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Foreword

This book signals the maturity of the methodologies and technology that surround
test score equating and the acceptance of these methodologies and of the
open-source software by the testing industry’s experts and academia.

Test equating is a statistical procedure for adjusting the test form differences in
standardized testing. Test equating methodologies originated in testing companies
many decades ago. Due to the pragmatic operational perspective, many of these
methodologies had lacked rigorous theoretical background and research for many
years. Then in the 1980s, test score equating started to receive the appropriate
attention from researchers and academia (Holland and Rubin 1982). Several
notable journal articles and books were written at that time, and the field was
brought forward significantly. The availability of personal and fast computers
also facilitated the implementation of the established equating methods. For
example, psychometricians and technology specialists at Educational Testing
Service developed GENASYS, a very comprehensive, modular, and sophisticated
software system to support the large-scale application of test score analysis and
equating with all the available methodologies at that time. The first edition of the
Kolen and Brennan (1995) book became a landmark in equating. A second wave
of theoretical interest and the development of new methods took place around 2005
(Kolen and Brennan 2004; von Davier et al. 2004; Dorans et al. 2007).

Since 2005, there has been a noticeable shift in test equating. First, there has been
an increasing interest in and use of test equating all over the world. Second, as it was
illustrated in the edited volume of von Davier (2011a), there has been a renewed
interest in searching for better methodologies that improve the score conversion in
terms of bias (the observed-score equating framework, various kernel methods, local
equating), in terms of error (kernel equating, equating with exponential families),
in terms of hypothesis testing (Lagrange multiplier tests for item response theory
(IRT) methods, Wald test for kernel methods), in terms of approximations for
small sample equating, and in terms of monitoring the quality control of equating
results (using time series approaches); third, there has been an increased interest
in equating by university professors in statistics and educational measurement;
and more importantly, there has been a significant software development using
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different software environments, from SAS to R. Moreover, the rapid changes
in the technology made the upgrade of proprietary software challenging; the
society became more appreciative of the open-source environment that facilitates
transparency, research, and community work.

This volume is remarkable from several perspectives. First, it is a perfect mirror
of the changes in test equating during recent years: it includes new equating
methods alongside the older ones, and it provides code in R for users. The authors
of this volume have both an academic background (one works for the Pontificia
Universidad Catélica de Chile, in Santiago de Chile, and one works for Umea
University in Sweden) and a practitioner background (one is a consultant for the
operational tests from the measurement center MIDE UC and the other consults for
the operational large-scale Swedish SAT). Both authors developed or codeveloped
R packages for conducting various equating methods. Last but not least, one is
from Chile and one is from Sweden. Again, the technology makes the world
interconnected and supports collaborations like these!

The structure of this volume follows the process of operationalizing various
test equating methods. The volume starts by locating equating in the realm of
statistical models, which was also attempted by von Davier (2011b). Then the
volume continues by briefly presenting the theory behind the methods (smoothing of
discrete test score data, linear interpolation equating, several kernel methods, local
and IRT equating) and by illustrating the application of these methods with sets of
real data and with various R packages, including those developed by the authors
themselves.

For those of us who work on educational assessments, there are still many open
challenges. Measurement accuracy for all groups of test takers across the range
of scores is hard to ensure in operational testing. With the increased shifts in
demographics, we had to provide more sophisticated and complex, yet transparent,
types of tests. Nevertheless, as we test more diverse groups of people, the challenge
of providing accurate scores increases. For example, much of the research on
alternative kernels, in particular on adaptive kernels, has been motivated by the need
to analyze data from heterogeneous populations. Another way to look at fairness
is through the lenses of transparency of the process: Will the transparency of the
open-source software aid the fairness arguments?

Another area that remains of interest for future research is how to ensure that
the computations with the open-source software environment are well tested and
error-free for large-scale high-stakes tests administered over time. In the future, we
will also need to provide open-source code for methods for quality control.

As many of us have started to work on simulation- and game-based assessments,
new challenges occurred. To meet these challenges, we need to redefine the concept
of test equating and the notion of adjusting for difficulty across test forms. While
we do not have a solution yet, it is quite probable that the solution will use some of
these newer approaches to test equating and open-source software.

A final challenge relates to improved communication about the practical
consequences of addressing equating issues as an ongoing activity in order to
ensure meaningful scores. We need to explain the limitations of the methods and
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the cost of being able to make truthful claims about score accuracy for all groups
over time. The authors of this book examine theoretical and practical issues that
cut across different types of methodological and operational situations and open
the doors to hands-on teaching and learning and to more theoretical research on
equating methods conducted by students and other researchers.

Princeton, USA Alina A. von Davier
December 2016
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Preface

This book provides an overview of test equating methods with a focus on how to
implement them using R (R Core Team 2016).

The idea for writing this book emerged in April 2014 when we both attended the
NCME conference in Philadelphia. There are many reasons to go to conferences
including presenting your research, meeting other researchers, working on
collaborative projects, and getting new ideas. For us, writing a book on equating
with applications using R was a natural step as we had both been involved in the
development of two different R packages, kequate (Andersson et al. 2013) and
SNSequate (Gonzilez 2014), and we have noticed that a number of software and
R packages that can be used when equating test scores have emerged in recent
years. Weeks (2010) (and references therein) offers a list that includes EQUATE,
ST, mcmequate, IpLink, POLYST, STUIRT, POLYEQUATE, IRTEQ, irtoys,
and MischPsycho. These software packages are mainly designed for conducting
item response theory (IRT) linking rather than equating, with the exception of
POLYEQUATE and IRTEQ that implement IRT equating. The list can be enlarged
by including CIPE, Equating Recipes, RAGE-RGEQUATE, Equating Error,
PIE, and LEGS (Kolen and Brennan 2014), the KE software (ETS 2011), the
SAS/IML macro for log-linear smoothing (Moses and von Davier 2011), and the
R packages plink (Weeks 2010), lordif (Choi et al. 2011), equate (Albano 2016),
and equateIRT (Battauz 2015).

Two questions of interest to us were whether all of the available equating methods
had been implemented in these packages and if we could replicate known results
using all of these different packages. When we started writing this book, neither of
us had used all of these packages, but we got to learn many things and got many
ideas for new research along the way. By using an open-source software, a new
generation can easily start their research where the previous generation left off.
Thus, we expect many new research papers within the equating field in the next
few years.

People in the test equating field might wonder what is new and unique in this
equating book compared with others such as the works of von Davier et al. (2004)
and Kolen and Brennan (2014). This is the first equating book that provides all
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of the necessary tools to perform equating regardless of which framework the
equating belongs to. This means that no matter if it is a traditional equating method,
an IRT equating method, a local equating method, or a kernel equating method,
this book provides the essential tools both in terms of theory and computational
implementation. The goal is to give the readers a pamphlet of as many different
equating methods as possible and to provide them with hands-on examples of how to
perform the analyses by themselves. A unique feature of this book is that it provides
R codes to implement all of the described equating methods. R has become an
essential tool for research in many fields including psychometrics, and our aim is to
ensure that equating methods are not the exception of this tendency.

The intended audience for this book is very broad. It includes test constructors,
researchers in equating, graduate students both in statistics and psychometrics, and
all of those who have an interest in learning how to perform equating with different
methods. One of the aims of the book is also to make it easier for beginners to get
into the research field of equating.

Organization of this book. The first chapter gives a summary of our view of the
equating transformation as a statistical estimator. It then moves on to the practical
concerns in Chap. 2 in which the data used in the book are described. This chapter
also explains how the data need to be prepared and structured in order to be utilized
with the different R packages used in the book. Chapter 3 contains descriptions and
illustrations of the traditional equating methods, while Chap. 4 goes step by step
through the kernel equating framework. Chapter 5 describes and illustrates different
IRT equating methods, and Chap. 6 contains material regarding some of the existing
local equating methods. Finally, in Chap.7, we illustrate how to replicate some
recent developments in test equating research. In all chapters, examples using R
code are provided. All used data sets and R scripts as well as additional examples
not appearing in the book are available from the book’s Web page at http://www.
mat.uc.cl/~jorge.gonzalez/EquatingRbook.

Jorge’s Acknowledgments. Writing this book has been possible thanks to many
people who have been important in my career. Although my Ph.D. dissertation was
not related to equating, I was lucky to be part of the psychometric research group
at K.U. Leuven and to have Paul de Boeck and Francis Tuerlinckx as supervisors.
Once I graduated, I was hired by the Measurement Center MIDE UC where I learned
many things related to educational measurement, equating being among them. I
thank Jorge Manzi, director of the Measurement Center MIDE UC, for trusting
me and allowing me to be part of the center. I have also been very lucky to meet
wonderful colleagues and friends from whom I have learned many of the things I
now know. Thanks to Alina von Davier for always being receptive and willing to
collaborate on projects. Thanks to Ernesto San Martin for always being there to
discuss the most interesting problems in statistics and especially in psychometrics.
I would also like to thank all of my students for working with me on their master’s
theses on equating. I would especially like to thank my parents, Luis and Iris, who
have always given whatever is necessary for my well-being. Thanks to my brother,
Carlos, for being my eternal best friend whom I can always trust. For all the time
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that I have stolen from you and for all of your understanding, thanks Fanny for being
my partner for all these years. Lastly, for being the non-equatable ones, thanks to
my children Javiera and Renato. This book is dedicated to both of you.
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worked with and will work with in the future. I am also thankful to Bjorn Andersson,
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with his own research ideas. I would also like to thank my parents Britt and Ulf, for
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the best in the world.
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Chapter 1
General Equating Theory Background

Abstract This chapter provides a general overview of equating and offers a
conceptual and formal mathematical definition of equating. The roles of random
variables, probability distributions, and parameters in the equating statistical
problem are described. Different data collection designs are introduced, and an
overview of some of the equating methods that will be described throughout the
book is also presented.

1.1 Introduction

In different fields, it is usually of interest to compare measures coming from
a common phenomena: “The comparability of measurements made in differing
circumstances by different methods and investigators is a fundamental pre-condition
for all of science” (Dorans and Holland 2000). Particularly in the field of educational
measurement, the comparability of test scores is of interest because these scores
are used to make important decisions in various settings. When making decisions,
it is usually the case that individuals are compared on certain features that are
measured as scores such that a score comparison implies a comparison among
individuals. Scores are important in determining academic admissions, whether
scholarships should be granted, to monitor progress in achievement, to determine
competencies on a particular task, etc. Sometimes, score results do not lead to
serious consequences, but when they are used for making decisions, it is important
to report scores in a fair and precise way.

Mainly due to security reasons, it is common for measurement programs to
produce different forms of a test that are intended to measure the same attribute.
Although the test constructors try their best to produce test forms as parallel!
as possible, differences in the difficulty of the forms are unavoidable. Thus, it is
very possible that some test takers are administered an easier form of a test that
is supposed to measure the same characteristic in all available test forms. When

Tt is enough to consider test forms to be parallel if they measure the same attribute in a different
way, for instance, by using different items. A more technical definition of parallel forms can be
found in Lord (1964).
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the magnitude of such characteristics is important for decisions, it is not fair to
assign higher scores to some group of the population only because the test form
administered to them was easier than another test form. In other words, if test forms
were equated then it would be fair to give them to different people and treat the
scores as if they come from the same test.

1.1.1 A Conceptual Description of Equating

Score differences are not exclusively due to differences in the difficulty of the tests
forms. It might happen that a group of test takers is simply more able than the other
in which case a comparison between groups by using test scores is confounded by
the ability of individuals in the two groups. In this sense, a definition of equating
should consider scores on two test forms as equivalent in a group of test takers if
they represent the same relative position in the group (Livingston 2004).

The process of equating tests involves not only the adjustment of scores so that
differences in difficulty can be compensated for, but it should also consider initial
aspects so as to carefully construct the tests (i.e., test forms that differ in content
or have different numbers of items cannot be considered parallel). In this book, the
focus is on the first aspect. After disentangling the confounding between differences
in group ability and differences in difficulty of tests forms, statistical models and
methods will be used to adjust scores (rather than tests) and thus compensate for
differences in the difficulty of the forms. We will thus define equating as a family of
statistical models and methods that are used to make test scores comparable among
two or more versions of a test, so that scores on these different test forms, which
are intended to measure the same attribute, may be used interchangeably (see, e.g.
Holland and Rubin 1982; von Davier et al. 2004; Dorans et al. 2007; von Davier
2011; Kolen and Brennan 2014).

1.1.2 A Statistical Model View of Equating

Our perspective is to view equating as statistical models because random variables,
probability distributions and parameters are indeed involved in the process. We
believe that the statistical theory viewpoint of equating (von Davier 2011; van der
Linden 2011; Gonzédlez and von Davier 2013; Wiberg and Gonzdlez 2016) is
useful not only for understanding the different methods that will be described in
the subsequent chapters, but also because it opens new research possibilities on
equating. With this approach, the score scales of two test forms that are to be equated
will be seen as the sample spaces of two random variables representing the scores
from both forms, respectively. The equating problem will thus be reduced to finding
an appropriate function to map the scores from one scale into their equivalents in
the scale of the other.
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In the following section we introduce the general definition of a statistical model
and discuss the basics concepts of parameters, parameter space, and sampling
space. This is followed by a discussion about the role of random variables,
probability distributions and parameters as involved in equating in this general
framework.

1.2 Statistical Models

1.2.1 General Definition, Notation, and Examples

Statistical models assume that observed data are realizations of random variables
following some probability distribution. Thus, statistical models are used to
learn about the data generating mechanism. The random variables X, ..., X, are
supposed to follow a distribution Fy that is indexed by a parameter 6 defined on a
parameter space ®. Let x,...,x, ~ Fg be the observed data defined on a sample
space 2. A statistical model can compactly be written as (e.g., Fischer 1922; Cox
and Hinkley 1974; McCullagh 2002)

F =1{ Fy:0c0), (1.1)

where the family .% is the collection of all probability distributions on 2" indexed
by a parameter 6. The sample space 2" is the set of all possible observed data.

Example 1.1 (The linear regression model) Consider a simple linear regression
model y = By + Bi1x + & with & ~ N(0, 02). With this specification, the statistical
model can be written as

F ={R,N(Bo + Bix,0%) : (Bo. B1,0%) € R* x RT},

where R is the set of real numbers, N(a, b) represents the normal distribution with
mean a and variance b, and Rt is the set of positive real numbers (excluding zero).
In this case, the probability model generating the data is the normal distribution,
which is indexed by the parameters § = (B0, B1,0?%). For known values of x, the
parameter @ fully characterizes the data generating mechanism which, in this case,
produces the outcome variable y.

Example 1.2 (Fixed-effects Item Response Theory (IRT) models) Let X;; be the
random variable denoting the answer of test taker 7 to item j on a test. Fixed-effects
IRT models are specified through the following two conditions: (i) mutual
independence of X, i = 1,...,n.j = 1,...,J;, where X;; = 1 when test taker
i correctly answers item j , and X;; = 0 otherwise; (ii) X;; ~ Bernoulli[m (;, ;)]
where @; € R corresponds to the person parameter, w; € £2 C RX corresponds to
the item parameter, and 7 is a known and strictly increasing function in ¢; for all
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w € §2. For instance, for the one parameter logistic (1PL) IRT model, w; = f; and
we have

F = {{0, 1}, Bernoulli[n (c;, Bj)] : (ci, B;) € R x R},

where 7 (;, B;) = Pr(Xjj = 1| o;, Bj) = exp(a; — B;)/1 +exp(a; — B;). In this case,
the underlying probability model generating the data is the Bernoulli distribution
indexed by 6 = («;, B;).

In the first example, the parameters of interest are directly related to the
probability distribution that generates the data. In the second, person and item
parameters are related to the Bernoulli distribution through 7. In both cases, the
data generating mechanism is fully characterized by 6.

Sometimes the parameters of interest are functions of other parameters that are
involved in the model, as is shown in the following example.

Example 1.3 (Odds-ratio model) Consider a 2 x 2 contingency table with entries
X11, X12, X21, X27. When the total number of counts » is known, the random variable
X = (X11,X12, X321, X2,) conditional on n is multinomial. We write X | n ~
Mult(n; @) where 0 = (71, 12, 721, T22) are the cell probabilities. To test the
raw-column independence, a commonly used parameter of interest is the odds ratio
OR = % Although the statistical model involves a family of multinomial
distributions indexed by @ € [0, 1]*, the parameter of interest is the OR that is not
directly related to the data generating mechanisms but is instead a function of other
parameters involved in the model.

Many other statistical models that are often used (e.g., factor analysis models,
structural equation models, ANOVA models, log-linear models, etc) can be written
in this compact way and can thus be shown to be a part of this general definition.

1.2.2  Types of Statistical Models

When the data generating mechanism (i.e., the probability model) is fully
characterized by the parameter 6, then the model is said to be a parametric model.
Formally, a parametric model is one where the dimension of the parameter space
© is finite, meaning that §# € ® C R? where d is a finite number. Sometimes
the parameter characterizing the statistical model is a mixture of both finite and
infinite-dimensional parameters (e.g., Schervish 1995, Section 1.6). In such a case,
we denote the model as semiparametric. Yet another possibility is when no finite
parameters characterize the probability distributions, but they are themselves the
parameter of interest. The nonparametric approach starts by focusing on spaces of
distribution functions, denoted by §, so that uncertainty is expressed on F itself
(Tsiatis 2007).
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To distinguish among these three types of models, the following notation is used
to write the general definition for statistical models given in Eq. (1.1).

(i) Parametric model:
F =(2.Fy:0e0 CR?
(i) Semiparametric model:
F =(Z,Fg:0=(6.60,),0, €0, CR 0, e @ =57
(iii) Nonparametric model:
F =(Z,F:Fej)

Note that in (i) and (ii) d is a finite number such that ® and ®; are
finite-dimensional parameter spaces. In (iii), however, the parameter space ©
is typically the set of all probability distributions on 2 so that it constitutes a
function space that we denote by §.

Example 1.4 (The linear regression model (cont’d)) Both semiparametric and
nonparametric versions of the (normal) linear regression model can be defined. In
the first case, the assumption of linearity on the mean of the conditional distribution
can be relaxed, leaving the data to “speak for itself”” about its functional form. In
this case, we have y = m(x) + ¢ where m(-) is a functional parameter that has to be
estimated from the data. As before, ¢ ~ N(O, 02) so o2 constitutes the parametric
part of the model. Under this specification, the semiparametric statistical model
becomes

F = {R,N(m(x),0?) : (m(-),0?) € Fx R}

Note that the parameters § = (m(-), 0>) completely characterize the data generating
mechanism.

Example 1.5 (Survival analysis models) Let T be the random variable denoting the
time at which an element fails. The main parameter of interest in this setting is the
so-called survival function, which is defined as S(t) = Pr(T > 1) = 1 — Fr(¢).
This functional parameter has the particularity that it is itself a function of another
function: the cumulative distribution function (CDF) of the failure times F(z).
Having a sample of failure times 7y, ...,17,, the main parameter of interest can
be estimated by first estimating F(f) and thus we have S(t) =1-F (7). The
data generating mechanism in this case is described by an infinite number of
parameters.

Examples of semiparametric and nonparametric IRT models can be found in
Duncan and MacEachern (2008), Miyazaki and Hoshino (2009), and San Martin
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et al. (2011). Example 1.5 shows that the parameters of interest that characterize
the data generating mechanisms are not always finite elements @ but instead the
probability distributions themselves are of interest.

Note that no matter the type of model used, the aim of either classical or Bayesian
statistical inference is to learn about the data generating mechanism that produced
the data. The parameters of interest, which characterize the probability distributions
in the models, have to be estimated from the data, which at the same time are
supposed to be generated by the corresponding probability distribution. As we
have seen, sometimes the probability distributions are themselves of interest and
constitute the main parameter to be estimated from the data. Equating models are
no exception to this general formulation as will be demonstrated in the next section.

1.2.3 Mathematical Statistics Formulation of the Equating
Problem

As with any other statistical model, random variables, probability distributions, and
parameters (either finite or infinite dimensional), also play a role in equating. In this
section we introduce the notation and formal specification of these elements in the
context of equating.

Although in many cases more than two test forms are to be equated, for ease
of exposition we will consider only two test forms and denote them as X and Y.
It will be assumed that these two forms are administrated to n, and n, randomly
sampled test takers respectively. The scores obtained from test form X are denoted
by X; i = 1,...,n,), and those obtained from Y as ¥; G = 1,...,n,). The X
and Y scores are assumed to be random variables that are accordingly defined on
sample spaces 2" and %/, and following the distributions Fy and Fy, respectively.
In this case, the sample spaces constitute the sets of all possible values for the
scores in both test forms. For instance, if test form X is composed of 30 binary
scored items and scores are assumed to be the total number of correct answers,
then 2~ = {0,1,2,...,30}. Note however that other scoring rules such as the
ones used in IRT models can produce different types of scores (i.e., continuous
rather than discrete scores). Methods for equating such types of score scales will be
discussed in Chap. 5. In what follows, the definitions will be given for what we
call observed scores, which will always be the total number of correct answers
on a test. The actually observed score data will be assumed to be realizations of
the random variables X and Y following distributions x,...,x,, ~ Fx(x) and
Visewos Yy, ~ Fr(y).

The statistical problem in equating consists in modeling the relationship
between a score on one test form and its corresponding score in another form.
Mathematically, this means that a function has to be defined that takes values in
Z and gives as a result a value on %. The following definition is general for any
equating function transformation.
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Definition 1.1 Let 2" and % be two sample spaces. A function ¢ : 2" +— % will
be called an equating transformation.

The sample spaces can be of different dimensions, and this allows us to consider
two test forms that differ in the number of items.> From Definition 1.1, it follows that
the equating transformation maps the scores on the scale of one test form into the
scale of the other. Note that for simplicity, Definition 1.1 assumes that an equating
is made to map 2 on %/, but the reverse equating is also possible thus imposing
that ¢ is a function that produces a symmetric equating in the sense that if ¢ equates
X to Y, then ¢! equates Y to X. The equating transformation will constitute the
object of primary interest in the equating problem.

In test theory, it is assumed that two parallel tests forms X and Y measure the
same characteristic (ability) without knowing the mathematical relation between
2 (the X score scale) and ¢ (the Y score scale). As is seen from Definition 1.1,
the equating transformation provides such a relationship. An easy first step to learn
about the connection between 2" and " would be to examine the score distributions
that result from observed data that have been generated by test takers taking the tests.
If ¢ equates X to Y, then the distribution of Y and the distribution of the transformed
scores should be the same. Following these ideas, Braun and Holland (1982) gave
a definition of equating that we reproduce in the next section. All methods that are
described in this book follow this definition.

1.2.4 Mathematical Form of the Equating Transformation

Definition 1.1 establishes that the equating transformation maps the scores of one
test form into the scale of another. However, an explicit mathematical form for ¢
has not been given yet. This form will depend on the definition of equating or, in
other words, in the way we operationalize the idea of treating scores as if they come
from the same test. Throughout this book we will use the definition given by Braun
and Holland (1982) which we reproduce here using our notation.

Definition 1.2 (Braun and Holland’s (1982) definition of equating) Let X and
Y be two test forms both generating score data X and Y, respectively. Forms X and
Y are said to be equated in population T by ¢(x) if Fy(y) = Fy ().

Definition 1.2 indicates that two scores x and y = ¢(x) are equated if the distribution
of Y and that of the transformed (equated) scores ¢(X) are the same. Under this
definition, we can obtain an explicit form for ¢ that equates X to Y in 7. As a matter
of fact, if x and y are the quantiles in the distributions of tests scores X and Y for
an arbitrary common cumulative proportion p of the population, i.e., x(p) = Fy'(p)

2In practice such difference should be small (Braun and Holland 1982, p. 16).
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i i) —
- F(X) -’

Cumulative Distribution Function

Scores

Fig. 1.1 Graphical representation of the equipercentile equating transformation. A score x in test
form X is mapped into a score on the scale of test form Y using y = ¢(x) = Fy ' (Fx(x))

and y(p) = Fy'(p), it follows that, for every p € [0, 1], with the requirement that
Fy(y) = Fy(y), an equivalent score y on test Y for a score x on X can be obtained
as

y=¢) = Fy' (Fx(x)). (1.2)

Although Eq.(1.2) can be used in general for the comparison of any two
samples or distributions of random variables (see, e.g., Wilk and Gnanadesikan
1968), in the equating literature the function ¢ is known as the equipercentile
transformation (Angoff 1971). A graphical representation of the equipercentile
equating transformation is shown in Fig. 1.1. The heuristic behind this definition
is simple: to define equated scores as those that have the same percentile rank in a
given group of test takers.

1.2.5 Continuization

All of the equating methods that will be described in subsequent chapters are based
on the mathematical form shown in Eq. (1.2) and thus suffer from the following
problem. For multiple choice tests, where answers are coded as either correct or
incorrect, one of the most commonly used test scores in measurement programs



1.2 Statistical Models 9

are the so-called sum score, which corresponds to the total number of correct
answers on the test. Because the possible values that sum scores can take are
consecutive integers, an evident problem with Eq. (1.2) is the discreteness of the
scores’ distributions, rendering their corresponding inverses unavailable. Thus, in
common practice estimates of ¢ are based on continuous approximations of the
originally discrete distributions Fy and Fy. In the equating literature, this practice
is called continuization, and it requires one to actually “continuize” the discrete
score distributions Fx and Fy in order to properly use Eq.(1.2) for equating.
Typical continuization methods used in equating include linear interpolations,
kernel smoothing techniques, and continuized log-linear methods.

1.2.6 Requirements for Comparability of Scores

So far, ¢(x) functions as a mathematical rule that takes elements in 2~ and return
their equivalents in ¢. For test scores to be considered interchangeable, it is obvious
that the elements in 2" and % must be at least similar in some sense. The extent of
such similarity is a discussed topic in the research field of equating. The following
requirements are needed for the mapping in Definition 1.1 to be validly called an
equating: (i) same construct: the test forms being equated should measure the same
construct; (ii) reliability: the test forms should be equally reliable; (iii) symmetry:
the equating transformation to map % into 2" should be ¢! (i.e., the inverse of the
equating transformation defined in Definition 1.1 to map 2 into %); (iv) equity:
if X and Y have been equated, then the administered form should not be a concern
for test takers; and (v) group invariance: the equating function ¢ should be invariant
if score data from different groups in the population are used for estimation. These
requirements have been listed in completeness, for instance, in Kolen and Brennan
(2014), von Davier et al. (2004), Dorans and Holland (2000), and some of them have
origins from Angoff (1971), Lord (1980), and Petersen et al. (1989).

1.2.7 Assessing the Uncertainty of Equating Results

Because random samples of individuals produce realizations of random score
variables, uncertainty in the estimation of the equating transformation appears
naturally. Although from the general setup outlined so far in this chapter it might
appear evident that the main object of inference is the equating transformation, an
obtained equating has typically been evaluated with different measures within a
particular framework. A well accepted index used to measure the uncertainty in
the estimation of ¢ is the standard error of equating (SEE). The SEE corresponds
to the standard deviation of the equated scores over a number of hypothetical
replications of an equating. As it will be seen in subsequent chapters, the way in
which the SEE is calculated when using different equating methods varies. Note,
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however, that the viewpoint of the authors is that the equating transformation is
the parameter of interest to conduct statistical inference in the equating problem,
and estimations of the equating transformation need to be statistically assessed as
with any standard evaluation of an estimator of an unknown parameter in statistics
(Wiberg and Gonzdlez 2016). In Chap. 7 we explicitly show how it is possible to
define a “true” equating transformation that can be evaluated against the estimated
equating transformation using measures such as bias, mean square error (MSE) and
standard error (SE), as is customary in ordinary statistical inference.

1.3 Collecting Data in Equating

In practice, score data are needed for the estimation of ¢. Because differences in the
distribution of scores can be attributed either to differences in difficulty of the test
forms administered or due to differences in ability in the test takers, it is necessary
to disentangle the confusion before any linking between 2~ and % takes place.
As mentioned above, equating will correct for differences in difficulty of the tests
forms, so we first need a way to correct for differences in ability. The way such
correction is made will be guided by the way the score data are collected.

Suppose we have many test takers each with both x and y score data. Because the
same group of people have both test scores, differences in ability can be assumed
to be controlled for and thus by using the pairs (x,y), we can find y = ¢(x)
approximately. If it is not possible to obtain x and y from the same test takers, we
can assume that test takers with test score x are a random sample from the same
population as test takers with test score y. In this way, we are assuming that the
groups are equivalent. If the test forms are administered to different groups of test
takers that cannot be considered to be equivalent, differences in ability between the
groups can arise. In this case, the common solution is to use the scores of a set
of common items, typically referred to as an anchor test (or any variable that can
account for differences in abilities) whose scores are used to measure and control
for these differences. An anchor test should reflect the content representation and
the difficulty level of the whole test. It is widely accepted that an anchor test used
in test equating benefits from being a miniature version of the current test, and thus
it is sometimes called a minitest (e.g., Kolen and Brennan 2014), although some
criticisms of this belief have been brought up by some authors (e.g., Sinharay et al.
2012).

In summary, because the differences in the distribution of scores can be attributed
either to differences in the difficulty of the forms administered or to differences in
ability in the test takers, it is necessary to control for ability differences before
any equating take place. Depending on the situation, either common test takers
or common items will be used to disentangle the confusion between these two
factors.

The following sections discuss various equating designs for collecting score data
that are commonly described in the equating literature.
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1.3.1 Data Collection Designs in Equating

The observed score data can be thought of as a realization of a random variable
that represents the score of a test taker belonging to a certain group in a certain
population. Although in principle it is possible to obtain data from any number
of different groups of test takers within any number of different populations,
the exposition that follows will consider only two populations and two groups
within each population. Likewise, only two test forms and one anchor test will be
considered although in theory any number of them could be used for equating.

In defining the equating designs, the population of interest or target population
from where score data are to be obtained will be denoted as 7. If test takers cannot
be considered to be equivalent but instead are considered to come from different
populations, then the two different populations will be denoted as P and Q. In such
a case, T will be some kind of mixture of both P and Q. Different equating data
collection designs are described in the following sections.

1.3.1.1 Single Group Design

In the single group (SG) design, a unique sample group (G) of test takers (n, = n, =
n) from a common population 7 is administered both test X and test Y. Because
every test taker is administered both X and Y, the resulting data is a bivariate vector
(xi,v:), i = 1,...,n. One disadvantage of this design is the possible effects of
fatigue or familiarity that depend on whether one test or another is administered
first. Another issue is that the total test time can become long because each test
taker is administered both X and Y.

1.3.1.2 Equivalent Groups Design

In the equivalent groups (EG) design, two independent groups of test takers (G and
G») are sampled from a common population 7. Each group is administered only
one of two test forms. Thus, the resulting data are two independent variables x;
i=1,...,ny)and y; G = 1,...,n,). When tests are given to groups at different
time points, and the composition of test takers in the groups have changed over time,
it has been shown that adopting an EG design is sometimes problematic because the
assumption of equivalence might not hold (Lyrén and Hambleton 2011).

1.3.1.3 Counterbalanced Design

Similar to the EG design, in the counterbalanced (CB) design two independent
groups of test takers are sampled from the same population 7. The difference
between the EG and the CB design is that in the CB design both groups are
administered both test forms, but in different orders. Assuming that ng, and ng,
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test takers are sampled in groups G| and G, respectively, the obtained data are
two independent bivariate vectors (xi;,y2) (i = 1,...,ng,) and (x;,y) (G =
1,...,ng,). The subindexes 1 and 2 denote the order in which the tests were
administered. In this case group 1 was first administered form X and then form
Y, whereas group 2 was first administered form Y and then form X. Because it is
possible to view this design as containing two EG designs on the one hand and two
SG designs on the other, there are several possibilities to use the data from a CB
design for equating. For a discussion on different possibilities of using these types
of data, see von Davier et al. (2004). Although the order effect can be removed using
this design, the time needed to administer two forms can be a problem.

1.3.1.4 Non Equivalent Groups with Anchor Test Design

In the non equivalent groups with anchor test (NEAT) design, two groups are
independently sampled from different populations P and Q. Each group is
administered either of the test forms X and Y, and a common anchor test form
A is administered to both groups. Let a be the observed anchor test score, then
the obtained data are two independent vectors (x;,a;) (i = 1,...,n,) and (y;, q;)
(G = 1,...,ny). When anchor scores count for the total score reported, they are
referred to as internal, whereas when they are used only for equating purposes and
do not count for the reported score, they are referred to as external. This design
is also referred to as common item nonequivalent group design (CINEG) by some
authors (e.g., Kolen and Brennan 2014). A potential threat to the NEAT design is
the fact that test takers might recognize anchor items and not take such items as
seriously as the rest of the test. It should also be noted that not all measurement
programs using standardized tests have anchor tests, and this makes the NEAT
design impossible to use in some situations.

1.3.1.5 Non Equivalent Groups with Covariates Design

The non equivalent groups with covariates (NEC) design is an important alternative
to the NEAT design in the case when no anchor test are available for equating
(Wiberg and Brinberg 2015). As it is the case in the NEAT design, two groups are
independently sampled from different populations P and Q and each is administered
either of the test forms X and Y. In the absence of an anchor test form, the NEC
design uses relevant covariates denoted by C that can account for differences in
the groups of test takers. This design and the type of data obtained from it will be
discussed in more detail in Chap. 4. A similar approach that also uses background
information to form pseudo-equivalent groups has been proposed by Haberman
(2015). New methods for the NEC design have recently been proposed by Sansivieri
and Wiberg (2017) and Wallin and Wiberg (2017).

Table 1.1 shows a summary of the equating designs described above. Other
similar schemas explaining some of these designs are encountered in von Davier



1.4 Some Examples of Equating Transformations 13

Table 1.1 Description of the equating designs with respect to populations, groups, and what
information is gathered

T P ]
Design | Group | X Y A C X Y A C X Y A C
SG G X X

EG G
G,
CB Gy
G,
NEAT Gy X X
G, X X
NEC Gy X X
Gy X X

Note: C = covariates, A = Anchor test, 7 = Target population, X = Test form X, ¥ = Test
form Y, P = Population P, 0 = Population Q, SG = single group, EG = equivalent groups,
CB = counterbalanced, NEAT = nonequivalent groups with anchor test, NEC = nonequivalent
groups with covariates

et al. (2004, Chapter 2) and Kolen and Brennan (2014, Section 1.4). The score
data obtained under these different designs will be used to estimate the equating
transformation ¢.

1.4 Some Examples of Equating Transformations

Different continuization methods define different statistical inference approaches
that produce either parametric, semi-parametric, or nonparametric estimators of ¢
(Gonzalez and von Davier 2013). In the following sections we give some examples
of these estimators and leave the details for the subsequent chapters.

1.4.1 The Equipercentile Equating Function

The equipercentile equating transformation is formally defined exactly as in Defini-
tion 1.2, i.e.

o(x) = Fy' (Fx(x)). (1.3)

Having observed score data xi,...,x, ~ Fx and YisewosYny, ~ Fr, a natural
estimator for the CDFs involved in the calculation of ¢ is the nonparametric
empirical distribution function. In fact, because we do not specify any particular
parametric family of score distributions, the data generating mechanism is fully
described by the two CDFs Fx and Fy thus resulting in an equating estimator that
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is nonparametric by nature. Note, however, that in using this estimator, the problem
of discreteness of the distributions persists and that is why linear interpolation has
been used to continuize the obtained discrete distributions.

1.4.2 The Linear Equating Function

Various models that will be described in Chap. 3 utilize a linear equating function,
including the mean, linear, Tucker and Levine equating (Kolen and Brennan
2014). The equating transformations are still based on the general definition given
in Eq.(1.2). As a matter of fact, if a parametric location-scale family of score
distributions is assumed for X and Y with means (uy,iy) and standard deviations
(0x,0y) such that

Fx(x) =H (x_ “X)

Ox

Fy(y) =H (y_‘”),

Oy

where H is some distribution function (e.g., Braun and Holland 1982; von Davier
et al. 2004), then

— (e}
0(x;0) = Fy' (Fx(x; pix, 0x); [y, 0y) = fiy + O—Y(x— 11x), (1.4)
X

In this case, the parameter = (6,, 6,) = (ix, [y, Ox,0y) € © = RxRxRTxR*
characterizes the score distributions that generate the data leading to an equating
estimator that is completely parametric. The method of moments leads to sample
means and variances that are directly estimated from the observed data. In Chap. 3
we give a detailed account of these methods and illustrate their use in different
equating designs.

1.4.3 The Kernel Equating Function

Kernel equating (von Davier et al. 2004) can be considered to be an example of a
semi-parametric equating estimator in that both finite parameters and distribution
functions are involved in the estimation of ¢. The parametric part consists of score
probability parameters r; = Pr(X = x;), and sy = Pr(¥Y = y) with x; and y,
taking values in 2, and &, respectively, and these are often considered to be the
parameters of a multinomial distribution (see Sect.2.3). On the other hand, the



1.6 Summary and Overview of the Book 15

score distribution functions are estimated using nonparametric kernel smoothing
techniques. The equating transformation used in kernel equating is written as

o(x;0) = Fh_y1 (Fpy (x;1),8).

where r and s are the vectors with elements 7; and s, and hy and hy are bandwidth
parameters controlling the amount of smoothness. Kernel equating will be discussed
in detail in Chap. 4. Other examples of semiparametric equating estimators that will
be discussed in Chap. 6 are local equating (van der Linden 2011), and combinations
of kernel and local equating (Wiberg et al. 2014).

1.5 R Packages That Are Used in This Book

A unique feature of this book is that it provides R code for performing all of the
described equating methods. Four of the packages that will be used in the book
can be considered “specialized” in the sense that they are particularly developed
for equating. The R package equate (Albano 2016) implements traditional equating
methods as well as smoothing of test score distributions. It will be used mainly
in Chaps.2 and 3. The SNSequate package (Gonzilez 2014), implements both
traditional and kernel equating methods and will be used in Chaps.2, 3, 4, 5, 6
and 7. The kequate package (Andersson et al. 2013) is focused on kernel equating
including IRT kernel equating and it will be used in Chaps.2, 4, 6, and 7. We
will also use equateIRT (Battauz 2015) in Chap.5 when item parameter linking
is described.

The other packages are not particularly focused on equating, but the models and
methods implemented in them will be helpful in particular stages of some of the
equating methods. Among the packages in this list, Itm (Rizopoulos 2006) and mirt
(Chalmers 2012) will be used to estimate IRT models that will play an important role
in some equating methods described in Chaps. 5, 6 and 7.

Finally, some of the methods that will be illustrated in the book are not yet part
of any R package distribution. In this case, we will provide the raw R code that
implements such method.

1.6 Summary and Overview of the Book

In this chapter we have outlined the main ideas behind equating using a formal
mathematical statistics approach. Random variables, sample spaces, probability
distributions, and parameters have been shown to indeed be part of the equating
problem. Although this book is primarily oriented on practically applying equating,
we believe that a formal definition of the elements and steps involved in equating
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will help to better understand the actual implementation of the methods. Through
the remaining chapters of the book, the R software (R Core Team 2016) will
be used to illustrate how the described equating methods can be implemented
in practice. In Chap.2 we describe the different data sets that will be used for
illustrations. The way in which the score distributions are prepared to feed the R
functions is also described in this chapter. Chapter 3 introduces traditional methods
of equating including equipercentile, mean, and linear equating, and the R package
equate (Albano 2016) is used to illustrate these methods. In Chap. 4 the kernel
method of equating is described. The R packages kequate (Andersson et al. 2013)
and SNSequate (Gonzalez 2014) will be used to illustrate the kernel method of
equating. Chapter 5 describes IRT equating methods, including IRT true-score
and IRT observed-score equating. Methods that transform IRT scales rather than
observed score scales are also described in this chapter. The R packages SNSequate,
equatelRT, mirt, and Itm are used for illustrations. In Chap. 6 local equating is
discussed and some relationships with other equating methods are described and
exemplified using SNSequate and kequate.

Viewing equating as statistical models and the equating transformation as a
functional parameter that has to be estimated from score data, enhances the
possibilities in equating. Parametric, nonparametric, and semiparametric types of
equating transformations can be introduced, and all types of inferences both from
the classical (frequentist) and Bayesian point of view can indeed be conducted
(Gonzalez et al. 2015a,b). Some of these new possibilities are described in Chap. 7,
and kequate and SNSequate are used for illustrations. The new developments in
equating that are introduced include Bayesian nonparametric estimation of equating
transformations, different bandwidth selection methods, and the use of alternative
kernels and IRT in the kernel equating framework.
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Chapter 2
Preparing Score Distributions

Abstract Depending on the equating data collection design, score data will be in
the form of either univariate or bivariate distributions. In this chapter, we describe
how to prepare the score distributions in order to read them into the different R
packages that will be used. Presmoothing the score distributions as a first step in
equating is also discussed. Known data sets appearing in the equating literature,
as well as real data examples from an admissions test and an achievement test are
described. The illustrations will use the three R packages equate (Albano, J Stat
Softw 74(8):1-36, 2016), kequate (Andersson et al., J Stat Softw 55(6):1-25, 2013)
and SNSequate (Gonzdlez, J Stat Softw 59(7):1-30, 2014).

2.1 Data

Throughout the book, different equating methods will be exemplified using available
real data sets. Published data are used to reproduce various equating results
appearing in the literature, and two new real data sets from an admissions test and
an achievement test are used for illustrative purposes. All of these data sets and how
they can be obtained are briefly described in the following sections.

2.1.1 Data from Kolen and Brennan (2014)

Kolen and Brennan (2014) describe and use two data sets to exemplify various
methods of equating. The first data set consists of tests forms of the original ACT
Mathematics test. The test contains 40 multiple-choice items scored incorrect (0)
or correct (1). Test form X was administered to 4,329 examinees and test form Y
to 4,152 examinees. This data set is presented in Table 2.5 of Kolen and Brennan
(2014) as score frequencies. We will refer to these data as the ACT data set. Both the
equate and SNSequate packages include the ACT data set as the objects ACTmath
and ACTmKB, respectively. Both objects contain the score scale, score frequencies
for test form X, and the score frequencies for test form Y.
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The second data set, which we call KB36, consists of two 36-items test forms.
Form X was administered to 1,655 examinees and form Y was administered to 1,638
examinees. Also, 12 out of the 36 items are common between both test forms (items
3,6,9, 12, 15, 18, 21, 24, 27, 30, 33, and 36). The KBneat object in the equate
package contains the data. The same data, but in a more complete way is provided
in the KB36 object in the SNSequate package. The KB36 object contains not only
the score frequencies, but also the response patterns and item parameters estimates
obtained from a 3PL (three parameter logistic) IRT model fitted to the two 36-items
tests forms. KB36 is a list with four elements containing binary data matrices of
responses (KBformX and KBformY) and the corresponding parameter estimates
that result from a 3PL IRT model fit to both data matrices (kBformX_par and
KBformY par). The 0-1 score data come with the distribution of the CIPE software
(Kolen and Brennan 2014) that is freely available at https://www.education.uiowa.
edu/centers/casma/computer-programs. The list of item parameters estimates can be
found in Table 6.5 of Kolen and Brennan (2014).

