
NUMERICAL METHODS FOR PARTIAL

DIFFERENTIAL EQUATIONS

http://pde.fusion.kth.se

André Jaun <jaun@fusion.kth.se>

September 10, 2001

with the participation of

Thomas Johnson <thomasj@fusion.kth.se>
Thomas Hürtig <hurtig@fusion.kth.se>

Thomas Rylander <rylander@elmagn.chalmers.se>
Mikael Persson <elfmp@elmagn.chalmers.se>
Laurent Villard <Laurent.Villard@epfl.ch>

A
m

p
lit

u
d

e

Position-32 32

Zabuski’s finite difference scheme for solitons
1

0

2001 course of the Summer University of Southern Stockholm, held simultaneously at the
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Chalmers Institute of Technology, Göteborg, Sweden
Royal Institute of Technology, Stockholm, Sweden

ii

This document is typeset with LATEX 2ε1 using the macros in the latex2html2 package
on Sun3 and Linux4 platforms.

c© A. Jaun, J. Hedin, T. Johnson, 1999-2001, TRITA-ALF-1999-05 report, Royal Institute
of Technology, Stockholm, Sweden.

1http://www.tug.org/
2http://cdc-server.cdc.informatik.tu-darmstadt.de/%7Elatex2html
3http://www.sun.com
4http://www.linux.org

CONTENTS iii

Contents

1 INTRODUCTION 5
1.1 How to study this course . 5
1.2 Differential Equations . 7

1.2.1 Ordinary differential equations . 7
1.2.2 Partial differential equations . 8
1.2.3 Boundary / initial conditions . 8
1.2.4 Characteristics and dispersion relations 9
1.2.5 Moments & conservation laws . 9

1.3 Prototype problems . 10
1.3.1 Advection . 10
1.3.2 Diffusion . 10
1.3.3 Dispersion . 11
1.3.4 Wave-breaking . 11
1.3.5 Schrödinger . 12

1.4 Discretization . 12
1.4.1 Convergence . 13
1.4.2 Sampling on a grid . 13
1.4.3 Finite elements . 14
1.4.4 Splines . 14
1.4.5 Harmonic functions . 16
1.4.6 Wavelets . 16
1.4.7 Quasi-particles . 19

1.5 Exercises . 21
1.0 E-publishing . 21
1.1 Stiff ODE . 21
1.2 Predator-Prey model . 21
1.3 Fourier-Laplace transform . 21
1.4 Random-walk . 21
1.5 Convergence . 22
1.6 Laplacian in 2D . 22
1.7 Hypercube . 22

1.6 Further reading . 22
1.7 Solutions . 23
1.8 Interactive evaluation form . 25

2 FINITE DIFFERENCES 27
2.1 Explicit 2 levels . 27
2.2 Explicit 3 levels . 29
2.3 Lax-Wendroff . 29
2.4 Leapfrog, staggered grid . 30
2.5 Implicit Crank-Nicholson . 31

2.5.1 Advection-diffusion equation . 31
2.5.2 Schrödinger equation . 33

2.6 Exercises . 34
2.1 Upwind differences, boundary conditions 34
2.2 Numerical dispersion . 35

iv CONTENTS

2.3 Shock waves using Lax-Wendroff . 35
2.4 Leapfrog resonator . 35
2.5 European option . 35
2.6 Particle in a periodic potential . 36

2.7 Further Reading . 36
2.8 Solutions . 36
2.9 Interactive evaluation form . 39

3 FINITE ELEMENTS METHODS 41
3.1 Mathematical background . 41
3.2 An engineer’s formulation . 42
3.3 Numerical quadrature and solution . 43
3.4 Linear solvers . 46
3.5 Variational inequalities . 48
3.6 Exercises . 49

3.1 Quadrature . 49
3.2 Diffusion in a cylinder . 49
3.3 Mass lumping . 50
3.4 Iterative solver . 50
3.5 Obstacle problem . 50
3.6 Numerical dispersion . 50
3.7 American option . 50

3.7 Further reading . 51
3.8 Interactive evaluation form . 51

4 FOURIER TRANSFORM 53
4.1 Fast Fourier Transform (FFT) with the computer 53
4.2 Linear equations. 54
4.3 Aliasing, filters and convolution. 55
4.4 Non-linear equations. 57
4.5 Exercises . 59

4.1 Advection-diffusion . 59
4.2 Equivalent filter for Zabusky’s FD scheme 59
4.3 Prototype problems . 60
4.4 Intrinsic numerical diffusion . 60

4.6 Further Reading . 60
4.7 Interactive evaluation form . 60

5 MONTE-CARLO METHODS 61
5.1 Monte Carlo integration . 61
5.2 Stochastic theory . 61
5.3 Particle orbits . 62
5.4 A scheme for the advection diffusion equation 64
5.5 When should you use Monte Carlo methods? 66
5.6 Exercises . 66

5.1 Expectancy and variance . 66
5.2 Diffusion statistics . 67
5.3 Periodic boundary conditions . 67

CONTENTS 1

5.4 Steady state with velocity gradient 67
5.5 Diffusion coefficient gradient . 68
5.6 Evolution of a crowd of people . 68

5.7 Further readings . 68
5.8 Interactive evaluation form . 69

6 LAGRANGIAN METHODS 71
6.1 Introduction . 71
6.2 Cubic-Interpolated Propagation (CIP) . 71
6.3 Non-Linear equations with CIP . 72
6.4 Exercises . 73

6.1 Arbitrary CFL number . 73
6.2 Diffusion in CIP . 73
6.3 Lagrangian method with splines . 73
6.4 Non-linear equation . 73

6.5 Further Reading . 73
6.6 Interactive evaluation form . 73

7 WAVELETS 75
7.1 Remain a matter of research . 75

8 THE JBONE USER MANUAL 79
8.1 Source code & installation . 79
8.2 Program execution . 80
8.3 Program structure & documentation . 81
8.4 An object-oriented example: Monte-Carlo in JBONE 81

9 LEARNING LABORATORY ENVIRONEMENT 83
9.1 Typesetting with TEX . 83
9.2 Progamming in JAVA . 85
9.3 Parameters and switches in HTML . 87

10 COURSE EVALUATION AND PROJECTS 89
10.1 Interactive evaluation form . 89
10.2 Suggestions for one-week projects . 89

2 CONTENTS

PREFACE 3

PREFACE

This is the syllabus of the course taught at the Royal Institute of Technology (KTH,
Stockholm) to graduate students in physics, engineering and quantitative social sciences.
With the development of collaborative teaching and distance learning, the material is
now also shared with the Chalmers (CTH, Göteborg) and the Swiss Federal Institutes of
Technology (EPFL, Lausanne), the University of Perugia (Perugia, Italy) and independent
learners from the Internet.

Recognizing the value of an introductory level text describing a whole range of numer-
ical methods for partial differential equations (PDEs) with practical examples, a virtual
learning laboratory has been developed around this highly interactive document 5 . Every
problem is exposed all the way from the formulation of the master equation, the discretiza-
tion resulting in a computational scheme, to the actual implementation with hyper-links
into the JAVA source code. The JBONE applet executes every scheme with edit-able pa-
rameters and initial conditions that can be modified by the user. Comparisons of different
methods show advantages and drawbacks that are generally exposed separately in ad-
vanced and specialized books. The complete source of the program can be obtained free
of charge for personal use after registration.

For this second web edition accessible to everyone on the internet, I would like to thank
Kurt Appert (EPFL, Lausanne) for the inspiration he provided when I was a student of
his own course Expérimentation Numérique. Johan Carlsson, Johan Hedin and Thomas
Johnson (KTH, Stockholm) have one after the other been responsible for the Monte-Carlo
method, Johan Hedin providing valuable advice for the development of the educational
technology. Ambrogio Fasoli (MIT, Cambridge), with whom I have the pleasure to col-
laborate in fusion energy research (by comparing numerical solutions of PDEs with actual
experiments), provided the measurement of an Alfvén instability, showing the importance
of aliasing in the digital acquisition of data.

I hope that this learning environement will be useful to you; I will consider my task more
than satisfactorily accomplished, if, by the end of the course, you will not be tempted to
paraphrase Oscar Wilde’s famous review: “Good in parts, and original in parts; unfortu-
nately the good part were not original, and the original parts were not good”.

André JAUN, Stockholm, 1997–2001

5accessible with a java-powered web browser from http://pde.fusion.kth.se

4 PREFACE

5

1 INTRODUCTION

1.1 How to study this course

Studying is fundamentally an individual process, where every student has to find out
himself what is the most efficient method to understand and assimilate new concepts. Our
experience however shows that major steps are taken when a theory exposed by the teacher
(in a regular classroom- or a video-lecture or a syllabus) is first reviewed, questionned,
discussed with peers (best accross the table during a coffee break, alternatively during
video-conferences or in user forums) and later applied to solve practical problems.

The educational tools that have been developed for this course reflect this pedagogical
understanding: they are meant to be combined in the order / manner that is most appro-
priate for each individual learner. Along the same line, the assessment of the progress is
carried out with a system of bonus points. They reward original contribution in the user
forum as well as the assignments that have been sucessfully carried out.

An example showing how you could study the material during a typical day of the
intensive summer course involves three distinct phases.

Passive learning (1h). This is when new concepts are first brought to you and you have
to follow the teacher’s line of thought. You may combine

• Video-Lecture. From the course main page6, select COURSE: video-lecture.
Download the video file once for all to your local disk (press SHIFT + select
link) to enable you scrolling back and forth in the lecture. Use the labels on top
of the monitor for synchronization with the syllabus. Open your Real player
next or on the top of the web browser to use both simultaneously (Windows
users: select Always on top when playing).

• Syllabus. Select the COURSE: notes where you can execute the applets dis-
cussed in the lectures. You may prefer reading the equivalent paper edition
that can be downloaded in PDF or Postsript format and sent to your local
printer.

Active learning (2h). After a first overview, you are meant to question the validity of
new concepts, verify the calculations and test the parametric dependencies in the
JBONE applet.

• Syllabus. Repeat the analytical derivations, which are on purpose scarce to
force you to complete the intermediate steps by yourself. Answer the quiz
questions and perform numerical experiments on the web. The original applet
parameters can always be recovered and the applet restarted (click RIGHT in
the white area + press SHIFT + select Reload).

• Video-Conference. Rather than a lecture, the video-conference is really
meant to discuss and refine the understanding you have previously acquired
in the passive phase. An opportunity for everyone not only to ask, but also to
answer and comment the questions from peers.

• User Forum. Regular students select the classroom forum to obtain advice
helping the understanding of new material. Don’t hesitate to discuss related

6http://pde.fusion.kth.se

6 1 INTRODUCTION

topics and comment the answers of your classmates: we judge this virtual
classroom activity sufficiently important that your participation is rewarded
with bonus points (independently on whether your arguments are correct or
not — it is the teachers’ duty to correct potential errors). Consult the Forum:
rules and try make your contributions beneficial for all the learners.

Problem based learning (5h). Most important after acquiring a new skill is to test
and practice it by solving practical problems. Select USER: login to enter into your
personal web account. A whole list of problems appears under assignments; each can
be edited in your browser simply by clicking on the identification number. Below the
handout, three input windows allow you to submit your solution to the compilers:

• TeX. The first window takes regular text (ASCII) and LATEXinput, allowing
you to write text and formulas (symbols inserted between two dollar signs, such
as $\sin^2\alpha + \cos^2\alpha = 1$, will appear as regular algebra in
your web browser). Explain how you derive your numerical scheme, how you
implement it and analyse the numerical output. Users who are not familiar
with LATEXgenerally find it easy to first only modify the templates and use the
symbols dictionary appearing on the top of every input window.

• JAVA. The content of the second window is compiled into the JBONE applet,
allowing you to execute your own schemes locally in your browser. Careful: be
sure to correct all compiler errors before you switch to a new exercise — or your
applet will stop working everywhere! Also, your web browser may store old data
in your cash; you may have to force it to reload the new compiled version (again,
click RIGHT in the white area + press SHIFT + select Reload). If you don’t
get immediate programming advice from the User Forum, you can temporarily
deactivate a problematic scheme using the /* java comment delimiters */.

• Parameters. Choose defaults values that exploit the strength of your scheme,
but remain compatible with the numerical limitations.

Be sure to submit only one input window at a time and please do always compile
your work before you navigate further to the syllabus or the user Forum. Sometimes,
the Back button of your browser restores lost data... but don’t count on it! When
your solution is ready and documented, click on the CheckMe button (appears only
after the first compilation) and select Submit Check (bottom of the list) to send your
assignment for correction to the teachers. Take into account the modifications that
are suggested until your solution is accepted and the exercise is signalled as passed.

The amount of work in each chapter is sufficiently large that it is not possible to complete
all the requirements directly within two intensive weeks; rather than proceeding sequen-
tially chapter by chapter, it is important that you start at least one assignment before
every topic is discussed in the video-conference. Remember, this is not a lecture and is
rather useless if you did not study the material before!

Individual work (1 week). One week is reserved to complete the assignments that
could not be finished in time during the first two weeks. Combine the learning
tools until you meet the course requirements. Please submit your evaluation of the
course as we keep improving it in the future.

1.2 Differential Equations 7

Project (1 week). Regular students are given an opportunity to apply their newly ac-
quired skills in a topic that could be of interest for their own research. Part of the
intention is to reward taking a risk (stricktly limited to one week), to assess whether
one of the tools could potentially result in an useful development in the frame of
a PhD thesis. A small report with no more than four A4 pages will be published
under the main course web page.

1.2 Differential Equations

1.2.1 Ordinary differential equations

Ordinary differential equations (ODE) are often encountered when dealing with initial
value problems. In Newtonian mechanics, for example, the trajectory of a particle is
described by a set of first order equations in time:

d2X
dt2

=
F

m
⇐⇒ d

dt

(
X
V

)
=
(

V
F/m

)
This example shows explicitly how higher order equations can be recast into a system of
first order equations, with components of the form

y′ = f(t, y), y(0) = y0 (1.2.1#eq.1)

Under very general assumptions, an initial condition y(0) = y0 yields exactly one solution
to Eq. (1.2.1#eq.1), which can be approximated with a digital computer. Rather than
developing the details of elementary numerical analysis, this section is meant only to
identify the problem and review the elementary solutions that will be used later in the
Monte-Carlo method for partial differential equations.

Introducing a discretization yn = y(tn) with a finite number n of time steps tn = n∆t+t0,
a straight forward manner to solve an ODE is to approximate the derivative with a finite
difference quotient (yn+1 − yn)/h, which leads to the Euler recursion formula

yn+1 = yn + hf(tn, yn), y0 = y(t0) (1.2.1#eq.2)

Because all the quantities are known at time tn, the scheme is called explicit. An implicit
evaluation of the function f(tn+1, yn+1) is sometimes desirable in order to stabilize the
propagation of numerical errors in O(h); this is however computationally expensive when
the function cannot be inverted analytically.

More precision is granted with a symmetric method to evaluate the derivative, using
a Taylor expansion that involves only even powers of h. This achieved in the so-called
midpoint formula

yn+1 = yn−1 + 2hf(tn, yn), y−1 = y0 − hf(t0, y0) (1.2.1#eq.3)

It is accurate to O(h2), but requires a special initialization to generate the additional
values that are needed from the past. Writing the mid-point rule as

yn+1 = yn + hf

(
tn +

h

2
, y(tn +

h

2
)
)

8 1 INTRODUCTION

this initialization problem is cured in the second order Runge-Kutta method, by using an
Euler extrapolation for the intermediate step

k1 = hf(tn, yn)

k2 = hf(tn +
h

2
, yn +

1
2
k1)

yn+1 = yn + k2 (1.2.1#eq.4)

Such elementary and more sophisticated methods are commonly available in software pack-
ages such as MATLAB. They are usually rather robust, but become extremely inefficient
when the problem is stiff (exercise 1.1) — i.e. involves two very different spatial scales,
that limit the step size to the shorter one even if it is not a priori relevant.

1.2.2 Partial differential equations

Partial differential equations (PDE) involve at least 2 variables in space (boundary value
problems) or / and time (initial value problems):

A
∂2f

∂t2
+ 2B

∂2f

∂t∂x
+ C

∂2f

∂x2
+D(t, x,

∂f

∂t
,
∂f

∂x
) = 0 (1.2.2#eq.1)

It is of second order in the derivatives acting on the unknown f , it is linear if D is linear
in f , and is homogenous if all the terms in D depend on f .

Initial value problems with several spatial dimensions and / or involving a combination
of linear and non-linear operators

∂f

∂t
= Lf (1.2.2#eq.2)

can sometimes be solved with the so-called operator splitting. The idea, based on the
standard separation of variable, is to decompose the operator in a sum of m pieces Lf =
L1f+L2f+ . . .+Lmf and to solve the whole problem in sub-steps, where each part of the
operator is evolved separately while keeping all the others fixed. One particularly popular
splitting for is the alternating-direction implicit (ADI) method, where only one spatial
dimension is evolved at any time using an implicit scheme. Non-linearities can equally be
split from the linear operators and treated with an appropriate technique.

1.2.3 Boundary / initial conditions

Depending on the problem, initial conditions (IC)

f(x, t = 0) = f0(x) , ∀x ∈ Ω (1.2.3#eq.1)

and / or boundary conditions (BC) need to be imposed. The latter are often of the form

af + b
∂f

∂x
= c , ∀x ∈ ∂Ω ∀t (1.2.3#eq.2)

and are called Dirichlet (b=0), Neumann (a=0), or Robin (c=0) conditions. Other forms
include the periodic condition f(xL) = f(xR), where {xL, xR} ∈ ∂Ω ∀t, and the outgoing-
wave conditions if the domain is open. Note that to prevent reflections from the compu-
tational boundary of an open domain, it can be useful to introduce absorbing boundary
conditions: they consist in a small layer of an artificial material distributed over a few
mesh cells that absorb outgoing waves. The perfectly matched layers [1] are often used in
problems involving electromagnetic waves.

1.2 Differential Equations 9

1.2.4 Characteristics and dispersion relations

The characteristics of a PDE can loosly be defined as the trajectories x(t) along which
discontinuities and the initial conditions propagate: think of the path a heat pulse takes in
an inhomogeneous material. The chain rule can be used more formally to classify second
order equations ((1.2.2#eq.1) with D=0) with the ansatz f(x, t) = f(x(t), t)

∂2f

∂x2

[
A

(
∂x

∂t

)2

+ 2B
∂x

∂t
+ C

]
= 0 =⇒ ∂x

∂t
= A−1

(
−B ±

√
B2 −AC

)
(1.2.4#eq.1)

into three categories depending on the sign of the discriminant: if

• B2 −AC < 0 the equation has no characteristic and is called elliptic (Laplace eq.)

• B2 −AC = 0 the equation has one characteristic and is called parabolic (heat eq.)

• B2−AC > 0 the equation has two characteristics and is called hyperbolic (wave eq.)

The characteristics play an important role by themself and will be exploited numerically
in the so-called Lagrangian methods in sect.6.

The local properties of a linear equation can be analyzed with a harmonic ansatz
f(t, x) = f0 exp(−iωt + ikx), transforming the differential operators in (t, x) into alge-
braic expressions in (ω, k) called the dispersion or stability relation:

∂f

∂t
+ u

∂f

∂t
= 0 =⇒ −ω + uk = 0 (1.2.4#eq.2)

Dispersion relations relate the phase velocity <e(ω)/k or the growth rate =m(ω)/k to
the scale of the solution k. Assuming moreover a homogeneous grid in space xj = j∆x
and time tn = n∆t, it is possible to assess the quality of a numerical approximation as a
function of the spatial k∆x or temporal resolutions ωt. Take for example the wavenumber
keff = −if ′/f that is obtained when the mid-point rule (1.2.1#eq.3) is used to approximate
the first derivative of f(x) = exp(ikx):

keff = −iexp(ik∆x)− exp(−ik∆x)
2∆x

= k
sin(k∆x)
k∆x

(1.2.4#eq.3)

The wave number is under-estimated for poor resolution k∆x→ π and even changes sign
with less than two mesh points per wavelenth. The forward difference (1.2.1#eq.2)

keff = −iexp(ik∆x)− 1
∆x

= k
sin(k∆x

2)
k∆x

2

[
cos
(
k∆x

2

)
+ i sin

(
k∆x

2

)]
(1.2.4#eq.4)

has an additional imaginary part responsible for a damping f ∝ exp[−=m(keff)∆x].

1.2.5 Moments & conservation laws

Differential calculus is at the heart of science and engineering because it describes the
interactions locally, relating infinitesimal changes at the microscopic scale to the macro-
scopic scale of a system. At the macroscopic scale, global quantities can be found that
remain constant despite these microscopic changes: the total density, momentum and the
energy in a closed box isolated from the outside world do not change. Such conservation

10 1 INTRODUCTION

laws can in general be constructed by taking moments in phase space x, where the moment
of order K a function f(x) is defined by

MK =
∫

Ω
dV xKf (1.2.5#eq.1)

Usually,M0 is the total density,M1 the total momentum andM2 the total energy in the
system. Conservation laws provide useful self-consistency checks when PDEs are solved
in an approximate manner with the computer: deviations from the initial value can be
used to monitor the quality of a numerical solution as it evolves in time.

1.3 Prototype problems

Here are some of the most important initial value problems /equations, illustrated in a
1D periodic slab x ∈ [0;L[.

1.3.1 Advection

Also called convection, advection models the streaming of infinitesimal element in a fluid.
It generally appears when a transport process is modeled in a Eulerian representation
through the convective derivative

d

dt
f ≡ ∂f

∂t
+ u

∂f

∂x
= 0 (1.3.1#eq.1)

For a constant advection velocity u, this can be solved analytically as f(x, t) = f0(x−ut)
∀f0 ∈ C(Ω), showing explicitly the characteristic x = ut. Use the applet 7 to compute the
evolution of a Gaussian pulse with an advection computed using the Lagrangian CIP/FEM
method from sect.6. For a constant advection speed, the wave equation can be written
in flux-conservative form

∂2h

∂t2
− u2∂

2h

∂x2
= 0 ⇐⇒ ∂

∂t

(
f
g

)
− ∂

∂x

[(
0 u
u 0

)
·
(
f
g

)]
= 0 (1.3.1#eq.2)

suggesting how the advection schemes may be generalized for wave problems.

1.3.2 Diffusion

At the microscopic scale, diffusion is related to a random walk and leads to the prototype
equation (exercise 1.4)

∂f

∂t
−D∂

2f

∂x2
= 0 (1.3.2#eq.1)

where D ≥ 0 is the so-called diffusion coefficient. For a homogeneous medium, the com-
bined advection-diffusion equation

∂f

∂t
+ u

∂f

∂x
−D∂

2f

∂x2
= 0 (1.3.2#eq.2)

7in the electronic version of the lecture notes http://pde.fusion.kth.se

1.3 Prototype problems 11

can be solved analytically in terms of a Green’s function (exercise 1.3)

f(x, t) =
∫ +∞

−∞
f0(x0)G(x− x0 − ut, t)dx0

G(x− x0 − ut, t) =
1√
π4Dt

exp
(
−(x− x0 − ut)2

4Dt

)
(1.3.2#eq.3)

A numerical solution is generally required to solve the equation in an inhomogeneous
medium, where u(x), D(x):

∂f

∂t
+ u

∂f

∂x
− ∂

∂x

(
D
∂f

∂x

)
= 0

Check the document on-line for an example of a numerical solution describing the advection-
diffusion of a box computed with the finite element method from sect.3.

A harmonic ansatz in space and time f ∼ exp i(kx− ωt) yields the dispersion relation

ω = −iDk2 (1.3.2#eq.4)

and shows that short wavelengths (large k) are more strongly damped than long wave-
lengths. Change the initial conditions to Cosine and model this numerically in the applet
by altering the wavelength.

