¢

Join the discussion @ ;)Zp.;wr(f.r.mm

PROFESSIONAL

Java® for Web Applications

Nicholas S. Williams

A Y

WFrox

A Wiley Brand

Professional Java® for Web Applications

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-65646-4
ISBN: 978-1-118-65651-8 (ebk)
ISBN: 978-1-118-90931-7 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958292

Trademarks: Wiley, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may
not be used without written permission. Java is a registered trademark of Oracle America, Inc. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned
in this book.

ABOUT THE AUTHOR

NICK WILLIAMS is a Software Engineer for UL Workplace Health and Safety
in Franklin, Tennessee. A computer science graduate from Belmont University,
he has been active in commercial and open source software projects for more
than 9 years. He is the founder of DNSCrawler.com, a site for free DNS and
IP troubleshooting tools, and NWTS Java Code, an open source community
that specializes in obscure Java libraries that meet niche needs. In 2010, the
Nashville Technology Council named him the Software Engineer of the Year
for Middle Tennessee. Nick is a committer for Apache Logging (including
Log4j) and Jackson Data Processor JSR 310 Data Types. He has also contributed new features to
Apache Tomcat 8.0, Spring Framework 4.0, Spring Security 3.2, Spring Data Commons 1.6, Spring
Data JPA 1.4, and JBoss Logging 3.2; serves as a contributor on several other projects, including
OpenJDK; and is a member of the Java Community Process (JCP).

Nick currently lives in Tennessee with his wife Allison. You can find him on Twitter @Java_Nick.

ABOUT THE TECHNICAL EDITORS

JAKE RADAKOVICH joined UL Workplace Health and Safety in 2009, and currently serves as
Software Developer on the Occupational Health Manager product. Prior to that, he was a
research assistant at Middle Tennessee State University working on AlgoTutor, a web-based
algorithm development tutoring system. He holds a BS in Computer Science and Mathematics
from Middle Tennessee State University. You can follow Jake on Twitter @JakeRadakovich.

MANUEL JORDAN ELERA is an autodidactic developer and researcher who enjoys learning new
technologies for his own experiments and creating new integrations. He won the 2010 Springy
Award and was a Community Champion and Spring Champion in 2013. In his little free time,
he reads the Bible and composes music on his guitar. Manuel is a Senior Member in the Spring
Community Forums known as dr_pompeii. You can read about him and contact him through his
blog and you can follow him on his Twitter account, @dr_pompeii.

CREDITS

ACQUISITIONS EDITOR
Mary James

PROJECT EDITOR
Maureen Spears Tullis

TECHNICAL EDITORS
Michael Jordan Elera
Jake Radakovich

TECHNICAL PROOFREADER
Jonathan Giles

SENIOR PRODUCTION EDITOR
Kathleen Wisor

COPY EDITOR
Apostrophe Editing Services

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER
Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Todd Klemme

PROOFREADERS
Nancy Carrasco
Josh Chase, Word One

INDEXER
Robert Swanson

COVER DESIGNER
Wiley

COVER IMAGE
iStockphoto.com/Elementallmaging

ACKNOWLEDGMENTS

THANKS TO...

My wife Allison, whose unwavering support and persistent reminders about deadlines during
this stressful year made this book possible.

My parents and siblings, who told me that I could do anything I put my mind to.

Drs. Joyce Blair Crowell and William Hooper, whose dedicated instruction and mentoring
made my career possible.

Dr. Sarah Ann Stewart, who believed in me when I thought surely calculus and proofs spelled
doom for my education.

Mrs. Lockhart, who inspired me to write.
Jay, for introducing me to Mary, and to Mary and Maureen for making this book a reality.

Jake, for being absurd. Oh, and for agreeing to be my technical editor.

CONTENTS

INTRODUCTION xxiii

CHAPTER 1: INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION 3

A Timeline of Java Platforms 3
In the Beginning 4
The Birth of Enterprise Java 5
Java SE and Java EE Evolving Together 6

Understanding the Most Recent Platform Features 9

A Continuing Evolution 13
Understanding the Basic Web Application Structure 13
Servlets, Filters, Listeners, and JSPs 13
Directory Structure and WAR Files 14
The Deployment Descriptor 15
Class Loader Architecture 16
Enterprise Archives 17
Summary 18
CHAPTER 2: USING WEB CONTAINERS 19
Choosing a Web Container 19
Apache Tomcat 20
GlassFish 21
JBoss and WildFly 22
Other Containers and Application Servers 22
Why You'll Use Tomcat in This Book 23
Installing Tomcat on Your Machine 23
Installing as a Windows Service 24
Installing as a Command-Line Application 24
Configuring a Custom JSP Compiler 26
Deploying and Undeploying Applications in Tomcat 27
Performing a Manual Deploy and Undeploy 28

Using the Tomcat Manager 28

CONTENTS

Debugging Tomcat from Your IDE 30
Using IntelliJ IDEA 30
Using Eclipse 35

Summary 39

CHAPTER 3: WRITING YOUR FIRST SERVLET 41

Creating a Servlet Class 42
What to Extend 42
Using the Initializer and Destroyer 45

Configuring a Servlet for Deployment 46
Adding the Servlet to the Descriptor 46
Mapping the Servlet to a URL 47
Running and Debugging Your Servlet 49

Understanding doGet(), doPost(), and Other Methods 51
What Should Happen during the service Method Execution? 51
Using HttpServletRequest 52
Using HttpServletResponse 55

Using Parameters and Accepting Form Submissions 56

Configuring your Application Using Init Parameters 61
Using Context Init Parameters 61
Using Servlet Init Parameters 62

Uploading Files from a Form 64
Introducing the Customer Support Project 65
Configuring the Servlet for File Uploads 65
Accepting a File Upload 68

Making Your Application Safe for Multithreading 69
Understanding Requests, Threads, and Method Execution 69
Protecting Shared Resources 70

Summary 71

CHAPTER 4: USING JSPS TO DISPLAY CONTENT 73

 Is Easier Than output.printin(“
") 74
Why JSPs Are Better 75
What Happens to a JSP at Run Time 76

Creating Your First JSP 78
Understanding the File Structure 78
Directives, Declarations, Scriptlets, and Expressions 79
Commenting Your Code 81
Adding Imports to Your JSP 82

viii

CONTENTS

Using Directives 83
Using the <jsp> Tag 86
Using Java within a JSP (and Why You Shouldn’t!) 88
Using the Implicit Variables in a JSP 88
Why You Shouldn’t Use Java in a JSP 93
Combining Servlets and JSPs 94
Configuring JSP Properties in the Deployment Descriptor 94
Forwarding a Request from a Servlet to a JSP 97

A Note about JSP Documents (JSPX) 102
Summary 104
CHAPTER 5: MAINTAINING STATE USING SESSIONS 105
Understanding Why Sessions Are Necessary 106
Maintaining State 106
Remembering Users 107
Enabling Application Workflow 107
Using Session Cookies and URL Rewriting 107
Understanding the Session Cookie 108
Session IDs in the URL 110
Session Vulnerabilities 112
Storing Data in a Session 116
Configuring Sessions in the Deployment Descriptor 116
Storing and Retrieving Data 119
Removing Data 123
Storing More Complex Data in Sessions 125
Applying Sessions Usefully 129
Adding Login to the Customer Support Application 129
Detecting Changes to Sessions Using Listeners 133
Maintaining a List of Active Sessions 135
Clustering an Application That Uses Sessions 139
Using Session IDs in a Cluster 139
Understand Session Replication and Failover 141
Summary 142
CHAPTER 6: USING THE EXPRESSION LANGUAGE IN JSPS 143
Understanding Expression Language 144
What It's For 144
Understanding the Base Syntax 145
Placing EL Expressions 146
Writing with the EL Syntax 147

CONTENTS

Reserved Keywords 148
Operator Precedence 148
Object Properties and Methods 154
EL Functions 155
Static Field and Method Access 156
Enums 157
Lambda Expressions 157
Collections 158
Using Scoped Variables in EL Expressions 160
Using the Implicit EL Scope 161
Using the Implicit EL Variables 165
Accessing Collections with the Stream API 167
Understanding Intermediate Operations 168
Using Terminal Operations 170
Putting the Stream API to Use 171
Replacing Java Code with Expression Language 172
Summary 175
CHAPTER 7: USING THE JAVA STANDARD TAG LIBRARY 177
Introducing JSP Tags and the JSTL 178
Working with Tags 178
Using the Core Tag Library (C Namespace) 182
<c:out> 182
<curl> 183
<c:if> 184
<c:choose>, <c:when>, and <c:otherwise> 185
<c:forEach> 186
<c:forTokens> 187
<c:redirect> 188
<c:iimport> 188
<c:set> and <c:remove> 189
Putting Core Library Tags to Use 190
Using the Internationalization and Formatting
Tag Library (FMT Namespace) 193
Internationalization and Localization Components 193
<fmt:message> 194
<fmt:setLocale> 196
<fmt:bundle> and <fmt:setBundle> 196
<fmt:requestEncoding> 197
<fmt:timeZone> and <fmt:setTimeZone> 197
<fmt:formatDate> and <fmt:parseDate> 198
<fmt:formatNumber> and <fmt:parseNumber> 199

CONTENTS

Putting i18n and Formatting Library Tags to Use 200
Using the Database Access Tag

Library (SQL Namespace) 203
Using the XML Processing Tag

Library (X Namespace) 205
Replacing Java Code with JSP Tags 205
Summary 208

CHAPTER 8: WRITING CUSTOM TAG AND FUNCTION LIBRARIES 209

Understanding TLDs, Tag Files, and Tag Handlers 210
Reading the Java Standard Tag Library TLD 211
Comparing JSP Directives and Tag File Directives 217

Creating Your First Tag File to Serve
as an HTML Template 219

Creating a More Useful Date Formatting
Tag Handler 221

Creating an EL Function to Abbreviate Strings 226

Replacing Java Code with Custom JSP Tags 227

Summary 232

CHAPTER 9: IMPROVING YOUR APPLICATION USING FILTERS 233

Understanding the Purpose of Filters 234
Logging Filters 234
Authentication Filters 234
Compression and Encryption Filters 234
Error Handling Filters 235

Creating, Declaring, and Mapping Filters 235
Understanding the Filter Chain 235
Mapping to URL Patterns and Servlet Names 236
Mapping to Different Request Dispatcher Types 236
Using the Deployment Descriptor 237
Using Annotations 238
Using Programmatic Configuration 238

Ordering Your Filters Properly 239
URL Pattern Mapping versus Servlet Name Mapping 239
Exploring Filter Order with a Simple Example 241
Using Filters with Asynchronous Request Handling 243

Investigating Practical Uses for Filters 247
Adding a Simple Logging Filter 248
Compressing Response Content Using a Filter 249

Simplifying Authentication with a Filter 254

Summary 255

xi

CONTENTS

CHAPTER 10: MAKING YOUR APPLICATION INTERACTIVE

WITH WEBSOCKETS 257
Evolution: From Ajax to WebSockets 258
Problem: Getting New Data from the
Server to the Browser 259
Solution 1: Frequent Polling 259
Solution 2: Long Polling 260
Solution 3: Chunked Encoding 262
Solution 4: Applets and Adobe Flash 263
WebSockets: The Solution Nobody Knew Kind
of Already Existed 264
Understanding the WebSocket APIs 268
HTMLS5 (JavaScript) Client API 268
Java WebSocket APIs 270
Creating Multiplayer Games with WebSockets 273
Implementing the Basic Tic-Tac-Toe Algorithm 274
Creating the Server Endpoint 274
Writing the JavaScript Game Console 278
Playing WebSocket Tic-Tac-Toe 283
Using WebSockets to Communicate in a Cluster 284
Simulating a Simple Cluster Using Two Servlet Instances 284
Transmitting and Receiving Binary Messages 286
Testing the Simulated Cluster Application 287
Adding “Chat with Support” to the Customer
Support Application 288
Using Encoders and Decoders to Translate Messages 289
Creating the Chat Server Endpoint 291
Writing the JavaScript Chat Application 294
Summary 296

CHAPTER 11: USING LOGGING TO MONITOR YOUR APPLICATION 297

Understanding the Concepts of Logging 298
Why You Should Log 298
What Content You Might Want to See in Logs 299
How Logs Are Written 301

Using Logging Levels and Categories 303
Why Are There Different Logging Levels? 303
Logging Levels Defined 303
How Logging Categories Work 304
How Log Sifting Works 305

Choosing a Logging Framework 305

API versus Implementation 305

xii

CONTENTS

Performance 306
A Quick Look at Apache Commons Logging and SLF4J 307
Introducing Log4j 2 307
Integrating Logging into Your Application 312
Creating the Log4j 2 Configuration Files 313
Utilizing Fish Tagging with a Web Filter 316
Writing Logging Statements in Java Code 317
Using the Log Tag Library in JSPs 319
Logging in the Customer Support Application 319
Summary 320
CHAPTER 12: INTRODUCING SPRING FRAMEWORK 323
What Is Spring Framework? 324
Inversion of Control and Dependency Injection 325
Aspect-Oriented Programming 325
Data Access and Transaction Management 325
Application Messaging 326
Model-View-Controller Pattern for Web Applications 326
Why Spring Framework? 326
Logical Code Groupings 326
Multiple User Interfaces Utilizing One Code Base 327
Understanding Application Contexts 327
Bootstrapping Spring Framework 329
Using the Deployment Descriptor to Bootstrap Spring 330
Programmatically Bootstrapping Spring in an Initializer 332
Configuring Spring Framework 336
Creating an XML Configuration 338
Creating a Hybrid Configuration 340
Configuring Spring with Java Using @Configuration 345
Utilizing Bean Definition Profiles 349
Understanding How Profiles Work 350
Considering Antipatterns and Security Concerns 352
Summary 353
CHAPTER 13: REPLACING YOUR SERVLETS WITH CONTROLLERS 355
Understanding @RequestMapping 356
Using @RequestMapping Attributes to Narrow
Request Matching 356
Specifying Controller Method Parameters 360
Selecting Valid Return Types for Controller Methods 368

xiii

CONTENTS

Using Spring Framework’s Model and View Pattern 370
Using Explicit Views and View Names 371
Using Implicit Views with Model Attributes 373
Returning Response Entities 375

Making Your Life Easier with Form Objects 380
Adding the Form Object to Your Model 381
Using the Spring Framework <form> Tags 381
Obtaining Submitted Form Data 383

Updating the Customer Support Application 384
Enabling Multipart Support 384
Converting Servlets to Spring MVC Controllers 385
Creating a Custom Downloading View 386

Summary 387

CHAPTER 14: USING SERVICES AND REPOSITORIES TO SUPPORT
YOUR CONTROLLERS 389

Understanding Model-View-Controller Plus Controller-Service-

Repository 390
Recognizing Different Types of Program Logic 391
Repositories Provide Persistence Logic 392
Services Provide Business Logic 392
Controllers Provide User Interface Logic 393

Using the Root Application Context
Instead of a Web Application Context 394
Reusing the Root Application Context for Multiple

User Interfaces 394
Moving Your Business Logic from

Controllers to Services 396
Using Repositories for Data Storage 399

Improving Services with Asynchronous
and Scheduled Execution 404
Understanding Executors and Schedulers 404
Configuring a Scheduler and Asynchronous Support 405
Creating and Using @Async Methods 407
Creating and Using @Scheduled Methods 408

Applying Logic Layer Separation to WebSockets 409
Adding Container-Managed Objects to the

Spring Application Context 409
Using the Spring WebSocket Configurator 411
Remember: A WebSocket Is Just Another

Interface for Business Logic 412

Summary 416

Xiv

CONTENTS

CHAPTER 15: INTERNATIONALIZING YOUR APPLICATION WITH

SPRING FRAMEWORK 118N 417
Why Do You Need Spring Framework i18n? 418
Making Internationalization Easier 418
Localizing Error Messages Directly 418
Using the Basic Internationalization
and Localization APIs 419
Understanding Resource Bundles
and Message Formats 419
Message Sources to the Rescue 421
Using Message Sources to Internationalize JSPs 422
Configuring Internationalization
in Spring Framework 424
Creating a Message Source 424
Understanding Locale Resolvers 425
Using a Handler Interceptor to Change Locales 427
Providing a User Profile Locale Setting 428
Including Time Zone Support 429
Understanding How Themes Can Improve
Internationalization 429
Internationalizing Your Code 430
Using the <spring:message> Tag 431
Handling Application Errors Cleanly 433
Updating the Customer Support Application 436
Using the Message Source Directly 437
Summary 440
CHAPTER 16: USING JSR 349, SPRING FRAMEWORK, AND
HIBERNATE VALIDATOR FOR BEAN VALIDATION 441
What Is Bean Validation? 442
Why Hibernate Validator? 444
Understanding the Annotation Metadata Model 444
Using Bean Validation with Spring Framework 445
Configuring Validation in the Spring
Framework Container 445
Configuring the Spring Validator Bean 446
Setting Up Error Code Localization 448
Using a Method Validation Bean Post-Processor 449
Making Spring MVC Use the Same Validation Beans 450

Adding Constraint Validation Annotations
to Your Beans

450

XV

CONTENTS

XVi

Understanding the Built-in Constraint Annotations 451
Understanding Common Constraint Attributes 452
Putting Constraints to Use 452
Using @Valid for Recursive Validation 454
Using Validation Groups 455
Checking Constraint Legality at Compile-Time 457
Configuring Spring Beans for Method Validation 458
Annotating Interfaces, Not Implementations 458
Using Constraints and Recursive Validation
on Method Parameters 459
Validating Method Return Values 459
Indicating That a Class Is Eligible for Method Validation 460
Using Parameter Validation in Spring MVC Controllers 462
Displaying Validation Errors to the User 463
Writing Your Own Validation Constraints 466
Inheriting Other Constraints in a Custom Constraint 466
Creating a Constraint Validator 467
Understanding the Constraint Validator Life Cycle 469
Integrating Validation in the Customer
Support Application 470
Summary 472
CHAPTER 17: CREATING RESTFUL AND SOAP WEB SERVICES 473
Understanding Web Services 474
In the Beginning There Was SOAP 475
RESTful Web Services Provide a Simpler Approach 476
Configuring RESTful Web Services
with Spring MVC 484
Segregating Controllers with Stereotype Annotations 484
Creating Separate Web and REST Application Contexts 485
Handling Error Conditions in RESTful Web Services 488
Mapping RESTful Requests to Controller Methods 491
Improving Discovery with an Index Endpoint 495
Testing Your Web Service Endpoints 496
Choosing a Testing Tool 497
Making Requests to Your Web Service 497
Using Spring Web Services for SOAP 500
Writing Your Contract-First XSD and WSDL 501
Adding the SOAP Dispatcher Servlet Configuration 503
Creating a SOAP Endpoint 504
Summary 508

CONTENTS

CHAPTER 18: USING MESSAGING AND CLUSTERING FOR

FLEXIBILITY AND RELIABILITY 509
Recognizing When You Need Messaging
and Clustering 510
What Is Application Messaging? 510
What Is Clustering? 513
How Do Messaging and Clustering Work Together? 517
Adding Messaging Support to your Application 520
Creating Application Events 520
Subscribing to Application Events 522
Publishing Application Events 523
Making your Messaging Distributable
Across a Cluster 525
Updating Your Events to Support Distribution 526
Creating and Configuring a Custom Event Multicaster 527
Using WebSockets to Send and Receive Events 529
Discovering Nodes with Multicast Packets 531
Simulating a Cluster with Multiple Deployments 533
Distributing Events with AMQP 534
Configuring an AMQP Broker 536
Creating an AMQP Multicaster 537
Running the AMQP-Enabled Application 539
Summary 540
CHAPTER 19: INTRODUCING JAVA PERSISTENCE API AND
HIBERNATE ORM 543
What Is Data Persistence? 543
Flat-File Entity Storage 544
Structured File Storage 544
Relational Database Systems 545
Object-Oriented Databases 546
Schema-less Database Systems 546
What Is an Object-Relational Mapper? 547
Understanding the Problem of Persisting Entities 547
O/RMs Make Entity Persistence Easier 549
JPA Provides a Standard O/RM API 550
Why Hibernate ORM? 552
A Brief Look at Hibernate ORM 552
Using Hibernate Mapping Files 552

xvii

CONTENTS

Understanding the Session API 554
Getting a Session from the SessionFactory 556
Creating a SessionFactory with Spring Framework 557
Preparing a Relational Database 559
Installing MySQL and MySQL Workbench 559
Installing the MySQL JDBC Driver 562
Creating a Connection Resource in Tomcat 563
A Note About Maven Dependencies 564
Summary 564
CHAPTER 20: MAPPING ENTITIES TO TABLES WITH
JPA ANNOTATIONS 565
Getting Started with Simple Entities 566
Marking an Entity and Mapping It to a Table 567
Indicating How JPA Uses Entity Fields 569
Mapping Surrogate Keys 570
Using Basic Data Types 576
Specifying Column Names and Other Details 579
Creating and Using a Persistence Unit 581
Designing the Database Tables 581
Understanding Persistence Unit Scope 583
Creating the Persistence Configuration 584
Using the Persistence API 586
Mapping Complex Data Types 590
Using Enums as Entity Properties 590
Understanding How JPA Handles Dates and Times 592
Mapping Large Properties to CLOBs and BLOBs 594
Summary 596
CHAPTER 21: USING JPA IN SPRING FRAMEWORK REPOSITORIES 597
Using Spring Repositories and Transactions 598
Understanding Transaction Scope 598
Using Threads for Transactions and Entity Managers 599
Taking Advantage of Exception Translation 601
Configuring Persistence in Spring Framework 602
Looking Up a Data Source 602
Creating a Persistence Unit in Code 603
Setting Up Transaction Management 607
Creating and Using JPA Repositories 610
Injecting the Persistence Unit 610
Implementing Standard CRUD Operations 611

xviii

CONTENTS

Creating a Base Repository for All Your Entities 613
Demarking Transaction Boundaries in Your Services 618
Using the Transactional Service Methods 622
Converting Data with DTOs and Entities 624
Creating Entities for the Customer Support Application 624
Securing User Passwords with BCrypt 628
Transferring Data to Entities in Your Services 630
Summary 632
CHAPTER 22: ELIMINATING BOILERPLATE REPOSITORIES
WITH SPRING DATA JPA 633
Understanding Spring Data’s
Unified Data Access 634
Avoiding Duplication of Code 634
Using the Stock Repository Interfaces 638
Creating Query Methods for Finding Entities 639
Providing Custom Method Implementations 642
Configuring and Creating Spring
Data JPA Repositories 646
Enabling Repository Auto-Generation 646
Writing and Using Spring Data JPA Interfaces 654
Refactoring the Customer Support Application 656
Converting the Existing Repositories 656
Adding Comments to Support Tickets 657
Summary 661
CHAPTER 23: SEARCHING FOR DATA WITH JPA
AND HIBERNATE SEARCH 663
An Introduction to Searching 664
Understanding the Importance of Indexes 664
Taking Three Different Approaches 666
Using Advanced Criteria to Locate Objects 666
Creating Complex Criteria Queries 667
Using OR in Your Queries 674
Creating Useful Indexes to Improve Performance 676
Taking Advantage of Full-Text Indexes with JPA 676
Creating Full-Text Indexes in MySQL Tables 677
Creating and Using a Searchable Repository 678
Making Full-Text Searching Portable 684
Indexing Any Data with Apache Lucene
and Hibernate Search 684

Xix

CONTENTS

Understanding Lucene Full-Text Indexing 685
Annotating Entities with Indexing Metadata 686
Using Hibernate Search with JPA 688
Summary 692
CHAPTER 24: CREATING ADVANCED MAPPINGS
AND CUSTOM DATA TYPES 693
What's Left? 694
Converting Nonstandard Data Types 695
Understanding Attribute Converters 695
Understanding the Conversion Annotations 696
Creating and Using Attribute Converters 698
Embedding POJOs Within Entities 699
Indicating That a Type Is Embeddable 699
Marking a Property as Embedded 700
Overriding Embeddable Column Names 702
Defining Relationships Between Entities 703
Understanding One-to-One Relationships 703
Using One-to-Many and Many-to-One Relationships 705
Creating Many-to-Many Relationships 708
Addressing Other Common Situations 709
Versioning Entities with Revisions and Timestamps 709
Defining Abstract Entities with Common Properties 710
Mapping Basic and Embedded Collections 712
Persisting a Map of Key-Value Pairs 715
Storing an Entity in Multiple Tables 716
Creating Programmatic Triggers 717
Acting before and after CRUD Operations 717
Using Entity Listeners 719
Refining the Customer Support Application 720
Mapping a Collection of Attachments 721
Lazy Loading Simple Properties with Load Time Weaving 723
Summary 725
CHAPTER 25: INTRODUCING SPRING SECURITY 729
What Is Authentication? 729
Integrating Authentication 730
Understanding Authorization 740
Why Spring Security? 743

XX

CONTENTS

Understanding the Spring Security Foundation 744
Using Spring Security’s Authorization Services 745
Configuring Spring Security 745
Summary 746
CHAPTER 26: AUTHENTICATING USERS WITH SPRING SECURITY 747
Choosing and Configuring an
Authentication Provider 748
Configuring a User Details Provider 748
Working with LDAP and Active Directory Providers 759
Authenticating with OpenID 762
Remembering Users 765
Exploring Other Authentication Providers 766
Writing Your Own Authentication Provider 766
Bootstrapping in the Correct Order 767
Creating and Configuring a Provider 769
Mitigating Cross-Site Request Forgery Attacks 775
Summary 778
CHAPTER 27: USING AUTHORIZATION TAGS AND ANNOTATIONS 779
Authorizing by Declaration 780
Checking Permissions in Method Code 780
Employing URL Security 783
Using Annotations to Declare Permissions 786
Defining Method Pointcut Rules 794
Understanding Authorization Decisions 794
Using Access Decision Voters 795
Using Access Decision Managers 796
Creating Access Control Lists for Object Security 798
Understanding Spring Security ACLs 798
Configuring Access Control Lists 800
Populating ACLs for Your Entities 803
Adding Authorization to Customer Support 804
Switching to Custom User Details 804
Securing Your Service Methods 808
Using Spring Security’s Tag Library 813
Summary 814
CHAPTER 28: SECURING RESTFUL WEB SERVICES WITH OAUTH 815
Understanding Web Service Security 816
Comparing Web GUI and Web Service Security 816

XXi

CONTENTS

Choosing an Authentication Mechanism 817
Introducing OAuth 818
Understanding the Key Players 819
The Beginning: OAuth 1.0 819
The Standard: OAuth 1.0a 820
The Evolution: OAuth 2.0 826
Using Spring Security OAuth 833
Creating on OAuth 2.0 Provider 833
Creating an OAuth 2.0 Client 838
Finishing the Customer Support Application 840
Generating Request Nonces and Signatures 840
Implementing Client Services 842
Implementing Nonce Services 845
Implementing Token Services 847
Customizing the Resource Server Filter 850
Reconfiguring Spring Security 852
Creating an OAuth Client Application 856
Customizing the REST Template 857
Configuring the Spring Security OAuth Client 858
Using the REST Template 861
Testing the Provider and Client Together 861
Summary 862

INDEX 865

XXii

INTRODUCTION

THOUGH MANY DON'T REALIZE IT, MOST PEOPLE USE JAVA EVERY DAY. It’s all around you — it’s
in your TV, in your Blu-ray player, and on your computer; some popular smart phones run a Java-
based operating system; and it powers many of the websites you use every day. When you think of
Java, you may naturally picture browser applets or desktop applications with user interfaces that
don’t match other applications on the operating system. You may even think of that annoying sys-
tem tray notification that tells you to update Java (seemingly) constantly.

But Java is much more than just these daily, visible reminders you may be exposed to. Java is a
powerful language, but much of its capability lies in the power of the platform. Although the Java
SE platform provides indispensable tools for creating console, desktop, and browser applications, the
Java EE platform extends this platform significantly to help you create rich, powerful web applica-
tions. This book covers these tools and shows you how to create modern and useful enterprise Java
web applications.

WHO THIS BOOK IS FOR

This book is for software developers and engineers who already have a proficient knowledge in the
Java language and the Java Platform, Standard Edition (Java SE). It is a self-guided, self-study book
that existing Java developers can use to expand their Java knowledge and grow their skillset from
applets or console or desktop applications to enterprise web applications. You can read this book
from start to finish to cover all the topics in order, or you can pick and choose topics that interest
you and use this book more as a reference. Although some chapters occasionally refer to examples
from previous chapters, an effort was made to make each chapter as self-sustaining as possible. The
examples are all available for download from wrox. com, which should help you when an example
relies on another example from a previous chapter.

This book can also be useful for developers with existing Java Platform, Enterprise Edition (Java
EE) experience who want to refresh their skills or learn about new features in the latest Java EE
version. Software architects might also find this book useful because it covers several web software
development concepts and patterns in addition to specific tools and platform components. This book
could help architects apply new ideas to their teams’ projects and processes.

If you’re a manager of a software development team, you may also find this book helpful.
Undoubtedly you strive every day to communicate effectively with the developers and engineers that
you oversee. By reading this book, you can expand your knowledgebase, understand the tools your
developers use to more successfully communicate, and make recommendations to your team to solve
certain problems. After reading this book, you may also decide to purchase several copies for your
team to improve their skillsets and apply the concepts within your projects.

Finally, teachers and students can apply this book to a classroom environment. Used as a textbook,
it can be invaluable for 300 and 400 level courses to instruct students in real-world skills that can
help them succeed in the workplace beyond graduation.

INTI

RODUCTION

WHO THIS BOOK IS NOT FOR

w

XXiv

This book is not for readers who have no experience with Java and have never written or compiled
Java-based applications. If you have no prior Java experience, you will likely find it difficult to
understand the text and examples in this book. This is because this book does not cover the Java
language syntax or the specifics of the Java SE platform. It is assumed the reader is comfortable
writing, compiling, and debugging Java code and is familiar with the standard platform. Very few
explanations are given about standard Java features and tools, except where those features were
added in Java SE 8.

In addition, the reader is expected to have a basic understanding of the following technologies and
concepts. Although some of them may seem obvious, it’s important to note that if you are unfamil-
iar with one or more of these concepts you may have difficulty with some chapters in the book.

> The Internet and the TCP and HTTP protocols

HyperText Markup Language (HTML), including HTML 5

Extensible Markup Language (XML)

JavaScript or ECM AScript, including jQuery and browser debugging tools
Cascading Style Sheets (CSS)

Y Y ¥V VY Y

Structured Query Language (SQL) and relational databases, specifically MySQL (If you are
familiar with other relational databases, you can adapt to MySQL easily.)

\

Transactions and transactional concepts, such as Atomicity, Consistency, Isolation,
Durability (ACID)

> Use of an Integrated Development Environment (IDE)

Execution of simple command-line tasks (You do not need to be a command-line guru.)

HAT YOU WILL LEARN IN THIS BOOK

In this book, you learn about the Java EE platform version 7 and many of the technologies within

it. You’ll start with an introduction to what exactly the Java EE platform is and how it evolved, fol-
lowed by an introduction to application servers and Servlet containers and how they work. You’ll
then proceed to explore Spring Framework, publish-subscribe, Advanced Message Queuing Protocol
(AMQP), object-relational mappers (O/RMs), Hibernate ORM, Spring Data, full-text searching,
Apache Lucene, Hibernate Search, Spring Security, and OAuth. Throughout this book you will also
explore the following components of Java EE 7:

> Servlets 3.1 — JSR 340

> JavaServer Pages (JSP) 2.3 — JSR 245

> Java Unified Expression Language (JUEL or just EL) 3.0 — JSR 341
> Java API for WebSockets — JSR 356

INTRODUCTION

> Bean Validation (BV) 1.1 — JSR 349

> Java Message Service (JMS) 2.0 — JSR 343
» Java Persistence API (JPA) 2.1 - JSR 338

» Java Transaction API (JTA) 1.2 — JSR 907

You’ll also make extensive use of lambda expressions and the new JSR 310 Java 8 Date and Time
API, both additions to Java SE 8.

Part I: Creating Enterprise Applications

Here you explore Servlets, filters, listeners, and JavaServer Pages (JSP). You’ll learn about how
Servlets respond to HTTP requests and how filters assist them. You’ll easily create powerful user
interfaces based on JSP. Combining the power of JSP tags and the brand-new Expression Language
3.0, you’ll then create Java-free views easily maintained by Ul developers who have little or no Java
knowledge. You’ll learn about HTTP sessions and how they can help you create rich user experi-
ences that span multiple pages in your application. You’ll explore the brand-new technology called
WebSockets, which helps you create richer, more interactive user interfaces by providing full-duplex,
bidirectional communications between your application and the client (such as a browser). As a final
note, you’ll learn about application logging best practices and technologies, something that will
become critical as you create complex applications with lots of code.

Part Il: Adding Spring Framework Into the Mix

In this part of the book you start working with Spring Framework and Spring MVC. You’ll

explore topics such as dependency injection (DI), inversion of control (IoC), and aspect-oriented
programming (AOP). You’ll configure advanced Spring Framework projects using both XML and
annotation-based configuration, and you’ll use Spring tools to support your bean validation and
internationalization needs. You’ll create both RESTful and SOAP web services using Spring MVC
controllers and Spring Web Services, and you’ll learn how to use the flexible messaging systems built
in to Spring Framework. You’ll also learn about the Advanced Message Queuing Protocol (AMQP)
and configure and use a RabbitMQ installation.

Part Ill: Persisting Data with JPA and Hibernate ORM

This part focuses on data persistence and different approaches to storing your objects in your
databases. After understanding some of the basic issues with using raw JDBC for persisting your
entities, you’ll learn about object-relational mappers (O/RMs) and explore Hibernate ORM and its
API. You’ll then take a look at the Java Persistence API, an abstraction that allows you to program
to a common API regardless of the O/RM implementation. Next you’ll explore Spring Data and
how it can help you create persistence applications without writing any persistence code. You’ll also
learn several methods for searching your persisted data and explore Hibernate Search with Apache
Lucene as a potential full-text searching tool.

XXV

INTRODUCTION

Part IV: Securing Your Application with Spring Security

The final part of the book introduces you to the concepts of authentication and authorization and
shows you several techniques that can be used for both. It then helps you integrate Spring Security
into your Spring Framework applications. You’ll also learn how to secure your web services using
OAuth 1.0a and OAuth 2.0 and create a custom access token type to make your OAuth 2.0 imple-
mentation stronger.

WHAT YOU WILL NOT LEARN IN THIS BOOK

This book does not teach you about basic Java syntax or the Java SE platform, though it will briefly
explain some new features added in Java SE 7 and 8. It will also not teach you how to write Java-
based console or desktop applications or applets. If you are looking for a book on these topics,
Wrox has a variety of titles to choose from.

More important, this book does not teach you how to administer a Java EE application server
environment. There are dozens of different application servers and web containers, and no two are
managed identically. Which application server you use strongly depends on the nature of your appli-
cation, your business requirements, your business practices, and your server environment. It would
be impractical to teach you how to administer even a few of the most common application servers.
The best way to learn how to deploy and administer your Java EE application server or web con-
tainer of choice is to consult its documentation and, in some cases, experiment. (Because the use of
a web container is necessary to complete the examples in this book, Chapter 2 covers the basic tasks
of installing, starting, stopping, and deploying applications to Apache Tomcat.)

Refer back to the introductory section titled “Who This Book Is Not For” — this book does not
cover the basics of the technologies and concepts listed in that section. It also does not cover the fol-
lowing Java EE 7 components, which are unsupported by most simple web containers and unneces-
sary when using Spring Framework and its related projects.

> Java API for RESTful Web Services (JAX-RS) 2.0 — JSR 339
JavaServer Faces (JSF) 2.2 — JSR 344

Enterprise JavaBeans (E]JB) 3.2 — JSR 345

Contexts and Dependency Injection (CDI) 1.1 — JSR 346
JCache - JSR 107

State Management — JSR 350

Batch Applications for the Java Platform — JSR 352
Concurrency Utilities for Java EE — JSR 236

Java API for JSON Processing — JSR 353

Y Y Y VY Y VY VY Y

XXVi

INTRODUCTION

WHAT TOOLS YOU WILL NEED

You’ll need several different tools to complete and run the examples in this book. To start, be sure
you have the following installed or enabled on your computer:

> Apache Maven version 3.1.1 or newer

> A command line for certain tasks, and an operating system that provides access to the com-
mand line (In other words, you cannot compile and run the examples on a smartphone or
tablet.)

> A quality text editor useful for tasks such as editing configuration files. You should never
use Windows Notepad or Apple TextEdit as a text editor. If you are looking for a quality
text editor, consider:

> Windows — Notepad++ or Sublime Text 2.
> Mac OS X — TextWrangler, Sublime Text 2, or Vim.

> Linux — Sublime Text 2 or Vim.

Java Development Kit for Java SE 8

You must have the Java Development Kit (JDK) for Java SE 8 installed on your machine. Java SE 8
is scheduled to release on March 18, 2014. You should be able to download the JDK from Oracle’s
standard Java SE Downloads site. However, if you purchased this book prior to the release of Java
SE 8, you may need to download the Early Access JDK from its Java.net project site (Don’t worry,
you won’t have to compile it.) Always get the latest version of the JDK, and download the version
and architecture appropriate for your machine. If your machine contains a 64-bit processor and
64-bit operating system, you should download the 64-bit Java installer.

Integrated Development Environment

You need an integrated development environment, or IDE, for compiling and executing the code
samples and general experimentation. An IDE, sometimes also called an interactive development
environment, is a software application with coding, building, deploying, and debugging facilities
for software developers to use when creating software. There are many different Java IDEs avail-
able, and some are better than others. A lot of what makes one IDE better than another is simply
perspective and personal practices — an IDE that is perfect for one developer may not be so easy
for another developer to use. Generally, however, IDEs that include intelligent code suggestions,
code completion, code generation, syntax checking, spell checking, and framework integration
(Spring Framework, JPA, Hibernate ORM, and so on) are going to be much more useful and pro-
vide you with a much more productive work environment than IDEs without these features.

XXVii

INTRODUCTION

You may already have an IDE that you use regularly, or you may simply use your favorite text

editor and a command line. If you have an IDE, it may or may not be up to the task of running the
examples in this book. When choosing an IDE (or evaluating whether you current IDE is sufficient),
you should get one with intelligent code completion and suggestions, syntax checking, and integra-
tion with Java EE, Spring Framework, Spring Security, Spring Data, JPA, and Hibernate ORM. This
means it should have the ability to evaluate your Java EE, Spring, JPA, and Hibernate configurations
and tell you whether there are any errors or problems with those configurations. This introduction
briefly tells you about three polyglot IDEs and makes a recommendation for this book.

NetBeans IDE 8.0

NetBeans — a free IDE — is the standard, Oracle-sponsored Java IDE, similar to how Microsoft
Visual Studio is the standard IDE for .NET development. It is not, however, the most popular Java
IDE. Only NetBeans IDE 8.0 has support for Java SE 8 and Java EE 7 — previous versions do not.
NetBeans provides a strong feature set and built-in support for all Java EE features. It also supports
C, C++, and PHP development. You can also extend NetBeans’s functionality using plug-ins,

and plug-ins are available for Spring Framework and Hibernate ORM. However, the NetBeans
feature set is not as rich as other IDEs, so it is not recommended for this book. The code examples
in this book are not available as NetBeans downloads, but you should be able to import the
samples as Maven projects if you prefer to use NetBeans. You can download NetBeans here.

Eclipse Luna IDE 4.4 for Java EE Developers

Eclipse is another free IDE and the most popular Java IDE worldwide. One of its strengths is its
extensibility, which goes beyond its support for plug-ins. Using the Eclipse platform, you can com-
pletely customize the IDE for specific tasks and workflows. It already has plug-ins and extensions
for Spring Framework, Spring Data, Spring Security, Hibernate ORM, and more. The Spring com-
munity offers a customized version of Eclipse — called Spring Tool Suite — that is very well suited
for working with Spring-based projects. However, in this author’s opinion, Eclipse is a very dif-
ficult IDE to use effectively and efficiently. Very simple tasks often require a great amount of effort.
Historically, compatible Eclipse releases have trailed Java SE and EE releases considerably. At the
time this book was written, the Eclipse community had not yet released an Eclipse IDE version
compatible with Java SE 8 and Java EE 7. Therefore, it is not recommended that you choose Eclipse
IDE for running the examples in this book. If you do choose to use — or continue to use — Eclipse,
you should make sure you get Eclipse Luna IDE 4.4 for Java EE Developers, which is scheduled

for release in June 2014. This may require downloading a pre-release edition, and that edition

may not support all the topics covered in this book. You can download Eclipse IDE here.

Due to the popularity of Eclipse IDE, the code examples for this book will be available to download
as Eclipse projects as soon as Eclipse Luna 4.4 is capable of running them.

XXviii

INTRODUCTION

IntelliJ IDEA 13 Ultimate Edition

JetBrains’s Intelli] IDEA is a feature-rich Java IDE with both Community (free) and Ultimate (paid)
editions. It is, again in this author’s opinion, the easiest to use and most powerful Java IDE avail-
able. Its code suggestions and completion and framework support are unmatched in any other IDE.
In addition, it has historically provided better early support for experimental versions of Java SE and
Java EE before they release. Intelli] IDEA 12, for example, provided Java SE 8 support as early as
December 2012 — a full 15 months before Java SE 8 was released and 18 months before Eclipse IDE
supported it. If you like to test new versions of Java SE and Java EE before they come out, and use
them immediately after their release, Intelli] IDEA is essentially your only option.

This power does come at a cost, however. The Community Edition is useful for many different types
of Java SE projects, but not Java EE projects. You need to purchase the Ultimate Edition to realize
the full support for Java EE, Spring projects, and Hibernate ORM. The Ultimate Edition is priced
reasonably and competitively for companies, individuals, and students, at a fraction of the cost that
you would pay for equivalent editions of Microsoft Visual Studio. Educational institutions can get
free licenses for official classroom use, and established open source organizations can get free licenses
for their projects. You can download a 30-day free trial of Intelli] IDEA 13 Ultimate Edition here,
and you can purchase a license (or obtain a free license if you qualify) for your download at any time.
In addition, the back of this book contains a coupon for a free 90-day personal license of Intelli]
IDEA 13 Ultimate! We recommend you use Intelli] IDEA Ultimate Edition for all the code examples
in this book. Until Eclipse Luna 4.4 is capable of running the examples, the code downloads will ini-
tially be available only as Intelli] IDEA projects.

Be sure to download the latest version of Intelli] IDEA. Although version 13.0.x is the most current
version as of the date this book was published, 13.1.x is scheduled for release sometime in April
2014 with several Spring Framework and Java EE 7 support improvements, and 14.0.x will likely be
released in December 2014.

Java EE 7 Web Container

The final tool you’ll need while reading this book is a Java EE web container that implements the
Servlet, JSP, JUEL, and WebSocket specifications in Java EE 7. This topic is covered more thor-
oughly in Chapter 2, where you review the most popular web containers and application servers and
learn how to download, install, and use Apache Tomcat 8.0.

CONVENTIONS USED IN THIS BOOK

Several conventions are used throughout this book to help draw your attention to certain items or
demonstrate something in code. This section covers those conventions by example.

NOTE Notes indicate notes, tips, hints, tricks, reminders, and other interest-
ing information loosely related to the current discussion. Youw’ll want to pay
attention to these boxes.

XXiX

INTRODUCTION

WARNING Warnings hold important information that is directly relevant to

the surrounding text and should not be forgotten. Warnings can indicate pitfalls,
dangers, and potential for loss or corrupted data. Pay close attention o these
boxes.

You may see several styles in the text:

> New terms and important words are highlighted when introduced. This may not be the first
time these words appear in the text, but it will be the first time they are explained.

> Keyboard strokes appear as Ctrl+S, Ctrl+Alt+F8, and so on.

Filenames, URISs that aren’t URLs, class and method names, primitive types, and code
within the text appear like this.

> Code variables, method and constructor parameter names, and request parameters look like
this.

> Values the user must enter in dialog boxes, prompts, or form fields are bold and monospace.

Finally, when reading sample code within the text, it may be presented in two different ways:
We use a monofont type with no highlighting for most lines of code.
We use bold to emphasize code that’s especially important, to show changes from

previous examples, or to draw attention to it when mentioning it in the text.

In most cases, code examples are simply written inline, between paragraphs. However, when they
are particularly long they will be referenced by number in the text and appear as code listings, as in
the sample Listing I-1.

LISTING I-1: A Sample Code Listing

This is what a code listing will look like.

Finally, you will occasionally see an icon in the margin next to a paragraph. This icon will

- always be referenced in the paragraph it is next to and indicates a toolbar button that you will

need to use to perform a task discussed in that paragraph.

CODE EXAMPLES

XXX

As with any software development book, this book makes extensive use of code examples to dem-
onstrate the topics explained. For the most part, these examples are full IDE projects that you can
just open in your IDE, compile, and execute. All the examples are available for download from the
wrox.comcodedOWHﬂoadSﬁeuhmtgotohttp://www.wrox.com/go/projavaforwebappsandchck
the Download Code tab. You can download all the code samples as a single ZIP file or a ZIP file

INTRODUCTION

for each chapter. Within the download for each chapter you’ll find two versions of each sample: an
Intelli] IDEA project and an Eclipse project. You should use the version applicable to the IDE you
chose. If you are not using one of these two IDEs, your IDE should be able to import the IntelliJ
IDEA project as a simple Maven project.

NOTE Remember, the Eclipse version of the code samples will not be available
until Eclipse Luna 4.4 is capable of running them. If you are reading this book
before that milestone, you can download the Intelli] IDEA example projects.

Near the beginning of the book, you can create the examples from scratch in your IDE without
downloading them from the code site (if that’s what you want). However, as the examples get more
complex this will not be possible. The most critical code is printed in the book, but printing every
line of code is not practical — it would make this book considerably longer, and thus make it more
expensive for you. In addition, much of the omitted code is repetitive. For example, the Spring
Framework configuration is nearly identical for most of the example projects in Parts II through IV.
In these cases, it makes much more sense to simply show you how the configuration has changed
from previous chapters rather than re-printing the entire configuration. For this reason, you need to
download most of the code examples from the wrox.com code download site if you want to execute
and test the examples.

On the first page of each chapter, you’ll see an area titled “Wrox.com Code Downloads for This
Chapter.” This section lists the names of all the code examples used in the chapter and reminds you
of the link for downloading the code samples. A handful of chapters do not contain code example
downloads, but most do.

MAVEN DEPENDENCIES

The code examples in this book make extensive use of third-party dependencies, such as Spring
Framework, Hibernate ORM, and Spring Security. Including these dependency JARs in the code
downloads on the download site would make these downloads unnecessarily large and cause you
to download many hundreds of megabytes over the course of the book. To eliminate this problem,
the code samples use Apache Maven and its dependency management capabilities. All the sample
projects are Maven projects. When opening each project in your IDE, the IDE should automatically
resolve the dependencies in your local Maven repository or, if necessary, download them to your
local Maven repository.

On the first page of each chapter you’ll see an area titled “New Maven Dependencies for This
Chapter.” This section lists the Maven dependencies that, in addition to all previous dependencies,
youw’ll use in that chapter. You can also consult the pom.xm1 file in each example project to view its
dependencies. Some chapters do not introduce new Maven dependencies, but most do.

XXXi

INTRODUCTION

Each Maven dependency has a scope that defines which classpath that dependency is available on.
The most common scope — “compile” scope — indicates that the dependency is available to your
project on the compile classpath, the unit test compile and execution classpaths, and the eventual
runtime classpath when you execute your application. In a Java EE web application, this means the
dependency is copied into your deployed application. “Runtime” scope indicates that the depen-
dency is available to your project on the unit test execution and runtime execution classpaths,

but unlike compile scope it is not available when you compile your application or its unit tests. A
runtime dependency is copied into your deployed application. Finally, “provided” scope indicates
that the container in which your application executes provides the dependency on your behalf. In a
Java EE application, this means the dependency is already on the Servlet container’s or application
server’s classpath and is not copied into your deployed application. Maven and your IDE ensures
provided dependencies are available when you compile your application and its unit tests. There are
other Maven scopes as well, but these are the only scopes you use in this book.

Some of the Maven dependencies you see in the text and the sample projects have exclusions that
ignore certain dependencies of those dependencies — these are called transient dependencies. To a
large extent, these exclusions are usually redundant and are shown only for clarity. When a depen-
dency relies on an older version of a dependency than a version you are already using, the exclusion
makes it clear that there is a discrepancy there, and also avoids problems caused by Maven’s
nearness algorithm. However, some of the exclusions exist because newer versions of Java SE or
Java EE provide the dependency already, or because the dependency ID changed. When this is the
reason an exclusion exists, it is noted in the text.

WHY SECURITY IS AT THE END OF THE BOOK

Quite frankly, application security gets in the way. The technologies and techniques you must use

to add authentication and authorization to your products can clutter your code and make the pro-
cess of learning more difficult. It’s natural to think about security first, and it’s never wrong to keep
security in mind at all times. However, with the right tools, it’s fairly easy to add authentication

and authorization to an existing project after it is complete (or nearly so). This book focuses first on
creating quality web applications with rich feature sets using industry standard tools. Once you have
all the skills you need to create powerful applications, Part IV of this book shows you how to add
authentication and authorization to an existing application to secure it from unauthorized and mali-
cious access.

