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PREFACE

This is one of two volumes consisting of 32 invited papers presented
at the International Indian Statistical Association Conference held during
October 10–11, 1998, at McMaster University, Hamilton, Ontario, Canada.
This Second International Conference of IISA was attended by about 240
participants and included around 170 talks on many different areas of
Probability and Statistics. All the papers submitted for publication in
this volume were refereed rigorously. The help offered in this regard by
the members of the Editorial Board listed earlier and numerous referees
is kindly acknowledged. This volume, which includes 32 of the invited
papers presented at the conference, focuses on Advances on Theoretical
and Methodological Aspects of Probability and Statistics.

For the benefit of the readers, this volume has been divided into seven
parts as follows:

Part I Stochastic Processes and Inference
Part II Distributions and Characterizations
Part III Inference
Part IV Bayesian Inference
Part V Selection Methods
Part VI Regression Methods
Part VII Methods in Health Research

I sincerely hope that the readers of this volume will find the papers to be
useful and of interest. I thank all the authors for submitting their papers
for publication in this volume.
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CHAPTER 1

NONLINEAR FILTERING WITH
STOCHASTIC DELAY EQUATIONS

G.KALLIANPUR P.K.MANDAL
University of North Carolina, Chapel Hill, NC

Abstract: We consider a model where the coefficient function ‘h’
appearing in the observation model depends not only on the
instantaneous value of the signal Xt, but also on the past signal values.
The signal process is modeled by a stochastic delay differential equation
(SDDE). The signal process is characterized as the unique solution to
an appropriate martingale problem. A Zakai-type stochastic differential
equation (SDE) is obtained for the optimal filter corresponding to the
nonlinear filtering problem and the filter is characterized as the unique
solution to the Zakai equation.

Keywords and phrases: Nonlinear filtering, Zakai equation, stochastic
delay equations, martingale problem

1.1 INTRODUCTION

The general filtering problem can be described as follows. The signal or
system process , is unobservable. Information about (Xt)
is obtained by observing another process Y which is a function of X
corrupted by noise. The usual model for Y is

(1.1.1)

where h is a measurable function and (Wt) is a standard Wiener process.
The observation σ -field  contains all the available
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information about Xt. The primary aim of filtering theory is to get an
estimate of Xt based on the information . This is given by the
conditional distribution vt of Xt given , or equivalently, the conditional
expectation  for a rich enough class of functions f. Since
this estimate minimizes the squared error loss, v is called the optimal
filter.

It is known that the non-linear filter vt satisfies a stochastic
differential equation (SDE) widely known as the Kushner or the Fujisaki-
Kallianpur-Kunita (FKK) equation. See Kushner (1967), Fujisaki,
Kunita and Kallianpur (1972) and Kallianpur (1980). When the signal
process is a Markov process satisfying the SDE

where  is another Brownian motion independent of W, Zakai (1969)
obtained an equivalent stochastic differential equation for a measure
valued process σ t, called the unnormalized conditional distribution of Xt

given , such that .
In this article we consider the case where the coefficient ‘h’ in the

observation model (1.1.1) depends not only on the current state of the
signal but also on the values from the past of length r>0. In particular,
we consider

(1.1.2)

where  is a -valued process defined by

Also, unlike the usual theory, we consider the signal process to be non-
Markov. In a recent paper, Bhatt and Karandikar (1996) studied the
non-linear filtering problem corresponding to a non-Markov signal
process where they allowed the coefficients to depend on the past values
of the observation but dependence on the signal is through instantaneous
values only. We take the signal process to be governed by a so called
Stochastic Delay Differential Equation (SDDE):

(1.1.3)

where r>0, η is a C-valued square integrable random variable, 
 is a standard Brownian motion, independent of W and a and b

are two continuous functionals on C satisfying the Lipschitz condition:

(1.1.4)
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for some constant K>0.
Stochastic delay differential equations were first studied by Ito and

Nisio (1964) for the case of infinite delay (r=∞). Recently, Mohammed
(1984) has done an extensive investigation of stochastic functional
differential equations with finite delay. Although the solution of a SDDE
is not Markov, properly picked slices of the solution paths (namely the
C-valued process �tX) constitute a Markov process. See, for example,
Mohammed (1984. Theorem III.1.1).

The main objective of this paper is to obtain a Zakai-type equation
for the above filtering probl em and to show that the optimal filter is
characterized as the unique solution of that equation. We do this by
applying the ideas and, in some cases, extending the results of
Mohammed (1984).

We organize this article as follows. In Section 1.2, we start with some
known results on martingale problems and their connections to Markov
processes. Also, we introduce the notation and definitions we will follow
throughout this article.

The main results on SDDE needed for our analysis are discussed in
Section 1.3. A few of the results in this section are new and some are
generalizations of the results of Mohammed (1984). We show that for
any solution (Xt, -r�t�T) the SDDE (1.1.3), the process (πtX, 0�t�T)
can be characterized as the unique solution to a martingale problem
corresponding to a suitable operator A0. Then the martingale problem
techniques are used to prove the Markov property of �tX as given in
Theorem 1.3.4. Also, the latter result is more general than Theorem
IV.4.3 of Mohammed (1984) in that we do not require the boundedness
assumption on the coefficients a and b to obtain the explicit form of the
generator.

Section 1.4 deals with the filtering problem with delay equations.
Here we deduce a stochastic differential equation for the so called
unnormalized conditional expectation of �tX given . The
corresponding Zakai type equation for the unnormalized conditional
distribution of �tX given  is obtained in Section 1.5 and the uniqueness
of the solution to the Zakai equation is also proved there.

1.2 PRELIMINARIES

Suppose S is a complete, separable metric space and B is an operator
on C(S), the space of continuous functionals on S, with domain D(B)
�Cb(S), the space of bounded continuous functionals on S.

For a sequence of functions , m=1, 2, …and , we
say that � is the bounded pointwise limit of �m if  and

. We write .
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We impose the following conditions on the operator B.

C1. There exists �∈C(S), satisfying

where Kf is a constant depending on f.

C2. There exists a countable subset {fn} �D(B) such that

 

where “bp-closure” means the bounded pointwise closure.

C3. D(B) is an algebra that separates points in S and contains the
constant functions.

Definition Suppose µ is a probability measure on S. A process Zt,
0�t�T, defined on some probability space (�, , P) and taking values
in S is said to be a solution to the martingale problem for (B, µ) if:

(i)

(ii)  for every t�T;

(iii) for all f∈D(B),

 

is a martingale.

Definition The martingale problem for (B, µ) is said to be well posed in
a class of processes C if there exists a solution Z1∈C to the martingale
problem for (B, µ) and if Z2∈C is also a solution to the martingale problem
for (B, µ), then Z1 and Z2 have the same probability distributions.

We will assume the following additional conditions.

C4. The martingale problem for (B, δz) is well posed in the class of
r.c.1.1. solutions for every z∈S.

C5. For all µ P(S), the space of probability measures on S, any
progressively measurable solution to the martingale problem for
(B, µ) admits a r.c.l.l. modification.
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The following result says that the uniqueness of the solution of a
martingale problem always implies the Markov property [see Theorems
IV.4.2 and IV.4.6 of Ethier and Kurtz (1986) and Remark 2.1 of Horowitz
and Karandikar (1990)].

Lemma 1.2.1 Suppose B satisfies the conditions C1, C2 and C4. Then
the solution Z to the martingale problem for (B, µ) is a Markov process.
Further, if A is the generator of Z, then D(B) �D(A) and A and B coincide
on D(B).

We will denote by Cb the Banach space of all bounded continuous
functions  with the supremum norm

 

Define a weak topology on Cb as follows: Let M(C) be the Banach space
of all finite regular measures on B(C), the Borel sets of C, given the
total variation norm. Consider the continuous bilinear form

 given by

 

A family  in Cb is said to converge weakly to  as t→0+ if
 for all µ∈M(C). We write .

The following result states the relationship between the weak
convergence and the bounded pointwise convergence [see Proposition
IV.3.1 of Mohammed (1984)].

Proposition 1.2.1 Suppose for each t>0,  and also �∈Cb. Then
 if and only if  is bounded and

 as t→0+ for each θ∈C, that is,  converges to φ bounded
pointwise.

1.3 STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

Let (�, , P) be a complete probability space and W=(W(t))0�t�T be a real
valued Wiener process defined on it.

Suppose  is a family of increasing P-complete sub-σ-fields
of  such that for each t ∈ [0, T],

 

Copyright © 2002 Taylor & Francis



G.KALLIANPUR and P.K.MANDAL8

Suppose  is the class of all continuous functions from [-r,
0] to . For 0�s�t�T, and a C-valued random variable η on (�, , P),
let

and  

For any Banach space B with norm  we denote by L2(�, B) the space
of all random variables � taking values in B such that  . For
each sample path of a real valued process �(t), -r�t�T, define

 

The following theorem on the existence and the uniqueness of the solution
of an SDDE has been proved by Mohammed (1984). See, for example,
Theorem II.2.1, Lemma III.1.2 and Remark V.2.2(ii) on page 143.

Theorem 1.3.1 Suppose that (�, , P), W,  are given as above.
Suppose  are two Borel measurable functions
satisfying the following Lipschitz and growth conditions. For all 
and ,

 

for some positive constant K independent . Suppose 0�s�T
and η is a s-measurable C-valued random variable. Then the stochastic
delay differential equation (SDDE) with the initial process η, given by

(1.3.5)

possesses a unique continuous strong solution  such
that for each -measurable.

Remark Suppose  are two continuous functionals satisfying
the Lipschitz condition (1.1.4). Consider  and 
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[0, T], θ∈C. Then

 

for some constant K1>0 independent of t and θ. Hence, under (1.1.4), a(t,
θ) and b(t, θ) satisfy the conditions (E1) and (E2) of Theorem 1.3.1.
Therefore there exists a unique strong solution to the SDDE (1.1.3).

In the filtering problem of Section 1.4 we will need the assumption
that the initial process η is square integrable. It then follows that

(1.3.6)

Now we will proceed to obtain an operator A0 with its domain D(A0)
�Cb such that if (X(t), -r�t�T) is the solution to the SDDE (1.1.3) and

, then (πtX, 0�t�T) is a solution to the martingale problem
corresponding to A0. This will be one of the main tools in dealing with
the nonlinear filtering problem with delay equations in the next section.
First we prove the following

Lemma 1.3.1 Suppose (X(t), -r�t�T) is the solution to the SDDE (1.1.3)
and . Then

(1.3.7)

PROOF Note that  
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which gives rise to the equation (1.3.7).

Definition Quasi-tame Function [Mohammed (1984, Definition IV.4.2,
pp. 105)] A function  is said to be a quasi-tame function if
there exist k>0, C∞-bounded maps ;  and
piecewise C1 functions  with absolutely integrable for
j=1, …, k-1, such that

(1.3.8)

for θ ∈C with the understanding that when k=1, . Let the
space of quasi-tame functions be denoted by .

Now suppose φ ∈  is given by (1.3.8). Then SDDE (1.1.3), identity
(1.3.7) and an application of the Ito formula yield that
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(1.3.9)

Define an operator A0 on Cb with  as follows. Let 

be of the form (1.3.8). Then

Then it is easy to see that the following theorem holds. See, for example,
Mohammed (1998, p. 26).

Theorem 1.3.2 Suppose (X(t), -r�t�T) is given by the SDDE (1.1.3)
with the coefficients a, b satisfying the Lipschitz condition (1.1.4). Suppose
φ ∈ . Then

 

is a .

Let us note the following properties of the operator A0.

Proposition 1.3.1 Suppose A  is defined as above. Then A0 satisfies the
conditions C1-C3 of Section 1.2.

PROOF Suppose  is given by

 

(1.3.10)

Copyright © 2002 Taylor & Francis
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where . Then
for ,

where  is a constant depending on f, Fj, gj, j=1, …, k-1 and

(1.3.12)

Therefore, C1 is satisfied by A0.
To see that C2 holds, note that

 

This will imply the existence of a countable set  such
that

 

and hence C2 follows.
That D(A0) is an algebra follows from Mohammed (1984, p. 107). It is

also easy to check that D(A0) separates points in C[-r, 0] and contains
the constant functions which implies that A0 satisfies C3.

From Theorem 1.3.2 we then have that πtX is a solution to the
martingale problem corresponding to (A0, η). We now show that it is the
unique solution.

Theorem 1.3.3 Suppose η is a square integrable C-valued random
variable and A0 is as given by (1.3.10). Then the martingale problem for
(A0, η) is well posed.

(1.3.11)
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PROOF Let Zt, defined on a probability space  be a progressively
measurable solution to (A0, η)-martingale problem, i.e. for , 
is a semi-martingale, given by

(1.3.13)

and Z0=η. We shall show that  for some continuous process
 satisfying a SDDE of the form (1.1.3). Then by the

uniqueness of the solution to the SDDE (1.1.3) we will have that the
distribution of Zt is the same as that of πtX, proving the well-posedness
of the martingale problem for (A0, η).

From (1.3.13) it follows that

(1.3.14)

where

(1.3.15)

Also, applying the Ito formula to (1.3.13) we have for ß ∈C1[0, T] and
φ∈ ,

(1.3.16)

Now suppose . Let ∆=∆(F, g) be a bound for
the integral . Suppose  is a 
function [Hirsch (1976, pp. 41–42)] such that

Suppose , so that  and f(x)=x, for |x|�∆. Also,
let  be given by . Consider a quasitame
function of the form (1.3.8) with k=2, given by,

(1.3.17)
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Then from (1.3.10), we have

and similarly,

 

Then from (1.3.15),  and hence,
from (1.3.14), . Therefore  a.s. . From (1.3.16), we
then have for t’�t�0,

 

Using the special forms of � and A0�, given by (1.3.17), and (1.3.18),
respectively, for t’�t�0, we have

  

(1.3.18)
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Letting G(t, s)=ß(t)g(s) for t ∈ [0, T], s ∈[-r, 0], we may rewrite the above
equation in the following form

(1.3.19)

By linearity we will then have equation (1.3.19) for all functions G of
the form , where ßi ∈ C1[0, T], gi ∈ C1[-r, 0], i= 1,
…, m. Then by standard limiting arguments it can be shown that (1.3.19)
holds for all G ∈ C1,1 ([0, T]×[-r, 0]).

Define

(1.3.20)

To show that  it suffices to show that for t1, t2  ∈ [0, T], s1, s2  ∈
[-r, 0],

(1.3.21)

For, if t�0, -r�s�0,

 

First let us consider the case when -r<s2<s1<0. It suffices to show that
for some 0<δ<s2+r,

(1.3.22)
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Because, if (1.3.22) holds, then letting k to be the largest integer smaller
than [2(t2-t1)/δ], we have

 

Note that s2�s1-jδ/2�s1, for all j=1, …, k.
To prove (1.3.22) suppose  is such that .

Let  and  be supported on
. Fix a  and let t<t’<t+δ. Taking G(u, s)= g* (u+s-t)

in (1.3.19), we see that for t�u�t’,

 

Hence from (1.3.19)

(1.3.23)

putting t’+s-t=α. Note that during the change of variable of integration
in (1.3.23), the boundary points for α lie outside the support of g* because

 and .
Since (1.3.23) holds for all , we have for any

,

 

But this being true for all  we have Zt’(α+t-t’)=Zt(α), 
, which is (1.3.22). Hence we have proved (1.3.21) when -r<s2<

s1<0.
If -r�s2<s1<0, then take a sequence  which decreases to s2.

Then for large m, so that , we have
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Taking the limit as m→∞, by continuity of Zt(·), we then have 
.

If -r<s2<s1�0, then taking a sequence  increasing to s1 we have
for large m (so that ),

Again by continuity of Zt(·), taking the limit as m→∞, we get 
.

Finally if s2=-r and s1=0, then 
.

Thus, we have proved that . It is easy to check that 
 is a continuous process and hence, so is (Zt, 0�t�T). Now it

remains to show that the process  satisfies a SDDE of the form (1.1.3).
For , taking �(θ )=f(θ (0)) in (1.3.13), we have

 

is a martingale. That is,

 

is a martingale for all . Then using standard arguments [see,
for example, Theorems 13.55 and 14.80 of Jacod (1979) and Theorem
4.5.2 of Stroock and Varadhan (1979)] we conclude that  satisfies a
SDDE of the form (1.1.3) for some Brownian motion . This implies
that the law of  and hence of  is uniquely determined. Thus
the martingale problem for (A0, η) is well posed.

Remark In the course of proving Theorem 1.3.3 we have proved that
for any probability measure µ on Borel sets of C([-r, 0], ), the martingale
problem for (A0, µ) is well posed in the class of progressibly measurable
solutions and any progressively measurable solution to (A0, µ) has a
continuous modification. In particular, we have that the conditions C4
and C5 of Section 1.2 hold for A0.

The next result is on the Markov property of πtX and has been proved
by Mohammed (1984) using a different method. The form of its weak
generator is also obtained there but under the additional assumption
that ‘a’ and ‘b’ are bounded. See Theorems III.1.1 and IV.4.3.
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Theorem 1.3.4 Suppose (X(t), -r≤t≤T) satisfies the SDDE (1.1.3) with the
coefficients a, b satisfying the Lipschitz condition (1.1.4). Then

(i) πtX is a Markov process.
(ii) τq is in the domain, D(A), of the weak generator A of (πtX) and the

restriction of A on τq is the same as A0.
(iii) τq is weakly dense in Cb.

PROOF By Theorem 1.3.2, πtX is a solution to the martingale problem
for (A0, η). From Proposition 1.3.1 and the remark following the proof of
Theorem 1.3.3, A0 satisfies conditions C1, C2, C4. Then an application
of Lemma 1.2.1 with B=A0 proves (i) and (ii). To prove part (iii) it suffices
to prove that the tame functions can be approximated by quasitame
functions. For, by Theorem IV.4.1 of Mohammed (1984), the tame
functions are weakly dense in Cb. So let be � a tame function and has
the representation

 

where  is C∞-bounded and s1<…<sk ∈ [-r, 0]. We have to
find a sequence �m, m=1, 2, …of quasi tame functions such that

.
Choose a sequence , m=1, 2, …of C∞-bump functions [Hirsch (1976,

pp. 41–42)] with the properties

 

Define . Then each Fm is a C∞ bounded function. Also
define  for t ∈ [-r, 0], where

 

Note that g(t) is a C∞ function satisfying  (In fact, any
continuously differentiable g on (-∞, ∞), supported on a bounded interval,
such that  will do the work.)

Now let ∈>0 be given. Suppose -r≤sj<0 and θ ∈ C. By uniform
continuity of θ find δj>0 such that .  Also
suppose K is a bound for θ(t), t ∈ [-r, 0]. Then
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Hence  for any θ ∈ C,

(1.3.24)

We consider two cases.

Case 1 sk=0. For θ ∈ C define

Then �m, m=1, 2, …, are quasi-tame functions and since f is continu-
ous, from (1.3.24), we have

Case 2 sk<0. For θ ∈ C define
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where . Clearly, φm, m=1, 2, …, are
quasi-tame functions. Since f and hence f* is continuous, from (1.3.24),
we have

 

Also in both the cases,

 
Hence, by Proposition 1.2.1, .

Remark As noted earlier, Mohammed (1984) has given alternative
proofs of the parts (i) and (ii) of the theorem. But the form of A0 is
obtained with the further assumption that the coefficients a, b are
globally bounded (see, e.g., Theorem III. 1.1 and Theorem IV.4.3). The
proof of part (iii) given by Mohammed (1984, Theorem IV.4.2(iii)) is not
entirely correct. After the completion of the article it has come to the
authors’ attention that a corrected proof of (iii) is given in the errata to
be found at http://salah.math.siu.edu/sfde.html.

1.4 THE FILTERING PROBLEM

Suppose the signal process (Xt, -r≤t≤T) is governed by the SDDE (1.1.3)
with η a -measurable square integrable C-valued random variable
and a, b: C→R satisfying the following Lipschitz condition:

 

for some constant K>0.
Suppose the observation process (Yt, 0≤t≤T) is given by (1.1.2). We

assume that h: [0, T]×C→R is a Borel measurable function satisfying

(1.4.25)

Suppose all the processes are defined on the probability space (Ω,F (Ft),
P). First, we are going to obtain an analog of the Bayes formula due to
Kallianpur and Striebel (1968), in our setup. Our treatment is similar
to the one in the appendix of Kallianpur and Karandikar (1988).
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Define a measure Q on (Ω, F) by  where

(1.4.26)

It then follows that the measure Q is a probability measure under which
(Yt) is a Wiener process independent of (Xt) and the distribution of (X),
under Q, is the same as that under P. It also follows that for any
measurable integrable function g,

(1.4.27)

See Theorem 11.3.1 of Kallianpur (1980) and the appendix of Kallianpur
and Karandikar (1988).

For the convenience of later analysis, we will consider the probability
space (Ω×Ω,F⊗F, µ), where . We denote a typical point in
Ω×Ω by (ω, ω′). For any F-measurable function ζ on Ω, ζ† will denote the
function on Ω×Ω defined by  which clearly is an F⊗F-
measurable function. Also, ζ′ will denote the function on Ω×Ω given by
ζ′(ω, ω′)=ζ(ω′). Thus,  and . So,
under µ,  is an independent copy of . Also, with this notation

 for (ω, ω′) ∈ Ω×Ω.
Hence, from (1.4.27), we have

(1.4.28)

for (ω, ω′) ∈ Ω×Ω. Since (Xt) is independent of (Yt) under (Q, ( ) is
independent of ( ) under µ. Also, since, under µ, ( ) has the same
distribution as  the joint distribution of ( ) and ( ), under µ, is the
same as that of  and ( ). Hence

(1.4.29)

where Rt is obtained by changing X and Y to X’ and Y†, respectively, in the
formula (1.4.26) of ρt, so that

(1.4.30)
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Also, using the independence of  and , it is easy to check that

(1.4.31)

Hence from (1.4.28), (1.4.29) and (1.4.31), we have the following

Theorem 1.4.1 Let g be an -measurable integrable random variable.
Then for t ∈[0, T],

(1.4.32)

where Rt is given by (1.4.30).
Then for φ∈Cb, we have

(1.4.33)

(1.4.34)

where

(1.4.35)

Because of the relation (1.4.34),  is called the unnormalized
conditional expectation of  given .

Now we obtain a stochastic differential equation for  which can
then be used to get the Zakai-type equation for the unnormalized conditional
distribution of πtX given .

Theorem 1.4.2 Suppose φ∈Cb is a quasi-tame function of the form (1.3.8).
Suppose the following condition holds.

(1.4.36)
Then , the unnormalized conditional expectation of  given

, satisfies the following stochastic differential equation

(1.4.37)

where A0 is as defined in (1.3.10).
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PROOF Define . Since, by Theorem 1.3.2,
 du is a martingale, we have

 

Also, note that for fixed ω, as a function of ω’,

 

is -measurable Then, from (1.4.35), we have for 0�t�T,

(1.4.38)

Now applying the Ito formula to  and Rt, we get

 

and hence .

So for 0�t�T,

 

Hence

(1.4.39)
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Using (1.4.39) in (1.4.38), we get

(1.4.40)
Then, by Theorem 1.3.2, we have

(1.4.41)

Also, an interchange of the integral signs and (1.4.35) yields

(1.4.42)

(1.4.43)

In (1.4.42) above to interchange the integral signs we have used Fubini’s
theorem which is justified because of the following.
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Therefore,

Q-a.s. and hence P-a.s., since P=Q. So the interchange of the integral
signs in (1.4.42) is justified.

To complete the proof of the theorem it remains to show that

 

where

Note that I3 and   can be expressed as conditional expectations
w.r.t. µ on the product space (�×�, ⊗ ), namely

(1.4.44)

and

(1.4.45)

To simplify I3 we need to use a Fubini theorem for stochastic integrals,
which we state below [see, for example, Liptser and Shiryayev (1977,
Theorem 5.14)].

Lemma 1.4.1 Let Wt, 0�t�T, be a Wiener martingale with respect to
( t), 0�t�T. Let As be -progressively measurable such that 

 is an ( t)-martingale. Assume that (As) satisfy the following
further conditions.

(i)  a.s.

(ii)  a.s.

Then
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We apply the lemma on , defined on the product space
(�×�, ⊗ , µ) and . We take . To verify
the assumptions of the lemma recall that (Yt) is a Wiener process on (�,

, Q) and . Hence  is a Wiener martingale on (�×�,
(Gt), µ). Clearly, As is Gs-progressibly measurable. To see that

 is a martingale first note that

(1.4.46)

for some constant . Also, since

(1.4.47)

it follows that Rt is a continuous (Gt)-local martingale. Hence, being
positive, Rt is a supermartingale. On the other hand,

 

Hence Rt, 0�t�T, is a (Gt)-martingale. Now

 

Then from (1.4.46) we have

(1.4.48)
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Note that

 

by (1.3.12) and (1.3.6). Similarly,

 

Also EµRt=1. Hence we have, from (1.4.48), E|Mt|<∞. Now

Therefore, to prove that Mt is a Gt-martingale it suffices to show that

(1.4.49)

So let , where  and .
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since for fixed ω’, the quantities inside the two pairs of curly braces are
 and  measurable, respectively, where recall that 

 and under . We will show that the first
expectation EQ{…} in (1.4.50) is zero. Note that for P-almost all ω’,

(1.4.51)
since, by (1.4.25),  is finite for P-almost all ω’ and so is

(1.4.50)

Copyright © 2002 Taylor & Francis



STOCHASTIC DELAY EQUATIONS 29

(1.4.52)

by (1.4.25) and (1.4.36). Then from (1.4.51), we have

 

Hence, from (1.4.50), we get for B∈Gs,

 

that is, equation (1.4.49) holds. Hence Mt is a (Gt)-martingale. Now

 

because Rt is continuous and by (1.4.52)

 

So condition (i) holds. Finally for condition (ii) note that, from the Bayes
formula, given by (1.4.28) and (1.4.29), we have

 

so that, defining  we have

(1.4.53)
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Now since (Rt, Gt) is a µ-martingale and -
martingale and therefore, has a continuous path (or a continuous
version). This is so because  is a Wiener process and hence every -
adapted martingale can be represented as a stochastic integral with
respect to . Hence the first term on the RHS of (1.4.53) is µ-a.s. finite.
For the second term, note that

 

by (1.4.52). So  is P-a.s. and hence Q-a.s. finite. Therefore,
 is µ-a.s. finite. Then condition (ii) follows from (1.4.53).

Now with the help of the Lemma 1.4.1 above, taking the conditional
expectation in (1.4.44) inside the integral sign, we have

(1.4.54)

The theorem follows from (1.4.40), after substituting the forms (1.4.41),
(1.4.43) and (1.4.54) of I1, I2 and I3, respectively.

Remark Note that if the coefficients ‘a’ and ‘b’ in the signal model (1.1.3)
are bounded, then the extra integrability condition (1.4.36) that is
imposed on the coefficient ‘h’ in Theorem 1.4.2 is satisfied because of
(1.4.25).
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1.5 ZAKAI EQUATION AND UNIQUENESS

In this section we will deduce an analog of the Zakai equation for the
filtering problem with stochastic delay equations. We will obtain a
measure valued stochastic differential equation for what is called the
unnormalized conditional distribution of πtX given  and prove the
uniqueness of the solution. To prove the uniqueness we will use the
uniqueness result of Bhatt, Kallianpur and Karandikar (1995).

Recall, from (1.4.27), that

(1.5.55)

Suppose Yt denotes the path of Y up to time t, i.e.,Yt is a C[0, t]-valued
random variable where Yt(s)=Ys for 0�s�t. Let 

 be the measurable function such that

(1.5.56)

Define for ω∈�, a measure vt(·, Yt(ω )) on (C, B(C)) by

(1.5.57)

Now for any φ∈cb,

 

Since (X) and (Y) are independent under Q, the conditional expectation
on the RHS of the equation above can be evaluated as

 

Hence we have

(1.5.58)
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From (1.5.58), it follows immediately that vt( , Yt) is a.e. a finite measure
because  and  is called the
unnormalized conditional distribution of πtX given , because for any
φ∈Cb, from (1.5.55) and (1.5.58),

(1.5.59)

Indeed, if P( , Yt) is the conditional distribution of π tX given , then
from (1.5.59), we have

(1.5.60)

Recall that

(1.5.61)

Hence comparing (1.5.59) and (1.5.61), we have for φ∈Cb,

(1.5.62)

Then from the SDE (1.4.37) satisfied by , we get the following
measure-valued Zakai equation for �t( , Yt). For a quasi-tame function

,

(1.5.63)

The following is the desired uniqueness result for the solution to the
Zakai equation (1.5.63).

Theorem 1.5.1 Suppose the signal process {X(t), -r�t�T} is given by
the SDDE (1.1.3) where the coefficients a, b satisfies the Lipschitz
condition (1.1.4). Suppose the observation process Y is given by (1.1.2).
Assume that the condition (1.4.25) holds. Suppose A0 is as in (1.3.10)
and Φ, given by (1.3.12), is as in C1 of Section 1.2 corresponding to A0.
Further assume that the condition (1.4.36) holds.

If ρt is an -adapted (positive, finite) measure valued process

satisfying

(1.5.64)
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and

(1.5.65)

then ρt=vt, for all 0�t�T a.s., where vt, given by (1.5.62) and (1.4.35), is
the unnormalized conditional distribution of πtX given .

PROOF First note, from (1.5.63), that vt satisfies the Zakai equation
(1.5.64). Recall, from (1.4.35) and (1.4.30), that

 

where

 

Then

Hence vt satisfies the condition (1.5.65) also.
Since X and the observation noise W are independent, so are πtX and

W. From Theorem 1.3.2 and Theorem 1.3.3, we have that πtX is the
unique solution to the martingale problem for (A0, η) Also, from
Proposition 1.3.1 and the remark following the proof of Theorem 1.3.3,
A0 satisfies the conditions C1–C5. Then an application of Theorem 4.1
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of Bhatt, Kallianpur and Karadikar (1995) on the modified signal process
πtX completes the proof. 

Using the unique solution ρt of the measure valued Zakai equation
(1.5.64) one can, in principle, calculate the unnormalized conditional
expectation of  given  and hence can obtain

. In fact, one can, in principle, calculate the conditional
expectations of the form  as

(1.5.66)

We then have the following formula, given in Theorem 1.5.2 below, for
 where the various conditional expectations on the right

hand side of (1.5.67) is obtained as in (1.5.66).

Theorem 1.5.2 Suppose  -bounded. Let Et denote the
conditional expectation (given ). Then

PROOF Let  be a C∞-bounded function. Consider the
quasitame function  given by  for θ∈C. Then

Also observe that A0 operated on  takes the following form :

 

Hence it follows from (1.5.63) that

 

(1.5.67)

Copyright © 2002 Taylor & Francis



STOCHASTIC DELAY EQUATIONS 35

Then a simple application of the Ito formula to  yields the formula
(1.5.67) for .
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CHAPTER 2

SIGMA OSCILLATORY
PROCESSES

RANDALL J.SWIFT
Western Kentucky University, Bowling Green, KY

Abstract: The class of harmonizable processes is a natural extension of
the class of stationary processes. In 1965, Priestley introduced the class
of oscillatory processes and the concept of their evolutionary spectrum
as a tool for the frequency analysis of these processes. Recently, Swift
(1997), introduced the class of oscillatory harmonizable processes as an
extension of Priestley’s oscillatory class. In this paper, it is shown that
these classes of processes are not closed with respect to independent
elements. A broader class of nonstationary processes, termed sigma
oscillatory harmonizable, is introduced and shown to be closed with
respect to the sum of independent elements.

Keywords and phrases: Harmonizable processes, oscillatory processes,
evolutionary spectra, sigma oscillatory processes

2.1 SOME CLASSES OF NONSTATIONARY PROCESSES

In the following work, there is always an underlying probability space,
(Ω, Σ, P).

To set the stage, we consider second order stochastic processes. More
specifically, mappings  where for  is the set
of all complex valued  such that E(f)=0, with 

 the expectation.
Recall that a stochastic process  is stationary

(stationary in the wide or Khintchine sense) if its covariance
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 is continuous and is a function of the difference of
its arguments, so that

An equivalent and useful definition of a stationary process is one whose
covariance function can be represented as

(2.1.1)

for a unique non-negative bounded Borel measure F(�). This alternate
definition is a consequence of a classical theorem of Bochner’s c.f.,
Gihman and Skorohod (1974), and motivates the following definition.

Definition 2.1.1 A stochastic process  is weakly
harmonizable if its covariance r(�, �) is expressible as

(2.1.2)

where  is a positive semi-definite bimeasure, hence of
finite Fréchet variation.

The integrals in (2.1.2) are strict Morse-Transue, Chang and Rao (1986).
A stochastic process, X(�), is strongly harmonizable if the bimeasure
F(�, �) in (2.1.2) extends to a complex measure and hence is of bounded
Vitali variation. In either case, F(�, �) is termed the spectral bi-measure
(or spectral measure) of the harmonizable process.

Comparison of equation (2.1.2) with equation (2.1.1) shows that when
F(�, �) concentrates on the diagonal �=�’, both the weak and strong
harmonizability concepts reduce to the stationary concept. The power
and usefulness of harmonizable processes is now clear. They retain the
powerful Fourier analytic methods inherent with stationary processes,
as seen in Bochner’s theorem, (2.1.1); but they relax the requirement of
stationarity.

The structure and properties of harmonizable processes has been
investigated and developed extensively by M.M.Rao and others. A recent
detailed account of harmonizable processes and some of their
applications may be found in Swift (1997a).

A broader class of nonstationary processes which contains the weakly
harmonizable class was introduced by Swift (1997b). This class is defined
as follows.
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Definition 2.1.2 A stochastic process  is oscillatory weakly
harmonizable, if its covariance has representation

(2.1.3)

where F(�, �) is a function of bounded Fréchet variation, and

(2.1.4)

with H(�, B) a Borel function on �, H(�, �) a signed measure and A(t, �)
having an absolute maximum at �=0 independent of t.

Note that if A(t, �)=1, this class coincides with the weakly harmonizable
class of processes.

In 1965, M.B.Priestley, introduced and studied a generalization of
the class of stationary processes. In particular, a stochastic process

  is oscillatory if it has representation.

(2.1.5)

where Z(�) is a stochastic measure with orthogonal increments and
A(t, �) satisfies (2.1.4). Using this representation, the covariance of an
oscillatory process is

so that in the same fashion as Priestley’s oscillatory processes extend
the class of stationary processes, the oscillatory weakly harmonizable
processes extend the weakly harmonizable class.

One further observes that if F(�, �), the spectral bimeasure of a
oscillatory weakly harmonizable process concentrates on the diagonal
�=��, the oscillatory processes are obtained. Thus the oscillatory
harmonizable processes also provide an extension to the class of
oscillatory processes, which we will now term oscillatory stationary.

Using the definition of an oscillatory harmonizable process and a
version of Karhunen’s theorem, Swift (1997b) obtained the spectral
representation of an oscillatory weakly harmonizable process as

(2.1.6)
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with F(�, �) a function of bounded Fréchet variation.
A general class of nonstationary processes which extends the classes

of processes introduced above was first considered by Cramér in 1952.
A refined definition of these processes is due to Rao (1984), who gave
the following definition.

Definition 2.1.3 A second-order process X: T→L2(P) is of Cramér class
(or class (C)) if its covariance function r(�, �) is representable as

(2.1.7)

relative to a family {g(t, �), t � T} of Borel functions and a positive definite
function F(�,�) of locally bounded variation on S×S, [S will be in the
classical case  the dual of an LCA group T, and generally (S, B) is a
measurable space] with each g satisfying the (Lebesgue) integrability
condition:

If F(�, �) has a locally finite Fréchet variation, then the integrals in
equation (2.1.7) are in the sense of (strict) Morse-Transue and the
corresponding concept is termed weak class (C).

Chang and Rao (1986), obtained the integral representation of weak
class (C) processes as given by the following Theorem.

Theorem 2.1.1 If  is of weak Cramér class relative to a
family {g(t, �), t � T} of Borel functions and a positive definite bimeasure
F(�, �) of locally bounded Fréchet variation on S×S, then there exists a
stochastic measure , B a �-algebra of S, such that

(2.1.8)

where

Conversely, if X(�) is a second-order process defined by (2.1.8) then it is a
process of weak class (C).

where Z(�) is a stochastic measure satisfying
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If there exists a representation of a weak class (C) process of the
form (2.1.8) then there is a multitude of different representations of the
process, each representation based upon a different family of functions.
Clearly, one valid choice is the complex exponential family given by

with which, the representation (2.1.8) reduces to the spectral
representation of a weakly harmonizable process.

The complex exponential family provides the well-known spectral
decomposition of the process and forms the basis of the physical
interpretation of spectral analysis as an “energy distribution over
frequency”.

The oscillatory weakly harmonizable processes are intimately
connected with weak class (C) processes. Swift (1997b) showed the
following proposition which follows from setting g(t, �)=eit� A(t, �) in the
spectral representation of weak class (C) processes.

Proposition 2.1.1 The class of oscillatory weakly harmonizable processes
coincides with the class of weak class (C) processes indexed on �.

2.2 SIGMA OSCILLATORY PROCESSES

In the previous section, it was mentioned that for an oscillatory weakly
harmonizable process X(�) there will, in general, be a large number of
different families of functions in terms of each of which the process X(�)
has a representation of the form (2.1.6), with each family inducing a
different measure Z(�).

Swift recently gave the following definition.

Definition 2.2.1 Let  denote a particular family of functions of the
form g(t, �)=A(t, �)eit�, and let X(�) be an oscillatory weakly harmonizable
process with integral representation of the form (2.1.6) in terms of the
family . The evolutionary spectrum of X(t) with respect to the family

 is given by

(2.2.9)

One notes that if the spectral measure F(�, �) concentrates on the diagonal
�=�’, then the evolutionary spectrum (2.2.9) becomes

which is the evolutionary spectra for an oscillatory process as given by
Priestley (1965).
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Using this definition, it is possible to extend much of Priestley’s
results, as was recently done by Swift. However, a difficulty with the
above definition of the evolutionary spectrum, (as well as with Priestley’s
definition in the oscillatory stationary case), arises when one considers
the sum of two independent oscillatory weakly harmonizable processes.
This difficulty can be seen by considering the evolutionary spectrum of
the process

where X1(t) and X2(t) are two independent oscillatory weakly
harmonizable processes, with respective evolutionary spectrums

and

Does there exist a family of functions  with respect
to which an evolutionary spectrum for Y(t), say dG(s, t, �, �’), may be
defined? Further, does this spectrum satisfy

The answer is in the negative, as may be seen by assuming such a family
existed. It follows from this assumption that

so that if

then

Thus,

do not depend upon s or t. Hence, the ratio
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also does not depend upon s or t, so that X1(t) and X2(t) have time
proportional evolutionary spectra.

To circumvent this difficulty, the following definition is made.

Definition 2.2.2 A stochastic process  is sigma oscillatory
weakly harmonizable if it can be represented as

where the Xi(�), i=1, …, n are pairwise independent oscillatory weakly
harmonizable processes.

An immediate consequence of this definition is the following proposition
whose proof is obvious.

Proposition 2.2.1 A sigma oscillatory weakly harmonizable process Y :
 has spectral representation

(2.2.10)

where Zi(�), i=1, …, n are stochastic measures satisfying

with Fi(�, �), i=1, …, n functions of bounded Fréchet variation.

The evolutionary spectrum of each of the oscillatory weakly
harmonizable processes Xi(t), i=1, …, n is defined by

with respect to the family of functions

Using the pairwise independence of the Xi(t)’s, the covariance of Y(t)
can be computed as

(2.2.11)

so that the evolutionary spectrum of Y(�) can be defined with respect to
the vector family
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by

(2.2.12)

One notes here that question posed above now has a positive answer.
That is, the sum of two sigma oscillatory weakly harmonizable processes
is a sigma oscillatory weakly harmonizable process whose spectrum is
the sum of the spectra of each process.

2.3 DETERMINATION OF THE EVOLUTIONARY
SPECTRA

Conditions on the vector family of functions

provide useful information about the evolutionary spectra of the sigma
oscillatory weakly harmonizable process Y(t). For each family , define
the function  by

where each Hi(�, �) is the signed measure in the representation of the
oscillatory weakly harmonizable process Xi(t), cf., (2.1.4). Each  is
a measure of the width of |Hi(�, dx)|.

Using this notation, we have the following definition.

Definition 2.3.1 A vector family of functions

has bounded-width if for each i=1, …, n

The characteristic width of the vector family  is given by

Using this definition, a subclass of oscillatory weakly harmonizable
processes is defined as follows.
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Definition 2.3.2 A process  is a bounded-width sigma
oscillatory weakly harmonizable process if there exists a bounded-width
vector family  in terms of which Y(�) has a spectral representation
given by (2.2.10).

If C is the class of vector families  with respect to which a process Y(�)
admits the spectral representation (2.2.10), then the characteristic width
of the process Y(�) is given by

Let  be a linear filter with transfer function

normalized so that

(2.3.13)

The width of �(�) is given by

(2.3.14)

Consider for a fixed frequency �0, the following linear transformation of
the bounded-width sigma oscillatory weakly harmonizable process Y(�),

(2.3.15)

where each of the Xi(�), i=1, …, n is a bounded-width oscillatory weakly
harmonizable process. Thus, applying the following result of Swift,

Theorem 2.3.1 Let  be a linear filter, then the covariance of a
linear transformation
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where  as B�, the width of the linear filter �(�), goes to zero.

of a bounded-width oscillatory weakly harmonizable process X(�) is

to each of the Xi(�)�s, together with the independence conditions, yields
the following Proposition.

Proposition 2.3.1 Let  be a linear filter, then the covariance
of a linear transformation

of a bounded-width sigma oscillatory weakly harmonizable process Y(�)
is

where  as B�, the width of the linear filter �(�), goes to zero, and
GY(�, �, �, �) is the evolutionary spectrum of the bounded-width sigma
oscillatory weakly harmonizable process Y(�).
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CHAPTER 3

SOME PROPERTIES OF
HARMONIZABLE PROCESSES

MARC H.MEHLMAN
University of Pittsburgh, Johnstown, PA

Abstract: Harmonizable processes are considered as Fourier transforms
of vector measures. The incremental processes derived from
harmonizable processes are examined here. In particular, they are seen
to be harmonizable too, and are used to establish results concerning the
derivatives and definite integrals of harmonizable processes (both of which
turn out to be harmonizable too).

The nth moment of a vector measure is introduced and it is suggested
that there may be a theory that connects harmonizable processes to
their corresponding vector measures much as characteristic functions
are connected to their corresponding probability measures.

Finally, a result concerning the moving averages of harmonizable
processes with continuous parameter is updated to include moving
average representations of the derivative of these harmonizable processes
too.

Keywords and phrases: Harmonizable processes, incremental
processes, moving averages:

3.1 INTRODUCTION

Convention 3.1.1 Let (�, �, P) be a probability space. Let D represent
either R, the reals, or Z, the integers. The unit circle, T, will be thought
of as [-�, �). Note that D, the topological dual group of D, is either R or
T, depending on whether D is R or T respectively.
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Definition 3.1.2 Denote  to be the Hilbert space of all complex
valued functions f�L2(P) such that E(f)=0, where ,
the expectation of f.

Definition 3.1.3 An n-dimensional vector measure, 
has orthogonal increments iff  for all �, �’ � � such
that .

Definition 3.1.4 An n-dimensional process, , is weakly
harmonizable iff Xt can be written as the following Dunford-Schwartz
integral:

 

If ZX(d�) has orthogonal increments, Xt is stationary (stationary in the
wide or Khinchine sense).

It is somewhat traditional to define weakly harmonizable and stationary
processes in terms of their covariance functions, rather than as Fourier
transforms of a vector measure. However, the following Theorem states
that such definitions are equivalent to the one above.

Theorem 3.1.5 A process is harmonizable iff its covariance function is
expressible as the Morse-Transue integral 2,

(3.1.1)

A process is stationary iff its covariance function is expressible as

 

Kolmogorov (1941) proved the above Theorem for the stationary case.
The weakly harmonizable case is obtained by Rao (1982) and, in a more
general case, the above Theorem is derived in Chang and Rao (1986).
The “only if” part of the above Theorem is somewhat easy to see. The
“if” part in the weakly harmonizable case is a easy consequence of the
Dilation Theorem [see Chang and Rao (1986)] and the fact the above
Theorem holds in the stationary case.

1 Here * denotes the adjoint operator, i.e., the conjugate transpose operator.
2 For definition of a Morse-Transue integral, see Chang and Rao (1986).
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Definition 3.1.6 The spectral bimeasure of a weakly harmonizable
process, Xt, is the positive semi-definite bimeasure, FX(., .) in (3.1.1). A
weakly harmonizable random process is strongly harmonizable iff its
spectral bimeasure extends to a measure on the Borel �-algebra of �×�.
All strongly harmonizable process are weakly harmonizable with the
integral in (3.1.1) just an ordinary Lebesgue integral.

3.2 INCREMENTAL PROCESSES

Definition 3.2.1 Given a process, Xt, and � � D, its increment process,
(I� �), is defined as

 

Theorem 3.2.2 If Xt is harmonizable (stationary) and � � D then (I��)t is
harmonizable (stationary). Furthermore, if D=R then

1. if  exists (here convergence is in the mean
square sense), then  and hence is harmonizable
(stationary).

2.  ZX(d�) is harmonizable also (here the inte-

grand equals s when �=0).

PROOF If Xt is harmonizable, then

 

Letting , one sees that (I��)t is harmonizable
too. If Xt is stationary, by observing the covariance function of 
one sees (I� �)t is stationary too.

If Xt is harmonizable (stationary) with continuous parameter and X t́

exists, then
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which is again harmonizable (stationary). One can pass the limit inside the
integral sign since the integrand converges uniformly on compact sets.

Similarly, if Xt is harmonizable (stationary) with continuous parameter,
then

(3.2.2)

where  equals s when �=0.3 Again, switching the order of integration
is justified by noticing the integrand converges uniformly on compact
sets. �

Swift (1996, Theorem 2.1) states that (3.2.2) is the spectral representation
of a second order mean square differentiable process with strongly
harmonizable increments. This result may be obtained from the above
Theorem after noticing that “harmonizable” is not destroyed by
integration or differentiation and that the increments of a harmonizable
process are harmonizable. In particular, since  one
can rewrite (3.2.2) to obtain

 

3.3 MOMENTS OF HARMONIZABLE PROCESSES

Definition 3.3.1 The nth moment of a vector measure, Z, (if it exists) is

 

The nth moment of a harmonizable process,  (if it
exists) is Mn(Zx).

3 One could use  instead of Xt and notice that .
Then
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In the discrete parameter case, moments of all orders exist.
Furthermore,

 

For the continuous parameter case, one needs a condition to obtain
the analogous result. The following Theorem is not hard to prove (derive
the n=0 case first).

Theorem 3.3.2 Let Xt be a continuous parameter harmonizable process
with moments of all orders and assume

 

Then

 

is a continuous parameter harmonizable process with moments of all
orders too.

It maybe possible to employ techniques more similar to Paul Lévy’s
work with characteristic functions than ordinary Fourier Analysis, to
answer questions of inversion and convergence for the continuous
parameter case. Harmonizable processes would play the role of
characteristic functions and spectral measures would play the role of
distributions. For instance, the following Theorem and its proof mimics
Rao (1984, Proposition 4.2.6).

Theorem 3.3.3 If the harmonizable process, Xt, with continuous
parameter, has p�Z+ derivatives at t=0, then Xt has 2[p/2] moments,
where [x] is the largest integer not exceeding x. On the other hand, if Xt

has p�Z+ moments, then Xt is p times continuously differentiable.
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3.4 VIRILE REPRESENTATIONS

Definition 3.4.1 An n-dimensional harmonizable process, Xt, has
factorizable spectral measure (f.s.m.) iff its covariance function can be
represented as

(3.4.3)

where c(	) is an n×m matrix valued function with components in L2(d�)
and µ(d�, d�’) is a one dimensional bimeasure. A process with f.s.m. is
an f.s.m. process. The f.s.m. covariance representation (3.4.3) has full
rank m iff c(�)c*(�’) has matrix rank m a.e. with respect to µ(	, 	). If
n=m, the f.s.m. covariance representation (3.4.3) of full rank n has
maximal rank. An n dimensional f.s.m. process, Xt has a virile covariance
representation, iff

1. c(	) is equal everywhere to the inverse Fourier transform of its Fou-
rier transform.

2. For N�Z+, letting

 

then

 

Every stationary process is a f.s.m. process since its spectral measure
is positive definite. There exists examples of strongly harmonizable
processes that are not f.s.m. processes [Mehlman (1991, Example 5.2)].

If A is the set where c(.) and the inverse Fourier transform of its
Fourier transform differ and if |µ|(A, A)=0, then one can use the inverse
Fourier transform of the Fourier transform instead of the original c(.).
In particular, if a strongly harmonizable f.s.m. process has its spectral
measure equal to Lebesgue measure (on D×D or on the diagonal of
D×D) then it has a virile covariance representation.

Rank is not defined for all f.s.m. processes. However, rank (if it exists)
is independent of f.s.m. representation. Even if the c(�)c*(�’) has constant
rank p, there need not be an f.s.m. covariance representation with full
rank p.
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Definition 3.4.2 A moving average representation of a n-dimensional
random process, Xt, is a representation

(3.4.4)

where

1.  is the Fourier transform of an L2(d�) function 
where Mn,m are all n×m matrices and

2.  where p(., .) is the covariance function of a one
dimensional process.

A moving average representation (3.4.4) has full rank m iff c(�) has rank
m for all ��T. A harmonizable moving average is a virile moving average
iff  is harmonizable with spectral bimeasure  and for N�Z+,
letting

 

then

 

If A is the set where c(.) and the inverse Fourier transform of its
Fourier transform differ and if |µ|(A, A)=0, then one can use the inverse
Fourier transform of the Fourier transform instead of the original c(.).
In particular, if a strongly harmonizable f.s.m. process has its spectral
measure equal to Lebesgue measure (on D×D or on the diagonal of
D×D) then it has a virile covariance representation.

Theorem 3.4.3 Let Xt be an n-dimensional, continuous parametered,
strongly harmonizable process with a strongly harmonizable virile moving
average representation with full rank m,

 

Assume
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exists for all s, t�R and some j�{0, 1, 2, …}. Then for all k
j,

 

exists and is a strongly harmonizable process with a strongly harmonizable
virile moving average representation with full rank m,

 

where .

The above Theorem is proved for the case k=0 in Mehlman (1991,
Theorem 6.5). The above Theorem now follows from part one of Theorem
3.2.2 and the repetitive use of the k=0 case.

Acknowledgements Some of the ideas for this talk originated during
talks with Dr. Randall Swift. I would also like to thank Dr. Alan Krinik
for encouraging me to attend the October IISA conference.
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CHAPTER 4

INFERENCE FOR BRANCHING
PROCESSES

I.V.BASAWA
University of Georgia, Athens, Georgia

Abstract: Problems of inference for Galton-Watson (G-W) branching
processes are discussed. It is shown that the G-W branching process
belongs to a local asymptotic mixed normal family. Consequently, the
limit distribution of the maximum likelihood estimator of the offspring
mean parameter is non-normal. The usual test statistics such as the
score, Wald and likelihood ratio statistics do not have the same limit
distribution and are not asymptotically uniformly most powerful. Some
of these difficulties regarding efficiency can be overcome via a conditional
approach. Quasilikelihood, Bayes and empirical Bayes estimators are
discussed briefly.

Keywords and phrases: Inference for stochastic processes, branching
processes, asymptotic inference, maximum likelihood estimation,
quasilikelihood estimation, Bayes estimator, empirical Bayes estimator,
asymptotic tests, conditional inference

4.1 INTRODUCTION

Inference for branching processes is an important area of research with
applications in cell kinetics, genetics, population growth and biostatistics
among others. See Guttorp (1991) for an excellent review and references.
In this paper, we give an over-view of asymptotic inference problems
for a Galton-Watson branching process. Local asymptotic mixed normal
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(LAMN) family is used as a unified frame-work to discuss diverse
statistical issues such as estimation efficiency, test efficiency, confidence
bounds, conditional inference, etc. Quasilikelihood, Bayes and empirical
Bayes estimators are also discussed briefly. Basawa and Scott (1983)
have reviewed the basic theory for the LAMN family in general.

Preliminary background for G-W branching processes is given in
Section 4.2. The LAMN formulation and some statistical consequences
are presented in Section 4.3. Section 4.4 shows that the G-W branching
process is an example of a LAMN model. Asymptotic efficiency of
estimators, tests and confidence bounds are discussed in Sections 4.5–
4.7. Section 4.8 is concerned with a conditional approach to resolve
difficulties in efficiency comparisons of tests and confidence bounds.
Prediction and a test of fit based on prediction errors are presented in
Section 4.9. Section 4.10 gives an outline of quasilikelihood approach
to estimation. Bayes and empirical Bayes estimators are discussed
briefly in Section 4.11 and Section 4.12 contains some concluding
remarks.

4.2 GALTON-WATSON BRANCHING PROCESS: BACK-
GROUND

Let , i=1, 2, …, for each n=1, 2, …, denote a sequence of independent
and identically distributed random variables taking values in S=(0, 1,
2, …) with probabilities (offspring distribution) ,

 and p0+p1<1. Define . The
sequence {Zn}, n=0, l, 2, …, Z0=1, is then a Markov chain defined on the
state space S, with transition probabilities

 

where  denotes the j-fold convolution of {pk} and δjk is the Kronecker
delta (i.e. δjk is equal to 1 for j=k and zero otherwise).

Let  denote the number of offspring produced by the jth member
of the nth generation and Zn, the generation size of the nth generation.
We shall refer to {Zn} as the Galton-Watson (G-W) branching process.
The G-W branching process has a long history and it has a wide spectrum
of applications. The main goal of this paper is to review statistical
inference issues concerning the G-W branching process.
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Denote  and , the mean and the
variance of the offspring distribution. It is easily verified that

 

The asymptotic behavior of {Zn} depends crucially on whether m<1
(subcritical), m=1 (critical) and m>1 (supercritical). In particular, for
m>1, and σ2<∞, there exists a random variable W≥0 such that

 

We shall focus on inference problems concerning the offspring mean m.

4.3 LOCALLY ASYMPTOTIC MIXED NORMAL (LAMN)
FAMILY

Let Y(n)=(Y1, Y2, …, Yn) denote a vector of observations with joint density
, and denote the likelihood function 

.  The log-likelihood ratio is defined as

 

where , h is a (p×1) vector of real numbers, and δn(θ) is
a (p×p) symmetric, non-singular and non-random matrix such that

 as n→∞. The likelihood score vector and the sample
information matrix are defined respectively by

 

The LAMN model is specified by the following conditions:

LAMN Conditions

As n→∞,

(a) , where  and
.

(b) , where W(θ) is an almost sure non-negative definite
random matrix.

(c) , where Np
* denotes a variance mixture of

normals.
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Remarks: Note that if W(θ) is degenerate (i.e. non-random) the above
conditions reduce to the usual local asymptotic normality (LAN)
conditions and Np

* reduces to a normal distribution. See Basawa and
Scott (1983) for details on LAMN models for non-degenerate W(θ).

Some Consequences of LAMN Assumptions

From now on, we shall assume that W(θ) is a non-degenerate random
variable. Under LAMN conditions, the maximum likelihood estimator
θ of θ has a non-normal limit distribution. The usual test statistics such
as score, Wald and likelihood ratio statistics have non-standard limit
distributions. Moreover, asymptotically uniformly most powerful tests
for θ do not exist. One can, however, use conditional inference
(conditional on W(θ) or on its estimate) to resolve most of these inferential
problems. We refer to Basawa and Scott (1983) for a detailed discussion
of these issues.

In this paper, we illustrate the above mentioned statistical questions
and other related matters via the example of a G-W branching process.

4.4 G-W BRANCHING PROCESS AS A PROTO-TYPE
EXAMPLE OF A LAMN MODEL

Suppose (Z0=1, Z1, …, Zn) denote the generation sizes of a G-W branching
process. We assume that the offspring distribution belongs to a power
series family. More specifically,

 

where . We then have , and
σ2(θ)=Var(Z1)=θm’(θ). The log-likelihood function is

 

and the likelihood score function is given by
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The maximum likelihood (ML) estimator m of m is obtained by solving
Sn(m)=0 for m and

 

The sample and the expected Fisher informations are given respectively
by

 

Define . If we suppose that P(Z1)=0, and m>1, it is
easily verified that the G-W branching process belongs to the LAMN
family with

 

where , and W is a non-degenerate random
variable. If, in particular, the offspring distribution is geometric, W has
an exponential distribution with mean unity. In general,

 

A consistent estimator of σ2 is given by

 

4.5 ESTIMATION EFFICIENCY

Let . Then, In(m)=E(Jn(m)). We then have
. It can then be shown that

(a) , and

(b) .

See Heyde (1975, 1977, 1978) and Basawa and Scott (1976). Note that
the limit distribution in (b) is non-normal. In particular, if the offspring
distribution is geometric, the limit distribution N*(0, W-1) reduces to
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the Student’s t distribution with 2 degrees of freedom whose variance is
infinite. In other words, for the geometric offspring distribution the
asymptotic variance of the ML estimator of m is infinite! The question
then is how does one establish the asymptotic efficiency of the ML
estimator.

This question was resolved by Heyde (1977) using the random norm
as follows:

If TN is any estimator of m such that

 

then v(m)≥1, for all m(>1), and the equality v(m)=1 is attained for the
ML estimator m.

The above result establishes the asymptotic efficiency of the ML
estimator in some sense. However, a more satisfactory resolution of the
efficiency question is in terms of the limit distribution using a non-
random norm. One such result is as follows:

If Tn is any “regular” estimator of m such that  has a
limit distribution, then, under regularity conditions,

 

where Z* is a random variable distributed as N* (0, W-1). The equality
in the above inequality is attained for the ML estimator.

See Heyde (1978) and Basawa and Scott (1983) for details. A more
general result is given in Basawa and Scott (1983). Note that the above
result based on the limiting probability of concentration, viz.,

 

does not require the finiteness of the asymptotic variance.

4.6 TEST EFFICIENCY

Consider the problem of testing

 

Recall that the likelihood score function is given by

 

Consider the following three test statistics:

  

Copyright © 2002 Taylor & Francis



INFERENCE FOR BRANCHING PROCESSES 63

 

and
 

It can be verified (see Basawa and Scott (1976)) that, under H, we
have

 

where Z is a standard normal random variable independent of W. In
particular, if the offspring distribution is geometric, then ZW1/2 and
ZW-1/2 are distributed, respectively, as a double exponential and a t(2)
distribution.

Define the test functions:

 

i=1, 2, 3, where the constants k(i)(α) are chosen such that α,
where  denotes the power function of the test .

A locally most powerful (LMP) test maximizes the local power
. From standard theory, T1 is a LMP test. Basawa and Scott

(1976) have compared the tests , i=1, 2, 3 on the basis of the local
power and concluded that

 

However, it is more desirable to use limiting power at contiguous
alternatives rather than the local power for comparisons. Sweeting
(1978) compared the three tests using such a criterion. An asymptotically
most powerful test maximizes the limiting power lim ��n (mn), where

  for all h>0. Sweeting’s (1978) comparisons based
on lim ��n (mn), are inconclusive. This is not surprising because, for any
given h, the Neyman-Pearson most powerful test statistic �n(mn, m0)
for testing m=m0 against m=mn, depends on h, even asymptotically. This
is seen by the following:

 

which depends on h even asymptotically because the second term in
the expansion is a non-degenerate random variable. See Basawa and
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Scott (1983) for details. It, therefore, follows that for the G-W branching
process, there does not exist an asymptotically uniformly most powerful
test based on the criterion lim ��n (mn). In particular, none of the three
tests �n

(i), i=1, 2, 3, dominates the others for all h in the sense of
maximizing lim ��n (mn).

4.7 CONFIDENCE BOUNDS

We now consider the problem of constructing confidence bounds for the
mean m of the offspring distribution. As before, it will be assumed that
m>1 and P(Z1=0)=0 to ensure that the process grows exponentially and
does not get extinct.

Let Vn denote an asymptotic lower confidence bound for m satisfying

 

Using the statistic T1 of Section 4.6, viz.,

 

we have

 

where c1(α) is given by

 

We then have

 

and hence,

 

Consequently

 

is an asymptotic (1-α) lower confidence bound for m. Similarly, using
the statistics T2 and T3 of Section 4.6, we can construct alternative lower
confidence bounds as:
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and

 

Similarly, upper confidence bounds and confidence intervals can be
constructed.

It may be noted that the sample and expected Fisher information,
Jn(m) and In(m) depend on σ2 which can be replaced by its estimate σ2

given in Section 4.4. This does not affect the asymptotic results discussed
above.

Efficiency of Confidence Bounds

Vn is said to be asymptotically uniformly most accurate lower confidence
bound for m if it minimizes

 

where , h>0.
The existence of uniformly must accurate confidence bounds is related

to that of asymptotically uniformly most powerful tests. As seen in
Section 4.6, there does not exist asymptotically uniformly most powerful
test for m, and consequently we do not have asymptotically most accurate
confidence bounds. In particular, none of the bounds , i=1, 2, 3,
dominates the others in the sense of the optimality criterion given above.

The problem of non-existence of asymptotically most powerful tests
and confidence bounds can be resolved if we use a conditional approach
discussed in Section 4.8 below.

4.8 CONDITIONAL INFERENCE

The problems related to the efficiency of tests and confidence bounds
for m are mainly due to the fact that the almost sure limit W of m-n Zn is
a non-degenerate random variable. Conditional on W=�, the G-W
branching process can be viewed as a member of the (conditional) local
asymptotic normal (LAN) family. It is well known that asymptotic
uniformly most powerful tests and confidence bounds exist for the LAN
family. This motivates the conditional approach to resolve the efficiency
questions. We will illustrate below this approach for the special case of
a G-W branching process with geometric offspring distribution.

Suppose
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(m>1). We then have , where W is an exponential random
variable with E(W)=1. The joint density of Z(n)=(Z1, …, Zn), conditional
on W=�, assuming Z0=1, is given by

 

where �=log n, �=log[m -1(m-1)�], , and
. See Keiding (1974) for the details. Note that (m,

�) are reparammeterized as ( �, �). Testing m=m0 against m>m0 is
equivalent to testing H: �=�0 against K: �>�0, treating � as an unknown
nuisance parameter. It can then be verified that the uniformly most
powerful unbiased level-α test for testing H against K is given by

 

where k(Vn) and a(Vn) are determined such that 0≤a(Vn)≤1, and
 for almost all vn. See Basawa (1981a) for

details.
It can be shown that the three test statistics , i=1, 2, 3, discussed

in Section 4.6 are asymptotically equivalent and asymptotically
uniformly most powerful conditionally on W= �. See Basawa and Scott
(1983) for details. The asymptotic equivalence and efficiency of the three
confidence bounds discussed in Section 4.7 follows from the results
discussed by Basawa (1981b).

An alternative conditional approach proposed by Feigin and Reiser
(1979) and Sweeting (1978, 1986, 1992) is based on conditioning on Wn

where

 

Asymptotically, this approach also leads to the same conclusions as that
based on conditioning on the limiting random variable W.

4.9 PREDICTION AND TEST OF FIT

Denote Z(n)=(Z1, …, Zn), and Y(p)=(Zn+1, …, Zn+p), with Z0= 1. Consider
the problem of predicting Y(p) given the sample Z(n). The minimum
mean square error predictor of Y(p) is given by
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which depends on the unknown parameter m. Replacing m by its
estimator , we Set an estimated predictor

 of Y(p). Consider

 

where . Basawa (1987) has shown that Un and Vn are
asymptotically independent normal with mean zero and covariance
matrices 1 and 2. See Basawa (1987) for the expressions for 1 and

2. It then follows that the limit distribution of the (estimated) prediction
error is given by

 

Note that 1 is a contribution to the prediction mean square error from
prediction and 2 from estimation.

A test statistic for goodness of fit can be constructed as

 

which has an asymptotic �2(p) distribution under the null hypothesis
that {Zt} is a G-W branching process with m>1.

4.10 QUASILIKELIHOOD ESTIMATION

Recall that , and 
. If we choose

 

as the elementary estimating function, we may consider the class of
estimating functions

 

where the weights at are to be determined appropriately. The optimum
choice of {at} according to the Godambe criterion (see, for instance,
Godambe (1985) and Heyde (1997)) is given by

. 
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The optimum estimating function (also known as a quasi-score function)
is therefore given by

 

Note that if the offspring distribution is assumed to belong to a power
series family (see Section 4.4), the quasi-score function  coincides
with the likelihood score function as seen in Section 4.4. The
quasilikelihood estimator of m obtained as the solution of the equation

, is the same as the maximum likelihood estimator mn obtained
in Section 4.4. Note, however, that we do not assume a power series
offspring distribution in the derivation of the quasilikelihood estimator.
Basawa and Prakasa Rao (1980) give a “least-squares” derivation of m.

We now consider k independent G-W branching processes {Yt(s)}, s=
1, …, k, where Yt(s) denotes the generation size of the sth branching
process. Let m(s) and σ2(s) denote the offspring mean and variance
respectively of the sth process. For a given link function u(�) suppose
u(m(s))= xT(s)ß, where ß is a (p×1) vector of unknown parameters and
x(s), a (p×1) vector of fixed covariates. Denote

 

We then have

 

and

 

The quasi-score function for estimating ß is given by

 

If β is a solution of the equation G0(ß)=0, one can show, under regularity
conditions, that

 

where
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4.11 BAYES AND EMPIRICAL BAYES ESTIMATION

Consider the G-W branching process {Zt} with the power series offspring
distribution

 

The likelihood function based on the sample (Z1, …, Zn) is given by

 

Assume a conjugate prior for � with density

 

The posterior density of � given Z(n)=(Z1, …, Zn) is:

 

The maximum posterior probability (MPP) estimator of m is obtained
by solving . Note that

 

since m=�A’(�)/A(�) and σ2=�m’(�). Finally, the MPP estimator of m is
given by

 

The estimator mB can be viewed as the Bayes estimator with respect to
the zero-one loss function. The marginal likelihood based on Z(n) is
given by

 

Let 	 and � denote the maximum likelihood estimators of α and ß based
on . An empirical Bayes estimator of m is then given by
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It can be shown that, for m>1,

 

have the same limit distribution, and the limit distribution is N(0, σ2).
It may be recalled that this limit distribution is also the same as that
for the maximum likelihood estimator 
discussed in Section 4.4.

4.12 CONCLUDING REMARKS

The G-W branching process is a proto-type example of the local
asymptotic mixed normal family. The asymptotic properties of the
estimator, confidence bounds, and tests for the offspring mean m(m>1)
are non-standard since the limit distributions are non-normal.
Asymptotic efficiency of the ML estimator is established via the limiting
probability of concentration in the unconditional set-up. The large
sample efficiency of tests and confidence bounds are studied in a
conditional frame-work. Quasilikelihood, Bayes and empirical Bayes
estimators are also discussed briefly. It would be of interest to investigate
asymptotic inference problems for multi-type branching processes using
a similar unified approach.
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CHAPTER 5

THE CONDITIONAL
DISTRIBUTION OF X GIVEN

X=Y CAN BE ALMOST
ANYTHING!

B.C.ARNOLD C.A.ROBERSTON
University of California, Riverside, CA

Abstract: Suppose that X and Y are independent absolutely continuous
random variables. We consider the problem of deciding what is an
appropriate choice for the conditional density of X given X=Y. It has
been earlier noted [see, for example, Rao (1993)] that ambiguous
responses to this question are possible. In the present note we argue
that the situation is actually worse than this might suggest. In fact the
conditional density of X given X=Y is essentially arbitrary. It can be
whatever you wish!

