BEGINNING

Java SE 6

GAME PROGRAMMING,
THIRD EDITION

JONATHAN 5. HARBOUR

BEGINNING JAVA’
- SE 6 GAME
PROGRAMMING,
THIRD EDITION

JONATHAN S. HARBOUR

Course Technology PTR
A part of Cengage Learning

COURSE TECHNOLOGY

CENGAGE Learning"

Australia e Brazil Japan ¢ Korea ¢ Mexico ¢ Singapore e Spain ¢ United Kingdom e United States

-

COURSE TECHNOLOGY
CENGAGE Learning"

Beginning Java® SE 6
Game Programming, Third Edition
Jonathan S. Harbour

Publisher and General Manager,
Course Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Jordan Castellani
Senior Acquisitions Editor: Emi Smith
Project Editor: Jenny Davidson

Technical Reviewer: Dustin Clingman

Interior Layout Tech: MPS Limited, a Macmillan
Company

Cover Designer: Mike Tanamachi
Indexer: Larry Sweazy

Proofreader: Michael Beady

Printed in the United States of America

1234567121110

© 2012 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the
publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions
Further permissions questions can be emailed to
permissionrequest@cengage.com

Oracle and Java are registered trademarks of Oracle and/or its affiliates.
All other trademarks are the property of their respective owners.

All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2010942436
ISBN-13: 978-1-4354-5808-6

ISBN-10: 1-4354-5808-7

elSBN-10: 1-4354-5809-5

Course Technology, a part of Cengage Learning
20 Channel Center Street

Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

www.cengage.com/permissions

For Kaitlyn Faye

ACKNOWLEDGMENTS

Thank you to my wife, Jennifer, and kids—Jeremiah, Kayleigh, Kaitlyn, and
Kourtney—for keeping me on my toes and getting me out of the office from time to
time for a needed break! Special thanks to artists Ari Feldman (www.flyingyogi.com)
and Reiner Prokein (www.reinerstileset.de) for the 2D sprite artwork used in the
examples and final game (without their free collections of sprites, Galactic War
would have featured programmer art—yikes!). A big thank you to Emi Smith, Jenny
Davidson, and Dustin Clingman.

www.flyingyogi.com
www.reinerstileset.de

ABOUT THE AUTHOR

Jonathan S. Harbour has been programming video games since the 1980s. His
first video game system was an Atari 2600 that he disassembled on the floor of his
room at age 9. He has written on languages and subjects that include C++, C#,
Basic, Java, DirectX, Allegro, Lua, DarkBasic, XNA Game Studio, Pocket PC,
Nintendo GBA, and game console hacking. He is the author of Visual Basic Game
Programming for Teens, Third Edition; Visual C# Game Programming for Teens;
Beginning Game Programming, Third Edition; Multi-Threaded Game Engine
Design; and XNA Game Studio 4.0 for Xbox 360 Developers. Visit his blog and
forum at www.jharbour.com.

www.jharbour.com

CONTENTS

Introduction xiii
PART 1 JAVA FORBEGINNERS ¢ ittt ennnn 1
Chapter 1 Getting Started withJava 3

Javaandthe Web 3

Studying the Market 4
Design Rules 5
The Casual Games Market 6
No Manual Required 7
Casual Gamest e 8
Installing and ConfiguringJava 10
Installing Java 11
Configuring the Java Command-Line Compiler.............. 12
Java Version Numbers 15
Java SE 6 Development Kit 16
Java Development Environments 17
Your First Java Program 19
Java Application 19
Java Applet. . .. 21
Creating a NetBeans Project 27
Creating an Eclipse Project 29
JFrame-Powered Application 33

Vi

Chapter 2

Chapter 3

Contents

What You Have Learned, 37
Review QUEStIONS oot e e 40
ON YoUr OWN . ..o e e 40
Exercise 1 e e e 40
EXercise 2 e e e 40
Java Programming Essentials 41
Java Applets and Applications o ... 42
Web Server Technology Explained 42
Hosting Java Applets. 43
CompilingJavaCode........ 43
The Java Languaget 44
Java Data Types 45
The Essence of Classt 56
The main Function 58
Object-Oriented Programming. 59
What You Have Learned 67
Review QUEeSTIONS oo e e 67
ON YoUur OWN . ..o e 68
EXercise 1T i e 68
EXercise 2 e e e 68
Creating Your First JavaGame 69
About the Game Project 69
Creatingthe Game 72
Creating the Project 72
The BaseVectorShape Class 73
The Ship Classo e e e e 75
TheBullet Class. i i e 75
The Asteroid Classt 76
The Main Source Code File 77
What You Have Learned 92
Review QUESTIONS . . . o oo i e e e e e e e e e e e e e 93
ON YoUur OWN . ..o 93
EXercise T .. .o i e 93

EXErcise 2 . . .o e e 94

vii

viii Contents

PART I JAVA GAME PROGRAMMING 95
Chapter 4 Vector-Based Graphics. 97
Programming Vector Graphics 97

Working with Shapes 98

Working with Polygons 100

Rotating and Scaling Shapes 103

What You Have Learned 106

Review QUeStions. o it i e 107

ONYour OWN ... 107

Exercise 1 108

Exercise 2 108

Chapter 5 Bitmap-Based Graphics 109
Programming Bitmapped Graphics 109

Loading and Drawing Images 110

Applying Transforms to Images 112

Transparency e 115

Opaque Images.ot 115
TransparentImages. 118

Working Some Masking Magic 119

What You Have Learned 123

Review Questions. i e 123

ON YoUr OWN . ..o e e e e 124

Exercise 1 124

Exercise 2 124

Chapter 6 SimpleSprites. 125
Programming Simple Sprites. L 125

Basic Game Entities 127

The ImageEntity Class i 128

Creating a Reusable Sprite Class 131

Collision Testing it 132

Sprite Class Source Code i 132

Testing the Sprite Class 136

What You Have Learned 139

Review Questions. i e 139

ON YOUr OWN . ..o e e e e 140

Exercise 1 140

EXErcise 2 .. . oo e e e 140

Chapter 7

Chapter 8

Chapter 9

Contents

Sprite Animation. i 141
Sprite Animation 141
Animation Techniques. 142
Drawing Individual Frames 143
Keeping Track of Animation Frames 145
Testing Sprite Animation. 146
Encapsulating Sprite AnimationinaClass 151
Testing the New AnimatedSprite Class. 156
What You Have Learned 159
Review QUeStioNns.o . i e 159
ONn Your OWN . ..o e e 160
Exercise 1 160
EXErcise 2o 160
Keyboard and Mouse Input. 161
Listeningtothe User 161
Keyboard Input 162
Listening for Keyboard Events 162
Testing Keyboard Input 164
Mouse Input e 166
Reading Mouse Motion. 167
Detecting Mouse Buttons 167
Testing Mouse Input e 168
What You Have Learned 173
Review QUESTIONS o oottt e e e e e e e 173
ON YoUr OWN . ..o e e 174
Exercise 1T e 174
EXercise 2 . ..o 174
Sound Effectsand Music 175
Playing Digital Sample Files 175
Getting Started with JavaSound 177
Playing Sounds 184
Playing MIDI Sequence Files 186
Loadinga MIDIFile 187

Playing MuUSIC 187

X

Contents

Reusable Classes. 189

The SoundClip Classt 191

The MidiSequence Classc. ... 193

What You Have Learned, 196

Review Questions. i e 196

ON Your OWN ... oo e 197

Exercise 1 e 197

EXercise 2 197

Chapter 10 Timing and the Gameloop...................... 199
The Potency of aGame Loopo vt 199

ASIimple Loop 200

Overriding Some Default Behaviors 203

Feeling LoopY . . . o v i v e e 203
SteppingUptoThreads 204

Starting and Stopping the Thread 204

The ThreadedLoop Program 205

Examining Multithreading 209

What You Have Learned 209

Review QUESTIONS o oot e e e e e 209

ON YoUr OWN . ..o e 210

Exercise 1T 210

EXercise 2o 210

PART Il THE GALACTICWARPROJECT iinnnnnn 211
Chapter 11 Galactic War: From Vectors to Bitmaps 213
Improving the Game 213

Generalizing the Vector Classes 214

The Main Source Code File: GalacticWarjava.............. 217

What You Have Learned 223

Review QUESTIONS o oottt e e e e e e e e 223

ON Your OWN . ..o e 223

Chapter 12 Galactic War: Sprites and Collision Boxes. 225
Creating the Project 225

The Galactic War Bitmaps 226

The New and Improved Source Code 228

What You Have Learned 243

Review QUESEIONS oottt e 243

ON YOoUr OWN et e e e e e e e e e e e e e e e e 244

Chapter 13

Chapter 14

Chapter 15

Contents
Galactic War: Squashed by Space Rocks. 245
Being Civilized about Collisions 245
What You Have Learned 251
Review QUESTIONS . . . o oot e e e e e e e e e e e e 252
ON YoUur OWN . ..o e 252
Galactic War: Entity Management 253
Adjusting to Event-Driven Programming.................... 254
Exploring the Class Library 254
Building the New Game Class 256
Enhancing GalacticWar 268
Exploring the New Galactic War Source Code 268
What You Have Learned 293
Review QUESTIONS oottt e e e e e e e 293
ON YoUr OWN .o e e 294
Galactic War: Finishingthe Game 295
Let's Talk about Power-Ups 295
Ship and Bonus-Point Power-Ups 296
Weapon Upgrades 297
Enhancing GalacticWar 301
New Sprite Typest 301
New Game States 302
New Sprite Images 302
Health/Shield Meters, Score, Firepower, and Game
State Variables 304
New Input Keys i 304
Sound and Music Objects 304
Loading Media Files 305
Game State Issue—Resetting the Game 308
Detecting the Game-Over State 309
Screen Refresh Updates. 310
Preparingto End. 312
Updating New Sprites i 313
Grabbing Power-Ups 315
New Input Keys 318
Spawning Power-Ups 320
Making the Shield Work 323
Making Use of Weapon Upgrade Power-Ups 324

Tallyingthe Score 327

Xi

Xii

Contents

Chapter 16

What You Have Learned 328
Review QUEeStiONSo e 328
ON YoUr OWN . ..o e e e 329
Galactic War: Web Deployment 331
Packaging an Applet in a Java Archive JAR) 331

Using the jar.exe Program 332

Packaging Galactic War in a Java Archive 334
Creating an HTML Host File for Your Applet 338

A Simple HTML File 338

Testing the Deployed Applet Game 339
What You Have Learned i, 340
Review QUESEIONS oottt e 342
Epilogue 342
Chapter Quiz Answersccuiiiiinnnnnns 345

INTRODUCTION

This book will teach you how to create games with the awesome Java language.
Previous editions emphasized the casual game market with chapter projects
designed to run in AppletViewer or in a web browser. While still relevant, the
code in this new edition is a bit simpler, using a JFrame more often instead of an
applet, so that examples can be run as a Java application. Some chapters still
feature applet projects, while many others are now JFrame-based applications.
The final Galactic War project in Part I11 is still an applet, since a focus of the book
is an emphasis on the casual game market. Game programming is a challenging
subject, and it can be difficult to figure out how to get started. This book takes
away some of the mystery of game programming by explaining how to create a
game in Java. [assume that you have a little Java programming experience, but if
you have never used Java before you should be able to keep up. Chapter 2 provides
a quick summary of the language.

This book takes the approach that we can have fun while learning how to program
games. Typing in long source code listings out of a book is not fun, so I don’t ask
you to do that very much. Instead, you will learn to write short programs that
demonstrate the major topics, and over time you will get the hang of it. There is
no memorization required here, as I'm a firm believer that repetition and practice
is the best way to learn, not theory and memorization.

Xiii

Xiv

Introduction

Definition

Java is a programming language, invented by Sun Microsystems, now owned by Oracle, and
largely maintained as a loosely constrained community project. The primary design goal of Java
was to build runtime binary files that will run on any computer system in the world without being
recompiled. This “compile one, run many” philosophy works! The Java compiler creates a
bytecode binary file containing virtual machine instructions that the JRE (Java Runtime Envir-
onment) can execute on any computer system on which it is installed.

You will learn how to write a simple Java program in the first chapter. From there,
you will learn the details of how to write games that will run in a web browser or as
an application. We cover source code at a pace that will not leave you behind. By
the end of this book, you will have learned to create a complete game called
Galactic War, and will be able to deploy it to your website in a Java Archive (JAR)
file. I'm not talking about some half-baked simulation posing as a game. I'm
talking about a high-quality game, suitable for publishing in the casual game
market. There are thousands of casual gamers who are paying to download games
of this type from the many casual game sites on the web today—such as Real
Arcade (now www.GameHouse.com). By learning how to create a casual game,
you may even be preparing for a career in the game industry, developing games
for Microsoft Xbox Live Arcade and other commercial endeavors.

Definition

Web-based games are video games that are installed on a website and run in a web browser, so
that the end-users do not need to install the game. Some games are able to store high-score lists
and player data on the web server. The most popular type of web game is a “Casual Game” such
as Farmville on Facebook.

While we’re on the subject of casual games, you can even program your own Xbox
360 games, distributed on Xbox Live Arcade, using Microsoft’s free XNA Game
Studio Express software. Although this subject is beyond the scope of this book, I
bring it up because Microsoft’s C# language is unabashedly similar to Java. I have
another book on this subject titled XNA Game Studio 4.0 for Xbox 360 Developers
that you might want to check out.

It all begins here! Are you serious about this subject and willing to learn? As a
course developer and instructor of game development, I am scrutinized daily by
students who eat, drink, and breathe video games. I cannot create something that
stinks or I'll never hear the end of it! So I am as motivated to teach you cutting-
edge game development techniques here as I am in a real classroom setting, by

www.GameHouse.com

Introduction

students who are paying a lot more than the retail cost of this book to learn these
concepts. I have used this book in several Java courses already, so you are guar-
anteed high-quality material in these pages that will not be a waste of your time. In
other words, this book has already been through the flames of scrutiny twice
before, so you are guaranteed a solid read and good, working code.

WHAT WILL You LEARN IN THIS Book?

This book will teach you the difference between Java applications and applets
(which run in a web browser). You will then learn about Java’s graphics classes
and begin writing graphics code. You will learn how to get input from the user,
and how to play sound effects and music—all within the context of an online
game. From there, the sky’s the limit! Figure 1 shows the game you will learn to
create in this book. Starting with the basics (and I'm talking about extreme basics
here!), you will write a simple 2D game using vector graphics (using lines and
filled polygons).

Figure 1
You will learn how to create this game from scratch!

XV

XVi

Introduction

You will then learn new techniques in each chapter, such as how to load a bitmap
file and render it on the 2D applet window using Java 2D classes like Graphics2D.
You will eventually put the handful of game-related classes together in an event-
driven game engine. As you can see from this screenshot, the final game uses some
attractive artwork and is chock full of small details! You will learn about simple
bitmaps and then sprites before getting into animation. Along the way, you will
learn how to use Java’s advanced 2D library to rotate and scale sprites, and I'll
show you some interesting code that moves bullets, power-ups, asteroids, and
other game objects on the screen smoothly and realistically. The end result is a
professional sprite-based game engine that packs a serious punch! By learning
how to create this retail-quality casual game, you will have learned enough to
create your own games, suitable for sale in the casual game market (where games
are played over the web).

Definition

An applet is a limited type of Java program designed to run in a web browser. Due to security
restrictions, an applet is not able to access the file system on a user’s PC like a Java application,
which is installed like any other application software.

Since this book is dedicated to teaching the basics of game programming, it will
cover a lot of subjects very quickly, so you'll need to read the chapters of this book
sequentially for best results. I use a casual writing style to make the subjects easy to
understand and use repetition rather than memorization to nail the points home.
You will learn by practice and will not need to struggle with any one subject,
because you will use them several times throughout the book. Each chapter builds
on the one before. The Galactic War game developed in Part III refers back to
previous chapters, so I reccommend reading one chapter at a time, in order, to fully
understand everything that is going on. I tend to just use code after explaining
how it works the first time, and often do not explain something over and over
again because the book moves along at a brisk pace. We have a lot to cover in a
limited amount of space, so I recommend reading the book from start to finish.

WHAT ABOUT THE PROGRAMMING LANGUAGE?

This book is about game programming, and it assumes that you already know at
least some Java. I recommend that you acquire a Java primer to read before
delving into this book, or to keep handy for those parts that may confuse you. For

Introduction

starters, you can pick up Java Programming for the Absolute Beginner, by Joseph
P. Russell (Cengage Learning). We do not utilize any advanced features of Java SE 6,
even though this is the latest version of Java, so if you are new to the language you
should be able to make the best of it by following along.

While covering some of the basics over the first three chapters, you’ll have created
a complete casual game in Java that runs in a web browser, which will be a
milestone as well as a measure of your own skill level at that point. As I men-
tioned, this book is not a primer on the Java language, but rather, makes use of this
very capable, high-level language to create games. You will find the code in this
book much easier to understand if you have at least read a primer on the subject.
We discuss game programming, not basic Java programming.

All of the projects in this book will compile with the Java SE 6 development Kkit.
While later versions (such as Java SE 7) will compile the code, older versions of
Java may complain about classes or methods that are not recognized.

WHAT IDE SHouLD You UsEe?

You will be able to compile the programs in this book using the javac.exe pro-
gram, and will run the programs using appletviewer.exe. We use an awesome little
editor called TextPad that can tie in to these command-line tools to compile and
run your Java code. We also explore and use NetBeans as an alternative devel-
opment environment (if you’re looking for a more professional experience).

The first version of this book focused on a professional IDE (Integrated Devel-
opment Environment) called JBuilder to help organize Java game projects.
However, much has changed in the five years since the first edition came out.
Borland JBuilder Foundation was a free trial version of JBuilder, and we were able
to support the 2005 and 2006 versions at the time. But Borland sold its develop-
ment tools division to Embarcadero, and it is a proprietary tool now for enterprise
development. We simply do not need to use commercial software to build Java
code—there are some great options in open source software today!

If a revision is meant to update a book, then it may seem odd to step away from
using a professional IDE. But that is exactly what many professional Java pro-
grammers are doing—utilizing a simple text editor and the Java SE 6 development
kit directly. There are many reasons why this is preferable, and the best expla-
nation may be a desire to avoid the adoption of any single IDE since there are no
standard project files in the industry, and each one is dramatically different. I

XVii

XViii

Introduction

recommend using NetBeans or TextPad. NetBeans is absolutely free and fully
featured, but it’s kind of large and complex. TextPad is not free, but it is very
inexpensive (under $30) and has the great advantage of being lightweight and
simple. The main advantage to NetBeans is the programmer pop-up help built
into the editor that shows function parameters and class member lists. For those
who prefer Eclipse, we do spend some time with that IDE as well.

Avoiding any single IDE allows us to focus more on the Java code and this helps
with cross-platform development. The code in this book will compile and run on
the following systems:

» Windows (x86, x64, Itanium)
m Linux (x86, x64, Itanium)

m Solaris (SPARC, x86, x64)

Definition

Cross-platform development is the ability to compile and run the same code on many different
computer systems. Java code and executable files are supported on many platforms. You do not
need to recompile your Java code for every system, as the same .class file will run on all of them!

Due to this extensive list of supported operating systems, it is obvious why we
would not want to limit ourselves to a single IDE, but would prefer to support all
of these systems. As a consequence, none of the source code in the book resource
files include any project files, but merely source code files and assets (image and
sound files).

Tip

You will be using Java SE 6 (i.e. “Java Standard Edition 6"), which is the lightweight version of
Java best suited for creating standalone and web-based games. Our text editor of choice is
TextPad 5.0, which can compile your Java source code files with a macro key.

TextPad is a small, easy-to-use source code editor that recognizes the Java
Development Kit and is able to compile your Java code with a simple macro
(Ctrl+1). By using TextPad as our “IDE”, you’ll be working directly with the file
system on your hard drive rather than a virtual project manager (such as the one
in NetBeans). In TextPad, you'll see the actual files on your drive, and there is no
concept of “adding” files to a “project” because you are working with your source

Introduction XiX

files directly. I recommend purchasing a license of TextPad from www.textpad.
com. Sure, there are free editors available, but none that I have found with the
feature set and stability of TextPad. For example, two freeware products, Pro-
grammer’s Notepad and Notepad+-+, both seem to have stability problems in
Windows 7.

CoNVENTIONS UseD IN THIS Book

The following styles are used in this book to highlight portions of text that are
important. You will find these highlighted boxes here and there throughout the
book.

Note

This is what a note looks like. Notes are additional information related to the text.

Tip

This is what a tip looks like. Tips give you pointers in the current tutorial being covered.

Caution

This is what a caution looks like. Cautions provide you with guidance and what to do or not do in
a given situation.

Definition

This is what a definition looks like. Definitions will explain the meaning behind a technical concept
or word.

CoMPANION WEB SITE DowNLOADS

You may download the companion website files from www.courseptr.com/
downloads. Please note that you will be redirected to our Cengage Learning site.

www.textpad.com
www.textpad.com
www.courseptr.com/downloads
www.courseptr.com/downloads

This page intentionally left blank

PART |

JAVA FOR BEGINNERS

The first part of the book will get you started programming in Java. You will
learn how to install and configure the Java Development Kit from Java SE 6 and
test your Java installation on your PC by writing your first game—a version of
Asteroids that runs either standalone or in a web browser. The first chapter
covers all the groundwork with programming environments, showing how to
compile a Java program with NetBeans, Eclipse, or just a command prompt. The
choice will be yours which environment you choose to use!

m Chapter 1: Getting Started with Java
m Chapter 2: Java Programming Essentials

m Chapter 3: Creating Your First Java Game

This page intentionally left blank

CHAPTER 1

GETTING STARTED WITH JAVA

Java can be a complex programming language and a challenge to learn in its
entirety, but it is easy to get up and running very quickly using freely available
development tools and basic code. Java is one of the most rewarding program-
ming languages I have used, and I'm sure you will agree as you gain experience
with the language that it’s worth your investment of time. This chapter will help
you get started with Java and will be especially helpful if you have had no prior
experience with this language. This chapter explains what you need, where to get
it, and how to configure your system to prepare it for building Java-based games.
Several Java-enabled development tools will be presented so you can choose the
one that will best meet your needs, including TextPad, NetBeans, Eclipse, and
command line.

Here are some of the topics that will be addressed in this chapter:

m Java and the web
m The casual games market
m Installing and configuring Java

m Your first Java program

JAVA AND THE WEB

Let’s take a look at game design for a moment and see how Java fits in, because
this is the core subject of the book. What truly has changed in the world of

3

Chapter 1 = Getting Started with Java

gaming since the “good old days”? By that term, I am referring to the infancy of
the game industry that entertains the world today, back in the 1980s when
arcade game machines were at the top of their game. Many readers were
probably born in the 1980s and have no recollection of the games of that era,
except perhaps those that were ported to the second-generation consoles of the
early 1990s (Nintendo SNES, Sega Genesis, Atari Jaguar). You have seen the
various anthology collections from Namco, Atari, Midway, and Taito, featuring
classics such as Joust, Dig Dug, Pac-Man, Space Invaders, Defender, and others
(some of which date back to even the 1970s).

Note

Nintendo has given some of its classic games an overhaul and released them on the extraordinary
Nintendo DS handheld system. Good move! Not only are some classics, such as the original Super
Mario Bros., outselling most other handheld games, but re-releases, such as The Legend of Zelda: A
Link to the Past (for the Game Boy Advance), have outsold most console and PC games.

Studying the Market

The game industry is pushed forward by gamers, not by marketing and business
executives, which makes this industry somewhat unique in the world of enter-
tainment. Isn’t it obvious that professional sports (NFL, NBA, NHL, and MLB
here in the States) are not advanced or directed by the fans? On the contrary, the
fans are often derided and ignored by not only the team franchises, but by the
organizations themselves. This is an example of how centralized management
can lead to problems. Unfortunately for sports fans, they are more than willing
to put up with the derision given to them because they love the sport. This is a
level of loyalty that simply doesn’t exist in any other industry. If you love sports,
you ignore all the problems and just enjoy the game, but that doesn’t change the
fact that it’s a seller’s market (although digital entertainment is drawing fans
away from professional sports in droves).

How is the game industry a buyer’s market (meaning, gamers have a lot of
influence over the types of games that are created)? Most games are created
specifically for a consumer segment, not for the general public. The decision
makers at game publishing companies choose projects that will reach as many core
constituents as possible, while also trying to reach casual gamers and hardcore fans
of other game genres. For instance, Blizzard Entertainment (a subsidiary of

Java and the Web

Vivendi Universal Games, which also owns Sierra Entertainment) targets mainly
two genres: real-time strategy games (WarCraft series, StarCraft), and role-playing
games (Diablo series, World of WarCraft).

Can you think of a game that Blizzard has published that does not fit into these
two genres? Blizzard has consistently hit the mark dead on with their games in
terms of target audience, quality, polish, and subsequent mass appeal. World of
WarCraft has sold millions of copies with millions of simultaneous players
supported on its multitude of servers. WarCraft III has sold more than five
million units (including the add-ons), while the entire WarCraft series has sold
twelve million units since its debut in 1994. StarCraft has sold nine million
copies since 1998 (including add-ons), while StarCraft II, released this year,
increases the series total.

Why do you suppose Blizzard has been so successful? Certainly not through
aggressive advertising campaigns! Gamers have traditionally been immune to
marketing, relying primarily on word-of-mouth recommendations from friends,
online review sites, and bloggers for their game purchase decisions. If any of
Blizzard’s games had not been up to par with the gamers, they would not have
continued to play the game. But the sales figures shown here reveal products that
have had a very long shelf life due to continued sales.

Design Rules

I could go into other companies with equally impressive success stories, as well
as those that have been dismal failures. But my goal is to demonstrate to you that
the game industry is indeed a buyer’s (gamer’s) market. It’s not dictated and
ruled by the board of directors of one company or another or by marketing
people, who have been stymied by the reluctance of gamers to go along with
traditional promotional theories. In other words, gamers are a tough audience!
It’s an empowering position to be in, knowing that your personal preferences
and tastes are shared by millions of others who demand excellence and
innovative gameplay, and that these demands are met, more or less. Companies
that produce excellent games are rewarded by gamers, while those that fall short
quickly close up shop and move on.

Would you like another real-world example? A few years ago, a new publisher
emerged in the game industry by the name of Eidos. This company’s bank

Chapter 1 = Getting Started with Java

account was padded by millions of PlayStation owners who had all fallen in love
with Lara Croft. Eidos seems to have misinterpreted the market, believing that
gamers loved the image and motif of this Bond-esque heroine. Eidos created a
new hotshot team in Texas made up of some industry veterans in an endeavor
called Ion Storm. The belief was that marketing the “rock-n-roll” hype of these
developers would lead to millions of preorder sales for their games (coming
from the successes of the two Tomb Raider sequels).

Eidos failed to recognize that gamers bought into Lara Croft because the games
were fun, not because of the image. When Ion Storm was launched, Eidos
printed two-page spreads in major game magazines showing the team rather
than the upcoming games in development. The developers of Daikatana were
not able to keep up with the marketing explosion and were derided for
producing an average game that would have been well received were it not
blacklisted by gamers after years of hype. The impression was very strong that it
was all about sales, not a gaming experience, and gamers rejected that notion.
Eidos has moved on from the experience too, having published some fantastic
games such as LEGO: Star Wars, Deus Ex, and Anachronox.

In my experience, the fun factor of video games has risen exponentially in the last
two decades, along with the complexity of modern games. Let’s face it; you can
only play Pac-Man for an hour or so until it becomes tedious. The same applies to
most of the classic arcade games. At one time, you could fit every video game in
existence in a single room, and those quarter-fueled machines were housed in
stand-up cabinets. Since that time, there have been about a half million games
created, though we might narrow down that figure to a few thousand good games,
out of which we find a few hundred “Hall of Fame” greats.

THE CAasuAL GAMES MARKET

In recent years a new game genre called casual games arose in the game industry.
This genre has been relegated to secondhand status for many years, while the
numbers of gamers has risen from the hardcore “geek” fans to include more and
more people. The average gamer plays games for a few hours a week, whereas
the hardcore gamer spends 20 or more hours playing games every week (like a
part-time job). Casual gamers, on the other hand, will only spend a few minutes
playing a game now and then—perhaps every day, but not always. The casual
gamer does not become addicted to any game the way a hardcore gamer does,

The Casual Games Market

with games such as World of WarCraft, Star Wars: The Old Republic, Lord of the
Rings Online, and so on.

So, what is a casual game anyway? A casual game is any game that can be played
in a short timeframe and requires no instructions on how to play. In this
context, almost every classic arcade game ever made falls into this category. It is
only recently that publisher and game industry pundits have begun to realize
that gamers really don’t want the long, drawn-out experience of installing a
game, downloading a patch, and spending eight hours learning how to play it.
Sometimes it is refreshing to just fire up a game and play for 10 or 20 minutes
without having to screw with it all evening! This was a gripe of mine for a long
time. It is why I spend far more time playing console games than PC games, and
I'm sure many readers share that sentiment.

No Manual Required

Yes, there are some PC games that are so compelling or innovative that they are
worth the effort to get them installed and running. The best example of late is
World of WarCraft. 1 have spoken to many gamers who claim that if Blizzard’s
games were not so darned much fun, they would boycott Blizzard altogether!
(How’s that for a contradiction?) The impression I get is that these gamers have
a love/hate relationship with Blizzard and many other game publishers as well.
(Lest you suspect that I suffer from memory lapse over Blizzard, let me clear up
one important point—I love their games, but dislike their terrible installers!)

Case in point, I could not install World of WarCraft on my decently equipped
laptop. First, the installer locked up and a subsequent install attempt reported an
error on disc two. I got around these issues by copying all four discs to the hard
drive and installed it from there with no more problems. However, as soon as I
fired up the game and logged in to my account, it dropped out to download a
260MB update to the game. When that was done, three more small updates were
installed just to bring the game up to the latest version. Are these problems
tolerable? Yes and no. On the one hand, this is the most advanced and complex
MMORPG (massively multiplayer online role-playing game) ever created, and
Blizzard has a full-time team continually creating new content and improving
the game, which I applaud. But on the other hand, that sure was a lot of work
just to get the game installed, and it took three hours of my time (which is why
hardcore gamers tend to have more than one PC).

Chapter 1 = Getting Started with Java

Would a casual gamer be willing to devote that much time just to install a game
that will end up requiring hundreds of hours of gameplay in order to rise through
the ranks within the game world? Most casual gamers do not have the time or
patience to jump through so many hoops for Blizzard, unless a friend helps them
get started. Such is the target audience for casual games! Have you ever given
serious thought to this issue? If you are an IT (information technology) profes-
sional or a hardcore gamer, you are used to dealing with computer problems and
coping with them without incident. But do you ever wonder, if you—a smart,
experienced, knowledgeable computer expert—are having problems with a game,
how on earth will an average user figure out these problems? Well, the short
answer is, they don’t, which accounts for most game returns.

Casual Games

Casual gamers include professionals such as doctors and lawyers, business
executives, software developers, and, well, everyone else. Casual games attract
people from all cultures, classes, genders, religions, ethnicities, and political
orientations. Given that most potential game players are not willing or able to
cope with the issues involved in PC games, is it any wonder that this burgeoning
market has been inevitable for several years now? While casual games are
currently played mainly in a web browser using technology such as Java and
Flash, the console systems are featuring online gameplay as well, and this trend
will continue to gain popularity.

The casual game market was limited a few years ago. Only recently has this
subject started to show up on the radar of publishers, schools, and retail stores,
even though gamers have been playing casual games for two decades. (I
predicted casual games would take off a few years ago, but my dog ate that
article.) Casual games are a win-win situation because they are just as easy to
create as they are to play, so the developer is able to create a casual game in a
short timeframe, and the gamer has an enjoyable experience with a lot of
choices. Casual games have a very simple distribution model (most are put up
on a website for online play), a respectable compensation model (developers
receive a percentage of net sales or a single lump sum), an often meager
development cycle measured in weeks or a few months, and almost no testing
required. As a casual game developer, you can come up with an innovative game

The Casual Games Market

idea, develop the game, and get it onto store shelves (that is, a website) all within
the timeframe of just the concept-art stage of a full-blown retail game.

Jay Moore was an evangelist for Garage Games who promoted the Torque game
engine around the country at conferences and trade shows. He spoke at the 2005
Technology Forum at the University of Advancing Technology, where he
addressed the possibility of earning a living as a casual game developer. Garage
Games’ Torque engine has been ported to Xbox 360, and they have published
two games on Xbox Live Arcade that you can download and play if you are a
Live user. Marble Blast is one such game, and Garage has many more games
planned for release on Live and through retail channels. In fact, when you
purchase the entire Torque game engine for $100, you have the option of
publishing through Garage Games, which does the contractual work and
provides you with a contract (subject to quality considerations, of course).

Microsoft has really embraced casual games by making it possible for inde-
pendent developers to publish games directly on Xbox Live Arcade without
going through retail channels. Xbox 360 is the first console video game system in
history to provide downloadable games right out of the box without first
purchasing retail software. If you are interested in casual games, you can
enjoy playing on Xbox Live Arcade without buying a retail game at all, because
many games are available for free trial and purchase on Xbox Live Arcade (with
a membership account, that is). Indie developers can use XNA Game Studio to
develop games for Windows, Xbox 360, Zune, and Windows Phone 7 for a small
annual membership fee.

I attended the Austin Game Conference in 2005, and the focus of the show was
about casual games. Microsoft’s booth was titled “Microsoft Casual Games,” and
they were giving away USB flash drives with the MSN Messenger SDK and
showcasing some of their Xbox Live Arcade games, as just one example. These
early efforts to promote casual game development on Microsoft’s platforms has
paid off in a huge way today with Xbox Live seeing huge earnings for both
Microsoft and all of their publishers and indie developers alike, thanks to a very
reasonable 70/30 royalty rate.

One of the earliest downloadable games on Xbox Live Arcade was RoboBlitz.
This game was built using the Unreal Engine 3 (which Epic Games developed
for Unreal Tournament III). RoboBlitz also makes use of the impressive Ageia

10

Chapter 1 = Getting Started with Java

PhysX physics engine to produce realistic gameplay. Another innovative game
on Xbox Live Arcade from the creators of Project Gotham Racing is Geometry
Wars. This game is unique and compelling, with gameplay that involves gravity
and weapons that resemble geometric shapes.

If you feel as if I've been leading you along a train of thought, you would be right
to trust your feelings. The focus of this book is about programming games using
Java with a strong emphasis on casual games, and we will learn to do just that
shortly. Since Java is the pioneer language of casual game development, I will be
emphasizing this aspect of gaming while creating web-based projects in the
chapters to come. But for those interested in just Java game programming
without concern for the web or the casual market, most of the projects will be
presented as standalone applications that do not need AppletViewer or a web
browser.

INSTALLING AND CONFIGURING JAVA

As you might have guessed, Java applet games run in a web browser—Internet
Explorer and Mozilla Firefox work equally well for running Java games. Java
programs can also run on a desktop system locally without going to a website.
These types of programs are called Java applications and require the Java
Runtime Environment (JRE) to be installed. The web browser runtime is the
same as the desktop application runtime, which is installed with the JDK. Users
who do not need the Java development tools will just install the JRE, which is
what happens when a user installs “Java”—a reference to the JRE.

When you install Java Standard Edition 6 (Java SE 6), the runtime includes an
update for web browsers automatically. So if you write a Java game using
features from Java SE 6, the runtime might need to be updated on an end user’s
PC before it will run the game properly. In some cases, the compiled Java
program (which ends up being a file with an extension of .class or .jar) will run
on older versions of Java, because some updates to the Java language have no
impact on the resulting compiled files. The games we write will run as an applet
or as an application with a little bit of tweaking. In the interest of simplifying the
code as much as possible, we will create an application in most cases using a
JFrame. Why?

Installing and Configuring Java

A JFrame gives us the Graphics context we need to draw with Java 2D. An
Applet project has a Graphics context, but a standard console-style application
does not, unless a JFrame is used. What this does is give us a window for
drawing. By default, an application will just work with the console for text input
and output, but we need a graphical window on which to render, and that is
what a JFrame provides. It’s actually very easy to use, and we’ll begin working
with it soon.

Installing Java

The Java SE 6 development kit is available for download from http://www.oracle
.com/technetwork/java/javase/downloads. You will want to get the latest version
of the JDK, which is “Update 22” at the time of this writing (see Figure 1.1).
When you install the JDK, the installer will not automatically modify your
system’s environment variables, which is something we will need to do so that
you can run the Java compiler (javac.exe) using a command prompt or shell
window. The current version at the time of this writing is Java SE 6 Update 22,
and the install file is called jdk-6u22-windows-i1586.exe. If you are using a system
other than Windows you will need to visit the Java website to download the
appropriate version for your system.

14! Java(TM) SE Development Kit 6 Update 22 - Setup ‘ [

to the llation Wizard for Java™ SE Development Kit 6 Update 22

Thie wizard will guide you through the inctallation process for the Java SE Development
Kit 6 Update 22.

Figure 1.1
Installing Java SE 6.

11

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

12

Chapter 1 = Getting Started with Java

Tip

Since the second edition of this book was published, Sun Microsystems (the developer of Java) was
acquired by Oracle. So, Java is now an Oracle product.

Configuring the Java Command-Line Compiler

Java will be installed by default in the folder C:\Program Files\Java (on the
Windows platform; obviously, this will be different depending on your system).
In this folder are two folders called jdk1.6.0_22 and jre6, containing the
development kit and runtime environment, respectively. We need to focus our
attention on the first folder containing the JDK, in particular. This folder
contains a folder called bin, in which you will find all of the Java programs
needed to compile and run Java code. The most important programs in this
folder are javac.exe (the Java compiler) and appletviewer.exe (the applet viewer
utility). We need to add this folder to the system’s environment variables so that
we can invoke the Java compiler from any location on the hard drive.

I'm going to focus my attention on Windows since it is the most widely used
operating system. Depending on the system you’re using, the steps will be
different but the concept will be similar. You need to add the jdk1.6.0_22/bin
folder to your system path—the list of folders searched when you invoke a
program at the command line. In Windows, open the Control Panel and run the
System utility. Select the Advanced tab, as shown in Figure 1.2. Here you will
find a button labeled Environment Variables. Click on it.

Tip

The System Properties dialog in Windows 7 can be found in Control Panel, System, Advanced
system settings.

Scroll down the list of system variables until you find the Path variable. Select it,
then click the Edit button. Add the following to the end of the path variable
(including the semicolon):

;C:\Program FiTes\Jdava\jdkl.6.0_22\bin

If you have installed a different version, you will need to substitute the version
shown here with the actual folder name representing the version you installed
on your system. Click the OK button three times to back out of the dialogs and

Installing and Configuring Java

F ™
e e

Computer Name I Hardware | Advanced |Systern Protection | F{ernote|

You must be logged on as an Administrator to make most of these changes.

Performance

Visual effects, processor scheduling, memony usage, and virtual memony

User Profiles
Desktop settings related to your logon

Startup and Recovery
System startup, system failure, and debugging information

Enviranment Varables. ..

[ok |[cancel |

Figure 1.2
The System utility in Windows Control Panel.

save your settings. Now let’s verify that the path has been configured properly by
testing the Java installation.

To open a command prompt in Windows, open the Start menu, Program Files
(or All Programs), and you will find it in Accessories. The command prompt
should appear as shown in Figure 1.3.

If you are using a system like Linux, just open a shell if you don’t have one open
already, and the commands and parameters should be the same. Now that you
have a command prompt, type the following command and press Enter:

javac -version

This will invoke the Java compiler and instruct it to merely print out its version
number, as shown in Figure 1.4. The version reported here is just what you
would expect: 1.6.0_22 represents Java SE 1.6 Update 22.

13

14 Chapter 1 = Getting Started with Java

& ™
Envirenment Variables | P J

| Edit System Variable

Variable name: Path

Variable value: =mY;C:\Program Files\Javaljdki.6.0_22\bin

o [concel |

System variables

Variable Value ~
Path “eCommonProgramfiles ¥ Microsoft Sh...
PATHEXT .COM; EXE; BAT;.CMD; .VBS; . VBE; . 15;..... A

PROCESSOR_A... XB86
PROCESSOR_ID... xB86 Family & Model 15 Stepping 11, Gen... ~

New.. |[Edit. |[Deete |

[o J[concel |

Figure 1.3
Adding the JDK folder to the system path.

icrosoft Windows [Uersion 6.1.760@1
opyright {c> 280? Microsoft Corporation. All rights reserved.

sUsershjonathan>javac —version
javac 1.6.8_22

sUsershjonathan >

Figure 1.4
The Java compiler reports its version number.

Installing and Configuring Java

If you were able to see the version number show up on your system, then you
will know that Java has been installed correctly, and you're ready to start writing
and compiling code! On the other hand, if you received an error such as “Bad
command or file name,” then your environment variable has not been set
correctly, as explained previously. There is an alternative to editing the system’s
environment variable—you can just modify the path from the command
prompt. However, when you do this, the change is not permanent, and you
will have to set the path every time you open a command prompt. But just for
reference, here is how you would do it:

set path=%path%;C:\Program Files\Java\jdkl.6.0_22

At this point, you are ready to start writing and compiling Java code. So let’s do
just that, to further test your Java installation. In a moment, we’ll write a Java
application that prints something out to the console (or shell). See the section
below titled “Your First Java Program.”

Java Version Numbers

Java’s versioning can be confusing, but it’s something you might want to
understand. The official latest version of Java at the time of this writing is
Java Standard Edition 6 Update 22, or Java SE 6u22. However, the actual version
number is 1.6.0. The computer industry is anything but consistent, given the
extraordinary changes that have taken place on the Internet and in software
development in general. But one thing has been agreed upon in the computer
industry regarding versioning. The first release of a software product is version
1.0. Often a revision or build number will be appended, such as 1.0.8392, which
helps technical support or call center personnel identify the version or sub-
revision of software that a customer is using when a problem arises. The revision
number is, in every case, not part of the retail packaging and product name, but
rather a tracking tool. Table 1.1 lists the Java version history.

The interesting thing about this table is that it is very consistent in the second
column (Version), but there are a lot of inconsistencies in the third column
(Marketed Name), which is not a great surprise since marketing campaigns
seldom makes sense. If you were to follow the progression from one version to
the next and tally them, you might note that there have been seven major
versions of Java (while the eighth version is 1.7, and not yet released). Product

15

16 Chapter 1 = Getting Started with Java

Table 1.1 Java Version History

Year Version Marketed Name Code Name
1996 1.0 Java 1.0

1997 1.1 Java 1.1

1998 1.2 Java 2 Playground
2000 13 J2SE 1.3 Kestrel

2002 1.4 J2SE 1.4 Merlin

2004 1.5 J2SE 5.0 Tiger

2006 1.6 Java SE 6 Mustang
2010 1.7 Java SE 7 Dolphin

*1.7 is still in a pre-release state at the time of this writing, as it has been for two years.

branding is a very expensive and time-consuming process, which is why
businesses defend their brand names carefully.

When Sun released Java 2 as a trademarked name, the name caught on, and the
version we are using now, Java SE 6, is still known internally as version 1.6.0.
Java fans love these quirks, which are not flaws but endearing traits, and it’s not
a problem once you understand how it has evolved over the past decade.

Java SE 6 Development Kit
The Java SE 6 Development Kit (the “JDK”) is available for these platforms:

m Linux

m Linux Intel Itanium

m Linux x64

m Solaris SPARC

m Solaris x64

m Solaris x86

= Windows

= Windows Intel Itanium

m Windows x64

Installing and Configuring Java

We are focusing primarily on the Windows platform because that is the most
popular platform, but the code and examples will absolutely build and run on all
of the supported platforms without any modifications.

There are several components that extend the basic functionality of Java that are
of interest to us with regard to game programming.

Java 2D is an API containing classes for advanced 2D graphics rendering and
image manipulation, with support for vector (line-based) shapes, font-based
text, image formats, and advanced RGBA color manipulation. This API works
great for building 2D games with Java, and is what we will be using in this book.
Among other things, we can perform transforms (rotation, translation, and
scaling) on 2D images.

Java 3D is an API that allows rendering of 3D graphics in a Java application or
web-based applet with high-level constructs for building 3D scenes. The websites
are java3d.dev.java.net and www.java3dd.org. This API works very well for
building 3D games with Java.

Java Development Environments

There are a variety of Java development environments we can use for our Java
game projects, from the fairly large and complex Eclipse to a text editor with
command-line compiler. In most cases, you will want to install the Java
Development Kit (JDK) first, because all of the integrated development environ-
ments (IDEs) require the JDK.

Caution

The JDK must be installed first if you choose to install and use an IDE such as Eclipse or NetBeans.
These IDEs support Java, but do not include the JDK, and the JDK is a prerequisite in order for the
IDEs to automatically locate and plug in links to the JDK if it's installed. If you install an IDE first,
then it won't be automatically set up and you will have to manually link it to the JDK. Optionally,
you may install a special version of NetBeans with the JDK.

Command Prompt/Shell

The simplest way to create and run a Java program is with a text editor and the
Java command-line tools javac.exe, java.exe, and appletviewer.exe. Any text
editor will work, including Notepad, although there are better choices out there,
some of which offer Java source code syntax highlighting to improve your
productivity. The point is, once you have installed the JDK, you can technically

17

www.java3d.org

18

Chapter 1 = Getting Started with Java

get by with nothing more than this. In many ways, just using the simple
command-line tools is preferable to the large and complex projects created by
the professional IDEs, which is why I often take this route when I just want to
write a small program in Java. If you are using Linux or Mac OS, then the shell is
likely your preferred choice.

TextPad

One such editor with Java source code highlighting is TextPad, available for
download from www.textpad.com. We'll be using TextPad quite a bit in the next
section of this chapter so I'll refer you there for screenshots showing what TextPad
looks like. There are many other editors like TextPad, but TextPad is unique (and
helpful!) with its built-in support for the JDK tools that makes it possible to
compile and run Java code right from inside the text editor. The latest version of
TextPad (5.4 at the time of this writing) now supports a Workspace feature, which
puts TextPad into the realm of a “mini IDE.” A project workspace in TextPad can
now be saved so that all of the configured tools and source files are retained in the
project, saved to a workspace file with an extension of .tws. Since TextPad is so
incredibly easy to use, this will be our tool of choice, with NetBeans a close second.

NetBeans

NetBeans IDE (currently at version 6.9.1) is a free development environment
with support for Java, C++, PHP, and Ruby projects, and is available for
Windows, Mac OS, and Linux. This is the official development environment for
Java. The complete NetBeans distribution requires a separate installer for the
Java Development Kit (JDK), and it can be downloaded from http://netbeans
.org. Another distribution of the JDK is available with NetBeans 6.9.1 already
included! If you are new to Java development, then this is the version I
recommend using because it only requires one install to get both the JDK and
IDE up and running. If you have already installed the latest JDK, then just use
the independent NetBeans installer.

Eclipse

Eclipse is another community-supported development environment with sup-
port for multiple languages, including Java. The home page for Eclipse is at www
.eclipse.org. There is a package for Java development ready to be downloaded
and installed called “Eclipse IDE for Java Developers™ at http://www.eclipse.org/

www.textpad.com
www.eclipse.org
www.eclipse.org
http://www.eclipse.org/downloads
http://netbeans.org
http://netbeans.org

Your First Java Program

downloads. Eclipse can be rather difficult to use, especially if you're really new to
programming, but it is jam packed with incredible features right out of the box,
so to speak, and is a quite mature development environment. But, with
complexity comes difficulty of use. In fairness to the developers and fans of
Eclipse, we will at least see a simple example of an Eclipse project later in the
chapter but it will not be our tool of choice.

YoOuR FIRST JAVA PROGRAM

I want to take you through the steps of creating a new Java program to test the
JDK and a Java applet project to test web-browser integration right away so we
can begin programming. Let’s start at the very beginning so that when you have
written a full-featured game down the road, youll be able to look back and
see where you started.

Java Application

The following program, shown in Figure 1.5, is called DrinkJava. Type it into a
text file and save the file as DrinkJava.java.

import java.io.*;

public class DrinkJava {

public static void main(String args(]) {
System.out.printin("Do you Tike to drink Java?");

}

[ornkavajova - N
| File Edit Format View Help

Fii Beginning Java Game Programming, 3rd Edition %
// by Jonathan 5. Harbour
J/ nrinkilava program

import java.io.¥;
public class Drinklava
public static void main(string args[]1)
: system. out. printin("Do you like to drink Java?"):

¥
¥

Figure 1.5
The DrinkJava program can be edited using any text editor.

19

http://www.eclipse.org/downloads

20

Chapter 1 = Getting Started with Java

Tip

The perhaps undocumented but assumed coding standard for Java has always placed opening
brackets for a small block of code at the end of a statement. Large blocks of code typically have the
bracket on the next line to improve readability and reduce potential bugs. You may feel free to put
opening brackets on the next line if you prefer. | am doing it this way to stay in line with the JDK
examples.

Now let’s compile the program. You'll need to open a command prompt
window again, or you can continue using the one discussed earlier if you still
have it open. Use the cd command to change the directory to the where you
saved the .java file—for instance, cd \chapterO1\DrinkJava. Once in the correct
folder, you can then use the javac.exe program to compile your program,
assuming you have added the JDK to the system path as described earlier:

javac DrinkdJava.java

The Java compiler (javac.exe) should spend a few moments compiling your
program, and then return the command prompt cursor to you. If no message is
displayed, that means everything went okay. You should then find a new file in
the folder called DrinkJava.class. You can see the list of files by typing dir at the
command prompt, or just open Windows Explorer to browse the folder
graphically.

To run the newly compiled DrinkJava.class file, you use the java.exe program:
java DrinkJava

Note that I did not include the .class extension, which would have generated an
error. Let Java worry about the extension on its own. By running this program,
you should see a line output onto the command prompt like this:

Do you 1ike to drink Java?

Perhaps without realizing it, what you have done here is created a Java
application. This is one of the two types of Java programs you can create. The
other type is called an applet, which describes a program that runs in a web
browser and is really the goal of what we want to do in order to create Java
games. You can certainly write a Java game as an application and run it on a
local system, but the real point of this book is to create Java applets that run in a
web browser.

Your First Java Program

Java Applet

Now let’s create a Java applet and note how its code is different from a Java
application. This applet that you're about to write will run in a web browser, or
you can run it with appletviewer.exe (one of the JDK tools). Open your favorite
text editor (Notepad, TextPad, Emacs, or whichever it may be) and create a new
file called FirstApplet.java with the following source code. TextPad is shown in
Figure 1.6. Before you try to run the program, though, we’ll have to create a mini
web page container, which we’ll create shortly.

& - - U — e
[EC" TextPad - C:\Users\jonathan\books\Beginning Java Game Programming 3E\chapte:

Il File Edit Search View Tools Macros Configure Window Help

l'DEE BE&RE YRR O =E29 Q% 4R Tt o ue » - iFindincementally 1 1 :
i' Document Selector 2 x 2 DM ﬂ: a* FirstAppletjava | - X
DrinkJava java * x: Eeginning Jaga ﬁamgnﬁ::agr‘alnming. 3rd Editiom —“
Rt olitjeva e Pl savacpiak progeey
import java. awt ®;
import java.applet =
?Ublll: class FirstApplet extends Applet
Eubllc void paint(Graphics g)
A g.dravString("This is my first Java Applet!", 20, 30):
}
}
[
REpl. | Docu..[L Clip... |||« » .
Tool Output # x|
Tool completed successfully
g Search Results | G Tool Output
ﬂ 17| 1/|Read Ovr Block Sync Rec Caps

Figure 1.6
The FirstApplet source code in TextPad.

21

22

Chapter 1 = Getting Started with Java

Tip

The trial edition of TextPad has a pop-up that appears every time it is opened. You can register it at
www.textpad.com for a small fee to get rid of the pop-up message, which will cause TextPad to
start up much faster. | encourage you to support this developer if you find TextPad useful.

import java.awt.*;
import java.applet.*;
pubTic class FirstApplet extends Applet {

public void paint(Graphics g) {

g.drawString("This is my first Java Applet!", 20, 30);

}
}
The applet code is a little different from the application-based code in the
DrinkJava program. Note the extends Applet code in the class definition and the
lack of a static main method. An applet program extends a class called Applet,
which means the applet will receive all of the features of the Applet class (which
has the ability to run in a web browser). Essentially, all of the complexity of tying
in your program with the web browser has been done for you through class
inheritance (your program inherits the features of the Applet class). You can
compile the program with this command:

javac FirstApplet.java

TextPad Configuration

Now, if you happen to be using TextPad (refer to Figure 1.6), you can compile
the program from within TextPad without having to drop to the command
prompt to compile it manually. As Figure 1.7 shows, TextPad has a macro that
will launch the Java compiler for you and report the results of the compile. If
there are no errors in the Java code, it will report “Tool completed successfully.”

If you don’t see the Java tools listed in this menu, then there’s a way to add them
manually. Open the Configure menu and choose Preferences to bring up the
Preferences dialog. The last item in the list of preferences is Tools. Select it. Click
the Add button and choose “Java SDK Commands” from the list. This will add
the Java tools to the list of external tools, as shown in Figure 1.8.

The next change is optional, but I think it’s helpful. Select the “Run Java
Application” item under Tools, which was just added. There’s a check option
called “Capture output,” as shown in Figure 1.9. Check this option. This will

www.textpad.com

Your First Java Program

[

[T TextPad - CAUsers\jonathan\books\Beginning Java Game Programming 36\chapt
| ¢ File Edit Search View |Tools| Macros Configure Window Help
| [E Ol g & &I @ Compare Files... Ctrl+F3 r[|@ v Q} ﬂ @Q':- Eﬁ DRI Find mcrcm:ntall_l,:'. |} ‘[{

| Document Selector | ¥ | Spelling.. 7 fava | s
] DirkJava java * 4§ Sort.. F8 Bme Programming, 3rd Edition —
R Convert to DOS prbour

fam

Windows Explorer Alt+F3
stop . B r.

Run... oplet extends Applet
External Tools b M CompileJava Ctri+1
g.drawStrin M| Runlava Application Ctrl+2 Feu ", 20, 30)
} A% | RunJava Applet Ctrl+3
}
Eq ixpl... | %5 Docu... 'éISC[ip T J 4 L
Tool Output s

Tool completed successfully

_‘. Search Results | & Tool Output |

Start this tool 17 1 Read Owr Block Sync Rec Caps

Figure 1.7
Compiling Java code is a cinch in TextPad.

cause the Java output to go to the output window rather than causing a new
window to open.

Figure 1.10 shows the change with the “Capture output” option enabled. Now,
instead of TextPad bringing up a new window to show the Java program
running, it displays the output directly in the Output window at the bottom of
the TextPad window!

Applet Web Container

Java Applets can only run in a web browser or in the appletviewer. This is a basic
web page containing the code to embed an applet on the page. We'll be creating

23

24

Chapter 1 =

- Agsodated Files
... Badkwup
- Environment Variakb
- File Name Filters
- Folders
- Keyboard
- Language
- Macros
- Spelling
- Tools

4 LI 3

Figure 1.8
Adding the Java tools to the TextPad.

Getting Started with Java

q

E..

Figure 1.9

- File

- Editor

WEW

H- Document Classes
- Agsociated Files
- Backup

- Environment Variabl
- File Mame Filters
- Folders
--Keyboard
--Language
--Macros

- Spelling

Tools
Compile Java

B Run Java Applic

L.-Run Java Apple

|

=
| —y—

+ +
i Add ~
Compile Java -
Run Java Application o] DDA
Run lava App'&t e DOS Command...
tools you w Online Help File...
Tools menu
Menu Separator
To set the
dick Apply Java SDK Commands
contral,
[o J[coned J[ooty J[_reo |

| java.exe

Command:

Parameters: SBaseMame

Initial folder: SFileDir

Capture output
Suppress output until completed
Sound alert when completed

Prompt for parameters
Run minimized
Save all documents first

Regular expression to match output:

Registers:

EIE:E Qne:[:] Column; [:]

J e]| | [e

Configuring the Run Java Application tool.

Your First Java Program

|| File Edit Search View Tools Macros Configure Window Help

NEHASRE L BEIDCI EE 2 QY ARIBER] o ue » T rmdncemennly 1§ [Michese I

Selector B X Drinklavajava - X
DrinkJava java | 77 Beginning Java Game Programming, 3xd Edition —
| ## by Jonathan 5. Harbour =

DrinkJava program
import java. io. s
?ublic class DrinkJava
public static void main(String axgs[])
System.out .println("Do you like to drink Jawa?"):

}
1

Q@bpl. | & oocu.[Lcip. ||«)

Do you like to drink Java?

Tool completed successfully

Search Results | G Tool Output |

|I|FurH=DP. press F1 13 2 Read Owr Block Sync Rec Caps

Figure 1.10
Java console output now goes to the Output window in TextPad.

one of these containers for every program in the book. But don’t worry, our
development tools will generate the web container file for us. Here is what it
looks like:

<htm1>
<head><title>FirstApplet</title></head>
<body>
<applet
codebase="."
code = "FirstApplet.class"”
name = "FirstApplet"”
width ="640"
height = "480"
hspace="0"

25

Chapter 1 = Getting Started with Java

vspace="0"

align="middle"
>
</applet>
</body></htm1>
This container web page code includes an embedded <applet> tag with
parameters that specify the Java applet class file and the width and height of
the applet, among other properties. You can now open this file with Applet
Viewer like so:

appletviewer FirstApplet.html

The Applet Viewer window appears with the FirstApplet program running, as
shown in Figure 1.11.

You can also open the FirstApplet.html file in your favorite web browser. Using
Windows Explorer, locate the folder containing your project and locate the
FirstApplet.html file, then double-click it to open it in the default web browser.
Figure 1.12 shows the applet running in Internet Explorer.

TextPad can generate the web container file for us! From the Tools menu, choose
External Tools, then Run Java Applet. TextPad will automatically generate a web
container file and launch it in AppletViewer, as shown in Figure 1.13.

Applet

Thig is my first Java Applet!

Applet started,

Figure 1.11
The FirstApplet program is running inside the Applet Viewer utility.

A FirstApplet - Microsoft Internet Explorer

File Edit ‘Wew Favorites Tools Help

-\“) Back. \d) @ @ :_h j':_j Search {:{’Favorites @ Bv .,l_s\: - _'J ﬁ “3

Your First Java Program

59/(=)/E9

"

Address |

v| Go Links

This is my first Java Applet!

@ Applet FirstApplet started

:} My Computer

Figure 1.12

FirstApplet is running as an embedded applet in Internet Explorer.

