

Rob Koper · Colin Tattersall (Eds.)

Learning Design

Rob Koper · Colin Tattersall (Eds.)

123

Learning Design

With 116 Figures

A Handbook on Modelling and Delivering
Networked Education and Training

Library of Congress Control Number: 2004117337

ACM Computing Classification (1998): K.3.1, J.4, H.4, H.5.3

ISBN 3-540-22814-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting: By the authors
Cover design: KünkelLopka, Heidelberg
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

Rob Koper
Colin Tattersall

Educational Technology Expertise Centre
Open University of the Netherlands
6419 AT Heerlen

Rob.Koper@ou.nl
Colin.Tattersall@ou.nl

Preface

The Valkenburg Group

In March 2002, thirty-three experts in e-learning from four continents met
each other for the first time in Valkenburg aan de Geul, a small village in
the south of The Netherlands. Since then, the group, referred to as the Val-
kenburg Group, has met several times at different locations to explore how
to improve the pedagogical quality of e-learning courses, in an interoper-
able way, with user-friendly tools. The general feeling of the experts was
that most of the current e-learning offerings lack one or more of these as-
pects: they are of poor pedagogical quality, they lack portability, or they
lack adequate tooling. Pedagogical quality is considered to be the key is-
sue. To be successful, e-learning must offer effective and attractive courses
and programmes to learners, while at the same time providing a pleasant
and effective work environment for staff members who have the task of
developing course materials, planning the learning processes, providing
tutoring, and assessing performance.

Learning Design

The Valkenburg Group reached consensus on the idea that the Educational
Modelling Language (EML) and the IMS Learning Design (LD) specifica-
tion provide a good starting point towards this objective. EML was devel-
oped at the Open University of the Netherlands and was released in De-
cember 2000. EML was the input for the development of the LD specifica-
tion by IMS, a consortium of global e-learning software companies and
users (see imsglobal.org) and the specification was released in February
2003. Although EML and LD differ in structure, functionally they are
more-or-less equivalent. With EML and LD, it is possible to develop and
present advanced, interoperable e-learning courses that go beyond current
implementations. The specifications were developed to describe an unlim-
ited number of pedagogical approaches, both old and new, by abstracting
from those described in the literature (eg, the collection of models de-
scribed by Reigeluth in 1983 and in 1999). This abstraction level is re-
ferred to as a pedagogical meta-model (Koper 2000, 2002), and has been
tested in practice in several implementations and with various courses in
different settings (Koper & Manderveld 2004). For example, with
EML/LD courses were described that are based on the active participation
of learners in an interoperable way, such as:

vi Preface

Educational role and game playing courses where multiple users per-
form a variety of interdependent tasks.
Problem-based learning courses where teams of learners collaborate in
problem solving and teachers have expert, assessment, coaching or
monitoring roles.
Learning community approaches based on social-constructivist princi-
ples, where the design of the learning environment stimulates collabora-
tion and sharing of knowledge and resources.
Performance support approaches, where learning tasks are assigned de-
pending on assessed knowledge gaps.
Adaptive courses where the pedagogical model, the learning processes
and content are adapted to, for example, the learning needs, preferences
and learning styles of learners.
Peer coaching and assessment approaches, where learners support each
other.

Koper and Van Es (in press) tested the pedagogical flexibility of LD more
systematically. Their approach used an inventory of databases of peda-
gogical models available on the Internet (also called “lesson plans”, see
Van Es 2004 for an overview). Sixteen lesson plans were randomly se-
lected from these databases, covering a variety of designs based on differ-
ent pedagogical traditions (behaviorist, cognitive, social-constructivist).
The lesson plans were all able to be coded in LD without any restrictions.

Learning Design provides a conceptual model for the description of
teaching and learning processes. In a certain sense it works like a musical
notation: it can capture the teaching and learning processes on paper. This
makes the design explicit, it can be reflected upon by the designers them-
selves or by others, and it can be further refined and shared within a com-
munity of course developers. This feature is expected to increase the qual-
ity of courses in the long run.

IMS delivers XML Schemas (W3C 2004b) as an integral part of all its
specifications. As a result, the learning designs of courses are expressed in
XML to make the course machine-readable. This means that courses en-
coded using LD can be processed by runtime agents, making the delivery
management of courses more efficient. In current e-learning systems, the
teacher still has many mundane management tasks to perform to set up and
maintain the environment. This can be automated to a large extent using
LD.

The realisation of all these very desirable advantages of LD is, however,
still a future perspective. The principles and standards are defined, but
most of the tooling still has to be developed. It is exactly this aspect,
namely the joint development of tools around LD, that has been the driving
factor behind the Valkenburg Group. Currently the European Commission

Preface vii

has strengthened the activity of the Valkenburg Group by funding by the
UNFOLD project1. This book is one of the valuable resources used within
this project, and some parts of the work of writing and editing this book
were also sponsored by the UNFOLD project.

Development of the Ideas Behind Learning Design

It is helpful to understand the ‘where, why, when and how’ that went into
the development of the concepts that inform LD. In 1997, the Open Uni-
versity of the Netherlands made a strategic decision that e-learning would
be central to its future in terms of helping to innovate institutes for higher
education and to renew its own educational system by implementing new
competency-based models of education, integrated into an electronic learn-
ing environment. The university had to confront the fact that many differ-
ent pedagogical approaches are in use in higher education and its own in-
stitution. A key issue was how these many different approaches should be
expressed and supported on-line. Up to then, many interesting e-learning
projects had provided innovative ways of support for particular pedagogi-
cal approaches, but were based on different systems, with different support
needs, scalability, and other characteristics, each requiring its own integra-
tion effort with existing systems. The alternative of attempting to limit ex-
isting practice to the use of one or two pedagogical approaches was, if any-
thing, even more problematic. An internally funded five-year R&D pro-
gramme was therefore initiated to address this difficult dilemma.

In addition to surveying the pedagogical approaches actually in use
within the university and its partners, the project team carried out exten-
sive research into the variety of available pedagogical approaches, identi-
fying over a hundred. The team then analysed these for common character-
istics and, through a process of abstraction and experimentation, arrived at
a ‘pedagogical meta-language’ that formed the base of EML. EML
evolved in several iterations over a further two-year period of develop-
ment. The development of EML went through three complete cycles of
specification development, implementation in prototype software, trialling
with users, evaluation of results, and redesign of the specification and pro-
totype software. A key aim throughout these three iterations was to
achieve the right balance between being sufficiently general to support the
desired range of pedagogies, while at the same time being sufficiently spe-
cific to be useful and capable of supporting what was needed. EML v1.0
was released in December 2000 after three years of development and ex-

1 UNFOLD (IST-2002-1_507835, January 2004 to December 2005) is funded
under the European Union’s Sixth Framework Programme. It is a Coordination
Action within the Technology-enhanced learning and access to cultural heritage
Action Line of the Information Society Technologies area.

viii Preface

perimentation. In 2001, the specification was accepted as the basis for the
development of the new IMS Learning Design specification, and after al-
most two years of work and debate, the final 1.0 version of the IMS speci-
fication was made available to the public in February 2003.

The basic idea of EML and LD (we hereafter refer only to LD) is in es-
sence simple. It represents a vocabulary which users of any pedagogical
approach understand, and into which existing designs can be translated.
The core of LD can be summarised as the view that, when learning, people
in specific groups and roles engage in activities using an environment with
appropriate resources and services.

Many approaches to learning expect learners to work in groups, as well
as on their own. However, e-learning standards to date have only sup-
ported the model of single learners working in isolation, such as the model
behind SCORM (ADL 2004b). An important capability of LD is its inte-
gration of discussions and more complex, collaborative approaches to
learning into the model of content provision to the isolated individual
learner. It is also desirable to integrate these two approaches so that both
could be in a single unit of learning. Other requirements of EML and LD
included:

allowing learners to work in several groups so that each group could do
different things at the same time to support more complex types of col-
laborations, as in project-based learning;
allowing different learners to do the same things at different times, such
as taking turns in different roles, or a large group accessing a limited re-
source (e.g. a remote telescope or other experimental equipment) in a
sequence of smaller groups.

Some kinds of learning, such as those derived from programmed learn-
ing, require tight control by the system of the learning sequence, depend-
ing on the learners’ response to tests; while others, such as role-plays, need
to allow participants greater control over the course of events. Newer
types, such as personalised learning and competency-based learning, have
to respond conditionally to the characteristics of the learner, or their cur-
rent state. To support such a wide variety of approaches to learning is hard,
but these ideas, particularly when implemented in an open specification
such as LD, make a bold attempt to lay down a foundation for the next
generation of learning systems. It is also of great benefit to e-learning sys-
tem developers to be able to support a wide range of pedagogical ap-
proaches using one language, rather than having to support one for each.

Preface ix

However, it should be borne in mind that, as with all first-generation e-
learning specifications, LD can be expected to evolve and develop in re-
sponse to the experiences gained from implementing and using it.

Goal of the Book

The goal of this book is to present the current state of the art in the devel-
opment of e-learning courses using LD. It provides information about LD,
how to implement it in practice, what tools to use, what pitfalls to avoid. It
is based on the experience of members of the Valkenburg Group in build-
ing tools and using these tools in practice. The book also goes beyond the
current state of the art by looking at future advancements.

It should be noted however, that LD is a fairly young specification.
Large scale implementations and a full toolset for handling LD are still
missing. As a consequence, we are, for example, not yet able to present
rigorous summative evaluative findings, and most of the current applica-
tions aim at proving the concepts behind LD. The authors and editors are
however convinced that the book will help the community of learning de-
signers and LD tool developers to further advance the field.

Intended Audience

The handbook is designed to serve both those with an understanding of the
LD specification, and those who are new to it. The target audience is e-
learning course and tool developers interested in the innovation of e-
learning. This includes people who want to improve the effectiveness and
attractiveness of e-learning by applying interoperable designs in their
courses, including active learning, collaborative learning, problem-based
learning, gaming approaches and other multi-role learning activities. It also
includes people who want to make teaching and learning using ICT more
efficient, e.g. by decreasing the workload of teachers using the automated
workflow possibilities of LD. And last but not least, it is intended for those
who want to create truly interoperable courses, including all content, ser-
vices and processes (and not only the interoperable sequenced content).

Conventions Used in the Book

Learning Design or learning design?

In the text, we use the term ‘Learning Design’ (with capitals) and its ab-
breviation, LD, when referring to the formal specification. At the time of
writing, this is the IMS Learning Design Specification, version 1.0. This
specification consists of three different items: an information model, a best

x Preface

practice and implementation guide, and an XML binding with a binding
document.

We use ‘learning design’ (without capitals) when the human activity of
designing units of learning, learning activities or learning environments is
meant. This term is never abbreviated to ld. As a synonym the phrase ‘in-
structional design’ or ‘instructional systems design’ is used in this book,
however some may argue that this has a slightly different accent in mean-
ing. Consequently we use ‘the learning design’ when the result of the
learning design activity is meant, i.e. a document describing the learning
design in any formal or informal notation that is not LD. Furthermore, ‘the
Learning Design’ is the part of a unit of learning that describes the XML
learning design elements.

When the XML element <learning-design> is meant, we will use the no-
tation ‘learning-design’ (with a hyphen).

Learning Design, Unit of Learning or unit of learning

The term ‘Unit of Learning’ (UOL) is used to describe an IMS Content
Package that contains a learning-design element as its organisation. This
use of the term is defined in the LD specification. We use the term ‘unit of
learning’ to indicate all different kinds of formal and informal learning
opportunities and events. Examples are courses, workshops, self-directed
informal learning events, lessons, a curriculum, etc.

 Preface xi

Suggested Reading Path

Course
developer

Tool
developer

Part I Specification, Architectures and Tools
1 An Introduction to Learning Design • •
2 The Learning Design Specification •

3 Architectures to Support Authoring and Con-
tent Management with Learning Design

•

4 An Architecture for the Delivery of E-learning
Courses

•

5 An Architecture for Learning Design Engines •

6 A Reference Implementation of a Learning De-
sign Engine

•

7 Learning Design Tools •
Part II Designing E-learning Courses
8 Basic Design Procedures for E-learning

Courses
•

9 An Instructional Engineering Method and Tool
for the Design of Units of Learning

•

10 Integrating Assessment into E-learning Courses •
11 Collaboration in Learning Design Using Peer-

to-Peer Technologies
• •

12 Designing Adaptive Learning Environments • •
13 Designing Educational Games •
14 Designing Learning Networks for Lifelong

Learners
•

15 How to Integrate Learning Design into Existing
Practice

•

Part III Experience
16 Applying Learning Design to Self-Directed

Learning
• •

17 Applying Learning Design to Support Open
Learning

•

18 Using Learning Design to Support Design and
Runtime Adaptation

•

19 The Edubox Learning Design Player •
20 Delivery of Learning Design: the Explor@ Sys-

tem’s Case
•

21 Challenges in the Wider Adoption of LD: Two
Exploratory Case Studies

•

22 A Learning Design Worked Example • •

xii Preface

Acknowledgements

The editors and authors wish to thank the management and staff of the
Schloss Dagstuhl International Conference and Research Center for Com-
puter Science for providing a pleasant, stimulating and well organised en-
vironment for the writing of this book. Furthermore, we would like to ex-
press our gratitude to the members of the Valkenburg Group and the mem-
bers of the Technology Development Programme of the Educational Tech-
nology Expertise Centre at the Open University of the Netherlands who
acted as reviewers for the book chapters. Last but not least, we want to
thank Mieke Haemers for the enormous effort she put into supporting the
editors.

Contents

Preface ..v

List of Contributors ..xxi

Part I The Specification, Architectures and Tools..................................1

1 An Introduction to Learning Design...3
1.1 Introduction ..3
1.2 The Knowledge of the Learning Designer....................................4
1.3 Learning Design Rules: What Are They?.....................................5

1.3.1 Learning Situation ...6
1.3.2 Learning Design Method...7

1.4 Learning Design Rules: How Are They Derived?......................13
1.4.1 Rules Derived from Theory...13
1.4.2 Rules Derived from Best Practice15
1.4.3 Rules Derived from Patterns in Best Practice16

1.5 Conclusion..19

2 The Learning Design Specification ...21
2.1 Introduction ..21
2.2 The Move from EML to Learning Design..................................21
2.3 Who Is the Learning Design Specification for?22
2.4 A Reading Guide to the Specification Documents23
2.5 Understanding the Learning Design Specification25

2.5.1 Units of Learning...25
2.5.2 Where Learning Design Fits into a Content Package..........25
2.5.3 Looking Inside the learning-design element27
2.5.4 Running a Learning Design...28
2.5.5 Learning Objects and Learning Services.............................32

2.6 Learning Design Levels A, B and C...34
2.6.1 Level B ..35
2.6.2 Level C ..38

2.7 Conclusions ..40

3 Architectures to Support Authoring and Content Management with
Learning Design ...41

3.1 Introduction ..41
3.2 Workflows for Learning Design...41

3.2.1 Constraining the Variety of Possible Learning Designs......42

xiv Contents

3.2.2 Creating, Editing, and Storing Learning Design Templates 42
3.2.3 Creating and Editing Learning Designs 42
3.2.4 Editing the Presentation of Learning Designs 43
3.2.5 Discovering and Adding Materials to Learning Designs 43
3.2.6 Aggregating Learning Designs.. 44
3.2.7 Creating, Editing and Storing Materials 44
3.2.8 Testing Learning Designs.. 44
3.2.9 Storing Learning Designs in Repositories 44
3.2.10 Discovering and Retrieving Learning Designs from
Repositories .. 44

3.3 The Valkenburg Group Reference Architecture......................... 45
3.3.1 Constraint Editor ... 45
3.3.2 Reference Runtime .. 45
3.3.3 Learning Design Editor ... 47
3.3.4 Learning Designs Repository .. 47
3.3.5 Materials Repository ... 48
3.3.6 Stylesheet Editor.. 48
3.3.7 Search Toolkit ... 49
3.3.8 Material Editor(s) .. 49
3.3.9 Metadata Editor ... 49
3.3.10 Runtime Environment ... 50

3.4 The Architecture of a Flexible Learning Design Authoring
Tool .. 50

3.4.1 Constructing an LD Editor .. 51
3.5 The Reference Architecture in Context 54

3.5.1 Web Services... 54
3.5.2 Service-Oriented Architecture... 55
3.5.3 The Open Knowledge Initiative .. 58
3.5.4 IMS Abstract Framework .. 59
3.5.5 JISC e-Learning Framework ... 62

3.6 Conclusion.. 62

4 An Architecture for the Delivery of E-learning Courses................... 63
4.1 Introduction .. 63
4.2 Requirements Analysis ... 64
4.3 Design... 66

4.3.1 Moving from an Abstract Course to Specific Deliveries 67
4.3.2 Constraints on Run Creation ... 69

4.4 Implementation... 70
4.5 Conclusion.. 72

Contents xv

5 An Architecture for Learning Design Engines...................................75
5.1 Introduction ..75
5.2 Learning Design Engines as Collections of Finite State
Machines...76
5.3 Populating the Unit of Learning ...78
5.4 Properties ..80
5.5 Event Handling...83
5.6 Publication..86
5.7 Personalization ...88
5.8 Conclusions ..89

6 A Reference Implementation of a Learning Design Engine..............91
6.1 Introduction ..91
6.2 Conceptual Overview ...92

6.2.1 CourseManager ...92
6.2.2 LDEngine ..94

6.3 Technical Overview..103
6.4 Implementation Strategies ..105
6.5 Summary...108

7 Learning Design Tools..109
7.1 Introduction ..109
7.2 General Purpose Tools..109

7.2.1 Pieces of the Valkenburg Group Reference Architecture
Which Do Not Require Special Tools ..110
7.2.2 User Roles ...112

7.3 A Framework for Situating Learning Design Authoring
Tools ...114

7.3.1 Higher- vs Lower-Level Tools ..114
7.3.2 General Purpose vs. Specific Purpose Tools115

7.4 Design Time Tools ...118
7.4.1 Tree-Based Editors ..118
7.4.2 Higher-Level General Purpose Editors..............................121
7.4.3 Tools Which Are Standards Compliant, but Not Standards
Oriented ..125
7.4.4 An Enabling Framework for Editor Development126

7.5 Runtime Tools ..128
7.5.1 Learning Design Players: Delivering the Unit of Learning to
the Learner..128
7.5.2 Specialized Players..130
7.5.3 Learning Design Reference Runtime130

7.6 Repositories ..131

xvi Contents

7.7 Tools for Developers .. 132
7.7.1 CopperCore: a Learning Design Engine............................ 132
7.7.2 Compliance Testing... 133

7.8 Conclusion.. 133

Part II Designing E-learning Courses .. 137

8 Basic Design Procedures for E-learning Courses 139
8.1 Introduction .. 139
8.2 An Overview of the Five ISD Phases 140
8.3 The Learning Design Specification .. 143
8.4 Designing Instruction with Learning Design............................ 146

8.4.1 Analysis ... 148
8.4.2 Design.. 148
8.4.3 Development ... 157

8.5 Summary and Conclusion... 159
8.6 Acknowledgements .. 160

9 An Instructional Engineering Method and Tool for the Design of
Units of Learning ... 161

9.1 Introduction .. 161
9.2 Instructional Engineering Viewpoint on the LD Specification 162

9.2.1 Defining Instructional Engineering 162
9.2.2 Relationship Between Instructional Engineering and the
Learning Design Specification ... 163

9.3 An Instructional Engineering Method for Learning Design..... 165
9.3.1 Implementation.. 165
9.3.2 The MISA 4.0 Instructional Engineering Method............. 165
9.3.3 MISA Instructional Model .. 168

9.4 Graphical Modelling of Learning Designs 173
9.4.1 MISA/MOT+ as an Educational Modelling Language 174
9.4.2 A Graphical Language to Represent an LD Method
Structure ... 174
9.4.3 Using an MOT+ Editor.. 177

9.5 An LD Case Study.. 178
9.5.1 The Versailles Narrative.. 178
9.5.2 An MOT+ Representation of the Versailles Case 179
9.5.3 Discussion of the Case... 183

9.6 Conclusion.. 183

Contents xvii

10 Integrating Assessment into E-learning Courses185
10.1 Introduction ..185
10.2 Assessment: an Integral Part of the Design of Learning and
Instruction...186
10.3 Standardisation of Assessments in Learning Design..............188

10.3.1 What Is QTI? ...190
10.3.2 Principles of QTI ...190

10.4 The Four Processes in Assessment ...197
10.5 Conclusion..202

11 Collaboration in Learning Design Using Peer-to-Peer
Technologies ...203

11.1 Introduction ..203
11.2 The Evolution of Peer-to-Peer Environments for Learning....203

11.2.1 What Is P2P? ...203
11.2.2 P2P and Learning Design ..205
11.2.3 Challenges for P2P ..212
11.2.4 P2P and Collaboration...212

11.3 Conclusions ..213

12 Designing Adaptive Learning Environments with Learning
Design..215

12.1 Introduction ..215
12.1.1 Adaptive Learning: Background and Motivation215
12.1.2 Remainder of this Chapter...216

12.2 Implementation Options for Adaptive Learning in LD216
12.3 Assumptions ...217

12.3.1 LD Level B..217
12.3.2 Learner Profile Information...217
12.3.3 Multiple Variants...218
12.3.4 Instructor Variation ...218

12.4 Examples of Adaptive Learning in LD...................................218
12.4.1 Synchronous vs. Asynchronous Interactions...................218
12.4.2 Rule–Example vs. Example–Rule219
12.4.3 Variations in Encouragement ..220
12.4.4 Other Uses ...221

12.5 Limitations of Adaptive Learning in LD................................221
12.5.1 Multiple Rule Interactions...222
12.5.2 Lack of Enforced Ordering..223
12.5.3 Manifest-Centred vs. Server-Centred225

12.6 Conclusion..226
12.7 Acknowledgements ..226

xviii Contents

13 Designing Educational Games ... 227
13.1 Introduction .. 227
13.2 Overview of Games as Reusable Instructional Activities 227
13.3 Referencing Game Activities in Learning Design.................. 228
13.4 Game Representation: the Memory Example......................... 232
13.5 Discussion and Conclusions ... 235
13.6 Acknowledgements .. 237

14 Designing Learning Networks for Lifelong Learners.................... 239
14.1 Introduction .. 239
14.2 Requirements of a Learning Network 240
14.3 Formal Representation of a Learning Network 243
14.4 The Architectural Structure of a Learning Network............... 246
14.5 Implementations of a Learning Network................................ 247

14.5.1 The Groove-Based Prototype .. 248
14.5.2 PHP Nuke and Moodle.. 251

14.6 Conclusion.. 252

15 How to Integrate Learning Design into Existing Practice............. 253
15.1 Introduction .. 253
15.2 EML and LD... 254
15.3 The OUNL Case ... 255
15.4 How to Get Started ... 257
15.5 How to Design.. 258
15.6 How to Create... 262
15.7 How to Deliver ... 264
15.8 Conclusion and Discussion... 266

Part III Experience .. 267

16 Applying Learning Design to Self-Directed Learning................... 271
16.1 Introduction .. 271
16.2 Requirements .. 272
16.3 Application of Learning Design ... 274

16.3.1 Management of the Project.. 274
16.3.2 EML and Learning Design .. 274
16.3.3 Navigation Model.. 274
16.3.4 Extending the Interaction Model 276

16.4 Realisation .. 277
16.4.1 Design of Navigation Interface 277
16.4.2 Structure of the Material.. 277
16.4.3 Rendering of Pages.. 279

Contents xix

16.5 Project Outcomes..280
16.6 Conclusions ..280

17 Applying Learning Design to Supported Open Learning281
17.1 Introduction ..281
17.2 Supported Open Learning and Learning Design283

17.2.1 The Open University Approach.......................................283
17.2.2 Course Models...284

17.3 Applying Learning Design ...284
17.3.1 Learning Design Applied to a Simple Example285
17.3.2 Learning Design Applied to a Multi-Role Example........285
17.3.3 Learning Design as a Design Tool286
17.3.4 Discussion of Learning Design Examples.......................287

17.4 Plans for Learning Design at The Open University................289
17.5 Conclusion..290

18 Using Learning Design to Support Design and Runtime
Adaptation ..291

18.1 Introduction ..291
18.2 Adaptive E-learning Systems and Technologies293
18.3 The First Version of aLFanet..295

18.3.1 Authoring, Publishing and Delivering LD296
18.3.2 Adaptation and Agents ..298
18.3.3 Current Progress ..300

18.4 Conclusions ..301

19 The Edubox Learning Design Player ..303
19.1 Introduction ..303
19.2 The Historical Development of Edubox.................................304
19.3 Edubox 2...306
19.4 Edubox 3...308
19.5 Conclusion..310

20 Delivery of Learning Design: the Explor@ System’s Case311
20.1 Introduction ..311
20.2 Explor@-2 General Presentation ..312
20.3 The Explor@ Learning Design Information Model317
20.4 Integrating the LD (Level A) Specification in Explor@-2.....319
20.5 Integrating Level B and C Specifications in Explor@-2 or
Taking an Epiphyte Approach..321
20.6 Conclusion – Where to Go Next …and Further324

xx Contents

21 Challenges in the Wider Adoption of Learning Design: Two
Exploratory Case Studies.. 327

21.1 Introduction .. 327
21.2 The Units of Learning Developed .. 327

21.2.1 The Two SCOPE Units Of Learning............................... 328
21.2.2 The Interface Design Unit Of Learning........................... 328

21.3 Developing the Units Of Learning ... 329
21.4 Reflections on the Development Process 330

21.4.1 The Editing Environment .. 330
21.4.2 Delivery and Evaluation of the Units of Learning 332

21.5 The Effectiveness of the Solutions Developed....................... 336
21.6 Conclusions .. 338

22 A Learning Design Worked Example ... 341
22.1 Introduction .. 341
22.2 The scenario.. 341
22.3 Running the Scenario in a Player ... 342

22.3.1 Introduction (Learner) ... 343
22.3.2 Enter Initial Thoughts (Learner)...................................... 344
22.3.3 Monitor the Initial Thoughts (Tutor) 344
22.3.4 What Do Others Think? (Learner) 346
22.3.5 Respond To Initial Thoughts (Tutor) 348

22.4 Dissecting the XML Code .. 350
22.4.1 Roles.. 350
22.4.2 Properties... 350
22.4.3 Learning-Activities.. 351
22.4.4 Support-Activities ... 353
22.4.5 Plays and Acts ... 354
22.4.6 Environments... 355
22.4.7 Conditions ... 357
22.4.8 Key Resources ... 358

22.5 Concluding Remarks .. 360
22.6 XML Code.. 361

Appendix... 367

Glossary .. 387

References... 391

Index ... 405

List of Contributors

Blat, Josep
Interactive Technology Group
Department of Technology
Universitat Pompeu Fabra
Estació de França, Passeig de Circumval.lació 8
E-08003 Barcelona
Spain

Boticario, Jesús
Dpto. INTELIGENCIA ARTIFICIAL
ETSI Informática
Universidad Nacional de Educación a Distancia (UNED)
Juan del Rosal, 16 - 3ª
E-28040 Madrid
Spain

Casado, Francisco
Interactive Technology Group
Department of Technology
Universitat Pompeu Fabra
Estació de França, Passeig de Circumval.lació 8
E-08003 Barcelona
Spain

De la Teja, Ileana
CIRTA (LICEF) Research Centre
Télé-université
4750, avenue Henri-Julien
Bureau 100
Montréal (Québec)
H2T 3E4
Canada

Douglas, Peter
Intrallect Ltd.
Braehead Business Park
Braehead Road
Linlithgow
EH49 6EP
UK

xxii List of Contributors

Duncan, Charles
Intrallect Ltd.
Braehead Business Park
Braehead Road
Linlithgow
EH49 6EP
UK

Farooq, Umer
Penn State University
227H Computer Building
University Park
PA 16802
USA

Garcia, Rocío
Interactive Technology Group
Department of Technology
Universitat Pompeu Fabra
Estació de França, Passeig de Circumval.lació 8
E-08003 Barcelona
Spain

Gorissen, Pierre
Fontys Hogescholen
Het Eeuwsel 1-2
Gebouw S1, kamer 1.12
5612 AS Eindhoven
The Netherlands

Griffiths, David
Interactive Technology Group
Department of Technology
Universitat Pompeu Fabra
Estació de França, Passeig de Circumval.lació 8
E-08003 Barcelona
Spain

List of Contributors xxiii

Halm, Michael
Penn State University
227H Computer Building
University Park
PA 16802
USA

Hermans, Henry
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Hoadley, Christopher
Penn State University
314D Keller Building
University Park
PA 16802
USA

Hummel, Hans
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Janssen, José
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Joosten-ten Brinke, Desirée
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

xxiv List of Contributors

Koper, Rob
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Kwong, KL
GTK Press
18 Wynford Drive, Unit 109
Don Mills, Ontario
M3C 3S2
Canada

Latour, Ignace
Citogroep
Nieuwe Oeverstraat 50
6811 JB Arnhem
The Netherlands

Léonard, Michel
CIRTA (LICEF) Research Centre
Télé-université
4750, avenue Henri-Julien
Bureau 100
Montréal (Québec)
H2T 3E4
Canada

Lundgren-Cayrol, Karin
CIRTA (LICEF) Research Centre
Télé-université
4750, avenue Henri-Julien
Bureau 100
Montréal (Québec)
H2T 3E4
Canada

List of Contributors xxv

Manderveld, Jocelyn
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Marino, Olga
CIRTA (LICEF) Research Centre
Télé-université
4750, avenue Henri-Julien
Bureau 100
Montréal (Québec)
H2T 3E4
Canada

Martens, Harrie
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Martinez, Juanjo
Interactive Technology Group
Department of Technology
Universitat Pompeu Fabra
Estació de França, Passeig de Circumval.lació 8
E-08003 Barcelona
Spain

McAndrew, Patrick
Institute of Educational Technology
The Open University
Walton Hall
Milton Keynes
MK7 6AA
UK

xxvi List of Contributors

Morrey, Martin
Intrallect Ltd
Braehead Business Park
Braehead Road
Linlithgow
EH49 6EP
UK

Olivier, Bill
Bolton Institute of Higher Education
Deane Road
Bolton
BL3 5AB
UK

Paquette, Gilbert
CIRTA (LICEF) Research Centre
Télé-université
4750, avenue Henri-Julien
Bureau 100
Montréal (Québec)
H2T 3E4
Canada

Richards, Griff
Simon Fraser University Surrey
10153 King George Highway
Surrey
British Columbia
V3T 2W1
Canada

Sayago, Sergio
Interactive Technology Group
Department of Technology
Universitat Pompeu Fabra
Estació de França, Passeig de Circumval.lació 8
E-08003 Barcelona
Spain

List of Contributors xxvii

Sloep, Peter
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Tattersall, Colin
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Towle, Brendon
Thomson NETg
1751 W. Diehl Road
2nd Floor
Naperville
IL 60563-9099
USA

Van Rosmalen, Peter
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Vogten, Hubert
Educational Technology Expertise Centre
Open University of the Netherlands
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands

Weller, Martin
Institute of Educational Technology
The Open University
Walton Hall
Milton Keynes
MK7 6AA
UK

xxviii List of Contributors

Wilson, Scott
Research Institute for Enhancing Learning
University of Wales
Holyhead Road
Bangor
Gwynedd
LL57 2PX
UK

1

Part I

THE SPECIFICATION, ARCHITECTURES AND TOOLS

The first part of the book contains seven chapters. Chapter 1 sets the stage
for the book by introducing the concept of learning design in a rather in-
formal way. The second chapter will introduce you to the Learning Design
(LD) specification, and will guide you in reading and understanding it.
Three subsequent chapters provide architectures for the development of
tools that enable authoring, content management and the delivery of e-
learning courses coded with the LD specification. The final two chapters
provide an overview of the set of tools needed when working with LD:
Chap. 6 introduces the open source CopperCore engine that serves as a
reference implementation for an LD runtime engine, and Chap. 7 provides
an overview of the types of tools available.

1 An Introduction to Learning Design

Rob Koper

Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

1.1 Introduction

How can we help people to learn in an effective, efficient, attractive and
accessible way? There is no simple, straightforward answer to this ques-
tion; depending on the specific situation, solution X will work best for per-
son Y. However, it is generally acknowledged that we can improve learn-
ing considerably by making the conditions for optimal learning explicit,
and then use this knowledge to design new learning events.

Our knowledge of learning design draws on different disciplines. It an-
swers questions such as the following:

What support do people need in order to learn?
How can we assess and communicate the results of a learning process?
How can we make learning and support as effective, efficient, attractive
and accessible as possible for everyone involved in the process?

Implicit in these questions are issues related to the nature of knowledge,
the nature of learning and the nature of motivation and social exchange.
There are several ways to capture learning design knowledge, one of
which is the instructional design approach. Here, knowledge is encapsu-
lated in theories consisting of a set of design principles. Another approach
is to identify best practices in teaching and learning, and yet another is to
capture the knowledge in pedagogical design patterns. Such patterns take
up a position in between theory and best practices in that they are ab-
stracted from best practices. What a teacher believes about good teaching
and learning is influenced by one or more sources. These are: prescriptions
taken from instructional design theory; concrete examples of best prac-
tices; and patterns of experience. In each case, we will call the representa-
tion of this knowledge learning design knowledge.

A learning design is defined here as the application of learning design
knowledge when developing a concrete unit of learning, e.g. a course, a

4 R. Koper

lesson, a curriculum, a learning event. Our assumption is that the quality of
a unit of learning depends largely on the quality of the learning design,
and, moreover, that every learning practice (e.g. a course) has an underly-
ing learning design that is more generic than the practice itself. This is
similar to the belief that every building has an underlying architecture
which is more generic than the building itself. The design can be re-used
over and over again at different times and places for more or less the same
course (or building). This does not necessarily mean that the design is
made explicit before it is used. That may well be the case when it comes to
the architecture of buildings, but it is not common practice in education.
There is (still) no real tradition in education of making formal notations of
course designs that can be understood by anyone who is trained to read
them. The lack of a common notation makes designing courses a very local
or even individual event. It hampers broader communication about effec-
tive educational practice and impedes the evaluation of existing designs. It
also makes it difficult to automate some or all of the design and delivery
process. A notation would increase the effectiveness of education and
training and reduce the overall cost by making it possible to automate the
laborious, repetitive parts of the process.

In this chapter we introduce the concept of learning design. We examine
what a learning designer must know in order to create high-quality learn-
ing designs, and we discuss the nature of this knowledge, how it can be
modelled in terms of rules, and how the rules are derived. We use several
examples to introduce the different modelling concepts. Our informal in-
troduction to many of the concepts used in learning design sets the stage
for the rest of this book. We do not discuss the specifications for a learning
design (LD 2003) in any great detail, but we do introduce most of the basic
modelling concepts by comparing learning design to a theatre piece and by
providing several informal examples of learning design methods or lesson
plans. We conclude the chapter by describing the requirements for a learn-
ing design notation, which will then be presented in the next chapter.

1.2 The Knowledge of the Learning Designer

In this chapter, we use the term ‘learning designer’ to describe those who
have a learning design task to perform. They can be course developers,
curriculum developers, teachers, trainers, coaches, mentors or learners who
design their own learning plans. A learning designer’s basic task is to de-
sign a course that meets a set of learning objectives. Say, for example, that
a learning designer wishes to develop a course on ‘Spanish as a Second
Language’. How does the designer proceed? What steps must be taken to
develop an effective course? Typically, the designer should seek solutions

1 An Introduction to Learning Design 5

that give learners a good chance of attaining the learning objectives of the
course. However, the best solution depends heavily on the context of the
course. It is possible to develop hundreds of different Spanish courses, one
more suitable in situation A, and another in situation B. Solving this prob-
lem requires the designer to make use of design knowledge, i.e. a set of
rules that can be applied to the design problem. One example of such a rule
is: ‘When learning a new language, the best approach is to present various
common situations – e.g. transacting business in a shop or a hotel – and
define different tasks for students to perform in that situation.’ A design
rule can also take the form of a specific example: ‘This particular Spanish
course has been used successfully in a comparable situation.’ We will an-
swer two basic questions about learning design rules in the following sec-
tions: what are they, and how are they derived?

1.3 Learning Design Rules: What Are They?

In the literature much has been written about the nature of learning design
knowledge. In this section we will elaborate on the work of Reigeluth
(1999, pp 5–30) to specify what learning design rules are. Reigeluth uses
learning design knowledge as a synonym for instructional design theory
and defines it as knowledge that offers explicit guidance on how better to
help people learn and develop. The theory is not descriptive in nature, but
prescriptive: it offers guidelines as to what method or methods can be used
better to attain a certain learning outcome. Reigeluth states that learning
design knowledge is situational rather than universal, meaning that one
method may work best in one situation whereas another method works best
in a different one. This means that learning design knowledge consists of a
set of prescriptive rules with the following basic structure: ‘If learning
situation S, then use learning design method M.’ Furthermore, these rules
are not meant to be deterministic, but probabilistic. Applying a rule does
not guarantee that we reach the desired outcome, but it does increase the
probability that we will. We can expand the rule to reflect this idea: ‘If
learning situation S, then use learning design method M, with probability
P.’ It is difficult to indicate the exact probability of design rules for various
reasons, and we are usually not able to do so. One reason is that probabil-
ity is also situation dependent. However, although a rule does not guaran-
tee complete success, the probability of finding a good solution increases
when it has been thoroughly tested in practice. The argument is that using
learning design rules will probably result in better courses than ad hoc and
random decisions about a course design.

Another factor which we have to take into account, and which is also
difficult to measure, is that the rules are not value free. People prefer cer-

6 R. Koper

tain learning outcomes and methods above others. There are generally sev-
eral alternative methods that can be used in a given situation, and in such
circumstances in particular, the learning designer has to evaluate the vari-
ous methods available and choose between them.

Given the discussion above, we can now summarise the structure of a
learning design rule as follows:

If learning situation S (and value V)
then use learning design method M (with probability P)

As we mentioned above, the segments between brackets in the equation
are difficult to measure. We do not intend to discuss these aspects in detail,
but will concentrate on the two key factors in the equation: the learning
situation and the learning design method.

1.3.1 Learning Situation

The left-hand side of the equation is the learning situation. It contains all
the factors that are of importance when selecting adequate learning design
methods. The situational factors can be seen as the requirements that any
new learning design method has to meet, or as descriptors of the situation
in which an existing learning design method has been applied. The situ-
ational factors can be divided into learning outcomes and learning condi-
tions. Learning outcomes are related to the level of effectiveness, effi-
ciency, attractiveness and accessibility of the learning design method:

1. Effectiveness describes how well the learning objectives have been met
by the learning design method. For instance, when a Spanish course is
effective, 80% of the students will pass the test; when it is non-effective,
only 40% will. Success is measured by the number of students who pass
the test.

2. Efficiency describes the labour intensity and cost of the method, both
for the learners as they work to attain the outcomes and for the teachers
as they attempt to support the learners.

3. Attractiveness describes how much the activities appeal to the learners
and teaching staff.

4. Accessibility describes how easily learners and staff can access the
learning facilities: are the facilities location dependent or are they acces-
sible remotely; are there time constraints or can learners work whenever
they like; can the facilities be adapted to specific situational or personal
circumstances; etc.?

1 An Introduction to Learning Design 7

The learning conditions can be categorised as the characteristics of the
learning objective, the learners, the setting and the media. A special vo-
cabulary is needed in each category, for example:

1. Learning objective: knowledge, skill, attitude, competence
2. Learner characteristics: pre-knowledge, motivation, situational circum-

stances
3. Setting characteristics: individual and/or group work, work at school

and/or work and/or home
4. Media characteristics: bandwidth, synchronous/asynchronous, lin-

ear/interactive, media types.

1.3.2 Learning Design Method

The right-hand side of the equation is the key part: the learning design
method (or simply ‘method’). In this section we explain what a learning
design method is and then analyse the overall structure of a method and its
underlying components. We will use the script of a play as a metaphor to
explain the various issues involved.

The Script as a Metaphor

A learning design method describes a teaching–learning process, i.e. the
process undertaken by persons interacting within a learning environment.
To help us model this process, we can look at examples of similar proc-
esses and take these as a metaphor for our own. One useful metaphor for
learning design is the script of a theatrical play, a film or a game. A script
models all kinds of realities in which actors interact with one another
within the context of a defined environment (the stage; the scene). Let us
look at an example from the script of the play Street Theater by Wilson
(see next page).

If we analyse the structure of the script, we can identify the following
components:

1. Metadata: the descriptive data that is not a part of the play itself, but
identifies the title, author, copyright, objectives, etc.

2. Roles: Murfino and Jack are the roles. The roles are played by persons
who are referred to as actors. In this example the role is for single per-
sons. There are also roles, like Crowd or Jury, which are performed by a
group of actors.

3. Acts: this play has two acts (only a fragment of the first act is quoted).
The curtains usually close between acts to allow the stage crew to set up

8 R. Koper

new scenery or to give the actors a break. Acts are sequential; one fol-
lows the other.

Doric Wilson’s
STREET THEATER

Stonewall 1969

in two acts
Roles for this fragment:
- MURFINO, a thug
- JACK, heavy leather, keys left

Act One

(No curtain. No scenery. The audience, arriving, sees an empty performance space in half-
light. The sound system plays a medley of up beat golden oldies from the late sixties,
ending with the Lovin’ Spoonful’s Summer in the City. MURFINO, a thug, enters through
the audience carrying a battered garbage can.)

MURFINO: (To the audience, an unauthorized prologue.) Hot enough for you? They say
we got another week of heat wave. (As he wipes his brow.) This play is all about this
bunch of lowlifes. Juicebums, hopheads, weirdos, oddballs, queers—what you call your
“artistic element.” The usual gutter crud you got to expect to contend with down here in
Greenwich Village.

(The stage lights come up as MURFINO places the garbage can downstage left. JACK,
heavy leather, keys left, enters left, carrying an overly full plastic trash bag. The ominous
image used to promote S&M establishments, JACK’s geniality and good humor comes as a
surprise to the uninitiated.)

JACK: (Giving the bag to MURFINO.) Here you go, Murfino.

MURFINO: (Investigating the bag.) What’s this?

JACK: You forgot your lunch.

MURFINO: Garbage! (Emptying a wide assortment of rubbish into the garbage can,
filling it to overflowing.) We gotta be this authentic?

4. The set-up of the stage environment: the descriptions between brackets
provide information about the set-up: the staging (music, no scenery),
the props (garbage can, trash bag), and which actor is on the stage at
what time.

5. Role-part: the following describes a role-part: ‘MURFINO: (Investigat-
ing the bag.) What’s this?’ A role-part describes the activities of an ac-
tor when it is his or her turn on stage.

1 An Introduction to Learning Design 9

6. Sequence of activities: the sequence of activities is specified in two
ways. The order of the text lines suggests the order in time. However,
when different activities are performed simultaneously (e.g. a crowd
shouts while two knights are jousting), this is usually explained in the
text between brackets.

7. Conditions: these are special comments between brackets that tell the
actors how to adapt to specific situations. These are not shown in the
fragment presented above, but an example would be: (if the audience
laughs, tell them …; otherwise say …). Such constructs are generally
found more in game scripts and other interactive scripts than in linear
media formats such as plays and film.

In addition to these structural aspects, we can identify other important
factors in our script metaphor. One is the specificity of the script: it can be
very strict and detailed or more open to improvisation during performance.
Specificity, in turn, is related to another factor, which is that the script of
the play is different from the performance of the play itself. The script is a
model of the play. It is a high-level description that focuses on some de-
tails but abstracts from others. The same script can be staged by many dif-
ferent theatre companies at many different locations, with different actors
and for different audiences. It can be repeated over and over again, but the
actual performance (a ‘run’ in computer terms) can be very different and
have certain unique aspects to it. As a result, a script has to be instantiated
and interpreted at different moments in time to create an actual play.

Another factor is that the scripting language has a particular format
(roles, acts, etc.), but it does not require that the play be of any specific
type (e.g. a comedy or a drama). In fact, all sorts of realities or fantasies
can be modelled in a play or film. The medium puts constraints on what
can be modelled, e.g. some things are possible in film that are not possible
in the theatre, but these constraints only impact the quality of the represen-
tation, not its essence.

Finally, it is important to note that scripts are generally written by a spe-
cialist who is not necessarily the director or one of the actors.

Structuring Learning Design Methods as a Script

We can use the metaphor of a script to model learning design methods.
Learning design methods have different names, one of which is ‘lesson
plan’. A search on the Internet reveals several sites with example lesson
plans (see Van Es (2004) for a list). Let us look at a lesson plan for a Span-
ish course (Masciarelli 2004).

10 R. Koper

Title: Beginning of the Year or Semester Review for returning students
Primary Subject: Language Arts - Spanish; Grade Level - 6-8
General Goal: Student will be able to converse with peer in target language as a way of
reviewing previously learned material.

Required Materials:
- Textbook (Ven Conmigo)
- Lined Paper
- Name sticks (for random pairing)

Anticipatory Set (Lead-In):
Show scene from accompanying video series that models student conversation. Discuss
how at the end of the course last year, all students were able to converse like this.

Step-By-Step Procedures:
1. Students should be assigned partners by random pairing of name sticks.
2. Students should begin by reviewing key phrases and verbs. They should do this in pairs

using a read and quiz method.
3. To reinforce the review, students should write an outline of what they’d like to say in

their conversation, either as homework or in the next class. When students have
completed their outline, they should create a realistic conversation.

4. After they have completed their conversation, the students should check with the
teacher before memorising the dialogue. Any mistakes should be brought to the
students’ attention. Once correct, memorisation and practice should begin.

5. Once memorised, the conversation should be performed before the class.

Closure (Reflect Anticipatory Set): If lessons are videotaped, students may watch their
videos and compare them to the series that accompanies the book.

Assessment Based On Objectives: Students may be graded using a rubric based on
objectives or be given narrative feedback. Students could also use their own videos as a
self-assessment tool.

We can model this lesson plan as a kind of play. The metadata is the ti-
tle, author, learning objective (general goal). The roles are implicit: teacher
and students. The script is told from the teacher’s point of view. As no ex-
plicit acts are mentioned we can model it as a one-act play, but the group-
ing of activities suggests four acts (anticipatory set, step-by-step proce-
dures, closure and assessment). The set-up of the learning environment is
not described in detail, but a classroom context is implied. The role-part
can be distilled from the text, for example:

Teacher: Show scene from accompanying video series…
Teacher: Assign students in random pairs, using name sticks…
Student: Review key phrases and verbs….

1 An Introduction to Learning Design 11

Note that the role-part is described using the structure ‘Role: Activity’.
The sequence is indicated by the text, as in a script. Some conditions are
mentioned: ‘if lessons are videotaped, …’; ‘when students have completed
their outline’. Taking the script as our metaphor, we could rewrite the les-
son plan as follows (in abridged form):

LEARNING DESIGN METHOD

Metadata:
 Title: Beginning of the Year or Semester Review for returning students
 Primary Subject: Language Arts, Spanish;
 Students: Grade Level - 6-8
 Setting: classroom, students grouped in pairs
 Learning Objectives: Student will be able to ….

Play:
 Act I (Anticipatory Set):
 Teacher: Show scene from accompanying video series… (video set)
 Act II (Step-by-step procedure):
 Sequence:
 1. Teacher: Assign students in random pairs, using name sticks…
 (name sticks)
 2. Student: Review key phrases and verbs….(Ven Conmigo)
 3. etc.
 Act III (Closure)
 Teacher: Grade students (score system) OR
 Student: Use video to carry out self-assessment (video)

Conditions:
IF conversation is complete THEN students check with the teacher before

 memorising.
IF teacher wants to grade THEN students do not carry out self-assessment.

 Etc.

Look at how the activities in the example are structured. Every activity
implies certain resources that are needed to perform it, e.g. a classroom,
name sticks or a book. To put it more generally: roles perform activities
within an environment (e.g. classroom, stage, home). The environment is
filled with resources (e.g. books, computers) that can be used. Every activ-
ity is closely related to the environment needed to perform the activity.
When analysing the sentence that describes the activity, we get an idea of
the resources needed in the environment. Take the sentence ‘students may
watch their videos and compare them to the series that accompanies the
book’. The verbs in the sentence (watch, compare) describe the behaviour
students are expected to undertake. The nouns in the sentence define the
resources that are needed (their videos, the series that accompanies the
book). Besides these nouns, implicit resources may also be needed to per-

12 R. Koper

form the activity, e.g. the video player, a classroom. In the example above,
we summed up the resources between brackets.

Method Components

Methods are not fixed in terms of number of components; they can be bro-
ken down into smaller methods or constituent parts. In the example above,
the different acts can all be seen as smaller methods that can be reused in
other contexts. The method used in the Spanish course can also be incorpo-
rated into a larger course or curriculum. This raises several intriguing
questions: can we develop new methods from existing smaller ones, and
what is the smallest workable, reusable unit for developing methods? The
subject of reusing smaller learning objects (figures, computer programs
and textbooks) is a popular one in the literature (see e.g. Littlejohn 2003).
It is important to reuse learning objects, but we must bear in mind that they
are not courses; they are the resources needed to perform learning activi-
ties. Reusing a learning resource in a new course still requires us to inte-
grate the object into the course activities and method. So the exchange of
learning resources can be seen as one level of reuse in education and train-
ing. Another option is to reuse learning design methods or parts of such
methods. It is too early to say how far a learning design method can be
broken down and what the smallest constituent part is; it may be a ‘play’,
an ‘act’ or an ‘activity’. We assume that all three can be exchanged to de-
velop new courses.

Summary

In the previous sections, we analysed the structure of learning design rules.
The formula takes the following format:

If Learning Situation:
 Required level of effectiveness, efficiency, attractiveness, accessibility AND
 Characteristics of learning objectives, learners, setting, media AND
 Values of Learning Designer
then Learning Design Method:
 A Play of one or more sequential Acts with one or more parallel Role-parts,

Taking into account a set of conditions for the Play, the Act or the Role-part
with A certain probability of success

1 An Introduction to Learning Design 13

1.4 Learning Design Rules: How Are They Derived?

Now that we know how a learning design rule is structured, we can answer
the next question: how can we create rules that work, i.e. rules that offer a
high probability that learners will indeed attain the intended learning out-
comes? There are two aspects to this question: the particulars of the situa-
tion or situations in which the rule is used and its success within that spe-
cific context. The lesson plan for the course Spanish as a Second Language
tells us the learning design method, for example, but we know very little
about the situation in which it was used, and have no idea whether the
method was successful. We need more information if we want to assess
how good the rule is. For example, it would be nice to know the effective-
ness of the method (percentage of students with a sufficiently high mark),
or its efficiency. (How much time did it take to refresh the students’
knowledge of Spanish in this way? Wouldn’t other methods have been
easier?) We also need more information about the underlying values or
preferences of the method’s designer. Did he or she include collaborative
aspects because they have been shown to be more effective, efficient or
attractive than other methods, or because he or she values these types of
activities more than, for instance, individual work?

There are three categories of good rules: (1) those derived from instruc-
tional design theory, (2) those derived from best practices, and (3) those
derived from patterns in best practices. We will refer to first type of rule as
prescriptions, the second as examples and the third as patterns. The rela-
tionships and differences between the three categories are quite complex.
For example, instructional design theory can be based on a rigorously em-
pirical approach which results in approximately the same procedures as the
patterns approach. Moreover, patterns can be abstracted to such an extent
that the relationship between practice and pattern is lost.

We will now discuss the three types of rules briefly. We do not prefer
one over another, but believe that all three are complementary.

1.4.1 Rules Derived from Theory

The romantic idea behind any theory is that it reveals an unconditional
truth. When we apply this idea to learning design theory, it means that the
theory would search for a learning method that can be applied universally:
in every course, in every setting and for every person. To put it differently,
the If side of the equation would be empty; there would be only one rec-
ommended learning design method. A recent example is the approach
taken by Merrill (2003). He proposes some ‘first principles of instruction’,
stating that ‘the most effective learning products or environments are those

14 R. Koper

that are problem centred and involve the student in four distinct phases of
learning: (1) activation of prior experience, (2) demonstration of skill, (3)
application of skill, and (4) integration of these skills into real-world ac-
tivities’. He doesn’t make this statement conditional on any particular
situation: his principles are the minimum requirements for every learning
product.

Leaving aside whether these principles are indeed unconditional, we do
know that they are based on a review of recent research into instructional
design and that using them to develop a learning design method will
probably increase the effectiveness of that method. However, let us return
to our wish to design a Spanish course. Do these principles provide us with
enough guidelines actually to design the course? The answer is no. The
principles can be used to check whether an existing design meets the re-
quirements, but they are not practical enough for a course developer (al-
though they can be inspiring). Course developers want more detail, per-
haps even complete examples of real practice.

Besides these universal principles, we also come across conditional in-
structional design principles in the literature, although they tend to be hard
to find for a learning designer, and sometimes contradict one another or are
hard to combine. It would be useful to have a summary of current, state-of-
the-art instructional design principles, using a uniform rule format such as
the one presented in this book, and similar to the attempt made by Reige-
luth (1999). It would provide some dozens of models and summarise them
in a conditional format (If situation then use this method). One example is
the rule for designing constructivist learning (abridged; Mayer 1999, see
next page).

The prescriptive rule is conditional, but it still has a high level of ab-
straction. It can be used to explore a wide range of design problems, but it
does not provide specific guidelines for the designers of our Spanish
course, for example.

1 An Introduction to Learning Design 15

Desired outcomes and conditions
Foster knowledge construction through direct instruction. Primarily intended for textbook-
based learning, lectures and multimedia environments in which behavioural activity is not
possible.

Values
- focus on process and product of learning
- focus on knowledge transfer and retention
- focus on how to learn as well as what to learn

Major Methods
1. Select relevant information
- highlight the most important information for the learner (using headings, italics, etc.)
- use instructional objectives and/or adjunct questions
- provide a summary
- eliminate irrelevant information; be concise
2. Organise information for the learner
- structure the text in some defined formats (cause-effect structure, generalisation structure,
enumeration structure, classification structure or comparison/contrast structure)
- Outlines
- Headings
- Pointers or signal words
- Graphic representations
3. Integrate information
- advanced organisers
- illustrations with captions
- animations with narration
- detailed examples
- detailed questions

1.4.2 Rules Derived from Best Practice

Another way of deriving learning design rules is to take the learning de-
sign method used in a specific example course. In this approach, our
search for a learning design method ends not with a principle but with a
comprehensive example. We can use several tactics to do so. The first is to
set up a database of accessible and usable courses or course components
(e.g. Edusource 2004; Merlot 2004), i.e. ‘out-of-the-box’. The second tac-
tic is to set up a database of learning design methods, e.g. course scripts,
frameworks or lesson plans. The ‘Spanish as a Second Language’ lesson
plan is an example. Lesson plans are more abstract than actual courses and
can be used as specific guidelines for designing a new course. However,
unlike in the first example, the course has yet to be developed.

16 R. Koper

One major problem with all such collections of examples is that the
situational characteristics of the courses and lesson plans must be de-
scribed in enough detail to support a successful search process. They must
also provide an indication of the quality, and the resulting learning design
method must be available in a usable format if it is to be of any practical
use. Quality can be expressed by the probability of success; other methods
are peer review, expert review or the average quality ratings of users.

Unlike with rules derived from theory, when rules are derived from best
practice the resulting learning design method is very well defined – an ad-
vantage that also has its disadvantages. The chance of finding a successful
example that matches precisely is not very great. It would take a huge
number of courses and lesson plans to have a reasonable chance of identi-
fying a suitable solution. In other words: whereas the theoretical approach
is intended to be of general purpose because it excludes conditions as
much as possible, the example-based approach is so highly contingent on
conditions that the chance of finding a matching example is relatively
small. However, it may be worth a try. Things have changed now that the
Internet allows us to share course examples and lesson plans with others
on a massive scale. A search on the Internet revealed at least 93,901 lesson
plans in 16 different databases (see Van Es 2004). Some of these contained
a large number of lesson plans (more than 35,000), while others were too
small to be of any real use (fewer than 1000, some even fewer than 100).
Learning designers are advised to try first try to find existing examples on
one of the websites identified by Van Es. Other approaches, e.g. that of
theoretical prescriptions, are preferable only when no matching examples
can be found.

1.4.3 Rules Derived from Patterns in Best Practice

The third, rather new and promising approach is to analyse patterns in col-
lections of comparable best practices, instead of using just one comprehen-
sive example. Patterns reflect the experience of experts in the field, are
described concisely and solve recurrent problems in a learning design. Pat-
terns can be created in two ways: inductively, by analysing common struc-
tures in a set of learning design methods, or deductively, by having meet-
ings with experienced learning designers to identify recurrent problems
and generic models for solutions. The second approach is the more popular
one at the moment (e.g. Bergin et al. 2000; E-LEN 2004). The following is
an example of a pedagogical pattern (abridged; Eckstein 2000):

1 An Introduction to Learning Design 17

LEARNING TO TEACH AND LEARNING TO LEARN: RUNNING A COURSE

Problem: how to start a course?
Forces: you want to get to know the participants; want to break the ice; …
Solution: the participants introduce themselves in a way which at the same time provides an
introduction to the topic (different variants are provided).
Discussion: for participants who seem to be aggressive, choose variant …

Problem: how can you make students less dependent on the teacher?
Forces: it’s easy for students to ask the teacher, but in a work environment the teacher will
not be available
Solution: assign a problem to your students. When they have a problem ask them to search
for answers with their peers first.
Discussion: a group often has different skills …

etc.

The rule expressed in the example takes the format: ‘if problem situa-
tion, then solution’. This is similar to our approach. The problem is a wide-
spread one in education. The solution is expressed in informal terms. This
is fine for human readers, but will be difficult to support when computers
are brought in. The different pedagogical patterns that can currently be
found on the Internet all define their own pattern language. To allow us to
search, store, adapt and use patterns, we need to adopt a single, standard
notation. For example, taking the script modelling language presented
above, we could develop a pattern of a learning design rule as follows:

Situation:
- Train a skill
- Setting: individual student

Method:
 Play Act I: Student: read/study introductory information
 Act II: (repeat for n exercises)
 Student: do exercise (1...n)
 Student: if question, then ask other student or tutor
 Student: answer questions posed by fellow students
 Tutor: if fellow students cannot respond, then answer
 students’ questions
 Student: take test, and get feedback about test results
 Act III: Tutor or Agent: Provide feedback about learning outcome

A pattern such as above could be used as a learning design template for
many skill-learning situations. The pattern can be derived from existing

18 R. Koper

examples by abstracting the learning design methods, mainly by looking at
common patterns.

Patterns can also be combined. For instance, the pattern above does not
describe how to prepare the introductory information or tests. This usually
means that they are available in the design and are fixed. In many situa-
tions, the tutor prefers to control this information so that he or she can de-
velop or adapt it. A pattern for texts and tests may take the following form:

Situation:
- Develop/adapt introductory information (or tests)

Method:
 Play Act I: Tutor: develop/adapt introductory information (or tests)

The methods can be combined to form the following pattern:

Situation:
- Train a skill
- Develop/adapt introductory information
- Develop/adapt tests
- Setting: individual student

Method:
 Play Act I: Tutor: develop/adapt introductory information
 Act II: Tutor: develop/adapt test
 Act III: Student: read/study introductory information
 Act IV: (repeat for n exercises)
 Student: do exercise (1...n)
 Student: if question, then ask other student or tutor
 Student: answer questions posed by fellow students
 Tutor: if fellow students cannot respond, then answer
 students’ questions
 Student: take test, and get feedback about test results
 Act V: Tutor or Agent: provide feedback about learning outcome

The main point here is not how correct the example is, but how to notate
the patterns and the idea of composing learning design methods based on
smaller pattern components. The notation can be easily translated into a
more formal notation, such as that provided by Learning Design (LD
2003), as we will see later in this book. These examples also give an initial
indication of the level at which the learning designs are being reused, i.e.
at the level of short plays that can be combined to form longer ones. This
would suggest that we should identify practical, small-scale, independent

1 An Introduction to Learning Design 19

play structures with a recurrent objective (as expressed in the situation) as
the building blocks for learning design methods.

It would be useful for authors to have access not only to the patterns, but
also to the specific examples derived from them, preferably notated in
Learning Design so that they can be adapted and reused.

1.5 Conclusion

A learning designer uses learning design knowledge to create the learning
design method for a course. Learning design knowledge consists of a se-
ries of rules taking the ‘if situation, then method’ format. These rules are
derived from theory, from examples, or from patterns. To enable learning
designers to search for, share and reuse learning design methods, a stan-
dard notation must be available and used.

In this chapter several design requirements have been mentioned
throughout the text. To conclude this chapter we will state the require-
ments for a learning design notation:

1. The notation must be comprehensive. It must describe the teaching–
learning activities of a course in detail and include references to the
learning objects and services needed to perform the activities. This
means describing:

– How the activities of both the learners and the staff roles are inte-
grated.

– How the resources (objects and services) used during learning are in-
tegrated.

– How both single and multiple user models of learning are supported.

2. The notation must support mixed mode (blended learning) as well as
pure online learning.

3. The notation must be sufficiently flexible to describe learning designs
based on all kinds of theories; it must avoid biasing designs towards any
specific pedagogical approach.

4. The notation must be able to describe conditions within a learning de-
sign that can be used to tailor the learning design to suit specific persons
or specific circumstances.

5. The notation must make it possible to identify, isolate, de-contextualise
and exchange useful parts of a learning design (e.g. a pattern) so as to
stimulate their reuse in other contexts.

6. The notation must be standardised and in line with other standard nota-
tions.

20 R. Koper

7. The notation must provide a formal language for learning designs that
can be processed automatically.

8. The specification must enable a learning design to be abstracted in such
a way that repeated execution, in different settings and with different
persons, is possible.

These requirements provided the basis for the Educational Modelling Lan-
guage (EML 2000; Koper 2001; Koper and Manderveld, 2004), and the
later standardised version of EML, called Learning Design (Koper and
Olivier 2004; Hummel et al. 2004; LD 2003). Koper and Olivier (2004)
provide a first qualitative evaluation to what extent these requirements are
met by the LD specification. They conclude that the specification fits the
requirements well, however further research is needed to a) evaluate how
well LD meets the pedagogical expressiveness requirement, b) integrate
the Question and Test Interoperability (QTI 2003) specification into LD
(this has since been done through an update of the QTI specification by
IMS), and c) the personalization rules aspects have to be studied in more
detail. The following chapter examines the LD specification in more detail.

2 The Learning Design Specification

Bill Olivier1, Colin Tattersall2

1 Bolton Institute of Higher Education, Bolton, United Kingdom

2 Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

2.1 Introduction

The preface and the previous chapter introduced the idea of describing a
learning design in terms of “people in specific groups and roles engage in
activities using an environment with appropriate resources and services”.
To be usable by computers, this language has to be given a concrete syntax
and semantics, and this is provided by the Learning Design (LD 2003)
specification.

The documents which make up the specification can be quite daunting,
and this chapter aims to lower the threshold to their comprehension. It
starts with some historical background, examines the intended readership
for the specification, then provides a reading guide to the specification
documents, before giving an overview of the ideas and concepts in LD and
how they are intended to work together when used to represent a Unit of
Learning (UOL). The overview is intended to make it easier to understand
the specification and the dynamics of a running learning design.

2.2 The Move from EML to Learning Design

IMS Global Consortium Inc.’s (IMS) work on specifications and the Open
University of the Netherlands’ (OUNL) R&D Programme into Learning
Technologies that resulted in the Educational Modelling Language (EML
2000), both started around the same time in 1997. IMS’s early work devel-
oped a number of e-learning specifications, mainly targeting support proc-
esses for learning rather than the learning process itself. By early 2001,
IMS had reached the point where it recognised the need for a specification
that addressed the description of learning processes and set up the Learn-
ing Design Working Group. It had an ambitious scope which could only be

22 B. Olivier, C. Tattersall

met in a reasonable timescale if it was based on an existing work. EML
was submitted to the Working Group in the second quarter of 2001.

EML was a very complete and mature specification, focused on the en-
tire learning process and was thus complementary to the specifications de-
veloped by IMS. Moreover, the use of SGML as the format in which to
cast EML fitted well with the IMS specification development approach,
which requires its specifications to be described using XML Schema
(W3C 2004b). As a result, EML was accepted by the Working Group as
the basis from which to develop the LD specification in August 2001.

The EML specification included both a DocBook-based (OASIS 2002)
content specification for marking up materials used in the learning process,
and extensions for multimedia, assessments and learner interaction with
the runtime system, known as a player (see Chap. 3 for details). The con-
tent model and extensions were dropped from LD by the Working Group,
which recommended the use of XHTML (W3C 2002) allowing both web
content, including typical web-enabled multimedia, and XML extensions.
It was agreed that Question and Test Interoperability (QTI 2003) should be
used for assessment, but defining how it should integrate with LD was left
until a later version of QTI was released. Separate mechanisms were intro-
duced to allow communication between content and LD players (described
later in this chapter). A further change involved the integration of LD into
the Content Packaging specification (CP 2003) Organizations element.
When used for an LD package, it replaces the simple Organization/Item
tree structure with a richer, more developed structure.

These modifications were proposed and the IMS LD 1.0 specification
was approved in February 2003. Thus, the central concepts of EML were
brought into a neutral forum in which members with various business in-
terests and decision-making criteria collaborate to satisfy real-world learn-
ing requirements for interoperability and reuse.

2.3 Who Is the Learning Design Specification for?

In understanding the LD specification and assessing its relevance and im-
portance, it is important to distinguish between the specification itself and
its application in the wider e-learning landscape. The specification is a
very detailed document intended primarily for software developers who
create the tools and systems that implement LD. However, it is also in-
tended to be understood by technically aware learning and instructional
designers to enable them to determine its suitability for their purposes.
Generally, the XML format of LD should not normally be visible, in the
same way that document formats such as RTF are not normally seen by
users but are hidden and processed by software applications such as word

2 The Learning Design Specification 23

processors. LD authoring and runtime tools should provide users with
higher-level representations for carrying out their tasks.

Although the specification itself has a narrowly defined readership, its
use is intended to provide a number of benefits for various e-learning
stakeholders:

1. E-learning system lock-in is avoided since courses can be exported as
LD Units of Learning from one system into another. The need to move
courses between systems occurs both when new systems are purchased
and when a heterogeneous set of tools is used at the same time, a situa-
tion not uncommon in both single and multiple learning provider situa-
tions.

2. Procurement choices are increased through increasing system interop-
erability, with commercial and open-source tooling being better able to
be mixed-and-matched to satisfy e-learning requirements.

3. The market for buying and selling courses is made more appealing,
since publishers are no longer bound to publishing for particular deliv-
ery systems.

4. Instructional and learning designers are liberated from the use of non e-
learning specific (e.g. HTML) or proprietary scripting languages to cre-
ate learning processes. Using the concepts described in the specification,
designers are able to talk in terms of pedagogy rather than technology,
making pedagogical choices explicit and subject to review, inspection
and critique.

5. New avenues for educational R&D are opened, with diverse approaches
to learning and teaching being better able to be compared when they are
both described and delivered in a formal language defined in an open,
technical specification.

The recency of the specification means that these benefits have yet to be
reaped in practice. However, the use of the specification is intended and
expected to lead to increases in the efficiency, effectiveness and attractive-
ness of e-learning, thereby improving the lot of one other important e-
learning stakeholder: the e-learner.

2.4 A Reading Guide to the Specification Documents

IMS has developed a set of document types for its specifications. There are
three main documents: an Information Model, a Best Practice and Imple-
mentation Guide (BPIG) and an XML Binding document.

The documents of the LD specification are intended to be read by tech-
nical domain specialists, learning technologists and learning and instruc-
tional designers. For almost all readers, the BPIG is the best place to start,

24 B. Olivier, C. Tattersall

since it is an informative, rather than a normative document. It provides
background information and guidance on how the LD specification is in-
tended to be used to represent various kinds of learning. Members of IMS
submitted a range of learning scenarios, referred to as ‘use cases’, repre-
senting the kind of learning they would like to see supported. As part of
the validation process for the specification, these were translated into LD
XML representations. Some of these XML representations are included in
the document but the larger ones were published as separate XML files.

The first part of the BPIG is primarily intended for more technically ori-
ented experts in the learning domain, although it is also of value to devel-
opers, particularly those developing authoring tools, and LD editors. In ad-
dition to the BPIG, the first chapters of the LD Information Model, up to
the start of the Information Tables themselves, will also be of value to
learning domain experts. Unless they are familiar with XML, those fo-
cused primarily on learning do not need to read the XML Binding Docu-
ment, which is intended primarily for software developers. The actual
XML Schemas are published separately. Also, as various XML software
toolkits and libraries are not able to handle modular XML Schemas, the
OUNL has made single schemas for each level available on the website
www.learningneworks.org.

The Implementer’s Guide section of the BPIG is, as its name suggests,
intended primarily for implementers, particularly those responsible for de-
veloping runtime systems, although it is also useful to teachers and system
administrators responsible for setting up LD runtime systems and Units of
Learning for use with learners.

The Implementer’s Guide inevitably provides only an overview of the
main issues at a fairly high level, outlining the main tasks and significant
aspects of implementing an LD runtime system. A more thorough treat-
ment can be found in Chaps. 3, 4 and 5 of this book.

Probably of more use to runtime system developers will be an open-
source reference implementation such as the CopperCore runtime engine
(Vogten and Martens 2004) developed by the OUNL, and described in
Chap. 6.

After reading the Implementer’s Guide, and the early parts of the Infor-
mation Model, developers can either go to the XML Binding document
and XML Schema files, using the Information Model tables to gain more
details about the intended use of the various elements, or might prefer to
continue on to the Behavioural Model section in the Information Model to
gain a better understanding of how the different parts of the LD specifica-
tion are intended to work together.

2 The Learning Design Specification 25

2.5 Understanding the Learning Design Specification

2.5.1 Units of Learning

The LD specification provides a framework of elements that can be used to
describe formally the design of any teaching–learning process. A UOL re-
fers to a complete, self-contained unit of education or training, such as a
course, a module, a lesson, etc. The creation of a UOL involves the crea-
tion of a learning design and also the bundling of all its associated re-
sources, either as files contained in the unit or as web references, including
assessments, learning materials and learning service configuration infor-
mation. As a result, a packaging mechanism is needed to pack the learning
design and its associated files into a single container. The LD specification
recommends the use of the CP specification for this purpose.

2.5.2 Where Learning Design Fits into a Content Package

A Content Package consists of a file structure that must include a ‘mani-
fest’ and the associated files. The manifest is described in detail in the CP
specification. It includes the structure of the content, described in the Or-
ganizations section which defines a simple tree hierarchy; a list of the files
themselves contained in the Resources section; and a Metadata section that
describes the package.

The structure of a Content Package and the manifest is shown in Fig.
2.1. The LD specification is constructed so that it can fit into a Content
Package as a discrete element, effectively replacing the simple initial tree
structure held in the Organization element (see Fig. 2.2).

26 B. Olivier, C. Tattersall

CONTENT PACKAGE

Manifest

Physical Files

The actual content: HTML,
Media, Activity descriptions,
Collaboration and other files

Meta-data

Organizations:Organization

Resources:Resource

(sub)Manifest

Fig. 2.1. The structure of a Content Package

Unit of Learning

Manifest

Physical Files

The actual content: HTML, Media,
Activity descriptions, Collaboration

and other files

Meta-data

Organizations:Learning Design

Resources:Resource

(sub)Manifest

Fig. 2.2. The location of the learning-design element in a Content Package

2 The Learning Design Specification 27

2.5.3 Looking Inside the learning-design element

The learning-design element in turn has many component elements,
as do they themselves. The following shows the main ‘top-level’ elements
within the learning-design element.

Fig. 2.3. The basic structure of the learning-design element

In Fig. 2.3, the learning-design element, as well as having a ti-
tle (most major elements include a title but these are omitted in the fig-
ures), learning-objectives, prerequisites and metadata
elements, also includes a components and a method element. Note that
learning-objectives can be described using either purely textual
resources or resources that are defined according to the Reusable Defini-
tions of Competencies and Educational Objectives specification (RDCEO
2002).

The components and method elements are the two main and largest
structures in LD.

The components includes the three components originally identified
as the main elements of the language:
1.roles
2.activities

28 B. Olivier, C. Tattersall

3. environments (which hold references to the resources and services
used by activities).

The Method holds the workflow or ‘learning flow’ for the learning de-
sign, and contains three main nested elements:

play*
act*
role-part*

Thus a play contains one or more acts and an act contains one or more
role-parts.

While the components element contains the main structural elements,
the method drives the whole process when a learning design is being run.
As a result, when reading a UOL that conforms to LD, the method element
provides an orientation point from which to view how the parts fit to-
gether. Since both a learning designer and a design implementer need to
understand how a learning design is expected to play out with learners
when it “goes live” in a player, an overview of this is given next.

2.5.4 Running a Learning Design

Once a learning design has been set up on a runtime system, the player
uses the method to make the appropriate activities and environments avail-
able to the people playing the various roles. Through this, it coordinates
and synchronises multiple learners as they work through a learning design.
Figure 2.4 sketches the method and components of a learning design.

The method part is where the top-level coordination of people and ac-
tivities takes place, and can be described using the metaphor of a theatrical
play, following on from Chap.1. A play, as in a theatrical play, consists
of acts, although there can be one-act plays.

As with theatrical plays, acts run in sequence, with one starting when
the previous act has finished, and the play ends with the completion of the
last act. The transition from one act to another serves as a synchronisa-
tion point for the multiple participants in a learning design, ensuring that
they can all start the next act at the same time. If a given learning scenario
does not require such points, then it can be designed with a single act.

2 The Learning Design Specification 29

Fig. 2.4. Relating the learning flow to its constituent components

Again, as in a theatrical play, an act includes one or more role-
parts, which are ‘on stage’ at the same time.

A role-part simply has two reference links; one refers to a role
and the other to the activity that the role is to perform in the act. Ef-
fectively the role-part assigns an activity to a role, analogous to giving
a role the script that it has to perform in the act.

An activity includes an activity-description and typically a
reference link to an environment. The activity description says what
the role should do with any items included in the environment.

An environment may include both learning objects (web pages or other
content, Content Packages, SCORM objects (ADL 2004a), QTI-compliant
tests, etc.), and/or learning services which are to be used in the activity
(see Sect. 2.5.5).

The horizontal line dividing Fig. 2.4 separates the elements that are in-
cluded in the method, which are above the line, and those included in the

30 B. Olivier, C. Tattersall

components, which are below the line. Thus role-parts act as the
link between the method section and the components section.

This division also marks another important distinction: the method is es-
sentially where the coordination of multiple roles takes place. The transi-
tion from one Act to another is essentially a synchronisation point for all
the participants. In effect, it releases a new set of activities and materials to
all participants in the new act’s role-parts at the same time. It does not
necessarily mean that those who have not finished their current activity are
forced to move on, as, by default, all earlier activities and resources should
continue to be made available. A designer could choose to create a con-
dition whereby some or all previous material is made invisible, e.g. if
the next act consists of a memory test with no referring. Equally, when an
activity is assigned to a role, in practice what this means is that the activity
is assigned to each person playing that role.

It is important to understand the relationship between individual partici-
pants and roles. When a UOL is instantiated, part of the process is assign-
ing individuals to the role or roles they are to play. A role may have one or
more participants, with the number of participants left open, or the learning
designer may specify maximum and minimum numbers of participants for
the role (see Chap. 4 for further information on the instantiation of UOLs).
When creating a run of a UOL, the role-parts in the first act must be
checked, and the activity in each role-part must be assigned to each person
assigned to the corresponding role.

An activity should have learning objectives, prerequisites, a description
and a reference link to an environment with learning objects and/or learn-
ing services. The player has to provide each person with access to these
and track their individual use of them, so that after they log off from a ses-
sion, when they next return they can be presented with the activity in the
same state as they last saw it. Thus the presentation of, engagement with
and progress through LD activities and their compound activity structures
are done on an individual basis, although learners, teachers and other users
can engage with each other and work together through shared collaborative
learning services.

Although LD supports models that involve multiple learners, it can be
used for models involving single learners. Used in this way, it is possible
to use LD to implement programmed learning, just as easily as collabora-
tive and multi-user scenarios.

Figure 2.5. fills out the LD structure.

2 The Learning Design Specification 31

Components
Role

learner*
staff*

Activities
learning-activity*

environment-ref*
activity-description

support-activity*
activity-structure* {sequence | selection}

environment-ref*
activity-ref*
activity-structure-ref*

Environments
environment*

learning-object*
learning-service*

mail-send*
conference*

Method
Play*

Act*
Role-Part*

role-ref
activity-ref

Fig. 2.5. The further parts of the components and methods sections

The role-part includes: a reference to a role and a reference to an activ-
ity. In the components which precede it, roles include predefined learner
and staff roles, but learning designers can define other roles of their own,
derived from these basic two.

Activities include learning-activities, support-activities and activity-
structures. Learning-activities and support-activities have a similar struc-
ture. As shown in Fig. 2.5. an activity can include an environment refer-
ence and an activity description. However, it also includes a title, meta-
data, learning-objectives and prerequisites (which, for brevity, are not
shown in these diagrams).

Activity-structures contain a simple list of references to activities and/or
other (sub)activity-structures. The attribute structure-type has two
possible values: sequence and selection (the default). Using the
former value indicates that the elements should be presented in sequence,
separately, to each learner. The latter value indicates that the player should

32 B. Olivier, C. Tattersall

provide some mechanism, such as a menu or navigation tree, which allows
the user to choose from the list.

Note that sequence and selection provide simple dynamics for a
single user when engaging with an activity-structure. More so-
phisticated dynamics can be provided through the use of properties and
conditions (if–then type rules explained below). However, as activity-
structures can be nested, sequence and selection can be used to
provide some degree of flexibility without the use of conditional rules. A
set of activities and activity-structures may be set to run in a sequence,
but when a particular activity-structure in the sequence is reached this
could be set to selection, allowing the user a choice of activities at that
point. One of these activities might in turn contain another sub-structure
where the activities have to be worked through in a sequence, and there are
many possible variations of this.

A further refinement is that the number of activities can be set for a se-
lection. This means that if the number-to-select is set to a value
of 1, then only one of the optional activities needs to be carried out, and
the user can choose which one. If the number-to-select equals the
number of activities, this means that all activities must be carried out, but
the order in which they are done is not important.

In this way, activity-structures can be used to create more elaborate sets
of activities and choices to present to users on an individual basis.

2.5.5 Learning Objects and Learning Services

A learning object typically links through to a web page or other content
item (making it essentially equivalent to an Item element in a Content
Package).

As already described, an environment can contain learning objects
learning-services. The selection of services reflects the most widely im-
plemented and used services in online learning environments at the time of
approval of version 1 of the LD specification: send-mail, confer-
ence, monitor, and index search. These services must either be
provided by the player, or be separate services that are linked to by the
player (e.g. they might be provided by standard email and Netnews servers
respectively).

Underneath, what distinguishes a ‘learning object’ from a ‘learning ser-
vice’ is simply that for a learning object, its location (or URL) is known at
design time, whereas the location for a learning service is created when a
UOL is instantiated. The reason for this is that an LD learning service in-
cludes a mapping of LD roles onto the roles in the service (e.g. for a con-
ference this includes participant, observer, moderator and ad-

2 The Learning Design Specification 33

ministrator and usually grants participants different permissions in a
conferencing system in the allocated space). At design time, not only are
the actual participants unknown, but they will change every time the UOL
is run. If we again take the example of using a conference system in a
UOL, what a designer may well intend is a unique discussion space dedi-
cated to the use of the actual participants in each run.

To handle this, when a UOL is being set up prior to a run with a particu-
lar group of participants, the participants have first to be mapped to the
roles specified in the learning design. Typically this would be done
through a management utility provided with the runtime system.

The learning design is then scanned for all learning services and, with a
list of participants for each role, a dedicated instance of the service is set
up using the list of participants in the relevant roles and the mapping of LD
roles to the service roles contained in the UOL’s service definition. Setting
up the service can be done in one of two ways. If the service only has a
user interface for creating instances, then setting up the service with the ac-
tual participants has to be done manually. In this case, the set-up function
of the management utility should produce a human-readable list of the
necessary services together with a list of people mapped to the service’s
roles. If, on the other hand, the service has a machine-to-machine interface,
then the management utility can produce a script to automate the process
of setting up the service. The ability to set up collaborative and other ser-
vices automatically is of some practical importance, as without it, the load
on system administrators will result in limiting the use of such services and
hence conflict with the learning goals.

Once a service has been set up, the link (URL or other identifier) to this
service has to be passed back to the player, along with the reference to the
service in the learning design. From then on, the LD player can treat a
learning service in the same way as a learning object, by simply providing,
at the appropriate point, a hyperlink to it in the learner’s web browser in-
terface.

It is worth noting that where a service such as a conference is re-
quested, it could be met in several ways. One of the systems available
where the design is deployed could be used, or this approach could be sub-
stituted for a face-to-face meeting or a conference call with a link being
made to a web page providing information about time, place, phone num-
ber and other details as appropriate.

It should also be noted that services such as computer-based conferenc-
ing systems do not have a standardised configuration interface. This means
that LD management utilities are likely to produce some XML files, which
will then need a further specialised transformation into the configuration
calls needed for the particular service to be used. It will be of benefit if all
LD management utilities produced such service configuration information

34 B. Olivier, C. Tattersall

in the same XML format, so a small ‘adjunct’ specification outlining this
may well be produced. This would at least limit one side of the many-to-
many translations that are otherwise necessary so that only one transforma-
tion needs to be written for any given service which all LD management
utilities can use. In the longer term, a standard interface to the service may
be produced for each service so that the ideal of plug-and-play between
LD systems and services can be achieved.

2.6 Learning Design Levels A, B and C

LD has three levels:

Level A contains the core language of LD that has been covered so
far.
Level B adds properties and conditions to Level A, allowing more
sophisticated control and types of learning.
Level C adds notifications to Levels A and B.

There were several reasons for partitioning LD into three levels:

It gives developers the option of releasing their implementation of
this large specification in stages.
The properties and conditions of Level B can be seen as a more
general capability that overlaps to some extent with the functional-
ity of Simple Sequencing (SS 2003), which, while starting later
than LD, was developed in parallel. By making the LD properties
and conditions optional and allowing Simple Sequencing to be
used where possible, it enables the door to reuse of Simple Se-
quencing in LD.
Notifications were separated to allow those developers whose
Learning Management Systems were primarily content oriented,
rather than communication oriented, to choose whether not to im-
plement this feature, or to add it at a later date.

A separate reason relates to compliance. The LD specification defines a
system rather than just a collection of elements. That is to say, the ele-
ments all work together and depend on each other. Therefore, to be com-
pliant with LD, a system is required to implement all features for a given
level, whether or not they are indicated in the specification as mandatory
or optional. Mandatory and optional relate only to particular instances of
learning designs which, when exchanged between systems as an XML file,
do not have to include optional features. Thus the conformance require-

2 The Learning Design Specification 35

ments for systems that implement LD are more stringent than for docu-
ment instances.

The three levels show where this natural partitioning of LD lies, and
how the main parts of LD build on each other. Thus the parts contained in
Level A are seen as a whole that provides a minimum level of capability
that meets the requirements of the specification. But Level A has no de-
pendency on Level B, although Level B depends upon and extends the
elements in Level A; while Levels A and B have no dependency on Level
C, but Level C in turn depends upon and extends the elements in Levels A
and B.

2.6.1 Level B

Level B adds Properties and Conditions. Properties enable information
about learner, roles and the state of the learning design itself to be main-
tained. Conditions enable designers to define rules that govern the behav-
iour of the UOL as a whole and what gets presented to individual partici-
pants.

Properties

Properties are of two main types, ‘Local’ and ‘Global’, which can in turn
be General, Person or Role Properties.

Local Properties (Table 2.1) live only for the duration of each ‘run’ of a
UOL.

Table 2.1. Local Properties

Property Type Description
General Property (loc-property) attached to a UOL as a whole
Person Property (locpers-property) attached to each individual user
Role Property (locrole-property) attached to all members of a role

Global Properties (Table 2.2) persist across multiple runs of a UOL.

Table 2.2 Global Properties

Property Type Description
General Property (glob-property) attached to a UOL as a whole
Person Property (globpers-property) attached to each individual user

Property Groups act as a container that holds a set of Properties of the
same type and may also contain
(sub-)Property Groups.

36 B. Olivier, C. Tattersall

Properties can be used for many different purposes, but one common
use is to use Person Properties to provide more detailed information about
learners to adapt a learning design to individual needs and preferences.
This can be done either before a run of a UOL starts or during the run, us-
ing tests that are integrated in the LD (see Chap. 10). Another use is to
maintain the state information during the run of a UOL. This can be used
to determine, dynamically, when an action should be triggered (e.g. on the
completion of an Act, or indeed to trigger other events).

A Property has the simple structure described in Table 2.3.

Table 2.3. The structure of a property

Structural Element Description
A name (title) a text string that uniquely identifies the

property
A type (datatype) a data type, such as text, integer, URL

and several others
A value a value which can be set initially by the

designer or during the run
An identifier a unique identifier that is an XML ID in

the XML binding
Restrictions a designer may constrain the permissi-

ble values
Metadata metadata can be added to describe a

property

This property structure is essentially the same as that used for handling
the results of tests in QTI and as that used for handing the outcomes of ac-
tivities in the Learner Information Package specification (LIP 2001). The
former can be used to pass results from a separate test service or QTI run-
time engine to an LD player while the latter can be used to store informa-
tion generated about a learner during the run of a learning design to a sepa-
rate dossier or ePortfolio repository

One main difference between these different specifications is that QTI
and LIP do not limit their identifiers to XML IDs. In the LD specification,
the characters that can be used to compose a Property identifier are limited
to those that can be used in an XML ID (an identifier that uniquely identi-
fies an element in an XML document). This was to facilitate automatic
validation of properties and the references to them in a UOL. However,
this has a potential drawback in terms of integrating with other IMS speci-
fications, as these do not have the restrictions imposed by an XML ID, al-
lowing any characters to be used. It is likely that these three IMS specifica-
tions will be harmonised in future (see Chap. 10 for more on integrating
QTI and LD).

2 The Learning Design Specification 37

Properties are also associated with a further addition to the level A
specification: ‘Global Elements’. In essence, global elements enable
properties and groups of properties to be both viewed and set by
participants at runtime, and so are part of LD Level B.

In order to function through a learner’s browser, global elements are
provided as XML extensions to an XHTML web page. When an XHTML
page includes the LD-defined global elements, it is given a CP type
of IMSLDcontent. The definition of these XML extensions is provided
as a small XML Schema that is separate from the main LD Level A, B and
C XML schemas.