Keywords and phrases: Monotone transformations, null events,
arbitrary conditional densities

5.1 INTRODUCTION

It has long been known that conditioning on events of probability zero
can be tricky business. The following example, taken from Rao (1993)
is not atypical. Consider X and Y to be two independent standard
exponential random variables. Define Z and W as follows

(5.1.1)
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(5.1.2)

Observe next that the events {Z=1} and {W=2} are equivalent, and could
be denoted by a common label B. What then should be the conditional
distribution of X given the event B? We could approach the question by
considering the joint distribution of X and Z, obtaining from this the
conditional densities of X given Z=z for any z, and then setting z=1.
This leads to the putative answer

(5.1.3)

a gamma density with shape parameter 2 and scale parameter 1/2.
Alternatively, we could consider the joint density of X and W. We could
obtain from it, the conditional density of X given W=w for any w and
then set w=2. The result of this exercise is as follows.

(5.1.4)

a gamma density with shape parameter 1 and scale parameter 1/2. The
conditional density of X given B is apparently not well defined. Kolmogorov
(1956) and more recently Rao (1993) argue that reporting a single
conditional distribution such as (5.1.3) or (5.1.4), rather than a family of
conditional densities such as fX|Z(x|z), � R or fX|W(x|w), w � R, is inadmissible.
We are not proposing to question this decision. We do wish however to
point out that conditional probabilities such as fX|B(x) above are not just
not uniquely determined. They, in fact, can pretty much be anything. In
this light it becomes even more important to emphasize the dangers of
dealing with conditional densities given events of measure zero.

5.2 THE DISTRIBUTION OF X GIVEN X=Y CAN BE
ALMOST ANYTHING

Consider X and Y two independent random variables with absolutely
continuous distribution functions. Suppose that the possible values of
X form an interval  (possibly of infinite length) while the possible
values of Y form an interval  (again, possibly of infinite length). We
assume that  is a non-empty interval. It is thus logically possible
that X=Y even though this event has zero probability.

We focus on the conditional distribution of X given that X=Y. We claim
that this conditional density can arguably be almost any density
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supported on . To see this, consider an arbitrary strictly increasing
function h: R→R. The event {X=Y} is of course then equivalent to the
event {h(X)=h(Y)}. Now consider two random variables

(5.2.5)

(5.2.6)

The conditional density of U given V=0 then provides an expression
that could be interpreted as the conditional density of X given {X=Y}.
Now assume that h-1 is differentiable so that a straightforward Jacobian
argument yields

(5.2.7)

From this expression we find

(5.2.8)

an expression which is non-zero on . The missing normalizing
constant in (5.2.8) is such that the given conditional density integrates
to 1 as it should.

If for example we take h(x)=x in (5.2.6) then we would get

(5.2.9)

since in this case h-1'(t)≡1.
If we take h(x)=log x assuming that X>0, Y>0 we would find h-1'(t)=et,

so h-1'(h(u))=u and

(5.2.10)

If we take h(x)=x3, we find h-1' (h(u))=1/3u2 and

(5.2.11)

Other monotone functions lead to other conditional densities.
Suppose that g(u) is an integrable positive function on . We

claim that there exists a suitable choice of monotone function h(x) in
(5.2.6) to yield

(5.2.12)

so that, as claimed, this conditional density can be quite arbitrary. In
order for (5.2.12) to hold, referring to (5.2.8), it must be true that

(5.2.13)
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Let us denote the known function on the right of (5.2.13) by w(u). We
then seek a strictly monotone differentiable function h on  such
that h-1' (h(u))=w(u), on . Let us denote

(5.2.14)

then we seek k(�) such that

(5.2.15)

If we write

and differentiate, we confirm that

(5.2.16)

Consequently we seek a function k such that

(5.2.17)

It follows that a suitable choice for h(�) is

(5.2.18)

With this choice of monotone function h(�), Equation (5.2.13) holds and
consequently

(5.2.19)

Whatever g is desired can be produced by suitable choice of monotone
function h. We reasonably then say that the conditional density of X
given X=Y can be anything.

5.3 DEPENDENT VARIABLES

It is reasonable to ask whether the assumption of independence of X and
Y is crucial in the above development. In fact it is not. Instead of assuming
that X and Y are independent we may assume that (X, Y) is absolutely
continuous with an arbitrary joint density fX,Y (x, y). Again assume that
the possible values of X are denoted by and the possible values of Y by .
It is still true that the conditional density of X given X=Y can be almost
any density supported on . As before let h be an increasing function
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and define U and V as in (5.2.5)–(5.2.6). Since we no longer assume X and
Y are independent, (5.2.7) and (5.2.8) must be replaced by

(5.3.20)

and

(5.3.21)

If we wish to have

(5.3.22)

we must select h such that

(5.3.23)

But this can obviously be achieved, as described in Section 5.2, by
choosing h as in (5.2.18) with w(u) now defined to be the right hand
expression in (5.3.23) [instead of (5.2.13)]. So in the dependent case
also, the conditional density of X given X=Y can be anything.

5.4 RELATED EXAMPLES

A large number of related paradoxes can be recounted. We will mention
two.

(a) Consider two i.i.d. normal (0, 1) random variables. We wish to
evaluate the conditional density of X2+Y2=Z given X=Y. Method 1
consists of writing Z=U2+V2 where  and

. Of course U, V are i.i.d. normal (0, 1) random
variables and the event X=Y is equivalent to V=0. Consequently
given V=0 (i.e. given X=Y), the distribution of Z will be like that of
U2, i.e. .

Method 2 involves writing Z=R2 where  and 
. It is well known that R and � are independent ran-

dom variables  and � ~ uniform(-�, �). The event X=Y is
equivalent to �=�/4 or -3�/4. But since R2 and � are independent,
the conditional distribution of Z=R2 given �=�/4 or -3�/4 (i.e. given
X=Y) will be .

So the distribution of Z given X=Y is, take your pick,  or . Or
something else, if you wish.
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(b) An example described by Kolmogorov (1956) and attributed to
Borel. Consider points uniformly distributed on the surface of the
unit 3 dimensional sphere. Such points can be identified by the
latitude (angular distance in radians above or below the equator)
denoted by X and their longitude (angular distance in radians from
a fixed prime meridian, a half circle through the poles, to a half
great circle through the point and the poles) denoted by Y. There
are however other ways of describing points on the sphere. One
could associate with a point, its latitude, X, as above and its prime
meridian latitude, Z, the angular distance in radians above or below
the prime meridian. Kolmogorov was interested in the distribu-
tion of the point given that it was on the prime meridian great
circle. Since a uniform distribution on the sphere will be uniform
on any subset of the sphere, it might be argued that the distribu-
tion of the location of the point (i.e. its latitude) given that it is on
the prime meridian great circle should be uniform. Such an argu-
ment is appealing, but since the prime meridian great circle is a
subset of the sphere surface of zero measure, it is not rigorous or
compelling. Indeed in the spirit of the present paper, the condi-
tional distribution of the latitude given that the point is on the
prime meridian great circle can be quite arbitrary.

If we consider (as did Kolmogorov) the joint distribution of (X, Y)
(i.e. latitude and longitude), we find easily that Y is uniform (-�, �)
while the distribution of X is not uniform. In fact

(5.4.24)

In addition X and Y are independent random variables. The condi-
tion that the point lie on the prime meridian great circle is equiva-
lent to Y=0 or Y=�. The conditional distribution of latitude given
that we are on the prime meridian, i.e. the distribution of X given
Y=0 or Y=� is by independence the same as the unconditional dis-
tribution of X given in (5.4.24). It is clearly not uniform.

Alternatively if we consider the joint distribution of (X, Z) (i.e.
latitude and prime meridian latitude), it is evident that X and Z
are identically distributed with common distribution given by
(5.4.24) but they are dependent. The point will be on the prime
meridian great circle iff Z=0. So the conditional distribution of the
latitude, given we are on the prime meridian great circle will, in
this formulation, be the conditional distribution of X given Z=0.
In this case the conditional density is uniform, i.e.
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(5.4.25)

(Note that the conditional density of X given Z=z (for z≠0) is not
uniform).

Other ways of specifying the location of a point on the surface of
the sphere can be expected to yield other conditional densities for
the latitude given that the point is on the prime meridian great
circle. There seems to be nothing inherently “correct” about either
(5.4.24) or (5.4.25) as a conditional density and, essentially, any-
thing would be just as good.
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CHAPTER 6

AN APPLICATION OF RECORD
RANGE AND SOME

CHARACTERIZATION RESULTS

PRASANTA BASAK
Penn State University, Altoona, PA

Abstract: Let Z1, Z2, …be a sequence of independent and identically
distributed random variables with absolutely continuous distribution
function F. For n≥1, we denote by Z1,n≤Z2,n≤…≤Zn,n the order statistics of
Z1, Z2, …, Zn. Consider the sequence of sample ranges Wi=Zi,i-Z1,i, i= 2, 3,
4, …. Then define W(n), n=1, 2, …to be the nth record range in the
sequence of sample ranges Wis. Observe that a new record range is
attained as soon as a new upper or lower record is observed. This article
introduces a general sequential method for model choice and outlier
detection involving the record range. The procedure require only limited
information about the sample, namely the suitably chosen stopping
times. Also, we give a characterization of the exponential distributions.

Keywords and phrases: Exponential distributions, record values,
stopping times

6.1 INTRODUCTION

Let Z1, Z2, …be a sequence of independent and identically distributed
(iid) random variables with absolutely continuous distribution function
(df) F, and probability density function (pdf) f. For n≥1, we denote the
order statistics of Z1, Z2, …, Zn by

(6.1.1)
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Since F is continuous, removing a null set will give us Zi≠Zj; i≠j. That is
we get the strict inequality in (6.1.1).

Let X(0)=Y(0)=Z1, and a new record (either an upper or lower)
occurs at time j if either Zj>max {Z1, Z2, …, Zj}, or Zj<min {Z1, Z2, …, Zj}.
Let X(n) be the lower record value and Y(n) be the upper record value
at the nth record in this sequence. Then for n≥1, define W(n)=Y(n)-X(n)
to be the nth record range. Also, it can be defined by looking at the
sample ranges Wi=Zi,i-Z1,i, i=2, 3, 4, …. By this definition, we get
W(1)=W2 to be the first record range. Observe that a record range is
encountered whenever either a new lower or upper record value in Zis
is observed.

Properties of record values and order statistics of iid random variables
have been extensively studied in the literature. See, for example,
Ahsanullah (1995), Arnold, Balakrishnan, and Nagaraja (1998),
Deheuvels (1984), and bibliographies in Galambos and Kotz (1978),
Nagaraja (1988), Nevzorov (1987). DasGupta, Rinott and Vidakovic
(1998) intoduced some methods for model choice and outlier detection
using order statistics.

The goal of this article is to introduce a technique for model choice
that uses a sequential approach. Of course, the well known SPRT due
to Wald already does that, and it is also well known that Wald’s SPRT is
strongly admissible. The hope in introducing new method is that one
can save, in many cases, very substantially on the expected sample size
by sacrificing minimally on error rates. Also, in this article, we give
some characterizations of the exponential distributions.

The method proposed here apply particularly well to two specific types
of problems: choosing between tails and investigating the effect of
outliers. Therefore, these will be emphasized consistently. We define
the following stopping time.

• For iid samples from an absolutely continuous distribution with df
F (we assume unbounded interval of support) and density f, we
will let N denote the stopping time

 

N thus simply gives the waiting time until the record range of an iid
sample exceeds a given value c. Observe that here the waiting time N
is defined in terms of number of records (either upper or lower) and
not in terms of the number of observations. Note that N is quite
evidently constructed for applications to problems of choosing tails.
The idea is that for populations with thicker tails, N would tend to be
smaller, giving rise to the possibility that one can choose the right tail
without sampling for too long. With this introductory description, we
will now study the stopping times on a theoretical basis in section 6.2.
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In section 6.3, we give some characterizations of the exponential
distributions based on record range time and the lower record value
at that time.

6.2 THE STOPPING TIME N

6.2.1 The Mean and the Variance of N

It is known [see Houchens (1984)] that, for n≥1, the pdf of W(n) is given
by

 

To see that N is a stopping time, we simply use the identity

in applying the formula (6.2.2), little care has to be taken if the support
of F is finite. Now use the fact that X(n)→∞ a.s., while Y(n)→-∞ a.s,
implying W(n) converges in probability to ∞, giving P(N>n)→0, as n→∞,
meaning N is proper.

Theorem 6.2.1 For every 0<c<∞, expected value of N is finite and is
given by

 

(6.2.2)
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PROOF For non-negative integer valued random variable N, it is known
that

So,

To see that the expectation is finite, we can invoke Tonelli’s theorem.
The right side of equation (6.2.3) can be written as

 

This is easily shown to be finite since

 

The case of bounded support can be dealt in similar fashion. �

(6.2.3)
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Theorem 6.2.2 For every 0<c<∞, variance of N is finite and is given
by

 

PROOF First we find E(N(N-1)), which is known to be

 

for non-negative integer valued random variable.
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So,

 

Example 1 The standard normal (with cdf �����(0, 1), and pdf �(.)) and
standard Laplace (also known as standard double exponential) (with
pdf ) cases. Application of the above formulas, on numerical
integration, gives the values for the mean and the standard deviation
of N as in Tables 6.1 and 6.2 respectively. Here, we standardize the
standard Laplace distribution, so that comparisons with standard
normal will be more meaningful.

TABLE 6.1 Mean and standard deviation of N under standard normal

TABLE 6.2 Mean and standard deviation of N under standard Laplace

Note that standard Laplace does not have quartiles equal to those of
�(0, 1), but the effect of a thicker tail is transparent from the numbers
in Table 6.2. Some care is needed in interpreting the the two tables,
although the effect of a thicker tail is clear from the respective expected
values. It will take on average 15.79 records from the standard normal

�
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for the record range to hit 7, but only 10.29 on the averge for the same
range in the case of Laplace. Care is needed though, because 10.29 is
within two sigma of the mean value of N for the normal case. However,
if one was sampling from the Laplace, almost certainly one would hit
the value 7 in 17 records, and the chance of doing so for normal population
is low. Thus a sequential sample is likely to give information regarding
the model one is sampling from.

One can do formal tests by setting up H0: F is �����(�, 1), for some �,
versus H1: F is Laplace (�, 1), for some �. A reasonable procedure seems
to be: Reject H0 if N>n. The choice of c and this later threshold value n
is an optimality problem, and many formulations is possible. For
instance, one can ask for the optimal pair (c, n) that minimizes some
weighted average of the Type 1 and Type 2 errors. Incidentally, these
two errors can be calculated immediately because they both involve
only the event {N>n} and we have seen how to evaluate P(N>n) for any
absolutely CDF.

6.2.2 Behavior for Large c: Almost Sure Limits

It will now be necessary to explicitly emphasize the role of the c in the
definition of N. Consequently, we will for now write N as N(c). It is
evident that N(c)→∞ almost surely as c→∞. One can give just a sample
point argument. One would expect, however, that the rates of
convergence would depend on the tail.

Theorem 6.2.3 , where 
. In other words, N(c) is of order R(c).

PROOF To arrive at the stated assertion, we use the inequalities

 

where for any n, W(n) denotes Y(n)-X(n). This is immediate from the
definition of N(c). Consequently,

 

Now use the following three facts.

1.  and  converge almost surely to .

The above almost sure convergence is true for the distribution
functions satisfying the conditions (6.2.4) below [Resnick (1973,
Theorem 4)]
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Theorem 6.2.4 A sufficient condition for  is

(6.2.4)

where, V(n) is the usual nth upper record value.

Resnick (1973) also showed that (6.2.4) is equivalent to

(6.2.5)

If R-1 is regularly varying with exponent �, 0≤�≤∞ [equivalent to R
regularly varying with exponent �-1] then (6.2.4) or (6.2.5) is
satisfied.

2. N(c)→∞ almost surely as c→∞, which was discussed before.

3. If W(n) is a sequence of random variables and a(n) is a sequence of
real numbers such that W(n)/a(n)→1 almost surely as n→∞, then
so does W(N(c))/a(N(c)) as n→∞. �

It now follows from our inequalities above that  almost
surely, and the stated result follows.

Example 1 (Normal case) Conventional wisdom says that the �����(0, 1)
distribution has thin tails; furthermore the values for E(N) in normal
case of Example 1 suggest N(c) has to be very large for large c. For
standard normal distribution,  for large values of x using
Mill’s ratio. That is,  implying . So,

 

That is, N(c) is of order R(c)=c2/2 for large c.
Arguments entirely parallel to the normal case imply that in the case

of Laplace N(c) to be of order of c. Notice the slower rate at which N
grows in comparison to the normal case. It will also be intersting to see
at what rate does E[N(c)] grow. We will work out an example in greater
detail.

Example 2 For nonnegative random variables interesting variation of
stopping time N can be given although N itself still makes sense.
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Consider the case of the exponential density exp(-x), x≥0. Define a new
stopping time N1 as

 

On transforming to the distribution of a log-exponential random variable
(the negative extreme value distribution) this corresponds to the stopping
time N.

We will, however, study the expectation of this new stopping time
without transforming, as it seems better to do so. One can check by
using now familiar arguments that E(N1) is finite and equals

 

which in this case reduces to

 

on the change of variable in the integral. The question is at which rate
this expectation goes to infinity. We use an old technique known as
method of Laplace to do this.

The function 1-x+xc has unique minimum at ; this goes to
1 as c→∞. But the dependence on c creates hurdles in the subsequent
analysis. Instead we make the change of variable y=cxc-1. The integral
now becomes

 

The contribution from [0, 1] remains bounded; the contribution from (1,
c) determines the rate of convergence. On expanding the term in the
denominator of the integrand around y=1, and using the fact that 
is of the order , one gets E(N1) equivalent to , i.e., c.

6.3 CHARACTERIZATION RESULTS

In this section, we give a characterization of the exponential
distributions in terms of record range time and lower record value at
that time. The record range times, I(n), are defined as follows. Let

 and define
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I(n) is the nth record range time, i.e., the time when the nth record
value (either lower or upper) is observed. Observe that I(n) is the index
of the observation creating the nth record range. Let X(n) be the lower
record value at time I(n).

Houchens (1984) shows that the pmf of I(n) is given by

 

where  are the Stirling numbers of the first kind, defined by

 

In order to prove our main characterizing results, we will need the
following lemma.

Lemma 6.3.1 .

PROOF

 

Then we the have the following theorem.

Theorem 6.3.2 Suppose that

 

Then  if and only if , for some �>0.
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PROOF (If Part) Easy to verify.
(Only if Part) Let  and define , x>0. Since

, we have u(0)=u(0+). Then

(6.3.6)

The theorem is proved if it can be shown that u(x) in equation (6.3.6) is
a constant. Following Ahsanullah and Kirmani (1991) we show that
u(x) is indeed a constant. Define for any given t>0,

 

By continuity of u(x), we have x � [0, t] and u(x0)=a0. Therefore,

(6.3.7)

If in (6.3.7) equality holds for all m>n then u(x0)=u(0), which gives x0=0
by the definition of x0. Now suppose that x0>0. Then in (6.3.7) we must
have strict inequality for at least one value of m>n and hence

 

which contradicts (6.3.6). Therefore, x0=0. Similarly, it can be shown
that x1=0. This proves that  and
therefore u(x) is constant.

Theorem 6.3.3 Suppose that

 

Then  if and only if, for some m≥2, the conditional
distribution of I(n)X(n) given I(n)=m is identical with the unconditional
distribution of I(n)X(n).
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PROOF The conditional survival function of I(n)X(n) given I(n)=m is
given by

 

So K(x)=P(I(n)X(n)≤x) is independent of m if and only if, for all x>0,
. Using the method of Galambos and Kotz (1978, pp.

39–40), we get

 

It follows that �

Our next characterization deals with distributions having harmonic new
better (worse) than used in expectation property. A distribution function
F(.) with F(0)=0 and µ=E(Z1)<∞ is said to be harmonic new better (worse)
than used in expectation abbreviated HNBUE (HNWUE), if

 [see Basu and Ebrahimi (1986)]. These
distributions contain all new better (worse) than used in expectation
(NBUE, NWUE) distributions and also IFR (DFR), IFRA (DFRA), and
NBU (NWU) distributions.

Theorem 6.3.4 Suppose the underlying distribution F(.) is HNBUE
(HNWUE). Then E [I(n)X(n)]=E[Z1] if and only if F(.) is exponential

PROOF Let µ=E[Z1] and suppose F(.) is HNBUE (HNWUE). Then we
have

 

with equality if and only if

(6.3.8)

But (6.3.8) is a necessary and sufficient condition for F(.) to be exponential
when F(.) is HNBUE (HNWUE) [see Basu and Kirmani (1986)].

�
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CHAPTER 7

CONTENTS OF RANDOM
SIMPLICES AND RANDOM

PARALLELOTOPES

A.M.MATHAI
McGill University, Montreal, Quebec, Canada

The University of Texas at El Paso, TX

Abstract: General moments and distributions of the volume contents
of random simplices and random parallelotopes in Rn, the n-dimensional
Euclidean space, when some general probability measures are associated
with the vertices, are considered in this article. Usual methods available
in the literature for dealing with such problems depend heavily on results
from integral and differential geometry. Algebraic procedures based on
properties of Jacobians of matrix transformations and functions of
matrix argument, and no results from integral and differential geometry,
will be used in the present article. Various types of results will be
obtained when the vertices are preselected points or when the points
arrive according to some stochastic processes.

Keywords and phrases: Random simplex, random parallelotope,
random volume, exact distributions, moments

7.1 INTRODUCTION

A few known results from basic linear algebra and a few results on
Jacobians of matrix transformations are needed in the discussions later
on. Hence these will be introduced here as lemmas.
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7.1.1 Some Basic Results from Linear Algebra

Consider a parallelogram in a plane. The 3-dimensional analogue is the
parallelepiped. In each of (x1, x2)-plane, (x1, x3)-plane, and (x2, x3)-plane
it is a parallelogram. The n-dimensional analogue of a parallelogram is
the parallelotope. Consider a rectangular coordinate system with the
origin denoted by O. Let P1=(x11, x12) and P2=(x21, x22) be two points. Then
a parallelogram can be generated by these points and O. The area of
the parallelogram is twice the area of the triangle OP1P2 or 
where a1 is the length of OP1 and h is the perpendicular distance from
P2 to the line OP1. Then the area is |a1a2 sin �| where � is the angle
between OP1 and OP2. But

 

where (a1, a2) is the dot product of the vectors  and  or in terms
of the coordinates

 

Substituting the coordinates, the expression for the area reads as

 

where the+indicates that the absolute value of the determinant is taken.
With three points P1(x11, x12, x13), P2(x21, x22, x23), P3(x31, x32, x33) in a 3-
dimensional space we can create a parallelepiped. The volume is given
by the cross product of the vectors ,  and  which is the
determinant
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(a) The content of a parallelotope

Generalizing this concept the volume of an n-dimensional parallelotope
is given by

(7.1.1)

where the n points which created the parallelotope are

 

Lemma 7.1.1 Let Pj=Pj(xj1, …, xjn), j=1, …, n be n linearly independent
points in a rectangular coordinate system with the origin O. Let θij be the
angle between the vectors  and , i≠j and aj the length of , j=1,
…, n. Then the volume content of the parallelotope created by the vectors

 are given in (1).

(b) The content of a simplex

Consider 3 noncollinear points P1, P2, P3 in a plane. Let the coordinates
of these points be P1(x11, x12), P2(x21, x22), P3(x31, x32). The area of this
triangle can be computed by shifting the origin to one of the points, say
P3. When the origin is shifted to P3 the other points, with reference to
the new origin, are P1(x11-x31, x12-x32) and P2(x21-x31, x22-x32). Then the
area of the triangle, A2, is the area of the corresponding parallelogram
divided by 2. That is,

 

The last expression is more convenient since it gives the coordinates of
the individual points on separate rows. Now consider 4 points in a 3-
dimensional space such that no point lies on the points, lines and the
plane generated by the other 3 points. Consider the solid body having
these four points as vertices. All the sides of this body are triangles. Six
such identical bodies can be packed into a parallelepiped. Then the volume
content, by proceeding as above and denoting it by A3, is given by
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Lemma 7.1.2 Consider n+1 points in an n-dimensional Euclidean space
Rn, Pj=Pj(xj1, …, xjn), j=1, …, n+1, so that no point lies on the 0-dimensional,
1-dimensional, …, (n-1)-dimensional bodies created by the other n points.
The convex hull created by these n+1 points is a simplex and the volume
content, denoting by An, is given by

(7.1.2)

From the expression for A2 note that if all the sides of the triangle are
equal to some number a then the area is .

As a corollary we have the following result: If all the edges of the
regular simplex in Lemma 1.2 are of equal lengths a then

 

Thus we have for

 

From (7.1.2) observe that by subtracting the last row from each row the
following results are obtained:
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(7.1.3)

where |YY�| denotes the determinant of YY � and Y is the matrix Y=
(yij), yij=xij-xn+1j. when the matrix Y is an identity matrix which is the
same as saying that

 

the i-th unit vector, i=1, …, n then

 

But the right side of (3), excluding  is the content or volume of an n-
parallelotope formed in the rectangular coordinate system with the
origin at the point Pn+1. Hence we have the following result:

Lemma 7.1.3 Let Xj be an n×1 real vector, j=0, 1, …, r. Thus X0, X1, … Xr

are r+1 points in the Euclidean n-space Rn, r �n. Let �n denote the volume
content or r-content of the r-simplex created by the ordered and linearly
independent points X0, …, Xr. Let  be the volume or the r-content of the
r-parallelotope created by the vectors , for j=1, …, r or the r points
taking X0 as the origin of the coordinate system. Then

(7.1.4)

where

(7.1.5)

Note that  can be interpreted as Wilks’ sample generalized variance
when E(Y)=O, where E denotes the expected value and O the null matrix.
Properties and applications of this concept of generalized variance may
be seen from books on multivariate statistical analysis, see for example
Anderson (1984). A critical examination of this concept and showing
that it cannot be interpreted as a generalized variance may be seen
from Mathai (1968).
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7.1.2 Some Basic Results on Jacobians of Matrix Transforma-
tions

When dealing with the distributions and moments of �n and �n of (7.1.4)
and (7.1.5) we will need to consider one-to-one transformations involving
matrices and the associated Jacobians. Jacobians of frequently used
matrix transformations are available from Mathai (1997). Some
Jacobians that we need later on are listed here as lemmas. In the
following discussion ||(�)|| denotes the norm or distance or length in
( �), and the symmetric positive definiteness of a matrix X will be denoted
by X=X’>0. All matrices appearing are p×p real symmetric positive
definite unless stated otherwise. 0<A<X<B means A=A �>0, B=B’>0,
X=X �>0, B-X>0, X-A>0 and  will mean the integral of the
real scalar function f of the matrix X integrated over 0<A<X=X�<B and
dX denotes the volume element. That is, for X=(xij),

 

if all xij’s are functionally independent and it is  if X=X � and all
the elements are functionally independent subject to the condition X=X �.
A real matrix-variate gamma, �p(α), is defined as

(7.1.6)

where  denotes the real part of (�). It is easy to show , see for example
Mathai (1993), that for a constant matrix B=B�>0

(7.1.7)

where tr denotes the trace. When B=I, an identity matrix, (7.1.7) gives
an integral representation for �p(α) which can also be taken as a
definition for �p(α). The integral is evaluated with the help of the
following two results. These and other results that are needed in our
discussion will be stated as lemmas. A detailed treatment of the
Jacobians of matrix transformations may be found in Mathai (1997).

Lemma 7.1.4 Let X be a p×p symmetric positive definite matrix of
functionally independent real variables. Let T=(tij) be a lower
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triangular matrix, tij=0, i<j, with positive diagonal elements, tjj>0,
j=1, …, p. Then,

(7.1.8)

It is easy to see that the transformation is one to one when tjj>0, j= 1, …, p.

Lemma 7.1.5 Let X be a p×p symmetric matrix of functionally
independent real variables and A a nonsingular constant matrix. Then,
ignoring the sign,

(7.1.9)

By using (7.1.7), (7.1.8) and (7.1.9) one can establish the following results,
which are also known as the type-1 and type-2 real matrix-variate beta
integrals.

(7.1.10)

(7.1.11)

for .

When Xj ∈Rn, j=1, …, p are mutually independently distributed as
standard normal or Gaussian, Xj~Nn(0, In), then the n×p matrix X=(X1,
…, Xp), n�p, of full rank p, has a standard matrix-variate Gaussian
distribution with the density

(7.1.12)

The normalizing constant  can be obtained either by
directly integrating xij’s over the real line -�<xij<�, observing that

, or with the help of the following result:

Lemma 7.1.6 Let X be an n×p, n�p, matrix of functionally independent
np real variables. Let T=(tij) be a lower triangular matrix with positive
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diagonal elements. Let U be an n×p, n�p, semiorthonormal matrix,
U�U=Ip or U in the Stiefel manifold Vp,n, U ∈Vp,n. Then

(7.1.13)

where

(7.1.14)

(dUj) indicates the n×1 vector of differentials of the elements of Uj, the j-
th column of U.

If the density in (7.1.12) is now evaluated by transforming X to T and
U and integrating out -�<tij<�, i>j, 0<tjj<�, j=1, …, p then one has the
following result:

(7.1.15)

If n=p then Vp,n is the full orthogonal group O(p) and

(7.1.16)

From Lemma 7.1.4, and equations (7.1.13) and (7.1.14) we have the
following result:

Lemma 7.1.7 Let X, T and U be as defined in Lemma 7.1.6 and let A=
X�X. Then

(7.1.17)

where dU* is defined in (7.1.14), with the integral in (7.1.15).

7.1.3 Some Practical Situations

The two-dimensional simplex is a triangle and some of the practical
situations where random triangles appear will be mentioned here.
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(a) Density of plants in a forest

Any study of the density of plants in a forest requires measuring the
distance from a plant to the nearest plant. Trees are assumed to draw
the nutrients from circular areas centered at their bases. Thus in the
long-run a natural forest will have trees at the lattice points of
equilateral triangles of sides l where l is the distance between the
centres of tightly packed circles of radius 1/2 each. Study of such
problems in forestry may be seen from the references in Holgate
(1965).

(b) Growth of crystals

Consider the problem of crystal growth on a wire of length l.
Suppose that at random locations on the wire and at random times
crystals are born along the wire. These can be taken initially as
random points on a line segment of length l, each crystal growing
with constant speed v on both sides in such a way that when a
crystal touches its neighbor the growth stops on that side where the
contact is made. New crystals can be born only on uncovered parts of
the wire. We can show that the problem is equivalent to studying
random points in an isosceles triangle if we start with one crystal at
each end of the wire. This and other related problems are examined
in Krengel (1967) for the cases when the crystals are born at random
points on the wire and when the points arrive according to a Poisson
process.

(c) Travel distance in a triangular city core

Another situation that one can consider is the problem of travel
distances to a city core which is triangular in nature. A vehicle arrives
at the entry point to the city core. This entry point could be one of the
vertices of the triangle or a point on one of the sides. Taking into
consideration all possible destination points inside the city core a
typical travel can be taken as the random path from a vertex or from a
random point on a side to a random point inside the triangle. In this
case the triangle is fixed and one is interested in random points inside
this triangle. Items of interest will then be the expected travel distance
and the density and moments of this random distance. Such problems
of travel distances in circular cities are considered by many authors,
see some of the references from Mathai (1998b, d) and Mathai and
Moschopoulos (1998). Random distances in Gaussian random fields
may be seen from Provost and Barnwal (1993) and Provost and Cheong
(1997).
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(d) Sylvester problem

The famous problem known in the geometrical probability literature as
Sylvester’s four-point problem is the problem of evaluating the
probability that four points selected at random in a given finite plane
convex region, such as a circle of finite radius in a plane, form a convex
quadrilateral. This can be evaluated by computing the probability that
the fourth point selected at random is inside the triangle formed by the
first three randomly selected points. In this case the quadrilateral is
not convex. A generalization of the problem will be to compute the
probability that a point selected at random within a well-defined convex
region in Rn will fall inside the random simplex formed by n+1 random
points in Rn.

The above ones are a few of the practical problems where one has to
deal with a random simplex or the volume content, in the above examples
the areas, of a random simplex. Specific cases when the vertices of the
simplex have some specified distributions are considered by many
authors. We will consider some very general families of distributions
for the vertices and then look at the distribution of the volume contents
of such random simplices and parallelotopes. Miles (1971), Ruben (1979)
and Ruben and Miles (1980) considered Gaussian distributed
independent random points. When Xj, j=1, …, p are iid (independently
and identically distributed) real random n×1 vectors with E(Xj)=0 then
the determinant |X’X| is the square of the random p-content of the p-
parallelotope in Rn. This remains invariant under orthogonal
transformations or under rotations of the orthogonal coordinate axes.
Independence and isotropy of the random points in Rn, not necessarily
identically distributed, are usually the basic assumptions in the
literature when dealing with the distributions of random p-contents.
Various techniques available in the literature use almost exclusively
results from differential and integral geometry, see for example, Coleman
(1969), Kendall and Moran (1963), Kingman (1969), Ruben (1979),
Santaló (1976) and Solomon (1978). Some aspects of spherically
symmetric and elliptically contoured distributions are available in Fang
and Anderson (1990), Fang, Kotz and Ng (1990) and Fang and Zhang
(1990).

In the present paper we consider the case of the joint distribution of
the elements of the n×p matrix X belonging to some general classes of
distributions, where the Xj’s need not be independently or identically
distributed. Particular cases such as independently distributed isotropic
random points are shown to give rise to the results obtained by Ruben
(1979) and Miles (1971). Our methods will be based on algebraic
procedures making use of the lemmas listed above and no results from
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integral geometry and decomposition of measures will be used. One major
drawback for procedures based on integral geometry seems to be that
only integer moments, that is for h=0, 1, …when the h-th moment of the
p-content is evaluated, are coming out from such techniques. Our
procedure will provide the h-th moment for an arbitrary h, real or
complex, whenever the moment exists.

7.2 DISTRIBUTION OF THE VOLUME OR CONTENT OF A
RANDOM PARALLELOTOPE IN Rn

Let Xj, j=1, …, p be an ordered set of random points in Rn for a prefixed
p and X=(X1, …, Xp) the n×p, n≥p, matrix of rank p. Let U=(U1, …, Up) be
an n×p semiorthonormal matrix, U’U=Ip, U 	 Vp,n. Let T=(tij) be a lower
triangular matrix with positive diagonal elements. Then from
elementary considerations the following results are easily established.

(7.2.18)

where ||(�)|| denotes the length of (�). Again, from the transformation
we have

 

which then yields

 

Let
 

Then the transformation in (7.2.18) implies the Gram-Schmidt
orthogonalization process, producing a set of p mutually orthogonal n×1
vectors Z1, …, Zp where ||Zj||=tjj, j=1, …, p. Then the p-content  of
the p-parallelotope in Rn determined by the vectors , which
is also p! times the p-content �p,n of the p-simplex with the vertices O,
X1, …, Xp, is given by

(7.2.19)

(7.2.20)

Hence an arbitrary h-th moment of 
p,n is available from the h-th moment
of the product t11…tpp. The exact distribution of 
p,n is available from
that of t11…tpp.
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One of the simplest cases that we can deal with is when the joint
distribution of the elements in the real n×p, n�p, matrix X has an
absolutely continuous distribution with the density function f(X) which
can be expressed as a function of X�X. In Sections 7.2 and 7.3 we consider
the case of a fixed or preselected p. Let

 

where g(X�X)>0 with probability 1 on the support of X�X. Let the columns
of X be linearly independent so that X is of full rank p. Let W=X�X.
With the help of the lemmas we have

 

and

(7.2.21)

provided the integral on the right converges, where En|W|h denotes
the h-th moment of |W| in the density of X. As an example, if

(7.2.22)

where c is the normalizing constant and B is a constant matrix, then
from (7.2.21) we have the following result:

Theorem 7.2.1 When W=X�X with X having the density in (7.2.22) then
the h-th moment of |W| in the density (7.2.22), En|W|h, is given by

 

When the columns of X are independently distributed standard normal
then a=0,  and in this case Theorem 7.2.1 gives
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which is the h-th moment of what is known in the statistical literature
as Wilks’ generalized variance. From Theorem 7.2.1 observe that

 

where wj is a real scalar gamma random variable with the shape
parameter  and the scale parameter 1. Hence |BW| is
structurally a product of p independent real gamma variables and the
exact density of such a product is available in terms of a Meijer’s G-
function or in explicit series form, see Mathai (1993). For the sake of
completeness we will list this result as a theorem.

Theorem 7.2.2 When W=X’X with X having the density in (7.2.22) then
y=|BW| has the density, denoted by fy(y), given by

 

0<y<� and zero elsewhere.

Theory and applications of G and H-functions are available from Mathai
and Saxena (1973, 1978) and Mathai (1993). Since the definition of G
or H-function will take up too much space it will not be given here.

7.2.1 Matrix-Variate Type-1 Beta Distribution

Many types of matrix-variate distributions are discussed in Mathai
(1997). One of the simplest of such distributions is a type-1 beta
distribution. Let the n×p, n≥p, real random matrix X of full rank p have
the density

(7.2.23)

for 0<X’X<I with probability 1, ,  where c is the
normalizing constant. Then from the lemmas we have the following
result:
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Theorem 7.2.3 Let W=X�X with X having the density in (7.2.23) and let
En|W|h denote the h-th moment of |W| in this density. Then

 

The right side can be written as the h-th moment of a product of p
independent real scalar type-1 beta random variables. That is,

 

where wj is type-1 beta with the parameters . Thus,

structurally, |W| is a product of the independent variables w1, …, wp.
The exact density of such a structure can be written as a G-function.

Theorem 7.2.4 For the W in Theorem 7.2.3 let z=|W| with the density
of z denoted by fz(z). Then

 

and zero elsewhere.

7.2.2 Matrix-Variate Type-2 Beta Density

Another simple case one can consider is when the density of X belongs
to a general type-2 beta family. Let the n×p, n�p, real random matrix
of rank p have the density

(7.2.24)

with X�X>0 almost surely,  and c is the normalizing
constant. Then from the lemmas we have

Theorem 7.2.5 Let X have the density in (7.2.24), W=X�X and En|W|h

the h-th moment of |W| in (7.2.24). Then
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Thus, only a few moments satisfying the above inequality will exist.
From the structure of the gamma product in En|W|h of Theorem 7.2.5
it is easy to note that |A| is structurally a product of p independent
real scalar type-2 beta random variables and then the exact density of
|W| can be written as follows:

Theorem 7.2.6 When the density of X is as in (24) with the moment
expression given in Theorem 7.2.5 the exact density of x=|W| is given by

 

0<x<� and zero elsewhere.
Various types of computable series representations for G-functions

of the types , , , and other forms, are available from Mathai
(1984) as solutions of certain integral equations.

7.3 SPHERICALLY SYMMETRIC DISTRIBUTIONS

Let the n×1 real vector random variable Xj have a spherically symmetric
distribution then, by definition, the density of Xj can be written as a
positive function of . Then going through a triangular
decomposition for X=(X1, …, Xp) as in (18) we have

 

As an example let the p columns Xj, j=1, …, p of the n×p, n�p, matrix X
be independently distributed with Xj having the density of the form

(7.3.25)

and zero elsewhere, where cj is the normalizing constant. This is a multi-
variate type-1 beta form. Note that

(7.3.26)

The procedure goes through also when fj(Xj) contains a factor of the type
 with �jk�0, k=1, …, j-1. Hence the condition that Xj, j=1, …,

p are independent and isotropic is not necessary in this example as long
as the joint density of X1, …, Xp can be written finally in the form

(7.3.27)
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where c is the normalizing constant, 
 for all j and k.

In (7.3.26), -1<tjk<1, k=1, …, j-1, 0<tjj<1 as per the assumptions in the
matrix T. Integrating out tj1 from (7.3.26) gives the following: For
convenience write . Then

 

Successive integrations of tj1, …, tjj-1 yield the final form

(7.3.28)

Multiplying (7.3.28) by  and integrating gives

(7.3.29)

where �j depends only on j and it is free of h. Then we have

Theorem 7.3.1 Let the columns Xj, j=1, …, p of the n×p, n�p, matrix X
be independently distributed and having the density in (7.3.25). Let
W=X�X. Then the h-th moment of |W| is given by

(7.3.30)

From the right side in (7.3.30) it is clear that |W| is structurally a
product of p independent real type-1 beta random variables with the
parameters , j=1, …, p. (7.3.30) is Equation (33) of
Ruben (1979) who obtained it with the help of several results from
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integral geometry. As indicated earlier, the density of |W| of (7.3.30)
can be written as a G-function of the type . Several results of the
type in Theorem 7.3.1, covering the cases when Xj’s have some general
classes of distributions, are worked out in Mathai (1998c) by using only
Jacobians of matrix transformations and some properties of functions
of matrix argument. Hence further cases of this type will not be given
here.

7.4 ARRIVAL OF POINTS BY A POISSON PROCESS

When points arrive into a well-defined region according to some random
process then the moments and densities obtained in Sections 7.2 and
7.3 can be taken as conditional moments and densities with p given.
Consider the case of Poisson arrivals of points. Let p have the following
probability function:

(7.4.31)

and zero elsewhere. With a pre-selected rectangular coordinate system
we need at least one point to create a non-zero length or volume. If no
such pre-selected system is there then we need at least two points to
create a non-zero length or volume for the p-parallelotope and p-simplex.
If points arrive according to (7.4.31) then the h-th moment in (7.3.30) is
the conditional h-th moment of |W|, given p. The unconditional h-th
moment of |W| is given by the following, observing that when p=0 the
volume is zero:

(7.4.32)

Since the summation in (7.4.32) is over p and since the product of
gammas is also over p we cannot simplify (7.4.32) in terms of some
standard special functions. New categories of functions are to be defined
if (7.4.32) is to be written in a more simplified form. All the results in
Sections 7.2 and 7.3 can be rewritten in the light of the above discussion
if p is a random variable having its own distribution. Further discussion
of this aspect will not be done here.
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CHAPTER 8

THE DISTRIBUTION OF
FUNCTIONS OF ELLIPTICALLY

CONTOURED VECTORS IN
TERMS OF THEIR GAUSSIAN

COUNTERPARTS

YOUNG-HO CHEONG SERGE B.PROVOST
The University of Western Ontario, London, Ontario, Canada

Abstract: No general representations of the density or the distribution
function of quadratic forms in elliptically contoured vectors are currently
available in the literature. As a result, the random vectors associated
with quadratic forms have been assumed—almost invariably and at
times inappropriately—to follow a multivariate normal distribution in
statistical applications. It is shown in this paper that a certain scale
mixture representation of the density function of a central elliptically
contoured vector, as well as its extension to non-central random vectors
yield computable expressions for the moments, the density and the
distribution function of quadratic forms in elliptically contoured vectors.
The same approach can readily be used to determine the distribution of
other functions of elliptically contoured vectors in terms of their
Gaussian counterparts.

Key words and phrases: Elliptically contoured distributions, spherically
symmetric distributions, quadratic forms, exact distribution, moments

8.1 INTRODUCTION AND NOTATION

The class of elliptically contoured distributions which includes the
multivariate normal distribution possesses several of its properties while
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allowing for increased flexibility in modeling random processes. Several
fields of application involve distributions belonging to this class,
including for example, filtering and stochastic control: Chu (1973);
random input signal: McGraw and Wagner (1968); financial analysis:
Zellner (1976) and the references therein; the analysis of stock market
data: Mandelbrot (1963) and Fama (1965); and Bayesian Kalman
filtering: Girón and Rojano (1994). Studies on the robustness of
statistical procedures when the probability model departs from the
multivariate normal distribution to the broader class of elliptically
contoured distributions were carried out by King (1980) and Osiewalski
and Steel (1993). Results related to regression analysis can be found
for example in Fraser and Ng (1980). Several multivariate applications
are also discussed in Devlin, Gnanadesikan and Kettenring (1976).
Heavy-tailed time series models were recently discussed in Resnick
(1997).

A p-dimensional vector X has an elliptically contoured (or elliptical)
distribution with mean vector µ and scale parameter matrix � if its
characteristic function  can be written as

 

where µ is a p-dimensional real vector, � is a p×p nonnegative definite
matrix and �(.) is a nonnegative function, see Cambanis, Huang and
Simons (1981); this will be denoted

 

Moreover, the densities associated with elliptically contoured vectors X
are of the form h((x-µ)’�-1(x- µ)) where h(.) is a density function defined
on (0, ∞) whose (p/2-1)-th moment exists, see Fang, Kotz and Ng (1990).
In particular, when µ is the null vector and � is the identity matrix of
order p, X is said to have a spherically symmetric (or spherical)
distribution; this will be denoted

In fact, whenever Y~Cp(µ, �, �) and � is a positive definite matrix,
, where �-1/2 denotes the inverse of the symmetric

square root of �. Furthermore, spherical distributions are invariant
under orthogonal transformations: For any orthogonal matrix P, X and
PX are identically distributed—this will be denoted . Other
characterizations and properties of elliptical distributions are available
from Chmielewski (1981), Fang, Kotz and Ng (1990) and Mathai, Provost
and Hayakawa (1995), among others.
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A representation of the density function of a central elliptically
contoured vector in terms of a scale mixture of normal variates
involving a certain weighting function is given in Section 8.2 and used
in Section 8.3 to obtain integral representations for both the density
and the distribution function of quadratic forms in elliptically
contoured vectors. Computable expressions for the moments of
quadratic forms are obtained from an extension of a theorem due to
Chu (1973) in Section 8.4. The proposed technique can be readily used
to obtain similar distributional results for other functions of elliptically
distributed vectors in terms of their Gaussian counterparts. A
numerical example is provided in Section 8.5.

The distributional results obtained in this paper for quadratic forms
in elliptically contoured random vectors not only extend but make use
of their Gaussian counterparts. As pointed out at the beginning of this
section, elliptically contoured distributions are used as models in a host
of applications. Quadratic forms being ubiquitous in statistics, the
results derived in this paper should prove useful in a variety of contexts
and lead to the development of improved statistical inference techniques.

8.2 A REPRESENTATION OF THE DENSITY FUNCTION
OF ELLIPTICAL VECTORS

Chu (1973) showed that the density of a central elliptically contoured
random vector has the mixture representation given in the following
theorem.

Theorem 8.2.1 If X is a p-dimensional central elliptically contoured
random vector with scale parameter matrix � and density function g(x),
then, under certain regularity conditions, there exists a scalar function
w(t) defined on (0, ∞) such that

where �X(t-1�) denotes the density function of X~Np(0, t-1�), a p-
dimensional Gaussian random vector with mean 0 and covariance matrix
t-l�, and

 

-l(f(s)) denoting the inverse Laplace transform of f(s) with f(s)=g(x) when
s=x’�-1 x/2.

In fact, -1(f(s)) exists whenever f(s) is an analytic function and f(s) is
O(s-k) as s→∞ for k>1; for additional properties of the Laplace transform
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and its inverse, one may refer to Gradshteyn and Ryzhik (1980, Chapter
17).

On integrating g(x) as defined in Theorem 8.2.1 over Rp and changing
the order of integration, one can easily show that w(t) integrates to 1.
Hence, w(t) can be regarded as a weighting function. The weighting
functions associated with certain p-dimensional elliptically contoured
distributions are given explicitly in Table 8.1. When w(t) is a non-
negative function (as in most cases of interest), it is a density function.
It follows from Theorem 8.2.1 that a central elliptical distribution is
completely specified by its scale parameter matrix � and its weighting
function w(t) whenever the latter exists.

8.3 THE EXACT DISTRIBUTION OF QUADRATIC FORMS

We now turn our attention to quadratic forms in elliptically contoured
vectors. Quadratic forms play a major role in statistical inference; several
applications are described for instance in Mathai and Provost (1992),
Chapter 7. However, few results are available in the literature for the

TABLE 8.1 Some elliptical distributions and their weighting functions
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case of elliptically contoured vectors. Some particular results, including
the case where the matrix of the quadratic form is idempotent, may be
found for example in Fang and Zhang (1990), Anderson and Fang (1987),
Li (1987), Fan (1986), Hsu (1990), and Fang, Fan and Xu (1987). Many
distributional results on quadratic forms in normal vectors are readily
available in the literature, see for example Mathai and Provost (1992),
Provost and Rudiuk (1992, 1994, 1995), and the references therein.

Let X~Cp(µ, �, �), � be a positive definite matrix, ����� be a p-dimensional
real vector, and A be a real symmetric matrix. The exact distribution
function of Q=(X-�����)’A(X-�����), denoted by FQ(q), can be obtained as follows:

 

where A*=P’�1/2 A�1/2P, �1/2 denotes the symmetric square root of � and
P=(v1, …, vp) is an orthogonal matrix such that

�1, …, �p being the characteristic roots of �1/2 A�1/2 (or equivalently those
of A�) and v1, …, vp, the corresponding normalized characteristic vectors.
(The symmetric square root, �1/2, is equal to  where the
�j’s, j=1, …, p denote the characteristic roots of � and the uj’s are the
corresponding normalized characteristic vectors.)

Letting

(8.3.1)

and Y=(Y1, …, Yp)’=�-1/2(X-µ), and noting that  one
has

 

It should be noted that a similar representation of Q involving r�p
terms holds when � is a positive semidefinite matrix whose rank is r.

Letting Lp(q) be the set of points y’=(y1, …, yp) such that Q(y)�q and
f(y) denote the density function of Y, one has from Theorem 8.2.1
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where I denotes the identity matrix.
Now, if one lets Z=t1/2Y and  represent the set of points z= (z1, …,

zp)’ such that , then

(8.3.2)

where

(8.3.3)

and the Zi’s, i=1, …, p, are independently and identically distributed
standard normal variables.

The integral appearing in (8.3.3) can be evaluated by means of Imhof’s
(1961) formula:

(8.3.4)

where

 

the �j’s being the characteristic roots of A� and the ßj’s, as given in
(8.3.1). Hence, with the above notation,

(8.3.5)

where w(t) is as defined in Theorem 8.2.1. On differentiating the right-
hand side of (8.3.5) with respect to q, one obtains the following
representation of density function of Q:

(8.3.6)
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where �(u) and �(u) are as defined in Imhof’s formula. The ranges of
integration can be made finite using for example the transformations
u*= 1/(u+1) and t*=1/(t+1) and numerical integration techniques may
then be applied to either integral, should this be required for
computational purposes.

It should be pointed out that the right-hand side of Equation (8.3.3)
can also be expressed in terms of MacLaurin series, chi-square densities
or series involving Laguerre polynomials; see, for example, Ruben (1962),
Kotz, Johnson and Boyd (1967a, b), and Mathai and Provost (1992,
Chapter 4). The main results of this section are summarized in the
following theorem.

Theorem 8.3.1 Let X~Cp(µ, �, �), A be a real symmetric matrix and ����� be
a p-dimensional real vector. Then, the distribution function and the
density of the quadratic form Q=(X-�����)’A(X-�����) can be respectively
evaluated from the integral representations given in (8.3.5) and (8.3.6).

Clearly the approach described in this section also applies to other
functions of elliptically distributed vectors whose associated weighting
functions can be determined.

8.4 MOMENTS AND APPROXIMATE DISTRIBUTION

First, Theorem 8.2.1 is extended to non-central elliptically contoured
distributions. A representation of the moments of quadratic forms in
elliptically contoured vectors is then obtained.

Theorem 8.4.1 Let Z~Cp(µ, �, �). Then, under certain regularity
conditions, the density of Z denoted by h(z) can be represented as follows

where �z(µ, t-1�) denotes the density function of a p-dimensional Gaussian
random vector with mean µ and covariance matrix t-1�, and

 

-1(f(s)) denoting the inverse Laplace transform of f(s) with f(s)=h(z) when
s=(z-µ)’�-1(z-µ)/2.

The result follows from Theorem 8.2.1 by letting X=Z–µ. A
representation of the density function of an important subclass of
elliptically contoured distributions in terms of scale mixtures of normal
variates is also discussed by Muirhead (1982).
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Let Z~Cp(µ, �, �) and A=A’; then according to Theorem 8.4.1, the
moment-generating function of the non-central quadratic form Z’ AZ
can be obtained as follows:

(8.4.7)

where

 

is the moment-generating function of the quadratic form Q(s)=Y’AY in
which Y~Np(µ, s-1�).

The moments of Z’AZ are obtained similarly. Whenever they exist,
they are given by

(8.4.8)

where Y~Np(µ, s-1�). The first four moments of Y’AY are

 

and
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Note that in light of the conclusion of Section 3.2b.3 in Mathai and
Provost (1992), the moments have the same representations when Σ is
singular.

The first moments of Z’ AZ may be used to obtain approximate
distributions such as those based on the Pearson or Johnson curve
systems, the saddlepoint approximation, or on Edgeworth or Gram-
Charlier expansions.

Furthermore, it can be seen that the technique used in (8.4.7) readily
applies to other functions of elliptically contoured vectors whose counter-
parts for Gaussian vectors are known. The results derived in this section
are summarized in the following theorem.

Theorem 8.4.2 Let Z~Cp(µ, �, �) and A=A’; then, whenever they exist,
the moment-generating function and the moments of the quadratic form
Z’ AZ can be evaluated from the integral representations given respectively
in (8.4.7) and (8.4.8).

The distributional results derived in Sections 8.2, 8.3 and 8.4 could
be used for example for determining the distribution of the Mahalanobis
distance when the vectors are elliptically contoured or that of the serial
covariances associated with time series whose innovations are
spherically distributed. The use of spherically distributed errors was
discussed for instance by Jensen (1979) and Hwang and Chen (1986) in
connection with some linear models, by Pázman (1988) for certain
nonlinear models and by Krishnaiah and Lin (1986) and Basu and Das
(1994) in connection with some time series models.

8.5 A NUMERICAL EXAMPLE

A generic numerical example is given in this section.
Let X be an elliptical vector with mean µ=(2, 4, -1, 3)’ and scale

parameter matrix �

 

The distribution function of the quadratic form Q=(X–�)’A(X–�) where
�����=(0.5, 0.4, -0.6, 0.2)’ and
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can be determined by making use of Theorem 8.3.1.
Exact and simulated values of the distribution function of Q were

obtained for some selected points in the range of Q, first assuming that
X~N4(µ, �) and then that X~t3(µ, �), a non-central t-vector with 3 degrees
of freedom and scale parameter matrix Σ. The integrations were done
numerically by making use of Mathematica, Version 3.0 with precision
5, and the simulations were carried out with 100,000 replications. The
results are reported in Table 8.2.
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CHAPTER 9

INVERSE NORMALIZING
TRANSFORMATIONS AND AN
EXTENDED NORMALIZING

TRANSFORMATION

HAIM SHORE
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract: When available data are non-normal, a common practice is
to normalize them by applying the Box-Cox power transformation. The
general effectiveness of this transformation implies that an inverse
normalizing transformation, viz. a power transformation of the standard
normal quantile, may effectively deliver a general representation for
many of the commonly applied theoretical statistical distributions.

Employing as a departure point the Box-Cox transformation, we
develop in this paper several inverse normalizing transformations
(INTs), and define criteria for their effectiveness. In terms of these
criteria, the new transformations are shown to deliver good
representations to differently shaped distributions having skewness
values that range from zero to over 11. A new normalizing
transformation, derived by conversion of a certain INT, turns out to be
an extension of the classical Box-Cox transformation. The new
normalizing transformation provides an appreciably better normalizing
effect relative to the Box-Cox transformation. Some estimation
procedures for the new INTs are developed.

Keywords and phrases: Box-Cox transformation, distribution fitting,
inverse normalizing transformation
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9.1 INTRODUCTION

The Box-Cox power transformation is widely applied to achieve a
normalizing effect for non-normal data. The basis for this transformation,
as articulated by Box and Cox (1964), is the empirical observation that
a power transformation is equivalent to finding the “right” scale for
given data. Furthermore, expressing data by their “right” scale can
simultaneously achieve three objectives: Simplicity of structure of
descriptive models, homogeneity of the error-variance and normalization
[Box and Cox (1964, pp. 211, 213)]. In the years that have followed,
since the introduction of the Box-Cox transformation, it has proved to
be effective in achieving normality for a variety of published cases
involving widely differing source distributions. Yet, the obvious
implication of this general effectiveness, namely, the potential of the
Box-Cox transformation to serve as a starting point for developing
general representations for statistical distributions, has never been
probed.

In this paper we use the Box-Cox transformation as a departure point
to develop inverse normalizing transformations (INTs), namely:
transformations that express the quantile of a non-negative r.v. X, in
terms of the corresponding quantile of the standard normal variable Z.
Efforts of this sort are not new in the literature. Perhaps the most well
known of these are Cornish and Fisher (1937) and Fisher and Cornish
(1960). The latter have developed series-expansions that describe the
quantile of an asymptotically normally distributed r.v. in terms of a
polynomial sum of the standard normal quantile, where the coefficients
of the polynomial terms are functions of the cumulants of X. However,
for a polynomial of degree k these expansions assume that all cumulants
of X up to degree k are known; see, for example, Johnson, Kotz and
Balakrishnan (1994). This assumption diminishes appreciably from the
applicability of the Cornish-Fisher expansions.

In this paper we pursue a different approach, and examine various
extended variations of the inverse Box-Cox transformation that may
deliver good representations to distributions with widely differing
shapes. In Section 9.2 we develop three new INTs, together with a new
normalizing transformation. The latter is found to be an extension of
the classical Box-Cox transformation, hence its name “The extended
normalizing transformation” (ENT). In Section 9.3 we examine the
goodness-of-fit obtained when the new INTs are fitted to differently
shaped distributions. The effectiveness of the ENT is also numerically
demonstrated. In Section 9.4 we develop estimation procedures to some
of the new INTs. Finally, Section 9.5 discusses some implications of the
new transformations.
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9.2 DERIVATION OF THE TRANSFORMATIONS

The Box-Cox single-parameter transformation is defined for non-negative
X by Box and Cox (1964):

(9.2.1)

Assume first that ��0. Since the Box-Cox transformation is generally
known to be an effective procedure to achieve normality, let us assume
that the transformed variable, X(�), is normal with parameters u and v.
Denoting the standard normal variate by Z, we may express the quantile-
relationship between X and Z by:

(9.2.2)

or

(9.2.3)

where x and z are corresponding quantile values, namely: F(x)=�(z),
where F(�) and �(�) are the CDFs of X and Z, respectively.

Rewriting (9.2.3) so that the median of X (denote it by M) is preserved,
we obtain:

(9.2.4)

which has two parameters: � and a. Eq. (9.2.4) expresses x as a power
transformation of the standard normal quantile, however it does not
preserve the domain of x since as z tends to be negative x will also become
negative (for a non-even value of 1/�).

Next, assume that �=0. Then, similarly with the derivation of (9.2.4)
we obtain:

(9.2.5)

where b is a parameter, to be determined.
Unlike (9.2.4), (9.2.5) has the desirable property that as z tends to

negative infinity x tends to zero. Since we wish this property to be
available also for (9.2.4), and since it would be desirable to have a single
quantile function for x (irrespective of the value of �), a reasonable
merging of (9.2.4) and (9.2.5) would result in the following quantile-
relationship:

(9.2.6)
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where H(z; �) denotes the quantile-relationship between X and Z, and
�={a, b, c} is a vector of three parameters, to be determined. Note, that
for b=1, c=0, X is normally distributed, while for b=0 X follows a log-
normal distribution.

The parameters in (9.2.6) should ensure that x is an increasing
function of z. Differentiating x with respect to z, and requiring that
�x/�z>0, we obtain, assuming that ab>0 and (1+az)>0:

or

(9.2.7)

and

(9.2.8)

Once the parameters {a, b, c} are determined, (9.2.7) and (9.2.8) may be
used to determine the valid domain of z.

Expression (9.2.6) may serve as a departure point to develop two
further INTs. First, when (9.2.6) is fitted to differently shaped
distributions we realize that the parameters a and c are very close in
their absolute values, however they have opposite signs (refer to Table
9.1 in the next section). This suggests that setting: c=-a in (9.2.6) may
result in an INT that still provides good representation for a wide variety
of distributions. The resulting transformation is:

(9.2.9)

The constraint on the parameters is, from (9.2.7) and (9.2.8):

(9.2.10)

Note, that since (9.2.9) contains only two parameters (apart from M),
these uniquely determine (and are determined) by the mean and the
variance. Thus, matching of the mean and the variance of (9.2.9) with
those of X may provide a convenient fitting procedure. This will be
numerically demonstrated in Section 9.3.

A third INT may be derived from (9.2.9) if we note that the exponent
therein contains two power transformations of (1+az), namely: the log
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term (which is equivalent to a zero power-transformation) and the linear
term. Thus, it is plausible to investigate the adequacy of the following
INT:

(9.2.11)

where z(�) is a Box-Cox transformation of (1+az), namely:

(9.2.12)

A unique feature of (9.2.11) is that the quantile z appears only once.
This implies that a normalizing transformation may be easily derived
thereof. If (9.2.11) is found to yield good representation for a large variety
of distributions, then a normalizing transformation based on (9.2.11)
may prove to be extremely effective. In particular, unlike the Box-Cox
transformation the new normalizing transformation will preserve the
true range of the normal variate.

From (9.2.11) and (9.2.12), the associated normalizing transformation
is:

(9.2.13)

where A (=�/b), B (=1/(�a)) and C (=1/�) are parameters, to be determined.
It is interesting to note that (9.2.13) represents a double application of
the original Box-Cox transformation: First we apply the log
transformation [�=0 in Eq. (9.2.1)] and then we apply a power
transformation to a linear combination of the result [��0 in Eq. (9.2.1)].
Also note that since:

(9.2.14)

and A is close to zero (observe values in Table 9.3), we may write from
(9.2.13), approximately:

(9.2.15)

or

(9.2.16)

where C=1/b, D=1/(ab). Thus, (9.2.13) is found to be an extension of the
Box-Cox transformation, and will therefore be denoted the “extended
normalizing transformation” (ENT).

The effectiveness of transformations (9.2.6), (9.2.9), (9.2.11), (9.2.13)
and (9.2.16) will be examined in the next section.
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9.3 NUMERICAL ASSESSMENT

To examine how well the new INTs may serve as general models for the
quantile-relationship between X and Z, suitability criteria have to be
established. These criteria will naturally be linked to the procedure used
to determine the parameters’ values, for example: If the fitting procedure
is based on matching of moments, obviously the moments of the fitted
transformation cannot be used to assess the goodness-of-fit. In this
section, we use a set of quantile values of X and Z, which are incorporated
in a non-linear least-squares (NL-LS) procedure to determine the
parameters of the examined transformation. Once the parameters are
identified, we examine the suitability of the examined INTs by
calculating numerically the mean, the variance and the skewness and
kurtosis measures of the fitted transformation. Proximity between these
values and the exact moments will provide the required criteria for the
effectiveness of the transformations.

To numerically assess the new INTs, we have selected a test-set of
nine distributions, with skewness values that range from 0.63 (Rayleigh)
to over eleven (Weibull). For each distribution in the test-set, seventy-
one quantile values of z: -4.0(0.1)3.0 have been selected, and the
corresponding x values identified. These distributions are then fitted
via the NL-LS procedure, and the resulting moments numerically
calculated with numerical integration that extends from P=0.000003
(z=-4.5) to P=0.999997 (z=4.5).

The results are shown for the three inverse normalizing
transformations in Tables 9.1 [Eq. (9.2.6)], 9.2 [Eq. (9.2.9)] and 9.3 [Eq.
9.2.11)].

It is of interest to examine whether the constraint on the permissible
values of z [Eqs. (9.2.7), (9.2.8) and (9.2.10)] comprise a real restriction
on the use of the new INTs. For that end, we have calculated, for each
distribution in the test-set, the related limits. These are given as ZL and
ZU (lower limit and upper limit, respectively) in Tables 9.1 and 9.2. We
realize that practically Eqs. (9.2.7), (9.2.8) and (9.2.10) do not constitute
any real limitation for the application of transformations (9.2.6) and
(9.2.9).

Examining the tables we realize that the last transformation (9.2.11)
generally provides better fit than the other transformations. To appreciate
the effectiveness of this transformation, we provide plots of (9.2.11) (in
standardized values), together with the source (exact) quantile function,
for some of the distributions in the test-set. These plots are given in Figure
9.1 (left-hand plots). Note, that due to the small deviations between the
two graphs (exact and approximate) the latter are indistinguishable in
Figure 9.1. Plots of the associated errors (approximate minus exact) are
given as the right-hand plots in Figure 9.1.
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Next we examine the effectiveness of the new normalizing
transformation (9.2.13) in comparison to the Box-Cox transformation.
To this end, we apply the ENT to the distributions in the tables (using
the NL-LS routine to determine the parameters), and also to the Box-
Cox transformation. For a fair comparison between the two normalizing
transformations, we use the two-parameter version of the Box-Cox
transformation [Box and Cox (1964, Eq. 2)], and add a scale parameter
to obtain:

(9.3.17)

Thus, (9.2.13) and (9.3.17) share an equal number of parameters (3),
one of which is a scale parameter. Also included in the comparison is the
modified Box-Cox transformation, as given by (9.2.16).

The results of the comparison are assessed in terms of the proximity
of the transformation’s numerically calculated moments to the first
four partial moments of the standard normal distribution. The reason
for using partial moments, rather than complete moments, is that the
first three moments of the standard normal variate characterize any
symmetrically distributed standardized variable. Employing partial
moments may thus provide a better test for normality. The results are
given in Table 9.4. Unfortunately, we were unable to achieve
satisfactory goodness-of-fit from applying the NL-LS routine to the
three-parameter Box-Cox transformation (9.3.17). Therefore, only
results from (9.2.13) and (9.2.16) are given. Examining the table we
realize that the new normalizing transformations yield good
normalizing effect though, as expected, (9.2.13) is slightly better than
its derivative (9.2.16).

9.4 ESTIMATION

Assume that only sample data are available. In this case, either the
formerly described fitting methodology may be applied to the sample
data, or other approaches be adopted, like moment-matching or
maximum-likelihood procedures.

Referring to the former approach, assume that we have n observations
and denote by Xi the ith observation, and by X(i) the ith order statistic,
namely: X(1)≤X(2)≤…≤X(n). Then, following the shifted, piecewise linear
definition of the sample quantile function given by Parzen (1979), and
also used by Grimshaw and Alt (1997), an estimator of the quantile
function for a given value P is:
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(9.4.18)

for

The quantile estimator is left undefined for P<1/(2n) and for P>[1-1/
(2n)]. Introducing for the ith order statistic: Pi=i/n, the sample quantile
function becomes:

(9.4.19)

which is used as an estimator for the quantile value of x corresponding
to P=i/n. The associated values of Z, {zi}, may now be identified, and
incorporated in the NL-LS procedure.

Referring next to moment-matching, we will develop here a fitting
procedure for Eq. (9.2.11). A basic requirement for the fitting procedure
will be that only the mean and the variance of X (or their sample
estimates) need to be specified. Thus, the large standard errors
associated with sample estimates of higher-order moments (like
skewness and kurtosis) are to be avoided.

To develop the fitting routine, note first that transformation (9.2.11)
contains three parameters. This implies that to apply regular moment-
matching procedure the first three moments need to be specified, which
violates the requirement formulated above. To circumvent this problem,
let us define: T=log[X], and let µi denote the ith non-central moment of
T (moment about zero). Then from (9.2.11) we obtain:

(9.4.20)

Expanding the second term on the RHS (the expression following the
expectation sign) into a Taylor series around zero, and taking expectation
for the first five terms in the expansion, we obtain:

(9.4.21)

Introducing from (9.4.21) into (9.4.20) we obtain an expression for b in
terms of µ1(T), M, a and �. Introducing back into (9.2.11) we obtain a
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transformation with two parameters, a and �, that may be identified by
matching the transformation’s mean and variance with those of X. Table
9.5 exhibits the transformation’s parameters and the resulting skewness
and kurtosis values. A high goodness-of-fit is achieved. Since only
moments of first and second degrees are used, we expect the MSEs
associated with the skewness and kurtosis measures, calculated from
the fitted transformation, to be small. This will ensure that the fitted
transformation represents well the underlying (presumably unknown)
distribution of X. Further moment-matching procedures, and
examination of the resulting MSEs, are given in Shore (1999).