Now that we’ve seen how to compile the program from the command line as
well as from within the very simple to use editor, TextPad, we’ll look at how to
compile a Java program with two major integrated development environments

(IDEs): NetBeans and Eclipse.

Creating a NetBeans Project

NetBeans is a pretty good IDE, balancing features with usability without adding
too much complexity. Let’s see how to create and configure a new Java
Application project in NetBeans as a reference for all future projects. First,
open the File menu and select New Project (see Figure 1.14).

27

28

Chapter 1 = Getting Started with Java

i File Edit Search View |Jools| Macros Configure Window Help

‘NS B &SRB B Comparefiles.. CtisFI L@ .57 AL RIS ot Gl e s B Findincrementally 5 ¢ :
Document Selector e | Spelling... F7 Stjava | =
Diklavageva” %l Sort... F9 me Programming. 3rd Edition = |
Fifppia Jva Convert to DOS rboux

am

Windows Explorer Alt+F3

Run... plet extends Applet

External Tools 3 Compile Java Ctris+1

Run Java Application Ctrl+2 plet!", 20, 30);

| A
q .dravStrin! V! I
A RunJava Applet Ctrl+3 |

;'-_d Expl... _}_?_Docu..._g_ﬁ’-c_'l'up v | '
Tnoi.{.)mpu.l. 7 x

Tool completed successfully

i q Search Rssum“ Tool Output

Il start this tool D7) 1| Resd | Ove] Block] Syac] Rec | Caps

Figure 1.13
Launching an applet from TextPad.

The New Project dialog will appear (Figure 1.15). This dialog has many options
and will look a bit different depending on the version of NetBeans that you have
installed (this is the complete version with all tools installed). Choose the Java
category in the list to the left, and Java Application from the list on the right.

A second project configuration dialog now comes up, titled New Java Applica-
tion (Figure 1.16). Enter the new project name in the field. Unless you
specifically want to change the location of the new project, the other options
can be left alone.

Your First Java Program

[0 NetBeans 10k 69
Edit View MNavigate Source Refactor Run De

] Mew Project... Ctrl+Shift+N
New File... Ctrl+N

|| G5 Open Project... Ctrl+Shift+0
Open Recent Project 3

Open Team Project...

Close Project

Open File...

Open Recent File 3
Project Group 3

Project Properties
Import Project 3

Save Ctrl+5
Save As...

B savenn Ctrl+ Shift+S

Page Setup...
Print... Ctrl+Alt+Shift+P
Print to HTML...

Exit

Figure 1.14
Creating a new Java project in NetBeans.

At this point, the new project will be created with a sample source code file
(Figure 1.17).

Add the following line of code to the main() function in the Main.java file. You
can then run the project by pressing the F6 key or by opening the Run menu and
selecting Run Main Project, as shown in Figure 1.18. The output is shown in the
Output window at the bottom.

System.out.printin("NetBeans makes Java programming easier!");

Creating an Eclipse Project

Eclipse is somewhat similar to NetBeans when it comes to creating a new project
and running the Java code. There are a few extra steps that are a bit unusual,
though, so a quick walkthrough is needed. This should help anyone who intends
to use Eclipse for the projects in the book. First, open the File menu, choose
New, Java Project, as shown in Figure 1.19.

29

30 Chapter 1 = Getting Started with Java

Choose Project

Categories:

)0 Java

JavaFX & Java Desktop Application

Java Web & Java Class Library

Java EE & Java Project with Existing Sources
&% Java Free-Form Project

5 Java ME
Maven
CjC++
MetBeans Modules
Samples

Description:

Creates a new Java SE application in a standard IDE project. You can also
generate a main cdass in the project. Standard projects use an IDE-generated
Ant build script to build, run, and debug your project.

< Back |[Next =]| Einish |[Cancel][Help

Figure 1.15
The New Project dialog in NetBeans.

Steps Mame and L

1. Choose Project

Project Name: MyProject
2. Name and Location e |) |

Project Location: |\J..lsers‘ljonaman\books\ﬁeginning Java Game Programming 3E\d'13pher01| [Browse...

Project Folder: |onaﬁ'13n“>ooks\ﬂeghning Java Game Programming .f\d'1apher01\~'ly1>rojt|

Use Dedicated Folder for Storing Libraries

Libraries Folder: | | | Browse. ..

Different users and projects can share the same compilation libraries
(see Help for details).

Create Main Class |myproject.|'“'lain
Set as Main Project

Figure 1.16
The New Java Application project configuration dialog.

Your First Java Program 31

ICposat
File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help {l
?j | ﬁ % B ¥ [coehouteonfy> il Eﬁ' nﬂ E> b" @ » Q| Search (Cii+])
[tProjects @ u]:Fites : services [startpage [manjova m] l_n_ﬂEJ@_l
|& & nyproject BE-B-AeFElPead e La !
= [l Source Packages =g /- =i
B8 myproject 2 |
[o, Main, javas 3
i [TestPadages ;
i [Libraries 5 |
L TestLbranes & package myproject: ‘
=
210
10 {
11
12 public class Main {
13 s
UL ..
15T
16 g
17 public static void main(String[] azgs)
18 ot . o e Y ek
| 1%
[+ Main - Navigator an ;‘1‘ |
_[Humesm 2| 22
@ man(strgl] args) |
|
J
In'lf's 'x:
|| Description Fie Location |
;D §/8/TO0O code applcation koge: here [pran java ... fercjmypraject/Main, java: 18|
H
| & EEIEDED || [TOBG: 1 o opened profects
84 |ms
Figure 1.17

The new Java project has been created in NetBeans.

This brings up the New Java Project dialog, shown in Figure 1.20. Enter the
project name, choose the Java runtime to use (default shown here is JavaSE-1.6,
as expected). One option I recommend setting is “Use project folder as root for
sources and class files.” The other option will generate too many subfolders,
making the project even more difficult to manage.

Eclipse does not use any project files to manage projects, but instead uses a
workspace containing one or more project folders with source code files, such that
no “file” is even related to the workspace—it’s just a bunch of folders containing
sources. It’s definitely a different approach than the way most development tools
work, and it can be difficult to use until you get the hang of working within a

32

Chapter 1 = Getting Started with Java

File Edit View Navigate Source Refactor Debug Profile Team Took Window Help |
5 70 Gl W %) @8 [k P RunMainProject 7 Qe o 1
: - - Test Project (MyProject) Alt+F6 t |
iPro.. @ W |[iFiles Services ENEE
|5 & MyProject U Build Main Project F11 1ile 5| & |
| &l Source Packages i Clean and Build Main Project ShifteF11 | | |
=B myprogect Batch Build Main Project... jooae
il [Main.java |
- Ul TestPackages Set Project Configuration »
| @l Ubrases Set Main Project ¥
@ | TestLibraries S
Genesate Javadoc (MyProject)
Run File Shift+ 5
Test File Ctrl«F6
W CheckFile Alt+F
% Validate File Alte Shift+F9 2

Repeat Budd/Run: MyProject (run)

Stop Build/Run

TaE public static void main(String[] args) {
System,out.println("NetBeans makes swa programming essier!"):

: main - Navigator an

|
|
|
Compile File Fa

tyProject (run) % i Tasks

ans makes Java programming easier!

Figure 1.18
Compiling and running the project in NetBeans.

workspace. Note in Figure 1.21 that there are two “projects” listed in the Package
Explorer. By default, a new project like the one we just created has no source code
tiles—we have to add the first source file to the project.

Right-click on the project name in the Package Explorer, then choose New,
Class, as shown in Figure 1.22.

The New Java Class dialog appears (Figure 1.23). Choose your desired source
folder and enter a name such as “Main.” Be sure to check the option “public
static void main(String[] args),” as this will generate our main function for us. If
you don’t select the option, you'll just have to type in extra code.

Now that the source file has been created, add this line to the main() function:

System.out.printin("Doing Java in Eclipse. Yay!");

Edit Source

File Refactor Mavigate Search Project Run Window Help
New Alt+Shift+N b | 2% Java Project
Open File... | 1 Project...

Close Ctrl+W | ¥ Package
Close All Ctrl+Shift+W [@& Class
Save cues || Iohetiace
Save As... G; iy
2 :
Save Al cuteshinss | € | Annotation
o4
Eevert #4 Source Folder
155 Java Working Set
Move 4 Folder
Rename... F2 ¢ File

izl ket B | & Untitled Text File
Convert Line Delimiters To 3 Ef | JUnit Test Gase
Print... Cedsp | [Task
Switch Workspace » | [Example...
Restt T4 Other.. Ctri+N

g2y Import...

5 Export..

Properties Alt+Enter

1 main.java [Drinklava/src]

Exit

Your First Java Program

Figure 1.19
Creating a new Java project in Eclipse.

Run the program by clicking the green “Run” icon on the toolbar, as shown in
Figure 1.24. The output is down at the bottom in the Console window.

JFrame-Powered Application

As mentioned earlier, JFrame makes it possible to do graphics in a Java application
that is normally limited to just console output. JFrame provides a Graphics
context, as does the Applet class, which can be used for drawing. The source code
for a JFrame-based application is not any less code than an Applet project, but it
foregoes the need of a web browser (or appletviewer), meaning we can run such a
program with java.exe. The JFrameDemo project is shown in Figure 1.25, and the
source code listing for the program follows. This is a bit more code than we’ve seen
so far, but this program does more than any previous code.

33

34

Chapter 1 = Getting Started with Java

a New Java Project

Create a Java Project -
Create a Java project in the workspace or in an external location, “

Project name: MyProject

Use default location

Laocation: | CihUsers\jonathan\workspace\MyProject | [Browse... |
JRE
@ Use an execution environment JRE: [}avaSE-l.E v]
() Use a project specific JRE: |jreﬁ - |

() Use default JRE (currently 'jre6') Configure JREs...

Project layout

@ Use project folder as root for sources and class files!

() Create separate folders for sources and class files Configure default...

Working sets

Add project to working sets

Wiarking sets: - i i

@ | <Back | MNea>][Ensh][Cancel

Figure 1.20
Setting the properties for a new Java project in Eclipse.

package jframedemo;
import javax.swing.*;
import java.awt.*;
public class JFrameDemo extends JFrame
{
public JFrameDemo()
{
super("JFrameDemo") ;
setSize(400,400);
setVisible(true);

Your First Java Program 35

ot e
File Edit Source Refactor Mavigate Search Project Run Window Help
— S g = . I |
F-0-Q- HE- OB F- H-F oo = @)
ﬁpmma’é . =g = 0§ Tasklist 2) =0
- s ' AR ARSI B
P (5% Uncategorized
S—: Outline ’VT e FT50
|An outline is not available.
[Z Problems @ Javadoc -L‘Q\ Declaration IE Console G S . B~y "0
No consoles to display at this time.
|
MyProject

Figure 1.21
Managing projects in an Eclipse workspace.

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
public void paint(Graphics g)
{
super.paint(g);
g.setColor(Color.WHITE);
g.fillRect(0, 0, 400, 400);
g.setColor(Color.orange);
g.setFont(new Font("Arial", Font.BOLD, 18));
g.drawString("Doing graphics with a JFrame!", 60, 200);
}
public static void main(String[] args)
{
new JFrameDemo();
}

Chapter 1 = Getting Started with Java

New 2 é Java Project
Go Into Y | Project...
Open in New Window | ¥ Package
Open Type Hierarchy Fd | @& Class
Show In Alt+Shift+W b | @ Interface
i Copy Ctrl+C ‘? i
E= Copy Qualified Name) Sorotation
= Dacte culay | B Source Folder
- 2 .
3¢ Delete Delete 51 Java Working Set
¥ Folder
Remove from Context Ctrl+ Alt+Shift+Down T,
B ath *| & Untitled Text File
Source AteShifteS ¥ | co it Test Case
Refactor AleShIfEET P | = oo
By Import.. [T Example.
L3 Export.. i
| C5 Other.., Ctrl+N
o™ Refresh 3 - [
Figure 1.22

Adding a new source file to the project.

Let’s go over this code. It’s important to understand this basic code because all of
our game projects coming up will be based on the code you see here—extending
JFrame, with a main() method, a paint() method, and a constructor.

First, we need javax.swing, which owns the JFrame class, while java.awt makes
the Graphics class available. The JFrameDemo class is the main class of the
program, which extends JFrame, meaning that our class is a JFrame. There are
some things that come with a JFrame class, such as the paint() method, which
renders the window when the program first starts up. We still need our main()
function, and it has a single purpose: to launch the JFrame-powered class,
JFrameDemo. The JFrameDemo() method is actually the constructor for the class,
meaning it runs when the class is first created. Anything you want to happen
when the window is first created and comes up, you could put in the
constructor. So, we set the window title, the dimensions, and other useful
properties. Figure 1.26 shows the output.

What You Have Learned

Java Class

& The use of the default package is discouraged.

Source folder MyProject

Package: .) (default) m

[T] Enclosing type: | Browse..

Mame: Main
Modifiers: 1@ public () default private protected
[abstract [T final [static

Superclass: -j_avjl.ang.ﬂhject

Interfaces:

Which method stubs would you like to create?
[¥]ipublic static void main{String[] args):
[T] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

|:| Generate comments

Figure 1.23
Adding a source file with the New Java Class dialog.

WHAT You HAVE LEARNED

Well, this has been a pretty heavy chapter that covered a lot of introductory
information about working with several Java development tools, but the goal
was to get the basics covered so that we can jump right into Java game
programming in the next chapter. Consider this a reference chapter on creating

37

38

Chapter 1 = Getting Started with Java

Y el
File Edit Source Refactor Mavigate Search Project Bun Window Help

ki JRE System Librory levaSe-1. public static void main(String[] args) {

7} L uto-generated method atub =)

System.out.println("Doing Java in Eclipse. Yay!"):

&2 Outline 22

3, Main

b

Main [Java ; i C:\Pr‘og{am Files\Java'jref\bin'javaw.exe (Nov 3, 2010 3:18:02 PM)
Doing Java in Eclipse. Yay!

Writable Smart Insert 14:1

w5 @ $-0-Q- HEG- Oy POvED Si-FH-wora- & @)
I3 Package Exploser &1 01 1Main I = 0B ToskList B =0
o |[F] 2Drinklava I - cg-EE elxwala”
4= Drinklava Run As » [T 1lavaApplication AleShiftsX,) |. Find S F Al M Activate..
o Z L
e MyProject Run Configurations... I3 Uncategorized
B (default package) o Faverit args)
:ﬂ Mlin.le l;ﬂﬂl&t oot | i

FhRRV e W

ef main(Stringl]) : veid

|: Prokieme | @ Dnradoe U, Declaration .El Console 3 WX | ¢~;| #EB-~rs>=0

=

Figure 1.24
Running our first Java program in Eclipse.

Java projects with the various development tools, and come back here any time
you need to create a new project but can’t quite remember all of the steps. You

learned about:

m Casual games, what they are, and their importance
m The Java Development Kit (JDK) and Java versions

m Editing and compiling Java code

Standalone Java applications and Java applets

Using Eclipse, NetBeans, and TextPad

What You Have Learned 39

File Edit View Navigate Source Refactor Bun [ebug Prafde Team Took Window Help
nent o) T W D BB
2] v LNEE
BEE-8- Rt FfEfe% awle s
1| packaye jframedems: - u
:T Smport Javax.swing.¥:
3 L smpore java.awr.e:
5 | =
5 public class JrrameDemo extends J¥rame
6 ¢
T public JFrameDemo () -]
L10) t
2 super ("I
10 setSize (400, $00
11 seLViaible (Lrue):
12 DefaultClosedperation (JF:
13-] -
14
| pablic woid paint [Graphics gl
167 ¢
17 super.paint (g);
18 g.aecCalar (Calar FHITE) ¢
13 g-filiRect (0, 0, 400, 400}:
|20
n
2 60, 200):
2z b)
24 L4
kR public static vold main{Stringl] argsl
%67 t
] [new JFrameDenci):
28]
23]
W
£ Output - Wrame_Demo [clean jar) F u | Tasks
w Crwated diz: C.\Dawzey it Jave Cazm V. SE\chaptez01\JFcase i -
fat copying he libraties
w Bublding jae: C:\Usezsh Java Case 37 JFzane AJFzane Deso. jd
B o e on frem the command line without AnE, £yt
i L Java Case W 4 3 tes0l\JFrame Descidist\JFrase Dese. jar"
BUILD SUCCEEEFUL (total time. 0 secusds) i
& [MEEE » < 0 i '

RLE

Figure 1.25
The JFrameDemo project.

Figure 1.26
A JFrame window with a Graphics context for drawing.

40

Chapter 1 = Getting Started with Java

ReEviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

. What does the acronym “JDK” stand for?

. What version of the JDK are we focusing on in this book?

. What is the name of the company that created Java?

. Where on the web will you find the text editor called TextPad?

. In what year was Java first released?

. Where on the web is the primary download site for Java?

. What type of Java program do you run with the java.exe tool?

. What type of Java program runs in a web browser?

O 0 N N Ul A~ W N

. What is the name of the command-line tool used to run a web-based
Java program?

—
(=

. What is the name of the parameter passed to the paint() event method
in an applet?

ON Your OwN

Use the following exercises to test your grasp of the material covered in this
chapter.

Exercise 1

Modify the FirstApplet program so that it displays your own message on the
screen below the current message.

Exercise 2

The JFrame Demo program displayed a message with orange text over a white
background. See if you can change the background color to black and the text
color to green.

CHAPTER 2

JAVA PROGRAMMING
ESSENTIALS

Java is a mature programming language that offers many good features and
capabilities that make it popular on many computer systems. Java is quite
popular among Linux server programmers and administrators, as well as
Windows application programmers. The key aspect of Java that makes it so
appealing is its built-in library support. The C+4+ language cannot even begin to
do what Java can do out of the box, so to speak. That is, you can’t do any
graphics programming in C++ without an extra graphics library (such as
OpenGL or Direct3D). Java, on the other hand, has everything built in (while
still supporting add-on libraries). If you are just getting started as a Java
programmer, then this chapter will help you gain some familiarity with the
Java language. You will learn most of the basics in this chapter that you will need
to write a game. There is a lot more to the Java language than what you will learn
about in this sole chapter, obviously—many whole books have been written on
Java programming. This chapter will help give you a jumpstart if you are new to
Java. If you have experience with Java, you may find the information to be overly
simple, but it is more important for a beginner to understand concepts rather
than standards.

Here is what you will learn in this chapter:

m Writing Java code using applets

m How to use the Java data types

41

42

Chapter 2 = Java Programming Essentials

m The basics of object-oriented programming

m Writing Java classes

JAVA APPLETS AND APPLICATIONS

There are two different types of programs you can compile with Java:
applications and applets. A Java application—the most common type of Java
program—is a program compiled to run on a computer as a standalone
application. A Java applet, on the other hand, is compiled specifically to run
in a web browser. Java applications are usually written to run as server programs
or just for one user, whereas applets run as client programs in a networked
environment. For example, Java Web Server (JWS) is a Java application that
hosts web page files to a web browser (such as Internet Explorer or Mozilla
Firefox), and it is comparable to Microsoft’s Internet Information Server (IIS)
web server and the open-source Apache web server. But, Java applications are
not solely devoted to services, as we can use the Swing library and the Abstract
Windowing Toolkit (AWT) to bring up a graphical window for an application
with all the same features as an applet window. Since applications are much
easier to use, requiring fewer steps to compile and run, this is the approach we
are taking in this new edition. The final game of Galactic War in the last chapter
will support both.

Web Server Technology Explained

The main difference is that Microsoft’s web server (IIS) and the Apache web
server were written in C++, while JWS was written in Java. JWS can host
regular HTML web pages and custom Java Server Pages (JSP), which are custom
web server programs written in Java. A Java applet is different: An applet is a
“client-side” program that runs entirely in the web browser, not on the web
server. A JSP application literally runs on the web server and sends content to
the web browser, whereas an applet runs only in the web browser. For this
reason, we say that server programs run on the “back end,” and applets run on
the “front end.”

An applet is like an HTML file that a web browser (like Firefox) downloads from the
web server and then displays to the user. Microsoft’s IIS web server has gained in
popularity and market share in recent years, thanks in part to the new .NET

Java Applets and Applications

Framework, ASP.NET, and Web Services technologies. Active Server Pages .NET
(ASP.NET) pages are similar to JSPs in concept, but ASP sites are written in Basic or
C#, while JSP sites are built entirely with Java. If you don’t know much about web
servers and web applications, don’t worry—we will only be writing web client
programs, not server programs.

Hosting Java Applets

If you really find that you enjoy Java, then you may want to consider creating or
enhancing your own website with Java applets. You can build an entire website
as one large applet or you can embed many different applets inside a standard
HTML page to enhance your website. One of the strong suits of Java is that you
don’t need any special type of web server in order to use Java on your website.
Java has been around since 1995, and web browsers have supported Java since
Java 1.1. Microsoft Internet Explorer and Mozilla Firefox support the latest
version of Java. To update your browser, simply install Java SE 6, and the
installer will add a plug-in to your web browser automatically. This is necessary
if you want to run the applet examples in this book.

Compiling Java Code

The easiest way to compile a Java program is by using the command-line
compiler. As you may recall from Chapter 1, you use the javac.exe program to
compile a .java file into a .class file. You then use the appletviewer.exe program in
conjunction with an .html container file with an embedded applet tag to run your
Java applet in the Applet Viewer program. You can also open this HTML test file
in a web browser to run the applet. One of the main reasons why TextPad is such a
useful editor is that it generates the HTML container file automatically when it
invokes AppletViewer, which is a real time saver if you're in a hurry.

We looked at NetBeans and Eclipse in the previous chapter. These are relatively
large Integrated Development Environments (IDEs) for building software
projects. For simple games, I recommend using a text editor like TextPad and
the command-line tools. But one really great feature of both NetBeans and
Eclipse is syntax lookup, which lists the contents of classes and parameters for
functions, effectively eliminating the need for a manual! This is one feature you
won’t get with a text editor, and so I recommend using one of these IDEs for
larger game projects.

43

44

Chapter 2 = Java Programming Essentials

THE JAVA LANGUAGE

There are many built-in classes in Java, but we will only be using a few of them
to build games. Now then, I suppose even a word like “class” might be a mystery
if you are new to programming. A class is a sort of container that holds both
data and functions. Do you have any experience with the C++ language? Java
was based on C++ by “borrowing” all of the best features of C++ and dropping
the more difficult aspects of the language. The programmers who developed the
Java specification created a language that is more of an evolution than some-
thing created. C++ is a powerful language used to build everything from cell
phone games to operating systems to supercomputer simulations. Linux was
built with C++. Microsoft Windows was built with C++. The Java Develop-
ment Kit was built with C++! The power of C++ makes it difficult for
beginners to grasp, and even professionals who have spent many years working
with databases and web applications may be stymied when confronted with a
mysterious C++ error message. It is a world-class language, and there are
dozens of compilers for it on every computer system, but it is very difficult to
master. Here is a list of software built with the C4++ language:

m Microsoft Windows
m Microsoft Office
m Microsoft Visual Studio
m NVIDIA video card drivers
m Mozilla Firefox
= Linux core
m Mac OS X
m Apple iOS (iPod, etc.)
m OpenOffice
I could go on and on, listing thousands of operating systems, productivity

applications, video card device drivers, compilers, assemblers, interpreters, and
so on, that were built with C++.

Now consider Java. There is just one compiler for it, the Java Development Kit
(JDK), which is available for most computer systems. Java is innovative enough

The Java Language

to be called a new language, but it was heavily influenced by C++-. Java is much
easier to program than C++. Java automatically handles memory management
for you—all you do is allocate memory for new variables and objects, and then
you don’t really need to worry about freeing up the memory afterward. Java uses
a technology called garbage collection to remove unused things from memory
that your program no longer needs. To give you an analogy, in the realm of Java,
you don’t even need to carry the trashcan out to the street for pickup because the
garbage collector just picks up all the trash thrown about in your house. The
garbage collector is sort of like a little robot that scurries about the house
searching for trash to pick up. When you are done with your Chinese takeout,
just pitch the container and your napkin, and the little trash robot will find it
and clean it up for you.

This could lead to sloppy programming habits if you spend many years
programming in Java and then switch to a more demanding language like
C++, so Java makes it possible for you to write solid code that cleans up after
itself if you wish to use it. There is a drawback to garbage collection, though: You
can’t tell it specifically when to pick up the trash (variables and objects that are
no longer used), only that there is trash to be picked up (as with the real-world
garbage collectors most of the time!).

Java Data Types

Let’s now learn about the basic data types available in Java, because you will be
using these data types throughout the book (and presumably for the rest of your
programming career).

Integer Numbers

Java supports many data types, but probably the most basic data type is the
integer. Integers represent whole numbers, which are numbers that have no
decimal point. There are several types of integer that you may use depending on
the size of number you need to store. Table 2.1 shows the types of integers you
can use and their attributes.

Since Java programs can run on a wide variety of computer systems (this is
called cross-platform support), you might be wondering whether these data type
values will be the same on every system. After all, a Java program can run on a

45

46

Chapter 2 = Java Programming Essentials

Table 2.1 Integer Data Types

Type Size in Bits Range

byte 8 bits —128 to 127

short 16 bits —32,768 to 32,767

int 32 bits —2,147,483,648 to 2,147,483,647

long 64 bits —9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

little cell phone or it can run on a supercomputer, such as a Cray Red Storm
system.

Tip

For more information about supercomputers, check out www.top500.0rg for a list of the top 500
supercomputers in the world. At the time of this writing, the most powerful computer is Oak Ridge
National Laboratory’s 224,162-core Jaguar, based on a Cray XT5-HE, which achieves a peak of
2,331,000 GFlops. Four years ago, when the second edition of this book was published, the top
supercomputer was IBM's BlueGene/L at 280,000 GFlops—a nearly ten-fold increase.

Java gets around the data type inconsistency in C++ by defining that data types
will be exactly the same, regardless of the computer system on which the Java
program is running. It’s the job of the Java Runtime Environment (JRE) to
determine at runtime how the current computer system will handle the data
types your Java program is trying to use, and it does this seamlessly behind the
scenes.

Definition

FLOPS is an acronym that stands for FLoating point OPerations per Second, used to measure
computer performance.

Floating-Point Numbers

There are two data types available in Java for working with floating-point
numbers. A floating-point represents a decimal value. The f1oat data type stores
a 32-bit single-precision number. The double data type stores a 64-bit double-
precision number. Table 2.2 shows the specifics of these two data types.

www.top500.org

The Java Language 47

Table 2.2 Floating-Point Data Types

Type Size in Bits Range
float 32 bits 1.4E-45 to 3.4028235E+38
double 64 bits 4.9E-324 to 1.7976931348623157E+308

The easiest way to determine the range for a numeric data type is to use the
MIN_VALUE and MAX_VALUE properties of the base data type classes. Although we
use lowercase to specify the type of a numeric variable (byte, short, int, Tong,
float, and double), these base numeric types are actually instances of Java
classes (Byte, Short, Integer, Long, Float, and Double). Therefore, we can take
a peek inside these base classes to find some goodies. The MIN_VALUE and
MAX_VALUE properties will give you the range of values for a particular data type.

I have written a program called DataTypes that displays these values in an applet
window. The output is shown in Figure 2.1, and the source code listing follows.
This program is on the companion website (www.courseptr.com/downloads) in
the \sources\chapter02\DataTypes folder.

Byta r =128 te 127

Short : -3Z7e8 to 3276/

Int : —2147403640 to 2147403647

Long 1 —9223372036854775808 to 9223372036854775807

Float : 1.4E-45 to 3.4U028BZ35E38
Double : 4.9E-324 to 1.7976931340623157E300

Figure 2.1
The DataTypes program displays the range for each numeric data type.

www.courseptr.com/downloads

48

Chapter 2

m Java Programming Essentials

import java.awt.*;

import javax.swing.*;

public class DataTypes extends JFrame {

public DataTypes() {

super("DataTypes");
setSize(600,400);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

public void paint(Graphics g) {

g.
.drawString("Byte : " +

g

}

setFont(new Font("Courier New", Font.PLAIN, 16));

Byte .MIN_VALUE + " to " + Byte.MAX_VALUE, 20, 50);

.drawString("Short : "+

Short .MIN_VALUE + " to " + Short.MAX_VALUE, 20, 70);

.drawString("Int : " +

Integer MIN_VALUE + " to " + Integer.MAX_VALUE, 20, 90);

.drawString("Long : " +

Long.MIN_VALUE + " to " + Long.MAX_VALUE, 20, 110);

.drawString("Float : " +

Float .MIN_VALUE+ " to " + Float.MAX_VALUE, 20, 130);

.drawString("Double : " +

DoubTe .MIN_VALUE + " to " + Double.MAX_VALUE, 20, 150);

public static void main(String[] args) {
new DataTypes();

}
}

Characters and Strings

There are two data types in Java for working with character data: char and
String. Note that char is a base data type, while String is automatically
recognizable as a class (due to the uppercase first letter). Java tries to make
programming easy for C++ programmers by using many of the same basic data
types in order to make it easier to convert C and C++4- programs to Java. So we
have a base char and a String class; of course, as you now know, every data type

in Java is a class already.

The Java Language

You define a char variable like this:

char studentgrade;
char examscore = "A";

The char data type can only handle a single character, not an entire string. Note
that a character is identified with single quotes ('A") rather than double quotes,
necessary for strings. The String data type (or rather, class) is very easy to use
and is used by many of the Java library methods. (Remember, a method is a
function.) For instance, you have seen a lot of the Graphics class so far in this
chapter because it is the main way to display things (such as text) in an applet
window. Here are a couple of different ways to create a string:

String favoritegame = "Sid Meier's Civilization V";

String username;

username = "John" + " R. " + "Doe";

In addition to supporting the plus operator for combining strings (something
that C programmers look upon with envy), the String class also comes equipped
with numerous support methods for manipulating strings. I won’t go over every
property and method in the String class here because that is the role of a Java
reference book—to cover every single detail.

Tip

If you are enjoying Java so far and you think you will stick with it, you will definitely need a
comprehensive Java language reference book. | recommend Herbert Schildt's Java: The Complete
Reference, 7th Edition (McGraw-Hill Osborne Media, 2006). A good introductory book for
beginners is John Flynt's Java Programming for the Absolute Beginner, Second Edition (Cengage,
2006). If you want just a good online reference, the online docs for Java can be found at http://java
.sun.com/reference/apil.

One good example of a function we’ve been using in this chapter is Graphics
.drawString(). This function has many overloaded versions available (over-
loading is explained later in this chapter, in the section entitled “Object-Oriented
Programming”) that give you a lot of options for printing text to the applet
window, but the main version I use is this:

drawString(String str, int x, inty)

49

http://java.sun.com/reference/api/
http://java.sun.com/reference/api/

50

Chapter 2 = Java Programming Essentials

Table 2.3 String Class Methods

Method Description
contains Returns true if one string is contained in another string
endsWith Returns true if the string ends with a certain string
equalsIgnoreCase Compares strings without considering uppercase or lowercase
Tength Returns the length of the string
replace Replaces all occurrences of a sub-string with another sub-string in a string
trim Removes blank spaces from the start and end of a string
Note

We have just scratched the surface of Java 2D (with the Graphics and Graphics2D classes).
This will be the focus of most of Part Il, covering Chapters 4 through 10. You will learn about class
inheritance later in this chapter.

Table 2.3 lists just some of the useful methods in the String class. This is by no
means a complete list.

If you want to see all of the properties and methods in a class (such as String),
the easiest way to get a list, aside from using a reference book, is to create an
instance of a class (such as String s) and then use the dot operator (.) to cause
NetBeans or Eclipse to bring up the contents of the class. This built-in “look”
feature works with the Java language classes as well as classes you have written
yourself, as shown in Figure 2.2.

Possibly the single-most beneficial advantage to using an IDE is the built-in help
system, which is available in tools such as NetBeans. If you aren’t using an IDE
that provides context-sensitive help and class member lists, then you will need a
good reference book or website.

Tip

If you are looking for help on a specific Java language term or class, the easiest way to look up that
information is by using Google. Search “java keyword” to quickly locate the reference. For
example, the first Google result for “java graphics2d” will most likely be a URL to one of Sun’s own
Java reference pages. Or you can just go straight to the source and search through the class listings
at http://java.sun.com/reference/api/. Looking up the reference instead of using the editor's pop-up
help may not be as convenient, but it will make you a stronger programmer.

http://java.sun.com/reference/api/

The Java Language 51

_hl! Edhit We’_lii.wg_ﬂl: Source Rd.h’.hl Run Debug Profile _'Ig_am_im_k Window H!_i_p .
Rk w % () (et i =) ‘"‘a“ % 53 ER,- @ - [[sexan e]
[ipr. @ |fies iservices | [simpletiassjova 4] muckgnn w6 vehae joa a1 EHEE
& i S PE-B-aefEfreae s aq
- Souree Padkages 16 -
[=8C5] :dehdlpm> 17
| g} SrpheClass. java 18
&) wudcjava 18
] vehide java 30
| Test Fackanes 21 Sk GBIRCT GEANGE & CONSTIUETD =
| Ubraries 22 lightning = new truck("Ford SVI", "F-150 Lightning", "S.4L Tzitcn VO™, 2700): |
| =. et Ubeacicr 23 lightning.
FTRS 1 @ equals (Object obi) boolean 4
I 25 @ getClass () Class<?s| |l
@ punlic void Ry T
270 i @ gettake () String |
28 let's| @ geeModsl () .\ir.ranq; il
| a8 g-2ecFol @ gethumihesls () int|
a0 @ getTowingCapacity () int |
| 2 01| @ hashCode {} int s
| n §-araws| @ notify () voxaf | 500 2
| 33 g.draws| @ natifyall () veid| ii‘!;eels[!, 20, T0);
3 @ setEngine (String gine} void|
s di8pl| @ setMake (String o boolean |
EL) g.-aravs) § setHodel (3tring o void | E"“— 20, 90):
anl G-drawS) § secHumiheels (int cour boolean| Fel{), 20, 110);
|| g.dzrewS| @ sctTowingCapacity (int valuc) void — Pgine(), 20, 130);
39 g.drawd| @ cascring () String
10 vedid -y 150):
41 1 e
4z
4 public stat|
“T ! |public String wetBagine ()
@ new Sim
46 1 Javadec not found. Either Javadoc documentation for this item does not exst or you
a1 have not added specified Javadoc in the Java Platform Manager or the Library
Manager.
| -
|
| =
[}
& ([CDEDEDED |
2 |msll

Figure 2.2
NetBeans displays the contents of a class with a pop-up window.

Booleans

The Boolean data type can be set to either true or false, and it is useful as a
return value for methods. For instance, in some of the example programs you've
seen so far, there have been methods that returned a Boolean based on whether
the code succeeded. You can declare a boolean variable like so:

boolean gameover = false;

Here is a short method that returns a Boolean value based on whether a value is
within a boundary of a minimum and maximum value:

public boolean checkBounds(long val, Tong lTower, Tong upper) {
if (val <Tower || val > upper)

52

Chapter 2 = Java Programming Essentials

return false;
else
return true;
}

Here is an example of using the checkBounds method to determine whether a
sprite’s position on the screen (in the horizontal orientation) is within the
screen’s boundary:
spriteX =spriteX +1;
if (checkBounds(spriteX, 0, 639) == true)

spriteX =20;
This short example assumes that the spriteX variable has already been declared
earlier in the program. The sprite’s X position on the screen will wrap around to
the left edge anytime the sprite moves off the right edge of the screen. This
Boolean method can also be written like this, where the == true is assumed in the
if statement:

if (checkBounds(spriteX, 0, 639)) ...

Note that I have left out the == true in this line of code. This is possible because
Java evaluates the return value of the checkBounds method and replaces the
method call with the return value when the program is running. Thus, if the
checkBounds method returns true, the if statement becomes this:

if (true) ...

This is why we can leave the == true out of the equation. Conversely, when you
want to test for a false return value, you can insert == false in the if statement
or you can use the logical negative operator (!) in the statement:

if (IcheckBounds(spriteX, 0, 639)) ...

The result is that if checkBounds returns false, the if statement will execute the
code that follows; otherwise, the code is not executed. Speaking of which, you
may include a single line of code after an if statement, or you may include a
code block enclosed in curly braces as follows. This is especially helpful if you
want to do more than one thing after a conditional statement returns true or
false:

public booTean checkBounds(Tong val, Tong Tower, Tong upper) {
if (val < Tower || val > upper) {

The Java Language

return false;
} else {

return true;

}

The use of curly braces in this new version of checkBounds might not change
anything, but it does allow you to add more lines of code before each of the
return statements. (For instance, you may want to display a message on the
screen before returning.)

Arrays

An array is a collection of variables of a specific data type that are organized in a
manageable container. An array is created using one of the base data types, a
Java library class, or one of your own classes. To tell Java that you want an array,
attach brackets to the data type in your variable declaration:

int[] highScorelist;

But there are two steps to creating an array because an array must first be
defined, and then memory must be allocated for it. First, you define the data type
and array variable name, then you allocate the array by specifying the number of
elements in the array with the new operator:

int[] studentGrades;
studentGrades = new int[30];

Note that I have allocated enough memory for this array to hold 30 elements in
the studentGrades array. You can also define a new array with a single line of
code:

int[] studentGrades = new int[30];

I don’t know about you, but I enjoy writing beautiful code like this. I get a chill
when writing code like this because my imagination starts to take oft with
visions of scrolling backgrounds and spaceships and bullets and explosions, all of
which are made possible with arrays. But the real power of an array is made
obvious when you start iterating through an array with a loop. If you need to

53

54

Chapter 2 = Java Programming Essentials

update the values of this array, you might access the array elements individually
like this:

studentGrades[0] = 90;

studentGrades[29] =100;

If you truly need to set each element in an array individually, then an array can
still help to cut down on the clutter in your program. And an array will always
benefit from processing in a loop when it comes to things such as printing out
the contents of the array or storing it in a data file, or for any other purpose you
may have for the array. Let’s set all of the elements in an array to a starting value
of zero (this is good programming practice):
Tong[] speed = new Tong[1007;
for (int 1 =0; 1 <100; i++) {

speed[i]=0;
}
There is another way to create an array by setting the initial values of the array
right at the definition. This array of five floats is defined and initialized in
memory with starting values at the same time.

float[] radioStations = { 88.5, 91.3, 97.7, 101.5, 103.0 };

You can also create multidimensional arrays. An array with more than one
dimension will have a multiplicative number of elements (based on the number
of elements in each dimension) because for every one element in the first
dimension, there are N elements in the next dimension (based on the size of the
next dimension). In my own experience writing games, I seldom use more than
one dimension for an array because it is possible (and more efficient) to use a
single-dimensioned array, and then index into it creatively to deal with multiple
dimensions.

Here is an example two-dimensional array that stores the values for a game level.
The pound characters (#) represent walls (or any other object you want in your
game) while the periods (.) represent dirt, grass, or any other type of image. I
presume that this is a level for a tile-based game, where each character in the
array is drawn to the screen as a tile from a bitmap file.

The Java Language

char[][] gamelevel = {
U L

}s

Another common practice is to create a game level with just numbers (such as 0
to 9). Some programmers prefer to use character-based levels because they sort
of look more like a game level, and are, therefore, easier to edit. I tend to prefer
integer-based game levels using a level editor such as Mappy, which exports
levels as a comma-delimited array of numbers. Here is how Mappy might export
the same level with numeric data:

N = == = =N
N = === =N
[DSI DS DGR DGR DGR D S R)

You can download Mappy from www.tilemap.co.uk. The subject of tiled scrolling is not covered in
this book. For an exhaustive guide to the subject, | refer you to Visual Basic Game Programming for
Teens, 3rd Edition (Course PTR, 2010) (or the sister book Visual C# Game Programming for Teens).
Although this book covers Basic, it is one of the few books that explains how to build a level editor
from scratch, and the concepts can be applied to Java should you wish to create such a game.

Can you make out the similarity between the two game levels shown here? It’s
all the same data, just represented differently. When Mappy exports a level like
this, it sends the data to a text file that you can then open and paste into your

game’s source code. To make it work, you would define an array to handle the
data like this:

www.tilemap.co.uk

56

Chapter 2 = Java Programming Essentials

int[1[] gamelevel = {
{(2,2,2,2,2,2,2,2,2,2},
{2,1,1,1,1,1,1,1,1, 2},
{2,1,1,1,1,1,1,1,1, 2},
{2,1,1,1,1,1,1,1,1, 2},
{2,1,1,1,1,1,1,1,1, 2},
{2,1,1,1,1,1,1,1,1, 2},
(2,2,2,2,2,2,2,2,2,2}

}s

Tip

Don't forget the semicolon at the end of an array declaration, or you will get some very strange
errors from the Java compiler.

I prefer to treat a game level (or other array-based data sequence) as a single-
dimensioned array because data like this is easier to work with as a one-
dimensional array. Here is how I would define it:

int[] gamelevel = {
2,2,2,2,2,2,2,2,2,2,
2,1,1,1,1,1,1,1,1, 2,
2,1,1,1,1,1,1,1,1, 2,
2,1,1,1,1,1,1,1,1, 2,
2,1,1,1,1,1,1,1,1, 2,
2,1,1,1,1,1,1,1,1, 2,
2,2,2,2,2,2,2,2,2,2

b

Do you see the subtle difference between this 1D array and the 2D array defined
before? All I need to know are the width and height of the array data, and then I
don’t need multiple dimensions. In this example, this game level is 10 tiles wide
and 10 tiles deep, for a total of 100 tiles. (A tile is a small bitmap used to build a
game world in a 2D scrolling game, and it very closely resembles the analogy of
floor tiles in the way it is used.)

The Essence of Class

In case you haven’t noticed, I've been talking about classes a lot. That’s because
you can’t really get around the subject when writing a Java program. The main
part of a Java source code file itself is a class. You might have seen a C program

The Java Language 57

before and you might already be familiar with the main() function. Here is a
simple C program:
int main(int argc, char argvl]l) {

printf("I ama C program.\n");

return 0;

}
Let’s take a look at the same program written in pure C++:

#include <iostream>

int main(int argc, char argvl[]) {
std::cout << "I ama C++ program." << std::endl;
return1;

}
Now take a look at the same program written in Java:

import java.io.*;
pubTic class Sampledava {

public static void main(String args[]) {

System.out.printin("I am a Java program.");

}
}
Do you see any similarities among these programs? You should, because they are
listed in evolutionary order. Now, I don’t want to get into an argument with
anyone about whether Java is truly an evolutionary leap ahead of C++ because
I'm not sure if I believe that in the strictest sense (with a feature comparison).
But I do like to think of Java as the next logical step above C++; it is easier, less
prone to error, but not as powerful. Doesn’t that describe any system that tends
to evolve over time? Take the computer industry itself, for instance. The earliest
computers were built with thousands of vacuum tubes, which were difficult to
maintain and very prone to error; and as far as power consumption goes, I think
the computers of old were definitely more powerful than the computers we
commonly use today—but let’s not talk about performance, which is no contest.

The C program is quite simple and maybe even readable by a non-programmer
(who may not understand anything other than the printf line, and even then with
much confusion). The C++ program is so much gobbledygook to anyone but a
programmer. But those of us with a C++ background often describe C++ code
as beautiful and elegant, with a powerful, perhaps even intimidating, lure. The Java

58

Chapter 2 = Java Programming Essentials

program is very similar to the C and C+4+ programs. Like the C++ program, the
Java program must “get something” from “somewhere else” in the form of
the import java.io.* statement. This java.io is a library that provides access to
the System.out class, which is used for printing out text (as you probably guessed).
But the biggest difference is that the Java program is located inside a class. This
class is called SampleJava, and inside this class (enclosed with curly braces) is a
main function very similar to the main functions found in the C and C++
programs.

What is this SampleJdava class, you may ask? The truth is, everything in Java is a
class, and it is not possible to do anything useful in Java without using a class.
All source code that you write in Java will be enclosed inside a class definition.

The main Function

The core of a Java application is the main function. (Note that applets typically
don’t have a main function, as I'll explain shortly.) The main function has this
basic format:

public static void main(String args[]) { }

The parameter (String args[1) allows you to pass information to the Java
program and is only practical when developing a Java application (rather than
an applet) to which you can pass parameters, presumably from a command
prompt or shell. You can pass parameters to a Java applet, but that is not done
very often. I once worked for a company that built vehicle tracking systems
using GPS (global positioning system), and my job was to maintain the Java
program that displayed a map with all the vehicles in the state of Arizona
moving along their routes. This Java program received vehicle tracking infor-
mation from a server, and then displayed it in an applet.

Caution

Java applets don’t need a main function because there are several events that are found in an
applet instead (such as init and paint).

Let’s dissect the main function to help you better understand what it does. The
term public specifies that this function is visible outside the class. (Remember,
every Java program runs inside a class.) The static term specifies that the
function definition never changes and is not to be inherited (borrowed for use in
another function). The static keyword is optional and not often used in an

The Java Language

applet. The void term means that the function does not return a value. Every
Java application you write will have a main function, just like every C and C++
program. However, a Java applet, which runs in a web browser, contains events
instead and is not in complete control in the same way that a standalone Java
application (with a main method) is.

However, you can write Java classes that don’t have a main function. Why would
you want to do that? A class is usually created to perform a specific task, such as
the handling of sprites in a game. You might write a sprite class that knows how
to load a bitmap file and draw a sprite on the screen; then the main Java
program (with the main function) will consume or use the sprite class, which
itself has no main function. A class has its own variables and functions, some of
which are hidden inside the class itself and invisible outside the class. What I'm
describing here are some of the key aspects of object-oriented programming, or
OOP. In some cases, as when developing an applet, you may just use the paint
event rather than using a main function. (More on that later.)

Object-Oriented Programming
There are four main concepts involved in OOP, though you may not use all of
them in every class you write:

m Data hiding

m Encapsulation

m Inheritance

m Polymorphism
I'll briefly talk about each of these concepts because you will be dealing with these
throughout the book. I don’t spend a lot of time discussing advanced concepts like
these while writing Java games, and this book is not intended as a primer on the

Java language. Hundreds of books have been written about Java programming,
including some very complex textbooks on the subject used in college courses.

Data Hiding

Data hiding is a key concept of OOP because it provides a way to protect data
within an object at runtime from direct manipulation. Instead of providing

59

60

Chapter 2 = Java Programming Essentials

access to certain pieces of data, a class definition will include functions (often
called methods or accessors/mutators in OOP lore) for retrieving and changing
data (often called properties) that is hidden within the class definition. An
accessor function retrieves a hidden variable; a mutator changes a hidden
variable.

This way, the programmer can specify exactly what changes can be made to a
private variable through the built-in mutator functions and return custom-
formatted data through the accessor functions. For instance, if you want to make
sure that a birth date is valid, the mutator function can restrict changes to a
certain range (such as 0 to 120). The following source code demonstrates the
concept of data hiding. I have intentionally kept the code listing simpler by not
including any comments.

public class vehicle {
private String make;
private int numwheels;

public String getMake() {
return make;
}
public boolean setMake(String newmake) {
if (newmake.length() > 0) {
make = newmake;
return true;
} else {
return false;
}
}

public int getNumWheels() {
return numwheels;
}
public boolean setNumWheels(int count) {
if (count > 0 && count < 20)
{
numwheels = count;
return true;
} else {
return false;

The Java Language

}

Encapsulation

Encapsulation is related to data hiding in that it describes how information and
processes are both handled internally by a class. These two concepts are often
used interchangeably, depending on the opinion of the programmer. (I prefer to
use the term encapsulation rather than data hiding.) 1 would suggest that
encapsulation involves modeling a real-world entity, whereas data hiding
describes the ability to use private variables in a class. It's common to
encapsulate a real-world entity by writing a class that describes the data and
functions for working with that data. In the vehicle class example, I have
encapsulated the specifications for a basic vehicle inside a class with hidden (or
private) data members and public functions (or methods).

Inheritance

Inheritance describes the ability to reuse class definitions and to make changes
to a subclass that relies on a base class. For instance, the vehicle class might be
used as a basis for many subclasses covering a wide range of vehicles, from two-
wheel motorcycles to 18-wheel semi trucks. When you are writing the code for a
class, it is best to put each class inside its own source code file. Java allows you to
inherit from a single base class.

Note

Although C++ allows you to inherit from multiple base classes, this feature often causes more
problems than it solves, so it is seldom used. Instead of multiple inheritance, Java allows you to use
multiple interfaces—which are guidelines for the properties and methods that should be found
within a particular class.

For instance, the SimpleClass program includes the source code listing for the
vehicle class, and it is stored in a file called vehicle.java. Also included in the
SimpleClass project is the main source code file called SimpleClass.java—and
this file “consumes” or uses the vehicle class defined in the vehicle.java file.
Additional classes can be written and saved in their own source files.

61

62

Chapter 2 = Java Programming Essentials

Tip

To add a new class to your project, just create a new text file with a .java extension and compile it
separately from your main program file. This is very easy to do using TextPad by pressing Ctrl+1 to
compile your Java code.

A constructor is a method that is called whenever you create a new class in your
program. I'm not talking about typing in a new class, but when a class is
instantiated into an object at runtime. When a new class is created (with the new
operator), the class definition is used to construct an object. See where the
keyword comes in here? The new object is “constructed” when it is being created
at runtime; the class is a blueprint used to build or construct the object at
runtime.

Definition

Instantiate means to create or to construct. Within the context of object-oriented programming,
new objects are instantiated when they are created at runtime from the blueprint specified in a
class definition (such as the vehicle class).

When I click the OK button on the Class Wizard dialog box, a new file called
truck.java is added to my project, and it contains this source code:

pubTic class truck extends vehicle {

public truck() {

}
}
This is a nice, clean starting point for a new class. Note that this class inherits
from the vehicle class (extends vehicle), and it includes a simple constructor
(public truck()). This constructor is called whenever you use new to create a
new truck object, using code like this:

truck silverado = new truck();

The constructor is specified after the new operator in this line of code, and this is
called an empty constructor. If you want to pass parameters to a constructor, you
can do so by defining another version of the constructor, which is a topic that
needs to be covered in the next section on polymorphism.

The Java Language

Polymorphism

Polymorphism is a complex word that, when broken down, equates to poly
(“many”) and morph (“shape”); therefore, polymorphism means “many shape”
or “many shapes.” Java allows you to write many versions of a function (or
method) with different sets of parameters. When you write more than one
version of a method, you have overloaded that method. Overloading is a
technical programming term that describes polymorphism at work.

Tip

| have been using the terms function and method together up to this point. | will refer to method
from this point forward. Just note that a method is the same as a function, and this applies to
accessor/mutator functions (terms that are used by C++ programmers). Just remember: A property
is a variable, and a method is a function.

The complete truck class source code listing demonstrates polymorphism. Note
the constructor, truck(), which has been overloaded once with an alternative
version with the following syntax:

public truck(String make, String model, String engine, int towing)

You will probably not pass all of the data to a class in this manner all at once, as
it is not usually very practical. You may pass any values to the constructor that
you think will help with the initialization of the object that is being instantiated,
but keep in mind that there are methods available for reading and changing
those variables (or properties) as well.

Do you see how the default constructor includes several method calls to set the
private variables to some initial values? This is a good practice to do when
creating a class definition, because it eliminates the chance of a null-pointer
runtime error from occurring—which is common when working with strings
that have not yet been set to a value. I've decided not to include a string length
check in the set functions to make the source code easier to read, but this sort of
built-in error handling is a good idea.

public class truck extends vehicle {
private String model;

63

64 Chapter 2 = Java Programming Essentials

private String engine;
private int towingcapacity;

public truck() {
setMake("make");
setNumWheels(4);
setModel("model");
setEngine("engine");
setTowingCapacity(0);

public truck(String make, String model, String engine, int towing) {
setMake(make);
setModel(model);
setEngine(engine);
setTowingCapacity(towing);
}

public String getModel() {
return model;

}

public void setModel(String newmodel) {
model = newmodel;

}

public String getEngine() {
return engine;

}

public void setEngine(String newengine) {
engine = newengine;

}

public int getTowingCapacity() {
return towingcapacity;

}

public void setTowingCapacity(int value) {
towingcapacity = value;

}

The Java Language

Now let’s make some changes to the main source code in the SimpleClass.java
file. This is the part of the program that consumes, or uses, the vehicle and
truck classes. Here is the complete listing:

import java.lang.*;
import javax.swing.*;
import java.awt.*;

public class SimpleClass extends JFrame {
vehicle car;
truck Tightning;

public SimpleClass() {
super("SimpleClass");
setSize(600,400);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//initialize a vehicle object

car =new vehicle();

car.setMake("Ford");

car.setNumWheels(4);

//initialize a truck object using a constructor

1ightning = new truck("Ford SVT", "F-150 Lightning",
"5.4L Triton V8", 7700);

1ightning.

public void paint(Graphics g) {
//let's use a nice big font
g.setFont(new Font("Verdana", Font.BOLD, 12));

//display the car info
g.drawString("Car make: " + car.getMake(), 20, 50);
g.drawString("Number of wheels: " + car.getNumWheels(), 20, 70);

//display the truck info

g.drawString("Truck make: " + 1ightning.getMake(), 20, 90);
g.drawString("Truck model: " + Tightning.getModel (), 20, 110);
g.drawString("Truck engine: " + Tightning.getEngine(), 20, 130);

65

66

Chapter 2 = Java Programming Essentials

g.drawString("Truck towing capacity: " +
Tightning.getTowingCapacity(), 20, 150);
}

public static void main(String[] args) {
new SimpleClass();
}
}

What is the most significant part of this program that might seem unusual or
surprising? Well, take a look at those last few lines of code where the truck
information is displayed on the screen. The truck is using a method called
getMake() that is not even defined in the truck class; this is a method found only
in the vehicle class, from which the truck class was inherited. That is the real
power of inheritance—the ability to reuse functionality while enhancing existing
classes.

I have added the truck class to the SimpleClass program, which is where
the vehicle class may also be found. You can open the SimpleClass project
from the companion website materials (www.courseptr.com/downloads) in the
\sources\chapter02 folder. Figure 2.3 shows the output from the current version
of the program up to this point.

G = = =

Car make: Ford

Mumber of wheels: 4

Truck make: Ford S¥T

Truck model: F-150 Lightning
Truck engine: 5.4L Triton ¥8
Truck towing capacity: 7700

Figure 2.3
The SimpleClass program now demonstrates inheritance with the truck class.

www.courseptr.com/downloads

Review Questions 67

WHAT You HAVE LEARNED

This chapter provided an overview of the basics of Java programming. You
learned about the differences between a Java application and a Java applet, and
how to write programs of each type and then compile and run them. You
learned the basics of object-oriented programming and many other Java
programming issues that will be helpful in later chapters. Specifically, this
chapter covered:

m How to write a Java application

m How to write a Java applet

m How to compile a Java program

ReviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

(@)

1. What is the name of the JDK tool used to compile Java programs?
2. Which JDK command-line tool is used to run a Java application?

3.
4
5

Which JDK command-line tool is used to run a Java applet?

. What are two good, free Java IDEs recommended in this chapter?

. Encapsulation, polymorphism, and inheritance are the keys to what pro-

gramming methodology?

. What’s the main difference between a Java application and an applet?

. Which method of the Graphics class can you use to print a text message

on the screen?

. How many bits make up a Java integer (the int data type)?
. How many bits are there in a Java long integer (the Tong data type)?
10.

What programming language was Java based on?

68

Chapter 2 = Java Programming Essentials

ON Your OwN

Use the following exercises to test your grasp of the material covered in this
chapter.

Exercise 1

Write your own Java class and then use it to extend an inherited class to try out
the concepts of inheritance and encapsulation.

Exercise 2

Modity your new class by adding some methods that demonstrate the concept of
polymorphism by writing several versions of the same method with different sets
of parameters.

CHAPTER 3

CREATING YOUR
FIRsT JAvA GAME

This chapter will give you a glimpse of what’s coming in the next few chapters
while teaching you some of the basics of game creation. The game featured here
was inspired by the classic Atari game of Asteroids. My first video game system
was an Atari 2600, and I spent many hours with it. In this chapter, you'll learn
how to create a variation of this classic game, which will be the basis of a more
advanced game later on when we get to Part III. This will also be our first really
big applet chapter—learning how to build a Java applet-based game, and the
specific source code features of an applet. We will return to using JFrame as well
in upcoming chapters rather than focusing on just one or the other.

Here are the key topics in this chapter:

m Creating an Asteroids-style game

Writing key classes: BaseVectorShape, Ship, Asteroid, and Bullet

Writing the main source code

Calculating velocities on the fly

ABOUT THE GAME PROJECT

Our game project in this chapter will run in a web browser window with a
resolution of 640 x 480 and will be done entirely using vector graphics. It will
have some features that you have not yet learned about, but the exposure to this
code will be helpful to you. I want to introduce you to some of the concepts early

69

70

Chapter 3 = Creating Your First Java Game

Figure 3.1
This Asteroids clone is the basis for a much more ambitious game.

on, before you have learned all of the prerequisites (otherwise, we wouldn’t be
able to create a game until about halfway through the book!). You may not
understand everything in the source code for the game at this point, but you will
learn how it works in time. Figure 3.1 shows the completed game you will build
in this chapter.

As mentioned, the game is entirely based on vector graphics. The player’s ship, the
asteroids, and the bullets are all rendered as polygons, as shown in Figure 3.2.

Definition

Vector graphic displays are different from our modern monitors in that they draw shapes based on
entire lines. On the other hand, our modern displays draw raster graphics based on pixels.

All of the objects in the game are moved using an algorithm that calculates the X
and Y velocity values, which are used to update the object’s position on the
screen. All of these values use floating-point math, and the result is fluid 2D
rotation animation and realistic movement. Each of the vector shapes in the
game has a built-in bounding rectangle that is used to simplify collision testing,
which is a crucial aspect of the game (see Figure 3.3). Without it, the bullets

About the Game Project 71

Figure 3.2
The objects in the game are all rendered as vector graphics.

Figure 3.3
Bounding rectangles are used to detect when collisions occur.

72

Chapter 3 = Creating Your First Java Game

would not destroy the asteroids, and the ship would be invulnerable! Collision
testing is what makes gameplay possible in a game.

The goal is to modify this game concept later on to come up with a high-quality,
polished game with a lot of interesting gameplay features (such as power-ups) by
the time you've finished the book. The final version of Galactic War is an arcade-
style game with many different types of asteroids, animated explosions, and power-
ups for the player’s ship. When we start working in earnest on Galactic War, we’ll
make a transition from vector graphics (based on polygons) to rasterized graphics
(based on bitmaps). But before you can run, as the old saying goes, you have to
learn how to walk. This chapter teaches you how to walk, and you will gradually
improve the game a little at a time, starting with the next chapter.

