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Preface 

Traditions of the 150-year-old St. Petersburg School of Probability and Statis­
tics had been developed by many prominent scientists including P. L. Cheby­
chev, A. M. Lyapunov, A. A. Markov, S. N. Bernstein, and Yu. V. Linnik. In 
1948, the Chair of Probability and Statistics was established at the Department 
of Mathematics and Mechanics of the St. Petersburg State University with Yu. 
V. Linik being its founder and also the first Chair. Nowadays, alumni of this 
Chair are spread around Russia, Lithuania, France, Germany, Sweden, China, 
the United States, and Canada. 

The fiftieth anniversary of this Chair was celebrated by an International 
Conference, which was held in St. Petersburg from June 24-28, 1998. More 
than 125 probabilists and statisticians from 18 countries (Azerbaijan, Canada, 
Finland, France, Germany, Hungary, Israel, Italy, Lithuania, The Netherlands, 
Norway, Poland, Russia, Taiwan, Turkey, Ukraine, Uzbekistan, and the United 
States) participated in this International Conference in order to discuss the 
current state and perspectives of Probability and Mathematical Statistics. 

The conference was organized jointly by St. Petersburg State University, St. 
Petersburg branch of Mathematical Institute, and the Euler Institute, and was 
partially sponsored by the Russian Foundation of Basic Researches. 

The main theme of the Conference was chosen in the tradition of the St. 
Petersburg School of Probability and Statistics. The papers in this volume 
form a selection of invited talks presented at the conference. The papers were 
all refereed rigorously, and we thank all the referees who assisted us in this 
process. We also thank all the authors for submitting their articles for inclusion 
in this volume. 
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XVI Preface 

Thanks are also due to Mr. Wayne Yuhasz and Ms. Lauren Schultz, both at 
Birkhauser (Boston), for their support and encouragement. Our final thanks go 
to Mrs. Debbie Iscoe for her excellent camera-ready typesetting of this entire 
volume. 
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PART I 

PROBABILITY DISTRIBUTIONS 



1 

Positive Linnik and Discrete Linnik Distributions 

Gerd Christoph and Karina Schreiber 

Otto-von-Guericke-Universitat Magdeburg, Magdeburg, Germany 

I belong to the last generation of students learning the basic knowl­
edge of statistics by Yuri Vladimirovitsch Linnik. Only a few weeks 
before he died, I took my examination in Statistics. I remember this 
examination because Prof. Linnik welcomed me in German and he 
asked me (in German) about properties of "Maximum-Likelihood­
Schatzungen." Never before I had heard these German terms. I was 
prepared to answer, as usually, in Russian. So, I learned from Prof. 
Linnik not only to like statistics but also during the examination 
that likelihood is an old English word for probability which is used 
in German statistical terms too. Gerd Christoph 

Abstract: In this chapter, (continuous) positive Linnik and (nonnegative in­
teger valued) discrete Linnik random variables are discussed. Rates of conver­
gence and first terms of both the Edgeworth expansions and the expansions 
in the exponent of the distribution functions of certain sums of such random 
variables with nonnegative strictly stable as well as discrete stable limit laws 
are considered. 

Keywords and phrases: Positive Linnik and discrete Linnik distributions, 
discrete self-decomposability, discrete stability, rates of convergence, Edgeworth 
expansions, expansions in the exponent with discrete stable limit law 

1.1 Different Kinds of Linnik's Distributions 

Linnik (1963, p. 67) proved that the functions 

cp(t) = (1 + Itl'Y)-l for 'Y E (0, 2] 
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are characteristic functions of real valued symmetric random variables, which 
are called symmetric Linnik distributed. Later on, in Devroye (1990) some more 
parameters were considered and it was proved that 

cp,(t) = (1 + c Itl,)-!3 for 'Y E (0,2], c> 0, {3 > 0 

are characteristic functions of real valued symmetric random variables, too. 
Pakes (1995, p. 294) called nonnegative random variables with Laplace­

Stieltjes transforms 

'I/;,(u) = (1 + cu,)-!3, u ~ 0, for 'Y E (0, 1], c> 0, {3 > 0 (1.1) 

positive Linnik distributed. Here, we restrict ourselves to the case 'Y E (0, 1], 
since the corresponding function '1/;, ( u) in case 1 < 'Y ~ 2 is not completely 
monotone. Hence, 'I/;,(u) with 1 < 'Y ~ 2 can not be a Laplace-Stieltjes trans­
form, see Feller (1971, p. 439). 

Changing u in 'I/;,(u) by (1 - z), it was shown that 

g,(z) = (1 + c(l- z),)-!3, Izl ~ 1, for 'Y E (0,1]' c> 0, {3 > 0 (1.2) 

are probability generating functions of nonnegative integer valued random vari­
ables, which are called discrete Linnik distributed. See Devroye (1993) for the 
case c = 1 and Pakes (1995, p. 296). 

In analogue to the generalized Pareto distribution, these random variables 
are redefined in Christoph and Schreiber (1998b): A random variable L~ with 
probability generating function 

{
(I + >.. (1 - z)' j(3)-f3, for 0 < (3 < 00, 

9U'(z) = 
-y exp{ ->.. (1 - z)'} , for {3 = 00, 

Izl ::::: 1, (1.3) 

is called discrete Linnik distributed with characteristic exponent'Y E (0,1]' scale 
parameter>.. > 0 and form parameter {3 > O. 

In case {3 = 00, the discrete stable random variables denoted further by 
X~ and introduced in Steutel and van Ham (1979) occur in (1.3) as a natural 
generalization of the discrete Linnik distribution defined in (1.2) with c = A.j {3. 

If (3 = 1, then (1.3) gives the probability generating function of the discrete 
Mittag-Leffler distribution; see Jayakumar and Pillai (1995). 

For 'Y = 1, well-known distributions occur: 
- Poisson(>..) distribution if {3 = 00, 

- negative binomial distribution with probabilities 

A (-{3) ( >..)k ( (3 )13 P(L1 = k) = k - >.. + {3 >.. + {3 , 

if {3 < 00 and as special case 
- geometric distribution if {3 = 1. 

k = 0, 1, ... , (1.4) 
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If, = 1, the probabilities (1.4) of the negative binomial random variable 
L~ tend to the probabilities of the Poisson(A) random variable xl' as {3 ------ 00. 

If, < 1, the probabilities of the discrete Linnik distributions with proba­
bility generating function (1.3) may be obtained by expanding the probability 
generating function in a power series. Hence, 

if {3 < 00, or in the case of (3 = 00 

P(X; = k) = (_1)k f ('kj ) (-~)j, k = 0, 1,... (1.5) 
j=O J. 

In both cases, the series are absolutely convergent, but they can not be expressed 
in a simple form. Again, we find 

P(L~ = k) ------ P(X; = k) as {3 ------ 00, k = 0, 1, ... 

For both the discrete Linnik random variable L~ if {3 < 00 and the discrete 
stable random variable X~ if {3 = 00, asymptotic formulas for the mentioned 
probabilities are given in Christoph and Schreiber (1998b, 1998a). We have, as 

k ------ 00: 

P(L~ = k) 
.!. [(-Y~hJ (j + (3 - 1) (_1))+1 Aj fh j + 1) sinh j 71") 

71" ~ J' (3J ki J + 1 
J=1 

+ O(k-i - 2 ) 

if {3 < 00, or in the case of {3 = 00 

In analogue to (1.3), we now redefine the positive Linnik distributions using 
c = >.j {3 in (1.1). A random variable W; with Laplace-Stieltjes transform 

{ 
(1 + AUi /(3)-(3, for 0 < (3 < 00, 

~w),(u) = 
l' exp{ -A ui } , for (3 = 00, 

(1.6) 

is called positive Linnik distributed with characteristic exponent, E (0,1], scale 
parameter A > 0 and form parameter (3 > O. 

In case (3 = 00, the nonnegative strictly stable random variables denoted 
further by S~ occur in (1.6) as a natural generalization of the positive Linnik 
distribution. 
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If (3 = 1, (1.6) defines probability generating function of the Mittag- Leffler 
distribution [see Pillai (1990) or Jayakumar and Pillai (1995)] with the corre­
sponding distribution function 1 - E'Y ( - x'Y ), where E'Y(x) is the Mittag-Leffler 
function. In contrast, in Bingham, Goldie and Teugels (1987, p. 329 and p. 392) 
Mittag-Leffler distributions as limit laws for occupation times of Markov pro­
cesses are defined by the corresponding Laplace-Stieltjes transform E'Y ( u) being 
Mittag-Leffler functions. See also Pakes (1995, p. 294) . 

For 'Y = 1 well-known distributions occur: 
- degenerate distribution at the point>' if (3 = 00, 
- Gamma distribution with density (f((3))-l ((3/>.)(3e- x (3/>"x(3-1 as x > 0 if 
(3 < 00 with the special case of 
- exponential distribution with parameter 1/>. > 0 if (3 = 1. 

1.2 Self-decomposability and Discrete 
Self-decomposability 

A real random variable W is said to be self-decomposable (or it belongs to the 
so-called class L) if corresponding to every a E (0, 1) there exists a random 
variable Wa such that 

W~aW* + Wa , (1.7) 

where W* and Wa are independent , W ~ W* and ~ denotes the equality in 
distribution. Nondegenerate self-decomposable random variables are known to 
be absolutely continuous; see Fisz and Varadarajan (1963). 

A real valued random variable S is called strictly stable if 

S ~ as* + (1 - a'Y )lh S** for every 0 < a < 1 (1.8) 

with some 0 < 'Y ::; 2, where S* and S** are independent with the same distri­
bution as S. 

It follows from (1.7), (1.8) and Sa ~ (1 - a'Y)lh S** with some 0 < 'Y ::; 2 

and S ~ S** , that strictly stable random variables are self-decomposable. 
Self-decomposable random variables are important as the only possible limit 

laws of normalized partial sums of independent random variables. Moreover, 
the stable random variables occur as the only possible limit laws of normalized 
partial sums of independent and identically distributed (iid) random variables. 

Strictly stable random variables S; with (1.8) are nonnegative only if'Y E 

(0, 1]. Such random variables S; have Laplace-Stieltjes transform (1.6) with 
(3 = 00. 

Further, we restrict ourselves to nonnegative integer random variables, for 
which discrete analogues of self-decomposability and stability were introduced 
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by Steutel and van Harn (1979). In (1.7) and (1.8), the multiplication a X of 
a nonnegative integer valued random variable X with a constant a E (0,1) is 
replaced by a dot product a 8 X, which is defined as a random partial sum of 
the first X members of a sequence of iid Bernoulli random variables {N k h:::: 1 , 

which are independent of X: 

a 0 X 4: Nl + ... + Nx with a = P(NI = 1) = 1 - P(N1 = 0). (1.9) 

Hence, 
9a0X(Z) = 9x(1- a + az) = 9x(1 - a (1- z)). (1.10) 

Then, a nonnegative integer random variable X is called discrete self-decompos­
able, if corresponding to every a E (0, 1) there exist independent random vari-

ables Xa and X* with X* 4: X such that 

X 4: a 0 X* + Xa . (1.11) 

Further, a random variable X"f is called discrete stable iffor every a E (0, 1) 

there exist iid random variables X; and X;* with X; 4: X"f such that 

(1.12) 

It follows from (1.11), (1.12) and Xa 4: (1 - a"f)lh 0 X;* with some 

o < I ::; 1 and X"f 4: X;*, that discrete stable random variables are discrete 
self-decomposable. It was also proved in Steutel and van Harn (1979) that a 
random variable X"f is discrete stable iff the corresponding probability generat­
ing function has the form (1.3) in the case of f3 = 00. 

The relations (1.3) and (1.6) show the connection between the Laplace­
Stieltjes transform of a positive Linnik random variable W; and the probability 
generating function of a discrete Linnik random variable L~. For more details, 
see van Harn, Steutel and Vervaat (1982) or Pakes (1995). In particular, 
- degenerate distribution corresponds with Poisson law if f3 = 00 and I = 1, 
- gamma distribution corresponds with negative binomial law in case of f3 < 00 

and 1= 1, and 
- Mittag-Leffler distribution with discrete Mittag-Leffler one if f3 = 1. 

Using the approach of Jayakumar and Pillai (1995) to prove the discrete self­
decomposability of the discrete Mittag-Leffler law with probability generating 
function (1.3) for f3 = 1, we find for discrete Linnik laws with integer form 
parameters f3 = m: 

The right-hand side is the weighted average of probability generating functions 
of degenerate and discrete Linnik laws. Hence, the left-hand side defines a 
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probability generating function The discrete self-decomposability of discrete 
Linnik laws with integer form parameters m follows now from (1.10) and (1.11). 
In the same manner, we obtain the self-decomposability of positive Linnik laws 
with integer form parameter m too. 

Using representation theorems for self-decomposable or discrete self-decom­
posable random variables in terms of Laplace-Stieltjes transforms or probability 
generating functions given in Steutel and van Harn (1979), it may be proved 
that positive Linnik random variables are self-decomposable and discrete Lin­
nik are discrete self-decomposable for arbitrary form parameter {3. See also 
Christoph and Schreiber (1998b, p. 8). Hence, these random variables are in­
finitely divisible. 

Note that the other Mittag-Leffler laws with Mittag-Leffler functions E-y(u) 
as Laplace-Stieltjes transforms are not infinitely divisible; see Bondesson, Kris­
tiansen and Steutel (1996, Theorem 4.3). 

1.3 Scaling of Positive and Discrete Linnik Laws 

Let W be self-decomposable. It follows from Loeve (1977, p. 334) that if to W 
there correspond a real number a > 0 and a nondegenerate random variable 
Wa such that (1.7) holds, then a < 1. For a = 1, the random variable WI in 
(1. 7) is degenerate at point O. Nevertheless, the random variable a W is a well 
defined for any a > O. 

For the positive Linnik random variable W.¢' we find 

A -Ih W>' 4 WI for arbitrary A> O. -y -y (1.13) 

.I 
Consider now the discrete Linnik random variable L~ with probability gen-

erating function (1.3), then using (1.10) with arbitrary a > 0 we obtain 

A- Ih 0 L~ 4 L~ for arbitrary A> 0, (1.14) 

but the dot product in (1.9) is defined only for A -lh < 1, i.e. A > 1. We 
may extend the definition of the dot product a 0 X for such a > 1, whenever 
the functions 9a0X(Z) defined by (1.10) is a probability generating function In 
dependency of X, there may exist an upper bound for such a that 9a0X (z) is 
a probability generating function. For more about scaling and the dot product, 
see Christoph and Schreiber (1998d). 

The scaling properties (1.13) and (1.14) of the positive Linnik random vari­
able W ~ and discrete Linnik random variable L~ allow to consider only the case 
of A = 1. 
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Let PI(x; >., fJ) be the density of positive Linnik random variable W;, then 
by (1.13) 

PI(x; >., fJ) = >. -lh pl (>' -lh x; 1, fJ) . 

For the probabilities of discrete Linnik random variable L~, we find by (1.14) 

In order to avoid such difficulties, we formulate the following limit theorems 
for arbitrary scaling parameter. 

1.4 Strictly Stable and Discrete Stable 
Distributions as Limit Laws 

Both the positive Linnik random variable W; with Laplace-Stieltjes transform 
(1.6) and the discrete Linnik random variable L~ with probability generating 
function (1.3) belong to the domain of normal attraction of the nonnegative 
strictly stable random variable S; having Laplace-Stieltjes transform (1.6) with 
fJ = 00, since 

(1.15) 

and 
as n --t 00. (1.16) 

Following Steutel and van Ham (1979), the discrete Linnik random variable 
L~ with probability generating function (1.3) belong to the discrete domain of 

normal attraction of the discrete stable random variable X; having probability 
generating function (1.3) with fJ = 00, since 

(1.17) 

Let WI, W2,"" Wn be iid copies of W; and Ll, L2," " Ln be iid copies of 
L~. Then different limit statements follow from (1.15), (1.16) and (1.17): 

Sn = n- 1h(W1 + ... + Wn) ~ S; as n --t 00, (1.18) 

S*- -1h(L L) d SA n-n 1+"'+ n --t I as n --t 00 (1.19) 

and 
d A 

Xn = Nl + ... + NLl+ ... +Ln --t XI as n --t 00, (1.20) 
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where in the later case the random variables Ll, ... , Ln are independent of the 
iid random variables Nl, N2, ... with P(NI = 1) = n- 1h = 1 - P(NI = 0) and 

~ denotes the convergence in distribution. 
We may interpret (1.17) also as the sum of iid random variable Ll n, ... , Ln n 

in the nth series of a triangular array {Lkn }, k = 1,2, ... , n, n = 1,2, . . . 

X~ = LIn + ... + Lnn ~ X; as n --+ 00, (1.21 ) 

where Ll n is discrete Linnik with with characteristic exponent 'Y, scale par am­
d 

eter >..jn and form parameter (3. Note that Xn = X~. 
Since the discrete Linnik random variable L~ is nonnegative integer with 

span 1, the random variable S~ is lattice with span n - Ih but the limit random 
variable S; in (1.19) is absolutely continuous for 0 < 'Y < 1 or degenerate for 
'Y = 1, whereas both random variables Xn and X; in (1.20) are nonnegative 
integer with span 1. Relation (1.21) shows a special type of convergence to 
nonnegative integer valued infinitely divisible random variables. 

Proposition 1.4.1 For positive Linnik random variable W,¢ with Laplace­
Stieltjes transform (1.6), if (3 < 00 we have in (1.18) 

IP(Sn :S x) - P(S; :S x)1 = O(n-l) as n --+ 00. 

For discrete Linnik random variable L~ with probability generating function 
{l.3}, we obtain in {l.19} 

{ 
O(n-l) , 

IP(S~ :S x) - P(S; :S x)1 = 
O(n- 1h) , if (3 = 00, 

if {3 < CXJ, 

as n --+ 00. 

Proposition 1.4.2 For discrete Linnik random variable L~ with probability 
generating function (1.3), if (3 < 00 we find in {l. 20 } 

IP(Xn:S x) - P(X;:S x)1 = O(n- 1) as n --+ 00. 

Since Xn 4: X~, the same bound holds in {l.21}. 

Remark 1.4.1 The results are special cases of more general ones proved in 
Christoph and Schreiber (1998c). They follow also from the corresponding 
statements about asymptotic expansions given in the next section. 

Remark 1.4.2 In the case 'Y = 1 Proposition 1.4.1 gives a special type ofrates 
of convergence in the weak law of large numbers for gamma distribution and 
negative binomial or Poisson distributions, because Sn is the arithmetic mean 
and the limit is the degenerate law at the point >... 
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Remark 1.4.3 If 'Y = 1 in Proposition 1.4.2 the convergence rate for the distri­
bution function of a random sum of Bernoulli random variables to the Poisson 
law is obtained. More details about Poisson approximation see Lorz and Hein­
rich (1991), Vellaisamy and Chaudhuri (1996) or in the monograph by Barbour, 
Holst and Janson (1992) and the references therein. 

1.5 Asymptotic Expansions 

It follows from Proposition 1.4.1 that for positive Linnik random variable W; 
and discrete Linnik random variable L~, in case of (3 < 00 we obtain the same 
rate of convergence to the distribution of the strictly stable random variable 
S~. To see the difference between the continuous and discrete random variables 
we consider asymptotic expansions up to such an order, where they differ. 

Asymptotic expansions with a (continuous) stable limit law (corresponding 
to 0 < 'Y < 1) are well investigated; see Christoph and Wolf (1993, Ch. 4) 
and references therein. In case of discrete stable limit laws, the Poisson limit 
law (which is discrete stable with 'Y = 1) is considered, when the underlying 
random variables have second or more moments; see Lorz and Heinrich (1991) 
or Aleskeviciene and Statulevicius (1995) and references therein. If 'Y < 1, then 
even the first moment does not exist. 

Define m = [1;']' where [r] denotes the integer part of r. Let 

{ 
m+1 1 .} 

hn(w) = exp w + j; j (3j-1 n j - 1 wJ (1.22) 

and 

h~(w) = eW • (1 + f Pj(w) n- j ) , 
J=l 

(1.23) 

where the polynomials Pj (w) are defined by the formal equation 

which leads to [see Christoph and Wolf (1993, p. 97)] 

j 1 m. 
p·(w) = " - " IT s-l wm+J 

J ~ m! ~ . k , 
m=l 81 + ... +8m =m+J k=1 

(1.24) 

where the summation in the second sum of the right-hand side is carried over 
all integer solutions (81, ... , sm) of the equation 81 + ... + sm = m + j with 
Sk 2: 2, k = 1, ... ,m. 
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The first three polynomials are PI ( w) = 1/ (2 ,8) w 2 , 

P2(W) = - -w + -wand P3(W) = - -w + -w + -w . 1 ( 1 4 1 3) 1 (1 6 1 5 1 4 ) 
,82 8 3 · ,83 48 6 4 

Remember that 'P SA (t) and 'P Sn (t) are the characteristic functions of the strictly 
"I 

stable random variable S~ and the normalized sum Sn defined in (1.18). Put 
TJ(t) = In'PsA(t), then 

"I 

TJ(t) = -,\, Itl'Y exp{ - i (7f, /2) sgn t } = -,\,( - i t)'"i, 

'PSA(t) = 'l/JsA(-it) and 'PSn(t) = 'l/J~A (-itn- Ih ) = (1 - TJ(t)/ (n,B) )-f3 n . 
"I "I "I 

With Lemma 4.30 from Christoph and Wolf (1993), we find for It I < E nIh with 
sufficiently small E > ° that 

where a ~ ,(m + 2) and CI are some constants independent of It I and n. 
Consider now S~ defined in (1.19) which is lattice with span n- Ih . The 

characteristic function of the random variable L~ is given by 'P LA (t) = 9 LA (eit ) 
I "I "I 

with the corresponding probability generating function (1.3). Using (1- eit )'"! = 
(- it)'"! (1 -,( - it)/2) + O(ltl2+'Y) as It I -+ 0, we find similar to (1.25) 

l'Ps;; (t) - h~*(TJ(t))1 :S c2n-m-I(ltl'Y(m+2) + Itl b) e-A1tl"l /4, (1.26) 

where b ~ ,(m + 2) and C2 are some constants independent of It I and nand 

h~*(TJ(t)) = h~(TJ(t)) - ,TJ(t)(-it)/2. 

Let G~ (x) and G~* (x) be functions of bounded variation such that h~ (TJ (t)) and 
h~*(TJ(t)) are their Fourier-Stieltjes transforms: 

h~(TJ(t)) = 1000 eitx dG~(x) and h~*(TJ(t)) = 1000 eitx dG~*(x). 

Denote the distribution function of the strictly stable random variable S~ by 
G'Y(x; ,\,), 

ak+j 
G~,j (x;,\,) = axk a,\,j G'Y(x;'\') , k = 0,1 and j = 0, 1, ... 

and the Fourier-Stieltjes transform of Pj(TJ(t)) 'PSA(t) by Qj(x; '\'). Then by 
"I 

(1.23) and (1.24) the functions G~(x) and G~*(x) are linear combinations of 
partial derivatives of the limit law G'Y(x; '\'). 
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Proposition 1.5.1 Let 0 < 'Y < 1. 
i) For positive Linnik random variable W; with Laplace-Stieltjes transform 
(1.6), if f3 < 00 we have 

IP(Sn ::; x) - G~(x)1 = O(n- [lh]-l) as n -t 00, 

where 
[lh] 

G~(x) = G"f(x; >.) + L Qj(x; >.) n-j . 
j=l 

ii) For discrete Linnik random variable L~ with probability generating function 
(l.3), we obtain 

{ 
O(n- [lhl+l) for f3 < 00 

IP(S~ ::; x) - G~*(x)1 = 
O(n- 2h) for f3 = 00 

where, with jumps correcting function S(x) = [xl - x + 1/2, 

as n -t 00, 

G~*(x) = G~(x) - b /2)G~,1(x; >.)n- 1h + S(x nIh) G~'O(x; >.)n- 1h 

if f3 < 00, or if f3 = 00 

G~*(x) = G"f(x;>,) - b/2)G~,1(x;>.)n-lh + S(xnlh)G~,o(x;>')n-lh. 

PROOF. The first part follows from Theorem 4.11 of Christoph and Wolf 
(1993), which can not be used directly for the random variable L~ since it 
is lattice. Combining the proofs of Theorem 4.11 with that of Theorem 4.37 
in Christoph and Wolf (1993) and changing the pseudomoment condition by 
condition (1.26) on the behavior of the characteristic functions, we obtain the 
second statement too. • 

Remark 1.5.1 The Edgeworth expansions of the normalized sums of positive 
Linnik or discrete Linnik random variables differ in a continuous term and a 
term considering the jumps of S~ both with the order n- 1h. 

Consider now P(Xn ::; x) = P(X~ ::; x), where Xn and X~ are defined in 
(1.20) and (1.21). 

Using (1 + u)-r = exp{ -T In(1 + u)} and expanding In(1 + u) in series, we 
obtain for 11 - zl < c with sufficiently small c > 0 

(1.27) 

and expanding exp{I:} in hn(w) in (1.22) in series 
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where C3, C4 and d ~ (m + 2) r are positive constants independent of It I and n. 

Let Mn(x) and M~(x) be functions of bounded variation such that 

The function Mn(x) is an asymptotic expansion in the exponent; see Cekanavi­
cius (1997) and references therein which goes back to signed compound binomial 
approximation by LeCam (1960). 

With M~(x), we have an Edgeworth expansion with discrete stable limit law 
which coincides for r = 1 with the Poisson-Charlier expansion with the Poisson 
limit law due to Franken (1964). See the also the references in Aleskeviciene 
and Statulevicius (1995), where the approximating functions M~(x) with the 
Poisson limit law and the constants in the remainder are calculated. 

In Steutel and van Ham (1979), it was proved that all nonnegative integer 
random variables with finite expectation are discrete normal attracted by the 
Poisson law. In case 0 < r < 1, we do not have even the first moment; 

The probabilities of the strictly stable random variable X~ are given in 
(1.5). Hence, for m = 1,2, ... , we have 

<Xl 

(- >. (1 - z)')m exp{ - >. (1 - z)'} = L qk(m)zk (1.29) 
k=O 

with the jumps 

(1.30) 

It follows from (1.29) and (1.30) that '£~O qk(m) = 0 for m = 1,2, .... Hence, 
by (1.23) and (1.23) we may calculate the approximating functions M~(x) = 

'£O<k<x q'k, which are functions of bounded variation with jumps q'k, where 

'£~oq'k = 1. 

Proposition 1.5.2 For the discrete Linnik random variable L"( with Laplace­
Stieltjes transform (1.6), if (3 < 00 we have 

IFn(x) - Mn(x)1 = O(n-[lhl-1) as n -t 00 

and 

PROOF. Since both the discrete Linnik and the discrete stable random vari­
ables are nonnegative integers, we make use of an analogue of Esseen's smooth­
ing lemma for nonnegative integer valued random variables due to Franken 
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(1964, Lemma 1). Let F(x) = L.O~k~xPk be a lattice distribution function with 
jumps Pk 2: 0, G(x) = L.O<k<x rk a function of bounded variation with jumps rk 
such that L.~o rk = 1 and both <P F and <Pc the corresponding Fourier-Stieltjes 
transforms, then 

sup IF(x) - G(x)1 ~ ~ 171" I <PF(t) ~ <pc(t) I dt. 
x 27r - 71" exp{ ~t} - 1 

(1.31 ) 

Put F(x) = P(Xn ~ x) and G(x) = Mn(x) or M~(x), then <PF(t) = <PXn(t) 
and <pc(t) = hn( - A (1 - eit )") or h~( - A (1 - eit )") . With (1.31) and (1.27) 
or (1.28) we obtain the statements of Proposition 1.5.2. • 
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On Finite-Dimensional Archimedean Copulas 

S. V. Malov 

St. Petersburg State University, St. Petersburg, Russia 

Abstract: We investigate general finite dimensional Archimedean copulas. 
Some properties of generators of Archimedean copulas are under consideration. 
We obtain necessary and sufficient conditions for the generators of Archimedean 
copulas and give some properties of degenerate finite dimensional Archimedean 
copulas. Some examples of degenerate finite dimensional Archimedean copulas 
are also represented. 

Keywords and phrases: Archimedean copula, complete monotone function, 
copula, Laplace transformation 

2.1 Introduction 
- -d -

Let a, bE R , a = (aI, a2, .. . , ad), and b = (bl' b2, .. . , bd). Introduce the partial 
ordering the following way. We say that a :S b if ai :S bi for all i = 1,2, ... ,d. 
A d-box is the Cartesian product of d closed intervals. For a :S b, we define the 

d-box [a, bl = {l E ~ : a :S l:S b} as the Cartesian product [aI, bll x [a2' b21 x 
... x [ad, bdl and the vertices of [a, bl are the points iJ = (VI, V2, ... ,Vd) such that 
each Vm is equal to either am or bm . Introduce the following definitions. 

Let Qt = [a, bl be a nondegenerate n-box (i.e. ai < bi for all i = 1,2, ... , d). 
Introduce the function sgnQ! : J ~ {-I, 0,1}, where J is the set of vertices of 
Qt, such that 

_ { 1 sgnQ!(v) = -1 
if Vm = am for an even number of m's, 
if Vm = am for an add number of m's, 

for any vertex V = (VI, V2, ... ,Vd) of Qt. For degenerate n-box (i.e. ai = bi for 
some i E {I, 2, ... , n}), we assume that sgnQ!(iJ) = 0 for all iJ E J. 
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We say that a function F : D -t R, D c ~, is d-increasing if for any d-box 
2lcD 

VF(21) ~f :L sgnQt(v) F(v) ~ 0. (2.1) 
iJ 

Suppose that the set D has smallest element e : e ::; u for all u ED. 
The function F : D -t R is said to be grounded if F(x) = ° for all x = 

(Xl,X2, ... ,Xd) such that Xi = ei for some i E {1,2, ... ,d}. 
It is well known that the function F : W -t [0,1] is the distribution function 

of some random vector iff F is d-increasing, grounded and F( 00,00, ... ,00) = 1. 
We say that a function C : Id -t [0,1]' where Id = [0,1] x [0,1] x ... x [0,1] 

is the d-dimensional unit cube, is a copula if it is d-increasing, grounded and 

C(I, ... , 1, Urn, 1, ... ,1) = Urn, Urn E [0,1]' 

for all m = 1,2, ... , d. 
It is clear [see, for example, Schweizer and Sklar (1983)] that any distribution 

function F having marginals Fl, F2, ... , Fd can be represented using copula 

A copula C is say to be Archimedean if there exist the functions B : R+ -t 

[0,1] and A : [0,1] -t R+ such that B is continuous and strictly decreasing on 
[0, A(O)], B(O) = 1, lim B(u) = 0, B(u) = 0 for all U > A(O) and 

u-->A(O) 

d 

C(Ul,U2, ... ,Ud) =B(:LA(uj)), Ul,U2, ... UdE [0,1]. (2.3) 
j=l 

It is not difficult to see that under continuous marginals B(x) = A-1(x) for 
all X E [0, A(O)]. 

Remark 2.1.1 The function F given by (2.2) is a distribution function of a 
random vector with marginals Fl, F2, ... , Fd for any marginals if this property 
takes place for some continuous marginals Fl, F2, ... , Fd. Therefore, when we 
prove the main results, we lose no generality by the assumption that all marginal 
distribution functions 

{ 
0, x::; 0, 

Fi(X) = U(x) = x, x E (0,1]' 
1, x> 1 

(2.4) 

are the distribution functions of the uniform U(O,I) distribution for all i 
1,2, ... ,d. 
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As was given by Schweizer and Sklar (1983), based on the result of Moynihan 
(1978), the function C(Ul, U2) defined by (2.3) for d = 2 is a copula iff B is a 
convex function. Kimberling (1974) based on the results of Widder (1946) for 
Laplace transformation, proved that C(Ul, U2, ... , Ud) in (2.3) is a copula for all 
d 2 2 iff the function B is completely monotone, i.e. B is infinitely differentiable 
on (0,00) and 

(2.5) 

for all kEN. 
An (n)-differentiable function satisfying (2.5) for all k = 1,2, ... ,n is said 

to be n-th order monotone on [0,00) or simply n~th order monotone. 
We say that the random vector having distribution function given by (2.2) 

and (2.3) is an Archimedean copula vector. The process having finite dimen­
sional distributions given by (2.2) and (2.3) is said to be an Archimedean copula 
process. 

As was mentioned by Malov (1998), any Archimedean copula sequence can 
be represented using the Laplace transformation via independent random vari­
ables (r.v.'s). Let Xl, X2, ... , Xn be the Archimedean copula process hav­
ing finite dimensional distributions given by (2.2) and (2.3). It is known [see, 
for example, Feller (1971)] that any completely monotone function B(t) with 
B(O) = 1 and limhoo B(t) = 0 can be represented as follows: 

r+ oo 
B(t) = io e-stdG(s) 

for some distribution function G such that G(O+) = O. 
Suppose that Yl , Y2, ... are independent and identically distributed r.v.'s 

having the distribution functions 

and Y is some r.v. independent of {YdkElN. Introduce r.v.'s Z = exp(Y), Zk = 
exp(Yk), and Lk = ~ for all kEN. Then 

P(LI > Rl(xI), L2 > R2(X2), ... , Ln > Rn(xn)) 
+00 J P(ZI > SRI (Xl), Z2 > SR2(X2), ... , Zn > sRn(xn)) dG(s) 
o 
+00 n +00 n J exp(-s LRi(Xi)) dG(s) = J exp( -s ~A(Fi(Xi))) dG(s), 
o 2=1 0 2=1 

where G(s) is the distribution function of Z; Ri(Xi) = A(Fi(Xi)), X E R, for all 
i EN. The suitable choice of the distribution of Y yields us that the process 
Rll(Ld, Ki l (L2), ... is the desired Archimedean copula process. 
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In the special case of proportional Archimedean copula, under the 
condition ~(x) = aiR(x), x E R, for some function R : R ~ [0,1] and 
some positive constants aI, a2, ... , an, i = 1,2, ... , n, it is convenient to use 
the following representation using the independent r.v.'s Y, YI, Y2, ... with the 
distribution functions 

Fi(X) = 1 - exp( -aieX), x E R, 

and the Y such that the distribution function of Z = exp(Y) is G. In this case 
the sequence R-I(LI), R-I(L2), ... is the Archimedean copula process. 

In Sections 2.2 and 2.3, we obtain the class of functions B such that the 
function C given by (2.3) is an Archimedean copula for finite d > 2. Also, we 
investigate some degenerate cases. In Section 2.4 we present some examples of 
Archimedean copulas. 

2.2 Statements of Main Results 

The following theorem gives us the class of functions which can be used to 
generate a finite dimensional Archimedean copula. 

Theorem 2.2.1 Let B : [0, 00) ~ [0,1] be a continuous and strictly decreasing 
function on [0, A(O)] such that B(O) = 1, limt-->A(O) B(t) = ° and B(t) = ° for all 
t ~ A(O). In this case, the function C given by {2.3} is an Archimedean copula 
iff B is a (d-2)-differentiable function on (0,00) satisfying the conditions {2.5} 
for k = 1,2, ... , d - 2, and (_l)d B(d-2) is a convex function. 

Now we consider the following example. 

Example 2.2.1 Suppose that for d = 2 

B(x) = { 1 - x, x E [0,1]' 
0, X> 1, 

and the marginal distributions are both standard uniforms U(O, 1), i.e. H(x)= 
F2(X)=U(x), xER, where U(x) is as defined in (2.4). In this case, the function 
A = B-1 is given by 

A(x) = 1 - x, x E [0,1]. 

It is clear that B is a convex function. Therefore, the function 

0, 
Xl + X2 - 1, 
Xl, 

X2, 
1, 

Xl ::; 0, or X2 ::; 0, or Xl + X2 ::; 1, 
Xl E (0,1]' X2 E (0,1]' Xl +X2 > 1, 
Xl E (0,1]' X2 > 1, 
Xl> 1, X2 E (0,1]' 
Xl > 1, X2> 1. 
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calculated by (1.2) and (1.3) is a two-dimensional distribution function, but 
simple calculations bring us that this function is a distribution function of 
the vector (X,1 - X), where X is the uniformly distributed on [0,1] (U(0,1)) 
random variable. Therefore, this distribution is concentrated on the segment 
Xl +X2 = 1, Xl E [0,1] and the distribution function F(XI,X2) is not absolutely 
continuous. 

Remark 2.2.1 If we choose B as in Example 2.2.1, we obtain for absolutely 
continuous distribution functions FI and F2 that the function 

defined by (2.2) and (2.3) is a distribution function of the vector (FI-I(X), 
F2- 1 (1 - X)) with X uniformly distributed on [0,1]. The distribution of this 
vector is concentrated on a one-dimensional manifold and this distribution 
function also is not absolutely continuous. 

It is not difficult to see that the distribution function given by (2.2) and (2.3) 
is absolutely continuous for any absolutely continuous marginals F I , F2, . .. , Fd 
if B is a monotone (d)-differentiable function satisfying the conditions (2.5) for 
k = 1,2, ... , d. In this case, the corresponding density function can be obtained 
as follows: 

d d 

p(XI' X2,···, Xd) = B(d) (I: A(Fj(xj)) II A'(Fi(xd) Pi(Xi), (2.6) 
j=l i=l 

for all Xl, X2, ... ,Xd E R, where Pi are the density functions corresponding 
to Fi, i = 1,2, ... , d, respectively. 

Suppose that 

Q3 n = {t E R+ : there exists B(n)(t)}, n E N. 

As was mentioned above, the function B must be (d - 2)-differentiable 
and (-1)d B(d-2) must be a convex function. Therefore, Q3d-1 is an every­
where dense set. Consequently, for any y E Q3d-l, we can write left and right 
derivatives 

B(d-l)(y_) = lim B(d-l)(t) and B(d-l)(y+) = lim B(d-l)(t). 
tE2l tE2l 

t-+y_ t-+y+ 

The following theorem gives some properties of Archimedean copulas in the 
degenerate case. 
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Theorem 2.2.2 Suppose that the function F(XI,X2, ... ,Xd) is a distribution 
function defined by {2.2} and {2.3} of some random vectorXI,X2, ... ,Xd with 
absolutely continuous marginals H, F2, . .. , Fd, respectively. Then for all x = 

d 

(Xl, X2, ... , Xd) E R such that L A(Fj(xj» E ~d, there exists a density func­
j=l 

tion and it is given by {2.6}. For y E R+ \~d, we have 

d d 
p(", Z· = y) = ~ ~ BCd-I) ;Si J d! Y , 

where 
~yB(d-l) = 1 B(d-l)(y_) _ B(d-l)(y+) I, 

is the increment of (d -1)-th derivative of B in y, Zi = A(Fi(Xi», i = 
1,2, ... , d, and for any y E R+ \~d-l the conditional distribution of the vector 
(Zl, Z2, ... , Zd-l) under the condition Zl + Z2 + ... + Zd = Y is uniform in the 
set 1) = {tl, t2,"" td-l ~ 0 : 2:.f::f ti < y}. 

Remark 2.2.2 By Theorem 2.2.1, (_I)d B(d-2) is a convex function. There­
fore, under the condition that B is (d -I)-differentiable, it satisfies (2.5) for 
k = 1,2, ... , d - 1, and BCd-I) is a monotone function. Under the condition 
that B(d-l) is absolutely continuous, the distribution function F defined by 
(2.2) and (2.3) with absolutely continuous marginals is absolutely continuous 
and the corresponding density function can be calculated by (2.6) for all x's, 

d 

such that L A(Fj(xj» E 23d. For other x's the density function can be defined 
j=l 

arbitrary. 