Finally, maximum likelihood procedures may be developed for the
various INTs. The resulting expressions are complex and will be
introduced elsewhere.

9.5 CONCLUSIONS

In this paper we derive universal quantile relationships between a non-
negative r.v. and the standard normal variable. Unlike previous
derivations, which are based on polynomial expansions [like the Cornish-
Fisher expansions; refer to Johnson, Kotz and Balakrishnan (1994) and
Stuart and Ord (1987, pp. 232–233)], the present effort has an empirical
basis that derives its validity from the universal effectiveness in
achieving normality of the Box-Cox power transformation. Employing
the inverse transformation as a departure point, we derive three INTs
that are capable of expressing quantile-relationships between a non-
normal r.v. and the standard normal variate for distributions with
skewness values that range from 0 to at least 11.

The motivation for deriving H(z; �) is twofold. First, recognizing that
in many applications the amount of data required to identify the correct
distribution with satisfactory confidence is insufficient, the methodology
developed here allows for universal solutions to stochastic optimization
problems to be derived, irrespective of the source distributions.
Furthermore, as shown elsewhere [Shore (1999)], the sampling
uncertainty associated with fitting H(z; �) via two-moment matching
procedures is considerably lower compared to alternative available
approaches (like three- or four-moment matching).

A second reason for developing H(z; �) is the simplicity introduced by
addressing various statistical analyses (like statistical process control
and process capability analysis) in terms of a single r.v. (the standard
normal variate). Thus, the complex task of identifying the correct
distributions and apply appropriate distribution-specific parameter-
estimation procedures is avoided.
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An important implication of the new normalizing transformations
pertains to the use of the Box-Cox transformation to achieve the stated
three objectives [Box and Cox (1964)]: Simplicity of structure of
descriptive models, homogeneity of variance and normality. While we
have demonstrated in this paper that the new extended normalizing
transformation and its derivative [Eqs. (9.2.13) and (9.2.16), respectively]
achieve better normality relative to the three-parameter Box-Cox
transformation, the other two objectives (simplicity of structure and
homogeneity of variance) may in many applications be of higher priority.
It remains to be seen, by the cumulative empirical evidence gathered in
reported studies, whether the new normalizing transformations are also
more effective with respect to these other objectives.
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TABLE 9.1 Parameters values (9.2.6) and the resulting moments. The exact
moments are the upper entries. Sk and Ku are the skewness and kurtosis mea-
sures

TABLE 9.2 Parameters values (9.2.9) and the resulting moments. The
exact moments are the upper entries. Sk and Ku are the skewness and
kurtosis measures
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TABLE 9.3 Parameters values [Eqs. (9.2.11) and (9.2.12)] and the resulting
moments. The exact moments are the upper entries. Sk and Ku are the
skewness and kurtosis measures
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TABLE 9.4 Parameters values for the normalizing transformations [(9.2.15),
upper entries, and (9.2.16), lower entries], and the resulting first four upper
partial moments. The corresponding upper partial moments of the standard
normal variate are:

; m2=1/2; ; m4=3/2
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TABLE 9.5 Parameters values* [Eqs. (9.2.11) and (9.2.12), two-moment fit-
ting] and the resulting skewness (Sk) and kurtosis (Ku) measures. For these
moments, the exact figures are the upper entries

* Unsatisfactory fit was achieved for the gamma with parameters: �=1/4, �=2
(Sk=4)
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FIGURE 9.1 Plots of the quantile function (approximate and exact; left) and of
the error function (approximate minus exact; right) for the (top to bottom):

Gamma(3, 2), Weibull(1.125, 5), Weibull(0.8, 5) and ExtremeValue(3, l).
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CHAPTER 10

CURVATURE: GAUSSIAN OR
RIEMANN

WILLIAM CHEN
Internal Revenue Service, Washington, DC

Abstract: In this paper, we discuss the Gaussian curvature and discuss
some of its basic properties. We also present some illustrative examples.

Keywords and phrases: Gaussian curvature, Riemannian curvature,
Gauss equations

10.1 DEFINITION OF THE GAUSSIAN CURVATURE

We start with derivation of second fundamental form. It can be obtained
by taking on the surface a curve C passing through a point p and
considering the curvature vector of C at p. When t is the unit tangent
vector of C then , curvature vector. We now decompose k into a
component kn, normal and a component kg, tangential to the surface:

 

The vector �n is determined by C alone, not by any choice of the sense of
t or N. The vector �g is called the tangential curvature vector or geodesic
curvature vector.

From the equation , we obtain by differentiation along C:
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Both N and X are surface functions of u and v [we may write N(u, v),
X(u, v)] which

 

in turn depend on C. With

differentiation gives

 

where

 

These formula allow ready computation of e, f, g when the equation of
the surface is given.
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The distance of two points P and Q on a curve is found by integrating

 

 along the curve and substituting for dX(u, v). We find that

 

where

where

I is the first fundamental form, and II is the second fundamental form.
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We see that the right-hand side depends only on u, v and . The
coefficients e, f, g, E, F and G are constants at P(u0, v0). So that kn is
fully determined at P(u0, v0) by the direction . All curves through P
tangent to the same direction have therefore the same normal curvature.

We can now ask for the directions in which the normal curvature is a
maximum or minimum:

 

or

 

where . The extreme values of � can be

 

characterized by ;

 

which can be simultaneously satisfied if and only if

 

This quadratic equation in � has �1 and �2 as roots. Usually, we call
them the principal curvatures �1 and �2.

We define M as the mean curvature and K as the Gaussian curvature
(or total curvature).
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10.2 EXAMPLES

Example 10.2.1 We find here the mean curvature and Gaussian
curvature of a given monkey saddle parametrized surface:

 

Therefore,

 

Furthermore, by inspection, a surface unit normal is

 

so that

Therefore,

 

A glance at the expression for K shows that (0, 0, 0) is a planar point of
the monkey saddle, and that the other point is hyperbolic. Furthermore,
the Gaussian curvature of the monkey saddle is invariant under all
rotation about the z-axis, even though the monkey saddle itself does
not have this property.
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Example 10.2.2 We find here the mean curvature and Gaussian
curvature of the torus parameterized by

 

and so E=(a+b cos v)2, F=0, G=b2. Furthermore,

FIGURE 10.1
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Therefore,

 

Thus we see that the Gaussian curvature of the torus:

(a) �=0 along the curves given by v=±�/2. These are the parabolic points
of the torus.

(b) X(u, v): the set of hyperbolic points is �/2<v<3�/2,
(c) X(u, v): the set of elliptic points is -�/2<v<�/2.

In the following figure, the dark points are hyperbolic, the light points
are elliptic, and the parabolic points have an intermediate color.

10.3 SOME BASIC PROPERTIES OF GAUSSIAN CURVATURE

Theorem 10.3.1 A necessary and sufficient condition that a surface be
developable is that the Gaussian curvature vanish.

FIGURE 10.2
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PROOF We have

 

which shows that eg-f2 is identical with (NNuNv)=0. This can happen
either (a) when Nu or Nv vanishes, or (b) when Nu is collinear with Nv (N
is perpendicular to Nu and Nv).

In case (a), N depends on only one parameter and the surface is the
envelope of a family of 8 planes, and hence is developable. In case (b)
we take as one set of coordinate curves on the surface the asymptotic
curves with equation . If
these curves are taken as the curves v=constant in the new coordinate
system, then e=f=0 or XuNu=XvNu=0, and hence, Nu=0 which brings us
back to case (a). �

Theorem 10.3.2 The differential equation of the developable surface z=
f(x, y) is rt-s2=0, where

 

PROOF We have
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Illustrative example. We now show that the surface

 

where the coefficients of x and y are all constants, are developable:

PROOF We have  
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Theorem 10.3.3 A sufficient small portion of a surface can be mapped
isometrically into a plane if and only if it is a portion of a developable
surface.

Theorem 10.3.4 All surfaces of the same constant Gaussian curvature
are isometric.

PROOF We distinguish among the three cases

 

Case 1. Since K satisfies the differential relation

 

we find that  is of the form

 

We can impose on G the conditions

 

Hence,  and ds2=du2+u2dv2.
This expression for ds2 can be obtained for all surfaces with K=0 by

taking on it a geodesic polar coordinate system. All surfaces of zero
curvature therefore are isometric. Taking x=u cos v, y=u sin v, we
obtain ds2 in the form ds2=dx2+dy2, which shows that all developable
surfaces can be isometrically mapped on a plane, the curvilinear
coordinates corresponding to the rectangular Cartesian coordinates
in the plane.
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10.4 APPLICATIONS OF THE GAUSS EQUATIONS

Example 10.4.1 A correspondence can be established between the points
of a catenoid and of a right helicoid such that at corresponding points
the E, F, and G and, therefore, the Gaussian curvature are the same.

The Gaussian curvature of the catenoid is

 

Since , the Gaussian curvature of the right helicoid is

 

After substitution, we get K=K1. This is a one-to-one correspondence as
long as-a≤u≤a and 0≤v≤2� for one full turn of the helix. It can be shown
that one surface can actually pass into the other by a continuous bending.
We show six different stages in this deformation. This can be
demonstrated with a flexible piece of brass applied to a plaster model of
a catenoid and bent so as to be applied to a model of a right helicoid.

The catenoid is

 

The right helicoid is

 

The first fundamental form of the catenoid is

  

and that of the right helicoid is

 

If we now write

 

then .
For 0≤v≤2� and-a≤u≤+a, we have thus established a one-to-one

correspondence between the points on both surfaces such that at
corresponding points the first fundamental forms are equal.
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CHAPTER 11

CONVEX GEOMETRY,
ASYMPTOTIC MINIMAXITY AND

ESTIMATING FUNCTIONS

SCHULTZ CHAN MALAY GHOSH
University of Florida, Gainesville, FL

Abstract: The paper generalizes the asymptotic minimaxity result of
Huber (1964) to the multiparameter situation. The method of proof
involves an application of convex geometry as well as the geometric
interpretation of optimal estimating functions as orthogonal projections
of score functions into appropriate linear subspaces.

Keywords and phrases: Convex geometry, asymptotic minimaxity,
estimating functions, orthogonal projections, score functions

11.1 INTRODUCTION

Huber (1964), in his seminal paper, introduced a class of robust estimators
whose members are intermediaries between the sample mean and the
sample median. He then proved asymptotic minimaxity results related
to these estimators. The main result in this context is that if within a
convex set C of distribution functions, F0 has the smallest Fisher
information, and one calculates the asymptotic variance of the score
function corresponding to F0 with respect to every distribution in C,
then the largest asymptotic variance results when F0 is the true df. This
explains the “max” part of asymptotic minimaxity. The “min” part is
explained by the fact that this largest asymptotic variance is the least
asymptotic variance within a class of competing functions � (� in Huber’s
notation) involving both the parameter and the data when the asymptotic
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distribution of every such function � is calculated under F0. Huber (1964)
found it convenient to consider the reciprocal of the asymptotic variance
rather than the asymptotic variance itself. He also provided a necessary
and sufficient condition for F0 to have the least Fisher information when
compared to other members of C. Also, Huber (1964) considered only
the case when the parameter was real valued.

Our objective here is to extend the asymptotic minimaxity result of
Huber (1964) to the multiparameter situation. More important, we tie
Huber’s result with the idea of finding an optimal estimating function.

Research on estimating function was pioneered by Godambe (1960),
Kale (1962), and their associates. More recently, optimal estimating
functions have been viewed as projections of score functions into
appropriate linear subspaces [cf. Small and McLeish (1988, 1989, 1991,
1992, 1994)]. Chan and Ghosh (1998) have recently collected, extended
and unified many optimal estimating function results via orthogonal
projections. The present paper adopts the same geometric approach.

In addition to this geometric view of optimal estimating functions, we
need to extend some convexity results of Huber (1964) to the
multiparameter case. This convexity geometry is the second critical
component in the derivation of our results.

Section 11.2 contains a simple result on convexity for matrix-valued
functions. The multiparameter generalization of Huber’s (1964) result
is given in Section 11.3. Proof of a Lemma of a somewhat more technical
nature is deferred to the Appendix.

11.2 A CONVEXITY RESULT

Let L be a linear space. A subset C of L is said to be convex if for every x,
y�C, ��[0, 1],

 

A function f: C→R is said to be convex if for any x, y�C, ��[0, 1],

 

A symmetric matrix-valued function N: C→Mk×k (i.e., for any x�C,
N(x) is a symmetric k×k matrix) is said to be convex, if for any x, y�C,
��[0, 1],

 

where for two k×k matrices A, B, A�B means that B-A is nonnegative
definite (n.n.d.). In the following, we only study properties of matrix
valued convex functions.
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For every x, y�C, consider the function

 

on [0, 1]. Then N(�; x, y) is a convex function on �. The directional
derivative of N at x in the direction of y is defined as

(11.2.1)

The existence of the limit is justified as follows: Since

 

for 0<�1<�2<1,

 

This implies

(11.2.2)

that is  is a nondecreasing function of � in (0, 1]. Hence
the limit in (11.2.1) is well defined.

From (11.2.1) and (11.2.2), for a convex function N,

(11.2.3)

The following result will be used repeatedly in the sequel.

Theorem 11.2.1 Suppose that N is convex. Then for x0 C, N(x0)�N(y) for
all y�C if and only if

(11.2.4)

for all y�C.

PROOF Suppose that N(x0)�N(y) for all y�C. Then 
(0<��1) is non-negative definite. Hence

 

is n.n.d., for all y�C.
Conversely, if FN(x0; y)�0 for all y�C, then from (11.2.3),

 

Thus N(x0)�N(y) for all y�C.
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11.3 ASYMPTOTIC MINIMAXITY

In this section, the famous asymptotic minimaxity result of Huber (1964)
will be generalized. We begin with the sample space X, a parameter
space Θ which is an open subset of Rk. Let C be a convex set of distribution
functions such that every F�C has an absolutely continuous density f
such that

(11.3.5)

is positive definite. Consider functions  satisfying the
following four properties:

(i) E(g|F, θ)=0 for all F�C and 0�Θ;

(ii)  exists for almost all  and all θ�Θ;

(iii) , where ;

(iv)  is nonsingular.

A function g satisfying (i) is called an unbiased estimating function [cf.
Godambe (1960)]. This unbiasedness criterion does not impose any
restriction on g since if E(g|θ)�0, one can work with g*=g-E(g|θ). A
function g satisfying (i)–(iv) will be referred to as a regular unbiased
estimating function.

Let L be the space of unbiased estimating functions with respect to C,
i.e., every element of L is unbiased with respect to every distribution in
C. Let L0 be the subset of L which consists of all regular unbiased
estimating functions in L.

Consider the function K: L0×C→Mk×k defined by

(11.3.6)

for all ��L0, F�C. Note that when k=1, then

 

which is the expression given in Huber (1964).
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For every F � C, for any g1, g2 � L, the inner product of g1 and g2 is
defined by

 

For any g�L, y0�L0 is said to be an orthogonal projection of g into
L0 if

 

for all y�L0, i.e., g-y0 is orthogonal to every element of L0. Further, if
the orthogonal projection exists, then it is unique. This result available
in Small and McLeish (1994), is given more explicitly in Theorem 1 of
Chan and Ghosh (1998).

In the following, for every F�C, the orthogonal projection of the score
function of F into the subspace L0 with respect to the inner product 
(if it exists) is denoted by .

Before proceeding further, we need the following lemma involving
matrix convexity. Its proof is technical, and is deferred to the Appendix.

Lemma 11.3.1 For any , where  denotes
the set of all k×k positive definite matrices, the matrix valued function

 is convex in the sense that, for any 
, � � (0,1),

 

is convex in �.

Next using the geometry of optimal estimating functions, a necessary
and sufficient condition for the asymptotic minimaxity of estimating
functions in the multiparameter case will be given. This result generalizes
the asymptotic minimaxity result of Huber (1964).

Theorem 11.3.1 Suppose the parameter space is multi-dimensional. Then
(�F0, F0) is a saddle point of K, that is

 

for all � � L0, and F � C, if and only if

(11.3.7)
is non-negative definite.
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PROOF Let sF0 denote the score function for F0. Note that since �F0 is the
orthogonal projection of sF0 into L0,

 

for all ��L0. This result follows from Theorem 5 of Chan and Ghosh
(1996).

Also for any F�C, consider the function

 

given by

(11.3.8)

From Lemma 11.3.1, JF is convex, and by direct calculation,

 

where

 

Since �F0 is the orthogonal projection of sF0 into L0 with respect to ,
M3=M4. Hence,

(11.3.9)

Only if: Suppose that (�F0, F0) is a saddle point of K. Then for any
F�C, and every ��(0,1),
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From the definition of  is non-negative definite. Hence,

 

is non-negative definite, where g=f-f0.
If: Now suppose that

 

is non-negative definite, where g=f-f0. Then from Theorem 11.2.1, JF is a
monotone function in [0,1]. Hence,

 

Hence, (�F0, F1) is a saddle point of K. This completes the proof. �

Corollary 11.3.1 Assume that F0�C is such that I(F0)�I(F) for all F�C,
and . Then (s F0, F0) is a saddle point of K.

PROOF For any F�C, consider the function

 

Then by Lemma 11.3.1, QF is convex, and attains its minimum at �=0.
Thus, since s(Fo) = �F0,

(11.3.10)

is non-negative definite. The above equality follows from the Lebesgue
dominated convergence theorem and the facts that
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and

 

APPENDIX

PROOF OF LEMMA 11.3.1 By straightforward calculation, and using
repeatedly the relation

 

one gets

(11.3.11)

and

(11.3.12)
where
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This completes the proof of the Lemma. �
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CHAPTER 12

NONNORMAL FILTERING VIA
ESTIMATING FUNCTIONS

A.THAVANESWARAN
University of Manitoba, Winnipeg, Manitoba, Canada

M.E.THOMPSON
University of Waterloo, Waterloo, Ontario, Canada

Abstract: A result of Godambe (1999) on optimal combination of
estimating functions for discrete time stochastic processes, extended to
non-orthogonal estimating functions, is applied to nonnormal filtering
problems, in which the posterior mode of the signal distribution is
efficient. The extensions so obtained may be applicable in a wider context
than the standard notions based upon the conditional mean. Recursive
formulas are implied, and their properties are considered.

Keywords and phrases: Censored correlated data, estimating
functions, recursive filtering, nonnormal filtering, posterior mode,
biostatistical time series

12.1 INTRODUCTION

The state space approach is a useful tool for nonstationary time series
[Kitagawa (1987)]. Recently, efforts have been made to extend the ordinary
Kalman filter methodology in various directions [Thavaneswaran and
Thompson (1986, 1988), Thompson and Thavaneswaran (1999), Kitagawa
(1987) and Naik-Nimbalkar and Rajarshi (1995)]. The purpose of this
paper is to explore further the implications for filtering of a recent
optimality result of Godambe (1999). The main application is to filtering
for discrete time series models.
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Much filtering theory, both in the stationary process context and
otherwise, is based on ad hoc application of minimum mean squares or
minimum dispersion methods. This has the advantage of avoiding specific
distributional assumptions. However, the standard results can sometimes
be improved and the general estimating function theory which is now
available provides a clear focus on particular classes of estimating
functions and, within these, leads to optimal filters such that the
information associated with the combined estimating function is large.
This theory is not yet widely used in filtering and it deserves attention
both for its concentration on information issues and for the focus it
gives on the role of the choice of a family of estimating functions from
which to choose an optimal one. Applications of orthogonal combination
of estimating functions for prediction problems are given in
Thavaneswaran and Heyde (1999).

The following basic results on combining estimating equations are
implicit in the paper of Godambe (1999), and references therein. Consider
a probability space (�, F, P), on which � and � are jointly distributed
random variables, and � is real valued. In this context an estimating
function for � is a real valued function g(�, �) or g(�), and it is unbiased if
Eg(�, �) or Eg(�) is zero. Define Ef f(g), the efficiency or “information”
associated with g, by

(12.1.1)

Note that  if satisfies  approximates the
mean squared error .

The first result gives the optimal combination of a pair of estimating
functions unbiased with respect to the conditional distribution of � given
� and the marginal (prior) distribution of �, respectively.

Theorem 12.1.1 Consider estimating functions h1(�, �) and h2(�) such
that E(h1(�, �)|�)=0 and Eh2(�)=0. Let h take the form

(12.1.2)

Then

(i) Ef f(h) is maximized when

(ii) When c1 and c2 are chosen as in (i),
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and

 

The second result affirms the optimality of the “posterior score” among
functions of the form (12.1.2).

Theorem 12.1.2 Among all linear combinations

 

of estimating function pairs h1(�, �) and h2(�) such that E(h1(�, �)|�)=0
and Eh2(�)=0, the efficiency E f f(h) is maximized when

 

c1=c2=1.

In that case

 

where

 

In this paper, we will illustrate the ideas of combining the estimating
functions in a number of linear non-Gaussian process filtering problems.
In Section 12.2, the combination of estimating functions approach is
extended to non-orthogonal cases. In Section 12.3 it is indicated how the
approach might be extended to cases of more general (non-normal) state
space models.

12.2 LINEAR AND NONLINEAR FILTERS

The linear filter is optimal for Gaussian processes and (in the minimum
mean square error or MMSE sense) for linear time series models with
martingale difference innovations [Hannan and Heyde (1972)]. When
one leaves this context it becomes important to assess possible
improvements in efficiency associated with various extensions. In this
section we give an example where the MMSE linear filter is the same as
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the optimal linear filter (in the sense of the estimating function criterion)
and then show that the optimal (nonlinear) filter has approximately the
same efficiency as the MMSE (nonlinear) filter, the posterior mean.

Let us consider the question of obtaining a filtered estimate of � given
�=�+�, where � and � are independent with means zero and known
variances  and  respectively. The best linear filter of � in the minimum
mean square sense is ��, where

 

and the variance of the filtering error is

 

It can be shown that the optimal linear filter in the estimating function
sense can be obtained as a root of the combined [Heyde (1987) and
Godambe (1999)] linear estimating functions for �,

(12.2.3)

The root is

and the information associated with the estimating function (12.2.3) is
given by

 

Thus the MMSE linear filter and the optimal linear filter coincide.
The best filter (not necessarily linear) for � in the mean square sense

is E[�|� ]. Suppose now that η is normal and that � is nonnormal with
density �(.). Under differentiability conditions it can easily be shown
that

(12.2.4)

(12.2.5)

and the difference is given by

(12.2.6)
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Thus, when the density of � is known the filter E[�|�], which has smaller
mean square error than the best linear filter, can be computed, and
approximated by (12.2.4). In the sense of Godambe (1999) the optimal
estimating function for � is

(12.2.7)

which gives the equation for the posterior mode. The information associated
with g* is given by

 

where ; and this information is maximal.

Since the equation for the approximate minimum mean square error
filter (12.2.4) is close to the Equation (12.2.7), we can argue that for
small  the minimum mean square error filter has approximately the
same information and the same efficiency as the posterior mode.

In a slightly more refined approximation, when � is normally distributed,

 

while the posterior mode [solution of (12.2.7)] is

 

Thus the two estimates differ when  is not very small, and the equation
for E[�|�] is suboptimal under Godambe’s criterion.

Note It follows from Godambe (1999) that the information associated
with the posterior score function (12.2.7) is maximal. However the
corresponding estimate need not have minimum mean square error.
Moreover if, for example, � has a Cauchy distribution then the MMSE
filter of � is not defined but the information associated with the posterior
score is well defined.

12.2.1 Optimal Combination Extension

The result of Godambe (1999) uses combinations of orthogonal estimating
functions. We now give some combination results when the components
need not be orthogonal, and apply them in the normal case. Again consider
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a probability space (�, , ), on which � and � are jointly distributed and
� is real valued.

Let g1(�, �), g2(�, �) be fixed unbiased estimating functions having finite
and positive variances, and such that the expectations of �g1/�� and �g2/
�� are finite, with E[�g1/��]�0.

The following theorem can be used to obtain the filtering equations
in a wider context. It is reproduced from Thompson and Thavaneswaran
(1999).

Theorem 12.2.1 In the class of all unbiased estimating functions

 

(i) the one which minimizes Var g is given by

 

where
 

and
(ii) the one which maximizes Ef f(g) is given by

 

where

 

PROOF The proof follows by evaluating the expressions and optimizing
w.r.t. C. �

Notes

(i) The two criteria are equivalent if , in which case C*=
C0=-Cov(g1, g2)/Var g2.

(ii) When  and  are orthogonal and information unbiased
estimating functions as in Godambe (1999), then C0=1, and the
optimal combined estimating function is

 

We now show how to apply the results above to the updating of a filter in
a state space model.
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12.3 APPLICATIONS TO STATE SPACE MODELS

12.3.1 Linear State Space Models

Again assuming a probability space (�, , ), consider the following state
space model in discrete time:

 

where { } is an unobserved sequence of random variables, {ξt} is an
observed sequence of random variables and {ut}, {vt} are independent
sequences of independent variables having mean 0 and variance ,
respectively. The functions a(t), b(t), c(t), A(t) and B(t) are -measurable,
i.e. functions of the observations up to time t.

Let .

Since it is in some ways natural to think of the innovations as
elementary estimating function components, consider combinations of

where θt+1 plays the role of θ in Section 12.2. It is easy to show that
 and . The ‘optimal’ combination will be

(12.3.8)

Now 
0 Thus, . This gives as ‘optimal’
estimate of θt+1

(12.3.9)

which agrees with the one based on the combination of the orthogonal
estimating functions and  as in
Godambe (1999): Setting

(12.3.10)
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gives the same result as (12.3.9).
The point estimation would be regarded as recursive if 

 We cannot conclude this in general, though we conclude that
 -measurable and

(12.3.11)

12.3.2 Generalized Nonnormal Filtering

Here we assume a more general form for the state process (so that θt+1 is
non-normal), and

where {ηt+1} is a sequence of mean zero normal random variables, {ξt+1} is
an observed sequence of variables and {(�t+1|�t)} has density λt+1().

It can be shown that if θt were known the optimal filter could be
obtained as the solution of the combined [Godambe (1999)] estimating
functions for θt+1,

(12.3.12)

An estimate of θt+1 can be obtained by solving Equation (12.3.12) in terms
of ξt+1 and θt and plugging in an estimate of θt. Fahrmeir (1994) has
studied properties of such recursions in the biostatistical context.

12.3.3 Robust Estimation Filtering Equations

Assume that instead of a normal distribution, η t+1 of the previous section
has a general zero mean distribution with density f(η ). For example, η t+1

might have a heavy-tailed distribution such as the Laplace distribution
or the Cauchy distribution. We now have no hope of obtaining a simple
recursive relation for the posterior mean. However, we can take
Godambe’s formulation as a starting point and investigate a combination
of orthogonal estimating functions. By replacing the first component of
the combined estimating function (12.3.12) by the score function
corresponding to f, we obtain a filtering equation

(12.3.13)

In particular, if f is the Laplace distribution, we obtain the “Least
Absolute Deviation” filtering equation

(12.3.14)
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In either case, the estimate of �t+1 can be obtained by solving the equation
in terms of ξt+1 and �t and plugging in the estimate of �t.

When the distribution of η t+1 is symmetric, both combined estimating
equations (12.3.12) and (12.3.14) are unbiased regardless of the form of f.
For example, when f is the Cauchy distribution both are unbiased, and
we would expect (12.3.14) to be more efficient than (12.3.12). Equation
(12.3.13) is unbiased conditional on �t, and it obviously defines a recursion,
in the sense of defining an estimate of �t+1 in terms of ξt+1 and an estimate
of �t. The properties of such recursions and their modifications need
careful study.

12.3.4 Censored Autocorrelated Data

Now we give an interesting example of filtering with censored
autocorrelated data from a biostatistical time series. Here the original
process is imperfectly observed not because of additive noise but because
of censoring.

Censored observations may arise naturally in time series if there is
an upper or lower limit of detection—for example when one is monitoring
levels of an airborne contaminant or recording daily bioassays of hormone
levels in a patient. Regression analysis with autoregressive errors when
some observations are left censored had been studied in Zeger and
Brookmeyer (1986). The case below is similar, but with right censored
observations.

Let �t+1 satisfy

where the ut+1’s are independent and identically distributed Gaussian
variates with mean zero and variance σ 2. We observe possibly right censored
observations, and suppose censoring of � t+1 happens rarely (with high
probability at most two consecutive observations are censored), and happens
whenever �t+1>Lt+1. We consider the following four cases:

where Lt’s are the known limits of detection. In cases B, D an elementary
estimating function would be

(12.3.15)
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while in cases A, C an elementary estimating function would be

(12.3.16)

here φ and Φ are, respectively, the density and distribution functions of
the standard normal law.

Assuming a value of a, we can estimate the unobserved θt+1 in case B
through setting (12.3.15) to 0, then the unobserved θt+1 in case D by
setting (12.3.15) to 0 and using the (case B) estimate of θt. We can then
obtain a new estimate of a by setting the sum of all terms of type (12.3.15)
or (12.3.16) equal to 0; then obtain new estimates of the unobserved
θt+1’s, and so on.

It is of interest to note that even though the error distribution is
normal, the filtered estimate of the censored observation, in this case
the posterior mean, becomes a nonlinear function of the observations.

REFERENCES

Fahrmeir, L. (1994). Dynamic modelling and penalized likelihood
estimation for discrete time survival data, Biometrika, 81, 317–330.

Godambe, V.P. (1960). An optimum property of regular maximum
likelihood equation, Annals of Mathematical Statistics, 31, 1208–
1211.

Godambe, V.P. (1999). Linear Bayes and optimal estimation, Annals of
the Institute of Statistical Mathematics, 51, 201–215.

Hannan, E.J. and Heyde, C.C. (1972). On limit theorems for quadratic
functions of discrete time series, Annals of Mathematical Statistics,
43, 2058–2066.

Heyde, C.C. (1987). On combining quasi-likelihood estimating functions,
Stochastic Processes and Their Applications, 25, 281–287.

Kitigawa, G. (1987). Non-Gaussian state space modelling of nonstationary
time series (with discussion), Journal of the American Statistical
Association, 82, 1032–1063.

, R. and Shiryayev, A. (1978). Statistics of Random Processes, Vol.
II, Applications, Springer-Verlag, Heidelberg.

Naik-Nimbalkar, U.V. and Rajarshi, M.B. (1995). Filtering and smoothing
via estimating functions, Journal of the American Statistical
Association, 90, 301–306.

Copyright © 2002 Taylor & Francis



NONNORMAL FILTERING VIA ESTIMATING FUNCTIONS 183

Thavaneswaran, A. and Heyde, C.C. (1999). Prediction via estimating
functions, Journal of Statistical Planning and Inference, 77, 89–101.

Thavaneswaran, A. and Thompson, M.E. (1986). Optimal estimation for
semimartingales, Journal of Applied Probability, 23, 409–417.

Thavaneswaran, A. and Thompson, M.E. (1988). A criterion for filtering
in semimartingale models, Stochastic Processes and Their
Applications, 28, 259–265.

Thompson, M.E. and Thavaneswaran, A. (1999). Filtering via estimating
functions, Applied Mathematics Letters, 12, 61–67.

Zeger, S.L. and Brookmeyer, R. (1986). Regression analysis with censored
autocorrelated data, Journal of the American Statistical Association,
81, 722–729.

Copyright © 2002 Taylor & Francis



185

CHAPTER 13

RECENT DEVELOPMENTS IN
CONDITIONAL-FREQUENTIST

SEQUENTIAL TESTING

BENZION BOUKAI
Indiana University-Purdue University, Indianapolis, IN

Abstract: Recent developments on a new sequential testing procedure
which unifies conditional frequentist and Bayesian approaches to testing
are presented. The new testing procedure has simultaneously valid
Bayesian and Conditional Frequentist interpretations, which greatly
improve interpretability of results. It is also considerably easier to use
than the conventional sequential tests and it reports error probabilities
which are independent of the stopping rule employed.

Keywords and phrases: Bayes factor, likelihood ratio, composite
hypothesis, SPRT, sequential test, conditional test, error probabilities

13.1 INTRODUCTION

Conditional frequentist tests of a precise hypothesis versus a composite
alternative have recently been developed in Berger, Boukai and Wang
(1997), and have been shown to be equivalent to conventional Bayes
tests in that the reported frequentist error probabilities equal the
posterior probabilities of the hypotheses. These recent development were
lead by Berger, Brown and Wolpert (1994) who advocated a ‘common’
conditional frequentist viewpoint. They considered, in fixed sample and
in sequential settings, the testing of simple versus simple hypotheses
and presented a conditional frequentist testing method that can be made
exactly equivalent to the Bayesian testing method. This equivalence
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was made possible by proposing a particular conditioning strategy which
allows an agreement between the two approaches.

There are several surprising aspects of this result; not only that both
the Bayesian and the Conditional Frequentist might have the same
decision rule for rejecting or accepting the null hypothesis, but also
that they will both report the same conditional error probabilities upon
rejecting or accepting. That is, the reported conditional error
probabilities are the same as the posterior probabilities of the relevant
hypotheses.

The new conditional testing method was generalized to testing simple
null hypothesis against a composite alternative by Berger, Boukai and
Wang (1997), in the fixed sample size settings, and by Berger, Boukai
and Wang (1999), in its sequential version. They demonstrated that
even when testing a simple hypothesis against a composite alternative,
the new testing procedure allows for a valid Bayesian interpretation as
well as for a valid conditional frequentist interpretations. The appeal
of such a testing procedure is evident. The new ‘common’ conditional
approach for testing does not seem to comprise of an artificial
compromise between the Bayesian and the frequentist approaches, but
rather appears to indicate that there is a testing method that is
simultaneously frequentist and Bayesian. This approach was further
generalized in the fixed sample setting, by Dass and Berger (1999), to
the case where the null and the alternative hypotheses are both
composite and have a related invariance structure.

From a frequentist viewpoint, sequential testing of composite
hypotheses is typically viewed to be quite difficult. Wald (1947)
considered a generalization of the SPRT by utilizing some a weight
function, (i.e. some sort of prior distribution, on composite hypotheses).
The primary difficulties prevail in the computation of error probabilities
and in the related matter of choosing a suitable stopping rule. There
are also inherent deficiencies in unconditional frequentist testing,
particularly when testing precise hypotheses. Most notably is that the
reported error probabilities do not depend on the evidentiary strength
of the observed data. Thus, for an �=0.05 level test, one reports the
same error probability upon rejection whether the data is just at the
rejection boundary or well within the rejection region. For the SPRT,
this criticism only applies when there can be substantial ‘overshoot’ of
the stopping boundary. The traditional remedy to this problem is often
to report a p-value or attained significance level, [e.g. Siegmund (1985)].
However, the p-value is not perceived as a true frequentist error
measure; see Berger, Boukai and Wang (1997) for discussion and earlier
references.

In this article we review some of the developments regarding the
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new conditional test as were obtained in Berger, Boukai, and Wang
(1999) for the sequential settings. Apart from the dual interpretability
as a valid conditional frequentist and as a Bayesian testing procedure,
which rectify much of the deficiencies mentioned above, the new
sequential test appears to be much more easier to use than the
conventional sequential tests. Among the interesting properties of the
new sequential tests is the lack of dependence of the reported error
probabilities on the stopping rule employed.

13.2 THE SETUP

Let X1, X2, …, be a sequence of observable random variables and for each
n=1, 2, …, write Xn=(X1, X2, …, Xn) and let  denote
the corresponding sigma-algebra. In addition, let  denote the smallest
sigma-algebra containing all the . Here, n represents time and 
represents the data available at time n. Let N be a proper stopping time
(adaptive to ) and let  denote the collection of all events 
determined prior to N, i.e. .
Given � � �, we let P� denote the unique probability measure on  under
which, Xn has joint probability density function (p.d.f.) fn(xn|�), xn=(x1, x2,
…, xn), for each n=1,2, ….

Consider the problem of sequentially testing a simple hypothesis
versus a composite alternative as given by

(13.2.1)

for some given � � �, . Often we will take �1 to be  
.

In the Bayesian framework, one usually specifies the prior
probabilities, �0 for H0 being true and 1-�0 for H1 being true and then
proceeds to construct the posterior probability (given the data) of H0

being true. When no specific prior probabilities of the hypotheses are
available, it is intuitively appealing to choose �0=1/2. We will use this
default choice in the remainder of the paper. Thus, we assume the default
prior probability of �0=1/2 for the simple hypothesis H0: �=�0 while
assigning to �1 the prior density (1-�0)�(�)��(�)/2, where �(·) is a proper
p.d.f. over �1 with respect to Lebesgue measure.

For each fixed n, the marginal p.d.fs of xn under H0 and H1 in (13.2.1)
are given by m0,n(xn)=fn(xn|�0) and

(13.2.2)
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respectively. Clearly, with a given prior p.d.f. �(·), the marginal p.d.fs,
m0,n(·) and m1,n(·) of xn are completely specified. For a Bayesian, the
sequential test of the hypotheses (13.2.1) can be reduced to a sequential
test of the “simple” versus “simple” hypotheses

(13.2.3)

which my be carried-on based on the corresponding likelihood ratio

(13.2.4)

Bn is also the Bayes factor in favor of H0, which is often viewed as the
odds of H0 to H1 (of H0� to H1� to )arising from the data. If the stopping
rule, N, of the sequential experiment is indeed, a proper stopping time,
so that P�(N<�)=1, then BN in (13.2.4) is well defined, (in fact, BN is 
measurable).

Let Pi denote probability under , i=0, 1, in (13.2.3). That is, for any
, while

(13.2.5)

For i=0, 1, let Fi(·) denote the distribution function of BN: Fi(b)≡Pi(BN�b),
. Wherever they exist, we write  for the inverse function of Fi,

i=0, 1, and write

(13.2.6)

These functions will be seen important in the development.

13.3 THE ‘CONVENTIONAL’ APPROACHES

The classical Frequentist approach to sequentially testing the
hypotheses (13.2.1) or (13.2.3) is to construct, based on the stopping
rule N at hand, appropriate rejection and acceptance regions and to
report the corresponding (though fixed) error probabilities. The incorrect
rejection of the null hypothesis, the Type I error, has a probability ��,
and the incorrect acceptance of the null hypothesis, the Type II error,
has a probability ß�. However, when dealing with a composite
hypotheses, as H1 in (13.2.1), these frequentist’s measures of respective
errors are considered as functions of the parameter �. Let

(13.3.7)
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These functions, �(�) and ß(�) � � �, are known as the power function
and operating characteristic functions of the test. In most cases however,
the rejection and acceptance regions of the sequential test are closely
related to the stopping boundaries of N and any frequentist evaluation
of these error probabilities requires an accurate account of the effect of
the particular stopping rule employed.

Example 1 Consider the testing problem of the “simple” hypotheses
(13.2.3), and recall that the SPRT with boundaries 0<R<A<∞ (usually
R<1<A) continues sampling as long as R<Bn<A; it stops at the first n (if
any) for which either Bn�R or Bn	A, and it rejects  if Bn	R and accepts

 if Bn	A. That is, the SPRT of (13.2.3) is based on the stopping time

(13.3.8)

and rejects if and only if BN�R. The test’s boundaries R and A are
constructed so that to achieve the desired, error probabilities, �� and
ß�, for the Type I and the Type II errors, respectively. That is, R and A
are related to �� and ß� by ��=P0(BN�R)=F0(R) and ß�=P1(BN	A)=1-F1(A).

It is a remarkable property of the SPRT that (assuming again that N
is a proper stopping time) if one neglects the boundaries’ “overshoot”
then the respective error probabilities can simply be approximates as
a�� R(A-1)/(A-R) and ß��(1-R)/(A-R), (which entails approximations to
R and A). Following Wald’s (1947) proposal, the SPRT of  versus 
can also be employed as a sequential test of H0 versus H1 in (13.2.1).

Example 1 (continued) With the stopping rule (13.3.8), the extension
of the SPRT to a sequential test of the simple versus composite
hypothesis (13.2.1), can be written as;

(13.3.9)

where by (13.3.7), the reported error probabilities now become

 (13.3.10)

The relation between the error probabilities (�(�), ß(�)) in (13.3.10) and
(��, ß�) of Example 1 is evident. Clearly, ��=�(�0) and it is straight-forward
to realize that by (13.2.5),

(13.3.11)
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That is, for the frequentist, ß� is the “average” probability of the Type II
error, averaged with respect to the weight function (the prior p.d.f.)
� (·). Clearly, the frequentist who utilizes the test (13.3.9), may report
either (��, ß�) or (�(�0), ß(�)). In either case, these error probabilities as
reported by the frequentist are data-independent and hence, are
constants over the rejection and the acceptance regions, respectively,
[see also discussion in Berger, Boukai and Wang (1999)].

To allow the reporting of data-dependent error probabilities, the
conditional frequentist considers some statistic S(XN), where larger
values of S( XN) are indicative of data with greater evidentiary strength,
for or against H0, and then reports the error probabilities conditional
on S( XN)= s, where s denotes the observed value of S( xN). In similarity
to (13.3.7), these conditional error probabilities (abbreviated here, CEP),
can be obtained at any value of � � � as; �(s|�)=P�(Rejecting H0|S( XN)=s)
and similarly, ß(s|�)=P�(Accepting H0|S(XN)=s).

Example 1 (continued) For the conditional frequentist, the sequential
test of H0 versus H1, as is based on the stopping rule N (13.3.8), becomes

 

where s is the observed value of S( XN). Here the reported conditional
error probabilities are obtained from (13.3.9) as, 

 and ß(s|�)=P�(BN=A|S(XN)=s).

It is not hard to realize [c.f. Berger (1985)] that even in the most
favorable case of i.i.d. observations, accurate evaluation of the error
probabilities, either conditional or unconditional, are not easy to come
by. Clearly the choice of the conditioning statistics greatly affects the
reported CEP �(s|�0) and ß(s|�). And unfortunately, optimal choices
rarely exist [see Kiefer (1977) and Brown (1978) also see discussion in
Berger, Boukai, and Wang (1997, 1999)].

In contrast, the Bayesian need not search for a “good” choice of
conditioning statistics since he/she utilizes the most extreme form of
conditioning, namely conditioning on the given data. It can be verified
that, upon stopping at N=n, the posterior probability of H0 being true,
given the data xn, is

(13.3.12)

whereas the posterior probability of H1 being true is

(13.3.13)
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These posterior probabilities of H0 and H1, �*(BN) and ß*(BN),
respectively, are very simple to compute and they provide data-
dependent measures of the evidentiary strength in favor or against H0.
Typically under, say, ‘0–1’ loss, one then accepts or rejects H0 according
to whether its posterior probability is greater than or less than 1/2, and
the reported error probability is just the posterior probability of the
rejected hypothesis. Note that however, that posterior probabilities are
unaffected by the choice of the stopping rule being employed.

Example 1 (continued) The Bayesian’s version of the sequential test
(13.3.9) for H0 versus H1, as is based on the stopping time N (13.3.8),
(with R<1<A), can be written as

 

Here, the reported posterior probabilities (of H0 and H1, respectively)
are �*(BN)=BN/(1+BN) and ß*(BN)=1/(1+BN).

13.4 THE NEW CONDITIONAL SEQUENTIAL TEST

Recall the basic setup of Section 13.2 and consider the problem of
sequentially testing a simple hypothesis H0 against a composite
alternative H1 as stated in (13.2.1).

Let N be any stopping time of the sequential experiment and let 

and 
-1 be as are defined in (13.2.6). The only requirements we impose
on the sequential experiment is that,

Condition I The range of BN is of the form ,
where , RL could be zero and AU could be infinity.
Furthermore, assume that 
 exists on (RL, Ru] and 
-1 exists on [AL, AU).

Since we are dealing with continuous densities, this condition will be
satisfied by commonly encountered stopping rules. These include
(13.3.8), the standard ‘open-ended’ SPRT stopping rule. If the Bn can
range from zero to infinity, it is easy to see that and 
and  the remaining part of Condition I can be easily
verified. Other variants include the truncated at m version of (13.3.8),
namely, Nm=min(N, m). Since the range of Bm must include 1, so must
that of BN; hence Ru= 1=AL and RL=0 and AU=Cm for some constant
Cm>1. See Berger, Boukai and Wang (1999) for other examples.
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Corresponding to the constants RU and AL defined above, let

(13.4.14)

These constants, r and a, define the decision boundaries for a modified
Bayes sequential test, T*, as follows:

(13.4.15)

Recall that [see (13.3.12)-(13.3.13)], given {N=n} and xn, �*(Bn) ≡Bn/(1+Bn)
and ß*(Bn) ≡1/(1+Bn), are the posterior probabilities of H0 and H1,
respectively. This new sequential test T* is similar to the one presented
in Berger, Brown and Wolpert (1994) and it was shown in Berger, Boukai
and Wang (1999) to define a conditional (frequentist) sequential test.
This was achieved by considering, for the conditional frequentist, the
conditioning statistics

(13.4.16)

as defined over the domain . (The
complement of BS is the no-decision region.) Since T* rejects H0 if BN�r
and accepts H0 if BN	a, it follows immediately that the conditional error
probabilities in this case become  and
ß(s|�)=P�(BN	a|S(BN)=s), � � �.

Theorem 13.4.1 [Berger, Boukai and Wang (1999)] For the sequential
test T* in (13.4.15) of the simple versus composite hypotheses (2.1) and
the conditioning statistic S(BN) given in (13.4.16), it holds that �(s|�0)=
�*(BN) and

 

where �(�|s) denotes the posterior p.d.f. of � conditional on H1 being
true and on {S(BN)=s}.

Clearly, by this Theorem, the conditional Type I error probability and
the posterior probability of H0 are equal. However, the situation for
Type II error is a bit complicated because the frequentist probability of
Type II error necessarily depends on the unknown �, while the
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posterior probability of H1, is necessarily a fixed number (with respect
to �). The relationship between the posterior probability of H1,
ß*(BN)=Pr(H1| xN), and the conditional frequentist Type II error
probability, ß(s|�)=P�(BN	a|S(BN)=s), is however, quite natural. It is
similar to the relation (13.3.11) between ß� and ß(�) discussed in
Example 1. Similarly, the posterior probability of H1 can be interpreted
as the weighted conditional probability of the Type II, with a weight
function being the posterior probability of � given S(BN)=s. Also, for
those who wish to report weighted power, this procedure provides a
reasonable choice of weight function.

Also observe that this conditional test is an exact frequentist test in
the sense that it does not involve any type of approximation such as
ignoring ‘overshoot’. The conditional error probabilities are available
explicitly here and incorporate the overshoot in the error statement;
the greater the overshoot, the smaller the stated error. The inclusion of
the particular no-decision region in the sequential test is seen to allow
that duality of interpretations. This no-decision region disappears if
the stopping rule is chosen so that F1(RU)+F0(AL)=1 This can virtually
always be achieved, if desired. (In the case of the SPRT for instance,
with natural “standard” rule N as in (13.3.8), we have with this choice
that r=R ≡RU and a=A≡AL and the no-decision region disappears, then
for each R a solution of A is a straightforward one.)

13.5 AN APPLICATION

We illustrate the application of the new conditional sequential testing
procedure to the two-sided normal testing problem. Let X1, X2, …, be a
sequence of i.i.d. N(�, � 2) random variables and consider the sequential
testing of H0: �=�0 against H1:���0, in the presence of the unknown � 2.
A conventional Bayesian approach in this case, [see Berger, Boukai and
Wang (1997, 1999)], is to assume a hierarchical prior structure defined
as follows. For the first-stage prior distribution of �, take �1(�|�2, ) as
the N(�0, �2) density. For the second-stage prior of (�2, ), take �2(�2,
)=�-2g()d�2d, where g(·) is some proper prior density for >0.
Straightforward computation yields, for n	2,
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where  is the usual sample variance. For this
testing problem, Berger, Boukai and Wang (1997) recommended the
prior

 

For some predetermined stopping boundaries R and A, R<1<A, consider
the truncated at m stopping time Nm discussed in Section 13.3. It can
be verified from (13.4.14) that the test T* applies here with

, and with a satisfying the equation F0(a)=1-F1(1). Thus
the resulting conditional sequential test is given by,

 

Table 13.1 presents values of a as were determined by M=104 simulation
runs for selected choices of boundaries R and A and various choices of
the truncation value m. In addition, other unconditional quantities are
also presented in the table. These include the unconditional probabilities
of Type I and Type II errors, ��=P0(BN<1) and ß�=P1(BN>a), respectively;
the expected stopping times E0(N), E1(N), under  and , respectively;
and the corresponding probabilities of ‘no decision’, p0= P0(1<BN<a) and
p1=P1(1<BN<a).

Example 2 Consider the case of �0=0 in (13.2.1) and the data set in
Table 6.3 of Armitage (1975). The data were presented as the difference

TABLE 13.1 Truncated two-sided normal sequential testing with R=0.1
and unknown � 2
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in time to recovery between paired patients who were administered
different hypotensive agents. Armitage used a type of approximate
sequential t-test truncated at m=62. Suppose R=0.1 and A=9 are chosen;
intuitively, these would correspond to desiring to reject H0 when the
odds are 10 to 1 in favor of H1, while desiring to accept H0 when the
odds are 9 to 1 in its favor. These, together with m=62, define the
stopping boundaries, and are shown in Figure 13.1 together with the
data, graphed as Bn versus n. Computation then yields a=3.72; the
resulting decision boundaries are also shown in Figure 13.1.

For the given data, the stopping boundary A=9 would have been
reached with n=52 observations; indeed, B52=9.017. The conclusion of
the test would then be to accept H0  and report conditional error
probability ß*(B52)=1/(1+B52)=0.100.

Example 2 (continued) Note that the experiment reported by Armitage
actually was actually stopped at the 53rd observation. As further
illustration, suppose that m=53 had been the predetermined truncation
time for the sequential test but now with A=10 and R=0.1. For these
boundaries, computation yields a=3.66. This situation is depicted in
Figure 13.2, and the experiment would not have stopped until reaching
the truncation time m=53. Now, since B53=8.613>a=3.66, one would
accept H0, reporting conditional error probability ß*(B53)=1/
(1+B53)=0.104. For design purposes, one might be interested in

FIGURE 13.1 The truncated conditional sequential test for
Armitage’s (1975) data with R=0.1, A=9, m=62, and N=52
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pre-experimental properties of these tests, including their unconditional
error probabilities and expected stopping times. For the situation of
Figure 13.1, we have ��=0.048 and ß�=0.109, and the expected stopping
times under  and  are 55.7 and 19.4, respectively. The corresponding
numbers for the situation of Figure 13.2 are 0.041, 0.115, 51.0, and 17.6.
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CHAPTER 14

SOME REMARKS ON
GENERALIZATIONS OF THE

LIKELIHOOD FUNCTION AND
THE LIKELIHOOD PRINCIPLE

TAPAN K.NAYAK SUBRATA KUNDU
George Washington University, Washington, DC

Abstract: This paper discusses the sufficiency principle (SP), the weak
conditionality principle (WCP), the likelihood function (LF), and the
likelihood principle (LP) for a general statistical inference problem. It
is argued that a general statistical problem can be regarded as a
prediction problem by treating the quantity (z) of inferential interest
as the realized but unobserved value of a random vector Z. The LF is
defined as the density of the data given z and the unknown fixed
parameters (�) of the model, considered as a function of z and �. The
SP and WCP are modified such that they are equivalent to the LP
based on the proposed LF.

Keywords and phrases: Evidence, prediction, sufficiency, weak
conditionality

14.1 INTRODUCTION

This paper deals with generalizations of the likelihood function (LF)
and the likelihood principle (LP). For convenience of exposition we
briefly review the LF and LP for standard parametric inference
problems before discussing the generalizations and related issues. Let
Y be a random observable taking values in a sample space according
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to a probability distribution belonging to a given family
. Here, � is an unknown parameter vector; the

observed value of Y, denoted by y, constitute the data, and the goal is
to make inferences about � or some function(s) of it. The experiment is
formalized as E={Y, �, P}.

Definition 14.1.1 In the above context, given the data y,

(14.1.1)

considered as a function of �, is called the likelihood function. Actually,
the likelihood function is defined upto a constant multiple, and two LFs
are equivalent if they are proportional to each other.

The likelihood principle says that in making inferences or decisions
about � based on y, the LF l(�|y) contains all relevant experimental
information about � provided by y and E. We shall denote this information
by Ev(E, y; �). Let E1={Y1, �, P1} and E2={Y2, �, P2} be two experiments
where  and  are the families
of distributions of Y1 and Y2, respectively, and � is a common parameter
vector. Then, the LP can be stated as follows [cf., Berger and Wolpert
(1988, p. 26)].

Formal LP Let E1 and E2 be two experiments as stated above with
outcomes y1 and y2 such that f1(y1|�) and f2(y2|�) are proportional to
each other, as functions of �. Then, Ev(E1, y1; �)=Ev(E2, y2; �), i.e., the
experimental evidence about � when y1 is observed in experiment E1,
and y2 is observed in experiment E2, respectively, are identical.

There have been considerable debate about validity and relevance of
the LP. We refer to Berger and Wolpert (1988), for an excellent discussion
of the LP, its consequences, main controversies about it, and many
relevant references. There are some measure-theoretic difficulties, but
we shall not concentrate on them. Actually, this paper also suffers from
those difficulties in the continuous case. Our discussions are valid for
discrete distributions, and provide intuitive guides in the continuous
case. We focus mainly on the validity and interpretations of
generalizations of the LP when the problem involves unobserved random
variables as in prediction problems, and falls outside the parametric
framework considered earlier. Such issues were raised and discussed
by Hill (1987), Bayarri, De Groot, and Kadane (1988), and Bjørnstad
(1996).

One criticism stems from the role and meaning of �. While Berger
and Wolpert (1988, p. 4) stated that “� will be understood to contain
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all unknown features of the probability distribution” (of Y), Bayarri,
De Groot, and Kadane (1988) argued that what should be regarded as
Y and what should be regarded as � is not clear when the problem
involves unobserved random variables (W) either as a part of the model
or for prediction. They examined three possibilities: (i) exclude W in
the LF   definition, i.e.,  , (ii) include W in Y, i.e.,

, and (iii) include W in �, i.e., , and
concluded that none of them is fully satisfactory. While the LF and
many of its variations, such as, marginal, conditional, profile, and
integrated likelihood functions have been used extensively for
statistical inferences, Bayarri, De Groot, and Kadane (1988) argued
that no general definition of the LF can be given and hence the LP and
likelihood methods are questionable.

Another criticism of the LP is that Berger and Wolpert (1988),
Birnbaum (1962) and most other authors do not define Ev(E, y; �) but,
allow it to be any concept of evidence. For example, Bjørnstad (1996)
stated that “it can be a report of the experimental results, the inferences
made, or the methods used, or a collection of different measures of
evidence.” LeCam (1988) questioned the existence of Ev(E, y; �), and
Hill (1987) argued that as Ev(E, y; �) is not defined and what constitute
� is unclear, the LP as stated above is stronger than can be justified,
and he proposed a restricted LP.

In this paper we address, in part, the question: “What is the likelihood
function?” raised by Bayarri, De Groot, and Kadane (1988). First, we
feel that for this question to be meaningful it should be stated clearly
what is wanted in such a definition. Otherwise, one can suggest any
definition as an answer to the question. Indeed, a definition is useful
when it is given in a well defined context for clear purposes. It appears
from the literature that usually one or more of the following are wanted
in a definition of the LF.

(A) The LF should be such that good inferences can be made based
solely on it, i.e., it should be a good summary of all available and
relevant information. Various predictive likelihoods [e.g., Lauritzen
(1974); Hinkley (1979); Butler (1986)] attempt to achieve this goal;
see Bjørnstad (1990) for an informative review.

(B) The LF should lead to equivalency of the LP, and sufficiency and
weak conditionality principles (suitably modified), to generalize
Birnbaum’s (1962) seminal result that generated much attention
for the LP.

(C) The LF should extracts all experimental information that is rel-
evant for the inference problem i.e., once the LF is given one would
not need to know any part of (E, y) for making inferences.
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The difference between the first and third goals is that in the later case
the LF is required to extract only all experimental information, whereas
in the former case it is expected to capture all experimental information
as well as other relevant information such as prior information. As our
goal is to generalize the LP we shall define the LF for achieving goals
(B) and (C).

We agree with Butler (1987) and Bjørnstad (1996) that the LF and
the LP should be defined in a well defined context. Further, it is desirable
to consider a context that is as broad as possible, preferably including
all statistical inference problems. Recently, Bjørnstad (1996) attempted
to provide such a discussion; he gave a general definition of the LF and
proved that it achieves goal (B). We, however, find some parts of that
discussion unclear. We shall show that his description of a general
statistical problem and hence his generalizations of various principles
are ambiguous. In Section 14.2, we argue that a general statistical
problem can be regarded as a prediction problem. The description of the
problem is then completed by specifying a family of joint distributions
of the data and the quantities of interest. The sufficiency, and weak
conditionality principles are modified suitably in Section 14.3. The
general LP is presented in Section 14.4. We argue that our LF contains
all experimental information, and generalize Birnbaum’s (1962) result
by proving that the general LP is equivalent to the generalized sufficiency
and weak conditionality principles.

14.2 A GENERAL FRAMEWORK

Since the goal is to provide a general discussion of the LF and the LP,
which applies to all statistical inference problems, it is first necessary
to consider a general framework covering all statistical problems. We
think this task is rather ambitious because we are not aware of every
statistical problem that mankind has faced (or imagined) in the past or
will face in future. Thus, while our set up described below covers most
known problems, we shall refrain from claiming that it covers all
problems.

As the goal of a general statistical analysis is to make inferences about
some unknown quantity z (may be vector valued) from the data y, we
think a reasonable approach to describe a general statistical problem is
to describe y, and z, and state what we know and/or assume about their
nature. For statistical analysis it is common to regard the data (y) as the
observed value of some random observable Y. The quantities of inferential
interest may be fixed unknowns or the realized but unobserved value of a
random vector Z, or a combination of both. For mathematical generality
z can always be regarded as the realized value of Z. Since a random vector
is described completely by its probability distribution, our knowledge
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and/or assumptions about all statistical aspects of (Y, Z) can be expressed
by specifying a family  of the joint distributions of Y
and Z and postulating that the true distribution belongs to P. Here, � just
indexes the family P and it is natural to require P to be identifiable with
respect to �. The parameter � may or may not have simple physical
interpretations. Thus, a general statistical problem can be described as
(Y, Z, P). Intuitively, specification of a probability model seems necessary
for relating y to z and hence making inferences about z from y. We define
the likelihood function for a general problem as

(14.2.2)

considered as a function of z and �. This is a natural modification of
(14.1.1), and was also suggested by Bayarri and De Groot (1988).

We should note that while our description of a general statistical
problem specifies all probabilistic properties of Y and Z and captures
the mathematical part of the model, it does not specify the loss function
relevant to the problem. As our main goal is to generalize the LF and
the LP, which do not concern the loss function, we do not include the
loss function in our statement of the problem. Accepting Y, Z and P as
the starting point, it can be seen that our framework covers standard
estimation and prediction problems under frequentist, Bayes, and
empirical Bayes models. In standard parametric problems Z is a function
of � and f(z|�) is degenerate. In Bayesian models, P contains a single
distribution f(y, �), which can be factored into two components, f(�), the
prior distribution of �, and f(y|�). Further, f(y|�) considered as a function
of � is called the likelihood function, and it is said to capture all
experimental information. Although frequentist, Bayes, and empirical
Bayes problems can be brought under a common model, we think it is
important to recognize their differences for proper interpretation of the
results.

We formalize the experiment in the general case as E={Y, (Z, �), P}.
The experiment produces y and z from a distribution in P, or equivalently
a value of z according to f(z|�), and then a value of y from f(y|z, �) for
some �� �. It is important to note that the statistician observes only y,
and z remains unobserved. So, the statistician performs only a part of
the experiment. Letting En={Z, �, Pz}, and Es={Y, (z, �), P*)}, where

, , and is the sample
space of Z, it seems reasonable to regard E as consisting of En and Es of
which the statistician performs only Es. Conceptually, the nature first
selects a value of � and performs En to obtain a value of z, and then the
statistician performs Es to obtain a value of y. Our likelihood function in
(14.2.2) captures the information provided by the outcome of the statis-
tician’s experiment, i.e., the statistician’s post-experimental information.
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Clearly, post-experimental information makes sense for the statistician’s
experiment, but not for the nature’s experiment as its outcome remains
unknown to us. Our break up of the experiment and information is
consistent with parametric Bayesian analysis where the likelihood
function in (14.1.1) captures the statistician’s post-experimental
information, and the prior distribution of � captures our pre-
experimental knowledge about the nature’s experiment. We shall use
Ev(E, y; z, �) to denote the information about z and �, when y is observed
in the experiment E.

To describe the general statistical problem, Bjørnstad (1996) started
with the data Y=y and some unobservable variables W, which may consist
of variables to be predicted and/or parameters in a Bayes or empirical
Bayes model. The unknown fixed parameters characterizing the
distribution of (Y, W) are denoted by �. He then formalized the model as

  and the experiment as the triple E={Y, (W, �), P}.
Finally, he regarded the quantities of interest for statistical analysis to
be a function of w and possibly y, z=zy=z(w, y), and may be � or some
part of �.

As it has been noted in Nayak (1999), Bjørnstad’s framework is not
well defined because what constitute W is unclear. Since any function
of W can also be regarded as a function of W and W+, where, W+ are
some additional random variables, the problem can also be stated in
terms of Y, W, W+, �, ß, and z*, where ß are some additional parameters
necessary for complete specification of the joint distribution of Y, W,
and W+, and z*(w, w+, y)=z(w, y) expresses the quantity of interest as a
function of y, w, and w+. Thus, his set up is not well defined and a
statistical problem can be given many different formal descriptions.
Our formulation avoids this ambiguity by describing the problem using
the joint distribution of Y and Z. It may be convenient to consider
some unobserved variables W for specifying (and motivating) the model,
as in random effects, and measurement error models, but it may not
be necessary to go beyond the family of joint distributions of Y and Z
after it has been obtained.

14.3 SUFFICIENCY AND WEAK CONDITIONALITY

14.3.1 The Sufficiency Principle

As we regard a general statistical problem to be a prediction problem,
we take sufficiency to mean predictive sufficiency. Thus, a statistic T is
said to be sufficient if

(14.3.3)
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i.e., T is sufficient in the usual sense for the conditional model f(y|z, �).
This is also equivalent to f(y|t, �)=f(y|t) and f(z|y, �)=f(z|t, �). Further,
T is sufficient if and only if there exists two nonnegative function g and
h such that the factorization f(y|z, �)=g(t, z, �)h(y) holds. In most
applications, this provides an easy method for finding a minimal
sufficient statistic T. Prediction sufficiency and its many properties have
been studied by Skibinsky (1967), Takeuchi and Akahira (1975),
Torgersen (1977), Dawid (1979) and others.

Using (14.3.3) it is possible to construct Y* only from the knowledge
of T such that (Y*, Z) and (Y, Z) have the same joint distributions.
Further, when z is scalar, for any given predictor k(Y), there exists a
predictor based only on T, viz., k1(T)=E[(Y)|T], which is at least as
good as k(Y) in terms of the mean squared error, i.e., E�[k1(T)-
Z]2�E�[k(Y)-Z]2 for all �. The equality holds if and only if k(Y) is a
function of Y only through T with probability 1. A (predictive)
sufficient statistic T is also Bayes sufficient i.e., for any prior
distribution of �, f(z, �|y)=f(z, �|t) with t=T(y). Thus, in many ways
t=T(y) contains all information in the data y. The general sufficiency
principle is described as follows.

General SP Let Ev(E, y; z, �) denote the experimental evidence
about z, and � supplied by (E, y). Let T be a (predictive) sufficient
statistic and y1 and y2 be such that T(y1)=T(y2). Then, Ev(E, y1; z,
�)=Ev(E, y2; z, �).

Our general SP is the same as Bjørnstad’s (1996) sufficiency principle
for prediction (SPP). He, however, defined general SP differently, which
is ambiguous as discussed below. Recall that his framework contains Y,
W, � and z=z(y, w). Letting  denote the sample space of Y, and 

, he defined T to be regular sufficient for (z, �)
if f(y|t, z, �)=f(y|t) for all y � Yz. Then he described the general SP as
follows.

Bjørnstad’s SP Let T(Y) be regular sufficient for (z, �) and assume (a)
z(w, y1)=z(w, y2) (=z) for all w, and (b) T(y1)=T(y2). Then, Ev(E, y1; z,
�)=Ev(E, y2; z, �).

Thus, he requires the additional condition in (a) to be satisfied. We
find this unnecessary, and it creates additional complications as it is
not clear what is to be included in W. One undesirable consequence of
requiring condition (a) is illustrated in the following example.

Example 14.3.1 Let X1, …, Xn be iid N(�, 1), Y=(X1, …, Xn), W~ N(0, 1),
Z=Xn+W, where Y, W are independent. Bjørnstad (1996) used this
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example for a different purpose. It can be seen easily that
 is minimal predictive sufficient, and the SP (both our,

and Bjørnstad’s) implies that Ev(E, y; z, �) depends on y only through
 .

The same problem can also be stated as: Z=Xn-X1+W* where Y is as
before, and W* is an unobservable random variable with f(w*|y, �) being
N(x1, 1). Here also,  is minimal predictive sufficient, and
our SP implies that Ev(E, y; z, �) depends on y only through ,
which is intuitively sensible. However, we cannot reach this conclusion
from Bjørnstad’s SP as T(y1)=T(y2) does not imply that condition (a) is
satisfied. His SP implies that Ev(E, y; z, �) depends on y only through

 and x1. Thus, different representations of Z leads to different
data reductions based on Bjørnstad’s SP. Our SP does not have this
drawback.

14.3.2 Weak Conditionality

The weak conditionality principle (WCP) due to Basu (1975) in the
standard parametric case, is a modification of Birnbaum’s (1962)
conditionality principle, and it can be described as follows. Let E1={Y1,
�, P1} and E2={Y2, �, P2} be two experiments with common �, and 

, j=1, 2. Let E* be a mixture of E1 and E2 with mixture
probability of each experiment being 0.5. That is, in E*, first J=1 or 2
is observed, each having probability 0.5, and experiment EJ is
then performed. The outcome of E* can be represented as (j, yj),
and E* can be formalized as E*={Y*, �, P*} where, Y*=(J, YJ) and

. Then, the WCP says
that Ev(E*, (j, yj); �)=Ev(Ej, yj; �).

To generalize the WCP let E1={Y1, (Z, �), P1} and E2={Y2, (Z, �), P2}
be two experiments with common (Z, �), and ,
j= 1, 2. Since a complete description of (Z, �) is given by � and

 , we interpret “common (Z, �)” as � and 
being common to the two experiments. Otherwise, it would seem that
the experiments are informative about z, creating more confusion.
Alternatively, one may require � as well as z, the realized but
unobserved value of Z, to be the same for two experiments. We think
this requirement is unnecessarily stringent. Also, this is equivalent to
treating z as an unknown fixed parameter, which leads to the standard
parametric case. It should be noted, however, that if z is treaded as a
fixed unknown parameter, {f(y|z, �)} need not be identifiable with
respect to (z, �). With our broader interpretation of “common (Z, �)”,
the general WCP is presented below.