1.3.3 Dispersion

Dispersion occurs when different wavelengths propagate with different phase velocities.
Take for example the third order dispersion equation

∂f

∂t
− ∂3f

∂x3
= 0 (1.3.3#eq.1)

A harmonic ansatz f ∼ exp i(kx− ωt) yields the phase velocity

−if(ω − k3) = 0 =⇒ ω

k
= k2 (1.3.3#eq.2)

showing that short wavelengths (large k) propagate faster than long wavelengths (small
k). In the Korteweg-DeVries equation below, this explains why large amplitude solitons
with shorter wavelengths propagate more rapidly than low amplitudes solitons.

1.3.4 Wave-breaking

Wave-breaking is a non-linearity that can be particularly nicely understood when surfing
at the see shore... where the shallow water steepens the waves until they break. It can
also be understood theoretically from the advection equation with a velocity proportional
to the amplitude u = f :

∂f

∂t
+ f

∂f

∂x
= 0 (1.3.4#eq.1)

As a local maximum (large f) propagates faster than a local minimum (small f) both will
eventually meet and and the function becomes multi-valued, causing the wave (and our

12 1 INTRODUCTION

numerical schemes) to break. Sometimes, this wave-breaking is balanced by a competing
mechanism. This is the case in the Burger equation for shock-waves

∂f

∂t
+ f

∂f

∂x
−D∂

2f

∂x2
= 0 (1.3.4#eq.2)

where the creation of a shock front (with short wavelengths) is physically limited by a
diffusion — damping the short wavelengths (1.3.2#eq.4). Check the document on-line
to see a shock formation computed using a 2-levels explicit finite difference scheme from
sect.2.

Another example, where the wave-breaking is balanced by dispersion leads to the
Korteweg-DeVries equation for solitons

∂f

∂t
+ f

∂f

∂x
+ b

∂3f

∂x3
= 0 (1.3.4#eq.3)

The on-line document shows how large amplitudes solitons (short wavelengths) propagate
faster than lower amplitudes (long wavelength).

1.3.5 Schrödinger

Choosing units where Planck’s constant ~ = 1 and the mass m = 1/2, its appears clearly
that the time-dependent Schrödinger equation is special type of wave / diffusion equation:

i
∂ψ

∂t
= Hψ with H(x) = − ∂2

∂x2
+ V (x) (1.3.5#eq.1)

In quantum mechanics, such a Schrödinger equation evolves the complex wave-function
|ψ >= ψ(x, t) that describes the probability < ψ|ψ >=

∫
Ω |ψ|2dx of finding a particle in a

given interval Ω = [xL;xR]. Take the simplest example of a free particle modeled with a
wave-packet in a periodic domain with a constant potential V (x) = 0. The JBONE applet
on-line shows the evolution of a low enery E = − < ψ|∂2

x|ψ > (long wavelength) particle
initially known with a rather good accuracy in space (narrow Gaussian envelope): the
wave-function <e(ψ) (blue line) oscillates and the probability density |ψ|2 quickly spreads
out (black line) — reproducing Heisenberg’s famous uncertainty principle.

1.4 Discretization

Differential equations are solved numerically by evolving a discrete set of values {fj},
j = 1, N and by taking small steps in time ∆t to approximate what really should be a
continuous function of space and time f(x, t), x ∈ [a; b], t ≥ t0. Unfortunately, there is no
universal method. Rather than adopting the favorite of a “local guru”, your choice for a
discretization should really depend on

• the structure of the solution (continuity, regularity, precision), the post-processing
(filters) and the diagnostics (Fourier spectrum) that are expensive but might be
anyway required

• the boundary conditions, which can be difficult to implement depending on the
method

• the structure of the differential operator (the formulation, the computational cost
in memory×time, the numerical stability) and the computer architecture (vectoriza-
tion, parallelization).

1.4 Discretization 13

This course is a lot about advantages and limitations of different methods; it aims at
giving you a broad knowledge, so that you to make the optimal choices and that allows
you to pursue with relatively advanced literature when this becomes necessary.

1.4.1 Convergence

The most important aspect of a numerical approximation of a continuous function with a
finite number of discrete values is that this approximation converges to the exact value as
more information is gathered (exercise 1.5). This convergence can be defined locally for
any arbitrary point in space / time (more restrictive) or by monitoring a global quantity
(more permissive).

Take for example the function f(x) = xα in [0; 1] discretized using a homogeneous mesh
with N values measured in the middle of each interval at xn = (n+ 1/2)/N . The lowest
order approximation f(0) ≈ f (N)(x0) = (2N)−α converges at the origin provided α ≥ 0.
The convergence rate can be estimated from a geometric sequence of approximations {f (i)},
obtained by successively doubling the numerical resolution i = N, 2N, 4N

r =
ln
[
(f (N) − f (2N))/(f (2N) − f (4N))

]
ln[2]

(1.4.1#eq.1)

For the example above, this gives a local convergence rate r = α when α > 0. Using the
mid-point rule (sect.3.3)

∫ 1
0 f(x)dx ≈

∑N
n=0 x

α
n∆x with ∆x = 1/N , global convergence is

achieved when α > −1; because of the weak singularity, the rate however drops from the
O[(∆x)2] expected for “smooth” functions to r ' 1.5, 0.5, 0.2 when α = 0.5,−0.5,−0.8.

1.4.2 Sampling on a grid

The main advantage of a sampling data on a grid is the simplicity: starting from a
continuous function f(x) a finite number of values {(xj; fj)} are measured on what is
generally a homogeneous mesh xj = j∆x, j = 1, N . The values at the domain boundary
appear explicitly as x1 and xN . Figure 1 shows that the sampled function is unknown

0 1 2 3 4 5 6
−1

0

1

m
es

h
[s

in
(x

 2)]

x

Figure 1: Approximation of sin(x2) on a homogeneous mesh.

almost everywhere except on the grid points where it is exact. If the sampling is dense
enough and the function sufficiently smooth, the intermediate values can be interpolated
from neighbouring data using a Taylor expansion

f(x0 + ∆x) = f(x0) + ∆xf ′(x0) +
∆x2

2
f ′′(x0) +O(∆x3) (1.4.2#eq.1)

14 1 INTRODUCTION

Derivatives are obtained by finite differencing from neighboring locations

fj+1 ≡ f(xj + ∆x) = fj + ∆xf ′j +
∆x2

2
f ′′j + . . .

fj−1 ≡ f(xj −∆x) = fj −∆xf ′j +
∆x2

2
f ′′j + . . .

leading to the formulas for the k-th derivative f (k) from Abramowitz [2] §25.1.2

f
(2n)
j =

2n∑
k=0

(−1)k
(

2n
k

)
fj+n−k (1.4.2#eq.2)

f
(2n+1)
j+1/2 =

2n+1∑
k=0

(−1)k
(

2n+ 1
k

)
fj+n+1−k (1.4.2#eq.3)(

n
k

)
=

n(n− 1) · · · (n− k + 1)
k!

Note that a discretization on a grid is non-compact: the convergence depends not only
on the initial discretisation, but also on the interpolation used a posteriori to reconstruct
the data between the mesh points.

1.4.3 Finite elements

Following the spirit of Hilbert space methods, a function f(x) is decomposed on a complete
set of nearly orthogonal basis functions ej ∈ B

f(x) =
N∑
j=1

fjej(x) (1.4.3#eq.1)

These finite-elements (FEM) basis functions span only as far as the neighboring mesh
points; most common are the normalized “roof-tops”

ej(x) =
{

(x− xj−1)/(xj − xj−1) x ∈ [xj−1;xj]
(xj+1 − x)/(xj+1 − xj) x ∈ [xj;xj+1]

(1.4.3#eq.2)

which yield a piecewise linear approximation for f(x) and a piecewise constant derivative
f ′(x) defined almost everywhere in the interval [x1;xN].

Boundary conditions are incorporated by modifying the functional space B (e.g. taking
“unilateral roofs” at the boundaries). Generalization with “piecewise constant” or higher
order “quadratic” and “cubic” FEM is also possible. Important is the capability of densi-
fying the mesh for a better resolution of short spatial scales. Figure 1 doesn’t exploit this,
but illustrates instead what happens when the numerical resolution becomes insufficient:
around 20 linear (and 2 cubic) FEM per wavelength are usually required to achieve a
precision of 1% and a minimum of 2 is of course necessary only to resolve the oscillation.

1.4.4 Splines

Given an approximation on an inhomogeneous mesh, the idea of splines is to provide a
global interpolation which is continuous up to a certain derivative. Using a cubic polyno-
mial with tabulated values for the function and second derivative, this is achieved with

f(x) = Afj +Bfj+1 + Cf ′′j +Df ′′j+1 (1.4.4#eq.1)

1.4 Discretization 15

0 1 2 3 4 5 6
−1

0

1

LF
E

M
 [s

in
(

x
2)]

0 1 2 3 4 5 6
0

1

2
 e

5
 −> f

5
 =−0.947

x

Figure 1: Approximation of sin(x2) with roof-top linear finite elements.

A(x) = (xj+1 − x)/(xj+1 − xj) B(x) = 1−A
C(x) = (xj+1 − xj)2(A3 −A)/6 D(x) = (xj+1 − xj)2(B3 −B)/6

from which it is straight forward to derive

f ′(x) =
fj+1 − fj
xj+1 − xj

− 3A2 − 1
6

(xj+1 − xj)f ′′j +
3B2 − 1

6
(xj+1 − xj)f ′′j+1 (1.4.4#eq.2)

f ′′(x) = Af ′′j +Bf ′′j+1 (1.4.4#eq.3)

Usually f ′′i , i = 1, N is calculated rather than measured: requiring that f ′(x) is continuous
from one interval to another (1.4.4#eq.2) leads to a tridiagonal system for j = 2, N − 1

xj − xj−1

6
f ′′j−1 +

xj+1 − xj−1

3
f ′′j +

xj+1 − xj
6

f ′′j+1 =
fj+1 − fj
xj+1 − xj

− fj − fj−1

xj − xj−1

(1.4.4#eq.4)

leaving only two conditions to be determined at the boundaries for f ′1 and f ′N (1.4.4#eq.2).
Figure 1 illustrates the procedure and shows the excellent quality of a cubic approximation

0 1 2 3 4 5 6
−1

0

1

sp
lin

e[
si

n(
 x

 2)]

x

Figure 1: Approximation of sin(x2) with cubic splines.

until it breaks down at the limit of 2 mesh points per wavelength.

16 1 INTRODUCTION

1.4.5 Harmonic functions

A harmonic decomposition is obtained from discrete Fourier transform (DFT) assuming
a regular mesh and a periodicity L. Using the notations xm = m∆x = mL/M and
km = 2πm/L, the forward and backward transformations are given by:

f̂(km) =
1
M

M−1∑
j=0

f(xj)W−kmxj , W = exp(2πi/M) (1.4.5#eq.1)

f(xj) =
M−1∑
m=0

f̂(km)W+kmxj (1.4.5#eq.2)

If M is a power of 2, the number of operation can be dramatically reduced from 8M2 to
M log2M with the fast Fourier transform (FFT), applying recursively the decomposition

f̂(km) =
1
M

2M−1∑
j=0

f(xj)W−kmxj =
∑
j even

+
∑
j odd

=

=
1
M

2M−1−1∑
j=0

f(x2j)(W 2)−kmxj +
W−km

M

2M−1−1∑
j=0

f(x2j+1)(W 2)−kmxj

(1.4.5#eq.3)

with W 2 = exp(2iπ/2M−1) until a sum of DFT of length M = 2 is obtained. Figure 1
illustrates how the approximation of a periodic square wave converges with an increasing
resolution. Note how the function overshoots close to sharp edges: this is the Gibbs
phenomenon and it will always be there for a finite number of terms in the sum.

It should be no surprise to anyone to hear that harmonic decompositions are well suited
for smooth global functions having long wavelengths λ ∼ L and result in a rather narrow
spectrum |k| ≤ 2π/λ � π/∆x. Finally note that the convergence is not polynomial and
that the implementation of non-periodic boundary conditions can be problematic.

1.4.6 Wavelets

Starting with a coarse (global) approximation, the first idea behind wavelets is to succes-
sively refine the representation and store the difference from one scale to the next

VJ = VJ−1 ⊕WJ−1 = . . . = V0 ⊕W0 ⊕ . . .WJ−1 (1.4.6#eq.1)

This is illustrated with Haar wavelets in 1, showing that the piecewise constant approxi-
mation at the level V4 can be brought to the higher level V5 by adding a correction W4.
Appropriate for integral equations and best suited for the understanding, Haar wavelets
are however not practical for the evaluation of derivatives in PDEs. In the spirit of the

1.4 Discretization 17

0 2 4 6 8 10 12
−1

0

1

FT
3

0 2 4 6 8 10 12
−1

0

1
F

F
T

 [s
qu

ar
e 2π

(x
)]

FT
6

0 2 4 6 8 10 12
−1

0

1

FT
12

x

Figure 1: Square wave
M∑
m=0

2
π(2m+ 1)

sin
(

(2m+ 1)πx
L

)
with M = 3, 6, 12.

FFT, Daubechies proposed a fast O(N) linear discrete wavelet transformation (DWT)

c0 c1 c2 c3
c3 −c2 c1 −c0

c0 c1 c2 c3
c3 −c2 c1 −c0

...
...

. . .
c0 c1 c2 c3
c3 −c2 c1 −c0

c2 c3 c0 c1
c1 −c0 c3 −c2

f1

f2

f3

f4

...
f5

f6

f7

f8

=

f̃1

g̃1

f̃2

g̃2

...
f̃3

g̃3

f̃4

g̃4

→

f̃1

f̃2

f̃3

f̃4

...
g̃1

g̃2

g̃3

g̃4

c0 = (1 +

√
3)/4
√

4 c1 = (3 +
√

3)/4
√

4 c2 = (3−
√

3)/4
√

4 c3 = (1−
√

3)/4
√

4
(1.4.6#eq.2)

called DAUB4, which is applied successively with the permutation to the function f̃ until
only the first two components remain. The inverse simply is obtained by reversing the

18 1 INTRODUCTION

0 1 2 3 4 5 6
−1

0

1 V5

0 1 2 3 4 5 6
−1

0

1 V4
H

aa
r

w
av

el
et

s
[s

in
(

x
2)]

0 1 2 3 4 5 6
−1

0

1 W4

x

Figure 1: Successive approximation of sin(x2) using Haar wavelets.

procedure and using the inverse matrix:

f1

f2

f3

f4

...
f5

f6

f7

f8

=

c0 c3 . . . c2 c1
c1 −c2 . . . c3 −c0
c2 c1 c0 c3
c3 −c0 c1 −c2

. . .
c2 c1 c0 c3
c3 −c0 c1 −c2

c2 c1 c0 c3
c3 −c0 c1 −c2

f̃1

g̃1

f̃2

g̃2

...
f̃3

g̃3

f̃4

g̃4

←

f̃1

f̃2

f̃3

f̃4

...
g̃1

g̃2

g̃3

g̃4

(1.4.6#eq.3)

Approximations with DAUB4 have the peculiar property that the derivative exists only
almost everywhere. Even if wavelets are not smooth, they still can represent exactly
piecewise polynomial functions of arbitrary slope — the cusps in the wavelets cancel out
exactly! Figure 2 illustrates how the solution converges when the first 24 DWT components
of DAUB4[sin(x2)] are taken to a higher level of refinement with 25 components.

Note that next to Haar and Daubechies wavelets, a whole familly can be generated with
a cascading process that has very nicely been illustrated in the Wavelet Cascade Applet8.
Wavelets are still relatively new and remain a matter of active research [3]: they have so
far been proven useful in approximation theory and are currently being developed both for
PDE and integral equations. Apparent in the figures 1 and 2 is the problem with boundary
conditions; another issue which will become clear with the coming sections is the difficulty
of calculating inexpensive inner products.

8http://cm.bell-labs.com/cm/ms/who/wim/cascade/

1.4 Discretization 19

0 1 2 3 4 5 6

−1

0

1 V5

0 1 2 3 4 5 6

−1

0

1 V4
D

A
U

B
4

w
av

el
et

s
[s

in
(

x
2)]

0 1 2 3 4 5 6

−1

0

1 W4

x

Figure 2: Successive approximation of sin(x2) using DAUB4 wavelets.

1.4.7 Quasi-particles

Yet another way of approximating a function is to use quasi-particles

f(x) =
N∑
i=1

wiSi(x− xi) (1.4.7#eq.1)

where wi is the weight, Si is the shape, and xi the position of the particle. In JBONE
the particle shapes are Dirac pulses Si(x) = δ(x), so that the particles are localized in an
infinitely small interval around xi. The weight is set to unity

f(x) =
N∑
i=1

δ(x− xi) (1.4.7#eq.2)

This form of disctretization never converge locally, since the Dirac pulses are either zero or
infinite. However, the “global properties”, or moments, of a smooth and bounded function
g(x) discretized using Dirac pulses converge

∫ b

a
dx xKg(x) =

∫ b

a
dx xK

∞∑
i=1

wiδ(x− xi) =
∞∑
i=1

wix
K
i

Since there is no local convergence it is difficult to compare a quasi-particle discretization
with for example a finite elements discretization. The solution is therefore often projected

20 1 INTRODUCTION

onto a set of basis functions {ϕj}Nϕj=1

fϕ(x) =
Nϕ∑
j=1

∫
f(x)ϕj(x)) dξ√∫

ϕj(ξ)2 dξ
ϕj(x)

=
Nϕ∑
j=1

N∑
i=1

∫
wiδ(ξ − xi)ϕj(ξ) dξ√∫

ϕj(ξ)2 dξ
ϕj(x)

=
Nϕ∑
j=1

N∑
i=1

wiϕj(xi)√∫
ϕj(ξ)2 dξ

ϕj(x)

(1.4.7#eq.3)

In JBONE the basis functions are chosen to be piecewise linear roof-top function.
The functions {ϕj}Nϕj=1 used to project and plot must of course be the same. Figure 1

illustrates how a Gaussian function appears when using piecewise constant (box) and
linear (roof-top) basis functions (1.4.3#eq.2). The dashed line mixes boxes for projection
with roof-tops for the plotting and is wrong!

−10 −5 0 5 10
0

1000

2000

3000

Figure 1: The solid lines are projections of Gaussian function on piecewise constant (box)
and linear (roof-top) basis functions. The dashed line suggests that the result can be
misleading when boxes are used for the projection and roof-tops for the plotting.

In the document on-line, try to press INITIALIZE a few times to get a feeling how good
a quasi-particle approximation is to approximate a box with 64 grid points and a varying
number of particles. The applet uses random numbers to generate a particle distribution
from the initial condition f0(x) with a range [fmin, fmax] in the interval [a, b] following the
procedure:

Let i = 1
while i 6 N
• Let x be a uniformly distributed random number in the interval [a, b].

• Let y be a uniformly distributed random number in the interval [fmin, fmax].

• If y < fi(x) then let xi = x and advance i by 1 else do nothing.

end while

1.5 Exercises 21

1.5 Exercises

1.0 E-publishing

Familiarize yourself with the electronic submission of assignments and use the discussion
forums. Follow the TEXlink to type a small text with formulas; learn how to interpret
the error messages. Change the default applet parameters to compute the diffusion of
a harmonic function and determine the largest diffusion coefficient that seems to give a
reasonable result (this will be discussed in the next chapter). Read the rules governing
the discussion forums and introduce yourself, telling a few words about your background
and interests; chat with your colleagues...

1.1 Stiff ODE

Assuming boundary conditions u(0) = 1; v(0) = 0, use the MATLAB commands ode23
and ode23s to integrate

u′ = 998u+ 1998v
v′ = −999u− 1999v

in the interval [0; 1]. Use the variable transformation u = 2y − z; v = −y + z to compare
with an analytical solution and show that the problem is stiff.

1.2 Predator-Prey model

Study the solutions of the famous Volterra Predator-Prey model

dy1

dt
= αy1 − βy1y2;

dy2

dt
= −γy2 + δy1y2

that predicts the evolution of two populations (y1 the number of preys and y2 the number
of predators) depending on each other for their existence. Assume α = β = γ = δ = 1
and use MATLAB to study periodic solutions in the interval [0; 4]× [0; 4]. Is there a way
to reach a natural equilibrium?

1.3 Fourier-Laplace transform

Solve the advection-diffusion analytically in an infinite 1D slab assuming both the ad-
vection speed u and the diffusion coefficient D constant. Hint: use a Fourier-Laplace
transform to first determine the evolution of the Green’s function G(x − x0, t) starting
from an initial condition δ(x − x0). Superpose to describe an arbitrary initial function
f0(x).

1.4 Random-walk

Determine the diffusion constant for a random-walk process with steps of a typical duration
τ and mean free path λ =

√
〈v2〉τ . Hint: calculate first the RMS displacement

〈
z2
〉

(t)
of the position after a large number M = t/τ of statistically independent steps took place.
Take the second moment of the diffusion equation and integrate by parts to calculate the
average z2(t). Conclude by relating each other using the ergodicity theorem.

22 1 INTRODUCTION

1.5 Convergence

Calculate a discrete representation of sin(kx), kx ∈ [0; 2π] for atleast four numerical
approximations introduced in the first chapter. Sketch (with words) the relative local
error for kx = 1 and show how the approximations converge to the analytical value when
the numerical resolution increases. What about the first derivative?

1.6 Laplacian in 2D

Use a Taylor expansion to calculate an approximation of the Laplacian operator on a
rectangular grid ∆x = ∆y = h. Repeat the calculation for an evenly-spaced, equilateral
triangular mesh. Hint: determine the coordinate transformation for a rotation of 0, 60,
120o and apply the chain rule for partial derivatives in all the three direction.

1.7 Hypercube

Show that when using a regular grid with n mesh points in each direction, most of the
values sampled in hypercube of large dimension N land on the surface. Can you think
of a discretization that is more appropriate? Hint: estimate the relative number of mesh
points within the volume with

(
n−2
n

)N , write it as an exponential and expand.