Corollary 2.2.1 Under the conditions of Theorem 2.2.2, the distribution of 
the initial random vector is absolutely continuous iff B is (d-I)-differentiable 
and B(d-l) is an absolutely continuous function on R+. 

Corollary 2.2.2 Under the conditions of Theorem 2.2.2, the distribution 
of the vector (Zl, Z2, ... , Zd) under the condition Zl + Z2 + ... + Zd = Y for 
y E R+ \~d-l is uniform in the set 1)* = {tl, t2,"" td ~ 0 : 2:.f=1 ti = y}. 

Usually in survival analysis, distributions are given by survival functions. 
Suppose that Xl, X2, ... , Xd is an Archimedean copula vector having the dis­
tribution function given by (2.2) and (2.3) with absolutely continuous 
marginals. Introduce the r.v.'s Yi : Yi = -Xi, i E N. Then as was 
mentioned by Bagdonavicius, Malov and Nikulin (1997), the random vector 
(YI , Y2, ... , Yd) : Yi = -Xi, i = 1,2, ... , d, has the survival function 
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P(Yi > Xl, 1'2 > X2, · ··, Yd > Xd) 

P(XI ~ -XI,X2 ~ -X2, . .. ,Xd ~ -Xd) 
d d 

B(L:A(Fi(-Xi))) = B(L:A(8i(xd)), 
i=l i=l 

where 81,82, ... , 8d are the survival functions of Y1, Y2, ... , Yd. In this case, 
(Y1, Y2, ... , Yd) is said to be a survival Archimedean copula vector. Theorems 
2.2.1 and 2.2.2 can be also formulated in terms of survival Archimedean copulas. 

2.3 Proofs 

When we prove Theorem 2.2.1 , we lose no generality by assuming that 
the marginal distributions are all the standard uniform U(O, 1). 

PROOF OF THEOREM 2.2.1. Let (X1,X2, ... ,Xd) be a random vector having 
distribution function F defined by (2.2) and (2 .3) with the standard uniform 
marginals. Introduce the following notation 

R(x) = A(U(x)), X E R, 

where U(x) is given by (2.4). Then for any n E {2, 3, . .. , d}, the vectors 
(XiI' Xi2 , ... , Xin ) are Archimedean copula vectors with distribution functions 

n 

Fn(X1,X2, .. . ,xn) = B(L:R(Xi)), X1,X2, .. . ,Xn E R (2 .7) 
j=l 

for all populations of indexes {iI, i2, ... , in} ~ {I, 2, . .. , d}. We use induction 
based on the case n = 2 which was given by Schweizer and Sklar (1983). 

Suppose that we have proved that the function B is (n - 2 )-differentiable 
function such that the conditions (2.5) take place for all k = 1,2, ... , n - 2, and 
(_1)(n)B(n-2) is a convex monotone function for some n E {2,3, . . . ,d-1}. 
Then the distribution function of the vector X1,X2, .. . ,Xn+1 can be repre­
sented as follows: 

n+1 
B(L: R(Xi)) 

j=l 
n+1 

+ L: R(xj)) dR(X1) dR(X2) .. . dR(xn-2) . 
j=n-1 

Using the convex property of B(n-2), the function under the integral can be 
represented for any fixed t1, t2, . .. , tn-2 in the following way: 
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n-2 n+l 

B(n-2)(2: R (td+ 2: R(xj)) 
i=l j=n-l 

n-l J B(n-l) (2: R(ti) + R(Xn) + R(Xn+I)) dtn-l, 
i=l 

( -OO,Xn-l] 

~EQ3n-l 

n-l 

where ~ = 2: R(ti) + R(xn) + R(xn+d. Therefore, it is possible to define the 
i=l 

conditional distribution function a.s. on tl, t2, ... , tn-I: 

F't(XI' X2) = P(Xn+1 < Xl, Xn < X21 Xl = tl, X2 = t2,"" X n- l = tn-d 
n-l 

B(n-l) (2: R(ti) + R(xn) + R(Xn+d) 
i=l 

n-l 

B(n-l) (2: R(ti)) 
i=l 

In this case 

P(Xn+1 E (x, y), Xn E (x, y) I Xl = tl, X2 = t2, ... , Xn-l = tn-I) 
n-l n-l 

[B(n-l) (ti R(td+R(y)+R(y)) +B(n-l) (ti R(td+R(x)+R(x)) 

- 2 B(n-I) (~R(ti) + R(x) + R(Y))] / B(n-l) (~R(ti))' (2.8) 
i=l i=l 

By the properties of distribution functions, 

The left side of this inequality is given by (2.8) a.s. for (tl, t2, ... ,tn-I) ERn-I. 

By ietting ti ---+ 00, i = 1,2, ... ,n - 1, we obtain by (2.8) and (2.9) that 

B(n-I)(2 R(y)) + B(n-I)(2 R(x)) - 2 B(n-I)(R(x) + R(y)) 
> 0 

n-l 

B(n-l) (2: R(ti)) 
i=l 

or 

a.s. for all x, y E R.· Therefore, the function (_1)n-1 B(n-l) is a convex 
function. Then B(n-l) is continuous and satisfy the condition (2.5) for k = 
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n - 1. By the condition lim B(t) = 0, we obtain that lim B(n-l)(t) = 0 and 
t->oo t->oo 

(_l)n-l B(n-l) is a monotone function. 
Therefore, B is a (d - 2)-differentiable monotone function satisfying the 

condition (2.5) for all k = 1,2, ... , d - 2, and (_l)d B(d-2) is a convex function. 
Conversely, let B : [0,00) -+ [0,1] be a continuous function, strictly decreas­

ing on [0, A(O)] and such that B(O) = 1, limt->A(O) B(t) = 0 and B(t) = 0 for 
all t 2: A (0). Also we assume that it is (d - 2 )-differentiable and satisfy the 
condition (2.5) for all k = 1,2, ... , d - 2 and (-l)d B(d-2) is a convex function. 
It is easy to see that the function F(Xl' X2, ... , xn) defined by (2.2) and (2.3) 
is continuous and satisfies the following conditions: 

lim F(Xl,X2, ... ,Xd) =0 for all i=1,2, ... ,d, 
Xi-----+-OO 

and 
lim F(Xl' X2, ... ,Xd) = 1. 

Xi -+-00 
i=1,2, ... ,d 

Now we need to prove that the condition (2.1) holds for an arbitrary chosen 
set 2( = [ai, bl] x [a2, b2] x ... x [ad, bd] E Rd such that ai ~ bi for all i = 
1,2, ... ,d. 

Introduce, for any fixed c 2: 0, the function Be such that 

Then Be(t) is a convex function for any c 2: O. Following the proof for d = 2 
given in Schweizer and Sklar (1983), we obtain that for all [Xl, Yl] X [X2, Y2] ~ R2 
the condition 

Be(R(Yl) + R(Y2)) + Be(R(xd + R(X2)) 

-Be(R(xI) + R(Y2)) - Be(R(yI) + R(X2)) 2: 0 (2.10) 

holds for any c 2: O. 
The function F(Xl' X2, ... , Xd) can be represented as 

Then for any 2( = [ai, bl ] x [a2' b2] x ... x [ad, bd] E Rd such that ai ~ bi for all 
i = 1,2, ... , d, the left hand side of (2.1) can be rewritten as follows: 



28 

2: sgn21 (v) F(v) 
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b1 b2 bd-2 d-2 J J ... J [B(d-2) (2: R(td + R(bd-l) + R(bd)) 
al a2 ad-2 2=1 

d-2 
+ B(d-2) (2: R(td + R(ad-l) + R(ad)) 

i=l 

d-2 
- B(d-2) (2: R(ti) + R(bd-l) + R(ad)) 

i=l 

d-2 
- B(d-2) (2: R(ti) + R(ad-d + R(bd))] 

i=l 

By choosing c = '£1::[ R(ti) in (2.10) we obtain that the function under this 
integral is nonnegative for odd d and nonpositive for even d. Therefore, the last 
integral is nonnegative and the condition (2.1) holds. Theorem is proved. • 

PROOF OF THEOREM 2.2.2. Let (Xl, X2, ... , Xd) be a random vector with 
a distribution function F given by (2.2) and (2.3). It is clear that under the 
condition that B is a (d)-differentiable function at some y E R+, the function 
F(Xl' X2, . .. , Xd) defined by (2.2) and (2.3) has a d-th partial derivative with 

d 

respect to Xl, X2, ... , Xd for all a = (aI, a2,···, ad) such that 2: A(Fi(ai)) = y, 
i=l 

which can be calculated in the following way: 

Therefore, the density function for any x E ~d can be calculated by (2.6). 
Further, without loss of generality we assume that the random vector 

(Xl, X2, .. . ,Xd) has the standard uniform marginal distributions [Le. the dis­
tribution function of this vector is defined by (2.7)]. By Theorem 2.2.1, the 
function B(d-2) is convex. Therefore, B(d-2) is absolutely continuous and 

d-l 

p (2: R(Xi) E ~d-l) = o. 
i=l 

Introduce for all y E ~d-l and for all Xl, X2, ... , Xd-l a.s. the conditional 
distribution function of the sum 
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d 

P(LR(Xi)<Y I X 1 =Xl,X2=X2, ... ,Xd-l=Xd-l) 
i=l 

Therefore, for any Y E IBd-l 

d 

P(LR(Xi ) < Y) 
i=l 

J J ... J B(d-l)(y) dR(tl)dR(t2) ... dR(td-d 

R(tl)+ R(t2 )+ ... + R(td_l )<y 

B(d-l)(y) J J ... J dR(tddR(t2)'" dR(td-d 

R(tl)+ R(t2)+ ... +R(td_l)<Y 

d-l 
y B(d-l)( ) 

(d - 1)! Y . 

29 

As was mentioned above, the set IBd-l is everywhere dense in R+. Thus, we 
can find two sequences {yd and {zd such that Yi ~Y-, Zi ~Y+ and 

t-+-CX) t~OO 

Yi, Zi E IBn - 1 for all i E N. Consequently, 

P(ZI + Z2 + ... + Zd=Y) 

lim I yf-l B(d-l) (Yi) _ 4-1 B(d-l)(Zi) I 
Yi-+Y- (d-1)! (d-1)! 
Zi-+Y+ 

d-l 
Y IB(d-l)(y) - B(d-l)(y )1 

(d - 1)! + -
d-l 

Y ~ B(d-l) 
(d - 1)! Y 

Now we assume that y E R\IBd- 1. In this case, P('L1=1 Zj = y) > 0, where 
Z's were defined above, and we can write the conditional distribution function 
F(Xl' X2,"" Xd-d under the condition 'L1=1 Zj = y as follows: 

F(Xl,X2, ... ,xd-d 
d d 

= P(ZI < Xl,Z2 < X2, ... ,Zd-l < Xd-l,LZj = Y)/ P(LZj=Y) 
j=l j=l 



30 S. V. Malov 

For any t E ~ d-l, it is possible to calculate that 

Then, 

and 

d 

P(ZI < XI,Z2 < X2,···,Zd-1 < Xd-I,LZj < t) 
j=l 

J J ... J 
tiE[O,xi),i=I,2, ... ,d-1 

tl +t2+ ... +td_l <t 

J J ... J 
tiE[O,xi),i=I,2, ... ,d-1 

tl +t2+ ... +td-l <t 

d 

P(ZI < XI,Z2 < X2, ... ,Zd-1 < Xd-I,LZj = Y) 
j=l 

d 

= p( Zl < Xl, Z2 < X2,···, Zd-l < Xd-b L Zj < Y+) 
j=l 

d 

-P(ZI < XI,Z2 < X2, ... ,Zd-1 < Xd-I,LZj < Y-) 
j=l 

J J ... J 
ti E[O,xi),i=I,2, ... ,d-1 

tl +t2+ ... +td-l <t 

d 

P(ZI<Xl,Z2<X2, ... ,Zd-I<Xd-1 I2:Zj=Y) 
j=l 

(d-l)! 
yd- l J J ... J dXldx2 ... dXd-l· 

ti E[O,xi),i=I,2, ... ,d-1 
tl +t2+ ... +td_l <t 

Consequently, the conditional distribution of (Zl, Z2, ... , Zd-l) under the 
condition 'L1=1 Zj = Y is uniform in :D = {tl, t2, ... , td-l ~ 0 'Lf=l ti ~ y}. 
Theorem is proved. • 

2.4 Some Examples 

Now we represent some examples of finite dimensional Archimedean copulas. 
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Example 2.4.1 Let the function B : [0,00) ---t [0,1] be such that 

B(t) = { (t _1)2, ~ E [0,1]' 
0, In other cases. 
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By Theorem 2.2.1, this function can generate Archimedean copulas only for 
d = 2 and d = 3. For d = 2, the direct calculation (2.3) gives us the function 
C: [0,1]2 ---t [0,1] such that 

C(XI X2) = { (JX1 + JX2 - 1)2, :fx1 + JX2 > 1, 
'0, In other cases. 

By Corollary 2.2.1, the distribution function F defined by (2.7), viz. 

0, 
0, 
(JX1 + JX2 - 1)2, 
xl, 
x2, 

1, 

Xl ~ ° or X2 ~ 0, 
Xl > 0, X2 > 0, JX1 + JX2 ~ 1, 
Xl ~ 0, X2 ~ 0, JX1 + JX2 > 1, ° < Xl ~ 1, X2 > 1, 
Xl > 1, ° < X2 ~ 1, 
in other cases, 

of an Archimedean copula vector with U(O, 1) marginals is absolutely continuous 
and the density function of this vector has the following form: 

( ) { 2~' 0 < Xl ~ 1, ° < x2 ~ 1, JX1 + JX2 > 1, 
P Xl, X2 = XIX2 

0, in other cases. 

In the case d = 3, we obtain that 

C( ) - { (JX1 + JX2 + JX3 - 2)2, 
XI,X2,x3 - ° , JX1 + ..fi2 + JX3 > 2, 

in other cases. 

Then the distribution function F defined in (2.7) is 

F(XI,X2,X3) 

(JX1 + VX2 + JX3 - 2)2, xl E (0,1]' X2 E (0,1]' X3 E (0,1] 
JX1 + JX2 + JX3 > 2, 

(JX1 +..fi2 _1)2, xl E (0,1], X2 E (0,1], X3> 1, 

JX1 +..fi2> 1, 
(JX1+JX3-1)2, XIE(0,1], x2>1, X3E(0, 1], 

JX1 +JX3>1, 

(..fi2 + JX3 _1)2, Xl> 1, X2 E (0,1]' x3E (0,1], 
..fi2 + JX3> 1, 

Xl, Xl E (0,1]' X2 > 1, X3 > 1, 
X2, Xl > 1, X2 E (0,1], X3 > 1, 
X3, Xl > 1, X2 > 1, X3 E (0,1], 
1, Xl > 1, X2 > 1, X3 > 1, 
0, in other cases. 
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It is easy to see that the absolutely continuous component of a 
vector (Xl, X2, X3) having distribution function F is 0, and by Theorem 2.2.2 
we obtain that JXl + VX2 + JX3 = 2. 

In the following example, the function A from Example 2.4.1 is taken as a 
generator of an Archimedean copula. 

Example 2.4.2 Suppose that the function B : [0,00) --t [0,1] is defined by the 
following relation 

B(t) = { 1 - 0, t E [0,1]' 
0, in other cases. 

It is clear that the function B is convex but it is not differentiable for t = 1 
[B'(L) = -1/2 and B'(1+) = 0]. Therefore, the function B can generate an 
Archimedean copula only for d = 2. This copula has the following form: 

Calculate the corresponding distribution function with U(O, 1) marginals 

Then, 

82F(XI,X2) 

8xl 8x2 

0, Xl :s ° or X2 :s 0, 
0, Xl E (0,1]' X2 E (0,1]' 

(1 - xI)2 + (1 - X2? > 1, 
I-V(I-xI)2+(I-X2)2, XIE(O, 1], X2E(0,1], 

(I-XI)2+(I-X2)2:s 1, 
Xl, Xl E (0,1]' X2 > 1, 
X2, Xl > 1, X2 E (0,1]' 
1, in other cases. 

Xl tt (0,1] or X2 tt (0,1] 

or (1 ~ xI)2 + (1 - X2)2 > 1. 

Let (Xl, X 2 ) be the random vector with distribution function F. By Theorem 
2.2.2, we obtain that P((1 - XI)2 + (1 - X2)2 = 1) = 1/2. This fact is easy to 
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obtain by direct calculations: 

J J (Xl -1)(x2 -1) dXldx2 

xIE(O,I],X2E(O,I] ((XI_1)2+(X2_ 1)2)3/2 
(I-Xl)2+(I-x2)2<1 

I 7r/2 

= J dr J sin </> cos </> d</>= 1/2 = 1-1/2. 
o 0 

In the following example we consider the copula generated by a function 
which is not differentiable at two points. 

Example 2.4.3 Let the function B : [0, (0) -+ [0, 1] be defined as follows: 

{ 
(2t - 1)2, t E [0,1/4]' 

B(t) = 1-20, t E (1/4,1]. 

The function B is convex, but it has no derivative at the points t = 1/4 and 
t = 1. The copula generated by B is 

C(XI' X2) 

1 - J(l- 2xdl + (1 - 2X2)2 

2 
Xl E (0,1/4]' X2 E (0,1/4]' 
(1 - 2xI)2 + (1 - 2X2)2 :s 1, 

1- V(1- 2XI)2 + (1 - JX2)/2, 

1- V(l - JX2)/2 + (1 - 2xI)2, 

(1- V1- (JX2 + JXl)/2) /2, 

Xl E (0,1/4]' X2 E (1/4,1]' 
(1 - 2XI)2 + (1 - JX2)/2 :s 1, 

Xl E (1/4,1]' X2 E (0,1/4]' 
(1 - 2X2) + (1 - JXl)/2 :s 1, 

XIE(1/4,1], x2E(1/4,1], 
JX1 +JX2:s 3/2, 

1, 
0, 

Xl E (1/4,1]' X2 E (1/4,1]' 
JX1 +JX2>3/2, 

Xl > 1 or X2 > 1 or X3 > l. 
in other cases. 

Then the distribution function given by (2.7) with U(O, 1) marginals is 

0, 
C(XI, X2), 
Xl, 
X2, 
1, 

Xl :s ° or Xl :S 0, 
Xl E (0,1]' X2 E (0,1]' 
Xl E (0,1]' X2 > 1, 
Xl > 1, X2 E (0,1], 
Xl > 1, X2> 1. 

Let (Xl, X2) be the Archimedean copula vector having the distribution function 
F. In this example, A(t) = B(t), t E (0,1). Also, it is important to mention 
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that b.1/ 4B = 3/2 and b.IB = 1/4. Therefore, by Theorem 2.2.2, P(A(Xd + 
A(X2) = 1/4) = 3/8 and P( VX1 + JX2 = 3/2) = 1/4. Thus, 3/8 of unit 
measure is concentrated on the manifold A(xI) + A(X2) = 1/4, Xl E [0,1], and 
1/4 of unit measure is concentrated on the manifold JX1 + JX2 = 3/2, Xl E 

[1/4,1]. For any other point (Xl, X2) E R2, the derivative of F(XI, X2) exists: 

(PF(XI,X2) 
aXlax2 

and 

4 VX2((1- 2xI)2 + (1 - JX2)/2)3' 

1- 2X2 

4 VXI((1- JXl)/2 + (1- 2X2)2)3' 

1 

128 VXI X2 (1 - (JX1 + JX2)/2)3' 

1/(2y1XI X2), 

0, 

Xl E (0,1/4]' X2 E (0,1/4]' 
(1- 2XI)2 + (1 - 2X2)2 ::; 1/4, 

Xl E (0, 1/4]' X2 E (1/4,1]' 
(1- 2XI)2 ::; (1- y'x2) /2, 

Xl E (1/4,1]' X2 E (0,1/4]' 
(1 - 2X2)2 ::; (1 - JXl) /2, 

XIE(1/4,1], X2E(1/4, 1], 
JXl +y'x2::;3/2, 

Xl E (1/4,1]' X2 E (1/4,1]' 
JXl + y'x2 > 3/2, 

in other cases 
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Quadratic Forms 

G. Christoph, Yu. Prohorov, and V. Ulyanov 
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Abstract: Sufficient conditions are given under which the distribution of a 
finite quadratic form in independent identically distributed symmetric random 
variables defines uniquely the underlying distribution. Moreover, a stability 
theorem for quadratic forms is proved. 

Keywords and phrases: Quadratic forms, characterization problem, stability 
problem 

3.1 Introduction 

Let Zl,.'" Zn be independent identically distributed (i.i.d.) standard normal 
random variables and al,"" an be real numbers with ar+·· .+a~ =J. O. Suppose 
that Xl,"" Xn are i.i.d. random variables such that 

where ~ denotes the equality in distribution. Then, by Cramer's decomposition 
theorem for the normal law [see Linnik and Ostrovski (1972, Theorem 3.1.4)], 
the Xi are standard normal too. 

Lukacs and Laha (1964, Theorem 9.1.1) considered a more general prob­
lem. Namely, let Xl, ... , Xn be LLd. random variables such that their linear 
combination L = alXI + ... + anXn has analytic characteristic function and 

af + ... + a~ =J. 0 for all s = 1,2, ... 

Then the distribution of Xl is uniquely determined by that of L. 
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The aim of this Chapter is to obtain a similar characterization property for 
quadratic forms in Li.d. random variables Zl, ... , Zn. Furthermore, we state a 
stability property of such quadratic forms. 

3.2 Notations and Main Results 

Consider a symmetric matrix A = (aij)7,j=1 . Let 

n 

Q(XI, ... , xn) = L aijXiXj 
i,j=l 

be a quadratic form in variables Xl, ... , x n . Assume that Q is non-degenerate 
in the sense that A is not a zero matrix. Suppose Zl, ... , Zn are i.i.d. random 
variables with a symmetric distribution F. 

We say that a pair (Q, F) has a characterization property (CP) iff for a 
sequence of LLd. symmetric random variables Xl, ... , X n , the equality 

(3.1) 

implies 

Remark 3.2.1 We require in the definition of CP that the random variables 
Xl, ... ,Xn are symmetric. Otherwise the problem does not have solution even 
in the case n = 1 and Q(XI) = xI. Equation (3.1) holds for Xl = Zl as well as 
for Xl = IZII. 

Remark 3.2.2 With a symmetric distribution F an answer is trivial in the 
one dimensional case, i.e. any pair (Q, F) has CPo Therefore we assume that 
n ~ 2 everywhere below. 

In this Chapter, sufficient conditions are given under which the pair (Q, F) 
has CPo The solution of the problem depends also on the coefficients of the 
matrix A, where the following possibilities occur: 

1. aii = 0 for all i = 1,2, ... ,n. 

2. aii i- 0 for some i = 1,2, ... ,n. 

2 1 2k+ I 2k+ I 2k+ I -I- 0 £ 11 k 0 1 2 . . a11 + a22 + ... + ann r or a =", ... 
2.2. a11 + a22 + ... + ann = O. 

2.2.1. aij = 0 for all i i- j. 
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2.2.2. aij j 0 for some i j j. 

2 3 2k+ 1 2k+ 1 2k+ 1 - 0 £ k - 1 2 . . au + a22 + ... + ann - or some - , , ... 

Here, we consider cases 1, 2.1 and 2.2.1. 

Define now a class F of probability distributions so that F E F iff the 
following two conditions are satisfied: 

00 

(C1) F has moments o.k = J xkdF(x) of all orders k. 
-00 

(C2) F is uniquely specified by 0.1, 0.2, ... 

The following examples demonstrate when probability distribution F E F. 

Example 3.2.1 If F has an analytic characteristic function, then F E F. 

Remember [see Lukacs (1970, §7.2)] that a characteristic function is analytic iff 

(i) the condition (C1) is satisfied and 

(ii) lim sup o.~~(2n) / (2n) < 00. 
n-->oo 

The latter condition leads to (C2); see Lukacs and Laha (1964, Ch. 9). 
We say that a probability distribution F satisfies Cramer's condition CC iff 

i: exp{hlxl}dF(x) < 00 for some h> O. 

Example 3.2.2 Let F satisfies CC, then F E F. 

It follows from the fact that F satisfies CC iff its characteristic function is 
analytic [see Lukacs (1970, §7.2)]. 

Example 3.2.3 If the moments {o.k} of F satisfy Carleman condition, i.e. 

00 

'" -1/(2n)_ 
~ o.2n - 00, (3.2) 
n=l 

then F E F. 

In fact, the condition (3.2) yields the uniqueness of the moment problem for F; 
see, for example, Shohat and Tamarkin (1970, Theorem 1.10). 

Note that Carleman condition is weaker than CC. Other examples of proba­
bility distributions belonging to F as well as detailed discussion concerning the 
moment problem and other related topics; see Akhiezer (1965), Feller (1971, 
Sec. VII.3) and Stoyanov (1987, Sec. 8.12 and 11). 

Theorem 3.2.1 Let F E F and the matrix A be such that aii 

i = 1,2, ... , n. Then, (Q, F) has CPo 
o for all 
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Example 3.2.4 Let Zl, Z2, Z3 be LLd. standard normal random variables and 
Xl, X2, X3 be LLd. symmetric random variables such that 

d 
ZlZ2 - Z2 Z3 = XlX2 - X2 X 3 , 

then by Theorem 3.2.1 the random variables Xl, X2, X3 are standard normal. 

Theorem 3.2.2 Let F E F and the matrix A be such that for all k = 0,1,2, ... 
2k+1 2k+ I 2k+1 -'- 0 fTll.. (Q F) I.. CF an + a22 + ... + ann T . .1. nen, , nas . 

Example 3.2.5 Let Zl, Z2 be Li.d. random variables with distribution F and 
density function 

p(x) = (1/4) exp{ -lxll/2}, x E (- 00, 00) (3.3) 

Then, FE F; see Stoyanov (1987, p. 98). 
Let XI,X2 be Li.d. symmetric random variables such that 

Then by Theorem 3.2.2, the random variables Xl and X2 have the density 
function defined in (3.3) too. 

Theorem 3.2.3 Let aii /: 0 for some i = 1,2, . . . , n, but au +a22+ ... +ann = 0 
and aij = 0 for all i /: j. Then for any F, the pair (Q, F) does not have CPo 

Example 3.2.6 Let Z be a random variable with symmetric distribution F 
independent of the random variable ( with P(( = 1) = P(( = - 1) = 1/2 and 
let c > 0 be a real constant. Put 

Suppose now that both Z,Zl,Z2, ... ,Zn are i.i.d. and X,Xl,X2" .. ,Xn are 
LLd. too. Under the conditions of Theorem 3.2.3 varying the constant c, we find 
a family of symmetric distributions of Xl such that (3.1) holds. In particular, 
if 

Z 2 Z2 d X2 X2 1- 2= 1- 2, 

then the distributions of Xl and Zl may differ. 

Example 3.2.6 proves Theorem 3.2.3. The proofs of Theorems 3.2.1 and 
3.2.2 are given in Section 3.4. They are based on the following: 

a) If FE F, then Xl has moments EXt of all orders k. 

b) Under the given conditions, we have 

E Xf = E Zf for all k = 1,2, ... 
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Moreover, we also prove also a stability theorem. 

Theorem 3.2.4 Suppose that the pair (Q, F) has CPo Let XN,I, ... , XN,n for 
N = 1,2, ... be a series of i.i.d. symmetric random variables and 

where ~ denotes the convergence in distribution. Then, 

Theorem 3.2.4 will be proved in Section 3.4 using the tightness of the con­
verging sequences of quadratic forms. 

3.3 Auxiliary Results 

At first, we give some simple relations for a quadratic form which enable us to 
remove undesirable elements to get inequalities between tail probabilities of Xl 
and Q(XI , ... , Xn). Denote 

trA = au + ... + ann and M = max la· ,1. .. ~,J 
~,J 

Lemma 3.3.1 We have 

and 

auxr + ... + annX; = 2-n L Q(EIXI, ... , EnXn) 
c(l,n) 

(3.4) 

auxr + ... + annx; + 2al2xlx2 = 22- n L Q(XI, X2, E3X3,···, EnXn) , (3.5) 
c(3,n) 

where E fori:::; n denotes the summation over all vectors c(i, n) = (Ei,"" En) 
c(i,n) 

with 10 j E { -1, I}. 

Lemma 3.3.2 Assume that trA = 0 and put 

Then 

2 al2 (XIX2 + XnXI + ... + X2X3) 

= Q*(XI' X2···, xn) + Q*(Xn, Xl···, Xn-l) + ... + Q*(X2' X3 ... , Xn , Xl). 
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Lemma 3.3.3 Let Xl,"" Xn be i.i.d. symmetric random variables. Then for 
any permutation (il, ... ,in) of indices (1, ... ,n) and any vector (el, ... ,en) 
with ej E {-1, 1}, we have 

Proofs of Lemmas 3.3.1-3.3.3 are obvious. 

Lemma 3.3.4 If all i= 0, then 

IQ(XI,"" xn)1 2: 0.75lalllxi - cI(A)(x~ + ... + x;), 

PROOF. Since 

we find 

Using in the second term of the right hand side 

The inequality 21xiXjl ~ xI + X] leads to 

which completes the proof of Lemma 3.3.4. • 
We now prove inequalities between tail probabilities of both Xl and Qx = 

Q(XI,"" Xn). 

Lemma 3.3.5 Let Xl, ... , Xn be i.i.d. symmetric random variables. For any 
positive u, we have 

P{IQxl2: u} ~ nP{Xr 2: u/(Mn2 )}. 
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PROOF. The obvious inequality 

IQ(XI,X2,'" ,xn)1 ~ nM (xi + ... + x;) 

leads to the statement. 

Denote by m = medXr a median of Xr, i.e. 

P{X[ ~ m} ~ 1/2 and P{X[ ~ m} ~ 1/2. 

(3.6) 

• 

Lemma 3.3.6 There are positive constants C} and C2 depending only on the 
elements of matrix A such that 

(aj if aii = 0 for all i = 1,2, ... , n, then for any u ~ 0 we have 

(3.7) 

(bj if aii =I=- 0 for some i = 1,2, ... , n, then for any u ~ 0 we have 

P{X[ ~ u + C2 (n -1) m} ~ 2n - 1 P{IQxl ~ CI u}. (3.8) 

PROOF. Case a: Since A is not a zero matrix, there exists aij =I=- 0 with i =I=- j. 
Without lose of generality, we may assume al2 =I=- O. Then using (3.5), we get 

21 a l2XIX21 ~ 22- n L IQ(XI, X2, E3X 3,···, EnXn)l· 
e:(3,n) 

Therefore, by Lemma 3.3.3, we have for any positive u 

Case b: Without loss of generality, we assume all =I=- O. Put 

a = 4 CI (A) (n - 1) m / (3 I a lll) , 

where C} (A) is defined in Lemma 3.3.4 and m is the median of Xf. 
For any u ~ 0, we find now 

P{X[~u+a} < 2n-Ip{Xr?u+a,Xi~m, ... ,X~~m} 
< 2n - 1 P{IQxl ~ 0.751alll (u + a) - cI(A) (n - 1) m} 

< 2n - 1 P{IQxl ~ 0.75Ialllu} 

and Lemma 3.3.6 is proved. • 
Using the last two lemmas, we find the following statement which is of its 

own interest. 

Lemma 3.3.7 Random variables Xl and IQxll/2 satisfy or do not satisfy CC 
simultaneously. 
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PROOF. It follows from Lemma 3.3.5 and the equality for any h> 0 

E exp{hIXI} = 1 + h 1000 exp{hu}P{IXI2: u}du (3.9) 

that IQx11/2 satisfies CC if Xl satisfies CC. 
Suppose now E exp{hoIQxI1/2} < 00 and aii = 0 for all i = 1,2, ... , n. By 

(3.9), (3.7) and the Markov inequality, we find 

roo 1/2 
E exp{hXd ::; 1 + 2(n-2)/2h 10 exp{hu} (P{IQxI1/2 2: ci/2 u}) du 

< 1 + 2(n-2)/2h {exp{hu} exp 0 1 ~ du < 00. 
00 (E {h IQ Il/2}) 1/2 

10 exp{ hoc/ u} 

Hence, CC holds with some 0 < h < ho ci/2. 
Let now aii t= 0 for some i = 1,2, ... , n. Then by (3.9), (3.8) and P{IXll 2: 

u + c2(n -1)m} ::; P{IXlI2 2: u2 + C2 (n - 1)m}, we find 

{'Xl 1/2 
E exp{hIXll} ::; c3 + c4 10 ehU P{IQxI1/2 2: Cl u}du 

with some finite constants C3 and C4. Hence, Xl satisfies CC. • 
Lemma 3.3.8 Random variables Xl and Qx have moments of all orders si­
multaneously. 

PROOF. Let Xl have moments of all orders, then by (3.6) EIQxlk < 00 for 
k = 1,2, . .. , too. If Qx has moments of all orders, then the existence of the 
absolute moments of all orders of Xl follows now from the equality 

00 

EIXllk = k J uk - 1p{IX ll2: u}du for any integer k 2: 1, 
o 

Lemma 3.3.6 and Markov inequality in the same way as in the second part of 
the proof of Lemma 3.3.7. • 

Lemma 3.3.9 Let aii = 0 for all i = 1,2, ... , n. Then, E Q3f is an increasing 
function of f32k = E Xfk for all k = 1,2, .. . 

PROOF. We have 
(3.10) 

for all k = 1,2, ... , where B, C and D depend on the matrix A and f32k-2l with 
l = 1,2, ... , k - 1. It is enough to prove that B > 0 and C 2: O. 

We obtain 

EQ3f = 22kE L aidtXitXit·· .ai2ki2kXi2kXi2k' 
i'<i' 

(3.11) 
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where L denotes the summation over all 2k pairs: 
i'<j' 

1 ~ il < jl ~ n, ... , 1 ~ i2k < j2k ~ n. 

It is clear from (3.11) that B in the representation (3.10) equals 

B = 22k L aTjk > 0 . 
l~i<j~n 

In order to prove that C 2: 0, we introduce notation for a finite set M = 
{ml, ... ,mz} of integers ml, ... ,mz. Let #(M) be the number of elements 
in M and #*(M) be the number of different elements in M. For example, if 
M = {3, 2, 2, I}, then #(M) = 4 and #*(M) = 3. 

The coefficient C in (3.10) up to factors (32k-2Z with l = 1,2, ... , k - 1 is a 
sum of products 22k aidl ... ai2ki2k [see (3.11)] such that the set of their indices 
E = {il,jl, ... ,i2k,j2k} satisfies the following three conditions: 

a) There is a subset EI C E with #(EI) = 2k and #*(EI) = 1. This yields 
that a corresponding summand in (3.11) has a factor (32k. 

b) #*(E \ E I ) 2: 2. It implies that we consider a summand with factor (32k, 

but not (3~k. Note that #*(E) = #*(E \ EI) + #*(EI). 

c) Each value from the set E \ EI is taken by even number of elements from 
E \ EI. Otherwise, the corresponding expectation equals to zero since the 
random variables Xj, j = 1,2, ... , n, are symmetric and independent. 

It follows from the above three conditions that C 2: O. Thus, Lemma 3.3.9 is 
proved. • 

A similar idea of monotony was used by Khakhubiya (1965). 

3.4 Proofs of Theorems 

PROOF OF THEOREM 3.2.1. We get from (3.1) and Lemma 3.3.8 that Xl has 
moments of all orders. Obviously, EXrk+1 = EZrk+1 = 0 for all k = 0,1,2, ... 
We now show that 

EXrk=EZrk forall k=1,2, ... (3.12) 

Comparing moments of Qx = Q(Xl, ... , Xn) and Qz = Q(Zl, ... , Zn), we 
get (3.12). In fact, it follows from (3.1) that 

EQ2f=EQ~ forall k=1,2, ... (3.13) 
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Since aii = 0 for all i = 1,2, ... , n, in E Q3f there occur only moments E xi 
up to order 2k. Taking k = 1 in (3.13), we get 

(EXr)2 tr(A2) = (E Zr)2 tr(A2). 

Therefore, we obtain (3.12) for k = l. 
Then taking k 2: 2 in (3.13) and using Lemma 3.3.9, we get (3.12) for k 2: 2 

by induction. 
Since F E F, it is uniquely specified by its moments. We proved that all 

moments of Xl and Zl coincide, respectively. Hence, the distribution of Xl is 
uniquely defined by its moments too, and Theorem 3.2.1 is proved. • 

PROOF OF THEOREM 3.2.2. Similar to the proof of Theorem 3.2.1, it is enough 
to show that (3.12) holds. With (3.1), we find now 

EQ~=EQ~ forall k=1,2, ... 

Taking k = 1 in (3.14), we obtain 

EXr trA = EZr trA, 

i.e. we get (3.12) for k = 1 since trA i= O. 

(3.14) 

The proof of (3.12) for k 2: 2 can be done by induction using (3.14) and the 
conditions on the elements of matrix A. • 

PROOF OF THEOREM 3.2.4. Put 

Since QX,N ~ Qz as N ---+ 00, the sequence {QX,N} is relatively compact. It 
is known [see Prohorov (1956)J that {QX,N} is relatively compact if and only if 
{Qx,N} is tight, i.e. 

SUpP{IQX,NI>v}---+O as v---++oo. (3.15) 
N 

In order to prove Theorem 3.2.4, it is enough to show that {XN,I} is also tight. 
In fact, in this case for any infinite subset of {XN,I} there exists a subsequence 
{XNk,l} which converges in distribution to some symmetric random variable 
Vi. Since Q is continuous in each argument, we have 

where VI, ... , Vn are Li.d. symmetric random variables. From the assumption 
of Theorem 3.2.4, we get 
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It yields Vi 4:. Zl. Therefore, any limit point of {XN,l} has the same distribution 
as Zl, which proves the statement of Theorem 3.2.4. 

In order to prove the tightness of {XN,r} , we consider two cases with respect 
to diagonal elements of A. 

Case 1 if aii = 0 for all i = 1,2, ... , n. It follows from Case a of Lemma 
3.3.6 that {XN,l} is tight when (3.15) holds. 

Case 2 if aii =1= 0 for some i = 1,2, ... , n. It follows from (3.8) that the 
sequence {XJ., 1 -c2(n-1) mN} with mN = med(XJ., 1) is also tight when (3.15) 
holds. Theref~re, it is enough to show that ' 

with some absolute constant c. 
Put 

supmN ::; c < 00 
N 

(3.16) 

The quadratic form Q differs from Q only by the diagonal elements of the matrix 
A, which are laiil in Q instead of aii in Q, i = 1,2, ... , n. Using (3.4) of Lemma 
3.3.1 and Lemma 3.3.3, we get 

2-n < P{al1 X J.,l ~ lal1lmN, .. ·,lannIXJ.,n~ lannlmN} 

< P LE lai:IXJ."i ~ mN i~l laiil } , 

< P {2-n L: IQ(c1XN,1,"" cnXN,n) I ~ mN i: laiil} 
e{l,n) i=l 

~ n 
< 2np{IQx,NI ~ mN L: laiil}· 

i=l 

Comparing the last inequality with (3.15), we find (3.16). It proves the tightness 
of {XN,l} in this case too. Thus, Theorem 3.2.4 is proved. • 
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A Characterization of Gaussian Distributions by 
Signs of Even Cumulants 

L. B. Klebanov and G. J. Szekely 

St. Petersburg Architecture Building University, St. Petersburg, Russia 
Bowling Green State University, Bowling Green, Ohio 

Abstract: Let J(t) be a characteristic function, analytic in some neighborhood 
of the origin, and let {"'2j} ~1 be a sequence of its even cumulants. According 
to a classical result of Marcinkiewitz, if all but finitely many cumulants are 
0, then J is Gaussian. In this chapter, we prove the following generalization. 
Denote by An the sequence of sign changes in the sequence {( -1 )j "'2j } ~1. If 
J has no zeros on the real line and I:~=1 1/ An < 00, then J is Gaussian. We 
conjecture that for non-Gaussian characteristic functions J without zeros on 
the real line, there is a fixed jo such that "'2j > 0 for all j > jo. 