General WCP Let E1 and E2 be two experiments with common (Z, �),
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and let E* be the mixture of E1 and E2 with equal probabilities.
Formally, E*={(J, YJ), (Z, �), P*}, where ,
and f*((j, yj)=(z|�)=(1/2)fj(yj, z|�). Then,

To generalize the WCP Bjørnstad (1996) considered two experiments
, j=1, 2, with identical (W,

�) and the same Z function Z(W,.). He did not elaborate much on what
he meant by “identical (W, �)”, and “the same Z function; Z(W, ·)”, except
that his WCP “deals with two experiments about the same unknown
physical quantities �, W”. Here, one implicit restriction is that Y1 and Y2

must be of same dimension, otherwise the Z function cannot be the
same in the two experiments. Also, unlike us he did not assume (p. 800)
that the distributions of Z given � are the same in the two experiments.

14.4 THE LIKELIHOOD PRINCIPLE

We defined the likelihood function as , considered

as a function of z and �. This definition of the LF depends on the
inferential goal, which Bayarri, De Groot and Kadane (1988) did not
consider, and it includes the fixed unknown parameters � used for
specifying the joint distributions of Y and Z. Also, (14.2.2) is a natural
modification of the parametric LF in (14.1.1) as both are based on the
density of the observed data conditional on the unknowns relevant to
the problems. As noted earlier, Bayarri and De Groot (1988) also
suggested (14.2.2) as the general LF. Taking (14.2.2) as the general LF
we next state the general LP, and generalize Birnbaum’s (1962) theorem.

General LP Let Ei={Yi, (Z, �), Pi}, , i= 1, 2, be
two experiments with common (z, �), i.e., with common � and

. Suppose y1, y2 are two outcomes of E1 and E2, respectively,
such that , where . Then,
Ev(E1, y1; z, �)=Ev(E2, y2; z, �).

Theorem 14.4.1 The general LP follows from the general sufficiency
and weak conditionality principles. Conversely, the SP and the WCP
follow from the LP.

PROOF (SP, WCP  LP). Let E1, E2, y1, y2 be as defined in the general
LP and suppose

(14.4.4)
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where c is a constant independent of � and z. Let E* be the mixture of E1

and E2, each with probability 0.5, as in the WCP. Then, from the general
WCP

We shall now complete the proof by showing that the general SP and
(14.4.4) implies

(14.4.5)

Note that in the mixture experiment E*,

(14.4.6)

Since f(z|�) is the same in the two experiments, (14.4.4) and (14.4.6)
imply that

(14.4.7)

Now, (14.4.7) implies that (1, y1) and (2, y2) are in the same minimal
sufficient partition set of E*, and hence (14.4.5) follows from the
general SP.

To prove LP⇒SP, let T be a sufficient statistics and T(y1)=T(y2). Then,
(14.4.4) holds from the definition of sufficiency, and then the LP implies
that Ev(E, y1; z, �)=Ev(E, y2, z, �).

To prove LP⇒WCP, let one experiment be E* and the other be Ej.
Then, from (14.4.6) and our definition of the LF,

 

and it follows from the LP that Ev(E*, (j, yj); z, �)=Ev(Ej, yj; z, �), j=
1, 2. �

As in the standard parametric case, the general LP implies that Ev(E,
y; z, �), the experimental information about z and � when y is observed
in the experiment E, depends on (E, y) only through the likelihood
function l(z, �|y). The general LP does not say that the LF contains all
available information relevant for the inference problem. It only says
that the LF contains all information relevant to the inference problem
provided by the observed outcome of the experiment actually performed
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by the statistician, i.e., the observed outcome of Es. There may be other
relevant information, namely, the loss function, the prior distribution
of �, and f(z|�). We do not consider the prior distribution of �, and f(z|�)
as parts of the experimental information. To us, they contain our pre-
experimental knowledge about the nature’s experiment En. As we stated
earlier, there is no post-experimental information from the nature’s
experiment En, whose outcome remains unknown to us. The LP also
does not say how to use the LF for making inferences or, how to combine
the LF with other relevant information.

Bjørnstad (1996), Butler (1987), and Berger and Wolpert (1988) have
not favored taking (14.2.2) as the general definition of the LF. They
prefer to take

(14.4.8)

as the general LF (as a function of z and �). One criticism of (14.2.2) is
that if Y and Z are independent given �, then (14.2.2) does not involve z
(and we lose the information y carries about z through �). We think this
criticism is not valid as the LP does not say that the LF contains all
relevant information, and does not forbid combining the LF with other
information such as f(z|�), and the prior distribution of �. Indeed, (14.4.8)
can be obtained by combining (14.2.2) with f(z|�), and is better suited
for achieving goal (A). But in our view, it contains more than the
experimental information. It may also be noted that the choice of the
LF for achieving goal (A) is not unanimous. Other predictive likelihoods
have also been proposed in the literature, and we refer to Bjørnstad
(1990) for an excellent review and further references.

It should be noted that Theorem 14.4.1 can also be proved taking
(14.4.8) as the LF definition. This is because (14.4.4) is equivalent to

 

as f(z|�) is the same in the two experiments. Thus, both (14.2.2) and
(14.4.8) achieve the goal of generalizing Birnbaum’s theorem, but their
interpretations are different. In our opinion, (14.4.8) contains more than
sample information and hence we like to take (14.2.2) as the general
definition of the LF. We may emphasize the following points about our
definition of the LF. (1) It depends on the specific objective or inferential
aim of the statistical investigation, which Bayarri, De Groot, and Kadane
(1988) seemed to overlook but Bjørnstad (1996) attempted to take into
account. (2) It is designed to capture only the information provided by the
observed outcome of the experiment actually performed by the statistician.
(3) It includes the model parameters � even when they are not of inferential
interest. Thus, it captures all post-experimental information on z and �.
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Bayarri and De Groot (1988) gave some additional arguments for taking
(14.2.2) as the LF. It may also be noted that if in the WCP common (Z, �)
is interpreted as z and � being common to the two experiments, i.e., if z is
treated as an unknown fixed parameter, Theorem 14.4.1 holds with
(14.2.2) as the LF.

14.5 DISCUSSION

In this paper, we viewed a general statistical inference problem as a
prediction problem, and in that set up we discussed the SP, WCP, LF,
and the LP. We think a well defined context is necessary for discussing
such basic principles. Our context as well as the starting point is Y,
Z, and , and the SP, WCP, LF, and the LP come
into play after this starting point is given. Thus, we did not address
what Mallows (1998) called “The Zeroth Problem”, namely, how to
decide what the relevant data (y) and the quantities of inferential
interest (z) are, and how they relate to the purpose of the statistical
study. Clearly, one should use good judgment and care in choosing Y,
Z, and especially, P.

It may be noted that according to our formulation, a Bayesian problem
does not contain nuisance parameters. For example, if Y consist of iid
observations X1, …, Xn from N(µ, �) and the goal is to estimate µ,
ordinarily one takes a prior distribution of �=(µ, �) and calculates the
posterior distribution, f(µ, �|y), of (µ, �), and then integrates out � to
obtain f(µ|y), which is of main interest. But, the same posterior
distribution of µ is obtained starting from the model f(µ)=�f(µ, �)d� and
f(y|µ)=[� f(y|µ, �)f(µ, �)d�]/f(µ) for (Y, µ). However, one may choose to
report the calculations for the first approach for better disclosure of the
arguments and judgments used in the analysis, and for allowing others
to make inferences about �. The point is that while formulating a problem
(Bayesian or non-Bayesian) we should think if there are some quantities
that are not of interest to us, but are quite likely to be of interest to
others and hence should be included in.Z. It may be noted that a non-
Bayesian problem may contain nuisance parameters (in �) even when Z
contains the quantities that are of interest to us only.

It has been more than 36 years since Birnbaum’s paper was published,
but the LP has still remained controversial, at least judged by how often
it is violated in practice. This may be due to the radical consequences of
the LP, but it may also be due to lack of a clear definition of “evidence”
(or information). While it is not necessary to define Ev(E, y; �) for proving
Birnbaum’s theorem, it is important to have a good practical
interpretation of Ev(E, y; �) for convincing others that it applies to their
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analyses. Also, the use of the word all as in all information and all
unknowns, without adequate qualifications may have contributed to
the scepticism about the LP. Indeed, this was the source of the concerns
of Hill (1987), and Bayarri, De Groot, and Kadane (1988). This is not
surprising when we think about the difficulties the word “all” caused in
set theory. The LP still occupies a somewhat strange position in statistical
science. Mainly the Bayesian methods do not violate it, but there how
the joint density of Y, Z, and � is factored into likelihood, prior, and
other components appears to be unimportant.

REFERENCES

Basu, D. (1975). Statistical Information and Likelihood (with discussion),
Sankhya, Series A, 37, 1–71.

Bayarri, M.J. and De Groot, M.H. (1988). Discussion: Auxiliary
parameters and simple likelihood functions, In The Likelihood
Principle Second Edition, by Berger and Wolpert, Institute of
Mathematical Statistics, Hayward, California. 160.3–160.7.

Bayarri, M.J., De Groot, M.H. and Kadane, J.B. (1987). What is the
likelihood function? (with discussion), In Statistical Decision Theory
and Related Topics IV, Vol. 1 (Eds., S.S.Gupta and J.O.erger),
Springer-Verlag, New York.

Berger, J.O. and Wolpert, R.L. (1988). The Likelihood Principle Second
Edition, Institute of Mathematical Statistics, Hayward, California.

Bjørnstad, J.F. (1990). Predictive likelihood: A review (with discussion),
Statistical Science, 5, 242–265.

Bjørnstad, J.F. (1996). On the generalization of the likelihood function
and the likelihood principle, Journal of American Statistical
Association, 91, 791–806.

Butler, R.W. (1986). Predictive likelihood inference with applications
(with discussion), Journal of the Royal Statistical Society, Series B,
48, 1–38.

Butler, R.W. (1987). A likely answer to ‘What is the likelihood function?’,
In Statistical Decision Theory and Related Topics IV, Vol. 1 (Eds., S.
S.Gupta and J.O.Berger), Springer-Verlag, New York.

Birnbaum, A. (1962). On the foundations of statistical inference (with
discussion), Journal of American Statistical Association, 57, 269–
306.

Dawid, A.P. (1979). Conditional independence in statistical theory (with

Copyright © 2002 Taylor & Francis



T.K.NAYAK and S.KUNDU212

discussion), Journal of the Royal Statistical Society, Series B, 41,
1–31.

Hill, B.M. (1987). On the validity of the likelihood principle, The
American Statistician, 41, 95–100.

Hinkley, D.V. (1979). Predictive likelihood, Annals of Statistics, 7, 718–
728.

Lauritzen, S.L. (1974). Sufficiency, prediction and extreme models,
Scandinavian Journal of Statistics, 1, 128–134.

LeCam, L (1988). Discussion. In The Likelihood Principle, Second
Edition, by Berger and Wolpert, Institute of Mathematical Statistics,
Hayward, California. 182–185.2.

Mallows, C (1998). The zeroth problem, The American Statistician, 52
1–9.

Nayak, T.K. (1999). On best unbiased prediction and its relationships
to unbiased estimation, Journal of Statistical Planning and Inference
(to appear).

Skibinsky, (1967). Adequate subfields and sufficiency, Annals of
Mathematical Statistics, 38, 155–161.

Takeuchi, K. and Akahira, M. (1975). Characterization of prediction
sufficiency (adequacy) in terms of risk functions, The Annals of
Statistics, 3, 1018–1024.

Torgersen, E.N. (1977). Prediction sufficiency when loss function does
not depend on the unknown parameter, The Annals of Statistics, 5,
155–163.

Copyright © 2002 Taylor & Francis



213

CHAPTER 15

CUSUM PROCEDURES FOR
DETECTING CHANGES IN THE

TAIL PROBABILITY OF A
NORMAL DISTRIBUTION

RASUL A.KHAN
Cleveland State University, Cleveland, OH

Abstract: Let x1, x2, …be independent random variables having normal
distribution with unknown parameters, and consider the problem of
detecting changes in the tail probability p=P(x1>x0), where x0 is a known
constant. To monitor changes in p we consider some cusum procedures
including a Shewhart control chart and its generalization based on a
suitable integer-valued random walk. Both of these procedures are based
on noncentral t-statistics under group sampling although a special case
of the generalized version is also applicable without group sampling.
Some cusum procedures based on noncentral t-statistics under group
sampling are also considered, and the average run lengths of these
procedures are evaluated and/or estimated by simulations to compare
their relative merits.

Keywords and phrases: Normal, tail probability, Shewhart chart,
cusum, noncentral t-statistics, average run length (ARL), approximation,
simulation

15.1 INTRODUCTION

Control charts and cusum (cumulative sum) procedures are often used
for monitoring shifts in the mean of a normal or nearly normal
distribution. In practice one can expedite these procedures under group
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sampling of small or moderate sample sizes with fairly good results
and minimum sequentialization. Moreover, group sampling is a practical
convenience and very natural in some problems. In what follows we
consider the problem of monitoring changes in the tail probability of a
normal distribution. Let x1, x2, …be independent N(µ, �2) random
variables with unknown mean µ and unknown variance �2. Let
p=P(x1>x0)=�((µ-x0)/�), where x0 is a known constant and �(�) is the
standard normal distribution function. The process x1, x2, …is said to be
in control if µ≥x0+a�, or equivalently, p≥ß=�(a) for a given ß(0<ß<1).
With no loss of generality and without any further comment in the sequel
we let x0=0 for one can always replace xi by xi-x0. Thus letting �=µ/� and
�={(µ, �): �≥a}, it is assumed that x1, …, xt-1 are independent N(µ, �2)
when (µ, �)∈ �, while xt, xt+1, …are independent N(µ, �2) with ,
where t (t≥1) is an unknown change-point. Such a change in distribution
at an unknown time point is particularly important in some industrial
applications such as reliability control and it is of interest to detect a
change in p or equivalently in � as quickly as possible. The problem is
interesting and some detection procedures are explored.

The object of this note is to study some cusum procedures and provide
evaluations and/or simulated estimates of the average run lengths
(ARLs). In Section 15.2 we begin with Shewhart chart and its
generalization based on a suitable integer-valued random walk
dependent on non-central t-statistics under group sampling although
the generalized version is also applicable without group sampling. In
Section 15.3 we consider some cusum procedures based on noncentral
t-statistics under group sampling, and a modified cusum without group
sampling. Exact evaluations and/or approximate or simulated estimates
of the ARLs are given. Simulations are reported in Section 15.4 and the
relative merits of these procedures are discussed.

15.2 A SHEWHART CHART AND A CUSUM SCHEME

In order to motivate a Shewhart control chart we consider a random
sample (x1, x2, …, xm) of size m≥2 from a N(µ, �2) distribution and define

  and . Letting �=µ/�
and c as a constant we have
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where �0 is the control value and t[q, �] denotes a noncentral t random
variable with q degrees of freedom and noncentrality parameter �. Let

 denote a �-fractile such that

Thus

Now suppose that independent random samples {xij, j=1, 2, …, m, i�
1}are taken at certain intervals of time and  are computed. Define
the stopping time

(15.2.1)

and a corrective action is taken as soon as v terminates. Thus the
statistics �

—
m xi/si are plotted on a control chart with a boundary line

 , and a corrective action is signaled whenever 
falls below the boundary line for the first time. It is a simple-minded
procedure and its average run length (ARL) mEv can be easily computed.
To this end, we clearly have

(15.2.2)

where . Hence the ARL is
given by

(15.2.3)

Since 	(�)≥	(�0)=1-� when �≥�0, we have ARL(�)≥ARL(�0)=m/� for �≥�0.
By choosing m and � we can achieve ARL(�0) at any desired level
to satisfy ARL(�0)≥A0 for any preassigned A0. This simple control
procedure based on noncentral t-statistics is quite practical and
completely analogous to the standard Shewhart control chart had �
been known.

We will now define a closely related cusum procedure based on a
suitable integer-valued random walk. This may be considered a
generalization of the preceding Shewhart control scheme. As before,

 are respectively the mean and the variance of the ith random
sample of size m, and likewise �=µ/� and �≥�0 are the control values.
For k≥0 and i=1, 2, …let
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Also, let p=p(�)=P(
i=1) and q(�)=1-p(�). Note that

(15.2.4)

where t[q, �] is a noncentral t random variable with q d.f. and
noncentrality parameter �. Set S0=0, Sn=
1+…+
n, n≥1. Then {Sn, n≥0} is
a random walk on the integers and it is natural to choose a positive
integer h as the boundary of the ensuing cusum procedure. Consequently,
we define a cusum stopping time by

(15.2.5)

and a corrective action is taken at the termination of N. An alternative
representation of N is obtained by letting W0=0, Wn=max (0, Wn-1+
n),
n≥1, and noting that

(15.2.6)

A little reflection makes it clear that N is indeed the Shewhart scheme
v defined by (15.2.1) when h=1 and . For higher values
of h, N is much more stringent. For example, h=2 makes termination
possible only when two consecutive samples produce 
i=1, 
i+1=1, etc. It
should be remarked that this procedure is applicable even if k=0. This
is due to the fact that p=P(
i=1) still depends on � only. In fact, if k=0 we
have , , and one can use N with a
suitable h. In case k=0, the procedure is also applicable even if m=1 so
that no group sampling is required.

The procedure N defined by (15.2.6) has been studied by Khan (1984)
and the associated ARL is given by

(15.2.7)

For  we note from (15.2.2) and (15.2.4) that p(�)= 1-
	(�) and q=	(�). Moreover, if h=1, (15.2.7) becomes EN=1/p(�) so that
ARL(�)=m EN agrees with (15.2.3). Some other properties of N can be
found in Khan (1995).

15.3 NONCENTRAL t-STATISTICS BASED CUSUM
PROCEDURES

Let {xij, i=l, 2, …, m, j≥1} be random samples of size m≥4 taken at regular
intervals of time, and let  where  and  are the ith sample
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mean and variance as defined in Section 15.2. In what follows we define
two intuitive cusum procedures based on the sequence y1, y2, … with
the hope that the size based cusum procedures are more efficient than
those discussed in Section 15.2. Clearly, the distribution of yi’s depends
on �=µ/�, and like the preceding section, the control values are �≥�0,
where �0 is known and fixed. Let , where k(k ≥0) is a
reference constant, and set S0=0, Sn=d1+d2+…+dn, n≥1. For any h>0 we
define the cusum procedure by

and a corrective action is signaled as soon as T terminates. Let .
.

Clearly, T can be written as

(15.3.8)

The ARL(�) (average run length) is defined as E�T under the assumption
that y1, y2, …are iid. We note that , and it
is easily verified [cf. Resnikoff and Lieberman (1957)] that the mean
ß(�) and the variance �2(�) of y1 are given by

Thus E�di=�(�)=ß(�-�0)+k, and var(di)=�2(�). It is also known [cf. Ghosh
(1970, p. 22)] that yi’s are approximately normal N(�, (1+�2/2)/m) for
large m. Clearly,  and , and that  can be
suitably approximated by normal random variables for large m. Since
it is desirable to keep the group sample size m at moderate levels, the
resulting ARL cannot be approximated by the usual known results based
on normal theory unless m is fairly large. Some alternative asymptotics
are needed to supplement the normal approximation for E�T. However,
before discussing any approximation we define another intuitive cusum
procedure. To this end, we define

and note that
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Thus we continue to combine samples to improve our estimate  as long
as , and the renewal occurs as soon as 
The new intuitive cusum procedure is defined by

(15.3.9)

A little reflection shows that T1 is equivalent to repeated application
(after each renewal) of the stopping time M until exit occurs at h where
M is defined by

(15.3.10)

where

Set �0=0, and define

and in general, for i=1, 2, …, n-1,

The following general result provides the alternative asymptotics which
can supplement the normal approximations for the associated ARLs of
the preceding cusum procedures.
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Theorem 15.3.1 Let 
1,
2,…be iid random variables with mean µ
and variance �2, and set S0=0, Sn=
1+…+
n, n≥1. Define the cusum
stopping time . Then (as
h→∞):

(a)

(b)  if µ=0,

(c)  if µ>0.

PROOF The asymptotics (a) and (b) are known [cf. Khan (1979) and
Robbins (1976)]. Since , Renyi-Anscome Theorem [cf. Gut
(1988, p. 15)] gives

(15.3.11)

Clearly, from the definition of � we have

(15.3.12)

Since µ>0, min(0, S1, …, Sn)=max(0, -S1, …, -Sn) has a limit distribution,
and it can be shown that  as n→∞. Moreover,

 as h→∞ by Lemma 2.6 of Gut (1988). Hence (c) follows
from (15.3.11) and (15.3.12). Thus Theorem 5.1 of Gut (1988, p. 85)
continues to hold if v(h)=inf {n≥1: Sn≥h} is replaced by � (h). �

Remark 15.3.1 It is known [cf. Khan (1995)] that under appropriate
conditions, � has an asymptotic exponential distribution with a suitable
parameter if µ<0. The required conditions are related to the moment
generating function of 
1 which obviously cannot be applied to the
noncentral t-distribution.

Clearly, (a) can be used to approximate the ARLs of (15.3.8) and (15.3.9)
when �<�0-k, while (c) can be used to estimate the standard deviations of
T and T1. If k=0, then (b) can be used to approximate the ARL under �0 (or
under �0-k even if k0) without any normality, etc. Thus if �<�0-k, then
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 if m is also large. Now recalling (15.3.10)
let , and note that . It then
follows that

Consequently, by Stirling’s formula we see that E� yn→� and var(yn)→1/
m as n→∞. Hence it follows from (15.3.9), (15.3.10) and (a) that

(15.3.13)

Such approximations seem to work even for moderate h and m. However,
the difficulty is under �0 if we do use a suitable reference constant k.
Then there is no choice but to use some normal approximation at least
under �0. Let -�(�) and �2(�) be the mean and variance of the random
variables of our cusum procedures, then the normal approximation for
ARL(�) is given by

(15.3.14)

The uses of these approximations are discussed in the next section on
simulation.

Finally, we now consider a fully sequential cusum procedure without
group sampling. Let x1, x2, …be independent N(µ, �2) random variables,
and the process is said to in control if �=µ/�≥�0, and out of control if
�<�0. Let  and  be the usual sample mean and variance based
on (x1, …, xn). For a suitable positive reference constant k define

and renewal occurs whenever �n=0. The associated cusum procedure is
defined by

(15.3.15)

Of course, whenever renewal occurs, one has to take at least two
observations to obtain new �n’s. Obviously, T0 is equivalent to repeated
application of a stopping time M0 until termination at h, where M0 is
defined by
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Given the nature of T0 and M0, no suitable approximation of the ARL
seems possible. Therefore, only the simulated estimates of the ARL are
given in the next section.

15.4 SIMULATIONS

Exact evaluations and simulations of the ARL of the Shewhart chart
and its generalized version under group sampling use the values of the
noncentrality parameter  from the table of noncentral t-
distribution of Resnikoff and Lieberman (1957). Table 15.1 gives the
exact and simulated ARL for the Shewhart control chart. Table 15.2
gives the exact and simulated ARL of the generalized version N defined
by (15.2.5). Table 15.3 gives the approximate and simulated ARL of T
defined by (15.3.8). The approximation is based on (15.3.14) with a
modified �2(�). Recall that �(�) and �2(�) are the mean and variance of di

which is a linear function of a noncentral t-statistic. For small or
moderate m, (15.3.14) gives poor approximation. Surprisingly, the
estimates get improved by using the variance  where

 is the variance of the central t-statistic. Of course, one can
use the normal approximation for the t-statistic itself with mean � and
variance (1+�2/2)/m if m is fairly large. Table 15.4 gives the estimated
ARL of T1 defined by (15.3.9). Here we use (15.3.13) to approximate the
ARL if �<�0 while (15.3.14) is used under �0 with �(�)=k and �2(�0)=2/m.
As noted earlier,  large n (which is certainly the
case under �0), and thus �2(�0)�1/m. However, �2(�0)�2/m seems to
compensate the variation caused by s(1, n). Still it provides only a rough
estimate of ARL(�0). The simulated estimates of the ARL for (15.3.15) is
also included in Table 15.4.

TABLE 15.1 ARL of Shewhart chart
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TABLE 15.2 ARL of generalized cusum N

In the remaining Tables 15.3 and 15.4, the choice of k is determined by
�0-k=(�0+�1)/2, and thus k=(�0-�1)/2=.183192 is used in both tabes. This
is in line with the usual practice, and with this choice of k, the
approximate and simulated ARL are given. Only simulated estimates
of ARL are given for T0.

TABLE 15.3 ARL of cusum T

TABLE 15.4 ARL of T1 and T0

The relative merits of these procedures can now be compared. Comparing
Tables 15.1–15.3 we see that the cusum procedure of Section 15.2.3
based on noncentral t-statistics is more efficient than that of Shewhart
or its generalized version. However, the Shewhart chart or the
generalized cusum have the advantage of the availability of their exact
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ARL. Nevertheless, procedures (15.3.8) and (15.3.9) do indeed perform
better, and (15.3.9) appears to be some what more efficient than (15.3.8).
The cusum procedure N with k=0 and m=1, and the cusum procedure
(15.3.15) are indeed useful without group sampling. However, some
suitable approximations of the ARL associated with T0 in (15.3.15) is an
interesting open problem.
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CHAPTER 16

DETECTING CHANGES IN THE
VON MISES DISTRIBUTION

KAUSHIK GHOSH
George Washington University, Washington, DC

Abstract: Tests for detecting changes in the concentration parameter
and/or the mean direction when data are from von Mises distribution
are developed. Critical values are obtained through simulations.
Finally, the tests are compared with respect to their powers using
simulations.

Keywords and phrases: Change-point, directional data, von Mises
distribution, generalized likelihood ratio test, power

16.1 INTRODUCTION

Suppose we have a set of independent and identically distributed
measurements on 2-dimensional directions, say �1, �2, …, �n. These
measurements, called angular or circular data, can be represented as
points on the circumference of a circle with unit radius. They may be
wind directions, the vanishing angles at the horizon for a group of birds
or the times of arrival at a hospital emergency room where the 24 hour
cycle is represented as a circle [see Mardia (1972), Fisher (1993) for
more on circular data]. In Ghosh, Jammalamadaka and Vasudaven
(1999), tests to detect presence of change-points in the preferred direction
were proposed and studied. In this article, we cover other aspects by
considering detection of changes in the concentration (variability) and/
or the preferred direction.

Formally, let a1, …, an be angular measurements measured in a time-
ordered or space-ordered sequence. Assume that for some unknown (but
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fixed) k, (1≤k≤n), �1, …, �k~F1 and �k+1, …, �n~F2(�F1). Here, k is called
the change-point of the data. If k=n, there are no observations from F2,
meaning all the observations are from the same population and hence,
there is no change-point. We are interested in testing for the presence
of a change-point. Hence, we are testing H0: k=n vs. H1:1≤k≤n-1. For
concreteness and simplicity, we assume that the two populations F1

and F2 are von Mises (sometimes also known as the Circular Normal)
with concentration parameters κ1 and κ2 and mean directions µ1 and µ2

respectively.
We say that a random angle a has von Mises distribution with mean

direction µ ∈ [-�, �) and concentration parameter κ>0 (i.e. vM(µ, κ)) if it
has the probability density:

von Mises distribution is in many ways analogous to the normal
distribution on the line and plays a central role in modeling circular
data. Many real-life circular data can be modeled by such a
distribution.

A change in distribution at k implies that �1, …, �k~vM(µ1, �1) and
�k+1, …, �n~vM(µ2, �2). Here, we have a 4-dimensional parameter �=(µ1,
µ2, �1, �2) with the parameter space �=[-�, �)×[-�, �)× (0, ∞)×(0, ∞).

While there has been an extensive study of change-point problems
for the linear data case, only a few have dealt with circular data. Lombard
(1986) proposed nonparametric tests for detecting change-points in
angular data. Csörgo and Horváth (1996) give the asymptotic
distributions of the statistic proposed by Lombard. Ghosh et. al. (1999)
deals with detecting changes in mean direction in the parametric set up
of the von Mises distribution. To the author’s knowledge, no other work
is currently available that deals with changes in directions.

This article is organized as follows: Section 16.2 deals with the
derivation of tests when there is a change in � (possibly along with a
change in µ). We use the generalized likelihood ratio method to derive
tests for H0 vs. H1. The exact critical values of the test statistics are
obtained through simulations after conditioning on the length the
resultant of the observed data.

An alternative method, with a Bayesian flavor, assumes that the
change-point is equally likely to be at any one of the intermediate
points. Hence, using a discrete uniform prior over the possible change-
point values, we get an alternate statistic. If we have further
information about the possible point of change, we can incorporate that
into an appropriate prior on � and derive the corresponding Bayes
procedure.

Copyright © 2002 Taylor & Francis



DETECTING CHANGES IN VON MISES DISTRIBUTION 227

The results on the critical values of some of the test statistics, obtained
through simulations, are presented in Section 16.3. They are provided
as nomograms from which one can read the 5% values. The author may
be contacted for the code, if other values are of interest. Finally, in Section
16.4, we compare the powers of the two procedures for various
alternatives.

In what follows, we will use I0(�) to denote the modified Bessel function
of order zero, I1(�) to denote the modified Bessel function of order one
and A(�) to denote the ratio . We will also use the notation �(�) for
the following function:

(16.1.1)

It is worth noting here that I1(�) is the derivative of I0(�).

16.2 THE TESTS

16.2.1 Change in �, µ Fixed and Known

Let µ1=µ2=µ (say). If the change is at k, the likelihood of the data is

which is maximized for

Under H0, the likelihood is

which is maximized for

If 	k is the likelihood ratio when change is at k, we reject the null
hypothesis of no change for change at k if
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is too large. Here, 
 and �(�) is as in (16.1.1). Without loss of generality, we

can assume that µ=0.
Since k is unknown, we use the “sup” and “avg” methods as in Ghosh,

Jammalamadaka and Vasudaven (1999) to get the following statistics
for testing H0 against H1:

(16.2.2)

and

(16.2.3)

When H0 is true, the distributions of these statistics depend on the
unknown common concentration parameter �. To make them free of �,
one could, as we do, condition on the overall sum of cosines C (sufficient
statistic for �). Although exact distributions are very difficult to find,
we can resort to simulations to obtain the cut-offs of these conditional
tests.

16.2.2 Change in �, µ Fixed but Unknown

In this case, the maximizer of the likelihood assuming change at k is
given by the following three equations:

Under H0, the likelihood is maximized at

where( , R) are the direction and length respectively of the overall
resultant.
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where 
 and �(�) is as in (16.1.1). The two statistics of interest for testing H0

against H1 are then

(16.2.4)

and

(16.2.5)

As before, to make the null distributions of the tests free of the unknown
parameters, we condition on the overall resultant R. Exact distributions
being difficult to obtain, we need to resort to simulations to get the cut-
offs of these conditional tests.

16.2.3 Change in µ or � or Both

Assuming that the change-point is at k, the likelihood of the observed
data is maximized for

Hence, if 	k is the likelihood ratio, we have

Here, ( 1k, R1k) denote the direction and length respectively of the
resultant of the unit vectors given by �1, …, �k while ( 2k, R2k) denote
those for �k+1, …, �n.

Under H0 (no change-point), µ1=µ2(=µ, say) and �1=�2(��, say). The
likelihood is then maximized for

where ( , R) are the direction and length respectively of the resultant
of the n unit vectors given by �1, …, �n.
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After some algebra, we have

As before, k being unknown, the “sup” and “avg” methods give rise to
the statistics:

(16.2.6)

and

(16.2.7)

Note that unlike the previous cases, k runs from 2 through n-2. This is
because, the concentration parameters being unknown, we need at least
two observations to estimate them.

The test statistics so obtained are functions of the resultant lengths
of the angles, whose distributions under the null hypothesis depend on
the common (unknown) concentration parameter �. This can be made
free of � upon conditioning by the overall resultant length R, since the
conditional distribution of (R1, R2) given R is independent of � [see Watson
and Williams (1956)]. Results of these conditional simulations are
presented in the next section.

16.3 SIMULATION RESULTS

All the tests proposed in the previous section have no simple known
distributional form. Thus, to obtain their cut-off values, we need to do Monte-
Carlo simulations. For illustration and simplicity, we present here
simulation results for the last case (subsection 16.2.3) only. In particular,

Thus, assuming that the change-point is at k, the likelihood ratio
becomes
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the results are based on simulations of the following two statistics:

(16.3.8)

and

(16.3.9)

All the codes were written in the C language with calls to the IMSL/C/
STAT library for the random number generators. In particular, we made
extensive use of the routine imsls_f_random_von_mises to generate
all the von Mises random deviates.

Since � is unknown, we sample from a conditional von Mises
distribution, the conditioning event being the given length r of the
resultant R. Each (r, n) combination results in a different distribution
and we considered n=10(2)20(5)30(10)50 and . Since
the conditional sampling discards a lot of the random numbers for not
meeting the conditioning criterion, sampling procedure was sometimes
computer intensive—especially in the very extreme  values. Apart from
using imsls_f _random_von_mises, we used imsls_f _random_binomial
to draw the conditional samples. The results of 100,000 simulations
appear as nomograms in Figures 16.1 and 16.2.

A striking feature as observed on close examination of these
nomograms is the decreasing trend for a fixed  as n increases. In
comparison, the nomograms when we were testing for changes only in
mean had an increasing trend. This can be explained by the convexity
of the function �(�).

The other notable feature is that the curves all become close to
horizontal as n increases. This asymptotic behavior is pronounced after
a considerable sample is taken, say n=50 or more. This can be explained
using the same argument as used to explain the horizontal nature of
nomograms in the test for change in mean.

16.4 POWER COMPARISONS

To examine the behavior of the tests proposed in (16.3.8) and (16.3.9)
under various alternatives, we did a Monte-Carlo study of their power
curves. For each of the alternatives under consideration, we ran 500
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simulations to get the powers. the cut-of for each test was based on 100
simulations. Figures 16.3–16.6 summarize the effects of changes in n,

, � and k on the power curves. In Figure 16.3, we chose , �1=1.5,
�2=4.5. We varied n through the values 5(5)10(10)40(20)80 choosing

 in each case. As expected, the power increases with sample size
increase; he effect being more pronounced for the “sup” statistic where
the power for n=30 is close to 1. In comparison, the “avg” statistic reaches
a maximum power of about 65% for n as large as 80.

In Figure 16.4, we examine the effect of change in difference in means

=|µ1-µ2|. We took n=20, �1=1, �2=4, k=10 and keeping these fixed, we
varied 
 over the range . Again, power increases with increase
in the difference of the means and the “sup” statistic performs better
than the “avg”.

Figure 16.5 depicts the effect of changing one concentration parameter
on the power of the test. Here, we have taken n=20,  �1=2 and
k=10. Under this set up, the powers of the two tests obtained by varying
�2 over the range 0.5(0.5)4.5 are obtained. Clearly, the “sup” statistic is
the uniform winner.

Finally, Figure 16.6 demonstrates the effect of the position of change-
point k on the powers of the two tests, when everything else remains
the same. In particular, we chose n=30, , �1=1, �2=4 and k=1(2)15.
as before, “sup” is the clear winner, with maximum power close to 100%
for k close to  while the “avg” gets max power close to 65%.

A notable feature of the study of the power curves is that in all these
cases, the “sup” statistic is doing better, unlike the tests for change in
mean only in which “avg” seems to be doing better in most cases. Also,
as expected, both the tests are symmetric in k (i.e., power at k is same
as power at n-k) and is also symmetric in �1 and �2.‘

Summarizing, we would suggest using the “sup” statistic in almost
all cases, if we are looking for changes in mean and/or concentration.
A bonus is that we can also get the estimate of the location of the
change-point in this case—this is the value of k at which the “sup” is
attained.

16.5 AN EXAMPLE

As an illustration of the proposed method of change-point detection,
consider the following data taken from Fisher (1993):
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These are the measurements of azimuth of flares when they start
burning, collected by Dr. F.Lombard and later analyzed in Lombard
(1986). We will use the first 30 observations to detect for presence of a
change-point, assuming there is at most one change (AMOC).

The values of  and  calculated from this data set are 0.459 and
0.291 respectively, with n=30 and . Comparing with the 5%
cut-off values in Figures 16.1 and 16.2, we see both the “sup” and “avg”
tests are significant (since the observed values are bigger than the
tabulated values). This suggests the presence of a change-point in the
distribution of the azimuth direction of the (first 30) burning flares.

This conforms with the findings of Lombard (1986) in which the
presence of a change-point in this data set is shown using non-parametric
techniques.
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FIGURE 16.1 Cut-offs of the sup statistic
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FIGURE 16.2 Cut-offs of the avg statistic
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FIGURE 16.3 Effect of n on power

FIGURE 16.4 Effect of 
 on power
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FIGURE 16.5 Effect of � on power

FIGURE 16.6 Effect of k on power
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CHAPTER 17

ONE-WAY RANDOM EFFECTS
MODEL WITH A COVARIATE:
NONEGATIVE ESTIMATORS

PODURI S.R.S.RAO
University of Rochester, Rochester, NY

Abstract: For the balanced case of the one-way random effects model
with a covariate, the Analysis of Covariance Estimator (ANCOVA) is
adjusted for nonnegativeness. The Minimum Norm Quadratic Estimator
(MINQE), which is nonnegative, is also considered and a modification
is suggested to reduce its bias. B ased on the principle of the Minimum
Variance Quadratic Unbiased Estimation (MIVQUE), a nonnegative
estimator for the variance component which utilizes its prior information
is developed. The sensitivity of the above MIVQUE and MINQE type
estimators to the a priori values are examined. The relative merits of
all the estimators are compared.

Keywords and phrases: Random effects model, analysis of covariance,
minimum norm quadratic estimator, minimum variance quadratic
estimator

17.1 INTRODUCTION

The balanced one-way random effects model with a covariate is

(17.1.1)

for i=(1, …, k) and j=(1, …, m). In this model, yij represents m observations
from each of k groups or treatments and xij the covariate, with its mean

 where n=km is the total sample size. The overall mean
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and the common slope for the k groups are represented by µ and ß
respectively. The residuals εij in each group are assumed to have mean
zero and variance �2. They are assumed to be uncorrelated within each
group and among the groups. The random effect αi is assumed to be
independent of εij with mean zero and variance .

Cochran (1946) and Anderson and Bancroft (1952) consider the
ANCOVA procedure for the estimation of �2 and . For both the balanced
and unbalanced cases of the above model, the Minimum Variance
Quadratic Estimation (MIVQUE) proposed by C.R.Rao (1971, 1972) and
some of its modifications were examined by P.S.R.S.Rao and Miyawaki
(1989) and P.S.R.S.Rao (1977).

The purpose of this article is to suggest nonnegative estimators for
 based on the ANCOVA and MIVQUE procedures and examine their

relative merits. In Section 17.2, we present the ANCOVA estimator as
presented in P.S.R.S.Rao (1977) and derive a nonnegative estimator,
ANCOVA(N). A nonnegative estimator derived from the Minimum Norm
Quadratic Estimation (MINQE) procedure considered by P.S.R.S.Rao
and Chaubey (1978) is presented in Section 17.3. We have also made an
adjustment to this estimator to reduce its bias and considered the
MINQE*. In Section 17.4, we derive a nonnegative estimator
MIVQUE(N) based on the MIVQUE procedure. This estimator follows
the procedure of PROPE (proportional priors) considered by P.S.R.S.Rao
(1997) for the one-way random effects model. It depends on the prior
values of �2 and . We have also considered special cases of this
estimator based on the relative magnitudes of these prior values. We
note that for the balanced case of the model, the MIVQUE does not
depend on these prior values and it coincides with the ANCOVA
estimator. In Section 17.5, we examine the biases and variances of the
different estimators.

17.2 ANCOVA ESTIMATOR AND ITS MODIFICATION

17.2.1 Ancova Estimator

Let

 

and

 

where  and  are the group means and the overall means
respectively. Similarly, let Txx, Bxx and Wxx denote the total, between
and within sums of squares for the covariate.
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Let

 

where b1=Txy/Txx. Similarly, let

 

where b2=Wxy/Wxx. An unbiased estimator of σ2 is .
Since

 

an unbiased estimator of  is given by

(17.2.2)

where A=[(k-2)+Wxx/Txx]m. Note that (Wxx/Txx)=Wxx/(Wxx+ Bxx)=1/(1+R),
where R=Bxx/Wxx=[(k-1)/(n-k)]Fk-1,n-k; Fk-1,n-k is the F-distribution with (k-
1) and (n-k) d.f.

The variance of the estimator in (17.2.2) is

(17.2.3)

17.2.2 Adjustment for Nonnegativeness

From (17.2.2), a nonnegative estimator, ANCOVA(N), for  is

(17.2.4)

Denoting the expectation of (Ty.x-Wy.x) by E, the expectation and bias of
this estimator are E/A and (k-1)�2/A respectively. The variance of this
estimator is 2E2/(k-1) A2. Its Mean Square Error is

(17.2.5)

From (17.2.3) and (17.2.5),

(17.2.6)

This difference can be large if F is significant.
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17.3 THE MINQE AND A MODIFICATION

Let  denote the a priori values of , and let 
. Following P.S.R.S.Rao and Chaubey (1978) and P.S.R.S Rao

(1997), the MINQE for  is given by

(17.3.7)

where b=(Bxy+Wxy)/(Bxx+Wxx). The expectation of the summation on the
right hand side of (17.3.7) is

 

where . With this expression, from (17.3.7), 
.

The above estimator is biased. The modified estimator MINQE*,
obtained by replacing k in the denominator of (17.3.7) by (k-1), will
have smaller bias.

17.4 AN ESTIMATOR DERIVED FROM THE MIVQUE
PROCEDURE

Following the procedure in P.S.R.S.Rao (1997), we derive a nonnegative
estimator for , MIVQUE(N), as follows. Let E denote the expectation of

, with  replaced by , where c is a
constant. From this approach,

 

where D=WBxx/m+Wxx/�2.
Now, a nonnegative estimator for  is

(17.4.8)

The expectation of this estimator is given by , where
N is the same as presented in Section 17.3.
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17.4.1 Special Cases of the Estimator

We consider the cases where  is large or small. When r is
large, the estimator in (17.4.8) becomes

(17.4.9)

In this expression, b=Wxy/Wxx. The expectation of this estimator is

(17.4.10)

When r is small, the estimator in (17.4.8) becomes

(17.4.11)

In this expression, b=Bxy/Bxx. The expectation and variance of this
estimator are

(17.4.12)

and

(17.4.13)

17.5 COMPARISON OF THE ESTIMATORS

To examine the estimators for their sensitivity to the prior values and
to compare their biases, in Tables 17.1 and 17.2, we present the expected
values of the estimators for  when  , (20,
2) and (5, 1). The expected values for k=3, m=10 and n=30 are presented
in Table 17.1 and for k=6, m=11 and n=66 are presented in Table 17.2.
For these two cases, F2,27(.05) and F5,60(.05) are equal to 5.5 and 2.37
respectively, and we have computed the expectations with these
values. We have considered these significant points, since the model
in (17.1.1) should be considered only when the effect of the covariate is
significant.
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As can be seen from Tables 17.1 and 17.2, MINQE* and MIVQUE(N)
are not sensitive to the relative magnitudes of the prior values of the
variance components. The biases of these estimators are also negligible.

From (17.2.3), the variance of  of the ANOVA procedure for all the
three cases in Table 17.1 is equal to 102.35. For all the three cases of
Table 17.2, it is equal to 40.76. From the expressions in (17.2.4), (17.3.7)
and (17.4.8), we can expect the variances of the ANOVA(N), MINQE*
and MIVQUE(N) to be close to these variances, provided the effect of
the covariate is significant. We are investing the biases and variances
of all the estimators described in Sections 17.2, 17.3andrefs4 through
simulations.

TABLE 17.1 Expected values of the
estimators when  = (10, 1); k=3, m=10
and n=30

TABLE 17.2 Expected values of the
estimators when  = (10, 1); k=6, m=11
and n=66
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CHAPTER 18

ON A TWO-STAGE PROCEDURE
WITH HIGHER THAN

SECOND-ORDER
APPROXIMATIONS

NITIS MUKHOPADHYAY
University of Connecticut, Storrs, CT

Abstract: We reconsider the general Stein-type two-stage methodology
of Mukhopadhyay and Duggan (1999) which had incorporated partial
information in the form of a known and positive lower bound for the
otherwise unknown nuisance parameter. This revised methodology was
shown to enjoy customary second-order properties and expansions for
functions of the associated stopping variable, under appropriate
conditions. In this paper, new machineries are provided which help one
to obtain the third-order and higher than third-order expansions of the
analogous functions of the associated stopping variable, under
appropriate conditions. These general techniques are then applied in a
variety of estimation as well as selection and ranking problems.

Keywords and phrases: General procedure, third-order expansions,
higher-order expansions, exact consistency, confidence regions, point
estimation, selection and ranking

18.1 INTRODUCTION

In his classic papers, Stein (1945, 1949) developed two-stage procedures
for constructing a confidence interval J for estimating the unknown
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mean µ in a N(µ, �2) population when � ∈ R+ is completely unknown, in
such a way that J had the fixed-width 2d and

(18.1.1)

Here, the two numbers d(>0) and 0<�<1 are preassigned before data
collection. The novelty of this two-stage procedure came out loud and
clear, particularly because no fixed-sample procedure could solve this
problem [Dantzig (1940)] in the first place.

But the Stein two-stage procedure had one important poor
characteristic of significant over-sampling, even asymptotically. In order
to reduce over-sampling, other types of two-stage, purely sequential
and multi-stage estimation strategies have been developed in the
literature. Extensive reviews of this literature can be found in Ghosh,
Mukhopadhyay and Sen (1997). Let us simply add that the three-stage,
purely sequential, and accelerated sequential estimation strategies allow
one to claim second-order approximations of the associated confidence
coefficient and the expected sample size, among other characteristics.
However, when one of these three-stage, purely sequential, and
accelerated sequential procedures is implemented, we then fail to
conclude the exact consistency property described by (18.1.1).

Mukhopadhyay and Duggan (1997) had developed a modification of
Stein’s two-stage fixed-width confidence interval estimation procedure
for µ in a N(µ, �2) population, when the experimenter has some additional
prior knowledge to justify an assumption that �>�L and �L(>0) is known.
The corresponding two-stage procedure still enjoyed the exact
consistency property (18.1.1) and the methodology also had attractive
second-order characteristics. The key ideas from this paper were then
extended and synthesized in a latter article by the same authors (1999).
Such general techniques eventually provided second-order properties
of the Mukhopadhyay-Duggan type two-stage sampling strategies in
the case of a series of other difficult and interesting problems in
reliability, multivariate analysis, regression analysis as well as selection
and ranking.

In the meantime, Mukhopadhyay (1999) has successfully expanded
both the lower and upper bounds of Eµ,�(N) up to the order O(d6), and
those for the coverage probability up to the order o(d4), for the two-
stage procedure of Mukhopadhyay and Duggan (1997). The
approximations for the coverage probability were then further sharpened
by providing the remainder term up to the order O(d6). These sharper
rates of convergence are referred to as the third-order approximations
and beyond via double sampling.

The readers will easily locate references to the available
approximations for Eµ,�(N) and the coverage probability respectively up
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to the orders o(1) and o(d2) in the context of the existing multi-stage
and sequential fixed-width confidence interval estimation methodologies
in the literature. These go by the name, second-order expansions. Refer
to Woodroofe (1977, 1982), Ghosh and Mukhopadhyay (1981), and Ghosh
et al. (1997), among other sources. Mukhopadhyay’s (1999) orders of
approximation are obviously much sharper and these are shown to hold
for an appropriately modified Stein type two-stage sampling design when
the unknown parameter � exceeds �L and �L(>0) is known!

The objective of the present paper is two-fold. First, we go back to
the general formulation of Mukhopadhyay and Duggan (1999) and
derive specific third- and higher-order expansions for the expected values
of functions of the stopping variable, N. These higher-order expansions
constitute a substantial leap from the available results of
Mukhopadhyay (1999). In that earlier paper, we took the first step in
this direction in a special case. The general methodology and the main
results (Theorems 18.2.1–18.2.3) are explained in Section 18.2. The
Section 18.3 builds the essential tools and then provides the proofs of
the main results. The second objective of this paper is to substantiate
that these general machineries can be immediately applied in a variety
of interesting problems in statistical inference. Some examples are
included in Section 18.4 from the areas of reliability, multivariate
estimation, regression analysis and multiple comparisons.

The breadth of the techniques proposed in the Sections 18.2 and 18.3
should be clear from the wide variety of applications given in Section
18.4. We hope that this synthesis will provide some impetus to
researchers to investigate higher than second-order expansions for other
multi-stage strategies and/or other challenging problems.

18.2 GENERAL FORMULATION AND MAIN RESULTS

Let us revisit the general two-stage procedure studied by Mukhopadhyay
and Duggan (1999). In many problems in estimation and multiple
decision theory, the expression of the so called “optimal” fixed sample
size looks like:

We assume that �>�L(>0) where �L is known.
The explicit roles of q, h*,� and � will become clear from the specific

applications given in the Section 18.4. In this section and in Section
18.3, the asymptotic analysis are carried out assuming that h*→0.
Throughout the text, [u]* and I(.) will respectively stand for the largest
integer <u and the indicator function of (.).

(18.2.2)
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Let m(≥m0) be the initial sample size where

(18.2.3)

m0(≥1) being a fixed integer. Based on the pilot sample of size m, suppose
that one considers a statistic U(m) such that P{U(m)>0}=1, E[U(m)]= �,
and

Let q* be a positive number such that

(18.2.5)

with some real number a1. Mukhopadhyay and Duggan (1999) then
defined a positive integer valued random variable as follows:

(18.2.6)

In various applications, as we will see in Section 18.4, one starts
with m random samples in the first stage and thereby obtains U(m)
which leads to the determination of N, an estimator of . If N=m, one
does not take any more observations at the second stage. But, if N>m,
then one samples the difference (N-m) at the second stage. In either
situation, one proceeds with the appropriate inference procedures given
the nature of a particular application which depends on all N
observations gathered from the population.

Under the assumptions (18.2.4) and (18.2.5), Mukhopadhyay and
Duggan (1999) proved the following results among others:

(18.2.7)

(18.2.8)

(18.2.9)

Mukhopadhyay and Duggan’s (1999) central piece of the results can be
summarized as follows:

(18.2.4)
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where  and recall the expression of  from
(18.2.8). Mukhopadhyay and Duggan (1999) also showed the following
second-order expansion of :

(18.2.13)

In the derivations of (18.2.11) and (18.2.12), the expansion from (18.2.13)
was a crucial ingredient.

The expressions which are analogous to both the lower and upper
bounds in (18.2.11) and (18.2.12), but expanded up to the order (n0

*–2) or
(n0

*–3), are respectively called the third-order and higher than third-order
approximations for E[g(N/n0

*)].
The aim of the present paper is to derive approximations in (18.2.11)–

(18.2.13) which are significantly sharper. In order to achieve this, we
need more accurate expansions of all the intermediate ingredients used
in the original work of Mukhopadhyay and Duggan (1999). Also, we

(18.2.12)

Suppose that g: R+→R+ and let us denote g(s)(x)=dsg(x)/dxs, s=1, 2. Let
g(x) be a twice differentiable function such that

(i) g(2)(x) is continuous at x=1;
(ii)  for all x∈R+, where pi’s and ui’s are fixed but

non-negative numbers;
(18.2.10)

Then, under the assumptions (18.2.4), (18.2.5) and (18.2.10), the
following expanded forms of the lower and upper bounds for E[g(N/n0

*)]
were obtained up to the second-order approximations as h*→0:

(18.2.11)
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where . The expressions for ai and bi(1), i=1, 2, 3,
respectively appear in (18.2.14) and Lemma 18.3.1.

The expression for � given by the Theorem 18.2.1 certainly agrees with
that given by (18.2.13) which was obtained earlier by Mukhopadhyay
and Duggan (1999). But, we emphasize how strong the new expansion
of  is when compared with that in (18.2.13). The new
remainder term is instead of !

Suppose again that g: R+→R+ and let us recall the notation,
g(s)(x)=dsg(x)/dxs, s=1, …, 6. For sharper approximations of E[g(N/n0

*)].,
now we have to demand more of the function g(.) compared with what
Mukhopadhyay and Duggan (1999) had required in (18.2.10).

In the Theorem 18.2.2, we require that g(x) satisfies the following
conditions:

(i) g(4)(x) is continuous at x=1;
(ii)  for all x ∈ R+, where pi’s and si’s are fixed

but non-negative numbers.
(18.2.15)

need a more accurate expansion of qm
* than what was assumed in (18.2.5).

These kinds of expansions are customarily known as the Cornish-Fisher
expansions. When qm

* stands for the appropriate percentage points of
the Student’s t or F distribution, we can indeed include more explicit
terms on the rhs of (18.2.5) involving m-2, m-3 and so on. One may refer
to Johnson and Kotz (1970, pp. 84 and 102).

In order to achieve higher than second-order approximations in
(18.2.11)– (18.2.13), we assume the following expansion of  instead
of what was assumed earlier in (18.2.5). Let us now suppose that

(18.2.14)

Now, the three main results are successively given below.

Theorem 18.2.1 For m and N respectively defined in (18.2.3) and
(18.2.6), with the assumptions (18.2.4) and (18.2.14), we have as h*→0:
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The major difference between the two Theorems 18.2.2 and 18.2.3
can be seen from the rates of convergence of the two remainder terms.
In the proof of the Theorem 18.2.2, we directly exploit the Theorem
18.2.1, the Lemmas 18.3.2, 18.3.3 and Lemma 18.3.7, part (i), plus the
condition (18.2.15). Theorem 18.2.3 is stronger than the Theorem 18.2.2
and hence we need stronger machineries to deal with the Theorem
18.2.3. In the proof of the Theorem 18.2.3, we exploit the Theorem 18.2.1,
the Lemmas 18.3.2–18.3.5, Lemma 18.3.7, part (ii), plus the condition
(18.2.16). One may, however, note that the Lemma 18.3.6 is essential in
the proof of the Lemma 18.3.7.

In order to apply the Theorems 18.2.2 and 18.2.3, one needs to consider
several situations separately involving the signs of p(s)(1), s=1, …, 4.

In the Theorem 18.2.3, we require that g(x) instead satisfies the
following conditions:

(i) g(6)(x) is continuous at x=1;
(ii)  for all x ∈ R+, where pi’s and vi’s are fixed

but non-negative numbers;
(18.2.16)

Theorem 18.2.2 For m and N respectively defined in (18.2.3) and
(18.2.6), with the assumptions (18.2.4) and (18.2.14), and with g(.)
satisfying (18.2.15), we have as h*→0:

Theorem 18.2.3 For m and N respectively defined in (18.2.3) and
(18.2.6), with the assumptions (18.2.4) and (18.2.14), and with g(.)
satisfying (18.2.16), we have as h*→0:
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Now, with some specific g(.) function, one will be able to write down the
lower and upper bounds of E[g(N/n0

*)]. up to the order o(n0
*–2)  or O(n0

*–3),
by combining the available bounds from the Theorem 18.2.1 and Lemmas
18.3.2–18.3.6. In order to get the correct upper and lower bounds,
naturally one has to be particularly mindful of the signs of the
derivatives g(s)(1), s=1, 2, 3, 4. The first example in Section 18.4 shows
some details in order to clarify the technicalities.

Proofs of the three theorems, particularly the details needed in the
verifications of the Theorems 18.2.2 and 18.2.3, are involved and
technical in nature. These are deferred to Section 18.3. In order to
appreciate the usefulness of these results, the reader may first decide
to skip to Section 18.4 and have a look at the wide range of applications
before considering all the details given in Section 18.3. Two remarks
follow.

Remark 18.2.1 In the higher-order bounds obtained from Theorems
18.2.1–18.2.3, one may consider the coefficients of terms looking like

,  or  where �1, �2 and �3 are some fixed appropriate
numbers. These coefficients are all known and fixed real numbers. In
the fixed-width confidence interval problem for a normal mean, the
Remark 3.2 in Mukhopadhyay (1999) gave explicit comparisons of his
third- and higher-order bounds for  with the corresponding
second-order bounds from Mukhopadhyay and Duggan (1997). The third-
and higher-order bounds provided better approximations.

Remark 18.2.2 In a three-stage procedure, one customarily estimates
a fraction of in the second stage with the help of pilot samples and
takes these observations in the first and second stage combined. The
remaining observations are taken in the third stage. A fairly broad
class of three-stage procedures are known to have second-order
properties. One may refer to Chapter 6 in Ghosh, Mukhopadhyay and
Sen (1997) for a review. From (18.2.3), observe that

, say, where 0<	<1 is unknown. It may
be tempting to view our first-stage sampling as equivalent to what is
customarily carried out in the second stage of a three-stage design. But,
the big difference is that we have not assumed any knowledge about
the number 	 ∈(0, 1). In a three-stage sampling strategy, the
experimenter works with an arbitrary, but fixed 	 ∈ (0, 1) which is chosen
along with the other design constants. How to make an appropriate
choice of 	 is not really a simple matter. In the present two-stage
methodology, however, we are on safe grounds because we know for
sure that .
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Along the lines of the arguments used in Mukhopadhyay and Duggan
(1999), we find it easier first to work with the random variable

(18.3.18)

instead of directly working with the stopping variable N from (2.5). The
results obtained for T are not difficult to transcribe into analogous results
for N in view of the following relationship:

(18.3.19)

Next, observe that in order to expand various moments of N, we must
at first expand appropriate higher moments of U(m). With any fixed
s>0, one has

(18.3.20)

Lemma 18.3.1 One can expand  for large m and obtain:

 

where

 

18.3 PROOFS OF THE MAIN RESULTS

Under the assumption of (18.2.14), we can show that the following
expansions hold:

(18.3.17)
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The proof of Lemma 18.3.1 is particularly long and tedious. One needs
to expand each individual term involved in (18.3.20) very carefully and
let the painstaking algebra take care of the rest. The details are left out
for brevity.

In the proofs of the bits and pieces which follow, we repeatedly combine
terms such as mrP(N=m) for different values of r, and replace all of
them with one generic expression, namely, O(m-k) or  where k(>0)
can be chosen sufficiently large in view of (18.2.7).

18.3.1 Proof of Theorem 18.2.1

Recall the random variable T from (18.3.18) and write the basic
inequality

(18.3.21)

The result (18.2.7) also holds for the variable T. Thus, combining
(18.2.14) and Lemma 18.3.1 with s=1, one has

(18.3.22)

Hence, we obtain

(18.3.23)
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Now, without any loss of generality, suppose that we make h*
approach zero in such a way that  remains an integer (>m). Now,
we can rewrite (18.3.23) as

The desired result finally follows from (18.3.24) in view of the
relationship between T and N given by (18.3.19). �

18.3.2 Auxiliary Lemmas

Before we can set out to prove Theorems 18.2.2 and 18.2.3, we need to
verify a series of crucial lemmas. We first take care of these.

Lemma 18.3.2 For the stopping variable N from (18.2.6), we have as
h*→0:

(18.3.24)

where the coefficients k2,i, i=1, 2, 3, come from (18.3.27).

PROOF We combine (18.2.14) and Lemma 18.3.1 with s=2 to write

(18.3.25)
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Next, utilizing (18.3.19), one can verify that

The desired result then follows by combining (18.3.22), (18.3.26) and
(18.3.28). �

Remark 18.3.1 From (18.3.26), it is clear that

 

But, we have . Hence,

 

which coincides with the variance of the limiting distribution of (T–n0
*)

n0
*1/2. The equation (18.3.28) already implies the uniform integra-bility

of (T–n0
*)2/n0

* and thus the actual limiting value of its expectation makes
good intuitive sense in view of the distributional convergence given in
(18.2.8). We have actually verified more than what the uniform
integrability property of (T–n0

*)2/n0
*  alone would allow one to conclude

in this situation.

Lemma 18.3.3 For the stopping variable N from (2.5), we have as h*→
0: 

Now, we recall the expression of  from (18.3.22) and combine
this with (18.3.25) to obtain

(18.3.26)

where we denote

(18.3.27)

(18.3.28)

where the coefficients k3,i, i=1, 2, 3, come from (18.3.32).
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with k2,1 defined earlier in (18.3.27). �

Lemma 18.3.4 For the stopping variable N from (18.2.6), we have as
h*→0: 

PROOF Using arguments as before, we can show that

Then, we combine (18.3.22), (18.3.25) and (18.3.29) to obtain

Next, we use (18.3.19) to get the following bounds:

Hence, after combining (18.3.24), (18.3.26) and (18.3.30), the result
follows with

(18.3.29)

(18.3.30)

(18.3.31)

(18.3.32)

where the coefficients b2(s), s=1, 2, 3, 4, come from Lemma 18.3.1.

PROOF Using arguments as before, we can show that

(18.3.33)
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Then, we combine (18.3.22), (18.3.25), (18.3.29) and (18.3.33) to obtain

Now, one may proceed along the lines of proof of the Lemma 2.5 in
Mukhopadhyay (1999) and complete this proof. �

Remark 18.3.2 From (18.3.34), it is clear that

 

But, we have . Hence,

 

which coincides with the fourth central moment of the limiting
distribution of (T–n0

*)/n0
*1/2. The equation (18.3.34) already implies the

uniform integrability of (T–n0
*)4/n0

*2 and thus the actual limiting value
of its expectation makes good intuitive sense in view of the distributional
convergence given in (18.2.8). We have, however, verified more than
what the uniform integrability property of (T–n0

*)4/n0
*2 alone would allow

one to conclude in this situation.

Lemma 18.3.5 For the stopping variable N from (18.2.6), we have as
h*→0:

 

PROOF Using arguments as before, we can show that

(18.3.35)

Then, we combine (18.3.22), (18.3.25), (18.3.29), (18.3.33) and (18.3.35)
to obtain

(18.3.36)

Now, one may again use (18.3.19) to write down the appropriate lower
and upper bounds for  along the lines of what was
done at the end of the Lemmas 18.3.2–18.3.3, and thus complete this
proof. �

(18.3.34)
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Lemma 18.3.6 For the stopping variable N from (18.2.6), we have
the uniform integrability of  for 0<h*<h0 for sufficiently
small h0.

PROOF In view of (18.3.19), it will suffice to verify the desired result
when N is replaced by T. First let us examine the behavior of .
It will obviously converge to zero as h*→0, but the question is at what
rate? Now, let us write

(18.3.37)

Since , for sufficiently small 0<h*(<h0), we can make
 for some ε(>0). Now, from (18.3.37) we can claim

that

Let us denote . Hence, we have

(18.3.38)

Also, we note that

(18.3.40)

(18.3.39)
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Next, in the light of (18.3.39) and (18.3.40) and the Theorem 1.5 of
Woodroofe (1982), it will now suffice to show that

(18.3.41)

We first consider the set {T>m�t<-x}. When , we
have

(18.3.42)

When , for large enough m, we can write

Next, we consider the set . When , we have

(18.3.44)

Then, we simply need to show that for , we can conclude:

(18.3.45)

The claim made in (18.3.45) can be justified along the lines of the
arguments used in (18.3.44). Some details are left out for brevity. The
proof is now complete. �

Lemma 18.3.7 For the stopping variable N defined in (18.2.6), we have
as h*→0:

(i)  if g(.)
satisfies (2.14);

(ii)  if g(.)
satisfies (2.15);

where W is a random variable between  and 1.

(18.3.43)
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Next, on the set {N>m}, we have . Also,  is
uniformly integrable, and hence utilizing (18.2.15) again, we obtain 

PROOF We sketch a proof of part (i) only, since the proof of part (ii) is
very similar. From (18.2.15), observe that

(18.3.46)

where pi’s and si’s are non-negative numbers. On the set {N=m}, we
have . Hence, using (18.2.7) and (18.3.46), we get

(18.3.47)

so that  is then uniformly integrable.
Thus, in view of Lemma 18.3.4 and the fact that g(4)(x) is continuous at
x=1, we obtain

Now, from the Remark 18.3.1 we recall that 
, and hence (18.3.47) and (18.3.48) together would complete

the proof of part (i).
To prove part (ii), simply recall the condition (18.2.16) to bound

|g(6)(x)| and the fact that g(6)(x) is assumed continuous at x=1. One will
also need the Lemma 18.3.6 and the distributional convergence from
(18.2.8). Further details are left out. �

(18.3.48)
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Then, by taking the expectations throughout (18.3.49), we obtain

18.3.3 Proof of Theorem 18.2.2

Using the Taylor expansion, with some suitable random variable W
between 1 and Nn0

*–1, we obtain

(18.3.49)

Now, we can bound  using the terms from the Theorem 18.2.1
up to the order . Next, we can bound  using the
terms from the Lemma 18.3.2 up to the order  also. Then, we
bound  using the terms from the Lemma 18.3.3 up to
the order On0

*–3. At the end,  can be bounded
up to the order o(1), using the terms from the Lemma 18.3.7, part (i).
The desired result will then follow from (18.3.50). Some details are left
out. �

18.3.4 Proof of Theorem 18.2.3

Using the Taylor expansion, with some suitable random variable W
between 1 and Nn0

*–1, we obtain

(18.3.50)

(18.3.51)
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Then, by taking the expectations throughout (18.3.52), we obtain the
desired result in view of the Lemma 18.3.7, part (ii). In this expansion,
we go up to the remainder term of order On0

*–3 which requires us to
invoke the Lemmas 18.3.2–18.3.5 and Theorem 18.2.1. The details are
left out. �

Remark 18.3.3 The proofs of the Theorems 18.2.2 and 18.2.3 may seem
obvious to some readers. But, one must also realize that this appearance
is deceiving. The major hard work lies in building the essential
machineries before one is ready to prove Theorems 18.2.2 and 18.2.3.

18.4 APPLICATIONS OF THE MAIN RESULTS

Let us briefly go back to the construction of a fixed-width confidence
interval for the mean of a normal population when the variance �2 is
also unknown. In the case when one has the available information that
�>�L where �L is known and positive, we had mentioned the paper of
Mukhopadhyay and Duggan (1997) which appropriately modified the
two-stage sampling design of Stein (1945, 1949) and obtained the
associated second-order properties. Mukhopadhyay (1999) derived the
third- and higher-order expansions of both the lower and upper bounds
for the corresponding  and the confidence coefficient for the
normal problem alone. It should be apparent that those expansions given
in Mukhopadhyay (1999) would follow from the present Theorems
18.2.1–18.2.3. But, instead of supplying any more details on the normal
problem, let us go forward and examine a few other interesting problems
where the general results obtained here can be directly applied.

Then, by taking the expectations throughout (18.3.51), we obtain

(18.3.52)
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18.4.1 Negative Exponential Location Estimation

Let X1, X2, …be i.i.d. random variables with the probability density
function:

(18.4.53)

where-∞<µ<∞, 0<σ<∞ are two unknown parameters. This distribution
has been used widely in reliability as well as survival analyses where
the minimum guarantee time µ is of course assumed positive. One may
refer to Basu (1971, 1991) and Balakrishnan and Basu (1995), among
other sources.

We will, however, continue to assume that µ ∈R in order to avoid
additional complexities. Sequential and multistage estimation problems
for µ and σ were reviewed in Basu (1991) and Mukhopadhyay (1988,
1995).

Having recorded X1, …, Xn we estimate µ, σ respectively by Tn= min{X1,
…, Xn} and , with n≥2. Now suppose that
given two preassigned numbers d(>0) and 0<α<1, we wish to construct a
confidence interval I for µ such that the length of I is d and

. Here, the scale parameter σ is treated as a nuisance
parameter. A two-stage procedure was originally proposed by Ghurye
(1958), but it does not have the (first-order) efficiency property in the
sense of Chow and Robbins (1965) and Ghosh and Mukhopadhyay (1981).