2.1.2 Data from von Davier et al. (2004)

Other real data sets used in the literature are described in von Davier et al. (2004)
for the EG, SG, CB and NEAT designs. For the EG design, data for two parallel
20-items mathematics tests given to two samples from a national population of test
takers are given in Table 7.1 in von Davier et al. (2004). The Math2 0EG object in
SNSequate contains raw sample frequencies of number correct scores for the two
test forms. A similar test is used to illustrate the SG design with data appearing
in Table 8.2 in their book that shows the corresponding bivariate score frequency
distributions. These data are available as the Math20SG object in SNSequate. For
the CB design, a data set from a small field study from an international testing
program is used. This data set contains the observed scores for test form X (with
75 items) and Y (with 76 items) administered to two independent, random samples
of test takers from a single population. These data are available in Chap. 9 in von
Davier et al. (2004) and make up the CBdata object in SNSequate.

2.1.3 The ADM Admissions Test Data

The ADM data set contains information about an admissions test that is given twice a
year and is used as an entrance test to universities and colleges. The test is composed
of a verbal and a quantitative section, each having 80 multiple-choice items that are
binary scored and equated separately. An anchor test of 40 items is given to a smaller
sample of test takers in each administration in order to perform the equating for each
section. To illustrate the methods under various equating data collection designs,
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different samples of two consecutive administrations are used. These samples have
been stored as R data sets' that are available on this book’s webpage. For the EG
design, the ADM1 and ADM2 data sets both contain samples of 10,000 test takers.
For the NEAT design, the ADMneatX data contains one sample from population P
with 2,000 test takers, and the ADMneatY data contain one sample from population
Q with 2,000 test takers who took the anchor test. For the SG design, a sample of
8,000 test takers who were administrated both test forms is available as the ADM12
data set.

2.1.4 The SEPA Test Data

The SEPA data come from a private national evaluation system in Chile called
SEPA (Sistema de Evaluacién de Progreso del Aprendizaje; System of Assessment
Progress in Achievement) administered by the measurement center MIDE UC.
SEPA consists of tests specifically designed to assess achievement in students from
first to eleventh grade in the subjects of Language and Mathematics. For each of
the two subjects, there are two test forms within a particular grade in a year. The
total number of items in the tests depends on the grade assessed, and goes from 25
(first grade) to 50 (eleventh grade). In each application, additional information such
as test taker’s gender, and school type (e.g., municipal, subsidized, private) is also
available in the data base. The SEPA object in SNSequate contains the test scores
in mathematics for 1,458 and 2,619 eight grade test takers administered test forms
X and Y, respectively, where each test form contains 50 items.

2.2 Preparing the Score Data

As seen in Sect. 1.3.1 the type of score data to be used for equating will depend on
the adopted equating data collection design. For instance, under the EG design, the
observed score data are assumed to be the realizations of two independent random
variables X and Y with x; ( = 1,...,n,) and y; G = 1,...,n,), whereas under
the SG design, the score data are in the form of a bivariate vector (x;,y;) (i =
1,...,n). Both the CB and NEAT design also produce bivariate score data. After
tests have been administered, score data are stored in different ways. Some test score
files contain the sum score of the test takers, other files contain the number of test
takers at each test score (score frequencies) and yet others contain only the response
patterns of test takers for each test form. Most of the R packages that are used for

IThe data can also be obtained in different file formats from this book’s webpage. Appendix A
provides examples on how to read data files of different formats in R.
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equating, analyze score distributions primarily as frequency table objects. In what
follows, we first introduce the functions from the equate and kequate packages that
are needed to create score frequency distributions. Examples are presented for the
EG, SG and NEAT designs.

2.2.1 Functions to Create Score Frequency Distributions

The equate package uses score distributions structured as frequency tables in R
within the class freqgtab. The freqtab () and as.fregtab () functions are
used to produce either univariate or bivariate score frequency distributions as table
arrays using a vector or data frame of observed scores. A typical call to freqgtab ()
reads as

freqtab (x, scales, design, ...)

where the argument x is either a vector of scores or a matrix whose raw entries
correspond to the response patterns of each test taker. The argument scales is
either a single sequence of numbers indicating the score scale for the test (i.e., for
the case of univariate distributions) or a list containing two or more sequences of
numbers indicating the multiple scales (i.e., under the SG, CB, or NEAT design).
The assumed equating design is set using the argument design with default
values design = "eg" (EG design) and design = "ng" (NEAT design) for
univariate and multivariate score distributions, respectively. The SG and CB designs
are specified using the options "sg" and "cb", respectively.

The kequate package has the kefreq () function whose functionality is very
similar to that of fregtab () in equate. A typical call to kefreq () reads as

kefreqg(inl, xscores, in2, ascores)

where inl and in2 are vectors containing scores on test form X and on test forms
Y or A (the anchor test), respectively. The arguments xscores and ascores are
used to indicate the score scales for tests X and Y or A, respectively. How to use the
kefreq () function is illustrated in this chapter for the EG, SG and NEAT designs.
An illustration of the NEC design is postponed until Chap. 4.

In what follows both the fregtab () and kefreqg () functions will be used
for illustrations using score data collected under different equating designs.

2.2.2 Score Data in the EG Design

The first illustration is for the case when we have a long vector of scores, one for
each of the test forms. The length of each score vector equals the sample size of
the group that is being administered the corresponding form. To exemplify how to
create score frequency distributions using the freqgtab () function, we use the
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Math20EG data set. The scores in the Math20EG data set can be loaded and
visualized using the following code

> data ("Math20EG", package = "SNSequate")
> Math20EG
x.freq y.freqg
[1,1 1 0
[2,] 3 4
[3,] 8 11
[4,] 25 16
[5,] 30 18
[6,1 64 34
[7,1 67 63
[8,1] 95 89
[9,1 116 87
[10,] 124 129
[11,] 156 124
[12,] 147 154
[13,] 120 125
[14,] 129 131
[15,] 110 109
[16,] 86 98
[17,] 66 89
[18,] 51 66
[19,] 29 54
[20,] 15 37
[21,] 11 17

As seen from the output, the score data are already tabulated as frequencies.
Each column contains the observed frequencies for each score in test form X and
Y, respectively. The numbers in the first raw correspond to the observed frequencies
for scores X = 0 and Y = 0, the ones in the second for X = 1 and Y = 1, and so on
until the last raw that represents the frequencies for scores X = 20 and Y = 20. We
expand this frequency data using the rep () function to obtain the whole vector of
scores using the following code

> X.scores<-rep(0:20,Math20EG[,1])
> y.scores<-rep(0:20,Math20EG[,2])

The x.scores and y. scores are now score vectors of dimension equal to
the sample sizes in forms X and Y, respectively. To create frequency distributions
we write

> library (equate)
> eg.x<-fregtab(x.scores, 0:20)
> eg.y<-freqtab(y.scores, 0:20)

The objects eg.x and eg.y are now two-column matrices containing score
frequency distributions. If instead of a long vector the score data are tabulated in
frequencies, as is the case for the Math20EG data, the as . fregtab () function
can be used to give the appropriate attributes to the object to be used in equate. For
instance, using the frequencies in Math20EG and adding a vector of all possible
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total scores obtained (i.e., Z° = {0,1,...,19,20} in this case), the previously
created eg.x and eg.y can equivalently be obtained by writing:

> eg.x<-as.freqgtab(cbind(0:20,Math20EG[,1]))
> eg.y<-as.fregtab(cbind(0:20,Math20EG[,2]))

For test form X the output is

> eg.x

total count
1 0 1
2 1 3
3 2 8
4 3 25
5 4 30
6 5 64
7 6 67
8 7 95
9 8 116
10 9 124
11 10 156
12 11 147
13 12 120
14 13 129
15 14 110
16 15 86
17 16 66
18 17 51
19 18 29
20 19 15
21 20 11

The count column contains the number of test takers obtaining each of the
scores in the total column, and this column coincides with the x . freq column
in the Math20EG data matrix.

A graphical representation of the score frequency distributions can be obtained
in two ways. First, if the equate package has not been loaded, the generic plot ()
function in R can be used to visualize a scatter plot of scores vs frequencies. If
an object of class fregtab is passed to plot (), then with the equate package
loaded, a plot of frequencies as vertical lines will be displayed. This situation is
shown in Fig. 2.1 which was produced using the following code

par (mfrow=c(1,2))

plot (0:20, Math20EG[, 1], pch = 0, ylab = "Frequency",
xlab = "Score")

plot (eg.x)

vV + VvV Vv

Next, we illustrate how to create frequency distributions starting from 0-1
matrices of item responses (response patterns), using the ADM1 admissions test data
for the first administration (Y) and ADM2 for the second (X). Assuming that the
working directory has been properly set (see Sect. A.3), loading the data sets in the
R session is done by writing
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Fig. 2.1 Frequency distribution of X scores for the Math2 0EG data set

> load ("ADM1.Rda")
> load ("ADM2.Rda")

If an internet connection is available, an alternative and useful way to
automatically load the data from the book’s webpage is

load (url ("http://www.mat.uc.cl/~jorge.gonzalez/
EquatingRbook/ADM1.Rda"))
load (url ("http://www.mat.uc.cl/~jorge.gonzalez/
EquatingRbook/ADM2.Rda"))

+ v + Vv

Consider the data set ADM1 which contains the answers to both the verbal and
quantitative sections of the first test administration. Each row of this 10,000 x 160
binary matrix is the response pattern of a test taker. The first 80 columns correspond
to answers to the quantitative test, and the remaining 80 are the answers to the verbal
test. The data set ADM2 which contains the answers for the second administration
has similar characteristics. Suppose we want to equate the quantitative test such
that scores on the second administration are equated to the scale of the first. We
label the test form in the second administration X and the test form in the first
administration Y. Our aim is to find the equating transformation ¢(x). Because the
first 80 columns are the answers for the quantitative test, we use this part of the data
set to obtain quantitative sum scores.

> quant.x<-apply (ADM2[,1:80],1, sum)
> quant.y<-apply (ADM1[,1:80],1,sum)

The objects quant . x and quant .y are now vectors of sum scores with length
equal to the sample sizes in X and Y (10,000 in this case). For each row, the
apply () function sums over the columns of the 0-1 matrix to obtain sum scores.
Thus, score frequency distributions can be created using the following code.

> egADM.x<-fregtab (quant.x,0:80)
> egADM.y<-fregtab (quant.y,0:80)
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Fig. 2.2 Frequency distribution of X and Y scores for the ADM data under an EG design

A graphical representation of the score frequency distributions is shown in
Fig. 2.2, which was created using the following code

> par (mfrow=c(1,2))
> plot (egADM.x,main="Form X")
> plot (egADM.y,main="Form Y")

When using kequate, the score data must first be converted into frequencies for
each combination of score values. The kefreqg () function is designed to create
both univariate and bivariate score frequency distributions. To use kefreq () under
the EG design, only two arguments need to be defined: inl and xscores. For
instance, using the observed scores stored in the quant .x and quant .y objects
created above

> library (kequate)
> egADMk.x <- kefreg(inl=quant.x,xscores=0:80)
> egADMk.y <- kefreg(quant.y,0:80)

The observed test scores are input in inl and the possible test score values are
input in xscores. Note that the way egADMk .y was obtained exemplifies that
shorthand writings are possible. In this case, it is not necessary to write neither of
the argument names (inl and xscores).

The resulting objects egADMk .x and egADMk.y are two-column matrices
containing the possible test score values (X, first column) and a vector with the
frequencies for each test score value for test X (Erequency, second column). The
first 10 rows for egADMK . y are shown below



2.2 Preparing the Score Data 27

> head (egADMk.y,
X frequency
0

n=10)
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Additional examples of preparing score distributions under the EG design using
the ADM data can be found in the book’s webpage.

2.2.3 Score Data in the SG Design

The Math20SG data are used for illustrating score data in the SG design. As
indicated in Chap. 1, the SG design will produce a bivariate vector of scores. The
data matrix thus contains the (joint) bivariate sample frequencies for X in rows and
for Y in columns. The Math2 0SG data set has the following appearance

> data ("Math20SG", package = "SNSequate")
> colnames (Math20SG) <-as.character (0:20)
> rownames (Math20SG) <-as.character (0:20)
> Math20SG

0123 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
o o010 0 O O O O O O O O O O O O o o o0 o
i 0010 1 12 0 0O O O O O O O O o o o o o o
2 0010 2 1 3 0 0 1 0o 0O O O O O O O O o0 o
3 o015 6 3 8 1 1 0 0 0 O O O O O O O 0 O
4 0027 4 6 4 3 1 3 0 O O O O O O O 0 0 O
5 0033 51214 8 9 6 3 1 0 O 0 0O O O O o0 O
6 001410 912 9 810 4 0 0 O O O O O 0 0 O
7 0013 5 716 16 11 17 10 5 3 0 1 0O O O O 0 O
8 0011 3 816 14 12 24 2011 3 3 0 O O O O 0 O
9 0001 3 4 8192017171311 9 2 0 O O O o0 O
100000 1 2 6 14 20 19 28 24 1711 S5 3 2 0 0 0 O
110000 1 3 3 613 17 21 2327 14 13 2 2 1 1 0 O
12 0 0 0 O 0 1 0 5 11 14 16 26 18 11 10 3 3 1 1 O 0
130000 O O 1 4 8 82021 191613 9 6 3 1 0 O
14 0 0 0 O 0 0 0 1 4 3 3 17 18 26 11 21 4 1 1 0 0
10000 0 O 1 0 1 3 410 12 15 151010 3 1 1 o0
16 0 0 0 O 0 0O 0 0 0 1 1 1 11 12 8 13 10 7 1 1 0
170000 0 O O O O O 2 1 5 4 8 911 5 3 3 0
180000 0 O O O O O O O OS5 0 4 412 4 1 O
190000 0 0O O 0O O O O O 1 1 2 2 2 3 3 1 o0
200000 0 0 o o 0 O O O1TL O O O 2 3 3 2 o0
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The output shows that, for instance, 10 test takers obtained X = 6 and ¥ = 4
whereas only one test taker obtained X = 1 and Y = 4. To obtain the marginal
score distributions, we need to sum over either row or columns depending on the
marginal distribution we are interested in. The following code can be used to obtain
the marginal frequency distributions of X and Y

> Math20SG.x<-rep(0:20,apply (Math20SG, 1, sum))
> Math20SG.y<-rep(0:20,apply (Math20SG, 2, sum) )

Preparing bivariate score frequency distributions using equate is simple if one
uses the freqgtab () function as follows

> sg.data<-fregtab (cbind (Math20SG.x, Math20SG.y),
+ scales = 1list(0:20, 0:20), design="sg")

The arguments are now a two-column matrix of scores in test X (first column)
and Y (second column), along with a list of vectors containing the score scales for
each column in the matrix.

For the admissions test data, the data set ADM12 contains the answers for 8,000
test takers who have results on both test forms X and Y for the quantitative and
verbal sections. The data matrix has 320 columns where the first 80 are answers to
the quantitative test in X, the second 80 are answers for the verbal test in X, the third
80 are answers for the quantitative test in Y, and the last 80 are the answers for the
verbal test in Y. If we want to equate the quantitative test under the SG design, we
first need to obtain sum scores in the following way

load ("ADM12.Rda")

SgADM.x <- apply (ADM12[,1:80],1, sum)

SgADM.y <- apply(ADM12[,161:240],1,sum)
sgADM.data <- fregtab(cbind(sgADM.x, sgADM.y),
scales = 1list(0:80, 0:80))

+ Vv v v Vv

The resulting sgADM. data object is a 81 x 81 matrix of bivariate frequencies.
The way in which the sgADM. data object is displayed in the output, however,
corresponds to a three-column array where the first and second column contain all
possible combinations of score pairs and the third column is the observed frequency
of such score pair combinations. For instance the following portion of output

total anchor count

6059 64 74

1
6060 65 74 0
6061 66 74 2
6062 67 74 1
6063 68 74 2
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Fig. 2.3 Marginals of the bivariate score frequency distributions for the ADM data under the SG
design

shows that only one test taker scored 64 on test form X and 74 on test form Y.
Also, there were no test takers scoring 65 on test form X and 74 on test form
Y, and only two test takers scored 68 on test form X and 74 on test form Y,
and so forth. When working with bivariate frequency distributions, the plot ()
function will draw marginal score distributions for X and Y as well as the score
points for both test forms as shown in Fig.2.3. Note that when applied to a
bivariate frequency distribution created using freqgtab (), the default option for
plot () is for the case when a NEAT design is assumed (see the next section).
This means that the function will assign labels for anchor (Y axes) and total
scores (X axes), respectively. Thus, to obtain a plot with correct labels in the case
of an SG design the code can slightly be modified in its arguments by writing
plot (sgADM.data,xlab='Form Y’ ,ylab='Form X').

A similar code that produces the same results as the one just shown for
freqgtab () can be written using the kefreq () function in kequate. A notable
difference is that the obtained output is now a data frame, which permits one to filter
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the results as desired. For instance, in order to obtain the portion of output shown
above for the freqgtab () function, we can write

> sgADMxy <- kefreq(sgADM.x,0:80,sgADM.y,0:80)
> sgADMxy [6059:6063,]
X A frequency

6059 64 74 1
6060 65 74 0
6061 66 74 2
6062 67 74 1
6063 68 74 2

The kefreq () function internally handles all of the different combinations of
the score frequencies (£ requency) with each combination of score values, for test
form X (X) and for test form Y (denoted A in the output).

2.2.4 Score Data in the NEAT Design

Similarly to the SG design, collecting data under the NEAT design will produce
bivariate score data. The difference is that under the NEAT design, the bivariate
scores vectors will be the pairs of total test scores (in the first coordinate) and total
anchor scores (in the second coordinate). The examples given in the help section
for the fregtab () function in equate use the KB36 data and show how to create
frequency distributions using the scores frequencies. Although the same data are
used here, we will illustrate how to start from the 0-1 matrix, and show how to
obtain the same bivariate frequency score distributions. First, the KBneatX and
KBneatY data are loaded®

> load ("KBneatX.Rda")
> load ("KBneatY.Rda")

The fregtab () function is used with the argument items to indicate which
items should be summed to obtain scores for both the total test and the anchor test.
The argument items is a list whose first element indicates the range of items to
be summed in order to obtain the total test score. The second element in the list
indicates the items that should be summed to obtain the total anchor scores. Note
that when anchor scores are considered internal, the total score is considered to be
the sum of “unique” correctly answered items plus the sum of the corresponding
anchor score items. For instance, for the KB36 data, both forms X and Y are built
using 24 unique items for each form and 12 anchor items that are common to both
forms. The total score is thus obtained by summing the 24 plus 12 items for each
form. As mentioned previously in this chapter, every third items in the KB36 data
is a common item, thus one way to obtain the test items to be summed is as follows

2Note that the 0-1 response matrices for forms X and Y can also be obtained from the KB36 list
by writing KB36 $KBformX and KB36$KBformyY, respectively.
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> KB.neat.x <-freqgtab (KBneatX[,1:36], items =
+ list(1:36,seq(3, 36, 3)), scales=1ist(0:36, 0:12))
> KB.neat.y <-freqgtab (KBneatY[,1:36], items =
+ list(1:36,seq(3, 36, 3)), scales=1ist(0:36, 0:12))

Using the following code, the resulting KB .neat .x and KB.neat .y objects
can be shown to give the same outputs obtained using the example code provided in
the help section for fregtab () in equate

> KB.neat.x2 <- fregtab (KBneat$x, scales =
+ 1list(0:36, 0 :12))

> KB.neat.y2 <- fregtab (KBneat$y, scales =
+ 1list(0:36, 0 :12))

> all.equal (KB.neat.x,KB.neat.x2)

[1] TRUE

> all.equal (KB.neat.y,KB.neat.y2)

[1] TRUE

The resulting objects are 37 x 3 matrices of bivariate frequencies. The displayed
output for the first 10 scores in form X is

> head (KB.neat.x,n=10)
total anchor count

1 0 0 0
2 1 0 0
3 2 0 1
4 3 0 2
5 4 0 0
6 5 0 2
7 6 0 0
8 7 0 6
9 8 0 0
10 9 0 3

We will now illustrate how to prepare score distributions under the NEAT design
using the ADM data set. This time, the verbal section of the test will be used for
illustration. For test forms X and Y the ADMneatX and ADMneatY data sets
contain 2,000 test takers who were given a verbal anchor test composed of 40 items.
Both data sets are a 2000x 120 matrix where the first 40 columns contain the answers
to the verbal anchor items and the remaining 80 columns are the answers to the
verbal items in the corresponding test form. After loading the data, we first create
vectors of both anchor and items sum scores

load ("ADMneatX.Rda")

load ("ADMneatY.Rda")

verb.xa <- apply (ADMneatX[,1:40],1,sum)
verb.ya <- apply (ADMneatY[,1:40],1,sum)
verb.x <- apply(ADMneatX[,41:120],1,sum)
verb.y <- apply(ADMneatY[,41:120],1,sum)

V V.V V V Vv

Before creating the frequency distributions, we need to build two-column
matrices with the test sum scores in the first column and the anchor sum scores
in the second column. Once these matrices are obtained, the fregtalb () function
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Fig. 2.4 Marginals of the bivariate distribution of (X, A) for the ADM data

is used to produce the bivariate score frequency distributions that are needed under
the NEAT design. The following code is used to perform these tasks.

>

\

+ v + Vv

neat.X <-cbind(verb.x,verb.xa)
neat.Y <-cbind(verb.y,verb.ya)

neat.xl<-fregtab(x = neat.X, scales

list (0:80, 0:40))
neat.yl<-freqgtab (x
list (0:80, 0:40))

neat.Y, scales

The plot () function in this case will produce a graphical representation of total

test scores and anchor scores as seen in Fig. 2.4.

>
+
>

When using the kequate package, the following code serves to prepare the
admissions test data

neatk.x <- kefreqg(inl = verb.x,

in2 = verb.xa, ascores = 0:40)

neatk.y <- kefreqg(verb.y, 0:80,

Xscores

verb.ya,

0:80,

0:40)
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Score frequency distributions, as illustrated for the CB and NEC designs can
also be obtained with the kequate function kefreq (). How this should be done
is illustrated in Chap. 4. Once the test score distributions are obtained and prepared
for use in R, the next step is either to perform the equating of interest directly or
to first presmooth the score distributions to repair irregularities in the observed
score distributions. Some statistical models for presmoothing are described in the
following section.

2.3 Presmoothing the Score Distributions

When collecting equating data, samples from the populations of interest are drawn
according to a certain design. The resulting data are either pairs of independent score
random variables (e.g., for the EG design) or bivariate random vectors (e.g., for
the SG, CB, and NEAT designs) (see Sect. 1.3.1). Intuitively, the larger the sample
size, the better the score distribution will represent the population. However, due to
sampling error, irregularities are often seen in these distributions, and good estimates
of the discrete distribution are needed. A common way to reduce these irregularities
is to presmooth the score distributions obtained from a particular data collection
design. Mathematically, presmoothing means modeling the score distributions by
relating the score probabilities with the model parameters. Formally, if p represents
the score probabilities under some data collection design in equating, and .# (0) is
a model parameterized by #, then the model

p=.#(0) (2.1

is fitted to the data and the model parameter estimates 9 are used to determine
p. Note that under the EG design we have p = Pr(X = x;) = p;, whereas
under the SG and NEAT designs p equals Pr(X = x,Y = y) = pp and
Pr(X = x;,A = a;) = pj, respectively. In the case of the CB design, the two
independent bivariate probabilities are specified as Pr(X; = xyj, Y2 = yu) = pa2ji
and Pr(X, = xz;, Y1 = yix) = pu)jk, respectively. Similar score probabilities can be
defined for Y under the EG and NEAT designs. Although various options for .Z (6)
are possible, in this section we discuss the log-linear models that are included in the
presmoothing () function in the R package equate. In Chap. 7, the use of item
response theory models is discussed for the estimation of p.

2.3.1 Polynomial Log-Linear Models for Presmoothing

Because each score is obtained with a certain probability, the main idea in log-linear
presmoothing is to assume that observed score frequencies, each with a specific
probability of occurrence, are realizations of a multinomial distribution. More
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specifically, let j represent the test scores and n; the frequency of test score j.
If pp = Pr(X = xj) and n = (ny,...,ny), then n ~ Multinomial(n, p). The
log-likelihood function in this case is

Lp) =Y nilog(p)) . (2.2)
J

Thus, assuming a log-linear model for p; of the form log(p;) = Bo + bj/-ﬁ , where B
is a normalization constant, b; is a vector of known constants, and § is a vector of

parameters, the likelihood equation to obtain f? implies that
> by(n/N) =) by . (2.3)
J J

where N is the sum of the observed score frequencies. Equation 2.3 shows what is
known as the moment-matching property of log-linear models indicating that sample
and fitted moments are matched. Although other moments are possible to be used
(see e.g., von Davier et al. 2004, Appendix C), power moments are mostly used
and will be used here for illustrations. Under this specification, b; = x;, and the
polynomial log-linear models used to model p; becomes

T,
log(p) = Bo+ Y _ Bi(x) = Bo + B1x; + Box + ... + Br.x]". (2.4)
i=1
where T, denotes the highest polynomial degree, i = 1,...,7,. A similar model

can be specified using the Y scores. For designs where bivariate distributions are
involved, a bivariate log-linear model can be fitted to the score data. Besides the
marginal moments of X and Y, interaction terms can be included in the model. For
instance, let j and k represent the test scores. Under the SG design we have py =
Pr(X = x;, Y = y) and thus the model becomes

T, Ts Ly L
log(pi) = Bo+ Y BEG) + D BI o) + D> BT xk, 2.5)
i=1 i=1 i=1 I=1
where T, denotes the highest polynomial degree in y, (i = 1,...,T;) and T, is

defined as before. L, and L, are the sum limits that serve to accommodate cross
moments in the models. The superscripts X, Y, and XY are used to differentiate
between the B parameters accompanying the powers of the x; scores, the y; scores,
and the cross products of the scores x;y, respectively. For a more detailed review
on the use of loglinear models to describe discrete test score distributions, refer
to Rosenbaum and Thayer (1987), Holland and Thayer (1987, 2000), Moses and
Holland (2009).
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2.3.2 Polynomial Log-Linear Smoothing in equate

To fit polynomial loglinear models in the equate package, the presmoothing ()
function is used. Its main arguments and a typical call are as follows

presmoothing (x, smoothmethod, scorefun, degrees, ...)

The x argument is most typically a previously created object of class
“freqtab”, which specifies a univariate or multivariate score distribution. Writing
smoothmethod = "loglinear", makes a call to the general R function
glm() to fit generalized linear models using a Poisson family so that log-linear
models are obtained. Depending on whether a univariate or bivariate model is
fitted, different possibilities to specify the covariates in the model (i.e., the x}), are
available. The first possibility is to use a matrix of score functions (scorefun)
where each column is a predictor in the model of interest. The second possibility
is to include the highest desired polynomial terms in the argument degrees for
univariate or bivariate moments. For instance, to fit the model in Eq.(2.4) with
T, = 2, scorefun will contain a matrix having x; and sz as columns. If, the
argument degrees is used instead, then degrees=2 will produce the same
covariates in the model. If a bivariate model such as in Eq.(2.5) is fitted, for
instance for T, = L, = 2 and T, = L; = 3 then scorefun will contain a matrix
having xj, 7, Yi, ¥i» Yo Xk Xie Xii» X Vi, X7 Y3, and x7y; as columns, whereas if
the degrees argument is used, then one might specify degrees=1ist (2, 3).
The first integer in the list indicates that the first variable, x, is modeled up to the
second power whereas the second, indicates that y is modeled up to the third power.
Log-linear models fitted using this option are considered hierarchical so that all
lower-order terms are included in the model (Fienberg 1980). It is, however, also
possible to fit a model with no hierarchical structure. To exemplify this, consider a
model with T, = 2, Ty = 3, L, = 1 and L; = 2 so that the model equation becomes

log(pix) = Bo + BY () + B3 (x)*
+ BT 5e) + B3 v)* + By ()’
+ B () ) + B () i) (2.6)

In this case we write degrees=1ist (c(2,3),c(1,2)). The integer values
in the vector c(2,3) mean that x and y are modeled up to the second and
third power, respectively, and c (1,2) means that in the interaction only the
main effect of x is modeled whereas for y the effects up to the second power
are used. Note that, because freqgtab () is capable of producing multivariate
score frequency distributions using more than just two variables, a general use of
degrees implies that the given list contains as many vectors as there are variables
being modeled. The order in which such vectors appear in the list corresponds to
main effects, bivariate interaction effects, trivariate interaction effects, and so on.
Thus, if x,y, and z are three score variables, a model including up to the third



36 2 Preparing Score Distributions

power for each univariate distribution, up to the second power for each two-way
interaction, and up to the second power for the three-way interaction is fitted by
setting degrees=1ist (c(3,3,3),c(2,2,2),c(2,2,2)).

A third option for fitting polynomial log-linear models is to use the argument
grid. This argument receives as input a matrix with as many rows as covariates
(main effects and interactions) that there are in the model. In each row-vector, whose
length is equal to the number of variables being modeled, the corresponding power
degree for the variables must be specified. For instance, to fit the model in Eq. (2.6),
grid will be a 7 x 2 matrix of the form

10
20
01
02
03
11
12

which can easily be written as

> grid = matrix(c(1, 0, 2

, 0, 0, 1, 0, 2, 0, 3, 1, 1,
+ 1, 2), ncol = 2, byrow = T)

In what follows, the use of the presmoothing () function is exemplified for
both univariate and bivariate score distributions.

2.3.3 Examples
2.3.3.1 Smoothing Univariate Distributions

The EG design will provide univariate score vectors and this type of data is used
here to illustrate univariate presmoothing with log-linear models. For this example,
score frequencies are taken from Table 7.1 in von Davier et al. (2004), which are
stored in the Math2 0EG object described previously. We will reproduce the results
of Table 7.2 in von Davier et al. (2004) where the fitted frequencies are obtained by
fitting polynomial log-linear models that preserve the second and third moments of
X and Y, respectively

log(p)) = B3 + Bix + B3, 2.7)

log(pe) = By + Blye + Bayi + Bivi. (2.8)
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We can use the eg . x and eg . y frequencies created in Sect. 2.2.2 and the following
code

tab72.x <- presmoothing(eg.x, smoothmethod
"loglinear", degrees = 2,asfreqtab=FALSE)
tab72.y <- presmoothing(eg.y, smoothmethod =
"loglinear", degrees = 3,asfreqtab=FALSE)

+ Vv + Vv

which produces the following output that coincides with the fitted values as shown
in Table 7.2 in von Davier et al. (2004).

> round (cbind(tab72.x,tab72.y),2)
tab72.x tab72.y

0 3.30 1.71
1 6.44 3.77
2 11.77 7.65
3 20.17 14.24
4 32.43 24 .44
5 48.89 38.75
6 69.10 56.98
7 91.57 77.91
8 113.79 99.35
9 132.58 118.54
10 144.83 132.72
11 148.36 139.87
12 142.49 139.15
13 128.32 131.10
14 108.35 117.31
15 85.79 100.00
16 63.69 81.46
17 44 .33 63.60
18 28.93 47.73
19 17.71 34 .54
20 10.16 24.18

A plot showing the original score frequency distributions for tests forms X and
Y and the result of presmoothing them using the log-linear models in the example
above is shown in Fig. 2.5. The figure was produced with the code
> par (mfrow=c(1,2))

> plot(eg.x, y = tab72.x, legendtext = "degree
> plot(eg.y, vy = tab72.y, legendtext "degree =

2")
3")

2.3.3.2 Smoothing a Bivariate Distribution

Both SG and NEAT designs produce bivariate data. To illustrate how to perform
a log-linear smoothing with the equate package, the Math20SG test data are used
with the sg. data object created in Sect. 2.2.3. Suppose we want to fit the loglinear
model in Eq. (2.5) with T, = Ty = 3 and to consider only the main effects of score
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Fig. 2.5 Original (bars) and smoothed (continuous line) score frequency distributions for test
forms X (left panel) and Y (right panel) for the Math2 0EG data

covariates so that L, = Ls = 0 and thus ;7 3=, B xiyl = 0. The following

code can be used to fit this model

sg.smooth<-presmoothing(sg.data, smoothmethod =
"loglinear", degrees = list(c(3, 3),c(0, 0)),
showWarnings = FALSE)

plot (sg.data, sg.smooth,ylab="Form Y",xlab="Form X",
addlegend=FALSE)

+V o+ + v

A plot showing the original discrete distributions and the effect of presmoothing
is shown in Fig.2.6. An example of bivariate presmoothing under the NEAT
design using the KB36 data can be found in Albano (2016). More examples of
presmoothing are given on the book’s webpage.

2.3.4 Choosing the Best Log-Linear Model

Choosing the appropriate polynomial degree in presmoothing reduces to a
comparison of different log-linear models. This task can be performed using
the compare=TRUE option in the presmoothing () function. The function
will fit all nested models with the maximum degree as specified. The output is an
ANOVA table containing information of fit statistics such as the Akaike Information
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Fig. 2.6 Marginals of the bivariate distribution: SG design Math20SG data set

Criterion (AIC) (Akaike 1981), the Bayesian Information Criterion (BIC) (Schwarz
1978), and the likelihood ratio y? test. The smallest values of AIC and BIC lead to
a preferable model.

To illustrate how to obtain AIC and y? measures, we reproduce parts of Table 3.1
in Kolen and Brennan (2014) using the ACTmath data. The table shows values
for AIC, x2, and the difference between two y? values. First, score frequency
distributions are created as follows

> XACT<-as.fregtab (ACTmath[,c(1,2)])
> yACT<-as.fregtab (ACTmath[,c(1,3)])

The compare=TRUE argument is used to indicate that all (nested) models with
polynomial degree less than 10 are to be fitted.

> KBtab3l<-presmoothing (xACT, smoothmethod="loglinear",
+ degrees = 10, compare=TRUE)

Among other information, the KBtab31 object contains fit indexes such as
the AIC and y? statistics. Because the output does not give the y? differences
directly, we create an auxiliary matrix aux, that will produce the desired differences
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when multiplied by the y? values ordered in a vector. The values for y2, their
differences, and AIC are stored in the object £it .measures which is used to
produce Table 2.1. The following code is used to carry out these tasks

> aux<-matrix(c(

+1,-1, o0, 0, 0, 0O, O, O, O, O,
+ 0, 1,-1, 0, 0, 0, O, 0O, 0O, O,
+ 0, 0, 1,-1, 0, 0O, O, O, O, O,
+ 0, 0, 0, 2,-1, 0, O, O, 0O, O,
+ 0, 0, 0, O, 1,-12, 0O, O, O, O,
+0, 0, 0, 0, 0, 1,-1, 0, 0, O,
+ 0, 0, 0, 0, 0, O, 1,-2, O, O,
+ o0, 0, 0, 0, 0, O, O, 1,-1, O,
+ 0, 0, 0, O, 0, 0, 0, O, 1,-1),
+ ncol=10, byrow=TRUE)

> fit.measures<-cbind (Chi2=KBtab31[[2]],DifChi2=
+ c(aux%$*%$KBtab31[[2]],NA), AIC =
+ KBtab31[[2]]+24c(2,3,4,5,6,7,8,9,10,11))

From Table 2.1 one can see that a model with 7, = 6 produces the smallest AIC
and thus is the preferred model.

A graphical way to compare the different models is to add the st epup argument
in the presmoothing () function and then to plot the original vs the smoothed
score distributions.

> KBtab3l<-presmoothing (xACT, smoothmethod="1loglinear",
+ degrees = 10, stepup = TRUE)
> plot (xACT,KBtab31)

Setting stepup=TRUE will result in fitting a number of nested models. For
the current example, ten log-linear models will be fitted, starting with the one
that considers one polynomial degree (7, = 1), followed by a model fitting two
polynomial degrees (7, = 2) up until a model considering ten polynomial degrees
(T, = 10). Figure 2.7 shows the graphical comparison and can be contrasted with
the results in Table 2.1.

Table 2.1 Fit indices for

) ) ! T, X Xe = Xeyy | AIC

various polynomial log-linear

models 1 2215.02 1769.83 2219.02
2 445.19 232.36 451.19
3 212.82 172.03 220.82
4 40.80 5.01 50.80
5 35.78 5.18 47.78
6 30.61 0.20 44.61
7 30.40 0.46 46.40
8 29.94 0.03 47.94
9 29.91 0.23 49.91
10 29.68 NA 51.68
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Fig. 2.7 Score frequency distribution (bars) and smoothed frequencies for ten different log-linear
models

2.4 Using Other Arguments, Packages and Functions

In the previous sections we have shown how to perform presmoothing by fitting
loglinear models to the data. The presmoothing () function also supports
alternative methods for presmoothing that make adjustments to scores with low

or zero frequencies. For instance setting smoothmethod = "bump" will add
the proportion jmin, to be specified by the user, to each score point and then
will adjust the probabilities to sum to 1. If smoothmethod = "average" then

frequencies falling below the minimum jmin will be replaced with averages of
adjacent values as described by Moses and Holland (2008). Useful examples can be
found in the help section for the presmoothing () function in equate.

If only loglinear models are used for the presmoothing, then instead of using
presmoothing (x, smoothmethod= "loglinear") one can obtain the
same results using the function loglinear (). For instance, if one wants to fit the
first two moments of X for the Math2 0EG data, the code

> loglinear (eg.x, degrees = list(2, 0, 0))

will produce exactly the same results as the ones shown in Sect. 2.3.3.

The general R function glm () can be used directly to presmooth the data, and
output objects from this function are typically used when presmoothed data are
needed in kequate. This will be discussed and exemplified in detail in Chap. 4.
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Finally, in SNSequate the function loglin.smooth () also performs
loglinear presmoothing. How this function should be used is illustrated in Chap. 4.

2.5 Summary

In this chapter we have shown how to prepare and read in score data under different
data collecting designs in equating. We have also introduced presmoothing as an
initial step in equating. Functions from the equate and kequate packages were used
in the examples. In Chap. 1, the NEC design was also described. We have however,
postponed the description of how data should be prepared under this design until
Chap. 4, where we discuss this design in detail. Because presmoothing is a key step
in kernel equating, as will be seen in Chap. 4, further examples using designs not
considered here will be given in that chapter as well.

In the next chapter, various traditional methods of equating will be introduced.
The score distributions derived in this chapter will serve as inputs for the examples
using the equate () function from the equate package.
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Chapter 3
Traditional Equating Methods

Abstract This chapter describes traditional equating methods and their
implementation in R. The equate package (Albano, J Stat Softw 74(8):1-36, 2016)
will be used the most, although the possibility to use SNSequate (Gonzélez, J Stat
Softw 59(7):1-30, 2014) for traditional equating methods will also be explored.
The methods included in this chapter are mean, linear and equipercentile equating
for different data collection designs.

3.1 Equipercentile, Linear, and Mean Equating
Transformations

Definition 1.1 given in Chap. 1 is general and it handles various types of equating
transformations. The equipercentile equating transformation is formally defined
exactly as presented in Definition 1.2. As described in Chap.1, when using
equipercentile equating, test form X is equated to test form Y by identifying X scores
on test form X that have the same percentile ranks as Y scores on test form Y. The
equipercentile equating transformation can be written in a closed form if we assume
that X and Y are continuous random variables with cumulative distribution functions
(CDF) Fx and Fy, respectively,

p(x) = Fy' (Fx(x)). 3.1)

All equating transformations can be shown to be special cases of Eq.(3.1). In
particular, we have seen in Sect. 1.4 that linear equating is also a special case when
the score distributions are location-scale families. Linear equating relies on the
assumption that the differences in difficulty across test forms can be completely
described by the first two moments of the score random variables (or of their
distributions), i.e. the means (uy and wy) and standard deviations (ox and oy)
coming from the test forms X and Y, respectively. The general definition of the
linear equating function is

Oy
o(x; iLx, by, Oy, Ox) = o [x — pux] + py. (3.2)
X
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The mean equating method emerges for the case when only location families
of score distributions for X and Y are concerned, or when the variance of both
location-scale distributions are assumed to be equal (see Eq. (3.2)). Mean equating
relies on the assumption that the test forms X and Y only differ in difficulty by their
means (first moments) ((x and py) along the score scale

@ pix, y) = X + by — px. (3.3)

It should be noted that mean equating is typically used only for illustrative
purposes because it might be overly simplistic in many operating testing situations.

All equating transformations that are described in this chapter are based on
Egs. (3.1), (3.2), or (3.3). They will differ in the way the involved parameters in
@ have to be estimated and in that different estimation procedures use different
assumptions that depend on the data collection design which are described next.

3.2 Assumptions in the Different Designs

We have seen in Sect.1.3.1 that different data collection designs for equating
collect test score data using samples from either one common population, 7, or
two different populations P and Q. For instance, in the SG, EG, and CB designs,
a unique sample, two independent samples, and a mixture of both samples from
a common target population T are obtained and used for the estimation of ¢ (see
Table 1.1). However, in both the NEAT and NEC designs, samples are taken from
different populations, P and Q, so that a target population must be defined from
these two populations. Because the definition of equating given in Definition 1.2
is established for a common population 7, some assumptions will be needed to
obtain a valid equating, especially when score data have been collected under the
NEAT design. In what follows, the different assumptions within these designs are
discussed.

3.2.1 Assumptions in EG, SG, and CB Designs

In the SG design, both test forms X and Y are administered to a unique sample
group (G) of test takers. In the EG design, two independent groups (G| and G»)
of test takers are administered one of the two test forms X or Y. In the CB
design, two independent groups are administered both test forms, but in different
order. What is common in all of these designs is that samples are taken from a
common (unique) population, 7. This means that the univariate (EG) or bivariate
(SG, CB) score distributions are directly obtained, and thus the parameters related
to these distributions are directly estimable and can be used for the straightforward
estimation of ¢. For the EG, SG and CB designs we do not need any particular
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assumptions for making inferences on the equating transformation. Everything is
directly observable and estimable because all data come from a common population.

3.2.2 Assumptions in the NEAT Design

When equating is performed under the NEAT design, the main difference compared
with the EG, SG, and CB designs is that in the latter designs, samples are taken
from a common population, T, whereas in the NEAT design, samples come from
two different populations P and Q. Under the NEAT design, the target population is
built as a weighted combination of P and Q, which is also referred to as a synthetic
population (Braun and Holland 1982) and is defined as

T = wpP + wpO. (3.4)

where it holds that wp 4+ wp = 1 and wp, wp > 0.

Using the definition in Eq. (3.4), the corresponding score distributions of X and Y
defined on the common target population, 7, which we denote as fyr(x) and fyr(y),
respectively, can be written accordingly as a weighted combination of the form

Jxr(x) =wpfxp(x) + wofxo(x), and
frr(v) =wefrp(y) + wofro ().

Here, fxp(x) and fxo(x) are the distributions of X scores in P and Q, respectively,
and similarly, fyp(y) and fyo(y) denote the distributions of Y scores in populations
P and Q, respectively. Note, however, that because under a NEAT design test form
X is only administered to population P and test form Y is only administered to
population Q, the score distributions fxo(x) and fyp(y) cannot be estimated from
the collected data.! A common solution to this problem is to administer an anchor
test, A, to both populations P and Q. The unobserved distributions can be estimated
after imposing certain assumptions and marginalizing the resulting conditional score
distributions fxp(x | a) and fyg(y | a) over far(a), which is the (marginal) anchor
scores distribution on 7. Details of this derivation can be found in Sect. B.4.