Keywords and phrases: Cumulants, sign changes, Gaussian distribution 

4.1 A Conjecture and Main Theorem 

Let J(t) be a characteristic function, analytic in some neighborhood of the 
origin and let {"'2j}~1 be a sequence of its even cumulants (by definition, "'j = 

(_i)jdjl~;pt)lt=o). By a classical result of Marcinkiewitz (1938), if "'2j = 0 for 
all j > jo, then the corresponding distribution is Gaussian. In this Chapter, we 
prove the following generalization. Denote by An the sequence of sign changes 
in the sequence {"'2j} ~1' where "'2j = (-I)j "'2j, that is, A1 = 1, A2 = m if 
"'2m < 0, and the inequality "'2j < 0 does not hold for j < m, A3 = n if "'2n > 0 
, and the inequality "'2j > 0 does not hold for m < j < n, etc. 

Suppose that an entire characteristic function J has no zeros. If j is big 
enough, then "'2j is strictly positive except the Gaussian case when "'2j = 0 for 
j = 1,2, .... 

For infinitely divisible distributions, this conjecture is a simple consequence 
of Ramachandran (1969). What we can prove here is the following theorem. 
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Theorem Let f(t) be a characteristic function, analytic in some neighborhood 
of the origin, and let An be the sequence of sign changes of the sequence {""2j} ~1 . 
If f has no zeros on the real line and L~=11/ An < 00 then f is Gaussian. 

PROOF. First we suppose that f is a symmetric characteristic function. 
We are going to show that f(t) is an entire function. Suppose indirectly 

that this is not true, and let {t : It I < R} (0 < R < 00) be the maximal circle 
in which the function cp(t) = log f(t) is analytic. According to Fabri's theorem 
[see, for example, Bieberbach (1955)], if an analytic function has real Taylor 
coefficients and for the corresponding sequence An of sign changes 1/ An ---t 0 as 
n ---t 00, then t = R is a point of singularity of cp . But f(t) is analytic in a 
circle centered at the origin, and (being a characteristic function) analytic in a 
strip containing the real line. Since f has no real zeros, the point t = R cannot 
be a singularity of cp and, therefore, both cp and f are entire functions. Thus, 
f cannot have any complex zeros. 

Since f is an entire function, 

M(r) = M(r; 1) = max If(t)1 = max(lf(ir)l, If( -ir)I)· 
IllSr 

Using the notation T = {z : I arg zl ::; 7rCT} where CT > 0 is arbitrary, we have 

and therefore 

max If(t)l::; M(rsin(7rCT)), 
IllSr, lET 

max Recp(z)::; log(M(r sin 7rCT)). 
IzlSr, zET 

According to CaratModory's theorem [see P6lya and Szego (1964)]. 

max Icp(z) I ::; C log(M(r sin 7rCT)). 
IzlSr, zET 

Sheremeta (1975) obtained the following result. Let an entire function f 
have real Taylor coefficients and suppose L~=l 1/ An < 00. Then, 

In our case, this implies 

lim log Icp(x)1 = l. 
x->oo log M (x; cp) 

logM(r;cp) ::; C1 log(M(rsin7rCT)) 

and consequently 
M(r) ::; (M(r sin 7rCT)fl. 

But CT > 0 can be arbitrarily small and thus from the previous inequality, we 
see that f has finite order. Hence, f is an entire characteristic function of finite 
order and has no zeros. Thus by Marcinkiewicz's theorem, it is Gaussian. 
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To complete the proof, observe that if f is not necessarily real valued, then 
we can apply the proof above for the real valued f(t)f( -t), and finally apply 
Cramer's classical result: all components of Gaussian distributions are Gaus­
sian. • 

4.2 An Example 

Let us now give an example showing that the condition of our Theorem "f has 
no zeros on the real line" is essential. 

Consider the function (1 - t 2 )e-t2 /2. It is easy to see that the function is a 
characteristic function of the distribution with the density cx2e-x2 /2, where c 
is a normalizing constant. The function 1/ (1 + t 2 ) is the characteristic function 
of Laplacian distribution. Therefore, it is clear that the function 

f( ) = 1 - t 2 -t2 /2 
t 1 + t2e 

is a characteristic function of the corresponding convolution. We have 

f(t) = exp (f)_1- -(_1)k_1_)t2k+2 - t2/2) . 
k=O k + 1 k + 1 

From here, we see that K2k ~ 0 for all k = 1,2,.... Now we see that the 
condition on the zeros in the Theorem is essential. 
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On a Class of Pseudo-Isotropic Distributions 

A. A. Zinger 

Aerocosmic Academy, St. Petersburg, Russia 

Abstract: A class of distributions of random vectors in IRn , such that distri­
bution of any linear statistics belongs to the same multiplicative type, is con­
sidered. Results are then developed for the description of translated moments 
of linear statistics. 

Keywords and phrases: Linear statistics, pseudo-isotropic distribution, scale 
function, negative definite function, translated moments 

5.1 Introduction 

Let X = (Xl"'" Xn) be a random vector in IRn (n 2: 2) and L = tlXl + 
... + tnXn be a linear statistic with coefficients vector t = (tl,"" tn). We will 
be interested here in distributions of vectors X, for which the distributions of 
linear statistics L belong to the same mUltiplicative type for any t E IRn , i.e., 

for some c E IRn and random variable~. Distribution of X, satisfying (5.1), 
will be called pseudo-isotropic distribution, and the corresponding function c 
will be called the scale function. Let us also denote (x, y) = X1Yl + ... + XnYn, 
Ixl = (x, x)1/2 for any x = (Xl, ... , Xn), Y = (Yl,"" Yn) E IRn. A simple 
example of the pseudo-isotropic distribution is spherically symmetric distri­
butions, corresponding to the scale function c(t) = Itl. These distributions 
were described by Shoenberg (1938). Similar results were obtained in Camba­
nis, Kenner and Simons (1983) for the scale function c(t) = 2:,,1=1Itjl. Fur­
ther investigations were mainly devoted to the case when the scale function 
c(t) = (2:,j=lltjlo<)l/O<; see, for example, Kuritsin (1989), Koldobsky (1992), 
and Gnating (1998). Special interest in this case is probably due to the con­
nection with lp-norms. In the general case, however, there is almost nothing 
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known until now. The main goal of this chapter is to construct a sufficiently 
wide class of pseudo-isotropic distributions corresponding to scale functions of 
a general type. The results obtained here turn out to be useful for some prob­
lems, connected with linear statistics. One result in this direction will also be 
presented. All investigations on this subject till now make an assumption of 
existence of finite absolute power moment of some positive order ao ::; 2. The 
case ao = 2 gives a scale function that is a positive definite quadratic form 
and elliptically countered distributions as the corresponding pseudo-isotropic 
distributions. So, we will assume that for some 0 < ao < 2 

(5.2) 

It is known [see Kuritsin (1989)] that by assumption (5.2) the scale function 
c(t) should be even, positive, continuous, and homogeneous of the first order, 
admitting representation 

( f )l/QO 
c(t) = Jsn-l I(t, e)IQ°O"(de) , (5.3) 

where 0" is a finite measure on Borel subsets of the unit sphere sn-l. It is evident 
that the characteristic function of the pseudo-isotropic distribution cp(t) should 
have a form 

cp(t) = h(c(t)), 

It is also known [see, for example, Kuritsin (1989)] that the class of pseudo­
isotropic distributions corresponding to the scale function c(t), given by (5.3) 
is certainly non-empty, because the Levy-Feldhaim distribution with character­
istic function CPo (t) given by 

cpo(t) = exp(q(c(t))QO) 

for any coefficient q > 0, belongs to this class of distributions. 

5.2 The Main Results 

Before we go over to the main results of this paper, we should mention some 
known facts. An even function w : lRn -t JR is negative definite, if for any 
integer k 2: 1 and for arbitrary t 1, ... , t k E JRn , Ul, ... , Uk E JR, Ul+' '+Uk = 0, 
the inequality 

k k 
L Lw(tV - tJ1.)::; 0 
J1.=1 v=l 



On a Class of Pseudo-Isotropic Distributions 57 

holds. Negative definite continuous functions satisfy the known Levy represen­
tation, which gives in case of even functions 

w(t) = r (cos((t, x)) - l)s(dx), 
JRn\{o} 

where s is a O"-finite measure on the class of Borel subsets of lRn satisfying the 
condition 

r Ixl2 s(dx). 
JRn\{o} 1 + Ixl2 (5.4) 

We will also use the formula [see Gradshtein and Ryzhik (1994)] 

100 1 - cos ap 7r lal2 

c(z) = 1+ dp = -') r(l ). 7r , 0 < Rez < 2. o p Z ~ + z SIll"2Z 
(5.5) 

In this chapter, we will the prove the following results. 

Theorem 5.2.1 Let w : lRn ~ lR+ be even, continuous, homogeneous of order 
o < ao < 2. Then 

(i) c(t) = (w(t) )1/ao is a scale function of some nondegenerate pseudo-isotropic 
distribution if w is negative definite, and the same is true for (w(t))a/ao 

(ii) for any complex z, satisfying the condition 0 < Rez :::; ao, the representa-
tion 

r l(t,eWO"(de) = (w(t)y/ao, 
Jsn-l 

(5.6) 

where 0" is a complex-valued finite measure on the class of Borel subsets 
of the unit sphere sn-1, holds. 

Theorem 5.2.2 Letw be a function, satisfying the conditions of Theorem 5.2.1 
with 0 < ao < 2 its homogeneity order. For any integer N 2: 1, let us take 
complex Iq, ... , l'i,N and Z1, ... , ZN under the condition Rezj = a E (0, ao], 
j = 1, ... , N, and construct the function 

N 

'P(t) = exp{ -Re L l'i,j(w(t))zj/ao}. (5.7) 
j=1 

Then, 'P(t) is a characteristic function of the pseudo-isotropic distribution with 
scale function (w(t) )1/ao , if 

N 

0" = Re L l'i,jpZj c(Zj)-10"Zj 
j=1 

(5.8) 

is a finite measure on Borel subsets of sn-1 for any p > 0, and O"Zj is the 
solution of (5.6) for Z = Zj, j = 1, ... , N. 
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Note. The function <p(t) in this theorem turns out to be an infinitely divisible 
characteristic function. In this class of characteristic functions, the condition 
of Theorem 5.2.2 is also necessary. 

The stated results are closely connected with the problem of the reconstruc­
tion of reconstructing from means of translated moments of linear statistics, 
considered earlier by Zinger (1997) [see also Kakosyan, Klebanov and Zinger 
(1989)]. An application of the concept of negative definiteness is also produc­
tive here as it allows us to give a new simple condition for a function to be a 
translated moment of linear statistics. We give here one possible result in this 
direction. 

Theorem 5.2.3 Let n ~ 1 be an integer and 0 < a < 2. Then, some even 
function'lj; : R n +1 ---+ R+ may be presented in the form 

(5.9) 

for some random vector X in R n , iff 'Ij; is continuous, homogeneous of 00 order 
a and negative definite. 

5.3 Proofs 

In this section, we provide proofs of the theorems stated in the last section. 

Proof of Theorem 5.2.1. Necessity of (i) follows immediately from (5.3). If 
(w(t))l/ao is a scale function, then 

(5.10) 

where (Jao is a finite measure on Borel subsets of sn-l. Multiplying both sides 
of (5.10) by c(ao), we will have 

where 

c(ao)w(t) = r {1- cos((t,x))}Sao(dx), iRn 

R Sn-l 
X = pe, p E +, e E . 

(5.11) 

It follows from (5.11) that -w is negative definite (caD> 0). For checking the 
sufficiency of (i), let us consider the representation 

w(t) = kn-l {1- COS((t, x))}S(dx), (5.12) 
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where the measure S satisfies (5.4), and deduce from (5.12) due to the homo­
geneity of w (for A > 0) 

AaOW(t) = J {1- cos((t,xjA))}S(dx). (5.13) 

In the integral on the right hand side of (5.13), using the coordinates transfor-
mat ion 

x = Ape, p E lR+, e E sn-1 

and then comparing the result with (5.12), we obtain 

dp 
S(dx) = -1+ O'ao(de), p ao 

where O'ao is some finite measure on Borel subsets of sn-1. This means that 

and c(t) = (w(t))l/ao is a scale function of a pseudo-isotropic distribution in 
which case, one can take the Levy-Feldhaim distribution with characteristic 
function 

rpo(t) = exp{ -w(t)}. (5.14) 

Next, let us consider (ii). Because of the positiveness and homogeneity of the 
function w(t) we have 

for some appropriate positive constants m and M. So, the distribution with 
characteristic function rpo(t) defined in (5.14) possesses an infinitely differen­
tiable density function 

po(x) = (2~)n in exp{ -i(t, x) - w(t)}dt. 

This distribution, in addition, has finite absolute power moments of order 0 < 
a < ao. We can rewrite the definition of pseudo-isotropic distribution with scale 
function c(t) as follows: a random vector X has a pseudo-isotropic distribution 
if 

d (t, X) = c(t)~, (5.15) 

for some random variable ~. Here, the symbol :1= denotes equality in distribution. 
We can take in (5.15) the random vector Xo (for X) with characteristic function 
(5.14) and corresponding ~o (for ~) random variable having symmetric stable 
distribution with parameter ao. In this case, we obtain from (5.15) 

EI(t, XoW = (w(t)) :0 EI~olz (5.16) 
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for complex z, satisfying condition 0 < Rez = 0: < 0:0 , It is known [see Zolotarev 
(1983)] that for such z 

z 1 7r 
EI~olz = 2r(1 + z)r(l - -)- sin -2 z =1= 0 

0:0 Z 

and so we have from (5.16) 

We obtain (5.6) from (5.17) immediately with 

O'(A) = EI~olz k+XA Po (pe)pn-HzdfYY(de) , 

(5.17) 

(5.18) 

where "y denotes the uniform measure on sn-1. It is obvious, that for real z, 
(5.18) gives a measure. Now we will extend this result to the case Rez = 0:0. 

We can proceed here in the same way as Kuritsin (1989), in spite of the fact, 
that we have complex exponents. We fix z = 0:0 + is and consider a sequence 
{Zk: k = 1,2, ... , Zk = O:k + is, O:k < 0:0 , k ---t oo}, from which may be 
chosen the subsequence {Zk,,: v = 1,2, ... }, such that there exists a weak 
limit O'Qo+is for O'k" by v ---t 00, where O'k" satisfies (5.6), and this limit is finite 
complex-valued measure on sn-1, also satisfying (5.6). Concluding the proof 
of Theorem 5.2.1, we should mention that in the class of solutions of (5.6) the 
solutions are unique, which may be proved in the same way as Zinger (1997) 
[see also Kakosyan, Klebanov and Zinger (1989)]. • 

Proof of Theorem 5.2.2. We can deduce from (5.6), similar to (5.11), that 

(w(t))Z/QO = _(1) r (l-cos((t, x)))sz(dx), t E lRn 0 < Rez :S 0:0, (5.19) 
c Z IRn\{o} 

where c(z) defined by (5.5) is nonzero, and 

dp 
SAdx) = pHzO'z(de), x =pe 

with O'z as in (5.18). Using (5.19), we have 

N 

Re L /'i,j(w(t)y/QO = r {1 - cos(t, x)}s(dx), 
j=l JRn\{o} 

where 
_ ~ -1 0' Zj (de) 
s(dx)=Re~/'i,jc (z) HZj dp. 

j=l P 
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Condition (5.8) provides s to be a measure, satisfying (5.4). This means that 
(5.7) is a characteristic function of pseudo-isotropic distribution and this distri­
bution is infinitely divisible. It is easy to see that in this class of distributions, 
(5.8) is also necessary. 

Verification of (5.8) to be a measure becomes very simple, when we choose 
Zj = a + idj for some dj > 0, j = 1, ... , N. In this case, we need to deal with 
positivity condition for trigonometric polynomials, which is well worked out. 

Using characteristic function (5.7), we can essentially extend the variety of 
pseudo-isotropic distributions. Multiplicative convolutions of pseudo-isotropic 
distributions with arbitrary random coefficients once again, give again a pseudo­
isotropic distribution. More precisely, if <p(t) is a characteristic function of a 
pseudo-isotropic distribution, then 

<pT}(t) = E<p(ryt) 

(for any random variable ry) is also a characteristic function of a pseudo-isotropic 
distribution, with the same scale function. • 

Proof of Theorem 5.2.3. We note that the situation is quite similar to one (i) 
of Theorem 5.2.1. So, 'lj;(tl, ... , tn, T) belongs to the convex hull of I(t, x) - TICl:, 
t = (tl, ... ,tn ) and x = (XI, ... ,Xn ) . For checking sufficiency one can notice 
that the conditions of (i) of Theorem 5.2.1 are fulfilled, and the following thE; 
presentation for 'lj; [see Kuritsin (1989)] 

'lj;(tl, ... , tn, T) = f I(tlel + ... + tnen + Ten+dlCl:()(de) isn (5.20) 

is true. (5.9) follows from (5.20) after appropriate change of variables on the 
right hand side of (5.20). In conclusion, we may mention that, in the same 
manner one can also treat odd translated moments and probabilities to get into 
half-spaces. But, we intend to present these results in our next paper. • 

Acknowledgement. The author is grateful to L. B. Klebanov for useful dis­
cussions and help in preparing this paper. This research was partially supported 
by RFFI Grants 96-01-00852 and 96-15-96199. 

References 

1. Cambanis, S., Kenner, R. and Simons, G. (1983). On a-symmetric mul­
tivariate distributions, Journal of Multivariate Analysis, 13, 213-233. 

2. Gradshtein, 1. S. and Ryzhik, 1. M. (1994). Table of Integrals, Series and 
Products, Fifth edition, Boston: Academic Press. 



62 A. A. Zinger 

3. Gnating, T. (1998). On a-symmetric multivariate characteristic func­
tions, Journal of Multivariate Analysis, 64, 131-147. 

4. Kakosyan, A. V., Klebanov, L. B. and Zinger, A. A. (1989). Characteriza­
tion of distributions by average of statistics and some probability metrics, 
In Stability Problems for Stochastic Models. Proceedings of the Seminar, 
The Institute for Systems Studies, pp. 47-54. 

5. Koldobsky, A. (1992). Shoenberg's problem on positive definite functions, 
Report, University of Missouri at Columbia, Department of Mathematics, 
1-12. 

6. Kuritsin, Yu. G. (1989). Multidimensional versions and two Shoenberg 
problems, Stability Problems for Stochastic Models. Proceeding of the 
Seminar, The Institute for Systems Studies, pp. 72-78. 

7. Shoenberg, I. J. (1938). Metric spaces and completely monotone func­
tions, Annals of Mathematics, 39, 811-841. 

8. Zinger, A. A. (1997). On reconstruction of distributions by the translated 
moments of linear statistics, Journal of Mathematical Sciences, 83, 109-
115. 

9. Zolotarev, V. M. (1983). One-Dimensional Stable Distributions, Moscow: 
Nauka. 



PART III 

PROBABILITIES AND MEASURES IN 

HIGH-DIMENSIONAL STRUCTURES 



6 

Time Reversal of Diffusion Processes in Hilbert 
Spaces and Manifolds 

Ya. Belopolskaya 

St. Petersburg Architecture Building University, St. Petersburg, Russia 

Abstract: We describe some results of the theory of diffusion processes in infi­
nite dimensional Hilbert spaces and manifolds and apply them to investigation 
of invariant measures and time reversal of diffusion processes. 

Keywords and phrases: Hilbert space and manifold, diffusion process, in­
variant measure, time reversal 

6.1 Diffusion in Hilbert Space 

The development of the theory of infinite dimensional diffusion processes was 
started by Gross and Dalecky and intensively developed during the last decades. 
Nevertheless, there are still many open problems in the field both in the frame­
work of linear spaces and smooth manifolds. In this chapter, we follow the line 
exposed in Belopolskaya and Dalecky (1990) and Dalecky and Fomin (1991) 
and discuss problems concerning invariant measures of infinite dimensional dif­
fusion processes and description of their time reversal. We extend here the 
results due to Dalecky and Steblovskaya (1996) concerning invariant measures 
of diffusion processes using previous results from Belopolskaya (1998) as well. 
In the construction of time reversal of a diffusion process, we use the approach 
developed by Nagasawa (1961) in a finite dimensional framework. Notice that 
our results are close as well to the results received by Follmer and Wakolbinger 
(1986). 

Let (0., F, P) be a complete probability space, H+ c H c H_ be a Gelfand 
triple of Hilbert spaces with dense Hilbert-Schmidt imbedding, w(t) E H_ be 
a standard Wiener process in H, and F t C F be a set of cr-fields adopted to 
w(t). Given nonrandom vector field a(t, x) E H and Hilbert-Schmidt operator 
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field A(t, x), x E H, t E [0, T] consider a Cauchy problem for SDE 

d~ = aCt, ~(t))dt + A(t, ~(t))dw, ~(O) = ~o E H. (6.1) 

If a( t, x) and A( t, x) are smooth enough functions with sublinear growth in x, 
then there exists the unique Markov solution ~(t) of (6.1) if ~(O) = ~o E H is 
Fo-measurable [see Belopolskaya and Dalecky (1990)]. 

Let B(H) and M(H) be the space ofreal valued bounded measurable func­
tions and Borel measures defined on H, and Ck(H) and Mk(H) denote spaces of 
Ck-smooth functions and measures correspondingly. Denote by pes, x, t, G) = 

P{~(t) E GI~(s) = x}, 0 ~ s ~ t ~ T,x E H,G E BH, the transition probabil­
ity of the Markov process ~(t) E H, and consider evolution families Vet, s) and 
V* (s, t) 

Vet, s)J(x) = EJ(~(t)) iH J(y)P(s, x, t, dy), J E B(H), (6.2) 

V*(s, t)v(dy) = iH v(dx)P(s, x, t, dy), v E M(H) (6.3) 

dual in pairing (1, v) = fH J(y)v(dy). 
A measure v E M2(H) is said to be an invariant measure of the diffusion 

process ~(t) if V*(s, t)v = v. It is known [see Dalecky and Steblovskaya (1996) 
and Belopolskaya (1998)] that a measure v is an invariant measure of ~(t) if 

1 00 

m = div [2 L V' Ak(Akv) - av] = O. 
k=l 

(6.4) 

Let L2(H, v) be a Hilbert space of square integrable functions on H (with re­
spect to v) with the inner product ((g,!)). Assume that A(t, x) = A(x), aCt, x) = 

a(x) and v is an invariant measure of the solution ~(t) to (6.1). Define Vet) 
and V+(t) in L2(H, v) by 

iHg(x) iJ(y)P(t,x,dy)v(dx) = (g, Vet)!) = (V(t)+g,J) (6.5) 

for any measurable bounded functions J and g. 
Semigroups vt and yt+ are called dual with respect to the invariant measure 

v if (6.5) holds. 
We show that the evolution family V+(t) coincides with the evolution family 

Vet) generated by the time reversal of ~(t) and derive the stochastic equation 
for the time reversal process. 

Denote by t(t) the time reversal of ~(t) given by t(t) = ~(T-t), t E [0, T]. 
The process t(t) is a diffusion process as well. To check it, consider a partition 
0= to < tl < ... < tn = T, denote by L::.k(t) = tk - tk-l, and notice that 
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Ef(t(to), ... , t(tn)) 

Ef(~(l - to), ... , ~(1 - tn)) 

h f( ) (d )P(t,xI,dxo) V(dXI)P(~I(t),X2,dxI) 
Xo, ... ,Xn V Xo (d) (d ) 

H v Xo v Xl 

P(~n(t), Xn, dxn-d (d ) 
.. . (d) v X n · v Xn-l 

(6.6) 

• A P(t, y, dx)v(dy) 
ConsIder P(t, x, dy) = v(dx) . It follows from (6.6) that 

Ef(t(to), ... , t(tn)) 

= i f(xo, ... , xn)v(dXO)P(tl, XO, dxI) ... (~n(t), Xn-l, dXn)f(xO,"" xn) 

and hence P(t, x, dy) is the transition probability of the diffusion process t(t). 
Finally, 

(g, lit!) ig(X) iH f(y)P(t, x, dy)v(dx) 

i ig(x)[p~,(~~~y) v(dy)]v(dx) 

iH V/ g(y)f(y)v(dy) = (V/ g,!). 

Thus, the following assertion is proved. 

Theorem 6.1.1 Let v(dy) be an invariant measure of the process ~(t). Let lit 
and"Ct be evolution families in L2(H, v) generated by the processes ~(t) and t(t) 
respectively. Then"Ct = v;,+, where v;,+ is given by {6.5}. 

Consider a pair of diffusion processes ~(t) and T/(t) in H such that 

a(~(t))dt + A(~(t))dw, ~(O) = ~o (6.7) 

dry = fL(ry(t))dt + A(ry(t))dw, ry(O) = ~o (6.8) 

and let the distribution v of ~o E H be a smooth measure with vector logarith­
mic derivative A. 

Theorem 6.1.2 Let v E M2(H) . Then v is an invariant measure for a pair 
of diffusion processes ~(t) and ry(t) satisfying {6.7} and {6.8} if and only if the 
drift coefficients a(x) and fL(x) satisfy 

a(x) + fL(x) = B(X)A(X) + V' Ak(x)Ak(x), B(x) = A*(x)A(x) (6.9) 

and 

div(a(x) - fL(x)) + (a(x) - fL(x), A(X)) = O. (6.10) 
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PROOF. Consider generators of semi groups Vt and Yt having the form 

and 

Ag(x) = ~ g"(X) (Ak(x) , Ak(x)) + V' &(x)g(x). 

Here and below, we assume summing over all repeating indices. If Vt and Yt 
are dual then the relation (Ag, j)J.L = (g, Aj)J.L should hold. Using integration 
by part formula, one can check that if 

~diV (V'Ak(x)Ak(x)) - div(a(x)) + ~ ((V' Ak(x)A, Ak(x)) + (Ak(x)A, Ak(x)A) 

+ (V' Ak(x)Ak(x), A)) - (a, A) = 0, 

(V' Ak(x)J, Ak(x)A) + V'V' Ak(X)Ak(x)f) = (a(x) + a(x), V' f) 

hold, then 

L [~ gil (x )(Ak(x), A k(x)) + V' &(x)g(x )]J(x )v(dx) 

= Lg[~ j"(x)(Ak(x), Ak(x)) + V'a(x)J(x)]v(dx). 

Notice that (6.4) and the invariance of v with respect to ~+ yield (6.9). As 
far as v is invariant with respect to Vt as well, we have 

m(y) ~Bij[V'jAi + AiAj] + (V'iBij - aj)Aj + ~V'iV'jBij - diva 

1 1 
2"Bij[V'jAi + AiAj] + (V'iBij - aj)>"j + 2"V'iV'jBij - diva = 0 

that yields (6.10) . • 
Remark 6.1.1 Given ~(t) satisfying (6.7) , the time reversal process ~(t) is 
governed by (6.8). Denote by 8 and U two smooth scalar (potential) functions 
such that V'U = ~A and V'8 = ~(a-a). Then both a and a could be represented 
in terns of 8 and U as a = BV'(U +8) and a = BV'(U -8). This representation 
is very important in Nelson mechanics. 

It is known due to Nagasawa (1961) that if an arbitrary measure v is choosen 
(omitting the requirement that it should be invariant with respect to ~(t)) to 
define the time reversal process ~ (t), one has to to consider the random time 
L(w) called co-optional time instead of the constant time T to get a homogenous 
time reversal process. Using the co-optional time, it is possible as well to extend 
the above consideration to time dependent drifts . 
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By definition, L(w) is a co-optional time if {w : s < L - t} = {w : s < 
L 0 ~t, t, s 2: O}, where ~t is the shift operator in the trajectory space ~tw(s) = 

w(s + t). This property is equivalent to L 0 ~t = (L - t)+, t 2: O. 
The following statements are proved similar to Nagasawa (1961). 

Theorem 6.1.3 Let ~(t) be a solution to (6.7) and the distribution v of ~o 
has smooth vector logarithmic derivative A. Then the time reversal process 
~ (t) from a cooptional time L (w) with ~ (0) = ~o is a diffusion process and the 
corresponding semigroup Vt is dual to Vt, (g, Vtf)m = (Vtg, f)m with respect to 
a measure m defined by m(G) = E[IoOO XG(~(t))dt]. 

6.1.1 Duality of time inhomogenous diffusion processes 

Consider SDE with time inhomogenous diffusion coefficients 

d, = a(t,,(t))dt + b(t,,(t))dt + A(t,,(t))dw. (6.11) 

Notice that we need two components in the drift coefficient since they are 
responsible for different phenomena. 

Let ,(t) be a time inhomogenous diffusion process defined on the interval 
[0,1] which satisfies (6.11) and at the moment s < t its value ,(s) be a ran­
dom variable with given distribution J.1,S. Denote by P(s, x, t, G) = P{r(t) E 

GI,(s) = x} its transition probability. The process ,(t) gives rise to evolution 
families 

(Zi f)(x) = L f(t, y)P(s, x, t, dy), [(Zi)* J.1,]t(dy) = L J.1,s(dx)P(s, x, t, dy). 

Recall that a time inhomogenous diffusion process ,(t) could be considered as a 
component of the time homogenous process r;,(t) = (t,,(t)) and hence we could 
apply the above considerations to this new process choosing J.1,o(dy) = v(dy) , 
J.1,t(dy) = ((ZP)*v)(dy) and 

m(dt, dy) = E fo1 dTXT,,,/(T) (dt, dy) = J.1,t(dy)dt. (6.12) 

Denote by (fsu)(x) = Iei IH U(T, y)P(s, x, T, dy)dT and use the time homoge­
nous duality relation (g, ftf)m = (ft g, f)m to derive 

(g, Zi f)J1-s = (Zig, f)J1-t = ((Zt)+ g, f)J1-tl S < t. (6.13) 

Here, ztg(t, y) = IH g(s, x)P(t, y, s, dx) and 

PA
( d) P(s,x,t,dy) ( ) 
t, y, s, x = J.1,t(dy) J.1,s dx . (6.14) 
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Given the space-time process K,(t) = (t, ,(t)) and its time reversal, define 
Mrf(s, x) = Z:+rf(s, x), r 2': 0, and Mrg(t, y) = zi-r g(t, y), r 2': O. Then 

(6.15) 

As a result, the duality relation 

(6.16) 

holds. 
Let us compute the difference 

faT i[B(t)f(x)g(x) - f(x)B(t)g(x)JJ.Lt(dx)dt 

faT fH f(x)g(x)(B*(t)J.L)t{dx)dt - faT i f(x)([a(t, x) + a(t, x) 

- Ak(t, X)Ak(t, x).(t, x) - \7 AkAk], \7g(x))J.Lt(dx)dt. (6.17) 

Here 

B(t)f= CZ +~f"(Ak,Ak)+(b+a,f') (6.18) 

and 

while the corresponding adjoint (in L2(H, m)) operators have the form 

~( ) ag 1,,( k k) ((~ ) ) B t 9 = - at - 2g A, A + a - b , \7 9 , (6.20) 

(6.21) 

Let us prove that the duality relations for a pair of space-time diffusion 
processes have the form 

aJ.L . a - a 
at + dzv(b + -2-)J.L = O. (6.22) 
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To derive (6.22), consider the diffusion process 'Y(t) and its dual in the 
sense of (6.16) with respect to m(dt, dy) = J.Lt(dy)dt. Since B*(t)J.L = 0 and 
B*(t)J.L = 0, we deduce from (6.17) the first relation in (6.22). To derive the 
second one, notice that 

foT i[B(t)f(x )g(x) - f(x )B(t)g(x )]J.Lt(dx )dt 

foT i f(x)g(x)(B*(t)J.L)t(dx)dt - foT i g(x)([a(t, x) + a(t, x) 

- Ak(t,x)Ak(t,x)'x(t,x) - V' Ak(t,x)Ak(t,x)], V'f(x))J.Lt(dx)dt. 

(6.23) 

Hence to ensure (6.16), we need 

(6.24) 

Finally, taking into account (6.23) and (6.24), we get (6.22). Notice that on the 
contrary, if (6.22) holds, then we can easily check with the help of (6.17) and 
(6.23) that (6.16) is valid. 

In applications, the case a(t, x) - a(t, x) = 2B(t, x)V' S(t, x) with a potential 
function S(t, x) is rather important. 

Consider next symmetric semigroups generated by diffusion processes. Re­
call that Mr is called symmetric with respect to m(dx,dt) = mt(dx)dt if 

In other words, the semigroup Mr is symmetric if Mr = M:. To derive the 
conditions on coefficients of (6.11) and the measure J.Lt to ensure Mr = M: 
consider the difference 

where Band B+ are given by (6.18) and (6.20), respectively. 
It is easy to check by differentiation by part formula that 

foT i Bf(t, x)g(t, x)J.Lt(dx)dt = foT i B+ g(t, x)f(t, x)J.Lt(dx)dt 

+ foT if(t,x)g(t,x)M:J.Lt(dx)dt 

+ foT i fV' AkgV' AkJ.Lt(dx)dt 

+ foT iH fgdiv[(b + a)J.Lt(dx)]dt. 
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Consider in addition backward Kolmogorov equation B(t)g = 0 for time re­
versal process and forward Kolmogorov equation (B*(t))ft = 0, where fts(dx) = 
ftt(dx)q(s, x, t, y), q(s, x, t, y) = P s,x:,dy • Recall that 

J.l.t y 

Q~J(s, x) = L J(t, y)P(s, x, t, dy), Q~g(t, y) = L g(s, x)P(t, y, s, dx) 

L (Q~g)(t, Y)J.Lt(dy) = L g(s, x)(Q~)* J.Lt(dx) = L g(s, x)q(s, x, t, Y)J.Ls(dx) 

and as a result we prove that ftt(dx) solves (6.21). 
The invariance of m(dt, dy) = J.Lt(dy)dt and the symmetry of Mr yield 

(MrJ, g)m = (1, Mrg)m and hence 8* = B*. 
In particular, consider the duality relations 

OJ.L . a - a 
as + dw(b + -2-J.L) = 0, 

and 
a(t, x) + a(t, x) = B)..(t, x) 

deduced from (6.22) for A(t, x) = A and T = 1. Choose b(t, x) == 0 and 

1 x 
a(t, x) = "2 B )"(t, x) = -i' a(t x) = __ x_. 

, 1- t' 

then ~(t) and ~(t) solve respectively SDE 

~ de = Adw - -dt 
<" t ' 

A ~ 
d~ = Adw - --dt. 

1-t 

Stochastic process ~(t) with ~(O) = 0 is called a Brownian bridge and the 
above result for this process was derived in Follmer and Wakolbinger (1986). 

6.2 Diffusion on Hilbert Manifold 

Let M be a Hilbert manifold, B be its model space. We say that M is equipped 
with a Hilbert-Schmidt structure if its model space has a structure of a rigged 
Hilbert space H+ c H c H_ = B. 

Denote by exp : T M -t M an exponential mapping on M corresponding 
to a fixed connection on M and assume that it is the Levi-Chivitta connection 
generated by a metric G on M. 
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Assume in addition that 'V denotes the covariant derivative corresponding 
to this connection and moreover that the tangent bundle T M has a Hilbert­
Schmidt structure. Recall [see Belopolskaya and Dalecky (1990)] that it means 
the following. Given a local trivialization of the Riemannian bundle over a 
neighborhood Uy of a point y E M, one may choose a set of local sections 
{ek(x)}~l that make an orthonormal basis in each 'H-x = ,),-1 (X), X E Uy , and 
such that (ek(x), ek(x))-Jix = (ek(x), C(x)ek(x))x = tSik (the Kronecker symbol). 
Here (-, ·)x is a natural pairing between 'H-x and 'H-;, (.,.) is an inner product in 
'H-x. 

Let <I> be a section of Lb,')'*). Given an orthonormal basis ek(x), define 

Tra<I> (x) 

<I>(x)ek(x))x 

C-1 (x ) <I> (x )ek(x) )1-{x 

00 

2)ek(x), 
k=l 

Tr1-{x C-1 (x )<I>(x), 

assuming that C-1(x)<I>(x) is a nuclear operator in 'H-x. In the sequel, we omit 
subscripts in notations (., ·)1-{x and (., ·)x if it will not lead to any confusion. 

A manifold M is said to be equipped with a Hilbert-Schmidt structure 
(1"x,')'x,i) [see Belopolskaya and Dalecky (1990)] if given the Hilbert bundle ')' 
one may define a bundle embedding i : ')' ---+ 1" with 1"x 0 i = ')' possessing 
the following property: for each x E M, the map ix : 'H-x = ,),-l(x) ---+ TxM 
belongs to L12('H-x, TxM) and ix'H-x is a dense subset of TxM. This structure 
is called nuclear if the map ix belongs to Lll ('H-x, TxM). In this case, given a 
Riemannian bundle,), with the inner product 

we say that the HS-structure is Riemannian. The affine connection on M 
is called Hilbert-Schmidt affine connection if the local connection coefficient 
possesses the property 

rI = r~IBxH: B x H ---+ H,x E U. 

Introduce rt : B x H* ---+ H* by 

(z, rr (y, v)) = -(rI(y, z), v). 

Denote by (jk b) the class of vector fields belonging to (jk ( 1") and valued in 
'H-x C TxM for each x E M. Given fI E (jkb) and ~ E (jk(1"), put 

'Vtfl = 'Vefl, 'Vtfl(x) = fI~~x + r~(~x, fix). 

Hence, 'Vtfl E (jk(1") if rI is smooth enough. 
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Let M be a manifold equipped with a Riemannian structure (,)" T, i). An 
affine connection on the manifold is said to be compatible with this structure 
if 'Vz(cP,'l/J) = ('VlcP,'l/J) + (cP, 'Vl'l/J) holds for all cP,'l/J E Ul(')'),Z E Ul(T). 

Consider i : , ---t T and i* : T* ---t ,*. For each point x EX, we equip TxM 
with an HS-structure 

T*M jx=C;;li~ C-1'1J* - '1J ix T M x ~ 'Lx - 'Lx ~ X • 

As a result, we get a rigged Hilbert space 1i;t = C-1Tl! c 1ix c TxM = H;; 
with the pairing (g, h hix = (g, C (x) h) x. Denote by uk ( ,) a class of vector fields 
belonging to Uk(T) which satisfy the condition C(x)zx E i*T;M. 

We say that the divergence of the vector field 'T} E uk(')') exists if 'VT'T}IH is a 
nuclear operator and define it by divc'T}(x) = TrcC'VT'T}. 