Let us consider In=[Tn-d, Tn] as the confidence interval for µ. Now,
 provided that n is the smallest integer ≥aσ/d=C,

say, where a=log(1/α).
Here, C plays the role of n0

* from (2.1) with q=a, θ=σ, �=1 and h*=d.
But, let us suppose that σ>σL where σL(>0) is available from prior
knowledge and the nature of the practical applications on hand. With
θL=σL and m0≥2, one then defines m as in (18.2.3) and N as in (18.2.6)
with U(m)=Sm, and implements the two-stage sampling design, with
being the upper 100α% point of the F distribution with degrees of
freedom 2 and 2(m-1). This is the modified version of Ghurye’s (1958)
two-stage sampling design when one has the prior knowledge that σ>σL

where σL(>0) is known.
Based on all the observations X1, …, XN, we then propose the fixed-

width confidence interval IN=[TN-d, TN] for µ. The asymptotic analysis
is carried out when d converges to zero.

Since I(N=n) and Tn are independent for all n≥m, we have

(18.4.54)

where g(x)=1-exp(-ax), x>0.
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The condition (18.2.4) is satisfied with pm=2(m-1), that is c1=2, c2=-2.
It is also easy to see that  and hence

(18.4.55)

Now, we need to expand qm
* up to the order O(m-4) as in (18.2.14) and we

proceed as follows. First, we write

(18.4.56)

so that from (18.4.55) and (18.4.56) one has

From (18.4.57) we readily see that the expansion of qm
* with q=a satisfies

(18.2.14) where

(18.4.58)

From Ghurye (1958) and Mukhopadhyay (1988), it follows that for
all fixed µ, σ, d and α,

(18.4.59)

Next, with  and c1=2, c2=-2, we get the expressions of bi(1),
i=1, 2, 3. In this special situation, we obtain

(18.4.60)

Now, one evaluates the expression of � given in Theorem 18.2.1 and
obtains . Thus, using Theorem 18.2.1, we immediately claim
that Eµ,σ(N-C) lies between

(18.4.57)

(18.4.61)
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where C=aσ/d, the optimal fixed sample size with a=log(1/α).
These bounds for Eµ,s(N-C) are certainly much sharper than the ones

obtained earlier in Mukhopadhyay and Duggan (1999) which were given
up to the order o(d1/2).

Next, we consider the higher order expansions for the coverage
probability. From (18.4.54), recall that 
where g(x)=1-exp(-ax), x>0. Observe that g(s)(x)=(-1)s+1ase-ax and hence
we know the signs for all these derivatives at x=1 for s=1, …, 6. Also,
one obviously can conclude that |g(4)(x)|≤a4 and |g(6)(x)|≤a6 for all x>0.
In other words, one can verify the conditions in (18.2.15) and (18.2.16)
as needed. Thus, we can right away use the Theorems 18.2.2 and 18.2.3
to write down the upper and lower bounds for  up
to the order o(d2) or O(d3), as desired. Mukhopadhyay and Duggan (1999)
obtained bounds for  up to the order o(d). The
details are left out for brevity.

Remark 18.4.1 In the next few applications, we do not show much of
the details for the sake of brevity. In each case, we first explain the
nature of the problem and then show generally how the underlying
structure can be identified with the one we have developed in the
Sections 18.2 and 18.3.

18.4.2 Multivariate Normal Mean Vector Estimation

Consider X1, X2, …, a sequence of independent Np(µ, σ2H) random
variables where , σ ∈R+ are two unknown parameters, but H is a
p×p positive definite (p.d.). matrix. Here, σ2 is the nuisance parameter.
First, we discuss the fixed-size confidence region problem and then the
minimum risk point estimation problem for the mean vector µ. In
practice, let us suppose, however, that σ>σL where σL(>0) is known.

Fixed-size confidence region

Having recorded X1, …, Xn, we estimate µ and σ2 respectively by 
 and  with n≥2.

Given d(>0) and 0<α<1 we consider the fixed-size ellipsoidal confidence
region

(18.4.62)

for µ, and we require that  which holds if n is the
smallest integer ≥aσ2/d2=C, say. Here, F(a)=1-α with 

.
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Here again, C plays the role of n0
* with q=a, h*=d2, θ=σ2 and τ=1.

Mukhopadhyay and Al-Mousawi (1986) proposed a two-stage procedure
which had the exact consistency property but it was not first-order
efficient. Mukhopadhyay and Al-Mousawi (1986) also had developed
other multistage procedures. Nagao (1996) came up with the second-
order properties associated with his sequential procedure when the
dispersion matrix has some special structure, including the one
considered in Mukhopadhyay and Al-Mousawi (1986).

With  and m0≥2, we then define m as in (18.2.3) and N as in
(18.2.6) with , and implement the two-stage sampling design
with  where bm is the upper 100a% point of the F distribution
with degrees of freedom p and p(m-1). The condition (18.2.4) is satisfied
with pm=pm-p, that is with c1=p=-c2. Utilizing the results from Scheffe
and Tukey (1944), we can express bm, and hence , satisfying
(18.2.14).

Since I(N=n) and  are independent for all n≥m, we have

(18.4.63)

with g(x)=F(ax), x>0 while the confidence region RN corresponds to
(18.4.62) based on X1, …, XN.

From Theorem 2 in Mukhopadhyay and Al-Mousawi (1986) it follows
that

(18.4.64)

for all fixed µ, σ, d and α. Using Theorem 18.2.1, we can immediately
bound Eµ,σ[N-C] up to the order O(d6) as d→0.

Then, one may look at the function g(x)=F(ax), x>0, and obtain the
successive derivatives g(s)(x), s=1, …, 6. Their behavior will depend on
the dimension p also. But, once (18.2.15) and (18.2.16) are verified, the
Theorems 18.2.2 and 18.2.3 will provide both the lower and upper bounds
for  up to the order o(d4) or O(d6), as the case may
be. Further details are omitted.

Minimum risk point estimation

Let X’s be i.i.d. Np(µ, σ2H) as before. Suppose that the loss function in
estimating µ by  is taken to be

(18.4.65)

where A, c, r and t are known positive numbers. The type of loss function
given by (18.4.65) was adopted by Wang (1980). The situation when r=2
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and t=1 corresponds to the customary scenario of squared error loss
plus linear cost of sampling.

Now, the risk associated with (18.4.65) is given by 
 with , whereas this risk is

minimized (approximately) if n=n*={K*c-1}2/(2t+r) σ2r/(2t+r) with  .
The corresponding minimum risk is given by 

, and our goal is to achieve this
minimum risk approximately.

Note that n* plays the role of n0
* where q=K*2/(2t+r), h*=c2/(2t+r), θ=σ2 and

. With  and m0≥2, we then define m as in (18.2.3)
and N as in (18.2.6) where , the same as in Section 18.4.2,
and . So, the condition (18.2.14) applies in this case with
a1=a2=a3=0. The condition (18.2.4) is satisfied with c1=-c2=p.

After implementing the two-stage procedure (18.2.6), we propose to
estimate µ by . Using Theorem 18.2.1, we can immediately bound
Eµ,s(N-n*) up to the order O(n*-3) as c→0.

Since I(N=n) and  are independent for all n≥m, we have
, and hence the

Then, with the function g(x)=x-r/2, we can bound Eµ,σ((N/n*)-r/2) and then
with another function h(x)=xt, we can bound Eµ,σ((N/n*)t) up to the desired
order by utilizing the Theorems 18.2.2 and 18.2.3. Further details are
omitted.

18.4.3 Linear Regression Parameters Estimation

Consider the linear regression model with normally distributed errors.
We write

(18.4.67)

where εi’s are i.i.d. N(0, σ2), ß is an unknown p×1 vector of parameters,
and xi’s are known vectors. Let us denote  and 

 and assume that the model is of full rank, that is the rank of
the p×p matrix  is p(<n). Also, we assume that the nuisance
parameter σ(>0) is unknown.

(18.4.66)
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Having recorded (xi, Yi), i=1, …, n, we estimate ß by the least squares
estimator  and use the loss function

(18.4.68)

with A(>0) known. Our goal is to make the risk <W where W(>0) is
preassigned.

Hence, the sample size n has to be the smallest integer ≥Apσ2/W≥n*,
say, which corresponds to n0

* with q=Ap, h*=W, τ=1 and θ=σ2. Let us
assume that σ>σL where σL(>0) is known. Let 

, the mean square error, where m
is given by (18.2.3) with θL=σL

2 and m0>p+2. We implement the two-
stage procedure (18.2.6) with .

With , let us define 
. One can verify that for all fixed ß, σ2, A and W, the associated risk

(18.4.69)

The condition (18.2.4) holds with pm=m-p, that is with c1=1, c2=-p. This
structure can again be identified with that developed in Sections 18.2
and 18.3. Hence, one will be able to obtain higher order bounds for both
Eß,σ(N-n*) and Eß,σ(LN/W). Further details are omitted.

In this setup, minimum risk point estimation problem for ß or the
fixed-size confidence region problem for ß could also be easily
introduced under similar sort of two-stage sampling schemes when
σ>σL with known σL(> 0). In order to review such procedures when
σ(>0) is completely unknown, one should refer to Ghosh,
Mukhopadhyay and Sen (1997), Mukhopadhyay and Abid (1986), and
Mukhopadhyay (1991). Finster’s (1983, 1985) papers are also relevant.
We omit the details for brevity.

18.4.4 Multiple Decision Theory

The tools developed in Sections 18.2 and 18.3 will now be applied for
two interesting selection and ranking problems. The emphasis still lies
in achieving higher-order characteristics for the two-stage methodologies
developed for such problems in Mukhopadhyay and Duggan (1999).

Selecting the best normal population

Consider independent populations 
1, …, 
k with k≥2, and let Xi1, …, Xin,
…be i.i.d. N(µi, σ2) random variables from πi, with µi ∈R and σ ∈R+, i=1,
…, k. Let us write  
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and  for n≥2, i-1, …, k. We assume that all the parameters
are unknown whereas σ2 is considered the nuisance parameter.

Let us denote µ’=(µ1, …, µk) and write µ[1]≤…≤µ[k-1]=µ[k] for the ordered
µ values. Here and elsewhere, “CS” would stand for “Correct Selection”.
We adopt Bechhofer’s (1954) indifference zone formulation. So, let there
be two preassigned numbers δ*(>0) and P* ∈ (k-1, 1), and our goal is to
select the population associated with µ[k], referred to as the best population,
so that Pµ,σ(CS)≥P* whenever  , the
preference zone. The parameter subspace Ωc(δ*) is referred to as the
indifference zone.

Define C=a2σ2/δ*2 where “a” satisfies the integral equation:

 

 being the standard normal density and , x ∈ R.
If σ2 were known, then C could be interpreted as the optimal fixed

sample size required from each π in conjunction with the selection of
the population giving rise to the largest sample mean. When σ2(>0) is
completely unknown, a two-stage procedure was developed by Bechhofer,
Dunnett and Sobel (1954). For a review of other multistage sampling
techniques for this problem, refer to Chapter 3 in Mukhopadhyay and
Solanky (1994).

Let us, however, assume that σ>σL where σL(>0) is known in advance.
Now, C plays the role of n0

* with q=a2, θ=σ2, τ=1 and h*=δ*2. One then
defines m as in (18.2.3), with m0≥2, ,  and considers N as in
(18.2.6) with U(m)=Um and n0

*=q. We then implement the two-stage
methodology and select the population associated with 
based on the observations {Xi1, …, XiN}, i=1, …, k.

Since I(N=n) and  are independent for all n≥m, we have
[from Theorem 3.2.1 in Mukhopadhyay and Solanky (1994)]:

(18.4.70)

where  and , x>0. The
condition (18.2.4) is satisfied with pm=k(m-1), that is c1=-c2=k. Obviously
(18.2.14) holds with a1=a2=a3=0.

By taking the derivatives of g(x) inside the integral, one can
successively determine g(s)(x), s=1, …, 6 and thereby one can also show
that the conditions (18.2.15) and (18.2.16) would be satisfied.
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This structure can again be identified with that developed in Sections
18.2 and 18.3. Hence, one will be able to obtain higher order bounds for
both Eσ(N-C) and . Further details are omitted.

Selecting the best negative exponential population

Consider independent populations π1, …, πk with k≥2, and let Xi1, …, Xin,
…be i.i.d. random variables obtained from πi having the negative
exponential probability density function f(x; µi, σ), defined via (4.1),
with µi R, σ ∈ R+, i=1, …, k. Let us write Tin=min{Xi1, …, Xin}, 

, and  for n≥2, i=1, …, k. We
assume that all the parameters are unknown whereas σ is considered
the nuisance parameter. Let us denote as before µ, µ[.], and pursue the
indifference zone formulation again, given two preassigned numbers
δ*(>0) and P* ∈(k-1, 1). We define the preference zone Ω(δ*) as before
and the problem is to select the population associated with µ[k], referred
to as the best population, in such a way that Pµ,σ(CS)≥P* whenever
µ,∈Ω(δ*). Let C=aσ/δ* where “a” is obtained by solving the equation,

.
If σ were known, then C could be interpreted as the optimal fixed

sample size required from each π in conjunction with the selection of the
population associated with the largest sample minimum order statistics
among the corresponding TiC’s. We tacitly assume that C is an integer.
When σ2(>0) is completely unknown, Desu, Narula and Villarreal (1977)
developed a two-stage procedure for this selection problem. For a review
of other multistage sampling techniques in this problem, refer to Chapter
4 in Mukhopadhyay and Solanky (1994), and Panchapakesan (1995).

Let us, however, assume that σ>σL where σL(>0) is known in advance.
Now, C plays the role of n0

* where q=a, θ=σ, τ=1 and h*=δ*. One then
defines m as in (18.2.3), with m0≥2, θL=σL. Then, consider N as in (18.2.6)
with U(m)=Um and n0

*=q. We then implement the two-stage methodology
and select the population associated with max1<i<k TiN based on the
observations {Xi1, …, XiN}, i=1, …, k.

Since I(N=n) and (T1n, …, Tkn) are independent for all n≥m, we have
[from Theorem 4.2.1 in Mukhopadhyay and Solanky (1994)]:

where . The expression
in (18.4.71) can be further simplified as follows:

(18.4.71)
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(18.4.72)

where  and gu(x)=exp(-uax), x>0, u= 0, 1,
…, k-1. The condition (18.2.4) is satisfied with pm=2k(m-1), that is with
c1=-c2=2k. Obviously (18.2.14) holds with c1=c2=c3=0.

Using (18.4.72), one can successively determine g(s)(x), s=1, …, 6 and
thereby one can also show that the conditions (18.2.15) and (18.2.16)
would be satisfied.

This structure can again be identified with that developed in Sections
18.2 and 18.3. Hence, one will be able to obtain higher order bounds for
both Eσ(N-C) and . Further details are omitted.

18.5 CONCLUDING THOUGHTS

After going through the techniques used in the proofs of the three
Theorems 18.2.1–18.2.3, it becomes obvious in principle that both the
lower and upper bounds for  could be expanded up to the
order O(n0

*–k) for any k(>0). One will certainly need more terms in
(18.2.14) and conditions like those in (18.2.16) for appropriately chosen
higher derivatives of g(.). Of course, any such sharpening of the rate of
convergence will need more efforts, but the direction of the approach
should be quite apparent. For brevity alone, we have gone only up to
the order O(n0

*–k).
Another point is to be noted here. In several applications, including

the normal problem (Section 1) of Stein, as well as the problems such as
those mentioned in the Sections 18.4.1, 18.4.2, 18.4.3, and 18.4.4, the
relevant g(.) function is frequently monotone in nature. Then, depending
on the problem on hand, we may be satisfied with either the lower or
upper bound for . In view of (18.3.19), in the monotone case,
we may then simply use  as the
appropriate lower or upper bound for . Then, one will simply
write down the appropriate expansions up to the order

 for or as the case may be.
Here, one will directly exploit (18.3.22), (18.3.26), (18.3.30), (18.3.34),
(18.3.36) and Lemmas 18.3.6 and 18.3.7. By this time, such calculations
may be considered fairly routine. So, we leave out the details.

Acknowledgement The referee’s queries prompted the Remarks 18.2.1
and 18.2.2 of which Remark 18.2.2 is more substantial. Thanks to the
referee.
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CHAPTER 19

BOUNDED RISK POINT
ESTIMATION OF A LINEAR

FUNCTION OF K MULTINORMAL
MEAN VECTORS WHEN

COVARIANCE MATRICES ARE
UNKNOWN

MAKOTO AOSHIMA
University of Tsukuba, Ibaraki, Japan

YOSHIKAZU TAKADA
Kumamoto University, Kumamoto, Japan

Abstract: The problem of constructing an estimator with a risk bounded
by a preassigned number is considered for a linear function of mean
vectors of k multi-normal distributions when covariance matrices are
fully unknown. We provide a new two-stage procedure which does
improve that in Aoshima (1998a). The procedure is shown to be
asymptotically efficient.

Keywords and phrases: Asymptotic efficiency, bounded risk, exact
consistency, two-stage procedure

19.1 INTRODUCTION

Suppose that there exist k independent p-variate normal populations
�i: Np(µi, �����i), i=1, …, k, where all the parameters are unknown. Let µ=

Copyright © 2002 Taylor & Francis



M.AOSHIMA and Y.TAKADA280

, where bi’s are known and nonzero scalars. Let ,
be random sample vectors of size ni from �i, i=1, …, k, and let

 

where n=(n1, …, nk) and . For fixed n
suppose that the loss incurred in estimating µ by Tn is given by

(19.1.1)

The problem is to construct an estimator Tn of µ such that the risk as
sociated with (19.1.1) is bounded by some preassigned number W (>0), i.e

(19.1.2)

for all (µi, �����i), i=1, …, k.
If �����i, i=1, …, k, were known, the optimal-fixed sample size would be

given by

(19.1.3)

as in Aoshima (1998a). That gives , the minimum total
sample size required to satisfy the requirement (19.1.2). In the present
problem with �����i’s unknown, there does not exist any fixed-sample size
procedure to achieve the requirement (19.1.2) [see Takada (1988)].
Aoshima (1998a) gave a solution by using a two-stage procedure as
follows: First take the initial samples of size m (>max(3, p)) from πi’s,
and compute the sample covariance matrices Sim, i=1, …, k, as

(19.1.4)

where v=m-1. Let lim denote the maximum latent root of Sim for each
i=1, …, k. Let , where , i=1, …, k, are i.i.d.
chi-square random variables with � d.f. The sample size of the two-
stage procedure is defined by

(19.1.5)
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Let N=(N1, …, Nk). Secondly, take the additional samples of size Ni-m
from πi, i=1, …, k, and construct  for estimating µ.
Then, the estimator TN satisfies the requirement (19.1.2). Aoshima
(1998a) also showed that the two-stage procedure based on (19.1.5) is
more efficient than the Ghosh, Mukhopadhyay and Sen (1997)-type two-
stage procedure asymptotically.

In this paper, we provide a new two-stage procedure satisfying the
requirement (19.1.2) exactly for general �����i, i=1, …, k, for which the
sample size is smaller than that in (19.1.5) w.p.1 for every πi. The
stopping rule proposed here does mimic the expression (19.1.3). The
procedure is shown not only to improve Aoshima’s (1998a) two-stage
procedure in terms of the sample size but also to be asymptotically
efficient, along with some other asymptotic properties when W→0.

19.2 TWO-STAGE PROCEDURE

We shall consider the estimation of ni
* (i=1, …, k) which is obtained by

replacing �����i in (19.1.3) with Sim and denote

(19.2.6)

Let R=(R1, …, Rk), where z=z(m, k, W) is a positive constant such that
TR satisfies the requirement (19.1.2). When we adopt R instead of N
based on (19.1.5) in the two-stage procedure, the determination of the
constant z becomes very crucial.

We propose a two-stage procedure based on (19.2.6) as follows: First,
the intial samples of size m (>3) are taken from πi’s and Sim, i=1, …, k,
are computed as (19.1.4). Let z=W(ν-2)/ν. The sample size of the two-
stage procedure is defined by (19.2.6) for each πi. The additional samples
of size Ri-m from πi, i=1, …, k, are taken and  is
constructed.

The following theorem verifies that the estimator TR is a solution to
the problem.

Theorem 19.2.1 The two-stage procedure based on (19.2.6) with z=W(ν
-2)/ν satisfies the requirement (19.1.2) for all (µi, Si), i=1, …, k.

PROOF By noting that I(R=n) is independent of Tn for every fixed n,
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we have that

(19.2.7)

where Vim=tr(Sim)/tr(�����i), i=1, …, k. Let

 

Then, we write

(19.2.8)

But, note that

(19.2.9)

since , and  from Kubokawa (1990).
Combining (19.2.9) with (19.2.8), we conclude the result since 
w.p.1.    �

We observe that Ri�Ni(i=1, …, k) w.p.1 since tr(Sim)�plim w.p.1 and �/
(�-2)�B, where the equality holds only when (p, k)=(1, 1). Also, note
that the constant z does not depend on k contrary to B. From the Table
in Aoshima (1998a), we observe that the larger (p, k) are, the more
efficient the two-stage procedure based on (19.2.6) with z=W(�-2)/� is
than based on (19.1.5). Hence, we conclude that the estimator TR

improves upon TN.

19.3 ASYMPTOTIC PROPERTIES

Under the condition that m=m(W):

(19.3.10)
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we study asymptotic properties of the two-stage procedure proposed in
Section 19.2. First we have the following first-order asymptotics,
especially in which part (b) says that the proposed procedure is
asymptotically efficient.

Theorem 19.3.1 For the two-stage procedure based on (19.2.6) with z=
W(�-2)/�, we have as W→0:

(a)  (i=1, …, k) in probability;

(b) ;

(c) E(LR/W)→1 for all (µi, �����i), i=1, …, k,

where 

PROOF Let us write the basic inequality from (19.2.6) that

(19.3.11)

for each πi. From (19.3.11) we have

 

for i=1, …, k. Then part (a) follows since tr(Sim)→tr(�����i) w.p.1 as W→0
and  as W→0 under (19.3.10).

From (19.3.11) we also have

(19.3.12)

which implies that

(19.3.13)
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Taking expectations throughout (19.3.13), we obtain part (b) when W→0.
We write

 

From part (a) we have LR/W→1 in probability as W→0. So, in order to
have part (c), it is enough to show that {LR/W} is uniformly integrable
for small W>0. From (19.2.7) and with z=W(v-2)/v, we note that

 

Then the following Lemma 19.3.1 shows that {LR/W} is uniformly
integrable. �

Lemma 19.3.1 Let Vim=tr(Sim)/tr(ΣΣΣΣΣi), i=1, …, k. Then, if m≥ m0>5,
 is uniformly integrable for each i=1, …, k.

PROOF Let λi(j), j=1, …, p, denote the latent roots of ΣΣΣΣΣi for i=1, …, k. We
can write from Aoshima (1998a) that

(19.3.14)

where , j=1, …, p, and , j=1, …, p denote i.i.d.
chi-square random variables with v=m-1 d.f. Note that 
and  for j=1, …, p. Then we have

(19.3.15)
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where the inequality (19.3.15) holds in a way similar to Kubokawa
(1990), by using the convexity of f(x)=x-2, x>0. Hence, we obtain

 

if m�m0>5. The proof is complete. �

For the regret of the two-stage procedure based on (19.2.6), we have the
following theorem.

Theorem 19.3.2 Under the condition (19.3.10), the asymptotic regret of
(19.2.6) with z=W(ν-2)/ν is infinity, that is,

 

where .

PROOF From the left hand side of the inequality (19.3.12), we have

(19.3.16)

From (19.3.14), it is easy to show that

 

that is

(19.3.17)
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Combining (19.3.17) with (19.3.16) and noting that z-1=W-1(1+2/�+
O(�-2)),

The inequality (19.3.18) holds because of . The proof
is complete.            �

Remark A suitable modification of the condition (19.3.10) would enable
us to study the second-order asymptotic properties of (19.2.6) along with
its bounded regret. Aoshima (1998b) discussed it for the case when k=1
by using the techniques given in Mukhopadhyay (1999) and Aoshima
and Mukhopadhyay (1999).
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CHAPTER 20

THE ELUSIVE AND ILLUSORY
MULTIVARIATE NORMALITY

GOVIND S.MUDHOLKAR
University of Rochester, Rochester, NY

DEO KUMAR SRIVASTAVA
St. Jude Children’s Research Hospital, Memphis, TN

Abstract: The assumption of multivariate normality is intrinsic in most
statistical methods used for analyzing multidimensional data. The
normality assumption is, in general, dubious even in the univariate
case. In multivariate setting the assumption is harder to justify since it
implies joint normality in addition to marginal normality. Unlike the
assumption of univariate normality, tests for which are a part of most
of the software packages, the multivariate normality is rarely verified
in practice because of paucity of simple and readily available procedures.
In this paper we first survey the literature on testing multivariate
normality and then variously examine the appropriateness of normality
assumptions for some well known data sets, such as Rao’s Cork data,
Fisher’s Iris data, used for illustrative purposes in such leading
multivariate analysis monographs as Seber (1984), Anderson (1984)
and Mardia (1994). It is seen that, under such scrutiny, the support for
multivariate normality for these data is at best equivocal. Hence, in
general, such an assumption may be inappropriate and may essentially
be illusory. The results emphasize the need for robust multivariate
methods.

Keywords and phrases: Multivariate analysis, normal theory, robust
alternatives
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20.1 INTRODUCTION

Since the earliest days of multivariate analysis, beginning with the
introduction of Mahalanobis’ D2 or equivalently Hotelling’s T2 tests,
Fisher’s discriminant analysis, Rao’s classification methods included
in the monographs such as Kendall (1961), Rao (1962) and Anderson
(1984), multivariate normality has been the canonical underlying
assumption. Although there exists considerable literature on
nonnormal, principally nonparametric, methods for analyzing
multivariate data normal theory methods remain the mainstay of the
practice. However, as reflected in Geary’s (1947) provocative comment,
“Normality is a myth; there never was, and never will be, a normal
distribution”, the assumption of normality has always been considered
suspect in univariate setting. The assumption of multivariate
normality is more dubious since it requires joint normality in addition
to marginal normality of the components. It has also been established
by several recent studies, e.g. see Chase and Bulgren (1971), Mardia
(1975), that if the assumption of multivariate normality is
inappropriate then Hotelling’s T2 is likely to be either too conservative
or invalid. The same may be expected to be true of other multivariate
procedures. The purpose of this paper is to examine multivariate
normality of some well known data sets which are commonly used to
illustrate normal theory methods.

There exist many exploratory and confirmatory methods for
assessing normality of univariate data. These include graphical
methods such as q-q plots, p-p plots and a variety of formal tests of the
simple and composite hypothesis of normality; see D’Agostino and
Stephens (1986). Many of the formal tests of normality including the
Shapiro-Wilk test are now part of commonly used statistical software
packages such as SAS, S-plus, etc. Many analogous procedures for
assessing multivariate normality which are part of the literature
require some familiarity with multivariate theory and few of them are
incorporated into standard software packages. For an account of
implementing some of the procedures using FORTRAN programs and
SAS procedures see Looney (1995). Romeu and Ozturk (1993) have
compared ten tests for assessing the assumption of multivariate
normality and have provided a ranking of the procedures under
various types of alternatives. They also highlight the fact that the
convergence to the asymptotics of several tests of multivariate
normality is very slow and for drawing valid conclusions often requires
sample sizes to be as large as 200.

In Section 20.2, we first summarize and present a relatively up to
date account of the proposals in the literature for testing the
assumption of multivariate normality. A list of some of the famous data
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sets along with the results of applying some of the tests of Section 20.2
are presented in Section 20.3. Finally in Section 20.4 we present the
conclusions and miscellaneous remarks.

20.2 TESTS OF MULTIVARIATE NORMALITY

The tests of multivariate normality can be broadly classified into four
classes (i) tests based on Mahalanobis distances (ii) tests based on
multivariate measures of skewness and kurtosis (iii) tests based on
generalizing the univariate test procedures for multivariate setting,
and (iv) tests based on transformations and goodness-of-fit.

Tests based on Mahalanobis distance

The basic role of Mahalanobis’ D2 in testing multivariate normality is
to make it a univariate problem. If X1, X2, …, Xn is a random sample
from a p-variate population then

 

where X and S represent the sample mean vector and sample covariance
matrix, respectively, are the Mahalanobis’ distances. The distances 
are well known to be asymptotically independent  variates, e.g. see
Mardia (1977). Healy (1968) proposes plotting, a version of q-q plot,

 against their expected order statistics to assess multivariate
normality of the data X. Further, Small (1978) uses the fact that

 is a beta variate, B[a, b], where a=d/2 and b=(n-d-1)/
2, and proposes plotting the order statistics u(i) against , where  is
the solution of

 

Alternatively, Mudholkar, McDermott and Srivastava (1992) use the
approximate normality of a refinement , where h=1/3+.11/p, to
develop the multivariate version Zp of the Lin and Mudholkar’s (1980)
z-test based upon the characteristic independence of the sample mean
and variance of a normal population. Specifically, they propose the test
statistic Tn,p=(Zn,p-µn,p)/�n,p~N(0, 1), where µn,p=A1(p)/n-A2(p)/n2, A1(p)=-
1.0/p-.52p and A2(p)=.8p2 and �n,p=B1(p)/n-B2(p)/n2, B1(p)=(3-1.67/p+.51/
p2), B2(p)=1.8p-9.75/p2, and reject the hypothesis of p-variate normality
for large values of |Tn,p|. They further examine the finite sample
behavior of the statistic empirically through an extensive simulation
study.
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Tests based on skewness and kurtosis

The coefficients skewness and kurtosis of multivariate distributions
have been defined in several different ways but ß1,p and ß2,p measures
defined by Mardia (1970, 1974, 1975, 1978) are probably most widely
used and accepted. Mardia (1974) shows that the sample analogs b1,p

and b2,p are distributed approximately as,

 

where , and uses them to develop test of multivariate
normality. Furthermore, Mardia and Foster (1983) combine the
measures of skewness and kurtosis in various ways to construct omnibus
tests of multivariate normality. After examining various alternatives
using simulation methods they recommend using their  or  based
on the Wilson-Hilferty transformation of a  variate, while showing a
preference for . Horswell and Looney (1992) note a necessity of using
empirical rather than asymptotic critical values of the test statistics in
order to obtain adequate type I error control and better power properties.
Horswell and Looney (1993) also provide an account of the limitations
of skewness coefficients in assessing the departures from univariate
and multivariate normality.

Small (1980) considers the vector of sample values of marginal
coefficients of skewness (b1) and kurtosis (b2), with covariance matrices
Ω1 and Ω2, respectively, and uses them directly to test multivariate
normality. Bowman and Shenton (1975), however, propose a normalizing
transformation,

 

and the test statistics

 

where the diagonal elements of �1 and �2 are unity and the (j, k)th off-
diagonal elements are the third and fourth powers of rjk, the sample
correlation coefficient between the j-th and k-th components. They
approximate the null distribution of Qi’s by  a variate for samples of
size 29 or more and 2�p�8.

Malkovich and Afifi (1973) use the fact that Y(px1) is distributed as
N(µ, S) if and only if C�Y is distributed as N(C�µ, C�SC) for all constant
vectors C. Then they define the multivariate measures of skewness and
kurtosis by maximizing the coefficients of skewness and kurtosis for
C�Y for all values of C.
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Tests based on adaptation of the univariate procedures

Royston (1983) extends Shapiro-Wilk W test for testing univariate
normality to the multivariate setting and proposes the test statistic

, where , i=1, 2, …, p, z=((1-W)�-µ)/σ,
and Φ is a standard normal c.d.f. Its null distribution is adequately
approximated by a scaled X2 variate, although, a bit conservative for
the bivariate and trivariate populations.

Srivastava (1984) applies the principal component analysis for
transforming the p-dimensional normal data into p independent
normal samples and suggests using the normal probability plots or
Shapiro-Wilk and Vasicek tests for assessing p variate normality.
Srivastava and Hui (1987) propose two statistics M1 and M2 as
generalizations of Shapiro-Wilk statistic, based respectively on Fisher
and Tippett combination of independent p-values, for assessing
multivariate normality. They find the type I error control of the tests
to be slightly inflated even for sample of size 50 and indicate a
preference for M1 over M2.

Stepwise procedure: Mudholkar, Srivastava and Lin (1995) use an
orthogonal Helmert’s matrix to decompose the problem of testing the
hypothesis of multivariate normality into p independent problems of
testing univariate normality. Then, they combine the p-values of the
Shapiro-Wilk test applied to the component problems using one of the
combination methods such as Fisher, Logit, Liptak and Tippett and
propose the statistics , , , and , respectively. They also
suggest a simplified recursive approach based on stepwise residuals
and propose the statistics WF, WL, WN and WT, corresponding to
Fisher, Logit, Liptak and Tippett method of combining p-values,
respectively. They note through an extensive simulation study that
the type I error control for the exact tests W*�s and their simplified
versions W�s are essentially equivalent and satisfactory, even for
samples of size 20, and recommend using the statistics W�s for testing
the hypothesis of multinormality. However, it may be noted that the
combination statistics W’s require an ordering among the response
variables which, in practice, may be available a priori. In the absence
of availability of such an ordering the tests may be used in a data
analytic fashion. They further conclude that among the combination
statistics the one based upon Fisher’s method of combination is
generally superior in terms of power, Logit method being a close
second. The two combinations based on Liptak and Tippett methods
often have considerably lower power. They recommend the test based
on Fisher combination statistic.
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Tests based on transformations and goodness-of-fit

The idea is basically to transform the multivariate problem into a single
univariate problem and exploit the properties of the test procedures
well established in the univariate setting. Rincon-Gallardo, Quesenberry
and O’Reilly (1979) use the probability integral transform and obtain a
set of i.i.d. uniform random variables. Then they test the hypothesis of
multivariate normality by testing the simple hypothesis that the
transformed variables are from U(0, 1). Hasofer and Stein (1990) apply
the Gram-Schmidt orthogonalization procedure to the data from a p-
variate normal population and obtain p mutually uncorrelated vectors
with zero means and unit variances. Then to test the p-variate normality
they test the univariate normality of all the transformed vectors and
their independence.

20.3 DUBIOUS NORMALITY OF SOME WELL KNOWN DATA

We examined a large number of multivariate data sets in the literature
using the battery of tests for multivariate normality described in the
previous section. Not surprisingly, for every data set different tests
showed varying, sometimes very different, degrees of agreement with
the assumption of multivariate normality. The following discussion
involving a selection of famous data represents a general picture. A
summary of the results appears in Table 20.1.

TABLE 20.1 Validity of multivariate normal model
with respect to the above tests

Cork data set [Rao (1948)]

This well known data set, appearing in Rao (1948), was used for
illustrating Hotelling’s T2 test, also see Mardia (1994), Seber (1984).
The weights of bark deposits of 28 trees in the four directions north (N),
east (E), south (S) and west (W) were measured and the interest was in
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testing the hypothesis H0: µ1=µ2=µ3=µ4, that is, the average weight of
bark deposits were same in all the directions. Rao (1973) was particularly
interested in testing the significance of the contrasts

 

using Hotelling’s T2 test. Hotelling’s T2 test would be justified under
the assumption of four variate normality.

Pearson (1956) notes, and Seber (1984) concurs, that the weights
have asymmetrical distributions. However, Mardia (1975) finds the
values of b1,4=4.476 and b2,4=22.957 not significant and does not contain
enough evidence against the assumption of four-variate normality. The
value of his omnibus test  with a p-value of .8439 also did
not caste any doubt on the assumption of four variate normality.
Srivastava and Hui (1987) further examined this data and for their
statistics obtain M1= 19.974 and M2=.8947 which gives p-values of .01
and .037 suggesting significant nonnormality. The value of statistic
Tn,p=1.8774, proposed by Mudholkar, McDermott and Srivastava
(1992), gives a p-value of .0302 and the application of combination
statistics, due to Mudholkar, Srivastava, and Lin (1995), yields p-
values as small as .006 again casting doubt on the assumption of four
variate normality.

Iris data (Edgar Anderson’s data [Fisher (1936)])

These are the best known classical data sets due to Edgar Anderson.
They have been studied by many workers including Fisher (1936), Small
(1980), Royston (1993), Rao (1973), and Anderson (1984) for illustrating
various multivariate normal methods. The data consist of four
measurements (Sepal Length, Sepal Width, Petal Length and Petal
Width) on 50 plants for each of the 3 varieties of Iris (Setosa, Versicolor
and Virginica). It would be natural to check if the assumption of
multivariate normality is appropriate for these data. The data are
reproduced in Anderson (1984) and are also available in S-PLUS
statistical software package.

Iris (Setosa): Small (1980) assessed the assumption of multivariate
normality using his statistics Q1, Q2, and Q1+Q2 and concluded that the
data indicated considerable skewness, particularly in the fourth
component, and suggested a departure from the four-variate
normality. Royston (1983) obtains a p-value of p<<<.001 corresponding
to the statistic G and providing a strong evidence against normality.
However, Mardia and Foster (1983) obtain , which with a p-
value of .1142 provides no evidence against the four variate normality.
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Similarly, the Tn,p statistic, due to Mudholkar, McDermott and
Srivastava (1992), gives a p-value of .1464 providing insufficient
evidence against multinormality. On the other hand, the combination
statistic, due to Mudholkar, Srivastava and Lin (1995), yields highly
significant p-values as small as .0003. This once again provides strong
evidence against the assumption of multivariate normality. The fact
that most of the nonnormality manifests in the fourth component, as
observed by several other authors, is confirmed by looking at the p-
values of the combination orders where X4 variable was taken into
consideration first.

Iris (Versicolor): The marginal plots of these data are reasonably
normal and hence have not been used to illustrate the tests of
multivariate normality. However, since they have been used in
illustrating the multi-variate methods it seemed interesting to see the
results of several tests of multivariate normality applied to this data
set. The value of  gives a p-value of .6887 providing strong
evidence in favor of the four variate normality. The value of the Zp=-
.3449 gives a p-value of .6349 which gives strong indication of data
being consistent with the assumption of multivariate normality.
However, when we apply the combination statistics for the orders (X4,
X1, X2, X3) and (X4, X3, X2, X1) we get p-values of .0042 and .0044,
respectively. This once again indicates that the assumption or normality
may not be appropriate and that most of the nonnormality may manifest
in the fourth component only.

Iris (Virginica): After seeing that even Versicolor variety of Iris showed
some signs of deviations from normality, it was of interest to check the
assumption of multivariate normality for the variety Virginica. The p-
value of .4106 corresponding to Mardia and Foster’s (1980)  test
suggests that the assumption of four dimensional normality may be
appropriate. But the value of T50,4=1.8656 gives a p-value of .0310
which indicates a moderate departure from the normality assumption.
The p-value corresponding to the Fisher combination statistics for
combination order (X4, X3, X2, X1) is .0478, providing marginal evidence
against nonnormality.

We can, therefore, conclude that the assumption of multivariate
normality may not be appropriate for any of the three varieties of Iris
and it seems that most of the nonnormality may manifest in the third
or fourth component, i.e. petal length or petal width, respectively.
However, the violation of the assumption may be more prominent in
varieties Setosa and Versicolor, whereas the variety Virginica shows
only a mild deviation from normality.
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Hematology data [Royston (1983)]

These data are taken from Chatterjee, Royston and Smith (1982), and
are considered by Royston (1983). They consist of six variables,
HAEMO (X1) =haemoglobin concentration, PCV (X2)=packed cell
volume, WBC (X3) =white blood count, LYMPHO (X4)=lymphocyte
count, NEUTRO (X5) =neutrophil count, and LEAD (X6)=serum lead
concentration on 103 West Indian or African workers in a car assembly
plant and are reproduced in Table 2 of Royston (1983). These data are
used by Smith (1982) and Looney (1995) for illustrating test of
multivariate normality. As in Royston, we transformed the variables
WBC, LYMPHO, NEUTRO and LEAD to a logarithmic scale. The
value of T103,6=3.2686 with a p-value of .0005 strongly suggests a
deviation from six normality assumption. Further, examination using
Fisher combination method for several combination orders gives p-
values ranged from .00003, to .00051. The above p-values indicate a
clear departure from the assumption of multivariate normality.
Royston (1983), on the other hand, using G statistic gets a p-value of
.08 and does not provide significant evidence against departure from
normality. Looney (1995) also considers this data but he considers Box-
Cox transformations of all the variables except PCV and applies the
test statistics H due to Royston (1983), Q1, Q2, and Q3=Q1+Q2 due to
Small (1980), b1p and b2p due to Srivastava (1984) and M1 and M2 due to
Srivastava and Hui (1987) and concludes that the original variables
indicate strong departure from normality. For the transformed
variables the statistics proposed by Srivastava and Srivastava and Hui
indicate departures from multinormality.

Peruvian Indian data

These data, regarding the heights (in mm) and weights (in kg) of 39
Peruvian Indians, are available in Seber (1984, p. 64). The interest is
in testing H0: µ=(63.64, 1615.38)�����=µ0. Under the assumption of
bivariate normality the desired hypothesis can be tested by a straight
forward application of Hotelling’s T2. Seber (1984) remarks that the
probability plot of weights is somewhat S shaped and also there is an
outlying observation. However, in the context of using Hotelling’s T2, it
would be appropriate to check the assumption of bivariate normality.
The p-value corresponding to  is .0933, which provides
some evidence in favor of mild departure from bivariate normality. By
applying Zp statistic we get the value of T39,2=1.7521 which gives a p-
values of .0399 indicating that the assumption of normality may not be
appropriate. By applying the Fisher’s combination statistic for the
combination orders (X1, X2) and (X2, X1) we get the WF=8.6704 and
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27.1450 with the corresponding p-values of .0699 and <.0001 providing
strong evidence against the assumption of bivariate normality.

20.4 CONCLUSIONS

It is clear from the above illustrations that in practice multivariate
normality may be too strong an assumption. Even if not rejected by one
goodness of fit test it may be rejected by another, and should be accepted
with some reservation. It is, therefore, important to understand the
effects of nonnormality on the normal theory inference methods and to
develop methods which would be robust with moderate size samples.
As noted by Box (1953) in univariate case, and confirmed by Layard
(1972) in the multivariate case, the normal theory methods for the
variances and covariance matrices are even asymptotically nonrobust.
The univariate studies show that the normal theory methods for testing
the means are asymptotically robust and in the case of moderate size
samples have reasonable validity robustness, i.e. type I error control,
but they lack efficiency robustness, i.e. have substantially lower power
in relation to robust alternatives; e.g. see Mudholkar, Mudholkar and
Srivastava (1991) and Srivastava, Mudholkar and Mudholkar (1992).
An examination of a multivariate case suggests that these findings as
well hold in multivariate setting, that of a co-ordinatewise trimmed
means alternative to Hotelling’s T2 considered by Mudholkar and
Srivastava (1995), and Mudholkar and Srivastava (1996). Obviously
much developmental work in the multivariate case lies ahead. In
summary it is safe to conclude that in practical terms the multivariate
normality is, in general, elusive and the assumption illusory.
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CHAPTER 21

CHARACTERIZATIONS OF
TAILFREE AND NEUTRAL TO

THE RIGHT PRIORS

R.V.RAMAMOORTHI L.DRAGHICI J.DEY
Michgan State University, East Lansing, MI

Abstract: Let X1, X2, …be exchangeable random variables. By de
Finetti’s Theorem, there exists a prior � such that P~� and given P, X1,
X2, …are i.i.d. P. We give necessary and sufficient conditions for � to be
(a) tailfree and (b) neutral to the right. En route to such characterization
we also obtain characterizations in terms of the posterior.

Keywords and phrases: Neutral to the right prior, Beta-Stacy process,
de Finetti’s theorem, Polya tree process

21.1 INTRODUCTION

A random distribution function F is said to be neutral to the right (NR)
if for any  are independent.
Doksum (1974) introduced these priors and showed that if the process
is NR then so is the posterior given n observations X1, …, Xn. The Beta
and Beta-Stacy processes developed respectively by Hjort (1990) and
Walker and Muliere (1997) are interesting examples of NR priors. These
examples demonstrate the use of NR priors as a useful concept in
Bayesian Nonparametrics, especially in the context of right censored
data.

Tailfree priors [Freedman (1963), Fabius (1964) and Doksum (1974)]
are similar to NR processes in the sense that they too require
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independence of certain conditional probabilities. We will give a formal
definition later, but just note here that the Polya tree processes studied
by Mauldin, Sudderth and Williams (1992) and Lavine (1992, 1994)
show that the property of “tailfreedom” can be used to construct
interesting classes of tractable priors.

In this note we provide characterization of NR and tailfree priors. In
addition, we characterize situations when the prior given by de Finetti’s
Theorem would be NR or tailfree.

A comprehensive account of NR and tailfree priors, and de Finetti’s
Theorem can be found in Schervish (1995).

21.2 TAILFREE PRIORS

We begin by considering the multinomial case. Let  be a finite set.
Construct a nested sequence of partitions Ti, i=1, …, k where

 

where B00, B01 is a partition of B0 and B10, B11 is a partition of B1.
Similarly T3 consists of partitions of elements of T2 and so on. For
each i, let Ei={0, 1}i. We can then conveniently write the partition Ti as

. Assume without loss of generality that Tk consists of
singletons.

Let M( ) be the set of probability measures on  and let � be a prior
on M( ). Let X1, X2,…be a sequence of observations in  which are,
given , independent with common distribution P.

For � ∈Ei, let  be the number of observations out of X1, …, Xn

which fall in . Formally . Denote by  the vector
.

For the prior �, �x1, …, xn will stand for the posterior given X1, …, Xn

and  for the posterior given . For a function g on M( ), we will
write (g(P)|�x1, …, xn) to denote the ‘law’ or distribution of g(P) under
�x1, …, xn. Similar notation will be followed with measures .

Definition 21.2.1 A prior � on M( ) is said to be tailfree if, under �,
the sets

are independent for all i.

Theorem 21.2.1 Suppose  for all 
Then the following are equivalent.
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1. � is tailfree;
2. For all n and all i=1, …, k,

 

PROOF Under the assumption, note that  is uniquely determined
and hence the equality in (2) is pointwise and not just almost everywhere.

(1)  (2) is well known and follows from noting that under ,
 has the density

 

For (2)  (1) we first prove a lemma.

Lemma 21.2.1 For any i, under (2),

(a)  and  are independent.

(b)  and  are indepen-
dent.

Here E0 is the empty set and  stands for P(B0).

PROOF OF LEMMA Since  determines 
for any j�i, quantities like  for , j<i are functions of

. Hence (b) is an immediate consequence of (a).
To prove (a) first note that (2) gives the conditional independence of

 and (X1, …, Xn) given , which we write as

 

from where it follows that

 

and hence that

(21.2.1)
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To establish (a) it is enough to show that for any collection 
of integers

 

Let . Consider the posterior density of 
given  and its posterior density given .
Since by (21.2.1) these two are equal, we have

 

which yields

 

�

Returning to the proof of the Theorem, (2)  (1) now follows by
applying the lemma successively for i=k-1, k-2, …, 1. �

We now turn our attention to de Finetti’s Theorem, which states that,
if X1, X2, …is a sequence of exchangeable random variables under a
measure µ, then there is a unique prior � on M( ) such that, for any n,

 

The question we address is: what additional condition on µ would ensure
that � is tailfree. The last theorem can be used to provide an answer to
this.

For each i, let Ti(X) be the vector . Let �x1...xn be the
predictive distribution of Xn+1, Xn+2, …given X1, …, Xn.
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Theorem 21.2.2 Let X1, X2, …be an exchangeable sequence under µ,
and let � be the corresponding prior obtained from de Finetti’s Theorem.
If, for every , then the
following are equivalent

1. � is tailfree;

2. For all n and all i�1,

 

PROOF Condition (i) of the theorem ensures that 
for all , and therefore, Theorem 1 can be applied.
(1)  (2) is easy to show since, for any ,

If � is tailfree, then from Theorem 21.2.1, we have

from which (2) follows easily.
To show (2)  (1), by Theorem 21.2.1, it is enough to show that

 

or equivalently, for any collection  of positive intergers

Since for every n, by (2) of the theorem, for fixed i,

 

it is easy to see that, for every m,

(21.2.2)
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Now let  and, given X1, …, Xn, consider the conditional
probability that out of the next m observations n� fall in B� for � ∈Εi.
This is given by

 

and, by equation (21.2.2) above, is equal to

 

Remark The last two theorems can be extended immediately to tailfree
priors on, the set of probability measures on . Towards this let {Ti:
i�1} be a nested sequence of partitions of  by intervals such that 
generates the Borel �-algebra on . A prior � on M( ) is said to be
tailfree if the families

 

are independent for all i. It is easy to see that Theorems 21.2.1 and
21.2.2 hold if  is replaced by .

21.3 NEUTRAL TO RIGHT PRIORS

In this section we provide a characterization of neutral to the right priors
in the same spirit as done for tailfree priors in the last section.

Let  be the set of distribution functions on  endowed with the �-
algebra that makes the functions F�F(t) measurable for all t∈ . A prior
� on  is said to be NR if, for all t1<…<tk, under �,

 

are independent, where .
As before, let X1, X2, …be a sequence of random variables which are,

given , i.i.d. F.
For each n, define the process Nn by

 

�
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For each T in , let . As before,  will
stand for the posterior given X1, …, Xn, and  for the posterior given
{Nn(t): t�T}.

Theorem 21.3.1 Suppose � is a prior such that, for all t,
�{F:0<F(t)<1�t}=1.. Then the following are equivalent

1. � is NR;

2. For all T ∈ ,

 

3. For all t1<…<tk<tk+1,

 

Remark Note that (2) is a statement that holds almost everywhere
with respect to the marginal distribution of X1, …, Xn. However, under
our assumption, (3) holds everywhere. Interpret (2) as, there exists a
version of the L.H.S. equal to the R.H.S. everywhere.

PROOF (1)  (2) is well known. See for instance Doksum (1974).
To see (3)  (1), we will argue as in Theorem 21.2.1 that for fixed

t1<…<tk+1,

 

This would then show that

 

Let n be any integer. Since the posterior density of (F(t1), …, F(tk)) given
{Nn(t1)=n, …, Nn(tk)=n} and the posterior density given {Nn(t1)=n, …,
Nn(tk)=n, Nn(tk+1)=n} are equal, then so are the densities of

. This gives, with t0=-∞,

 

Copyright © 2002 Taylor & Francis



R.V.RAMAMOORTHI L.DRAGHICI and J.DEY312

and hence that

 

Since this holds for all n,  is independent of .
Repeating the argument with k replaced by j=k-1, k-2, …, 1 the result
follows.

We now prove (2)  (3). For this, note that since, by (2),

 

it follows that

 

Now, for any measurable function g of (F(t1), …F(tk)), E[g|Nn(t1), …,
Nn(tk+1)] is measurable both with respect to the �-algebra generated by
{Nn(t1), …, Nn(tk+1)} and �{Nn(t): t�tk} and is hence measurable with
respect to their intersection. But this intersection is precisely �{Nn(t1),
…, Nn(tk)} which concludes the proof. �

To reinterpret the above theorem in the context of de Finetti’s Theorem,
let X1, X2, …be exchangeable under µ. The following result gives the
condition on µ such that the corresponding de Finetti prior � is NR.

Theorem 21.3.2 Assume that, for every t, as n→∞

 

Then the following are equivalent

1. � is NR;

2. For all t∈  and n�1,

 

PROOF Since , in view of
Theorem 21.3.1, (2) immediately follows from (1).

To see (2)  (1), fix  and define T(x)=xI(-∞,s](x)+(s+ 1)I(s,∞)(x). Then
(2) implies that
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To prove this claim, consider t1<…<tk<tk+1=s. Since 
, each of the events {Xn+1>ti}, i=1, …, k+1, is

conditionally independent of X1, …, Xn given  and hence the function
 is conditionally

independent of X1, …, Xn given . Letting t1, …, tk run through a
countable dense set in (-∞, s], we get that

 

A simple induction argument then yields the claim.
Now, fix t1<…<tk. Given integers n1, …, nk, set m=n1+…+nk and, given

X1, …, Xn, consider the predictive probability of the event that of the
next m observations, ni observations fall in (ti-1, ti] for i=1, …, k.

Since the event  is same as the event 
 for all i=1, …, k and s�tk, we have

 

This shows that the distribution of 
 given X1, …, Xn is same as that given  for all s�tk. Since

 is a function of these quantities, the same is true for
 and hence (1) follows from Theorem 21.3.1. �

In a recent work, yet to appear, Walker and Muliere (1999) also
obtained the same result. Their condition on µ is expressed in terms of
the expected instantaneous hazard rate under the de Finetti prior and
corresponding posteriors. When the set of values for the observations,

, is finite they explicitly provide the condition on the predictive
distributions.

21.4 NR PRIORS FROM CENSORED OBSERVATIONS

In this section we provide a characterization of neutral to the right priors
with respect to the posterior in the presence of right censored observations.

Suppose as before, that F~� and given F, X1, X2, …are independent
and identically distributed as F. Here X1, X2, …are thought of as survival
times. Let c1, c2, …be constants. These are our censoring times. For
each i, we only get to observe:
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Therefore, �i=0 means Zi is a right censored observation.
Define the observation processes:

 

and let  and also let 
.

Under this set-up, the following theorem characterizes NR priors.

Theorem 21.4.1 Suppose � is a prior such that, for all t,
�{F:0<F(t)<1�t}=1. Then the following are equivalent

1. � is NR;
2. For all T∈  and n=1,

 

3. For all n�1, k�1 and t1<…<tk<tk+1, the distribution of
 under the posterior given ,

{N(n)(t): t�tk} is the same as that under the posterior given
, {N(n)(t): t=tk}.

PROOF (1)  (2) is due to Ferguson and Phadia (1979). We omit the
proof here.

To prove (2)  (3) note that, by (2), {F(t1), …F(tk)} is conditionally
independent of {N(n)(t): t�0} given {N(n)(t): t�tk}. Therefore {F(t1), …F(tk)}
is conditionally independent of  and

 given {N(n)(t): t�tk}.
Then, for any measurable function g of (F(t1), …F(tk)),

 

is measurable both with respect to 
 and �{Nn(t): t�tk}. Hence it is also measurable with respect to their

intersection, which is .
To see (3)⇒(1), we will show that for arbitrary t1<…<tk+1,
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Fix y1<…<yr�tk. Let  and let s1<…< Sk+r+1 be points
such that

 

Note that Sk+r=tk and Sk+r+1=tk+1. Now, for integers m1�…�mr, consider
the set

 

Thus, on B, for each j=1, …, r, (mj-mj-1) observations are censored at the
point yj. Let  and let 

.
Since the posterior density of (F(t1), …, F(tk)) given C�B and the

posterior density given C’�B are equal, then so are the densities of
. This gives,

 

and hence that

 

Since this holds for all positive integral values of n-mk,  is
independent of { }. Repeating the argument with k
replaced by k-1, k-2, …, 1 the result follows. �
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CHAPTER 22

EMPIRICAL BAYES ESTIMATION
AND TESTING FOR A LOCATION

PARAMETER FAMILY OF
GAMMA DISTRIBUTIONS

N.BALAKRISHNAN YIMIN MA
McMaster University, Hamilton, Ontario, Canada

University of Regina, Regina, Saskatchewan, Canada

Abstract: In this chapter, we consider a location parameter family of
gamma distributions with � as the location parameter and ��2 as the
fixed shape parameter. The empirical Bayes estimator for � and the
empirical Bayes testing rule for the two-action problem H0: ���0 vs. H1:
�>�0 are studied. Under some moment conditions on the prior
distribution G, the convergence rates for the proposed empirical Bayes
estimator and the empirical Bayes testing rule are established.

Keywords and phrases: Convergence rate, empirical Bayes, linear
loss, location parameter, squared-error loss, two-action problem

22.1 INTRODUCTION

The empirical Bayes approach, formulated originally by Robbins (1955),
has been used rather extensively for various statistical problems by many
authors including Robbins (1963, 1964), Johns and Van Ryzin (1971, 1972),
Lin (1975), Singh (1979), and Singh and Wei (1992). For certain
nonexponential families of distributions, the empirical Bayes method has
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been applied by Fox (1978), Van Houwelingen (1987), Nogami (1988),
Datta (1991), Huang (1995), and Singh (1995), among others.

The gamma distribution with location parameter is useful in many
areas of application including survival analysis, life-testing, and
reliability theory (in these cases, the location parameter is often referred
to as the ‘threshold parameter’); for example, see Balakrishnan and
Cohen (1991), and Johnson, Kotz, and Balakrishnan (1994). For this
distribution model, Fox (1978) studied empirical Bayes estimation of
the location parameter under squared-error loss; however, Fox did not
examine the convergence rate of that empirical Bayes estimator.

In this chapter, we consider the empirical Bayes estimation of the
location parameter as well as the empirical Bayes two-action testing
problem. In Section 22.2 we formulate the two problems and derive the
Bayes estimator and the Bayes testing rule. In Section 22.3, we derive
the empirical Bayes estimator of the location parameter and the
empirical Bayes testing rule for the two-action problem. In Sections
22.4 and 22.5, we examine the asymptotic optimality properties of the
proposed empirical Bayes estimator and the empirical Bayes testing
rule, respectively.

22.2 BAYES ESTIMATOR AND BAYES TESTING RULE

Consider the family of gamma distributions (with location parameter �
and shape parameter �) with conditional density

(22.2.1)

where �(.) is the complete gamma function and ��2 is fixed. In life-testing
situations, � in (22.2.1) is interpreted as ‘minimum guaranteed life-time’.

22.2.1 Bayes Estimation

Under the square-error loss, it is known that the Bayes estimator relative
to the prior G(�) is

(22.2.2)

For the gamma model in (22.2.1), Fox (1978) obtained the Bayes
estimator of � as

(22.2.3)
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where

(22.2.4)

with

 

being the density function of X and F(x) the corresponding cumulative
distribution function.

22.2.2 Bayes Testing

Consider the problem of testing the hypothesis H0: ���0 vs. H1: �>�0

with the linear loss function

(22.2.5)

where �0 is a given positive constant and ai is the action in favour of Hi,
i=0, 1. L(ai, �) denotes the loss when action ai is taken (i=0,1), and b is a
positive constant. Let

(22.2.6)

be the decision rule for the two-action problem considered. Then the
Bayes risk associated with d(x) under prior G(�) is given by [Johns and
Van Ryzin (1971, 1972)]

(22.2.7)

where

(22.2.8)

and

(22.2.9)

From (22.2.7), a Bayes testing rule dG(x) is then given by

(22.2.10)
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22.3 EMPIRICAL BAYES ESTIMATOR AND EMPIRICAL
BAYES TESTING RULE

Since the Bayes estimator and the Bayes testing rule presented in the
last section are both dependent on the prior distribution G(�) which
may not be known, we adopt the empirical Bayes approach in this
section.

Let xi and �i (i=1, 2, …, n) denote the observation and the location
parameter at stage i, and that (conditional on �i) xi follows a gamma
distribution (with location parameter �i and shape parameter �) with
density

(22.3.11)

We assume that �1, �2, …, �n are i.i.d. with the unknown prior distribution
G(�) and denote xn+1=x for the observation at the present stage.

Based on the past data, viz., x1, x2, …, xn, we define the estimator for
the function w(x) in (2.4) as

(22.3.12)

Further, let kr be the class of all Borel measurable real-valued bounded
functions vanishing off (0, 1) such that

(22.3.13)

where r is an arbitrary, but fixed, positive integer. Then, define the kernel
estimator for the density function f(x) as

(22.3.14)

where hn is a positive function of n such that hn→0 and nhn→∞ as n→∞.
These kernel estimators have been used by Johns and Van Ryzin (1972)
and Singh (1977, 1979).

22.3.1 Empirical Bayes Estimator

Note that under the statistical model (22.2.1), ,
then, from (22.2.3), 0��(x)�x. Utilizing wn(x) and fn(x) defined in
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(22.3.12) and (22.3.14), respectively, we propose the empirical Bayes
estimator for the location parameter � as [see Eqs. (22.2.3) and (22.2.4)]

(22.3.15)

where  and .

22.3.2 Empirical Bayes Testing Rule

Next, we propose an empirical Bayes testing rule [from Eqs. (22.2.8)
and (22.2.10)] as follows.

Let

(22.3.16)

Then, the empirical Bayes testing rule is given by

(22.3.17)

22.4 ASYMPTOTIC OPTIMALITY OF THE EMPIRICAL
BAYES ESTIMATOR

Under the squared-error loss function, the Bayes risk of the empirical Bayes
estimator  in (22.3.15) and the Bayes estimator  in (22.2.3) are

(22.4.18)

and

(22.4.19)

Since  is the Bayes estimator of �, we have

(22.4.20)

where En denotes the expectation with respect to (x1, …, xn). It is known
that

(22.4.21)

where En
* denotes the expectation with respect to (x, x1, …, xn).
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Definition 22.4.1 A sequence of empirical Bayes estimators {�n} is
said to be asymptotically optimal at least of order �n relative to the
prior G if

(22.4.22)

where {αn} is a sequence of positive numbers such that limn→∞ �n=0.
In order to examine the asymptotic optimality of the empirical Bayes

estimator �n(x) proposed in (22.3.15), we need the following lemmas.

Lemma 22.4.1 Let y, z≠0 and L>0 be real numbers, and Y and Z be two
real-valued random variables. Then, for any 

(22.4.23)

PROOF This is Lemma 3.1 in Singh and Wei (1992).

Lemma 22.4.2 (a) Let fn(x) be defined by (22.3.14) with kernel function
k ∈ k[�-1], � is the shape parameter, if hn=n-1/(2[�-1]+1), then for any 0<��2,

(22.4.24)

(b) Let wn(x) be defined by (22.3.12), then for any 0<��2,

(22.4.25)

PROOF (a) Since

 

and

 

it is easy to show that both f(x) and f([�-1])(x) are finite because the function
v(x)=xae-x, x>0, a>0, attains maximum value at x=a. Then with hn=n-1/(2[�-

1]+1), by Corollary 3.3.4 of Singh (1977), we obtain
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Next, for any 0<��2, by Hölder’s inequality,

 

(b) Since wn(x) is an unbiased estimator of wn(x), then

 

and

 

The following theorem presents the convergence rate of the empirical
Bayes estimator �n(x) proposed in (22.3.15). In the rest of the chapter,
we shall use c1, c2 and c to denote some positive constants which may be
different with the same notation.

Theorem 22.4.1 Let  be the sequence of empirical Bayes estimator
of � proposed in (22.3.15); if for 0<�<1,

(22.4.26)

then with the choice of hn=n-1/(2[�-1]+1), we have

(22.4.27)

PROOF From the definition of �n(x), we have by Lemma 22.4.1 and
Lemma 22.4.2,

 

where
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To show that A2 is finite, we use Hölder’s inequality to observe that

 

and

 

by the assumption. Similarly, we can show that A1 is also finite under
the assumption. Then, with the choice of hn=n-1/(2[�-1]+l), we have

 

Therefore, we obtain from the definition of ,

 

Hence, the theorem.
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22.5 ASYMPTOTIC OPTIMALITY OF THE EMPIRICAL
BAYES TESTING RULE

In this section, we examine the convergence rate of the empirical Bayes
testing rule dn(x) proposed in (22.3.16). From (22.2.7), we have the Bayes
risk associated with the empirical Bayes testing rule dn(x) and the Bayes
testing rule dG(x) as

(22.5.28)

and

(22.5.29)

respectively. Obviously,

(22.5.30)

since the Bayes testing rule dG achieves the minimum Bayes risk r(G);
the expectation En is taken with respect to (x1, x2, …, xn).

From Lemma 1 of Johns and Van Ryzin (1972), we have

(22.5.31)

for 0<	<1.

Definition 22.5.1 A sequence of empirical Bayes testing rule {�n} is
said to be asymptotically optimal at least of order ßn relative to the
unknown prior G if

(22.5.32)

where ßn is a sequence of positive numbers such that limn→∞ ßn=0.
Now we present the convergence rate of the empirical Bayes testing

rule dn(x) in (22.3.16) in the following theorem.

Theorem 22.5.1 Let {dn(x)} be the sequence of empirical Bayes testing
rule proposed in (3.7); if for 0<�<1,

(22.5.33)
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then with the choice of hn=n-1/(2[�-1]+1), we have

(22.5.34)

PROOF With

 

and since

 

and

 

we have, by Lemma 22.4.2,

 

where

 

To show that A1 is finite, we use Holder’s inequality to observe
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and

 

by the assumption. We can similarly show that A2, A3 and A4 are also
finite. Then, we finally obtain that

 

Hence, the theorem.

REMARKS

1. The location parameter family of gamma distributions in (22.2.1) is
not included in the typical truncation parameter density family as
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Datta (1991) and Huang (1995) considered in their papers. The
importance of (22.2.3) and (22.2.4) by Fox (1978) is that it gives us
an explicit expression for the Bayes estimator  in terms of the
marginal distribution of x, which enables us to estimate  from
the past observations x1, x2, …, xn.

2. The convergence rates in Theorem 22.4.1 and Theorem 22.5.1
are dependent on �, 0<�<1, and the shape parameter �. If � is
bigger, then the convergence rates re faster. If conditions of Theo-
rem 22.4.1 and Theorem 22.5.1 are satisfied for � arbitrarily close
to 1, then the convergence rates can be arbitrarily close to O(n-[�-

l]/(2[a-1]+1)).

3. For the more general location parameter family of gamma distri-
butions when location parameter � ∈(-∞, ∞) instead of � ∈(0, ∞)
as in (22.2.1), the relation  is no longer
true, we can just get . The we can similarly propose
empirical Bayes estimator for both � and empirical Bayes testing
rule for the two-action problem and obtain convergence rates
under some moment conditions on the prior G. But, since the
distribution family (22.2.1) is more useful in application, we just
present the asymptotic optimality results for the distribution
family (22.2.1) in Theorem 22.4.1 and Theorem 22.5.1 in this
chapter.
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CHAPTER 23

RATE OF CONVERGENCE FOR
EMPIRICAL BAYES ESTIMATION
OF A DISTRIBUTION FUNCTION

TACHEN LIANG

Wayne State University, Detroit, MI

Abstract: The paper considers nonparametric empirical Bayes
estimation of a distribution function having a Dirichlet process prior

(�). For the case when the size �(R) is unknown, it is shown that the
proposed empirical Bayes estimators are asymptotically optimal with
order O(n-1), where n is the number of data at hand for the present
estimation problem. Therefore, the results of Korwar and Hollander
(1976) and Ghosh, Lahiri and Tiwari (1989), in which �(R) is assumed to
be known and a rate of order O(n-1) is achieved, are extended to �(R)
unknown case.

Keywords and phrases: Asymptotically optimal, Dirichlet process,
empirical Bayes, regret Bayes risk, rate of convergence

23.1 INTRODUCTION

Consider a pair of random elements (F, X), where F is a random
distribution, distributed according to the Dirichlet process with parameter
�, denoted by (�), and X=(X1, …, Xm) is a sample of size m arising from
the distribution F. Here, a is a finite, nonnull measure defined on the
Borel �-field  of the real line R. We are interested in the estimation of
the distribution function F. Let both the parameter space and the action
space be the sets of all distribution functions on R. For an estimator G of
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the distribution function F, we consider the integrated squared error
loss function

(23.1.1)

where W(t) is a given, finite measure over the measurable space (R, ).
Under the precedingly described statistical model, Ferguson’s (1973)

Bayes estimator of F based on X is given by

(23.1.2)

where p=m/[m+�(R)], F0(t)=�((-∞, t])/�(R), and  is the empirical
distribution function of X. The Bayes risk of the Bayes estimator G� is:

(23.1.3)

where E�|X denotes the expectation taken with respect to the posterior
distribution of the Dirichlet process (�) given X and EX is the expectation
taken with respect to the marginal probability measure generated by X.
Note that the posterior distribution of the Dirichlet process (�) given X
is a Dirichlet process (�(X)) with parameter , where
for each x�R, and A�B, �x(A)=1 if x�A, =0 otherwise.