When viewing or setting a property, there is a default set to self which
means that only the learner’s own properties can be viewed or set. This can
be changed to supported-person which allows someone given a sup-
port role to see properties of the people in a given role that they are sup-
porting.

The particular properties or property-groups that are to be made accessi-
ble by the system are defined by the learning designer at design time.

Conditions

Conditions provide the capability for learning designers to define rules as
to what should happen when certain events take place.

The simplest kind of event is provider by a timer when the UOL’s run-
time clock reaches a given point in time, then carry out a specified action.

The time can simply be checked against the current date and time, or it
can be the time since the UOL or since a particular Activity started.

Rules can also be triggered when an Activity or Activity-structure, a
Role-part, Act, Play or even the UOL as a whole has completed.

Another common event that can be checked for by rules is the changing
of a property value. This might be when it is first given a value, when it is
set to a value that is equal to, above or below a number given in the rule, or
is set to a value between two other numbers. It could also be triggered if a
text Property’s value is set equal to a text string defined in the rule. The
value of a Property can also be checked against the value of another Prop-
erty, rather than against just a fixed value defined in the rule. Equally all
other types of Property can be used in condition rules.

A number of types of action can be triggered from a rule. A rule can
hide or show learning-objects and learning-services, en-
vironments, Activities, Activity-structures, or Plays.
(there can be more than one Play running in parallel and one might be hid-
den unless or until a rule is triggered which reveals it). Note that it is not
possible to show or hide Acts or Role-parts.

38 B. Olivier, C. Tattersall

Rules can also be used to set or change Property values. This can be
used to create records of what a person has done, to change what is pre-
sented to them, or to change how a live learning design functions.

In Level C, rules are extended so that they can also trigger a notifica-
tion.

2.6.2 Level C

Notifications provide a greater level of interactivity and control over a live
learning design, as a form of event-driven messaging system within an LD
player. Notifications can be sent both to elements of the design, as well as
to human participants. At Level C, a notification can be triggered by an ac-
tivity completing or by a rule, but a human participant, through the global
elements, can also trigger a notification to be sent, either to another human
or to a design element.

Through addressing design elements, a notification can be used to make
a new activity visible (or invisible) to participants in a role, or it can be
used to set a property value. As rules can be triggered by property changes,
setting a property value that has such a condition attached to it can trigger
other actions.

Figure 2.6 shows the Level C Information Model containing all the con-
cepts in the LD specification.

The Future of Learning Services in LD

Learning Services are a significant area that LD opens up, but that is as yet
relatively undeveloped, both in the specification and in current LD prac-
tice.

Clearly many more services could be added to the LD specification, and
it is desirable that they should be, from chat, instant messaging and white-
boards, through virtual classrooms and more sophisticated collaborative
services, such as virtual design environments, to sophisticated simulation
and multi-user game-playing systems.

The key issue that needs to be addressed is how to add services in such a
way that learning designs that use them still retain a reasonable degree of
portability across different LD-compliant platforms. If all the above ser-
vices were included, could any system be expected to be compliant? Or
should the specification stick to the lowest common denominator for ser-
vices, as in LD v.1.0, only supporting them as they become commonly
available in systems?

Clearly individual institutions could extend the specification to support
their own services, though they would have to adapt their LD instantiation
facilities in order to integrate them.

2 The Learning Design Specification 39

Fig. 2.6. The LD Information Model

In the meantime, this is an area that is likely to see different communi-
ties create applications profiles and optional extensions (i.e. optional for
LD system implementers). The application profiles should enable both
content and systems to be clearly described so that the requirements of the
one and the capabilities of the other can be determined at a glance.

One hopeful avenue will be that many of these services will come to be
provided by standalone services, rather than integrated into increasingly
strained Learning Management Systems (LMSs) and Virtual Learning En-
vironments (VLEs). Such loose integration would be facilitated by both
configuration and service interfaces along the lines being developed by
OKI (2004) and IMS. This would allow the addition of services to become
independent of particular LMS/VLE providers, but presupposes the avail-
ability of at least one instance of any such service, whether open source or
commercial, for each service defined, so that anyone could make use of a
service specified in a learning design.

Learning services are likely to come in two varieties: those that are
available as downloadable software, either open source or commercial,
which are set up as part of a local environment; and those that are set up as
remote web services, which again would be either freely accessible or
available on a commercial basis.

To further this approach, it would be desirable to have a registry of
learning services, giving their type and the service interface they used,

40 B. Olivier, C. Tattersall

perhaps together with an Open Service Interface Definition (OSID) type of
adaptor that could be downloaded.

2.7 Conclusions

The use of general languages such as HTML or proprietary scripting lan-
guages to describe learning processes leads to unnecessary difficulty in
documenting teaching strategies and reusing elements of existing teaching
materials.

LD, an open technical specification, allows learning designers to model,
in a generic, formal way, who does what, when and with which content
and services in order to achieve learning objectives. It allows processes to
be designed that include several roles, each of which can be played by sev-
eral people. It enables their activities to be specified in coordinated learn-
ing flows that are analogous to groupware workflows, and it supports
group and collaborative learning of many different kinds. Using the LD
language, designers are able to talk in terms of pedagogy rather than tech-
nology, helping to bring learning to the forefront in e-learning.

3 Architectures to Support Authoring and
Content Management with Learning Design

Scott Wilson

Research Institute for Enhancing Learning, University of Wales, Bangor

3.1 Introduction

Learning Design (LD 2003) is a complex specification, and requires a sub-
stantial supporting framework of components and services if it is to trans-
form the experience of learning technology. In this chapter we look at
some initial work to develop reference architectures for the processes of
managing learning designs and their supporting materials.

Two reference models have been put forward by the Valkenburg Group:
an architecture for a content management and authoring environment, in-
cluding repositories and editing tools, and within that at a slightly deeper
level there is a blueprint for how an LD authoring tool could be con-
structed. Both are presented in this chapter.

Since the development of an initial reference architecture by the Val-
kenburg Group there have been a number of developments in the area of
architecture for e-learning, including MIT’s Open Knowledge Initiative
(OKI, Thorne et al. 2004), and the IMS Abstract Framework (AF 2004);
there has also been a surge of interest in the use of service-oriented archi-
tectures and the role of middleware. We’ll take a look at the Valkenburg
Group Reference Architecture in the light of these trends.

3.2 Workflows for Learning Design

A first step towards defining a supporting architecture is to look at the
kinds of task that users and tools may need to perform in working with LD.

While there may be a variety of workflows in practice, any process in-
volving authoring and managing learning designs will most likely include
several of the following tasks:

Constrain the variety of learning designs.
Create, edit and store learning design templates.
Create and edit learning designs.

42 S. Wilson

Edit presentation of learning designs.
Discover and add materials to learning designs.
Aggregate learning designs.
Create, edit and store materials.
Test learning designs.
Store learning designs in a repository.
Search and retrieve a learning design from a repository.

This is only the set of tasks for creating and managing learning designs;
there is an additional set of tasks required for delivering and using a learn-
ing design with learners, described in Chap. 4.

3.2.1 Constraining the Variety of Possible Learning Designs

LD is a very expressive specification, and enables a tremendous amount of
flexibility on the part of the designer to model a wide range of educational
scenarios. However, in a specific organizational context (e.g. a department
within a university) it is quite likely that there will be limits that may need
to be expressed to narrow this range. This could be due to policy decisions
with regards to appropriate pedagogic models, or it may be simply to re-
duce the complexity of the authoring tools that teachers are expected to
use. In any case, there is a recognizable requirement to support the han-
dling of constraints on the possibilities of LD.

In practice, this may be a task performed by an expert user with standard
XML tools to modify the base LD schema.

3.2.2 Creating, Editing, and Storing Learning Design Templates

While constraints restrict the possible learning designs, there is also a
separate requirement to provide templates, acting as exemplars of particu-
lar models expressed in LD. Such templates may be very rich and well de-
veloped, requiring teachers only to modify the composition of materials
within the design to suit their subject, or they may be incomplete structures
designed to simplify the construction of activity sequences and conditions.

In either case, there is a requirement for the architecture to be able to
support working with templates, both by editors and repositories.

3.2.3 Creating and Editing Learning Designs

It is clearly necessary for architectures to support the creation of new
learning designs, whether from scratch, from an existing learning design,

3 Architectures to Support Authoring Learning Design 43

or based on a template. The creation and editing process may also need to
be aware of the constraints imposed on learning designs. Teachers may
have a variety of templates to choose from, offered by instructional de-
signers in their organization, which they can select based on their under-
standing of the learning situation.

3.2.4 Editing the Presentation of Learning Designs

A possible pattern for working with learning designs is to present the de-
sign directly from XML using XSLT - the XML Stylesheet Transforma-
tion Language (W3C 1999) to convert parts of LD directly to XHTML,
Shockwave, or some other presentation format.

For example, to present the current navigation options for a learner, the
presentation system may ask a runtime engine to provide the activity tree
for that learner as a fragment of LD XML, which is then processed by the
presentation system using a stylesheet to display a navigation tree.

For authoring purposes, it may be useful to have access to these
stylesheets so that the look and feel of visual authoring tools and testing
tools matches that of the production environment where the design will be
used.

To support these capabilities, the architecture could provide a way to
create, edit and store these stylesheets. However, this is not a prescribed
requirement for an LD architecture, as other presentation and rendering
technologies may be used, such as directly encoding presentation methods
within the runtime environment as interface objects (Java Swing compo-
nents, Windows user interface elements, etc.), or by using a server-side
scripting language like JSP or ASP dynamically to render the design ele-
ments.

3.2.5 Discovering and Adding Materials to Learning Designs

In addition to editing the structure of Learning Designs, it also necessary to
incorporate materials within a design, such as learning objects, HTML,
images, animations and so on. These materials tend to be created and man-
aged separately from the LD, and then need to be inserted into the LD at
the appropriate points.

Materials also tend to get stored in structured repositories that support
search mechanisms to enable designers to discover appropriate materials.

44 S. Wilson

3.2.6 Aggregating Learning Designs

Units of Learning (UOLs) can be referenced from within other learning
designs, so one of the tasks that designers may undertake is to aggregate
UOLs from multiple learning designs into new structures: for example, in-
corporating a set of designs, each of which is intended as a series of activi-
ties within a single session, into a sequence within an LD for a course or
module.

3.2.7 Creating, Editing and Storing Materials

Although not strictly part of the LD workflow as such, an architecture that
supports LD will typically also need to interact with the workflow for
managing materials.

3.2.8 Testing Learning Designs

Designers need to be able to test their learning designs, to step through
them and see how they work, and try out the various roles and pathways
through the design.

Because of the flexibility of LD, there is a lot of potential for “runtime
errors” emerging from the combinations of roles, activities and properties
defined by the designer, so there is a need to support sophisticated debug-
ging, validity checking and boundary testing of LDs to prevent problems
occurring during use.

3.2.9 Storing Learning Designs in Repositories

Designers need to be able to store their learning designs, both in draft form
for development, but also to submit finalized designs into production re-
positories for use by teachers.

3.2.10 Discovering and Retrieving Learning Designs from
Repositories

During the creation and editing process, designers will need to be able to
find and reuse previous designs (or parts of them), and locate draft learning
designs for editing. Typically this is envisaged as a structured storage sys-
tem that supports metadata tagging and search.

3 Architectures to Support Authoring Learning Design 45

3.3 The Valkenburg Group Reference Architecture

The reference architecture developed by the Valkenburg Group embodies
the workflow tasks discussed in the previous section as a set of logical ar-
chitectural components (see Fig. 3.1).

Each piece of this architecture is described by a package – a logical unit
of architecture, rather than as a physical software component. In actual de-
ployment, each of these parts may be a separate software component, or be
parts of the functionality of a few large applications.

This reference architecture is defined here at a very abstract level; we’ll
look at how this relates to some of the predominant technology platforms
later in this chapter.

3.3.1 Constraint Editor

This package supports the editing of design constraints, and also provides
an interface to allow the LD Editor to access constraints, so that it can
check whether a design or template is valid, either by user request, or be-
fore saving. In some cases the editor may also be able to reconfigure its
user interface based on the schema or application profile it is provided
with.

There is no specific requirement of the reference architecture for how
constraints are defined and managed; this editor could create XML Sche-
mas derived from the basic IMS LD schemas, or the constraints could be
maintained via some other means of representation, such as the Object
Constraint Language (Warmer 2004). Currently there exists no standard
for a constraints expression format, although if there were then this could
be of potential benefit for realizing this architecture.

A possible implementation of a Constraint Editor is simply a standard
XML editor capable of working with XML Schemas, such as XMLSpy
(Altova 2004) or TurboXML (TIBCO 2004).

The schemas created using the Constraint Editor could then be used to
configure the LD Editor, either to provide output validation, or actually to
modify the behaviour of the editor itself – for example, the RELOAD edi-
tor (RELOAD 2004) generates a user interface based on an XML Schema.

3.3.2 Reference Runtime

The Reference Runtime performs the functions required to test learning
designs, enabling designers to “run” a design and step through it, and de-
bug it.

46 S. Wilson

Tool Repository

Material Editor

Constraint
Editor

Reference
Runtime

run material

Search ToolkitMaterials
Repository

store and retrieve material

find material

Learning Design
Editor

Learning
Designs

Repository

search, store and
retrieve learning designs

search, store, retrieve templates

search, store,
retrieve stylesheets

Stylesheet
Editor

Metadata Editor

Runtime
environment

check
constraints

Fig. 3.1. Overview of the Valkenburg Group Reference Architecture. Note that the
Runtime Environment and Search Toolkit are tinted differently; this is to indicate
that these are external to the authoring and content management architecture

It is called a “Reference” runtime because it is intended to act to inform
designers how their design will work in a “generic” runtime environment,
even though in practice runtime environments may vary widely, especially
in presentation.

The package provides an interface accessible by the LD Editor, so that
the designer can take a look at how his or her design works directly from
the editing workflow. This sort of interactive editing and debugging is

3 Architectures to Support Authoring Learning Design 47

something often found in web development software, and also in Inte-
grated Development Environments (IDEs) such as Jbuilder (Borland 2004)
or ECLIPSE (ECLIPSE 2004).

Teachers wanting to use a learning design could also use the Reference
Runtime to preview it.

In either case, if stylesheets are used, it would be useful for the Refer-
ence Runtime to be able to access the set of standard stylesheets also used
in the Runtime Environment so that the visual appearance of a design dur-
ing testing will be closer to how it will appear in actual use.

3.3.3 Learning Design Editor

This package performs the main creation and editing duties for learning
designs.

As well as providing the user interface to allow designers to create and
work with learning designs, the package is additionally defined with access
to the functionality of several other packages in the architecture. It can:

Run material to test it using the Reference Runtime package.
Search, store and retrieve templates from the Learning Designs Reposi-
tory.
Search, store, and retrieve learning designs from the Learning Designs
Repository.
Find material in the Materials Repository.
Check that a learning design or template fits constraints defined by the
Constraints Editor.
Access stylesheets to alter the visual appearance of the learning design.

Because an LD template is essentially just a learning design with per-
haps some boilerplate text or empty sections, the LD Editor also doubles
up as the editing package for templates.

There is a great deal more to say about the LD Editor, and this is ex-
plored later in this chapter.

3.3.4 Learning Designs Repository

The Learning Designs Repository is a structured storage system for han-
dling learning designs, templates and stylesheets. Although logically this is
defined as a single package, in deployment this could very well take the
form of a federated repository structure, distinct repositories for each type
of resource, or a single multi-purpose repository (even including the func-
tions of the Materials Repository).

48 S. Wilson

The Learning Designs Repository provides interfaces to allow the dis-
covery,1 retrieval and storage of learning designs, templates, and
stylesheets.

Because LD has a lot of reusable “parts”, such as roles, activities, envi-
ronments and so on, another potential role for the Learning Designs Re-
pository is to manage these fragments so they can be accessed from the LD
Editor.

In addition to the special requirements of LD, such a repository would
also perform all the usual tasks associated with structured storage systems,
such as version control, status management, access control, and search.

3.3.5 Materials Repository

The Materials Repository is charged with managing the workflow relating
to materials (such as knowledge objects, learning objects and other media),
particularly discovering2 materials so that they may be incorporated into an
LD. The Materials Repository also provides storage and retrieval functions
for the Material Editor and Metadata Editor.

As with the Learning Designs Repository, the Materials Repository may
in deployment actually manifest itself as a federation of repositories, and is
also expected to provide generic repository-type features.

3.3.6 Stylesheet Editor

The Stylesheet Editor enables designers to create and edit stylesheets for
modifying the presentation of LDs. The Stylesheet Editor uses the Learn-
ing Designs Repository for the storage and retrieval of stylesheets.

1 A critical issue for the discovery of learning designs is the type of metadata used,
how it is created, and how aspects of the design can be effectively described for
search purposes. Although in theory the IEEE Learning Object Metadata standard
could be seen as the appropriate choice of metadata format, this is not the only
possible approach to support discovery; for example, in the future we may also see
the use of ontologies and the semantic web as relevant to this area. Currently,
there is no definitive proposal presented by the Reference Architecture for how to
implement discovery of learning designs.
2 Once again, metadata is a crucial factor here. For materials, the IEEE Learning
Object Metadata standard is an obvious choice for electronic learning materials,
although other options exist such as Dublin Core and its various extensions. The
Reference Architecture itself is agnostic on this point, although for practical inter-
operability purposes the choice of metadata standard must be defined for any re-
alization of the architecture.

3 Architectures to Support Authoring Learning Design 49

In general, the rendering and presentation of LDs is handled by the Run-
Time environment (e.g. the player could have a standard set of stylesheets
for rendering any learning design).

In the authoring architecture, the role of stylesheets is to enable authors
to view the design as it may finally appear, either with a visual editor or
through the use of the Reference Runtime.

As noted previously, the use of stylesheets is only one possible means of
managing presentation, and is not a required part of any architecture to
support authoring learning designs.

3.3.7 Search Toolkit

The Search Toolkit represents an external discovery mechanism used to
find learning designs or materials. This could manifest itself as a federated
search mechanism such as XGrain (JISC 2003) or Splash (Edusource-
Splash 2004), a search harvesting engine based on the Open Archives Ini-
tiative metadata harvesting specification (OAI 2004), or simply a web
search engine like Google.

The Search Toolkit represents, abstractly, the means by which the LD
management workflow interacts with a broader information environment,
such as the JISC Information Environment (JISC 2004a), or the broader set
of resources within an enterprise.

In the reference architecture, the LD Editor searches the Learning De-
signs Repository and Materials Repository directly through an interface of-
fered by these packages; however, it would also be perfectly reasonable for
the editor to have access to external search capabilities also.

3.3.8 Material Editor(s)

Material Editors allow materials to be created and edited, and stored in the
Materials Repository. In deployment, the existing wide range of image,
animation and web editing tools would most likely provide the functions of
this package.

3.3.9 Metadata Editor

This package enables users to tag materials with metadata to facilitate dis-
covery of materials for use within learning designs. This editor is envis-
aged as being able to access external classification schemes and taxono-
mies, but not necessarily able to define or modify these schemes itself.

50 S. Wilson

3.3.10 Runtime Environment

For learning designs actually to be deployed and used, it is necessary to
have a runtime environment access the Learning Designs Repository and
retrieve designs. The architecture of the Runtime Environment (and its
other packages and services) is not explored in this chapter.

3.4 The Architecture of a Flexible Learning Design
Authoring Tool

The LD Editor needs to perform two sets of functions: it needs to provide a
means of creating pedagogic scenarios, defining the flow of activity along
with the various branching conditions, for use either as a single design or
as a template. There is also a quite distinct requirement that calls for an LD
Editor to be able to populate a design with specific resources and services.

These sets of requirements overlap, but tend to have some specialization
in the form of the actors that perform the tasks; in the former case there is
a role of an “educational specialist” who defines a pedagogic scenario,
while in the latter case it is often the teacher who “fills” the scenario with
what is needed for a particular session.3 The key distinction between these
actors may not necessarily be the different functions they use, but the us-
ability requirements for the tool interface.

These overlapping requirements are expressed as coarse-grained UML
use cases in Fig. 3.2.

One interpretation of these requirements is to create specialized user in-
terfaces that manage the tasks of “Create Pedagogic Scenario” and “Fill
Scenario” and their various sub-tasks, perhaps in a predefined order, such
as in a “wizard”.

Alternatively, the requirements could be expressed as individual fine-
grained use cases, which can be performed in any order or combination, al-
lowing more flexibility (Fig. 3.3).

These are not the only two possible roles, or sets of use cases, but are a
useful reference set for defining what an LD Editor does. As more tools
appear, it may be the case that different models for managing the authoring
process emerge.

3 Note that this is not the same as populating a design with learners for execution
at runtime (see Chap. 4).

3 Architectures to Support Authoring Learning Design 51

Learning Design Editor

Teacher

Fill Scenario

<include>

Create
Pedagogic
Scenario

Educational
Specialist

Manage
Roles

Manage
Activities

Create
Timeline

Assign
Roles to
Activities

Align
Activities on

Timeline

Assign
Environment

to Activity

Manage
Environment

Attach
Objects to

Environment

<include>

<include> <include>

Fig. 3.2. UML use cases for an LD Editor. Note that the weak verb “Manage” in
this instance means to create, read, edit and delete that type of object. So, “Man-
age Environment” means to create, read, edit and delete Environment elements of
a learning design

3.4.1 Constructing an LD Editor

The LD Editor is a large package, and it could be a difficult task to con-
struct it completely in one development project.

However, it may be possible to create a framework in which the various
components of the editor can be “plugged in” as one approach to collabo-
ratively developing an editor.

52 S. Wilson

Learning Design Editor

Teacher Educational
Specialist

Manage
Roles

Manage
Activities

Create
Timeline

Assign
Roles to
Activities

Align
Activities on

Timeline

Assign
Environment

to Activity

Manage
Environment

Attach
Objects to

Environment

Fig. 3.3. Small-grained UML use cases for an LD Editor. Note that the weak verb
“Manage” in this instance means to create, read, edit and delete that type of object

The kind of application envisaged has two frameworks: one that con-
trols the underlying data model of the LD instance, and one that handles
the management of the user interface. The data model layer is also a logi-
cal point at which to enforce constraints, either embedded within the appli-
cation by incorporating XML Schema checking, or through delegation to
an external constraint handling service.

Plug-in tools provide controllers and views that fit into the presentation
layer framework, and access the instance data model through the Learning
Design Model Framework. This architecture is shown in Fig. 3.4.

Each plug-in would provide a particular kind of authoring capability,
such as managing roles, activities or environment (see Fig. 3.5). Variations
on the same authoring task could also be provided for different levels of
user. For expert users, the editor could also have a “Raw Learning Design”
plug-in that simply allowed direct editing access to the underlying XML
representation.

3 Architectures to Support Authoring Learning Design 53

<< framework >>
Learning Design Model Layer

<< framework >>
Editor Presentation Layer

Plug-In

access instance model

provide controllers and views

The Editor Presentation Layer is a framework that allows
plug-ins to install new menu items and views within the

Editor user interface.

The Learning Design Model Layer manages the internal
representation of the Learning Design instance, and
controls the modification of the instance by Plug-Ins.

Fig. 3.4. Plug-in framework for an LD Editor

Other types of plug-in might include a package that provides import and
export of SCORM (ADL 2004b) files, and a package to support access to
the Learning Designs Repository and Materials Repository.

This type of application architecture has a number of real-world exam-
ples in practice. The RELOAD e-learning editor is an example, and one
that draws explicitly on this framework model (this is covered in more de-
tail in this book in Chap. 7). The ECLIPSE development environment is
also constructed in a very similar fashion (ECLIPSE 2004) Its strength is
that, while allowing a wide variety of functionality and user experiences
for different types of users in various organizations, the validity and integ-
rity of the learning designs they create can still be ensured.

54 S. Wilson

<< framework >>
Learning Design Model Layer

<< framework >>
Editor Presentation Layer

Timeline Editor
Plug-In

Role Editor
Plug-In

Activity Editor
Plug-In

Environment
Editor Plug-In

Fig. 3.5. Example of an LD Editor with a set of plug-ins

3.5 The Reference Architecture in Context

Since this framework was first created in 2002, there have been several
major developments, both in e-learning and the wider field of system ar-
chitecture. The most critical developments that need to be looked at are:

The emergence of web services technology, and its adoption across all
major technology platforms, with Service-Oriented Architecture an
emerging approach to tackling system design.
The ongoing efforts from MIT’s OKI to create common interfaces for e-
learning components.
The publishing of the IMS Abstract Framework.
The creation of the JISC e-Learning Framework Programme (JISC
2004b) to investigate and promote a common architectural approach in
UK e-learning development

3.5.1 Web Services

Web services has finally emerged as a mainstream technology, with ma-
ture specifications from W3C, OASIS and others, and toolkits available for
the major programming environments of Microsoft’s net and Sun’s Java
platform.

3 Architectures to Support Authoring Learning Design 55

The maturity and wide adoption of SOAP (W3C 2003) and the Web Ser-
vices Description Language (W3C 2001) have resulted in the approach to
system design known as Service-Oriented Architecture.

3.5.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an approach to joining up systems
within enterprises. It is a relatively new approach, but is rapidly gaining
popularity because of the low costs of integration coupled with flexibility
and ease of configuration. SOA builds upon the experience of using web
services for integration.

In SOA, the application logic contained in the various systems across
the organization – such as student record systems, library management sys-
tems, learning environments, directories and so on – are exposed as ser-
vices, which can then be consumed by other applications. This “service
layer” is interposed between presentation and business logic within a typi-
cal three-tier architecture (Fig. 3.6).

Presentation Layer

Service Layer

Business Logic Layer

Data Layer

Fig. 3.6. The service layer encapsulates business logic within a three-tier architec-
ture

This layer provides a means to encapsulate the business logic of a com-
ponent (expressed in a specific programming language, such as Java) and
expose it in a language- and platform-independent fashion. In this sense,
SOA has a lot in common with CORBA, but has a considerably lower cost
of implementation.

The service layer becomes the point in the architecture where integra-
tion agreements are made, rather than down at the data level or in the pres-
entation layer, or even in the business layer. The problem typically with in-
tegration at the business logic layer is that it predicates a homogeneous
programming environment – either Java and RMI, or Microsoft D/COM.

A service-oriented approach does not preclude also using portals or data
warehouses, and is in fact agnostic about how the rest of the enterprise is

56 S. Wilson

configured, which is why it makes a good approach for integration in het-
erogeneous environments.

From an LD architecture perspective, we can look at the various func-
tional packages defined in the Valkenburg Group Reference Architecture,
and identify how those functions could be exposed as services. When look-
ing at our earlier model from an SOA viewpoint, we find that some of our
packages can be thought of as applications that are consumers of services
provided by other packages, and some that are primarily providers of ser-
vices to applications. This results in the service architecture in Fig. 3.7.

Service Layer

Run
Stylesheet

ManagementMaterial Discovery
Learning Design

Management

Supports discovery,
storage and retrieval
of Learning Designs
and templates

Supports discovery and
retrieval of externally
held materials

Constraint
Management

Manages constraints
on Learning
Designs, and
validates Learning
Designs against
relevant constraints

Supports storage,
retrieval of stylesheets

Runs a Learning
Design and allows
monitoring of its state

Material
Management

Supports submission
and storage, status
management and other
repository functions

Service Consumers

Service Providers

Learning Design
Editor

Constraint Editor Metadata Editor Materials Editor Search Agent

Materials Repository
Learning Designs

Repository
Runtime Reference

Fig. 3.7. The Valkenburg Group Reference Architecture modelled from a service-
oriented viewpoint. Note that in this model, constraint management services have
been split out from the Constraint Editor and into the service layer: in the original
architecture, the editor provides the constraint checking service

In this view, we have interposed a set of service definitions between the
“editor”-type packages, and the supporting repositories. These services
would typically be defined using the Web Services Description Language
(W3C 2001) and accessed using SOAP.4

4 Originally, SOAP was an acronym of “Simple Object Access Protocol”, but this
expansion is no longer used as it is somewhat misleading with regard to what the
current W3C definition of SOAP actually does.

3 Architectures to Support Authoring Learning Design 57

Ideally, one would like to create standard definitions for any of these
services; for example, a standard definition for a Learning Design Man-
agement Service would enable any LD Editor to readily consume services
provided by any Learning Designs Repository.

Looking again at the framework for the LD Editor, we can also refactor
the design to view it from a service-oriented perspective (Fig. 3.8). In this
view, we are not interested in the internal behaviour of the editor as such,
but the services that need to be in place in the wider environment within
which the editor is being used; for example, within the set of networked
services available in an educational enterprise.

Service Layer

Learning Design Editor

Run
Stylesheet

Management Material Discovery
Learning Design

Management

Materials
Repository

Remote
Repository

Remote
Repository

Remote
Repository

providesprovides provides

Learning Designs
Repository

Runtime
Reference

Constraint
Management

Constraint Editor

provides

Search Gateway

Fig. 3.8. The LD Editor modelled from a service-oriented viewpoint

In addition to the services easily identified from the original Valkenburg
Group Reference Architecture (i.e. operations already defined as an inter-
face between packages) there may be aspects of the editor packages that
could be redefined as services. For example, the model layer of the LD
Editor could be defined as a service rather than as an intrinsic part of the
editor, as could the logic contained in some of the plug-ins. Whether or not
this is to be desired remains to be seen.

Overall, the service-oriented approach and the Valkenburg Group Ref-
erence Architecture fit together quite well, and it should be perfectly pos-
sible to deploy an LD authoring workflow based on the Valkenburg Group
Reference Architecture using web services.

58 S. Wilson

3.5.3 The Open Knowledge Initiative

The Open Knowledge Initiative has also been developing an architec-
ture framework. Although the OKI model does not define its architecture
in terms of web services, but instead as a set of abstract Application Pro-
gramming Interfaces (APIs),5 there is a lot of commonality between the
overall approach taken by OKI and service-oriented architecture. For a de-
tailed technical discussion of how OSIDs differ from web services and
other protocol-level specifications, see Kraan (2003).

The OKI model defines two large groupings of services: those referred
to as “Application Services” (or sometimes “Educational Services”) are
focused on supporting the needs of educational applications, whether that
is from a learning, administrative or information management perspective.
The second grouping is called “Common Services”, and is the set of ser-
vices associated with access to parts of the common technical infrastruc-
ture, such as authentication and data management.

On top of these two layers of services sit the actual user applications,
while beneath them sits the actual infrastructure of the organization – its
databases, directories, file systems and so on. This is illustrated in Fig. 3.9.

Within the OKI framework, the Valkenburg Group Reference Architec-
ture can best be seen as a set of (hypothetical) educational applications,
and a set of educational services.

For the most part, the types of behaviour identified for the logical pack-
ages in the Valkenburg Group Reference Architecture have no direct coun-
terparts in the OKI model. However, many of the functions of the Learning
Designs Repository and the Materials Repository can be expressed using
the OKI Digital Repositories OSID, which defines a set of basic repository
operations, such as discovery, delivery, submission and storage, and so on.
As this forms the basis of most of what would be the service layer for an
LD authoring environment, then there is some integration possible using
OKI specifications to support LD.

Placing the Valkenburg Group Reference Architecture in the OKI con-
text also gives us is a picture of how the LD authoring workflow sits
within the broader enterprise, particularly how it may integrate with the
security infrastructure. In a sense, OKI and the activities around LD have
been approaching the e-learning problem from opposite ends – while LD
has been trying to tackle the pedagogic aspects of e-learning, OKI have
been investigating the system management and administration compo-
nents, with very little overlap.

5 OKI calls its interface specifications Open Service Interface Definitions
(OSIDs).

3 Architectures to Support Authoring Learning Design 59

Learning Management System

E
du

ca
tio

na
l

A
pp

lic
at

io
ns

E
du

ca
tio

na
l

S
er

vi
ce

s
C

om
m

on
S

er
vi

ce
s

In
st

itu
tio

na
l

In
fr

as
tr

uc
tu

re

Educational
Software

Educational
Software

Educational
Software

Educational
Software

Educational
Software

Content Mgt
API

Course Mgt
API

Assessment
API

(etc.)

Local Implementations

Authentication
API

Authorization
API

Logging API (etc.)

Local Implementations

Security
File

Services
Database (etc.)

Fig. 3.9. The OKI architecture model, based on a diagram by Thorne et al. (2004)

It may be possible in the future to devise OSIDs for the services identi-
fied for the Valkenburg Group Reference Architecture beyond repository
integration; at present the two approaches are not in any conflict, however,
and it should be possible to create a deployment architecture that draws on
both sets of work.

3.5.4 IMS Abstract Framework

The Abstract Framework is a document published by the IMS Global Con-
sortium Inc., the body with responsibility for the LD specification. In it,
IMS defines at an abstract level the components of a standards-based e-
learning architecture. This framework is not intended to guide develop-
ment or implementation as such, but to provide a model that can be re-
ferred to as new specifications are proposed or developed.

Structurally, the IMS Abstract Framework has a great deal in common
with the OKI architecture model, with the same four layers (Fig. 3.10).

60 S. Wilson

IMS provides a great deal of information about modelling and binding
services and components, with an overall goal of being able to create
specifications for use within SOA.

Application Layer

Application Services Layer

Common Services Layer

Infrastructure Layer
S

er
vi

ce
 A

cc
es

s
P

oi
nt

s

users

Fig. 3.10. IMS Abstract Framework, high-level overview, based on a diagram by
IMS (AF 2004)

IMS works very closely with the OKI Group at MIT, and there is a con-
scious effort to relate the IMS Abstract Framework and the OKI architec-
ture.6

At the specification level, IMS has developed a range of specifications –
in addition to LD itself - that relate to some of the aspects of the Valken-
burg Group Reference Architecture:

The Digital Repositories specification (DR 2003) defines a set of opera-
tions for working with repositories.

6 The IMS Abstract Framework draws upon a wide range of architectures in addi-
tion to the OKI framework, such as the work of the Carnegie–Mellon Learning
Systems Architecture Lab, and so there is not necessarily a direct correspondence
between the two models.

3 Architectures to Support Authoring Learning Design 61

The Meta-Data specification (MD 2001), now the IEEE Learning Object
Metadata standard (LOM 2002) specifies how to describe learning re-
sources to aid discovery.
The Enterprise Services specification (ES 2004) defines a set of web
services for working with information about students, courses and group
membership.
The Learner Information Package specification (LIP 2001) defines a de-
tailed model for describing learners and profiling their achievements.
The Content Packaging specification (CP 2003) provides a means to en-
capsulate, transport and store learning resources.
The Simple Sequencing specification (SS 2003) provides a sequencing
and ordering mechanism that can be used to make adaptive learning ob-
jects.
The Question and Test Interoperability specification (QTI 2003) defines
formats for exchanging and rendering electronic assessments and return-
ing results.
The Sharable State Persistence specification (SSP 2004) defines the
mechanism for exchanging state representations between simulations
and learning systems.
The Resource List Interoperability specification (RLI 2004) defines ser-
vices for exchanging reading lists.
The Vocabulary Definition and Exchange specification (VDEX 2004) is
a model for defining controlled vocabularies.
The Reusable Definitions of Competencies and Educational Objectives
specification (RDCEO 2002) can be used to define competencies for ex-
change between systems.

Other specifications by bodies other than IMS are also under develop-
ment, and some of these specifications are being formalized as interna-
tional standards by the Institute of Electrical and Electronics Engineers
(IEEE) and the International Organization for Standardization (ISO). Most
of these specifications relate more closely to the runtime environment than
to the authoring and content management area.

The areas of the Valkenburg Group Reference Architecture not ad-
dressed by the IMS Abstract Framework, or its current set of specifica-
tions, are some of the specific operations of the Learning Designs Reposi-
tory (such as working with fragments, templates and, potentially,
stylesheets), the handling of constraints, and the functions of the Reference
Runtime.

These service types do not conflict with any existing parts of the IMS
framework, and there is some effort underway through the IMS Interna-
tional Conformance Programme to develop a set of recommendations for
expressing constraints on IMS specifications.

62 S. Wilson

3.5.5 JISC e-Learning Framework

The JISC e-Learning Framework is an initiative to focus the efforts of UK
educational development activities around a common set of architectural
concepts. Instead of creating service definitions itself, JISC has instead
taken a pragmatic approach and is referencing existing work wherever
possible, including both OKI, IMS and SCORM.

Strategically, LD plays an important role in the JISC framework as one
of the main “workflow” specifications that links together at runtime a
range of educational tools, such as synchronous chat, content delivery, col-
laboration and so on. For LD authoring and content management, the JISC
framework is identifying the key services needed by drawing on the work
of the Valkenburg Group as well as OKI, IMS, and the wider set of bodies
creating technical standards and specifications. Unlike OKI and IMS,
however, JISC is an organization that conducts development activities
rather than specifications, so it can use its framework to target efforts such
as technology demonstrators and common code libraries to support the im-
plementation and deployment of the packages defined by the Valkenburg
Group Reference Architecture.

3.6 Conclusion

The Reference Architecture proposed by the Valkenburg Group is a useful
framework for identifying and specifying the components of an architec-
ture for authoring and managing learning designs. It is sufficiently abstract
to support a wide range of implementations (such as a single integrated au-
thoring and content management application, a distributed network of web
services and thin clients, or a collection of standalone generic applications
used in a particular fashion) yet it still provides a useful framework to as-
sist in the design of authoring and content management environments. The
models proposed are also congruent with current frameworks for learning
technologies, including the OKI and the IMS Abstract Framework.

It is important to note that, although this reference architecture specifies
a number of packages, many of these packages can be provided by existing
generic software components, rather than requiring the development of
new specialist LD tools. Where specialist tools are needed – for the LD
Editor, the Learning Designs Repository and the Reference Runtime –
there has been a great deal of effort by Valkenburg Group members to re-
search and develop the relevant technologies, using models like the flexi-
ble LD Editor architecture model as a point of reference. Again, this is
something explored in subsequent chapters. Chapter 7 explores the topic of
LD tooling in more depth.

4 An Architecture for the Delivery of E-learning
Courses

Colin Tattersall, Hubert Vogten, Rob Koper

Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

4.1 Introduction

In distance learning, production processes are used to create courses for
delivery to many hundreds or thousands of students over several years.
One of the most powerful drivers for the use of e-learning in distance
learning is an economic one, following the well-established economics of
the publishing world—courses can be created once and delivered many
times. Although each delivery incurs costs, these are marginal and more
than covered by the fees and subscriptions paid by the material’s consum-
ers. In this way, over time, high initial production costs are first recouped
and subsequently exceeded by revenues, yielding course profit. Substantial
initial costs can be justified by informed market forecasting and used to
invest in high-quality learning experiences which might otherwise be im-
possible to finance.

These opportunities have sparked a proliferation of commercial and
open-source course delivery systems, also known as (web-based) course
management systems, courseware delivery systems, on-line educational
delivery applications and learning management systems (for an overview,
see Brusilovsky and Millar 2001).

Although the ‘create once, deliver many times’ approach is one of the
foundations of e-learning economics (Molyneux 2000; Sloep 2003), it is
often overshadowed and overlooked in the wider debate on reuse in e-
learning. There, the focus is squarely on reuse to support the creation of
new courses and is dominated by discussions of learning object reposito-
ries, and methods and techniques to support the creation of new materials
(Downes 2001; Friesen 2001).

Consideration must nevertheless be given to the concepts required for
successful application of the ‘create once, deliver many times’ approach in
the design and development of integrated e-learning systems (Koper
2003a). Without such attention, processes and systems for the delivery of
courses can lead to a ‘create once, deliver once’ situation where each de-

64 C. Tattersall et al.

livery is associated with its own unique variant production. The conse-
quences of this situation are often not felt immediately, since copies of
productions can be made instantly and at negligible cost. However, the
seeds are sown for future course administration and management difficul-
ties which ultimately undermine the original economic case.

This chapter provides an analysis of the requirements for reproducibility
in e-learning, where reproducibility refers to repeated delivery of e-
learning courses in different settings with different participants. Thereafter,
the chapter describes the design for part of an integrated e-learning system
which meets the requirements, followed by a description of a production
level implementation of the design. We conclude with a discussion of the
approach.

4.2 Requirements Analysis

The requirements presented here have been derived from production ex-
perience at the Open University of the Netherlands delivering courses to
thousands of students via the Internet from 1996 onwards. We distinguish
between course enrolment, when learners sign up to participate in e-
learning courses, and course delivery, the process by which learners are
engaged in learning processes supported by e-learning systems. The prob-
lem area addressed by this chapter is the combination of course creation
and management, and course delivery policy. The latter concerns the man-
ner in which those enrolled for a course have their education delivered, fo-
cusing on when delivery occurs and how (in terms of cohorts and sets of
learners).

The distance and open learning worlds are associated with a variety of
delivery policies. Learning Providers (LPs) must cater for a variety of
situations, including those where:

1. a course is run once only (then discontinued), with a single set of learn-
ers.

2. a course is run for several sets of learners. The rationale behind the di-
viding of learners into sets is here a logistical one for the LP. The avail-
ability of staff resources to act as (remote) tutors might be constrained
by institutional policy that the staff-to-learner ratio must never rise
above a certain advertised maximum. Alternatively, the division might
reflect simple physical constraints, such as classroom size for blended
learning courses where groups of more than 40 cannot be accommo-
dated for face-to-face sessions. In contrast, it might reflect the targeting
of different geographical areas or market segments (e.g. running the

4 An Architecture for the Delivery of E-learning Courses 65

course in the winter months and marketing to those seasonal workers
fully employed in the summer months, and vice versa).

3. a course is run for (possibly several sets of) learners and the learners are
divided into groups. In contrast to the previous possibility, the rationale
here is pedagogical, reflecting a choice to pursue, for example, a group-
based learning approach in which learners are divided into competing
teams, or a problem-based learning approach (Nulden 2001). Similarly
the use of computer-supported collaborative learning (CSCL) technolo-
gies might be associated with working in small groups.

4. a course is run only when, but as soon as, there are enough learners en-
rolled on it. Here, the decision might be a pedagogical one (group learn-
ing) or might reflect economic reasoning, such as the need to have a
minimum number of learners to break even.

5. a course is run for each individual learner as soon as the individual’s en-
rolment has been finalised.

LPs may wish to adopt different delivery policies, either to gain competi-
tive advantage through flexibility of delivery, or to reflect the stage of de-
velopment of the organisation (starting with limited flexibility but increas-
ing as the organisation’s logistical processes mature).

Without an appropriate approach to delivering e-learning providing ade-
quate separation between courses and their delivery to learners, LPs run
the risk of being forced down a path of creating course variants each time a
course is run. This results in a ‘create once, deliver once’ situation. In
situations involving large numbers of learners (see Daniel (1998) for some
extreme cases) this situation becomes unmaintainable.

While targeting flexibility of delivery, providers must also be aware of
legal obligations on retaining information in cases of dispute with learners.
Information on both the structure and content of a course, together with
that concerning its time-of-delivery and cohort size must be preserved, and
the obligation may exist long after learners’ participation in courses has
ended. Providers making modifications to courses on-the-fly without pay-
ing sufficient attention to version management run the risk of losing law-
suits filed by learners who dispute their failing of course examinations.

Notwithstanding the need for effective version management of courses,
providers need to be able to make minor modifications (i.e. without legal
significance) to materials being used in running courses. Such modifica-
tions include correcting spelling errors in course materials, improving the
readability of materials following learner feedback, and the updating of
links to time-dependent material used in courses such as company year-
books and governmental surveys.

We identify four requirements to be met by LP processes and systems in
the area of reproducibility:

66 C. Tattersall et al.

1. The same course must be able to be delivered to different sets of learn-
ers without resorting to duplication of course structure and contents.

2. Deliveries must be able to be handled in an efficient way, and, where
possible, partly or wholly automated. Meeting this requirement further
reduces delivery costs thereby strengthening the ‘create once, deliver
many times’ case.

3. Effective version control must be applied to courses.
4. Minor updates to running courses must be possible without disrupting

on-going learning processes.

E-learning practice has not always taken these requirements into account,
as noted by Porter (2001):

In many cases the instructor is given training in a particular on-line develop-
ment, delivery and management tool and then the instructor proceeds to craft a
course for on-line delivery. The pedagogical structures embedded within the in-
structional delivery tool are tweaked to suit the needs of the class, the content or
the particular instructional problem. In most cases, the courses are hand tooled and
kept current through the intervention by the instructor over time.

This point is echoed by Abdallah et al. (2002) who note that in a com-
mercial course delivery system each module, lesson, Web page has to be
duplicated in each course if needed. Similarly faculties’ resentment of the
time required to load and reload course materials is noted as one of the fac-
tors which leads to reduction in faculty use of course management systems
(Morgan 2003).

Such practice contrasts sharply with the publishing-world-inspired pro-
duction systems required to realise the ‘create once, deliver many times’
promise.

4.3 Design

The above analysis points to the need to distinguish between a course in
the abstract, and its deliveries to different sets of learners. The LD specifi-
cation (LD 2003) provides an appropriate context within which to view
this distinction.

LD provides a notational system to describe a Unit of Learning (UOL),
an abstract term used to refer to any delimited piece of education or train-
ing, such as a course, a module, a lesson, etc.

One of the requirements the LD specification is designed to meet is that
of reproducibility—the specification must describe the learning design ab-
stracted in such a way that repeated execution in different settings with dif-
ferent persons is possible.

In a UOL, people act in different roles in the teaching–learning process.

4 An Architecture for the Delivery of E-learning Courses 67

Through its use of roles, LD abstracts from the details of specific learn-
ing situations and provides an appropriate concept to describe a course in
the abstract: the UOL. It is UOLs that are created once, then delivered
many times.

4.3.1 Moving from an Abstract Course to Specific Deliveries

The ‘creation versus delivery’ distinction reflects that between design time
and runtime. The formal description of a learning process which results (at
design time) from the use of the LD notational system is interpreted (at
runtime) by an LD-aware software component, or LD Player, in the same
the way HTML is interpreted by a browser. Taking into account the re-
quirements identified in the previous section, it is clear that the design time
concept (the UOL) must be augmented with an additional, runtime concept
in order to satisfy the requirements.

The need to establish a specific runtime concept related to the abstract
design time concept of a UOL can be informed by the world of object ori-
entation. Although the link between e-learning systems and object orienta-
tion has been examined in other work (Douglas 2003; Permanand and
Brooks 2003; Virvou and Tsiriga 2001), such work has tended to focus on
the reuse of learning objects at design time; that is, in creating new UOLs.
In the context of reproducibility, the focus is on the move from design time
to runtime. This is the process of instantiation, whereby an object class,
modelling an abstraction, is used as the basis from which to create specific
object instances. Following this line, we view a UOL as describing a class
of possible instances, and we use the term instantiation to describe the
process of transforming an abstract UOL into deliveries for learners. The
specific instances of a UOL are referred to as runs, defined as the
combination of a particular UOL with an assigned community of users.
Each run is assigned to exactly one UOL, but a particular UOL may have
zero or more runs assigned to it.

Additionally, we exploit the notion of a publication, which is introduced
to allow pre-processing of the contents of a unit of learning for a run. Pub-
lications are not strictly necessary to meet reproducibility requirements,
since the processing can also be achieved on-the-fly, but have proven use-
ful in several situations in practice. The first involves the selection of al-
ternative resources in different languages, as is the case when a course is
run for different sets of learners with different mother tongues. Here, the
pedagogical approach remains identical for the two groups but the re-
sources utilised in the learning design differ, including instructions to
learners and staff, materials to be read and exercises to perform. The con-
tent package representing the UOL consists of a single learning design
with multiple alternative resources. These alternatives are split out during

68 C. Tattersall et al.

pre-processing for linking to particular sets of learners and staff in a run
(e.g. a run with French contents and a run with English contents in the Ca-
nadian context). In a similar vein, alternative resources can be selected for
different media, such as a course offered both in printed form and over the
web, or for different (mobile) devices, perhaps with differing display sizes
and capabilities. Finally, publications can be exploited to accommodate va-
riety in the formatting and styling of UOLs for different sets of learners,
meeting both accessibility and re-branding requirements on course content.
A full examination of the utility of publications is outside the scope of this
chapter, but we note recent interest in the need to support re-branding of e-
learning material (Canadian Department of National Defence 2003).

This resulting combination of concepts is illustrated by the UML class
diagram shown in Fig. 4.1.

Chart ID : run_1
Chart Name : run
Chart Type : UML Class Diagram

run

publication

unit of learning

staff

learner

role

resources learning design

1..*

1..*

0..*

0..*

0..*

1..* defines

Fig. 4.1. The relationships between UOLs, publications, runs, roles, staff and
learners

A run adds runtime information to a UOL by defining a start and end
date and binding specific individuals into the roles modelled in the learn-
ing design part of the UOL.

The same UOL can have an unlimited number of runs. The notion of an
abstract class (UOL) from which specific instances (runs) can be spawned
is at the heart of the solution to reproducibility problems. Various delivery
policies can be realised by creating multiple runs from a single UOL. In all
cases, the ‘parent’ UOL is frozen and archived for future reference, with

4 An Architecture for the Delivery of E-learning Courses 69

each ‘child’ run maintaining a link to its parent. The unique identification
of a UOL using a Uniform Resource Identifier (URI) which is mandated
by the LD specification is also applied to each run.

4.3.2 Constraints on Run Creation

Mechanisms are provided in the LD modelling language to help designers
(at design time) indicate constraints on the creation of runs (at runtime).
The mechanisms provide the basis for automation of run creation and build
on the two general roles inherent in the specification: learner and staff..

Two of the constraint mechanisms are the min-persons and max-persons
attributes associated with a role. The former specifies the minimum num-
ber of persons which must be bound to the role before starting a run and
the latter specifies the maximum. Runs are generated using the constraints
until the enrolled population of learners is exhausted. Note that if the at-
tribute is not used, no restrictions apply to the number of individuals who
can fill a role. This can be useful in situations where the number of indi-
viduals participating in a UOL is unimportant, such as is the case with
fully individualised, self-taught courses.

By combining these attributes with the notion of a default run, the deliv-
ery process is opened to partial or full automation. If only one run is cre-
ated for a UOL and it is designated as the default run, learners can be
automatically assigned to participate in runs according to any min-persons
and max-persons constraints. Therefore, we extend the definition of a run
to include an attribute indicating whether or not it is the default run. Only
one run for a learning design may be a default run.

To illustrate the utility of default runs, consider a cohort of 200 learners
for a given UOL which has constraints indicating a minimum of 10 and
maximum of 20 individuals in the role of learner. A software tool could be
written to create runs automatically, so that as soon as the run is made
available, 10 runs could be spawned automatically, each with 20 learners.
Alternatives to full automation are also possible, whereby humans in the
loop are used to couple learners to runs.

Finally, a run progresses through a lifecycle, mirrored by its changing
status – namely waiting, active, stopped or archived. When a run is first
created it has the status 'waiting', meaning that users have still to be as-
signed to the run from the pool of enrolled learners before delivery starts.
Delivery starts when the run status changes to 'active'. As soon as all users
have finished, the run gets the status of 'stopped', meaning that users can
still access the learning design and the corresponding content contained in
the UOL but no more interactions will be allowed. Finally, a decision can
be made to archive the run, meaning that it is no longer available to the

70 C. Tattersall et al.

learners and staff, but all information is stored in an archive for future ref-
erence.

The final design is reflected in the UML domain model shown in Fig.
4.2.

Chart ID : run_2
Char t Name : run
Char t Type : UML Class Diagram

run
runId
status
start-date
end-date
defaul t

publication
stylesheet
language
#uol Id

unit of learning
uri

staff

learner

role
min-persons
max-persons
orgRole Id

resources learning design

1..*

1..*

0..*

0..*0..*

1 ..* defines

Fig. 4.2. The full UML class diagram for the design

In summary, the design of an approach to ensuring reproducibility in in-
tegrated e-learning systems involves coupling the concept of a UOL to that
of a run, which links individuals in particular roles to a UOL delivered in a
given time period.

4.4 Implementation

Implementation of the design occurs within the context of the production
sub-system of integrated e-learning systems (Koper 2003a). Within this
sub-system, a process is introduced, namely run management.

Our organisation implemented the design in its production processes a
number of years ago and is successfully operating with enrolment numbers
in excess of 1000 learners per course (i.e. UOL), coupled to multiple runs,
following different delivery policies, varying from tens to hundreds of
learners per run.

4 An Architecture for the Delivery of E-learning Courses 71

The run management process, incorporating the creation and manage-
ment of publications, is supported by a run tool, the positioning of which is
shown in Fig. 4.3.

LD PlayerLD PlayerRun toolRun toolRepositoryRepository Unit of
Learning

Run

AuthoringAuthoring Learner & Staff
Administration
Learner & Staff
Administration

U
ni

t o
f

Le
ar

ni
ng

Le
ar

ne
r &

st

af
f d

et
ai

ls

Design time Run time

Fig. 4.3. Positioning the run tool in its immediate architectural context

Using the tool, course administrators can access a repository and upload
UOLs previously created in an authoring process. The repository stores the
frozen ‘parent’ UOLs and implements version control mechanisms. Once
the abstract course description is available in the run tool, multiple in-
stances can be spawned by linking to learner and staff details pulled in
from the appropriate enrolment and administrative systems.

For users (staff or learners) using the player, support is offered in sev-
eral situations. First, if the user has been assigned to exactly one run for a
given UOL he or she can be directed to the run (e.g. through a hyperlink).
If the user has been assigned to multiple runs of the same UOL, a choice
between the available runs is offered. This mechanism can be used, for ex-
ample, to give learners a choice of starting date, or staff a choice of which
run to support when several are running in parallel. If the user has not been
assigned to a run but is enrolled for a UOL for which a default run is avail-
able, the user is assigned to the run automatically. A fourth possibility ex-
ists in which the user is not enrolled for a UOL (and so is not assigned to a
run) but requests access to a run (perhaps through sharing of hyperlinks
between learners). In this case an enrolment form could be presented to the
user, requesting enrolment. This aspect is not implemented in our context,
where users are instead denied access and directed to the traditional enrol-
ment process.

The run tool is used as the mechanism by which the status of a run is
changed by course administrators. However, the opportunities for automa-

72 C. Tattersall et al.

tion are evident, such as using timed events to move the status from wait-
ing to active at the start of an academic year.

In rounding off this description of the design’s implementation, we note
that the current implementation in our organisation is based on LD’s pre-
cursor, the Educational Modelling Language, or EML (Koper and Man-
derveld 2004). Although EML and LD differ in certain respects, the differ-
ences do not alter the requirements or design described in this chapter, and
have only minor repercussions for the implementation.

4.5 Conclusion

Introducing the UOL/run distinction is a simple yet effective way of
achieving flexibility of e-learning delivery while preserving efficiency and
traceability of administration. The distinction mirrors that used in the book
and record publishing industries where similar production and delivery
economics apply.

Returning to the example delivery policies outlined in the requirements
analysis, we outline how each is addressed by the design:

1. a course is run once only (then discontinued), with a single set of learn-
ers. The UOL which represents the course in the abstract is mapped to a
single run which is delivered once only.

2. a course is run for several sets of learners for logistical reasons, such as
staff resource limitations, physical room constraints or marketing pur-
poses. Here, the LP creates as many runs as needed from the single par-
ent UOL given the specific constraints, and at the times the runs are
needed.

3. a course is run for (possibly several sets of) learners and the learners are
divided into groups on pedagogical grounds. This example is addressed
in a similar manner to the previous one, with the LP assigning learners
to groups (e.g. teams) used in the learning design.

4. a course is run only when, but as soon as, there are enough enrolled
learners. This is a slightly more complex situation but one which under-
lines the power of the approach described here. Runs can be created by
LPs with appropriate constraints on min-persons and given the status of
active. This means that although active, the run will not start until the
constraints are met. Learners may enrol at any time and are placed into a
queue until sufficient numbers are gathered, at which point an alert is is-
sued to learners and staff that learning can begin (the queue can of
course be monitored to help with staff planning). Note that runs will
continue to be generated from the pool of enrolled learners each time the
constraints are met. For example, if min-persons=50, then as soon as 50

4 An Architecture for the Delivery of E-learning Courses 73

learners enrol, a run will start, and as soon as the 100th learner enrols, a
second run commences.

5. a course is run for each individual learner as soon as the individual’s en-
rolment has been finalised. Here a single, constraint-free run is created
to which enrolled individuals can be directed.

Archiving and version management run across these examples. The UOL
which is the basis for each of the runs remains frozen in the repository, and
the link between individuals and a uniquely identified run of a particular
UOL is logged in learner administration systems.

Turning to the issue of making minor modifications to runs which are in
progress, the link between a UOL and its runs is maintained, making it
possible to apply minor modifications across all runs in one action (al-
though institutional archiving policies may require storage of the various
versions of the runs).

The approach also opens new avenues when used together with linking
technologies. A UOL can contain resources, and indeed other UOLs, either
directly in the content package or by reference using URIs. The use of ref-
erencing rather than direct inclusion in a content package makes it possible
to deliver UOLs while referenced sub-components are still under devel-
opment—a link is created in a UOL to a location in which another resource
will be placed when completed. The UOL can be frozen, since it will not
be modified, and runs can be spawned to reach the market before produc-
tion has completely finished.

The design meets the four requirements outlined in the Requirements
Analysis and has been implemented in a production level environment. We
believe the distinction between an abstract description and its specific in-
stantiations is important for the realisation of e-learning’s economic prom-
ise, yet straightforward to implement, and Chaps. 5 and 6 explore the ar-
chitecture in more detail.

5 An Architecture for Learning Design Engines

Hubert Vogten, Rob Koper, Harrie Martens, Colin Tattersall

Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

5.1 Introduction

Learning Design (LD 2003) is a declarative language, meaning that it de-
scribes what an implementation supporting LD must do. LD does not state
how this should be done. Furthermore, LD is an expressive language,
which means that it has the ability to express a learning design in a clear,
natural, intuitive and concise way, closest to the original problem formula-
tion. This expressiveness and declarative nature complicate the implemen-
tation of an engine that can interpret the specification. As a result, the main
objective of this chapter will be to describe how such an engine can be im-
plemented. We will provide guidelines which go beyond the published
specification to help implementers incorporate LD into their products. The
approach is generic in nature and has been tested in the CopperCore engine
described in Chap. 6 of this book. We note, however, that the user inter-
face aspects of the engine are considered to be out of scope for this chap-
ter. These considerations are heavily influenced by the environment in
which the engine is incorporated, and are not easily able to be generalized.
LD specifies few requirements that have a direct impact on the user inter-
face design.

To illustrate both the declarative and expressive nature of LD, consider
the following XML code fragment.

<imsld:roles identifier=“roles”>
 <imsld:learner identifier=“novice” min-persons=“5”
 max-persons=“10”>
 <imsld:title>Novice students</imsld:title>
 </imsld:learner>
 <imsld:learner identifier=“advanced” min-persons=“1”
 max-persons=“5” create-new=“allowed”>
 <imsld:title>Advanced students</imsld:title>
 </imsld:learner>
</imsld:roles>

76 H. Vogten et al.

Two roles, novice and advanced learner, are declared with attributes
stating the minimum and maximum number of members for each defined
role. For the second learner role it is possible to have N instances of this
role during execution time due to the declaration of the create-new
attribute. LD does not make any assumptions about how, when and who
should be assigned to these roles nor does it state how and when the men-
tioned constraints should be checked. It merely declares valid states.

Another example Unit of Learning (UOL) fragment shows how LD can
express dynamic behavior in a very declarative manner:

<imsld:complete-act>
 <imsld:when-condition-true>
 <imsld:role-ref ref=“tutor”/>
 <imsld:expression>
 <imsld:complete-support-activity-ref ref=“mark-assignment1”/>
 </imsld:expression>
 </imsld:when-condition-true>
</imsld:complete-act>

This example states that an act will be completed when all tutors have
completed a certain support activity with id mark-assignment1. The
LD specification makes the assumption that the completion of activities
will be tracked during runtime (at least for the activity with id mark-
assignment1) and that the activity will be completed for all users in
role tutor. Again, how this is achieved is left up to those implementing the
specification. LD merely specifies valid state transitions.

An engine is needed to present the learning activities to learners as ex-
pressed by a UOL. The output of the engine will be a personalized version
of the UOL in XML format according to the rules defined by LD. The ap-
proach we take in this chapter is to demonstrate how an LD engine imple-
mentation can benefit from the perspective of finite state machines, FSMs
(Sipser 1997). FSMs offer a logical, methodical approach towards sequen-
tial input processing, which is relatively easy to design and implement and
which avoids error-prone conditional programming. They are a proven
concept that allows for efficient and effective implementations.

5.2 Learning Design Engines as Collections of Finite State
Machines

At the heart of LD are interactions between users in particular roles or be-
tween users and the LD system. The results of these interactions can be
captured in properties which can be declared explicitly in LD. We further

5 An Architecture for Learning Design Engines 77

distinguish properties which are not declared but which are assumed to ex-
ist, such as a property capturing the completion status for activities for
every user. We will call these properties system-defined properties.

The property mechanism defines an FSM for each individual user. An
FSM consists of a set of states, a start state, an input alphabet and a transi-
tion function that maps an input symbol and current state to next state. An
engine will always deal with multiple users, and so the engine is a collec-
tion of FSMs.

Each state in LD is represented by the set of values of all the properties
that are either defined by the author or defined by the system. The start
state of the FSM is defined by the initial value of all properties for this
user. The system-defined properties are created during a socalled publica-
tion process (see also Chap. 4). A UOL is parsed and analyzed by the en-
gine and all properties are created and stored in a database. All users have
their own values for these properties representing their state at any time.
Execution of the UOL consists of personalizing it for the user; in other
words, adapting the UOL according to the property values of this user. A
state represents the position of a user with respect to his or her progress in
the UOL. The start state is defined by the initial values of the properties.
These initial values are either given in LD or set as the result of executing
other UOLs at earlier stages. The input alphabet is made up of all LD con-
structs and the transition functions are defined by LD constructs dealing
with interactions. When, for example, the engine provides feedback on
completion of an activity, the engine is reacting to a user action, namely
completing an activity. In terms of an FSM, this can be formulated as fol-
lows: the engine responds to a change of state that is caused by the user
completing an activity.

There are a number of cases defined in LD where a change of state
should cause another change of state. A fairly obvious example is the
change-property-value LD construct that can be triggered by the
completion of an activity. In order to cope with these LD constructs when
using an FSM, the definition of an FSM must be extended to allow each
state to have an output that itself can be an input for the FSM. This type of
FSM is also known as a Moore machine. By introducing this feedback
loop, we are able to deal with chains of state changes that can occur
through several LD constructs.

The following sections explain in detail how the concept of an FSM is
implemented in the engine. First the concepts of runs and roles are intro-
duced; these concepts together with the user are the primary key when ac-
cessing a single FSM from the collection of FSMs. The subsequent section
shows how each state is stored by the use of properties. A number of prop-
erty types can be distinguished each with its own characteristics and use.
The following section deals with the transition function of the FSM. The

78 H. Vogten et al.

concept of an event is introduced as the core of both alphabets. It will be-
come clear how the engine is capable of dealing with these events. Then
we will return to the start of the process, explaining the importance of the
pre-processing of the UOL. Finally, bringing all the previous concepts to-
gether, personalization will be shown to have become a straightforward
XML transformation.

5.3 Populating the Unit of Learning

Before a UOL can be ‘executed’, users (learners, staff, etc.) have to be as-
signed to it. LD does not refer to users directly, but uses the notion of roles
for this purpose. It is the engine’s responsibility to bind actual users to ab-
stract roles.

A ‘run’ is introduced as a pedagogically neutral term for binding a
group of users to a UOL via a publication (see Chap. 4). Each run has one
or more users assigned to it, forming the community of users taking part in
the UOL together at the same time. Users can enroll for a particular UOL
and are assigned to one or more runs for the UOL. A run has exactly one
publication assigned to it, which in turn is associated with exactly one
UOL. For now, it is sufficient to understand that a publication is the result
of pre-processing a UOL so it can easily be processed by the engine during
execution of the UOL. For each publication one or more runs may exist,
allowing parallel execution of the same UOL.

Runs provide a mechanism for binding users to the UOL, allowing at
the same time multiple reuse of the same UOL, both sequentially and in
parallel. Furthermore, it allows users to be grouped together in cohorts.
However, individual users still must be mapped to the roles defined in the
UOL. Two constructs are responsible for this requirement: ‘role-
participation’ and ‘run-participation’. Role-participation defines what roles
a user may assume when participating in a run. Run-participation defines
the active role for a user in a run at any moment in time.

Figure 5.1, which extends Figure 4.2, shows the relationships between
the various concepts.

LD specifies that it is possible to have multiple instances for some roles.
Role instances can be created dynamically during execution of the UOL as
defined by LD. For a UOL to be reusable, these newly created instances of
the roles cannot be associated with the publication since they are different
for each run. As a result, some of the roles are associated with the run and
should be considered copies (or instances) of roles defined in the UOL.
The difference between roles associated with the publication and those as-
sociated with the run is reflected in the way information about them is
stored.

5 An Architecture for Learning Design Engines 79

Chart ID : run_3
Chart Name : run_3
Chart Type : UML Class Diagram

run
runId
status
start-date
end-date
default

publication
stylesheet
language
#uolId

unit of learning
uri

staff

learner

role
min-persons
max-persons
orgRoleId

user
userId

run participationrole participation

resources learning design

1..*

1..*

0..*

0..*0..*

0..*

0..*

1..*

participates

0..*

1..*

active role

0..1

defines

Fig. 5.1. The relationship between run and role

Information about roles associated with the publication is stored through
global UOL properties, whereas information about roles associated with
the run is stored through local UOL properties. The difference is explained
in more detail in the following section, but for now it will suffice to say
that global UOL properties have the same value for all runs of the same
UOL, and that in contrast, local UOL properties can have different values
for each run of the same UOL.

With the addition of role-participation and run-participation, all mem-
bers of a particular role can be determined, thereby satisfying the last re-
maining requirement with regard to user population, i.e. assigning individ-
ual users to roles.

How, why, when and by whom users are assigned to roles is not part of
the functionality of the engine, which merely provides the interfaces allow-
ing the manipulation of the model presented in Fig. 5.1. When doing so,

80 H. Vogten et al.

the engine enforces the rules implied by both the model and the UOL pre-
venting the system getting into a state not allowed by the UOL.

We will see that the engine is a collection of FSMs and that the user, run
and role are the primary key when determining which FSM is being re-
ferred to at any point in time during execution. Before going into more de-
tail, we first describe LD’s property mechanism.

5.4 Properties

Properties represent data to be stored and each property consists of a prop-
erty definition with one or more property values. The property definition
determines the type, the default value, the scope and owner of each prop-
erty. The type restricts the possible values and provides some implicit se-
mantics on the interpretation of the data, in a similar way to the variable
types found in most computer programming languages. Initial values are
used as the initial state for the FSM. The scope of a property is either local,
which means that it is bound to the context of a run, or global, which
means there is no direct relation with a run. The owner defines to whom or
what a property belongs. The combination of scope and owner determines
when and how properties are instantiated. The term ‘instantiated’ is de-
rived from the world of object orientation. A property is instantiated when
a new instance of a property, here a new persistent data store, is created
according to its definition. The new property is assigned the initial prop-
erty value of its corresponding property definition. The value ‘null’ is as-
signed when no initial property value is defined. This is only needed for
user-defined properties as system-defined properties always have an initial
value which is set by the engine when creating this property.

+property definition
-type
-scope
-owner
-initialValue

+property
-value0..*1

instance

Fig. 5.2. Property definition and properties

Figure 5.2 shows a class diagram of a property definition and its instan-
tiated properties. How and when properties should be instantiated is de-
termined by the scope and owner. Table 5.1 shows valid combinations of
scope and owner and describes the instantiation moment and the impact of
this for the state.

5 An Architecture for Learning Design Engines 81

There are several interesting points to note from this table. First of all, it
becomes apparent that the state of a user comprises a number of sets of
properties. Some sets are unique per individual, others for each individual
in a run, and yet others are common between groups of persons in a par-
ticular role or to individuals in a run. Note that scope and owner apply to
all types of properties.

Table 5.1. Property types by scope and owner

Scope

Local Global

User

A property is instantiated
for every user for every run.
Parallel runs can result in dif-
ferent states per run as the
values may vary per run.

A property is instantiated once
for every user. This part of a
user’s state is the same for every
run.

UOL

A property is instantiated
for each run. The property is a
part of the state of all users of
a run.

A property is instantiated for
each UOL and is used for persist-
ing results from the parser. This
property isn’t part of anyone’s
state.

Role
 A property is instantiated

for each role in each run. The
property is part of the state for
all the users in the group.

O
w
n
e
r

None

A single property is instanti-
ated once and typically contains
information about the environ-
ment. This property isn’t part of
anyone’s state.

Figure 5.3 shows how the different sets of properties make up the state
for a particular user. Note that part of the state is shared amongst users and
that a user can have more than one state at any moment in time if we view
the engine as a collection of FSMs. This can be explained from the fact
that the state is not purely related to the user, but also to the run and the
role in which the user is participating. So, when viewing the engine as a
collection of FSMs, the user, run and role are the primary key when deter-
mining which FSM is being referred at any point in time. The collection of
all states for a user is also known as the user’s dossier. Since the FSMs in
part make use of the same properties, modifications to the properties
propagate to all the involved FSMs. This also explains why the initial state
for one FSM could be influenced by the final state of another FSM.

82 H. Vogten et al.

Global User
Properties

Local-User
Properties

Local-Role
Properties

Local UOL
Properties

N
ot

-s
ha

re
d

Sh
ar

ed

State for a user in a run and a
role

Global Properties

Fig. 5.3. State as combination of sets of properties

The interlocking of FSMs provides a mechanism for dealing with group
behavior in the engine.

It is important to understand that the engine is responsible for determin-
ing the scope and owner for each of the system-defined properties it de-
fines. The example at the beginning of this section mentions that the en-
gine is responsible for adding completed properties for a number of
constructs. The engine is also responsible for determining what the owner-
ship and scope of each of the completed properties should be. For exam-
ple, the engine needs to keep track of state for each user with respect to
constructs like learning-activity, support-activity, ac-
tivity-structure, role-part, act, play, and unit-of-
learning. The owner and scope for all these completed properties
should be user and local. This is true for all except for unit-of-
learning. The completion of the UOL can be relevant beyond the run,
e.g. in a curriculum, and its scope should therefore be global. Careful con-
sideration of these aspects is needed for each system-defined property in-
troduced.

The second issue arising from Table 5.1 is that a new type of property,
the global UOL property, has been added in addition to the ones that are
defined in LD. It is a special category of global UOL property used by the
engine to facilitate persistence of the parsing results during the pre-

5 An Architecture for Learning Design Engines 83

processing. Parsing converts the UOL into a format that can be easily in-
terpreted during the personalization stage. The results of this parsing con-
sist of XML documents derived from the original UOL. The newly created
XML documents are stored in global UOL properties. By doing so, the en-
gine extends the use of properties as a mechanism for persisting FSM state
towards a more generic store. The extension allows an efficient implemen-
tation of the engine with minimal code and optimal reuse.

5.5 Event Handling

We have seen that properties provide the means to describe the state of a
user (even multiple states). In order to complete the FSM concept, we need
a transition function capable of changing the state on the basis of an input
alphabet. As noted earlier, the engine is a Moore machine, making it nec-
essary to have a mechanism that can react to a change of a state in the
manner required by LD for some of its constructs. These reactions will
form the output alphabet.

LD provides some instructions allowing the user to manipulate proper-
ties, and thereby state, directly. Examples are the set-property or
user-choice instructions. However, most constructs change property
values in a more indirect fashion.

Q2

Complete learning activity

Set-property x to value

Q1Q0

Fig. 5.4. An example state diagram

Figure 5.4 shows an example FSM responding to the input alphabet. Q0
represents the start state for the state machine for a particular user, run and
role. The user interacts via the engine by manually setting a property and
thereby changing state. The input is represented by the edge between Q0

84 H. Vogten et al.

and Q1. We assume that the UOL for which this state machine is drawn
contains a conditional construct stating that setting property x to value y
should result in the completion of learning activity Z. The result of this
output is state Q2 and the output itself is represented by the edge between
Q1 and Q2.

What are the alphabets and how can they be ‘read’ and ‘written’? Every-
thing that can change the state of an FSM is considered to be an event and
the collection of events thus forms the input alphabet of the FSM. The out-
put alphabet consists of the input alphabet extended with additional events
as a result of the LD semantics. The events making up the input alphabet
can be classified and are limited to only two classes: property events which
trigger whenever a property value is changed, and timer events, which
trigger after a defined duration of time.

The output alphabet consists of events triggered on the basis of changed
property values and a number of events that will not cause any state
changes. Among the latter are events triggering notifications and email
messages. The remainder of this section deals with the implementation of
the event processing mechanism in the engine. Figure 5.5 shows the archi-
tecture of the event handling mechanism of the engine. The property store
contains all states of all users. Whenever a property value is changed the
property store raises a new event, which is captured by the event dis-
patcher.

Although the event dispatcher reacts to all events from the input alpha-
bet, not all of these events trigger a state transition. Those events which
cause a state transition are defined by LD. This is either done by explicitly
defined LD level B conditions or by the more implicit LD business rules.
The pseudo LD fragment below shows an example of an explicit condi-
tion:

<imsld:if>
 <imsld:is>
 <imsld:property-ref ref=“integer_prop_x”/>
 <imsld:property-value>1</imsld:property-value>
 </imld:is>
 <imsld:then>
 <!-- action causing new event -->
 </imsld:then>
 </imsld:if>

5 An Architecture for Learning Design Engines 85

E
ve

nt
H

an
dl

er
E

ve
nt

H
an

dl
er

ev
en

t
di

sp
at

ch
er

LD rules

ev
en

t
ha

nd
le

r

change of
property valueproperty storeevent

eventeventevent

Fig. 5.5. Overview of the event handling mechanism

An example implicit condition is expressed by Fig. 5.4. In this example,
a learning activity is completed when a property is set to a particular value.
Each condition, being either implicit or explicit, determines if an incoming
event leads to a state transition. These conditions which filter the events
are known as guards.

During the pre-processing of the LD instances, all explicit and implicit
conditions are expressed as guards using an extended version of the LD
level B condition language. This collection of pre-parsed guards is stored
as XML using a global system property. Whenever the event dispatcher
receives an event this system property is read and the event is checked
against all the guards. Each event for which a guard evaluates to true will
cause a state transition.

The way in which the engine processes an event is defined by LD. For
this purpose, a limited set of transition functions is defined in LD. These
transition functions include operations regarding visibility, notifications,
completions and properties. Each class of transition function is imple-
mented by one event handler. To perform a state transition, an event han-
dler requires additional data such as the identifier of the property that will

86 H. Vogten et al.

be changed and its new value. The type of transition function and its asso-
ciated additional data are defined by LD via the then element. The then
element is re-used and extended and stored in a system property similar to
the guards.

The event handler may trigger one or more new events thereby forming
a chain of events. The event handlers do not necessarily react by changing
property values. They may raise events triggering notifications or email
messages. Note that an event can trigger zero, one or more event handlers
and that an event handler can change zero, one or more properties. Fur-
thermore, the change of properties can supersede the scope of a single
FSM because the same properties can be shared amongst different FSMs.
Therefore multiple FSMs can change state simultaneously as a result of a
single event. This characteristic ensures propagation and, as a result, the
synchronization of different roles and groups working together. Propaga-
tion can occur from the perspective of a single user having multiple FSMs
(one for every role the user may assume) or from the perspective of groups
within a run or even at the level of the whole user community known to the
engine. It is important to understand that in order for this mechanism to
function properly, state changes propagating over several FSMs are con-
sidered as atomic actions.

Timer events do not start with a change of a property value, but are
raised by a timer. The rest of the event handling mechanism is exactly the
same as for events raised through change of a property value. Clearly,
there is a risk of recursion causing endless loops and it is the responsibility
of the validation process in the pre-processing stage to detect such situa-
tions (this point is elaborated later in the chapter).

5.6 Publication

A publication is the result of pre-processing a UOL and the part of the en-
gine responsible for this process is called the publication engine. We have
already seen that the properties and event handling mechanisms depend on
the outcome of this process.

Figure 5.6 shows a sequence diagram representing the publication proc-
ess. The first step of the publication process is to check the UOL validity.
Validation covers a numbers of aspects. The UOL is checked for com-
pleteness; that is, whether all locally referenced resources are also included
in the UOL package. The UOL manifest is validated against the LD
schema using a validating parser such as Xerces (2004). These types of
validation are straightforward and revolve around XML technology. More
interesting types of validation cover the semantics of a UOL.

5 An Architecture for Learning Design Engines 87

: Publication Engine : Validator : LDParser : PersistentStore

validate UOL()

validation results

[valid]: parse UOL()

parsing results

* [n]: persist structures()

Fig. 5.6. The publication process

All references are checked to determine if no erroneous cross-references
have been made.

Examples of such errors would be a role-ref referring to a prop-
erty. Another type of semantic validation includes the checks for invalid
attribute values: for example, if the minimum number of people specified
in a role exceeds the maximum number.

Recursion can occur whenever and wherever elements can include other
elements by reference, such as with the environment element. Check-
ing for recursion is especially important for preventing event handlers fal-
ling into endless loops. Determining whether an UOL represents meaning-
ful education can not be done by automated validation but will involve the
expertise of the human author.

If the validation is successful, the LD parser is invoked. The LD parser
converts the LD into a format that can be easily interpreted during the exe-
cution phase. This intermediate XML format is used during the personal-
ization stage. As noted earlier, global UOL properties are used to store
these small XML documents. It is important to highlight that the actual re-
source is not part of such an XML document but is stored separately on a
web server and is referenced from the XML documents.

Another result of the parsing process is the store containing rules that
should be applied for a UOL. These entries are retrieved by the event dis-
patcher in order to determine what actions need to be taken when an event
occurs. Finally the publication process is responsible for creating all rele-
vant property definitions for all properties.

88 H. Vogten et al.

5.7 Personalization

A UOL is executed when a user accesses a run of a UOL in a role, and re-
sults in an adapted view of the UOL according to the role and user’s prop-
erty values. This adaptation process is known as personalization and is one
of the core requirements of LD. Personalization involves adaptation of the
LD according to rules defined by LD, which describe how the engine
should react to certain states. An example is feedback, which should only
be provided when the corresponding activity has been completed, in other
words, when a certain state has been reached (states are constructed by sets
of properties).

Once the FSM is in place, personalization and execution of LD becomes
relatively straightforward as most of the work has already been done by
the event handling mechanism.

property
store

personalization

pre-parsed
XML
document

personalized
XML docu-
ment

Fig. 5.7. The personalization process

The result of the personalization process, as shown in Fig. 5.7, is a per-
sonalized XML document. This is achieved by merging the XML docu-
ment that was stored as result of the publication with the property values
from the persistent property store. Note that the original XML document is
stored as a global UOL property. How the pre-parsed XML document is
merged with the property values varies slightly depending on the type of

5 An Architecture for Learning Design Engines 89

element and corresponding rules. The process can result in the replace-
ment, addition or removal of some XML elements. Although there are a
number of personalization types defined in LD, we can classify them into
the following three classes:

Personalization of the activity tree. An activity tree is the combination
of all plays and their sub-elements. The current activity tree is selected
on the basis of the run and the current role of the user and contains only
the relevant subset of the activity tree. This subset is the same for all us-
ers in the same role. Personalization is the process of applying the val-
ues of the FSM for the completed and visibility properties to the current
activity tree. The outcome is a personalized XML representation of the
activity tree reflecting the state of the user.
Personalization of the environment tree associated with an activity. The
environment tree is adapted using visibility properties in a similar way
to the activity tree, resulting is an XML representation of the environ-
ment tree.
Personalization of the content of various LD constructs. References to
properties are replaced by their actual values and parts of the content
may be hidden on the basis of the value for the different class properties.
Class properties are system-defined properties created during publica-
tion which reflect the visibility status (hidden or visible) for classes of
content.

In conclusion, once the FSM mechanism is in place, personalization is
reduced to a simple XML transformation applying the values defined in
the FSM according to the rules defined by LD.

5.8 Conclusions

In this chapter we decomposed LD to a few basic constructs allowing ele-
gant and relatively lightweight implementations. This decomposition is ac-
complished by exploiting the property mechanism in LD, extending it with
system-defined properties. The use of these properties helps harmonize the
different kinds of rules defined in LD, and reduces them to simple property
operations. Furthermore the property mechanism acts as a store for the re-
sult of the publication process for the pre-parsed XML content. The event
mechanism helps break down the large number of rules to a limited num-
ber of transition functions. The event handlers implementing these transi-
tion functions each have a dedicated task, dealing with different aspects of
the rules laid down by LD, but all have the same basic mechanism which
again helps reduce the complexity enormously. Reduction of the complex-
ity is essential and is achieved by the fact that implementers only have to

90 H. Vogten et al.

focus on the proper implementation of the event handlers themselves. Im-
plementers of an event handler do not have to worry about the bigger pic-
ture as it is dealt with by the event handling mechanism. The same event
handling mechanism ensures that reactions to certain events are adequately
propagated throughout the whole system. By doing so, all group and role
dynamics are automatically incorporated into the engine without additional
effort as the engine is considered as a collection of FSMs. The introduction
of runs and roles provides the primary key for each of the FSMs. We have
shown that by selecting the right owner and scope of the properties, we can
interlock the FSMs, resulting in correct, automatic propagation of state
changes. Again no additional efforts have to be made because the event
handling mechanism propagates state changes throughout all interlocked
FSMs. Using these constructs, the implementation complexity of LD en-
gines can be reduced significantly.

6 A Reference Implementation of a Learning
Design Engine

Harrie Martens, Hubert Vogten

Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

6.1 Introduction

From the moment the Learning Design specification (LD 2003) was pub-
lished there has been a need for software capable of processing LD-
compliant content. LD is a powerful and complex specification, and it is
not a trivial matter to implement an LD player. In response to this need,
the Educational Technology Expertise Centre of the Open University of
the Netherlands launched an initiative to develop a reusable kernel dealing
with the intricacies of processing LD. Since this kernel should be able to
be used in different settings, it is not a standalone product but needs to be
integrated in a learning management system. The kernel, known as Cop-
perCore, has been developed under the GNU General Public License and
is available through SourceForge at http://www.coppercore.org.

CopperCore has the following features:

A validation routine for the manifest file containing the LD ensuring
only valid LD is processed. Validation includes both technical and se-
mantic checks and the validation results are reported.
An administrative backend with regard to publications, user manage-
ment, runs and roles. These concepts are discussed below.
Interpretation of LD and delivery of personalized content according to
the rules defined in LD. This is achieved by keeping track of the user’s
progress and settings.
Platform independence, based on a strategic choice for Java and J2EE.

This chapter provides background information for implementing an LD-
compliant player based on CopperCore. First a conceptual overview is
given of the two major functional Application Programming Interfaces
(APIs) dealing with administrative tasks and runtime delivery. The next
section gives a brief technical overview of the architecture of CopperCore

92 H. Martens, H. Vogten

and discusses the technical design decisions. This helps the reader under-
stand the final section dealing with implementation strategies.

6.2 Conceptual Overview

In order to process LD successfully, CopperCore functionality has been
divided into two major parts. The CourseManager handles administrative
functionality such as users, roles, runs and publications. In contrast, the
LDEngine forms the heart of CopperCore and deals with the runtime de-
livery of the personalized content as defined in the LD. Well-defined APIs
are available for both parts to developers who wish to integrate Copper-
Core into their own products. The next section provides an overview of the
functionalities found in the APIs.

6.2.1 CourseManager

The CourseManager deals with all administrative tasks required in order
for the LDEngine to work. The CourseManager covers user management,
role assignments, run management and publications. All these concepts are
discussed next.

Publications

According to the LD specification a learning design needs to be packaged
in a content package (CP 2003) which is a ZIP file containing all re-
sources. This content package must contain a file named imsmani-
fest.xml containing the learning design itself. All other files in the
package are additional resources. A content package containing LD is
called a Unit of Learning (UOL). Before a UOL can be deployed, Copper-
Core creates a publication for the UOL, taking care of several aspects
needed during deployment.

First, the UOL is validated to make sure no syntactic or semantic errors
are present in the package. Validation includes validation against schemas,
validation of the package itself with regard to the resources included, and
validation of semantics of the learning design. Detected errors are stored in
a list of messages which can be reported back to the user.

Second, CopperCore breaks down the learning design into more man-
ageable parts such as activities, environments, learning objects, roles, etc.
Third, CopperCore analyses the roles that are declared in the learning de-
sign. This is necessary since users need to be assigned to particular roles

6 A Reference Implementation of a Learning Design Engine 93

before they can start using the system. Finally all content contained in the
UOL is copied to a web server directory for retrieval during deployment.

Publishing a UOL can be done by simply calling an API method called
publishUOL.

User Management

LD focuses on delivering personalized education. This is achieved by de-
scribing a learning design through profiles using the role. CopperCore
deals with this personalized delivery by creating a dossier for each user. In
order to do so, CopperCore requires users to be defined. For this purpose a
user may be added to CopperCore using the createUser API call. The only
parameter passed is the user id. All other user information needed should
be defined in LD as global personal properties and stored in a user’s dos-
sier. Once defined, users cannot be deleted.

Run Management

LD may refer to all users in a role, i.e. a grouping of users (see Chap. 4 for
further discussion of this point). A grouping mechanism is required that al-
lows the division of the user population into smaller cohorts working to-
gether in one particular learning design. A group could, for example, rep-
resent a classroom, or a number of students participating in a distance
learning course. The term “run” is used in this context.

Users are never assigned directly to a publication but they are enrolled
for a particular learning design by adding them to a specific run. Therefore
each publication must have at least a run. If necessary, more runs can be
added depending on the particular circumstances. A new run can be cre-
ated in CopperCore using the createRun API call passing the id of the
publication as one of its parameters.

The next step is assigning the users to a particular run. As stated earlier,
who should be assigned to which run depends very much on the circum-
stances. It is important to understand that only participants of the same run
can cooperate and are “visible” to each other in the same learning design.
So when LD refers to all users, in effect it refers to all the participants in a
specific run. Users can be added to a run by calling the method ad-
dUserToRun. Users may be removed from a run by calling re-
moveUserFromRun.

Role Management

Roles are the main personalization mechanisms of LD and are essential for
creating different paths through a learning design. Roles may be seen as a

94 H. Martens, H. Vogten

representation of users with a certain profile. It is the task of role manage-
ment to populate these roles with actual users of a run. Users can be as-
signed to a role using the method addUserToRole and can be removed
using removeUserFromRole.