Notice that if both the Riemannian metrics and connection are nuclear, 
then the vector field 'T} E uk(')') possesses a finite divergence and divc'T}(x) = 
('V,'T}(x)hix ' where 'V = D+r and r is defined by (')'x,'T}xhi x = TrC(x)r'1('T}x) 
and 

00 

rJ; = -C-1(x) L rJ;* (ek(x), G(x)ek(x)). 
k=l 

Morover, if R('T}l, ek, 'T}2) is a curvature tensor of the given connection, then the 
Ricci tensor R('T}l, 'T}2) = Lk(R('T}l, ek, 'T}2), Cek)x is finite and it holds 

(6.25) 

Consider a diffusion process ~(t) E M satisfying 

d~ = expt(t) (a(t, ~(t))dt + A(t, ~(t))dw), ~(O) = ~o (6.26) 

or in local chart 

d~ = a(t, ~(t))dt + A(t, ~(t))dw - ~r(~(t))(Ak(~(t)), Ak(~(t)))dt, ~(O) = ~o. 
(6.27) 

Here and below, we omit notations connected with a chart if it will not lead to 
any confusion. 

Let L12(')', T) be the bundle of Hilbert-Schmidt operators acting from a 
Hilbert subbundle , : K ---t M of the tangent bundle T : T M ---t M. We as­
sume that given sections a( t, x) and A( t, x) of T M and L12 (,' T), respectively, 
are nonrandom, smooth and bounded. It is known that under these assump­
tions there exists a unique solution ~(t) E M to (6.26) possessing the Markov 
property. Denote by 

P(s, x, t, K) = P{~(t) E KI~(O) = x}, 0::; s ::; t ::; T, x E M, G E 8M 

the transition probability of the process ~ (t). 
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Denote by B(M) the space of measurable bounded scalar functions on M 
and by M(M) the space of measures defined on a O"-algebra BM of Borel sets 
of M. It is well known that 

V(t, s)f(x) = 1M f(y)P(s, x, t, dy) = Ef(e(t)) (6.28) 

and 

V*(s, t)v(dy) = 1M v(dx)P(s, x, t, dy) (6.29) 

is a pair of evolution families acting in B(M) and M(M), respectively. The 
infinitesimal operator of V (t, s) has the form 

or in local chart 

Af(x) = ~[f"(x)(Ak, Ak) - (r(x)(Ak, Ak), f'(x))l + (a, f'(x)). (6.31) 

To derive the expression for the infinitesimal operator of V* (s, t), notice 
that V (t, s) and V* (s, t) are dual in the natural pairing between M (M) and 
B(M) given by (f, v) = IM f(y)v(dy) and hence A*(t)v could be computed as 
an adjoint operator to A( s) using differentiation by part formulas. 

Given a measure f.-l on B = H_, denote by V;f.-l(dx) = Dzf.-l(dx) = [(A, Z)H + 
divZlf.-l(dx). 

To make both terms in square brackets of the last relation invariant , rewrite 
V;f.-l(dx) in the form V;f.-l(dx) = (A,z)1ix +divGz, where A = A-ri . Applying 
integration by parts formula, we derive that the generator A* of V*(s, t) has 
the form 

A*f.-l = ~[V~k V~kf.-l + V~ Akf.-l + divGAk[V~kf.-l + divGAkf.-ll 
~ Ak 

+ V~k(divGAkf.-l) + 2divGAkV~kf.-l- divG(V AkAk)f.-ll 

- divGaf.-l - V~f.-l 

~[V~k V~kf.-l + V~ kAkf.-ll + divGAkV~kf.-l + ~[(divGAk)(divGAk) 
2 A 2 
+ [V AkdivGAk - divGV AkAkllf.-l + divGAkV~kf.-l- divGaf.-l- V~f.-l. 

(6.32) 

The next question we are going to answer is how to formulate the conditions 
on diffusion coefficients and the initial measure to ensure that the initial measure 
is invariant with respect to V*(t,s) . For this purpose, we could follow the 
approach given in the previous section. We start with the case when coefficients 
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A(t, x) = A(x) and a(t, x) = a(x) do not depend on time variable. Notice that 
under the above condition, there exists a unique solution to 

aIL _ A* 
at - IL, ILo(dx) = I/(dx). (6.33) 

It results that the measure ILt (dy) = V* (t) 1/( dx) is absolutely continuous with 
respect to 1/ and hence could be represented in the form ILt(dx) = v(t,x)l/(dx). 

Let us derive the equation to govern the function v(t,x). Direct computa­
tions show that 

and 

a[v(t, x)l/(dx)] = av(t, x) (d ) 
at at 1/ x, 

\7;[v(t, x )I/(dx)] = (v' (t, x), z2)I/(dx) + v(t, x )\7;2 I/(dx) , 

(\7 ZlV'(t, x), z2)I/(dx) 

+( v' (t, x), \7 Zl z2)I/(dx) + (v' (t, x), Z2)\7;11/ 

+( v' (t, x), zl)\7;21/(dx) + v(t, X )\7;1 \7;21/(dx). 

Finally, recall that \7;1/ = [(A,z) + divGz] 1/, \7;1\7;21/ = [(\7z1A,Z2) 
+(A, \7 Zl Z2)+ \7 Zl divGZ2] 1/ + [(A, Zl) + divGZl] [(A, Z2) + divGZ2] 1/ that yields 

\7;1\7;21/ - \7Vz1Z21/ = [(\7z1 A,Z2) + \7z1 divGZ2 - divG\7z1 z2 

+ [(A, zd + divGZl][(A, Z2) + divGZ2]]I/. 

Substituting these relations into (6.33), we show that v(t, x) solves 

av 
at = Fv, v(O, x) = 1, (6.34) 

where 

Fv = ~[\7 Ak \7 AkV + \7 V' AkAkV + \7 AkV(A, Ak) + divGAk\7 AkV]- \7 aV 

+ ~[(A, \7 AkAk) + \7 AkdivGAk - divG\7 AkAk + (A, Ak)(A, Ak) 

+divGAkdivGAk] + \7 Ak(A, Ak) + divGAk(A, Ak) - divGa - (a, A)]v. 

(6.35) 

Let us construct a probabilistic representation for the solution to (6.34) in 
terms of a new stochastic process 'Y(t) which solves 

d'Y = expM (b(-y(t)dt + A(-y(t))dw) (6.36) 

with the same diffusion coefficient A(x) and a new drift coefficient b(x) given 
by 
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In terms of this process, the solution to (6.34) has the form 

(6.37) 

where 

a(x) ~[(A(x), \7 Ak(x)Ak(X)) + \7 Ak(x)diveAk(X) - dive \7 Ak(x)Ak(x) 

+ (A(x), Ak(x))(A(x), Ak(x)) + diveAk(x)diveAk(x)] 

+ \7 Ak(x)(A(x), Ak(x))] 

+ diveAk(x)(A(x), Ak(x)) - divea(x) - (a(x), A(x))]. (6.38) 

Finally, the condition a(x) = 0 ensures that v(t,x) = 1 satisfies (6.34) and 
hence measure v is invariant with respect to the evolution family V*(t). 

In addition, we give another representation for the function a(x) in terms of 
the initial measure itself rather then its vector logarithmic derivative. In these 
terms, we derive 

11k 
a(x)v(dx) = "2[\7 Ak \7 AkV(dx) + \7\7 AkAkV(dx)] + "2 [dive A \7 AkV(dx) 

+ K;(Ak, Ak)v(dx) + (diveAk) (diveAk)v(dx)], (6.39) 

where K;(Zl, Z2) has the form (6.25). 
Let L2(M, v) be a space of square integrable functions on M. Assume that 

A(t, x) = A(x), a(t, x) = a(x) and the measure v is invariant with respect to 
the solution ~(t) of (6.26) with time homogenous coefficients. Define V(t) and 
V+(t) in L2(M, v) by 

1M g(x) 1M f(y)P(t, x, dy)v(dx) = (g, V(t)f) = (V+(t)g, 1) (6.40) 

for any measurable bounded functions f and g. A pair of semigroups Vi and 
V/ is said to be dual with respect to the invariant measure v if (6.40) holds. 

We show that the evolution family V+(t) coincides with the evolution family 
V(t) generated by the time reversal of ~(t) and derive the stochastic equation 
for the time reversal process. 

Let ~(t) = ~(T - t), t E [0, T]. By considerations similar to those used in 
the last Section, one could check that ~ (t) is a diffusion process as well, and 
P(t, x, dy) = p(t'~~r(dy) is its transition probability. Finally, 

(g, Vif(x)) = lM g(x)[IM p~(~~~y) v(dy)]v(dx) 

1M f(y) 1M g(x) p~(~~~y) v(dx) = 1M Vtg(y)f(y)v(dy). 

Thus, the following assertion is proved. 
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Theorem 6.2.1 Let v(dy) be an invariant measure of the process ~(t) E M. 
Let Vi and Vt be evolution families in L2(M, v) generated by the processes ~(t) 
and e(t), respectively. Then Vt = yt+, where yt+ is given by (6.40). 

Consider a pair of diffusion processes ~(t) and T/(t) in M which solve 

d~ = expM (a(~(t))dt + A(~(t))dw), ~(o) = ~o, (6.41) 

and 

(6.42) 

respectively, and let the distribution v of ~o E M be a smooth measure with 
vector logarithmic derivative A. Finally, we state the conditions on drift coeffi­
cients a and a which ensure that Vif(x) = Ef(~(t)) and Vtg(x) = Eg(T/(t)) are 
dual with respect to the invariant measure v. 

Theorem 6.2.2 Let v E M2(M) . Then v is an invariant measure for a pair 
of diffusion processes ~(t) and T/(t) satisfying (6.41) and (6·42) if and only if 
the drift coefficients a(x) and o,(x) satisfy 

a(x) + o,(x) = B(x)A(x) + V Ak(x)Ak(x), B = A* A, (6.43) 

and 

divc(a(x) - o,(x)) + (a(x) - o,(x) , A(x)) = o. (6.44) 

PROOF. Recall that generators of the semigroups Vi and Vt have the form 
(6 .30) . If Vi and Vt are dual, then the relation (Ag, J)j.L = (g,AJ)j.L should hold. 
Using integration by part formula, we check that 

lM[~ (V Ak(x) V Ak(x) - V\7 Ak(X)Ak(x))g(x) + V a(x)g(x)lJ(x)v(dx) 

1M g[~(V Ak(x) V Ak(x) - V\7 Ak(x)Ak(x))f(x) + divc(V Ak(x)Ak(x))f(x) 

+ ((V Ak(x)Ak(x)), Vf(x)) - divc(o'(x))f(x) - Vaf(x) 

+ f(x)[~((V Ak(x)A(x), Ak(x)) + (Ak(x)A(x), Ak(x)A(x)) 

+ divc(V Ak(x)Ak(x)) + (V Ak(x)Ak(x), A(x))) - (o,(x), A(x))]]v(dx) 

1M g[~ (V Ak(x) V Ak(x) - V\7 Ak(X)Ak(x))f(x) + V a(x)f(x)]v(dx). 

As a result, 

~diV (V Ak(x)Ak(x)) - divc(o'(X)) + ~ ((V Ak(x)A, Ak(x)) 

+(Ak(x)A, Ak(x)A) + (V Ak(x)Ak(x), A)) - (a, A) = 0 
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and 
(V' f, B(x)A + V' Ak(x)Ak(x)) = (a(x) + a(x), V' f). 

Notice that (6.33) and the invariance of the measure v with respect to yt+ yield 
(6.43). As far as v is invariant with respect to Vt as well, we have 

m ~Bij [V'jAi + AiAj] + (V'iBij - aj)Aj + ~ V'iV'jBij - diVG a 

-21 Bij[V'jAi + AiAj] + (V'iBij - aj)Aj + ~V'iV'jBij - divGa = 0 
2 

and hence (6.44) is valid. • 
Acknowledgement. This work was supported by grant RFBR N97-01-01123. 
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Localization of Majorizing Measures 

Bettina Biihler, Wenbo V. Li, and Werner Linde 

Friedrich Schiller Universitiit, Jena, Germany 
University of Delaware, Newark, Delaware 
Friedrich Schiller Universitiit, Jena, Germany 

Abstract: A fundamental result of Fernique and Talagrand characterizes the 
a.s. boundedness and continuity of Gaussian processes by properties of their 
covariance. Basic tools are either majorizing measures or quantities defined by 
partitions and weights. Our objective in this chapter is to investigate general­
izations of those expressions. As a consequence, we get a deeper understanding 
of the structure of precompact metric spaces as well as of Gaussian processes. 

Keywords and phrases: Gaussian processes, majorizing measure, metric 
entropy 

7.1 Introduction 

Let Y = (Yt;)tET be a centered Gaussian process over an arbitrary index set T. 
Then, Y is (up to equivalence) completely determined by its covariance. It is 
natural and important to find criteria (only depending on the covariance) which 
will ensure the existence of a.s. bounded or continuous (if T is metric) versions 
of Y. By standard methods [Ledoux and Talagrand (1991)]' it may be reduced 
to the special case in the Hilbert space setting. Let H be a separable Hilbert 
space and let X = (Xt)tEH be an isonormal Gaussian process defined on H. 
For example, let X be given by 

00 

X t := L~j (t,!i) , t E H, (7.1) 
j=l 

where (~j)'t=l are independent and identically distributed as standard normal 
and (!i)'t=1 is any ONB in H. Then, one needs geometric characterizations of 
subsets T in H for which (Xt)tET has either a bounded or a bounded and uni­
formly continuous version (in the terminology of Dudley (1967), those sets were 
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called GB- or GC-sets, respectively). Metric entropy conditions are used but 
it only led to sufficient [ef. Dudley (1967)] or necessary conditions [ef. Sudakov 
(1969)] due to the fact that it is a very rough tool to describe the detailed struc­
ture of a set T precisely. Consequently, finer (and more complicated) quantities 
were necessary. After basic work of Fernique [ef. Fernique (1975)], the problem 
was finally solved in Talagrand (1987). For example, the process X = (Xt)tET 

has an a.s. bounded version iff there is a probability measure J..l on T (majorizing 
measure) with 

100 

sup 
tET 0 

1 
log J..l(B(t; e)) de < 00 (7.2) 

where B(t;e) := {s E T: lit - sliH ~ c} is the closed e-ball centered at t E 
T. Recently, Talagrand [ef. Ledoux (1996) and Talagrand (1996)] presented 
other conditions which are equivalent to (7.2) and are much easier to handle 
in concrete situations. For example, a very useful quantity 8(T) [see (7.4)] is 
defined by a countable increasing sequence of partitions of T and corresponding 
weights. Then the existence of a bounded version of X over T in H is equivalent 
to 8(T) < 00. This is a remarkable result, but it has the disadvantage that it 
neither tells something about the size of sets T when 8(T) = 00, nor does it 
give any additional information about the structure of T when 8(T) < 00. This 
led us to modify the definition of 8(T) in a simple and effective way. Instead 
of taking partitions and weights starting at a fixed level No(T), we investigate 
partitions and weights ranging from a certain level N to a (possible finite) level 
M, thus getting quantities 81jJ (T) for any choice of -00 < N < M ~ 00. 

When 8(T) = 00, the behavior of 81jJ (T) --7 00 as M --7 00 leads to detailed 
information about T. And when 8(T) < 00, the speed of convergence of 8'N(T) 
as N --7 00 provides the desired information. Hence, we finally obtain a tool 
which describes the finer structure of any precompact T c H, and this has 
already turned out to be very useful in the study of the size of the convex hull 
of a precompact set [ef. Li and Linde (1998)]. 

The organization of this chapter is as follows. After introducing 81jJ (T) 
and proving some elementary properties of this quantity, we extend Talagrand's 
partitioning scheme to our more general setting. As a consequence, we get a 
majorizing measure characterization for 81jJ (T) similar to (7.2). Although all 
these quantities originate in the study of Gaussian processes, they also make 
sense in arbitrary metric spaces (T, d), and we shall investigate these expressions 
in this more general setting. Only when we treat their relations to Gaussian 
processes, the metric d is assumed to be generated by a scalar product. In this 
case, we get a probabilistic characterization of 81jJ (T) completing the classical 
relation between majorizing measures and Gaussian processes. Finally, some 
examples show how our results apply in concrete situations. 
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7.2 Partitions and Weights 

Throughout this chapter, (T, d) denotes a metric space with 

0< diam(T) := sup d(s, t) < 00 . 
s,tET 

If B(tj c) is the closed e-ball centered in t E T (w.r.t. the metric d), the covering 
numbers of a set A ~ T are defined by 

N(A,e):= inf {n EN: "3 tl, ... ,tn E T s.t. A ~ U B(tkje)} 
k=l 

and its metric entropy is defined by H (A, c) : = log N (A, c) . 
Here and in the sequel, q is a sufficiently large fixed number and all constants 

c> 0 (with or without subscript) are assumed to depend on this number q only. 
For integers N,M with -00 < N < M::; 00, let A = (AN+l, ... ,AM) for 

M < 00 or A = (AN+l, AN+2, ... ) for M = 00 be a sequence of partitions of T 
possessing the following properties: 

(i) Each Aj is finite and consists of measurable (w.r.t. the Borel-o--algebra 
on T) subsets. 

(ii) Given A E Aj, there is atE T such that A ~ B(tj q-j), i.e. we have 
N(A, q-j) = 1 and, hence, diam(A) ::; 2q-j. 

(iii) Each Aj+l refines A j . 

Let Zfj (T) or Zfj (T, d) be the set of sequences A which possess properties (i), 
(ii) and (iii) from above. Given t E T and A E Ztf (T), then for each finite j 
with N < j ::; M we find a unique Aj(t) in Aj with t E Aj(t). Note that in 
view of (iii), necessarily Aj+l(t) ~ Aj(t). 

If A E Zf:/(T), a sequence W = (WN+l, ... ,WM) or W = (WN+l,WN+2, ... ) 
is called weight sequence adapted to A provided 

(i) each Wj maps Aj into [0, 1] and 

(ii) for all finite j with N + 1 ::; j ::; M, we have 'EAEAj wj(A) ::; l. 

Denote by W(A) the set of all those sequences adapted to some A. Basic 
examples of weight sequences are those defined by probability measures {L on 
T. Indeed, if A E Zfj(T), setting for all j's 

(7.3) 

we always obtain a sequence W E W(A). 
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Now we are in position to introduce the main quantity of this chapter: Given 
A E Zt! (T) and W E W(A), set 

with Aj(t) as above. Finally, we define 

eljJ (T) := inf {eA,w(T) : A E Zt! (T), wE W(A)} 

where the numbers Nand M indicate that we use partitions from level N + 1 
to level M. Observe (and this is the main difference to former investigations) 
that the optimal choices for A and W may heavily depend on Nand M. Thus, 
in general, there is no natural relation between A's and w's being optimal for 
different indices. 

Two choices of Nand M are of special interest: 

(1) Let No = No(T) be defined by 

No:= sup{J E Z: N(T,q-j) = 1} 

For N < No and N < J ~ No, we may choose Aj = {T} and Wj == 1, hence 
eljJ (T) = eMo (T) in this case. So without loss of any generality, we can 
always assume N 2: No(T). Then for any pre compact space T the quantity 
elJJo (T), M < 00, is finite and its behaviour as M ---7 00 measures the degree of 
compactness of T. 

(2) Another case of interest is M = 00. Here, one may ask for the behaviour of 
e~(T) as N ---7 00. 

Combining these two cases, i.e. N = No(T) and M = 00, we obtain the 
classical quantity 

e(T) := e~o (T) 

investigated in Ledoux (1996) and Talagrand (1996). 

7.3 Simple Properties of e~ (T) 

(7.4) 

As we mentioned above, every probability measure J-L on T defines via (7.3) a 
sequence W E W(A). A first result tells us that it suffices to investigate weight 
sequences generated in this way. Let P(T) be the set of Borel probability 
measures on T. Then the following is valid: 



Localization of Majorizing Measures 

Proposition 7.3.1 We have 

e1]1 (T) :::; inf {sup t q-j 
tET j=N+l 

:::; c· e1]1 (T) . 

85 

1 M } log fL(Aj(t)) : A E ZN (T), fL E P(T) 

PROOF. The left hand inequality follows easily by setting wj(A) = fL(A). For 
the right hand inequality, let A E Zft (T) and W E W(A) be arbitrary. We 
choose some point t A E A for any A E Aj and set 

M 

fLo = L 2-j+N L wj(A) iStA ' 

j=N+l AEAj 

Then we get fLO(T) :::; 1, thus there exists a fL E P(T) with fL 2: fLo. Using 
N 2: No, we find an A E AN+l with wN+l(A) :::; 1/2, which clearly implies 
eA,w(T) 2: q-N-lylln2. Now using the fact fL(Aj(t)) 2: 2-j+NWj (Aj (t)) and 
standard methods [ef. Ledoux (1996)], we obtain the desired inequality with 

00 . 

c = q I: q-Jy'j + 1. • 
j=l 

The next result answers the natural question as to how e1]1 (T) depends on 
the indices Nand M, respectively. 

Proposition 7.3.2 
(a) If N + 1 < M :::; 00, then e1]1+1(T) :::; e1]1(T) :::; c e1]1+1(T). Thus, the 
asymptotic behaviour of e1]1 (T) as M -t 00 does not depend on the special 
choice of N. 
(b) For N < M < 00, we have 

e1]1 (T) :::; e1]1+1(T) :::; c e1]1 (T) + q-M-l J H(T, q-M-l) . 

PROOF. Both left hand sides are trivial. For the right hand side of (a), we use 
Proposition 7.3.1 and AN+2(t) ~ AN+l(t), hence fL(AN+2(t)) :::; fL(AN+l(t)) 
for any fL E P(T). To prove the right hand side of (b), let A E Zft (T) and 
W E W(A) be arbitrary. Choose a partition B of T which is induced by a 
covering with N(T, q-M-l) balls of radius q-M-l. Then we set 

and 

AM+l = {A n B : A E AM, BE B, An B =1= 0} 

wM(A) 
WM+l(AnB) = N(T,q-M-l)' 

and get A = (AN+l, ... ,AM+l) E Z%+l(T) and W = (WN+l, ... ,WM+l) in 
W(A). Thus we obtain 

e A,U;(T) :::; (1 + l/q)eA,w(T) + q-M-IV H(T, q-M-l) 
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as desired. • 
In view of property (ii) in the definition of A's in Zt/ (T), the inclusion 

8 ~ T does not necessarily imply eM (8) ~ eM (T). But we have the following 
result. 

Proposition 7.3.3 For 8 ~ T and N < M, we have 

efr~f(8) ~ q eM (T). 

PROOF. Let A E Zt/(T) and W E W(A) be arbitrary. For N -1 < j ~ M-1 
we define 

Aj = {A n 8 : A E Aj+l , An 8 # 0}. 

Then we obtain An 8 ~ B(s; q-j) for some s E 8 as follows: By definition of 
Zt/ (T), we have A ~ B(t; q-j-l) for some t E T. Using An 8 # 0, we find 
s E 8 with des, t) ~ q-j-l, so that An 8 ~ B(s; 2q-j-l) ~ B(s; q-j). Hence, 
- - - M 1 A = (AN, ... , AM-t) E ZN~l (8,dlsxs), and by setting wj(A n 8) = wjH(A), 

we get e A,w(8) :::; q eA,w(T) which completes the proof. • 

Let (T, d) be precompact. Then there exists a tight connection between 
eM (T) and quantities defined by the metric entropy of T. To make this more 
precise, let ANH be generated by an optimal q-N-l-cover, Le. AN+l consists 
of suitable intersections of q-N-l-balls and card(ANH) = N(T, q-N-l). If 
Aj , j < M, is already defined, we divide any A E Aj in the same way by an 
optimal q-j-Lcover of A. In this way, we obtain a sequence A E Zt/ (T) with 

If j = N + 1, ... , M, we define adapted weights by wj(A) := (card(Aj))-l for 
all A E Aj, and it is easy to see that 

-N-l 

eA,w(T) ~ c l q VH(T, e) de. 
q-M-l 

This is the classical Dudley bound in the case of Gaussian processes when 
N = No and M = 00. Also a lower Sudakov bound is valid in this more general 
setting. This can be seen using N(A, q-j) = 1 for A E Aj, A E Zt/ (T), so that 
we find teA) E T with 

T ~ U A ~ U B(t(A); q-j). 
AEAj AEAj 

Thus N(T, q-j) ~ card(Aj ), and for each j there exists a set A E Aj with 
wj(A) ~ (N(T, q-j))-l. Summing up, the following holds. 
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Proposition 7.3.4 We have 

-N-l 

sup q-jVH(T,q-j):=:; eljJ(T):=:; c lq VH(T, c) de . (7.5) 
N+l-:5.j-:5.M q-M-l 

Let us state a consequence of this proposition, which has been used in Carl, 
Kyrezi and Pajor (1997) in a weaker form. 

Corollary 7.3.1 Let a> 0 and f3 E R. Then, H(T, c) :=:; c e-a (log(l/e)),B iff 

e!J(T) :=:; c qN(a/2-1) N,B/2, N --7 00, 

for 0 < a < 2, and iff 

e~ (T) :=:; c qM(a/2-1) M,B/2, M --7 00 , 

for 2 < a < 00. 

Remark. The estimates in (7.5) do not yield similar assertions in the critical 
case a = 2. For special T, this problem has been investigated in Li and Linde 
(1998). 

7.4 Talagrand '8 Partitioning Scheme 

Given a metric space (T, d) and N < M :=:; 00, it is a highly non-trivial task to 
construct optimal A E ZJ:f (T) and W E W(A). As mentioned before, partitions 
and weights generated by optimal q-Lcovers do not lead to sharp results in 
general. The deeper reason for this is that those weights do not suffice to 
describe the finer structure of T. Fortunately, Talagrand found a general scheme 
for constructing optimal A's in ZN'a(T) and W E W(A) [ef. Talagrand (1996)]. 
The same ideas also apply in our more general situation. To be more precise, 
we need the following. 

Given N, M as above, a sequence 'PN,.'" 'PM+l of functions from T into 
[0,00) satisfies the Talagrand condition (for some K, > 0) if they possess the 
following property: 

For N :=:; j :=:; M - 1, all t E T and any points tl, ... tn E B(t, q-j) with 
d(tz, tk) > q-j-l for 1 :=:; k < l :=:; n, we have 

(7.6) 

Theorem 7.4.1 Let'P = ('PN, .. " 'PM+I) be a sequence of functions satisfying 
the Talagrand condition (7.6) with K, > O. Let 

/I'PII := sup sup 'Pj(t). 
tET N-:5.j-:5.M+l 
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Then there exist A E Zf! (T) and wE W(A) such that 

8A,w(T) ::; c (/i;-I II'PII + q-N V H(T, q-N) + 1) (7.7) 

PROOF. The proof follows almost exactly as for N = No and M 00 in 
Talagrand (1996), but with one important difference. If N = No, then there 
exist a natural partition ANo = {T} and a natural weight WNo == 1 to start 
with. Then Aj and Wj, j > No, are constructed inductively by dividing sets 
in Aj-I and by splitting Wj-I. But, in our situation, N > No, we have to 
find a natural partition to start the partitioning procedure. We choose AN as 
partition generated by an optimal q-N-cover and set WN = (N(T, q-N))-I. 

This leads for N > No(T) to the additional term q-N V H(T, q-N) on the right 
hand side of (7.7). Then we may proceed as in the classical case. One should 
also observe that only 'P N, ... ,'Pj+1 are needed to construct AN, ... ,Aj. • 

7.5 Majorizing Measures 

Recall that first characterizations of metric spaces T with 8(T) < 00 were via 
(7.2) by using special probability measures on T (called majorizing measures). 
Similar results also hold in our more general situation. Given J.-l E P(T) and 
No ::; N < M ::; 00, we define 

1 
log J.-l(B(t;E)) dE 

and 
If! (T) := inf {IN,Jl- (T) : J.-l E P(T) } (7.8) 

Theorem 7.5.1 There are CI,C2 > 0 such that 

CI If! (T) ::; 8~ (T) ::; C2 IN+I(T) . 

PROOF. The first inequality is easy to prove by using Aj(t) ~ B(t; 2q-j) and 
Proposition 7.3.1. For the second inequality, we set 

'Pj(t) := sup {12q- j 

2q-M-l 
1 "} log J.-l(B(s; E)) dE; sET, d(s, t) ::; 2q-J 

for N ::; j ::; M + 1. As in Talagrand (1996), it can be proved that these 
functions satisfy II'PII ::; IN+I(T) as well as the Talagrand condition with cor­
responding constant /i; = (q - 8)j(2q2). Furthermore, it is easy to prove that 

IN+1(T) ~ c q-N VH(T,q-N) + 1, 
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so the result follows by applying Theorem 7.4.1. 

Remark. Letting 

'L(T) = 'LWo (T) = inf sup roo 
/-LEP(T) tET 10 

1 
log J.l(B(t;c» de, 

then the classical majorizing measure theorem reads now 

Cl 'L(T) ::; 8(T) ::; C2 'L(T). 

7.6 Approximation Properties 

89 

• 

(7.9) 

Let (T, d) be a metric space with 8(T) < 00. Then the behaviour of 8lJ(T) as 
N -> 00 should tell us more about the degree of compactness of T. The first 
aim of this section is to make this more precise. 

Lemma 7.6.1 Suppose that T = Uj=l Tj for some disjoint Tj 'so Then we have 

8lJ(T) ::; c (sup 8'N(Tj) + q-N JIOgk) . 
l~j~k 

PROOF. Let J.ll,"" J.lk be probability measures on Tl,"" Tk. Then we define a 
probability measure J.l on T by J.l:= k-1 Ej=l J.lj. Let Aj = {A-~V+1,A~+2"'} 
be partitions of Tj, 1 ::; j ::; k. Setting ~ := Uj=l At, we get a sequence 
A = {AN+1' AN+2,"'} in Z't!(T). If t E Tj, we have 

Ai (t) = At (t), i = N + 1, N + 2, ... , 

hence by using Proposition 7.3.1 

8lJ(T) ::; 

< 

Since the partitions and the measures on each Tj were chosen arbitrarily, this 
completes the proof by taking the infimum over all partitions and measures, 
and by using Proposition 7.3.1 again. • 

Theorem 7.6.1 If T is a metric space, then 

C1 8'N(T) ::; sup 8(B(t; q-N» + q-N V H(T, q-N) ::; C2 8'N(T) . 
tET 

(7.10) 
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PROOF. To verify the left hand side, let T = Uj=l B(tj; q-N) for k = N(T, q-N) 
and tl, ... , tk in T. Then we obtain disjoint sets Tj ~ B(tj; q-N) covering T. 
Hence, Lemma 7.6.1 implies 

8J:J(T) < c ( sup 8(B(tj; q-N)) + q-N V H(T, q-N)) 
l::;j::;k 

as claimed. 

< C (SUP8(B(t;q-N))+q-NV H(T,q-N)) 
tET 

Conversely, by Propositions 7.3.3 and 7.3.2 we have 

sup 8(B(t; q-N)) = sup 8N'(B(t; q-N)) ::; C 8N'(T) 
tET tET 

and Proposition 7.3.4 implies q-N-IVH(T,q-N)::; 8N'(T), hence 

sup8(B(t; q-N)) + q-N V H(T, q-N) ::; C 8J:J(T), 
tET 

completing the proof. • 
Remark. Note that entropy term in (7.10) is indeed necessary. For example, if 
all points of Tare c-separated with c > q-N, then this yields 8(B(t; q-N)) = 0 
for t E T, yet 8N'(T) > 0 if card(T) > 1. 

Corollary 7.6.1 Let (T, d) be precompact. Then it holds limN-.oo 8N'(T) = 0 
iff 

lim sup 8(B(t; c)) = o. 
g-.O tET 

PROOF. We have to show that limg-.osuptET8(B(t;c)) = 0 implies 

lim 8V H(T, 8) = O. 
8-.0 

This can be done by using 

N(T,8)::; N(T,c) supN(B(t;c),8) 
tET 

and Proposition 7.3.4 [ef. the proof of Corollary 3.19 in Ledoux and Talagrand 
(1991)]. • 

If T is precompact and 8(T) = 00, then the behavior of 8~ (T) as M ~ 00 

should describe how badly T is behaved, Le., how far it is away from a set S 
with 8(S) < 00. Before making this more precise, we need the following lemma. 
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Lemma 7.6.2 Suppose we have T = U~l Tj for some disjoint measurable 
subsets Tj ~ T. Let p be a metric on N such that for B ~ N we have 

diamd( U Tj) ::; diamp(B) + 4q-M-l 
jEB 

for some M E Z. Then this implies 

eP:1 (T) ::; c eiZf + 1 (N) ::; c eN' (N) . 

(7.11) 

PROOF. Let B = {BN+l,"" BM+l} be a sequence of partitions in Z1jf+l(N, p) 
and let v = (VN+l,"" VM+l) be a sequence of adapted weights. Given BE Bi+l 
for some i E {N, ... , M}, we define a subset AB := UjEB Tj ~ T. Then by 
(7.11), diamd(AB) ::; 2q-i-l + 4q-M-l ::; q-i provided q 2: 6. Defining now 

Ai := {AB : B E Bi+l} for i = N + 1, ... , M, 

we get a sequence A E ZN (T, d). Next let wi(AB ) := Vi+l (B) for B E Bi+l. 
Given t E T, there is a unique j E N such that t E Tj . Hence, if Bi+l (j) is 
the unique set in Bi+l such that j E Bi+l(j), we have Ai(t) = ABi+l(j) by the 
construction. Consequently, for each fixed t E T 

so after taking the supremum over all t E T on the left-hand side, we get the 
desired estimate by taking the infimum over all partitions and weights on the 
right-hand side. • 

Theorem 7.6.2 Let T be a subset of a metric space (E, d) and suppose that 
there is a countable set SeE such that 

T ~ U B(s;2q-M-l) 
SES 

for some M E Z. Then this implies 

eP:1 (T) :::; c eiZf+l(S) :::; c eN'(S) . 

PROOF. Of course, we may assume B(s; 2q-M-l) n T f=. 0 for any S E S. 
Writing S = {Sl,S2," .}, there exist disjoint subsets Tj ~ B(sj;2q-M-l) such 
that T = UjEN Tj . Define a distance p on N by 

p(i,j):= d(Si,Sj) fori,j EN. 

Then estimate (7.11) holds by the construction and we obtain 

eiZf (T) ::; c eiZf +1 (N) = c . eiZf +1 (8) 

completing the proof. 

Next, we view our results in a uniform way. 

• 
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Proposition 7.6.1 We have 

CI 8-'jf (T) ~ inf {8}}(S) : T ~ U B(s; 2q-M-l) , S countable} 
sES 

< inf {8}}(S) : T ~ U B(s; 2q-M-l) , S ~ T, S countable} 
SES 

< inf {8!J(S) : T ~ U B(s; 2q-M-l) , S ~ T, S finite} 
SES 

PROOF. It only remains to prove the last inequality. For that purpose, let 
A = (AN+l,"" AM+r) E Zf!+l(T) and W = (WN+1,"" WM+r) E W(A) be 
arbitrary. For any A E AM+1, we choose an element tA E A and denote the set 
{tA : A E A M+1} by S. Obviously S ~ T, S finite and diam(A) ~ 2q-M-l so 
that T ~ UsEs B(s;2q-M-l). Thus, it suffices to prove 8A',w(S) ~ c· 8A,w(T) 

for suitable A E Z't/(S, dlsxs) and W E W(A). We define 

Aj = {A n S : A E Aj+ I} for N < j ~ M 

and 
Aj = {{ s} : s E S} for M < j < 00 

and claim that the Aj's generate a sequence of partitions in Z't/(S). Indeed, if 
j ~ M and A E Aj+l' then An S ~ B(s; q-j) for a suitable s E S. This easily 
follows from An S ~ B(t; q-j-l) for some t E T. Set wj(A n S) = Wj+l (A) for 
N < j ~ M, A E Aj+l and Wj({s}) = WM+l(A) for j > M and s = tA E S. 
Thus, 

8A~~(S) 
,w 

< sup (q "fl q-j 
sES j=N+2 

< c 8A,w(T) 

completing the proof. • 
Corollary 7.6.2 For every finite S there exists some M < 00 (depending on 
S) with 



Localization of Majorizing Measures 93 

7.7 Gaussian Processes 

As already mentioned, the quantities 8(T) and I(T) originate in the theory of 
Gaussian processes. More precisely, if T S;;; H, H separable Hilbert space, and 

d(s, t) := lit - slIH' s, t E T , 

then the famous theorem of Fernique and Talagrand [ef. Ledoux (1996) or Ta­
lagrand (1996)] asserts the following. 

Theorem 7.7.1 Let (XthEH be the isonormal process on H defined in (7.1). 
Then, we have 

Cl 8(T) S E sup X t S C2 8(T) (7.12) 
tET 

with some universal Cl, C2 > o. 
The expression E SUPtET Xt in (7.12) should be understood throughout as 

sup {E supXs : S S;;; T, S finite} . 
SES 

In view of (7.9), the estimate (7.12) remains true with I(T) instead of 8(T), 
which was the original form of Theorem 7.7.1 in the language of majorizing 
measures [ef. Fernique (1975) and Talagrand (1987)]. Let us recall the im­
portant and well-known fact that Theorem 7.7.1 applies by standard argu­
ments [ef. Ledoux and Talagrand (1991)] to any centered Gaussian process 
y = (Yt)tET provided the (pseudo)-metric d on T is generated by Y via 
d(s, t) = (E IYt - YsI 2)1/2. 

The aim of this section is to compare 8-jif (T) with quantities generated by 
(Xt)tET, similarly as in (7.12). Let us start with the case N 2: No(T) and 
M = 00. If t E T, the modulus of continuity (w.r.t. (Xt)tET) at t is defined as 
function of E > 0 below: 

WT(t; E) := E sup Xs = E sup (Xs - Xt) . 
sET sET 

d(S,t)S;E d(S,t)S;E 

Similarly, the modulus of uniform continuity may be defined by 

UT(E) := E sup IXt - Xsi = E sup (Xt - Xs) . 
8 , tET s,tET 

d(S,t)S;E d(S,t)S;E 

Theorem 7.7.2 For any N 2: No(T), 

C1 8'N(T) < SUpWT(t; q-N) + q-N V H(T, q-N) 
tET 

< UT(2q-N) + q-N VH(T,q-N) S C2 8 N(T) . 

(7.13) 

(7.14) 

(7.15) 
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PROOF. The first inequality is a direct consequence of Theorem 7.6.1 and 

which follows from Theorem 7.7.1. Of course, SUPtETWT(t; c) :::; UT(C:) :::; uT(2c:), 
hence it remains to prove the last estimate. To do so, we use the following result 
which is a direct consequence of (5.2.6) in Fernique (1997): If /1 E P(T) and 
c: > 0, then 

UT(C:) = E sup IXt - Xsi :::; c sup r 
s,tET tET 10 

d(S,t):5E 

1 
log /1(B(t; 6)) d6 , 

i.e., we have uT(2q-N) :::; c Ifj(T) where Ifj(T) was defined in (7.8). Using 
Proposition 7.3.4 and Theorem 7.5.1, we have the proof. • 

Remark. Since the term q-N J H(T, q-N) in (7.14) and (7.15) is indeed nec­

essary, eN(T) is a combination of the local quantities SUPtETWT(t; q-N) or 

ur(2q-N) and of q-N J H(T, q-N) measuring the global size of T. 

Combining Theorem 7.7.2 with Corollary 7.6.1, the following holds. 

Corollary 7.7.1 Let T c H be precompact. Then the following are equivalent: 

(i) limN-->oo e'N(T) = 0 , 

(iii) lime-->o UT(C:) = 0 and 

(iv) (XdtET has an almost surely uniformly continuous version. 