When the parameter �(.) is unknown, it is not possible to apply the
Bayes estimator G� for the estimation problem. In such a situation,
Korwar and Hollander (1976), Zehnwirth (1981) and Ghosh, Lahiri and
Tiwari (1989) have studied this estimation problem via the empirical
Bayes approach, respectively. When the size �(R) is known, Korwar and
Hollander (1976) and Ghosh, Lahiri and Tiwari (1989) proved that their
proposed empirical Bayes estimators are asymptotically optimal of order
O(n-1), respectively, where n is the number of data at hand for the current
estimation problem. When the size �(R) is unknown, Zehnwirth (1981)
and Ghosh, Lahiri and Tiwari (1989) respectively, have studied certain
empirical Bayes estimators. However, neither of the two papers discussed
the rate of convergence associated with the proposed empirical Bayes
estimators.

In this paper, we investigate the asymptotic optimality of two empirical
Bayes estimators. It is shown that under the regularity condition that

  the underlying empirical Bayes estimators are
asymptotically optimal of order O(n-1). Hence, the results of Korwar and
Hollander (1976) and Ghosh, Lahiri and Tiwari (1989) are extended to
�(R) unknown case.
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23.2 THE EMPIRICAL BAYES ESTIMATORS

In the empirical Bayes framework, let (Fi, Xi), 1=1, 2, …, be a sequence
of independent pairs of random elements, where for each 

 is a sample of size mi taken, at stage i, from a distribution
Fi, and F1, F2, …are iid random distributions, having the common
Dirichlet process prior (�). At stage n, let X(n-1)=(X1, …, Xn-1) denote
the historical data, and Xn the present sample. We want to estimate the
current distribution function Fn based on Xn and X(n-1). Such an estimator
is called an empirical Bayes estimator, and is denoted by Gn. Note that
the data X(n) is implicitly contained in the subscript n. The conditional
Bayes risk of the empirical Bayes estimator Gn given X(n-1) is:

 

and the unconditional Bayes risk of Gn is:

(23.2.4)

where the expectation EX(n-1) is taken with respect to the marginal
distribution of X(n-1).

Let Gn,� denote the Bayes estimator of Fn given Xn. That is,

(23.2.5)

where pi=mi/[mi+�(R)],  is the empirical distribution function of Xi,
i=1, …, n. Then, r(Gn, �|X(n-1))�r(Gn,�, �) for all X(n-1) and for all n.
Hence r(Gn, �)-r(Gn�, �)�0 for all n. This nonnegative regret Bayes risk
r(Gn, �)-r(Gn,�, �) is used as a measure of performance of the empirical
Bayes estimator Gn.

A sequence of empirical Bayes estimators {Gn} is said to be
asymptotically optimal relative to the Dirichlet process (�) if r(Gn, �)-
r(Gn,�, �)= o(1).{Gn} is said to be asymptotically optimal of order {ßn} relative
to the Dirichlet process (�) if r(Gn, �)-r(Gn,�, �)=O(ßn) where {ßn} is a
sequence of positive numbers such that limn→∞ ßn=0.

For m1=…=mn=m and a(R) be known case, Korwar and Hollander
(1976) investigated the asymptotic optimality of an empirical Bayes
estimator, say , and established that  is asymptotically optimal
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of order O(n-1). Note that in the case where m1=…=mn=m, Gn,�=G � for all
n=1, 2, … For m1=…=mn=m but �(R) unknown case, Zehnwirth (1981)
proposed an empirical Bayes estimator  and proved that  possesses
the asymptotic optimality. However, the rate of convergence of 
was not discussed. For general sample sizes case where m1, …, mn may
not be equal, Ghosh, Lahiri and Tiwari (1989) proposed empirical Bayes
estimators for Fn for each of the two cases: �(R) being known or unknown.
For �(R) known case, their proposed empirical Bayes estimator, say

, is asymptotically optimal of order O(n-1). However for the �(R)
unknown case, they only established the asymptotic optimality of their
proposed empirical Bayes estimator, say , and no rate of convergence
regarding  is discussed.

In this chapter, we study empirical Bayes estimators for Fn for a(R)
unknown case. First, we introduce certain notations as follows. Let

(23.2.6)

A straightforward computation yields that

(23.2.7)

where . Therefore,

(23.2.8)

By the identity �(R)=Ea[VarF(X)]/Var �[EF(X)] [see Zehnwirth (1977)] and
by (23.2.7) and (23.2.8),

(23.2.9)

We use MSW to estimate E�[VarF(X)]. SinceVar�[EF(X)]>0 while
MSB-MSW may be negative, we therefore use 
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to estimate Vara[EF(X)], where y+=max(0, y). For each i=1, …, n, we
estimate pi=pin by

(23.2.10)

We consider two empirical estimators  and  defined as follows.

Empirical Bayes estimator 

Let  Then, define

(23.2.11)

Empirical Bayes estimator 

Let

 

Then, define

(23.2.12)

23.3 ASYMPTOTIC OPTIMALITY

From (23.1.3), (23.2.4) and by an argument similar to that in Theorem
2.4 of Korwar and Hollander (1976) or in Theorem 2 of Ghosh, Lahiri
and Tiwari (1989), it follows that

(23.3.13)

From (23.2.5) and (23.2.11)

 

Therefore,

(23.3.14)
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since . Combining (23.3.13) and (23.3.14) yields

(23.3.15)

To establish the asymptotic optimality, we need the following helpful
lemmas.

Lemma 23.3.1

(a) .

(b)

and

The result of Lemma 23.3.1 can be obtained via a straightforward
computation. The details are omitted here.

Lemma 23.3.2 Let V=Var�[EF(X)] andE=E�[VarF(X)]. Then,

(a) ;

(b) ;

(c)

PROOF (a) First, for each i=1, …, n,

 

Copyright © 2002 Taylor & Francis



EMPIRICAL BAYES ESTIMATION OF DISTRIBUTION 337

Therefore, by (23.2.6) and (23.2.7),

(b) By (23.2.6) and (23.2.7) again,
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(c) Since V>0, we have

Lemma 23.3.3 For each i=1, …, n,

where  and .

PROOF From (23.2.9) and (23.2.10), . Then by Singh’s
inequality [see Singh (1977)], and Lemma 23.3.2,

�

�
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Theorem 23.3.1 Suppose that

(a) The Dirichlet process (�) satisfies that � x4d�(-∞, x])<∞;
(b) 2�mi�m for all i=1, 2, …, where the value of m is independent of

i=1, 2, ….

Then, .

PROOF From Lemma 23.3.1, and since W(t) is a finite measure on (R, ),
so,

 

Next, note that . This
result and the assumption that 2�mi�m for all i=1, 2, …together imply

Now, the theorem follows from the above results and (23.3.15). �

Next, we investigate the asymptotic optimality of the empirical Bayes
estimator . Similarly,

(23.3.16)

where  and

 

which are obtained from the result of Theorem 23.3.1. Therefore, it
suffices to investigate the asymptotic behavior of the third term of
(23.3.16).

Note that
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(23.3.18)

(23.3.17)

Hence,

where

(23.3.19)

and by Singh’s inequality and Lemma 23.3.3,
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(23.3.20)

Under the assumption of Theorem 23.3.1 and from (23.3.19) and (23.3.20),
we see that

 

and

 

Therefore, we have the following theorem.

Theorem 23.3.2 Under the assumptions of Theorem 23.3.1, 
.
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CHAPTER 24

ON A SELECTION PROCEDURE
FOR SELECTING THE BEST

LOGISTIC POPULATION
COMPARED WITH A CONTROL
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Abstract: In this paper we investigate the problem of selecting the
best logistic population from k(�2) possible candidates. The selected
population must also be better than a given control. We employ the
empirical approach and develop a selection procedure. The performance
(rate of convergence) of the proposed selection rule is also analyzed. We
also carry out a simulation study to investigate the rate of convergence
of the proposed empirical selection procedure. The results of the
simulation study are provided in this chapter.

Keywords and phrases: Asymptotically optimal, empirical approach,
selection procedure, logistic population, rate of convergence
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24.1 INTRODUCTION

Logistic distributions have been widely used in studies that are
related with growth processes. Berkson (1957) used the logistic
distribution as a model to analyze quantal response. Plackett (1958)
considered the use of the logistic distribution with life test data. The
importance of the logistic distribution has resulted in numerous
investigations involving the statistical aspects of the distribution.
For example, Talacko (1956) showed that it could be a limiting
distribution in various situations. Birnbaum and Dudman (1963),
and Gupta and Shah (1965) studied its order statistics and their
limiting properties. Gupta and Gnanadesikan (1966), and Gupta,
Qureishi and Shah (1967) have considered the estimation of
parameters of the logistic distribution, Gupta, Qureishi and Shah
have constructed the best linear unbiased estimators of both location
and scale parameters using order statistics.

It is now well recognized that the classical techniques for testing
homogeneity hypotheses are inadequate to serve, in many practical
situations, the experimenter’s real purpose, which is to rank several
competing populations or to select the best among them. Such realistic
goals and formulations set the stage for the development of the ranking
and selection theory. An important part of this development is the
study of ranking and selection problems for specific parametric
families of distributions including, of course, logistic distributions.
Gupta and Han (1991) proposed an elimination type procedure based
on the estimated sample means for selecting the best logistic
population. In addition, Gupta and Han (1992) proposed another
selection rule for selecting the best logistic population using the
indifference zone approach. A very nice paper on ranking and selection
procedures for the logistic populations is Panchapakesan (1992) which
is published in “the Handbook of the Logistic Distribution”, edited by
Balakrishnan (1992). In this book one can find a good deal of recent
developments related to the logistic distribution.

In this paper, we investigate the problem of selecting the best
logistic population by using the observed sample medians. Assume
that there are k independent logistic populations whose location
parameters follow a prior normal distribution and the parameters of
the prior normal distribution are unknown. Motivated by the empirical
methodology, we propose an empirical selection procedure that is
based on the past observed data.
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24.2 FORMULATION OF THE SELECTION PROBLEM WITH
THE SELECTION RULE

Let �1, …, �k be k independent logistic populations with unknown means
�1, …, �k. Let �[1]�…��[k] denote the ordered values of the parameters
�1, …, �k. It is assumed that the exact pairing between the ordered and
the unordered parameters is unknown. A population �i with. �i=�[k] is
considered as the best population. For a given fixed control �0, population
IIi is defined to be good if the corresponding �i>�0, and bad otherwise.
Our goal is to select the one which is the best among the k logistic
populations and also good compared with the given standard �0. If there
is no such population, we select none.

Let  be the parameter space and 

be an action, where ai=0, or 1, for i=0, 1, …, k, and . For each

i=1, …, k, ai=1 means population �i is selected as the best among the k
candidates and also good compared with �0, while ai=0 means population
IIi is not selected either because it is not the best among the k candidates
or because it is bad compared with the control. a0=1 means that all the
k populations are excluded as bad and none of these k logistic populations
is selected. The following loss function will be considered:

 

For each i=1, …, k, let Xi1, …, XiM be a sample of size M from the i-th
logistic population  which has the following conditional
density distribution given �i and 

(24.2.1)

For convenience, suppose (for now) M is an odd number, and we denote
M=2s+1. Since logistic distribution is symmetric about its mean, the
population mean and median are identical. We assume that for each i=
1, …, k, the population median (and also the mean) �i is a realization of
random variable �i which follows a normal  prior distribution
with parameters . The random variables �1, …, �k are mutually
independent. , µi,  are unknown but fixed. In other words, , µi, 
are fixed nuisance parameters. Let Xi be the median of {Xi1, …, XiM},
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i=1, …, k, then the conditional distribution of Xi given  can be
explicitly written out as follows:

(24.2.2)

From (24.2.2) we see that the density function  is symmetric
about �i=�i, therefore,

(24.2.3)

The posterior distribution density of �i given Xi=xi is proportional to

(24.2.4)

The selection procedure will be based on the sample medians Xi. An
estimator of �i given Xi=xi is the median of the posterior distribution of
�i. For i=1,…, k, denote �i(xi) to be the median of the posterior
distribution of �i given Xi=xi.

Let  and  be the sample space generated by . A
selection procedure  is a mapping defined on the sample
space . For every  � �, , i=1,…, k, is the probability of selecting
population �i as the best among the k populations and also good
compared with the given control �0,  is the probability of excluding
all k populations as bad and selecting none. Also, , for all

 � �.
We next derive a selection rule  based on the posterior median

�i(xi), i=1, …, k. For each , let 
, and . Then based on �i(xi), a selection

procedure  is constructed as follows:

(24.2.5)

Under the preceding statistical model, the expected risk of the selection
procedure  is denoted by . Denote  to be the prior
density function of �i given , we have

(24.2.6)
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where

 

Note that sample median Xi is not a sufficient statistic for �i (the
observation vector is a minimal sufficient statistic). So  may not be
a Bayes rule. Also, the selection procedure  defined above depends
on the unknown parameters , i=1, …, k and the specific form of
�i(xi). Since the parameters and the specific form of �i(xi) are both
unknown, it is impossible to implement this selection procedure for the
selection problem in practice.

To derive a practical selection rule, we assume there are past
observations when the present selection is to be made. At time l=1, …,
n, let Xijl be the j-th observation from �i, that is, for each i=1, …, k, let

(24.2.7)

and

(24.2.8)

For l=1, …, n, denote Xi,l to be the median of (Xi1l, …, XiMl), and

(24.2.9)

(24.2.10)

Then,

(24.2.11)

and

(24.2.12)
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Denote  Since (Xi1, …, Xin) are i.i.d., by the strong law of
large numbers, we know that as n→8,

(24.2.13)

To derive an empirical selection procedure, we first consider the
following lemmas.

Lemma 24.2.1 Let {Yi, 1�i�m} be m i.i.d. random observations from
continuous distribution function F; also let  and 	 be the sample
median of {Yi, 1�i�m} and population median of F, respectively. Then,
for any � > 0.

(24.2.14)

where .

This lemma is from Serfling (1980) and the proof can be found in it.
Back to our selection problem. Put

 

Xi1, …, XiM are i.i.d. from , which has the following cumulative
distribution function

(24.2.15)

and for 0 < � � 
�,

(24.2.16)

Given �i=�i, �i and Xi are the population median and sample median of
L(�i, 
i) respectively. We have, from Lemma 24.2.1,

(24.2.17)

For any 0 < � � 
�, denote . We show that the
conditional density of Xi given �i and is approximately  as
s→8.
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From (24.2.2), the conditional density of Xi given �i and  is

(24.2.18)

By Stirling’s formula, when s is large enough,

(24.2.19)

Also choosing  to be a sequence of fixed numbers which tend to
0 as s→∞, by Taylor’s polynomial expansion, we have

(24.2.20)

on Ai. When s→∞, from (17),

(24.2.21)

Therefore, we see that as s→∞,

(24.2.22)

that is,  is approximately .
From above, we can see that for sufficiently large s, the conditional

density of Xi,l is approximately  given �i and 
i. Since the
prior distribution of �i is N , the unconditional density of Xi,l is
approximately .

For each population �i, let  be the measure of the overall sample
variation for the past observations. That is,

(24.2.23)
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Then we define, for i=1, …, k,

(24.2.24)

and

(24.2.25)

Then for each  � �, let ,
and . We propose the following selection procedure
as   follows:

(24.2.26)

24.3 ASYMPTOTIC OPTIMALITY OF THE PROPOSED SE-
LECTION PROCEDURE

Consider the selection procedure  constructed in (24.2.26).
 is similar to selection rule  except that normal approximation

is used to estimate the unknown prior parameters and the specific form
of �i(xi) for . A natural question to ask is: How good is the selection
rule  compared with ? Let R( ) be the conditional
expected risk given the past observations {Xijl , i=1, …, k, j=1, …, M, and
l= 1, …, n}, then

(24.3.27)

Since  is mimicking , R( )–R( ) should be close to 0
if the empirical selection rule works well. Note that R( )–R( )
can be negative because  is not a Bayes rule. Therefore, we use the
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overall integrated risk  as a measure of the
performance of the selection procedure , where E is the
expectation taken with respect to the past observations {Xijl}.

We first state some facts about �i(xi), the posterior median of �i given
Xi=xi and µi. From the definition of �i(xi), we can see that �i(xi) is between
xi and µi. Besides,

Lemma 24.3.1 When s is large enough, for 1�i�k,

(24.3.28)

PROOF We only prove  here. The proof of 
 is similar. To prove , it suffices to

show that

(24.3.29)

as s→∞. We first show

(24.3.30)

uniformly for  Obviously it is enough to consider the case of

 since t(�, s) is decreasing on �>0. When  and s is

large enough, by Taylor’s formula,

(24.3.31)

and by (24.2.19), when s is large enough,

(24.3.32)
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From (24.3.31) and (24.3.32), we obtain that

as s→∞. Therefore, (24.3.30) is proved, from which we can immediately
see that (24.3.29) holds true. It completes the proof of Lemma 24.3.1. �

The next lemma is well known and can be found in Baum and Katz
(1965).

Lemma 24.3.2 Let X1, …, Xn be i.i.d. random variables with mean 0.
Suppose for a > 1, E|Xi|a < ∞, for i=1, …, n, then for any � > 0,

(24.3.34)

As a consequence of Lemma 24.3.2, we have

Lemma 24.3.3 Let X1, …, Xn be independent random variables, with
mean EXi=µ and variance VarXi=
2, for i=1, …, n. Also let 
and . Suppose for i=1, …, n and a fixed number a
> 2, E|Xi|a < ∞, then for any � > 0,

(24.3.35)

Since for any , by � > 0, Lemma 24.3.2,

(24.3.36)

also by Lemma 24.3.3,

(24.3.37)

Similarly, we have for any � > 0,

(24.3.38)

When s is large enough, . Therefore, from (24.3.37) and
(24.3.38), when s is sufficiently large,

(24.3.39)

(24.3.33)

Copyright © 2002 Taylor & Francis



SELECTING THE BEST LOGISTIC POPULATION 355

Besides,  by (24.2.12) and

We have

Lemma 24.3.4

(24.3.41)

PROOF

(24.3.42)

By Stirling’s formula, when s is large enough,

(24.3.43)

Using the same approach as in the proof of Lemma 24.3.1, we have

 

(24.3.40)

Copyright © 2002 Taylor & Francis



S.S.GUPTA, Z.LIN and X.LIN356

(24.3.44)

Moreover,

(24.3.45)

This completes the proof of Lemma 24.3.4.  �

From Lemma 24.3.4, we observe that when s is sufficiently large,

(24.3.46)

and therefore, by (24.3.37), (24.3.39) and the definition of 
 where c>0,

(24.3.47)

and furthermore,

(24.3.48)

Next we investigate the overall integrated risk .
Let Pn,s be the probability measure generated by the past observations
Xijl, i=1, …k, j=1, …M and l=1, …, n.
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(24.3.49)

For any � > 0 , and i, j=1, …, k, let

(24.3.50)

Then we have

By Lemma 24.3.1, when s is large enough, .

From now on, we always set . Therefore, for sufficiently

(24.3.51)
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large s,

(24.3.52)

on  and

(24.3.53)

Thus,

(24.3.54)

Moreover,

From (24.3.28), when s is large enough,  and 
. Therefore, when s is sufficiently large,

(24.3.56)

(24.3.55)
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Thus, similar to (24.3.53),

(24.3.57)

We observe that

(24.3.58)

From (24.3.54) and (24.3.58), it suffices to analyze the limiting behaviors of

(24.3.59)

We first analyze . Denote

(24.3.60)

By Lemma 24.3.1, we know that when s is large enough, .

Therefore, for sufficiently large s, we have

(24.3.61)

and
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(24.3.62)

Using similar approach, we can obtain

(24.3.63)

At the beginning of this paper, M is assumed to be an odd number.
However, from the proof we can see that this condition can be dropped.
In other words, no matter M is even or odd, the asymptotic property
will hold true. Combining (24.3.49), (24.3.54), (24.3.58), (24.3.59),
(24.3.62) and (24.3.63), we finally obtain the asymptotic property of the
derived selection procedure.

Theorem 24.3.1 The selection procedure  defined in (24.2.26) is
asymptotically optimal with a convergence rate of order .
That is,

(24.3.64)

Theorem 24.3.1 establishes the rate of convergence of 
 as both n and s go to infinity in an additive form. This implies

that  will converge to 0 when both n and s go to
infinity.
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24.4 SIMULATIONS

We carried out a simulation study to investigate the performance of the
selection procedure . The overall integrated risk 

 is used as measure of the performance of the selection rule.
We consider the following case in which k=3, that is, we have 3 logistic

populations �1, �2 and �3 and we would like to use the proposed selection
procedure to select the best population compared with a control.

The simulation .scheme is described as follows:

(1) For each i, generate past observations as follows:

(24.4.65)

(2) For each i, generate current observations �i from  and
(Xi1, …, XiM) i.i.d. from L(�i, 
i).

(3) Based on the past observations Xijl, and the present observations,
we construct  and . Then compute the losses L( )
and L( ).

(4) Repeat Steps (2) and (3) 1000 times. Calculate the averages of
the conditional losses L( ) and L( ), respectively. De-
note the averages to be . Then compute
the absolute difference

(24.4.66)

(5) Repeat steps (1), (2), (3) and (4) 5000 times. The average of the
Ds in (66), denoted by D(n, s), is used as an estimator of the dif-
ferences .

Tables 24.1, 24.2, and 24.3 give the results of simulation for the
performance of the proposed empirical selection procedures. We choose
�0=0.5, µ1=0.4, µ2=0.5, µ3=0.6, , and 
1=
2=
3=1. The
related figures are also attached.
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TABLE 24.1 Performance of the
selection rule when s=5

TABLE 24.2 Performance of the
selection rule when s=10
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TABLE 24.3 Performance of the
selection rule when s=50
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FIGURE 24.1 Graph for Table 24.1
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FIGURE 24.2 Graph for Table 24.2
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FIGURE 24.3 Graph for Table 24.3
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CHAPTER 25

ON SELECTION FROM NORMAL
POPULATIONS IN TERMS OF
THE ABSOLUTE VALUES OF

THEIR MEANS

KHALED HUSSEIN S.PANCHAPAKESAN
Southern Illinois University, Carbondale, IL

Abstract: In this chapter, the problem of selecting the t normal
populations (out of k) with the largest or the smallest absolute value of
means. For this purpose, both indifference zone and subset selection
approaches are considered.

Keywords and phrases: Signal-to-noise ratio, selection procedure,
indifference zone approach, subset selection approach

25.1 INTRODUCTION

Let �1, …, �k (k�2) be k independent normal populations with unknown
means µ1, …, µk, respectively, and a common variance �2. Let �i=|µi|,
i=1, …, k. The populations are ranked according to their �-values. Let
�[1]�…��[k] denote the ordered �i. It is assumed that there is no prior
knowledge about the correspondence between the ordered and the
unordered �i. Our goal for most of this paper is to select the populations
associated with the t largest or the t smallest �-values, where 1�t�k-1.
Consider selecting those with the t largest �-values. These are referred
to as the t best populations. Since the populations have the same variance
�2, the problem is equivalent to selecting the populations associated
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with t largest �i/�=|µi|/�, which is the signal-to-noise ratio well-known
in communications theory. In terms of comparing k different electronic
devices, our goal is to select the devices having the t largest signal-to-
noise ratios. We also note that  is the Mahalanobis distance between
�i and N(0, �2) population. In this context, our goal is to select the t
farthest populations from N(0, �2).

We now formulate our problem of selecting the t best using the two
classical approaches, namely, the indifference zone (IZ) approach of
Bechhofer (1954) and the subset selection (SS) approach of Gupta (1956,
1965). Let �={�����: �����=(�1,…,�k), 0��i<∞, i=1, …, k} and �(�*)= {�����: �k-t+1]-�k-

t]=�*, �*>0, �����  � �} for any specified �*. In the IZ approach, one wants to
select exactly t populations with a probability requirement that the
probability of a correct selection (PCS) is at least P* whenever � � � � � � �(�*).
Here a correct selection (CS) occurs when the t best populations are
selected. Also, �* and P* are specified in advance by the experimenter.

For a meaningful problem, we take . For

, the probability requirement can be satisfied by choosing

t populations randomly. The region �(�*) is called the preference zone
(PZ). Its complement w.r.t. � is the so-called indifference zone (IZ). In
the SS approach, we want to select a non-empty subset of the k
populations so that the selected subset contains the t best populations
(in which case, a correct selection is said to occur). The size of the selected
subset is random subject to a minimum of t. Also, if there is more than
one set as a contender for the t best, we assume that one of them is

tagged as the set of t best populations. We again take .

In either approach, we need to define a selection rule R which really
has three parts: a sampling rule, a stopping rule for sampling, and a
decision rule after stopping sampling. Denoting the PCS using the rule
R by P(CS|R), the rule R is valid if

(25.1.1)

in the case of the IZ approach, and if

(25.1.2)

in the case of the SS approach. For comparing valid rules under the IZ
formulation, one naturally considers the sample sizes (or expected
sample sizes) for the rules. For the SS approach, one can always select
all the populations, yielding a valid rule! So we use operating
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characteristics such as E(S), the expected size of the selected subset,
E(S)-PCS, which is the expected number of non-best populations
included in the selected subset, and E(S)/PCS.

In this paper, we briefly review (Sections 25.3 through 25.7) several
significant results available in the literature under the IZ approach
(Sections 25.3 and 25.5), the SS approach (Section 25.4) and an
integrated formulation (Section 25.7). We present new results for
simultaneously selecting the two extreme populations under the IZ
(Section 25.8) as well as the SS approach (Section 25.9). We conclude
(Section 25.10) with some directions for further investigations.

25.2 SOME PRELIMINARY RESULTS

Let  denote the mean of a random sample of size n from a normal
population with mean µ and variance �2. Let  and �=|µ|. Then
it is easy to see that the cdf H(	; �) and the density function h(	, �) of W
are given by

(25.2.3)

and

(25.2.4)

where 
 and � are standard normal cdf and density function,
respectively.

For ��0 and �>0, we have

 

which is <0, since .

This shows that the family {H(	; �)}, ��0, is stochastically increasing
in �.

We now continue with our selection problem under the two
formulations mentioned.
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25.3 INDIFFERENCE ZONE FORMULATION: KNOWN COM-
MON VARIANCE

For the goal of selecting the populations associated with the t largest
�i’s, Rizvi (1971) studied a fixed sample procedure based on samples of
common size n from the k populations. Let  be the mean of the sample
from �i and let , i=1,…, k. Rizvi (1971) proposed the rule

(25.3.5)

The design problem is to determine the minimum sample size n needed
in order to satisfy the probability requirement (25.1.1) for given k, t, P*
and δ *. Let W(i) denote the Wj from the population associated with �[i],
i=1, …, k. Rizvi (1971) has shown that the infimum of P(CS|R1) over
Ω(δ *) is attained for the configuration

(25.3.6)

which is called the least favorable configuration (LFC). At the LFC, the
PCS given by

(25.3.7)

where . Let �=�(k, t, P*) be the solution of the equation
obtained by equating the right side of (25.3.7) to P*. Then the minimum
sample size required to satisfy (25.1.1) is given by

(25.3.8)

where  denotes the smallest integer �s.
Two notable special cases are: (A) t=1 and (B) t=k-1, corresponding

to selecting the population with the largest and the smallest �-value,
respectively. For both cases, Rizvi (1971) has tabulated the PCS at the
LFC for k=2(1)10 and �=0.0 (0.5) 2.0 (0.2) 7.0, and the value of � needed
to determine n from (25.3.8) for k=2(1)10 and P*= 0.5000, 0.7500, 0.9000,
0.9500, 0.9750, 0.9900, 0.9950, 0.9990, 0.9995, 0.9999.

Rizvi (1963) has proved some optimality properties of the rule R1. In
particular, he has shown that R1 is a most economical decision rule in
the sense that there is no other single sample procedure with a smallest
common sample size satisfying the probability requirement (25.1.1).
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25.4 SUBSET SELECTION FORMULATION: KNOWN COM-
MON VARIANCE

As before, let , i=1, …, k, based on samples of a common size n.
In this case, Rizvi (1971) considered only selecting the best (t=1)
population and selecting the worst (associated with the smallest �i)
population. For selecting the best, Rizvi (1971) proposed the rule

(25.4.9)

where d=d(n, k, P*) is chosen as the smallest positive constant for which
the probability requirement (25.1.2) is satisfied. The infimum of
P(CS|R2) over � has been shown to occur when �[1]=…=�[k]=�→∞. This
infimum is given by

(25.4.10)

where . Thus, our constant d is obtained by solving for D
the equation

(25.4.11)

The value of D satisfying (25.4.11) has been tabulated for different
ranges of k and P* by Bechhofer (1954), Gupta (1963), Milton (1963)
and Gupta, Nagel and Panchapakesan (1973). Rizvi (1971) has shown
that the supremum over � of the expected subset size, E(S), is attained
when �[1]=…= �[k]=0 and is given by

(25.4.12)

The above bound for E(S) exceeds kP* but is less than k.
In addition to satisfying the probability requirement (25.1.2), one

can ask for the smallest common sample size n necessary to control
E(S) at some pre-assigned level. For a particular parametric
configuration �����0 in �. For example, �����0 could be a slippage configuration
[i.e. �[k]-�[i]=�*, i=1, …, k-1, for some specified �*>0] or an equi-distance
configuration [i.e. �[i+1]-�[i]=�* for some specified �*>0, i=1, …, k-1]. Then
we want to find the smallest n such that E(S|�����0)�1+, for a specified
� (0, k-1). Alternatively, one can control the supremum of E(S) over a
subpsace �(�) of � at a specified level. Rizvi (1971) considered �(�)={�����:
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�[k]-�[k-1]��>0}. The problem then is to determine the smallest n needed
so that  for some specified �(0, k-1).

The problem of selecting a subset containing the population associated
with the smallest �i is treated in an analogous manner. Rizvi (1971)
studied the analogous rule

(25.4.13)

where d�=d�(n, k, P*) is chosen as the smallest positive constant for
which the probability requirement (25.1.2) is satisfied (with CS suitably
modified). The infimum of  over � has been shown by Rizvi

(1971) to occur when �[1]=…=�[k]=�→∞. This infimum is given by

(25.4.14)

which is same as the right side (25.4.10) if we let . Thus the
constant d� is same as d for R2. Parallel results can be obtained regarding
the supremum of E(S).

Finally, both rules R2 and  possess an important monotonicity
property. Let Qi  be the probability that the population associated
with the parameter �[i] is included in the subset selected by R2 .
Then, for i<j, Qi�Qj and .

25.5 INDIFFERENCE ZONE FORMULATION: UNKNOWN
COMMON VARIANCE

In Section 25.3, we discussed the selection of the t best populations
when the common variance �2 is known. When � is unknown, it can be
seen from (25.3.8) that we cannot determine without the knowledge of
� the sample size necessary for R1 to meet the probability requirement
(25.1.1). In this case, a single sample procedure that guarantees a
minimum PCS does not exist. For the problem of selecting the best
(t=1), Jeyaratnam and Panchapakesan (1999) proposed a two-stage
procedure analogous to that of Bechhofer, Dunnett and Sobel (1954) for
selecting the normal population having the largest µi. Their procedure
R3 is described below.
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Procedure R3:

(1) First take a random sample of n0 observations from each of the k
populations. Let these be Xij, j=1, …, n0; i=1, …, k. Define

 

(2) Choose h such that

 

where

 

g�(u) is the chi-square density with �=k(n0-1) degrees of freedom.
Now, take a second sample of (N-n0) observations from each popu-
lation, where

 

and  denotes the smallest integer �s.
(3) Let  denote the overall mean of the N observations from �i and

let , i=1, …, k. Select as the best the population that
yields the largest Wi.

Jeyaratnam and Panchapakesan (1999) have tabulated the values of h
for P*=0.90, 0.95, k=2(1)10, and selected values of n0 for each k. The
expression for E(N), the expected value of the total sample size N, is
given (to within a quantity less than unity) by
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where  and  is a chi-square variable with �=k(n0-1) degrees
of freedom. Jeyaratnam and Panchapakesan (1999) have done some
limited analysis of gain due to the knowledge of �. The case of selecting
the population associated with the smallest �i can be handled
analogously.

25.6 SUBSET SELECTION FORMULATION: UNKNOWN COM-
MON VARIANCE

Under the subset selection formulation, when σ  is unknown, one can
define a single sample procedure. Based on random samples of common
size n from the k populations, let , i=1, …, k, be the sample means
and let S2 denote the usual pooled unbiased estimator of �2 on �=k(n-1)
degrees of freedom. For selecting the population associated with �[k],
Rizvi (1971) studied the rule

(25.6.15)

where c=c(n, k, P*) is chosen as the smallest positive constant for which
(25.1.2) is satisfied. The minimization of P(CS|R4) can be carried out
using the steps involved in the case of R2 in (25.4.9) by first conditioning
on S. Equating the minimum P(CS|R4) to P*, the constant c is given by

(25.6.16)

where  and g�(.) is the chi-density with � degrees of
freedom. The constant C is a multiple of upper 100(1-P*) percentage
point of the distribution of the studentized maximum of equally
correlated (�=0.5) normal variables. The need for these percentage points
(with 0<�<1) arises in several problems. So the value of C satisfying
(25.6.16) can be obtained from the tables in Dunnett and Sobel (1954)
[k=2 only], Dunnett (1955), Gupta and Sobel (1957), Krishnaiah and
Armitage (1966), and Gupta, Panchapakesan and Sohn (1985) for several
selected values k, � and P*.

One can carry out an analysis of the behavior of E(S) for R4 parallel
to that of R2. Also, one can study the problem of selecting the population
with the smallest �i by defining a rule  be replacing d� by c�S (c�>0) in
(25.4.13). However, these results seem to be not explicitly available in
the literature.
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25.7 AN INTEGRATED FORMULATION

In Section 25.1, we discussed the IZ and SS formulations. We will
consider here the problem of selecting the best (t=1) population. We
also assume that the common variance �2 is known. In the IZ approach,
we control the PCS when �������(�*), but there is no probability requirement
when �������\�(�*). On the other hand, when �������(�*) [meaning the best
population stands sufficiently apart from the rest], the SS approach
does not restrict the correct selection to selecting only the best
population. An integrated formulation incorporating the features of both
IZ and SS formulations has been studied by Chen and Sobel (1987a, b).
A few other papers in this direction are Chen (1988), Chen and
Panchapakesan (1994), and Jeyaratnam and Panchapakesan (1997).
We discuss here the results of Jeyaratnam and Panchapakesan (1997)
who considered the problem of selecting the normal population with
the largest �i, assuming a common known variance �2.

When , the population associated
with �[k] is defined as the �*-best; otherwise when ����� � IZ, this population
is defined as just the best. Our goal is to select the �*-best and none
other when ����� � PZ, and select a non-empty subset containing the best
population when ����� � IZ. Let CD1 and CD2 denote the correct decision
when ����� � PZ and ����� � IZ, respectively. It is required of any valid procedure
that

(25.7.17)

and

(25.7.18)

where , i=1, 2. Here �*,  and  are specified in advance.
As before, based on random samples of common size n, let ,

where  is the sample mean from �i, i=1, …, k. Let c and d be constants,
with 0<d<c, to be determined (along with n) as functions of �*, , 
and k. Assume that c, d and n are already determined. Jeyaratnam and
Panchapakesan (1997) proposed and studied the procedure

R5: If W[k]-W[k-1]>c, then select the population that yielded
the largest Wi as the �*-best population; otherwise, select
all populations �i for which Wi�W[k]-d and claim that
the best population is included in the selected subset.

Using a lower bound for the infimum of P(CD1|PZ), Jeyaratnam and
Panchapakesan (1997) have shown that (25.7.17) is satisfied if we can choose
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c such that

(25.7.19)

where H(u; �) and h(u; �) are defined in (25.2.3) and (25.2.4), respectively.
They have also shown that P(CD2|IZ) attains its infimum when �[1]=
…=�[k]=�→∞. This shows that (25.7.18) is satisfied if

(25.7.20)

In order to implement the rule R5, we need to find n, c and d satisfying
(25.7.19) and (25.7.20) for given k,  and with the restriction

that d<c<�*. Jeyaratnam and Panchapakesan (1997) have discussed how,
by a trial and error method, one can get a feasible solution, not
necessarily unique. For comments regarding finding an optimal solution
and some desirable properties of R5, the reader is referred to their paper.

25.8 SIMULTANEOUS SELECTION OF THE EXTREME POPU-
LATIONS: INDIFFERENCE ZONE FORMULATION AND
KNOWN COMMON VARIANCE

We now consider a modified goal of selecting simultaneously the two
populations associated with �[k] and �[1], individually identified as such.
This is a special case of the general ranking problem of partitioning the
set of k population into s groups, I1, …, Is, such that the populations in
Ii have smaller �-values than those in the set Ii+1, i=1, …, k-1. This general
goal has been mentioned in Bechhofer (1954) but not investigated.
Mishra (1986) has considered our special case (s=3) for location
parameters. In our present formulation, a correct selection occurs when
the two target populations are selected and identified correctly. It is
required of any valid rule R that

(25.8.21)

where  is
the preference zone, and the constants  and  are specified in advance
along with the probability level P* such that [k(k-1)]-1<P*<1.

Based on random samples of common size n from the k populations,
let W[1]�…�W[k] denote the ordered , i=1, …, k. We propose
the rule

(25.8.22)
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Denoting by W(i) the W associated with the population having the
parameter �[i], i=1, …, k, we see that

(25.8.23)

The exact infimum over �* of the double integral in (25.8.23) is not available
for k�4. For k=3, we will obtain the LFC for P(CS|R6). In this case,

(25.8.24)

Using (25.2.3) and (25.2.4) in (25.8.24) and letting  and 
 i=1, 2, 3, we obtain

(25.8.25)
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We want to establish that P(CS|R6) is non-increasing in a1 when a2 and
a3 are kept fixed. Towards this end, we find the derivative of the
expression in (25.8.25) w.r.t.a1. In doing so, we first change the variable
in I2(a1) and I3(a1) by putting y=u-a1 and y=u+a1, respectively. After
straight-forward differentiation, we change back by the same
transformations. This gives us

 

which is�0 since . Thus P(CS|R6) is non-increasing
in a1 when a2 and a3 are kept fixed.

Similarly, we consider P(CS|R6) as a function of a3 when a1 and a2

are kept fixed. It can be seen again by straightforward differentiation
that

 

which is�0 since . Thus P(CS|R6) is non-decreasing
in a3 when a1 and a2 are kept fixed.

By combining the above two results, it is easy to see that the infimum
of P(CS|R6) over Ω* occurs at an LFC of the form:

(25.8.26)

Letting  and , i=1, 2, 3, P(CS|R6) at the LFC in
(25.8.26) is given by

(25.8.27)

where

 

Copyright © 2002 Taylor & Francis



ON SELECTION FROM NORMAL POPULATIONS 383

We now establish the monotonicity of P(CS|R6) at the LFC given in
(25.8.26) as a function of �0 (or, equivalently �0).

Lemma 25.8.1 At the LFC given in (25.8.26), P(CS|R6) is non-decreasing
in �0 for fixed  and .

PROOF First, put y=u-�0-�2, y=n+�0+�2, y=u-�0+�1 and y=u+ �0-�1 in
Vi(�0; �1, �2), i=1, …, 4, respectively. Note that V2(�0; �1, �2)= -V1(-�0; -�1,
-�2) and V4(�0; �1, �2)=V3(-�0; -�1, -�2). Let  
and , where the prime (�) denotes the
derivative w.r.t. a0. It can now be seen that 

 and . By carrying out
routine differentiation and using the substitutions mentioned in the
beginning of the proof, one can obtain

 

(25.8.28)
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It is easy to check that

 

and

 

Thus PLFC(CS|R6) is non-decreasing in a0. This proves the lemma. �

Summarizing the preceding discussion regarding P(CS|R6) for k=3
populations and using Lemma 25.8.1, we obtain the following theorem.

Theorem 25.8.2 For the rule R6 defined in (25.8.22) applied to k=3
populations,

.

where , i=1, 2.

For given P*,  and , we have to find the smallest n for which the
right side of (7.9) is =P*.

25.9 SIMULTANEOUS SELECTION OF THE EXTREME POPU-
LATIONS: SUBSET SELECTION FORMULATION AND
KNOWN COMMON VARIANCE

Our goal here is to select two non-empty subsets of the k given
populations, namely, SB which contains the population associated with
�[1] (called the worst) and SG which contains the population associated
with �[k] (called the best). In the case of a tie for the best or the worst
population, one of the contenders is assumed to be the best or the worst
as the case may be. Any selection of two subsets SB and SG consistent

(25.8.29)
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with our goal is called a correct selection. For any valid procedure R, we
require that

(25.9.30)

where P* is specified in advance such that [k(k-1)]-1<P*<1. Continuing
our notations of Section 25.8, we propose the rule

 

where c1 and c2 are non-negative constants to be chosen so that the
requirement (25.9.30) is satisfied.

Now,

 

We are unable to obtain the exact infimum of P(CS|R7) over �. We get
a conservative solution for (c1, c2), by using a lower bound for the PCS.
By letting A={W(i)�W(k)+c1, i=1, …, k-1} and B={W(i)� W(1)-c2, i=2, …, k},
we get

 

We note that P(A) and P(B) are same as the PCS for the rules R2 in
(25.4.9) and  in (25.4.13), respectively. Thus, from Rizvi (1971), it
follows that P(A) and P(B) are minimized for a configuration with
�[1]=…=�[k]=� (say), andthat each is monotonically decreasing in �.
Consequently, the infimum of P(A)+P(B)-1 is obtained by letting �→∞.
This gives

(25.9.31)

where , i=1, 2. A conservative solution for (c1, c2) can now
be obtained by solving

(25.9.32)
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The left side of (25.9.32) varies from (2/k)-1 to 1 as d1 and d2 vary from
0 to 8. So a solution (d1, d2) exists for any specified P* between [k(k-1)]-1

and 1. However, there is no unique solution. If we take c1=c2=c, then
 (say). Then d is given by

(25.9.33)

Since C(d, k) increases in d for k�2 from 1/k to 1, and since (1+P*)/2�
(1/k), there is a unique solution for d. Equation (25.9.33) is the same as
(25.4.11) with P* replaced with . So the value of d
satisfying (25.9.33) can be obtained different ranges of k and  from
tables referred to following (25.4.11).

If G and B denote the sizes of the subsets SG and SB, respectively,
then E(G) and E(B) are same as the expected subset sizes of the rules
R2 in (25.4.9) and  in (25.4.13). Thus the suprema of E(G) and E(B)
can be obtained from Rizvi (1971).

As in the case of the rule R6 defined in (25.8.22), we can obtain the
exact infimum over � of P(CS|R7) when k=3 and c1=c2=c (say). The
method is similar to that for R6. Hussein (1998) has shown that P(CS|R7)
is minimized when �[1]=�[2]=�[3]=� (say) and that P(CS|R7) is decreasing
in � for fixed . By letting �→∞, we get

(25.9.34)

When k=3 and c1=c2=c, the lower bound for inf P(CS|R7) given in
(25.9.31) becomes  which is less than the exact
infimum in (25.9.34) by the amount .

Finally, we note that the rule R7 selects two subsets SG and SB which
may overlap. It is desirable to ask for SG and SB which are mutually
exclusive. This problem remains unsolved.

25.10 CONCLUDING REMARKS

As pointed out at the end of Section 25.9, the problem of simultaneously
selecting two non-overlapping subsets SG and SB is important and it
remains to be solved. When the common variance is known, several
other problems arise naturally for further investigations. These are
suggested by the literature available on the problem of selecting the
normal population having the largest mean, assuming a common known
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variance. Under the indifference zone formulation, one can consider a
two-stage procedure which uses a subset procedure at the first stage to
screen poorer populations and goes to the second stage, if necessary, to
select the best. This is analogous to the two-stage procedure of Tamhane
and Bechhofer (1978) for selecting the normal population with the largest
mean, assuming a common known variance. Other problems relate to
several aspects such as unequal sample sizes, unequal and unknown
variances, modified and generalized goals, and related problems of
estimation of the PCS and estimation after selection. For discussions
on these topics and for further references, see Gupta and Panchapakesan
(1979, 1985), and Gupta (1991).
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CHAPTER 26

A SELECTION PROCEDURE PRIOR
TO SIGNAL DETECTION

PINYUEN CHEN
Syracuse University, Syracuse, NY

Abstract: We study a procedure in the framework of ranking and
selection theory to identify multivariate normal observations that have
different covariance structures from a control covariance matrix.
Simulation results are presented to illustrate that, for a sample of data
contaminated with non-homogeneous observations, our selection
procedure improves the performance of the hypothesis testing for a signal
in terms of the probability of type II error while the level of significance
is held at a constant.

Keywords and phrases: Complex multivariate normal, likelihood ratio
principle, constant false alarm rate test, nonhomogeneous covariance
structure

26.1 INTRODUCTION

In signal detection, one is interested in the problem of detection of a
given radar signal s which is a complex vector in the presence of noise
in transmission. The signal may be a set of voltages an electromagnetic
wave from the selected search directions induces on a number of receiving
elements. The actual observed data Y may be a pure noise vector n or
the signal s plus a noise vector n. It is assumed that the noise follows a
complex multivariate normal distribution with mean 0 and covariance
matrix �. Statistically, the model can be described as Y=s+n where s is
a specific signal and n is a noise random vector. The goal is to test the
null hypothesis that Y=n versus the alternative hypothesis that Y=s+n.
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Reed, Mallett and Brennan (1974) discussed an adaptive procedure
for the above detection problem in which two sets of input data are
used, which are called the primary and secondary data. A radar receives
primary data Y0 which may or may not contain a signal, and secondary
data y1, Y2, …, Yn which are assumed to contain only noise, independent
of and statistically identical to the noise components of the primary
data. The goal is to test H0: µ=0 versus H1: µ=s where µ is the population
mean of Y0. Kelly (1986) used the likelihood ratio principle to derive a
test statistic for the above hypothesis testing problem. The test possesses
a desirable property that its false alarm rate (the probability of type I
error) remains constant when the unknown covariance matrix of the
secondary data varies. That is, it is a CFAR (constant false alarm rate)
test. Khatri and Rao (1987) used a conditional argument to derive a
test equivalent to Kelly’s and they showed that the test is more powerful
than the traditional Hotelling’s T2 test.

Numerical examples in Melvin, Wicks and Chen (1998) showed that
a fundamental problem in radar that employs the above detection
methods is that the environment is non-homogeneous. That is, the
covariance matrix of the secondary data differs from that of the primary
data. Data from a non-homogeneous covariance structure produces
biased estimate of the covariance matrix, thereby leading to a severe
degradation in detection performance. To resolve this problem, Chen
and Wicks (1999) proposed a selection procedure which compares the
covariance matrices of the secondary data with that of the primary data.
It is used to identify and eliminate those observations that have different
covariance structure from the secondary data. It retains homogeneous
radar data for further investigation. As described in Chen and Wicks
(1999), this procedure can be applied prior to the step of estimating the
covariance matrix of the secondary data in Kelly (1986) and Khatri and
Rao (1987). As a consequence, the CFAR property remains true in the
detection process.

26.2 THE SELECTION PROCEDURE

We begin with some notations and definitions. If A=aij is a matrix of
complex numbers, the conjugate transpose of A is defined by ,
where  is the complex conjugate of aij. Let z=x+iy be a complex random
p-vector with mean � and covariance matrix Q=�1+i�2. Then z has a
complex multivariate normal distribution with mean � and covariance
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matrix Q, written as z~CNp( �, Q), if and only if

where

[See, for example, Definition 2.9.2 in Srivastava and Khatri (1979)].
Let Y0~CNp(µ, �) denote the primary data which is received by a

receiver and is to be tested for a specific signal s where s is a known
vector. Let Y1, Y2, …, Yn~CNp(0, �) be the secondary data which is to be
used to estimate the unknown covariance matrix �. The random vector
Y0 is independent of the secondary data. Let S denote n times the sample
covariance matrix of the secondary data sample Y1, Y2, …, Yn. Therefore
we have S~CWp(n, �). As described earlier, the goal of a signal detection
problem is to test

(26.2.1)

Kelly’s likelihood ratio test statistic for (26.2.1) can be written as

(26.2.2)

The null hypothesis is rejected for large observed �. A desirable property
of the test statistic is that its distribution under |H0 is independent of
S. Therefore, the probability of type I error (false alarm rate) remains
constant when the secondary data varies. It was shown in Khatri and
Rao (1987) that under H0, �~Beta(1, n-p+1), a Beta distribution with
parameters 1 and n-p+1 . Following Reed, Mallett, and Brennan (1974)’s
structure of radar data, Kelly’s test also assumes an i.i.d. sample Y1, Y2,
…, Yn for the secondary data and an independently distributed primary
data Y0. However, the real airborne radar signal environment is not
homogeneous in terms of their covariance structure, as has been
determined at the United States Air Force’s Rome Laboratory through
extensive analysis of airborne radar data. In fact, the signal environment
of an airborne platform can be as non-homogeneous as the visual
environment appears to an airborne observer who might see, e.g.,
mountains, lakes, forests, roads, and vehicles, etc., from an aircraft
window. [See, for example, Melvin, Wicks and Wicks (1998, p. 3)].
However, environment changes among clusters, but not within cluster.
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The data obtained from mountains may have different covariance
structure from that of the data obtained from lakes. The goal in Chen
and Wicks (1999) is to perform a data preprocessing procedure that will
allow an experimenter to select among several cells which are potential
target cells the ones that have the same covariance structure as that of
a control secondary data. A selected cell, which should have the same
covariance structure as the secondary data, later may either be used as
a part of secondary data or its nearby cell may be tested for target.

Let �1, �2, …, �k represent k p-variate complex normal populations,
i=1, 2, …, k, and let �0 be a control p-variate complex normal population.
Those k populations are the resources of the k cells which may or may
not have the same or similar covariance structures as the control
population �0 from which the secondary data are taken. Here “similarity”
is defined in (26.2.3) and (26.2.4) and the paragraph after (26.2.4) later
in this section. Thus, from each of the k experimental populations, only
one observation is taken, and from the control population, n observations
are taken. We assume that µi=0, i=0, 1, 2, …, k since the k experimental
populations are the cells which are assumed to have zero mean. In
comparing the variances of two univariate normal populations with zero
mean, a measure of similarity is the ratio function, d(x, y)=x/y, because
the variance is a scale parameter. The covariance matrix of a
multivariate normal random vector has similar properties as the
variance of univariate normal random variable, especially in distribution
theory. Here, we also use the ratio, �i�0

-1, of two covariance matrices as a
distance measure in our study. Let �i,1≥�i,2≥…≥�i,p>0 denote the ordered
eigenvalues of �i�0

-1. We define the two disjoint and exhaustive subsets,
�G and �B, of the set �={�1, �2, …, �k}, by using a pair of distance
functions d1 and d2 defined as follows:

(26.2.3)

and

(26.2.4)

where  are pre-assigned positive real numbers which are used
to define similar and dissimilar populations. Theoretically, the values
of �*

2 should be less than 1 and the value of �*
2 should be greater than 1

since  is equivalent to the perfect case when the control
population �0 has exactly the same covariance matrix as that of the
experimental populations �i. A population is considered similar to a
control population when the distance measures are close to unity. Our
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goal is to separate the populations obtained from the guard cells into
two disjoint subsets, SG and SB. The separation is correct if ,
meaning that all populations included in selected subset SG have similar
covariance structure as the control population. It also means that all
populations with significantly different covariance structures are
eliminated. We require a procedure R that will satisfy the probability
requirement that Pr(the separation is correct|R)=Pr(CS|R)≥P*, where
P* is chosen in advance of the experiment such that 2-k<p*<1.

The procedure R defined in Chen and Wicks (1999) is as follows.

Procedure R For each population �i (i=1, 2, …, k), we first compute
 where xi’s are the data vectors from experimental cells,

 is the conjugate transpose of xi, and S is the sample covariance matrix
associated with population �0. Then we partition the set of populations
�={�1, �2, …, �k} into two subsets SG and SB. The subset SG consists of
those populations �i with c≤Ti≤d where c and d are chosen such that the
probability requirement P(CS)≥P* is satisfied and SB=�-SG. We claim
that SG consists of the populations that have covariance matrices that
are the same as the covariance matrix of �0.

The distribution of was derived in Chen, Melvin and Wicks (1999). Chen
and Wicks (1999) showed that the so-called Least Favorable
Configuration (LFC) under procedure R is given by

(26.2.5)

where

Under the LFC, the distributions of

and

become an F distribution with 2p and 2(n-p+1) degrees of freedom.
A typical measure of the performance of the above procedure is the

probability of a correct separation P(CS). One would always require a
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(26.2.6)

where F2p,2(n-p+1) is the distribution function of an F distribution with 2p
and 2(n-p+1) degrees of freedom. We also define T0�0 and Tk+1�0.

26.3 TABLE, SIMULATION STUDY AND AN
EXAMPLE

We use the formula given in (26.2.6) to approximate the minimum
sample sizes needed to achieve the P*-requirement for the cases p (the
number of components in a signal)=10, and 20; k=3, 4, 5;

 ; ;  P*=.90, and .95.
The results are given in Table 26.1 at the end of the paper. The choices
of c and d of Procedure R are arbitrary. However, the values of c and d
arrived at by taking a combination of  and  in Table 26.1 may
not be admissible. For example, take , , �*

1/c=1/2 and �*
1/

d=2. In this case, Table 26.1 gives a solution for n for k=5, p=20.
However, this gives c=2/3, d=0.6, which is inadmissible because c>d.
When we search for solution of n from Table 26.1, we need to make sure
that our procedure constants c and d satisfy the condition c<d. Now we
consider a simulation example.

Example Five test (or guard) cells are to be examined and to be
compared with a sample of secondary cells. Each cell �i is represented
by a 20×1 random vector from a multivariate complex normal
distribution with mean 0 and covariance matrix �i. The covariance
matrix of the secondary cells is denoted by �i. The five test cells come
from normal populations with covariance matrices �i such that

large probability of a correct separation when the procedure is employed.
To implement the procedure with a pre-determined probability
requirement P*, Chen and Wicks (1999) have shown that the procedure
constants c and d have to satisfy the following integral equation:
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Suppose we want to eliminate the test cell �i if either the largest
eigenvalue of �1�0

-1 is smaller than or equal to  or the smallest
eigenvalue of �1�0

-1 is larger than or equal to . Then by choosing
c=.2 and d=5, we find from Table 26.1, for the case k=5, p=20, �*

1/c=1/2
and �*

1/d=2, that the required sample size is n=39 for the secondary data
to achieve P*=.90. We simulated 100 trials of xi (i=1, …, 5) and S from
the multivariate complex normal populations with mean 0 and with
respective covariance matrices satisfying the above conditions. Then
for each trial, we calculate the test statistic . The results
are plotted in Figure 26.1 at the end of the paper. From the definition of
Procedure R given in Section 26.2, Cell �i is retained if .2<Ti<5. It is
clear from the figure that Cell 4 is always retained. Cell 2 and Cell 5 are
always eliminated. Cell 1 and Cell 3 are retained most of the times.
Notice that Cell 4 is a perfect cell while Cell 1 and Cell 3 are both
considered good cells.

In our next simulation illustrations, we show, in Figures 26.2–26.5,
the probability of the false alarm (P(FA)) and the probability of the
detection (P(D)) when Kelly’s adaptive detection algorithm is applied to
three different data sets. The first data set is the perfect data set where
all the observations in the secondary data are simulated from the same
multivariate complex normal distribution as the primary data. The
second data set is the contaminated data set where the secondary data
includes some observations that were obtained from simulation of
various multivariate complex normal distributions whose covariance
matrices are significantly different from the covariance matrix of the
primary data. The third data set is the screened data set which consists
of those observations that were originally in the contaminated data set
and were retained in the secondary data after our procedure R has been
applied. We consider the following cases: n, the sample size of the
secondary data,=25, …, 50; p=20; and s=(.5, …, .5)* and (1, …, 1)*. The
level of significance is set at .05 for all the cases considered. In Figures
26.2–26.5, the ‘o”s are for the contaminated data set. The ‘x’s are for the
perfect data set, and the ‘+”s are for the screened data set. It is clear
from the illustrations that Kelly’s algorithm does not provide a constant
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false alarm rate (CFAR) for the contaminated data set and it always
gives CFAR for the perfect data set and screened data set. The
contribution of the non-homogeneous data screening proposed in our
research is significant as we can see from the illustrations that the P(D)s
for the screened data set always stay closely to those for the perfect
data set while the P(FA)s are always below the level of significance.
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TABLE 26.1 Sample size n needed to achieve the P* requirement
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TABLE 26.1 (cont’d)

A * sign shows that the probability requirement P* is not
satisfied by any sample size.
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FIGURE 26.1 100 trials of T for 5 test cells x and a sample covariance S from
n=39 secondary cells

Copyright © 2002 Taylor & Francis



P.CHEN402

FIGURE 26.2 P(FA) at s*=(.5 .5…)

FIGURE 26.3 P(D) at s*=(.5 .5…)
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FIGURE 26.4 P(FA) at s*=(1 1…)

FIGURE 26.5 P(D) at s*=(1 1…)

Copyright © 2002 Taylor & Francis



Part VI

Regression Methods

Copyright © 2002 Taylor & Francis



407

CHAPTER 27

TOLERANCE INTERVALS AND
CALIBRATION IN LINEAR

REGRESSION

YI-TZU LEE THOMAS MATHEW
University of Maryland Baltimore County, Baltimore, MD

Abstract: In the linear regression model, we explore whether intervals
obtained using the tolerance interval condition will satisfy a marginal
property that arises in multiple use calibration. The marginal property
of interest is the following. Suppose the same estimated regression line
is used a large number of times in order to construct intervals for future
observations, corresponding to possibly different values of the
explanatory variable. At least a proportion � of such intervals are to
contain the corresponding future observations with confidence �. The
problem is investigated numerically and the numerical results indicate
that intervals derived using the tolerance interval condition will satisfy
such a marginal property quite well. We have used this observation for
the construction of multiple use confidence regions in the calibration
problem. The results are illustrated using examples.

Keywords and phrases: Confidence level, conservative tolerance
intervals, multiple use confidence region, simultaneous tolerance
intervals

27.1 INTRODUCTION

This article addresses the problem of deriving tolerance intervals in
the context of a normal linear regression model. Thus let y be an n×1
vector of observations having the distribution

(27.1.1)
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where X is a known n×m matrix, ß, an m×1 vector, and �2>0, are both
unknown parameters, and In denotes the n×n identity matrix. The rows
of X are the values of an m-dimensional independent variable, assumed
to be non-random. If the model contains an intercept term, then the
first component of ß can be taken as the intercept and, in this case, the
first column of X will be a vector of ones.

Now let y(x) denote a future observation corresponding to the value
x’ of the independent variable. Assume that

(27.1.2)

where y(x) is also assumed to be independent of y in (27.1.1). The problem
that we shall address is the construction of tolerance intervals for a
sequence of future observations y(x), corresponding to possibly different
values of x. A tolerance interval (TI) for y(x) is an interval such that
with confidence �, the interval is to contain at least a proportion a of the
normal distribution of y(x), for any fixed x. On the other hand,
simultaneous tolerance intervals (STI’s) satisfy the following. Suppose
the same estimated regression line is used a large number of times in
order to construct intervals for future observations y(x), corresponding
to possibly different values of x. With confidence �, at least � proportion
� of the y(x) distribution is to be contained in the corresponding
tolerance interval, simultaneously for every x. The construction of a
TI, or an STI, amounts to obtaining k(x), a function of x, so that
the interval   satisfies the condition required of a TI, or an
STI. Here denotes the least squares estimator  and

 Note that s2 is the residual mean square
based on the model (27.1.1). (In this article we shall assume without
loss of generality that the m×m matrix X’X is nonsingular).

The setup given above is the same as that in Mee, Eberhardt and
Reeve (1991). A review of the literature on the construction of
simultaneous tolerance intervals is given in this article and also in the
recent article by Mee and Eberhardt (1996). Further references on the
problem can be found in these articles. The usual approach for obtaining
STI’s is as follows: the proportion of the normal distribution of y(x),
contained in the interval , is a function of x. Compute k(x)
subject to the requirement that the minimum (with respect to x) of this
proportion is to be at least �, with confidence �. This is the procedure
followed by a number of authors, including Mee, Eberhardt and Reeve
(1991).

The purpose of this article is to explore whether TI’s satisfy the
following marginal property. Suppose the same estimated regression
line is used a large number of times in order to construct intervals for
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future observations y(x), corresponding to possibly different values of x.
At least a proportion � of such intervals are to contain the corresponding
future observations with confidence �. This is a weaker requirement
than the STI condition. A theoretical investigation of this marginal
property appears to be difficult. Consequently, we have studied the
problem numerically. Our fairly extensive numerical results for the
simple linear regression model indicate that TI’s very nearly satisfy
the above marginal property.

We would like to point out that the computation of TI’s is quite
straightforward. It turns out that the k(x) required to compute the TI

 depends on x only through the scalar d2=x’(X’X)-1x; see Mee,
Eberhardt and Reeve (1991, Section 2). Hence we shall use the notation
k(d) instead of k(x). For any value of d, k(d) satisfying the TI condition
can be evaluated using the program in Eberhardt, Mee and Reeve (1989).
(For the simple linear regression model, we used a MATLAB program
for the evaluation of k(d)). It will be convenient to obtain the functional
form of k(d), so that for any value of d that is of interest, the value of
k(d) is readily available. Our recommendation is to numerically evaluate
k(d) for a few selected values of d, and then fit a suitable function to the
k(d) values so obtained. This will provide the approximate functional
form of k(d). This is the approach used in Mathew and Zha (1996, 1997)
for the construction of confidence regions in a calibration problem. We
would like to emphasize that the numerical evaluation of a few k(d)
values and the fitting of a suitable function (usually a polynomial) to
these values is computationally quite simple and fast. This will become
clear from the later sections.

The rest of the article is organized as follows. In the next section, we
shall give the mathematical expressions for the conditions to be
satisfied by TI’s and STI’s, along with the marginal property
mentioned above. In Section 27.3, we numerically investigate whether
TI’s satisfy the marginal property. The numerical study is carried out
in the case of simple linear regression. In the numerical study, there
are only two quantities that can vary: the value of n (the dimension of y
in (1.1)) and the range for d= {x’(X’X)-1x}1/2. Assuming that 0≤d≤� (a
knownupperbound) we have carried out the necessary simulations to
conclude whether TI’s satisfy the marginal property. By inverting
intervals satisfying the marginal property, it is possible to obtain
multiple use confidence regions in the calibration problem. This is
briefly indicated in Section 27.4. Some concluding remarks are made in
Section 27.5.

We conclude this section by recalling some of the observations in
Mee and Eberhardt (1996). These authors report one Monte-Carlo study
where it turns out that a TI satisfies the marginal property; see Table 4
and Section 4 in their article. In Section 5 of their article, Mee and
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Eberhardt (1996) state that “…intervals having the shape of TI’s seem to
hold the most promise for achieving this goal” (i.e., achieving the
requirements of multiple use confidence regions in calibration). The
numerical study in this article suggests that this is indeed the case.
The numerical results in Mathew, Sharma and Nordström (1998) also
support this in the context of a multivariate calibration problem.

27.2 TOLERANCE INTERVALS, SIMULTANEOUS
TOLERANCE INTERVALS AND A MARGINAL
PROPERTY

As pointed out in the previous section, we want to construct intervals of
the . Here  and .
The quantity k(x) is to be determined subject to the conditions that
should be satisfied by the interval. Let

(27.2.3)

Then

(27.2.4)

where  denotes the central chi square distribution with df=n-m. In
order to state the conditions to be satisfied by a TI, let

(27.2.5)

where z=[y(x)-x’ß]/�~N(0, 1) and u and v are as defined in (27.2.3) and
(27.2.4). From (27.2.5), it is clear that any probability statement
regarding C(x) depends on u and v. Hence we shall use the notation
C(x; u, v) instead of C(x). Thus (27.2.5) can be written as

(27.2.6)

where �(.) denotes the standard normal cdf. The condition to be satisfied
by a TI is

(27.2.7)
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for every x. The marginal property (marginal in x) that we are interested
in is

(27.2.8)

for every sequence {xi} and for every N. STI’s, on the other hand, satisfy
the following.

(27.2.9)

We note that in practice, x in (27.2.7) and the xi’s in (27.2.8) won’t be
completely arbitrary. They will be bounded quantities with known
bounds.

The interpretation of (27.2.7) is as follows. If a large number of future
observations y(x) are obtained, based on the normal distribution (27.1.2),
corresponding to the same x, the interval  will contain at
least a proportion � of these future observations with confidence �. On
the other hand, the condition (27.2.8) states that in a sequence of future
observations y(xi), corresponding to possibly different x values xi (i=1, 2,
3, ….), at least a proportion � of these observations will belong to the
corresponding interval , with confidence �.

The formulas and arguments that we have presented so far in this
section are quite standard and are available, for example, in Mee,
Eberhardt and Reeve (1991) and Eberhardt and Mee (1996). The
condition (27.2.8) is given in Mee and Eberhardt (1996). These authors
have also discussed the significance of (27.2.8). In the next section, we
propose to investigate the following. Suppose k(x) is derived subject to
(27.2.7), which is the condition for a TI. Does such a k(x) satisfy (27.2.8)?
What we have done is only a numerical study for the simple linear
regression model. We shall first give the simplified versions of (27.2.7)
and (27.2.8) for such models. For the simple linear regression model,
the components of y in (27.1.1), say y1, y2, …, yn, are independently
distributed with

(27.2.10)

where xi’s are the known values of the explanatory variable (i=1, 2, …,
n). Also,

(27.2.11)

denotes a future observation corresponding to the value x of the
explanatory variable. Note that in the notation of (27.1.1) and (27.1.2),
ß=(ß0, ß1)’ and x=(1, x)’. Write

(27.2.12)
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Let  and  denote the least squares estimators of ß0 and ß1, respectively,
and . Then

(27.2.13)

Let

(27.2.14)

where S is defined in (27.2.12). Also note that u1 and u2 are independently
distributed. By using the definition of C(x) in (27.2.5) [to be denoted by
C(x) for the model (27.2.11)], and by straightforward calculations, we
get

(27.2.15)

where z=[y(x)-ß0-ß1x]/�~N(0, 1), u1 and u2 are as defined in (27.2.14),
, so that  and

(27.2.16)

In view of (27.2.15) and (27.2.16), we shall use the notation k(c) instead
of k(x) and C(c; u1, u2, v) instead of C(x). Thus

(27.2.17)
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Let � denote an upper bound on |c|, i.e., |c|≤�. Then the conditions
(27.2.7) and (27.2.8) simplify to

(27.2.18)

for every c satisfying |c|≤�, and

(27.2.19)

for every sequence {ci} satisfying |ci|≤�. Note that it is reasonable to
assume a known upperbound for c. For example, if x in (27.2.11) is like
the xi’s in (27.2.10), then xmin≤x≤xmax, where xmin and xmax denote the
minimum and the maximum among the xi’s. From the definition of c in
(27.2.16), it follows that

Since , is clear that  and  are both less

than or equal to one. In other words |c|≤1 is a reasonable assumption.
The actual upper bound for |c| will depend on the xi’s and will perhaps
be much less than one. In fact one should expect the upper bound on
|c| to get smaller as n becomes large, since S becomes large with n.