CREATING THE GAME

This game is divided into five classes. Does that seem like a lot of classes for just
your first game? I thought about that for a while, considering this might be too
much code all at once. But I think you will enjoy it. This is a complete game, for
the most part, so you can examine it—pore over the lines of code in Holmesian
style (with a magnifying glass, if you wish)—to learn the secrets of how a game is
made. You are presented with a mystery of sorts—a complete game. Your task is
to reverse engineer the situation to determine, step by step, what events led up to
the complete game. The main class, Asteroids, contains the main source code
for the game. Four additional classes are used:

BaseVectorShape

m Ship
m Bullet

m Asteroid

Creating the Project

You can type in the code for each of the classes (and the main source code file,
Asteroids.java) and then compile each file into a .class file using the Java
Development Kit (JDK) command-line tools. The compiler is called javac.exe.
You can compile a file by simply typing:

javac Asteroids.java

Creating the Game

and likewise for the other source code files. I recommend using TextPad if you
are a Windows user because of its very convenient support for the JDK, where
you can compile your Java program with Ctrl41 and run it with Ctrl43.

The BaseVectorShape Class

The three main objects in the game (the asteroids, the bullets, and the player’s
ship) are all derived from the BaseVectorShape class. I originally wrote this game
without the base class, and in the end, all three of the game objects (the player’s
ship, the bullets, and the asteroids) ended up sharing most of their properties
and methods, so the BaseVectorShape class was a way to clean up the code. In
the end, I put a lot of useful methods in this class for handling the needs of this
vector graphics game. By doing this, I have used the object-oriented feature
called inheritance. The Asteroid, Ship, and Bullet classes are all derived from
BaseVectorShape, which contains code that is shared by all three. As a result, the
code for the three subclasses is quite short in each case.

This game detects collisions between the asteroids, bullets, and player’s ship, so
each vector shape in the game includes its own bounding rectangle. While the
getBounds() method is not found in the BaseVectorShape class for reasons I’ll
explain in a moment, this method does use the getX() and getY() methods from
the base class to calculate the bounding rectangle. This class basically contains all
the variables that will be used to move the objects around on the screen, such as
the X and Y position, the velocity, the facing and moving angles, and the shape
itself (which is a polygon).

Tip

What is bounding rectangle collision detection? This phrase describes the process of detecting
when objects collide with each other in the game (such as a bullet hitting an asteroid) using
rectangular shapes that surround or contain the shape. As a result, the shape is bound within that
rectangle, so to speak.

import java.awt.Shape;
// Base vector shape class for for polygonal shapes
public class BaseVectorShape {

//variables

private Shape shape;

private boolean alive;

73

74 Chapter 3 = Creating Your First Java Game

private double x,y;
private double velX, velY;
private doubTle moveAngle, faceAngle;

//accessor methods

public Shape getShape() { return shape; }

public boolean isATive() { returnalive; }

pubTic double getX() { return x; }

pubTic double getY() { returny; }

public double getVelX() { return velX; }

public double getVelY() { return velY; }

public double getMoveAngle() { return moveAngle; }
public double getFaceAngle() { return faceAngle; }

//mutator and helper methods

pubTic void setShape(Shape shape) { this.shape = shape; }

public void setAlive(boolean alive) { this.alive=alive; }

public void setX(double x) { this.x=x; }

public void incX(double i) { this.x+=1; }

public void setY(double y) { this.y=y; }

pubTic void incY(double i) { this.y +=1; }

public void setVelX(double velX) { this.velX =velX; }

public void incVelX(double i) { this.velX +=1; }

public void setVelY(double velY) { this.velY =velY; }

public void incVelY(double i) { this.velY +=1; }

public void setFaceAngle(double angle) { this.faceAngle =angle; }
public void incFaceAngle(double i) { this.faceAngle +=1; }

public void setMoveAngle(double angle) { this.moveAngle = angle; }
public void incMoveAngle(double i) { this.moveAngle +=1; }

//default constructor

BaseVectorShape() {
setShape(null);
setATive(false);
setX(0.0);
setY(0.0);
setVelX(0.0);
setVelY(0.0);
setMoveAngle(0.0);
setFaceAngle(0.0);

Creating the Game

The Ship Class

The Ship class handles the shape, position, and velocity of the player’s ship in
the game. It includes its own bounding rectangle, which is calculated based on
the custom polygon shape for the ship. The Ship class inherits all of the public
properties and methods from the BaseVectorShape class.

import java.awt.Polygon;

import java.awt.Rectangle;

// Ship class - polygonal shape of the player's ship

public class Ship extends BaseVectorShape {
//define the ship polygon
private int[] shipx={ -6, -3, 0, 3,6, 0 };
private int[] shipy={(6,7,7,7,6, -7};

//bounding rectangle

public Rectangle getBounds() {
Rectangle r;
r=new Rectangle((int)getX() - 6, (int) getY() - 6, 12,12);
return r;

}

Ship() {
setShape(new Polygon(shipx, shipy, shipx.length));
setAlive(true);

The Bullet Class

The Bullet class defines the bullets fired from the ship. It is also derived from
the BaseVectorShape class, so most of the functionality of this class is provided
by the base class. All we really need to do for bullets in this game is to define a
rectangle that is one pixel in width and height to create a tiny rectangle.
This small shape is used to calculate the bounding rectangle returned in the
getBounds() method. While we’re only drawing a rectangle the size of a single
pixel, we will still treat it as a rectangle, but when it’s time to check to see
whether the bullet has hit an asteroid (using collision detection), then we’ll do it
slightly differently than the way in which we compare collisions between the

75

76

Chapter 3 = Creating Your First Java Game

player’s ship and the asteroids. Instead of checking for an intersection, we’ll see
whether the bullet is “contained within” an asteroid.

import java.awt.*;
import java.awt.Rectangle;

// Bullet class - polygonal shape of a bullet
public class Bullet extends BaseVectorShape {

//bounding rectangle

public Rectangle getBounds() {
Rectangle r;
r=new Rectangle((int)getX(), (int) getY(), 1, 1);
return r;

}

Bullet() {
//create the bullet shape
setShape(new Rectangle(0, 0, 1, 1));
setATive(false);

The Asteroid Class

The Asteroid class also inherits from BaseVectorShape and provides three of its
own new methods: getRotationVelocity, setRotationVelocity, and getBounds.
The rotation velocity value is used to rotate the asteroids (which is a cool effect
in the game). The getBounds method returns the bounding rectangle for the
asteroid and is similar to the same method found in the Ship and Bullet
classes.

import java.awt.Polygon;
import java.awt.Rectangle;

// Asteroid class - for polygonal asteroid shapes

public class Asteroid extends BaseVectorShape {
//define the asteroid polygon shape
private int[] astx=1{-20,-13, 0,20,22, 20, 12, 2,-10,-22,-16};
private int[] asty ={ 20, 23,17,20,16,-20,-22,-14,-17,-20, -5};

Creating the Game

//rotation speed

protected double rotVel;

public double getRotationVelocity() { return rotVel; }
public void setRotationVelocity(double v) { rotVel =v; }

//bounding rectangle

public Rectangle getBounds() {
Rectangle r;
r=new Rectangle((int)getX() - 20, (int) getY() - 20, 40, 40);
return r;

}

//default constructor

Asteroid() {
setShape(new Polygon(astx, asty, astx.length));
setATive(true);
setRotationVelocity(0.0);

}

The Main Source Code File

The main source code file for this game is found in a file called Asteroids.java. I
am providing the complete source code listing here so you can examine it in
detail while reading my explanations of each method along the way. The first
thing you’ll notice with the main source code for our Asteroids clone is the
implements keywords. This program implements two interfaces: Runnable and
KeyListener. Runnable gives us an extremely powerful new capability—threads!
With a thread, our program can run in real time, with things moving on the
screen automatically. This really brings the game to life compared to prior
examples! The next interface is pretty obvious: KeylListener “listens” for key
presses, and notifies us when a key is pressed. The next major feature of this
game over previous examples is that it’s double buffered, which is a second buffer
representing the dimensions of the game window, giving the game a very
smooth refresh without any flicker or artifacts. Without the second buffer, the
window would flicker like crazy as the window is cleared and the graphics are
drawn over and over again. Everything else in the code is just support for these
three major concepts.

77

78

Chapter 3 = Creating Your First Java Game

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.image.*;
import java.util.*;

//Primary class for the game

pubTic class Asteroids extends Applet implements Runnable, KeylListener {
//the main thread becomes the game Toop
Thread gameloop;

//use this as a double buffer
BufferedImage backbuffer;

//the main drawing object for the back buffer
Graphics2D g2d;

//toggle for drawing bounding boxes
boolean showBounds = false;

//create the asteroid array
int ASTEROIDS = 20;
Asteroid[] ast =new Asteroid[ASTEROIDSI;

//create the bullet array

int BULLETS =10;

Bullet[] bullet =new Bullet[BULLETS];
int currentBullet =0;

//the player's ship
Ship ship =new Ship();

//create the identity transform (0,0)
AffineTransform identity = new AffineTransform();

//create a random number generator
Random rand = new Random();

Creating the Game

Applet init() Event

The applet init() event is run when the applet first starts up and is used to
initialize the game. The code first creates a double buffer, upon which all
graphics will be rendered in order to produce a smooth screen refresh without
flicker. The player’s ship and the asteroids are initialized, and then the key
listener is started.

// applet init event
public void init() {
//create the back buffer for smooth graphics
backbuffer = new BufferedImage(640, 480,
BufferedImage.TYPE_INT_RGB);
g2d = backbuffer.createGraphics();

//set up the ship
ship.setX(320);
ship.setY(240);

//set up the bullets

for (int n=0; n<BULLETS; n++) {
bullet[n] =new Bullet();

}

//create the asteroids

for (int n=0; n<ASTEROIDS; n++) {
ast[n] =new Asteroid();
ast[n].setRotationVelocity(rand.nextInt(3)+1);
ast[n].setX((double)rand.nextInt(600)+20);
ast[n].setY((double)rand.nextInt(440)+20);
ast[n].setMoveAngle(rand.nextInt(360));
doubTe ang =ast[n].getMoveAngle() - 90;
ast[n]l.setVelX(calcAngleMoveX(ang));
ast[n]l.setVelY(calcAngleMoveY(ang));

}

//start the user input Tistener
addKeylListener(this);

79

80

Chapter 3 = Creating Your First Java Game

Applet update() Event

The applet’s update() event is triggered whenever the screen needs to be
refreshed. This game does not call the update() method from the game loop
yet, although a future version of the game will make this change, which provides
better control over the screen refresh process. This method does all of the
drawing to the applet window by first drawing graphics to the back buffer. This
buffer is then copied to the applet window during the paint() event.

The identity transform is the starting point of a vector-based transform that
allows vector-based shapes to be rotated and moved around in the game. First,
you start at the identity and then move the shape and rotate it from there. If you
don’t start off with the identity before manipulating a shape, then it will be
moved with the previous shape rather than on its own.

// applet update event to redraw the screen
public void update(Graphics g) {
//start off transforms at identity
g2d.setTransform(identity);

//erase the background
g2d.setPaint(Color.BLACK);
g2d.fil1Rect(0, 0, getSize().width, getSize().height);

//print some status information

g2d.setColor(Color.WHITE);

g2d.drawString("Ship: " + Math.round(ship.getX()) +"," +
Math.round(ship.getY()) , 5, 10);

g2d.drawString("Move angle: " + Math.round(
ship.getMoveAngle())+90, 5, 25);

g2d.drawString("Face angle: " + Math.round(
ship.getFaceAngle()), 5, 40);

//draw the game graphics
drawShip();
drawBullets();
drawAsteroids();

//repaint the applet window
paint(g);

Creating the Game

Drawing the Player’s Ship

The drawShip() method is called by the update() event to draw the player’s ship
onto the back buffer at the correct X and Y location. Before drawing, the identity
transform is set so that the ship’s local coordinate system is used, rather than the
previous vector’s coordinates. Remember, a transform effects an object’s X and Y
position. The identity is the starting point (0,0).

When the ship is first drawn, it is actually centered at the origin, with the shape
of the ship being drawn from —6 to +-6 in the X and Y axes. So the ship is about
12 pixels square in size. If you don’t draw a vector around the origin, then
rotation will not work at all, because rotations occur at the origin—or rather, at
the identity location.

// drawShip called by applet update event

public void drawShip() {
g2d.setTransform(identity);
g2d.translate(ship.getX(), ship.getY());
g2d.rotate(Math.toRadians(ship.getFaceAngle()));
g2d.setColor(Color.0RANGE);
g2d.fil1(ship.getShape());

}

Drawing the Bullets

The drawBullets() method goes through the array of bullets and draws any
bullets that need to be drawn. This only occurs if a bullet is alive using the
isATive() method. Then the bullet is transformed to its position on the screen,
and the shape is drawn (which is a tiny rectangle).

// drawBullets called by applet update event
public void drawBullets() {
//iterate through the array of bullets
for (int n=0; n <BULLETS; n++) {
//is this bullet currently in use?
if (bulletnl.isAlive()) {
//draw the bullet
g2d.setTransform(identity);
g2d.translate(bulletnl.getX(), bulletlnl.getY());
g2d.setColor(Color.MAGENTA);
g2d.draw(bullet[n].getShape());

81

82

Chapter 3 = Creating Your First Java Game

}

Drawing the Asteroids

The drawAsteroids() method draws all of the asteroids in the ast[] array,
depending on whether they are alive. When the player fires a bullet and it hits an
asteroid, that asteroid’s alive variable is set to false, so the asteroid is no longer
drawn to the screen—and it is also ignored by the bullets after that. An
interesting option in this method will draw the bounding rectangle around
the asteroids if you have toggled bounding on by pressing the B key.

// drawAsteroids called by applet update event
public void drawAsteroids() {
//iterate through the asteroids array
for (int n=20; n <ASTEROIDS; n++) {
//is this asteroid being used?
if (ast[nl.isAlive()) {
//draw the asteroid
g2d.setTransform(identity);
g2d.translate(astin]l.getX(), astinl.getY());
g2d.rotate(Math.toRadians(ast[n].getMoveAngle()));
g2d.setColor(Color.DARK_GRAY);
g2d.fill(ast[n].getShape());

}

Screen Refresh

The paint() event occurs when the applet window needs to be refreshed. This
method is called by the update() method and simply serves the purpose of
drawing the back buffer to the applet window.

// applet window repaint event- -draw the back buffer
public void paint(Graphics g) {
//draw the back buffer onto the applet window
g.drawImage(backbuffer, 0, 0, this);

Creating the Game

Thread Events and the Game Loop

There are three thread events that are part of a program when you implement
the Runnable interface in a Java applet. Runnable tells Java that your applet will
support more than one thread. A thread is sort of a mini program that can run
on its own. You create a new thread in the start() event, and then destroy that
thread in the stop() event to keep things running smoothly.

The most interesting thread event is called run(). This event method contains
the code for the game loop, which is a while loop that sort of powers the game
and keeps it running at a consistent frame rate. This event calls the gameUpdate ()
method, which processes the current frame of the game by moving objects
around on the screen, testing for collisions, and so on.

// thread start event - start the game Toop running
public void start() {
//create the gameloop thread for real-time updates
gameloop = new Thread(this);
gameloop.start();
}

// thread run event (game Toop)

public void run() {
//acquire the current thread
Thread t = Thread.currentThread();

//keep going as long as the thread is alive
while (t == gameloop) {
try {
//update the game loop
gameUpdate();

//target framerate is 50 fps
Thread.sleep(20);

}

catch(InterruptedException e) {
e.printStackTrace();

}

repaint();

83

84 Chapter 3 = Creating Your First Java Game

// thread stop event

public void stop() {
//ki11 the gameloop thread
gameloop =null;

}

Game Loop Update

The gameUpdate() method is called by the game loop thread when it’s time to
process the game for the next applet window refresh. The game loop is timed to
hit around 50 frames per second (fps), and the window refresh occurs after
gameUpdate is run. Normally the game loop will run as fast as possible and only
the screen refresh will be tied to a specific frame rate, but in this first game, that
difference is not important.

// move and animate the objects in the game
private void gameUpdate() {
updateShip();
updateBullets();
updateAsteroids();
checkColTlisions();
}

Updating the Ship

The updateShip() method updates the ship’s X and Y position using the velocity
variables. This method also “warps” the ship around when it crosses an edge of
the screen (in which case the shape is moved to the opposite side of the screen).
This is a technique used in many classic arcade games.

// Update the ship position based on velocity
public void updateShip() {
//update ship's X position
ship.incX(ship.getVelX());

//wrap around Teft/right

if (ship.getX() < -10)
ship.setX(getSize().width +10);

else if (ship.getX() > getSize().width +10)
ship.setX(-10);

Creating the Game

//update ship's Y position
ship.incY(ship.getVelY());

//wrap around top/bottom

if (ship.getY() < -10)
ship.setY(getSize().height +10);

else if (ship.getY() > getSize().height +10)
ship.setY(-10);

Updating the Bullets

The updateBullets() method updates the X and Y position for each bullet that
is currently alive using the velocity variables. When a bullet hits the edge of the
screen, it is disabled.

// Update the bullets based on velocity
public void updateBullets() {

//move each of the bullets

for (int n=0; n <BULLETS; n++) {

//is this bullet being used?
if (bullet[n].isAlive()) {

//update bullet's x position
bullet[nl.incX(bulletlnl.getVelX());

//bullet disappears at left/right edge
if (bullet[nl.getX() <0 ||
bullet[nl.getX() > getSize().width)
{
bullet[n].setAlive(false);
}

//update bullet's y position
bullet[nl.incY(bulletln]l.getVelY());

//bullet disappears at top/bottom edge
if (bullet[nl.getY() <0 ||
bullet[n].getY() > getSize().height)

85

86

Chapter 3 = Creating Your First Java Game

bullet[n].setAlive(false);

}

Updating the Asteroids

The updateAsteroids() method updates the X and Y position of each asteroid
that is currently alive based on the velocity variables. These X and Y values and
velocities are all set to random values when the game starts up. The asteroids are
warped around the edges of the screen. One interesting thing about the asteroids
that differs from the ship and bullets is that the asteroids are rotated by a
random number of degrees each frame, causing them to spin on the screen. This
is a pretty nice effect that adds to the quality of the game.

// Update the asteroids based on velocity
public void updateAsteroids() {

//move and rotate the asteroids

for (int n=0; n <ASTEROIDS; n++) {

//is this asteroid being used?
if (astnl.isAlive()) {

//update the asteroid's X value
astnl.incX(astn].getVelX());

//warp the asteroid at screen edges

if (astnl.getX() < -20)
astin].setX(getSize().width +20);

else if (astln].getX() > getSize().width + 20)
ast[n].setX(-20);

//update the asteroid's Y value
astnl.incY(astnl.getVelY());

//warp the asteroid at screen edges

if (astnl.getY() < -20)
ast[n].setY(getSize().height +20);

else if (ast[nl.getY() > getSize().height +20)
astin].setY(-20);

Creating the Game

//update the asteroid's rotation
ast[n].incMoveAngle(ast[n].getRotationVelocity());

//keep the angle within 0-359 degrees
if (ast[nl.getMoveAngle() < 0)
astin].setMoveAngle(360 - ast[nl.getRotationVelocity());
else if (astln].getMoveAngle() > 360)
ast[n].setMoveAngle(astn].getRotationVelocity());

}

Testing for Collisions

We haven’t discussed collision detection yet, but I think you will get the hang of
it here because this checkCol1isions() method is straightforward. First, there is a
loop that goes through the asteroid array (ast[]). Inside this loop, if an asteroid
is alive, it is tested for collisions with any active bullets, then it is tested for a
collision with the ship. If a collision occurs, then an explosion sound effect is
played, and the asteroid is disabled. If it collided with a bullet, the bullet is also
disabled. When the player’s ship is hit, it is reset at the center of the screen with
zero velocity. A collision occurs when one shape overlaps another shape, which
is why we use the intersects() and contains() methods to determine when a
collision occurs. Specifically, contains() is used to see whether the bullet has hit
an asteroid, while intersects() is used to see whether an asteroid has hit the
ship.

The key to the collision code here is a method in the Shape object called
contains() that accepts a Rectangle or a Point and returns true if there is an
overlap. This method makes it possible to perform bounding rectangle collision
detection with just a few lines of code because the shapes already have built-in
getBounds() methods available.

/1 Test asteroids for collisions with ship or bullets
public void checkCollisions() {

//iterate through the asteroids array
for (int m=0; mCASTEROIDS; m++) {

87

88 Chapter 3 = Creating Your First Java Game

//is this asteroid being used?
if (ast[m].isATive()) {

// check for collision with bullet
for (int n=20; n <BULLETS; n++) {

//is this bullet being used?
if (bullet[n].isAlive()) {

//perform the collision test
if (ast[m].getBounds().contains(
bullet[nl.getX(), bullet[nl.getY()))

{
bullet[n].setAlive(false);
ast[m].setAlive(false);
continue;

}

}

// check for collision with ship
if (ast[m].getBounds().intersects(ship.getBounds())) {
ast[m].setAlive(false);
ship.setX(320);
ship.setY(240);
ship.setFaceAngle(0);
ship.setVelX(0);
ship.setVelY(0);
continue;

Keyboard Events

This game only uses the keyPressed() event to detect key presses, while
keyReleased() and keyTyped() are ignored (although they must be in the source
code listing because of the KeyListener interface). The most important parts of
this method are found in the code following the thrust and fire keys, which are

Creating the Game

mapped to the Up arrow and Ctrl keys. (The Enter key and spacebar can also be
used to fire.) When the Up arrow is pressed, this adds thrust to the ship, causing
it to move.

Definition

An algorithm is a mathematical expression that causes one of the variables in the expression to
change in a consistent way. A movement algorithm, for instance, causes the x variable on an x-y
coordinate plane to change so that it consistently increases in value, moving whatever object it
represents horizontally across the screen.

An advanced movement algorithm is used to move the objects in the game,
which is covered in the next section. Moving the ship must look as realistic as
possible—so you can apply thrust to the ship, rotate to a new direction, then
apply thrust, and that new angle of movement is added to the current velocity
values. The result is a very realistic zero-gravity motion for the ship. Some
programmers like to use a mass/acceleration algorithm to move a spaceship.
That is a good method, where the mass (or weight) of the ship affects how fast it
can move. I have simulated this effect using a velocity algorithm instead, which,
again, is covered in the next section.

// key Tistener events
public void keyReleased(KeyEvent k) { }
public void keyTyped(KeyEvent k) { }
public void keyPressed(KeyEvent k) {
int keyCode = k.getKeyCode();
switch (keyCode) {
case KeyEvent .VK_LEFT:
//1eft arrow rotates ship Teft 5 degrees
ship.incFaceAngle(-5);
if (ship.getFaceAngle() < 0) ship.setFaceAngle(360-5);
break;
case KeyEvent .VK_RIGHT:
//right arrow rotates ship right 5 degrees
ship.incFaceAngle(5);
if (ship.getFaceAngle() > 360) ship.setFaceAngle(5);
break;
case KeyEvent.VK_UP:
//up arrow adds thrust to ship (1/10 normal speed)
ship.setMoveAngle(ship.getFaceAngle() - 90);

89

20 Chapter 3 = Creating Your First Java Game

ship.incVelX(calcAngleMoveX(ship.getMoveAngle()) *0.1);
ship.incVelY(calcAngleMoveY(ship.getMoveAngle()) *0.1);
break;

//Ctr1, Enter, or Space can be used to fire weapon

case KeyEvent.VK_CONTROL:

case KeyEvent.VK_ENTER:

case KeyEvent.VK_SPACE:
//fire a bullet
currentBullet++;
if (currentBullet > BULLETS - 1) currentBullet =0;
bullet[currentBullet].setAlive(true);

//point bullet in same direction ship is facing
bulletlcurrentBullet].setX(ship.getX());
bulletlcurrentBullet].setY(ship.getY());
bullet{currentBullet].setMoveAngle(ship.getFaceAngle() - 90);

//fire bullet at angle of the ship

double angle =bullet[currentBullet].getMoveAngle();

double svx = ship.getVelX();

double svy =ship.getVelY();

bullet[currentBullet].setVelX(svx + calcAngleMoveX(angle) * 2);
bullet[currentBullet]l.setVelY(svy + calcAngleMoveY(angle) * 2);
break;

Calculating Realistic Motion

The most fascinating part of this game is how the movement of the player’s
ship, the bullets, and the asteroids are all controlled by two methods that return
floating-point values for the X and Y update for the object. In order to move an
object in any direction, we need to calculate it’s linear velocity at the given
angle.

Definition

Velocity is a rate of change of position calculated in pixels per second.

Creating the Game

The calcAngleMoveX() method uses cosine to calculate the update value for X,
returned as a double. The calcAngleMoveY() method uses sine to calculate the
update value for Y, also returned as a double. These small methods accept a
single parameter (the angle that a game object is facing) and return an estimated
X and Y update value in pixels based on that angle. I can’t stress enough how
wonderful these two methods are! In the past, I have relied mainly on the brute
force (and imprecise) method to move game objects (usually called sprites) on
the screen. I would set the velocityX to 1 and velocityY to O to cause an object
to move to the right. Or, I would set velocityX to 0 and velocityY to —1 to
cause the game object to move up on the screen. These velocity variables, along
with an object’s X and Y values, would cause the object to move around on the
screen in a certain way.

I have written many games that used this type of movement code. Invariably,
these games include a lot of switch statements to account for each of the
directions that an object might be facing. For instance, if a spaceship sprite has
eight directions of travel, then I would write a switch statement that considered
the case for each direction (0 to 7, where 0 is north and 4 is south), and then
update the X and Y values based on the ship’s direction.

No longer! These wonderful methods now calculate the velocity for X and Y
based on an object’s orientation as an angle (from 0 to 360). Not only does this
result in a more realistic game, but the source code is actually cleaner and
shorter! As far as realism goes, this code supports every angle from 0 to 359
(where a circle is composed of 360 degrees). You can point the spaceship in this
game at an angle of 1, then fire a weapon, and that bullet will travel just slightly
off from due north.

The biggest difference between this new method of sprite movement from my
previous game is that I previously used integers, but now I am using floating-
point variables (doubles). This allows the velocityX and velocityY variables to
reflect any of the 360 degrees of movement. For an angle of 45 degrees,
velocityX is set to 1 pixel, while velocityY is set to 0. The cardinal directions
(north, south, east, and west) are similarly predictable. But when dealing with an
angle such as 17 degrees, the velocity variables will be set to some very unusual
numbers. For instance, velocityX might be set to something like 0.01, while

91

92

Chapter 3 = Creating Your First Java Game

velocityY is set to something like 1.57. These numbers don’t equate to actual
pixel-level movements on the screen in a single frame, but when you consider
that the game is running at 50 fps or more, then these values add up, and the
ship or other game object is moved over time in the correct direction. Since the
vector transform method expects floating-point values for X and Y, these
velocity values work just fine with the part of the program that draws things
on the screen. It is fascinating to watch, and we will be using this technique
throughout the book.

Now, without further ado, here are the velocity calculation methods in all their
simplistic glory:
// calculate X movement value based on direction angle

pubTic double calcAngleMoveX(double angle) {
return (double) (Math.cos(angle * Math.PI / 180));

}

// calculate Y movement value based on direction angle
public double calcAngleMoveY(double angle) {

return (double) (Math.sin(angle * Math.PI / 180));
}

WHAT You HAVE LEARNED

This chapter threw a lot of new concepts your way without fully explaining all of
them, but with the goal of giving you an opportunity to examine a nearly
complete game to see how it was created from start to finish. This Asteroids-style
game will be enhanced in subsequent chapters into an exciting arcade-style game
with a scrolling background. Specifically, you learned:

m How to use the Graphics2D class
m How to use a thread as a game loop

How to draw vector graphics to make game objects

m How to move an object based on its velocity

m How to test for collisions between game objects

On Your Own

ReEviEw QQUESTIONS
The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What is the name of the method that calculates the velocity for X?

2. What is the base class from which Ship, Asteroid, and Bullet are
inherited?

3. Which classic Atari game inspired the game developed in this chapter?
4. Which type of collision testing does this game use?

ul

. Which method of the Shape class does this game use for collision
testing?

. Which geometric shape class do the Ship and Asteroid classes use?
. Which geometric shape class does the Bullet class use?

. Which applet event actually draws the screen?

O o NN N

. What is the name of the interface class used to add threading support to
the game?

10. What math function does calcAngleMoveX use to calculate the X velocity?

ON Your OwN

Although this game will be enhanced in future chapters, you will learn a lot by
making changes to the source code to add some of your own ideas to the game
right now. Use the following exercises to test your grasp of the material covered
in this chapter.

Exercise 1

If you apply a lot of thrust to the ship so that it is moving very quickly across the
screen, and then rotate around backward and fire a bullet, that bullet will seem
to stand still or move very slowly. This is because the bullet is based on the ship’s
velocity. This isn’t very realisticc. Modify the weapon firing code in the
keyPressed event method to fire bullets at a fixed rate regardless of the ship’s
velocity.

93

94

Chapter 3 = Creating Your First Java Game

Exercise 2

The ship tends to rotate rather slowly when you press the Left or Right arrow
keys, making it difficult to hit asteroids that are closing in on the ship from all
directions. The rotation angle is adjusted by 5 degrees each time the keys are
pressed. Modify the game so that the ship rotates much more quickly without
changing this 5-degree value. In other words, you want it to rotate by the same
value, but do these rotations more quickly.

PArT |1

JAVA GAME PROGRAMMING

The second part of the book will cover the important topics you need to know in
order to write an applet-based game in Java, including graphics, sound, music,
keyboard and mouse input, timing, and so on. These subjects will be a mix of
JFrame-based applications and applet-based projects for the first few chapters,
after which the focus shifts primarily over to JFrame. Here are the chapters in

Part II:

Chapter 4: Vector-Based Graphics
Chapter 5: Bitmap-Based Graphics
Chapter 6: Simple Sprites

Chapter 7: Sprite Animation

Chapter 8: Keyboard and Mouse Input
Chapter 9: Sound Effects and Music
Chapter 10: Timing and the Game Loop

This page intentionally left blank

CHAPTER 4

VECTOR-BASED GRAPHICS

The previous chapter really pushed the limits as far as the amount of
information covered without thorough explanations beforehand. I wanted to
immerse you in the source code for a game right up front before fully explaining
all of the concepts to give you a feel for what is involved in creating a real game.
The Asteroids clone was not a great game, and not even very good looking, but it
was functional. Java has a robust and feature-rich set of classes for working with
2D vector graphics and bitmaps (explained in the next chapter), making it
possible to draw rectangles, polygons, and other shapes very easily. The
examples in this chapter again are applets rather than JFrame-based applica-
tions. Aside from initialization code, there’s very little difference in the two types
of projects, and I want you to become comfortable with both types. Here are the
key topics in this chapter:

m Drawing and manipulating vector graphics

m Using the AffineTransform class

m Applying the translation, rotation, and scaling of shapes

PrRoGRAMMING VECTOR GRAPHICS

You have already been exposed to a significant number of features in Graphics2D
and other classes in java.awt (the Abstract Window Toolkit), such as Rectangle
and Polygon. The core of Java’s 2D graphics engine is the Graphics2D class. This

97

98

Chapter 4 = Vector-Based Graphics

Figure 4.1
The RandomShapes program demonstrates the Graphics2D class.

class is incredibly versatile for working with vector graphics and bitmapped
graphics. For instance, Graphics2D has many methods for drawing images in a
variety of ways! In my opinion, this is somewhat of an overkill just to draw
images on the screen. But Java is well known for its versatility and convenience.
This class knows how to draw rectangles and many other shapes. But it can do a
lot more than just draw—it can also move, rotate, and scale shapes!

Working with Shapes

Let’s write a short program to demonstrate. The RandomShapes program is
shown in Figure 4.1, and the source code listing follows. I have highlighted all of
the important lines of code in bold text, and you’ll learn about the classes,
properties, and methods that have been highlighted.

// RandomShapes program

import java.awt.*;

import java.applet.*;

import java.awt.geom.*;

import java.util.*;

Programming Vector Graphics

public class RandomShapes extends Applet {
//here's the shape used for drawing
private Shape shape;

//applet init event
public void init() {

shape = new Rectangle2D.Double(-1.0, -1.0, 1.0, 1.0);
}

//applet paint event

public void paint(Graphics g) {
//create an instance of Graphics2D
Graphics2D g2d = (Graphics2D)g;

//save the identity transform
AffineTransform identity = new AffineTransform();

//create a random number generator
Random rand = new Random();

//save the window width/height
int width = getSize().width;
int height = getSize().height;

//fi11 the background with black
g2d.setColor(Color.BLACK);
g2d.fil11Rect(0, 0, width, height);

for (int n=0; n <300; n++) {
//reset Graphics2D to the identity transform
g2d.setTransform(identity);

//move, rotate, and scale the shape randomly
g2d.translate(rand.nextInt() % width, rand.nextInt() % height);
g2d.rotate(Math.toRadians(360 * rand.nextDouble()));
g2d.scale(60 * rand.nextDouble(), 60 * rand.nextDouble());

//draw the shape with a random color
g2d.setColor(new Color(rand.nextInt()));
g2d.fil1l1(shape);

99

100

Chapter 4 = Vector-Based Graphics

This program used the Graphics2D class to translate, rotate, and scale a Shape object
randomly, which results in the screen being filled with random rectangles of varying
sizes and orientations. This simple program illustrates the base concept behind the
Asteroids-style game from Chapter 3—that Java provides the toolset for manipu-
lating 2D graphics, and it’s up to you how you will use these versatile tools.

The RandomShapes program defines a Shape object (called shape) and then uses
that basic object to create a Rectangle2D like so:

shape = new Rectangle2D.Double(-1.0, -1.0, 1.0, 1.0);

This works, even though the shape object was originally created as a Shape because
Rectangle?2D is derived from the Shape class. In other words, Rectangle2D inherits
from Shape. This makes it possible to use the Graphics2D method fi11 to draw a
filled rectangle, even though it was defined originally as a basic Shape. For each
class, such as Rectangle, there is a floating-point version, such as Rectangle2D.
Classes such as Rectangle utilize integer values, while Rectangle2D uses floats and
doubles. You can also use the Point and Polygon classes in similar fashion.

Working with Polygons

The Polygon class is a bit different from Point and Rectangle because it allows
you to define the shape yourself using X and Y value pairs. You can construct a
polygon with just a single point or a polygon with four points to duplicate the
Point and Rectangle classes yourself. Or you can define custom polygons, such
as the asteroids and ship in Chapter 3. The asteroid shape (shown in Figure 4.2)
was defined like this:

private int[] astx={-20,-13, 0,20,22, 20, 12, 2,-10,-22,-16};
private int[] asty = { 20, 23,17,20,16,-20,-22,-14,-17,-20, -5};

Figure 4.2
The asteroid shape.

Programming Vector Graphics

Figure 4.3
This five-sided polygon will be modeled in the RandomPolygons program.

These two arrays define the X and Y points for the polygon. We call a point a
vertex, and the plural form is vertices. When you are creating a polygon in this
manner, keep in mind that the X and Y arrays must pair up, since every X must
go with a Y value to make a vertex.

When you're ready to draw a shape, whether it is a rectangle, a polygon, or
something else, you have two choices. You can use the f111() method to draw the
shape with a filled-in color. Or you can use the draw() method to draw the outline
or border of the shape in the current color. The color is set with the setColor()
method beforehand. Sometimes it can be confusing when you are trying to define
the shape of a polygon using the two arrays of X and Y points, so you may want to
design the polygon on paper or in a graphics editor first. Figure 4.3 shows the
design of a five-sided star-shaped polygon.

Seeing a diagram of the image can really help, especially when you have a
complex polygon in the works. Here are the arrays for defining this polygon.
Note how the points directly correspond to the values in the figure.

private int[] xpoints=1{0,-10, -7, 7, 10 };

private int[] ypoints = {-10, -2, 10, 10, -2 };

Let’s write a program to demonstrate how to create and draw polygons. The
RandomPolygons program will use the five-sided star polygon with random
rotation and scaling. The output of the program is shown in Figure 4.4.

101

102 Chapter 4 = Vector-Based Graphics

Figure 4.4
The RandomPolygons program draws star-shaped polygons.

// RandomPolygons program
import java.awt.*;

import java.applet.*;
import java.util.*;
import java.awt.geom.*;

pubTic class RandomPolygons extends Applet {
private int[] xpoints={0,-10, -7, 7, 10 };
private int[] ypoints = {-10, -2, 10, 10, -2 };

//here's the shape used for drawing
private Polygon poly;

//applet init event
pubTic void init() {

poly = new Polygon(xpoints, ypoints, xpoints.length);
}

//applet paint event
public void paint(Graphics g) {

Programming Vector Graphics

//create an instance of Graphics2D
Graphics2D g2d = (Graphics2D) g;

//save the identity transform
AffineTransform identity = new AffineTransform();

//create a random number generator
Random rand = new Random();

//save the window width/height
int width = getSize().width;
int height = getSize().height;

//fi11 the background with black
g2d.setColor(Color.BLACK);
g2d.fil11Rect(0, 0, width, height);

for (intn=20; n<300; n+t+) {
//reset Graphics2D to the identity transform
g2d.setTransform(identity);

//move, rotate, and scale the shape randomly
g2d.translate(rand.nextInt() % width, rand.nextInt() % height);
g2d.rotate(Math.toRadians(360 * rand.nextDouble()));
g2d.scale(5 * rand.nextDouble(), 5 * rand.nextDouble());

//draw the shape with a random color
g2d.setColor(new Color(rand.nextInt()));
g2d.fil11(poly);

}

Rotating and Scaling Shapes

The preceding programs have used vector rotation to rotate rectangles and
polygons by a random value. Now I want to give you a little more direct
exposure to this feature by writing a program that rotates a single polygon on
the screen using the arrow keys and, alternately, the mouse buttons. The scale
factor is set to a fixed value of 20, which you can change if you want. Figure 4.5
shows the output of the RotatePolygon program.

103

104

Chapter 4 = Vector-Based Graphics

Figure 4.5
The RotatePolygon program rotates a star-shaped polygon.

There are a couple of notable differences between this program and the last one.
This program just draws a single shape, so there is no need to set the identity
transform before drawing. This program implements the Keylistener and
Mouselistener interfaces, which means that the program must use all of the
methods defined in these interface classes, even if you don’t plan to use them.
It’s an odd quirk that is inherent to how interface classes work because they are
abstract.

// RotatePolygon program
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.util.*;
import java.awt.geom.*;

pubTic class RotatePolygon extends Applet
implements KeylListener, MouselListener {
private int[] xpoints={0,-10, -7, 7, 10 };
private int[] ypoints = {-10, -2, 10, 10, -2 };

//here's the shape used for drawing
private Polygon poly;

//polygon rotation variable
int rotation=0;

Programming Vector Graphics

//applet init event
public void init() {

}

//create the polygon
poly =new Polygon(xpoints, ypoints, xpoints.length);

//initialize the 1isteners
addKeyListener(this);
addMouseListener(this);

//applet paint event
public void paint(Graphics g) {

}

//create an instance of Graphics2D
Graphics2D g2d = (Graphics2D) g;

//save the identity transform
AffineTransform identity = new AffineTransform();

//save the window width/height
int width = getSize().width;
int height = getSize().height;

//fi11 the background with black
g2d.setColor(Color.BLACK);
g2d.fil11Rect(0, 0, width, height);

//move, rotate, and scale the shape randomly
g2d.translate(width / 2, height / 2);
g2d.scale(20, 20);
g2d.rotate(Math.toRadians(rotation));

//draw the shape with a random color
g2d.setColor(Color.RED);
g2d.fill(poly);
g2d.setColor(Color.BLUE);
g2d.draw(poly);

//handle keyboard events
public void keyReleased(KeyEvent k) { }

105

106 Chapter 4 = Vector-Based Graphics

public void keyTyped(KeyEvent k) { }
public void keyPressed(KeyEvent k) {
switch (k.getKeyCode()) {
case KeyEvent .VK_LEFT:
rotation- -;
if (rotation < 0) rotation=359;
repaint();
break;
case KeyEvent.VK_RIGHT:
rotationt+;
if (rotation > 360) rotation=20;
repaint();
break;

}

//handle mouse events
public void mouseEntered(MouseEvent m) { }
public void mouseExited(MouseEvent m) { }
public void mouseReleased(MouseEvent m) { }
public void mouseClicked(MouseEvent m) { }
public void mousePressed(MouseEvent m) {
switch(m.getButton()) {
case MouseEvent .BUTTONI:
rotation- -;
if (rotation < 0) rotation =359;
repaint();
break;
case MouseEvent .BUTTON3:
rotation++;
if (rotation > 360) rotation=0;
repaint();
break;

WHAT You HAVE LEARNED

This chapter provided a bridge from the material you were immersed into in the
previous chapter to the new concepts you will learn in the next chapter, covering

On Your Own 107

the basics of vector graphics programming. The next step in graphics is to draw
bitmaps, and then regular sprites, followed by animated sprites. We have much
to learn in upcoming chapters! Here is what we covered in this chapter:

m How to use the Graphics2D class to manipulate vector graphics

m How to translate, rotate, and scale vector shapes

ReviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1

ul

O 0 NN N

10.

. What is the primary class we’ve been using to manipulate vector

graphics in this chapter?

. What is the name of the Applet event that refreshes the screen?

. What is the name of the Graphics2D method that draws a filled

rectangle?

. Define the words comprising the acronym “AWT.”

. What class makes it possible to perform translation, rotation, and scaling

of shapes?

. Which Graphics2D method draws a polygon?
. Which transform method moves a shape to a new location?
. What method initializes the keyboard listener interface?

. What method in the Random class returns a double-precision floating-

point value?

Which KeyListener event detects key presses?

ON Your OwWN

Use the following exercises to test your grasp of the material covered in this
chapter.

108

Chapter 4 = Vector-Based Graphics

Exercise 1

There are many example programs in this chapter that could be modified and
experimented upon. Let’s tweak the RandomPolygons program—modify the
program so that it draws two different polygons instead of just a single one.

Exercise 2

Modify the RotatePolygon program so that it will rotate based on mouse
movement instead of button clicks. You will need to implement the Mouse-
MotionListener interface (and events) and call the addMouseMotionListener
method to gain access to the mouseMoved event. In this event, you can track
mouse movement and rotate the polygon accordingly.

CHAPTER 5

BitTMAP-BASED GRAPHICS

Java has a robust and feature-rich set of classes for working with 2D bitmap-
based graphics (also known as raster graphics), allowing you to load and draw
bitmaps very easily. Bitmaps are the keys to building a good 2D game with
images rather than vector shapes.

Here are the key topics in this chapter:

m Loading and drawing bitmap images
m Applying transformations to bitmap images

m Drawing opaque and transparent images

PrRocrRAMMING BiITMAPPED GRAPHICS

I mentioned before that there are many methods for drawing bitmap images in
Java. Actually, most of those methods are found in the base Graphics class, while
several more are found in Graphics2D. I think you will find the Graphics2D
methods more useful, so we won’t spend any time working with the legacy
versions. The great thing about the Graphics2D class is how its methods for
manipulating 2D graphics work equally well with vectors and bitmaps. This
means you will be able to translate, rotate, and scale bitmap images just as easily
as you have manipulated vector graphics thus far. This awesome functionality
will translate well into the subsequent chapters on sprite and animation
programming. The real difference when working with images is that you will

109

110

Chapter 5 = Bitmap-Based Graphics

need to create a separate AffineTransform class to manipulate the Image object,
rather than going directly through Graphics2D. This strangely named class
allows us to rotate, scale, and move bitmaps.

Note

The online documentation for the Java API can be found at this website: http://download.oracle
.com/javase/6/docs/api.

Loading and Drawing Images
To load an image from a file, we have to use a helper class called Toolkit:
Toolkit tk = Toolkit.getDefaultToolkit();

Toolkit includes a method called getImage() that can load a bitmap file (the
most common format for Java is PNG, the Portable Network Graphics format).
This method is found in Toolkit, which is why we have to create a Toolkit
object to load the artwork for a game. The method for drawing a bitmap is found
in Graphics2D and is similarly easy to use: just call drawImage() with the
appropriate parameters.

Let’s write a program that demonstrates how to load and draw a bitmap image.
We can use the getImage() method to load an image file, and then use draw-
Image() to draw it onto the applet window. Figure 5.1 shows the output from the
Drawlmage program. I have highlighted the important lines of code.

Note

This high-quality castle image was rendered by Reiner Prokein using Caligari trueSpace. He offers a
large amount of royalty-free game artwork, such as this castle, at his website, www.reinerstileset.de
(a German site with an English version).

// DrawImage program
import java.awt.*;
import java.util.*;
import javax.swing.*;
import java.net.*;

public class DrawImage extends JFrame {
private Image image;

www.reinerstileset.de
http://download.oracle.com/javase/6/docs/api
http://download.oracle.com/javase/6/docs/api

Programming Bitmapped Graphics 111

Figure 5.1
The Drawlmage program loads and draws a bitmap file.

public static void main(String[] args) {
new DrawImage();

}

pubTlic DrawImage() {
super("DrawImage");
setSize(600,600);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Toolkit tk =Toolkit.getDefaultToolkit();
image = tk.getImage(getURL("castle.png"));

}

private URL getURL(String filename) {
URL url =null;
try {
url =this.getClass().getResource(filename);
}
catch (Exceptione) { }
return url;

112

Chapter 5 = Bitmap-Based Graphics

public void paint(Graphics g) {
//create an instance of Graphics2D
Graphics2D g2d = (Graphics2D) g;

//fi11 the background with black
g2d.setColor(Color.BLACK);
g2d.fil1Rect(0, 0, getSize().width, getSize().height);

//draw the image
g2d.drawlmage(image, 0, 40, this);

}

Applying Transforms to Images

Now TI'll demonstrate how to apply a transform to a simple bitmap image.
Remember, a transform affects the position, rotation, or scale. Transforms will
make our sprite code in the upcoming chapters really fun because the sprite
images will be manipulated with these transforms as well. Since this code is
similar to the code for transforming vectors, it should look at least somewhat
familiar even if you don’t fully understand it. One difference when working with
an image is that you must define a separate AffineTransform object for
manipulating the Image object because the Graphics2D transforms are designed
to work only with vectors. Figure 5.2 shows the output of the RandomImages
program, showing a spaceship image being moved, rotated, and scaled.

// RandomImages program

import java.awt.*;

import javax.swing.*;

import java.util.*;

import java.awt.geom.*;

import java.net.*;

pubTic class RandomImages extends JFrame {
private Image image;

public static void main(String[] args) {
new RandomImages();

}

Programming Bitmapped Graphics 113

Figure 5.2
The RandomImages program draws images at random locations, with random rotation and scaling.

//applet init event
public RandomImages() {
super("RandomImages");
setSize(600,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Toolkit tk =Toolkit.getDefaultToolkit();
image = tk.getImage(getURL("spaceship.png"));
}

//identity transformation
AffineTransform identity = new AffineTransform();

private URL getURL(String filename) {
URL url =null;
try {
url =this.getClass().getResource(filename);
}

114

Chapter 5 = Bitmap-Based Graphics

}

catch (Exceptione) { }
return url;

//applet paint event
public void paint(Graphics g) {

//create an instance of Graphics2D
Graphics2D g2d = (Graphics2D) g;

//working transform object
AffineTransform trans = new AffineTransform();

//random number generator
Random rand = new Random();

//applet window width/height
int width = getSize().width;
int height = getSize().height;

//fi11 the background with black
g2d.setColor(Color.BLACK);
g2d.fil11Rect(0, 0, getSize().width, getSize().height);

//draw the image multiple times

for (intn=20; n <50; n+t) {
trans.setTransform(identity);
//move, rotate, scale the image randomly
trans.translate(rand.nextInt()%width, rand.nextInt()%height);
trans.rotate(Math.toRadians(360 * rand.nextDouble()));
double scale = rand.nextDouble()+1;
trans.scale(scale, scale);

//draw the image
g2d.drawlmage(image, trans, this);

Transparency

TRANSPARENCY

Although you can load and draw a bitmap at this point, the code you’ve seen so
far is very limited. For one thing, the getImage() method can’t load a bitmap file
out of a Java Archive (JAR) file. JAR files will become very important later in
Part III, when we build the Galactic War game. Since the game is so large, with
so many bitmap and sound files, it takes a long time for the game to load over
the web (unless you have a broadband connection). You'll learn how to create
and use a JAR file soon enough. All I'm concerned about right now is that we are
using code that will be compatible with a JAR, so that Java can read files out of
the JAR as easily as it reads the raw files from the web server (or the directory in
which your program is located if you are running it locally).

The Abstract Window Toolkit, known as AWT, provides a class called Toolkit
that knows how to load a bitmap file. It's smart enough to look in the current
URL path where the applet is located (something that you must pass to the
getImage() method). You can use Toolkit in your own programs or you can
instantiate a global Toolkit object and then use it throughout the game; there
are many options. Let’s take a look at how this class works:

Toolkit tk =Toolkit.getDefaultToolkit();

Image ship = tk.getImage("star_destroyer.png");

First, I created a Toolkit object by returning the object passed back from
Toolkit.getDefaultToolkit(). This method returns a Toolkit object that
represents the state of the Java program or applet. You can then use this
Toolkit object’s getImage() method to load a bitmap file. Since we want our
applets to be JAR-friendly so games will run on the web as efficiently as possible,
I will use the getURL() method again:

Image ship = tk.getImage(getURL("star_destroyer.png"));

Opaque Images

Let’s start with what you have already learned up to this point—how to load and
draw a bitmap without any transparency. At this point, it doesn’t matter
whether you use the Applet or the Toolkit to load a bitmap file because the
end result will be the same. I leave it to you to decide which method you prefer,
and I will use them both interchangeably. Let’s write a short program to serve as
a basis for discussing this topic. The output from the BitmapTest program is

115

116

Chapter 5 = Bitmap-Based Graphics

-

E 3 — — —— I
| £ BitmapTest 4 — g =

Figure 5.3
The BitmapTest program demonstrates the loading and drawing of opaque images.

shown in Figure 5.3. I have highlighted the key portions of code in bold in the
listing that follows.

// BitmapTest program
import java.awt.*;
import java.util.*;
import java.net.*;
import javax.swing.*;

public class BitmapTest extends JFrame implements Runnable {
Image image;
Thread gameloop;
Random rand = new Random();

public static void main(String[] args) {
new BitmapTest();
}

public BitmapTest() {
super("Opaque Bitmap Test");
setSize(640,480);

setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Toolkit tk = Toolkit.getDefaultToolkit();
image = tk.getImage(getURL("asteroid2.png”));
gameloop = new Thread(this);
gameloop.start();

}

private URL getURL(String filename) {
URL url =null;
try {
url =this.getClass().getResource(filename);
}
catch (Exceptione) {}
return url;
}

public void run() {
Thread t = Thread.currentThread();
while (t == gameloop) {
try {
Thread.sleep(20);
}
catch (InterruptedException e) {
e.printStackTrace();
}
repaint();

}

public void update(Graphics g) {
paint(g);
}

public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;
int width = 640 - image.getWidth(this);
int height = 480 - image.getHeight(this);

Transparency

g2d.drawlmage(image, rand.nextInt(width), rand.nextInt(height), this);

117

118

Chapter 5 = Bitmap-Based Graphics

Figure 5.4
This opaque bitmap image contains no transparency information.

This short program loads the bitmap image shown in Figure 5.4. In many
programming languages and graphics libraries, you must specify a transparent
pixel color to be used for transparency. In the example shown here, the black
region around the edges of the asteroid would be considered the “tranparent
zone” of the image. This transparent color is black in the example shown here
(with an RGB value of 0,0,0), but other colors can be used for the transparent
color too—the color pink (255,0,255) is often used for the transparent color
because it stands out so well.

Java uses a more advanced method to handle transparency, as the next section
explains.

Transparent Images

Java is a smart language that handles a lot of things for the programmer
automatically, including the drawing of transparent images. This really makes
life easier for a Java game programmer because many game libraries use a
transparent pixel for transparency instead of a mask layer. So instead of dealing
with transparency in code, it’s handled in the source artwork. If you supply Java
with a transparent bitmap file, it will draw that image transparently.

Most Java programs use the PNG format because it offers decent compression
and transparency information without sacrificing image quality. You will need
to use a graphics editor such as GIMP to convert images from whatever source
format they are in (most likely the BMP format) to the PNG format, along with
the mask layer that makes transparency possible.

Transparency 119

| £ BitmapTest

Figure 5.5
The asteroid image is drawing with transparency due to its alpha channel.

Tip

| have used many graphic editors, including Paint Shop Pro, GIMP, and Photoshop. Although they
are functionally different, they all share a similar toolset, including the ability to create an alpha
channel. The instructions given here for GIMP will be similar to the steps in most other graphic
editors.

Let’s take the same program you just typed in for BitmapTest and run it again.
Only this time, it will load up a new version of the asteroidl.png file that has
been edited to support transparency. Figure 5.5 shows the output from the
TransparentTest program. The source code has not changed (refer earlier to the
BitmapTest program listing), but the PNG file has changed, which accounts for
the difference!

Working Some Masking Magic

Let’s take a look at how you actually create a masked PNG image. 'm using
GIMP because it’s very easy to use and free. If you want to use this program, you
can download it from www.gimp.org. To add a transparency layer to an image,

www.gimp.org

120

Chapter 5 = Bitmap-Based Graphics

File Edit Select View Image Layer Colors Tools Dialogs Filters
E]|,|Q|,|,|,|,|ﬁﬂ|,|,|,|,|1,D|],|,|,|,|1,5-|J,|,|,|,|20D,|,|,|,|i9:
L

-

Figure 5.6
The outer edge of the asteroid image has been selected with the Magic Wand tool.

you need to locate the Magic Wand tool available in most graphics editors. After
selecting the Magic Wand icon with your mouse, click somewhere in the black
region (or on any pixel that isn’t part of the game object). This should locate the
edges of the game object and highlight everything around it (see Figure 5.6).
Another more precise way to select a background is with the Color Picker or
Select By Color tool.

Now that you have a selection available, you can create a Layer Mask to invert it
because this selection will exclude the image. Click on the Selections menu and
choose Invert (see Figure 5.7). This brings up the dialog shown in Figure 5.8.
Choose the Selection option and check the Invert mask option.

Tip

If you have a complex image and would like to exclude many portions of it in order to select the
boundary of the real image, you can hold down the Shift key while clicking with the Fuzzy Select (or
Magic Wand) tool inside portions of the image to add new selections.

Transparency 121

File Edit Select View Colors Tools Dialogs Filters

O [et it B U et [Mew Layer... Shift+Ctrl+N

D_Z_ & Duplicate Layer Shift+ Ctrl+D

3 sl Anchor Layer Ctri+H
2| & Merge Down
@ Delete Layer

Stack
Mask

Add Layer Mask...

LRl ~ B

Transparency Apply Layer Mask

Transform @ Delete Layer Mask

Layer Boundary Size... Show Layer Mask
.0, LayertoImage Size Edit Layer Mask
B Scale Layer... Disable Layer Mask

A Crop to Selection Mask to Selection
Add to Selection
3 Subtract from Selection

Intersect with Selection

| v o
150%:3 Mamkﬁaﬁallmusmnrmﬁee&%

Figure 5.7
Preparing to add a layer mask.

= Add a Mask to the Layer
Background-20 (astercid2 png)

Initialize Layer Mask to:
() White (full opacity)

() Black [full transparency)
() Layer's alpha channel
() Transfer layer's alpha channel

() Grayscale copy of layer
(7) Channel

Invert mask

sl

Figure 5.8
The Add Layer Mask dialog is used to choose options for the new layer mask.

122

Chapter 5 = Bitmap-Based Graphics

® “asteroid2.png-6.0 (RGB, 1 layer) 240x240 ‘ sl L0

File Edit Select View Image
B le, 0 180000 119 T New Layer... Shift+Ctrl+N
= Duplicate Layer Shift+Ctrl+D
ws Anchor Layer Ctrl+H
@l Merge Down

Colors Tools Dialogs Filters

Delete Layer

Stack

s Add Layer Maslk...

Apply Layer Mask

k @ Delete Layer Mask

Transparency

Transform

 Layer Boundary Size...

Show Layer Mask
I‘D: Layer to Image Size v Edit Layer Mask
B Scale Layer... Disable Layer Mask

/s Crop to Selection ¥ Mask to Selection
Autocrop Layer B Add to Selection

i) Subtract from Selection
P e : [Intersect with Selection

1 | v o
150% ~ | Apply the effect of the layer mask and remo...

Figure 5.9
Applying the new layer mask makes it permanent.

The next step is to create a new mask layer in the image to represent the
transparent portion. You can tell GIMP to generate a mask based on the
selection you’ve made in the image. To do this, open the Layers menu, select
Apply Layer Mask, and then Show Selection, as shown in Figure 5.9.

Tip

GIMP is a freeware graphic editor for multiple platforms with many good features found in costly
commercial graphic editors. Download GIMP (GNU Image Manipulation Program) from www.gimp.org.

In Figure 5.10, the alpha channel has been created based on the masked selection.
The checkerboard background behind the asteroid image shows the transparent
region. The result looks very nice; this asteroid is ready for rendering! You can
load this image into your Java applet and draw it, and it will automatically be
drawn with transparency so the outer edges of the image (where the black pixels
used to be) will not overwrite the background of the screen.

www.gimp.org

Review Questions

File Edit Select View Image Layer Colors Tools Dialogs Filters
Bl.lql.l.l.l.ﬁul.|.|.|.|1.u|}.|.|.|.|1|5|:'.|.|.|.|2”|3.|.|.|.|5\gi
Ld

-

Figure 5.10
The asteroid image now has a masked transparency layer.

WHAT You HAVE LEARNED
We will continue to work with transparent images from this point forward, so
you have learned a very important tool in this chapter that will make it possible
to create extremely attractive games. Specifically, you learned:

m How to draw bitmap images

m How to translate, rotate, and scale bitmap images

m How to draw bitmaps with transparency

ReEviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

123

124

Chapter 5 = Bitmap-Based Graphics

1. What is the primary class we’ve been using to manipulate bitmapped
graphics in this chapter?

. What method initializes the keyboard listener interface?
. What Graphics2D method is used to draw an image?

. Which Java class contains the getImage() method?

192 I N SS E \S]

. What class makes it possible to perform translation, rotation, and scaling
of images?

. Which Graphics2D method draws an image?
. Which transform method moves an image to a new location?

. What is the name of the “transparency” channel in a 32-bit PNG image?