1.6 Further reading

• ODE, symplectic integration and stiff equations.
Numerical Recipes [4] §16, 16.6, Sanz-Serna [5], Dahlquist [6] §13

• PDE properties.
Fletcher [7] §2

• Interpolation and differentiation.
Abramowitz [2] §25.2–25.3, Dahlquist [6] §4.6, 4.7, Fletcher [7] §3.2, 3.3

• FEM approximation.
Fletcher [7] §5.3, Johnson [8], Appert [9]

• Splines.
Numerical Recipes [4] §12.0–12.2, Dahlquist [6] §4.8

• FFT.
Numerical Recipes [4] §12.0–12.2

• Wavelets.
Numerical Recipes [4] §13.10, www.wavelet.org9 [3]

• Software.
Guide to Available Mathematical Software10 [10], Computer Physics Communica-
tions Library11 [11]

9http://www.wavelet.org/wavelet/index.html
10http://gams.nist.gov
11http://www.cpc.cs.qub.ac.uk/cpc/

1.7 Solutions 23

1.7 Solutions

1.3. Fourier-Laplace transform. To solve the advection-diffusion equation for f(x, t)
as an initial value problem, start with a Laplace transform in time∫ ∞

0
dt exp(iωt)

[
∂f

∂t
+ u

∂f

∂x
−D∂

2f

∂x2

]
= 0 =m(ω) > 0

The condition =m(ω) > 0 is here mandatory to ensure causality. Integrate the
first term by parts and substitute a Dirac function f0(x) = δ(x− x0) for the initial
condition

f exp(iωt)|∞0 +
∫ ∞

0
dt exp(iωt)

[
−iωf + u

∂f

∂x
−D∂

2f

∂x2

]
= 0

−δ(x− x0) +
[
−iωf(x, ω) + u

∂f(x, ω)
∂x

−D∂
2f(x, ω)
∂x2

]
= 0

using here the notation f(x, ω) for the Laplace transform in time of f(x, t). Spatial
derivatives can be dealt with a simple Fourier transform∫ ∞

−∞
dx exp(−ikx)

[
−δ(x− x0)− iωf(x, ω)− iukf(x, ω) +Dk2f(x, ω)

]
= 0

exp(−ikx0) + iωf(k, ω) + iukf(k, ω)−Dk2f(k, ω) = 0

which yields an explicit solution for the Fourier-Laplace transformed function

f(k, ω) =
i exp(−ikx0)
ω + uk + iDk2

This has a pole in the complex plane for ω = −uk − iDk2 and needs to be taken
into account when inverting the Laplace transform

f(k, t) =
∫ +∞+iC

−∞+iC

dω

2π
exp(−iωt)

(
−i exp(−ikx0)
ω + uk + iDk2

)
C > 0

= 2πi
(
−i
2π

exp(−i[−uk − iDk2]t) exp(−ikx0)
)

= exp(i[ukt− x0]) exp(−Dk2t)

where the residue theorem has been used to calculate the integral along the positive
real frequencies and closing the contour in the positive half plane where the Laplace
integral decays exponentially. Inverting the Fourier integral

f(x, t) =
∫ ∞
−∞

dk

2π
exp(ikx)

[
exp i(ukt− x0) exp(−Dk2t)

]
=

1
2π

∫ ∞
−∞

dk exp ik(x− x0 − ut) exp(−Dk2t)

Using the formula (3.323.2) from Gradshteyn & I. M.Ryzhik [12]∫ ∞
−∞

dx exp(−p2x2) exp(±qx) =
√
π

p
exp

(
q2

4p2

)
p > 0

24 1 INTRODUCTION

with p = Dt and q = i(x− x0 − ut), this finally yields the explicit solution

f(x, t) =
1

2
√
πDt

exp
(
−(x− x0 − ut)2

4Dt

)
from (eq.1.3.2#eq.3) for the Green function and shows explicitly the characteristic
x− x0 − ut = 0.

1.4. Random-walk. Consider a walk with a large number M of statistically independent
steps ξi randomly distributed, so that the statistical average of the random variable
yields < ξ >= 0. The final position z =

∑M
i=1 ξi in average coincides with the initial

position < z >=
∑M

i=1 < ξi >= 0. The root mean square (RMS) displacement,
however, is finite

< z2 >=

〈(
M∑
i=1

ξi

) M∑
j=1

ξj

〉 =
M∑
i=1

< ξ2
i > +

∑
i6=j

< ξiξj >= M < ξ2 >=
t

τ
λ2

mfp

where τ defines the average time elapsed between consecutive steps, M = t/τ is the
number of steps taken during a time interval of duration t and λmfp is the so-called
mean free path.

Now, repeat the calculation with the second moment of the diffusion equation
(1.3.2#eq.1), defining the total density N as

N(t) =
∫ +∞

−∞
n(z, t)dz

z̄2(t) =
1
N

∫ +∞

−∞
z2n(z, t)dz

The first term in (1.3.2#eq.1) yields∫ +∞

−∞
z2∂n

∂t
dz =

∂

∂t

∫ +∞

−∞
z2ndz = N

∂

∂t
z̄2

and the second after two integration by parts gives∫ +∞

−∞
z2D

∂2n

∂z2
dz =

[
z2D

∂n

∂z

]+∞

−∞
−
∫ +∞

−∞

∂

∂z
(z2D)

∂n

∂z
dz =

=
[
∂

∂z
(z2D)n

]+∞

−∞
+
∫ +∞

−∞

∂2

∂z2
(z2D)ndz =

= 2D
∫ +∞

−∞
n(z, t)dz = 2DN

where a constant diffusion has been assumed for simplicity D 6= D(x). Reassembling
both terms and integrating in time leads to

N
dz̄2

dt
= 2DN ⇒ z̄2 = 2Dt

1.8 Interactive evaluation form 25

The ergodicity theorem is finally used to identify the statistical average < X > with
the mean value of a continuous variable X̄, leading to the well known identity

D =
λ2

mfp

2τ
.

The theory of stochastic processes behind the Monte-Carlo Method is rather so-
phisticated and will be introduced later in sect.5. From the calculation above, it
is however possible to conclude now already that the evolution of a large number
of independent particles following a random walk can be described implemented in
JBONE with the simple algorithm

for(int j = 0; j < numberOfParticles; j++){
particlePosition[j] += random.nextGaussian() *
Math.sqrt(2 * diffusCo * timeStep);

}

and describes in fact a diffusion.

1.8 Interactive evaluation form

Your anonymous opinion is precious. Please fill-in our anonymous form in the web edition.
Thank you very much in advance for your collaboration!

26 1 INTRODUCTION

27

2 FINITE DIFFERENCES

2.1 Explicit 2 levels

A spatial difference to the left for the advection (1.3.1#eq.1) and a centered difference for
the diffusion (1.3.2#eq.1) yields an explicit scheme that involves only two time levels

∆t + t

����
����
����

����
����
����

����
����
����

����
����
����

t

x

t

j−1 j j+1

Figure 1: Explicit 2 levels.

f t+∆t
j − f tj

∆t
+ u

f tj − f tj−1

∆x
−D

f tj+1 − 2f tj + f tj−1

∆x2
= 0

f t+∆t
j = f tj − β

[
f tj − f tj−1

]
+ α

[
f tj+1 − 2f tj + f tj−1

]
(2.1#eq.1)

where the so-called Courant-Friedrich-Lewy (CFL) number β = u∆t/∆x and the coef-
ficient α = D∆t/∆x2 measure typical advection and diffusion velocities relatif to the
characteristic speed of the mesh ∆x/∆t. For every step in time, a new value is obtained
explicitly by the linear combination of the current neighbors. This scheme has been im-
plemented in JBONE as

for (int i=1; i<n; i++) {
fp[i]=f[i] -beta *(f[i]-f[i-1])+alpha*(f[i+1]-2.*f[i]+f[i-1]); }

fp[0]=f[0] -beta *(f[0]-f[n])+alpha*(f[1]-2.*f[0]+f[n]);
fp[n]=f[n] -beta *(f[n]-f[n-1])+alpha*(f[0]-2.*f[n]+f[n-1]);

where the last two statements take care of the periodicity.
Sharp variations of the solution should generally be AVOIDED in a physically mean-

ingful calculation. To study the properties of a numerical scheme, it is however often
illuminating to initialize a box function and check how the intrinsic numerical dispersion
and damping affect the superposition of short and long wavelengths. The document on-
line shows the evolution obtained for a constant advection u = 1 with no physical diffusion
D = α = 0: after 128 steps of duration ∆t= 0.5, the pulse propagates exactely once
accross the domain with a period L = 64 and discretized with 64 mesh points so that
∆x = 1. The lowest order moment (density) is conserved to a very good accuracy and
the function remains positive everywhere as it should. The shape, however, is strongly
affected by the intrinsic numerical diffusion of (2.1#eq.1)!
Numerical experiments:

• Change the initial condition from Box to Cosine, and vary the wavelength λ =
2–64 mesh points per wavelength to verify that it is indeed the short wavelengths
associated with steep wavefronts that get damped: exactly what you expect from
diffusion (1.3.2#eq.4) except that with D = 0, this is here a numerical artifact!
Without special care, this can easily cover the physical process you want to model...

28 2 FINITE DIFFERENCES

• Looking for a quick fix, you reduce the time step and the CFL number from β = 0.5
down 0.1. What happens ? Adding further to the confusion, increase the time step
to exactly 1 and check what happens.

These properties can be understood from the numerical dispersion analysis using a
local ansatz f ∼ F = exp(i[kx − ωt]) with a homogeneous grid xj = j∆x. Define the
amplification factor as

G = exp(−iω∆t) (2.1#eq.2)

and simplify by F to cast the dispersion relation into

G = 1− β [1− exp(−ik∆x)] + α [exp(+ik∆x)− 2 + exp(−ik∆x)]

= 1− β [1− exp(−ik∆x)]− 4α sin2

(
k∆x

2

)
(2.1#eq.3)

Figure 2 illustrates with vectors in the complex plane how the first three term are combined
in the presence of advection only (D = 0). Short wavelengths k∆x ' π get damped |G| < 1

−1

1 Im G

Re G

−β 1

βexp()

Figure 2: Numerical dispersion / stability (explicit 2 levels).

as long as the CFL number β remains smaller than unity; if this is exceeded, |G| > 1 and
the shortest wavelengths grow into a so-called numerical instability. Try and model this in
the JBONE applet. For a diffusive process (β = 0), the dispersion relation (2.1#eq.3) shows
that the scheme is stable for all wavelengths provided that ‖G‖ = ‖1− 4α sin2(π/2)‖ < 1 i.e.
α < 1/2. Although the superposition of advection and diffusion is slightly more limiting, the
overall conditions for numerical stability may here be conveniently summarized as

α =
D∆t
∆x2

<
1
2

β =
u∆t
∆x

< 1 (CFL condition) (2.1#eq.4)

It is worth pointing out that a finite difference evaluated backwards for the advection is
unstable for negative velocities u < 0. In an inhomogeneous medium, this defect of a de-
centered schemes can be cured with a so-called upwind difference, by taking the finite difference
forward or backward according to the local direction of propagation (exercise 2.1).

2.2 Explicit 3 levels 29

∆t + t

t − t∆

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

x

t

j−1 j j+1

Figure 3: Explicit 3 levels.

2.2 Explicit 3 levels

A more accurate scheme in O(∆x2∆t2) can be obtained with differences centered both in
time and space

f t+∆t
j − f t−∆t

j

2∆t
+ u

f tj+1 − f tj−1

2∆x
−D

f tj+1 − 2f tj + f tj−1

∆x2
= 0

f t+∆t
j = f t−∆t

j − β
[
f tj+1 − f tj−1

]
+ 2α

[
f tj+1 − 2f tj + f tj−1

]
(2.2#eq.5)

and has been implemented in JBONE as

for (int i=1; i<n; i++) {
fp[i]=fm[i] -beta*(f[i+1]-f[i-1]) +2*alpha*(f[i+1]-2.*f[i]+f[i-1]);}

fp[0]=fm[0] -beta*(f[1]-f[n]) +2*alpha*(f[1]-2.*f[0]+f[n]);
fp[n]=fm[n] -beta*(f[0]-f[n-1]) +2*alpha*(f[0]-2.*f[n]+f[n-1]);

Note that a special starting procedure is required to calculate an approximation for a time
−∆t, which is anterior to the initial condition t = 0. This can be defined by taking one explicit
step backwards in time with the 2 levels scheme (2.1#eq.1). The document on-line shows the
evolution with the same advection conditions as used previously: despite the (mathematically)
higher accuracy in O(∆x2∆t2) and an excellent conservation of the moment, the initial box
function is here strongly distorted by the phase errors from numerical dispersion and the
solution becomes locally negative — clearly a non-sense when f(x, t) is a density. You should
however not be mislead here by the choice of the initial condition.
Numerical experiments:

• check how well this scheme performs for the advection of harmonic functions.

• Even though we used the same spatial differencing for the diffusion term as in (2.1#eq.1),
verify that a 3 levels scheme is always unstable for D 6= 0 (exercise 2.2)

2.3 Lax-Wendroff

Rather than counting on your intuition for the right combination of terms, is it possible to
formulate a systematic recipe for solving an equation in Eulerian coordinates with a chosen
accuracy? Yes, using the so-called Lax-Wendroff approach, which can easily be generalized
for non-linear and vector equations.

1. Discretize the function on a regular grid f(x)→ (xj , fj), j = 1, N ,

30 2 FINITE DIFFERENCES

2. Expand the differential operators in time using a Taylor series

f t+∆t
xj = f txj + ∆t

∂f

∂t

∣∣∣∣
xj

+
∆t2

2
∂2f

∂t2

∣∣∣∣
xj

+O(∆t3) (2.3#eq.6)

3. Substitute the time derivatives from the master equation. Using only advection (1.3.1#eq.1)
here for illustration, this yields

f t+∆t
xj = f txj − u∆t

∂f

∂x

∣∣∣∣
xj

+
(u∆t)2

2
∂2f

∂x2

∣∣∣∣
xj

+O(∆t3) (2.3#eq.7)

4. Take centered differences for spatial operators

f t+∆t
j = f tj −

β

2
(
f tj+1 − f tj−1

)
+
β2

2
(
f tj+1 − 2f tj + f tj−1

)
+O(∆x3∆t3) (2.3#eq.8)

This procedure results in a second order advectionscheme which is explicit, centered and stable
provided that the CFL number β = u∆t/∆x remains below unity:

for (int i=1; i<n; i++) {
fp[i]=f[i] -0.5*beta *(f[i+1]-f[i-1])

+0.5*beta*beta*(f[i+1]-2.*f[i]+f[i-1]); }
fp[0]=f[0] -0.5*beta *(f[1]-f[n])

+0.5*beta*beta*(f[1]-2.*f[0]+f[n]);
fp[n]=f[n] -0.5*beta *(f[0]-f[n-1])

+0.5*beta*beta*(f[0]-2.*f[n]+f[n-1]);

Numerical diffusion damps mainly the shorter wavelengths and distorts somewhat the box
function as it propagates.
Numerical experiments:

• Test if this scheme works also for negative velocities.

• Explain what happens when you chose β = 1; why can you not rely on that?

2.4 Leapfrog, staggered grid

The leap-frog algorithm provides both for a remedy against the numerical damping and benefits
from a higher accuracyO(∆x2∆t2) allowing you to take larger time steps: it is perhaps the best
finite-difference scheme for the evolution of hyperbolic wave equations. The idea, illustrated

j+1j−1 j

t+ t∆

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

t

x

t

Figure 4: Staggered grids.

2.5 Implicit Crank-Nicholson 31

in figure 4, is to use so called staggered grids (where the mesh points are shifted with respect
to each other by half an interval) and evaluate the solution using two functions of the form

1
∆t

[
f t+∆t
i+1/2 − f

t
i+1/2

]
= u

∆x

[
g
t+∆t/2
i+1 − gt+∆t/2

i

]
1

∆t

[
g
t+∆t/2
i − gt−∆t/2

i

]
= u

∆x

[
f ti+1/2 − f ti−1/2

] (2.4#eq.9)

This scheme suggests with scalar fields (f, g) how Maxwell’s equations can be conveniently
solved using the so-called finite differences in the time domain (FDTD) by using different grids

for the electric and the magnetic fields (~E, ~B) [2.7]. The leapfrog algorithm in JBONE has
been implemented as

for (int i=1; i<=n; i++) { //time + time_step
fp[i]=f[i] -beta*(g[i]-g[i-1]); }

fp[0]=f[0] -beta*(g[0]-g[n]);
for (int i=0; i<=n-1; i++) { //time + 1.5*time_step
gp[i]=g[i] -beta*(fp[i+1]-fp[i]); }

gp[n]=g[n] -beta*(fp[0]-fp[n]);

Special care is required when starting the integration — here particularly since it is the initial
condition which determines the direction of propagation (exercise 2.4).

Numerical experiments:

• Vary the wavelength of the harmonic oscillation in the applet and check how it performs
in terms of numerical diffusion / dispersion in comparison with the previous schemes.

• Compare your conclusions with the ones you draw when propagating a box function.

Finally, note by substitution that that a leap-frog scheme is in fact equivalent to an implicit
3 levels scheme

1
(∆t)2

(
f t+∆t
i − 2f ti + f t−∆t

i

)
=

u2

(∆x)2

(
f ti+1 − 2f ti + f ti−1

)
. (2.4#eq.10)

where the matrix inversion is carried out explicitly in an elegant manner.

2.5 Implicit Crank-Nicholson

All the schemes that have been developed so far calculate unknowns explicitly by linear combi-
nation from quantities that are all known. Implicit methods allow for the coupling of unknowns
and therefore require a matrix inversion. This makes the implementation considerably more
complicated; the finite element approach is then generally preferable, since it offers more
flexibility for the same programming effort — as will be shown in sect.3). We nevertheless
introduce here two popular schemes that are based on the same combination of variables orig-
inally proposed by Crank & Nicholson: one deals with diffusive problems and the other is often
used to solve the Schrödinger equation.

2.5.1 Advection-diffusion equation

Combine centered differences in space that are evaluated with equal weights from the current
and the future level of time discretization:

32 2 FINITE DIFFERENCES

∆t + t

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

t

x

t

j−1 j j+1

Figure 5: Implicit Crank-Nicholson.

f t+∆t
j − f tj

∆t
+

u

2

{
f t+∆t
j+1 − f t+∆t

j−1

2∆x
+
f tj+1 − f tj−1

2∆x

}

− D

2

{
f t+∆t
j+1 − 2f t+∆t

j + f t+∆t
j−1

∆x2
+
f tj+1 − 2f tj + f tj−1

∆x2

}
= 0

(2.5.1#eq.11)

This Crank-Nicholson scheme is conveniently written as a linear system −α/2− β/41 + α
−α/2 + β/4

T

·

 f t+∆t
j−1

f t+∆t
j

f t+∆t
j+1

 =

 α/2 + β/4
1− α

α/2− β/4

T

·

 f tj−1

f tj
f tj+1

 (2.5.1#eq.12)

showing explicitly the tri-diagonal structure of the matrix implemented in JBONE as

BandMatrix a = new BandMatrix(3, f.length);
BandMatrix b = new BandMatrix(3, f.length);
double[] c = new double[f.length];
for (int i=0; i<=n; i++) {
a.setL(i,-0.25*beta -0.5*alpha); //Matrix elements
a.setD(i, 1. +alpha);
a.setR(i, 0.25*beta -0.5*alpha);
b.setL(i, 0.25*beta +0.5*alpha); //Right hand side
b.setD(i, 1. -alpha);
b.setR(i,-0.25*beta +0.5*alpha);

}
c=b.dot(f); //Right hand side
c[0]=c[0]+b.getL(0)*f[n]; // with periodicity
c[n]=c[n]+b.getR(n)*f[0];

fp=a.solve3(c); //Solve linear problem

We will show later in sect.3 how the simple BandMatrix.solve3() method solves the linear
system efficiently with an LU-factorisation in O(N) operations [2.7] dealing explicitly with the
periodicity.

Repeating the von Neumann stability analysis with (2.5.1#eq.11), a pure diffusive process
(u = α = 0) yields the amplification factor

G =
1− 2α sin2

(
k∆x

2

)
1 + 2α sin2

(
k∆x

2

) (2.5.1#eq.13)

proving that this scheme is unconditionally stable ∀∆x, ∀∆t, phase errors affecting short
wavelength oscillations k∆x ∼ 1. The analogue is true also for the advective part. This

2.5 Implicit Crank-Nicholson 33

favorable stability property can nicely be exploited when solving diffusion dominated problems
that concerned mainly with the evolution of large scale features λ� ∆x.

Starting from a relatively smooth Gaussian pulse that is subject both to advection and
diffusion u = D = 1, the document on-line shows that a reasonably accurate solution (12 %
for the valley to peak ratio as the time reaches 100) can be computed using extremely large
time steps with α = β = 5.
Numerical experiments:

• Repeat the calculation with an initial box function; what happens?

• Add a few tiny time steps using a 2 level scheme (2.1#eq.1) at the end of an implicit
evolution with very large time steps. When is this combination particularly indicated?

2.5.2 Schrödinger equation

When a complex wave function |ψ >= ψ(x, t) (which represents a non-decaying particle in
quantum mechanics) evolves in time, the physical problem requires that the total probability
of finding that particle somewhere in space remains exactly unity at all times < ψ|ψ >=∫
|ψ|2dx = 1 ∀t. Solving the Schrödinger equation

i
∂ψ

∂t
= H(x)ψ with H(x) = − ∂2

∂x2
+ V (x) (2.5.2#eq.14)

here normalized so as to have Planck’s constant ~ = 1, the particle mass m = 1/2 and a static
potential V (x), it could therefore be important to keep the evolution operator unitary even in its
discretized form. This is achieved by writing the formal solution ψ(x, t) = exp(−iHt)ψ(x, 0)
in the so-called Cayley form for the finite difference in time

exp(−iH∆t) '
1− i

2H∆t
1 + i

2H∆t
(2.5.2#eq.15)

This approximation is unitary, accurate to second-order in time O(∆t2) and suggests an evo-
lution of the form

(1 +
i

2
H∆t)ψt+∆t = (1− i

2
H∆t)ψt (2.5.2#eq.16)

Replacing the second order derivative in the Hamiltonian operator H(x) with finite differences
centered in space O(∆x2), one obtains a scheme that is stable, unitary and in fact again the
Crank-Nicholson method in a new context:

ψt+∆t
j +

i∆t
2

(
−
ψt+∆t
j−1 − 2ψt+∆t

j + ψt+∆t
j+1

∆x2
+ Vjψ

t+∆t
j

)
=

= ψtj +
i∆t
2

(
−
ψtj−1 − 2ψtj + ψtj+1

∆x2
+ Vjψ

t
j

)
(2.5.2#eq.17)

The scheme is finally cast into the linear system − i∆t
2∆x2

1 + i∆t
∆x2 + i∆t

2 Vj
− i∆t

2∆x2

T

·

 ψt+∆t
j−1

ψt+∆t
j

ψt+∆t
j+1

 =

 i∆t
2∆x2

1− i∆t
∆x2 − i∆t

2 Vj
i∆t

2∆x2

T

·

 ψtj−1

ψtj
ψtj+1

(2.5.2#eq.18)

exploiting the tri-diagonal structure of the matrix, and has been implemented in JBONE using
complex arithmetic

34 2 FINITE DIFFERENCES

BandMatrixC a = new BandMatrixC(3, h.length); //Complex objects
BandMatrixC b = new BandMatrixC(3, h.length);
Complex[] c = new Complex[h.length];
Complex z = new Complex();

double[] V = physData.getPotential(); //Heavyside(x-L/2) times
double scale = 10.*velocity; // an arb. scaling factor
double dtodx2 = timeStep/(dx[0]*dx[0]);
Complex pih = new Complex(0., 0.5*dtodx2);
Complex mih = new Complex(0.,-0.5*dtodx2);
Complex pip1 = new Complex(1., dtodx2);
Complex mip1 = new Complex(1., -dtodx2);

for (int i=0; i<=n; i++) {
z = new Complex(0.,0.5*scale*timeStep*V[i]);
a.setL(i,mih); //Matrix elements
a.setD(i,pip1.add(z));
a.setR(i,mih);
b.setL(i,pih); //Right hand side
b.setD(i,mip1.sub(z));
b.setR(i,pih);

}

c=b.dot(h); //Right hand side with
c[0]=c[0].add(b.getL(0).mul(h[n])); // with periodicity
c[n]=c[n].add(b.getR(n).mul(h[0]));

hp=a.solve3(c); //Solve linear problem

for (int i=0; i<=n; i++){ //Plot norm & real part
fp[i]=hp[i].norm();
gp[i]=hp[i].re();

}

It again relys on the complex BandMatrixC.solve3() method to solve the linear system effi-
ciently with a standard LU-factorisation with O(N) complex operations [2.7].

The document on-line shows the evolution of the wavefunction and the probability when a
wavepacket is scattered on a (periodic) square potential barrier rizing in the right side of the
simulation domain. The conservation of the moment shows that the total probability remains
indeed perfectly conserved for all times.

Numerical experiment:

• Modify the energy in the wavepacket ICWavelength and verify that the applet recpro-
duces the probability of reflection / transmission accross a potential barrier.

2.6 Exercises

2.1 Upwind differences, boundary conditions

Use upwind differences and modify the explicit 2 level scheme (2.1#eq.1) in JBONE to propose
a new scheme that is stable both for forward and backward propagation. Implement Dirichlet
conditions to maintain a constant value on the boundary up-the-wind (i.e. in the back of the
pulse) and an outgoing wave in the front.