ERRATA

We strove to make this text as thorough and accurate as possible, but nobody is perfect and mis-
takes do happen. Occasionally this book may contain errors that require correction. If you find fac-
tual errors, spelling mistakes, or faulty pieces of code, we want to hear about it! By providing your
feedback, you could save other readers’ time and effort trying to troubleshoot something that isn’t
working, and at the same time improve future editions of this book.

XXXii

INTRODUCTION

To read the discovered errata for this book, go to Wrox’s website and use the search box to find this
title. Searching for its ISBN is the fastest way to locate it. On this book’s page, click the Errata link.
Here you can view all the errata that has been submitted by readers and verified by Wrox editors. If
you don’t spot the errata you found, go to the Wrox technical support page and complete the form
there to report the problem. After we verify the error and come up with a correction, we will post it
to this book’s errata page and fix the problem for future editions.

XXxiii

PART |
Creating Enterprise Applications

» CHAPTER 1: Introducing Java Platform, Enterprise Edition

» CHAPTER 2: Using Web Containers

» CHAPTER 3: Writing Your First Servlet

» CHAPTER 4: Using JSPs to Display Content

» CHAPTER 5: Maintaining State Using Sessions

» CHAPTER 6: Using the Expression Language in JSPs

» CHAPTER 7: Using the Java Standard Tag Library

» CHAPTER 8: Writing Custom Tag and Function Libraries

» CHAPTER 9: Improving Your Application Using Filters

» CHAPTER 10: Making Your Application Interactive with WebSockets

» CHAPTER 11: Using Logging to Monitor Your Application

Introducing Java Platform,
Enterprise Edition

IN THIS CHAPTER

» Java SE and Java EE version timeline
> Introducing Servlets, filters, listeners, and JSPs

> Understanding WAR, and EAR files, and the class loader hierarchy

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

NEW MAVEN DEPENDENCIES FOR THIS CHAPTER

There are no Maven dependencies for this chapter.

A TIMELINE OF JAVA PLATFORMS

The Java language and its platforms have had a long and storied history. From its invention in
the mid-‘90s to an evolution drought from 2007 to nearly 2012, Java has gone through many
changes and encountered its share of controversy. In the earliest days, Java, known as the Java
Development Kit or JDK, was a language tightly coupled to a platform composed of a small
set of essential application programming interfaces (APIs). Sun Microsystems unveiled the
earliest alpha and beta versions in 1995, and although Java was extremely slow and primitive
by today’s standards, it began a revolution in software development.

4 | CHAPTER1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

In the Beginning

Java’s history is summarized in Figure 1-1, a timeline of Java platforms. As of the publication of this
book, the Java language and the Java SE platform have always evolved together — new versions of
each always release at the same time and are tightly coupled to one another. The platform was called
the JDK through version 1.1 in 1997, but by version 1.2 it was clear that the JDK and the platform
were not synonymous. Starting with version 1.2 in late 1998, the Java technology stack was divided
into the following key components:

Feb 19, 1997 Dec 11, 2006 Jul 28, 2011
JDK 1.1 Released Java SE 6 Released Java SE 7 Released

Jan 23, 1996 May 8, 2000 Sep 30, 2004
JDK 1.0 Released J2SE 1.3 Released J2SE 5.0 Released 2007-2011
1995 Dec 8, 1998 Feb 6, 2002 The 5-Year Java Drought Mar 18, 2014
JDK Beta J2SE 1.2 Released | J2SE 1.4 Released Java SE 8 Released
[[[[T Y TV [
1995 2006-2009 2010-2013 2015

Jun 1997
Servlets 1.0
Released

Sep 24,2001

Java EE Drought #1 Java EE Drought #2
J2EE 1.3 Released

Dec 12, 1999 Nov 11, 2003 May 11, 2006 Dec 10, 2009 Jun 12, 2013
J2EE 1.2 Released J2EE 1.4 Released Java EE 5 Released Java EE 6 Released Java EE 7 Released

May 1998
Java Professional
Edition (JPE) Announced

FIGURE 1-1: A timeline showing the correlation of the evolution of Java Platform, Standard Edition and

Java Platform, Enterprise Edition. The events on top of the timeline represent Java SE milestones while the
events on the bottom represent Java EE milestones.

> Java is the language and includes a strict and strongly typed syntax with which you should
be very familiar by now.

> Java 2 Platform, Standard Edition, also known as J2SE, referred to the platform and
included the classes in the java.lang and java.io packages, among others. It was the
building block that Java applications were built upon.

> A Java Virtual Machine, or JVM, is a software virtual machine that runs compiled Java
code. Because compiled Java code is merely bytecode, the JVM is responsible for compiling
that bytecode to machine code before running it. (This is often called the Just In Time
Compiler or JIT Compiler.) The JVM also takes care of memory management so that
application code doesn’t have to.

> The Java Development Kit, or JDK, was and remains the piece of software Java developers
use to create Java applications. It contains a Java language compiler, a documentation
generator, tools for working with native code, and (typically) the Java source code for the
platform to enable debugging platform classes.

> The Java Runtime Environment, or JRE, was and remains the piece of software end users
download to run compiled Java applications. It includes a JVM but does not contain any of
the development tools bundled in the JDK. The JDK, however, does contain a JRE.

A Timeline of Java Platforms | 5

All five of these components have historically been specifications, not implementations. Any
company may create its own implementation of this Java technology stack, and many companies
have. Though Sun offered a standard implementation of Java, J2SE, the JVM, the JDK, and the
JRE, IBM, Oracle, and Apple also created competing implementations that offered different
features.

The IBM implementation was born out of need — Sun didn’t offer binaries capable of running on
IBM operating systems, so IBM created its own. The situation was similar for the Apple Mac OS
operating system, so Apple rolled its own implementation as well. Although the implementations
offered by these companies were all free as in beer, they were not free as in freedom, so they were
not considered open source software. As such, the open source community quickly formed the
Open]DK project, which provided an open source implementation of the Java stack.

Still more companies created less popular implementations, some of which compiled your
application to machine code for a target architecture to improve performance by avoiding JIT
compilation. For the vast majority of users and developers, the Sun Java implementation was both
sufficient and preferred. After Oracle’s purchase of Sun, the Sun and Oracle implementations
became one and the same.

Not shown in Figure 1-1 is the development of other languages capable of using the J2SE and
running on the JVM. Over the years, dozens of languages appeared that can compile to Java
bytecode (or machine code, in some cases) and run on the JVM. The most high-profile of these are
Clojure (a Lisp dialect), Groovy, JRuby (a Java-based Ruby implementation), Jython (a Java-based
Python implementation), Rhino, and Scala.

The Birth of Enterprise Java

This brief history lesson might seem unnecessary — as an existing Java developer, you have likely
heard most of this before. However, it’s important to include the context of the history of

the Java Platform, Standard Edition, because it is tightly woven into the birth and evolution of the
Java Platform, Enterprise Edition. Sun was already aware of the need for more advanced tools for
application development, particularly in the arena of the growing Internet and the popularity of
web applications. In 1998, shortly before the release of J2SE 1.2, Sun announced it was working
on a product called the Java Professional Edition, or JPE. Work had already begun on a technology
known as Servlets, which are miniature applications capable of responding to HTTP requests. In
1997, Java Servlets 1.0 released alongside the Java Web Server with little fanfare because it lacked
many features that the Java community wanted.

After several internal iterations of Servlets and the JPE, Sun released Java 2 Platform, Enterprise
Edition (or J2EE) version 1.2 on December 12, 1999. The version number corresponded with the
current Java and J2SE version at the time, and the specification included:

> Servlets 2.2

JDBC Extension API 2.0

Java Naming and Directory Interface (JNDI) 1.0
JavaServer Pages (JSP) 1.2

Enterprise JavaBeans (EJB) 1.1

Y Y Y VY

6 | CHAPTER1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

Java Message Service (JMS) 1.0
Java Transaction API (JTA) 1.0
JavaMail AP 1.1

Y Y VY Y

JavaBeans Activation Framework (JAF) 1.0.

Like J2SE, J2EE was a mere specification. Sun provided a reference implementation of

the specification’s components, but companies were free to create their own as well. Many
implementations evolved, and you learn about some of them in the next chapter. These
implementations included and still include open source and commercial solutions. The J2EE quickly
became a successful complement to the J2SE, and over the years some components were deemed so
indispensable that they have migrated from J2EE to J2SE.

Java SE and Java EE Evolving Together

J2EE 1.3 released in September 2001, a little more than a year after Java and J2SE 1.3 and before
Java/J2SE 1.4. Most of its components received minor upgrades, and new features were added into
the fold. The following joined the J2EE specification, and the array of implementations expanded
and upgraded:

> Java API for XML Processing (JAXP) 1.1

> JavaServer Pages Standard Tag Library (JSTL) 1.0
> J2EE Connector Architecture 1.0
>

Java Authentication and Authorization Service (JAAS) 1.0

At this point the technology was maturing considerably, but it still had plenty of room for
improvement.

J2EE 1.4 represented a major leap in the evolution of the Java Platform, Enterprise Edition. Released
in November 2003 (approximately a year before Java/J2SE 5.0 and 2 years after Java/J2SE 1.4), it
included Servlet 2.4 and JSP 2.0. It was in this version that the JDBC Extension API, JNDI, and
JAAS specifications were removed because they had been deemed essential to Java and moved to
Java/J2SE 1.4. This version also represented the point at which J2EE components were broken up
into several higher-level categories:

> Web Services Technologies: Included JAXP 1.2 and the new Web Services for J2EE 1.1, Java
API for XML-based RPC (JAX-RPC) 1.1, and Java API for XML Registries (JAXR) 1.0

> Web Application Technologies: Included the Servlet, JSP, and JSTL 1.1 components, as well
as the new Java Server Faces (JSF) 1.1

> Enterprise Application Technologies: Included EJB 2.1, Connector Architecture 1.5, JMS
1.1, JTA, JavaMail 1.3, and JAF

> Management and Security Technologies: Included Java Authorization Service Provider
Contract for Containers (JACC) 1.0, Java Management Extensions (JMX) 1.2, Enterprise
Edition Management API 1.0, and Enterprise Edition Deployment API 1.1

A Timeline of Java Platforms | 7

The Era of the Name Changes

Enter the era of the name changes, which are often a source of confusion for Java developers. They
are highlighted here so that you fully understand the naming conventions used in this book and how
they relate to the previous naming conventions you may already be familiar with. Java and J2SE

5.0 were released in September 2004, and included generics, annotations, and enums, three of the
most radical language syntax changes in Java history. This version number was a departure from
previous patterns, made more confusing by the fact that the J2SE APIs and the java command-

line tool reported the version number as being 1.5. Sun had made the decision to drop the 1 from
the publicized version number and go by the minor version, instead. It quickly recognized that the
“dot-oh” on the end of the version number was a source of confusion and quickly began referring to
it as simply version S.

About the same time, the decision was made to retire the name Java 2 Platform, Standard Edition
in favor of Java Platform, Standard Edition and to abbreviate this new name Java SE. The changes
were made formal with Java SE 6, released in December 2006, and to this day the name and version
convention has remain unchanged. Java SE 6 is internally 1.6, Java SE 7 is internally 1.7, and Java
SE 8 is internally 1.8.

The same name and number change decisions were applied to J2EE, but because J2EE 1.5 was set
to release between J2SE 5.0 and Java SE 6, the changes were applied a version early. Java Platform,
Enterprise Edition 5, or Java EE 5, was released in May 2006, approximately 18 months after J2SE
5.0 and 7 months before Java SE 6. Internally Java EE 5 is 1.5, Java EE 6 is 1.6, and Java EE 7 is
1.7. Whenever you see the terms J2SE or Java SE, they are interchangeable, and the preferred and
accepted name today is Java EE. Likewise, J2EE and Java EE are interchangeable, but Java EE is
preferred today. The rest of this book refers to them exclusively as Java SE and Java EE.

Java EE 5 grew and included numerous changes and improvements again, and today it is still one of
the most widely deployed Java EE versions. It included the following changes and additions:

> JAXP and JMX moved to J2SE 5.0 and were not included in Java EE 5.

> Java API for XML-based Web Services (JAX-WS) 2.0, Java Architecture for XML Binding
(JAXB) 2.0, Web Service Metadata for the Java Platform 2.0, SOAP with Attachments API
for Java (SAAJ) 1.2, and Streaming API for XML (StAX) 1.0 were added to Web Services
Technology.

> Java Persistence API (JPA) 1.0 and Common Annotations API 1.0 were added to Enterprise
Applications Technology.

The Java SE and EE Droughts

The release of Java SE 6 in December 2006, marked the beginning of a drought for Java SE releases
that lasted approximately 5 years. This time was a period of frustration and even anger for many

in the Java community. Sun continued to promise new language features and APIs for Java SE 7, but
the schedule continued to slip year after year with no end in sight. Meanwhile other technologies,
such as the C# language and .NET platform, caught up to and surpassed Java in language features
and platform APIs, causing some to speculate whether Java had reached the end of its useful life.

To make matters worse, Java EE entered its own drought period and by 2009, more than 3 years

8 | CHAPTER1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

had passed since Java EE 5 was released. All was not lost, however. Java EE 6 development picked
up in early 2009, and it released in December 2009, 3 years and 7 months after Java EE 5, and 3
years almost to the day after Java SE 6.

By this time, Java Enterprise Edition became enormous:
> SAAJ, StAX, and JAF moved to Java SE 6.

> The Java API for RESTful Web Services (JAX-RS) 1.1 and Java APIs for XML Messaging
(JAXM) 1.3 specifications were added to Web Services Technologies.

> The Java Unified Expression Language (JUEL or just EL) 2.0 was added to Web Application
Technologies.

> Management and Security Technologies saw the addition of Java Authentication Service
Provider Interface for Containers (JASPIC) 1.0.

> Enterprise Application Technologies realized the most dramatic increase in features,
including Contexts and Dependency Injection for Java (CDI) 1.0, Dependency Injection
for Java 1.0, Bean Validation 1.0, Managed Beans 1.0, and Interceptors 1.1, in addition to
updates to all its other components.

Java EE 6 also represented a major turning point in the architecture of Java EE on two fronts:

> This version introduced annotation-based and programmatic application configuration to
complement the traditional XML configuration used for more than a decade.

» This version marked the introduction of the Java EE Web Profile.

To account for the fact that Java EE had become so large (and maintaining and updating certified
implementations was becoming increasingly difficult), the Web Profile certification program offered
the opportunity to certify Java EE implementations that included only a subset of the entire Java

EE platform. This subset included the features deemed to be most critical to a large number of
applications and excluded specifications that are used only by a small minority of applications. As of
Java EE 6:

> None of the Web Services or Management and Security components are part of the Java EE
Web Profile.

» The Web Profile includes everything from Web Application Technologies and everything
from Enterprise Application Technologies except Java EE Connector Architecture, JMS, and
JavaMail.

It was during the 5-year Java drought that Oracle Corporation bought Sun Microsystems in January
2010. Coupled with the Java SE drought, this brought a whole new set of concerns for the Java
community. Oracle was never known for its agility or willingness to cooperate with open source
projects, and many people feared Oracle had bought Sun to shut Java down. However, this turned
out not to be the case.

Early on, Oracle began reorganizing the Java team, creating communication pipelines with the
open source community, and releasing roadmaps for future Java SE and Java EE versions that were
more realistic than anything Sun had promised. Work began anew on Java SE 7, which released on

A Timeline of Java Platforms | 9

(Oracle’s) schedule in June 2011, almost 5 years after Java SE 6. A second Java EE drought ended
with the release of Java EE 7 in June 2013, 3 years and 7 months after Java EE 6. Oracle now says
it is on track to begin releasing new versions of both platforms every 2 years, on alternate years. It
remains to be seen whether that will come to pass.

Understanding the Most Recent Platform Features

Java SE 7 and 8 and Java EE 7 have brought major changes to the language and supporting APIs and
resulted in a rejuvenation of Java technologies. You use these new features throughout this book, so
this section provides an overview of them.

Java SE 7

Originally, Java SE 7 had a very ambitious feature list, but after acquiring Sun, Oracle quickly
admitted that achieving the goals for Java SE 7 would take many, many years. Every feature was the
most important feature to some group of users, so the decision was made to defer some of them to
future versions. The alternative was to delay the release of Java SE 7 until 2015 or later — an option
that was not acceptable.

Java SE 7 included support for dynamic languages as well as compressed 64-bit pointers (for
improved performance on 64-bit JVMs). It also added several language features that made
developing Java applications more productive. Perhaps one of the most useful changes was
diamonds, a shortcut for generic instantiation. Prior to Java 7, both the variable declaration and the
variable assignment for generic types had to include the generic type arguments. For example, here
is a declaration and assignment for a very complex java.util.Map variable:

Map<String, Map<String, Map<Integer, List<MyBeans>>>> map =
new Hashtable<String, Map<String, Map<Integer, List<MyBean>>>>();

Of course, this declaration contains a lot of redundant information. Assigning anything other than
a Map<String, Map<String, Map<Integer, List<MyBean>>>>tOthiSVarhﬂﬂe\woukibeiﬂegah
so why should you have to specify all those type arguments again? Using Java 7 diamonds, this
declaration and assignment becomes much simpler. The compiler infers the type arguments for the
instantiated java.util.Hashtable.

Map<String, Map<String, Map<Integer, List<MyBean>>>> map = new Hashtable<>();

Another common complaint about Java prior to Java 7 is the management of closable resources as it
relates to try-catch-finally blocks. In particular, consider this nasty bit of JDBC code:

Connection connection = null;

PreparedStatement statement = null;

ResultSet resultSet = null;

try

{
connection = dataSource.getConnection/() ;
statement = connection.prepareStatement(...);
// set up statement
resultSet = statement.executeQuery() ;
// do something with result set

10 | CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

catch (SQLException e)

// do something with exception

}

finally
{
if (resultSet != null) ({
try {
resultSet.close() ;
} catch(SQLException ignore) { }

}
if (statement != null) {
try {
statement.close () ;
} catch(SQLException ignore) { }
}
if (connection != null && !connection.isClosed()) ({

try {
connection.close() ;
} catch(SQLException ignore) { }

}

Java 7’s try-with-resources has drastically simplified this task. Any class implementing
java.lang.AutoCloseable is eligible for use in a try-with-resources construct. The JDBC
Connection, PreparedStatement, and Resultset interfaces extend this interface. When you

use try-with-resources as shown in the following example, the resources you declare within the

try keyword’s parentheses are automatically closed in an implicit £inally block. Any exceptions
thrown during this cleanup are added to an existing exception’s suppressed exceptions or, if there is
no existing exception, are thrown after the resources have all been closed.

try(Connection connection = dataSource.getConnection() ;
PreparedStatement statement = connection.prepareStatement(...))

// set up statement
try(ResultSet resultSet = statement.executeQuery())

// do something with result set

}
}

catch (SQLException e)

// do something with exception

Another improvement made to try-catch-finally is the addition of multi-catch. As of Java 7 you can
now catch multiple exceptions within a single catch block, separating the exception types with a
single pipe. For example:

try

{

// do something

A Timeline of Java Platforms | 11

}

catch (MyException | YourException e)

// handle these exceptions the same way

}

One caveat to keep in mind is that you can’t multi-catch two or more exceptions such that one
inherits from another. For example, the following is prohibited because FileNotFoundException
extends IOException:
try {
// do something

} catch(IOException | FileNotFoundException e)
// handle these exceptions the same way
}

Of course, this can easily be considered a matter of common sense. In this case, you would simply
catch 10Exception, which would catch both types of exceptions.

A few other miscellaneous language features in Java 7 include binary literals for bytes and integers
(you can write the literal 1928 as 0b11110001000) and underscores in numeric literals (you can
write the same literals as 1_928 and 0b111_1000_1000, if desired). In addition, you can finally use
Strings as switch arguments.

Java EE 7

Java EE 7, released on June 12, 2013, contains a number of changes and new features. You’ll cover
many of these new features throughout this book, so they are not detailed here. In summary, the
changes to Java EE 7 are as follows:

> JAXB was added to Java SE 7 and is no longer included in Java EE.

> Batch Applications for the Java Platform 1.0 and Concurrency Utilities for Java EE 1.0 were
added to Enterprise Application Technologies.

> Web Application Technologies picked up Java API for WebSockets 1.0 (which you learn
about in Chapter 10) and Java API for JSON Processing 1.0.

> The Java Unified Expression Language has been significantly expanded to include lambda
expressions and an analog of the Java SE 8 Collections Stream API. (You learn more about
this in Chapter 6.)

> The Web Profile was expanded slightly to include specifications more likely to be required
in common web applications: JAX-RS, Java API for WebSockets, and Java API for JSON
Processing.

Java SE 8

The new features in Java SE 8 can come in very handy as you work the examples in this book.
Perhaps most visible is the addition of lambda expressions (unofficially known as closures). Lambda
expressions are anonymous functions that are defined, and possibly called, without being assigned

12 | CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

a type name or bound to an identifier. Lambda expressions are particularly useful for anonymously
implementing those one-method interfaces that are so common in Java applications. For example, a
Thread that was previously instantiated with an anonymous Runnable like this:

public String doSomethingInThread (String someArgument)

{

Thread thread = new Thread(new Runnable() {
@Override
public void run()

{

// do something

can now be simplified with a lambda expression:

public String doSomethingInThread (String someArgument)

{

Thread thread = new Thread(() -> {
// do something

b ;
}

Lambda expressions can have arguments, return types, and generics. And where desired, you can
use a method reference instead of a lambda expression to pass a reference to an interface-matching
method. The following code is also equivalent to the previous two instantiations of Thread. You can
also assign method references and lambda expressions to variables.

public String doSomethingInThread (String someArgument)

{

Thread thread = new Thread(this::doSomething) ;

}

public void doSomething()

{
}

One of the biggest complaints among Java users since its earliest days is the lack of a decent date and
time APL. java.util.Date has always been rife with problems, and the addition of java.util
.Calendar just made many problems worse. Java SE 8 finally addresses that with JSR 310, a new
date and time API. This API is based largely on Joda Time, but with improvements to the underlying
architecture to fix problems in it that the Joda Time inventor pointed out. This APl is a revolutionary
addition to the Java SE platform APIs and finally brings a powerful and well-designed date and time
API to Java.

// do something

Understanding the Basic Web Application Structure | 13

A Continuing Evolution

As you can tell, the Java SE and EE platforms were born together and have evolved hand-in-hand
for nearly two decades. It’s probable that they will continue to evolve together for many years or
decades to come. You should be fairly familiar with Java SE, but it’s possible you know absolutely
nothing about using Java EE. It’s also possible you’re familiar with older Java EE versions but want
to learn more about the new features in Java EE.

Part I of this book teaches you about the most important features in Java EE, including:
> Application servers and web containers (Chapter 2)

Servlets (Chapter 3)

JSPs (Chapters 4, 6, 7, and 8)

HTTP sessions (Chapter 5)

Filters (Chapter 9)

WebSockets (Chapter 10).

Y Y ¥V VY Y

UNDERSTANDING THE BASIC WEB APPLICATION STRUCTURE

A lot of components go into making a Java EE web application. First, you have your code and
the third-party libraries it depends on. Then you have the deployment descriptor, which includes
instructions for deploying and starting your application. You also have the classLoaders
responsible for isolating your application from other web applications on the same server. Finally,
you must package your application somehow, and for that you have WAR and EAR files.

Servlets, Filters, Listeners, and JSPs

Servlets are a key component of any Java EE web application. Servlets, which you learn about in
Chapter 3, are Java classes responsible for accepting and responding to HTTP requests. Nearly
every request to your application goes through a Servlet of some type, except those requests that are
erroneous or intercepted by some other component. A filter is one such component that can intercept
requests to your Servlets. You can use filters to meet a variety of needs, from data formatting, to
response compression, to authentication and authorization. You explore the various uses of filters in
Chapter 9.

As with many other different types of applications, web applications have a life cycle. There are
both startup and shutdown processes, and many different things happen during these stages.
Java EE web applications support various types of listeners, which you learn about throughout
Parts I and II. These listeners can notify your code of multiple events, such as application startup,
application shutdown, HTTP session creation, and session destruction.

Perhaps one of the most powerful Java EE tools at your disposal is the JavaServer Pages technology,
or JSP. JSPs provide you with the means to easily create dynamic, HTML-based graphical user
interfaces for your web applications without having to manually write strings of HTML to an
OutputStream or PrintWriter. The topic of JSPs encompasses many different facets, including the

14 | CHAPTER1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

JavaServer Pages Standard Tag Library, the Java Unified Expression Language, custom tags, and
internationalization and localization. You will spend significant time on these features in Chapter 4
and Chapters 6 through 9.

Of course, there are many more features in Java EE than just Servlets, filters, listeners, and JSPs.
You will cover many of these in this book, but not all of them.

Directory Structure and WAR Files

Standard Java EE web applications are deployed as WAR files or “exploded” (unarchived) web
application directories. You should already be familiar with JAR, or Java Archive, files. Recall that a
JAR file is simply a ZIP-formatted archive with a standard directory structure recognized by JVMs.
There is nothing proprietary about the JAR file format, and any ZIP archive application can create
and read JAR files. A Web Application Archive, or WAR, file is the equivalent archive file for Java
EE web applications.

All Java EE web application servers support WAR file application archives. Most also support
exploded application directories. Whether archived or exploded, the directory structure convention,
as shown in Figure 1-2, is the same. Like a JAR file, this structure contains classes and other
application resources, but those classes are not stored relative to the application root as in a JAR file.
Instead, the class files live in /WEB-INF/classes. The WEB-INF directory stores informational and
instructional files that Java EE web application servers use to determine how to deploy and run the
application. Its classes directory acts as the package root. All your compiled application class files
and other resources live within this directory.

Unlike standard JAR files, WAR files can contain bundled -
JAR files, which live in /WEB-INF/1ib. All the classes in
the JAR files in this directory are also available to the
application on the application’s classpath. The /WEB-
INF/tags and /WEB-INF/t1d directories are reserved | @ Container Resources
for holding JSP tag files and tag library descriptors, -4 WEB-INF

respectively. You’ll explore the topic of tag files and tag
libraries thoroughly in Chapter 8. The i18n directory
is not actually part of the Java EE specifications, but it

WebApplication Root
~#- META-INF
------- {-] MANIFEST.MF

Ry classes

-4 META-INF

is a convention that most application developers follow t--[7) Application Resources
for storing internationalization (i18n) and localization L— Lﬁ Java .class Files and Resources
(LlOn) files. ek i18n
You probably also noticed the presence of two different - {7 Internationalization Files
META- INF directories. This can be a source of confusion | i _ + lib
for some developers, but if you remember the simple .

. . . . s @ Bundled JAR Files
classpath rules, you can easily differentiate the two. Like
JAR file META- INF directories, the root-level /META-INF T4 tags
directory contains the application manifest file. It can oo [JSP Tag Files
also contain resources for specific web containers or ot tld

application servers. For example, Apache Tomcat (which
you’ll learn about in Chapter 2) looks for and uses a

context .xml file in this directory to help customize how
the application is deployed in Tomcat. None of these files

N @ JSP Tag Library Descriptors
------- u__h‘j Other Web-Accessible Files
FIGURE 1-2

Understanding the Basic Web Application Structure | 15

are part of the Java EE specification, and the supported files can vary from one application server or
web container to the next.

Unlike JAR files, the root-level /META-INF directory is zot on the application classpath. You cannot
use the ClassLoader to obtain resources in this directory. /WEB-INF/classes/META- INF, however,
is on the classpath. You can place any application resources you desire in this directory, and they
become accessible through the classLoader. Some Java EE components specify files that belong

in this directory. For example, the Java Persistence API (which you’ll learn about in Part IIT of this
book) specifies two files — one named persistence.xml and another orm.xml — that live in
/WEB-INF/classes/META-INF.

Most files contained within a WAR file or exploded web application directory are resources directly
accessible through a URL. For example, the file /bar.html relative to the root of an application
deployed to http://example.org/foo is accessible from http://example.org/foo/bar.html.

In the absence of any filter or security rules to the contrary, this holds true for all resources in your
application except those resources under the /WEB-INF and /META-INF directories. The files in these
directories are protected resources that are not accessible via URL.

The Deployment Descriptor

The deployment descriptor is the metadata that describes the web application and provides
instructions to the Java EE web application server for deploying and running the web application.
Traditionally, all this metadata came from the deployment descriptor file, /WEB-INF/web.xml.

This file contains definitions for Servlets, listeners, and filters, and configuration options for HTTP
sessions, JSPs, and the application in general. Servlet 3.0 in Java EE 6 added the ability to configure
web applications using annotations and a Java configuration APIL. It also added the notion of web
fragments — JAR files within your application can contain Servlets, filters, and listeners configured
in /META-INF/web-fragment .xml deployment descriptors within the necessary JAR files. Web
fragments can also use annotations and the Java configuration API.

This change to the deployment of web applications in Java EE 6 added significant complexity to
the task of organizing this process. To ease this complexity, you can configure the order of your
web fragments so that they are scanned and activated in a specific sequence. This happens one of
two ways:

> Each web fragment’s web-fragment .xml file can contain an <ordering> element that
uses nested <before> and <afters tags to control whether the web fragment activates
before or after other web fragments. These tags contain nested <name> elements to specify
the name of another fragment relative to which the current fragment should be ordered.
<befores> and <afters can alternatively contain nested <others> elements to indicate
that the fragment should activate before or after any other fragments not specifically
named.

> 1If you didn’t create a particular web fragment and don’t have control over its contents, you
can still control the order of your web fragments within your application’s deployment
descriptor. The <absolute-orderings element in /WEB-INF/web.xml, together with its
nested <name> and <others> elements, configures an absolute order for bundled web
fragments that overrides any order instructions that come with the web fragments.

16

CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

By default, Servlet 3.0 and newer environments scan web applications and web fragments

for Java EE web application annotations for configuring Servlets, listeners, filters, and more.
You can disable this scanning and disable annotation configuration by adding the attribute
metadata-complete="true" to the root <web-app> Or <web-fragment> elements as needed.
You can also disable all web fragments in your application by adding <absolute-ordering />
(without any nested elements) to your deployment descriptor.

You learn more about the web application deployment descriptor and annotation configuration
throughout Part I of the book. In Part I, you explore the container initializer and programmatic
configuration with the Java API, and see how it can make bootstrapping Spring Framework easier
and testable.

Class Loader Architecture

When working with Java EE web applications, it’s essential to understand the classLoader
architecture because it differs from the architecture to which you are accustomed in standard Java
SE applications. In a typical application, the java.* classes that come with the Java SE platform
are loaded in a special root classLoader that cannot be overridden. This is a security measure that
prevents malicious code from, for example, replacing the string class or redefining Boolean . TRUE
and Boolean.FALSE.

After this ClassLoader comes the extension ClassLoader, which loads classes from the extensions
JARs in the JRE installation directory. Finally, the application classLoader loads all other classes
in the application. This forms a hierarchy of classLoaders, with the root serving as the earliest
ancestor for all classLoaders. When a lower-level classLoader is asked to load a class, it always
delegates to its parent ClassLoader first. This continues up until the root classLoader is checked.
With the exception of the root ClassLoader, a ClassLoader loads a class from its collection of
JARs and directories only if its parent ClassLoader first fails to find the class.

This method of class loading is called the parent-first class loader delegation model, and although
it works great for many types of applications, it is not ideal for most Java EE web applications.

A server that runs Java EE web applications is typically extraordinarily complex and a number

of vendors could provide its implementation. The server could use some of the same third-party
libraries that your application uses, but they may be of conflicting versions. In addition, different
web applications could also provide conflicting versions of the same third-party libraries, leading
to even more problems. To solve these problems, you need a parent-last class loader delegation
model.

In Java EE web application servers, each web application is assigned its own isolated classLoader
that inherits from the common server ClassLoader. By isolating the applications from each

other, they cannot access each other’s classes. This not only eliminates the risk of conflicting
classes, but it also serves as a security measure preventing web applications from interfering with
or harming other web applications. In addition, a web application classLoader (typically) asks
its parent to load a class only if it can’t load the class itself first. In this way, the class loading is
delegated to the parent last instead of the parent first, and web application classes and libraries
are preferred over those that the server supplies. To maintain the protected status of bundled Java
SE classes, web application classLoaders still check the root classLoader before attempting to
load any classes. Although this delegation model is more preferable for web applications in nearly

Understanding the Basic Web Application Structure | 17

all cases, there are still rare circumstances in which it is not appropriate. For this reason, Java
EE-compliant servers provide the capability of changing the delegation model from parent-last
back to parent-first.

Enterprise Archives
4 EnterpriseApplication.ear
You’ve learned about WAR files, but there’s another type of Java

EE archive that you should know about: EAR files. An Enterprise 4 META-INF
Archive is a collection of JAR files, WAR files, and configuration
files compressed into a single, deployable archive (in ZIP format,
just like JARs and WARs). —» MANIFEST.MF

—» application.xml

Figure 1-3 shows a sample EAR file. As with a WAR file, the —» Modulel.war
root /META-INF directory contains the archive manifest and

is not available to the application classpath. The /META- INF/ —> Module2.war

application.xml file is a special deployment descriptor that —» SharedClasses.jar
describes how to deploy the various components included within the
EAR file. At the root level of an EAR file are all the web application —» ThirdParty.jar

modules included within it — one WAR file for each module. There FIGURE 1-3

is nothing special about these WAR files; they can have all the

same contents and features as a normal, standalone WAR file. The EAR file can also contain JAR
libraries, which can serve many purposes. The JAR files can contain Enterprise JavaBeans declared
in the /META-INF/application.xml deployment descriptor, or they can be simple third-party
libraries that two or more WAR modules share within the enterprise archive.

As you might have figured, enterprise archives also come with their own ClassLoader architecture.
Typically, an additional classLoader is inserted into the hierarchy between the server classLoader
and the web application classLoaders assigned to each module. This classLoader isolates the
enterprise application from other enterprise applications but enables multiple modules in a single
EAR to share common libraries contained within the EAR. This new classLoader can use either
the parent-last (default) or parent-first delegation models. The web application ClassLoaders can
then either delegate parent-first (enabling EAR library classes to take precedence) or parent-last
(enabling WAR classes to take precedence).

Although it is useful to understand enterprise archives, they are a feature of the full Java EE
specification, and most web container-only servers (such as Apache Tomcat) do not support them.
As such, they are not discussed further in this book.

WARNING The ClassLoader examples described in this section are just

that — examples. Though the Java EE specifications do describe parent-first and
parent-last class loading, different implementations achieve these models in dif-
ferent ways, and each server could have certain nuances that might cause prob-
lems depending on your needs. You should always read the documentation of the
server you choose so that you can determine whether the ClassLoader architec-
ture of that particular server is appropriate for you.

18 | CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

SUMMARY

In this chapter you explored the histories of the Java Platform, Standard Edition and Java Platform,
Enterprise Edition and learned how the two platforms evolved together over the last 19 years. You
were briefly introduced to some of the topics covered in this book — Servlets, filters, listeners, JSPs,
and more — and saw how Java EE applications are structured, both internally and on the filesystem.
You then learned about web application archives and enterprise archives and how they serve as
vessels for transporting and deploying Java EE applications.

The rest of the book explores these topics in much greater detail, answering the many questions that
you likely have after reading the last several pages. In Chapter 2 you take a closer look at application
servers and web containers, what they are, and how to choose one for your purposes. You also learn
how to install and use Tomcat for the examples in this book.

Using Web Containers

IN THIS CHAPTER

Choosing a web container
Installing Tomcat on your machine
Deploying and undeploying applications in Tomcat

Debugging Tomcat from IntelliJ IDEA

Y Y Y Y Y

Debugging Tomcat from Eclipse

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox. com code downloads for this chapter http: //www.wrox.com/go/
projavaforwebapps on the Download Code tab. The code for this chapter is divided into the
following major examples:

> sample-deployment WAR Application File
> Sample-Debug-Intelli] Project
> Sample-Debug-Eclipse Project

NEW MAVEN DEPENDENCIES FOR THIS CHAPTER

There are no Maven dependencies for this chapter.

CHOOSING A WEB CONTAINER

In the previous chapter you were introduced to the Java Platform, Enterprise Edition, and the
concepts of Servlets, filters, and other Java EE components. You also learned about some of
the new features in Java 7 and 8. Java EE web applications run within Java EE application
servers and web containers (also known as Servlet containers, and this book uses the terms
interchangeably).

20

CHAPTER 2 USING WEB CONTAINERS

Although the Java EE specification is full of many smaller sub-specifications, most web containers
implement only the Servlet, JSP, and JSTL specifications. This is different from full-blown Java

EE application servers, which implement the entire Java EE specification. Every application server
contains a web container, which is responsible for managing the life cycle of Servlets, mapping
request URLs to Servlet code, accepting and responding to HTTP requests, and managing the filter
chain, where applicable. However, standalone web containers are often lighter-weight and easier to
use when you don’t require the entire feature set of Java EE.

Choosing a web container (or an application server, for that matter) is a task that requires careful
research and consideration for the requirements of your project. You have many options for
choosing a web container, and each has its advantages and challenges. You may use a variety of web
containers. For example, you may decide to use Apache Tomcat for local testing on your developers’
machines while using GlassFish for your production environment. Or you may write an application
that your customers deploy on their own servers, in which case you probably want to test on many
different application servers and web containers.

In this section you learn about some common web containers and application servers, and in the
remaining sections you take a closer look at the one you use for the rest of this book.

Apache Tomcat

Apache Tomcat is the most common and popular web container available today. Sun Microsystems
software engineers originally created this web container as the Sun Java Web Server, and it was

the original reference implementation of the Java EE Servlet specification. Sun later donated it

to the Apache Software Foundation in 1999, and at that point it became Jakarta Tomcat and
eventually Apache Tomcat. It is also interesting to note that Apache’s evolution of Tomcat led to the
development of the Apache Ant build tool, which thousands of commercial and open source projects
use today.

Tomcat’s primary advantages are its small footprint, simple configuration, and long history of
community involvement. Typically, developers can be up-and-running with a functional Tomcat
installation in § to 10 minutes, including download time. Tomcat requires very little configuration
out-of-the-box to run well on a development machine, but it can also be tuned significantly to
perform well in high-load, high-availability production environments. You can create large Tomcat
clusters to handle huge volumes of traffic reliably. Tomcat is often used in commercial production
environments due to its simplicity and lightweight profile. However, Tomcat lacks the sophisticated
web management interface than many of its competitors offer for configuring the server. Instead,
Tomcat provides only a simple interface for basic tasks, such as deploying and undeploying
applications. For further configuration, administrators must manipulate a collection of XML and
Java properties files. In addition, because it is not a full application server, it lacks many Java EE
components, such as the Java Persistence API, the Bean Validation API, and the Java Message Service.

As you can imagine, this makes Tomcat great for many tasks but does make deploying more
complex enterprise applications challenging and, sometimes, impossible. If you like Tomcat but
need a full Java EE application server, you can turn to Apache TomEE, which is built on Tomcat
but offers a full implementation of all the Java EE components. Being built on Tomcat, it has the
full force of the Tomcat community and more than a decade of testing behind it. Apache also offers
Geronimo, another open source full Java EE application server.

Choosing a Web Container | 21

NOTE TomEE and Geronimo are both Oracle-certified Java EE application
servers, meaning they have been verified to be in compliance with all aspects of
the Java EE specification. Because Tomcat is only a web container, it has no such
certification. However, its huge user base and active community ensure that it
accurately implements the Java EE components it provides.

Tomcat provides implementations of the Servlet, Java Server Pages (JSP), Java Unified Expression
Language (EL), and WebSocket specifications. Table 2-1 lists several Tomcat versions and the
specifications they implement. Only Tomcat 6, 7, and 8 are still supported. Versions 3.3, 4.1,
and 5.5 reached end of life years ago. You can read more about Apache Tomcat on the Tomcat
website.

TABLE 2-1: Tomcat Versions and Their Specifications

TOMCAT VERSION JAVA EE* SERVLET JSP EL WEBSOCKET MIN. JAVA SE VERSION
3.3.x 1.2 2.2 1.1 - - 1.1

4.1.x 1.3 2.3 1.2 - - 1.3

5.5.x 1.4 24 2.0 - - 1.4

6.0.x 5 2.5 2.1 2.1 - 5.0

7.0.x 6 3.0 2.2 22 - 6

8.0.x 7 3.1 2.3 3.0 1.0 7

* The Java EE column indicates only the equivalent Java EE version; Tomcat is not an application server and
does not implement Java EE. A hyphen in a column indicates that the Tomcat version did not implement that
particular specification.

GlassFish

GlassFish Server is an open source and commercial full Java EE application server implementation.
It provides all the features in the Java EE specification, including a web container, and is currently
the reference implementation for the Java EE specification. Its web container is actually a derivative
of Apache Tomcat; however, it has evolved considerably since the Tomcat core was forked to create
GlassFish, and the code is hardly recognizable today. The open source edition of GlassFish offers
community support, whereas the commercial Oracle GlassFish Server provides paid, commercial
support through Oracle Corporation. Oracle is only offering commercial support through Java EE 7.
Starting with Java EE 8, GlassFish will not include a commercial support option.

One of GlassFish’s strengths is its management interface, which provides a graphical web user
interface, a command-line interface, and configuration files to configure anything within the server.
Server administrators can even use the management interface to deploy new GlassFish instances
within a GlassFish cluster. As the reference implementation, it is also always the first server to

roll out a new version whenever the specification is updated. The first version of GlassFish was

22 | CHAPTER 2 USING WEB CONTAINERS

released in May 2006, and implemented the Java EE § specification. In September 2007, version
2.0 added support for full clustering capabilities. Version 3.0 — the reference implementation for
Java EE 6, released in December 2009 — included several enterprise improvements. This version
represented a turning point in GlassFish’s popularity, and it became extremely simple to manage an
enterprise clustered GlassFish environment. In July 2011, version 3.1.1 improved several enterprise
features and added support for Java SE 7, though Java SE 6 was still the minimum required version.
GlassFish 4.0 released in June 2013 as the reference implementation of Java EE 7 and requires a
minimum Java SE 7.

You can read more about GlassFish, and download it if you want, at the GlassFish website.

JBoss and WildFly

Red Hat’s JavaBeans Open Source Software Application Server (JBoss AS) was the second-most
popular Java EE server, next to Tomcat, as of early 2013. Historically, JBoss AS has been a web
container with Enterprise JavaBeans support and some other Java EE features. Eventually it became
Web Profile-certified and, in 2012, became certified as a full Java EE application server. Over

time, the name JBoss also became synonymous with a development community (like Apache) that
provided several products, as well as the commercial JBoss Enterprise Application Platform. The
application server retained the name JBoss AS through version 7.1.x, but in 2012, the community
decided that the name was the source of too much confusion due to other JBoss projects. The
application server was renamed to WildFly as of version 8.0, released in early 2014.

Similar to GlassFish, WildFly is open source with free support provided by the JBoss Community
and paid, commercial support provided by Red Hat. It has a comprehensive set of management
tools and provides clustering and high-availability capabilities like Tomcat and GlassFish. JBoss
AS versions 4.0.x through 4.2.x were built atop Tomcat 5.5 and supported Java EE 1.4 features.
Version 5.0 introduced Java EE 5 support and a brand new web container, and 5.1 contained
early implementations of some Java EE 6 features (although it was still a Java EE 5 application
server). JBoss AS 6.0 implemented the Java EE 6 Web Profile, but it did not seek or obtain a Java
EE 6 application server certification. JBoss AS 7.0 represented a complete rewrite of the product
to dramatically decrease its footprint and increase its performance, and also supported only the
Java EE 6 web profile. It was not until JBoss AS 7.1 that it again became a full application server,
achieving Java EE 6 certification more than 2 years after Java EE 6 was released. WildFly 8.0 is
a full Java EE 7 application server and requires a minimum of Java SE 7. (Actually, all Java EE 7
application servers and web containers require a minimum of Java SE 7.)

You can learn more about and download JBoss AS 7.1 and earlier at the JBoss website, whereas you
can find WildFly 8.0 at the WildFly website.

Other Containers and Application Servers

There are many other web containers, such as Jetty and Tiny, and open source full Java EE application
servers, such as JOnAS, Resin, Caucho, and Enhydra. There are also a number of commercial full
application servers, of which Oracle WebLogic and IBM WebSphere are the most popular. Table 2-2
shows some of these servers and the versions that supported various Java EE specifications.

Installing Tomcat on Your Machine | 23

TABLE 2-2: Container and Application Server Versions

SERVER J2EE 1.2 J2EE 1.3 J2EE 1.4 JAVA EE 5 JAVA EE 6 JAVA EE 7

Jetty* 3.x 4.x 5.x 6.x: J2SE 1.4 8.x: Java SE 6 9.1.x
7.x:JavaSE 5.0 9.0.x: JavaSE 7

WebLogic 6.x 7.x-8.x 9.x 10.x: Java SE 6 12¢ 12.1.4*%*
11g PS5: Java
SE7

WebSphere 4.x 5.x 6.x 7.x 8.x: Java SE 6 9.x**

8.5.x: Java SE 7

* Web container only; not a full application server

** These are speculated versions — Oracle and IBM have not officially announced Java EE 7 support yet.

Each web container or application server has its own advantages and disadvantages. The task of
picking an application server cannot be covered in a single chapter and is beyond the scope of this
book. The needs of your organization’s project must be understood, and the right web container or
application server that meets those needs should be chosen. Operational budgets must be considered
because commercial application servers tend to have an extremely high cost of licensing. All these
factors will impact your decision, and you may pick a server that isn’t even listed in this book.

Why You'll Use Tomcat in This Book

Many of the advantages of Apache Tomcat (which is referred to simply as Tomcat for the rest of
this book) have already been outlined. Perhaps most important for this book is the ease with which
developers can start using Tomcat. By far, Tomcat is easier to get running quickly than any other
web container, and it provides all the features that you need to complete the examples in this book.
In addition, all the major Java IDEs provide tools to run, deploy on, and debug Tomcat, making it
easier for you to develop your application.

Although some developers prefer using other web containers — and with the right knowledge
nearly any web container can serve you well on a development machine — it’s hard to make a case
against using Tomcat. By using Tomcat for this book, you can focus on the code and development
practices, paying little-to-no attention to the management of your container. The rest of this chapter
helps you get Tomcat installed and set up on your machine. It also introduces you to deploying and
undeploying applications with the Tomcat manager and debugging Tomcat in your Java IDE.

INSTALLING TOMCAT ON YOUR MACHINE

Before you can install Tomcat on your machine, you need to download it from the Tomcat

project site. Go to the Tomcat 8.0 Downloads Page, and scroll down to the “Binary Distributions”
section. There are many downloads on this page, and the only ones you need for this book are
under the “Core” heading. As a Windows user, the two downloads you are concerned with are the
“32-bit/64-bit Windows Service Installer” (works for any system architecture) and the

24 | CHAPTER 2 USING WEB CONTAINERS

“32-bit Windows zip” or “64-bit Windows zip” (depending on your machine architecture). If you
run on Linux, Mac OS X, or some other operating system, you need the non-Windows zip, which
is just called “zip.”

Installing as a Windows Service

Many developers want to install Tomcat as a Windows service. This has several advantages,
especially in a quality assurance or production environment. It makes management of JVM
memory and other resources easier, and it greatly simplifies starting Tomcat automatically when
Windows boots. However, in a development environment, installing Tomcat as a service can have
some drawbacks. This technique installs only the service and does not install the command-line
scripts that run Tomcat from the command line. Most IDEs use these command-line scripts to run
and debug Tomcat from within the IDE. You may install Tomcat as a service by downloading the
“32-bit/64-bit Windows Service Installer,” but you also need to download the “Windows zip” to
run Tomcat from your IDE.

This book does not cover installing Tomcat as a windows service because you would usually do this
only for production or QA environments. The documentation on the Tomcat website is very helpful
if you want to explore this further. Of course, if you are not using Windows, the Windows installer
will be of no use to you. There are ways to start Tomcat automatically in other operating systems,
but they are also outside the scope of this book.

Installing as a Command-Line Application

Most application developers need to run Tomcat only as a command-line application and usually
only from their IDE. To do this, follow these steps:

1. Download the architecture-appropriate Windows zip (if you use Windows) or the non-
Windows zip (if you use anything else) from the Tomcat 8.0 download page and unzip the
directory.

2. Place the contents of the Tomcat directory in this zip file into the folder c:\Program
Files\Apache Software Foundation\Tomcat 8.0 on your local machine (or into the
appropriate directory for a server in your operating system). For example, the webapps
directory should now be located at c: \Program Files\Apache Software Foundation\
Tomcat 8.0\webapps.

3. If you use Windows 7 or newer, you need to change some permissions to make Tomcat
accessible from your IDE. Right-click the Apache Software Foundation directory in C:\
Program Files and click Properties. On the Security tab, click the Edit button. Add your
user or the Users group, and give that entry full control over the directory.

4. To configure Tomcat for its first use, start by opening the file conf/tomcat-users.xml in
your favorite text editor. Place the following tag between the <tomcat -users>
</tomcat-users> XML tags:

<user username="admin" password="admin" roles="manager-gui,admin-gui" />

Installing Tomcat on Your Machine | 25

5.

9.