The equating methods that will be described in Sects.3.4.1 and 3.4.2 for the
NEAT design make use of different assumptions in order to estimate either the
unobserved distributions fxy(x) and fyp(y) (i.e., for equipercentile transformations)
or their corresponding location-scale parameters [y, 0§Q, Wyp, and OI%P (i.e. for
linear transformations).

ITechnically, the score probability distributions are not identifiable (see, San Martin and Gonzélez
2017).
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3.3 Traditional Equating Methods for the EG, SG and CB
Designs

In the previous section it was noted that no particular assumptions are needed when
using the EG, SG, or CB designs. This means that we can estimate ¢ in definitions
(3.1), (3.2) and (3.3) directly from the data. Thus, the means and the standard
deviations for the linear equating in Eq. (3.2), or the means for mean equating in
Eqg. (3.3), can be estimated directly using the data at hand and then plugging the
obtained quantities into their definitions of ¢. Likewise, the equipercentile equating
transformation in Eq.(3.1) can be estimated from the data without resorting to
any particular assumptions. Examples of using R with the EG and SG designs are
provided later in this chapter.

3.4 Traditional Equating Methods for the NEAT Design

Two common approaches that can be used either with linear or equipercentile
equating transformations under a NEAT design are chained equating and frequency
estimation equating. The first approach equates X to Y through A and does not make
use of the concept of a synthetic population to obtain score distributions defined on
T. To understand this better, let ¢4 (x) be the transformation that links scores in X
to those in A and ¢y (a) be the transformation that links scores on A to Y. Chained
equating produces the transformation from X to Y by using

@(x) = y(x) = py(pa(x)). (3.5)

Because ¢4 (x) is estimated on P and ¢y(a) is estimated on Q it is uncertain in
which population the equating transformation ¢y (x) is valid. As will be seen later,
some assumptions are needed for gy (x) to be a valid equating transformation defined
on a common population.

The frequency estimation approach, on the other hand, makes use of the synthetic
population to obtain the score distributions of X and Y in T from which the
equating transformation is built. As we have seen in Sect. 3.2.2, under this approach
not all of the score distributions involved are estimable from the data and some
assumptions will be needed to obtain the equating transformation defined on 7.
These assumptions will be described in the sections where frequency estimation
methods are introduced.
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3.4.1 Linear Equating Methods for the NEAT Design

To perform a linear equating using the transformation in Eq. (3.2) under the NEAT
design, we first need the means and standard deviations for the score distributions
of X and Y defined on the target population 7. Using the definitions in Eqs. (B.14)
and (B.15), it can be shown (Brennan 2006) that the parameters for the synthetic
population are defined as

HxT = Wplxp + WollxQ, (3.6)

Hyr = Wplyp + Wollyg, 3.7

Oxr = WpOgp + WoOy + wewoluxe — tixol’, (3.8)
and

Oy = wpopp + WQO)%Q + wpwoliyp — fyol*. (3.9)

As pointed out before, not all parameters are directly estimable from the information
at hand. For instance, uxo cannot be directly estimated because population Q is
only administered test form Y. Likewise, 07, cannot be estimated because only test
form X is administered in population P. The methods that are described next make
different assumptions to obtain the parameters that are not directly estimable.

3.4.1.1 Tucker Equating

Tucker equating (Gulliksen 1950, pp. 299-300) relies on the following two
assumptions: (i) the conditional expectations of X given A and Y given A are the
same in both populations, i.e., Ep(X | A) = Eg(X | A) and Ep(Y | A) = Eo(Y | A);
and (ii) the conditional variances of X given A and Y given A are the same in both
populations, i.e., Varp(X | A) = Varg(X | A) and Varp(Y | A) = Varp(Y | A).
Traditionally, the conditional expectations are assumed to be linear and the
conditional variances are assumed to be constant, which is similar to the
assumptions made in linear regression models. Thus, assumptions i and ii above
can be equivalently reformulated by forcing slopes, intercepts and variances to be
the same for both linear regressions (i.e., X regressed on A and Y regressed on A).
Formally, if § and y are the intercept and slope parameters of the regressions in P
and Q defined as

OXP.AP 0Y0.AQ
8p = Wxp — YpHap, 5Q = UxQ — YoMHap, YP = 5 and yp = 5
Oap 00

(3.10)
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with oz representing the covariance between any two random variables Z and W,
then by making yp = yo and §p = § it can be shown that the means and variances
of the synthetic target population are

MxT = Hxp — WoVplihar — Hag)s (3.11)
Wyr = pyo + wepYoliar — Hagls (3.12)
oxr = oxp — woVploap — af%Q] + wewoypliar — taol’, (3.13)
and
Oy = 079 + weygloie — 3ol + wewoygliar — paol’, (3.14)

where yp is the slope for the regression of X on A in population P and y is the slope
of the regression of Y on A in population Q.

To obtain the Tucker equating transformation, first plug yp and y, defined in
Eq. (3.10) into Egs. (3.11), (3.12), (3.13) and (3.14) and then plug the latter into the
general linear equating transformation in Eq. (3.2).

3.4.1.2 Nominal Weights Equating

A simplified version of Tucker equating is nominal weights equating which is
typically used for small samples (Babcock et al. 2012; Albano 2016). It relies on the
assumptions that test forms X and Y and the anchor test form A correlate perfectly
within the populations P and Q and that the test forms have similar statistical
properties. If J,, J, and J, are the number of items in X, Y, and A, respectively,
the following ratios are useful approximations of the y terms in Eq. (3.10)

Jy J,
yp = ]—a and yp = J—: (3.15)

To obtain the equating transformation using nominal weights, proceed as with
Tucker equating using Eq. (3.15) instead of Eq. (3.10).

3.4.1.3 Levine Observed-Score Equating

Levine observed-score equating was first proposed by Levine (1955). In what
follows we adopt the description of the Levine observed-score method given in
Kolen and Brennan (2014). The assumptions in Levine observed-score equating are
based on the classical test theory model (see, e.g., Lord and Novick 1968; Crocker
and Algina 1986). The idea is that for each of the involved test forms the observed



3.4 Traditional Equating Methods for the NEAT Design 49

scores X, Y and A can be decomposed as the sum of true scores ty, Ty, and t4 and
errors Ex, Ey, and E4 in the following way:

X = 1x + Ex, (3.16)

Y =1ty + Ey, (3.17)
and

A =14+ Ey. (3.18)

In Levine observed-score equating, the three assumptions are stated in terms of
true scores even though observed test scores are used in practice for equating. These
assumptions are:

1. The correlation between the true scores on test forms X and Y with the anchor
test form A is 1.

2. The coefficients of a linear regression of the true scores on test forms X and Y
on A are the same.

3. The measurement error variance across populations is the same for test forms X,
Y and A.

Using these assumptions it is possible to show that y slopes are defined in terms
of true-score standard deviations, which in practice are not observable. Although
it is still possible to obtain estimates for the y terms by following the assumptions
of classical test theory, the results used here and shown below are derived from
what is referred to as the classical congeneric model (see, Kolen and Brennan 2014,
Sects. 4.2.5 and 4.2.6)
2 2
P:&, and yp = Tvo .
Oxp.AP 0yQ.AQ

(3.19)

To obtain the Levine observed-score linear transformation, the values in
Eq. (3.19) are plugged into Egs. (3.11), (3.12), (3.13) and (3.14). The final step
is to plug the resulting means and variances into the general linear equating
transformation in Eq. (3.2).

Note that we have defined Levine observed-score equating by resorting on the
classical congeneric model and assuming that an internal anchor is used. The
definitions for Levine observed-score equating with an external anchor can be found
for example, in Kolen and Brennan (2014, p. 115).

3.4.14 Levine True-Score Equating
A method that relies on the same assumptions as the Levine observed-score method

is the Levine true-score method (Levine 1955). The conceptual difference is that
instead of observed scores, true scores are equated.
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After some algebra and using the assumptions from classical test theory, the
linear equating function for Levine true-score equating becomes

Vi
©(Tx: xP, [hYQ, AP, LAQs VPs V0) = y—f[fx — xp] + Wyg + Yoltap — agl,

(3.20)
where Yo and yp are defined in Eq. (3.19). For a theoretical justification and for
more information about the Levine true-score equating refer to Kolen and Brennan
(2014), Hanson (1991), or Hanson et al. (1993).

3.4.1.5 Chained Linear Equating

Chained linear equating (Angoff 1971) can be performed by calculating the means
and standard deviations of the test scores and anchor test scores within the
populations P and Q and then composing the estimated linear transformations that
links X to A with the estimated linear transformation linking A to Y (see Eq. (3.5)).
Chained linear equating results in the following equating transformation

0yo/0a0 0vg/0ag

XP (3.21)
UXP/ OAP UXP/ OAP

Oy
(x) = pyo + —Q[,UvAP — Mag] —
0AQ

3.4.2 Egquipercentile Equating Methods for the NEAT Design

As previously mentioned, there are two possible approaches to perform
equipercentile equating under a NEAT design: frequency estimation and chained
equating. Both of these approaches are described next.

3.4.2.1 Frequency Estimation

The frequency estimation equating method (Angoff 1971; Petersen et al. 1989;
Braun and Holland 1982) makes use of an anchor test to estimate both the X and Y
score distributions in the target population 7. From the obtained score distributions,
percentile ranks are obtained and the forms are equated using equipercentile
equating.

Formally, the conditional distribution of test scores X given an anchor test score
A defined on population P is denoted as fxp(x|a) (see Sect.3.2.2). Similarly for
Y, the conditional distribution defined on population P is denoted as fyp(y|a). The
corresponding conditional distributions defined on population Q are denoted as
fxo(x|a) and fyo(y|a), respectively. The marginal distributions of anchor test scores
are accordingly defined as fyp(a) and fip(a) for both populations. In order to
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obtain the (marginal) score distributions defined for 7, the following assumptions
are made

1. fxp(x|la) = fxo(x|a), i.e., the conditional X score distributions are the same for
any target population 7 of the form given in Eq. (3.4).

2. fyp(vla) = fro(y|a), i.e., the conditional Y score distributions are the same for
any target population T of the form given in Eq. (3.4).

With these assumptions, it follows from Egs. (B.14) and (B.15) that

Fr®) = wefip(0) +wo Y frr(x | )fao(@), (3.22)

and

frr @) = wofro®) +wp Y _ fro(v | @)far(a). (3.23)

3.4.2.2 Chained Equipercentile Equating

In chained equipercentile equating (Dorans 1990; Livingston et al. 1990), the test
scores X and Y are connected or “chained” together through the anchor test as
explained in Sect. 3.4. First, test form X is equated to test form A and then test form
A is equated to test form Y. The chained equipercentile equating transformation can
formally be defined as

oy (x) = Fy) (Fag(Fap (Fxp(x)))) = ¢yo(@ap(x)). (3.24)

As mentioned in Sect. 3.4, some assumptions have to be made to ensure that
@y (x) is properly defined on T and these are the following

1. pap(x) = @ap(x) = @a(x), i.e., the equating from test form X to the anchor test
form A for the target population T is the same for any 7" of the form given in
Eq.(3.4).

2. gyr(a) = @yp(a) = @y(a), i.e., the equating from anchor test form A to test form
Y for the target population T is the same for any T of the form given in Eq. (3.4).

Under these assumptions, chained equating can be shown to produce a valid
equating transformation defined for a common population 7.

3.4.2.3 Braun-Holland Equating

The Braun-Holland equating method (Braun and Holland 1982) is a hybrid between
linear and equipercentile methods for the NEAT design. This method is a linear
version of the frequency estimation equating method, which is described in
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Sect.3.4.2.1. It is based on estimates of the means and standard deviations of
the synthetic target distributions fxr(x) and fyr(y) given in Eq. (3.22). The mean and
standard deviation in the synthetic target distributions for X are defined as

pxr = xfxr(x). (3.25)

X

oxr = Z[x — pxrfr ().

X

and for Y are defined as

pvr = Y 3hr(), (3.26)

v

opr = Y Iy = urlfr ().

Parameters in Egs. (3.25) and (3.26) are then plugged into Eq. (3.2) to obtain the
Braun-Holland linear equating transformation.

3.5 Examples with the equate Function

In this section, different examples of the previously described traditional equating
methods are illustrated using the equate () function in the equate package. To
get a deeper understanding, we start with a short description of equate () that
includes the general function call. Note that although we have discussed four data
collection designs (EG, SG, CB, and NEAT), only three of them (EG, SG, and
NEAT) can currently be implemented directly in the equate package. Implementing
equating under the CB design is still possible, but it requires additional steps
depending on the way the score data are used (see Sect. 1.3.1.3).

3.5.1 The equate Function

The equate () function implements all of the traditional equating methods we
have introduced so far in this chapter. The general function call is

equate(x, y, type = c("identity", "mean", "linear",
"general linear", "circle-arc", "equipercentile"),
method = c("none", "nominal weights", "tucker", "levine",
"frequency estimation", "chained", "braun/holland"),

name, lowp, highp, boot = FALSE, verbose = TRUE, ...)
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The arguments x and y are used to provide X and Y scores as a frequency table
of class “freqtab” (see Sect. 2.2). If y is not provided, then an SG design is assumed.
The argument type specifies the kind of equating transformation to be used (e.g.,
equipercentile, linear, or mean as defined in Egs. (3.1), (3.2), and (3.3), respectively).
Other types of equating transformation not described so far (i.e., identity, general
linear, and circle-arc) will be discussed in Sect.3.6. The argument method is
used to specify which equating method is to be performed, especially for the case
when score data have been collected under the NEAT design. Possible methods
include all of those discussed in this chapter for the NEAT design (nominal weights,
Tucker, Levine observed and true score, frequency estimation, chained equating, and
Braun-Holland). The default method “none” is used to perform an equating under
the EG or the SG design. The optional arguments 1owp (or highp) allow the user
to set the lowest (or the highest) score expected by chance. Using the argument
boot=TRUE allows the user to obtain bootstrap standard errors (see Sect.3.8).
Finally, the argument verbose is used to decide between two display options
for the output. If verbose=FALSE, then only the equated values are displayed,
whereas if verbose=TRUE, which is the default, then a more complete output
including relevant descriptive statistics for the scores will be displayed.

Note, equate allows the use of short names when writing the code, e.g. "equip"
and "e" can be used instead of "equipercentile", "m" is used for "mean",
and "1" is used for "linear". Similarly, "frequency estimation" can
also be written "freqg" or simply "f". Likewise, "t" and "b" can be used for
Tucker and Braun-Holland equating, respectively.

3.5.2 Examples Under the EG and SG Designs

To illustrate the use of the equate () function under the EG design, we start with
a simple example where equipercentile equating is performed using the ACTmath
data described in Chap. 2. Although the necessary steps for using the ACTmath data
as score frequency distributions were already described in Sect. 2.2.2, we repeat the
needed code here for completeness:

> library(equate)
> XACT <- as.fregtab(ACTmath[,c(1,2)])
> yACT <- as.fregtab(ACTmath[,c(1,3)])

Once score frequency distributions have been obtained, equipercentile equating
can be performed using the following code:

> eqg.equipercentile <- equate (xXACT, yACT,
+ method = "none",type = "equipercentile")

Because under the EG design no special assumptions are needed to estimate the
equating transformation (see Sect. 3.2.1), the argument method is set to "none".
Typing eq.equipercentile gives the following output:
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> eqg.equipercentile

Equipercentile Equating: xACT to yACT
Design: equivalent groups

Smoothing Method: none

Summary Statistics:

mean sd skew kurt min max n
x 19.85 8.21 0.38 2.30 1.00 40.0 4329
y 18.98 8.94 0.35 2.15 1.00 40.0 4152
yx 18.98 8.94 0.35 2.15 0.98 39.9 4329

The output indicates that an equipercentile equating from X to Y was performed
under the EG design and that no smoothing method was applied to the score
distributions. The summary statistics indicate the mean, standard deviation,
skewness, kurtosis, minimum, maximum and the sample sizes for the raw scores
(with row labels x and y) and the equated scores (with row label yx). Note that the
mean, standard deviation, skewness and kurtosis (the first four moments of the score
distribution) are the same for Y and for the equated values. This happens because the
equipercentile equating transformation is built from the whole score distributions
in comparison with the linear and mean equating transformation where, as we have
seen in Sect. 3.1, only the first two moments of the score distribution play a role in
the equating. In the examples that come below this will be explicitly illustrated.

The displayed output for an equate object contains only some information.
Such object could contains further useful information. If we want to see the
complete list of output elements that are available, the str () function can be
applied to an equating object. For example, applying the str () function to the
eq.equipercentile object gives the following output:

> str(eqg.equipercentile)

List of 9
$ name : chr "Equipercentile Equating: XACT to yACT"
S type : chr "equipercentile"
$ method : chr "none"
$ design : chr "equivalent groups"
S x fregqtab [1:41(1d)] 0 1 1 3 9 18 59 67 91 144

.- attr (%, "dimnames")=List of 1
..$ total: chr [1:41] "o" m1m n2n n3mn

.- attr (%, "class")= chr [1:2] "fregtab" "table"
..- attr(x, "design")= chr "eg"
Sy : fregtab [1:41(1d)] 0 1 3 13 42 59 95

131 158 161
.- attr (%, "dimnames")=List of 1
.. ..$ total: chr [1:41] "Q" m1lm n2m n3n
.- attr(x, "class")= chr [1:2] "fregtab" "table"

.- attr(%, "design")= chr "eg"
$ concordance :’data.frame’: 41 obs. of 3 wvariables:

..$ scale: num [1:41] 0 1 2 3 456 7 89
LS yx : num [1:41] -0.5 0.98 1.65 2.29 2.89
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..S$ se : num [1:41] 0 0.831 0.521 0.821 0.295

$ points :’data.frame’ : 2 obs. of 2 variables:
..$ low : num [1:2] 0 O
..$ high: num [1:2] 40 40

$ smoothmethod: chr "none"

- attr(x, "class")= chr "equate"

The output shows that the eqg.equipercentile object is a list of nine
elements. Each of the elements can be retrieved by typing the object’s name and
writing as a suffix the dollar sign ($) followed by any of the available options. For
instance, if the interest is in retrieving the equated values, then the concordance
(or short coded here as con or conc) element in the list must be selected

> eg.equipercentile$con

scale VX se
1 0 -0.5000000 0.0000000
2 1 0.9795564 0.8305507
3 2 1.6462231 0.5210048
4 3 2.2856318 0.8209735
5 4 2.8931979 0.2950250
6 5 3.6204666 0.1478062
7 6 4.4996535 0.2541079
8 7 5.5148375 0.1581823
9 8 6.3124157 0.1969085
10 9 7.2242386 0.1761150
11 10 8.1606665 0.1731162
12 11 9.1826961 0.1951590
13 12 10.1858956 0.1799526
14 13 11.2513015 0.2310924
15 14 12.3896334 0.2431244
16 15 13.3928909 0.2138483
17 16 14.5240050 0.2763547
18 17 15.7169010 0.2617253
19 18 16.8234423 0.3383500
20 19 18.0092239 0.2826068
21 20 19.1647208 0.2947267
22 21 20.3676007 0.3298667
23 22 21.4556277 0.3182666
24 23 22.6871228 0.3864620
25 24 23.9156570 0.3554621
26 25 25.0291585 0.3013309
27 26 26.1612293 0.3683138
28 27 27.2632870 0.3532292
29 28 28.1800647 0.3069083
30 29 29.1424331 0.3422039
31 30 30.1304817 0.2896340
32 31 31.1297014 0.3267974
33 32 32.1357069 0.3309308
34 33 33.0780678 0.3047704
35 34 34.0171864 0.3079831
36 35 35.1016041 0.3043501
37 36 36.2425502 0.3239977
38 37 37.1247622 0.2713679
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39 38 38.1320883 0.3430113
40 39 39.0807346 0.2017926
41 40 39.9005544 0.2787227

This element contains the score scale, the equated values, and standard errors.>

If we only want to obtain the equated values, we add an extra suffix term (yx) as
shown in the following code (output not shown):

> eg.equipercentile$concsyx

The output stored in an equating object and displayed by the stxr () function
will depend on the tasks that have been performed by the equate () function. This
means that if, for instance, the boot argument was added, then bootstrap standard
errors will also be available from the created equating object. Bootstrap standard
errors will be described in Sect. 3.8.

Using the previously created score frequency distributions xACT and yACT, we
can easily perform a mean equating under the EG design as follows

> eg.mean <- equate (xACT, yACT, type = "m")

Note that this time we have not typed the argument method as the default
value is "none". Also, instead of writing "mean" in the type argument, the
shorthand "m" was used. The displayed output for mean equating differs from that
for the equipercentile equating shown above and it adds the elements intercept,
slope, cx, cy, X, and sy.

> eg.mean
Mean Equating: xACT to yACT
Design: equivalent groups

Summary Statistics:

mean sd skew kurt min max n
x 19.85 8.21 0.38 2.30 1.00 40.00 4329
y 18.98 8.94 0.35 2.15 1.00 40.00 4152
yx 18.98 8.21 0.38 2.30 0.13 39.13 4329

Coefficients:
intercept slope cx cy sx sy
-0.8726 1.0000 20.0000 20.0000 40.0000 40.0000

The first two elements, the intercept and the slope, correspond to the
intercept, Ly — g—; i, and the slope, 7%, of the linear equating function in Eq. (3.2).
Because mean equating is being performed, the slope is equal to one. The last four
elements cx, cy, sx, and sy are parameters used in the general linear equating
approach introduced in Albano (2015).

2 Analytic standard errors are displayed when available.
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Note also that this time only the mean of the score values Y coincides with that of
the equated values. As pointed out before, this is the case because in mean equating
only the first moment of the score distribution plays a role in the equating. The
reader can verify that if a linear equating is performed, then only the mean and
standard deviation of the Y scores and equated scores will coincide. Linear equating
under the EG design can easily be obtained by changing the type of the equating in
the code to "1inear" (or equivalently "1" as a shorthand) as follows:

> eqg.linear <- equate(xACT, yACT, type = "1")

Performing equating under the SG design only requires a few modifications to
the code presented above. Indeed, the main modification is that data formatted
according to a SG design should be used as an input (see Sect. 2.2.3). We now use the
Math20SG data to illustrate mean, linear, and equipercentile equating under the SG
design. The sg.data object previously created in Sect. 2.2.3 is already formatted
as score frequency distributions and can be used as input for linear equating under
the SG design:

> sg.linear <- equate(sg.data, type = "1")
> sg.linear

Linear Equating: sg.data to sg.data
Design: single group

Summary Statistics:

mean sd skew kurt min max n
x 10.82 3.81 0.00 2.53 0.00 20.00 1453
y 10.39 3.59 -0.01 2.48 2.00 19.00 1453
yx 10.39 3.59 0.00 2.53 0.19 19.04 1453

Coefficients:
intercept slope cx cy sx sy
0.1937 0.9424 10.0000 10.0000 20.0000 20.0000

Similarly as for the EG design, we can perform both mean equating
and equipercentile equating under the SG design by simply modifying the
method argument as method="mean" and method="equipercentile",
respectively.

In the following example, the three equating methods implemented above under
the SG design are compared graphically. The plot () function applied to an
equate object will by default produce a plot of the corresponding equating
transformation. When applied to several equating objects, it will draw all the
equating functions that are part of passed equating objects. First, we use the
following code to obtain mean, linear, and equipercentile equating under the SG
design:

> mod.sgl <- equate(sg.data,type="equipercentile")
> mod.sg2 <- equate(sg.data, type="mean")
> mod.sg3 <- equate(sg.data,type="linear")
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Fig. 3.1 The identity, equipercentile, mean, and linear equating transformations

Figure 3.1 shows the obtained equating transformations and was produced using
the following code:

> plot (mod.sgl,mod.sg2,mod.sg3,1lty=c(1,2,3,4),
+ col=c(3,4,5,6))

Note that the identity equating transformation ¢(x) = x is plotted by default but
can be omitted by adding the argument addident = FALSE totheplot () call

As a final example to illustrate traditional equating methods under the EG design,
we give the code to reproduce Table 2.7 in Kolen and Brennan (2014), where a
comparison between mean, linear, and equipercentile equating is made using the
ACTmath data. Using the previously created objects xACT and yACT, the different
equating transformations are obtained using the argument type with values "m",
"1", and "e" meaning that mean, linear, and equipercentile equating are being
performed.

> eg.mean <- equate (xACT, yACT, type = "m")
> eqg.linear <- equate (xXACT, yACT, type = "1")
> eg.equipercentile <- equate (xACT, yACT, type = "e")

We use the equated values stored in each of the created equating objects to mimic
Table 2.7 in Kolen and Brennan (2014).

> Table2.7 <- cbind(0:40,eg.mean$consyx,
+ eqg.linear$con$yx, eg.equipercentile$con$yx)
> colnames (Table2.7) <- c("Score", "Mean", "Linear",
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+ "Equipercentile")

> Table2.7
Score

[1,] 0

[2,] 1

[3,] 2

[4,] 3

[5,] 4

[6,] 5

[7,] 6

[8,] 7

[9,] 8

[10,1 9
[11,] 10
[12,] 11
[13,1] 12
[14,] 13
[15,] 14
[16,1 15
[17,1] 16
[18,1 17
[19,1] 18
[20,1] 19
[21,] 20
[22,] 21
[23,] 22
[24,] 23
[25,] 24
[26,] 25
[27,1 26
[28,1 27
[29,1 28
[30,1] 29
[31,] 30
[32,] 31
[33,] 32
[34,] 33
[35,] 34
[36,] 35
[37,1 36
[38,] 37
[39,1] 38
[40,1] 39

[41,]

IS
o

Mean
.8726221
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779
.1273779

-2.
-1.
.4547278
0.
.7225152
.8111367
.8997582
.9883797
.0770012
.1656227
.2542443
.3428658
.4314873
11.
12.
13.
.7859733
15.
16.
18.
19.
.2290808
.3177023
.4063238
.4949453
24.
25.
26.
.8494313
28.
30.
31.
.2039173
.2925388
34.
.4697818
36.
37.
38.
39.
40.

-0

0w J 0 b WN K

10

14

20
21
22
23

27

32
33

35

Linear Equipercentile

6319708
5433493

6338937

5201088
6087303
6973518

8745948
9632163
0518378
1404593

5835668
6721883
7608098

9380528
0266743
1152958

3811603

5584033
6470248
7356463
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9128893
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5000000

.9795564
.6462231
.2856318
.8931979
.6204666
.4996535
.5148375
.3124157
.2242386
.1606665
.1826961
.1858956
.2513015
.3896334
.3928909
.5240050
.7169010
.8234423
.0092239
.1647208
.3676007
.4556277
.6871228
.9156570
.0291585
.1612293
.2632870
.1800647
.1424331
.1304817
.1297014
.1357069
.0780678
.0171864
.1016041
.2425502
.1247622
.1320883
.0807346
.9005544
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3.5.3 Examples Under the NEAT Design
3.5.3.1 Linear Methods

We start by comparing four linear equating methods under the NEAT design:
Tucker, chained, Levine observed-score, and Levine true-score equating. The first
two lines of code below read in the data, and the subsequent lines perform the four
different equating methods.

nex <- fregtab (KBneat$x, scales = list(0:36, 0:12))
ney <- fregtab (KBneatS$Sy, scales = list(0:36, 0:12))
neql <-equate (nex,ney,type="linear", method="tuck",
ws=1)

neq2 <-equate (nex,ney,type="linear",method="chain")
neqg3 <-equate (nex,ney, type="linear",method="levine",
ws=1)

neg4 <-equate (nex,ney, type="linear",method="1levine",
1ts=TRUE, ws=1)

+ Vv + Vv Vv + VvV VYV

In all cases, the argument type is set to "linear" because a linear
transformation such as the one shown in Eq. (3.2) is used for the equating. However,
different methods are specified because all of them make different assumptions for
obtaining the location and scale parameters needed to estimate ¢(x). In the case
of the Tucker and the Levine methods, setting the argument ws=1 means that the
weight wp in Eq. (3.4) is set to 1 (see also Egs. (3.11), (3.12), (3.13) and (3.14)). For
the Levine method, the default method is observed-score equating so to obtain the
Levine true-score equating the additional argument 1ts=TRUE has been added in
neqg4. For the four methods, the displayed output will be very similar to the output
described earlier for the eq . mean object, except for the chained equating in object
neqg2 where the elements cx, cy, sx, and sy are not displayed.

The obtained equated values can be used to reproduce Table 4.5 of Kolen and
Brennan (2014) using the following code:

> compneg<-round (cbind (xscale=0:36, tucker=negls$concsSyx,
+ chain=neqg2$conc$yx, levineOS=neg3$concsyx,
+ levineTS=neg4S$Sconcs$yx) ,4)
> Table45 <- compneqg(c(1l,11,21,31,37),]
> Table45

xscale tucker chain levineOS levineTS
[1,] 0 0.5368 0.3937 0.2513 0.2912
[2,] 10 10.8263 10.6064 10.3630 10.3777
[3,] 20 21.1157 20.8191 20.4747 20.4641
[4,] 30 31.4052 31.0318 30.5863 30.5506
[5,] 36 37.5789 37.1595 36.6533 36.6024

3.5.3.2 Equipercentile Methods

To illustrate how to perform both equipercentile frequency estimation and chained
equipercentile equating, we use data from Kolen and Brennan (2014) as described



3.5 Examples with the equate Function 61

—— FE
—a— Chain

1.5

1.0
|
e
—_
>
>
o
O/
o\o
> 0
> _o
o
—
D>
[t N
-° —

PX)—X

0.0

T
0 5 10 15 20 25 30 35

Form X Score

Fig. 3.2 Relationship between frequency estimation (FE) and chained equating

in Chap. 2. The data set is also available in the equate package and it is stored with
the name KBneat. The following code performs both the frequency estimation
equating and chained equipercentile equating:

> neg5 <- equate(nex, ney, type = "equipercentile",
+ method = "freqg", ws = 1)

> negé6 <- equate(nex, ney, type = "equipercentile",
+ method = "chain")

The argument ws for the frequency estimation method corresponds to the wp
weight used in the definition of synthetic population in Eq. (3.4), and in this case it
is set to 1, meaning that wp = 0.

The following code reproduces part of Figure 5.4 in Kolen and Brennan (2014).
Because the modified frequency estimation method is not implemented in equate,
only two curves are shown in Fig. 3.2.

plot (0:36,neg5%consyx-0:36,type="b",pch=1,ylim=c(0.00,
1.75),ylab=expression (varphi (x) -x) ,xlab="Form X Score")
lines (0:36,neg6sconsyx-0:36, type="b",pch=2)

legend ("topleft",c("FE", "Chain") ,lty=c(1,1) ,pch=c(1,2))

vV V + Vv

3.5.3.3 Comparison Between Linear and Equipercentile Methods

Kolen and Brennan (2014, Section 5.1.6) make a comparison between
equipercentile frequency estimation, Tucker, Levine observed-score, and Braun-
Holland equating methods. In the case of equipercentile frequency estimation,
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Fig. 3.3 The relationship between equipercentile frequency estimation and the Tucker, Levine
observed-score, and Braun-Holland linear equating methods

both smoothed (using cubic splines postsmoothing) and unsmoothed results are
considered. The code shown below can be used to reproduce Figure 5.3 in Kolen
and Brennan (2014). Note that we first obtain the results for the Braun-Holland
linear equating and store them in the object neq7. Also, note that because equate
does not implement postsmoothing, one of the curves (as well as the standard error
bands) in the original figure is omitted in Fig. 3.3.

> neq7 <- equate (nex,ney,type="linear",

+ method="braun/holland",ws=1)

> plot (0:36,neg5%con$yx-0:36,type="b",pch=1, ylim=c(-0.25,
+ 1.75),ylab=expression (varphi (x)-x) ,xlab="Form X Score")
> lines (negl$con$yx-0:36,type="b",pch=3)

> lines(neg3$conSyx-0:36,type="b",pch=4)

> lines (neqg7$conSyx-0:36,type="b",pch=5)

> legend("topleft",c("Equipercentile", "Tucker", "LevineOS",
+ "Braun-Holland"),lty=c(1,1,1,1),pch=c(1,3,4,5))

Log-linear smoothing in the analyses is easily incorporated in the code using the
smoothmethod argument. For instance, under the NEAT design, the following
code can be used to perform equipercentile frequency estimation equating using
presmoothed distributions

> neg8 <- equate (nex,ney, type="eq",method ="freq",
+ smoothmethod="1log",degrees=1ist (3,3), ws=1)

Note that the inclusion of the smoothmethod argument inside the equate ()
function is only implemented for equipercentile equating.
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3.5.4 Examples Using the ADM Data Under the NEAT Design

In order to examine different equating methods for the NEAT design we use the
admissions ADM data described in Chap.2. For a NEAT design the previously
defined R objects neat .x1 and neat .yl are used. In what follows we show
the necessary code to implement Tucker, frequency estimation, Braun-Holland, and
chained equating using the ADM data. Because the obtained outputs are similar to
the ones we have obtained in previous sections for other data sets, they are omitted.

> Aeqgl <-equate (neat.xl,neat.yl,type="linear", method =
+ "tuck", ws = 1)

> Beg2 <-equate (neat.xl,neat.yl,type="linear", method =
+ "braun", ws = 1)

> Ceg3 <-equate (neat.xl,neat.yl,type="equip", method =
+ "freq", ws = 1)

> Deg4 <-equate (neat.xl,neat.yl,type="equip", method =
+ "chain")

To compare the obtained equated values under the different equating methods,
the following code is used to create a table of all equated values (only the first 15
records are shown in the output)
> compADM<-round (cbind (xscale = 0:80, Tucker =
+ Aeglsconc$yx,Braun = Beg2$concSyx,

+ FE = Ceg3$concsyx, Chain = Deg4S$concsyx), 2)
> head (compADM, n=15)

xscale Tucker Braun FE Chain
[1,] 0 -0.34 -0.16 -0.50 -0.50
[2,] 1 0.69 0.86 -0.50 -0.50
[3,1] 2 1.71 1.89 -0.50 -0.50
[4,] 3 2.74 2.91 -0.50 -0.50
[5,] 4 3.77 3.93 -0.50 -0.50
[6,] 5 4.79 4.96 -0.50 -0.50
[7,1 6 5.82 5.98 -0.50 -0.50
[8,] 7 6.84 7.00 -0.50 -0.50
[9,1 8 7.87 8.03 -0.50 -0.50
[10,] 9 8.90 9.05 8.78 -0.50
[11,] 10 9.92 10.07 9.33 8.62
[12,] 11 10.95 11.10 9.66 8.75
[13,] 12 11.98 12.12 9.66 8.75
[14,] 13 13.00 13.14 10.09 8.88
[15,] 14 14.03 14.17 11.41 9.38

3.6 Additional Features in equate

There are also additional features in the equate package, including other equating
methods not described so far, and the possibility to obtain the bootstrap standard
error of equating. One feature is the use of a circle-arc choice of the equating
transformation (Livingston and Kim 2009) for Tucker, Braun-Holland, Levine and
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chained equating. A general description of the circle-arc method is given in Albano
(2016) together with an example.

Throughout this chapter we have considered the case of only one anchor test
form. However, nothing prevents us from using multiple anchor test forms as
described in Albano (2016). In equate, this option is valid for frequency estimation,
Braun-Holland, Tucker, and nominal weights equating.

Bootstrap standard errors are a useful tool when comparing different equating
methods and this will be illustrated later in this chapter.

3.7 Performing Traditional Equating Methods
with SNSequate

Mean, linear and equipercentile equating can also be performed using the functions
mea.eq(), lin.eq(), and egp.eq (), respectively in SNSequate. A notable
difference is that frequency tables are not needed in SNSequate, but instead the full
vectors of total scores are directly used as inputs for equating. Another difference is
that the term concordance in equate is replaced by the term resu to obtain
the resulting equated values in SNSequate. Using the ACTmath data included
in SNSequate, the following code reproduces the previous described Table 2.7 in
Kolen and Brennan (2014):

> library (SNSequate)
> act.m <- mea.eq(rep(0:40, ACTmath[,2]), rep(0:40,
+ ACTmath[,3]),0:40)
> act.l <- lin.eqg(rep(0:40, ACTmath[,2]), rep(0:40,
+ ACTmath([,3]),0:40)
> act.e <- egp.eqg(rep(0:40, ACTmath([,2]), rep(0:40,
+ ACTmath([,3]),0:40)

In each case, the first two arguments correspond to the whole vector of scores for
tests forms X and Y, respectively. Note that because the score data in the ACTmath
object are stored as frequencies, the rep () function helps in expanding score
frequencies across the score scale so as to obtain a score vector with a length equal
to the number of test takers that have been administered the tests. The third argument
indicates the range of score values that are to be equated — in this case, the whole
score scale. For the three functions, the output corresponds to the score scale and
the corresponding equated values according to the specified range of values in the
third argument.

A table showing equated scores using the three methods is obtained as follows:

> Table2.7s <- cbind(0:40, act.mSresu, act.lSresu,

+ act.eSresu)

+ colnames (Table2.7s) <- c("Score", "Mean", "Linear",
+ "Equipercentile")

> Table2.7s

The reader can verify that this table is actually identical to the one obtained using
equate in Sect. 3.5.2 and to the one shown as Table 2.7 in Kolen and Brennan (2014).
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3.8 Comparing Traditional Test Equating Methods

The performance of different test equating methods can be examined in different
ways. As seen in Chap. 1, equating transformations are statistical estimators and
as such they are subject to systematic and random errors. The systematic error in
statistics is typically examined measuring bias, whereas random errors are examined
with standard errors. In this chapter the bias, standard errors, and root mean squared
errors (RMSE), are defined, and we describe how they can be obtained using the
equate package.

3.8.1 Bootstrap Standard Errors of Equating

Suppose for a moment that a very large number of replications of an equating
procedure can be obtained using samples from a population of examinees. This
means that, for each score value, there is a large collection of equated values
obtained using each sample in the replications. For each score value, the standard
error of equating can be defined as the standard deviation of the collected equated
values over the replications (Kolen and Brennan 2014). However, in real life practice
only one sample of data is usually available, and thus methods to obtain the standard
error of equating should use the score data at hand. One such method is the bootstrap
method (Efron 1982; Efron and Tibshirani 1993) that can be used to obtain the
standard error of any statistic of interest using a large number of random samples
with replacement from the (unique) observed sample data. This method is extremely
useful in the context of equating because for some equating transformations it
is sometimes very difficult (if not impossible) to derive explicit formulas of the
standard errors.

In the case of equating functions, the following algorithm can be used to obtain
standard errors of equated values using bootstrap:

1. Draw a random sample of size ny with replacement from the observed sample of
ny test takers that have been administered test form X.

2. Draw a random sample of size ny with replacement from the observed sample of
ny test takers that have been administered test form Y.

3. Estimate the equating transformation using the data from the bootstrap samples
obtained in step 1 and 2.

4. Replicate step 1 through 3 L times, which yields L bootstrap estimates of the
equating transformation.

5. Estimate the standard error using

L
SE(x;) = % > e — @i(x)]? (3.27)
=1
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where ¢;(x;) = % ZIL=1 @1(x;), and @;(x;) is the estimated equated score for the
[-th replicate.

Because the replicated samples are taken directly from the raw score data, this
method is called empirical bootstrap. A variant of the empirical bootstrap utilizes
a parametric model to sample from. Thus, in the parametric bootstrap (Efron and
Tibshirani 1993) a parametric model is fitted to the data and is treated as if it
describes the population appropriately so that the statistics of interest are simulated
from the fitted model. Note that sampling with or without replacement is considered
the same because the populations are assumed to have infinite size. To obtain
parametric bootstrap standard errors, one can follow these steps:

1. Use log-linear modelling described in Sect. 2.3 to fit the empirical distributions
of the test forms X and Y.

2. Use the fitted distributions from step 1 as population distributions for test forms
X and Y and randomly select ny scores for test X and ny scores for test Y. The
obtained distributions are the parametric bootstrap sample distributions of scores
on X and Y, respectively.

3. Estimate the equating transformation using the parametric bootstrap sample
distributions of scores obtained in step 2.

4. Replicate step 2 and 3 L times.

5. Estimate the standard error (SE) at test score x; over the samples using Eq. (3.27).

3.8.2 Bias and RMSE

Besides the standard error of equating, other measures such as bias and RMSE can
be defined in the context of equating. For score x;, let ¢(x;) be the true equated score
and ¢;(x;) be the equated score based on sample [ using any particular equating
method. We define bias in a specific test score x; as

L
bias(x) = 1 3 ix) — plx)], (3.28)
=1

where L is the number of replicates (or samples). Combining the systematic (bias)

and random standard errors (SE) yields the RMSE = \/ bias(x;)* + SE(x;)? in test
score x;, which can be estimated through

L
RMSE() = | 73 [6i(0) — gl (3.29)
=1
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Because “true” equated values do not exist, a criterion value ¢(x;) is needed
in order to estimate the bias. In the following section, examples using the equate
package are shown to exemplify bootstrap standard errors, bias, and RMSE.

3.8.3 Examples Using equate

Estimates of SE, bias, and RMSE can be obtained using the bootstrap ()
function in the equate package, which implements both empirical and parametric
bootstrap methods. The bootstrap () function is described later in this section.
We start with an example showing how to obtain the bootstrap standard error of
equating by adding the argument boot =TRUE in a call to the equate () function.
In this case, bootstrap standard errors are based on sample sizes as specified in
the arguments xn and yn. By default, the used sample sizes are matched with
the observed sample sizes. The number of bootstrap samples is specified in the
argument reps, which by default is set to 100 replications. To illustrate how to
use bootstrap, we give an example using data from Kolen and Brennan (2014)
and perform equipercentile equating using 100 bootstrap replications. The example
shows a comparison between analytic standard errors and bootstrap standard errors.
The values of the analytic standard errors are stored in the object anse and can be
found in Kolen and Brennan (2014, p. 72). Reusing the objects xACT and yACT
created earlier, the comparison is made by running the following code:

\Y

reqgl <- equate (xXACT, yACT, type = "equipercentile",
boot = TRUE, reps = 100)

+

> anse <-c(1.9384,.8306, .5210, .8210, .2950, .1478, .2541,
+ .1582, .1969, .1761, .1731, .1952, .1800, .2311, .2431,

+ .2138, .2764, .2617, .3383, .2826, .2947, .3299, .3183,

+ .3865, .3555, .3013, .3683, .3532, .3069, .3422, .2896,

+ .3268, .3309, .3048, .3080, .3044, .3240, .2714, .3430,

+ .2018, .2787)

Figure 3.4 mimics Figure 7.1 in Kolen and Brennan (2014) and it was produced
using the following code:
plot (0:40,reqgl$bootstrapssse, type="1",1lty=2,xlim=c(5,40),
ylim=c(0,0.5),xlab="Test X Score",ylab="Standard errors")
lines (0:40,anse, 1ty=1)
legend ("topright",c("Bootstrap", "Analytic"),lty=c(2,1))

vV V + Vv

It can be seen that bootstrap standard errors are very similar to analytic standard
errors and are thus a valuable alternative when no formulas for standard errors are
available. Note that because the bootstrap method involves random sampling, the
appearance of the figure might slightly change if the analysis is redone.

To perform parametric bootstrap in R, one has to provide optional frequency
distributions. Their role is to replace the sample distributions x and y when
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Fig. 3.4 Analytic and bootstrap standard errors

bootstrapping is performed (i.e. step 2 above). It is also possible to perform multiple
equatings at each bootstrap replication with the boot strap () function described
in the next section. In equate, it is possible to obtain bias, standard errors, and
RMSE for each equating function with the same bootstrap data. These ideas are
illustrated in the next section.