Now suppose k(c) is derived subject to (27.2.18). In the next section
we have numerically investigated whether such a k(c) will satisfy
(27.2.19). The problem essentially involves only two quantities that can
vary, namely, n and δ (the upper bound on |c|). However, in order to
carry out any numerical computation based on (27.2.19), one also has
to decide upon a large enough value of N and, more importantly, one
has to choose the sequence {ci}, i=1, 2, …, N. Even for a fixed value of N,
it is obviously quite time consuming to carry out simulations for a large
number of different choices for the sequence {ci}, i=1, 2, …, N. Note that
if the ci’s are all equal, then (27.2.18) and (27.2.19) coincide. Thus, when
the ci’s are nearly equal, (27.2.18) is likely to imply (27.2.19). Since we
want to study if k(c) satisfying (27.2.18) also satisfies (27.2.19), it appears
that we should choose the ci’s to be as unequal as possible in the sequence
{ci}, i=1, 2, …, N. For our numerical results in the next section, we have
chosen N=10,000 and have made three choices of the sequence {ci}, i=1,
2, …, 10,000. Our first choice consists of 10,000 equispaced ci’s, starting
at -�, in the interval [-�, �]. Our second choice consists of 5,000 ci’s equal
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to zero and 5,000 ci’s equal to �. The third choice consists of 5,000 ci’s
equal to -� and 5,000 ci’s equal to �. Note that the third choice maximizes
the variance among the ci’s (i=1, 2, …, 10,000) subject to |ci|≤�. However,
it is certainly not clear if such a choice is the least favorable one for the
condition (27.2.19) to hold. In our computations, we have also made two
choices for �, namely, �=0.5 and �=5.

Since there is arbitrariness in the choice of the sequence {ci}, an
alternative is the following. Assume a probability distribution on
the interval [-�, �] and generate the sequence {ci}, i=1, 2, …, N,
according to this probability distribution. Suppose, for example, that
the ci’s are generated independently according to a uniform
distribution on [-�, �]. Then, by the strong law of large numbers,

, with probability one, as

N→∞. Here Ec(.) denotes expected value computed with respect to the
uniform distribution for c ∈[-�, �]. The above result is true for every
fixed u1, u2 and v. Thus, assuming a uniform distribution for c ∈[-�, �],
(27.2.19) becomes

(27.2.20)

In our numerical results in the next section, we have also studied the
condition (27.2.20) assuming a uniform distribution for c ∈[-�, �].

27.3 NUMERICAL RESULTS

We shall first give a small simplification of (27.2.18). Let

 

Hence . In view of this observation and (27.2.17),
(27.2.18) can be written as

where u~N(0, 1) and . Note from (27.3.21) that k(c)= k(-
c). (It is easy to verify that (27.2.18) depends on u only through |u|). In
other words, it is enough to obtain k(c) satisfying (27.3.21) for c≥0. For
our numerical calculations, we have assumed |c|≤δ with two choices
for δ : δ =0.5 and δ =5. As already pointed out, δ is expected to be much
less than one in actual applications. However, we have included the
choice δ =5 in our numerical results in order to see to what extent (27.2.18)
will imply (27.2.19) when the ci’s vary over a rather wide interval.

The specific numerical calculations that we have carried out are the

(27.3.21)
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following. Starting with c=0 and ending with c=5, obtain the values of
k(c) satisfying (27.3.21) for 1001 equispaced values of c in the interval
[0, 5]. A MATLAB program was used for this calculation. The program
first computes k(0) and uses k(0) as a starting value for the computation
of k(c1) for c1>0. The value of k(c1) is used as a starting value for the
computation of k(c2) for c2>c1 etc. For the evaluation of k(0), a starting
value is required. Let k*(0) satisfy

(27.3.22)

From (27.3.22), we immediately get

(27.3.23)

where z[(1+α)/2] denotes the 100[(1+α)/2]th percentile of the standard
normal distribution and  denotes the 100(1-γ)th percentile
of the central chi square distribution with df=n-2. Note that at c= 0,
(27.3.21) is “approximately the same” as (27.3.22), especially when n is
large. In any case, we have k(0)>k*(0) and k*(0) in (27.3.23) can be used
as a starting value for computing k(0). Now fit a function, perhaps a
polynomial of appropriate degree, to the k(c) values numerically
obtained. The degree of the polynomial is decided so as to get a
satisfactory fit. The values of k(c) along with the fitted function can be
plotted to verify that the fitted function is visually satisfactory. The
fitted function is taken to be the function k(c) that satisfies (27.2.18), or
equivalently (27.3.21), for all values of c in the interval [-5, 5]. A few
fitted functions are given in Appendix A corresponding to α=0.90, γ=0.95
for n-2=5, 13, 38 and 100 and corresponding to α=0.95, γ=0.99 for n-
2=38. (Recall that n-2 is the df of the chi square distribution of (n-2)v2).
Figures 27.1(a)– (d) give plots of the actual k(c) values and these fitted
functions. The k(c) functions given in Appendix A contain powers of c up
to and including c6.5 and we have kept several decimal places in the
coefficients of the various powers of c. This was done in order to get a
visually satisfactory fit. As should be clear from Figures 27.1(a)–(d),
the functions given in Appendix A provide very satisfactory fits to the
k(c) values.
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Note that sequence 1(a) has 10001 equispaced values in the interval [-
0.5, 0.5], starting with -0.5 and ending with 0.5. Sequence 1(b) has 10,000
values, half of them being equal to 0 and the remaining half equal to
0.5. Sequence 1(c) has 10,000 values, half of them being equal to -0.5
and the remaining half equal to 0.5. Sequences 2(a), 2(b) and 2(c) are
similarly defined for the interval [-5, 5]. For the sequences in (27.3.24),
we have simulated

(27.3.25)

where  and these random
variables are independent. C(ci; u1, u2, v) is given in (27.2.17). Here N=
10,001 for sequences 1(a) and 2(a) and N=10,000 for the other sequences
in (27.3.24). Thus we are essentially simulating the lhs of (27.2.19). For
this purpose, we generated 10,000 values of the random variables u1, u2

and v. Tables 27.1a, 27.1b and 27.1c give the simulated values of
(27.3.25). Table 27.1a gives the simulated values of (27.3.25)
corresponding to the sequences 1(a) and 2(a) in (27.3.24), and Table
27.1b and Table 27.1c give the same for the sequences 1(b), 2(b) and
1(c), 2(c) in (3.4). If (27.2.18) implies (27.2.19), then the simulated values
of (27.3.25) should all be close to �. We see from Tables 27.1a, 27.1b and
27.1c that most of the simulated values are very close to � or slightly
more than �. There are only very few values that are below �, and none
of them is unacceptably below the corresponding �. This is especially
true for δ=0.5. The conclusion is that if k(c) satisfies the TI condition

27.3.1 The Simulation of (27.2.19) and (27.2.20)

Consider the following sequence of ci’s:

(27.3.24)
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(27.2.18), then such a k(c) meets the condition (27.2.19) quite well, at
least for the sequences in (27.3.24).

For the simulation of (27.3.25) using the sequences 1(a) and 2(a), we
used values of k(c) obtained from the fitted functions. Note that in order
to simulate (27.3.25), it is not necessary to obtain the functional form of
k(c); only its numerical values are required. However, with the sequences
1(a) and 2(a) in (27.3.24), this amounts to evaluating 10,001 k(c) values
numerically. To save time, we chose to evaluate only 1001 k(c) values
and then fit a function to the values so obtained. We note that the
simulations reported in Mee and Eberhardt (1996) uses the individual
k(c) values instead of a fitted function. For the sequences 1(b), 1(c), 2(b)
and 2(c) in (27.3.24), we used the actual k(c) values in the simulation
since only two k(c) values are required, namely, k(0) and k(0.5) for the
sequences 1(b) and and 1(c), and k(0) and k(5) for the sequences 2(b)
and 2(c) (recall that k(c)=k(-c)).

Table 27.2 gives the simulated values of the lhs of (27.2.20), where,
for given values of u1, u2 and v, Ec[C(c; u1, u2, v)] was computed using
10,000 values of c generated based on the uniform distribution on the
intervals [-0.5, 0.5] and [-5, 5]. For each value of c, the value of k(c) was
obtained from the fitted function. For simulating the lhs of (27.2.20),
10,000 values of u1, u2, and v were generated. From Table 27.2, it is
clear that the lhs of (27.2.20) is very close to � and is slightly more than
� in most cases. Note that c being uniform on [-0.5, 0.5] or [-5, 5] implies
that x has a uniform distribution on an appropriate interval; see (27.2.16)
for the relationship between x and c. One can also simulate the lhs of
(27.2.20) using some other distribution for x or c. However, we have
carried out our simulation only using the uniform distribution.

The conclusion we draw from the numerical results is that it is enough
to obtain k(c) satisfying the TI condition in order to satisfy the
requirement (27.2.19). Unfortunately, the numerical results do not reveal
any pattern regarding the behavior of (27.3.25) when the df, α,� and δ
vary. One should expect that the simulated values of (27.3.25) would be
less for the wider interval [-5, 5] than for the interval [-0.5, 0.5]. Most,
though not all, of the simulated values support this.
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TABLE 27.1 Simulated values of (27.3.25) for the sequences in (27.3.24) for ci∈
[–δ, δ], with δ=0.5, 5, and df=n–2

TABLE 27.1a Simulated values of (27.3.25) for the sequences 1(a) and 2(a) in
(27.3.24)

TABLE 27.1b Simulated values of (27.3.25) for the sequences 1(b) and 2(b) in
(27.3.24)
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TABLE 27.1c Simulated values of (27.3.25) for the sequences 1(c) and 2(c) in
(27.3.24)

TABLE 27.2 Simulated values of the lhs of (27.2.20)
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Remark For the models (1.1) and (1.2), the computation of k(x) satisfying
(2.5) is quite similar to that of k(c) satisfying (3.1). To see this, note that,
in view of (2.2),

(27.3.26)

Hence (2.4) can be written as

 

where u=x’u/d~N(0, 1) and we use the notation k(d) instead of k(x).
Thus, in (3.1), . (2.5) can now be written as

(27.3.27)

Note that (3.1) and (3.7) are identical. In other words, the computation
of k(x) satisfying (2.5), or equivalently, the computation of k(d) satisfying
(3.7), does not present any difficulty. However, in order to verify whether
k(x) satisfying (2.5) also satisfies (2.6), we need to consider a sequence
of vectors {xi} (i=1, 2, 3, …) for computing the lhs of (2.6). The advantage
in studying the condition (2.17), as opposed to (2.6), is that in (2.17), the
sequence that we need to consider, namely, {ci} (i=1, 2, 3, …), is a sequence
of scalars. Perhaps one way to study (2.6) is to consider the xi’s belonging
to a bounded region (which is usually the case) and then generate xi’s
according to a probability distribution on this region. In other words,
we can study a condition analogous to (2.18). In this article, we have
not pursued this further.

27.3.2 An Example

Intervals satisfying (2.16) or (2.17) will be much shorter compared to the
STI’s that satisfy (2.7). In other words, k(c) satisfying (2.16) or (2.17) will
be smaller compared to k(c) satisfying (2.7). Of course, the conditions
(2.16), (2.17) and (2.7) express different requirements. Nevertheless,
we shall now compare our k(c) values with those obtained using the
Mee, Eberhardt and Reeve (1991) procedure for the example in
Lieberman and Miller (1963). We recall that the Mee, Eberhardt and
Reeve (1991) procedure is for the computation of STI’s, i.e, intervals
satisfying (2.7). In this example the models (2.8) and (2.9) are applicable.
The response variable y represents the speed of a missile (in miles per
hour) and the explanatory variable x is the dimension of the orifice
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opening (measured in inches) of the valve which admits the fuel. In
Section 7 of Lieberman and Miller (1963), values of the speed, namely
the yi’s, are given corresponding to the values xi’s of x for i=1, 2, …, 15.
The xi values were in the range 1.310 inches to 1.400 inches with

 and ; see Lieberman and Miller
(1963, p. 166). Table 27.3 gives three values of x and the corresponding
values of c and k(c). In the table k(c) denotes the value that satisfies
(2.16) and kMER(c) denotes the value obtained using the Mee, Eberhardt
and Reeve (1991) procedure. As mentioned earlier, a MATLAB program
was used for obtaining k(c). As expected, the k(c) values are substantially
smaller compared to the kMER(c) values. However, as already pointed
out, our k(c) values do not satisfy the stronger condition (27.2.9), whereas
kMER(c) does satisfy this condition.

27.4 CALIBRATION

Consider the models (27.2.10) and (27.2.11) and suppose x in (27.2.11)
is unknown. The calibration problem consists of statistical inference
concerning x. Here we shall discuss the problem of constructing
confidence regions for x. More specifically, we shall discuss the
construction of multiple use confidence regions. The problem arises when
the yi’s in (27.2.10), referred to as the calibration data, are used
repeatedly to construct a sequence of confidence regions for a sequence
of unknown and possibly different x values after observing the
corresponding y(x), following the model (27.2.11). Multiple use confidence
regions are derived subject to the following coverage and confidence
level requirements. Given that the confidence regions are constructed
using the same calibration data, the proportion of confidence regions
that include the corresponding true x values is to be at least α. The
probability that the calibration data will provide such a 100a% coverage
is to be at least �. For further details on this criterion, we refer to Mee
and Eberhardt (1996). This article also contains other relevant
references.

One approach for obtaining a multiple use confidence region for the
calibration problem is to invert an STI. However, what is required is

TABLE 27.3 Values of k(c) satisfying (27.2.18) and kMER(c) for n=15
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the inversion of an interval satisfying the condition (27.2.19). That is,
observe y(x) in (27.2.11) and invert the interval (1,x) β +k(c)s in order to
obtain the region for x, where k(c) satisfies (27.2.19). Here 
and k(c) is a function of x; see (27.2.16). Note that in order to do this, the
functional form of k(c) is required. Since the numerical results in the
previous section indicate that k(c) satisfying (27.2.18) [or, equivalently,
(27.3.21)], also satisfies (27.2.19), at least approximately, our
recommendation is to compute k(c) satisfying (27.2.18) and then invert
the interval (1,x)β+k(c)s in order to obtain a confidence region for x. We
shall briefly illustrate the procedure using the line width calibration
problem discussed in Croarkin and Varner (1982), and also in Mee,
Eberhardt and Reeve (1991) and Mee and Eberhardt (1996). Here the
response variable represents line-width measurements in a certain
range on integrated circuit photomasks. The explanatory variable is
the line-width certified by the National Institutes of Standards and
Technology (NIST). The data given in Croarkin and Varner (1982) consist
of 40 values of the response variable, say yi, corresponding to known
values xi of the explanatory variable (i=1, 2, …, 40). The assumed model
is yi~N(ß0+ß1xi, σ2), i=1, 2, …, 40, where the yi’s are also assumed to be
independent. Let y(x) denote the line-width measurement corresponding
to an unknown value of x of the explanatory variable. Then
y(x)~N(ß0+ß1x, σ2), where y(x) is assumed to be independent of the yi’s
(i=1, 2, …, 40). The 40 yi values are to be used repeatedly to obtain
confidence regions for the unknown x as and when the corresponding
line-width measurement becomes available.

Based on the data in Croarkin and Varner (1982), we have β0=0.282,
β 1=0.977 and s=0.0683. For the line-width measurement y(x)=8, α=0.95
and �=0.99, we can use k(c) given in Appendix A (see A5 in Appendix A)
and invert the interval (1,x)β+k(c)s for y(x) in order to get the confidence
region for x. The resulting confidence region for x is the interval (7.709,
8.097). This is narrower than the interval (7.69, 8.12) obtained by the
Mee, Eberhardt and Reeve (1991) procedure.

For a multivariate calibration problem, Mathew and Zha (1997) have
derived confidence regions using a criterion similar to (27.2.18).
However, they did not verify if such a confidence region will satisfy the
requirement (27.2.19).

27.5 CONCLUSIONS

Our work suggests that k(c) satisfying the TI condition can be used to
obtain intervals satisfying the property (27.2.8). This has resulted in
less conservative multiple use confidence regions for the calibration
problem. However, it appears quite difficult to theoretically prove that

Copyright © 2002 Taylor & Francis



TOLERANCE INTERVALS AND CALIBRATION 423

the TI condition (27.2.18) will imply the condition (27.2.19). The main
difficulty in proving (27.2.19) is that the random variables C(ci; u1, u2,
v), i=1, 2, …, are not independent.

It does take a certain amount of computational time in order to arrive
at the tables like Table 27.1 and Table 27.2. However, the numerical
computation of k(c) satisfying (27.2.18) is quite simple and fast. All it
takes is the evaluation of k(c) for a few values of c. We could easily
accomplish this using a MATLAB program. A polynomial of appropriate
degree can then be fitted to such k(c) values. In practice, c may vary in
a rather narrow range and hence k(c) may not vary too much.
Consequently, it may not be necessary to evaluate k(c) for a large number
of values of c; about 100 values should be quite adequate. Note that in
problems that call for the construction of a sequence of intervals, for
example, multiple use confidence intervals in the calibration problem,
such intervals will be constructed for y(x) in (27.1.2) for many values of
x. However, the function k(c) required for this purpose need to be
evaluated only once and it can then be used repeatedly.

APPENDIX A: SOME FITTED FUNCTIONS k(c)

A1 df=5, α=0.90 and �=0.95

A2 df=13, α=0.90 and �=0.95
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A3 df=38, α=0.90 and �=0.95

A4 df=100, α=0.90 and �=0.95

A5 df=38, α=0.95 and �=0.99
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CHAPTER 28

AN OVERVIEW OF SEQUENTIAL
AND MULTISTAGE METHODS IN

REGRESSION MODELS

SUJAY DATTA
Northern Michigan University, Marquette, MI

Abstract: This chapter presents a brief survey of the wide variety of
sequential and multistage inference-procedures used in linear regression
and other related models. The primary motivation behind using such
methodologies in these models comes from, among other things, fixed
precision inference and online (or adaptive) data-processing. After a
general introduction to these models and methodologies, here we explore
the significant developments in sequential and multistage fixed-
precision inference in deterministic regression models, sequential
shrinkage estimation in such models, and the Bayes sequential
approach. These are followed by sequential inference in stochastic
regression, inverse regression, and errors-in-variables models.
Throughout, the emphasis is on first and second-order asymptotic
properties of the procedures involved. An updated list of references is
provided at the end.

Keywords and phrases: Linear regression, Fixed precision inference,
Sequential and multistage procedures, Bayes sequential procedures,
Shrinkage estimation, Stochastic regression models, Inverse regression

28.1 INTRODUCTION

This chapter is intended to provide a brief overview of the wide variety
of sequential and multistage methodologies that are used for drawing
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inferences in linear regression and related models. A linear regression
model is one of the oldest in statistical data analysis. Also, sequential
and multi-stage inference-procedures have come a long way since the
days of Wald’s Sequential Probability Ratio Test (SPRT). The ‘marriage’
of these two was primarily motivated by, among other things, fixed
precision inference (for example, fixed-width interval estimation,
bounded-risk or minimum-risk point estimation, fixed proportional
accuracy estimation, etc.) and the increasing demand for online (or
adaptive) data-processing techniques. The result has been an
astonishingly rich array of procedures encompassing almost all aspects
of regression analysis and some related models as well. Here, following
a concise introduction to these models and a general discussion of
sequential and multistage methodologies in Section 28.2, Section 28.3
addresses the issue of fixed-precision inference in regression models
with deterministic regressors. In the classical (that is, frequentist)
framework, few-stage, sequential and accelerated sequential procedures
for point estimation, confidence set estimation and hypothesis-testing
are described with a predetermined measure of accuracy in each case.
Section 28.4 provides a survey of sequential shrinkage estimation
methodologies in regression. Then in Section 28.5, Bayes sequential
inference in a regression model is considered and the idea of an
asymptotically pointwise optimal (APO) estimator is introduced. Section
28.6 deals with fixed precision inference in stochastic regression models
where the regressors themselves have their own probability
distributions. Section 28.7 explores sequential solutions to inverse
regression (or calibration) problems. Finally, Section 28.8 presents some
miscellaneous topics which are relevant in this context. Throughout,
asymptotic optimality properties of the procedures involved are
examined, with special emphasis on second-order asymptotic
characteristics. An extensive and updated (but by no means exhaustive)
list of references are provided at the end. For additional information
and further details regarding some of the topics mentioned here, the
interested reader should see, for example, Ghosh and Sen(1991) or
Ghosh, Mukhopadhyay and Sen (1997).

28.2 THE MODELS AND THE METHODOLOGIES—A
GENERAL DISCUSSION

Here we provide a brief description of the models we will be dealing
with in the later sections, and also a preview of sequential and multistage
inference-procedures in general. We also indicate, by means of an
example, why one would use such procedures in the context of these
models.
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28.2.1 Linear Regression and Related Models

In the following sections, we will primarily be concerned with the model:

(28.2.1)

where Xn×p isthe known design matrix of rank p, ßp×1 is the unknown
vector of regression coefficients, and  is the vector of random errors
having some joint distribution Fn with zero mean and variance-
covariance matrix �n×n. Under this model, typically we would be
interested in inferences regarding ß, or Hß for some known r×p matrix
H of rank r. Depending on the situation, certain special cases or
variants of the above model may be appropriate. For example, � might
be assumed to have a multivariate Gaussian distribution, � could have
the special configuration �2In×n for some unknown �2>0 or �2�n×n for
some known positive definite matrix �, or it could have the
equicorrelation structure {(�2-�)In×n+dJn×n} for some unknown �2>0 and
� ∈(-∞ , ∞). On the other hand, a more general version of this model
might assume that the i-th row of X is  for some
known real-valued functions , instead of just {xi1, …, xip}.
Another direction for generalization would be to consider the
generalized linear model: E(yi)=�(ß1xi1, …, ßpxip) for some known real-
valued ‘link-function’ �. It might even be justified, depending on the
nature of the underlying experiment, to assume that the rows of X are
themselves independent and identically distributed (i.i.d.) random
vectors coming from a certain p-variate joint distribution which could
be independent of the error-distribution. In that case we would be
dealing with a stochastic regression model. In a deterministic or
stochastic regression model, the classical (i.e. frequentist) approach
to inference would assume that ß is a vector of (unknown) constants.
However, the Bayesian approach would consider it as another random
vector having an a priori distribution (say, p-variate Gaussian with
mean-vector µ and dispersion-matrix �). While an empirical Bayesian
approach would try to estimate µ and � from the observed data, a
hierarchical Bayesian approach would assume certain (known)
probability distributions on these parameters.

While inference on ß, the vector of unknown regression coefficients,
is our primary objective in all the above models, the classical univariate
inverse regression (or calibration) problem is concerned with determining
the value (say, x0) taken by the regressor X in the model: 

, by using one or more observed values of the response-variable
Y corresponding to X=x0. Generally, the parameters ß0 and ß1 are
assumed unknown and are estimated by fitting the regression model to
a set of observations independent of those taken at X=x0.
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In an errors-in-variables (EIV) model, also known as a measurement
error model, the basic setup is as follows: one observes pairs {(Xi, Yi), i=
1, …, n} where ; Xi=�i+�i, with 	, ß being real constants,

 and  being independent of
�i’s. If the �i’s are fixed constants, this is the so-called functional
relationship model, as opposed to a structural relationship between X
and Y where �i’s would also be assumed to have come from a probability
distribution.

28.2.2 Sequential and Multistage Methodologies

In classical parametric inference, the probability distributions of the
random variables involved are completely characterized by parameters
whose values are usually unknown to us. Typically the information
available regarding the parameters is in the form of random samples,
often obtained through a chosen experimental design or a controlled
random mechanism. Based on these samples, we draw inferences about
the unknown parameters in many different ways, such as point
estimation, confidence-set estimation, hypothesis-testing, etc..
Corresponding to each of these approaches, there are many competing
inference-procedures and to be able to choose one out of them, we must
use some criterion for comparing their performances. Statistical
decision theory provides several such criteria. One starts with a
suitable loss function, intended to quantify the loss incurred when a
‘wrong’ inference is drawn, and subsequently chooses the decision-
rule that minimizes the risk (i.e. the expected loss). But the problem
is, often such optimal decision-rules may not exist and even if they do,
their own performances may be far from satisfactory. For example, if
it is desirable in a point estimation problem to bound the maximal
risk from above by a given number, or in a hypothesis-testing problem
to achieve a preassigned power, even the decision-theoretically ‘best’
procedures may fail to achieve these goals for a fixed number of sample
observations. Dantzig(1940) showed the nonexistence of a fixed sample-
size solution to a certain version of the problem of constructing fixed-
width confidence intervals for a normal mean µ such that the coverage-
probability is at least some preassigned quantity (1-
), irrespective of
the value of the unknown population variance �2. Inferences of this
sort with preassigned precision-constraints are called fixed-precision
inferences.

On the other hand, sometimes the ‘optimal’ decision-rules for fixed
sample-size inference problems may turn out to be ‘inefficient’ in the
sense that the same level of performance could be achieved with
possibly fewer observations by following an adaptive sampling scheme
in which, the ‘necessity’ of taking any further sample for the
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inference-drawing purpose is re-examined after every step. A classic
example of this phenomenon is the SPRT of Wald(1947) which is
essentially a likelihood-ratio test based on a sequential sampling scheme
governed by a ‘stopping rule’. The average sample number (ASN) for
this test turns out to be smaller than the number of samples needed to
achieve the same power via the fixed sample-size UMP test. Almost
simultaneously with the emergence of Wald’s SPRT, a version of the
problem that Dantzig(1940) proved to be unsolvable in the fixed
sample-size scenario, was solved by Stein(1945) using a two-stage
sampling scheme—the first stage intended to provide an estimate of
the unknown nuisance-parameter �2 and the final inference intended
to be based on both stages combined.

Apart from the two examples cited above where an adaptive
multistage sampling scheme either helps save samples or solves an
inference problem otherwise unsolvable via fixed sample-size
methodologies, there are situations where such a sampling scheme is
appealing from other viewpoints as well. For example, in industrial
process control where detection of change-points in the production
system is an important issue and one observes the products one by
one (or batch by batch) as they come out of the assembly-line, a
sequential sampling scheme is intrinsic and it is difficult to deny it
preference over any fixed sample-size procedure. Also, in clinical and
pharmaceutical research involving humans or other living beings,
any plan to apply fixed sample-size methodologies almost always
runs the risk of becoming unethical. This is because some subjects
already treated with the drug under study might suddenly develop
fatal side-effects forbidding any further experimentation with it, or
conclusive evidence regarding the drug’s performance may already be
there even before all the subjects are treated with it. Adaptive
sequential and multistage designs are often tailor-made to take into
account such contingencies.

As the scope of applying sequential and multistage methodologies
has gradually widened, several criteria have emerged over the years to
assess their performances:

• Consistency or Exact Consistency in the sense of Stein (1945)—
when the procedure exactly achieves the underlying inferential
goal;

• Asymptotic Consistency in the sense of Chow and Robbins (1965)—
when the procedure achieves the underlying inferential goal only
asymptotically (i.e. in the limit);

• Asymptotic First Order Efficiency in the sense of Chow and Robbins
(1965) or Ghosh and Mukhopadhyay (1981) respectively—if the
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ratio of the ASN of the multistage procedure to the corresponding
‘optimal’ fixed sample-size approaches 1 asymptotically;

• Asymptotic Second Order Efficiency in the sense of Ghosh and
Mukhopadhyay (1981)—if the difference between the ASN of the
multistage procedure and the corresponding ‘optimal’ fixed sample-
size remains bounded asymptotically.

It turns out that Stein-type two-stage procedures, although exactly
consistent in most cases, lack even asymptotic first order efficiency—a
drawback that makes them less attractive. Mukhopadhyay (1980)
came up with a modified version of it which is both exactly consistent
and asymptotically first-order efficient. On the other hand, purely
sequential procedures are in general only asymptotically consistent
whereas their asymptotic efficiency is often of the second order. But the
biggest shortcoming of a purely sequential sampling scheme is its
operational inconvenience. The trade-off between asymptotic second
order efficiency and operational convenience came in the form of a
triple-sampling scheme, first considered by Mukhopadhyay and later
recommended by Hall (1981), which cuts the number of sampling
operations to bare bones without sacrificing second order optimality.
Subsequently, Hall (1983) tried to impart ease of implementation to a
purely sequential procedure by suggesting an accelerated version of it.
The idea was to go purely sequentially part of the way, and then resort
to a single batch-sampling. Mukhopadhyay (1990) provided a unified
theory behind three-stage sampling while Mukhopadhyay and Solanky
(1991) generalized Hall’s idea of acceleration to a variety of inference
problems. Recently, Mukhopadhyay (1993) modified their earlier
accelerating technique in order to simplify the underlying asymptotic
theory.

28.2.3 Sequential Inference in Regression: A Motivating
Example

Suppose, in the context of a deterministic multiple linear regression
model , that the vector of random errors has a N(O, �2In×n)
distribution for some unknown �2>0, and ß ∈Rp is unknown (n�p). Given
two numbers d(>0) and 0<
<1, let it be our goal to construct a fixed-
volume confidence set for ß whose volume is a given function of d and
confidence coefficient is at least (1-
). One might consider confidence
ellipsoids of the form:

(28.2.2)
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where . It is easy to see that 
where  for x>0. Hence the confidence coefficient
associated with the above ellipsoid will be at least (1-
) if n is the smallest
integer >
2�2/d2(=C, say) where F(a2)=1-
. So in order to achieve the
desired confidence coefficient and, at the same time, satisfy the given
volume constraint, one needs to take at least C samples. In other words,
C is the ‘optimal’ fixed sample-size for this problem. But C involves the
unknown parameter �2 and is, therefore, unknown—implying that there
can be no fixed sample-size solution to this problem that will work for
all values of �2.

A way of getting around this stumbling block was suggested by
Mukhopadhyay and Abid (1986) who proposed the following purely
sequential sampling scheme: start with {(yi, xi): i=1, …, k0} for some
k0>p and continue to take one more sample at a time until there are N
of them where

(28.2.3)

where . At the stopped stage, construct
the confidence set �N as defined in (28.2.2). Using some nice properties
of a multivariate Gaussian error-distribution, one can show that

 where g(x)=F(a2x) for x>0. The N defined in
(28.2.3) is called a stopping variable for this sampling scheme. Now it
remains to verify whether this procedure really achieves the targetted
confidence level of (1–
) and how efficient it is compared to its fixed
sample-size counterpart (which uses C samples). Mukhopadhyay and
Abid (1986), in their Theorem 4, have shown that:

Theorem 28.2.1 For the above procedure, as 

(i) N/C→1 and E(N/C)→1;
(ii) E(N-C)=A+o(1); and
(iii) ,
for some computable real constants A and B. In other words, the procedure
is asymptotically consistent and second order efficient in the sense of the
previous subsection. Some of the procedures described in the following
sections share only the first one of these three properties and are, therefore,
called first order efficient.

28.3 FIXED-PRECISION INFERENCE IN DETERMINISTIC
REGRESSION MODELS

Here we set out to explore the plethora of sequential and multistage
methodologies used for drawing inferences under precision-constraints.
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We consider point estimation, confidence-set estimation and hypothesis-
testing separately, although the basic techniques involved share a great
deal of similarity.

28.3.1 Confidence Set Estimation

For inference on Hß (Hr×p being a known matrix of rank r) under the
‘Aitken setup’ where, in the model (28.2.1), � has a N(O, �2�) distribution
with a known positive definite (p.d.) matrix �n×n and an unknown
�2>0, Stein(1945) proposes a two-stage procedure. Actually, Stein
does it for the special case �=In×n, and one should see Chatterjee
(1959a, b) or Chatterjee (1991) for extension to a general p.d. matrix
�. The procedure is essentially as follows: start with n0 pilot samples
(with nn0-p>1) and compute the usual unbiased estimator

 of �2 from it (  being the least-

squares estimator of ß). Then take (N- n0+1) more samples where
, with z
 being the upper 
-percentage

point of a standard normal distribution and <x> being the largest integer
<x. Finally, use the least-squares estimator of ß based on N samples in
the point estimator of Hß, or in order to construct confidence-ellipsoids
of the form (28.2.2) for it, or for testing H0: Hß= vs. H1: Hß�. It turns
out that Stein’s procedure is not even asymptotically first order efficient.
However, Bishop (1978) and Wilcox (1985) considered Stein-type two-
stage procedures for constructing fixed-width confidence intervals for
the parameters of a general linear model assuming unequal and equal
variances respectively.

Albert (1966) and Srivastava (1967, 1971) proposed sequential
procedures for constructing fixed-volume ellipsoidal confidence regions
for ß (the former actually did it for Hß for a known matrix H of full row-
rank). Neither of them required the error-distribution to be Gaussian,
and their methods involve eigenvalues of n(X’X)-1. They considered
confidence ellipsoids of the form (28.2.2) with only d2 replaced by d2/�n,
where �n is the largest eigenvalue of n(X’X)-1. Inorder to obtain a confidence
ellipsoid with maximum diameter �2d which achieves the targetted
confidence level (1-
) at least asymptotically, they suggested the following
sampling scheme: start with n0(>p) sample-vectors and continue taking
one more vector at a time until there are N of them where

(28.3.4)

where  and a2 are as in Subsection 28.2.3. At the stopped stage,
construct the ellipsoid �N with d2 replaced by d2/�N. Assuming that

 is a pxp positive definite matrix, they prove the
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asymptotic consistency and first order efficiency of their procedures.
Gleser (1965, 1966) provide similar results for this problem, also without
assuming a Gaussian error-distribution. But he considered spherical
(instead of ellipsoidal) confidence sets.

Mukhopadhyay and Abid (1986) put forward a two-stage, a three-
stage and a sequential sampling scheme for constructing fixed-size
confidence ellipsoids for ß under the assumption of Gaussian errors.
Their sequential procedure, which is asymptotically second order
efficient, can be found in our Subsection 28.2.3. Their two-stage
procedure is a modified version of Stein’s, in the sense that unlike
Stein (1945), they start with an initial sample-size of n0 which is no
longer a fixed positive integer but an appropriately chosen monotone
function of C (the corresponding ‘optimal’ fixed sample-size). This
gives their double-sampling scheme asymptotic first order efficiency.
For details, see also Mukhopadhyay (1980). Their triple-sampling
strategy is along the line of Hall (1981) and is second order efficient.
The idea here is to start with a first-stage sample-size that is a
certain monotone function of C, and then determine the second-stage
sample-size in much the same way as N was determined in Stein’s
two-stage procedure (see above)—except that  will now be
replaced by  for a suitably chosen � ∈(0,1). The third-stage
sample-size is then figured out in a similar manner, this time without
the �. See Mukhopadhyay (1990) for the general theory. As
mentioned earlier, a triple-sampling procedure is a nice trade-off
between second order efficiency and ease of implementation. In order
for the sequential procedure of Subsection 28.2.3 (which has better
second order properties than triple-sampling) to be operationally
convenient, Mukhopadhyay and Solanky (1991) proposed an
‘acceleration’ technique for it following Hall (1983), which was later
simplified by Mukhopadhyay (1996). The idea is to replace the

 in Equation (28.2.3) by  for a suitably chosen �∈ (0,1)
such that �-1 is an integer and when sequential sampling stops (say,
with N* samples), take (�-1-1)N* more samples in a single batch. This
modification significantly reduces the number of sampling operations
involved, without sacrificing second order efficiency. Recently,
Mukhopadhyay and Datta (1995) ‘fine-tuned’ the procedure in
Subsection 28.2.3 by modifying the stopping variable (28.2.3) so that
the second order expansion of P( ß ∈�N) in part (iii) of Theorem 1 no
longer has the unwanted middle-term BC -1. For many of the
procedures described above, Sinha (1991) is a useful reference. See
also Sriram and Bose (1988) in this context.

Chaturvedi (1988) also came up with a modified sequential procedure,
which uses an idea somewhat similar to the acceleration technique
mentioned above, for fixed-size confidence set estimation of ß. He derives
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conditions for his procedure to be asymptotically second order efficient,
but only provides an expansion of the form 
of the coverage-probability. Martinsek (1989), on the other hand,
suggested a sequential procedure for obtaining fixed-size confidence
regions for ß which uses certain regression-analogues of trimmed means
[as formulated by Welsh (1987)], instead of the least-squares estimate.
He assumes a continuous and symmetric error-distribution with (4+�)-
th moment finite for some �>0, and proves asymptotic consistency and
efficiency for his procedure. Coleman (1995) considered the slightly
different problem of constructing fixed-width confidence intervals for
1/ß in the simple linear regression model where it is known that ß∈ (0,
ß*) for some ß*>0. His sequential procedure ensures that the coverage-
probability →	 uniformly over ß∈ (0, ß*) as the width of the interval
tends to 0 (	 being pre-specified).

As a departure from the usual regression model (28.2.1), Rahbar
(1995) considered constructing fixed-width confidence intervals
sequentially for the parameters of a simple linear regression having
only discrete regressors and randomly right-censored responses.
Timofeev (1991) addressed the issue of bounded-width interval
estimation (with confidence coefficient at least 1-
 for a given 0<
<1)
for the parameter �* in the model:

(28.3.5)

where {xt}t�1 areinputs (such that a�xt�b for all t and for some real
constants a, b), {ft}t�1 are known functions, {�t}t�1 are independent random
variables with E(�t)=0 and  for some known �>0.

An interesting variation to the conventional way of constructing
fixed-size confidence sets in the regression context is the idea of
‘accurate estimation’ introduced by Finster (1985). He considers
estimating ß by  so as to ensure that  for all ß and
for all �2 (the common error-variance) for a pre-specified set A and a
given 0<	<1. He uses a sequential version of the maximum-probability
estimator of Weiss and Wolfowitz (1974). Later, Lohr (1990, 1993)
introduced three-stage and two-stage procedures for accurate
estimation of ß (in the above sense). However, she used accuracy-sets
A that are compact, orientable manifolds with boundary and star-
shaped with respect to 0. Asymptotic second order properties of these
procedures are provided.

28.3.2 Point Estimation

As mentioned earlier, Chatterjee (1959 a, b) uses his Stein-type two-
stage sampling scheme for point estimation as well. However, such
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procedures are grossly inefficient compared to their fixed sample-
size counterparts. Later, Chatterjee (1962) considers a sequential
procedure for bounded-risk point estimation of ß under the loss

, with � a ‘nicely behaved’ function and
�p×p a known p.d. matrix. He proves the asymptotic first order
efficiency of his procedure. Mukhopadhyay (1974) proposed a
sequential sampling scheme for minimum-risk point estimation of ß
under the loss

(28.3.6)

for some known p.d. matrix Ap×p. This loss penalizes for both wrong
estimates and sampling extravagance (the cost per unit sample being
c). His overall approach and the stopping variable are quite similar to
those in our Subsection 28.2.3. Since the risk under this loss (=p�2n-1+cn)
is minimized for n=<(p�2c-1)1/2>+1, it should be the ‘optimal’ fixed sample-
size for this problem. But it involves the unknown parameter �2 and so
he formulates a sequential stopping rule whose boundary-crossing
condition ‘mimics’ (p�2c -1)1/2. He proved this procedure to be
asymptotically first order efficient and bounded-regret, but Finster
(1983) later derived conditions for its second order efficiency and
Nickerson (1987) improved upon those conditions. Actually, Finster
(1983) addressed this problem with a more general loss-function and
even allowed for the responses to be vectors. See also Sinha (1991) in
this context. Chaturvedi (1987), on the other hand, puts forward a
sequential procedure for point estimating ß under the loss

 where a>0, 
>0,
c>0 and t>0 are known constants. This generalizes Mukhopadhyay’s
(1974) results in some sense, and sharpens the regret-bounds obtained
therein.

Once again, departing from the usual regression model (28.2.1), Konev
and Pergamenshchikov (1997) consider what they call ‘guaranteed mean-
squared accuracy’ estimation (which is nothing but bounded-risk point
estimation under the squared error loss) of the parameters �1, …, �p in
the model:

(28.3.7)

where |�|<1,  are known deterministic functions and �i’s are i.i.d. ~F
with mean 0 and variance 1. They come up with a sequential procedure
and indicate its applications in control and identification of dynamic
systems under random perturbations.
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28.3.3 Hypotheses Testing

Chatterjee (1962) considered a sequential test for testing H0: ß=ß0 vs. H1:
ß� ß0 with Gaussian errors and stochastic regressors which are
independent of the errors. The test asymptotically guarantees a
minimum power at any specified alternative. The corresponding test
for deterministic regressors follows as a special case.

Sen (1981) proposed a repeated significance test (RST) based on a
general linear rank statistic for testing H0: ß1=0 vs. H1: ß1>0 in the simple
linear regression model with slope ß1 and intercept ß0 where the error-
distribution is unknown and continuous almost everywhere. Kim (1994)
considered another RST for the coefficients of a linear regression model
in the context of sequential testing for the difference between two
medical treatments whose effectiveness is influenced by prognostic
factors. For more details on a RST, see Siegmund (1985).

Arghami and Billard (1981) introduced two partial sequential tests
separately for the slope ß1 and the intercept ß0 of a simple linear
regression. The basic idea is to eliminate the nuisance parameters by
means of a suitable transformation to the original data and then run
an SPRT using the transformed data. When testing H0: ß1=b1 vs. H1:
ß1=b2, the nuisance parameters are ß0 and �2 (the common variance of
the Gaussian errors). After transforming the data to get rid of them,
the SPRT based on the new variables has an Operating Characteristic
(OC) function free from ß0 and �2, and an ASN function free from ß0.
Similar is the case when testing for ß0, except that ß1 is now a nuisance
parameter.

Khan (1984) used his idea of confidence sequences to put forward
sequential tests with power 1 for the parameters in simple linear
regression.

28.4 SEQUENTIAL SHRINKAGE ESTIMATION IN
REGRESSION

Ever since the famous James-Stein estimator was shown to dominate
the sample-mean in terms of having a smaller risk under the squared-
error loss while estimating the mean-vector µ of a p-variate Gaussian
distribution (with p�3), a significant amount of research has gone
into the area of shrinkage estimation, and doing it sequentially was
a natural option to consider. Sclove (1968) explicitly derived a class
of James-Stein type estimators dominating the least-squares
estimator  under the loss (28.3.6) with A replaced by n-1X’X.
Nickerson (1987) explored the sequential versions of these estimators
and obtained asymptotic (as c→0) second order risk-expansions for
them. Comparing these second order risk-expansions with that of
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the least-squares estimator, he also provided the optimal choice for
the shrinkage-factor for smallc. Later Sriram and Bose (1988)
provided a significant generalization of these procedures and
simplified the derivation of the asymptotic risk-expansions, by
considering vector-valued responses and stochastic regressors
(independent of the errors). For more details in this regard, see Sinha
(1991) and Mukhopadhyay (1991).

On a slightly different note, Kubokawa and Saleh (1990) considered
sequential shrinkage estimation for the coefficient-matrix � in the
following model: let Y1, Y2, …be independent random vectors with Yi~
N(�ai, �����) where ai’s are known r×1 vectors and �����p×r and �����p×p are unknown
matrices. Under the loss-function 

, where c=the cost per unit sample and An is the matrix
{a1|a2|…|an}, they developed a sequential shrinkage estimator of �����
that exactly dominates its usual sequential estimator in each of the
following two cases: (i) when ����� is of the form diag{�1, …, �p} and (ii)
when ����� is totally unknown. In each case, they provide an asymptotic
second order risk-expansion for their estimator.

28.5 BAYES SEQUENTIAL INFERENCE IN REGRESSION

In Bayesian inference, the unknown population-parameters (in this
case ß and �����, the dispersion matrix of the errors) are considered random
and are assumed to have certain a priori probability distributions.
Depending on whether the parameters of these a priori distributions
are again assumed to have distributions of their own or are estimated
from the data, it is called a hierarchical Bayes or an empirical Bayes
model. It is well-known that in Bayes sequential inference problems,
once a Bayes stopping rule tells us to stop, the Bayes action taken at
the stopped stage is independent of the stopping rule and is the same
as what would have been its fixed sample-size counterpart. However,
despite the fact that Bayes stopping rules exist under fairly general
conditions, their exact determination is quite a daunting task. As a
result, numerous ways of approximating Bayes rules are found in the
literature. Berger (1985) and Ghosh (1991) are useful references in
this context. One of them is the concept of an asymptotically point-
wise optimal (APO) stopping rule introduced by Bickel and Yahav
(1967, 1968, 1969a, b) which is nothing but approximating the Bayes
stopping rules asymptotically as c (the cost per unit sample) tends to
0. See Ghosh and Hoekstra (1991) for an elaborate account. Bickel
and Yahav developed several asymptotic optimality properties of the
APO rules in the context of sequential estimation and hypothesis-
testing for a fairly general class of distributions, including the one-
parameter exponential family. For this special family, Woodroofe
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(1981) showed that the APO rules were asymptotically nondeficient—
in the sense that the difference between the Bayes risk of a Bayes
estimator under the optimal Bayes rule and that of the APO rule is
o(c) as c→0. Finster (1987) extended Woodroofe’s results to a normal
regression model.

Ghosh (1991) develops an APO sequential estimation procedure
for ß in the following hierarchical Bayes setup: conditional on R=r
and ß, Yi’s are independent observations with Yi~N(zi’ß, r-1) where
ZnZn’=(z1| …|zn)(z1|…| zn)’ is assumed to be invertible for all n.
Conditional on M=m and R=r, ß~N(m1p×p, (�r)-1Ip×p). Marginally, M
and R are independent with M~g(m) for a certain known density
g(m), and R~Gamma(a/2, b/2) for known constants a, b and �. Under
the loss , the APO stopping variable
NAPO is just a variant of Mukhopadhyay’s (1974) stopping variable.
At the stopped stage, the Bayes estimator of ß based on NAPO samples
is used.

Finster (1987) considers an APO estimation rule in Zellner’s economic
regression model, and it is based on a single-stage (informative) prior.
Hoekstra (1989) suggests an APO rule in a hierarchical Bayes setup
starting with Finster’s (1983) model and using an expansion of the above
hierarchical structure mentioned in Ghosh (1991).

28.6 SEQUENTIAL INFERENCE IN STOCHASTIC
REGRESSION MODELS

Let us now switch to the case with stochastic regressors which may be
natural under many experimental circumstances. As mentioned earlier,
Chatterjee (1959, 1962) considered stochastic regressors when
developing sequential procedures for the construction of confidence sets
with pre-specified contours for ß or point estimation of ß under the loss
mentioned in Subsection 28.3.2. Finster (1983) also considered stochastic
regressors.

Martinsek (1995), however, looked at the slope-estimation problem
in simple linear regression with stochastic regressors from a slightly
different viewpoint. He considered estimation of ß (the slope) with a
prescribed proportional accuracy. In other words, he wanted to ensure
that  (or, at least, approximately equal to
1-	) for two preassigned constants �>0 and 	∈(0, 1)—a loss-function
which is appropriate when ß is either very close to 0 or very large in
magnitude. Assuming that the regressors and the errors are
independently distributed, with the regressor-distribution having finite
(6+�)-th moment for some �>0 and the error-distribution having finite
4th moment, he devised a sequential procedure for this purpose and
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showed his procedure to be both asymptotically consistent and efficient
as the degree of accuracy increases (i.e. �→0). He also obtains a central
limit theorem for the associated stopping variable. In an attempt to
generalize his results, Datta (1996) proposed sequential procedures for
fixed-size confidence set estimation and fixed proportional accuracy
estimation of ß in a simple, as well as multiple, linear regression model
with stochastic regressors (distributed independently of the errors) when
(i) both the distributions are Gaussian and (ii) both the distributions
are unknown satisfying certain moment-conditions. In each case, the
asymptotic consistency and second order efficiency of the procedure are
proved using nonlinear renewal theoretic techniques from Aras and
Woodroofe (1993) and these theoretical results are supported by
extensive simulation-studies. Etemadi, Sriram and Vidyashankar (1997)
also considered stochastic regressors in their sequential estimation
methodology for ß in a simple linear regression model (without an
intercept) as an application of their results on Lp-convergence of
reciprocals of sample-means. They too consider fixed proportional
accuracy estimation (calling it estimation under relative squared error
loss) and establish the asymptotic second order efficiency of their
procedure, in addition to providing an asymptotic second order risk-
expansion, under the assumption of finite 4th moments for the regressors
as well as the errors.

In estimating the parameters of a linear regression model with
arbitrary noise, Goldenshluger and Polyak (1993) also considered
stochastic regressors. Their regressors are zero-mean random vectors
independent of the noise-variables which, however, are allowed to be
nonzero-mean or correlated or even nonrandom. Their methodology is
stochastic approximation as well as least-squares.

28.7 SEQUENTIAL INFERENCE IN INVERSE LINEAR
REGRESSION AND ERRORS-IN-VARIABLES
MODELS

Levy and Samaranayake (1988) proposed a sequential sampling scheme
as a solution to the multiple-response extension of the univariate
calibration problem. In doing so, they generalized the existing univariate
calibration results of Perng and Tong (1974). The technique used is
primarily based on the Chow and Robbins (1965) theory. Tahir (1989),
on the other hand, derived an asymptotic second order expansion for
the coverage-probability of a fixed-width confidence interval for the x-
variable in an inverse linear regression model via a two-stage sampling
scheme similar to Perng and Tong (1974).

Datta (1996) considered fixed-width interval estimation of the
parameter ß in the errors-in-variables model (with a structural
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relationship) described in Subsection 28.2.1. He used approximate 100(1-

) % confidence intervals for ß with a prescribed semiwidth d, along the
line of Gleser (1987). For his sequential procedure, once again he
establishes asymptotic second order efficiency and provides a second
order expasion for the coverage-probability using tools from Aras and
Woodroofe (1993).

28.8 SOME MISCELLANEOUS TOPICS

In addition to the various categories of research mentioned in the earlier
sections, there are a number of other interesting pieces of research
relevant to the theme of this review-article. Due to space-constraints,
we must resist the temptation of elaborating on their contents, and so
we provide a short list of them here. The exact citations are available in
the reference-list.

Ellingsen and Leathrum (1975) applied on-line ridge regression
(biased estimation) to sequential estimation in order to come up with
an improved estimation technique when the (X’X) matrix is ill-
conditioned. They treat the problem of a singular (X’X) matrix by both
biased estimation and the generalized inverse method. An algorithm
for nonlinear parameter estimation in ill-conditioned systems is
obtained by a parallel application of sequential biased and sequential
least-squares estimation. Perl (1977) derived weak convergence results
for a sequential regression algorithm that arises in the identification
of non-linear memoryless systems and the adaptive design of moving
average filters. He shows the algorithm to be weakly consistent if the
system-input is a stationary sequence (in the wide sense) of order 4
that satisfies certain covariance and fourth cumulant conditions. Gyorfi
(1980) uses a Robbins-Monro type stochastic approximation procedure
xn+1=xn-(n+1)-1 (An+1xn-yn+1) tosolvethe linear equation Ax=y in a Hilbert
space, where yn and An are estimators such that their arithmetic means
converge to y and A respectively. Eichhorn and Zacks (1981) suggest a
Bayes sequential search procedure for an optimal dosage under the
following model: assuming that Y(x), the log-toxicity at dosage x, has
a Gaussian distribution with mean 
+ßx and variance �2(x), an optimal
dosage �	 is defined as the largest value of x for which, P(Y(x)��|x)�	
with � being a specified threshold. For each of the two cases (i) �2(x)=�2

for all x and (ii) �2(x)=�2x2 for all x, a Bayes sequential search procedure
is devised by using a bivariate Gaussian prior distribution for the
unknown parameters-vector (
, ß), and it is proved to be for any given
(
, ß, �). Hsu and Huang (1982) consider a sequential selection
procedure to select a subset of random size which includes all ‘good’
regressor-variables in a regression model. Diaz, O’Reilly and Rincon-
Gallardo (1983). introduce a set of sequential residuals for the
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multivariate linear regression model and show that they are with known
distributions not involving the parameters of the regression model.
Irle (1999) proposed estimating the conditional expectation E(Xn+1|Xn=x)
for a discrete-time Markov process by means of a sequential nearest-
neighbor regression estimator.
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CHAPTER 29

BAYESIAN INFERENCE FOR A
CHANGE-POINT IN NONLINEAR

MODELING

VENKATA K.JANDHYALA
Washington State University, Pullman, WA

JAMAL A.ALSALEH
Kuwait University, Kuwait

Abstract: Under the setting of a nonlinear model with normal additive
errors, the nonlinear change-point problem is formulated and inferential
procedures are developed adapting the Bayesian approach. Assuming
an exponential type regressor, numerical methods are implemented for
approximating the marginal posterior densities. Calculations are carried
out for approximating these posterior densities by means of the Gibbs
sampler. The outcome of this Bayesian analysis are the calculation and
graphical display of posterior densities of the parameters of interest.
Results of simulation studies are presented.

Keywords and phrases: Nonlinear regression, change-point, Bayesian
analysis, Gibbs sampler, simulation

29.1 INTRODUCTION

Nonlinear models arise in a variety of applications. With the rapid
growth of software capacity and desk-top computing power, nonlinear
methods have become more accessible to practitioners as well as
researchers for the modeling and analysis of statistical data. As
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applications of these nonlinear procedures become more common, the
need for their careful use becomes that much more important. Several
of the phenomena in areas such as engineering, biology, medicine,
business and economics are known to be inherently nonlinear. For
example, the effects of pollutants on crop yield, and the growths of trees
and animals are best explained by nonlinear models.

One encounters quite commonly time-ordered data for the purposes
of modeling and analysis. The models explaining such data are
invariably dynamic in nature. Such dynamic effects may or may not
influence the parameters of the underlying model. When dynamic effects
influence the parameters also, then, model fitting and diagnostics
become much more complicated even when the parameters are linear
in the model. Change-point modeling is one of the ways by which
dynamic effects on the parameters of a model may be incorporated. In a
model with a single change-point, the parameters remain same for all
the observations up to an unknown change-point. Subsequent to the
change-point, the observations are explained by a different set of
parameters. Inferential problems associated with a change-point model
are both testing for the occurrence of an unknown change-point as well
as estimation of the unknown change-point and the parameters. While
both of these inferential problems are inherently complicated, there
has been substantial progress in the literature for the case of linear
change-point models. Some recent references in the area include Smith
and Cook (1980) and Carlin, Gelfand and Smith (1992) on the Bayesian
approach and Jandhyala and MacNeill (1989, 1991, 1997) and Jandhyala
and Minogue (1993) on the Bayes-type approach. For advances on
likelihood based methods, one may refer to Worsley (1986) and Kim
and Siegmund (1989). It should be noted that the Bayes-type approach
was first introduced by Chernoff and Zacks (1964) for deriving change-
detection statistics.

To our knowledge, the change-point problem has not been considered
in the literature for the case of nonlinear models. Our goal in this paper
is to formulate the nonlinear change-point problem and then develop
inferential procedures adapting the Bayesian approach. This work, thus,
is a first attempt at developing inferential methods for nonlinear change-
point models. In the Bayesian approach, one is concerned with the
derivation of the marginal posterior densities for the parameters of
interest. Often, there are no closed form expressions for these posterior
densities and many times these are not easily evaluated by numerical
integration. In the case of nonlinear change-point models, the marginal
posterior densities are quite involved and are beyond direct numerical
computation.

Recently, Markov Chain Monte Carlo methods such as the Gibbs
sampler have been found to be extremely useful for evaluating Bayesian
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posterior densities. In this paper, we approximate the marginal posterior
densities of the model parameters including that of the unknown change-
point, by means of the Gibbs sampler iterative procedure. The outcome
of the analysis is the computation and graphical display of marginal
posterior densities of the parameters of interest.

The Gibbs sampler procedure requires that all of the full conditional
distributions be available. The method, then, evolves by simulating
observations from these full conditional distributions based on a
Markovian updating scheme. The method is easily implemented when
the full conditional distributions are from well known families. However,
when the full conditional densities are not from well known families,
implementation of the Gibbs sampler procedure becomes much more
complicated. In the nonlinear change-point analysis, one unavoidably
encounters such difficulties. We, however, implement methods in this
paper for simulating observations from general discrete as well as
continuous random variables with no specific families attached to their
respective probability functions and densities. This enables us to
implement the Gibbs sampling procedure for the nonlinear change-point
analysis.

The nonlinear model that we consider involves exponential type
regressor functions. Simulations suggest that the inferential procedure
along with the Gibbs sampler perform extremely well for the nonlinear
change-point models.

29.2 GIBBS SAMPLER

The Gibbs sampler is an iterative Monte Carlo integration method which
proceeds by a Markovian updating scheme. It was introduced by Geman
and Geman (1984) in the context of image processing. It is essentially a
modification of the Metropolis algorithm, see Metropolis et al. (1953).
The Metropolis algorithm has been used in many application areas
including pattern analysis, image restoration, and in the implementation
of simulated annealing, see also Hastings (1970).

In the statistical frame work, a closely related technique is the ‘data
augmentation’ algorithm of Tanner and Wong (1987), who adopted a
substitution sampling approach. The data augmentation problem arises
naturally in missing data problems. Data augmentation as such refers
to a scheme closely related to the Gibbs sampler where augmentation
of the given data facilitates data analysis. Subsequently, the Gibbs
sampler was proposed as a general method for Bayesian calculations
by Gelfand and Smith (1990). They gave an empirical illustration of
the Gibbs sampler and other sampling based schemes as alternatives
for the calculation of marginal probability distributions. In particular,

Copyright © 2002 Taylor & Francis



V.K.JANDHYALA and J.A.ALSALEH454

the relevance of these approaches is in the calculation of Bayesian
posterior densities for a variety of structured models. The method has
already been successfully applied for the analysis of linear variance
components models by Gelfand et al. (1990).

Carlin and Polson (1991) used the Gibbs sampler for evaluating the
influence diagnostics in a parametric setting. Their conclusion is that
the influence diagnostics obtained, performed well in flagging an
aberrant subset of the data, exemplified in the cases of a two-stage
linear model, a hierarchical model, and a nonlinear Michaelis-Menten
model. The application of their influence measure to nonlinear models
is based on a non-informative prior for the nuisance parameters. Zeger
and Karim (1991) considered the Gibbs sampler for estimating
parameters in a generalized linear model with Gaussian random effects.
They focused on the logistic Gaussian case because it poses some
numerical difficulties.

Gelfand et al (1992) introduced methods of using Gibbs sampler in
constrained parameter and truncated data problems. Carlin et al. (1992)
provided solutions to problems of multivariate state-space modeling using
the Gibbs sampler. In their modeling, they allowed for the possibility of
nonnormal errors as well as nonlinear functionals in the state equations.
The methodology, thus provides a general strategy for computing marginal
densities of unknown parameters in the state-space modeling. Gelman
and Rubin (1992) illustrated the use of Gibbs sampler for the analysis of
random effect mixture models and then applied it to analyze
measurements of reaction times of normal and schizophrenic patients.

Carlin, Gelfand and Smith (1992) first introduced the Gibbs
sampler as an alternative for the calculation of marginal posterior
densities in change-point problems. Their study mainly considers
hierarchical models and in particular the changing Poisson and linear
models. Our study extends their work to the case of nonlinear change-
point models.

More recently, Ingrassia (1994) derived bounds on the spectral gap
for the transition matrices associated with the Gibbs sampler and the
Metropolis algorithm. Furthermore, it was shown that the random
updating dynamics of sites based on the Gibbs sampler and the
Metropolis algorithm have the same rate of convergence. Raghunathan
and Grizzle (1995) developed a survey design and analysis for data with
imputations using the Gibbs sampler. Rosenthal (1995) considered the
question of the number of iterations required for convergence when
applying the Gibbs sampler.

We shall now give a brief introduction to the Gibbs sampler. Let V1,
…, Vp be random variables such that their full conditional distributions
can be determined. It may or may not be that these full conditional
distributions belong to well known families. We shall assume for the
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This completes one cycle. Next, we repeat the above cycle with
 as the starting set of constants. After t such cycles, we obtain
. Geman and Geman (1984) showed that under mild

conditions, as t→∞, the p-tuple  converges in distribution
to a random observation from g(v1, …, vp). Thus, if we repeat the process
m times, we obtain m independent observations from (V1, …, Vp):

(29.2.3)

We may then use the above pseudo-random data to estimate the
marginal densities. Gelfand and Smith (1990) recommend a density
estimate of the form:

(29.2.4)

We consider the above density estimate to be a suitable choice for our
study. For more discussion on the density estimation, see Gelman and
Rubin (1992) and Carlin, Gelfand and Smith (1992).

Finally, note that complete implementation of the Gibbs sampler
requires determination of suitable values for t and m. Both Gelman
and Rubin (1992) and Raftery and Lewis (1992) suggested approaches
for choosing t and m. For example Carlin, Gelfand and Smith (1992)

present that it is possible to generate random samples from these full
conditional distributions. Denote for each random variable Vk, its full
conditional density by

(29.2.1)

Now, given an arbitrary set of starting constants  respectively
for V1, …, Vp, we implement the following steps:

(29.2.2)
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chose t=50 and m=100. For our nonlinear models, we found their choices
to be inadequate. After much experimentation, we were satisfied with
the choice of t=100 and m=150. In the sequel, these will be our choices
whenever we implement the Gibbs sampler.

29.3 BAYESIAN PRELIMINARIES AND THE NONLINEAR
CHANGE-POINT MODEL

Bayesian analysis for inference regarding change-point problems started
with the work of Chernoff and Zacks (1964). Smith (1975) presents a
Bayesian formulation of the change-point problem for sequences of
independent random variables. In the linear models frame work, the
problem was considered among others by Chin Choy and Broemeling
(1980), Smith and Cook (1980) and Moen et al. (1985). One may also
refer to Booth and Smith (1982) for related Bayesian approaches to the
change-point problem.

In the above references, the models are all linear in the parameters.
Our interest, however, is in the Bayesian analysis of nonlinear change-
point models. In the Bayesian analysis, once subjective opinion or further
information about a parameter can be expressed as a suitable prior,
then the posterior distribution of the parameter given the data may be
obtained by applying the Bayes Theorem. As a natural estimate of the
unknown parameter, one usually considers the posterior mode, it being
the most probable value of the parameter given the data. Furthermore,
a prior is said to be a conjugate prior when the prior and the posterior
have the same functional form for their densities. When conjugate priors
are available, then marginal posterior densities may be found
analytically rather than by numerical integration. However, in
complicated models such as nonlinear models, conjugate priors are not
available and numerical methods must be used for finding the marginal
posterior densities.

We introduce our model and the analysis in the frame work of an
exponential type nonlinear regressor function with additive errors. This
is among the more commonly encountered nonlinear models in many
application areas.

Let Y1, …, Yn be a sequence of time-ordered observations observed at
time-points t1, …, tn respectively. One may assume without loss of
generality the entire sampling interval to be [0, 1]. Then, we have
0≤t1<t2<…<tn≤1. Let Y1, …, Yn satisfy satisfy the nonlinear change-point
model given by:

(29.3.5)
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where the parameters θ0, θ1, θ2 are unknown and  is unknown.
In the literature, k is called the change-point. When k=n, the model
(29.3.5) is said to be time homogeneous in its parameters. As for the
errors, we assume  to be independent and distributed normally
each with mean 0 and variance σ2.

In the sequel, we let the parameter space for the nonlinear parameter
to be [0,1]. As long as the original parameter space is finite, one may
easily achieve this by a suitable reparameterization. Thus, we assume
that  as well as . For convenience, we also let .

Given the observations, the primary objective is to draw inferences
regarding the unknown change-point k and the parameters θ0, θ1 and
θ2. It should be noted that at the change-point k in the model (29.3.5),
we could have allowed a change in θ0 as well. However, since θ0 is a
parameter which is linear in the model, for simplicity, we let θ0 remain
time homogeneous. In all, the parameters associated with the model
29.3.5) are k, θ0, θ1, θ2 and σ2. We present our inference procedures in
the form of the following two different cases.

(i): We let k, θ0, θ1, θ2 to be unknown and assume σ2 to be known.
(ii): We let k, θ1, θ2, σ2 tobe unknown and assume θ0 to be known.

Initially, prior to case (i), we assumed θ0 also to be known and carried
out inferences upon simulated data based on selected choices of k, θ1

and θ2. We subsequently let θ0 to be unknown and repeated the same
inferences under case (i). A comparison of the two inferences revealed
the assumption of ‘θ0 known’ to have negligible effect on the accuracy of
both the change-point estimate as well as the estimates of the nonlinear
parameters. Thus, we are satisfied in assuming θ0 to be known under
case (ii). It was of paramount importance for us to be able to carry out
inferences by letting σ2 to be unknown, and this has been achieved
through case (ii).

29.4 BAYESIAN INFERENTIAL METHODS

Here, we first begin with case (i) and present our inferential method in
sufficient detail. A less detailed version of the method for case (ii) will
be presented subsequently. The specific implementations and the
corresponding outputs for both the cases will be presented in the next
section.

Case (i): Here, we let k, θ0, θ1, θ2 to be unknown and assume σ2 to be
known. Under this case, as given by model (29.3.5), we have:
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The marginal posterior densities u0(θ0|y), u1(θ1|y) and u2(θ2|y) may
also be derived similarly. The form of p(k|y) above suggests clearly that
all of the marginal posteriors are quite complicated for computation.
There are no conjugate choices for priors and neither are there any
easier choices for ρ(k), ξ0(θ0), ξ1(θ1) and ξ2(θ2) that easily enable us to
compute these marginal posteriors. We are thus motivated to implement
the Gibbs sampler for the calculation of the required marginal posteriors.

The Gibbs sampler, however, requires the full conditional probability
distributions of all the parameters. Accordingly, let q(k|θ0, θ1, θ2, y) be
the full conditional probability function of the change-point k and, let
v0(θ0|k, θ1, θ2, y), v1(θ1|k, θ0, θ2, y) and v2(θ2|k, θ0, θ1, y) be the full
conditional density functions of θ0, θ1 and θ2 respectively.

Again, implementing the Bayes’ rule, the full conditionals are found
to be as given below:

(29.4.7)

and

(29.4.6)

where k, θ0, θ1, θ2 are unknown and σ2 is known.
Let ρ(k), ξ0(θ0), ξ1(θ1) and ξ2(θ2) represent independent priors for the

parameters k, θ0, θ1 and θ2 respectively and let y=(y1, …, yn) represent
given data for Y1, …, Yn. Furthermore let p(k|y) be the marginal posterior
probability function of the change-point k and let u0(θ0|y), u1(θ1|y) and
u2(θ2|y) represent the respective marginal posterior density functions
for θ0, θ1 and θ2. Then, from (29.4.6) and the Bayes’ theorem, we have:

(29.4.8)
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With these full conditionals, one may implement the Gibbs sampler
procedure as described in Section 29.2. The implementation, however,
is not immediately straightforward. It requires drawing random samples
from the full conditionals given by (29.4.8) – (29.4.11) respectively. These
conditionals, however, do not belong to any of the well known parametric
families of distributions. Consequently, generation of pseudo random
observations from these distributions is not so easy. The methods by
which we accomplish this task are briefly elaborated in the next section.
We shall now move on to the next case.

Case (ii): Here we let k, θ1, θ2, σ2 to be unknown and assume θ0 to be
known.

As in the previous case, here also, we assume independent priors for
the unknown parameters k, θ1, θ2 and σ2. Specifically, let ρ(k), ξ1(θ1),
ξ2(θ2) and  be the independent priors. Let the full conditionals for
the parameters k, θ1, θ2 and σ2 be denoted by r(k|θ1, θ2, σ2, y), θ1(θ1|k, θ2,
σ2, y), θ2(θ2|k, θ1, σ2, y) and t(σ2|k, θ1, θ2, y) respectively. The derivation
of these full conditionals is quite analogous to the previous case. Hence,
we present only the form of the full conditional for the variance σ2:

(29.4.9)

(29.4.10)

(29.4.11)
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The full conditionals all being available, we are again ready to
implement the Gibbs sampler. The specifics of the implementation are
presented in the next section.