WARNING This configures an admin user that you can use to log in to Tomcat’s
web management interface. Of course, this username and password combination
is very insecure and should never be used for production or publicly facing serv-
ers. However, for testing on your local machine it is sufficient.

Open the conf/web.xml file. Search the file for the text org.apache.jasper.servliet
.JspServlet. Below the tag that contains this text are two <init-params tags. You
learn about Servlet init parameters in the next chapter, but for now add the following init
parameters below the existing init parameters:
<init-params>
<param-name>compilerSourceVM</param-name>
<param-values>1l.8</param-value>
</init-param>
<init-params>
<param-name>compilerTargetVM</param-name>
<param-value>1l.8</param-value>
</init-param>

By default, Tomcat 8.0 compiles JavaServer Pages files with Java SE 6 language support even
if it runs on Java SE 8. These new Servlet init parameters instruct Tomcat to compile JSP
files with Java SE 8 language features, instead.

After you make these changes and save these files, you should now be ready to start
up Tomcat and make sure that it runs properly. Open up a command prompt and
change your directory to the Tomcat home directory (C:\Program Files\
Apache Software Foundation\Tomcat 8.0).

Type the command echo %JAVA HOME% (or echo $JAVA HOME on a non-Windows
operating system) and press Enter to check whether the JaAvA HOME environmental variable
is properly set to your Java Development Kit (JDK) home directory. If it is not, configure the
environmental variable, and then log out and back in before proceeding (see the Note that
follows). Tomcat cannot run without this variable properly set.

Type the command bin\startup.bat (or bin/startup.sh if you do not use Windows)
and press Enter. A Java console window should open showing the output of the running
Tomcat process. After a few seconds, you should see the message “INFO [main] org.apache
.catalina.startup.Catalina.start Server startup in 1827 ms” or something similar in the
console window. This means Tomcat has started properly.

NOTE When starting, Tomcat initially looks for the JRE_HOME environmental
variable and uses that if it is set. If it isn’t, it next looks for the JAVA HOME variable.
If neither is set, Tomcat fails to start. However, to debug Tomcat you must

have JAVA_HOME set, so it’s best to simply go abead and configure that.

Open your favorite Web browser and navigate to http://localhost:8080/. You should
see a page that looks like Figure 2-1. This means that Tomcat is running and JSPs are
compiling properly with Java SE 8. If this screen does not come up or you observe an error

26 | CHAPTER 2 USING WEB CONTAINERS

in the Java console, you need to check the preceding steps and possibly consult the Tomcat

documentation.
=
¢ 2 |@ hitp:/{localhost:80807 P-BC ” [Apache Tomeatis.0 1 ‘ ‘ 2?63
File FEdit V\iew Favorites Tools Help
Home Documentation Configuration Examples Wiki Mailing Lists Find Help 2
Apache Tomcat/8.0.1 Nﬁpache Software Foundation
2= http://www.apache.org/

™ Recommended Reading: Server Status

% Security Considerations HOW-TO
Manager App
/‘& Manager Application HOW-TO i b S

Clustering/Session Replication HOW-TQ Host Manager

Developer Quick Start

Tomcat Setup Realms & AAA Examples Servlet Specifications
Eirst Web Application JDBC DataSources Tomcat Versions
Managing Tomcat Documentation Getting Help
For security, access to the manager webapp Tomcat 8.0 Documentation FAQ and Mailing Lists
Is restricted. Users are defined in: © .) .

Tomcat 8.0 Configuration The following mailing lists are available

$CATALINA_HOME/conf/tomcat-users.xml Tomcat Wiki TN
— Important announcements, releases, security

In Tumqa1 8.0 access fo the manager Find additional important configuration vulnerability nofifications. (Low volume).
g{;{;l;:raﬂlloorrém split between different users. information in: e
e User support and discussion

SCATALINA HOME/RUNNING.txt -

alibs-user o
Release Notes Developers may be interested in User support and discussion for Apache Taglibs
#100% -

When you finish using Tomcat, you can stop it by running the command bin\shutdown.bat (or
bin/shutdown.sh) in the command prompt in the Tomcat 8.0 home directory. The Java console
window should close, and Tomcat will stop. However, do not do this yet; in the next section, you

explore deploying and undeploying applications in Tomcat. (If you have already shut down Tomcat,
don’t worry about it. It’s easy to start it back up again.)

WARNING The earliest releases of Tomcat 8.0 do not support compiling
JSPs for Java 8. You’ll know that this is the case for your release if you see
“WARNING: Unknown source VM 1.8 ignored” or similar in the Java console.

If so, you need to complete the following steps for “Configuring a Custom JSP
Compiler.”

Configuring a Custom JSP Compiler

Tomcat ships with and uses the Eclipse JDT compiler for compiling JavaServer Pages files in web
applications. (You learn more about JSP files and how they compile in Chapter 4.) This enables
Tomcat to run properly without requiring a JDK installation. Using the Eclipse compiler, all you
need is a simple Java Runtime Edition (JRE) installation. Because JSPs are usually very simple,

Deploying and Undeploying Applications in Tomcat | 27

the Eclipse compiler is typically quite adequate for any Tomcat environment. However, there are
circumstances for which you don’t want to use the Eclipse compiler. Perhaps you find a bug in the
Eclipse compiler that prevents one of your JSPs from compiling. Or if a new version of Java comes
out with language features you want to use in your JSPs, it could be some time before Eclipse has
a compatible compiler. Whatever reason you may have, you can easily configure Tomcat to use the
JDK compiler instead of Eclipse.

1. Open Tomcat’s conf /web.xml file back up and find the Jspserviet again.

2. Add the following init parameter, which tells the Servlet to use Apache Ant with the JDK
compiler to compile JSPs instead of the Eclipse compiler.
<init-params>
<param-name>compiler</param-name>

<param-value>modern</param-value>
</init-param>

3. Tomcat doesn’t have a way to use the JDK compiler directly, so you must have the latest
version of Ant installed on your system. You also need to add the JDK’s tools.jar file and
Ant’s ant . jar and ant-launcher. jar files to your classpath. The easiest way to do this is
to create a bin\setenv.bat file and add the following line of code to it (ignore new lines
here), replacing the file paths as necessary for your system.

set "CLASSPATH=C:\path\to\jdks8\lib\tools.jar;C:\path\to\ant\lib\ant.jar;
C:\path\to\ant\lib\ant-launcher.jar"

Of course, this applies only to Windows machines. For non-Windows environments, you
should instead create a bin/setenv.sh file with the following contents, replacing the file
paths as necessary for your system:

export CLASSPATH=/path/to/jdk8/lib/tools.jar:/path/to/ant/lib/ant.jar:
/path/to/ant/lib/ant-launcher.jar

When running Tomcat with such a custom JSP compilation configuration, be sure to carefully
observe the output in the Tomcat logs. If Tomcat cannot find Ant or Ant cannot find the JDK
compiler, Tomcat automatically falls back to the Eclipse compiler and outputs only a warning to
the logs.

DEPLOYING AND UNDEPLOYING APPLICATIONS IN TOMCAT

In this section you learn how to deploy and undeploy Java EE web applications in Tomcat. You have
two options for accomplishing this:

> Manually by placing the application in the webapps directory
> Using the Tomcat manager application

If you have not already done so, you should download the sample-deployment .war sample
application from the Chapter 2 section on the wrox.com download site. This is what you should use
to practice deployment and undeployment.

28 | CHAPTER 2 USING WEB CONTAINERS

Performing a Manual Deploy and Undeploy

Deploying an application manually on Tomcat is simple — just place the sample-deployment
.war file in Tomcat’s webapps directory. If Tomcat is running, within a few moments Tomcat
should automatically unpack the application file into a directory with the same name minus the
.war extension. If Tomcat is not running, you can start it, and the application file will unpack as
Tomcat starts. When the application has unpacked, open your browser and navigate to http://
localhost:8080/sample-deployment/. You should see a page that looks like Figure 2-2. This
means that the sample application has successfully deployed.

7 ~
=
1 1

e hitp:/localhost:6080/sample-deployment, © ~ B ¢ ‘ Sample Deployment | |
File Edit View Fawvorites Tools Help

Your application has successfully deployed!

Java runtime version: 1.8.0-ea

F00% v

FIGURE 2-2

Undeploying the application is as simple as reversing the process. Delete the sample-deployment
.war file and wait a few moments. When Tomcat detects that the file was deleted, it undeploys the
application and deletes the unpacked directory, and the application will no longer be accessible from
your browser. You do not need to shut down Tomcat to perform this task.

Using the Tomcat Manager

You can also deploy a Java EE application using the Tomcat manager web interface. To do so, follow
these steps:

1. Open your browser and navigate to http://localhost :8080/manager/html.

2. When you are prompted for a username and password, enter admin for the username and
admin for the password (or whatever you configured in conf/tomcat-users.xml). The
page you are presented with should look like Figure 2-3.

Deploying and Undeploying Applications in Tomcat | 29

o [[
o | nttpiistocathost:c050/ manager ht mi pP~Be ” [imanager | ‘ i 3o 92
File Edit View Favorites Tools Help
M "
™ Apache T
Software Foundation "&
http://www.apache.org/
Tomcat Web Application Manager
Message: OK
Manager
List Applications HTML Manager Help Manager Help Server Status
Applications
Path Version Display Name Running | Sessions |Commands
Start -Smp Reload Undeploy
! None specified ‘Welcome to Tomcat true 0 | | ‘ |
| Expire sessions | with idie = [30 minutes
Start | Reload H Undeploy |
Idocs None specified | Tomcat Documentation true 1}
| Expire sessions |wilh idle = |3U ‘minules
Start Reload || Undeploy
lexamples None specified Servlet and JSP Examples true o
| Expire sessions |wilh idle 2 |3O ‘minutes
Start -Smp Reload Undeploy
thost-manager | None specified | Tomcat Host Manager Application true 0 | | ‘ |
| Expire sessions |with idie = [30 | minutes v
0% v

FIGURE 2-3

3. Scroll down to the Deploy section and find the form “WAR file to deploy.” In the “Select
WAR file to upload” field, choose the sample-deployment .war file from your filesystem,
as shown in Figure 2-4, and then click the Deploy button. The WAR file uploads to Tomcat,
which deploys the application. The sample-deployment directory is again created in
Tomcat’s webapps directory. When complete, Tomcat returns you to the list of applications
where you can see that the sample application has been deployed, as shown in Figure 2-5.

4,

Like before, you can go to http://localhost:8080/sample-deployment/ and view the
sample page in the sample application.

You have now deployed the application using the Tomcat manager.

Deploy

Deploy directery or WAR file located on server

Context Path (required): |:|
XML Configuration fie URL: [|

WAR or Directory URL: |

WAR file to deploy

Select WAR file to upload »rsiNicholas\Desktop\sample-deployment.war

Browse

FIGURE 2-4

30 | CHAPTER 2 USING WEB CONTAINERS

— — 7
e he.catalina. O ~ B € || [imanager
File Edit View Favorites Tools Help
|Message: |s:< | ~
|Manager |
List Applications HTML Manager Help Manager Help Server Status
Applications
Path Version Display Name Running |Sessions |C.
Start ‘ Reload H Undeploy ‘
L None specified | Welcome to Tomcat true Q
| Expire sessions | with idle =30 | minutes
Start | Stop | [Reload | | Undeploy |
[docs None specified | Tomeat Documentation true 1] ‘ | ‘ ‘
Expire sessions |with idle = |30 minutes
Start | Stop | [Reload | [Undeploy |
lexamples None specified | Servlet and JSP Examples true Q ‘ | ‘ ‘
Expire sessions |with idle = |30 minutes
Start \ Reload | [Undeploy |
[host-manager None specified | Tomeat Host Manager Application true 0 ‘ | ‘ ‘
Expire sessions |with idle = |30 minutes
Start Stop Reload Undeploy
[manager None specified | Tomcat Manager Application true 1 — - o N
| Expire sessions | with idie =30 | minutes
Start ‘ Reload H Undeploy ‘
/sample-deployment None specified true (1}
‘ Expire sessions |wi(h idle >[30 | minutes
[Depioy |
|Deploy directory or WAR file located on server | Y
H100% v

Undeploying is just as easy to accomplish. On the Tomcat manager page you saw earlier, you
should notice an Undeploy button next to the sample application (refer to Figure 2-5). Click
this button and the sample application will be undeployed and removed from the webapps

directory. When complete, you can no longer access the application at http://localhost:8080/
sample-deployment/.

DEBUGGING TOMCAT FROM YOUR IDE

As a Java EE developer, one of the most important skills you can hold is the ability to deploy

and debug applications in Tomcat from your Java IDE. This provides you with immeasurable
troubleshooting skills for determining why an application won’t run or figuring out why the

bug your customer reported occurs. This section covers setting up, running, and debugging web
applications in Tomcat using both Intelli] IDEA and Eclipse. You can read both sets of instructions
or just the set that pertains to the IDE you have chosen — that choice is up to you.

Throughout the rest of this book is very little instruction for doing this. This keeps the text
decoupled from any particular IDE. You also do not see any IDE-specific screenshots after this
chapter. Be sure you are familiar and comfortable with deploying and debugging applications in
Tomcat using your IDE before moving on, even if that means going over this section several times.

Using IntelliJ IDEA

If you use Intelli] IDEA 13 or newer, you have just a few simple steps to take to get up and
running with your web applications. The first thing you need to do is set up Intelli] to recognize

Debugging Tomcat from Your IDE | 31

your local Tomcat or other container installation. This is a one-time-only step — you set it up
once in your global IDE settings, then you can use the application server for any web application
project. Next, set up each web application project to use your configured container. Finally, you
just need to start your application from Intelli] and place breakpoints where you’d like to debug

your application.

Setting Up Tomcat 8.0 in IntelliJ

To start, you need to configure Tomcat in Intelli]’s list of application servers.

% 1.

==

Open up Intelli]’s IDE settings dialog. With a project open you can go to File &> Settings,

or click the Settings icon in the toolbar (shown here in the margin), or press Ctrl + Alt + S.
If you don’t have a project open, you can click the Configure button and then the Settings

button.

2. In the left pane of the Settings dialog, click Application Servers under IDE Settings. Initially,

you have no application servers configured.

3. Click the green plus icon to add a new application server. Click the browse button
next to the Tomcat Home field to browse for and select the Tomcat home directory
(for example, C:\Program Files\Apache Software Foundation\Tomcat 8.0). Then
click OK. IntelliJ should automatically detect your Tomcat version, and the dialog should

look like Figure 2-6.

| settings =
[| Application Servers
Deployment
File Colors +
File Encodings
Gant
Gradle
G Desigrer
Inspections
Javaseript
Language Injections
Maven
osGi
Play Configuration I Tomcat Server =5
Schemas and DTDs —
Scopes Tomcat Home: [w i Software F 80|
zgi”‘g‘ga‘ms Tomeat Version; 8.0.0
S5H Terminal Tomcat base diectory: [;\pache Software Fi 80|
Tasks lication Server Selected
Template Dats Languages
Terminal
Version Control
weh Contexts | o | cancel
X3LT Flle Associations
IDE Settings — '
Console Folding
Database
Debugger
Diagrams
Editor
Emmet {Zen Coding)
External DFf Tools
External Tools
i s e Tamnlarans
aK J | cancer Help

FIGURE 2-6

32 | CHAPTER 2 USING WEB CONTAINERS

5.

Click OK again to complete adding Tomcat to your list of application servers, and change
the name if you want. All the Intelli] code samples you can download for this book assume
an application server name of Tomcat 8.0, so for maximum ease you should rename it to
Tomcat 8.0 if it is named something else.

Click Apply to save the changes and OK to close the Settings dialog.

Adding a Tomcat Configuration to a Project

+

==

After you create a project and are ready to deploy it to Tomcat from IntelliJ, you need to add a
Tomcat run/debug configuration to your project.

1.

2.

6.

Click the run/debug configurations icon (a down arrow) on the toolbar, then click Edit
Configurations.

¥ |- o |

| # Edit Configurations. ..

In the dialog that appears, click the green plus icon, scroll to the bottom of the Add
New Configuration menu, hover over Tomcat Server, and click Local. This creates a run/
debug configuration for running your project against a local Tomcat, as shown in

Figure 2-7.

If Tomcat 8.0 is the only application server you have added to Intelli], it is automatically
selected as the application server this run/debug configuration will use. If you have other
application servers configured, one of those might be selected, in which case you need to
click the “Application server” drop-down and select Tomcat 8.0 instead.

Name the run configuration something meaningful. In Figure 2-7 and in all the sample
IntelliJ projects you download for this book, the run configuration is named Tomcat 8.0 like
the application server it uses.

You’ll probably see a warning that no artifacts are marked for deployment. Correcting this
is simple. Click the Deployment tab and then the green plus icon under the “Deploy at the
server startup” heading. Click Artifact, and then click the exploded war file artifact. Click
OK. Change the “Application context” name for the artifact deployment to the server-
relative URL you want it deployed to, as shown in Figure 2-8.

Click Apply and then OK to save the run/debug configuration and dismiss the dialog.

You can download the Sample-Debug-Intelli] project from the wrox.com code download site to view
a sample web application already configured to run on your local Tomcat 8.0 application server.
(However, you still need to set up your Tomcat 8.0 installation in IntelliJ’s IDE settings.)

Debugging Tomcat from Your IDE | 33

r N
3| Run/Debug Configurations [
+ - [% =] Mame: [Tomcat 8.0] [share

[T
¥ Defautts Server | Deployment | Logs | CodeCoverage | StartupfConnection
- & Tomcat Senver
L@ Tomeatso Application server: | Tomoat 6.0 [] [corfigure... |

Open browser
[After launch () Default][] with avascri debuager

[debug’ (]

M options: [IE

On ‘Undate’ action: Restart server [-] [show dialog
On frame deactivation: Do nothing -]

Tomesk Server Settings

HTTPpor:: (8080 | [pepioy applications corfigured in Tomeat instance

HTTPs port: | | CIPreserve sessions across restarts and redeploys

Mxport (1009 J

+ Before launch: Make, Build Artifacts

+
4 Make
tﬂ; Build *Sample-Debug-IntelliJ:war exploded’ artifact

[showy this page

ok | [dese || aely | [Hep

FIGURE 2-7

-
Jl Run/Debug Configurations

[=x=))

+ -0y

% Defaults

= @ Tomcat Server
L;di‘ Tomcat8.0

[}

Mame: [Tomcat 8.0 [share

Server | Deployment | logs | CodeCoverage | StartupfConnection |

Deplay s the server startup

s Sample-Debug-Intelli r exploded + Application context: [isample-tebug E

+ Before launch: Make, Build Artifacts

+
Ll Make
L% Build "Sample-Debug-IntelliJ:war exploded' artifact

[] show this page

ok || dess || oy || reb

FIGURE 2-8

34 | CHAPTER 2 USING WEB CONTAINERS

Starting an Application and Hitting Breakpoints

Now that you have set up Tomcat in Intelli] and configured an Intelli] project to run in Tomcat,
you’re ready to start the application and debug it within your IDE.

1. Download the Sample-Debug-Intelli] project from the wrox.com code download site, and
open it with Intelli] IDEA.

2. Make sure that its run/debug configuration is properly configured to use your local Tomcat
8.0 application server. You should perform this check for each sample project you download
for this book before attempting to start it.

3. When opened, you should see a screen like Figure 2-9, with two breakpoints in place for
index.jsp.

4. Click the Debug icon on the toolbar (highlighted by the mouse pointer in Figure 2-9) or
press Shift + F9 to compile and start your application in debug mode. Intelli] should launch
your default browser, and you should immediately hit the breakpoints in index.jsp.

B sample Debug IntelliJ - [C: i \D. Debug-IntelliJ] - [Sample-Debug IntelliJ] - i jsp - IntelliJ IDEA 13 = [[
File Edit View Navigate Code Analyze Refactor Build Rur Debug Tomcat8.0' (Shift+F3) 2lp
OHO| ¢ ¥ O aR|« W [@oncaso | b [B5l5 ¥ @ 7 & & Q
Sample-Debug-Intelli] | [5] web | 5 index.jsp

g &2 Praject - [2+ |- | Boindexgsp x -

o s

g | -1 i =

£ B J_Samsle Debug-intelliJ]

-l idea 5

31| | & source 1. <!DOCTYPE htmlx =

20 C<html>

v W‘D?UCUEI’V 3 e <heatd> m

2 lava 4 <title>Sample Deployment</title> z

% H resources 5 B < /head> g

) test 6 [<hody style='font-family: Verdama, sans-serif'> Ei

v I: java 7@ Your application has successfully deployed!
 S

G resources 8 dr S v

LB wab 9@ Java runtime version: <b= Systew,getProperty('java.version') fo- .

il

L indexjsp 1 a R [=]

11, £</htnl> 8

— M pom.xm| %

— 31 Sample-Debug-Intelliiml 3

#— il External Libraries

=

2

o

g

E]

E|

2

g

&

=

S

2

=
£
5
2
il
éil
2
B
=
7]

[= Terminal 53 Application Servers ([Java Enterprise 1 & TODO Event Log
] Debug selected configuration 111 [CRLF 3 UTF-B 3 & &

You should again see the webpage from Figure 2-2 to indicate that your application successfully
deployed.

Debugging Tomcat from Your IDE | 35

NOTE Intelli] may actually access http://localhost:8080/sample-debug/
before launching your browser. It does this to ensure that your application has
been properly deployed. If this is the case, you will hit the breakpoints twice —
once when Intelli] accesses the application and once when your browser opens
and accesses the application.

Using Eclipse

Using Tomcat in Eclipse has some similarities to using Tomcat in Intelli] IDEA, but it also has many
differences, and the screens look very different. The same basic process still applies — you need to
set up Tomcat in Eclipse’s global settings, configure it for a project, and start and debug the project.
In this last part of this section. you learn how to use Tomcat from Eclipse in case you have chosen
that as your IDE for this book.

WARNING As discussed in the introduction, as of the date this book was pub-
lished, Eclipse does not yet support Java SE 8, Java EE 7, or Tomcat 8.0. You
must wait until Eclipse 4.4 Luna is released in June 2014 to realize support for
these technologies. As such, the Eclipse instructions and figures in this section
may not be completely accurate, and you should respond as needed to changes
made to the release version of Eclipse Luna.

Setting Up Tomcat 8.0 in Eclipse

To begin, you must configure Tomcat 8.0 as a runtime environment in Eclipse’s global preferences.
To do so, follow these steps:

1.
2.

Open your Eclipse IDE for Java EE Developers and go to Windows = Preferences.

In the Preferences dialog that appears, expand Server, and then click Runtime
Environments. A Server Runtime Environments panel appears where you can manage the
application servers and web containers available to all your Eclipse projects.

Click the Add button to open the New Server Runtime Environment dialog.

Expand the Apache folder and select Apache Tomcat v8.0, making sure you select the
“Create a new local server” check box. Then click the Next button.

On the next screen, click the Browse button and browse to your Tomcat 8.0 home directory
(for example, C:\Program Files\Apache Software Foundation\Tomcat 8.0). Then
click OK.

In the JRE drop-down, select your local Java SE 8 JRE installation. Name the server
whatever you want. The Eclipse sample projects you download throughout this book
assume that the server is named Apache Tomcat v8.0, which is the Eclipse default. At this
point you should see a screen like Figure 2-10.

36 | CHAPTER 2 USING WEB CONTAINERS

[Java EE - Eclipse =T = |

Filp—Edit Maucato Coarch Droicct Dun —aind Lol

d @] Preferences. ElE] = —— |

type filter text Server Runtime Environments Ty Quick Access 5 | [32 JavaEE
> General -

[l . ant Add, remove, or edit server runtime environments. =5 %% Qutline 52 Task. = O
. Data Management Server runtime environments: .
> Help Name Tyne | l Add... An outline is not available.
> InstallUpdate
. Java @) New Server Runtime Environment (o |
» Java EE
- Java Persistence Tomcat Server
- JavaScript Specify the installation directory
> Maven
g M“ Name:
> Plug-in Development =
. Remote Systems Apache Tomcat v8.0
- RuniDebug Tomcat installation directory:

“ Server CiProgram Files\pache Software i 80 Browse..
Audio
Launching Download and Install...
Overlays JRE:
Profilers
Runtirme Environme ires -] [mstalea JRes... |
> Team
Terminal
Validation
- Weh
- \Weh Services il v =g
«] ’
N L
@

FIGURE 2-10

7. Click the Finish button to complete adding your local Tomcat server to Eclipse, and then
click OK to close the preferences dialog.

You are now ready to use Tomcat 8.0 in your Eclipse projects.

One other thing to note is that, by default, Eclipse uses a built-in browser to open your web
applications. You should disable this feature and use a mainstream browser, instead, such as Google
Chrome, Mozilla Firefox, or Microsoft Internet Explorer. To change this setting, go to the Window
> Web Browser menu, and select something other than “0 Internal Web Browser.” The option

“1 Default System Web Browser” should be sufficient in most cases, but it’s easy to change this
setting frequently to meet your needs at any given time.

Using the Tomcat Server in a Project

When creating a new project in Eclipse, you have to select the configured runtime server you are
going to use for that project on the first dialog, as shown in Figure 2-11. However, this configures
only the libraries for your application. It does not select the Tomcat 8.0 server you created. For that,
follow these steps:

1. After you create or open the project, go to Project & Properties and click the Server menu
item on the left side of the project Properties dialog that appears.

2. By default, the selected server is “<None>,” so you should change it to “Tomcat v8.0 Server
at localhost” instead, as shown Figure 2-12.

Debugging Tomcat from Your IDE | 37

-
@ New Dynamic Web Project

Dynamic Web Project 2
Create a standalone Dynamic ¥YWeb project or add it to a new or existing Enterprise Application. | @

Project name: Sample-Debug-Eclipse

Project location
[C] Use default location

Location: C:WUsers'Nicholas'Desktop'Sample-Debug-Eclipse

Target runtime

|Apache Tomcat v8.0 VI [New Runtime... I

Dynamic web module version
[30 -

Configuration

[Defaun Configuration for Apache Tomcat v8.0 v] [Modify...

A good starting point for working with Apache Tomcat v8.0 runtime. Additional facets can later be
installed to add new functionality to the project.

EAR membership
Add project to an EAR

New Project...
Working sets
[Add project to working sets

Select...

@ <Back wet> | @nsh | [cancel

L

FIGURE 2-11

E Properties for Sample-Debug-Eclipse

type filter text Server J -

> Resource
Builders Project: Sample-Debug-Eclipse (J2EE Weh module)
Deployment Assembly Always use the following server when running this project:
Java Build Path
- Java Code Style
» Java Compiler
Java Editor
Javadoc Location
JavaScript
JSP Fragment
Project Facets
Project References
Refactoring History
Run/Debug Settings
Server
Service Policies
Targeted Runtimes
Task Repository
Task Tags
Validation
Weh Content Settings
Web Page Editor
Weh Project Settings
WikiText
> XDoclet

<None>
B i’[uml:al 8.0 Server at Iucalhuslf

[Resmre Defaults] [Apply]

FIGURE 2-12

38 | CHAPTER 2 USING WEB CONTAINERS

5.

Click Apply to save the changes.

Change the application context URL that the application deploys to in Tomcat (assuming
you didn’t configure it when you created the project). In the project Properties dialog, you
can click the Web Project Settings menu item and update the “Context root” field to change

this setting.

After clicking Apply to save the changes, click OK to dismiss the dialog.

You can download the Sample-Debug-Eclipse project from the wrox.com code download site to view
a sample web application already configured to run on your local Tomcat 8.0 application server.
(However, you still need to set up your Tomcat 8.0 installation in Eclipse’s IDE preferences.)

Starting an Application and Hitting Breakpoints

You’re now ready to start your application and debug it from Eclipse.

1.

2.

Download the Sample-Debug-Eclipse project from the wrox.com code download site, and
open it with Eclipse IDE for Java EE Developers.

Make sure that its server settings are properly configured to use your local Tomcat 8.0
application server. You should perform this check for each sample project you download for
this book before attempting to start it.

When opened you should see a screen like Figure 2-13, with one breakpoint already in place

for index. jsp.

E Java EE - Sample-Debug-Eclips i jsp - Eclipse =] S|
File Edit Source Refactor MNavigate Search Project Run Window Help
- (SRR N [l ERFO - Gror@E P @ R Ll O e
Debug indexjsp Quick Access 7 | [55 Java EE | @ web %5 Debug
[Project Explorer 52 =0 indexjsp 22 | (@ Sample Debug =0 | BEouwi. g [Tk, = 08
= 5| > | |B ; (:‘EGEWPE hrtmilb) T m
4 %% Sample-Debug-Eclipse : . (;ea " [& DOCTYPE:htmI =
> &g Deployment Descriptor: Sam a <titlersample Debuge/titles < & htmi @
22 JAX-WS Web Services 5 </head> » <> head
, 23 Java Resources = <body style="fent-family: Verdana, sans-serif™ ») body style=font-famity:
. = JavaScript Resources ; :;ur;pplication has successfully deployedlchr /> =
-
> (& source e Java runtime version: <%= System.getProperty(“java.ve =
> & target 10 </body>
4 (= weh 11 </html>
. (= WEBINF
[indexjsp
[pom.xml
. 1= Servers
< . » < [»
« n 4
[DOCTYPEhtml Writable Smartinsert | 1:1 &

FIGURE 2-13

Summary | 39

4. Click the Debug icon in the toolbar (highlighted by the mouse pointer in Figure 2-13) to
compile and start your application in debug mode. Eclipse should launch the configured
browser, and you should immediately hit the breakpoint in index.jsp. You can again see
the webpage from Figure 2-2 to indicate that your application successfully deployed.

U= 5. To continue from the breakpoint, click the continue icon (shown here in the margin) on the
Eclipse toolbar.

WARNING When you run Tomcat from Eclipse, Eclipse overrides any custom
conf\setenv.bat or conf/setenv.sh file that you create to configure advanced
JSP compilation. If you do not want to use the Eclipse [DT compiler to compile
your JSPs, you need to add the CLASSPATH configuration in this file to some other
Tomcat configuration file. Consult the Tomcat documentation to determine the
appropriate file to place this in.

NOTE You likely noticed that the JSP in Eclipse only has one breakpoint,
whereas the JSP in Intelli] IDEA has two breakpoints. The Eclipse JSP debugger
is much more limited than the IDEA JSP debugger, so placing a breakpoint on
Line 7 in this JSP is not possible in Eclipse.

SUMMARY

In this chapter, you learned about Java EE application servers and web containers and explored
several popular implementations of both. You installed Tomcat 8.0 on your local machine,
configured JSP compilation, started it from the command line, and experimented with deploying
and undeploying applications in Tomcat. Finally, you learned how to configure and run Tomcat 8.0
and debug your applications using both Intelli] IDEA and Eclipse IDE for Java EE Developers.

In the next chapter you create Servlets and learn how Java EE web applications work.

Writing Your First Servlet

IN THIS CHAPTER

> Creating a Servlet class

Configuring a Servlet for deployment

Understanding doGet (), doPost () and other methods
Using parameters and accepting form submissions
Configuring your application using init parameters

Uploading files from a form

Y Y Y VY Y Y

Making your application safe for multithreading

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox. com code downloads for this chapter at www.wrox.com/go/
projavaforwebapps on the Download Code tab. The code for this chapter is divided into the
following major examples:

> Hello-World Project
> Hello-User Project

> Customer-Support-vl Project

NEW MAVEN DEPENDENCIES FOR THIS CHAPTER

In this chapter, you’ll need your first Maven dependency, shown in the following code. You’ll
use this dependency for every chapter throughout the rest of the book.

<dependency>
<groupIlds>javax.servlet</groupIld>
<artifactId>javax.servlet-api</artifactIds>
<version>3.1.0</versions>
<scope>provided</scope>

</dependency>

42

| CHAPTER 3 WRITING YOUR FIRST SERVLET

In the last chapter, you became familiar with application servers and web containers and learned
how to run, deploy to, and debug Apache Tomcat 8.0 from your Java IDE. In this chapter, you begin
building web applications by first exploring the world of Servlets. Throughout this chapter and

the rest of the book, you’ll continually change and improve these applications, deploying them to
Tomcat for testing and debugging.

CREATING A SERVLET CLASS

In the Java Platform, Enterprise Edition, a Servlet is what receives and responds to requests from the
end user. The Java EE API specification defines a Servlet as follows:

A Servlet is a small Java program that runs within a Web server. Servlets receive
and respond to requests from Web clients, usually across HTTP, the HyperText
Transfer Protocol.

http://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html

Servlets are the core classes in any web application, the only classes that either perform the work of
responding to requests or delegate that work to some other part of the application. Unless some filter
prematurely terminates a request (discussed in Chapter 9), every request to your application goes
through some Servlet. The web container in which you run your application will have one or more
built-in Servlets. These Servlets handle serving JavaServer Pages, displaying directory listings (if you
have them enabled) and accessing static resources, such as HTML pages and graphics. You won’t
need to worry about these Servlets yet (in some cases, ever). In this chapter, you learn how to write
and configure the custom Servlets that make up your application.

Every Servlet implements the javax.servlet.Servlet interface, but usually not directly. serviet
is a simple interface, containing methods for initializing and destroying the Servlet and servicing
requests. However, the service method will be called for any request of any type, even if it is

not an HTTP request (theoretically, assuming your web container supports such a request). As

an example, in the future it’s possible that new Servlets could be added to Java EE to support File
Transfer Protocol (FTP). For that reason, there are various Servlet classes that you can extend
instead. As of Java EE 7, the only Servlet protocol currently supported is HTTP.

What to Extend

In almost all cases, Servlets inherit from javax.servlet.GenericServlet. GenericServlet is still
a protocol-independent Servlet with the lone, abstract service method, but it contains several helper
methods for logging and getting information about the application and Servlet configuration (more
on that later in the section “Configuring a Servlet for Deployment”).

For responding to HTTP-specific requests, javax.servlet.http.HttpServlet extends
GenericServlet and implements the service method to accept only HTTP requests. Then, it provides
empty implementations for methods corresponding to each HTTP method type, as illustrated in Table 3-1.

Creating a Servlet Class | 43

TABLE 3-1: Empty Implementations for HTTP Method Types

METHOD SERVLET METHOD PURPOSE

GET doGet () Retrieves the resource at the specified URL

HEAD doHead () Identical to GET, except only the headers are returned
POST doPost () Typically used for web form submission

PUT doPut () Stores the supplied entity at the URL

DELETE doDelete () Deletes the resource identified by the URL

OPTIONS doOptions () Returns which HTTP methods are allowed

TRACE doTrace () Used for diagnostic purposes

NOTE Most web programmers are familiar with the GET and POST methods
and use them the majority of the time. If you are not familiar with the various
HTTP methods or would like to learn more, now is the time to click http://
www . w3 .org/Protocols/rfc2616/rfc2616-sec9.html to see the RFC-2616
specification section on method definitions.

With no exceptions in this book, your Servlets will always extend Httpservlet. It provides all
the tools you need to selectively accept and respond to different types of HTTP requests, and its
Inethodsacceptjavax.servlet.http.HttpServletRequest and javax.servlet.http
.HttpServletResponseargunuﬂnsins&xuiOfjavax.servlet.ServletRequest and javax
.servlet.ServletResponse so that you have easy access to HTTP-specific attributes of the
requests your Servlet services. You should begin by creating a new, empty Servlet that extends
HttpServlet:

package com.wrox;
import javax.servlet.http.HttpServlet;

public class HelloServlet extends HttpServlet

{
}

NOTE In order for this code to compile, you need to have the Java EE Servlet
API library on your compile classpath. This is where the Maven artifact listed on
the first page of this chapter comes into play. In each chapter you will need the
listed Maven artifacts in order to compile any examples in that chapter.

44 | CHAPTER 3 WRITING YOUR FIRST SERVLET

In this form, your Servlet is already prepared to accept any HTTP request and respond to it with

a 405 Method Not Allowed error. This is how you control which HTTP methods your Servlet
responds to: Any HTTP Servlet methods you do not override will be responded to with an HTTP
status 405. A Servlet that does not handle any requests is, of course, not very useful, so override the
doGet method to add support for the HTTP method GET:

package com.wrox;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

public class HelloServlet extends HttpServlet

{

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

}

response.getWriter () .println("Hello, World!");

}

Now your Servlet is equipped to respond to GET requests and return the plain text response

“Hello, World!” in the response body. The code in this example is fairly straightforward. Calling
getWriter on the response parameter returns a java.io.PrintWriter, a common Java class
used for writing text to an output stream. Next, the code calls the print1n method on the
PrintWriter to write the text “Hello, World!” to the output stream. Notice that you don’t have

to worry about any of the details of the raw HTTP request or response. The web container takes
care of interpreting the request and reading the headers and parameters from the socket. After your
method returns, it takes care of formatting the response headers and body and writing them back
to the socket.

NOTE Notice that you did not call the close method on the PrintWriter that
you obtained from the response. Generally speaking, in Java you only need to
close resources that you create. The web container created this resource, so it is
responsible for closing it. Even if you had assigned the instance to a local vari-

able and called several methods on it, this would still be the case.

You obviously could do a lot more in this doGet method, such as using request parameters, and you
haven’t taken a look at the other methods yet. Rest assured, you’ll get to both soon.

Creating a Servlet Class | 45

Using the Initializer and Destroyer

While you get your first Servlet up and running, you should probably know about the init and
destroy methods. When a web container first starts a Servlet, it calls that Servlet’s init method.
This is sometimes, though not always, when the application is deployed. (You learn how to control
this in the next section.) Later when the web container shuts down the Servlet, it calls the Servlet’s
destroy method. These methods are not the same as the Java constructor and finalizer, and they are
not called at the same time as the constructor and finalizer. Normally, these methods do nothing,
but you can override them to perform some action:

@Override
public void init() throws ServletException

{
}

@Override
public void destroy()

{
}

System.out.println("Servlet " + this.getServletName() + " has started.");

System.out.println("Servlet " + this.getServletName() + " has stopped.");

NOTE You should know that another init method accepts a single argument of
type javax.servlet.ServletConfig. This method is specified in the Servlet
interface, but GenericServlet takes care of implementing this method for you
and then calls the no-argument overload of init overridden in the previous code
example. In this way, you do not have to call super.init (servletConig) from
your own init method implementation.

Although you can override the original method, you shouldn’t do so because if
you forgot to call the super method, the Serviet might not initialize correctly. If
you need to access the ServletConfig, it’s much easier to just call the
getServletConfig method. You learn more about the ServletConfig class
throughout Parts I and 11 of this book.

You can do many things with these two methods. More important, init is called after the

Servlet is constructed but before it can respond to the first request. Unlike when the constructor is
called, when init is called all the properties have been set on the Servlet, giving you access to the
ServletConfig and javax.servlet.ServletContext objects. (You learn what to do with these in
the “Configuring your Application Using Init Parameters” section.) So, you may use this method to
read a properties file or connect to a database using JDBC, for example. The init method is called
when the Servlet starts. If the Servlet is configured to start automatically when the web application
is deployed and started, that is when it is called. Otherwise, it is not called until the first request for
that Servlet is received.

Likewise, destroy is called immediately after the Servlet can no longer accept any requests. This
typically happens either when the web application is stopped or undeployed or when the web

container shuts down. Because it is called immediately upon undeployment or shutdown, you do
not have to wait for garage collection to trigger the finalizer before cleaning up resources such as

46 | CHAPTER 3 WRITING YOUR FIRST SERVLET

temporary files or disconnecting from databases no longer in use. This is particularly important
because if your application is undeployed but the server continues running, it may be several
minutes or even hours before garbage collection runs. If you clean up your resources in the finalizer
instead of the destroy method, this could result in your application undeploying partially or failing
to undeploy. Thus, you should always use the destroy method to clean up resources held by your
Servlet between requests.

The previous code example uses the init and destroy methods to log when the Servlet starts and
stops, respectively. When you run your application in the next section, these log messages appear
in the output window of your IDE’s debugger. Later in this chapter you put these methods to
better use.

CONFIGURING A SERVLET FOR DEPLOYMENT

Now that you have created your Servlet, it’s time to put it in action. Although you have a working
class that can respond to HTTP GET requests with a clever greeting, you have not written
instructions for the web container to deploy the Servlet with the application. Chapter 1 introduced
you to the deployment descriptor (web.xml) and the structure of a web application, and in Chapter
2 you learned how to deploy and debug an application using your IDE. In this section, you create
the web.xm1 file in your WEB-INF directory and configure your Servlet for deployment. You then
deploy the application using your IDE and see that greeting in your browser. Finally, you put some
breakpoints in your code and examine when certain methods are called.

Adding the Servlet to the Descriptor

As you’ve learned, the deployment descriptor instructs the web container how the application should
be deployed. Specifically, it defines all the listeners, Servlets, and filters that should deploy with the
application and the settings the application should use to do this. First, take a look at a (mostly)
empty web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app 3 1.xsd"
version="3.1">

<display-name>Hello World Application</display-name>

</web-app>

WARNING If you have worked with deployment descriptors in previous Java
EE versions, this might look slightly unfamiliar to you. This is because the XML
schema URIs for web.xul and other configuration files have changed since

Java EE 6. You must use the new URIs for your application to be Java EE 7
compliant.

Configuring a Servlet for Deployment | 47

In the previous example, the code in bold indicates to the application server what the name of the
application is. On the Tomcat manager screen that lists all the installed applications, the name
between the <display-name> tags appears beside your application. The version attribute in the
opening <web-app> tag indicates which Servlet API version the application is written for — in this
case, version 3.1.

Now you need to tell the web container to create an instance of the Servlet you wrote earlier, so you
must add a Servlet tag to the descriptor file between the beginning and ending <web-app> tags:

<servlet>
<servlet-name>helloServlet</servlet-name>
<servlet-class>com.wrox.HelloServlet</servlet-class>
</servlets>

Earlier in the chapter, you learned about the Servlet init method and when it would normally be
called. In this example, the init method is called when the first request arrives for the Servlet after
the web application starts. Normally, this is sufficient for most uses. However, if the init method
does many things, Servlet startup might become a time-intensive process, and this could make

the first request to that Servlet take several seconds or even several minutes! Obviously, this is not
desirable. A simple tweak to the servlet configuration can make the servlet start up immediately
when the web application starts:

<servlet>
<servlet-nameshelloServlet</servlet-name>
<servlet-class>com.wrox.HelloServlet</servlet-class>
<load-on-startup>l</load-on-startup>

</servlet>

The emboldened code instructs the web container to start the Servlet as soon as the web application
starts. If multiple Servlet configurations contain this tag, they start up in the order of the values
within the tags, with the previously used value “1” coming first and higher numbers later. If two or
more Servlets have the same value in the <lcad-on-startups> tag, those conflicting Servlets start in
the order they appear in the descriptor file, still after other Servlets with lower numbers and before
other Servlets with higher numbers.

Mapping the Servlet to a URL

You have instructed the application server to start the Servlet but have not yet told it what URL
requests the Servlet should respond to. This is a simple matter:
<servlet-mapping>
<servlet-name>helloServlet</servlet-name>

<url-patterns>/greeting</url-patterns>
</servlet-mapping>

With this configuration, all requests to the application-relative URL /greeting are handled

by the helloserviet. (Notice that the <servlet-names tags within the <servlets and
<servlet-mapping> tags match each other. This is how the web container associates the two.) If the
application is deployed at http://www.example.net, the Servlet responds to requests directed to
the URL http://www.example.net/greeting. Of course, you are not limited to this one mapping.
You could map several URLs to the same Servlet:

48

CHAPTER 3 WRITING YOUR FIRST SERVLET

<servlet-mapping>
<servlet-name>helloServlet</servlet-names>
<url-pattern>/greeting</url-patterns>
<url-pattern>/salutation</url-patterns>
<url-patterns>/wazzup</url-patterns
</servlet-mapping>

In this case, all three URLSs act as aliases for the same logical endpoint: the helloservliet. Why,
you might ask, do you need to give a Servlet instance a name and then map a request to the name of
that instance? Why can’t you just map the URL directly to the Servlet class? Well, what if you have
two different store Servlets in an online shopping application, for example? Those stores might have
identical logic but connect to different databases. This can be achieved simply:

<gservlet>
<servlet-name>oddsStore</servliet-names>
<servlet-class>com.wrox.StoreServlet</servlet-class>
</servlet>
<servlets>
<servlet-names>endsStore</servlet-name>
<servlet-class>com.wrox.StoreServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>oddsStore</servliet-name>
<url-pattern>/odds</url-patterns>

</servlet-mapping>

<servlet-mapping>
<servlet-names>endsStore</servlet-name>
<url-patterns>/ends</url-patterns

</servlet-mapping>

Now you have two instances of the same Servlet class, but they have different names and are
mapped to different URLs. Two examples ago, you had three URLSs all pointing to the same Serviet
instance. However, in this example you have two different Servlet instances. You might wonder how
the two different instances know which stores they are. A quick call to this.getServletName ()
from anywhere in the servlet code returns either “oddsStore” or “endsStore” depending on which
instance it is. Recall that you used this method earlier when you were logging calls to the initializer
and the destroyer.

Rewinding a bit, you now have the simple, completed web.xm1 descriptor file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app 3 1.xsd"
version="3.1">

<display-name>Hello World Application</display-name>

<servlet>
<servlet-name>helloServlet</servlet-names
<servlet-class>com.wrox.HelloServlet</servlet-class>
</servlet>

Configuring a Servlet for Deployment | 49

<servlet-mapping>
<servlet-names>helloServlet</servlet-name>
<url-pattern>/greeting</url-patterns
</servlet-mapping>

</web-app>

Running and Debugging Your Servlet

After it’s saved, compile your application and check to make sure you have an IDE run configuration
set up to run your project in your local Tomcat 8.0 instance. (If you don’t remember how to do

this, refer back to Chapter 2). The application should deploy to /hello-world. You can also just
download the Hello-World IDE project from the wrox.com code download site — it is already
configured to deploy properly. When this is done, follow these steps:

1. Click the debug icon in your IDE to start the web container in debug mode. Your IDE
deploys your application to the web container after it starts.

2. Open your favorite web browser and navigate to http://localhost:8080/hello-world/
greeting. You should now see the screen in Figure 3-1.

|[# nttp:tnocainost:s080eno-world/greeting O ~ B ¢ II [#] 1ocalhost

File Edit \iew Favorites Tools Help
Hello. World!

L 1] A

FIGURE 3-1

3. A good way to understand what happened is to place some breakpoints in the
HelloServlet and run this experiment again. You should stop your debugger (which shuts
down Tomcat) so that you can hit a breakpoint in the initializer as well. Place breakpoints

50 | CHAPTER 3 WRITING YOUR FIRST SERVLET

6.

in the single lines of code in the doGet, init, and destroy methods of your Servlet; then
restart your debugger. After Tomcat starts and your application deploys, you will notice
that you did not hit any breakpoints yet (because <1oad-on-startups> is not present in the
deployment descriptor).

Refresh the greeting page in your browser and you should hit the breakpoint in the
init method of your IDE. This means that Tomcat has activated the just-in-time
initialization of your Servlet: It was not initialized until the first request came in.

Just like it would if the init method were taking a long time to complete, the request from
your browser remains on hold until you continue your debugger, so do that now. You should
immediately hit the breakpoint in the docet method. Now the Servlet services the request,
but your browser still waits on a response.

Continue your debugger a second time, and now the response is sent to your browser.

At this point, you can press the Refresh button on your browser as many times as you like, and you
will hit the breakpoint only in the doget method. The init method is not called again until some
action destroys the Servlet (for example, Tomcat shutting down) and then it starts again. Up until
this point, you have not yet hit the breakpoint in the destroy method. You want to do that now, but
unfortunately, if you stop Tomcat from your IDE, it detaches the debugger before the breakpoint is
hit, so you need to stop Tomcat from the command line. To do this, follow these steps:

1.

2.

3.

Open up a command prompt and change your current directory to the Tomcat home
directory (C:\Program Files\Apache Software Foundation\Tomcat 8.0 on a Windows
machine, remember).

Type the command bin\shutdown.bat (or bin/shutdown.sh if you are not running Windows)
and press Enter.

In your IDE window, you should immediately hit the breakpoint in the destroy method.
Tomcat does not completely shut down until you continue your debugger.

As mentioned earlier, you can change the configuration of your Servlet so that it is initialized when
the application starts. Try that now.

1.

Update your Servlet declaration in the deployment descriptor to add the code in bold in the
following example:

<servlet>
<servlet-nameshelloServlet</servlet-name>
<servlet-class>com.wrox.HelloServlet</servlet-class>
<load-on-startup>l</load-on-startup>

</servlet>

With the breakpoints still in place in your Servlet, start your debugger again. You should
immediately hit the breakpoint in the init method before you make the first request to the
Servlet.

Continue the debugger and then refresh your browser. Now you should hit the breakpoint
only in the doGet method; the Servlet was initialized on application startup and does not
need to be initialized again.

Understanding doGet(), doPost(), and Other Methods | 51

Now that you have created your first Servlet and are familiar with the life cycle of a Servlet, you
are encouraged to experiment with different method calls on the Servlet and on the request and
response parameters in the doGet method. In the next section, you explore doGet, doPost, and
other methods further to better understand HttpServletRequest and HttpServletResponse.

NOTE You should consult (and bookmark) the API documentation for Java EE
7 located at http://docs.oracle.com/javaee/7/api/ for information on the
available methods and their purposes.