3.8.4 Additional Example: A Comparison of Traditional
Equating Methods

In this chapter a number of traditional equating methods have been described for
different data collection designs. To illustrate how to compare and choose between
equating methods, a comparison will be performed for the NEAT design using the
ADM data set described in Chap. 2. This time, we will use parametric bootstrap where
polynomial log-linear models are used to fit distributions as described in Sect. 2.3.
Suppose that log-linear models chosen for X and Y with two univariate and one
bivariate moments are adequate to fit the score data in the following way:

loglpi] = By + Bt + /.‘35()612 + By + Biai + B xay, (3.30)
and

log[pu] = By + Bive + Bavi + Biar + Biaj + B na. 331
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Using the objects neat .x1 and neat .x2 created in Chap.2, these log-linear
models can be fitted using the following code:

neat.xc <- presmoothing(neat.xl, "loglinear",
degrees = list (2, 1))
neat.yc <- presmoothing(neat.yl, "loglinear",
degrees = list (2, 1))

+ v + Vv

To perform parametric bootstrap with the bootstrap () function, a few
arguments need to be set. A typical call to the functions reads as

bootstrap(x, y, xn = sum(x), yn = sum(y), reps = 100,
crit, args, eqgs = FALSE, ...)

where x and y are either score frequency distributions or previously created
equating objects using equate (). The arguments xn and yn are the
corresponding sample sizes which by default are set to the total observed number of
test takers that have been administered test forms X and Y, respectively. The number
of replications L can be specified using the (reps) argument, and its default value
is 100. As mentioned before, to obtain a measure of bias (and thus a measure of
RMSE as well), a criterion equating function ¢(x;) is needed. The criterion equated
values can be provided using the (crit) argument. To be able to compare different
methods in terms of SE, bias and RMSE, one can perform multiple equatings in a
single bootstrap study. In order for this to work, the arguments for each equating
must be combined into a single object using the 1ist () function, which is read
into the args argument of the bootstrap () function.

For example, suppose that criterion equated values are considered to come as
a result of an equipercentile frequency estimation equating method. If we use the
presmoothed score data, the criterion equated values can be obtained as follows:

> critF <- equate (neat.xc, neat.yc, "equip",
+ "frequency estimation") $concS$yx

Now, suppose we want to compare the Tucker, Levine, chained linear, frequency
estimation, and chained equipercentile equating methods. A simple way to do this is
to create a list containing arguments for each equating method. An example is given
below.

> neat.argms <- list(i = list(type = "i"),

+ 1t = list(type="1lin", method = "tucker"),

+ 11 = list(type="1lin", method = "levine"),

+ lc = list(type="1lin", method = "chain"),

+ ef = list (type="equip", method = "freqg", smooth="log"),
+ ec = list(type="equip", method = "chain", smooth="1log"))

With these arguments, the bootstrap function can be used as follows

> boOotNEAT <- bootstrap (x=neat.xc, y=neat.yc ,xn = 100,
+ yn = 100, reps = 100, crit = critF, args = neat.argms)

At each replication, an estimated equating is performed and saved. The bias
in Eq. (3.28) and the RMSE in Eq. (3.29) can be obtained if a vector of criterion
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Fig. 3.5 Bias and standard errors for the five equating methods using the ADM data

equating scores is added via the argument crit, which in this example corresponds
to frequency estimation equipercentile equating. To obtain a matrix of estimated
equated values at each replication, the argument eqs = TRUE is used.

A more convenient way to analyze the results is by means of plots. We have
chosen to show the obtained standard errors and bias in Fig. 3.5, although one can
also obtain a plot of RMSE using the plot function as shown in the following code?:

plot (bootNEAT, out = "se", addident = F,

col = c¢(1, rainbow(5)), legendplace = "top")

plot (bootNEAT, out="bias",addident=F, legendplace="top",
col=c(1l, rainbow(5)),morepars=1list (ylim=c (-2, 5)))
plot (bootNEAT, out="rmse",addident=F, legendplace="top",
col=c(1l,rainbow(5)) ,morepars=1list (ylim=c (0, 5)))

+ v + Vv + Vv

From Fig. 3.5, it can be seen that in terms of both bias (left panel) and standard
errors (right panel), the linear Tucker equating seems to outperform the other
equating methods.

These findings can be confirmed using the summary () function, which when
applied to the boot NEAT object will show the bias, mean standard errors, RMSE,
and absolute and weighted means from each equating. The weighted means
are defined as the multiplication of the error estimate at each score point by
the corresponding relative frequency in X. To obtain this information with the
summary function, write

> round (summary (bootNEAT) ,2)

The obtained output* is the following table where the standard errors, bias and
RMSE are given for the examined methods.

3Because of the random sampling involved in the bootstrap method, the obtained figures can be
different.
“Because of the random sampling involved in the bootstrap method, the obtained output can be
different.
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se w.se bias a.bias w.bias wa.bias rmse w.rmse

i 0.00 0.00 -0.64 0.68 -0.01 0.01 0.68 0.01
lt 1.86 0.02 0.05 0.31 0.00 0.00 1.90 0.02
11 2.44 0.02 -0.07 0.28 0.00 0.00 2.46 0.02
lc 2.01 0.02 0.00 0.15 0.00 0.00 2.02 0.02
ef 2.37 0.02 -0.02 0.38 0.00 0.00 2.41 0.02
ec 2.69 0.02 -0.15 0.36 0.00 0.00 2.73 0.02

It follows from the output that, indeed, the lowest value for standard errors is seen
for the linear Tucker equating.

3.9 Summary

In this chapter traditional equating methods have been illustrated using the data
described in Chap. 2. Several features of the equate package have been highlighted
including the use of different equating methods for different data collection designs.
In the last part of this chapter, it has been shown how to compare and assess different
equating transformations using the bootstrap method for calculating standard errors
and measures of bias and RMSE. A recent paper (Wiberg and Gonzélez 2016)
discusses more thoroughly how to assess an equating transformation, and these ideas
will be discussed in detail in Chap. 7.

In the next chapter, kernel equating is introduced with examples using the
kequate and SNSequate packages.
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Chapter 4
Kernel Equating

Abstract This chapter describes the kernel equating framework. The five steps
that characterize kernel equating are illustrated using the Math20EG, Math20SG,
CBdata, and KB36 data sets that were introduced in Chap. 2 and which have been
previously analyzed in the literature. We also illustrate the methods using the ADM
admissions test data set. The R packages kequate (Andersson et al., J Stat Softw
55(6):1-25, 2013) and SNSequate (Gonzélez, J Stat Softw 59(7), 1-30, 2014) are
used throughout the chapter.

4.1 A Quick Overview of Kernel Equating

In the kernel equating approach (Holland and Thayer 1989; von Davier et al. 2004),
continuous approximations of the discrete score distributions Fy and Fy are obtained
using kernel smoothing techniques (Silverman 1986). Such approximations are
achieved by defining a continuized random variable that is a function of (i)
the originally discrete score random variable, (ii) a continuous random variable
characterizing the kernel, and (iii) a parameter controlling the degree of smoothness
for the continuization (see Sect.4.4). The conversion of scores is based on the
estimated equating transformation

Gar,s) = Fy (Fi (: 8):8) = Fy (B (), (4.1)

where hy and hy are parameters that control the degree of smoothness in the
continuization, and T and § are vectors of estimated score probabilities with
coordinates defined as r; = Pr(X = x;) and s = Pr(¥Y = y;) respectively, with
x; and y; taking values in 27, and %/, respectively. Both, r and S are obtained
using the so-called design functions (DF), which take into account the chosen data
collection design in the estimation (see Sect. 1.3.1). This process is performed after
presmoothing the discrete (univariate and/or bivariate) observed-score frequency
distributions by typically using log-linear models (see Sect.2.3). The accuracy of
the estimated @ (x) is assessed with different measures, especially the standard error
of equating.
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The kernel equating method has been summarized in the following five steps
(see e.g., von Davier et al. 2004): (1) presmoothing, (2) estimation of scores
probabilities, (3) continuization, (4) computation of the equating transformation,
and (5) computation of accuracy measures. In the following sections, we provide
details on the five steps in kernel equating together with examples of how to
implement each of the steps in the kequate and SNSequate packages. Additional
examples besides the ones shown in this chapter can be obtained from the book’s
webpage.

4.2 Step 1: Presmoothing

Presmoothing the score distributions as a first step when performing equating
was described in Sect.2.3 and the use of log-linear models for presmoothing and
how to implement it with equate was described in Sect.2.3.2. In this section, we
describe how the presmoothing step in kernel equating is performed using both the
SNSequate and kequate packages.

4.2.1 Presmoothing with SNSequate

Presmoothing in SNSequate is performed using the loglin.smooth ()
function. This function fits log-linear models to score data and provides estimates
of the score probabilities (Step 2) as well as the C matrix! decomposition of their
covariance matrix that is needed for the calculation of the standard error of equating
(Step 5, see Sect.4.6). The loglin.smooth () function is “design-specific”,
which means that its functionality will adapt according to the equating design
specified in the argument design . A typical call to the function is as follows

loglin.smooth (scores, degree, design,...),

where the argument scores receives as input the score frequency distributions
to be presmoothed, and the argument degree is used to specify the number of
power moments to be fitted. In what follows, we give examples of univariate and
bivariate presmoothing using the Math20EG, Math20SG, CBdata, and KB36
data described in Chap. 2.

"Further details about C matrices are given in Appendix B.2.
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4.2.1.1 Presmoothing Under the EG Design
We start with data collected under an EG design and fit a polynomial log-linear

model for the X scores as described in Eq.(2.4). We fit a model with highest
polynomial degree 7, = 2, which can be written as

log(pj) = Bo + B () + B3 (). (4.2)

The model in Eq. (4.2) can be fitted in SNSequate using the following code

> data (Math20EG)

> presEG <- loglin.smooth (scores = Math20EG[, 1],
+ degree = 2, design = "EG")

> presEG

Call:

loglin.smooth.default (scores = Math20EG[, 1],

+ degree = 2, design = "EG")

Estimated score probabilities:

Score Est.Score.Prob.

1 0 0.002270957
2 1 0.004428770
3 2 0.008098301
4 3 0.013884856
5 4 0.022321610
6 5 0.033646997
7 6 0.047555830
8 7 0.063022827
9 8 0.078312061
10 9 0.091242272
11 10 0.099678200
12 11 0.102103574
13 12 0.098065977
14 13 0.088314586
15 14 0.074573268
16 15 0.059043294
17 16 0.043832338
18 17 0.030510924
19 18 0.019913736
20 19 0.012186718
21 20 0.006992903

The output shows the score scale in the score column, and the corresponding
estimated score probabilities in the Est . Score.Prob. column. Note that these
values coincide with what is reported in Table 7.4 in von Davier et al. (2004).

The object presEG contains the elements sp . est, C, and psv, which store the
estimated score probabilities, ?j, the C matrix, and the score scale 2", respectively.
To exemplify the retrieving of these elements, suppose that we are interested in
how the presmoothed score distribution compares to the original score distribution.
Mimicking what is shown in Figure 7.1 in von Davier et al. (2004), Fig. 4.1 shows
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a plot of the original and smoothed score distribution and was generated with the
following code:

data ("Math20EG", package = "SNSequate")

rj <- loglin.smooth(scores = Math20EG[, 1],

degree = 2, design = "EG")S$sp.est

sk <- loglin.smooth(scores = Math20EG[, 2],

degree = 3, design = "EG")S$sp.est

score <- 0:20

plot (score, Math20EG[, 1],pch = 0,ylab="Frequency",
xlab = "X scores")

points(score, rj x 1453, pch = 15)

legend ("topright",pch=c(0,15),c("Observed", "Fitted"))

vV V+ VvV VvV + VvV + VvV V

4.2.1.2 Presmoothing Under the SG Design

As was seen in Chap. 2, presmoothing under the SG design is possible by fitting a
bivariate log-linear model for test scores X and Y. A convenient strategy is to start
estimating the two univariate marginal score distributions for tests X and Y in the
same way as for the EG design. When satisfactory univariate models are obtained,
bivariate models should be estimated. Besides the univariate moments from each
univariate log-linear model, the cross-moments between X and Y should be included
up to the highest moments included in the univariate log-linear models. The best
fitting model should be chosen according to the criteria discussed in Sect. 4.2.3. To
presmooth the bivariate frequency distribution according to the SG design, we can,
for example, consider the use of three power moments for each (marginal) X and Y
score and one cross moment XY and fit the following log-linear model
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T,=3 L.=1L;=1

Ts=3
log(pi) = Bo+ Y B + Y B + D D By (4.3)

i=1 i=1 i=1 I=1

When loglin.smooth () is used to fit a bivariate score distribution under
the SG design, the argument degree becomes a vector with entries equal to the
number of power moments to be fitted to the marginal distributions and the number
of cross moments to be fitted to the joint distributions.

> data(Math20SG)

> presSG<-loglin.smooth (scores = Math20SG,
+ degree = c(3, 3, 1, 1),design = "SG")

> presSG

Call:

loglin.smooth.default (scores = Math20SG,

+ degree = c(3, 3, 1, 1), design = "SG")

Estimated score probabilities:

Score r s
1 0 0.001583093 0.001578752
2 1 0.003561066 0.003623786
3 2 0.007203015 0.007473589
4 3 0.013230277 0.013976282
5 4 0.022240753 0.023870355
6 5 0.034421089 0.037425573
7 6 0.049260072 0.054058035
8 7 0.065405878 0.072113498
9 8 0.080796899 0.089016839
10 9 0.093091894 0.101848078
11 10 0.100276704 0.108179978
12 11 0.101221187 0.106838498
13 12 0.095968537 0.098250225
14 13 0.085656941 0.084233492
15 14 0.072132287 0.067359828
16 15 0.057425354 0.050197807
17 16 0.043288323 0.034746895
18 17 0.030921249 0.022198047
19 18 0.020916943 0.012962520
20 19 0.013366505 0.006835540
21 20 0.008031934 0.003212383

In this case, degree = ¢ (3, 3, 1, 1) meansthat7, =3,T, =3,L, =1,
and Ly = 1, respectively. Note that although we have fitted a bivariate loglinear
model, the output shows the marginal estimated score probabilities. This is due to
the fact that loglin.smooth () internally applies the DF to obtain 7; and S
according to the specified equating design (see Sects. 4.3 and B.1). Note also that
the outputs coincide with the results shown in Table 8.5 in von Davier et al. (2004).
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4.2.1.3 Presmoothing Under the CB Design

Presmoothing the data to be used under the CB design in SNSequate is possible
by adding some additional arguments to the loglin.smooth () function. As
we have seen in Sect. 1.3.1.3, the collected data under the CB design result in two
independent bivariate vectors of scores. The argument scores is used for scores
from the group taking test form X first and then later test form Y, whereas scores?2
is used for the group taking test form Y first and then test form X. We use the
CBdata introduced in Chap.?2 to exemplify presmoothing under the CB design.
CBdata is a list of two elements, datx1y2 and datx2y1, containing the scores
for the first and second group of test takers, respectively.
Suppose that for each of the bivariate score vectors, we want to fit the model

T,=2 Ts=2

log(pie) = Bo + D B + D BT (i)' + B 2k (4.4)

i=1 i=1

The model in Eq. (4.4) can be fitted using the following code

> data (CBdata)

> presCB <- loglin.smooth (scores=CBdatas$datxly2,

+ degree=c(2,2,1,1,2,2,1,1), design="CB",

+ scores2=CBdatas$datx2yl,K=76,0=77,wx=0.5,wy=0.5) $sp.est

The arguments K and J are used to indicate the number of possible test score
values for test forms X and Y, respectively. The arguments wx and wy correspond
to weights used within the CB design (see Sect. B.1) when the collected data are
used as coming from two independent SG designs (see Sect. 1.3.1.3). The output
(not shown) once again corresponds to the estimated score probabilities.

4.2.14 Presmoothing Under the NEAT Design

Kernel equating can be seen as an improved version of the traditional equipercentile
equating in that percentile ranks and linear interpolation are replaced by more
sophisticated smoothing techniques. As such, the assumptions made and the
methods adopted for equipercentile equating methods under the NEAT design
described in Sect.3.4.2, can be translated to the kernel equating framework. As
a matter of fact, both chained and frequency estimation kernel equating can be
used under the NEAT design (see Sect.4.5.1). In the kernel equating framework,
frequency estimation is known as poststratification equating (PSE) (von Davier et al.
2004).

Under a NEAT design, the presmoothing step includes the fitting of two bivariate
log-linear models. Let x; and y; be possible scores on test forms X and Y,
respectively, and a; be a possible score on the anchor test A. The score probabilities
to be modeled using bivariate log-linear models are defined as

pi =Pr(X =x;,A = a)), 4.5)
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and
qu =Pr(Y =y, A = a)), (4.6)

where the p;; probabilities are defined on population P and the gy probabilities are
defined on population Q.
Suppose we want to fit the following log-linear model for X (and similarly for Y)

T,=2 T,=2
log(pi) = Bo + D BE@) + > By + i<l 4.7)

i=1 i=1

If the chained equating (CE) method is chosen, then we need to presmooth
four different score distributions (see Eq. (3.24)). Accordingly, four vectors of score
probabilities rp, tp, Sp, and ty have to be estimated (see Eq. (B.6)). The loglinear
model in Eq. (4.7) can be fitted using the following code:

> presNEAT CE<-loglin.smooth (scores=KBneat$x,
+ degreeXA=c(2,2,1,1) ,degreeYA=c(2,2,1,1),
+ design="NEAT CE", scores2=KBneat$y,K=37,J=37,L=13) $sp.est

The arguments degreeXA and degreeYA function similarly to degree when
design="SG" is selected (see Sect.4.2.1.2). The values of K, J, and L indicate
the total number of possible scores that can be obtained in test forms X, Y, and A,
respectively. The displayed output corresponds to the estimated score probabilities.

On the other hand, if PSE is to be conducted, the following code can be used to
fit the model in Eq. (4.7)

> presNEAT PSE<-loglin.smooth (scores=KBneat$x,
+ degreeXA=c(2,2,1,1) ,degreeYA=c(2,2,1,1),
+ design="NEAT PSE", scores2=KBneat$y,K=37,J=37,L=13,w=1)

The additional argument w is used here to specify the value of wp in Eq. (3.4).
The displayed output corresponds to the estimated score probabilities.

4.2.1.5 Modeling Complexities in the Data

The data sets used so far to illustrate the presmoothing step do not show any
particular irregularities. Sometimes, however, the observed distributions are
complex. Two common complexities in test data are discussed in von Davier
et al. (2004, Chap. 10) and are briefly discussed here. The first is “teeth” or “gaps”
in the observed score frequencies that occur at regular intervals due to the fact
that scores are rounded to integers. The second is a “lump” or “spike” at O in the
marginal distributions, and this occurs because negative values” are rounded to 0.

2Negative score values can arise for instance when in a multiple choice test, a fraction of the total
score in the test is discounted for each wrong answer in the test.
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Fig. 4.2 Score frequencies distribution: original, presmoothed without accounting for the lump

(WL), and accounting for the lump (AL)

One way to model lumps and teeth is to extend the elementary

by adding indicator variables for the particular O and teeth values.

justification of this practice, see von Davier et al. (2004).

log-linear model
For a theoretical

The loglin.smooth () function can handle these types of features in the
data. To illustrate its use, we reproduce an example appearing in Moses and von
Davier (2005). Figure 4.2 shows a score frequency distribution with a lump at X = 0
and compares this distribution with presmoothed versions that do not account for
the lump (WL) and that do account for it (AL). The figure was produced using the

following code

0,

> score <- 0:20

> freq <- c(10, 2, 5, 8, 7, 9, 8, 7, 8, 5, 5, 4, 3,
+ 2, 0, 1, 0, 2, 1, 0)

> ldata <- data.frame(score, freq)

> plot (ldata, pch=16, xlab="Scores",ylab="Frequency",
+ main="",col=1)

> ml = loglin.smooth(scores=1datasfreq, kert="gauss",
+ degree=c(3),design="EG")

> m2 = loglin.smooth(scores=1datasfreq, kert="gauss",
+ degree=c(3),design="EG", lumpX=0)

> Ns = sum(ldataS$freq)

> points(0:20,mlSsp.estxNs, col=2, pch=16)

> points (0:20,m2$sp.estxNs, col=3, pch=16)

> legend("topright",pch=c(16,16,16),col=c(1,2,3),

+ c¢("Original", "Presmoothed WL", "Presmoothed AL"))
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4.2.2 Presmoothing with kequate

In Sect. 2.3.1, the observed score frequencies were assumed to follow a multinomial
distribution so that maximum likelihood estimates of r; and si can be calculated. A
standard result of probability theory establishes that the conditional distribution of
independent Poisson distributed random variables given the sum of these follows
a multinomial distribution. Modeling Poisson data in R with the glm () function
is straightforward. If we assume that the score frequencies follow a Poisson
distribution, then dividing the obtained fitted values 71; by the sum of the frequencies
allows estimates of r; and s to be obtained directly.’ This approach is adopted
in the kequate package, which makes use of the glm() function to model the
score frequencies. The created glm () object is read into kequate where further
calculations are made internally. We thus first discuss briefly how the glm ()
function is used to estimate polynomial loglinear models. Using the resulting
estimated score frequencies to obtain estimations of the score probabilities is
discussed in Sect.4.3.2. The ADM data set is used in the following sections, and
additional examples using other data sets can be found in the book’s webpage.

4.2.2.1 Presmoothing Under the EG Design

Consider the object egADMk . x created in Chap. 2 using the kefreq () function
from kequate. Assume that the score data are well described by a polynomial
log-linear model of the form

T,=6

log(p)) = Bo+ Y _ B (%) (4.8)

i=1
The following code can then be used to fit the model in Eq. (4.8) using the g1lm ()
function in R:

> egADMx <- glm(frequency~I(X)+ I (X"2)+
+ I(X®3)+ I(X™4)+ I(X"5)+I(X"6),
+ family = "poisson", data = egADMk.x, x = TRUE)

Because the ~ operator has a different meaning in an R formula, the I () is used
to wrap polynomial terms. A summary of the fitted model appears as follows:

> summary (egADMx)

Call:
glm(formula = frequency ~ I(X) + I(X"2) + I(X"3) + I(X™4) +
I(X*5) + I(X"6), family = "poisson", data = egADMk.x, x = TRUE)

3Note that this is only true for the EG design. For other designs, the vector of score probabilities
has to be further transformed using the design functions in order to obtain 7; and 5.
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Deviance Residuals:
Min 10 Median 30 Max
-2.50354 -0.64481 -0.00515 0.47955 1.94570

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -1.657e+01 1.957e+00 -8.467 < 2e-16 *#**
I(X) 2.981e+00 3.479e-01 8.570 < 2e-16 *#*x
I(X*2) -1.659e-01 2.437e-02 -6.806 1.00e-11 *x*=*
I(x"3) 4.894e-03 8.633e-04 5.669 1.44e-08 #%+*
I(X%4) -8.046e-05 1.637e-05 -4.914 8.93e-07 **%*
I(x"5) 6.952e-07 1.583e-07 4.390 1.13e-05 #*+
I(xX%6) -2.480e-09 6.127e-10 -4.047 5.19e-05 *x%*

Signif. codes: O x%% 0.001 %% 0.01 %= 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 9439.808 on 80 degrees of freedom
Residual deviance: 69.392 on 74 degrees of freedom
AIC: 509.49

Number of Fisher Scoring iterations: 6

The output shows the estimated values for s together with standard errors and
associated p-values (the columns Estimate, Std. Error, and Pr(>|z]),
respectively). Fit statistics such as the AIC and the residual deviance are also
reported. Although this output is the usual one for a glm object, we are more
interested in the obtained fitted values because they will be used to estimate the score
probabilities. Also, the C matrices (see Sect. B.2) are of interest for the calculation
of the standard error of equating. As pointed out earlier, kequate will make use of
the egADMx glm object and will internally calculate these elements. Nevertheless,
how to obtain estimated score probabilities under the EG using the fitted frequency
values from the glm output will be illustrated in Sect.4.3.2. Also, in Sect.4.5.2 we
will show how the glm object egADMx can be read into kequate together with a
similar object created for test Y in order to obtain a kernel equating transformation.

4.2.2.2 Presmoothing Under the SG Design

Presmoothing score data under the SG design can be done in a very similar way.
For instance, using the sgADMxy object created in Chap.2 with the kefreqg()
function for the ADM data set, the log-linear model in Eq. (4.3) with T, = T, =
L, = Ly = 1 can be fitted using

> SGadmXY <- glm(frequency~I (X)+I(A)+I(X):I(A),
+ family = "poisson",data = sgADMxy, x = TRUE)

Similarly as with the EG design, the glm object SGadmXY can then be read into
kequate to perform a kernel equating as will be shown in Sect. 4.5.2.
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4.2.2.3 Presmoothing Under the CB Design

To presmooth score data under the CB design we proceed in the same way as for the
SG design, except that separate log-linear models are fitted for the two independent
groups. For instance, using the CBdata we first create score distributions using
kefreq (), then we fit the log-linear model given in Eq. (4.3) as follows:

data ("CBdata", package="SNSequate")

CBadmx1ly2 <- kefreqg(CBdatasdatxly2([,1],0:75,
CBdatas$datxly2[,2],0:76)

CBadmx2yl <- kefreqg(CBdatasdatx2yl[,1],0:75,
CBdatas$datx2yl[,2],0:76)

CBadmXY1l <- glm(frequency~I(X)+I(X*2)+I(X"3)+I(A)
I(A*2)+I(A"3)+ I(X):I(A),family = "poisson",
data = CBadmxly2, x = TRUE)

CBadmXY2 <- glm(frequency~I (X)+I(X*2)+I (X"3)
I(A)+I(A®2)+I(A™3)+I(X):I(A),family = "poisson",
data = CBadmx2yl, x = TRUE)

+ + VvV ++V A+ V A+ VoV

Note that although there is no anchor test involved in the CB design, the
kefreq () function assigns the label A by default when creating any bivariate score
frequency distribution. This is why the A appears in the g1m formula, and the same
is true for the SGadmXY glm object created above.

4.2.2.4 Presmoothing Under the NEAT Design

Suppose we want to fit the log-linear model in Eq. (4.7). Using the admissions test
data, the code below can be used to presmooth the score distributions using the
objects neatk.x and neatk.y created in Chap. 2.

> NEATvX <- glm(frequency~I (X)+I (X"2)+I(A)+I(X):I(A),
+ family = "poisson", data = neatk.x, x = TRUE)
> NEATVY <- glm(frequency~I (X)+I (X"2)+I(A)+I(X):I(A),
+ family = "poisson", data = neatk.y, x = TRUE)

Note that regardless of whether CE or PSE is used, the presmoothing step is
done in the same way. This is because the glm () function is only being used to
fit the observed score frequencies. The kequate () function will then receive the
glm object as an input and will automatically account for the different methods to
estimate the score probabilities.

In Chap. 2, plots of the marginal frequencies of X and A in population P and of Y
and A in population Q were introduced to graphically illustrate score data under the
NEAT design. This type of plot was the default for the plot () function when the
freqgtab () function in equate was used to create bivariate frequency distributions
(see, e.g., Fig.2.4). When we are working on a kernel equating project using only
the kequate or SNSequate package and the equate package has not been loaded,
it is still possible to obtain the type of plots just described. As a matter of fact, the
objects verb.x and verb . xa previously created in Chap. 2 were used to produce
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Fig. 4.3 Marginals of the bivariate frequency distributions for tests X and A in the ADM data
under the NEAT design

Fig. 4.3 using the R packages ggplot2 (Wickham 2009) and ggExtra (Attali 2016)
and the following code:

> library (ggplot2)

> library (ggExtra)

> dfl <- data.frame (verb.x,verb.xa)

> (gl <- ggplot(dfl,aes(verb.x,verb.xa))
+ geom point () + theme bw())

> ggMarginal (gl, type = "histogram")

4.2.2.5 Modeling Complexities in the Data

To illustrate the modeling of complexities in the data when using the glm ()
function, we use the ADM data and the previously created object neat . vx. Note
that because the neat . vx object was created using the kefreq () function, the
data are already formatted in a proper way (i.e., ordered by the scores vectors). If
the bivariate frequencies were not created using kefreq () , the order function in
R can be used. To order a data frame first by the A-vector and then by the X-vector
in the case of equal values of A, we can write

> neatXorder <- neatk.x[order (neatk.x$A, neatk.xS$X),]
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Assume that after examining the plots of the marginal frequencies, a lump is
found at X = 0 and spikes are found at score values 5 and 10 for test form X. In
order to incorporate this information in the log-linear model, we create indicator
variables for each of these score values. We create two indicator variables, one that
takes the value 1 if X is equal to O (1x0) and another that takes the value 1 if X has
either the value 5 or 10. In practice we proceed as follows:

neatk.x$ix0 <- numeric (length (neatk.x$X))
neatk.x$ixl <- numeric (length (neatk.x$X))
neatk.x$ix0 [neatk.x$X==0] <- 1

neatk.x$ix1 [neatk.x$X %in% c(5, 10)] <- 1

vV V. V V

If the data contain more complexities in the X variable, we can create additional
variables, and of course we can also construct new variables for particular values of
the A and/or Y variables. A simple example that considers the fit of only the first
two moments of the distribution of X, the first moment of the distribution of A, the
cross moment XA, and the indicator variables defined previously is given in the code
below.

> iNEAT <- glm(frequency~I(X)+I(X"2)+I(A)+I(X):I(A)
+ I(ix0)+I(ix1),data = neatk.x,
+ family = "poisson", x = TRUE)

4.2.2.6 Presmoothing Under the NEC Design

Presmoothing under a NEC design (Wiberg and Brinberg 2015) proceeds similarly
as under the NEAT design. Recall from Chap. 1 that a NEC design typically uses
other information from the test takers’ covariates together with or instead of an
anchor test. Because the covariates can be of any data type and not just integers, the
specifications of the log-linear models can be somewhat more complicated. This
means that the kefreqg () function in kequate cannot always be used directly
without manipulating the data first.

An example with the admissions test data with covariates is given here to
illustrate how to presmooth data under a NEC design. Besides the test takers’ scores,
we have information about the two covariates sex (with values of 1 if male and 2
if female) and age category (with values of 1 if age is 20 years or younger, 2 if
age is 21-24 years, 3 if age is 25-29 years, and 4 if age is 30 years or older).
This means that there are 2 x 4 = 8 possible combinations of covariates. This also
means that the frequency vector has length 81 x 8 = 648. The data are stored in
the data frames ADMnecX and ADMnecY, each containing the test takers’ scores
and the covariates (sex and age). In this example we do not use the kefreq ()
function to create score distributions, and show how this process can be made in
an alternative manner. The data are first sorted by age, then by sex, and finally
by the test scores on test X. To obtain a data frame NECxfreq that contains
the frequencies for all pairs of combinations of variables, we use the R functions
table() and as.data.frame () as follows.
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load ("ADMnecX.Rda")

NECx <- data.frame (Xage=ADMnecX[,1], Xsex=ADMnecX][, 2],
x=apply (ADMnecX [,43:122],1,sum))

NECxfreq <- as.data.frame(table(factor (NECxS$x,

levels = 0:80,ordered=TRUE) , factor (NECx$Xsex,

levels = 1:2,ordered=TRUE) , factor (NECx$Xage,

levels = 1:4,ordered=TRUE) ,dnn=c ("necX", "sex", "age")))

+ + 4+ VvV + VoV

Next, the test scores and covariates vectors have to be specified in a data frame
using the rep () function. This ensures we have a data frame with correctly sorted
vectors with all possible combinations.

> NECxdata <- data.frame (frequency = NECxfreg$Freq,
+ necX = rep(0:80,8), sex = rep(rep(l:2, each=81),2),
+ age = rep(l:4, each = 81%2))

When we have obtained a correctly sorted data frame, we can proceed to
fit log-linear models in the same way as for the NEAT design. For instance, a
polynomial log-linear model that fits three power moments of X, the main effects of
the covariates, and the interaction of the X scores with each of the covariates can be
obtained as follows.

> glmNECx <- glm(frequency~I (necX)+I (necX*2)+I (necX™3)+
+ factor(sex) + factor(age) + I(necX):I(sex)

+ I(necX) :factor(age), data = NECxdata,

+ family = "poisson", x = TRUE)

This object is later used in kernel equating with a similarly constructed object for
test Y.

No matter the chosen data collection design, several log-linear models should be
fitted and compared in the presmoothing step. This is done in order to decide which
model fits the data the best. Assessing model fit and selecting a good model for
presmoothing is discussed in the next section.

4.2.3 Assessing Log-Linear Model Fit

There are several ways to assess and compare the fit of log-linear models. Moses and
Holland (2009) recommend using the Akaike information criterion (AIC; Akaike
1974) because it is an effective criterion compared with other model selection
strategies. Choosing a log-linear model using the AIC was described in Sect. 2.3.4.

Another strategy when assessing model fit is to examine residuals. A good choice
would be to examine the Freeman-Tukey residuals (Bishop et al. 1975), which are
approximately standard normal distributed if the observed frequencies are assumed
to be Poisson distributed. If n; is the i:th observed frequency and #; is the i-th fitted
frequency, then the Freeman-Tukey residuals are defined as

FT; = J/m + /ni + 1 — /4h; + 1. (4.9)
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Unfortunately, analysis of the Freeman-Tukey residuals might be less useful in
the bivariate case because there might be a large number of zero frequencies in
the observed bivariate frequency distribution. When selecting a bivariate log-linear
model, it is instead recommended to compare the models using AIC and likelihood
ratio tests. A useful additional strategy to assess the dependency between the
variables being fitted is to assess conditional parameters such as conditional means,
variances, skewnesses, and kurtoses. The idea is that if the conditional parameters
differ to a large extent between the observed and estimated distributions, one might
need to try other models.

4.2.3.1 Assessing Log-Linear Model Fit in SNSequate

In SNSequate the gof () function contains various measures to assess the model’s
goodness of fit, and one of these measures is the Freeman-Tukey residuals. A typical
function call reads as

gof (obs, fit, methods=c("FT"), p.out=TRUE)

where obs is a vector containing the observed values, and fit is a vector
containing the fitted values. Supported options for methods are FT for
Freeman-Tukey residuals (default), Chisqg for Pearson’s chi-squared test, and KL
for the symmetrised Kullback-Leibler divergence (Johnson and Sinanovic 2000).
The p . out argument is a logic that decides whether or not to display a QQ-plot of
the Freeman-Tukey residuals. We use the Math20EG data to illustrate the gof ()
function. With the object presEG created in Sect.4.2.1.1, the following code can
be used to obtain the FT residuals, the symmetrised Kullback-Leibler divergence,
and the chi-square statistic.

> assess.EG<-gof (Math20EG[,1], presEGS$sp.est%1453,
+ method=c ("FT", "KL", "Chisg"))
> assess.EG
Freeman-Tukey Residuals:
[1] -1.35391640 -1.43902355 -1.10463321 1.06028151
[5] -0.38887200 2.04240224 -0.22359988 0.37997648
[9] 0.22932204 -0.73407900 0.92992690 -0.09097184
[13] -1.94030685 0.08173209 0.18100165 0.04945792
[17] 0.31709466 0.99852452 0.05782508 -0.60222802
[20] 0.32760700

Symmetrised Kullback-Leibler divergence:

X-squared = 420, df = 400, p-value = 0.236030325498846
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Freeman-Tukey Residuals QQPlot
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Fig. 44 QQ-plot for Freeman-Tukey residuals

By default, when method="FT" a QQ-plot is also displayed as output, and this
is shown in Fig. 4.4. From the output, we can conclude that the model is appropriate
for fitting the data.

4.2.3.2 Assessing Log-Linear Model Fit in kequate

The function FTres () in kequate is implemented to calculate the Freeman-Tukey
residuals from an estimated log-linear model. The FTres () function receives as
input two vectors containing the observed and estimated frequencies from the fitted
log-linear model. The code below shows an example using the Math20SG data

dataSG <- data.frame (X=rep(0:20, 21),

Y=sort (rep(0:20, 21)), frequency=as.numeric (t(Math20SG)))
fitSG <- glm(frequency~I (X)+I(X"2)+I(X*3)+I(Y)+I(Y"2)+
I(Y"3)+I(X):I(Y), data = dataSG, family = "poisson",

x = TRUE)

obsSG <- Math20EG

estSG <- matrix(as.numeric (fitSGs$fitted.values),

nrow= 21, byrow = T) / sum(Math20SG)

+ v Vv + + VvV + Vv

*1453
*1453
*1453
*1453

SG.estX<-apply
SG.estY<-apply
SG.obsX<-apply
SG.obsY<-apply

estSG, 1, sum
estSG, 2, sum
0obsSG, 1, sum
obsSG, 2, sum

vV V V V
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FTx<-FTres (SG.obsX, SG.estX)

FTy<-FTres (SG.obsY, SG.estY)

FTsg<-round (cbind (0:20,SG.estX,FTx,SG.estY,FTy) ,2)
FTsg

vV V. V V

SG.estX FTx SG.estY FTy

[1,17 O 2.30 -0.78 2.29 -2.19
[2,] 1 5.17 -0.93 5.27 -3.70
[3,1 2 10.47 -0.72 10.86 0.40
[4,7 3 19.22 1.27 20.31 0.83
[5,1 4 32.32 -0.37 34.68 1.06
[6,1 5 50.01 1.88 54.38 0.38
[7,1 6 71.57 -0.52 78.55 1.48
[8,1 7 95.03 0.02 104.78 -0.45
[9,] 8 117.40 -0.11 129.34 -0.90
[10,]1] 9 135.26 -0.97 147.99 -0.39
[11,] 10 145.70 0.86 157.19 -0.64
[12,] 11 147.07 0.01 155.24 -0.16
[13,] 12 139.44 -1.68 142.76 0.29

1

[14,] 13 124.46 0.42 122.39 0.43
[15,] 14 104.81 0.52 97.87 -0.58
[16,1 15 83.44 0.30 72.94 0.38
[17,] 16 62.90 O
[18,1 17 44.93 0.91 32.25 .01

.42 50.49 0

1

[19,] 18 30.39 -0.21 18.83 0.09
0

3

.79

[20,1 19 19.42 -1.00 9.93 -0.22
[21,] 20 11.67 -0.12 4.67 -3.44

Note that this results coincide with what is shown in Table 8.3 in von Davier et al.
(2004).

The conditional moments for observed and estimated bivariate frequency
distributions can be obtained in kequate through the function cdist (), which
takes as arguments the matrices containing estimated (est) and observed (obs)
frequencies in the population. By writing

> distSG <- cdist (est=estSG, obs=0bsSG, 0:20, 0:20)
> plot (distSG)

we obtain the object distSG, which contains four data frames with the conditional
parameters of each distribution. A plot of the conditional and fitted conditional mean
and variances is shown in Fig. 4.5, where the triangles represent the observed values
and the squares the fitted values. Note that this plot reproduces the results shown
in Figures 8.4-8.6 in von Davier et al. (2004).* The chosen log-linear model is
appropriate if the conditional parameters of the estimated distribution compared
with those of the observed distribution do not deviate much from each other.

4 Although variances instead of standard deviations are plotted in the right panel of Fig. 4.5.
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Fig. 4.5 The conditional parameters for each distribution using the Math20SG

4.3 Step 2: Estimation of Score Probabilities

Score probabilities are obtained from the presmoothed score distributions in step 1,
and an important part in this step is the definition and the use of the design function
(DF). The DF maps the estimated population score distributions into estimates
ofr = (r,r,...,r;) and s = (s1,5,...,5¢)". The DF for the different data
collection designs is given in Sect. B.1.

4.3.1 Estimation of Score Probabilities with SNSequate

Estimated score probabilities can be obtained as an output from the
loglin.smooth () function. This function internally calculates both T and §
according to the specified equating design. The code given in Sect.4.2.1.1 for the
EG design can be used to reproduce Table 7.4 in von Davier et al. (2004) if we write
these additional lines

> Table7.4 <-cbind(score,rj, sk)
> Table7.4
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that give the following output:

score rj sk
1 0 0.002270957 0.001172655
2 1 0.004428770 0.002594327
3 2 0.008098301 0.005257340
4 3 0.013884856 0.009788287
5 4 0.022321610 0.016794173
6 5 0.033646997 0.026633849
7 6 0.047555830 0.039160187
8 7 0.063022827 0.053543058
9 8 0.078312061 0.068284368
10 9 0.091242272 0.081472531
11 10 0.099678200 0.091218940
12 11 0.102103574 0.096129091
13 12 0.098065977 0.095638497
14 13 0.088314586 0.090101256
15 14 0.074573268 0.080623425
16 15 0.059043294 0.068728368
17 16 0.043832338 0.055984437
18 17 0.030510924 0.043708630
19 18 0.019913736 0.032805583
20 19 0.012186718 0.023742208
21 20 0.006992903 0.016618788

4.3.2 Estimation of Score Probabilities with kequate

For an EG design, the DF is the identity function (see, Eq. (B.1)), thus the estimated
score probabilities can be obtained through the estimated frequencies obtained from
the glm output.’ The following code shows an illustration using the Math20EG
data

egk.x <- kefreqg(rep(0:20,Math20EG[,1]),0:20)

egk.y <- kefreqg(rep(0:20,Math20EG[,2]),0:20)

EGx <- glm(frequency~I(X) + I(X*2),family = "poisson",
data = egk.x, x = TRUE)

EGy <- glm(frequency~I(X) + I(X*2) + I(X"3),

family = "poisson", data = egk.y, x = TRUE)

rj <- EGxS$fitted.values/sum(EGxSfitted.values)

sk <- EGy$fitted.values/sum(EGyS$fitted.values)

vV V. + VvV + V VvV V

STt might be possible to obtain estimated score probabilities from fitted frequencies for designs
different than the EG, but additional steps might be necessary (i.e., the DF should be explicitly
programmed and applied).
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For the EG and all the other equating designs, kequate automatically
estimates the score probabilities which can be easily retrieved using the function
getScores (). If a kernel equating as described in Sect. 4.5.2 has been performed
in kequate, the estimated score probabilities from the kernel equating object are
retrieved using the getScores () function. The following code can be used to
reproduce Table 7.4 in von Davier et al. (2004).

MathEG <- kequate("EG",0:20,0:20,EGx, EGy)
rj <- getScores (MathEG) $XSr

sk <- getScores (MathEG) $YS$s
Table7.4 <- cbind(0:20,rj,sk)

vV V. V V

Instead of estimating values, kequate also allows the option to provide either
vectors or matrices containing score probabilities. It is also possible to use observed
proportions, which is useful when a kernel equating that omits the presmoothing
step is performed.

4.4 Step 3: Continuization

As mentioned in the introduction of this chapter, continuizing a discrete
score random variable involves the use of both a continuous random variable
(characterizing the kernel to be used) and a bandwidth parameter (controlling
the degree of smoothness in the continuization). In what follows, we describe
continuization for the X score random variable, although the definitions for Y are
analogous.