2.6 Exercises 35

2.2 Numerical dispersion

Determine analytically how the explicit 3 levels scheme (2.2#eq.5) affects the advection of
short wavelength components and calculate the growth rate of the numerical instability when
D 6= 0. Use a harmonic initial condition to confirm your results with the JBONE applet.

2.3 Shock waves using Lax-Wendroff

Follow the Lax-Wendroff approach to solve the Burger equation (1.3.4#eq.2) with the JBONE
applet. Implement a first order scheme and study the numerical convergence for different values
of the physical diffusion D. If you want, you may try to go to second order and notice that it is
better not to expand high order non-linear derivatives to keep 2f(∂xf)2 + f2∂2

xf = (∂2
xf

3)/3.
How can you compare the performance of the first and second order schemes? Hint: use
the high order finite differences formulas (1.4.2#eq.2) to calculate an approximation for the
derivatives.

2.4 Leapfrog resonator

Study the intitialization of the leapfrog scheme (2.4#eq.9) in the JBONE applet and examine
how you can affect the direction of propagation of a Gaussian pulse (comment out one of
the three definitions for gm). Modify the numerical scheme to incorporate perfectly reflecting
boundary conditions.

2.5 European option

Use a finite difference schemes to solve the Black-Scholes equation

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0 (2.6#eq.1)

for the value of a European Vanilla put option using an underlying asset S ∈ [0; 130] and a
stike price E = 95, a fixed annual interest rate r = 0.05, a volatility σ = 0.7155, no dividend
D0 = 0 and T = 0.268 year to expiry. Start with a change of variables t = T − t′ to form a
backward-parabolic equation in time and propose an explicit scheme for the variables (S, t′).

After giving some thoughts to the numerical stability of this solution, examine the transfor-
mation into normalized variables (x, τ) defined by t = T − 2τ/σ2, S = E exp(x) and use the
ansatz

V (S, t) = E exp
[
−1

2
(k2 − 1)x−

(
1
4

(k2 − 1)2x+ k1

)
τ

]
u(x, τ) (2.6#eq.2)

k1 = 2r/σ2, k2 = 2(r −D0)/σ2

to reduce the original Black-Scholes equation to a standard diffusion problem

∂u

∂τ
− ∂2u

∂x2
= 0 (2.6#eq.3)

Derive initial and boundary conditions and implement the improved scheme in the JBONE
applet. Compare with the Monte-Carlo solution previously developed in this course now running
very nicely as an applet

36 2 FINITE DIFFERENCES

2.6 Particle in a periodic potential

The quantum mechanics for particles in a periodic potential is a cornerstone of Solid State
Physics (see e.g. Ashcroft and Mermin [13], chapters 8 and 9).

It is shown from perturbative theory that the addidtion of a weak periodic potential modifies
the energy levels of the particle as compared to the free particle case E = h2k2/2m. The
most dramatic effect is felt for wavenumbers k close to a Bragg plane, for which a forbidden
gap in allowed energy occurs. If L is the periodicity of the potential, K = 2p/L is called a
reciprocal lattice vector, and the Bragg plane is at k = K/2. Thus the dispersion relation for
particles in a weak potential is such that the group velocity vanishes at the Bragg plane.

The aim of this exercise is to demonstrate this property. Modify the scheme for the
Schroedinger equation (2.5.2#eq.18) to include a periodic potential. Choose the period length
for the potential and an amplitude set by PhysDataValue. See how plane wave particles
propagate when their wavelength is equal to the Bragg condition, as compared to when their
wavelength differs from that. Then choose a wave packet. Document your observations and
relate them to the theory.

2.7 Further Reading

• Eulerian schemes for advection-diffusion problems.
Numerical Recipes [4] §19.1–19.2, Boris [14]

• FDTD leapfrog for Maxwell’s equation.
Jin [15], EMLIB homepage12 [16]

• Direct and iterative methods for solving linear systems.
Numerical Recipes [4] §2.4, Dahlquist [6] §6.3, §11.1–11.4, Saad [17]

• Option pricing.
Wilmott [18], Björk [19], Duffie [20], Rebonato [21]

2.8 Solutions

2.5. Option pricing. It is really not possible to give here a complete introduction into the
broad subject of option pricing; simple explanations can be found on-line in a tutorial by
the Chicago Bord of Exchange13; a more thorough analysis is given in books by Wilmott
[18] and Rebonato [21]. For this excercise, it is sufficient to understand that an European
Vanilla put option is a contract giving its owner the right to sell a certain asset (called
the underlying) for a fixed price (E the exercise or strike price) at a prescribed time T
in the future (the expiry date).

The parameters of the exercise have been chosen for the underlying QQQ index (NAS-
DAQ top 100) on the evening of May 24, 2000 when QQQ was traded for S = 79.5 USD
(alternatively, you can take the value from today and repeat the exercise with updated
values). Imagine you are the owner of a put option allowing you to sell a QQQ share for
E = 95.00 USD on September 1st, 2000: you may want to know how much this right
was worth on May 24, 2000, i.e. T = 0.268 year before expiry (alt. take today).

12http://emlib.jpl.nasa.gov/
13http://www.cboe.com

2.8 Solutions 37

At expiry on September 1st, 2000, it is clear that the value of the put depends only
on the price S of the underlying share and is given by the payoff function P (S, t =
0) = max(E − S, 0) given as initial condition to the JBONE applet: the put option is
worthless if QQQ is traded above S = 95 USD (an option is a right you are allowed not
to exercise) and you will earn the price difference if QQQ is traded below (you can buy
QQQ shares for e.g. S = 75 USD on the market and sell them without taking any risk
for the strike price of E = 95 USD with a net profit of 20 USD per share).

Two factors at least can change the price of this right from May to September:

1. If you give your money to a bank, you can earn an interest rate of say r = 0.05 on
your deposit; you should therefore discount this systematic (risk free) return from
the value of the option during the entire period your money is invested.

2. The market (and in particular NASDAQ) is volatile. Prices change constantly with
what may be modeled as a random component in the price of a share: even if
chance are slim, you may still earn money with a put option at 95 USD if QQQ
is above 100 USD in August... if the market crashes, making you rich! Clearly,
options keep a finite value until they expire depending on the underlying volatility14.
For QQQ, this was σ = 0.7155 in May (alt. take the value today).

The Black & Scholes model takes these factors into account and integrates the payoff
function backwards in time to model the price of an option before it expires.

Using an explicit 2 levels spatially centered finite difference scheme, eq.2.6#eq.1 can
naively be written as

V t+∆t = V t + ∆t
[
σ2(

1
2
j∆S)2Vj+1 − 2Vj + Vj−1

∆S2
+ r(j∆S)

Vj+1 − Vj−1

2∆S
− rVj

]
= 0

(2.8#eq.1)

and cast into

V t+∆t =
∆t
2

(σ2j2 + rj)Vj+1 + (1− σ2j2∆t+ r∆t)Vj +
∆t
2

(σ2j2 − rj)Vj−1

(2.8#eq.2)

This has been implemented in JBONE as:

double E = runData.getInitialShapePosition(); //Exercise price
double sigmaSq= diffusCo; //Volatility square
double rate = velocity; //Interest rate

fp[0]=E*Math.exp(-rate*time); //Boundary condition
for (int i=1; i<n; i++) {
fp[i]=f[i+1]* 0.5*timeStep*(sigmaSq*i*i +rate*i) //Explicit 2 levels

+f[i]*(1.0-timeStep*(sigmaSq*i*i +rate))
+f[i-1]* 0.5*timeStep*(sigmaSq*i*i -rate*i);

}
fp[n]=fp[n-1]+dx[0]*(fp[n-1]-fp[n-2]); //Boundary condition

Press Start/Stop to start the (slow) integration backward in time. Increase the time
step by a factor 2: after only about 40 steps, a numerical instability develops that can
be traced down to a violation of the stability criterion σ2∆t/∆x2 < 1/2 (eq.2.1#eq.4).

14http://www.cboe.com/tools/historical/vol0400.txt

38 2 FINITE DIFFERENCES

The problem with this naive approach is that the random changes in the asset prices
δS are in reality lognormally distributed, so that the natural mesh for the a random
walk should in fact be equally spaced in logS rather than S. The time step is therefore
limited by the largest asset price, where the relative mesh intervals ∆S is smallest.

To avoid instabilities and negative values for large asset prices, it is possible to change
from financial (S, t′) to lognormal variables (x, τ) and evolve the standard diffusion
equation (eq.2.6#eq.3). An interpolation back to financial variable is only required for
diagnostic purposes. This has been implemented in JBONE as:

double E = runData.getInitialShapePosition(); //Exercise price
double sigmaSq= diffusCo; //Volatility square
double rate = velocity; //Interest rate
double divid = disperCo; //Dividend
int j;
double x0, x1, f0, f1, xi; //Change variables
double tau = 0.5*sigmaSq*time; // f(x,t) ->
double dtau= 0.5*sigmaSq*timeStep; // fm(xx,tau)
double xx0 = Math.log(x[1]/E);
double dxx =(Math.log(x[n]/E)-Math.log(x[1]/E))/(n-1);
double k1 = 2*rate/sigmaSq;
double k2 = 2*(rate-divid)/sigmaSq;
double k2m1 = k2-1.;

//Interpolate from financial (x,t) to lognormal variables (xx,tau)
if (time <=timeStep) {
j=1; ; x0=xx0;
f0=f[1]/E*Math.exp(0.5*k2m1*x0+(0.25*k2m1*k2m1+k1)*tau);
x1=x0; f1=f0; xi=x0;
for (int i=1; i<n; i++) { //Loop over lognormal mesh index
xi=xx0+(i-1)*dxx;
while (xi>=x1) { j++; x0=x1; f0=f1; x1=Math.log(x[j]/E); }
f1=f[j]/E*Math.exp(0.5*k2m1*x1+(0.25*k2m1*k2m1+k1)*tau);
fm[i]= f0 + (xi-x0)*(f1-f0)/(x1-x0);

}
fm[n]= fm[n-1] + dxx*(fm[n-1]-fm[n-2]);

} else { //Retrieve fm[] from previous time step }

//Solve diffusion equation with an explicit 2 levels scheme
double D = dtau/(dxx*dxx);
for (int i=2; i<n; i++)
f[i]= fm[i] + D*(fm[i+1]-2.*fm[i]+fm[i-1]);

f[1]= Math.exp(0.5*k2m1*xx0+0.25*k2m1*k2m1*tau); //Boundary cond.
f[n]= f[n-1] + dxx*(f[n-1]-f[n-2]);

//Interpolate back from lognormal to financial mesh variables
fp[0]=E*Math.exp(-rate*time); //Analytically
j=1; x0=x[0]; x1=x0; f0=fp[0];
xi=xx0; f1=f[1]*E/Math.exp(0.5*k2m1*xi+(0.25*k2m1*k2m1+k1)*tau);
for (int i=1; i<n; i++) { //Loop over financial mesh index
while (x[i]>=x1)
{j++;x0=x1;f0=f1;xi=xx0+(j-1)*dxx;x1=E*Math.exp(xi);}

f1=f[j]*E/Math.exp(0.5*k2m1*xi+(0.25*k2m1*k2m1+k1)*tau);

2.9 Interactive evaluation form 39

fp[i]= f0 + (x[i]-x0)/(x1-x0)*(f1-f0);
}
xi=Math.log(x[n]/E);
fp[n]=f[n]*E/Math.exp(0.5*k2m1*xi+(0.25*k2m1*k2m1+k1)*tau);

Using lognormal variables, the stability limit is the same for all prices; the maximum value
can therefore be considerably larger and the problem with negative payoffs for large asset
prices is cured. After the first step, you can clearly see the numerical interpolation error
induced by changing to lognormal variables and back; higher precision is achieved by
refining the mesh, but keep in mind that the scheme remains subject to the stability
condition (eq.2.1#eq.4).

After these numerical considerations, you are ready to calculate what was the price of
your put option on May 24, 2000 (alt. today).

1. Edit the value of the

• interest rate r → Velocity = 0.05,

• volatility square σ2 = 0.71552 = 0.512→ Diffusion = 0.512,

• time to expiry of 98 days = 0.268 year → Run time = 0.268

• strike price → ICPosition = 95.

• largest asset price → Mesh length = 130.

2. Press Initialize and then Start/Stop for the calculation

3. Select Data to java console in the applet top right selector, press Step 1 and
switch back to Double click to edit below

4. Open the java console (in Netscape, select Communicator->Tools->Java console)

With an underlying QQQ traded for S = 79.5 USD on the evening of May 24, 2000,
the nearest grid point approximation from x[79]=80.23 shows that the price of the put
option will finally reach g[79]=14.77 on September 1st, but was still much higher on
May 24 f[79]=21.82 because of the so-called time value associated with the market
volatility. This predicted value of 21.82 USD can finally be compared with the value
set by the market, which was 20.875 on the evening of May 24, 2000 (alt. consult the
current market price on the web). The agreement is certainly not bad given the crude
approximations made for the input parameters... and remember: the Black-Scholes is
only a model of what the market really does!

2.9 Interactive evaluation form

Your anonymous opinion is precious. Please fill-in our anonymous form in the web edition.
Thank you very much in advance for your collaboration!

40 2 FINITE DIFFERENCES

41

3 FINITE ELEMENTS METHODS

3.1 Mathematical background

To approximate a set of linear partial differential equations

L~v = ~r in Ω (3.1#eq.1)

for an unknown ~v ∈ V ⊂ Cn(Ω) continuously defined with n derivatives in the volume Ω and
subject to the boundary conditions

B~v = ~s in ∂Ω (3.1#eq.2)

a mathematician would probably first involve

Weighted residuals. Having defined a scalar product (·, ·) and a norm || · ||, the calculation
essentially amounts to the minimization of a residual vector

||~R|| = ||~r − L~v|| (3.1#eq.3)

which can be carried out using tools from the variational calculus.

Variational form. A quadratic form is constructed for that purpose by choosing a test
function ~w in a sub-space W that is “sufficiently general” and satisfies the boundary
conditions. The linear equation (3.1#eq.1) can then be written as an equivalent varia-
tional problem

(~w, ~R) = (~w,L~v − ~r) = 0 ~v ∈ V, ∀~w ∈ W (3.1#eq.4)

Integration by parts. If ~w is differentiable at least once W ⊂ C1(Ω), the regularity re-
quired by the forth-coming discretization can often be relaxed by partial integrations.
Using L = ∇2 for illustration, Leibniz’ rule states that

∇ · (v ~w) = (∇v) · ~w + v∇ · ~w =⇒ ∇v · ~w = −v∇ · ~w +∇ · (v ~w) (3.1#eq.5)

Integrating over the volume Ω and using Gauss’ divergence theorem∫
Ω
∇ · ~F dV =

∫
∂Ω

~F · ~dS

yields a generalized formula for partial integration:∫
Ω
∇v · ~w dV = −

∫
Ω
v∇ · ~w dV +

∫
∂Ω
v ~w · ~dS (3.1#eq.6)

For the special case where ~w = ∇u, this is known as Green’s formula∫
Ω
v∇2u dV = −

∫
Ω
∇v · ∇u dV −

∫
∂Ω
v∇u · ~dS (3.1#eq.7)

Note that the last (surface-) term can sometimes be imposed to zero (or to a finite
value) when applying so-called natural boundary conditions.

42 3 FINITE ELEMENTS METHODS

Numerical approximation. It turns out that the formulation as a variational problem is
general enough that the solution ~v of (3.1#eq.4) remains a converging approximation
of (3.1#eq.1) even when the sub-spaces V,W are restricted to finite, a priori non-
orthogonal, but still complete sets V,W of functions; the overlap integrals between
these functions can then be handled simply as linear algebra by the computer.

In general, the discretized solution ~v is expanded in basis functions ~ej ∈ V ⊂ V which
either reflect a property of the solution (e.g. the operator Green’s function in the Method
of Moments), or which are simple and localized enough so that they yields cheap inner
products (~w, ~ej) and sparse linear systems (e.g. the roof-top function for the linear Finite
Element Method). Different discretizations are possible also for the test functions ~w.
Among the most popular choices is the Galerkin method where test and basis functions
are both chosen from the same sub-space V ≡ W; the method of collocation consists
in taking ~w ∈ W = {δ(~x − ~xj)}, j = 1, N which yields a point-wise evaluation of the
integrand on a discrete mesh { ~xj}, j = 1, N .

3.2 An engineer’s formulation

After a section of what a physicist believes might be a mathematician’s view of the subject,
it is time for an example. Using the format of a “recipe” applicable to a rather broad class of
practical problems, this shows how the advection-diffusion problem (1.3.2#eq.2) is formulated
using Galerkin linear finite elements (FEMs) and how it is implemented in the JBONE applet.

Derive a weak variational form. “Multiply” your equation by ∀g ∈ C1(Ω),
∫

Ω dx g
∗(x)

where the conjugation is necessary only if your equation(s) is (are) complex:

∀g ∈ C1(Ω),
∫ xR

xL

dx g

[
∂f

∂t
+ u

∂f

∂x
−D∂

2f

∂x2

]
= 0 (3.2#eq.1)

Integrate by parts. To avoid having to use quadratic basis functions for the discretization
of the second order diffusion operator, you now integrate by parts:∫ xR

xL

dx

[
g
∂f

∂t
+ ug

∂f

∂x
+D

∂g

∂x

∂f

∂x

]
− Dg

∂f

∂x

∣∣∣∣xR
xL

= 0 ∀g (3.2#eq.2)

Assuming a periodic domain, the surface term can here be cancelled, imposing so-called
natural boundary conditions.

Discretize time. This can be formulated in general using a partially implicit scheme f =
(1− θ)f t + θf t+∆t, where θ ∈ [1/2; 1]:∫ xR

xL

dx

[
g

(
f t+∆t − f t

∆t

)
+ ug

∂

∂x

[
(1− θ)f t + θf t+∆t

]
+D

∂g

∂x

∂

∂x

[
(1− θ)f t + θf t+∆t

]]
= 0

∫ xR

xL

dx

[
g

∆t
+ θug

∂

∂x
+ θD

∂g

∂x

∂

∂x

]
f t+∆t =

∫ xR

xL

dx

[
g

∆t
− (1−θ)ug ∂

∂x
− (1−θ)D∂g

∂x

∂

∂x

]
f t

(3.2#eq.3)

∀g, where all the unknowns have been reassembled on the left. Re-scale by ∆t, and

3.3 Numerical quadrature and solution 43

Discretize space using a linear FEMs expansion and a Galerkin choice for the test function:

f t(x) =
N∑
j=1

f tjej(x), ∀g ∈ {ei(x)}, i = 1, N (3.2#eq.4)

∫ xR

xL

dx

ei N∑
j=1

f t+∆t
j ej + ∆tθeiu

N∑
j=1

f t+∆t
j

∂ej
∂x

+ ∆tθD
∂ei
∂x

N∑
j=1

f t+∆t
j

∂ej
∂x

 =

∫ xR

xL

dx

ei N∑
j=1

f tjej + ∆t(θ − 1)eiu
N∑
j=1

f tj
∂ej
∂x

+ ∆t(θ − 1)D
∂ei
∂x

N∑
j=1

f tj
∂ej
∂x

∀i = 1, N (3.2#eq.5)

Note how the condition ∀g ∈ C1([xL;xR]) is now used to create as many independent
equations i = 1, N as there are unknowns {f t+∆t

j }, j = 1, N . All the essential boundary
conditions are imposed by allowing e1(x) and eN (x) to overlap in the periodic domain.
Since only the basis and test functions ei(x), ej(x) and perhaps the problem coefficients
u(x), D(x) remain space dependent, the discretized equations can all be written in
terms of inner products for example of the form (ei, ue′j) =

∫ xR
xL
dx u(x)ei(x)e′j(x).

Reassembling them in matrix notation,

Write a linear system through which the unknown values from the next time step f t+∆t
j

can implicitly be calculated in terms of the current values f tj

N∑
j=1

Aijf
t+∆t
j =

N∑
j=1

Bijf
t
j (3.2#eq.6)

To relate this Galerkin linear FEM scheme with the code which has been implemented in
the JBONE applet, it is necessary now to evaluate the integrals from the inner product; this
is usually performed with a numerical quadrature.

3.3 Numerical quadrature and solution

Except when the PDE coefficients are singular and require a special treatment, the precision
required for the numerical integration really depends on the type of FEMs; in general, it is
sufficient to preserve the convergence rate guaranteed by the discretization. Using a numerical
quadrature of the form∫ b

a
f(y)dy =

b− a
2

n∑
i=1

wif(yi) +Rn (3.3#eq.1)

yi =
(
b− a

2

)
xi +

(
b+ a

2

)
(3.3#eq.2)

with the abscissas xi, weights wi and rests Rn given in the table 1 below it is possible exactly
integrate polynomials with a degree (p − 1), simply by superposing n terms for which the
integrand is evaluated at the specified location yi(xi) ∈ [a; b] and weighted by the factor wi.
Using the powerful Gaussian quadrature, the product of two cubic FEMs will therefore require

44 3 FINITE ELEMENTS METHODS

scheme n terms ±xi wi Rn ∼ O(f (p))
mid-point 2 0 1 p=2
trapezoidal 2 1 1 p=2
Gaussian 2

√
1/3 1 p=4

Gaussian 3 0 8/9 p=6√
3/5 5/9

Gaussian 4
√

3/7 +
√

120/35 1/2− 5/(3
√

120) p=8√
3/7−

√
120/35 1/2 + 5/(3

√
120)

Table 1: Quadrature abscissas and weights for the interval xi ∈ [−1; 1]

no more than three or four evaluations of the integrand in every interval of a unidimensional
mesh.

With two linear FEMs, the mid-point and the trapezoidal rules are often both precise enough
with only one evaluation per interval; although slightly more expensive with one extra evalua-
tion per interval, they can nicely be combined into a so-called tunable integration [22]∫ b

a
f(y)dy = (b− a)

[
p

2
[f(a) + f(b)] + (1− p)f

(
a+ b

2

)]
+R2, p ∈ [0; 1] (3.3#eq.3)

It will become clear below, how a piecewise linear FEM discretization (obtained for p = 1/3)
can then be continuously changed into either an equivalent FD discretization (for p = 1) or
a piecewise constant FEM approximation (for p = 0). Apart from the academic interest, this
feature can sometimes be used to change the slope of the numerical convergence and even to
stabilize an approximation which is marginally unstable because of the numerical discretization.

Armed with new tools to complete the linear FEM discretization from sect.3.2, we can
now evaluate the matrix elements in (3.2#eq.5) using a tunable integration (3.3#eq.3). Since
FEMs reach only as far as to the nearest neighbors, all the matrix elements Aij with |i−j| > 1
vanish, except those created by the periodicity on the domain boundaries. Using a sequential
numbering of the unknowns {f t+∆t

j }, j = 1, N , this results in a tri-diagonal structure of the
matrix, plus two extra elements in the upper-right and lower left corner from the periodic
boundary conditions.

To keep the FEM implementation in JBONE as simple as possible, homogeneity is assumed
u 6= u(x), D 6= D(x) and the matrix coefficients are calculated directly in terms of the inner
products ∫ xi

xi−1

eieidx =
∫ xi+1

xi

eieidx = (1 + p)
∆x
4∫ xi+1

xi

eiei+1dx =
∫ xi+1

xi

ei+1eidx = (1− p)∆x
4∫ xi+1

xi

eie
′
idx = −

∫ xi+1

xi

eie
′
i+1dx = −1

2∫ xi+1

xi

e′ie
′
idx = −

∫ xi+1

xi

e′ie
′
i+1dx =

1
∆x

(3.3#eq.4)

In a real code, this would be replaced by a call to the function returning a local value of the
integrand, and combined with the summation from one of the quadratures described above.