UNDERSTANDING DOGET(), DOPOST(), AND OTHER METHODS

In the previous section you learned about the docet method and other methods that map to the
various HTTP request methods. But what exactly can you do in these methods? More important,
what should you do in these methods? The short answers to these questions are “just about
anything” and “not very much,” respectively. This section explores some of the things you can do
and how to do them.

What Should Happen during the service Method Execution?

The servlet class’s service method, as you learned earlier, services all incoming requests.
Ultimately, it must parse and handle the data on the incoming request based on the protocol in

use and then return a protocol-acceptable response to the client. If the service method returns
without sending response data back to the socket, the client will likely observe a network error, such
as “connection reset.” In the HTTP protocol specifically, the service method should understand
the headers and parameters that the client sends and then return a proper HTTP response that at
least includes the minimum HTTP headers (even if the response body itself is empty). In reality, the
implementation of this is complex (and involves many steps) and may differ from web container to
web container.

The beauty of extending HttpServlet is that you don’t have to worry about any of these details.
Although the reality is that the service method must do many things before responding to the
user, the developer using HttpServlet must do little. Actually, in the Hello-World project you

used in the last two sections, if you remove the single line of code from the docet method and

run the application, everything still works fine! A properly structured HTTP response with zero-
length content returns to the client. The only requirement is that you override the doget method (or
doPost or doPut or whatever you want to support); you don’t need to put anything in it. But how
useful is this, really?

The answer to that is “not at all.” Just because you can return an empty response doesn’t mean you
should. This is where HttpServletRequest and HttpServletResponse come in. These parameters
in the various methods defined by HttpServlet enable you to read parameters passed from the
client, accept files uploaded from a posted form, read the raw data contained in the request body
(for doing things such as handling PUT requests or accepting JSON request bodies), read request

52 | CHAPTER 3 WRITING YOUR FIRST SERVLET

headers and manipulate response headers, and write response content back to the client. These are
some of the many things that you can do when servicing a request, and in reality you usually should
do one or more of these things.

Using HttpServletRequest

The HttpServletRequest interface is an extension of ServletRequest that provides additional
HTTP protocol-specific information about a received request. It specifies dozens of methods that
you can use to obtain details about an HTTP request. It also permits you to set request attributes
(different from request parameters).

NOTE You’'ll learn about request attributes and the inspection of authentication
details in the next chapter. This book does not cover the details of every method

(for that, you can consult the API documentation) but covers the most important
features.

Getting Request Parameters

Perhaps the most important capability of HttpServletRequest, and one you explore through
examples in the next section, is to retrieve request parameters passed by the client. Request
parameters come in two different forms: via query parameters (also called URI parameters), or

in an application/x-www-form-urlencoded or multipart/form-data encoded request body
(typically called post variables or form variables). Query parameters are supported with all request
methods and are contained in the first line of data in an HTTP request, as in the following example:

GET /index.jsp?productId=9781118656464&category=Books HTTP/1.1

NOTE Technically speaking, the RFEC specification for the HTTP protocol does
not disallow query parameters in any of the HT TP methods. However, many web
servers ignore query parameters passed to DELETE, TRACE, and OPTIONS, and the
usefulness of query parameters in such requests is questionable. So, it is best to
not rely on query parameters for these types of requests. This book does not cover
all the rules and intricacies of the HTTP protocol. That exercise is left up to you.

In this example, there are two query parameters contained in the request: product1d, which has
this book’s ISBN as its value, and category, which has the value Books. These same parameters
could also be passed in the request body as post variables. Post variables can, as the name implies,
be included only in PoST requests. Consider the following example:

POST /index.jsp?returnTo=productPage HTTP/1.1

Host: www.example.com

Content-Length: 48
Content-Type: application/x-www-form-urlencoded

addToCarté&productId=9781118656464&category=Books

Understanding doGet(), doPost(), and Other Methods | 53

This posT request has post variables (instructing the website to add this book to the cart) and
query parameters (instructing the website to return to the product page when the task is complete).
Although there is a difference in the delivery of these two types of parameters, they are essentially
the same, and they convey essentially the same information. The Servlet API does not differentiate
between the two types of parameters. A call to any of the parameter-related methods on a request
object returns parameters whether they were delivered as query parameters or post variables.

The getpParameter method returns a single value for a parameter. If the parameter has multiple
values, getParameter returns the first value, whereas get Parametervalues returns an array of
values for a parameter. If the parameter has only one value, this method returns an array with
one element in it. The getParameterMap method returns a java.util.Map<String, String[]s>
containing all the parameter names mapped to their values, whereas the getParameterNames
method returns an enumeration of the names of all the available parameters; both are useful for
iterating over all the request parameters.

WARNING The first time you call get Parameter, get ParameterMap,
getParameterNames, Or getParameterValues on g request object, the web
container determines whether the request contains post variables, and if it does

it reads and parses those post variables by obtaining the request’s InputStream.
The InputStream of a request can be read only once. If you call get InputStream
or getReader on a request containing post variables and then later attempt to
retrieve parameters in that request, the attempt to retrieve the parameters results
in an T1legalStateException. Likewise, if you retrieve parameters on a request
containing post variables and then later call get InputStream or getReader, the
call to getInputStream Oor getReader fails with an IllegalStateException.

Simply put, any time you anticipate that a request may contain post variables,
it’s best to use only the parameter methods and leave get InputStream and
getReader alone.

Determining Information about the Request Content

Several methods are available to help determine the type, length, and encoding of the content of the
HTTP request. The getContentType method returns the MIME content type of the request, such
as application/x-www-form-urlencoded, application/json, text/plain, or application/
zip, to name a few. A MIME content type describes that the data it marks contains some type. For
example, ZIP archives files have a MIME content type of application/zip to indicate that they
contain ZIP archive data.

The getContentLength and getContentLengthLong methods both return the number of byteS n
the request body (the content length), with the latter method being useful for requests whose content
might exceed 2 gigabytes (unusual, but not impossible). The getCharacterEncoding method
returns the character encoding (such as UTF-8 or ISO-8859-1) of the request contents whenever the
request contains character-type content. (text/plain, application/json, and application/
x-www-form-urlencoded are some examples of character-type MIME content types.) Although
these methods can come in handy in many situations, none of them are necessary if you get post
variables from the request body using the parameter methods.

54 | CHAPTER 3 WRITING YOUR FIRST SERVLET

NOTE The Servlet 3.1 specification in Java EE 7 is the first version that sup-
ports the getContentLengthLong method. Before this version, you had to call
getHeader ("Content-Length") and convert the returned String to a long for
requests that could be larger than 2,147,483,647 bytes.

Reading the Contents of a Request

The methods getInputStream, which returns a javax.servlet.ServletInputStream, and
getReader, which returns a java.io.BufferedReader, can both be used to read the contents of the
request. Which one is best completely depends on the context in which the request contents are being
read. If the contents are expected to be character-encoded data, such as UTF-8 or ISO-8859-1 text,
using the Buf feredReader is typically the easiest route to take because it lets you easily read char
data. If, however, the request data is binary in nature, you must use the servlietInputStream so
that you can access the request content in byte format. You should never use them both on the same
request. After a call to either method, a call to the other will fail with an T1legalStateException.
Remember the preceding warning, and do not use these methods on a request with post variables.

Getting Request Characteristics Such as URL, URI, and Headers

There are many request characteristics that you may need to know about, such as the URL or URI
the request was made with. These are easy to obtain from the request object:

> getRequestURL: Returns the entire URL that the client used to make the request, including
protocol (http or https), server name, port number, and server path but not including the
query string. So, in a request to http://www.example.org/application/index
.jsp?category=Books, getRequestURL returns http://www.example.org/application/

index. jsp.

> getRequestURI: This is slightly different from getRequestURL in that it returns only the
server path part of the URL; using the previous example, that would be /application/
index. jsp.

» getServletPath: Similar to getRequestURI, this returns even less of the URL. If the
request is /hello-world/greeting?foo=world, the application is deployed as
/hello-world on Tomcat, and the servlet-mappings are /greeting, /salutation,
and /wazzup, getServletPath returns only the part of the URL used to match the servlet
mapping: /greeting.

> getHeader: Returns the value of a header with the given name. The case of the header does
not have to match the case of the string passed into the method, so getHeader ("content -
type") can match the content-Type header. If there are multiple headers with the same
name, this returns only the first value. In such cases, you would want to use the getHeaders
method to return an enumeration of all the values.

> getHeaderNames: Returns an enumeration of the names of all the headers in the request —
a great way to iterate over the available headers.

Understanding doGet(), doPost(), and Other Methods | 55

> getIntHeader: If you have a particular header that you know is always a number,
you can call this to return the value already converted to a number. It throws a
NumberFormatException if the header cannot be converted to an integer.

> getDateHeader: You can call this to return the (millisecond) Unix timestamp-
equivalent of a header value that represents a valid timestamp. It throws an
IllegalArgumentException if the header value is not recognized as a date.

Sessions and Cookies

The getSession and getCookies methods are mentioned only long enough to tell you that this
chapter doesn’t cover them, but they are both important citizens in the HttpServletRequest realm.
You can learn more about these is Chapter 5.

Using HttpServletResponse

As the HttpServletRequest interface extends ServletRequest and provides access to the

HTTP protocol-specific properties of a request, the HttpServletResponse interface extends
ServletResponse and provides access to the HTTP protocol-specific properties of a response.

You use the response object to do things such as set response headers, write to the response body,
redirect the request, set the HTTP status code, and send cookies back to the client. Again, the most
common features of this object are covered here.

Writing to the Response Body

The most common thing you’ll do with a response object, and something you have already done
with a response object, is write content to the response body. This might be HTML to display

in a browser, an image that the browser is retrieving, or the contents of a file that the client is
downloading. It could be plain text or binary data. It might be just a few bytes long or it could be
gigabytes long.

The getOutputStream method, which returns a javax.servlet.ServletOutputStream, and the
getWriter method, which returns a java.io.PrintWriter, both enable you to write data to the
response. Like their counterparts in HttpServletRequest, you would probably want to use the
PrintWriter for returning HTML or some other character-encoded text to the client because this
makes it easy to write encoded Strings and chars to the response. However, for sending binary
data back, you must use the ServletoutputStream to send the response bytes. Also, you should
never use both getoutputStream and getWriter in the same response. After a call to one, a call to
the other will fail with an I1legalStateException.

While you’re writing to the response body, it might be necessary to set the content type or encoding.
You can do this with setContentType and setCharacterEncoding. You may call these methods
as many times as you like; the last call to the method is the one that matters. However, if you

plan to call setContentType and setCharacterEncoding along with getWriter, you must call
setContentType and setCharacterEncoding before getWriter soO that the returned writer is
configured for the correct character encoding. Calls made after getWriter are ignored. If you do
not call setContentType and setCharacterEncoding before Calling getWriter, the returned
writer uses the container’s default encoding.

56 | CHAPTER 3 WRITING YOUR FIRST SERVLET

At your disposal, you also have the setContentLength and setContentLengthLong methods. In
almost all cases, these do not need to be called. The web container sets the content-Length header
as it finalizes your response, and it is safest to let it do so.

NOTE The Serviet 3.1 specification in Java EE 7 is the first version that sup-
ports the setContentLengthLong method. Before this version, you had to call
setHeader ("Content-Length", Long.toString(length)) for responses that
could be larger than 2,147,483,647 bytes.

Setting Headers and Other Response Properties

Serving as counterparts to methods in HttpServletRequest, you can call setHeader,
setIntHeader, and setDateHeader to set nearly any header value you desire. If the existing
response headers already include a header with the name you are setting, the value of that
header will be overridden. To avoid this, you can instead use addHeader, addIntHeader,

or addDateHeader. These versions do not override existing header values, but instead

add additional values for the given headers. You can also call getHeader, getHeaders
getHeaderNames, and containsHeader to investigate which headers have already been set on
the response.

In addition, you can use:
> setstatus: To set the HTTP response status code
> getStatus: To determine what the current status of the response is

> sendError: To set the status code, indicate an optional error message to write to the

response data, direct the web container to provide an error page to the client, and clear the
buffer

> gsendRedirect: To redirect the client to a different URL

This section covered most of the things you can do while servicing an HTTP request in your Servlet

and noted important details and cautions where necessary. In the past several sections you have used
the Hello-World project to demonstrate working with Servlets. In the next section, you move on to a
slightly more complex example.

USING PARAMETERS AND ACCEPTING
FORM SUBMISSIONS

In this section, you make your Hello-World project a little more dynamic by accepting parameters
and form submissions. You also explore annotation configuration and temporarily forego the
deployment descriptor. For the examples in this section, you can follow along in the completed
Hello-User project, or you can simply incorporate the changes into your existing project as they are
covered.

Using Parameters and Accepting Form Submissions |

57

Several changes have been made to the project. The first thing you should notice is that the docet
method is much more complex now:

private static final String DEFAULT USER = "Guest";

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

}

throws ServletException, IOException

String user = request.getParameter ("user");
if (user == null)
user = HelloServlet.DEFAULT USER;

response.setContentType ("text/html") ;
response.setCharacterEncoding ("UTF-8") ;

PrintWriter writer = response.getWriter();
writer.append ("<!DOCTYPE html>\r\n")
.append ("<html>\r\n")

.append (" <head>\r\n")

.append (" <title>Hello User Application</title>\r\n")

.append (" </head>\r\n")

.append (" <body>\r\n")

.append (" Hello, ").append(user) .append("!

\r\n")
.append (" <form action=\"greeting\" method=\"POST\">\r\n")
.append (" Enter your name:
\r\n")

.append (" <input type=\"text\" name=\"user\"/>
\r\n")
.append (" <input type=\"submit\" value=\"Submit\"/>\r\n")
.append (" </form>\r\n")

.append (" </body>\r\n")

.append ("</html>\r\n") ;

The code in bold is new. It is doing a little logic now:

>

It tests if the user parameter is included in the request and, if it is not, it uses the DEFAULT
USER constant instead.

It sets the content type of the response to text/html and the character encoding
to UTF-8.

It gets a PrintWriter from the response and writes out a compliant HTMLS5 document
(note the HTMLS5 DOCTYPE), including the greeting (now directed at a particular user)
and a form for supplying your username.

You might wonder how the doGet method can receive the form submission when the method type
for the form is set to posT. This is handled with the simple doPost implementation, which is also

new:

@Override

protected void doPost (HttpServletRequest request, HttpServletResponse response)

58 | CHAPTER 3 WRITING YOUR FIRST SERVLET

throws ServletException, IOException

{
}

This implementation simply delegates to the doGet method. Either a query parameter or a post
variable named user can trigger the greeting to change.

this.doGet (request, response);

The last thing you should notice is the annotation just above the Servlet declaration:

@WebServlet (
name = "helloServlet",
urlPatterns = {"/greeting", "/salutation", "/wazzup"},

loadOnStartup = 1
)
public class HelloServlet extends HttpServlet

{

NOTE You’ll notice that the class imports have been left off of the newest
HelloServlet code example. As your code gets more complex, the imports can
begin to take up many dozens of lines of code. This is too much to print in this
book efficiently. A good IDE, like the one you use for this book, can recognize
the class names and suggest the imports for you, taking the hard work out of
your hands. With few exceptions, import and package statements are omitted
from the rest of the examples in this book. New classes will be in the com.wrox
package unless otherwise stated.

If you also take a look at the deployment descriptor, you’ll notice that the Servlet declaration and
mapping were removed from the web.xml file. (Or if you made these changes to the existing
project, you should remove everything in the deployment descriptor except for the <display-name>
tag.) The annotation in the previous example replaces the XML that you wrote in your previous
project and adds a little bit more.

You still get an instance of HelloServlet named helloServlet; it still starts when the application
starts; and it is still mapped to the /greeting URL. It is also now mapped to the /salutation and
/wazzup URLs. As you can tell, this is a much more direct and concise approach to instantiating
and mapping servlets. However, it has some drawbacks, which are pointed out throughout the

rest of the chapter. For now, compile your project and start Tomcat in your debugger; then go to
http://localhost:8080/hello-world/greeting in your browser. You should see a screen as
shown in Figure 3-2.

Using Parameters and Accepting Form Submissions |

59

http:{/localhost:8080fhello-worldigreeting 0 ~ B & II Hello UserApplication

File Edit \iew Favorites Tools Help

Hello, Guest!

Enter your name:

Submit

H100% -

b

FIGURE 3-2

To understand what this Servlet can do, first add the query string user=al1lison to the URL so that
itis http://localhost:8080/hello-world/greeting?user=Allison. The screen should now
change and, instead of saying “Hello, Guest!” it should say “Hello, Allison!” In this case the request
was serviced by the doget method, which found the user query parameter and output it to the
screen.

You can confirm this by placing breakpoints in docet and dopPost and refreshing the page.

Now, type your name in the form field on the screen and click the Submit button. If you

examine the URL in the address bar, it does not have any query parameters. Instead, your

name was included in the request as a post variable, and when the dorPost method serviced the
request and delegated to the doGet method, the call to getParameter retrieved the post

variable, resulting in your name displaying on the screen. Hitting the breakpoints will confirm that

this has happened.

Remember from the previous section that single parameter values are not the only thing your
Servlets can accept. You can also accept multiple parameter values. The most common example

of this is a set of related check boxes, where the user is permitted to check one or more values.
Refer to the code Listing 3-1, the MultivalueParameterServlet, mapped to /checkboxes.
Compile and run this code in Tomcat using your debugger and navigate your browser to http://
localhost:8080/hello-world/checkboxes. The doGget method in this Servlet prints out a simple
form with five check boxes. The user can select any number of these check boxes and click Submit,
which is serviced by the doPost method. This method retrieves all the fruit values and lists them
on the screen using an unordered list. Try this out by selecting various combinations of check boxes
and clicking Submit.

60 | CHAPTER 3 WRITING YOUR FIRST SERVLET

LISTING 3-1: MultiValueParameterServlet.java

@WebServlet (
name = "multiValueParameterServlet",
urlPatterns = {"/checkboxes"}
)
public class MultiValueParameterServlet extends HttpServlet
{
@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{

response.setContentType ("text/html") ;
response.setCharacterEncoding ("UTF-8") ;

PrintWriter writer = response.getWriter();
writer.append ("<!DOCTYPE html>\r\n")
.append ("<html>\r\n")

.append (" <head>\r\n")

.append (" <title>Hello User Application</title>\r\n")
.append (" </head>\r\n")

.append (" <body>\r\n")

.append (" <form action=\"checkboxes\" method=\"POST\">\r\n")

(

(

(

(

(

(
.append ("Select the fruits you like to eat:
\r\n")
.append ("<input type=\"checkbox\" name=\"fruit\" value=\"Banana\"/>")
.append (" Banana
\r\n")
.append ("<input type=\"checkbox\" name=\"fruit\" value=\"Apple\"/>"
.append (" Apple
\r\n")
.append ("<input type=\"checkbox\" name=\"fruit\" value=\"Orange\"/>")
.append (" Orange
\r\n")
.append ("<input type=\"checkbox\" name=\"fruit\" value=\"Guava\"/>"
.append (" Guava
\r\n")
.append ("<input type=\"checkbox\" name=\"fruit\" value=\"Kiwi\"/>"
.append (" Kiwi
\r\n")
.append ("<input type=\"submit\" value=\"Submit\"/>\r\n")
.append (" </form>")
.append (" </body>\r\n")
.append ("</html>\r\n")

}

@Override
protected void doPost (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

String[] fruits = request.getParameterValues ("fruit");

response.setContentType ("text/html") ;
response.setCharacterEncoding ("UTF-8") ;

PrintWriter writer = response.getWriter();
writer.append ("<!DOCTYPE html>\r\n")
.append ("<html>\r\n")
.append (" <head>\r\n")
.append (" <titles>Hello User Application</title>\r\n")

Configuring your Application Using Init Parameters | 61

.append (" </head>\r\n")
.append (" <body>\r\n")
.append (" <h2>Your Selections</h2>\r\n");
if (fruits == null)
writer.append (" You did not select any fruits.\r\n");
else
{
writer.append (" \r\n") ;

for (String fruit : fruits)

{

writer.append (" <1li>") .append (fruit) .append("</1li>\r\n") ;
}
writer.append (" \r\n");
}
writer.append (" </body>\r\n")

.append ("</html>\r\n") ;
}

This section has shown you the various ways that you can use request parameters within your
Servlet methods. You have explored query parameters and post variables, along with single-value
and multivalve parameters. In the next section you learn about various ways to configure your
application using init parameters.

CONFIGURING YOUR APPLICATION USING INIT PARAMETERS

When writing a Java web application, the need will inevitably arise to provide ways of configuring
your application and the Servlets within it. There are many ways to do that using numerous
technologies, and you explore a few of those in this book. The simplest means of configuring your
application, through context initialization parameters (usually shortened to init parameters) and
Servlet init parameters, is covered in this section. These parameters can be put to any number

of uses, from defining connection information for communicating with a relational database, to
providing an e-mail address to send store order alerts to. They are defined at application startup and
cannot change without restarting the application.

Using Context Init Parameters

Earlier you emptied the deployment descriptor file and replaced your Servlet declaration and
mappings with annotations on the actual classes. Although this is one thing (added in the Servlet
3.0 specification in Java EE 6) that you can do without the deployment descriptor, several things
still require the deployment descriptor. Context init parameters are one such feature. You declare
context init parameters using the <context-params tag within the web.xm1 file. The following code
example shows two context init parameters added to the deployment descriptor:

<context-params

<param-name>settingOne</param-name>
<param-value>foo</param-values>

62 | CHAPTER 3 WRITING YOUR FIRST SERVLET

</context-param>

<context-param>
<param-name>settingTwo</param-name>
<param-values>bar</param-values>

</context-param>

This creates two context init parameters: settingOne having a value of foo and settingTwo having
a value of bar. You can easily obtain and use these parameter values from anywhere in your Servlet
code. The contextParameterServlet demonstrates this ability:

@WebServlet (
name = "contextParameterServlet",
urlPatterns = {"/contextParameters"}

)

public class ContextParameterServlet extends HttpServlet

{

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

ServletContext ¢ = this.getServletContext () ;
PrintWriter writer = response.getWriter();

writer.append("settingOne: ") .append(c.getInitParameter ("settingOne"))
.append (", settingTwo: ") .append(c.getInitParameter ("settingTwo")) ;

}

If you compile, debug, and navigate to http://localhost:8080/hello-world/
contextParameters, you can see these parameters listed on the screen. Every Servlet in your
application shares these init parameters, and their values are the same across all servlets. There may
be cases, however, in which you need a setting that applies to only a single Servlet. For this purpose
you would use Servlet init parameters.

NOTE [f should be noted that as of Servlet 3.0 you can call the
setInitParameter method on the ServletContext as an alternative to
defining context init parameters using <context-params. However, this method
can only be called within the contextInitialized method of a javax
.servlet.ServletContextListener (which you learn about in Chapter 9) or
theonStartup7netbOd(ﬁﬂzjavax.servlet.ServletContainerInitializer
(which you learn about in Chapter 12). Even so, changing the values would
require recompiling your application, so XML is usually the best option for
context init parameters.

Using Servlet Init Parameters

Consider the code for the servlietParameterServiet class. You may immediately notice that it is
not annotated with eWwebservlet. Don’t worry; you learn why in a minute. The code is otherwise
nearly identical to the ContextParameterServlet. Instead of getting your init parameters from the
ServletContext object, you obtain them from the Servietconfig object:

Configuring your Application Using Init Parameters | 63

public class ServletParameterServlet extends HttpServlet

{

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

ServletConfig ¢ = this.getServletConfig() ;
PrintWriter writer = response.getWriter();

writer.append ("database: ") .append(c.getInitParameter ("database"))
.append (", server: ").append(c.getInitParameter ("server"));

}

Of course, just having the Servlet code isn’t enough. The following XML added to the deployment
descriptor declares and maps the servlet and also does a little bit more:

<servlet>
<servlet-names>servletParameterServlet</servlet-name>
<servlet-class>com.wrox.ServletParameterServlet</servlet-class>
<init-params>
<param-name>database</param-name>
<param-value>CustomerSupport</param-values>
</init-param>
<init-param>
<param-names>server</param-name>
<param-value>10.0.12.5</param-value>
</init-param>
</servlets>
<servlet-mapping>
<servlet-name>servletParameterServlet</servlet-name>
<url-patterns>/servletParameters</url-patterns
</servlet-mapping>

The <init-params tag, like the <context-params> tag for the Servlet context, creates an init
parameter specific to this Servlet. If you compile, debug, and navigate to http://localhost:8080/
hello-world/servletParameters, you can see the database and server parameters specified in
the deployment descriptor. So why, you might ask, can’t you use annotations for this like you can
for the rest of the Servlet mapping? Well, technically you can. You can achieve the same result as in
the previous code by removing the initialization and mapping from the deployment descriptor and
adding this annotation to the Servlet declaration:

@WebServlet (
name = "servletParameterServlet",
urlPatterns = {"/servletParameters"},
initParams = {
@WebInitParam(name = "database", value = "CustomerSupport"),
@WebInitParam(name = "server", value = "10.0.12.5")
}
)
public class ServletParameterServlet extends HttpServlet

{

64 | CHAPTER 3 WRITING YOUR FIRST SERVLET

The drawback to doing this, however, is that the values of the Servlet init parameters can no longer
be changed without recompiling the application. Sure, there may be settings that you wouldn’t

want to change without recompiling the application, but at that point why not just make them class
constants? The advantage of putting Servlet init parameters in the deployment descriptor is that a
server administrator needs to change only a few lines of XML and restart the deployed application to
effect the change. If such settings contain connection information for a relational database, the last
thing you want to do is to recompile the application to change the IP address of the database server!

The next section introduces a new feature of HttpServletRequests added in the Servlet 3.0
specification and a new example application that you improve upon throughout the rest of the book.

THE DRAWBACKS OF @CONFIG

As mentioned earlier there are advantages and disadvantages to using annotation-
based configuration (often simply called @Config) in your web application. The
primary advantage is the lack of XML and the direct, concise annotation language
used to configure your application. However, there are numerous drawbacks to this
approach as well.

One example of this is the inability to create multiple instances of a single Servlet
class. You saw earlier in the chapter how such a pattern might be used. This is
impossible using annotations and can be accomplished only using XML configura-
tion or programmatic Java configuration.

In Chapter 9, you learn about filters and why it’s important to carefully construct
the order the filters execute in. You can make filters execute in a specific order when
declaring them using XML configuration or programmatic Java configuration. If
you declare your filters using @javax.servlet.annotation.WebFilter, however,
it is impossible to make them execute in a specific order (something many feel is a
glaring oversight in the Servlet 3.0 and 3.1 specifications). Unless your application
has only one filter, ewebFilter is virtually useless.

There are many smaller things that still require the XML deployment descriptor

to accomplish, such as defining error-handling pages, configuring JSP settings, and
providing a list of welcome pages. Thankfully, you can mix-and-match XML, anno-
tation, and programmatic Java, and configuration, so you can use each when it’s
most convenient. Throughout this book, you use all three techniques.

UPLOADING FILES FROM A FORM

Uploading files to Java EE Servlets has nearly always been possible, but it used to require
considerable effort. The task was so complex that Apache Commons made an entire project, called
Commons FileUpload, to handle all the work. Thus, what seemed to be the simple requirement of
accepting file upload submissions required introducing a third-party dependency in your application.
Servlet 3.0 in Java EE 6 changed all that when it introduced the multipart configuration options for
Servlets and the getPart and getParts methods in HttpServletRequest.

Uploading Files from a Form | 65

You can use this feature as a launching point for your interchapter example application: the
Customer Support project. Although each chapter has smaller examples to demonstrate specific
points, each chapter also includes a new version of the Customer Support project that incorporates
the new topics learned in that chapter.

Introducing the Customer Support Project

The setup is a global website serving customers around the world for Multinational Widget
Corporation. Your product managers have been tasked with adding an interactive customer support
application to the company’s website. It should enable users to post questions or support tickets and
enable employees to respond to those inquiries. Support tickets and comments alike should contain
file attachments. For urgent matters, customers should enter a chat window with a dedicated
support representative. And, to top it all off, because this is Multinational Widget Corporation, the
entire application should be localizable in as many languages as the company decides to translate.
That’s not asking much, right?

Oh, yea. It needs to be really secure, too.

Obviously you can’t tackle this all at once, especially with how little you’ve learned so far, so for
each chapter you either tackle a small feature or improve upon code written in the chapter before.
For the rest of this chapter, refer to the Customer-Support-v1l project. The project is relatively simple
right now. It consists of three pages, handled by doget: a list of tickets, a page to create tickets,

and a page to view a ticket. It also has the capability of downloading a file attached to a ticket and
of accepting a POST request to create a new ticket. Although the code is not complex and consists
largely of concepts you have already covered in this chapter, there is too much to print it all here.
You need to follow along in the code downloaded from the website.

Configuring the Servlet for File Uploads

In the project you can find a Ticket class, an Attachment class, and the TicketServlet class. The
Ticket and Attachment classes are simple POJOs — plain old Java objects. The TicketServlet
does all the hard work at this time, so start by looking at its declaration and fields:

@WebServlet (
name = "ticketServlet",
urlPatterns = {"/tickets"},
loadOnStartup = 1
)
@MultipartConfig(
fileSizeThreshold = 5 242 880, //SMB
maxFileSize = 20 971 520L, //20MB
maxRequestSize = 41 943 040L //40MB
)
public class TicketServlet extends HttpServlet

{

private volatile int TICKET ID SEQUENCE = 1;

private Map<Integer, Ticket> ticketDatabase = new LinkedHashMap<>() ;

66

CHAPTER 3 WRITING YOUR FIRST SERVLET

Already you should see some things you recognize and some things you don’t. The
@MultipartConfig annotation instructs the web container to provide file upload support for this
servlet. It has several important attributes you should look at. The first, which is not shown here, is
location. This instructs the web container in which directory to store temporary files if it needs to.
In most cases, however, it is sufficient to omit this field and let the application server use its default
temporary directory. The £ilesizeThreshold tells the web container how big the file has to be
before it is written to the temporary directory.

In this example, uploaded files smaller than 5 megabytes are kept in memory until the request completes
and then they become eligible for garbage. After a file exceeds 5 megabytes, the container instead stores
it in location (or default) until the request completes, after which it deletes the file from disk. The

last two parameters, maxFileSize and maxRequestSize, place limits on uploaded files: maxFileSize
in this example prohibits an uploaded file from exceeding 20 megabytes, whereas maxRequestSize
prohibits the total size of a request from exceeding 40 megabytes, regardless of the number of file
uploads it contains. That’s really all there is to it. The Servlet is now configured to accept file uploads.

NOTE As with configuring Servlet init parameters using annotations, the multi-
part configuration parameters in the previous example cannot be changed with-

out recompiling the application. If you anticipate server administrators’ needing
to customize these settings without recompiling the application, you need to

use the deployment descriptor instead of eWwebServlet and @MultipartConfig.

Within the <servlet> tag you can place a <multipart-configs> tag, and within
thatyouCantwethe<location>,<file—size—threshold>,<max—file—sizez

and <max-request-sizes tags.

You may also notice that the “ticket database” isn’t a database at all (Or is it? It’s a medium for
storing data, no?), but rather a simple hash map. Eventually in Part III of this book you back your
application with a relational database. For now, however, you want to get the user interface right
and understand the business requirements so that product management at Multinational Widget
Corporation is happy. After that, you can worry about persisting your data.

Now that you understand what you’ve seen so far, take a look at the doget implementation:

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

String action = request.getParameter ("action");
if (action == null)
action = "list";
switch(action)
{
case '"create":
this.showTicketForm(response) ;
break;
case "view":
this.viewTicket (request, response);
break;

Uploading Files from a Form | 67

case "download":
this.downloadAttachment (request, response) ;
break;
case “download”:
default:
this.listTickets (response) ;
break;

}

There’s too much to do to put everything in the docet method; before long, you could have a method
that spans hundreds of lines. In this example, the doGget method uses a primitive action/executor
pattern: The action is passed in through a request parameter, and the doGet method sends the request
to an executor (method) based on that action. The doPost method is similar:

@Override
protected void doPost (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

String action = request.getParameter ("action");
if (action == null)

action = "list";
switch(action)

{

case "create":
this.createTicket (request, response) ;
break;

case "download":

default:
response.sendRedirect ("tickets") ;
break;

}

One new thing you can notice in doPost is the use of the redirect method. You learned about this
method a few sections ago. In this case, if the client performs a PoST with a missing or invalid action
parameter, his browser is redirected to the page that lists tickets. Most of the methods in this class are
nothing new: use of parameters, use of the PrintWriter to output content to the client’s browser,
and so on. Not all the code can fit in this book, but there are some new features used here that you
should look at. The following example is a snippet of the downloadattachment method, only the
part that contains something new you haven’t seen yet:

response.setHeader ("Content-Disposition",

"attachment; filename=" + attachment.getName()) ;
response.setContentType ("application/octet-stream") ;

ServletOutputStream stream = response.getOutputStream() ;
stream.write (attachment.getContents()) ;

This simple bit of code is responsible for handing off the file download to the client’s browser. The
Content-Disposition header, as set, forces the browser to ask the client to save or download

the file instead of just opening the file inline in the browser. The content type is a generic, binary
content type that keeps the data from having some kind of character encoding applied to it. (A more
correct implementation would know the attachment’s actual MIME content type and use that value,
but that task is outside the scope of this book.) Finally, the servietoutputStream is used to write

68 | CHAPTER 3 WRITING YOUR FIRST SERVLET

the file contents to the response. This may not be the most efficient way to write the file contents to
the response because it may suffer memory issues for large files. If you anticipate permitting large
file downloads, you shouldn’t store files in-memory, and you should copy the bytes from a file’s
InputstreamtotheResponseOutputStream.YoushoukithmlflushtheResponseOutputStream
frequently so that bytes are continuously streaming back to the user’s browser instead of buffering
in memory. The exercise of improving this code is left up to you.

Accepting a File Upload

Lastly, take a look at the createTicket method and the method that it uses, processAttachment,
in Listing 3-2. These methods are particularly important because they deal with handling a

file upload — something you have not done yet. The processattachment method gets the
InputStream from the multipart request and copies it to the Attachment object. It uses the
getSubmittedFileName method added in Servlet 3.1 to identify the original file name before it was
uploaded. The createTicket method uses this method and other request parameters to populate
the Ticket object and add it to the database.

LISTING 3-2: Part of TicketServlet.java

private void createTicket (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

Ticket ticket = new Ticket();

ticket.setCustomerName (request.getParameter ("customerName")) ;
ticket.setSubject (request.getParameter ("subject")) ;
ticket.setBody (request.getParameter ("body")) ;

Part filePart = request.getPart("filel");
if (filePart != null)
{
Attachment attachment = this.processAttachment (filePart);
if (attachment != null)
ticket.addAttachment (attachment) ;

}

int id;
synchronized (this)

{

id = this.TICKET_ID_SEQUENCE++;
this.ticketDatabase.put (id, ticket);

}

response.sendRedirect ("tickets?action=view&ticketId=" + id);

}

private Attachment processAttachment (Part filePart)
throws IOException
{

InputStream inputStream = filePart.getInputStream() ;
ByteArrayOutputStream outputStream = new ByteArrayOutputStream() ;

Making Your Application Safe for Multithreading | 69

int read;
final byte[] bytes = new byte[1024];

while ((read = inputStream.read (bytes)) != -1)

{
}

Attachment attachment = new Attachment () ;

outputStream.write (bytes, 0, read);

attachment.setName (filePart.getSubmittedFileName()) ;
attachment.setContents (outputStream.toByteArray()) ;

return attachment;

}

One thing you may notice in the createTicket method is the use of a synchronized block to
lock access to the ticket database. You explore this a little more in the next and final section of the
chapter.

MAKING YOUR APPLICATION SAFE FOR MULTITHREADING

Web applications are, by nature, multithreaded applications. At any given time, zero, one, or a
thousand people may be using your web application simultaneously, and your code must anticipate
and account for this. There are dozens of different facets to this topic, and entire books have been
written about multithreading and managing concurrency in applications. Obviously, this book
cannot possibly cover all the important multithreading discussions. However, you should know two
things above all else when considering concurrency in your web applications.

Understanding Requests, Threads, and Method Execution

Every web container is, of course, slightly different. But in the Java EE world, generally speaking, a
web container contains some type of thread pool, possibly called the connector pool or executor pool.

When the container receives a request, it looks for an available thread in the pool. If it does not find
an available thread and the thread pool has already reached its maximum size, the request enters a
queue — first in first out — and waits for an available thread. (Typically, there is also a higher limit,
called the acceptcount setting in Tomcat, which defines the maximum number of connections that
can be queued before the container starts rejecting connections.) Once a thread is available, the
container borrows the thread from the pool and hands the request off to be handled by the thread.
At this point, the thread is no longer available for any other incoming requests. In a normal request,
the thread and request will be linked throughout the life of the request. As long as the request is
processed by your code, that thread will be dedicated to the request. Only when the request has
completed and the content of your response has been written back to the client will the thread be
free from the request and return to the pool to service another request.

70

CHAPTER 3 WRITING YOUR FIRST SERVLET

Creating and destroying threads includes a lot of overhead that can slow an application down,
so employing a pool of reusable threads in this manner eliminates this overhead and improves
performance.

The thread pool has a configurable size that determines how many connections can be serviced

at once. Although this is not a discussion of the techniques and practices of managing application
servers, hardware limitations place a practical limit on the size of this pool, after which increasing
the pool size achieves no performance gains (and often can hurt performance). The default
maximum pool size in Tomcat is 200 threads, and this number can be increased or decreased. You
must understand this because it means that, in a worst-case scenario, 200 different threads (or
more, if you increase the number) could be executing the same method in your code on the same
instance of that code simultaneously. Therefore, you should consider the way that code functions so
that simultaneous executions of the code in multiple threads do not result in exceptional behavior.

NOTE Oun the subject of requests and threads, there are circumstances during
which a thread may not be devoted to a request for the entire life of the request.
Servlet 3.0 in Java EE 6 added the concept of asynchronous request contexts.
Essentially, when your Servlet services a request, it can call ServletRequest’s
startAsync method. This returns a javax.servlet .AsyncContext object in
which that request resides. Your Servlet can then return from the Servlet’s ser-
vice method without responding to the request, and the thread will be returned to
the pool. The request does not close, but instead stays open, unanswered. Later,
when some event occurs, your application can retrieve the response object from
the AsyncContext and use it to send a response to the client. You learn more
about using asynchronous request contexts in Chapter 9. This approach is often
employed for a technique called long polling, something that Chapter 10 discusses.

Protecting Shared Resources

The most typical complication when coding for a multithreaded application is the access of shared
resources. Objects and variables created during the execution of a method are safe as long as that
method is executing — other threads do not have access to them. However, static and instance
variables in a Servlet, for example, could be accessed by multiple threads simultaneously (remember:
in the worst case, even 200 threads simultaneously). It’s important to synchronize access to these
shared resources to keep their contents from becoming corrupt and possibly causing errors in your
application.

You can employ a few techniques to protect shared resources from these problems. Consider the first
line of code in the TicketServlet:

private volatile int TICKET_ID SEQUENCE = 1;

In Java, it is sometimes possible for one thread to read the previous value of a variable even after the
value has been changed in another thread. This can cause consistency issues in some circumstances.
The volatile keyword in this case establishes a happens-before relationship for all future reads of

the variable and guarantees that other threads will always see the latest value of the variable.

Summary | 71

Next, recall the synchronized block of code in the createTicket method from Listing 3-2:

synchronized (this)

{

id = this. TICKET ID SEQUENCE++;
this.ticketDatabase.put (id, ticket);

}

Two things are happening in this block of code: the TICKED ID SEQUENCE is incremented and its
value retrieved, and the Ticket is inserted into the hash map of tickets. Both of these variables are
instance variables of the Servlet, meaning multiple threads may have access to them simultaneously.
Putting these actions within the synchronized block guarantees that no other thread can execute
these two lines of code at the same time. The thread currently executing this block of code has
exclusive access to execute the block until it completes. Of course, care should always be taken when
using synchronized code blocks or methods because incorrect application of synchronization can
result in a deadlock, a problem beyond the scope of this book.

WARNING Oue final thing to keep in mind when writing your Servlet meth-
ods: Never store request or response objects in static or instance variables. Just
don’t do it. There is no maybe — it will cause problems for you. Any objects and
resources that belong to a request should exist only as local variables and method
arguments.

SUMMARY

In this chapter, you were introduced to the Servlet interface and GenericServlet and
HttpServlet abstract classes, along with the HttpServletRequest and HttpServletResponse
interfaces. You learned how to service incoming requests and respond to them appropriately

using the request and response objects. You experimented with the deployment descriptor and
explored how to configure Servlets using web.xml and annotations. You also discovered one of the
most important tasks when dealing with HTTP requests: handling request parameters, including
query parameters and post variables, and accepting file uploads through form submissions. You
were introduced to context and Servlet init parameters and how to use them to configure your
application. Finally, you learned about request threads and thread pools and why multithreading
considerations are so important in web application programming.

At this point, you should have a firm grasp on the basics of creating and using Servlets in your
web application. One of the major inconveniences you may have noticed during this chapter is the
complexity and cumbersomeness of writing simple HTML to the response. In the next chapter
you explore the answer to this problem and how it makes life much easier in the Java EE world:
JavaServer Pages.

Using JSPs to Display Content

IN THIS CHAPTER

> Using
 is easier than output.println("
")

Creating your first JSP

>
> Using Java within a JSP (and why you shouldn't)
> Combining Servlets and JSPs

>

A note about JSP Documents (JSPX)

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/
projavaforwebapps on the Download Code tab. The code for this chapter is divided into the
following major examples:

> Hello-World-JSP Project
> Hello-User-JSP Project

> Customer-Support-v2 Project

NEW MAVEN DEPENDENCIES FOR THIS CHAPTER

In addition to the Maven dependency introduced in the previous chapter, you will also
need the following Maven dependencies. The exclusions are necessary because the J[STL
implementation defines transient dependencies on older versions of the JSP and Servlet
specifications that have different Maven artifact IDs than the current versions.

<dependency>
<groupId>javax.servlet.jsp</groupIlds>
<artifactId>javax.servlet.jsp-api</artifactIds>
<version>2.3.1</version>
<scope>provided</scope>

74 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

</dependency>

<dependency>
<groupId>javax.servlet.jsp.jstl</groupld>
<artifactId>javax.servlet.jsp.jstl-api</artifactIds>
<version>1l.2.1l</versions>
<scope>compile</scope>

</dependency>

<dependency>
<groupIld>org.glassfish.web</groupIlds>
<artifactId>javax.servlet.jsp.jstl</artifactId>
<version>1.2.2</version>
<scope>compile</scope>
<exclusions>
<exclusions>
<groupld>javax.servlet</groupIds>
<artifactIds>servlet-api</artifactIds>
</exclusions>
<exclusion>
<groupIld>javax.servlet.jsp</groupIlds>
<artifactId>jsp-api</artifactIds>
</exclusion>
<exclusions>
<groupld>javax.servlet.jsp.jstl</groupIlds>
<artifactId>jstl-api</artifactIds>
</exclusion>
</exclusions>
</dependency>

In the last chapter you learned about Servlets and handling requests, responses, request parameters,
file uploads, Servlet configuration, and more. However, you may have noticed a serious inconvenience
when writing the Servlet code to output HTML content to the response: Repeatedly calling methods
on the ServletOutputStream or PrintWriter classes to output the content and having to put
HTML content within Java Strings, requiring escaping of quotation marks, is a real pain. In this
chapter, you explore JavaServer Pages and how they can make your life a whole lot easier.

 IS EASIER THAN OUTPUT.PRINTLN("
")

Java is a powerful language. It has many capabilities and features that make it useful, flexible, and
easy to use. Chances are, you are reading this book because you like Java and want to learn how to
do more with it. So what’s up with this?

PrintWriter writer = response.getWriter();
writer.append ("<!DOCTYPE html>\r\n")
.append ("<html>\r\n")

append (" <head>\r\n")
.append (" <title>Hello World Application</titles>\r\n")
.append (" </head>\r\n")
.append (" <body>\r\n")
append (" Nick says, \"Hello, World!\"\r\n")
append (" </body>\r\n") ;
(

.append ("</html>\r\n") ;

 Is Easier Than output.printIn(“
") | 75

The number of ways this is inconvenient and cumbersome is rather long. Significantly more code
must be written to achieve this. More file space is needed to store the code. Time is wasted writing
and testing the code. Verbosity with line endings (\r\n) is necessary to make HTML source that is
readable in the browser’s View Source feature. Any quotation marks that appear in the HTML must
be escaped so that they do not prematurely terminate the string literal. And — perhaps one of the
worst problems — code editors cannot easily (in most cases, at all) recognize and validate HTML
code within strings to tell you if you’re doing something wrong. Surely there is a better way. After
all, it’s just text. If you wrote the previous example in a plain HTML file, it would be simple:

< !DOCTYPE html>
<html>
<head>
<title>Hello World Application</titles>
</head>
<body>
Hello, World!
</body>
</html>

Fortunately, the creators of the Java EE specification realized that this system would quickly become
unwieldy and designed JavaServer Pages, also known as JSPs, to answer the need.

Why JSPs Are Better

The problem with the most-recent code example is that it’s a static HTML document. It may have
been easier to write and it will likely be infinitely easier to maintain than the example written in
Java, but there’s nothing dynamic about it. JSPs are essentially a hybrid solution, combining Java
code and HTML tags. JSPs can contain any HTML tag in addition to Java code, built-in JSP

tags (Chapter 7), custom JSP tags (Chapter 8), and something called the Expression Language
(Chapter 5). Many of these features you learn about in later chapters.

In this chapter, you explore the basic rules of JSPs and learn about the syntax, directives,
declarations, scriptlets, and expressions of the JSP technology. You also learn about the life cycle of
a JSP and how it is ultimately used to send a response back to the user.

There are alternatives to JSPs. Perhaps the most common alternative is Facelets, part of the broader
JavaServer Faces technology (or JSF for short, making it easy to confuse with JSP). There are also
templating frameworks, such as Velocity, Freemarker, SiteMesh, and Tiles, that all, in some fashion,
supplement or replace the features provided by JSPs. This book cannot possibly cover all the options
and variations of presentation technologies that work with the Servlet 3.1 specification. It will,
therefore, focus on the most popular and widely used technology.

The following example, which you can find in the index. jsp file of the Hello-World-JSP project on
the wrox.com downloads page, re-creates the Hello-World project from Chapter 2, but uses a JSP
instead of a Servlet to display the greeting to the user.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<!DOCTYPE html>
<html>
<head>
<title>Hello World Application</titles>

76

CHAPTER 4 USING JSPS TO DISPLAY CONTENT

</head>
<body>
Hello, World!
</body>
</html>

This example is nearly identical to the original HTML-only example earlier in the section. The only
new code is the first line, highlighted in bold. This is one of several JSP directives that you will examine
in more detail in the section “Creating Your First JSP.” This particular directive sets the content type
and character encoding of the page, something you previously did with the setcontentType and
setCharacterEncoding method calls on the HttpservletResponse. Everything else in this JSP is
plain HTML, transmitted back to the client as-is in the response. The interesting question is, “What’s
actually happening behind the scenes?”

What Happens to a JSP at Run Time

A JSP is really just a fancy Servlet. Perhaps you have heard the phrase “syntactic sugar.” Ultimately,
in one way or another, all popular languages programmers use today on a regular basis are syntactic
sugar. Take Java, for example, as a code you write with. When you compile Java code, it is turned
into bytecode. The bytecode is what matters — not the Java code. In fact, many different statements
in Java can turn into identical bytecode. But to take it a step further, bytecode is not the final
rendering of a Java program. This bytecode is still platform-independent, but that is not sufficient to
run on varying operating systems.

When Java runs in the JRE, the Just In Time compiler compiles it into machine code, which is
specific to the platform it runs on. Ultimately, it’s this machine code that is executed. Even lower-
level languages, such as C, are simply syntactic sugar for the machine code they actually get
compiled to. JSPs are another form of syntactic sugar. At run time, the JSP code is interpreted by the
JSP compiler, which parses out all the special features in the JSP code and translates them to Java
code. The Java class created from each JSP implements Servlet. Then, the Java code goes through
the same cycle it normally does. Still at run time, it is compiled into bytecode and then into machine
code. Finally, the JSP-turned-Servlet responds to requests like any other Servlet.

To investigate this, for these steps:

1. Compile the Hello-World-JSP project in your IDE, start your debugger, and open your
browser to http://localhost:8080/hello-world/. You should see the all-too-familiar
greeting on your screen.

2. Browse your file system to the Tomcat 8.0 home directory (C:\Program Files\
Apache Software Foundation\Tomcat 8.0 on Windows) and go into the directory work\
Catalina\localhost\hello-world. Tomcat puts all compiled JSPs for the application in
this directory, but it also leaves behind the intermediate Java files it generates so that you
can inspect and troubleshoot with them.

3. Continue going down further directories until you come across the index_jsp.java file.

Open it (not the index_jsp.class file) in your favorite text editor.

What you should find is a class that extends org.apache.jasper.runtime.HttpJIspBase. This
abstract class extends — you may have guessed — HttpServlet. HttpJspBase provides some base

 Is Easier Than output.printin(“
") | 77

functionality that will be used by all JSPs that Tomcat compiles, and when your JSP is executed,
ultimately the service method on that Servlet is executed, which eventually executes the
__jspService method.