Different users can be assigned to different roles, but it is also possible
to assign an individual user to multiple roles. However, when the LDEn-
gine delivers the learning design to a user it personalizes the design using
the role of the user. Therefore only one role may be active at any moment
for each user. This role is called the active role. A user can switch roles at
any time by selecting a new active role from the list of roles he or she is
assigned to. The method setActiveRole sets the active role for a user.

LD defines a hierarchy of roles. This has an impact on the interpretation
of the roles. A sub-role is considered to inherit all the properties of its an-
cestor roles. For example, a sub-role of the role “learner” will inherit the
properties of this “learner” role and everything available to the “learner” is
also available to its sub-role. CopperCore states that a user may only be as-
signed to a sub-role when the user is already assigned to the parent of that
sub-role. The hierarchy of roles starts with a common root and all users
must be assigned to this common root before doing any further role as-
signments.

LD supports the runtime creation of new roles. For example, if a role is
used to group users together with a maximum of ten users, a new role may
be created during runtime whenever this maximum is exceeded. In LD
these roles have an attribute “create-new” with the value “allowed”.
A new instance of a role can be created by calling the method cre-
ateRole. Users can be assigned to these roles in the same way as with
regular roles.

The UML class diagram of CopperCore is that shown in Fig. 5.1.

6.2.2 LDEngine

After the UOL is published, users are assigned to the run and to their roles
and the delivery of the learning design can start. LD defines a hierarchy of
activities to be performed by a role in the method section. For each activity
there are a number of resources, learning objects and services, grouped in
an environment. Environments are also hierarchies.

CopperCore defines a number of concepts and API calls for retrieving
the information contained in these hierarchies which are discussed in detail
in the following sections.

6 A Reference Implementation of a Learning Design Engine 95

Activity Tree

An activity tree is an XML representation of the method section of LD
personalized for a user. Personalization consists of two parts. First, the ac-
tive role of the user requesting the activity tree is taken into account. Only
those activities associated with the active role, or one of its parent roles,
will be included in the activity tree. CopperCore deals with this personal-
ization during the publication stage by splitting the method hierarchy up
into a number of smaller hierarchies based on the defined roles, using the
role-part constructs in LD.

Second, personalization deals with the individual progress of users. This
mainly involves keeping track of the completed activities for a user. Cop-
perCore deals with all defined rules in LD, such as the completion of activ-
ity structures, acts, plays and the unit of learning. The resulting XML tree
is based on the application of these rules on a personal basis. A personal-
ized activity tree can be retrieved by calling the method getActivityTree.
This method is called in the context of a user in a specific run and returns
an XML representation of the activity tree for this user. A visual represen-
tation of the underlying schema of this XML response (an activity tree
schema) is shown in Fig. 6.1.

Fig. 6.1. Activity tree schema

The schema closely resembles the original LD. However, there are some
differences, especially when reflecting the user’s progress. The root ele-
ment of the activity tree is the learning design itself. It contains one or
more plays. A play contains one or more acts and an act is made up of role
parts. A role part itself contains an activity which is a learning-
activity, support-activity, activity-structure or an

96 H. Martens, H. Vogten

environment-activity. The last is not an activity as such but repre-
sents an environment with an implicit activity, such as an activity that in-
structs the learner to read the documents in the environment. Each of the
elements may contain a title which can be used in the user interface when
representing a node of the activity tree.

The activity tree contains only those nodes available to the user at the
moment of retrieval, which is a major difference from the original learning
design containing all potential nodes for all users. This filtering of nodes is
only one result of the personalization. Another aspect of the personaliza-
tion can be seen when examining the attributes of the nodes. Table 6.1 de-
scribes each of the attributes.

Table 6.1. Activity tree node attributes

Attribute Description
completed This attribute may have the value true, false or unlimited.

The attribute indicates if a user has completed the node
or, if the value is unlimited, that the node should be con-
sidered completed. The following nodes have a com-
pleted attribute: act, activity-structure, en-
vironment-activity, learning-activity,
learning-design, play, support-activity.

environment This attribute contains a space-separated list of ids be-
longing to environments of the activity represented by
the node. The values of this attribute should be passed
when retrieving the environment via the getEnviron-
mentTree API call. This attribute is used in the follow-
ing elements: activity-structure, environ-
ment-activity, learning-activity,
support-activity.

identifier This attribute is the identifier of the object represented by
the node. Note that this is not the identifier of the node it-
self and therefore multiple nodes may have the same
identifier value if they are pointing to the same object.
This identifier should be used when retrieving the content
of the object represented by the node via the getCon-
tent API call. The identifier attribute is used in ac-
tivity-structure, environment-activity,
learning-activity, learning-design,
play, role-part, support-activity.

6 A Reference Implementation of a Learning Design Engine 97

isvisible This attribute indicates if a node is visible for the user or
not. For Level A it means that this value is identical to
the value defined initially in the learning design because
there are no constructs allowing the value to be changed.
The attribute may occur in learning-activity,
play, support-activity.

role This attribute contains the role name which was the basis
for generating this activity tree. The attribute occurs only
in the learning-design node.

structure-
type

This attribute can have the values sequence or selection
indicating which type of activity structure is represented
by the activity-structure node in which the attribute oc-
curs.

time-limit This attribute indicates that the completion of a node is
dependent on a timed event. It occurs in an act, learning-
activity, play, support-activity.

user-choice This attributes indicates that a user must indicate when
an activity has been completed. There should be a means
in the user interface allowing for this. When a user indi-
cates completion of the activity, completeActivity
should be called. The attribute may occur in learn-
ing-activity, support-activity.

Environment Tree

An environment tree is a representation of the environment and the learn-
ing objects and services belonging to one or more activities. The environ-
ment tree may be retrieved by calling getEnvironmentTree which re-
sults in an XML document according to the schema shown in Fig. 6.2. The
root element is environments which can contain one or more environ-
ments. An environment consists of zero or more learning object, environ-
ments and services. There are three types of services: send-mail, confer-
ence and index search. Send-mail contains the send-to element
representing the recipients of the mail and the from element representing
the sender of the mail. The content of the title element should be used to
represent a node in the user interface. In LD Level A there is no personal-
ization of the environment tree.

98 H. Martens, H. Vogten

Fig. 6.2. Environment tree schema

The attributes in Table 6.2 may be defined for these elements:

Table 6.2. Environment tree node attributes

Attribute Description
class The class attribute allows the nodes to be typed by a space-

separated list of types. For LD Level A this attribute should
be considered merely as documentation. From Level B on-
wards it can be used to hide or show these nodes. The attrib-
ute may occur in conference, index-search and
send-mail.

confer-
ence-type

This attribute indicates what type of conference is referenced
by the conference element. Allowed values are synchronous,
asynchronous and announcement. It is the responsibility of
the integrating module to provide a link to a service having
the appropriate features.

identifier This attribute is the identifier of the object represented by the
node. Note that this is not the identifier of the node itself and
therefore multiple nodes may have the same identifier value
if they are pointing to the same object! This identifier should
be used when retrieving the content of the object represented
by the node via the getContent API call. The identifier at-
tribute is used in index-search, learning-object
and send-mail.

isvisible This attribute indicates whether a node is visible for the user.
For level A it means that this value is identical to the value
defined initially in the learning design because there are no
constructs allowing the value to be changed. The attribute
may occur in conference, environment, index-
search, learning-object, send-mail.

6 A Reference Implementation of a Learning Design Engine 99

parameters This attribute contains the parameters defined in a learning
design for a service. The attribute may occur in confer-
ence, index-search, send-mail.

select This attribute defines who should receive the mail defined by
the send-mail element. Allowed values are person-in-
role and all-persons-in-role.

type This attribute contains the type of the learning-object element
as defined in LD.

user-id This attribute is used in the send-to and from elements
and contains the user ids of the receivers and sender of the
mail. In Level B this will be extended with the email ad-
dresses of the sender and receivers of the email. This explains
why the from element is available here already (for Level A
it could be omitted as the sender’s identity is known as he or
she is typing the mail).

Content

All nodes in both the activity tree and the environment tree may contain
content. The content can be retrieved by calling the getContent method
while passing the identifier of the object to be retrieved as parameter. Con-
tent is returned as personalized XML resembling the original learning de-
sign content. All content may include a title and metadata if these were de-
fined in the UOL to which the content belongs. The getContent call
does not return the actual content of the items. Each item contains a fully
qualified URL to the location of the resource representing this content. So
retrieving the complete content of any element consists of a two-stage
process which involves as a first step the retrieval of a personalized XML
structure of the content, followed by the retrieval of the resources refer-
enced by the items.

Figure 6.3 shows the schema for the content model of a learning activity
(the Learning-activity schema). Like all content objects, a learning activity
may contain a title and metadata. Furthermore it may contain learning ob-
jectives, prerequisites and an activity. All these elements have exactly the
same content structure, starting with one or more item elements which may
be surrounded with an optional title and metadata. An item may have zero
or more sub-items. Again, an optional title and metadata may be present.
An item represents a kind of paragraph structure where the title element
should be used as a heading. How this hierarchy is presented in the user in-
terface is left to the integrator of CopperCore. An item has a required Uni-
form Resource Identifier (URI) attribute that contains an absolute Uni-
form Resource Locator (URL) to the location of the associated resource. A
resource may be any resource that can be rendered in a web browser.

100 H. Martens, H. Vogten

Fig. 6.3. Learning-activity schema

The learning-objectives and prerequisite elements can also occur in the
content model of a learning design. The feedback-description is only
shown when it is present in the original UOL and if the user has completed
the learning activity. Feedback description may also occur in the
content models of the learning design the play and the act and will be pre-
sent only if the corresponding element has been completed by the user.

Figure 6.4 shows the content model for a learner role (the learner
schema). Clearly, the main structure of the content model is very similar
for all elements. The information element that may be presented to the user
as additional information is new. The information element may also occur
in the staff and act element.

6 A Reference Implementation of a Learning Design Engine 101

Fig. 6.4. Learner schema

The content elements can contain a number of attributes included for
reference only. The most relevant are presented in Table 6.3..

Table 6.3. Learner tree node attributes

Attribute Description
Identifier The identifier of the object. It occurs in the elements act,

activity-structure, environment, item,
learner, learning-activity, learning-
design, learning-object, play, roles-to-
support, send-mail, staff, support-
activity.

isvisible This attribute holds an integer value indicating if an object
was visible or not. This attribute may occur in the elements
act, item, play, learning-activity, sup-
port-activity, learning-object and send-
mail.

url This attribute contains the absolute URL to an resource for
which an item is a placeholder. The attribute occurs in the
item element only.

Class The class attributes assign an element to one or more cate-
gories. The visibility of these categories may be manipu-
lated via conditions in Levels B and C of LD. The class at-
tribute can occur in send-mail and learning-
object.

Overview

Figure 6.5 gives an example of a typical calling sequence of the LDEngine
API.

102 H. Martens, H. Vogten

Fig. 6.5. Sequence diagram of LDEngine calls

There are three “swim lanes” representing the user, the client integrating
CopperCore and the CopperCore LDEngine API. In the example, a user
starts by selecting one of the runs, probably from a list of runs for which
the user is enrolled. After the user selects the run, the client application re-
trieves the activity tree for the user and run combination. The activity tree
is returned as an XML file as discussed earlier. The client transforms this
XML data in such a manner so that the user may select one of its nodes.
After the user has selected a node from the activity tree, the client retrieves
the environment tree belonging to this node. Both the identifier of the node
in the activity tree and the list of environment objects are passed as pa-
rameters. As a result, CopperCore responds with the XML representation
of the requested environment trees. The client renders this tree into a for-
mat suitable for the user. Next, the client retrieves the content for the node
selected from the activity tree. The content is returned as XML and the cli-
ent parses this content so it may retrieve all the needed resources refer-
enced from the item inside the content. These resources are merged or
linked and also presented to the user.

The user may now select a node from the environment tree. The client
acts on this request by fetching the content from the CopperCore API and
rendering the content in a similar fashion to the rendering of the content of
the selected activity node.

6 A Reference Implementation of a Learning Design Engine 103

This is merely a short example of the type of interaction which takes
place between the user, client and CopperCore but it gives an idea of the
dependencies between the activity tree, environment tree and content.

6.3 Technical Overview

CopperCore is implemented using Sun’s Java 2 Platform, Enterprise Edi-
tion (J2EE). The most pertinent reasons for this choice are:

The kernel should be able to run on multiple platforms supporting mul-
tiple operating systems. Java is an obvious choice.
The kernel should be accessible via web services or similar web-
oriented technologies, but should allow for non-web-based access as
well. Enterprise Java Beans (EJBs) provide a mechanism for this.
The kernel should be scalable when necessary. This is another reason
for choosing EJBs.

Figure 6.6 shows the technical architecture of the CopperCore kernel.
All persisted data is stored in a relational database. CopperCore uses a
JDBC driver to access the database. Using this extra layer between the data
components and the actual database allows CopperCore to use different
DBMSs by just switching the JDBC driver. The “Data Access Layer” is
responsible for all interactions with the database and is made up of BMP
entity beans. The “Database Access Layer” is split into two major parts.

The first part consists of properties. Although CopperCore currently
only implements LD Level A, internally it depends heavily on the property
mechanism. The other part of the “Database Access Layer” deals with
course administration, which involves concepts such as users, runs, unit-
of-learning etc.

The next layer of the architecture is the “Business Logic Layer” and
contains all components representing the business logic of CopperCore.
This layer is made up of a number of container components which are rep-
resentations of the learning design that are directly or indirectly accessible
through the API. Each container contains all the business logic it needs to
adapt itself to the profile of the user accessing the LD component. For this
purpose, the container makes extensive use of the property mechanism
which contains its own business logic for retrieval and storage of proper-
ties. The EventDispatcher and EventHandler components deal with all
event handling business logic occurring in the system. Finally the parser
deals with the processing of an LD XML instance. It analyses and decom-
poses the LD into smaller parts suitable for further processing during run-
time.

104 H. Martens, H. Vogten

Fig. 6.6. CopperCore technical architecture

The next layer comprises three session beans. The first bean is the
LDCourseManager bean. It deals with all administrative calls necessary
to prepare delivery of an LD instance. Typical interfaces offered deal with
the publication of an XML LD instance, creation of users, creation of runs
and assignment of roles.

6 A Reference Implementation of a Learning Design Engine 105

The second bean is the LDEngine. This is the core of the delivery
mechanism. This bean handles the personalization of the LD instance for a
particular user at a particular time. Calls that deal with the retrieval of per-
sonalized activity trees, environment trees and content are available.

Finally, there is a Timer bean which deals with all time-related events
specified in the learning design. Due to implementation restrictions in
J2EE the clients should generate timer events on regular intervals by call-
ing proces(). CopperCore does not make any assumptions about the
granularity of the intervals, by ensuring no time-related events are missed.

The final layer is the “CopperCore Client Libraries” and is not a layer in
the formal sense. It is a collection of libraries that should be used by an
implementation making use of CopperCore. The most important library is
the validator. As the name implies, the validator validates a UOL content
package. Several checks are made to see if the package is complete, if the
learning design is well formed and valid against the schema, and if the
learning design is semantically correct. The library should be called by all
clients to make sure that everything is correct before proceeding. In addi-
tion to the validator, three business delegates are offered for the three API
beans. A business delegate contains the code to make the actual connection
to the enterprise bean, making life easier for implementers.

6.4 Implementation Strategies

The main design decision when building CopperCore was to give imple-
menters maximum flexibility to use the kernel in the way they see fit.
However, this also implies that CopperCore itself is not a complete LD
player. To make effective use of CopperCore, the kernel has to be inte-
grated into a larger application. This application has to implement different
services, the most important being the graphical user interface (GUI),
without which the kernel cannot be used by an end-user. The GUI not only
gives the learners and tutors access to the LD, but should also enable
administrators to manage the learning process by letting them create new
publications, add new users to the system, create a run for a publication,
and so on.

The other major service being offered by the application is the possibil-
ity to serve the resources which are included in the LD package to the cli-
ent. CopperCore does not implement a mechanism to deliver this content
directly through the kernel. It does, however, extract the resources from
the package and stores them on the file system when a UOL is published.
Furthermore, CopperCore changes the local references to these resources
into an application-specific reference, so the application is able to serve

106 H. Martens, H. Vogten

these resources to the end-user upon request. The easiest way to implement
this service is to use a web server in the application.

CopperCore has been developed using J2EE. The kernel itself is imple-
mented as three EJBs which must be installed and run on a Java Applica-
tion Server such as JBoss (JBoss 2004). This gives CopperCore the flexi-
bility to run on different operating systems, the scalability to cope with
load increases and the ability to be called from different kinds of clients
(e.g. web-based clients or native Java clients). The downside of this ap-
proach is that the J2EE specification does not allow access to the underly-
ing file system. CopperCore requires access to the file system to store the
resources found in an LD package. To solve this problem CopperCore con-
tains a CopperCore Client Library which is implemented as a set of Java
classes that are used in the context of the calling application. This way ac-
cess to the file system is allowed. Furthermore the library implements
business delegates to hide the implementation details of accessing the re-
mote EJBs which make up the CopperCore kernel.

Figure 6.7 shows the two main approaches to calling CopperCore. A
client calls CopperCore directly via Java native calls, or an intermediate
server allows clients to call CopperCore via the http protocol using a
common web browser. Which approach to choose is up to the require-
ments of the software clients that access CopperCore. Different aspects of
client software influence the decision for either a native Java client or a
web browser client. When considering the ease of distributing the client
application to the end-users, the web browser of course has the upper hand.
No local software installation is required apart from having a recent web
browser, which is the case for the majority of users. Updating the software
is also easier using this web-based approach – only the web application on
the server has to be updated to allow all users access to the latest version of
the software. Compare this to delivering a new version of the software to
individual users who may have different kinds of software configurations,
different operating systems, different Java virtual machines, and so on.
Furthermore, versioning becomes an issue as different users may install
different versions of the client software.

Another issue is the access to the server. Since CopperCore runs on a
Java application server, each client must have access to this server. In most
places strict security policies exist making it easier to access the server via
the most widely used port 80 for http traffic as opposed to the more ob-
scure ports required for the native Java calls. Finally, rendering the LD
content (mainly (X)HTML documents) is easier in a web browser.

6 A Reference Implementation of a Learning Design Engine 107

Fig. 6.7. Implementation strategies for CopperCore

A native client is usually more responsive, the GUI can be more elabo-
rate, making handling of large amounts of data more intuitive, and avoid-
ing port 80 can make the application more secure by not exposing some of
the APIs to the Internet.

A common way of building clients for CopperCore is to create a web
client to be used by end-users acting as either a student or a tutor. In other
words, these users are all assigned to one or more runs and access the UOL
in the context of a role. For a user who administers CopperCore a native
Java client might be more appropriate. The demonstration implementation
which can be downloaded from http://coppercore.org illustrates this con-
cept. It implements a web-based player used for accessing the LD. Al-
though the interface is rather primitive it illustrates how such a web client
could be built. For administrators, a simple command line interface to
CopperCore (clicc) is implemented as a native Java application.

Building a web client requires implementers to create a web application.
A common approach to implementing a web application on the J2EE plat-
form is using servlets to dynamically create the Internet pages that are

108 H. Martens, H. Vogten

served to the browser on the end-user’s machine. These servlets call the
CopperCore kernel on behalf of the client to maintain the actions per-
formed by the user and to retrieve the personalized LD based upon the ac-
tions. To ease access to the kernel, the web application should use the
CopperCore client library as is shown in Fig. 6.7.

Building a native Java client is straightforward as far as the kernel is
concerned. There are a few clearly defined APIs that can be called. Using
the CopperCore client library makes accessing the kernel even easier by
hiding all the intricacies of connecting to the remote EJBs. There is, how-
ever, one major issue in building a management application in this way. As
noted above, an EJB is not allowed to access the file system. To circum-
vent this problem, CopperCore accesses the file system from within the
client library. This client library, however, runs in the context of the call-
ing application. In the case of a management application like clicc, this
implies that access to the file system is in the context of the application it-
self. In other words, access to the file system is relative to the location of
the application instead of to the location of the server. Being aware of this
problem is the major hurdle for an implementer. The problem itself can be
solved in different ways: clicc takes the easiest approach by running the
application on the server itself, another option is to store the resources on a
file share on the server, and finally an intermediate server application
could be created which stores the resources of a publication in the appro-
priate place on the server.

6.5 Summary

Since the release of LD there has been a need for a reference implementa-
tion of a player for the specification. CopperCore provides a way for im-
plementers to jumpstart building an LD-compliant learning management
system. It provides two major APIs to deal with the processing of LD. One
covers administration-related tasks while the other deals with the runtime
delivery of LD.

CopperCore has been implemented using J2EE and the main compo-
nents are implemented as Enterprise Java Beans. The use of J2EE allows a
number of different implementation strategies giving developers the choice
between a pure web-based approach and a dedicated native Java client.

CopperCore is now readily available to all developers who wish to inte-
grate LD support into their own software. It is released under the GNU
General Public License and is available for free through SourceForge at
http://www.coppercore.org.

7 Learning Design Tools

David Griffiths1, Josep Blat1, Rocío Garcia1, Hubert Vogten2, KL Kwong3

1 Interactive Technologies Group, Universitat Pompeu Fabra, Barcelona,
Spain

2 Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

3 GTK Press, Toronto, Ontario, Canada

7.1 Introduction

In this chapter we provide an overview of the tools required for working
with the Learning Design specification (LD 2003). These include editors
for creating Units of Learning (UOLs), runtime players, and repositories
for storing UOLs.

We first examine the context provided by the Valkenburg Group Refer-
ence Architecture, identifying those parts which can be handled using gen-
eral purpose tools, and those which require the development of tools which
are specific to LD. We then move on to discuss user roles, and the tools
which they require. A framework is offered which enables authoring tools
to be situated in terms of their degree of specialization, and the degree to
which they require the user to work directly with the specification vocabu-
lary and syntax.

We then move on to classify and examine the tools which are specific to
LD which have so far been produced, or are currently being developed.
The discussion is organized as shown in Fig. 7.1, which indicates the main
topics and examples.

7.2 General Purpose Tools

In Chap. 3 we saw how the Valkenburg Group Reference Architecture
provides a set of subsystems which define the structures and expected be-
haviors required by authors and learning managers. It is not necessary to
develop specialist LD tools for all these functionalities, as some can be met
by general purpose tools.

110 D. Griffiths et al.

Fig. 7.1. Overview of LD tools

Indeed, the OUNL, which develops and delivers large numbers of EML
courses to cohorts of learners, develops and manages its EML UOLs using
Adobe Framemaker and other generic tools, and only the final delivery to
the browser is through the specially developed Edubox server application
(see Chap. 19). If LD is to be widely adopted, however, the process of cre-
ating and using UOLs has to be made much easier than can be achieved
with generic tools.

7.2.1 Pieces of the Valkenburg Group Reference Architecture
Which Do Not Require Special Tools

Since the establishment of the reference architecture there has been a tacit
agreement among the members of the Valkenburg Group that the follow-
ing pieces of architecture do not require the development of special tools:

Materials repository. The learning materials used in a learning design,
such as web pages, Acrobat documents, Flash documents, etc., do not
have any LD specific characteristics, and so any generic materials re-
pository may be used to store them. For example, DSpace (Lynch
2003) is a digital library system developed by MIT Libraries and Hew-

7 Learning Design Tools 111

lett Packard, which is freely available and open source. Another alter-
native is Intralibrary, a Learning-Object Management System mar-
keted by Intrallect.
Materials editor. The choice of editor depends on the format used in
the materials. No special LD features are required, and any of the
popular authoring tools may be used, such as OpenOffice, Microsoft
Word, Adobe Acrobat, Macromedia Dreamweaver, etc.
Constraint editor. In order to limit the range of learning designs pro-
duced by an institution or group of users the base LD schema can be
constrained. This both simplifies the authoring process and ensures
pedagogic consistency. This task will typically be carried out infre-
quently by expert users. Consequently specialist tools have not been
considered necessary, as expert users are familiar with standard tools
which have the required functionality, such as XMLspy produced by
ALTOVA.
Stylesheet editor. A runtime player will typically use stylesheets to
control the appearance of UOLs. These may be edited by expert users
using generic tools such as XML Spy. Alternatively a simpler interface
could be provided as part of the player. In either case there is no need
to develop a special Learning Design Stylesheet Editor.
Metadata editor. LD metadata is handled by the LOM specification
(LOM 2002) using the IMS XML binding for LOM. A number of
tools are already available to work with LOM, such as RELOAD, the
Aloha editor, or any SCORM editor.

With the above functionalities being met by generic tools, the focus of
LD tooling has been on those pieces of the architecture where the devel-
opment of specific LD tools is seen to be essential if the development and
delivery of UOLs is to be a viable option for learning professionals and
institutions. These elements are

Runtime player
Reference runtime
Learning Design Editor
Learning Design Repository.

Before moving on to a discussion of these applications, we first provide
an overview of user roles, and reflect on the various tools which they re-
quire.

112 D. Griffiths et al.

7.2.2 User Roles

At a high level of description we identify five basic user roles for LD tools
(there are of course others, such as educational administrators, technical
support and systems administrators). These roles are not exclusive, and
users may shift between two or three roles at various times, depending on
the authoring workflow and the pedagogy being used. The roles are out-
lined below, with a brief discussion of the types of tools which they re-
quire.

1) Learners and teachers participating in educational activities
Learners need to be able to access the learning activities and resources
which are appropriate to their role and their progress within the learning
design. Services such as conference systems and questionnaires also need
to be provided, and learners should normally also be able to access their
own learning record and administrative information. Teachers need to be
able to launch activities, monitor the progress of the learners, and intervene
in the educational process as required by the UOL and the dynamics of the
learner interactions.

Learners and teachers in this role interact with an application called a
player. This accepts an LD-compliant XML file as an input, and generates
the corresponding learning activities. At the appropriate times it provides
access to the specified learning objects, tests, tools, etc., and coordinates
the learners’ interactions throughout the duration of the activity.

Players may be specialized in various ways. For example, if they are in-
tended to be used in a clearly defined and constrained pedagogic context
they may only need to implement a subset of LD,

The interface and appearance of players may need to be specialized for
particular pedagogies and learner groups in order to maximize usability.

2) Staff who set up UOLs to be run with learners
Each time a UOL is used with learners it needs to be set up for a new run.
To do this a member of staff has to enter the learner information for the
new cohort, and set a date when the run will commence. This does not
change the UOL itself, and the required functionality is provided by the
player application. These staff members may also need to find appropriate
UOLs to run with a certain cohort of learners, and they will do this by us-
ing a repository.

3) Adaptors and assemblers of UOLs
Users in this role are teachers who carry out high-level editing to adapt
UOLs to their learners’ needs, or to assemble them from high-level com-
ponents. They need to be able to

7 Learning Design Tools 113

search for suitable learning designs which are close to their require-
ments
incorporate new learning resources which they have found or created
into the existing UOL structure.
edit the activities to be carried out.

Users in this role use a repository to find suitable UOLs and components
of UOLs.

If they are adapting an existing UOL then they need to be able to edit a
subset of the LD elements which compose that UOL. In practice this will
generally involve modifying a template, which enables them to edit certain
exposed elements: for example, the learning resources used in a UOL. This
approach is useful if an institution wants to maintain a consistent peda-
gogic approach in classes taught by different teachers, or across subject
areas.

Another possible approach is to assemble a sequence of predefined
learning activities which are at a lower level of granularity than an entire
UOL, such as “discussion group”, “comment on a text”, or “negotiation
activity”. These activities would be composed of a number of LD ele-
ments, for example a role part, an activity, an environment and a service,
but would appear to the user as single editable object. For an example of
this assembly approach see the section on LAMS below (note, however,
that LAMS is not at present LD compliant). This approach is valuable
when it is desirable to give the teacher substantial autonomy in defining
the pedagogy which she or he wishes to use.

When the new or adapted UOL is ready, the user then needs to be able
to preview it in a player, or in a preview component incorporated into the
editor.

4) Designers of UOLs
These users, who may be pedagogic experts, course planners, and learning
or instructional designers, need to be able to define roles, resources and the
flow of activities together with the various branching conditions, either for
use as a single design or as a template or component.

These users need access to repositories of learning designs where they can
find parts of learning designs which they can reuse. They also require an
editor which enables them to define the entire range of LD elements. De-
pending on the tasks which they have to carry out, they may also need a
tool for creating the templates and components for assembly described in
point 3 above. Depending on the workflow used in the design process,
tools for specific parts of the authoring process may be valuable, for ex-
ample activity authoring. Finally tools that support particular learning ap-

114 D. Griffiths et al.

proaches and pedagogies will be needed. The LD specification enables a
pedagogical scenario which is usually described in terms which do not
have a precise and agreed definition (such as “constructivist”, “problem-
solving”, or “drill and test”) to be represented without ambiguity in a form
which supports reuse and facilitates the use of technology. This also
means, however, that any given learning design may be understood in dif-
ferent ways by different users, who participate in different discourses, and
may need to describe it in different ways in order to understand it, and edit
it. They may also want specialized tools which provide them with easy
ways to author the structures which are typically used within their peda-
gogy. To some extent these needs may be met by templates, but they may
also require more general editors which use particular metaphors and edit-
ing techniques and procedures.

5) Developers of tools for LD
Developers also have their own tooling needs. These include software for
testing that the code produced by editing tools complies with the specifica-
tion, a reference runtime implementation to ensure consistent interpretation
of the specification when creating runtime systems, and engines and librar-
ies to assist in the development process.“

7.3 A Framework for Situating Learning Design Authoring
Tools

We now focus on authoring tools and situate them along to axes, according
how closely their interface follows the specification, and their degree of
specialized focus.

7.3.1 Higher- vs Lower-Level Tools

The tools described for the five categories of user above vary greatly in the
degree to which they require users to be knowledgeable about the specifi-
cation. As mentioned in the section on general purpose tools above, UOLs
are sometimes created with a general purpose XML editor. An author
working with such a tool has to have a detailed knowledge of the elements
of LD and their function in order to create a UOL, and has to provide both
the LD elements and their values. Such an author is working at a low level,
as close as possible to the specification. This is not, however a typical
situation for an LD author. The XML binding for LD was created as an
interoperable machine-readable format, and when it was proposed it was

7 Learning Design Tools 115

not envisaged that people would author UOLs directly with the XML.1
Authoring tools need to represent authors’ work with the specification in a
way which is appropriate to the user. This applies to both experts in the
specification and those who know nothing about it, but the interfaces and
support which they require vary greatly.

XML experts will be helped in authoring LD documents by having ac-
cess to tools which enable them to easily access the parts of an LD docu-
ment on which they want to work, avoid them having to enter repetitive
text, and to have their document checked for integrity. The ability to work
close to the specification may be particularly valuable in debugging UOLs.
The users of these low-level tools include professional producers of educa-
tional resources, and technical support staff within educational institutions.

Other authors will find the structures and terminology of LD incompre-
hensible, and need high-level tools which have vocabularies and represen-
tations that they recognize. Thus teachers, designers, etc., are familiar with
terms such as lesson, curriculum, and so on, and need to be able to specify
and visualize their designs in these terms, which do not necessarily have a
direct equivalent in LD. For instance, while the everyday concept of
learner has a formal equivalent in LD, the same is not true of the concept
of homework. It will greatly help users who are not technical experts if the
authoring tools can give assistance in mapping such concepts onto the
formal language of LD. Thus a spectrum of tools may be established, go-
ing from those which are presented in terms and structures which remain
close to the specification, and those which are presented in non-formal col-
loquial terms which are distant from the specification and use a hidden
mapping between the users’ interactions and the LD document which is
being edited – for a discussion (in Spanish) of this issue in relation to QTI
see Sayago et al. (2004). Similarly a variety of interfaces which are distant
from the specification may be required to represent the learning design
within the concepts and terminology which are accepted within a particular
pedagogic practice.

7.3.2 General Purpose vs. Specific Purpose Tools

As has been observed above in the section on user roles, not all users need
access to the whole specification. In a context where a users’ role in a
workflow means that they only have to perform certain kinds of action the
complexity of tools can be greatly reduced by only presenting users with
the functionality which they need. Similarly in institutions with a clearly
defined pedagogic approach more tightly focused tools guiding authors
towards a particular type of UOL are appropriate. This can be achieved

1 Bill Olivier, one of the authors of the specification; personal communication.

116 D. Griffiths et al.

using constrained schemas, or templates, or environments where UOLs can
be constructed out of predefined components. On the other hand some au-
thors require access to the whole of LD. Pedagogy specialists and experts
in areas of knowledge who create new UOLs fall into this category, as do
specialists in the technical aspects of UOL authoring and delivery.

These two axes create a quadrant within which tools may be situated, as
shown in Fig. 7.2.

The need for tools in all four quadrants depends on the context within
which LD is to be implemented, and the perspectives one has of the pur-
pose and application of LD. As has been explained in Chap. 2, LD
emerged from EML, and was developed by a large-scale distance learning
provider, where UOLs are produced by large teams of experts. In this envi-
ronment the production of courses (both traditional and e-learning) usually
involves a large budget, and the involvement of teams of professionals,
including experts in the subject area, pedagogy, design and technical is-
sues. This team-based workflow, for example, is current practice in the
development of EML-based courses at OUNL, the only institution which
has so far produced EML or LD courses on a large scale, and it is carried
out with general purpose tools which are close to the specification.

While LD was developed in the context of large-scale institutional de-
velopment, however, it also has the potential to be applied in other con-
texts indeed this was part of the intent in providing it as a general use
specification. In particular LD is significant in the potential it has for rep-
resenting the range of teachers’ practice. Previous e-learning standards
have often been seen by teachers as forcing learning designers to adopt the
“conduit” metaphor for learning. This metaphor is identified by Lakoff and
Johnson (1980) as being: Ideas (or meanings) are objects, linguistic ex-
pressions are containers, communication is sending, and focuses on the
role of content while it marginalizes or constricts the actions of the teacher.
This was the case in the Prometeus Conference 2002 in Paris, where the
education professionals who participated saw standards as vital, but also
controversial and dangerous. Particular concerns were raised about the re-
strictions imposed by the standards, the bias inherent in the tools used to
implement them, and the idea that e-learning standards make it possible to
carry out education without teachers in the same way that the Jacard loom
made weavers redundant (Griffiths et al. 2002, p 29).

In contrast one of the great strengths of LD is that it can be used to cap-
ture teachers’ practice, and make it available to learners and other teachers
in a standard and machine-readable way. The enthusiasm which many
teachers had for sharing their practice was shown some years ago by the
very much more informal repositories set up using Apple’s Unit of Prac-
tice methodology, described by Debra Rein (2000). From this perspective
a general purpose authoring tool for non-experts is clearly important.

7 Learning Design Tools 117

Fig. 7.2. Two dimensions of LD tool design

Such a tool would have potential application even outside the context of
e-learning, as there is at present no standard way of describing teaching
practice or planning for learning activities, and LD is well placed to meet
this need, as discussed by McAndrew and Weller in Chap. 17 of this vol-
ume. Thus there may be a use for such tools even if the learning designs
produced are never run in a player for learners, or are processed to gener-
ate printed lesson plans and handouts.

The contrast between these perspectives serves to remind us that tools
are not neutral, and that they both emerge from and, in turn, modify the
socio-cultural context in which they are developed and used – this interac-
tion has been illuminated by Activity Theory, particularly by Engeström
(1987). Consequently it is to be expected that a number of different ap-
proaches to LD tooling will emerge, and indeed the first indications of
such distinctions may already be discerned in the developments described
in this chapter. This spectrum is not unique to LD, and the same is true, for

118 D. Griffiths et al.

example, of HTML tools. Indeed that precedent suggests that the easiest
tools to create, and the earliest to be produced, are those which correspond
closely to the specification, while it takes an intense design effort and sev-
eral iterations to produce a tool which is effective for the non-technical
user and which produces well-formed code.

7.4 Design Time Tools

7.4.1 Tree-Based Editors

A tree-based editor presents the elements of LD as a branching tree. An
interface is provided to enable the author to navigate through the tree, and
to enter values for the elements. A good example of an editor of this type
is the Perot LD Editor (see Chap. 21). This was the first tool to be designed
to edit EML, the specification which it currently supports, but it has not
been marketed. It was designed as a tool for expert users who handled the
technical aspects of UOL authoring, while others were responsible for
pedagogic design and resource authoring.

LD does not stand alone, it builds on and integrates other IMS specifica-
tions, notably Content Packaging (CP 2003), but also Meta-Data (MD
2001), Question and Test Interoperability (QTI 2003), and Simple Se-
quencing (SS 2003). Tree-based editors are often used for these specifica-
tions, and so it is natural to extend this approach to LD. There is a particu-
larly strong link between LD and CP, and this is made clear in paragraph
2.2.3 of the LD Information Model (LD 2003) which states that “The pri-
mary use of LD is to model UOLs by including an LD in a CP”. In some
respects this association is more of a marriage of convenience than a struc-
tural relationship, as is discussed by other authors in this volume, but nev-
ertheless, this has led to the design of tools which enable users to author
both specifications. As CP is both simpler than LD and also of wider ap-
plication, it is a natural choice to take a tagging tool which works for CP,
and then add LD functionality. This has been the approach taken by both
RELOAD and GTK Komposer.

Both these applications provide users with access to the elements of CP,
and enable them to navigate through a tree structure which directly reflects
the specification, adding parameters and resources. To this extent they are
“close to the specification”, but they are some distance away from the base
line. RELOAD does not require the user to edit any XML code, simply to
drag resources into a tree structure, leaving the application to generate all
the code to represent the tree. Moreover RELOAD inspects the resources
included by the author and manages all the references to the components

7 Learning Design Tools 119

of those resources. For example, if an HTML resource is used, all the ref-
erences to image files will be identified and handled transparently, without
the author having to be aware of it. This is a good solution for CP, as the
specification is relatively simple. In adding LD to a “close to the specifica-
tion” CP editor, however, as is planned for RELOAD, or in creating a new
editor using the same principle, such as aLFanet, the increase in complex-
ity is considerable, as is made clear in paragraph 2.3 of the LD Information
Model:

A ‘unit of learning’ represents more than just a collection of ordered resources
to learn, it includes a variety of prescribed activities (problem solving activities,
search activities, discussion activities, peer assessment activities, etcetera), as-
sessments, services and support facilities provided by teachers, trainers and other
staff members. Which activities, which resources, which roles and which work-
flow is dependent on the learning design in the unit of learning.

Less expert users can cope with the relatively simple structures of CP, in
part because the process of building a content package is analogous to the
familiar task of building an index, and a tree is an intuitive representation
of this. LD structures are much more complex, the trees are correspond-
ingly extensive, and their relationship with the end product more obscure.
In LD, moreover, the creation of properties and conditions falls outside the
scope of the tree metaphor, and as a result tree-based editors are much less
intuitive. These users may be lost when confronted by the much more
complex LD structures.

Because of these circumstances the aLFanet LD Editor, which uses a
tree-based interface, is intended for users who already know the LD speci-
fication in detail. Like Komposer, this editor is embedded in another appli-
cation which provides it with services, but in contrast to the Microsoft
Word and web services solution used by Komposer, aLFanet is built on top
of the Groove peer-to-peer application.

Given this degree of complexity, the designers of such tree-based tool
interfaces for LD need to consider how they can maximize the support for
authors in understanding the specification and the editing actions which
they are being invited to perform. This may be through templates, auto-
matic completion of elements with default values, dropdown menus, or in
terms of changing the vocabulary from that used in the specification to one
which is more familiar to their working context. The aLFanet Editor pro-
vides basic support for authors by ensuring that any file which it generates
is valid by filling in the non-optional fields with defaults. RELOAD will
provide additional support by presenting the interface for authoring in a
series of modules. The screen layout for the Play/Act/Role-part editor is
shown in Fig. 7.3.

Komposer, under development at the time of writing, establishes a quite
different trade off between power and ease of use.

120 D. Griffiths et al.

Fig. 7.3. RELOAD activity editor (under development)

The strength of this approach is that it is strongly focused on the needs
of a particular user group: teachers and other content creators with limited
technological skills. It supports them by offering them predefined peda-
gogic activities, and a workflow which takes them from authoring to deliv-
ery.

In the Komposer Authoring Platform, which is a tree-based editor, the
complexity of the task facing the author is reduced by restricting UOLs to
one role and a single path, and using a interface which is familiar from
another context for authoring.

In creating web-based learning resources, authors often format their
content to provide the look and feel they see as appropriate (Bartz 2002),
and Komposer builds on this familiarity with the use of styles for web re-
sources. Microsoft Word is used as the authoring platform as it presents a
WYSIWYG front end to the authors, and provides familiar formatting
tools to minimize the training effort which may be foreseen when users
start to adopt the system. Within this familiar context a UOL template is
provided using Word styles, which constrains the complexity (and expres-
sive power) presented to the author by restricting UOLs to one role and a
single learning path. Several generic Word templates (DOT files) are pro-

7 Learning Design Tools 121

vided in the Authoring Platform so that the users can work within the LD
structures given in the templates. Users familiar with the LD Learning Ac-
tivity Structure may develop their own templates for the writers.

Figure 7.4 shows how this approach results in a template structure
which is a great deal more approachable for a non-expert content than is a
full featured editor such as RELOAD or the aLFanet LD Editor.

Support for users of the Authoring Platform is also provided by situating
the LD authoring process within the wider Komposer workflow. This
guides authors to (i) prepare their manuscripts in Word; (ii) use the “Styl-
ing”function to disaggregate the documents into smaller modules and to
provide the look and feel of the course; and (iii) use the “Insert”function to
aggregate other external and web resources. When the course document is
completed, the CP-Generator of the Authoring Platform, the Komposer®
Suite, converts the Word document into a set of XHTML files according to
the styles provided in the document. A manifest is generated at the same
time, and the organization structure is defined in accordance with the lay-
out used in the Word document. The location of the resulting resource files
is listed in the manifest. A CP Editor is provided to edit the metadata, the
organization structure of the manifest, and to add and delete the resources
files. A player will be included in the tool to play any CP-compliant pack-
ages.

7.4.2 Higher-Level General Purpose Editors

For some purposes tree-based editors will not be satisfactory, however
much support is provided for the user, and an interface will be required
which is further from the specification. One of the reasons for this is that
the LD specification addresses real-world problems of learning and teach-
ing, and seeks to resolve them by harnessing the power of a formal lan-
guage. Thus a pedagogical scenario which is usually described in terms
which do not have a precise and agreed definition (such as “constructiv-
ist”, “problem solving”, or “drill and test”) can be represented without am-
biguity in a form which supports reuse and facilitates the use of technol-
ogy. This also means, however, that any given learning design may be un-
derstood in different ways by different users, who may want to describe it
in different ways. Consequently there is a need for high-level tools which
enable authors to define learning designs in terms of their own pedagogic
skills and experience.

122 D. Griffiths et al.

Fig. 7.4. The Komposer Authoring Platform

These can be either general editors, which give authors access to the full
power of the specification (with the accompanying complexity which this
brings), or editors for specific purposes or constrained pedagogic ap-
proaches. Such tools typically reveal the structure of a UOL in graphical
terms, so that designers (and particularly non-expert designers) can obtain
an overview, and navigate to the parts which they want to edit. The nature
of this representation, and the forms which it might take, is one of the most
interesting issues around the design of tools for LD authors. One possible
solution is the use of UML as an authoring tool, as this is already used in
best practice in designing UOLs. This is, however, unlikely to be a univer-
sal solution. First, it requires users to learn UML, and, second, because
authors conceive of UOLs in many different ways, a variety of graphical

7 Learning Design Tools 123

representations will be needed to support these different approaches to
teaching and learning.

A particularly interesting example of a general purpose high-level editor
is the MOT+ system described by Paquette et al. in Chap. 9 they describe
how the high-level graphical editor MOT+ can configured as an LD editor,
and the learning designs created within MOT+ can be exported as LD
XML files. As their chapter provides a detailed description of the system,
we do not discuss it in depth here. It should be noted, however, that their
work is significant, not only because it provides an example of a powerful
and expressive high-level LD editor, but also because the structures of LD
are mapped onto a graphical language which appears to be very remote
from the specification. Indeed the graphical language used was established
some years prior to the publication of the LD specification, as the fruit of
many years of practice in defining instructional design structures. The abil-
ity to produce valid learning designs from this system clearly demonstrates
that the metaphors and structures used to define UOLs can be quite distinct
from the terms and structures used in the specification. This authoring sys-
tem is therefore distant from the specification in the terms we have de-
scribed. In Chap. 9, Paquette et al. provide a specific example of this,
showing how the Versailles Negotiation in the LD Best Practice Guide can
be represented in MOT+. The challenge to be addressed by tools develop-
ers is to identify the metaphors and procedures which are most appropriate
for the various user groups, in terms of both their skills and understanding
LD, but more importantly their traditions of educational practice.

Specialized High-Level Editors

MOT+, described above, provides a powerful graphical language which
aims to provide learning designers with the tools which they require to de-
fine any structure which they may need. There is, however, an irreducible
level of complexity in editing LD documents, in part because of the wide
range of structures and properties, and in part because of the formality of a
learning design. Some authors will prefer to have a more constrained edi-
tor which meets their needs without providing them with access to the
whole of LD. This is the role of specialized high-level editors.

Templates for Learning Designs

For teachers who simply want to be to be able to teach with on-line re-
sources, using one of a few basic pedagogic models, it is very helpful to
have templates which provide a range of pedagogical structures which
teachers can populate with resources and learners. It is to be hoped that a
range of LD templates will develop as the specification becomes more

124 D. Griffiths et al.

widely adopted, and that these will cluster around particular communities
of teachers and learners.

The first tool which provides explicit support for templates is
EduploneLearningSequence, an open-source authoring and runtime player
application released under the GNU General Public License. In the work-
flow established by the application, the topics required in a learning envi-
ronment are identified, and then templates which define the pedagogic
models to be used by the learner are added. This makes it easy to produce
multiple ways of sequencing the same learning resources (a similar ap-
proach was taken in the SCOPE project, see Chap. 21). The learning
strategies supported range from guided tours of the resources, to more ex-
plorative strategies, and are based on the vocabulary of didactic metadata
in Webdidactics, which has been adopted by the developers. Webdidaktik
was developed by Norbert Meder (now: University of Duisburg–Essen)
and his team during the project “L3 - Lebenslanges Lernen”, a major re-
search project funded by the German Ministry of Education and Research.
Webdidaktik combines theoretical approaches of educational theory, me-
dia theory and knowledge organization. A multidimensional ontology of
didactical metadata is used for organizing learning resources. For some of
the core concepts see: http://www.eduplone.net/concepts/webdidaktik/.
Within Eduplone these strategies can be altered, and new strategies added,
by scripting in the Python language. The results are intended to be deliv-
ered to the learner through an Eduplone server, which functions as a spe-
cialized LD player. Both authoring tools and runtime are delivered through
a web interface. The UOLs which are created by the system can, however,
be exported as standard LD XML files, and can be run on any compatible
player.

To support this functionality the developers have used Python to imple-
ment a subset of LD. The system is built on the Plone content management
system, which in turn uses the Zope server infrastructure.

Similarly elive Learning Design, a German-based company, in co-
operation with cogito GmbH, has released an integrated LD toolset for the
design, documentation and optimization of didactic scenarios, called “elive
LD-Suite”. The documentation for this suite states that it also makes use of
pre-modeled methodical structures, templates and pedagogic patterns,
while enabling the user to extend the existing repository and interchange
effective patterns and scenarios.

LAMS

LAMS (Learning Activity Management System) is also a specialized high
level editor, but unlike EduploneLearningSequence it takes as its starting
point the sequencing of a set of preset activities, rather than the application

7 Learning Design Tools 125

of pedagogic templates to content. LAMS is produced by WebMCQ and
Macquarie E-learning Centre of Excellence (MELCOE), Macquarie Uni-
versity, Australia. It does not at present produce or run LD code, but is
explicitly inspired by LD, and is designed to illustrate examples of the ap-
proach taken by the specification, as discussed in Dalziel (2003). LAMS
has a full runtime system and learner administration facilities, but as it is
not a compliant system much of the detail is not relevant to this chapter.
The component for teacher authoring/adaptation of sequences is, however,
a valuable example of how a specialized high-level LD editor could func-
tion. The author can drag and drop items onto a flow chart. In LAMS these
items are called “activities“, but the word is used differently from the same
term in LD, and so avoided here. The items include synchronous discus-
sion (chat), web polls, students posting material and structured debates.
Learning resources can be added, and a series of on-line lessons can be
planned and run. The components which can be used are fixed, but these
cover many of the basic activities carried out in the classroom. This use of
familiar elements makes the application easy for teachers to comprehend,
as this is the way that conventional lessons are planned.

Thus the LAMS authoring application (Fig. 7.5) is specialized in the
sense that it offers a set menu of learning activities which can be se-
quenced. If the proposed LD compliance were added, then it would be an
appropriate tool for the assemblers of UOLs described in the section on
user roles above. Some of the items assembled in LAMS would, if imple-
mented in LD, require the combination of, for example, an environment
and a service in a single entity which to a higher-level user appears to be a
single object. Indeed one of the valuable contributions of LAMS has been
to make clear the need for a lower-level tool for the creation of these reus-
able items.

7.4.3 Tools Which Are Standards Compliant, but Not Standards
Oriented

It may that if teachers are to work effectively with high-level tools, then
they will need to manipulate LD in combination with other specifications.
For example, it may be useful to have a reusable item which combines an
evaluation activity using QTI integrated with the use of a learning re-
source. This functionality should be transparent to teachers who adapt and
reuse components, who should not need to know that at one point they are
generating QTI and at another LD.

126 D. Griffiths et al.

Fig. 7.5. The LAMS authoring component

In other words, for many purposes tools for the end user (teacher or
learner) should be standards compliant (in their outputs), but not standards
oriented (in their interface). Such tools should be designed in terms of the
tasks which they carry out, rather than being structured according to the
enabling technology, in this case the IMS suite of e-learning standards.
The development of tools which can create reusable components which
make use of a number of complementary specifications is clearly a signifi-
cant challenge.

7.4.4 An Enabling Framework for Editor Development

The creation of an all-encompassing LD Editor is a major development
project, which may be beyond the capabilities of a single organization. The
Valkenburg Group Reference Architecture documentation also discusses
the way that this problem may be overcome, by creating an LD editor
“framework”in which the various components of an editor can be “plugged
in“. It is proposed that there should be two frameworks: one that controls
the underlying data model of the LD instance, and another that handles the
management of the user interface. The data model layer is also a logical
point at which to enforce constraints, either embedded within the applica-

7 Learning Design Tools 127

tion by incorporating XML Schema checking, or through delegation to an
external constraint handling service.

Plug-in tools provide controllers and views that fit into the presentation
layer framework, and access the instance data model through the LD
model framework. This architecture is shown in Fig. 7.6.

Fig. 7.6. Plug-in framework for an LD Editor

Each plug-in can provide a particular kind of authoring capability, such
as managing roles, activities or environment, while variations on the same
authoring task can also be provided for different levels of user. For expert
users, the editor could also have a “Raw LD” plug-in that simply allowed
direct editing access to the underlying XML representation. Other types of
plug-in might include a package that provides import and export of
SCORM files, and a package to support access to the Learning Designs
Repository and Materials Repository.

In actual deployment the two frameworks can be placed behind a single
interface or façade to assist plug-in development. The end result is a tool-
set for developers which enables them to avoid handling all the underlying
processes involved in manipulating LD structures, and to focus on the user
interface of the editing tool which they are creating. This greatly facilitates
the creation of editing tools for a wide range of different users, with vary-
ing metaphors, pedagogies, scope, terminology, etc.

128 D. Griffiths et al.

Open-Source Java Libraries for Developers

A number of libraries and engines have been developed which can be used
as the basis of the Learning Design Model Layer. The simplest approach is
to hard-code the data model, and make it available to programmers, and
this was how the open-source LD libraries created by the Interactive Tech-
nologies Group of Universitat Pompeu Fabra were produced.2 This has the
advantage of simplicity but may be hard to maintain and not easily extend-
able.

The RELOAD Approach

The RELOAD project (Fig. 7.7) takes a more complex approach. This re-
sponds to the need to allow for specializations of the schemas to be used
for authoring specific UOL templates, and to respond to possible changes
to the specification which will be reflected in the XML Schema files. If the
XML Schema has been hard coded, or tied Java class bindings used, then
the code will also have to be in these circumstances. A more generic and
maintainable approach is to use the IMS Schema as the driving data model
document. In RELOAD reusability and general application are enhanced
by reading, parsing and modeling a schema as a Document Object Model
(DOM). This schema DOM is used to generate an editable instance DOM
which can hold the entries made by the user.

The advantage of this approach is that a framework is provided which
can be applied to the whole range of IMS specifications, providing a
framework which maximizes ease of development and maintenance of edi-
tors for LD and other IMS specifications.

7.5 Runtime Tools

7.5.1 Learning Design Players: Delivering the Unit of Learning
to the Learner

Users in the learner role interact with an LD player, described in point 3 of
Sect. 7.2.2 above. Players may be standalone applications, or a component
of a more extensive environment, and the output to the learner is typically
a web page.

2 This work was carried out in the context of the SCOPE project, funded by the
European Community. For further information see www.tecn.upf.es/scope.

7 Learning Design Tools 129

User Interface level
(What the user sees and edits)

Middle layer: Widget factory etc

RELOAD Engine (parsing XML, helpers)

Metadata UI
controller

CP UI controller SS UI
controller

LD UI controller

XML Parsing and Persistence Engine
(JDOM, Castor)

Fig. 7.7. The RELOAD architecture

At the time of writing the only full player available is Edubox, produced
by Perot for the Open University of the Netherlands, which works with
EML and does not accept LD input. This situation may change in the fu-
ture, as Blackboard Inc. has signed a strategic alliance with OUNL with
the aim of incorporating Edubox into Blackboard products, and to support-
ing LD.

Edubox is the delivery system used by the OUNL in all its on-line
courses, This player has been important in the development of LD as it has
demonstrated that the concepts underlying EML and LD are valid, and that
their use as a solution for a large-scale education institution is effective.
Edubox is a solution developed to meet the needs of a large institution, and
has to cope with a large number of courses and users. Consequently it is a
robust and scalable system built to industrial standards using IBM’s Web-
Sphere platform. Edubox is not available on the open market, as Perot Sys-
tems Netherlands is principally a solutions provider rather than a software
vendor, but the system can be made available to its clients. It should be
noted that the company is confident that it would not be a major develop-

130 D. Griffiths et al.

ment task to adapt the system to run with LD, using an XSLT stylesheet
transformation.

7.5.2 Specialized Players

As mentioned above, it is possible to create players for specific purposes
which do not implement the whole of LD. Indeed, the division of LD into
three parts, A, B and C, is specifically intended to make it possible to im-
plement the core functionality in A without necessarily incorporating the
additional features in Levels B and C. The EduploneLearningSequence
player is an example of a specialized player, only implementing those parts
of LD which are required to run designs produced by the pedagogic tem-
plates in the editor (see below).

7.5.3 Learning Design Reference Runtime

Learners and staff are not the only users of LD players. When an author is
creating a learning design it is not easy to envisage how this will appear to
a learner when it is run by a player. This is not only because the XML code
which makes up a UOL is hard to understand. If this were the case a sim-
ple preview function in the editor (as used in HTML editors) would re-
solve the problem. The problem is that the interactions between learners,
and with the UOL, create many properties and states which are not explic-
itly stated in the learning design, but are the product of contingencies when
the UOL is run. These have to be tracked in runtime, as is well explained
in Chap. 6. There, the example of the “completion” status of a particular
user at a particular time is given as a property which is not present in the
UOL, and has to be generated by the player. An author clearly needs an
understanding of how these properties will be handled by the runtime sys-
tem, and this is the function of a reference runtime player. This provides
LD authors with a simple and authoritative view of how their design will
behave, and provides a benchmark for LD players, which should produce
the same basic output, though they may present it in many different ways.
There is no reference runtime player available for LD at the time of writ-
ing, but the CopperCore engine (see Chap. 6) provides an ideal platform
for constructing one. This is a high priority in the development of LD tool-
ing.

7 Learning Design Tools 131

7.6 Repositories

One of the fundamental goals of LD is to support interoperability, reuse
and sharing of learning resources. If this is to be achieved then users need
an infrastructure which enables them to identify and exchange UOLs, and
this is the role played by repositories. To ensure that reuse and sharing can
contribute to effective educational practice, it is also essential that users
can easily find UOLs which are appropriate to their needs, and repositories
can facilitate this process.

There are many repositories which can store UOLs, together with the
metadata which describes them, which can then be searched by potential
users. A simple first step in creating an LD repository would be to reach
agreement on how to identify a UOL within the metadata, and so enable
users to search specifically for them. In addition, a repository which can
parse the structure of a content package will have the potential to identify
UOLs within searches. This is an elegant way of finding UOLs, but is a
less general solution, as it is only applicable to learning designs which
have been packaged using CP, and is not applicable to fragments such as
acts.

These approaches are sufficient for many purposes, but there are also
good reasons for building LD awareness into repositories themselves.

1. An LD-aware repository could provide a number of specialized services.
For example, it could provide an ontology of LD by using templates and
good practice examples, or offer searches for UOLs that have been used
with a certain kind of content. It would also be possible to add a degree
of intelligence to the repository, so that it could it could be used to
search for UOLs with a similar pedagogy, or for content that has been
used in similar learning designs

2. If a user wants to retrieve a fragment of a UOL so as to incorporate it
into his or her own learning design, then the repository needs to under-
stand the structure of LD in order to provide the elements which make
up that fragment. For example, if the searcher wants to retrieve an act,
then the repository needs to deliver all the elements of which it is com-
posed, such as learning resources and roles. This awareness would also
be required if an author wants to point at an act using an XML inclu-
sion, as proposed by W3C (W3C 2004a), and so include it in a UOL at
runtime.

3. An LD-aware repository can also provide information to the user on
how learning resources have been used in other UOLs, giving a valuable
perspective on the nature of those resources.

132 D. Griffiths et al.

4. The repository could also store metadata provided by users, on what
UOLs have been used for and how successful they were, as this is very
valuable information for both learners and teachers.

The Repository to Reality project, funded by the National Research
Council of Canada, is making a contribution to these issues, and in one of
its lines of action Dr. Tom Carey, University of Waterloo, is developing a
controlled vocabulary for the description of UOLs. This is an important
first step towards the implementation of repositories for LD.

Desirable additional functionality includes natural language processing
capability, so that users can search for UOLs which are in a language
which they do not understand. Not only may they want to obtain a transla-
tion of the UOL, or use it with learners who do understand it, but also may
be able to reuse fragments of the UOL as it stands. In the medium term the
development of the semantic web will no doubt open up many new possi-
bilities for LD repositories.

7.7 Tools for Developers

7.7.1 CopperCore: a Learning Design Engine

The development of an LD player is complex, because the application has
to handle activity scheduling, and keep track of the states of the various
learners and activities over time. Developers need to be relieved of the
burden of dealing with these complex issues if they are to be freed so they
can concentrate on the creation of innovative interfaces of a user player.
To meet this need CopperCore (discussed in the previous chapter), was
developed by the Open University of the Netherlands. CopperCore is an
open-source reference implementation of the complex core of a player.
This is described in detail in Chap. 6, and so only an overview is provided
here.

CopperCore is not itself a player, since all user interface aspects are ex-
plicitly excluded from its scope. Rather, it implements what experience at
OUNL has shown to be the biggest hurdle to development of LD-aware
software – the runtime maintenance of individuals’ activity lists in both
single user and multi-role, multi-user situations and as time limits expire,
acts and activities complete, properties are changed and their consequences
propagated through conditions, etc.

CopperCore is best viewed as a running software process which takes a
UOL as a content package as input and then responds to queries posed it to
according to a published API. The engine can, for example, return the “ac-
tivity tree” for a given individual in a given role at a given point in the life-

7 Learning Design Tools 133

time of a run of a UOL. Data is returned as XML, allowing freedom to
transform the results using XSLT into any number of user interfaces. A
first implementation of CopperCore supporting LD Level A was made
available in February 2004, level B and C support became available later
that year. The software is written in Java™ and makes use of the open
source J2EE™ Application Server JBoss and the open source database
PostgreSQL. During 2005 also a core open source authoring environment
will be included in the CopperCore suite to further help developers to cre-
ate a complete LD learning management system or to include LD into an
existing application.

7.7.2 Compliance Testing

An important tool for developers is an application which certifies compli-
ance with the specification. This enables them to test the output of editor
applications and ensure that it conforms to the same criterion for compli-
ance as that used by other developers, thus greatly improving the prospects
for effective interoperability.

The TelCert project (see http://www.opengroup.org/telcert/), funded by
the IST programme of the European Commission, is developing a testing
and conformance system which will include LD.

7.8 Conclusion

In our discussion of LD tooling we have sought to present the range and
variety of tools which will be required as the specification becomes widely
adopted. The list of available tools Table 7.1 on the other hand, shows that
at the time of writing the tool set is still rather restricted.

Returning to the two dimensions of tool design identified in Fig. 7.2
above, the authoring tools from Table 7.1 may be classified as shown in
Fig. 7.8.

As may be seen from Table 7.1, at the time of writing editing tools were
more advanced than players, with a number of systems being demonstrated
or in the late stages of development, and this is in part a reflection of the
greater complexity involved in developing a player. It is, of course, of
critical importance that effective players are available so that the power of
LD can be demonstrated. In this respect the Learning Design Engine is of
particular significance, as it provides an open-source platform for the rapid
development of multiple players.

134 D. Griffiths et al.

Table 7.1. Learning Design tool set available or under development at the time of
writing

Name Application Type Ownership Spec.
supported

Edubox Player General player Proprietary EML
Edubox Editor Customization of Adobe

Framemaker
Proprietary EML

Perot LD
Editor

Editor Close to spec. general
purpose tree editor

Proprietary EML

aLFanet Editor Close to spec. general
purpose tree, editor

Open
source

LD A

aLFanet Player Integrates .LRN with
CopperCore

Open
source

LD C

GTK Press
Komposer

Editor Close to spec. tree editor,
linked to high-level
Word-based resource
authoring.

Proprietary LD A
Single
role, single
path

RELOAD Editor Close to spec., general
purpose tree editor, with
runtime preview.

Open
source

LD, Levels
A, B
and C

MOT+ Editor Distant from spec. gen-
eral purpose graphical
editor

LD Levels
A, B and C

LAMS Example of
activity se-
quencer,
inspired by
LD

Distant from spec. spe-
cialized editor with
graphical interface

Proprie-
tary, parts
may be-
come open
source

Non-
compliant

elive Editor Distant from spec. spe-
cialized editor

Proprietary LD Levels
A and B

Chrono-
tech editor

Editor Also suitable for Edubox
(EML support)

Proprietary EML and
LD Level
A

Eduplone
Learning
Sequence

Integrated
editor and
player

Distant from spec. spe-
cialized editor, template
based

Open
source

LD
Level A

Copper-
Core

Engine Core of Learning Design
player

Open
source

LD Levels
A, B and C

Copper-
Core

Editor Basic LD editor Open
source

Level A

SCOPE
Learning
Design
Library

Library Java library Open
source

LD
Level A

7 Learning Design Tools 135

Fig. 7.8. Classification of LD editing tools

The effort involved in adapting existing repositories to provide LD
awareness is relatively small compared with that of developing editing
tools and players, and it is to be expected that repositories will emerge as
the specification becomes more widely used, and large numbers of UOLs
are stored.

Given the time which is required for the development of tools, the lim-
ited progress described in this chapter is impressive rather than a cause for
pessimism. There is a strong group of developers, both within the Valken-
burg Group and beyond, and progress is being made on all aspects of tool-
ing.

Part II

DESIGNING E-LEARNING COURSES

Part II of the book contains eight chapters that provide an overview of the
process of design and implementation of e-learning courses using the LD
specification. The first chapter sets the scene by presenting a generic proc-
ess for learning design. The second chapter introduces an instructional en-
gineering method and modelling tools to design e-learning courses.

The next five chapters deal with specific topics relevant for the learning
designer: how to integrate assessment into e-learning courses, how to de-
sign collaborative learning, how to design adaptive learning environments,
how to design educational games and how to design learning networks for
lifelong learners. The final chapter provides an overview of the implemen-
tation issues to be addressed by educational institutions when delivering e-
learning courses using LD.

8 Basic Design Procedures for E-learning
Courses

Peter Sloep1, Hans Hummel2, Jocelyn Manderveld2

1 Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands and
Fontys University of Professional Education, Eindhoven, The Netherlands

2 Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

8.1 Introduction

Designing and developing instruction and learning is a complex process.
Analysis of the behaviour of expert designers shows that it cannot be di-
vided up into a simple, linearly ordered sequence of steps that, if duly fol-
lowed, will inevitably lead to sound instruction (Kirschner et al. 2003).
However, even if each expert has his or her own way of designing and de-
veloping instruction, we can still discern a number of phases that are an
idealisation of the Instructional System Development (ISD) process. The
five phases one often distinguishes are analysis, design, development, im-
plementation, and evaluation (e.g. Reigeluth 1999; Morrison et al. 2004).
Each phase concludes with a product. The evaluation phase, for example,
typically results in an evaluation report that records the success, or lack
thereof, of the entire design and development process, but often also serves
as input for the next design and development cycle. Furthermore, each
phase often involves using tools that improve the quality of the end prod-
uct, or enhance efficiency or efficacy of the process. These tools may vary
from checklists and manuals to software.

We start this chapter with a brief discussion of the five ISD phases, set-
ting the stage for our main subject: a discussion of how the Learning De-
sign specification (LD 2003) can assist and inform the Instructional Design
(ID) process proper. The ID process focuses purely on the analysis and de-
sign phases of ISD and it is with respect to the analysis, design and devel-
opment phases that the LD specification is particularly useful.

Two preliminary comments are in order here. First, in attempting to de-
scribe what it is that students are exposed to, designers design, developers

140 P. Sloep et al.

develop, and teachers act upon, we have found it rather difficult to identify
a term that does not evoke all kinds of associations with existing learning
and instruction paradigms or philosophies. The term ‘instruction’ suggests
a preference for teacher-led education, and the term ‘learning material’ a
significant role for content. There is no easy way to avoid seeming to sub-
scribe to a particular educational philosophy to the exclusion of others.
Yet, this is necessary in the present context because we want to explore the
various ways in which LD may be utilised. We will therefore adopt the fol-
lowing terminological convention: ‘Instruction’ will be used both to denote
the ensemble of ‘stimuli’ (documents, messages, discussions, etc.) that
evoke learning experiences in students and support experiences in teach-
ers. In addition, we will also use ‘instruction’ to denote the collective of
learning and support experiences themselves. We will therefore deliber-
ately confound the process of having experiences with the products that
elicit those experiences. This simplifies our discussion without leading to
confusion in the present context.

Secondly, the chapter is essentially about a procedure for bringing order
to the process of designing instruction and for formally describing the re-
sulting designs. Questions of project planning and proper staffing are in-
volved, but their discussion will be left to Chap. 15. Similarly, there are
various tooling issues; these are dealt with in Chap. 7.

8.2 An Overview of the Five ISD Phases

According to the ISD model, the entire instructional design and develop-
ment process can be broken down into five phases. We will discuss these
to point out how LD relates to them. Table 8.1 reviews these phases; the
table also shows the structure of the chapter by relating the phases to LD-
based products, a stepwise design procedure and some specific examples.

8 Basic Design Procedures for E-learning Courses 141

Table 8.1. Relationship between ISD phases, LD-based products, a stepwise pro-
cedure for designing instruction and a specific case; see text for further explana-
tion

Phase/subsection Products Steps Case
1 Analysis

(Instructional
problem)
Sect. 8.4.1

Narrative; simple, non-formal
diagrams

- Box 8.1

2 Design
(Instructional
scenario)
Sect. 8.4.2

XML instance documents;
semi-formal templates (e.g.
UML activity diagram)

- Figs. 8.1, 8.2
and 8.3

2.1 Learning flow Activity table 1-7 Tables 8.3
and 8.4

2.2 XML coding XML instance document
(filled-out template)

8-10 Appendix

3 Development
(Resources)
Sect. 8 4.3

XML instance document
(filled-out template)

11-12 Appendix

4 Implementation
(Publication and
run of UoL)

Instantiation for specific
group and virtual learning
environment

- -

5 Evaluation Evaluation report; adjusted
narrative

- -

The analysis phase involves analysing a specific educational problem.
Various tools may be used to conduct the analysis, from a simple checklist
to more sophisticated tools. At least the following questions will have to be
answered:

1. Who is the instruction for and how would you characterise the learners?
2. What is it that they should learn, and how should their learning experi-

ences affect them?
3. Is there a particular strategy that allows them to learn most effectively

and efficiently, and that they find the most attractive?
4. How do we know that the strategy and actual learning experiences to-

gether have led these learners to achieve their learning objectives?

Usually, one works with more elaborate lists of questions. Morrison et al.
(2004), for example, uses a list of nine questions, while Visscher-Voerman
(1999) uses a list of 16. Kirschner et al. (2003, Table 6.1) review the lists
recommended by a variety of authors. Also, in an academic environment,
the analysis is likely to be conducted differently than in a business setting.
However, the differences are in emphasis, not in the substance.

142 P. Sloep et al.

The phase starts by holding discussions with the various stakeholders or
by surveying available documents, enabling the designers to find out what
the instruction should accomplish (needs and task analysis). The analysis
results in a narrative description of the subject matter (What should be
learnt?) and a description of the instructional method (How should it be
learnt?). The narrative is particularly important from the perspective of
LD, and may contain simple, non-formal diagrams for illustrative pur-
poses. It should, however, allow one to separate information about the sub-
ject matter from a description of the instructional method.

In the design phase, one creates a coherent view how the instructional
aspect of the educational problem described by the narrative may be
solved. The solution is expressed in the form of an instructional design,
devoid of any content. LD requires two issues are distinguished: how the
narrative may be translated into a particular instructional strategy, and how
the design can be fleshed out with instructional materials. The chosen
strategy must be described with sufficient precision to allow it to be ex-
pressed in LD’s XML code.

Various tools may be used to ease the design process. Van Merriënboer
(1997) and co-workers (De Croock et al. 2002a), for example, have devel-
oped a method that offers the best support to the 4C/ID model of instruc-
tion. Indeed, tools are often specific to a particular class of instructional
models. Within the context of LD, though, the design may be better served
by tools that are pedagogically non-committal yet sufficiently powerful to
be able to represent any instructional scenario. Such tools can be used in
any design process. UML activity diagrams (Rumbaugh et al. 1999) fit the
bill. Gilbert Paquette and co-workers have developed a similarly general
tool (MOT+), which has the added benefit of having been developed spe-
cifically with an educational application in mind (see Chap. 9). The XML
code itself may be created with a plain text editor, although the ability to
validate XML makes an XML-editor more suitable. Ideally, editors should
be adapted to make them more suitable for editing LD XML (see Chap. 7).

In the development phase the instruction’s content is developed. The in-
structional strategy developed in the design phase acts as a mould for the
instruction. In this chapter, we will illustrate how the development of the
instructional material fits in with the instructional design. After the devel-
opment phase, a complete piece of instructional material is available for
implementation. This requires a software environment or system that is
able to parse the XML code, render it in a user interface, and keep track of
the state changes of the system, either user or system generated (see Chap.
6).

This chapter, then, provides LD-related guidelines for the analysis, de-
sign and development phases, with an emphasis on the design phase. We

8 Basic Design Procedures for E-learning Courses 143

will use a particular case of problem-based learning in medical training as
an example to inform and illustrate the discussion (Sect. 8.4). But first we
will briefly examine the LD specification (see also Chap. 2); a working
knowledge of the specification is an absolute prerequisite for the discus-
sion.

8.3 The Learning Design Specification

Our discussion will be couched in terms of the LD Information Model, of-
ten even its XML binding (we will not always strictly distinguish an ele-
ment as it appears in the information model from its formal representation
in XML).

Chap. 2 provided a detailed introduction to and review of the LD speci-
fication. We will not repeat that discussion here, with the exception of a
small number of elements that play a major role in the design process. Ta-
ble 8.2 lists those elements. Knowing their names and hierarchical rela-
tionships is a prerequisite for reading this chapter. Note also that our dis-
cussion pertains to Level C of the LD specification; it thus includes
properties, conditions and notifications.

As Table 8.2 and Fig. 8.1 make clear, the most prominent elements in
LD are the components and method elements because they have the
largest number of sub-elements. The method element plays out the thea-
tre metaphor: it contains a nested structure of play, act, and role-
part elements. The play element usually occurs only once; it may con-
tain one or more act elements. Every act consists of one or more role-
parts. Acts run in sequence, each one being triggered by the completion of
the preceding one. Note that each transition between two adjacent acts thus
forms a synchronization point for all the subordinate role-parts: all the
role-parts within some act must be completed before the subsequent act
can begin. A play is therefore only complete when its final act has been
completed. Also note that role-parts within the same act always run in par-
allel. The relation between role-part completion and act completion is a
complex one. It is up to the designer to decide what this relationship is. For
example, an act may be completed only if all its role-parts have been com-
pleted, if only one has been completed, etc.

Figure 8.2 focuses on the components part of Table 8.2. It shows in a
graphical way that a role-part refers to the elements role and ac-
tivity, and that an activity in turn refers to an environment element.
The role-part element acts as a bridge connecting the method and
components elements to each other. A role-part refers to one or

144 P. Sloep et al.

more activity elements (in the latter case grouped in activity-
structures) and one role only. Each activity (or activity-
structure) refers to one or more environment elements.

As introduced in Chap. 1, likening a learning design to a theatrical play
allows us to conceive of activities as parts of the scripts for the different
roles that will be on stage together in the same act. Since role-parts run in
parallel, different roles may do different things at the same time. That
means that learners and staff (teachers) may be given different activities to
carry out within the same time-frame (act). But different tasks may also be
allotted to different subsets of learners, by discerning more learner roles.

Table 8.2. The major elements of the LD specification, in hierarchical order. In-
dentation denotes nesting. All elements are nested under the learning-
design root element, the components element has a number of sub-elements,
such as roles, which in turn has learners and staff as it members etc. An asterisk
* means that an element may occur more than once; thus there may be more than
one learner role, or more than one learning-activity. Further restrictions may ap-
ply, but are not indicated here

learning-design
 title
learning-objectives
 prerequisites
 components
 roles
 learner*
 staff*
 activities
 learning-activity*
 environment-ref*
 activity-description
 support-activity*
 environment-ref*
 activity-description
 activity-structure*
 environment-ref*
 environments
 environment*
 learning objects*
 services*
 environment-ref*
 method
 play*
 act*
 role-parts*
 role-ref
 activity-ref
 metadata

8 Basic Design Procedures for E-learning Courses 145

Act i Act n

Role-part 1
Role-part i
Role-part n

Act 1

Play 1

Role-part 1
Role-part i
Role-part n

Role-part 1
Role-part i
Role-part n

Fig. 8.1. A diagram of the relations between the major elements in the method
part. The arrows indicate a part-of relation. Thus a play consists of one or more
act elements, each act of one or more role-part elements; the acts fur-
thermore exhaust the play and so do the role-parts with respect to the
acts. See text for further explanation

Role-part

Role

Activity
Environ-
ment

Fig. 8.2. A diagram of the referral mechanism in role-parts. As in Fig. 8.1,
the arrows represent an association. So each role-part is linked to at least one
role and at least one activity, and an activity may be linked to one or
more environment elements. See text for further explanation

146 P. Sloep et al.

8.4 Designing Instruction with Learning Design

This section makes frequent reference to an actual case, described in Box
8.1. It contains excerpts from a third-year course book for medical students
at the University of Maastricht, The Netherlands (De Krom and Antheunis
2002: Blok 3.2 Uitvalsverschijnselen en functieverlies). The text has been
translated and edited slightly to better suit our discussion.

Box 8.1. The narrative: case description neuropathology course for medical stu-
dents

The module Disabilities treats ailments of the sense organs and the nervous sys-
tem. It is a follow-up of modules 1.3, 2.1. 2.2, and 2.7, that covered the normal
structure and function of these systems. It is recommended to re-examine these
modules, so as to be able successfully to build on the knowledge acquired there in
this module.

The subject matter presented in this module, specifically the neurology, has the
reputation of being difficult. In day-to-day practice this gives rise to the following
argument:

This patient has a neurological problem.
Neurology is a difficult subject.
It is therefore best to consult a neurologist.

Clearly, this is not a recommendable practice; it minimally reflects a serious lack
of opportunities for the non-neurologist. This module attempts to present the sub-
ject matter in such a way that structures and functions that are related to the
pathophysiology of the sensory organs and the nervous system become clear. In
the end, the students are expected to be able to arrive at a differential diagnosis as
well as a diagnostic and therapeutic plan on the basis of a medical history and a
physical examination.

This module covers ailments that either occur very frequently or are very seri-
ous. This way, the future physician acquires knowledge of symptomatology, diag-
nostics and therapy. The module furthermore moves from peripheral to central, an
important issue in the topographical diagnosis of ailments of both the sense organs
and the nervous system.

[A discussion follows of the topics that are to be covered in the 6 weeks the course
lasts.]

The module aims to discuss the pathophysiology of ailments of the nervous sys-
tem from the perspective of various disciplines. Integration of these view points
will lead to a better understanding of the complexity of the sense organs and the
nervous system.

[A discussion follows of subjects not treated.]

8 Basic Design Procedures for E-learning Courses 147

Clinical seven step method
The cases in this module may best be approached via the so-called clinical seven
step method:
step 1 Discuss what body part or organ the case is about, and make an inventory

of what the group knows about its normal structure and function.
step 2 Discuss what additional information needs to be acquired - through anam-

nesis or additional inquiry - to obtain a full picture of the patient’s prob-
lem; collect it.

step 3 Combine the results of step 1 and 2.
step 4 Formulate a causal explanation for the combined results; what factors are

risk factors for the patient in question?
step 5 On the basis of step 4 make a differential diagnosis ordered according to a

decrease in likelihood.
step 6 Discuss how a more certain diagnosis may be arrived at.
step 7 Develop a therapy in the form of a plan.

 [...]
Case 2-A, part 1 description
A 48 year old language teacher has decided to pay his GP a visit. He has been ex-
periencing hearing problems for some time. In his classes it has become increas-
ingly difficult to hear what his pupils are saying, and at the end of each day he re-
turns home exhausted. Last week, he felt as if he was coming down with the flu.
Although that feeling has gone, his hearing impairment even seems to have wors-
ened. He does not suffer from dizziness or disturbances of equilibrium. A general
examination also does not reveal anything in particular. In tonometer examina-
tions, the test of Rinne shows a bilateral positive result, Weber’s test lateralizes to
the right. The othoscopy reveals that on both sides the middle ear contains air. The
patient is worried and you decide to make a screening audiogram. The air conduc-
tivity threshold is about 45 dB for both ears.

[…]
Case 2-A, part 1 excerpt from the tutor instruction

Learning goals
Hearing loss with an emphasis on perceptual and neural aspects
Distinguish conductive and perceptive aspects
Opportunities for treatment and revalidation
Rekindle knowledge on tonometer test in skills lab
Etc.

Medical history
How did the complaint arise? Over time (not acutely)
What kind of complaint is it? Problems hearing what people say in the
presence of background noise (class) because of subjectively deterio-
rating hearing (both sides), on the right side more than on the left side.
Hearing problem causes rapid fatigue and diminished capacity to work
When did the complaint arise? First signs of it about 1.5 years ago
Etc.

148 P. Sloep et al.

8.4.1 Analysis

The description in Box 8.1 is a typical example of a problem-based learn-
ing case for medical students (cf. Barrows and Tamblin 1980). It contains
the narrative, i.e. highly informal information about the educational prob-
lem, provided as a description in natural language. The narrative addresses
the instructionally relevant issues. With a view to the LD specification, the
narrative should address at least the following questions:

i. What are the (learning) objectives and what prerequisites, if any,
should the learners comply with at the start?

ii. What instructional strategy or method do we want to use?
iii. In view of the objectives and instructional strategy, what (learning) ac-

tivities should the learners carry out and what the (support) activities
should the staff perform to support them?

iv. What resources (learning environment) should be made available to
both learners and staff, in the form either of learning objects or interac-
tive services?

The narrative of Box 8.1 points to both the module’s goals and prerequi-
sites (question i). The goals are: to avoid simplistic arguments of the kind
given, to be able to arrive at a differential diagnosis and a diagnostic and
therapeutic plan, and to be capable of adopting an interdisciplinary per-
spective. Being up to speed on the preceding modules is a prerequisite.
The instructional strategy (question ii) is discussed explicitly, the clinical
variant of the seven-step method for problem-based learning. Although
problem-based learning itself is not mentioned, it is implied: the medical
school at the University of Maastricht uses it throughout its curriculum.
The final three parts of the narrative of Box 8.1 contain excerpts from texts
in the course book. These contain the actual subject matter of the case and
thus provide material with which questions iii and iv may be answered.

8.4.2 Design

As discussed, the design phase only concerns the instructional method, i.e.
question ii in the previous section. We will return to the remaining three
questions later, when we discuss the development phase (Sect. 8.4.3). The
design phase can be broken down into two sub-phases. The first sub-phase
results in a description of the scenario’s learning flow, that is, the temporal
order in which the various learning activities unfold. Our description will
be provided in a table, and accompanied by a UML activity diagram. Once
the table has been completed, sub-phase 2 commences. In it, the actual

8 Basic Design Procedures for E-learning Courses 149

XML coding will take place. It is assumed throughout the discussion that
we are dealing with one play only. If we had wanted to work with several
plays, we would have followed the same procedure, with one exception:
we would consider how the components (roles, properties, activities, envi-
ronments) can be reused across the different plays.

The process of creating the activity table consists of a number of steps
which all amount to filling in the columns of the table (see Table 8.3). It is
best to work from the inside out; that is, to begin by focusing on the role-
parts and the role, activities and environments associated with them first,
and then look at how the various role-parts can be aggregated to form ac-
tivity-structures and acts. The sequence is reflected in the order of the col-
umns in Table 8.3. Table 8.4 (below) is the completed version of Table
8.3, and should be consulted throughout our discussion.

Step 1 Describe Role-parts. Describe the various role-parts in the sequen-
tial order in which they occur. The order may not always be obvious as, by
their very nature, different role-parts may run in parallel. Nevertheless, be-
gin with what seems to be the first activity and the role that carries it out,
then move on to the next, and so on. Mark whether the activity is a learn-
ing activity or a support activity.

The seven steps of the clinical method in Box 8.1 correspond to the ac-
tivities the students are supposed to carry out. These activities need to be
supplemented by facilitator and evaluator activities, and it is customary to
appoint a chairperson as well. Only the chairperson has been added, in or-
der to illustrate how this role may influence the learning flow. See the Ap-
pendix for an elaboration of these roles and their activities in a generalised
version of a problem-based learning scenario.

Table 8.3. An empty activity table. The text in the cells indicates the steps which
are to be filled in.

Role Activity Environment Activity com-
pletion

Property/
notification

step 1 step 1 step 2 step 3 step 4

Act Act completion Activity-
structure

Activity-type

step 5 step 6 step 7 step 7

Step 2 Describe Environments. If an activity requires particular resources
or perhaps a service, e.g. an electronic conference, describe this in the en-
vironment column.

150 P. Sloep et al.

Although Box 8.1 does not indicate this explicitly, a conferencing ser-
vice and a ‘resource centre’ have been added in our example to allow stu-
dents to obtain information and discuss their findings.

Step 3 Indicate Completion of Activities. Indicate for each activity how
it will be completed. Various mechanisms are available, ranging from
‘leave it up to the user’ (user-choice), via a time limit that may be ex-
ceeded, to a property that needs to acquire a particular value. If this col-
umn remains empty, the activity’s status is set to ‘completed’ by default.

In our example we have used user-choice throughout, but for all the stu-
dent activities a time limit could also have been used.

Step 4 Set Properties or Notifications. Completing an activity may trig-
ger various events, such as the provision of feedback. More interestingly, it
may trigger the setting of a property or the sending of a notification (for
instance, by email). If completing an activity is supposed to affect future
events, a relevant property should be set or changed. Notifications are rou-
tinely used to move the flow of learning and support activities from one
role to another. In this way the persons in that role are triggered to start
moving.

This is indicated in Table 8.4. In the same vein, it is the chairperson who
makes the therapy available to all participants.

Table 8.4 shows the activity table for the example given in Box 8.1.
Note that a good understanding of the LD Information Model very much
helps to fill out the table properly. In case of doubt one should always con-
sult the LD Information Model to check for the validity of particular con-
structions. (Note that we are not referring here to validity in terms of the
XML syntax – say, every opening <element> needs a closing
</element> – but to validity with respect to the LD semantics.)