Let X (hy) be a continuized random variable defined as

X(hx) = ax(X + hxV) + (1 — ax) jix,

where iy = Yxr 03 = 30y 1’ ax = yJo3/(03 + 0P, V is
a continuous random variable characterizing the kernel, and Ay is a bandwidth
parameter. Let K (-) be the chosen kernel, Theorem 4.2 in von Davier et al. (2004)
shows that the kernel smoothing of Fy, is defined as

S e | (4.10)

- axhy
J

which is exactly the CDF of the continuized random variable X (Ay). Although K =
@, the standard normal (or Gaussian) distribution function is a common choice of
kernel, we will later see that other alternative kernels can also be used for equating.
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4.4.1 Bandwidth Selection

The bandwidth Ay should be chosen so that the estimated density functions are
smooth but the characteristics of the originally discrete score distributions are
preserved. The bandwidth can be chosen in several ways. In von Davier et al. (2004)
it is suggested to minimize the following penalty function

PEN (hx) = Y (?j—fhx (x,-))2 +kY p @.11)
J

J

where f‘hx (xx) is the estimated density function, k is a constant, and p; is an indicator
variable taking the value 1if f; (x; —v) < 0 and f; (x; + v) > 0, and 0 otherwise.

ﬂx (%) is the derivative of fhx (xj) and v is a parameter that indicates the width of the
interval around the score x, typically chosen to be 0.25 (Lee and von Davier 2011;
von Davier 2013). The first term in Eq. (4.11) preserves the characteristics of the
distribution, although it could potentially undersmooth the data. The second term
ensures the smoothness of the continuized distribution.

Alternative methods to choose the bandwidth in kernel equating have been
proposed recently, including a cross-validation method (Liang and von Davier
2014), double smoothing (Higgstrom and Wiberg 2014), and a rule-based method
(Andersson and von Davier 2014). Two of these new bandwidth selection methods
are described in detail in Chap. 7.

4.4.2 Choosing the Kernel

Different choices besides a Gaussian kernel have been proposed in the literature. For
example, Lee and von Davier (2011) explored the use of a uniform and a logistic
kernel. If V is a uniform random variable and b is a positive real number, the uniform
CDF is defined as

0 for v<-b
K(v) = { (v +b)/2bfor —b < v < b. (4.12)
1 for v>b

The logistic CDF is defined as

1

R ETE)

4.13)

where s is a scale parameter and V has a mean of 0 and variance of o7 =
72s%/3. These alternative kernels are implemented in both kequate and SNSequate.
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Additionally, SNSequate also has implemented the Epanechnikov and adaptive
kernels (Cid and von Davier 2015; Gonzalez and von Davier 2017), which will be
described in detail in Chap. 7.

In what follows, options for continuization (kernel and selection of bandwidth)
are specified for kequate and SNSequate although examples are postponed for
subsequent sections.

4.4.3 Continuization Choices in SNSequate

The function bandwidth () implements the minimization of the combined
penalty function described in Eq. (4.11). A typical call reads as

bandwidth (scores, kert, degree, design, Kp = 1,
scores2, degreeXA, degreeYA, J, K, L, wx, wy, W, ...)

Many of the arguments function as explained in previous sections. The Kp
argument correspond to the k constant in Eq.(4.11). Note that because the
penalty function depends on both the estimated score probabilities® and the kernel
density estimate, bandwidth () incorporates the degree, design, and kert
arguments.

Choices of kernels are specified in the ker.eq () function using the argument
kert. Current options for kert include the implementation of kernel equating
using the Gaussian, logistic, uniform, Epanechnikov and adaptive kernels. In all
of these cases, setting the bandwidth parameters can be done manually using
the arguments hx and hy, or calculated automatically (default). In the last case,
ker.eq () makes a call to the bandwidth () function.

4.4.4 Continuization Choices in kequate

The selection of bandwidth parameters can be done automatically or manually.
The default is to use the penalty method in Eq.(4.11). Also, the arguments
hx and hy in the kequate () function can be specified manually. In addition
to the penalty function, two other bandwidth selection methods are currently
implemented in kequate. The first is a rule-based selection method (Andersson and
von Davier 2014) that only requires adding the argument altopt=TRUE in a call
to kequate (). The second is an implementation of double smoothing (Hall et al.
1992) in the context of kernel equating (Higgstrom and Wiberg 2014) that only
requires adding the argument DS=TRUE in a call to kequate (). These methods
will be described in detail in Chap. 7.

Estimated score probabilities are obtained by making a call to the Loglin.smooth () function.
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Currently, four different kernels are available in kequate: uniform, logistic,
standard Gaussian, and Gaussian (default). These options are specified using the
argument kernel in the kequate () function.

4.5 Step 4: Equating

Once the continuization step has been done, continuous approximations of
the score distributions are available. Thus, the fourth step in kernel equating,
which corresponds to the equating itself, can be done using the kernel equating
transformation defined in Eq. (4.10), which we repeat here

G(xir,s) = Fj (Fi (1:£):8) = Fy (Fie (1)),

4.5.1 Equating in SNSequate

To perform the actual equating in SNSequate the ker.eq () function is used. A
typical call to ker.eq () has the following general structure

ker.eqg(scores, kert, hx = NULL, hy = NULL, degree,
design, Kp = 1, scores2, degreeXA, degreeYA, J, K,
L, wx, wy, w, gapsX, gapsY, gapsA, lumpX, lumpY,
lumpA, alpha=NULL, h.adap=NULL)

where most of the arguments have already been explained in previous sections.
The arguments alpha and h.adap will be explained in more details in Chap. 7
when adaptive kernel equating is introduced. Current options for kert are gauss,
logis, uniform, epan, and adap. Possible options for the design argument
are EG, SG, CB, NEAT_CE, and NEAT PSE.

The examples that follow make use of the Math20EG and CBdata data. Other
examples of kernel equating under the SG and NEAT designs can be found on the
book’s webpage.

We first illustrate kernel equating under the EG design by comparing the different
results for: Gaussian, uniform and logistic kernels. In all cases, the log-linear models
used in the presmoothing step are specified with 7, = 2 and 7, = 3 as given in
Eq.(4.2)

> data ("Math20EG")

> mod.logis <- ker.eq(scores=Math20EG, kert = "logis",
+ hx = NULL, hy = NULL, degree = c(2,3), design ="EG")
> mod.unif <- ker.eqg(scores=Math20EG, kert="unif",

+ hx = NULL, hy = NULL, degree = c(2,3), design = "EG")
> mod.gauss <- ker.eqg(scores=Math20EG, kert = "gauss",
+ hx = NULL, hy = NULL, degree=c(2,3), design="EG")
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The output for the case of Gaussian kernel equating is as follows.

> mod.gauss

Call:

ker.eq.default (scores = Math20EG, kert = "gauss",
hx = NULL, hy = NULL, degree = c(2, 3),
design = "EG")

Equated values under the EG design:

Score eqgyx egXy
1 0 0.3937085 -0.3215515
2 1 1.5812834 0.4964832
3 2 2.6403556 1.3862241
4 3 3.6443689 2.3557751
5 4 4.6316260 3.3604009
6 5 5.6177507 4.3748539
7 6 6.6099656 5.3870449
8 7 7.6120142 6.3912345
9 8 8.6259734 7.3847116
10 9 9.6530092 8.3661703
11 10 10.6934813 9.3353858
12 11 11.7471380 10.2925436
13 12 12.8126193 11.2385828
14 13 13.8868829 12.1751787
15 14 14.9641329 13.1051884
16 15 16.0338664 14.0334143
17 16 17.0781205 14.9679945
18 17 18.0676603 15.9235928
19 18 18.9607449 16.9287484
20 19 19.7182999 18.0476989
21 20 20.3929823 19.4152871

The displayed output shows the score scale (the Score column) and each of
the equated values when X is equated to Y (the eq¥x column) and when Y is
equated to X (the egXy column). A more complete output that includes summary
statistics for scores, the selected bandwidth and kernel used in the continuization
step, and the standard error of equating (see Sect.4.6.1), is obtained by typing
summary (mod.gauss). These and other elements that are available from the
object mod . gauss are listed in Table 4.1.

As an example of retrieving some of these elements, the following code can be
used to reproduce Table 10.3 in Lee and von Davier (2011):

XtoY <- cbind(LK.XtoY=mod.logis$eq¥x,
UK.XtoY=mod.unifSeqg¥x,GK.XtoY=mod.gaussSeq¥x)
YtoX <- cbind(LK.YtoX=mod.logisS$egXy,
UK.YtoX=mod.unif$SegXy,GK.YtoX=mod.gaussSeqgxy)

Tablel0.3 <- round(cbind (XtoY,YtoX), 3)
Tablel0.3

vV V + VvV + Vv
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Table 4.1 Elements stored in an object produced by ker.eq ()

Element Value

kert Type of kernel (gauss, logis, uniform, epan, adap)
design Equating design (EG, SG, CB, NEAT CE, NEAT PSE)
eqyx Equated values when X is equated to Y

eqgxy Equated values when Y is equated to X

h.x Selected bandwidth parameter for F,

h.y Selected bandwidth parameter for F,

SEEYx Standard error of equating when X is equated to Y
SEEXy Standard error of equating when Y is equated to X
sevecYx SE-vector when X is equated to Y

sevecXy SE-vector when Y is equated to X

score Score scale

rj Estimated score probabilities for X

sk Estimated score probabilities for Y

nx Number of test takers for X

ny Number of test takers for Y

meanx Mean of X

meany Mean of Y

sdx Standard deviation of X

sdy Standard deviation of Y

kurtx Kurtosis of X

kurty Kurtosis of Y

skewx Skewness of X

skewy Skewness of Y

de f Density valuesfhx

de g Density Valuesfhy

LK.XtoY UK.XtoY GK.XtoY LK.YtoX UK.YtoX GK.YtoX

[1,] 0.447 0.439 0.394 -0.412 -0.227 -0.322
[2,] 1.573 1.639 1.581 0.486 0.556 0.496
[3,] 2.629 2.678 2.640 1.396 1.429 1.386
[4,] 3.635 3.676 3.644 2.365 2.389 2.356
[5,] 4.625 4.660 4.632 3.367 3.392 3.360
[6,1] 5.614 5.643 5.618 4.379 4.405 4.375
[7,1 6.608 6.631 6.610 5.389 5.415 5.387
[8,1] 7.612 7.628 7.612 6.392 6.415 6.391
[9,1 8.627 8.636 8.626 7.384 7.403 7.385
[10,1] 9.655 9.658 9.653 8.365 8.379 8.366
[11,] 10.696 10.694 10.693 9.333 9.342 9.335
[12,] 11.750 11.745 11.747 10.290 10.295 10.293
[13,] 12.815 12.810 12.813 11.236 11.239 11.239
[14,] 13.888 13.885 13.887 12.174 12.175 12.175
[15,] 14.963 14.964 14.964 13.105 13.105 13.105
[16,] 16.031 16.035 16.034 14.034 14.033 14.033
[17,1 17.072 17.080 17.078 14.971 14.967 14.968
[18,] 18.058 18.073 18.068 15.930 15.920 15.924
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[19,] 18.952 18.970 18.961 16.939 16.922 16.929
[20,] 19.734 19.707 19.718 18.058 18.036 18.048
[21,] 20.461 20.278 20.393 19.369 19.399 19.415

To perform kernel equating under other designs, we need to modify the argument
design accordingly. Depending on the specified design, other arguments might
be included in the ker.eqg() function as well. To illustrate kernel equating
under the CB design, we use the CBdata. Suppose that we want to estimate the
kernel equating function when the same loglinear model as the one described in
Sect.4.2.1.3 is used in the presmoothing step and when the bandwidth parameters
are selected automatically according to the penalty function method. The following
code can be used:

> CBsns <- ker.eg(scores= CBdataS$datxly2, kert="gauss",
+ hx = NULL, hy = NULL, degree=c(2,2,1,1,2,2,1,1),

+ design="CB", Kp=0, scores2 = CBdata$datx2yl,
>J = 76,K = 77,wx=0.5,wy=0.5)

Using part of the output stored in the CBsns object, we can, for instance, plot
the equating transformations for the cases when X is equated to Y and vice-versa,
as was shown in Figure 9.10 in von Davier et al. (2004). Figure 4.6 shows such a
plot and was produced using the following code:

> plot (0:75,CBsnsSeq¥x,pch=1,ylim=c(-6,78),

+ ylab="Equated Value",xlab="Score")

> points(0:76,CBsns$SegXy, pch=2)

> legend("topleft",pch=c(1,2),c("X to Y","Y to X"))
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Fig. 4.6 Equating functions when X is equated to Y and vice-versa
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4.5.2 Equating in kequate

The kequate () function is used to perform the actual kernel equating in kequate.
A general function call is as follows:

kequate (design, ...)
where design can take the values EG, SG, CB, EG, NEAT CE, NEAT PSE, or NEC.
Depending on the specified equating design, other arguments might need to be

supplied. A list of the arguments that can be used in kequate () according to
the selected design is shown in Table 4.2.

Table 4.2 Arguments supplied to kequate ()

Argument(s) Designs Description
X,y ALL Score value vectors for test X and test Y.
a CE Score value vector for the anchor test A.
r,s EG Score probability vectors for tests X and Y.
Alternatively objects of class glm
P SG, CE, PSE, |Matrix of bivariate score probabilities for tests X
NEC and Y (SG), tests X and A (CE, PSE), or test X and

covariates (NEC) on population P. Alternatively an
object of class glm

Q CE, PSE, NEC | Matrix of bivariate score probabilities for tests Y
and A (CE, PSE) or test Y and covariates (NEC) on
population Q. Alternatively an object of class glm

P12, P21 CB Matrices of bivariate score probabilities for tests X
and Y. Alternatively objects of class glm
DMP, DMQ CE, PSE, NEC | Design matrices for the specified bivariate log-linear

models on populations P and Q, respectively (or
groups taking test X and Y, respectively, in an EG
design). Not needed if P and Q are of class glm

DM SG Design matrix for the specified bivariate log-linear
model. Not needed if P is of class glm
DM12,DM21 CB Design matrices for the specified bivariate log-linear
models. Not needed if P12 and P21 is of class glm
N ALL The sample size for population P (or the group

taking test X in the EG design). Not needed if r, P,
or P12 is of class glm

M EG, CB, CE, |The sample size for population Q (or the group
PSE, NEC taking test Y in the EG design). Not needed if s, Q,
or P21 is of class glm

w PSE Optional argument to specify the weight given to
population P. Default is 0.5.

hx, hy, hxlin, hylin |EG, SG, CB, |Optional arguments to specify the continuization
PSE, NEC parameters manually.

(continued)
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Table 4.2 (continued)

Argument(s) Designs Description

hxP, hyQ, haP, haQ, CE Optional arguments to specify the continuization

hxPlin, hyQlin, parameters manually.

haPlin, haQlin

wcb CB The weighting of the two test groups in a
counterbalanced design. Default is 0.5.

KPEN ALL Optional argument to specify the constant used in
deciding the optimal continuization parameter.
Default is 0.

wpen ALL An argument denoting at which point the derivatives

in the second part of the penalty function should be
evaluated. Default is 0.25.

linear ALL Logical denoting if only a linear equating is to be
performed. Default is FALSE.
irtx, irty ALL Optional arguments to provide matrices of the

probabilities of correctly answering the items on the
parallel tests X and Y, as estimated in an IRT model.

smoothed ALL A logical argument denoting if the data provided are
pre-smoothed or not. Default is TRUE.
kernel ALL A character vector denoting which kernel to use,

LTS

with options “gaussian”, “logistic”, “stdgaussian”,
and “uniform”. Default is “gaussian”.

slog ALL The parameter used in the logistic kernel. Default is
1.

bunif ALL The parameter used in the uniform kernel. Default is
0.5.

altopt ALL Logical that sets the bandwidth parameter equal to a
variant of Silverman’s rule of thumb. Default is
FALSE.

DS EG, SG, CE, |Logical that sets the bandwidth parameter equal to

PSE, NEC double smoothing. Default is FALSE.

The argument 1inear is a logical operator that if set to TRUE returns a linear
equating version of the kernel transformation (see Theorem 4.5 in von Davier et al.
2004). The arguments irtx and irty are used to perform IRT kernel equating as
described in Chap. 7. In all designs, different design matrices (e.g., DM, DP, DMP,
DMQ, etc.) are needed if a glm object is not provided.

To illustrate kernel equating in kequate (), we use the ADM data and perform
kernel equating under the EG, SG, NEAT, and NEC designs. The previously created
objects egADMx, egADMy, SGadmXY, NEATVX, and NEATVY are used for the EG,
SG and NEAT designs, respectively. For the NEC design, the previously created
object glmNECx and a glm object glmNECYy, similarly created using the same
log-linear model, are used as input to kequate (). The uniform and logistic
kernels are used for the EG and SG designs whereas the default Gaussian kernel
is used for the other designs. The following code can be used to perform equating
under the EG design.
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> EGadm <- kequate("EG",0:80,0:80,egADMx, egADMy,
+ kernel = "uniform")

> summary (EGadm)

Design: EG equipercentile

Kernel: uniform

Sample Sizes:
Test X: 10000
Test Y: 10000

Score Ranges:
Test X:
Min = 0 Max = 80
Test Y:
Min = 0 Max = 80

Bandwidths Used:
hx hy hxlin hylin
1 0.6478069 0.6365894 12718.08 12249.77

Equating Function and Standard Errors:

Score eqyx SEEYx
1 0 -0.29864646 0.04263775
2 1 -0.02288653 0.74487187
3 2 1.04369932 0.93949748
4 3 2.17929405 1.07861366
5 4 3.68737662 0.23059999
76 75 75.87150696 0.55516719
77 76 76.94807037 0.55545481
78 77 77.98642461 0.52804639
79 78 78.95953597 0.46192304
80 79 79.81899927 0.34549307
81 80 80.19076844 0.09109381

Comparing the Moments:
PREYx
-0.04160941
-0.08740705
-0.12721538
-0.15318140
-0.16490377
-0.16741158
-0.16719473
-0.16948332
-0.17729479
0 -0.19160971

H WO oo Jo0 U WwN R

The first part of the displayed output shows details on the performed equating such
as the assumed equating design, the type of kernel used, and the bandwidth values
used in the continuization step. The second part gives the score scale (the Score
column), the equated values (the eqYx column), and the standard error of equating
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(the SEEYx column).” In the last part of the output, the percent relative error (the
PREYx column) described in Sect. 4.6 is shown for the first ten moments. The output
for the other designs that are examined below are similar and thus are omitted. The
following can be used to perform equating under the SG, NEAT PSE, NEAT CE,
and NEC designs, respectively.

SGadm <- kequate("SG",0:80,0:80,SGadmXY, "logistic")
neatPSEadm <- kequate ("NEAT PSE",0:80,0:80,

NEATvX, NEATvVY)

neatCEadm <-kequate ("NEAT CE",0:80,0:80,0:40,
NEATvX, NEATvVY)

NECadm <- kequate ("NEC",0:80,0:80,glmNECx,glmNECY)

v + v + Vv Vv

Among other useful elements, the created equating objects contain the equated
values, which can be retrieved using the function getEq (). For instance, if we
want to produce a table showing a comparison of the equated values obtained for
the different equating designs we can use the following code:

> compare <- data.frame (EG=getEqg(EGadm), SG=getEqg(SGadm),
+ NEAT PSE=getEq(neatPSEadm), NEAT CE=getEq(neatCEadm),
+ NEC=getEq (NECadm) )
> head (compare)

EG SG NEAT_PSE NEAT CE NEC
1 -0.29864646 0.1789797 -0.06991286 -0.07056532 -0.07139571
2 -0.02288653 1.4708836 0.86575669 0.86454785 0.87119888
3 1.04369932 2.7782494 1.81220941 1.81055003 1.83171535
4 2.17929405 4.0714894 2.77776014 2.77576969 2.81351072
5 3.68737662 5.3572239 3.75883075 3.75658998 3.809899¢61
6 4.72380634 6.6373788 4.75185071 4.74940945 4.81605625

Additional examples using other data sets and different options with kequate can
be found on the book’s webpage.

4.6 Step 5: Computation of Accuracy Measures

The last step in kernel equating is to assess the equating transformation by
calculating accuracy measures such as the standard error of equating (SEE), the
percent relative error (PRE), and the standard error of equating differences (SEED).
For a detailed discussion on how an equating transformation should be assessed,
refer to Wiberg and Gonzalez (2016).

"Values from lines 6 to 75 have been omitted in order to save space.
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4.6.1 Calculating the Standard Error of Equating

The SEE measures the uncertainty in the estimated equating transformation. The
SEE for equating X to Y is denoted in general as

SEEy (x) = 8y(x) = v/ Var (¢ (x)) = v/ Var (¢ (x: ,9)). (4.14)

As described in von Davier et al. (2004), the §-method (Bishop et al. 1975;
Lehmann 1999; Rao 1973; Kendall and Stuart 1997), which divides the problem
into three parts, can be used to compute an estimate of the SEE. The first part
consists of the Jacobian matrix J,, of the equating transformation. The second part
consists of the Jacobian matrix of the DF, Jpr, which depends on the chosen data
collection design. The final part relates to the asymptotic covariance matrix of the
pre-smoothed frequencies obtained by the particular data collection design. After
further calculations, which can be found in Sect. B.3, it can be shown that

SEEy (x) = |JoJprC| . (4.15)

4.6.2 Standard Error of Equating Difference

To compare different kernel equating transformations, the SEED can be used. Let
¢1 and @, represents two kernel equating transformations, then the SEED is defined
as the Euclidean norm of the difference between two vectors of SEEs as follows®:

SEEDy (x) = v/Var (¢ (x) — ¢» (x)) = |J, IprC — I, JprC|| - (4.16)

4.6.3 Percent Relative Error

Another way of comparing different equating transformations is through the
moments of the score distributions. The PRE measures the difference between the
moments of the distribution for equated values with those of the score distribution
to which scores are being equated. The idea behind PRE is to get a measure of how
well the equated scores match the observed distribution by comparing a number of
moments. High values of PRE indicate a less effective score equating (Jiang et al.
2012). The PRE in the p” moment, PRE (p), is in general defined by

8The quantity inside the norm sign in Eq. (4.15) is called an SEE vector.
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My (0 (X)) — pp (Y)

, 4.17
wp (Y) ( )

PRE (p) = 100

where 1, (¢ (X)) = > (¢ (xA))p riand pw, (Y) = >, )’ sk (von Davier et al.
2004).

4.6.4 Obtaining SEE, SEED, and PRE in SNSequate

The SEE is obtained as an output of the ker.eq () function. Both the SEE
resulting from an equating of X to Y (SEEYx) and that resulting from an equating of
Y to X (SEEXy) can be retrieved. For instance, using the previously created object
mod . gauss, the following code shows how to retrieve the SEE for the equating of
XtoY:

> see¥Yx<-mod.gaussS$SEEYx

> see¥Yx
[1] 0.22003271 0.28953356 0.28751030 0.26639755
[5] 0.24104055 0.21695354 0.19666632 0.18124384
[9] 0.17075038 0.16457168 0.16187109 0.16210071
[13] 0.16533595 0.17213358 0.18265321 0.19505015
[17] 0.20376009 0.19900477 0.16999780 0.11860165
[21] 0.07030529

Figure 4.7 shows a plot of the SEE produced using the following code:

> plot (score, mod.gauss$SSEEYx, ylab = "SEEy(x)",
+ xlab = "X scores")

Both the SEE values and Fig. 4.7 show that values located in the middle of the
score scale are more accurately equated. For this data set, this is an expected result
because the frequency of extreme score values is lower. The figure mimics the one
appearing as Figure 7.6 in von Davier et al. (2004).

The PRE and the SEED can be obtained in SNSequate with the functions
PREp () and SEED (), respectively. Again, we use the mod.gauss object to
exemplify the use of these functions. To obtain the PRE for the first 10 moments,
we can write

> PREp (mod.gauss, 10)
Percent Relative Error:

Moments X to Y Y to X
.005861301 -0.006287818
.012235716 -0.022772776
.021915811 -0.054971354
.039716757 -0.113883778
.072771753 -0.213412807
.127423113 -0.366390824

o Ul W N
o Ul W N
O O O O o o
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From the obtained results, it can be seen by comparing the first five moments that
the distribution of equated scores matches very well with the observed distribution
of Y.

In Theorem 4.5 in von Davier et al. (2004) it is shown that a kernel equating is
approximately linear when large values of bandwidth parameters are used. Suppose
there is interest in comparing linear and Gaussian kernel equating. The following
code can be used to obtain the corresponding SEED:

> mod.linear <- ker.eqg(scores = Math20EG,kert = "gauss",
+ hx = 20, hy = 20, degree = c(2, 3), design = "EG")
> seedeg <- SEED(mod.gauss, mod.linear) $SEEDYx
> seedeg
[1] 0.21120890 0.19421631 0.16553450 0.12978042
[5] 0.09312270 0.05868800 0.02897404 0.01313716
[9] 0.02531616 0.03841881 0.04544525 0.04544446
[13] 0.03869717 0.02799566 0.02516353 0.04100783
[17] 0.06276693 0.08238740 0.10573648 0.14917952
[21] 0.20243258

It can be seen that the standard error of equating differences range from 0.01
to 0.21. The differences between each of the equated values obtained using the
Gaussian kernel equating function with those obtained using the approximated
linear equating function can be assessed for significance by comparing them to their
uncertainty (i.e., their SEED values). A graphical alternative, as shown in Figure 7.7
in von Davier et al. (2004), is to plot such differences of equated values along with
+2SEED values. Figure 4.8 shows an example generated using the following code:
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Fig. 4.8 Difference between linear and kernel equating functions 2SEED

> Rx <- mod.gauss$eqg¥x - mod.linearS$Seqg¥x

> plot (0:20,Rx,ylim=c(-0.8,0.8),pch=15,xlab="Scores")
> abline(h = 0)

> points(0:20, 2 x seedeg, pch = 0)

> points(0:20, -2 % seedeg, pch = 0)

> legend("topright",pch=c(0, 15),c("+-2SEED", "R(x)"))

Other examples can be found on the book’s webpage.

4.6.5 Obtaining SEE, SEED, and PRE in kequate

The SEE, SEED, and PRE can be obtained in kequate using the functions
getSee (), genseed (), and getPre (), respectively. Also, the getSeed ()
function is used to obtain the SEED between a linear and a kernel equating function.
These functions are applied to equating objects that have been created using the
kequate () function. We use the ADM data with the previously created object
EGadm to obtain the SEE and the PRE from a kernel equating under the EG design.

> AdmEGsee <- getSee (EGadm)

> AdmEGsee
[1] 0.04263775 0.74487187 0.93949748 1.07861366
[5] 0.23059999 0.27028746 0.30010687 0.31745325
[9] 0.32169924 0.31397991 0.29666718 0.27275267
[13] 0.24530141 0.21705960 0.19022940 0.16637795
[17] 0.14643196 0.13072108 0.11906270 0.11090145
[21] 0.10549726 0.10211294 0.10014268 0.09916074
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[25] 0.09891059 0.09926657
[29] 0.10586187 0.10728897
[33] 0.11519517 0.11830876
[37] 0.13031128 0.13482367
[41] 0.14293797 0.14710155
[45] 0.16004005 0.16447198
[49] 0.17743963 0.18135684
[53] 0.20230967 0.20506263
[57] 0.21215767 0.21460674
[61] 0.24356042 0.24780185
[65] 0.25868979 0.26131550
[69] 0.31652428 0.32596446
[73] 0.37093851 0.38794507
[77] 0.55545481 0.52804639
[81] 0.09109381
> AdmEGpre <- getPre (EGadm)
> AdmEGpre

PREYX
1 -0.04160941
2 -0.08740705
3 -0.12721538
4 -0.15318140
5 -0.16490377
6 -0.16741158
7 -0.16719473
8 -0.16948332
9 -0.17729479
10 -0.19160971

.10549865
.10950213
.12194774
.13944732
15133965
.16890153
.19559914
.20752743
.21726727
.25187033
.26365257
.33833893
.53690264
.46192304
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.10525719
.11244512
.12598671
.13884922
.15565451
.17325493
.19917012
.20984191
.23937514
.25554615
.30936000
.35366272
.55516719
.34549307

The functions getSee (), getSeed (), and genseed () have implemented
plot methods. When an object created by getSee () is passed to plot (), a plot
showing the SEE for each score value will be displayed. In the case of get Seed ()
and genseen (), a plot showing the equated value differences together with the
associated SEED will be displayed. An example is shown in Fig.4.9 where the
left-hand plot was obtained from

> plot (AdmEGsee,
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Fig. 4.9 SEE and SEED using the admissions data with an EG design
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and the right-hand plot was obtained by writing

> AdmEGseed <- getSeed (EGadm)
> plot (AdmEGseed)

The genseed () function gives the SEED between two different kequate
objects. For instance, we can compare the previously performed poststratification
equating (neatPSEadm) to the chained equating (neatCEadm) using the
admissions test data. The resulting output gives the difference between the equated

values of the two equating functions (eq¥xD) and the SEED (SEEDYx).’

> ADMseedNEAT <- genseed(neatPSEadm,neatCEadm)

> ADMseedNEAT

An object of class "genseed"

Slot "out":
eqYxD
.0006524646
.0012088376
.0016593778
.0019904405
.0022407612

U W N
o O O O O

.0264014324
.0221884565
.0176941815
.0129488065
.0083604288
.0048851535

O O O O o o

It is also possible to retrieve other useful elements stored in a kequate () object.
A summary of the functions used to retrieve them is shown in Table 4.3. Further

SEEDYx
.01363087
.02537221
.03827020
.04948587
.05914505

O O O o o

.082843098
.07003946
.05623997
.04151021
.02705509

0
0
0
0
0
0.01571760

examples can be found in the book’s webpage.

Table 4.3 Functions to retrieve information from the resulting kequate () objects

Function

getEquating ()

getPre ()
getType ()
getScores ()
getH ()
getEq()
getEglin()
getSeelin()

getSeed ()

Output

A data frame with the equated values, SEEs and other information
about the equating.

A data frame with the PRE for the equated distribution.

A character vector describing the type of equating conducted.

A vector containing the score values for the equated tests.

A data frame containing the values of h used in the equating.

A vector containing the equated values.

A vector containing the equated values of the linear equating.

A vector containing the SEEs for the equated values of the linear
equating.

An object of class genseed containing the SEED between the kernel.
equipercentile equating and the linear equating (if applicable).

Values from lines 6-75 have been omitted to save space.
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4.7 Different Features in kequate and SNSequate

For the implementation of the kernel equating framework, the R packages kequate
and SNSequate share many similarities, but there are some important differences in
what can currently be done in both of them.

The kequate package allows both observed frequencies and glm objects as
inputs for score distributions. The latter option has been shown to be very
useful and flexible to account for model complexities in the presmoothing step
(see, Sect.4.2.2.5), and to incorporate covariates under the NEC design (see
Sect. 4.2.2.6). kequate also has specific functions like cdist () to assess the
model fit, and others like the get functions shown in Table 4.3 to retrieve
information about the performed kernel equating. kequate also has some other
distinct features that are discussed in detail in Chaps.6 and 7. Among these are
the option to choose different bandwidth selection methods, and to perform IRT
observed-score kernel equating and local kernel equating.

The SNSequate package on the other hand has implemented the Epanechnikov
and adaptive kernels in addition to the Gaussian, uniform and logistic kernels. It also
contains the function gof () that implements various measures to assess a model’s
goodness of fit which is especially useful in the presmoothing step.

4.8 Summary

In this chapter, the five steps of kernel equating were discussed and the R packages
SNSequate and kequate were used to illustrate kernel equating under the SG,
EG, CB, NEAT, and NEC designs. Both packages implement all of the procedures
described in von Davier et al. (2004), although each package has specific additional
features that have been discussed here. Further improvements in kernel equating that
have also been implemented in either SNSequate or kequate will be discussed in
Chap. 7.
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Chapter 5
Item Response Theory Equating

Abstract In this chapter, different methods of Item Response Theory (IRT) linking
and equating will be discussed and illustrated using the SNSequate (Gonzélez,
J Stat Softw 59(7):1-30, 2014) and equateIRT (Battauz, J Stat Softw 68(7):1-22,
2015) packages. Other useful packages include Itm (Rizopoulos, J Stat Softw
17(5):1-25, 2006) and mirt (Chalmers, J Stat Softw, 48(6):1-29, 2012), which
allow the user to model response data using different IRT models. IRT objects
obtained from the latter packages can also be read into equateIRT and kequate
(Andersson et al., J Stat Softw, 55(6):1-25, 2013) to perform IRT equating and
linking.

5.1 IRT Models

IRT models (Lord 1980; Hambleton and Swaminathan 1985; De Boeck and Wilson
2004; van der Linden 2016) are widely used nowadays for analyzing and scoring
tests. Because many testing programs use IRT to assemble tests, the use of IRT
equating is a natural choice for equating (Skaggs and Lissitz 1986; Cook and Eignor
1991; Lord 1980, Chap. 13). In what follows, we briefly describe the specification
of IRT models.

Let X;; be the random variable denoting the answer of individual i on item j in test
form X (the notation and definitions that follow can easily be adapted for test form
Y). Assuming i = 1,...,n, test takers and j = 1,...,J, items, the observed data
can be accommodated in an n, x J, matrix where each row contains the response
pattern of each test taker. Note that in the case where items are binary scored (i.e., 1
if the answer is correct and O otherwise), sum scores X; = Zf;l X;; can be computed
and used as the test taker’s i score. An alternative way to produce test takers’ scores
is to use IRT models. IRT models for binary-scored items specify the respondent’s
probability of a correct answer on a test item based on both a person’s parameter,
6;, and a vector of item characteristics, ; (e.g., the difficulty level of the item, the
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capacity of the item to discriminate among test takers, etc.). When it is assumed that
6; ~ N(0, 07) the statistical model' becomes

(X | 0;, w;) ~ Bernoulli( (6;, wy)), G.D

where () is known as the item characteristic curve (ICC). In particular, the three
parameter logistic IRT model (3PL, Birnbaum 1968) employs 7 (6;, w;) = ¢j + (1 —
¢j)¥(Daj(9; — by)), where w; = (a;,bj,c;), D is a scaling constant, and ¥ (x) =
exp(x)/1 + exp(x) is the standard logistic function. The a;, b;, ¢; components in w;
are the discrimination, difficulty, and guessing item parameters, respectively. Under
this specification, we have

exp[Daj(Qi — bj)]
1 + exp[Daj(Q,» — bj)] )

mp =Pr(Xy =1]6,0) =¢;+ (1 —¢) (5.2)

Other IRT models can be seen as special cases of the 3PL model. For instance,
the two-parameter logistic IRT (2PL) model is obtained by setting ¢; = 0 for all
J» whereas the one-parameter logistic IRT (1PL) model additionally sets all g; to be
equal to 1. For details on IRT parameter estimation methods and software, the reader
is referred to Fischer and Molenaar (1995), Baker and Kim (2004), and Tuerlinckx
et al. (2004).

5.1.1 Scoring Using IRT Models

Using an IRT model to fit the binary n, x J, data matrix will produce both person
and item parameter estimates 6 and & respectively. When an IRT model is used
for scoring, instead of using the sum score X; € 2, an estimation of the ability
parameter 6 is typically used as the test taker’s score, and this is labelled the IRT
score. In this case, e ®, where @ is the range of the IRT scores and is referred to
as the IRT scale. A standard normal scale is often assumed, thus ® ~ [—3, 3]. It is,
however, common to transform IRT scores into scale scores and to set a mean and
standard deviation in order to avoid negative values for scores.

'"The model shown in Example 1.2 corresponds to the fixed-effects version of IRT models. For
more details on the difference between the fixed-effects version and the random-effects version of
the model that is presented here, see San Martin et al. (2015).
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5.2 Equating IRT Scores

To equate IRT scores under the IRT setting, we need a transformation function that
maps the IRT scale on test form X to that of test form Y, i.e., ¢ : @4 +— Ogy (see,
Definition 1.1). The transformation of IRT scales will be different depending on the
equating design adopted. For instance, because in both the SG and the EG designs,
the abilities are not a concern, no additional transformation of scales is needed as
long as the estimation assumes the same constraints for the mean and variance
of the ability distribution. When using a NEAT design, the groups are considered
non-equivalent, so a transformation of the IRT scales is needed. In principle, only the
transformation regarding 6 is of interest for equating purposes (i.e. a transformation
of IRT scales). Nevertheless, in the next section we introduce methods to transform
the scale of all parameters involved (including both person and item parameters).
Transforming item parameter scales is useful not only when IRT scales are linked,
but also when number-correct scores are reported and equated instead of IRT scores.
Other IRT equating methods that do not use a function to link IRT scales will be
discussed in Sect. 5.4.

5.2.1 Parameter Linking

Because the parameters from different test forms need to be on the same scale, IRT
parameter linking (von Davier and von Davier 2011) is conducted to place the IRT
parameter estimates from separate calibrations of two test forms, on a common scale
(Kolen and Brennan 2014). This is needed in particular when conducting equating
under the NEAT design.

When an IRT model is used to fit two different test forms (see Kolen and Brennan
2014, Section 6.2), the transformation ¢ : &4 + Oy has typically been assumed
to be a linear equation used to convert IRT scores as

Oyi = Abg; + B. (5.3)

The relations between item parameters on the two test forms are as follows:

ay; = ayj/A (5.4)
by =Abyj+ B (5.5)
Cyj = Caj, (5.6)

where A and B are linking constants (also known as equating coefficients) that
are to be estimated. The indices 2~ and % are used to differentiate between the
scales. A detailed account of the methods to calculate A and B can be found
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in Kolen and Brennan (2014, Chap.6). A brief description of these methods is
given in the following sections. These parameter linking methods are also used
in Chap. 7 together with IRT kernel equating (Wiberg et al. 2014; Andersson and
Wiberg 2016). A different perspective on item parameter linking establishing that
“linking functions are not necessary to correct for arbitrary units and zeroes of the 6
parameters but, more generally, to adjust for the different effects of the identifiability
restrictions used in separate calibrations” is discussed in van der Linden and Barrett
(2016) (see also, Bechger and Maris 2015).

5.2.1.1 Moments Methods to Estimate Equating Coefficients

These methods use different moments, i.e. the means and standard deviations of
the common item parameter estimates, to obtain the equating coefficients A and
B. Two methods were described in Marco (1977) and Loyd and Hoover (1980)
and are refereed to in Kolen and Brennan (2014) as mean-mean and mean-sigma,
respectively. Another method is referred to as mean-geometric mean (Mislevy and
Bock 1990) and is described in, for example Ogasawara (2000). In all of these
methods, the means and standard deviations are defined only on the set of common
items between test forms X and Y. Let p,, and p,, be the mean of the item
discrimination parameter estimates taken only on the set of common items, and
let 0,,- and oy, be the corresponding standard deviations. The mean-mean method
defines the equating coefficient A as

A= P (5.7)

May
and the mean-sigma method defines the constant A as

Oby

A= (5.8)

Oby

The mean-geometric mean method defines the A constant as

Na ay; l/na
A= (—J) , (5.9)
1 \az;j

where n, is the number of common items. Although different A:s are used in these
three methods, the constant B is defined in each of these cases as

B = Kby —A/,Lh%-. (510)
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5.2.1.2 Characteristic Curves Methods to Estimate Equating Coefficients

Two additional methods to obtain the equating coefficients were proposed by
Haebara (1980) and Stocking and Lord (1983). These methods rely on the ICC:s
and iteratively search for optimal A and B values by minimizing

N 2
. ~ ~ N ayi .2 ~
Herit = E E 7 |:7T[j (9@,‘, ax;j, by, C{f?/j) — Ty (9?7/1', ijAbﬂ?,’j + B, szj):| ,
i jET
(5.11)
and

2

. ~ ~ ~ ayi 4 ~
SLcrit = Z Z T[ij<9?//i» aw;j, by, C??/j) —Z bt (9?7/1‘, %va,%”j + B, Cﬁfj) .

i | je¥ JEC
(5.12)

for the Haebara and Stocking-Lord methods, respectively. In both cases, ¢ denotes
the set of common items between test forms X and Y.

5.2.1.3 IRT Parameter Linking Using SNSequate

IRT parameter linking can be performed using the irt .1ink () function from the
SNSequate package whose typical call reads as follows:

irt.link (parm, common, model, icc, D, ...)

The irt.1link () function receives as arguments a data frame containing the
item parameter estimates (parm), a numerical vector indicating the position where
the common items are located (comitems), and both the type of the IRT model
(model) and ICC (icc) that were used to obtain the item parameter estimates. It
gives as output the values of the equating coefficients A and B calculated using the
mean-mean, mean-sigma, Haebara, and Stocking-Lord methods.

Suppose we want to estimate the values of A and B that are needed to link the
Z scale to the % scale (see Egs. (5.3), (5.4), (5.5), and (5.6)). To illustrate how
equating coefficients can be obtained using the function irt.1link (), the KB36
data object described in Chap. 2 is used. Remember that 12 out of the 36 items are
common items between the test forms (i.e. every third item: 3, 6, 9, 12, 15, 18, 21,
24,27, 30, 33, and 36). The following code can be used.

library (SNSequate)

data ("KB36")

parm.x KB36$KBformX par

parm.y KB36S$KBformY par

comitems = seq(3, 36, 3)

parm = as.data.frame (cbind(parm.y, parm.x))

V V.V V V V
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> irt.link(parm, comitems, model = "3PL",
+ icc = "logistic", D = 1.7)

The parm.x and parm.y objects are three column matrices containing the item
parameter estimates read from the KB36 list. Because a 3PL model was fitted to
obtain the item parameter estimates, the argument model was set to "3PL". The
corresponding output reads as

Call:
irt.link.default (parm = parm, common = comitems,
model = "3PL", icc = "logistic", D = 1.7)

IRT parameter-linking constants:

A B
217266 -0.5571557
168891 -0.5155426
093600 -0.4582959
101954 -0.4770156

Mean-Mean
Mean-Sigma
Haebara
Stocking-Lord

1.
1.
1.
1.

Note that the output reproduces the results reported in Table 6.6 in Kolen and
Brennan (2014).

Although the logistic ICC is the most commonly used in IRT models for binary
data, symmetric links are not always appropriate for modeling these kinds of data
(Chen et al. 1999; Chen 2004). When asymmetric ICC:s are used in IRT models,
methods of item parameter linking based on ICC:s (i.e., Haebara and Stocking-Lord)
should accordingly be based on these asymmetric ICC:s (Estay 2012). This option is
availableinthe irt . 1ink () function when a 1PL model with asymmetric cloglog
ICC is used to fit the data as illustrated in an example in Gonzélez (2014).

5.2.1.4 IRT Parameter Linking Using equateIRT

IRT parameter linking is also implemented in the package equateIRT through
the functions modIRT () and direct (). Typical calls to these functions are as
follows.

modIRT (coef, var = NULL,...)

direc (modl, mod2, method = "mean-mean",...)

The coef argument in the modIRT () function receives as input a matrix’
containing the item parameter estimates. If the covariance matrix of item parameter
estimates is available, equateIRT is also capable of estimating standard errors
for the estimated equating coefficients. The argument var is used to read in the
covariance matrix of item parameter estimates. The resulting modIRT object stores

2When multiple test forms are to be linked, the argument coef needs a list of matrices containing
the item parameter estimates corresponding to each test form.
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in a list the item parameter estimates and their covariance matrix (if supplied) for
each of the tests forms to be linked.