O 0 N O

. What is the Applet class method used to load a resource from a JAR?
10. Which KeyListener event detects key presses?

ON Your OwN

Use the following exercises to test your grasp of the material covered in this
chapter.

Exercise 1

There are many example programs in this chapter that could be modified and
experimented upon. Tweak the RandomImages program. Modify the program
so that it loads and draws two different images randomly instead of just a single
image.

Exercise 2

Modify the DrawImage program so that it will scale the image larger or smaller
with the use of the keyboard plus (4) and minus (—) keys.

CHAPTER 6

SIMPLE SPRITES

Up to this point you have learned about a lot of Java classes that are useful for
making a game, particularly the Graphics2D class. The previous two chapters
provided the groundwork for this chapter by showing you how to tap into the
Graphics2D class to draw vectors and bitmaps. At this point, the source code for
even a simple bitmap-based game will tend to be too complicated and too
difficult to manage without a better way to handle the objects in a game. What
you need at this point is a new class that knows how to work with game
objects—something known as an actor or a sprite. The goal of this chapter is to
develop a way to handle the game objects moving around on the screen.

Here are the specific topics covered in this chapter:

m Programming simple sprites
m Creating a Sprite class

m Learning about collision testing

PROGRAMMING SIMPLE SPRITES

A sprite usually represents an animated graphic image that moves around in a
game and is involved with other images to form the gameplay of a game. The
difference between a regular image and a sprite is often that a sprite will
encapsulate the image data as well as the methods needed to manipulate it. We
will create a new class later in this chapter called ImageEntity, which will be able

125

126

Chapter 6 = Simple Sprites

to load and draw a bitmap, and we will then create a new Sprite class that will
use ImageEntity. Animation will be held off until the next chapter.

I would like to build a pair of classes to simplify sprite programming. We will
create the Sprite class in this chapter and then add the AnimatedSprite class in
the next chapter to handle animation. The new Sprite class that I'm going to
show you here might be described as a heavy class. What do I mean by “heavy”?
This is not a simple, abstract class. Instead, it is tied closely to the JFrame and
Graphics2D objects in our main program. You would not be able to use this
Sprite class on its own in a Java applet (running in a web browser) without
modifications, because it relies on the presence of the JFrame to work. Although
it is possible to write a Java game that runs in a JFrame or a JApplet (which are
both somewhat related), the code to support both applications and applets at the
same time is messy. Our new Sprite class will work fine as a support class for an
application-based Java game. If we want to use it in an applet, minor
modifications can be made (they are trivial!).

A sprite cannot draw itself without the JFrame and Graphics2D objects in a main
program. Although the Sprite class could use methods such as getGraphics() to
pull information from the main applet, our examples use a double buffer (a back
buffer image used to update graphics smoothly, without flickering the screen).

The BaseGameEntity class will handle all of the position, velocity, rotation, and
other logistical properties, while ImageEntity will make use of them by
providing methods such as transform() and draw(). I want to simplify the
Sprite class so it doesn’t expose all of these properties and methods, but
provides a simpler means to load and draw images. This simplification will be
especially helpful in the next chapter because animation tends to complicate
things. Although we have three classes just to draw a single sprite, there’s reason
behind this apparent madness—I don’t want to duplicate code in all of the game
entities if it can be helped. In the next few chapters we’ll be drawing vectors and
sprites, and it is helpful if we can reuse some of the code.

A useful sprite class should handle its own position and velocity data, rather than
individual X and Y values for these properties. The sprite’s position and velocity
will be handled by the BaseGameEntity class. The Sprite class will not inherit
from ImageEntity; instead, it will use this class internally, like a regular variable.

Programming Simple Sprites

I also want the get methods that return values to resemble simple properties,
while the change methods will be in the usual “set” format. For instance, I want
the Sprite class to have a position() method that returns the position of the
Sprite object, but it will use a setPosition() method to change the X and Y
values. We should be able to access position and velocity by writing code like
this:

sprite.position().x

sprite.position().y

Whenever possible, we will forego good object-oriented design in favor of
simpler source code. This is especially helpful for beginners who may have
never seen a truly huge source code listing, and thus would not understand why
such things are important.

On top of these requirements, we should not be concerned with numeric data
types! I don’t want to typecast integers, floats, and doubles! So, this Sprite class
will need to deal with the differences in the data types automatically and not
complain about it! These are minor semantic issues, but they tend to seriously
clean up the code. The result will be a solidly built sprite handler. First, let’s take
a look at a support class that will make it possible.

Tip

An accessor method is a method that returns a private variable in a class. A mutator method is a
method that changes a private variable in a class. These are also commonly called “get” and “set”
methods.

Basic Game Entities

The BaseVectorShape class was introduced back in Chapter 3 for the Asteroids-
style game. We will use a very similar class for sprite programming in a future
version of Galactic War (beginning in Chapter 11). Here is the code for this
class.

public class BaseGameEntity extends Object {
//variables
protected boolean alive;
protected double x,y;
protected double velX, velY;
protected doubTe moveAngle, faceAngle;

127

128 Chapter 6 = Simple Sprites

//accessor methods

pubTic boolean isATive() { returnalive; }

public double getX() { return x; }

public double getY() { returny; }

public double getVelX() { return velX; }

public double getVelY() { return velY; }

public double getMoveAngle() { return moveAngle; }
pubTic double getFaceAngle() { return faceAngle; }

//mutator methods

public void setAlive(boolean alive) { this.alive=alive; }

public void setX(double x) { this.x=x; }

public void incX(double i) { this.x +=1; }

public void setY(double y) { this.y=y; }

public void incY(double i) { this.y +=1; }

public void setVelX(double velX) { this.velX =velX; }

pubTic void incVelX(double i) { this.velX +=1; }

public void setVelY(double velY) { this.velY =velY; }

pubTic void incVelY(double i) { this.velY +=1; }

public void setFaceAngle(double angle) { this.faceAngle =angle; }
public void incFaceAngle(double i) { this.faceAngle +=1; }

public void setMoveAngle(double angle) { this.moveAngle = angle; }
public void incMoveAngle(double i) { this.moveAngle +=1; }

//default constructor

BaseGameEntity() {
setAlive(false);
setX(0.0);
setY(0.0);
setVelX(0.0);
setVelY(0.0);
setMoveAngle(0.0);
setFaceAngle(0.0);

}

The ImageEntity Class

The ImageEntity class gives us the ability to use a bitmap image for the objects
in the game instead of just vector-based shapes (such as the asteroid polygon).
It’s never a good idea to completely upgrade a game with some new technique,

Programming Simple Sprites

which is why some of the objects in the first version of Galactic War will still be
vectors, while the player’s ship will be a bitmap. When you reach Chapter 11,
you will have an opportunity to examine the progression of the game from its
meager beginning to a complete and complex game with sprite entity manage-
ment. I always recommend making small, incremental changes, play-testing the
game after each major change to ensure that it still runs. There’s nothing more
frustrating than spending two hours making dramatic changes to a source code
file, only to find the changes have completely broken the program so that either
it will not compile or it is full of bugs.

The ImageEntity class also inherits from the BaseGameEntity class, so it is related
to VectorEntity. This class is awesome! It encapsulates all of the functionality
we need to load and draw bitmap images, while still retaining the ability to rotate
and move them on the screen!

// Base game image class for bitmapped game entities
import java.awt.*;

import java.awt.geom.*;

import javax.swing.*;

import java.net.*;

public class ImageEntity extends BaseGameEntity {
//variables
protected Image image;
protected JFrame frame;
protected AffineTransformat;
protected Graphics2D g2d;

//default constructor

ImageEntity(JFrame a) {
frame =a;
setImage(null);
setAlive(true);

public Image getImage() { return image; }
public void setImage(Image image) {

this.image = image;
double x = frame.getSize().width/2- width()/2;

129

Chapter 6 = Simple Sprites

double y = frame.getSize().height/2 - height()/2;
at = AffineTransform.getTranslatelnstance(x, y);
}

public int width() {
if (image !=null)
return image.getWidth(frame);
else
return 0;
}
public int height() {
if (image !=null)
return image.getHeight(frame);
else
return 0;

}

public double getCenterX() {
return getX() + width() / 2;

}

public double getCenterY() {
return getY() + height() / 2;

}

public void setGraphics(Graphics2D g) {
g2d =g;
}

private URL getURL(String filename) {
URL url =null;
try {
url =this.getClass().getResource(filename);
}
catch (Exceptione) { }
return url;

}

public void Toad(String filename) {
Toolkit tk =Toolkit.getDefaultToolkit();
image = tk.getImage(getURL(filename));

Creating a Reusable Sprite Class

while(getImage().getWidth(frame) <=0);

double x = frame.getSize().width/2- width()/2;

double y = frame.getSize().height/2 - height()/2;

at = AffineTransform.getTranslateInstance(x, y);
}

public void transform() {
at.setToldentity();
at.translate((int)getX() + width()/2, (int)getY() + height()/2);
at.rotate(Math.toRadians(getFaceAngle()));
at.translate(-width()/2, -height()/2);

}

public void draw() {
g2d.drawlmage(getImage(), at, frame);
}

//bounding rectangle

public Rectangle getBounds() {
Rectangle r;
r=new Rectangle((int)getX(), (int)getY(), width(), height());
return r;

CREATING A REUSABLE SPRITE CLASS

Following is the source code for the new Sprite class. This class includes a ton of
features! In fact, it’s so loaded with great stuff that you probably won’t even
know what to do with it all at this point. I am not a big fan of inheritance,
preferring to build core functionality into each class I use. We will peruse the
properties and methods of this class as we need them. This highly reusable
Sprite class will be a useful helper class for any future game project you work
on! It is a bit daunting only because I wanted to provide a complete class now
rather than give it to you in parts over time. This class resulted from work done
on the Galactic War game.

131

132

Chapter 6 = Simple Sprites

Collision Testing

The Sprite class includes several methods for detecting collisions with other
sprites, and it also provides tests for collision with Rectangle and Point2D
objects as a convenience. Remember that I wanted this Sprite class to be
intuitive and not cause the compiler to complain about silly things, such as data
type conversions? Well, the same is true of the collision testing code. There are
three versions of the collidesWith() method in the Sprite class, providing
support for three different parameters:

m Rectangle
m Sprite
m Point2D

This should cover almost any game object that you would like to test for a
collision. Since these methods are built into the Sprite class, you can call them
with a single parameter, and the internal data in the sprite itself is used for the
second parameter that would normally be passed to a collision routine.

Sprite Class Source Code

This new Sprite class does not inherit from anything other than the base
Object, although it uses ImageEntity internally for access to that class’ excellent
support for image loading and drawing. Why doesn’t this class inherit from
BaseGameEntity or ImageEntity? Those classes followed a logical inheritance
chain but also included a lot of features that do not need to be in the core of the
Sprite class. We still have access to those properties and methods if we want to
use them, by using an ImageEntity as a private variable, but we get around the
problem of having to deal with private/public access and inheritance. Inher-
itance is a beautiful concept, but in practice too much of it can make a program
too complicated.

// Sprite class

import java.awt.*;

import javax.swing.*;

public class Sprite extends Object {
private ImageEntity entity;
protected Point pos;

Creating a Reusable Sprite Class

protected Point vel;
protected double rotRate;
protected int currentState;

//constructor

Sprite(JFrame a, Graphics2D g2d) {
entity = new ImageEntity(a);
entity.setGraphics(g2d);
entity.setAlive(false);
pos = new Point(0, 0);
vel = new Point(0, 0);
rotRate=0.0;
currentState=0;

}

//1oad bitmap file

public void Toad(String filename) {
entity.load(filename);

}

//perform affine transformations

public void transform() {
entity.setX(pos.x);
entity.setY(pos.y);
entity.transform();

}

//draw the image

public void draw() {
entity.g2d.drawImage(entity.getImage(),entity.at,entity.frame);

}

//draw bounding rectangle around sprite

public void drawBounds(Color c) {
entity.g2d.setColor(c);
entity.g2d.draw(getBounds());

}

//update the position based on velocity
public void updatePosition() {

133

134 Chapter 6 = Simple Sprites

pos.x +=vel.x;
pos.y +=vel.y;
}

//methods related to automatic rotation factor
pubTic double rotationRate() { return rotRate; }
public void setRotationRate(double rate) { rotRate =rate; }
public void updateRotation() {
setFaceAngle(faceAngle() + rotRate);
if (faceAngle() < 0)
setFaceAngle(360 - rotRate);
else if (faceAngle() > 360)
setFaceAngle(rotRate);
}

//generic sprite state variable (alive, dead, collided, etc)
public int state() { return currentState; }
public void setState(int state) { currentState = state; }

//returns a bounding rectangle
public Rectangle getBounds() { return entity.getBounds(); }

//sprite position
public Point position() { return pos; }
pubTic void setPosition(Point pos) { this.pos =pos; }

//sprite movement velocity
public Point velocity() { return vel; }
public void setVelocity(Point vel) { this.vel =vel; }

//returns the center of the sprite as a Point
public Point center() {
int x = (int)entity.getCenterX();
int y = (int)entity.getCenterY();
return(new Point(x,y));

//generic variable for selectively using sprites
public boolean alive() { return entity.isAlive(); }
public void setAlive(boolean alive) { entity.setATive(alive); }

Creating a Reusable Sprite Class

//face angle indicates which direction sprite is facing

public double faceAngle() { return entity.getFaceAngle(); }

public void setFaceAngle(double angle) {
entity.setFaceAngle(angle);

}

public void setFaceAngle(float angle) {
entity.setFaceAngle((double) angle);

}

public void setFaceAngle(int angle) {
entity.setFaceAngle((double) angle);

}

//move angle indicates direction sprite is moving

public doubTe moveAngle() { return entity.getMoveAngle(); }

public void setMoveAngle(double angle) {
entity.setMoveAngle(angle);

}

public void setMoveAngle(float angle) {
entity.setMoveAngle((double) angle);

}

public void setMoveAngle(int angle) {
entity.setMoveAngle((double) angle);

}

//returns the source image width/height
public int imageWidth() { return entity.width(); }
public int imageHeight() { return entity.height(); }

//check for collisionwith a rectangular shape
public boolean collidesWith(Rectangle rect) {
return (rect.intersects(getBounds()));
}
//check for collision with another sprite
public boolean collidesWith(Sprite sprite) {
return (getBounds().intersects(sprite.getBounds()));
}
//check for collision with a point
pubTic boolean collidesWith(Point point) {
return (getBounds().contains(point.x, point.y));
}

135

136

Chapter 6 = Simple Sprites

pubTic JFrame frame() { return entity.frame; }

public Graphics2D graphics() { returnentity.g2d; }

public Image image() { return entity.image; }

public void setImage(Image image) { entity.setImage(image); }
}

Tip

Animation is a feature missing from the Sprite class at this point; we will go over that subject in
the next chapter.

Testing the Sprite Class

Let’s give the new classes we've developed in this chapter a test run. The
following program (shown in Figure 6.1) draws a background image and then
draws a sprite randomly on the screen. This test program uses a thread and the
Runnable interface in order to draw a sprite repeatedly on the screen without
user input. We'll study this feature more thoroughly in Chapter 10, when we
learn more about threads and the game loop. Study this short demo program

- —
T2l sprie 1ot _} = X
+

e T —— T — -

Figure 6.1
The SpriteTest program demonstrates how to use the Sprite class.

Creating a Reusable Sprite Class

well, because it demonstrates perhaps the first high-speed example you've seen
thus far.

// SpriteTest program
import java.awt.*;
import java.awt.image.*;
import javax.swing.*;
import java.util.*;
import java.net.*;

public class SpriteTest extends JFrame implements Runnable {
int screenWidth = 640;
int screenHeight = 480;

//double buffer objects
BufferedImage backbuffer;
Graphics2D g2d;

Sprite asteroid;
ImageEntity background;
Thread gameloop;

Random rand = new Random();

public static void main(Stringl[] args) {
new SpriteTest();
}

public SpriteTest() {
super("Sprite Test");
setSize(640,480);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//create the back buffer for smooth graphics

backbuffer = new BufferedImage(screenWidth, screenHeight,
BufferedImage.TYPE_INT_RGB);

g2d = backbuffer.createGraphics();

//Toad the background
background = new ImageEntity(this);
background.load("bluespace.png");

137

138 Chapter 6 = Simple Sprites

//10ad the asteroid sprite
asteroid = new Sprite(this, g2d);
asteroid.load("asteroid2.png");

gameloop = new Thread(this);
gameloop.start();
}

public void run() {
Thread t = Thread.currentThread();
while (t == gameloop) {
try {
Thread.sleep(30);
}
catch (InterruptedException e) {
e.printStackTrace();
}

//draw the background
g2d.drawImage(background.getImage(), 0, 0, screenWidth-1,
screenHeight-1, this);

int width = screenWidth - asteroid.imageWidth() - 1;
int height = screenHeight - asteroid.imageHeight() - 1;

Point point = new Point(rand.nextInt(width),
rand.nextInt(height));

asteroid.setPosition(point);

asteroid.transform();

asteroid.draw();

repaint();
}
public void paint(Graphics g) {

//draw the back buffer to the screen
g.drawImage(backbuffer, 0, 0, this);

Review Questions

WHAT You HAVE LEARNED
This significant chapter produced a monumental new version of Galactic War
that is a foundation for the chapters to come. The final vestiges of the game’s
vector-based roots have been discarded, and the game is now fully implemented
with bitmaps. In this chapter, you learned:

m How to create a new, powerful Sprite class

m How to detect sprite collision

m How to write reusable methods and classes

ReEviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What is the name of the support class created in this chapter to help the
Sprite class manage position and velocity?

2. During which keyboard event should you disable a keypress variable,
when detecting multiple key presses with global variables?

3. What are the three types of parameters you can pass to the collidesWith
() method?

4. What Java class provides an alternate method for loading images that is
not tied to the applet?

5. Which Java package do you need to import to use the Graphics2D class?

6. What numeric data type does the Point class use for internal storage of
the X and Y values?

7. What data types can the Point class work with at the constructor level?
8. Which sprite property determines the angle at which the sprite will move?

9. Which sprite property determines at which angle an image is pointed,
regardless of movement direction?

10. Which AffineTransform method allows you to translate, rotate, and scale
a sprite?

139

140

Chapter 6 = Simple Sprites

ON Your OwN

Use the following exercises to test your understanding of the material covered in
this chapter.

Exercise 1

The SpriteTest program demonstrates the use of the Sprite class. Modify the
program so that it draws multiple instances of the asteroid sprite on the screen,
each moving and animating differently.

Exercise 2

Modify the SpriteTest program even further by adding collision testing, such
that the asteroids will rebound off one another when they collide.

CHAPTER 7

SPRITE ANIMATION

This chapter adds a significant new feature to your Java toolbox—the ability to
load and draw animated sprites and apply that knowledge to an enhanced new
sprite class. You will learn about the different ways to store a sprite animation
and how to access a single frame in an animation strip, and you will see a new
class called AnimatedSprite with some serious new functionality that greatly
extends the base Sprite class.

Here are the key topics we’ll cover in this chapter:

m Sprite animation techniques
m Drawing individual sprite frames
m Keeping track of animation frames

m Encapsulating sprite animation in a class

SPRITE ANIMATION

Over the years I have seen many techniques for sprite animation. Of the many
algorithms and implementations I've studied, I believe there are two essential
ways to animate a graphic object on the screen—1) Loading individual frames,
each stored in its own bitmap file (in sequence); or 2) Loading a single bitmap
containing rows and columns of animation frames (as tiles).

141

142

Chapter 7 = Sprite Animation

Animation Techniques

First, there is the sequence method. This type of animation involves loading a
bitmap image for each frame of the animation in sequence, and then animating
them on the screen by drawing each image in order. This technique tends to take
a long time to load all of the animation frames, especially in a large game with
many sprites. There is also the system overhead required to maintain so many
images in memory, even if they are small. Figure 7.1 shows an example.

Drawing an animation sequence is somewhat of a challenge when loading individual
frames because of the logistics of it. How should you store the images—in an array
or a linked list? I've seen some implementations using both methods, and neither is
very friendly, so to speak, because the code is so complicated.

The second sprite animation technique is the tiled method. This type of animation
involves storing an entire animation sequence inside a single bitmap file, also
known as an animation strip. Inside this bitmap file are the many frames of the
animation laid out in a single row or with many columns and rows. Figure 7.2
shows an animation strip on a single row, while Figure 7.3 shows a larger
animation with multiple columns and rows.

CAT1.PNG CAT2PNG CAT3.PNG CAT4.PNG CAT5.PNG CAT6.PNG

Figure 7.1
An animation sequence with frames stored in individual bitmap files.

!
-

i

Il

Il.ii”l[_}i!

-
|

O

Figure 7.2
An animation strip with a single row. Courtesy of Ari Feldman.

Sprite Animation

Figure 7.3
An animation strip with four columns and two rows. Courtesy of Ari Feldman.

Drawing Individual Frames

The key to drawing a single frame from an animation sequence stored in a tiled
bitmap is to figure out where each frame is located algorithmically. It’s
impossible to manually code the X and Y position for each frame in the
image; the very thought of it gives me hives. Not only would it take hours to jot
down the X,Y position of every frame, but the bitmap file could easily be
modified, thus rendering the manually calculated points irrelevant. This is
computer science, after all, so there is an algorithm for almost everything.

You can calculate the column (that is, the number of frames across) by dividing
the frame number by the number of columns and multiplying that by the height
of each frame. This calculation focuses on the quotient as the answer we want.

frameY = (frameNumber / columns) * height;

This will give you the correct row down into the image where your desired frame
is located, but it will not provide you with the actual column, or X value. For
that, you need a similar solution. Instead of dividing the frame number by
columns, we will use modulus. This calculation focuses on the remainder as the
answer we want.

frameX = (frameNumber % columns) * width;

As you might have noticed, this looks almost exactly like the formula for
calculating frameY. Now we’re multiplying by width and using the modulus

143

144

Chapter 7 = Sprite Animation

Columns: 0 1

Row 0

o 0 00O
o 00000
@a.a Row 2

Row 3

Row 4

Figure 7.4
lllustration of a specific frame in the sprite sheet.

character instead of the division character. Modulus returns the remainder of a
division, rather than the quotient itself. If you want the Y value, you look at the
division quotient; if you want the X value, you look at the division remainder.
Figure 7.4 illustrates how a desired frame is at a certain column and row position
in the sprite sheet. See if you can use the division and modulus calculations to
figure out where any random frame is located on the sheet on your own!

Here is a complete method that draws a single frame out of an animation
sequence. There are a lot of parameters in this method! Fortunately, they are all
clearly labeled with descriptive names. It’s obvious that we pass it the source
Image, the destination Graphics2D object (which does the real drawing), the
destination location (X and Y), the number of columns across, the frame
number you want to draw, and then the width and height of a single frame.
What you get in return is the desired animation frame on the destination surface
(which can be your back buffer or the applet window).

public void drawFrame(Image source, Graphics2D dest,

int destX, int destY, int cols, int frame, int width, int height)
{

int frameX = (frame % cols) * width;

int frameY = (frame / cols) * height;

Sprite Animation

dest.drawImage(source, destX, destY, destX+width, destY+height,
frameX, frameY, frameX+width, frameY+height, this);
}

Keeping Track of Animation Frames

Acquiring the desired animation frame is just the first step toward building an
animated sprite in Java. After you have figured out how to grab a single frame,
you must then decide what to do with it! For instance, how do you tell your
program which frame to draw, and how does the program update the current
frame each time through the game loop? I've found that the easiest way to do
this is with a simple update method that increments the animation frame and
then tests it against the bounds of the animation sequence. For instance:

currentFrame +=1;

if (currentFrame > 7) {
currentfFrame =0;

}

else if (currentFrame <0) {

currentFrame =7;
}
Take a close look at what’s going on in the code here. First, the current frame is
incremented by the value 1. To animate in the reverse order, this would be -1.
Then, the next line checks the upper boundary (7) and loops back to 0 if the
boundary is crossed. Similarly, the lower boundary is checked, setting currentFrame
to the upper boundary value if necessary. Making this code reusable, we would need
three variables:

m currentFrame
m totalFrames

m animationDirection

You would want to call this update code from the thread’s run() event method.
But, speaking of the thread, that does bring up an important issue—timing.
Obviously, you don’t want every sprite in the game to animate at exactly the
same rate! Some sprites will move very slowly, while others will have fast
animations. This is really an issue of fine-tuning the gameplay, but you must
have some sort of mechanism in place for implementing timing for each
animated sprite separately.

145

146

Chapter 7 = Sprite Animation

You can accomplish this by adding a couple more variables to the mix. First, you
will need to increment a counter each time through the game loop. If that
counter reaches a certain threshold value, then you reset the counter and go
through the process of updating the animation frame as before. Let’s use
variables called frameCount and frameDelay. The frame delay is usually a smaller
value than you would expect—such as 5 to 10, but usually not much more. A
delay of 10 in a game loop running at 50 fps means that the object only animates
at 5 fps, which is very slow indeed. I often use values of 1 to 5 for the frame
delay. Here is the updated animation code with a delay in place:

frameCount++;
if (frameCount > frameDelay) {
frameCount=0;
currentFrame += animationDirection;
if (currentFrame > totalFrames-1) {
currentFrame =0;

}
else if (currentFrame < 0) {
currentfFrame = totalFrames-1;

}
}
The end result is a much simplified form of timed animation that assumes the
update is taking place within a certain timed function already. If we did not call
on this animation code from inside an already-timed function, then the
animation would go too fast, and we would need to insert built-in timing into
every sprite. We can get away with somewhat lazy timing code like this as long
as we can assume timing is already handled.

Testing Sprite Animation

I'd like to go through a complete example with you so these concepts will feel
more real to you, and so that you can see the dramatic result when a sprite is
animated. The AnimationTest program loads a sprite sheet containing 30 frames
of an explosion animation (shown in Figure 7.5) and animates it on the screen.
Since we are sticking to the subject of animation in this chapter, the program
doesn’t attempt to do any transforms, such as rotation. But can you imagine the
result of an animated sprite that can also be rotated? This program will help to
determine what we need to do in the animation class coming up next.

Sprite Animation

Figure 7.5
An animated explosion with 30 frames.

The output from the program is shown in Figure 7.6, where the single animated
sprite is being drawn over a background image. Following is the code listing for
the AnimationTest program. I have highlighted key portions of code that are
new to this chapter in bold text.

// AnimationTest program
import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.image.*;
import java.net.*;

public class AnimationTest extends JFrame implements Runnable {
static int ScreenWidth = 640;
static int ScreenHeight = 480;
Thread gameloop;
Random rand = new Random();

147

148 Chapter 7 = Sprite Animation

L

Figure 7.6
The AnimationTest program.

//double buffer objects
BufferedImage backbuffer;
Graphics2D g2d;

//sprite variables
Image image;
Point pos = new Point(300,200);

//animation variables

int currentFrame =0;

int totalFrames = 30;

int animationDirection=1;
int frameCount =0;

int frameDelay =10;

public static void main(String[] args) {
new AnimationTest();
}

Sprite Animation

public AnimationTest() {

}

super("Animation Test");
setSize(ScreenWidth,ScreenHeight);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//create the back buffer for smooth graphics

backbuffer = new BufferedImage(ScreenWidth, ScreenHeight,
BufferedImage.TYPE_INT_RGB);

g2d = backbuffer.createGraphics();

//10ad the ball animation strip
Toolkit tk = Toolkit.getDefaultToolkit();
image = tk.getImage(getURL("explosion.png”));

gameloop = new Thread(this);
gameloop.start();

private URL getURL(String filename) {

}

URL urT =null;
try {
url =this.getClass().getResource(filename);
}
catch (Exceptione) {})
returnurl;

public void run() {

Thread t = Thread.currentThread();
while (t == gameloop) {
try {
Thread.sleep(5);
}
catch (InterruptedException e) {
e.printStackTrace();
1
gameUpdate();

149

150 Chapter 7 = Sprite Animation

public void gameUpdate() {
//clear the background
g2d.setColor(Color.BLACK);
g2d.fil11(new Rectangle(0, 0, ScreenWidth-1, ScreenHeight-1));

//draw the current frame of animation
drawFrame(image, g2d, pos.x, pos.y, 6, currentFrame, 128, 128);

g2d.setColor(Color.WHITE);
g2d.drawString("Position: " + pos.x+"," + pos.y, 10, 50);
g2d.drawString("Animation: " + currentFrame, 10, 70);

//see if it's time to animate
frameCount++;
if (frameCount > frameDelay) {
frameCount=0;
//update the animation frame
currentFrame += animationDirection;
if (currentFrame > totalFrames - 1) {
currentFrame=0;
pos.x = rand.nextInt(ScreenWidth-128);
pos.y = rand.nextInt(ScreenHeight-128);
}
else if (currentFrame < 0) {
currentFrame = totalFrames - 1;
}
}
repaint();
}

public void paint(Graphics g) {
//draw the back buffer to the screen
g.drawImage(backbuffer, 0, 0, this);
}

//draw a single frame of animation
public void drawFrame(Image source, Graphics2D dest,

int x, int y, int cols, int frame, int width, int height)
{

int fx = (frame % cols) * width;

Sprite Animation

int fy = (frame / cols) * height;
dest.drawlmage(source, x, y, x+twidth, y+height,
fx, fy, fxtwidth, fy+height, this);

}

Now, after reviewing this code, you might be wondering why we aren’t using the
ImageEntity and Sprite classes from the previous chapter, since they would cut
down on so much of this code. That’s a good question! While learning how to do
animation, a single, self-contained example is helpful before we get into a class.
Coming up next, we will do that.

Encapsulating Sprite Animation in a Class

There are some significant new pieces of code in the AnimationTest program
that we’ll definitely need for the upcoming Galactic War project (in Part IIT). All
of the properties can be stuffed (that’s slang for encapsulated or wrapped) into a
class, and we can reuse that beautiful drawFrame() method as well. One really
great thing about moving drawFrame() into a class is that most of the parameters
can be eliminated, as they will be pulled out of the class internally. Setting up an
animation will require a few steps up front when the game starts up, but after
that, drawing an animated sprite will be an automatic process with just one or
two method calls.

This new AnimatedSprite class will be completely self-contained. Now that we’ve
seen how inheritance works and how useful it is for reusing code, and it works
well for the existing Sprite class, we don’t need to continue adding new levels to
drive the point home. At this time, we will condense everything into just one
class to cut down on any confusion that may arise as a result of using the three
classes that have been written up to this point: BaseGameEntity, ImageEntity,
and Sprite. The properties and methods in these three will be combined into the
single AnimatedSprite class.

To improve performance, the AnimatedSprite class will not support affine
transforms! This is because of a limitation in the Graphics2D.drawImage()
function, which can either do animation or a transform, but not both in the
same function call. So, there are two choices and we can only make one without
writing a ton of code: 1) We can draw the current animation frame onto a
scratch image and then apply the transforms to it before drawing it; or 2) We

151

152

Chapter 7 = Sprite Animation

can draw frames of animation directly, but without the benefit of transforms.
Since the Sprite class in the previous chapter works already with transforms, a
good compromise is this: If you want transforms, use Sprite; otherwise, if you
need animation, use AnimatedSprite (but without transforms). A compromise
certainly could involve rendering each frame to a scratch image and then
applying transforms to it, and perhaps more advanced sprite code would do just
that.

Tip

The Sprite class supports transforms (rotation and scaling) and manual animation. The
AnimatedSprite class does automatic animation but cannot do any transforms.

Here’s the new source code listing for the AnimatedSprite class, which is
completely self-contained. Probably the most obvious thing about this class is
that most variables are declared as public, which exposes them to any program
that uses the class without any get or set methods. In a game project, often those
get and set methods just hurt productivity. The important thing is that the class
works and is versatile, with variables that are used by the embedded methods in the
class. This is not pure object-oriented programming (OOP) by any means—we
give up some security for versatility and just count on programmers who use
the class to know what theyre doing. Getting the job done while writing good,
clean code is often the rule in a programming team!

// AnimatedSprite class
import java.awt.*;
import java.awt.geom.*;
import java.awt.image.*;
import javax.swing.*;
import java.net.*;

public class AnimatedSprite {
protected JFrame frame;
protected Graphics2D g2d;
pubTic Image image;
public boolean alive;
public Point position;
pubTic Point velocity;
public double rotationRate;

Sprite Animation 153

public int currentState;

public int currentFrame, totalFrames;
public int animationDirection;

public int frameCount, frameDelay;

public int frameWidth, frameHeight, columns;
public double moveAngle, faceAngle;

public AnimatedSprite(JFrame _frame, Graphics2D _g2d) {
frame = _frame;
g2d = _g2d;
image =null;
alive =true;
position =new Point(0, 0);
velocity = new Point(0, 0);
rotationRate=0.0;
currentState=0;
currentFrame =0;
totalFrames =1;
animationDirection=1;
frameCount = 0;
frameDelay =0;
frameWidth =0;
frameHeight =0;
columns =1;
moveAngle =0.0;
faceAngle =0.0;

}

pubTic JFrame getdFrame() { return frame; }
public Graphics2D getGraphics() { return g2d; }
public void setGraphics(Graphics2D _g2d) { g2d =_g2d; }

public void setImage(Image _image) { image = _image; }

public int getWidth() {
if (image !=null)
return image.getWidth(frame);
else
return 0;

154 Chapter 7 = Sprite Animation

public int getHeight() {
if (image !=null)
return image.getHeight(frame);
else
return 0;
}

public double getCenterX() {
return position.x + getWidth() / 2;
}
public double getCenterY() {
return position.y + getHeight() / 2;
}
public Point getCenter() {
int x= (int)getCenterX();
int y = (int)getCenterY();
return(new Point(x,y));
}

private URL getURL(String filename) {
URL url =null;
try {
url =this.getClass().getResource(filename);
}
catch (Exceptione) { }
return url;

}

public Rectangle getBounds() {
return (new Rectangle((int)position.x, (int)position.y, _
getWidth(), getHeight()));
}

public void Toad(String filename, int _columns, int _totalFrames,
int _width, int _height)

{
Toolkit tk =Toolkit.getDefaultToolkit();
image = tk.getImage(getURL(filename));
while(image.getWidth(frame) <=0);
columns = _columns;

Sprite Animation 155

totalFrames = _totalFrames;
frameWidth = _width;
frameHeight = _height;

protected void update() {
//update position
position.x +=velocity.x;
position.y +=velocity.y;

//update rotation
if (rotationRate > 0.0) {
faceAngle +=rotationRate;
if (faceAngle < 0)
faceAngle = 360 - rotationRate;
else if (faceAngle > 360)
faceAngle = rotationRate;
}

//update animation
if (totalFrames > 1) {
frameCount++;
if (frameCount > frameDelay) {
frameCount =0;
currentFrame += animationDirection;
if (currentFrame > totalFrames - 1) {
currentFrame=0;
}
else if (currentFrame < 0) {
currentFrame = totalFrames - 1;

}

//draw bounding rectangle around sprite

public void drawBounds(Color c) {
g2d.setColor(c);
g2d.draw(getBounds());

156

Chapter 7 = Sprite Animation

public void draw() {

update();

//get the current frame

int frameX = (currentFrame % columns) * frameWidth;

int frameY = (currentFrame / columns) * frameHeight;

//draw the frame

g2d.drawlmage(image, position.x, position.y,
position.x+frameWidth, position.y+frameHeight,
frameX, frameY, frameX+frameWidth, frameY+frameHeight,
getdFrame());

//check for colTision with a rectangular shape
public boolean collidesWith(Rectangle rect) {
return (rect.intersects(getBounds()));
}
//check for collision with another sprite
pubTic boolean collidesWith(AnimatedSprite sprite) {
return (getBounds().intersects(sprite.getBounds()));
}
//check for collision with a point
public boolean collidesWith(Point point) {
return (getBounds().contains(point.x, point.y));
}
}

Testing the New AnimatedSprite Class

Figure 7.7 shows the output of the program, which you can open up and run
from the chapter’s resource files if you wish (www.courseptr.com/downloads).
Thanks to our new AnimatedSprite class, the source code here is quite short
compared to previous sprite projects!

import java.awt.*;

import javax.swing.*;

import java.util.*;

import java.awt.image.*;

import java.net.*;

public class AnimationClassDemo extends JFrame implements Runnable {
static int ScreenWidth = 640;

www.courseptr.com/downloads

£, Animation Class Demo

Figure 7.7
Testing the AnimatedSprite class.

static int ScreenHeight = 480;
Thread gameloop;
Random rand = new Random();

//double buffer objects
BufferedImage backbuffer;
Graphics2D g2d;

//sprite variables
AnimatedSprite sprite;

public static void main(String[] args) {
new AnimationClassDemo();
}

public AnimationClassDemo() {
super("Animation Class Demo");
setSize(ScreenWidth,ScreenHeight);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Sprite Animation

157

158 Chapter 7 = Sprite Animation

//create the back buffer for smooth graphics

backbuffer = new BufferedImage(ScreenWidth, ScreenHeight,
BufferedImage.TYPE_INT_RGB);

g2d = backbuffer.createGraphics();

//10ad the explosion animation

sprite =new AnimatedSprite(this, g2d);
sprite.load("explosion.png", 6, 5, 128, 128);
sprite.position =new Point(300,200);
sprite.frameDelay =10;

sprite.totalFrames = 30;

sprite.velocity = new Point(1,1);
sprite.rotationRate=1.0;

gameloop = new Thread(this);
gameloop.start();

public void run() {
Thread t = Thread.currentThread();
while (t == gameloop) {
try { Thread.sleep(5); }
catch (InterruptedException e)
{ e.printStackTrace(); }
gameUpdate();

public void gameUpdate() {
//draw the background
g2d.setColor(Color.BLACK);
g2d.fi11(new Rectangle(0, 0, ScreenWidth-1, ScreenHeight-1));

//draw the sprite
sprite.draw();

//keep the sprite in the screen boundary

if (sprite.position.x <0 || sprite.position.x>ScreenWidth-128)
sprite.velocity.x *=-1;

if (sprite.position.y <0 || sprite.position.y>ScreenHeight-128)
sprite.velocity.y *=-1;

Review Questions

g2d.setColor(Color.WHITE);

g2d.drawString("Position: " + sprite.position.x+"," +
sprite.position.y, 10, 40);
g2d.drawString("Velocity: " + sprite.velocity.x+"," +

sprite.velocity.y, 10, 60);
g2d.drawString("Animation: " + sprite.currentFrame, 10, 80);

repaint();
}

public void paint(Graphics g) {
//draw the back buffer to the screen
g.drawImage(backbuffer, 0, 0, this);

WHAT You HAVE LEARNED
This chapter tackled the difficult subject of sprite animation. Adding support for
animation is not an easy undertaking, but this chapter provided you with the
knowledge and a new class called AnimatedSprite that will make it possible for
you to write your own games without reinventing the wheel every time you need
to load an image and draw it. Here are the key topics you learned:

= How an animation is stored in a bitmap file

m How to load and draw an animation strip from a single bitmap file

m How to animate a sprite with timing

m How to put it all together into a reusable class

ReEviEw QQUESTIONS
The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What is the name of the animation class created in this chapter?

2. From which class does the new animation class inherit?

3. How many frames of animation were there in the animated ball sprite?

159

160

Chapter 7 = Sprite Animation

4. What do you call an animation that is stored inside many files?
5. What do you call an animation that is all stored in a single file?

6. What type of parameter does the AnimatedSprite.setVelocity method
accept?

7. What arithmetic operation is used to calculate an animation frame’s Y
position?

8. What arithmetic operation is used to calculate an animation frame’s X
position?

9. What is a good class to use when you need to create a bitmap in mem-
ory?

10. Which AnimatedSprite method draws the current frame of animation?

ON Your OwN

The following exercises will help you to determine how well you have under-
stood the new material introduced in this chapter.

Exercise 1

Modify the AnimationTest program so that it draws 10 sprites, each with its own
animation rate and random position on the screen. You can use a list or an array
if you wish.

Exercise 2

Now that you can do full-blown animation, it’s time to combine that awesome
new capability with time-proven collision detection in order to add some actual
functionality to the last project. Modify the program so that many sprites are
moving on the screen and then cause the sprites to destroy each other when they
collide.

CHAPTER 8

KEYBOARD AND MOUSE INPUT

The keyboard and mouse are the only realistic devices for user input in a Java
game, regardless of whether it’s a web-based applet or a standalone application.
But even when considering a standard Windows-based game developed in
DirectX or another library, the keyboard and mouse are by far the most
common forms of user interaction in a game. This chapter covers the important
subject of handling user input.

Here are the key topics you will learn in this chapter:

m Listening for keyboard events

m Testing keyboard input

Displaying key presses

Reading mouse motion

m Detecting mouse buttons

Testing mouse input

LISTENING TO THE USER

Java provides an interesting way to interact with users through a series of listener
methods. You tell Java that you would like to listen to keyboard input events,
and then Java sends keyboard events to your own listener methods, at which
point you can check the key codes to figure out which keys have been pressed or

161

162

Chapter 8 ® Keyboard and Mouse Input

released. The way Java tells your program that a key has been pressed (or that
the mouse has moved) is through an interface that your program uses—or
rather, implements. Your program must use the implements keyword to use an
interface class. This is a type of class that just includes methods your program
needs to use (or implement); the class doesn’t really have any functionality on its
own. This type of class is called an interface because it represents a blueprint of
the methods your program must use.

KEYBOARD INPUT

The KeyListener interface listens for events generated by the keyboard and
sends those events to the callback methods implemented in your program. These
methods are called keyPressed, keyReleased, and keyTyped, and these three
methods all have a single parameter called KeyEvent. When writing a program to
use the KeyListener, you modify the class definition of your program using the
implements keyword:

public class KeyboardTest extends JFrame implements KeyListener

Tip

The interesting thing about the impTements feature of Java classes is that you can implement
multiple interfaces in your program by separating the interface class names with commas.

You may recall seeing the implements keyword used before with the Runnable
interface (which added threading support). When you need to add more than
one interface class, you can separate them with commas.

Listening for Keyboard Events

Your program needs to then call the addKeylListener method to initialize the
keyboard listener so that key events will be sent to your program by the Java
Runtime Environment. The sole parameter of this method is the instance of
your program’s class, represented by the keyword this. You use this as a way to
identify the current class in a block of code without referring to that class
specifically by name. It is usually best to call addKeyListener(this) in the init
method within your program. (Recall that the constructor method is automati-
cally called when your program starts running.)

Keyboard Input

Next, you must implement the three keyboard events in your program to satisty
the Keylistener interface:

public void keyPressed(KeyEvent e)

public void keyReleased(KeyEvent e)

public void keyTyped(KeyEvent e)

There are two ways to determine the key that has been pressed or released using
the KeyEvent parameter. If you want to determine the character code of a key,
you can use the getKeyChar method, which returns a char. If you want to know
whether a key has been pressed based on the key code instead of the character,
you can use the getKeyCode method instead. If your program is listening to the
keyboard and you press the A key, then getKeyChar will return “a” (or “A” if you
are holding down Shift), while getKeyCode will return a virtual key code called
VK_A. All of the virtual key codes are contained in a class called KeyEvent.
Table 8.1 shows a partial list of virtual key codes for the most commonly used
keys for a game.

Table 8.1 Virtual Key Codes (Partial List)

Key Code Description
VK_LEFT Left arrow
VK_RIGHT Right arrow

VK_UP Up arrow

VK_DOWN Down arrow
VK_0...VK_9 Numeric keys
VK_A...VK_Z Alphabetic keys
VK_F1...VK_F12 Function keys
VK_KP_LEFT Numeric keypad left
VK_KP_RIGHT Numeric keypad right
VK_KP_UP Numeric keypad up
VK_KP_DOWN Numeric keypad down
VK_ENTER Enter key

VK_BACK_SPACE
VK_TAB

Backspace key
Tab key

163

164 Chapter 8 ® Keyboard and Mouse Input

Fress a key..
Key code: 87

Key char: w

Figure 8.1
Output from the KeyboardTest program.

Note

When you want to get the keys being typed for use in a chat message, for instance, then you will
want to use the keyTyped event, which returns ASCII characters. Most of your game’s input will
come from the keyPressed event, which provides key codes.

Testing Keyboard Input

Let’s write a program to test keyboard input so you will have a complete example
of how this works with Java code. I have highlighted the important code in bold.
You can see the output of this program in Figure 8.1.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class KeyboardTest extends JFrame implements KeyListener {
int keyCode;
char keyChar;

public static void main(String[] args) {
new KeyboardTest();
}

Keyboard Input

public KeyboardTest() {
super("Keyboard Test");
setSize(500,400);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
addKeyListener(this);

}

public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D)g;
g2d.setColor(Color.WHITE);
g2d.fi11(new Rectangle(0,0,500,400));
g2d.setColor(Color.BLACK);
g2d.drawString("Press a key...", 20, 40);
g2d.drawString("Key code: " + keyCode, 20, 60);
g2d.drawString("Key char: " + keyChar, 20, 80);
}

public void keyPressed(KeyEvent e) {
keyCode = e.getKeyCode();
keyChar="";
repaint();

}

public void keyReleased(KeyEvent e) { }
public void keyTyped(KeyEvent e) {

keyChar = e.getKeyChar();
repaint();

This is the bare-minimum code you need to provide keyboard support to your
Java programs, so you might want to jot down this page number for future
reference (or save the code in a file that you can easily find).

A virtual key code is a platform-neutral value for a key. When you write code to work with a certain
virtual key code (such as VK_LEFT), you can be certain that the key will be detected on any
platform (Windows, Linux, Mac, Solaris, and so on).

165

166

Chapter 8 ® Keyboard and Mouse Input

Tip

The constructor method is a special method in a JFrame application. The constructor is the first
method that runs when an application starts up. There are several other events generated by
JFrame, such as paint (), that | will explain as we go along. The paint() event, for instance,
refreshes the graphics in the window, so this is often where programmers will write much of the
code for a game.

MousEeE INPUT

Tapping into the mouse handler in Java is similar to the process of program-
ming the keyboard, as you might have suspected. Java handles mouse input
using events that are generated by the Java Runtime Environment (JRE) and
passed to your program when you implement a mouse listener.

Tip

The Java Runtime Environment, or JRE, is a subset of the Java Development Kit (JDK) that is designed
to allow you to have access to an essential set of classes that you can use to run Java programs. The
JRE is also most commonly installed on end-user PCs when they want to run a Java program
(including web applets). Both the JDK and JRE are included in the Java SE 6 download package.

The first step you must take to incorporate mouse event handling in your
program is to call two functions that will tell the JRE to begin sending your
program mouse events. Since we’ll be dealing with two interfaces for the mouse,
you must initialize both mouse handlers. This is similar to the function you
learned about for initializing the keyboard handler. You put these functions in
the constructor method so that they are sure to be called when the program
starts up. You'll recall from the keyboard section earlier in this chapter that the
this keyword represents the current program; in more technical terms, this
represents the primary object that was created based on the class definition in
your program.

Tip

An object is not a class; it is the result of a class. Think of a class as a blueprint for a product, and
an object as the product itself that has been constructed.

addMouselListener(this);
addMouseMotionListener(this);

Mouse Input

Reading Mouse Motion

Java provides an interface class for mouse motion and button press events that is
similar to the keyboard interface. The Mouselistener class is an abstract class
that provides your program with an interface, or blueprint, with five methods
that you must implement in your program (regardless of whether you will use all
of them):

m public void mouseClicked(MouseEvent e)

public void mouseEntered(MouseEvent e)

public void mouseExited(MouseEvent e)

public void mousePressed(MouseEvent e)

public void mouseReleased(MouseEvent e)

The MouseListener interface keeps track of the mouse buttons, the mouse
position in the window, and the mouse location when the mouse cursor moves
into and out of the window.

There is another, completely different interface class for mouse movement. You
can read the mouse’s position during a button or enter/leave event with a
Mouselistener, but receiving events for actual mouse motion on the window
requires another interface. To receive events for the mouse’s movement across
the window, you must use the MouseMotionListener interface. There are two
events in this interface:

m public void mouseDragged(MouseEvent e)

m public void mouseMoved(MouseEvent e)

Detecting Mouse Buttons

Some of these events report when a mouse button is clicked, pressed, or released.
The only methods that do not deal with the mouse buttons are mouseEntered,
mouseExited, and mouseMoved, all of which deal with the mouse’s position and
motion, regardless of button status. The remaining events (mouseClicked,
mousePressed, mouseReleased, and mouseDragged) all have to do with the buttons.

As you might have noticed, all of these events have a single parameter called
MouseEvent. This parameter is actually a class, and the JRE fills it with

167

168

Chapter 8 ® Keyboard and Mouse Input

information for each mouse event. You can look inside this class to get the
mouse’s position and button values. For the mouse’s X and Y position values, you
can use MouseEvent.getX() and MouseEvent.getY(). The parameter is usually
defined as (MouseEvent e), so in actual practice you would use e.getX() and
e.getY() to read the mouse’s current position.

Likewise, MouseEvent tells you which button was pressed. Inside MouseEvent is a
method called getButton() that will equal one of the following values depending
on which button is being pressed:

m BUTTON1
m BUTTON2
m BUTTON3

The getButton() method is useful if you only care about detecting a single
button press. If, for whatever reason, you need to know when two or three
mouse buttons are being pressed at the same time, you can use a different
method in the MouseEvent class called getModifiers(). This function will report
multiple events in the MouseEvent class, such as the following:

m BUTTONI_MASK
m BUTTONZ_MASK
m BUTTON3_MASK

There are many more masked values (that is, values that are bit-packed into
a single variable) in the MouseEvent class that you can examine using the
getModifiers() method. But if all you care about are the usual left-click and
right-click events, you can make use of getButton().

Testing Mouse Input

I would like to show you a program called MouseTest that demonstrates all of
the mouse events that you have just learned about. To build this program, you
should create a new project called MouseTest, and then remove all of the
automatically generated code to be replaced with the following code listing
instead. This program uses the Graphics2D.drawString method and a bunch of
variables to display the status of all the mouse events individually. Figure 8.2

Mouse Input 169

Mouse clicked 1 at 239171
Mouse entered at 487 197
Mouse exited at 940,-25
Mouse pressed 1 at 239,171
Mouse released 1 at 239,171

Mouse dragged at 232,235
[(Mouse moved at 239,171

Figure 8.2
Output from the MouseTest program.

shows what the program output looks like. Note the important parts of the code
listing in bold.

The first part of the program includes the class definition (with the needed
interfaces following the implements keyword) and variable declarations.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MouseTest extends JFrame
implements MouseListener, MouseMotionListener {

//declare some mouse event variables
int clickx, clicky;

int pressx, pressy;

int releasex, releasey;

int enterx, entery;

int exitx, exity;

int dragx, dragy;

int movex, movey;

int mousebutton;

170

Chapter 8 ® Keyboard and Mouse Input

public static void main(String[] args) {
new MouseTest();
}

The constructor is the first method that gets run in an application, and in this
case, it’s called public MouseTest(). So this is where you would initialize your
game objects and variables, and this is also where you add the listeners for any
input devices the program needs to use. If your program ever seems to be
ignoring the keyboard or mouse, check this method to make sure you have
added the appropriate listener.

public MouseTest() {
super("Mouse Test");
setSize(500,400);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
addMouseListener(this);
addMouseMotionListener(this);

}

The paint() event method is called whenever the window needs to be refreshed.
Since paint() comes with a parameter (Graphics g), we can use this object to
draw onto the screen. In this program, I've used the Graphics.drawString()
method to display text on the window. This code is messy in print due to the line
wrapping, but it looks nice in the source code file included with this chapter’s
resource files (www.courseptr.com/downloads).

//redraw the window
pubTic void paint(Graphics g) {
Graphics2D g2d = (Graphics2D)g;
g2d.setColor(Color.WHITE);
g2d.fi11(new Rectangle(0,0,500,400));
g2d.setColor(Color.BLACK);
g2d.drawString("Mouse clicked " + mousebutton+ " at " + clickx +
","+clicky, 10, 40);
g2d.drawString("Mouse entered at " + enterx+ "," + entery,10,55);
g2d.drawString("Mouse exited at " +exitx+"," + exity, 10, 70);
g2d.drawString("Mouse pressed " + mousebutton+ " at " + pressx +
"," +pressy, 10, 85);
g2d.drawString("Mouse released " + mousebutton + " at " +
releasex+"," + releasey, 10, 100);

www.courseptr.com/downloads

Mouse Input 171

g2d.drawString("Mouse dragged at " + dragx + "," + dragy, 10, 115);
g2d.drawString("Mouse moved at " + movex + "," + movey, 10, 130);

}

The next portion of code includes the checkButton() method, which I have
written to support the mouse event handler in the program. This checkButton()
method checks the current button that is being pressed and sets a variable
(mousebutton) to a value representing the pressed button.

//custom method called by mouse events to report button status
private void checkButton(MouseEvent e) {
//check the mouse buttons
switch(e.getButton()) {
case MouseEvent .BUTTONI:
mousebutton=1;
break;
case MouseEvent .BUTTONZ:
mousebutton = 2;
break;
case MouseEvent .BUTTON3:
mousebutton = 3;
break;
default:
mousebutton =0;

}

The mouseClicked() event is part of the Mouselistener interface. When you
implement this interface, you must include all of the mouse events defined in the
interface, or the compiler will generate some errors about the missing events.
This event is called whenever you click the mouse button on the window—in
which case both a press and release has occurred. This event is not usually
needed when you program mousePressed() and mouseReleased() yourself.
public void mouseClicked(MouseEvent e) {
//save the mouse position values

clickx =e.getX();
clicky =e.getY();

//get an update on buttons
checkButton(e);

172

Chapter 8 m Keyboard and Mouse Input

//refresh the screen (call the paint event)
repaint();
}

The next two mouse event methods, mouseEntered() and mouseExited(), are
called whenever the mouse cursor enters or leaves the window. These events are
not often needed in a game.

public void mouseEntered(MouseEvent e) {
enterx =e.getX();
entery =e.getY();
repaint();

}

pubTic void mouseExited(MouseEvent e) {
exitx =e.getX();
exity =e.getY();
repaint();

}

The mousePressed() and mouseReleased() event methods are called whenever
you click and release the mouse button, respectively. When these events occur,
you can get the current position of the mouse as well as the button being pressed
or released.

pubTic void mousePressed(MouseEvent e) {
pressx =e.getX();
pressy =e.getY();
checkButton(e);
repaint();

}

pubTic void mouseReleased(MouseEvent e) {
releasex =e.getX();
releasey = e.getY();
checkButton(e);
repaint();

}

The MouseMotionListener interface defines the next two events—mouseDragged()

and mouseMoved(). These events are helpful when you just want to know when the

mouse is moving over the window (and when it is moving while the button is being
held down).

Review Questions

public void mouseDragged(MouseEvent e) {
dragx =e.getX();
dragy = e.getY();
repaint();

}

public void mouseMoved(MouseEvent e) {
movex = e.getX();
movey = e.getY();
repaint();

}

WHAT You HAVE LEARNED
This chapter explained how to tap into the keyboard and mouse listeners in
order to add user input to your Java programs.

m You learned how to detect key presses.

m You learned about key codes and character values.

m You learned how to read the mouse’s motion and buttons.

ReviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What is the name of the method used to enable keyboard events in your
program?

. What is the name of the keyboard event interface?

. What is the virtual key code for the Enter key?

. Which keyboard event will tell you the code of a pressed key?

. Which keyboard event will tell you when a key has been released?

. Which keyboard event will tell you the character of a pressed key?

. Which KeyEvent method returns a key code value?

o NN N U1 o W

. What is the name of the method used to enable mouse motion events?

173

174

Chapter 8 ®m Keyboard and Mouse Input

9. What is the name of the class used as a parameter for all mouse event
methods?

10. Which mouse event reports the actual movement of the mouse?

ON Your OwN

Use the following exercises to test your grasp of the material covered in this
chapter. Are you ready to put mouse and keyboard input to the test in a real
game yet? These exercises will challenge your understanding of this chapter.

Exercise 1

Modify the KeyboardTest program so that pressing numeric keys 1 to 9 will
change the font size used to display the key code and character values. To do
this, use the Graphics class in the paint event, which has a method called
setFont that you can implement like this:

g.setFont(new Font("Ariel", Font.NORMAL, value));

I will give you a hint: The key code for “1” is 49, so you can subtract 40 from the
key code to arrive at a good font size.

Exercise 2

Modify the MouseTest program so that a point is drawn whenever the user
presses a mouse button. You can use the Graphics class’ fi11Rect method and
the mouse position variables. (Just draw a rectangle with four corners that are
one pixel apart.) If you are feeling confident with your new Java programming
skills, try using the setColor method to change the color of the points.

CHAPTER 9

SouND EFFEcTS AND Music

Java has a rich set of features for recording, mixing, and playing sound samples
and MIDI sequences using a variety of classes that you will learn about in this
chapter. You will learn about Java’s rich set of sound support classes for loading
and playing audio files in a variety of formats through Java’s sound mixer. You
will then learn about MIDI files and how to load and play them through Java’s
MIDI sequencer.

Here is a rundown of the key topics in this chapter:

m Loading and playing digital files
m Loading and playing MIDI files

m Writing some reusable audio classes

PLAYING DiGITAL SAMPLE FILES

Java’s Sound API provides a package for working with digital sample files, which
has methods for loading a sample file (AIFF, AU, or WAV) and playing it through
the sound mixer. The package is called javax.sound.sampled and includes
numerous classes, most of which we will ignore. Some of these classes provide
support for recording sound and manipulating samples, so you could write a
complete sound-editing program in Java that is similar to full-blown sound-editing
programs. One good example is Audacity—a freeware, open-source sound editor
that is available for download at http://audacity.sourceforge.net (see Figure 9.1).

175

http://audacity.sourceforge.net

176

Chapter 9 = Sound Effects and Music

o E% Yon Foke Geneas Oien b b

P 90090

isd »

[
Iroct e, 44100 _| [0100000000 e Fms T 01

Figure 9.1
Audacity is an excellent freeware sound-editing program with many advanced features.

The Java Sound API supports the three main audio file formats used in web and
desktop applications:

m AIFF

m AU

s WAV
The digital sample files can be 8-bit or 16-bit, with sample rates from 8 kHz to
48 kHz (which is CD quality). Java’s Sound API includes a software sound mixer

that supports up to 64 channels for both sound effects and background music
for a Java program.

Tip

For the latest information about the Java Sound API, point your web browser to java.sun.com/
products/java-media/sound.