Our next objective is to investigate the case M < 00. A first natural 
question is about the relation between eN(T) and sUPM<oo e9j (T). Of course, 
restricting any A E Zfj(T) and wE W(A), we obtain partitions in zft (T) for 
any M < 00 (and adapted weights), i.e. it always holds 

sup e9j (T) :::; eN (T) . (7.16) 
M<oo 

But it is far from clear whether or not the converse of (7.16) is true as well. To 
verify this, one has to construct optimal A's in Zfj(T) out of optimal partitions 
in Zft (T) for every M < 00. This seems to be complicated, so we use a different 
approach. 
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Proposition 7.7.1 There is a constant c > 0 such that 

8';j(T) ::; c sup 81jJ (T) . 
M<oo 

Especially, we have 8(T) < 00 iff sup M <00 81jJ (T) < 00 for one (each) N. 

PROOF. Of course, 

UT(E) = sup {us (E) :8~T, 8 finite}; 

hence by Theorem 7.7.2 it follows 

Proposition 7.3.4 implies 81jJ(T) ~ q-N-IVH(T,q-N) for any M> N. Thus, 
it remains to show that 

sup {us(2q-N) : 8 ~ T, 8 finite} ::; c sup 81jJ (T) . 
M<oo 

Applying Theorem 7.7.2 for 8, we obtain uS(2q-N) ::; C 8';j(8). Since 8 is 
finite, by Corollary 7.6.2 we find an M < 00 such that 8';j(8) ::; c 81jJ (8). 
Now, Proposition 7.3.3 completes the proof. • 

Remark. The last proof depends heavily on the special choice of T as subset 
of a Hilbert space, i.e. on the fact that the metric d on T is generated by a 
scalar product. Using refined methods [ef. Buhler (1998)], one can show that 
Proposition 7.7.1 remains valid for general metric spaces (T, d). Note also that 
one big advantage of Proposition 7.7.1 is that the weights can depend on M 
and sometimes this make the construction much easier. An explicit example is 
given in the paper of Li and Linde (1998). 

Let us formulate, for simplicity, the next result for N = No(T) only. Here, 
B(E) = B(O; E) denotes the closed E-ball in H centered at zero. 

Theorem 7.7.3 If M < 00, then 

Cl inf {E supXs : T ~ 8 + B(2q- M )} 
sES 

::; 81f1o(T)::; C2 inf {E supXr: T ~ R+ B(2q- M - 1)} , 
rER 

where the sets 8 and R may be chosen as finite or countable subsets of H or 
T, respectively. 
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PROOF. Applying Proposition 7.6.1, we obtain 

8~(T) ~ c inf {8No (R) : T ~ R + B(2q-M-1), R countable} 

and 

8~(T) ~ c inf {8No (S) : T ~ S + B(2q-M), S ~ T, S finite}. 

By using Theorem 7.7.2 for Rand N1 = No(R), we get 

C1 8 N! (R) ~ E supXr ~ E sup IXr - Xtl ~ C2 8 N! (R), 
rER r,tER 

analogous for Sand N2 = No(S). Thus, it remains to show that 

By definition of No, we find t1, t2 E T satisfying 

We choose r1,r2 E R with d(ri,ti) ~ 2q-M-1 and obtain d(r1,r2) > 2q-NO-2, 
thus N1 < No + 2. By using Proposition 7.3.2, this yields 8 No (R) ~ C 8 N! (R). 
Furthermore, we get S ~ B(s, q-No + 2q-M) ~ B(s, q-No+1) for some s E S 
satisfying d(s, t1) ~ 2q-M. Hence, N2 ~ No - 1 and by using Proposition 7.3.2 
again this completes the proof. • 

7.8 Examples 

We first treat the case 

T = {ajej: j = 1,2, ... } U {O} c H, 

where a1 > a2 > ... > 0 tends to zero and (ej)~l is an ONB in H. Note that 
this set corresponds to the stochastic process Y = (Yn)n~l with Yn = an~n, 
where 6,6, ... are Li.d. N(O, 1). Instead of T, we may use N U {oo} with 

d(i,j) = (a;+a;)1/2 forii:j andd(i,oo)=ai. (7.17) 

Proposition 7.8.1 1fT = NU{ oo} is endowed with metric d defined by (7.17), 
then for N < M ~ 00 we have 

8Ij:! (T) ~ c (sup {ajV1ogj + 1 : q-M-1 < aj ~ q-N} 

+ q-N Vlogcard( {j : aj > q-N}) + 1) . 
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PROOF. Let 
cr(K) := max {j : Gj > q-K} 

and define S ~ T by S = {I, ... ,cr(M + 1),00}. Then we have the inclusion 
T ~ S+B(2q-M-1) , hence Proposition 7.6.1 implies e';J(T) ~ c e't)(S) . Now 
using Theorem 7.7.2 for the metric space (S, dI Sxs ), we get 

For j E S with Gj > q-N (that means for j = 1, ... ,cr(N)), the q-N-ball 
around j consists of j only, thus ws(j; q-N) = 0 in this case. Furthermore, it 
holds B(oo,q-N) nS = {cr(N) + 1, ... ,cr(M + 1),00}. Hence, 

H(S, dlsxs , q-N) = log(cr(N) + 1) 

and 

(7.18) 

By Theorem 9 in Linde and Pietsch (1974) and by the closed graph theorem, 
we have 

for any /31 ~ ... ~ /3n ~ O. Applying this to (7.18), the proof is complete. • 

Remark. Observe that H(T, q-k) = log(cr(k) + 1), hence Proposition 7.8.1 
yields 

e';J (T) < c (sup {GjVlOg(j + 1) : q-I-1 < Gj ~ q-l, N ~ l ~ M} 
+ q-N V H(T, q-N)) 

< c sup q-l V'-H-(-T-, -q--l-). 
Ng::;,M+1 

In view of Proposition 7.3.4, this tells us that the estimate in Proposition 7.8.1 
is nearly optimal. 

Our next example treats the set 

(7.19) 

for a non-increasing square sum mabIe sequence (Gj )~1 of positive real num­
bers. In different words, T consists of the corners of an infinite dimensional block 
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in b A corresponding Gaussian process is Y = (Ye)eEE with E = {-1, 1}00 
and 00 

Ye = L OjCj~j for e = (Cj)J=1 E E . 
j=1 

Lemma 7.8.1 Let T be defined by (7.19) with OJ'S satisfying the regularity 
condition 

(7.20) 

for some 'Y 2: 1. Then we have 

where 

o-(C) = card { n : E o~ > c2 } (7.21) 

PROOF. If we define the strictly decreasing sequence (,Bn)~=1 by 

it follows ,Ba(e:)+1 ::; c2 as well as N(T,2c) ::; 2a(e:) , hence H(T,2c) ::; c o-(c). 
This implies 

foe: V H(T, fJ) dfJ ::; 2 f J.fi3; V H(T, 2fJ) dfJ 
k=a(e:) Vf3k+l 

< 2 f (~- V,Bk+l) VH(T,2V,Bk+d 
k=a(e:) 

< c f Vk ( ~ - V,Bk+1 ) 
k=a(e:) 

00 0 2 
< c L k 1/2 ::; c L Ok 

k=a(e:) (i l:J=k+l 0;) k=a(e:) 

00 

in view of (7.20) and completes the proof. • 
Lemma 7.8.2 Let T C l2 be defined by (7.19) with OJ'S as before (we do not 
suppose (7.20) here). Then for this set T, its modulus of uniform continuity UT 

(cf. (7.13) for the definition) satisfies 

with o-(c) given by (7.21). 

00 
uT(2c) 2: c L Ok 

k=a(e:)+1 
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PROOF. By the definition 

uT(2c:) = E sup IXt - Xsi = E sup lXvi, 
t ,sET VEAg 

d(t , s)~2g 

where 

If we set 

then the choice of O"(C:) implies Be: ~ Ae:. Hence 

(2 00 

uT(2c:) ~ E sup IXvl = V;: L CXk 
vEBg 7r k=u(e:)+l 

which completes the proof. 

99 

• 
Proposition 7.8.2 Let T be as in (7.19) with positive non- increasing CXj 's sat­
isfying (7.20). If 

then 
00 00 

Cl L CXk ~ eN (T) ~ C2 L CXk· 

PROOF. This follows directly by combining Lemma 7.8.1 and 7.8.2 with Theo­
rem 7.7.2 and Proposition 7.3.4. • 
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Multidimensional Hungarian Construction for 
Vectors With Almost Gaussian Smooth 
Distributions 

F. Gotze and A. Yu. Zaitsev 

University of Bielefeld, Bielefeld, Germany 
Steklov Mathematical Institute, St. Petersburg, Russia 

Abstract: A multidimensional version of the results of Kom16s, Major, and 
Tusnady for sums of independent random vectors with finite exponential mo­
ments is obtained in the particular case when the summands have smooth dis­
tributions which are close to Gaussian ones. The bounds obtained reflect this 
closeness. Furthermore, the results provide sufficient conditions for the exis-
tence of i.Ld. vectors Xl, X2, ... with given distributions and corresponding 
LLd. Gaussian vectors YI , Y2, ... such that, for given small c, 

1 n n 

P { lim sup -1 -I L Xj - L Yj 1 ~ c} = l. 
n->oo og n j=l j=l 

Keywords and phrases: Multidimensional invariance principle, strong ap­
proximation, sums of independent random vectors, Central Limit Theorem 

8.1 Introduction 

This chapter is devoted to an improvement of a multidimensional version of 
strong approximation results of Kom16s, Major and Tusnady (KMT) for sums of 
independent random vectors with finite exponential moments and with smooth 
distributions which are close to Gaussian ones. 

Let Fd be the set of all d-dimensional probability distributions defined on 
the o--algebra Bd of Borel subsets of Rd. By F(t), t E R d, we denote the 
characteristic function of a distribution F E Fd. The product of measures is 
understood as their convolution, Le., FG = F * G. The distribution and the 
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corresponding covariance operator of a random vector ~ will be denoted by £(~) 
and cov ~ (or cov F, if F = £(~)). The symbol Id will be used for the identity 
operator in Rd. For b> 0, we denote log* b = max {1, log b}. Writing z E Rd 
(resp. Cd), we shall use the representation z = (Zl, ... , Zd) = Zl e1 + ... + Zded, 
where Zj E R 1 (resp. C 1) and the ej, are the standard orthonormal vectors. 
The scalar product is denoted by (x, y) = xdh + ... + xiYd' We shall use the 

Euclidean norm Ilzll = (z,z)1/2 and the maximum norm Izi = max IZjl. The 
l~j~k 

symbols e, e1, e2, ... will be used for absolute positive constants. The letter e 
may denote different constants when we do not need to fix their numerical 
values. 

Let us consider the definition and some useful properties of classes of dis­
tributions Ad(T) c Fd, T 2: 0, introduced in Zaitsev (1986); also see Zaitsev 
(1995, 1996, 1998a). The class Ad(T) (with a fixed T 2: 0) consists of distribu­
tions F E Fd for which the function 

<p(Z) = <p(F,z) = log { e(z,x)F{dx} 
lRd 

is defined and analytic for IIzil T < 1, Z E Cd, and 

(<p(0) = 0) 

for all U,V E Rd and IIzil T < 1, 

where D = cov F, and the derivative du<p is given by 

d () 1· <p(z + (3u) - <p(z) 
u<p Z = 1m (3 

(3-->0 

It is easy to see that T1 < T2 implies Ad(TI) C Ad(T2). Moreover, the 
class Ad( T) is closed with respect to convolution: if F1 , F2 E Ad( T), then Fl F2 
E Ad(T). The class Ad(O) coincides with the class of all Gaussian distributions 
in Rd. The following inequality can be considered as an estimate of the stability 
of this characterization: if FE Ad(T), T > 0, then 

(8.1) 

where 7f(-,') is the Prokhorov distance and <J>(F) denotes the Gaussian dis­
tribution whose mean and covariance operator are the same as those of F. 
Moreover, for all X E Bd and all A> 0, we have 

F{X} < <J>(F){XA} + ed2 exp ( - ed~T)' 

<J>(F){X} < F{XA}+ed2exp(-ed~T)' 

(8.2) 

(8.3) 

where X A = {y E Rd: inf IIx - yll < A} is the A-neighborhood of the set X; 
XEX 

see Zaitsev (1986). 



Hungarian Construction for Almost Gaussian Vectors 103 

The classes Ad( T) are closely connected with other natural classes of mul­
tidimensional distributions. In particular, by the definition of Ad(T), any 
distribution £(~) from Ad( T) has finite exponential moments E e(h,';) , for 
Ilhll T < 1. This leads to exponential estimates for the tails of distributions; 
see, for example, Lemma 8.3.3 below. On the other hand, if E e(h,';) < 00, for 
hE A C R d , where A is a neighborhood of zero, then F = £(~) E Ad(T(F)) 
with some T(F) depending on F only. 

Throughout we assume that T ~ 0 and 6, 6, . .. are random vectors with 
given distributions £( ~k) E Ad( T) such that E ~k = 0, cov ~k = Id , k = 1,2, .... 
The problem is to construct, for a given n, 1 ~ n ~ 00, on a probability 
space a sequence of independent random vectors Xl, ... , Xn and a sequence 
of Li.d. Gaussian random vectors YI, ... , Yn with £(Xk) = £(~k)' E Yk = 0, 
cov Yk = Id, k = 1, ... , n, such that, with large probability, 

is as small as possible. 
The aim of this Chapter is to provide sufficient conditions for the following 

Assertion A. 

Assertion A There exist absolute positive constants CI, C2 and C3 such that, 
for Td3/ 2 ~ C}, there exists a construction with 

(8.4) 

Using the exponential Chebyshev inequality, we see that (8.4) implies 

(8.5) 

Therefore, Assertion A can be considered as a generalization of the classical 
result of Koml6s, Major and Tusnady (1975, 1976). Assertion A provides a 
supplement to an improvement of a multidimensional KMT-type result of Ein­
mahl (1989) presented by Zaitsev (1995, 1998a) which differs from Assertion A 
by the restriction T ~ 1 and by another explicit power-type dependence of the 
constants on the dimension d. In a particular case, when d = 1 and all sum­
mands have a common variance, the result of Zaitsev is equivalent to the main 
result of Sakhanenko (1984), who extended the KMT construction to the case of 
non-identically distributed summands and stated the dependence of constants 
on the distributions of the summands belonging to a subclass of Al (T). The 
main difference between Assertion A and the aforementioned results consists in 
the fact that in Assertion A we consider" small" T, 0 ~ T ~ CI d-3/ 2 . In previ­
ous results, the constants are separated from zero by quantities which are larger 
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than some absolute constants. In Koml6s, Major and Tusnady (1975, 1976), the 
dependence of the constants on the distributions is not specified. From the con­
ditions (1) and (4) in Sakhanenko (1984, Section 1), it follows that Var~k ~ .\-2 
(.\-1 plays in Sakhanenko's paper the role of 7) and, if Var~k = 1, then 
.\ -1 ~ 1. This corresponds to the restrictions a-I ~ 2 in Einmahl [1989, 
conditions (3.6) and (4.3)J and 7 ~ 1 in Zaitsev (1995, 1998a, Theorem 1). 

Note that in Assertion A we do not require that the distributions £(~k) 
are identical, but we assume that they have the same covariance operators; see 
Einmahl (1989) and Zaitsev (1995, 1998a). A generalization of the results of 
Zaitsev (1995, 1998a) and of this chapter to the case of non-identical covariance 
operators appeared recently in the preprint Zaitsev (1998b). 

According to (8.1)-(8.3), the condition £(~k) E Ad(7) with small 7 means 
that £(~k) are close to the corresponding Gaussian laws. It is easy to see that 
Assertion A becomes stronger for small 7 (see as well Theorem 8.1.4 below). 
Passing to the limit as 7 ---+ 0, we obtain a spectrum of statements with the 
trivial limiting case: if 7 = 0 (and, hence, £(~k) are Gaussian), we can 
take Xk = Yk and ~(n) = O. 

We show that Assertion A is valid under some additional smoothness-type 
restrictions on £(~k)' The question about the necessity of these conditions 
remains open. The case 7 ~ 1 considered by Zaitsev (1995, 1998a, Theo­
rem 1) does not need conditions of such kind. The formulation of our main 
result-Theorem 8.2.1-includes some additional notation. In order to show 
that the conditions of Theorem 8.2.1 can be verified in some concrete simple 
situations, we consider at first three particular applications-Theorems 8.1.1, 
8.1.2 and 8.1.3. 

Theorem 8.1.1 Assume that the distributions £(~k) E Ad(7) can be repre­
sented in the form 

£(~k) = HkG, k = 1, ... , n, 

where G is a Gaussian distribution with covariance operator cov G = b2 Id and 
b2 ~ 210 72 d3 log* ;.. Then, Assertion A is valid. 

The following example deals with a non-convolution family of distributions 
approximating a Gaussian distribution for small 7. 

Theorem 8.1.2 Let 'T7 be a random vector with an absolutely continuous dis­
tribution and density 

( ) _ (4+72 1IxI12 ) exp( -llxI12j2) 
PT x - (27r)d/2 (4 + 72 d) , (8.6) 

Assume that £(~k) = £('T7h), k = 1, ... ,n, where 

2 (4+72 (d+2)) 
'Y = ( 4 + 7 2 d) , 'Y > O. (8.7) 

Then, Assertion A is valid. 
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The proof of Theorem 8.1.2 can be apparently extended to the distributions 
with some more general densities of type P(T2 1IxI1 2) exp ( - c IlxI1 2 ), where 
P( .) is a suitable polynomial. 

Theorem 8.1.3 Assume that a random vector ( satisfies the relations 

E( =0, P{ 11(11 ~ bd = 1, (8.8) 

and admits a differentiable density p(.) such that 

sup I dup(x) I ~ b3 Ilull, (8.9) 
XERd 

with some positive b1 , b2 and b3 · Let (1, (2, . .. be independent copies of (. 
Write 

where m is a positive integer. Assume that the distributions £(~k) can be 
represented in the form 

k = 1, ... ,n, (8.11) 

where 

(8.12) 

Then there exist a positive b4 depending on H only and such that m 2: b4 
implies Assertion A. 

Remark 8.1.1 If all the distributions L(k) are concentrated at zero, then the 
statement of Theorem 8.1.3 (for T = bm-1/ 2 with some b = b(H)) can be 
derived from the main results of Komlns, Major and Tusnady (1975, 1976) (for 
d = 1) and of Zaitsev (1995, 1998a) (for d 2: 1). 

A consequence of Assertion A is given in Theorem 8.1.4 below. 

Theorem 8.1.4 Assume that ~, 6,6, ... are i.i.d. with a common distribu­
tion £(~) E Ad( T). Let Assertion A be satisfied for 6, ... , ~n for all n with 
some Cl, C2 and C3 independent of n. Suppose that Td3/ 2 ~ Cl. Then, there 
exists a construction such that 

1 n n 

P { lim sup -1 -I L Xj - L Yj 1 ~ C4 Td3/ 2 1og* d } = 1 
n->oo og n . 1 . 1 

J= J= 

(8.13) 

with some constant C4 = C4(C2, C3). 
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From a result of Bartfai (1966), it follows that the rate O(logn) in (8.13) 
is the best possible if £(0 is non-Gaussian. In the case of distributions with 
finite exponential moments, this rate was established by Zaitsev (1995, 1998a, 
Corollary 1). Theorems 8.1.1-8.1.3 and 8.2.1 provide examples of smooth dis­
tributions which are close to Gaussian ones and for which the constants cor­
responding to this rate are arbitrarily small. The existence of such examples 
has been already mentioned in the one-dimensional case; for example, see Ma­
jor (1978, p. 498). 

This Chapter is organized as follows. In Section 8.2 we formulate Theo­
rem 8.2.1. To this end, we define at first a class of distributions Ad( T, p) used 
in Theorem 8.2.1. The definition of this class is given in terms of smoothness 
conditions on the so-called conjugate distributions. Then we describe a multi­
dimensional version of the KMT dyadic scheme, cf. Einmahl (1989). We prove 
Theorem 8.2.1 in Section 8.3. Section 8.4 is devoted to the proofs of Theorems 
8.1.1-8.1.4. 

A preliminary version of this work appeared as a preprint of Gotze and 
Zaitsev (1997). 

8.2 The Main Result 

Let F = £(~) E Ad(T), Ilhll T < 1, hERd. The conjugate distribution 
F = F(h) is defined by 

F{dx} = (Ee(h,.;))-le(h,x)F{dx}. (8.14) 

Sometimes, we shall write Fh = F(h). It is clear that F(O) = F. Denote by 
~(h) a random vector with £(~(h)) = F(h). From (8.14), it follows that 

Ef(~(h)) = (Ee(h,';))-lEf(~)e(h,.;) (8.15) 

provided that E I f(O e(h,';) I < 00. It is easy to see that 

if U1 , U2 E Ad(T), U = Ul U2, then U(h) = Ul(h) U2 (h). (8.16) 

Below we shall also use the following subclasses of Ad(T) containing distri­
butions satisfying some special smoothness-type restrictions. Let T ~ 0, 8 > 0, 
p> 0, hERd. Consider the conditions 

J I Fh(t) I dt ::; 
(2 7r )d/2 T d3/ 2 

(j(detD)l/2 ' 
piitilTd2':l 

(8.17) 

J IFh(t) I dt ::; 
(27r)d/2T2d2 

(j2 (det D)l/2 ' 
piitilTd2':l 

(8.18) 
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J for all v E R d , (8.19) 

plltllrd~1 

where Fh = F(h) and (J2 = (J2(F) > 0 is the minimal eigenvalue of D = cov F. 
Denote by Ad(T,p) (resp. Ad(T,8,p)) the class of distributions F E Ad(T) 
such that the condition (8.17) [resp. (8.18) and (8.19)] is satisfied for hERd, 
Ilhll T < 1. It is easy to see that 

Td1/ 2 
if --<1. 

(J -
(8.20) 

In the present work, the class Ad( T, p) plays the role of the class Ad( T, 8, p) 
which was used by Zaitsev (1995, 1998a); see also Sakhanenko [1984, inequal­
ity (49), p. 9] or Einmahl [1989, inequality (1.5)]. Note that (8.15) implies 

Fh(t) = Ee(it,~(h)) = (Ee(h,~))-1 Ee(h+it,~). (8.21) 

The dyadic scheme. Let N be a positive integer and {6, ... , ~2N} be a 
collection of d-dimensional independent random vectors. Denote 

k 

So = 0; Sk = L~I' 1 < k < 2N . - - , (8.22) 
1=1 

0::; k < 2N - m , 0::; m ::; N. (8.23) 

In particular, UO,k = ~k+ 1, Ujy,o = S2N = 6 + ... + ~2N . In the sequel, we 
shall use the term block of summands for a collection of summands with indices 
of the form k· 2m + 1, ... , (k + 1) ·2m , where 0 :::; k < 2N - m , 0 :::; m :::; N. 
Thus, U:n k is the sum over a block containing 2m summands. Put , 

fJ~,k = U~-1,2k - U~-1,2k+1' 0:::; k < 2N - n , 1:::; n ::; N. (8.24) 

Note that 

U~-12k + U~-12k+1 = U~ k> , , , (8.25) 

Introduce the vectors 

o ::; k < 2N -n, 1::; n ::; N, (8.26) 

with the first d coordinates coinciding with those of the vectors U~_1 2k and 
with the last d coordinates coinciding with those of the vectors U~~1,2k+l. 
Similarly, denote 

0::; k < 2N - n , 1::; n ::; N. (8.27) 
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Introd uce now the projectors Pi : R S ---t R I and P j : R S ---t Rj, for i, j = 

1, ... ,s, by the relations PiX=Xi, PjX=(XI, ... ,Xj), where X = (XI, ... ,Xs ) 

E R S (we shall use this notation for s = d or s = 2d). 
It is easy to see that, according to (8.24)-(8.27), 

U * AU-* R2d nk= nkE , , , (8.28) 

where A: R2d ---t R2d is a linear operator defined, for x = (Xl"", X2d) E R 2d , 

as follows: 

Denote 

PjAx = Xj +Xd+j, 

Pj Ax = Xj - Xd+j, 

j = 1, .. . ,d, 
j=d+1, ... ,2d. 

U *(j) - P U* n k - j n k, 

U;j - (U*(l)' U*(j)) - p. U* Rj 
nk- nk'"'' nk - J nkE , , , , , 

j = 1, ... ,2d. 

Now we can formulate the main result of the Chapter. 

(8.29) 

(8.30) 

Theorem 8.2.1 Let the conditions described in (8.22} - (8.30) be satisfied, T 2: 
o and E~k = 0, COV~k = Id, k = 1, ... , 2N. Assume that 

for 0 ~ k < 2N- n , 1 ~ n ~ N, d ~ j ~ 2d, 

(8.31) 

and 

for 1 ~ j ~ 2d. (8.32) 

Then there exist absolute positive constants cs, C6 and C7 such that, for Td3/ 2 

~ Cs, one can construct on a probability space sequences of independent random 
vectors Xl,"" X 2N and i.i.d. Gaussian random vectors YI , ... , Y2N so that 

k = 1, ... ,2N, (8.33) 

and 

( C6 ~(2N) ) * 
E exp d3/ 2 T ~ exp (C7N log d), (8.34) 

where ~(2N) = max 1 t Xk - t Yk I· 
l:Sr:S2N k=l k=l 

Theorem 8.2.1 says that the conditions (8.31) and (8.32) suffice for Asser­
tion A. However, these conditions require that the number of summands is 2N. 
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For an arbitrary number of summands, one should consider additional (for sim­
plicity, Gaussian) summands in order to apply Theorem 8.2.1. 

Below, we shall prove Theorem 8.2.1. Suppose that its conditions are satis­
fied. 

At first, we describe a procedure of constructing the random vectors {Un,k} 
with £( {Un,d) = £( {U~,k})' provided that the vectors Yl , ... , Y2N are al­

ready constructed (then we shall define Xk = UO,k-l, k = 1, ... , 2N ). This pro­
cedure is an extension of the Kom16s, Major and Tusnady (1975, 1976) dyadic 
scheme to the multivariate case due to Einmahl (1989). For this purpose, we 
shall use the so-called Rosenblatt quantile transformation [see Rosenblatt (1952) 
and Einmahl (1989)]. 

Denote by FjJ6(xd = P{PlUNo < xd, Xl E Rl, the distribution func­
tion of the first co~rdinate of the vector UN o. Introduce the conditional distri-

butions, denoting by Fj,J,6( . I Xl, ... ,Xj-d: 2 -::;. j -::;. d, the regular conditional 

distribution function (r.c.d.f.) of P j UNo, given P j - l UNo = (Xl, ... , Xj-l). 

Denote by F~jk( . IXl, ... , xj-d the r.~.d.f. of Pj U~ k' 'given Pj-l U~ k = 

(Xl, . .. , xj-d,' for 0 -::;. k < 2N - n , 1 -::;. n -::;. N, d + 1 -::;. j -::;. 2d. Put ' 

and 

k 

Tk=LY/, 1 < k < 2N . - - , 
1=1 

Vm,k = (V~~t···, V~~k) = T(k+l).2 m - n·2m , 

o -::;. k < 2N -m, 0 -::;. m -::;. N; 

- _ _ -(1) -(2d) 2d 
V n,k - (Vn-l,2k, Vn- l ,2k+1) - (V n,k'"'' V n,k ) E R , 

o < k < 2N -n 1 < n < N' - ,- - , 

(8.35) 

(8.36) 

(8.37) 

_ ((1) (2d)) _ - 2d 
Vn,k - Vn,k"'" Vn,k - AVn,k E R , 0-::;' k < 2N - n , 1 -::;. n -::;. N. 

(8.38) 

Note that, according to the definition of the operator A, we have [see (8.24)­
(8.29) and (8.35)-(8.38)] 

(8.39) 

where 

Vn k = Vn- l 2k + Vn- 12k+l, 
........... ' , , 
Vn,k = Vn- l ,2k - Vn-l,2k+l, 

(8.40) 
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and 

(8.41 ) 

Thus, the vectors V m,k, V n,k and V n,k can be constructed from the vectors Y1, 
... , Y2N by the same linear procedure which was used for constructing the 
vectors U:n k, U~ k and U~ k from the vectors 6,···, ~2N . , , . , 

It is obvious that, for fixed nand k, 

cov U~,k = cov V n,k = 2n I2d (8.42) 

and, hence, the coordinates of the Gaussian vector V n,k are independent with 
the same distribution function <P2n/2 ( • ); here and below, 

is the distribution function of the normal law with mean zero and variance 0"2. 

Denote now the new collection of random vectors Xk as follows. At first, 
we define 

U(l) - (F(l) )-1(<p (V(1»)) 
N,O - N,O 2N / 2 N,O and, for 2 :S j :S d, 

(8.43) 
(j) ((j) )-1 (;J;. (V(j») I U(l) U(j-1») U N,O = F N,O '¥2N / 2 N,O N,O' •.. , N,O 

(here (FJ.i6f1(t) = sup {x: FJ.i6(x) :S t}, 0 < t < 1, and so on). Taking into 
account that the distributions or'the random vectors 6, ... , ~2N are absolutely 
continuous, we see that this formula can be rewritten in a more natural form 
[see Sakhanenko (1984, p. 30-31)] as 

FJ.i6(UJ.ib) = <P2N/2(V~16), 
" , 

(8.44) 

P (j) (U(j) I U(l) U(j-1») - ;J;. (V(j») 
N,O N,O N,O'···' N,O - '¥2 N / 2 N,O' for 2:S j :S d. 

Suppose that the random vectors 

_ ( (1) (d) ) 
Un,k - Un,k'···' Un,k , 0< k < 2N - n - , (8.45) 

corresponding to blocks containing each 2n summands with fixed n, 1 :S n :S N, 
are already constructed. Now our aim is to construct the blocks containing each 
2n - 1 summands. To this end, we define 

U(j) - p. U - U(j) n,k - J n,k - n,k' 1 :S j :S d, (8.46) 
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and, for d + 1 :S j :S 2 d, 

Uei) - (p(j))-l(1l> (V(j))IU(l) U(j-l)) n,k - n,k 2n/2 n,k n,k' ... , n,k . (8.47) 

It is clear that (8.47) can be rewritten in a form similar to (8.44). Then, we 
put 

and 

_ ( (1) (2d) ) 2d 
Un,k - Un,k"'" Un,k E R , 

U j - (U(l) U(j) ) - p. U Rj n,k - n,k"'" n,k - J n,k E , 

U~(j) - U(j+d) . 1 d 
n,k - n,k' J = , ... , , 

~ _ ~(l) ~(d) d 
Un,k - (Un,k"'" Un,k) E R 

Un-l,2k = (Un,k + Un,k)/2, 

Un-l,2k+l = (Un,k - Un,k )/2. 

j=1, ... ,2d, 

(8.48) 

(8.49) 

Thus, we have constructed the random vectors Un-l,k, O:S k < 2N- n+l. After 
N steps, we obtain the random vectors UO,k, O:S k < 2N. Now we set 

k 

So = 0, Sk = LXI, (8.50) 
1=1 

Lemma 8.2.1 [Einmahl (1989)] The joint distribution of the constructed vec­
tors Un,k and Un,k coincides with that of the vectors U~,k and U~,k' In 

particular, Xk, k = 1, ... ,2N, are independent and £(Xk) = £(~k). 

Moreover, according to (8.24) and (8.25), we have 

Un k = Un-12k - Un-l 2k+l, , , , 

Un,k = Un- l ,2k + Un- l ,2k+l = S(k+lpn - Sk.2n, (8.51) 

for 0 :S k < 2N - n , 1 :S n :S N [it is clear that (8.51) follows from (8.49)]. 
Furthermore, putting 

~ 2d 
Un,k = (Un- l ,2k, Un- l ,2k+l) E R , 0:Sk<2N - n , l:Sn:SN, (8.52) 

we have [see (8.26) and (8.28)] 

~ 2d 
U n,k = A Un,k E R , o :S k < 2N -n, 1:S n :S N. (8.53) 

Note that it is not difficult to verify that, according to (8.29), 

(8.54) 

where the asterisk is used to denote the adjoint operator A * for the operator A. 
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Remark 8.2.1 The conditions of Theorem 8.2.1 imply the coincidence of the 
corresponding first and second moments of the vectors U = {U n,k, iT n,k, U n,k } 
and V = {Vn,k, V n,k, V n,k} since the vectors U can be restored from vectors 
Xl, ... , X 2N by the same linear procedure which is used for reconstruction of 
the vectors V from YI , ... , Y2N. In particular, E U = E V = O. 

Lemma 8.2.2 [Einmahl (1989) Lemma 5, p. 55] Let 1 :S m = (2s+1)·2 r :S 2N, 
where s, r are non-negative integers. Then, 

N 
m "'-8m = 2N 82N + ~ In Un,ln,m' 

n=r+l 

where In = In(m) E [0, lh] and the integers In,m are defined by 

In,m ·2n < m :S (In,m + 1) ·2n. 

(8.55) 

(8.56) 

The shortest proof of Lemma 8.2.2 can be obtained with the help of a 
geometrical approach due to Massart (1989, p. 275). 

Remark 8.2.2 The inequalities (8.56) give a formal definition of In,m. To 
understand better the mechanism of the dyadic scheme, one should remember 
another characterization of these numbers: Un,ln ,m is the sum over the block of 
2n summands which contains X m , the last summand in the sum 8m . 

Corollary 8.2.1 Under the conditions of Lemma 8.2.2, 

1 N _ _ 

18m - Tml :s IUN,o - VN,ol +"2 L IUn,ln,m - Vn,ln,m I, m = 1, ... ,2N. 
n=r+l 

This statement evidently follows from Lemmas 8.2.1 and 8.2.2 and from the 
relations (8.22)-(8.25), (8.35) and (8.36). 

8.3 Proof of Theorem 8.2.1 

In the proof of Theorem 8.2.1, we shall use the following auxiliary Lemmas 
8.3.1-8.3.4 [Zaitsev (1995, 1996, 1998a)]. 

Lemma 8.3.1 Suppose that £(~) E Ad(T), y E R m , 0: E RI. Let M: Rd---+ 
R m be a linear operator and f E Rk be the vector consisting of a subset of 
coordinates of the vector (. Then, 

£(M~ + y) E Am( IIMII T), where IIMII = sup IIMxll, 
II x l19 
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Lemma 8.3.2 Suppose that independent random vectors f,(k) , k = 1,2, satisfy 
the condition £(f,(k») E Adk (T). Let f, = (f,(l), f,(2») E R dl +d2 be the vector 

with the first dl coordinates coinciding with those of f,(l) and with the last 
d2 coordinates coinciding with those of f,(2). Then, £(f,) E Adl+d2(T). 

Lemma 8.3.3 (Bernstein-type inequality) Suppose that £(f,) E A1(T), Ef, = 0 
and E e = (72. Then, 

Lemma 8.3.4 Let the distribution of a random vector f, E R d with E f, = 

o satisfy the condition £(f,) E Ad( T, 4), T 2:: O. Assume that the variance 
(72 = E f,J > 0 of the last coordinate f,d of the vector f, is the minimal eigenvalue 
of cov f,. Then, there exist absolute positive constants C8, ... , C12 such that the 
following assertions hold: 
a) Let d 2:: 2. Assume that f,d is not correlated with previous coordinates 
6, ... , f,d-l of the vector f,. Define B = cov P d-l f, and denote by F(z I x), 
z E Rl, the r.c.d.f. of f,d for a given value of Pd-lf, = x E Rd-l. Let 

£(Pd-lf,) E Ad-l(T,4). Then there exists y E Rl such that 

Iyl :::; C8 Til B-1/ 2x 112 :::; C8 T Ilx~2 (8.57) 
(7 

and 

Td3/ 2 < for --u- _ Cg, I B-l/2x I < ~ Izl < ~ where 
- d 3/ 2T' - dT ' 

(8.58) 

(8.59) 

b) The assertion a) remains valid for d = 1 with F(z I x) = P {6 < z} and 
y = 8 = 0 without any restrictions on B, P d-l f, and x. 

Remark 8.3.1 In Zaitsev (1995, 1996), the formulation of Lemma 8.3.4 is in 
some sense weaker; see Zaitsev (1995, 1996, Lemmas 6.1 and 8.1). In particular, 
instead of the conditions 

and (8.60) 

the stronger conditions 

£(f,) E A;'l(T,4,4) and (8.61) 

are used. However, in the proof of (8.57) and (8.58) only the conditions (8.60) 
are applied. The conditions (8.61) are necessary for the investigation of quan­
tiles of conditional distributions corresponding to random vectors having coin­
ciding moments up to third order which has been done in Zaitsev (1995, 1996) 
simultaneously with the proof of (8.57) and (8.58). 



114 F. Gotze and A. Yu. Zaitsev 

Lemma 8.3.5 Let Sk = Xl + ... + Xk, k = 1, ... , n, be sums of independent 
random vectors Xj E Rd and let q(.) be a semi-norm in Rd. Then, 

t 2: o. (8.62) 

Lemma 8.3.5 is a version of the Ottaviani inequality; see Dudley (1989, 
p. 251) or Hoffmann-Jorgensen (1994, p. 472). In the form (8.62), this inequality 
can be found in Etemadi (1985) with 4 instead of 3 (twice). The proof of 
Lemma 8.3.5 repeats those from the references above and is therefore omitted. 

Lemma 8.3.6 Let the conditions of Theorem 8.2.1 be satisfied and assume 
that the vectors Xk, k = 1, ... , 2N , are constructed by the dyadic procedure de­
scribed in (8.35)-(8.50). Then there exist absolute positive constants C13, ... ,C17 

such that: 

a) If Td3/ 2/2 N / 2 ~ Cg, then 

(8.63) 

provided that I U N,O I ~ db;: ; 
b) If 1 ~ n ~ N, 0 ~ k < 2N - n , Td3/ 2/2n / 2 ~ C15, then 

(8.64) 

provided that I U n,k I ~ ~~7'i; . 

In the proof of Lemma 8.3.6, we need the following auxiliary Lemma 8.3.7 
which is useful for the application of Lemma 8.3.4 to the conditional distribu­
tions involved in the dyadic scheme. 

Lemma 8.3.7 Let F(·) denote a continuous distribution function and G(·) 
an arbitrary distribution function satisfying for z E B E Bl the inequality 

G(z - f(z)) < F(z + w) < G(z + f(z)) 

with some f : B -+ R 1 and w E R 1 . Let rJ E R 1, 0 < G (rJ) < 1 and 
~ = F- 1(G(rJ)), where F-1(x) = sup {u: F(u) ~ x}, 0 < x < 1. Then, 

1~-rJl<f(~-w)+lwl if ~ - wEB. 

PROOF. Put (= ~ - w. The continuity of F implies that F(F- 1 (x)) == x for 
o < x < 1. Therefore, 

( E B =* G( (- f()) < F(~) = G(rJ) =* (- f() < rJ =* ~ - rJ < f() + w 
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and 

( E B =* G(7]) = F(~) < G( (+ f(()) =* 7] < (+ f(() =* 7] - ~ < f(() - w. 