8 Basic Design Procedures for E-learning Courses 151

T
ab

le
 8

.4
. A

ct
iv

ity
 ta

bl
e

fo
r e

xa
m

pl
e

in
 B

ox
 8

.1

R
ol

e

A
ct

iv
ity

En
vi

ro
nm

en
t

A
ct

iv
ity

co
m

pl
et

io
n

Pr
op

er
ty

/
no

tif
ic

at
io

n
A

ct
A

ct
co

m
pl

et
io

n
A

ct
iv

ity
-

st
ru

ct
ur

e
Ty

pe

St
ud

en
t

D
is

cu
ss

 w
ha

t b
od

y
pa

rt
or

 o
rg

an
 th

e
ca

se
 is

 a
bo

ut
 (s

te
p

1)

Sy
nc

hr
on

ou
s c

on
fe

r-
en

ci
ng

 se
rv

ic
e

R
es

ou
rc

e
ce

nt
re

U
se

r c
ho

ic
e

A
ct

 1

W
he

n
al

l s
tu

-
de

nt
s a

re
 d

on
e

St
ud

en
t

D
is

cu
ss

 n
ec

es
sa

ry
ad

di
tio

na
l i

nf
or

m
a-

tio
n

(s
te

p
2)

Sy

nc
hr

on
ou

s
co

nf
er

-
en

ci
ng

se

rv
ic

e
R

es
ou

rc
e

ce
nt

re

U
se

r c
ho

ic
e

A
ct

 2

W
he

n
al

l
st

u-
de

nt
s a

re
 d

on
e

St
ud

en
t

C
om

bi
ne

 re
su

lts
 o

f
bo

th
 d

is
cu

ss
io

ns

(s
te

p
3)

Sy
nc

hr
on

ou
s c

on
fe

r-
en

ci
ng

 se
rv

ic
e

U
se

r c
ho

ic
e

A
ct

 3

W
he

n
ch

ai
r-

pe
rs

on
 is

 d
on

e

C
ha

irp
er

-
so

n
St

at
e

pr
ob

le
m

Sy

nc
hr

on
ou

s c
on

fe
r-

en
ci

ng
 se

rv
ic

e
U

se
r c

ho
ic

e
U

pl
oa

d
fil

e
A

ct
 3

St
ud

en
t

Fo
rm

ul
at

e
ca

us
al

ex
pl

an
at

io
n

(s
te

p
4)

Sy

nc
hr

on
ou

s c
on

fe
r-

en
ci

ng
 se

rv
ic

e
R

es
ou

rc
e

ce
nt

re

U
se

r c
ho

ic
e

A
ct

 4

W
he

n
al

l s
tu

-
de

nt
s a

re
 d

on
e

St
ud

en
t

M
ak

e
a

di
ff

er
en

tia
l

di
ag

no
si

s (
st

ep
 5

)
Sy

nc
hr

on
ou

s c
on

fe
r-

en
ci

ng
 se

rv
ic

e
U

se
r c

ho
ic

e
A

ct
 5

W

he
n

al
l s

tu
-

de
nt

s a
re

 d
on

e
St

ud
en

t
D

is
cu

ss
 h

ow
 to

 o
b-

ta
in

 m
or

e
ce

rta
in

 d
i-

ag
no

si
s (

st
ep

 6
)

Sy
nc

hr
on

ou
s c

on
fe

r-
en

ci
ng

 se
rv

ic
e

U
se

r c
ho

ic
e

A
ct

 6

W
he

n
al

l s
tu

-
de

nt
s a

re
 d

on
e

St
ud

en
t

D
ev

el
op

 a
 th

er
ap

y
(s

te
p

7)

Sy
nc

hr
on

ou
s c

on
fe

r-
en

ci
ng

 se
rv

ic
e

R
es

ou
rc

e
ce

nt
re

U
se

r c
ho

ic
e

A
ct

 7

W
he

n
ch

ai
r-

pe
rs

on
 is

 d
on

e

C
ha

irp
er

-
so

n
St

at
e

th
er

ap
y

U
se

r c
ho

ic
e

U
pl

oa
d

fil
e

A
ct

 7

152 P. Sloep et al.

Step 5 Look for Synchronisation Points. At this stage, all the role-parts
should have been specified. Now the time has come to look for synchroni-
sation points between activities; that is, to aggregate role-parts into acts.
Consider a particular activity, An. Suppose analysis of the narrative and the
activities defined thus far reveal that An may be initiated only if all the ac-
tivities that precede An (A1 through An-1) have been completed. In such a
situation, activity An indicates a synchronisation point. The role-part asso-
ciated with An should be the starting point for a new act, while the role-
parts associated with the activities A1 through An-1 constitute the preceding
act. (If some of the preceding role-parts have already been aggregated in
an act, the rule applies to those preceding role-parts that have not yet been
gathered under an act.) Creating acts amounts to partitioning the entire set
of temporally ordered role-parts into subsets that do not overlap and follow
on from one another: {A1 …An-1}, {An … Am}, etc.

Our example is rather uncommon in that most of the student activities
constitute acts by themselves. In two cases, the combined student and
chairperson activities constitute an act. In other designs, an act can easily
consist of several activities.

Step 6 Determine Termination of Activities. Once a new act has been
created, at least one of the role-part needs to be designated as the one that
decides on the act’s completion (if more than one role-part needs to be
completed, all need to be completed). The chosen activity will usually, but
not necessarily, be those whose completion is subject to user control,
rather than activities that are completed by default. An act may further-
more be completed by exceeding a predetermined time limit. When decid-
ing on what activity should be completed for act completion, recall that
role-parts and hence activities may run in parallel. Where this is the case, it
may be impossible to indicate the particular order in which activities may
be completed. In our example, role-parts terminate activities, but a time
limit could also have been used.

Step 7 Make Activity-structures. Once the sequential structure of acts is
in place, look within the acts for role-parts that are carried out by the same
role. Perhaps they need not be performed in the temporal order indicated,
or perhaps not all need to be carried out. If so, the activities should be
grouped in an activity-structure for which the relevant attributes have been
set (sequence or selection, number of activities to select). The role-part in
question now becomes linked to the activity-structure rather than to each
of the activities within it. Another reason for creating activity-structures
may be that one can link them, rather than its constituent activities, to an
environment. This is simpler and more efficient than linking several activi-

8 Basic Design Procedures for E-learning Courses 153

ties all to the same environment. One may also associate some environ-
ment E1 with the activity-structure that thus is common to all the activities
in the structure, and still associate other environments (E2 … En) with the
activities that constitute the activity-structure. This allows for quite a so-
phisticated scheme of associated environments that can be well managed.
Our example does not require activity-structures.

Table 8.4 is still incomplete in that no staff involvement has been
planned. In the narrative of Box 8.1 staff involvement wasn’t made ex-
plicit. However, to the extent that the instruction was implicitly designed
according to the medical problem-based learning model, one may expect
staff time to be allotted accordingly. Thus, we need three more roles: a co-
ordinator who organises the module, a facilitator who tutors the group of
students and appoints the chairperson, and an evaluator who assesses the
students’ performance. The Appendix provides a more elaborate table that
also contains the roles of coordinator, facilitator and evaluator. It also pro-
vides a number of activity-structures (see step 7 above).

Now that the activity table has been filled in, we could also create an
accompanying sketch or diagram. Figure 8.3 shows a UML activity dia-
gram for Table 8.4 (see Chap. 9 of this volume for a similar MOT+ dia-
gram.) Although the diagrams make it easier to complete the next sub-
phase, coding the LD XML, neither is an absolute prerequisite. For more
experienced users, the activity table is likely to suffice.

Sub-phase 2.2 also consists of a number of steps. For the sake of clarity,
we use rank numbers that continue the sequence of steps in sub-phase 2.1.
The steps in sub-phase 2.2 are all about the actual XML coding. The cod-
ing is carried out with the help of the activity table and, where available,
the activity diagram. It is to be expected that in the not too distant future a
graphical editor, perhaps one that uses an activity table or activity diagram
as input, will generate the code. For now, however, one typically uses a
generic XML editor that can validate the code on the basis of the LD XML
binding. This will only be a syntactic validation, which prevents one from
coding XML that is not well formed or does not conform to the semantics
of the LD information model. The editor will not complain if one codes
scenarios that are nonsensical from a pedagogical perspective, even if the
scenario has an endless loop of activities.
We have decided not to illustrate the steps which follow with actual XML
code. Although the activity table will allow us to do so, the text would rap-
idly become inaccessible. As an intermediary step, we provide what may
be called XML pseudo-code, in the manner of Table 8.1. From this, one
may easily obtain the actual XML code (the Appendix has XML code for
the general case of problem-based learning).

154 P. Sloep et al.

discuss case

Discuss
additional

information

Combine steps

State problem

Formulate
causal

explanation

Differential
diagnosis

Discuss more
certain

diagnosis

Activity

student chair

Fig. 8.3. A UML activity diagram for the case of Box 8.1. Compare with Table
8.4.

8 Basic Design Procedures for E-learning Courses 155

Step 8 Describe Components. First, focus on the components element.
It should contain the sub-elements roles, properties, activities
and environments, each with one or more role, property, ac-
tivity, and environment elements. It may also contain one or more
activity-structure elements. To be precise, roles are manda-
tory, properties, activities and environments are optional.
However, any useful learning design will contain a few activities and
environment elements. The first three columns and the last two col-
umns of Table 8.4 contain information that helps to fill in the compo-
nents element. Similar to Table 8.1, the case of Box 8.1 would result in
the pseudo-XML of Table 8.5.

Table 8.5. Pseudo-XML for case of Box 8.1

components
 roles
 learner student
 learner chair-person
 activities
 learning-activity discuss relevant body part
 environment-ref synchronous conference
 environment-ref study-landscape
 learning-activity discuss additional information
 environment-ref synchronous conference
 environment-ref study-landscape
 learning-activity combine results
 environment-ref synchronous conference
 learning-activity state problem
 environment-ref synchronous conference
 learning-activity formulate causal explanation
 environment-ref synchronous conference
 environment-ref study-landscape
 learning-activity make differential diagnosis
 environment-ref synchronous conference
 learning-activity discuss more certainty
 environment-ref synchronous conference
 learning-activity develop therapy
 environment-ref synchronous conference
 environment-ref study-landscape
 learning-activity state therapy
 support-activity (none)
 activity-structure (none)
 environments
 environment
 service synchronous conference
 environment
 learning object study-landscape

Step 9 Describe Method. Now focus on the method element. The
method constitutes the learning flow in its most concise form. The ‘role’
and ‘act’ columns of Table 8.4 provide the relevant information; Table 8.6
provides the pseudo-XML for the method element.

156 P. Sloep et al.

Step 10 Describe Conditions. State the rules for completing activities and
act, and fill in the conditions element. This is best done in the actual
XML code. See the LD Information Model and Chap. 1 for an explanation
of how the various modes of completion affect one another (LD 2003,
Sect. 4.5 and Tables 3.1.7, 3.1.8 and 3.1.14).

Table 8.6. The pseudo-XML for the method element for the case of Box 8.1

method
 play
 act 1
 role-parts
 role-ref student
 activity-ref discuss relevant body part
 act 2
 role-parts
 role-ref student
 activity-ref discuss additional information
 act 3
 role-parts
 role-ref student
 activity-ref combine results
 role-ref chair-person
 activity-ref state problem
 act 4
 role-parts
 role-ref student
 activity-ref formulate causal explanation
 act 5
 role-parts
 role-ref student
 activity-ref make differential diagnosis
 act 6
 role-parts
 role-ref student
 activity-ref discuss more certainty
 act 7
 role-parts
 role-ref student
 activity-ref develop therapy
 role-ref chair-person
 activity-ref state therapy

Filling in the components and method elements requires meticulous-
ness and a good understanding of the LD Information Model. The con-
ditions element allows us to fine-tune the learning flow, and requires a
basic understanding of programming logic in addition to the above. If one
wants to work with the conditions element with any confidence, one
must understand how conditional constructions are evaluated.

At this stage in the design process we have a document that contains
valid XML and that describes the instructional design of the instructional
problem we have analysed. To the extent that our problem represents a

8 Basic Design Procedures for E-learning Courses 157

more general instructional problem, the document can act as a design tem-
plate for that particular class of instructional problems. To be more spe-
cific, the instructional approach that underpins the case of Box 8.1 is prob-
lem-based learning. The design we have come up with at this particular
stage exemplifies the problem-based learning approach. Obviously, activi-
ties would have to be described in more generic terms – a description such
as ‘discuss what body part the case is about’ is hardly sufficiently generic
– but that could easily be accomplished. In fact, that is precisely what has
been done in the XML instance document in the Appendix. That document
can therefore serve as a generic design template for problem-based learn-
ing.

8.4.3 Development

In the development phase the content is added to the instructional design.
Strictly speaking, the development phase therefore is outside the scope of
the present chapter. For the sake of completeness, however, we will look
briefly at development here.

Let us assume that the content is available in a form similar to that pro-
vided in Box 8.1. The content now needs to be allotted to various recipient
elements in the learning design (as content is often already available in
some form or other, usually one will have to do some rewriting to tailor it
to the design). The LD specification takes a generic approach to content by
means of a two-step referral mechanism. It uses this mechanism primarily
to comply with the Content Packaging specification (CP 2003; see also
section 2.2.3 of the LD Information Model, LD 2003). As it happens this
approach also fosters reuse of content and helps keep the XML instance
document comprehensible.

The elements that may contain content are: the learning-
objectives and prerequisites elements, and all components, i.e.
the various sub-elements of each of the roles, activities and en-
vironments elements (cf. Table 8.1). Each one of these (elements or
sub-elements) contains an item element. The item element also occurs
in the Content Packaging specification. An item does not contain content
itself, but points to a resource element. In this way resources may be
used more often within a design (or content package). This is the first re-
ferral step. Contrary to what their name implies, resource elements do not
themselves contain the physical resources. They point to them (the second
referral step). All resource elements are grouped in the Content Pack-
aging’s resources element. The physical resources themselves may ei-
ther be part of the content package (and thus come packaged with the de-

158 P. Sloep et al.

sign) or be located elsewhere (more on this appears in the Content Packag-
ing specification). The Appendix shows how this arrangement works.

Step 11 Fill in Title, Learning Objectives, Prerequisites and Metadata.
Fill in the learning scenario’s title, learning-objectives, pre-
requisites and metadata. The subject of how best to fill out meta-
data deserves a chapter in itself. We will not go into that here but refer to
the abundant literature on the subject (see, for example, JORUM+ (2004)
and various chapters in McGreal 2004). Suffice it to say that metadata is of
crucial importance for reuse, both in the instructional design itself and for
the content embedded in it. Learning objectives and prerequisites are
stored as resources. The item element inside the learning-
objectives and prerequisites elements refers to a resource
element that, in turn, refers to the physical resource that contains the learn-
ing objectives’ or prerequisites’ content.

 Box 8.1 provides all sorts of relevant material. ‘Deficit and loss of
function, case 2-A’ would be a suitable title. Lines such as ‘At the end, the
students are expected to be able to arrive at a differential diagnosis …’ and
‘The module aims to discuss the pathophysiology of ailments of the nerv-
ous system from the vantage point of various disciplines …’ can be used to
compile a list of learning objectives. (Note that the learning goals men-
tioned in case 2-A, part 1 are the goals the students themselves should
formulate.) ‘[This module] is a follow-up of modules 1.3, 2.1, 2.2 and 2.7
…’ indicates prerequisites.

Step 12 Fill in all Items (Resources). The final step is straightforward but
labour intensive since the content that pertains to the learning experiences
themselves is to be added. This content has been referenced by the various
item elements within the component sub-elements. As discussed, referral
starts with the item element, which refers to the resource element,
which, in turn, refers to the physical resource.

The full text of the case contains a wealth of relevant information that
should be placed into item elements for activity descriptions, etc. The
case description (‘A 48 year old language teacher … 45 dB for both ears’)
should be placed into an environment item. The tutor instruction–
learning goals and anamnesis constitutes two environment items for sup-
port activities (not modelled in Table 8.4).

8 Basic Design Procedures for E-learning Courses 159

8.5 Summary and Conclusion

In this chapter we have described the steps that need to be taken to develop
a design that conforms to the LD specification. We have done so, first of
all, by grouping the various activities needed to arrive at such a document
into the analysis, design and development phases of the Instructional Sys-
tem Development process. We then discussed the analysis phase, particu-
larly with the aim of identifying to what conditions the ensuing narrative
had to conform in order to be useful in the subsequent design process. We
found that is was particularly important to be able to distinguish between
elements that relate to the underlying instructional strategy and elements
that contain the content that is needed to flesh out the design. The design
phase, not surprisingly, builds on the first and the development phase on
the second aspect of the narrative. To make the discussion more tangible,
we then introduced a genuine educational problem.

A proper design, it was shown, is developed in two steps. First, we cre-
ated a table in a series of seven steps detailing who (role) carries out what
activities against which background (environment). The table also indi-
cates whether activities should be grouped into activity structures and/or
acts, and how activities and, where appropriate, acts are to be completed.
Secondly, we created an XML instance document in three more steps with
the help of our table. We pointed out in step 10 that we had arrived at a
kind of design template for the instructional problem analysed. This tem-
plate will easily acquire more generic value if the problem analysed has
characteristics of general interest. If so, one would need only to ensure that
the design template’s descriptive terminology is sufficiently generic. Fi-
nally, we explained the slots of the design template into which actual con-
tent may be entered so as to arrive at a complete XML instance document.
Such a document is complete in the sense that a runtime system capable of
parsing and interpreting the XML document would be able to pose as a
learning environment developed specifically for the educational problem
analysed.

We realise that the details of the present discussion will become out-
dated as soon as LD-specific tooling is available. That will certainly be the
case when an editor becomes available that is able to generate appropriate
LD XML code from a graphical user interface. We nevertheless feel that
this chapter still makes a significant contribution to our ability to work
with the LD specification since the discussion identifies how, in our view,
an LD-based design and development process should be carried out, and
thereby helps to identify the functionalities of the tools that need be devel-
oped. We are convinced that the stepwise model presented here remains

160 P. Sloep et al.

valid and valuable, irrespective of the tools that will become available in
the future.

8.6 Acknowledgements

The authors are grateful for the comments that Solvig Norman provided;
they have helped significantly to improve the chapter. The authors wish to
thank M. de Krom, MD PhD, and L. Antheunis, PhD, and A. Scherpbier
(director of the School of Education of the Medical Faculty of the Univer-
sity of Maastricht) for their permission to use excerpts from their work
(Box 8.1) as well as Martin van Boxtel, MD PhD, for his help in translat-
ing the case from Dutch.

9 An Instructional Engineering Method and Tool
for the Design of Units of Learning

Gilbert Paquette, Ileana de la Teja, Michel Léonard, Karin Lundgren-
Cayrol, Olga Marino

CIRTA(LICEF) Research Centre, Télé-université, Montréal, Canada

9.1 Introduction

The fast evolution of learning technologies has multiplied the number of
decisions one must take to create a distributed learning system (DLS).
While it is true that a majority of the first web-based applications have
been mostly used to distribute information, more and more educators have
become aware of the need to go beyond simple uses of information and
communication technologies. This context has generated a much-needed
interest for pedagogical methods and, more generally, for the field of In-
structional Design (Wiley 2002).

The term “Educational Modelling Language” (EML) was first intro-
duced in 1998 by researchers at the Open University of the Netherlands
(OUNL), as a response to Instructional Design and pedagogical concerns
towards standardization and interoperability needs. The work on Educa-
tional Modelling Languages (Koper 2002), and the subsequent integration
of a subset in the Learning Design specification (LD 2003), is the most
important initiative to date, to integrate Instructional Design preoccupa-
tions into the international standards movement. In particular, it describes
a formal way to represent the structure of a Unit of Learning and the con-
cept of a pedagogical method specifying roles and activities that learners
and support persons can play using learning objects.

The LD specification leaves open the choice of instructional methods
and modelling tools that can support designers in the process of building
learning design specification, especially for those aiming at distributed,
networked or on-line education. Extensive research and development in
the field of Instructional Design has led to a large body of methodologies.
One of the approaches is described in the previous chapter. This chapter
will elaborate on the work we did in Canada on the Instructional Engineer-
ing approach (Paquette 2001a) and the Learning Systems Engineering

162 G. Paquette et al.

Method (MISA)1. The approach is especially well suited to help designers
build LD-compliant Units of Learning.

The chapter is structured into four sections. Section 9.2 presents the in-
structional engineering viewpoint on the LD specification. Section 9.3 out-
lines the MISA instructional engineering method and its relation to LD.
Section 9.4 presents the MOT+ graphical representation language and situ-
ates MISA/MOT+ as embedding an educational modelling language with
its XML machine-readable output. Section 9.5 presents a practical learning
design case of a complex unit of learning.

9.2 Instructional Engineering Viewpoint on the LD
Specification

Instructional Engineering can be defined as
A method that supports the analysis, the design and the delivery planning of a
learning system, integrating concepts, processes and principles of instructional
design, software engineering and knowledge engineering. (Paquette 2003, p 56)

9.2.1 Defining Instructional Engineering

Located at the crossroads of instructional design, software engineering and
knowledge engineering, from which it inherits most of its properties, In-
structional Engineering is a particular systemic and systematic method in
the field of educational problem solving. It is founded on the system sci-
ences (Le Moigne 1995; Simon 1973) and defines the concept of a system
as a series of units in dynamic interaction, organized in order to achieve
specific goals.

The origin of instructional design2 goes back to John Dewey (1900),
who, a century ago, claimed the development of an “interlinked science”
between learning theories and educational practices. Since the 1950s, the
evolution of this new discipline has been carried by influential researchers
such as B.F. Skinner (1974), Jerome Bruner (1966) and David Ausubel
(1968). In the 1970s and 1980s, instructional theories blossomed through
the work of researchers such as Gagné (1970), Scandura (1973), Merrill et

1 MISA is the French acronym for Méthode d’ingénierie des systèmes
d’apprentissage.
2 In the American literature, this discipline is known as “Instructional Design
(ID)”, “Instructional System Design (ISD)” or “Instructional Science” (Reigeluth
1983; Merrill 1994) depending on theoretical inclination. In Europe, one of the
pioneers of the field used the term “Scientific Pedagogy” (Montessori 1912).

9 An Instructional Engineering Method and Design Tool 163

al. (1979), Landa (1976), Reigeluth and Rodgers (1980), Collins and Ste-
vens (1983), to name a few. These instructional design models and theories
have been built on solid foundations and present an impressive body of
work. However, today it seems necessary to renew the instructional design
methods and tools to support the creation of Distributed Learning Systems
(DLSs) that are heavily dependent on information and communication
technologies.

Software engineering brings some interesting solutions to meet demands
required by innovative technology used in a DLS. From a technical point
of view, a Unit of Learning, and its distributed environment, is an informa-
tion system consisting of a complex array of software tools, digital docu-
ments and communication services. This environment allows learners and
facilitators to interact using information and communication technologies.
By adapting software engineering principles to instructional design princi-
ples, Instructional Engineering proposes well-defined processes and prin-
ciples that help produce deliverables, precisely described products of these
processes. Moreover, multi-agent systems offer a good way to represent
the enacted learning designs at delivery time as a set of agents, persons and
digital objects, interacting to help some of the agents to learn and others to
facilitate learning.

Knowledge engineering is a methodology developed in the field of ex-
pert systems and artificial intelligence over the last 30 years. Knowledge
engineering focuses on identifying and structuring knowledge to explain it,
using a symbolic or graphical language representation to facilitate its use
by persons and/or computer systems. Knowledge engineering has been
applied in education to build intelligent tutoring systems (Wenger 1987)
and also as support systems for designers (Merrill 1994; Spector et al.
1993). Recently, the focus has shifted to machine-readable knowledge
structures aiming at a new generation of the web (Berners-Lee et al. 2000).
In an instructional engineering method, knowledge modelling processes or
the workflow are at the forefront. The workflow model guides the designer
in his or her tasks to define content and objectives using them as an orien-
tation for the design of instructional scenarios, learning objects (or educa-
tional resources)3, as well as the learning system delivery processes.

9.2.2 Relationship Between Instructional Engineering and the
Learning Design Specification

Developing high-quality distance learning courses can be a difficult and
expensive task. On-line course development faces two main challenges:

3 We will use the terms learning object, educational resource or simply re-source
as synonyms throughout this chapter.

164 G. Paquette et al.

viability and quality. A key concept has emerged as a response to the con-
cern of viability, the concept of reusability. Basically, reusability means
being able to use an educational resource or learning object (LO) in differ-
ent educational contexts or courses, possibly supported by different inde-
pendent or interoperated e-learning delivery systems, which demands a
standard way of describing those learning objects. In the past few years, a
vast movement towards international standards for learning objects has
been initiated. Duval and Robson (2001) present a review of the evolution
of standards and specifications starting with the Dublin Core meta-data
initiative in 1995 up to the publication of the Learning Object Metadata
(LOM) standard in 2002. A host of other specifications have been pub-
lished since then.

But what about quality? High-quality learning objects are necessary but
not sufficient to produce a high-quality course or unit of learning. When,
how, for what and by whom will those LOs be used? The LD specification
offers a standardized way to associate learning materials (learning objects),
activities and actors in a learning scenario. Furthermore, having an XML
format that can be read by any compliant delivery system, LD bridges the
gap between the process of designing a course and that of delivering it.
What is still needed, to ensure quality of a course, is to ensure the quality
of the learning scenarios produced by the design process. Basically, in-
structional engineering methods like MISA, and tools like MOT+ and
ADISA4, guide and support course designer(s) through the process of de-
signing high-quality learning systems and scenarios; in particular, by en-
suring coherence through systematic documentation of all aspects of the
design process and products, automatic propagation of many pieces of in-
formation as well as a systemic view of the process.

Figure 9.1 presents a general view of the relationship between instruc-
tional engineering methods and tools, and EML/LD specifications. The
remaining part of this chapter focuses on a presentation of MISA as an
instructional engineering method and MOT+ as a modelling tool to support
this process. In Chap. 20, we discuss the DLS delivery process by analys-
ing Explor@, an open system for learning and content delivery developed
at Télé-université in Quebec.

4 ADISA (Distributed Workshop for Learning Systems Engineering) is a tool de-
veloped at Télé-université. It is a web-based system that supports course de-
signing teams in the elaboration and integration of the various elements of the
MISA method.

9 An Instructional Engineering Method and Design Tool 165

Instructional
Engineering
Methods and

Tools

MISA
MOT

ADISA

Platform,
LCMS, LMS,

delivery
Systems

EXPLORA

Distributed
LearningSystem

(DLS)
Instructional
Engineering

DLSDelivery

Learning
System Model

Learning
System

Materials

Learning
System

Environments

EML
IMS-LD

Instructional
Engineering
Methods and

Tools

MISA
MOT

ADISA

Platform,
LCMS, LMS,

delivery
Systems

EXPLORA

Distributed
LearningSystem

(DLS)
Instructional
Engineering

DLSDelivery

Learning
System Model

Learning
System Model

Learning
System

Materials

Learning
System

Materials

Learning
System

Environments

Learning
System

Environments

EML
IMS-LD
EML

IMS-LD

Fig. 9.1. Interrelations between MISA 4.0, LD Design and Explor@

9.3 An Instructional Engineering Method for Learning
Design

9.3.1 Implementation

This section presents a synthesis of our work in Instructional Engineering
at Télé-université in Quebec (Canada). We will present the main MISA 4.0
Instructional Engineering Method components and concepts, and then in-
troduce a more detailed description of the design processes inherent to the
instructional model, which in turn will assist instructional designers in
producing LD-compliant Units of Learning.

9.3.2 The MISA 4.0 Instructional Engineering Method

A knowledge modelling approach is used to define the Instructional Engi-
neering method itself, its concepts, processes and principles. This R&D
initiative started in 1992 and has led to the MISA 4.0 version (Paquette
2001a; 2002a) and to its support tool, called ADISA (Paquette et al. 2001).
The editor MOT+ is embedded in the ADISA system and accessible
through a web browser from any workstation linked to the Internet.

MISA is based on a problem solving approach. The method starts by (1)
identifying the educational problem, its context and constraints as well as
general orientations, (2) defining preliminary solution, (3) building the

166 G. Paquette et al.

learning system architecture including elaboration of the knowledge and
competency model as well as the instructional model, (4) designing in-
structional materials, (5) modelling, producing and validating learning ma-
terials and (6) specifying learning system delivery model(s) as well as
maintenance and quality management. The six phases in MISA are illus-
trated in Fig. 9.2.

P h a s e 4
D e s i g n

I n s t r u c t i o n a l
M a t e r i a l s

P h a s e 5
P r o d u c e a n d

V a l i d a t e
M a t e r i a l s

P h a s e 6
 P r e p a r e

D e l i v e r y o f L S

P h a s e 3
B u i l d L S

A r c h i t e c t u r e

P h a s e 1
D e f i n e P r o b l e m
 a n d C u s t o m i z e

M I S A

P h a s e 2
D e f i n e

P r e l i m i n a r y
S o l u t i o n

M I S A
p r o c e s s e s

C

C
C C

C

C

D e s i g n
p r i n c i p l e s

R

L e a r n i n g n e e d s
a n d s i t u a t i o n I / P L e a r n i n g s y s t e m

(L S)I / P

Fig. 9.2. The main MISA process and its six phases

The whole process is guided by a set of design principles that must be
taken into account when building high-quality distance learning systems:

Self-management and meta-cognition principles: Explicit association
of a skill to a set of knowledge units, where the skill’s generic process
guides the design. Offer different learning paths and personalization
options to be self-managed by learners. Promote self-management by
introducing support tools like progress reports. Provide explicit meta-
cognitive activities, such as for example individual and group product
and process formative task evaluation.
Information processing principles: Include rich and diversified static
and dynamic information resources, clearly related to activities. Pro-
vide access to search, annotation and modelling tools to manipulate re-
sources as well as production tools adapted to each task.
Collaboration principles: Collaborative and individual activities must
sustain one another. Adapt the modalities of collaboration to the ge-
neric process in which the collaboration is proposed. Allow for both
synchronous and asynchronous interactions. Provide management
tools for coordinating collaborative activities within the learning sys-
tem.

9 An Instructional Engineering Method and Design Tool 167

Personalized assistance principles: Encourage heuristic and methodo-
logical guidance rather than algorithmic assistance. Including multiple
facilitators, both human and machine, to provide a flexible learning
environment. Provide assistance mainly on the learner’s initiative.

In each of the phases 2 to 6, MISA also proposes the development along
four axes: knowledge, instructional, learning materials and delivery model.

The Knowledge Model centres on a graphical representation of the
learning system’s content domain. In this model, the domain’s facts, con-
cepts, procedures and principles are displayed and interrelated with precise
links. Then target and prerequisite competencies are associated to units of
knowledge, thus identifying prerequisites and learning objectives for the
Instructional Model. Subsequently, knowledge units and competencies are
attributed to learning units, instruments or resources used in the learning
units.

The Instructional Model is essentially a network of learning events and
units, to which knowledge and target competencies are associated. Each
learning unit is described by a learning scenario specifying learning and
support activities linked to resources in the environment. Resources hold-
ing content (called instruments) are associated with a subset of the knowl-
edge model.

The Learning Material Models are useful to describe materials (learning
objects), their media components, source documents and presentation prin-
ciples as well as other specifications aimed at graphical designers and
learning material producers.

Finally, Delivery Models are produced to show how and where actors
use or provide the learning materials and resources such as tools, commu-
nication means, services and locations, used in the learning system. Each
delivery model is a multi-user workflow, where actors use or produce re-
sources, while assuming different roles. These processes correspond to
organizational issues, such as group organization, staff assignments, tech-
nical help, resource delivery, and so on, which must be prepared to ensure
smooth network-based or distance learning deployment.

The MISA Learning Engineering process produces specifications
grouped in documentation called Design Elements (DEs), resulting from
sub-tasks in the six phases presented in Fig 9.2. These DEs are also organ-
ized according to the four axes within each phase. Presently, MISA 4.0
comprises 35 basic sub-tasks, each producing one DE, numbered, as
shown in Table 9.1, from 100 to 640. The first digit denotes the phase, the
second, the axis or model, and the third, the sequence number within the
axis.

The first task in each axis (shown in Table 9.1) aims to define orienta-
tion principles pertinent to the axis model and based on the general princi-
ples stated in the Problem Definition phase. These principles help define

168 G. Paquette et al.

one or more graphical models (bold italics in Table 9.1) built using the
MOT+ knowledge representation technique and tool (Paquette 1999;
2002b). Graphical models are the basic DE in each axis, the backbone of
the MISA method. Most of the other tasks, in MISA, describe properties of
objects in these models (e.g., competencies, learning units, resources,
roles) as well as their relationships. MISA also includes revision and vali-
dation tasks in phase 5, which allow the cyclic evolution of the learning
system design and reduce the risk of costly errors. Phase 6 mainly serves
to specify the deployment and delivery aspects of the learning system.

9.3.3 MISA Instructional Model

An Instructional Engineering method like MISA involves the interaction of
many specialists such as content experts, instructional designers, media
producers and training managers (see also Chap. 15). Each of these main
actors is central to one of the four axes, but they all interact and intervene
in all axes as well. We will now focus on the instructional model axis,
where the instructional designer is the main actor.

In producing design element 220, the instructional designer will set a
number of orientation principles, formulate a learning metaphor, identify
the type of learning event network or course structure, specify types of
learning scenarios, collaboration, content assessment (see Chap. 10), re-
sources, documents, services, the degree to which activities can be custom-
ized and any other instructional principles, which could help construct the
global learning design corresponding to the educational problem. Seven-
teen typologies have been thoroughly researched and integrated in the
MISA method’s support documentation as well as in ADISA.

Based on these principles, the instructional designer will proceed to de-
sign element 222, where he or she will construct the learning design’s in-
structional model, called the Learning Event Network, which is a generic
term to describe a module, a course, a training program, etc. In LD, it cor-
responds to the structure of the Method; that is, information on number of
Plays, Acts and Activity-structures included in the Unit of Learning.

In MISA, a Learning Event Network is composed of learning events
(LEs) and/or learning units (LUs) (which are terminal learning events),
resources, links and rules. Composition links (C) are used to represent the
hierarchy of nested learning events, also seen as the course structure. The
precedence (P) link is used to indicate whether an LE/LU is a prerequisite
to another. Resources are inputs (link I/P going in) to LEs/LUs or their
products (link I/P going out). Rules express the conditions applied (link R)
to LEs/LUs: for instance, a choice to be made between alternative
LEs/LUs or a specification of the kind of evaluation, collaboration or ad-
aptation that will take place during the LE/LU.

9 An Instructional Engineering Method and Design Tool 169

Table 9.1. MISA 4.0 Design Elements/tasks and products by axes

Problem Definition
100 Organization’s Training

System
102 Training Objectives

104 Target Populations
106 Actual Situation

108 Reference
Documents

Knowledge Model Instructional Model

210 Knowledge Model Orientation
Principles

212 Knowledge Model

214 Target Competencies
310 Learning Unit Content

410 Learning Instrument Content

610 Knowledge/Competency Management

220 Instructional Principles
222 Learning Event Network

224 Learning Unit Properties
320 Instructional Scenarios

322 Learning Activity Properties
420 Learning Instrument Properties
620 Actors and Group Management

Learning Materials Model Delivery Model

230 Media Principles
330 Development Infrastructure
430 Learning Materials List
432 Learning Material Models

434 Media Elements
436 Source Documents
630 Learning System/Resource

Management

240 Delivery Principles
242 Cost-Benefit Analysis
340 Delivery Planning
440 Delivery Models

442 Actors and User’s Materials
444 Tools and Telecommunication
446 Services and Delivery Locations
540 Assessment Planning
542 Revision Decisions Log
640 Maintenance/Quality Management

Figure 9.3 shows an example structure of the Course: Equipment Main-
tenance, which is composed of five modules, where four are terminal LEs
and thus called LUs, and one is an LE, decomposed into two LUs.

Each LU consists of one Instructional Scenario describing the relation-
ship among actors (facilitators and learners), activities and resources,. The
set of activities performed by learners is called the Learning Scenario. It
includes all required and produced resources, links and rules. The set of
activities performed by facilitators (e.g. tutors, teachers, evaluators, etc). is
called the Assistance Scenario.

The next step is to build a learning scenario model for each LU, where
the designer takes into account target and entry as well as prerequisite
competencies, which were all defined in the Knowledge Model. Paquette
(2001a) shows that it is possible to derive the learning scenario from a ge-
neric skill proposed in the target competency (or in a learning objective)
for that LU.

170 G. Paquette et al.

Fig. 9.3. Example of a MISA Learning Event Network

For example, if a target competency states that learners should learn to
diagnose equipment failures, a generic diagnostic process will provide a
workflow or task model composed of the individual diagnostic tasks in-
cluding their inputs, products, and control principles5.

An Assistance Scenario is created when the designer adds an instruc-
tional intervention strategy to this basic flow of tasks. For example, in an
expository approach, an instructor will use the workflow model to present
segments of the diagnostic process. In a constructivist approach, diagnostic
problems concerning equipment failure will be proposed to the learners
and the instructor will use the diagnostic workflow model to give advice to
learners carrying out the tasks.

MOT+ graphical models use ovals to represent procedures. In instruc-
tional scenario models, they are used to represent activities that are per-
formed by actor roles that are represented by small hexagons holding the
letter L for learner or F for facilitator (equivalent to staff in LD). Rectan-
gles represent resources in the environment, labelled I for instruments, T
for tools, S for services and C for communication means. Unmarked re-
sources are outcomes produced by the actor during an activity. White
hexagons represent the four kinds of rules labelled P for progression, E for
evaluation, C for collaboration and A for adaptation rules. R-links are used
to relate actors to activities. For resources an I/P-link is used, ingo-

5 This approach is similar to the KADS software engineering methodology (Breu-
ker et al. 1999).

9 An Instructional Engineering Method and Design Tool 171

ing/outgoing to/from an activity. Activities can be linked to other activities
by precedence links (P-link) expressing a sequence of activities. Rules
found in the Learning Event Network model are also used in the Instruc-
tional Scenario model. Rules of progression, evaluation, collaboration and
adaptation are represented by a hexagon and can be R-linked to activities.

Figure 9.4 illustrates a MISA instructional scenario representative of
such a workflow model.

1- Analyse
schema of
the system

3- Identify
list of

components

2- Choose
a module

List of
modules and
components

Selected
module

Module
components

I/P I/P

I/P

I/P

I/P I/P

System to
analyse

I/P

Liste of default
components

5- Compare
component
to a norm

If norm not
satisfied, go 6

6 - Add
default to list

and report

I/P

If norm
satisfied, go 4

4- Select a
component

If no more
components,

go 2

If no more
modules,

end

 L

F

R

R

R

Teams
of 2

R

R

R

L

R

R R

L
R

R

Distribute
systems to

teams

I/P

R

Coach
learners

Evaluate
results

Feedback

I/P

I/P

I/P

R

I/P

R

I/P

P

Tool kit

I

T

I/P

Document
transfer

Forum

C

C

S

Assessment
 results

S
I/P

I/P

I/P

I/P

I/P

C

P

P P

P

Fig. 9.4. An example of a MISA scenario for learning to diagnose equipment fail-
ures

In the learning scenario subset (white ovals), learners (label L) perform six
activities, starting with the analysis of an electronic system for trouble-
shooting. A collaboration rule (label C) states that they work in teams of
two. Progression rules (label P) define iterative cycles between activities
until the complete electronic system has been analysed. Through these cy-
cles, each team of learners uses learning objects (label I) as inputs and
produces intermediate outcomes, which finally results in a list of default
components. Using an assistance scenario (grey ovals), facilitators (label
F) start by distributing the system to be analysed by the teams of learners,
then providing feedback using a forum and document transfer, and finally
providing assessment services to learners.

The instructional model encompasses five types of resources: instru-
ments (documents/materials), tools/applications, services, locations (where
learning is carried out) and communication means (such as “broadband”,

172 G. Paquette et al.

mail or face-to-face). These categories are expanded into sub-classes creat-
ing a complementary typology to the IEEE LOM Learning Resource ty-
pology6. In our definition, an instrument is the only type of resource that
holds content. More precisely, they are associated to a sub-model in the
Knowledge Model. We distinguish the “instrument” concept from the
“learning materials” because they can, in general, be produced in different
media formats. Usually, instruments are small pieces of information con-
sulted or produced as a result of performing an activity and which, in turn,
can be grouped and implemented in one or more media formats (to in-
crease accessibility) to create a certain type of learning material, such as a
tutorial, handbook, guide, etc. In particular, evaluation material, such as a
questionnaire, exam or essay, is also associated to a knowledge sub-model
and the target competencies are linked to the knowledge units in that sub-
model. These competencies are the basis on which evaluation is developed
and carried out.

The MISA method itself has been modelled using the MOT+ knowledge
representation technique and tool. The relationship between MISA’s tasks
has been clearly and systematically represented using a process graph for
each of the tasks. In the MISA documentation, this information is pre-
sented in the context table for each DE. Table 9.2 presents this type of con-
textual information for the task “Define the instructional scenarios”, which
produces the DE 320 – Instructional scenarios. The list of DE sources on
the left includes some input information useful to the task that produces
the DE 320; the list of DE sources to the right, uses information provided
or produced in task 320.

To support the propagation of data from one design task to another, we
have developed a web-based instructional engineering work-bench,
ADISA (Distributed Workshop for Engineering Training/Learning Sys-
tems). For each DE, the contextual information table uses labels A (auto-
matic), S (source), or I (informative) to indicate which data propagation
type is used in ADISA. Propagation is automatic when the data is directly
used and necessary to carry out the task in ADISA. Data is displayed in the
designer’s interface when he or she starts the task. Propagation is semi-
automatic when the data from the source needs to be accepted by the de-
signer beforehand. Informative propagation means that the designer may
consult some data information that might influence decisions for the task at
hand.

6 See LOM (2002), Group Educational 5.2 Learning Resource type: exercise,
simulation, questionnaire, diagram, figure, graph, index, slide, table, narrative
text, exam, experiment, problem statement, self-assessment and lecture. Interested
LD groups propose that this typology should be extended to include for example
Unit of Learning and instructional methods.

9 An Instructional Engineering Method and Design Tool 173

The design documents of MISA can be edited in a flexible order, ac-
cording to data propagation rules, and can be modified, published in sev-
eral stages, stored in archives, displayed on screen or printed. The data in
the design documents is translated into a unified XML structure, allowing
both on-line and off-line work through an integrated web-based interface.

Table 9.2. A context model for an instructional design task in MISA

Source Target

104 Target Populations 222-3 Learning Event Network

212 Knowledge Model 224-3 Learning Unit Properties I

214 Target Competencies 230-3 Material Production Orientation
Properties

220 Instructional Model Orienta-
tion Principles

240-3 Delivery Orientation Principles

222 Learning Event Network A 322 Properties of Each Learning
Activity

A

224 Learning Unit Properties 330 Development Infrastructure

230 Material Production Orien-
tation Properties

340 Delivery Planning

240 Delivery Orientation Princi-
ples

410 Content of the Learning
Instruments

A

310 Learning Unit Content

32
0

420 Properties of the Instructional
Instruments and Guides

It can be seen as a task map, allowing data propagation from one task
interface to another, and also facilitating the information transfer to other
systems. Other than supporting the data propagation between and among
tasks and elements, ADISA supports the coordination of a group of ex-
perts, who plan and develop an instructional learning system, working both
on- and off-line.

9.4 Graphical Modelling of Learning Designs

In this section, we situate MISA/MOT+ as an Educational Modelling Lan-
guage, followed by a presentation of the graphical symbolism integrated
into the MOT+ graphical editor. Instructional designers will use this
graphical representation language to build an IMS-compliant learning de-
sign. Finally, we discuss the advantages of using the MOT+ graphical rep-

174 G. Paquette et al.

resentation language and tool as well as new features to be added in order
to become a fully compliant LD editor.

9.4.1 MISA/MOT+ as an Educational Modelling Language

In a study on educational modelling languages, Rawlings et al. (2002) give
the following definition:

An EML is a semantic information model and binding, describing the content
and process within a ‘unit-of-learning’ from a pedagogical perspective in order to
support reuse and interoperability.

According to this definition, MISA’s specification of an Instructional
Model is a kind of EML. The set of MOT+ models inherent in the Learn-
ing Event Network, plus the Instructional Scenarios of each Learning Unit,
represented in a graphical way, can be directly compared to a semantic
information model describing the content and processes of any unit-of-
learning from an Instructional Engineering perspective. The translation of
MOT+ models into XML files, automatically or by hand using an XML
editor, makes possible interoperability and promotes reusability.

The MOT+ editor, which produces models like Figs. 9.3 and 9.4, has a
built-in translator that produces an XML description of any such MOT+
graph. This translator has been used in the ADISA web-based support sys-
tem to propagate information from one design element to another
(Paquette et al. 2001). These XML files list the objects, links, sub-models,
their properties and their interrelations. They do not constitute an LD XML
binding, and a parser is under development to be added to the MOT+ tool,
that can translate these XML structures into which standard machine-
readable LD XML files.

9.4.2 A Graphical Language to Represent an LD Method
Structure

When activating a Unit of Learning at runtime, the Method part of the
XML file is central. This unique element and its sub-elements control the
behaviour of the Unit of Learning as a whole, coordinating the activities of
the actors in their various roles and their use of resources.

As presented in the previous chapters, and displayed in Fig. 9.5, the
Method components, Plays, Acts and Role-parts, are all nested within each
other. Plays are alternative scenarios run in parallel, while acts in a play
are run in sequence. Within each act, role-parts are run in parallel, associ-
ating an actor’s role to an activity (or to a more complex activity struc-
ture).

9 An Instructional Engineering Method and Design Tool 175

Method
Role 1 Activity 1
Role 2 Activity 2

Act 1

Role 3 Activity 3
complete act requirements

Role 1 Activity 5 Act 2
Role 4 Activity 6

Play 1

complete act requirements
complete play requirements

Role 1 Activity 9
Role 3 Activity 10

Act 3

Role 4 Activity 11
complete act requirements

Role 1 Activity 3
Role 2 Activity 1

Act 4

Role 3 Activity 2

Play 2

complete act requirements
complete play requirements

complete method (unit of learning) requirements
Fig. 9.5. An LD Method

Because the MISA/MOT+ graphical representation system is generic,
used for many kinds of models, such as representing domain ontologies or
delivery process models, the MOT+ editor needs to be constrained in order
to facilitate the modelling of LD-compliant Units of Learning. To accom-
modate all the LD components, a set of graphical conventions has been
specified and an LD XML parser for MOT+ is under development. Figure
9.6 displays some of the symbolism used.

Within MOT+, some combinations of specific graphic symbols, labels
and links can be used to describing all the LD components and to produce
a compliant XML document.

With the MOT+ LD-adapted userinterface, the user will be presented
with a Method model consisting of one Play, one Act and one Activity,
which is the smallest possible structure for a Unit of Learning.

176 G. Paquette et al.

All procedures, such as the Method, Plays, Act, Activities or Activity
structures, are represented as MOT+ procedures (ovals) and organized as a
hierarchy using a composition link (C-link). To facilitate the interpretation
and visualization of complex models, the activities in an act are embedded
in a MOT+ sub-model, instead of being integrated into the main model as
shown in Fig. 9.6. The precedence link, P-link, between acts illustrates a
sequence of acts or activities. The absence of such links between activities
denotes that they can be performed in any order (in parallel). Rules can be
added at any level, using a white hexagon symbol, e.g. completion rules at
any level.

At the activity (or activity structure) level, role-parts are represented as
the combination of a role R-linked to an activity or an activity structure. A
shadowed hexagon represents the role, associated by a responsibility R-
link from the role to the activity or the activity structure. Icon-labels at-
tached to the role symbol and on the activity symbol indicate whether it is
a learner (black dot icon) or staff (white dot icon) role or learning or sup-
port activity.

Fig. 9.6. An equivalent MISA/MOT+ model of an LD example

Environments containing learning objects and services are represented
as concept objects (rectangles) and associated to activities through an input
or product I/P-link, depending on whether they are used to carry out the

9 An Instructional Engineering Method and Design Tool 177

activity (input), or produced (output) by performing the activity. Note that
environments can be composed of many resources and services, which can
be organized into a sub-model, using C-links to indicate relationships. Dif-
ferent icon-labels distinguish content resources (white squares) from the
three kinds of LD services: conference (telephone icon), email (letter icon)
and index-search (folder icon). An internal or external reference can be
associated to any resource using an instantiation I-link from the resource to
the reference. The reference item is represented by a fact symbol (rectan-
gle with cut angles). Learning Objectives and Prerequisites are represented
by a fact symbol bearing an icon-label in the-form-of-upward versus
downward-pointing arrows, as shown in Fig. 9.6. To respect the IMS
specifications, the designer can only attach these symbols to the Method or
to a Learning Activity.

At all levels of the LD structure, time limit completion conditions can
be defined using a white hexagon. If this symbol is absent, the parser in-
terprets the completion condition as “user-choice”.

9.4.3 Using an MOT+ Editor

Graphical representational techniques and tools will free instructional de-
signers from using XML editors and viewers in order to consult either
global or partial views of their design. Although well suited for software
engineering purposes, UML graphs and diagrams, as proposed by the LD
Best Practice and Implementation Guide, are not suited for instructional
design, except maybe in very simple cases. Complex Units of Learning
scenarios, especially those involving many actors, are not easily repre-
sented using UML graphs and activity diagrams. Moreover, it is important
that all the LD components can be integrated using only one type of
graphical model. This would greatly reduce the learning curve for design-
ers to acquire a technique for constructing IMS-compatible Learning De-
signs, which in turn would increases the possibility of interoperability and
reusability.

The advantage of a graphical editor as compared to an XML editor is
that designs can be structured and easily modified in an iterative manner,
which is common practice for instructional designers when developing
training courses and programs. An XML editor obliges the designer to de-
clare all components of a Unit of Learning (Roles, Resources and Activi-
ties), then to specify the Method structure and finally to list all resource
references. In the MOT+ editor, the designer proceeds by constructing the
course structure (Method, Plays, Acts, Activities and Activity Structures),
then adding environments with their learning objects and services as well
as rules for progression and completion in an cyclic fashion. In this way,
preliminary designs and milestones can be presented and validated by team

178 G. Paquette et al.

members and clients, avoiding both costly and time-consuming redesigns.
Once consent is reached, the MOT+ editor allows the designer to save the
Unit of Learning as a perfectly compliant LD XML document, ready to be
used in a Content Packaging tool (e.g. RELOAD), yet to be developed, or
to be instantiated for a run in a compatible Learning Content Management
System, such as Explor@2 or ATutor7.

Many years of modelling courses and programs, for both universities
and companies, have shown the MOT+ strength and user-friendliness for
non-computer professionals. Furthermore, the object-oriented paradigm
(Paquette 1996; 1999), distinguishing objects that represent facts, con-
cepts, procedures and principles related by a standard set of links, is rooted
in Instructional Design theories as well as in Information Sciences, and
thus provides a strong basis as a notational language for learning designs.

9.5 An LD Case Study

In this last section, we will use the Versailles Experience (LD 2003) to
develop and build an LD-compliant Level A Unit of Learning using the
MOT+ editor. We will then discuss the design method and tool used to
build the model for this case.

9.5.1 The Versailles Narrative

The Versailles Experience (from LD 2003, Best Practice and Implementa-
tion Guide) is aimed at 14–16 year-old secondary school students. Partici-
pating schools organize students into six groups, one for each of the coun-
tries involved in negotiating the original Treaty of Versailles at the end of
World War I: Great Britain, USA, Poland, France, Serbia and Italy. The
design is based on collaborative learning and the duration is 4 to 6 weeks.
The Unit of Learning has three main phases:

A preparatory phase in which students explore the content to find out
what their role is, the context of their adopted country and agree on
priorities and strategies for the forthcoming negotiation. In this pre-
negotiation period participants in each school are organized into the
six national negotiating teams, where each participating school is
given six passwords, one for each country. These give access to the
appropriate materials and a discussion group (dedicated conference)

7 Explor@2 demo at http://lice.teluq.uquebec.ca
and ATutor at http://www.atutor.ca/.

9 An Instructional Engineering Method and Design Tool 179

set up for each nation. Ahead of the actual negotiation, the tasks of the
national teams are to:

become familiar with their country’s objectives,
decide on their country’s priorities – what they most want and
what they can concede,
become familiar with the objectives of the other countries,
identify possible negotiating strategies and agree the favoured
approach.

The negotiation itself. For the Negotiation Day, there is a main nego-
tiation forum with a conference Chair, but there are also ‘side rooms’
for each pair of countries to hold private discussions. These are set up
as dedicated conferences with appropriate access provided for each
team. When agreements are reached during negotiations, they are sent
to a person playing the role of a Recorder who posts them on a ‘Re-
sults Board’. Participants have access to the results at any time. Once
the negotiations are completed, or at a given time towards the end of
the day, participants are encouraged to review the outcomes of the day.
A post-negotiation period offers the students the opportunity to dis-
seminate what they have learned in the form of web-based materials
presenting national perceptions of what the treaty meant to each of the
participating nations. In this last phase, students reflect on what they
have learned, writing it up from the point of view of what the out-
comes mean for their adopted countries. This involves both face-to-
face activities in each school as well as using the country team forums.
These are then translated into web pages and posted under a preset
page for each country. Students then review their collective postings.

9.5.2 An MOT+ Representation of the Versailles Case

We have built an MOT+ model of that learning unit, using the graphical
conventions presented in the previous chapter. Because of the complexity
of this learning situation, we need to use embedded activity structures (la-
belled by a bull’s-eye icon) using MOT+ sub-models.

The main model presents the Unit of Learning structure, the LD
Method. The method is composed of one play divided into eight sequential
acts as shown in Fig. 9.7. Each act is described in a sub-model. Acts 1, 2,
4, 5, 7 and 8 are simple acts that are not decomposed further; that is, they
do not contain embedded activity-structures, just simple role-plays where a
role performs a single learning of staff activity.

Act 4 is an example of a simple act as shown in Fig. 9.8. This sub-model
displays one central activity structure performed by two staff roles, a
teacher and an expert. The activity structure is composed of six learners’

180 G. Paquette et al.

roles and their corresponding learning activities, one for each country.
Each national team (hexagon with Country Name) uses a private confer-
ence (rectangle with telephone label) to establish the country’s negotiation
strategy. Results can be accessed by all.

Figure 9.9 presents the main model for Act 6 covering the activities on
the negotiation day between the six teams. At the centre, there is an activ-
ity structure, “Main_Negotiate”, which uses an environment composed of
a general conference in which there are two conference activities, actually
indicating user-rights for the conference (see LD Information Model sec-
tion 3.1.11): “moderate” played by a staff person called “Chair”, and “par-
ticipate” played by all learners, plus a teacher and an expert.

The central activity structure is further decomposed into eight other ac-
tivity structures, all performed in parallel, shown by the absence of prece-
dence (P) links. Six of them correspond to each national team of learners,
associated to corresponding role-parts in the activity structure, each devel-
oped in a sub-model constituting a third level of models (this is shown by
the little model icon on the upper left of the oval).

Fig. 9.7. The Versailles main model

9 An Instructional Engineering Method and Design Tool 181

Fig. 9.8. A sub-model for Act 4: SIX NATION ON-LINE STRATEGY

Fig. 9.9. A sub-model for Versailles’ Act 6: THE MAIN NEGOTIATIONS

182 G. Paquette et al.

There are two more activity structures: “Chair_Negotiations” performed
by the Chair role, and “Staff_Negotiation_Day” performed by Teacher and
Expert roles.

Figure 9.10 presents one of the third-level activity structures, the one
where the Great Britain (GB) team is involved. The lower part of the fig-
ure shows that it is decomposed into five learning activities where the GB
team is involved in negotiations with each of the five other teams. For this,
specialized conferences are open in the environment and each activity pro-
duces five corresponding agreements (the lower dark rectangles = prod-
ucts).

The upper part of the model in Fig. 9.10 illustrates the exchange of in-
formation between GB learners and staff.

There are three such learner activities: one where GB learners send the
results of their negotiation using an email service, another one where a GB
learner, taking the role of a Recorder, receives results in a mailbox and
does some web editing, and a last one where this aggregated result is re-
turned to GB learners and staff. Note that since GB learners are associated
to the central activity structure, it is not necessary to repeat this association
for the other learner activities. By default, it is inherited through the C-
link.

Fig. 9.10. A sub-sub-model for Activity structure: GB_NEGOTIATION_DAY

9 An Instructional Engineering Method and Design Tool 183

9.5.3 Discussion of the Case

This case is probably one of the most complex Unit of Learning scenarios
that have been developed so far. In the classroom, a teacher would proba-
bly spend many hours explaining it to the learners. Collaborative scenarios
like the Versailles example may have great learning benefits, but are diffi-
cult to implement in a classroom and even more so in network-based envi-
ronments.
The advantage of providing a structural graphical model is that it can also
serve as a task guide for both students and teachers, thus avoiding lengthy
and repeated explanations.

The modelling of learning designs brings the greatest benefits, when the
learning situations involve multiple roles, where the activities are not se-
quential, and where their results are reinvested in other activities. The
process of building a model helps the designer to clarify his or her ideas
and communicate them to the learners, whether in a class or acting as an
on-line coach.

But there is more to it. If machine support is expected in a computerized
networked environment, it is essential to formalize the flow of activities
and precisely identify the actors, their roles as well as the resources used or
produced in the environment. Once the graphical formalization is done, it
can automatically be translated into LD XML machine-readable code,
without direct intervention from the designer.

9.6 Conclusion

The adoption, at the end of 2002, by IMS of EML as the basis for a stan-
dard specification is great progress. It enables knowledge-based instruc-
tional engineering methods, like MISA, to produce learning designs that
can potentially be read by any compliant LCMS, as is discussed in the fol-
lowing chapters describing case studies.

We have shown that the LD specification and the MISA method com-
plement each other, by proposing an instructional engineering method in
six phases, specifying four axes through the elaboration of a knowledge
and competency model, a pedagogical model, as well as resulting learning
material and delivery models. The LD specification provides a standard-
ized formal and machine-readable representation of a learning design,
whereas MISA proposes a systemic and systematic method to design and
implement such learning designs. The MOT+ graphical editor, used to im-
plement the MISA method, also appears as a promising alternative to
UML modelling, mainly because it is rooted in instructional design theory
and has been built with education and training applications in mind.

184 G. Paquette et al.

In 2004, we are completing the integration of LD-related tools in the
eduSource8 Suite of Tools application, which already contains an imple-
mentation of standards for learning objects, repository interoperability. In
the five-year term of the LORNET9 project, we will be working to extend
the LD specification to more general function or workflow models
(Paquette and Rosca 2002), and to adapt our Explor@2 delivery system to
fully exploit the multi-actor concept claimed by the LD specification.

On a larger scale, we believe that international standardization efforts
should focus on the very important question of the association of knowl-
edge and competencies to the LD method components. In a semantic web
perspective, this is an essential task where strong international collabora-
tion is needed.

8 eduSource is a large Canadian project that is implementing many IMS specifica-
tions and in which our group is responsible for the integration of the open-source
software infrastructure (www.edusource.ca).
9 LORNET is a new 5-year Canadian Research Network (www.lornet.org).

10 Integrating Assessment into E-learning
Courses

Desirée Joosten-ten Brinke1, Pierre Gorissen2, Ignace Latour3

1 Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

2 Fontys University of Professional Education, Eindhoven,
The Netherlands

3 CITO, Arnhem, The Netherlands

10.1 Introduction

Assessment is an integral part of learning, requiring learners to demon-
strate the knowledge or skills they have acquired throughout the course. In
this chapter, we focus not only on summative assessments, which are given
at the end of a course, but also on formative assessments, that is to say, the
use of assessments throughout the course whereby students are informed
how to improve their learning by being given constructive feedback. The
feedback in formative assessments is meant to guide students’ learning.
Also, their results can lead to a better understanding of personal educa-
tional needs.

The design of assessments should concur with the design of instruction
and learning. Thus, the Learning Design specification (LD 2003) enables
developers to formalize learning and the Question and Test Interoperability
specification (QTI 2003) enables the formalization of testing.

The first part of this chapter will introduce assessment and its relation to
learning design. Subsequently, the second part of the chapter presents the
QTI specification and the structures and features it provides for describing
assessments. Examples of how QTI and LD structures can be integrated
will be shown and explained. Even though there is as yet no normative de-
scription of this integration available, the examples will clarify how both
specifications enhance each other and how they interact. Their possibilities
and impossibilities will be illustrated, using the two specifications in their
current form, QTI version 2.0 and LD 1.0.

186 D. Joosten-ten Brinke et al.

The last part considers a possible integration of LD and QTI with the
four processes of assessment.

10.2 Assessment: an Integral Part of the Design of
Learning and Instruction

In this chapter we will address the issue of how to integrate assessments
into learning designs. Before reaching a solution, however, we will first
discuss some developments in the field of assessment. Twenty years ago,
considering assessment to be a part of learning was not that obvious. Be-
fore 1985 the “evaluation” and “measuring” tradition maintained that ob-
jectivity could only be achieved if the process of investigating the attain-
ment of a student was kept separate from the instruction. On the other
hand, the “mastery” tradition considered that the two were inseparable
(Ewell 2003). At the time, assessment was the concluding activity of a
study period. Once students passed the exam, they got a certificate or di-
ploma and could continue to a following or a different course. Failing the
exam often meant that the course had to be re-done in the same way. No
personal feedback for future learning was given.

The word assessment was used separately for psychological tests and
traditional assessment centres. In an educational context the word testing
was most frequently used in the sense of measuring to see if students knew
what they had learned. Later, assessment in the educational sense was in-
troduced to distinguish between testing in traditional instructional models,
on the one hand, and new ‘student-centred’ instructional models, like prob-
lem-based learning or competence-based learning, on the other. Traditional
instructional models are based on (teacher-centred) knowledge transfer.
Biggs (1999) describes the new learning as a system in which all activities,
i.e. teaching, learning and assessment (formative as well as summative),
interact. There must be an alignment between curriculum objectives, teach-
ing and learning activities and assessment tasks.

This new mode of teaching also necessitates another way of testing.
Segers et al. (2003) give a summary of the most important shifts in as-
sessment:

from atomic, objective tests towards more authentic, contextualized per-
formance tests
from simple marking to making a profile based on multiple measures
from lower to higher levels of competence testing
from testing only cognition to testing meta-cognition, affective and so-
cial dimensions

10 Integrating Assessment into E-learning Courses 187

from isolated assessment to assessment integrated into the learning
process
from teacher responsibility towards student responsibility in the learning
and assessment process
from assessment of learning towards assessment for learning.

The Assessment Reform Group (2002), a workgroup of the British Edu-
cational Research Association, explains this last point as a process of seek-
ing and interpreting evidence for use by learners and their teachers in order
to decide where learners are in their learning, where they need to go and
how best to get there.

This new assessment paradigm implies assessment forms including per-
formance assessment, authentic assessment, portfolio assessment, peer as-
sessment, self-assessment, collaborative assessment. A good assessment
covers a student’s total competence and requires combinations of test
forms. While such tools as interviews, learner reports and 360 degree
feedback instruments are preferably used, multiple-choice questions and
essay questions can also be used, e.g. in self-assessments or peer assess-
ments.

In this chapter we use assessment for “all methods and models in which
students have to perform tasks to determine information on their study
process and progress, for themselves or others, for reasons of certification,
placement or diagnosis, both in formative and in summative ways”.

Assessment can be embedded in a learning design by having students
perform tasks in which the performance gives evidence of their compe-
tence. These tasks are the basis for their learning activities. Initially, these
tasks will be learning tasks, whereby students get support from a tutor or
peer students. However, throughout the learning process the students must
also perform the tasks on their own, as assessment tasks. This process can
be described either in single-learner scenarios or multi-learner scenarios
(Tattersall 2004a). Examples of the former include:

checking learners’ level of understanding before sending them down a
particular learning path (intake assessment)
checking whether a concept has been learned before allowing the learner
to progress
providing modules with a high level of feedback to keep motivation
high
ending courses with examinations.

Examples of multi-learner scenarios include:

revealing individuals’ answers to a group in order to promote discussion
and learning

188 D. Joosten-ten Brinke et al.

arranging for peer assessment
dividing a set of students into several groups of more or less equally
able students
dividing a group of students into sub-groups having people of differing
levels of ability
giving the best/worst performer in a group a particular role in a learning
design.

The development of adequate assessments is a complex and expensive
activity. However, the costs can be reduced by exchanging assessments, or
parts of them, with colleagues in the same content domain. Assessment
parts which are to be exchanged need to be described in a common format.
Preferably, this would have to be an open, vendor-independent, standard-
ized format. Various possibilities for this standardization will be outlined
in the next section.

10.3 Standardisation of Assessments in Learning Design

There are two IMS specifications which are of particular concern for ena-
bling the exchange of assessments: they are the LD specification and the
QTI specification. Although there are other specifications and standards
related to assessment, such as ePortfolio and Learner Information Package
(LIP 2001), we will focus on the role LD and QTI play as formats for de-
scribing assessment integrated in a Unit of Learning (UOL).

LD supports the use of a wide range of pedagogical approaches in on-
line learning, since it is a specification that enables the interoperability of
learning designs. The specification is based on a social model, where dif-
ferent roles and activities are related. LD is used to model units of learn-
ing. A unit of learning is a delimited piece of education or training, such as
a course, a module or a lesson. Such units consist of activities, assess-
ments, services and support facilities provided by teachers, trainers and
other staff members.

The predecessor of LD, the Educational Modelling Language (EML
2000), developed by the Open University of the Netherlands (OUNL),
contains specific elements for assessments. Hermans et al. (2000) evalu-
ated whether EML could support different forms of assessment. They
made a subdivision in classical testing methods and alternative assess-
ments. The authors concluded that EML could in fact model most of the
classical item types (like multiple choice question, multiple response ques-
tion, question answer and true–false question sequence question, matching
question, short-answer question, prompt).

10 Integrating Assessment into E-learning Courses 189

For assessment to be embedded in a unit of learning, it is not only the
item types which must be modelled, but also the processes (like the ones
described in the previous paragraph). Therefore, the study also looked at
the possibilities of these formative assessments in which the processes in
assessment are more important. Hermans et al. elaborated on an example
of an assessment. The assessment process mentioned at the end of the pre-
vious paragraph can be modelled in EML (see Fig. 10.1).

activity

output

notification

is stored in

assessor:
peer(s)

assessor:
teacher/tutor etc

assessorr:
x

support-
activity:
review

support-
activity:
review

support-
activity:
review

output:
review

output:
review

output:
review

has

Dossier

property

property

property

property

performs

results in

notification notification

performs

performs

performs

results in

results in

results in

is stored in

is stored in

is stored in

student or
studentgroup

environment:
tools,

criteria

environmenthas

property

property

property

property

property

property

has

environment:
tools,

criteria
has

environment:
tools,

criteria
has

Environment-object:

labeled (e.g):

- Portfolio
- Learner report
- Dossier

may be viewed in

is viewed in

is part of

Fig. 10.1. Basic model of alternative assessment in EML

The language EML formed the basis for the LD specification; in 2002
the OUNL ceased further development of EML in favour of LD. A number
of existing IMS specifications influenced the development of LD, notably
the use of the Content Packaging specification as the container for the
learning designs and the use of the QTI specification instead of the EML
specific interaction types. Assessment, in LD, has no specific labelled ele-
ments, but is part of the environment of a learning activity. It is here that
the elements of the QTI specification can be referenced.

190 D. Joosten-ten Brinke et al.

In the next section we will first introduce the QTI specification before
explaining how it can be integrated with the LD specification.

10.3.1 What Is QTI?

QTI is a specification that enables the exchange of questions (assess-
mentItems) and tests (assessments), including the results of these
assessments. This exchange takes place between Learning Management
Systems, as well as between Test Content Management Systems, tools to
create tests, content authors and collections of test items.

QTI is designed to provide a well-documented content format for stor-
ing items independent of the authoring tool used to create them; to support
the deployment of items and item banks across a wide range of learning
and assessment delivery systems; and to provide systems with the ability to
report results in a consistent manner.

The core data object within the QTI specification is the assessmen-
tItem that contains the actual question, answer options, information
about the correct answer, and scoring scenarios. An item is the smallest
possible object in the QTI specification and cannot be nested, i.e. an item
cannot contain another item. An assessment contains the collection of
items used to determine the level of mastery that a participant has of a par-
ticular subject. Figure 10.2 gives this relation between assessment and
assessmentItem.

10.3.2 Principles of QTI

Core Structures of QTI Version 2.0

All QTI version 2.0 (QTI 2004) items adhere to a specific core structure.
Figure 10.3 shows the base elements available in that structure.

In the response declaration (responseDeclaration) section of the
item, the response variables are declared so that its identifier, the cardinal-
ity and its base type are known. A response declaration may assign an op-
tional correctResponse. This value indicates the correct value for the re-
sponse of the candidate.

The outcome declaration (outcomeDeclaration) section contains
the declarations for the outcomes (e.g. SCORE) returned for the question,
including an optional default value for that outcome variable. The stem of
the question and the possible interactions (e.g. the answer options of a
multiple choice question) are located in the item body (itemBody).

10 Integrating Assessment into E-learning Courses 191

Fig. 10.2. Overview of the role of assessment and assessmentItems (QTI
2003)

When the candidate has selected one or more of the possible answer op-
tions to a question, the outcome variables are set by the rules in the re-
sponse procession (responseProcessing) section of the item.

Version 2.0 of the QTI specification allows for advanced and complex
response processing, as well as permitting the use of simple, built-in proc-
essing.

The XML code in example 10.1 contains all core elements of Fig. 10.3
and defines a complete multiple choice question (What does the acronym
LD stand for?) with three answer options and the response processing. The
example does not show feedback to the candidate. Readers familiar with
the previous versions of QTI will recognize the improved clarity of the
XML code. The example uses one of the default response processing op-
tions provided, which assigns the value 1 to the outcome variable SCORE,
if the correct response (ChoiceB) is selected and assigns the value 0 to the
outcome variable SCORE if one of the other choices has been selected.
The use of templates eliminates any unnecessary duplication of XML code
defining response processing.

192 D. Joosten-ten Brinke et al.

assessmentItem

responseDeclaration

outcomeDeclaration

responseProcessing

itemBody

interaction

correctResponse

SCORE

Fig. 10.3. Structure of an example of a single QTI version 2 assessment-
Item

Example 10.1
<?xml version=“1.0” encoding=“UTF-8”?>
<assessmentItem identifier=“choice” title=“Simple LD ques-
tion” adaptive=”false” timeDependent=”false”>
 <responseDeclaration identifier=”RESPONSE” cardinal-
ity=”single” baseType=”identifier”>
 <correctResponse>
 <value>ChoiceB</value>
 </correctResponse>
 </responseDeclaration>
 <outcomeDeclaration identifier=”SCORE” cardinality=”single”
baseType=”integer”>
 <defaultValue>
 <value>0</value>
 </defaultValue>
 </outcomeDeclaration>
 <itemBody>
 <choiceInteraction responseIdentifier=”RESPONSE” shuf-
fle=”true” maxChoices=”1”>
 <prompt>What does the acronym LD stand for?</prompt>
 <simpleChoice identifier=”ChoiceA”>Learning and Do-

ing</simpleChoice>

10 Integrating Assessment into E-learning Courses 193

 <simpleChoice identifier=”ChoiceB”>Learning De-
sign</simpleChoice>
 <simpleChoice identifier=”ChoiceC”>Let’s Do
it!</simpleChoice>
 </choiceInteraction>
 </itemBody>
 <responseProcessing tem-
plate=”http://www.imsglobal.org/xml/imsqti_item_v2p0/rpMatchC
orrect” templateLocation=”RPTemplates/rpMatchCorrect.xml”/>

</assessmentItem>

Example 10.2 shows the XML code defining the response processing
referenced in Example 10.1. If more complex response processing is
needed, e.g. if partial credit for other answer options is to be rewarded, a
custom response processing structure can be defined instead of the default
template used in Example 10.1.

Example 10.2
<?xml version=“1.0” encoding=”UTF-8”?>
<responseProcessing>
<responseCondition>
 <responseIf>
 <match>
 <variable identifier=”RESPONSE”/>
 <correct identifier=”RESPONSE”/>
 </match>
 <setOutcomeValue identifier=”SCORE”>
 <baseValue baseType=”integer”>1</baseValue>
 </setOutcomeValue>
 </responseIf>
 <responseElse>
 <setOutcomeValue identifier=”SCORE”>
 <baseValue baseType=”integer”>0</baseValue>
 </setOutcomeValue>
 </responseElse>
</responseCondition>
</responseProcessing>

Rendering of QTI Items

Though the content model for QTI version 2 has been defined as XHTML
code only, which no longer allows the use of, for example, RTF code, the
QTI player still has a number of options for rendering questions. For ex-
ample, the multiple choice question (Example 10.1) might be rendered as a
list with radio buttons, as displayed in Fig. 10.4.

Another possibility is that these answer options can be selected by click-
ing on the answer, highlighting it, as shown by a screen print of the Canvas
Learning Flash player for QTI (Fig. 10.5; Canvas Learning 2004).

194 D. Joosten-ten Brinke et al.

Fig. 10.4. The screen print of the question in the Respondus tool (2004)

Fig. 10.5. A screen print of the Canvas Learning Flash player for QTI (Canvas
Learning 2004)

Both are equally valid choices. This should be kept in mind while de-
signing an QTI item; hints like click on the radio button in front of the cor-
rect answer option should be avoided. Instead, more neutral hints like se-
lect the correct answer option should be used.

Implementing QTI

The first official release of the QTI specification dates from May 2000.
The most current release is version 2.0, which is a significant change from
the previous 1.x versions. Because QTI has been around for a while and

10 Integrating Assessment into E-learning Courses 195

has reached a certain stability, there are an increasing number of tools
which support the specification. These tools support both the creation of
questions and tests as well as the actual testing process. While QTI has the
reputation of being complex and somewhat difficult to implement, it is
also regarded as an extensive specification.

As the level of support for previous versions of the specification dif-
fered, there was a lot of room for improvement. A quick scan of nine ap-
plications used within the Dutch Digital University (Gorissen 2003a) re-
vealed that it is possible to construct a basic set of QTI version 1.2
questions, which can be imported by all the applications supporting QTI in
one way or the other. However, as soon as more than just the basic ele-
ments of QTI version 1.2 were used, one or more of the applications failed
to import correctly and/or interpret the QTI files. None of the applications
had support for import/export of QTI version 1.2 sections, assessment or
metadata.

Things are improving, however. A growing number of people are de-
manding QTI support and/or implementing better support for it. For exam-
ple, the TOIA system (TOIA 2003) is completely based on QTI and the
project has committed itself to build the optimal QTI import/export func-
tion into the system. The SToMP (Software Teaching of Modular Physics)
project (SToMP 2004) developed a tool for teaching introductory-level
undergraduate physics, extending QTI with a number of advanced variable
processing features. CETIS (2002) is doing boundary testing of QTI,
which will provide a good, yet not too elaborate, test set which can be used
to test the QTI systems support. The Canvas Learning QTI player (Canvas
Learning 2004) offers support for many of the things the other players
were missing in the original quick scan (Gorissen 2003b).

Most importantly, though, QTI version 2.0, released in 2004, provides
implementers, tool vendors and educational technologists with a specifica-
tion that is simpler, still powerful, easier to implement and less ambiguous
to interpret.

Integrating QTI and LD

As explained in the assessment section of this chapter, the LD specifica-
tion does not have native elements for questions and tests. Instead, it relies
on the integration of QTI. An example of this integration will be shown
below (Tattersall 2004b).

The integration of LD and QTI revolves around properties and vari-
ables, and could be called a lexical integration. Essentially, when property
identifiers and variable names are declared to be lexically identical at de-
sign time (i.e. in LD-based and QTI-based XML), they are considered to
be a shared variable in runtime software environments which involve LD

196 D. Joosten-ten Brinke et al.

and QTI-based processes. Because properties are being used to store the
values returned by the QTI item, the example implies units of learning at
LD Level B or C. When multiple QTI items are used in combination with
the same UOL, there may be a problem with duplicate variable names.
More than one QTI item might use the variable SCORE to store the candi-
date’s score for that question. The approach recommended by the QTI ver-
sion 2 specification is to create compound identifiers for use as LD prop-
erty names. This is done by combining the resource identifier, associated
with the content package resource containing the QTI item, as a prefix to
the variable name, using a period as separator. This approach is illustrated
below.

In a typical example (Example 10.3), learning designers might create a
property called SCORE to hold the result of the QTI test.

Example 10.3
<imsld:properties>
 <imsld:locpers-property identifier=”Q_1.SCORE”>
 <imsld:title>The result for the test</imsld:title>
 <imsld:datatype datatype=”integer”/>
 <imsld:initial-value>0</imsld:initial-value>
 </imsld:locpers-property>
</imsld:properties>

In this example, a local personal LD property Q_1.SCORE, which has
an initial value of 0, is being declared. This property is being used in the
code shown in Example 10.4 to set the completion of a learning activity
LA-1. If the value of Q_1.SCORE is 1, the status of the learning activity is
set to completed. The property name Q_1.SCORE is formed by using the
resource identifier of the content package resource which references the
QTI item (Q_1, see also Example 10.6), together with the QTI variable
name, separated by a period (SCORE, see Example 10.3).

Example 10.4
<imsld:learning-activity isvisible=”true” identifier=”LA-1”>
 <imsld:title>Complete the question</imsld:title>
 <imsld:environment-ref ref=”E-1”/>
 <imsld:activity-description>
 <imsld:title>Check your knowledge of LD</imsld:title>
 <imsld:item identifier=”I-1” identifierref=”R-1”/>
 </imsld:activity-description>
 <imsld:complete-activity>
 <imsld:when-property-value-is-set>
 <imsld:property-ref ref=”Q_1.SCORE”/>
 <imsld:property-value>1</imsld:property-value>
 </imsld:when-property-value-is-set>
 </imsld:complete-activity>
 </imsld:learning-activity>
</imsld:complete-activity>

10 Integrating Assessment into E-learning Courses 197

The question the candidate has to answer is referenced in the environ-
ment for the learning activity (Example 10.5).

Example 10.5
<imsld:environment identifier=”E-1”>
 <imsld:title>Simple Test</imsld:title>
 <imsld:learning-object identifier=”LO-QTI-I1”>
 <imsld:title>LD basic question</imsld:title>
 <imsld:item identifier=”I-Q1” identifierref=”Q_1”/>
 </imsld:learning-object>
</imsld:environment>

The environment does not contain the actual code of the QTI item, but
references a resource in the resources section, which in turn points to the
actual XML file (Example 10.6). In that file the response variable SCORE
(see Example 10.1) is set to 1 when the correct answer is selected.

Example 10.6
<imscp:resource identifier=”Q_1” type=”imsqti_item_xmlv2p0”>
 <imscp:file href=”choice_01.xml”/>
 <imscp:file href=”RPTemplates/rpMatchCorrect.xml”/>
 </imscp:resource>

Multiple Rendering Engines

When QTI code is integrated or referenced from within a learning design,
the QTI code also needs to be rendered in a form which can be displayed
by a runtime environment, in most cases (X)HTML for use in an Internet
browser. Figure 10.6 shows the rendering process. However, this function-
ality is not expected to be integrated into future LD rendering software. It
makes (more) sense to have renderers for the different specifications used
and have the runtime environment coordinate the rendering tasks by as-
signing the appropriate rendering engine for each content type.

In practice this should not make any difference to learning designers de-
signing educational content, since the process should be hidden from them
by the shared layer that renders the user interface (GUI layer). In general,
however, it does mean users should be aware of the need for modular sys-
tems during initial design or of selection of their learning environments.

10.4 The Four Processes in Assessment

It is our view that a conceptual framework for assessment would be very
helpful in finding solutions for the absent support for the integration of
learning and assessment in a (blended) learning environment.

198 D. Joosten-ten Brinke et al.

Fig. 10.6. The rendering process

The development of such a conceptual model is one step towards develop-
ing tools and practices and the next generation of specifications, in which
the assessment and learning process descriptions are optimized to work to-
gether in an integrated way.

An underlying model of the testing process for the QTI specification is
the Evidence-Centered Design Framework (ECD), employed by the Edu-
cational Testing Service (ETS) for developing educational assessments
(Mislevy 2000; Almond et al. 2002). This model consists of four processes
required for each assessment: “activity selection”, “presentation”, “re-
sponse processing” and “summary scoring”.

The ECD framework describes a process which begins by defining the
decisions to be made based upon the results of an assessment. It then
works backwards to develop tasks, delivery mechanisms, scoring proce-
dures, and feedback mechanisms to provide evidence informing the pre-
defined purpose of the assessment. The main processes and elements in the
architecture are depicted in Fig. 10.7 (from Almond et al. 2002).

We take this framework to present a more general view of the total as-
sessment process. Mislevy (2000) focuses on the delivery system taken in
the assessment. As we have seen, there are also assessment types where an
assessment delivery system is not (only) responsible. Many newer types,
like performance assessments and portfolio assessments, are based on
more human interaction – especially in the judging process.

Within this framework the word “task” is used instead of question or
item. The activity selection process can take place in different ways and at
different levels, either within the QTI code or from within LD.

10 Integrating Assessment into E-learning Courses 199

Fig. 10.7. The four principal processes in the assessment cycle

LD is designed as an integrative layer in which information expressed in
other XML document types, such as QTI, can become part of the LD
document by name spacing. Now that we are integrating QTI and LD we
have to find out how information is expressed in one or both of these
specifications. From the viewpoint of the four main processes of assess-
ment we can distinguish different types of assessment and thus different
expression types. In the next four scenarios we describe how we can use
LD or QTI in relation to the ECD framework.

Scenario 1

In Scenario 1, students take a summative assessment at the end of a course
(a Play), to decide which learning design they should continue with. In this
scenario, the summative assessment is referenced from the environment of
the learning design (Example 10.7). The assessment itself is expressed in
QTI and returns one final score. This score is stored in an LD property,

200 D. Joosten-ten Brinke et al.

called A_1.SCORE (see Example 10.3), with the resource identifier for the
assessment being A_1. The QTI document is part of the package and is
referenced in the resources section as shown in Example 10.6.

Example 10.7
<imsld:environment identifier=”E-1”>
 <imsld:title>A Summative assessment</imsld:title>
 <imsld:learning-object identifier=”LO-QTI-A1”>
 <imsld:title>LD Assessment</imsld:title>
 <imsld:item identifier=”I-A1” identifierref=”A_1”/>
 </imsld:learning-object>
</imsld:environment>

The resulting A_1.SCORE for the assessment can then be used to decide
whether the play can be set to completed (as in Example 10.4) or whether
the next activity structure or rather a remedial step should be displayed
(Example 10.8).

Example 10.8
<conditions>
<if>
 <greater-than>
 <property-ref ref=”A_1.SCORE”/>
 <property-value>5</property-value>
 </greater-than>
 </if>
 <then>
 <show>
 <activity-structure-ref ref=”AS-next-step”/>
 </show>
 </then>
 <else>
 <show>
 <activity-structure-ref ref=”AS-remedial-step”/>
 </show>
 </else>
</conditions>

All four processes of the assessment cycle in this scenario are expressed
in QTI (see also Mislevy 2000). The reference to the assessment and the
conditions for the next step are expressed in LD, but the assessment itself,
the items and responses and response processing, stays hidden from the
LD designer.

Scenario 2

In a second scenario, students are offered tasks (implemented as QTI
items) during the course, which are scored directly and which will give
feedback in relation to their level of ability for the task.

10 Integrating Assessment into E-learning Courses 201

In this scenario the reference to one or more tasks is expressed in LD,
whereas the tasks themselves are expressed in QTI. From the assessment
cycle the process of activity selection and summary scoring will not be
implemented in QTI. The XML code for this scenario is very similar to the
code for the first scenario, but now the sequencing, ordering and selection
of the individual items are handled in the LD code and individual items are
referenced as previously shown in Example 10.1. As in Scenario 1, the
score resulting from the response processing is returned and stored in a lo-
cal personal property. This scenario gives the LD designer more control
over the assessment, but should only be used if really necessary, since it
results in more complex LD code.

Scenario 3

The previous two scenarios both assumed that the response processing of
the assessment and the individual items could be handled by the computer.
That is of course not always the case. At the moment, for instance, essays
or reports cannot be scored by the computer and need human intervention.
This can be done by tutors, teachers or peers. The LD code can either ref-
erence complete assessments for the scenario (as in Scenario 1) or individ-
ual items (as in Scenario 2). Although the presentation process of the as-
sessment cycle is still expressed in QTI, the response processing takes
place within the context of the LD environment. The most important dif-
ference in this case is that it is not only the score which is returned, but
also the response for those items requiring a human scorer. The content of
the response can be simple text, a file reference or an object possibly con-
taining a graphic or a drawing. The response, once received by LD, needs
to be stored in a global personal attribute (Example 10.9), so that it can be
made available to the human scorer.

Example 10.9
<globpers-property identifier=”GP-RESPONSE-GUID”>
 <global-definition uri=”GP-RESPONSE-GUID”>
 <title>My response to task 1</title>
 <datatype datatype=”file”/>
 </global-definition>
</globpers-property>

Note that LD, much like QTI, has the set-property element which
can be used for uploading files or for entry of text responses (Example
10.10). The advantage of using QTI in this case is that the tasks can also be
used outside the LD context.

Example 10.10
<div class=”C-Activity”>
 <p>Please upload your task report here:</p>

202 D. Joosten-ten Brinke et al.

 <ld:set-property ref=”GP-RESPONSE-GUID”/>
</div>

Scenario 4

The fourth assessment scenario is one consisting of a combination of the
assessment methods of the previous three scenarios, combined with a port-
folio assessment at the end of a number of units of learning. During that
portfolio assessment an assessor (possibly the tutor), together with the stu-
dent, assess the portfolio of the student. This discussion will address indi-
vidual results, as well as the process and the student’s ability for self-
reflection. Though part of this assessment scenario (e.g. the main criteria
that will be taken into account) can be modelled and described using LD,
there are no corresponding structures in QTI to model the assessment. In
general, portfolio assessment, peer assessment, self-assessment and col-
laborative assessment are assessment forms which, at the moment, can
only be described, not actually uniformly modelled.

10.5 Conclusion

This chapter describes how the LD specification and the QTI specification
can be integrated. The first enables developers to formalize learning and
the second enables the formalization of testing. Together they might for-
malize new forms of learning, integrating assessment in the learning de-
sign.

The chapter starts with the developments around assessments, indicating
that more attention is now being focused on formative assessments. It is
not only products which are assessed, but processes, too, which become
more important in such new assessment forms like performance assess-
ment or portfolio assessment.

QTI was not originally designed to facilitate these kinds of assessments.
However, this chapter outlines four scenarios in which the possibilities of
an integration of QTI and LD are explored.

11 Collaboration in Learning Design Using
Peer-to-Peer Technologies

Michael J. Halm1, Bill Olivier2, Umer Farooq1, Christopher Hoadley1

1 Penn State University, USA

2 Bolton Institute of Higher Education, Bolton, United Kingdom

11.1 Introduction

Two interesting sociological and technological phenomena have the poten-
tial for tremendous impact on the future architectures and delivery strate-
gies to support Anytime, Anywhere Learning (AAL). The first is the ever-
increasing nomadic and intermittently connected nature of learners illus-
trated by the growth of PDAs, mobile phones, tablet PCs and laptop and
notebook computers. The second is the escalating use of instantaneous
forms of one-to-one and group communication and collaboration as seen in
the popularity of peer-to-peer (P2P) file sharing, SMS, Instant Messaging,
Chat and Chat rooms, forums, etc. These technological and social trends
require us to consider how the future of AAL will take place in this more
decentralized environment and in the corresponding changes in architec-
ture needed to support them. Furthermore, these trends will certainly have
an impact on the implementation of future learning strategies.

This chapter explores how P2P technologies and architectures can po-
tentially support these changing trends and how P2P technologies, particu-
larly when hybridized with client/server technologies, can be applied to
Learning Design, and how they can address the scalability issues faced by
Learning Design systems.