Playing Digital Sample Files

Getting Started with Java Sound

The first step to writing some Java sound code is to include the javax.sound
.sampled package at the top of your program:

import javax.sound.sampled.*;

If you are using an IDE such as NetBeans, you will see a pop-up menu appear to
help you narrow down the class names within javax, which can be very
educational. You'll see that when you type in import javax.sound., the editor
will show you the two classes available in javax.sound., which are sampled and
midi. By adding .* to the end of the import statement, you are telling the Java
compiler to import every class within javax.sound.sampled, of which there are
many.

In fact, when working with the sound system, you will need access to several
classes, so it is convenient to import the associated packages at the start of a
program so those classes are easier to use. For instance, without importing
javax.sound.sampled, you would need to create a new sound sample variable
using the full class path, such as:

javax.sound.sampled.AudioInputStream sample =

javax.sound.sampled.AudioSystem.getAudioInputStream(
new File("woohoo.wav"));

Could you imagine what it would look like if you had to write all of your code
like this? It would be illegible for the most part. Here is what the code looks like
after you have imported javax.sound.sampled.*:

AudiolInputStream sample = AudioSystem.getAudioInputStream(new File("woohoo.
wav"));

AudioSystem and AudioInputStream are classes within the javax.sound.sampled
package and are used to load and play a sample in your Java program. Later in
this chapter, when I show you how to do background music, you'll get the hang
of using some classes in a package called javax.sound.midi.

Caution

You may run into a problem with the audio portion of your game, where your source code seems to
be well written, without bugs, but you still get unusual errors. One of the most common sources of
problems when working with audio data is an unsupported file format error. This type of exception
is called UnsupportedAudioFileException and will be discussed later in this chapter.

177

178

Chapter 9 = Sound Effects and Music

Audacity Preferences 1

.t'-\udicula’EII Cuality File Formats | Spectlogramsl Dilectnliesl Interfacel Keyboaldl Mousel

—When importing uncompreszed audio files into Audacity

{~ Make a copy of the file before editing [safer)
¥ Read directly from the original file [faster]

r Uncompressed Export Format

I Other... j

AIFF [ApplesSGI1E bit PCH)
AIFF [applesSGl 32 bit float)
AIFF [ApplesSGI S bit PCM)
AU [SundMext 16 bit PC)
Al [SundMest 8-bit u-law)
0Kl Dialogic WO ADPCH
L[[Microsoft 16 bit PCh)
Wity [Microzoft 32 bit float]
Wity [Microsoft 4 bit IMA ADPCH)
Wity [Microsoft 4 bit S ADPCH) —
Wi [Micrazoft 8 bit PCM] Find Library |
Other....
Bit Riate: 320 =]

—

Cancel (] 4

Figure 9.2
Changing the digital sample format settings in Audacity.

If the program’s flow runs through the UnsupportedAudioFileException block in
your error handler, then the audio file may be encoded with an unsupported file
format. The other, more obvious, problem is that the file itself might be missing.

You can check and convert audio files using the freeware Audacity program that
I mentioned earlier. Just load up a wary audio file that you suspect is encoded in
a weird format, and then save the file to a new format. Figure 9.2 shows the File
Formats tab in the Audacity Preferences dialog box. Here you can change the
default file format for exporting audio files from the File menu. If you choose the
Other option from the drop-down list, you will be presented with even more
audio formats, but most of them are obsolete. (For instance, you can save to
Creative Labs” old VOC format, which was popular in MS-DOS games many
years ago.) Some of the custom formats require an additional download of a
plug-in for that particular sound format.

Playing Digital Sample Files

The key to sound programming is a class called AudioInputStream. This class is
used to load a sound file (which can be an AIFF, AU, or WAV file) from either a
local file or from a remote URL anywhere on the Internet. An input stream is a
source of data. You can create a new instance of the class like so:

AudioInputStream sample;

This statement is usually specified as a global variable within the class, defined
up at the top of the class before any methods. You can define this variable as
private, public, or protected. (The default, if you do not specify it, is public.) In
object-oriented terms, public specifies that the variable is visible to other classes
outside the current class, private means the variable is hidden to the outside
world, and protected is similar to private, except that subclasses (through
inheritance) have access to otherwise hidden variables defined as protected.

The code to load a sound from a file or URL is usually called from a program’s
constructor. The method used to load a sound is AudioSystem.getAudioInput-
Stream. This method accepts a File, InputStream, or URL; there are two other
ways to create an audio stream (AudioFormat and Encoding), neither of which is
useful for our needs.

sample = AudioSystem.getAudioInputStream(new File("humbug.wav"));

Note that the return value of this method is an AudioInputStream. Also, since
getAudioInputStream does not offer an overloaded version that just accepts a
String for a filename, you must pass a File object to it instead. This is easy
enough using a new File object, passing the filename to the File’s constructor
method. If you want to grab a file from a URL, your code might look something
like this:

URL url =new URL("http://www.mydomain.com/test.wav");

sample = AudioSystem.getAudiolnputStream(url);

Either way, you then have access to a sound file that will be loaded when needed.
However, you can’t just use an AudiolInputStream to play a sound; as the class
name implies, this is just a source of sample data without the ability to play itself.
To play a sample, you use another class called C1ip (javax.sound.sampled.C11ip).
This class is the return value of an AudioSystem method called getC11ip:

Clip clip =AudioSystem.getClip();

179

180

Chapter 9 = Sound Effects and Music

Loading Resources

The code presented here will load a sound file correctly when your Java program is running either
on your local PC or in a web browser. However, we need to use a slightly different method to load
a file out of a Java archive. This subject is covered in Chapter 16, which covers web deployment.

But | want to prepare you for distributing your Java programs on the web now, so that your
programs will already be ready for deployment. To that end, you must replace the new File()
and new URL() methods to load a resource (such as an image or sound file) with the following
code instead: this.getClass().getResource(). The getResource() method is found
in the current class instance, this.getClass(). You will find it most useful if you use
this.getClass().getResource() anytime you need to build a URL. Here is a method
I've written that accomplishes that goal:

private URL getURL(String filename) {
URL urT =null;
try {
url =this.getClass().getResource(filename);
}
catch (Exceptione) {}
return url;
}

Then, when you get to Chapter 16, the programs you've written will be ready for web deployment
in a compressed Java archive (JAR)! During your explorations of the Java language while writing
games and other programs, you will likely come up with many useful methods such as getURL().
You may want to store them in a reusable package of your own designation. The root package
might be called jharbour, and then | would add subpackages to this, such as jharbour
.graphics, jharbour.util, and so on. Since getURL() is the only custom reusable
method repeatedly used in the book, it is more convenient to just include it in every class.

Since we don’t need to pass a parameter to getClip, you might be wondering
how this object knows what to play. There’s actually one more step involved
because at this point, all you have is a sound clip object with the capability to
load and play an audio file or stream. This method actually returns a sound clip
object from the default system mixer.

Loading the Sound Clip

At this point, you have an AudioInputStream and a C1ip, so you just need to
open the audio file and play it. These steps are both performed by the C11ip class.
First, let’s open the sound file:

clip.open(sample);

Playing Digital Sample Files

Playing the Sound Clip

Next, there are two ways to play a clip, using the C1ip class. You can use the
start() method or the Toop() method to play a sample. The start() method
simply plays the sound clip.

narrator.start();

On the other hand, the Toop method provides an option that lets you specify
how many times the clip will repeat, either with a specific number of repeats or
continuously. Here is how you might play a clip one time using the 100op method:

explosion.Tloop(0);

Remember, the parameter specifies the number of times it will replay, as it’s a
given that the clip will always play at least once using the 1oop method. Here’s
how you can play a clip continuously:

thrusters.loop(Cl1ip.LOOP_CONTINUQUSLY);

You might use this option if you have a music track that you would like to play
repeatedly for the soundtrack of the game. Keep in mind, though, that sample
files (AIFF, AU, and WAYV) are quite large, so you wouldn’t want the user to
wait five minutes or longer (especially on dial-up) while the sound file is
downloaded by your program from a URL (although it’s not an issue when the
program is running as an application). This happens when you call the open()
method, so if you try to open a huge sound file it will force the user to sit there
and wait for an indeterminate length of time while the clip downloads. This is
why I recommend using a MIDI sequence rather than a digital soundtrack for
your game’s background music.

Tip

MIDI is the acronym for Musical Instrument Digital Interface. MIDI is a synthesized music format,
not a sampled format, meaning that MIDI music was not recorded using an analog-to-digital
converter (which is built into your computer’s soundcard). Professional musical instruments use the
MIDI format to record notes rather than samples.

You may feel free to use the C1ip class’ start() method to play a sound clip, but
I recommend using 1oop(0) instead. This type of call will give you the same
result, and it will be easy to modify the method call if you ever want to repeat a
sound clip once or several times. For instance, you might use this technique to

181

182

Chapter 9 = Sound Effects and Music

save some bandwidth. Instead of downloading a two-second explosion sound
effect, go for a one-half-second clip, and then repeat it four times. Always keep
your mind open to different ways to accomplish a task, and look for ways to
optimize your game.

Tip

As you will learn in Chapter 16, the Java Runtime Environment (JRE) provides an attractive applet
download screen with a progress bar when you use a Java archive (JAR) to store the applet and all
of its media files.

Stopping the Sound Clip

Most of the time you will simply forget about a sound clip after it has started
playing. After all, how often do you need to stop a sound effect from playing
when there’s a sound mixer taking care of all the details for you? Seldom, if ever.
However, if you do need to stop a clip during playback, you can use the stop()
method. I suspect the only time you will need this method is when you are
looping a sample.

kaboom.stop();

Handling Errors

One interesting aspect of the sound classes is that they require that errors be
caught. The compiler will refuse to build a program using some of the sound
classes without appropriate try...catch error-handling blocks. Since this is a
new concept, I'll quickly explain it.

Java errors are handled with a special error-handling feature called a try...catch
block. This feature was simply borrowed from the C++ language, on which Java
was based. Here is the basic syntax of a try...catch block:
try {

//do something bad
} catch (Exceptione) {
}
When you add error handling to your program, you are “wrapping” an error
handler around your code by literally wrapping a try...catch block around a
section of code that you need to track for errors. The Java sound classes require

Playing Digital Sample Files 183

try...catch blocks with specific types of error checks. The generic Exception
class is used to catch most errors that are not caught by a more specific type of
error handler. You can have many catch blocks in your error handler, from the
more specific down to the more generic in nature.

Tip

In some cases, a try...catch error handler is required to handle exception errors that a
particular method throws (on purpose). In those cases, your program must implement the
appropriate error handler (such as I0Exception).

Another available version of the error handler is called try...catch...finally.
This type of error-handling block allows you to put code inside the finally
section in order to perform any cleanup or closing of files. The code in a finally
block will be run regardless of whether an error occurred. It gets executed if there
are errors and if there are no errors.

For instance, if you are loading a file, you will first check for an I0Exception
before providing a generic Exception handler. The AudioSystem, AudioInput-
Stream, and C1ip classes require the following error handlers:

m I0Exception
m LineUnavailableException

m UnsupportedAudioFileException

Let me show you how to implement an error handler for the audio code you're
about to write for the PlaySound program. The following code is found in the
constructor:

try {

//source code 1ines clipped

} catch (MalformedURLException e) {

} catch (I0Exception e) {

} catch (LineUnavailableException e) {

} catch (UnsupportedAudioFileException e) {

}

I'll be the first person to admit that this is some ugly code. Error handling is
notoriously ugly because it adds all kinds of unpleasant-looking management

184

Chapter 9 = Sound Effects and Music

methods and events around your beautifully written source code. However, error
handling is necessary and prevents your program from crashing and burning. I
like to think of a try...catch block as a rev limiter that prevents a car engine
from blowing itself up when a foolish driver hits the accelerator too hard.

Wrapping Sound Clips

Since error handling is a necessary evil, it supports the argument that you may
want to put some oft-used code into reusable methods of your own. A couple of
methods to load and play a sound file would be useful (and that error-handling
code could be bottled up out of sight). It would be logical to encapsulate the
AudioInputStream and C1ip objects into a new class of your own design with
your own methods to load and play a sound file or URL. Later in this chapter
you will find source code for a class called SoundC1ip that does just that.

Playing Sounds

The Java sound classes are not quite a “turnkey” programming solution, because
you must perform several steps to load and play a sound file. I think it would be
convenient to write a class that has a collection of sound clips you can load and
play at any time from that single class, but I hesitate to “wrap” any Java code
inside another class when it is such a heavily object-oriented language in the first
place. Let’s just write an example program to see how to put all this code to
work. The resulting program, called PlaySound, is shown in Figure 9.3. The
relevant code to this chapter is highlighted in bold.

import java.awt.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import javax.sound.sampled.*;

pubTic class PlaySound extends JFrame {
String filename = "gong.wav";
AudioInputStream sample;

public static void main(String[] args) {
new PTaySound();
}

Playing Digital Sample Files 185

| £/ PlaySound

Sample file: gong.way

FCM_SIGNED 220580.0 Hz, 16 hit, mono, 2 bytes/frame, little-endian
Sampling rate: 22050

Sample channels: 1

Encoded format: PCM_SIGNED

Sample size: 16-hit

Frame size: 2

Figure 9.3
The PlaySound program demonstrates how to load and play a sound clip.

pubTlic PlaySound() {
super("PTaySound");
setSize(500,400);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

try {
sample = AudioSystem.getAudioInputStream(getURL(filename));

//create a sound buffer
Clip clip = AudioSystem.getClip();

//10ad the audio file
clip.open(sample);

//play sample
clip.start();

} catch (MalformedURLException e) {
} catch (I0Exception e) {

186 Chapter 9 ® Sound Effects and Music

} catch (LineUnavailableException e) {
} catch (UnsupportedAudioFileException e) {
} catch (Exceptione) {}

repaint();
}

public void paint(Graphics g) {
g.drawString("Sample file: " + filename, 10, 40);
g.drawString(sample.getFormat().toString(), 10, 55);
g.drawString("Sampling rate: " + (int)sample.getFormat().
getSampleRate(), 10, 70);
g.drawString("Sample channels: " + sample.getFormat().getChannels(),
10, 85);
g.drawString("Encoded format: " + sample.getFormat().getEncoding().
toString(), 10, 100);
g.drawString("Sample size: " + sample.getFormat().
getSampleSizeInBits() + "-bit", 10, 115);
g.drawString("Frame size: " + sample.getFormat().getFrameSize(),
10, 130);
}

private URL getURL(String filename) {
URL url =null;
try {
url =this.getClass().getResource(filename);

}
catch (Exception e) { e.printStackTrace(); }
return url;

PLAYING MIDI SEQUENCE FILES

Although using MIDI is not as popular as it used to be for background
soundtracks in games, you have an opportunity to save a lot of bandwidth by
using MIDI files for background music in a web-based game delivered as a Java
applet. On the web, bandwidth is crucial, since a game that takes too long to load
may cause a potential player to abandon the game and go elsewhere. For this

Playing MIDI Sequence Files 187

reason, I would like to recommend the use of MIDI for in-game music when
delivering a game via the web. Java supports three types of MIDI formats:

s MIDI Type 1
= MIDI Type 2
m Rich Music Format (RMF)

Loading a MIDI File

Loading a MIDI file in Java is just slightly more involved than loading a digital
sample file because a MIDI file is played through a sequencer rather than being
played directly by the audio mixer. The Sequence class is used to load a MIDI
file:

Sequence song = MidiSystem.getSequence(new File("music.mid"));

Although this code does prepare a MIDI file to be played through the sequencer,
we haven’t actually created an instance of the sequencer yet, so let’s do that now:
Sequencer seq =MidiSystem.getSequencer();

Note that the Sequencer class can be accessed through MidiSystem directly, but it
requires less typing in of code to create a local variable to handle the setup of the
MIDI sequencer. Next, let’s tell the Sequencer class that we have a MIDI file
available (via the Sequence class):

seq.setSequence(song);

This line of code establishes a link between the sequencer and this particular
MIDI sequence file. Now all that remains to do is actually open the file and
play it:

seq.open();

seq.start();

At this point, the MIDI sequence should start playing when the window
comes up.

Playing Music

The following program listing demonstrates how to load and play a MIDI file in
a Java window. The PlayMusic program is shown in Figure 9.4. As you can see,
there are some minor details about the MIDI file that are displayed in the

188

Chapter 9 = Sound Effects and Music

Midi File: titlemusic.mid
Resolution: 192

Tick length: 86784
Tracks: 7

Fatches: 0

Figure 9.4
The PlayMusic program demonstrates how to load and play a MIDI sequence.

window, which is basically just an easy way to determine that the MIDI file has
been loaded correctly. The key portions of code are highlighted in bold.

import java.awt.*;

import javax.swing.*;
import java.io.*;

import java.net.*;

import javax.sound.midi.*;

public class PlayMusic extends JFrame {
String filename = "titlemusic.mid";
Sequence song;

public static void main(String[] args) {
new PlayMusic();
}

public PlayMusic() {
super("PlayMusic");
setSize(500,400);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

Reusable Classes

try {
song = MidiSystem.getSequence(getURL(filename));
Sequencer sequencer = MidiSystem.getSequencer();
sequencer.setSequence(song);
sequencer.open();
sequencer.start();

} catch (InvalidMidiDataException e) {
} catch (MidiUnavailableException e) {
} catch (I0Exceptione) {}

repaint();

public void paint(Graphics g) {

}

g.drawString("Midi File: " + filename, 10, 40);
g.drawString("Resolution: " + song.getResolution(), 10, 55);
g.drawString("Tick Tength: " + song.getTickLength(), 10, 70);
g.drawString("Tracks: " + song.getTracks().length, 10, 85);
g.drawString("Patches: " + song.getPatchList().length, 10, 100);

private URL getURL(String filename) {

URL url =null;

try { url =this.getClass().getResource(filename); }
catch (Exceptione) { e.printStackTrace(); }

return url;

ReusaABLE CLASSES

Now that you understand how to load and play sound clips and sequence files,
let’s put all of this useful (but scattered) code into two reusable classes that can
be easily dropped into a project and used. Instead of dealing with all of the Java
sound classes and packages, you will be able to simply create a new object from
the SoundClip and MidiSequence classes, and then load up and play either a
sample or sequence with a couple lines of code.

I should disclaim the usefulness of these classes for you, so you will know what
to expect. Java’s Sound API has a sound mixer that works very well, but we can’t

189

190

Chapter 9 = Sound Effects and Music

tap into the mixer directly using the Clip class that I've shown you in this
chapter. The sound files that you load using the C1ip class do support mixing,
but a single clip will interrupt itself if played repeatedly. So, in the case of
Galactic War, when your ship fires a weapon, the weapon sound is restarted
every time you play the sound. However, if you have another clip for explosions
(or any other sound), then it will be mixed with any other sound clips currently
playing.

In other words, a single C1ip object cannot mix with itself, only with other
sounds. This process works quite well if you use short sound effects, but can
sound odd if your sound clips are one second or more in length. (They sound
fine at up to about half a second, which is typical for arcade-game sound effects.)
If you want to repeatedly mix a single clip, there are two significant options (and
one other unlikely option):

m Load the sound file into multiple C1ip objects (such as an array), and
then play each one in order. Whenever you need to play this specific
sound, just iterate through the array and locate a clip that has finished
playing, and then start playing it again.

m Load the sound file into a single C1ip object, then copy the sample bytes
into multiple C1ip objects in an array, and then follow the general tech-
nique described in the first option for playback. This saves time from
loading the clip multiple times.

m Write a threaded sound playback class that creates a new thread for
every sound that is played. The thread will terminate when the sound
has completed playing. This requires some pretty complex code, and
there is a lot of overhead involved in creating and destroying a thread
for every single sound that is played. One way to get around this over-
head is to create a thread pool at the start of the program and then reuse
threads in the pool. Again, this is some very advanced code, but it is
how professional Java games handle sound playback. If you write a great
Java game suitable for publishing (such as Galactic War, which you will
start in the next chapter and develop throughout the book), I would rec-
ommend one of the first two options as good choices for a simple game.
You don’t want to deal with the overhead (or weighty coding

Reusable Classes 191

requirements) of a threaded solution, and an array of five or so dupli-
cates of a sound clip can be played to good effect—with mixing.

The SoundClip Class

The SoundC11p class encapsulates the AudioSystem, AudioInputStream, and Clip
classes, making it much easier to load and play an audio file in your programs.
On the chapter’s resources there is a project called SoundClass that demon-
strates this class. This class simply includes all of the code we’ve covered in the
last few pages, combined into a single entity. Note the key portions of code that
I've discussed in this section, which are highlighted in bold.

Tip

A complete project demonstrating this class is available in the chapter's resource files (www.
courseptr.com/downloads) in the chapter09\SoundClass folder.

import javax.sound.sampled.*;
import java.io.*;
import java.net.*;

public class SoundClip {
//the source for audio data
private AudioInputStream sample;

//sound cTip property is read-only here
private Clip clip;
public Clip getClip() { returnclip; }

//1ooping property for continuous playback

private boolean Tooping = false;

pubTic void setLooping(boolean _Tooping) { Tooping = _Tlooping; }
pubTic boolean getLooping() { return Tooping; }

//repeat property used to play sound multiple times
private int repeat =0;

public void setRepeat(int _repeat) { repeat = _repeat; }
public int getRepeat() { return repeat; }

www.courseptr.com/downloads
www.courseptr.com/downloads

192 Chapter 9 = Sound Effects and Music

//filename property

private String filename="";

public void setFilename(String _filename) { filename = _filename; }
public String getFilename() { return filename; }

//property to verify when sample is ready
public boolean isLoaded() {

return (boolean)(sample !I=null);
}

//constructor
public SoundClip() {
try {
//create a sound buffer
clip = AudioSystem.getClip();
} catch (LineUnavailableExceptione) { }
}

//this overloaded constructor takes a sound file as a parameter
pubTic SoundCTip(String audiofile) {

this(); //call default constructor first

Toad(audiofile); //now Toad the audio file

private URL getURL(String filename) {
URL url =null;
try {

url =this.getClass().getResource(filename);

1
catch (Exceptione) { }
return url;

}

//10ad sound file

public boolean Toad(String audiofile) {
try {

//prepare the input stream for an audio file
setFilename(audiofile);

//set the audio stream source

sample = AudioSystem.getAudioInputStream(getURL(filename));

Reusable Classes

//1oad the audio file
clip.open(sample);
return true;

} catch (I0Exception e) {
return false;

} catch (UnsupportedAudioFileException e) {
return false;

} catch (LineUnavailableException e) {
return false;

}

}

public void play() {
//exit if the sample hasn't been loaded
if (lisLoaded()) return;

//reset the sound clip
clip.setFramePosition(0);

//play sample with optional Tooping
if (Tooping)
clip.loop(C1ip.LOOP_CONTINUOUSLY);
else
clip.loop(repeat);
}

public void stop() {
clip.stop();
}
}

The MidiSequence Class

The MidiSequence class is another custom class that makes it easier to work with
the Java sound code. This class encapsulates the MidiSystem, Sequencer, and
Sequence classes, making it much easier to load and play a MIDI file with just
two lines of code instead of many. Take note of the key portions of code, which
have been highlighted in bold.

193

194 Chapter 9 = Sound Effects and Music

Tip

A complete project demonstrating this class is available in the chapter's resource files in the
chapter09\MidiSequence folder.

import java.io.*;
import java.net.*;
import javax.sound.midi.*;

public class MidiSequence {
//primary midi sequencer object
private Sequencer sequencer;

//provide Sequence as a read-only property
private Sequence song;
pubTic Sequence getSong() { return song; }

//filename property is read-only
private String filename;
pubTic String getFilename() { return filename; }

//Tooping property for Tooping continuously

private boolean Tooping = false;

public boolean getLooping() { return Tooping; }

pubTic void setLooping(boolean _lTooping) { Tooping=_looping; }

//repeat property for Tooping a fixed number of times
private int repeat =0;

public void setRepeat(int _repeat) { repeat = _repeat; }
public int getRepeat() { return repeat; }

//returns whether the sequence is ready for action
public boolean isLoaded() {

return (boolean)(sequencer.isOpen());
}

//primary constructor
public MidiSequence() {
try {
//fire up the sequencer
sequencer = MidiSystem.getSequencer();

Reusable Classes

} catch (MidiUnavailableExceptione) { }
}
//overloaded constructor accepts midi filename
pubTic MidiSequence(String midifile) {
this(); //call default constructor first
Toad(midifile); //Toad the midi file
}

private URL getURL(String filename) {
URL url =null;
try {
url =this.getClass().getResource(filename);
}
catch (Exceptione) {}
return url;

}

//1oad a midi file into a sequence
public boolean load(String midifile) {
try {
//7oad the midi file into the sequencer
filename =midifile;
song = MidiSystem.getSequence(getURL(filename));
sequencer.setSequence(song);
sequencer.open();
return true;
} catch (InvalidMidiDataException e) {
return false;
} catch (MidiUnavailableException e) {
return false;
} catch (I0Exception e) {
return false;
}
}

//play the midi sequence
public void play() {
if (Isequencer.isOpen()) return;
if (Tooping) {
sequencer.setLoopCount(Sequencer.LOOP_CONTINUOUSLY);

195

196 Chapter 9 = Sound Effects and Music

sequencer.start();

} else {
sequencer.setLoopCount(repeat);
sequencer.start();

}

//stop the midi sequence

public void stop() {
sequencer.stop();

}

}

WHAT You HAVE LEARNED
This chapter explained how to incorporate sound clips and MIDI sequences into
your Java programs. Game audio is a very important subject because a game is
just no fun without sound. You learned:

m How to load and play a digital sound file

m How to load and play a MIDI sequence file

m How to encapsulate reusable code inside a class

ReviEw QQUESTIONS
The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What is the name of Java’s digital sound system class?

2. What is the name of Java’s MIDI music system class?

3. Which Java class handles the loading of a sample file?

4. Which Java class handles the loading of a MIDI file?

5. What type of exception error will Java generate when it cannot load a
sound file?

6. Which method of the MIDI system returns the sequencer object?

On Your Own

7. What is the main Java class hierarchy for the audio system class?
8. What is the main Java class hierarchy for the MIDI system class?
9. What three digital sound file formats does Java support?

10. What rare exception error will occur when no MIDI sequencer is
available?

ON Your OwWN

Use the following exercises to test your grasp of the material covered in this
chapter. Are you ready to put sound and music to the test in a real game yet?
These exercises will challenge your understanding of this chapter.

Exercise 1

Write your own sound-effects generating program to try out a large list of sound
files. You can acquire sound files of various types by searching the web. Have the
program play a specific sound file by pressing keys on the keyboard.

Exercise 2

Write a similar program for playing back multiple MIDI music sequence files by
pressing various keys on the keyboard. For an even greater challenge, try
combining this program with the one in Exercise 1 so that you can try out
playing music and sound effects at the same time!

197

This page intentionally left blank

CHAPTER 10

TIMING AND THE GAME Loop

You have learned how to use the Graphics2D class to program graphics using
vector shapes and bitmap images, and you have even seen a nearly complete
game written from scratch. You have learned how to load and play sound files
and MIDI music files, and how to program the keyboard and mouse. By all
accounts, you have the tools to create many different games already. But there
are some tricks of the trade—secrets of the craft—that will help you to make
your games stand out in the crowd and impress. This chapter discusses the game
loop and its vital importance to a smooth-running game. You will learn about
threads and timing, and you will take the Asteroids-style game created in
Chapters 3 and 5 into completely new territory, as it is modified extensively
in the following pages.

Here are the specific topics you will learn about:

m Using timing methods
m Starting and stopping a thread
m Using a thread for the game loop

THE PoTENCY OF A GAME Loop

The key to creating a game loop to facilitate the needs of a high-speed game is
Java’s multithreading capability. Threads are such an integral part of Java that it
makes a special thread available to your program just for this purpose. This

199

200

Chapter 10 = Timing and the Game Loop

special thread is called Runnable, an interface class. However, it’s entirely
possible to write a Java game without threads by just using a simple game
loop. I'll show you how to do this first, and then we’ll take a look at threads as an
even better form of game loop.

Tip

An interface class is an abstract class with properties and methods that are defined but not
implemented. A program that uses an interface class is said to consume it, and must implement all
of the public methods in the interface. Typical examples include KeyListener and Runnable.

A Simple Loop

The Runnable interface gives your program its own awareness. I realize this
concept sounds a lot like artificial intelligence, but the term awareness is a good
description of the Runnable interface. Before Runnable, your Java programs have
been somewhat naive, capable of only processing during the screen refresh. Let’s
take a look at an example. Figure 10.1 shows the SimpleLoop program. As you
can see, this program doesn’t do anything in real time; it waits until you press a
key or click the mouse before drawing a rectangle.

Figure 10.1
The SimpleLoop program.

The Potency of a Game Loop

// Simpleloop program
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

public class SimplelLoop extends JFrame
implements KeyListener, MouselListener {
Random rand = new Random();

public static void main(String[] args) {
new SimpleLoop();
}

public SimplelLoop() {
super("SimpleLoop");
setSize(500,400);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
addKeyListener(this);
addMouselListener(this);

}

public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;

//create a random rectangle

int w=rand.nextInt(100);

int h=rand.nextInt(100);

int x=rand.nextInt(getSize().width - w);
int y = rand.nextInt(getSize().height - h);
Rectangle rect = new Rectangle(x,y,w,h);

//generate a random color

int red = rand.nextInt(256);

int green = rand.nextInt(256);

int blue = rand.nextInt(256);
g2d.setColor(new Color(red,green,blue));

201

202

Chapter 10 = Timing and the Game Loop

//draw the rectangle
g2d.fill(rect);
}

//handle keyboard events

public void keyReleased(KeyEvent k) { }

public void keyTyped(KeyEvent k) { }

public void keyPressed(KeyEvent k) {
repaint();

}

//handle mouse events
public void mouseEntered(MouseEvent m) { }
public void mouseExited(MouseEvent m) { }
public void mouseReleased(MouseEvent m) { }
public void mouseClicked(MouseEvent m) { }
public void mousePressed(MouseEvent m) {
repaint();

}

}

Tip

The Random class is located in the java.awt.util class along with many other utility classes
that provide commonly needed tools to your program. To use Random in your program, you must
include this class with the following import statement:

import java.awt.util.*;

This program has no loop whatsoever, so it cannot process anything in real
time—not spaceships, asteroids, jumping Italian plumbers, yellow dot-eaters, or
female spelunkers packing dual Berettas. The only thing this program can do is
draw a single rectangle at a time.

There are some ways you can make the program a little more interactive. The
only problem with the mouse and keyboard listener interfaces is that you have to
implement all of them or none of them. That reminds me of Yoda’s famous
saying, “Do, or do not. There is no ‘try.” An interface class is an all-or-nothing
proposition that tends to junk up your source code, not to mention that it takes
a lot of work to type in all of those interface event methods every time! But
there’s no real workaround for the unused event methods.

The Potency of a Game Loop

Note

I've been thinking about a way to use all of these interface classes (such as Runnable and the
input listeners) by tucking them away into a class outside of the main program. This support class
would provide my main program with real events when things happen, such as key presses, mouse
movement, and other events. Perhaps this is the birth of an idea that will become some sort of
game engine? Let's wait and see what Part Il has in store.

Overriding Some Default Behaviors

There is a serious problem with this program because it was supposed to just
add a new rectangle every time the user presses a key or mouse button, not
redraw the entire window—with a single rectangle left over. There is definitely
something odd going on because this program should have worked as expected.

Well, it turns out that Java has been screwing with the screen without
permission—or rather, by default. The JFrame class, which is the basis for the
SimpleLoop program, provides many default event methods that do certain
things for you. You don’t even need to implement paint() if you don’t want to,
and the JFrame base class will provide it for your program. Granted, nothing will
be drawn on the window as a result, but the compiler won’t give you an error.
This differs from an interface class (such as KeyListener) that mandates that you
must implement all of its abstract methods. So it’s pretty obvious by this
difference in functionality that JFrame is not an interface class, but a fully
functioning class.

What happens, then, when you implement a JFrame class method such as paint()?
These methods are essentially empty inside the JFrame class. Oh, they exist and are
not abstract, but they don’t do anything. The JFrame class defines these methods in
such a way that you can override them in your program. For instance, in the
SimpleLoop program, SimpleLoop is actually the name of the class, and it inherits
from JFrame. Therefore, SimpleLoop has the opportunity to override any of the
methods in JFrame that it wants to, including paint().

Feeling Loopy

Now you finally have an opportunity to add a real loop to this program. But just
for kicks, what do you think would happen if you added a while() loop to the
constructor? I tried it, so you should try it too. Doing this will cause the window
to quickly fill up with rectangles! The only problem with this kind of loop is that

203

204

Chapter 10 = Timing and the Game Loop

none of our program’s other events will come up because we’ve trapped the
program inside the while loop. The call to repaint the window is only the last
step in a game. First, you move your game objects around on the screen, perform
collision testing, and so forth. You can perform all of these steps in the paint()
event, but that limits the program to a very low frame rate. The following is a
suggestion on what we might try to do (note: this is not actual code that you
should add to the SimpleLoop program—it’s just an exploration of an idea).
//the game Toop
while (true) {

//move the game objects

updateObjects();

//perform collision testing

testCollisions();

//redraw the window

repaint();
}
This would work, but we’re still locking out processes that communicate with
our program through events such as the keyboard and mouse handlers.

STEPPING UP TO THREADS

We use the Runnable interface class to add threading support to a game. This
interface has a single event method called run() that represents the thread’s
functionality. We can create this run() method in a game, and that will act like
the game loop. The thread just calls run() once, so you must add a while loop to
this method. The while loop will be running inside a thread that is separate from
the main program. By implementing Runnable, a game becomes multithreaded.
In that sense, it will support multiple processors or processor cores! For
instance, if you have an Intel Core2 Duo or another multi-core processor, you
should be able to see the applet running in a thread that is separate from the web
browser or applet viewer program.

Starting and Stopping the Thread

To get a thread running in an applet, you have to create an instance of the
Thread class, and then start it running using the applet’s start() event. First,
let’s create the thread object:

Stepping Up to Threads

Thread thread;
Next, create the thread in the constructor method:

thread = new Thread(this);
thread.start();

Then you can write the code for the thread’s loop in the run() event method
(part of Runnable). We'll take a look at what goes inside run() in a moment.

The ThreadedLoop Program

Let’s take a look at the entire ThreadedLoop project, and then I'll explain the
loop for the thread inside the run() method. The key portions of code have been
highlighted in bold.

// ThreadedLoop program
import java.awt.*;
import java.lang.*;
import javax.swing.*;
import java.util.*;

public class ThreadedLoop extends JFrame implements Runnable {
Random rand = new Random();

//the main thread
Thread thread;

//count the number of rectangles drawn
long count =0, total =0;

public static void main(String[] args) {
new ThreadedLoop();
}

public ThreadedlLoop() {
super("ThreadedLoop");
setSize(500,400);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
thread = new Thread(this);
thread.start();

205

206 Chapter 10 = Timing and the Game Loop

//thread run event
public void run() {
long start = System.currentTimeMillis();

//acquire the current thread
Thread current = Thread.currentThread();

//here's the new game 1oop
while (current == thread) {
try { Thread.sleep(0); }
catch(InterruptedException e) { e.printStackTrace(); }

//draw something
repaint();

//figure out how fast it's running

if (start + 1000 < System.currentTimeMillis()) {
start = System.currentTimeMillis();
total = count;
count =0;

}

//JdFrame paint event
public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;

//create a random rectangle

int w=rand.nextInt(100);

int h=rand.nextInt(100);

int x = rand.nextInt(getSize().width - w);
int y = rand.nextInt(getSize().height - h);
Rectangle rect = new Rectangle(x,y,w,h);

//generate a random color

int red = rand.nextInt(256);

int green =rand.nextInt(256);

int blue = rand.nextInt(256);
g2d.setColor(new Color(red,green,blue));

Stepping Up to Threads

//draw the rectangle
g2d.fill(rect);

//add another to the counter
count++;

g2d.setColor(Color.WHITE);

g2d.fi11(new Rectangle(0,360,500,400));
g2d.setColor(Color.BLACK);

g2d.drawString("Rectangles per second: " + total, 10, 380);

}

Now let’s examine this run() event that is called by the Runnable interface.
There’s a lot going on in this method. First, a variable called start gets the
current time in milliseconds (System.currentTimeMi11is()). This value is used
to pause once per second to print out the total number of rectangles that have
been drawn (see Figure 10.2).

Next, a local variable is set to the current thread, and then a while loop is
created.

Rectangles per second: 7974

Figure 10.2
The ThreadedLoop program displays the number of rectangles drawn per second.

207

208

Chapter 10 = Timing and the Game Loop

Thread current = Thread.currentThread();

This local thread makes sure that our loop only processes thread events intended
for the game loop because you can use multiple threads in a program.

while (current == thread)

The core of the thread loop includes a call to Thread.sleep(0), which is a
placeholder for slowing the game down to a consistent frame rate. Right now it’s
running as fast as possible because the s1eep() method is being passed a 0. This
single method call requires an error handler because it throws an Interrupted
Exception if the thread is ever interrupted by another thread. This is an
advanced subject that doesn’t concern us. If the thread is interrupted, it’s not
a big deal—we’ll just ignore any such error that might crop up.
try {

Thread.sleep(0);
}
catch(InterruptedException e) {

e.printStackTrace();
}

After this call to sleep (which will slow the game to a consistent frame rate), then
we can call game-related methods to update objects on the screen, perform
collision testing, perform game logic to interact with enemies, and so on. In the
block of code that follows, you can see some timing code inside an if statement.
This code prints out the number of rectangles that have been drawn by the paint()
event during the past 1,000 milliseconds (which equals 1 second).

//draw something
repaint();

//figure out how fast it's running

if (start + 1000 < System.currentTimeMillis()) {
start = System.currentTimeMillis();
count =0;

}

The single call to repaint() actually makes this program do something; all of the
rest of the code helps this method call to do its job effectively. The run() event
contains the new threaded game loop.

Review Questions

Examining Multithreading

Aside from the sample game in Chapter 3, this program might have been your
first exposure to multithreaded programming. Java makes the process very easy
compared to other languages. I've used several threading libraries such as Posix
threads, Boost threads, and Windows threads to add thread support in my C++
programs in Linux and Windows, and it’s not very easy to use at all compared to
Java’s built-in support for threads. We will continue to use threads in every
subsequent chapter, so you will have had a lot of exposure to this subject by the
time you complete the book.

Note

Multi-Threaded Game Engine Design (Course Technology, 2010) covers thread libraries extensively
with the C++ language while developing a fully featured game engine along the way.

WHAT You HAVE LEARNED

This was a heavyweight chapter that covered some very difficult subjects. But the
idea is to get up the most difficult part of a hill so you can reach the peak, and
then head on down the other side. That is what this chapter represents—the last
few steps up to the peak. You have now learned the most difficult and
challenging aspects of writing a Java game at this point, and you are ready to
start heading down the hill at a more leisurely pace in the upcoming chapters.
This chapter explained:

m How to create a threaded game loop

m How to override default applet methods

= How to manipulate a bitmap with transformations

ReEviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What is the name of the interface class that provides thread support?

2. What is the name of the thread execution method that you can use to
run code inside the separate thread?

209

210

Chapter 10 = Timing and the Game Loop

. What is the name of the class that handles vector-based graphics?

. What Thread method causes the thread to pause execution for a specified

time?

5. What System method returns the current time in milliseconds?

. What is the name of the method that returns the directory containing

the applet (or HTML container) file?

. What is the name of the method that returns the entire URL string

including the applet (or HTML container) file?

. What class do you use to store a bitmap image?
9.
10.

Which Graphics2D method is used to draw a bitmap?

Which class helps to improve gameplay by providing random numbers?

ON Your OwN

The following exercises will test your comprehension of the topics covered in
this chapter by making some important changes to the projects.

Exercise 1

The ThreadedLoop program runs at breakneck speed with no delay. Modify the
thread delay value to see whether you can slow down the number of rectangles
being drawn to just 1,000 rectangles per second.

Exercise 2

The ThreadedLoop program just draws vector graphics. Modify the program so
that it draws animated sprites instead.

PaArT 11|

THE GALACTIC WAR PROJECT

This final part of the book is devoted to the development of a complete game
called Galactic War, built entirely in Java as a web applet. We have spent the last
several chapters focusing on JFrame-based applications for the sake of conven-
ience, but now we can return to the subject of Java applets that run in a web
browser, with the goal of building a casual game. By the time you have finished
reading the book, you will have learned how to create this game from scratch
and deploy it to your website. Here are the chapters in Part III:

m Chapter 11: Galactic War: From Vectors to Bitmaps
m Chapter 12: Galactic War: Sprites and Collision Boxes
m Chapter 13: Galactic War: Squashed by Space Rocks

Chapter 14: Galactic War: Entity Management

Chapter 15: Galactic War: Finishing the Game
m Chapter 16: Galactic War: Web Deployment

This page intentionally left blank

CHAPTER 11

GALACTIC WAR:
FROM VECTORS TO BITMAPS

The Galactic War project will demonstrate just one type of game that can be
created in Java. This game is complex, but that complexity is hidden inside a
game engine that, once written, does not need to be opened again. You will write
an applet that will inherit from the game engine, and then the vast majority of
the core code for the game will be handled behind the scenes. We'll build the
game step by step, beginning with the simplistic Asteroids-style game from
Chapter 3, gradually improving the game until it is finished and ready to be put
up on your website. The first step to building Galactic War is to begin
converting the original project from an entirely vector-based game into a
bitmap-based game. We'll start with a partial conversion in this chapter,
retaining some of the vector shapes but replacing the player’s ship with a bitmap.

Here are the key topics:

m Improving the game

m Generalizing the vector classes

IMPROVING THE GAME

Chapter 3 gave you an example of a semi-complete Asteroids-style game to show
you what would be covered in the upcoming chapters. You have now learned
enough about game programming in Java to greatly enhance the game. That
original game featured a class called BaseVectorShape, which contained all of the

213

214

Chapter 11 = Galactic War: From Vectors to Bitmaps

properties needed to manipulate game objects on the screen (the asteroids,
bullets, and ship). In this chapter, we’ll make a few changes to add sprite
support, and in the next chapter we’ll move the game entirely over to bitmaps.

By upgrading the spaceship to an image and doing away with the vector ship
(which was little more than a filled triangle), the game is really starting to look
more playable. There is no substitute for bitmapped graphics. But one of the
goals I set out to achieve for this game is adding the ability to use an image
instead of a shape, while still retaining the existing transformation features (most
importantly, real-time rotation).

You can open up the project from Chapter 3 and continue using it or you can
just copy the .java files from the old project to the new project. Here are the
source code files you will want to bring over to the new game from previous
chapters:

m BaseVectorShape.java

m Asteroid.java

Bullet.java

Ship.java

SoundClip.java

MidiSequence.java

Note that I did not include the main source code file, Asteroids.java. There are a
few changes needed to add image support to the game, so I will just give you the
complete source code listing for the main code file, which is now called
GalacticWar.java.

Generalizing the Vector Classes

In the Asteroids project in Chapter 3, there were several classes to handle the
ship, asteroids, and bullets in the game. Now we’re going to generalize these
three classes and make them more general purpose, since a lot of code is shared
among these classes. The Ship class will be replaced entirely with an ImageEntity
(covered back in Chapter 6). Let me show you what we’re going to do with the
Asteroid and Bullet classes.

Improving the Game 215

Create a new source code file called VectorEntity.java. This class is very simple,
as the following code suggests. Note that this class inherits from BaseGameEntity!

Note

The BaseGameEntity and ImageEntity classes were created back in Chapter 6. Despite our
having already created an awesome animation class in Chapter 7 called AnimatedSprite, we
learned that this class does not support transformations. Since we desperately need trans-
formations for Galactic War, we will have to rely primarily on the original Sprite class and a
less capable AnimatedSprite class that uses a scratch pad image to support both transforms
and animation. This is the more advanced class that was hinted about in Chapter 7! Despite
sharing the name, this is not the same class anymore.

// Vector class for handling game entities
import java.awt.*;

public class VectorEntity extends BaseGameEntity {
//variables
private Shape shape;

//accessor methods
public Shape getShape() { return shape; }

//mutator methods
public void setShape(Shape shape) { this.shape = shape; }

//default constructor

VectorEntity() {
setShape(null);

}

The New Asteroid Class

The Asteroid class will be modified now to use VectorEntity as a base class.
This frees up a lot of code that was previously duplicated in Asteroid and the
other classes. The Asteroid class inherits from VectorEntity, which in turn
inherits from BaseGameEntity. You can open up the Asteroid.java file that you
copied over from the project in Chapter 3, or you can just add this as a new class
to the Galactic War project.

216

Chapter 11 = Galactic War: From Vectors to Bitmaps

// Asteroid class derives from BaseVectorShape
import java.awt.*;

public class Asteroid extends VectorEntity {
//define the asteroid polygon shape
private int[] astx={-20,-13, 0,20,22, 20, 12, 2,-10,-22,-16};
private int[] asty ={ 20, 23,17,20,16,-20,-22,-14,-17,-20, -5};

//rotation speed

protected double rotVel;

public double getRotationVelocity() { return rotVel; }
public void setRotationVelocity(double v) { rotVel =v; }

//bounding rectangle

public Rectangle getBounds() {
Rectangle r;
r =new Rectangle((int)getX() - 20, (int) getY() - 20, 40, 40);
return r;

}

//default constructor

Asteroid() {
setShape(new Polygon(astx, asty, astx.length));
setAlive(true);
setRotationVelocity(0.0);

}

The New Bullet Class

Much of the code in the previous Bullet class has now been moved to
VectorEntity as well, so we can just rewrite this class and give it the specific
information relevant to a bullet object (most notably, that the getBounds()
method returns a Rectangle that is one pixel wide and one pixel high).

// Bullet class derives from BaseVectorShape
import java.awt.*;

public class Bullet extends VectorEntity {

//bounding rectangle
public Rectangle getBounds() {

Improving the Game

Rectangle r;
r=new Rectangle((int)getX(), (int) getY(), 1, 1);
return r;

}

Bullet() {
//create the bullet shape
setShape(new Rectangle(0, 0, 1, 1));
setAlive(false);

}

The Main Source Code File: GalacticWar.java

The actual gameplay hasn’t changed much in this new revision. Figure 11.1
shows the game with a new bitmap image being used for the player’s spaceship.
However, we have upgraded the core classes significantly in this update, which
will be very useful in the next chapter, where ImageEntity will see a lot more use.

Figure 11.1
The player’s spaceship is now a bitmap image rather than a polygon.

217

218

Chapter 11 = Galactic War: From Vectors to Bitmaps

Figure 11.2
The bounding rectangles are used for collision testing.

The ImageEntity, which you learned about in Chapter 6, provides a getBounds ()
method to perform collision testing. You can still toggle the bounding rectangles
on and off by pressing the B key. Figure 11.2 shows the rectangle around the
player’s ship. The collision code is a little too strict for a truly enjoyable game
because the bounding rectangles are slightly too big. We'll correct this by fine-
tuning the collision code in the next two chapters.

The majority of the code remains unchanged from the Asteroids.java file back in
Chapter 3, so you can just open that file and modify it as indicated. But I'm
going to list the entire program again because it’s been a long time since we went
over that code. I have highlighted in bold all of the lines of code that have
changed. If the source code for a particular method has not changed at all, I
simply commented out the code and inserted the statement //no changes needed,
so keep an eye out for this comment and then reuse that code from the Chapter 3
project. It is a beautiful testament to object-oriented programming that so few
changes are needed to this source code file!

// GALACTIC WAR, Chapter 11
import java.applet.*;

Improving the Game

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.image.*;
import java.util.*;

// Primary class for the game
public class GalacticWar extends Applet impTlements Runnable, KeylListener {
//the main thread becomes the game Toop
Thread gameloop;
//use this as a double buffer
BufferedImage backbuffer;
//the main drawing object for the back buffer
Graphics2D g2d;
//toggle for drawing bounding boxes
boolean showBounds = false;

//create the asteroid array
int ASTEROIDS = 20;
Asteroid[] ast = new Asteroid[ASTEROIDSI;

//create the bullet array

int BULLETS = 10;

Bullet[] bullet =new Bullet[BULLETST;
int currentBullet =0;

//the player's ship
ImageEntity ship = new ImageEntity(this);

//create the identity transform
AffineTransform identity = new AffineTransform();

//create a random number generator
Random rand = new Random();

//10ad sound effects
SoundClip shoot;
SoundClip explode;

219

220 Chapter 11 = Galactic War: From Vectors to Bitmaps

// applet init event
pubTic void init() {
//create the back buffer for smooth graphics
backbuffer = new BufferedImage(640, 480, BufferedImage.TYPE_INT_RGB);
g2d = backbuffer.createGraphics();

//set up the ship
ship.setX(320);
ship.setY(240);
ship.load("spaceshipl.png");
ship.setGraphics(g2d);

//set up the bullets

for (int n=0; n<BULLETS; n++) {
bulletn]l =new Bullet();

}

//set up the asteroids

for (int n=0; n<ASTEROIDS; n++) {
astn] = new Asteroid();
ast[n].setRotationVelocity(rand.nextInt(3)+1);
ast[n].setX((doubTe)rand.nextInt(600)+20);
ast[n].setY((double)rand.nextInt(440)+20);
ast[n].setMoveAngle(rand.nextInt(360));
double ang = ast[n].getMoveAngle() - 90;
ast[n].setVelX(calcAngleMoveX(ang));
ast[n].setVelY(calcAngleMoveY(ang));

}

//10ad sound files
shoot = new SoundClip("shoot.wav");
explode = new SoundClip("explode.wav");

//start the user input Tistener
addKeyListener(this);

// applet update event to redraw the screen
public void update(Graphics g) {
//NO CHANGES HERE
}

Improving the Game

// drawShip called by applet update event
public void drawShip() {
//transform and draw the ship
ship.transform();
ship.draw();

//draw bounding rectangle around ship

if (showBounds) {
g2d.setTransform(identity);
g2d.setColor(Color.BLUE);
g2d.draw(ship.getBounds());

}

There are no changes beyond this point. Please double-check the source code
listing in your new Galactic War project to ensure that all of the methods
following this point are included (from the project in Chapter 3). If you prefer,
you may open the completed project in the resource folder \sources\chapter11\
GalacticWar (found at www.courseptr.com/downloads).

// drawBullets called by applet update event
public void drawBullets() {
//NO CHANGES HERE
}
// drawAsteroids called by applet update event
public void drawAsteroids() {
//NO CHANGES HERE
}
// applet window repaint event--draw the back buffer
public void paint(Graphics g) {
//NO CHANGES HERE
}
// thread start event - start the game Toop running
public void start() {
//NO CHANGES HERE
}
// thread run event (game Toop)
pubTlic void run() {
//NO CHANGES HERE
}

221

www.courseptr.com/downloads

222 Chapter 11 = Galactic War: From Vectors to Bitmaps

// thread stop event
pubTic void stop() {
//NO CHANGES HERE
}
// move and animate the objects in the game
private void gameUpdate() {
//NO CHANGES HERE
}
// Update the ship position based on velocity
public void updateShip() {
//NO CHANGES HERE
}
// Update the bullets based on velocity
public void updateBullets() {
//NO CHANGES HERE
}
// Update the asteroids based on velocity
public void updateAsteroids() {
//NO CHANGES HERE
}
// Test asteroids for collisions with ship or bullets
public void checkCollisions() {
//NO CHANGES HERE
}

// key Tistener events

public void keyReleased(KeyEvent k) { }

public void keyTyped(KeyEvent k) { }

public void keyPressed(KeyEvent k) {
//NO CHANGES HERE

}

// calculate X movement value based on direction angle
public double calcAngleMoveX(double angle) {

//NO CHANGES HERE
}

// calculate Y movement value based on direction angle
pubTic double calcAngleMoveY(double angle) {

//NO CHANGES HERE
}

On Your Own 223

WHAT You HAVE LEARNED

You have now learned the most difficult and challenging aspects of writing a
Java game at this point, and you are ready to start heading down the hill at a
more leisurely pace in the upcoming chapters. This chapter explained:

m How to add bitmaps to Galactic War

= How to support multiple key presses

ReEviEw QQUESTIONS
The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What is the name of the class that handles bitmaps?

2. Which class in Galactic War detects when bullets hit the asteroids?

3. What is the maximum number of sprites that can be supported by the
game?

4. Which method in the Graphics2D class actually draws the image of a
sprite?

. What is the name of the Applet method that redraws the window?
. How many key presses can the game detect at a single time?
. What method do you use to track the mouse’s movement?

. What type of graphics entity does the game use for the asteroids?

O 0 N O U

. Regarding ship rotation, by how many angles can the ship be rotated?

10. What method provides the game with support for collision detection?

ON Your OwWN

The following exercise will test your comprehension of the topics covered in this
chapter by making some important changes to the projects.

224

Chapter 11 = Galactic War: From Vectors to Bitmaps

The Galactic War game is much more playable now than it was back in Chapter 3,
thanks in part to the new keyboard handler. But we are completely ignoring a
perfectly valid alternative to the keyboard—your trusty mouse. Devise a way to
add mouse support to the game. You could rotate the ship when the mouse is
moved left or right, and apply thrust when the mouse wheel is used, and fire when
the button is pressed.

CHAPTER 12

GALACTIC WAR: SPRITES
AND CoLLISION BoOXES

The goal of this chapter is to develop a way to handle the game objects moving
around on the screen and to enhance the Galactic War game with some
significant new gameplay features using sprites rather than just images and
vectors.

Here are the specific topics you will learn about:

m Upgrading Galactic War to a sprite-based game
m Adding new artwork to the game

m Adding new functionality to the gameplay

CREATING THE PROJECT

The Galactic War game has so much potential that I'm eager to implement, but
the game has been somewhat hobbled up to this point due to it being limited—
first by vectors, then by simple bitmaps. Now that we have this useful new
Sprite class available with some serious functionality built into it, the game will
really start to resemble what I am envisioning for it.

The first thing I want to do is enlarge the applet window to 800 x 600. I realize
that 640 x 480 provides better support for users of low-end PCs, but the truth of
the matter is that most users run their PCs at 1024 x 768, while a similarly large
percentage use 1280 x 960 or 1280 x 1024. Only a tiny minority of PC users run

225

226

Chapter 12 = Galactic War: Sprites and Collision Boxes

Figure 12.1
The new version of Galactic War.

the system at the lower resolutions. A resolution of 800 x 600 will give the game
more breathing room due to the large size of the asteroids.

As you can see in Figure 12.1, the game has been completely converted to
bitmapped graphics, finally doing away with the vestiges of its vector graphics
ancestry.

The Galactic War Bitmaps

There are a lot of high-quality bitmaps in the game now, giving it a sharp, catchy
appearance. The first and most significant change to the game is that it now uses
a background bitmap instead of a blank, black background. The bluespace.png
background image was created by Reiner Prokein and is shown in Figure 12.2.
This is one example of many backgrounds, sprites, and tiles you can find in the
Reiner’s Tileset collection at www.reinerstileset.de.

www.reinerstileset.de

Creating the Project 227

Figure 12.2
The background image used in Galactic War.

Figure 12.3
The five unique asteroids featured in the game.

There are five different types of asteroids of the large variety in this iteration of
Galactic War. These gigantic rocks will be blasted into smaller pieces in later
iterations of the game; at this point, shooting one of them simply causes it to
disappear. I wanted to use very large starting asteroids to make the game more
interesting by breaking them up into many smaller rocks. The asteroids shown
in Figure 12.3 were rendered by a talented 3D artist by the name of Edgar Ibarra,
who actually created these asteroid models for a project I was working on several

228 Chapter 12 = Galactic War: Sprites and Collision Boxes

£ spaceship png-L0 (KGE
Eile

3 — : AT [+
px B| 11mx3|’sackgrm:lca6ﬂm)

Figure 12.4
The player's spaceship used in Galactic War.

years ago. I have converted the asteroid bitmaps to the PNG format using Paint
Shop Pro, as well as applied a transparency mask in the process.

The spaceship has also been upgraded significantly from the version presented
in the previous chapter. I based the spaceship on a design by Reiner Prokein and
significantly modified it to give it a more distinct look with a pseudo-3D
appearance like an X-Wing from Star Wars. (Note the four guns, top and
bottom.) Figure 12.4 shows the ship sprite. This is a great-looking ship, if I do
say so myself. I'd like to add a small fire animation coming out of the engine
nozzles when you press the Up arrow key to apply thrust (future enhancement?).

The New and Improved Source Code

There’s a lot of source code here for the new version of the game. This is
necessary because the game is now taking shape with a lot of functionality, and it
has room for new features in upcoming chapters. Future chapters will actually
involve additions and changes to the monumental work done in this chapter,

Creating the Project

which is now a new foundational version of the game. The first thing I'd like to
point out is that Galactic War no longer uses the VectorShape class, so you can
remove it from the project. I have made no changes to BaseGameEntity or
ImageEntity, so those can remain in the project. (ImageEntity is used by the
Sprite class internally.) You can see the current state of the project by looking at
the list of files now required by the project:

m BaseGameEntity.java

m GalacticWar.java

ImageEntity.java

Point2D.java

Sprite.java

Tip

Two obviously glaring omissions from the game so far have been sound effects and music. We will
add sound to the game in Chapter 15, “Galactic War: Finishing the Game.”

The first code listing here includes the main class definition for the game, along
with the global variables. I have highlighted key changes to the game in bold
text.

/***

* GALACTIC WAR, Chapter 12
***/
import java.applet.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import java.util.*;

import java.lang.System;

/***

* Primary class for the game
***/
public class GalacticWar extends Applet impTlements Runnable, KeylListener {
//global constants
static int SCREENWIDTH = 800;

229

230 Chapter 12 = Galactic War: Sprites and Collision Boxes

static int SCREENHEIGHT = 600;

static int CENTERX = SCREENWIDTH / 2;
static int CENTERY = SCREENHEIGHT / 2;
static int ASTEROIDS =10;

static int BULLETS = 10;

static int BULLET_SPEED = 4;

static double ACCELERATION = 0.05;

//sprite state values
static int SPRITE_NORMAL =0;
static int SPRITE_COLLIDED =1;

//the main thread becomes the game Toop
Thread gameloop;

//double buffer objects
BufferedImage backbuffer;
Graphics2D g2d;

//various toggles
boolean showBounds = true;
boolean collisionTesting = true;

//define the game objects

ImageEntity background;

Sprite ship;

Spritel[] ast = new Sprite[ASTERQIDS];
Sprite[] bullet =new Sprite[BULLETS];
int currentBullet =0;

//create a random number generator
Random rand = new Random();

//define the sound effects objects
SoundC1ip shoot;
SoundClip explode;

//simple way to handle multiple keypresses
booTean keyDown, keyUp, keylLeft, keyRight, keyFire;

Creating the Project

Figure 12.5
Bounding boxes and collisions are toggled with the B and C keys.