3.3 Numerical quadrature and solution 45

Substituting back into (3.2#eq.5) finally yields the FEM scheme (1− p)∆x
4 − θ∆t

u
2 − θ∆t

D
∆x

(1 + p)2∆x
4 + θ∆t 2D

∆x

(1− p)∆x
4 + θ∆tu2 − θ∆t

D
∆x

T

·

 f t+∆t
i−1

f t+∆t
i

f t+∆t
i+1

 =

 (1− p)∆x
4 − (θ − 1)∆tu2 − (θ − 1)∆t D∆x

(1 + p)2∆x
4 + (θ − 1)∆t 2D

∆x

(1− p)∆x
4 + (θ − 1)∆tu2 − (θ − 1)∆t D∆x

T

·

 f ti−1

f ti
f ti+1

 (3.3#eq.5)

After initialization where the initial condition is discretized with trivial projection on piecewise
linear “roof-top” FEMs, the scheme is implemented in JBONE using two tri-diagonal matrixes
a, b and a vector c:

BandMatrix a = new BandMatrix(3, f.length);
BandMatrix b = new BandMatrix(3, f.length);
double[] c = new double[f.length];

double h = dx[0];
double htm = h*(1-tune)/4;
double htp = h*(1+tune)/4;

for (int i=0; i<=n; i++) {
a.setL(i, htm +h*(-0.5*beta -alpha)* theta);
a.setD(i,2*(htp +h*(alpha)* theta));
a.setR(i, htm +h*(0.5*beta -alpha)* theta);
b.setL(i, htm +h*(-0.5*beta -alpha)*(theta-1));
b.setD(i,2*(htp +h*(alpha)*(theta-1)));
b.setR(i, htm +h*(0.5*beta -alpha)*(theta-1));

}

c=b.dot(f); //Right hand side
c[0]=c[0]+b.getL(0)*f[n]; // with periodicity
c[n]=c[n]+b.getR(n)*f[0];

fp=a.solve3(c); //Solve linear problem

The BandMatrix.solve3() method is again used to compute a direct solution in O(N) opera-
tions with LU-factorization. The on-line document illustrates the advection of a box, calculated
with a piecewise linear “roof-top” FEMs discretization (p = 1/3) slightly decentered in time
(θ = 0.55).

After a considerable effort spent in understanding this FEM discretization, isn’t it frustrating
to see how similar the code is with the implicit Crank-Nicholson FD scheme from sect.2.5?
This should be the main argument for the community who still uses implicit finite difference
schemes! With some thinking but the same computational cost, a finite element approach
offers considerably more flexibility: it is now for example easy to densify the mesh15, vary
the partially implicit time integration from centered to fully implicit θ ∈ [1

2 ; 1] and tune the
integration p ∈ [0; 1]. Convince yourself that Crank-Nicholson (2.5.1#eq.12) and this FEM
scheme (3.3#eq.5) are strictly equivalent for a homogeneous mesh xj = j∆x, j = 1, N , a
time centered integration θ = 1

2 and a trapezoidal quadrature p = 1. Also take a couple
of minute to experiment how you can affect the numerical dispersion / diffusion of short
wavelengths by varying both the parameters θ ∈ [1

2 ; 1] and p ∈ [0; 1].
15Although this has, for pedagogical reasons, here not been exploited

46 3 FINITE ELEMENTS METHODS

Numerical experiments:

• Vary the TimeImplicit and TuneIntegr parameters and determine which combinations
yields the smallest numerical damping. Do your conclusions depend on the CFL number?

• Repeat this study to minimize the phase errors

3.4 Linear solvers

Writing efficient solvers for linear systems is a complete chapter of numerical analysis — and
involves much more than what can be introduced here with a couple of sentences! As a user
of software libraries such as Netlib [23] or PetSc [24], it is however sufficient to have a rough
idea of what type of solvers exist and what they do.

Direct LU factorization. Remember that you should a priori never calculate a matrix
inverse; you can solve a linear problem directly with only a third of the operations by
decomposing it first into lower and upper triangular parts [3.7] with 2

3N
3 operations

(∗,+)

A · x = (L ·U) · x = L(U · x) = b (3.4#eq.1)

and then solve a forward-backward substitution with 2N2 operations

y1 =
b1
L11

; yi =
1
Lii

bi − i−1∑
j=1

Lijyi

 , i = 2, ...N

xN =
yN
U11

; xi =
1
Uii

yi − N∑
j=i+1

Uijxj

 , j = N−1, ...1 (3.4#eq.2)

A particularly simple version has been implemented in JBONE for tri-diagonal matri-
ces, where the solve3() method computes the solution in O(N) operations; the first
and the last equations are simply eliminated “by hand” to take care of the periodic-
ity. Many different implementations of one and the same algorithm exist and adapt the
LU-factorization to specific non-zero patterns of A; it is likely that Netlib has a routine
already tailored for your application.

For matrices with more than three diagonals, it is important to allow for a pivoting during
the factorization process — interchanging rows and columns to avoid divisions by small
values created on the diagonal. For particularly large problems, note the possibility of
storing most of the matrix on disk with a frontal implementation of the same algorithm.

If memory consumption, calculation time or the parallelization of a solver becomes an issue
for 2D, 3D or even higher dimensions, it might be useful to consider iterative methods as an
alternative to direct solvers. The idea behind them is best understood from a splitting of the
matrix into a sum16 of a diagonal D and strict lower −E and upper −F triangular parts

A = D−E− F (3.4#eq.3)

16Don’t get confused here with the product previously used for the LU factorization!

3.4 Linear solvers 47

An iterative solution of the problem

(b−A · xk+1)i = 0 , i = 1, ...N (3.4#eq.4)

is then sought where xk+1 =
(
ξ

(k+1)
i

)
is the (k + 1)-th iterate approximating the solution,

with components ranging from i = 1, ...N .

Iterative Jacobi. The simplest form of iteration consists in inverting only the diagonal

aiiξ
(k+1)
i = βi −

∑
i6=j

aijξ
(k)
j (3.4#eq.5)

which is equivalent in matrix notation to

D · xk+1 = (E + F) · xk + b (3.4#eq.6)

Starting from an arbitrary initial guess x0, simple elliptic problems will –albeit slowly–
converge to a stationary point which is the solution of the linear problem.

Gauss-Seidel. As the equations i = 1, ...N are updated one after the other, it is in fact
possible to immediately use the updated information available in an explicit forward
scheme

aiiξ
(k+1)
i +

∑
j<i

aijξ
(k+1)
j = βi −

∑
j>i

aijξ
(k)
j (3.4#eq.7)

or

(D−E) · xk+1 = F · xk + b (3.4#eq.8)

where the calculation is carried out with an equation index increasing from i = 1, ...N .
The reverse is also possible and is called backward Gauss-Seidel

(D− F) · xk+1 = E · xk + b (3.4#eq.9)

Successive over-relaxation — SOR is obtained when either of the Gauss-Seidel itera-
tions (3.4#eq.8 or 3.4#eq.9) is linearly combined with the value of the previous step

xk+1 = ωxGS
k + (1− ω)xk (3.4#eq.10)

using the parameter ω ∈ [0; 1] for an under-relaxation or ω ∈ [1; 2] for an over-relaxation.
A symmetric-SOR (SSOR) scheme can be obtained for the combination{

(D− ωE) · xk+1/2 = [ωF + (1− ω)D] · xk + ωb
(D− ωF) · xk+1 = [ωE + (1− ω)D] · xk+1/2 + ωb

(3.4#eq.11)

Preconditionning / approximate inverse. Realizing that all the methods above are of
the form xk+1 = G ·xk +f where G = 1−M−1 ·A, the linear problem approximatively
be diagonalized with a preconditionning

M−1 ·A · x = M−1 · b (3.4#eq.12)

48 3 FINITE ELEMENTS METHODS

MJacobi = D MSOR =
1
ω

(D− ωE)

MGS = D−E MSSOR =
1

ω(2− ω)
(D− ωE) ·D−1 · (D− ωF)

(3.4#eq.13)

Note that a product s = M−1 · A · x for a given x can be calculated without ever
forming the inverse, first with a product r = A · x and then solving the linear system
M · s = r in sparse format.

All these variants of Gauss-Seidel are simple and work fairly well for reasonable sized (e.g.
20× 20) elliptic problems, making the much more complicated multigrid approach attractive
only for larger applications which have to be solved many times. Solving hyperbolic (wave-)
problems and non-Hermitian operators iteratively is however more complicated and remains
a matter of research [15], [25]. Methods rely in general both on a suitable preconditionning
and the rapid convergence of Krylov-space and minimal residual methods such as GMRES or
TFQMR [3.7].

It is important finally to note that the matrix-vector multiplication to form iterates can be
performed in sparse format, i.e. using only those matrix elements which are different from
zero. This is why iterative methods can be much more economical than direct solvers which
fill the matrix during the LU factorization process — if they converge!

3.5 Variational inequalities

Consider the obstacle problem, which arises when an elastic string held fixed at both ends is
pulled over a smooth object and you seek an equilibrium without a priori knowing where are
the regions of contact between the string and this object. Define a function S(x) ∈ C1(Ω) to
measure the elevation of the string in the interval Ω = [xL;xR] and O(x) ∈ C1(Ω) to model
the shape of this object. The obstacle problem amounts to finding S(x) from the conditions:

1. the string always remains above the obstacle S(x) ≥ O(x),

2. the string satisfies the equilibrium equation. Neglecting the inertia, this says that the
string has either zero curvature (straight line between the points of contact) or a negative
curvature S′′ ≤ 0 (line of contact – in other words, the obstacle can only push the string
up, not pull it down).

Here are two manners for solving such problems that involve inequalities:

Linear complementary formulation. Reassemble all the conditions in a form

AB = 0, A ≥ 0, B ≥ 0 (3.5#eq.1)

After discretization, assuming that A invertible and positive definite, the linear problem

(x− c)(Ax− b) = 0, Ax ≥ b, x ≥ c (3.5#eq.2)

can be solved with the so-called projected SOR method, replacing (3.4#eq.10) by

xk+1 = max[c, ωxGS
k + (1− ω)xk] (3.5#eq.3)

and starting the iteration from an initial guess x0 ≥ c.

3.6 Exercises 49

For the obstacle problem, the string follows either a straight line above the obstacle
S′′ = 0 or fits exactly the object S − O = 0, suggesting how the complementary
problem

S′′(S −O) = 0 S −O ≥ 0 − S′′ ≥ 0 (3.5#eq.4)

can be discretized with finite differences and solved using the pojected SOR method
(exercise 3.5).

Variational formulation. This second approach is paticularly well suited for a discretiza-
tion with finite elements is and best illustrated directly with the example. Choose a test
function ∀w ∈ V ∈ C1(Ω) that satisfies the same conditions as the solution (w− c) ≥ 0.
Having already (S − c) ≥ 0 and −S′′ ≥ 0, write two inequalities∫ xR

xL

−S′′(w − c) ≥ 0∫ xR

xL

−S′′(S − c) ≥ 0

and substract them ∫ xR

xL

−S′′(w − S) ≥ 0 (3.5#eq.5)

The condition c now appears only implicitly through the fact that w and S are members
of the same sub-space V. After the usual integration by parts and a discretization with
linear FEMs, the linear problem can be solved with projected SOR (3.5#eq.3) iterations
(exercises 3.5, 3.7).

3.6 Exercises

3.1 Quadrature

Calculate the integral
∫ π

0 sin(x)dx for a piecewise linear FEM approximation with two intervals,
comparing the analytical result both with the tunable integration scheme (3.3#eq.3) and a
two point Gaussian quadrature (3.3#eq.1) using the table 1 with m = 2.

3.2 Diffusion in a cylinder

Use a Galerkin linear FEM approximation to compute the diffusion of heat when a homogeneous
cylinder of radius rc, a conduction capacity κ and a radially inhomogeneous initial temperature
T0(r) is kept isolated from the outside world. (Hint: solve the heat equation for the evolution
of the temperature T (r, t) in cylindrical geometry

∂T

∂t
− κ1

r

∂

∂r

(
r
∂T

∂r

)
= 0 (3.6#eq.1)

Formulate a variational problem, integrate by parts and impose natural boundary conditions
to guarantee a regular behavior of the solution in the limit r → 0. Choose either a 2-points
Gaussian or a trapezoidal quadrature and form a linear system of equations which you complete
with boundary conditions on the cylinder surface r = rc. Implement the scheme in the JBONE
applet.

50 3 FINITE ELEMENTS METHODS

3.3 Mass lumping

Examine the possibility of “lumping the mass matrix”, a procedure invented by structural
engineers in the 1970’s where the mass matrix (Aij) in (3.2#eq.6) is artificially set to unity
to obtain an explicit scheme in terms only of the stiffness matrix (Bij). Study the advection
problem separately from the diffusion.

3.4 Iterative solver

Implement an iterative–SOR solver in JBONE and study the number of iterations required to
achieve a 10−6 precision for different values of the diffusion coefficient and advection velocity.

3.5 Obstacle problem

Compute a numerical solution for the obstacle problem from sect.3.5. For simplicity, take an
obstacle parametrized by O(x) = 1

2 − x2 and an elastic string S(x) attached to the edge of
the solution interval S(−1) = S(1) = 0. Hint: you may call the BandMatrix.ssor3() solver
documented in the JBONE tree.

3.6 Numerical dispersion

Use a local ansatz f(x, t) ∼ exp(−iωt)
∑

j exp(ikxj)ej(x) to determine how a Galerkin dis-
cretization based on linear FEMs affects the dispersion of a wave in the standard wave equation
(1.3.1#eq.2). Plot the phase velocity as a function of the numerical resolution).

3.7 American option

Extending your knowledge from exercise 2.5, use a Galerkin linear FEM formulation to solve
the Black-Scholes equation for an American put option, which differs from the European in
that it can be exercised anytime until it expires:

∫ x+

x−

∂u

∂τ
(φ− u) +

∂u

∂x

(
∂φ

∂x
− ∂u

∂x

)
dx ≥ 0, ∀φ ∈ W, ∀τ ∈ [0;

1
2
σ2T] (3.6#eq.1)

Restrict φ ∈ W to a piecewise linear test function which remains larger than the transformed
payoff functions φ(x, τ) ≥ g(x, τ) for all x and τ

gput(x, τ) = exp
{[

1
4

(k2 − 1)2 + 4k1

]
τ

}
max

{
0, exp

[
1
2

(k2 − 1)x− 1
2

(k2 + 1)x
]}

gcall(x, τ) = exp
{[

1
4

(k2 − 1)2 + 4k1

]
τ

}
max

{
0, exp

[
1
2

(k2 + 1)x− 1
2

(k2 − 1)x
]}

(3.6#eq.2)

and satisfying the boundary conditions φ(x+, τ) = g(x+, τ), φ(x−, τ) = g(x−, τ), φ(x, 0) =
g(x, 0). Implement the scheme in JBONE and compare with the solution previously obtained
for the European put in exercise 2.5.

3.7 Further reading 51

3.7 Further reading

• Finite elements.
Johnson [8], Fletcher [7], Saad [17] §2.3

• Quadrature.
Abramowitz [2] §25.4.29 with table 25.4, Numerical Recipes [4] §4.5

• Linear solvers.
Dahlquist [6] §6, Saad [17], Numerical Recipes [4] §2.4.
Software from netlib17, and PetSc18,

3.8 Interactive evaluation form

Your anonymous opinion is precious. Please fill-in our anonymous form in the web edition.
Thank you very much in advance for your collaboration!

17http://www.netlib.org
18http://www.mcs.anl.gov/petsc

52 3 FINITE ELEMENTS METHODS

53

4 FOURIER TRANSFORM

4.1 Fast Fourier Transform (FFT) with the computer

As mentioned earlier in sect.1.4, it is largely thanks to the possibility of computing efficiently
the Fourier transformation in O(N logN) operations that FFT’s can be considered as a viable
alternative to solve partial differential equations. And here again, it is sufficient to have only
a rough idea of the underlying process to efficiently use the routines from software libraries.
Particularly for FFT’s, you should privilege vendors implementations which have in general
been optimized for the specific computer you are using. Since no library is available yet in
JAVA, a couple of routines from Numerical Recipes [4] have been translated for JBONE

into the FFT.java class, making as little modification as possible to the original code, enabling
you to learn more about the algorithm directly from the book. The Complex.java class has
been imported to illustrate how rewarding it is to work with Netlib [23] libraries.

Remember that a complex function f(x) of period L = 2π/K can be represented with a
complex series

f(x) =
∞∑

m=−∞
cm exp(imKx), cm =

1
L

∫ a+L

a
f(x) exp(−imKx)dx (4.1#eq.1)

On the other hand, you can use the cosine – sine form

f(x) =
a0

2
+
∞∑
m=1

[am cos(mKx) + bm sin(mKx)] (4.1#eq.2)

am =
2
L

∫ a+L

a
f(x) cos(mKx)dx (m ≥ 0), bm =

2
L

∫ a+L

a
f(x) sin(mKx)dx (m ≥ 1)

(4.1#eq.3)

with the following relations that hold between the Fourier coefficients

c0 = 1
2a0, cm = 1

2(am − ibm), c−m = c∗m, m ≥ 1
a0 = 2c0, am = cm + c−m, bm = i(cm − c−m), m ≥ 1

(4.1#eq.4)

and only if f(x) is real

a0 = 2c0, am = 2Re(cm), bm = −2Im(cm), cm = c∗−m, m ≥ 1 (4.1#eq.5)

This is almost how the transformation is implemented in FFT.java, except that

1. the number of modes is assumed to be an integer power of 2. The creation of an
FFT-object from data sampled on a homogeneous mesh relies on the command

double f = new double[64];
FFT myFTObject = new FFT(f, FFT.inXSpace);

where FFT.inXSpace chooses the original location of the variable myFTObject of type
FFT.

2. To avoid negative indices and relying on the periodicity f(x + L) = f(x), negative
harmonics (−m) are stored in wrap-around order after the positive components and are
indexed by N/2−m. For a real function f(x) = [7 + 8 cos(2πx/64) + 4 sin(2πx/32) +
3 cos(2πx/2)] sampled on a mesh xj = 0, 1, ...63 with a period L = 64, the call to

54 4 FOURIER TRANSFORM

Complex spectrum = new Complex[64];
double periodicity=64.;
spectrum = myFTObject.getFromKSpace(FFT.firstPart,periodicity);
for (int m=0; m<N; m++)

System.out.println("spectrum["+m+"] = "+spectrum[m]);

will print the non-zero components

spectrum[0] = (7. +0.0i)
spectrum[1] = (4. +0.0i) spectrum[63] = (4. +0.0i)
spectrum[2] = (0. +2.0i) spectrum[62] = (0. -2.0i)
spectrum[32]= (3. +0.0i)

It is easy to see that the shortest wavelength component [32] will always be real if f(x)
was real, since sin(2πx/2) is sampled exactly for the multiples of π.

3. Relying on the linearity of the FFT, two real numbers are packed into one complex
number and transformed for the cost of a single complex transformation by initializing

double f = new double[64];
double g = new double[64];
FFT myPair = new FFT(f,g, FFT.inXSpace);

This is the reason for the argument FFT.firstPart used here above, asking for the
spectrum of only the first (and in this example the only) function.

Apart from the array index which starts with [0] in JAVA, the implementation is equivalent
to the routines in Numerical Recipes [4] and indeed very similar to many computer vendors.

4.2 Linear equations.

Albeit slower for a single time-step than all the numerical schemes we have seen so far, an
FFT can be used to compute the Fourier representation of the advection-diffusion problem
(1.3.2#eq.2) and describe the evolution of each Fourier component fm separately

df̂m
dt

+ ikmuf̂m + k2
mDf̂m = 0, km =

2πm
L

(4.2#eq.1)

This can be integrated analytically without any restriction on the size of the time-step; starting
directly from the initial condition, this yields for every Fourier component

f̂m(t) = f̂m(0) exp[−(ikmu+ k2
mD)t)] (4.2#eq.2)

After an initialization, where the initial condition is discretized by sampling on a regular mesh
and stored for subsequent transformation, the scheme implemented in JBONE reads:

int N = mesh_.size(); //A power of 2
double boxLen = mesh_.size()*mesh_.interval(0); //Periodicity
double k = 2*Math.PI/boxLen; //Notation
Complex ik1 = new Complex(0., k);
Complex ik2 = new Complex(-k*k, 0.);

Complex advection = new Complex(ik1.scale(velocity)); //Variables
Complex diffusion = new Complex(ik2.scale(diffusCo));

4.3 Aliasing, filters and convolution. 55

Complex[] s0 = new Complex[f.length]; //FFT real to KSpace
s0=keepFFT.getFromKSpace(FFT.firstPart,boxLen); // only once

s[0] = s0[0];
for (int m=1; m<N/2+1; m++) { //Propagate directly
total= advection.scale((double)(m)); // from initial
total=total.add(diffusion.scale((double)(m*m))); // contition

exp=(total.scale(timeStep*(double)(jbone.step))).exp();

s[m] = s0[m].mul(exp); // s0 contains the IC
s[N-m] = s[m].conj(); // f is real

}
FFT ffts = new FFT(s,FFT.inKSpace); //Initialize in Kspace
f = ffts.getFromXSpacePart(FFT.firstPart,boxLen); //FFT real back for plot

If you are a careful reader, you should now wonder about the sign of the phase factor, which
is exactly the opposite from (4.2#eq.2); the reason is that the phase of the spatial harmonics
is exactly opposite to the one used in the FFT routine from Numerical Recipes [4]. This
makes the scheme look like as if it evolves backwards in time. Also note that once the initial
condition has been transformed to K-space, subsequent transformations back to X-space are
only required for the plotting.

The on-line document illustrates the advection of a box calculated with the same time step
∆t = 0.5 as previously. The Gibbs phenomenon (artifact from using harmonic functions for
the discretization discussed in sect.1.4.5) is clearly visible except when u∆t/∆x is an integer;
don’t get fooled however by the plotting, which (for simplicity – but still incorrectly) misses
parts of the oscillations visible in figure 1 by linear interpolation between the grid points.
The power of the method is evident when taking larger time-steps: edit the parameter to
TimeStep=64, add some diffusion Diffusion=0.3 and compare the solution obtained in one
single step with the result computed using your favorite FD or FEM scheme from the previous
sections19. This is very nice indeed, but remember that dealing with an inhomogeneous
medium u(x), D(x) or complicated boundary conditions are problematic in Fourier space.
Numerical experiments:

• Switch to Finite Differences and Finite Elements to measure the quality of pre-
vious schemes for Advection=1, Diffusion=0.5 by comparing the results with the
exact solution obtained with the Fourier transform. Hint: re-select the method that
has just been used to re-scale the plot window and print the maximum at the end of the
evolution.

• Initialize a Gaussian and determine the optimal numerical parameters (MeshPoints,
TimeStep, TimeImplicit, TuneIntegr) for different schemes to achieve a 2% precision
in the final value of the peak.

4.3 Aliasing, filters and convolution.

One of the beauties when using Fourier transforms, is the ability to work with a spectrum of
modes and act on each of the components individually with a filter. By sampling a function
over a period L with a finite number of values N = L/∆ where ∆ is the size of the sampling

19Don’t forget to reduce again the time-step!

56 4 FOURIER TRANSFORM

interval, the spectrum gets truncated at the shortest wavelength λc = 2∆ = 2π/kc called
Nyquist critical wavelength, which corresponds to exactly 2 mesh points per wavelength. This
does however not mean that shorter wavelengths |k| > kc do not contribute to the Fourier
coefficients (4.1#eq.1). Figure 1 illustrates how they get aliased back into the lower compo-
nents of the spectrum. This can be important for the digital data acquisition of an experiment,

0

aliasing

aliased spectrum
true spectrum

k−kc c

A(k)

k

Figure 1: Aliasing from Fourier components shorter than the Nyquist critical wavelength
|k| > kc.

where the signal has to be low-pass filtered before the sampling. Figure 4.3 shows that even
with the greatest precautions, such an aliasing can sometimes not be avoided, an needs then
to be correctly interpreted.