This completes the proof of the lemma. • 
PROOF OF LEMMA 8.3.6. At first, we note that the conditions of Theorem 8.2.1 
imply that 

for 1::; n ::; N, 0< k < 2N - n - , 

and, hence [see (8.42)], 

for 1::; j ::; 2d. (8.65) 

Let us prove the assertion a). Introduce the vectors 

(8.66) 

consisting of the first j coordinates of the vectors UN,O, VN,O, respectively. By 
(8.65), (8.46) and (8.48), 

(8.67) 

and 

Uj -uj 
NO - NO' , , for 1::; j ::; d. (8.68) 

Moreover, according to Lemma 8.2.1, Remark 8.2.1, (8.68) and (8.32), the distri­
butions £(Ui 0)' j = 1, ... ,d, satisfy in the j-dimensional case the conditions 

of Lemma 8.3:4 with (J2 = 2N and B = cov ui-ol = 2 N I j _ l (the last equality 
for j ~ 2). ' 

Taking into account (8.43) and applying Lemmas 8.3.4 and 8.3.7, we obtain 
that 

1 U(l) 12 
1 U (l) - Vel) 1 < (1 + N,O ) 

N,O N,O - C!2 T 2N (8.69) 

if 2;;/2 ::; Cg, 1 u,0,~ I::; Cll~2N . Furthermore, 

1 u(j) - v(j) ! 
N,O N,O 

( !uj-l! !u(j) 1 

< ·3/2 + ·3/2 N,O (1 + N,O - Yj ) 
C12 T J J 2N/2 2N/2 

(j) 2 . 

+ 1 u N,O - Yj 1 ) + 1 .1 
2N YJ (8.70) 
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if 

I U(j) _ y.1 < cn' 2N 
N,O J - jT 

2 :s; j :s; d, (8.71) 

where 

I uj-112 
1 1 < . N ,O 
Yj - CST] 2N ' 2 :s; j :s; d. (8.72) 

Obviously, 

I u}j,b I :s; max { I uto1 I, I U}J;o I } = I U~,o I :s; I u N,O I, 2 :s; j :s; d (8.73) 

see (8.45) and (8.66). Using (8.69), (8.70), (8.72) and (8.73), we see that one 
can choose C13 to be so large and C14 to be so small that 

(8.74) 

if ~1::: :s; Cg, I u N,O I:s; cJ§i;~ , 1 :s; j :s; d. The inequality (8.63) immediately 
follows from (8.74), (8.36) and (8.45). 

Now we shall prove item b). According to Lemma 8.2.1, Remark 8.2.1, 
(8.31), (8.45) and (8.65), the distributions £(U~ k)' j = d+ 1, ... , 2d, satisfy in 
the j-dimensional case the conditions of L~mma 8.3.4 with (]"2 = 2n , 

B Uj-l 2nI = cov n k = j-l· 

if 

Using (8.47) and applying Lemmas 8.3.4 and 8.3.7, we obtain that 

lu(j) - V(j) I < 
n ,k n,k-

Tj3/2 
--<cg 

2n/ 2 - , 

l u j - 1 1 lu(j) I 
C T ( ·3/2 + ·3/2 n,k (1 + n,k - Yj ) 
12] ] 2n/2 2n/2 

I U(j) Y·12 
+ n ,k - J ) + 1 .1 

2n YJ 

I U(j) _ y.1 < cn' 2n 

n,k J - jT 

where 

l uj-1 12 

1 1 < . n,k 
Yj - CST] 2 n ' d + 1 :s; j :s; 2 d. 

Obviously, 

max { I U~J} I, I U~~ I } = I U~,k I :s; I u n,k I 

(8.75) 

(8.76) 

(8.77) 

(8.78) 
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see (8.48). Using (8.75), (8.77) and (8.78), we see that one can choose CI5 and 
CI 7 to be so small and C16 to be so large that 

1 U(j) - V(j) 1 < C d3/ 2 T (1 + 2-n 1 U 12) n,k n,k - 16 n ,k (8.79) 

if ~~%2 ::; CI5, IUn,k I ::; dl;'i;, d + 1 ::; j ::; 2d. The inequality (8.64) 
immediately follows from (8.79) , (8.38) , (8.39) and (8.48). • 

PROOF OF THEOREM 8.2.1. Let Xk, k = 1, ... , 2N , denote the vectors 
constructed by the dyadic procedure described in (8.35)-(8.50). Denote 

(8.80) 

C5 = min {cg, CI5}, CI8 = min {CI4' Cl7, 1}, 
CI8 1 

y:= d3/ 2 T ::; -:;' (8.81) 

fix some x > 0 and choose the integer M such that 

x < 4y . 2M ::; 2x. (8.82) 

We shall estimate P {~ ~ x}. Consider separately two possible cases: 
M ~ Nand M < N. Let , at first, M ~ N . Denote 

(8.83) 

It is easy to see that ~::; ~I + ~2 and, hence, 

(8.84) 

Taking into account the completeness of classes Ad( T) with respect to convo­
lution, applying Lemmas 8.3.5,8.3.1 and 8.3.3 and using (8.81) and (8.82), we 
obtain that 2N ::; 2M ::; x/2y and 

x 2 X 

::; 6d exp ( - min { 144. 2N ' 24T }) 

( CI9 X ) 
::; 6d exp - d3/ 2 T . (8.85) 

Since all d-dimensional Gaussian distributions belong to all classes Ad( T), 
T ~ 0, we automatically obtain that 

(8.86) 
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From (8.84)-(8.86), it follows in the case M 2 N that 

( CI9 x ) p {~ 2 x} :S 12 d exp - d3/2 T . 

Let now M < N. Denote 

and 

L = max{O, M} 

~3 = max max IS k '2L+l - Sk.2L I, 
05,k<2 N - L 15,l9L 

~4 = max max 1 Tk .2L+l - Tk .2L I, 
05,k<2 N -L 15,15,2L 

~5 = max 1 Sk.2 L - Tk ·2L I· 
15,k9N - L 

Introduce the event 

A = { w: 1 U L,k 1 < y . 2L, O:S k < 2N - L } 

(8.87) 

(8.88) 

(8.89) 

(8.90) 

(8.91) 

(8.92) 

(we assume that all considered random vectors are measurable mappings of w E 

D). For the complementary event we use the notation .if = D \ A. 
We consider separately two possible cases: L = M and L = O. Let L = M. 

It is evident that in this case 

(8.93) 

Moreover, by virtue of (8.93), (8.82), (8.89) and (8.92), we have 

.if c {w : ~3 2 x /4 }. (8.94) 

From (8.93) and (8.94), it follows that 

Using Lemmas 8.3.5, 8.3.1 and 8.3.3, the completeness of classes Ad(T) with 
respect to convolution and the relations (8.81) and (8.82), we obtain, for 0 :S 
k < 2N- L, that 2L = 2M :S x/2y and 

(8.96) 
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Since all d-dimensional Gaussian distributions belong to classes Ad( T) for all 
T ~ 0, we immediately obtain that 

From (8.89), (8.90), (8.96) and (8.97), it follows that 

P {~3 ~ x/4} + P {~4 ~ x/4} ::; 2N . 12d exp ( - ;:J2X
T ). (8.98) 

Assume that L = O. Then, according to (8.80) and (8.91), ~ = ~5 and, 
hence, we have the rough bound 

P{~ ~ x}::; P{X} + P{~5 ~ x/2, A}. (8.99) 

In this case, UL,k = Xk+l, 2L = 1 ~ 2M, Y > x/4 [see (8.81), (8.82) and (8.88)]. 
Therefore, by (8.92) and by Lemmas 8.3.1 and 8.3.3, . 

2N -1 2N 

P{X} < l: P{IUL,kl ~ y.2L } = l: P{IXkl ~ y} 
k=D k=1 

< 2N +1 d exp ( - min { ~2 , 4YT }) 

< 2N+1d exp ( - min { ~~ , l:T }) 
< 2N+1d (_ C21 X ) exp d3/ 2T' (8.100) 

It remains to estimate P {~5 ~ x /2, A} in both cases: L = M and L = 0 
[see (8.95) and (8.98)-(8.100)]. Let L defined by (8.88) be arbitrary. Fix an 
integer k satisfying 1 ::; k ::; 2N - L and denote for simplicity 

j = j(k) := k ·2L. (8.101) 

By Corollary 8.2.1, we have 

1 N _ _ 

I Sk.2L - Tk.2L I = I Sj - Tj I ::; I U N,D - VN,D I +"2 l: I Un,ln ,j - Vn,ln,j I, 
n=L+l 

(8.102) 

where In,j are integers, defined by In,j . 2n < j ::; (In,j + 1) ·2n [see (8.56)]. 
By virtue of (8.81) and (8.92) , for wE A we have 

I I L C18 ·2L min{ C14, C17} ·2L 
UL ,l < y. 2 = d3/ 2 T < d3/ 2 T 

(8.103) 



120 F. Gotze and A. Yu. Zaitsev 

and, by (8.49)-(8.93), UL,1 are sums over blocks consisting of 2L summands. 

Moreover, Un,l (resp. Un,l), L + 1 ~ n ~ N, 0 ~ I < 2N - n , are sums 
(resp. differences) of two sums over blocks containing each 2n - 1 summands. 
These sums and differences can be represented as linear combinations (with 
coefficients ±1) of 2n- L sums over blocks containing each 2L summands and 
satisfying (8.103). Therefore, for W E A, L + 1 ~ n ~ N, 0 ~ I < 2N - n , we 
have [see (8.46) and (8.48)] 

(8.104) 

Using (8.104), we see that if W E A, the conditions of Lemma 8.3.6 are satisfied 
for T, UN,O and Un,l, if L + 1 ~ n ~ N, 0 ~ I < 2N - n . By (8.102), (8.104) 
and by Lemma 8.3.6, for W E A we have 

ISj-Tjl ~ C13d3/2T(1+2-NIUN,012) 

N 

+ L C16 d3/ 2 T ( 1 + 2-n max {I Un,ln,j 12, 1 Un,ln,j 12}) 
n=L+l 

N-l 

< cd3/ 2T ( N + 1 + 2-N 1 UN,O 12 + L 2-n (I U(n) 12 + 1 U(n) 12 )), 

n=L 

(8.105) 

where 

U (n) - U 
- n,ln,j' U(n) = U ~l .' n, n,J 

(8.106) 

and 

~ {2In,j, if In-l,j = 21n ,j + 1, 
In-l,j = 21 1 }·f I 21 n,j +, n-l,j = n,j, 

L<n~N (8.107) 

(it is easy to see that In-l,j can be equal either to 2ln ,j or to 2ln ,j + 1, for 
given In,j). In other words, U( n), L ~ n ~ N, is the sum over the block 
of 2n summands which contains Xj. The sum U(n) does not contain Xj and 

U(nH) = U(n) + U(n) , 

[see (8.93)]. The equality (8.108) implies 

n-L-l 
u(n) = U(L) + L U(L+s) , 

s=O 

L~n<N (8.108) 

L ~ n ~ N. (8.109) 

It is important that all summands in the right-hand side of (8.109) are the sums 
of disjoint blocks of independent summands. Therefore, they are independent. 
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Put j3 = 1/J2. Then, using (8.109) and the Holder inequality, one can 
easily derive that, for L :s; n :s; N, 

n-L-1 
1 U(n) 12 :s; C22 (j3-(n-L) 1 U(L) 12 + ~ j3-(n-L-1)+s 1 U(L+s) 12 ) (8.110) 

with C22 = f j3j = ¥-1' It is easy to see that 
J=O V-" 

Moreover, 

N l: 2-n j3-(n-L) 1 U(L) 12 :s; C22 . 2-L 1 U(L) 12. 

n=L 

N n-L-1 
l: l: 2-n j3-(n-L-1)+s 1 U(L+s) 12 

n=L+1 s=O 
N-L-1 N 

= l: l: 2-n j3-(n-L-1)+s 1 U(L+s) 12 
s=O n=L+1+s 

N-L-1 

:S;C22 l: 2-(L+1+s) IU(L+s) 12. 
s=O 

It is clear that the inequalities (8.110)-(8.112) imply 

N-1 

2-N 1 UN,O 12 + l: 2-n (I u(n) 12 + 1 U(n) 12) 
n=L 

From (8.105) and (8.113), it follows that for wE A we have 

( 1 U(L) 12 N-1 1 U 12) 
I S· - r·1 < C d3/ 2 T N + 1 + + " (n) . J J - 23 2L ~ 2n 

n=L 

Denote (for 0 :s; n :s; N, O:s; I < 2N - n ) 

W -{ 2-n Iun,l 1
2, if IUn ,ll:S;y·2n , 

n,l - 0 otherwise. , 

Let us show that 

E exp (tWn,l) :s; 2d + 1 for 0 < t < ~. - - 8 

(8.111) 

(8.112) 

(8.113) 

(8.114) 

(8.115) 

(8.116) 
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Indeed, integrating by parts, we obtain 

y2·2n 

Eexp(tWn,l) = 1+ J texp(tu)P{Wn,z~u}du 
o 

< 1 + ~ 7" exp (u/8) P {I Un,1i ?: 2n/2 v'u} duo 
o 

(8.117) 

Taking into account (8.93), (8.81) and using Lemmas 8.3.1 and 8.3.3, we obtain 
that 

( { 2n u 2n/
4
2
T
fo}) 

P {I Un,zl > 2n/2 fo} :s 2d exp - min 4. 2n ' ---'--

< 2 d exp ( - min { ~ , 4 ~ T }) 

2d exp ( - ~) (8.118) 

if 0 :s u :s y2 ·2n . The relation (8.116) immediately follows from (8.117) 
and (8.118). 

The relations (8.103), (8.104) and (8.115) imply that, for L < n :S N, 
o :S l < 2N -n, W E A, 

(8.119) 

Thus, according to (8.106), we can rewrite (8.114) in the form 

w E A, (8.120) 

where 

WCL) = WLZ . , L,J , WCn) = W -z .' n, n,J 
(8.121) 

Putting now t* = (8C23d3/2T)-1 and t = t* . C23d3/2T = 1/8, taking into 
account that the random variables WCL), WCL) , ... , WCN -1) are independent 
and applying (8.116), (8.120) and (8.121), we obtain 

P {{ w : I Sj - Tj I ~ x/2} n A} 

N~l 

< P { C23d3/2T ( N + 1 + WCL) + l: WCn) ) ~ x/2 } 
n=L 

N-1 
< p{t(WCL)+ l:wCn)) ~t*x/2-t(N+1)} 

n=L 
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N-l 
< E exp (t ( W(L) + E w( n) ) ) / exp ( t* x /2 - t (N + 1) ) 

N-l 
E exp (t W(L») II E exp (t W(n») / exp (t*x/2 - t (N + 1)) 

n=L 

< N+l (N + 1 X) 
(3d) exp 8 - 16c23d3/2T . (8.122) 

From (8.91), (8.101), and (8.122) it follows that 

p {~5 2: x/2, A} ~ 2N (3d)N+l exp ( N; 1 X) (8.123) 
- 16c23d3/2T . 

Using (8.87), (8.95), (8.98)-(8.100) and (8.123), we obtain that 

x 2: 0, (8.124) 

where we can take C24 = max {16c23, CIgl , c2"d, c2"l, 2}. Let the quantities 
c, Xo > 0 be defined by the relations 

Integrating by parts and using (8.124) and (8.125), we obtain 

E ecA = fo= cecx P {~ 2: x} dx + 1, 

(8.125) 

foXO cecx P {~ 2: x} dx ~ foxO cecx dx = eCxo - 1 = (19d)N+l - 1, 

1= ceCX p {~ 2: x} dx ~ 1= ce-e:(x-xo) dx = 1, 
Xo Xo 

and, hence, 
E ee:A ~ (19d)N+l + 1 ~ (20d)N+l. 

Together with (8.80) and (8.125), this completes the proof of Theorem 8.2.1. 

• 

8.4 Proofs of Theorems 8.1.1-8.1.4 

We start the proofs of Theorems 8.1.1-8.1.3 with the following common part. 

BEGINNING OF THE PROOFS OF THEOREMS 8.1.1, 8.1.2 AND 8.1.3. At first, 
we shall verify that under the conditions of Theorems 8.1.2 or 8.1.3 we have 
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£(~k) E Ad(T). For Theorem 8.1.3, this relation is an immediate consequence of 
Lemma 8.3.1, of the completeness of classes Ad( T) with respect to convolution, 
and of the conditions (8.8) and (8.10)-(8.12). In the case of Theorem 8.1.2, we 
denote K = £(1]). One can easily verify that B = cov K = ,2 Id, where ,2 is 
defined by (8.7) and, hence, 

1 ~ ,2 ~ 3. (8.126) 

Moreover, 

cp(K, z) = log Ee(z,1)) = log (4 + T2 (d + (z, z))) exp ((z, z)/2) z E Cd. 
(4 + T 2 d) 

(8.127) 

Using (8.126) and (8.127), we obtain 

Idud;cp(K,z) I I dud; 10g(4+T2 (d+ (z,z)))1 

< cT3 11ullllvl12 ~ Ilull T(Bv,v) (8.128) 

for II z II T ~ 1, if C1 involved in Assertion A is sufficiently small. This means 
that K = £(1]) E Ad(T). The relation £(~k) = £(1]/r) E Ad(T), k = 1, ... ,n, 
follows from (8.126) and from Lemma 8.3.1. 

The text below is related to Theorems 8.1.1, 8.1.2 and 8.1.3 simultaneously. 
Without loss of generality we assume that the amount of summands is equal to 
2N with some positive integer N. It suffices to show that the dyadic scheme 
related to the vectors 6, ... , ~2N satisfies the conditions of Theorem 8.2.1 with 
T* = V2 T instead of T. According to Lemma 8.2.1, we can verify the condi­
tions (8.31) and (8.32) for the vectors U~k and U~o instead of U;!k and uito· 

" " To this end, we shall show that 

for 0 ~ k < 2N-n, 1 ~ n ~ N, 1 ~ j ~ 2d. 

(8.129) 

Recall that Un,k = A Un,k, where A is the linear operator defined by (8.29) 
and satisfying (8.54). Furthermore, Un,k = (Un - 1,2k, Un - 1,2k+d E R 2d , where 
the d-dimensional vectors Un -l,2k and Un -l,2k+1 are independent. The rela­
tion £(U n,k) E A2d ( V2 T) can be therefore easily derived from the conditions 
of Theorems 8.1.1,8.1.2 and 8.1.3 with the help of Lemmas 8.2.1,8.3.1 and 8.3.2 
[see (8.54)] if we take into account the completeness of classes Ad(T) with re­
spect to convolution and their monotonicity with respect to T. It is easy to see 
that U~,k = P j Un,k, where the projector P j : R2d -+ Rj can be considered 
as a linear operator with IIPj II = 1 [see (8.48)]. Applying Lemma 8.3.1 again, 
we obtain the relations £(U~,k) E Aj (V2 T), 1 ~ j ~ 2 d. 
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It remains to verify that, for hE Rj, IIhll v'2 T < 1, the following inequality 
holds 

(8.130) 

T = {t E Rj : 411tll V2Tj ~ I}, (8.131) 

where F = £(U~ k)' and a 2 is the minimal eigenvalue of D = cov U~ k. Note 
that, according t~ (8.65), we have ' 

det D = 2nj . (8.132) 

Introduce 2n - l random vectors 

r = 2n - l . 2k + 1, ... , 2n - l (2k + 1). 

(8.133) 

Obviously, these vectors are independent. According to (8.50), (8.162) and 
(8.133), 

2n-l(2k+1) 

Un,k = (Un- l ,2k, Un- l ,2k+r) = LXI'. (8.134) 
r=2n-1.2k+ 1 

Denote R~s) = £[XJ(h) , for s = 1, ... , 2N , hERd, and M~r) := 

£(Xr )(h), Qt) := £(AXr )(h), for r = 2n- l ·2k+ 1, ... ,2n - l (2k+ 1), h E R2d. 
As usually, we consider only such h for which these distributions exist. Us­
ing (8.21), we see that, for all t E R 2d , 

Qt)(t) = E exp ((h + it, AXr)) 
E exp ( (h, AXr ) ) 

By (8.16) and (8.134), we have (for j = 2d) 

2n - 1 (2k+ 1) 

E exp ( (A * h + i A *t, XI') ) 
E exp ( (A * h, XI') ) 

Mr.!h(A *t). (8.135) 

IFh(t)1 = IT IQt\t)l· (8.136) 
r=2n-1.2k+ 1 

Split t = (tl, ... , t2d) E R2d as t = (t(l), t(2)), where t(1) = (tl, ... ,td) and 
t(2) = (td+1, ... , t2d) E Rd. Using (8.133), (8.21) and introducing a similar 
notation for hER 2d, it is easy to check that 

(8.137) 
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Note that 

(8.138) 

END OF THE PROOF OF THEOREM 8.1.1. Let now the distributions £(~s) 

satisfy the conditions of Theorem 8.1.1. In this case, according to (8.16), we 

have R~s) = Hs(h) G(h). It is well-known that the conjugate distributions 
G(h) of the Gaussian distribution G are also Gaussian with covariance opera­
tor cov G (h) = cov G = b2 Id. Therefore, 

(8.139) 

Using (8.137)-(8.139), we get, for t, hE R 2d , Ilhll T < 1, 

2 

I M ~ s) ( t) I ~ II exp ( - b2 II t (Il) 112 /2) = exp ( - b2 II t 112/2) . (8.140) 
Il=l 

Applying (8.54), (8.135) and (8.140) with t = A*u and h = A*" we see that 

(8.141) 

for u" E R 2d , 11111 J2 T < 1. The relations (8.136) and (8.141) imply that 

t, hE Rj, Ilhll V2 T < 1. (8.142) 

It is clear that it suffices to verify (8.142) for j = 2d [for 1 ~ j < 2d, one 
should apply (8.142) for j = 2d and for t, h E R 2d , with hm = tm = 0, 
m = j + 1, ... , 2d]. 

Using (8.131), (8.132) and (8.142), we see that 

(8.143) 

if q is small enough. The relations (8.132) and (8.143) imply (8.130). It 
remains to apply Theorem 8.2.1 to complete the proof of Theorem 8.1.1. • 

END OF THE PROOF OF THEOREM 8.1.2. Let now the distributions £(~s) 

satisfy the conditions of Theorem 8.1.2. In this case, according to (8.21) 
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and (8.127), we have 

I (4+T2 (d+ll hI1 2+2i(h,t)-ll t I1 2») exp (<ll hIl2+2i(h,t)-ll t I1 2)/2) I 
( 4+T2 (d+llhI12») exp (1IhI12/2) 

< (2 + Ilt11 2 ) exp ( - IltI1 2 /2) 

< C25 exp ( -lltl1 2 /4), Ilhll T < 1. (8.144) 

The rest of the proof is omitted. It is similar to that of Theorem 8.1.1 with 
b2 = %. The presence of C25 in the right-hand side of (8.144) can be easily 
compensated by choosing CI to be sufficiently small. • 

END OF THE PROOF OF THEOREM 8.1.3. Consider the dyadic scheme with 

-1 9N S - , ••• ,"-1 . (8.145) 

Putting H := £((), 'l/Jh(x) = e(h,x) p(x), h,x E R d , and integrating by 
parts, we see that (for t E R d , t 1= 0) 

ih(t) = (Ee(h,())-l J ei(t,x)'ljJh(X)dx 

IIxll::;b1 

J ei(t,x) 
_(Ee(h,())-l 2 dt'IjJh(X)dx, 

i lit II 
(8.146) 

IIxll::;b1 

where Hh = H(h). Besides, using (8.9), we see that 

sup sup Idt'IjJh(X) I ~ b5 Iltll· (8.147) 
IIxll::;b1 IIhllb29 

As in the formulation of Theorem 8.1.3, we denote by bm different positive 
quantities depending on H. Note that the quantities depending on the dimen­
sion d can be considered as depending on H only as well. From (8.146) and 
(8.147), it follows that 

sup IHh(t) I ~ b6 Iltll-1 

II h llb2 9 

(note that, by the Jensen inequality, E e(h,() > e E (h,() 

ity (8.148) implies that 

and 

(8.148) 

1). The inequal-

(8.149) 

(8.150) 
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Since the distributions Hh are absolutely continuous, the relation I Hh(t) I = 
1 can be valid for t = 0 only. Furthermore, the function IHh(t) I considered as 
a function of two variables hand t is continuous for all h, t E Rd. Therefore, 

sup sup IHh(t) I ::; bg < 1, (8.151) 
II h II b29 b8:::;!1 til::; b7 

where 

(8.152) 

The inequalities (8.150) and (8.151) imply that 

sup sup IHh(t) I ::; bg := e-blO < 1. (8.153) 
Ilhllb291l t ll;:::b8 

Denoting L~s) = I/s)(h), hERd, s = 1, ... , 2N , and using (8.11), (8.12), 
(8.16) and (8.21), it is easy to see that 

~(s) ~ ~ m ~(s) 
Rh (t) = (Hh/...;m(t/ym)) Lh (t). (8.154) 

The relations (8.10), (8.149), (8.153) and (8.154) imply that 

(8.155) 

and 

sup sup I R~s) (t) I ::; e -mblO . (8.156) 
IIhllT9 IItll;:::b8...;m 

Using (8.137), (8.138), (8.145) and (8.155), we get, for r = 2n - 1 . 2k + 
1, ... ,2n - 1 (2k + 1), Iltll 2: b7 .j2m, t E R 2d , 

sup lM1r)(t) I::; min (1 + ~t~ )-m ::; (1 + ~ )-m. (8.157) 
IIhllT9 1l=1,2 7 m b7 2m 

Moreover, 

sup sup I M~r) (t) I ::; e-mblO . (8.158) 
IIhllT9 Iltll ;:::b8v'2ffi 

Using (8.54), (8.135), (8.157) and (8.158), we see that, for the same r and for 
t E R 2d , Iltll 2: b7 rm, 

sup IQt)(t)l::; (1 + Iltll )-m 
IIhlh!29 b7 rm (8.159) 
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and 

(8.160) 

It is easy to see that the relations (8.136), (8.159) and (8.160) imply that, 
for hE Rj, Ilhll v'2T < 1, and for t E Rj, Iltll ~ b7Vm, 

IFh(t) I :S (1 + b;ljk rm
.
2n

-
1 (8.161) 

and 

sup IFh(t) I :S e-mblO·2n-1. (8.162) 
IItll?bsVm 

It suffices to prove (8.161) and (8.162) for j = 2d [for 1 :S j < 2d, one should 
apply (8.161) and (8.162) for j = 2d and for h E R 2d , Ilhll v'2 T < 1, t E R2d 

with hm = tm = 0, m = j + 1, ... , 2d]. 
Note now that the set T defined in (8.131) satisfies the relation 

T c {t E Rj : Iltll ~ bsVm} (8.163) 

[see (8.10) and (8.152)]. Below [in the proof of (8.130)] we assume that Ilhll v'2 T 

< 1. According to (8.162) and (8.163), for t E T we have 

(8.164) 

Taking into account that IFh(t) I :S 1, and m ~ b4, choosing b4 to be suffi­
ciently large and using (8.10), (8.132), (8.161) and (8.164), we obtain 

< exp ( - mblO . 2n- 2) (J (1 + b;ljk rm.2n- 2 dt + bll md/2 ) 

R.i 

< b12 md / 2 exp ( - mblO .2n - 2 ) 

(27r)j/2v'2 b2j3/2 (27r)j/2 v'2 T j3/2 

m1/2 . 2n/2 ·2nj/2 (J' (det D)1/2 
(8.165) < 

The inequality (8.130) follows from (8.165) immediately. It remains to apply 
Theorem 8.2.1. • 

PROOF OF THEOREM 8.1.4. Define mO,ml,m2, ... and nl,n2, ... by 

28 

mo = 0, ms = 2 , s = 1,2, .... (8.166) 
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It is easy to see that 

log ns :S log ms = 2s log 2, 8 = 1,2, . ... (8.167) 

By Assertion A [see (8.5)], for any 8 = 1,2, ... one can construct on a proba-
b·l·t f· . d Xes) xes) d f .. d G . 1 1 Y space a sequence 0 1.1.. l' ... , ns an a sequence 0 1.1.. aUSSlan 

Y1(s), .. . , yJ:) so that £(Xis)) = £(~), E y~s) = 0, cov y~s) = Id, and 

x 2: 0, (8.168) 

where 
r r 

~s = max 1 ~ Xes) _ ~ yes) I. 
l<r<n ~ k ~ k 
- - s k=l k=l 

(8.169) 

It is clear that we can define all the vectors mentioned above on the same 
b b ·l· h h 11· ';::;' - {XCs) xes). v(s) vCs)} pro a 1 Ity space so t at t e co ectlOns ~s - l' ... , n s , L 1 , ... , L ns , 

8 = 1,2, .. . are jointly independent. Then, we define Xl, X2,··· and Y1, Y2 , ... 

by 

X (s) 
ms-l+k = X k , 

(s) 
Yms- 1 +k = Yk , 

k=l, ... ,ns, 8=1,2, .... (8.170) 

In order to show that these sequences satisfy the assertion of Theorem 8.1.4, it 
remains to verify the equality (8.13). 

Put 

C25 = 
(C3log 2 + 1) 

and introduce the events 

where 

00 C25 v'2 
C26 = C25 L TI/2 = J2 _ 1 ' 

1=0 

l = 1,2, ... , 

According to (8.169), (8.170) and (8.173), we have 

~ (I) :S ~ 1 + ... + ~I. 

(8.171) 

(8.172) 

(8.173) 

(8.174) 

Taking into account the relations (8.167), (8.171), (8.172), (8.174) and applying 
the inequality (8.168) with x = 2(s+I)/2, we get 

1 

P {Az} :S L P { ~s 2: 2(s+I)/2 C25 Td3/ 2 log* d} 
s=l 

1 

< L exp ( - 2(s+I)/2) :S C exp ( - 21/ 2). (8.175) 
s=l 
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00 

The inequality (8.175) implies that L P {AI} < 00, Hence, by the Borel-
1=1 

Cantelli lemma, with probability one a finite number of the events Al occurs 
only. This implies the equality (8.13) with C4 = 2c26/log2 [see (8.166), (8.172) 
and (8.173)]. • 
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On the Existence of Weak Solutions for Stochastic 
Differential Equations With Driving L2_ Valued 
Measures 

v. A. Lebedev 

M. V. Lomonosov Moscow State University, Moscow, Russia 

Abstract: For Eq. (9.4) with a O"-finite L2-valued random measure f) in the 
sense of Bichteler and Jacod (1983), a theorem on the existence of its weak 
solution in terms of the decomposition of f) according to Theorem 1 of Lebedev 
(1995) is proved. 

Keywords and phrases: O"-finite LP-valued random measure, stochastic dif­
ferential equation, weak solution, extension of a stochastic basis 

9.1 Basic Properties of O"-Finite LP-Valued Random 
Measures 

Let (0, F, F, P) be a stochastic basis consisting of a probability space (0, F, P) 
and of a right-continuous filtration F = (Ft)tER+, and let 0 and P be the 
F-optional and the F-predictable O"-algebra on 0 x R+, respectively. 

Let (E,f) be a measurable space and f) be a O"-finite LP-valued random 
measure on (0 x R+ x E, P Q9 f) in the sense of Bichteler and Jacod (1983) for 
some p 2: 0, i.e., a family f) = (f)t)tER+ satisfying the following conditions: 

(a) for every t E R+ f)t is a O"-finite measure on (0 x R+ x E, P Q9 f) with 
values in LP(O, Ft , P), i.e., there is a strictly positive P Q9 f-measurable 
function V on 0 x R+ x E such that if (P Q9 f)v={ <P: P Q9 f-measurable, 
<p/V is bounded} then we have: 

[(a-I)] f)t is a linear mapping from (P Q9 f)v into LP(O, F t , P), 

[(a-2)] if (<Pn) is a sequence in (P Q9 f)v with l<Pnl ::; V converging 
pointwise to 0 then f)t(<Pn) --+ 0 in LP(D, Ft , P); 
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(b) Os(c.p) = Ot(c.pl[o,sJ) for all c.p E (P @£)v and s ~ t; 

(c) Ot('PIAxl xE) = lAOt(c.plnxl xE) for all c.p E (P@£)v and t E R+ if A E Fo 
and 1= R+ or if A E Fs and I =]s , s'] with s < s' . 

In particular when V == 1 0 is called a finite LP -valued random measure. Let 
us denote by sg (respectively by SP) the space of all (J-finite (finite) LP-valued 
random measures on (0 X R+ X E , P @ £). 

We put for 0 E sg 
00 

11'P11£1,P(B) = L (1/\ sup II ON ('/f) lip) 
N=I 1/JE(P0E)v, 11/J1::;1'P1 

and denote by LI,P(O) the set ofP @£-measurable functions 'P for each of which 
there is a sequence ('Pn) C (P @ £)v with IIc.pn - 'P11£1,P(B) ---t O. Then for each 
t E R+, Ot ( c.pn) tends to a limit in LP (0, Ft , P) which does not depend on the 
choice of (c.pn) for the given c.p and is denoted by Ot (c.p). In addition, if p ~ q 
and 0 E sg, then 0 E sg and LI ,q(O) C L I,P(O) . 

Let us introduce an example which is important for the further development 
of the theory. Let E = {I}, i.e., let it consist of one point , so that we con­
sider random measures on (0 X R+, P). Then, by the Dellacherie-Mokobodzki­
Bichteler theorem [for example Bichteler (1981, Theorem 7.6)]' there is a bijec­
tive correspondence between the sets of finite LO-valued random measures on 
(0 X R+ , P) and of defined up to indistinguishability semimartingales by the 
formula 

(9.1) 

for any bounded predictable H at every t E R+. As far as (J-finite LO-valued 
random measures are concerned, they are called usually formal semimartingales. 

Let 0 E sg and c.p E LI ,P(O). Then the equality 

(9.2) 

for HE PI defines the family c.p * 0 as a finite LP-valued measure on (0 X R+, P) 
for which by the preceding example there is a semimartingale denoted also by 
c.p * 0 and called the stochastic integral process for 'P with respect to 0, and by 
(9.1) 

'P * Ot = ('P * eM!) = Ot(c.p). 

We can define integrals with respect to 0 E sg for a wider class of P @ £­
measurable functions than LI ,p(e) . Let us introduce the set L~(e)={ c.p: P @£­
measurable, and there is a strictly positive predictable process K such that 
K'P E LI ,P(O)}. Then the equality (9.2) for predictable H with bounded H/K 
defines 'P * e as a (J-finite LP-valued random measure on (0 X R+, P), i.e. , as a 
formal semimartingale. Now we select the set LP(O) c L~(e) of such 'P for which 
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cp*O is a finite LP-valued random measure on (n x R+, P), i.e. a semimartingale. 
Obviously, LI,p(O) C LP(O) and Lq(O) c LP(O) for p :::; q. 

So let 0 E S; be given on (n x R+ x E, P Q9 £) in the case when (E, £) 
is a Lusin space with its Borel (j-algebra. Then according to Theorem 1 of 
Lebedev (1995), there exist a predictable increasing process Xl and starting 
at 0 square-integrable martingales Xi for i 2': 2 with (Xi, xj) == 0 for i i= j 
and regular (signed) transition measures pi from (n x R+, P) to (E, £) such 
that for every cp E L2(0) its sections are pi-integrable almost everywhere in the 
measures P x dX I and P x d(Xi, Xi) for i 2': 2 respectively, and 

cp * 0 = t, k cp p~ (w, du) . Xi, (9.3) 

the series converging unconditionally in S2, i.e. in 1-{2 from Emery (1979) on 
each finite interval. Besides, we choose the martingales Xi for i = 3k - 1 to 
be continuous, for i = 3k to be purely discontinuous and quasi-left-continuous, 
and for i = 3k + 1 to be purely discontinuous and accessible. Let B be some 
predictable increasing process with respect to which Xl and (Xi, Xi) are ab­
solutely continuous for all i 2': 2. The main result of this Chapter will be 
formulated just in these terms. 

9.2 Formulation and Proof of the Main Result 

Now let 0 be the set of all Rd-valued functions on R+, :F be its Borel (j-algebra 
for the Tikhonov topology, F be the filtration of (j-algebras :Ft for t E R+ 
each of which is the intersection for s > t of sub-(j-algebras of:F generated by 
restrictions to [0, s] of functions from O. Then, let X be the canonical process 
on 0, i.e. Xt(c:iJ) = Wt. Let also n = n x 0, F = F Q9:F, Ft = ns>t(Fs Q9 :Fs), 
and F = (Ft)tER+. 

Now, let us consider a P(F) Q9 £-measurable d-vector function h on n x E 
and the equation 

(9.4) 

for 0 E S~, where N is a given Rd-valued F-progressively measurable process 
playing the role of an initial condition. Then analogous to Lebedev (1983), 
Lebedev (1996) or Jacod and Memin (1981), we can define a weak solution of 
(9.4). Namely, a solution-measure (or a weak solution) of (9.4) is a probability 
measure P on ([2, F) such that its n-marginal Pin is equal to P, Eq. (9.4) keeps 
its sense on ([2, F, F, P), and the canonical process X, being substituted into h 
instead of wE 0, is a solution-process of (9.4). Keeping the sense by Eq. (9.4) 
means holding the following two conditions: 
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(a) fJ admits an extension to (0 x R+ x E, P(F) 0£) as a o--finite LO(O,:F, P)­
valued random measure, i.e., there exists a strictly positive P@£~measur­
able function V on n x R+ x E belonging to L1,0(fJ, F) and such that for 
all P0£-measurable cp on n x R+ x E with Icpl :S V the stochastic iritegral 
processes cp * fJ on F and F coincide; 

(b) if a P @£-measurable function cp on n x R+ x E belongs to i ° (fJ, F), then 
it belongs also to iO(fJ, F) and besides the stochastic integral processes 
cp * fJ on F and F also coincide. 

According to Theorem 3 of Lebedev (1995), Condition (b) holds in particular 
when (O,:F, F, P) is a very good extension of the stochastic basis (n, F, F, P), 
i.e., when any F-martingale is a F-martingale. In this case the solution-measure 
itself is also said to be very good. 

Let us formulate the main result of this Chapter. 

Theorem 9.2.1 Let for fJ E S; and for Eq. (9.4) the following assumptions 
hold: 

(1) 

P x dB-a.e. on n x R+ at all wE 0 for a P-measurable process c with a 
P-a.s. finite for any t E R+ integral c· B t ; 

(2) the functions IE h pi (du) are continuous in wEn for the U -topology al­
most everywhere in the measures P x dX1 and P x d(Xi, Xi) for i 2:: 2 on 
n x R+ respectively, and P x dB -a. e. on n x R+ the series 

00 11 12 d(X3k-1 X3k-1) L h p3k-1(du) , 
k=1 E dB 

and 

fir h P3k (dU)1 2 d(X3k,X3k) 
k=1 JE dB 

converge uniformly in w on each subset of 0 of the form N(w) + K, where 
K is compact respectively fo'!" the U - and J1 -topology respectively. 

Then for Eq. (9.4), there exists a very good solution-measure. 

Let us note that for this solution-measure P the extension of the measure fJ 
to (0 x R+ x E, P(F)@£) by Theorem 3 of Lebedev (1995) is also an L2-valued 
random measure. 
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The proof of the theorem is carried out quite analogously to Theorem 9.20 
of Lebedev (1996) or Theorem 1 of Lebedev (1983). First of all, analogous to 
Lemma 9.22 of Lebedev (1996) or Lemma 1 of Lebedev (1983) the process N 
can be eliminated from Eq. (9.4). The following generalization of Lemma 9.24 
of Lebedev (1996) or Lemma 3 of Lebedev (1983) is less trivial. 

Lemma 9.2.1 Let there exist a very good solution-measure of Eq. (9.4) with 
N == 0 and e E S; under the additional assumption that the O"-algebra F is 
separable. Then, it exists without this assumption. 

The proof of Lemma 9.2.1 uses the following strengthening of Theorem 2.55 
of Lebedev (1996) or Lemma 2 of Lebedev (1983). 