Once a modIRT object has been created, it can be passed to the direc ()
function to perform the linking step itself. The arguments mod1l and mod2 are fed
into the function using the elements of the list stored in the modIRT object.

It is important to emphasize that the row names in the matrix provided in the
argument coe f must be the names given to the items because this is the information
that is used to differentiate between common and unique items in the linking
process. This means that different names on the unique items and the same names
on the common items are needed. For example, consider the KB36 data where
items 3,6,9,12,15,18,21,24,27,30,33, and 36 are common to both X and Y
forms. If we decide to refer to the unique items in form X as I1, I2, I4,
I5, I7,...,I35 then different names for the non-common items in test form
Y should be given. The following code shows a possible way to correctly assign
names to the items.

data ("KB36",package="SNSequate")

kbx<-cbind (KB36$KBformX par[,3],KB36sKBformX parl[,2],
KB36SKBformX par([,1])

kby<-cbind (KB36$KBformY par[,3],KB36sKBformY parl[,2],
KB36SKBformY par([,1])

+ Vv + v Vv

row.names (kbx) <-paste ("I", 1:36, sep = "")
row.names (kby) <-paste ("I", c(37,38, 3,39,40, 6,41,42,
9,43,44, 12,45,46, 15,47,48, 18,49,50, 21,51,52,
24,53,54, 27,55,56, 30,57,58, 33,59,60, 36), sep = "")

+ + v Vv

> datakb <-1list (kbx, kby)

The element kbx in the list is a three column matrix with row names I1, I2, ...,
I36. The kby element instead, appears as follows:

> datakb[[2]]
[,1] [,21] [,31]

I37 0.1576 -1.4507 0.8704
I38 0.1094 -0.4070 0.4628
I3 0.1559 -1.3349 0.4416
I39 0.1381 -0.9017 0.5448
I40 0.2114 -1.4865 0.6200
I6 0.1913 -1.3210 0.5730
I41 0.2947 0.0691 1.1752
I42 0.2723 0.2324 0.4450
I9 0.1177 -0.7098 0.5987
I43 0.1445 -0.4253 0.8479
I44 0.0936 -0.8184 1.0320
I12 0.0818 -0.3539 0.6041
I45 0.1283 -0.0191 0.8297
I46 0.0854 -0.3155 0.7252
I15 0.3024 0.5320 0.9902
I47 0.2179 0.5394 0.7749
I48 0.2299 0.8987 0.5942
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I18 0.0648 -0.1156 0.8081
I49 0.1633 -0.1948 0.9640
I50 0.1299 0.3506 0.7836
I21 0.2410 2.5538 0.4140
I51 0.1137 -0.1581 0.7618
I52 0.2397 0.5056 1.1959
I24 0.2243 0.5811 1.3554
I53 0.2577 0.6229 1.1869
I54 0.1856 0.3898 1.0296
I27 0.1651 0.9392 1.0417
I55 0.2323 1.1350 1.2055
I56 0.1070 0.6976 0.9697
I30 0.0794 1.8960 0.6336
I57 0.1855 1.3864 1.0822
I58 0.1027 0.9197 1.0195
I33 0.0630 1.0790 1.1347
I59 0.0999 1.8411 1.1948
I60 0.0832 2.0297 1.1961
I36 0.1259 2.1337 0.9255

where it can be seen that, indeed, the commons items have the same name as
assigned in test form X.

Once the data have been properly prepared, the following code can be used to
obtain the mean-mean equating coefficients.

library (equateIRT)
mod3plkb <- modIRT (coef = datakb,ltparam = FALSE,
lparam = FALSE)
112 <- direc(modl = mod3plkb[1l], mod2 = mod3plkb[2],
method = "mean-mean")
summary (112)
Link: T1.T2
Method: mean-mean
Equating coefficients:
Estimate StdErr
A 1.21727 NA
B -0.55716 NA

v + Vv + Vv VvV

The StdErr column in the output shows NA because we did not provide the
covariance matrix of the item parameter estimates. As mentioned before, when such
a covariance matrix is available the program will provide standard errors for the
equating coefficients A and B. To use any of the other methods to obtain the equating
constants, we simply exchange the method argument with any of the following
options: mean-sigma, Stocking-Lord, Haebara, or mean-gmean.

We have illustrated a simple linking procedure that considers only two test forms.
The equateIRT package can, however, be used to implement more complex linkage
plans that involve many tests forms. Also, we have used as input the item parameter
estimates that were already available from the KB36 data object. If this would not
be the case, equateIRT can import item parameters estimates obtained from other
packages such as mirt or Itm that are used to estimate IRT models. The binary data
matrix can be modeled in either Itm or mirt and then the obtained results can be
read into equateIRT using the import.1ltm() and import.mirt () functions,
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respectively. This is exemplified using the Itm package to fit a 2PL model to both
test forms’ score data.

library (1ltm)

modx.2pl<-1ltm(KBneatX~z1)
mody.2pl<-1ltm(KBneatY~z1)

estm2x <- import.ltm(modx.2pl,display=FALSE)
estm2y <- import.ltm(mody.2pl,display=FALSE)
pl2x <- modIRT (coef=1list (estm2x$coef),
var=1list (estm2xSvar) )

pl2y <- modIRT (coef=1list (estm2yS$coef),
var=list (estm2yS$var))

pl2hs <- direc(modl=pl2x[1], mod2 =pl2y[1],
method="Haebara")

summary (pl2hs)

Vv + Vv +V + V V VYV VYV

The output yields the equating coefficients for the Haebara method and appears as
follows:
Link: T1.T1
Method: Haebara
Equating coefficients:
Estimate StdErr
A 0.88332 0.028071
B -0.44930 0.036127

The previous example can be replicated using mirt to obtain the corresponding
item parameter estimates. Note that because different IRT software packages handle
estimation differently, the results might differ slightly from analyses with other IRT
software packages.

5.3 Equating Observed Scores Under the IRT Framework

Even when test forms are scored using IRT scores (i.e., using éi as a test-taker’s i
score), it is still possible to report results under the observed score scale using the
sum scores X; = ZIJ‘: Xjand Y; = Zf;l Y;j, which are obtained from the binary
data matrix. Although in principle any of the equating transformations described
in the previous chapters could be used to map 2 onto %, two model-theoretic
methods based on IRT have been widely used for this purpose. These methods
are called IRT true-score equating and IRT observed-score equating (Lord 1980;
Lord and Wingersky 1984) and are described next. Other IRT equating methods
are discussed in Chaps. 6 and 7. Both methods rely on the comparison of the score
distributions, but a significant difference with the methods described in the previous
chapters is that both are based on conditional distributions of tests scores given the
ability (Gonzilez et al. 2016). Using IRT in the process of equating sum scores,
rather than IRT scores, requires item parameter linking as a preliminary step. After
item parameters are estimated and placed on the same scale using some of the
methods described in Sect.5.2.1, IRT equating transformations of the type to be
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defined in Sects. 5.3.1 and 5.3.2 are used to relate scores from two test forms in the
usual way. In the exposition that follows, we assume that X = (Xj,...,X},) is the
response pattern for a test taker of ability 6 such that the corresponding sum score
isX =Y Xy

5.3.1 IRT True-Score Equating

IRT true-score equating (Lord 1980) is based on the mean of the conditional score
distribution. In classical test theory (Lord and Novick 1968), a true score is defined
as the conditional expectation of the score random variable given the test taker’s
ability. If tx and ty represent the true scores associated with test forms X and Y,
then

wy =E(X | 0) = Y m;(6.0) = T*(6), (5.13)
e

ry =E(Y | 0) =Y my(0.0p) = T (6). (5.14)
J:Y

where the sum is over the items of the corresponding test form. In the psychometric
literature, the 7'(-) functions are known as test characteristic functions (Lord 1980).

Equations (5.13) and (5.14) are used to relate true scores tx and ty. Thus, a true
score Ty associated with a given 6 is considered to be equivalent to the true score ty
that is associated with that same 6. The resulting transformation to find an equivalent
true score 1y of tyx is given by

o(tx,0) = T (T (). (5.15)

In practice, estimates of the item parameters for each test form are used to
produce an estimated true score relationship ¢(tx, 0, @4, ®s) by means of the test
characteristics functions. Because true scores are not observable, the estimated true
score conversion is actually applied to the observed sum scores X and Y. Thus, in
practice, the method starts by solving for 6 in Eq.(5.13) for a given value of x.
Then, the obtained value of 6 is plugged into Eq. (5.14) to obtain the corresponding
equated value y. An equating transformation based not only on the mean but on
the whole conditional score distributions will be described in Chap. 6 for the local
equating method.

5.3.2 IRT Observed-Score Equating

IRT observed-score equating (Lord 1980; Lord and Wingersky 1984) is based on the
marginal score distributions and uses the IRT model to define the conditional score
probabilities involved. To obtain a marginal score distribution, a distribution for the
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abilities is assumed and integrated (or summed) across all ability levels to produce
a marginal observed score distribution. Once this process has been completed for
both X and Y, equipercentile equating is applied to relate scores between the two
test forms. Formally, let f(x | 8), f(y | 8), and ¥ (6) be the conditional scores and
ability distributions, respectively, then the resulting equating transformation is

o(x) = Fy' (Fx(x)), (5.16)

where Fx and Fy are obtained after cumulating the values of the two mixtures
f(x) = [flx | 0)y(0)do and f(y) = [f(y | O)¥(6)d6. To obtain the conditional
scores distributions, a recursive algorithm proposed in Lord and Wingersky (1984)
is most commonly used, although new alternatives have been proposed recently
(Gonzalez et al. 2016). Details of the Lord and Wingersky algorithm are given in
Sect.B.5.

5.3.3 IRT True-Score and Observed-Score Equating Using
SNSequate

The irt.eqg() function in the SNSequate package implements both IRT
true-score and IRT observed-score equating. The general function call is

irt.eqg(n_items, param x, param y, theta points=NULL,
weights=NULL, n_points=10, w=1, A=NULL, B=NULL,
1ink=NULL, method 1ink=NULL, common=NULL, method="TS",
D=1.7,...)

The function receives as its main arguments the number of items in the test,
n_items, and two sets of item parameter estimates, @y and @, which are
labelled param x and param_y, respectively. The default method of IRT equating
is true-score equating and it is obtained by setting the argument method="TS".
When IRT observed-score is used (method="0S"), two additional arguments
need to be included. The theta points and weights arguments are used to
build the ability distribution using a grid of possible values of 6 to integrate out
the ability term. If weights=NULL, the method assumes that the distribution of
ability is characterized by a finite number of abilities (Kolen and Brennan 2014,
p-199). The equating coefficients A and B can either be provided by the user
using the arguments A and B, respectively, or they can be automatically® calculated
providing the set of common items in the argument common and the preferred
linking method in the argument method_1link (e.g., mean/mean, mean/sigma,
Haebara, StockLord). Itis also possible to use a previously created irt . 1ink
object as an input in the argument 1ink. The function gives as an output the table
of converted scores.

3In this case, an internal call to irt .link () is made.
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To illustrate the use of irt.eq(), we again use the KB36 data from Kolen
and Brennan (2014). The kB36_t object contains all the information that appears in
Table 6.8 in Kolen and Brennan (2014). We can obtain the item parameter estimates
using the following code

> data ("KB36_t", package="SNSequate")
> param x <- list(a=KB36_t[,3],b=KB36_t[,4],c=KB36_t[,5])
> param y <- list(a=KB36 t[,7],b=KB36 t[,8],c=KB36 t[,9])

In order to obtain comparable results for the IRT observed-score method, we use
the same points and weights for 6 as the ones shown in Table 6.10 in Kolen and
Brennan (2014)

> theta points=c(-5.2086,-4.163,-3.1175,-2.072,-1.0269,
0.0184,1.0635,2.109,3.1546,4.2001)
> weights=c(0.000101,0.00276,0.03021,0.142,0.3149,0.3158,
0.1542,0.03596,0.003925,0.000186)

Finally, the equating is performed. The following code* can be used to obtain a
table of transformed scores using both IRT true-score equating (IRTTSE) and IRT
observed-score equating (IRTOSE).

res.tse<-irt.eq(36, param x, param y, method="TS",
A=1, B=0)

res.ose<-irt.eq(36, param x, param y, theta points,
A=1, B=0, weights, method="0S")
outirt<-cbind(Theta=res.tse$theta equivalent,
Scale=0:36, IRTTSE=res.tse$tau_y, IRTOSE=res.ose$e Y x)

+ v + v + Vv

The obtained output is as follows.

> outirt
Theta Scale IRTTSE IRTOSE
[1,] NA 0O 0.0000000 0.03504169
[2,] NA 1 0.8880207 0.61791013
[3,1] NA 2 1.7760414 1.58016093
[4,] NA 3 2.6640621 2.54598504
[5,1] NA 4 3.5520829 3.51853882
[6,] NA 5 4.4401036 4.50262990
[7,1] NA 6 5.3281243 5.50482544
[8,] -4.33579405 7 6.1340702 6.53178001
[9,] -2.76962168 8 7.1863245 7.58600535
[10,] -2.06273325 9 8.3961646 8.66191273
[11,] -1.60659143 10 9.6235960 9.74810798
[12,] -1.26759951 11 10.8278915 10.83647390
[13,] -0.99453316 12 12.0027423 11.93041351
[14,] -0.76275510 13 13.1523676 13.04561220
[15,] -0.55875957 14 14.2832934 14.19714790

“Note that the item parameter estimates shown in Table 6.10 in Kolen and Brennan (2014) are
already rescaled. This is why we have set the equating coefficients as A=1 and B=0 so that
comparable results with those obtained in Kolen and Brennan (2014) are obtained.
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[16,]1 -0.37426356 15 15.4026505 15.37001929
[17,] -0.20386899 16 16.5163433 16.51360703
[18,] -0.04361758 17 17.6301154 17.59791730
[19,] 0.10909751 18 18.7454840 18.64431311
[20,] 0.25645197 19 19.8633271 19.67923022
[21,] 0.40000362 20 20.9809800 20.73895536
[22,] 0.54100388 21 22.0936749 21.87754232
[23,] 0.68054901 22 23.1955335 23.10284297
[24,] 0.81968954 23 24.2805929 24.28949855
[25,] 0.95967002 24 25.3448289 25.36173053
[26,] 1.10197542 25 26.3862698 26.36432784
[27,] 1.24876542 26 27.4072685 27.34317400
[28,] 1.40277618 27 28.4119269 28.32171394
[29,] 1.56770324 28 29.4060002 29.31912794
[30,] 1.74866222 29 30.3953420 30.35038228
[31,] 1.95274485 30 31.3819416 31.37659605
[32,] 2.19095382 31 32.3613840 32.34521624
[33,] 2.48169050 32 33.3158694 33.28005241
[34,] 2.85959583 33 34.2081257 34.19868532
[35,] 3.39838079 34 34.9791161 35.07472658
[36,] 4.32073754 35 35.5753858 35.85184549
[37,] NA 36 36.0000000 36.39026070

A graphical way to compare both methods is by plotting the estimated equating
relationships for IRT true-score and IRT observed-score equating. Figure 5.1 shows
a plot where test form X scores are subtracted from equated scores and plotted
against the scale scores.
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Fig. 5.1 IRT true-score and IRT observed-score equating example from Kolen and Brennan
(2014)
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plot (0:36,outirt[,3]1-0:36,ylim=c(-1,2.5),type='b’,
pch=1,ylab='Form Y Equivalent Minus Form X Score’,
xlab='Raw Score Test Form X’)

points (0:36,outirt[,4]-0:36,type="b’,pch=2)
legend (' topleft’,pch=c(1,2),c("3PL IRTTSE",

"3PL IRTOSE"))

+ v v + + Vv

Note that the figure intends to reproduce what is shown in Figure 6.6 in Kolen
and Brennan (2014).

As mentioned before, IRT equating requires the use of item parameter estimates
obtained from an IRT software package. In the following example, we perform
a Rasch equating, mimicking the illustration in Sect. 6.8.4 in Kolen and Brennan
(2014). To illustrate the fitting of IRT models, we use the Itm package. The item
parameter estimates from the obtained output are then used in SNSequate to
perform IRT true-score and IRT observed-score equating using the Rasch model.
First, the IRT models are fitted

library (1ltm)

modx.rasch <-rasch(KBneatX, constraint =
cbind (ncol (KBneatX) + 1, 1))

mody.rasch <-rasch(KBneatY, constraint =
cbind (ncol (KBneatyY) + 1, 1))

+ Vv + v Vv

The rasch () function is used to fit the Rasch model under the IRT framework.
It receives as input the binary data matrix of item responses (in this case, the object
KBneatX) and returns as its main output the item difficulty parameter estimates.
The argument constraint is used to force the value of all discrimination
parameters, a;, j = 1,...,Jy, to be equal to 1. Otherwise, a common value of a for
all items in the test will be estimated. Item parameter estimates can be retrieved from
a 1tm object using the function coef (). The full sets of item parameter estimates
are stored in the objects param_x and param_y, respectively.® The following code
is used to perform these tasks

parm.x = coef (modx.rasch) [,1
parm.y = coef (mody.rasch) [,1
param x <- list(a=rep(1,36),
param y <- list(a=rep(1,36)

’

]

]
b=parm.x,c=rep(0,36))
b

>
>
>
> =parm.y,c=rep(0,36))

’

The actual Rasch equating (IRT true-score and IRT observed-score equating)
is carried out using the irt.eq () function. The following code shows how to
implement both IRT true-score and IRT observed-score equating.

> res.Rasch.tse<-irt.eq(36, param x, param y,
+ method="TS",method link="mean/sigma", common=seq(3, 36, 3))

SFigure 6.6 in Kolen and Brennan (2014) also shows the curve for frequency estimation equating.
This curve can easily be obtained and added using the equate package as illustrated in Chap. 3.
6Because a Rasch model is used to fit the 0/1 data, item discrimination parameters are fixed to 1
and guessing parameters fixed to 0.
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res.Rasch.ose<-irt.eq(36, param x, param y,
method="0S",method link="mean/sigma", common=seq(3, 36, 3))
outirt.Rasch <- cbind(Theta=res.Rasch.tse$theta equivalent,
Scale=0:36, IRTTSE=res.Rasch.tse$tau_y, IRTOSE=res.Rasch.ose
Se Y x)

+ v + Vv

> outirt.Rasch

Theta Scale IRTTSE IRTOSE
[1,] NA 0 0.000000 0.1467132
[2,] -2.80749301 1 1.045037 1.1022981
[3,] -2.31256342 2 2.147447 2.2394178
[4,] -1.99811265 3 3.256670 3.4056409
[5,] -1.76024710 4 4.356351 4.4753960
[6,] -1.56518154 5 5.443147 5.4884525
[7,] -1.39728413 6 6.518522 6.4916573
[8,] -1.24805199 7 7.584381 7.5065491
[9,] -1.11235774 8 8.641921 8.5863401
[10,] -0.98666501 9 9.693277 9.7274636
[11,] -0.86859558 10 10.739184 10.8125062
[12,] -0.75637361 11 11.780276 11.8436280
[13,] -0.64867721 12 12.816507 12.8576140
[14,] -0.54442483 13 13.847948 13.8664930
[15,] -0.44272917 14 14.874489 14.8729593
[16,] -0.34281935 15 15.896081 15.8776476
[17,] -0.24407622 16 16.911997 16.8811194
[18,] -0.14591665 17 17.921735 17.8853089
[19,] -0.04771696 18 18.925594 18.8940060
[20,1] 0.05095184 19 19.922097 19.9010902
[21,] 0.15064579 20 20.911129 20.8949148
[22,1] 0.25187582 21 21.892041 21.8800825
[23,] 0.35522477 22 22.864652 22.8605112
[24,] 0.46122338 23 23.827922 23.8363160
[25,] 0.57058510 24 24.781942 24.8060091
[26,1] 0.68407215 25 25.726411 25.7659877
[27,1 0.80260058 26 26.661245 26.7068620
[28,1 0.92733269 27 27.586818 27.6137969
[29,1] 1.05963287 28 28.502990 28.5096457
[30,1] 1.20167135 29 29.412190 29.4049402
[31,1] 1.35620113 30 30.315793 30.3052847
[32,1] 1.52769604 31 31.217647 31.2295758
[33,] 1.72350616 32 32.122877 32.1670270
[34,] 1.95764962 33 33.039835 33.1029061
[35,] 2.26159884 34 33.980135 34.0231544
[36,] 2.73617518 35 34.960572 34.9650898
[37,1 NA 36 36.000000 35.9597041

Note that the output mimics what is shown in Table 6.14 in Kolen and Brennan
(2014). It should be mentioned however, that results are not expected to be exactly
the same as the ones shown in Table 6.14 in Kolen and Brennan (2014) because
(i) different IRT software packages with possible different default settings were
used (i.e., BILOG-MG vs. Itm), (ii) different equating coefficients could have been
used for item parameter linking (i.e., it is not specified in Kolen and Brennan
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(2014) which IRT linking method was used to obtain the equating coefficients),
and (iii) different ways to average the ability distribution could have been used
(i.e., for simplicity we used the same points and weights as the ones used for the
3PL example, but it is not specified in Kolen and Brennan (2014) how the ability

distribution was integrated out).

To end this section, we continue the previous Rasch IRT true-score and IRT
observed-score equating example above by illustrating how to use equateIRT to

5 TItem Response Theory Equating

link item difficulty parameters using the Stocking-Lord method.

> est.modx.
> est.mody.

> modrasch.

ltm <- modIRT (coef =

rasch <- import.ltm(modx.rasch)
rasch <- import.ltm(mody.rasch)

list (est.modx.raschscoef,
list (est.modx.raschsvar,

coef

Dffclt.It4
-0.637413454
Dffclt.It8
-1.156791618

+ est.mody.rasch$coef), var =
+ est.mody.raschsvar), digits = 4)
> 112.1tm <- direc (modl = modrasch.ltm[1],
+ mod2 = modrasch.ltm[2], method = "Stocking-Lord")
> conv<-convert (A = 112.1tmSA, B = 112.1tm$B,
+ coef (modrasch.1ltm$ST1))
> convScoef
Dffclt.Itl Dffclt.It2 Dffclt.It3
-2.370672800 -1.255691866 -1.445008169
Dffclt.It5 Dffclt.Ite Dffclt.It7
-1.283871507 -1.664591169 -0.870807837
Dffclt.It9 Dffclt.Itl0 Dffclt.Itll

-0.832791526
Dffclt.It13
-0.640265086
Dffclt.It1l7
-0.529100461
Dffclt.It21
0.334935640
Dffclt.It25
0.179039907
Dffclt.It29
0.711007422
Dffclt.It33
1.311846421

The obtained values can be compared to those shown in Table 6.13 in Kolen and
Brennan (2014).

5.3.4 IRT True-Score and Observed-Score Equating Using

-0.586065535
Dffclt.Itl4
0.007582455
Dffclt.It1s8

-0.363757637
Dffclt.It22

-0.113030497
Dffclt.It26
0.511109405
Dffclt.It30
1.316157527
Dffclt.It34
1.321117518

equatelRT

The score () function in the equateIRT package can be used to obtain equated
scores using either IRT true-score or IRT observed-score equating. We exemplify

-0.363761470
Dffclt.Itl5
-0.338004506
Dffclt.Itl9
-0.403735303
Dffclt.It23
0.112082500
Dffclt.It27
0.578115877
Dffclt.It31
0.521125051
Dffclt.It35
1.780480861

Dffclt.Itl2
-0.717535419
Dffclt.Itlé6
-0.512003500
Dffclt.It20
-0.007356718
Dffclt.It24
0.001493633
Dffclt.It28
0.779462425
Dffclt.It32
1.079218991
Dffclt.It36
1.554429979
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the use of score () with the ADM data. In this example, we illustrate first how
to fit a 2PL IRT model to the binary data using the mirt package, and then how
parameter estimates can be read into equateIRT. Next, item parameter linking is
performed prior to the IRT observed-score equating. The following code shows how
to implement all of these steps.

load (url ("http://www.mat.uc.cl/~jorge.gonzalez/
EquatingRbook/ADMneatX.Rda"))

load (url ("http://www.mat.uc.cl/~jorge.gonzalez/
EquatingRbook/ADMneatY.Rda"))

library (mirt)
modADMx .2PL <- mirt
SE = TRUE, SE.type
modADMy .2PL <- mirt
SE = TRUE, SE.type

ADMneatX, 1, itemtype = "2PL",
’BL’)

ADMneatY, 1, itemtype = "2PL",
’BL’)

+ Vv + Vv Vv + VvV + vV

The objects modADMx.2PL and modADMy.2PL store the 2PL fit to the
response data from test forms X and Y, respectively. The obtained item parameter
estimates can be imported to equateIRT using the import .mirt () function as
follows.

parADMx.2PL<-import.mirt (modADMx.2PL, display = FALSE,
digits = 3)
parADMy.2PL<-import.mirt (modADMy.2PL, display = FALSE,
digits = 3)

+ v + Vv

In Sect. 5.2.1.4, we saw that common items must share the same names in order
to be distinguished from unique test form items. In the ADM data, the first 40 (out
of 120) items in each test form correspond to anchor items. We give the names c1,
... ;€40 to the common items and the names uX and uY for the unique items in test
forms X and Y, respectively. The item parameter estimates with the relabeled item
names are then stored in the list parADM. 2PL as shown in the following code.

> aux.x<-as.matrix (parADMx.2PL$coef)

> aux.y<-as.matrix (parADMy.2PLsScoef)

> row.names (aux.x)<-c(paste("c", 1:40, sep = ""),
+ paste("ux", 1:80, sep = ""))

> row.names (aux.y)<-c(paste("c", 1:40, sep = ""),
+ paste("uy", 1:80, sep = ""))

> parADM.2PL<-1list (aux.x,aux.y)

Before the equating step, item parameter linking is conducted in order to put the
item parameter estimates on a common scale. In this case, we use the mean-sigma
method to obtain equating coefficients.

mod2pl.adm <- modIRT (coef = parADM.2PL,
ltparam = FALSE, lparam = FALSE)

112 <- direc(modl = mod2pl.adm[1],

mod2 = mod2pl.adm[2], method = "mean-sigma")

+ Vv + Vv
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The final step is the equating itself, which is performed using the score ()
function as shown below.

> gcore (112, method = "OSE",se=FALSE, scores = 5:15)
T2 Tl.as.T2

6 5 5.078680

7 6 6.098008

8 7 7.121798

9 8 8.150029

10 9 9.182403
11 10 10.218250
12 11 11.256572
13 12 12.296327
14 13 13.336815
15 14 14.377856
16 15 15.419550

The argument scores indicates that only the equated values for scores 5 to 15
in the scale are to be returned. If this argument is not set to a particular set of values,
then the complete list of equated values is returned.

5.4 Other Equating Methods for IRT Scores

In Sect. 5.2, IRT scores were linked using a linear function ¢ : ® 2 — @4 defined
by the equating coefficients A and B (see Eq. (5.3)). The linking function in Eq. (5.3)
can be seen as an equating transformation that maps IRT scores from one IRT scale
onto the other. In the following sections, we describe two alternative methods to link
IRT scores known as concurrent calibration and fixed item parameter calibration.
A notable difference is that these alternative methods do not need an equating
transformation to perform the equating, and instead parameters are linked on a
common scale during the estimation routine.

5.4.1 Concurrent Calibration

In the concurrent calibration method (Wingersky and Lord 1984), the parameters
obtained from both test forms data (i.e., w2 and wg) are estimated together in a
single run of the IRT software where separate ability distributions are assumed in
the two populations. Items that are not common are treated as not reached by the
program. As an example, suppose that two test forms X and Y are composed of
six items in total, where three of them are unique items and three are common
items. Also, assume that a sample from population P is composed of three test
takers whereas in population Q the sample size is four test takers. A schematic
representation of the data structure necessary to perform concurrent calibration in
this case is shown in Fig.5.2. As mentioned before, because the two test taker
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Fig. 5.2 Schematic X A Y
representation of the data item|it1[it2]it3[al[a2]a3]itl[it2]it3
structure to perform id
concurrent calibration P 1Ilv v v v v Vv
2 |V V VYV VY
3 WV VvV VvV Yoo
0 1 Vv v vy vy
2 VYV vy vy
3 Vv v vy vy
4 VvV VY vy

populations could differ significantly in ability, the IRT software used for concurrent
calibration must have a feature that supports multiple groups for the estimation. This
means that a different distribution for abilities is assumed for each of the groups
in the calibration. DeMars (2002) pointed out that item difficulty parameters can
be overestimated for the items on the less difficult test form and underestimated
for the items on the more difficult test form if group differences in ability are not
taken into account. However, the simulation study in DeMars (2002) showed that
the amount of bias was small (at least for the studied conditions) such that large
practical differences are not expected. Based on this last finding, in the following
section we give an example of how to perform concurrent calibration using the ltm
package, which does not support the multiple group feature.

54.1.1 Concurrent Calibration Using Itm

The following example shows how to implement concurrent calibration when the
Itm package is used to fit a Rasch model, using the KB data. First, we need to create
a data set with the structure shown in Fig. 5.2. The code below perform this task.

data ("KB36", package = "SNSequate")
KBneatX<-KB36S$KBformX
KBneatY<-KB36SKBformY

# extracting common items
xci<-KBneatX[,seq(3,36,3)]
yci<-KBneatY[,seq(3,36,3)]

V V.V V V V

> xui<-KBneatX|[,setdiff (seq(1:36),seq(3,36,3))]
> yui<-KBneatY[,setdiff (seq(1:36),seq(3,36,3))]

> nax<-matrix (NA,nrow=1655,ncol=24)
> nay<-matrix (NA,nrow=1638,ncol=24)

colnames (nax) <-paste ("It",seqg(37,60,1),sep="")
colnames (nay) <-paste ("It",setdiff (seq(1:36),
seq(3,36,3)),sep="")

colnames (yui) <-paste ("It",seq(37,60,1),sep="")

vV + Vv VvV
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kbfx<-cbind (xui, xci,nax)
kbfy<-cbind (nay,yci, yui)

vV Vv

# final data to be concurrently calibrated
> datkb<-rbind (kbfx, kbfy)

\

The object datkb is a 3293 x 60 matrix. The total number of rows is the sum
of the number of test takers for both X and Y (1655 + 1638 = 3293). The total
number of columns corresponds to the sum of the unique items for X and Y and
the common items (24 + 24 4 12 = 60). The not reached items are represented by
NA. Using this data set, the Rasch concurrent calibration can be stored in the object
modRasch. cc and can be performed as follows.

> modRasch.cc<-rasch(datkb, constraint =
+ cbind (ncol (datkb) + 1, 1))

For comparison purposes, we also fit separate calibrations stored in the objects
modx . rasch and mody . rasch using test forms X and Y, respectively. Because
IRT scores are being equated, a graphical comparison can be made by plotting
the predicted ability distributions using the results from the concurrent and the
separate calibrations. This plot is shown in Fig. 5.3. The R code used for the separate
calibrations as well as to produce the plot of the predicted ability distributions is
shown below.

modx.rasch<-rasch (KBneatX, constraint =
cbind (ncol (KBneatX) + 1, 1))

mody .rasch<-rasch (KBneatY, constraint =
cbind (ncol (KBneatyY) + 1, 1))

coef (modx.rasch)

coef (mody.rasch)

coef (modRasch.cc)

vV V.V + VvV + VvV
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> thetas.xr<-factor.scores (modx.rasch)
thetas.yr<-factor.scores (mody.rasch)
thetas.cc<-factor.scores (modRasch.cc)

vV Vv

plot (density (thetas.ccSscore.dat$zl) ,ylim=c(0,0.6),
main="",xlab=expression (theta),lwd=2.0,1lty=1)

lines (density (thetas.xr$score.dat$zl),1lwd=2.0,1lty=2)
lines (density(thetas.yr$score.dat$zl),1lwd=2.0,1lty=3)
legend ("topright",lty=c(1,2,3),1lwd=c(2,2,2),
c("Concurrent Calibration","X Calibration",

"Y Calibration"))

+ + v v v + vV

5.4.2 Fixed Item Parameter Calibration

In the fixed item parameter calibration method (Kim 2006), the estimated values for
common items from previous calibrations are fixed in the calibration of other test
forms. Assuming that test form Y is first administered, parameter estimates for the
portion of common items are used and treated as fixed when calibrating test form
X. In this way, the 2" scale is forced to be on the % scale.

5.4.2.1 Fixed Item Parameter Calibration Using mirt

We use the KB36 data to show how fixed item parameter calibration can be
performed using the mirt package. A key task is to instruct the program to fix the
values of anchor parameter estimates when calibrating a new test form. This task
can be performed using the argument parms in the mirt () function. By setting
parms="values", it is possible to inspect (and later modify) the way the model
is being estimated (i.e., which starting values are being used for estimation, which
parameter are actually being estimated and which are left fixed, etc.). Suppose that
test form Y is first calibrated. The previously explained steps can be performed using
the following code.”

> str.mod <- mirt (KB36$SKBformY, 1, itemtype = 'Rasch’,
+ pars = ’‘values’)
> head(str.mod,n=12)

group item class name parnum value lbound ubound est
1 all 1Itl dich al 1 1.0000000 -Inf Inf FALSE
2 all 1Itl dich d 2 2.0612449 -Inf Inf TRUE
3 all 1Itl dich g 3 0.0000000 0 1 FALSE
4 all 1Itl dich u 4 1.0000000 0 1 FALSE
5 all 1It2 dich al 5 1.0000000 -Inf Inf FALSE
6 all 1It2 dich d 6 0.5828647 -Inf Inf TRUE

7Some columns in the output are omitted.
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7 all 1It2 dich g 7 0.0000000 0 1 FALSE
8 all 1It2 dich u 8 1.0000000 0 1 FALSE
9 all 1It3 dich al 9 1.0000000 -Inf Inf FALSE
10 all 1It3 dich d 10 1.3540319 -Inf Inf TRUE
11 all 1It3 dich g 11 0.0000000 0 1 FALSE
12 all 1It3 dich u 12 1.0000000 0 1 FALSE

The column est in the output indicates that the only parameter® that is being
estimated is d (see column name in the output). Because in the KB36 data every
three items are common items, the est column can be modified in the following
way.

> str.mod$est <- c(rep(c(FALSE, TRUE, FALSE, FALSE,
+ FALSE, TRUE, FALSE, FALSE,
+ FALSE, FALSE, FALSE, FALSE) ,12) , FALSE,
+ FALSE)

This modification will result in anchor items being fixed to the values estimated
in the calibration of test form X, and unique items in test form X will indeed be
estimated. The calibration of test form X using fixed item anchor items is performed
as follows.

> mod.FIPC <- mirt (KB36$KBformX, 1, pars = str.mod)

In order to check that anchor items were indeed fixed and that unique items were
estimated, we also calibrate test forms X and Y separately and compare the resulting
item parameter estimates with the fixed item parameter calibration results.

> mod.x<-mirt (KB36$KBformX, 1, itemtype = ’‘Rasch’)
> mod.y<-mirt (KB36$KBformY, 1, itemtype 'Rasch’)

# Check that anchor items were fixed
> aux.parm<-matrix(c(str.mod$val,0,0),ncol=4,byrow=TRUE)
> check.parm<-cbind (aux.parm[-37,],coef (mod.FIPC,
+ simplify=TRUE) $Sitems)
> check.parm
al dgu
Ttl 1 2.061244896 01 1 2.176 0 1
It2 1 0.582864689 01 1 1.062 0 1
It3 1 1.354031884 0 1 1 1.354 0 1
It4 1 1.115791050 0 1 1 0.444 0 1
It5 1 1.872662531 01 1 1.090 0 1
It6e 1 1.618311781 0 1 1 1.618 0 1
It7 1 0.681053078 01 1 0.677 0 1
It8 1 0.548382925 01 1 0.963 0 1
It9 1 0.950015430 0 1 1 0.950 0 1
It10 1 0.836619693 01 1 0.392 0 1

8The mirt () function implement a general four parameter model from which the 1PL, 2PL
and 3PL models are particular cases. The discrimination, difficulty and guessing parameters are
denoted by a1, d, and g, respectively, whereas a fourth upper asymptote parameter is denoted by
u. In the case of the Rasch model, al=u=1 and c=0.
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Itl1 1 1.289923157 01 1 0.170 0 1
Itl2 1 0.539008477 01 1 0.539 01
Itl3 1 0.341558648 0 1 1 0.446 0 1
Itl4 1 0.548382925 0 1 1 -0.201 0 1
Itl5 1 0.265464639 01 1 0.265 0 1
Itle 1 0.048124734 01 1 0.318 01
Itl7 1 -0.102301021 0 1 1 0.3350 1
Itl8 1 0.292806712 0 1 1 0.293 01
Itl19 1 0.636514043 0 1 1 0.210 0 1
It20 1 -0.042108156 0 1 1 -0.187 0 1
It21 1 -0.671480291 0 1 1 -0.671 0 1
It22 1 0.452072063 0 1 1 -0.081 0 1
It23 1 0.048124734 01 1 -0.306 0 1
It24 1 -0.108324656 0 1 1 -0.108 0 1
It25 1 -0.009022518 0 1 1 -0.373 0 1
It26 1 0.030076127 0 1 1 -0.705 0 1
It27 1 -0.611210637 0 1 1 -0.611 0 1
It28 1 -0.570305655 01 1 -0.974 0 1
It29 1 -0.548382925 0 1 1 -0.905 0 1
It30 1 -1.490825665 0 1 1 -1.491 0 1
It31 1 -0.933149123 01 1 -0.715 0 1
It32 1 -0.830038920 01 1 -1.274 0 1
It33 1 -1.238142370 0 1 1 -1.238 0 1
It34 1 -1.8212133%92 01 1 -1.516 0 1
It35 1 -2.092787071 0 1 1 -1.976 0 1
It36 1 -1.682497427 0 1 1 -1.682 0 1

The output shows that, indeed, for every three items the values of the parameter
estimates are the same for both test forms.

5.5 Other R Packages for IRT Analysis

In this chapter, we have illustrated how the Itm and mirt packages can be used
to fit IRT models and how the obtained results from these packages can be
combined with SNSequate and equateIRT for performing equating tasks. There
are also other R packages that can be used for different types of IRT analyses.
For example, the 1mer () function in the Ime4 package (Bates et al. 2015) can
be used to fit several IRT models (De Boeck et al. 2011). The sca () function
in the irtoys package (Partchev 2014) implements the mean-mean, mean-sigma,
Stocking-Lord, and Haebara methods for the transformation of IRT scales. Other
functions in this package such as est () and eap () are used to estimate
both item and ability parameter estimates. The sirt package (Robitzsch 2016)
has the functions equating.rasch (), equating.rasch.jackknife (),
linking.haberman (), and 1linking.robust (), all of which implement
variants of IRT linking methods and many other functions for general IRT analysis.
The packages TAM (Kiefer et al. 2016) and eRm (Mair and Hatzinger 2007)
implement functions to estimate a variety of unidimensional and multidimensional
IRT models.
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We acknowledge the existence of the plink package (Weeks 2010), which
unfortunately is no longer available on CRAN. The package is designed for linking
mixed-format tests using IRT-based methods, and it also implements IRT true-score
and observed-score equating. Interested readers can still download archived versions
of the package at https://cran.r-project.org/src/contrib/Archive/plink/.

5.6 Summary

In this chapter, different methods of IRT equating have been described for the case
when either IRT scores or sum scores are used for reporting the equating results. The
methods have been illustrated using the R packages SNSequate and equateIRT.

The equating methods described require item parameter estimates from an IRT
model as inputs, and these can be obtained from any IRT software package. We have
illustrated how IRT models can be fitted using the R packages 1tm and mirt. A list of
alternative R packages for IRT analyses as well as methods of linking and equating
were described in Sect. 5.5. It is worth mention that, although in this chapter we have
only described item parameter linking and equating for IRT models using binary
scored items, the methods can also be extended to accommodate polytomous score
data (see, e.g., Kolen and Brennan 2014, Sect. 6.10). A method that can use either
binary or polytomous scored data with kernel equating will be described in Chap. 7
together with a brief description of two IRT models for polytomous scored data
which is given in Sect. 7.3.1. Further examples of IRT equating and linking can be
found on the book’s webpage.
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Chapter 6
Local Equating

Abstract Local equating (van der Linden (2011) Local observed-score equating.
In: von Davier A (ed) Statistical models for test equating, scaling, and linking.
Springer, New York, pp 201-223) can be seen as an attempt to obtain a fairer
equating in comparison to the traditional equating methods described in previous
chapters. In this chapter, the concept of local equating is presented, and some
existing local equating methods that are currently implemented in kequate
(Andersson et al., J Stat Softw 55(6):1-25, 2013) and SNSequate (Gonzilez,
J Stat Softw 59(7):1-30, 2014) are illustrated.

6.1 The Concept of Local Equating

We motivate the idea behind local equating using the following hypothetical
example! inspired by van der Linden and Wiberg (2010). Let x,...,x, and
ViseensYny be observed score data for n, and n, test takers that have been
administered test forms X and Y, respectively. Consider two test takers p and g with
abilities 6, and 8, and with scores x, and x, in test form X, respectively. As we have
seen in previous chapters, equating transformations are built from the corresponding
score distributions Fy(x) and Fy(y) (see Eq.(1.2)), which are estimated using the
score data. Thus, to obtain an equivalent test score for x, and x, it is sufficient to
evaluate ¢(x) = Fy'(Fx(x)) at these values to obtain y, = ¢(x,) and y, = ¢(x,),
respectively. Suppose now that both p and g get the same test score so that x, = x,,.
Using the above approach, both test takers would obtain the same equated score.
But what if test taker p is in reality more able than ¢? Would it be fair to assign him
or her the same equated score as g? In general, would it be acceptable for test takers
to obtain a score that actually depends on the abilities of other tests takers?

If the full score distributions for 8, were available for both tests, Fx(x|6,) and
Fy(y|6,) and likewise for ,, Fx(x|0,) and Fy(y|6,), a fairer equating would provide
an equated value of x, using ¢,(x,6,) = F ;|10p (Fxjg,(x)). In the same vein, a fairer

equated value for x, can be obtained by building the equating transformation using

! Alternative motivations for local equating are given in Sect. B.6.
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138 6 Local Equating

Fx(x]6,) and Fy(y|0,). Thus, rather than a unique equating transformation, a family
of equating transformations would be needed to assign fairer equated scores. This is
the fundamental idea behind local equating.

6.1.1 True Equating Transformation

The ideas introduced above are well summarized by Lord (1980) who
conceptualized the issue of fairness in equating by establishing the equity principle.
Equity is fulfilled if the (conditional) probability function of scores on Y, f,9, and
that of the transformed scores, f, ()9, are the same for every test taker at every
ability level 0, i.e.,

Fyio = fow)eo- (6.1)

Starting from the equity principle, and replacing probability functions with
distribution functions, van der Linden (2013) derived what is called the family of
true equating transformations

9*(x,0) = Fyp(Fxa(x)), 0 € %, (6.2)

where 6 indexes the individual members of the family and R is the set of possible
values for 6 (van der Linden 2000, 2013). The local equating method is thus
different from the equating methods described in Chaps. 2, 3, 4, and 5 in that the
latter utilize only one single equating transformation. Another immediate difference
is that the equating transformation in Eq.(6.2) is built from the conditional
distributions of the observed scores given 6.