If you inspect the _jspService method, you’ll find a series of method calls writing your HTML to
the output stream. This code should look very familiar to you because it’s not that different from
the Java code that you replaced with this JSP. Of course, the JSP Servlet class does not look the same
on every web container. The org.apache. jasper classes, for example, are Tomcat-specific classes.
Your JSP compiles differently on each different web container you run it on. The important point

is that there is a standard specification for the behavior and syntax of JSPs, and as long as the web
containers you use are compliant with the specification, your JSPs should run the same on all of
them, even if the Java code they get translated into looks completely different.

JSPs, just like your normal Servlets, can also be debugged at run time. To demonstrate this, place

a breakpoint on the line of your JSP that contains “Hello, World,” and then refresh your browser.
At this point you should hit the breakpoint in the JSP, and you should notice a few things. First,

you can hit breakpoints directly within the JSP code! You don’t have to place breakpoints in the
translated JSP Servlet class; Java, Tomcat, and your IDE can match the breakpoint in the JSP to code
executing in the run time. You should also notice that, although the breakpoint might be

in the JSP code, the debugger clearly is not. The stack will show that your run time has paused
within the jspservice method, and the variables window shows you all the instance and local
variables defined within that scope in the index jsp class.

WARNING Intelli] IDEA has much better [SP debugging facilities than does
Eclipse IDE. If you are using Eclipse, it’s possible that you may not be able to
place a breakpoint in this [SP at all. As of now, Eclipse only lets you place break-
points in the Java code embedded in your [SPs, while Intelli] allows breakpoints
in any JSP code.

Like all other Servlets running in your web container, JSPs have a life cycle. In some web containers,
such as Tomcat, the JSP is translated and compiled just in time when the first request to that JSP
arrives. For future requests, the JSP is already compiled and ready to use. This, as you can imagine,
introduces some performance impacts. Although the performance hit generally comes only on the
first request, leaving all subsequent requests to run at a decent speed, this is still unwanted in some
production environments. Because of this, many web containers give you the option of precompiling
all of an application’s JSPs as it deploys. This, of course, significantly slows down deployment for
large applications. If you have many thousands of JSPs, your application could conceivably take 10
minutes to deploy instead of just 1. It’s up to the organization to decide which configuration meets
its needs best. Regardless of the time of compilation, after the first request arrives, the JSP Servlet
will be instantiated and initialized, and then the first request can be serviced.

By this point you should realize that the code you write in your JSP ultimately is translated into
some version of the code you would have had to write anyway if you didn’t have JSPs. So why, you
might ask, should one even bother with JSPs? The fact remains that the JSP is a much easier file
format for producing markup for display in a web browser than writing straight Java code. If this
can improve the speed, efficiency, and accuracy of your development process, the question actually
is, “Why wouldn’t you use JSPs?”

78 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

CREATING YOUR FIRST JSP

You’ve explored a JSP that was already written for you, so now work on creating your own JSP. You
need to know some things about how JSPs are structured and what you can put in JSPs. You go over
some of the basic need-to-knows in this section and then delve a little further in the next.

Understanding the File Structure

In the previous chapter you explored Servlets and answered the question, “What must you do in
the service method?” The answer was that you must appropriately respond to the HTTP request
with a valid HTTP response, but because HttpServiet takes care of all of that for you, your doget
and dopost methods could literally be empty methods (as useless as that was). As it turns out,

the question in this case is still the same. There are many things that must happen when a JSP is
executed, but all those “musts” are handled for you.

To demonstrate this, create a file named blank.jsp in the web root of an empty project; delete

all its contents (your IDE might put some code in there for you — delete it all); and redeploy your
project. Alternatively, just use the Hello-World-]JSP you downloaded from wrox. com, which already
Contaﬁmziblank.jsp.Vthlyougy)U)http://localhost:8080/hello-world/blank.jsp,you
don’t get any errors. Everything works fine; you just get a useless blank page back. Now put the
following code in it, redeploy, and reload:

< !DOCTYPE htmls>
<html>
<head>
<title>Hello World Application</titles
</head>
<body>
Hello, World!
</body>
</html>

There’s just a slight difference between blank.jsp and index.jsp now, that being the missing
special tag that’s on the first line of index.jsp. And yet, the content still displays the same. This

is because JSPs by default have a content type of text/html and a character encoding of ISO-
8859-1. However, this default character encoding is incompatible with many special characters like
those in non-English languages, which can interfere with efforts to localize your application. So,

at a minimum, your JSP needs to contain HTML to display to the user. However, to ensure that
HTML displays correctly in all browsers on all systems in many languages, you’ll want to include
certain JSP tags to control the data sent to the client, such as setting the character encoding to the
localization-friendly UTF-8.

Several different types of tags can be used in JSPs, and you explore more of them in the next section.
Of the directive tag type, there is one that you have already seen:
<%@ page ... %>

This directive tag provides you with some controls over how the JSP is translated, rendered, and
transmitted back to the client. In the index.jsp example, the page directive looks like this:

o

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

Creating Your First JSP | 79

The 1anguage attribute tells the container which JSP scripting language this JSP uses. A JSP
scripting language (not to be confused with interpreted scripting languages) is a language that can
be embedded in a JSP for scripting certain actions. Currently, Java is the only supported scripting
language for JSPs, but this attribute leaves that open for extension someday.

Technically, you can omit this attribute. Because Java is the only supported JSP scripting language,
and in addition Java is the default in the specification, Java is implied when this attribute is missing.
The contentType attribute tells the container the value of the content-Type header that should be
sent back along with the response. The content -Type header contains both the content type and
the character encoding, separated with a semicolon. If you recall reading the index_jsp.java file, it
contained the Java that this attribute was translated to:

response.setContentType ("text/html;charset=UTF-8") ;

It should be noted that the previous code snippet is the equivalent of the following two lines of code,
which you saw in your Hello-User project from Chapter 3:

response.setContentType ("text/html") ;
response.setCharacterEncoding ("UTF-8") ;

And furthermore, these are both equivalent to the following line of code:

response.setHeader ("Content-Type", "text/html;charset=UTF-8");

As you can see, there are several ways to accomplish the same task. The setContentType and
setCharacterEncoding methods are convenience methods. Which method you use is up to you;
although, you should generally pick one and stick to it to avoid confusion. However, as most of your
content code from here on will be JSP-based, you’ll mostly just be concerned with the contentType
attribute of the page directive.

Directives, Declarations, Scriptlets, and Expressions

In addition to the various HTML and JSP tags you can use within a JSP, there are several unique
structures that define a sort of JSP language. They are directives, declarations, scriptlets, and
expressions. In the simplest terms, they look like this:
<%@ this is a directive %>
<%! This is a declaration
<% this is a scriptlet %>
<%= this is an expression

o\
\%

o°
Vv

Using Directives

Directives are used to direct the JSP interpreter to perform an action (such as setting the content
type) or make an assumption about the file (such as which scripting language it uses), to import a
class, to include some other JSP at translation time, or to include a JSP tag library.

Using Declarations

You use declarations to declare something within the scope of your JSP Servlet class. For example,
you could define instance variables, methods, or classes within a declaration tag. You need to
remember that these declarations all are made within the generated JSP Servlet class, so any classes
you define are actually inner classes of the JSP Servlet class.

80

CHAPTER 4 USING JSPS TO DISPLAY CONTENT

Using Scriptlets

Like a declaration, a scriptlet also contains Java code. However, scriptlets have a different scope.
Although code within a declaration is copied to the JSP Servlet class body at translation time and
must therefore be used to declare some field, type, or method, scriptlets are copied to the body of
the jspservice method you looked at earlier. Any local variables that are in scope within this
method execution will be in scope within your scriptlets, and any code that is legal within a method
body is legal within a scriptlet. So, you can define local variables, but not instance fields. You can
use conditional statements, manipulate objects, and perform arithmetic, all things you cannot do
within a declaration. You can even define classes (as odd as that may sound, but it is legal in Java to
have class definitions within a method), but the classes do not have scope outside the jspservice
method. A class, method, or variable defined within a declaration can be used within a scriptlet, but
a class or variable defined within a scriptlet cannot be used within a declaration.

Using Expressions

Expressions contain simple Java code that returns something that can be written to the client
output, and expressions output the return variable of that code to the client. So, you could have

an arithmetic calculation within an expression because that results in a numeric value that can be
displayed. You could call some method that returns a string or number or other primitive because
that results in a displayable returned value. Essentially, any code that can legally be the entire right
side of an assignment statement can be placed within an expression. Expressions execute within the
same method scope as scriptlets; that is, expressions get copied into the jspService method just
like scriptlets do.

Take a look at the following example code. It doesn’t actually do anything useful, but it
demonstrates the variety of things you can do within directives, declarations, scriptlets, and
expressions.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%!

private final int five = 0;
protected String cowboy = "rodeo";

//The assignment below is not declarative and is a syntax error if uncommented
//cowboy = "test";

public long addFive (long number)

{
}

public class MyInnerClass

{
}

MyInnerClass instanceVariable = new MyInnerClass() ;

return number + 5L;

//WeirdClassWithinMethod is in method scope, so the declaration below is
// a syntax error if uncommented

Creating Your First JSP | 81

//WeirdClassWithinMethod bad = new WeirdClassWithinMethod() ;

N oe
\Y

o\

class WeirdClassWithinMethod

{
}

WeirdClassWithinMethod weirdClass = new WeirdClassWithinMethod() ;
MyInnerClass innerClass = new MyInnerClass();

int seven;

seven = 7;

oe
\

"Hello, World" %>

addFive (12L) %>

N
o°
]

N
o\
U}

Putting It All Together

Create a JSP file named gibberish.jsp in the web root of an empty project, and put the preceding
gibberish code in there (or just use the JSP in the Hello-World-JSP project). Compile and run your
application and go to http://localhost:8080/hello-world/gibberish.jsp. Obviously, this
page isn’t useful in the browser; the point that you should understand is in the source file. Go back
into the Tomcat work directory and find the gibberish_jsp.java file. Examine how the code in
your JSP got translated into Java code in the JSP Servlet class to gain a better understanding of the
differing purposes of directives, declarations, scriptlets, and expressions.

Commenting Your Code

Like nearly every other language or markup in existence, JSP also has a method for commenting
code. There are four different ways that you can comment code within a JSP:

> XML comments

> Traditional Java line comments
> Traditional Java block comments
>

JSP comments.

The XML comment (also known as the HTML comment) is syntax you are most likely already
familiar with:

<!-- This is an HTML/XML comment -->

This type of comment is passed through to the client because it is standard XML and HTML
markup. The browser ignores it, but it appears in the source of the response. More important,

any JSP tags within this comment will still be evaluated. This is essential to remember because
commenting out code with this style of comment does not prevent Java code within from executing.
To demonstrate this, consider the following example:

o

<!-- This is an HTML/XML comment: <%= someObject.dumpInfo() %> -->

If someObject .dumpInfo () returns “connections=3, errors=12, successes=3847,” the response sent
back to the client’s browser will contain the following HTML comment in it:

<!-- This is an HTML/XML comment: connections=5, errors=12, successes=3847 -->

82 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

You can use any legal Java comment within declarations and scriptlets in JSPs. This includes, as
mentioned previously, line comments and block comments. In the following example, all the code in
bold is commented out and will not be evaluated:

oe

<
String hello = "Hello, World!"; // this is a comment
//long test = 12L;
/*int i=0;
int j = 12;*/
String goodbye = "Goodbye, World!";

o©

>

The new type of comment that you have not used yet is the JSP comment. The syntax of the JSP
comment closely resembles an XML/HTML comment, with the only difference being the percent
sign instead of the exclamation point at the beginning, and the percent sign at the end:

o o

<%-- This is a JSP comment --%>

Just as with the XML/HTML comment, everything between the <%-- and the --%> is considered
commented. Not only is it not sent to the browser, it isn’t even interpreted/translated by the JSP
compiler. Whereas all three of the previously covered comment types appear in the JSP Servlet java
file, this last comment type does not. To the translator, it does not even exist. This is especially
useful for commenting out some range of code that includes JSP scriptlets, expressions, declarations,
directives, and markup that you do not want to be evaluated or sent to the browser.

Adding Imports to Your JSP

In Java when you use a class directly, you must either reference it using its fully qualified class
name, or you must include an import statement at the top of the Java code file. The rules are the
same in JSPs. Any time a JSP contains Java code that uses a class directly, it must either use the
fully qualified class name or include an import directive in the JSP file. And just as every class in
the java.lang package is imported implicitly in Java files, similarly every class in the java.lang
package is implicitly imported in JSP files.

Importing Java classes in JSPs is different but just as easy as importing Java classes in a Java code
file. Importing one or more classes is as simple as adding an import attribute to the page directive
you learned about earlier:

<%@ page import="java.util.*,java.io.IOException" %>

In this example, you use a comma to separate multiple imports, and the result is that the
java.io.IOException class and all the members of the java.util package are imported. Of
course, you do not have to use a separate directive to import classes. You could combine this with
the example seen earlier:

<%@ page contentType="text/html;charset=UTF-8" language="java"
import="java.util.*,java.io.IOException" %>

You also don’t have to combine multiple imports into a single directive using a comma separator.
You could use multiple directives to accomplish this task:

<%@ page import="java.util.Map" %>

<%@ page import="java.util.List" %>

<%@ page import="java.io.IOException" %>

Creating Your First JSP | 83

Something to consider when doing this is that every JSP tag that results in no output, and also every
directive, declaration, and scriptlet, results in an empty line being output to the client. So, if you
have many page directives for imports followed by various declarations and scriptlets, you could end
up with dozens of blank lines in your output. To compensate for this, JSP developers often chain the
end of one tag to the beginning of the next:

<%@ page import="java.util.Map"

$><%@ page import="java.util.List"
%$><%@ page import="java.io.IOException" %>

This code example has the exact same logical outcome as the previous example, but it results in

only one blank line at the top of the output instead of three. In the section “Combining Servlets and
JSPs,” you will learn about a deployment descriptor setting that trims this white space entirely.

Using Directives

Earlier you were introduced to the directive, a JSP feature denoted with a beginning <3e and an
ending %>. There are three different types of directives, which are discussed at this time.

Changing Page Properties

You have already explored some features of the page directive, such as the contentType, language,
and import attributes. There are also many more features of the page directive. As explained
earlier, the page directive provides you with some controls over how the JSP is translated, rendered,
and transmitted back to the client. Here are some of the other attributes that may be included in this
directive:

pageEncoding

Specifies the character encoding used by your JSP and is equivalent to setCharacterEncoding on
HttpServletResponse. Instead of contentType="text/html;charset=UTF-8 ", you could write
contentType="text/html" pageEncoding="UTF-8".

session

This must either be true or false, and indicates whether the JSP participates in HT TP sessions. By
default it is true, giving you access to the implicit session variable in the JSP (covered in the section
“Using Java within a JSP (and Why You Shouldn’t)”). If you set it to false, you cannot use the implicit
session variable. If your application does not use sessions and you want to improve performance,
setting this to false might be a good idea. You learn more about HTTP sessions in Chapter 5.

isELIgnored

This attribute specifies whether expression language (EL) is parsed and translated for this JSP.
You learn more about EL in Chapter 6. Prior to the JSP 2.0 specification, the default value was
true, meaning you had to set it to false for every JSP in which you wanted to use EL. As of JSP
2.0 (you use JSP 2.3 in this book) the default value is false, so you should never need to worry
about this setting.

buffer and autoFlush

These attributes are closely related, and their defaults are “8kb” and true, respectively. They
control whether the output of the JSP is sent immediately to the browser as it is generated or

84

CHAPTER 4 USING JSPS TO DISPLAY CONTENT

buffered and sent in batches. The buffer attribute specifies the size of the JSP buffer or “none”

(the output will not be buffered), whereas autoF1lush indicates whether the buffer will be flushed
automatically after it reaches its size limit. If buffer is set to “none” and autoFlush is set to false,
an exception occurs when the JSP is translated to Java. If autoFlush is set to false and the buffer
becomes full, an exception occurs. This is a handy way to ensure that the content a JSP generates
does not exceed a certain length.

With autoFlush set to true (the default), the smaller your buffer, the more often data will be
flushed to the client, and the larger the buffer, the less often data will be flushed to the client.
Disabling the buffer entirely with buffer="none" can improve the performance of your JSPs
because it decreases memory consumption and CPU overhead. However, this is not without its
setbacks. Using no buffer can result in sending more packets to the browser, which can increase
bandwidth consumption marginally. Also, when the first character of the response begins flowing

to the client, the HTTP response headers must be committed and sent before the response.

Because of this, you cannot set response headers (response.setHeader (. ..)) or forward the JSP
(<jsp:forward />) after the buffer has flushed, and you cannot set response headers or forward the
JSP at all in a JSP where the buffer has been disabled. This may be an acceptable sacrifice to improve
server-side performance in certain circumstances.

errorPage

If an error occurs during the execution of the JSP, this attribute instructs the container what JSP to
forward the request to.

isErrorPage

This attribute indicates that this JSP is serving as an error page (by default, it is false). If set to
true, this enables the implicit exception variable on the page. You would do this on JSPs that you
forward to when errors occur, or that you have defined in the container as error-handling JSPs.

isThreadSafe

true by default, this tells the container that the JSP can safely serve multiple requests simultaneously.
If changed to false, the container only serves requests to this JSP one-by-one. A good rule of thumb
is to never change this. Remember, “If your JSP isn’t thread safe, you’re doing it wrong.”

extends

This attribute specifies which class your JSP Servlet should inherit from. Using this is not portable
from one web container to another, and it should never be necessary. Just don’t do it.

Other Attributes

In most of your JSPs, contentType (and optionally pageEncoding) are the only attributes of the
page directive that you will ever change from the default values. The session and isErrorPage
attributes are probably the two most common of the other attributes. Occasionally, you may need
to disable buffering. With each JSP, you should evaluate your options and decide which attributes
should be changed to suit your application’s needs.

Creating Your First JSP | 85

Including Other JSPs

Including other JSPs in a JSP is easy, but there are some interesting rules and options to keep in
mind. The first tool that you can use to include another JSP in your JSP is the include directive. It is
straightforward:

<%@ include file="/path/to/some/file.jsp" %>

The file attribute provides the container with the path to the JSP file that should be included. If it
is absolute, the path resolves from the web root of the application, so a file named included.jsp in
the WEB- INF directory could be included with path /WEB-INF/included.jsp. If the path is relative,
it resolves from the same directory the including JSP exists in. The include directive is evaluated
at translation time. Before the JSP is translated to Java, the include directive is replaced (virtually)
with the contents of the included JSP file. After this happens, the combined contents are then
translated to Java and compiled. Thus, as you can see, this process is static and only occurs once.

To demonstrate this, follow these steps:

1. Create a JSP called includer.§sp in the web root of your Hello-World-JSP project and
place the following line of code in it (deleting any code your IDE generated). Alternatively,
just use the Hello-World-JSP project.

<%@ include file="index.jsp" %>

2. Compile and debug your application and navigate to http://localhost:8080/
hello-world/includer.jsp in your favorite browser. You should see the familiar page,
which means your include has worked.

3. Now go into the Tomcat work directory and open the includer jsp.java file that Tomcat
created. You should immediately notice that, other than the class name, it is identical to
index jsp.java. This is because the JSP was included statically at translation time.

There is a different way to include other JSPs that results in a dynamic (run time) inclusion instead
of a static (translation time) inclusion. You use the <jsp:include> tag to achieve this:

<jsp:include page="/path/to/some/page.jsp" />

The <jsp:includes tag doesn’t have a file attribute; it has a page attribute. The path is still
relative to the current file or absolute from the web root, just like with the include directive. But
it is not included at translation time. Instead, the included file is compiled separately. At run time,
the request is temporarily forwarded to the included JSP, the resulting output of that JSP is written
to the response, and then the control returns back to the including JSP. This can easily be seen by
creating a file named dynamicIncluder.jsp in your project’s web root with the following line of
code (or use the Hello-World-]JSP project):

<jsp:include page="index.jsp" />

Compile and debug again and navigate to http://localhost:8080/hello-world/
dynamicIncluder. jsp, then open the dynamicIncluder jsp.java file that Tomcat created. You
can see now that the content of this Java file is quite different. The most interesting line in the file is:

org.apache.jasper.runtime.JspRuntimeLibrary.include (request, response, "index.jsp",
out, false);

86 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

This sends the request and response down into another method, which runs the included JSP, writes
its contents to the response, and returns.

Both of these methods of inclusion have their strengths and weaknesses. The include directive

is fast because it is evaluated only once, and all variables defined in the including JSP are in scope
and can be referenced by the included JSP. But this method makes your JSP (and the jspservice
method, as a result) longer, which is important to keep in mind because the bytecode of compiled
Java methods can’t be longer than 65,534 bytes. The <jsp:include> tag does not cause this
problem, but it also does not perform as well because it must be evaluated every page load, and
variables defined in the including JSP are out of scope and cannot be used in the included JSP.
Ultimately, you must decide which is appropriate each time you need to include a file, but in most
cases, the include directive is a good choice.

NOTE By default, web containers translate and compile files ending in .5sp and
.jspx (which you learn about later) as JSPs. You may have also seen the exten-
sion .jspf. JSPF files are generally called |SP Fragments and are not compiled by
the web container. Although there are no hard-and-fast rules governing JSPF files
(you can technically configure most web containers to compile them if you want),
there are some agreed-upon best practices. |SPF files represent fragments of JSPs
that cannot stand alone and should always be included, not accessed directly.
This is why web containers do not normally compile them. Actually, in many
cases a JSPF file references variables that can exist only if it is included in another
JSP file. For this reason, JSPF files should be included only using the include
directive because variables defined in the including JSP must be in scope in the
included JSP.

Including Tag Libraries

Chapters 7 and 8 talk more about tag libraries, but they are mentioned now because of how they are
included. You use the taglib directive to reference a tag library so that you can use the tags defined
by that tag library in your JSP. Like the include directive, the taglib directive is quite simple:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

The uri attribute specifies the URI namespace that the tag library is defined under, and the prefix
attribute defines the alias with which you reference the tags in that library. You learn more about
what this means in Chapter 7.

Using the <jsp> Tag

All JSPs support a special kind of tag with an XMLNS prefix of jsp. This tag has many uses and
features. Most of the features are used in JSP Documents (XML versions of JSPs that you learn
about in the last section of this chapter) or relics from older versions of JSP in which some things
were much harder to do than they are now (and so are not covered here). However, you should learn
about a few useful features of this tag.

Creating Your First JSP | 87

You have already learned about <jsp:include> and how it differs from the include directive.

A similar tag is the <jsp: forwards tag. This enables you to forward a request from the JSP it is
currently executing in to some other JSP. Unlike a <jsp:include>, the request does not return to
the original JSP. This is not a redirect; the client’s browser does not see the change. Also, anything
the JSP writes to the response stays in the response when the forward occurs; it is not erased, like it
would be with a redirect. Using the <jsp: forwards tag is simple:

<jsp:forward page="/some/other/page.jsp" />

In this example the request is internally forwarded to /some/other/page.jsp. Any response
content generated before the tag still goes to the client’s browser. Any code that comes after
the tag is ignored and not evaluated. This is how this tag differs from the <jsp:include> tag.
If the code after the <jsp: forwards tag were not ignored, this tag would behave just like the
<jsp:include> tag.

Three(nherreknedtagsare<jsp:useBean>,<jsp:getProperty>,and <jsp:setPropertys.

The <jsp:useBeans tag declares the presence of a JavaBean on the page, whereas
<jsp:getPropertys retrieves properties (using getter methods) from beans declared

with <jsp:useBeans. Similarly, <jsp:setPropertys sets properties (using setter methods). A Java
bean in this case is any instantiated object. <jsp:useBean> instantiates a class to create a bean,
and this bean can then be accessed using the other two bean tags, custom tags, and JSP scriptlets
and expressions. The advantage to declaring a bean in this way is that it makes the bean available
to other JSP tags; if you simply declared the bean in a scriptlet, it would only be available to
scriptlets and expressions.

Finally, there is the <jsp:plugin> tag, which is a handy tool for embedding Java Applets in the
rendered HTML. This tag removes the risk of messing up the careful structure of <object> and
<embed> tags necessary to get Java Applets to work in all browsers. It handles creating these HTML
tags for you so that the Applet should work in all mainstream browsers that support the Java
plug-in. Here is an example of using the <jsp:plugin> tag:
<jsp:plugin type="applet" code="MyApplet.class" jreversion="1.8">
<jsp:params>
<jsp:param name="appletParaml" value="paramValuel"/>
</jsp:params>
<jsp:fallback>
The browser you are using does not support Java Applets. You might
consider switching browsers.
</jsp:fallback>
</jsp:plugin>

Note that <jsp:plugin> can also contain standard object/embed HTML attributes such as name,
align, height, width, hspace, and vspace. These attributes are copied to the HTML markup.

NOTE Java Applets are a completely different subject from web applications and
are outside the scope of this book. If you want to learn more about Java Applets,
most beginner Java books cover the topic.

88 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

USING JAVA WITHIN A JSP (AND WHY YOU SHOULDN'T!)

In this section you explore using Java within a JSP a little more by replacing the Servlet in the Hello-
User project (from the previous chapter) with just a JSP. Then you briefly consider why using Java in
a JSP is discouraged (and why there’s actually a deployment descriptor setting to disable it). For the
rest of this section you use the Hello-User-]SP project on the wrox.com download site.

Using the Implicit Variables in a JSP

JSP files have several implicit variables (objects) available for use within scriptlets and expressions
in the JSP. They are considered implicit because you do not have to define or declare them anywhere
in your code. The JSP specification requires that the translator and compiler of the JSP provide these
variables, with the exact names specified. The variables have method scope. They are defined at the
beginning of the Servlet method that the JSP executes in (in Tomcat 8.0, the jspService method).
This means you cannot use them within any code you place inside JSP declarations. Declarations
have class scope. Because the implicit variables are in scope only within the method that the JSP
executes in, code inside declarations cannot use them. You can see an example of how the implicit
variables are defined by looking at the jspService method of any of the previously compiled JSPs
you examined in the last section:

public void _jspService(final javax.servlet.http.HttpServletRequest request,
final javax.servlet.http.HttpServletResponse response)
throws java.io.IOException, javax.servlet.ServletException

final javax.servlet.jsp.PageContext pageContext;
javax.servlet.http.HttpSession session = null;

final javax.servlet.ServletContext application;

final javax.servlet.ServletConfig config;
javax.servlet.jsp.JspWriter out = null;

final java.lang.Object page = this;
javax.servlet.jsp.JspWriter jspx out = null;
javax.servlet.jsp.PageContext _Jjspx _page context = null;

try {
response.setContentType ("text/html;charset=UTF-8") ;
pageContext = jspxFactory.getPageContext (this, request, response,

null, true, 8192, true);
_jspx_page context = pageContext;
application = pageContext.getServletContext();
config = pageContext.getServletConfig() ;
session = pageContext.getSession();
out = pageContext.getOut() ;
_Jjspx_out = out;

}

The code isn’t exactly the picture of clean code, but the important parts of the code are bold so
that you can understand what’s going on. The bold code emphasizes the declaration or assignment
(or both) of implicit variables required by the JSP specification. Variables that are not bold (such
as _jspx_out or _jspx page context) are Tomcat-specific variables that are not guaranteed to

Using Java within a JSP (and Why You Shouldn't!) | 89

exist and should never be used in your JSP. Eight implicit variables are in this code, but the JSP
specification defines nine implicit variables. Now take a look at each of these implicit variables, and
then you’ll understand why one is missing.

request and response

The request variable is an instance of HttpServletRequest and the response variable is an
instance of HttpServletResponse, both of which you learned about in detail in Chapter 3.
Anything you can do with a request in a Servlet you can also do in a JSP, including getting request
parameters, getting and setting attributes, and even reading from the response body. The same rules
you learned about in the last chapter apply here. However, there are some restrictions on what you
can do with the response object in a JSP. These restrictions are not contract restrictions, so they

are not enforced at compile time. Instead, they are enforced at run time because violating them
could cause unexpected behavior or even errors. For example, you should not call getwriter or
getOutputStream because the JSP is already writing to the response output. You also should not set
the content type or character encoding, flush or reset the buffer, or change the buffer size. These are
all things that the JSP does, and if your code does them, too, it can cause problems.

session

This variable is an instance of HttpSession. You learn more about sessions in the next chapter.
Remember from the previous section that the page directive has a session attribute that defaults
to true. This is why the session variable is available in the previous code example and will be
available by default in all of your JSPs. If you set the page directive’s session attribute to false,
the session variable in the JSP is not defined and cannot be used.

out

The Jspwriter instance out is available for you to use in all your JSPs. It is a writer, just like what
you get from calling the getWriter method on HttpServletResponse. If for some reason you need
to write directly to the response, you should use the out variable. However, in most cases you can
simply use an expression or write text or HTML content in the JSP.

application

This is an instance of the servletContext interface. Recall from Chapter 3 that this interface gives
you access to the configuration of the web application as a whole, including all the context init
parameters. Why this variable was named application instead of context or servietContext is a
mystery.

config

The config variable is an instance of the ServletConfig interface. Unlike the application
variable, its name actually reflects what it is. As you learned in Chapter 3, you can use this object to
access the configuration of the JSP Servlet, such as the Servlet init parameters.

pageContext

This object, an instance of the PageContext class, provides several convenience methods for getting
request attributes and session attributes, accessing the request and response, including other files,

90 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

and forwarding the request. You will probably never need to use this class within a JSP. It will,
however, come in handy when you write custom JSP tags in Chapter 8.

page
The page variable is an interesting object to examine. It is an instance of java.lang.Object, which
initially makes it seem unuseful. However, it essentially is the this variable from the JSP Servlet
object. So, you could cast it to Serviet and use methods defined on the serviet interface. It is also
a javax.servlet.jsp.JspPage (which extends Servlet) and a javax.servlet.jsp.HttpJIspPage
(which extends gspPage), so you could cast it to either of those and use methods defined on those
interfaces. In reality, you will probably never have a reason to use this variable. It may be useful if
other JSP scripting languages are ever supported. However, the JSP 2.3 specification, section 1.8.3
note “a,” says that page is always a synonym for this when the scripting language is Java. Thus,
anything you can do with page (such as get the Servlet name or access methods or instance variables
you defined in a JSP declaration) you can also do with this.

exception

This is the variable that was missing from the previous code example. Recall from the previous
section that you can specify as true the isErrorpage attribute on the page directive to indicate
that the JSP’s purpose is to handle errors. Doing so makes the exception variable available for
use within the JSP. Because the default value for isErrorPage is false and you have not used
it anywhere, the exception variable has not been defined in any JSPs you created. If you create
a JSP with isErrorPage set to true, the implicit exception variable, a Throwable, is defined
automatically.

NOTE You can read the JavaServer Pages 2.3 specification document on the |SP
specification page.

Trying Out the Implicit Variables

Now that you understand the available implicit variables and their purposes, you should explore this
more by writing some JSP code that uses the implicit variables. In your project, create a greeting
.jsp file in the web root, and place the following code in it (or just use the Hello-User-JSP project):
<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%!

private static final String DEFAULT USER = "Guest";

N oe
A"

oe

String user = request.getParameter ("user");
if (user == null)
user = DEFAULT USER;
%>
<!DOCTYPE html>
<html>
<head>

Using Java within a JSP (and Why You Shouldn't!) | 91

<title>Hello User Application</title>
</head>
<body>
Hello, <%= user %>!

<form action="greeting.jsp" method="POST">
Enter your name:

<input type="text" name="user" />

<input type="submit" value="Submit" />
</form>
</body>
</html>

Compare this to the code you wrote in HelloServlet.java for the Hello-User project in the
previous chapter. There’s much less to it, but it accomplishes the same thing. Notice the use of a
declaration to define the DEFAULT USER variable, a scriptlet to look for the user request parameter
and default it if it is not set, and an expression to output the value of the user variable. Now
compile and debug this code and go to http://localhost:8080/hello-world/greeting.jsp in
your browser. Try entering a name in the input field and clicking the Submit button — the post variable
is detected and used. Now try going to http://localhost:8080/hello-world/greeting
.jsp?user=Allison, and you should see that the query parameter is also detected and used. You are
encouraged to explore the Java code that Tomcat translated your JSP into.

Another thing you did in the Hello-User project was create a Servlet to demonstrate using multiple-
value parameters. This, too, can be replicated using JSPs. Create a file in your project web root
named checkboxes.jsp (or use the Hello-User-]JSP project):

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<!DOCTYPE htmls>

<html>
<head>
<title>Hello User Application</title>
</head>
<body>
<form action="checkboxesSubmit.jsp" method="POST">
Select the fruits you like to eat:

<input type="checkbox" name="fruit" value="Banana" /> Banana

<input type="checkbox" name="fruit" value="Apple" /> Apple

<input type="checkbox" name="fruit" value="Orange" /> Orange

<input type="checkbox" name="fruit" value="Guava" /> Guava

<input type="checkbox" name="fruit" value="Kiwi" /> Kiwi

<input type="submit" value="Submit" />
</form>
</body>
</html>

This file replicates the output of the doGet method in the MultivalueParameterServlet.java
file from the Hello-User project. Next, create checkboxesSubmit .jsp (also in the Hello-User-JSP
project):

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<

o°

String[] fruits = request.getParameterValues ("fruit");
%>
<!DOCTYPE htmls>

<html>

92 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

<head>
<title>Hello User Application</title>
</head>
<body>
<h2>Your Selections</h2>
<%
if (fruits == null)
{

%>You did not select any fruits.<%

}

else

{

B><%
for (String fruit : fruits)

{
}

%><%

}

out.println("" + fruit + "</1li>");

%>
</body>
</html>

This file replicates the logic and output of the doPost method from the
MultiValueParameterServlet class. Notice how the bold code jumps in and out of scriptlets,
using Java only where the logic requirements demand and leaving the scriptlets to use straight
output instead of writing with the implicit out variable. The exception is inside the for loop, which
demonstrates one use case for the out variable. This could have just as easily been replaced with
$><%= fruit %></1li><% to accomplish the same thing. Now compile and debug the project
and go to http://localhost:8080/hello-world/checkboxes.jsp in your browser. You should
see a page like that in Figure 4-1. Experiment with different combinations of the check boxes, and
verify that it behaves identically to the Hello-User project in Chapter 3. Try replacing the use of out
in the for loop with $><1i><%= fruit %><%. When you recompile and run the project again,
the output should not change.

Finally, create a file named contextParameters.jsp to explore the use of the application implicit
variable and the retrieval of context init parameters. Alternatively, use the file already in the Hello-
User-]SP project.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<!DOCTYPE html>
<html>
<head>
<title>Hello User Application</title>
</head>
<body>
settingOne:
settingTwo:
</body>
</html>

o©

%= application.getInitParameter ("settingOne")
%= application.getInitParameter ("settingTwo")

Vv Vv

o°

Also, you need to have some context init parameters defined in your deployment descriptor, just like
in Chapter 3:

Using Java within a JSP (and Why You Shouldn’t!) | 93

<context-param>
<param-names>settingOne</param-name>
<param-value>foo</param-value>

</context-params

<context-param>
<param-name>settingTwo</param-name>
<param-valuesbar</param-values>

</context-params

hittp:/localhost:8080hello-world/checkbe 2 ~ B & Helio UserApplication

File Edit “iew Favorites Tools Help

Select the fruits you like to eat:
] Banana

[Apple

[] Orange

[] Guava

] Kiwi

| Submit

H00% v

i

FIGURE 4-1

Now compile, debug, and navigate to http://localhost:8080/hello-world/
contextParameters.jsp. As with the Servlet-based Hello-User project, you should see the values of
the context init parameters.

Why You Shouldn’t Use Java in a JSP

There are plenty of advantages to using Java within a JSP, and in addition to the uses previously
pointed out so far in this chapter, you are likely thinking of other uses as you read this paragraph.
The coolest thing about using Java in a JSP is that almost anything you can do in a normal Java
class you can do in a JSP. However, one of the biggest dangers of using Java in a JSP is that almost
anything you can do in a normal Java class you can do in a JSP. These sentences might sound crazy,
but it’s true. Think about all the things you can do in Java code. Here are a few to help you out.

You could connect to, query, and manipulate a relational database (or NoSQL database, as the case
may be). You could also access and write to files on the server file system. You could connect to
remote servers, perform REST web service transactions, and interact with system peripherals. You

94 | CHAPTER4 USING JSPS TO DISPLAY CONTENT

could even do some number crunching, sort a binary tree with one billion nodes, traverse a large
data set looking for suspicious data, or search a Document Object Model for a particular set of
nodes. Now raise your hand if you think any of these things are good ideas in a JSP.

Java is a powerful language, and the problem with having all that power at your fingertips is that it’s
so hard not to use it. Depending on the application, any one of those tasks might be tasks you need
to perform within a web application. But consider this: In a cleanly structured application, would

it be appropriate to put all the database access, file manipulation, and number crunching code in a
single class? Probably not. Most likely, you would have several classes that performed specialized
functions and then use those classes wherever needed. JavaServer Pages is a technology that was
designed for the presentation layer, also known as the view. Although it’s possible to mix database
access with the presentation layer, or to mix number crunching with the presentation layer, it is not
a good idea. Functional languages, scripting languages, and other languages that execute from the
top of a file to the bottom of a file, such as PHP, certainly have their uses. But it’s likely you didn’t
pick Java as your platform of choice so that you could make pages written in this manner. Chances
are you picked Java for its elegance, strong typing, and strict object-oriented structure, among other
reasons.

Additionally, in most organizations, user interface developers are responsible for creating the
presentation layer. These developers rarely have experience writing Java code, and providing them
with that ability can be dangerous. Instead, it often makes sense to provide them with a less-
powerful set of tools to work with.

In a well-structured, cleanly coded application, the presentation layer is separated from the business
logic, which is likewise separated from the data persistence layer. It’s actually possible to create JSPs
that display dynamic content without a single line of Java inside the JSP. This enables application
developers to concentrate on the business and data logic while user interface developers work on the
JSPs. You may wonder how this is possible, but you will not be disappointed. You learn the first step
in the next section, and explore even more powerful JSP technologies in Chapters 6, 7, and 8.

COMBINING SERVLETS AND JSPS

For the rest of this chapter you improve the customer support application you began working

on in Chapter 3. You can follow along with the examples and find the entire source code in the
Customer-Support-v2 project on the wrox.com download site. When dealing with complex logic,
data validation, data persistence, and a detailed presentation layer, it makes the most sense to use a
combination of Servlets and JSPs instead of using exclusively one or the other. In this section, you
separate the business logic of customer support from the presentation layer.

Configuring JSP Properties in the Deployment Descriptor

Earlier in the chapter you learned about the page directive and the many attributes it provides to
enable you to customize how your JSP is translated, compiled, and processed. If you have many JSPs
with similar properties, however, it can be cumbersome to place this page directive at the top of
every JSP file. Fortunately, there is a way to configure common JSP properties within the deployment
descriptor. In the web.xm1 file, which should be empty except for the <display-name>, add the
following contents:

Combining Servlets and JSPs | 95

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-patterns>
<url-pattern>*.jspf</url-patterns
<page-encoding>UTF-8</page-encoding>
<scripting-invalid>false</scripting-invalids>
<include-prelude>/WEB-INF/jsp/base.jspf</include-prelude>
<trim-directive-whitespaces>true</trim-directive-whitespaces>
<default-content-type>text/html</default-content-type>
</jsp-property-group>
</jsp-config>

Understanding JSP Property Groups

The <jsp-configs tag contains any number of <jsp-property-groups tags. These property
groups are used to differentiate properties for different groups of JSPs. For example, you may

want to define one set of common properties for all JSPs in the /WEB-INF/jsp/admin folder and a
different set of common properties for all the JSPs in the /WEB-INF/jsp/help folder.

You differentiate these property groups by defining distinct <url-patterns tags for each
<jsp-property-groups. In the previous code example, the <url-patterns tags indicate that this
property group applies to all files ending in .jsp and .jspf, anywhere in the web application. If you
want to treat JSPs in one folder differently from JSPs in another in the fashion mentioned just earlier,
you could have two (or more) <jsp-property-groups tags, with one having <url-patterns/
WEB-INF/jsp/admin/*.jsp</url-patterns and the other having <url-patterns/WEB-INF/jsp/
help/*.jsp</url-patterns.

Consider some important rules when dealing with the <url-patterns tag:

> If some file in your applications matches a <url-patterns in both a <servlet-mapping>
and a JSP property group, whichever match is more specific wins. For example, if one
matching <url-patterns> were *.jsp and the other were /WEB-INF/jsp/admin/*.jsp, the
one with /WEB-INF/jsp/admin/*.jsp would win. If the <url-patterns> tags are identical,
the JSP property group wins over the Servlet mapping.

> If some file matches a <url-patterns in more than one JSP property group, the more
specific match wins. If two or more most-specific matches are identical, the first matching
JSP property group in the order it appears in the deployment descriptor wins.

> If some file matches a <url-patterns in more than one JSP property group and more than
one of those property groups contains <include-prelude> or <include-codas rules, the
include rules from all the JSP property groups are applied for that file, even though only one
of the property groups is used for the other properties.

To understand that last bullet point, consider the following hypothetical property groups:

<jsp-property-group>
<url-pattern>*.jsp</url-patterns
<url-pattern>*.jspf</url-patterns>
<page-encoding>UTF-8</page-encoding>
<include-prelude>/WEB-INF/jsp/base.jspf</include-prelude>

</jsp-property-group>

<jsp-property-group>
<url-pattern>/WEB-INF/jsp/admin/*.jsp</url-patterns>
<url-pattern>/WEB-INF/jsp/admin/*.jspf</url-pattern>

96

CHAPTER 4 USING JSPS TO DISPLAY CONTENT

<page-encoding>IS0-8859-1</page-encoding>
<include-prelude>/WEB-INF/jsp/admin/include.jspf</include-prelude>
</jsp-property-group>

A file named /WEB-INF/jsp/user.jsp would match only the first property group. It would have

a character encoding of UTF-8 and the /WEB-INF/jsp/base.jspf file would be included at the
beginning. On the other hand, /WEB-INF/jsp/admin/user.jsp would match both property
groups. Because the second property group is a more specific match, this file would have a character
encoding of ISO-8859-1. However, both /WEB-INF/jsp/base.jspf and /WEB-INF/jsp/admin/
include.jspf would be included at the beginning of this file. This can get very confusing, so you
are urged to keep your JSP property groups as simple as possible.

Using JSP Properties

The <include-prelude> tag in the Customer Support project’s deployment descriptor tells the
container to include the /WEB- INF/qisp/base.jspf file at the beginning of every JSP that belongs in
this property group. This is useful for defining common variables, tag library declarations, or other
resources that should be made available to all JSPs in the group. Similarly, an <include-coda> tag
defines a file to be included a# the end of every JSP in the group. You can use both of these tags more
than once in a single JSP group. You might, for example, create header.jspf and footer.jspf files
to include at the beginning and end, respectively, of every JSP. These files could contain header and
footer HTML content to work as a sort of template for your application. Of course, you must take
care when doing this, because you could easily include these files in places you don’t intend.

The <page-encoding> tag is identical to the pageEncoding attribute of the page directive.

Because JSPs already have a content type of text/html by default, you could simply specify a
<page-encoding> of UTF-8 to change the content type character encoding of your JSPs from text/
html; IS0-8859-1 to text/html;UTF-8. You could also use the <default-content-type> tag to
override text/html with some other default content type.

A particularly useful property is <trim-directive-whitespacess>. This property instructs the
JSP translator to remove from the response output any white space only text created by directives,
declarations, scriptlets, and other JSP tags. Earlier in this chapter you learned how to chain the
end of one directive to the beginning of the next to prevent extra new lines from appearing in the
response. This tag takes care of that for you so that you can write cleaner code.

Also mentioned earlier was the possibility to use the deployment descriptor to completely disable
Java within JSPs. The <scripting-invalids tag serves that purpose. The default value and value
in your code, false, permits Java in all JSPs in the group. Later in the book you change this value to
true. Once true, using Java within a matching JSP results in a translation error. The <el-ignoreds
tag is similar and corresponds to the isELIgnored attribute of the page directive. If true,
expression language is prohibited in the group’s JSPs (resulting in a translation error if EL is used).
This defaults to false (allow expression language), and you can leave it that.

There are a handful of other JSP property group tags that you will probably never use. <is-xml>
indicates that matching JSPs are JSP documents (which you learn about in the next section). The
<deferred-syntax-allowed-as-literals tag is an expression language feature you learn about

in Chapter 6. <buffers> corresponds to the buffer attribute of the page directive that you learned
about earlier in the chapter. Finally, <error-on-undeclared-namespace> indicates whether an error
is raised if a tag with unknown namespace is used within a matching JSP, and defaults to false.

Combining Servlets and JSPs | 97

Except for <url-patterns, all of the tags within <jsp-property-groups> are optional, but they
must appear in the following order, with unused tags omitted: <url-patterns, <el-ignoreds,
<page-encodings, <scripting-invalids, <is-xml>, <include-prelude>, <include-coda>,
<deferred-syntax-allowed-as-literals, <trim-directive-whitespace>,

<default-content-types>, <buffers, <error-on-undeclared-namespaces.

In the Customer Support project you have included /WEB-INF/jsp/base.jspf in all JSPs in the
application. (The web container is smart enough not to apply this include rule to base. jspf itself.)
Its contents are simple:

<%@ page import="com.wrox.TicketServlet, com.wrox.Attachment" %>
<%@ taglib prefix="c¢" uri="http://java.sun.com/jsp/jstl/core" %>

This accomplishes two things: It imports these classes for all JSPs and declares the JSTL core tag
library with an XMLNS prefix of c. You learn more about the JSTL in Chapter 7. You may wonder
why this file is placed in the /WEB-INF/jsp directory instead of in the web root. Remember that files
within the WEB- INF directory are protected from web access. Placing the JSP file in this directory
prevents users from accessing the JSP from their browser. You would want to do this for any JSP
that you do not want browsers to access directly, such as JSPs that rely on session and request
attributes provided by a forwarding Servlet and JSPs that are only included.

The last thing you should look at before moving on is the index.jsp file in the web root of the
Customer Support project. This is a web application directory index file, and its existence in the web
root means it can respond to requests for the deployed application root (/) without being directly
identified in the URL. It has two simple lines of code in it:

o

<%@ page session="false" %>
<c:redirect url="/tickets" />

The second line of code redirects the user to the /tickets Servlet URL relative to the deployed
application. The first line of code disables sessions in the index.jsp file to prevent the unnecessary
JSESSIONID parameter from being automatically appended to the redirect URL (which happens
when a session is created and the client is redirected in the same request).

Forwarding a Request from a Servlet to a JSP

A typical pattern when combining Servlets and JSPs is to have the Servlet accept the request, do any
business logic processing and data storage or retrieval necessary, prepare a model that can easily

be used in a JSP, and then forward the request to the JSP. The methods in the Customer Support
application’s TicketServlet need a few changes to make this happen. You can apply these changes
yourself or just view them in the project you downloaded.

Using the Request Dispatcher

You should first address the showTicketForm method because it is the simplest to change. You need
to change its signature to also accept an HttpServletRequest and then replace the entire contents
with a simple forward to the JSP:

private void showTicketForm(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

98 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

request.getRequestDispatcher ("/WEB-INF/jsp/view/ticketForm.jsp")
.forward (request, response);

}

The new code for this method introduces you to a new feature of the HttpServletRequest. The
getRequestDispatcher method obtains a javax.servlet.RequestDispatcher,“ﬁﬁchliandkm
internal forwards and includes for a specific path (in this case /WEB-INF/jsp/view/ticketForm
.jsp). With this object, you can forward the current request to that JSP by calling the forward
method. Note that this is not a redirect: The user’s browser does not receive a redirect status code,
and the browser URL bar does not change. Instead, the internal request handling is forwarded to a
different part of the application. After you call forward, your Servlet code should never manipulate
the response again. Doing so could result in errors or erratic behavior. Now create the JSP file that
this method forwards to (or view it in the project you downloaded):

<%@ page session="false" %>
< !DOCTYPE htmlsx>
<html>
<head>
<title>Customer Support</titles
</head>
<body>
<h2>Create a Ticket</h2>
<form method="POST" action="tickets" enctype="multipart/form-data"s>
<input type="hidden" name="action" value="create"/>
Your Name

<input type="text" name="customerName">

Subject

<input type="text" name="subject"s

Body

<textarea name="body" rows="5" cols="30"></textarea>

Attachments

<input type="file" name="filel"/>

<input type="submit" value="Submit"/>
</form>
</body>
</html>

Designing for the Presentation Layer

This isn’t an impressive example because all you’ve done is copy some code from Java to JSP — not
a new thing at this point. You are not using sessions yet, so that has been disabled in the JSP. You
should next change the TicketServlet’s viewTicket method, which is more complicated. A good
approach to take is to think of your presentation, first — what data elements does it need to work? —
and then code your Servlet method to provide that information. With this in mind, start with the
/WEB-INF/jsp/view/viewTicket.jsp file:

<%@ page session="false" %>

<%
String ticketId = (String)request.getAttribute("ticketId");
Ticket ticket = (Ticket)request.getAttribute("ticket");

%>

< !DOCTYPE htmls>

<html>
<head>

Combining Servlets and JSPs

99

<title>Customer Support</titles>

</head>
<body>

<h2>Ticket #<%= ticketId %>: <%= ticket.getSubject() %></h2>
<i>Customer Name - <%= ticket.getCustomerName () %></i>

<%= ticket.getBody() %>

<%
if (ticket.getNumberOfAttachments () > 0)
{
¥>Attachments: <%
int 1 = 0;
for (Attachment a : ticket.getAttachments())
{
if (i++ > 0)
out.print (", ");
$><a href="<c:url value="/tickets">
<c:param name="action" value="download" />
<c:param name="ticketId" value="<%= ticketId %>" />
<c:param name="attachment" value="<%= a.getName() %>" />
</c:url>"><%= a.getName () %><%

}
%>

<a href="<c:url value="/tickets" />">Return to list tickets

</body>

</html>

Creating this JSP should show you that the presentation layer needs a ticket1d and a ticket
to display correctly (the code in bold). The viewTicket method can be changed to provide these
variables and forward the request to the JSP:

private void viewTicket (HttpServletRequest request,

}

The first few lines of the method perform the business logic of parsing the request parameter and

HttpServletResponse response)
throws ServletException, IOException

String idString = request.getParameter ("ticketId");
Ticket ticket = this.getTicket (idString, response) ;
if (ticket == null)

return;

request.setAttribute ("ticketId", idString);
request.setAttribute("ticket", ticket);

request.getRequestDispatcher (" /WEB-INF/jsp/view/viewTicket.jsp")
.forward (request, response) ;

getting the ticket from the database. Then the code in bold adds two attributes to the request.
This is the primary purpose of request attributes. They can be used to pass data between different
elements of the application that are handling the same request, such as between a Servlet and a
JSP. Request attributes are different from request parameters: Request attributes are Objects
while request parameters are Strings, and clients cannot pass in attributes like they can

parameters. Request attributes exist solely for internal use within your application. If the Servlet

100 | CHAPTER4 USING JSPS TO DISPLAY CONTENT

places a Ticket into a request attribute, the JSP retrieves it as a Ticket. During the life of the
request, any component of the application that has access to the HttpServletRequest instance
has access to the request attributes. When the request has completed, the request attributes are

discarded.