It is extremely easy to design a filter in Fourier space simply by multiplying the spectrum by
a suitable filter function H(k) (exercise 4.2). Simply remember that

• to keep the data real after transforming back to X-space, you must keepH(−k) = H(k)∗,
for example by choosing H real and even in k,

• the filter has to be defined in the entire interval k ∈ [−kc; kc] and should be smooth to
avoid phase errors and dampings for wavelengths that appear with sharp edges.

Although they are present from the beginning when the initial condition is discretized (try
to initialize and propagate an aliased cosine with a wavelength ICWavelength=1.05 using the
JBONE applet above), aliases do not actually interfere with the resolution of linear equations.
The story is however different for spatial non-linearities such as the quadratic term ∂xf

2(x)
that is responsible for the wave-breaking (1.3.4#eq.1). This can be understood from the

convolution theorem, telling that the Fourier transform of a convolution f̂ ∗ g is just the
product of the individual Fourier transforms f̂ ĝ. The converse is unfortunately also true: what
can be viewed as a simple product in X-space becomes a convolution in K-space

̂f(x)g(x) = f̂ ∗ ĝ, f̂ ∗ ĝ ≡
∫
f̂(k′)ĝ(k − k′)dk′ (4.3#eq.1)

or in discrete form

(f̂ ∗ ĝ)m ≡
N/2∑

k=−N/2+1

f̂kĝm−k (4.3#eq.2)

For the quadratic wave-breaking non-linearity, this shows that a short wavelength component
such as f̂+31 in a sampling with 64 points, will falsely “pollute” a long wavelength channel

4.4 Non-linear equations. 57

Figure 2: Experimental spectrum 0-500 kHz digitally recorded during 2 sec from the
magnetic perturbations in a fusion plasma in the Joint European Torus. Apart from
the Alfvén instabilities which are the subject of this research, you can see the sawteeth-
like trace of an exciter antenna reaching a minimum of 200 kHz around 1.5 sec; despite
heavy analogic low-pass filtering before the signal is sampled, the large dynamic range
of the measurement above 80 dB is here sensitive enough to pick up (dark red line) a
non-linearly induced high-frequency component which is aliased down into the frequency
range of interest. Courtesy of Prof. A. Fasoli (MIT/USA).

through aliasing: (f̂+31 ∗ f̂+31) = f̂2
+62 −→ f̂2−2. A simple cure for this, is to expand the

size of the arrays by a factor two before the convolution takes place and pad them with zeros;
changing representation to calculate the multiplication of arrays twice the orgiginal size, the
upper part of the spectrum is then simply discarded after the data has been transformed back.
The entire procedure is illustrated in the coming section, where the non-linear Korteweg-
DeVries (1.3.4#eq.3) and Burger equations (1.3.4#eq.2) are solved with a convolution in
Fourier space.

4.4 Non-linear equations.

Combining the linear terms from advection (1.3.1#eq.1), diffusion (1.3.2#eq.1), dispersion
(1.3.3#eq.1) and the non-linear wave-breaking term (1.3.4#eq.1) into a single non-linear
equation, yields

∂f

∂t
+ u

∂f

∂x
−D∂

2f

∂x2
+ b

∂3f

∂x3
+

1
2
∂f2

∂x
= 0 (4.4#eq.1)

where the last term has been written so as to explicitly show the quadratic non-linearity. After
transformation to Fourier space, all the spatial operators become algebraic and an ordinary

58 4 FOURIER TRANSFORM

evolution equation is obtained for each individual Fourier component

df̂m
dt

+ (ikmu+ k2
mD − ik3

mb)f̂m +
1
2
ikmf̂2

m = 0 (4.4#eq.2)

It would of course formally be possible to write the non-linear term as a convolution in K-
space, but it is here much easier to write and efficient to compute the multiplication in X-space.
Following the same lines as in sect.4.2, the linear terms are integrated analytically and yield
a phase shift proportional to the time-step ∆t. The convolution is calculated numerically by
transforming back and forth from Fourier to configuration space, and after a simple Euler
integration (1.2.1#eq.2) in time yields the formal solution

f̂m
t+∆t

= f̂m
t
exp[−(ikmu+ k2

mD − ik3
mb)∆t] +

∆t
2
ikmf̂2

m

t
(4.4#eq.3)

This has been implemented in JBONE using the variable keepFFT to store the current values

of spectrum f̂m
t

and the variable toolFFT for the transformation to X-space required by the
convolution and the plotting. As mentionned earlier in sect.4.2, the sign of time in (4.4#eq.3)
has been changed to stick to the definition of the phase factor used in Numerical Recipes [4].

int N = mesh_.size(); //A power of 2
double boxLen = mesh_.size()*mesh_.interval(0); //Periodicity
double k = 2*Math.PI/boxLen; //Notation
Complex ik1 = new Complex(0., k);
Complex ik2 = new Complex(-k*k, 0.);
Complex ik3 = new Complex(0.,-k*k*k);

Complex advection = new Complex(ik1.scale(velocity)); //Variables
Complex diffusion = new Complex(ik2.scale(diffusCo));
Complex dispersion= new Complex(ik3.scale(disperCo));

//----- Non-linear term: convolution
s = keepFFT.getFromKSpace(FFT.bothParts,boxLen); //Current Spectrum
toolFFT = new FFT(s,s,FFT.inKSpace); // for convolution

if (scheme.equals(jbone.ALIASED)) //With-/out aliasing,
sp = toolFFT.aliasedConvolution(boxLen); // use an FFT to

else //scheme.equals(jbone.EXPAND) // calculate product,
sp = toolFFT.expandedConvolution(boxLen); // FFT back to KSpace

//----- Linear terms: complex terms in spectrum s
s = keepFFT.getFromKSpace(FFT.bothParts,boxLen); //Current Spectrum
linear= s[0];
sp[0]=linear;
for (int m=1; m<=N/2; m++) {
total= advection.scale((double)(m));
total=total.add(diffusion.scale((double)(m*m)));
total=total.add(dispersion.scale((double)(m*m*m)));
exp=(total.scale(timeStep)).exp();
linear = s[m].mul(exp);
nonlin = sp[m].mul(ik1.scale(0.5*timeStep*(double)(m)));
sp[m] = linear.add(nonlin);
if (m<N/2) sp[N-m] = sp[m].conj(); //For a real spectrum

4.5 Exercises 59

}

keepFFT = new FFT(sp,FFT.inKSpace); //Spectrum is complete
toolFFT = new FFT(sp,FFT.inKSpace); //inv FFT for plotting
f=toolFFT.getFromXSpacePart(FFT.firstPart,boxLen);

Depending on the scheme selector, the convolution is calculated either without precaution and
is subject to aliasing, or by temporarily expanding the spectrum padding the upper part with
zeros to cure the problem.

The on-line document shows the evolution obtained for the Korteweg-DeVries equation,
when two solitons propagate and collide through the delicate balance between the non-linear
wave-breaking and dispersion. Change the switch to Aliased Convolution and verify how
the aliasing pollutes the spectrum with short wavelengths that rapidly evolve into a non-linear
instability.

Replace the dispersion with a small amount of diffusion by setting Dispersion=0.0 and
Diffusion=0.1; evolve a Gaussian into a shock front and verify how much less aliasing seems
to be an issue for the Burger equation (1.3.4#eq.2), when a diffusive process physically damps
the short wavelengths... Remember however that the cascade of energy from one wavelength
to another is now affected by the aliasing and is much more delicate to diagnose!
Numerical experiments:

• Go back to the KdV equation by setting Dispersion=0.5 and try to cure the aliased
scheme with a small amount of non-physical diffusion. Separate the short wavelengths
(unphysical aliases) from the longuer wavelengths (physical) by reducing the ICAmplitude.
Is such a solution attractive?

4.5 Exercises

4.1 Advection-diffusion

Propose an alternative scheme solving the linear advection-diffusion problem in Fourier space,
evolving the solution with small steps in time ∆t.

4.2 Equivalent filter for Zabusky’s FD scheme

Study Zabusky’s finite difference scheme for the Korteweg-DeVries equation

f t+∆t
j − f t−∆t

j

2∆t
+

1
3
[
f tj+1 + f tj + f tj−1

] f tj+1 − f tj−1

2∆x
+ b

f tj+2 − 2f tj+1 + 2f tj−1 − f tj−2

2∆x3
= 0

(4.5#eq.1)

using JBONE with b = 1/2. Calculate the equivalent Fourier space filter that is implied
for the linear terms when the calculation is performed in configuration space. Add this fil-
ter to the Fourier scheme available in JBONE and check that after filtering, both the FD
and FT methods indeed are similar. What remains different? Hint: Zabusky’s finite differ-
ence scheme has already been implemented under this link and can be executed by selecting
Finite differences, Explicit 3-level and KdV (solitons) in the applet selectors.
Your task in this exercise is first to calculate and then to implement a filter function Hm,
which emulates for each Fourier component f t+∆t

m = Hmf tm the evolution that results from
the finite differencing of the linear terms.

60 4 FOURIER TRANSFORM

4.3 Prototype problems

Modify the parameters of the non-linear equation 4.4#eq.3 in Fourier space to develop a
better qualitative understanding of what are advection, diffusion, dispersion and wave-breaking.
Choose a regime where you trust the numerical description and propose a combination of
parameters you believe is particularly interesting.

4.4 Intrinsic numerical diffusion

Use the exact solution of the advection-diffusion equation calculated with the Fourier method
(4.2#eq.2) to measure the numerical damping Dnum in FD / FEM schemes with different
implicit-time and tunable-integration parameters. Start with uphys = Dphys = 1 and, after
evolving a narrow Gaussian, measure the final peak amplitude max[f](Dtot) for a decreasing
value of the total diffusion Dtot = Dphys +Dnum. Calculate the intrinsic numerical damping
Dnum from the saturation you observe for small values of the physical damping Dphys. Hint:
in JBONE, re-select the method that has just been used to re-scale the plot window and print
the maximum of the solution.

4.6 Further Reading

• FFT algorithm.
Numerical Recipes [4] §12

4.7 Interactive evaluation form

Your anonymous opinion is precious. Please fill-in our anonymous form in the web edition.
Thank you very much in advance for your collaboration!

61

5 MONTE-CARLO METHODS

5.1 Monte Carlo integration

The name stems from the city which is famous for its casinos and suggests a method involving
random numbers. The most common use of Monte-Carlo methods (mcm) is the evaluation of
multi dimensional integrals [4]. Consider first the approximation of an integral obtained with
the trapezoidal rule (3.3#eq.1) by sampling on a uniform mesh∫ b

a
f(ξ) dξ =

N−1∑
i=0

f(xi)
b− a
N

+ O
(

1
N

)
, xi = a+

b− a
N − 1

i (5.1#eq.1)

Instead, you could use a mesh where the positions {xi} are random numbers uniformly dis-
tributed in the interval [a, b]. This suggests the Monte Carlo integration∫ b

a
f(ξ) dξ =

N∑
i=1

f(xi)
b− a
N

+O
(

1√
N

)
, xi ∈ U(a, b) (5.1#eq.2)

The rate of convergence of this Monte-Carlo integration is lower than for the sampling on
a uniform mesh (5.1#eq.1). The strength however appears for the evaluation of integrals in
higher dimensions d > 2, where the mcm error scales as N−1/2 irrespective of the number of
dimensions, instead of the O

(
N−1/d

)
obtained using a uniform mesh.

5.2 Stochastic theory

This section is intended as a very short introduction into the stochastic calculus that provides
the mathematical foundation behind the Monte Carlo method. Check Kloeden [26] and Van
Kampen [27] for complete courses on the subject!

Definition The expected or mean value E and the variance V are defined by

E [X](x) ,
∫ ∞
−∞

xfX(x) dx (5.2#eq.1)

V[X](x) , E [X]
(

(x− E [X] (x))2
)

(5.2#eq.2)

=E [X]
(
x2
)
− E2 [X] (x) (5.2#eq.3)

where fX(x) is the density distribution function of the stochastic variable X.

Definition N (µ, σ) refers to the set of Gaussian or normal distributed stochastic variable
X with density distribution function

fX(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
(5.2#eq.4)

where µ is the mean and σ2 is the variance.

Definition U(a, b) refers to the set of uniformly distributed random numbers in the
interval [a, b].

Definition A stochastic process Wt is called a Wiener process (or Brownian motion) in
time t if and only if

62 5 MONTE-CARLO METHODS

1. Wt+∆t−Wt ∈ N (0,
√

∆t), where N is the set of normal distributed random numbers.

2. E [WtdWt] = E [Wt]E [dWt], where E denotes expected value, dWt = Wt+∆t −Wt and
∆t > 0, i.e. the Wiener increment dWt is independent of the past.

The distribution function of a Wiener increment Wt+∆t −Wt is essentially the same function
as the Green’s function of the diffusion equation (1.3.2#eq.3).

The differential calculus of stochastic processes, the so called Itô calculus, involves new
properties that are fundamentally different from the ordinary Riemann calculus. The reason
can be tracked down to the preferred direction of time t in the Itô integral:

Definition The Itô integral is defined as the limit of an explicit (forward Euler) dis-
cretization ∫ T

0
b(Wt, t) ◦ dWt ≡

∑
i

lim
∆ti→0

b(Wti , ti)(Wti+∆ti −Wti) (5.2#eq.5)

for any sequence {ti : ti ∈ [0, T], ti+1 = ti + ∆ti}. The circle, ◦ stands for Itô differential
and states that dWt is independent of b(Wt, t).

Note that an implicit discretization in (5.2#eq.5) would give a fundamentally different result.
Now consider a property Yt that is a sum of ordinary Riemann integral and an Itô integral.

YT =
∫ T

0
v(Yt, t)dt+

∫ T

0
b(Yt, t) ◦ dWt (5.2#eq.6)

Integrating over a infinitely short time interval we obtain the so called stochastic differential
equation

dYt = v(Yt, t)dt+ b(Yt, t) ◦ dWt (5.2#eq.7)

which reduces to an ordinary differential equation if b(Yt, t) = 0 in the absence of a stochastic
component in the evolution

dYt
dt

= v(Yt, t) (5.2#eq.8)

5.3 Particle orbits

When using the Monte Carlo method to solve pdes, functions are discretized using quasi
particles and differential operators need to be reformulated in terms of particle motions. In
(1.4.7#eq.1) a quasi-particle is defined by a weight wi, a position xi and a shape function Si.
For simplicity, we assume here unit weights wi = 1 and point shaped particles Si(x) = δ(x)
described by the Dirac pulse. The solution is computed from an ensemble of particle positions
{xi(t)}, that are called the particle orbits.

A deterministic orbit is described by an ordinary differential equation for the position X(t)
as a function of time t

dX(t)
dt

= v(X(t), t) (5.3#eq.1)

or

dX(t) = v(X(t), t)dt (5.3#eq.2)

5.3 Particle orbits 63

This equation can be solved numerically using the methods discussed in section 1.2.1, with an
explicit or implicit discretization of time

X(t+ ∆t) = X(t) + v(X(t), t)∆t “explicit” (5.3#eq.3a)
X(t+ ∆t) = X(t) + v (X(t+ ∆t), t+ ∆t) ∆t “implicit” (5.3#eq.3b)

For an ensemble of N particles with orbits xi(t), a particle density distribution function f(x, t)
is constructed according to section 1.4 and yields

f(x, t) =
N∑
i=0

δ(x− xi(t)) (5.3#eq.4)

Note that the first order moment is perfectly conserved, since no particle is lost.
Using a large number of particles, the density distribution function is then approximated by

a smooth function. If the individual particle orbits X(t) evolve according to

dX(t) = v(X(t), t)dt. (5.3#eq.5)

then the Taylor’s transport theorem states that the evolution of particle density distri-
bution function f(x, t) is described by the advection equation

∂f

∂t
+

∂

∂x
(vf) = 0 (5.3#eq.6)

This theorem makes it possible to study a PDE instead of an N -particle system; the reverse
is also possible and used in particle methods involving the advection equation.

Let us now introduce the concept of stochastic particle orbits; that is an ensemble of
possible orbits with different probabilities. As an example, picture a snowflake falling slowly
from the sky: the motion is unpredictable and the evolution could be described as a stochastic
particle orbit X(t) following the stochastic differential equation

dX(t) = v(X(t), t)dt+ b(X(t), t) ◦ dWt (5.3#eq.7)

where Wt is a Wiener processes (Brownian motion).
Starting from (5.3#eq.7), you will show in exercise 5.2 that

∂

∂t
E [X(t)](x) =v(x, t) (5.3#eq.8)

∂

∂t
V[X(t)](x) =b(x, t)2. (5.3#eq.9)

where ∂
∂tE [X(t)](x) is the average particle velocity, ∂

∂tV[X(t)](x) is a measure of the broad-
ening of the distribution of possible orbits. Eq. (5.3#eq.7) can then be written as

dXt =
∂

∂t
E [Xt] (x)dt+

√
∂

∂t
V [Xt] (x) ◦ dWt (5.3#eq.10)

Example: Let X(t) be a stochastic process with an evolution of the probability density
distribution f(x, t) following the advection-diffusion equation

∂f(x, t)
∂t

+
∂

∂x
[a(x)f(x, t)] =

∂

∂x

(
D(x)

∂f

∂x

)
, x ∈ (−∞,∞) (5.3#eq.11)

64 5 MONTE-CARLO METHODS

From the derivations in exercise 5.1, we obtain

∂

∂t
E [X(t)](x) = a(X(t)) +

(
∂

∂x
D(x)

)
x=X(t)

(5.3#eq.12a)

∂

∂t
V[X(t)](x) = 2D(X(t)) (5.3#eq.12b)

In the same spirit as in Taylor’s transport theorem, it is possible to relate the evolution of a large
number of stochastic particle orbits to a PDE. This is a form of the so-called Feynman-Kac
theorem, tellings that a smooth density distribution function f(x, t) in which the individual
particles move according to

dX(t) = v(X(t), t)dt+ b(X(t), t) ◦ dWt (5.3#eq.13)

evolves according to the Fokker-Planck (or Kolmogorov forward) equation

∂f

∂t
= − ∂

∂x
(vf) +

∂2

∂x2

(
b2

2
f

)
(5.3#eq.14)

which is in fact an advection-diffusion equation.

5.4 A scheme for the advection diffusion equation

Using the Feynman-Kac theorem, we solve a large number of stochastic particle orbits to
approximate the advection diffusion equation. According to the Ito calculus, the time dis-
cretization has to be explicit

Xt+∆t = Xt + v(Xt, t)∆t+ b(Xt, t)(Wt+∆t −Wt) (5.4#eq.1)

using the notation Xt = X(t). It is also possible to construct implicit discretizations of
a stochastic differential equation, but it not as straightforward as for ordinary differential

equations [26]. Since (Wt+∆t−Wt) ∈ N
(

0,
√

∆t
)

, the Wiener process can now be rewritten

Wt+∆t −Wt = ζ
√

∆t (5.4#eq.2)

in terms of normally distributed in random numbers ζ ∈ N (0, 1). According to the central
limit theorem, any sum of n equally distributed random numbers with zero mean and unit
variance will eventually converge to N (0,

√
n), for large n. Any such random number could

therefore be used for ζ if the number of time steps is large; practically, ζ ∈ N (0, 1) leads to
the fastest convergence.

Consider a N -particle ensemble; a numerical Monte Carlo scheme for the advection diffusion
equation can now be constructed with particles evolving according to

Xt+∆t = Xt + v(Xt, t)∆t+ ζb(Xt, t)
√

∆t (5.4#eq.3)

or

Xt+∆t = Xt +
∂

∂t
E [Xt] ∆t+ ζ

√(
∂

∂t
V [Xt]

)
∆t (5.4#eq.4)

5.4 A scheme for the advection diffusion equation 65

which describes an ensemble of stochastic orbits, corresponding to the possible outcomes of the
random variable ζ. With a large number of particles, it is possible to sample and approximate
the entire ensemble of orbits.

In JBONE, this has been implemented as

for(int j = 0; j < numberOfParticles; j++){
particlePosition[j] += velocity * timeStep +
random.nextGaussian() *
Math.sqrt(2 * diffusCo * timeStep);

// Periodic boundary conditions

} // for

JAVA is one of the few programming languages that has a pseudo random numbers gen-
erator N (0, 1). Most programming languages don’t, but they usually have uniform pseudo
random numbers U(0, 1). Random numbers in N (0, 1) can then be obtained from the Box
Müller method

• Construct two uniformly distributed random numbers U1, U2 ∈ U(0, 1).

• Then

N1 =
√
−2 ln(U2) cos(2πU1) (5.4#eq.5a)

N2 =
√
−2 ln(U2) sin(2πU1) (5.4#eq.5b)

are two independent pseudo random numbers in N (0, 1).

Example: 1D Diffusion equation. As an example, let us calculate a Monte Carlo approxi-
mation of the temperature in a 1D slab u(x, t), which follows the equation

∂u(x, t)
∂t

= D
∂2

∂x2
u(x, t) 0 6 t (5.4#eq.6)

subject to the initial condition

u(x, 0) =

{
1 if 0 < x < 1
0 otherwise

(5.4#eq.7)

• Imagine N heat-particles, so that the local heat is given by the density of particles.
According to the Feynman-Kac theorem and equation (5.4#eq.6) the position of the
i’th particle evolves according to

dxi(t) =
√

2D ◦ dWt, i = 1, 2...N (5.4#eq.8)

where Wt is a Wiener process.

• This is discretized as

xi(t+ ∆t) = xi(t) + ζ
√

2D∆t. (5.4#eq.9)

66 5 MONTE-CARLO METHODS

• Randomize the initial positions xi(0) of the N particles, using a good pseudo random
number generator in U(0, 1).

• With the Box Müller method pseudo random numbers are obtained from ζ ∈ N (0, 1).

• For each particle calculate step by step the evolution xi(0)→ xi(∆t)→ ...

• The solution can then be visualized by projection as previously discussed in (1.4.7#eq.3).

5.5 When should you use Monte Carlo methods?

Monte Carlo methods are efficient for a large number of dimensions and complex geometries:
table 1 suggests that Monte Carlo methods are more efficient than fd or fem approximatively
when d/n > 2 (in the limit of N →∞ and neglecting computer hardware issues).

Method Accuracy
Monte Carlo O

(
N−1/2

)
, N is the number of particles.

FEM/FD (n:th-order) O
(
N−n/d

)
, N is number of grid points.

Table 1: Accuracy for a d-dimensional problem.

The mcm is also well suited for problems with complicated boundary conditions. Take for
example a 3D cube with a ball bouncing inside. Let the cube contain a non collisional gas,
so that the atoms bounce back from the surfaces of the cube and the ball. For simplicity
let the cube and the ball have infinite mass during the collisions with the gas particles. The
distribution of the gas atoms is fairly easy to compute with mcm, but nearly untraceable with
a fluid method.

Parallelization is easy and efficient if the problem is linear and the particles are completely
decoupled: just run a copy of the simulation program on several machines simultaneously. The
final result is obtained simply by summation and normalization of the results from the individual
machines, since the Monte Carlo time stepping is a diagonal linear operation L = {Lij}

f(t+ dt) = L[f(t)] = L[
∑
j

fj(t)] =
∑
ij

Lij [fj(t)] =
∑
i

Lii[fi(t)] (5.5#eq.1)

where fi is either the particle or its projection (1.4.7#eq.3). Simply be careful to seed the
random numbers differently on the different machines — or the simulations will all be identical!

The mcm is however not that easy to parallelize for non-linear problems: if a and b are
functions of the density distribution, the continuous density distribution function needs to be
approximated after each step. This will dramatically reduce the performance on a parallel
machine.