//frame rate counter

int frameCount = 0, frameRate =0;

lTong startTime = System.currentTimeMiTlis();
The showBounds and collisionTesting variables are used to draw some helpful
information on the screen, which is invaluable while developing a complex
game. Figure 12.5 shows the game with bounding boxes and collision testing
turned on. When a collision occurs, the bounding boxes of the two objects are
drawn in red instead of blue. You can turn off collision testing altogether, if
needed for testing.

This brings up an important point about the current state of the game. There are
a lot of new features in the game, and it pretty much looks the way it will when it
is finished—except for a scrolling background and a few other tidbits. The game
really doesn’t take any action at this point based on a collision. Instead, collisions
are detected, and that status information is made available to the game through

231

232

Chapter 12 = Galactic War: Sprites and Collision Boxes

the sprite’s state property (which is generic enough for use however you see fit).
We'll revisit the process of responding to collisions in the next chapter.

Tip

We need a little more functionality out of the java.awt.Point class, so we'll be building our
own Point2D class in this chapter. Try not to confuse this with java.awt.geom.Point2D,
which is the base class for java.awt.Point, and has no relation to our custom Point2D class.

Next up is the init() event method of the applet.
/***

* applet init event
***/
public void init() {
//create the back buffer for smooth graphics
backbuffer = new BufferedImage (SCREENWIDTH, SCREENHEIGHT,
BufferedImage.TYPE_INT_RGB);
g2d = backbuffer.createGraphics();

//1oad the background image
background = new ImageEntity(this);
background.load("bluespace.png”);

//set up the ship

ship =new Sprite(this, g2d);
ship.load("spaceship.png");
ship.setPosition(new Point2D(CENTERX, CENTERY));
ship.setAlive(true);

//set up the bullets

for (int n=0; n<BULLETS; n++) {
bullet[n] = new Sprite(this, g2d);
bullet[n].Toad("plasmashot.png");

}

//set up the asteroids

for (int n=20; n<{ASTEROIDS; n++) {
ast[n] =new Sprite(this, g2d);
ast[n].setAlive(true);

Creating the Project

//10ad the asteroid image

int i = rand.nextInt(5)+1;

ast[n].load("asteroid" +1i + ".png");

//set to a random position on the screen

int x =rand.nextInt (SCREENWIDTH);

int y = rand.nextInt (SCREENHEIGHT) ;

ast[n].setPosition(new Point2D(x, y));

//set rotation angles to a random value

ast[n].setFaceAngle(rand.nextInt(360));

ast[n].setMoveAngle(rand.nextInt(360));

ast[n].setRotationRate(rand.nextDouble());

//set velocity based on movement direction

double ang =ast[n].moveAngle() - 90;

double velx = calcAngleMoveX(ang);

double vely = calcAngleMoveY(ang);

ast[n]l.setVelocity(new Point2D(velx, vely));
}

//start the user input Tistener
addKeyListener(this);
}

The next section of code is the main game update portion of the game, including

the applet update() event, the paint() event, and three methods to draw the

game objects: drawShip(), drawBullets(), and drawAsteroids().
/***

* applet update event to redraw the screen
***/
public void update(Graphics g) {
//calculate frame rate
frameCount++;
if (System.currentTimeMillis() > startTime +1000) {
startTime = System.currentTimeMillis();
frameRate = frameCount;
frameCount = 0;
}

//draw the background
g2d.drawImage(background.getImage(),0,0,
SCREENWIDTH-1,SCREENHEIGHT-1,this);

233

234 Chapter 12 = Galactic War: Sprites and Collision Boxes

//draw the game graphics
drawAsteroids();
drawShip();
drawBullets();

//print status information on the screen
g2d.setColor(Color.WHITE);
g2d.drawString("FPS: " + frameRate, 5, 10);
Tong x = Math.round(ship.position().X());
long y = Math.round(ship.position().Y());
g2d.drawString("Ship: "+ x+","+y , 5, 25);
g2d.drawString("Move angle: " + Math.round(
ship.moveAngle())+90, 5, 40);
g2d.drawString("Face angle: " + Math.round(
ship.faceAngle()), 5, 55);

if (showBounds) {
g2d.setColor(Color.GREEN);
g2d.drawString("BOUNDING BOXES", SCREENWIDTH-150, 10);
}
if (collisionTesting) {
g2d.setColor(Color.GREEN);
g2d.drawString("COLLISION TESTING", SCREENWIDTH-150, 25);
}

//repaint the applet window
paint(g);
}

/***

* drawShip called by applet update event
***/
public void drawShip() {
// set the transform for the image
ship.transform();
ship.draw();
if (showBounds) {
if (ship.state() = SPRITE_COLLIDED)
ship.drawBounds(Color.RED);
else

Creating the Project

ship.drawBounds(Color.BLUE);

}

/***

* drawBullets called by applet update event
***/
public void drawBullets() {
for (int n=0; n < BULLETS; n++) {
if (bullet[n].alive()) {
//draw the bullet
bullet[n].transform();
bullet[n].draw();
if (showBounds) {
if (bullet[n].state() == SPRITE_COLLIDED)
bullet[n].drawBounds(Color.RED);
else
bullet[n].drawBounds(Color.BLUE);

}

/***

* drawAsteroids called by applet update event
***/
public void drawAsteroids() {
for (int n=20; n < ASTEROIDS; n++) {
if (ast[nl.alive()) {
//draw the asteroid
ast[n].transform();
astin].draw();
if (showBounds) {
if (ast[n].state() == SPRITE_COLLIDED)
ast[n].drawBounds(Color.RED);
else
ast[n].drawBounds(Color.BLUE);

235

236 Chapter 12 = Galactic War: Sprites and Collision Boxes

/***

* applet window repaint event--draw the back buffer
***/
public void paint(Graphics g) {
g.drawImage(backbuffer, 0, 0, this);
}

The next section of code updates the game via the gameloop thread, which calls

gameUpdate(). This method, in turn, calls methods to process user input; update

the ship, bullets, and asteroids; and perform collision testing.
/***

* thread start event -- start the game Toop running
***/
public void start() {
gameloop = new Thread(this);
gameloop.start();
}

/***

* thread run event (game loop)
***/
public void run() {
//acquire the current thread
Thread t = Thread.currentThread();
//keep going as long as the thread is alive
while (t == gameloop) {
try {
Thread.sleep(20);
}
catch(InterruptedException e) {
e.printStackTrace();
}
//update the game Toop
gameUpdate();
repaint();

}

/***

* thread stop event
***/

Creating the Project

public void stop() {
gameloop =null;
}

/***

*move and animate the objects in the game
***/
private void gameUpdate() {

checkInput();

updateShip();

updateBullets();

updateAsteroids();

if (collisionTesting) checkCollisions();
}

/***

* Update the ship position based on velocity
***/
public void updateShip() {

ship.updatePosition();

double newx = ship.position().X();

double newy = ship.position().Y();

//wrap around left/right

if (ship.position().X() < -10)
newx = SCREENWIDTH + 10;

else if (ship.position().X() > SCREENWIDTH + 10)
newx = -10;

//wrap around top/bottom

if (ship.position().Y() < -10)
newy = SCREENHEIGHT + 10;

else if (ship.position().Y() > SCREENHEIGHT + 10)
newy = -10;

ship.setPosition(new Point2D(newx, newy));
ship.setState(SPRITE_NORMAL);
}

/***

* Update the bullets based on velocity

***/

237

238 Chapter 12 = Galactic War: Sprites and Collision Boxes

public void updateBullets() {
//move the bullets
for (int n=20; n <BULLETS; n++) {
if (bullet[n].alive()) {

//update bullet's x position
bullet[n].updatePosition();

//bullet disappears at left/right edge
if (bullet[n].position().X() <0 ||
bullet[n].position().X() > SCREENWIDTH)
{
bullet[n].setAlive(false);
}

//update bullet's y position
bullet[n].updatePosition();

//bullet disappears at top/bottom edge
if (bullet[n].position().Y() <0 ||
bullet[n].position().Y() > SCREENHEIGHT)
{
bullet[n].setAlive(false);
}

bullet[n].setState(SPRITE_NORMAL);

}

/***

* Update the asteroids based on velocity
***/
public void updateAsteroids() {
//move and rotate the asteroids
for (int n=0; n <ASTEROIDS; n++) {
if (ast[nl.alive()) {
//update the asteroid's position and rotation
ast[n].updatePosition();
ast[n].updateRotation();

Creating the Project

int w=ast[n].imageWidth()-1;

int h=ast[n].imageHeight()-1;
double newx = ast[n].position().X();
double newy = ast[n].position().Y();

//wrap the asteroid around the screen edges

if (ast[n].position().X() < -w)
newx = SCREENWIDTH + w;

else if (ast[n].position().X() > SCREENWIDTH + w)
newx = -w;

if (ast[n].position().Y() < -h)
newy = SCREENHEIGHT + h;

else if (ast[n].position().Y() > SCREENHEIGHT + h)
newy = -h;

ast[n].setPosition(new Point2D(newx,newy));
ast[n].setState(SPRITE_NORMAL);

}

/***

* Test asteroids for collisions with ship or bullets
***/
public void checkCollisions() {
//check for collision between asteroids and bullets
for (int m=0; mCASTEROIDS; m++) {
if (ast[m].alive()) {
//iterate through the bullets
for (int n=20; n <BULLETS; n++) {
if (bullet[n].alive()) {
//collision?
if (ast[m].collidesWith(bullet[n])) {
bullet[n].setState(SPRITE_COLLIDED);
ast[m].setState(SPRITE_COLLIDED);
explode.play();

239

240 Chapter 12 = Galactic War: Sprites and Collision Boxes

//check for collision asteroids and ship
for (int m=0; m<ASTERQIDS; m++) {
if (ast[ml.alive()) {
if (ship.collidesWith(ast[m])) {
ast[m].setState(SPRITE_COLLIDED);
ship.setState(SPRITE_COLLIDED);
explode.play();

}

The next section of code processes keyboard input. The game has progressed to
the point where the simplistic keyboard input from earlier chapters was
insufficient, so I've added support to the game for multiple key presses now.
This works through the use of several global variables: keyLeft, keyRight, and so
on. These boolean variables are set to true during the keyPressed() event and set
to false during the keyReleased() event method. This provides support for
multiple keys at the same time in a given frame of the game loop. There is a
practical limit to the number of keys you will be able to press at a time, but this
code makes the game fluid-looking, and the input is smoother than the jerky
input in the last chapter.
/***

* process keys that have been pressed
***/
public void checkInput() {
if (keyLeft) {
//1eft arrow rotates ship Teft 5 degrees
ship.setFaceAngle(ship.faceAngle() - 5);
if (ship.faceAngle() < 0) ship.setFaceAngle(360 - 5);
}
else if (keyRight) {
//right arrow rotates ship right 5 degrees
ship.setFaceAngle(ship.faceAngle() +5);
if (ship.faceAngle() > 360) ship.setFaceAngle(5);
}
if (keyUp) {
//up arrow applies thrust to ship
applyThrust();

Creating the Project

}

/***

* key listener events
***/
public void keyTyped(KeyEvent k) { }
public void keyPressed(KeyEvent k) {
switch (k.getKeyCode()) {
case KeyEvent .VK_LEFT:
keyLeft = true;
break;
case KeyEvent .VK_RIGHT:
keyRight = true;
break;
case KeyEvent.VK_UP:
keyUp = true;
break;
case KeyEvent.VK_CONTROL:
keyFire = true;
break;
case KeyEvent.VK_B:
//toggle bounding rectangles
showBounds = !showBounds;
break;
case KeyEvent.VK_C:
//toggle collision testing
collisionTesting = !collisionTesting;
break;
}
}
public void keyReleased(KeyEvent k) {
switch (k.getKeyCode()) {
case KeyEvent .VK_LEFT:
keyLeft = false;
break;
case KeyEvent.VK_RIGHT:
keyRight = false;
break;
case KeyEvent.VK_UP:
keyUp = false;

241

242 Chapter 12 = Galactic War: Sprites and Collision Boxes

}

break;

case KeyEvent.VK_CONTROL:
keyFire = false;
fireBullet();
break;

public void applyThrust() {

}

//up arrow adds thrust to ship (1/10 normal speed)
ship.setMoveAngle(ship.faceAngle() - 90);

//calculate the X and Y velocity based on angle

double velx =ship.velocity().X();

velx += calcAngleMoveX(ship.moveAngle()) * ACCELERATION;
double vely =ship.velocity().Y();

vely += calcAngleMoveY(ship.moveAngle()) * ACCELERATION;
ship.setVelocity(new Point2D(velx, vely));

public void fireBullet() {

//fire a bullet

currentBullet++;

if (currentBullet > BULLETS - 1) currentBullet =0;
bullet[currentBullet].setAlive(true);

//set bullet's starting point

int w=bullet[currentBullet].imageWidth();

int h=bullet[currentBullet].imageHeight();

double x = ship.center().X() - w/2;

double y = ship.center().Y() - h/2;
bullet[currentBullet].setPosition(new Point2D(x,y));

//point bullet in same direction ship is facing
bullet[currentBullet].setFaceAngle(ship.faceAngle());
bullet[currentBullet].setMoveAngle(ship.faceAngle() - 90);

//fire bullet at angle of the ship
double angle =bullet[currentBullet].moveAngle();
double svx = calcAngleMoveX(angle) * BULLET_SPEED;

Review Questions

double svy = calcAngleMoveY(angle) * BULLET_SPEED;
bullet[currentBullet].setVelocity(new Point2D(svx, svy));

//play shoot sound
shoot.play();
}
The last section of code concludes the main code listing for this new version
of Galactic War, implementing the now-familiar calcAngleMoveX() and calc
AngleMoveY () methods.
/***

* Angular motion for X and Y is calculated
***/

public double calcAngleMoveX(double angle) {
double movex = Math.cos(angle * Math.PI / 180);
return movex;

}

public double calcAngleMoveY(double angle) {
double movey = Math.sin(angle * Math.PI / 180);
return movey;

}

WHAT You HAVE LEARNED

This significant chapter produced a monumental new version of Galactic War
that is a foundation for the chapters to come. The final vestiges of the game’s
vector-based roots have been discarded, and the game is now fully implemented
with bitmaps. In this chapter, you learned:

m How game entities can become unmanageable without a handler (such as
the Sprite class).

m How the use of a sprite class dramatically cleans up the source code for
a game.

ReviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

243

244 Chapter 12 = Galactic War: Sprites and Collision Boxes

10.

. Which support class helps manage the position and velocity of sprites?

. During which keyboard event should you disable a keypress variable,

when detecting multiple key presses with global variables?

. What is the name of the sprite collision detection routine used in

Galactic War?

. Which method in the Applet class provides a way to load images from a

JAR file?

. Which Java package do you need to import to use the Graphics2D class?

. What three numeric data types does the Point2D class support for the X

and Y values?

. How does the use of a class such as Point2D improve a game’s source

code, versus using simple variables?

. Which property in the Sprite class determines the angle at which the

sprite will move?

. Which property in the Sprite class determines the angle at which a

sprite is pointed?

How many milliseconds must the game use as a delay in order to
achieve a frame rate of 60 frames per second?

ON Your OwN

The Galactic War game is in a transition at this point, after having been
upgraded significantly from vector-based graphics. At present, it does not
perform any action due to collisions other than to report that a collision has
occurred. We want to separate the collision testing code from the collision
response code. Add a method that is called from gameUpdate() that displays the
position (x,y) of any object that has collided with another object, for debugging
purposes. You can do this by looking at a sprite’s state property.

CHAPTER 13

GALACTIC WAR: SQUASHED
BY SPACE Rocks

We'll make a minor enhancement to Galactic War in this chapter by adding
support for an animated explosion. To facilitate this, we’ll have to write some
new code to handle the timing and state properties for each sprite. The goal in
this chapter is to add a handler for responding to ship-asteroid collisions. When
a collision occurs, the game should animate an explosion over the ship, and then
put the ship into a temporary invulnerability mode so the player can get the heck
out of the way before another collision occurs.

Here are the key topics we’ll cover in this chapter:

m Examining possible interactions among the game entities

m Adding collision detection between the player’s ship and the asteroids

BeEING CiviLIZED ABOUT COLLISIONS

Responding to collisions in a civilized manner is the first step toward adding
realistic gameplay to any game. The next step is to add a sense of timing to the
response code. We'll add explosions to show when the player gets hit by an
asteroid! The new animated explosion in the game is a 16-frame sequence,
which is shown in Figure 13.1.

When the explosion code is added to the game, the ship will literally blow up
when it collides with an asteroid (see Figure 13.2).

245

246 Chapter 13 = Galactic War: Squashed by Space Rocks

e
ez Eadudy
LIEIRD

Figure 13.1
The 16-frame animated explosion (courtesy of Reiner Prokein).

Applet Viewer: GalacticWar.class
Applet

Applet started.

Figure 13.2
The new animated explosion is now part of the game.

Being Civilized about Collisions

Let’s take a look at the changes required to update the game to support
explosions. There’s more involved here than just loading up the animation
and drawing it because we have to account for timing and sprite state values.
The first change is in the global section at the top of the class—note the changes
in bold.

Tip

The static keyword defines a variable that does not change.

public class GalacticWar extends Applet
implements Runnable, KeyListener {

//global constants
static int SCREENWIDTH = 800;
static int SCREENHEIGHT = 600;
static int CENTERX = SCREENWIDTH / 2;
static int CENTERY = SCREENHEIGHT / 2;
static int ASTEROIDS = 10;
static int BULLETS = 10;
static int BULLET_SPEED = 4;
static double ACCELERATION =0.05;

//sprite state values

static int STATE_NORMAL = 0;
static int STATE_COLLIDED =1;
static int STATE_EXPLODING = 2;

//the main thread becomes the game Toop
Thread gameloop;

//double buffer objects
BufferedImage backbuffer;
Graphics2D g2d;

//various toggles

boolean showBounds = true;
boolean collisionTesting = true;
long collisionTimer =0;

247

248 Chapter 13 = Galactic War: Squashed by Space Rocks

//define the game objects

ImageEntity background;

Sprite ship;

Sprite[] ast =new Sprite[ASTEROIDS];
Sprite[] bullet = new Sprite[BULLETS];
int currentBullet =0;

AnimatedSprite explosion;

//create a random number generator
Random rand = new Random();

//sound effects
SoundClip shoot;
SoundCTip explode;

//simple way to handle multiple keypresses
boolean keyDown, keyUp, keylLeft, keyRight, keyFire;

//frame rate counters and other timing variables
int frameCount =0, frameRate =0;
long startTime = System.currentTimeMiTlis();

Make the following changes near the top of the init() event method to switch
the background object from an Image to an ImageEntity.

public void init() {
//create the back buffer for smooth graphics
backbuffer = new BufferedImage(SCREENWIDTH, SCREENHEIGHT,
BufferedImage.TYPE_INT_RGB);
g2d = backbuffer.createGraphics();

//1oad the background image

background = new ImageEntity(this);

background.load("bluespace.png");
Next, scroll down inside the init() event method a bit more until you have
found the call to addKeyListener(this) and insert the following code in bold.
This code loads a 16-frame explosion animation.

//10ad the explosion

explosion = new AnimatedSprite(this, g2d);
explosion.load("explosion96x96x16.png", 4, 4, 96, 96);

Being Civilized about Collisions

explosion.setFrameDelay(2);
explosion.setAlive(false);

//start the user input 1istener
addKeyListener(this);

Next, go to the update() event and look for the line of code that draws the
background and make the change noted in bold. Then, a few lines further down,
add the new line of code shown in bold.

//draw the background
g2d.drawImage(background.getImage(),0,0,SCREENWIDTH-1,
SCREENHEIGHT-1,this);

//draw the game graphics
drawAsteroids();
drawShip();
drawBullets();
drawExplosions();

Now, while you're still in the update() method, scroll down a few lines to the
part of the method that draws status information on the screen and add the
following code to display the ship’s current state.

if (ship.state()==STATE_NORMAL)
g2d.drawString("State: NORMAL", 5, 70);

else if (ship.state()==STATE_COLLIDED)
g2d.drawString("State: COLLIDED", 5, 70);

else if (ship.state()==STATE_EXPLODING)
g2d.drawString("State: EXPLODING", 5, 70);

Now, scroll down past the three draw methods and add the following method
after drawAsteroids (). This is just the first version of the explosion code, and it
only draws a single animated explosion. Later, the game will need to support
several explosions at a time.

public void drawExplosions() {
//explosions don't need separate update method
if (explosion.alive()) {
explosion.updateAnimation();
if (explosion.currentFrame() ==explosion.totalFrames()-1) {
explosion.setCurrentFrame(0);
explosion.setAlive(false);

249

250 Chapter 13 = Galactic War: Squashed by Space Rocks

else {
explosion.draw();
}

}

Next, scroll down a bit more to the gameUpdate() method. Modify it with the
additional lines of code shown in bold.

private void gameUpdate() {

checkInput();

updateShip();

updateBullets();

updateAsteroids();

if (collisionTesting) {
checkCollisions();
handleShipCollisions();
handleBulletCollisions();
handleAsteroidCollisions();

}

Scroll down just past the checkCol1isions() method and add the following new
methods to the game. The two collision handler routines for asteroids and bullets
are not implemented yet, as the goal is first to get a response for ship-asteroid
collisions along with an animated explosion. The handleShipCollisions()
method uses the ship sprite’s state property extensively to monitor the current
state of a collision, and it adds a three-second delay after a collision has occurred
so the player can get out of the way before collisions start to occur again.

public void handleShipCollisions() {

if (ship.state() == STATE_COLLIDED) {
collisionTimer = System.currentTimeMillis();
ship.setVelocity(new Point2D(0,0));
ship.setState(STATE_EXPLODING);
startExplosion(ship);

}

else if (ship.state() == STATE_EXPLODING) {
if (collisionTimer + 3000 < System.currentTimeMillis()) {

ship.setState(STATE_NORMAL);

}

What You Have Learned

public void startExplosion(Sprite sprite) {
if (lexplosion.alive()) {

double x = sprite.position().X() -
sprite.getBounds().width / 2;

double y = sprite.position().Y() -
sprite.getBounds().height / 2;

explosion.setPosition(new Point2D(x, y));

explosion.setCurrentFrame(0);

explosion.setAlive(true);

}

public void handleBulletCollisions() {
for (int n=0; n<BULLETS; n++) {
if (bullet[n].state() == STATE_COLLIDED) {
//nothing to do yet
}

}

public void handleAsteroidCollisions() {
for (int n=0; n<ASTEROIDS; n++) {
if (ast[n].state() == STATE_COLLIDED) {
//nothing to do yet
}

WHAT You HAVE LEARNED

This chapter tackled the difficult subject of sprite collision detection. Adding
support for collision testing is not an easy undertaking, but this chapter
provided you with the knowledge and explained the collision code in the core
classes that make it possible. You can now draw two or more sprites on the
screen and very easily determine when they have intersected or collided, and
then respond to such events.

251

252

Chapter 13 = Galactic War: Squashed by Space Rocks

ReEviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What is the name of the method that makes collision detection possible?

2. How many collisions can the game detect within a single update of the
game loop?

3. What would happen if the ship were to fire a projectile that “warps”
around the screen and then hits the ship? Would a collision take place?
Why or why not?

4. What should happen to the player’s ship after it has been destroyed by a
collision with an asteroid? Describe a better way to “respawn” the ship
than what is currently being done.

5. What type of transform could you apply to the explosion sprite to
change its size?

6. How does the ship’s velocity affect the result of a collision when the ship
is destroyed? Should the ship continue to exert momentum even while
blowing up?

7. How can the collision routine be improved upon, so that collisions are
more precise?

8. What is the name of the constant applied to the ship when a collision
has taken place?

9. What is the name of the method that updates a sprite’s animation sequence?

10. What is the name of the method that handles the game loop for Galactic
War?

ON Your OwN

Since we are constantly improving the game with each new chapter, there is little
you can do now that will not be addressed in the next chapter. However, some
improvements can be made now that are not added in future chapters. Here is
one such example: Add another explosion to Galactic War so that the asteroids
blow up like the player’s ship when they collide with the ship.

CHAPTER 14

GALACTIC WAR: ENTITY
MANAGEMENT

You have learned the basics of web game programming in previous chapters,
and you have been building the Galactic War game here in Part III. The source
code for an applet-based game is becoming a bit tedious at this point. You've
seen that there is a lot of code that does not change very much from one game to
the next, now that you know how to write a typical game in Java. Aren’t you
getting tired of seeing the key and mouse handlers in every code listing? I sure
am! I don’t want to enforce too much structure for your own game projects, but
I think it will be helpful to add some organization to the code.

There are a lot of events and methods that must be called and monitored
regularly, and since this code doesn’t change very often (if ever), it would clean
up the source code considerably if we could move reusable code into a separate
class. This chapter shows you how to create a base class for an applet-based
framework—or rather, a game engine. You will be able to write a game very
easily by inheriting from the new Game class, and your game won’t need to
implement the interfaces (such as Runnable) any longer. Instead, you will be able
to focus on high-level game design and gameplay.

Here are the specific topics you will learn about:

m Event-driven game programming

m Creating a Java applet-based game engine

253

254

Chapter 14 = Galactic War: Entity Management

» Internalizing the sprite handler

m Adapting Galactic War to the new game engine

ADJUSTING TO EVENT-DRIVEN PROGRAMMING

The biggest obstacle to the adoption of a game framework, or a game engine, is
that you must give up direct (active) control of the game and accept an indirect
(passive) programming methodology. Adapting Galactic War from a direct to a
passive game was very challenging, and I would like to share my experience with
you so that you will not have to go through the pains of developing your own
game engine the hard way. I could have completed the game two or three times
over in the time I've spent building the Game class in this chapter, but the end
result is a powerful engine for creating additional games for delivery on the web.

Exploring the Class Library

Let’s take a look at the class library as it exists at this point, after the changes
made in the previous chapter. Figure 14.1 shows a diagram of the four main

BaseGameEntity

SPRITE IMAGE

ImageEntity feccccccccccap Sprite

Image image()
int width()
int height()

FRAME IMAGE
ImageEntity image()
int imageWidth()
int imageHeight()

TILED ANIMATION IMAGE

meeaaDRININNITN-.» AnimatedSprite

ImageEntity getAnimimage()

int frameWidth()
int frameHeight()

Figure 14.1
The four key Java classes for working with game graphics.

Adjusting to Event-Driven Programming

classes we've developed so far. The diagram doesn’t show the VectorEntity class
since it is no longer being used.

First, BaseGameEntity contains the basic movement and orientation variables
that are passed on to the ImageEntity class. This class adds the capability to
move, rotate, and draw bitmap images, and it is the core class. From this point, a
new class called Sprite was developed. Now, Sprite does not inherit from
ImageEntity, but rather, it uses this core class to store its internal image used for
drawing sprites. That is why the link from ImageEntity to Sprite is a dotted line.
Next we have AnimatedSprite, which is the core of the game engine due to its
support for animation.

When you look at this diagram and resolve the connections in the reverse
direction, you find that AnimatedSprite inherits from Sprite several key
properties: an image, width, and height. AnimatedSprite also makes use of an
ImageEntity to handle the large, tiled images containing frames of animation.
The Sprite class likewise, looking backward, consumes an image and its width
and height properties. You can use this diagram if you ever start to feel
overwhelmed while perusing the Galactic War source code in these final
chapters, because the game is becoming tighter. When an AnimatedSprite
loads its source bitmap, that is passed up to the “super” or “parent” class
(Sprite) that handles the image. This is inheritance at work, because the
AnimatedSprite class doesn’t actually need to handle its image at all.

I use the word “tight” to describe the situation in which the source code is not
becoming bloated, as is often the case when a game becomes more advanced.
Instead, Galactic War will evolve from a direct, actively coded model to an
indirect, passively coded model using the game engine developed in this chapter.
The source code listing for the game is about the same length as it was before,
but the game has been completely rewritten. The Game class is quite complex, but
the “front end” or “user” source code file, GalacticWar.java, is much, much
simpler. That is the benefit of a game engine—it handles all of the messy details
for you, allowing you to focus on building gameplay. From the engine’s point of
view, “You are too skilled to be bothered with such minutiae as sprite manage-
ment. Let me take care of that for you, while you focus on making this game as
fun as possible!”

255

256

Chapter 14 = Galactic War: Entity Management

Building the New Game Class

The purpose of the game engine is to encapsulate the platform code on which the
game is developed. In this case, we're talking about a Java applet that runs in a
web browser. So, the goal of this chapter is to build a game engine that simplifies
building web games with Java. The first step is to create a new class. I opened the
Galactic War project from the last chapter and began modifying it. First, I
created a new class called Game. The Game class extends (or inherits from) the
Applet class, as our programs have for the last 13 chapters. This new class will
also need to implement the keyboard and mouse listener interfaces. It will also
need to handle the game loop thread on its own, so the derived game will not
need to be bothered with such details (or rather, logistics, since we're trying to
manage the logistics of an applet).

Encapsulating a Standard Java Applet

Here are the main events that you're accustomed to seeing in a Java applet-
based program up to this point. I'm including the mouse events because they are
going to be part of the engine, even if we haven’t used them very much in
Galactic War. You are welcome to add mouse support if you wish; I'm just not
sure how you would control the ship with a mouse.

pubTic void init()

public void update(Graphics g)

public void paint(Graphics g)

public void start()

public void run()

public void stop()

public void keyTyped(KeyEvent k)
public void keyPressed(KeyEvent k)
public void keyReleased(KeyEvent k)
public void mousePressed(MouseEvent e)
public void mouseReleased(MouseEvent e)
public void mouseMoved(MouseEvent e)
public void mouseDragged(MouseEvent e)
public void mouseEntered(MouseEvent e)
public void mouseExited(MouseEvent e)
public void mouseClicked(MouseEvent e)

Even if you ignore the mouse listener events, there are a lot of raw events in this
listing that every applet-based game must implement at a minimum. As for

Adjusting to Event-Driven Programming

things such as key events, we want to completely replace the stock events with a
keyboard handler that supports multiple key presses and releases. I experi-
mented with quite a few different ways to do this, and I came up with a solution
that is versatile but not totally internal to the Game class. The key events are
passed on to the game, which can then use a few global booTlean variables to keep
track of keys needed by the game. The mouse events are parsed, and several
mouse properties are made available to provide your game with mouse button
and movement information.

Custom Game Events

In place of the standard applet events, I want this class to send events to the
game that are directly related to gameplay issues, such as sprite collision and
screen refresh. The most crucial methods in the Game class use the Animated-
Sprite class. The Game class has the following features:

m Performs automatic double buffering

m Maintains a consistent frame rate

m Handles the input listeners

m Manages the game loop thread

m Maintains an internal linked list for sprites

m Performs an automatic frame rate calculation

m Automatically moves and draws all active sprites

m Performs collision testing on all active sprites

m Passes important events on to the game
That’s an impressive list of goals for any sprite-based game engine. This engine
allows you to build far more complex games than would be possible with the
simple arrays we’ve been using in the previous chapters. The key to the sprite
handler is the java.util.LinkedList class. By using a linked list containing
AnimatedSprite objects, you can dynamically add and remove sprites without
adversely affecting performance. I've managed to get 300 sprites on the screen at
once, with full collision testing, and the game still runs at the desired frame rate.

Keep in mind, the target platform here is a web browser! Anytime you add some
overhead to a system, you will inherently introduce some inefficiency.

257

258

Chapter 14 = Galactic War: Entity Management

There’s a tradeoff between simple speed and your desire to have an engaging,
complex game with a lot of graphics on the screen. I like having the ability to
add an explosion to the game at any point without having to worry about that
explosion after it has finished animating itself. AnimatedSprite has a lot of
properties and methods that make this possible (such as the lifetime and
lifeage variables that the Game class uses to terminate a sprite when its lifespan
is completed). I want to tell the game engine, “Hey, the player’s ship has
exploded right here [provide X,Y position]. Please display an explosion here.”
The game engine should not only animate the explosion at that location, it
should also handle timing and then remove the explosion from the linked list
automatically.

Tip

The linked list that handles sprites in the game engine is a global class variable called sprites().
You can access this object anywhere in your program when it inherits from Game.

Here are the new events introduced in the sprite engine. These events are
declared as abstract because the inheriting class must implement them. They do
not contain any source code in the Game class, although Game does call them. This
is what gives the sprite engine the ability to pass events on to the game while still
handling all the real work behind the scenes.

void gameStartup()

void gameTimedUpdate()

void gameRefreshScreen()

void gameShutdown()

void gameKeyDown(int keyCode)

void gameKeyUp(int keyCode)

void gameMouseDown()

void gameMouseUp()

void gameMouseMove()

void spriteUpdate(AnimatedSprite sprite)
void spriteDraw(AnimatedSprite sprite)
void spriteDying(AnimatedSprite sprite)
void spriteCollision(AnimatedSprite sprl, AnimatedSprite spr2)

Know what’s really great about these events? They describe exactly what you
need to know in your game. What does spriteDying mean? This is called just
before a sprite is removed from the linked list! What about spriteUpdate and

Adjusting to Event-Driven Programming

spriteDraw? These two work hand in hand to give your code an opportunity to
monitor a sprite as it is updated and drawn (both of them are handled for you).
For instance, you use spriteDraw to draw the bounding box around a sprite if
you turn on the bounding box display option (B key). The sprites are already
drawn by the time spriteDraw is called. This just gives you notice that the sprite
has been drawn, and you can do whatever you want with it. Likewise, when
spriteUpdate is called, the sprite will have already moved (based on velocity).
I’s up to you to keep the sprite from going out of the screen bounds, or
performing any other behavior you want.

The Game Class Source Code

Here is the complete source code listing for the Game class, which I have been
describing to you thus far. Much of this code should be familiar to you because
we’ve used it extensively in previous chapters. I will highlight in bold the crucial
code that is not directly related to the applet. While perusing the source code for
the Game class, pay close attention to all bold lines of code, and then take note of
the rest of the code. This should help you to grasp exactly what this class does.
/***

* Applet Game Framework class
***/
import java.applet.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import java.lang.System;

import java.util.*;

abstract class Game extends Applet implements Runnable, KeyListener,
MouselListener, MouseMotionListener {

//the main game loop thread
private Thread gameloop;

//internal Tist of sprites
private LinkedList _sprites;
public LinkedList sprites() { return _sprites; }

//screen and double buffer related variables
private BufferedImage backbuffer;

259

260 Chapter 14 = Galactic War: Entity Management

private Graphics2D g2d;
private int screenWidth, screenHeight;

//keep track of mouse position and buttons
private Point2D mousePos = new Point2D(0,0);
private boolean mouseButtons[] =new boolean[4];

//frame rate counters and other timing variables
private int _frameCount =0;

private int _frameRate =0;

private int desiredRate;

private Tong startTime = System.currentTimeMillis();

//Tocal applet object
public Applet applet() { return this; }

//game pause state

private boolean _gamePaused = false;

public boolean gamePaused() { return _gamePaused; }
public void pauseGame() { _gamePaused = true; }
public void resumeGame() { _gamePaused = false; }

//declare the game event methods that sub-class must implement
abstract void gameStartup();

abstract void gameTimedUpdate();

abstract void gameRefreshScreen();

abstract void gameShutdown();

abstract void gameKeyDown(int keyCode);

abstract void gameKeyUp(int keyCode);

abstract void gameMouseDown();

abstract void gameMouseUp();

abstract void gameMouseMove();

abstract void spriteUpdate(AnimatedSprite sprite);

abstract void spriteDraw(AnimatedSprite sprite);

abstract void spriteDying(AnimatedSprite sprite);

abstract void spriteCollision(AnimatedSprite sprl,AnimatedSprite spr2);

/***

* constructor
***/

Adjusting to Event-Driven Programming

pubTic Game(int frameRate, int width, int height) {
desiredRate = frameRate;
screenWidth =width;
screenHeight = height;

}

//return g2d object so sub-class can draw things
public Graphics2D graphics() { return g2d; }

//current frame rate
public int frameRate() { return _frameRate; }

//mouse buttons and movement
public boolean mouseButton(int btn) { return mouseButtons[btnl; }
public Point2D mousePosition() { return mousePos; }

/***

* applet init event method
***/
public void init() {
//create the back buffer and drawing surface
backbuffer = new BufferedImage(screenWidth, screenHeight,
BufferedImage.TYPE_INT_RGB);
g2d = backbuffer.createGraphics();

//create the internal sprite list
_sprites =new LinkedList<AnimatedSprite>();

//start the input 1isteners
addKeyListener(this);
addMouselListener(this);
addMouseMotionlListener(this);

//this method implemented by sub-class
gameStartup();

/***

* applet update event method

***/

261

262 Chapter 14 = Galactic War: Entity Management

public void update(Graphics g) {
//calculate frame rate
_frameCount++;
if (System.currentTimeMillis() > startTime + 1000) {
startTime = System.currentTimeMillis();
_frameRate = _frameCount;
_frameCount =0;

//once every second all dead sprites are deleted
purgeSprites();
}
//this method implemented by sub-class
gameRefreshScreen();

//draw the internal 1ist of sprites

if (!gamePaused()) {
drawSprites();

}

//redraw the screen
paint(g);

/***

* applet window paint event method
***/
public void paint(Graphics g) {
g.drawImage(backbuffer, 0, 0, this);
}

/***

* thread start event - start the game Toop running
***/
public void start() {
gameloop = new Thread(this);
gameloop.start();
}

/***

* thread run event (game loop)
***/

Adjusting to Event-Driven Programming

public void run() {
//acquire the current thread
Thread t = Thread.currentThread();

//process the main game loop thread
while (t == gameloop) {
try {
//set a consistent frame rate
Thread.s1eep(1000 / desiredRate);
}
catch(InterruptedException e) {
e.printStackTrace();
}

//update the internal Tist of sprites

if (!1gamePaused()) {
updateSprites();
testCollisions();

}

//allow main game to update if needed
gameTimedUpdate();

//refresh the screen
repaint();

}

/***

* thread stop event
***/
public void stop() {

//kil1l the game 1oop

gameloop =null;

//this method implemented by sub-class
gameShutdown();
}

/***

* key listener events
***/

263

264 Chapter 14 = Galactic War: Entity Management

public void keyTyped(KeyEvent k) { }

public void keyPressed(KeyEvent k) {
gameKeyDown(k.getKeyCode());

}

public void keyReleased(KeyEvent k) {
gameKeyUp(k.getKeyCode());

}

/***

* checkButtons stores the state of the mouse buttons
***/
private void checkButtons(MouseEvent e) {
switch(e.getButton()) {
case MouseEvent .BUTTONI:
mouseButtons[1] = true;
mouseButtons[2] = false;
mouseButtons[3] = false;
break;
case MouseEvent .BUTTONZ:
mouseButtons[1] = false;
mouseButtons[2] = true;
mouseButtons[3] = false;
break;
case MouseEvent .BUTTON3:
mouseButtons[1] = false;
mouseButtons[2] = false;
mouseButtons[3] = true;
break;

}

/***

*mouse listener events
***/
public void mousePressed(MouseEvent e) {

checkButtons(e);

mousePos.setX(e.getX());

mousePos.setY(e.getY());

gameMouseDown() ;

Adjusting to Event-Driven Programming

public void mouseReleased(MouseEvent e) {
checkButtons(e);
mousePos.setX(e.getX());
mousePos.setY(e.getY());
gameMouseUp();

}

public void mouseMoved(MouseEvent e) {
checkButtons(e);
mousePos.setX(e.getX());
mousePos.setY(e.getY());
gameMouseMove();

}

public void mouseDragged(MouseEvent e) {
checkButtons(e);
mousePos.setX(e.getX());
mousePos.setY(e.getY());
gameMouseDown();
gameMouseMove();

}

public void mouseEntered(MouseEvent e) {
mousePos.setX(e.getX());
mousePos.setY(e.getY());
gameMouseMove();

}

public void mouseExited(MouseEvent e) {
mousePos.setX(e.getX());
mousePos.setY(e.getY());
gameMouseMove();

1

//this event is not needed

public void mouseClicked(MouseEvent e) { }

/***

* X and Y velocity calculation functions
***/
protected doubTe calcAngleMoveX(double angle) {
return (double)(Math.cos(angle * Math.PI /180));
}
protected double calcAngleMoveY(double angle) {
return (double) (Math.sin(angle * Math.PI / 180));
}

265

266 Chapter 14 = Galactic War: Entity Management

/***

* update the sprite Tist from the game Toop thread
***/
protected void updateSprites() {
for (int n=0; n < _sprites.size(); n++) {
AnimatedSprite spr = (AnimatedSprite) _sprites.get(n);
if (spr.alive()) {
spr.updatePosition()
spr.updateRotation()
spr.updateAnimation(
spriteUpdate(spr);
spr.updatelLifetime();
if (Ispr.alive()) {
spriteDying(spr);

)

}

}

/***

* perform collision testing of all active sprites
***/
protected void testCollisions() {
//iterate through the sprite 1ist, test each sprite against
//every other sprite in the 1ist
for (int first=0; first < _sprites.size(); first++) {

//get the first sprite to test for collision
AnimatedSprite sprl = (AnimatedSprite) _sprites.get(first);
if (sprl.alive()) {
//Took through all sprites again for collisions
for (int second =0; second < _sprites.size(); second++) {
//make sure this isn't the same sprite
if (first !=second) {
//get the second sprite to test for collision
AnimatedSprite spr2 = (AnimatedSprite)
_sprites.get(second);
if (spr2.alive()) {
if (spr2.collidesWith(sprl)) {
spriteCollision(sprl, spr2);

Adjusting to Event-Driven Programming 267

break;
}
else
sprl.setCollided(false);

/***

* draw all active sprites in the sprite list
* sprites Tower in the 1ist are drawn on top
***/
protected void drawSprites() {
//draw sprites in reverse order (reverse priority)
for (int n=0; n<_sprites.size(); n++) {
AnimatedSprite spr = (AnimatedSprite) _sprites.get(n);
if (spr.alive()) {
spr.updateFrame();
spr.transform();
spr.draw();
spriteDraw(spr); //notify player

/***

* once every second during the frame update, this method
*is called to remove all dead sprites from the Tinked 1ist
***/
private void purgeSprites() {
for (int n=0; n < _sprites.size(); n++) {
AnimatedSprite spr = (AnimatedSprite) _sprites.get(n);
if (Ispr.alive()) {
_sprites.remove(n);
}

268

Chapter 14 = Galactic War: Entity Management

ENHANCING GALACTIC WAR

You will be surprised to learn that the source code for Galactic War has
remained about the same in length, even though the game is dramatically more
complex with significant new gameplay features. It is truly only a few steps away
from completion, and my goal in the next chapter will be to add more gameplay
features (such as power-ups). Just play the game for a few seconds, and you’ll
immediately see a need for power-ups! This game is hard! If you can manage to
keep from destroying some of the larger asteroids while working on the smaller
ones, you might have a chance, but once you start letting bullets fly and asteroids
begin to break into smaller pieces, you will have to be quick on the maneuvering
to keep from becoming space dust (which I have just become—see Figure 14.2).

Exploring the New Galactic War Source Code

Rather than go over the source code solely from a functional point of view, I'm
going to take you on a tour of the code along with screenshots of key aspects of

Figure 14.2
My ship has just been demolished by three medium-sized asteroids.

Enhancing Galactic War

the game that are impacted by specific sections of the source code. For a game
this complex, 630 or so lines of code is surprising (not counting the support
classes). I have highlighted all key lines of code in bold text so they will stand
out. If you pay close attention to the bold lines of code, the code listings should
make more sense to you.

Let’s get started with the opening credits for the game, where all the initial
variables and objects are defined. The most significant thing about this code is
the short class definition! The GalacticWar class just extends Game—and that’s it!
Beyond that, the initialization of the game’s graphics is all done here. The images
defined and loaded at the beginning are used whenever a new sprite needs to be
added to the internal sprite list.

/***

* GALACTIC WAR, Chapter 14
***/
import java.awt.*;

import java.util.*;

import java.lang.System;

import java.awt.event.*;

public class GalacticWar extends Game {
//these must be static because they are passed to a constructor
static int FRAMERATE = 60;
static int SCREENWIDTH =800;
static int SCREENHEIGHT = 600;

//misc global constants

final int ASTEROIDS = 10;

final int BULLET_SPEED = 4;

final doubTle ACCELERATION =0.05;
final double SHIPROTATION =5.0;

//sprite state values

final int STATE_NORMAL = 0;
final int STATE_COLLIDED =1;
final int STATE_EXPLODING = 2;

//sprite types
final int SPRITE_SHIP =1;

269

270 Chapter 14 = Galactic War: Entity Management

final int SPRITE_ASTEROID_BIG =10;
final int SPRITE_ASTEROID_MEDIUM = 11;
final int SPRITE_ASTEROID_SMALL = 12;
final int SPRITE_ASTEROID_TINY = 13;
final int SPRITE_BULLET =100;

final int SPRITE_EXPLOSION = 200;

//various toggles
boolean showBounds = false;
boolean collisionTesting = true;

//define the images used in the game

ImageEntity background;

ImageEntity bulletImage;

ImageEntity[] bigAsteroids = new ImageEntity[5];
ImageEntity[] medAsteroids = new ImageEntity[2];
ImageEntity[] smlAsteroids = new ImageEntity[3];
ImageEntity[] tnyAsteroids = new ImageEntity[4];
ImageEntity[] explosions = new ImageEntity[2];
ImageEntity[] shipImage = new ImageEntity[2];

//create a random number generator
Random rand = new Random();

//used to make ship temporarily invulnerable
long collisionTimer =0;

//some key input tracking variables
boolean keylLeft, keyRight, keyUp, keyFire, keyB, keyC;

/***

* constructor
***/
public GalacticWar() {
//call base Game cTass' constructor
super(FRAMERATE, SCREENWIDTH, SCREENHEIGHT);
}

/***

* gameStartup event passed by game engine
***/

Enhancing Galactic War 271

void gameStartup() {
//1o0ad the background image
pbackground = new ImageEntity(this);
background.load("bluespace.png");

//create the ship sprite--first in the sprite 1ist
shipImage[0] = new ImageEntity(this);
shipImage[0].1oad("spaceship.png");
shipImage[1] = new ImageEntity(this);
shipImage[1].load("ship_thrust.png");

AnimatedSprite ship = new AnimatedSprite(this, graphics());
ship.setSpriteType(SPRITE_SHIP);
ship.setImage(shipImage[0].getImage());
ship.setFrameWidth(ship.imageWidth());
ship.setFrameHeight(ship.imageHeight());
ship.setPosition(new Point2D(SCREENWIDTH/2, SCREENHEIGHT/2));
ship.setAlive(true);

ship.setState(STATE_NORMAL);

sprites().add(ship);

//10ad the bullet sprite image
bulletImage = new ImageEntity(this);
bulletImage.load("plasmashot.png”);

//10ad the explosion sprite image
explosions[0] = new ImageEntity(this);
explosions[0].1oad("explosion.png");
explosions[1] = new ImageEntity(this);
explosions[1].load("explosion2.png");

//Toad the big asteroid images (5 total)

for (int n=0; n<5; n++) {
bigAsteroids[n] = new ImageEntity(this);
String fn = "asteroid" + (n+l) + ".png";
bigAsteroids[n].load(fn);

}

//Toad the medium asteroid images (2 total)

for (int n=0; n<2; n++) {
medAsteroids[n] = new ImageEntity(this);
String fn = "medium" + (n+l) + ".png";

272

Chapter 14 = Galactic War: Entity Management

medAsteroids[n].load(fn);

}

//Toad the small asteroid images (3 total)

for (int n=0; n<3; n+) {
smlAsteroids[n] = new ImageEntity(this);
String fn="small" + (n+1) + ".png";
smlAsteroids[n].load(fn);

}

//Toad the tiny asteroid images (4 total)

for (int n=0; n<4; nt+) {
tnyAsteroids[n] = new ImageEntity(this);
String fn="tiny" + (n+l1) + ".png";
tnyAsteroids[n].load(fn);

}

//create the random asteroid sprites
for (int n=0; n<ASTEROIDS; n++) {
createAsteroid();
}
}

Game Loop Update and Screen Refresh

Now let’s take a look at some key events passed here from the Game class.
Remember, these methods were defined as abstract in Game so that they would be
implemented here in the derived source code file. The gameTimedUpdate()
method is called from within the timed game loop thread. The gameRe-
freshScreen() method is called from the applet update() event. I'm not
currently using gameShutdown(), but it is available if you need to clean house
before the program ends.

Now let’s take a look at Figure 14.3, which shows the game fairly early on in the
run. The same toggles are still available in the game, including collision testing
and bounding box display. There are four stages to destroying an asteroid:

m Large, detailed asteroids

m Medium asteroid chunks

m Small asteroid pieces

m Tiny asteroids

Enhancing Galactic War 273

Figure 14.3

The large asteroids break up into smaller ones, either when they hit your ship or when you fire a plasma
bolt.

Don’t let the tiny asteroids fool you—they will still damage your ship, and they
can be destroyed by your guns. Speaking of damage, the game would be more
fun if the ship’s health were displayed somewhere on the screen—a good feature
to add in the next chapter.
/***

* gameTimedUpdate event passed by game engine
***/

void gameTimedUpdate() {
checkInput();
}

/***

* gameRefreshScreen event passed by game engine
***/

274 Chapter 14 = Galactic War: Entity Management

void gameRefreshScreen() {
Graphics2D g2d = graphics();

//the ship is always the first sprite in the Tinked Tist
AnimatedSprite ship = (AnimatedSprite)sprites().get(0);

//draw the background
g2d.drawImage(background.getImage(),0,0,SCREENWIDTH-1,
SCREENHEIGHT-1,this);

//print status information on the screen
g2d.setColor(Color.WHITE);
g2d.drawString("FPS: " + frameRate(), 5, 10);
Tong x =Math.round(ship.position().X());
long y =Math.round(ship.position().Y());
g2d.drawString("Ship: "+x+","+y , 5, 25);
g2d.drawString("Move angle: " +
Math.round(ship.moveAngle())+90, 5, 40);
g2d.drawString("Face angle: " +
Math.round(ship.faceAngle()), 5, 55);
if (ship.state()==STATE_NORMAL)
g2d.drawString("State: NORMAL", 5, 70);
else if (ship.state()==STATE_COLLIDED)
g2d.drawString("State: COLLIDED", 5, 70);
else if (ship.state()==STATE_EXPLODING)
g2d.drawString("State: EXPLODING", 5, 70);

//display the number of sprites currently in use
g2d.drawString("Sprites: " + sprites().size(), 5, 120);

if (showBounds) {
g2d.setColor(Color.GREEN);
g2d.drawString("BOUNDING BOXES", SCREENWIDTH-150, 10);
}
if (collisionTesting) {
g2d.setColor(Color.GREEN);
g2d.drawString("COLLISION TESTING", SCREENWIDTH-150, 25);

Enhancing Galactic War

/***

* gameShutdown event passed by game engine
***/

void gameShutdown() {
//oh well, Tet the garbage collector have at it..
}

Updating and Drawing Sprites

Next, let’s take a look at the spriteUpdate() and spriteDraw() events, which are
passed on by the Game class. The spriteDying() event is also available here, but
it’s not currently being used in the game. You would use this event to keep a
sprite alive if you wanted to keep it around by setting alive back to true.

The game engine processes all of the sprites in the linked list automatically
(by the game loop thread). After each sprite is updated, control is sent to
spriteUpdate() to give you a chance to fool around with the sprite if you need
to. (It is passed as a parameter.) You can make any changes you want to the sprite,
and those changes will be stored back in the linked list because you are working
with an object reference—the actual object in the linked list, not just a copy.

This is truly where the sprite engine shows its power. You can fire as many
weapons as you want, and they will strike an unknown number of sprites, which
will each blow up in an animated explosion—and the linked list keeps track of all
these details for you. All we really have to do is put together a new scratch sprite,
give it an image from one of our global images, and then pop it off to the sprite
list. This sprite will then automatically move around on the screen, rotate (if
rotation is set), and animate (if frames exist). This new sprite will also be included
in collision testing. The engine allows you to determine whether a collision
“sticks” by giving you control at the key point where a collision has occurred,
passing both sprites to your implementation of the spriteCollision() event.

When I was first developing the engine, I thought it would be too limiting to
move all of the sprites into the list. I kept the ship outside the list for a while, and
then realized that to truly make the internal sprite handler work the way it is
supposed to, you really need to give it all of the sprites it needs to update, draw,
and test for collision. When you get tired of a sprite, just set its alive property to
false, and then the game engine will remove it from the list a few seconds later!
Furthermore, as you learned in the previous chapter, you can make use of the

275

276

Chapter 14 = Galactic War: Entity Management

Figure 14.4
The ship is overwhelmed by asteroids and in need of some weapon upgrades!

features in AnimatedSprite for limiting the lifetime of a sprite. By setting the
lifespan of a sprite, you can have it automatically terminate after a certain
number of passes through the game loop. For instance, the “flaming plasma”
projectiles fired from the ship are given a lifetime of 200 loops. The engine
detects when the age is beyond the lifespan threshold, and then kills the sprite
automatically!

Figure 14.4 shows the game after all of the large asteroids have been broken
down into smaller ones. The game is truly crazy at this point, with close to a
hundred small asteroids floating around your ship on various random trajecto-
ries! It’s hard enough just to spin and shoot frantically, let alone move around. I
even had to cheat to keep from getting blown up repeatedly! (I'll share the cheat
with you at our next stop in this trip through the source code.)
/***

* spriteUpdate event passed by game engine
***/

Enhancing Galactic War

public void spriteUpdate(AnimatedSprite sprite) {
switch(sprite.spriteType()) {
case SPRITE_SHIP:
warp(sprite);
break;

case SPRITE_BULLET:
warp(sprite);
break;

case SPRITE_EXPLOSION:
if (sprite.currentFrame() = sprite.totalFrames()-1) {
sprite.setAlive(false);
}

break;

case SPRITE_ASTEROID_BIG:
case SPRITE_ASTEROID_MEDIUM:
case SPRITE_ASTEROID_SMALL:
case SPRITE_ASTEROID_TINY:
warp(sprite);
break;

}

/***

* spriteDraw event passed by game engine
* called by the game class after each sprite is drawn
* to give you a chance to manipulate the sprite
***/
public void spriteDraw(AnimatedSprite sprite) {
if (showBounds) {
if (sprite.collided())
sprite.drawBounds(Color.RED);
else
sprite.drawBounds(Color.BLUE);

}

/***

* spriteDying event passed by game engine
* called after a sprite's age reaches its lifespan

277

278

Chapter 14 = Galactic War: Entity Management

* at which point it will be killed off, and then removed from

* the 1Tinked Tist. you can cancel the purging process here.
***/

public void spriteDying(AnimatedSprite sprite) {
//currently no need to revive any sprites
}

Handling Sprite Collisions

The most important event in the game is probably the spriteCollision() event,
which is passed from the engine to your source code automatically. The engine
goes through the list of active sprites (where the alive property is true) and tests
each one for collision with all the other sprites in the list (except for the same
one—we don’t want to have objects blow themselves up for no reason!).

Take a look at Figure 14.5, which shows the ship firing several volleys of flaming
plasma bolts toward asteroids. There are several bolts traveling away from the

Figure 14.5
Projectiles fired from the ship eventually get passed through the spriteCollision() event when
they collide with asteroids.

Enhancing Galactic War

ship at various angles and several explosions that are animating on the screen.
Figure 14.5 shows sprite collision testing in progress. The engine, as imple-
mented in the Game class and inherited by GalacticWar, goes through the sprites
and tests them all for collision—but that’s all it does. Look at the sprite counter
in this figure—132 sprites! This number includes the ship, bullets, asteroids, and
explosions, and the number rises and falls dynamically with the gameplay. (The
engine clears out unused sprites that have “died” once every second when the
frame rate is calculated.)

There is no more logic going on behind the scenes than the test for collision
itself. The engine simply passes both sprites that have interacted to the sprite
Collision() method. At this point, it’s entirely up to you to decide what to do
with the conflicting sprites. You can destroy them, have them bounce away from
each other, or anything else. So all you have to do is figure out what kinds of
sprites have been passed to you through the spriteCollision() event. You can
do this with your own predefined constants (defined as a static int in Java). For
example, I have defined SPRITE_EXPLOSION for all explosions. Yes, explosion
sprites are tested for collision like everything else—but we simply ignore them,
let them play out, and then disappear. The value of each constant is not
important, as long as each one is different. Since I defined each of the four types
of asteroids with a separate constant, I had to write a helper method called
isAsteroid() to handle them all in the same way when they are passed through
the event handlers.

Now, how about that cheat I promised? When I get into a tough spot in the
game, I hold down the left or right arrow key to spin while hitting both fire
buttons (the Ctrl keys). This launches twice as many volleys of plasma bolts, as
Figure 14.6 shows.