The last method you need to change is the 1istTickets method. Again, begin by creating the
/WEB-INF/jsp/view/listTickets.jsp presentation file in the Customer Support application.
Because request attributes are objects, you must cast them when you retrieve them. In this case, the
cast to a Map<Integer, Tickets is an unchecked operation, so you need to suppress the warning.

<%@ page session="false" import="java.util.Map" %>
<

oe

@SuppressWarnings ("unchecked")
Map<Integer, Ticket> ticketDatabase =
(Map<Integer, Tickets)request.getAttribute ("ticketDatabase");
%>

<!DOCTYPE html>

<html>
<head>
<title>Customer Support</titles
</head>
<body>
<h2>Tickets</h2>
<a href="<c:url value="/tickets">
<c:param name="action" value="create" />
</c:url>">Create Ticket

<%
if (ticketDatabase.size() == 0)
{
$><i>There are no tickets in the system.</i><%
}
else
{
for(int id : ticketDatabase.keySet())
{
String idString = Integer.toString(id) ;
Ticket ticket = ticketDatabase.get (id);
$>Ticket #<%= i1dString %>: <a href="<c:url value="/tickets">
<c:param name="action" value="view" />
<c:param name="ticketId" value="<%= idString %>" />
</c:url>"><%= ticket.getSubject() %$> (customer:
<%= ticket.getCustomerName () %>)
<%
}
}
%>
</body>
</html>

As you can see, this JSP needs the ticketDatabase, so you should change the 1istTickets method
to provide this variable and forward the request:

private void listTickets (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

Combining Servlets and JSPs | 101

request.setAttribute ("ticketDatabase", this.ticketDatabase) ;

request.getRequestDispatcher (" /WEB-INF/jsp/view/listTickets.jsp")
.forward (request, response);

}
Testing the Updated Customer Support Application

At this point your Servlet code should look much less cluttered. You have moved the presentation
code into JSPs and focused on business logic in the Servlet. There are two methods from the
previous version of the TicketServlet, writeHeader and writeFooter, that are now unused and
can be removed. These made writing presentation code in the Servlet slightly easier, but now you
don’t need that. Finally, doGet and doPost had to be updated to reflect the changed signature of the
methods they call.

Compile the customer support application and run Tomcat in your IDE debugger. Navigate in your
favorite browser to http://localhost:8080/support/. You should be redirected to http://
localhost:8080/support/tickets because of the redirect code in the index. jsp file. You should
see the page in Figure 4-2. Create a few tickets, uploading attachments with some and not with
others; view tickets; and download attachments. Overall, the application should function identically
to version 1 created in Chapter 3. However, now that you are no longer writing presentation layer
code in Java, it is much easier to improve and expand the application.

;El hitp://localhost:3080/support lickets R ~ & & || [# customer Support

File Edit View Favorites Tools Help

Tickets

Create Ticket

There are no tickets in the system.

#100% -

<

FIGURE 4-2

In the next chapter you continue improving the customer support application by introducing session
support and the ability to add comments to support tickets.

102 | CHAPTER 4 USING JSPS TO DISPLAY CONTENT

A NOTE ABOUT JSP DOCUMENTS (JSPX)

Earlier in the chapter you saw a passing reference to a technology known as JSP Documents,

which end in the .jspx extension. They are not as widely used as standard JSPs, and although

they support the same features, they do so in different ways. Overall, the increased difficulty and
code that comes with using JSP Documents instead of JSPs can be nontrivial, as demonstrated in
this section. Also, due to the lesser popularity of JSP Documents, you can find fewer examples and
code samples online that use JSP Documents, and it may be harder to find forum and mailing list
users with experience in JSP Documents to help you with any questions you might have. For this
reason, JSP Documents are not used in this book. Only in this chapter do you see an example of JSP
Documents for the purpose of understanding the difference between the two related technologies.
Nevertheless, the technology exists in case you prefer working with pure XML.

JSP Documents are XML Documents (hence their name), and therefore many of the features you
have seen, such as directives, cannot work the same way. XML Documents must adhere to a strict
schema or they will fail to parse correctly. The main advantage to using JSP Documents over
standard JSPs is that it’s slightly easier to detect problems with the JSPs at compile time instead

of run time. However, in many cases this benefit is not worth the added cost of dealing with

JSP Documents. Table 4-1 lists several JSP features and compares their JSP syntax to their JSP
Document syntax.

TABLE 4-1: Comparison of JSP Features and JSP Document Features

FEATURE JSP SYNTAX JSP DOCUMENT SYNTAX

Page Directive <%@ page %> <jsp:directive.page />

Include Directive <%@ include %> <jsp:directive.include />

Tag Library Directive <%@ taglib %> xmlns:prefix="Library URI"

Declaration <%! %> <jsp:declaration> ... </jsp:declarations>
Scriptlet <% ... %> <jsp:scriptlet> ... </jsp:scriptlets>
Expression <%= ... %> <jsp:expression> ... </jsp:expression>
Comment <%-- ... --%> <l-- ... -->

You should notice two patterns in this table:

> Everything is a jsp tag. Directives, declarations, scriptlets, and expressions are all XML
tags now, with the jsp namespace prefix. The only exception is the tag library directive,
which becomes an attribute of the root document tag, instead.

> You no longer differentiate between JSP comments and XML comments. All comments
are XML comments. (Of course, inside declarations and scriptlets, you can still use Java
comments.)

To demonstrate how this can change a document, consider Listing 4-1. This is a simple JSP file
with all the features covered in this chapter. Then, compare that code to Listing 4-2, the JSP

A Note about JSP Documents (JSPX) | 103

Document-equivalent of Listing 4-1. Notice how the directives, declarations, scriptlets, expressions,
and comments all change. Pay particular attention to the XML doctype, the <jsp:root> element,
and the XMLNS attributes. As you can see, JSPs are noticeably easier to work with than JSP

Documents.

LISTING 4-1: A standard JSP file

include file="/WEB-INF/jsp/base.jspf" %>
taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"

private static final String DEFAULT USER = "Guest";

String user = request.getParameter ("user");
if (user == null)
user = DEFAULT USER;
%>

o o

"This code is commented"

<%--<%= F>--%>
<!DOCTYPE htmls>
<htmls>
<head>
<titles>Hello User Application</titles
</head>
<body>
Hello, <%= user %>!

<form action="greeting.jsp" method="POST">
Enter your name:

<input type="text" name="user" />

<input type="submit" value="Submit" />
</form>
</body>
</html>

LISTING 4-2: The JSP Document-equivalent of Listing 4-1

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns="http://www.w3.org/1999/xhtml" version="2.0"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core">
<jsp:directive.page contentType="text/html;charset=UTF-8"
<jsp:directive.include file="/WEB-INF/jsp/base.jspx" />
<jsp:declaration>
private static final String DEFAULT USER = "Guest";
</jsp:declaration>
<jsp:scriptlet>
String user = request.getParameter ("user");
if (user == null)
user = DEFAULT USER;

page contentType="text/html;charset=UTF-8" language="java" %>

oe
A\

language="java" />

continues

104

CHAPTER 4 USING JSPS TO DISPLAY CONTENT

LISTING 4-2 (continued)

</jsp:scriptlet>
<!l--<jsp:expression>"This code is commented"</jsp:expression> -->
< !DOCTYPE htmls>

<htmls>
<head>
<title>Hello User Application</title>
</head>
<body>
Hello, <jsp:expressions>user</jsp:expressions!

<form action="greeting.jsp" method="post">
Enter your name:

<input type="text" name="user" />

<input type="submit" value="Submit" />
</form>
</body>
</html>

</jsp:root>

SUMMARY

In this chapter you explored the world of JSPs and learned how they can make your life easier by
simplifying the task of writing HTML markup to the response output. You were introduced to
directives, declarations, scriptlets, and expressions. You learned about the various ways you can
comment out code in JSPs and about the many ways you can include Java code in a JSP file. You
also discovered the nine implicit Java variables available in your JSP and read about why using Java
scriptlets and declarations is discouraged. Finally, you applied these principles and improved the
Customer Support application by adding JSP properties to the deployment descriptor and separating
the business logic in the Servlet from the presentation code in the JSP.

In the next chapter you learn about HTTP sessions, their purpose, and how to use them in Java EE
web applications.

Maintaining State Using
Sessions

IN THIS CHAPTER

Why sessions are necessary
Working with cookies and URL parameters
How to store data in a session

Making sessions useful

Y Y Y Y Y

How to cluster an application that uses sessions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox. com code downloads for this chapter at www.wrox.com/go/
projavaforwebapps on the Download Code tab. The code for this chapter is divided into the
following major examples:

> Shopping-Cart Project
> Session-Activity Project

> Customer-Support-v3 Project

NEW MAVEN DEPENDENCIES FOR THIS CHAPTER

There are no new Maven dependencies for this chapter. Continue to use the Maven
dependencies introduced in all previous chapters.

106 | CHAPTER5 MAINTAINING STATE USING SESSIONS

UNDERSTANDING WHY SESSIONS ARE NECESSARY

So far you’ve learned about web applications, web containers, Servlets, JSPs, and how Servlets and
JSPs work together. You have also learned about the life cycle of a request, and it should be clear at
this point that the tools you have been introduced to so far do not enable you to associate multiple
requests coming from the same client and share data between those requests. You might think that
you can use the IP address as a unique identifier and all requests from an IP address within some
timeframe must belong to the same client. Unfortunately, due to Network Address Translation
(NAT) this is not reliable. Thousands of students at a college campus can literally all use the same
IP address, hidden behind a NAT router. For this reason the concept of HT TP sessions has achieved
nearly universal adoption by all HTTP server-side technologies, and Java EE has session support
written into its specification.

Not every application needs sessions. The Hello World examples you’ve seen in this book certainly
don’t need sessions. So far the Customer Support application hasn’t needed sessions. It has been
more like an anonymous message board. But if you think about the requirements Multinational
Widget Corporation has for its customer support site, you may quickly realize that at some point
you must create user accounts, and those users need to log in to the application. Customer support
requests may contain private information, such as server configuration files that other customers
shouldn’t see. Certainly you need a way to restrict access to certain support tickets so that only the
posting customer and members of MWC’s support team can access any given ticket. You could have
users provide a username and password on every page they access, but it’s a fair bet customers aren’t
going to be happy with that solution.

Maintaining State

Sessions are used to maintain state between one request and the next. HTTP requests are
completely stateless on their own. From the server’s perspective, the request begins when the user’s
web browser opens a socket to the server, and it ends when the server sends the last packet back
to the client and closes the connection. At that point there is no longer a link between the user’s
browser and the server, and when the next connection comes in, there is no way to tie the new
request to the previous request.

Applications often cannot function correctly in such a stateless manner. A classic example is the
online shopping website. Nearly every online shopping site these days requires you to create a
username and password before purchasing, but consider even the few that don’t. When browsing
the store, you find a product you like, so you add that product to your shopping cart. You
continue browsing the store and find another product you like. You add it to your shopping cart
as well. When you view your shopping cart, you see that both products you added remain in
your shopping cart. Somehow, between every request you made, the website knew those requests
were coming from the same browser on the same computer and associated that with your
shopping cart. Nobody else can see your shopping cart or the items in it — it is exclusively tied
to your computer and browser. This scenario is an analogy to a real-life shopping experience.
You enter your favorite grocery store, and as you walk in the door, you grab a shopping cart or
basket. (You get a session from the server.) You walk through the store and pick up items as you
go, placing them in your cart (adding them to the session). When you get to the cash register,
you remove the items from the cart and give them to the cashier, who scans them and takes

Using Session Cookies and URL Rewriting | 107

your money. (You check out using your session.) As you walk out the door, you return your
shopping cart or basket. (You close your browser or log out, ending your session.)

In this example, the cart or basket maintains your state as you walk through the store. Without the
cart, neither you nor the store could keep up with everything you needed to purchase. If no state
were maintained between requests, you would have to “walk in,” grab one item, pay for it, “walk
out” (end the request), and repeat the entire process again for each item you wanted to purchase.
Sessions are the engine behind maintaining state between requests, and without them the web
would be a very different place.

Remembering Users

Another scenario to consider is the user forum website. Almost universally in online forums, users
are known by their usernames or “handles.” As a user enters the forums, he logs in, providing a
username and password to prove his identity. (The merit of username/password authentication

as proof of identity is an argument reserved for Chapter 25.) From that point he can add forum
threads, respond to threads, participate in private messages with other users, report threads or
responses to moderators, and possibly mark threads as favorites. Notice that the user logged in
only a single time during that entire timeline. The system needed a way to remember who he was
between each request, and sessions provided that.

Enabling Application Workflow

Often users need some form of workflow to complete a task using an advanced web application.
In the case of creating a news article for publication on a news site, for example, the journalist
might first go to a screen where she can enter a title, tagline, and body and format the elements
appropriately. On the next page she might then select one or more photos associated with the
article and indicate how they should be displayed. She might also upload or record some video to
be placed in the article. Finally, she would probably be presented with a list of similar articles or
a search field to find similar articles so that she could indicate which ones should be placed in a
Related Articles box.

After all these steps had been completed, the article would be published. This entire scenario
represents the idea of a workflow. The workflow contains many steps in it, each step part of the
completion of a single task. To tie all these steps together to complete the workflow, the requests
must have state maintained between them. The shopping cart example is actually a subset of the
broader idea of workflows.

USING SESSION COOKIES AND URL REWRITING

Now that you understand the importance of sessions, you are probably wondering how they work.
There are two different components to this: first, the generic theory behind web sessions and how

they are implemented; and second, the specifics behind the session implementation in Java EE web
applications. Both are covered in this section.

In the general theory of web sessions, a session is some file, memory segment, object, or container
managed by the server or web application that contains various data elements assigned to it.

108

| CHAPTERS5 MAINTAINING STATE USING SESSIONS

These data elements could be a username, a shopping cart, workflow details, and more. The user’s
browser does not hold or maintain any of this data. It is managed solely by the server or web
application code. The only missing piece is a link between this container and the user’s browser. For
this purpose, sessions are assigned a randomly generated string called a session ID. The first time a
session is created (as a result of a request being received), the session ID for that session is conveyed
back to the user’s browser as part of the response. Every subsequent request from that user’s browser
includes the session ID in some fashion. When the application receives the request with the session
ID, it can then link the existing session to that request. This is demonstrated in Figure 5-1.

15t Request Need a New Session
» Web »/
User Application Session
Browser Stores data in Store
Response + Session ID session Session
N abc123 N ID = abc123

and Response + Session ID

abc123 — Need Session abc 123
» Web Application >,
User Uses data Session
Browser previously Store
Response stored in P Session
B session M ID = abc123

FIGURE 5-1

NOTE You may wonder why the session ID is random instead of a simple
sequential ID. The reason for this is compelling: A sequential ID would be pre-
dictable, and a predictable ID would make hijacking other users’ sessions trivial.

The remaining problem to be solved is how the session ID is passed from server to browser and
back. There are two techniques used to accomplish this: session cookies and URL rewriting.

Understanding the Session Cookie

Fortunately, a solution already exists in HTTP 1.1 that enables servers to send session IDs back

to browsers so that the browsers include the session IDs in future requests. This is the technology
called HTTP cookies. If you are unfamiliar with cookies, they are essentially a mechanism whereby
arbitrary data can be passed from the server to the browser via the Set-Cookie response header,
stored locally on the user’s computer, and then transmitted back from the browser to the server via
the Cookie request header. Cookies can have various attributes, such as a domain name, a path, an
expiration date or maximum age, a secure flag, and an HTTP-only flag.

The Domain attribute instructs the browser for which domain names it should send the cookie back,
whereas the Path attribute enables the cookie to further be restricted to a certain URL relative to
the domain. Every time a browser makes a request of any type, it finds all cookies that match the
domain and path for the site and sends those cookies along with the request. Expires defines an
absolute expiration date for the cookie, whereas the mutually exclusive Max-Age attribute defines the
number of seconds before the cookie expires. If a cookie’s expiration date is in the past, the browser

Using Session Cookies and URL Rewriting | 109

deletes it immediately. (This is how you delete a cookie — set its expiration date to the past.) If a
cookie does not have an Expires or Max-Age attribute, it is deleted when the browser is closed. If
the secure attribute is present (it does not need to have a value) the browser will send the cookie
back only over HTTPS. This protects the cookie from being transmitted unencrypted. Finally,
the Httponly attribute restricts the cookie to direct browser requests. Other technologies, such as
JavaScript and Flash, will not have access to the cookie.

Web servers and application servers use cookies to store session IDs on the client side so that they
can be transmitted back to the server with each request. With Java EE application servers, the name
of this session cookie is JSESSIONID by default. Examine the following headers from a series of
requests and responses between a client browser and a Java EE web application deployed at http://
www . example . com/support. This is what you would expect to see if tracing the HTTP requests and
responses with a network-stiffing tool like Fiddler or Wireshark.

REQUEST 1

GET /support HTTP/1.1
Host: www.example.com

RESPONSE 1

HTTP/1.1 302 Moved Temporarily
Location: https://www.example.com/support/login
Set-Cookie: JSESSIONID=NRxclGg2vG7kI4MdlLn; Domain=.example.com; Path=/; HttpOnly

REQUEST 2

GET /support/login HTTP/1.1
Host: www.example.com
Cookie: JSESSIONID=NRxclGg2vG7kI4MdlLn

RESPONSE 2

HTTP/1.1 200 OK
Content-Type: text/html;charset=UTF-8
Content-Length: 21765

REQUEST 3

POST /support/login HTTP/1.1
Host: www.example.com
Cookie: JSESSIONID=NRxclGg2vG7kI4MdlLn

RESPONSE 3

HTTP/1.1 302 Moved Temporarily

Location: http://www.example.com/support/home

Set-Cookie: remusername=Nick; Expires=Wed, 02-Jun-2021 12:15:47 GMT;
Domain=.example.com; Path=/; HttpOnly

REQUEST 4

GET /support/home HTTP/1.1
Host: www.example.com
Cookie: JSESSIONID=NRxclGg2vG7kI4MdlLn; remusername=Nick

RESPONSE 4

HTTP/1.1 200 OK
Content-Type: text/html;charset=UTF-8
Content-Length: 56823

110

CHAPTER 5 MAINTAINING STATE USING SESSIONS

The set-Cookie headers in the responses are used to send cookies to the user’s browser for storage.
Likewise, the cookie headers in the requests are used to send cookies back to the web server. In this
imaginary scenario, the user navigates to some support site and gets redirected to the login page.
While redirected, the user’s browser also gets a session ID cookie from the server. When the user’s
browser goes to the login page, it includes the session ID cookie in its request. From then on, each
time the browser sends a new request, it includes the JSESSTONTID cookie. The server does not send it
again because it knows the browser already has it.

After a successful login, the server also sends back a remusername cookie. This is unrelated to the
session and in this case represents a technique the site uses to auto-populate the user’s username
whenever he goes to the login page. Future requests will always contain this cookie; although, future
responses do not reset it. Notice that the JSESSTONID cookie has no expiration date, whereas the
remusername cookie does. The remusername cookie will expire in the year 2021 (a long time from
now, after which the user will probably have a different computer), whereas the JSESSTONID cookie
will expire as soon as the user closes his browser.

NOTE The remusername cookie is used here simply to demonstrate another
use for cookies and how multiple cookies are transmitted in the Cookie request
header. The actual feature — remembering usernames — is not related to this
discussion.

One of the obstacles to using cookies to transmit session IDs is that users can disable cookie support
in their browsers, thereby completely eliminating this method of transmitting session IDs. However,
over the past decade this has become less and less of a concern, with one major search and e-mail
provider and one major social network requiring cookies to be enabled for users of their websites.

Session IDs in the URL

Another popular method for transmitting session IDs is through URLs. The web or application
server knows to look for a particular pattern containing the session ID in the URL and, if found,
retrieves the session from the URL. Different technologies use different strategies for embedding and
locating session IDs in the URL. For example, PHP uses a query parameter named PHPSESSID:

http://www.example.com/support? PHPSESSID=NRxc1Gg2vG7kI4Mdlln&foo=bar&ghigh=five

Java EE applications use a different approach. The session ID is placed in a matrix parameter in the
last path segment (or directory) in the URL. This frees up the query string so that the session ID
does not conflict with other parameters in the query string.

http://www.example.com/support ; JSESSIONID=NRxclGg2vG7kI4MdlLn?foo=bar&high=five

The specific technique that a given technology uses is immaterial to the end result: Embed the session
ID in the URL and you avoid needing to use cookies. You might wonder, however, how the session ID
in a request URL gets to the browser in the first place. A request URL is only effective for conveying
the session ID from the browser to the server. So where does the session ID come from? The answer
is that the session ID must be embedded in every URL that the application sends back in every
response, including links on the page, form actions, and 302 redirects. Consider the previous example

Using Session Cookies and URL Rewriting | 111

of the login scenario using cookies. The following headers demonstrate the same set of transactions
using URL embedding instead of cookies:

REQUEST 1

GET /support HTTP/1.1
Host: www.example.com

RESPONSE 1

HTTP/1.1 302 Moved Temporarily
Location: https://www.example.com/support/login;JSESSIONID=NRxcl1Gg2vG7kI4MdlLn

REQUEST 2

GET /support/login;JSESSIONID=NRxclGg2vG7kI4MdlLn HTTP/1.1
Host: www.example.com

RESPONSE 2

HTTP/1.1 200 OK
Content-Type: text/html;charset=UTF-8
Content-Length: 21796

<form action="http://www.example.com/support/login; JSESSIONID=NRxclGg2vG7kI4Md1lLn"
method="post">

REQUEST 3

POST /support/login;JSESSIONID=NRxclGg2vG7kI4Md1lLn HTTP/1.1
Host: www.example.com

RESPONSE 3

HTTP/1.1 302 Moved Temporarily
Location: http://www.example.com/support/home; JSESSIONID=NRxclGg2vG7kI4MdlLn

REQUEST 4

GET /support/home;JSESSIONID=NRxclGg2vG7kI4MdlLn HTTP/1.1
Host: www.example.com

RESPONSE 4

HTTP/1.1 200 OK
Content-Type: text/html;charset=UTF-8
Content-Length: 56854

In this case, notice that the session ID is being returned to the browser via the Location header,
form action, and link tag. As you can see, the browser is never actually “aware” of the session ID
like it is with a session cookie. Instead, the server rewrites the Location header URL and the URLs
in any response content (links, form actions, and other URLSs) so that any URLs the browser uses to
access the server already have the session ID embedded in them. The important point about this is
that the session ID must be embedded in the Location header URL and in every single URL in the
markup. This is no trivial task and can often be downright inconvenient. For this purpose, the Java
EE Servlet API comes with a few conveniences that make this simple.

112

| CHAPTERS5 MAINTAINING STATE USING SESSIONS

For starters, the HttpServletResponse interface defines two methods that rewrite URLs to include
embedded session IDs if necessary: encodeURL and encodeRedirectURL. Any URL that will be
placed in a link, form action, or other markup can first be passed to the encodeURL method, which
returns an appropriately “encoded” version of the URL. Any URL passed to the sendRedirect
response method can be passed to the encodeRedirectURL method, which returns an appropriately
“encoded” version of that URL. The word “encoded” here means that the JsESST10NID matrix
parameter will be embedded in the last path segment of the URL only if all four of the following
conditions are met:

> A session is active for the current request. (Either it requested a session by passing in a
session ID, or the application code created a new session.)

» The JSESSTONID cookie was not present in the request.
The URL is not an absolute URL and is a URL within the same web application.

> Session URL rewriting is enabled in the deployment descriptor (more on this in the section
“Storing Data in a Session”).

The second condition is the troublesome condition. The only way to detect if a user’s browser allows
cookies is to set a cookie and then look for that cookie to be returned on the next request. However,
you need a session to associate one request with another; otherwise, how would you know whether
the request was simply the first request from a different user or a second request from the same user
without a cookie? Therefore, the second condition always assumes that the lack of a JsEssron1D
cookie means the user’s browser doesn’t support cookies, with the understanding that this means
URLs will always get encoded on the first request to a session-enabled application even if the

user’s browser supports cookies. The unfortunate side effect is that sometimes URLs contain the
JSESSIONID matrix parameter even if the user’s browser accepted the JSESSTONID cookie.

Of course, the HttpServletRequest methods are just part of the toolset available to help you
embed session IDs in URLs. The <c:urls> tag, which is discussed more in Chapter 7, also embeds
session IDs in URLs.

Session Vulnerabilities

As you can imagine, sessions are not without their vulnerabilities, and I would be remiss if T did
not warn you about them. The bad news is that these vulnerabilities can cause serious problems
for your users, and if you transact sensitive or personal information (such as credit card numbers
or healthcare data) it can mean huge penalties for your business. The good news is that there are
easy ways to address these vulnerabilities, which you will learn about as well. Of course, I cannot
possibly cover all potential vulnerabilities in your applications as there are thousands of ways

to compromise web applications. The developer should always be diligent and well informed on
matters of security. In mission-critical, sensitive applications, it would be wise to use a commercial
scanner of some type that scans your application for weaknesses.

For more information about web application and session vulnerabilities and how to detect and
address them, visit the Open Web Application Security Project (OWASP) https: //www.owasp.org/
website.

Using Session Cookies and URL Rewriting | 113

The Copy and Paste Mistake

Perhaps one of the easiest ways a session can be compromised is for an unsuspecting user to copy
and paste the URL from his browser into an e-mail, forum posting, chat room, or other public area.
Embedding session IDs in URLs, which you read about earlier in this section, is the source of this
problem. Remember the URLs passed back and forth between the client and server? Those URLs,
session ID and all, appear in the address bar in the client’s browser. If the user decides to share a
page in your application with his friends and copies and pastes the URL from the address bar, the
session ID is included in the URL his friends see. If they go to that URL before the session expires,
they then assume the identity of the user who shared the URL. The obvious problem with this is
that the user’s friends might see personal information accidentally.

The more dangerous scenario is that a nefarious character finds the link and uses it to hijack the
user’s session. He can then change the account e-mail address, obtain a password reset link, and
finally change the password — giving the attacker complete control over the user’s account and
everything in it.

As innocent as the origin of this problem is — a user copying and pasting a URL from his address
bar — the only infallible method of addressing this vulnerability is to completely disable embedding
session IDs in URLs. Although this may sound like a drastic measure with potentially catastrophic
consequences for the usability of your application, remember what was said earlier about how
commonplace it has become for major Internet companies to require cookies when using their sites.
Cookies have become a fact of life for web users today, and the vulnerabilities inherent in cookies
are far less common and dangerous than this one.

Session Fixation

The session fixation attack is similar to the copy-and-paste mistake, except that the “unsuspecting
user” in this case is the attacker, and the victims are the users who use a link containing a session
ID. An attacker might go to some website known to accept session IDs embedded in the URL.

The attacker will obtain a session ID in this manner (either through a URL or by examining the
browser’s cookies) and then send a URL containing that session ID to a victim, through a forum or
(most often) an e-mail. At this point, when the user clicks the link to go to the website, his session
ID is fixed to what was in the URL — a session ID the attacker knows about. If the user then logs
in to the website during this session, the attacker will also be logged in because he shares the session
ID, giving him access to the user’s account.

There are two ways to address the issue:

> As with the copy-and-paste mistake, you can simply disable the embedding of session IDs in
URLs and also disallow your application from accepting session IDs via URLs (something
you explore in the section “Storing Data in a Session”).

> Employ session migration after login. When the user logs in, change the session ID, or
copy the session details to a new session and invalidate the original session. (Either method
achieves the same thing: assigning a different session ID to the newly “logged in” session.)
The attacker still has the original session ID, which is no longer valid and not connected to
the user’s session.

114 | CHAPTERS5 MAINTAINING STATE USING SESSIONS

WARNING There is another type of session fixation attack in which a malicious
website writes a session ID cookie using another website’s domain name, effec-
tively setting the session ID for the other website in the victim’s browser. This
attack has the same effect as the URL session fixation attack. However, there

is no way for web applications to protect against this vulnerability without dis-
abling sessions altogether. This vulnerability is actually a browser vulnerability,
not a vulnerability of web applications.

All modern browsers have fixed this vulnerability for cross-domain attacks (site
example.net sets a cookie for site example.com). However, site malicious
.example.net could still set a session cookie for domain .example.net, which
would then be picked up by site vulnerable.example.net. This problem can be
avoided altogether by following a simple rule: Don’t share a domain name with
untrusted applications.

Cross-Site Scripting and Session Hijacking

You have already read about the copy-and-paste mistake which, when exploited by a malicious
party, becomes a session fixation attack. There is another form of session hijacking that utilizes
JavaScript to read the contents of a session cookie. An attacker, who exploits a site’s vulnerability
to cross-site scripting attacks, injects JavaScript into a page to read the contents of a session ID
cookie using the JavaScript DOM property document . cookie. After the attacker retrieves a session
ID from an unsuspecting user, he can then assume that session ID by creating a cookie on his own
machine or using URL embedding, thereby assuming the identity of the victim.

The most obvious defense against this attack is to secure your site against cross-site scripting, which
is a topic outside the scope of this book (see the previously mentioned OWASP website). However,
doing this can be tricky and difficult, and attackers are constantly finding new ways to effect cross-
site scripting attacks. An alternative defense, which you should always use in conjunction with this,
is flagging all your cookies with the Httponly attribute. This attribute allows the cookie to be used
only when the browser makes an HTTP (or HTTPS) request, whether that request happens via link,
manual entry of a URL in the address bar, form submission, or AJAX request. More important,
Httponly completely disables the ability of JavaScript, Flash, or some other browser scripting or
plugin to obtain the contents of the cookie (or even know of its existence). This stops the cross-

site scripting session hijacking attack in its tracks. Session ID cookies should always include the
HttpOnly attribute.

NOTE Although the uttponly attribute prevents JavaScript from accessing the
cookie using the document . cookie DOM property, AJAX requests originating
from JavaScript code will still include the session ID cookie because the browser,
not the JavaScript code, is responsible for forming the AJAX request headers.
This means the server will still be able to associate the AJAX requests with the
user’s session.

Using Session Cookies and URL Rewriting | 115

Insecure Cookies

The final vulnerability you should consider is the man-in-the-middle attack (MitM attack), the
classic data interception attack whereby an attacker observes a request or response as it travels
between the client and server and obtains information from the request or response. This attack
gave rise to Secure Sockets Layer and Transport Layer Security (SSL/TLS), the foundation of the
HTTPS protocol. Securing your web traffic using HTTPS effectively foils the MitM attack and
prevents session ID cookies from being stolen. The problem, however, is that a user might first try
to go to your site using HTTP. Even if you redirect them to HTTPS, the damage is already done:
Their browser has transmitted the session ID cookie to your server unencrypted, and an observing
attacker can steal the session ID.

The secure cookie flag was created to address this very issue. When your server sends the session
ID cookie to the client in the response, it sets the secure flag. This tells the browser that the

cookie should be transmitted only over HTTPS. From then on, the cookie will only be transmitted
encrypted, and attackers cannot intercept it. The drawback is that your site must always be behind
HTTPS for this to work. Otherwise, as soon as you redirect the user to HTTP, the browser can no
longer transmit the cookie and the session will be lost. For this reason, you must weigh the security
needs of your application and determine if the data you are protecting is sensitive enough to warrant
the performance overhead and hassle of securing every request with HTTPS.

The Strongest Possible Defense

One final option you should understand when dealing with the security of your sessions is the SSL/
TLS Session ID. To improve the efficiency of the SSL protocol by eliminating the need to perform
an SSL handshake on every request, the SSL protocol defines its own type of session ID. The SSL
Session ID is established during the SSL handshake and then used in subsequent requests to tie
requests together for determining which keys should be used for encryption and decryption. This
very concept duplicates the notion of the HTTP session ID. However, the SSL Session ID is not
transmitted or stored using cookies or URLs and is extremely secure. (You can learn more about
how the SSL Session ID works by reviewing RFC 2246 “The TLS Protocol.”) It is inordinately
difficult to obtain an SSL Session ID for which you are not authorized. Some extremely high-
security websites, such as those of financial institutions, reuse the SSL Session ID as the HTTP
session 1D, thereby eliminating cookies and URL encoding and still maintaining state between
requests.

This is an extremely secure method of establishing a session ID across requests and is nearly
invulnerable. Plus, when SSL vulnerabilities are found, they are usually dealt with in a matter of
weeks and eliminated by browser updates. However, there are understandably some drawbacks to
using this technique; otherwise, everyone would use it. In older versions of the Java EE specification,
there was no standard way to specify this, so developers had to use container-specific classes to
achieve using SSL Session IDs, and this configuration was sometimes hit-or-miss. In the Java EE

6.0 specification, an option was added (which you learn about in the next section) to easily instruct
the web container to use SSL session IDs, so configuration is no longer a major concern (though

not many sites are using this yet). In addition, as with the secure cookie flag, it requires that your
site always be behind HTTPS. If you are concerned enough about security to enable this feature,
however, you probably intend for your entire site to always be behind HTTPS, so this will likely not
be an issue for you.

116

| CHAPTERS5 MAINTAINING STATE USING SESSIONS

Another problem with reusing the SSL Session ID is that the web container must be responsible
for the SSL communications. If you use a web server or load balancer to manage your SSL
communications — something common in clustered server environments — the web container
will not know what the SSL Session ID is. In such a clustered environment, the user’s request must
also always be routed to the same server. Finally, depending on server and browser, the life of the
SSL Session ID can be very long or very short, so it’s hard to rely on this as an HTTP session ID
replacement.

Now that you have been introduced to sessions, learned about the 7sESSTONID cookie and URL
rewriting, and explored some of the vulnerabilities inherent in sessions and how to address them, it’s
time to start using sessions in your Java EE applications.

STORING DATA IN A SESSION

As you learn about using sessions in Java EE, you will be using the Shopping-Cart example project
found on the wrox.com code download site. You will not create an entire shopping site with
payment systems and related features. You will simply explore the concept of using sessions to
aggregate data collected across multiple pages (in this case, products added to a shopping cart). You
can create the project yourself or follow along in the Shopping-Cart project. Your project should
start with the deployment descriptor <jsp-config> from Chapter 4 and the following /WEB-INF/
jsp/base.jspf file:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
Also, you should have a simple index. jsp file in your web root for redirecting to your store Servlet:

<c:redirect url="/shop" />

Configuring Sessions in the Deployment Descriptor

In many cases, HTTP sessions are ready to go in Java EE and require no explicit configuration.
However, configure them you can, and for security purposes you should. You configure sessions in
the deployment descriptor using the <session-config> tag. Within this tag, you can configure the
method by which sessions are tracked, the age after which sessions timeout, and the details of the
session ID cookie, if you use that. Many of these have default values that you never need to change.
The following code demonstrates all the possible deployment descriptor settings for sessions.

<session-config>
<session-timeout>30</session-timeout>
<cookie-config>
<name>JSESSIONID</name>
<domains>example.org</domain>
<path>/shop</path>
<comment><! [CDATA [Keeps you logged in. See our privacy policy for
more information.]]></comments
<http-only>true</http-only>
<secure>false</secure>
<max-age>1800</max-age>
</cookie-config>
<tracking-mode>COOKIE</tracking-mode>

Storing Data in a Session | 117

<tracking-mode>URL</tracking-mode>
<tracking-mode>SSL</tracking-mode>
</session-config>

All of the tags within <session-config> and <cookie-configs are optional, but they must appear
in the order shown in this example (excluding omitted tags). The <session-timeout> tag specifies
how long sessions should remain inactive, in minutes, before being invalidated. If the value is 0 or
less, the session never expires. If this tag is omitted, the container default applies. Tomcat’s default
container is 30, which can be changed in the Tomcat configuration. If you want consistency, you
should explicitly set the timeout using this tag. In this example the timeout is 30 minutes. Each time
a user with a certain session ID makes a request to your application, the timer resets on his session’s
inactivity. If he goes more than 30 minutes without making a request, his session is considered
invalid and he is given a new session. The <tracking-mode> tag, which was added in Servlet 3.0/
Java EE 6, indicates which technique the container should use for tracking session IDs. The legal
values are:

> URL — The container only embeds session IDs in URLSs. It does not use cookies or SSL
session IDs. This approach is not very secure.

> cookIE — The container uses session cookies for tracking session IDs. This technique is
very secure.

> gs1, — The container uses SSL Session IDs as HTTP session IDs. This method is the most
secure approach available but requires all requests to be HTTPS for it to work properly.

You may use <tracking-mode> more than once to tell the container it can use multiple strategies.
For example, if you specify both coox1E and URL, the container prefers cookies but uses URLs
when cookies are not available (as described in the previous section). Specifying COOKIE as the only
tracking mode tells the container to never embed sessions in URLs and always assume the user has
cookies enabled. Likewise, specifying URL as the only tracking mode tells the container to never use
cookies. If you enable the sst tracking mode, you cannot also enable the cOoKIE or URL modes. SSL

Session IDs must be used on their own; the container cannot fall back to cookies or URLs in the
absence of HTTPS.

The <cookie-configs tag applies only when COOKIE is specified as one of the (or the only) tracking
modes. Tags within it customize the session cookies that the container returns to the browser:

> The <name> tag enables you to customize the name of the session cookie. The default is
JSESSIONID, and you will probably never need to change that.

> The <domain> and <path> tags correspond to the Domain and Path attributes of the cookie.
The web container appropriately defaults these for you so that you should usually not need to
customize them. The Domain defaults to the domain name used to make the request during
which the session was created. The path defaults to the deployed application context name.

> The <comment > tag adds a Comment attribute to the session ID cookie, providing the
opportunity to add arbitrary text. This is often used to explain the purpose of the cookie
and point users to the site’s privacy policy. Whether you use this is entirely up to you. If you
omit this tag, the comment attribute is not added to the cookie.

118 | CHAPTERS5 MAINTAINING STATE USING SESSIONS

> The <http-onlys and <secures tags correspond to the Httponly and Secure cookie
attributes, and both default to false. For increased security you should always customize
<http-only> to true. <secure> should be changed to true only if you have HTTPS enabled.

> The final tag, <max-age>, specifies the Max-Age cookie attribute that controls when the
cookie expires. By default, the cookie has no expiration date, which means it expires when
the browser closes. Setting this to -1 has the same effect. Expiring the cookie when the
browser closes is almost always what you want. You customize this value in seconds (unlike
<session-timeouts, which is in minutes), but doing so could cause the cookie to expire
and session tracking to fail while the user is in the middle of actively using your application.
It’s best to leave this one alone and not use this tag.

NOTE As of Servlet 3.0/Java EE 6, you can skip the deployment descriptor and
configure most of these options programmatically using the ServletContext. Use the
setSessionTrackingModes method to specify a Set of one or more javax
.servlet.SessionTrackingMode enum constants. getSessionCookieConfig
returns a javax.servlet .SessionCookieConfig — use this object to configure any
of the <cookie-configs settings. You can configure the tracking modes or cookie con-
figuration only within a ServletContextListener’s contextInitialized method
or a ServletContainerInitializer’s onStartup method. You learn about listeners
in the “Applying Sessions Usefully” section, and ServletContainerInitializers in
Chapter 12. Currently you cannot configure the session timeout programmatically —
this oversight should be corrected in Java EE 8.

Now that you understand the available options, the session configuration for the Shopping-Cart
project is as follows:

<session-config>
<session-timeout>30</session-timeout>
<cookie-config>
<http-only>true</http-only>
</cookie-config>
<tracking-mode>COOKIE</tracking-mode>
</session-configs>

This causes sessions to last 30 minutes, instructs the container to only use cookies for session
tracking and makes session cookies contain the Httponly attribute for security. It accepts all the
other default values and does not specify a comment for the cookie. URL session tracking is disabled
because it is not secure. For the rest of the book, you will always use this session configuration.

NOTE As noted earlier, the most secure approach would be to use SSL Session
IDs. A secure compromise uses cookies but sets the cookie Secure attribute

to require HTTPS. This book does not demonstrate either of these techniques
because doing so would require generating a self-signed SSL certificate and
learning the complexities of configuring SSL in Tomcat. Both of these top-

ics are beyond the scope of this book and can be explored more in the Tomcat
documentation.

Storing Data in a Session | 119

Storing and Retrieving Data

In your project create a Servlet called com.wrox.StoreServlet and annotate it as a Servlet with
the URL pattern /shop. In addition, create a simple map in your Servlet representing a product
database. (Or, just use the Shopping-Cart project.)

@WebServlet (
name = "storeServlet",
urlPatterns = "/shop"

)

public class StoreServlet extends HttpServlet

{

private final Map<Integer, Strings> products = new Hashtable<>();

public StoreServlet ()

{

this.products.put (1, "Sandpaper");
this.products.put (2, "Nails");
3, "Glue");

this.products.put (4, "Paint");

(
(
this.products.put (
(
this.products.put (5, "Tape");

}

You can use this product database to “browse” products and link cart items back to product names.

Using Sessions in Your Servlets

Create a simple implementation of the doGet method supporting three actions: browse, addToCart,
and viewCart:

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

String action = request.getParameter ("action");
if (action == null)
action = "browse";

switch (action)
case "addToCart":
this.addToCart (request, response) ;
break;

case "viewCart":
this.viewCart (request, response) ;
break;

case “browser”:

default:
this.browse (request, response);
break;

120 | CHAPTER5 MAINTAINING STATE USING SESSIONS

The browse and viewCart methods of your Servlet should be quite simple, adding a request
attribute and forwarding on to a JSP:

private void viewCart (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

request.setAttribute ("products", this.products) ;
request.getRequestDispatcher ("/WEB-INF/jsp/view/viewCart.jsp")
.forward (request, response) ;

}

private void browse (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

request.setAttribute ("products", this.products);
request.getRequestDispatcher (" /WEB-INF/jsp/view/browse.jsp")
.forward (request, response);

}

These methods are similar in that they both add the products database to a request attribute, but
they forward to different JSPs. Now take a look at the addTocart method:

private void addToCart (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

int productId;
try

{
}

catch (Exception e)

{

productId = Integer.parselnt (request.getParameter ("productId")) ;

response.sendRedirect ("shop") ;
return;

}

HttpSession session = request.getSession();
if (session.getAttribute("cart") == null)
session.setAttribute("cart", new Hashtable<Integer, Integer>());

@SuppressWarnings ("unchecked")
Map<Integer, Integer> cart =
(Map<Integer, Integers)session.getAttribute("cart");
if (lcart.containsKey (productId))
cart.put (productId, 0);
cart.put (productId, cart.get (productId) + 1);

response.sendRedirect ("shop?action=viewCart") ;

}

This method is definitely more complicated. First, it gets and parses the product ID for the product
being added to the cart. After that the code in bold calls some new session-related methods that
you haven’t looked at yet. The getSession method on HttpServletRequest comes in two forms:
getSession () and getSession (boolean).

Storing Data in a Session | 121

A call to getsession () calls getsession (true), which returns the existing session if one exists
and creates a new session if a session does not already exist. (It never returns null.) A call to
getSession (false), on the other hand, returns the existing session if one exists and nul1l if no
session exists. There are reasons for calling getSession with an argument of false — for example,
you may want to test whether a session has already been created — but in most cases you simply
call getsession (). The getattribute method returns an object stored in the session. It has a
counterpart, getAttributeNames, which returns an enumeration of the names of all the attributes
in the session. The setattribute method binds an object to the session. In this example, the code
looks for the cart attribute, adds it if it does not exist, and then retrieves the simple cart map from
the session. It then looks for the product ID in the cart and adds it with a quantity of zero if it does
not exist. Finally, it increments the quantity of that product in the cart.

Using Sessions in Your JSPs

The Servlet code can handle the logic in your application, but you need some JSPs to display the
product list and shopping cart. Start by creating /WEB-INF/jsp/view/browse.jsp:

°

<%@ page import="java.util.Map" %>
<!DOCTYPE html>

<html>
<head>
<titles>Product List</title>
</head>
<body>
<h2>Product List</h2>
<a href="<c:url value="/shop?action=viewCart" />">View Cart</as

<%
@SuppressWarnings ("unchecked")
Map<Integer, String> products =
(Map<Integer, Strings)request.getAttribute ("products");
for(int id : products.keySet())
{
%$><a href="<c:url value="/shop">
<c:param name="action" value="addToCart" />
<c:param name="productId" value="<%= Integer.toString(id) %>"/>
</c:url>"><%= products.get (id) %>
<%
}
5>
</body>
</html>

This JSP has little new in it, and simply lists out all the products. You will explore the <c:url> and
<c:params> tags further in Chapter 7. Clicking a product name adds it to the cart. Next create
/WEB-INF/jsp/view/viewCart.jsp:

<%@ page import="java.util.Map" %>
<!DOCTYPE html>
<html>
<head>
<title>View Cart</titles>
</head>
<body>

122 | CHAPTER5 MAINTAINING STATE USING SESSIONS

<h2>View Cart</h2>

<a href="<c:url value="/shop" />">Product List

<%
@SuppressWarnings ("unchecked")
Map<Integer, String> products =

(Map<Integer, Strings)request.getAttribute ("products") ;

@SuppressWarnings ("unchecked")
Map<Integer, Integer> cart =

(Map<Integer, Integers)session.getAttribute("cart");

if (cart == null || cart.size() == 0)

out.println("Your cart is empty.");

else

{

for(int id : cart.keySet())
{
out.println(products.get (id)
||>
u)’.

%>
</body>
</html>

+ " (gty: " + cart.get(id) +

This JSP uses the implicit session variable you learned about in Chapter 4 to access the shopping
cart Map stored in the session. It then lists out all the items in the cart and their quantities. Notice
that the session attribute of the page directive is no longer set to false (it defaults to true), which

enables you to use the session variable in the JSP.

Compiling and Testing

Now that everything is in place, compile your project, and run Tomcat in your IDE debugger.

1. Navigate in your browser to http://localhost:8080/shopping-cart/ and you see the

list of products.

2. Click View Cart to view your cart, which will be empty because you haven’t added anything

yet.

3. Click Product List to return to the product list and then click a product name to add it to
your cart. You should now see the cart, which has the item in it.

4. Return to the product list and add a different product to the cart. Now you should see both
items in your cart. The session is successfully storing data between requests.

5. Add another product and also add some of the same products. More products should appear
in your cart, and the quantities should increase for products you’ve added again.

After a while, your cart should look like Figure 5-2.

Storing Data in a Session | 123

=)
e http://localhost:8080/shopping-cart/shop L~-Be I! E View Cart

File Edit \iew Favorites Tools Help

View Cart
Product List
Tape (qty: 2)

Nauls (qty: 1)
Sandpaper (qty: 4)

E 100% v

FIGURE 5-2

To further test that the session is working properly, open your application in a different browser,
and click View Cart. The cart in the new browser should be empty, whereas the cart in your original
browser should still have items in it. This demonstrates that not only is your cart persisting between
requests, but also that it belongs only to your individual session in that browser. No other users can
see it.

The final test is to close and re-open the original browser window that had cart items in it. Now

the cart should be empty. This is because your session cookie expired when you closed the browser,
and when you went back to your application, you got a new session. The old session, however, sticks
around for a while until you undeploy the application or shut down Tomcat, or the session times out
due to inactivity. There is no (easy) way to get that session back in your browser.