Because the parameter indexing the family of equating transformations in
Eq. (6.2) is not known, either an estimate or a proxy of this parameter must be
used in practice to obtain an estimated equating transformation. For instance, when
0 represents the ability of test takers under a response model, estimates of 6
can be plugged into Eq.(6.2) to obtain an estimated equating transformation. It
is thus possible to use, for example, maximum likelihood estimates or Bayesian
expected a posterior estimates (van der Linden 2011). It is also possible to use an
indirect estimate of 6 that is some kind of proxy for the ability (van der Linden
and Wiberg 2010). In this context, a proxy is defined as any monotone function
of the ability that is measured (Wiberg and van der Linden 2011). For instance,
under a NEAT design, information from the anchor test scores constitutes a suitable
proxy of 6 (van der Linden and Wiberg 2010). No matter the chosen type of value
that is used for indexing the family of equating transformations, the aim of local
equating is to obtain a transformation that is as close as possible to the true equating
transformation.
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van der Linden (2000) has shown that the family of true equating transformations
fulfills all of the equating requirements defined in Chap. 1 (see Sect. 1.2.6). Several
empirical studies have used the definition of the true equating transformation
(van der Linden 2006a,b, 2011; Wiberg et al. 2014; Wiberg and van der Linden
2011; van der Linden and Wiberg 2010).

6.2 Performing Local Equating

A general algorithm to perform local equating was suggested by van der Linden
(20064a), and this is summarized in the following three steps:

1. Use either an estimate or proxy of 6 that is obtained from the test takers’ response
vectors.

2. Pick a true equating transformation at this estimate or proxy from the family in
Eq. (6.2).

3. Use the chosen true transformation to calculate the equated score associated with
the test taker’s observed number-correct score.

One way to evaluate a performed local equating is to calculate the bias. The bias
is defined as the difference between the actual obtained equating transformation
@(x) and the true equating transformation ¢* (x)

bias = p(x) — ¢ (x;0), 6 € N (6.3)

(van der Linden 2000; van der Linden and Wiberg 2010; Wiberg and van der
Linden 2011). Another common measure that is used is the root mean squared error
(RMSE).

6.3 Local Linear Equating Transformations

As it was in the case of traditional methods of equating, both equipercentile
and linear transformations can be used under the local equating framework. The
mathematical form of the equating transformation will depend on the equating
design and sometimes on the type of index chosen for the family of equating
transformations. In this section, we describe some local linear equating methods,
detailing the type of index used and the most suitable equating design that the
transformation is used for.
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6.3.1 Local Linear Equating Conditioning on Anchor Test
Scores: NEAT Design

Local linear equating conditioning on anchor test scores (Wiberg and van der Linden
2011) was the first proposed local linear method. Under a NEAT design, a suitable
proxy of @ is the anchor test score, thus it is possible to condition on the anchor score
and adjust the traditional linear equating transformation (see Eq. (3.2)) as follows

0 a
0(x) = fhyia + UY" (X — ixla). @ € . (6.4)
Xl|a

where a is a possible value of the anchor test score and <7 is the entire set of possible
values of anchor test scores. Estimates of fty|s, [x|q» Ox|a> and Oy|, can be obtained
in a straightforward manner from the test score data set.

6.3.2 Local Linear Equating Method of Conditional Means:
SG Design

For the SG design, it is possible to use the observed score of the test form that is to
be equated as a suitable proxy of 8. Thus, conditioning on the observed test score
X = x we have

QD(X) = MUylx +

OV (x — paxp). x € 2. 65)
Ox|x

From classical test theory, using the fact that px, = x it is possible to reduce
Eq. (6.5) to the local linear method of conditional means

P(x) = pyjx, x € X (6.6)
For a thorough discussion and empirical study of this method and local linear

equating conditioning on anchor test scores, please refer to Wiberg and van der
Linden (2011).

6.3.3 Local Linear Equating Examples in R

None of the local equating methods described above are currently part of any R
package. However, in what follows we show that they can be easily implemented
in R.



6.3 Local Linear Equating Transformations 141

6.3.3.1 Implementing Local Linear Equating Conditioning on Anchor
Test Scores

To illustrate local linear equating conditioning on anchor test scores, we use the
KB data. Remember that the object KBneat is a list with two elements, x and vy,
containing the test score pairs (x, a) and (y, a) for test forms X and Y, respectively.
To obtain conditional means and variances, it is thus necessary to first filter the
data set for selected values of anchor scores. In this example we chose the values
a=3,6,912.

> library(equate)

dat.ax3<-KBneat$x [KBneat$x[,2]==3,]
dat .ax6<-KBneats$x [KBneat$x[,2]==6,]
dat.ax9<-KBneat$x [KBneat$x[,2]==9,]
dat.axl2<-KBneat$x [KBneat$Sx[,2]1==12,1]

vV V. V V

dat.ay3<-KBneat$y[KBneatsSy[,2]==3,]
dat.ay6<-KBneat$y[KBneat$y[,2]==6,]
dat.ay9<-KBneat$y [KBneats$y[,2]1==9,]
dat.ayl2<-KBneat$y[KBneatSyl[,2]1==12,]

vV V V V

The resulting objects are two-column matrices containing the observed score
values (first column) for a given anchor score (second column). For example, the
observed realizations of the distribution fxj4 (x|A = 12) looks like

> dat.ax12
total anchor

6 36 12
129 30 12
221 34 12
799 33 12
1106 34 12
1359 34 12
1515 32 12
1569 33 12

The conditional means and standard deviations are calculated directly from the
scores that are observed for a given anchor score. The following code can be used
for this task:

mu.x3<-mean (dat.ax3sStotal)
mu.x6<-mean (dat .ax6stotal)
mu.x9<-mean (dat.ax9stotal)
mu.xl2<-mean (dat.axl2Stotal)

vV V. V V

sigma.x3<-sd(dat.ax3$total)
sigma.x6<-sd(dat.ax6$total)
sigma.x9<-sd(dat.ax9$total)
sigma.x12<-sd(dat.axl2stotal)

vV V V V
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vV V. V V

vV V. V V

sigma
sigma
sigma
sigma
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mu.y3<-mean (dat.ay3stotal)
mu.y6<-mean (dat.ay6$total)
mu.y9<-mean (dat.ay9stotal)
mu.yl2<-mean(dat.ayl2S$total)

.y3<-sd(dat.ay3S$total)
.y6<-sd(dat.ay6stotal)
.y9<-sd(dat.ay9stotal)
.yl2<-sd(dat.ayl2stotal)

Having the estimated conditional means and standard deviations, the equating
transformation in Eq. (6.4) can be easily implemented. The following is an example
of code that can be used to create a function called 1ocal.lin (), which takes
as arguments the score values in 2 that are to be equated, and the estimated
parameters fly|q, MUx|a> Ox|a> aNd Oy|,. The function then returns the corresponding
equated values in %

> local.lin<-function(x,mu.y,mu.x,sigma.y, sigma.x) {
+ phi.x<- mu.y+(sigma.y/sigma.x) * (x-mu.x)
+ return (phi.x)

>}

For example, we can create a table showing the equated values for the whole
score scale for the case when a = 3 using the following code:

> eqg.ll<-local.lin(0:36,mu.y3,mu.x3,sigma.y3,sigma.x3)
> tab.eqgll<-cbind(0:36,eq.11)
> tab.eqll

[1,]
[2,1]
[3,1]
[4,]
[5,1]
[6,1
[7,]
[8,1
[9,1]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,1
[23,]
[24,]

W J 0 Ul WNKH O
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U WNROWNOU KR WNRE OV

eq.1l1l

.1234318
.2338482
.3442647
.4546811
.5650975
.6755140
.7859304
.8963468
.0067632
.1171797
.2275961
.3380125
.4484290
.5588454
.6692618
.7796783
.8900947
.0005111
.1109275
.2213440
.3317604
.4421768
.5525933
.6630097
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[25,] 24 26.7734261
[26,] 25 27.8838426
[27,] 26 28.9942590
[28,] 27 30.1046754
[29,] 28 31.2150918
[30,] 29 32.3255083
[31,] 30 33.4359247
[32,] 31 34.5463411
[33,] 32 35.6567576
[34,] 33 36.7671740
[35,] 34 37.8775904
[36,] 35 38.9880069
[37,] 36 40.0984233

Figure 6.1 shows a plot of the four equating transformations, and it was produced
with the following code:

plot (0:36,1local.lin(0:36,mu.y3,mu.x3,sigma.y3,sigma.x3),
type='1’, 1lty=1, lwd =2,col=1,ylab = expression (phi (x)),
xlab = "x")
lines(0:36,1local.lin(0:36,mu.y6,mu.x6,sigma.y6,sigma.x6),
lty = 2, 1lwd =2,col=2)
lines(0:36,local.lin(0:36,mu.y9,mu.x9,sigma.y9,sigma.x9),
lty = 3, 1lwd =2,col=3)
lines(0:36,local.lin(0:36, mu.yl2, mu.x12,sigma.yl2,sigma.x12),
lty = 4, 1lwd =2,col=4)

legend ("topleft",lty=c(1,2,3,4), col=c(1,2,3,4),
c("a=3","a=6","a=9","a=12") ,lwd=c(2,2,2,2))

+V 4+ V A+ V A+ V A+ o+

()

0 5 10 15 20 25 30 35
X

Fig. 6.1 True equating transformations for a = (3, 6, 9, 12) for local linear equating
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6.3.3.2 Implementing the Local Linear Equating Method of Conditional
Means

An example of the local linear equating method of conditional means under the SG
design is given next using the ADM data. Part of the R code described in Chap. 2
to create the objects sgADM.x and sgADM.y is used here to create the object
dat . xy, which contains a two-column matrix with the score pairs (x,y) for each
test taker.

load (url ("http://www.mat.uc.cl/~jorge.gonzalez/
EquatingRbook/ADM12.Rda"))

SgADM.x <- apply(ADM12[,1:80],1,sum)

SgADM.y <- apply(ADM12[,161:240],1,sum)
dat.xy<-cbind (sgADM.x, sgADM.y)

vV V.V + VvV

As in the previous example, we first need to filter the data matrix. In the case
of the SG design, we need to obtain the observed y scores for each of the observed
values of x scores so that |, can be calculated.

dat.Allxy<-list ()

mu.xy<-c ()

for(i in 0:80)
dat.Allxy[[i+1l]]<-dat.xy[dat.xy[,1]==
mu.xy [i+1] <-mean(dat.Allxy[[i+1]] [2])

}

The object mu . xy contains the estimated values jy|, with which an estimate of
the equating transformation is obtained. Figure 6.2 shows the family of equating
transformations obtained under the local linear equating method of conditional
means. Note that for each value X = x, the equating transformation is actually a
constant number corresponding to the conditional mean fty|,. Because the values
X =0,1,2,3,4,5,6,8,9,80 were not observed, no equating transformation is
plotted for these cases. The figure was produced using the following code.

i,]

V V.V V V Vv

> plot (0:80, mu.xy,type="p’,ylab = expression (phi (x)),
+ xlab='x’',1lwd=2)

6.4 Local Equipercentile Equating Transformations

Some local equating methods that use an equipercentile-like transformation have
been proposed in the literature. As was the case for local linear methods, their
usability will depend on the type of index used to characterize the family of equating
transformations, which is selected considering the equating data collection design.
In this section we describe the methods that are currently implemented in the R
packages SNSequate and kequate.
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Fig. 6.2 Equating transformations for the local linear equating method of conditional means

6.4.1 Local IRT Observed-Score Equating

In local IRT observed-score equating® (van der Linden 2000, 2006a), the family of
true equating transformations is indexed by the ability parameter underlying some
IRT model. The two-parameter logistic (2PL) or the three-parameter logistic (3PL)
IRT models have been shown to work well for local equating, in contrast to the
one-parameter logistic (1PL) IRT model (von Davier et al. 2013). Both maximum
likelihood and Bayesian expected a posterior estimates can be used to obtain 6
(van der Linden 2011). Another possibility is to use the full posterior distribution
of O for the test taker’s response vector to obtain the posterior expectation of
the true equating family (van der Linden 2000, 2006a). The family of local IRT
observed-score equating transformations is defined as

o(x) = F 5 (Fy3(x). 0 € %, 6.7)

where the conditional distributions can be obtained using the recursive algorithm
described in Lord and Wingersky (1984) (see Sect.B.5) or using alternative
approaches as described in Gonzélez et al. (2016). For more details about this
method, we refer to van der Linden (2000, 2006a).

2This method is also called estimated conditional equating or estimated true equating.
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6.4.2 Local Observed-Score Kernel Equating Conditioning
on Anchor Test Scores

In Chap. 4, the observed-score kernel equating framework was described. In Wiberg
et al. (2014), the local kernel equating conditional on anchor test score method was
proposed for the NEAT design. This method has its roots in the local equating on
anchor test score method described in van der Linden and Wiberg (2010). It relies
on the assumption that the observed score on the common anchor test form A is
an accurate proxy of the proficiency measured by test form X and test form Y. A
discussion about the requirements that the anchor test should fulfill in order to be
used as a proper proxy can be found in Wiberg and van der Linden (2011).

The family of local observed-score kernel equating transformations can be
defined as

o) = Fyl(Fxa(x)). a € o (6.8)

where F is the presmoothed and continuized conditional distribution obtained using
the kernel equating framework (see Chap. 4).

6.4.3 Local IRT Observed-Score Kernel Equating

Another method is local IRT observed-score kernel equating (Wiberg et al. 2014;
Andersson and Wiberg 2016), which relies on the assumption that the tests X and Y
jointly fit an IRT model. The method has its origin in IRT observed-score equating
and IRT observed-score kernel equating. From the scores in test forms X and Y, the
distribution of number-correct scores given the ability 6 can be obtained using either
the Lord and Wingersky (1984) algorithm (see Sect. B.5) or alternative methods
(Gonzdlez et al. 2016). After these distributions have been continuized, the family
of equating transformations can be derived from them as

o) = F 5 (Fyp(0)). 0 € 9%, (6.9)

where F is the continuized distribution obtained using the general kernel equating
framework described in Chap. 4. Note that because we are using equivalent test
takers with the same level of ability, the design function used to obtain the estimated
score probabilities is the identity function (see Eq. (B.1)).
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6.4.4 Local Equipercentile Equating Examples in R

In the following sections, we give examples of local equipercentile equating
methods that are currently implemented in the R packages SNSequate and kequate.

6.4.4.1 Local IRT Observed-Score Equating Using SNSequate

The function le.eqg() in SNSequate can be used to perform local IRT
observed-score equating. This function first estimates the conditional score
distributions and then performs equipercentile equating using the estimated
conditional distributions. A typical call reads as

le.eqg(S.X, It.X, It.Y, Theta)

where the argument S.X is a vector containing the observed scores of the sample
taking test form X. The arguments It.X and It.Y contain matrices of item
parameter estimates coming from an IRT model fitted to test forms X and Y,
respectively. These values are used together with the Lord-Wingersky recursive
algorithm to obtain the conditional score distributions. The argument Theta can
either be a number or vector of values representing the value of 6 on which to
condition on. The function returns as output a list containing the observed scores
for each value of 6 and the corresponding equated values.

The following example uses the parameter estimates in the KB3 6 data to simulate
item response data under a 3PL IRT model. We simulate two test forms that are both
administered to a total of 2,500 individuals. From the two simulated test forms, sum
scores are obtained and used as inputs in the 1e.eq () function to obtain the true
equating transformation. The following code is used to store the values of the item
parameters estimates and to generate the values of ability with which the response
data will be generated.

data ("KB36", package = "SNSequate")

Itx <- KB36$KBformX par

Ity <- KB36$KBformY par

Itx.m <- t(cbind(Itx[, 2], Itx[, 11, Itx[, 31))
Ity.m <- t(cbind(Ity([, 21, Ityl[, 11, Ityl[, 31))
Th <- rep(seq(-2, 2, 1), each = 500)

V V.V V V V

For the given values of item and person parameters stored in the objects Ttx.m,
Itx.m, and Th, respectively, the given values of probabilities used to produce
Bernoulli random variables according to the 3PL probabilities (see Sect.5.1) are
obtained using the function Pr (). This function is used as an input in the function
Pattern () to produce a full response pattern. These functions are created as

follows.
> Pr <- function(theta, b, a =1, ¢ = 0)
)

+ ¢ + (1-¢)/(1+exp(-ax (theta-b)))
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> Pattern <- function(theta, b, a = rep(l, length(b)),
+ ¢ = rep(0, length(b)))
+ rbinom(length(b),1,Pr(theta, b, a, c))

For each value of § = (—2.0,—1.0,0.0,1.0,2.0), 500 response patterns are
generated using the DataGen () function described below.

> DataGen <- function (Theta, ItemPar){

+ res <- NULL

+ N <- length(Theta)

+ for (i in 1 : N) res <- rbind(res, Pattern(Thetali],
+ ItemPar[l, ], ItemPar[2, ], ItemPar([3, 1))

+ return(res)}

The final step to obtain the simulated data is to generate the 0/1 matrices of item
responses that are stored in the objects X and Y for test forms X and Y, respectively.
These matrices are then summed over columns to obtain the sum scores that are
stored in the objects sx and sy.

set.seed (10)

X <- DataGen(Th, Itx.m)
Y <- DataGen(Th, Ity.m)
sx <- apply (X, 1, sum)
sy <- apply (Y, 1, sum)

V V. V V V

The actual local equating procedure is performed using the 1e.eq () function.
To illustrate what the output looks like, suppose we want to obtain the results for
test takers that have scored X = 18. The following code can be used:

library (SNSequate)
true <- le.eg(sx, Itx.m, Ity.m, Th)
res <- data.frame(Theta=trues$Theta, Score=truesObs.Sc,
Equated value=true$resu)
unique (res[res[, 2] == 18, 1)
Theta Score Equated value
609 -1 18 20.13200
1001 0 18 20.67140
1509 1 18 20.66928

vV + VvV Vv Vv

Because local equating generates a family of equating transformations, different
test takers (i.e., with different values of 6) obtain different equated values, regardless
of the fact that all of them have obtained the same sum score. This situation is
exemplified by restricting the output to show only the results for test takers with
0 = (—1,0, 1), and where all of them obtained a sum score of 18.

A graphical display of the resulting family of equating transformation is shown
in Fig.6.3, where the equipercentile transformation has also been plotted for
comparison. This figure was generated using the following code:

> resu <- vector("list", 9)

> ind <- seq(-2, 2, 1)

> for(i in 1 : 5){

+ resul[[i]l] <- unique(res([res[,1] == ind[i],2:3])}
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Fig. 6.3 True equating transformations for 6 = (—2,—1,0, 1, 2) using local IRT observed-score
equating and equipercentile equating transformation (dashed line)

est.egp <- egp.eq(sx, sy, 0 : 36)

est.e <- est.egpSresu[match(apply (X, 1, sum),
est.eqgps$X)]

plot (resul[[1]], type = '1’, xlim = c(0,36),

ylim = c(0, 36), col =1, 1lwd = 2.0,

ylab = expression(phi(x)), xlab = "x")

for(i in 2:5) lines(resul[[i]], type = '1’,

col=1i, lwd = 2.0)

lines (0 : 36, est.egpS$resu, type = '1l’, 1lty = 2)
legend("topleft", 1lty = c¢(1,1,1,1,1),

lwd = ¢(2,2,2,2,2),c("Theta = -2.0","Theta = -1.0",
"Theta = 0.0", "Theta = 1.0", "Theta = 2.0"),

col = ¢(1,2,3,4,5))

+ + 4+ VV A+ V A+ +V A+ VY

6.4.4.2 Local Observed-Score Kernel Equating Using kequate

To exemplify local kernel equating conditional on anchor test scores, we use the
ADM test data described in Chap. 2 under a NEAT design. Similarly to the example
given in Sect. 6.3.3.1, the score data need to be filtered for selected values of anchor
scores. The following code shows how to perform this task for the case a = 20 and
using the objects neat .X and neat .Y created in Sect. 2.2.4.
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dneat.X <- as.data.frame (neat.X)
dneat.Y <- as.data.frame (neat.Y)
Adm20P <- dneat.X$verb.x[dneat.X$Sverb.xa==20]
Adm20Q <- dneat.YS$verb.yl[dneat.YSverb.ya==20]

vV V. V V

Once the observed score values for a given anchor score are obtained (objects
Adm20P and Adm2 0Q), the obtained data are analyzed using the five steps of kernel
equating described in Chap. 4.3

fXAdm20 <- kefreq(Adm20P,0:80)

fYAdm20 <- kefreq(Adm20Q,0:80)

glmXAdm20 <- glm(frequency~I (X)+I (X"2),data=fXAdm20,
family=poisson, x = TRUE)

glmYAdm20 <- glm(frequency~I (X)+I (X"2),data=fYAdm20,
family = poisson, x = TRUE)

1A20 <- kequate("EG",0:80,0:80,glmXAdm20,glmYAdm20)

v + v + Vv Vv Vv

Equated values can be obtained using the getEg () function and stored in an
object called A20 as follows:

> A20 <- getEg(lA20)
> A20

[1] -2.36134259 -2.01951704 -1.70979658 -1.38579527

[5] -1.02357764 -0.59797660 -0.06874029 0.62456646

[9] 1.51687911 2.55058022 3.64847963 4.77118536
[13] 5.90316748 7.03863746 8.17544443 9.31277541
[17] 10.45031465 11.58793617 12.72558983 13.86325719
[21] 15.00093320 16.13861586 17.27630414 18.41399444
[25] 19.55168336 20.68936779 21.82704897 22.96472888
[29] 24.10241186 25.24009885 26.37778907 27.51547978
[33] 28.65316736 29.79085060 30.92853090 32.06621154
[37] 33.20389551 34.34158381 35.47927452 36.61696430
[41] 37.75465033 38.89233220 40.03001211 41.16769363
[45] 42.30537889 43.44306820 44.58075891 45.71844757

[49] 46.85613202 47.99381277 49.13149268 50.26917505
[53] 51.40686167 52.54455152 53.68224148 54.81992825
[57] 55.95761039 57.09528924 58.23296746 59.37064801
[61] 60.50833093 61.64601310 62.78368896 63.92135177

]
]
]
]
[65] 65.05899393 66.19660466 67.33416202 68.47161979
]
]
]
]

[69] 69.60888051 70.74574492 71.88180002 73.01617420
[73] 74.14698465 75.27008950 76.37632293 77.44575263
[77] 78.43807022 79.29044113 79.97019181 80.53221703
[81] 81.08812053

Repeating the above analysis with similar names for the objects for other anchor
test score values, e.g., a = 15 and a = 20, a plot of the different obtained equating
transformations can be produced using the code below. The resulting plot is shown
in Fig. 6.4.

3Because we compare the results for test taker groups having the same anchor test score, test scores
can be equated assuming an EG design.
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Fig. 6.4 Local observed-score kernel equating for anchor test scores 15, 20, and 25

plot (0:80,A15, type='1l’,lwd=2,col=1,
ylab = expression (phi (x)),xlab = "x")
lines(0:80,A20, lty=2,1lwd=2,col=2)
lines(0:80,A25,1ty=3,1wd=3,col=3)
legend ("topleft", 1lty = c(1, 2, 3),
lwd = c(2, 2, 3),c("a = 15", "a = 20",
"a = 25"),col = c(1, 2, 3))

+ + v v Vv + vV

The anchor test used in the ADM data is external. Because equating under a
NEAT design can be performed using either an internal or external anchor test, the
equating transformation might have to be adjusted accordingly. Two examples of
such adjustments for the case of internal anchor tests can be found in Wiberg and
van der Linden (2011).

6.4.4.3 Local IRT Observed-Score Kernel Equating Using kequate

To illustrate local IRT observed-score kernel equating with kequate we use the
DataGen () function described in the previous section to simulate data under
a NEAT design. Two test forms (both containing 10 items) and an anchor test
also containing 10 items are administered to two groups of 1,000 test takers each.
The item response data are assumed to have been generated by a 2PL model.
Given values for discrimination parameters are generated from uniform distributions
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whereas both item parameters and ability parameters are generated from normal
distributions. The code used to perform these tasks is

set.seed(5)

aX <- runif (10
aY <- runif (10
aA <- runif (10
bX <- rnorm(1l0
bY <- rnorm(10
bA <- rnorm(10)

thetaP <- rnorm(1000,mean=0.5)
thetaQ <- rnorm(1000,mean=0)

V V. V V V V V V V

> itx<-rbind(c (bX,bA),c(aX,ad),c(0,0))
> ity<-rbind(c(bY,bA),c(aY,ad),c(0,0))

> tP <- DataGen (thetaP, itx)
> tQ <- DataGen (thetaQ, ity)

where the objects t P and tQ contain the simulated 0/1 matrices of item responses.

As will be seen in Chap.7, the function irtose () in kequate is used to
perform IRT observed-score kernel equating. However, the same function with a
small modification in one of the arguments also permits one to perform local IRT
observed-score kernel equating. In this section we only describe the necessary
arguments of irtose () needed to perform local IRT observed-score kernel
equating, postponing more details of this function to Chap.7. A typical call with
the minimal arguments needed to perform local IRT observed-score kernel equating
is as follows:

irtose(design, P, Q, x, y, a, gpoints,...)

The argument design is used to set the equating design under which the
equating is to be performed. Current options are "EG", "PSE" and "CE" for
the EG design, and poststratification and chained equating methods under a NEAT
design, respectively. The arguments x, y, and a are used to specify the score
scales for test forms X, Y, and the anchor test form A, respectively. P and Q are
most commonly IRT model objects* created with the package ltm from which
item parameter estimates and other useful information is obtained and passed to
irtose (). Itis also possible to use the mirt package instead of the ltm package.
The argument gpoints is actually used to integrate out the ability distributions as
used in IRT observed-score equating (see Chap. 5). However, when set to a particular
value, the result is a performed equating using the conditional score distributions at
that fixed value.

As an example, suppose we want to know the equating transformation for test
takers with 6 = (=2, 0, 2). The following code shows first how the 2PL IRT model
is fitted with the Itm package using the simulated item response data (objects tP

“In addition, 0/1 matrices of item responses can be used as input in which case IRT models are
internally fitted.
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and tQ) and then how these objects are passed to irtose () to perform local IRT
observed-score kernel equating under the poststratification approach.’

> library (ltm)
> tPm <- ltm(tP~zl, IRT.param=FALSE)
> tQm <- ltm(tQ~zl, IRT.param=FALSE)

library (kequate)

Low <- irtose ("PSE",tPm,tQm,0:10,0:10,0:10,
model="2pl",gpoints=-2)

Mid <- irtose("PSE",tPm,tQm,0:10,0:10,0:10,
model="2pl",gpoints=0)

High<- irtose("PSE",tPm,tQm,0:10,0:10,0:10,
model="2pl", gpoints=2)

+ v + Vv + Vv Vv

The created objects Low, Mid, and High contain the performed local IRT
observed-score kernel equating transformation picked at 6 values of —2, 0, and 2,
respectively. A plot of these equating transformations is shown in Fig. 6.5, which
was produced using the code below.

> low <- getEqg(Low)
> mid <- getEg(Mid)
> high <- getEqg(High)

21 —Theta=-2
---Theta=0
... Theta=2
©
©
=3
=S
< 4
~
o

10

X

Fig. 6.5 Local IRT observed-score kernel equating for 8 = —2, 0 and 2

3An example showing local IRT observed-score kernel equating under the chained equating
approach is shown in Andersson and Wiberg (2014).
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> plot (0:10,1low, type=’'1l’,lwd=2,col=1,ylab =

+ expression (phi (x)),xlab = "x",ylim=c(0,10))

> lines(0:10,mid, 1lty = 2,lwd=2,col=2)

> lines(0:10,high,1lty = 3,1lwd=3,col=1)

> legend("topleft", 1lty = c(1, 2, 3),1lwd = c(2, 2, 3),

+ ¢ ("Theta = -2", "Theta = 0", "Theta = 2"),col = c(1, 2, 1))

6.5 Other Local Equating Methods

In the previous sections, we have described and exemplified only those local
equating methods that are currently implemented in some R packages. However,
several other local equating methods have been proposed in the literature. These
methods include the posterior expected true score equating (van der Linden
2006a,b), local equating with ability estimated from anchor test scores (Janssen et al.
2009), local kernel equating with ability estimated from the anchor test (Wiberg
et al. 2014), local observed-score equating with anchor test design using the full
distribution (van der Linden and Wiberg 2010), and the two recently proposed
local linear IRT observed-score equating and local linear kernel IRT observed
score equating methods (Wiberg 2016). Because research on local equating is an
active field and new methods are continuously emerging, we expect that more local
equating methods will probably be included in different R packages in the near
future.

6.6 Summary

This chapter discussed the general concept of local equating. Implementations of
some local linear equating methods were illustrated using the R programming
environment, and some local equipercentile equating methods were illustrated using
the R packages kequate and SNSequate.
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Chapter 7
Recent Developments in Equating

Abstract This chapter briefly describes some recent developments in test equating
and provides examples of how they are performed using the R packages kequate
(Andersson et al., J Stat Softw 55(6):1-25, 2013) and SNSequate (Gonzilez, J
Stat Softw 59(7):1-30, 2014). The chapter begins with recent developments within
the kernel equating framework, including different bandwidth selection methods,
the use of different kernels in the continuization step, and IRT kernel equating. A
Bayesian approach to test equating and the assessment of equating transformations
are also discussed. The chapter ends with some concluding reflections on the future
of equating research connected to the use of R.

7.1 Alternative Kernel Equating Transformations

We have seen in Chap. 4 that both kequate and SNSequate implement the uniform
kernel and the logistic kernel as alternatives to the Gaussian kernel (see Sects. 4.4.2,
443, and 4.4.4). Two other recently suggested alternative kernels for equating
are the Epanechnikov kernel and the adaptive kernel (Cid and von Davier 2015;
Gonzélez and von Davier 2017), both of which are implemented in SNSequate and
are briefly described next.

7.1.1 Epanechnikov Kernel

The continuization step (see Sect.4.4) involves the use of a continuous random
variable that characterizes the kernel to be used for equating. The Epanechnikov
kernel (Epanechnikov 1969) is defined for a random variable V with the density
function

3
fv) =70 — ) 1y<1, (7.1)
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and corresponding CDF
0 v<-—1
F(v) = 3v—vi42 l<v<1:
1 v>1

for which it is easily verified that E(V) = 0 and Var(V) = é Following the
steps described in Sect. 4.4, we have that the Epanechnikov kernel continuization
becomes

ri (3Rix (x) — R3,(x) + 2
th:;/( X 4JX )+;rj’ (72)

where Rix(x) = W, s the set of all j such that —1 < Ry < 1,
and ¢ is the set of j such that R;x > 1. Note that the penalty function method for
the selection of the bandwidth parameter (see Eq. (4.11)) applies straightforwardly.
The needed density estimate and the derivatives used in the second summand in the

penalty function, are given in Sect. B.7.

7.1.2 Adaptive Kernels

Adaptive kernels (e.g., Silverman 1986) allow the bandwidth parameter hyx to vary
across the data points in the score distribution. The kernel continuization has the
form

x —aixx; — (1 —ajx) iy
thx(x) = erK( X7 ( JX)M ),
J

ajxhix

where ax = and by = Ajhx, (j = 1,...,J). For illustration, we will

5%
ox+hy
consider a Gaussian adaptive kernel so that K(-) = &(-).

Silverman (1986) suggested the following steps to obtain A,

i. Find a pilot estimate of the density, ?(t), such thatif(Xﬂ >0Vj
ii. Define a local bandwidth factor A; as

()
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where g is the geometric mean of f(Xj) and « is a sensibility parameter satisfying
0 < a < 1. Silverman’s recommendation is to use ¢ = 0.5.

To obtain A; we propose as a pilot estimate

f& =Y ré (x B e S axmx) : (7.3)

axhx axhy’

J

where hy can be obtained using any of the bandwidth selection methods described
in Sects.4.4.1,7.2.1, and 7.2.2.

Following the strategy described above, we can also obtain Fj,, such that the
adaptive kernel equating transformation becomes ¢(x) = F h‘}; (Fpyy ().

7.1.3 Examples of Epanechnikov and Adaptive Kernel
Equating in SNSequate

The ker.eq () function described in Sect. 4.5.1 implements both the Epanechnikov
and Gaussian adaptive kernels by setting the arguments kert="epan" and
kert="adap", respectively. The sensitivity parameter « is specified using the
argument alpha, and the value of the bandwidth parameter hy for the pilot
estimate in Eq. (7.3) is set using the argument h.adap. If no value is provided
for these two arguments, then alpha is set to 0.5 and hx will be automatically
estimated using the penalty method described in Sect. 4.4.1.

The following example shows a comparison of equated values obtained from five
different kernel equating transformations using the Math20EG data. The results
for the five different kernel equating transformations are stored in the objects
mod.gauss, mod.logis, mod.unif, mod.epan, and mod.adap for the
Gaussian, logistic, uniform, Epanechnikov, and adaptive kernel continuizations,
respectively.

> data ("Math20EG")

> mod.gauss = ker.eqg(Math20EG,degree=c(2,3),design="EG",
+ kert="gauss")

> mod.logis = ker.eq(Math20EG, degree=c(2,3),design="EG",
+ kert="logis")

> mod.unif = ker.eq(Math20EG,degree=c(2,3),design="EG",
+ kert="unif")

> mod.epan = ker.eqg(Math20EG,degree=c(2,3),design="EG",
+ kert="epan")

> mod.adap = ker.eqg(Math20EG,degree=c(2,3),design="EG",
+ kert="adap")
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A table showing the equated values for the five kernel equating transformations
that are stored in the object ker . comp can be obtained using the following code:

> ker.comp<-cbind(Scale=0:20,Gauss=mod.gauss$eq¥yx,

+ Logistic=mod.logis$eq¥x, Uniform=mod.unifS$eq¥x,

+ Epanechnikov=mod.epan$eq¥x, Adaptive=mod.adap$Seq¥x)
> round (ker.comp, 4)

Scale Gauss Logistic Uniform Epanechnikov Adaptive
[1,] 0O 0.3937 0.4474 0.4392 0.4197 0.5697
[2,] 1 1.5813 1.5732 1.6387 1.5529 1.6070
[3,1 2 2.6404 2.6285 2.6783 2.6158 2.6219
[4,] 3 3.6444 3.6353 3.6762 3.6285 3.6165
[5,1] 4 4.6316 4.6253 4.6604 4.6224 4.6082
[6,] 5 5.6178 5.6137 5.6434 5.6141 5.6094
[7,]1 6 6.6100 6.6079 6.6313 6.6111 6.6187
[8,1 7 7.6120 7.6116 7.6280 7.6168 7.6342
[9,]1 8 8.6260 8.6269 8.6361 8.6331 8.6583

[10,] 9 9.6530 9.6549 9.6576 9.6608 9.6929
[11,] 10 10.6935 10.6960 10.6937 10.7007 10.7371
[12,] 11 11.7471 11.7497 11.7448 11.7527 11.7878
[13,] 12 12.8126 12.8147 12.8097 12.8151 12.8434
[14,] 13 13.8869 13.8879 13.8849 13.8840 13.9047
[15,] 14 14.9641 14.9633 14.9638 14.9534 14.9723
[16,] 15 16.0339 16.0305 16.0349 16.0128 16.0414
[17,] 16 17.0781 17.0717 17.0805 17.0443 17.0959
[18,] 17 18.0677 18.0578 18.0729 18.0197 18.1021
[19,] 18 18.9607 18.9520 18.9702 18.9418 19.0032
[20,] 19 19.7183 19.7339 19.7072 19.8442 19.7891
[21,] 20 20.3930 20.4613 20.2781 20.7254 20.4913

The obtained equated values are quite similar. To see how the different kernels
differ in terms of the standard error of equating (SEE), Fig. 7.1 shows the SEE for
each equated value using the five kernel equating transformations. Some differences
are observed in terms of SEE, especially at the extremes of the score scale. This
figure was created using the following code:

score <- 0:20

plot (score,mod.gauss$SEEYx, type="1",col=1,1lwd=2,
xlab="Scores",ylab="SEE",ylim=c(0,0.4) ,main="")
lines (score,mod.logis$SEEYx, col=2,1lwd=2)

lines (score,mod.unif$SEEYx, col=3,1lwd=2)

lines (score,mod.epan$SEEYx, col=4,lwd=2)

lines (score,mod.adap$SSEEYx, col=5,lwd=2)

legend ("topright", col = c(1,2,3,4,5),
c("Gaussian", "Logistic", "Uniform", "Epanechnikov",
"Adapative"), lty=c(1,1,1,1,1),1lwd=2)

+ + VvV VvVvVvVvyvVvyvVv + Vv Vv

We point out that when performing kernel equating with the Epanechnikov and
adaptive kernels, other functions described in previous chapters such as PREp (),
to obtain percent relative errors, and SEED (), to obtain standard error of equating
differences, can also be used. Further examples showing the use of these functions
are available on the book’s webpage.
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Fig. 7.1 SEE for five kernel equating transformations

7.2 Bandwidth Selection in Kernel Equating

The penalty function method described in Sect. 4.4 was the first approach suggested
to obtain the bandwidth parameter in the kernel equating framework. Other
alternative bandwidth selection methods in kernel equating have recently been
proposed (Liang and von Davier 2014; Andersson and von Davier 2014; Haggstrom
and Wiberg 2014). In what follows, we describe two of the newly proposed methods
that are currently implemented in kequate.

7.2.1 Rule-Based Bandwidth Selection

Andersson and von Davier (2014) proposed an adjusted version of Silverman’s rule
of thumb (Silverman 1986), which states that for a standard Gaussian kernel, an
appropriate value for the bandwidth parameter is hy = .9axn;1/ >, In the context
of kernel equating, the modification of this general rule leads to selection of the
bandwidth parameter as follows:

9
hy = ——20%X (7.4)

100nY° — 81
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7.2.2 Bandwidth Selection with Double Smoothing

Héggstrom and Wiberg (2014) proposed the use of double smoothing (DS, Hall et al.
1992) to select the bandwidth in kernel equating. The overall idea of DS is to select
the bandwidth that minimizes an estimate of the targeted estimator’s mean squared
error where a pilot bandwidth is used to estimate the bias part. The goal of the final
DS estimate is to preserve the characteristics of the estimated relative frequency
distribution. The resulting objective function is similar to the first summand used in
the penalty method described in Sect.4.4.1 (see Eq. (4.11)) and reads as

DS(hy) = Y G —fr ()%, (7.5)
!

where 7" and f;:( (x]) are defined in Sect.B.8. In practice, the following steps are
carried out!

1. Start with a large subjectively chosen bandwidth gx and estimate f, at the score
values and the values halfway between the score values.

2. Because the smooth estimate obtained in the previous step will not perfectly
interpolate the estimated score probabilities; the 7:s, this can be improved by
estimating fj, at the actual score values, i.e. we can obtain a DS estimate fh”;

3. Select the bandwidth that minimizes Eq. (7.5).

7.2.3 Examples of the Rule-Based and Double Smoothing
Bandwidth Selection Methods Using kequate

The rule-based and the DS bandwidth selection methods are implemented in the
kequate () function by setting the arguments altopt=TRUE and DS=TRUE,
respectively. In the following example, we use the admissions data and the objects
egADMx and egADMy created in Sect. 4.2.2.1.

> egADMrb <- kequate("EG",0:80,0:80,
+ egADMx, egADMy, altopt=TRUE)
> getH (egADMrb)

The getH () function is used to extract the value of the bandwidth parameter,
which in this case yields iy = 1.832854 and hy = 1.765363 for the X and Y score
distributions, respectively.

In a very similar way, we can retrieve the bandwidth parameter obtained using
the DS method, as illustrated in the following code:

"More details are given in Sect. B.8.
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> egADMds <- kequate ("EG",0:80,0:80,
+ egADMx, egADMy,DS=TRUE)
> getH (egADMds)

yielding the optimal bandwidths 0.6032495 for hx and 0.5636444 for hy.

7.3 Item Response Theory Kernel Equating

We saw in Chap.4 that score probabilities were calculated using the design
functions after presmoothing the data using log-linear models. On the other
hand, it was pointed out in Sect.5.3.2 (see also Sect.B.5) that the (Lord and
Wingersky 1984) algorithm can use the item parameter estimates from an IRT model
to obtain conditional score distributions by calculating the corresponding score
probabilities for each score on a test. This means that IRT models together with the
Lord-Wingersky method can be used as an alternative to log-linear presmoothing
and the use of design functions for the estimation of score probabilities. IRT kernel
equating (Andersson and Wiberg 2014, 2016) is based on this alternative. More
specifically, if we consider a Gaussian kernel and an IRT model 7 (60, w;) fitted to
score data from test form X, then the estimated F'y is defined as

) = Y i(0) (x_“"x" — U adp X) (7.6)

axhy
J

where 7;(0) = Pr(X/z\xj | 0). In order to find the marginal score probabilities, the
Lord-Wingersky algorithm and an extension of the algorithm (Thissen et al. 1995)
are used together with a quadrature distribution for 6 for binary and polytomous
score data, respectively.

In Chap. 5, IRT models for binary scored items were discussed. In the following
section we briefly describe two commonly used IRT models for the case when items
are scored in more than two categories.

7.3.1 Two Polytomous IRT Models

The graded response model (Samejima 1969) is used to model items scored in
ordered polytomous categories, for instance, items scored using a Likert scale.
The probability of a randomly chosen test taker with ability 6 scoring in category
x €{l,...,m;} onitem j is defined as



164 7 Recent Developments in Equating

1
S T
1 1
1+ exp(—a;(0 —bj,)) 1+ exp(—a;j(0 — bjag1)
1
1+ exp(=a;(0 — bjx))’

x=1

P (0)= 2<x<m, (7.7

X = mj

where b; ; and a; are threshold and item discrimination parameters, respectively.

The generalized partial credit model (Muraki 1992), on the other hand,
accommodates partial credit data where the item responses are scored in {1, ..., S}
with S being the highest score category for the item. The probability that a randomly
chosen test taker with ability 6 scores x on item j is defined as

exp(3_)_p 4(6 — bj0))

Pia(8) = — ] .
O = S (a6 — b))

(7.8)

where the b;, terms are referred to as step difficulty parameters and Zizl(é —
bj.v) = 0.

7.3.2 Performing IRT Kernel Equating with kequate

The function irtose () was briefly introduced in Sect. 6.4.4.3 to perform local
IRT observed-score kernel equating. In this section, we give a more detailed
description of this function. Subsequent sections give examples of using irtose ()
to perform IRT observed-score kernel equating for both binary and polytomous
score data.

The general function call for irtose () is

irtose (design="CE", P, Q, x, y, a = 0, gpoints=
seq(-6, 6, by=0.1),model="2pl", catsX=0, catsY¥=0,
catsA=0, see="analytical",replications = 50,
kernel="gaussian", h = list(hx=0, hy=0, hxP=0,
haP=0, hyQ=0, haQ=0), hlin = list (hxlin = O,
hylin = 0, hxPlin = 0,haPlin = 0,hyQlin = O,
haQlin = 0), KPEN=0, wpen=0.5, linear = FALSE,
slog = 1, bunif = 1, altopt = FALSE, wS = 0.5,
eqcoef="mean-mean", robust=FALSE, distribution =
list ("normal", par= data.frame(mu =0,sigma=1)))

where many of the arguments are defined similarly as those used for kequate ()
(see Sect.4.5.2 and Table 4.2) with the exception of P and Q, which in this case are
objects of class “matrix” or are objects created by the R package Itm (Rizopoulos
2006) or mirt (Chalmers 2012). These objects contain either the response patterns
in population P (or Q) or the estimated IRT model in P (or Q). Quadrature points
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used for calculating the marginal score distribution are specified using the argument
gpoints. If no value is provided, then the quadrature points used for the IRT
model fitting are used by default. The type of IRT model can be specified using the
argument model, and the current binary IRT model options are "2pl" and "3pl"
for the 2PL and 3PL models, respectively. When a polytomous IRT model is used,
the arguments cat sX, catsY, and catsaA are used to set the number of response
categories for each item in test forms X, Y, and A, respectively.