5.6 Exercises

5.1 Expectancy and variance

Calculate ∂
∂tE [X(t)](x) and ∂

∂tV[X(t)](x), where X(t) is the position of a particle with a
density distribution function f(x, t), given by

∂f(x, t)
∂t

+
∂

∂x
[a(x)f(x, t)] =

∂

∂x

(
D(x)

∂f

∂x

)
, x ∈ (−∞,∞) (5.6#eq.1)

5.6 Exercises 67

With initial condition X(0) = xi, ie the density distribution is

f(x, 0) = δ(x− xi) (5.6#eq.2)

Hint: The time derivative of E is obtained by

∂

∂t
E [X(t)](x) =

∂

∂t

∫ ∞
−∞

f(x, t)xdx =
∫ ∞
−∞

∂f(x, t)
∂t

x dx (5.6#eq.3)

Use partial integration to remove the derivatives of the Dirac distribution.

5.2 Diffusion statistics

Use the stochastic differential equation (5.3#eq.7) and the definitions

∂

∂t
E [X(t)](x) = lim

dt→∞

1
dt
E [dX(t)]

∂

∂t
V[X(t)](x) = lim

dt→∞

1
dt
E [dX(t)2]

to calculate the average particle velocity (5.3#eq.8) and the broadening of the distribution
of possible orbits (5.3#eq.9) in a random walk. Combine this with the results from the
previous excercise, and show that the advection-diffusion equation (5.3#eq.11) is related to
the Fokker-Planck equation (5.3#eq.14).

Comment: combined with the previous exercise, you have shown that the two first moments
of a density distribution function are treated in an equivalent manner by the stochastic differ-
ential equation (5.3#eq.7) and by the advection diffusion equation (5.3#eq.14). If you would
extend this to include all moments, you would prove the Feynman-Kac theorem.

5.3 Periodic boundary conditions

Add periodic boundary conditions to the Monte Carlo solver in the JBONE applet.
Hint: for every particle lost on the right an identical particle should enter from the left.

Remember that a kick might be larger than the length of simulation domain,

double[] lim = {mesh_.point(0),
mesh_.point(mesh_.size() - 1) + dx[0]};

which ranges from lim[0] on the left to lim[1] on the right (lim[1] includes the extra mesh
cell connecting consecutive domains, which is not plotted).

5.4 Steady state with velocity gradient

Simulate the equation

∂f

∂t
= − ∂

∂x

(
(x0 − x)

s
f

)
+D

∂2f

∂x2
(5.6#eq.1)

Adjust x0, D and s to obtain a steady state solution. Note that a steady state with random
walkers can be fairly noisy.

68 5 MONTE-CARLO METHODS

5.5 Diffusion coefficient gradient

Simulate the equation

∂f

∂t
= −u∂f

∂x
+

∂

∂x

(
D

[
1
4
−
(
x− (xR + xL)/2

xR − xL

)2
]
∂f

∂x

)
(5.6#eq.1)

Why is the motion of the pulse retarded at the right boundary? Play with u and D and
determine for which values the particles passes the boundary. Hint: Use the increments
calculated in exercise 5.1.

5.6 Evolution of a crowd of people

Simulate people walking using the continuity equation

∂P

∂t
+

∂

∂x
v(P)P = 0 (5.6#eq.1)

where P denotes the density of people. The speed at which a person walks is strongly
dependent on the density of people at that point: it is indeed very difficult to walk fast in a
packed crowd! Invent and motivate your own function v(P) and let your walkers go around in
circle using periodic boundaries. Did you notice that people do not always know where they
are going? It may therefore be appropriate to include a diffusion term, making the behaviour
even more interesting. The complete equation to simulate will then look like this:

∂P

∂t
+

∂

∂x
v(P)P −D∂

2P

∂x2
= 0 (5.6#eq.2)

Hint: Use the function getValue(particlePosition[j]) as the argument for the density
at the particle position.

5.7 Further readings

• Numerical Solution of Stochastic Differential Equations
Kloeden [26].

• Stochastic processes in physics and chemistry
Van Kampen [27].

• Numerical Recipies
W. H. Press et al [4].

• The Black-Scholes equation with an Applet
Carlsson20 [28]

• Particle Methods
Birdsall21 [29] and Hockney [30]

• Example of Monte Carlo integration
Ising model22

20http://fedu52.fed.ornl.gov/%7Ecarlsson/MonteCarlo
21http://ptsg.eecs.berkeley.edu/
22http://www2.truman.edu/%7Evelasco/ising.html

5.8 Interactive evaluation form 69

• Monte Carlo Methods
Monte Carlo Methods23 in www virtual library24, Taygeta Scientific Incorporated25

including c++ classes

5.8 Interactive evaluation form

Your anonymous opinion is precious. Please fill-in our anonymous form in the web edition.
Thank you very much in advance for your collaboration!

23http://random.mat.sbg.ac.at/others/
24http://vlib.org/Overview.html
25http://www.taygeta.com/stochastics.html

70 5 MONTE-CARLO METHODS

71

6 LAGRANGIAN METHODS

6.1 Introduction

Rather than solving the convective derivative d
dt = ∂

∂t + u ∂
∂x in Eulerian coordinates, for

example by using a Taylor expansion with the Lax-Wendroff method (sect.2.2), the idea behind
Lagrangian schemes is first to split the evolution into a sequence of alternating advection and
non-advection phases

df

dt
= G(f) =⇒

df

dt
= 0 (advection)

∂f

∂t
= G(f) (all the rest)

(6.1#eq.1)

The advection is then evolved independently by propagating the solution along the charac-
teristics (sect.1.2.4) in a suitable and if possible explicit manner with no restriction on the
time step, keeping an Eulerian method such as explicit finite differences for the non-advection
phase.

6.2 Cubic-Interpolated Propagation (CIP)

Introduced less than a decade ago by Yabe and Aoki [31], a whole family of schemes have been
proposed along the same lines, relying on different interpolatations to propagate the solution
along the characteristics.

Using a cubic-Hermite polynomial, the discretized function and its derivatives {xj , fj , f ′j}
can be approximated in a continuous manner with

Fj(x) =
[
(ajX − bj)X + ∆xf ′j

]
X + fj ; aj = ∆x(f ′j + f ′j+1)− 2(fj+1 − fj)

X =
(x− xj)

∆x
; ∆x = xj − xj−1 ; bj = ∆x(f ′j + 2f ′j+1)− 3(fj+1 − fj)

(6.2#eq.1)

Both satisfy the master evolution equation and its spatial derivative
df

dt
≡ ∂f

∂t
+

∂

∂x
(uf) = g

df ′

dt
≡ ∂f ′

∂t
+
(
∂u

∂x
f ′ + u

∂f ′

∂x

)
=
∂g

∂x

(6.2#eq.2)

They are split into an advection and non-advection phase
df

dt
= 0

df ′

dt
= 0

and

∂f

∂t
= g − ∂u

∂x
f

∂f ′

∂t
=
∂g

∂x
− ∂u

∂x
f ′

(6.2#eq.3)

For the advection phase, the solution is integrated analytically simply by shifting the cubic
polynomials Fj(x, t) = Fj(x− u∆t, t−∆t) along the characteristics

f t+∆t
j+1 = Fj+1(xj+1 − u∆t, t−∆t) = f tj+1 − β

[
∆xf ′ tj+1 − β(bj+1 − βaj+1)

]
f ′ t+∆t
j+1 = d

dxFj+1(xj+1 − u∆t, t−∆t) = f ′ tj+1 −
β

∆x(2bj+1 − 3βaj+1)
(6.2#eq.4)

72 6 LAGRANGIAN METHODS

where β = u∆t/∆x is the Courant-Friedrich-Lewy (CFL) number.
Although this is not at all mandatory (exercise 6.1), the scheme implemented in JBONE

assumes for simplicity that β ∈ [0; 1] so that the quantities (f t+∆t
j+1 , f ′ t+∆t

j+1) can be interpolated

exclusively from the polynomial Fj+1, which is continuously defined in the interval [xj ;xj+1] —
some bookkeeping is necessary to determine which interval to interpolate from when |β| > 1.
After an initialization where the function is discretized with cubic-Hermite polynomials by
sampling on a grid and the derivative calculated with centered finite differences, the CIP
scheme is implemented in JBONE as

double alpha=timeStep*diffusCo/(dx[0]*dx[0]); //These are only constant
double beta =timeStep*velocity/(dx[0]); // if the problem and the
int n=f.length-1; // mesh are homogeneous

for (int i=0; i<n; i++) {
a=dx[0]*(df[i]+ df[i+1])-2*(f[i+1]-f[i]);
b=dx[0]*(df[i]+2*df[i+1])-3*(f[i+1]-f[i]);
fp[i+1]= f[i+1] -beta*(dx[0]*df[i+1]-beta*(b-beta*a));
dfp[i+1]= df[i+1] -beta/dx[0]*(2*b-3*beta*a);

}
a=dx[0]*(df[n]+ df[0])-2*(f[0]-f[n]);
b=dx[0]*(df[n]+2*df[0])-3*(f[0]-f[n]);
fp[0]= f[0] -beta*(dx[0]*df[0]-beta*(b-beta*a));
dfp[0]= df[0] -beta/dx[0]*(2*b-3*beta*a);

The on-line document illustrates the high quality of this approach when it is compared with
the advection of a box function computed using other methods.
Numerical experiments:

• Change the initial condition to Cosine and reduce the spatial resolution down to 4 and
2 mesh points per wavelength in order to check how small both the numerical diffusion
and dispersion are in comparison with other schemes!

6.3 Non-Linear equations with CIP

The same approach is applicable more generally for non-linear and vector equations

∂ ~f

∂t
+

∂

∂x
(u~f) = ~g (6.3#eq.1)

where u = u(~f) and ~g = ~g(~f). The problem is again decomposed in alternating phases
without / with advection describing the evolution of the function

∂ ~f

∂t
= ~g − ~f

∂u

∂x
= ~G (non-advection with compression term)

∂ ~f

∂t
+ u

∂ ~f

∂x
= 0 (advection)

(6.3#eq.2)

and by differentiation of (eq.6.3#eq.1), the evolution of the derivative
∂~f ′

∂t
= ~g′ − u∂

~f ′

∂x
= ~G′ − ~f ′

∂u

∂x
(non-advection)

∂~f ′

∂t
+ u

∂~f ′

∂x
= 0 (advection)

(6.3#eq.3)

6.4 Exercises 73

Starting with the non-advection phase, the discretized function is first evolved according to

~f∗j = ~f tj + ~Gj∆t (6.3#eq.4)

where the super-script (∗) refers to the intermediate step between the non- and advection

phases. To avoid having to calculate ~G′j , the equation for the derivative is computed with

~f ′ ∗j − ~f ′ tj
∆t

=

[
~Gj+1 − ~Gj−1

2∆x
− ~f ′ tj

uj+1 − uj−1

2∆x
=

]

=
~f ′ ∗j+1 − ~f ′ ∗j−1 − ~f ′ tj+1 + ~f ′ tj−1

2∆x∆t
− ~f ′ tj

uj+1 − uj−1

2∆x
(6.3#eq.5)

The advection phase is then evolved in the same manner as before (eq.6.2#eq.4), by shifting
the cubic-Hermite polynomials along the characteristics (exercise 6.4).

6.4 Exercises

6.1 Arbitrary CFL number

Modify the CIP scheme in the JBONE applet to allow for arbitrarily large time-steps and
negative advection velocities.

6.2 Diffusion in CIP

Use your favourite method to implement the diffusion phase with CIP in the JBONE applet.
Discuss the merits of this combined solution.

6.3 Lagrangian method with splines

Analyze and discuss the Lagrangian scheme proposed by Guillaume Jost (EPFL, Lausanne)
using a cubic-spline interpolation of the function.

6.4 Non-linear equation

Use the formalism in sect.6.3 to solve the general non-linear problem (4.4#eq.1). Study each
of the wave-breaking, diffusion and dispersion terms separatly and compare with the solutions
obtained previously with another method.

6.5 Further Reading

• Cubic-Interpolated Propagation (CIP).
Yabe and Aoki [31], [32], [33]

6.6 Interactive evaluation form

Your anonymous opinion is precious. Please fill-in our anonymous form in the web edition.
Thank you very much in advance for your collaboration!

74 6 LAGRANGIAN METHODS

75

7 WAVELETS

7.1 Remain a matter of research

There is a growing interest in using wavelets not only for the discretization of functions
(sect.1.4), but also to approximate differential and integral operators. Motivations for that
are the potential gain of solving global problems with the same O(N) operations as there are
unknowns, relying on recent advances in iterative methods (sect.3.4) to solve linear systems
in sparse format. Having not had the possibility so far to implement wavelets into the JBONE
applet and extract the essence of research papers in a pedagogical manner, this section is
limited to a number of links to papers maintained on a web site from MathSoft26:

1. D. M. Bond and S. A. Vavasis, Fast Wavelet Transforms for Matrices Arising From
Boundary Element Methods.27

2. T. Chan, W. Tang and W. Wan, Wavelet sparse approximate inverse preconditioners28

3. P. Charton and V. Perrier, Factorisation sur Bases d’Ondelettes du Noyeau de la Chaleur
et Algorithmes Matriciels Rapides Associes29

4. P. Charton and V. Perrier, Towards a Wavelet Based Numerical Scheme for the Two-
Dimensional Navier-Stokes Equations.30

5. P. Charton and V. Perrier, A Pseudo-Wavelet Scheme for the Two-Dimensional Navier-
Stokes Equations.31

6. S. Dahlke and A. Kunoth, Biorthogonal Wavelets and Multigrid.32

7. S. Dahlke and I. Weinreich, Wavelet-Galerkin Methods: An Adapted Biorthogonal
Wavelet Basis.33

8. S. Dahlke and I. Weinreich, Wavelet Bases Adapted to Pseudo-Differential Operators.34

9. W. Dahmen and A. Kunoth, Multilevel Preconditioning.35

10. R. Glowinski, T. Pan , R. O. Wells, Jr. and X. Zhou, Wavelet and Finite Element
Solutions for the Neumann Problem Using Fictitious Domains36

11. R. Glowinski, A. Rieder, R. O. Wells, Jr. and X. Zhou, A Wavelet Multigrid Precondi-
tioner for Dirichlet Boundary Value Problems in General Domains.37

26http://www.mathsoft.com/wavelets.html
27ftp://ftp.tc.cornell.edu/pub/tech.reports/tr174.ps
28ftp://ftp.math.ucla.edu/pub/camreport/cam96-33.ps.gz
29ftp://ftp.lmd.ens.fr/MFGA/pub/wavelets/produits2d.ps.Z
30ftp://ftp.lmd.ens.fr/MFGA/pub/wavelets/iciam95.ps.Z
31ftp://ftp.lmd.ens.fr/MFGA/pub/wavelets/ns.ps.Z
32ftp://ftp.igpm.rwth-aachen.de/pub/dahlke/dksh.ps.Z
33ftp://ftp.igpm.rwth-aachen.de/pub/ilona/wega.ps.Z
34ftp://ftp.igpm.rwth-aachen.de/pub/ilona/wega2.ps.Z
35ftp://ftp.igpm.rwth-aachen.de/pub/dahmen/mulpre.ps.gz
36ftp://cml.rice.edu/pub/reports/9201.ps.Z
37ftp://cml.rice.edu/pub/reports/9306.ps.Z

76 7 WAVELETS

12. R. Glowinski, A. Rieder, R. O. Wells, Jr. and X. Zhou, A Preconditioned CG-Method
for Wavelet-Galerkin Discretizations of Elliptic Problems38

13. F. Heurtaux, F. Planchon and M. V. Wickerhauser, Scale Decomposition in Burgers’
Equation39

14. A. Jiang, Fast wavelet based methods for certain time dependent problems40

15. A. Kunoth, Multilevel Preconditioning – Appending Boundary Conditions by Lagrange
Multipliers.41

16. J. Lewalle, Wavelet Transforms of some Equations of Fluid Mechanics42

17. J. Lewalle, Energy Dissipation in the Wavelet-Transformed Navier-Stokes Equations43

18. J. Lewalle, On the effect of boundary conditions on the multifractal statistics of incom-
pressible turbulence44

19. J. Lewalle, Diffusion is Hamiltonian45

20. D. Lu, T. Ohyoshi and L. Zhu, Treatment of Boundary Conditions in the Application
of Wavelet-Galerkin Method to a SH Wave Problem46

21. A. Rieder and X. Zhou, On the Robustness of the Damped V-Cycle of the Wavelet
Frequency Decompositions Multigrid Method47

22. A. Rieder, R. O. Wells, Jr. and X. Zhou, A Wavelet Approach to Robust Multilevel
Solvers for Anisotropic Elliptic Problems.48

23. A. Rieder, R. O. Wells, Jr. and X. Zhou, On the Wavelet Frequency Decomposition
Method49

24. O. V. Vasilyev and S. Paolucci, A Dynamically Adaptive Multilevel Wavelet Collocation
Method for Solving Partial Differential Equations in a Finite Domain.50

25. O. V. Vasilyev, S. Paolucci and M. Sen, A Multilevel Wavelet Collocation Method for
Solving Partial Differential Equations in a Finite Domain.51

26. R. O. Wells, Jr. and X. Zhou, Wavelet Solutions for the Dirichlet Problem52

27. R. O. Wells, Jr. and X. Zhou, Wavelet Interpolation and Approximate Solution of
Elliptic Partial Differential Equations53

38ftp://cml.rice.edu/pub/reports/9414.ps.Z
39http://wuarchive.wustl.edu/doc/techreports/wustl.edu/math/papers/burgers.ps.Z
40ftp://ftp.math.ucla.edu/pub/camreport/cam96-20.ps.gz
41ftp://ftp.igpm.rwth-aachen.de/pub/kunoth/cosh.ps.Z
42http://www.mame.syr.edu/faculty/lewalle/acta-94.html
43http://www.mame.syr.edu/faculty/lewalle/dissip-93.html
44http://www.mame.syr.edu/faculty/lewalle/camb-93.html
45http://www.mame.syr.edu/faculty/lewalle/hamdiff.html
46ftp://ftp.mathsoft.com/pub/wavelets/bc.ps.gz
47ftp://cml.rice.edu/pub/reports/9310.ps.Z
48ftp://cml.rice.edu/pub/reports/9307.ps.Z
49ftp://cml.rice.edu/pub/reports/9413.ps.Z
50http://landau.mae.missouri.edu/%7evasilyev/Publications/adaptive.ps.gz
51http://landau.mae.missouri.edu/%7evasilyev/Publications/WML.ps.gz
52ftp://cml.rice.edu/pub/reports/9202.ps.Z
53ftp://cml.rice.edu/pub/reports/9203.ps.Z

7.1 Remain a matter of research 77

28. R. O. Wells, Jr. and X. Zhou, Representing the Geometry of Domains by Wavelets with
Applications to Partial Differential Equations54

29. R. O. Wells, Jr., Multiscale Applications of Wavelets to Solutions f Partial Differential
Equations55

54ftp://cml.rice.edu/pub/reports/9214.ps.Z
55ftp://cml.rice.edu/pub/reports/9409.ps.Z

78 7 WAVELETS

79

8 THE JBONE USER MANUAL

The Java Bed for ONE dimensional evolution equations JBONE provides a flexible environe-
ment to test and compare a variety of numerical schemes using a JAVA applet. This section
gives a short introduction serves as a user manual for the program. Note that you don’t
need to install the code if you open a distance-learning account on the course web server56.

8.1 Source code & installation

In the downloadable distribution, the JBONE package consists of JAVA sources files *.java,
installation instructions in the README file and a number of UNIX specific configuration
config* and compiler rules Makefile*.

Download. The JBONE source code can be obtained free of charge for personal use from
the course main page57. After registration, the server will send a password that gives
you access to an automatic download service.

Install under UNIX. The installation is in principle very simple using the commands
autoconf / automake that generate a Makefile tailored specifically for your system:

cd ~ # Preferably your home directory
gunzip pde-course-*.tar.gz # Uncompress
tar xvf pde-course-*.tar # Unbundle
cd jbone
configure # Create Makefile for your system

A Makefile.default is provided if configure fails on an old UNIX platform:

cp Makefile.default Makefile

Compile under UNIX. Different targets are built using the commands

make all # Everything below
make jbone # Compile java files
make docs # Generate documentation
make run.html # Wrapper file for appletviewer

It is possible to compile the JAVA sources by hand using commands of the type

javac jbone.java # Compile java files
javadoc -private -version *.java # Generate documentation
cp *.html ~/public_html/jbone # Publish on the web

These are however system dependent.

Install & compile under Windows. Please refer to vendor supplied information to find
out how to compile and run the JBONE code starting from the source files *.java.

56http://pde.fusion.kth.se
57http://pde.fusion.kth.se

80 8 THE JBONE USER MANUAL

Program listing. The substance of the program listing58 (excluding the graphics user inter-
face) can be consulted directly in your web browser. If you read this document on-line,
the previous link illustrates how markers of the form //TAG_rights_TAG// have been
inserted in the source code to target specific sections, enabling the web browser to jump
directly to a section of interest. The column on the left tells you from which file the
program instruction comes from.

8.2 Program execution

The JBONE code can be executed either as an independent JAVA program or as an applet,
the latter adding the possibility of running it in your web browser.

There are 3 manners to execute. On a UNIX platform, type

java jbone # Run program interpreter
appletviewer run.html # Run applet with default

arguments in run.html

The third manner, of course, is to open the file run.html directly with your web browser
using the address file://absolute_path/run.html. You need to recompile with the
command make all after every modification. Because the web browser tend to use
buffered data, you must PRESS SHIFT AND SELECT View->RELOAD to force it
to load the newly compiled code.

Preset with HTML tags. Running applets has the advantage of choosing the run time
arguments in the calling HTML file. Take for example run.html:

<html>
<head>
<! -- @(#)run.html
Andre JAUN (jaun@fusion.kth.se) and Johan HEDIN (johanh@fusion.kth.se)
(C) 1999-2001, all rights reserved. This shareware can be obtained
without fee by e-mail from the authors. Permission to use, copy, and
modify the source and its documentation for your own personal use is
granted provided that this copyright notice appears in all copies.
-->
<title>JBONE</title>

</head>
<body>
<h1>JBONE scratch-pad</h1>
Select the switches and modify the parameters to study and compare
different numerical schemes
<p>
<applet codebase="../jbone/" code=jbone.class

align=center width=740 height=340>
<param name=pde value="Advection">
<param name=method value="Lagrangian">
<param name=ic value="Gaussian">
<param name=Velocity value=1.>

</applet><p>
</body>

</html>

58http://www.fusion.kth.se/courses/jbone/listing.html#rights

8.3 Program structure & documentation 81

The default parameters are here modified to calculate the advection of a Gaussian pulse
using the CIP / Lagrangian scheme from sect.6.

8.3 Program structure & documentation

Using an object oriented language such as JAVA, it is important to realize that you don’t
have to read the entire listing to understand and even modify the code. This section gives you
some hints as where to find information and what needs to be done to add a new scheme.

Documentation. It is generated and automatically updated with the command make docs,
using the comments /** */ that preceed the declarations in the JBONE source code.
Check how this happens in the method Mesh.point() from the Mesh object in the file
Mesh.java

/** Coordinate value
@param i The index of a coordinate
@return The value of a coordinate */

public double point(int i) { return x[i]; }

Follow the links to verify where Mesh.point() appears in the program tree and the
name index, defining everything you need to know to obtain a mesh point coordinate:
give it an integer index and it will return the corresponding real position. Unless you
want to modify the properties of the Mesh object, you never need to know where and
how the position was stored!