Removing Data

So far the session is useful, but you shouldn’t have to close and re-open your browser to empty your
cart. That’s where the removeAttribute method of the session comes in.

1. Add a new case to your doGet method:

case "emptyCart":
this.emptyCart (request, response);
break;

2. Add the emptycart method implementation:

private void emptyCart (HttpServletRequest request,

124 | CHAPTER5 MAINTAINING STATE USING SESSIONS

HttpServletResponse response)
throws ServletException, IOException

request.getSession() .removeAttribute ("cart") ;
response.sendRedirect ("shop?action=viewCart") ;

}

As you can see, this is the simplest method in your Servlet. The code removes the cart attri-
bute from your session and then redirects you to view your empty cart.

NOTE Iz should be pointed out that you could have instead called
getAttribute to retrieve the Map and then called the clear method on the Map.
This would also empty the cart and would be slightly more efficient because over
time it would lead to fewer garbage collections. However, this example demon-
strates the use of the removeAttribute method.

3. You now need a way to navigate to the link to empty the cart. Modify /WEB-INF/qsp/
view/viewCart.jsp and add the following link to it:

<a href="<c:url value="/shop?action=emptyCart" />">Empty Cart</as

4. Compile and debug your application and add some products to your cart.

5. After your cart starts to fill up, click Empty Cart. All the products in your cart should go
away, leaving you with an empty cart.

You can do some other things with sessions that you won’t experiment with here but that you need
to know about. The most obvious thing you might want to do is retrieve the session ID to use for
some purpose. Calling the get 1d method on the HttpSession object easily accomplishes this. Also
there are the getCreationTime and getLastAccessedTime methods. Although getCreationTime
obviously returns the time (Unix timestamp in milliseconds) that the session object was created, the
getLastAccessedTime method can be a bit counterintuitive.

This is not the last time that your code used the session object in some way. Instead, it is the
timestamp of the last request that included the session ID for that session in it (URL, cookie, or SSL
session) — in other words, the last time the user accessed the session. The isNew method can be
handy: It returns true if the session was created during the current request, which means the user’s
browser has not yet received the session ID.

getMaxInactiveInterval returns the maximum time (in seconds) that this session

can be inactive (no requests containing the session ID) before it expires. Its counterpart

is setMaxInactiveInterval, which enables you to change the inactivity window. By

default, getMaxInactiveInterval returns the value you set in <session-timeouts. The
setMaxInactiveInterval method overrides this configured setting to make it shorter or longer for
this specific session.

To understand why you might need to do this, consider an application where certain users
(administrators) have a lot of power and can see sensitive information. You might want their

Storing Data in a Session | 125

inactivity interval to be shorter than other users’. So, when the user first signs in, you call
setMaxInactiveInterval to change this value depending on the user’s permissions.

Perhaps one of the most important HttpSession methods to know about is the invalidate
method. This is a method that you would call when a user logs out (although that is just one
example). invalidate destroys the session and unbinds all the data bound to it. Even if the client’s
browser makes another request with the same session ID, the invalidated session is not used.
Instead, a new session is created and the response contains the new session ID.

Storing More Complex Data in Sessions

So far you’ve learned how to use the HttpSession object and how to add data to and remove it
from the session. However, you worked only with a simple Map with integer keys and values. Is this
all that a session can do? The answer is no. Theoretically speaking, a session can store just about
anything you want to put in it.

Of course, you have size considerations to think about. If you put too much data in your sessions,
you could begin to exhaust the virtual machine’s memory pool. Then there’s clustering to keep in
mind. Clustering is discussed in the section “Clustering an Application That Uses Sessions,” but you
want to make sure that you can serialize and transmit your session data throughout the cluster (so
the session attributes would need to implement serializable). Other than those two restrictions,
there’s really not a lot you can’t put in a session.

To demonstrate this, consider the Session-Activity example project available on the wrox.com
download site. It has the same deployment descriptor and /WEB-INF/jsp/base.jspf file and a
slightly different index.jsp file:

<c:redirect url="/do/home" />

In the com.wrox package there is a POJO called ragevisit. The class and its fields are shown in the
following code. The simple accessor (getter) and mutator (setter) methods for this class are left up to
the reader to complete.

import java.io.Serializable;
import java.net.InetAddress;

public class PageVisit implements Serializable
{ private long enteredTimestamp;

private Long leftTimestamp;

private String request;

private InetAddress ipAddress;

// accessor and mutator methods

}

Notice that although enteredTimestamp is a primitive long, leftTimestamp is a wrapper
Long. This is so that 1leftTimestamp can be null. The ActivityServilet in Listing 5-1
isn’t very complex. The standard doGet method calls recordsessionaActivity and then

126 | CHAPTER5 MAINTAINING STATE USING SESSIONS

viewSessionActivity. The viewSessionActivity method simply forwards to a JSP.
recordSessionActivity is doing all the fun work: It gets the session; ensures the activity Vector
exists in the session; updates the 1eftTimestamp for the last Pagevisit in the Vector, if there

is one; and then adds information about the current request to the Vector. Vector is used here
because, unlike ArrayList, it is a thread-safe List. The URL pattern for the Servlet has a wildcard
in it. This URL pattern means that this Servlet answers any request starting with /do/, which can
come in handy when you test this out.

LISTING 5-1: ActivityServlet.java

@WebServlet (
name = "storeServlet",
urlPatterns = "/do/*"

)
public class ActivityServlet extends HttpServlet

{

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

this.recordSessionActivity (request) ;

this.viewSessionActivity (request, response);

}

private void recordSessionActivity (HttpServletRequest request)

{

HttpSession session = request.getSession() ;

if (session.getAttribute ("activity") == null)
session.setAttribute ("activity", new Vector<PageVisits>());
@SuppressWarnings ("unchecked")
Vector<PageVisit> visits =
(Vector<PageVisit>) session.getAttribute ("activity");

if (lvisits.isEmpty())

{
PageVisit last = visits.lastElement () ;
last.setLeftTimestamp (System.currentTimeMillis()) ;

}

PageVisit now = new PageVisit();
now.setEnteredTimestamp (System.currentTimeMillis()) ;

if (request.getQueryString() == null)

now.setRequest (request.getRequestURL () .toString()) ;
else

now.setRequest (request.getRequestURL () +"?"+request .getQueryString()) ;
try

{
}

now.setIpAddress (InetAddress.getByName (request.getRemoteAddr ())) ;

Storing Data in a Session | 127

catch (UnknownHostException e)

{
}

visits.add (now) ;

e.printStackTrace() ;

}

private void viewSessionActivity (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

request .getRequestDispatcher ("/WEB-INF/jsp/view/viewSessionActivity.jsp")
.forward (request, response) ;

}

The final thing to look at in this project is the /WEB-INF/jsp/view/viewSessionActivity.jsp file
in Listing 5-2. It’s less complicated than it looks. All it’s doing is displaying all the page visit data
accrued in the session in a readable manner. Now to test this, follow these steps:

1. Compile and debug your application and navigate to http://localhost :8080/
session-activity/do/home/ in your browser. You should see some information about your
session, an indication that the session is new, and information about the request you just made.

2. Start adding paths and query parameters to the end of the URL. Try different URLs and
wait different amounts of time between each request. You can even replace home/ with
something else — just make sure you leave /do/ in the URL.

After a while, you should start to see something like Figure 5-3 emerge. Your application is tracking
request activity and persisting it between requests to display to the user.

LISTING 5-2: viewSessionActivity.jsp

<%@ page import="java.util.Vector, com.wrox.PageVisit, java.util.Date" %>
<%@ page import="java.text.SimpleDateFormat" %>
<%!
private static String toString(long timeInterval)
{
if (timeInterval < 1_000)
return "less than one second";
if (timeInterval < 60_000)
return (timelInterval / 1 000) + " seconds";
return "about " + (timelInterval / 60 _000) + " minutes";

oe
\Y

A
o°

SimpleDateFormat f = new SimpleDateFormat ("EEE, d MMM yyyy HH:mm:ss Z");
%>
<!DOCTYPE html>
<html>

<head>

<title>Session Activity Tracker</title>
</head>
<body>
continues

128

CHAPTER 5 MAINTAINING STATE USING SESSIONS

LISTING 5-2 (continued)

<h2>Session Properties</h2>

Session ID: <%= session.getId() %>

Session is new: <%= session.isNew() $%>

Session created: <%= f.format (new Date(session.getCreationTime()))%>

<h2>Page Activity This Session</h2>

o
<3

%>
</body>
</html>

@SuppressWarnings ("unchecked")
Vector<PageVisit> visits =

(Vector<PageVisit>) session.getAttribute ("activity") ;

for (PageVisit visit : visits)

{

out.print (visit.getRequest()) ;
if (visit.getIpAddress() != null)

out.print (" from IP " + visit.getIpAddress() .getHostAddress());
out.print (" (" + f.format (new Date(visit.getEnteredTimestamp())));
if (visit.getLeftTimestamp() != null)
{

out.print (", stayed for " + toString(

visit.getLeftTimestamp() - visit.getEnteredTimestamp ()

)) i

}

out.println(")
");

e : |@ http:/localhost:6080/session-activity/dop O ~ B & H [#] session Activity Tracker | |

File Edit \iew Favorites

Tools

Help

Session is new: false

seconds)

for 11 seconds)

Session Properties
Session ID; E424DC543DE47D73 1BS8DEGEEDCDESA4

Session created: Sun, 3 Nov 2013 22:49:48 -0600

Page Activity This Session
http://localhost:8080/session-activity/do/home/ from IP 127.0.0.1 (Sun. 3 Nov 2013 22:49:48 -0600, stayed for 12
http://localhost:8080/session-activity/do/home/hello/world from IP 127.0.0.1 (Sun, 3 Nov 2013 22:50:00 -0600, stayed

http://localhost-8080/session-activity/do/home/hello/world ?foo=bar&rtrue=false from IP 127.0.0.1 (Sun. 3 Nov 2013
22:50:11 -0600, stayed for 17 seconds)

http://localhost:8080/session-activity/do/home/run/dos/run:x=1.y=2 from IP 127.0.0.1 (Sun, 3 Nov 2013 22:50:28
-0600, stayed for 9 seconds)

hitp://localhost:8080/session-activity/do/done from IP 127.0.0.1 (Sun, 3 Nov 2013 22:50:38 -0600)

F100% v

L

FIGURE 5-3

Applying Sessions Usefully | 129

APPLYING SESSIONS USEFULLY

At this point you should be well acquainted with how sessions work and how to use sessions in

Java EE web applications. There are many things you can do with sessions. In addition, some extra
tools are available to help you track when sessions are created, destroyed, and updated. You explore
those further in this section. For the rest of the chapter, youw’ll work with the Customer-Support-v3
project found on the wrox.com code download site and integrate sessions into the Customer Support
application.

Adding Login to the Customer Support Application

In the last chapter you disabled sessions in the customer support application by adding
session="false" to the page attributes in all the JSPs. You want to use sessions now, and this can
prevent you from doing that, so remove the session="false" attribute from all the JSPs in version
3 of the Customer Support application. Remember that this attribute value defaults to true, so
removing the attribute altogether enables sessions.

You should also add the <session-config> XML from the Shopping-Cart application to the
deployment descriptor so that sessions are configured for better security and session IDs don’t end
up in URLs. It should be obvious at this point that the Customer Support application needs some
form of user database with logins. In this section, you’ll add a very rudimentary, unsecure login
capability to your application. In the last part of the book several chapters cover securing your
application with a more comprehensive authentication and authorization system, so you can keep it
simple for now.

Setting Up the User Database

Add a Loginservlet class to your application and create a static, in-memory user database in it:

@WebServlet (
name = "loginServlet",
urlPatterns = "/login"

)
public class LoginServlet extends HttpServlet

{

private static final Map<String, String> userDatabase = new Hashtable<>();

static {
userDatabase.put ("Nicholas", "password");
userDatabase.put ("Sarah", "drowssap");
userDatabase.put ("Mike", "wordpass");
userDatabase.put ("John", "green");

}

As you can see, the user database is a simple map of usernames to passwords without respect to any
sort of varying permissions level. Users can either access the system or they can’t, and passwords are
not stored in a secure manner. The doGet method is responsible for displaying the login screen, so
create that now.

130

| CHAPTERS5 MAINTAINING STATE USING SESSIONS

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

HttpSession session = request.getSession() ;

if (session.getAttribute ("username") != null)
response.sendRedirect ("tickets") ;
return;

}

request.setAttribute ("loginFailed", false);
request .getRequestDispatcher ("/WEB-INF/jsp/view/login.jsp")
.forward (request, response);

}

The first thing the method in the previous example does is check to see if a user is already logged
in (a username attribute exists) and redirect them to the ticket screen if they are. If the user is not
logged in, it sets a loginFailed request attribute to false and forwards the request to the login
JSP. When the login form on the JSP is submitted, it posts to the doPost method:

@Override
protected void doPost (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

HttpSession session = request.getSession();

if (session.getAttribute ("username") != null)
response.sendRedirect ("tickets") ;
return;

}

String username = request.getParameter ("username") ;

String password = request.getParameter ("password") ;

if (username == null || password == null ||
|LoginServlet.userDatabase.containsKey (username) | |
Ipassword.equals (LoginServlet.userDatabase.get (username)))

request.setAttribute ("loginFailed", true);
request .getRequestDispatcher ("/WEB-INF/jsp/view/login.jsp")
.forward (request, response);

}

else

{

session.setAttribute ("username", username) ;
request.changeSessionId() ;
response.sendRedirect ("tickets") ;

}

There’s not a lot new in the doPost method. It again makes sure that the user isn’t already logged
in, and then checks the username and password against the “database.” If the login failed it sets the
loginFailed request attribute to true and sends the user back to the login JSP. If the credentials
match, it sets the username attribute on the session, changes the session ID, and then redirects the

Applying Sessions Usefully | 131

user to the ticket screen. The changeSessionId method (code in bold) is a new feature in Servlet
3.1 from Java EE 7 that protects against the session fixation attacks you read about earlier in the
chapter by migrating the session (changing the session ID).

Creating the Login Form
Next create /WEB-INF/jsp/view/login.jsp and put a login form in it:

<!DOCTYPE htmls>
<htmls>
<head>
<title>Customer Support</titles>
</head>
<body>
<h2>Login</h2>
You must log in to access the customer support site.

<%

if (((Boolean)request.getAttribute ("loginFailed")))

{
%>

The username or password you entered are not correct. Please try
again.

<%
}
%>

<form method="POST" action="<c:url value="/login" />">
Username

<input type="text" name="username" />

Password

<input type="password" name="password" /><br /s>

<input type="submit" value="Log In" />

</form>

</body>
</html>

This simple page writes out a login form to the screen and, using the loginFailed attribute, notifies
users when their login credentials were rejected. Together with the Logingervilet, it completes the
simple login feature. However, this doesn’t stop users from accessing the ticket screens. You need

to add a check in the TicketServlet to make sure users are logged in before displaying ticket
information or letting them post tickets. This is easily accomplished by adding the following code to
the top of the docet and doPost methods in the TicketServiet:

if (request.getSession () .getAttribute ("username") == null)

{

response.sendRedirect ("login") ;
return;

}

Now that users log in before creating tickets, your code already has access to their names when they
create new tickets. This means you don’t need the name field on the ticket form anymore. In the
TicketServlet’s createTicket method, change the current code, which sets the ticket’s customer
name using the request parameter, so that it now uses the username from the session as shown in the
following code. You can also remove the “Your Name” (customerName) input field from /WEB-INF/
jsp/view/ticketForm. jsp.

132 | CHAPTER5 MAINTAINING STATE USING SESSIONS

ticket.setCustomerName (
(String) request.getSession () .getAttribute ("username")

)i

Testing the Log In

Now that your application requires logins, follow these steps to test it:
1. Compile the project and debug it using your IDE.

2. Navigate to the application in your browser (http://localhost:8080/support/) and you
should immediately be taken to the login page.

3. Trylogging in with incorrect usernames and passwords (both of which are case-sensitive)
and you should be denied entry.

4. Try avalid username and password, and you should land on the list of tickets.

5. Create a few tickets like you did in previous chapters, and your username should be
attached to them.

6. Close your browser, re-open it, and log back in using a different username and password.

7. Create another ticket and you can see that the new ticket has the name of the user you’re
currently logged in as, while the old tickets have the other user’s name.

Adding a Logout Link

When testing, you had to close your browser to log out of the Customer Support application. This
may not be desirable and is not the hallmark of an enterprise application. Adding a logout link is
trivial enough. First, tweak the code at the top of the Loginservlet’s doGet method to add support
for logging the user out:

HttpSession session = request.getSession() ;
if (request.getParameter ("logout") != null)

session.invalidate() ;
response.sendRedirect ("login") ;
return;

}

else if (session.getAttribute ("username") != null)

{

response.sendRedirect ("tickets") ;
return;

}

The only other thing you need to do is add a logout link to the top of the 1istTickets.jsp,
ticketForm.jsp, and viewTicket.jsp files in /WEB-INF/jsp/view, just above the <h2> headers:

<a href="<c:url value="/login?logout" />">Logout

Now rebuild and run again, and log in to your application. You should see a logout link on top of
every page. Click the logout link and you will return to the login page, indicating that you have
successfully been logged out.

Applying Sessions Usefully | 133

Detecting Changes to Sessions Using Listeners

One of the more useful features of sessions in Java EE is the idea of session events. When changes
are made to sessions (for example, session attributes are added or removed), the web container

can notify your application of these changes. This is achieved through a form of the publish-and-
subscribe model, enabling you to decouple the code in your application that needs to be aware of
session changes from the code that makes changes to sessions. This is especially useful if some third-
party code — such as Spring Framework or Spring Security — makes changes to sessions in your
application because it enables you to detect these changes without changing the third-party code.
The tools that you use to detect these changes are called listeners.

Several listeners are defined in the Servlet API and most, though not all of them, listen for

some form of session activity. You subscribe to an event by implementing the listener interface
corresponding to that event and then (in most cases) either adding a <1isteners configuration to
your deployment descriptor or (as of Servlet 3.0/Java EE 6) annotating the class with ejavax
.servlet.annotation.WebListener (but not both).

You may implement as few or as many listener interfaces as you need in a single class; although of
course, you wouldn’t want to put code that didn’t logically belong together in the same class. When
something happens that triggers the publication of an event to which your code is subscribed, the
container invokes the method on your class corresponding to that event.

NOTE Starting in Servlet 3.0/Java EE 6, instead of annotating a listener class
with eWebListener or declaring it in your deployment descriptor you can pro-
grammatically register it using ServletContext’s addListener method.

You can only call this method within a ServletContextListener’s
contextInitialized method or a ServletContainerInitializer’s onStartup
method. Of course, any ServletContextListener you use to do this has to be
registered as well (using one of these three approaches). You learn more about
ServletContainerInitializers in Chapter 12.

One of the listener interfaces you can implement is the javax.servlet.http
.HttpSessionAttributeListener interface. It has three methods that are notified when session
attributes are added, updated (replaced) or removed.

A particularly interesting listener is javax.servlet .http.HttpSessionBindingListener.

Unlike most other listeners, you do not add deployment descriptor configurations for or annotate
HttpSessionBindingListeners. If a class implements this interface, it becomes aware of its status
as a session attribute. For example, if class Foo implements HttpSessionBindingListener and you
add an instance of Foo to an HttpSession using setAttribute, the container calls that instance’s
valueBound method. Likewise, the container call’s the instance’s valueUnbound method when you
remove it from the session using removeAttribute.

The two listeners you look at more closely in this section are HttpSessionListener and
HttpSessionIdListener in the javax.servlet.http package. Create a SessionListener class in
your project that implements both of these interfaces and annotate it with ewebListener (or follow
along in the Customer-Support-v3 project):

134 | CHAPTER5 MAINTAINING STATE USING SESSIONS

@WebListener
public class SessionListener implements HttpSessionListener, HttpSessionIdListener

{

@WebServlet is not the only way to notify the container that your code is subscribing to these events.
You could instead register it programmatically or declare the listener in the deployment descriptor as
follows (though the example will stick to the annotation because it is the easiest technique).

<listener>
<listener-class>com.wrox.SessionlListener</listener-class>
</listener>

The HttpSessionListener interface defines the sessionCreated and sessionDestroyed methods.
sessionCreated, intuitively, is called whenever a new session is created. sessionDestroyed is
called whenever something causes the session to no longer be valid. This could be an explicit call to
the session’s invalidate method in code, or it could be an implicit invalidation due to an inactivity
timeout. The following code implements these methods:

@Override
public void sessionCreated (HttpSessionEvent e)

{
System.out.println(this.date() + ": Session " + e.getSession().getId() +
" created.");

}

@Ooverride
public void sessionDestroyed (HttpSessionEvent e)

{
System.out.println(this.date() + ": Session " + e.getSession().getId() +
" destroyed.") ;

}

As you can see, you use these events to log when a session is created or destroyed. This is a common
use case for this particular listener because often administrators want to log this information

in some way for record-keeping purposes. HttpSessionIdListener defines only one method,
sessionIdChanged. This method, called whenever the session ID is changed using the request’s
changeSessionId method, is implemented in the following code:

@Ooverride
public void sessionIdChanged (HttpSessionEvent e, String oldSessionId)

{
System.out.println(this.date() + ": Session ID " + oldSessionId +
" changed to " + e.getSession().getId());

}

All three of these methods use a simple helper method to add a timestamp to the session activity log
entries.

private SimpleDateFormat formatter =
new SimpleDateFormat ("EEE, d MMM yyyy HH:mm:ss") ;

Applying Sessions Usefully | 135

private String date()

{
}

Now compile, debug, and navigate to your application. Immediately a logging message should
appear in your debug window indicating that a session was created. Log in to the application,

and you should observe another logging message that the session ID changed. This is the session
fixation protection that you added to the project a few pages ago. Finally, when you log out of the
application, two more log entries appear — one indicating that your session was destroyed and
another indicating that a new session was created (because you returned to the login page). You now
have a mechanism to log session activity in your application.

return this.formatter.format (new Date()) ;

NOTE When you first start the debugger but before you open your browser,
you may already see a logging message indicating that one or more sessions were
destroyed. This is completely normal. Tomcat persists sessions to the filesys-
tem when it is shut down so that the data in them is not lost and then attempts
to restore the serialized sessions to memory when Tomcat starts back up. If

the persisted sessions expired before Tomcat restored them, Tomcat notifies
HttpSessionListeners that the sessions expired just as if Tomcat was never
stopped. This is fairly standard bebavior among web containers and can be dis-
abled in most cases, but that is outside the scope of this book. Consult your con-
tainer’s documentation.

Maintaining a List of Active Sessions

In addition to logging session activity, you can use the HttpSessionListener and
HttpSessionIdListener to maintain a list of active sessions in the application, something the
Servlet API specification does not provide for directly.

To accomplish this, start by creating the SessionRegistry class in Listing 5-3. This class is fairly
simple. It maintains a static Map with session IDs as keys and corresponding session objects as
values. This may seem inefficient at first, but remember that these session objects already exist in
memory for another purpose. The session objects are not being duplicated; this class simply stores
another set of references to them, which is a relatively lightweight thing to do compared to the
potential memory footprint of the session objects themselves. Because the class contains only static
methods, its constructor is private to prevent instantiation.

LISTING 5-3: SessionRegistry.java

public final class SessionRegistry

{

private static final Map<String, HttpSession> SESSIONS = new Hashtable<>();

continues

136 | CHAPTER5 MAINTAINING STATE USING SESSIONS

LISTING 5-3 (continued)

public static void addSession (HttpSession session)

{
}

public static void updateSessionId(HttpSession session, String oldSessionId)

{

SESSIONS.put (session.getId(), session);

synchronized (SESSIONS)

{

SESSIONS.remove (oldSessionId) ;
addSession(session) ;

}

public static void removeSession (HttpSession session)

{
}

public static List<HttpSession> getAllSessions ()

{
}

public static int getNumberOfSessions ()

{
}

private SessionRegistry() { }

SESSIONS.remove (session.getId()) ;

return new ArrayList<>(SESSIONS.values());

return SESSIONS.size();

This registry stores references to all the active sessions, but you must add and remove sessions
somehow. For that, follow these steps:

1.

2.

3.

Expand the sessionListener you created earlier. Add the following code to the
sessionCreated method:

SessionRegistry.addSession(e.getSession());
Add the following code to the sessionDestroyed method:
SessionRegistry.removeSession (e.getSession()) ;

Add the following code to the sessionIdChanged method:

SessionRegistry.updateSessionId(e.getSession(), oldSessionId);

Now sessions will be added to and removed from your registry at the appropriate times, but you still
need a way to display these sessions. A simple SessionListServlet handles the request:

@WebServlet (

name = "sessionListServlet",
urlPatterns = "/sessions"

Applying Sessions Usefully | 137

public class SessionListServlet extends HttpServlet
{
@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{

if (request.getSession () .getAttribute ("username") == null)
{

response.sendRedirect ("login") ;

return;

}

request.setAttribute ("numberOfSessions",
SessionRegistry.getNumberOfSessions()) ;

request.setAttribute ("sessionList", SessionRegistry.getAllSessions());

request .getRequestDispatcher ("/WEB-INF/jsp/view/sessions.jsp")
.forward (request, response);

The code for /WEB-INF/jsp/view/sessions.jsp, which takes care of displaying the sessions, is
contained in Listing 5-4.

To test this you need two different Internet browsers (not just two windows of the same browser):

Rebuild and debug your application, and open the first browser to the support
application URL.

After logging in, navigate to http://localhost :8080/support/sessions. You should see
your current session listed in the list of sessions.

Open the second browser, log in to the support application, and navigate to http://
localhost:8080/support/sessions in that browser as well. You should see a screen
similar to the one in Figure 5-4.

Reload the first browser you opened, and the new session should appear there too. This
means you are successfully maintaining a list of sessions.

138 | CHAPTER5 MAINTAINING STATE USING SESSIONS

e : ‘Eﬁl p: i o~ EG”@CualnmerSuppnn ‘ |

File Edit View Favorites Tools Help

Logout
Sessions

There are a total of 2 active sessions in this application.

87AEF91FC198FODCCIC4CEDO9EEG8CDS - Sarah (vou) - last active 11 seconds ago
ADBB649D99744A3687TEB20E6F2A 72199 - Nicholas - last active about 2 minutes ago

H100% v

FIGURE 5-4

LISTING 5-4: sessions.jsp

<%@ page import="java.util.List" %>

<%!
private static String toString(long timeInterval)
if (timeInterval < 1_000)
return "less than one second";
if (timeInterval < 60_000)
return (timelInterval / 1_000) + " seconds";
return "about " + (timeInterval / 60_000) + " minutes";
%>

N
oe

int numberOfSessions = (Integer)request.getAttribute ("numberOfSessions");
@SuppressWarnings ("unchecked")
List<HttpSession> sessions =
(List<HttpSession>)request.getAttribute ("sessionList") ;
%>

<!DOCTYPE htmls>

<html>
<head>
<title>Customer Support</titles>
</head>
<body>
<a href="<c:url value="/login?logout" />">Logout
<h2>Sessions</h2>

There are a total of <%= numberOfSessions %> active sessions in this
application.<br /s>

<%

long timestamp = System.currentTimeMillis();

for (HttpSession aSession : sessions)

Clustering an Application That Uses Sessions | 139

out.print (aSession.getId() + " - " +
aSession.getAttribute ("username")) ;
if (aSession.getId() .equals(session.getId()))
out.print (" (you)");
out.print (" - last active " +
toString(timestamp - aSession.getLastAccessedTime()));
out.println(" ago
");

%>
</body>
</html>

NOTE The sessions listed in this example are only the ones in the currently run-
ning instance of Tomcat. If your application was deployed to multiple Tomcat
instances, you would see different sessions listed, depending on which Tomcat
instance your request to the application landed on, because the page would still
list only sessions on that particular Tomcat instance. The solution to this problem
involves properly configuring your application for clustering and setting up session
replication in your container. These topics are explored in the next section.

CLUSTERING AN APPLICATION THAT USES SESSIONS

In the time you spend working with enterprise applications, you will undoubtedly come across the
need to cluster an application. Clustering provides several advantages, notably adding redundancy
and scalability to your application. Properly clustered applications can suffer failures or even
endure routine maintenance without end users ever experiencing downtime. In a very well-managed
environment, administrators can even roll out upgrades to applications without causing downtime.
As you can tell, clustering is an invaluable member of the web application toolset.

Clustering does not come without its downsides, however, and there are challenges that must be
overcome. One of the biggest of these challenges is the passing of messages between instances of an
application running on separate machines, sometimes even on disparate or disconnected networks
or in different regions of the world. For decades engineers have been re-imagining and redesigning
cluster messaging systems, constantly searching for that “perfect” messaging framework that is
stable, reliable, and fast. Advanced Message Queuing Protocol (AMQP), Java Message Service
(JMS), and Microsoft Message Queuing (MSMQ) are three competing technologies that have
emerged as a result. Of course, there are other challenges with application clustering than just
messaging, and the one you look at in this section is managing sessions in a cluster.

Understanding this section requires you to have some basic knowledge of what load balancing is,
how it works, and what some of the common load balancing strategies are. These are topics that
would require considerable time to discuss and are outside the scope of this book.

Using Session IDs in a Cluster

The immediate problem you might see with session clustering is that sessions exist as objects in
memory and as such only reside on a single instance of a web container. In a purely round-robin
or load-smart load balancing scenario, two consecutive requests from the same client may go to

140

| CHAPTERS5 MAINTAINING STATE USING SESSIONS

different web containers. The first web container instance would assign a session ID to the first
request it received, and then when the next request came in to a different instance of the web
container, the second instance would not recognize the session ID and would create and assign a
new session ID. At this point, sessions would be useless.

One solution to this problem is to employee sticky sessions. The idea of sticky sessions is that the
load balancing mechanism is session-aware and always sends a request from the same session

to the same server. This can be accomplished in a number of ways and depends largely on the

load balancing technology. For example, the load balancer may be made aware of the web
container’s session cookie and know that it is a session cookie, therefore using it as a mechanism
for determining when requests should go to the same server. Or some load balancers can add their
own session cookies to responses and recognize those cookies in subsequent requests. (Yes, a single
request can belong to many different sessions, as long as the session cookie names or session ID
transmission techniques are all different.)

A potential downside to both of these techniques is that the web container cannot use SSL/HTTPS because
that would prevent the load balancer from inspecting or modifying requests or responses. However, many
load balancers support handling the encryption and decryption of HTTPS traffic, so you haven’t really
made your application less secure; you’ve just moved the encryption mechanism from the server to the

load balancer. (Some organizations even prefer this setup, but remember that it prevents you from using
SSL Session IDs as your HTTP session IDs.) Finally, some load balancers use a combination of source and
destination IP addresses to determine when to send multiple requests to the same server, but this can be
troublesome for the same reason that using IP addresses to establish HTTP sessions is a bad idea.

The most common load balancing approach administrators of a Tomcat environment take is to use
an Apache HTTPD or Microsoft IIS web server to load balance requests between Apache Tomcat
instances. The Apache Tomcat Connector http://tomcat .apache.org/connectors-doc/ provides
a mechanism for interfacing these web servers with Tomcat. The connector’s mod_jk component is
an Apache HTTPD module that forwards requests to Tomcat and provides sticky sessions capability
using Tomcat’s session IDs. Likewise, isapi_redirect is the IIS connector that provides the same
capability when using IIS. As load increases even more, you can set up a dumb round-robin load
balancer to balance requests between multiple HTTPD or IIS web servers.

This multi-layer approach, demonstrated in Figure 5-5, can achieve extremely high performance

and availability while maintaining session affinity. The connector (mod_jk or isapi_redirect) uses a
Tomcat concept known as the session 1D jumroute to determine which Tomcat instance to send each
request to. Consider the following session ID:

ARG4E92624FFEA976C4148DF5BC6BA03
In a load-balanced environment with multiple Tomcat instances, each Tomcat instance would have a
jvmroute configured in the <Connectors> element in Tomcat’s conf/server.xml configuration file.
That jvmroute is appended to the end of all session IDs. In a cluster with three Tomcat instances
having jvmroutes tcin01, tcin02 and tcin03, that same session ID would instead look like this if
the session originated on instance tcino2:

AA64E92624FFEA976C4148DF5BC6BAO3 . tcin0d2

From then on the web server connector (mod_jk or isapi_redirect) would recognize that this
session belonged to Tomcat instance tcino2 and would always send requests in that session to that
instance. If your application were secured with HTTPS, the web server would have to be in charge
of certificates and encryption/decryption for this to work. The advantage of using mod_jk or isapi_
redirect for this is that they have access to the SSL Session ID and re-transmit that ID to Tomcat,

Clustering an Application That Uses Sessions | 141

allowing SSL session tracking to work properly. This exact sticky-session load balancing approach
also works with GlassFish behind Apache HTTPD/mod_jk and IIS/isapi_redirect.

Apache
» Tomcat or
GlassFish

Apache
» Tomcat or
GlassFish

. Apache HTTPD or IIS

O s
User Load Balancer ' Apache

N Tomcat or
° GlassFish
N
Apache HTTPD or IIS
Apache
» Tomcat or
GlassFish

FIGURE 5-5

The exact details of configuring mod_jk, isapi_redirect, and Tomcat’s and GlassFish’s jymroute

are outside the scope of this book and vary from one version to the next. Consult the Tomcat and
GlassFish documentation for instructions. WebLogic, WebSphere, and other containers offer similar
but ultimately different approaches that are covered in detail in their documentation as well.

Understand Session Replication and Failover

The major problem with using sticky sessions is that it may support scalability, but it does not
support high availability. If the Tomcat instance that created a particular session goes down, the
session is lost and the user must log in again. Even worse, the user could potentially lose unsaved
work. For this purpose sessions can be replicated throughout the cluster so that all sessions are
available to all web container instances regardless of the instances from which they originated.
Enabling session replication in your application is easy to accomplish. You just need to add the
<distributables tag to the deployment descriptor:

<distributable />

That’s all there is to it. There are no attributes, nested tags, or content for this tag. The presence of this in
the deployment descriptor tells the web container to replicate sessions across the cluster, if one exists. When
a session is created in one instance, it is replicated to the other instances. If a session attribute is changed,
that session is re-replicated to the other instances so that they have the latest version of the session.

Of course, it isn’t actually this simple. For instance, this only marks your application as supporting
distributable sessions. It does not configure your web container’s session replication mechanism
(which is a complex topic not discussed in this book). It also does not automatically mean your
application follows best practices. You must be careful which session attributes you set (if they are
not Serializable, an I1legalArgumentException is thrown when you call setAttribute) and
how you update those session attributes. Consider this code snippet from the Shopping-Cart project:

142 | CHAPTER5 MAINTAINING STATE USING SESSIONS

@SuppressWarnings ("unchecked")
Map<Integer, Integer> cart =
(Map<Integer, Integers)session.getAttribute("cart");
if (lcart.containsKey (productId))
cart.put (productId, 0);
cart.put (productId, cart.get (productId) + 1);

The web container does not (and cannot) know that the Map containing the cart items has changed
in this way. Because of this, the change to the session will not be replicated, which means that other
container instances cannot know about the new item in the cart. This can be addressed simply:

@SuppressWarnings ("unchecked")
Map<Integer, Integer> cart =
(Map<Integer, Integers)session.getAttribute("cart");
if (lcart.containsKey (productId))
cart.put (productId, 0);
cart.put (productId, cart.get (productlId) + 1);
session.setAttribute("cart", cart);

Notice the code in bold that has been added. This may seem silly because you replaced the cart
session attribute with the same object that was already assigned to it. However, calling this method
tells the container that the session has changed and causes the session to be replicated again. Any
time you change an object assigned to a session attribute, you must call setAttribute again to
ensure the change is replicated.

There is also a listener associated with the concept of session replication. Any objects added to
sessions as attributes can implement the javax.servlet.http.HttpSessionActivationListener
interface. When a session is about to be serialized to replicate to other servers, the
sessionWillPassivate method is called, giving the object bound to the session an opportunity

to perform some action first. When the session is deserialized in another container, the
sessionDidActivate method is called to notify the attribute that it has been deserialized.

One final note: Sticky sessions and session replication are not mutually exclusive concepts. Often the two
are combined to achieve session failover — sessions are still replicated, but requests in the same session are
sent to the same instance until that instance fails, at which point the requests are sent to a different instance
that already knows about the session. You can use several techniques to increase the efficiency of your
application using sticky session failover, but they are outside the scope of this book. The documentation for
your web container should describe the replication features it supports and how to use them.

SUMMARY

In this chapter you have been introduced to the concept of sessions and how sessions are established
between the client and server. You learned about some of the many potential security vulnerabilities
associated with sessions and how each of them can be addressed, and you also learned about

the most secure session ID transmission method of all: using the SSL session ID. You explored
employing sessions in Java EE using a shopping cart application and added login support to the
Customer Support application. You also discovered how to detect changes to sessions and used

that to establish a registry of sessions within your application. Finally, you were introduced to the
concepts behind clustering sessions and learned about some of the challenges and approaches to
session clustering. In the next three chapters, you explore some technologies that make working
with JSPs easier than ever before and help you get rid of Java within JSPs for good.

Using the Expression
Language in JSPs

IN THIS CHAPTER

All about Expression Language
How to write with the EL syntax
How to use scoped variables in EL expressions

How to access collections with Java 8 streams in EL expressions

Y Y Y Y Y

Switching out Java code with Expression Language

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox. com code downloads for this chapter at www.wrox.com/go/

projavaforwebapps on the Download Code tab. The code for this chapter is divided into the
following major examples:

> User-Profile Project

> Customer-Support-v4 Project

NEW MAVEN DEPENDENCIES FOR THIS CHAPTER

In addition to Maven dependencies introduced in previous chapters, you also need the
following Maven dependency:

<dependency>
<groupld>javax.el</groupId>
<artifactId>javax.el-api</artifactIds>
<version>3.0.0</versions>
<scope>provided</scope>

</dependency>

144 | CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

UNDERSTANDING EXPRESSION LANGUAGE

Up to this point, you have used Java to output dynamic content from your JSPs. However, recall that
Chapter 4 covers how the use of declarations, scriptlets, and expressions is discouraged. Not only
does this provide a great deal of power (sometimes too much) to your JSPs, but it also makes writing
JSPs difficult for UI developers with little or no Java background. There must be an easier way to
display data and perform simple operations than using Java code. You might think that the <jsp>
tags could provide a solution, and indeed these tags can be used to replace certain Java operations.
However, these tags are clunky and awkward to use. What’s needed is something easily read,
familiar to both Java developers and Ul developers, and with a simple set of rules and operators to
make data access and manipulation easier.

What It's For

Expression Language (EL) was originally developed as part of the JSP Java Standard Tag Library
(JSTL), something you learn about in the next chapter, to support the rendering of data on JSP pages
without the use of scriptlets, declarations, or expressions. It was inspired by and largely based on
the ECMAScript (the foundation of JavaScript) and XPath languages. At the time it was referred to
as the Simplest Possible Expression Language (SPEL) but later shortened to Expression Language.
EL was part of the JSTL 1.0 specification that came out with JSP 1.2 and could be used only in
attributes of JSTL tags. In JSP 2.0 and JSTL 1.1 the EL specification (due to its popularity) was
moved from the JSTL specification to the JSP specification and became available for use anywhere in
a]JSP, not just within JSTL tag attributes.

While this was happening, work had commenced on JavaServer Faces, built on JSP 1.2 as an
alternative to plain JSP. JSF also needed its own expression language. However, there were several
drawbacks to reusing the EL as it existed for JSPs. For one, JSF needed to control the evaluation of
expressions to certain points of the JSF life cycle. An expression might need to be evaluated during
page rendering but also during a postback to the JSF page. In addition, JSF needed better support for
method expressions than the EL offered. As a result, two separate but extremely similar expression
languages formed — one for JSP 2.0 and one for JSF 1.0.

Obviously having two separate Java expression languages was not ideal, so when work began on the
JSP 2.1 specification, an effort was underway to merge the JSP 2.0 Expression Language with the
JSF 1.1 Expression Language. The result was the Java Unified Expression Language (JUEL) for JSP
2.1 and JSF 1.2.

Despite being shared by JSP and JSF, EL did not get its own JSR but continued to be a part of

the JSP specification, although it did have its own specification document and JAR artifact. This
remained the case for EL in JSP 2.2. EL continues to expand and improve, and as of Java EE 7

it was moved into its own JSR (JSR 341) and updated to support lambda expressions and an
equivalent of the Java 8 Collections Stream API, marking Java Unified Expression Language 3.0 (or
EL 3.0 for short). EL 3.0 was released with Java EE 7, Servlet 3.1, JSP 2.3, and JSF 2.2 in 2013. In
this chapter you explore EL 3.0 as it pertains to JSPs, learning about JSF-related features only where
pertinent comparisons can be made. Most of the chapter centers on syntax, and where features that
are new to EL 3.0 are demonstrated, this is indicated.

Understanding Expression Language | 145

Understanding the Base Syntax

The base syntax for EL delineates expressions that require evaluation from the rest of the JSP page
syntax. The JSP interpreter must detect when an EL expression begins and ends so that it can parse
and evaluate the expression separately from the rest of the page. There are two different types of the
base EL syntax: immediate evaluation and deferred evaluation.

Immediate Evaluation

Immediate evaluation EL expressions are those that the JSP engine should parse and evaluate at the
time of page rendering. This means that as the JSP code is being executed from top to bottom, the
EL expression is evaluated as soon as the JSP engine comes across it and before the execution of
the rest of the page continues. EL expressions that should be immediately evaluated look like the
following example, where expr is a valid EL expression.

${expr}

The dollar sign and opening and closing brackets define the boundaries of the EL expression.
Everything inside the brackets gets evaluated as an EL expression. More important, this means that
you can’t use this syntax for any other purpose in your JSPs; otherwise, it will get evaluated as an
EL expression and could result in an EL syntax error. If you ever needed to write something with
this syntax out to the response, you would need to escape the dollar sign:

\${not an EL expression}

The backslash before the dollar sign indicates to the JSP engine that this is not, in fact, an EL
expression and should not be evaluated. The previous example would have literally been written to
the response as ${not an EL expression}. You could also have used the dollar sign XML entity
$ instead of \ ¢ and it would have resulted in the same outcome.

$ {not an EL expression}

Although the JSP engine would also ignore this, many find using the backslash easier. It’s simply a
matter of personal preference. Of course, you might legitimately need to put a backslash before an
expression that you do, actually, want evaluated. This requires the use of the backslash

XML entity:

\${EL expression to evaluate}

In this case, the EL expression will be evaluated and rendered after the backslash.

Deferred Evaluation

Deferred evaluation EL expressions are a part of the Unified Expression Language that primarily
supports the needs of JavaServer Faces. Although the deferred syntax is legal in JSPs, it is not
normally seen in JSPs. Deferred syntax looks nearly identical to immediate syntax, again where
expr is a valid EL expression:

#{expr}

146

| CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

In JSF, deferred expressions can be evaluated either when the page is rendered or during a postback
to the page, or possibly even both. The specifics of this are not pertinent to this book, but you must
understand that this is different from JSP, which does not have a sense of life cycles that JSF has.

In JSP, the #{} deferred syntax, which is only valid in JSP tag attributes, can be used to defer the
evaluation of the EL expression until later in the rendering process of the tag. Instead of the EL
expression being evaluated before the attribute value is bound to the tag (like it would be with ${}),
the tag attribute gets a reference to the unevaluated EL expression. The tag can then later invoke a
method to evaluate the EL expression when it’s appropriate. This can be useful and is explored more
in Chapter 8, but it is rarely used.

One potential problem with deferred syntax is that some templating languages and JavaScript
frameworks use the #{} syntax for substitutions. Because of this, if you use these substitutions,
you would normally have to escape them so that they aren’t confused with deferred evaluation EL
expressions:

\#{not an EL expression}
{also not an EL expression}

However, this may not work for some frameworks that utilize this syntax, and it can be a real
pain if you need to use this often or if you have a lot of existing JSPs that need to work with EL
2.1 or higher. (Also, the XML entity isn’t compatible with JavaScript.) Because of this, there is
another option for preventing a #{} literal from being evaluated as a deferred expression. Within
the <jsp-config> section of the deployment descriptor, you can add the following tag to any
<jsp-property-groups>:

<deferred-syntax-allowed-as-literal>true</deferred-syntax-allowed-as-literal>

This permits the #{} syntax to be used in a literal manner and prevents you from having to escape
the hash tag in this case. If you need to control this for individual JSPs, you can use the
deferredSyntaxAllowedAsLiteral="true" attribute of the page directive in any JSP, instead.

For the remainder of this book, you will only see immediate evaluation EL syntax in example code
and you will not use deferred evaluation EL syntax, with one exception. In the Chapter 8 discussion
on custom tag and function libraries, you’ll explore the <deferred-values and <deferred-method>
options when defining custom tags. This also necessitates demonstrating the deferred syntax.

Placing EL Expressions

Simply put, EL expressions can be used just about anywhere in a JSP, with a few minor exceptions.
To start, EL expressions cannot be used within any directives, so don’t even try it. Directives

(<%@ page %>, <%@ include %>,and <%e@ taglib %>) are evaluated when the JSP is compiled, but
EL expressions are evaluated later when the JSP is rendered, so it cannot work. Also, EL expressions
are not valid within JSP declarations (<%! %>), scriptlets (<% %>), or expressions (<%= %>). If used
within any of these, an EL expression will simply be ignored or, worse, could result in a syntax error.

Other than that, EL expressions can be placed just about anywhere. One place you might see EL
expressions is within simple literal text written to the screen:

The user will see ${expr} text and will know that ${expr} is good.

Writing with the EL Syntax | 147

This example includes two EL expressions that, when evaluated, are placed inline with the text that
displays. If the first expression evaluated to “red” and the second expression evaluated to “it,” the
user would see the following:

The user will see red text and will know that it is good.

In addition, expressions can be used within standard HTML tag attributes as in the following
example.

<input type="text" name="something" value="${expr}" />

HTML tag attributes are not the only place that EL expressions are allowed. You can also use them
in JSP tag attributes, as demonstrated with the following code.

<c:url value="/something/${expr}/${expr}" />
<c:redirect url="${expr}" />

As you can see, EL expressions do not have to make up the entire attribute value. Instead, any one
or more parts of the attribute value can include EL expressions. You might wonder about other
HTML features, such as JavaScript or Cascading Style Sheets. The JSP engine does not parse things
of this nature and writes them out to the response as if they were literal text, so these, also, may
contain EL expressions in either quoted or literal form:

<script type="text/javascript" lang="javascript"s>
var employeeName = '${expr}';
var booleanvalue = ${expr};
var numericValue = ${expr};
</scripts>
<style type="text/css">
span.error {
color: ${expr};
background-image: url('/some/place/${expr}.png');

}

</style>

So far you have learned about the different types of EL expressions and where EL expressions can be
placed, but you may wonder what exactly expr looks like. In the next section you learn about what
you can put within an EL expression.

WRITING WITH THE EL SYNTAX

EL expressions, like any other language, have a specific syntax. Like Java, JavaScript, and most
other languages, that syntax is strict, and violating it will result in syntax errors when your JSP is
rendered. Unlike Java, however, EL syntax is loosely typed and has many implicit type conversions
built in, similar to languages like PHP or JavaScript. The primary rule for an expression is that it
should evaluate to some value. You cannot declare variables within an expression or perform some
kind of assignment or operation that does not result in a value. (For example, ${object .method () }
is only valid if method has a non-void return type.) EL is not designed to replace Java; instead, it is
designed to provide you with the tools you need to create JSPs without Java.

148

CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

NOTE Although you cannot declare variables within an EL expression, you can
assign variables as of the EL 3.0 specification. Using the standard assignment
operator =, you can assign A = B within an expression as long as B is some value
that can be written out to the page. So, the expression ${x = 5} will result in
assigning 5 to x and also in rendering s in place of the EL expression.

Reserved Keywords

As with any other language, one of the first things you should know about EL is its list of reserved
keywords. These are words that should be used only for their prescribed purpose. Variables,
properties, and methods should have names equal to these reserved words.

> true > or
> false > not
> null > eq
> instanceof > ne
> empty > 1t
> div > gt
> mod > le
> and > ge

You’ll recognize the first four words as also being Java reserved keywords. You can use these in

the same manner you would use their counterparts in Java. The empty keyword is used to validate
whether some collection, Map, or array contains any values, or whether some string has a length
of one or more characters. If any of these are null or “empty,” the expression evaluates to true;
otherwise, it evaluates to false.

${empty x}

The div and mod keywords map to the Java mathematical operations divide (/) and modulus (%),
respectively, and are merely alternatives to the mathematical symbols. You can still use / and %
if you prefer. The and, or, and not keywords map to the Java logical operators &s, | |, and !,
respectively. As with the mathematical operators, you can still use traditional logical operators if
you prefer. Finally, the eq, ne, 1t, gt, 1e, and ge operators are alternatives to the Java relational
operators ==, !=, <, >, <=, and >=, respectively, which can also still be used if you prefer.

Operator Precedence

Just like with other languages, all the previous operators, together with other operators in the EL,
have an order of precedence that is important to understand. This order is mostly intuitive and

Writing with the EL Syntax | 149

not dissimilar from operator precedence in Java. More important, as with Java and arithmetic
equations, operators of equal precedence are considered in the order they appear in an expression,
from left to right.