11.2 The Evolution of Peer-to-Peer Environments for
Learning

11.2.1 What Is P2P?

The popularity of file sharing and instant messaging (IM) applications on
the Internet has raised the profile of P2P approaches, but distributed com-

204 M. Halm et al.

puting and IM are also part of the P2P paradigm. Simply put, P2P is a class
of independent collaborating applications that take advantage of available
resources such as distributed storage, processing power, available band-
width, content, and human presence at the ‘edge’ of computer networks,
due to the increasingly powerful, but largely unused, capacity of users’ cli-
ent systems. P2P on the Internet has grown remarkably, but what we have
witnessed so far is only the beginning. Once thought of as nuisance, P2P
will evolve into an indispensable tool for learning organizations.

A number of P2P architectures have evolved but this chapter investi-
gates two models. The first model is the completely decentralized, pure
P2P model, where each peer on the network is both a client and a server.

Fig. 11.1. The Gnutella model

This decentralized model, the Gnutella model, is illustrated in Fig. 11.1,
– each peer is an equal member on the network. This type of network is
somewhat fragile in the sense that when the peer application is not in op-
eration, its resources cannot be discovered or shared, unless they are
physically replicated across multiple peers. This model is likely to be most
useful where learning communities do not have an institutional base, oper-
ating either across organizations or informally, as in an ad hoc group.

11 Collaboration in Learning Design 205

The second P2P topology is a hybrid model, the Napster model, as illus-
trated in Fig. 11.2.

Fig. 11.2. The Napster model

This model represents a decentralized–centralized topology because a
central server, or super peer, has been added to the traditional P2P network
to provide a source for persistent services to the network where peers typi-
cally have intermittent connection. Persistence is achieved because the
PeerServer is always available to store learning resources and activities
even when the peer itself is unavailable.

11.2.2 P2P and Learning Design

Clearly the pure P2P architecture and the hybrid architecture provide dif-
ferent ways of supporting Learning Design (LD 2003) and in turn make
different demands.

Both models support human presence, persistent and distributed storage,
increase available bandwidth and time synchronization, but in different

206 M. Halm et al.

ways. They thus enable both collaborative activities and nomadic, intermit-
tently connected use. Furthermore, when used to implement the Learning
Design specification, they allow learning activities to be separated into
smaller pieces and the heavy processing load they create can be completely
or partially distributed to the peers. There they can be sequenced and pre-
sented independently of a Learning Management System (LMS). They
thus can provide a solution to the scalability problem that sophisticated
specifications like LD face when implemented on a single, centralised
server. Moreover, P2P can facilitate a more learner-centred and learner-
controlled model of learning such as that described in Chap. 14.

In the pure P2P model, each learner must have on their system a rela-
tively complete LD runtime environment. This must not only be able to
handle each individual’s activities and resources within the multi-player
structure of a Unit of Learning (UOL), but also be able to communicate
with all other peers participating in the same instance or run of the UOL.
In particular the events and property changes that control the synchroniza-
tion of multiple players have to be reliably shared with all the other peers.
There is also a potentially difficult issue of synchronizing clocks across
peers for time-driven changes, although in practice this can probably be re-
solved by an implementation using an on-line time service such as the UK
National Physical Laboratory’s atomic clock.

Another problem that the pure P2P model has to address its the intermit-
tently connected nature of many peers. Many users only have access to the
Internet via a temporarily allocated Internet address. Often a presence
server is provided where currently connected systems register their pres-
ence so that others can locate them, together with their temporary Internet
address, and are then able to communicate with them directly. However,
there is a problem when peers form and participate in a defined group and
it is necessary for all messages to be reliably transferred to all members, as
is the case when running an LD UOL. Peers have to track which others
have received every message ensuring that it is sent to other peers as they
reconnect. If the originating peer goes off-line and remains off-line when
others come on, there can be potentially serious delays in message trans-
mission. This can be handled by all peers in a group taking responsibility
for ensuring that newly present peers are updated, but another route is to
use a store-and-forward server, the route taken by the Jabber system. Simi-
larly if a peer is the sole owner of a shared resource, it cannot be accessed
by others when it is off-line. Again one solution is to distribute it among
all current peers in a group, which can then update others, but another
solution is to introduce a peer file server to ensure that shared files are al-
ways available regardless of the presence or absence of individual peers.

We thus find that the pure P2P model is often modified in favour of a
hybrid model of peers operating through ‘PeerServers’ and services. How-

11 Collaboration in Learning Design 207

ever, the disadvantage of breaking the pure P2P model is that ad hoc
groups typically have no means of setting up and maintaining shared serv-
ers and services, unless one of the group has a permanent Internet address
that enables them to run services for the others. But the hybrid route is of-
ten preferred in an institutional or organizational context where IS services
can support and maintain PeerServers on a 24/7 basis.

Turning to the hybrid, or ‘Napster’, model in Fig. 11.2, a ‘PeerServer’
pulls together one or more of the services that the peers would otherwise
have to provide themselves. In terms of implementing LD, the most useful
service it can provide is that of coordinating the different players partici-
pating in a single run of a UOL, while leaving the peers to handle each
participant’s interactions with their personal part of the UOL. To achieve
this the UOL has first to be analysed and each individual’s part extracted
according to the roles they are playing in the UOL. To understand how a
UOL can be split into a multi-player coordination part and a personal par-
ticipation part it is necessary to review the structure of a UOL.

Figure 11.3, illustrating the learning design architecture, provides a con-
ceptual overview of the LD specification.

Fig. 11.3. The learning design architecture

This diagram is explained in Chap. 2 of this book.

208 M. Halm et al.

The Play is performed by different players, according to the roles they
are assigned, participating in a specific set of activities, where each activity
has a defined environment containing a variety of specified learning re-
sources (learning objects and services).

This enables a split to be made between the multi-player coordination
part of a UOL, which embodies the Method, Play, Act and Role-part sec-
tion, and the remaining parts of the UOL consisting of a personalized set
of Activity structures, Activities, Environments and resources or links to
resources. This then allows the coordination to be handled by a shared co-
ordination service, or ‘PeerServer’, and the personalized parts to be dis-
tributed to peers.

This distributed model can then take advantage of the user’s local com-
puting power, storage, bandwidth, staged content and human presence in
either the Napster-style or Gnutella-style P2P environment. This offloads a
considerable burden from a centralized server and increases scalability as
each new peer that is added also brings its own resources.

Consider the learning design architecture in Fig. 11.4, the LD for P2P.
The PeerServer mediates communication between the peers (clients) and
the learning design repository/course management system. This repository
contains information of the Plays, Acts, and Roles to be used as part of
pedagogical applications. A walkthrough scenario of this architecture
could be as follows. The PeerServer retrieves an Act (Act 1, for example)
from the learning design repository (Fig. 11.4A). This Act is parsed by
Role as above and, according to the role each individual is playing, the Ac-
tivity and its Environment are passed on to the peers that are connected to
the PeerServer (Fig. 11.4B). Content can be downloaded to the peers if
they wish to work temporarily in disconnected mode. After this point, the
peers need not be connected to the PeerServer and, having retrieved their
part, they can engage in it with relative autonomy, communicating with the
PeerServer only as necessary, for example when they cause properties to
change or need to be notified of properties’ changes that affect their activ-
ity, and to send and receive LD notifications.

Where the peers are assigned a learning service, this has to be carried
out on-line using the server assigned when the UOL was instantiated,
unless this service also permits a degree of off-line working, as for exam-
ple with an Internet email client.

Once an Activity is completed, the peers inform the PeerServer and pass
any results of the Activity back to the PeerServer (Fig. 11.4C). This en-
sures persistent storage of Activity outcomes for future use.

11 Collaboration in Learning Design 209

Fig. 11.4. Learning Design for P2P

In turn, the PeerServer routes these results back to the learning design
repository for storage, and the process is started all over again (Fig.
11.4D).

Next we present a brief illustration of some of the further benefits of the
hybrid model, starting with an expansion of the PeerServer model (Fig.
11.5). As mentioned, there are several different ways in which peers can
use a server. In this version, all LD-related communication is being di-
rected through the PeerServer, although LD email and conferencing ser-
vices might be carried out directly between peers (not shown in the dia-
gram), or could also be mediated via the PeerServer, where for example a
recipient is currently not on-line.

This model can be adapted to enable a scalable centralized server archi-
tecture (Fig. 11.6). The personal LD engine becomes a session servlet, one
for each logged-on participant. The servlets are coordinated through a
separate coordination server, effectively the PeerServer, which remains
unchanged. This separation of the LD coordination server from the per-
sonal LD engines has some interesting features.

210 M. Halm et al.

Fig. 11.5. Learning Design for P2P

1. It allows the server-based system to become scalable according to the
number of users that need to be supported. Typically there would be
many more than two per server as shown in the diagram, but it serves to
illustrate how the architecture can be scaled by adding more servers.

2. By providing a separate coordination server, a UOL can be split across
institutions and organizations, thus enabling shared courses to be sup-
ported.

Finally, the same structure can also support a combination of server-
based and peer-based participants (Fig. 11.7). This supports both on-
campus and off-campus students. It can also support a combination of stu-
dents with and without their own portable systems.

11 Collaboration in Learning Design 211

Fig. 11.6. P2P design adapted for scalable servers

Fig. 11.7. P2P combination server and peer architecture

212 M. Halm et al.

11.2.3 Challenges for P2P

Two challenges are:

how to synchronize intermittently connected learning activity with the
server
the ability to provide secure transactions.

P2P learning environments must have a way to synchronize with client-
server based LMS/VLE systems. While it is feasible for learning to mi-
grate to the edge of the network, institutions will want to have evidence of
competency and completion of assignments stored on centralized institu-
tional infrastructure. There are a variety of ways to enable this synchroni-
zation but it is important to do it in a standardized way that guarantees in-
teroperability between these different systems. There are three functional
requirements necessary for this support:

1. the ability for the learner to select UOLs to be downloaded to the no-
madic devices

2. the ability to download the selected UOL
3. the ability for the learner to reconnect to the central LMS to synchronize

learner-generated data such as tracking information, test results and
learner-generated content.

These ideally should have small standardised interfaces and formats to en-
able systems from different providers to work together.

Another area that will require considerable thought is the method to en-
sure that learning results and personal information are secure when a
learner is disconnected. Projects are currently underway to develop a
lightweight trust fabric that will allow locally produced certificates that
will verify the identity of an individual who is publishing or retrieving ma-
terials from a central secure learning repository. These technologies prom-
ise secure transactions between P2P networks and central LMS/VLEs.

11.2.4 P2P and Collaboration

LionShare is a joint project of Penn State, Simon Fraser University, Inter-
net2 and MIT to apply the P2P file sharing paradigm to an academic envi-
ronment. LionShare is an academic P2P system that will assist in the dis-
tribution of academic materials through the university networks and
beyond. The primary goal of LionShare is to provide a P2P network which
has unlimited potential for collaboration among faculty, students, depart-
ments and even across multiple universities in a controlled way. This net-
work will be accessed by a trust fabric built on emerging security stan-

11 Collaboration in Learning Design 213

dards such as Shibboleth, and has the potential to provide a method for se-
cure transactions on the P2P network.

11.3 Conclusions

Recent trends suggest that P2P technologies have the potential to change
the way learning systems operate from the current highly centralized envi-
ronments toward a blended environment that allows for nomadic and in-
termittently connected learners on the edge of the network. Current e-
learning community efforts to develop standards for interoperability to
support meaningful, authentic learning activities suggest that it is now pos-
sible to exploit P2P in the instructional technology toolset. While P2P
holds much promise, there are a few challenges that must be overcome be-
fore its true potential can be realised. This chapter provides a first over-
view of the implications of combining P2P technologies and LD with a
view towards decentralising e-learning.

12 Designing Adaptive Learning Environments
with Learning Design

Brendon Towle1, Michael Halm2

1 Thomson NETg, Naperville, USA

2 Penn State University, USA

12.1 Introduction

12.1.1 Adaptive Learning: Background and Motivation

It has long been known that individual learners differ. Some learners need
a picture before they are fully comfortable with their understanding, while
others are more comfortable with streams of text. Some learners want de-
tailed instructions before attempting a new task, while others want to jump
right in and try on their own. Some learners are eager to offer the answer
to any question, while others will participate only when asked (and per-
haps even then only reticently).

Furthermore, if learners differ in the way they approach problems, it is
not hard to recognize they would receive the maximum benefit from indi-
vidualized instructions. Formally, this is known as an Aptitude–Treatment
Interaction (ATI): the student’s aptitude interacts with the way that the
student is treated to produce varying results. The pioneering ATI research
was done by Cronbach and Snow (1977). In the ensuing years, many dif-
ferent researchers have identified a variety of ways in which individual
learners can be categorized (e.g., Gardner 1983; Kolb 1984; Martinez and
Bunderson 2000). Further, many of these categorization schemes have had
differing instructional schemes associated with them (e.g., Jonassen and
Grabowski 1993), where each scheme describes how to treat learners in
each category differently to best achieve particular instructional goals.
This area continues to be an active area of research (e.g., Nokelainen et al.
2002; Sampson and Karagiannidis 2002; Sampson et al. 2002; Shute and
Towle 2003).

While there are many technical hurdles to be overcome in successfully
implementing e-learning, the importance of the learning experience is
paramount. Learners must be able to form new mental models, or acquire
new scripts or schemas to guide their actions in new situations. If individ-

216 B. Towle, M. Halm

ual learners indeed learn differently, the e-learning developer would be
well advised to provide an environment in which the differing needs and
talents of individual learners can best be focused on the learning process
itself, resulting in the maximum benefit for all learners.

Previously, implementing adaptive learning on a wide scale was a rela-
tively time-consuming process that required designing large portions of the
infrastructure from scratch (the first author of this chapter had to do ex-
actly that). Fortunately, the introduction of the Learning Design specifica-
tion (LD 2003) provides learning designers with a specification that can be
used to create many useful forms of adaptive learning without requiring
that the learning designers build the infrastructure; the various technical
capabilities provided in LD provide that infrastructure.

12.1.2 Remainder of this Chapter

This chapter will be devoted to examples of implementing adaptive learn-
ing using LD. Three relatively simple adaptive strategies, and the learner
characteristics behind them, will be discussed and implemented in LD.
Furthermore, the limitations of using LD to implement adaptive learning
will be considered. Finally, some conclusions about the usefulness of im-
plementing adaptive learning and enhancements to LD that will support
easier implementation of adaptive learning will be examined.

12.2 Implementation Options for Adaptive Learning in LD

When one looks at a strategy for implementing adaptive learning in LD,
there are at least two separate axes upon which that strategy can be de-
scribed. One is in regards to the logic that implements the adaptive strat-
egy: is it encapsulated within the Unit of Learning (UOL) itself, or is it ex-
ternal to the UOL? Another axis concerns what exactly is adapted: is it the
contents of the UOL, or is it the interface to the UOL, or is it something
else entirely? In Chap. 18, van Rosmalen and Boticario discuss a system
where the adaptive logic is external to the UOL, and modifications are
made to both the UOL and the interface. However, this chapter describes
examples that take the opposite approach: implementing the adaptive logic
completely within the UOL.

This also restricts what can be adapted. Within LD, there are at least
four areas where a UOL could be tailored to individual learners based on
their learning characteristics:

1. One could change the environment for different learners — providing
different resources, or the same resources in a different order.

12 Designing Adaptive Learning Environments with Learning Design 217

2. One could change the method for different learners.
3. One could slot different learners into different roles, or provide support

from different roles for different learners.
4. Finally, one could change the activities given to different learners.

However, if the adaptive logic is to be implemented completely within
the UOL, the logic must go within the method. Within the method, con-
structs are available to change a variety of things within the UOL; the en-
vironment, the activities, the play, etc. Because we limit our scope to adap-
tivity that can be completely contained within the UOL: all of the
examples developed herein will have the adaptive logic within the method;
for the sake of simplicity, they will also be restricted to option 1 above
(changing elements within the environment). Later in the chapter, we will
discuss the disadvantages of this approach, and detail alternative ap-
proaches.

12.3 Assumptions

All of the examples in this chapter assume the following:

12.3.1 LD Level B

All of the examples require a runtime system that implements at least LD
Level B, since Level B introduces the conditions element, and the condi-
tions element is required to implement the adaptive strategies.

12.3.2 Learner Profile Information

Since all examples are based on learner-characteristic adaptation, it is as-
sumed a machine-readable record of learner characteristics has already
been populated with the relevant information about the learner (such mod-
els are relatively commonplace, and public specifications are available for
them—for example, Learner Information Package (LIP 2001)). Depending
on the implementation, the system responsible for delivering the learning
experience may or may not need prior knowledge of the contents of this
learner profile. (It will certainly need prior knowledge of the format of the
record, however.) Furthermore, the learner profile will have to be imple-
mented in such a way that the delivery system can access this record while
delivering the learning experience. The following examples assume that
access to this profile is accomplished through the LD Level B globpers-
property mechanism. The actual learner profile data could be modeled in

218 B. Towle, M. Halm

LD itself, or the globpers-property mechanism could have some sort of
mapping to the native implementation of the system.

Note that the examples below are agnostic as to how the learner profile
information is created. It could be that the learner interacts explicitly with
some sort of profiling instrument; alternately, it could be that some sort of
process observes the actions of the learner in the learning environment and
generates the profile based on those observations. Also, note that in the
long term, a learner’s profile may not be static, but may change based on
any of a number of factors; authors of UOLs should keep this in mind
when appropriate.

12.3.3 Multiple Variants

Some of the examples require the existence of multiple variants of either
content objects or services with which the learner interacts. While some
adaptive strategies simply involve delivering activities to the student in a
different order, others involve directing the student to a different activity;
in these cases, the different activity must exist.

12.3.4 Instructor Variation

In some cases, proper implementation of the adaptive strategies will de-
pend on how well instructors follow directions in presenting materials to
different learners, or how learners might be coached differently.

12.4 Examples of Adaptive Learning in LD

The following are examples of how various sorts of adaptive learning
might be implemented in LD. None of the examples claims to be the only
way to implement a particular strategy; rather, they all show merely one
way.

12.4.1 Synchronous vs. Asynchronous Interactions

Some research indicates (Jonassen and Grabowski 1993) that learners who
are strongly introverted may be intimidated in synchronous interactions
like chat rooms and instant messaging, and might derive greater benefit
from asynchronous interactions like email and bulletin boards. Conversely,
learners who are strongly extroverted might have greater benefit from syn-
chronous interactions than asynchronous ones. Learners in the middle,

12 Designing Adaptive Learning Environments with Learning Design 219

while showing no inherent preference either way, might have the greatest
benefit from whatever the learning designer believes to be the better of the
two alternatives presented.

This simple adaptive strategy can easily be implemented in an LD envi-
ronment.

First, there must be a service for each category of learner instantiated in
the UOL. Each of these would be a conference; one would be synchronous
and one would be asynchronous. (We’ll call these “Synch Conference” and
“Asynch Conference” respectively.) Initially, each of these services would
be invisible (isvisible=false).

The adaptive strategy can be described quite simply as: for each learner,
only show the appropriate conference, depending on whether the learner is
more extroverted than introverted, or vice versa. Figure 12.1 depicts this
strategy.

Unit of Learning

Environment

Service: Asynch Conference (invisible)

Service: Synch Conference (invisible)

Method

Conditions

IF extroversion > introversion

THEN Show "Synch Conference"

ELSE Show "Asynch Conference"

Fig. 12.1. Synchronous vs. asynchronous conference adaptation. Only the portions
of the UOL relevant to the adaptive strategy are shown

12.4.2 Rule–Example vs. Example–Rule

Research also indicates (Shute 1993) that learners who exhibit more ex-
ploratory behavior may derive more benefit more from having examples

220 B. Towle, M. Halm

presented before concepts, while learners who are less exploratory may
benefit more from having the concepts presented before the examples.

This adaptive strategy can be implemented in LD as follows. First, at the
location where the examples and content are to be presented, create two
items, both with isvisible = “false”. In the first (which we will call “induc-
tiveContainer”), place a child item for the examples followed by a child
item for the concepts; in the second (called “deductiveContainer”), place a
child item for the concepts followed by a child item for the examples. In
both containers, the child items should reference the same resource(s) to
deliver the instruction; in this example, we’re simply varying the order of
presentation, and not the items that are actually presented. Finally, if the
student’s exploratory tendencies are greater than some threshold, show the
inductiveContainer item; otherwise, show the deductiveContainer item.
Figure 12.2 depicts this strategy.

Unit of Learning

Environment

Method

Conditions

IF exploratory > THRESHOLD

THEN Show "Inductive Container"

ELSE Show "Deductive Container"

Resources

Concepts Examples

Item: "Inductive Container" (invisible)

Itemref: Examples Itemref: Concepts

Item: "Deductive Container" (invisible)

Itemref: Concepts Itemref: Examples

Fig. 12.2. Rule–Example vs. Example–Rule adaptation. Only the portions of the
UOL relevant to the adaptive strategy are shown

12.4.3 Variations in Encouragement

Research by Margaret Martinez into learning orientation theory (e.g., Mar-
tinez 2001; Martinez and Bunderson 2000) has shown that individual
learners approach learning differently in terms of their personal involve-

12 Designing Adaptive Learning Environments with Learning Design 221

ment and commitment to the learning process. Martinez characterizes
these different types of learners as Resistant, Conforming, Performing, and
Transforming. Because of differing levels of involvement and commit-
ment, these learners require differing levels of encouragement and affirma-
tion, and respond differently when they are provided. Resistant learners,
for example, need substantial encouragement to continue with the learning
process, while that sort of encouragement will be irritating or offensive to
a Transforming learner. This implies a strategy where the feedback a
learner receives is tailored to their learning orientation.

This adaptive strategy can also be easily implemented in an LD envi-
ronment in a couple of ways.

A simple way is an adaptation of the previous container strategy. In the
feedback-description of the appropriate act, four different sets of feedback
are built (one for each level in the Martinez scale); all are hidden at first,
and given a unique name. Then, in the method, show the appropriate mate-
rial based on the characteristic value from the learner’s profile. Figure 12.3
depicts this strategy.

An alternative strategy involves instructions to the support/teaching staff
(if any exist in this particular UOL). If this strategy is used, four different
sets of instructions to the teacher or tutor on how to give feedback are in-
corporated into the support-activity used by that role, and then showing the
appropriate strategy as above. This strategy is not shown, but is conceptu-
ally very similar to the one shown below.

12.4.4 Other Uses

While all of the examples described above deal with adapting the learning
process to accommodate the way that individual learners learn, there are
other applications of this strategy. For example, UOLs could automatically
be adapted to accommodate the accessibility needs of individual learners
(i.e., larger type for visually impaired learners).

12.5 Limitations of Adaptive Learning in LD

While LD does provide an attractive environment for implementing some
basic forms of learner-centered adaptive learning, it is not without its limi-
tations. In this section, some of the more problematic limitations of im-
plementing adaptive learning within LD will be discussed including: the
difficulty of supporting multiple interactions, the lack of enforced ordering
within the LD spec, and the “manifest-centered” representational scheme.

222 B. Towle, M. Halm

Unit of Learning
Method

Conditions
IF learningOrientation = resistant

THEN Show "Resistant Feedback"

IF learningOrientation = conforming

THEN Show "Conforming Feedback"

IF learningOrientation = performing

THEN Show "Performing Feedback"

IF learningOrientation = transforming

THEN Show "Transforming Feedback"

Play

Act

Feedback Description

Item "Transforming Feedback" (invisible)

Item "Performing Feedback" (invisible)

Item "Conforming Feedback" (invisible)

Item "Resistant Feedback" (invisible)

Fig. 12.3. Feedback adaptation. Only the portions of the UOL relevant to the
adaptive strategy are shown

12.5.1 Multiple Rule Interactions

All of the above examples show adaptation based on a single characteristic
of learners. While this is useful, individual learners have multiple charac-

12 Designing Adaptive Learning Environments with Learning Design 223

teristics; in many cases, designers will want to adapt based on more than
one characteristic of any particular learner.

In cases where these interactions occur in different learning activities or
at different stages in the same learning activity (such as the examples
above concerning the type of feedback and synchronous vs. asynchronous
conferencing), integration into the same UOL is a relatively trivial matter;
the different adaptive strategies can simply be combined without interac-
tion. In cases where the interactions overlap, however, the relatively large
number of rules and rule interactions can be quite difficult to express
within an LD Manifest.

For example, learners who are very practically oriented (or who lack pa-
tience with the learning process) may wish to see problems up front, so
they know what benefit they will get from the course; other learners may
wish to see the problems at the end. Further, learners who are confident in
their own learning may do better if they are given the hard problems
straight away, while learners with less confidence may do better with eas-
ier problems first. Imagine combining these two strategies with the
Exploratory and Introversion strategies above. The LD Manifest required
to simply set up the content, without accounting for the various conditions
required for adaptivity, would look as shown in Figure 12.4. This is feasi-
ble, albeit somewhat clumsy. However, imagine that each learner was
categorized on 10 or 15 dimensions, rather than just 4; it should quickly
become apparent that the idea of extending this to several more interacting
strategies is not likely to be feasible.

12.5.2 Lack of Enforced Ordering

Much of the current LD specification is relatively agnostic to the eventual
user experience. For example, the hide and show actions as specified only
remove items from a display list; the spec appears to be silent on the issue
of whether or not those items can be accessed by other means, and is also
silent on the issue of whether hidden (invisible) elements are experienced
while the learner simply walks through the content by pushing the “next”
button or its equivalent. While one can assume that hidden items would not
be delivered to the learner under these circumstances, there is nothing in
the spec to indicate one way or another, and some strategies require differ-
ent delivery during a sequence than the items available during choice (see,
for example, the use cases in the Best Practice and Implementation Guide
of the LD specification).

This poses some problems for designers of adaptive learning. In most
adaptive strategies, the designer wants to force the student to experience
items in a certain order, or to not experience certain items at all.

224 B. Towle, M. Halm

Unit of Learning

Environment

Item: "Inductive Container" (invisible)
Itemref: Easy Probs

Item: "Deductive Container" (invisible)
Itemref: Examples

Resources
Concepts Examples Easy Probs Hard Probs

Environment
Service: "Asynch Discussion"

Service: "Synch Discussion"

Item: "Discussion"
Item: "Asynch1" ref: Asynch Discussion (invisible)

Item: "Synch1" ref: Synch Discussion (invisible)

Itemref: Concepts

Item: "Inductive Container" (invisible)
Itemref: Concepts

Item: "Discussion"
Item: "Asynch1" ref: Asynch Discussion (invisible)

Item: "Synch1" ref: Synch Discussion (invisible)

Itemref: Examples

Item: "Evaluation Problems"

Item: "Confident Learner Problems" (invisible)
Itemref: Hard Probs

Item: "Confident Learner Problems" (invisible)
Itemref: Hard ProbsItemref: Easy Probs

Fig. 12.4. Content necessary for complex interactions. Only the content is shown;
the conditions necessary to adapt the content to individual learners are omitted

At this stage, it is probably best for designers to simply assume that stu-
dents will not experience hidden items during a sequence; while this is less
than satisfactory, the alternative appears to be to wait until the specifica-
tion is revised.

12 Designing Adaptive Learning Environments with Learning Design 225

12.5.3 Manifest-Centred vs. Server-Centred

LD is what we will call a “manifest-centred” or “manifest-based”
representation: all of the information necessary to interact with a particular
UOL is contained within the manifest for that UOL. While this is a good
idea for many purposes, there are problems inherent in representing any
adaptive learning strategy entirely in a manifest-based representational
scheme. These include:

The difficulties inherent with rule interactions for multiple characteris-
tics (see above for more details).
Once delivered, manifests cannot be changed to take advantage of new
adaptive strategies.
The same strategy is encoded in multiple manifests, causing redundancy
in authoring and storage.
The knowledge about learning objects is often embedded in the mani-
fest, and not accessible through metadata for use in new or arbitrary
strategies.

One solution to these problems is to move the adaptive logic outside of
the manifest; this could be implemented roughly as follows (see Shute and
Towle (2003) for more details). First, define a set of standard activities
and/or content types, and provide metadata that maps from learning objects
and activity structures to the standard activities and content types. Then,
the LD player can take the role of a client of an adaptive server: the player
sends the server information about what the learner has done, and the
adaptive server sends back to the client the ID of the most appropriate next
activity.

The important thing to note about this strategy is that the intelligence
about the adaptive strategy is removed from the client and the manifest;
the client neither knows nor cares what the adaptive strategy is, and nor
does the manifest itself. This uncoupling of the adaptive strategy from the
manifest (and thus from the knowledge about the learning objects and ac-
tivities themselves) provides several advantages. It means that the adaptive
strategy can be changed simply by tuning or adjusting the server (assuming
that the metadata referenced above is always available, and that it does not
require any changes as a result of the new model). Further, it means that
the adaptive strategy is only defined once, rather than in every manifest.

This strategy does require that the pedagogical design of the UOL be
such that it will be pedagogically effective regardless of what changes are
made on-the-fly by the server. This is a bit of a departure from the typical
LD approach, in which the “intelligence” of the UOL is hard-coded into
the manifest; however, that departure is exactly the point.

226 B. Towle, M. Halm

12.6 Conclusion

Contemporary learning theory suggests that individual learners differ in
the way they learn and that learning must be tailored to the individual
learner. Consequently, learning environments must have the flexibility to
adapt themselves for the individual learner. This chapter has discussed
several different learner-characteristic, driven adaptive learning strategies
and how these strategies can be completely implemented within the con-
straints of the existing LD specification. Adaptive strategies discussed in-
clude 1) Synchronous vs. Asynchronous, 2) Rule–Example vs. Example–
Rule, and 3) Feedback adaptation. This chapter has also detailed some of
the ways in which implementing adaptive strategies entirely within LD can
prove insufficient, and suggested one way around these problems.

The LD specification is the first attempt to move existing e-learning in-
teroperability efforts from first-generation products that have traditionally
focused primarily on content toward more robust second-generation envi-
ronments that support richer learning strategies. While LD does not offer
all features necessary for implementing extremely complex forms of adap-
tive learning, it does provide a way to implement many simple adaptive
learning strategies. Consequently, this is a positive step toward providing
more robust infrastructure for adaptive learning. Thus, it must be viewed
as a good first effort that will undoubtedly produce fruit and provide the
catalyst for future specifications efforts in this area.

12.7 Acknowledgements

Griff Richards, Patrick McAndrew, and Peter van Rosmalen provided use-
ful comments on early drafts of this chapter. Three anonymous reviewers
provided further useful comments on a near-final draft.

13 Designing Educational Games

Griff Richards

British Columbia Institute of Technology and Simon Fraser University,
Canada

13.1 Introduction

The goal of an educational mark-up language such as Learning Design
(LD 2003) is to promote the reuse and sharing of instructional activities by
using a meta-language to describe learning activities. The ideal meta-
language would be easily readable by humans, encode the learning design
separate from the content, and conform to a technical specification that
would make it transportable among authoring tools and “player” software.
With the promise of returning control of educational activities to the edu-
cators the recent release of version 1.0 of LD has sparked a great deal of
interest in this area, and a number of prototypic tools are being developed
as the concept is explored. A successful meta-language approach would be
an ideal mechanism for expressing and altering instructional game strate-
gies and thus promote their sharing, improvement and reuse in different
contexts or with different content.

This chapter explores the use of LD to reference educational game ac-
tivities. After examining ways in which existing games may be incorpo-
rated into units of instruction, the potential of LD to encode games as reus-
able activities will be discussed in light of the current trends for identifying
game patterns, and with the “memory” game used as an example.

13.2 Overview of Games as Reusable Instructional
Activities

One of the main drivers of the learning objects paradigm is the promise of
reusability. Since complex interactive media elements are often costly to
produce, there is an economic incentive to reuse good learning objects
(South and Monson 2002). Essentially there are two ways in which reuse
can take place. The first is to insert a learning object intact into a new in-
structional context and the second is to modify the learning object for the
new setting. For example, an interactive diagram of the heart might be bor-

228 G. Richards

rowed from biology for use in anatomy, but it might also be modified by
changing the labels from English to French for use in a different language
setting. In more radical reuse, the logic of the interactivity might be pre-
served but the content changed, e.g. replacing the heart with a diagram of
the liver. In either case it is often more cost-effective to reuse and modify
the heart object than build a completely new liver object.

The useful separation of a learning object’s activity from its content is a
key premise of LD. Once an object’s learning design is extracted and
documented, it is possible to repopulate the template with new content for
use in a new instructional setting. When the new content in place, the LD
XML can then be “played” and the new educational experience is available
for learners. Educational games can also be considered as learning objects
to be reused in a variety of ways. While some games could be reused with-
out modifications, other games have been developed with the express pur-
pose of being modified for new learning content or a different audience.
For example, the SAVIE website1 provides ready-made templates or
“shells” for four different frame games into which instructors can load new
content, and then save them for later use by their learners. Thus a template
for a simple matching game like Memory can be used to generate several
games, each a set of paired content for discrimination exercises. Similarly
a variant of Tic Tac Toe can be set up to stimulate group interactions in a
number of different settings. While SAVIE generously provides its frame
games as a free service to educators, the games can only be used on the
SAVIE web server.

The encoding of learning activities and content in a proprietary author-
ing system or computing system is a common barrier to the reusability of
computer games. Despite the good intentions of sites such as SAVIE, the
reusability of the game is constrained by the technology and the distribu-
tion models. Thus the fundamental structure and instructional strategy that
comprise the game design are neither open nor modifiable.

13.3 Referencing Game Activities in Learning Design

LD is primarily a macro instructional design tool to help designers specify
a path through a curriculum and to prescribe activities for a Unit of Learn-
ing (UOL). Its strength lies as a method for organizing curriculum into
courses, and bringing learners together with learning opportunities. Figure
13.1 outlines the hierarchy of activities that can be encoded by LD. The
most granular element is the “activity” and this is the level where educa-
tional games can be prescribed. As seen in the Versailles example of Chap.

1 http://www.savie.qc.ca/CarrefourJeux/fr/Accueil/VisiteGuideePublique.htm

13 Designing Educational Games 229

9, LD can orchestrate fairly complex collaborative activities and simula-
tions into an interesting UOL.

Fig. 13.1. The hierarchy of representations in LD

It is important to note that the level of granularity of learning activities
that can be described in LD is not at the micro-design level. Unless a game
activity was intentionally developed to be used in sub-components, LD
does not provide a way of dismembering parts of an activity so they can be
recombined anew. To do so would be akin to tinkering with the executable
computer code in which the activity is encoded.

It is important to note that LD models are not computer code. They are
abstractions that help specify relationships between participants, materials
and sequences of events for learning. Given LD templates to serve as blue-
prints, a progression of tools including flowcharts, pseudo code and pro-
gramming languages is required to add the increasing levels of detail
needed to define and execute a computer-based game activity. Thus, it is
easier to reference games as learning objects rather than to try to define
and encode them in their entirety in LD. Game activities are probably best

230 G. Richards

left as a sort of procedural call – the environment for the game is specified,
learners are directed to engage in the game and, if necessary, parameters
may be passed to the game and results of the interaction returned.

In general, an educational game is a medium for content rather than the
content itself. For example, the Memory game itself is not the object of
learning (other than perhaps the first instance when the game itself is ex-
plained). Memory is usually deployed with a set of cards that promote
linked list learning – the sort of association formed when matching vo-
cabulary terms with pictures or definitions of objects. The drill and prac-
tice that comes with Memory helps to reinforce the association of the
terms. Memory could also be populated with simple arithmetic equations
to be mentally solved before matching the results. A more complex exam-
ple, the Versailles Game referred to in Chap. 9, is contrived as a means of
engaging learners with content, perspectives and goals similar to that of
countries in 1919. Once exposed to the corpus of information, they are
placed into role-plays to attempt to negotiate a better treaty than the one ar-
rived at in history. Presumably, the template for Versailles could be
stripped and its content replaced with that from any other negotiation con-
text. Thus the learning intent is not simply the situational content, but also
the understanding of the negotiation process – the fundamental lesson be-
ing, as a recent advertisement for a negotiation course put it, “… you don’t
get what you deserve, you get what you negotiate”.

LD can specify the conditions around the use of a game. For example,
as diagrammed in Fig. 13.2, there can be a number of approaches to the
use of a particular game within a learning unit:

The game might be deployed first as a motivational tool, and then the
learners can be debriefed in a conference where they reflect on what
happened, why it happened, and what might be done to achieve a differ-
ent outcome in the future.
The game might follow a lesson or briefing session that sets up the
characters and explains the rules.
The game might be sandwiched between the briefing and the debriefing.
The game might be used as a standalone individual learning activity
where the learner prepares a report for marking by faculty.

Note from the “I/P” (Input or Product) arrow connecting the rectangular
box that in all cases the game is included as a material input to the play ac-
tivity. Both tutors and learners have roles to play, but not always in the
same place and time. These examples are by no means the only ways to in-
clude faculty and learners in games; there could be a game where the fac-
ulty member plays a role in the game, or a staff person is required to sup-
port the game as an adversary or umpire.

13 Designing Educational Games 231

Fig. 13.2. Learning designs for inclusion of games as activities

The ability to define sub-roles for educational games and simulations is
specifically mentioned in the LD specification (p 24). In examples c and d,
the game activity is followed with some reflective activity.

In example c there is a group discussion and in example d a report is
produced and input into the marking activity. As mentioned in the LD Best
Practice Guide (p 8), in a Level C implementation of an LD system, the
game or the marking activities might generate information which is re-
turned automatically to either the student or to a student tracking system.

Contrast these simple learning designs with that of the role-play Ver-
sailles example in Fig. 13.3.

232 G. Richards

Fig. 13.3. Versailles expression in LD

When a game is referenced as a black box little information is known
about its internal workings. When a game activity is encoded as in LD it
can be inspected to see its organization and pedagogy within the context of
the module. Moreover, the LD-encoded game is transportable; that is, as
with any LD template it is playable on other LD players, and with other
content. Might there be benefit in extending this level of detailed represen-
tation to all educational games and simulations? Perhaps, but the drawback
is that even a simple simulation takes several views to represent fully. A
complex game with intricate micro-design may be difficult to portray and
the level of abstraction necessary for comparison between games might be
lost in the programming code.

13.4 Game Representation: the Memory Example

In approaching the representation of a game activity in LD, it is important
to consider the challenges of their depiction. Salen and Zimmerman (2004)
propose Rules, Play and Culture as three schemas for describing games.

13 Designing Educational Games 233

Rules are the formal schemas that define the game, Play the experiential
and Culture the context of shared values that make game play meaningful.
These schemas map nicely to the education world, where learning designs
as the formalizations of learning activities yield different experiences to
different learners based upon the human and content aspects of the activi-
ties, interpreted through the cultural context in which the learning activity
takes place.

As an example, it is useful to consider the variety of ways a simple chil-
dren’s card game, Memory, might be represented. The rules provide the
simplest description in natural language:

Memory is a card game for two or more players. The cards are randomly placed
face down on a flat surface. A player turns over first one card and then another. If
the face values pair up, then the cards are removed to the player’s score pile and
the player takes another turn. If they do not match, the cards are turned face down
and the play passes to the next player. Play continues until there are no more cards
left. The player with the most cards is declared winner.

While brief, the rules provide sufficient information to set up and play the
game. The rules tell us when to take turns, how to end the game, and how
to determine the winner. The rules clearly identify in natural language a
number of elements to encode in LD:

There is a role in the game for two or more players. Note that one player
might be a computer, another a student or a teacher.
The environment includes

the materials:
cards
a flat surface capable of holding all the cards face down – in a very
generic way – generic enough that the game can be played on the
floor, on a field, or on a computer screen.

The activities include
Preparation – randomize cards and deal face down on the surface.
Play – while there are cards

take a turn {flip two cards over, compare}:
if match remove and take another turn,
if not return cards and end turn.

Evaluation – compare piles; the one with the most wins.

Note how the rules are written for human understanding and are contextu-
alized within our culture – it presumes we know what cards are, and that
we have them available, that the players are capable of deciding which
cards to turn over, and have the means to enact that operation. The regula-
tion mechanism of taking turns is inherent in play, and the players have
some means of comparing results to determine the winner. What is absent

234 G. Richards

from the rules are other aspects of game playing such as conflict resolution
– what do you do if someone insists on turning over all the cards at once?
This is left to the players to interpret and enforce based upon their culture
– if you violate the rules, then you are simply not playing the game, and if
you don’t quit cheating, your opponent will usually refuse to play with you
or bash you on the head.

The rules are free of content, in this case the values of the cards. This
means the game can be used with a large variety of content areas. In
education it is common to build game shells so the content can be replaced
quite readily. For mathematics the cards could contain equations to be
solved mentally, or for biology, names to match with illustrated parts of
the cell. No mention is made of meta-content that might be present but is
not part of the game. For example, the cards might have a company logo
printed on the back for advertising purposes, or the cards might have safety
messages written on their faces so workers can be reminded of safe work
practices while they play cards in their off hours.

The rules do not provide a game-playing strategy. Strategies are some-
thing experiential that players develop over time, and thus fall under Salen
and Zimmerman’s “Play” schema. In Memory a simple strategy most chil-
dren learn is to pay attention and try to remember the cards flipped by
other players. A poor strategy is to turn over a known card first because
there is low probability that the next card will be a match. A better strategy
is to work sequentially through the cards on the table. By turning over the
next new card in a row, a player increases the number of known cards,
since the second card turned over will either be a match (if the player’s
memory is good) or another new card.

Another possible representation of the game is a visualization such as a
picture of the layout of the cards, which might help understand the prepa-
ration of the game, or a flowchart to chart the logic of the game.

Inevitably there may be variations on the game, depending on the cul-
ture. Local rules and handicaps might emerge to make the game easier for
children. Games can have progressive levels of difficulty, or they can be
adaptive, tracking the performance of each individual player and providing
drill and practice in areas of non-mastery. There may also be variations in
materials, in manipulation devices, in reward schemes, in timing, in the
number of players, and the look and feel. All of these elements contribute
to the complexity of designing and redeploying games.

As a game becomes more elaborate, it will take more time and effort to
describe and document in any detail. The goal then is to come up with de-
scriptions that are operationally sufficient. Games played face to face in a
social setting will be easier to describe than those to be played on a com-
puter. Indeed, while a set of rules might be adequate for the former, the lat-
ter will require scenarios, use cases, flowcharts, sequence charts and ulti-

13 Designing Educational Games 235

mately computer code. The prime questions are, “When dealing with the
learning design of games, are there advantages in having a richer descrip-
tion language?” and if yes, “To meet practical constraints of documenting
game algorithms, to what level of detail should it go?” “Is LD of itself suf-
ficient to describe the rules, the play and the culture?”.

Contrast the flowchart in Fig. 13.4 with the LD diagram in Fig. 13.5.
These are different views of the same Memory game. While the familiar
flowchart governs the flow of logic, the LD diagram depicts the relation-
ships between roles, materials and activities. If computer games are ever to
be successfully encoded in LD, the level of representation will have to
match at least the level of logic of decision-making within each sub-
activity. Perhaps the activity-structure feature of LD will need to be used
to encode complex multi-path games, or games with adaptive rules that
change with the maturity of the players.

Fig. 13.4. Flowchart for Memory game

13.5 Discussion and Conclusions

Now that implementations of LD authoring tools and LD players have
been delivered, it will be interesting to see the degree to which LD-
Encoded games evolve and how game developers press for extensions to
the current specification to facilitate detailing of game activities. The divi-
sion between LD-encoded and LD-referenced templates is pragmatic.

236 G. Richards

Fig. 13.5. LD graph of Memory game

Until we have more experience encoding games it may be more efficient
to treat them as black boxes. Ideally it should be possible to have a library
of interoperable game activity templates that could drawn upon to create
the desired learning experience. It should be noted that the search for a
game design meta-language is not new or unique to LD. Bjork et al. (2003)
are in search of a game design pattern language somewhat akin to the pat-
tern language proposed for architecture (Alexander 1977). However, pat-
tern languages are essentially narratives of rules, and designs need to be
semantically encoded in some ontology if they are to be effectively com-
pared and recombined. This might be a possible role for a game meta-
language variant of LD perhaps with extensions of the semantic-web vari-
ety that will allow a wider range of both representations and operations on
those representations.

Should a library of LD-encoded game activities emerge we would then
expect every LD player to interpret and reproduce every game experience.
What is foreseeable is the evolution of a specialized LD game authoring
tool which embeds the logic of several relevant game patterns, so that the
author need merely choose the paths and decision points, and the resulting
game could be reproduced on the generic LD player. An early example of
a generic simulation authoring tool has been produced for emergency ser-
vices training in the LogicProject (Key and Mundell 2004) where the au-
thor is free to link a variety of predefined presentation and response pat-

13 Designing Educational Games 237

terns to create a simulation case study that is playable through the web
browser. While the range of simulation activities is limited to the templates
available in the authoring system, there is no theoretical limit on the com-
binations and permutations that may be prescribed.

A repository containing examples of both LD-referenced and LD-
encoded games that could be readily referenced by other lesson designers
would be a useful starting point for encouraging the use of game activities
in LD implementations and the adaptation of design templates to new
instructional contexts. With time, the number and variety of examples and
usage of both types of game inclusions can be expected to increase.

13.6 Acknowledgements

The author is grateful for discussions and comments of Olga Marino, Pat-
rick McAndrew, and Peter Sloep, and to Bill Olivier and Gilbert Paquette
for use of the Versailles simulation. Jim Bizzocchi provided valuable in-
sights on game design.

This chapter was made possible through the Canarie e-Learning Pro-
gram as part of the eduSource Canada Project. Partial funding for this
work was received from the Social Sciences and Humanities Research
Council through the SAGE (Simulation and Gaming in Education) Col-
laborative Research Initiative, and the Natural Sciences and Engineering
Research Council through the LORNet Research Network.

14 Designing Learning Networks for Lifelong
Learners

Rob Koper

Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

14.1 Introduction

As discussed in the preface of this book, Learning Design (LD 2003) can
represent many different approaches to learning, such as competency-
based learning, problem-based learning or collaborative learning. How-
ever, most current designers have some implicit assumptions underlying
their designs that can be summarized as follows:

E-learning courses are developed by teachers or expert developers
Following development, the course is put into practice by enrolling stu-
dents and assigning teachers
Students take the course and the support is provided by the teacher
Assessment is the responsibility of the teacher or an institutional or su-
per-institutional entity
The curriculum prescribes which courses a student has to take
Students study primarily within the context of a single institution and
with fellow students who also study within the same institution.

Given the current demand for more flexible, self-directed, informal and
formal lifelong learning opportunities and the need for more efficient
teaching scenarios, these assumptions provide an unnecessary restriction
on the set of possible design solutions for a learning problem. In lifelong
learning, roles are not fixed as implied above: students can be (co-
)producers of course materials, can perform assessments (e.g. in peer and
self-assessment), and can support other students. Similarly, teachers and
experts can both teach and learn at the same time in a certain field of ex-
pertise. In the five-year RTD programme, called ‘Learning Networks:
connecting people, organizations, autonomous agents and learning
resources to establish the emergence of effective lifelong learning’ (Koper
and Sloep 2003), we examine a form of education delivery that goes
beyond course- and curriculum-centric models, and envisions a learner-

240 R. Koper

and curriculum-centric models, and envisions a learner-centred and
learner-controlled model of lifelong learning where learners have the same
capabilities as teachers and other staff members have in regular, less
learner-centred educational approaches, but without increasing the work-
load for learners and staff members. Mechanisms responsible for this effi-
ciency are the principles of self-organization (e.g. Hadeli et al. 2003;
Maturana and Varela 1992; Varela et al. 1991) and software agents
(Jennings et al. 1998) that provide support and feedback for people in per-
forming their learning and support tasks in the learning and teaching proc-
ess. It is expected that the application of self-organization principles will
help empower learners to move beyond passive consumption of e-learning
content towards active production (Fischer and Ostwald 2002). This shift
of control aims to help relieve the burden on providers to predict needs,
costs, expected use and income, and tilt the balance of responsibility for
learning processes towards the learners themselves (see Tattersall et al.
2003).

We see a central role for LD in several aspects of realizing a Learning
Network:

1. It provides a means to design courses that are modelled according to the
lifelong learning perspectives discussed above (e.g. using peer assess-
ment and peer support).

2. It formalizes the design in a semantic way, enabling automatic process-
ing of software agents.

3. It facilitates pattern analysis of successful learning designs since the
designs use a uniform specification language. These patterns can be
used to help develop higher quality courses.

4. It enables the development of interoperable tools and content that can
function in a distributed network and supports the sharing and reuse of
learning objects.

This chapter presents a possible design for such a Learning Network, us-
ing LD.

14.2 Requirements of a Learning Network

Like any network, a Learning Network (LN) can be represented as a graph
with nodes. An LN is a two-mode network, with the nodes being LN mem-
bers and Units of Learning (UOLs). In the following sections we will ag-
gregate the two modes into a single node, called an Activity Node (AN).
An AN contains all the runs of all the versions of a UOL, including infor-
mation about the members who are (or have been) active in it together with
information the members have produced about it (e.g. feedback, comple-

14 Designing Learning Networks for Lifelong Learners 241

tion data). Moreover, it contains a set of rules that govern its lifetime, spe-
cifically its ‘fading out’ and ‘staying alive’ behaviour. There are subtle but
important differences between a UOL, a UOL run, and an AN. A UOL is
the learning facility that is defined abstractly for any set of learners at any
time. A UOL run is its instantiation for a specific set of learners in a cer-
tain time frame (e.g. a class, the actual run of a workshop). An AN is the
set of all possible runs for different versions of the UOL.

The requirements for an LN are specified in Table 14.1 (from Koper et
al. in press). These requirements can be elaborated in a ‘use case model’.
Use cases are abstractions of scenarios in which the concrete behaviour of
persons within a system, or using a system, is described (Fowler 2000;
Cockburn 2001). A use case model contains, among other things, use
cases, actors and relationships. ‘Use cases’ (the ellipses in the diagrams in
Fig. 14.1) are sequences of actions required of the LN to function properly.
The ‘actors’ (the stick figures) are the persons or software agents that initi-
ate the use cases, perform them or benefit from them. ‘Relationships’ (the
lines in the diagrams) link two elements to show the interaction. The dia-
gram in Fig. 14.1 is drawn according to the UML use case diagram speci-
fication (OMG-UML 2003; Booch et al. 1999). There is only one actor in
an LN, the LN member. There are three types of LN members: lifelong
learners (primary actors), providers and software agents, each of which can
play roles in the management of the LN. Members can act individually or
in groups. Groups can be formal (e.g. company employees) or informal.
Software agents can, in principle, perform the same use cases as any of the
human actors, but in most situations they will support a human member in
performing a specific use case. Lifelong learners have specific expertise
and competence in the discipline and these must be registered and updated
in a learning dossier. The competence and expertise levels stored in the
dossier must be standardized to be able to position a learner in an LN. A
key notion in LNs is that lifelong learners can perform all the use cases,
including those that are traditionally the responsibility of teachers. Control
is expected to be distributed democratically using a set of agreed policies.
The policies, the mechanism that provide feedback (usage patterns, moni-
tor emergent properties and log tracks), and the reward system are the ba-
sic instruments to create self-organization in the system. Providers can be
educational institutions, companies and libraries that provide lifelong
learners (e.g. employees), the learning services (e.g. tutoring services) or
the learning resources (e.g. books, CDs). LN members can perform a vari-
ety of primary use cases: for example, search an AN to plan a suitable
learning route; get or access an AN; study an AN; or provide feedback
about an AN.

242 R. Koper

Table 14.1. General Requirements for LNs

No. General Requirement
R1 The objective of any LN is to offer long-lasting, evolving facilities

for the members to improve and share their expertise and build the
competencies needed in a disciplinary field.

R2 An LN should offer facilities for members to create, search,
get/access and study LNs, ANs, UOLs and learning resources as a
means of building expertise and competence.

R3 An LN should be governed by community policies that reflect the
common goals and values of the membership. Instruments must be
available to manage, change and apply the different policies (LN
objectives and values, terms of use, standards and quality, reward
systems, membership policies).

R4 An LN should have facilities to assign its members to specialized
roles according to certain role policies. Roles are not fixed. Role
change policies must be available.

R5 An LN should offer facilities to search for ANs and UOLs that
match the members’ needs and LNs, and should support flexible
learning routes (positioning, logging of tracks of others and usage
patterns).

R6 An LN should contain ANs and UOLs for different levels of ex-
pertise to serve a heterogeneous membership.

R7 An LN should offer ANs and UOLs in which learning designs are
based on pedagogical models that are selected as suitable for the
discipline, the membership and the learning objectives (e.g. prob-
lem-based and learner-centred, formative assessment, knowledge
and community-centred).

R8 An LN should facilitate a high level of dialogue, interaction and
collaboration within an LN and within ANs.

R9 An LN should support guidance/scaffolding, or more generally:
support activities.

R10 An LN should support distributed control. LN managers are LN
members with specific assigned management tasks (according to
the change policies).

R11 An LN should provide first-order and second-order feedback to all
members to support the optimization of organization and quality
according to self-organization principles.

R12 An explicit exchange reward system which is consistent with self-
organization principles should be available in LNs.

R13 An LN should have distributed, ubiquitous access.
R14 An LN should have facilities to provide automated support (soft-

ware agents) for some members’ tasks to make performance more
efficient.

14 Designing Learning Networks for Lifelong Learners 243

R15 An LN should use community standards for interoperability (e.g.
UOLs, learner dossiers, learning/knowledge services and re-
sources) and provide facilities to discuss and change these.

R16 An LN should find the right balance between usability for the par-
ticipants and flexibility/complexity (information/training facilities,
adaptable user interfaces, error-free technology).

Figure 14.1 shows the primary use cases as grey ellipses. The other use
cases are specializations of a primary use case or are included in them.

LNmanagerLNmember

search UOL

get/accessUOL

CRUUOL

f eedback

(dis-)aggregate

perf orm support
activ ities

reward

manage, change &
 apply policies

standards &
quality

lif elong learner

prov ider

inf ormation
 about LN

enrollment
manage &

apply usability

indiv idual group

training

communicate
collaborate

log tracks

study UOL

sof tware agent

terms of use

membership access &
role change policies

create (sub-)LN

CRUlearning
dossier

plan learning
route

CRUlearning
resource

learner
positioning

analy se usage
patternslearning

design
pedagogical

 model

CRU = Read,Update, Delete
UOL = Unit Of Learning

= <<include>> dependency
= association
= specialization
= primary use case

LearningNetwork

LN objectiv e &
v alues

monitoremergent
properties

Fig. 14.1. Use case model for LNs

14.3 Formal Representation of a Learning Network

Using the AN concept, the formal structure of an LN can be represented as
a graph in disciplinary domain D, with ANs as its nodes {a1, …,ai} (Fig.
14.2). The nodes of the graph represent the available learning events,
namely the ANs. An AN can be anything that is available to support learn-
ing, such as the different runs of a course, a workshop, a conference, a les-
son, an Internet learning resource, etc. Providers and learners can create

244 R. Koper

new ANs (and new runs within ANs), can adapt existing ANs or can delete
ANs. In an LN, ANs are described with their metadata (title, objective,
etc.) together with a link or reference to the actual AN.

An LN typically represents a large and ever-changing set of ANs that
provide learning opportunities for lifelong learners (actors) from different
providers, at different levels of expertise within the specific disciplinary
domain.

When using the LN, actors travel from AN to AN. The path of ANs
completed sequentially over time by an individual actor is called a learning
track. A track represents the actual behaviour of actors. Paths through an
LN that are planned beforehand are called routes (see Fig. 14.2). In tradi-
tional education, teachers or instructional designers are responsible for this
route planning (e.g. curriculum planning). In lifelong learning, a different
approach may be followed. Learning tracks can be shared between the par-
ticipants in an LN. This can be a single track or an analysis of the aggre-
gated, collective tracks from a set of participants to determine the most
successful routes. This data is expected to help actors navigate in the LN.

Another concept in an LN is the learner’s position in the LN (in Fig.
14.2, the set {a4, a8, a10}). This is defined as the set of ANs marked as
completed in the LN, based on the actor’s portfolio. This does not neces-
sarily mean that the actor completed the concrete ANs, but covers situa-
tions in which the objectives associated with the ANs are already met by
the actor (e.g. as a result of exemptions arising from previous study or
work experience).

A target is any set of ANs that is sufficient to reach a particular level of
competence or expertise in the domain (Fig. 14.2, the set {a1, …, a8}).
These targets and their connected competency levels may be self-defined
(e.g. step by step) or are predefined in the network. When creating an LN
conforming to a predefined competency framework (e.g. European Lan-
guage Levels (CEFRL 2001)), it is a requirement that every AN indicates
its prerequisites and learning objectives in terms of the framework.

A target can be associated with one or more formal assessments to cer-
tify knowledge or a competency. This either can involve an additional,
specific kind of AN, or can be integrated into one or more ANs. The dif-
ference between the set of target nodes and the set of position nodes de-
fines the set of ANs that a learner has to perform to reach the target. Fig.
14.2 shows this to-do list as the set {a1, a2, a3, a5, a6, a7}. Given this list,
a sequence of learning steps can be established, by deciding on the order in
which the ANs are taken (e.g. first a3, then a1 and a5 simultaneously, then
a2 and a7 simultaneously, and finally a6; see Figure 14.2). This decision
can be based on the tracks of other successful and comparable learners in
the LN. A learner can also follow a more exploratory route or can change

14 Designing Learning Networks for Lifelong Learners 245

routes on demand. Ultimately this will also create a track that can be
shared.

position and target

learning route

Fig. 14.2. LN in domain D with ANs {a1,…,a13}

246 R. Koper

14.4 The Architectural Structure of a Learning Network

Using the above requirements a model can be designed of the architectural
structure of an LN (see Fig. 14.3). The model identifies the classes (the
named boxes in Fig. 14.3) that are of importance in an LN and it specifies
the relationships between the classes (the lines in Fig. 14.3). The main as-
pects of the architecture are summarized below.

The available LNs are listed in a web portal which can be freely ac-
cessed for information about the LNs. People can take on different roles in
the LN according to certain policies in the community. Members can be
learners, tutors, assessors, providers of learning content, etc.

The LNs themselves are not part of the portal: the portal only describes
the LNs with metadata and provides links to them. This also allows for the
establishment of different portals, with different views on the available
LNs, running at different locations.

Software agents can be integrated in the architecture to support users,
such as in providing recommendations on the next ANs to study, to search
and filter information and knowledge sources in the network and to help
users in performing certain tasks, such as filling in forms or using the sys-
tem.
An LN lists the available ANs by the learning goals they can be used to
attain. The behaviour of learners is logged and feedback and advice can be
provided based on analysis of the behaviour of learners. ANs can be rated
by learners or other reviewers to indicate their quality. For every person
enrolled in an LN, a dossier, including a portable ePortfolio, is kept (to-
gether with some local data). The social interaction between the different
participants is governed by policies, including terms of use, quality, mem-
bership policies, etc. (Preece 2000).

Three different aspects in every AN can be distinguished: 1) its design
as available in the UOL 2) the different runs of the UOL for different users
and different time schedules, and 3) the runtime resources (including ser-
vices). The design can be described using LD. This part of Figure 14.3 is
sketched in less detail (only roles, activities, etc.). To expand the diagram,
the LD UML class diagram (Fig. 2.6 in Chap. 2) has to be merged with
this diagram at the appropriate classes. When a UOL actually runs within
an AN, additional runtime resources become available. Examples are email
and conference contributions, and also the traces and resources produced
during additional and non-described activities.

14 Designing Learning Networks for Lifelong Learners 247

Fig. 14.3. Conceptual model of an LN’s architecture

14.5 Implementations of a Learning Network

Two different prototypes were created based on the principles discussed
above. The first prototype was created using Groove, a fairly easy to cus-
tomize, peer-to-peer collaborative environment. The second, recent proto-
type was built with the experience we had using Groove, and is based on
PHP Nuke and Moodle (see http://hdl.handle.net/1820/207).

248 R. Koper

14.5.1 The Groove-Based Prototype

Groove (groove.net) uses the concept of shared workspaces. A workspace
can be created by any user (manager), who may then invite others to join
the workspace in the role of manager, participant or guest (with different
rights attached to each role). Users with the appropriate rights can add
tools to the workspace from a predefined tool-set, such as discussion fo-
rums, shared files, collaborative writing, shared web navigation tools and
shared calendars. Users may use the tools according to their roles. An im-
portant feature is that all users share the same tool-set. No user is privi-
leged to access any special tools. This satisfies one of our major criteria for
self-organized LNs. Policies can be communicated and implemented by
setting user-rights. When setting up the Groove prototype, the logical
model of LD was used, not its XML Schema binding. The test was primar-
ily functional and not technical, i.e. interoperability issues, reuse and runs
on multiple platforms were not supported in the prototype. Groove specifi-
cations indicate that the environment is highly programmable and uses
XML for data storage. A subsequent implementation of the LD XML im-
port and export should be possible in principle. In another project, the au-
thoring part of the architecture has also been implemented in Groove in the
context of the European Project aLFanet (see Chap. 18). This editor creates
UOL packages in XML according to the LD specification (see manual at
http://hdl.handle.net/1820/103).

The design of an LN described above was implemented as follows in
Groove workspaces:

An LN is a workspace with a name that starts with ‘LN:’, e.g. LN: psy-
chology.
An AN is a workspace with a name that starts with ‘AN:’, e.g. AN:
intervention-strategies.
Learning and support activities are modelled as records in a database
with forms (using the Groove Form tool).
Activity structures (sequences and selections) are created by organiz-
ing the sequence of the activities in a list and by providing extra tex-
tual information about the sequencing (see Fig. 14.4).
Learning objects and services are links within the activity record with
specific tools and resources in the environment.
An environment is modelled as a labelled group of tools and services
in Groove.
Learning objects are contained in a files tool within the environment.
Services, specifically discussion forums, sketchpads and outliners, are
included in the environment as separate tools.

14 Designing Learning Networks for Lifelong Learners 249

Tracking and monitoring is implemented by asking learners to provide
the necessary information in a form.
Membership of the LNs and ANs is made visible by Groove (including
on-line/off-line status and published profiles).
Navigation is supported as follows: Groove provides a list of ANs to
select from. The preferred route is modelled by listing each AN as a
message in a discussion tool. The access files that Groove needs to ac-
cess the ANs are attached to the messages. They are updated for every
new AN that is developed.
Communications and collaborations that are not related to specific
LNs or ANs are supported by the standard communication facilities of
Groove (e.g. chatting and setting up workspaces for sub-groups).

We conducted a study, reported in Koper et al. (in press), to determine
to what extent the implementation met the criteria as stated in Table 14.1.
The users were 25 participants with different levels of pre-knowledge who
used Groove in a self-organized way to learn more about e-learning. Most
of the participants created some ANs, and at the same time they studied
other ANs of other participants. At the end of the sexperiment (6 month),
22 ANs were created and studied. Most of the basic use-cases were im-
plemented like the search, study, get/access, etc. use-cases. To be more
specific: the findings showed that we were able to implement most re-
quirements except for R12 (reward system). It was not necessary to im-
plement such a function in our rather closed situation, where one aspect of
the community members’ assigned activities was to participate in the LN.
However, it seems to be a crucial function in more open, distributed, larger
LNs. Issues such as internal/external motivation and financial versus other
rewards (fulfilment of personal needs, reputation) have to be elaborated.
Further, more generic economic principles such as exchange mechanisms
in LNs need further study, specifically how to reward active participation
and contributions of particular qualities in the LN. An analysis of the im-
plications of theories such as the social exchange theory (Thibaut and
Kelly 1959; Constant et al. 1994) for LNs is required.

Several requirements were only partially implemented, namely: R5
(flexible learning routes), R7 (pedagogical models), R11 (feedback), R13
(ubiquitous access), R15 (standards) and R16 (usability). To create flexible
learning routes one needs to develop: a framework for the assessment of
the learner’s position in the LN; a method to define targets in it; a method
to calculate learning routes; and a method to analyse usage patterns. We
concluded that these topics should be further explored in future work. To
support the use of adequate pedagogical models (R7), better design tools
should be developed or selected. With respect to R11, a future system
should include enough tracking data to be able to provide second-order

250 R. Koper

feedback to stimulate self-organization. Ubiquitous access (R13) is another
issue that should be elaborated. We envision that in a future LN, partici-
pants will be able to choose which tools to use in any situation (at home, at
work, or ‘on the road’), given compliance with certain standards. They
may prefer their own email and chat systems to functions built into the LN
application. Groove offers good facilities for off-line work, but at the price
of using a specific client instead of the more common Internet browser.
With respect to standards (R15), we need to address the issue of compe-
tence more than we did in this implementation. We had rather few ideas
about a learner in the LN, and these ideas were not specific enough for us
to measure progress. This should be improved. The last partially satisfied
requirement was usability. We reported on learnability, technical problems
and the lack of overview for navigation purposes. All these issues are re-
lated to the usability of Groove.

Fig. 14.4. Implementation of activities

14 Designing Learning Networks for Lifelong Learners 251

14.5.2 PHP Nuke and Moodle

We evaluated the use of Groove as a platform, and although Groove pro-
vided us with the possibility of easily implementing some of the use cases
from the LN framework, it was not without its disadvantages. In addition
to the functional requirements, the main issues for selecting and develop-
ing tools for LNs are: technical stability; performance; sustainability; scal-
ability; the use of open standards; and the use of commonly available tools
such as email and webbrowsers. We decided that our next prototype would
be based on open-source tools and components only. The LN component
of the architecture is implemented in a package called PHP-Nuke (2004).
It provides several views on the information about the different ANs avail-
able in the LN. The information about an AN is implemented as a PHP-
Nuke item linking to the actual AN. The actual ANs can be any of a num-
ber of learning events – a face-to-face meeting or a course in a learning
management system.

Fig. 14.5. The Moodle user nterface representing an AN within the LN for learn-
ing design

252 R. Koper

We selected Moodle (Dougiamas 2004), and an LD runtime system
called CopperCore (see Chap. 6) to represent the ANs and UOLs. The idea
is, however, that anyone can use his/her own systems that are integrated
through the architecture. One of the first experiments created with this in-
frastructure is sponsored by the EU UNFOLD1 project (UNFOLD 2003)
and is establishing an LN for people who want to study learning design
(see: ln4ld.learningnetworks.org). Figure 14.5 gives an overview of the
userinterface of Moodle as it currently stands, just prior to the opening of
the platform to the public.

14.6 Conclusion

We have presented a model for the design of a distributed network to
support lifelong learning based on the use of LD. In order to explore im-
plementation of the requirements, we created prototypes and used them in
practice. The study of LNs is still in its exploratory phase. A great deal of
work remains to be done to refine the framework, improve the implemen-
tation and evaluate the effectiveness and usability of the facilities in prac-
tice. LNs provide, however, a strong application area for LD. Currently we
are working towards the integration of feedback mechanisms for naviga-
tional support, technologies for learner positioning, the calculation of
learning routes based on positions and targets, the development of a suit-
able reward system and the use of software agents to support the primary
actors. Interested readers may follow our progress at the site
www.learningnetworks.org and view the publications at
http://dspace.learningnetworks.org/handle/1820/11.

1 UNFOLD (IST-2002-1_507835, January 2004 to December 2005) is funded
under the European Union’s Sixth Framework Programme. It is a Coordination
Action within the Technology-enhanced learning and access to cultural heritage
Action Line of the Information Society Technologies area.

15 How to Integrate Learning Design into Existing
Practice

José Janssen, Henry Hermans

Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

15.1 Introduction

What does it take for an institution to adopt the Learning Design specifica-
tion (LD 2003) for the design, development and delivery of its courses?
What are the implications at an organizational level? These questions will
be addressed in this chapter, drawing on the experiences gained at the
Open University of the Netherlands (OUNL) with the deployment of EML.
EML is the XML-based Educational Modelling Language developed at the
Open University and later integrated in LD as the basis for the modelling
of learning designs (EML 2000).

Although there are clear differences between the EML and LD specifi-
cations, which will be described in more detail in the next section, there
are also many parallels. These parallels are sufficient enough to consider
the process of adopting EML on a large scale as a valid frame of reference
for deploying LD within an institution or organization.

The OUNL started using EML on a wide scale within its regular course
development process in 2002. At present (March 2004) a total of nine
courses are delivered to over 2000 users (students and staff) via the Inter-
net, using Edubox. In addition, several other courses have already seen
their life-cycle come to an end, including courses developed with external
partners and hosted by the OUNL.

In terms of LD some of these courses represent Level B designs, but
most of them include the use of notifications (Level C). The type of
courses and the tools used in developing and delivering these courses will
be described in greater detail below, in Sect. 15.3.

Having thus described the context and the extent of experiences relating
to the use of EML within the OUNL, the remainder of this chapter will
address several “how to?” questions, regarding the integration of an educa-
tional design specification. These “how to?” questions are presented in

254 J. Janssen, H. Hermans

chronological order, following the stages in the course1 development and
delivery cycle: design, creation and delivery. The stage of analysis preced-
ing the design stage is considered to have led to the decision to develop
(part of) the course within LD and will not be dealt with separately.

Attention will be paid to what we perceive as a continuum between dif-
ferent approaches regarding the development of LD courses, with a “tailor-
made” approach at one end of the scale and a “bulk” approach at the other.
The variety of possible approaches in using LD and the consequences in-
volved in choosing a certain approach will be considered throughout the
chapter.

15.2 EML and LD

Is it justifiable to say that the experiences at the OUNL in adopting EML
can serve as a model or guide for the integration of LD elsewhere? It is
necessary to recognize that there are some differences between LD and
EML, the most important being that:

EML is a single, all-embracing approach to developing learning ex-
periences, making it possible to model, for instance, all types of ques-
tions, whereas LD offers a framework which references other specifi-
cations in order to model questions, metadata, etc.
EML contains a content model, allowing content to be modelled “in
EML”, whereas LD has no content model, leaving it open as to how
(in what format) content is modelled, although XHTML is recom-
mended.

In relation to the processes described in this chapter, these differences are
not too significant. EML may be conceived of as an implementation of the
LD framework, with specific choices regarding the content model and the
use of metadata.

In general, the quality of design and creation tools determines to a large
extent the efficiency of business processes and strongly influences the ac-
ceptance of learning technologies by teachers. As will become clear, tool-
ing has been and still is a problem. However, this can be said to apply to
EML as well as XHTML. So, these problems occur when working with
EML as well as LD. However, although the availability of appropriate
tools is an important issue with regard to the workflow and processes de-
scribed in this chapter, we have aimed to consider and discuss this work-

1 Courses are the smallest unit of delivery at the OUNL. However, courses may
consist of more than one UOL. In some cases only parts of the course have been
modelled in EML.

15 How to Integrate Learning Design into Existing Practice 255

flow in terms of the underlying purposes and principles, regardless of spe-
cific tools. After all, tools can be expected to change and develop rapidly
over time.

15.3 The OUNL Case

In the year 2000, after a two-year period of small-scale experiments, the
OUNL launched a more ambitious experiment to explore the use of EML
in the course development process as part of a strategy to become a Digital
University. The so-called “Start projects” aimed to develop six demonstra-
ble Units of Learning (UOLs) in EML within half a year. The ambitious
nature of the project is evident from the fact that the staff involved in the
development of those courses were trained on the job in working with
EML. In addition, the experiences gained during the design and creation
process were intended to result in a detailed description of the work proc-
esses involved. Prior to these Start projects only few educational special-
ists had gained any “hands-on” experience with the design and develop-
ment of educational materials using EML. Now it was time to broaden the
scope and see what it would entail to integrate EML in the organization,
working with a team approach to course development, as is common with
distance education institutions. Educational specialists, subject experts,
editors and graphical designers received training and worked together to
search for the most efficient ways to get the job done. The training in-
volved both an introduction to EML and gathering hands-on experience
with the tools used to create, edit and store EML documents: Frame-
maker+SGML and Microsoft’s Visual SourceSafe. The tools used in the
R&D phase were transferred, without finetuning, to the production envi-
ronment. At this stage, a stronger division between design and creation
appeared. Rather than having the educational specialist (incorporating
EML expertise) doing all the “EML work”, subject experts and support
staff contributed as well.

Different teams developed different approaches. While some teams fo-
cused on the elaboration of a fully explicit pedagogical design before
creating the corresponding structures in EML, others chose a more incre-
mental approach. Some paid meticulous attention to the use of metadata,
whereas others completely disregarded the issue of metadata. At the time,
little integration within existing practices could be identified: the focus
was on demonstrable products rather than courses to be delivered.

Meanwhile, several experimental implementations were also set up out-
side the OUNL. The development of a full curriculum at the Hotel Man-
agement School in Maastricht is particularly noteworthy. The separate
modules of this curriculum were to be based on the pedagogical concept of

256 J. Janssen, H. Hermans

competency learning. However, the lack of a common development ap-
proach and corresponding templates led to the production of a broad vari-
ety of learning designs. Time and money constraints forced the team to
switch to a different development approach, in which design flexibility
was restricted and a single design template was used to create the remain-
ing courses. As a result of the conventions and rules underlying the (EML)
template, the time required to create a concrete module design was reduced
significantly.

Another noteworthy implementation is the Law-On-line project of the
Digital University (DU), a consortium of universities and institutions for
higher education in the Netherlands. The Law-On-line project aims for the
joined development of on-line learning materials in a broad variety of law
disciplines. These learning materials have a strong focus on self-
assessment and are to be used within educational institutions using differ-
ent delivery systems. Considering the collaborative development and the
explicit purpose of reuse, this project has paid extensive attention to the
use of metadata.

Back at the OUNL, from 2002 onwards, a step forward was made in the
development of nine courses, modelled using EML. The courses were part
of the regular curricula of several faculties. To support this major deploy-
ment a new version of the runtime system, Edubox, was developed by a
software developer, based on specifications provided by the OUNL. In
September 2003 the new player was put to use, delivering nine courses, to
a total number of over 2000 students and staff members. Five of these
courses include the use of notifications (LD Level C), whereas the other
courses match LD Level B.

The integration of the EML/LD player into the existing virtual learning
environment marks a shift in the functional use of the virtual learning envi-
ronment. This shift may be characterized as a move from a predominantly
supporting function, with a strong focus on information service, towards
regulation of the primary educational process for both students and staff.

In conclusion we can say that the OUNL has moved from a pioneering
stage towards a stage of consolidation. From all the different approaches
and experiences gained hitherto, several recommendations have come to
the fore, which will be discussed in the next sections. However, in our
view the OUNL still has not reached a stage of full deploy-
ment/integration. In particular, authoring tools and processes need to be
improved in order to gain more widespread acceptance within the organi-
zation and to be able to increase production efficiency. Nonetheless, the
experiences gained in pioneering and experimenting offer a considerable
empirical base from which guidelines may be derived regarding the adop-
tion of LD within an organization.

15 How to Integrate Learning Design into Existing Practice 257

15.4 How to Get Started

A major issue relating to the implementation of LD is the extent to which
pedagogical flexibility is allowed within the (educational) organization
concerned. If the organization is to allow the use of a broad variety of
pedagogical concepts and models, this calls for a different approach and
tools from an organization which wants to restrict the number of pedagogi-
cal models used.

The following scenarios illustrate the possible implications of both ap-
proaches, which may be taken to represent two extremes on a continuum.

In the “restricted” scenario the organization is likely to have a highly
standardized approach to course development and delivery. Taken to its
extreme, there is only one pedagogical model, e.g. problem-based educa-
tion, and all courses are built in the same way: presenting a set of problems
which need to be solved in several steps. Subject experts merely need to
have a tool at their disposal whereby they can specify the problems and
steps. Relevant materials and services can additionally be selected from a
fixed set of resources, ranging from Internet sources to mail services. The
tool presents a well-defined learning design, a form for completion, as it
were, with a limited set of options to select from and ‘blanks’ to be filled
by the subject expert. Subject experts can work relatively “undisturbed”;
they need not know that “underneath” (in LD terms) the problem is an ac-
tivity sequence and that each step represents a learning activity – nor need
they consider other possible ways to model a problem-based approach.

At the opposite extreme of the continuum is the scenario resembling the
“tailor-made” approach we have witnessed at the OUNL. Whereas in the
first scenario a design can be considered to be integrated in the tool the
subject expert uses, a tailor-made approach presupposes the flexibility to
choose and develop an appropriate learning design. Experiences at the
OUNL show that even in this scenario subject experts do not necessarily
have to concern themselves with LD specification terminology or with
XML authoring tools. Given the circumstances at the OUNL, and the need
to work with XML tools in order to keep a wide variety of modelling op-
tions open, that side of things was left to the educational specialists, inter-
mediaries trained in EML and the tools used to create it. Working accord-
ing to this second scenario required considerable finetuning, which will be
described in more detail in the following sections. This, of course, cannot
necessarily be considered as a viable option in other contexts, where
teachers work more individually and independently. A considerable chal-
lenge therefore lies in the development of authoring tools which support
the design and development of a wide variety of models in a user-friendly
way.

258 J. Janssen, H. Hermans

In order to get started, appropriate authoring tools, matching the neces-
sary pedagogical flexibility and constraints, need to be chosen or created.
Quite conceivably, the whole continuum of approaches needs to be sup-
ported. In this case the authoring tool(s) should allow the editing of “basic”
LD files, on the one hand, and facilitate the creation of restricted tem-
plates, on the other hand (this approach is proposed by the architecture
described in Chap. 3).

Once the relevant tools have been selected or created, staff involved will
need to receive proper training regarding their use.

15.5 How to Design

During the design phase the outline of the course is planned. In the re-
stricted scenario the design phase will involve matching course parts and
content with predefined templates of courses or course-parts. For the tai-
lor-made approach it is recommended that the course design is allowed to
evolve in a number of iterative cycles, resulting from close cooperation
between educational specialist and subject expert. First, a course outline is
created, giving a “full picture” of all course components and the way they
relate to one another. This outline is ideally represented schematically.
Such a schematic representation (“educational architecture”) could be a
simple drawing in Word, a UML diagram, or some other, more sophisti-
cated representation from, for instance, the MOT+ graphic editor described
in Chap. 9. A schematic is created in order to facilitate communication and
discussion between educational specialist and subject expert. It helps to
establish whether all elements of the course are “in the picture” (e.g. dif-
ferent types of student and tutor tasks, different types of resources and ser-
vices used). Although the educational specialist will already be analysing
the course in terms of LD concepts, a schematic will describe the course in
the terms used by the course itself. After all, it is intended to be a tool for
communication between subject expert and educational specialist to estab-
lish whether they have a common understanding of the course and its con-
stituent parts.

During the next step the educational specialist (EML/LD expert) trans-
lates the pedagogy and components of the course model to LD elements.
The specific course model is mapped onto the pedagogical “meta model”,
which consists of abstract notions such as learning activities and learning
objects. Figure 15.1 shows how a course can be considered as a specific
example of a pedagogical model, which in turn is an illustration of the
pedagogical meta model behind LD.

15 How to Integrate Learning Design into Existing Practice 259

Fig. 15.1. A course as a pedagogical model instance

Figure 15.2 gives a more detailed description of the process of translat-
ing the course model to LD elements. First, the course is described in
terms of roles, activities (and their inter-relatedness), tools and services.
This is done separately for each role. Also, at this stage, decisions are
made on the use of metadata, based on considerations regarding reusabil-
ity: what metadata is needed on which levels? It is necessary to consider
these issues at this stage as they may influence the way the course is mod-
elled.

Once the schematic representation is agreed upon and the mapping of
the course model to LD is finalized, a prototype can be created, which
shows what the course will look like in practice for learners and staff.
Thus, a better impression of the different roles within the UOL can be ac-
quired by both the educational specialist and the subject expert.

260 J. Janssen, H. Hermans

Fig. 15.2. The design process for the educational specialist in detail

So far, the design stage in the tailor-made scenario is a stage in which
educational specialist and subject expert come to agree on an increasing
level of detail in the design: creating a design is an iterative process, in
which previous steps may require adjustments later on, when increased
levels of detail may highlight omissions or misunderstandings. Several
tools can be used (e.g. schemata, prototypes, etc.) to explain and discuss
the design with colleagues who have no knowledge of LD and its concepts.

Once the design is agreed upon, i.e. the model and mapping as specified
in the prototype are approved, and each component (e.g. “reading tasks”,

15 How to Integrate Learning Design into Existing Practice 261

“exercises”, etc.) of the specific course has been identified, it is possible to
create the entire course structure in LD, along with templates for compo-
nents such as learning activities and environments. We recommend that
these templates are welldocumented with comments explaining how to use
the template and what adjustments are necessary in order to create a new
UOL or learning activity. The full skeleton of the course is thus created,
which can then be “filled” with content and content-references. This proc-
ess will be described in the next section. Figure 15.3 summarizes the work-
flow in the design phase.

Fig. 15.3. Workflow in the design phase for educational specialist and subject
expert

262 J. Janssen, H. Hermans

In addition to planning the course structure, arrangements need to be
made regarding the storage of content and access to files. Decisions re-
garding the granularity, storage and management of content will have to be
made right from the beginning of the design phase, when the issue of reuse
is being addressed. By the time the full skeleton of the course is being cre-
ated, a contentmanagement system of some kind must be available. How-
ever, the availability of a content-management system alone doesn’t solve
the problem of defining a proper content management strategy. A thorough
content management strategy requires that attention is paid to:

1. The domain model, which describes which topics within the broader
field of study are covered by what components and how they are related.

2. A metadata model, describing what metadata will be added to which
components, and what logic or order will be followed.

3. An authorization model, describing who is responsible for which data-
base files and/or authorized to access which files and to what extent.

4. A “life-cycle” or development model, describing the processes of data
entry, publication and testing, correction and updating.

Obviously, this process involves input and agreement from both the educa-
tional specialist and subject expert. The subject expert contributes domain
knowledge and expertise of classifications and subject indexes used in the
field, whereas the educational specialist facilitates the processes of au-
thorization, data entry, publication and testing.

15.6 How to Create

The templates selected (restricted scenario) or created (tailor-made sce-
nario) in the design phase must now be “filled” with content, during the
creation phase. Due to the lack of effective authoring tools, three ap-
proaches have been adopted at the OUNL:

1. Authors work directly in Framemaker templates which have been pre-
pared for them.

2. Authors work in MS Word and others “copy and paste” to Framemaker.
Depending on the complexity involved, these “others” might refer to
supportive staff or educational specialists.

3. Authors are given MS Word templates (forms) to work in. This ap-
proach is appropriate only for strictly structured content, such as multi-
ple-choice questions. The templates actually consist of EML structures
which are hidden with only the relevant input fields (like “question”,
“correct answer”) being visible to the author. This is comparable to the
approach used in the Komposer tool described in Chap. 7, although the

15 How to Integrate Learning Design into Existing Practice 263

approach described there is an alternative way of using word templates.
After the form has been completed, the file is converted into an “EML
file”.

The third approach requires that all formatting (e.g. emphasis, lists, spe-
cial characters, etc.) is added “manually” afterwards. In the first two ap-
proaches authors and data-entry typists receive instructions on the use of
these formatting elements, should they have to be used. The approaches in
which authors work either “freely” in MS Word or in MS Word templates
entail more detailed planning, since extra handling by supportive staff or
educational specialists is required. None of these methods of adding con-
tent to a design are either effective or satisfactory, illustrating the clear
requirement for efficient and user-friendly authoring tools. Working with
EML has meant that the OUNL has more or less been obliged to model
content in the EML format, whereas LD (or rather Content Packaging) dis-
tinguishes between LD content and web content, making it possible, for
instance, to simply add Word files. However, this doesn’t mean that there
are no problems regarding content-authoring in the context of LD. In all
instances where content requires learners to produce some input, or where
content must be presented in a uniform way (as specified through style
sheets, for example) these resources must be created using XHTML, which
is currently not supported by adequate, easy-to-use authoring tools.

Once content (including formatting elements) has been added to the de-
sign, either directly in EML or via templates, and has been validated, an-
other cycle of evaluation takes place, in order to test the content. This par-
ticular stage of testing is comparable to the final editing of written materi-
als and can be carried out by an editor, if they are sufficiently familiar with
the content. Errors may result not only from spelling or typing mistakes,
but also, for example, from putting a link covering a certain subject in the
wrong place. If the editor is not sufficiently familiar with the subject, the
testing will have to be undertaken by the author(s). Depending on the
complexity of the design and the volume of content modelled this way, the
iterative cycle of testing, editing and retesting may take a considerable
amount of time, postponing the moment of completion of the course. Once
testing has been finalized and any necessary adjustments have been made,
the course is ready to be delivered to learners.

It should be highlighted that the process described above presupposes
that content creation takes place “beforehand”, in design time as opposed
to runtime, when learners have already started studying the course. This
approach does not necessarily need to be adopted in other contexts, al-
though it is by and large the procedure used within the OUNL. Neverthe-
less, the delivery system used at the OUNL does allow content to be
changed (updated) during delivery (runtime), although it does not allow
alterations to the design, such as the addition of entirely new activities. It is

264 J. Janssen, H. Hermans

important to note that this is simply how the system used by the OUNL is
regulated, rather than being an inherent feature of EML or LD.

Figure 15.4 shows the workflow for the roles and tasks involved in the
creation phase.

Fig. 15.4. Workflow in the creation phase

15.7 How to Deliver

LD courses at the OUNL are delivered via the web, using a delivery sys-
tem called Edubox. In implementing a delivery system it is necessary to
assess how it will be required to connect with other systems, for instance
administrative systems. At the OUNL the delivery system is integrated

15 How to Integrate Learning Design into Existing Practice 265

with an electronic learning environment called Studienet and an interface
has been created to connect to the student administration system. Within
Studienet students have a personalized homepage; connecting the delivery
system with the administrative system has made it possible to automati-
cally add a link to a course delivered by Edubox to the homepages of stu-
dents who have subscribed to that course. Students gain direct access to
Edubox through a “sign-single on” capability, without needing to re-enter
their user and password details. Other systems that could be integrated are
services such as conferencing clients. However, these connections (inter-
faces), however relevant, primarily concern practical features of the pro-
duction environment, rather than the core of the delivery process.

The process of course delivery typically involves a number of actions.
The Edubox delivery system consists of two components: Edutool and the
player. In order for a course to be made available to students and staff in
the player, the course must first be published and users assigned to it. This
involves several steps in Edutool:

1. Publication management: first the course must be published. This in-
volves uploading all files and some technical “processing” to check ref-
erences and materials. Publishing a course also requires a presentation
format, which is specified using a style sheet, to be selected. In the
player OUNL uses, activities and activity structures are presented in a
frame that has the title “To Do”. This could be modified depending on
the pedagogical style and changed into, for example, “Tasks” or “Prob-
lems”. It is also possible to provide different style options within a style
sheet enabling the interface to be switched to another language.