Lemma 9.2.2 Let (E, £) be a measurable space and f be a P(F)®£- or O(F)® 
£ -measurable function on n x R+ x E taking values in a separable metric space 
S. Then, there exists a separable O"-algebra Q c F such that 

(a) f is P( G) ® £ - or O( G) ® £ -measurable respectively, where G = (Q n 
Ft)tER+; 

(b) any G-martingale is an F -martingale [that is, the stochastic basis 
(n,F,F,p) is a very good extension of(n,F,G,p)). 

PROOF. (a) is proved quite similarly to Theorem 2.55 of Lebedev (1996) or 
Lemma 2 of Lebedev (1983). Now, let Q(O) be a separable O"-algebra with which 
instead of Q (a) is satisfied, A = (An)nEN be a countable algebra generating the 
O"-algebra Q(O), and Q(l) be the O"-algebra generated by Q(O) and right-continuous 
martingales (P(AnIFt))tER+ for An E A. Since the O"-algebra Q(O) is separable 
and the martingales (P(AnIFt)) are determined completely by their values at 
rational t, the O"-algebra Q(l) is also separable. Now, let Q(2) be the O"-algebra 
obtained from Q(l) similar to Q(l) from Q(O)' and so on, and Q = V':=o Q(n)' 

Property (a) is obviously preserved under extension of the O"-algebra Q, and 
since Q(O) c Q it holds for the given Q. Now it is sufficient to prove that 
any bounded G-martingale is an F-martingale. Let M be an arbitrary right­
continuous bounded G-martingale. Then there exists P-a.s. Moo = limt--;oo M t 

and the random variable Moo can be chosen bounded and Q-measurable. To 
show that M is an F-martingale, it suffices to verify that for every t E R+ 
the random variable E(MooIFt ) is Q-measurable upto P-null sets. Let 'H be 
the set of bounded Q-measurable random variables X for which E(XIFt ) are 
Q-measurable upto P-null sets for all t E R+. Then'H is obviously linear, closed 
under the uniform and the bounded monotone convergences and contains all 
random variables of the form 1A for A E Q(n), n = 0,1,2, .... Let M consist of 
such random variables. Since Q(m) C Q(n) for m :S n, the set M is closed under 
multiplication, generating also the O"-algebra Q. Hence, by the monotone class 
theorem'H contains all Q-measurable variables which gives the required result . 

• 
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PROOF OF LEMMA 9.2.1. First of all, we apply Lemma 9.2.2 to a strictly 
positive P(F) ® £-measurable function V, belonging to Ll ,2((}), to the P(F)­
measurable processes c, B, Xl, (Xi, Xi) for i ~ 2, 

and 

for i ~ 2, j, kEN, where Cl = {V > I} and for j ~ 2 Cj = {2-j+l < 
V ::; 2-j+2}, and rk E £ constitute an algebra generating the o--algebra £, to 
the O(F)-measurable processes Xi for i ~ 2, and also to the P(F) ®:F ® £­
measurable function h. Let y C F be a separable o--algebra such that all 
enumerated functions are adapted properly to the filtration G = (Yt)tER+ with 
Yt = Y n Ft and (0, F, F, P) is a very good extension of (0, F, G, P). Then 
the function V is P(G) ®£)-measurable so that Eq. (9.4) keeps its sense under 
passage from F to G, and the decomposition (9.3) for 'P E i}((}, G) remains 
such also with respect to G so that the conditions of the theorem also keep 
their sense with respect to G. 

By hypothesis, there exists a probability measure P on (D, g) with 9 = y®:F 
which is a very good weak solution of Eq. (9.4) with N == 0 with respect to G, 
and () admits an extension to (D x R+ x E, P(G) ®£) as a o--finite L2(D, g, P)­
valued random measure. This means that the equality 

X = h(X) * (), (9.5) 

where the stochastic integral process is taken on the filtration G constructed 
from G similarly to F from F, is valid up to P-indistinguishability and the 
measure P admits the factorization 

P(dw x dw) = P(dw) Q(w, dw) (9.6) 

with a regular transition measure Q from (0, y) to (0, :F), for every t E R+ and 
FE :Ft the function Q(., F) being Yt-measurable up to P-null sets from y. 

Now we construct the measure P on (D, F) with the factorization (9.6) 
and with the measure P on F instead of y. It remains be to proved that the 
measure () admits an extension to (D x R+ x E, P(F) ®£) and that the stochastic 
integral process on G in the right-hand member of (9.5) remains such on F. 
First of all, for 'P E i}((}, F) by Theorem 1 of Lebedev (1995), we have the 
decomposition (9.3), where the series converges unconditionally in S2(F) and, 
in particular, for 'P E i}((}, G) in S2(G). For a P(F)®£-measurable function 'P 
on D x R+ x E with I'PI ::; V we define 'P * () by formula (9.3) and prove that the 
series in (9.3) converges unconditionally in S2(F). At first, we can show that 
by regularity (the very good property) of the passage from F to F the measure 



Existence of Weak Solutions 139 

() admits an extension to F and, in particular, to G as a o--finite L2(n, F, P)­
valued random measure, as such it is extended uniquely, and V E L 1,2(F). By 
applying Theorem 1 of Lebedev (1995) on F for 'P with I'PI :S V, we obtain the 
decomposition 

'P * () = f 1 'P p~(w, du) . Xi + f 1 'P p{(w, du) . Xj , (9.7) 
i=1 E j=1 E 

where Xj are martingales on (0" F, F, P) orthogonal one to another and to Xi 
for i 2: 2, and pi are the corresponding transition measures, both series con­
verging unconditionally in S2(F). But the first series in the right-hand member 
of (9.3) gives already an extension of the measure () to F and by its uniqueness 
the second series in (9.7) is equal to 0 identically up to P-indistinguishability. 
Besides that, the integral in the right-hand member of (9.5) has the same de­
composition of the form (9.3) on G and F. The lemma has been proved. • 

So let N == 0 and the o--algebra F be separable. Let us introduce P(F) Q9 [­

measurable d-vector functions hen) on 0, x E by the formula 

where in = kin if kin < i :S (k + l)ln, and in = 0 if i = o. Then analogous 
to Lemma 9.26 of Lebedev (1996) or the corresponding fragment of the proof 
of Theorem 1 of Lebedev (1983), for each n E N the equation 

X = hen) * () 

has a unique solution-process X(n) on the original stochastic basis (0, F, F, P). 
Now let 

X(n) = 
x c _ ",00 

(n) - L..i=1 
X q - ",00 

(n) - L..i=1 
X j - ",00 

(n) - L..i=1 

Then analogous to Lemma 9.28 of Lebedev (1996) or the corresponding frag­
ment of the proof of Theorem 1 of Lebedev (1983), Condition (1) of the theorem 
ensures the tightness of the sequence of distributions on D[o,00[(R4d) with the 

Skorokhod Jl-topology of processes R(n) = (X(n) , X(n) , X(n) , xtn))' and the 
condition of uniform convergence of the corresponding series on a h -compact 
set ensures also the tight majorization of jumps for the sequence (R(n))nEN. 

Now let 'r/ be a random element of some compact metric space generating 
the o--algebra F and now we apply the generalized Skorokhod theorem for the 
weak-strong convergence of probability measures [Theorem 5.13 with account 
of Remark 5.15 of Lebedev (1996), or Lemma 4 of Lebedev (1983)] to some 
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subsequence extracted from the sequence (rJ, R(n)). Let (rJ(O) , R) be the corre­

sponding limiting random element on a probability space (n, f:, P), gt for t E R+ 
be the o--algebra generated by random variables <p(rJ(O)) for which <p(rJ) are F t -

measurable, 9t be the intersection for s > t of o--algebras generated by gs and 
Rr at O:S r:S s, G = (tJt)tER+ and a = (9t)tER+. Let R = (XV,xc,xq,xj) 
and X = Xv + Xc + xq + xj. We must prove that any G-martingale is a 
a-martingale [i.e., the stochastic basis (n, f:, a, P) is a very good extension for 
(n,f:,G,p)] and 

or, 

X = ~ Ie h(rJ(O) , X) pi (rJ(O) ,du) . Xi(rJ(O)), (9.8) 

the series converging unconditionally in S2(a) under the proper G-Iocalization. 
The G-regularity in this sense of the stochastic basis (n, f:, a, P) can be 

proved as in Theorem 9.20 of Lebedev (1996) or in Theorem 1 of Lebedev (1983) 
without any changes. We prove analogously [which is also analogous to limit 
relations for stochastic integrals in § 5 of Chapter IX of J acod and Shiryaev 
(1987)] that 

Xv = Ie h(rJ(O) , X) pI (rJ(O) , du) .X1(rJ(O)), 

that Xc, xq and xj are locally square-integrable martingales on (n, f:, a, P) 
and that for all i E Nand kEN 

(XC, X 3i- 1(rJ(O))) 

= Ie h(rJ(O) , X) p3i-l(rJ(O), du) . (X3i- 1(rJ(O)), X 3i- 1(rJ(O))), 

(xq, X 3i (rJ(O))) 

= Ie h(rJ(O) , X) p3i(rJ(O),du) . (X3i (rJ(O)),X3i (rJ(O))), 

(xj, X 3i+l (rJ(O))) 

= Ie h(rJ(O) , X) p3i+l(rJ(O), du) . (X3i+1(rJ(O)), X 3i+1(rJ(O))), 

(xc,Xk(rJ(O))) == 0, (Xq,Xk('fl(O))) == ° and (xj,Xk(rJ(O))) == 0, respectively, 
for k =1= 3i - 1, k =1= 3i and k =1= 3i + 1 with some i EN. Hence, we conclude that 

Xc Z::~l IE h(rJ(O) , X) p3i-l (rJ(O) , du) . X 3i- 1 (rJ(O)) + Xc, 

xq Z::~l IE h('fl(O) , X) p3i(rJ(O) , du) . X 3i (rJ(O)) + X q, 
xj Z::~l IE h(rJ(O) , X) p3i+1(rJ(O), du) . X3i+1(rJ(O)) + xj, 
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where Xc, Xq and X j are locally square-integrable martingales on (n, J:, G, P) 
orthogonal to every Xi(1](O)) for i 2: 2, all series converging unconditionally in 
S2(G) under the proper G-Iocalization. From the continuity of functions 

and 
00 2 i i t; lie h p3i (du)1 d(~~X) 

in wEn for the U-topology following from Condition (2) of the theorem, 
we obtain that Xc == 0 and xq == O. Moreover, increments of (xj, xj) are 
concentrated on the union of graphs of G-predictable stopping times exhausting 
jumps of (X3i+l, X 3i+l) for all n E N but X j has no jumps on this set, and 
hence Xj == o. Thus, (9.8) holds as required. So, we have constructed the 
solution-process X of Eq. (9.4) on the very good extension (n, J:, G, P) of the 
stochastic basis (n, J:, G, P) isomorphic to the original (n, F, F, P), which is 
equivalent analogously to Proposition 9.16 of Lebedev (1996) or Theorem 2.18 
of Jacod and Memin (1981) to the existence of a very good solution-measure of 
Eq. (9.4). • 
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Tightness of Stochastic Families Arising From 
Randomization Procedures 
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Abstract: We consider the laws of Gaussian random elements arising from 
randomization procedures in ergodic theory and real analysis. We find sufficient 
conditions for the tightness of the corresponding families in the spaces e[O, 1] 
and Lp[O, 1] and demonstrate some crucial situations where tightness does not 
take place. 

Keywords and phrases: Gaussian random functions, measures in functional 
spaces, randomization procedure, tightness 

10.1 Introduction 

Let (X, A, J-L) be a measure space with J-L(X) = 1, endowed with an ergodic 
measure-preserving transformation T : X -----) X. Let also {~j, j E N} be a stan­
dard Gaussian i.i.d. sequence defined on another probability space (0, B, P). 
To each element J E LP(J-L), we associate the following sequence of LP(J-L)-valued 
random elements defined on 0: 

One should regard this object as a randomized version of classical averages, 
J-1 Lj~J JoTj(x). The similar elements were introduced by Stein (1961, The­
orem 1) in the study of the continuity principle for ergodic transformations 
where they played a key role in the probabilistic proof of his main result (to be 
precise, Stein used Rademacher sequence as ~j). More recently, by combining 
this randomization technique with the theory of Gaussian processes, Bourgain 
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(1988, Propositions 1 and 2) discovered a remarkable and useful entropy crite­
rion for the study of the almost everywhere convergence in ergodic theory and 
related problems of real analysis. He considered more general randomizations 

related to different sequences of linear operators Sj. 
The tightness properties of the laws of the family {FJ,J, J E N} led to 

various refinements of Bourgain's entropy criterion in Weber (1994, 1996). We 
refer the interested reader to the recent monograph of Weber (1998) containing 
detailed exposition of applications of FJ,J. 

Although the role of Gaussian elements {FJ,J} in ergodic theory is now 
self-evident, they constitute a remarkable class of Gaussian random functions 
independently of this kind of applications. In our opinion, the study of their 
behavior may successfully contribute to the general theory of Gaussian random 
functions. In Lifshits and Weber (1998), we adopted a "J-trajectory approach" 
(with fixed x E X and integer variable J) and studied the oscillations of the 
corresponding random sequences. 

Inspired with several most interesting examples in Bourgain (1988) where 
the sequences of shift operators Sj appear in the definition of FJ,J, we consider 
in this work the families of random elements 

J 

FJ,J,>-(x) = J-1/ 2 I: 1(x + AJ,j)~j 
j=l 

in the space LP[O, 1] (or C[O, 1]) for 1 E LP[O,l] (or C[O, 1] according to the 
context), A E A, where A is the class of all triangular arrays taking values in 
[0,1]' J E N and ~j a standard Gaussian i.i.d. sequence. We investigate the 
tightness of the laws of these elements in the corresponding spaces (in what 
follows, we identify the tightness of the family of random elements of vector 
space with the tightness of the family of the corresponding laws). 

There are two types of arrays of special interest coming from Bourgain 
(1988): the sequences AJ,j = Aj and the array corresponding to randomized 
Riemann sum AJ,j = j / J. 

We consider [0, 1] as a circle equipped with the structure of additive group. 
This factorization enables to treat 1(x + AJ,j) properly for all AJ,j and x. 

Denote II· lip the LP-norm for 1 E LP and let 11·11 denote LP-norm or C[O, 1]­
norm according to the context. Define for 1 E LP the modulus of continuity 

Wf(U) = sup 111(· + h) - 1Ullp· 
O~h~u 

The modulus of continuity of the function 1 E C[O, 1] coincides with that of the 
space LOO[O, 1]. 
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10.2 Sufficient Condition of Tightness in C[O, 1] 

We prove the following result. 

Proposition 10.2.1 Let f be a continuous i-periodic function. Assume that 
its modulus of continuity wfC) satisfies 

fo wf(u)/ (u~) du < 00. 

Let ~j be a standard Gaussian i.i.d. sequence. Then the family of the processes 

if>f ~ {FJ(X) ~ rlf2 t e;f(x + AJ,;), J E N, A E A} 
is tight in the space e[O, 1]. 

Remark 10.2.1 Moreover, if AJ,j = Ar-tO and J-+oo, this family converges 
to the law of the degenerated process 6 f ( .). 

PROOF OF THE PROPOSITION 10.2.1. For all J EN, x, y E [0,1]' we have 

J 

VarJ(x, y) = Var(FJ(x) - FJ(Y)) = J-1 2)f(x + AJ,j) - f(y + AJ,j)f 
j=l 

Hence, 

< sup[J(x + AJ,j) - f(y + AJ,j)]2 :S wf([x - y[)2. 
j 

VarJ(x,y):S wf([x - y[)2. 

We deduce now the estimate for Dudley integral [see Lifshits (1995, Section 15) 
for the definition; one could also use Fernique integral] which will be uniform 
over J and A. Indeed, for each r > ° and each J the intervals of length W j 1 (r ) 
form a covering of [0,1] by the sets of diameter not exceeding r with respect 
to the metric generated by the process FJ . Since the number of intervals is 
1/wj1(r), the Dudley integral '!jJJ(R) admits the estimate 

'!jJJ(R) :S foR Vlog(1/wt(r))dr = foR V[logwj1(r)[dr. 

By the variable change r = wf(u) and integration by parts, we obtain 

[wjl(R) 
'!jJJ(R) < Jo V[log(u)[dwf(U) 

/ IW-1(R) lWj1 (R) wf(u) 
wf(u)y [log(u)[ f + duo 

o 0 2uV[log(u)[ 
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Moreover, the integral term is dominating, since the function wf is monotone 
and we have for each u 

Letting u = wi1(R) , we obtain 

< 2 fWjl(R)1/2 wf(u) 
'ljJj(R)_ io uVllog(u)ldu-tO, (R -t 0). 

Since the obtained estimate of 'ljJJ(R) is J-uniform, the tightness easily follows 
via classical estimates of modulus of continuity using 'ljJJ(R); see, for example, 
Lifshits (1995, Theorem 15.1, p. 216). • 

10.3 Continuous Generalization 

We can transform the parameter). from the statement of Proposition 10.2.1 in 
a continuous object. Let M denote the class of probabilistic measures on [0,1]. 
For each measure fl E M, let Wil de~ote the white noise with variance fl, and 
define a random function 

Then the family 
iJ>j1 = {Ff,Il' fl E M} 

is tight in e[O, 1] since, for each p, E M and x , y E [0, 1]' 

Var fa1 (i(x + ).) - f(y + ).)) WIl(d)') 

fo11f(x +).) - f(y + ).)12p,(d)') ~ wf(lx - YI)2 , 

and the arguments of Proposition 10.2.1 work without further changes. Recall 
that iJ> f is a part of iJ>j1, corresponding to the measures p, = J-1 2:,f=1 fJ >" J ,j for 
integer J and), E A. 
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10.4 An Example of Non-Tightness in C[O, 1] 

We start our construction with the following definition. 

Definition 10.4.1 Let {dj} and {Aj} be two positive sequences. We call a 
continuous I-periodic function f on (-00, (0) a function with (d, A)-complete 
system of values if for each J E N and for each sequence {E j} E {-I; + 1 } J 

there exists x E [0,1] such that f(x + Aj) = djEj, 1:::; j :::; J. 

This property means that all possible combinations of values appear simul­
taneously. 

Proposition 10.4.1 Let {Aj} be arbitrary sequence and the sequence {dj } be 
such that 

J 

limsup J- 1/ 2 L dj = 00. 
J->= j=l 

Let f be a function with (d, A)-complete system of values. Let ~j be a standard 
Gaussian i.i.d. sequence. Then the set of processes 

if>j,A = { FJ(x) = rl/2 t, f(x + >'j)~j, J 2: 1 } 

is not tight in e[O, 1]. 

PROOF OF PROPOSITION 10.4.1. For all J E N, wEn, we have 

and hence 

J 

IIFJOII = sup J- 1/ 2 L f(x + Aj)~j 
XE[O,l] j=l 

J 

> J- 1/ 2 L f(x* + Aj )~j , 
j=l 

J J 
J- 1/ 2 L f(x* + Aj)~j = J- 1/ 2 L djl~jl 

j=l j=l 

J J 

EIIFJ(')II ~ J-1/2 L djEI~jl = (2j7rJ)1/2 L dj. 
j=l j=l 
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It follows that 
lim sup EIIFJOII = 00. 

J-->oo 

• 
The latter property is incompatible with tightness of Gaussian measures. 

Proposition 10.4.2 Let {Aj = 2 . s-j} and assume that the sequence {dj } 
satisfies 

lim dj = O. 
J-->OO 

Then there exists a function f with (d, A)-complete system of values. 

Corollary 10.4.1 Let dj = j-1/ 3. Then, limsuPJ-->oo J-1/ 2 'L-f=l dj = 00 and 
limj->oo dj = O. Assumptions of Propositions 10.4.1 and 10.4.2 are verified. 
Thus, we obtain a family Fj which is not tight. 

PROOF OF PROPOSITION 10.4.2 . We base our construction on the continuous 
function 9 : R1----+ [-1, 1] defined as follows. Let 

(a) g(t) = 0 on (-00 , l/S] U [4/S, 5/S] U [1, (0); 

(b) g(t) = 1 on [2/S,3/S] and g(t) = -1 over [6/S, 7/S]; 

(c) 9 is linear on each of the remainder intervals [l/S, 2/S], [3/S,4/S], [5/S,6/S], 
and [7/S, 1]. 

For each x E Rl, consider the expansion 

00 

x = Zx + 2: cn(x)S- n, 
n=l 

Denote Ix I = 0 for integer x and 

Zx E Z, cn(x) E [0 .. 7] . 

Ixl = sup{n : cn(x) > O} ::; 00 

for non-integer x. 
Introduce a set of Cantor type 

x ={x E [0,1) : Ixl < 00, cn(x) E {O} U {4} \In}. 
All possible combinations of values will appear on the elements of X. 

Finally, define the function f on [0,1) by 

00 

f(y) = L dn L gx,n(Y) 
n=O xEX,lxl:Sn 
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with 
gx,n(Y) = g(Sn(y - x)) 

and extend f periodically on Rl. 
It is easy to verify that the support Sx,n of gx,n is 

{Y : Cj(Y) = Cj(x) E {a} U {4} j = 1, ... ,n; Cn+l(Y) ~ {a} U {4}}. 
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It follows that the supports of functions gx,n with different n are disjoint. In 
particular, this observation confirms that the series which defines f, is uniformly 
convergent. 

It is also easy to see that for all Y E Sx,n we have 

gx,n(Y) = +1 if Cn+1(Y) = 2 

and 
gx,n(Y) = -1 if Cn+1(Y) = 6. 

It follows that for each j ~ 1 and for each x E X we have 

where Xj = L,~~~ cn(x)s-n. We also obtain 

f(x + Aj) = dj if Cj(x) = 0, 

f(x + Aj) = -dj if Cj(x) = 4. 

This is sufficient to derive that 2J points {x EX, Ix I ::; J} provide all possible 
combinations cjdj, Cj = ±1 of the values f(x + Aj). The system of values of f 
is therefore (d, A)-complete. • 

Remark 10.4.1 It is interesting to compare the variety of the values f(X+Aj) 
with identity f(x) = ° that holds for all x E X. 

10.5 Sufficient Condition for Tightness in LP[O, 1] 

We consider now the tightness of the same families of random elements F J,j,>., (x) 
in the space LP[O, 1], for f E LP[O, 1], Aj E A. We start from some general 
conditions providing tightness. For a, f3 E [0,1]' write a ::; f3 or a < f3 if 
f3 - a E [0,1/2) or f3 - a E (0,1/2), respectively. In these cases, we understand 
[a,f3] as {x: a::; x::; f3} etc. 

Let II . II or II . lip denote LP-norm and for f E LP let us use the notion of 
LP-modulus of continuity wf(u) as stated in the introduction. 

Recall some basic results about the relative compactness of sets in LP[O, 1]. 
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Theorem 10.5.1 Let p E [1,(0) and F be a subset of LP[O,I]. Then F is 
relatively compact if and only if it is uniformly bounded, that is, 

sup Ilfll < 00, 
:F 

and uniformly continuous, that is, 

lim supwf(u) = o. 
u->O :F 

This LP-version Arzela-Ascoli theorem [see the proof in Dunford and Schwartz 
(1958, p. 298)] will not be applied directly, but it is useful for better understand­
ing of the following criterion of the tightness of the family of the measures. 

Theorem 10.5.2 Let p E [1,(0). A family <I> of random functions with sample 
paths in LP is tight if and only if 

lim sup P{IIFII > M} = 0 
M->CX) FECI> 

and for each c > 0 
lim sup P{WF(U) > c} = O. 
u->O FECI> 

This criterion yields the following simplified Gaussian version. 

Theorem 10.5.3 Let p E [1,(0). A family <I> of centered Gaussian random 
functions is tight in LP if 

and 

sup EIIFIIP < 00 
FECI> 

lim sup EWF(U)P = o. 
u->O FECI> 

(10.1) 

(10.2) 

In what follows, we always verify (10.1) and (10.2). In our special case, for 
(10.1) we have the estimate 

EIIFJ,f,AIIP = E 101 
IFJ,f,A(x)IPdx 

with cp = E161p . 

1 J In J-p/2EI 2:: f(x + AJ,j)~jIPdx 
o j=l 

1 J 
cpJ-p/2 In [2:: f(x + AJ,j)2]p/2dx 

o j=l 
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It is good enough for p :::: 2, since discrete Holder inequality yields 

which implies 

and 
1 J 

EIIFJ,J,AIIP:s cpJ-1 In L If(x + AJ,j)IPdx = cpllfllP. 
o j=l 
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(10.3) 

The latter inequality serves as a powerful instrument of "closure", i.e., for 
the passage from the "nice" functions to arbitrary ones. 

In the case p E [1,2), we still have a Holder estimate 

(10.4 ) 

which is not always efficient, especially for f E LP\L2 . However, in certain 
situations, it is also useful (see a counter-example for LP below). 

Remark 10.5.1 The interested reader may compare Theorem 10.5.3 with al­
ternative tightness criteria for LP-spaces, [ef. Baushev (1987), Nguyen, Tarieladze, 
and Chobanyan (1978), and Suquet (1998).] 

10.6 Indicator Functions 

We show now that indicator functions fa = l[O,a) generate tight families in 
LP, 1 :S p < 00. Closing procedure will enable to extend this result on the class 
of arbitrary functions f in LP, 2 :S p < 00, while for 1 :S p < 2 the general 
result is false. 

Theorem 10.6.1 The family of random functions 

<I> = {FJ,Ja ,A, a E [0,1), A E A, J E N} 

is tight in each LP, p E [1,00). 
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PROOF OF THEOREM 10.6.1. In order to keep transparent notations for inter­
vals, we consider only the case 0 ~ a < 1/2; there is no loss of generality. We 
fix and abandon during this proof the indices J, a, >.. for F. Our estimates will 
be uniform over these parameters. 

We apply Theorem 10.5.3. Let us estimate the moments and the modulus 
of continuity. For the moments, we already have by (10.3) and (10.4) 

EIIFIIP ~ cq Ilfll~, q = max{2,p}. 

This bound is uniform over q,. Now we pass to the modulus of continuity. 
Take an integer M ~ 5, let u = M-1. For each integer k E [O .. M - 1], let 

tk = kiM and Ik = [tk, tk + 2u). Then for each x Elk, we have 

J-1/ 2 r L ~j - L ~jl 
L::;J,a->'j,jE(tk'X] j::;J,->'j,jE(tk,X] 

J- 1/ 2 [wt(x) - W;(x)] . 

Next, 

sup IF(x) - F(y)1 
x,yEh 

~ J- 1/ 2 [sup Iwt(x) - wt(y)1 + sup IW;(x) - W;(Y)lj. 
x,yE1k x,yEh 

The oscillations of the processes wt, W; are bounded by the numbers of terms 
in the corresponding sums, 

By evident reasons, 

{
M-1 M-1 } 

max L Nt; L N; ~ 2J. 
k=O k=O 

Since the process wt is a composition of consecutive sums of standard Gaussian 
LLd. variables, we bound its oscillation with oscillation of a Wiener process W. 

Remark 10.6.1 This idea could also work for non-Gaussian ~j with symmetric 
distribution and finite moments of all orders. 
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We have 

Similarly, 

E sup IW:(x) - W:(y) IP 
x ,YEh 

E (sup W:(x) + SUP(-W:(y)))P 
xEh yEh 

~ 2P- 1E (sup W:(X)P + SUp( -W:(y))p) 
xEh yEh 

2PE(sup W:(x))P ~ 2PE( sup W(z))P 
xEh O~z~N: 

2PEIW(N:)IP = 2Pcp(N:)p/2. 

E sup IWk-(x) - W;(y)IP ~ 2Pcp(N;)P/2. 
x ,YEh 
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Now we are able to calculate the mean oscillations of the functions F . For each 
h E [0, U], we have 

IIF(· + h) - F(·)IIP fo11F(X + h) - F(x)IPdx 

M-l 

L r IF(x + h) - F(x)IPdx 
k=O J[tk ,tk+U) 

M-l 

< U L sup IF(x) - F(y)IP 
k=O x ,yEh 

and 

Esup IIF(· + h) - F(·)IIP 
h~u 

M-l 

< 2PcpJ-P/2u L [(N:)p/2 + (N;)P/2]. 
k=O 

If p ~ 2, we have 

and 
EWF(U)P ~ 23p/2+1cpu --t 0 (u--tO) 

uniformly over F E CP. If p E [1,2), the estimate is not so good but still 
sufficient: 

'E11(Nt)P/2 + (N,)p/21 ,-0 M [C~l Nt;M r + (1=>, 1M f'] 



154 Mikhail Lifshits and Michel Weber 

M 1-p/2 [ (~ Nt r + (~l N' f'] 
< 2up/2- 1 (2J)p/2 

and 
Ew (u)P < 23p/ 2+1c up/2 F _ p ---t 0 ( u---tO) 

uniformly over F E <P. Condition (10.2) is verified and application of Theorem 
10.5.3 completes the proof. • 

Corollary 10.6.1 Let f be a function in LP, p ~ 2. Then the family of random 
functions 

<Pf = {FJ,J,).. , A E A, J E N} 

is tight in LP. 

PROOF. First, let 

f(x) = 1 [t,Ha] (x) , 0:::; t:::; t + a:::; 1. 

Then <Pf = {FJ,Ja ,>"(' - t), A E A, J E N} and the tightness follows from 
Theorem 10.6.1. Next, recall that tightness is a property stable with respect 
to linear operations on random vectors (linear combination of compact sets is 
a compact) . Therefore, we obtain the result for any function of the type 

M-l 

g(x) = L 9k1[k/M, (kH) /M] (x). (10.5) 
k=O 

Let now f be an arbitrary function. Inequality (10.1) for <Pf follows directly 
from closure inequality (10.3). Next, for arbitrary E > 0, choose 9 of type (10.5) 
such that Ilf - gil:::; E. Then we have 

WFJ,J,). (u) :::; WFJ,g,). (u) + 21IFJ,J-g,>..II, 

EWFJ,f,). (u)P < 2P- 1 (EWFJ,g ,). (u)P + 2PEIIFJ,J-g,>..II P) 

< 2P- 1 (EWF (u)P + 2PEP) J,g,). 

and hence 

lim sup EWFJf Ju)P :::; 2P- 1 (lim sup EWFJ ). (u)P + 2PEP) = 22p- 1EP. 
u---+O J,>" ' , u---+O J,>" ,g, 

Since E could be chosen arbitrarily small, we obtain (10.2) for <Pf . 

Remark 10.6.2 For p E [1,2), this method only yields the tightness of <Pf in 
LP for f E L2. This is trivial, since for f E L2 we have obtained the tightness 
in L2-topology which is stronger than LP-topology. 
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Continuous generalization 

We trace here a "continuous" generalization analogous to that described above 
for e[o, 1]. Recall that M denotes the class of all probabilistic measures on 
[0,1], Wtt is the white noise with variance {L E M, and 

Ff tt(x) = (f(x + A)Wtt(dA). , Jo 

The family <P-jI = {Ff,tt, {L E M} contains <Pf and is still tight in LP, p 2: 2. The 
proof of tightness remains almost the same. In particular, for closure inequality 
(p 2: 2) we have 

E IIFf,tt liP 101 ElFf,tt(x)IPdx = J [10 1 f(x + A)2{L(dA) r/2 
dx 

< 101 [10 1 If(x + A)IP{L(dA)] dx = Ilfll~· 
Estimating the modulus of continuity for the key case f(x) = l[O,a)(x) and 
using old notations for M, u, tk, Ik, one obtains the representation 

and for x E h 

Observe that these expressions are the processes with independent increments of 
argument x. Next, the prooffollows the old way but instead of Nt and Nk one 
should control the variances Nt,tt = {L[-tk+2' tk) and Nk,tt = {L[-tk+2+a, tk+a); 
the sum of expressions of each type is bounded by 2. 

10.7 An Example of Non-Tightness in LP, p E [1,2) 

Consider the tightness of the families of random elements 

J 

FJ,J,>..(x) = J- 1/ 2 L f(x + Aj)~j 
j=1 

in the space LP[O, l], for f E LP[O, 1], {Aj} E [O,l]OO,J EN. We give a para­
metric series of examples of functions f E LP[O, 1], p E [1,2) and sequences A 
such that the family 

<P = {FJ,J,>., J E N} 

is not tight in LP[O, 1]. 
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Construction 

Fix p E [1,2), q E [P,2) and let for mEN 

Consider the function 
00 

J(x) = I: Mm1[lm+1,lm)(x) 
m=l 

and the sequence 

We have immediately 

00 00 

IIJII~ ::; IIJII~ ::; I: Minlm = I: m-2 < 00 

m=l m=l 

and hence J E Lq[O, 1] c LP[O, 1]. 

Estimation 

Consider the subsequence I n = L:~=l km . 

From now on, fix n and omit I n , A. in the notation thus replacing FJn,g). by 
simple Fg . We have 

J=iI+12+13, 
where 

n-l 00 

iI = I: Mm 1 [lm+1>ITn) , 12 = Mn 1 [ln+l,ln) , 13 = I: Mm 1 [ITn+1>Im)' 
m=l m=n+l 

In fact, we wish to get rid of iI, h. Towards this aim, write 

n-l n-l 

IliIll~ = I: M!(lm -lm+d ::; I: M!lm 
m=l m=l 
n-l I: 2(2/q-l)m2 m-2 ::; 23 (2 _ q)-12(2/q-l)(n-l)2. 

m=l 

By closure inequality (10.4), we have 

EIIF/I II~ ::; IliI II~ ::; 23p/2(2 - q)-p/22(p/q-p/2)(n-l)2. 

On the other hand, let U denote the support of the function Ffa. Then U is 
contained in the union of I n intervals 
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We obtain a bound for Lebesgue measure of U, 

mes U < J l < 2k l < 21+n2 -(n+1)2 < 2-2n < (4n)-1. _ n n+1 _ n n+1 _ __ 

On the other hand, for the main term we have 

I n 

Fh(x) = J;;1/2 L h(x + )..j)~j 
j=l 

In-l 

J;;1/2Mn L l[ln+l-,\j)ln-,\j)(x)~j 
j=l 

kn 

+ J;;1/2Mn L 1[ln+l+kln,(k+1)ln)(X)~Jn-l+k 
k=l 

FA(X) + FB(X) 

where the functions FA and FB are symmetric and independent. Let 

kn 

1= U [In+1 + kln, (k + 1)ln). 
k=l 

Then 
mes 1= kn(ln -In+d ~ knln/2 = (2n)-1. 

We start the key estimate with 

EllFfll~ = r1 ElFh+h+fs (x) IPdx ~ r EIFh+h(x)IPdx. Jo J1- U 

By linearity, 

IF-h + Fh+hl :::; IFhl + IFh+hl, 
< 2P-1(lFh IP + IFh+h IP ), 

21-PIFh IP - IFh IP 

and we obtain for the expectations 

> r 21-PEIFh(x)IPdx - EllFhll~ J1- U 

> (mes 1- mes U)21- p inf EIFA(X) + FB(X)IP - EllFh II~ 
xEI 

> (4n)-121- p inf EIFB(X)IP - EllFh II~ 
XEI 

> (4n)-12 1- p J;;P/2 M!:,cp _ 23p/2(2 _ q)-p/22(q/p-p/2)(n-l)2 

> (4n)-12 1- p(2kn)-p/2 M!:,cp - 23p/2(2 _ q)-p/22(q/p-p/2)(n-l)2 
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> n-l-P/2cp2-1-3p/2+(P/q-p/2)n2 _ 23p/2(2 _ q)-p/22(q/p-p/2)(n-l)2 

---t 00 
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when n--'>oo. Therefore, we have obtained 

limsupEIIFJ,J,AII~ 2: Ji~ EIIFJn,J,AII~ = 00 
J--->oo 

and the tightness does not take place. 
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Long-Time Behavior of Multi-Particle Markovian 
Models 

A. D. Manita 

M. V. Lomonosov Moscow State University, Moscow, Russia 

Abstract: We find convergence time to equilibrium for wide classes of large 
multi-particle Markovian systems. We show that if a "one-particle" state space 
is large, then the long-time behavior of the multi-particle Markovian system 
strongly depends on the type of stochastic evolution of a single particle. 

Keywords and phrases: Convergence time to equilibrium, multi-particle 
Markov chains, nonreversible Markov chains, Monte Carlo Markov chains, queue­
ing models 

11.1 Introduction 

From the standpoint of computer simulation of Markovian stochastic systems, 
it is important to estimate the number of steps which are needed to approach 
the stationary distribution. This problem is important for dynamic Monte 
Carlo methods, Metropolis-Hastings algorithms, simulated annealing and im­
age analysis. The special feature of these simulations is that the state space of 
a simulated system is finite but very large. This is the reason why this problem 
attracts widespread attention of experts in statistical physics, applied statistics 
and theory of computer algorithms. 

In the majority of Markovian models of networks and multi-component sys­
tems in statistical physics, besides the standard Markovian property, there is 
some additional structure. This structure is determined by features peculiar to 
the state space and to the transitions between states. Undoubtedly, this struc­
ture exerts qualitative effect on convergence time to equilibrium. The notion of 
convergence time to equilibrium [see Manita (1996, 1999)] is an mathematical 
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formalization of "the number of steps of an algorithm needed for approaching 
the stationary distribution" . 

By a multi-particle Markov chain, we mean a system consisting of M(N) 
particles, each evolving on large "one-particle" state space K(N). We are 
interested mainly in the situation when both M(N) and IK(N)I tend to 00 

as N -t 00. In this setting, the term "particle" is a matter of convention. It is 
used only to invoke physical intuition. The role of particles can be played by 
messages in large communication network or by customers in a queueing sys­
tem with large number of nodes. Here we consider the case when an interaction 
between different particles is absent. A presence of interaction generally creates 
additional mathematical difficulties. The present work should be considered as 
the first step in studying the convergence time to equilibrium for more general 
Markovian systems of particles with interaction. 

11.2 Convergence Time to Equilibrium 

We consider sequences £(N), N = 1,2, ... , where £(N) is a finite Markov chain 
on state space X(N). We assume that IX(N)I -t 00 as N -t 00. In this Section, 
we recall the notion of convergence time to equilibrium (GTE) for the sequence 
of Markov chains £(N). 

Let PN be a transition matrix of the Markov chain £(N). Let J.L = (J.La, 0: E 

X(N)) denote an initial distribution of £(N). Then distribution of the chain 
at time t is equal to J.Lpfv, where Pfv is the t-th power of the matrix PN . 

We assume that each chain £(N) is irreducible and aperiodic. Hence, each 
chain £(N) is ergodic. Denote by 1["N = (1[":;,0: E X(N)) the stationary distri­
bution of £(N). 

The variation distance between two probability distributions v and p is 
defined as follows: 

1 
II v - p 11= sup Iv(B) - p(B)1 == 2" L Ivx - Pxl· 

BCX(N) XEX(N) 

In the sequel, we denote by P(X) the set of probability distributions on a 
finite set X. 

Definition 11.2.1 [Manita (1999)] We say that a function T(N) is a conver­
gence time to equilibrium if for any function '!jJ(N) i 00 

sup II J.Lp~(N)1/J(N) - 1["N II-t 0, N -t 00, 

/-L 
(11.1) 

where sup is taken over all initial distributions of the chain £(N): J.L E P(X(N)). 
The convergence time to equilibrium T(N) is called a minimal CTE if for 

any function T'(N) satisfying (11.1), we have T(N) = O(T'(N)) as N -t 00. 
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Remark 11.2.1 The minimal CTE is unique up to the following equivalence 
relation: 

Note that for any fixed N, the function sup II J-LPJv - 7rN II decreases mono­
J.l 

tonically in t. Hence, we have the following statement. 