The irtose () function is also capable of giving as output two types
of SEE by using the argument see. Either analytical or bootstrap standard
errors are available by setting see="bootstrap" or see="analytical",
respectively. In the first case, the argument replications is used to set the
number of bootstrap replications. When performing equating under the NEAT
design, the eqcoef argument is used to specify the type of equating coefficients
to be used for parameter linking (see Sect.5.2.1). Current possible options
are eqcoef=c ("mean-mean", "mean-gmean", "mean-sigma",
"Haebara", "Stocking-Lord"). Finally, robust is a logical indicator
of whether a robust covariance matrix (Yuan et al. 2014) should be calculated for
the IRT model.

7.3.3 Examples of IRT Kernel Equating for Binary Scored
Items Using kequate

To exemplify IRT kernel equating for binary-scored data under the NEAT design,
we use the admissions data. After the full data sets are loaded for the X and Y
tests forms, matrices of binary item responses are stored in the matrix objects
admPneat and admQneat, where the first 80 columns in each matrix correspond
to the responses to unique items and the last 40 to common (i.e. anchor) items in
both test forms

load ("ADMneatX.Rda")

load ("ADMneatY.Rda")

admPneat0 <- as.matrix (ADMneatX)
admPneat <- admPneatO[,c(41:120,1:40)]
admQneat0 <- as.matrix (ADMneatyY)
admQneat <- admQneatO[,c(41:120,1:40)]

V V.V V V V

Next, a 2PL IRT model is fitted using the obtained binary matrices as input in the
function 1tm () from the Itm package

> library(ltm)
> adm2plP <- ltm(admPneat~zl, IRT.param=TRUE)
> adm2plQ <- ltm(admQneat~zl, IRT.param=TRUE)

As a final step, the 1tm objects adm2plP and adm2plQ, which contain the
IRT parameter estimates and their associated covariance matrix, are used as input in
irtose () to perform the actual IRT kernel equating
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> library (kequate)
> admNEAT2pl <- irtose("CE", adm2plP, adm2plQ,
0:80, 0:80, 0:40)

A summary of the output reads as’

> summary (admNEAT2pl)
Design: IRT-OSE CE

Kernel: gaussian

Sample Sizes:
Test X: 2000
Test Y: 2000

Score Ranges:

Test X:

Min = 0 Max = 80
Test Y:

Min = 0 Max = 80

Test A:
Min = 0 Max = 40

Bandwidths Used:
hxP hyQ haP haQ hxPlin hyQlin
haPlin haQlin

1 0.6334889 0.6260819 0.6372787 0.6391538 12617.23 13089.33
6848.809 6868.221

Equating Function and Standard Errors:

Score eqgyx SEEYx
1 0 -0.4087277 0.1338158
2 1 0.4942297 0.1726591
80 79 79.3247685 0.1953112
81 80 80.2525764 0.1589894

Comparing the Moments:
PREAX PREYa

1 0.0002341643 -0.0005381284
2 -0.0000993506 -0.0027625228
3 -0.0097508659 0.0025430473
4 -0.0207441206 0.0120485135
5 -0.0273741594 0.0222908184
6 -0.0262066529 0.0309160354
7 -0.0151882451 0.0364246762
8 0.0069589351 0.0378498273
9 0.0410743834 0.0345417469
10 0.0877410258 0.0260398591

2Results for test scores (2, ..., 78) have been omitted.
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Among other information, the output shows the bandwidth parameters used in
the continuization steps, the equated values together with their corresponding SEE,
and the value of PRE for the first 10 moments.

We want to emphasize that when performing IRT kernel equating using
irtose (), other options for the used kernel, such as the logistic kernel and
the uniform kernel, as well as the bandwidth selection method (e.g., the rule-based
bandwidth selection by adding the argument altopt=TRUE) can also be chosen.
Further examples showing the use of these alternatives are available on the book’s
webpage.

7.3.4 Examples of IRT Kernel Equating for Polytomous Scored
Items Using kequate

To exemplify IRT kernel equating for polytomous data (Andersson 2016) under
the EG design, we use simulated data. Two IRT models for polytomous data are
currently available as options of the argument model in the irtose () function.
The graded response model (Samejima 1969) is used by setting model="grm",
and the generalized partial credit model (Muraki 1992) is used by setting
model="gpcm". In the following example, we simulate data according to a
generalized partial credit model.

Assume we have two test forms both containing 10 items that can be scored
as 0, 1, or 2. Under this setting, two threshold parameters and one discrimination
parameter must be generated for each test item. The following code shows how to
obtain randomly generated item parameter data:

> Xs <- vector("list", 10)

> ¥Ys <- vector("list", 10)

> set.seed(5)

> for(i in 1:10) Xs[[i]] <- c¢(rnorm(1l, -0.2, 1),
+ rnorm(l, 0.4, 1), runif (1 + 0.2))

> set.seed(7)

> for(i in 1:10) Ys[[i]l] <- c(rnorm(1, -0.2, 1),
+ rnorm(1l, 0.4, 1), runif(l + 0.2))

The first two entries in each list stored in the objects Xs and Ys correspond to
the threshold parameters, followed by the item discrimination parameter in the third
entry. Using these values of item parameters, the rmvordlogis () function from
the Itm package can be used to generate 500 response patterns for both of the test
forms as follows:

Xscore <- rmvordlogis (500, Xs, model ="gpcm",
z.vals = rnorm(500))

library (1ltm)

Yscore <- rmvordlogis (500, Ys, model ="gpcm",
z.vals = rnorm(500,1,1))

+ Vv Vv + Vv



168 7 Recent Developments in Equating

Objects Xscore and Yscore are both 500 x 10 matrices of item responses
that can be modeled using the mirt () function from the mirt package. The mirt
package allows the user to model many of the most common IRT models, including
the graded response model and the generalized partial credit model. The obtained
objects are then read into the irtose () function from kequate to perform the
actual equating. Note that when polytomous data are modeled, it is necessary to
specify the number of response categories used for each of the items in the two
tests that are equated. This can be done using the arguments catsX and catsY as
shown below

library (mirt)

X500 <- mirt (Xscore-1, 1, itemtype = rep(’gpcm’,10),
quadpts=61, SE = T)

Y500 <- mirt (Yscore-1, 1, itemtype = rep(’gpcm’,10),
quadpts=61, SE = T)

library (kequate)

EGgpcm <- irtose("EG", X500, Y500, 0:20, 0:20,

catsX = rep(3,10), catsY = rep(3,10), model = "GPCM")

+ v Vv + Vv + VvV VvV

We can use the regular get commands available in kequate as described in
Sect.4.6.5 on the obtained object EGgpcm. For instance, to retrieve the equated
values we write

> getEq (EGgpcm)

> getEq (EGgpcm)
[1] 0.4110581 1.6054127 2.8263102 4.0636845
] 5.3077019 6.5491877 7.7797387 8.9925383
] 10.1819455 11.3426036 12.4692879 13.5573869
[13] 14.6033025 15.6045235 16.5593237 17.4662088
] 18.3233796 19.1275365 19.8716110 20.5494851

] 21.1591861

We point out that it is also possible to perform polytomous IRT kernel equating
under a NEAT design using either chained equating or poststratification equating.
Further examples of IRT kernel equating under the NEAT design as well as
examples assuming the graded response model for the IRT fit can be found on the
book’s webpage.

7.4 Bayesian Nonparametric Approach to Equating

7.4.1 Bayesian Nonparametric Modeling

Consider the general definition of a parametric statistical model given in Sect. 1.2.2.
In the parametric Bayesian framework (e.g., Gelman et al. 2003), a prior p(8)
is defined on ©®. Parametric Bayesian inference is then based on the posterior
distribution p(6 | x), which is proportional to the product of the prior p(f) and
the likelihood p(x | 6).
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The Bayesian nonparametric (BNP) approach (Ghosh and Ramamoorthi 2003;
Hjort et al. 2010) starts by focusing on spaces of distribution functions so that
uncertainty is expressed on F itself (see Sect.1.2.2). The prior distribution p(F)
is defined on the space § of all distribution functions defined on 2. If 2" is an
infinite set, then § is infinite-dimensional, and the corresponding prior model p(F)
on § is termed nonparametric. The prior probability model is also referred to as a
random probability measure, and it essentially corresponds to a distribution on the
space of all distributions on the set Z". Thus Bayesian nonparametric models are
probability models defined on a function space (Miiller and Quintana 2004).

7.4.2 BNP Model for Equating

Gonzélez et al. (2015b) (see also, Gonzélez et al. 2015a) proposed a Bayesian
nonparametric approach for equating that allows the use of covariates in
the estimation of the score distribution functions that lead to the equating
transformation. The main idea consists of introducing BNP models for a collection
of covariate-dependent equating transformations

{030,() 12,2, € 2}, (7.9)

where @, ,() = F, ! (Fg(+)) is the equating function that maps the scores
associated with the from scale defined by z, to the to scale related to z;. Here,
z; and z, are covariate vectors and 2 denotes the covariate space. Assuming data
of the form (¢;,2;), i = 1,...,n, where t; denotes the test scores and z; denotes the
covariates, these data are modeled as

iz Fy S F,i=1.. .n (7.10)

{F,:z2€e Z} ~ m,

where 7 denotes a prior probability measure for {F,:z e Z}. Based on the
modeling scheme in Eq. (7.10), we are interested in making inferences about the
collection of covariate-dependent’ score distributions {F, : z € 2’} that, in turn,
will allow us to infer about the family of equating transformations in Eq. (7.9). The
computational implementation of the model is based on Markov Chain Monte Carlo
(MCMC) methods. In what follows, the presented approach is illustrated using the
single weights version of the dependent Bernstein polynomial process (DBPP) as the
prior probability model so that {F, :z € 2} ~ wDBPP(«, A, ¥, ) (Barrientos
et al. 2012). More details on the DBPP can be found in Sect. B.9. A BNP model for

3In the examples that follow, the dependence is accounted in the form of a regression on the z
covariates.
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equating that does not consider the use of covariates in the estimation of the score
probability distributions is described in Karabatsos and Walker (2009).

7.4.3 An Illustration of the BNP Model for Equating
in SNSequate

The Bayesian approach for equating with covariates is implemented in SNSequate
using the functions: BNP.eqg() and BNP.eqg.predict (). The BNP.eq ()
function* is used to implement the modeling scheme in Eq.(7.10). A general
function call for BNP.eq () reads as follows:

BNP.eq(scores x, scores y, range scores=NULL,
design="EG", covariates=NULL, ...)

The arguments scores_x and scores_y are used to read the score vectors from
test forms X and Y, respectively, and the range of values in the score scale is
specified using the argument range scores. Currently, the only equating design
supported is the EG design. The covariates used for equating are specified in the
argument covariates. The function gives as output a list of objects that include
the samples from the posterior distribution of all the parameters involved in the
analysis, and a copy of both the vector of scores and the matrix of covariates used.
Also, the object pat terns, which is described in more detail later, is stored in the
list.

The actual prediction of the equating transformation is implemented in the
function BNP.eq.predict () which receives as input in the argument model
an object created with BNP.eq () and gives as output the equated score values. A
general function call reads as follows:

BNP.eq.predict (model, from=NULL, into=NULL, ...)

The arguments from and to are used to specify the from and the to scale,
defined by the covariates, where the equating is to be performed (see Eq. (7.9)). This
arguments can be set using the information provided by the object patterns as
exemplified below. Also, plot methods have been implemented for objects created
using the BNP.eqg.predict () function that produce graphical displays of the
estimated score distributions and the equating transformation.

To illustrate how these functions are used to perform a Bayesian equating with
covariates we use the SEPA data. In the original data, test forms X and Y are
administered to 1,458 and 2,619 test takers, respectively. Here, we use a random
sample of 50 test takers for each form. The following code is used to read in the
data and to obtain the random samples

“The BNP.eq () function makes use of other functions from the R package DPpackage (Jara
et al. 2011), which is also downloaded and installed when installing SNSequate.
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load ("SEPA")

set.seed(6)

sample size <- 50

idx x <- sample(length(scores x), sample size)
idx y <- sample(length(scores_y), sample size)
scores_x <- scores_x[idx_x]

scores_y <- scores_yl[idx yl

Z <- Z[c(idx x, idx_y+length(scores x)), ]

V V.V V V V V V

The objects scores x and scores_y are vectors of length 50 that contain the
scores in test forms X and Y, respectively. The covariates values are stored in the
object Z and they are coded as male (M) or female (F) for gender, and MUN, PS,
PP for school type (e.g., municipal, subsidized, private). The MCMC scheme is run
using the following code’

> mod.bnp <- BNP.eqg(scores x, scores_y,
+ range scores = c (0, 50), covariates=2Z)

As mentioned before, the information provided by the object patterns is used
to specify the from and the fo scale where the equating is to be performed. The object
appearance is as follows

> mod.bnpS$patterns
x..Intercept. x.FormY x.GenderM x.SchoolPP x.SchoolPS

1 1 0 0 0 0
2 1 0 0 0 1
3 1 0 0 1 0
4 1 0 1 0 0
5 1 0 1 0 1
6 1 0 1 1 0
7 1 1 0 0 0
8 1 1 0 0 1
9 1 1 0 1 0
10 1 1 1 0 0
11 1 1 1 0 1
12 1 1 1 1 0

The object is a design matrix where each row pattern represent a combination
of covariates defining a particular score distribution. For instance, the first pattern
defines the distribution of X scores for females attending municipal schools, whereas
the eleventh defines the distribution of Y scores for males attending subsidized
schools, and so on. Because in this case gender and test form both have two levels
and school type has three levels, a total of 2 x 2 x 3 = 12 different combinations are
possible. The BNP equating model can thus be used to equate forms administered
on different groups implied by covariates values (customized equating).

Suppose we want to equate scores on test form X to scores on test form Y. Then
we need to write®

SRunning the BNP . eq () function can take a considerable amount of computation time.

%Note that the covariates that are not directly involved in the equating of interest are automatically
integrated out by the function.
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> equ <- BNP.eq.predict (mod.bnp, from=c(1,2,3,4,5,6),
+ into=c(7,8,9,10,11,12))

The output shows the score scale and the equated values and can be obtained as
(score values between 4 and 47 are omitted)

> equ
Equated values:

Score eyYx

0 0.00
1 1.89
2 2.95
3 3.98
48 49.37
49 49.66
50 50.00

A graphical display of the estimated equating transformation is obtained
by writing plot (equ). Plots of the estimated score distributions and the
corresponding CDFs of scores X and Y can be obtained adding the arguments
which and what. For instance, the probability density function (PDF) of X scores
is obtained by writing

> plot (equ, which="X", what="PDF")

As a final example, we reproduce some of the results shown in Gonzélez et al.
(2015b). Figure 7.2 shows a graphical display of the estimated score distributions
as well as equating transformations for the case when only the type of school is
considered as a covariate in the model. In this figure panels (c), (f) and (i) show also
the equating function estimated when no covariates are considered in the analysis
(dashed line). It can be seen that the equating function appears to depend on the
school type. When school type is included in the estimation, the equating functions
show departure from the reference. The reader can verify that almost no departures
from the reference equating function (i.e., the one which does not include covariates)
occur when considering only the gender covariate. Thus, we can conclude that the
equating function appears to depend only on the school type but not on the gender.
The R code necessary to produce Fig. 7.2 and verify these findings can be obtained
from the book’s webpage.

7.5 Assessing the Equating Transformation

This section is based on the ideas in Wiberg and Gonzdlez (2016). Instead of
the usual practice of targeting different parts of the equating process and aiming
to evaluate the process from different aspects, we propose a new perspective in
which the equating transformation should be seen as a standard estimator that
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Fig. 7.2 SEPA data — Posterior mean (continuous line), and 95% point-wise HPD intervals (in
gray) for: conditional (school type and test form) densities (panels (a), (b), (d), (e), (g), (h)), and
equating functions (panels (¢), (f), and (i)). The dotted and dashed line displayed in (panel (c), (f),
and (i)) corresponds to the identity function and the posterior mean of the equating function from
test form X to Y (i.e. ignoring covariates), respectively

needs to be statistically assessed. The usual practice makes use of equating-specific
evaluation measures, e.g., PRE in kernel equating (described in Sect.4.6.3), the
SEE (described in Sect.4.6.1), and the difference that matters (DTM, Dorans and
Feigenbaum 1994). Among these measures, there are also summary indices (Harris
and Crouse 1993) that have been used for evaluations in equating, although not in
the way we assess equating transformations here. In contrast, the new perspective
makes use of general statistical evaluation measures such as bias, standard errors
(SE), mean squared error (MSE), and root mean squared error (RMSE), all of which
are built on the general statistical perspective described in Chap. 1. Note, however,
that in order to evaluate these statistical measures in practice, we need to use the
Monte Carlo method with replicated data generated from a known probability
model. The formal definitions and details of the way these measures are calculated
in practice when equating test scores are given in Sect. B.10. In what follows, we use
the kernel equating framework to illustrate the statistical assessment of an equating
transformation.
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7.5.1 An Illustration of Assessing ¢(x) in Kernel Equating
Using SNSequate

Wiberg and Gonzalez (2016) used the Math2 0EG data to compare a logistic and a
Gaussian kernel using all of the described measures of assessment. In this section,
we will reproduce some of the results of that study.

In order to make a fair comparison, rwo sets of true equated values — one obtained
using a logistic kernel and the other one using a Gaussian kernel- are generated as
follows:

data (Math20EG)

mod.gauss.true <- ker.eqg(scores=Math20EG,
kert="gauss", hx=NULL, hy=NULL, degree=c (2, 3),
design="EG")

mod.logis.true <- ker.eqg(scores=Math20EG,
kert="logis", hx=NULL, hy=NULL, degree=c(2,3),
design="EG")

+ +V + + VoV

Both objects mod .gauss . true and mod . logis. true actually contain not
only the corresponding equated values but also the associated SEE, the estimated
score probabilities, and the PRE values, which can be retrieved as follows:

true.r <- mod.gauss.true$rj

true.s <- mod.gauss.true$sk

true.eg.gauss <- mod.gauss.true$Seq¥x
true.eqg.logis <- mod.logis.true$eq¥x
true.see.gauss <- mod.gauss.truesSSEEYxX
true.see.logis <- mod.logis.true$SEEYx
true.pre.gauss <- PREp(mod.gauss.true,1l0) SpreYx
true.pre.logis <- PREp(mod.logis.true,10) Spre¥Yx

V V V V V V V V

To make a fair assessment of the equating transformation, we need to simulate the
following four possible scenarios:

1. True equated values are from a Gaussian kernel model and equated scores are
estimated using a Gaussian kernel.

2. True equated values are from a Gaussian kernel model and equated scores are
estimated using a logistic kernel.

3. True equated values are from a logistic kernel model and equated scores are
estimated using a Gaussian kernel.

4. True equated values are from a logistic kernel model and equated scores are
estimated using a logistic kernel.

In order to use the statistical evaluation methods in practice, a large set
of replications is performed as described in Sect. B.10. Score frequencies are
generated using a multinomial probability model with parameters stored in the
objects true.r and true.s. Then, for each replication, values of equated
scores, SEE, and PRE are stored in the objects res.gauss, res.logis,
resSEE.gauss, resSEE.logis, resPRE.gauss, resPRE.logis,
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respectively. The following code shows how these tasks are carried out, starting
by setting the number of replications and the storage space.

sims = 1000

res.X <-matrix(0,nrow=sims,ncol=21)

res.Y <-matrix(0,nrow=sims,ncol=21)
res.gauss <-matrix(0,nrow=sims,ncol=21)
res.logis <-matrix(0,nrow=sims,ncol=21)
resSEE.gauss <-matrix (0,nrow=sims,ncol=21)
resSEE.logis <-matrix (0,nrow=sims,ncol=21)
resPRE.gauss <-matrix (0,nrow=sims,ncol=10)
resPRE.logis <-matrix (0,nrow=sims,ncol=10)

V V.V V V V V V V

i=0

it=0

while (it<sims) {

i=i+1

X<-rmultinom(1l, 1453, true.r)

Y<-rmultinom(l, 1455, true.s)

mod.gauss <-tryCatch(ker.eq(scores=cbind(X,Y),
kert="gauss", hx=NULL, hy=NULL, degree=c (2, 3) ,
design="EG") ,error=function (e)NULL)

mod.logis <-tryCatch(ker.eqg(scores=cbind(X,Y),
kert="logis",hx=NULL, hy=NULL, degree=c (2, 3),
design="EG") ,error=function (e)NULL)

if (lany(lapply(list (mod.gauss,mod.logis),is.null))) {
it=it+1

res.X[it,]1<-X

res.Y[it,]1<-Y

res.gauss[it,]<-mod.gaussSeq¥x
res.logis[it,]<-mod.logissSeq¥yx

resSEE.gauss [it, ] <-mod.gauss$SEEYx
resSEE.logis[it,]<-mod.logis$SEEYx
resPRE.gauss [it, ] <-PREp (mod.gauss, 10) Spre¥x
resPRE.logis[it,]<-PREp (mod.logis, 10) $pre¥x }
print (1)

print (it)

R T i T T S S S S S S S S S A S S T AR VAR

Using the replications, we can calculate the different statistical measures defined
in Egs. (B.33), (B.34), (B.35), and (B.36). For instance, we can create a bias function
as

> Bias <- function(results,parameter) {

+ rel.bias<-matrix (0, nrow=nrow (results) ,h ncol=ncol (results))
+ for(i in 1l:nrow(results))

+ rel.bias[i,]<- (results[i,]-parameter) }

+ res <- apply(rel.bias,2,mean)

+ return(res)}

and we can visualize the results for the four different scenarios as shown in Fig. 7.3.
Note that because we are using simulations the appearance of the bias might slightly
change if the analysis is redone. The following code was used to produce the figure:
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Fig. 7.3 Bias for the four examined scenarios

ylab="bias",xlab="Scores")

abline (h=0)

points (b.logis.G,pch=3)

points (b.gauss.L,pch=2)
points(b.logis.L,pch=1)

legend ("bottomleft",pch=c(4,3,2,1)

+ VvV VVvVVvVYyVvV 4+ YV VYV VYV

plot (b.gauss.G,ylim=c(-0.1,0.1) ,pch=4,

b.gauss.G <- Bias(res.gauss, true.eqg.gauss)
b.logis.G <- Bias(res.logis, true.eqg.gauss)
b.gauss.L <- Bias(res.gauss,true.eq.logis)
b.logis.L <- Bias(res.logis,true.eq.logis)

c("gauss.G","logis.G","gauss.L","logis.L"))

It can be seen that the bias differs between the examined scenarios, especially at
the end points. To further examine the equating transformation, it is possible to write
functions and create plots for the MSE, RMSE and SE in a similar way as shown
here. Note that besides using these measures it is also possible to use summary
indices of equating specific measures, although they need to be adjusted to be used
with replication as described in Wiberg and Gonzélez (2016).
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7.6 Summary

In this chapter, some of the recent developments in equating research have been
briefly summarized and exemplified using the R packages kequate and SNSequate.
Research about equating has exploded in recent years, and thus there are several
other topics that could have been incorporated here. We did, however, restrict the
contents of this chapter to some of the methods that have been implemented in R
packages.

With many new equating methods available, it is more and more important to
have trustworthy and efficient methods to evaluate the equating transformations.
In this chapter we have emphasized the importance of viewing the equating
transformation as a statistical estimator and have proposed a general strategy for
the statistical assessment of equating transformations.

The rapid changes in the test equating world suggest that it is of great importance
to facilitate building on the most recent research. With this book, we want to
strongly encourage people to use R to implement new methods and functions that
are compiled into R packages that are available for everyone to use. In this way, the
next generation of researchers will be able to reach further and will be able to do so
much more quickly than their predecessors.
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Appendix A
Installing and Reading Data in R

A.1 Installing R

R (R Core Team 2016) is a free software environment that runs on Windows, MacOS
and Unix platforms. R can be downloaded from the Comprehensive R Archive
Network (CRAN) webpage': http://cran.r-project.org/.

There are precompiled binary distributions of the base system and contributed
packages for different platforms. The following list shows the links where these
distributions can be downloaded for different platforms when installing R for the
first time:

1. R for Linux (http://cran.r-project.org/bin/linux/)
2. R for MacOS (http://cran.r-project.org/bin/macosx/)
3. R for Windows (http://cran.r-project.org/bin/windows/)

All of the examples given in this book have been created and tested on Windows
using R version 3.3.2. To install R, run the executable file (R-3.3.2-win.exe) by
double clicking on it, which will start the R for Windows setup wizard.

A.1.1 R Studio

After installing the R software it is possible to install R studio which is a graphical
user interface. R studio (http://www.rstudio.org/) provides the usual R console and
has the advantage of providing a history/workspace window with common data set
features such as load/save/import. There are also a window with easy access to files

'Tt is recommended to use a mirror site near the place where the program is being downloaded. A
full list of mirrors can be found at https://cran.r-project.org/mirrors.html.
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and list of available packages. The Plots tab include easy export to a PDF file, a GIF
image and copy features to facilitate to insert plots into Word documents.

A.2 Installing and Loading R Packages

Once R has been installed, it is time to open the program and start working. To
install contributed R packages that do not come with the initial distribution, one
can go to the tab “Packages/Install package(s)”. Choose the package of interest (e.g.
equate) and press ok to install the package. To use the package, one can either go
to the menu and select “Packages/load package” or simply type in the R command
prompt

> library (equate)

Using the library command gives access to all functions within that package. When
help is needed with an R function or an R package, the user can simply write
help () in the R command prompt. For instance, if help is needed on the use of
the equate () function, one can write

> help (equate)

It should be noted that there are a number of books, online help resources, and
online books (simply search for “R Statistics book™) where information about R
can be obtained.

The R packages used for the examples shown in this book have been executed
under the following versions:

e equate version 2.0.6

¢ SNSequate version 1.2.2
* kequate version 1.6.0

¢ equatelRT version 2.0.1
e Itm version 1.0.0

e mirt version 1.20.1

A.3 Working Directory and Accessing Data

It is convenient to choose a working directory and to store everything connected to
a program in such a folder. This can be done in two ways, either by right clicking
on the R icon on the desktop and setting which directory R always should start in,
or from inside R. In the R command prompt, the current working directory can be
identified by writing

> getwd ()



Appendix A 181

and to set a working directory we can write
> setwd("C:/Users/documents/MyRProject")

A.4 Loading Data of Different File Formats

In Chap. 2 we described how the data sets used in this book can be loaded. If the
user has data with different file formats, it is possible to use other functions such
as read.table (). Assume that the ADM data described in Chap. 2 are in another
file format than .Rda. The following examples show how data with different formats
can be read into R. The data sets used in the examples can be download from the
book’s webpage.

First, if we want to read in a text file (.txt), that is separated with commas and
has headers, we can write the following

> ADMt<-read.table (file="ADMt.txt", sep="\t",6 header=TRUE)

If the data are in an Excel file, an easy way to read the data into R is to save
the file as either a .dat file or a .csv file. The following commands can be used after
saving the files as either of those file types
> ADMcl <-read.csv("ADMc.csv",sep=";",header=TRUE)

> ADMc2 <-read.table("ADMc.csv",sep=";",header=TRUE)
> ADMd <-read.table("ADMd.dat",header=T)

The same kind of data can be read directly from the Excel file (.xls) if the R
package XLConnect is installed. In this example “Sheet1” in the Excel file is named
“ADMsheet‘”. Reading the data into R can be done by writing

> library (XLConnect)
> ADMe <- loadWorkbook ("ADMe.xls")
> ADMee <- readWorksheet (ADMe, sheet="ADMsheet")

Finally, we can read in an SPSS file (.sav) using the R package foreign

> library (foreign)
> ADMs <- read.spss("ADMs.sav",to.data.frame=TRUE)

We can use any of these files with the R package equate to obtain the sum scores
for the verbal section of the admissions test as described in Chap. 2. Each line of the
following code yields the same result as the object "verb.y" in Sect.2.2.4

ADMtSum <- apply (ADMt[,41:120],1,sum)
ADMclSum <- apply(ADMcl[,41:120],1,sum)
ADMc2Sum <- apply (ADMc2[,41:120],1,sum)
ADMdSum <- apply (ADMd[,41:120],1,sum)
ADMeSum <- apply(ADMee[,41:120],1,sum)
ADMsSum <- apply(ADMs[,41:120],1,sum)

V V. V V V Vv

One way to assure that data are read correctly into R is to visualize the data set.
To perform a visual inspection, we can, for example, write

> View (ADMt)
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Appendix B
Additional Material

In this appendix we give more details on definitions, derivations, and other relevant
material covered throughout the chapters of the book.

B.1 Design Functions

As seen in Sect. 1.3.1, score data can be modeled separately (EG design) or jointly
(SG, CB, NEAT, or NEC designs). The design function DF is used to map the
score probabilities (either univariate or bivariate) into r and s. Thus, different design
functions (DF) are used for different equating designs (von Davier et al. 2004).
For instance, under the EG design, because two independent vectors of scores are
obtained, the DF is just the identity function, i.e.,

ry _(L; 0 (r
(7) =ores=(29) () )

The situation is different, however, when bivariate distributions are considered
(e.g., under the SG, CB, NEAT, and NEC designs). Define P as the J x K matrix
with entries py = Pr(X = x;, Y = y). Further, define the vectorized version of P as

P1
o@) = | 1 |. (B.2)

Pk
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where py is the k-th column of P. In the SG design, the DF is defined as

r M
(s) =DF(P) = (N) v(P), (B.3)

where M = (I, ---1;) is a J x KJ matrix and
(B.4)

is a K x KJ matrix.
The CB design can be obtained by using two independent SG designs. In this
case, the DF is defined as

r _ _ WxM (l — Wx)M U(P(]g))
(S) = DF (P, Pay) = ((1 “wN N ) (v(P(m)) (B.5)

where the weights wy and wy satisfies 0 < wy, wy < 1.
DFs are different under the NEAT design depending on whether CE or PSE is
used. For CE, the DF is defined as

rp (Mp) 0
tp | _ _ ( DFp(P) ) _ | \Np (U (P))
— DF(P,Q) = - B.6
o] =oree = (Gr o (Yo Ve .
So M
The DF for NEAT PSE is given by
(=w) ¥ qu
+ Lk IR
(r) _preg = | - (» fo/’zp? ‘ (B.7)
s > (U =w) + 552 g

where p; = (pu.pa. - -..pn)' and @i = (qu. g2, - - ., gxr)'. Finally, the DF for the
NEC design (Wiberg and Brinberg 2015) is given by

r\ | X (w + _(l_szn),[Qm) P
(S) R O (TR Py b 8

where p,, is the mth column of P and g¢,, is the mth column of Q and the summation
is over all the m possible combinations of the values of the covariates, in other words
a summation over all columns in the matrices.
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B.2 C Matrices

The polynomial log-linear models described in Sect.2.3.1 can be written in matrix
form as follows

log(r) =a +u+B'B
If [3 is the maximum likelihood estimator (MLE) of B, the estimator of #; is
#; = F;j(B), i.e. the MLE or fitted value of r;. It is assumed that the estimators, ¥ and
§, are obtained separately (independently) so that

Cov(f‘, §) = 2;.3 =0.

The following theorem establishes a computationally easy way to calculate X ;.

Theorem If T is the MLE of a log-linear model for r, the estimated covariance
matrix Xy = Cov(r) can be obtained as

>, =C,CL,
where C, is a J X T, matrix

C,=N""’D Q.

The diagonal matrix, D /; has elements \/?_J Also, Q is a JXT, orthogonal matrix
that comes from the following QR factorization

D — tt'|B’ = QR ,
where Q is a J x T, matrix with orthogonal columns and R is an T, x T, upper

triangular matrix. A proof and more details can be seen in Holland and Thayer
(1989) and von Davier et al. (2004).

B.3 Calculation of the SEE

To calculate the SEE, start by letting R and S be the vectors of the pre-smoothed
score distributions obtained under any of the data collection designs. If we assume
that they are estimated independently, we can write the covariances as (see Sect. B.2)

R CxCl, 0 .
~ | = = B.
Cov(s) ( 0 CsCfg) CcC', (B.9)
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where

_(Cr O
C= ( 0 Cs)' (B.10)

The pre-smoothed score distributions, obtained in kernel equating (step 1) can then
be transformed into r and s through the DF given in Sect.B.1 for the different
designs. The Jacobian of the DF is defined as

o o
Jor = (%l; gg). B.11)
9R IS

Further, the Jacobian of the equating transformation in Eq. (4.10) is defined by
do 9
Jo= (. %). (B.12)

Note, if R and S are approximately normal distributed with mean R and S,
respectively, and variances given in Eq. (B.9), then

SEEy (x) = | J,JorC| (B.13)

where ||v|| is the Euclidian norm of the vector v. For more details refer, to von
Davier et al. (2004).

B.4 Score Distributions Under the NEAT Design

To formally derive the score distributions of X and Y on T let us use fyp(x | @)
and fxp(x | a) to denote the conditional distributions of X scores on P and Q,
respectively. Similarly, fyp(y | a) and fyo(y | a) are the conditional distributions
for Y scores on P and Q, respectively. Further, because both samples (and thus both
populations) take the anchor test A, we define fyp(a) and fyp(a) as the (marginal)
distributions for anchor scores in P and Q, respectively. Following the definition of
a synthetic population, we have that

far(a) = wefap(a) + wofap(a),

and thus the score distributions of X and Y on 7 can be obtained as

Sxr(x) = [ / fxp(x | a)pr(a)da:| wp + |: / Sro(x | a)fAQ(a)da] wo (B.14)

frr(y) = |:/fyp(y | a)pr(a)da] wp + [/fYQ(y | a)fAQ(a)da] wo (B.15)
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Because under a NEAT design test form X is only administered to population P
and test form Y is only administered to population Q, the conditional distributions
fxo(x | @) and fyp(y | a) cannot be estimated from the collected data.! However,
note that if we assume that the conditional distributions of X | A are the same in
both populations P and Q and analogously for that of ¥ | A, it can easily be shown
that Egs. (B.14) and (B.15) become

fxr(x) = / fxp(x | @)far(a)da

Frr(y) = / fro(y | afar(a)da

which can be estimated from the observed quantities. The CDFs Fxr(x) and Fyr(y)
can be obtained by cumulating fy7(x) and fyr(y) over values of X and Y, respectively.
With this quantities, the equating transformation ¢r(x) = Fy}(Fxr(x)) is
obtained.

A different approach for the NEAT design that does not make use of a synthetic
population for equating can be found in San Martin and Gonzélez (2017).

B.S5 The Lord-Wingersky Algorithm

Let X = Zle X;; be the sum score of a test taker with ability 6. If we assume
that test takers with a given ability 6 correctly answer each of J items of a test with
probability p; (i = 1,...,J), then the conditional distribution of X for a given 6 is
called the compound binomial (Lord and Novick 1968) and is defined as

J
PrX=x510)=fx10= > |[]rieg "] (B.16)

ij=x Jj=1

where p; = 7(6, w;) (as defined in Sect.5.1), and ¢; = 1 — p;. The direct use of
Eq. (B.16) for the calculation of score probabilities is computationally demanding,
especially as the number of items in the test increases. An alternative to the direct
calculation of score probabilities using the compound binomial distribution has
traditionally been the use of a recursion formula given by Lord and Wingersky
(1984). The formula reads as follows

fr(x | 0) =fia(x | O)qr, x=0 (B.17)

ITechnically, the score probability distributions are not identifiable (see, San Martin and Gonzélez
2017).
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=qfr—1(x | 0) + pifr-1(x—1]60), 0 <x<r (B.18)
=f—1(x—1] 9)p,, x=r (B.19)

where f,(x | ) is the distribution of sum scores over the first r items for test takers
with ability 6, and p, = p; is the probability defined from the chosen IRT model.
Thus, having item parameter estimates so that p; = 7 (6, @;), the above formula can
be used to obtain the observed score distribution for test takers of a given ability
0. Alternatives to the Lord-Wingersky algorithm can be found in Gonzilez et al.
(2016), and an extension of this algorithm for the case of polytomous score data can
be found in Thissen et al. (1995).

B.6 Other Justifications for Local Equating

There are other motivations and justifications of the local equating method that
have been discussed in the literature. For instance, local equating can be justified
from a matching and conditioning point of view as described in Wiberg and
van der Linden (2011). Matching on a variable in observed-score equating results
in different pairs of distributions of the observed scores X and Y for each value
of the matching variable. This means that the focus is shifted from the marginal
distributions of X and Y to their conditional distributions given the values of the
matching variables. By conditioning on information about the test takers’ ability the
equating becomes less dependent on the ability distribution of the population of test
takers. If we could condition on the test takers’ true abilities the equating would
be independent of population. Matching and conditioning was used in the equating
literature before local equating was developed but only in the context of adjusting a
population distribution so that the population could be used with a single equating
transformation (Cook and Petersen 1987; Dorans 1990; Liou et al. 2001; Livingston
et al. 1990; Wright and Dorans 1993).

The idea of “one-size-fits” all in the history of test theory has been used for
standard error of measurement. Nowadays the single standard error of measurement
is often replaced by the conditional standard deviation of the observed scores, given
the ability

[Var(X|6)]"/2. (B.20)

Because local equating is based on conditional distributions of observed scores,
the same argument can be made for using local equating as can be made for using
the standard error of measurement (van der Linden 2011, 2013). Using different
standard errors for different test takers is nowadays well accepted. In line with this,
one should accept that different equating transformations might be used for different
test takers in observed score equating (van der Linden 2006a,b; van der Linden and
Wiberg 2010).
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Local equating essentially relies on the same two basic assumptions that classical
test theory and IRT rely on as stated in van der Linden (2006b):

1. For a fixed test taker, the observed score is random across replications of the test.
2. The observed score has a different distribution for each individual test taker.

The first assumption implies that each test taker has an observed score
distribution. An equating transformation is needed to map the scale of the X
test to the scale of the Y test such that the distributions of the score X and the
transformed version of score Y are identical. The true equating transformation
can accomplish this. The second assumption implies that there exist different true
equating transformations for different test takers. These two assumptions together
imply that instead of one equating transformation one should use a family of true
equating transformations (van der Linden 2006b).

B.7 Epanechnikov Kernel Density Estimate and Derivatives

Taking the derivative in Eq. (7.2), which we repeat here for completeness,

r; <3ij(x) ~ R + 2)

Fpy = J +> 7 (B.21)
S H
we obtain
3r; (1 —R? (x))
1 J X
Fo =fu = B.22
e =i = ; 7 (B.22)

The first derivative of f,, which we denote as fh(;) is obtained as

I« 0 (350 -Ry()

1 3 (3r; 1 (3R (x)
axhy 2 ax (T)  axhy § x (T

S
. 1 Z 3rjij(x) 1

axhy ~ 2 axhy

)

Wy 1 3rjRix (x)
fu(x) = (Clxhx)zé: . (B.23)
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B.8 The Double Smoothing Bandwidth Selection Method

in Kernel Equating

Let J be the total number of possible scores in test form X. Then, for/ = 1,...2J—1
the components of Eq. (7.5) are defined as

. Fipr if 1 is odd,
"= 1 ()zc*) if 7 is even ®-29
hy \* 7> °
and
! x—ayx; — (1 — ay) 1
w 5o —axx; — (I —ax)ux
R = Lt ( hyix ) hxix (2
where ¢ (z) is the standard normal density function, and
J ~8x ~8X\ 7
N . x—ayxi— (1 —ay )ix 1
Jox = r-¢( R —, (B.26)
o Z ! 8Xa§(' gxaix

J=1

with

ay = /63/ (65 + g3)- (B.27)

In practice, the DS method is implemented in kernel equating (Haggstrom and

Wiberg 2014) by carrying out the following steps.

1.

Start with a very smooth estimate of the density function by using a large
subjectively chosen bandwidth gx and estimate f,, at the score values and the
values halfway between the score values. This means x* = x = [x;,x; +
0.5,%,...x;,—05,x]7,1=1,...2] — 1.

. Because the obtained smooth estimate f"gx will not perfectly interpolate the

estimated score probabilities; the 7:s, the first estimate can be improved by
estimating f;,, at X* using f,, at the actual score values X. Thus we obtain a DS

estimate f,

. Select the bandwidth of Ay that minimizes the sum of the squared difference

between 7 and the /th DS estimate fh”; (%) (see Eq.(7.5)).
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B.9 The DBPP Model

We assume that for every z € %, F, has a density function, with respect to Lebesgue
measure of the form

F@C) =D wiB (| k@], k= [k6;(2)] + 1), (B.28)

J=1

where w; = v; ]_[i<j [1 —v], vi,vy,... are i.i.d. random variables with common
distribution Beta(1, o) with & > 0, k is a discrete random variable with distribution
indexed by a finite-dimensional parameter A, 6;(z) = h,(rj(z)), ri,r2, ... are
independent and identically distributed real-valued stochastic processes with law
indexed by the parameter ¥, and &, is a known [0, 1]-valued bijective continuous
functions defined on R. Note that Eq. (B.28) is a version of the single weights DBPP,
i.e., covariate dependence is introduced only in the atom processes {6;(z)} by means
of the link function /. For further reference, we denote this model as

{F,:z2e€ Z} ~wDBPP(a, A, ¥, 7),

where 7 = {h,:z2€ Z}.

B.10 Measures of Statistical Assessment When Equating
Test Scores

Let ¢(x) denote an estimator of ¢(x). The definitions of bias, MSE, RMSE
and SE are well known and are shown here explicitly for the case of equating
transformations.

Bias(¢) = E, (¢ — ¢) (B.29)
MSE($) = E,[(¢9 — ¢)’] (B.30)
RMSE(9) = m (B.31)
SE(¢) = v/Var(¢) (B.32)

Note that SE can be obtained from MSE and bias because the former can be
decomposed as the square of the latter plus variance. Because the expectations
are not generally available in closed form, randomly generated score data are
used to calculate them in practice using Monte Carlo simulation. Thus, in order
to practically evaluate the statistical measures in Eqgs. (B.29), (B.30), (B.31), and
(B.32), the Monte Carlo method is used with replicated data generated from a known
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probability model. For each assessment measure, the true and estimated equated
values are compared for each test score.

Assume that we have a specific test score x;, i = 0,...,n, and n is the
number of possible score values. The measures for an equated value ¢(x) over 1000
replications are defined as

1 1000
bias(@(x) = —— » (P (x) — p(x1)). (B.33)
1000 ;
1 1000
MSE@(x))) = —— Y (¢ (x) — o(x))?, (B.34)
1000 ;
1 1000
RMSE(@(x) = | —— Y @0(x;) — ¢(x:))2, (B.35)
1000 ;
SE(@(x)) = v/ Var(¢(x)) (B.36)

where ¢ (x;) is the estimated equated score for the /-th replication.
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