/***

* spriteCollision event passed by game engine
***/
public void spriteCollision(AnimatedSprite sprl,AnimatedSprite spr2) {
//jump out quickly if collisions are off
if (lcollisionTesting) return;

//figure out what type of sprite has collided
switch(sprl.spriteType()) {

279

280 Chapter 14 = Galactic War: Entity Management

spntes. . 2b

Figure 14.6
You can launch twice as many bolts using both Ctrl keys!

case SPRITE_BULLET:
//did bullet hit an asteroid?
if (isAsteroid(spr2.spriteType())) {
sprl.setAlive(false);
spr2.setAlive(false);
breakAsteroid(spr2);
}
break;
case SPRITE_SHIP:
//did asteroid crash into the ship?
if (isAsteroid(spr2.spriteType())) {
if (sprl.state() == STATE_NORMAL) {
collisionTimer = System.currentTimeMi1lis();
sprl.setVelocity(new Point2D(0, 0));
double x = sprl.position().X() - 10;
double y = sprl.position().Y() - 10;

Enhancing Galactic War

startBigExplosion(new Point2D(x, y));
sprl.setState(STATE_EXPLODING);
spr2.setAlive(false);
breakAsteroid(spr2);
}
//make ship temporarily invulnerable
else if (sprl.state() == STATE_EXPLODING) {
if (collisionTimer + 3000 <
System.currentTimeMillis()) {
sprl.setState(STATE_NORMAL);

}
}
break;

}

Keyboard and Mouse Events

The keyboard and mouse handlers are not always used, but you must still
implement them in your program. You might wonder, then, how is this any
better than just using the listeners directly in the game’s source code file? That’s
a good question! Basically, we want to homogenize the events as much as
possible. Note that the keyboard events pass nothing but the key scan code, and
the mouse events pass nothing at all—you must access the mouse information
through the mousePos and mouseButtons variables (with their associated accessor
methods). Simply knowing about a keyboard or mouse event is enough; we don’t
need all of the extra information that Java sends the program.
/***

* gameKeyDown event passed by game engine
***/
public void gameKeyDown(int keyCode) {
switch(keyCode) {
case KeyEvent .VK_LEFT:
keyLeft = true;
break;
case KeyEvent.VK_RIGHT:
keyRight = true;
break;

281

282 Chapter 14 = Galactic War: Entity Management

case KeyEvent.VK_UP:
keyUp = true;
break;

case KeyEvent.VK_CONTROL:
keyFire = true;
break;

case KeyEvent.VK_B:
//toggle bounding rectangles
showBounds = !showBounds;
break;

case KeyEvent.VK_C:
//toggle collision testing
collisionTesting = lcollisionTesting;
break;

}

/***

* gameKeyUp event passed by game engine
***/
public void gameKeyUp(int keyCode) {
switch(keyCode) {
case KeyEvent .VK_LEFT:
keyLeft = false;
break;
case KeyEvent.VK_RIGHT:
keyRight = false;
break;
case KeyEvent.VK_UP:
keyUp = false;
break;
case KeyEvent.VK_CONTROL:
keyFire = false;
fireBullet();
break;

/***

* mouse events passed by game engine

Enhancing Galactic War 283

* the game is not currently using mouse input
***/

public void gameMouseDown() { }
public void gameMouseUp() { }
public void gameMouseMove() { }

Asteroid Manipulation Methods

The asteroids are the most complicated part of Galactic War. First of all, there
are four types of asteroids in the game, each with several different images
available (which are chosen randomly when a new asteroid is created). I have
written several methods for working with asteroids, mainly called from the
collision events that occur. The larger asteroids are destroyed and replaced by
smaller asteroids, while an explosion is animated over the old asteroid.

Figure 14.7 shows the game with bounding boxes turned on so you can see the
dimensions of each sprite in the game. Note how even the explosions have a

Figure 14.7
The bounding boxes and collision testing can still be toggled on or off in the game.

284

Chapter 14 = Galactic War: Entity Management

bounding box—they are included in collision testing as well, even though the
game ignores them. All of the original asteroids have been destroyed and
replaced with increasingly smaller ones. If you want to grab some power-ups
(something that will be added in the next chapter), you will have to be careful
not to destroy all of the larger asteroids—the smaller ones are next to impossible
to get around, and your ship will get hosed by them in short order if you let the
guns go carelessly. As a result of this gameplay factor, this game involves some
strategy.

This section of code marks the end of the game engine events. From this point

forward, all of the methods are custom programmed and provide the real

gameplay in Galactic War.
/***

* break up an asteroid into smaller pieces
***/
private void breakAsteroid(AnimatedSprite sprite) {
switch(sprite.spriteType()) {
case SPRITE_ASTEROID_BIG:
//spawn medium asteroids over the old one
spawnAsteroid(sprite);
spawnAsteroid(sprite);
spawnAsteroid(sprite);
//draw big explosion
startBigExplosion(sprite.position());
break;
case SPRITE_ASTEROID_MEDIUM:
//spawn small asteroids over the o1d one
spawnAsteroid(sprite);
spawnAsteroid(sprite);
spawnAsteroid(sprite);
//draw small explosion
startSmal1Explosion(sprite.position());
break;
case SPRITE_ASTEROID_SMALL:
//spawn tiny asteroids over the o1d one
spawnAsteroid(sprite);
spawnAsteroid(sprite);
spawnAsteroid(sprite);
//draw small explosion

Enhancing Galactic War 285

startSmall1Explosion(sprite.position());
break;

case SPRITE_ASTEROID_TINY:
//spawn a random powerup
spawnPowerup(sprite);
//draw small explosion
startSmallExplosion(sprite.position());
break;

}

/***

* spawn a smaller asteroid based on passed sprite
***/
private void spawnAsteroid(AnimatedSprite sprite) {

//create a new asteroid sprite

AnimatedSprite ast = new AnimatedSprite(this, graphics());

ast.setAlive(true);

//set pseudo-random position around source sprite

int w=sprite.getBounds().width;

int h=sprite.getBounds().height;

double x = sprite.position().X() +w/2 + rand.nextInt(20)-40;
double y = sprite.position().Y() + h/2 + rand.nextInt(20)-40;
ast.setPosition(new Point2D(x,y));

//set rotation and direction angles
ast.setFaceAngle(rand.nextInt(360));
ast.setMoveAngle(rand.nextInt(360));
ast.setRotationRate(rand.nextDouble());

//set velocity based on movement direction
double ang = ast.moveAngle() - 90;
double velx = calcAngleMoveX(ang);
double vely = calcAngleMoveY(ang);
ast.setVelocity(new Point2D(velx, vely));

//set some size-specific properties
switch(sprite.spriteType()) {
case SPRITE_ASTEROID_BIG:

286 Chapter 14 = Galactic War: Entity Management

ast.setSpriteType(SPRITE_ASTEROID_MEDIUM);

//pick one of the random asteroid images

int i = rand.nextInt(2);
ast.setImage(medAsteroids[i].getImage());
ast.setFrameWidth(medAsteroids[i].width());
ast.setFrameHeight(medAsteroids[i].height());

break;
case SPRITE_ASTEROID_MEDIUM:
ast.setSpriteType(SPRITE_ASTEROID_SMALL);

//pick one of the random asteroid images

i = rand.nextInt(3);
ast.setImage(smlAsteroids[i].getImage());
ast.setFrameWidth(smlAsteroids[i].width());
ast.setFrameHeight(smlAsteroids[i].height());
break;

case SPRITE_ASTEROID_SMALL:
ast.setSpriteType(SPRITE_ASTEROID_TINY);

//pick one of the random asteroid images

i =rand.nextInt(4);
ast.setImage(tnyAsteroids[i].getImage());
ast.setFrameWidth(tnyAsteroids[i].width());
ast.setFrameHeight(tnyAsteroids[i].height());
break;

//add the new asteroid to the sprite Tist
sprites().add(ast);
}

/***

* create a random powerup at the supplied sprite location
* (this will be implemented in the next chapter)
***/
private void spawnPowerup(AnimatedSprite sprite) {
}

Enhancing Galactic War

/***

* create a random "big" asteroid
***/

public void createAsteroid() {

}

//create a new asteroid sprite

AnimatedSprite ast = new AnimatedSprite(this, graphics());
ast.setAlive(true);
ast.setSpriteType(SPRITE_ASTEROID_BIG);

//pick one of the random asteroid images

int i = rand.nextInt(5);
ast.setImage(bigAsteroids[i].getImage());
ast.setFrameWidth(bigAsteroids[i].width());
ast.setFrameHeight(bigAsteroids[i].height());

//set to a random position on the screen
int x =rand.nextInt(SCREENWIDTH-128);

int y = rand.nextInt(SCREENHEIGHT-128);
ast.setPosition(new Point2D(x, y));

//set rotation and direction angles
ast.setFaceAngle(rand.nextInt(360));
ast.setMoveAngle(rand.nextInt(360));
ast.setRotationRate(rand.nextDouble());

//set velocity based on movement direction
double ang = ast.moveAngle() - 90;
double velx = calcAngleMoveX(ang);
double vely = calcAngleMoveY(ang);
ast.setVelocity(new Point2D(velx, vely));

//add the new asteroid to the sprite list
sprites().add(ast);

/***

* returns true if passed sprite type is an asteroid type
***/

private boolean isAsteroid(int spriteType) {

switch(spriteType) {

287

288 Chapter 14 = Galactic War: Entity Management

case SPRITE_ASTEROID_BIG:
case SPRITE_ASTEROID_MEDIUM:
case SPRITE_ASTEROID_SMALL:
case SPRITE_ASTEROID_TINY:
return true;
default:
return false;

}

Handling Multiple Key Presses

I spent a lot of time trying to incorporate a multiple key-press system into the
game engine itself, but this proved to be too troublesome. As a result, the main
game keeps track of key presses and releases using global boolean variables.
Since only a handful of keys are ever used in an arcade-style game like this, a
more complex form of key handler is not necessary. As it is implemented here,
the engine calls a few events and passes the key code when a key is pressed or
released so that you don’t have to bother decoding the KeyEvent, MouseEvent, or
MouseMotionEvent class.

/***

* process keys that have been pressed
***/
public void checkInput() {
//the ship is always the first sprite in the Tinked Tist
AnimatedSprite ship = (AnimatedSprite)sprites().get(0);
if (keyLeft) {
//1eft arrow rotates ship Teft 5 degrees
ship.setFaceAngle(ship.faceAngle() - SHIPROTATION);
if (ship.faceAngle() <0)
ship.setFaceAngle(360 - SHIPROTATION);
}
else if (keyRight) {
//right arrow rotates ship right 5 degrees
ship.setFaceAngle(ship.faceAngle() + SHIPROTATION);
if (ship.faceAngle() > 360)
ship.setFaceAngle(SHIPROTATION);

}

Enhancing Galactic War

if (keyUp) {
//up arrow applies thrust to ship
ship.setImage(shipImage[1].getImage());
applyThrust();

}

else
//set ship image to normal non-thrust image
ship.setImage(shipImage[0].getImage());

Moving the Spaceship

The spaceship in Galactic War is rotated using the left and right arrow keys, and
thrust is applied by pressing the up arrow key. The applyThrust() method
handles the acceleration of the ship while keeping the ship within a reasonable
velocity threshold.

/***

*increase the thrust of the ship based on facing angle
***/

public void applyThrust() {

}

//the ship is always the first sprite in the Tinked Tist
AnimatedSprite ship = (AnimatedSprite)sprites().get(0);

//up arrow adds thrust to ship (1/10 normal speed)
ship.setMoveAngle(ship.faceAngle() - 90);

//calculate the X and Y velocity based on angle

double velx = ship.velocity().X();

velx += calcAngleMoveX(ship.moveAngle()) * ACCELERATION;
if (velx < -10) velx=-10;

else if (velx > 10) velx =10;

double vely = ship.velocity().Y();

vely += calcAngleMoveY(ship.moveAngle()) * ACCELERATION;
if (vely < -10) vely =-10;

else if (vely > 10) vely =10;

ship.setVelocity(new Point2D(velx, vely));

Firing Weapons

The most significant area of improvement for the game is in the weaponry
department, so some time will be spent in the next chapter adding power-ups to

289

290

Chapter 14 =

the game. You will be able to grab power-up icons that are dropped by exploding
asteroids, which will then enhance the ship in various ways. The current version
of the game here has not changed from the previous chapter, except that it now
functions with the game engine. The Ctrl key is used to fire weapons, but you
can change this to another key if you want by examining the key handlers.

Galactic War: Entity Management

/***

* fire a bullet from the ship's position and orientation
***/
public void fireBullet() {

//the ship is always the first sprite in the Tinked Tist

AnimatedSprite ship = (AnimatedSprite)sprites().get(0);

//create the new bullet sprite

AnimatedSprite bullet = new AnimatedSprite(this,graphics());
bullet.
bullet.
bullet.
bullet.
bullet.
bullet.
bullet.
bullet.

setImage(bulletImage.getImage());
setFrameWidth(bulletImage.width());
setFrameHeight(bulletImage.height());
setSpriteType(SPRITE_BULLET);
setAlive(true);

setLifespan(200);
setFaceAngle(ship.faceAngle());
setMoveAngle(ship.faceAngle() - 90);

//set the bullet's starting position
double x =ship.center().X() - bullet.imageWidth()/2;
double y = ship.center().Y() - bullet.imageHeight()/2;

bullet.

setPosition(new Point2D(x,y));

//set the bullet's velocity

double angle = bullet.moveAngle();

double svx = calcAngleMoveX(angle) * BULLET_SPEED;
double svy = calcAngleMoveY(angle) * BULLET_SPEED;

bullet.

setVelocity(new Point2D(svx, svy));

//add bullet to the sprite Tist
sprites().add(bullet);

Enhancing Galactic War

Give Me Something to Blow Up!

There are two main methods for starting explosions. I could have come up with
a craftier way to do this, but I decided to just write two similar methods: one for
initiating large explosions and another for smaller explosions. They use images
stored in the explosions array (of ImageEntity objects). There are currently only
two explosion animations. The large explosion is used when you hit a large
asteroid. The small explosion is drawn when you hit smaller asteroids. I think
the result looks pretty good.

Because there are a lot of small asteroids and bullets flying every which way, you
don’t want too complex of an explosion sucking up the game’s resources when
there could be a couple dozen such explosions animating at a time. Check out
Figure 14.8. The large explosion’s frames are 96 x 96 pixels in size and there are
16 frames; the small explosion has 8 frames, and each one is only 40 x 40 pixels
in size. The big explosion is used for the ship and large asteroids. This should be
used sparingly because it is such a large image.
/***

* Taunch a big explosion at the passed Tocation
***/

public void startBigExplosion(Point2D point) {
//create a new explosion at the passed Tocation
AnimatedSprite expl = new AnimatedSprite(this,graphics());
expl.setSpriteType(SPRITE_EXPLOSION);
expl.setAlive(true);
expl.setAnimImage(explosions[0].getImage());

o o & £
R R
%&&ﬁ LA A A
NG

LARGE EXPLOSION SMALL EXPLOSION

Figure 14.8
The two explosion animations compared side by side.

291

292

Chapter 14 = Galactic War: Entity Management

expl.setTotalFrames(16);
expl.setColumns(4);
expl.setFrameWidth(96);
expl.setFrameHeight(96);
expl.setFrameDelay(2);
expl.setPosition(point);

//add the new explosion to the sprite Tist
sprites().add(expl);
}

/***

* Taunch a small explosion at the passed Tocation
***/
public void startSmallExplosion(Point2D point) {
//create a new explosion at the passed location
AnimatedSprite expl = new AnimatedSprite(this,graphics());
expl.setSpriteType(SPRITE_EXPLOSION);
expl.setAlive(true);
expl.setAnimImage(explosions[1].getImage());
expl.setTotalFrames(8);
expl.setColumns(4);
expl.setFrameWidth(40);
expl.setFrameHeight(40);
expl.setFrameDelay(2);
expl.setPosition(point);

//add the new explosion to the sprite Tist
sprites().add(expl);
}

Additional Game Logic

The last method in the game is called warp(), and it has the duty of making
sprites wrap around the edges of the screen (right, left, top, and bottom). This is
kind of a strange occurrence if you think about it, but a lot of games use this
technique. The idea is that this makes an otherwise small playing field appear
larger because objects can just travel through ether-space behind the monitor
and magically reappear on the other side, otherwise unscathed. It helps to
contain the gameplay when a scrolling game world is not a goal for the game.

Review Questions

/***

* cause sprite to warp around the edges of the screen
***/

public void warp(AnimatedSprite spr) {
//create some shortcut variables
int w=spr.frameWidth()-1;
int h =spr.frameHeight()-1;

//wrap the sprite around the screen edges

if (spr.position().X() < 0-w)
spr.position().setX(SCREENWIDTH);

else if (spr.position().X() > SCREENWIDTH)
spr.position().setX(0-w);

if (spr.position().Y() <0-h)
spr.position().setY(SCREENHEIGHT);

else if (spr.position().Y() > SCREENHEIGHT)
spr.position().setY(0-h);

WHAT You HAVE LEARNED

This was a code-heavy chapter that involved significant changes to the coding
model we’ve been following in each chapter up to this point. Now that Galactic
War is event-driven and makes use of a sprite engine, the game has many more
upgrade possibilities than it might have had before (where each new sprite had
to be implemented from scratch). Here are the key topics you learned:

m How to create an event-driven game engine
m How to use the new Game class

m How to handle all sprites uniformly, regardless of type

m How to adapt Galactic War to an event-driven game

ReEviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

293

294 Chapter 14 = Galactic War: Entity Management

N Y U B~ W \S]

oo

. What is the name of the new game engine class developed in this chapter?

. How many sprites can the new engine handle on the screen simultane-

ously?

. Which of the four key classes in the game engine handles image loading?
. How many different asteroid sizes does the game use?

. True or False: Collisions are handled inside the game engine.

. What type of object is animImage, a private variable in AnimatedSprite?

. Which class is responsible for rendering a single frame of an animation

in AnimatedSprite?

. What is the maximum velocity value for the player’s spaceship?
. Which class does the game/sprite engine pass in some of its events?

10.

What is the name of the support method in AnimatedSprite that returns
a properly formed URL for a file to be loaded?

ON Your OwN

The following exercise will help you to see how well you have integrated the new
material in this chapter with your existing knowledge of Java game program-
ming.

There are currently two methods used to start an explosion—a custom method
for large explosions and another one for small explosions. These methods do the
same thing, but they use a few different properties. How could you revise one of
them to handle both cases for a large or small explosion with a single method?

CHAPTER 15

GALACTIC WAR: FINISHING
THE GAME

The things you have learned in this book all culminate in this last chapter
involving Galactic War. The game will be enhanced, polished, and ready for a
production environment at the end of this chapter. All that will remain to do is
to package up the entire game, resources and all, into a JAR file for distribution
on the web (which is covered in the next and final chapter of the book).

Here are the key topics of interest in this chapter:

m Adding power-ups to the game
m Implementing a global game state with a start and end screen

m Polishing the game and preparing it for production

LET's TALK ABOUT Power-UPs

Let’s face it; Galactic War is a difficult game. It’s nearly impossible to clear the
asteroids with the weapon we've been using up to this point—a single
peashooter, for the most part. I want to totally enhance the game in this chapter
and make it ready for primetime—for distribution on the web. To meet that
lofty goal, there are quite a few things to cover in this chapter. I'll itemize what
I'd like to accomplish:

m Add power-ups to upgrade the ship’s weapons system

295

296

Chapter 15 = Galactic War: Finishing the Game

SHIELD WEAPON HEALTH
POWER-UP POWER-UP POWER-UP
250 500 1000
POINTS POINTS POINTS

Ty

Figure 15.1
Galactic War has six different power-ups that enhance the ship and increase your score.

m Add power-ups to restore health and shields

m Add power-ups to gain extra score points

Figure 15.1 shows the six power-ups that will be added to the game in this
chapter.

Tip

The finished version of the game can be played online at www.jharbour.com/BeginningJava. You
need to have the Java Runtime Environment for SE 6 Update 22 installed (the same as required for
all of the book’s examples).

Ship and Bonus-Point Power-Ups

There are three different power-ups that simply increase your score for 250, 500,
and 1,000 points. These power-ups are released randomly when you destroy a
tiny asteroid—the last stage of the asteroid’s deterioration after the large,
medium, and small stages.

The shield power-up will increase your shield strength by 1/4 (not the full refill
that you were expecting?). Likewise, the cola can increases your ship’s health by
1/4, up to the maximum value displayed in the health bar at the top of the
screen. Figure 15.2 shows the three states the ship can take on during gameplay.

www.jharbour.com/BeginningJava

Let's Talk about Power-Ups

NORMAL THRUSTERS SHIELDS

Figure 15.2
There are now three modes for the ship: normal, thrusters, and shields.

Wait, the ship doesn’t have any shields! Oh, right; that’s a feature we’ll add to the
game in this chapter as well.

Weapon Upgrades

The weapon upgrade power-up is by far the most interesting new feature of the
game, and it is very welcome given how difficult it is to stay alive in this game!
You can earn up to five levels of weapon upgrades in this game. I had my son,
Jeremiah, help me design the weapon patterns for each upgrade, and the result is
shown in Figure 15.3.

The upgrades were implemented a little differently than our design here, but the
result is unmistakable. The biggest difference is upgrade level five: Rather than
firing side to side, the two additional shots go upward at a slight angle. I made
this adjustment while playing the game when it seemed to be more effective than

0 00 Wl C e 8 v s

9 00 Wl 9 090 e 00 2

)] 99 ¥y V009 8 00 7

A 1) 0000 200 ¢
Figure 15.3

The five levels of weapon upgrades for your ship.

297

298

Chapter 15 = Galactic War: Finishing the Game

firing them at 90-degree angles. Let’s take a tour of the five weapon upgrades as
they were implemented in the game.

Standard Weapon

The standard weapon is shown being fired in Figure 15.4. Note the single bullet
icon in the upper-right corner of the screen, showing the current weapon
upgrade level.

Weapon Level Two

The first weapon upgrade allows the ship to fire two shots at the same time, as
shown in Figure 15.5. There are now two bullet icons at the upper-right. After
play testing the game for a while, I decided to make this the starting weapon
level. You can still lose this by getting hit and then drop down to the standard
weapon if you aren’t careful.

Figure 15.4
The standard weapon is a single bullet.

Let's Talk about Power-Ups

Figure 15.5
Two bullets definitely do a lot more damage!

Weapon Level Three

Weapon upgrade level three allows the ship to fire three shots at the same time,
as shown in Figure 15.6. There are now three bullet icons at the upper-right.

Weapon Level Four

The fourth weapon upgrade gives you four shots at a time, spreading out at
slightly wider angles than the previous level, capable of meting out massive
damage to the horde of asteroids, as shown in Figure 15.7.

Weapon Level Five

Heavy gunner! Weapon level five is truly staggering, delivering massive amounts
of firepower to the ship. Take care, though—if you get hit, your ship is taken
down a notch to level four again. The angles of spread at level five are slightly
wider than level four, and two additional shots fire out roughly sideways from
the ship (see Figure 15.8).

299

300 Chapter 15 = Galactic War: Finishing the Game

Figure 15.6
The third weapon upgrade will keep you alive much longer.

Figure 15.7
Four shots at a time is good for your self-confidence.

Enhancing Galactic War

Figure 15.8
Weapon upgrade level five gives your ship six projectiles!

ENHANCING GALACTIC WAR

I'm going to start at the top of the GalacticWar.java file and note the changes
made as we move down through the source code. We'll take a look at a few
screenshots along the way to explain what’s happening in the code. As you can
clearly see in the pages to follow, the new game engine (via the Game class) makes
enhancements incredibly easy to add to the game.

Tip

If you run into any problems updating the source code with the new improvements, | recommend
you open up the complete Galactic War project, located in the chapter resources.

New Sprite Types

The first change to the program involves adding some new sprite type
definitions in GalacticWar.java. Near the top of the program listing is a set of
sprite types. Add the new items shown in bold text.

301

Chapter 15 = Galactic War: Finishing the Game

//sprite types

final int SPRITE_SHIP =1;

final int SPRITE_ASTEROID_BIG =10;
final int SPRITE_ASTEROID_MEDIUM =11;
final int SPRITE_ASTEROID_SMALL =12;
final int SPRITE_ASTEROID_TINY = 13;
final int SPRITE_BULLET =100;

final int SPRITE_EXPLOSION = 200;
final int SPRITE_POWERUP_SHIELD = 300;
final int SPRITE_POWERUP_HEALTH = 301;
final int SPRITE_POWERUP_250 = 302;
final int SPRITE_POWERUP_500 = 303;
final int SPRITE_POWERUP_1000 = 304;
final int SPRITE_POWERUP_GUN = 305;

New Game States

To give the game the ability to start, play, and end (with the option to restart),
we need to add some conditional gameplay states and make use of the pause
property in the sprite engine (found in the Game class). Add the following lines
just below the new sprite definitions, above the toggle variables. The new code is
shown in bold.

//game states

final int GAME_MENU =0;
final int GAME_RUNNING =1;
final int GAME_OVER = 2;

//various toggles
boolean showBounds = false;
boolean collisionTesting = true;

When the game first starts up, you see the title screen, which is shown in Figure 15.9.
This screen shows the keys you press to control the ship.

New Sprite Images

Now let’s add some new sprite image definitions using the ImageEntity class.
The ship has a new shield feature, and we have a whole bunch of new images
for power-ups and the updated user interface (such as the health and shield
meters).

Enhancing Galactic War

CONTROLS:
ROTATE - Leji/Right Arrows
THRUST - Up Arrow
SHIELD - Shift key (no scoring)
. TIRE - Ctrl key
4,
-
POWERUPS INCREASE FIREPOWER!

Press ENTER to start

Figure 15.9
The title screen of Galactic War displays the key controls.

Scroll down a bit more to the block of code showing definitions for all of the
ImageEntity objects used in the game. Add the new code shown in bold. (Note
also the minor change to the shipImage array, which now has three elements.)

//define the images used in the game

ImageEntity background;

ImageEntity bulletImage;

ImageEntity[] bigAsteroids = new ImageEntity[5];
ImageEntity[] medAsteroids = new ImageEntity[2];
ImageEntity[] smlAsteroids = new ImageEntity[3];
ImageEntity[] tnyAsteroids = new ImageEntity[4];
ImageEntity[] explosions = new ImageEntity[2];
ImageEntity[] shipImage = new ImageEntity[3];
ImageEntity[] barImage = new ImageEntity[2];
ImageEntity barFrame;

ImageEntity powerupShield;

ImageEntity powerupHealth;

ImageEntity powerup250;

303

304

Chapter 15 = Galactic War: Finishing the Game

ImageEntity powerup500;
ImageEntity powerupl000;
ImageEntity powerupGun;

Health/Shield Meters, Score, Firepower, and Game State
Variables

Now let’s add some global variables to keep track of such things as the ship’s
health, shield power, game state, as well as more obvious things such as current
score, high score, and weapon upgrade level. Add the following code after the
image definitions, before the Random line. New code is shown in bold.

//health/shield meters and score

int health =20;

int shield = 20;

int score =0;

int highscore=0;

int firepower =1;

int gameState = GAME_MENU;

//create a random number generator
Random rand = new Random();

New Input Keys

We need to add support for the new shield ability. I've defined the Shift key to
activate the ship’s shield, but you may change this key if you prefer a different
one. Locate the key input tracking variables a few lines below the last change you
just made, and note the new variable added in bold.

The collision toggle and bounding box toggle are both still active in the game.
Although they were used for testing, they are now known as undocumented
hidden cheats in the game!

//some key input tracking variables
boolean keyLeft, keyRight, keyUp, keyFire, keyB, keyC, keyShield;

Sound and Music Objects

Immediately below the key tracking variable definitions, add the following code
for the sound and music objects (or make sure the code looks like this, if it
differs in your source code listing). Note the changes in bold.

Enhancing Galactic War

//some key input tracking variables
boolean keyLeft, keyRight, keyUp, keyFire, keyB, keyC, keyShield;

//sound effects and music

MidiSequence music = new MidiSequence();
SoundC1ip shoot = new SoundC1ip();
SoundC1ip explosion = new SoundClip();

Loading Media Files

Unfortunately, all of these new features come with a price—load times. The
game loads up very fast on your local PC, but can take 10 to 20 seconds to load
from a website, depending on your connection speed. All the images and sounds
used in this game are fairly small because they are stored in the compressed
PNG format. The biggest file is the background, which is about 300 KB. All
remaining image and sound files are well under 100 KB, and most of them are in
the 1 to 10 KB range, which is extremely small indeed. I suspect that without the
background image and the large explosion, the game would load up almost
instantly. When packaged into a JAR (which is covered in the next chapter), the
entire game is 600 KB.

Let’s add all of the new code to gameStartup() to load all of the new images,
sounds, and music in the game. There are also some gameplay-related changes
in this method that you should look out for. All new code and changes are
highlighted in bold.

void gameStartup() {
//1o0ad sounds and music
music.load("music.mid");
shoot.load("shoot.au");
explosion.load("explode.au");

//10ad the health/shield bars
barFrame = new ImageEntity(this);
barFrame.load("barframe.png");
barImage[0] = new ImageEntity(this);
barImage[0].Toad("bar_health.png");
barImage[1] = new ImageEntity(this);
barImage[1].Toad("bar_shield.png");

305

306 Chapter 15 = Galactic War: Finishing the Game

//10ad powerups

powerupShield = new ImageEntity(this);
powerupShield.load("powerup_shield2.png");
powerupHealth = new ImageEntity(this);
powerupHealth.load("powerup_cola.png");
powerup250 = new ImageEntity(this);
powerup250.1oad("powerup_250.png");
powerup500 = new ImageEntity(this);
powerup500.Toad("powerup_500.png");
powerupl000 = new ImageEntity(this);
powerupl000.Toad("powerup_1000.png");
powerupGun = new ImageEntity(this);
powerupGun.load("powerup_gun.png");

//1oad the background image
background = new ImageEntity(this);
background.load("bluespace.png");

//create the ship sprite--first in the sprite 1ist
shipImage[0] = new ImageEntity(this);
shipImage[0].Toad("spaceship.png");
shipImage[1] = new ImageEntity(this);
shipImage[1].1oad("ship_thrust.png");
shipImage[2] = new ImageEntity(this);
shipImage[2].1o0ad("ship_shield.png");

AnimatedSprite ship = new AnimatedSprite(this, graphics());
ship.setSpriteType(SPRITE_SHIP);
ship.setImage(shipImage[0].getImage());
ship.setFrameWidth(ship.imageWidth());
ship.setFrameHeight(ship.imageHeight());
ship.setPosition(new Point2D(SCREENWIDTH/2, SCREENHEIGHT/2));
ship.setAlive(true);

//start ship off as invulnerable
ship.setState(STATE_EXPLODING);
collisionTimer = System.currentTimeMillis();
sprites().add(ship);

//1oad the bullet sprite image
bulletImage = new ImageEntity(this);

Enhancing Galactic War 307

bulletImage.load("plasmashot.png");

//10ad the explosion sprite image
explosions[0] = new ImageEntity(this);
explosions[0].Toad("explosion.png");
explosions[1] =new ImageEntity(this);
explosions[1].Toad("explosion2.png");

//Toad the big asteroid images (5 total)

for (int n=0; n<5; n++) {
bigAsteroids[n] = new ImageEntity(this);
String fn="asteroid" + (n+l) + ".png";
bigAsteroids[n].load(fn);

}

//1o0ad the medium asteroid images (2 total)

for (int n=0; n<2; ntt+) {
medAsteroids[n] = new ImageEntity(this);
String fn = "medium" + (n+1) + ".png";
medAsteroids[n].load(fn);

}

//Toad the small asteroid images (3 total)

for (int n=0; n<3; n++) {
smlAsteroids[n] = new ImageEntity(this);
String fn="small" + (n+l) + ".png";
smlAsteroids[n].load(fn);

}

//Toad the tiny asteroid images (4 total)

for (int n=0; n<4; n++) {
tnyAsteroids[n] = new ImageEntity(this);
String fn="tiny" + (n+l1) + ".png";
tnyAsteroids[n].load(fn);

}

//start off in pause mode
pauseGame();

//delete this block of code, which has been moved to another method
/**** moved to resetGame
//create the random asteroid sprites
for (int n=0; n<ASTEROIDS; n++) {

308

Chapter 15 = Galactic War: Finishing the Game

createAsteroid();

*/
}

Game State Issue—Resetting the Game

The game used to just start up with asteroids flying at your ship, without any
chance to prepare yourself! To avoid this problem, I've added an overall state
system to the game, which now starts off in GAME_MENU mode. During normal
gameplay, the state is GAME_PLAYING. When your ship blows up, the state is
GAME_OVER. To make it possible to restart the game after dying (in which case, the
high score is retained), we need a way to reset the key variables and objects—but
the game should not reload any files! Add the resetGame() method just below
gameStartup().

private void resetGame() {
//restart the music soundtrack
music.setLooping(true);
music.play();

//save the ship for the restart
AnimatedSprite ship = (AnimatedSprite) sprites().get(0);

//wipe out the sprite 1ist to start over!
sprites().clear();

//add the saved ship to the sprite 1ist

ship.setPosition(new Point2D(SCREENWIDTH/2, SCREENHEIGHT/2));
ship.setAlive(true);

ship.setState(STATE_EXPLODING);

collisionTimer = System.currentTimeMillis();
ship.setVelocity(new Point2D(0, 0));

sprites().add(ship);

//create the random asteroid sprites

for (int n=0; n<ASTEROIDS; n++) {
createAsteroid();

}

//reset variables

Enhancing Galactic War 309

health =20;

shield =20;

score=0;

firepower =2;
}

Detecting the Game-Over State

The next method in the source code listing is gameTimedUpdate(), an event
passed by the parent Game class. We need to add a bit of code here to handle the
GAME_OVER state, which occurs when there is only one sprite left in the game—the
ship. Figure 15.10 shows the game in this state after the health meter has
dropped to zero.

void gameTimedUpdate() {
checkInput();

if (lgamePaused() && sprites().size() =1) {

Press ENTL . to restart

Figure 15.10
If your health drops to zero, the game is over—you lose!

310

Chapter 15 = Galactic War: Finishing the Game

resetGame();
gameState = GAME_OVER;

}

Screen Refresh Updates

I've made a whole bunch of changes to the game screen, which is refreshed
regularly during the applet’s update() and paint() events. I've removed the
testing/debugging displays, which showed the ship’s vitals and other things. We
want the game screen to look nice now, without any clutter. Because there are so
many changes involved, you may want to just delete any commented-out code
and rewrite this method as indicated. I will show new or changed code in bold
and deleted code in italics.

void gameRefreshScreen() {
Graphics2D g2d = graphics();

//*** REMOVE OR COMMENT OUT THIS BLOCK
//the ship is always the first sprite in the linked Tist
AnimatedSprite ship = (AnimatedSprite)sprites().get(0);

******/

//draw the background
g2d.drawImage(background.getImage(),0,0,SCREENWIDTH-1,SCREEN-
HEIGHT-1,this);

//*** REMOVE OR COMMENT OUT THIS BLOCK
/* //print status information on the screen
g2d.setColor(Color.WHITE);
g2d.drawString("FPS: " + frameRate(), 5, 10);
Tong x =Math.round(ship.position().X());
Tong y =Math.round(ship.position().Y());
g2d.drawString("Ship: "+x+","+y , 5, 25);
g2d.drawString("Move angle: " +Math.round(ship.moveAngie())+90, 5, 40);
g2d.drawString("Face angle: "+ Math.round(ship.faceAngle()), 5, 55);
if (ship.state()==STATE_NORMAL)
g2d.drawString("State: NORMAL", 5, 70);
else if (ship.state()==STATE_COLLIDED)

******/

20));

Enhancing Galactic War

g2d.drawString("State: COLLIDED", 5, 70);

elseif

(ship.state()==STATE_EXPLODING)

g2d.drawString("State: EXPLODING", 5, 70);
g2d.drawString("Sprites: "+ sprites().size(), 5, 120);

if (showBounds) {
g2d.setColor(Color.GREEN);
g2d.drawString("BOUNDING BOXES", SCREENWIDTH-150, 10);

}

if (collisionTesting) {
g2d.setColor(Color.GREEN);
g2d.drawString("COLLISION TESTING", SCREENWIDTH-150, 25);

}

//what is the game state?
if (gameState == GAME_MENU) {

g2d
g2d
g2d
gad
g2d

int
g2d

gad.
gad.

gad

gad.
gad.
gad.

gad.
gad.

gad.
gad.
gad.

.setFont(new Font("Verdana"”, Font.BOLD, 36));
.setColor(Color.BLACK);

.drawString("GALACTIC WAR", 252, 202);

.setColor(new Color(200,30,30));

.drawString("GALACTIC WAR", 250, 200);

x=270, y=15;

.setFont(new Font("Times New Roman", Font.ITALIC | Font.BOLD,
setColor(Color.YELLOW);

drawString("CONTROLS:", x, ++y*20);

.drawString("ROTATE - Left/Right Arrows", x+20, ++y*20);
drawString("THRUST - Up Arrow", x+20, ++y*20);
drawString("SHIELD - Shift key (no scoring)", x+20, ++y*20);
drawString("FIRE - Ctrl key", x+20, ++y*20);
setColor(Color.WHITE);

drawString("POWERUPS INCREASE FIREPOWER!", 240, 480);
setFont(new Font("Ariel™, Font.BOLD, 24));
setColor(Color.0RANGE);

drawString("Press ENTER to start™, 280, 570);

311

312 Chapter 15 = Galactic War: Finishing the Game

else if (gameState == GAME_RUNNING) {
//draw health/shield bars and meters
g2d.drawImage(barFrame.getImage(), SCREENWIDTH - 132, 18, this);
for (int n=0; n < health; nt+) {
int dx = SCREENWIDTH - 130+ n * 5;
g2d.drawImage(barImage[0].getImage(), dx, 20, this);
}
g2d.drawImage(barFrame.getImage(), SCREENWIDTH - 132, 33, this);
for (int n=0; n<shield; n++) {
int dx = SCREENWIDTH - 130+ n * 5;
g2d.drawImage(barImage[1].getImage(), dx, 35, this);
}

//draw the bullet upgrades
for (int n=0; n < firepower; n++) {
int dx = SCREENWIDTH - 220 + n * 13;
g2d.drawImage(powerupGun.getImage(), dx, 17, this);
}

//display the score
g2d.setFont(new Font("Verdana", Font.BOLD, 24));
g2d.setColor(Color.WHITE);
g2d.drawString("" + score, 20, 40);
g2d.setColor(Color.RED);
g2d.drawString("" + highscore, 350, 40);

}

else if (gameState = GAME_OVER) {
g2d.setFont(new Font("Verdana"”, Font.BOLD, 36));
g2d.setColor(new Color(200, 30, 30));
g2d.drawString("GAME OVER", 270, 200);

g2d.setFont(new Font("Arial", Font.CENTER_BASELINE, 24));
g2d.setColor(Color.0RANGE);
g2d.drawString("Press ENTER to restart™, 260, 500);

}

Preparing to End

The gameShutdown () event comes next. As you'll recall, this method was left empty
in the previous chapter, but now we need to use it properly. A well-behaved Java

Enhancing Galactic War

program will free up resources before the program ends. In the case of Galactic
War, I prefer to rely on Java’s built-in garbage collector to free up resources
automatically. However, it is necessary to shut off the music and any sound effects
currently playing before the applet ends because sometimes a MIDI sequence will
keep playing after the game has ended.
void gameShutdown() {

music.stop();

shoot.stop();

explosion.stop();
}

Updating New Sprites

Next up is the spriteUpdate() event method. There are a lot of new additions
here but no changes, as we have all these new power-ups that need to be handled
when they appear on the screen. The most important thing to do here is to warp
the power-ups along with everything else in the game. Then, in addition, the
power-ups need to wobble, or alternate the rotation back and forth, so they stand
out from the other sprites.

Just as an example, take a look at Figure 15.11. This zoom-in of the ship firing
shows how much the sprite engine is handling at one time. In this figure, I count
60 sprites in just this small portion of the screen (which, granted, is where most
of the action is currently taking place). All of the asteroids are rotating by some
random value. The flaming bullets are rotated and adjusted every time they
move along their paths. The ship rotates with user input. Every time you destroy
a tiny sprite, an eight-frame animation is played. That’s a lot of action! It’s a
good thing we developed the sprite engine in the last chapter, or none of this
would have been possible using the old method of handling sprites with arrays.
(Oh, and in case you were wondering—the bullets have not passed through any
of those tiny sprites; they have just been spawned by the destruction of a larger
sprite and will soon be annihilated by the incoming fire.)

The new code in spriteUpdate(), marked in bold, adds additional cases to the
switch statement for dealing with the power-ups.
pubTic void spriteUpdate(AnimatedSprite sprite) {

switch(sprite.spriteType()) {
case SPRITE_SHIP:

313

314

Chapter 15 = Galactic War: Finishing the Game

Figure 15.11
There are a lot of sprites in any normal game, but this is only 1/4 of the screen.

warp(sprite);
break;
case SPRITE_BULLET:
warp(sprite);
break;
case SPRITE_EXPLOSION:
if (sprite.currentFrame() == sprite.totalFrames()-1) {
sprite.setAlive(false);
}
break;
case SPRITE_ASTEROID_BIG:
case SPRITE_ASTEROID_MEDIUM:
case SPRITE_ASTEROID_SMALL:
case SPRITE_ASTEROID_TINY:
warp(sprite);
break;

}

Enhancing Galactic War

case SPRITE_POWERUP_SHIELD:
case SPRITE_POWERUP_HEALTH:
case SPRITE_POWERUP_250:
case SPRITE_POWERUP_500:
case SPRITE_POWERUP_1000:
case SPRITE_POWERUP_GUN:

warp(sprite);

//make powerup animation wobble

double rot = sprite.rotationRate();

if (sprite.faceAngle() > 350) {
sprite.setRotationRate(rot * -1);
sprite.setFaceAngle(350);

}

else if (sprite.faceAngle() < 10) {
sprite.setRotationRate(rot * -1);
sprite.setFaceAngle(10);

}

break;

Grabbing Power-Ups

Next in the source code listing is the spriteCollision() event. All we need to do
here is handle all the new power-ups that are in the game; this means that only
the ship should collide with the power-ups. I've moved the test for the collision
testing toggle to the top of this method, out of the keyboard handling code,
because it belongs here instead. Some new lines have been added to increase the
score whenever a bullet hits an asteroid and to deal with collisions when the
shield is up. Note the changes in bold, as usual.

public void spriteCollision(AnimatedSprite sprl, AnimatedSprite spr2) {

//jump out quickly if collisions are off
if (lcollisionTesting) return;

//figure out what type of sprite has collided
switch(sprl.spriteType()) {
case SPRITE_BULLET:

//did bullet hit an asteroid?
if (isAsteroid(spr2.spriteType())) {
bumpScore(5);

315

316 Chapter 15 = Galactic War: Finishing the Game

sprl.setAlive(false);
spr2.setAlive(false);
breakAsteroid(spr2);
}
break;
case SPRITE_SHIP:
//did asteroid crash into the ship?
if (isAsteroid(spr2.spriteType())) {
if (sprl.state() == STATE_NORMAL) {
if (keyShield) {
shield -=1;
}
else {
collisionTimer = System.currentTimeMillis();
sprl.setVelocity(new Point2D(0, 0));
double x =sprl.position().X() - 10;
double y = sprl.position().Y() - 10;
startBigExplosion(new Point2D(x, y));
sprl.setState(STATE_EXPLODING);
//reduce ship health after a hit
health -=1;
if (health<0) {
gameState = GAME_OVER;
}
//1ose firepower when you get hit
firepower--;
if (firepower < 1) firepower =1;
}
spr2.setAlive(false);
breakAsteroid(spr2);
}
//make ship temporarily invulnerable
else if (sprl.state() == STATE_EXPLODING) {
if (collisionTimer + 3000 <
System.currentTimeMillis()) {
sprl.setState(STATE_NORMAL);

break;

case SPRITE_POWERUP_SHIELD:
if (spr2.spriteType()==SPRITE_SHIP) {
shield +=5;
if (shield > 20) shield = 20;
sprl.setAlive(false);
}
break;

case SPRITE_POWERUP_HEALTH:
if (spr2.spriteType()==SPRITE_SHIP) {
health+=5;
if (health > 20) health =20;
sprl.setAlive(false);
}
break;

case SPRITE_POWERUP_250:
if (spr2.spriteType()==SPRITE_SHIP) {
bumpScore(250);
sprl.setAlive(false);
}
break;

case SPRITE_POWERUP_500:
if (spr2.spriteType()==SPRITE_SHIP) {
bumpScore(500);
sprl.setAlive(false);
}
break;

case SPRITE_POWERUP_1000:
if (spr2.spriteType()==SPRITE_SHIP) {
bumpScore(1000);
sprl.setAlive(false);
}
break;

case SPRITE_POWERUP_GUN:
if (spr2.spriteType()==SPRITE_SHIP) {
firepower+t;

Enhancing Galactic War

317

318

Chapter 15 = Galactic War: Finishing the Game

if (firepower > 5) firepower =5;
sprl.setAlive(false);

}

break;

}

New Input Keys

The game now uses the Shift key to engage the ship’s shields and the Enter key
to continue when the game is in the GAME_MENU or GAME_OVER state. There’s also a
way to exit out of the game now: When the game is running, you can hit Escape
to end the game (see Figure 15.12).

Here are the new key handlers in bold.

public void gameKeyDown(int keyCode) {
switch(keyCode) {
case KeyEvent .VK_LEFT:

ress ENTER to restart

Figure 15.12
The Escape key will end the game immediately and allow you to start over.

keyLeft = true;
break;

case KeyEvent.VK_RIGHT:
keyRight = true;
break;

case KeyEvent.VK_UP:
keyUp = true;
break;

case KeyEvent.VK_CONTROL:
keyFire =true;
break;

case KeyEvent.VK_B:
//toggle bounding rectangles
showBounds = !showBounds;
break;

case KeyEvent.VK_C:
//toggle collision testing

collisionTesting = !collisionTesting;

break;
case KeyEvent.VK_SHIFT:
if ((lkeyUp) && (shield > 0))
keyShield = true;
else
keyShield = false;
break;
case KeyEvent .VK_ENTER:
if (gameState == GAME_MENU) {
resetGame();
resumeGame() ;
gameState = GAME_RUNNING;
}
else if (gameState == GAME_OVER) {
resetGame();
resumeGame();
gameState = GAME_RUNNING;
}
break;
case KeyEvent.VK_ESCAPE:
if (gameState == GAME_RUNNING) {
pauseGame();

Enhancing Galactic War

319

320

Chapter 15 = Galactic War: Finishing the Game

gameState = GAME_OVER;

}
break;

}
Now let’s add a single new case to the gameKeyUp() event as well.

public void gameKeyUp(int keyCode) {

switch(keyCode) {

case KeyEvent .VK_LEFT:
keyLeft = false;
break;

case KeyEvent.VK_RIGHT:
keyRight = false;
break;

case KeyEvent.VK_UP:
keyUp = false;
break;

case KeyEvent.VK_CONTROL:
keyFire = false;
fireBullet();
break;

case KeyEvent.VK_SHIFT:
keyShield = false;
break;

}

Spawning Power-Ups

In the previous chapter we added a new method to the game called spawnPowerup(),
which was left empty at the time. Due to that foresight, we do not have to make any
changes to the breakAsteroid() method that makes this call. Instead, here is the
fully functional spawnPowerup(). At the top of the code, a random percentage
determines whether the power-up is actually created. I have it currently set to 12
percent, which provides some fair gameplay. If you want to make the game more
difficult, reduce this value. To make it easier, increase it.

Even though 12 percent doesn’t sound like very many power-ups, keep in mind
that every large asteroid produces three “mediums,” each of which produces
three “smalls,” each of which produces three “tinys” (see Figure 15.13). That’s a

Enhancing Galactic War

LARGE ASTEROIDS
MEDIUM SMALL TINY
ASTEROIDS ASTEROIDS ASTEROIDS
® @ oo se s e

Figure 15.13
Here are all of the asteroids you'll run into in the game (pun intended).

whopping 27 tiny asteroids for every large one, and since the game starts out
with 10 large ones—well, you can do that kind of math. In a single game session,
12 percent will generate about 30 power-ups! I think this value should be
reduced to about 20 to make the game a bit more challenging, but each power-
up has a limited lifetime, so it’s possible in the heat of battle that the player will
only manage to grab a few of them.

The spawnPowerup() method creates a single power-up sprite with some stand-
ard properties that all power-ups share, and then it sets the specific properties
using a random number. Since there are six power-ups, this random number
determines the type of power-up.

private void spawnPowerup(AnimatedSprite sprite) {
//only a few tiny sprites spit out a powerup
int n =rand.nextInt(100);
if (n>12) return;

//use this powerup sprite

AnimatedSprite spr = new AnimatedSprite(this, graphics());
spr.setRotationRate(8);
spr.setPosition(sprite.position());

double velx = rand.nextDouble();

double vely = rand.nextDouble();

spr.setVelocity(new Point2D(velx, vely));
spr.setLifespan(1500);

spr.setAlive(true);

321

322

Chapter 15 = Galactic War: Finishing the Game

//customize the sprite based on powerup type

switch(rand.nextInt(6)) {

case 0:
//create a new shield powerup sprite
spr.setImage(powerupShield.getImage());
spr.setSpriteType(SPRITE_POWERUP_SHIELD);
sprites().add(spr);
break;

case 1:
//create a new health powerup sprite
spr.setImage(powerupHealth.getImage());
spr.setSpriteType(SPRITE_POWERUP_HEALTH);
sprites().add(spr);
break;

case 2:
//create a new 250-point powerup sprite
spr.setImage(powerup250.getImage());
spr.setSpriteType(SPRITE_POWERUP_250);
sprites().add(spr);
break;

case 3:
//create a new 500-point powerup sprite
spr.setImage(powerup500.getImage());
spr.setSpriteType(SPRITE_POWERUP_500);
sprites().add(spr);
break;

case 4:
//create a new 1000-point powerup sprite
spr.setImage(powerupl000.getImage());
spr.setSpriteType(SPRITE_POWERUP_1000);
sprites().add(spr);
break;

case 5:
//create a new gun powerup sprite
spr.setImage(powerupGun.getImage());
spr.setSpriteType(SPRITE_POWERUP_GUN);
sprites().add(spr);
break;

Enhancing Galactic War

Making the Shield Work

Although the key events turn the ship’s shield on or off, the real work is done in
the checkInput() method shown here. Let’s take a close-up look at the shield in
action. Figure 15.14 shows the ship bombarded with asteroids, but the shield is
taking all of the impact and protecting the ship (at least until the shield runs
out!).

We also need to make a change to the new global game state so it will ignore
input events unless the game is running—in other words, it should ignore
gameplay input changes when in the GAME_MENU or GAME_OVER state. The new
code is shown in bold.

public void checkInput() {
if (gameState != GAME_RUNNING) return;

//the ship is always the first sprite in the Tinked Tist
AnimatedSprite ship = (AnimatedSprite)sprites().get(0);
if (keylLeft) {

//1eft arrow rotates ship Teft 5 degrees

Figure 15.14
This close-up view shows multiple asteroids impacting the ship’s shields (and breaking apart into small
asteroids or just blowing up).

323

324 Chapter 15 = Galactic War: Finishing the Game

ship.setFaceAngle(ship.faceAngle() - SHIPROTATION);
if (ship.faceAngle() <0)
ship.setFaceAngle(360 - SHIPROTATION);

} else if (keyRight) {
//right arrow rotates ship right 5 degrees
ship.setFaceAngle(ship.faceAngle() + SHIPROTATION);
if (ship.faceAngle() > 360)

ship.setFaceAngle(SHIPROTATION);

}

if (keyUp) {
//up arrow applies thrust to ship
ship.setImage(shipImage[1].getImage());
applyThrust();

}

else if (keyShield) {
ship.setImage(shipImage[2].getImage());

}

else
//set ship image to normal non-thrust image
ship.setImage(shipImage[0].getImage());
}

Making Use of Weapon Upgrade Power-Ups

The new weapon upgrades are awesome, as you saw earlier in the chapter—
wouldn’t you agree? This is the most interesting new gameplay feature, without a
doubt. Each time you get a weapon upgrade, it adds another gun to your ship.
However, if your ship gets hit, you lose an upgrade, so it’s pretty tough to keep
those upgrades. The good news is, when you get level-four or level-five guns, your
ship is so powerful that it’s fairly easy to clear out the asteroids in short order.

To support weapon upgrades, the code in fireBullet() has been completely
rewritten, and two new support methods were needed: adjustDirection() and
stockBullet(). The new “bullets” emerge from the center of the ship, and then
spread out in various patterns, based on the upgrade level (which is in a variable
called firepower). I'll show you the new code for fireBullet() first.

public void fireBullet() {
//create the new bullet sprite
AnimatedSprite[] bullets = new AnimatedSprite[6];

Enhancing Galactic War

switch(firepower) {

case l: //single shot
bullets[0] = stockBullet();
sprites().add(bullets[0]);
break;

case 2: //double shot
bullets[0] = stockBullet();
adjustDirection(bullets[0], -4);
sprites().add(bullets[0]);
bullets[1] = stockBullet();
adjustDirection(bullets[1], 4);
sprites().add(bullets[1]);
break;

case 3: //triple shot
bullets[0] = stockBullet();
adjustDirection(bullets[0], -4);
sprites().add(bullets[0]);
bullets[1] = stockBullet();
sprites().add(bullets[1]);
bullets[2] = stockBullet();
adjustDirection(bullets[2], 4);
sprites().add(bullets[2]);
break;

case 4: //4-shot
bullets[0] = stockBullet();
adjustDirection(bullets[0], -5);
sprites().add(bullets[0]);
bullets[1] = stockBullet();
adjustDirection(bullets[1], 5);
sprites().add(bullets[1]);
bullets[2] = stockBullet();
adjustDirection(bullets[2], -10);
sprites().add(bullets[2]);
bullets[3] = stockBullet();
adjustDirection(bullets[3], 10);
sprites().add(bullets[3]);
break;

case 5: //5-shot
bullets[0] = stockBullet();
adjustDirection(bullets[0], -6);

325

326

Chapter 15 = Galactic War: Finishing the Game

sprites().add(bullets[0]);
bullets[1] = stockBullet();
adjustDirection(bullets[1], 6);
sprites().add(bullets[1]);
bullets[2] = stockBullet();
adjustDirection(bullets[2], -15);
sprites().add(bullets[2]);
bullets[3] =stockBullet();
adjustDirection(bullets[3], 15);
sprites().add(bullets[3]);
bullets[4] = stockBullet();
adjustDirection(bullets[4], -60);
sprites().add(bullets[4]);
bullets[5] = stockBullet();
adjustDirection(bullets[5], 60);
sprites().add(bullets[5]);
break;

}

shoot.play();

}

Here’s the new adjustDirection() support method, which basically just cuts
down on the amount of code in fireBullet() because this code is repeated for
every single bullet launched. This method is new, so you should add it below the
fireBullet() method in your code listing for GalacticWar.java.

private void adjustDirection(AnimatedSprite sprite, double angle) {
angle = sprite.faceAngle() + angle;
if (angle < 0) angle += 360;
else if (angle > 360) angle -=360;
sprite.setFaceAngle(angle);
sprite.setMoveAngle(sprite.faceAngle()-90);
angle = sprite.moveAngle();
double svx = calcAngleMoveX(angle) * BULLET_SPEED;
double svy = calcAngleMoveY(angle) * BULLET_SPEED;
sprite.setVelocity(new Point2D(svx, svy));

}

The next support method that helps out fireBullet() is called stockBullet().
This method creates a stock bullet sprite with all of the standard values needed
to fire a single bullet from the center of the ship. The custom upgraded bullets

Enhancing Galactic War 327

are modified from this stock bullet to create the various firepower patterns you
see in the game. This method returns a new AnimatedSprite object.

private AnimatedSprite stockBullet() {
//the ship is always the first sprite in the 1inked 1ist
AnimatedSprite ship = (AnimatedSprite)sprites().get(0);

AnimatedSprite bul = new AnimatedSprite(this, graphics());
bul.setAlive(true);
bul.setImage(bulletImage.getImage());
bul.setFrameWidth(bulletImage.width());
bul.setFrameHeight(bulletImage.height());
bul.setSpriteType(SPRITE_BULLET);

bul.setLifespan(90);

bul.setFaceAngle(ship.faceAngle());
bul.setMoveAngle(ship.faceAngle() - 90);

//set the bullet's velocity

double angle = bul.moveAngle();

double svx = calcAngleMoveX(angle) * BULLET_SPEED;
double svy = calcAngleMoveY(angle) * BULLET_SPEED;
bul.setVelocity(new Point2D(svx, svy));

//set the bullet's starting position

double x = ship.center().X() - bul.imageWidth()/2;
double y = ship.center().Y() - bul.imageHeight()/2;
bul.setPosition(new Point2D(x,y));

return bul;

Tallying the Score

The final change to the Galactic War source code is the addition of a new
method called bumpScore(). This is called in the collision routine to increase the
player’s score for every asteroid hit by a weapon. (Collisions with the ship don’t
count.)

public void bumpScore(int howmuch) {
score += howmuch;

328

Chapter 15 = Galactic War: Finishing the Game

if (score > highscore)
highscore = score;
}

WHAT You HAVE LEARNED

This has certainly been an eye-opening chapter! It’s amazing what is possible
now that we have a sprite engine with such dynamic sprite-handling capabilities.
It’s now possible, as you have seen, to add new power-ups and entirely new
gameplay elements by simply adding new cases to the switch statements in the
key event methods, as well as adding the few lines of code to load new images.
The end result is now a fully polished, retail-quality game that’s ready to take on
any game in the web-based casual game market.

Here’s what you have learned:

m How to add power-ups to the game
m How to enhance gameplay with new features
m How to fire a spread of bullets at various angles

m How to add a game state to give the game a start and an ending

ReviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What method in GalacticWar.java makes it possible to add power-ups to
the game when a tiny asteroid is destroyed?

2. What construct does the sprite engine (in Game.java) use to manage the
sprites?

3. How many weapon upgrades are available now in Galactic War?
4. How many different point-value power-ups are there in the game?

5. What method in GalacticWar.java returns a stock bullet sprite object,
which is then tweaked to produce the upgraded bullet spreads?

6. How many different asteroid images are there in Galactic War?

On Your Own

7. If you wanted to add another weapon upgrade to the game, which
method would you need to modify?

8. How many sprites is the sprite engine capable of handling at a time?

9. How many bullets are fired at a time with the fifth-level weapon
upgrade?

10. What is the name of the static int that represents the game state when
the game is running normally?

ON Your OwN

There are so many possibilities with this game that I hardly know where to start.
Since I consider the game finished in the sense that it is sufficiently stocked with
features and gameplay elements to meet the goals I laid out for this book, I will
just make some suggestions for the game.

I would like to add a black hole that randomly crosses the screen from time to
time, sucking in everything it touches. Wouldn’t that be cool?

Another great feature would be to have an alien spacecraft come onto the screen
from time to time and shoot at the player. To keep the alien ship from getting hit
by asteroids, the ship would engage a shield whenever it collides with an
asteroid; otherwise, it would have to navigate through the asteroid field, and
that’s some code I would not care to write!

Here is yet another idea to improve gameplay, since the game is really hard. The
game could start off with a single big asteroid for Level 1, and then add an
additional big asteroid to each level the player completes. Although the game
can handle an unlimited number of sprites, I would end the game at level 10 to
keep it reasonable. Since the game currently just throws 10 asteroids at the
player from the start, switching to a level-based system would greatly improve
the fun factor!

329

This page intentionally left blank

CHAPTER 16

GALACTIC WAR: WEB
DEPLOYMENT

This chapter finishes the book by explaining the all-important subject of how to
deploy your Java applet-based games to the web. I assume you already have
some knowledge about how to use FTP to copy your game to a web server. I will
show you how to prepare the applet so that it will run from your own web page!
(Even if you use a free hosting service, if you can upload the files to your website,
then very likely the game will run from your site.) You will also learn how to use
the Java Archive tool to bundle your entire game (with class files and all media
files together) in a Java Archive file.