2. Run management: publishing a course doesn’t automatically make it
available and visible. Students and staff have to be assigned to the
course before it becomes accessible to them. This is done via so-called
“runs”. This is comparable to a face-to-face course being offered by an
institution, where the course has been designed, materials prepared, but
the classes have not yet started. Students and staff are ‘scheduled’ or as-
signed to the course through a run. Since several runs can be associated
with a single version of a course, there is a “create once – use many
times” situation. Runs offer a mechanism to spread a large number of
students subscribed to the same course over several groups tutored by
different members of staff or to organize students into groups according
to the study centre they are related to. Run start and end dates can also
be set. If a run has no end date specified and the course design or or-
ganization doesn’t involve a particular grouping, newly enrolled stu-
dents can simply be added to an existing run. As long as the course (the
version) stays the same, it is sufficient to add new students to an existing
run or to create new runs. (For more detail on the concept of “runs” see
Chap. 4).

266 J. Janssen, H. Hermans

3. Role management: after runs have been created and staff and students
have been allocated to specific runs, these staff members and students
have to be assigned to the specific roles identified in the learning design.
It is important to remember that while a course design must include at
least one learner role, it may also include several additional learner and
staff roles. At this stage of role management the people who have been
assigned to a run are now assigned to the role or roles they will perform
while taking or tutoring the course.

At present, at the OUNL, publication management, run management and
role management are all coordinated by one person who is in charge of
Edutool. However, one could, for instance, also authorize tutors to organ-
ize runs and manage roles, although this would require some instruction
regarding the use of Edutool.

Other actions that may be necessary to enable the delivery of a course
include:

1. Instruction of tutors: depending on the complexity of the design and the
variations permitted by the style sheets it may be necessary for tutors to
become familiar with the learning design as well as the interface.

2. Services required by the learning design, which the runtime system does
not support, may have to be created/instantiated (e.g. communication
services).

3. Content update: to the extent that content update may be needed in run-
time, arrangements must be made regarding instruction and authoriza-
tion of those responsible for the updates.

4. A helpdesk service should also be provided, for both students and staff.
The need for helpdesk support is likely to vary depending on the scenar-
ios in use. The experiences of the OUNL suggest that with tailor-made
scenarios the helpdesk function may become quite complex. Filtering
requests for help, in terms of identifying what the problem relates to (the
student’s computer, provider services, the OUNL learning environment,
etc.), becomes more complex with LD, as the delivery system (interface
and database operations) and the designs themselves may be potential
sources of problems. Consequently, it is recommended that helpdesk
staff should get back-up from the educational specialists involved in the
design of the LD courses as well as from the staff responsible for
Edubox.

15.8 Conclusion and Discussion

Integrating LD within an organization involves a considerable degree of
planning, even if we take into account that in future many tasks will be

15 How to Integrate Learning Design into Existing Practice 267

facilitated by increasingly sophisticated and user-friendly tools. The need
for additional organization stems from the fact that the deployment of LD
introduces new tasks (e.g. related to the publication and authorization of
courses), changes current tasks and the tools used to perform them (e.g.
design, editing) and may even add to current tasks (e.g. helpdesk support).

In addition to providing staff with sufficient training in order to enable
them to adjust to these alterations, the reason for these changes must also
be carefully communicated. A notion not uncommon in the field of organ-
izational change states: “As much as possible, necessary skills and favor-
able attitudes should be fostered before changes are introduced” (Johns
1996, p. 565). However, even though permutations on an organizational
level may be justified, it may not always make similar sense on the indi-
vidual level. This is why some level of reluctance or even resistance can be
expected in bringing about these changes.

Favourable attitudes require efficient and user-friendly tools. Until these
tools are available it is necessary to proceed with care. Even when highly
efficient and user-friendly tools have become available, choosing a suit-
able deployment strategy will be an important first step. The choice be-
tween a tailor-made approach, a more restricted approach or a combination
of both will also influence the selection of tools. Therefore, in answer to
the question “How do you deploy LD within your organization?”, our
main recommendations are as follows:

1. Decide on the level of pedagogical flexibility/constraint required and
choose tools accordingly. Other factors which should be considered in-
clude: the degree of (de)centralisation, level of specialization of staff,
work processes, the need for runtime flexibility and cost-effectiveness.
Generally speaking, allowing more pedagogical flexibility will produce
higher expenses, due to the time needed to develop LD courses.

2. Following the guidelines provided in this chapter, consider the work-
flows involved and decide to what extent they either are supported by
the tools chosen, or have been made redundant by increasingly sophisti-
cated tools.

3. Communicate the rationale behind the deployment of LD, the conse-
quences involved for staff and train staff to use the tools chosen.

Part III

EXPERIENCE

The final part of the book contains seven chapters presenting specific pro-
jects and initiatives that explore the use of LD within a specific context:
company training, distance education, secondary level school and medical
education. Since the LD specification was only released quite recently,
most of the projects (also) deal with the development of tools as a condi-
tion for any experimentation in practice. The last chapter explores an ex-
ample in some detail, examining both the LD code and interface used by
learners.

16 Applying Learning Design to Self-Directed
Learning

Martin Morrey, Charles Duncan, Peter Douglas

Intrallect, Linlithgow, Scotland

16.1 Introduction

In 2001 Intrallect Ltd was asked to deliver the first part of a large-scale
programme of on-line learning for meteorologists. The customer,
EUMETSAT, is a European agency responsible for the satellites that pro-
vide cloud images and derived data products to European meteorological
services. EUMETSAT was about to launch its second generation of Me-
teosat satellites (MSG) and needed to train its customers how to use the
new data.

Intrallect Ltd is a software company based in Linlithgow near Edin-
burgh, Scotland, which specialises in innovative e-learning solutions and
learning object management. The company was spun out of the University
of Edinburgh by the authors in 2000. Intrallect’s three founders are all for-
mer atmospheric scientists, so they had good knowledge of the subject
domain for this project. In their academic careers Intrallect’s founders have
been involved in several large-scale projects to deliver learning on the
web. One of these, EuroMET (Gondouin 1996), was an EU-funded project
which produced 4500 web pages of interactive learning content in each of
four languages.

The scale of the EuroMET project led the team to develop a set of prin-
ciples for e-learning development that they have applied in all their subse-
quent work:

learning content should be as granular as possible (Duncan 2003)
content should be separated from style and the delivery technology
navigation of the granular materials should be defined externally, not
embedded in the materials (Koper 2003b)
most learning interactions can be expressed as an instance of generic in-
teraction type.

272 M. Morray et al.

The motivations for these principles are to maximise scalability, reus-
ability and future proofing in the development of learning content. During
EuroMET and related projects a kit of authoring tools and delivery tools
was developed that applied these principles. The subsequent emergence of
XML, and applications of it like the Educational Modelling Language
(EML 2000), mean the above principles can be applied using readily avail-
able and widely used technologies. The authors were attracted to EML
over other educational modelling languages (Rawlings et al. 2002) because
it enables educators to define completely whole courses independently of
the delivery technology, while potentially supporting a broad range of
pedagogies.

This chapter aims to give the reader an impression of some of issues that
may need to be considered in creating a practical implementation of Learn-
ing Design. The solution described does not use all the potential of Learn-
ing Design, because it was designed to satisfy the needs of independent
learners, but it is a valuable example of how a profile of Learning Design
can be developed to suit the needs of a particular project.

16.2 Requirements

The contract included requirements for a set of bespoke authoring and
maintenance tools, and three initial “modules” of learning content. The
Statement of Work stated that the solution should have the following gen-
eral characteristics, among others:

“Follow a structure based upon a library of modules.”
“Present clear learning objectives and follow a solid pedagogical
scheme.”
“Different courses can be constructed from a common module library.”
“The structure will allow easy navigation (and location) throughout the
material.”
“The contents should be structured to allow ease of translation into other
languages.”

The initial content was to be the seed of a library of reusable “units-of-
study” which could be combined to create bespoke courses to suit particu-
lar institutions and study groups. The materials needed to be usable across
a range of media, specifically the web and CD-ROM, so it was necessary
to separate the learning content from the delivery technology. The target
learners were weather forecasters in European meteorological organiza-
tions, considered to have a self-motivated and self-directed approach
(Fischer and Scharff 1998) to their professional development.

16 Applying Learning Design to Self-Directed Learning 273

A high frequency of formative interactions was required in the material,
ideally at least one in each “knowledge object”. The set of generic interac-
tions that was agreed with the customer is listed in Table 16.1. The content
of the questions and the content of the feedback for correct or incorrect an-
swers could all contain images as well as text. Sequences of questions of
the same type were displayed one after another.

Table 16.1. Agreed set of generic interactions

Interaction name Description
Multiple choice ques-
tion

One or more questions in which several choices
are presented, one of which is the correct answer.

Multiple response ques-
tion

One or more questions in which several choices
are presented, one or more of which are the cor-
rect answer.

Matrix question A series of questions in which the potential an-
swers are all of the same type and presented in
columns.

Image hotspot An image is presented with a question whose solu-
tion is found by clicking on hidden areas in the
image. Images may be multi-spectral, in which
case the images are presented in a stack which can
be viewed one image at a time.

Drag and drop The question may include a background image
and the interaction involves moving one or more
text phrases or images to specified locations (for
example, to form a list, or label a diagram). One
draggable object may be located in multiple drop-
pable locations.

Animation A series of images are displayed and played as an
animation. The controls available to the student
include: start, stop, pause, step forward, step
backward, play once, loop, swing, increase speed,
decrease speed, show only every second image.

Slide show A series of images is presented each with a text
caption. The student can step backwards and for-
wards through the sequence.

Slide show combined
with MCQ

Similar to Slide show but for each image in the
sequence a multiple choice question can option-
ally be presented.

Special Any valid code on a web page can be included us-
ing this option, which makes it easy, for example,
to include Java applets.

The material was required initially in two languages, English and
French, with the potential for translation into further languages later. A

274 M. Morray et al.

reference library was needed as part of the “environment” to give access to
a significant collection of background material.

16.3 Application of Learning Design

16.3.1 Management of the Project

The high degree of flexibility required by the customer led the Intrallect
team to choose EML to form the backbone of an effective solution. The
activity model of EML was attractive because it allowed the pedagogical
approach to be separated from the creation of the content. The built-in con-
tent model of EML allowed content to be written before the page design
and interactivity mechanisms had been finalised. Translation of the text-
based material was simplified because it was defined in a structured for-
mat. All of these activities could be progressed in parallel during the pro-
ject.

16.3.2 EML and Learning Design

The original work was all completed before EML had been released
through IMS as Learning Design (LD 2003). However, the use of the EML
activity model described is equivalent to an implementation of LD. As de-
scribed below, the Question and Test Interoperability Specification (QTI
2003) was used as the interaction model instead of EML’s own interaction
model, so this is highly relevant to an LD approach. Although the EML
content model was used, it could easily be replaced by an alternative such
as XHTML-Basic.

16.3.3 Navigation Model

The material was revealed to the learners as a set of “modules”, which
each required approximately 45 minutes of study time. The modules were
viewed in an “Environment” which included a library of relevant reference
material, links to communication tools, and a glossary of terms. Because
the materials were designed for self-study, only the “learner” role was
used. Modules were assembled from the units-of-study, in a branching
path, including core material and optional sections.

In LD terms, each unit-of-study was a set of “knowledge objects” con-
nected in a linear navigation scheme. The ordering of these knowledge ob-

16 Applying Learning Design to Self-Directed Learning 275

jects into a unit-of-study was defined in a simple activity-sequence. At the
next level in the hierarchy, units-of-study were combined in a parent unit-
of-study which defines a module. The conditional paths between the child
units-of-study were expressed as nested activity-structures. In order to
provide a usable interface, it was necessary to limit the depth of nested ac-
tivity-structures to three levels.

Fig. 16.1. Diagram showing the possible paths a learner could take through an ex-
ample module. Each numbered square represents a unit-of-study. The expected
movement is from left to right

An example of module structure is shown in Fig. 16.1. Learners were al-
lowed to take any path through a module they chose, even jumping to the
last unit-of-study or moving randomly through the units-of-study, but there
was a notion of a recommended path which was defined in the EML
“Method” for that module. An example of the “Method” part of the EML
describing a parent (module-level) unit-of-study is given below. “Link-
name” attributes have been removed for clarity.

<Method>
<Activity-structure Default-visibility=“Show” Id=“module”>

 <Activity-sequence>
 <Unit-of-study-ref Ref-worldwide-unique-id=“1/struct.xml” />
 <Activity-selection Number-to-select=“1”>
 <Activity-sequence>
 <Unit-of-study-ref Ref-worldwide-unique-id=“3a/struct.xml” />
 <Unit-of-study-ref Ref-worldwide-unique-id=“3b/struct.xml” />
 </Activity-sequence>
 <Unit-of-study-ref Ref-worldwide-unique-id=“3c/struct.xml” />
 </Activity-selection>
 <Activity-selection Number-to-select=“0”>
 <Unit-of-study-ref Ref-worldwide-unique-id=“4/struct.xml” />
 </Activity-selection>
 <Activity-selection Number-to-select=“2”>
 <Unit-of-study-ref Ref-worldwide-unique-id=“5a/struct.xml” />

276 M. Morray et al.

 <Unit-of-study-ref Ref-worldwide-unique-id=“5b/struct.xml” />
 <Unit-of-study-ref Ref-worldwide-unique-id=“6/struct.xml” />
 </Activity-selection>
 <Unit-of-study-ref Ref-worldwide-unique-id=“7/struct.xml” />
 </Activity-sequence>
 </Activity-structure>
 <Play>
 <Role-ref Id-ref=“learner”/>
 <Activity-structure-ref Id-ref=“module”/>
 </Play>
</Method>

Each unit-of-study has a reference to a “struct.xml” file in a sub-
directory. This file contains the definition of the child unit-of-study, in-
cluding its learning objectives and the linear navigation of its knowledge-
objects.

16.3.4 Extending the Interaction Model

The set of generic interactions agreed with EUMETSAT (Table 16.1) re-
quired a richer set of interactions than was available in EML 1.0. The ob-
vious alternative was to use the QTI specification, which could support
almost all the required interactions. After speaking to members of the
OUNL team it became clear that it would be possible to replace the EML
interaction model with QTI by inserting the QTI DTD into the modular
version of the EML DTD.

In hindsight a better solution would have been to use XML namespaces
to include QTI, but namespaces are not very compatible with XML de-
fined in DTDs. At the time XML Schemas had only just emerged, and the
EML and QTI specifications had not yet been given XML Schema bind-
ings. If the project were being done again now, the most sensible approach
would probably be to use XML namespaces to combine a pedagogy-
defined LD with content described in XHTML-Basic and interactions in
QTI.

16 Applying Learning Design to Self-Directed Learning 277

16.4 Realisation

16.4.1 Design of Navigation Interface

One of the key challenges was to realise the “learning design” in a way
that was easily comprehensible to the learners when they were navigating
their way through the units-of-study. The Intrallect team came up with a
“stepping-stone” metaphor for a unit-of-study. This made it possible to
visualise a range of possible pathways through the units-of-study.

In the web realisation of this metaphor, colour was used to indicate
completed, suggested and optional units-of-study. Learners were allowed
to “jump” to any stepping-stone they wished, but a recommended path was
always available. Figure 16.2 shows how the module structure described
above was revealed to the learner.

Fig. 16.2. Learners’ view of the module structure

16.4.2 Structure of the Material

An XML editor applying the combined DTD was used by the content au-
thors. A set of templates was provided to avoid having to create objects

278 M. Morray et al.

from scratch. Reusable and subject-specific media files are stored in sepa-
rate sub-trees of the directory structure, shown in Fig. 16.3.

Fig. 16.3. The directory structure

Apart from included multimedia resources, such as imagery and video,
all content and navigation was described entirely in XML (EML and QTI).
Each knowledge object was defined in a separate EML/QTI file, known as
a “source” file. These files were stored in a predefined directory structure,
shown in Figure 16.3.

The “source” directory has two language subdirectories: “english” and
“french”. Translated copies of the English material were mapped into an
identical structure in the “french” sibling directory. In this example the
three modules are “calib”, “channels” and “rds”. Each of these modules
contains its units-of-study as subdirectories. Each unit-of-study subdirec-
tory contains the knowledge object files.

The same directory structure also holds the “www” files (i.e. the files
containing the HTML that is generated by the transformation) and the
“tools” required to transform the source files to HTML. Another directory,
“cdrom”, at the same level as “www”, contains the files making up the

16 Applying Learning Design to Self-Directed Learning 279

CD-ROM specific version of the modules. The multimedia resources for
all modules and units of study are in the “resource” directory which has
the same subdirectory structure.

16.4.3 Rendering of Pages

XML Stylesheet Language Transformations (XSLTs) were defined to turn
the EML/QTI source into pages of Dynamic HTML for web or CD-ROM
viewing. Figure 16.4 shows an example of how the HTML output looks
when displayed in a web browser.

Fig. 16.4. A screenshot of a rendered page showing a multiple choice question
with feedback box open

280 M. Morray et al.

Access to the navigation interface and the rest of the environment is
through the toolbar on the left-hand side.

Since this was a single-learner model and no summative assessment was
included, no server component was required for the actual delivery of the
learning. All generic interactions were realised in client-side DHMTL and
JavaScript. EUMETSAT wanted to gather statistics on the use of the mate-
rials, so tracking of page access was required. This was achieved using a
simple CGI script (Black et al. 1999), which wrote a record of each page
access to a log file.

16.5 Project Outcomes

A working implementation of the modified EML DTD was produced, in-
cluding a complete transformation of the XML source into HTML, which
can be viewed in any recent version of the Netscape or Internet Explorer
web browser. A sample of the resulting learning materials can be viewed
on Intrallect’s website (Intrallect 2002). The tools are still being main-
tained and updated by Intrallect as part of an ongoing contract with
EUMETSAT.

Intrallect has since run four successful training courses for trainers from
EUMETSAT and related organizations in how to apply the MSG-CAL
tools. The tools have also been adopted by the EUMETCAL project, a col-
laboration of European meteorological services, and renamed “Meteo-
CAL”. Support for the Spanish language has been added.

16.6 Conclusions

A practical implementation of EML/LD was created which satisfied the
customer’s need for a flexible and future-proof solution for delivery of
learning material over the web and on CD-ROM. LD can be supplemented
with other models such as QTI to create a platform-independent definition
of a set of highly interactive learning materials. It is not necessary to have
a complete set of off-the-shelf solutions to do very useful things with LD.
Users will sometimes be happy managing XML source if they are given
suitable templates to work from. Applying an LD approach can also give
significant advantages for the management of content-development pro-
jects.

17 Applying Learning Design to Supported Open
Learning

Patrick McAndrew, Martin Weller

Institute of Educational Technology, The Open University, Milton Keynes,
UK

17.1 Introduction

In this chapter we consider how Learning Design (LD 2003) can be ap-
plied to “distance education and in particular the model of open learning
applied in our organization, The Open University. We do this by reflecting
on the changes underway as more course are taught on-line, and looking at
the lessons from applying LD to some activities from our courses. From
this experience we believe that LD can apply to the design process as well
as to course delivery and we expect to develop its use more fully as tools
are developed.

The Open University in the UK has a well-established and successful
approach to distance education. This approach has been termed Supported
Open Learning (SOL) and is an holistic approach combining the use of
different media with active support from tutors working with relatively
small groups of learners. The roots of this approach are in the use of high-
quality media in print, audio, video and broadcast television with students
offered tutor support through day-schools, telephone and formative com-
menting on assessments. However, The Open University is now one of the
largest providers of on-line education with over 200,000 learners on-line
and single presentations of on-line courses that have exceeded 10,000 en-
rolments. This change in focus has been accompanied by adjustments in
the models for participation in courses and in approaches to production.
The Open University has recognised the need to review how it can adopt
methods that capture the success of its experience, but also encourage
sharing of models and closer working between pedagogic designers and
those implementing the components used in on-line teaching.

LD is one candidate for the foundation for the representation of courses
at the University. The LD specification offers an approach to representing
course materials that captures the design of the activities and the roles ex-

282 P. McAndrew, M. Weller

pected of the learner and teacher. Once the application of LD moves be-
yond single courses to represent generic, sharable models for courses and
for activities within courses, it can then offer an effective tool and take its
place in the production process. It may then become the catalyst in the
creation of a more open approach to supporting the community of learning
technologists and academic teachers (Laurillard and McAndrew 2003).

LD, and the Educational Modelling Language that came before it, claim
strengths in being neutral in their pedagogy. This is an important attribute
of the approach as it allows all aspects to be represented; however, the
overall goal is to represent and encourage “good” pedagogy. New technol-
ogy in particular has shown (e.g. Butson 2003) that it can support bad
pedagogies as well as good. Indeed it can appear to encourage less good
practice by obscuring what was known before. In the experience of The
Open University the introduction of on-line learning has meant that stages
of production have become compressed, editing cycles have been carried
out less thoroughly, and validation and testing of learner actions have been
omitted. The result has been a running together of teaching materials with
tools and resources that can be confusing to the students. The supported
open learning approach, where a human tutor gives guidance, has proved a
robust strategy for making up for weakness in course materials, but means
that there is greater variation in student experience and those course mate-
rials that lack clarity can persist.

Improvements to this process will come from making the design of the
learning more explicit; with the potential for validation either by checking
before proceeding with implementation or by positive experience from
other instances of the same structures (e.g. a similar activity on another
course). Such designs are sharable and should improve and evolve. LD
clearly offers the potential to help address these issues. The Open Univer-
sity has therefore carried out a partial review of LD to see how it can be
used. In particular it has looked at some courses which can be considered
to have positive attributes; they are highly rated by their students, they
have modular or object-based structures, and an activity-based underpin-
ning. The activities from such courses appear highly suitable for the appli-
cation of LD and are considered as the initial test. It is important to recog-
nise though that this is part of a wider plan to review the models for all
courses across the University. Therefore as the process is adopted we will
be examining ways to include more traditional course approaches. We are
also left with further issues of:

How can we determine the overall effectiveness of material?
Can we use a theoretical framework (such as activity theory) to carry
out pre-assessment of activity structures?

17 Applying Learning Design to Supported Open Learning 283

At what granularity (course, block, activity, etc.) is it appropriate to ap-
ply LD?
How stable is a design? Can making a small change in one line make a
significant change to the overall experience?

17.2 Supported Open Learning and Learning Design

LD has potential for application at different scales. In The Open University
we are particularly interested in whether it can be applied to the team-
based approach to developing courses that is used for most of our courses.

17.2.1 The Open University Approach

In Supported Open Learning at The Open University in the UK a central-
ised course team is responsible for producing the course materials and an
overall design for the student’s learning experience. This will typically be
described within a “course guide” that explains how the student is ex-
pected to study, accompanied with a timetable that sets out expected pro-
gress. On a typical course therefore a group of students are expected to act
as a cohort, and this is enforced through the use of assessment in the form
of Tutor Marked Assignments (TMAs) with tight deadlines. The student
body is usually organized in groups of approximately 20 students who are
assigned to an Associate Lecturer as their tutor. The tutor’s role is to sup-
port the students through remote contact and in face-to-face tutorial meet-
ings, and to give detailed feedback on the TMAs. This model has proved to
be very successful in enabling students to study with the Open University
and to allow variation in how students and tutors operate. However, while
this approach still applies as a general description there are now many
variations in the support model especially as applied in on-line learning.
For example, there are now cases where the course guide and material
supplied to the students has been reduced so that the emphasis is on work-
ing collaboratively in groups guided by their tutors, either using activities
designed by the course team or related activities designed by the tutors.
Conversely on some courses tutor involvement has been reduced with the
on-line activities providing the primary guidance and opportunity for inter-
action in student peer groups with reduced back-up support from tutors
who now have responsibility for 200 students rather than 20.

This new situation, with more variability across the courses, raises ques-
tions on the underlying model: Is more support needed or is less? How can
the tutors be supported if they can now choose the activities their students
carry out? Can cases of best practice, or poor practice, be recognised and

284 P. McAndrew, M. Weller

disseminated? To answer questions such as these an important step is to
know how to describe the designs of the course and activities. LD offers
scope to do this; in particular if it can then demonstrate activity models
with different roles and levels of support it will be valuable in many ways,
such as for course team review and discussion and staff development. This
would be the case even without full implementation and integration into an
LD player. For example, the course planning process at The Open Univer-
sity requires media selection and specification at a very early stage, this
would be assisted by being able to prepare or adopt designs before devel-
oping materials but would not need these to be supported by a full delivery
system.

17.2.2 Course Models

The context for The Open University is a comprehensive review of its ap-
proach to courses with the aim of improving management of the costs as-
sociated with courses by increasing its understanding and use of models
for the new courses that it produces. The course models review that has
taken place has produced more than 30 recommendations across imple-
mentation, financial, development and educational issues.

LD can have an impact across the whole of the course models project,
but some of the elements in the review can be seen to have a “top-down”
rationale; for example, the initial breakdown of curriculum types is into
five broad categories that are related to general approaches to the curricu-
lum and teaching strategy. LD has a “bottom-up” impact on the course
models as it allows particular structures to be described, and a process im-
pact as it can change the decision points and production flow. The key
elements that we see LD influencing can be categorised into the provision
of descriptive tools and collections of designs, application of testing and
validation of such a description and changes to production processes. The
successful adoption of LD does not necessarily mean that it can meet all
these needs. Early use of LD is more likely to be as a tool for describing
course structures rather than a production route for course materials. Ac-
cordingly the initial trials looked at whether examples of good practice can
be encoded in LD and reflected on the value of that process.

17.3 Applying Learning Design

An initial assessment of the value of LD was carried out by selecting a
course (Learning in the Connected Economy) and converting short activi-
ties to LD format.

17 Applying Learning Design to Supported Open Learning 285

17.3.1 Learning Design Applied to a Simple Example

The content for the chosen course is already in the form of learning objects
(using an approach described in Weller et al. 2003). The object chosen for
this task was one entitled “Technology viewpoints”. It was selected as it
represented a middle-ground in terms of complexity. It contains two activi-
ties, a number of external links as well its own textual content. Thus it is
more than simply text, but not as complex as a collaborative task that calls
on external services such as synchronous collaboration tools.

LD was applied through the formal stages encouraged in the best prac-
tice guide. That is, a narrative was constructed, activity analysis carried out
using UML representation, and an XML instantiation produced incorporat-
ing the method in the form of plays and acts. The chosen activity was
found to match to Level A in LD; since there is no need for complex inter-
action, there was only one role, that of a student/learner; and with no need
for synchronisation a single play and single act LD was produced.

17.3.2 Learning Design Applied to a Multi-Role Example

The simple example above demonstrated the steps and feasibility in con-
verting material into LD, but the potential of LD was not demonstrated.
This is seen far more with Levels B and C of the LD specification. Level B
is probably an order of magnitude more complex than Level A and would
be the real test when designing an LD implementation system. A more
complex activity involving collaboration was then selected. The activity is
a four-week debate, which involves the students in researching material,
providing summaries of articles, discussing asynchronously, engaging in a
synchronous debate with set roles and then writing a report. As such it is a
very complex task to coordinate.

For this example there were six role: a tutor/support role and five dis-
tinct learner roles within the debate (Proposer, Opposer, Scribe, Technical
reviewer, Interrogator). The debate in this example takes place first in an
asynchronous and then in a synchronous format. Dealing with these to-
gether proved difficult and so activity diagrams were drawn for the sepa-
rate activity parts. The role assignment for the synchronous debate is
shown in Fig. 17.1 following the swimlane convention. The bold lines
show a division into three acts as the selection of roles requires a synchro-
nisation point as does completion and conclusion of the debate. Analysis
of this relatively complex activity showed that LD is capable of represent-
ing such a process but also that it was time consuming, especially if the
end point was to be a complete XML instantiation.

286 P. McAndrew, M. Weller

Tutor ScribeInterogatorOpposerProposer Reviewer

Allocates
Roles

Technology
Review

Summarise
Discussion

DiscussDiscussDiscuss

Opening
Statement

Opposes
Statement

Fig. 17.1. UML activity diagram for synchronous debate showing tutor and
learner roles

17.3.3 Learning Design as a Design Tool

In the previous examples LD was applied through the formal stages en-
couraged in the best practice guide. As discussed in Chap. 7, tools are be-
ing developed, but many of these stages have yet to be supported by au-
thoring tools, validation and connection through to a runtime player. The
motivation for some of the stages is therefore weak. However, the key
process of producing a formal, or semi-formal, representation of the activ-
ity has shown itself to be revealing. This stage may well be the key for re-
use of designs and the demonstration of explicit structure in courses.

17 Applying Learning Design to Supported Open Learning 287

A further course activity from a different course, Application of Infor-
mation Technology in Open and Distance Education, was considered to-
gether with the use of the LD-inspired Learning Activity Management
System (LAMS). LAMS (Dalziel 2003) offers a simple interface for con-
structing sequences of linked actions that may have conditions attached. It
provides an integrated editor, group management system and a set of col-
laborative tools matched to particular consideration of roles. As such it is
much less flexible than LD and, in its initial version, can only be used if its
own collaboration tools are adopted. This set of conditions made it unsuit-
able for a complete implementation within our courses; there was mis-
match between role descriptions and between the tools that can be used.
However, as with LD, the value of the tool emerged during the design
process. An activity (originally designed by one of the authors) in the
course was chosen that has had problems in previous presentations. At the
point in the course when they meet the activity students are expected to
have experienced various approaches to collaboration and are presented
with a task (evaluating and discussing examples of educational multime-
dia) that involves several stages. Breaking down the task into separate
linked activities (shown in Fig. 17.2 using the LAMS design mode) re-
vealed that the written activity description had missed out a collation ac-
tion within the sequence presented to the students (see Fig. 17.2). This had
not always been critical as tutor and peer support would often compensate
but indicated a weakness in the design that generated uncertainty in the
flow of the task and, in some cases, had caused the further stages to be
poorly completed. This early realisation could then be represented in the
construction of the LD representation of the play by introducing a new act
that represented the task.

17.3.4 Discussion of Learning Design Examples

The complexity apparent in writing down these examples highlights an
important issue associated with LD (and indeed all e-learning specifica-
tions), which is that they entail an increased overhead in the creation of
educational content compared with a “normal” authoring approach, where
some details are not recorded. To justify the overhead of LD we need to
consider what the advantages are in comparison with an approach that does
not correspond to any of the specifications (though it would also be valid
to compare with other specifications such as Simple Sequencing (SS
2003). One of the main potential advantages is reusability. So, while the
above example may be complex and time consuming to specify, once this
has been done the design can be reused with different content. This is be-
cause LD separates to some degree the content and the pedagogy.

288 P. McAndrew, M. Weller

Fig. 17.2. LAMS activity structure showing new activity introduced for valid flow

Within most institutions, including The Open University, the number of
different types of activities is actually quite limited. A good deal of the
teaching can be accommodated within a single-user linear model involving
one play and one act (as in the first example). Producing LD for a whole
course such as Learning in the Connected Economy could furnish the Uni-
versity with designs applicable across many of its other courses. In particu-
lar it may be possible to operate at a finer granularity than the course level
that is the initial focus of the course model review described above. It is at
the level of individual activities that reuse could be accomplished, and
these could be packaged together into many different types of courses. LD
can also then be used to specify a whole course if that is needed.

Another issue about LD is the implied prescriptive nature of each de-
sign. There may be events or paths that are unforeseen by the learning de-
signer and an LD approach might seem at odds with the flexible and dy-
namic nature of e-learning. Indeed, whether any specification can cover all
the types and sequences of interaction that take place in learning is an un-
resolved question that will only be addressed by using LD in earnest. On
the other hand, LD aids the educator in specifying what it is they want to
happen, and thus can make it more likely that their educational goals will
be achieved. It is worth stressing that LD does not remove the human edu-
cator from the system, but because the specification has been made more
explicit, it does mean that the environment can be used to aid the educator.

17 Applying Learning Design to Supported Open Learning 289

For instance, many of the steps in the complex example could be auto-
mated or at least have associated prompts. Having such support can be par-
ticularly important when operating on a large scale in distance education.

17.4 Plans for Learning Design at The Open University

The initial work undertaken at The Open University has shown the use of
LD as support for thinking through structures and reflecting on the differ-
ent models or templates that we can support. However, development of an
overall environment incorporating LD would bring further benefits and
enable a path from design selection, through validation (technical and
pedagogical), personalisation and presentation to the learners. The multiple
role representation and synchronisation features in the full specification
would extend this to flexible cohorts of students (this has been called “fill-
up-and-go” presentation) and to assessment. This work is under develop-
ment as shown by the work represented in other chapters of this book. The
Open University has started work to adopt the CopperCore LD engine pro-
duced by the OUNL (see Chap. 6) and carry out a pilot integration within a
flexible knowledge and content management system, the OU Knowledge
Network. This will allow a user interface to be developed for the manage-
ment and sharing of design templates, and instantiation with the tool sets
that are available to the Knowledge Network. The first evaluation of this
system will allow validation of designs and demonstration of their feasibil-
ity; as has been noted above, this in itself can help support greater pre-
specification of course design. The second evaluation will seek to apply
LD within staff development; this application has been selected as it brings
challenges about roles and formation of student groups, while avoiding the
need for the stringent quality assurance and scale requirements of student
facing systems.

Beyond the pilot phase LD offers a way to formalise the activity struc-
tures that are used within our courses. This formalisation can allow re-
search on key aspects of interest, for example:

Analysis of the activity structures against theoretical positions, such as
activity theory (Mwanza and Engeström 2003).
Research in the stability of activity designs and the context in which
they can apply.
Methods to classify the effectiveness of designs and to share descrip-
tions of best practice through the database and related case studies.
Development of template collections for use within The Open Univer-
sity and support for staff development in how to use them.

290 P. McAndrew, M. Weller

The support offered by LD for the analysis needed for the course mod-
els, implementation, such as the calculation of workload and identifica-
tion of assessment.

17.5 Conclusion

LD is an exciting concept that enables us to engage with ways to describe
educational design and material in a new way. The consequences of a full
LD implementation could mean entirely new ways of working with separa-
tion of design, content and presentation with benefits for sharing and reuse.
What the initial study at The Open University has shown is that even be-
fore such implementations are available the approach advocated by LD is
allowing a fresh look at the structures and designs in use across the Uni-
versity and giving a practical way to implement reviews in a way that can
support staff and potentially improve the student experience. LD can pro-
duce good descriptions of activities and in doing so reveal aspects that are
unclear. It may be possible to break down courses informally into tasks
and roles without using the full IMS specification, however, the formal
approach taken by LD means that technical validation of materials can
automate some of the checking and management of the designs. Forward
plans to adopt LD can build on the significant community activity now
taking place, both within the Valkenburg Group, supported by the UN-
FOLD project, and outside any formal support system. We expect that
progress will be made on integrated players, the design of tools that can
support specialised design aspects, sharing of designs, and research into
pedagogic validation.

The work of The Open University in the UK is to make initial contribu-
tions to these developments and to look for ways to apply the tools as they
are developed.

18 Using Learning Design to Support Design and
Runtime Adaptation

Peter van Rosmalen1, Jesús Boticario2

1 Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

2 aDeNu Research Group, Artificial Intelligence Department, Computer
Science School, UNED, Spain

18.1 Introduction

One of the key challenges in e-learning is to allow for adaptation to learn-
ers’ personal interests, characteristics and goals. E-learners require content
and activities based on their preferences and prior knowledge, not just
static, page-turning sequences. In this case study we describe the aLFanet
project,1 which intends to develop a learning environment that integrates
new principles and tools in the field of learning design and artificial intel-
ligence. The created environment is to offer intelligent personalization ca-
pabilities in order to support effective and flexible learning scenarios con-
sistent with the demands of the knowledge society.

In the project we focus on two almost opposite approaches to adapta-
tion, both common in e-learning. In the first approach, dominated by a
strong tradition in instructional design, a team produces a detailed design
of content, interaction and presentation. Within the design different options
may be worked out for different learners, based on such user data as level,
interest or learning style. The options for adaptation are prepared at design
time and require limited, if any, interaction of tutors at runtime. The sec-
ond approach relies on tutors having an active role. The author, and possi-
bly also the tutor, designs the material. Subsequently, at runtime, the tutor
adapts the course based on the learners’ interactions (usage data), i.e. to
what extent do learners succeed and which questions arise? Both of these

1 The authors thank their colleagues at SAGE, EDP, KLETT, ACE-CASE, UNED
and the Open University of the Netherlands for their contributions to the deliver-
ables upon which this chapter builds. The authors’ efforts were partly funded by
the European Commission in aLFanet, active Learning For adaptive internet (IST-
2001-33288). For more information see http://alfanet.ia.uned.es or
http://www.learningnetworks.org.

292 P. van Rosmalen, J. Boticario

approaches, however, tend to be (too) expensive as a result of high devel-
opment costs or high delivery costs due to the required extensive support.

The approach is summarized in Figure 18.1 and represents the so-called
open framework for aLFanet.

Fig. 18.1. Relating design and runtime adaptation

On top of the figure, the actors (authors) are designing courses using
Learning Design (LD 2003), which are used in runtime by other actors
(learners, tutors). There are three types of agents identified: agents that
support the designers at design time, agents that support the learners and
tutors at runtime and agents that relate the runtime with the design time.
The latter type of agents warn for instance the designers when the learners
and tutors in runtime behave different than the design prescribes, and warn
the learners, and learners and tutors are warned when they behave different
from the design intentions.

In this chapter we discuss this open framework developed in the aL-
Fanet project. To enable the design of this framework, a study was con-
ducted of tools, technologies and standards which allow for the outlined
approaches and are able to support them in an efficient and effective man-
ner. The section below first gives an overview of the results of this study
and subsequently discusses the reason for selecting LD. Next, the first ver-
sion of aLFanet is discussed. It describes the LD tools developed, an au-
thoring tool and an engine, and the two ways in which LD is used. The

18 Using Learning Design to Support Adaptation 293

first way, the ‘classical’ way, is to enable authors to create an explicit de-
sign of adaptive courses. The second way, specific to aLFanet, is to make
communication and collaboration possible between authors, tutors and
software agents, based on an explicit and machine-readable design in LD.
The chapter closes with the current progress and conclusions.

18.2 Adaptive E-learning Systems and Technologies

The requirements for aLFanet can be summarized into three main catego-
ries:

1. To what extent does the framework support active and adaptive e-
learning?

2. To what extent is the framework open to the use of different types of
learning models, alternative learning scenarios and new components,
such as agents?

3. To what extent does the framework support the user (author, student and
tutor) efficiently?

A review of existing technologies and systems covering e-learning sys-
tems, including web-based Adaptive Educational Systems, agents and
standards, was carried out to find solutions for meeting these requirements.
The main findings of this review are summarized in the paragraphs below.
Also, we discuss how using LD is expected to contribute to the first two
categories and the use of agents to the last (for the complete review, see De
Croock et al. 2002b; for a review of only e-learning systems, see Van der
Klink et al. 2002).

Most e-learning systems (WebCT, Blackboard, TopClass, Ingenium,
Docent, etc.) are not explicit about the didactical methods and models sup-
ported, nor is it possible to express them explicitly, as methods and content
are intertwined. Adaptation tends to be offered in the shape of mere prede-
fined settings requiring extensive customization. Web-based Adaptive
Educational Systems follow a similar approach as Intelligent Tutoring Sys-
tems and hypermedia systems. Intelligent Tutoring Systems (Wenger
1987) use knowledge about the domain, the student and about teaching
strategies to support flexible individualized learning. Adaptive hypermedia
(Brusilovsky 2001) apply different forms of user models to adapt the con-
tent and the links to the user. However, there are only few examples which
use standards or generic approaches, such as agent architectures (Paiva
1996), in order to improve adaptation to different settings.

It is important for aLFanet to build upon existing standards, in order to
enable an open framework. This is why a wide range of standards was re-
viewed, though it must be noted that, in reality, most of them are specifica-

294 P. van Rosmalen, J. Boticario

tions rather than formal standards (Van Es et al. 2003). The following
learning technology specifications were identified to be relevant:

1. Learner Information Package (LIP 2001), for student-related data which
needs to be exchanged between the different sub-systems.

2. Meta-Data (MD 2001), for content-related adaptation. The specification
creates a uniform way of describing learning resources, so that they can
be detected more easily and subsequently used.

3. Question and Test Interoperability (QTI 2003), for defining the structure
of questions and tests.

The use of these specifications still left a piece missing in the jigsaw.
aLFanet wants to offer a highly adaptive, personalized learning experience,
including a variety of pedagogical methods. This requires the capability to
model both structure and process, including the specification of roles and
activities. LD offers this capability and allows for the integration of the
other standards. Moreover, in-depth knowledge of LD is available and di-
rectly accessible in the aLFanet consortium.

Web-based technologies in conjunction with multi-agent methodology
form a new trend in the modelling and development of learning environ-
ments. Multi-agent methodology has recently appeared as an alternative to
conceive distributed learning applications (Webber et al. 2001). There are
two main reasons for this: the evolution of multi-agent technology itself is
one and the second is due to the fact that multi-agent methodology deals
well with applications incorporating crucial issues, such as distance, coop-
eration among different entities and integration of different software com-
ponents. Agents (Jennings et al. 1998; Wooldridge and Jennings 1995)
have proven to be useful in many different types of applications, from
email filters to traffic control or for guiding cooperation and communica-
tion among students/with lecturers (Boticario et al. 2000). A minimum re-
quirement for agents is reactivity: that is to say, agents perceive their envi-
ronment (which may be the physical world, a user via a graphical user in-
terface, a collection of other agents, the Internet or all of these combined),
and respond in a timely fashion to changes that occur in it.

LD can facilitate agents to perceive their environment. The events the
student is involved in can be formally derived from the learning design
(e.g. the activities, their resources, and the relations between the activities).
In addition, the agent can query the general properties of the learning de-
sign (e.g. the completion status of an activity). Finally, dedicated sets of
properties can be defined for use by a particular agent, describing an ele-
ment of the learning design or the state of a user. As for the user, some sets
are unique per individual, others for every individual for a specific course
run and some sets are common between groups of persons in a particular
role. Additionally, depending on the type of agent, LD can be used for task

18 Using Learning Design to Support Adaptation 295

allocation and control by assigning a task to an agent, i.e. by substituting a
staff role for an agent (e.g. an agent that automatically assigns a peer ready
to join a collaborative task).

18.3 The First Version of aLFanet

The assumption underlying the use of LD in aLFanet is that it can be used
to represent learning scenarios in a way that authors, tutors and agents can
manage. Authors use LD to specify advanced pedagogical designs, includ-
ing adaptation. They are provided with an authoring tool and templates for
different learning scenarios, which allows them to create new courses eas-
ily. This approach guarantees optimal support for learners in the learning
process. An LD engine (cf.. Chap. 6) translates and executes the learning
design, using the set of learning objects and services available. However,
not everything can be foreseen in the design process. Many unforeseen
events can occur during the actual learning process and there may be a
demand for additional support. Normally, tutors provide this additional
support. In part, tutor support may have been designed, for instance, for
marking an essay; another part of tutor support may become apparent dur-
ing the course, e.g. when students ask questions on how to proceed or how
to understand a certain topic.

In aLFanet, tutors are supported by agents which apply combinations of
machine learning algorithms to the data gathered from the actual users’
interactions. Thus, different types of adaptive features are provided, such
as automatic sub-grouping of learners according to specific criteria, auto-
matic message classification in forums, and supporting learners by rec-
ommending what to do next. Similarly, other agents provide meaningful
reports to the authors of the course based on learner interactions. They
compare the design and the expected results with the actual results and the
time needed to achieve them. Each of the actors – author, tutor and agent –
frame their actions on a pedagogical model explicitly defined in LD and
the properties derived from it.

In order to validate the idea behind this approach, a minimal learning
scenario (cf. Fig. 18.2) was designed, which involved the active participa-
tion of a tutor, two agents and a student.

LD is not explicit on how to integrate agents; in our case a choice was
made to model the agents as having a staff role. The agents communicated
with the other actors by sending a notification when they finished. The
resulting Unit of Learning (UOL) was successfully tested in Edubox 2.0
(cf. Chap. 19), to which two dedicated agents had been added.

296 P. van Rosmalen, J. Boticario

Method: Agents Supported Education
Activity 1 Role 1: Student Read and answer a set

of questions
Activity 2 Role 2: Staff - agent

to score assessment
Monitor the assessment
Score the assessment
Notify the tutor

Activity 3 Role 3: Staff Tutor Select topic area for
student

Activity 4 Role 4: Staff - agent
to select a resource
from an article data-
base

Monitor
Select an article for the
article database based
on (level, topic)
Notify the student

Play 1:

Activity 5 Role 1: Student reads
the introduction and
the advised article

Read the article

Fig. 18.2. The main design of the Unit of Learning

After the initial test a final architecture has been worked out. The archi-
tecture (Carrión et al. 2004) is a three-layer composition with an independ-
ent Authoring Tool to create the courses:

1. A Server layer is in charge of the user front-end, managing application
security, showing the user interface and tracing user interactions.

2. A Services layer is a group of services which provide the application
functionality and main logic. It contains, among other things, a Course
Manager, an LD engine, agents and an Interaction Module, which con-
tains the facilities for collaborative and user works tasks. The layer is
open to include new (types of) services. Figure 18.3 shows how LD is
positioned in relation to the Authoring Tool, the services and the user
front-end (a further description is given in the remainder of this chap-
ter).

3. A Data layer comprises the data management and storage.

18.3.1 Authoring, Publishing and Delivering LD

The Authoring Tool (cf. Fig.18.4) has been created in Groove
(www.groove.net), a peer-to-peer collaborative environment which is, as
such, particularly suitable for teams to create and share contents over the
Internet. Users can add tools to a workspace from a predefined tool-set,
such as forums, shared files and calendars.

18 Using Learning Design to Support Adaptation 297

Fig. 18.3. The aLFanet framework: ‘LD as communicator’ in between the various
services

Additionally, it is possible to integrate custom-made tools. The core part of
the Authoring Tool is the LD Editor. This sub-module allows the user to
create and edit courses in LD which are published in the aLFanet LMS.
The LD Editor closely reflects the structure of the LD specification with
some adaptations to enhance user-friendliness. It wraps the different con-
cepts of the learning design in sub-structures in order to be more intuitive
and conceptually organized to the user. Additionally, it makes sure that the
user can save a valid LD file at intermediate stages, too. However, al-
though the actual LD code is hidden, it still requires a solid understanding
of LD and its interdependencies. As a final result, a UOL can be saved as a
zip file following the CP specification (CP 2003).

Before a course can start, it needs to be populated with users (learners,
staff, etc.). The Course Manager includes interfaces for user creation and
deletion and for assignment to roles, runs and publications (see the previ-
ous chapters for an explanation of runs and publications). Additionally, it
includes the possibility to validate the content package and provides inter-
faces to access properties.

298 P. van Rosmalen, J. Boticario

Fig. 18.4. The main menu of the Authoring Tool and, on top, the LD Editor
(Learning Editor) opening screen

The LD engine, implemented using CopperCore (see Chap. 6), provides
the business logic for the delivery of the course and ensures property val-
ues are maintained. The engine itself also uses a set of implicit properties,
such as activity_completed and activity_visible, which are
not explicitly declared by the author in the learning design, but which cap-
ture the progress of the user. Finally, the actual activity tree (see ‘To Do’
in Fig. 18.5), composed by the LD engine for a user, is based on the run
and the role of a user, the status of the user and the status of other users.

18.3.2 Adaptation and Agents

In aLFanet, three different areas have been identified for adaptation to the
users’ preferences, habits, features, interests and needs. These areas are
adaptation included in the instructional design, adaptation of the interac-
tion and adaptation of the presentation. Additionally, there is another kind
of adaptation area, which is advice to the author on adapting the original
learning design. Each area is supported by an agent (or a collection of col-
laborating agents). The agents operate on the information available in the
learning design, in particular the properties, and on information obtained
by analysing user actions. At the moment, three agent modules are being
designed and under development: Multi-Agent Pedagogical Models
(MAPM), Adaptive Module (AM) and Audit. MAPM and AM support the
first three areas of adaptation, Audit supports advice to the author.

18 Using Learning Design to Support Adaptation 299

Adaptation included in the Instructional Design provides different
course contents, activities and services to the learner, depending on the
specifications of the learning design by the author. MAPM support the au-
thor in selecting and applying an instructional model. Giving the complex-
ity of this task, two generic pedagogical models have first been selected:
concept understanding and forming complex cognitive skills (Leshin et al.
1992; Van Merriënboer 1997). A simplified version of these models was
applied to an existing Spanish language course and expressed in LD. For
each type of learner the adaptation was based on the assessment of three
personal constructs: level of knowledge (absolute beginners, ‘false’ begin-
ners – people who have studied the subject before), cognitive modalities
(visual, auditory) and learning styles (thinkers, doers). The combination
gives eight possible learning paths. The next step is to define how MAPM
supports the author in applying these (and other) models and how it sup-
ports the author in defining a model in LD, e.g. with the help of wizard-
based templates.

Adaptation of the Interaction enables adaptive interactions during a
course. Thus, tutors and learners receive access to services, contents and
activities to work with, users to contact, etc., as needed. The adaptation is
provided by the AM and is based on learners’ interactions.

Adaptation of the Presentation deals with presenting a different user in-
terface to each learner, according to his/her user model. This adaptation is
also provided by the AM. To provide the adaptation of the interaction and
the presentation, a complex set of models has to be managed by the AM.
There are models for three different entity types: users, groups and ser-
vices. The AM combines information on the current learning context (for
instance, ‘which activities are available’) and properties of the learner
(such as background knowledge) with information obtained from user in-
teractions. It does so by applying a combination of machine learning algo-
rithms (e.g. an analysis of interaction data of the Interaction Module to
distinguish between discussion leaders and readers). The AM has a multi-
agent architecture which works autonomously to solve the set of adapta-
tion tasks it has been designed for, such as:

1. select a moderator for a group of learners in a group task;
2. recommend the next activity to a learner.

Finally, Audit is responsible for a specific form of adaptation: that is to
say, it supplies the authors with information on how effective (or efficient)
their design has been in practice. This will help the authors to adapt their
design if required. Audit analyses the extent to which the original design
and the actual learning practice match, by collecting and analysing the
relevant runtime data (see Table 18.1 for a simple example of the results of
a certain activity). It then reports the results to the author.

300 P. van Rosmalen, J. Boticario

Table 18.1. Runtime data associated with an activity

Field Value
Event
EventTimeStamp 5-11-2003 16:48:48
ActivityID Act 4
PlayID Ply 1
UOLID UOL 2
LearnerID Lrn 5
Result 3.2
RoleID Rol 2

Audit starts with some simple reports, such as the number of study
hours for a given learner and activity. The goal of these reports is to help
to observe (part of) the progress of students or a particular student. An ad-
ditional aim is to compile integrated reports on a course and report the re-
sults in relation to defined critical success factors. This helps authors to
assess their design (they get the average score or average study time for an
activity and can compare this to the expected score or study time).

18.3.3 Current Progress

ALFanet is built in three steps, each one increasing its functionality. Each
step includes a validation round with students from different backgrounds,
companies, private and university students, and in different domains,
Internet technology, language and waste management. The validation will
focus on authors, tutors and students and will include a full course cycle.
This means it will look at how a course is developed, used and updated.

A ‘proof of concept’ of this approach (see the scenario in Fig. 18.2) was
tested by using Edubox 2.0. Figure 18.5 gives a view of the current inter-
face, after the first development step. One part, ‘Recommendations’, is of
particular interest. It contains the suggestions automatically created by the
agents in the system and those provided by the tutor for the learner. In the
first step the validation of the system focused on usability, in particular
from the perspective of the author. A special point of attention concerned
the extent to which authors can successfully design courses which utilize
the adaptive options in the system.

The main requirements to ensure this are that each course is expressed
in LD and uses a minimum set of LIP and MD to supply the agents with
onset information. The first results of this validation show that the role of
MAPM is crucial for a common, non-LD-expert author. If presented with
only the authoring tool, a non-LD-expert author is limited to creating only
simple designs.

18 Using Learning Design to Support Adaptation 301

Fig. 18.5. A screenshot of the interface

For the next stages of development, the following issues need to be
studied

1. How well do design and runtime adaptations combine; which types of
intervention will be appreciated by the learner (and when); who is in
control?

2. Is LD (combined with other standards) sufficient to enable and structure
the communication between the different actors (in other words, is it
necessary to have an additional, dedicated ‘agents-LD’ specification)?

18.4 Conclusions

The objective of this chapter was to outline the role of LD in a framework
for an e-learning environment which integrates new methods and services
for active and adaptive e-learning. LD enables the formal description of
any learning design and can be used to communicate between the different
actors (authors, tutors and agents) in the framework. The first version of
the framework indicates that the approach taken is feasible and that the
framework is well worth exploring further in the pursuit of a generic, stan-
dards-based framework for e-learning.

19 The Edubox Learning Design Player

Colin Tattersall, Hubert Vogten, Henry Hermans

Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

19.1 Introduction

Part of the mission of the Open University of the Netherlands (OUNL) is
to innovate in higher education to improve the efficiency, effectiveness
and attractiveness of learning. New educational technologies provide one
means to this end, and the university is committed to technology develop-
ment and the advancement of technological knowledge. Specifications
form an important category of such knowledge, as highlighted by Gibbons
(2000), and OUNL devotes resources to the development of educational
technology specifications.

OUNL has offered on-line and blended courses for many years, and was
quick to see the need to support a wide variety of pedagogical approaches
and to liberate learning processes from the particular system(s) involved in
their delivery. These needs led to investments in the development of speci-
fications for describing the teaching–learning process, starting with the
Educational Modelling Language (EML 2000), and continuing with the
Learning Design specification (LD 2003).

EML’s development was driven by a series of requirements, including
the requirement for formalisation: “EML must be able to describe peda-
gogical models in a formal way, making them machine-readable so that
automatic processing is possible”. Here, automatic processing covers a va-
riety of mechanisms, from simple validation exercises, such as checking
whether the required learning resources are actually available, through to
full execution of an instance of the generic, modelled learning process. In
this latter case, we speak in terms of playing an instance of a Unit of
Learning (UOL), using software known as a player.

The investment in specification development at OUNL has been mir-
rored by an associated investment in software development, with two cen-
tral aims. First, to examine whether the requirement for formalisation has
been met (i.e. is it possible to implement a player for the specification?)
and second, to open the door for feedback on the player and specification,
promoting iterative development of both.

304 C. Tattersall et al.

Three generations of EML players have been developed, known collec-
tively as Edubox and designed to interpret and execute educational scenar-
ios and their content modelled using EML. These developments, which
proceeded both internally and with commercial partners, culminated in a
productionlevel system which is today used by thousands of students at
OUNL.

This chapter traces the development of the players before describing the
current version of Edubox in its broad production context, aiming to give
insight into the ways in which educational modelling has been applied in a
large production context.

19.2 The Historical Development of Edubox

The historical development of Edubox was driven by the development of
EML (Koper and Manderveld 2004). Table 19.1 summarises the develop-
ments.

Table 19.1. The historical development of the Learning Design specifications and
players

Year Specification Player
1998 (Q4) EML 0.5
1999 (Q4) EML 0.9 (April) ELON (“Edubox 1.0”)
2000 (December) EML 1.0 public

release
(June) Edubox 2.0.0

2001 Incremental versions up to Edubox
2.0.6

2002 (January) EML 1.1 (September) Edubox 3.0
2003 (February) LD approved (September) Edubox 3.7 in production

The Edubox players are used in the context shown in Fig. 19.1. Authors
use tools to create UOLs which are stored in a repository. A UOL mod-
elled in EML describes a class of possible instances of a learning process.
This abstraction is instantiated by assigning individuals into the appropri-
ate learner or staff roles. The specific instances are referred to as runs,
which can be executed in a player so that learners and staff may participate
in learning experiences (see Chap. 4 for an explanation of this process).
The various sub-processes involved in moving from a UOL to a run are
supported by run tooling, and make use of information on staff and learn-
ers.

19 The Edubox Learning Design Player 305

Fig. 19.1. The high-level system architecture in which a player operates

The learning process itself is supported by a player, which exploits
communication services such as conference and mail systems to facilitate
various modes of interaction in the learning process. Note that the player is
a component of a wider “learning portal” or virtual learning environment,
which handles interaction above the level of a UOL (e.g. information pro-
vision which is not course related).

In early evaluations, the first versions of EML were found to be specific
to the modelling of competency-based learning. The step towards a peda-
gogical meta model (Koper 2002) resulted in EML 0.5. This version of
EML was used as the basis for several courses delivered using a player
known an ELON (ELO stands for Electronische Leeromgeving, or “elec-
tronic learning environment”; the ‘N’ stands for network).

Educational models and their associated educational material were de-
scribed in EML 0.5 using the editor Framemaker+SGML together with an
SGML-aware content management system (known as Information Man-
ager). The manual authoring process was augmented by the conversion of
a large amount of content, pre-structured in Microsoft Word using a spe-
cific set of styles, from Rich Text Format (RTF) to EML elements and at-
tributes. Once authored, EML 0.5 files could be played by ELON.

ELON was an early prototype, although, as is often the case with a pro-
totype, it was also used in production. Evaluations of the courses delivered
using ELON revealed shortcomings in both the software and the modelling
language, and led to the development of EML version 0.9. This was
quickly followed by EML 1.0, which was applied across a much wider
range of settings, and was released publicly at the end of 2000.

306 C. Tattersall et al.

19.3 Edubox 2

Edubox 2, interpreting EML 1.0, was used in many pilots, including large-
scale projects in both higher education and training situations. Issues iden-
tified during the pilots led to a series of incremental releases of Edubox 2
up to 2.0.6.

Again, Framemaker+SGML was used as the authoring tool for Edubox
2, allowing SGML/XML documents to be created and edited, then vali-
dated against the EML DTD. The repository became Microsoft’s Visual
SourceSafe, and software was written to integrate both authoring environ-
ment and repository. This hid much of the complexity of Visual Source-
Safe, giving checking in and checking out of content, version management,
scalability, and so on. Figure 19.2 shows a screenshot of Frame-
maker+SGML being used to author EML 1.0 content.

© 2004

Fig. 19.2. Using Framemaker+SGML to author EML 1.0 content

Content experts experienced some difficulties working with Frame-
maker+SGML, and an alternative authoring process was developed
whereby the content experts composed Microsoft Word files. These files
were then sent to a separate group of people with both EML and Frame-
maker+SGML expertise, who copied and pasted the content into the ap-

19 The Edubox Learning Design Player 307

propriate format. This approach was further refined through the use of Mi-
crosoft Word templates containing hidden EML structures within which
the content-experts worked, making the content more amenable to auto-
matic conversion.

Several run tools were developed to facilitate the process of instantiating
an abstract UOL. The packaging of a UOL was handled by a tool which
linked the SGML file to the media-specific elements referenced within the
UOL (e.g. images, sound and video files). This package was then trans-
formed by another tool into a so-called “publication” which fixed the me-
dium (e.g., print or web-based delivery, although only the latter was ever
used in production), language (e.g. Dutch or English), style (fonts, colours,
etc.) and creation date. Finally, a further tool supported the filling of stu-
dent and teachers roles with user information, so that the learning process
could be carried out.

Figure 19.3 shows the Edubox 2.0.6 player used by learners and staff.

Fig. 19.3. The Edubox 2 player

The technologies used to implement Edubox 2 were centred on the Mi-
crosoft platform, and involved a wide range of products and languages, in-
cluding SQL Server, Internet Information Server, ADO, ASP, Delphi, Vis-
ual C++, JavaScript and Omnimark.

308 C. Tattersall et al.

Edubox 2 was piloted in a number of situations, with feedback being
elicited from learners, tutors, authors, help desk staff and several other par-
ties.

The pilot feedback spanned a wide range of areas, from confirmation of
Edubox’s beneficial role as an integrator for e-learning processes and con-
tent, to concerns on the quality of the player software in terms of non-
functional requirements, and the need to manage expectations of the costs
involved in building effective e-learning content. Although much of the
feedback concerned the wider implications of using EML and Edubox,
those aspects which related to the player were used to improve the soft-
ware incrementally.

19.4 Edubox 3

Two forces influenced the development of Edubox 3. First, OUNL took
the decision to pursue educational modelling as part of its e-learning strat-
egy. Although Edubox 2 had been used in production settings with hun-
dreds of learners, the move to bigger scales of delivery implied by this de-
cision brought with it new requirements in terms of scalability, reliability,
performance and security. The second force was the use of EML 1.0 as the
basis for the LD specification. Although both specifications share a con-
ceptual background, there are differences in their respective XML bind-
ings. More fundamentally, the transition from EML 1.0 to LD entailed dis-
secting the former—which specified all aspects of a UOL including
learning content, assessments, etc.—to accommodate existing IMS specifi-
cations, including Content Packaging (CP 2003), Question and Test Inter-
operability (QTI 2003), Learner Information Package (LIP 2001), and oth-
ers.

EML 1.1 anticipated the arrival of LD and sits between the EML 1.0
and LD specifications. It embraces, for example, the notion of a (zipped)
content package containing a manifest and employs items and resources.
However, in contrast to LD, EML 1.1 also defines a content model which
consists of XHTML mixed with EML 1.1 global elements, and which is
interpreted in a specific way by the Edubox player—questions (test-items)
are a subset of those global elements. EML 1.1 also allows for “web con-
tent”, referring to various kinds of content which may be handled by a
browser without special interpretation.

Edubox 3 was developed to be able to play EML 1.1 to a set of non-
functional requirements identified during pilots with Edubox 2. Its devel-
opment was put to tender and the contract was awarded to Perot Systems.
This third generation of Edubox was built on a different set of technolo-

19 The Edubox Learning Design Player 309

gies, including J2EE, JavaScript, CSS, XSLT and SOAP. Figure 19.4
shows the web player in use.

Fig. 19.4. The Edubox 3 Web Player

The authoring aspects of the context essentially remained unchanged be-
tween Edubox 2 and 3. The nature of EML 1.1 opened the door to auto-
matic conversion from EML 1.0, and a converter was written to perform
the transformation. This meant that prior investments in content could be
preserved, and that the existing authoring processes and software could be
retained, avoiding the need for new software and author retraining. Other
authoring avenues are available, though, and any XML editor can be used
to create EML 1.1 for packaging as a UOL.

Note that the door is also open to convert between LD and EML 1.1,
making Edubox 3 an LD-aware player. However, no converter has yet
been written given the current EML-based authoring processes at OUNL.
Moreover, the task is more complex than the corresponding EML 1.0 to
1.1 conversion due to the (likely) use of several specifications in an IMS-
based context.

The series of tools required to move from an abstract UOL to a running
learning experience were bundled into a single sub-system known as
Edutool. Edutool allows authorised users to upload zipped packages, ar-

310 C. Tattersall et al.

range the styling of a UOL, enrol learners, manage multiple runs of a
UOL, and perform various other administrative functions.

The Edubox 3.0 web player is a server-based system with which learn-
ers and staff interact in the learning process. This interaction is browser-
based, with the player being accessed through OUNL’s student portal,
Studienet. Collaboration services, such as news groups, are also available
for use in the learning process.

Edubox is a production-level system, embedded in mature system ad-
ministration and deployment processes and infrastructure. All packages are
first tested in a shadow environment before being deployed in the produc-
tion servers, which is a high-end multi-processor machine running a rela-
tional database (from Oracle) and application server (IBM’s WebSphere).

In September 2003, nine e-learning courses from the Faculties of Psy-
chology, Law and Business Administration, modelled using EML 1.1,
were launched, with over 2000 students using Edubox 3.7. In line with
OUNL policy, the courses were of a competency-based nature, involving a
large self-study component.

19.5 Conclusion

Over the last few years, OUNL has accumulated considerable experi-
ence in educational modelling, both from a theoretical perspective and in
educational delivery practice. Thousands of students today use a player in
the course of their education and there is worldwide interest in the specifi-
cations and software products developed by and with OUNL, together with
the lessons the university has learned in putting educational modelling
technology into practice.
This pioneering transition has not always been plain sailing, but the inno-
vation has been adopted and would not have been possible without the
three generations of the Edubox player.

During the innovation process, much attention has been given at all lev-
els of the university to the specifications and the players. As a result, they
have achieved a prominence which is perhaps disproportionate with their
role as mere enabling technologies in the educational process—both are,
after all, silent on the educational quality of a learning process, allowing
both good and bad approaches to learning to be modelled and played.
EML’s successor, LD, broadens the reach of the approaches, stimulates the
market for tools, and helps the enabling technologies to fade into the back-
ground of the educational process, allowing educators to focus on identify-
ing effective, efficient and attractive approaches to learning.

20 Delivery of Learning Design: the Explor@
System’s Case

Gilbert Paquette, Olga Marino, Ileana de la Teja, Michel Léonard, Karin
Lundgren-Cayrol

CIRTA(LICEF) Research Centre, Télé-université, Montréal, Canada

20.1 Introduction

The Learning Design specification (LD 2003) presents new challenges to
learning delivery systems. To comply with this specification, delivery plat-
forms must understand different learning strategies and course structures,
must manage multi-actor environments, must allow for standard learning
object integration, must deal with conditions and rules to be validated at
runtime and must support notifications.

In this chapter, we take a look at these requirements from the viewpoint
of an open delivery system, Explor@-2. Explor@-2 is the result of a re-
search stream that started a decade ago at Télé-université’s LICEF re-
search centre. Explor@ has focused, right from the beginning, on a re-
source (or learning object) management orientation, making it possible to
assemble a set of educational support tools, documents and services to be
shared across all programs, courses or activities delivered by an organiza-
tion. The chapter presents Explor@-2’s basic LD information model and
analyses how Explor@-2 can deal with LD-compliant courses – how it can
deliver units of learning modelled either with the LD Level A specification
or with the LD Level B or C specifications. The chapter ends with some
conclusions on future research and development to be done in order to
build a fully LD-compliant delivery system as well as on some promising
directions for developing powerful and adaptive distance learning envi-
ronments.

In an earlier chapter, we described a methodology, MISA, for designing
and developing learning systems as well as two software tools, MOT and
ADISA, developed to support this methodology. The relationship between
the design products of the methodology and the LD specification has also
been shown. In this chapter, we look at the LD specification from a deliv-
ery viewpoint by presenting the Explor@-2 delivery system (Paquette
1999; 2001b). As Explor@-2 delivers courses designed using the MISA

312 G. Paquette et al.

methodology or another method, it must represent the four models: knowl-
edge model, instructional model, media model and delivery model.

This chapter is divided into four sections. Section 20.2 provides a gen-
eral presentation of Explor@: its evolution and current global architecture.
Focusing on the instructional model, section 20.3 presents a UML model
of the Explor@-2 LD information model as well as its instructional activ-
ity structure editor. Section 20.4 shows how we can use this editor to build
a representation of an LD method that can be delivered using Explor@-2.
Further, the components of Explor@-2 that correspond to the LD specifi-
cation will be presented. Although integrating LD Level B and C in Ex-
plor@-2 should be straightforward, we propose in Sect. 20.5 an alternative
approach to deal with personalization, advising and notification, which
suggests further interesting studies on how to design and integrate external
global applications (advisors, managers, helping systems, intelligent tutors,
etc.) to the LD specification. The conclusion gives some hints on where to
go next and on how to handle the inherent complexity of powerful, flexible
distance learning systems.

20.2 Explor@-2 General Presentation

Explor@-2 is the result of a research stream that started a decade ago at
Télé-université’s LICEF research canter. The initial research efforts
(Paquette 1995) focused on a Virtual Learning Campus (VLC) model, ar-
chitecture and prototypes. To build the VLC model, object-oriented model-
ling techniques were applied such as Jacobson’s use cases methodology
(Jacobson 1992) and the Object Modeling Technique, OMT (Rumbaugh et
al. 1991), to identify sets of actions that different actors would do while in-
teracting within a virtual campus. Five actor types were identified then: the
learner, the trainer, the content expert (informer), the designer, and the
manager. Sixty-three roles that can be played by these various actor types
were defined.

Right from the beginning, the ambition was to build a distance learning
operating system capable of supporting a variety of roles within a variety
of delivery models such as High-tech Distributed Classroom,
web/multimedia self-training, On-line training, Community of Practice or
Performance Support Systems. From 1995 to 1999, we have conducted
various research and development projects supported by the Québec In-
formation Highway Fund and the Canadian Telelearning Network of Cen-
ters of Excellence (TL-NCE). This work has lead to the implementation of
our Virtual Learning Campus (VLC) architecture using web-based tech-
nology. In 1999, the Explor@-1 implementation of our VLC model was
completed and a number of distance learning courses were developed and

20 Delivery of Learning Design: the Explor@ System’s Case 313

delivered through it, mainly at the Télé-université, but also in pilot applica-
tions at Hydro-Québec and in professional associations.

The Explor@-1 system had a set of innovative features that are still pio-
neering.

Contrary to the general authoring system paradigm, Explor@-1 focused
on a resource (or learning object) based learning management, making it
possible to assemble a set of educational support tools and resources to
be shared across programs, courses or activities delivered by an organi-
zation.
The system had more flexibility compared to the traditional learner–
trainer-manager trio, enabling the definition of any set of actors.
Each course could be designed to meet different needs implementing
different pedagogical approaches, by using a variety of proprietary or
third-party tools, made available to learners, course designers and other
facilitators, such as instructors, content experts (informers), training
program administrators, etc.
An Advisor Editor enabled the designers to build a set of rules that
would trigger help/assistance in various forms (questions, messages,
visual cues) when certain conditions were met by values in the user
properties tracked by the system.
The Explor@-1 system was designed to support the integration of exist-
ing web courses without changing their format or assistance structure,
thus allowing an organization to transform its training/learning methods
progressively.
Finally, the open modular structure of the system made it possible to
significantly reduce design time, speeding up the implementation and al-
lowing periodic updates by the design team or the on-line tutor. Envi-
ronment maintenance also became much easier. Once the first course
was implemented, each additional course integrated into Explor@ could
be limited to a few web pages and hyperlinks to existing documents.

From 1999 to fall 2002, we conducted a third major R&D effort within
Technologies Cogigraph, a spin-off from Télé-université research centre.
The Explor@-2 system was developed and implemented at Télé-université
and at Canal Savoir1 for its SavoirNet delivery infrastructure.

Figure 20.1 presents a conceptual view of the core architecture of the
Explor@-2 system. It deals with four types of objects: actors (or roles),
learning objects (or resources), knowledge and competency (or content),
and operations structures (or functions).

1 Canal Savoir is Québec’s university television channel grouping most universi-
ties in Québec and some colleges. It has started to diversify its educational sys-
tem to support different combinations of web and TV delivery models.

314 G. Paquette et al.

«subsystem»
Resource Manager

«subsystem»
User Manager

«subsystem»
Operations Manager

«subsystem»
Knowledge Manager

Use and produce

Operation StructuresLearning Objects

Actors
Knowledge and

comptencies

Rule

Reference

Reference

Materials

Tools Events

Services

1

*

1*
1

*
1

*

Learners

Facilitators Others

Fig. 20.1. High-level architecture of the Explor@-2 system

Actors operate functions composed of operations (or activities) where
learning objects are used or produced. Knowledge and competencies de-
scribe the information owned, produced or processed by actors, processed
in operations or contained in resources. Four corresponding managers store
and retrieve information in a database, construct information structures and
display information to users.

As was stated before, Explor@ has a resource management orientation
allowing for the integration of learning objects and services in a learning
scenario. The resource manager shown in Fig. 20.2 (Paquette et al., in
press) is the Explor@-2 component in charge of this management. The two
upper components, Learning Object Aggregator and Learning Object
Launcher, operate on the learning objects themselves found in one or more
repositories, located on servers somewhere on the web. The six other com-
ponents all relate to metadata management services. Locally, Learning Ob-
ject Metadata (LOM 2002) records referencing the resources are stored by
the Explor@-2 resource manager in a relational/XML database.

The Explor@-2 system provides designers with three main ways to ag-
gregate learning objects into larger resources.

20 Delivery of Learning Design: the Explor@ System’s Case 315

Repository
Structure
Manager

Metadata
Editor

Metadata
Repositories

Buider

Access
Manager

Metadata
Repositories

Search
Agents

Learning
Object

Aggregators

Learning
Object

Launcher

Learning
Objects
(Assets)

Repositories

MetaData
Repositories

Explor@2
Relational/XML

DataBase

Collaborative
Annotator

Build new LOs

Describe

Create new LOs entries

Give location and context

Display LO

Find location & Transport

Enter and build LOMs

Add, move, copy, suppress

Add collaborative note file

Define user rights

Search in

Provide list of LOs

Fig. 20.2. Main components of the Explor@-2 resource manager

The corresponding designer’s tools are the Resource Aggregator, the
Role Environment Editor and the Instructional Structure Editor. The Re-
source Aggregator is a simple tool to build web pages filled with hyper-
links to resources found using the metadata repositories, search agents.
The Role Environment Editor aggregates resources into an environment
according to the roles of an actor. Using this editor, a designer identifies
the different roles an actor has to play in a course or a Learning Event, and
defines it indirectly by creating an environment made of spaces (menus)
grouping resources assisting an actor to carry out its various roles.

The most important aggregation tool is the Explor@-2 Instructional
Structure Editor. It enables a designer to import or build a tree structure
describing a Learning Event (or a course scenario) grouping activities
where resources are used or produced by a role. This editor is the Ex-
plor@-2 version of an LD editor. It helps designers to construct a runtime
learning model. During runtime, a progression tool shows students their

316 G. Paquette et al.

progression through the learning event based on the structure produced by
the designer with the activity editor.

Fig. 20.3. Screen display of a student delivery environment

The left-hand window in Figure 20.3 presents the resulting Instructional
Structure corresponding to the LD Method, Play, Act, Activities and Role
parts displayed in the Explor@-2 progression tool and produced by the
Explor@-2 editor.

For each node and leaf, the user (learner or staff) can access services
and learning objects (tools, documents and services) pertinent to the play,
the act or the activity by double-clicking on the corresponding title. Three
such resources are shown:

A direct link to an on-line conference (forum) service.
A video lecture, which can be viewed in segments or as a whole, ac-
companied by a PowerPoint presentation and other pertinent resources
to enhance subject comprehension.
An exercise guide matched to Act, 1 Activity 1.

The “Completed Act 1” window, at the centre, is where feedback is pro-
vided to the user when Act 1 is completed, either because the learner clicks
a box or when the time limit set by the designer is exceeded. The progress
bar shows whether or not the user has completed the act. As a user pro-
gresses from one activity to another, the completion level is calculated for

20 Delivery of Learning Design: the Explor@ System’s Case 317

the Play level as well as the Method level, all according to rules set forth
by the course designer in the Explor@-2 Instructional Structure Editor.

20.3 The Explor@ Learning Design Information Model

Explor@-2 provides designers with a set of tools to build a UOL and sup-
port learner and staff using web-based instances of it. In Explor@-2, using
the Instructional Structure Editor, a designer can import (from ADISA,
MOT, or any useful XML tree structure editor) an instructional structure or
build it from scratch, associate resources to the structure, describe time,
collaboration and evaluation rules, associate knowledge and competencies,
add advice and assessment questions, specify a progress/completion
mechanism and, finally, describe advisor/assistant rules governing actions
in the environment.

The Instructional Structure in Explor@-2 starts with a root representing
the main Learning Event: a program, a course, a module, etc. (the method
element in LD). The second level is composed of smaller Learning Events
nodes (plays in LD) that can be decomposed (through LD acts and activity
structures) at any number of levels until we reach terminal nodes corre-
sponding to Learning Units (activity structures in LD with no sub-activity
structures). Below are terminal nodes that correspond to activities (learn-
ing or staff single activities in LD) in the MISA instructional scenario. Fi-
nally, below these terminal nodes there are the input and output resources
from an activity (the environment in LD).

A corresponding conceptual model is shown in Fig. 20.4. Tree leaves
are special kinds of nodes. Any node may have associated resources, ad-
vice and assessment questions. It can also hold a progression rule that
specifies if the sub-nodes are to be processed in sequence or in parallel,
possibly with options, such as do two out of four nodes. The completion of
sub-nodes will affects the progression level of a parent node, according to
the progression rule associated to the parent node.

Additional elements can be associated to the leaves of the Instructional
Structure, corresponding to properties such as required completion time,
collaboration time and type, assessment tag and weight (percentage of the
evaluation). The system adds these elements, values and propagates the
cumulative value to the all upper levels of the Instructional Structure cor-
responding to Learning Units and Learning Events.2

Besides the Instructional Structure, the designer can build a knowledge
and competency tree structure and assign knowledge and competencies to
activities that are regrouped upward and assigned to larger activity struc-

2 See Chap. 9 for the correspondence between MISA and LD terminology.

318 G. Paquette et al.

tures. This association informs the learner about which learning events,
learning units, and/or activities will correspond to certain knowledge and
competencies. An alternative way to associate knowledge is to use the In-
structional Structure Editor to add a text description of the competencies to
any node or leaf of the structure or to recover a learning object describing
the knowledge from a learning object repository.

Figure 20.4 also displays the actor’s environment concept (produced
with the Role Environment Editor presented above). Any environment in
the learning system groups the resources for each actor into one or more
spaces like self-management, information, resource production, collabora-
tion or assistance. Figure 20.4 also indicates rules that can be assigned to
any node to build an advisory system for the users. This important aspect
corresponds to LD Levels B and C and will be discussed later.

Learning System

Leaves

Nodes

1

*

1

*

Learning Events

Learning Units

Learning Activities

Input Resources

Product Resources

Environment

**

Advice

1

*
parent of

Test Question

Progression rules

*

*

*

*

*

*

Target Competency

Prerequisite Competency

Progression Weight Evaluation Weight

Duration

Period

Collaboration

Input or Product ?

0..*

0..*

0..*

0..*

1

*

1

1

1

1

1

1

1

1

1

1

Space

1

1..*

1

1..*

Advisor System

**Advises on

1

*
Instructional Structure

Knowledge Unit

*

*

Links to
*

*

Links to

Knowledge Structure

1

*

*

*
*

*

Node Resource

* *1

*

Parent of

Resource

1*

Fig. 20.4. The Instructional Structure of Explor@-2

20 Delivery of Learning Design: the Explor@ System’s Case 319

20.4 Integrating the LD (Level A) Specification in
Explor@-2

We will now focus on the Instructional Structure Editor presented in Fig.
20.5. On the bottom left side of the window, we see functions to add or
suppress nodes and leaves of the Instructional Structure (Add node, Add
leaf, Remove). It is also possible to import an XML structure built with the
MOT+ Editor embedded or not in the ADISA instructional design support
system to MISA (see Chap. 9).

Selecting any node, a designer can assign progression rules on how to
proceed within the corresponding event, unit or activity, in sequence, in
parallel or with options. Designers can also use the editor to assign other
node and leaf attributes such as duration, evaluation weight, assignment,
advice, annotation capability. They can also associate to nodes in the In-
structional Structure learning object pointers stored as LOM records, to be
launched at runtime.

Fig. 20.5. The Instructional Activity Structure Editor

Using this editor it is possible to build a representation of an LD Method
and an Explor@-2 user progression as the one displayed in Fig. 20.3. Fig-
ure 20.6 presents a concrete instantiation of the activities of that structure.
Here, the Method corresponds to a Learning Unit called Module C and the
plays present two alternative course delivery models from which a learner
has to choose one: web delivery (play 1) or classroom delivery (play 2).
Play 1 consists of two acts in sequence. In the first act, learners prepare a

320 G. Paquette et al.

seminar by consulting resources, participate in a discussion forum and
produce a presentation; tutors animate the forum; experts provide advice to
learners in and outside the forum. In the second act, learners deliver the
presentation while assessors take notes to produce an evaluation report
(this activity could figure in a third act). Figure 20.6 shows that two of the
three role-parts in Act 1 have been completed; one of the learners has still
to produce a text. If the learner clicks the check box of this activity, the
system displays a validation question with two possible answers, each trig-
gering advice on what to do next.

Fig. 20.6. The Instructional Activity Structure at runtime

Explor@-2 has a built-in bottom-up propagation mechanism to assign a
progression level to each node of the Instructional Structure calculated
from its leaves, which can be used to provide feedback using completion
requirements for acts, plays or the method as specified in LD.

When the user selects a leaf of the tree structure, he/she can declare it
completed. If the designer has prepared an assessment question, only a
right answer will turn on the completed requirement flag; if there is no
question, the flag will be on by default or after a certain time limit selected
by the designer. If all the role-parts in an act are completed, in whatever
order, the act is completed. If all the acts are completed in the specified se-
quence, the play is completed. If the required number of plays is com-

20 Delivery of Learning Design: the Explor@ System’s Case 321

pleted, the method is completed. When an act, a play or a method is com-
pleted, a feedback message can be displayed.3

This example can be generalized to any method, showing that the In-
structional Structure in Explor@-2 is generic enough to build any unit of
learning modelled with the LD specification. In practice the corresponding
XML files could be produced either by an MOT model or a slightly modi-
fied activity editor, and read into the Instructional Structure.

Actually, in Explor@-2, each actor or role has its own activity structure
(which is not multi-role) and its own resource environment, so additional
functionalities will have to be built to exploit the multi-actor capabilities of
the LD specification. These include synchronization mechanisms when the
completion of an act requires verifying that all or some other roles have
also completed the act. We will then provide an LD activity editor as an
option, generate role environments automatically and activity structures for
each type of actor, and provide contextual alternate views to help an actor
situate the activities within a play. A way to do this using the concept of a
function model has been presented in Paquette and Rosca (2002).

On the other hand, Explor@ can produce and deliver instructional struc-
tures that are more complex than an LD Method since it is possible, at any
level, to assign to any node a progression mode specifying that the sub-
nodes are to be completed in sequence, in parallel or with options. This
might pose certain problems when we want to translate an Explor@ In-
structional Structure into an LD specification to increase reusability and
interoperability with other delivery systems. This problem will need fur-
ther investigation.

20.5 Integrating Level B and C Specifications in Explor@-
2 or Taking an Epiphyte Approach

The LD Levels B and C give additional possibilities to a simple feedback
produced by completed parts of a method. On the other hand, they are
minimally required to provide adaptation and role coordination capacities
in a distributed learning environment. As we see in the LD best practices
document (LD 2003), conditions and properties allow for the personaliza-
tion of pedagogical treatments. Instructional designers may, for example,
personalize the activities a student has to do, as a result of his/her profile
and pre-test scores (examples 2.1 and 2.3 from the best practices docu-

3 In the actual version of Explor@-2, that message is entered by the designer in the
assignment attribute of a node and is displayed only if the user asks for it. In a
previous version such a message could be displayed at the initiative of the system;
this functionality will be reintroduced in the next version.

322 G. Paquette et al.

ment) or previous experience (example 2.7) or as a result of recognizing
particular learners’ needs (example 2.10: obtaining learners’ profile from a
human resources database), the resources to be used in a particular activity
(example 2.2: the systems find adapted resources according to the student
cultural group), the composition of groups, taking into account students’
profiles (example 2.2) or the selection and sequencing of activities (exam-
ple 2.14). This personalization is achieved by inserting actions (show,
hide, notify and change property) into the learning structure, which are to
be triggered when conditions on properties are met. Those conditions are
inserted in different parts of the LD, at the Method, Play and Act level.

It might be worthwhile to look at another possibility which would be to
leave the design free of conditions and actions and to have an external ad-
vising agent monitoring it and eventually taking control when needed. This
is the approach taken in Epitalk (Paquette et al. 1996), which has been ap-
plied both to support instructional engineering in MISA (Paquette and
Tchounikine 2002) and to assist learners using Explor@ (Girard et al.
1999; Lundgren et al. 2001).

This approach is based on an external advisory system, a set of soft-
ware agents that can be grafted onto an existing host system. As was
shown in these articles, Epitalk has many advantages over the more tradi-
tional “branching-like” approach where conditions are wired in the host
system. The following principles guide this type of system:

the actions giving advices or adapting the environment can be added to
an existing host system without having to change its code;
the actions and the conditions are based on a model of the host system
constructed by the designers using a terminology that he/she chooses for
some intended purpose (this aspect is accessible to an instructional de-
signer without programming skills);
an advisory editor can be built to support instructional designers in the
difficult task of building an adaptive assistance system: to build an in-
structional model and assign conditions and actions to the model;
since the assistance is mediated by a model constructed by the designer,
it enables him/her to address assistance issues from different view-
points; for example, one agent could manage the resources proposed to
the learner, while another one would assist on the coherence of a tutor’s
interventions.

Epitalk can in principle be applied to activity models for any actor or sets
of actors, thus making it possible to address the multi-actor aspects of an
LD Method. In Explor@-1 (Girard et al. 1999) and ExploraGraph (Du-
fresne 2001), Advisor Editors made it possible to build a model of the host
system and to use it to maintain a user model and define rules triggering

20 Delivery of Learning Design: the Explor@ System’s Case 323

actions when certain conditions were met. We are now in the process of re-
introducing such functionalities into the actual Explor@-2 system.

As shown above, the Explor@-2 advisory component of the activity edi-
tor actually includes a simpler advisory system than in Explor@-1 focused
on student progression in the learning design. It has two components: the
Advice Editor and the Student Advisor. The Advice Editor allows the de-
signer to tie to each node in the learning design: its weight of importance;
its type of progression (sequential, modular, parallel or optional); pop-up
advice and assessment questions. The Student Advisor in Explor@-2 actu-
ally supports three functions:

It displays diagnostic questions and pop-up advice while navigating in
the course site (proactive advisor – dynamic advice).
It makes available contextual advice in an assistance space of the user
environment where the user can trigger pieces of advice (passive advisor
– static advice).
It displays viewers, for example a progress bar showing the student’s
progression in both the Instructional Structure and the cognitive struc-
ture (student self-monitoring).

To give dynamic advice and to display the student progress bar, the advi-
sory system dynamically builds a simple student model, tracing student in-
teraction, both with the learning system and the advisor. Rules in the Advi-
sor Editor are actually specialized: their conditions involve properties on
the user’s progression, navigation and answers to the diagnostic questions;
their actions are mainly to trigger advice or a question, and to update pro-
gression viewers.

In spite of this specialization, those rules already have the structure re-
quired to implement in Explor@-2 Levels B and C of the LD specification.
Indeed, triggering advices could be transformed into sending a message by
including email names and addresses. Showing and hiding is already pos-
sible. Property modification could be made by generalizing the modifica-
tion of the progress bar to other properties, as was the case in Explor@-1.

From an implementation method point of view, this discussion leads us
to propose that a next version of the LD specification should consider an
approach similar to Epitalk, basically a multi-level design allowing graft-
ing of the advisory system onto the host system instead of including it.
This could be done either by changing the XML binding to address multi-
level designs, or alternatively, by limiting LD to its actual Level A and
adding a new companion specification for an assistance system that can be
grafted onto a learning design of Level A.