The first operators evaluated in an EL expression are the bracket [] and dot (.) resolution operators.
Consider the following expression:

${myCollection["key"] .memberName ["anotherKey"] }

The engine first resolves the value mapped to key in the myCollection object. It then resolves the
memberName method, field, or property within the key value found in mycollection. Finally, it
locates the anotherkey value within the value that memberName evaluates to. After these operators
are considered, the grouping parentheses operators () are considered. These operators are used to
change the precedence of other operators, just as they are in Java or arithmetic equations.

The third set of operators considered includes the unary negative sign (-), not, !, and empty. Next,
the EL engine evaluates the arithmetic operators multiply (*), divide (/), and div, and modulus (%)
and mod, which are followed by the addition (+) and binary subtraction () operators, just like they
are ordered in mathematical equations. After this the EL string concatenation operator += (new to
EL 3.0) is evaluated. Next, it evaluates the comparison relational operators < (or 1t), > (or gt), <=
(or 1e), and >= (or ge), followed by the equality relational operators == (or eq) and != (or ne). After
this, it evaluates all the && and and operators from left to right, then all the | | and or operators
from left to right, and then all the ? and : conditional operators from left to right.

The next thing that the EL engine evaluates is the lambda expression operator (->), new in the EL

3.0 specification. This has the same syntactic and semantic purpose as the Java 8 lambda expression
operator. However, you do not need to be running on Java 8 for EL lambda expressions to be valid.
After this, the EL engine evaluates the assignment = operator, which was also added in the EL 3.0
specification. This operator assigns the value of some expression on the right side of the operator to the
variable on the left side of the operator. The resulting value of the expression is then the value of

the variable on the left side of the operator. Consider the following expression.

${x = v + 3}
Now assume that, at execution time, the value of y is 4. The result of the expressiony + 3is 7,

thus 7 is assigned to x. Because the resulting value of the expression is x, the value of
${x =y + 3}is7

The final operator that the EL engine evaluates is the semicolon (;) operator, also a new feature in
EL 3.0. This operator mimics the comma (,) operator in C, allowing the specification of several
expressions with the values of all but the last expression being discarded. To understand this, refer
to the following expression.

${x = y + 3; object.callMethod (x); 'Hello, World!'}

This combination EL expression has four expressions within it.
> The expression y + 3 is evaluated, resulting in 7 assuming y is 4.

> That value is assigned to x.

150

| CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

» The callMethod method is invoked on the object variable and passed x (7) as its argument.

> The string literal “Hello, World!” is evaluated. The result of this expression is the result of
the expression after the last semicolon only: “Hello, World!”

The results of the x = v + 3 expression and the object.callMethod (x) expression are discarded.
This is especially useful to assign some value to an EL variable and then include that value in some
other part of the expression instead of just outputting the value.

To help you keep all this straight, the following list summarizes the order of precedence from top
(highest) to bottom (lowest) with only the symbols and none of the clutter. Remember that operators
with the same precedence are evaluated in the order they appear in an expression, from left to right.

I, .

()

unary -, !, not, empty

*, /,div, %, mod

+ math, binary -

+= string

<, 1t, >, gt, <=, le, >=, ge
==, eq, !=, ne

&&, and

|, or

NOTE In Java, you test for equality between objects using the equals method.
For example, to test if two Strings were equal, you would use "Hello"

.equals ("Hello"), not "Hello" == "Hello". The latter tests that the two refer-
ences are the same instance, not that the two objects are equal. However, in EL
expressions you use the == or eq operators to test for object equality instead of call-
ing the equals method. (There is no equivalent for testing if two references are the
same in EL.) Likewise, you use ! = or ne instead of | "Hello" .equals ("Hello").

The use of the relational comparison operators <, 1t, >, gt, <=, le, >=, and ge is
similar to the equality operators. Any two objects that implement the java
.lang.Comparable interface can be compared with comparison operators as
long as the types are the same or one can be coerced to the other. So,

${o1l >= o2} and ${o1 ge o2} in EL are equivalent to ol .compareTo (02) >= 0in
Java, and ${o1 < 02} and ${o1 1t o2} are equivalent to ol .compareTo (02) < O.

Writing with the EL Syntax | 151

Literal Values

The Unified Expression Language has a support for specifying literal values with a specific syntax.
You have already seen the true, false, and null keywords, which are all literal values.

In addition, EL can have string literal values. Unlike Java, where string literals are always surrounded
by double quotes, string literals in EL can be surrounded by either double or single quotes, similar to
PHP and JavaScript. So, both of the expressions in the following example are valid.

${"This string will be rendered on the user's screen."}
${'This string will also be "rendered" on the screen.'}

As you can see, there are advantages and disadvantages to using either type of string literal, and

in many cases you will simply use the one that’s easiest for the particular case. If some string has a
single quote within it, it’s probably easiest to use double quotes for the literal. Similarly, if the string
has a double quote in it, it’s probably easiest to use a single quote literal.

One thing you must be careful about, however, is using EL expression string literals within JSP tag
attributes. Because these are both evaluated by the JSP engine, the quotes surrounding an attribute
value and the quotes surrounding a string literal conflict. Thus, both of the EL expression attribute
values in the following example are invalid and result in syntax errors:

<c:url value="${"value"}" />
<c:url value='${'value'}' />

There are two valid ways to address this conflict. You can either use opposite quote types for the
attribute and literal, or you can escape the literal quotes. All four lines of code in the following
example are valid.

<c:url value="${'value'}" />
<c:url value='${"value"}' />
<c:url value="${\"value\"}" />
<c:url value='${\'value\'}' />

Generally, you will find it is easier to simply use opposite quotes instead of escaping. But what if
your string literal itself contains a single or double quote and you need to put the expression in an
attribute value? There’s no way around it at this point. You must escape something. The six lines of
code in the following example are all valid ways of dealing with this.

<c:url value="${'some \"value\"'}" />
<c:url value='${"some \"value\""}' />
<c:url value="${'some \'value\''}" />
<c:url value='${"some \'value\'"}' />
<c:url value="${\"some 'value'\"}" />
<c:url value='${\'some "value"\'}' />

Need to mix and match single and double quotes within a string literal that exists within an
attribute value? This is where things start to get hairy:

<c:url value="${'some attribute\'s \"value\"'}" />
<c:url value='${"some \"attribute\" \'value\'"}' />

152

| CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

As you can tell, this can quickly spiral out of control. Where possible, it’s best to keep your string
literals simple. The last thing to note about string literals is that, as of Expression Language 3.0 in
Java EE 7, you can concatenate string literals within EL expressions somewhat like you do within
Java. All three lines in the following example are equivalent and result in the same output.

The user will see ${expr} text and will ${expr}.
${'The user will see ' += expr += " text and will " += expr += '.'}
${"The user will see " += expr += ' text and will ' += expr += "."}

If expr results in some object that is not a String, it will be coerced to a string by calling the
toString method on that object.

Numeric literals in EL are simplified over those in Java, and you can even perform arithmetic
between certain objects that you could not in Java. Consider the following three integer-type
numeric literals:

${105}

${-132147483648}
${139223372036854775807}

The first literal is an implicit int and is treated like one when the expression is evaluated.

> The second literal is too large to be an int. In Java, this would be a syntax error unless
you appended an L to the end of the number to indicate it was a 1ong, but in EL it simply
becomes a 1ong implicitly.

> The third literal is too large to even be a long, so it is treated as a BigInteger implicitly.

All these conversions happen under the hood without your involvement. Then there are the decimal
types:

${105.509}
${3400000000000000000000000000000000000001.0}
${1.79769313486231570e+309}

Similar to the integer types, these literals are an implicit £1oat, double, and BigDecimal,
respectively. It should be noted that although the default literal decimal type in Java is double, the
default decimal type in EL is £1oat unless a larger precision is required. Keep this in mind when
you work with EL expressions. You cannot explicitly specify the literal type — it is always handled
implicitly.

EL expressions make mathematical operations much easier because all type conversions and
precision upgrades are implicit and because the arithmetic operators can be used on BigInteger
and BigDecimal types. Consider the following expression, which adds two numbers and returns the
resulting value:

${12 + 1.79769313486231570e+309}

The number on the left side of the addition operator is an int, whereas the number on the right side
is an implicit Bigbecimal. To do this in Java would normally require the following code:

new BigDecimal (12) .add(new BigDecimal ("1.79769313486231570e+309")) ;

Writing with the EL Syntax | 153

However, the EL engine takes care of everything for you. First, it coerces 12 from an int to a
BigDecimalj; then it turns the addition operator into a call to the add method.

NOTE In Java, numbers can be expressed as standard (base-10, 83) literals, octal
(base-8, 0123) literals, hexadecimal (base-16, 0x53) literals, or binary (base-2,
0001010011) literals. In EL expressions, only base-10 literals are permitted.
There is no equivalent for literals in the other bases. Also, while underscores are
permitted within numeric literals (1_491_188, 0b0101_0011) in Java to make it
easier to distinguish groups of numbers in a literal (as a replacement for commas,
for example), this is not permitted in EL expressions. Number literals must be
contiguous.

Three other primitive literals to consider are chars, bytes, and shorts. You do not normally
need to use these data types in EL expressions, but it is possible that some method you might call
in an EL expression could expect a char, byte, or short as an argument. EL does not contain
specific literals for these types but will coerce other literals into chars, bytes, and shorts when
necessary.

For chars, a null, ' string literal, or " string literal will be coerced into the null byte character
(0x00). A single-character string literal (single or double quote) will be coerced into its equivalent
char. An integer-type number will also be coerced into a char as long as its value is between 0 and
65,535. Any other type, any multicharacter string, or any number outside the range of 0 and 65,535
will result in an error.

Any integer-type number will also be coerced into a byte or short when necessary, as long as the
number does not extend beyond the range of the byte or short it is being coerced to. Otherwise,
the attempted coercion will result in an error.

The final literal type is not a primitive but rather a literal for creating various collections. Collection
literals construction is a feature proposed as an improvement to the Java Collections API in Java 8

that did not make the final feature cut and instead was deferred to Java 9 (for now). It did make it into
Expression Language 3.0, however. You can create a collection within an EL expression whenever
needed. The syntax is rather intuitive, is quite similar to syntaxes in JavaScript and other languages,
and is in line with the proposed syntax for Java 9. You can construct Sets, Lists, and Maps with EL
collection literals, and they will all be constructed as instances of the default implementations. A literal
Set will become a HashSet<Objects, a literal List will become an ArrayList<Objects, and a literal
Map will become a HashMap<Object, Objects. Consider first the set literal:

{1, 2, 'three', 4.00, x}

This constructs a HashSet<Object> with five elements of varying types. The fifth object, x, could be
anything. Commas separate elements in the literal set. You might need to create a set, for example,
to pass in as an argument to a method call:

${someObject.someMethod ({1, 2, 'three', 4.00, x})}

154 | CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

Constructing a List is nearly identical to constructing a Set except that it uses brackets instead of
braces, and it works exactly the same as arrays in JavaScript/JSON:

[1, 2, 'three', [x, y], {'foo', 'bar'}]

Notice that the fourth element of this ArrayList<Objects is another List, and the fifth element is
a Set. You can nest collection literals in this manner to insert collection objects into other collection
objects. As with sets, elements in Lists are separated with commas.

The final collection literal, which creates a HashMap<Object, Objects, is identical to the object
literal syntax in JavaScript and JSON:

{'one': 1, 2: 'two', 'key': x, 'list': [1, 2, 3]}

Elements here, too, are separated with commas. However, Maps are more complicated because

they require keys mapped to values instead of just values. So each element in this literal is a pair of
objects separated by a colon, with the object on the left of the colon being the key and the object on
the right of the colon being the value. The 1ist key in this literal is mapped to a List object with
values 1, 2, and 3.

Object Properties and Methods

EL provides a simplified syntax for accessing properties in JavaBeans in addition to the standard
syntax you are used to for accessing public accessor methods. You cannot access public fields from
EL expressions. Consider a class named shirt with a public field named size. Assuming a variable
name of shirt, you might think that you could access size with the following EL expression:

${shirt.size}

However, this is not allowed. When the EL engine sees this syntax, it is looking for a property

on shirt, not a field. But what is a property? Consider an altered shirt where size is a properly
encapsulated private field with standard JavaBean accessor and mutator methods getsize and
setSize. Now the expression shirt.size becomes a shortcut for calling shirt.getSize ().

This can work for any field of any type. As long as it has a standard JavaBean accessor method,

it can be accessed in this way. If shirt had a field named stylecategory with an accessor
getStyleCategory, it could be accessed with shirt. styleCategory. For boolean fields (and Only
boolean fields) the accessor can start with either get or is. So for a field named expired with
either a getExpired or isExpired accessor, you could access the field with shirt.expired.

This is not the only technique that you can use to access properties within a JavaBean. In the spirit

of the ECMAScript and XPath languages, you can also access properties using the [] operator.

The following expressions also access the size, styleCategory, and expired properties using the

getSize, getStyleCategory, and getExpired or isExpired methods, respectively.
${shirt["size"]}

${shirt ["styleCategory"]}
${shirt ["expired"]}

In earlier versions of EL, you could access only JavaBeans properties. You could not call methods on
objects. However, EL 2.1 added the ability to call object methods in JSPs. So, you could get the size
of a shirt with ${shirt.getSize ()} instead of ${shirt.size}, but why would you? The latter

Writing with the EL Syntax | 155

is certainly easier. Method invocation mostly comes in handy when a value-returning method also
requires some input.

Suppose you had an immutable class ComplexNumber that represents mathematical complex
numbers (combination of a real number and an imaginary number in the form a + bi). That class
would undoubtedly have a plus method that enables you to add some other number to it. (Possibly
that method is overloaded so that you could add an integer, a double, or another ComplexNumber.)
You can call the plus method and pass in an argument, and the resulting ComplexNumber would be
the value of the expression:

${complex.plus(12) }

In this example, the tostring method is implicitly called on the resulting complexNumber

so that the string representation of the ComplexNumber is rendered. However, suppose you

wanted the i in the string representation to be properly italicized so that it looks like a proper
mathematical representation of a complex number. You might have a toHtmlString method on the
ComplexNumber class to achieve this. You can thus render it like so:

${complex.plus(12) .toHtmlString() }

These are chained method calls identical to the way you would perform this operation in standard
Java code.

EL Functions

In EL, a function is a special tool mapped to a static method on a class. Like schema-compliant
XML tags, functions are mapped to a namespace. The overall syntax of a function call is as follows,
where [ns] is the namespace, [fn] is the function name, and [a1] through [an] are arguments:

${[nsl:[fn] ([all, a2[, a3[, ...1111)}

Functions are defined within Tag Library Descriptors (TLDs), which may sound strange because
functions are not tags. This is a carryover from the earliest days of EL when it was part of the Java
Standard Tag Library (JSTL) specification and EL could be used only within JSP tag attributes.
Because the TLD concept already supported the idea of namespaces, it made sense for EL function
definitions to remain within TLDs.

You learn more about TLDs and defining tags and functions in Chapter 8. However, there is already
a set of functions defined in the JSTL that meet many of the needs developers have within JSPs
today. All the functions deal with strings in some way — trimming, searching, joining, splitting,
escaping, and more. By convention, the JSTL function library has a namespace of £n; however, you
may make it whatever you like in the taglib directive. You experiment with using EL functions in
the next section, but here are some of the more common JSTL EL functions and what they do.

> ¢{fn:contains(String, String)} — This function tests whether the first string contains
one or more instances of the second string and returns true if it does.

> ¢{fn:escapexml (String) } — If a string you are outputting could contain special
characters, you can use this function to escape those special characters. < becomes &1t ;, >
becomes > ;, & becomes samp;, and " becomes " ;. This is an especially important
tool in the prevention of cross-site scripting (XSS) attacks.

156

| CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

> ¢${fn:join(String[], String)} — This function joins an array of strings together using
the specified string as a delimiter. For example, this could be useful for comma-separating
an array of e-mail addresses together into one string for display on the page.

> ¢${fn:length(Object)} — If the argument is a string, this function invokes and returns
the result of calling the 1ength method on the specified string. If it is a Collection, Map, or
array, it returns the size of that collection, Map, or array. No other types are supported.
This is perhaps the most useful function in the JSTL.

» ¢${fn:toLowerCase (String) } and ${fn:toUpperCase (String) } — You can use these
functions to change the case of a string to all lowercase or all uppercase.

> ¢${fn:trim(String)} — This function trims all white space from both ends of the specified
string.

There are still more functions available in the JSTL, and you can read about the rest of them by
clicking. This is the documentation for JSTL 1.1 in Java EE 5. Unfortunately, there is no readily
available HTML documentation for JSTL 1.2 in Java EE 6 and 7.

Static Field and Method Access

New in Expression Language 3.0, you can now access the public static fields and public static
methods within any class on your JSP’s class path. You could argue (and some have) that this puts
too much power in the hands of JSP authors and enables them to do practically anything they could
normally do with a scriptlet. It’s up to you to decide whether that is a good thing or a bad thing, but
the feature exists and cannot be disabled in EL 3.0.

You access static fields and methods the same way you would in Java — using the fully-qualified
class name and field or method name separated with the dot operator. For example, you can access
the MAX_VALUE constant on the Integer class with the following expression:

${java.lang.Integer.MAX VALUE}

The class name must be fully qualified unless the class is imported using the JSP page directive.
Remember that in JSPs, like Java, all classes in java.lang are implicitly imported for you. Because
of this, the previous expression could be written like this instead:

${Integer.MAX VALUE}

With this you can access static fields or methods on any class your JSP has access to. It’s important
to note that you can only read the value of these fields. You cannot write to them. (Of course, if a
field is also final, you couldn’t normally write to it anyway.) Calling a static method on a class is just
as easy. Suppose you wanted to reverse the order of the bits in a number and see how the value of
the number changed:

${java.lang.Integer.reverse (42) }
${Integer.reverse(24)}

This expression calls the static reverse method on the Integer class and passes the number 42
as its argument. In addition to calling named static methods, you can also invoke a constructor
on a class, which returns an instance of that class that you can further access properties of, invoke
methods on, or simply coerce to a string for output.

Writing with the EL Syntax | 157

${com.wrox.User () }
${com.wrox.User ('First', 'Last').firstName}

Although the static method access can entirely replace the behavior of EL functions and function
libraries, that doesn’t mean that function libraries are unnecessary. The previous static method call
to Integer.reverse might be convenient, but with a theoretical int function library mapped to the
static methods of Integer, the following expression is still more convenient:

${int:reverse (42) }

That may not seem much shorter, but imagine a much longer class name, and you should quickly
see why function libraries are still of great use. One of the areas in which static field access could be
most handy is with enums, which you learn about next.

Enums

Chances are you’ve been exposed to Java enums at some point, and if you’ve been using Java for a
while, you are probably familiar with how useful and powerful they can be. Traditionally, enums
in EL have been coerced to and from strings when necessary. For example, say your JSP had an
in-scope variable named dayofweek and it represented one of the values from the java.time
.DayOfWeek enum in the new Java 8 Date and Time API. You could test whether dayofweek is
Saturday with the following boolean expression:

${dayOfwWeek == 'SATURDAY'}

The dayofweek variable here is converted to a string and compared to “SATURDAY.” This is
unlike Java, where this conversion would never happen automatically. Although this is handy, it is
certainly not type-safe. If you misspell Saturday (or if Saturday ever ceases being a day of the week)
your IDE would probably not catch it, and if you compile JSPs during a continuous integration
build to check for JSP compile-time errors, that would not catch it either. However, as of EL 3.0 you
can use the static field access syntax to achieve type-safe enum constant reference. After all, enum
constants are just public static final fields of their enum types:

${dayOfWeek == java.time.DayOfWeek.SATURDAY}

And, if you import DayOfWeek into your JSP, the expression is nearly as simple as the string-as-enum
expression (and more like what you’d see in Java code):

${dayOfWeek == DayOfWeek.SATURDAY}

These last two techniques are type-safe and will be validated by your IDE and at compile time.
Whichever you use is up to you, but we recommend a type-safe way.

Lambda Expressions

Expression Language 3.0 counts lambda expressions among its many new features. A lambda
expression is an anonymous function that, typically, is passed as an argument to a higher-order
function (such as a Java method). In the most general sense, lambda expressions are a list of
parameter names (or some placeholder if the function has no parameters), followed by some type
of operator, and finally the function body. In some languages supporting lambda expressions, this

158

| CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

order is reversed or otherwise different. Lambda expression syntax in EL is nearly identical to that
of Java 8 lambda expressions. The primary difference between the two is that in Java the body of a
lambda expression can contain anything that’s legal in a Java method, whereas in EL the body

of a lambda expression is another EL expression.

Just like with Java lambda expressions, EL lambda expressions use the arrow operator -> to
separate the expression parameters on the left side from the expression in the right side. Also, again
as with Java lambda expressions, the parentheses around the expression parameter are optional if
there is exactly one parameter. The following expressions are valid EL lambda expressions:

a->a+ 5
(a, b) ->a +Db

Of course, by themselves these lambda expressions are not complete EL expressions. Something
must be done with the lambda expressions. They could be evaluated immediately:

${(a -> a + 5)(4)}
${((a, D) ->a + b)(4, 7)}

In the preceding EL expressions, the lambda expressions are declared and evaluated immediately.
The resulting outputs of the two EL expressions are 9 and 11, respectively. Note that the lambda
expression itself is surrounded by parentheses. This disambiguates the lambda expression from
everything around it and enables you to execute it immediately. You could also define an EL lambda
expression for use at a later time:

${v.=(a, b) ->a + b; v(3, 15)}
The output of the second expression in this case is 18 because it executes the lambda expression

defined before the semicolon. The lambda expression v can now be used in any other EL expression
that follows this expression on the page. This is especially useful if the lambda is very complex.

Finally, you could also pass an EL lambda expression as an argument to a method called within an
EL expression.

${users.stream() .filter(u -> u.lastName == 'Williams' ||
u.lastName == 'Sanders ').toArray()}
Collections

Collections can be easily accessed in EL using the dot . and bracket [1 operators. How you use the
operators depends on what type of collection it is. Remember that in the Java Collections API, all
collections are either collections or Maps. Within the hierarchy of Maps, you simply have many
different types of maps, all of which share a common foundation: Some key is associated with
some value. The collection hierarchy is a little more complicated. Within it you have sets, Lists,
and Queues. Because each type of collection has a different way in which you access its values, EL
supports each one slightly differently.

Accessing values in a Map is quite simple and mimics the accessing of properties on JavaBeans.
Suppose you have a Map named map with a key username mapped to the value “Jonathon” and a
key user1d mapped to the value “27.” You could access these two properties of the map using the
bracket operators, as in the following example:

${map ["username"] }
${map ["userIid"]}

Writing with the EL Syntax | 159

However, this is not the only technique you can use to access the Map values. You could also treat
the keys like bean properties and access their values using the dot operator:

${map.username}
${map.userid}

Although the second technique certainly involves fewer characters (always three fewer, to be exact),
some people find the first technique more natural and more like how you would access Map values in
languages that support operator overloading. You should use whichever you are more comfortable
with. However, you should also note some restrictions on using the dot operator for accessing Map
values. Simply put, if a key couldn’t be an identifier in Java, you must use brackets instead of the dot
operator to access the value mapped to that key. This means that your key can’t contain spaces, periods,
or hyphens, can’t start with a number, and can’t contain most special characters. (Although, there

are a few surprising special characters that Java supports in identifiers, such as the dollar sign ($) and
accented characters such as 4, é, ¢, 1, 0, U, i, and so on.) If it contains any characters that aren’t valid in
Java identifiers, you must use brackets. If you’re not sure, err on the side of caution and use brackets.

Accessing Lists is equally simple; however, it may surprise you just how forgiving it is. Consider a
List (cleverly named 1ist) with values “blue,” “red,” and “green,” in order from 0 to 2. You would
access the values using the bracket operator just as if the List were actually an array. The following
code demonstrates this.

${1list[0]}

${1list[1]}
${1ist[2]}

You cannot treat the List indexes as properties and access them with the dot operator. This results
in syntax errors:

o

${1ist.0} <%-- The EL interpreter will complain about a syntax error --%>

However, EL does permit you to use string literals instead of numbers to index the List, just as if it
were a Map with the List indexes serving as the keys:

${list["0"]}

${list['1']}

${list[2]}

The only rule when using string literals is that the strings must be convertible to integers; otherwise,
your code results in runtime errors. Although this is certainly flexible, there is no reason to use
string literals as List indexes, and doing so can result in other developers’ confusing your List
(probably not named 1ist) for a Map. We recommend using numeric literals instead.

The values of the other two types of collections, Sets and Queues, cannot be accessed using EL. These
collections do not provide a means of directly accessing a value, such as an index with a List or a key
with a Map. There are no “get” methods on sets and Queues. You can access the values in these types
of collections only by using iteration — something you explore in the next chapter. However, as with
all types of collections, you can test whether sets and Queues are empty using the empty operator:

${empty set}
${empty queue}

160 | CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

You can do more things with collections using EL collection streams, and you explore that more in
the collection streams section later in this chapter.

USING SCOPED VARIABLES IN EL EXPRESSIONS

Expression Language’s sense of scoped variables and how variables are resolved makes it especially
useful and powerful. Recall from Chapter 4 that JSPs have a set of implicit variables (request,
response, session, out, application, config, pageContext, page, and exception) that you
can use to obtain information from the request, session, and execution environment and affect the
response. EL has a similar set of implicit variables; however, it also has an idea of implicit scope in
which unknown variables are resolved. This enables you to obtain information from a variety of
sources with minimal code. You explore these topics in this section.

For this section you use the User-Profile project available for download on the wrox . com code site.
If you create it from scratch, be sure to create your web.xm1 file using the <jsp-configs> from
Chapter 4 and the <session-configs from Chapter 5, and create an index.jsp with the lone tag
<c:redirect url="/profile" />.

The /WEB-INF/jsp/base. spf file, which you have used in previous chapters, has changed slightly.
Instead of just declaring the c tag library, it now also declares the £n function library, which you use
in this section:

o

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

A NOTE ABOUT SCOPES

There are four different attribute scopes mentioned in this section (page, request,
session, and application), but you may not understand the difference between them
or what exactly they are. Each of these scopes has a progressively larger and longer
scope than the previous one. You should already be familiar with the request scope:
It begins when the server receives the request and ends when the server completes
sending the response back to the client. The request scope exists anywhere that has
access to the request object, and the attributes bound to the request are no longer
bound after the request completes.

In Chapter 5 you learned about sessions and session attributes, so by now you may
have figured out that the session scope persists between requests, and that any code
with access to the HttpSession object can access the session scope. When the ses-

sion has been invalidated, its attributes are unbound and the scope ends.

The page and application scopes are somewhat different. The page scope encapsu-
lates attributes for a particular page (JSP) and request. When a variable is bound to
the page scope, it is available only to that JSP page and only during the life of the

Using Scoped Variables in EL Expressions | 161

request. Other JSPs and Servlets cannot access the page scope-bound variable, and
when the request completes, the variable is unbound. With access to the Jspcontext
or PageContext object, you can store and retrieve attributes that exist within the
page scope using the setAttribute and getAttribute methods. The application
scope is the broadest scope, existing across all requests, sessions, JSP pages, and
Servlets. The servletContext object you learned about in Chapter 3 represents the
application scope, and attributes that are stored in it live in the application scope.

Using the Implicit EL Scope

The EL defines 11 implicit variables in the scope of EL expressions, and you will learn about them all
later in this section. However, the implicit scope is more useful and more commonly used because of
its capability to resolve an attribute in the request, session, page, or application scope. When an EL
expression references a variable, the EL evaluator resolves the variable using the following procedure:

1.
2.

It checks if the variable is one of the 11 implicit variables.

If the variable is not one of the 11 implicit variables, the EL evaluator next looks for an
attribute in the page scope (PageContext .getAttribute ("variable")) that has the same
name (case-sensitive) as the variable. If it finds a matching page scope attribute, it uses the
attribute value as the variable’s value.

Finding no matching page attribute, the evaluator next looks for a request attribute
(HttpServletRequest.getAttribute ("variable")) with the same name as the variable
and uses the attribute if it is found.

The evaluator looks for a session attribute (HttpSession.getAttribute ("variable"))
and uses it if found.

The evaluator looks for an application attribute (ServlietContext
.getAttribute ("variable")) and uses it if found.

After the evaluator looks in all these places, if it finds no implicit variable or attribute
matching the variable name, it raises an error.

The beauty of this feature is you do not need to retrieve an instance of the HttpServletRequest or
HttpSession to use attributes on either of those objects. This is demonstrated in the
ProfileServlet and profile.jsp file in the User-Profile project. Start by looking at the com.
wrox .User class, which has several private fields with matching accessor and mutator methods:

public class User

{

private long userId;

private String username;

private String firstName;

private String lastName;

private Map<String, Boolean> permissions = new Hashtable<s>();

162 | CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

// mutators and accessors

This is a simple POJO that you can use to hold information about your “user.” You need to view
this information somehow, so next create a very simple ProfileServlet:

@WebServlet (
name = "profileServlet",
urlPatterns = "/profile"

)
public class ProfileServlet extends HttpServlet
{
@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{

User user = new User();
user.setUserId(19384L) ;
user.setUsername ("Coder314") ;
user.setFirstName ("John") ;
user.setLastName ("Smith") ;

Hashtable<String, Booleans> permissions = new Hashtable<>();
permissions.put ("user", true);

permissions.put ("moderator", true);

permissions.put ("admin", false);

user.setPermissions (permissions) ;

request.setAttribute ("user", user);
request.getRequestDispatcher ("/WEB-INF/jsp/view/profile.jsp")
.forward (request, response);

So far, you haven’t seen anything new. The Servlet creates a new User instance, sets some values on
it, adds some permissions to it, creates a request attribute to hold the user object, and then forwards
the request on to the view. The important code is contained in the /WEB-INF/jsp/view/profile
.jsp file, which displays the user profile information in the browser:

<%--@elvariable id="user" type="com.wrox.User"--%>
< !DOCTYPE html>
<html>
<head>
<title>User Profile</title>
</head>
<body>
User ID: ${user.userId}

Username: ${user.username} (${user.username.length()} characters)

Full Name: ${fn:escapeXml(user.lastName) += ', !
+= fn:escapeXml(user.firstName)}

Permissions (${fn:length(user.permissions)})

Using Scoped Variables in EL Expressions | 163

User: ${user.permissions|["user"]}

Moderator: ${user.permissions["moderator"]}

Administrator: ${user.permissions["admin"]}

</body>
</html>

There is a lot of interesting stuff in this JSP, and you will dissect it in a minute. For now, compile
and fire up your debugger; then navigate to http://localhost:8080/user-profile/profile in
your browser. You should see the page from the screen shot in Figure 6-1.

hitp://localhost:a0807user-profile/profite. O ~ B & || [&] user Profile | 0 2.8 553

File Edit View Favorites Tools Help
User ID: 19384

Username: Coder314 (8 characters)
Full Name: Smith, John

Permissions (3)
User: true
Moderator: true
Administrator: false

H100% v

L

FIGURE 6-1

Now take a look at this JSP line by line to get a better understanding of how it works. First there’s
the new, weird JSP comment at the top of the file:

o

<%--@elvariable id="user" type="com.wrox.User"--%>

This comment tag is not really needed, and in fact if you remove it, recompile, and rerun your
application, it still works. (Go ahead; try it!) So what does it do? The special @elvariable comment
is a convention that developers use to type-hint for their IDE. This comment tells the IDE “Yes,

a user variable exists in the implicit scope on this page, and its type is com.wrox.User.” The
advantage this gains you is that because the IDE knows the variable exists and what its type is, it
can now provide auto-completion and intelligent suggestions that it could not otherwise provide. It
can also validate that your EL expression is correct.

164 | CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

Even if you do not use an IDE or use one that does not support this convention, other developers
maintaining your JSPs at a later date can quickly know what the EL variable type is. Your JSP-
writing time will be much easier spent if you get in the habit of using @elvariable comments.

Next, you should notice the User ID line:

User ID: ${user.userId}

Here, the user attribute that you added to the request in the Servlet code has been accessed as an
EL variable using the implicit scope in the JSP page, and you have used the bean property userzd
instead of calling the accessor method directly. The line directly below it does the same with the
username but also calls the length method on the username string.

Username: ${user.username} (${user.username.length()} characters)

Note that instead of calling the length method directly you could have used the fn:length
function, but that is used later in the code for a collection, and this serves as a good example of the
alternative. Next, your JSP escapes the last and first name and concatenates them with a comma:

Full Name: ${fn:escapeXml (user.lastName) += ',
+= fn:escapeXml (user.firstName) }

Note the use of the £n:escapexml function to escape HTML characters that might be in the name
and the += string concatenation operator to combine all the strings. The final part of your JSP prints
out the user’s permissions:

Permissions (${fn:length(user.permissions)})

User: ${user.permissions["user"]}

Moderator: ${user.permissions["moderator"]}

Administrator: ${user.permissions["admin"]}

The £n:length function outputs the number of elements in the user’s permissions collection, and
the other three lines are all using the bracket operators to access values in the permissions Map.

As an exercise, edit your ProfileServlet and change the request.setAttribute ("user", user)
line to put the user on the session instead of the request:

request.getSession() .setAttribute ("user", user);

Now compile and rerun your application. You don’t need to make any changes to the JSP. The user
attribute may be in a different scope (session instead of request) but is still in the implicit scope so
that you can access it from EL expressions as an EL variable. When it was bound to the request,

the user attribute existed until the request was complete, and then it was made eligible for garbage
collection. Now that it is bound to the session, it is available to other requests from the same client,
even if they go to different pages. However, this is not the only scope you could bind the user
attribute to. Replace request .getSession () with this.getServletContext () and bind it to the
application context:

this.getServletContext () .setAttribute ("user", user);
Now compile and rerun again without making any changes to the JSP. Again the user attribute was

still in the implicit scope and accessible from your EL expression. You can access anything in the
four supported scopes in this manner, which greatly simplifies your task of writing JSPs.

Using Scoped Variables in EL Expressions | 165

Using the Implicit EL Variables

As mentioned earlier in this section, there are 11 implicit EL variables available for use within EL
expressions. With one exception, they are all Map objects. Most are used to access attributes from
some scope, request parameters, or headers.

>

pageContext is an instance of the PageContext class and is the only implicit EL variable
that is not a Map. You should be familiar with Pagecontext from Chapter 4 and earlier in
this section. Using this variable you can access the page error data and exception object (if
applicable), the expression evaluator, the output writer, the JSP Servlet instance, the request
and response, the ServletContext, the ServletConfig, and the session.

pageScope is a Map<String, Objects containing all the attributes bound to the
PageContext (page scope).

requestScope is a Map<String, Objects of all the attributes bound to the
ServletRequest. Using this, you can access these attributes without calling a method on
the request object.

sessionScope is also a Map<String, Objects, and it contains all the session attributes
from the current session.

applicationScope is the last of the scopes, a Map<String, Objects containing all the
attributes bound to the ServletContext instance.

param and paramValues are similar in that they both provided access to the request
parameters. The param variable is a Map<String, Strings and contains only the first value
from any parameter with multiple values (similar to getParameter from ServletRequest),
whereas the Map<String, Stringl]> paramValues contains all the values of every
parameter (getParametervalues from ServletRequest). param is easier to use if you
know a request parameter has only one value.

header and headerValues provide access to the request headers, with

Map<String, String> header containing only the first value of any multivalue headers and
Map<String, Stringl[]> headerValues containing all values for every header. Like param,
header is easier to use if you know a header has only one value.

initParamis a Map<String, Strings containing all the context init parameters from the
ServletContext instance for this application.

cookieis a Map<String, javax.servlet.http.Cookies containing all the cookies that
the user’s browser sent along with the request. The keys in this map are the cookie names.
It should be noted that it is possible to have two cookies with the same name (but different
paths), and in that case this Map will contain only the first cookie with a given name in the
order it existed in the request. This order might vary from one request to the next. There
is no way in EL to access any of the other duplicate cookies with the same name without
iterating over all the cookies. (Iteration with EL is something you learn how to do in the
next chapter.)

166 | CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

To demonstrate the various EL implicit variables and how they can be used, create a file named
info.jsp in the web root of your project and put the following code in it:

oe

<

application.setAttribute ("appAttribute", "foo");
pageContext.setAttribute ("pageAttribute", "bar");
session.setAttribute ("sessionAttribute", "sand");
request.setAttribute ("requestAttribute", "castle");

%>
<!DOCTYPE html>
<html>
<head>
<titlesInformation</title>
</head>
<body>
Remote Address: ${pageContext.request.remoteAddr}

Request URL: ${pageContext.request.requestURL}

Session ID: ${pageContext.request.session.id}

Application Scope: ${applicationScope["appAttribute"]}

Page Scope: ${pageScope["pageAttribute"]}

Session Scope: ${sessionScope["sessionAttribute"]}

Request Scope: ${requestScope["requestAttribute"]}

User Parameter: ${param["user"]}

Color Multi-Param: ${fn:join(paramValues["colors"], ', ')}

Accept Header: ${header["Accept“]}

Session ID Cookie Value: ${cookie["JSESSIONID"].value}

</body>
</html>

The first four lines of the JSP set attributes within the various scopes, for the purposes of
demonstration. The lines within the HTML body print out varying information about the

request, attributes on the different scopes, parameters in the URL, headers, and cookies.

Compile and debug your application; then go to http://localhost:8080/user-profile/
info.jsp?user:jack&colors:green&colors:redinyourbrowmer.Youshoukisaiagood(kalof
information printed out to the screen. If the Session ID Cookie Value line is empty, this means that
your session was just created and the browser did not send a cookie yet; refresh the page and a value
should appear here.

One last JSP demonstrates the priority of the various scopes when resolving variables in the implicit
EL scope. Create a file named scope. jsp in the web root, and put the following code in it.

oe

<
pageContext.setAttribute("a", "page");

request.setAttribute ("a", "request");
session.setAttribute ("a", "session");
application.setAttribute("a", "application");
request.setAttribute ("b", "request");
session.setAttribute ("b", "session");
application.setAttribute ("b", "application");

session.setAttribute("c", "session");

Accessing Collections with the Stream APl | 167

application.setAttribute("c", "application");

application.setAttribute("d", "application");
%>

<!DOCTYPE html>

<html>
<head>
<title>Scope Demonstration</titles>
</head>
<body>
a = ${a}

b = ${b}

c = ${c}

d = ${d}

</body>
</html>

The majority of this JSP is setup code, with only four EL expressions making up the demonstration.
The a attribute has conflicting values in all four scopes, b in three, and c in two. The d attribute is
present only in the application scope. The value displayed next to each name on the page will be the
name of the scope with the highest precedence among the scopes with conflicting values. Compile
and run your application and navigate to http://localhost:8080/user-profile/scope.jsp. The
output should look identical to what follows, indicating that the EL engine looks for implicitly scoped
variables first in the page scope and then in the request, session, and application scopes, in that order.

a = page
b = request
c = session
d = application

ACCESSING COLLECTIONS WITH THE STREAM API

One of the biggest additions to Expression Language 3.0 in Java EE 7 is support for the Collections
Stream API introduced in Java SE 8. Because the API is supported natively in EL 3.0, you do not
need to run your application in Java 8 to take advantage of this new EL feature. In this section, you
learn the basics of the Stream API and how to use it in your JSPs.

NOTE [n an early, prerelease version of Expression Language 3.0, the specifi-
cation included an implementation of Microsoft LINQ (Language Integrated
Query). This added collection-querying capabilities using the LINQ standard
query operators. The final specification was rewritten to remove the LINQ fea-
tures and replace them with an equivalent to the Stream API. This provides con-
sistency across the Java language and Expression Language specifications.

The basis of the Stream API is the no-argument stream method present on every Collection. This
method returns a java.util.stream.Stream that can filter and otherwise manipulate a copy of the
collection. The java.util.Arrays class also provides many static methods for retrieving streams
from various arrays. Using this Stream, you can perform many different operations. Some of these
operations return other Streams, allowing you to create a chained pipeline of operations. This

168 | CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

pipeline consists of a pipeline source (the stream), the intermediate operations (such as filtering
and sorting), and finally a terminal operation (such as converting the results to a List that can be
iterated and displayed).

In EL 3.0, you can call the stream method on any EL variable that is a Java array or a
Collection. The returned Streamisn’t actually a java.util.stream.Stream because EL 3.0
must work in Java 7, where streams do not exist yet. Instead, the returned Stream is an EL-specific
implementation of the Stream API. For example, the following EL expression filters a Collection
of books by title, reduces the properties available for each book to just the title and author, and
returns a List of the results:

books.stream() .filter (b->b.title == 'Professional Java for Web Applications')
.map (b->{ 'title':b.title, 'author':b.author })
.toList ()

Understanding Intermediate Operations

As mentioned earlier, intermediate operations filter, sort, reduce, transform, or otherwise alter a
collection of values so that the collection ends up in the desired state. It’s important to understand
that when performing intermediate operations on a Stream, the original Collection or array is
never altered. The operations affect only the contents of the stream. You’ll find many different
intermediate operations, and you learn about the most common and useful ones in this section.
You can learn about the rest of them by downloading and reading the JSR 341 specification

PDF from the specification download page.

Filtering the Stream

The filter operation is probably the operation you will use most often. It filters the contents of
the stream, typically reducing the number of objects contained therein. The filter operation
accepts a predicate argument — a lambda expression that returns a boolean and accepts a single
argument whose type is the element type of the stream. Given a List<E> where E is the element
type, stream returns a Stream<E>. Calling £ilter on this Stream<E>, you supply a Predicate<E>
with the signature E -> boolean. You then use properties of E to determine whether to include
that particular E in the resulting Stream<E>. To better understand this, consider the following
expression:

${books.stream() .filter (b -> b.author == "John F. Smith")}

The predicate in this case is the lambda expression that accepts a book as an argument and tests
whether the book’s author is John F. Smith. When passed to the filter operation, the predicate
applies to every book in the stream, and the resulting stream contains only those books for which
the predicate returns true.

You can also use the special distinct operation to filter out duplicate values. The following
expression removes the duplicate 3s and 5s from the List:

${[1, 2, 3, 3, 4, 5, 5, 5, 5, 6].stream().distinct()}

Accessing Collections with the Stream APl | 169

Manipulating Values

You can manipulate the values in a Stream using the forEach operation. Like filter, forEach
accepts a lambda expression that is evaluated for every element in the Stream. However, this
lambda expression is a consumer, meaning it has no return value. You can use this to manipulate
the values in the stream, likely to transform them in some way. Here is one potential use case:

${books.stream() .forEach(b -> b.setLastViewed (Instant.now())) }

Sorting the Stream

You sort the stream using the sorted operation. For a Stream<E>, the sorted operation accepts a
java.util.Comparator<Es>. As a Java developer, you are probably familiar with this interface,
which can be represented with the lambda expression (E, E) -> int. This lambda expression
or Comparator compares two elements in the Stream using an efficient sorting algorithm that is
unspecified and implementation-specific. The following expression sorts books by their title:

${books.stream() .sorted((bl, b2) -> bl.title.compareTo (b2.title))}

A variation of the sorted operation exists that does not accept any arguments. Instead, it assumes
that the elements in the Stream implement the java.lang.Comparable interface, meaning you can
naturally sort them. The following naturally orders the list of numbers from least to greatest. The
resulting list is -2, 0, 3, 5, 7, 8, 19.

${[8, 3, 19, 5, 7, -2, 0].stream().sorted()}.

Limiting the Stream Size

You can limit the number of elements in the Stream using the 1imit and substream operations.
Use 1imit to simply truncate the Stream after the specified number of elements. substream is more
useful for pagination because you can specify a start index (inclusive) and end index (exclusive).

${books.stream() .1limit (10) }
${books.stream() .substream(10, 20)}

Transforming the Stream

Using the map operation, you can transform the elements in the Stream to some other type of
element. The map operation accepts a mapper that expects one type of element and returns a
number. Given a Stream<S>, map expects a lambda expression whose sole argument is of type s.

If the lambda expression then returns a different type R, the resulting Stream is a Stream<R>. The
following takes a List<Books, retrieves a Stream<Book>, and transforms it into a Stream<String>
containing only the book titles:

${books.stream() .map(b -> b.title)}

Of course, you can return more complex types. You might have a different type, DisplayableBook,
with a limited set of properties. Or you could create an implicit List or Map, returning a
Stream<List<Object>> Or Stream<Map<Object, Object>>:

${books.stream() .map(b -> [b.title, b.author])}
${books.stream() .map (b -> {"title":b.title, "author":b.author})}

170

| CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

Using Terminal Operations

After you filter, sort, or otherwise transform your Stream, you need to perform some final operation
that converts the stream back into a useful value, Collection, or array. This type of operation is a
terminal operation. It is terminal because unlike intermediate operations, which all return streams
that can be further acted on, this operation does not return a Stream. It evaluates any intermediate
operations deferred for performance reasons and then converts the final result as desired. Ultimately,
you must always perform a terminal operation. A Stream is not very useful by itself; you need a final
value to act on.

Returning a Collection

You can use the toArray and toList operations to return a Java array or List of the final result
element type. For example, the following expressions return a String[] and List<String> of book
titles, respectively:

${books.stream() .map(b -> b.title).toArray()}
${books.stream() .map (b -> b.title).toList ()}

If you performed any sorted intermediate operations on the Stream, the resulting array or List
will be in the order indicated with those operations. You can also use the iterator operation to
return a suitable java.util.Iterator.

Using Aggregate Functions

You can aggregate the values in the Stream using the min, max, average, sum, and count operations.
The count operation can operate on any type of Stream, whereas the average and sum operations
require the final stream element types to be coercible to Numbers. count returns the number of
elements in the Stream as a long; average returns the average of all the stream elements as an
Optional<? extends Numbers>; and sum returns the sum of all the Stream elements as a Number.
An optional is a placeholder that can report whether the returned value was null and provide the
returned value when requested.

The min and max operations are both interesting. They both return optional<E> where E is the
element type of the resulting sStream. Without any arguments, these operations require that the
Stream elements implement Comparable. However, you can provide a Comparator argument to
these operations when wanted.

The following expressions represent some common use cases for these aggregating terminal
operations:

${books.stream() .map (b -> b.price()).min()}

${books.stream() .map (b -> b.price()).max()}

${books.stream() .filter (b -> b.author == "John F. Smith")
.map (b -> b.price()) .average() }

${books.stream() .filter(b -> b.author == "John F. Smith").count ()}
${cartItems.stream() .map(i -> i.price() * i.quantity()).sum()}

Accessing Collections with the Stream APl | 171

Returning the First Value

You can use the findFirst operation to return the first element in the resulting Stream. For a
Stream<Es> it returns an Optional<E> because the stream might be empty, meaning there is no first
element to return.

${books.stream() .filter (b -> b.author == "John F. Smith").findFirst ()}

Putting the Stream API to Use

For a simple exercise in the use of the Stream API, you add a JSP to the User-Profile project and
filter, map, and sort a List of Users. Start by adding a constructor to the User object (and also
adding a default constructor so that previous code won’t break).

public User() { }

public User(long userId, String username, String firstName, String lastName)
this.userId = userId;
this.username = username;
this.firstName = firstName;
this.lastName = lastName;

Now create a collections.jsp file in the web root of the project and put the following code in it:

°

<%@ page import="com.wrox.User" %>
<%@ page import="java.util.ArrayList" %>
<%

ArrayList<User> users = new ArrayList<>();

users.add (new User (19384L, "Coder314", "John", "Smith"));
users.add (new User (19383L, "geekl2", "Joe", "Smith"));
users.add (new User (19382L, "jackl23", "Jack", "Johnson"));
users.add (new User (19385L, "farmer-dude", "Adam", "Fisher"));

request.setAttribute ("users", users);
%>

<!DOCTYPE htmls>

<htmls>
<head>
<title>Collections and Streams</title>
</head>
<body>
${users.stream()
.filter(u -> fn:contains(u.username, '1'))
.sorted((ul, u2) -> (x = ul.lastName.compareTo(u2.lastName) ;
x == 0 ? ul.firstName.compareTo (u2.firstName) : X))
.map (u -> {'username':u.username, 'first':u.firstName,
'last':u.lastName})
.toList ()}
</body>

</html>

172

CHAPTER 6 USING THE EXPRESSION LANGUAGE IN JSPS

The setup code at the top of the file creates some users and adds them to the list. Then the EL
expression filters the list to users whose usernames contain the number 1; orders by the last name
and then first name; selects the username, first name, and last name from each matching user; and
then evaluates immediately to a List. Finally, the List is automatically coerced to a string for
display on the screen (using the List’s tostring method). Notice the use of the semicolon and
assignment (=) operators in the sorted lambda expression — this allows you to compare the last
names only once, assign the comparison to a variable (x), and then test the value of x, returning it
if the last names are different and comparing the first names if the last names are the same. The
body of the sorted lambda expression is surrounded by parentheses (in bold) because the lambda
operator (->) has a higher precedence than the assignment and semicolon operators.

You can test this out by compiling and running your application and going to
http://localhost:8080/user-profile/collections.jsp in your browser.

NOTE [n Chapter 4 you explored using Java code in JSPs and learned about
some of the many reasons using Java within JSPs is discouraged. The introduc-
tion of the Stream API to the Expression Language provides a lot of additional
power for the JSP author to manipulate collections sign