Here are the key topics in this chapter:

m Packaging an applet in a Java Archive (JAR)
m Using the JAR command-line program

m Packaging Galactic War into a JAR file

m Creating a host HTML file for the applet

PACKAGING AN APPLET IN A JAVA ARCHIVE (JAR)

The Java Development Kit (JDK) comes with a command-line tool called jar.exe
that is used to create Java Archive files. JARs, as they are known, use the ZIP
compression method when storing files. JARs can greatly reduce the size of a
Java applet—which is crucial for web deployment.

331

332

Chapter 16 = Galactic War: Web Deployment

To use the JAR tool, you will need to open a command-prompt window (also
known as a shell in some operating systems), and then set the path to the JDK
if it is not already set. By default, on a Windows system, the JDK is installed at
C:\Program Files\Java, and under this folder there will be a folder containing the
JDK and the Java Runtime Environment (JRE). You need to set the path to
include the \bin folder located in the JDK. This will differ depending on the
version of JDK you have installed. Currently on my system, the jar.exe tool is
located here:

C:\Program Files\Java\jdk1.6.0_22\bin

You can open the command prompt by going to Start, Program Files,
Accessories. You can also run cmd.exe manually using Start, Run. On Linux
and Mac systems, the JDK is usually already added to the path when it is
installed.

Tip

If you added Java to your system path as described back in Chapter 1, then you should be able to
run jar.exe from anywhere.

Using the jar.exe Program

The JAR tool is a bit finicky. If you don’t use the parameters exactly right and in
the correct order, JAR will complain and fail to create the JAR file you wanted it
to create. The order of the parameters should not be significant, but it is in this
case. The general syntax of the JAR command can be viewed by typing JAR at
the command line. The output looks something like Figure 16.1.

Creating a New JAR File

The parameters in this Help listing are deceptive. Not only should you not use
the dash (—), but these parameters must be specified in a specific order. For
instance, we use the “c” parameter to tell JAR to create a new JAR file. But this
parameter must be used along with “f” to specify the filename. I can’t imagine a
situation where you would want to use the JAR tool without using a JAR file, but
I guess that’s just me. After the “cf” parameters, you specify the JAR file name,
and then the files you want to add. Here is an example:

jar cf test.jar *.class

Packaging an Applet in a Java Archive (JAR)

\Users\,]onathan\honks\Beg:lnn1ng Java Game Programming 3E\chapter16\Ga1act1c'.\la1~6\p1~o,]ect),]ar
: jar {etxnitTufmAMe1 Tjar—Filel Imanifest—Filel Tentwy—pnint] -0 dirl Files __

create new archive
liet tables of contente for archive
extract named Cor all> files from archive
update existing archive
yenerale verbuze valpul un standard valpul
specify archive file name
include manifest information from specified manifest file
specify application entry point for stand—alone application
bundled into an executable jar file
store only; use no ZIP compression
do not create a manifest file for the entries
generate index information for the specified jar files
rhange tn the sperified divectary and include the Fallnwing File
file is a directory then it is processed recursively.
he manifest file name,. the archive file name and the entry point name are
mpoccificd in the same order az the 'm',. '£' and 'c¢’ flags.

Example 1: to archive two class files into an archive called classes.jar:
Jar vef classes. jar Fouv.class Bar.class
: use an existing manifest file ‘mymanifest’ and archive all the
files in the foo/ directory into ‘classes.jar’:
Jjar cefm classes.jar mymanifest —-C foor

Userssjonathan“books“\Beginning Java Game Programming 3EschapteribGalacticWarbproject>_

Figure 16.1
Verifying that the JAR program is available at the command prompt.

This command will create a new JAR file called test.jar and add all .class files
found in the current folder to the JAR file. After doing so, if the JAR tool
successfully created the new JAR file, it will simply exit and not print anything
out. (So remember, no display equals no problems.)

Listing the Contents of a JAR File
To display the contents of a JAR file, use the “tf” parameter, like so:
jar tf test.jar

You can also include the “v” option to display the contents of the JAR file with
details. This option also works when creating a new JAR file, but you must be
careful to include the “v” option after the “c” or “t” parameter. Here’s an
example of both cases:

jar cvf test.jar *.class

jar tvf test.jar

Extracting Files from a JAR File

«__»

You can extract a single file or all files from a JAR file using the “x” option, like
this:

jar xvf test.jar *.*

333

334

Chapter 16 = Galactic War: Web Deployment

Updating a JAR File

You can update a JAR file using the “u” parameter. Any files you specity will
replace existing files in the archive, and any new files will be added.

jar uvf test.jar HelloWorld.class

Manifest Files

Java archives can include a manifest file that tells the JRE the name of the .class
file it should run (automatically) when it opens the JAR file. Since this is a fairly
common occurrence, and manifest files are a cinch, it makes sense to include

one in a JAR file that will run on the web. The general format of the manifest file
looks like this:

Main-Class: Filename

You should not include the .class extension. There are more options for manifest
files, but this is the only one you need to be concerned with when the goal is to
run an applet stored in a JAR file on the web.

Caution

Be sure to add a blank line after this single line in the manifest file, or the JAR tool will complain.

To use a manifest file when creating a new archive, you can use the “m”
parameter option. Just be sure that this is the last letter in the options you
include.

jar cvfm test.jar manifest.txt *.class *.png

Note

Given the Java community’s obsession with clichés, I'm surprised the JAR program was not called
MUG instead, since one does not usually drink a hot beverage from a JAR.

Packaging Galactic War in a Java Archive

The JAR program is fairly easy to use once you get used to its specific
requirements. Now let’s use this tool to package Galactic War into a Java
archive. This will save a little space and will keep the game together in a single
file so you won’t leave any media files behind when copying the game or
uploading it to a website.

Packaging an Applet in a Java Archive (JAR)

Caution

You must load files in a certain way in your code so that the JRE will know how to read them from
a JAR file when you have deployed the applet to a website. I've shown you a couple of different
ways to load images and other media files in this book.

The method you must use when a game is deployed in a JAR uses the java.net.URL class and
the getResource() method to create a URL that you can pass to the appropriate image or
sound loader. The getResource() method is available from this.getClass (). This method
will correctly pull a media file from the local file system or from a JAR file when resources are
stored within a JAR. Here is an example:

URL url =this.getClass().getResource(filename);

The first order of business is to copy your project folder to a new location so
you don’t accidentally mess up the original. Essentially, this new folder
contains the runtime files for the game—the .class files and all assets. You do
not need to add the .java files to the .jar file that will be distributed to the web
server.

Reviewing the Project Files
Now let’s create a Java archive to contain the files needed by this game. The
manifest.txt file and index.html file (covered next) are found in the GalacticWar
folder. I have copied all of the Galactic War media and class files into a folder
called GalacticWar\project. Included are 30 image (PNG) files, two audio files,
and one MIDI file. In addition, we have these nine Java class files:

m AnimatedSprite.class

m BaseGameEntity.class

m Game.class

m ImageEntity.class

m Point2D.class

m Sprite.class

m GalacticWar.class

m MidiSequence.class

m SoundClip.class

335

336

Chapter 16 = Galactic War: Web Deployment

These files were compiled using Java SE 6. That’s a lot of files for a single game!
The last thing I want to do is deploy this game to a web server by copying all of
the files along with index.html, although that is definitely a workable option. In
fact, if you just edit the HTML file (which you’ll learn to do here shortly), you
can simply copy these files to a website and run the game over the web. But a
Java archive works so much better, and it saves some space too. Instead of
streaming all of those many dozens of bitmaps, classes, and audio clips to the
applet, it just streams the single .jar file.

Building the Java Archive

Using the CD command in the command prompt, I've changed the current folder
to chapter12\GalacticWar. (This may be slightly different on your system.) You
can perform this step from any folder where your project files are located. I've
copied all of the class and media files to a subfolder called “project” to keep
things tidy. So, all I have in this main GalacticWar folder are index.html,
manifest.txt, and the project subfolder (see Figure 16.2).

The manifest.txt file for Galactic War contains this line:

Main-Class: GalacticWar

Userssjonathansbooks“Beginning Java Game Programming 3EschapteribGalacticlaré>dir
Uolume in drive C is 58B8GB
Uolume Serial Number is 3CAS-4B84

Directory of c:slUsers:jonathan“bhooks:\Beginning Java Game Programming 3Exchapterib~Galacticlarét

=23 AN <DIR>»

=23 AM <DIR> -

32 PM 233 GalacticlWar.html
=31 PM 233 index.html

46 AM 2?7 manifest.txt

17 AM <DIR> project

3 Fileds> 423 huyte

s
3 Dirdsd> 215.839.246.336 bytes free

»Userssjonathansbooks“Beginning Java Game Programming 3EschapteribGalacticlaré>_

Figure 16.2
Listing the contents of the GalacticWar folder.

Packaging an Applet in a Java Archive (JAR)

This tells the JRE which of the .class files to open up and start running after
opening the JAR file. (Be sure to include a blank line after the Main-Class
property line.)

You will need to use an optional parameter of the JAR program that lets you
specify a subfolder where the actual files are located. You don’t want to just tell it
to include .\project*.* because that will add .\project to the internal structure of
the JAR file. Instead, you want to grab all the files inside of .\project, but not
include the folder name. The option is “C” (uppercase is important). Here’s the
command to create the GalacticWar jar file:

jar cvfm GalacticWar.jar manifest.txt -C project *.*

This line tells JAR to create a new Java archive called GalacticWar jar, to include
the manifest information stored in manifest.txt, to use the project subfolder, and
to add all files in that subfolder to the JAR file. Figure 16.3 shows the output of
the command.

SUserssionathan“books“Deginning Java Game Programming JLnchapteritiGalacticWarGjar celm Galacticll
ar.jor manilest.txt © project *.»
ro,]ccl:\calacl::lclku htnl : no zuch file or dircctory
ded manﬂ:csl:
index.html{in - 233> {out- 158>{dcf lated 32:>
anifest.txt{in = 2V} {out= 2Y)(def lated —/xd
nimatedSprite.clased{in = 2¥1Y) Cout= 13¥L>{def lated LH3x)
stepoidl _pngCin = 279852 Cout= Z279152Cdef lated B
stepoid? _pngCin 22725) Coutr= 227352Cdef lated @x)
aternidl_pngCin 313792 3138 Cdef lated Ax)
aternidd _pngdin IRFASY Cnut= IRFISY(Arflated RAx)
steroldS.png{in = 386777 Cout= 3B687)(deflared Bx»
arframe .. pnyCin - 2953 {out- 2983 {def lated 1x)
ar health.png{in - 2233 {vul- Z143{def lated 42>
ar_shield.png{in = 22%) {out= 217>{dellated 5x’
aseGomeEntity.class{in = 1662 {out=- (L@}{dellated Gix}
1 ng{in_~- 317628> (out- 317728>(dcflated Bx)
xploac aulin - 24328) Cout- 222283 (dcflated 8x)
xplozion.png{in - 70805} {out- 7B222>{dcflatcd B:>
wplocionZ.pnglin = 11788} Cout= 117/2){def lated M)
salacticWar.clase(in = 1V/28> Lout= Y1¥Ididef lated 4¥:u>
same _classlin = 6168} Cout= 3WL13{def lated LUx)
mageEntity.class(in = 282@) Cout= 1431)Cdef lated 49x>
17573 C(ont= 17a2)(def lated Ax)
IR45> C(nunt= IRSAY(deflated RAxl
22793 <nut= |IASY<{deflated Slx)
1 - 41561) <uut- 2780>leflated 3%
shol.pny{in - 399> {vul- 4883 {def lated 823
: Point2D.class{in = 875> {out- 425>{dellated 5ix>
2 powerup_188@.png{in - 468} {out=- 465>{dellated 82>
: powerup_258.pnglin = 472} {out- 471){dellated Bz}
owcrup_5808.png{in - 443> Cout- 443>{(dcflated Bzl
owcrup_cola.png{in - 437} {out- 448> <{dcf latcd Bx}
overup_gun.pngiin = 4W3) Cout= IYY¥i{def Llated M)
owerup_chieldd.pnglin = 4463 {out= 447)(def lated W)
hip_chield_pngCin = 15Y4) Cout= 15953 {def lated Wx)
hip_thrast _pngCin = 1432> Cout= 14372Cdef lated B
hont _an{in = 1176A2 (ant= 11451)(def lated 233
malll _png<in = 1218 <ont= 1223»Cdeflated Ax)
mallZ _png<in = 7AAY (nunt= 711 >{deflated ﬂx)
malld.pny<in 6817 {out- 6867 <deflated
vundClip.class<in - 23112 {uvul- 1135)(Lluf1ul.ed S8
paceship.png{in = 13913 {out= 1198>{dellated Bx)
prite.class<in = 4671 {out- 200831>{(defllated 57x)
est.jar{in = 217413 {out- 21824){dellated Iz}
inyl.png{in - 618} {out- 615>{dcflatcd B:)
iny2.png{in - 592} {out- 598>{dcflatcd B:)
iny3.pngdin = 5753 {out= S8A>{deflated B:)
inyd.pngCin = 56%3 Cout= SYMICdef lated Wx)

geper jonathansbooks Beginning Java Game Programming 3EwchapterlbrGalacticWart>

Figure 16.3
Creating the deployable JAR file.

337

338

Chapter 16 = Galactic War: Web Deployment

If these additional steps get on your nerves, just lump everything together in a
single folder and run the JAR program in the same folder as all your Java
project’s files, without using the C option, like so:

jar cvfm GalacticWar.jar manifest.txt *.*

CREATING AN HTML HosT FILE FOR YOUR APPLET

HTML is short for Hypertext Markup Language, and it is the water flowing
through the world wide web. To run a Java applet on the web, you have to embed
the applet inside a webpage. This involves creating an HTML file with an
<applet> tag that specifies the details about how to run the applet and where it is
contained. If you use an IDE such as NetBeans, then just launch the program as
an applet and the IDE will generate the HTML container file for you. But, if you
want to deploy your applet to a web server, then you do need to create your own
HTML file.

A Simple HTML File

The most basic format for an HTML file that will host an applet looks like the
following code. This code assumes that a file called game.class is available in the
same web folder as the HTML file.

<html><head>

<title>This is my game</title>
</head>

<body>

<applet code = game.class
width=800 height=600>
</applet>

</body></htm1>

The key to running an applet inside a Java archive is to add another option
within the <applet> tag called archive.
<applet code=game.class

archive=game. jar

width=800 height=600>
</applet>
The webpage file is usually called index.html because that is the name of a file
that web servers will send the web browser automatically if you don’t specify the

Creating an HTML Host File for Your Applet

TEY
Fle Edt Format Help

<html> =l
<hcad>

<titlexGalactic War by lonathan 5. Harbour</titlex
</head>

<body>

<applet code=Galacticwar.class
archive_"GalacticwWar.jar"
width=800 height=b00x>
«<fappleL>

</body>
</html=>

Figure 16.4
Creating a webpage file called GalacticWar.html.

HTML file directly. For instance, when you go to www.jharbour.com, the web
server delivers index.html automatically. You can create this simple HTML file
using a text editor such as Notepad (as shown in Figure 16.4). If you want your
applet to be stored with your other web files, including your already-existing
index file, then just use a different name, such as GalacticWar.html.

Testing the Deployed Applet Game

When you have the HTML host file and a JAR file ready to go, it’s time to
upload them to your web server. I've created a folder on my web server called
/BeginningJava that I'll use to deploy the Galactic War files. The index.html and
GalacticWar.jar files are both uploaded to www.jharbour.com/BeginningJava
and are ready to run from this location. When you open this URL, the web
browser fires up the JRE, which displays an attractive logo image and a progress
bar while it downloads the JAR file (see Figure 16.5). (Note that this logo may
look slightly different on your system.)

Tip

The great thing about an applet is that your web browser will store it in the web cache. That is why
the applet seems to just open up immediately when you go to the same URL again. The applet does
not need to be downloaded again when it is stored in the local web cache.

339

www.jharbour.com
www.jharbour.com/BeginningJava

340

Chapter 16 = Galactic War: Web Deployment

Java

Sum Mirmeyctame

Figure 16.5
The Java runtime displays this progress bar while downloading the JAR file.

When the applet has completely downloaded to your local system, it will access
the files in the JAR locally rather than hitting the web server for every file.
Remember the list of 404+ media files in Galactic War? If the game were
deployed to the web server with all of those individual files, the applet would
have to download every single file individually over the Internet. That’s a lot of
file transfers! But when your applet is stored in a JAR, that single JAR file is
downloaded to your PC, and the applet runs from there. All media files are
drawn directly from the JAR file instead of from the web server. If all goes well
during the downloading of the JAR file, the game should come up as shown in
Figure 16.6.

WHAT You HAVE LEARNED

Java applets can grow quite large when you are writing a game because most
games use dozens of media files. By packaging a Java applet-based game into a

What You Have Learned 341

ols Help

Wvﬂ c < ﬁ | http://www jharbour.com/Beginninglava 7 - [om. Google P
v *q search - @ @B B Sharer [Sidewiki + ¥¢ Bookmarks® =1 - » & - (O Signin ~
| | JHARBOUR.COM | o i lj

CONTROLS:
ROTATE - Left/Right Arrows
THRUST -
SHIELD - Shift key (na scaring)
1. FIRE - Ctrl key
2o

e
POWERUPS INCREASE FIREPOWER!

Press ENTER to start

Done

Figure 16.6
Galactic War is now running on a real web server from within an efficient JAR file.

Java Archive (JAR) file, you dramatically improve the time it takes to download
and run the game from a web server. You also cut down on the number of
transfers that must be made when individual files are stored directly on the
server instead of inside an archive file.

Here are the key topics you learned:

m Packaging an applet inside a Java archive

342

Chapter 16 = Galactic War: Web Deployment

m Creating an HTML host file for your applet

m Running the applet from a website

ReEviEw QQUESTIONS

The following questions will help you to determine how well you have learned
the subjects discussed in this chapter. The answers are provided in Appendix A,
“Chapter Quiz Answers.”

1. What does the acronym JAR stand for?

2. What is the name of the program used to work with JAR files?
3. What types of files can be stored inside a JAR file?

4. What compression method does the JAR format use?

5

. What method must you use in conjunction with the java.net.URL class
for loading media files when an applet has been deployed in a JAR file?

6. What command would you enter to create a new JAR file, called test.jar,
that contains all files in the current folder?

7. What command would you enter to create the same archive but also
include a manifest file called manifest.txt?

8. What command would you enter to list the contents of a file called
MyGame.jar with verbose listing enabled?

9. What JAR parameter option causes files to be added from a different
folder without adding the folder name to the files stored in the archive?

10. What type of web server do you need to host a Java applet-based game?

EPILOGUE

This concludes the final chapter of the book! I hope you have enjoyed this book
and learned a lot from it. I'll admit that it was quite a challenge! For a while I
didn’t think this Galactic War game would ever see the light of day. There are so
many advanced topics that we didn’t have time to cover in this book, the likes of
which a diehard Java programmer would have liked to see. However, I believe a
completely functional game, created from scratch and actually finished within

Epilogue

the pages of a book, is far more educational than any “advanced” material we
might have spent more time studying instead. The game engine developed in the
previous chapter, which was based on all the material in this book, is a viable
game engine that can be used for many different types of games. My hope is that
you have learned enough from this book to build your own blockbuster Java
game for the online casual game market. Good luck!

343

This page intentionally left blank

APPENDIX

C

HAPTER QUIZ ANSWERS

Here are the answers to the quizzes at the end of each chapter.

CHAPTER 1

1.

What does the acronym “JDK” stand for?
Answer: Java Development Kit

2. What version of the JDK are we focusing on in this book?

Answer: 6 or Java 6 or Java SE 6

3. What is the name of the company that created Java?

Answer: Sun Microsystems

4. Where on the web will you find the text editor called TextPad?

Answer: www.textpad.com

5. In what year was Java first released?

Answer: 1995

6. Where on the web is the primary download site for Java?

Answer: http://java.sun.com

345

www.textpad.com
http://java.sun.com

346 Appendix = Chapter Quiz Answers

7. What type of Java program do you run with the java.exe tool?

Answer: application

8. What type of Java program runs in a web browser?

Answer: applet

9. What is the name of the command-line tool used to run a web-based

Java program?
Answer: appletviewer.exe

10. What is the name of the parameter passed to the paint() event method

in an applet?
Answer: Graphics g

CHAPTER 2

1.

What is the name of the JDK tool used to compile Java programs?
Answer: javac.exe

. Which JDK command-line tool is used to run a Java application?

Answer: java.exe

. Which JDK command-line tool is used to run a Java applet?

Answer: appletviewer.exe

. What are two good, free Java IDEs recommended in this chapter?

Answer: Eclipse, NetBeans, or TextPad

. Encapsulation, polymorphism, and inheritance are the keys to what

programming methodology?
Answer: OOP: Object-Oriented Programming

. What’s the main difference between a Java application and an applet?

Answer: applets run in a Web browser

. Which method of the Graphics class can you use to print a text message

on the screen?

Answer: drawString()

. How many bits make up a Java integer (the int data type)?

Answer: 32

9.

10.

Chapter 3
How many bits are there in a Java long integer (the 7ong data type)?
Answer: 64

What programming language was Java based on?
Answer: C++

CHAPTER 3

1

10.

. What is the name of the method that calculates the velocity for X?

Answer: calcAngleMoveX()

. What is the base class from which Ship, Asteroid, and Bullet are inherited?

Answer: BaselectorShape

. Which classic Atari game inspired the game developed in this chapter?

Answer: Asteroids

. Which type of collision testing does this game use?

Answer: Bounding Rectangle

. Which method of the Shape class does this game use for collision testing?

Answer: contains()

. Which geometric shape class do the Ship and Asteroid classes use?

Answer: Polygon

. Which geometric shape class does the Bullet class use?

Answer: Rectangle (pixel also acceptable)

. Which applet event actually draws the screen?

Answer: paint()

. What is the name of the interface class used to add threading support to

the game?
Answer: Runnable

What math function does calcAngleMoveX use to calculate the X velocity?
Answer: Math.cos()

347

348

Appendix = Chapter Quiz Answers

CHAPTER 4

1

10.

. What is the primary class we've been using to manipulate vector

graphics in this chapter?
Answer: Graphics2D

. What is the name of the Applet event that refreshes the screen?

Answer: paint() or update()

. What is the name of the Graphics2D method that draws a filled

rectangle?
Answer: fillRect()

. Define the words comprising the acronym “AWT.”

Answer: Abstract Window Toolkit

. What class makes it possible to perform translation, rotation, and scaling

of shapes?
Answer: AffineTransform

. Which Graphics2D method draws a polygon?

Answer: draw()

. Which transform method moves a shape to a new location?

Answer: translate()

. What method initializes the keyboard listener interface?

Answer: addKeylListener()

. What method in the Random class returns a double-precision floating-

point value?
Answer: nextDouble()

Which KeyListener event detects key presses?
Answer: keyPressed()

Chapter 5

CHAPTER 5

1

10.

. What is the primary class we’ve been using to manipulate bitmapped

graphics in this chapter?
Answer: Graphics2D

. What method initializes the keyboard listener interface?

Answer: addKeylListener()

. What Graphics2D method is used to draw an image?

Answer: drawlImage()

. Which Java class contains the getImage() method?

Answer: Applet

. What class makes it possible to perform translation, rotation, and scaling

of images?
Answer: AffineTransform

. Which Graphics2D method draws an image?

Answer: drawImage()

. Which transform method moves an image to a new location?

Answer: translate()

. What is the name of the “transparency” channel in a 32-bit

PNG image?
Answer: alpha channel

. What is the Applet class method used to load a resource from a JAR?

Answer: getResource()

Which KeyListener event detects key presses?
Answer: keyPressed()

349

350

Appendix = Chapter Quiz Answers

CHAPTER 6

1

10.

. What is the name of the support class created in this chapter to help the

Sprite class manage position and velocity?
Answer: Point2D

. During which keyboard event should you disable a keypress variable,

when detecting multiple key presses with global variables?
Answer: keyReleased()

. What are the three types of parameters can you pass to the

collidesWith() method?
Answer: Rectangle, Sprite, and Point2D

. What Java class provides an alternate method for loading images that is

not tied to the applet?
Answer: Toolkit

. Which Java package do you need to import to use the Graphics2D class?

Answer: java.awt.Graphics2D

. What numeric data type does the Point2D class (created in this chapter)

use for internal storage of the X and Y values?
Answer: double

. What data types can the Point2D class work with at the constructor level?

Answer: int, float, and double

. Which sprite property determines the angle at which the sprite will move?

Answer: moveAngle

. Which sprite property determines at which angle an image is pointed,

regardless of movement direction?
Answer: faceAngle

Which AffineTransform methods allow you to translate, rotate, and scale
a sprite?
Answer: transiate(), rotate(), and scale()

Chapter 7

CHAPTER 7

1

10.

. What is the name of the animation class created in this chapter?

Answer: AnimatedSprite

. From which class does the new animation class inherit?

Answer: Sprite

. How many frames of animation were there in the animated ball sprite?

Answer: 64

. What do you call an animation that is stored inside many files?

Answer: sequence

. What do you call an animation that is all stored in a single file?

Answer: tiled

. What type of parameter does the AnimatedSprite.setVelocity method

accept?
Answer: Point2D

. What arithmetic operation is used to calculate an animation frame’s Y

position?
Answer: division

. What arithmetic operation is used to calculate an animation frame’s X

position?
Answer: modulus

. What is a good class to use when you need to create a bitmap in

memory?
Answer: BufferedImage

Which AnimatedSprite method draws the current frame of animation?
Answer: draw()

351

352

Appendix = Chapter Quiz Answers

CHAPTER 8

1.

10.

What is the name of the method used to enable keyboard events in your
program?
Answer: addKeylListener()

. What is the name of the keyboard event interface?

Answer: KeylListener

. What is the virtual key code for the Enter key?

Answer: VK_ENTER

. Which keyboard event will tell you the code of a pressed key?

Answer: Technically, any of the three (keyPressed(), keyReleased(), and
keyTyped())

. Which keyboard event will tell you when a key has been released?

Answer: keyPressed() or keyTyped()

. Which keyboard event will tell you the character of a pressed key?

Answer: Technically, any of the three (keyPressed(), keyReleased(), and
keyTyped())

. Which KeyEvent method returns a key code value?

Answer: getKeyCode()

. What is the name of the method used to enable mouse motion events?

Answer: addMouseMotionlListener()

. What is the name of the class used as a parameter for all mouse event

methods?

Answer: MouseEvent

Which mouse event reports the actual movement of the mouse?
Answer: mouseDragged() or mouseMoved()

Chapter 9

CHAPTER 9

1

10.

. What is the name of Java’s digital sound system class?

Answer: AudioSystem

. What is the name of Java’s MIDI music system class?

Answer: MidiSystem (Sequencer also acceptable)

. Which Java class handles the loading of a sample file?

Answer: AudiolnputStream (AudioSystem also acceptable)

. Which Java class handles the loading of a MIDI file?

Answer: Sequence (MidiSystem also acceptable)

. What type of exception error will Java generate when it cannot load a

sound file?

Answer: UnsupportedAudiofileException (LineUnavailableException and
I0Exception are also technically acceptable)

. Which method of the MIDI system returns the sequencer object?

Answer: MidiSystem.getSequencer()

. What is the main Java class hierarchy for the audio system class?

Answer: javax.sound.sampled

. What is the main Java class hierarchy for the MIDI system class?

Answer: javax.sound.midi

. What three digital sound file formats does Java support?

Answer: AIFF, AU, and WAV

What rare exception error will occur when no MIDI sequencer is avail-
able?

Answer: MidiUnavailableException

353

354 Appendix = Chapter Quiz Answers

CHAPTER 10
1. What is the name of the interface class that provides thread support?
Answer: Runnable

2. What is the name of the thread execution method that you can use to
run code inside the separate thread?

Answer: run()

3. What is the name of the class that handles vector-based graphics?
Answer: Shape

4. What Thread method causes the thread to pause execution for a specified
time?
Answer: sleep()

5. What System method returns the current time in milliseconds?
Answer: currentTimeMillis()

6. What is the name of the method that returns the directory containing
the applet (or HTML container) file?

Answer: getCodeBase()

7. What is the name of the method that returns the entire URL string
including the applet (or HTML container) file?

Answer: getDocumentBase()

8. What class do you use to store a bitmap image?
Answer: Image or BufferedImage

9. Which Graphics2D method is used to draw a bitmap?
Answer: drawImage()

10. Which class helps to improve gameplay by providing random numbers?
Answer: Random

Chapter 11

CHAPTER 11

1

10.

. What is the name of the class that handles bitmaps?

Answer: Image or BufferedImage

. Which class in Galactic War detects when bullets hit the asteroids?

Answer: Rectangle or Bullet

. What is the maximum number of sprites that can be supported by the

game?
Answer: virtually unlimited (based on available memory)

. Which method in the Graphics2D class actually draws the image of a

sprite?
Answer: drawImage()

. What is the name of the Applet method that redraws the window?

Answer: paint()

. How many key presses can the game detect at a single time?

Answer: virtually unlimited (limited only by the operating system)

. What method do you use to track the mouse’s movement?

Answer: mouseMoved() or mouseDragged()

. What type of graphics entity does the game use for the asteroids?

Answer: Shape

. Regarding ship rotation, by how many angles can the ship be rotated?

Answer: 360

What method provides the game with support for collision detection?
Answer: Rectangle.contains()

355

356

Appendix = Chapter Quiz Answers

CHAPTER 12

1

10.

. Which support class helps manage the position and velocity of sprites?

Answer: Point2D

. During which keyboard event should you disable a keypress variable,

when detecting multiple key presses with global variables?
Answer: keyReleased

. What is the name of the sprite collision detection routine used in Galac-

tic War?
Answer: Rectangle.contains()

. Which method in the Applet class provides a way to load images from a

JAR file?
Answer: getResource()

. Which Java package do you need to import to use the Graphics2D class?

Answer: java.awt.Graphics2D

. What numeric data type does the Point2D class (created in this chapter)

use for internal storage of the X and Y values?
Answer: double

. How does the use of a class such as Point2D improve a game’s source

code, versus using simple variables?
Answer: A single parameter handles two variables (x and y)

. Which property in the Sprite class determines the angle at which the

sprite will move?
Answer: moveAngle

. Which property in the Sprite class determines the angle at which a

sprite is pointed?
Answer: faceAngle

How many milliseconds must the game use as a delay in order to
achieve a frame rate of 60 frames per second?

Answer: 1000/60 = 16.67 ms

Chapter 13

CHAPTER 13

1

. What is the name of the method that makes collision detection possible?

Answer: Rectangle.contains()

. How many collisions can the game detect within a single update of the

game loop?
Answer: the square of the number of sprites

. What would happen if the ship were to fire a projectile that “warps”

around the screen and then hits the ship? Would a collision take place?
Why or why not?
Answer: No collision is handled between the ship and bullets

. What should happen to the player’s ship after it has been destroyed by a

collision with an asteroid? Describe a better way to “respawn” the ship
than what is currently being done.

Answer: It should be destroyed and respawned. A better way might be to
give the player some “invulnerable” time after respawn to improve game-

play.

. What type of transform could you apply to the explosion sprite to

change its size?
Answer: scaling

. How does the ship’s velocity affect the result of a collision when the ship

is destroyed? Should the ship continue to exert momentum even while
blowing up?

Answer: The ship currently stops when it explodes. A more realistic explo-
sion would continue to move a little ways along the ship’s trajectory.

. How can the collision routine be improved upon, so that collisions are

more precise?

Answer: Either smaller bounding boxes can be used or every pixel of two
sprites can be compared (which is usually overkill)

357

358 Appendix = Chapter Quiz Answers

8.

What is the name of the constant applied to the ship when a collision
has taken place?

Answer: STATE_EXPLODING

9. What is the name of the method that updates a sprite’s animation

sequence?
Answer: updateAnimation()

10. What is the name of the method that handles the game loop for Galactic

War?
Answer: gamelpdate()

CHAPTER 14

1.

What is the name of the new game engine class developed in this chapter?
Answer: Game

. How many sprites can the new engine handle on the screen simultane-

ously?
Answer: unlimited (with available memory)

. Which of the four key classes in the game engine handles image loading?

Answer: ImageEntity

. How many different asteroid sizes does the game use?

Answer: 4

. True or False: Collisions are handled inside the game engine.

Answer: False (collisions are only detected, not handled)

. What type of object is animImage, a private variable in AnimatedSprite?

Answer: ImageEntity

. Which class is responsible for rendering a single frame of an animation

in AnimatedSprite?
Answer: Sprite (which, in turn, uses ImageEntity)

Chapter 15

8. What is the maximum velocity value for the player’s spaceship?

Answer: 10

9. What class does the game/sprite engine pass in some of its events?

Answer: AnimatedSprite

10. What is the name of the support method in AnimatedSprite that returns

a properly formed URL for a file to be loaded?
Answer: getURL

CHAPTER 15

1.

What method in GalacticWar.java makes it possible to add powerups to
the game when a tiny asteroid is destroyed?

Answer: spawnPowerup()

. What construct does the sprite engine (in Game.java) use to manage the

sprites?
Answer: LinkedList

. How many weapon upgrades are available now in Galactic War?

Answer: 5

. How many different point-value power-ups are there in the game?

Answer: 3

. What method in GalacticWar.java returns a stock bullet sprite object,

which is then tweaked to produce the upgraded bullet spreads?
Answer: stockBullet()

. How many different asteroid images are there in Galactic War?

Answer: 14

. If you wanted to add another weapon upgrade to the game, which

method would you need to modify?
Answer: fireBullet()

359

360 Appendix = Chapter Quiz Answers

8. How many sprites is the sprite engine capable of handling at a time?

Answer: unlimited (with available memory)

9. How many bullets are fired at a time with the fifth-level weapon

upgrade?
Answer: 6

10. What is the name of the static int that represents the game state when

the game is running normally?
Answer: GAME_RUNNING

CHAPTER 16

1.

What does the acronym JAR stand for?
Answer: Java Archive

. What is the name of the program used to work with JAR files?

Answer: jar.exe

. What types of files can be stored inside a JAR file?

Answer: Any type of file

. What compression method does the JAR format use?

Answer: ZIP compression

. What method must you use in conjunction with the java.net.URL class

for loading media files when an applet has been deployed in a JAR file?
Answer: getResource()

. What command would you enter to create a new JAR file, called test.jar,

that contains all files in the current folder?
Answer: jar cf test.jar *.*

. What command would you enter to create the same archive but also

include a manifest file called manifest.txt?
Answer: jar cfm test.jar manifest.txt *. *

Chapter 16 361

8. What command would you enter to list the contents of a file called
MyGame.jar with verbose listing enabled?

Answer: jar tvf MyGame. jar

9. What JAR parameter option causes files to be added from a different
folder without adding the folder name to the files stored in the archive?

Answer: C

10. What type of web server do you need to host a Java applet-based game?
Answer: Any server will do; applets are client-side programs.

This page intentionally left blank

Symbols

(pound) characters, 54
% (modulus), 143

- (dot operator), 50

. (periods), 54

A

Abstract Windowing Toolkit. See
AWT
accessor methods, 60, 127
actions, shields, 323-324
actors, 125. See also sprites
adding
error handling, 182-184
game logic, 292-293
JDK folders to system paths, 14
loops, 203-204
power-ups, 289-290, 295-301
source files, 37
sprites, 301-302
threads, 204-209
tools, 24
addKeyListener method, 162
Add Layer Mask dialog, 121
affine transforms, 151
algorithms, 89, 143
Anachronox, 6
AnimatedSprite class, 151
testing, 156-159
animation
explosions, 245-252, 275
frames
drawing, 143-145
tracking, 145-146
sprites, 141-159
encapsulating, 151-156
testing, 146-151

INDEX

applets, 20, 21-27, 42-44
encapsulating, 256-257
hosting, 43
init()event, 79
launching, 28
packaging, 331-338
testing, 339-340
update() event, 80

appletviewer.exe, 12, 17

AppletViewers, 10

applications, 10, 19-20
JFrame, 33-37
programming, 42-44

applying transforms to images,
112-114

applyThrust() method, 289

arrays, 53-56

Asteroid class, 76-77, 215-216

Asteroids, 69, 72-92

asteroids, manipulation methods,
283-288

Asteroids.java source code,
77-92

Audacity, 178. See also sound

audio, 175-197. See also sound

AudioInputStream class, 179

awareness, 200

AWT (Abstract Windowing
Toolkit), 42, 115

backgrounds

images, 227

music, 176
BaseGameEntity class, 215
BaseVectorShape class, 127-128
behaviors, overriding, 203

bitmaps

Galactic War, 226-228

graphics, 109-124
Blizzard Entertainment, 4
bonus points, 296-297
Booleans data type, 51-53
bounding

boxes, 231, 272

rectangles, 71, 73
browsers, 42-43
building

Game classes, 256-268

JAR files, 336-338
Bullet class, 75-76, 216-217
bumpScore() method, 327-328
buttons, detecting mouse, 167-168

C

C++, inheritance, 61
calculating
columns, 143
linear velocity, 90
motion, 90-92
casual games, markets, 6-10
characters, 48-51
char data type, 49
cheats, hidden, 304
checkButton() method, 171
checkCollisions() method,
87-88, 250
checkInput() method, 323
classes
AnimatedSprite, 151,
156-159
Asteroid, 76-77, 215-216
AudiolInputStream, 179
BaseGameEntity, 215

363

Index

classes (continued)
BaseVectorShape, 127-128
Bullet, 75-76, 216-217
Clip, 179
Game, 256-268
heavy, 126
ImageEntity, 128-131,
215, 302
interfaces, 200
libraries, 254-255
MidiSequence, 193-196
overview of, 56-58
Polygon, 100-103
Random, 202
reusable, 189-196
Ship, 75
SoundC1ip, 191-193
Sprite
reusing, 131-139
source code, 132-136
testing, 136-138
String, 49-50
Toolkit, 115
VectorEntity, 255
VectorShape, 229
Class Wizard dialog box, 62
clients, 43
Clip class, 179
clips, 180. See also sound
code. See also programming;
source code
Asteroids.java, 77-92
compiling, 23, 43
event-driven programming,
254-267
FirstApplet, 21
Galactic War, 269-272
Game class, 259-267
key codes, 164
platform, 256
sound, 177-184
Sprite class, 132-136
virtual key codes, 163
collections, arrays, 53-56. See also
arrays
collidesWith() method, 132
collisions, 70
detecting, 71, 75
sprites, 278-281
testing, 87-88, 132, 272
collisionTesting variable, 231
columns, calculating, 143
command prompts, 13, 17-18
compilers, 11. See also javac.exe
configuring, 12-15
invoking, 13

compiling
code, 23, 43
projects in NetBeans, 32
configuring
Asteroids, 72-92
compilers, 12-15
Eclipse, 29-33
Java, 12-19
NetBeans, 27-29
properties, 34
Run Java Application tool, 24
TextPad, 22-23
consoles, output, 25
constructors, 62
containers, web, 23-27
converting images, 118
C program, 57
C++ program, 57
creating. see configuring;
formatting
Croft, Lara, 6
cross-platform support, 45
customizing
events, 257-259
polygons, 100

D

data hiding, 59-61
data types, 45-56
Booleans, 51-53
char, 49
doubTe, 46
float, 46
DataTypes program, 47
declaring arrays, 56. See also
arrays
default behaviors, overriding,
203
Defender, 4
defining
types of sprites, 301-302
variables, 247
delays, frames, 146
deploying
games, 339-340
on the Web, 331-343
design. See also programming
overview of, 3-6
rules, 5-6
detecting
collisions, 71, 75
game-over state,
309-310
mouse buttons, 167-168
Deus Ex, 6

development
IDEs (integrated development
environments), 17, 43
JDK (Java Development Kit), 11,
16-19, 166
tools, 10
dialog boxes
Audacity Preferences, 178
Class Wizard, 62
Dig Dug, 4
digital sample files, playing,
175-176
distributing casual games, 8
division character, 144
dot operator (.), 50
double data type, 46
drawAsteroids() method, 82
drawBullets() method, 81
drawFrame() method, 151
Drawlmage program, 111
drawing
animation sequences, 142
frames, 143-145
images, 110-112
polygons, 102
rectangles, 207
sprites, 275-278
drawShip() method, 81
DrinkJava.java program,
19-20

E
Eclipse, 18-19
configuring, 29-33
programs, running, 38
editors
graphics, 119
text, 17, 18-19, 43
effects, sounds, 175-197. See also
sound
embedding HTML (Hypertext
Markup Language), 338-340
empty constructors, 62
encapsulating, 61
applets, 256-257
sprite animation, 151-156
ending games, 312-313
engines
games, 253
sprites, 275
enhancing
Galactic War, 268-293,
301-328
power-ups, 296
entities, managing, 253-294

environments
IDEs (integrated development
environments), 17, 43
JRE (Java Runtime
Environment), 46, 166
error handling, 182-184
ether-space, 292
events
customizing, 257-259
event-driven programming,
254-267
init(), 79
keyboards, 162-164, 202,
281-283
mouse, 281-283
threads, 83-84
update(), 80
exceptions,
UnsupportedAudio
FileException, 177
explosions, 279. See also collisions
animation, 245-252, 275
starting, 291-292
exporting levels, 55
extracting JAR files, 333

F

files
audio, 176
digital sample, playing,
175-176
HTML (Hypertext Markup
Language), 338-340
JAR (Java Archive), 115, 336. See
also JAR files
Jjava, 20
manifest, 334
media, loading, 305-308
MIDI, 186-187. See also MIDI
projects, reviewing, 336
fil1() method, 101
fireBullet()method,
324-327
firepower, 304
firing weapons, 289-290
FirstApplet program, 26
source code, 21
first projects, games, 69-72
float data type, 46
floating-point numbers, 46-48
FLOPS (FLoating point
OPerations per Second), 46
formatting
Asteroids, 72-92
game levels, 54-55

HTML (Hypertext Markup
Language), 338-340
JAR (Java Archive) files, 332-333
sounds, modifying, 178
frames
animation, tracking, 145-146
drawing, 143-145
frameworks, 253
functions
Graphics.drawString(), 49
main(), 57-59
Fuzzy Select tool, 120

G

Galactic War, 211-223
animated explosions, 245-252
bitmaps, 226-228
collisions, 225-251
enhancing, 268-293, 301-328
entity management, 253-294
packaging, 334-338
power-ups, 295-301
source code, 217-222, 228-243,

269-272
sprites, 225-244
versions, 225-226
Web deployment, 331-343

Game class, 256-268
source code, 259-267

game-over state, detecting, 309-310

gameRefreshScreen()
method, 272

games
Anachronox, 6
Asteroids, 69, 72-92
casual, 6-10
Defender, 4
deployment, 339-340
Deus Ex, 6
Dig Dug, 4
ending, 312-313
engines, 253
first projects, 69-72
Galactic War, 211-223. See also

Galactic War
Geometry Wars, 10
Ion Storm, 6
Joust, 4
Legend of Zelda, The, 4
LEGO: Star Wars, 6
levels, creating, 54-55
logic, adding, 292-293
loops, 83-84

timing, 199-210

updating, 272-275

Index

Lord of the Rings Online, 7

Marble Blast, 9

Pac-Man, 4, 6

programming, 95-108

Project Gotham Racing, 10

resetting, 308-309

RoboBlitz, 9

Space Invaders, 4

Star Wars: The Old Republic, 7

states, 302

Super Mario Brothers, 4

testing, 339-340

Tomb Raider, 6

Unreal Tournament III, 9

updating, 233

World of Warcraft, 7
gameShutdown()method, 272,

312-313
gameStartup() method, 305
gameTimedUpdate() method, 309
gameTimeUpdate() method, 272
gameUpdate() method, 250
Garage Games, 9
Geometry Wars, 10
getBounds () method, 75
getImage() method, 110
getKeyChar method, 163
GIMP (GNU Image Manipulation

Program), 118, 122
grabbing power-ups, 315-318
graphics

bitmaps, 109-124

editors, 119

frameworks, 254

raster, 109

vector, 70, 97-108
Graphics context, 11, 39
Graphics2D, 109, 126
Graphics.drawString()

function, 49

H

health meters, 304

heavy classes, 126

hidden cheats, 304

histories, Java versions, 16

hosts, applets, 43

HTML (Hypertext Markup
Language), 338-340

Ibarra, Edgar, 227
IDEs (integrated development
environments), 17, 43

365

366

Index

IIS (Internet Information
Server), 42
ImageEntity class, 128-131,
215, 302
images, 6, 118-119. See also
graphics
backgrounds, 227
converting, 118
drawing, 110-112
loading, 110-112
masking, 119-123
opaque, 115-118
sprites, 302-304
transforms, applying, 112-114
implements keyword, 162, 169
individual frames, drawing,
143-145
inheritance, 61-62, 73, 255
init() event, 79
init() method, 248
input
keyboards, 161-174,
164-166, 240
keys, 304, 318-320
mouse, 161-174, 168-173
multiple key presses, 288-289
installing Java, 10-12
integers, numbers, 45-46
integrated development
environments. See IDEs
interfaces, 42-43
classes, 200
KeyListener, 77, 104, 162
Mouselistener, 104, 171
MouseMotionlListener, 172
Runnable, 77, 200-203
Internet Information Server.
See 1IS
invoking compilers, 13
Ion Storm, 6
IT (information technology), 8

J

jar.exe program, 332-334

JAR (Java Archive) files, 115, 180,
182
applets, packaging, 331-338
creating, 332-333
extracting, 333
lists, 333
updating, 334

Java
configuring, 12-19
installing, 10-12

Java Archive files. See JAR files

javac.exe, 11, 17, 20

Java Class dialog, 37

Java Development Kit. See JDK

java.exe, 17

.Jjava files, 20

Java Runtime Environment. See
JRE

Java Server Pages. See JSPs

Java Standard Edition 6 (Java
SE 6), 10

Java Web Server. See JWS

javax.sound.sampled, 175, 177

JDK (Java Development Kit), 11,
16-19, 166, 332

JFrame, 10, 11, 33-37

JFrameDemo project, 33, 39

Joust, 4

JRE (Java Runtime Environment),
10, 46, 166, 182, 332

JSPs (Java Server Pages), 43

JWS (Java Web Server), 42

K

keyboards
events, 162-164, 202, 281-283
input, 161-174, 164-166, 240
multiple key presses, 288-289

key codes, 164

KeyListener interface, 77, 104,
162

keyPressed() method, 88-90

keys, input, 304, 318-320

keywords, 50
implements, 162, 169
static, 59, 247

L

launching applets, 28. See also
starting
layers, adding masks, 121
Legend of Zelda, The, 4
LEGO: Star Wars, 6
levels
creating, 54-55
of weapons, 297-301
libraries
classes, 254-255
Swing, 42
linear velocity, 90
linked lists, 258
Linux, 13
listener methods, 161-162
listening for keyboard events,
162-164, 202

lists
JAR files, 333
linked, 258

loading
images, 110-112
media files, 305-308
MIDI files, 187
resources, 180
sound, 180

logic, adding, 292-293

loops
adding, 203-204
games, 83-84
timing, 199-210
updating, 272-275

Lord of the Rings Online, 7

M

Magic Wand tool, 120

main() functions, 57-59

managing
entities, 253-294
projects, 35

manifest files, 334

Mappy, 55

Marble Blast, 9

markets
casual games, 6-10
studying, 4-5

masking images, 119-123

media files, loading, 305-308

memory, arrays, 53

meters, shields, 304

methods, 60
accessor, 127
addKeylListener, 162
applyThrust(), 289
bumpScore(), 327-328
checkButton(), 171
checkCollisions(), 87-88, 250
checkInput(), 323
collidesWith(), 132
drawAsteroids(), 82
drawBullets(), 81
drawFrame(), 151
drawShip(), 81
fill(), 101
fireBullet(), 324-327
gameRefreshScreen(), 272
gameShutdown(), 272, 312-313
gameStartup(), 305
gameTimedUpdate(), 309
gameTimeUpdate(), 272
gameUpdate(), 250
getBounds (), 75

getImage(), 110
getKeyChar, 163
init(), 248
keyPressed(), 88-90
listener, 161-162
mouseClicked(), 171
mutator, 127
paint(), 166, 170
position(), 127
repaint(), 208
resetGame(), 308
sequences, 142
setPosition(), 127
spawnPowerup(), 321
spriteCollision(), 278-279,
315
spriteUpdate(), 275, 313
String class, 50
tiled, 142
update(), 249
updateAsteroids(), 86-87
updateBullets(), 85-86
updateShip(), 84-85
warp(), 292-293
MIDI (Musical Instrument Digital
Interfaces), 181
files, loading, 187
playing, 186-189
MidiSequence class, 193-196
mixing sounds, 190. See also sounds
MMORPG (massively multiplayer
online role-playing game), 7
modulus (%), 143
Moore, Jay, 9
motifs, 6
motion
calculating, 90-92
mouse, reading, 167
mouse
buttons, detecting, 167-168
events, 281-283
input, 161-174
motion, reading, 167
mouseClicked() method, 171
Mouselistener interface, 104, 171
MouseMotionListener
interface, 172
MouseTest program, 169
movement, algorithms, 89
moving spaceships, 289
multiple key presses, 288-289
multithreading, 209
music, 175-197. See also sound
backgrounds, 176
MID], playing, 187-189
objects, 304-305

Musical Instrument Digital
Interfaces. See MIDI
mutator methods, 60, 127

N

NetBeans, 18, 27-29
New Java Application project
configuration dialog, 30
New Java Class dialog, 32
new operator, 53
New Project dialog, 28, 30
numbers
floating-point, 46-48
integers, 45-46
versions, 14-16

o
object-oriented programming.
See OOP
objects
music, 304-305
sounds, 304-305
OOP (object-oriented
programming), 59-66, 152
opaque images, 115-118
opening
brackets, 20
command prompts, 13
operators
dot (.), 50
new, 53
optimizing Galactic War, 268-293,
301-328
output, consoles, 25
overriding default behaviors, 203

P
packaging
applets, 331-338
Galactic War, 334-338
Pac-Man, 4, 6
paint() method, 166, 170
pause property, 302
periods (.), 54
platform code, 256
playing
digital sample files, 175-176
MIDI, 186-189
sounds, 181-182, 184-186
PlayMusic program, 187-189
PlaySound program,
183, 185
PNG file format, 118
Polygon class, 100-103

Index

polygons, programming, 100-103
polymorphism, 63-66
pools, threads, 190
positioning sprites, 126
position() method, 127
pound (#) characters, 54
power-ups
adding, 289-290
Galactic War, 295-301
grabbing, 315-318
spawning, 320-322
upgrading, 324-327
presses, multiple key, 288-289
private variables, 179
programming. See also code
applets, 42-44
applications, 42-44
bitmapped graphics, 109-114
event-driven, 254-267
Galactic War, 228-243, 269-272
GalacticWar.java, 217-222
Game class, 259-267
games, 95-108
OOP (object-oriented
programming), 59-66, 152
overview of, 41-42
polygons, 100-103
shapes, 98-100
sound, 177-184
sprites, 125-127
vector graphics, 97-98
programs
C, 57
C++, 57
DataTypes, 47
Drawlmage, 111
DrinkJava.java, 19-20
FirstApplet, 26
jar.exe, 332-334
MouseTest, 169
PlayMusic, 187-189
PlaySound, 183, 185
RandomShapes, 98-100
running, 38
SimpleLoop, 200
ThreadedLoop, 205-208
writing, 19-37
project files, reviewing, 335-336
Project Gotham Racing, 10
projects
Eclipse, 29-33
games, 69-72
JFrameDemo, 33, 39
managing, 35
NetBeans, 27-29
Prokein, Reiner, 110, 226

367

368

Index

properties
configuring, 34
pause, 302
protected variables, 179
public variables, 179

R

Random class, 202
RandomShapes program,
98-100
raster graphics, 109
reading mouse motions, 167
rectangles
bounding, 71, 73
drawing, 207
references, 50
refreshing screens, 82, 272-275,
310-312
registering TextPad, 22
releasing power-ups, 296-297
repaint() method, 208
resetGame() method, 308
resetting games, 308-309
resources, loading, 180
reusable classes, 189-196
reusing Sprite class, 131-139
reviewing project files, 335-336
RoboBlitz, 9
rotating shapes, 103-106
rules, design, 5-6
Run Java Application tool, 24
Runnable interface, 77, 200-203
running
programs, 38
projects in NetBeans, 32
runtime, JRE (Java Runtime
Environment), 46, 166

S

scaling shapes, 103-106
scores, 304

tallying, 327-328
screens, refreshing, 82,

272-275, 310-312
sequences

methods, 142

MIDI, 181, 186-189
servers, overview of, 42-43
setPosition() method, 127
shapes

programming, 98-100

rotating, 103-106

scaling, 103-106
shells, 17-18

shields
actions, 323-324
meters, 304
Ship class, 75
showBounds variables, 231
shutting down games, 312-313
Sierra Entertainment, 4
SimpleLoop program, 200
sound
code, 177-184
digital sample files, playing,
175-176
effects, 175-197
error handling, 182-184
loading, 180
objects, 304-305
playing, 181-182, 184-186
stopping, 182
troubleshooting, 177
wrapping, 184
SoundClip class, 191-193
source code
Asteroids.java, 77-92
FirstApplet, 21
Galactic War, 228-243, 269-272
GalacticWar.java, 217-222
Game class, 259-267
Sprite class, 132-136
source files, adding, 37
Space Invaders, 4
spaceships, 228. See also Galactic
War
moving, 289
power-ups, 296-297
spawning power-ups, 320-322
spawnPowerup() method, 321
Sprite class
reusing, 131-139
source code, 132-136
testing, 136-138
spriteCollision() method,
278-279, 315
sprites, 125-140
animation, 141-159. See also
animation
encapsulating, 151-156
testing, 146-151
collisions, 278-281
drawing, 275-278
engines, 275
Galactic War, 225-244
images, 302-304
inheritance, 255
programming, 125-127
types, 301-302
updating, 275-278, 313-315

spriteUpdate() method, 275,
313
standard weapons, 298. See also
weapons
StarCraft, 5
starting
explosions, 291-292
threads, 204-205
Star Wars: The Old Republic, 7
states
game-over, detecting, 309-310
games, 302
static keyword, 59, 247
stopping
sounds, 182
threads, 204-205
String class, 49-50
strings, 48-51
strips, animation, 142
studying markets, 4-5
supercomputers, 46
Super Mario Brothers, 4
support, adding threads, 204-209
Swing library, 42
System Properties dialog, 12
System utility, 13

T

tallying scores, 327-328
testing
AnimatedSprite class,
156-159
collisions, 70, 87-88,
132, 272
games, 339-340
keyboard input, 164-166
mouse input, 168-173
sprite animation, 146-151
Sprite class, 136-138
text editors, 17-19, 43
TextPad, 18, 43
configuring, 22-23
trial edition of, 22
ThreadedLoop program, 205-208
threads, 77
adding, 204-209
events, 83-84
multithreading, 209
pools, 190
starting, 204-205
stopping, 204-205
tiled methods, 142
timing loops, 199-210
Tomb Raider, 6
Toolkit class, 115

tools

adding, 24

development, 10

Fuzzy Select, 120

Magic Wand, 120

Run Java Application, 24

System utility, 13
tracking frames, 145-146
transforms

affine, 151

images, applying, 112-114
transparency, 115

images, 118-119
troubleshooting

error handling, 182-184

sound, 177
types

of animation, 142

data, 45-56. See also data types

of sprites, 301-302

U

Unreal Tournament III, 9

UnsupportedAudio
FileException, 177

updateAsteroids() method,
86-87

updateBullets() method, 85-86
update() event, 80
update() method, 249
updateShip() method, 84-85
updating
games, 83-84, 233, 272-275
JAR files, 334
screens, refreshing, 310-312
sprites, 275-278, 313-315
upgrading
power-ups, 324-327
weapons, 297-301

Vv

variables
arrays, 53-56. See also arrays
collisionTesting, 231
defining, 247
showBounds, 231
VectorEntity class, 255
vectors
Galactic War, 213-223
graphics, 70, 97-108
VectorShape class, 229
velocity
linear, 90
sprites, 126

Index

versions, 14
Galactic War, 225-226
numbers, 15-16
vertices, 101
viewing, AppletViewers, 10
virtual key codes, 163
Vivendi Universal Games, 4

W

warp() method, 292-293
weapons

firing, 289-290

power-ups, 295-301,

324-327

upgrading, 297-301
web clients, 43
web containers, 23-27
Web deployment, 331-343
web servers, overview of, 42-43
World of Warcraft, 5, 7
wrapping sound, 184
writing programs, 19-37

X

Xbox 360, 9
Xbox Live, 9

369

	Contents
	Introduction
	PART I: JAVA FOR BEGINNERS
	Chapter 1 Getting Started with Java
	Java and the Web
	The Casual Games Market
	Installing and Configuring Java
	Your First Java Program
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 2 Java Programming Essentials
	Java Applets and Applications
	The Java Language
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 3 Creating Your First Java Game
	About the Game Project
	Creating the Game
	What You Have Learned
	Review Questions
	On Your Own

	PART II: JAVA GAME PROGRAMMING
	Chapter 4 Vector-Based Graphics
	Programming Vector Graphics
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 5 Bitmap-Based Graphics
	Programming Bitmapped Graphics
	Transparency
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 6 Simple Sprites
	Programming Simple Sprites
	Creating a Reusable Sprite Class
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 7 Sprite Animation
	Sprite Animation
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 8 Keyboard and Mouse Input
	Listening to the User
	Keyboard Input
	Mouse Input
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 9 Sound Effects and Music
	Playing Digital Sample Files
	Playing MIDI Sequence Files
	Reusable Classes
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 10 Timing and the Game Loop
	The Potency of a Game Loop
	Stepping Up to Threads
	What You Have Learned
	Review Questions
	On Your Own

	PART III: THE GALACTIC WAR PROJECT
	Chapter 11 Galactic War: From Vectors to Bitmaps
	Improving the Game
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 12 Galactic War: Sprites and Collision Boxes
	Creating the Project
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 13 Galactic War: Squashed by Space Rocks
	Being Civilized about Collisions
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 14 Galactic War: Entity Management
	Adjusting to Event-Driven Programming
	Enhancing Galactic War
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 15 Galactic War: Finishing the Game
	Let’s Talk about Power-Ups
	Enhancing Galactic War
	What You Have Learned
	Review Questions
	On Your Own

	Chapter 16 Galactic War: Web Deployment
	Packaging an Applet in a Java Archive (JAR)
	Creating an HTML Host File for Your Applet
	What You Have Learned
	Review Questions
	Epilogue

	Appendix: Chapter Quiz Answers
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