All you need to modify. To complete most of the projects, it is sufficient to modify or
add some small sections in the sub-classes of the Solution hierarchy, i.e. the files

• FDSolution.java — for finite difference schemes

• FEMSolution.java — for finite elements schemes

• FFTSolution.java — for Fourier methods

• MCMSolution.java — for Monte-Carlo schemes

• CHASolution.java — for Lagarangian schemes

Having identified the section with a specific choice of the selectors your task consists in
defining new values fp[] from the old f[]. If you add a new combination of selectors,
you need to define it in Solution.hasOption() to finally make it appear at run time.

After each modification, remember that you need to recompile with the command make
all. And you must press SHIFT and select View->RELOAD to force the browser to load
the new compiled code.

8.4 An object-oriented example: Monte-Carlo in JBONE

The Monte Carlo solver in JBONE is different from the finite differences and finite elements
solvers in the sense that the solution is represented by the set of particles and the function f
is just used for diagnostics. As shown in the class tree, the solvers have been divided into
particle methods and fluid methods. The discretization with particles is contained in the
class ParticleSolution and the Monte Carlo time stepping and boundary conditions in the
class MCMSolution. The class ParticleSolution contains a vector of the particles phase

82 8 THE JBONE USER MANUAL

space coordinates. Since f[] is only defined as a projection onto the roof-top base, the
advantage of an objected oriented methods becomes clear, as e.g. the method limits()
can here be overridden from the definition in Solution. Indeed, check how limits() in
FluidSolution is computed directly from the solution f[], whereas in ParticleSolution
the method generateDistribution() needs to be called prior to finding min and max of
f[]. Everything the class jbone needs to know is that the solver is a sub-class of Solution.
How and where things are computed, is none of jbone’s business! Also note how the solutions
to exercises 5.3–5.5 will be inherited in the class MCMDrawParticlesSolution

83

9 LEARNING LABORATORY ENVIRONEMENT

This chapter gives a short introduction, advice and links to the further documentation for the
tools that are used to run this course in a virtual university environement. Most of the tables
can be consulted directly when needed, by following the link above the input windows and
using the browser Back button to recover input. They are here only given for reference.

9.1 Typesetting with TEX

The text input in the first window is typeset using the TEXlanguage and is translated into
HTML with the tth compiler installed on our server. You have to view documents using the
Western character set ISO-8859, which is generally set by default in recent browsers. If this
page doesn’t display the symbols correctly, please refer to the frequently asked questions FAQ
link on the course main page.

TEXbasics.
Normal ASCII input is interpreted in text mode and TEXcommands starting with the
backslash character \ are used for formatting. Mathematical symbols are typed in math
mode delimited by two dollar signs ($\partial t f$ yields ∂tf) or in an equation:
\begin{equation}\label{advection}
\frac{d}{dt}f \equiv
\frac{\partial f}{\partial t}
+u\frac{\partial f}{\partial x}=0

\end{equation}

yields d

dt
f ≡ ∂f

∂t
+ u

∂f

∂x
= 0 (9.1#eq.1)

where (\ref{advection}) yields (9.1#eq.1) and can be used for reference within the
document. You can also add links and HTML inserts using

\href{http://address}{text} create a link from text to http://address
\special{html:stuff} inserts HTML stuff

Character type and size.
Rom \textrm{} Ital \textit{} Bold \textbf{} Type \texttt{}
Rom \mathrm{} Ital \mathit{} Bold \mathbf{} Type \mathtt{}
small \small{} normal \normalsize{} large \large{} Large \Large{}

Special characters and accents (text mode).
$ \$ & \& % \% # \# { \{ } \} \
é \’{e} è \‘{e} ê \{̂e} ë \”{e} ç \c{c}
† \dag ‡ \ddag § \S ¶ \P c© \copyright £ \pounds

Greek letters (math mode).
α \alpha β \beta γ \gamma δ \delta ε \epsilon ε \varepsilon
ζ \zeta η \eta θ \theta ϑ \vartheta ι \iota κ \kappa
λ \lambda µ \mu ν \nu ξ \xi o o π \pi
$ \varpi ρ \rho % \varrho σ \sigma ς \varsigma τ \tau
υ \upsilon φ \phi ϕ \varphi χ \chi ψ \psi ω \omega
Γ \Gamma ∆ \Delta Θ \Theta Λ \Lambda Ξ \Xi Π \Pi
Σ \Sigma Υ \Upsilon Φ \Phi Ψ \Psi Ω \Omega

84 9 LEARNING LABORATORY ENVIRONEMENT

Binary operation and relation symbols (math mode).
± \pm ∓ \mp × \times ÷ \div ∗ \ast ◦ \circ
• \bullet · \cdot ∩ \cap ∪ \cup † \dagger ‡ \ddagger
≤ \leq ≥ \geq � \ll � \gg ⊂ \subset ⊃ \supset
⊆ \subseteq ⊇ \supseteq ∈ \in 3 \ni ≡ \equiv ≈ \approx
∼ \sim ' \simeq 6= \neq ∝ \propto ⊥ \perp | \mid
‖ \parallel

Arrows and miscellaneous symbols (math mode).
← \leftarrow → \rightarrow ⇐ \Leftarrow ⇒ \Rightarrow
↔ \leftrightarrow ⇔ \Leftrightarrow ↑ \uparrow ↓ \downarrow
⇑ \Uparrow ⇓ \Downarrow 7→ \mapsto ℵ \aleph
~ \hbar ı \imath ` \ell ℘ \wp
< \Re = \Im ′ \prime ∅ \emptyset
∇ \nabla

√ \surd ‖ \— ∠ \angle
∀ \forall ∃ \exists \ \backslash ∂ \partial
∞ \infty ♣ \clubsuit ♦ \diamondsuit ♥ \heartsuit
♠ \spadesuit

Operations and functions (math mode).∑
\sum

∏
\prod

∫
\int

∮
\oint

√
a \sqrt{a}

ab a{̂b} aij a {ij} sinh \sinh arccos \arccos cos \cos
arcsin \arcsin sin \sin arctan \arctan tan \tan arg \arg
cot \cot cosh \cosh det \det dim \dim exp \exp
lim \lim ln \ln log \log max \max min \min

tanh \tanh
a

b
\frac{a}{b}

Format, list and equations.
\begin{quote} \end{quote} \begin{itemize} \item \end{itemize}
\begin{quotation} \end{quotation} \begin{enumerate} \item \end{enumerate}
\begin{center} \end{center} \begin{description} \item \end{description}
\begin{verse} \end{verse} \begin{equation} \label{key} \end{equation}
\begin{verbatim} \end{verbatim} \begin{equation*} \end{equation*}

Tables (text mode) and arrays (math mode).
\begin{tabular}{|llc|}
\multicolumn{2}{c}{ITEM} &
\multicolumn{1}{c}{PRICE} \\

gnat & (dozen) & 3.24 \\
gnu & (each) & 24.00
\end{tabular} \\

yields
ITEM PRICE

gnat (dozen) 3.24
gnu (each) 24.00

\begin{equation*}
\begin{array}{clcr}
a+b+c & uv & x-y & 27 \\
a+b & u+v & z & 134 \\
a & 3u+vw & xyz & 2,978
\end{array}
\end{equation*}

yields

a+ b+ c uv x− y 27
a+ b u+ v z 134
a 3u+ vw xyz 2, 978

9.2 Progamming in JAVA 85

\begin{eqnarray}
\lefteqn{a+b+c=} \nonumber \\
& & c+d+e+f+g+h \nonumber
x & < & y
\end{eqnarray}

yields
a+ b+ c =

c+ d+ e+ f + g + h

x < y (9.1#eq.2)

9.2 Progamming in JAVA

Numerical schemes submitted from the Java window are automatically inserted in the JBONE
source code (e.g. exercise 2.1) and have first to be compiled on our server before you can
download and execute them locally in your browser. This page introduces a limited number
of Java commands you have to know when you carry our the assignments. More details
concerning the JBONE applet can be found in the program tree, the name index and finally
in the program listing. For tutorial in Java programming, consult the tutorial59 from Sun
Microsystems.

JBONE variables.
From the list of run parameters (an object called runData), the JBONE applet defines
the (double = 16 digits precision real, int = up to 9 digits signed integer) local variables

advection velocity u double velocity = runData.getVelocity();
diffusion coefficient D double diffusCo = runData.getDiffusion();
dispersion coefficient υ double disperCo = runData.getDispersion();
time step ∆t double timeStep = runData.getTimeStep();
number of mesh points n int n = runData.getNumberOfMeshPoints();
number of particles NP int np = runData.getNumberOfParticles();
normalized advection β double beta;
normalized diffusion α double alpha;

and computes the evolution of the variables and arrays defining the solution (an object
called solution)

time t double time;
mesh xi, intervals ∆xi double[] x,dx;
f(x), g(x) ∈ R double[] f,g;
h(x), s(x) ∈ C Complex[] h,s;
f(t−∆t), f(t), f(t+ ∆t) double[] fm,f,fp, gm,g,gp;
h(t−∆t), h(t), h(t+ ∆t) Complex[] hm,h,hp, sm,s,sp;
∂xf , ∂xg, ∂xh double[] dfm,df,dfp, dgm,dg,dgp;

Complex[] dhm,dh,dhp;
particle positions xpi double[] particlePosition;

where the index of every array starts with zero (x[0]) and finishes with one element less
than its size (x[x.length-1]).

JBONE = Java Bed for ONE dimensional evolution.
In a simple evolution, which can schematically be written as

1. For t = 0 use the initial condition to define f(t)

2. Plot f(t), g(t)

3. Define new value f(t+ ∆t) in terms of current f(t) and past values f(t−∆t)

59http://java.sun.com/docs/books/tutorial/index.html

86 9 LEARNING LABORATORY ENVIRONEMENT

4. Shift time levels t→ t+ ∆t and copy the arrays f(t+ ∆t)→ f(t)→ f(t−∆t)
5. Goto 2 until finished

only the third step (in red) has in fact to be defined in the Java window. For example,
the simple loop

for (int i=0; i<=n; i++) {
fp[i]=0.98*f[i];

}

computes an artificial evolution where the initial condition decays by 2% every time step.

Debugging.
Having corrected all the compiler errors unfortunately doesn’t mean that your scheme
immediately behaves the way you want! You may then have to monitor the value of
different variables, inserting statements such as

System.out.println("Value fp["+i+"] = "+fp[i]);

after the second line in the example above (9.2) to print the values of the array fp to
the Java Console. Submit a scheme with such a print statement to the compiler, open
the Java Console of your browser (with Netscape select Communicator → Tools →
Java Console, with Explorer first select Tool → Internet Options → Advanced → Java
console enabled and then View → Java Console) and advance the calculation one step
in the applet. From the values that appear in the Console, it is generally possible to
track down all the mistakes.

Common errors.
To avoid first difficulties when you carry out your assignments, note that

• every new variable (not listed in the variable index) has to be declared; memory for
arrays and objects must be allocated explicitly with the command new

int i = 3; // Declare i as an integer
double[] c; // Declare c[] array 16 digits nbrs
c = new double[i]; // Memory for c[0], c[1], c[2]
BandMatrix A; // Declare A as a BandMatrix object
A = new BandMatrix(3,10); // Memory for 3 bands with 10 doubles

• if you forget to attribute memory in the example above and a statement suddendly
refers to the element c[0] results in the infamous java.lang.NullPointerException
error; accessing c[3] yields the java.lang.ArrayIndexOutOfBoundsException:3
error, because the first element of an array in Java always starts with the index
number 0.

• the assigning equal sign is denoted by as single = and the comparing equal sign by
a double ==

int a = 42;
if(a == 17)
System.out.println("a is equal to 17");

if(a != 17)
System.out.println("a is not equal to 17");

will print the text ”a is not equal to 17” to the Java Console.

9.3 Parameters and switches in HTML 87

9.3 Parameters and switches in HTML

Editable parameters.
The following list of input parameters can be used to change the defaults pre-defined in
the JBONE code:

• Velocity the advection velocity u (or the market interest rate r)

• Diffusion the diffusion D (or the market volatility σ)

• Dispersion the dispersion

• TimeStep the time step ∆t

• MeshPoints the number of mesh points N

• Particles the number of particles Np

• TimeImplicit the time implicit parameter θ

• TuneIntegr the tunable integration parameter p

• ICAmplitude the initial condition amplitude

• ICPosition the initial condition position

• ICWidth the initial condition width

• ICWavelength the initial condition wavelength

• RunTime the physical run time, T=n∆t

• MeshLeft the left position of the mesh x0

• MeshLength the length of the simulation box xN

• PhysDataCase the type of Physical Data, e.g potential shape

• PhysDataValue a Physical Data parameter, e.g potential amplitude

Selectors.
The selectors appear over the JBONE plot window and allow you to choose the problem
you want to solve. Careful, white spaces count!

• method selects the numerical method. Choices include
”Finite differences”, ”Finite elements”, ”Fourier transform”, ”Monte-Carlo”, ”La-
grangian”.

• scheme selects a particular scheme in a given method. Choices include
”Standard scheme”, ”Explicit 2-level”, ”Explicit 3-level”, ”Implicit 2-level”, ”Expl-
LaxWendroff”, ”Impl-LaxWendroff”, ”Leap-frog (FDTD)”, ”European naive”, ”Eu-
ropean vanilla”, ”American vanilla”, ”Tunable Integration”, ”Expanded convol.”,
”Aliased convol.”, ”CubicHermite FEM”, ”Cubic – Splines”, ”Forward Euler”,
”Forward Euler pp”, ”My scheme”, ”Exercise 2.1”, ”Exercise 2.3”, etc

• ic selects the type of initial condition. Choices include
”Box”, ”Gaussian”, ”Cosine”, ”Soliton”, ”WavePacket”, ”PutOption”.

• pde selects the type of PDE. Choices include
”Advection”, ”Burger (shock)”, ”KdV (solitons)”, ”Schroedinger”, ”Black-Scholes”,
”My equation 1”, ”My equation 2”, ”Exercise”.

TAG defaults.
The JBONE applet is included an HTML document with a header of the form

88 9 LEARNING LABORATORY ENVIRONEMENT

<applet codebase="./jbone/" code=jbone.class
align=center width=720 height=340>

<param name=Velocity value=0.>
<param name=Diffusion value=0.>
<param name=Dispersion value=0.>
<param name=TimeStep value=0.5>
<param name=MeshPoints value=64>
<param name=Particles value=0>
<param name=TimeImplicit value=0.7>
<param name=TuneIntegr value=0.333>
<param name=ICAmplitude value=1.>
<param name=ICPosition value=18.>
<param name=ICWidth value=8.>
<param name=ICWavelength value=4.>
<param name=RunTime value=128.>
<param name=MeshLeft value=0.>
<param name=MeshLength value=64.>
<param name=PhysDataCase value=1>
<param name=PhysDataValue value=1.>
<param name=method value="Finite differences">
<param name=scheme value="Exercise 2.1">
<param name=ic value="Gaussian">
<param name=pde value="Exercise">

</applet>

where the first two lines specify the path name of the executable, the position and the
size of the window. The TAGS that follow define the default values of parameters and
switches that are set when the applet appears in the web page.

89

10 COURSE EVALUATION AND PROJECTS

10.1 Interactive evaluation form

Your anonymous opinion is precious. Please fill-in the anonymous form in the web edition.
Thank you very much in advance!

10.2 Suggestions for one-week projects

The best ideas for a small one-week project stems directly from your own field ! For those
however who want some suggestions, here is a list of projects more or less in rising order of
difficulty.

Diffusion in an inhomogeneous medium. Let the advection u(x) and diffusion coef-
ficients D(x) vary in space, and solve the inhomogeneous advection-diffusion equation
(1.3.2#eq.2) with finite elements. Using a Gaussian quadrature instead of the analytical
calulation of the inner products (3.3#eq.4).

Inhomogeneous mesh with FEMs. Add the capability of refining the mesh using the fi-
nite elements method. Integrate analytically a sum of Lorentzian functions L[xj ,wj](x) =

wj

[
w2
j + (x− xj)2

]−2
defining the locations xj and the weights wj of the regions you

want to refine and derive the expression for an inhomogeneous distribution of mesh
points

Xpacked(x) = px+ (1− p)
∑N

j=1 arctan
(
x−xj
wj

)
+ arctan

(
xj
wj

)
∑N

j=1 arctan
(

1−xj
wj

)
+ arctan

(
xj
wj

) (10.2#eq.1)

Study the numerical convergence of the advection-diffusion problem in a strongly inho-
mogeneous medium.

Iterative GMRES solver for wave-equations. Add a modular GMRES solver in JBONE.
Start by defining a matrix-vector product in sparse format and implement the iterative
scheme by testing it first for a diffusion dominated problem; switch to a wave equation
once everything appears to work. Compare the efficiency of the new iterative method
with a direct solution for a diffusion dominated problem using an increasing amount of
advection.

The uncertain future of a predator-prey system. During uncertain (stochastic) feed-
ing conditions, the Volterra-Lotka system of equations (exercise 1.2) could be replaced
by a stochastic differential equation describing an ensemble of possible outcomes. Study
the evolution of the density distribution of the possible population using a Monte Carlo
method; check the possibility of an extinction simply by “bad luck”. Show that your
solution converges for small time steps.

Wave equation as a driven problem. Use two different methods to solve the equation
describing forced oscillation in a weakly absorbing bounded medium

∂2f

∂t2
− c2∂

2f

∂x2
= Sω0(x, t)− 2ν

∂f

∂t
(10.2#eq.2)

90 10 COURSE EVALUATION AND PROJECTS

Choose a source Sω0(x, t) = S0 exp(x2/∆2) sin(ω0t) smoothly distributed inside the
cavity x ∈ [−L/2;L/2] and a sink ν � ω0 ' 2πc/L which is sufficiently small to allow
the perturbations to propagate and reflect. Vary the driving frequency ω0 and study the
possibility of exciting resonances inside the cavity.

Particle weight. Apply individual weights wi to the particles in the Monte Carlo solver. Try
to reduce the amount of noise at low levels in a steady state solution (e.g. exercise 5.4)
by splitting particles with wi > wlimit(x). Try to find a good maximum weight func-
tion wlimit(x). After a while some particles will be to heavy. Solve this by re-discretizing
the distribution function with a call to discretize(new ShapeNumerical(this));
The particle weight should be used to increase the accuracy in discretization. This
project involves changing the projection, the discretization and learning the Vector
class in Java.

Option pricing. Study the finite difference schemes proposed for the price of a European
put option in financial and lognormal variables (exercise 2.5) and implement the implicit
finite element scheme for an American put (exercise 3.5) in financial variables. Complete
the project by implementing a Monte-Carlo solver along the same lines.

Bose-Einstein condensation. Start with the linear Schrödinger equation

i
∂ψ

∂t
=
[
− ∂2

∂x2
+ V (x)

]
ψ (10.2#eq.3)

normalized with Plank’s constant ~ = 1 and a particle mass m = 1/2 and use two differ-
ent schemes to calculate the scattering of a wavepacket by a simple one-dimensional po-
tential V (x). Having validated your schemes with analytical results, solve the non-linear
equation describing the Bose-Einstein condensation in a parabolic trapping potential
V (r) = α

2 r
2 with cylindrical symmetry

i
∂ψ

∂t
=
[
−1
r

∂

∂r

(
r
∂

∂r

)
+ V (r) + 2πa | ψ |2

]
ψ (10.2#eq.4)

where the parameter a defines the scattering length.

Slowing down of beams. The slowing down of a beam in a collisional media is given by

∂f(x, v, t)
∂t

+ v
∂f(x, v, t)

∂x
+

∂

∂v
[−vpvf(x, v, t)] =

∂

∂v

(
Dp

∂f(x, v, t)
∂v

)
(10.2#eq.5)

Use Monte Carlo for solving the beam distribution function. Identify the drift and
diffusion coefficients in x and v. Start the pulse to the left with v = v0. Modify vp
and Dp in order to get a nice slowing down of the pulse.

KdV with wavelets.

REFERENCES 91

References

[1] J. P. Bérenger. A perfectly matched layer for the absorption of electomagnetic waves.
Journal of Computational Physics, 114:185, 1994.

[2] M. Abramowitz and A. Stegun. Handbook of Mathematical Functions. Dover Publica-
tions, New York, tenth edition, 1972.

[3] W. Sweldens. The Wavelet Home Page60.

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipies61.
Cambridge University Press, second edition, 1992.

[5] J. M. Sanz-Serna and P. Calvao. Numerical Hamiltonian Problems. Chapman & Hall,
1994.

[6] G. Dahlquist and Å Bjorck. Numerical Methods. Prentice-Hall, 1974.

[7] C. A. Fletcher. Computational Techniques for Fluid Dynamics. Springer, second edition,
1991.

[8] C. Johnson. Numerical Solution of PDEs by the FEM Method. Studentlitteratur – Lund,
Sweden, 1987.

[9] K. Appert. Experimentation numérique. unpublished lecture notes, CRPP-EPFL, CH-
1015 Lausanne, Switzerland, 1988.

[10] National Institute of Standards and Technology (NIST). Guide to Available Mathematical
Software62.

[11] J. Eastwood. Computer Physics Communications Library63.

[12] I. M.Ryzhik I. S. Gradshteyn. Table of integrals, series and products. Academic Press,
New York, 1980.

[13] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Holt-Saunders International
Editions, 1976.

[14] J. Boris. Methods in Computational Physics, Vol.16. Academic, 1976.

[15] J. M. Jin. The Finite Element Method in Electromagnetics. John Wiley, 1993.

[16] D. Katz and T. Cwik. EMLIB homepage64.

[17] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

[18] P. Wilmott, J. Dewynne, and S. Howison. Option Pricing. Oxford Financial Press, 1993.

[19] T. Bjork. Examples in optimization theory. unpublished lecture notes, Inst. for Optimiza-
tion and System Theory, KTH, SE-100 44 Stockholm, Sweden, 1995.

60http://www.wavelet.org/wavelet/index.html
61http://www.ulib.org/webRoot/Books/Numerical Recipes/bookcpdf.html
62http://gams.nist.gov
63http://www.cpc.cs.qub.ac.uk/cpc/
64http://http://emlib.jpl.nasa.gov/

92 REFERENCES

[20] D. Duffie. Dynamic Asset Pricing Theory. Princeton University Press, 1992.

[21] R. Rebonato. Interest-Rate Option Models. Wiley & Sons Ldt, UK, 1996.

[22] A. Bondeson and G. Y. Fu. Tunable integration scheme. Computer Physics Communi-
cations, 66:167, 1991.

[23] S. Betts, S. Browne, J. Dongarra, E. Grosse, P McMahan, and T. Rowan. Netlib Software
Repository65.

[24] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc home page. The PETSc
home page66, 1999.

[25] A. Jaun, K. Blomqvist, A. Bondeson, and T. Rylander. Iterative solution of global elec-
tromagnetic wavefields with finite elements. Computer Physics Communications, 2001.

[26] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer-Verlag, second corrected printing edition, 1995.

[27] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland Per-
sonal Library, 1992.

[28] J. Carlsson. The Monte-Carlo method – a cookbook approach67. Alfvén Laboratory,
KTH, SE-100 44 Stockholm, Sweden, 1997.

[29] C. K. Birdsall and A. B. Langdon. Plasma physics via computer simulation. McGraw-Hill,
1985. The Plasma Theory and Simulation Group Homepage68.

[30] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Adam Hilger,
1988.

[31] T. Yabe and T. Aoki. A universal solver for hyberbolic equations by cip. Computer
Physics Communications, 66:219, 1991.

[32] H. Takewaki and T. Yabe. The cubic-interpolated pseudo particle (cip) method. Computer
Physics Communications, 70:355, 1987.

[33] T. Utsumi, T. Kunugi, and T. Aoki. Stability and accuracy of the cip scheme. Computer
Physics Communications, 101:9, 1997.

65http://www.netlib.org
66http://www.mcs.anl.gov/petsc
67http://fedu52.fed.ornl.gov/%7ecarlsson/MonteCarlo/cookbook/notes.html
68http://ptsg.eecs.berkeley.edu/