324 G. Paquette et al.

20.6 Conclusion – Where to Go Next …and Further

Educational modelling languages and the LD specification bring important
innovations to the e-learning toolset and present new technical challenges.
The next step, on our part, will be to analyse the specification from a de-
livery point of view to adapt our Explor@-2 system so that it can fully
process all three levels of the LD specification. Within the eduSource4 pro-
ject, we will also define generic services that any delivery system should
provide to fully exploit this specification.

Looking further ahead, we believe that a new era of more powerful and
flexible distance learning systems is starting. LD is a cornerstone in this di-
rection. Its proposed model of a method leads directly to delivery models
of a distributed learning system seen as a set of multi-actor process mod-
els. Pushing this idea further, our knowledge, delivery and assistance mod-
els are also basically process models in the sense that they describe and re-
late activities, objects and actors. In Paquette and Rosca (2002) we have
developed this idea under the name of function models. Function models
are models that aggregates resources used or produced by users with op-
erations that these users perform and possibly other functionalities such as
assistance services. Function models are promising components to de-
scribe, model and manipulate the different processes that take place in a
distance learning course and their relations. They allow for the description,
not only of the anatomy of a learning system, but also of its physiology, as
a dynamic set of interactions.

In the LORNET project5 we intend to develop and to tool the concept of
function models to provide a solution to the inherent complexity of a dis-
tance learning system and to encourage the evolution of the delivery sys-
tems towards greater flexibility. As part of the project, we will build a col-
lection of learning designs integrated to learning object repositories and we
will provide different ways to aggregate these learning designs with
knowledge objects and with assistance objects in a unified way through
function models implemented as multi-actor coordination interfaces. These
goals correspond well to the research agenda set forth by Duval and Hodg-
ins (2003), where they outline that authoring by aggregation and design for

4 The eduSource project, an ambitious Canadian project that aims to implement a
functional network of learning object repositories, based on international stan-
dards and providing a software suite of tools to find, reference and use learning
objects in educational applications.
5 LORNET (Learning Object Repositories Networks) is a major five-years re-
search network heavily funded by the Canadian government to address these ques-
tions in a semantic web and knowledge management perspective. It groups five of
the major Canadian laboratories in the field, headed by Télé-université’s LICEF
research center.

20 Delivery of Learning Design: the Explor@ System’s Case 325

content reuse are research issues that must be addressed in the near future,
if reusability and interoperability among learning resources are to be at-
tained. Furthermore, by allowing function models to mutate, change and
evolve, we expect to be able to produce flexible, personalized, evolving
and even emerging learning situations.

21 Challenges in the Wider Adoption of Learning
Design: Two Exploratory Case Studies

David Griffiths, Josep Blat, Francisco Casado, Rocío García, Juanjo
Martínez, Sergio Sayago

Interactive Technologies Group, Universitat Pompeu Fabra, Barcelona,
Spain

21.1 Introduction

This case study presents the conclusions drawn from the creation and
evaluation of three Units of Learning (UOLs) by the Interactive Technolo-
gies Group1 of Universitat Pompeu Fabra. They were developed using the
Education Modelling Language (EML 2000), the successor of Learning
Design (LD 2003), and trialled in both distance and blended learning. The
focus of the work reported was on evaluation of EML as a possible solu-
tion for two contexts: a distance education course, and on-line support for
face-to-face education. While our conclusions address the suitability of
EML for this purpose, we are very much aware that this is determined to a
substantial degree by the tools used to create and deliver the UOLs. Con-
sequently we report extensively on this aspect of our evaluation.

We provide a brief description of the purpose of the UOLs and the de-
velopment process, and then focus on our reflections on the outcomes,
drawing on usability studies and feedback from learners. In particular we
discuss the constraints which limited the adoption of the solutions, princi-
pally the difficulty of the authoring process. We conclude with reflections
on the need for tools which can support users in making use of the wide
range of opportunities opened up by the EML/LD specifications.

21.2 The Units of Learning Developed

Three UOLs were developed and are described in the following sections.

1 www.tecn.upf.es/gti.

328 D. Griffiths et al.

21.2.1 The Two SCOPE Units Of Learning

The two SCOPE UOLs constituted the prototype for a distance learning,
continuous education training course for medical specialists, created within
the SCOPE Project (SCOPE 2003) and funded by the eContent programme
of the EC. We acknowledge the essential contribution made by our part-
ners, particularly the publisher DOYMA and the Hospital Clínic Barce-
lona, and the technical support generously provided by Perot Systems, the
Netherlands. The SCOPE Project took content from a medical journal and
repurposed it for web delivery, establishing the G&H Continuada service.

The aim of the SCOPE UOLs was to add further value by reusing these
resources in educational activities, and they constituted the prototype for
an on-line continuing education course for medical specialists.

The objective was to demonstrate reuse of resources in different con-
texts by separating educational resources from pedagogic structure, assess-
ing the effort involved, and carrying out a small-scale evaluation of the
end-users’ responses.

The work carried out included the creation of two parallel UOLs with
two pedagogic approaches: the traditional “read and test”, and “problem-
based learning” (PBL). This chapter assumes a basic understanding of PBL
in the sense used by Barrows and Tamblyn (1980) in a medical setting, and
by Waters and McCracken (1996) in a computer science environment.
Both UOLs used the same learning resources, to demonstrate that the
UOLs could function as pedagogic templates for use with learning re-
sources. The development process was evaluated, and small scale trials
were carried out with users.

21.2.2 The Interface Design Unit Of Learning

The Interface Design UOL was designed for a contrasting environment: an
on-line complement to a face-to-face second-year degree course in Inter-
face Design at Universitat Pompeu Fabra. Many teachers have questioned
the added value of Learning Management Systems (LMSs) as a support to
presential learning, over and above that provided by the web. This trial
UOL was prompted by the perception that EML and LD might have value
in this respect, as they are fundamentally oriented towards pedagogy. It
constitutes an initial cost-benefit analysis of the advantages and effort in-
volved in using LD for supporting face-to-face classes. The authors are
aware that the EML specification was not developed for this purpose, but
wanted to explore its potential contribution, in line with Raymond’s apho-
rism “Any tool should be useful in the expected way, but a truly great tool
lends itself to uses you never expected” (Raymond 2000, p 16).

21 Challenges in the Wider Adoption of Learning Design 329

The aim of the Interface Design UOL was to test the quality and usabil-
ity of existing tools, and the cost required for learning and using them
compared to the benefits for teachers and learners.

The objective was to blend a small portion of a typical subject with an
on-line UOL, assess the effort involved, and carry out a small-scale
evaluation of the end-users’ responses.

The work carried out included creation of an EML UOL to support
face-to-face teaching of a topic in a face-to-face course in interface design
for undergraduates. This was used with a cohort of students, and a ques-
tionnaire administered.

21.3 Developing the Units Of Learning

All three UOLs were created using the LD Editor and delivered using
Edubox, and we thank Perot Systems Netherlands for providing us with
free access to these tools, and technical support. The UOLs were created
using EML, because the LD specification had not been published when
development started (November 2002). The pedagogic framework for the
SCOPE UOLs was established following discussions with experts in the
field from the Hospital Clinic. The UOLs were designed taking into ac-
count our target users, final year students and professionals in hepatology
and gastroenterology. The UOLs offered two learning paths: problem-
based learning (PBL), and a traditional “read and test” approach. Both
paths were designed for single-learner interaction.

The course was designed in such a way that the first action of the user
was to select one of the learning paths. The traditional approach consisted
of the completion of questionnaires and consulting scientific articles. The
PBL path consisted of the completion of several stages, each of which pre-
sented the user with a specific problem and a number of possible solutions.
Both diagnostic and therapeutic competencies, were tested in the PBL
path.

Metadata was added for each piece of information inside the EML, in
order to support the definition of reusable learning objects in a range of
granularity, as described by Duncan (2003). This was done for the whole
course, the different learning paths, the scientific articles and every indi-
vidual question and questionnaire. Each of these items was considered po-
tentially reusable for e-learning in the context of a medical publishing
company. The scientific articles were reused from the electronic medical
journal service provided by the publisher. As a first step towards promot-
ing reusability these articles were disaggregated from the journal, and each
in turn disaggregated in three types of resources: the article itself, the
bibliographic references and key related issues, as discussed by Koper

330 D. Griffiths et al.

(2003b). The UOLs were duplicated in HTML, which provided the oppor-
tunity for early user feedback, on the interface and its look and feel, before
access to the player was available.

21.4 Reflections on the Development Process

21.4.1 The Editing Environment

The three UOLs were implemented by technical staff using a beta version
of the Perot LD Editor2 which was kindly made available by Perot Systems
Netherlands. This tool presents the structure of an EML document to the
author, who can edit the various elements directly, facilitating navigation
through the document, and helping to produce valid EML. Two usability
evaluations of this tool were carried out: a semi-structured interview with
two EML editor users and a heuristic evaluation, following the method es-
tablished by Nielsen (Nielsen 1992; 1994; Mack and Nielsen 1994). The
conclusions coincided in indicating that the chief determinant of the us-
ability of the application is the way in which it closely reflects the specifi-
cation itself. The interface is designed using the same terminology as the
standard and the relationships between EML elements are directly mapped
in the interface. This makes the interface demanding to use for two rea-
sons.3

the user must have a extensive knowledge of the specification, in termi-
nology and structure, before starting;
there is no way of conceptualizing a course or UOL design independ-
ently of the specification.

While these issues may not be a problem for the LD Editors’ target us-
ers, who are technical experts, they mean that a tool of this type is not ap-
propriate for the content experts and authors, such as those who in the pre-
ferred workflow for the SCOPE course would have authored the UOLs
which we produced. If such users are to be able to use authoring tools, then
the terminology used in the application should not depend on that used in
the standard. At the same time the underlying structure of the concepts
should be maintained, so that the system is effective for both novices and

2 The Perot Editor generates EML code, but is called an “LD Editor” because it is
planned to provide the capability to convert EML to LD.
3 It should be stressed that a beta version of the LD Editor was used.

21 Challenges in the Wider Adoption of Learning Design 331

experts (who will recognize the concepts underlying the day-to-day vo-
cabulary).

These design principles were applied within SCOPE in the development
of QAed,4 an open-source tool for the authoring of tests and questionnaires
using the Question and Test Interoperability Lite specification (QTI-Lite
2001). This tool is centred on the practice of creating tests rather than on
the structure of the specification. It provides support for the usual work-
flow of the teachers when performing this type of task; the specification
details, and how the support to the standards is performed, are hidden from
the user by means of offering a comprehensible terminology which is
closer to the users, and mapping into the user interface the structure of the
specification. The QTI specification (QTI 2003) is much less complex than
LD, but the application provides a simple case which shows the approach
which we recommend for the development of LD tooling addressed to
non-technical users. Our experience in developing QAed indicates that de-
velopers should consider if the focus of an editing tool is a specification or
rather the teachers’ and learners’ workflow. This might involve a combina-
tion of different specifications, but the author need not be aware of the
fact. The QTI and LD specifications are not designed for teacher- and
learner-centred approaches to course development, and so their suitability
for this purpose is not a criterion for their success. Nevertheless, we be-
lieve that this context is important for authoring tools working with these
specifications. Even in content publishing contexts, such approaches could
be useful for promoting participatory design jointly with teachers and
learners while content authors are developing learning scenarios.

The expert users of the LD Editor identified some additional features
that would have assisted them in their task, and which may be generaliz-
able to other editors which work close to the specification:

Feedback indicating what information will appear in the player would
be valuable, for example by distinguishing visually between elements
which will appear in the rendered UOL, and those which will not be
rendered, but are required to enable the system to work. Similarly the
user interface should distinguish between mandatory and non-
mandatory elements.
The authors requested access to an HTML editor during the design
process, so as to avoid entering HTML by hand, and so creating the pos-
sibility for errors. In the Valkenburg Group Reference Architecture (see
Chap. 3) a separate materials editor is foreseen, so the solution would
appear to be an integration of the materials editor and the LD Editor.

4 QAed is available for download at
http://www.tecn.upf.es/gti/leteos/newnavs/qaed.html.

332 D. Griffiths et al.

Even for expert users, if all the navigation related to the creation of
activities, environment, roles, etc., is located in the same menu, then the
learning curve may be steep. A modular approach is an alternative pos-
sibility.
As a general principle for such applications, all authoring actions which
can be carried out automatically, such as keywords or identifiers, should
be automatic, so as to reduce the cognitive load on the user. Similarly
the user interface should indicate to users how to fill in the fields, for
example by offering default values.
The UOL authors found that there was a lack of support in Edubox for
the representation of the specialized symbols required by mathematics
and scientific subjects. This was resolved by the use of images inserted
in the text, but a better solution would be the use of a widely recognized
specification, such as the W3C recommendation MathML.5 Developers
of players should be aware of the need to incorporate such functionality.

21.4.2 Delivery and Evaluation of the Units of Learning

All three UOLs were delivered using Edubox,6 which is described in Chap.
19 of this volume. Support for Spanish was added to the Edubox system
through the creation of an XSLT stylesheet, demonstrating its extensibility.

Evaluation of the SCOPE UOLs consisted of four sessions with individ-
ual physicians, some of them post-graduate students, who had extensive
knowledge of the subject matter covered by the UOLs. As the UOLs were
intended for continuing education for medical professionals, these users
were a close match to the intended learners. The focus of the evaluation
was on the usability of the course user interface and the UOL designs.
Questionnaires were designed and administered to users before and after
the trials, gathering information on the background of the users (pre-test)
and their impressions after using Edubox and the UOLs (post-test).

In addition to the questionnaires a “talk-through” evaluation was also
carried out. A list of tasks to be carried out by trial users was prepared,
which were typical of learner actions when using the UOLs. The users
were asked to “think aloud” while following the requests of the evaluation
monitor, and were video recorded for subsequent analysis. For example,
the protocol for one task was:

5 For more details about MathML, see http://www.w3.org/Math/.
6 Again provided by kind permission of Perot Systems Netherlands. The SCOPE
UOLs are currently available at: ouserv3.perot.nl/edutool/EduToolController
(Edubox version), www.tecn.upf.es/gh/ (HTML version).

21 Challenges in the Wider Adoption of Learning Design 333

The first step is to select one of the two learning paths. Could you tell
me if you understand what these two learning paths are about?
Please try to complete the first level of the problem-based learning.
Do you understand the relationship between the “tools and resources”
and the “to do” panel?
Are the icons comprehensible? To what extent?

The Interface Design UOL (Fig. 21.1) was used with a group of students
who all attended a face-to-face class which covered the same material as
that in the UOL. During the class they used the UOL for half an hour, and
were then asked to fill in a questionnaire. The responses of the teacher and
the UOL editor were also evaluated. The following sections discuss the
outcomes of the evaluations.

Fig. 21.1. The Interface Design UOL opening screen in Edubox

Reflections on Unit of Learning Delivery

In both the SCOPE and Interface Design UOLs the interface of Edubox
was usable, in that it did not constitute a barrier to use of the application,
but certain issues were, however, identified, as follows.

334 D. Griffiths et al.

Terminology and choice of learning routes. The response to the organi-
zation of the two learning routes in the SCOPE UOLs was positive (sug-
gesting that pedagogic flexibility is valued by the users). They chose the
traditional read and test methodology learning itinerary, rather than the
problem-based learning itinerary for skills development. The reason for
this was a salutary reminder for course authors: the learners reported that
they did not really understand what “modelo para el desarrollo de compe-
tencias” (skills development) was, and so they stayed with the more famil-
iar sounding “modelo instruccional tradicional” (traditional instructional
model).

This underlines at the level of the user the need to avoid technical lan-
guage and terminology which we also identify at the authoring level. This
is an especially difficult issue at the European level, as, for example, the
concepts of competencies and skills would be more familiar to learners in
some other countries.7 It also reminds the author that the adoption of more
sophisticated e-learning pedagogies is not simply a technological issue, but
also one of culture and practice.

Reflections on the use of EML for supporting assessment as part of the
learning process. EML proved to be sufficiently flexible to model as-
sessment as well as learning processes. In the medical case study, for in-
stance, the corresponding assessment scenarios were implemented using
EML as well as the QTI Lite specification, and both specifications were
satisfactory. In the other implemented UOLs, however, our conclusions
identify shortcomings in the QTI-Lite and QTI specifications when trying
to describe some common assessment scenarios such as the Question Item
Bank (QIB). Question Item Banks are considered in the sense used by Bull
and Dalziel (2003): that is, a collection of items which can be used to con-
struct assessments through the selection of questions based on various pre-
defined criteria according to the appropriate assessment scenarios envis-
aged. While QIB is supported by QTI specification, important features for
its practical use, such as the overlap exclusion requirement, are not sup-
ported, as described by García-Robles et al. (2004). Overlap exclusion
means, in simple terms, enabling some questions to force the removal of
other questions. As stated in Chap. 10, there are also other advanced as-
sessment scenarios such as peer-to-peer, self-assessment or groupwork

7 This may in part be a problem of translation, and in later versions of the UOL the
Spanish equivalent for skills development was changed to ”actualización/revision
de conocimientos”. Nevertheless it highlights the problem of translating some
educational concepts, which can hinder the reuse of UOLs across cultures. The is-
sue of multilingual educational terminology is being addressed by CEN ISS. This
is valuable, but does not resolve the differences in practice and concepts which
underlie the differences in terminology.

21 Challenges in the Wider Adoption of Learning Design 335

which are not supported by the QTI and QTI-Lite specifications, but LD
can be used if the assessment is to be integrated into the overall learning
process.

Representing activities and resources. One open question identified by
users was the best way to represent activities and resources. In the SCOPE
UOLs there were many scientific articles associated for each learning ac-
tivity. Edubox show these articles as a list, and uses icons to distinguish
between the different states which they are in at any time (such as “con-
sulted”, “passed”, “pending”, etc.). Users suggested that they would prefer
to see the activities which they need, at any moment, and not the whole set
of activities. For example, at the beginning of the course only the main ac-
tivities could be shown (activity structure, choice activities…) and subse-
quently, only the activities related to the main activity selected, etc. It
seems that in this case the more information which they were shown, the
less useful it was.

If UOLs are to be reusable, they should be created independently of how
the player will represent the course. However, if these suggestions were to
be implemented, and a variety of possible player renderings of the same
UOLs were available, it would raise the issue of how the UOL author
could predict the interface on different systems. This is why a reference
runtime player will be of significant importance to the implementation of
LD. Working within Edubox, the author of a UOL has the responsibility
for modelling the learning process in such a way that this overload is
avoided.

Similarly users suggested that the resources associated with each activ-
ity could be classified using folders which were related to one question
(which is the meaning of… according to the study of X and Y), question-
naire, or activity, It was also requested that content which had become
available as the learner progressed should be flagged. One possible ap-
proach to this request would be to use nested environments.

There is probably no single best way to represent activities and re-
sources, but we note this issue as one which should be borne in mind in au-
thoring and rendering UOLs. To provide flexibility in this respect it might
be advantageous to provide preferences which could be set by the learner,
or by the course administrator.

The meaning of icons and menu items. In the Interface Design UOL
about half the students who answered the questionnaire stated that the
Edubox icons were understandable, if not at first glance, then with the help
of the contextual help (text which appears when the cursor is placed above
the icon), but the majority of the users felt that the meaning of the icons
could be clearer. Similar results were obtained from the four “talk-
through” trials of the SCOPE UOLs.

336 D. Griffiths et al.

The students in trials of all UOLs were generally in agreement that the
functionality of the modules was clear, but they again commented that the
terminology used was not always immediately clear, and could be im-
proved. In the “talk-through” sessions for the SCOPE UOLs one interface
feature relating to this issue was identified: in the menus “Actividades”
(Activities) and “Herramientas y recursos” (Tools and resources) the items
shown in the latter depend on the activity selected in the former, and this
was not immediately apparent to users. Once the evaluation monitor had
helped them grasp this idea the use of the menus presented no problems.

It should be added that the responsiveness of the UOLs in all trials was
rather low, which was a function of the performance and connectivity of
the server, rather than the software used. This may have raised doubt in the
mind of the user as to whether they have chosen the correct action.

General reflections. These results suggest that both the software used and
the particular UOLs which we developed could be improved in various re-
spects. We conclude, however, that the questions identified in the evalua-
tion of delivery of the UOL all reflect the same underlying issue: it is hard
to represent LD structures to learners in a way that is immediately com-
prehensible. There is no reason to suppose that this is the result of a struc-
tural problem in EML or LD. Rather it is a function of the lack of an estab-
lished body of practice and feedback from users. LD has been developed to
encode the essential elements of a pedagogic approach in an iterative proc-
ess lasting a number of years, and we believe that a similar iterative proc-
ess will be required to develop the best approaches to representing this en-
coded model both to learners and to teachers, and the applications which
make this possible.

The HTML version of the SCOPE UOLs closely followed the look and
feel of the G&H Continuada journal which provided the learning resources
used. It did not prove possible to reproduce exactly the HTML version in
the Edubox version. A particular limitation was that the frames are not re-
sizable and do not have a scroll bar. This would not be a problem for many
implementations, but in the context of SCOPE this was significant, be-
cause the publishing partner wanted to extend the look and feel of the
journal to the continuing education course which is based on it.8

21.5 The Effectiveness of the Solutions Developed

The conclusions regarding the effectiveness of these two prototype appli-
cations were essentially the same: the effort involved in creating the UOLs

8 Screen shots from the two applications are available at
 www.tecn.upf.es/scope/showcase/training_course.htm.

21 Challenges in the Wider Adoption of Learning Design 337

in this context, and with the current tool set, is too great to justify the bene-
fits which come from the use of EML. This similarity, however, masks
substantial difference between the two contexts, both of which make use of
different subsets of the functionality offered by EML.

In the SCOPE UOLs, the learner interactions required by the system are
relatively straightforward. There is a single learner completing a series of
learning tasks, and being evaluated with a multiple choice test. There are
no services being called, and there is no collaborative learning. In these
circumstances something similar could be created using a simpler standard
for which more mature authoring tools are available. In this context the
added value of EML is limited, mainly being the ability to adapt to a more
flexible pedagogic structure if that should be required. In practice, how-
ever, changes are likely to be infrequent, because pedagogic decisions are
not taken by teachers, but for the entire programme. Similarly, the business
model for resource sharing is primarily envisaged as taking place within a
single publishing company.

For EML/LD to be a viable solution within this context, tools would be
required which simplified the task of producing pedagogic templates for a
relatively unchanging set of UOLs, and, more importantly, for editing
those templates to include new learning resources, etc. A tool for editing
the smallest possible effective subset of metadata descriptors would also
be necessary.9 At present such tools are not available off the shelf, and al-
though producing the templates would be possible using present tooling
(as the SCOPE UOLs showed), the maintenance tools would have to be
created specifically for this purpose at considerable cost, or a technical ex-
pert would be required to carry out this function on a regular basis.

The limitations mentioned above on the presentation of the course in
Edubox (the only player available) were also a significant factor for the
publisher. This could no doubt be adjusted in the Edubox application, but
again would cost money, which cannot be justified by the benefits of using
EML/LD. In the current state of tooling, therefore, EML/LD was not a
cost-effective solution for the SCOPE prototype, given that the project did
not need to use many of the more sophisticated features of the specifica-
tion.

The teacher involved in the trial of the User Interface Design UOL was
enthusiastic about the technology when it was first explained to him. How-
ever, this enthusiasm turned to scepticism when the effort involved in cre-
ating the UOL became clear, requiring lengthy work by a team of experts.
In particular the features which offer a clear advantage (such as learner
tracking, and communication tools) are those which are most time consum-

9 The increasing demand for tools for editing the smallest possible effective subset
of metadata descriptors was one of the conclusions of the POOL project
(www.edusplash.net/) in Canada.

338 D. Griffiths et al.

ing (and hence expensive) to implement, and which can be substituted in a
face-to-face environment by direct contact with learners. Moreover the as-
pects of reuse, and interoperability of content, are also expensive in terms
of both planning and implementation, and are outside the traditional role of
the teacher in the face-to-face university environment. We conclude that at
present work with EML and LD has to be carried out with the support of
specialized centres, which cushion users from the difficulties. The high
cost of such a service could be balanced against other strategic factors to
make the use of EML/LD in a blended environment an attractive option.

The existing traditional teaching context constrains the use of the
technology just as much as the technology constrains teaching practice. In
our case this was fundamentally a lecture and practical work with on-line
documentation, and for this purpose the learners noticed little change with
the introduction of a UOL. To explore the wider potential of LD teaching
practice would have to change, along with the role of the technology
within it, and this is not an easy task. The evolution of mixed presential
and on-line learning programmes might well enhance the cost-
effectiveness of EML/LD within traditional education, as would tools
which are easier to use, by an order of magnitude. In this case the valuable
focus on flexible pedagogy, and the ability to support multiple users,
would become convincing features.

21.6 Conclusions

The SCOPE UOLs achieved their objective of demonstrating reuse of re-
sources in different contexts, with the educational resources separated
from the pedagogic structure, confirming the suitability of EML (and by
extension LD) for this purpose. The UOLs constituted a template for the
creation of the continuing education course, which facilitated the aim of
reusing published resources in educational activities. This was not devel-
oped and tested in a full-scale implementation because of the lack of suit-
able tooling. The essential tool required for the specific needs of SCOPE
was a specialized editor, enabling teachers to adapt UOLs within the pre-
defined pedagogic framework without the assistance of technical experts.
A desirable tool for this publishing context is a specialized player, which
preserves the look and feel of the G&H Continuada service, and meets the
needs and preferences of a specific learner group.

The objectives of the Interface Design UOL were also met, and the
UOL was used successfully with a cohort of learners as support for a face-
to-face course. In our particular case the added value provided by the use
of EML as opposed to HTML was not significant, but the result may not
be generalizable to other pedagogies. The effort involved in developing the

21 Challenges in the Wider Adoption of Learning Design 339

trial UOL was considerable, and prohibitively expensive for providing
support for courses developed by individual teachers. This is no doubt why
EML in the past, and now LD, have not been used beyond the context for
which they were designed: distance learning institutions which have a
clear need to exploit its ability to model a wide range of pedagogic ap-
proaches, or to use its capability to coordinate multiple learners. Our
small-scale study suggests that the use of LD in blended learning will not
be possible unless, firstly, new tools are provided which teachers can use
without the help of technical experts, and, secondly, the pedagogic context
adapts in order make use of the capabilities of the new technology. Now
that more flexible and varied tooling for LD is becoming available the first
of these conditions may soon be met. The second condition may be more
intractable and is likely to be the subject of extensive future debate and re-
search.

22 A Learning Design Worked Example

Pierre Gorissen1, Colin Tattersall2

1 Fontys University of Professional Education, Eindhoven,
The Netherlands

2 Educational Technology Expertise Centre,
Open University of the Netherlands, Heerlen, The Netherlands

22.1 Introduction

This chapter takes the reader through an educational scenario to illustrate
the modelling of a Unit of Learning (UOL) using Learning Design (LD
2003). In addition to examining the XML code, the chapter shows screen-
shots from a player application running the scenario to help the reader in
understanding the runtime consequences of design-time decisions.

The example used in the chapter is a simplified version of parts of the
use case described by Dalziel (2003). The approach taken to modelling es-
sentially follows that described in the Best Practices and Implementation
Guide of the LD specification.

22.2 The scenario

The narrative of the scenario can be condensed into the following aspects:

Title: What is greatness?
Pedagogy/type of learning: Individual and group-based learning.
Roles: Learner, Tutor.
Types of learning content involved: On-line forms to enter thoughts and
responses.
Types of learning services/facilities/tools involved: The Monitor service.
Learning activity workflow:

Learners are asked to think about the question: “what is greatness?”.
They then record a few sentences of initial thoughts.
This process is monitored and ended by the tutor.
Learners see the responses of other learners.

342 P. Gorissen, C. Tattersall

Each learner then enters personal reflections on all responses (not
made public).
The tutor receives all responses and personal reflections once they
have been entered.
The tutor gives feedback on the responses and reflections and finishes
the learning activity on a per-learner basis.

The UML Activity Diagram corresponding to the learning flow is show in
Fig. 22.1

Fig. 22.1. The UML Activity Diagram for the scenario

22.3 Running the Scenario in a Player

In the following sections, the five activities in the scenario are described,
screenshots of a run of the scenario in the Edubox player (see Chap. 19 for
a description) are shown and some specifics of the underlying XML struc-

22 A Learning Design Worked Example 343

tures are explained. The LD code implementing the scenario is covered in
more detail in the next section.

22.3.1 Introduction (Learner)

At the start of the scenario, the learner is presented with an activity-
structure and an environment containing general resources which will be
made available throughout the whole scenario. The structure-type
of the activity-structure is sequence. This means that the activities
within the structure are displayed in sequence and the learner has to com-
plete an activity before being able to proceed to the next one.

The first learning-activity is an introduction to “what is greatness?” Fig-
ure 22.2 shows the activity in Edubox.

Fig. 22.2. Learning-activity “Introduction” (learner view)

The LD offers some general resources which are available during all ac-
tivities by clicking on the General resources environment link. This first
activity can be completed by selecting the checkbox, which is rendered by
the player based on the <complete-activity> information. Note that the
checkbox shown in the user interface is generated as a result of the player

344 P. Gorissen, C. Tattersall

interpreting the LD, rather than having been explicitly coded using
XHTML.

22.3.2 Enter Initial Thoughts (Learner)

After completing the first activity, the second activity in the sequence is
made available to the learner. Here, learners can enter their initial thoughts
in a text area on a page. Unlike the previous activity, there is no option for
the learners to set the status of the activity to completed. Instead, the tutor
indicates when the activity is complete. This is arranged for in the LD by
making the completion of the activity dependent on a property value which
can only be set by the tutor.

Fig. 22.3. Learning-activity “Enter initial thoughts” (learner view)

The resource file (type imsldcontent) for this learning-activity con-
tains an LD <set-property> element, which refers to a property of
datatype “text”. As a result, the player renders a text box automatically, as
a result of the interpretation of the XML.

22.3.3 Monitor the Initial Thoughts (Tutor)

While the learners are involved with the first two learning-activities, the
tutor monitors their progress and decides when to end the second activity,
and as a result, the first act. This is achieved using a so-called Monitor ser-

22 A Learning Design Worked Example 345

vice, allowing the tutor to view certain specified properties. Figure 22.4
shows the tutor’s view.

Fig. 22.4. Support-activity “Monitor the initial thoughts” (tutor view)

The Monitor service “Initial Thoughts” is part of the Overview of
thoughts and responses in the Environment (Tools and Resources), as in
Fig. 22.5.

Fig. 22.5. Resources and services available to the tutor

The service shows a list of usernames and the entries for the second ac-
tivity enabling the tutor to monitor the progress of the learners, as shown
in Fig. 22.6. When the tutor decides to set the activity to completed, he or
she sets the property using the select box which can be seen in Fig. 22.4.

This has the consequence of displaying the next activity-
structure to the learner (What do others think?), displaying the next
support-activity to the tutor and making various aspects of the in-
terface associated with the first act read-only.

346 P. Gorissen, C. Tattersall

Fig. 22.6. Overview of initial thoughts (tutor-view)

Interaction

22.3.4 What Do Others Think? (Learner)

t do others think?) is made
available to the learners. Together with the new learning-activity an envi-

able to examine others’ responses by using a monitor service, rather
lik

now moves on to the second act.

In the second act, a new activity-structure (Wha

ronment resource listing all entered initial thoughts (without names) is
made available to the learner. The learner is asked to enter a general re-
sponse to the initial thoughts. As with the previous activity, the learner
cannot set this activity to completed. That is done by the tutor on a per-
user basis. The environment resource with the feedback by the tutor is ini-
tially hidden, but is made visible by the player once the tutor has entered
feedback for this specific learner. This is based on the conditions in the LD
code.

Figure 22.7 shows the learner view at the start of the second act. Learn-
ers are

e the one made available to tutors. However, the design excludes the
names of other learners (see Fig. 22.8).

22 A Learning Design Worked Example 347

Fig. 22.7. Allowing learners to respond to others

Fig. 22.8. Viewing others’ responses

348 P. Gorissen, C. Tattersall

22.3.5 Respond T

The completion of the second learning-activity also triggers the display of
a new support-activity (Respond to initial thoughts) for the tutor. The tutor
continues to have the environment resource available to monitor the pro-

nables the tutor to enter

o Initial Thoughts (Tutor)

gress of the learners. The second support-activity e
individual feedback for each user and set the activity to completed on a
per-user basis.

Figure 22.9 shows the tutor selecting a learner to view.

Fig. 22.9. The tutor is able to select from a list of learners

Again, this list is the result of the player interpreting the XML. Once a
learner has been selected, the properties of the learner can be viewed by
the tutor, as shown in Fig. 22.10.

The tuto nd set the
activity

r is also able to enter some feedback for the learner, a
to completed (for a given learner) using the appropriate user inter-

face control, all of which is generated by the player as a result of the XML
code.

Once the support-activity is completed, the UOL is also completed.

22 A Learning Design Worked Example 349

Fig. 22.10. Viewing the answers of a particular learner

Fig. 22.11. Providing feedback on a learner’s responses

350 P. Gorissen, C. Tattersall

22.4 Diss

This section takes the reader through key components of the XML code for
the UOL. A full listing of the code is given in Sect. 22.6.

22.4.1 Roles

ecting the XML Code

There are two role-types in the UOL, one learner role and one staff role:
<roles>
 <learner identifier=“Learner”>

<title>Learner</title>
 </learner>
 <staff identifier=“Tutor”>

<title>Tutor</title>
 </staff>
</roles>

22

To store the initial thoughts and responses, two global personal properties
are defined and one existing global personal property is referenced:

.4.2 Prope ies rt

<globpers-property identifier=“GP-username”>
 <existing href=“http://eml.ou.nl/dossier/name”/>
</globpers-property>
<globpers-property identifier=“GP-initial-thoughts”>

<global-definition uri=“GP-initial-thoughts”>
 <title>What do I think is greatness</title>
 <datatype datatype=“text”/>
 </global-definition>
</globpers-property>
<globpers-property identifier=“GP-response-to-initial-thoughts”>
 < efinition uri=“GP-response-to-initial-thouglobal-d ghts”>
 <title>Responses to the initial thoughts</title>
 <datatype datatype=“text”/>
 </global-definition>
</globpers-property>

bal opertie en afterG the run
ha within another
U alue is set individually for each user. The
da in a text area being rendered by the player when the
<set-property> element is being used. The GP-username property is filled

lo pr s are used so that their value remains set ev
ailable froms been completed and so that they are also av

OL. As they are personal, the v
ta type “text” results

22 A Learning Design Worked Example 351

with the username of the current user by the player. To illustrate the differ-
ence with these global properties, the feedback given by the tutor is stored
in a local personal property:

<locpers-propertyidentifier=“LP-tutor-comments-initial-thoughts”>
 <title>Response by tutor</title>
 <datatype datatype=“text”/>
</locpers-property>

Th the UOL
an

ties to set the completion of two of
th ivities of the UOL. One of the properties is a local
property, which contains the same value for all users. The other is a local

re initially set to false.

e result of this choice is that the value is reset for each run of
 is a OL.d lso not available from another U

The UOL uses two additional proper
e three learning act

personal property, and is set on a per-user basis. Both properties are Boo-
leans (possible values are true and false) and a

<loc-property identifier=“LP-activity-2-completed”>
 <title>Activity Enter Initial Thoughts completed</title>
 <datatype datatype=“boolean”/>
 <initial-value>false</initial-value>
</loc-property>
<locpers-property identifier=“LP-activity-3-completed”>
 <title>Enter response to initial thoughts completed</title>
 <datatype datatype=“boolean”/>
 <initial-value>false</initial-value>
</locpers-property>

22

Th am have been translated into
three learning-activities and two support-activities:

.4.3 Learning-Activities

e five activities in the UML Activity Diagr

<learning-activity isvisible=“true” identifier=“LA-introduction”>
 <title>Introduction</title>
 <activity-description>
 <item identifier=“I-introduction-a” identifierref=“R-intro”>

 <title>What</title>
 </item>
 </activity-description>
 <complete-activity>
 <user-choice/>
 </complete-activity>
</learning-activity>

352 P. Gorissen, C. Tattersall

The second activity revolves around learners entering their initial thoughts.
It ners can enter their thoughts. The comple-
tio tor, in order to ensure that all learners
ha as the tutor feels are necessary, be-
fo eds to the next activity where learners are asked to

arranges for a form where lear
n of the ac ity is set by the tutiv
ve completed this step, or as many
re interaction proce

respond to each other’s thoughts.

<learning-activity isvisible=“true” identifier=“LA-enter-initial-thoughts”>
 <title>Enter initial thoughts</title>
 <activity-description>
 <item identifier=“I-enter-initial-thoughts”

 identifierref=“R-initial-thoughts”>
 <title>Consider what you think is greatness</title>

 </item>
 </activity-description>
 <complete-activity>
 <when-property-value-is-set>
 <property-ref ref=“LP-activity-2-completed”/>
 <property-value>true</property-value>
 </when-property-value-is-set>
 </complete-activity>
</learning-activity>

Th
pl > ele-
m es the initial thoughts of
th y is again set to completed by the tutor.
Co n a value change of the property LP-activity-

e third learning-activity (LA-respond-to-others) consists of ex-
anation of what to do, together with a form using a <set-property
ent to set th global personal property that store

ning-activite learner. This lear
pletion depends om

3-completed from its initial value of false to true.

<learning-activity isvisible=“false” identifier=“LA-respond-to-others”>
 <title>Respond to the thoughts of others</title>
 <activity-description>
 <item identifier=“I-respond-to-others”
 identifierref=“R-respond”>
 </item>
 <item identifier=“I-respond-to-others-2”
 identifierref=“R-response-to-initial-thoughts-form”>
 <title>Enter your response</title>
 </item>
 </activity-description>
 <complete-activity>
 <when-property-value-is-set>
 <property-ref ref=“LP-activity-3-completed”/>
 <property-value>true</property-value>
 </when-property-value-is-set>

22 A Learning Design Worked Example 353

 </complete-activity>
</learning-activity>

Th
fir tivities
an nvironment available
during both activities. The R-Info-AS-first-step contains

eneral instructions for the learner, and is displayed when the activity-

e three learning-activities are grouped into two activity-structures. The
st one (-f) consists of the two first learning-acAS irst-step

g-general-ed makes the environment E-wi
resource

g
structure AS-first-step (and not the learning-activities within the se-
quence) is selected. The second activity-structure (AS-second-step)
contains only one learning-activity (LA-respond-to-others) but
adds an extra two environments to the already available environment.
Here, as with the first sequence, the resource R-Info-AS-second-
step is displayed when the activity-structure itself is selected.

<activity-structure identifier=“AS-first-step” structure-type=“sequence”>
 <title>First considerations</title>
 <information>
 <item identifierref=“R-Info-AS-first-step”/>
 </information>
 <environment-ref ref=“E-wig-general-environment”/>
 <learning-activity-ref ref=“LA-introduction”/>
 <learning-activity-ref ref=“LA-enter-initial-thoughts”/>
</activity-structure>
<activity-stru ture identifier=“AS-second-step” structure-type=“sec quence“>
 <title>What do others think?</title>
 <information>
 <item identifierref=“R-Info-AS-second-step”/>
 </information>
 <environment-ref ref=“E-wig-general-environment”/>
 <environment-ref ref=“E-overview-thoughts”/>
 <environment-ref ref=“E-response-by-tutor”/>
 <learning-activity-ref ref=“LA-respond-to-others”/>
</activity-str cture> u

22

Th SA-first-
st e activity-description and two environments. The
support-activity is set to completed using the same property as used for the
completion state of the second learning-activity.

.4.4 Support-Activities

ere are two support-activities for the tutor. The first one (
ep) consists of on

<support-activity identifier=“SA-first-step” isvisible=“true”>
 <title>Monitor the initial thoughts</title>

354 P. Gorissen, C. Tattersall

 <environment-ref ref=“E-wig-general-environment”/>
 <environment-ref ref=“E-overview-responses”/>
 <activity-description>
 <item identifier=“I-sa-first-step”
 identifierref=“R-set-activity2-complete”>
 <title>Set the activity to completed</title>
 </item>
 </activity-description>
 <complete-activity>
 <when-property-value-is-set>
 <property-ref ref=“LP-activity-2-completed”/>
 <property-value>true</property-value>
 </when-property-value-is-set>
 </com ete-activity> pl
</support-activity>

Th respond) is notable because of the
<role-ref ref=“Learner”> element. By using this construct, the
su er in the specified role (in
th
fa

e second support-activity (SA-

pport-activi is repeated for each individual usty
is case the Learner role), and is rendered as a list box in the player inter-
ce.

<s pond” isvisible=“true”> upport-activity identifier=“SA-res
<title>Respond to initial thoughts</title>
<role-ref ref=“Learner”/>
<environment-ref ref=“E-wig-general-environment”/>
<environment-ref ref=“E-overview-responses”/>
<activity-description>
 <item identifierref=“R-response-to-initial-thoughts-form-tutor” />
</activity-description>

</support-activity>

22

Th

.4.5 Plays and Acts

e play is split into two acts:

<play identifier=“P-1” isvisible=“true”>
 <title>What is Greatness - default play</title>
 <act identifier=“A-1”>
 <title>What is Greatness - Default act</title>
 <role-part identifier=“RP-Learner-1”>
 <title>First step</title>
 <role-ref ref=“Learner”/>
 <activity-structure-ref ref=“AS-first-step”/>
 </role-part>
 <role-part identifier=“RP-Tutor-1”>

22 A Learning Design Worked Example 355

 <title>Support activities for first step</title>
 <role-ref ref=“Tutor”/>
 <support-activity-ref ref=“SA-first-step”/>
 </role-part>
 <complete-act>
 <when-role-part-completed ref=“RP-Tutor-1”/>
 </complete-act>
 </act>
 <act id tifier=“A-2”> en
 <role-part identifier=“RP-Learner-2”>
 <title>Second step</title>
 <role-ref ref=“Learner”/>
 <activity-structure-ref ref=“AS-second-step”/>
 </role-part>
 <role-part identifier=“RP-Tutor-2”>
 <title>Support activities for second step</title>
 <role-ref ref=“Tutor”/>
 <support-activity-ref ref=“SA-respond”/>
 </role-part>
 <complete-act>
 <when-role-part-completed ref=“RP-Tutor-2”/>
 </complete-act>
 </act>
 <compl te-play> e
 <when-last-act-completed/>
 </complete-play>
</play>

22 o

Th within this UOL. The first (E-wig-
ge m-
bi

.4.6 Envir nments

ere are four environment elements
neral-environment) consists of two static XHTML files co

ned together in one knowledge-object:

<e eneral-environment”> nvironment identifier=“E-wig-g
<title>General environment</title>
<learning-object identifier=“lo-E-wig-general-environment”>
 <title>General resources</title>
 <item identifier=“I-1-wig-general-environment”
 identifierref=“R-TextualContent”>
 <title>Introduction</title>
 </item>
 <item identifier=“I-2-wig-general-environment”
 identifierref=“R-TextualContent-2”>
 <title>Examples</title>
 </item>

356 P. Gorissen, C. Tattersall

</learning-object>
</

Th en s the initial thoughts
of R-initial-thoughts-
ov ning a <view-
pr needed for the re-
su

environment>

e environm t E-overview-thoughts display
 all the learners in a table. The item file (
erview) contains a table with a single row contai

el soperty> ement. The player renders the table row
lting table.

<environment identifier=“E-overview-thoughts”>
 <title>Overview of initial thoughts</title>
 <service identifier=“S-overview-initial-thoughts”>
 <monitor>
 <role-ref ref=“Learner”/>
 <title>Initial thoughts</title>
 <item identifierref=“R-initial-thoughts-overview”/>
 </monitor>
 </service>
</environment>

Th for the
tu all the initial
th e learners. The tu-
to rs (as displayed
in
le

e vironment en E-overview-responses is available only
tor and consists of two services, one of them displaying
oughts, and the other displaying the responses from th
r sees not only the initial thoughts entered by the learne
E-overview-thoughts) but also the name of the associated

arner.

<e fier=“E-overview-responses”> nvironment identi
<title>Overview of thoughts and responses</title>
<service identifier=“S-overview-initial-thoughts-tutor”>
 <monitor>
 <role-ref ref=“Learner”/>
 <title>Initial Thoughts</title>
 <item identifierref=“R-initial-thoughts-overview-tutor”/>
 </monitor>
</service>
<service identifier=“S-overview-responses”>
 <monitor>
 <role-ref ref=“Learner”/>
 <title>Responses</title>
 <item identifierref=“R-response-to-initial-thoughts-overview”/>
 </mon r> ito
</service>

</environment>

22 A Learning Design Worked Example 357

Th -tutor) contains a single
le a single
le is et in the conditions section of
th

e final environment (E-response-by
arning-object which displays the feedback of the tutor for
arner. The v ibility of this environment is s
e design.

<e -response-by-tutor”> nvironment identifier=“E
 <title>Response by tutor</title>

<learning-object identifier=“lo-E-response-by-tutor”>
 <title>Response by tutor</title>
 <item identifierref=“R-response-by-tutor”/>
 </learning-object>
</environment>

22.4.7 Conditions

Conditions in this UOL are used to show or hide parts of pages using
rt-activities. They all

g a condi-
bes what to do when the condition is true

 part which describes what to do when the condition is
false.

erty structure checks to see if a value has been en-
y that has been defined to contain the

classes, environments, activities-structures and suppo
have a basic structure, consisting of an <if> statement checkin
tion, a <then>
and an <else>

 part which descri

The following prop
tered into the local personal propert
response by a tutor (for a single learner). If that property is not empty, the
environment that shows the content of both the learner’s initial thoughts
and the feedback of the tutor is set to visible.

<if>
<not>
 <no-value>
 <property-ref ref=“LP-tutor-comments-initial-thoughts”/>
 </no-value>
</not>

</if>
<then>

<show>
<environment-ref ref=“E-response-by-tutor”/>

</show>
</then>
<else>

<hide>
 <environment-ref ref=“E-response-by-tutor”/>
</hide>

</else>

358 P. Gorissen, C. Tattersall

The second condition handles the showing/hiding specific classes based on
a -respond-to-

he completion of a learning-activity is controlled on a per-user
check for the completion of a learning-activity (LA

others). T
basis.

<if>
 <complete>

<learning-activity-ref ref=“LA-respond-to-others”/>
 </complete>
</if>
<then>
 <show>

 <class class=“C-Activity3-complete”/>
</show>
<hide>

 <class class=“C-Activity3-not-complete”/>
 </hide>
</then>
<else>
 <show>
 <class class=“C-Activity3-not-complete”/>
 </show>
 <hide>
 <class class=“C-Activity3-complete”/>
 </hide>
</else>

22 ces.4.8 Key Resour

The scenario makes use of a number of resources, some of which include
so-called global-elements.
Initial-thoughts-form.xml is used by the learners to enter

their initial thoughts:

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns:ld=“http://www.imsglobal.org/xsd/imsld_v1p0”

 xmlns=“http://www.w3.org/1999/xhtml”>
<head>
 <title>Enter some initial thoughts regarding what is greatness</title>
</head>
<body>
 <div class=“C-Activity2-not-complete block-in-flow”>
 <p>Please enter your initial thoughts on greatness.</p>

22 A Learning Design Worked Example 359

 <ld:set-property ref=“GP-initial-thoughts”/>
 </div>
 <div class=“C-Activity2-complete block-in-flow”>
 <p>You entered these initial thoughts:</p>
 <table border=“0” width=“50%” cellspacing=“1”
 cellpadding=“0”>
 <tr>
 <td>
 <ld:view-property
 href=“GP-initial-thoughts”
 property-of=“self” view=“value”/>
 </td>
 </tr>
 </table>
 </div>
 <div class=“C-Activity2-complete in-flow”>
 The activity has been completed by the tutor.
 </div>
</body>

</

Th activity2-complete and C-
activity2-not-complete. Visibility of the classes is set in the con-
di ot been set to complete
(th t is, isible then), the
<s ent causes the player to render a form with text area
el d an ok-button enabling the learner to enter and, if needed,

is/her initial thoughts. The thoughts are then stored in the global
personal property . If the property has a value,

ones. The block-in-flow style causes the
te

m

html>

e file contains the classes C-

ti section of the UOL. If the activity has n
he cla

ons
a t ss C-activity2-not-complete is v
et-property> elem
ement an

change h
GP-initial-thoughts

that value is shown when the form is being displayed and overwritten
when the form is (re-)submitted.

Once the activity has been completed, the visibility of the classes tog-
gles and the form becomes invisible, being replaced by a table showing the
contents of the GP-initial-thoughts property (read-only). It
also sets the text “The activity has been completed by the tutor” to visible.

The file uses the cascading effect of the class property in XHTML to
also add the block-in-flow or in-flow style to the <div> element. In
XHTML a browser, and thus the player, cascades styles with the later ones
taking precedence over previous

xt to be displayed as a text box using a different background, different
colouring, etc. while the in-flow style (which is the default style for all text
displayed in the player) just applies the default fonts etc. to the text.

This structure of combining <view-property> and <set-property> ele-
ents in the same resource file with the visibility controlled by class-

visibility is also used in many of the other resources.

360 P. Gorissen, C. Tattersall

The resource responses-overview.xml gives an overview of all
the initial responses by the learners with their usernames. It is used for the
service that gives the overview of the initial thoughts (S-overview-
initial-thoughts) in the environment E-overview-thoughts.

As you can see, the table in the XHTML file only contains a header row
and a single table row with the <view-property> elements. Rendering
of the additional rows needed for all learners is handled by the player.

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns:ld=“http://www.imsglobal.org/xsd/imsld_v1p0”

 xmlns=“http://www.w3.org/1999/xhtml”>
<head>
 <title>The intitial thoughts</title>
</head>
<body>
 <table border=“0” width=“50%” cellspacing=“1” cellpadding=“0”>
 <tr>
 <th>Learner</th>
 <th>Overview of the responses to the
 initial thoughts</th>

</tr>
 <tr>
 <td>
 <ld:view-property ref=“GP-username”/>
 </td>
 <td>
 <ld:view-property
 ref=“GP-response-to-initial-thoughts”/>
 </td>
 </tr>
 </table >
</body>

</html>

22.5 Concluding Remarks

Th ribed above represents only part of the What is e worked example desc
Greatness use case but is none the less instructive – it illustrates the use of

es in a collaborative learning situation, a learning service (the
, properties and conditions, advanced completion rules, the show-

ing and hiding of content and global elements.

m
monitor)

ultiple rol

22 A Learning Design Worked Example 361

22.6 XML Code

<?xml version=“1.0” encoding=“UTF-8“?>
<imscp:manifest xmlns:imscp=“http://www.imsglobal.org/xsd/imscp_v1p1“ xm-
lns=“http://www.imsglobal.org/xsd/imsld_v1p0“ xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance“
xsi:schemaLocation=“http://www.imsglobal.org/xsd/imscp_v1p1 imscp_v1p1.xsd
http://www.imsglobal.org/xsd/imsld_v1p0 IMS_LD_Level_B.xsd “ identifier=“What-Is-Greatness-Partial“>
 <imscp:organizations>
 <learning-design identifier=“LD-What-Is-Greatness“ uri=“WIGC“ level=“B“>
 <title>What is Greatness</title>
 <components>
 <roles>
 <learner identifier=“Learner“>
 <title>Learner</title>
 </learner>
 <staff identifier=“Tutor“>
 <title>Tutor</title>
 </staff>
 </roles>
 <properties>
 <globpers-property identifier=“GP-username“>
 <existing href=“http://eml.ou.nl/dossier/name“/>
 </globpers-property>
 <globpers-property identifier=“GP-initial-thoughts“>
 <global-definition uri=“GP-initial-thoughts“>

<title>What do I think is greatness</title>
<datatype datatype=“text“/>

 </global-definition>
 </globpers-property>
 <globpers-property identifier=“GP-response-to-initial-thoughts“>
 <global-definition uri=“GP-response-to-initial-thoughts“>
 <title>Responses to the initial thoughts</title>
 <datatype datatype=“text“/>
 </global-definition>
 </globpers-property>
 <locpers-property identifier=“LP-tutor-comments-initial-thoughts“>
 <title>Response by tutor</title>
 <datatype datatype=“text“/>
 </locpers-property>
 <loc-property identifier=“LP-activity-2-completed“>
 <title>Activity Enter Initial Thoughts completed</title>
 <datatype datatype=“boolean“/>
 <initial-value>false</initial-value>
 </loc-property>
 <locpers-property identifier=“LP-activity-3-completed“>
 <title>Enter response to initial thoughts completed</title>
 <datatype datatype=“boolean“/>
 <initial-value>false</initial-value>
 </locpers-property>
 </properties>
 <activities>
 <learning-activity isvisible=“true“ identifier=“LA-introduction“>
 <title>Introduction</title>
 <activity-description>
 <item identifier=“I-introduction-a“ identifierref=“R-intro“>
 <title>What</title>
 </item>
 </activity-description>
 <complete-activity>
 <user-choice/>
 </complete-activity>
 </learning-activity>
 <learning-activity isvisible=“true“ identifier=“LA-enter-initial-thoughts“>
 <title>Enter initial thoughts</title>
 <activity-description>
 <item identifier=“I-enter-initial-thoughts“ identifierref=“R-initial-thoughts“>

362 P. Gorissen, C. Tattersall

 <title>Consider what you think is greatness</title>
 </item>
 </activity-description>
 <complete-activity>
 <when-property-value-is-set>
 <property-ref ref=“LP-activity-2-completed“/>
 <property-value>true</property-value>
 </when-property-value-is-set>
 </complete-activity>
 </learning-activity>
 <learning-activity isvisible=“false“ identifier=“LA-respond-to-others“>
 <title>Respond to the thoughts of others</title>
 <activity-description>
 <item identifier=“I-respond-to-others-1“ identifierref=“R-TextualContent“>
 <title>What</title>
 </item>
 <item identifier=“I-respond-to-others-2“ identifierref=“R-response-to-
initial-thoughts-form“>
 <title>Enter your response</title>
 </item>
 </activity-description>
 <complete-activity>
 <when-property-value-is-set>
 <property-ref ref=“LP-activity-3-completed“/>
 <property-value>true</property-value>
 </when-property-value-is-set>
 </complete-activity>
 </learning-activity>
 <activity-structure identifier=“AS-first-step“ structure-type=“sequence“>
 <title>First considerations</title>
 <information>
 <item identifierref=“R-Info-AS-first-step“/>

 </information>
 <environment-ref ref=“E-wig-general-environment“/>
 <learning-activity-ref ref=“LA-introduction“/>
 <learning-activity-ref ref=“LA-enter-initial-thoughts“/>
 </activity-structure>
 <activity-structure identifier=“AS-second-step“ structure-type=“sequence“>
 <title>What do others think?</title>
 <information>
 <item identifierref=“R-Info-AS-second-step“/>
 </information>
 <environment-ref ref=“E-wig-general-environment“/>
 <environment-ref ref=“E-overview-thoughts“/>
 <environment-ref ref=“E-response-by-tutor“/>
 <learning-activity-ref ref=“LA-respond-to-others“/>
 </activity-structure>
 <support-activity identifier=“SA-first-step“ isvisible=“true“>
 <title>Monitor the initial thoughts</title>
 <environment-ref ref=“E-wig-general-environment“/>
 <environment-ref ref=“E-overview-responses“/>
 <activity-description>
 <item identifier=“I-sa-first-step“ identifierref=“R-set-activity2-complete“>
 <title>Set the activity to completed</title>
 </item>
 </activity-description>
 <complete-activity>
 <when-property-value-is-set>
 <property-ref ref=“LP-activity-2-completed“/>
 <property-value>true</property-value>
 </when-property-value-is-set>
 </complete-activity>
 </support-activity>
 <support-activity identifier=“SA-respond“ isvisible=“true“>
 <title>Respond to initial thoughts</title>
 <role-ref ref=“Learner“/>
 <environment-ref ref=“E-wig-general-environment“/>
 <environment-ref ref=“E-overview-responses“/>

22 A Learning Design Worked Example 363

 <activity-description>
 <item identifierref=“R-response-to-initial-thoughts-form-tutor“/>
 </activity-description>
 </support-activity>
 </activities>
 <environments>
 <environment identifier=“E-wig-general-environment“>
 <title>General environment</title>
 <learning-object identifier=“lo-E-wig-general-environment“>
 <title>General resources</title>
 <item identifier=“I-1-wig-general-environment“ identifierref=“R-
TextualContent“>
 <title>Introduction</title>
 </item>
 <item identifier=“I-2-wig-general-environment“ identifierref=“R-
TextualContent“>
 <title>Examples</title>
 </item>
 </learning-object>
 </environment>
 <environment identifier=“E-overview-thoughts“>
 <title>Overview of initial thoughts</title>
 <service identifier=“S-overview-initial-thoughts“>
 <monitor>
 <role-ref ref=“Learner“/>
 <title>Initial thoughts</title>

 <item identifierref=“R-initial-thoughts-overview“/>
 </monitor>
 </service>
 </environment>

 <environment identifier=“E-overview-responses“>
 <title>Overview of thoughts and responses</title>
 <service identifier=“S-overview-initial-thoughts-tutor“>
 <monitor>
 <role-ref ref=“Learner“/>
 <title>Initial Thoughts</title>
 <item identifierref=“R-initial-thoughts-overview-tutor“/>
 </monitor>
 </service>
 <service identifier=“S-overview-responses“>
 <monitor>
 <role-ref ref=“Learner“/>
 <title>Responses</title>
 <item identifierref=“R-response-to-initial-thoughts-overview“/>
 </monitor>
 </service>
 </environment>
 <environment identifier=“E-response-by-tutor“>
 <title>Response by tutor</title>
 <learning-object identifier=“lo-E-response-by-tutor“>
 <title>Response by tutor</title>
 <item identifierref=“R-response-by-tutor“/>
 </learning-object>
 </environment>
 </environments>
 </components>
 <method>
 <play identifier=“P-1“ isvisible=“true“>
 <title>What is Greatness - default play</title>
 <act identifier=“A-1“>
 <title>What is Greatness - Default act</title>
 <role-part identifier=“RP-Learner-1“>
 <title>First step</title>
 <role-ref ref=“Learner“/>
 <activity-structure-ref ref=“AS-first-step“/>
 </role-part>
 <role-part identifier=“RP-Tutor-1“>
 <title>Support activities for first step</title>

364 P. Gorissen, C. Tattersall

 <role-ref ref=“Tutor“/>
 <support-activity-ref ref=“SA-first-step“/>
 </role-part>
 <complete-act>
 <when-role-part-completed ref=“RP-Tutor-1“/>
 </complete-act>
 </act>
 <act identifier=“A-2“>
 <role-part identifier=“RP-Learner-2“>
 <title>Second step</title>
 <role-ref ref=“Learner“/>
 <activity-structure-ref ref=“AS-second-step“/>
 </role-part>
 <role-part identifier=“RP-Tutor-2“>
 <title>Support activities for second step</title>
 <role-ref ref=“Tutor“/>
 <support-activity-ref ref=“SA-respond“/>
 </role-part>
 <complete-act>
 <when-role-part-completed ref=“RP-Tutor-2“/>
 </complete-act>
 </act>
 <complete-play>
 <when-last-act-completed/>
 </complete-play>
 </play>
 <complete-unit-of-learning>
 <when-play-completed ref=“P-1“/>
 </complete-unit-of-learning>
 <conditions>
 <if>
 <not>
 <no-value>
 <property-ref ref=“LP-tutor-comments-initial-thoughts“/>
 </no-value>
 </not>
 </if>
 <then>
 <show>
 <environment-ref ref=“E-response-by-tutor“/>
 </show>
 </then>
 <else>
 <hide>
 <environment-ref ref=“E-response-by-tutor“/>
 </hide>
 </else>
 <if>
 <complete>
 <learning-activity-ref ref=“LA-respond-to-others“/>
 </complete>
 </if>
 <then>
 <show>
 <class class=“C-Activity3-complete“/>
 </show>
 <hide>
 <class class=“C-Activity3-not-complete“/>
 </hide>
 </then>
 <else>
 <show>

<class class=“C-Activity3-not-complete“/>
 </show>
 <hide>
 <class class=“C-Activity3-complete“/>
 </hide>
 </else>

22 A Learning Design Worked Example 365

 </conditions>
 </method>
 </learning-design>
 </imscp:organizations>
 <imscp:resources>
 <imscp:resource identifier=“R-intro“ type=“webcontent“ href=“dummy.xml“>
 <imscp:file href=“dummy.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-TextualContent“ type=“webcontent“ href=“dummy.xml“>
 <imscp:file href=“dummy.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-Info-AS-first-step“ type=“webcontent“ href=“activity-seq1-info.xml“>
 <imscp:file href=“activity-seq1-info.xml“/>
 <imscp:file href=“einstein2.gif“/>
 </imscp:resource>
 <imscp:resource identifier=“R-Info-AS-second-step“ type=“webcontent“ href=“activity-seq2-
info.xml“>
 <imscp:file href=“activity-seq2-info.xml“/>
 <imscp:file href=“pencils.jpg“/>
 </imscp:resource>
 <imscp:resource identifier=“R-initial-thoughts“ type=“imsldcontent“ href=“initial-thoughts-
form.xml“>
 <imscp:file href=“initial-thoughts-form.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-set-activity2-complete“ type=“imsldcontent“ href=“set-activity2-
complete.xml“>
 <imscp:file href=“set-activity2-complete.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-initial-thoughts-overview“ type=“imsldcontent“ href=“initial-
thoughts-overview.xml“>
 <imscp:file href=“initial-thoughts-overview.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-initial-thoughts-overview-tutor“ type=“imsldcontent“ href=“initial-
thoughts-overview-tutor.xml“>
 <imscp:file href=“initial-thoughts-overview-tutor.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-response-to-initial-thoughts-form“ type=“imsldcontent“
href=“response-to-initial-thoughts-form.xml“>
 <imscp:file href=“response-to-initial-thoughts-form.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-response-to-initial-thoughts-overview“ type=“imsldcontent“
href=“responses-overview.xml“>
 <imscp:file href=“responses-overview.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-response-by-tutor“ type=“imsldcontent“ href=“initial-thoughts-tutor-
comments.xml“>
 <imscp:file href=“initial-thoughts-tutor-comments.xml“/>
 </imscp:resource>
 <imscp:resource identifier=“R-response-to-initial-thoughts-form-tutor“ type=“imsldcontent“
href=“initial-thoughts-tutor-form.xml“>
 <imscp:file href=“initial-thoughts-tutor-form.xml“/>
 </imscp:resource>
 </imscp:resources>
</imscp:manifest>

Appendix

This appendix contains the full XML code for a problem-based learning
template. The code is a generalised and extended version of the case dis-
cussed in the present chapter. This was done to make the template suitable
for other cases than the one discussed above: it is always easier to modify
a template than to build one from scratch. The accompanying, generalised
scenario consists of the following steps:

1. The coordinator for the course makes a problem description available
to the group (by uploading a file to a website).

2. Each of the students in the group reads the problem (on the website),
as does the facilitator. With the help of some synchronous conferenc-
ing system which includes the facilitator, the students also decide who
is going to be the chairperson – the spokesperson for the group, re-
sponsible for recording key group decisions. This step corresponds to
step 1 in Box 8.1: Discuss what body part or organ the case is about.

3. The chosen representative is formally appointed by the facilitator.
This allows the facilitator some leeway to override the students’ deci-
sion if this may be desirable.

4. The students in the group attempt to clarify the problem, using each
other and the facilitator to discuss and clarify terminology and any
open issues, eventually arriving at their own comprehensive statement
of the problem at hand. This step corresponds to step 2 in Box 8.1:
Discuss what additional information needs to be acquired […] to ob-
tain a full picture of the problem.

5. The chairperson states this problem description in a file uploaded to
the website and the group continues by identifying possible solutions
or explanations for the problem. This step corresponds to step 3 in
Box 8.1: Combine the results of step 1 and 2.

6. These possible explanations are clustered and the ensuing clusters
will be further explored by the students. This step corresponds to step
4 in Box 8.1: Formulate a causal explanation for the combined results.

7. The explanations to be pursued are listed in a file uploaded to the
web site. This step corresponds to step 5 in Box 8.1: … make a dif-
ferential diagnosis.

8. The group then identifies the learning goals of the problem, and
9. each individual student embarks on the required research. This step

and the previous one correspond to step 6 in Box 8.1: Discuss how a
more certain diagnosis may be arrived at.

368 Appendix

10. Eventually, the students in the group meet up (using a suitable syn-
chronous means of communication) to discuss their findings, again
assisted by the facilitator. This corresponds to step 7 in Box 8.1: De-
velop a therapy in the form of a plan.

11. The chairperson summarises the findings in a file uploaded to the
website.

12. Subsequently, an evaluator and the facilitator discuss the performance
of the group

13. and the evaluator provides an evaluation of the group (in a file up-
loaded to the website).

When working through the code template, one should take note of the fol-
lowing points:

The template makes use of several acts in the learning flow. Acts are
used not only to support parallel activities (e.g. the students and facilita-
tor reading the problem description), but also as synchronisation points
when the flow crosses roles (e.g. between the students discussing find-
ings and the chairperson summarising the findings).
Two environments are defined to support group discussions, both be-
tween the students (including the chairperson) and between the facilita-
tor and evaluator.
The various texts produced during the sessions are ‘published’ using a
mechanism which exploits a property with a file datatype being set in
the resource associated with ‘publishing’ activity. In this way P-
Problem-Description is defined as a property (with datatype file) associ-
ated with the coordinator role, and is set in the resource (RES-
Accompanying-Text-For-Coordinator) associated with the co-
ordinator’s support activity of SA-Make-problem-Description-
Available.
The example is at level C due to the use of notifications (e.g. the email
notification to the facilitator and students following the coordinator’s
‘publication’ of the problem description, handled with an on-completion
element on SA-Make-problem-Description-Available).

Identifiers are chosen such that they help the human reader to keep track
of how the design evolves. Thus the learner role is identified as R-student,
property identifiers will use a leading ‘P’, learning activities ‘LA’, support
activities ‘SA’, etc.

Appendix 369
R

ol
e

A

ct
iv

ity
En

vi
ro

nm
en

t
A

ct
iv

ity
co

m
pl

et
io

n
Pr

op
er

ty
/

no
tif

ic
at

io
n

A
ct

A
ct

 c
om

pl
e-

tio
n

A
ct

iv
ity

-
st

ru
ct

ur
e

Ty
pe

R
1-

C
oo

rd
in

a-
to

r

SA
1-

M
ak

e
pr

ob
le

m
de

sc
rip

tio
n

av
ai

la
bl

e

U
se

r c
ho

ic
e

N
ot

ify

st
ud

en
t

N
ot

ify
 fa

ci
lit

a-
to

r (
P1

-e
-m

ai
l)

P2
-p

ro
bl

em
de

sc
rip

tio
n

A
C

T1
-

M
ak

e
pr

ob
-

le
m

 d
e-

sc
rip

tio
n

av
ai

la
bl

e

W
he

n
co

or
di

na
to

r i
s

do
ne

R
2-

St
ud

en
t

LA
1-

R
ea

d
pr

ob
le

m
de

sc
rip

tio
n

U
se

rc
ho

ic
e

A
C

T2
-

Pr
ep

ar
e

W
he

n
fa

ci
lit

a-
to

r i
s d

on
e

A
S1

-
Pr

ep
ar

e
Se

qu
en

ce

R
2-

St
ud

en
t

LA
2-

C
ho

os
e

ch
ai

rp
er

so
n

E1
-

Sy
nc

hr
on

ou
s

gr
ou

p
fa

ci
li-

tie
s

R
3-

Fa
ci

lit
at

or

LA
1-

R
ea

d
pr

ob
le

m
de

sc
rip

tio
n

U
se

rc
ho

ic
e

A
S3

-H
el

p
gr

ou
p

Se
qu

en
ce

R
3-

Fa
ci

lit
at

or

SA
2-

Pr
ov

id
e

as
-

si
st

an
ce

E1
-

Sy
nc

hr
on

ou
s

gr
ou

p
fa

ci
li-

tie
s

R
3-

Fa
ci

lit
at

or

SA
3-

A
pp

oi
nt

ch
ai

r

U
se

r c
ho

ic
e

N
ot

ify
 st

ud
en

t
(P

1-
e-

m
ai

l)
A

C
T3

-
A

pp
oi

nt
ch

ai
r

W
he

n
fa

ci
lit

a-
to

r i
s d

on
e

 370 Appendix
Ta

bl
e

co
nt

in
ue

d
R

ol
e

A
ct

iv
ity

En
vi

ro
nm

en
t

A
ct

iv
ity

co
m

pl
et

io
n

Pr
op

er
ty

/
no

tif
ic

at
io

n
A

ct
A

ct
co

m
-

pl
et

io
n

A
ct

iv
ity

-
st

ru
ct

ur
e

Ty
pe

R
2-

St
ud

en
t

LA
3-

C
la

rif
y

pr
ob

le
m

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

U
se

r
C

ho
ic

e
A

C
T4

-
C

la
rif

y
pr

ob
-

le
m

W
he

n
al

l
st

ud
en

ts
 a

re

do
ne

R
3-

Fa
ci

lit
at

or

SA
2-

Pr
ov

id
e

as
si

st
an

ce

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

R
4-

C
ha

irp
er

so
n

LA
4-

St
at

e
pr

ob
le

m
E1

-S
yn

ch
ro

no
us

gr

ou
p

fa
ci

lit
ie

s
U

se
r c

ho
ic

e
P3

-P
ro

bl
em

st
at

em
en

t
A

C
T5

-S
ta

te

pr
ob

le
m

W
he

n
ch

ai
r

is
 d

on
e

R
3-

Fa
ci

lit
at

or

SA
2-

Pr
ov

id
e

as
si

st
an

ce

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

R
2-

St
ud

en
t

LA
5-

B
ra

in
st

or
m

ex
pl

an
at

io
ns

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

U
se

r c
ho

ic
e

A
C

T6
-A

rr
iv

e
at

 e
xp

la
na

-
tio

n

W
he

n
al

l
st

ud
en

ts
 a

re

do
ne

A
S2

-
A

rr
iv

e
at

ex

pl
an

a-
tio

n

Se
qu

en
ce

R
2-

St
ud

en
t

LA
6-

C
lu

st
er

ex
pl

an
at

io
ns

E1

-S
yn

ch
ro

no
us

gr

ou
p

fa
ci

lit
ie

s
U

se
rc

ho
ic

e

R
3-

Fa
ci

lit
at

or

SA
2-

Pr
ov

id
e

as
si

st
an

ce

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

Appendix 371

Ta
bl

e
co

nt
in

ue
d

R
ol

e
A

ct
iv

ity

En
vi

ro
nm

en
t

A
ct

iv
ity

co
m

pl
et

io
n

Pr
op

er
ty

/
no

tif
ic

at
io

n
A

ct
A

ct
 c

om
-

pl
et

io
n

A
ct

iv
ity

-
st

ru
ct

ur
e

Ty
pe

R
4=

C
ha

irp
er

so
n

LA
7-

Li
st

ex
pl

an
a-

tio
ns

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

U
se

r c
ho

ic
e

P4
-L

is
t o

f
ex

pl
an

a-
tio

ns

A
C

T7
-L

is
t

ex
pl

an
a-

tio
ns

W
he

n
ch

ai
r

is
 d

on
e

R
3-

Fa
ci

lit
at

or

SA
2-

Pr
ov

id
e

as
si

st
an

ce

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

R
2-

St
ud

en
t

LA
8-

Fo
rm

ul
at

e
go

al
s

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

U
se

r c
ho

ic
e

A
C

T8
-

Fo
rm

ul
at

e
go

al
s

W
he

n
al

l
st

ud
en

ts
 a

re

do
ne

R
3-

Fa
ci

lit
at

or
SA

2-
Pr

ov
id

e
as

si
st

an
ce

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

R
2-

St
ud

en
t

SA
9-

C
ar

ry

ou
t r

es
ea

rc
h

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

U
se

r c
ho

ic
e

A
C

T9
-

C
ar

ry
 o

ut

re
se

ar
ch

W
he

n
al

l
st

ud
en

ts
 a

re

do
ne

R
2-

St
ud

en
t

LA
10

-
D

is
cu

ss

fin
di

ng
s

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

U
se

r c
ho

ic
e

A
C

T1
0-

D
is

cu
ss

fin

di
ng

s

W
he

n
al

l
st

ud
en

ts
 a

re

do
ne

R
3-

Fa
ci

lit
at

or
SA

2-
Pr

ov
id

e
as

si
st

an
ce

E1
-S

yn
ch

ro
no

us

gr
ou

p
fa

ci
lit

ie
s

U
se

rc
ho

ic
e

 372 Appendix
Ta

bl
e

co
nt

in
ue

d
R

ol
e

A
ct

iv
ity

En
vi

ro
n-

m
en

t
A

ct
iv

ity

co
m

pl
et

io
n

Pr
op

er
ty

/
no

tif
ic

at
io

n
A

ct
A

ct
co

m
pl

e-
tio

n
A

ct
iv

ity
-

st
ru

ct
ur

e
Ty

pe

R
4-

C
ha

ir
LA

11
-

Su
m

m
ar

is
e

fin
di

ng
s

E1
-

Sy
nc

hr
o-

no
us

 g
ro

up

fa
ci

lit
ie

s

U
se

r c
ho

ic
e

N
ot

ify
 fa

ci
lit

at
or

(P

1)
N

ot
ify

 e
va

lu
at

or

(P
1)

P5
-S

um
m

ar
y

of

fin
di

ng
s

A
C

T1
1-

Su
m

m
ar

is
e

fin
di

ng
s

W
he

n
ch

ai
r i

s
do

ne

R
3-

Fa
ci

lit
at

or

SA
2-

Pr
ov

id
e

as
-

si
st

an
ce

E1
-

Sy
nc

hr
o-

no
us

 g
ro

up

fa
ci

lit
ie

s
R

5-
Ev

al
ua

to
r

SA
4-

D
is

cu
ss

gr

ou
p

E2
-

Sy
nc

hr
o-

no
us

ev
al

ua
tio

n
fa

ci
lit

ie
s

U
se

r c
ho

ic
e

P6
-G

ro
up

 e
va

lu
a-

tio
n

A
C

T1
2-

D
is

cu
ss

gr

ou
p

W
he

n
ev

al
ua

-
to

r i
s d

on
e

R
3-

Fa
ci

lit
at

or

SA
4-

D
is

cu
ss

gr

ou
p

E2
-

Sy
nc

hr
o-

no
us

ev
al

ua
tio

n
fa

ci
lit

ie
s

R
5-

Ev
al

ua
to

r
SA

5-
Ev

al
ua

te
gr

ou
p

U
se

r c
ho

ic
e

A
C

T1
3-

Ev
al

ua
te

gr
ou

p

W
he

n
ev

al
ua

-
to

r i
s d

on
e

Appendix 373
<
?
x
m
l

v
e
r
s
i
o
n
=
“
1
.
0
”

e
n
c
o
d
i
n
g
=
“
U
T
F
-
8
”
?
>

<
!
-
-

e
d
i
t
e
d

b
y

C
o
l
i
n

T
a
t
t
e
r
s
a
l
l
,

a
d
a
p
t
e
d

b
y

P
e
t
e
r

S
l
o
e
p

(
O
p
e
n

U
n
i
v
e
r
s
i
t
y

o
f

t
h
e

N
e
t
h
e
r
l
a
n
d
s
)

-
-
>

<
m
a
n
i
f
e
s
t

x
m
l
n
s
=
“
h
t
t
p
:
/
/
w
w
w
.
i
m
s
g
l
o
b
a
l
.
o
r
g
/
x
s
d
/
i
m
s
c
p
_
v
1
p
1
”

x
m
l
n
s
:
i
m
s
l
d
=
“
h
t
t
p
:
/
/
w
w
w
.
i
m
s
g
l
o
b
a
l
.
o
r
g
/
x
s
d
/
i
m
s
l
d
_
v
1
p
0
”

x
m
l
n
s
:
x
s
i
=
“
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
-
i
n
s
t
a
n
c
e
”

x
s
i
:
s
c
h
e
m
a
L
o
c
a
t
i
o
n
=
“
h
t
t
p
:
/
/
w
w
w
.
i
m
s
g
l
o
b
a
l
.
o
r
g
/
x
s
d
/
i
m
s
c
p
_
v
1
p
1

h
t
t
p
:
/
/
w
w
w
.
i
m
s
g
l
o
b
a
l
.
o
r
g
/
x
s
d
/
i
m
s
c
p
_
v
1
p
1
p
3
.
x
s
d

h
t
t
p
:
/
/
w
w
w
.
i
m
s
g
l
o
b
a
l
.
o
r
g
/
x
s
d
/
i
m
s
l
d
_
v
1
p
0

h
t
t
p
:
/
/
w
w
w
.
i
m
s
g
l
o
b
a
l
.
o
r
g
/
x
s
d
/
i
m
s
l
d
_
l
e
v
e
l
_
c
_
v
1
p
0
.
x
s
d
”

i
d
e
n
t
i
f
i
e
r
=
“
P
B
L
-

M
a
n
i
f
e
s
t
”
>

<
m
e
t
a
d
a
t
a
>

<
s
c
h
e
m
a
>
I
M
S

M
e
t
a
d
a
t
a
<
/
s
c
h
e
m
a
>

<
s
c
h
e
m
a
v
e
r
s
i
o
n
>
1
.
2
<
/
s
c
h
e
m
a
v
e
r
s
i
o
n
>

<
/
m
e
t
a
d
a
t
a
>

<
o
r
g
a
n
i
z
a
t
i
o
n
s
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
d
e
s
i
g
n

i
d
e
n
t
i
f
i
e
r
=
“
P
r
o
b
l
e
m
-
B
a
s
e
d
-
L
e
a
r
n
i
n
g
”

v
e
r
s
i
o
n
=
“
”

l
e
v
e
l
=
“
C
”

s
e
q
u
e
n
c
e
-

u
s
e
d
=
“
f
a
l
s
e
”

u
r
i
=
“
”
>

<
i
m
s
l
d
:
c
o
m
p
o
n
e
n
t
s
>

<
i
m
s
l
d
:
r
o
l
e
s
>

<
i
m
s
l
d
:
l
e
a
r
n
e
r

i
d
e
n
t
i
f
i
e
r
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
e
r

i
d
e
n
t
i
f
i
e
r
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
i
m
s
l
d
:
s
t
a
f
f

i
d
e
n
t
i
f
i
e
r
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
s
t
a
f
f

i
d
e
n
t
i
f
i
e
r
=
“
R
-
c
o
o
r
d
i
n
a
t
o
r
”
/
>

<
i
m
s
l
d
:
s
t
a
f
f

i
d
e
n
t
i
f
i
e
r
=
“
R
-
e
v
a
l
u
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
s
>

<
i
m
s
l
d
:
p
r
o
p
e
r
t
i
e
s
>

<
i
m
s
l
d
:
g
l
o
b
p
e
r
s
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
=
“
P
-
e
m
a
i
l
”
>

<
i
m
s
l
d
:
e
x
i
s
t
i
n
g

h
r
e
f
=
“
”
/
>

<
/
i
m
s
l
d
:
g
l
o
b
p
e
r
s
-
p
r
o
p
e
r
t
y
>

<
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
=
“
P
-
P
r
o
b
l
e
m
-
D
e
s
c
r
i
p
t
i
o
n
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
c
o
o
r
d
i
n
a
t
o
r
”
/
>

<
i
m
s
l
d
:
d
a
t
a
t
y
p
e

d
a
t
a
t
y
p
e
=
“
f
i
l
e
”
/
>

<
/
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y
>

<
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
=
“
P
-
P
r
o
b
l
e
m
-
S
t
a
t
e
m
e
n
t
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
i
m
s
l
d
:
d
a
t
a
t
y
p
e

d
a
t
a
t
y
p
e
=
“
f
i
l
e
”
/
>

<
/
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y
>

<
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
=
“
P
-
L
i
s
t
-
O
f
-
E
x
p
l
a
n
a
t
i
o
n
s
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
i
m
s
l
d
:
d
a
t
a
t
y
p
e

d
a
t
a
t
y
p
e
=
“
f
i
l
e
”
/
>

<
/
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y
>

<
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
=
“
P
-
S
u
m
m
a
r
y
-
O
f
-
F
i
n
d
i
n
g
s
”
>

 374 Appendix

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
i
m
s
l
d
:
d
a
t
a
t
y
p
e

d
a
t
a
t
y
p
e
=
“
f
i
l
e
”
/
>

<
/
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y
>

<
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
=
“
P
-
G
r
o
u
p
-
E
v
a
l
u
a
t
i
o
n
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
e
v
a
l
u
a
t
o
r
”
/
>

<
i
m
s
l
d
:
d
a
t
a
t
y
p
e

d
a
t
a
t
y
p
e
=
“
f
i
l
e
”
/
>

<
/
i
m
s
l
d
:
l
o
c
r
o
l
e
-
p
r
o
p
e
r
t
y
>

<
/
i
m
s
l
d
:
p
r
o
p
e
r
t
i
e
s
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
i
e
s
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
S
A
-
M
a
k
e
-
p
r
o
b
l
e
m
-
D
e
s
c
r
i
p
t
i
o
n
-

A
v
a
i
l
a
b
l
e
”
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
M
a
k
e
-
p
r
o
b
l
e
m
-
D
e
s
c
r
i
p
t
i
o
n
-

A
v
a
i
l
a
b
l
e
”

i
d
e
n
t
i
f
i
e
r
r
e
f
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
C
o
o
r
d
i
n
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
o
n
-
c
o
m
p
l
e
t
i
o
n
>

<
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a

e
m
a
i
l
-
p
r
o
p
e
r
t
y
-
r
e
f
=
“
P
-
e
m
a
i
l
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
/
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a
>

<
i
m
s
l
d
:
s
u
b
j
e
c
t
>
A
v
a
i
l
a
b
i
l
i
t
y

o
f

t
h
e

p
r
o
b
-

l
e
m
<
/
i
m
s
l
d
:
s
u
b
j
e
c
t
>

<
/
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a

e
m
a
i
l
-
p
r
o
p
e
r
t
y
-
r
e
f
=
“
P
-
e
m
a
i
l
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a
>

<
i
m
s
l
d
:
s
u
b
j
e
c
t
>
A
v
a
i
l
a
b
i
l
i
t
y

o
f

t
h
e

p
r
o
b
-

l
e
m
<
/
i
m
s
l
d
:
s
u
b
j
e
c
t
>

<
/
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
/
i
m
s
l
d
:
o
n
-
c
o
m
p
l
e
t
i
o
n
>

<
/
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
F
a
c
i
l
i
t
a
t
o
r
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
-
T
e
x
t
”
/
>

Appendix 375

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
/
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
S
A
-
A
p
p
o
i
n
t
-
C
h
a
i
r
p
e
r
s
o
n
”
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
A
p
p
o
i
n
t
-
C
h
a
i
r
p
e
r
s
o
n
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
A
p
p
o
i
n
t
-
C
h
a
i
r
p
e
r
s
o
n
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
o
n
-
c
o
m
p
l
e
t
i
o
n
>

<
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a

e
m
a
i
l
-
p
r
o
p
e
r
t
y
-
r
e
f
=
“
P
-
e
m
a
i
l
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
/
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a
>

<
i
m
s
l
d
:
s
u
b
j
e
c
t
>
A
p
p
o
i
n
t
m
e
n
t

o
f

c
h
a
i
r
p
e
r
-

s
o
n
<
/
i
m
s
l
d
:
s
u
b
j
e
c
t
>

<
/
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
/
i
m
s
l
d
:
o
n
-
c
o
m
p
l
e
t
i
o
n
>

<
/
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
S
A
-
D
i
s
c
u
s
s
-
G
r
o
u
p
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
E
v
a
l
u
a
t
i
o
n
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
D
i
s
c
u
s
s
-
G
r
o
u
p
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
F
a
c
i
l
i
t
a
t
o
r
-
E
v
a
l
u
a
t
o
r
-
D
i
s
c
u
s
s
i
o
n
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
S
A
-
E
v
a
l
u
a
t
e
-
G
r
o
u
p
”
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
E
v
a
l
u
a
t
e
-
G
r
o
u
p
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
E
v
a
l
u
a
t
i
o
n
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
R
e
a
d
-
p
r
o
b
l
e
m
-
D
e
s
c
r
i
p
t
i
o
n
”
>

 376 Appendix

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
R
e
a
d
-
p
r
o
b
l
e
m
-
D
e
s
c
r
i
p
t
i
o
n
”

i
d
e
n
t
i
-

f
i
e
r
r
e
f
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
S
t
u
d
e
n
t
s
-
A
n
d
-
F
a
c
i
l
i
t
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
C
h
o
o
s
e
-
C
h
a
i
r
p
e
r
s
o
n
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
C
h
o
o
s
e
-
C
h
a
i
r
p
e
r
s
o
n
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
C
h
a
i
r
p
e
r
s
o
n
-
C
h
o
i
c
e
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
C
l
a
r
i
f
y
-
P
r
o
b
l
e
m
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
C
l
a
r
i
f
y
-
P
r
o
b
l
e
m
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
S
t
u
d
e
n
t
-
P
r
o
b
l
e
m
-
C
l
a
r
i
f
i
c
a
t
i
o
n
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
S
t
a
t
e
-
P
r
o
b
l
e
m
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
S
t
a
t
e
-
P
r
o
b
l
e
m
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
H
e
l
p
-
F
o
r
-
C
h
a
i
r
-
W
i
t
h
-
P
r
o
b
l
e
m
-
S
t
a
t
e
m
e
n
t
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
B
r
a
i
n
s
t
o
r
m
-
E
x
p
l
a
n
a
t
i
o
n
s
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
B
r
a
i
n
s
t
o
r
m
-
E
x
p
l
a
n
a
t
i
o
n
s
”

i
d
e
n
t
i
-

f
i
e
r
r
e
f
=
“
R
E
S
-
B
r
a
i
n
s
t
o
r
m
-
G
u
i
d
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