29.5 IMPLEMENTATION AND THE RESULTS

Implementation of the Gibbs sampler for both the cases requires the
drawing of random samples from their respective full conditional
distributions. However, these full conditionals do not belong to any of
the well known parametric families of distributions. Hence, drawing
random samples from these full conditionals requires careful attention
to the choice of methods and their implementation. Thus, we first briefly
refer to the methods by which we accomplish this task.

First note that the full conditionals q(k|θ1, θ1, θ2, y) and r(k|θ1, θ2, σ2,
y) are both discrete with their support set being {1, …, n}. The remaining
conditionals are all continuous. Thus, we require methods of drawing
pseudo random samples from a general discrete probability distribution
as well as a general continuous probability distribution. We describe
below our approach for both the cases, beginning first with the discrete
case.

In a general framework, let p(i)=P(k=i), i=1, …, n be a probability
distribution for k. The method that we implement is called the Alias
method and is based on the work of Brately, Fox and Schrage (1983).
The method requires one uniform variate, one comparison, at most two
memory references per sample and two tables of length n. According to
the method, first transform a uniform variable U into an integer I
uniformly distributed over {1, …, n}. Now, I is a tentative value for k.
Then, with a certain probability R(I), replace the value I by its ‘alias’
A(I). If we choose the aliases and the aliasing probabilities properly,
then, k has the desired distribution. The Alias method is a stream lined
composition method. We decompose the original distribution into a
uniform mixture of two-point distributions. One of the two points is an
alias. Having found a particular two-point distribution from which to

(29.4.12)
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generate, the rest is implemented easily. The actual generator to be
followed and the proper selection methods of R(I) and A(I) are presented
in the Appendix.

We implement the Akima algorithm in order to generate pseudo
random samples from the continuous full conditional densities. The
method uses the inverse CDF technique by interpolation of points of
the distribution function given in a table. The interpolation we use is a
technique due to Guerra, Tapia and Thompson (1976). They give a
description of the Akima algorithm and an accuracy comparison between
this technique and linear interpolation. The relative error associated
with the Akima interpolation is generally considered very good. A small
description of how we implement the Akima algorithm is presented in
the Appendix.

With the above two procedures in place, the Gibbs sampler as
described in Section 29.2 is ready for implementation.

Case (i): We let k, θ0, θ1, θ2 unkown unknown and assume σ2 to be
known. From (29.4.6), we have

 

and

 

First, we generate 100 data points (n=100) from the above model by
setting the parameters to be:

(a1) k=50, θ0=0.95, θ1=0.2, θ2=0.7 and σ2=0.25.

The values of t1, …, tn are set to be , i=1, …, n. This amounts to
sampling at equi-spaced intervals. We then implement our Bayesian
inference by assuming the following priors on the unknown parameters:

 

with all of k, θ0, θ1 and θ2 being independent. The choices we consider
for (p1, q1) and (p2, q2) are p1=0.2, q1=2.0 and p2=8.0, q2=2.0. Next, we
implement the Gibbs sampler on the simulated data as per our
description. We present graphically the corresponding posteriors p(k|y),
u0(θ0|y), u1(θ1|y) and u2(θ2|y) in Figures 29.1a–29.1d.
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In order to assess the robustness of the inferential procedure, we
consider two more cases as below:

(a2) k=65, θ0=0.95, θ1=0.3, θ2=0.7, σ2=0.49

(a3) k=65, θ0=0.95, θ1=0.3, θ2=0.7, σ2=0.25

In both (a2) and (a3) above, we let p1=0.5, q1=2.0; p2=8.0, q2=2.0. Since
estimation of the unknown change-point is of primary interest, we
present the graphs of the posterior p(k|y) only. The graphs appear in
Figures 29.2a and 29.2b.

Case (ii): We let k, θ1, θ2, σ2 unknown and assume θ0 to be known. Here,
we perform our analysis on the two data sets generated in (a2) and (a3)
above treating θ0=0.95 to be known. As for the priors, we assume the
same priors on k, θ1 and θ2 and on σ2, we assume:

 

For both data sets, the choices for (p1, q1) and (p2, q2) remain the same
as before and for (c, �), we choose c=5, �=1. The graphs of the posterior
are presented in Figures 29.3a and 29.3b.

As indicated by Figures 29.1a–29.1d, the marginal posterior modes
estimate the true parameter values extremely well. Fig. 29.1a indicates

 where the true parameter is k=50. Further, we note that the
three highest probabilities are at k=48, 49 and 50. As for θ0, θ1 and θ2,
their true values are also captured quite well by their respective
marginal posterior modes.

Figures 29.2a and 29.2b correspond to the cases where σ2=0.49 and
σ2=0.25 respectively and for both cases true k=65. First note that the
change-point is again estimated extremely well despite the true value
being shifted away from the middle. There is higher amount of spread
in the case of Figure 29.2a as compared with Figure 29.2b. This is quite
what we would expect because the true variance is lower (σ2=25) for the
case of Figure 29.2b as compared to its value of (σ2=0.49) for Figure
29.2a.

Figures 29.3a and 29.correspond to the case where σ2 is assumed
unknown. Figure 29.3a corresponds to the case where the true σ2=.49
and Figure 29.3b with case where σ2=0.25. Despite σ2 being assumed
unknown, the true change-point again is estimated extremely well. A
closer comparison between Figures 29.2a, 29.2b and 29.3a, 29.3b
indicates higher posterior modes (heights) in Figures 29.2a and 29.2b
than in Figures 29.3a and 29.3b. This again is to be expected because
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Figures 29.2a and 29.2b are the marginal posteriors with σ2 known
while Figures 29.3a and v3b are the posteriors based on σ2 being
unknown.

APPENDIX

1. Generating pseudo random numbers from a general
discrete distribution:

We implement the Alias algorithm for this purpose. The algorithm
is as below:

(1) Generate U uniform on the continuous interval (0, n).
(2) Set I→[U] (Thus, I is uniform on the integers {1, …, n}).
(3) Set W→I-U.
(4) If W≤R(I), then

(a) out put k=I; otherwise,
(b) out put k=A(I), where A(I) and R(I) are tabulated values.

The remaining part is the proper selection of R(t) and A (t). For
this, we let Pn(W≤R(I), I=i)=R(i)/n and Pn(W>R(I), I= j)=[1-R(j)]/n.
Summing the mutually exclusive probabilities to get k=i, the
generator gives

 

To make this equal p(i), select R(i) and A(i) using the following
setup algorithms:

0. Set H→Φ, L→Φ, [Φ denotes the empty set].
1. For i=1, n:

(a) set R(i)→np(i);
(b) if R(i)>1, then add i to H.
(c) if R(i)<1, then add i to L.

2. (a) if H=Φ, stop;

(b) [Claim: H≠Φ ⇒L≠Φ]: otherwise select an index j from
L and an index l from H.
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3. (a) set A(j)→1;

(b) R(l)→R(l)+R(j)-1;
(c) if R(l)≤1, remove l from H;
(d) if R(l)<1, add l to L;
(e) remove j from L;

4. Go to step 2.

To generate a random deviate from the full conditional general
discrete distribution, the routine [RNGDS] in the IMSL (1988)
library has been used to set-up a table which made it possible for
us to apply the method discussed above. The alias algorithm for
set-up and random generation can be found in Kronmal and
Peterson (1979); see also, Brately, Fox and Schrage (1983) and
Ahrens and Dieter (1982).

2. Generating pseudo random numbers from a general
continuous distribution:

Here we adopt the Akima algorithm. The steps implemented are
as follows:

(1) Set up a table {(xi, F(xi)), i=1, …, n; x1<… <xn}
(2) Compute and store the coefficient x=F-1(y)
(3) Obtain a pseudo random-number y from U(0, 1).
(4)

(a) If y≤F(x1), the random number is x1.
(b) If y≥F(xn), the random number is xn.
(c) If F(x1)<y<F(xn), the random number is F-1(y).

The routine [GCDF] in the IMSL (1988), is used to set up a table
to evaluate a general continuous distribution function, given
ordinates of the probability density function. This approach
requires that the range of the distribution be specified. Also, end-
points must be chosen in such a way that most of the probability
mass is included within the end-points. The routine then uses a C1

cubic spline interpolation while computing the distribution
function.
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FIGURE 29.1b Graph of u0(θ0|y) forcase (a1) when σ2=0.25 is known

FIGURE 29.1a Graph of p(k|y) for case (a1) when σ2=0.25 is known
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FIGURE 29.1c Graph of u1(θ1|y) for case (a1) when σ2=0.25 is known

FIGURE 29.1d Graph of u2(θ2|y) forcase (a1) when σ2=0.25 is known
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FIGURE 29.2a Graph of p(k|y) for case (a2) when σ2=0.49 is known

FIGURE 29.2b Graph of p(k|y) for case (a3) when σ2=0.25 is known
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FIGURE 29.3b Graph of p(k|y) for case (a3) when σ2=0.25 is known

FIGURE 29.3a Graph of p(k|y) for case (a2) when σ2=0.49 is known
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CHAPTER 30

CONVERGENCE TO TWEEDIE
MODELS AND

RELATED TOPICS1

BENT JØRGENSEN

University of British Columbia, Vancouver, Canada

VLADIMIR VINOGRADOV
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Abstract: The class of Tweedie exponential dispersion models generalizes
positive and extreme stable distributions. They were used in the statistical
analysis of car insurance claims by Jørgensen and Souza (1994), and a
new type of weak convergence theorem to the Tweedie models was proved
by Jørgensen, Martínez and Tsao (1994). We discuss some analogies
between the development of this theory and certain phase-transition
phenomena in the theory of large deviations, branching processes,
mathematical physics and actuarial mathematics. Thus, we characterize
a new part of the domains of attraction to the Tweedie families, and suggest
certain probability models for analyzing some insurance claims data.
Specifically, distributions with exponential-power tails belong to the
domains of attraction to certain Tweedie models, and the same class of
distributions reveals some critical-point properties.

Keywords and phrases: Critical points, weak convergence, domains of
attraction, Tweedie models

1An expanded version of this paper including all proofs will be submitted elsewhere
[see Jørgensen, Martínez and Vinogradov (1999)].

Copyright © 2002 Taylor & Francis



B.JØRGENSEN and V.VINOGRADOV474

30.1 INTRODUCTION

In this work, we primarily study some properties of the following
univariate nonnegative natural exponential family:

(30.1.1)

where the canonical parameter ��0, parameter �<0 is fixed,

 

as y→∞, and this function c(y) is such that

 

Our main result, Theorem 30.1.1 of this section, deals with weak
convergence to the so-called Tweedie models for some probability densities
from class (30.1.1). Section 30.2 is devoted to a detailed consideration of
some special cases of the probability densities satisfying condition (30.1.1).
Also, in Section 30.3 we review some results and methods relevant to the
use of the densities satisfying condition (30.1.1) in various problems of the
theory of large deviations, branching processes, mathematical physics and
actuarial mathematics. In addition, in the concluding Section 30.4 we
suggest an approach to analyzing conditional distributions of the insurance
risk process under the assumption that the common probability density of
the amounts of claims satisfies condition (30.1.1). Note that in that section,
we also determine the critical value for the ratio of the initial capital and
the time period during which the risk process is being considered.

Now, we briefly review some basic concepts of the theory of dispersion
models which will be relevant for the further consideration. Note that
dispersion models were introduced in statistics in an attempt to weaken
the requirement on normality of data. In particular, Nelder and Wedderburn
(1972) introduced the so-called method of the analysis of deviance that
generalizes the classical analysis of variance approach to a wide class of
not necessarily normal data. We refer to Chapter 1 of Jørgensen (1997) for
a comprehensive review of the main concepts and basic properties of the
dispersion models.

In general, a natural exponential family is defined by densities for a
random variable Y having the following form:

(30.1.2)
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where h(y) is a given function and b(�) is a normalizing constant. Simple
calculations show that the mean

(30.1.3)

is a one-to-one function of �, which in turn implies that given µ, the unique
solution �(µ) to (30.1.3) is such that for this particular value of parameter
µ, and �=�(µ), the variance of Y may be expressed as a function of parameter
µ only, namely,

 

Here, V is the variance function. It should be noted that the variance
function V together with its open domain � characterize family (30.1.2)
within the class of all natural exponential families [see Section 2.3 of
Jørgensen (1997) for more detail]. Also, the given natural exponential family
(30.1.2) generates, uniquely, an exponential dispersion model, hereinafter
denoted by ED(µ, �2), where �2 is the dispersion parameter and µ continues
to be the mean. This model is characterized as the class of natural
exponential families with variance Var(Y) being proportional to the given
variance function V(.). In particular, EY=µ and

 

Here, the domain for �2 may be  or some subset thereof [see Chapter 3
of Jørgensen (1997) for more detail]. Dispersion models are reproductive,
that is, the sample mean of an i.i.d. sample from ED(µ, �2) has distribution
ED(µ, �2/n), where n is the sample size.

It is interesting to note that exponential dispersion models were
introduced by Tweedie (1947), but remained unnoticed for about 25 years.
An important special case that can be viewed as a generalization of
infinitely divisible and in particular stable distributions, is the so-called
class of Tweedie models which were introduced independently by Tweedie
(1984), Hougaard (1986), and Bar-Lev and Enis (1986). This class is
characterized by a particularly simple form of the variance function, namely,

 

where the parameter . Hereinafter, we denote a specific
Tweedie model characterized by parameters p, µ and �2 by Twp(µ, �2).

Recall that Tweedie models generalize the classical stable laws. In
particular, the following scaling property holds: for each fixed b>0,

(30.1.4)
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where  means that distributions of random variables coincide. In addition,
each Tweedie distribution possesses its own domain of attraction. In fact,
our main result, Theorem 30.1.1, that generalizes Theorem 4.2 and
Example 5.7 of Jørgensen, Martínez and Tsao (1994), deals with weak
convergence of our exponential family (30.1.1) to the Tweedie models. See
also the end of Section 4.4 of Jørgensen (1997), where Theorem 4.2 of
Jørgensen, Martínez and Tsao (1994) is formulated using a notation more
consistent with ours. Also, note that condition (30.1.4) characterizes only
a particular class of Tweedie models, namely, those which do not depend
on a location parameter. See Jørgensen (1997, Section 4.5) for a more
complete description.

We now proceed with the formulation of

Theorem 30.1.1 Consider an exponential family Y~ED(µ, �2) satisfying
condition (30.1.1) with �<-1. Then

(a) If -2<�<-1, we have

i)

 

as µ ↑ µ0, where c1 is a certain positive constant, µ0 is defined by
(30.1.7), and

 

ii)

(30.1.5)

b) If ��-2, we have

i)

 

as µ ↑ µ0, where c2 is a certain positive constant.

ii)

(30.1.6)

as c→0, where N(µ, c2�2) is a normal random variable having
the specified mean and variance.
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Remark 30.1.1 It is easily seen that under fulfillment of (30.1.1),

(30.1.7)

Remark 30.1.2 Point (a.ii) of Theorem 30.1.1 can be viewed as a
generalization of the well-known fact on weak convergence to a certain
stable distribution with index , whereas point (b.ii)
generalizes the central limit theorem. The interested reader is referred to
Vinogradov (1999) for more detail.

Remark 30.1.3 The natural exponential family Y~ED(µ, �2) that satisfies
condition (30.1.1) with �<-1 is not steep in the sense of Definition 2.2 of
Jørgensen (1997). Indeed, it follows from Remark 30.1.1 that the open
domain � of the means is an open interval (0, µ0) with µ0<∞, whereas the
interior of the support of the family Y is the entire semi-axis (0, ∞), and
therefore is different from �.

Remark 30.1.4 The well-known natural exponential family of the inverse
Gaussian distributions that will be described in the next Section 30.2,
satisfies condition (30.1.1) with �=-1/2 and hence our Theorem 30.1.1 is
not applicable to that family. However, the above Theorem 30.1.1 covers
an important subclass of the class of generalized inverse Gaussian
distributions. The main purpose of this paper is to consider the nonsteep
case, whereas one will have steepness in the case of fulfillment of condition
(30.1.1) with -1��<0. Hence, the consideration of the latter case is beyond
the scope of this paper and will be carried out separately [see Jørgensen,
Martínez and Vinogradov (1999)]. However, a trivial convergence result
for the inverse Gaussian family is obtained by combining the fact that the
inverse Gaussian distributions are in fact Tw3-models and the scaling
relationship (30.1.4). In turn, this suggests that under fulfillment of
condition (30.1.1) with �=-1/2, the corresponding natural exponential family
would converge to a certain inverse Gaussian distribution, since p(�)=3
(see also the second-to-last paragraph of this section). However, µ0=∞ in
that case.

Since an expanded version of this paper including all proofs will appear as
Jørgensen, Martínez and Vinogradov (1999), we confine ourselves to making
just a few remarks regarding the proof of Theorem 30.1.1. In particular,
the derivation of the asymptotics for V(µ) stipulated in points (a.i) and (b.i)
is similar to the proof of Theorem 4.2 of Jørgensen, Martínez and Tsao
(1994), and essentially repeats the calculations relevant to Example 5.7 of
that paper (see pp. 236–237 therein). Finally, the results on weak
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convergence follow from those on the asymptotic behaviour of the variance
function V(µ) by an application of Mora’s theorem [see, e.g., Theorem 2.12
of Jørgensen (1997)].

Now, in order to better explain the result of Theorem 30.1.1, we proceed
with a more detailed description of the results on weak convergence to
Tweedie models as well as the characterization of some important special
cases.

First, it should be pointed out that in the Tweedie class, the case of p=0
corresponds to the normal distribution, p=1 to Poisson, p=2 to gamma,
and p=3 to inverse Gaussian distribution (see Table 4.1 of Jørgensen (1997)
for more detail). In particular, random variable N(µ, c2 �2) which emerged
on the right-hand side of (30.1.6) can thus be rewritten as Tw0(µ, c2.s2).
However, neither Poisson, nor gamma, nor inverse Gaussian distributions
emerge as the limit on the right-hand side of (30.1.5). This is because we
have that

 

for -2<�<-1, and the corresponding Tweedie model Twp(µ, c1 . �2) is
obtained by exponential tilting of a certain extreme stable distribution
with index 1< �=- �<2 [see Jørgensen (1997, p. 136) and also the above
Remark 30.1.2].

Recall that Tw3-models, i.e., the inverse Gaussian distributions, as
well as their natural generalizations, namely, the class of generalized
inverse Gaussian distributions, are typical representatives of the class
of distributions satisfying condition (30.1.1). Since the latter ones will
play an important role in the further consideration, we now proceed
with a brief description of the main properties of the most studied class—
the inverse Gaussian and generalized inverse Gaussian distributions.
Our opinion is that the history of discovery of these distributions well
illustrates some interesting connections between probability and
statistics.

30.2 SPECIAL CASES: INVERSE GAUSSIAN AND
GENERALIZED INVERSE GAUSSIAN
DISTRIBUTIONS

First, note that the inverse Gaussian distribution with particular values
of parameters µ and �2, hereinafter denoted by IG(µ, �2) can be defined in
terms of its density pIG(y; µ, �2) as follows:
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(30.2.8)

Also, it is often more convenient to represent density (30.2.8) in the following
equivalent form:

(30.2.9)

where the parameters from formulas (30.2.8) and (30.2.9) are related as
follows:

 

and

 

This distribution was originally derived as the distribution of the first
hitting time of a univariate Brownian motion with drift 1/µ and unit
variance to level 1/� independently and simultaneously by Schrödinger
(1915) and by Smoluchowsky (1915). Subsequently, the importance of
IG (µ, �2) in statistics was realized [see, e.g., Tweedie (1957a, 1957b), and
also Seshadri (1993) for a comprehensive review of recent developments].
Later on, the generalized inverse Gaussian distributions, hereinafter
denoted by , were discovered and also used in statistics [see,
e.g., Halphen (published in 1941 through Dugué), Sichel (1974, 1975),
Barndorff-Nielsen (1977, 1978), and also Jørgensen (1982)]. The class of
GIG distributions is obtained from the class of IG distributions simply by
replacing the power -3/2 of y by the power �–1 (compare formulas (30.2.9)
and (30.2.10)). It can be characterized in terms of the following density:

(30.2.10)
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where K� denotes the modified Bessel function of the third kind with index
. Namely, for each real �>0,

 

[see, e.g., p. 170 of Jørgensen (1982)].
It is interesting to note that upon the discovery of this class of GIG

distributions, an attempt was made to associate them with some
probability models. Thus, Theorem 2.1 of Barndorff-Nielsen, Blæsild and
Halgreen (1978) stipulates that for each GIG distribution with a nonpositive
value of parameter �, there exists a certain time-homogeneous diffusion
process such that its first hitting time follows the specified GIG
distribution.

Remark 30.2.1 It is clear that for �<0, the class of GIG distributions
belongs to the class of natural exponential families satisfying condition
(30.1.1).

We will now turn from the consideration of the special cases, i.e., IG and
GIG distributions, to the consideration of other interesting properties of
our class of natural exponential families characterized by condition (30.1.1).

30.3 CRITICAL POINTS IN THE FORMATION OF
LARGE DEVIATIONS

In this section, we fix a particular density function p(y; �0) from our
exponential family (30.1.1) with the value of the canonical parameter �=�0

strictly less than zero. Let {Xn, n�1} be independent random variables
with common density function p(y; �0) introduced above. This class of
probability densities as well as its extensions were considered in a number
of works. It should be noted that various phase-transition-type phenomena
were discovered for these classes of distributions in connection to some
probability models.

We will now discuss some of them in more detail.
In particular, Chover, Ney and Wainger (1973) considered the following

class C(d) of distribution functions: G(.)�C(d) if

(30.3.11)

as x→∞, where real d>1 is fixed, and G*2(.) denotes the two-fold
convolution of the distribution function G(.). One can check that each
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member of our exponential family (30.1.1) with �=�0<0 satisfies condition
(30.3.11) with

 

It was then established that if the particle lifetime distribution function
G(t) of a certain subcritical branching process satisfies condition (30.3.11)
then the value

 

will be a critical point for the average number m of children born at each
birth epoch. Namely, Chover, Ney and Wainger (1973) established that
the mechanisms of survival of this process conditioned by nonextinction
will be of different nature depending on whether m<m0 or not. One should
note that conditioning a subcritical branching process by non-extinction
constitutes the consideration of a rare event (large deviation).

A result of a similar character in the context of non-life insurance was
obtained by Klüppelberg (1989). In particular, she revealed a non-classical
long-time behaviour of the ruin probability for the simplest risk process
under fulfillment of the net-profit condition (see formula (30.4.13) below),
and under the assumption that the common distribution function of the
amounts of claims satisfies condition (30.3.11).

Phase-transition-type phenomena which we believe are of a similar
nature were also established in mathematical physics. Thus, Dobrushin
and Shlosman (1994, Theorem 1.5.2) established the existence of a certain
critical value and determined the range of a non-classical behaviour of the
probabilities of large deviations for the Ising model. The main argument
behind their result on the presence of two distinct, classical and non-
classical, regimes for the behaviour of large deviations is based on the fact
that the rate function H(.) that determines the rate of exponential decay of
the probabilities of large deviations, degenerates after a certain critical
point. In other words, it is strictly convex in one region and nonstrictly
convex in the other region.

It should also be noted that the rate function H(µ) that corresponds to the
considered density function p(y; �0) possesses a similar degeneracy property
[see, e.g., Vinogradov (1993, 1994, 1996)]. Now, we introduce some auxiliary
notation to make this rigorous. Thus, one can show that under fulfillment
of (30.1.1) with �=�0 <0 and �<0, the moment-generating function

 

is monotonically increasing and finite within the semi-infinite interval��
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(-∞, - �0}. Also, its maximum is

 

Subsequently, the rate function H(µ), which is the Legendre transform of

 

can be represented as follows: 

Here, the critical value µ0 defined in Remark 30.1.1 is finite (see also
Remark 30.1.3), and �(µ) is the unique solution to equation (30.1.3) with

 

It is known that solution �(µ) to equation (30.1.3) exists for each µ�µ0

and fails to exist for µ>µ0 [see, e.g., Chapter 5 of Vinogradov (1994)].
Recall (see the above Remark 30.1.3) that the same phenomenon is
referred to in statistics as nonsteepness.

At this stage, let us point out that under fulfillment of the conditions
specified in the first paragraph of this section, the exact asymptotics of the
probabilities of large deviations in the range greater than µ0 times the
number of terms is not of Cramér’s type [see Vinogradov (1993, 1994,
1996) for more detail]. In particular, we have that if �<-2 then for each
fixed µ>µ0,

(30.3.12)

as n→∞. In other words, the asymptotic behaviour of the latter probability
is again of the exponential-power type. Similar results also hold for
-2��<-1 [see, e.g., Theorem 5.1.1 of Vinogradov (1994)].

A probabilistic interpretation of the just described results of the phase-
transition type is of a sufficient interest. Thus, Section 5.3 of Vinogradov
(1994) and Theorems 1.1 and 2.1 of Vinogradov (1996) deal with the
probabilistic interpretation of representation (30.3.12) using the techniques
of conditioning. In addition, in the next, concluding section of this paper,
we describe a relevant phenomenon for the classical risk process.
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30.4 DIFFERENT MECHANISMS OF RUIN
IN NON-LIFE INSURANCE

Recall that Klüppelberg (1989) revealed that under fulfillment of (30.3.11)
and some additional assumptions, the asymptotics of the ruin probability
of the classical risk process is not given by the classical Cramér-Lundberg
formula. Here, we consider a similar model, but in contrast to Klüppelberg
(1989), we impose a more restrictive assumption (30.1.1)—recall that
(30.1.1) implies (30.3.11) but not vice versa. The fact that our conditions
are more restrictive along with the consideration of finite rather than
infinite time intervals as in Klüppelberg (1989) and the use of an approach
based on conditioning enable us to reach rather interesting (in our
opinion) conclusions.

To be rigorous, we now introduce the classical insurance risk process
as follows:

 

for t�0, where R0>0 is the initial capital, C>0 is the constant premium
rate, and {N(t), t�0} is a time-homogeneous Poisson process with intensity
	>0 that counts the number of claims up to time t. Here, the random
variables {Xn, n�1} are the same as in Section 30.3, i.e., they are
independent with common density function p(y; �0) satisfying condition
(30.1.1) with �=�0<0 and �<-2. These variables {Xn, n�1} are interpreted
as the amounts of the subsequent positive claims which are independent
of each other and also of the Poisson process N(t) that describes the flow of
arrivals of the claims. Let

 

Then the following condition

(30.4.13)

is commonly known as the net-profit condition and stipulates the
prevalence of the insurance premiums over the accumulated claims.
Subsequently, it can be shown that under fulfillment of condition (30.4.13),
the ruin probability

 

approaches zero as R0→∞ which justifies referring to the ruin as a rare
event (large deviation). Also, note that the quantity

 

is usually referred to as the relative safety loading coefficient.
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It is well known that under our assumptions, the interarrival times
{En, n�1} between subsequent claims are independent and identically
distributed exponential random variables with mean 1/ 	, and that the
ruin, i.e., the occurrence of a negative value of R(t), can only be observed
at claim times. This motivates the consideration of the following random
walk {Sn, n �0} generated by the sequence of partial sums of independent
random variables

 

Namely,

 

and

 

Here, random variable C · Ei is interpreted as the amount of premiums
collected between the subsequent claims.

Using the just introduced notation, one can represent the ruin
probability, that characterizes the measure of the long-term stability of
the risk process, as follows:

 

Note that the study of the asymptotic decay of the ruin probability 
as R0 →∞ is an important problem of the risk theory [see, e.g., Grandell
(1991)].

Here, we study a similar, but perhaps more realistic problem of the
behaviour of

(30.4.14)

where N(T(R0)) stands for the total number of claims arrived over the
finite time period [0,T(R0)]. Recall that this number has Poisson distribution
with parameter 	.T(R0). Apparently, the probability on the right-hand
side of (30.4.14) can be represented as
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Let us point out that the latter probability is in fact the probability of a
large deviation, since the random walk {Sn, n�0} has a negative drift
under fulfillment of the net-profit condition (30.4.13). In particular,

 

In addition, one gets that the probability density of random variable

 

is also of the exponential-power type with the same values of parameters
�0 and �. Indeed,

(30.4.15)

where

 

as y →∞ [compare to Remark 5.1.6 of Vinogradov (1994)].
At this stage, note that the validity of representation (1.4.15) makes

possible an application of the results and methods from Vinogradov (1993,
1994, 1996). Recall that some of them were briefly described in the previous
section [see, e.g., formula (30.3.12)]. In particular, the ratio R0/T(R0) will
play an essential role. It turns out that for this ratio, there is a critical
value which enables one to distinguish between two opposite types of the
mechanism of ruin. However, this critical value, hereinafter denoted by

, slightly differs from µ0 (which is defined by (30.1.7)). Namely,

 

In particular, if R0→∞, T(R0)→∞, and

 

then the order of decay of 
(R0, T (R0)) will be as follows:
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[compare to (30.3.12)].
One is also capable to describe the mechanism of ruin within the time

period [0, T(R0)] provided that the ruin has occurred. Thus, if

 

then the ruin is likely to occur on the reason that the difference between
the amount Xi of ith claim and the amount of the insurance premiums
C · Ei collected over the time period between the occurrences of (i-1)-st
and ith claims would be approximately equal to µ/ 	, for each
1�i �N(T(R0)). One can speculate that observing substantial deviations
from this mechanism might necessitate auditing some of the claims.

On the other hand, if

 

then the ruin is likely to occur on the reason that the difference between
the amount of ith claim and the amount of the insurance premiums C ·
Ei collected over the time period between (i-1)-st and ith claims would be
approximately equal to , for each 1�i�N(T(R0)) except for the largest
of the differences {Xi-C · Ei}, 1 �i�N(T(R0)). In turn, the largest difference
should be of magnitude

 

Similarly to the previous case, one can speculate that observing substantial
deviations from this mechanism, e.g., two or more sufficiently large values
of Yi’s, might necessitate auditing some of the claims (compare to Section
5.3 of Vinogradov (1994) and Vinogradov (1996)).

An interesting open problem is the study of the asymptotics of 
(R0,
T (R0)) under various regimes of growth of R0 and T(R0).
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Abstract: In this paper, we review recent developments in
nonparametric estimation of stage occupation probabilities for the three
stage irreversible illness-death model. Fractional risk set estimators of
the stage occupation probabilities under independent right censoring
recently proposed by the authors are discussed. Closed form expressions
of the asymptotic standard errors of the proposed estimators are
presented which were previously unavailable. Extensions of these
estimators to more general multistage model are also considered.
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31.1 INTRODUCTION

The three stage illness death model is a model for simultaneous
investigation of the occurrence of an intermediate event (illness) and a
subsequent failure event of interest (death). In this model, all individuals
are assumed to be alive and free of disease (i.e., in the ‘well’ state) at
time zero; their subsequent evolution is described schematically in
Figure 31.1. Specifically, individuals may die before ever developing
disease, or may first develop disease before death. The model is
irreversible in that an individual in the ‘disease’ state will eventually
die without ever returning to the well state. Typical questions which
can be addressed using the 3-stage illness-death model are: What
proportion of individuals are alive but ill at time t; what proportion of
individuals have died by time t having had illness; and what proportion
of individuals have died by time t without having become ill. These
questions amount to estimating the stage occupation probabilities for
the model.

In real applications, data are usually subject to right censoring.
Because the onsets of illness and death can each be considered as
failure events, it would appear that estimating the stage occupation
probabilities for the three stage illness death model is equivalent to
estimating the joint distribution function of times to illness and
death. However, this is not the case, and two nonparametric
approaches have been recently proposed which make use of the
special restricted structure of this model [Hoover et al. (1996a,
1996b)] [Hoover’s (1996b) estimators make very strong assumptions
on censoring and are not considered further here]. Note that it is also
possible to estimate stage occupation probabilities under additional
structural assumptions such as a semi-Markov model [Lagakos,
Sommer and Zelen (1978)] using a time inhomogeneous Markov
model [Aalen and Johansen (1978)].

In a recent paper, Datta et al. (1999) proposed a simple new non-
parametric estimators for the stage occupation probabilities of the three
stage illness death model which are valid without additional structural
assumption. They introduce the concept of a fractional or estimated
risk set to obtain a Kaplan-Meier estimator of the conditional
distribution of the death times given that an individual dies following
illness. The novelty of this approach is that they make use of the illness
time information in assessing the death time distribution of such
individuals that is ignored by Hoover’s estimators. These estimators
are reviewed in the next section.

The rest of the paper is organized as follows. In Section 31.2, we
introduce the fractional risk set estimator of Datta et al. (1999). A small
sample correction is proposed which can be used to ensure that all stage
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occupation probability estimates are proper (i.e., they lie in [0, 1]). Closed
form estimators of the standard error of these estimators are presented
in Section 31.3 that were previously unpublished. An extension of the
fractional risk set approach to more general multistage models is
indicated in Section 31.4.

31.2 THE FRACTIONAL RISK SET ESTIMATORS

We first rewrite the three stage illness-death model, shown in Figure
31.1, as a four stage model as shown in Figure 31.2. Let Pj(t) denote the
probability of being in stage j at time t, for j=0, …, 3. (The stage 3
occupation probability for the original three-stage model can be obtained
by combining the stage 1 and 3 occupation probabilities in the four
stage model.) For 1�j�3, let  be the random variable denoting the
time the ith subject enters stage j (=∞ if stage j is never entered) and let

 denote the time stage 0 is left. Let Ci denote the
censoring time of the ith subject, and let  if ,
and equals ∞ if stage j is never entered. For 1�j�3, let �ij=1 if the ith
subject is seen to have entered stage j and 0 otherwise, and let �i0=1 if
the ith subject is seen to have left stage 0 and 0 otherwise. Define the
indicator variables Xij=1 if the ith subject ever enters stage j in the
uncensored experiment and 0 otherwise (Xi0=1 for all i). Because of
censoring, not all of the Xij’s or event times will be observed for each
individual, and the values of �ij contain all the information about the
Xij’s that is observed. Finally, let t1<…tk…<tK denote the set of all the
distinct observed event times (i.e. all observed illness and death times).

If all values of Xij were known, stage occupation probabilities could
be easily calculated in the following way. For 0�j�3, let

 and define counting processes

(31.2.1)

and risk set indicators

(31.2.2)

If we define Kaplan-Meier estimators  of the conditional survival
functions Sj(t)=Pr[Tij>t|Xij=1] by

(31.2.3)
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where �Nj(tk)=Nj(tk)-Nj(tk-), then we could estimate the stage occupation
probabilities using

(31.2.4)

(31.2.5)

and

(31.2.6)

Note that Y0(t) and the Nj(t)’s are calculable using the observed data
(because �ij=1 implies Xij=1). However, the values of Yj(t) for j�1 are not
calculable using the censored data because some values of Xij may be
missing. Hence, only  can be calculated using censored data.

Next we define new estimators of Pj(t), denoted Pj(t) which are similar
in form to  but can be calculated from the observed data as they
use estimates of the size of the population at risk Yj(t). These estimates
of  Yj(t), denoted by  are based on a self-consistency property of the
competing risks estimators noted by Satten and Datta (1999)

As mentioned earlier, because both Y0(t) and N0(t) are determined
from the observed data, the estimator of stage 0 does not require any
modification, that is, we take . Following Hoover et al.
(1996a), note that we may estimate P1(t) and P2(t)+P3(t) using standard
competing risks methodology [Aalen (1976) and Kalbfleisch and Prentice
(1980)]. Hence, it only remains to estimate either P2(t) or P3(t) and obtain
the other by subtraction.

Estimation of P1(t) and P2(t)+P3(t) is accomplished by pooling stages
two and three (in the four-stage version shown in Figure 31.2). For j=1,
2, let P0j(s, t) denote the probability that an individual who is in state 0
at time s will move to state j at or before time t. Note that in this notation,
P01(0, t)=P1(t) and P02(0, t)=P2(t)+P3(t). A competing risk estimate of P0j(s,
t) [see, e.g., Andersen et al. (1993)] is given by

(31.2.7)

Hence we take

(31.2.8)

and

(31.2.9)
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However, Satten and Datta (1999) show that, if we define for j=1, 2,

(31.2.10)

(31.2.11)

(31.2.12)

and

(31.2.13)

then

(31.2.14)

The interpretation of (31.2.10)–(31.2.14) is that  is an estimate of
 i.e.  is an estimate of the probability that

the ith subject is in the group which experiences death before illness,
while  is an estimate of the probability that the ith subject is in the
group which experiences illness before death. Hence  is an estimate of
the number of subjects experiencing death before illness and  is an
estimate of the number of subjects experiencing illness before death.
Equation (31.2.14) states that we may consider the  individuals to be in
separate groups, and that calculation of separate Kaplan-Meier survival
function estimates  in each group is exactly equivalent to the
competing risks estimators  calculated using equation (31.2.7).

Equations (31.2.10)–(31.2.14) and their interpretation now suggest the
following fractional risk set estimator of P3(t). Among the  (fractional)
persons estimated to develop illness before death, calculate  as the
Kaplan-Meier estimator of times of death. Specifically, because Xi2=1 is
equivalent to Xi3=1, we take  for each i,  and write

(31.2.15)

(31.2.16)

and

(31.2.17)
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and hence

(31.2.18)

Note that the resulting estimates (31.2.14), (31.2.17) and (31.2.18) are
analogous to (31.2.5) and (31.2.6) except that the unknown at-risk
functions Yj(t) have been replaced by the estimable fractional risk set
functions Yj(t) which denote the estimated fraction of mass at risk for
death before illness (j=1), illness before death (j=2) or death after illness
(j=3) at time t, and the sample fractions nj/n have been replaced by
their fractional risk set estimates.

Because  can be expressed as well-studied quantities (Kaplan-
Meier estimators or Aalen-Johansen competing risks estimators) it is
known that they are valid under any independent censoring mechanism
in which the instantaneous hazard of moving between stages in the
censored experiment is the same as in the corresponding uncensored
experiment. From an operational viewpoint, if complete data  and
censoring times Ci assume that  are independent and
identically distributed, and Ci is independent of .

Because the representation of (31.2.14) is exact, consistency and
asymptotic normality of  and  follows from standard
results on the Aalen-Johansen model [see e.g. Anderson et al. (1993)].
To establish consistency of  and hence , note that because 
is asymptotically equivalent to a sum of independent, identically
distributed quantities (obtained by replacing  by �i3), the law of large
numbers implies that

(31.2.19)

Because , 1�i�n, the expected value in
(31.2.19) equals

 

which is the in-probability limit of n-1Y3(t) by the law of large numbers.
Therefore we obtain

(31.2.20)
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By the Duhamel equation [cf. (4.3.4) in Andersen et al. (1993)],

(31.2.21)

where  and where 
 is a (zero mean) Martingale. Using standard

Martingale methods, the first term on the right hand side of (31.2.21)
converges to zero in probability, while the second term is op(1) by
(31.2.20), establishing that  is a consistent estimator of S3(t).
Consistency of /n follows from (31.2.14) because . Hence, P3(t)
is a consistent estimator of P3(t).

Remark 31.2.1 Because  is estimated by subtraction, it is
necessary to consider whether it is always non-negative. Although

 is the difference between two Kaplan-Meiers in which time-
ordered data from the same individuals is used, this unfortunately
does not guarantee positivity of  as the following example
illustrates. Consider hypothetical data from a population in which
death cannot occur before illness. For three individuals, the following
illness times �i and death times Ti are observed: (�i, Ti)=(1, 5), (2, 3),
(6, 7) while a fourth individual was censored before illness at time 4.
Standard calculation shows that the Kaplan-Meier estimator of the
proportion remaining free of illness is greater than the Kaplan-Meier
estimator of the proportion alive in the interval (5, 6), even though

 for each individual. A similar phenomenon was also observed
in the one-sample case by Oakes (1993).

To develop estimators which are always lie between 0 and 1 and are
also normalized, we replace  by min ,  in the formulas
(31.2.17) and (31.2.18); it then follows immediately that

 for all t. Furthermore, it is a small sample
correction that does not affect their large sample properties such as
consistency and asymptotic normality.

An alternative approach to achieve non-negativity that is more
complex but intuitively appealing is as follows. It follows from standard
results on Kaplan Meier estimation theory that  can be
represented as the function which maximizes the likelihood

(31.2.22)

with respect to S3(t), where . Choose  to
maximize (31.2.22) subject to the condition .
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Remark 31.2.2 As argued before the fractional risk set estimators are
valid (e.g., consistent) provided the censoring mechanism is independent
of the transitions in the chain. Most of the existing survival analysis
literature is based on such assumptions of independent censoring.
However, in practice, this assumption may be hard to justify. It is quite
conceivable that the censoring pattern changes from the well stage to
the illness stage. Datta et al. (1999) considered a modification of their
estimator to adjust for dependent censoring by reweighting both the
counting process N3(t) and the at fractional risk process  by inverse
probability of censoring. They showed that the resulting estimator would
be valid even under dependent censoring caused by a change in censoring
hazard from the well to the illness stage. See Datta et al. (1999) for the
details.

31.3 VARIANCE ESTIMATION

In this section, we obtain estimates for the asymptotic variances of the
estimators , j=0, …, 3.

Because  is a regular Kaplan-Meier and  obtained using
standard competing risks methodology, their asymptotic variances
estimates are known [see e.g. Andersen et al. (1993)]; we report them
here for the sake of completeness. In our notation, we have

(31.3.23)

and

(31.3.24)

The asymptotic variance of  is obtained from the
asymptotic i.i.d. representations of  and . It can
be shown that

 

where Di(t) are zero mean i.i.d. random variables. Replacing the various
population quantities in the definition of Di(t) by their natural estimators
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one can obtain

 

where

 

and

 

In above, Nc is the counting process corresponding to the censoring event.
Similarly,

 

with

 

Therefore, by delta method, we can estimate Var ) as

(31.3.25)

In the same way, one obtains

(31.3.26)

using the representation .
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31.4 EXTENSION TO MULTISTAGE MODELS

The fractional risk set methodology can be extended to calculate stage
occupation probabilities of general multistage models without any
structural assumption. Here we briefly indicate how such an extension
can be achieved. The details of the results will be available in a future
paper.

We assume the network of stages has a tree structure. This assumption
is possible because any acyclic network is equivalent to a tree (e.g., Figure
31.2 shows the tree version of the model in Figure 31.1). Cyclic networks
are equivalent to infinite trees; we assume the laws governing transition
between stages are such that any finite amount of data set from a cyclic
network can be described by a finite tree. Hence, we consider a network
of J+1 stages with a tree topology in which all individuals begin in stage
0 at time 0. Let  be the (possibly unobserved) times the ith person
enters stage j (=∞ if the ith person never enters stage j), 1�i�n, 1�j�J.
We take , for all i. Let  denote the (possibly unobserved) time the
ith person leaves stage j (=∞ if the ith person never enters stage j or if
stage j is a terminal node of the tree). Let Ci be the censoring time for the
ith person. Let  denote the last stage a person was seen at. Define the
censoring indicators �ij and �ij for the entry and departure times to and
from stage j, respectively, as

(31.4.27)

and

(31.4.28)

Note that the different values of �ij correspond to �ij=2 if person i is
known not to have entered stage j, �ij=1 if person i has been seen to
have entered stage j and �ij=0 if person i has been censored at a stage
from which it was possible to move to stage j in a number of steps,
respectively. Finally, let  if �ij�2 and tij=∞ otherwise, and

 if �ij�2 and uij=∞ otherwise be the censored entry and
departure times, respectively of stage j for the ith person. The basic
underlying assumption is that the data vectors Yi=(�ij, �ij, tij, uij; 0�j�J)
for 1�i�n are independent and identically distributed.

The goal of this section is to estimate the stage occupation
probabilities Pj(t)=P(s(t)=j), 1�j�J, where s(t) denotes the stage an
individual occupies at time t, based on {Yi, 1�i�n}.

Let  and 
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 be the counting processes that count the number of times we
observe stage j be entered, and left, respectively, in the time interval
[0, t].

Let , 1�j�J be random variables that track the
stages visited by individual i. Note that due to censoring the Xi’s are
only partially observed.

The probability of being in stage j at time t is estimated through the
relationship

(31.4.29)

where nj=nP[Xij=1] is the expected number of persons out of n who ever
enter stage j,  and 

 are the distribution functions of the entry and the departure
times, respectively, among all individuals in the population who would
ever enter stage j. We take Gj(t)≡0 if j is a terminal node of the tree, while
Fj(t)≡1 if j=0 for all 0�t<∞. The functions Fj and Gj are estimated through
the Kaplan-Meier formulas but with corresponding fractional risk sets

(31.4.30)

(31.4.31)

(31.4.32)

(31.4.33)

where  is an estimate of the probability that individual would eventually
pass through stage j given its censoring information. It is possible to
calculate the �ij recursively from the censored data. Finally, estimate nj

by Yj(0) to obtain a fractional risk estimator of Pj(t) via (31.4.29).
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FIGURE 31.1 The irreversible illness-death model

FIGURE 31.2 A tree representation for the illness-death model
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CHAPTER 32

STATISTICAL METHODS IN THE
VALIDATION PROCESS OF A

HEALTH RELATED QUALITY OF
LIFE QUESTIONNAIRE:

CLASSICAL AND MODERN
THEORY

MOUNIR MESBAH AGNÉS HAMON
Université de Bretagne Sud, Vannes, France

Abstract: In this chapter, we review various statistical methods that
have been developed in the literature for the validation process of a
health related quality of life questionnaire. The classical methods are
based on mixed linear models while modern methods are based on mixed
generalized linear models.

Keywords and phrases: Quality of life (QoL), linear models, mixed
linear models, Rasch model, QoL questionnaire

32.1 INTRODUCTION

Statistical methods used during the validation process of health related
Quality of Life (QoL) questionnaires are, in fact, also commonly used in
a wide variety of other fields. In educational science, tests can be used
to indicate possible promotion of students from one course to the next
or evaluating the impact of new teaching methodologies. In the social
and behavioral sciences, interest may focus on such diverse subjects
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such as intelligence, sociability or political attitudes. In the medical
field, psychiatric questionnaires are commonly used to measure, for
example, depressive status. Recently health related QoL scales have
been developed and they are increasingly used in different contexts:
comparing drugs or interventions in clinical trial or measuring health
of specific population in epidemiologic studies.

Measuring a variable needs an instrument. QoL in clinical trial or
epidemiological studies is generally assessed by self-rated
questionnaires consisting of a number of items (questions). Responses
to these items are generally dichotomous (Yes, No; Agree, Disagree) or
ordinal (Not at All, A little, Quite a bit, Very much). This QoL instrument
must produce scalar scores (numbers) for each item (item measure).
Each item of the instrument contributes to produce a sub-dimensional
score (sub-scale) in common with a sub-group of items measuring the
same underlying trait. Item scores and sub-scales scores constitute the
measurement of the instrument. The purpose of this paper is to
investigate how to evaluate the quality of such instruments, i.e., which
statistical methods and which measurement models to use for that
purpose. A crucial question is what is a good item and what is a bad
item in a questionnaire.

Many standard instruments are currently available. Among others,
two of the most well known are the Sickness Impact Profile (SIP) which
comprises 136 items distributed into 12 dimensions [Bergner et al.
(1976)] and the Nottingham Health Profile (NHP) [Hunt et al. (1981)]
with 38 dichotomous items for 6 dimensions: specifically, Physical
Mobility (8 items), Social Isolation (5 items), Pain (8 items), Emotional
Reaction (9 items), Energy (3 items) and Sleeping (5 items). These two
questionnaires are known as generic instruments as opposed to the
EORTC QLQ-C30 questionnaire [Aaronson (1993)] which is a specific
QoL measure of cancer patients. This contains 38 items forming 15

dimension of the SIP.
The contribution of statisticians in developing and validating QoL

instruments is small but increasing. The validation process of a health
related QoL questionnaire involve multidisciplinary collaboration of
physicians, nurses, psychologists, linguists and so on. Such
multidisciplinary participation is essential in the face or contents
validation of the instrument [Nunnally and Bernstein (1994)]. Our main
interest in this paper concerns statistical validation of an instrument
and in particular, internal statistical validation.

The common statistical methods used to evaluate the measurement
properties of an instrument depend on what data is available. If, in
ad-dition to a sample from the questionnaire, we have, jointly, data
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from an external criterion: expert, gold standard, etc., we can
externally validate the new QoL instrument by correlating it to that
external criterion. Classical methods of regression and discriminant
analysis can be used for that purpose. The statistical method to
evaluate the quality of the instrument is simply an evaluation of the
association between the expert or gold standard and the
measurements given by the questionnaire. In the QoL field, this is
unusual. Only responses of the questionnaire are observed and the
gold standard or expert responses could be considered as unobserved
latent variable.

Concurrent validity involves indirect evaluation of the association
between measurements given by the questionnaire and some surrogate
variables expected close to the latent trait measured.

Test-retest correlation is often used to evaluate the reproducibility
of the questionnaire, when the experimental design includes for each
subject two assessments at two time points so close together to consider
that the QoL is unchanged yet so far apart as to avoid memory bias.

From now, we focus on statistical internal validation methods.
Factorial analysis and related methods are probably the most commonly
used, essentially for dividing the items in separate dimensions. Principal
component analysis with varimax rotation is the factorial analysis
method which is often used in QoL fields. These methods give best results
when the item responses are normally distributed, or truly quantitative.

From now, we consider only unidimensional scales for which we
present classical and modern methods. Classical methods are based on
mixed linear models, while modern methods use mixed generalized
linear models.

32.2 CLASSICAL PSYCHOMETRIC THEORY

32.2.1 The Strictly Parallel Model

We note Xij the response of person i (i=1, …, n) to item j (j=1, …, k). The
first model is just a mixed one way model with the measure or item as
random factor

 

with
1. µ is a constant fixed effect.
2. ai is a random effect with zero mean and standard error σa corre-

sponding to the person variability. It produces the variance of the
true measure.

Copyright © 2002 Taylor & Francis



M.MESBAH and A.HAMON510

3. eij is a random effect with zero mean and standard error σe corre-
sponding to the additional measurement error.

4. The true measure and the error are uncorrelated, cov (ai, eij)=0.
5.  (ai, eij) and (ai’, ei’j) are independent for i�i’

These assumptions are classical in experimental design. This model
defines relationships between different kinds of variables: the observed
score Xij, the true score ai and the error eij. It is interesting to make
some remarks about assumptions underlying this model:

i) eij are measurement errors of item j
ii) the “true” measure of person i is  and it is assumed to

be independent of item j
iii) the measurement errors eij are assumed uncorrelated with the true

measure τi.
iv) Xij is observed whilst �i is not
v) it is easy to show that E(Xij)=µ; ; 

Clearly, this model is good for biological repeated measures, when the
same measure is repeated at different steps, assuming no systematic
change (µ=constant). In the case of QoL, we can assume that all items
measure the same thing, but they do it probably at a different level or
difficulty. Thus, a more realistic model is the parallel model, with the
true score being:

 

We can, then, review the previous remarks to adjust them. This model
allows the same covariance structure for the data, but with a slight
different mean structure.

32.2.2 Reliability of an Instrument

Definition of reliability coefficient

A measurement instrument gives us values that we call observed
measure. The reliability ρ of the instrument is defined as the ratio
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If the parallel model (or the strictly parallel one) is assumed, we can
show that

 

which is also the constant correlation between any two items. This
coefficient is also known as the intra-class coefficient.

Interpretation

The reliability coefficient ρ can be easily interpreted as a correlation
coefficient between the true and the observed measure. The k straight
regression lines , corresponding to the items (j=1, …, k) are
parallel and

 

When the parallel model is assumed, the reliability  of the sum of k
items equals

 

This formula is known as the Spearman-Brown formula, it shows that,
under the parallel model, when the number of items increase the
reliability tends to 1. Its maximum likelihood estimator, under the
assumption of a normal distribution of the error and parallel model, is
known as the Cronbach Alpha Coefficient (CAC) [Kristof (1963)]:

 

with

 

 

CAC and principal components analysis

It is easy to show a direct connection between CAC and the percentage
of variance of the first component in PCA, which is, with factor analysis,
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often used in the validation process of a questionnaire [Moret et al.
(1993)].

The PCA is based on the correlation matrix of the items R. Here

 

This matrix has only two different latent roots, the greater root is

 

and the other multiple roots are

 

This clearly indicate a monotone relationship between , which is
estimated by α (CAC) and the first latent root �1, which is in practice
estimated by the corresponding value of the observed correlation matrix,
and thus, the percentage of variance of the first principal component in
a PCA. Thus, CAC is often also considered as a measure of
unidimensionality.

Step by step procedure to select items with CAC

CAC can be computed to find the most reliable subset of items [Curt et
al. (1997) and Moret et al. (1993)]. At a first, all items are used to compute
the CAC. Then at every step, one item is removed from the scale. The
removed item is the one which gives for the scale without the item the
maximum CAC. This procedure is repeated until only two items
remained. If the parallel model is true, it can be shown, using Spearman-
Brown formula that increasing the number of items increase the
reliability of the total score which is estimated by Cronbach alpha. Thus,
a decrease of such curve when adding an item could strongly bring us to
suspect that the given item is a bad one (in term of goodness of fit of the
model). If an instrument is already validated, the curve is monotonously
increasing (Figure 32.1, example with the Communication dimension
of the SIP). Figure 32.2 (Social Interaction dimension of the SIP) shows
a non-increasing curve. We can choose to increase the reliability of the
instrument by deleting 4 items: numbers 2, 13, 18 and 10 (see annex for
content of these items). In fact, this instrument is already validated in
previous studies with different populations and is considered as a
standard. Moreover, we can see that the decreasing of the curve is very
slight. These arguments bring us to choose to keep the instrument
without removing any items.
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A supplementary and popular way to assess the influence of the item
on the goodness of fit of the parallel model is by examining the empirical
correlations item to total (or to total minus the given item). Assuming
the parallel model, these correlations must be equal. A low correlation
indicates a bad item. All popular software (SAS, SPSS, SYSTAT, etc.)
include computation of these statistics and additional goodness of fit
assessment. Unfortunately none include the stepwise built curve of
Cronbach Alpha or even any other parsimonious criteria.

FIGURE 32.1 CAC of the communication scale
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32.3 MODERN PSYCHOMETRIC THEORY

Clearly, the classical model deals better with quantitative item
responses, and much better if it can be assumed normally distributed.
But in practice this is rarely true. Modern test theory takes into account
the qualitative (dichotomous or polychotomous) nature of the item
response. Instead of modelling the item score directly like in classical
theory, Item Response Theory (IRT) relies on modelling the item
response function (or characteristic curve) i.e., the probability of
“taking positive value” conditionally on the actual value of the latent
trait. More precisely classical methods use classical linear models, in
fact mixed linear models and modern methods use mixed generalized
linear models.

Let us consider a set of n people having answered a test of k
dichotomous items. Denote Xij like previously, be the answer of
individual i to item j and θi the unobserved latent variable. The three
assumptions, common to all unidimensional IRT models, are:

1. the latent variable θi is unidimensional (scalar)
2. variables Xij are independent conditionally on θi, this hypothesis

is also called “local independence”.

FIGURE 32.2 CAC of the social interaction scale
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3. P(Xij=1/θi)=f(θi, γj) where  is a vector of unknown item pa-
rameters and f is a monotone increasing function in � (in most
cases the logistic or probit link function).

The coded answer 1 is called “correct” answer; this term comes from the
educational science vocabulary. When θi is very large (towards +8), and
thus when one consider an individual with a very good aptitude, his
probability of answering 1 is very close to 1.

The local independence property, weaker than pairwise independence,
is useful for deriving the likelihood. It define such Rasch model as a
graphical model [Edwards (1995)] with unobserved variable θ.

The marginal distribution of θ is often assumed Gaussian. The
developer of a QoL instrument generally wishes to produce normally
distributed scores, thus Conditional Gaussian model [Lauritzen and
Wermuth (1988)] is rarely used. Cox, in a discussion of the papers by
Edwards and Wermuth and Lauritzen (1990) have already remarked:
“The conditional Gaussian distributions provide an elegant basis for
dealing with mixed and continuous responses, but it should be
emphasized that there are other possibilities, especially simple linear
logistic models conditional on a marginally multivariate normal
response or a fully probit model, have simple properties for some
purposes.”

32.3.1 The Rasch Model

This model was first developed by the Danish mathematician Rasch
(1960) and it is also sometimes called the one parameter logistic model
because of its formulation

 

The probability in this formula, viewed as a function of θ, is called the
item characteristic curve. It is 1/2 when θi=ßj and at fixed θi, it is
decreasing. So the larger ßj, the more the probability of a good answer
approaches 0. The parameter ßj is thus called the item difficulty
parameter. We present in Figure 32.3 the estimated characteristic curves
of the Rasch model for six items of the Communication scale of the SIP
(ßj estimates are given in section 32.3.1). First, we remark that the
central parts of the curves are straight lines. Another interesting
property is that the different curves corresponding to different items
are “parallel” in the sense that they don’t cross.
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Sufficiency of the total subject score

The Rasch model distinguishes itself from the other IRT models by the
following main property: the individual’s total score is a sufficient
statistic for the ability parameter. Hence when we use the total score
as the measure produced by the instrument, we assume that the Rasch
model is true. If the Rasch model is not true, we can fit and use a more
complicated model like a two parameter model [Birnbaum (1968)], but
then we must estimate the latent trait by another method. We cannot
use the total person score as an estimate of the latent trait. If we want
to produce a simple score, we have to estimate weights, using data from
a representative sample, to construct weighted sum for items as a simple
score.

Specific objectivity

One interesting property of the Rasch model is the specific objectivity. This
is a measurement property which means that comparison of any two persons
v and w does not involves instrument parameter. A natural comparator is
the probability that person v passes the item j and that a second person w
does not pass it conditionally on the event that one of the two succeeds,

FIGURE 32.3 Estimated characteristic curves for the communication scale
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that is

 

This can be written

 

We can see that this probability does not depend on the item
parameters (ßj). This is true only for the Rasch model. This is not true
for another link function. [Fischer and Molenaar (1995)]

Parameter estimation

Three methods of estimation are commonly used: Joint (or unconditional)
Maximum Likelihood (JML), Conditional Maximum Likelihood (CML)
and Marginal Maximum Likelihood (MML).

The Joint Maximum Likelihood is just the classical maximum
likelihood method with θi and ßj considered as unknown fixed
parameters. Using the local independence assumption and independence
between individuals, we can write the likelihood

 

where xi=(xi1, …, Xik) is the response vector of person i. Noting 
 and , the log-likelihood can be written

 

Taking derivatives with respect to θi and ßj, we find the following
equations
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Unfortunately the estimates of �i and ßj thus obtained are asymptotically
biased [Andersen (1973a)] and inconsistent [Haberman (1977)] when
n→∞ and k remains moderate.

A second method consists of maximizing the conditional likelihood given
the sufficient statistic of the ability parameters. Under mild conditions,
this method gives consistent and asymptotically normally distributed
estimators of the item parameters [Andersen (1973a) and Pfanzagl
(1993)]. Fischer (1981) derived a set of necessary conditions for existence
and uniqueness of the CML estimates.

The last method, called marginal likelihood estimation, is directly
related to the interpretation of the Rasch model as a mixed model with
� as a random effect with a distribution g with unknown parameters φ.
The likelihood is then

 

The problem of this method is that we have no any explicit form of
this integral and maximum likelihood solutions are not
straightforward. A first approach implements an EM algorithm
[Thissen (1982)]. Considering � as a missing variable, the complete
likelihood is

 

and the EM can be decomposed into two steps: having previous
estimations 

E-Step Compute the mean of the complete log-likelihood with respect to
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the distribution of the unobserved θ conditionally to the observations.

 

M-Step Update estimations by computing the point  that
maximize 

The difficulty of this algorithm is the E-step because there is no
explicit form of the integral. A possible solution is to use the Gauss-
Hermite quadrature, to obtain a numerical approximation. Another
solution is to implement a stochastic EM algorithm [Hamon (1998)]. In
this case, the E-step of the EM algorithm is replaced by a simulation
step to impute missing values of θ and then one perform an EM-step
which consist on maximizing the complete log-likelihood.

Goodness of fit tests

The use of goodness-of-fit tests checks the nature of the departure of
the data from the IRT assumptions [Dupuy (1999)]. In the following,
difficulties of the items are estimated using the conditional maximum
likelihood method. We present three test statistics, which will be used
to assess the properties of the quality of life questionnaire. The first
one is an overall measure of how all the items of the questionnaire fit
the Rasch model. It is based on the fact that under the Rasch model, we
should expect the overall CML estimates of the difficulties to be
approximately equal to the CML estimates computed in each score group
[Andersen (1973b)]. Let

•  denote the vector of items difficulties estimated using the
subsample of respondents scoring r on the questionnaire

•  denote the likelihood function computed using the
subsample of respondents scoring r on the questionnaire.
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Under the null hypothesis that the assumptions of the Rasch model
hold, the test statistic:

 

is asymptotically distributed as x2 with (k-1) (k-2) degrees of freedom
[Andersen (1973b)].

The R1c statistic tests the null hypothesis against the alternative
that some of the item response functions are not monotone increasing
functions. Suppose that this assumption is not satisfied for an item.
The observed response function for this item should diverge from its
expected response function. For each score, one calculates how close
these two response functions are, making the differences between
observed and expected proportions of individuals who succeed on the
item. Let nr be the number of respondents scoring r, nri be the observed
number of respondents scoring r and who answer yes to item i, and 
be its expected value with the item parameter CML estimates inserted.
The test is based on the difference . Let dr denote
the vector of elements dri and Vr denote the matrix of covariance of dr.
Glas (1988) has shown that

 

has an asymptotic χ2 distribution with (k-1) (k-2) degrees of freedom.
The R2c statistic tests the null hypothesis against the alternative

hypothesis that local independence does not hold. If two items are not
locally independent, say a difficult item is easier for individuals
succeeding on an easier one, the observed number of individuals
succeeding on both items will be larger than the expected number of
such individuals. For each score, computing the difference between
observed and expected numbers of individuals succeeding on a couple
of items should reveal such a pattern. Computing differences for every
couples of items result in an overall measure of local independence. Let
nrij denote the observed number of respondents scoring r and who answer
yes simultaneously to items i and j and  be its CML expected value.
Let frij denote the difference  and f denote the vector of
elements frij. Let U be the covariance matrix of f. Glas (1988) has shown
that
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has an asymptotic χ2 distribution with  degrees of freedom.
In fact this statistic tests the independence of the observed items

conditional to the total score observed, not conditional to the true
unobserved latent score. Clearly this hypothesis depends on the form of
its distribution, which is unidentifiable. Nevertheless, the sufficiency
property of the total score allows us to reasonably expect that the null
hypothesis tested by this statistic is probably close to the true one
expected. Hatzinger (1989) shows how to derive equivalent tests using
log-linear models for contingency tables and GLIM software.

Assessment of reliability

In section 32.2, we showed that reliability is an important feature of a
psychometric questionnaire. Although the Rasch model is more and
more widely used to study QoL questionnaire, reliability is, in practice,
almost always estimated with alpha coefficient. In fact, in the mixed
Rasch model, it is possible to define a true score like in classical theory
and in the same manner, to define reliability coefficient as the ratio of
the true score variance and the observed score variance. More precisely
if we define the true score T(�i) as the expected score for individual with
latent trait �i

 

then we have

 

With the general formula

 

and if we suppose that the random variable � is normally distributed,
we have
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where g(�i, σ2) isthe normal distribution with variance σ2. To calculate
this coefficient, one has to evaluate complex integrals. An approximation
with a Taylor expansion when σ2→0 (σ2 variance of �) gives an expression
of reliability coefficient:

 

where

 

Unfortunately, in applications σ2 is too large and the approximation is
no more valid. Another way to compute this coefficient, when parameters
estimations are known, is to approximate the integrals with numerical
procedures like Monte Carlo algorithm.

In the IRT literature, no such reliability coefficient is clearly defined
with link to classical theory. The most common approach is to study the
Fisher information for � [Lord (1980)]. This function provides an accuracy
measure of ability estimations at any point along the latent trait. So it
is not a global measure and practical applications are not evident. A
step by step procedure is not possible to implement with the test
information function, because removing an item implies necessary a
decrease of information. And then no operational parsimonious criteria
is available to select items.

Example, the communication scale of the SIP

TABLE 32.1 Estimation of the difficulty
parameters for the communication scale

We present here estimates of the difficulty parameters of 6 items from
the Communication dimension of the SIP. Estimations are obtained
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with RSP software [Glas and Ellis (1993)] and we use the CML method.
Items 1, 5 and 7 are removed because they contributed to the lack of
fit of the model. The remaining items give a p-value for the R1c statistic
of 0.16 which indicates that the hypothesis of parallel curves is not
rejected.

32.4 CONCLUSION

As we move towards the end of the millennium QoL assessments are
becoming of increased importance and interest to a variety of users.
“Increasing and sometimes indiscriminate use of QoL measures has
provoked concern about these methods in the (health) context, especially
when important consequences, such as treatment decisions or resource
allocation, depend on them” [Cox et al. (1992)].

Two kinds of scientists usually deals with QoL data. Developers of
questionnaires are mainly social scientists and, more often than not,
psychologists. Analysis of data from clinical trials or other medical data
is generally conducted by statisticians and in particular biostatisticians.
The problem of non sampling error and particularly the problem of
measurement error became an important problem for statisticians.
Analyzing data without taking into account the model underlying the
production of the measure could bring us to make the wrong decisions.
In this paper we focus on statistical methods based on simple
measurement models for unidimensional scales. We present the Rasch
model for dichotomous items. Generalization to polychotomous items is
straightforward, and equivalently to polychotomous logistic models.
However care must be taken in the choice of parameters needed for
success at different levels of the item [van der Linden and Hambleton
(1996)]. Composite or multidimensional instruments are commonly used
in QoL. Multi-Trait Multi-Item analysis methods [Ware et al. (1997)]
are commonly used to validate multidimensional questionnaires when
the grouping of items is already established. These methods are related
to classical models. No equivalent methods, related to Rasch, exist or
are commonly used.
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ANNEX 1: COMMUNICATION DIMENSION OF THE
SIP (9 ITEMS)

1. I am having trouble writing or typing
2. I communicate mostly by gestures, for examples, moving head, point-

ing, sign language
3. I am having trouble writing or typing
4. My speech is understood only by e few people who know me well
5. I often lose control of my voice when i talk, for example, my voice

gets louder or softer, trembles, changes unexpectedly
6. I don’t write except to sign my name
7. I carry on a conversation only when very close to the other person or

looking at him
8. I have difficulty speaking, for example, get stuck, stutter, stammer,

slur my words
9. I am understood with difficulty

10. I do not speak clearly when I am under stress
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ANNEX 2: SOCIAL INTERACTION DIMENSION OF
THE SIP (20 ITEMS)

1. I am going out less to visit people
2. I am not going out to visit people at all
3. I show less interest in other people’s problems, for example, don’t

listen when they tell me about their problems, don’t offer to help
4. I often act irritable toward those around me, for example, snap people,

give sharp answers, criticize easily
5. I show less affection
6. I am doing fewer social activities with groups of people
7. I am cutting down the length of visits with friends
8. I am avoiding social visits from others
9. My sexual activity is decreased

10. I often express concern over what might be happening to my health
11. I talk less with those around me
12. I make many demands, for example, insist that people do things for

me, tell them how to do things
13. I stay alone much of the time
14. I act disagreeable to family members, for example, I act spiteful, I

am stubborn
15. I have frequent outbursts of anger at family members, for example,

strike at them, scream, throw things at them
16. I isolate myself as much as I can from the rest of the family
17. I am playing less attention to the children
18. I refuse contact with family members, for example, turn away from

them
19. I am not doing the things I usually do to take care of my children or

family
20. I am not joking with family members as I usually do
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