Appendix 377

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
C
l
u
s
t
e
r
-
E
x
p
l
a
n
a
t
i
o
n
s
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
C
l
u
s
t
e
r
-
E
x
p
l
a
n
a
t
i
o
n
s
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
B
r
a
i
n
s
t
o
r
m
-
G
u
i
d
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
L
i
s
t
-
E
x
p
l
a
n
a
t
i
o
n
s
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
L
i
s
t
-
E
x
p
l
a
n
a
t
i
o
n
s
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
H
e
l
p
-
F
o
r
-
C
h
a
i
r
-
W
i
t
h
-
E
x
p
l
a
n
a
t
i
o
n
s
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
F
o
r
m
u
l
a
t
e
-
G
o
a
l
s
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
F
o
r
m
u
l
a
t
e
-
G
o
a
l
s
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
H
e
l
p
-
W
i
t
h
-
G
o
a
l
-
F
o
r
m
u
l
a
t
i
o
n
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
C
a
r
r
y
-
o
u
t
-
r
e
s
e
a
r
c
h
”
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
C
a
r
r
y
-
o
u
t
-
r
e
s
e
a
r
c
h
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
C
a
r
r
y
-
o
u
t
-
r
e
s
e
a
r
c
h
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

 378 Appendix

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
D
i
s
c
u
s
s
-
F
i
n
d
i
n
g
s
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
D
i
s
c
u
s
s
-
F
i
n
d
i
n
g
s
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
D
i
s
c
u
s
s
-
F
i
n
d
i
n
g
s
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y

i
d
e
n
t
i
f
i
e
r
=
“
L
A
-
S
u
m
m
a
r
i
s
e
-
F
i
n
d
i
n
g
s
”
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
-
r
e
f

r
e
f
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
S
u
m
m
a
r
i
s
e
-
F
i
n
d
i
n
g
s
”

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
R
E
S
-
S
u
m
m
a
r
i
s
e
-
F
i
n
d
i
n
g
s
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
d
e
s
c
r
i
p
t
i
o
n
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
u
s
e
r
-
c
h
o
i
c
e
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
o
n
-
c
o
m
p
l
e
t
i
o
n
>

<
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a

e
m
a
i
l
-
p
r
o
p
e
r
t
y
-
r
e
f
=
“
P
-
e
m
a
i
l
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
e
v
a
l
u
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a
>

<
i
m
s
l
d
:
s
u
b
j
e
c
t
>
E
v
a
l
u
a
t
i
o
n

b
y

g
r
o
u
p
<
/
i
m
s
l
d
:
s
u
b
j
e
c
t
>

<
/
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a

e
m
a
i
l
-
p
r
o
p
e
r
t
y
-
r
e
f
=
“
P
-
e
m
a
i
l
”
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
e
m
a
i
l
-
d
a
t
a
>

<
i
m
s
l
d
:
s
u
b
j
e
c
t
>
E
v
a
l
u
a
t
i
o
n

b
y

g
r
o
u
p
<
/
i
m
s
l
d
:
s
u
b
j
e
c
t
>

<
/
i
m
s
l
d
:
n
o
t
i
f
i
c
a
t
i
o
n
>

<
/
i
m
s
l
d
:
o
n
-
c
o
m
p
l
e
t
i
o
n
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e

i
d
e
n
t
i
f
i
e
r
=
“
A
S
-
P
r
e
p
a
r
e
”

s
t
r
u
c
t
u
r
e
-

t
y
p
e
=
“
s
e
q
u
e
n
c
e
”
>

<
i
m
s
l
d
:
t
i
t
l
e
>
P
r
e
p
a
r
e
<
/
i
m
s
l
d
:
t
i
t
l
e
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
R
e
a
d
-
p
r
o
b
l
e
m
-
D
e
s
c
r
i
p
t
i
o
n
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
C
h
o
o
s
e
-
C
h
a
i
r
p
e
r
s
o
n
”
/
>

Appendix 379

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e

i
d
e
n
t
i
f
i
e
r
=
“
A
S
-
A
r
r
i
v
e
-
A
t
-
E
x
p
l
a
n
a
t
i
o
n
s
”
>

<
i
m
s
l
d
:
t
i
t
l
e
>
A
r
r
i
v
e

A
t

E
x
p
l
a
n
a
t
i
o
n
s
<
/
i
m
s
l
d
:
t
i
t
l
e
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
B
r
a
i
n
s
t
o
r
m
-
E
x
p
l
a
n
a
t
i
o
n
s
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
C
l
u
s
t
e
r
-
E
x
p
l
a
n
a
t
i
o
n
s
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e

i
d
e
n
t
i
f
i
e
r
=
“
A
S
-
H
e
l
p
-
G
r
o
u
p
”

s
t
r
u
c
t
u
r
e
-

t
y
p
e
=
“
s
e
q
u
e
n
c
e
”
>

<
i
m
s
l
d
:
t
i
t
l
e
>
H
e
l
p

T
h
e

G
r
o
u
p
<
/
i
m
s
l
d
:
t
i
t
l
e
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
R
e
a
d
-
p
r
o
b
l
e
m
-
D
e
s
c
r
i
p
t
i
o
n
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
>

<
/
i
m
s
l
d
:
a
c
t
i
v
i
t
i
e
s
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
s
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t

i
d
e
n
t
i
f
i
e
r
=
“
E
-
P
B
L
-
G
r
o
u
p
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
>

<
i
m
s
l
d
:
t
i
t
l
e
>
P
B
L

S
y
n
c
h
r
o
n
o
u
s

G
r
o
u
p

F
a
c
i
l
i
t
i
e
s
<
/
i
m
s
l
d
:
t
i
t
l
e
>

<
i
m
s
l
d
:
s
e
r
v
i
c
e

i
d
e
n
t
i
f
i
e
r
=
“
S
-
C
o
n
f
e
r
e
n
c
i
n
g
S
o
f
t
w
a
r
e
”
>

<
i
m
s
l
d
:
c
o
n
f
e
r
e
n
c
e

c
o
n
f
e
r
e
n
c
e
-
t
y
p
e
=
“
s
y
n
c
h
r
o
n
o
u
s
”
>

<
i
m
s
l
d
:
p
a
r
t
i
c
i
p
a
n
t

r
o
l
e
-
r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
i
m
s
l
d
:
p
a
r
t
i
c
i
p
a
n
t

r
o
l
e
-
r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
C
o
n
f
e
r
e
n
c
i
n
g
-
T
e
x
t
”

i
d
e
n
t
i
-

f
i
e
r
r
e
f
=
“
R
E
S
-
C
o
n
f
e
r
e
n
c
i
n
g
-
T
e
x
t
”
/
>

<
/
i
m
s
l
d
:
c
o
n
f
e
r
e
n
c
e
>

<
/
i
m
s
l
d
:
s
e
r
v
i
c
e
>

<
/
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
>

<
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t

i
d
e
n
t
i
f
i
e
r
=
“
E
-
E
v
a
l
u
a
t
i
o
n
-
F
a
c
i
l
i
t
i
e
s
-
S
y
n
c
h
r
o
n
o
u
s
”
>

<
i
m
s
l
d
:
t
i
t
l
e
>
P
B
L

S
y
n
c
h
r
o
n
o
u
s

F
a
c
i
l
i
t
i
e
s

F
o
r

E
v
a
l
u
a
t
o
r

a
n
d

F
a
c
i
l
i
-

t
a
t
o
r
<
/
i
m
s
l
d
:
t
i
t
l
e
>

<
i
m
s
l
d
:
s
e
r
v
i
c
e

i
d
e
n
t
i
f
i
e
r
=
“
S
-
E
v
a
l
u
a
t
o
r
s
C
o
n
f
e
r
e
n
c
i
n
g
S
o
f
t
w
a
r
e
”
>

<
i
m
s
l
d
:
c
o
n
f
e
r
e
n
c
e

c
o
n
f
e
r
e
n
c
e
-
t
y
p
e
=
“
s
y
n
c
h
r
o
n
o
u
s
”
>

<
i
m
s
l
d
:
p
a
r
t
i
c
i
p
a
n
t

r
o
l
e
-
r
e
f
=
“
R
-
e
v
a
l
u
a
t
o
r
”
/
>

<
i
m
s
l
d
:
p
a
r
t
i
c
i
p
a
n
t

r
o
l
e
-
r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
i
t
e
m

i
d
e
n
t
i
f
i
e
r
=
“
I
-
E
v
a
l
u
a
t
o
r
-
C
o
n
f
e
r
e
n
c
i
n
g
-

T
e
x
t
”

i
d
e
n
t
i
f
i
e
r
r
e
f
=
“
R
E
S
-
C
o
n
f
e
r
e
n
c
i
n
g
-
T
e
x
t
”
/
>

<
/
i
m
s
l
d
:
c
o
n
f
e
r
e
n
c
e
>

<
/
i
m
s
l
d
:
s
e
r
v
i
c
e
>

<
/
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
>

<
/
i
m
s
l
d
:
e
n
v
i
r
o
n
m
e
n
t
s
>

<
/
i
m
s
l
d
:
c
o
m
p
o
n
e
n
t
s
>

 380 Appendix

<
i
m
s
l
d
:
m
e
t
h
o
d
>

<
i
m
s
l
d
:
p
l
a
y

i
d
e
n
t
i
f
i
e
r
=
“
P
L
A
Y
-
P
B
L
”
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
c
o
o
r
d
i
n
a
t
o
r
”
/
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
M
a
k
e
-
p
r
o
b
l
e
m
-

D
e
s
c
r
i
p
t
i
o
n
-
A
v
a
i
l
a
b
l
e
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
c
o
o
r
d
i
n
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
-
r
e
f

r
e
f
=
“
A
S
-
P
r
e
p
a
r
e
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
-
r
e
f

r
e
f
=
“
A
S
-
H
e
l
p
-
G
r
o
u
p
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
A
p
p
o
i
n
t
-
C
h
a
i
r
p
e
r
s
o
n
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
C
l
a
r
i
f
y
-
P
r
o
b
l
e
m
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

Appendix 381

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
S
t
a
t
e
-
P
r
o
b
l
e
m
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
-
r
e
f

r
e
f
=
“
A
S
-
A
r
r
i
v
e
-
A
t
-

E
x
p
l
a
n
a
t
i
o
n
s
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
L
i
s
t
-
E
x
p
l
a
n
a
t
i
o
n
s
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
/
>

 382 Appendix

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
-
r
e
f

r
e
f
=
“
L
A
-
F
o
r
m
u
l
a
t
e
-
G
o
a
l
s
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
-
r
e
f

r
e
f
=
“
L
A
-
C
a
r
r
y
-
o
u
t
-
r
e
s
e
a
r
c
h
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
i
m
s
l
d
:
a
c
t
i
v
i
t
y
-
s
t
r
u
c
t
u
r
e
-
r
e
f

r
e
f
=
“
L
A
-
D
i
s
c
u
s
s
-
F
i
n
d
i
n
g
s
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
s
t
u
d
e
n
t
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

Appendix 383

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
L
A
-
S
u
m
m
a
r
i
s
e
-
F
i
n
d
i
n
g
s
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
c
h
a
i
r
p
e
r
s
o
n
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
e
v
a
l
u
a
t
o
r
”
/
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
D
i
s
c
u
s
s
-
G
r
o
u
p
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
f
a
c
i
l
i
t
a
t
o
r
”
/
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
D
i
s
c
u
s
s
-
G
r
o
u
p
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
e
v
a
l
u
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
r
o
l
e
-
r
e
f

r
e
f
=
“
R
-
e
v
a
l
u
a
t
o
r
”
/
>

<
i
m
s
l
d
:
s
u
p
p
o
r
t
-
a
c
t
i
v
i
t
y
-
r
e
f

r
e
f
=
“
S
A
-
E
v
a
l
u
a
t
e
-
G
r
o
u
p
”
/
>

<
/
i
m
s
l
d
:
r
o
l
e
-
p
a
r
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
i
m
s
l
d
:
w
h
e
n
-
r
o
l
e
-
p
a
r
t
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
R
-
e
v
a
l
u
a
t
o
r
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
a
c
t
>

<
/
i
m
s
l
d
:
a
c
t
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
p
l
a
y
>

<
i
m
s
l
d
:
w
h
e
n
-
l
a
s
t
-
a
c
t
-
c
o
m
p
l
e
t
e
d
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
p
l
a
y
>

<
/
i
m
s
l
d
:
p
l
a
y
>

<
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
u
n
i
t
-
o
f
-
l
e
a
r
n
i
n
g
>

<
i
m
s
l
d
:
w
h
e
n
-
p
l
a
y
-
c
o
m
p
l
e
t
e
d

r
e
f
=
“
P
L
A
Y
-
P
B
L
”
/
>

<
/
i
m
s
l
d
:
c
o
m
p
l
e
t
e
-
u
n
i
t
-
o
f
-
l
e
a
r
n
i
n
g
>

 384 Appendix

<
/
i
m
s
l
d
:
m
e
t
h
o
d
>

<
/
i
m
s
l
d
:
l
e
a
r
n
i
n
g
-
d
e
s
i
g
n
>

<
/
o
r
g
a
n
i
z
a
t
i
o
n
s
>

<
r
e
s
o
u
r
c
e
s
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
C
o
o
r
d
i
n
a
t
o
r
”

t
y
p
e
=
“
i
m
s
l
d
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
u
a
l

c
o
n
t
e
n
t

w
h
i
c
h

s
t
a
t
e
s

t
h
a
t

t
h
e

c
o
o
r
d
i
n
a
t
o
r

s
h
o
u
l
d

c
r
e
a
t
e
/
f
i
n
d

a

p
r
o
b
l
e
m

(
n
a
m
e
d
,

f
o
r

e
x
a
m
p
l
e

d
e
s
c
r
i
p
t
i
o
n
.
t
x
t
)

a
n
d

h
a
v
e

i
t

s
t
o
r
e
d

t
h
r
o
u
g
h

<
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>
<
s
e
t
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
-

r
e
f
=
“
P
-
P
r
o
b
l
e
m
-
D
e
s
c
r
i
p
t
i
o
n
”
/
>
<
/
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
S
t
u
d
e
n
t
s
-
A
n
d
-
F
a
c
i
l
i
t
a
t
o
r
”

t
y
p
e
=
“
i
m
s
l
d
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
u
a
l

c
o
n
t
e
n
t

w
e
l
c
o
m
i
n
g

t
h
e

s
t
u
d
e
n
t
s

a
n
d

f
a
c
i
l
i
t
a
t
o
r

a
n
d

i
n
c
l
u
d
i
n
g

a

s
t
a
t
e
m
e
n
t

t
o

a
l
l
o
w

t
h
e

p
r
o
b
l
e
m

d
e
s
c
r
i
p
t
i
o
n

t
o

b
e

v
i
e
w
e
d
:

<
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>
<
v
i
e
w
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
-
r
e
f
=
“
P
-
P
r
o
b
l
e
m
-

D
e
s
c
r
i
p
t
i
o
n
”
/
>
<
/
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
C
h
a
i
r
p
e
r
s
o
n
-
C
h
o
i
c
e
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
u
a
l

c
o
n
t
e
n
t
:

s
e
l
e
c
t

f
r
o
m

y
o
u
r

g
r
o
u
p

a
n

i
n
d
i
v
i
d
u
a
l

w
h
o

w
i
l
l

r
e
s
p
o
n
s
i
b
l
e

f
o
r

p
u
b
-

l
i
s
h
i
n
g

t
h
e

g
r
o
u
p

o
u
t
p
u
t

a
n
d

i
n
f
o
r
m

t
h
e

f
a
c
i
l
i
t
a
t
o
r

o
f

y
o
u
r

c
h
o
i
c
e
.

U
s
e

t
h
e

f
a
c
i
l
i
t
i
e
s

a
v
a
i
l
a
b
l
e

i
n

t
h
e

e
n
v
i
-

r
o
n
m
e
n
t

t
o

c
o
m
m
u
n
i
c
a
t
e

w
i
t
h

b
o
t
h

y
o
u
r

f
e
l
l
o
w

s
t
u
d
e
n
t
s

a
n
d

t
h
e

f
a
c
i
l
i
t
a
t
o
r
.
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
F
a
c
i
l
i
t
a
t
o
r
-
P
r
o
v
i
d
e
-
A
s
s
i
s
t
a
n
c
e
-
T
e
x
t
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
:

u
s
e

t
h
e

c
o
m
m
u
n
i
c
a
t
i
o
n

f
a
c
i
l
i
t
i
e
s

p
r
o
v
i
d
e
d

i
n

t
h
e

e
n
v
i
r
o
n
m
e
n
t

t
o

h
e
l
p

t
h
e

s
t
u
-

d
e
n
t
s
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
A
p
p
o
i
n
t
-
C
h
a
i
r
p
e
r
s
o
n
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
:

g
u
i
d
a
n
c
e

o
n

a
p
p
o
i
n
t
i
n
g

t
h
e

c
h
a
i
r
p
e
r
s
o
n
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
S
t
u
d
e
n
t
-
P
r
o
b
l
e
m
-
C
l
a
r
i
f
i
c
a
t
i
o
n
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t

s
t
a
t
i
n
g

t
h
a
t

t
h
e

s
t
u
d
e
n
t
s

s
h
o
u
l
d

r
e
a
c
h

a
s

f
u
l
l

a
n
d

u
n
a
m
b
i
g
u
o
u
s

a

d
e
c
r
i
p
t
i
o
n

o
f

t
h
e

p
r
o
b
l
e
m

a
s

p
o
s
s
i
b
l
e
,

d
i
s
c
u
s
s
i
n
g

a
n
y

u
n
c
e
r
t
a
i
n
t
i
e
s

a
n
d

i
s
s
u
e

a
m
o
n
g

t
h
e
m
s
e
l
v
e
s

a
n
d

u
s
i
n
g

t
h
e

f
a
c
i
l
i
t
a
t
o
r

f
o
r

a
s
s
i
s
t
a
n
c
e
;
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
H
e
l
p
-
F
o
r
-
C
h
a
i
r
-
W
i
t
h
-
P
r
o
b
l
e
m
-
S
t
a
t
e
m
e
n
t
”

t
y
p
e
=
“
i
m
s
l
d
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
u
a
l

c
o
n
t
e
n
t

w
h
i
c
h

s
t
a
t
e
s

t
h
a
t

t
h
e

c
h
a
i
r
p
e
r
s
o
n

s
h
o
u
l
d

s
t
a
t
e

t
h
e

p
r
o
b
l
e
m

a
s

t
h
e

g
r
o
u
p

u
n
d
e
r
s
t
a
n
d
s

i
t

i
n

a

f
i
l
e

(
e
g

p
r
o
b
l
e
m
s
t
a
t
e
m
e
n
t
.
t
x
t
)

a
n
d

h
a
v
e

i
t

s
t
o
r
e
d

t
h
r
o
u
g
h

<
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>
<
s
e
t
-

p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
-
r
e
f
=
“
P
-
P
r
o
b
l
e
m
-
S
t
a
t
e
m
e
n
t
”
/
>
<
/
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>

-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
B
r
a
i
n
s
t
o
r
m
-
G
u
i
d
a
n
c
e
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t

t
o

i
n
d
i
c
a
t
e

t
o

s
t
u
d
e
n
t
s

t
h
a
t

t
h
e
y

s
h
o
u
l
d

t
r
y

t
o

g
a
t
h
e
r

e
x
p
l
a
n
a
t
i
o
n
s
/
s
o
l
u
t
i
o
n
s

f
o
r

t
h
e

p
r
o
b
l
e
m

a
n
d

t
h
e
n

c
l
u
s
t
e
r

t
h
i
s

i
n
f
o
r
m
a
t
i
o
n

i
n
t
o

a

s
m
a
l
l
e
r

s
e
t

t
o

b
e

m
o
r
e

f
u
l
l
y

r
e
s
e
a
r
c
h
e
d
.
-
-
>

Appendix 385

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
H
e
l
p
-
F
o
r
-
C
h
a
i
r
-
W
i
t
h
-
E
x
p
l
a
n
a
t
i
o
n
s
”

t
y
p
e
=
“
i
m
s
l
d
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
u
a
l

c
o
n
t
e
n
t

w
h
i
c
h

s
t
a
t
e
s

t
h
a
t

t
h
e

c
h
a
i
r
p
e
r
s
o
n

s
h
o
u
l
d

l
i
s
t

t
h
e

e
x
p
l
a
n
a
t
i
o
n
s

i
n

a

f
i
l
e

(
e
g

e
x
p
l
a
n
a
t
i
o
n
s
.
t
x
t
)

a
n
d

h
a
v
e

i
t

s
t
o
r
e
d

t
h
r
o
u
g
h

<
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>
<
s
e
t
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
-
r
e
f
=
“
P
-
L
i
s
t
-
O
f
-

E
x
p
l
a
n
a
t
i
o
n
s
”
/
>
<
/
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>

-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
H
e
l
p
-
W
i
t
h
-
G
o
a
l
-
F
o
r
m
u
l
a
t
i
o
n
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t

t
o

t
h
e

t
u
n
e

o
f
:

t
h
i
n
k

a
b
o
u
t

t
h
e

l
e
a
r
n
i
n
g

g
o
a
l
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
i
s

p
r
o
b
l
e
m

p
r
i
o
r

t
o

c
a
r
r
y
i
n
g

o
u
t

y
o
u
r

(
d
e
s
k
)

r
e
s
e
a
r
c
h
;
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
C
a
r
r
y
-
o
u
t
-
r
e
s
e
a
r
c
h
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
A
c
c
o
m
p
a
n
y
i
n
g

t
e
x
t

t
o

g
u
i
d
e

t
h
e

s
t
u
d
e
n
t
s

i
n

c
a
r
r
y
i
n
g

o
u
t

t
h
e
i
r

r
e
s
e
a
r
c
h
.

C
o
u
l
d

i
n
-

c
l
u
d
e

l
i
n
k
s

t
o

u
s
e
f
u
l

s
i
t
e
s
,

a

l
i
s
t

o
f

s
t
a
n
d
a
r
d

r
e
f
e
r
e
n
c
e

w
o
r
k
s

e
t
c
.
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
D
i
s
c
u
s
s
-
F
i
n
d
i
n
g
s
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
D
i
r
e
c
t
i
o
n

f
o
r

t
h
e

s
t
u
d
e
n
t
s

f
o
l
l
o
w
i
n
g

t
h
e

d
e
s
k

r
e
s
e
a
r
c
h
.

M
i
g
h
t

i
n
c
l
u
d
e

c
o
r
e

q
u
e
s
t
i
o
n
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

p
r
o
b
l
e
m
.
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
S
u
m
m
a
r
i
s
e
-
F
i
n
d
i
n
g
s
”

t
y
p
e
=
“
i
m
s
l
d
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
u
a
l

c
o
n
t
e
n
t

w
h
i
c
h

s
t
a
t
e
s

t
h
a
t

t
h
e

c
h
a
i
r
p
e
r
s
o
n

s
h
o
u
l
d

s
u
m
m
a
r
i
s
e

t
h
e

f
i
n
d
i
n
g
s

i
n

a

f
i
l
e

(
e
g

f
i
n
d
i
n
g
s
.
t
x
t
)

a
n
d

h
a
v
e

i
t

s
t
o
r
e
d

t
h
r
o
u
g
h

<
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>
<
s
e
t
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
-
r
e
f
=
“
P
-
S
u
m
m
a
r
y
-
O
f
-

F
i
n
d
i
n
g
s
”
/
>
<
/
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>

-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
F
a
c
i
l
i
t
a
t
o
r
-
E
v
a
l
u
a
t
o
r
-
D
i
s
c
u
s
s
i
o
n
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
u
a
l

c
o
n
t
e
n
t

a
l
o
n
g

t
h
e

l
i
n
e
s

o
f
:

D
i
s
c
u
s
s

t
h
e

g
r
o
u
p

a
n
d

f
o
r
m

a
n

e
v
a
l
u
a
t
i
o
n
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
A
c
c
o
m
p
a
n
y
i
n
g
-
T
e
x
t
-
F
o
r
-
E
v
a
l
u
a
t
i
o
n
”

t
y
p
e
=
“
i
m
s
l
d
c
o
n
t
e
n
t
”
>

<
!
-
-
T
e
x
t
u
a
l

c
o
n
t
e
n
t

w
h
i
c
h

s
t
a
t
e
s

t
h
a
t

t
h
e

e
v
a
l
u
a
t
o
r

s
h
o
u
l
d

w
r
i
t
e

u
p

t
h
e

e
v
a
l
u
a
t
i
o
n

i
n

a

f
i
l
e

(
e
v
a
l
u
a
t
i
o
n
.
t
x
t
)

a
n
d

h
a
v
e

i
t

s
t
o
r
e
d

t
h
r
o
u
g
h

<
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>
<
s
e
t
-
p
r
o
p
e
r
t
y

i
d
e
n
t
i
f
i
e
r
-
r
e
f
=
“
P
-
G
r
o
u
p
-

E
v
a
l
u
a
t
i
o
n
”
/
>
<
/
g
l
o
b
a
l
-
e
l
e
m
e
n
t
s
>

-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
r
e
s
o
u
r
c
e

i
d
e
n
t
i
f
i
e
r
=
“
R
E
S
-
C
o
n
f
e
r
e
n
c
i
n
g
-
T
e
x
t
”

t
y
p
e
=
“
w
e
b
c
o
n
t
e
n
t
”
>

<
!
-
-
-
-
>

<
/
r
e
s
o
u
r
c
e
>

<
/
r
e
s
o
u
r
c
e
s
>

<
/
m
a
n
i
f
e
s
t
>

Glossary

Term Definition
Activity An action to be undertaken by a role within a

specified environment. There are two types of ac-
tivities: learning activities and support activities.

Activity Structure A container for activities and/or other activity
structures allowing sequencing and selection of
its elements, and assigned to a role at a particular
point in the learning process. Arbitrarily complex
structures of activities can be formed, such as tree
hierarchies.

Components The collection of parts that are reusable within
a learning design. The elements role, activity-
structure, learning-activity, support-activity and
environment are all included in the components
section of an IMS Learning Design document in-
stance.

Condition A rule used to influence the flow of a play in a
unit of learning. Used in conjunction with proper-
ties, conditions add further refinement and per-
sonalization facilities to a learning design. Condi-
tions have the basic format:

IF [expression]

THEN [show, hide, or change
 something or notify someone].

The expressions are mostly defined on proper-
ties (e.g. IF pre-knowledge-English="4").

Environment A structured collection of learning objects,
services and sub-environments within which ac-
tivities take place.

Global Elements A mechanism used in order to be able to set
and view properties during the teaching and learn-
ing. There are four global elements: set-property,
view-property, set-property-group and view-
property-group. Global elements are designed to
be included in any XML content schema by use
of XML namespaces (e.g. for inclusion in
XHTML).

Item When a component, a learning objective or a
prerequisite needs a resource, an ‘item’ element is
used in a similar way to the organization part of

388 Glossary

Term Definition
IMS Content Packaging.

Learning Activity An activity to be carried out by a learner in or-
der to obtain a learning objective. The notion of a
learning activity recognizes that learning can hap-
pen with or without learning objects (learning is
different from content consumption) and that
learning comes from learners being active.

Learning Design A description of a method enabling learners to
attain certain learning objectives by performing
certain learning activities in a certain order in the
context of a certain environment.

Learning Object Any reproducible and addressable digital or
non-digital resource used to perform learning ac-
tivities or support activities. Represented in IMS
Content Packaging with the element ‘Resources’.

Learning Objective The intended outcome for learners. It is possi-
ble to define learning objectives both at the global
level of the unit of learning and for every single
learning activity in the learning design.

Method The container element for a play and the condi-
tions governing its execution.

Notification The triggering of a new activity or the sending
of a message in response to an event. Events
which trigger notifications include the completion
of an activity and the changing of a property
value.

Play Specifies which roles perform what activities
in what order. A play is modelled according to a
theatrical play with acts and role-parts. In general:
a play consists of a sequence of acts. In each act,
different activities are set for different roles and
are performed in parallel. When an act is com-
pleted, the next act starts until the completion re-
quirements for the learning design are met.

Prerequisite An entry requirement for learners engaging in
learning. As with learning objectives, the prereq-
uisites can be provided at the level of the unit of
learning and/or for individual learning activities.

Property A variable used for a variety of purposes in-
cluding monitoring, personalization and assess-
ment. Learning Design supports five types of
properties: local properties, local-personal proper-
ties, local-role properties, global-personal proper-
ties and global properties.

Glossary 389

Term Definition
Role A specification of the type of participant in a

unit of learning. There are two basic role types –
Learner and Staff, which can be sub-typed to al-
low learners to play different roles in different
learning activities (e.g. task-based, role-playing,
simulations). Similarly support staff can be sub-
typed and given more specialized roles, such as
Tutor, Teaching Assistant, Mentor, etc. Roles
thus lay the basis for multi-user models of learn-
ing.

Service Facilities used during teaching and learning,
for instance a discussion forum or some other
communication facility.

Support Activity An activity carried out in support of a role per-
forming one or more learning activities. For ex-
ample, a staff role might have the support activity
to grade reports made by people in the learner
role named ‘student’. Each student creates his/her
own report and the tutor grades every report (re-
peating the ‘grade report’ support activity).

Unit of Learning An abstract term used to refer to any delimited
piece of education or training, such as a course, a
module, a lesson, etc. A unit of learning repre-
sents more than just a collection of ordered re-
sources to learn—it includes a variety of pre-
scribed activities (e.g. problem-solving activities,
search activities, discussion activities, peer as-
sessment activities), assessments, services and
support facilities provided by teachers, trainers
and other staff members.

XML The Extensible Markup Language is a simple,
flexible text format used in electronic publishing
and for the exchange of a wide variety of data on
the Web.

References

Abdallah R, El Hajj A, Benzekri A, Moukarzel I (2002) On the Improvement of
Course Interoperability in E-Learning Models. In: International Conference on
Engineering Education 2002

ADL (2004a) About SCORM. Retrieved January 23, 2004 from
http://www.adlnet.org/index.cfm?fuseaction=scormabt

ADL (2004b) Sharable Content Object Reference Model (SCORM) 2004. Re-
trieved July 2, 2004 from http://www.adlnet.org/index.cfm?fuseaction=
DownFile&libid=648&bc=false

AF (2004) IMS Abstract Framework. Retrieved January 22, 2004 from
http://www.imsglobal.org/af/index.cfm

Alexander C (1977) A pattern language: Towns, buildings, construction. Oxford
University Press, Oxford

Almond R, Steinberg L, Mislevy R (2002) Enhancing the design and delivery of
assessment systems: a four process architecture. The Journal of Technology,
Learning and Assessment 1 (5). Retrieved September 18, 2003 from
http://www.jtla.org and http://www.bc.edu/research/intasc/jtla/journal/pdf/
v1n5_jtla.pdf

Altova (2004) XML Spy Integrated Development Environment. Retrieved January
21, 2004 from http://www.xmlspy.com/products_ide.html

Ausubel DP (1968) Educational Psychology: A Cognitive View. Holt, Rinehart
and Winston, New York

Barrows H, Tamblyn RM (1980) Problem-Based Learning: An Approach to
Medical Education. Springer, New York

Bartz J (2002) Great Idea, but how do I do it? A practical example of learning ob-
ject creation using SGML/XML. Canadian Journal of Learning and Technol-
ogy 28 (3), pp 74–75

Bergin J, Eckstein J, Manns M, Sharp H, Voelter M (2000) The Pedagogical Pat-
tern Project. Retrieved June 12, 2003 from http://www.pedagogicalpatterns.
org

Berners-Lee T, Hendler J, Lassila O (2000) The Semantic Web. Scientific Ameri-
can, May, Feature article

Biggs JB (1999) Teaching for Quality Learning at University. Society for Re-
search in Higher Education & Open University Press, Buckingham

Bjork S, Lundgren S, Holopainen J (2003) Game design patterns. In: Copier M,
Raessens J (eds) Level Up – Proceedings of Digital Games Research Confer-
ence, Utrecht, The Netherlands, 4–6 November 2003

Black R, Duncan C, Douglas P, Morrey M, Gondouin D (1999) Accurately track-
ing the use of distributed Web-based learning courses. British Journal of Edu-
cational Technology

Booch G, Rumbaugh J, Jacobson I (1999) The Unified Modeling Language User
Guide. Addison-Wesley, Reading, MA

Borland (2004) JBuilder: The Leading Development Solution for Java. Retrieved
January 21, 2004 from http://www.borland.com/jbuilder/

392 References

Boticario JG, Gaudioso E, Hernandez F (2000) Adaptive Navigation Support and
Adaptive Collaboration Support in WebDL. Proceedings of the International
Conference on Adaptive Hypermedia and Adaptive Web-based Systems, Au-
gust 2000 number 1892 in Lecture Notes in Computer Science (LNCS),
Springer, Berlin HeidelbergTrento, Italy, pp 51 - 61

Breuker J, Muntjewerff A, Bredewej B (1999) Ontological modelling for design-
ing educational systems. In: Proceedings of the AI-ED 99 Workshop on On-
tologies for Educational Systems. IOS Press, Le Mans, France

Bruner J (1966) Toward a Theory of Instruction. Belknap Press/Harvard Univer-
sity Press, Cambridge, MA

Brusilovsky P (2001) Adaptive Hypermedia. User Modelling and User-Adapted
Interaction 11, pp 87–110

Brusilovsky P, Miller P (2001) Course Delivery Systems for the Virtual Univer-
sity. In: Tschang FT, Della Senta T (eds) Access to Knowledge: New Infor-
mation Technologies and the Emergence of the Virtual University. Elsevier
Science and International Association of Universities, Amsterdam, pp 167–
206

Bull J, Dalziel J (2003) Assessing question banks. In: Reusing online resources: A
sustainable approach to e-learning. Kogan Page, London, Chap. 14

Butson R (2003) Learning objects: weapons of mass instruction. British Journal of
Educational Technology 34 (5), pp 667–669

Canadian Department of National Defence (2003) White paper: SCORM Dynamic
Appearance Model. Retrieved January 19, 2004 from http://www.online-
learning.com/papers/SCORMModel.pdf

Canvas Learning Ltd (2004) Retrieved January 19, 2004 from
http://www.canvaslearning.com/

Carrión MJ, Fuentes C, Rodrigo M, Barrera C, Catalina C, Gaudioso E, Boticario
JG, Rodríguez A, Santos O, Martens H, Mofers F, Passier H, Stoyanov S,
Vogten H, De Abreu RC (2004) General System Architecture & Design. AL-
Fanet/IST-2001-33288 Deliverable D21. SAGE, Madrid. Retrieved November
10, 2004 from http://hdl.handle.net/1820/258

CEFRL (2001) A Common European Framework of Reference for Languages.
Retrieved February 4, 2004 from http://www.culture2.coe.int/portfolio/
documents_ intro/common_framework.html

CETIS (2002) Retrieved January 19, 2004 from http://www.cetis.ac.uk
Cockburn A (2001) Writing effective use cases. Addison-Wesley, Boston, MA
Collins A, Stevens AL (1983) A Cognitive Theory of Inquiry Teaching. In: Reige-

luth CM Instructional Design Theories and Models: An Overview of their
Current Status. Lawrence Erlbaum, Hillsdale, NJ

Constant D, Kiesler S, Sproull L (1994) What is mine is ours, or is it? Information
Systems Research 5 (4), pp 400–422

CP (2003) IMS Content Packaging. Information Model, Best Practice and Imple-
mentation Guide, XML Binding, Schemas. Version 1.1.3 Final Specification
IMS Global Learning Consortium Inc. Retrieved May 26, 2004 from
http://www.imsglobal.org/content/packaging/

Cronbach LJ, Snow RE (1977) Aptitudes and Instructional Methods: A Handbook
for Research on Interactions. Irvington, New York

References 393

Dalziel JR (2003) Implementing Learning Design: The Learning Activity Man-
agement System (LAMS). In: Crisp G, Thiele D, Scholten I, Barker S, Baron
J (eds) Interact, Integrate, Impact: Proceedings of the 20th Annual Conference
of the Australasian Society for Computers in Learning in Tertiary Education.
Adelaide, 7–10 December 2003. Retrieved March 1, 2004 from http://
www.melcoe.mq.edu.au/documents/ASCILITE2003%20Dalziel%20Final.pdf

Daniel J (1998) Mega-universities and Knowledge Media. RoutledgeFalmer, Lon-
don

De Croock MBE, Paas F, Schlanbusch H, van Merriënboer JJG (2002a) ADAPT-
IT: Tools for Design and Evaluation. Educational Technology Research and
Development 50, pp 47–58

De Croock M, Mofers F, van Veen M, van Rosmalen P, Brouns F, Boticario J,
Barrera C, Santos O, Ayala A, Gaudioso E, Hernández F, Arana C, Trueba I
(2002b) State-of-the-art ALFanet/IST-2001-33288 Deliverable D12. Open
Universiteit Nederland, Heerlen. Retrieved November 10, 2004 from
http://hdl.handle.net/1820/94

De Krom M, Antheunis L (2002) Blok 3.2 Uitvalsverschijnselen en functieverlies.
Onderwijsinstituut Medische Faculteit, Universiteit Maastricht, Maastricht

Dewey J (1900) Psychology and social practice. The Psychological Review 7, pp
105–124

Dougiamas M (2004) Moodle. Retrieved February 27, 2004 from http://moodle.
org/

Douglas I (2003) Instructional Design Based On Reusable Learning Objects: Ap-
plying Lessons Of Object-Oriented Software Engineering To Learning Sys-
tems Design. In: Proceedings of the 31st ASEE/IEEE Frontiers in Education
Conference, IEEE

Downes S (2001) Learning Objects: Resources For Distance Education World-
wide. International Review of Research in Open and Distance Learning 2

DR (2003) IMS Digital Repositories Specification. Information Model, Best Prac-
tice and Implementation Guide, XML Binding, Schemas. Version 1.0 Final
Specification IMS Global Learning Consortium Inc. Retrieved February 29,
2004 from http://www.imsglobal.org/digitalrepositories/

Dufresne A (2001) ExploraGraph: Improving interfaces to improve adaptive sup-
port. Paper presented at AIED 2001, San Antonio, TX, USA

Duncan C (2003) Granularisation. In: Littlejohn A (ed) Reusing Online Re-
sources: A Sustainable Approach to E-Learning. Kogan Page, London

Duval E, Robson R (2001) Guest Editorial on Metadata. Interactive Learning En-
vironments, Special issue : Metadata 9.3, pp 201–206

Duval E, Hodgins W (2003) A LOM Research Agenda. The Twelfth International
World Wide Web Conference, Budapest, Hungary. Retrieved January 23,
2004 from http://www.2003.org/cdrom/papers/alternate/P659/p659-duval
html. html

Eckstein J (2000) Learning to teach and learning to learn. Retrieved January 21,
2004 from http://www.pedagogicalpatterns.org/examples/LearningAndTeach-
ing. pdf

ECLIPSE (2004) eclipse.org. Retrieved January 21, 2004 from http://www.
eclipse.org/

394 References

Edusource (2004) The Edusource website. Retrieved January 22, 2004 from
http://www.edusource.ca

EduSource-Splash (2004) eduSplash. Retrieved January 23, 2004 from
http://www.edusplash.net/

E-LEN (2004) A network of e-learning centres (website Socrates/Minerva pro-
ject). Retrieved January 22, 2004 from http://www.tisip.no/E-LEN/

EML (2000) Educational Modelling Language. Retrieved November 10, 2004
from http://hdl.handle.net/1820/81

Engeström Y (1987) Learning by expanding: an activity-theoretical approach to
developmental research. Orienta-Konsultit Oy, Helsinki

ES (2004) IMS Enterprise Services. Public Draft Version 1, Retrieved July 19,
2004 from http://www.imsglobal.org/es/

Ewell PT (2003) An Emerging Scholarship: A Brief History of Assessment. Re-
trieved January 19, 2004 from http://media.wiley.com/product_data/excerpt/
56/07879594/0787959456.pdf

Fischer G, Scharff E (1998) Learning technologies in support of self-directed
learning. Journal of Interactive Media in Education 4

Fischer G, Ostwald J (2002) Transcending the Information Given: Designing
learning Environments for Informed Participation. Proceedings of the ICCE
2002 International Conference on Computers in Education, Auckland, New
Zealand

Fowler M (2000) UML distilled (second edition). Addison-Wesley, Upper Saddle
River, NJ

Friesen N (2001) What are Educational Objects? Interactive Learning Environ-
ments 9, pp 219–230

Gagné RN (1970) The conditions of learning. Holt, Rinehart & Winston, New
York

García-Robles R, Blat J, Sayago S, Griffiths D, Casado F, Martínez J (2004) Sup-
porting usability and reusability based on eLearning standards. ICALT, IEEE,
August-2004

Gardner H (1983) Frames of Mind. Basic Books, New York
Gibbons AS (2000) The Practice of Instructional Technology. In: Proceedings of

the Annual International Conference of the Association for Educational
Communications and Technology 2000 (AECT 2000)

Girard J, Paquette G, Miara A, Lundgren K (1999) Intelligent Assistance for Web-
based TeleLearning. Proceedings of AI-Ed’99, Amsterdam, Lajoie S and
Vivet M (eds). In: AI and Education, open learning environments. IOS Press,
pp 561–569

Gondouin D (1996) EuroMET development for meteorological satellite training,
1996 Meteorological Satellite Data Users’ Conference, Eumetsat Publications,
EUM P 19

Gorissen P (2003a) Quickscan QTI. De Digitale Universiteit, Utrecht. Retrieved
January 19, 2004 from http://www.digiuni.nl/digiuni//download/EA183322-
C145-0A52-7B7EF8A4EDFF4655.pdf

Gorissen P (2003b) Quickscan QTI Addendum #1. De Digitale Universiteit,
Utrecht. Retrieved January 19, 2004 from http://www.digiuni.nl/digiuni//
download/ EA1A1D10-D0D4-9C27-26004CB-F99A92EBC.pdf

References 395

Griffiths D, Kearney N, Koper EJR, Layte M, Malmport B, Vyskovsky P (2002)
PROMETEUS Paris Conference Proceedings Report, 29–30 September 2002.
Retrieved July 13, 2004 from http://www.prometeus.org/PromDocs/nkear
ney_florida-uni_es_17-03-03_11- 04-46.zip

Hadeli PV, Zamfirescu CB, van Brussel H, Saint Germain B, Holvoet T, Steeg-
mans E (2003) Self-Organising in Multi-agent Coordination and Control Us-
ing Stigmergy. Paper presented at the The First Workshop on Self-Organising
Engineering Applications (ESOA 2003). Melbourne, Australia

Hermans H, Manderveld J, Vermetten Y, Wagemans L (2000) Assessment. In:
Eindrapportage ELO project 1.1 – Nadere uitwerking onderwijsconcept. On-
derwijstechnologisch expertisecentrum, Open Universiteit Nederland, Heerlen

Hermans H, Manderveld J,Vogten H (2004) Educational Modelling Language. In:
Jochems W, van Merriënboer J, Koper EJR (eds) Open and Flexible Learning.
integrated E-LEARNING implications for pedagogy, technology & organiza-
tion. RoutledgeFalmer, London, Chap. 6, pp 80–99

Hummel HGK, Manderveld JM, Tattersall C, Koper EJR (2004) Educational
Modelling Language: new challenges for instructional reusability and person-
alized learning. International Journal of Learning Technology 1, pp 111–126

Intrallect (2002) Demonstration e-learning materials. Retrieved January 19, 2004
from http://www.intrallect.com/demos/msgcal

Jacobson J (1992) Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, Reading,MA

JBoss (2004) JBoss Application Server. Retrieved July 19, 2004 from
http://www.jboss.org

Jennings NR, Sycara K, Wooldridge M (1998) A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems 1, pp 7–38

JISC (2003) Xgrain: cross-searching specialist databases for learning and teach-
ing. Retrieved January 23, 2004 from http://www.jisc.ac.uk/project_xgrain.
html

JISC (2004a) Investing in the future: Developing an Online Information Environ-
ment. Retrieved January 23, 2004 from http://www.jisc.ac.uk/indexcfm?
name=ie_home

JISC (2004b) e-Learning Frameworks and Tools Programme. Retrieved January
23, 2004 from http://www.jisc.ac.uk/index.cfm?name=elearning_framework

Johns G (1996) Organizational behavior: Understanding and managing life at
work. Harper Collins, New York

Jonassen DH, Grabowski BL (1993) Handbook of Individual Differences, Learn-
ing, and Instruction. Lawrence Erlbaum Associates, Hillsdale, NJ

JORUM+ Project Team (2004) The JISC Learning Materials Repository Service;
JORUM Scoping and Technical Appraisal Study, Volume V: Metadata. Re-
trieved May 26, 2004 from http://www.jorum.ac.uk/vol5_fin.pdf

Key C, Mundell R (2004) LOGIC: Creating online case studies. White Paper. Re-
trieved June 6, 2004 from http://www.logicproject.ca/text/ LOGIC_White-
paper.pdf

Kirschner P, Carr C, van Merriënboer JJG, Sloep PB (2003) How Expert Design-
ers Design. Performance Improvement Quarterly 15 (4), pp 86–104

Kolb DA (1984) Experiential Learning: Experience as the Source of Learning and
Development. Prentice Hall, Englewood Cliffs, NJ

396 References

Koper EJR (2001) Van verandering naar vernieuwing [from change to renewal].
In: Schramade P (ed) Handboek Effectief Opleiden. Elsevier, Den Haag, Vol
26, pp 45-–86 (4710-4101–4710-4142)

Koper EJR (2002) Modelling units of study from a pedagogical perspective – The
pedagogical metamodel behind EML. Retrieved November 10, 2004 from
http://hdl.handle.net/1820/36

Koper EJR (2003a) Learning Technologies in eLearning: An Integrated Domain
Model. In: Jochems W, van Merriënboer J, Koper EJR (eds) Integrated E-
Learning: Implications for Pedagogy, Technology and Organization. Kogan
Page, London

Koper EJR (2003b) Combining reusable learning resources and services to peda-
gogical purposeful units of learning. In: Reusing online resources: A sustain-
able approach to e-learning. Kogan Page, London, pp 46–59

Koper EJR, Manderveld JM (2004) Educational modelling language: modelling
reusable, interoperable, rich and personalised units of learning. British Journal
of Educational Technology 35 (5), pp 537–551

Koper EJR, Sloep PB (2003) Learning Networks: connecting people, organiza-
tions, autonomous agents and learning resources to establish the emergence of
effective lifelong learning (OTEC RTD Programme Plan 2003-2008). Open
University of the Netherlands, Heerlen. Retrieved November 10, 2004 from
http://hdl.handle.net/1820/65

Koper EJR, Olivier B (2004) Representing the Learning Design of Units of Learn-
ing. Educational Technology & Society 7 (3), pp 97–111

Koper EJR, Giesbers B, van Rosmalen P, Sloep P, van Bruggen J, Tattersall C (in
press) A Design Model for Lifelong Learning Networks. Interactive Learning
Environments

Koper EJR and Van Es R (in press) How well can we implement existing lesson
plans in IMS Learning Design to evaluate its pedagogical flexibility?

Kraan W (2003) IMS and OKI, the wire and the socket. CETIS, July 17, 2003. Re-
trieved January 23, 2004 from http://www.cetis.ac.uk/content/
20030717185453

Lakoff G, Johnson M (1980) Metaphors We Live By. University of Chicago
Press, Chicago

Landa LN (1976) Instructional Regulation and Control: Cybernetics, Algorithmi-
zation and Heuristics in Education. Educational Technology Publications,
Englewood Cliffs, NJ

Laurillard D, McAndrew P (2003) Reusable educational software: a basis for ge-
neric e-learning tasks. In: Littlejohn A (ed) Resources for Networked Learn-
ing, Kogan Page, London

LD (2003) IMS Learning Design. Information Model, Best Practice and Imple-
mentation Guide, XML Binding, Schemas. Version 1.0 Final Specification
IMS Global Learning Consortium, Inc. Retrieved May 26, 2004 from
http://www.imsglobal.org/content/learningdesign/

Le Moigne J-L (1995) Les épistémologies constructivistes (ed). PUF Que sais-je?
Paris

Leshin C, Pollock J, Reigeluth Ch (1992) Instructional Design Strategies and Tac-
tics. Educational Technology Publications, Englewood Cliffs, NJ

References 397

LIP (2001) IMS Learner Information Package. Information Model, Best Practice
and Implementation Guide, XML Binding, Schemas. Version 1.00 Final
Specification IMS Global Learning Consortium Inc. Retrieved January 22,
2004 from http://www.imsglobal.org/profiles/

Littlejohn A (ed) (2003) Reusing Online Resources: A Sustainable Approach to
eLearning. Kogan Page, London

LOM (2002) Standard for Learning Object Metadata. Learning Technologies
Standards Committee of the IEEE 148.41.21

Lundgren-Cayrol K, Paquette G, Miara A, Bergeron F, Rivard J, Rosca I (2001)
Explor@ Advisory Agent: Tracing the Student’s Trail. Paper presented at
WebNet’01 Conference, Orlando, FL, USA, 2001

Lynch C (2003) Institutional Repositories: Essential Infrastructure for Scholarship
in the Digital Age. ARL Bimonthly Report 226, February 2003. Retrieved
July 13, 2004 from http://www.arl.org/newsltr/226/ir.html

Mack RL, Nielsen J (1994) Usability Inspection Methods. Executive Summary.
In: Baecker RM, Grudin J, Buxton WAS, Greenberg S (eds) Readings in Hu-
man-Computer Interaction: Toward the year 2000. Morgan Kauffman, San
Francisco

Martinez M (2001) Using Learning Orientations to Design Instruction with Learn-
ing Objects. In: Wiley D (ed) Instructional Use of Learning Objects. Associa-
tion for Educational Communications & Technology. Retrieved January 19,
2004 from http://reusability.org/read/

Martinez M, Bunderson CV (2000) Building Interactive Web Learning Environ-
ments to Match and Support Individual Learning Differences. Journal of In-
teractive Learning Research, 11 (2). Retrieved January 19, 2004 from
http://www.aace.org/dl/files/JILR/jilr-11-02-163.pdf

Masciarelli A (2004) Beginning of the Year or Semester Review for Returning
Spanish students (lesson plan). Retrieved January 20, 2004 from
http://www.lessonplanspage.com/LABeginningOfYearSpanishAssessmentOr
ReviewActivity68.htm

Maturana H, Varela FJ (1992) The Tree of Knowledge: The Biological Roots of
Human Understanding (revised edition). Shambhala/New Science Press, Bos-
ton, MA

Mayer RH (1999) Designing instruction for constructivist learning. In C. Reige-
luth (ed) Instructional-design theories and models (volume II). Lawrence Erl-
baum Associates, London, pp 141–160

McGreal R (ed) (2004) Online Education Using Learning Objects. Routledge/
Falmer, London

MD (2001) IMS Meta-Data. Information Model, Best Practice and Implementa-
tion Guide, XML Binding, Schemas. Version 1.2.1 Final Specification IMS
Global Learning Consortium Inc. Retrieved January 22, 2004 from
http://www.imsglobal.org/meta-data/

Merlot (2004) Online database with courses and learning objects. Retrieved Janu-
ary 22, 2004 from http://www.merlot.org

Merrill MD (1994) Principles of Instructional Design. Educational Technology
Publications, Englewood Cliffs, NJ

398 References

Merrill MD (2003) First Principles of Instruction. Retrieved October 2, 2003 from
http://www.1.moe.edu.sg/itopia/download/abstracts/Applying%20First Prin-
ciples of Instruction to Technology-Based Education.pdf

Merrill MD, Reigeluth C, Faust G (1979) The instructional quality profile: Cur-
riculum evaluation and design tool. In: O’Neil H (ed) Procedures for Instruc-
tional Systems Development. Academic Press, New York

Mislevy RJ (2000) A sample assessment using the four process framework. US
Department of Education

Molyneux S (2000) Where Technology Enables Open Learning Today. The Jour-
nal of the British Association for Open Learning, July

Montessori M (1912) The Montessori Method Scientific Pedagogy as Applied to
Child Education. In: George AE (ed) The Children's Houses. Frederick A.
Stokes, New York

Morgan G (2003) Faculty Use of Course Management Systems: Key Findings.
EDUCAUSE Center for Applied Research

Morrison GR, Ross SM, Kemp SE (2004) Designing Effective Instruction. Wiley,
Jossey Bass, Hoboken, NJ

Mwanza D, Engeström Y (2003) Pedagogical Adeptness in the Design of E-
learning Environments: Experiences from the Lab@Future Project. Proceed-
ings of E-Learn 2003 - International conference on E-Learning in Corporate,
Government, Healthcare, & Higher Education. Phoenix, AZ, USA. Retrieved
January 21, 2004 from http://www.aace.org/dl/index.cfm?fuseaction= toc&
start_row=301&id=13897

Nielsen J (1992) Finding usability problems through heuristic evaluation. Proceed-
ings of CHI'92. ACM Press, New York, pp 373–380

Nielsen J (1994) Usability Inspection Methods. CHI Tutorials 1994. ACM Press,
New York, pp 413–414

Nokelainen P, Tirri H, Kurhila J, Miettinen M, Silander T (2002) Optimizing and
profiling users online with Bayesian probabilistic modeling. In: Proceedings
of The NL 2002 Conference. Berlin, Germany, May 2002

Nulden U (2001) Education: research and practice. Journal of Computer Assisted
Learning 17, pp 363–375

OAI (2004) Open Archives Initiative Protocol for Harvesting Metadata. Retrieved
January 23, 2004 from http://www.openarchives.org/OAI/ openarchivesproto-
col.html

OASIS (2002) DocBook Version 4.2. Retrieved July 2, 2004 from
http://www.oasis-open.org/docbook/xml/4.2/indexs.html

OKI (2004) Open Knowledge Initiative Open Service Interface Definitions. Re-
trieved July 2, 2004 from http://web.mit.edu/oki/specs/OSID_table.pdf

OMG-UML (2003) UML Specification Version 1.4. Retrieved October 14, 2003
from http://www.omg.org/technology/documents/formal/uml.htm

Paiva A (1996) Communicating with Learner Modeling Agents. Position Paper for
ITS’96 Workshop on Architectures and Methods for Designing Cost-Effective
and Reusable ITSs, Montreal, Canada

Paquette G (1995) Modeling the Virtual Campus, Innovative Adult Learning with
Innovative Technologies A-61

References 399

Paquette G (1996) La modélisation par objets typés: une méthode de représenta-
tion pour les systèmes d’apprentissage et d’aide a la tâche. Sciences et techni-
ques éducatives, France, avril

Paquette G (1999) Meta-knowledge Representation for Learning Scenarios Engi-
neering. Proceedings of AI-Ed’99. Lajoie S and Vivet M (eds). In: AI and
Education, open learning environments. IOS Press, Amsterdam

Paquette G (2001a) TeleLearning Systems Engineering – Towards a new ISD
model. Journal of Structural Learning 14, pp 1–35

Paquette G (2001b) Designing Virtual Learning Centers. In: Adelsberger H, Collis
B, Pawlowski J (eds) Handbook on Information Technologies for Education
& Training. International Handbook on Information Systems. Springer, Berlin
Heidelberg, pp 249–272

Paquette G (2002a) L’ingénierie pédagogique, pour construire l’apprentissage en
réseau. Presses de l’Université du Québec, Québec

Paquette G (2002b) La modélisation des connaissances et des com-pétences, pour
concevoir et apprendre. Presses de l’Université du Québec, Québec

Paquette G (2003) Instructional Engineering for Network-Based Learning. Pfeif-
fer/Wiley

Paquette G, Rosca I (2002) Organic Aggregation of Knowledge Objects in Educa-
tional Systems. Canadian Journal of Learning Technologies, 28 (3), pp 11–26

Paquette G, Tchounikine P (2002) Contribution à l’ingénierie des système conseil-
lers: Une approche méthodologique fon-dée sur l’analyse du modèle de la tâ-
che. Science et Techniques Educatives, 9/3-4/2002, pp 409–435

Paquette G, Pachet F, Giroux S, Girard J (1996) EpiTalk: Generating Advisor
Agents for Existing Information Systems. Artificial Intelligence in Education.
USA

Paquette G, Rosca I, De la Teja I, Léonard M, Lundgren-Cayrol K (2001) Web-
based Support for the Instructional Engineering of E-learning Systems. Paper
presented at WebNet’01 Conference, Orlando, FL, USA

Paquette G, Lundgren-Cayrol K, Miara A, Guérette L (in press) The Explor@-2
Learning Object Manager. Chapter in Rory McGreal (ed) Online education
using learning objects. Routledge/Falmer, London

Permanand M, Brooks C (2003) Engineering a Future for Web-Based Learning
Objects. In: Lecture Notes in Computer Science Number 2722. Springer, Hei-
delberg, pp 120–123

PHP-Nuke (2004) PHP-Nuke. Retrieved February 27, 2004 from
http://www.phpnuke.org/

Porter D (2001) Object Lessons From the Web. In: Farrell G (ed) The Changing
Faces of Virtual Education. The Commonwealth of Learning, Vancouver, pp
47–69

Preece J (2000) Online Communities: designing usability, supporting sociability.
Wiley, Chichester

QTI (2003) IMS Question and Test Interoperability Information Model, Best Prac-
tice and Implementation Guide, XML Binding, Schemas. Version 1.2.1 Final
Specification IMS Global Learning Consortium Inc. Retrieved January 19,
2004 from http://www.imsglobal.org/qti/

QTI (2004) IMS Question and Test Interoperability. Public Draft Version 2. Re-
trieved July 19, 2004 from http://www.imsglobal.org/question/

400 References

QTI-Lite (2001) IMS Question & Test Interoperability QTI Lite Specification. Fi-
nal Specification Version 1.1. Retrieved June 28, 2004 from
http://www.imsglobal.org/question/index.cfm

Rawlings A, van Rosmalen P, Koper R, Rodriguez-Artacho M, Lefrere P (2002)
Survey of Educational Modelling Languages (EMLs) Version 1. September
19, 2002, CEN/ISSS

Raymond ES (2000) The Cathedral and the Bazaar, Revision 1.57. Retrieved May
31, 2004 from http://www.catb.org/~esr/writings/cathedral-bazaar/

RDCEO (2002) IMS Reusable Definitions of Competencies and Educational Ob-
jectives. Information Model, Best Practice and Implementation Guide, XML
Binding, Schemas. Version 1.0 Final Specification IMS Global Learning Con-
sortium Inc. Retrieved July 19, 2004 from http://www.imsglobal.org/compe-
tencies/

Reigeluth CM (ed) (1983) Instructional Theories in Action: Lessons Illustrating
Selected Theories and Models. Lawrence Earlbaum, Hillsdale, NJ

Reigeluth CM (1999) Instructional Design Theories and Models Volume II: A
New Paradigm of Instructional Theory. Erlbaum, Hillsdale, NJ

Reigeluth CM, Rodgers CA (1980) The Elaboration Theory of Instruction: Pre-
scription for Task Analysis and Design. NSPI Journal 19, pp 16–26

Rein D (2000) What is Effective Integration of Technology, and Does it Make a
Difference? Apple Computer Inc, Cupertino. Retrieved May 30, 2004 from
http://www.l2l.org/iclt/2000/papers/181a.pdf

RELOAD (2004) RELOAD Project. Retrieved January 23, 2004 from
http://www.reload. ac.uk

Respondus Inc (2004) Retrieved January 19, 2004 from http://www.respondus.
com/

RLI (2004) IMS Resource List Interoperability Specification – Public Draft Ver-
sion 1.0. Retrieved July 19, 2004 from http://www.imsglobal.org/rli/

Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W (1991) Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ

Rumbaugh J, Jacobson I, Booch G (1999) The Unified Modelling Language Ref-
erence Manual. Addison-Wesley Object Technology Series, Upper Saddle
River, NJ

Salen K, Zimmerman E (2004) Rules of play: Game design fundamentals. MIT
Press, Cambridge, MA

Sampson D, Karagiannidis C (2002) Incorporating Learning Styles Research for
Personalised Access to Educational e-Content. 14th World Conference on
Educational Multimedia, Hypermedia and Telecommunications (ED-MEDIA
2002). Denver, Colorado, USA

Sampson D, Karagiannidis C, Kinshuk (2002) Personalised Learning: Educa-
tional, Technological and Standardisation Perspectives, Interactive Educa-
tional Multimedia. Special Issue on Adaptive Educational Multimedia, 4 (in-
vited paper)

Sayago S, Martinez J, García R, Blat J, Casado F, Griffiths D (2004) Evaluación
de una aplicación sencilla de e-learning, presented at INTERACCIÓN 2004.
V Congreso Internacional Interacción-Persona Ordenador, May 3–7, 2004,
Lleida, Spain. Retrieved May 30, 2004 from http://www.tecn.upf.es/scope/

References 401

Scandura JM (1973) Structural Learning I: Theory and Research. Gordon &
Breach, London

SCOPE Project (2003) Training Course Prototype report. Retrieved May 31, 2004
from http://www.tecn.upf.es/scope/showcase/documentation/SCOPE_D4.pdf

Segers M, Dochy F, Cascallar E (2003) Optimising New Modes of Assessment.
In: Search of Qualities and Standards. Kluwer Academic Publishers,
Dordrecht

Shute VJ (1993) A Comparison of Learning Environments: All that Glitters... In:
Lajoie SP, Derry SJ (eds) Computers as Cognitive Tools. Lawrence Erlbaum,
Hillsdale, NJ, pp 47–74

Shute VJ, Towle B (2003) Adaptive e-Learning. Educational Psychologist 38 (2) ,
pp 105–114

Simon HA (1973) The Organization of Complex Systems. In: Pattee HH (ed) Hi-
erarchy Theory, The Challenge of Complex Systems. George Braziller, New
York, pp 1–27

Sipser M (1997) Introduction to the Theory of Computation. PWS Publishing ,
Boston, MA

Skinner BF (1974) About behaviorism. Knopf, New York
Sloep PB (2003) The Language of Flexible Reuse: Reuse, Portability and Interop-

erability of Learning Content or Why an Educational Modelling Language. In:
McGreal R (ed) Online Education Using learning Objects. Kogan Page, Lon-
don

South JB, Monson DW (2002) A university-wide system for creating, capturing
and delivering learning objects. In: Wiley DA (ed) The instructional use of
learning objects. Agency for Instructional Technology and Association for
Educational Communications and Technology, Bloomington, IN

Spector JM, Polson MC, Muraida DJ (eds) (1993) Educational Technology Publi-
cations. Englewood Cliffs, NJ

SS (2003) IMS Simple Sequencing Specification. Information Model, Best Prac-
tice and Implementation Guide, XML Binding, Schemas. Version 1.0 Final
Specification IMS Global Learning Consortium Inc. Retrieved February 29,
2004 from http://www.imsglobal.org/simplesequencing/

SSP (2004) IMS Shareable State Persistence Specification – Public Draft Version
1.0. Retrieved July 19, 2004 from http://www.imsglobal.org/ssp/

SToMP (2004) Retrieved January 19, 2004 from http://www.ph.surrey.ac.uk/
stomp/downldem.htm

Tattersall C (2004a) Presentation at joint SURF SiX/CETIS Assessment SIG
meeting, January 12, 2004 in Amsterdam. Retrieved January 20, 2004 from
http://e-learning.surf.nl/docs/six/colin_tattersall.ppt

Tattersall C (2004b) Input for IMS Question & Test Interoperability: Item, Ver-
sion: 2.0, Public Draft Document, Integration Guide, 21 April 2004. Retrieved
May 20, 2004 from IMS members website at http://www.imsglobal.org/

Tattersall C, Manderveld J, van den Berg B, van Es R, Janssen J, Waterink W,
Bolman C (2003) Road Mapping (ROMA) (OTEC/LTD Project Plan).Open
University of the Netherlands, Heerlen. Retrieved November 10, 2004 from
http://hdl.handle.net/1820/86

402 References

The Assessment Reform Group (2002) Assessment for Learning: 10 Principles.
Retrieved December 17, 2003 from http://www.assessment-reform-
group.org.uk/CIE3.pdf

Thibaut J, Kelly H (1959) The Social Psychology of Groups. Wiley, New York
Thorne S, Shubert C, Merriman J (2004), Architectural Overview. Retrieved Janu-

ary 22, 2004 from http://web.mit.edu/oki/learn/whtpapers/ArchitecturalOver-
view.pdf

TIBCO (2004) TIBCO TurboXML. Retrieved January 21, 2004 from
http://www.tibco.com/solutions/products/extensibility/turbo_xml.jsp

TOIA project (2003). Retrieved January 19, 2004 from http://www.toia.ac.uk/
UNFOLD Project (2003) Understanding New Frameworks of Learning De-

sign/IST-2002-1_507835. Retrieved July 19, 2004 from http://www.unfold-
project.net

Van der Klink M, Boon J, Rusman E, Rodrigo M, Fuentes C, Arana C, Barrera C,
Hoke I, Franco M (2002) Initial Market Study. ALFanet/IST-2001-33288 De-
liverable D72. Open Universiteit Nederland, Heerlen. Retrieved November
10, 2004 from http://hdl.handle.net/1820/93

Van Es R (2004) Overview of online databases with lesson plans and other learn-
ing design methods. Retrieved January 22, 2004 from
http://hdl.handle.net/1820/102

Van Es R, van der Baaren J, van Rosmalen P, Manderveld J, Koper R, Boticario J,
Barrera C, Rodriguez A, Santos O (2003) Existing Standards Analysis. AL-
Fanet/IST-2001-33288 Deliverable D31. Open Universiteit Nederland, Heer-
len. Retrieved November 10, 2004 from http://hdl.handle.net/1820/95

Van Merriënboer JJG (1997) Training Complex Cognitive Skills: A Four-
Component Instructional Design Model for Technical Training. Educational
Technology Publications, Englewood Cliffs, NJ

Varela FJ, Thompson E, Rosch E (1991) The Embodied Mind: Cognitive Science
and Human Experience. MIT Press, Cambridge, MA

VDEX (2004) IMS Vocabulary Definition Exchange Specification. Information
Model, Best Practice and Implementation Guide, XML Binding, Schemas.
Version 1.0 Final Specification IMS Global Learning Consortium Inc. Re-
trieved July 19, 2004 from http://www.imsglobal.org/vdex/

Virvou M, Tsiriga V (2001) An object-oriented software life-cycle of an intelli-
gent tutoring system. Journal of Computer Assisted Learning 17, pp 200–205

Visscher-Voerman JIA (1999) Review of Design in Theory and Practice. Univer-
siteit Twente

Vogten H, Martens H (2004) CopperCore. Retrieved February 27, 2004 from
http://www.coppercore.org

W3C (1999) XML Transformations (XSLT) Version 1.0. Retrieved January 21,
2004 from http://www.w3c.org/TR/xslt

W3C (2001) Web Services Description Language (WSDL) Version 1.1. Retrieved
January 22, 2004 from http://www.w3c.org/TR/wsdl

W3C (2002) XHTML 1.0 The Extensible HyperText Markup Language (Second
Edition) W3C Recommendation. Retrieved July 2, 2004 from
http://www.w3.org/TR/xhtml1/

W3C (2003) SOAP, Version 1.2 Part 1: Messaging Framework. Retrieved January
22, 2004 from http://www.w3c.org/TR/SOAP

References 403

W3C (2004a) XML Inclusions (XInclude) Version 1.0. Retrieved November 8,
2004 from http://www.w3.org/TR/xinclude/

W3C (2004b) XML Schema Part 1: Structures Second Edition. Retrieved Novem-
ber 8, 2004 from http://www.w3.org/TR/xmlschema-1/

Warmer J (2004) Introduction to OCL. Retrieved January 21, 2004 from
http://www.klasse.nl/ocl/index.html

Waters R, McCracken M (1996) Problem-Based Learning in Computer Science,
5th Annual Conference on Problem-Based Learning. Retrieved July 28, 2004
from http://fie.engrng.pitt.edu/fie97/papers/1454.pdf

Webber C, Bergia L, Pesty S, Balacheff N (2001) The Baghera project: a multi-
agent architecture for human learning. Workshop - Multi-Agent Architectures
for Distributed Learning Environments. Proceedings International Conference
on AI and Education. San Antonio, TX, USA

Weller MJ, Pegler CA, Mason RD (2003) Putting the pieces together: What work-
ing with learning objects means for the educator. Proceedings of Elearn Inter-
national Edinburgh, February 2003. Retrieved January 21, 2004 from
http://www.elearninternational.co.uk/2003/docs/presentations/ref_papers/wel.
zip

Wenger E (1987) Artificial Intelligence and Tutoring Systems. Morgan Kaufman
San Francisco

Wiley DA (2002) Connecting learning objects to Instructional design theory: a
definition, a metaphor, and a taxonomy. In: Wiley DA (ed) The Instructional
Use of Learning Objects. Agency for Instructional Technology and Associa-
tion for Educational Communications of Technology, Bloomington, IN

Wooldridge M, Jennings N (1995) Intelligent Agents: Theory and Practice.
Knowledge Engineering Review 10 (2), pp 115–152

Xerces (2004) XML Parsers in Java and C++. Retrieved July 19, 2004 from
http://xml.apache.org/#xerces

Index

360 Degrees Feedback, 187

Abstract Framework, 41; 54
Accessibility, 6; 221
Act, 7; 28; 143; 152; 174; 208; 285;

316
Activity, 11; 27; 96; 148; 149; 161;

176; 208; 217; 228; 233; 259;
294; 316; 317
Completion, 76; 95; 150; 294
Termination, 152

Activity Node, 240; 243
Activity Structure, 31; 152; 176;

208; 235; 248; 282; 289; 317
Activity Theory, 282; 289
Activity Tree, 95
Adaptation, 291; 293; 298
Adaptivity, 223

Adaptive Educational System,
293

Adaptive Learning, 216; 218
Adaptive Logic, 225
Adaptive Strategy, 219; 221

ADISA, 311
Administrator, 33
Agent, 293; 294

Architecture, 293
Multi-Agent Methodology, 294
Multi-Agent Pedagogical Models,

298
Multi-Agent System, 163
Software, 241; 246; 293

Aggregation, 324
aLFanet, 119; 248; 291
Analysis, 139
Annotation, 166
Anytime, Anywhere Learning, 203
Application Programming Interface,

91
Aptitude Treatment Interaction, 215
Architecture, 246; 313

Artificial Intelligence, 291
Assessment, 185; 190; 239; 323;

334
Authentic, 187
Collaborative, 187; 202
Cycle, 200
Formative, 185; 189; 202
Intake, 187
Peer, 187; 188; 202; 239
Performance, 187; 198
Portfolio, 187; 198; 202
Process, 198
Self-Assessment, 187; 202; 239;

334
Summative, 185; 199; 280

Assessment Cycle, 201
assessmentItem, 190
Asynchronous interaction, 166
Attractiveness, 6; 23; 303
Attribute, 96
ATutor, 178
Audit, 298
Authoring, 115

Process, 327
System, 313
Tools, 114; 331

Authorisation Model, 262

Benefits, 23
Best Practice, 16
Blackboard Inc., 129
Blended Learning, 339
BMP Entity Beans, 103
Bulk Approach, 254
Bulletin Boards, 218

Cardinality, 190
CD-ROM, 272; 279; 280
Certification, 187
CGI, 280
change-property-value, 77
Chat, 203; 218

406 Index

clicc, 107
Cohort, 69; 110; 112; 289
Collaboration, 166; 171; 242; 287;

293
Collaborative Activity, 206
Collaborative Learning, 239
Collaborative Scenario, 183

Communication, 293
Community Policies, 242
Competence, 241
Competency, 167; 313

Framework, 244
Level, 244

Competency-Based Learning, 186;
239; 305

Complex Cognitive Skills, 299
Compliance, 34; 125; 126; 133; 174
Component, 12; 27; 143; 155
Composition Links, 168
Compound Identifiers, 196
Conceptual Model, 317
Condition, 9; 35; 156; 223; 230;

321; 322; 346; 357
Conditional Construct, 84
Conduit Metaphor, 116
Constructivist, 114; 170
Constructivist Learning, 14
Content, 140

Expert, 168; 306
Management, 262
Model, 254; 274

Content Packaging, 22; 25; 61; 67;
92; 118; 157; 189; 263; 308

Coordination, 28; 30
Coordination Server, 209
CopperCore, 24; 75; 91; 130; 252;

289
Kernel, 103

CORBA, 55
Cost, 284

Cost-Benefit Analysis, 328
Delivery, 292
Development, 292
Production, 63

Course
Cycle, 300

Delivery, 63
Model, 288
Planner, 113
Production, 116
Structure, 261; 284

CourseManager, 92
create-new, 76
CSCL, 65
Curriculum, 239; 255

Planning, 244

D/COM, 55
Data Layer, 296
Data Model, 52
Data Type, 350
Delivery, 324

Model, 167; 312
Platform, 311
System, 217; 264; 284; 311

Deployment, 92
Design, 139

Constraints, 45
Phase, 148
Process, 281; 287
Template, 237

Design Time, 32; 69; 291
Development, 139
DHMTL, 280
Didactical Method, 293
Digital Repositories, 60
Digital University, 195; 256
Disciplinary Domain, 243
Distance Education, 281
Distance Learning, 63
Distributed Control, 242
Distributed Learning System, 161;

163
Distributed Network, 240
DocBook, 22
Document Object Model, 128
Domain Model, 262
Dossier, 93; 241; 246
Drill and Practice, 230
Drill and Test, 114

Editor

Index 407

Tree-Based, 118
Edubox, 129; 253; 256; 264; 295;

300; 304; 329; 332; 337; 342
Educational Game, 230
Educational Mark-up Language, 227
Educational Model, 305
Educational Modelling Language,

21; 72; 161; 173; 188; 253; 272;
282; 303; 327
EML 1.1, 308
Unit of Study, 274; 275; 276
Unit-of-Study, 272

Educational modelling languages,
324

Educational Needs, 185
Educational Scenario, 304; 341
Educational Specialist, 255; 258;

259
Educational Technology, 303
Educational Testing Service, 198
Eduplone, 124

EduploneLearningSequence, 124
eduSource, 184; 324
Edutool, 266
Effectiveness, 6; 23; 282; 303

Cost-effectiveness, 228
Efficiency, 6; 23; 303
E-learner, 23
E-learning

Adaptive, 293
Economics, 63
System, 293

elive, 124
Email, 218
Enrolment, 64
Enterprise Services, 61
Environment, 8; 28; 125; 144; 148;

149; 176; 189; 197; 208; 217;
219; 233; 274

Epitalk, 322
ePortfolio, 36; 188; 246
EuroMET, 271
Evaluation, 139; 332
Event, 78
Event Dispatcher, 87
Event Handler

Time-Related Event, 105
Evidence-Centered Design

Framework, 198
Explor@-2, 311

Feedback, 100; 185; 187; 221; 240;
242; 320; 321

Finite State Machine, 76
Interlocking, 82
Moore Machine, 77
State Change, 83

Flexibility, 274; 313
Flowchart, 234
Formalisation, 303
Fragment, 131
Framemaker, 255; 262; 305
Framework, 41
Future Proofing, 272

Games
Activity, 229
Algorithm, 235
Computer, 228
Design, 228
Design Pattern, 236
Educational Game Activity, 227
Game Playing Strategy, 234
Game Playing Systems, 38
LD-encoded, 235
LD-referenced, 235
Memory, 227
Meta-Language, 236
Multi-Path, 235
Pattern, 227

Global Elements, 358
Gnutella, 204
Granularity, 229; 262; 271; 288
Graphical Editor, 177
Graphical Language, 123
Graphical Representation, 167; 175
Groove, 247; 248; 296
GTK Komposer, 118; 119
Guideline, 142

Helpdesk, 266
Hide, 223

408 Index

Implementation, 139
Individual Learner, 215
Innovation, 303
Instant Messaging, 203; 218
Instantiation, 30; 32; 67
Instructional Design, 3; 139; 161;

162; 177; 228; 291; 298
Process, 139
Theory, 5

Instructional Designer, 113; 168
Instructional Engineering, 161; 162;

174; 322
Instructional Goals, 215
Instructional Method, 148
Instructional Model, 167; 171; 312
Instructional Strategy, 148; 228
Instructional Structure, 316
Instructional Structure Editor, 317
Instructional System Development,

139; 159
Instructor, 218
Intelligent Tutoring Systems, 293
Interaction Type, 189; 271
Interoperability, 188; 212; 243
Intrallect, 271
isvisible, 220
Item Body, 190

Java, 55; 103; 106; 133
EJB, 106
J2EE, 103; 106; 133; 309
JBoss, 133

JavaScript, 280; 309

Knowledge
Engineering, 163
Model, 167; 169; 312
Modelling, 165
Object, 273
Unit, 167

Knowledge Network, 289
Knowledge Society, 291
Komposer, 262

LAMS, 124; 287
LD Editor, 45; 46; 50; 51; 57; 125;

126; 174; 297; 330
LD engine, 295
LD player, 284
LD Player, 22; 67; 91; 109; 124;

128; 132; 225; 235
Learnability, 250
Learner Information Package, 36;

61; 188; 217; 294; 308
Learner-Centred Model, 240
Learning Activity, 223; 228; 261
Learning Design

Best Practice and Implementation
Guide, 23

Binding Document, 23
Information Model, 23; 38
Level A, 34; 97; 285; 311
Level B, 34; 130; 196; 217; 253;

285; 311; 318
Level C, 34; 130; 196; 231; 253;

311
Levels, 34
Manifest, 223
Semantics, 21; 92; 240
Syntax, 21
Tools, 109; 160

learning design knowledge
Conditional Instructional Design

Principles, 14
Design Rule, 5
First Principles of Instruction, 13
Universal Principles, 14

Learning Design Knowledge, 3
Learning Designer, 4; 216; 288
Learning Designs Repository, 47
Learning Event, 315
Learning Event Network, 174
Learning Flow, 28; 148
Learning Goals, 246
Learning Management System, 34;

39; 190; 206; 328
Learning Material Model, 167
Learning Model, 293
Learning Networks, 239

Index 409

Learning Object, 32; 148; 163; 208;
225; 227; 248; 285; 313; 329

Learning Object Aggregator, 314
Learning Object Launcher, 314
Learning Objective, 141; 148; 244
Learning Outcomes, 6
Learning Process, 187; 221; 295
Learning Route, 241
Learning Scenario, 28; 168; 171;

293; 295
Multi-Learner, 187
Multi-User, 30
Single-Learner, 187

Learning Service, 32; 33; 38; 125;
177; 219; 241
Collaboration, 310
Conference, 177; 209; 219; 265
Email, 177; 209
Index-Search, 177
Monitor, 344; 346

Learning Situation, 6
Learning Strategy, 311
Learning Style, 291
Learning Systems Engineering

Method, 162
Learning Track, 244
Lesson Designer, 237
Lesson Plan, 9; 15
Life-Cycle Model, 262
Lifelong Learners, 241
Lifelong Learning, 239
LionShare, 212
LOM, 61; 172; 314; 319
LORNET, 184; 324

Manifest-Centered Scheme, 225
Manifest-Centred Scheme, 221
Material, 233
MathML, 332
max-persons, 69
Measuring, 186
Media Model, 312
Media Producer, 168
Meta-cognition

Principles, 166
Meta-Cognition, 186

Meta-Content, 234
Metadata, 7; 31; 44; 49; 61; 99; 118;

132; 158; 246; 255; 329
MetaData, 294
Metadata Model, 262
Meta-Language, 227
Method, 28; 142; 143; 156; 208;

217; 285; 316
min-persons, 69
MISA, 164; 311
Moderator, 32
Modular, 313
Monitoring, 249
Moodle, 247
MOT+, 123; 142; 153; 162; 164;

258
Multi-Actor, 311; 322
Multi-Player, 207
Multiple Choice Question, 187; 188
Multiple Learner, 30

Napster, 205
Narrative, 146; 148; 285; 341
Navigation, 244; 249; 272; 274; 330
Notation, 4; 19

Formal Notation, 4; 18
Learning Design Notation, 19
Standard Notation, 17

Notification, 38; 84; 150; 208; 311
number-to-select, 32

Object Constraint Language, 45
Object Modeling Technique, 312
Observer, 32
Off-Campus, 210
Off-Line, 206
OKI, 41; 54; 58

OSID, 40; 58
On-Campus, 210
Ontology, 48; 124; 131; 175
Open Learning, 281
Outcome Declaration, 190
Outcome Variable, 191

P2P, 203; 247; 296
Architecture, 204

410 Index

Parsing, 142
Process, 87

Participant, 32
Path, 93; 244; 274; 329
Pattern, 16

Pedagogical Pattern, 16
PDAs, 203
Pedagogical Approach, 188; 303;

313; 336
Pedagogical Design, 255
Pedagogical Expert, 113
Pedagogical Flexibility, 257; 258;

267; 334; 338
Pedagogical Method, 294
Pedagogical Model, 42; 242; 258;

303
Pedagogical Meta Model, 258;

305
Pedagogical Scenario, 50; 114
Pedagogy, 112; 232; 282; 328
PeerServer, 205; 208
Performance, 187
Perot Systems, 129; 328
Personalization, 78; 83; 88; 93; 166;

291; 321; 322
PHP Nuke, 247
Pilot, 306
Play, 7; 28; 95; 143; 174; 208; 217;

285; 316
Player, 113; 117; 303; 305
Plug-In tools, 52; 127
Portfolio, 244
Position, 244
PostgreSQL, 133
Precedence Links, 168
Prerequisite, 148; 244
Presential Learning, 328
Problem-Based Learning, 65; 143;

148; 157; 239; 328
Problem-Solving, 114
Procurement, 23
Production Process, 282
Progression Rule, 319
Property, 35; 76; 80; 150; 195; 196;

297; 321
Global, 79; 217; 350

Global Property, 35; 93
Local Property, 35
Property Group, 35
Scope, 80
System-Defined Property, 77
Type Restriction, 80

Publication, 67; 77; 86; 91; 92; 104;
265; 307

Publishers, 23
Python, 124

QAed, 331
QTI Player, 193

Canvas Learning, 193; 195
Question and Test Interoperability,

22; 36; 61; 115; 118; 125; 185;
190; 274; 294; 308
QTI Lite, 331
QTI-Lite, 334
Version 2.0, 190; 194

Re-Branding, 68
Recursion, 86; 87
Reference Architecture, 41; 45

Valkenburg Group Reference
Architecture, 41; 109; 126; 331

RELOAD, 45; 53; 118; 128; 178
Repository, 44; 47; 109; 113; 131;

208; 237; 304; 306; 324
Reproducibility, 64; 65
Resource, 11; 99; 113; 125; 131;

158; 166; 167; 196; 208; 294
Multimedia, 278

Resource List Interoperability, 61
Response Declaration, 190
Response Processing, 191; 193
Response Variables, 190
Responsiveness, 336
Reusable Definitions of

Competencies and Educational
Objectives, 61

Reuse, 12; 44; 63; 67; 78; 114; 121;
227; 256; 335; 338
Reusability, 164; 174; 177; 227;

259; 272; 287; 321
Reward System, 242; 249

Index 411

RMI, 55
Role, 7; 27; 68; 78; 161; 233; 259;

281; 294; 304; 313
instance, 78

Role-Part, 8; 28; 143; 149; 174; 208;
316

Role-Participation, 78
Run, 9; 30; 33; 67; 78; 91; 93; 112;

206; 240; 265
Run-Participation, 78
Runtime, 24; 44; 45; 50; 69; 111;

114; 124; 174; 195; 206; 266;
291; 301; 311; 315; 341

Scaffolding, 242
Scalability, 208; 251; 272
SCOPE, 124; 328
SCORE, 190; 191; 196
SCORM, 29; 53; 127
Search, 113; 131; 166; 242

Federated, 49
Secure Transactions, 213
Self-Directed Learning, 239; 272
Self-Organization, 240
Sequence, 9; 223
Server Layer, 296
Server-Side Scripting, 43
Service Definition, 33
Service-Oriented Architecture, 55
Services Layer, 296
Servlet, 209
SGML, 22; 305; 307
Sharable State Persistence, 61
Shibboleth, 213
Show, 223
Simple Sequencing, 34; 61; 118;

287
SOAP, 55; 56; 309
Social Exchange Theory, 249
Software Engineering, 163
SourceForge, 91; 108
Specification, 303
Staff, 153; 167; 188; 221; 240; 266;

295
Faculty, 230

Stakeholder, 23; 142

Standard, 243; 293
Open, 251

SToMP, 195
structure-type, 31
Student Model, 323
Student Responsibility, 187
Studienet, 265; 310
Study Centre, 265
Stylesheet

CSS, 309
XSLT, 43; 130; 279; 309; 332

Subject Expert, 257
Support, 283
Support Activity, 31; 149
Support Staff, 255
Support-Activity, 348
Supported Open Learning, 281
Synchronisation, 28; 143; 152; 205;

206; 212; 285; 321
Synchronization, 86
Synchronous interaction, 166; 218

Tailor-Made Approach, 254
Target, 244
Task Analysis, 142
Teacher, 125
Team, 116; 255; 283
Technology Development, 303
Template, 42; 45; 47; 50; 113; 228;

229; 261; 277; 280; 337
Pedagogic, 130
Word template, 120

Test Content Management System,
190

Testing, 44; 263; 282
Classical Methods, 188
Process, 195

Test-Items, 308
Theatrical Play, 7; 144
Time Limit, 177; 316; 320
Timer, 37
To-Do List, 244
TOIA, 195
Tool, 142; 259
Training Manager, 168
Tree Structure, 315

412 Index

Tutor, 283; 295; 351
Tutor Marked Assignments, 283
Tutor Support, 281

Ubiquitous Access, 242
UML, 122; 177; 258; 312

Activity Diagram, 142; 148; 342
Class Diagram, 68; 80; 94; 246
Sequence Diagram, 86
Use Case, 24; 50; 241; 312; 341

UNFOLD, 252; 290
Uniform Resource Identifier, 99
Uniform Resource Locator, 32; 33;

99
Unit of Learning, 21; 66; 76; 92;

109; 161; 168; 188; 206; 216;
228; 240; 295; 303; 341
Completion, 82; 130
Validation, 86

Usability Study, 327
Usage Data, 291
User Model, 293

Validation, 91; 289
Variable, 195
Versailles Experience, 123; 178; 228
Video, 278

Lecture, 316
Virtual Campus, 312
Virtual Learning Environment, 39;

256; 305
Visualization, 234
Vocabulary Definition and

Exchange, 61

Web Portal, 246
Web Server, 87; 93
WebSphere, 129; 310
Workflow, 255; 264
WYSIWYG, 120

XHTML, 22; 43; 106; 121; 193;
197; 254; 263; 274; 308

XML, 22; 33; 34; 75; 76; 95; 102;
112; 142; 149; 153; 164; 173;
174; 191; 199; 228; 285; 308;
317; 321; 341
IDs., 36
Namespace, 276
Schema, 24; 45; 52; 92; 127; 128;

248
XML Authoring Tool, 257
XML Editor, 114; 142; 177; 277

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