Proposition 11.2.1 Let a function O(N) be such that sup II J-Lp~(N) _7rN 11-+ 0, 
J.l 

as N -+ 00. Then, O(N) is the CTE in the sense of Definition 11.2.1. 

The next proposition follows from Definition 11.2.1. 

Proposition 11.2.2 A function T(N) is the minimal CTE iff condition (11.1) 
holds and for any function ¢>(N) -+ 00 

sup II J-Lp~(N)/¢(N) - 7rN II f--t 0, N -+ 00. 
J.l 

Remark 11.2.2 To show that CTE T(N) is minimal, it is sufficient to prove 
the following statement: there exist a sequence of initial distributions {J-LN} , 

J-LN E P(X(N)), and a sequence of sets of states AN, AN c X(N), such that 

1. for any function ¢>(N) -+ 00, 

N -+ 00; 

N -+ 00. 

In [Manita (1996, 1999)] the CTE T(N) was found for sequences of fi­
nite Markov chains {£(N)} that are truncations of some geometrically ergodic 
countable chain. Moreover, in Manita (1999) some queueing applications of the 
obtained results were considered. Other examples are given in Section 11.4 of 
the present paper (see Remark 11.4.2 and Examples 11.4.1-11.4.3). 

11.3 Multi-Particle Markov Chains 

Let K be a finite set, K, = {~(t), t E Z+} be an irreducible aperiodic Markov 
chain on K with transition matrix R = (rij). It is well known that such a 
Markov chain is ergodic. Denote by v = (Vj,j E K) E P(K) the stationary 
distribution of the chain K,. We shall interpret the random variable ~(t) as a 
position of some particle at time t. We assume that this particle moves over 
the set K according to the law of the chain K,. 
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Now we are going to consider a system C(K, M) consisting of M noninter­
acting particles moving according to the law of the "one-particle" Markov chain 
K. This system of particles can be described in two different ways: in terms of 
distinguishable or indistinguishable particles. 

Let ~(l)(t), ... , ~(M)(t) be M independent copies of the Markov chain K. 
Consider a new Markov chain e(t) = (~(l)(t), ... , ~(M)(t)) on state space 

KM={k=(kl, ... ,kM): kmEK, m=l, ... ,M}. 

By assumption, the one-particle chain ~(t) is ergodic; This implies that the 
chain e(t) is also ergodic. 

The Markov chain e(t) describes the evolution of a system consisting of M 
noninteracting particles. Therewith particles are numbered, and ~(m)(t) is a 
position of the particle m at time t. Such representation of the system of non­
interacting particles will be called the representation in terms of distinguishable 
particles or briefly the e-representation. Sometimes, we shall use the notation 
Ct;(K, M) for the chain {e(t), t E Z+} to point out its dependence on K and M. 

Sometimes, in the situation when particles are identical, it is more conve­
nient to consider another state space. Let nj(t) be the number of particles of 
the process eo situated at state j at time t. Consider the random sequence 

n(t) = (nj(t),j E K), t=O,1,2, .... 

It is easy to check that n(t) is a Markov chain on the state space 

N(K, M) ~f {Y = (Yi, i E K) E Z~: ~ Yi = M}. 
tEK 

Under such choice of state space, we are interested only in that how many 
particles are placed at a specified state. On contrast to the case of e-representa­
tion, here particles are indistinguishable. Such representation of a system of 
noninteracting particles will be called the n-representation. To point out the 
dependence of this construction on the one-particle chain K and the number of 
particles M, we shall denote sometimes the chain {n(t), t E Z+} by Cn(K, M). 

Below we consider systems consisting of many particles under the assump­
tion that one-particle chains may be "large". More precisely, let {K(N)} be 
a sequence of finite one-particle chains with state spaces K(N), and {M(N)} 
be some sequence of positive integers. The subject of our investigation is the 
system C(K(N), M(N)) consisting of M(N) noninteracting particles moving ac­
cording to the law of the chain K(N). We shall always assume that M(N) ~ 00 

or IK(N)I ~ 00 as N ~ 00. Our aim is to find the CTE for the sequence 

C(N) ~f C(K(N), M(N)). It will be seen from Sections 11.4 and 11.5 that the 
form of this CTE depends on the nature of chosen sequence K(N). All results 
of this chapter hold for both (e and n) representations. 
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11.4 Hand S-Classes of One-Particle Chains 

Let K(N) be a irreducible aperiodic finite Markov chain with state space K(N), 
transition matrix RN = (rij(N))i,jEK(N) and stationary distribution vN = 

(vf, i E K(N)). 
Let heN) ~ 0 be a monotone function increasing to 00. 

Definition 11.4.1 We say that a sequence of Markov chains K(N) belongs to 
the H -class with function h = h( N), and write {K (N)} E H (h), if the following 
conditions hold: 

1. There exist C2, "12 > 0 such that 

sup II voR}y - vN II::; C;(N) exp (-'Y2t) \:It; 
vaE'P(K(N)) 

2. There exist constants aI, a2 > 0 and sequences of states {iN} and {iN}, 
iN,iN E K(N), such that Ir~NjN - VjNI > al > 0 'it::; a2h(N); 

3. There exist constants CI , "11 > 0, a sequence of states {kN}, kN E K(N), 
and No E N such that uniformly in N ~ No 

Condition 1 of Definition 11.4.1 is typical for sequences of Markov chains 
K(N) that are truncations [see Manita (1999)] of some countable geometrically 
ergodic Markov chain K which possesses a Liapunov function. Markov chains 
characterized by Condition 2 have "bounded" one-step transitions in the sense 
that it is impossible to do transition between "widely separated" states in a 
limited time. Examples are provided by random walks with bounded jumps. 
Verifying of the fulfilment of Condition 3 is a particular problem. 

Let seN) ~ 0 be a monotone function increasing to 00. 

Definition 11.4.2 We say that the sequence of Markov chains K(N) belongs 
to the 8-class with function s = seN), and write {K(N)} E 8(s), if the following 
conditions hold: 

1. There exist C2, "12, ao > 0 such that for all t ~ aos(N) 

sup II voR}y - vN II::; C2 exp (-'Y2t/ s(N)) ; 
Va 
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2. There exist constants C 1, ')'1 > 0, a sequence of states {k N }, k N E K (N), 
and a sequence of sets {B N }, B N C K (N), such that for sufficiently 
large N 

Remark 11.4.1 Condition 2 of Definition 11.4.2 is equivalent to the following 
condition: there exist constants C1, ')'1 > 0 and a sequence of initial states {kN }, 
kN E K(N), such that for all sufficiently large N 

IlrkN' - liN II 2: C1 exp (-,),1 s(~)) 'it. 

[Here rkN' E P(K(N)) is the distribution of K(N) at time t, provided that the 
chain is located at time 0 at the initial state kN.J 

Remark 11.4.2 If {K(N)} E H(h), then the minimal convergence time to 
equilibrium for the sequence of one-particle chains K(N) is equal to TdN) = 

h(N). If {K(N)} E 8(8), then TdN) = 8(N). 

Example 11.4.1 Markov chain K(N) in this example is the discrete ana­
logue of the queueing system M I Mill N. Namely, consider a set K(N) = 
{O, 1, ... ,N} == [0, NJ n Z and a Markov chain K(N) with state space K(N) 
and the following transition probabilities: ri,i+1(N) = P for 0 ~ i < N, 
ri,i-1(N) = q, for 0 < i ~ N, rii(N) = r, for 0 < i < N, roo(N) = q + r, 
rNN(N) = P + r, p + q + r = 1. If Pi- q, then {K(N)} E H(N). 

Example 11.4.2 Let K(N) be the same as in Example 11.4.1, but p = q = 
(1 - r)/2. In this case, {K(N)} E 8(N2). 

Example 11.4.3 Consider the discrete circle Z2N+1 == Z/(2N + l)Z and the 
simple random walk on it. More precisely, as an one-particle chain K(N), we 
consider the random walk ~(t) on the set K(N) = {O, ... , 2N} with periodic 
boundary conditions and the following jump probabilities: 

for j - i = ± 1 (mod 2N + 1) 

and ri,j(N) = 0 for any other pair (i,j). As in Example 11.4.2, one can show 
that {K(N)} E 8(N2). 

Details can be found in Manita (1997). 
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11.5 Minimal CTE for Multi-Particle Chains 

Let TK(N) denote the minimal CTE for the sequence of one-particle chains 

K(N). Consider the sequence of multi-particle chains £(N) ~f £(K(N), M(N)). 
We shall deal with the situation when at least one of sequences {M(N)} and 
{IK(N)I} tends to 00 as N -t 00. Let T(N) denote the minimal CTE for the 
sequence £(N). Our main results about large multi-particle Markov chains are 
summarized in the following theorem. 

Theorem 

1. If M(N) == M = const (i.e., the number of particles is fixed), then T(N) 
=TK(N). 

2. If K(N) == K (i.e., the one-particle chain is fixed), then T(N) = 
logM(N). 

3. If {K(N)} belongs to the H-class, then T(N) = ma;x(TK(N),logM(N)). 

4. If {K(N)} belongs to the S-class, then T(N) = TK(N) log M(N). 

Statements of the theorem hold for both (e and n) representations of the 
multi-particle chain £(K(N), M(N)). Comparing items 3 and 4 of the theorem 
with item 2, we see that in the situation when one-particle chain is large the 
nature of {K(N)} is important for the CTE T(N). 

Proofs are given in Section 11.6. 

Remark 11.5.1 Item 2 of the above theorem generalizes Proposition 7.7 in 
Aldous and Diaconis (1987) wherein random walks on finite groups were studied 
and result similar to item 2 was obtained for the case when K is a random walk 
on a finite group. In our theorem, K is an arbitrary finite ergodic Markov 
chain. Methods of this chapter are different from methods used by Aldous and 
Diaconis (1987). 
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11.6 Proofs 

Preliminary results 

Denote by P = (Pkl)k,IEKM the transition matrix of the chain .cf.CK, M) and by 
7r == 7r(K, M) E P(KM ) its stationary distribution. It is easy to see that 

M 

Pkl = IT rkmlm' 
m=l 

k = (kl' ... , k M ), I = (h, ... , l M ), 

7r =~, i.e., 7rk = Vkl .. 'VkM' 

M 

Lemma 11.6.1 sup Ill'pt - 7r11 < M sup IlvaRt - vii. 
I'EP(KM) voEP(K) 

PROOF. Let (il,'" ,iM) E KM. Then 

. L. I (r!dl - VjI) IT rLI + Vjl (IT rLI - IT Vjl) I 
)1, ... ,)M 1=2 1=2 1=2 

< ~ IrLl - Vjll + . L. lIT r~dl - IT Vjzl 
)1 )2,···,)M 1=2 1=2 

< 2 s~p IlvaRt - vii + . L. I IT r;zjz - IT VjZI· 
)2, ... ,)M 1=2 1=2 

Using this line of reasoning, we obtain Lemma 11.6.1. 

Let us introduce the map X: KM ---7 N(K, M), 

X(k) = (Xj(k),j E K), Xj(k) = #{m: km = j}, 

(11.2) 

• 

where #A == IAI is the cardinality of the finite set A. For any distribution 

p E p(KM), denote pn ~f p 0 X-I E P(N(K, M)). 
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PROOF. It is easily noted that 

Ilpn - 1]nll sup Ipn(D) - 1]n(D)1 
DEN(K,M) 

sup Ip(x-1 D) - 1](X-1 D)I 
DEN(K,M) 

< sup Ip(B) - 1](B)1 = lip - 1]11· 
BEKM 

• 
It is easy to check that n(t) = (nj(t), j E K) = X(e(t)) and 7rn = 7r 0 X-1 is 

the stationary distribution of the Markov chain Ln(K, M). Moreover, 7rn has 
the polynomial form 

n = Mf II (Vi)Yi 
7ry . .f· 

iEK Y2· 
(11.3) 

Denote ei = (0, ... , O,~, 0, ... ,0) E RIKI, rIB = E rIj and nB(t) = E nj(t). 
2 jEB jEB 

Lemma 11.6.3 If <5 > k, E > 0 then uniformly in i E K, Be K and tEN 

P {lnB(t) - MrIBI ~ EMOI n(O) = Mei} ~ 4E2~20-1. 
PROOF. At given initial condition, at time t each of M particles is at the 
set B with probability rIB independently of other particles. Since nB(t) = 

M 
E l(~(m)(t) E B), we have that the conditional distribution of nB(t) as bi-

m=l 
nomial: P {nB(t) = II n(O) = Mei} = CL-(rIB)I(l - rIB)M-I, l = 0,1, ... , M. 
Hence E (nB(t)) = M rIB and Var (nB(t)) = M rIB(1- rIB) ~ M/4 uniformly 
in i, Band t. Now statement of the lemma easily follows from the Chebyshev 
inequality. • 

Remark 11.6.1 It follows from (11.3) the stationary distribution of nj is bi­
nomial, namely, 7rn,N{nj = r} = CMvj(l- Vj)M-r, r = O,l, ... ,M. Hence, 
E7l'nB = Mv(B), Var7l'(nB) = Mv(B)(l- v(B)), where nB = E nj. Using the 

jEB 
Chebyshev inequality, we get the following uniform estimate: 

\fK, > ~, E > 0 7rn (InB - Mv(B)1 > EMK.) ~ 4E2 ~2K.-l . (11.4) 

Let {K(N)} be a sequence of finite one-particle chains with state spaces 
K(N), and {M(N)} be some sequence of positive integers. We shall always 
assume that M(N) --t 00 or IK(N)I --t 00 as N --t 00. Consider the system of 
M(N) noninteracting particles moving according to the law of the chain K(N). 
As already noted in Section 11.3, this system of particles can be described in 
terms of distinguishable or indistinguishable particles. The following question 
arises: does the convergence time to equilibrium depend on the choice of the 
representation or not ? 
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Proposition 11.6.1 

1. Suppose that a function T~(N) is the convergence time to equilibrium for 
the sequence of chains C£.UC(N) , M(N)) . Then, the function T~(N) is 
the convergence time to equilibrium for the sequence of chains Cn(K(N), 
M(N)). 

2. Suppose that a function Tn(N) is the minimal convergence time to equi­
librium for the sequence Cn(K(N), M(N)) and is the convergence time to 
equilibrium for the sequence C£.(K(N) , M(N)). Then, the function Tn(N) 
is the minimal convergence time to equilibrium for the sequence of Markov 
chains C£.(K(N), M(N)). 

Proposition 11.6.1 is an easy consequence of Definition 11.2.1 and Lemma 
11.6.2. 

General idea 

Let us fix some notation. Let K(N) denote the state space of one-particle 
Markov chain K(N), RN = (rij(N))i,jEK(N) be its transition matrix, and I/N = 
(1/3', j E K(N)) be its stationary distribution. Consider a sequence of multi­
particle systems {C(K(N), M(N)), N EN}. In e-representation: the state 
space of the multi-particle chain L£.(K(N), M(N)) is the set X(N) = K(N)M(N), 

M(N) 
transition probabilities have the form Pkl = Pkl(N) = IT rkmlm (N), the sta-

m=l 
tionary distribution is 

'JrN = (7t'I, 1 E X(N)) = I/N x ... X I/N • 
, v I 

M(N) 

In n-representation: the state space of the chain Ln(K(N), M(N)) is the set 
Xn(N) = N(K(N), M(N)), the stationary distribution defined in (11.3) will be 
denoted by 7t'n,N, and the state of the chain at time t will be denoted by nN (t). 

Proof of each item of the main theorem will consist of the following steps. 
Step 1: We prove that the function T(N) is the CTE for the sequence 

C£.(K(N), M(N)). To do this, we shall use Lemma 11.6.1. 
Step 2: We prove that the function T(N) is the minimal CTE for the 

sequence Cn(K(N), M(N)). By Proposition 11.2.2 and Remark 11.2.2 it is 
sufficient to show that there exist a sequence of initial states y~ E Xn(N) and 
a sequence of sets of states AN C Xn(N) such that the following conditions 
hold: 

• For any function of the form teN) = T(N)/¢Y(N), where ¢Y(N) IS an 
arbitrary function tending to 00, we have 

P {nN (t(N)) ¢ ANI nN (0) = yb'} -7 1 (N -7 (0). (11.5) 
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• 
(11.6) 

Then it will follow from Proposition 11.6.1 that T(N) is the minimal CTE 
for both (e and n) representations of the multi-particle system £(K(N), M(N)). 

The case when the number of particles is fixed 

Here we prove item 1 of the main theorem. It is assumed that the one-particle 
chain K(N) depends on N but the number of particles M is fixed, i.e. £(N) = 
£(K(N), M). This case is rather simple. 

Let us prove that T(N) = TdN) is the CTE for the multi-particle chain 
£f.(K(N), M). By Lemma 11.6.1 for any function 'l/;(N) i 00 we have 

sup Ill-lpPN)1/J(N) _1l'N II :::; M sup IlvoR~dN)1/J(N) - vNII. 
J..LEP(X(N)) l/oEP(K(N)) 

By definition of CTE the r.h.s. of the bound vanishes as N ~ 00. Step 1 is 
thus proved. 

Let us show now that the function T(N) = TdN) is the minimal CTE for 
the multi-particle chain £n(K(N), M). By assumption, TdN) is the minimal 
CTE for the sequence of chains K(N). The application of Proposition 11.2.2 
yields that for any function ¢(N) ~ 00 

sup II voR'ff(N)/¢>(N) - vN II f-+ 0, N~oo. 
I/O 

It immediately follows that there exist sequences iN E K(N) and BN C K(N) 
such that 

L r[:JN)/¢>(N)(N) - vN (BN) f-+ 0, N~oo. (11.7) 
jEBN 

Consider a sequence of states yf/ = MeiN E Xn(N) and a sequence of sets 

AN = {y: L Yi = M} c Xn(N). 
iEBN 

It is easy to see that 1rn ,N (AN) = (vN (BN)) M and 

P {nN (t) E ANlnN (0) = y~} = (,L r~Nj(N)) M 

JEEN 

Recall that M is fixed. Hence, using (11.7) we get 

Ip {nN (TdN)/¢(N)) E ANlnN (0) = y~} - 1rn,N (AN)I f-+ 0, N~oo. 

Step 2 thus proved. Now, item 1 of the theorem follows from Proposition 11.6.1. 
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The case when one-particle chain is fixed 

Here we prove item 2 of the main theorem. The one-particle chain K is fixed 
but the number of particles M tends to infinity. By assumption, the finite 
Markov chain K is ergodic. It is well known [Karlin (1968)] that such Markov 
chain converges exponentially fast to its stationary distribution, Le., there exist 
C > 0 and "( > 0 such that 

sup Ilrt. - vii ~ C exp( -"(t). 
k 

(11.8) 

Moreover, with the exception of the trivial case which we exclude from consid­
eration, this convergence can not be faster than the exponential one, viz., there 
exist i E K, 0: > 0 and to > 0 such that 

1!rI. - vii> exp( -o:t) Vt > to. (11.9) 

We show first that the function T(M) = log M is the CTE for the se­
quence of multi-particle chains £r;,(K, M). Indeed, taking into account (11.8) 
and Lemma 11.6.1, we obtain 

sup IIILPi;(M)1/J(M) - 7rM II < 
J.LEP(X(M)) 

M sup IlvoR1ogM1/J(M) - vii 
voEP(K) 

< C exp( -"( log M~(M) + log M). 

Since ~(M) i 00 as M ~ 00, the r.h.s. of the bound tends to O. Step 1 is 
completed. 

Let us prove now that T( M) = log M is the minimal CTE for the sequence 
of multi-particle chains Cn(K, M). Consider the following set of states AM = 
{y: Iy - M . ViI ~ ~M5/6} C Xn(M), where I· It is the LI-norm in RIKI, 

K 
Iyll ~f L IYkl. If M is sufficiently large, then the set AM is not empty. Let i 

k=1 

be the same as in (11.9). Put ytf = Mei E Xn(M). Let us prove that for the 
sequences AM and ytf, conditions (11.5) and (11.6) hold. 

Let us show first that uniformly in t 

p {In(t) - M· rtll < M2/3} ~ 1 (M ~ 00). 

To do this, let us note that 

{In(t) - M . rtll < M2/3} ~ n {Inj(t) - M . r~jl < M2/3 / K}, 
jEK 

(11.10) 

where K = IKI. Recall that K is fixed and does not depend on M. Hence, it is 

sufficient to show that Vj E K P {Inj(t) - M . rIjl 2: M2/3 / K} ~ 0 as M ~ 00. 

This easily follows from Lemma 11.6.3. 
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It follows from (11.9) that 

1M· r;' - M· ViI> M· exp(-at). (11.11) 

Fix any function ¢(M) such that ¢(M) ~ 00 as M ~ 00. Put t(M) = 
log M/¢(M). It follows from (11.10) and (11.11) that 

p {In(t(M)) - M· vII > M· exp( -at(M)) - M2/31 n(O) = y(i1} ----+ 1. 

Let us choose Mo > 26 such that a/¢(M) < 1/6 for M > Mo . Then for 
M > Mo, we have 

M· exp(-at(M)) - M 2/3 M· exp(-(a log M)/¢(M)) - M2/3 
M . M-a/¢(M) _ M 2/ 3 

> M 5/6 _ M2/3 ~ ~M5/6. 

Now condition (11.5) easily follows. To prove condition (11.6), note that the 

event BM = {IYj - vjMI :::; (2K)-1 M5/6 Vj E K} is imbedded into the event 
AM. Let us show that the stationary probability of the negation of the event 
BM tends to zero: 7rn ,M {BM } ~ O. Indeed, 

7rn ,M {BM} 7rn ,M {~{IYj - vjMI > (2K)-1 M5/6}} 
JEK 

< :L 7rn ,M {IYj - vjMI > (2K)-1 M5/6}. 
jEK 

Let us show that each term in the r.h.s. tends to zero. Fix any j and consider 
7rn ,M {IYj - vjMI > (2K)-lM5/6}. It follows from (11.4) that this probability 

is bounded by K2 M-2/3 and thus tends to 0 as M ~ 00. Condition (11.6) is 
proved and step 2 is completed. 

Statement 2 of the main theorem is thus proved. 

H-class of one-particle chains 

We prove here item 3 of the theorem. Now the one-particle Markov chain K,(N) 
is growing and the number of particles M(N) tends to infinity as N ~ 00. It 
is assumed that {K,(N)} E H(h), where h(N) ~ 0 is some monotone function 
increasing to 00. 

Let us show that1 T(N) = log M(N) V h(N) is the CTE for the sequence 
of chains L€.(K,(N), M(N)). It follows from Lemma 11.6.1 and Definition 11.4.1 

1 def () a V b = max a, b . 
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that 

sup IIJtPh- 7rNII < M(N)· C;(N) exp( -'Y2t) (11.12) 
J-tEP(X(N)) 

2 exp (log M(N) + h(N) log C2 - 'Y2t) . 

If we put t = (log M(N) V h(N)) . 'l/J(N), where 'l/J(N) i 00, (N -t (0), then the 
r.h.s. of (11.12) will tend to zero. Step 1 is thus completed. 

Let us prove that the function T(N) = log M(N) V h(N) is the minimal 
CTE for Ln(K(N), M(N)). Let us introduce sequences of states {UN}, {IN}, 

UN = {iN, if 10gM(N) ~ h(N), 
kN, if 10gM(N) > h(N), 

IN = {jN, if log M(N) ~ h(N), 
kN, if log M(N) > h(N), 

and sequence of sets AN = {y: IYIN - M(N)VINI ~ b· (M(N))5/6}. Let us 
show that there exists b > 0 such that, for the sequence of sets AN and the 
sequence of initial states y~ = M(N)eUN ' conditions (11.5)-(11.6) hold. First 
we test the validity of condition (11.5). It follows from Lemma 11.6.3 that 

(11.13) 

uniformly in t as N -t 00. Fix any function ¢(N), lim ¢(N) = 00, and put 
N~oo 

t(N) = (log M(N) V h(N))/¢(N). Let us prove now that for sufficiently large N 

(11.14) 

where c > 0 does not depend on N. It is necessary to consider two cases. 
Let N be such that 10gM(N) ~ h(N). In this case, t(N) = h(N)/¢(N). 
Since ¢(N) -t 00, we have ¢(N) > 1/a2 for sufficiently large N. Hence, by 
Condition 2 from Definition 11.4.1, for such N we get 

(11.15) 

Let N be now such that log M(N) > h(N), i.e. t(N) = log M(N)/¢(N). Using 
Condition 3 from Definition 11.4.1, we obtain 

Ir~~~ - VIN I > C1 exp (-'Y1log M(N)/¢(N)) 
C1 . (M(N))-'Yl/rl>(N) 

> C1' (M(N))-1/6 for large N. 
(11.16) 

Combining (11.15) and (11.16), we get (11.14). Let us show now that (11.13) 
and (11.14) imply the validity of (11.5). Indeed, the probability that the fol­
lowing inequality holds 

In~(t(N)) - M(N)r~~~1 < (M(N))2/3 
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tends to 1 as N ~ 00. On other hand, by (11.14), it follows that for large N 

IM(N)r~C:Z~ - M(N)VIN I > c· (M(N))5/6. 

Choosing b < c, we have that 

In~(t(N)) - M(N)VINI > c· (M(N))5/6 - (M(N))2/3 > b. (M(N))5/6 

with probability which tends to 1 as N ~ 00. This proves (11.5). 
Using (11.4), we can estimate -rrD,N (AN ): 

-rrD,N (IYIN - M(N)VIN I > b· (M(N))5/6) ::; 4b2 M~N)2/3 ----70 (N ~ (0). 

The validity of (11.6) is proved. Step 2 is completed, thus providing. This 
completes the proof of statement 3 of the theorem. 

S-class of one-particle chains 

We prove here item 4 of the theorem. Situation is similar to the previous case 
but now {K(N)} E 8(s), where s(N) ~ 0 is some monotone function increasing 
to 00. Applying Lemma 11.6.1 and using Condition 1 of Definition 11.4.2, we 
obtain 

sup "j.lpk - 7l'N" ::; exp (log M (N) + log C2 - r2 (Nt )) . 
~~~) s 

From this estimate, it follows that the function T(N) = s(N) log M(N) is the 
CTE for the sequence of chains Cf.(K(N), M(N)). Step 1 is completed. 

To prove that T(N) = s(N) log M(N) is minimal CTE for Cn(K(N), M(N)), 
it is sufficient to show that, for the sequence of initial states Y~ = M(N)ekN 

and the sequence of sets AN = {Y: I I: YI- M(N)v(BN)1 :S %(M(N))5/6}, 
IEBN 

statements (11.5) and (11.6) hold. Similarly to the previous case, statement 
(11.5) will follow from the next two statements: 

(11.17) 

uniformly in t as N ~ 00, and 

(11.18) 

where the constant C1 > 0 is the same as in Definition 11.4.2 and N is suffi­
ciently large. Statement (11.17) follows from Lemma 11.6.3. To prove (11.18), 
let us use Condition 2 of Definition 11.4.2. We have 

IP {~(t(N)) E BNI~(O) = kN} - V(BN) I > C1 exp (-r1t(N)/s(N)) 
C1 exp (-r1Iog M(N)/¢(N)) 

> C1(M(N))-1/6 
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for large N. Statement (11.6) follows from (11.4). 
This completes step 2 and the proof of the theorem. • 
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Applications of Infinite-Dimensional Gaussian 
Integrals 

A. M. Nikulin 

St. Petersburg State Technical University, St. Petersburg, Russia 

Abstract: In this chapter, the difference between an absolute moment of any 
Gaussian measure on the Hilbert space and the same moment of its projection 
onto some finite-dimensional subspace is evaluated. 

Keywords and phrases: Gaussian measure, Hilbert space, Banach space, 
infinite-dimensional Gaussian integral 

Let X = L2 be the separable Hilbert space and J-L be a Gaussian measure 
on X. Suppose that the mean value of the measure J-L is equal to zero: aJ.i = 0. 

The correlative operator KJ.i is a symmetric positive kernel operator: its 
eigenvectors form an orthogonal basis, its eigenvalues )..k are positive and 

ex:> 

I.:)..k < 00, )..k ;:::,0 k E IN. 
k=l 

In this case, it is natural to choose the following orthonormal basis {ed ~1 of 
the space X that ek, k = 1,2, .. . are the eigenvectors of KJ.i' which is enumerated 
in decreasing order of the corresponding eigenvalues: 

Note that 
ex:> 

A(n) = I.: )..k ---t 0, n ---t 00. 

k=n+l 

In the case supp J-L = X, our measure is a product measure. Consider the system 
of projectors 
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where 

and (.,.) is the scalar product in X. 
Let 11·11 be the Hilbert norm in X, II· lin the semi-norm in Xn generated by 

7rn , n E IN, and 

Theorem 12.1.1 Under these conditions, we have 

Vp ~ 1 3C1,p,JL < 00, C2,p,JL < 00 

such that 

C1,p,JLA(n) ~ ,0.n,p = J h(x) dJ1(x) - J hn(x) dJ1(x) ~ C2,p,JL A(n). 
x x 

For the proof of this theorem, we need the following result [see Fernique 
(1970) and Ledoux and Talagrand (1991)] 

Theorem [Fernique (1970)] Let (E,8) be a measurable vector space, X be a 
Gaussian vector with values in E, and N be a semi-notm in E. Then if the 
probability P{N(X) < oo} is strongly positive, there exists c > 0 such that 

Va < c: E{exp(aN2 (X))} < 00. 

Using this result we obtain 

Note that 

because 

Vp> 0 : J IlxIIPdJL(x) < 00. 

x 

,0.n,p = J h(x) dJL(x) - J hn(x) dJL(x) 
x x 

For the proof, it is necessary to prove some auxiliary results. 

Lemma 12.1.1 Vx,y> 0, Vp ~ 1, 
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The proof of Lemma 12.1.1 is evident; 

With the notation 
00 

In(x) = 2.:= X~, 
k=n+l 

we notice that 

00 00 

2.:= (KJLek, ek) = 2.:= Ak = A(n). 
k=n+l k=n+l 

Lemma 12.1.2 For all p > 0, there exist Kp < 00 and Cp < 00 such that 

KpA(n) :s J In(x)llxIIPdJ-l(x) :S CpA(n). 
x 

PROOF OF LEMMA 12.1.2. Let us find the upper bound. Denote 

00 

~ = 2.:= x; 
i=n+l 

Then it is sufficient to show that 

and 
n 

_" 2 a - ~xi' 

i=l 
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Let m E IN, p/2:S m. We decompose the mathematical expectation in the 
sum 

E {~(a + ~)~} E {~(a + ~)h[O,lJ(a +~) } + E {~(a + ~)~lJl,oo[(a +~)} 
< E~+E{~(a+~)m}=h+h. 

By the independence of a and ~, there is 

m m 

h = L C~E~k+lam-k = L C~Eam-kE~k+l. 
k=O k=O 

Because 
00 

a:S LX; and E~ = A(n), 
i=l 
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it is sufficient to show that there exists a constant independent of n and, prob­
ably, independent of the measure J-l, but depending on m: 

:3 Canst = Canst (m) < 00: E~k::; Canst E~. 

Let Ii = xI, i E IN, and it is evident that Ii are independent; 

for 
I 

81 oF 82 oF ... oF 81, L mi = k. 
i=1 

Therefore, we can compute 

I I k 

E/il .. 'Iik = II Ex;;nj = II (2mj - 1)!!.A~j = Cm1, ... ,ml II .Air' 
j=1 j=1 r=1 

It is clear that 

Thus we obtain 

where 

Canst = Am {f .Ai}k-l 
2=1 

Now we can look for the lower bound. We have 

where 

J In(x)llxIIPdJ-l(x) = It + 12 , 

X 

Canst E~, 

It = J In(x)llxIIPdJ-l(x), 
A 

h = J In(x) IlxIIPdJ-l(x), 
B 

A = {x EX: 0 < Ilxll < I}, B = {x EX: Ilxll ~ I}. 

It is evident that 
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We first look at h: By Cauchy-Schwartz inequality, we obtain 

{J In(X)~d/-L(X)}2 <; J In(x}llxIIPdl'(x} J II·xll-Pd,,(x}. 
A A A 

For estimating a lower bound of h, it is sufficient to prove that the second 
factor is finite. It is clear that, without loss of generality, we can suppose that 
Aj > 0 for infinite numbers of j. In this case, for any m > 0 

Thus, for m > p + 1 

< J [[x[[-Pd/-L(x) = f: J [[x[[-Pd/-L(x) 

x k=O k~l :Sllxll<i 
00 1 

< l:(k + l)P/-L([[x[[ < y) 
k=O 

00 1 
< C(m)(l: (k + l)P km + 1) < 00. 

k=l 

Consequently, 

'tip> 0 J [[x[[-Pd/-L(x) < 00. 

X 

So we have proved that 

Therefore, 

for example 

K = min J!._ , {6 I} 
P 2 '2 

Now let us find the lower bound for integral 



182 

By the Holder inequality, we get 

Thus 

The numerator of the fraction is equal to 

Now if we consider 

then 

1= J In(X)2dJ.L(x), 
X 

A. M. Nikulin 

I [ Ct x~) C~J x~) dl'(x) = k~j x~ Jt1 x;dl'(x) 

kt {Ext + [ x~dl'(x) [j~1"k xjdl' (x) } 

L {Ext + Ak(A(n) - Ak) }, EXk = Ak, Xk E N(O, Ak). 
k=n+l 

It is known that Ext = 3A~. Then 
(Xl (Xl 

I = I: {3A~ + Ak(A(n) - Ak)} = I: {2A~ + A(n)Ak}. 
k=n+l k=n+l 

In other words, 
(Xl 

1= A(n)2 + 2 I: A~::; 3A(n)2, 
k=n+l 

from which we conclude 
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so that 

J In(x)llxIIPdfL(X) ~ KpA(n). 
x 
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Remark 12.1.1 In the proof of Lemma 12.1.2, a stronger bound was obtained 

Remark 12.1.2 In fact, our constant Const = Const(m) is depending on the 
measure fL, since the covariate operator and its eigenvalues are defined only by 
the measure fL. 

Remark 12.1.3 In this lemma, it was shown that if we have a sequence 

{An}~=l' such that 

00 

'rIn E IN An > 0, L An < 00 

n=l 

and a sequence {Zn}~=l Li.d. standard Gaussian random variables 

'rIn E IN Zn E N(O, 1), 

we get 

We need the following result 

Lemma 12.1.3 With the same notations, we have 

'rip E [0, 1] "=:J(p < 00, Cp < 00 

such that 

PROOF OF LEMMA 12.1.3. Let us find the upper bound. Therefore, we de­
compose the integral in (*) into the sum of two integrals 

where 



184 A. M. Nikulin 

A = {x EX: 0 < Ilxll ~ I}, B = {x EX: Ilxll > I}. 

Consider each integral separately; by the Cauchy-Schwartz inequality, we obtain 

It must be noted that in Lemma 12.1.2 we have proved that 

Vp> 0 J IIxlI-Pdf.L(x) < 00. 

x 

Therefore, h < 00. Using Remark 12.1.1, we obtain Eln(X)2 < const{A(n)}2, 
hence Jt ~ CpA ( n). It is evident that 

h ~ J In(x) df.L(x) < J In(x) df.L(x) = A(n), 
B X 

so 1 = h + h ~ CpA(n) holds. Now we go on to find the lower bound of 
our integral. For that we decompose it into the sum of the same two integrals: 
1 = h + h. Consider each integral separately as 

Furthermore, we estimate 12 : 

and therefore 

Thus 

[ ~I;~; dl'(x) ~ constp {[ In(x)tdl'(X) }' , constp < 00, 

and by using the result of Lemma 12.1.2 

{[In(X)tdl'(X) }' ~ CAin), C < 00, 
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we conclude that there exists a constant Kp < 00 such that 

o<p:::;1. 

PROOF OF THEOREM 12.1.1. The special case p = 2 

~n,2 = J IlxI1 2dJ.L(x) - J IIxlI~dJ.L(x) = J In(x) dJ.L(x) = A(n) 
x x x 

delivers the result of our theorem. Let p ~ 1, p i= 2. Then 

{ n oo}P {n }P 2: x~ + 2: x~ - 2: x~ 
IIxliP _ IIxllP = k=l k=n+l k=l 

n IIxlip + IIxll~ 

By using Lemma 12.1.1, let us estimate the numerator of this fraction: 

and note that 

Therefore, 

By using Lemma 12.1.2 (when p > 2) or the Lemma 12.1.3 (when 1 :::; p < 2), 
we obtain constants C1,p < (Xl and C2,p < (Xl so that 

C1,pA(n) :::; ~n,p :::; C2,pA(n), 

which concludes the proof. • 
Now we shall give some applications. Consider the Brownian motion ~(t) in 

the interval t E [0, 1]. Let J.L be the distribution of ~ in the space L2 [0, 1]. 
In this case, the correlative operator is the integral operator with the kernel 

[see Gikhman and Skorohod (1971)] 

B(t, s) = min(t, s). 

Its eigenvectors are the functions [see Gikhman and Skorohod (1971)] 

{ 'Pn (t) } ~=o, 'Pn (t) = J2 sin { ( n + ~) 7rt } , 
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and its eigenvalues corresponding are 

1 
An = ( 1)2 2· n + '2 7r 

Thus, we can decompose our process in the orthogonal sum 

where {an (w)} ~=o is the sequence of Li.d. standard Gaussian random variables. 
At any fixed time i, we have the convergence with probability 1. Furthermore, 
we have the uniform convergence in [0,1] and the limit (continuous almost sure) 
is the Wiener process in [0,1]. 

Let h be the norm in the space L2[0, 1]. By using Theorem 12.1.1, we obtain 

C1,pA(n) ~ J IllxllP -llxll~1 dJ.L(x) ~ C2,pA(n), p ~ 1, 
X 

II . II = II . IIL2' C1,p < 00, C2,p < 00, 

00 00 1 Con~ 
A(n) = L Ak = L ( 1)2 2 rv --, 

k=n+l k=n+l n + '2 7r n 

where J.L is the Wiener measure in the space L2[0, 1]. 

Remark 12.1.4 In fact, we can rewrite our inequality 

where 
n sin{(k+~)7ri} 

~n(w, t) = V2L ak(w) ( 1) . 
k=O k + '2 7r 

Now we look at another example. Let (= {((i), i E [0, I]} be the random 
process connected with the Brownian motion 

((i) = ~(t) - t~(I), 

(it is the Brownian bridge). Then, ( is the Gaussian process and its correlative 
operator is the integral operator with the kernel 

Bl(t, s) = min(i, s) - is. 

Its eigenvectors are {'Pn(i)}~=l and its eigenvalues are {An}~=l [see Gikhman 
and Skorohod (1971)] 

'Pn(i) = J2sin{n7ri}, 
1 

An = 22 n E IN. 
n7r 
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Thus, we can decompose our process into the orthogonal sum 

;- ( ) _ 0 ~ () sin { mrt} ., w, t - v L, ~ an w , 
n=l nJr 

where {an(w)}~=o is the sequence ofi.i.d. standard Gaussian random variables. 
By using Theorem 12.1.1, we obtain 

Ci,pA(n) :::; J IllxllP -llxll~1 dJ-L(x) :::; C2,pA(n), p ~ 1, 
X 

11·11 = 11·IIL2' Ci,p < 00, C2,p < 00, 

A(n) = ~ Ak = ~ _1_ '" Const*, 
~ ~ n 2Jr2 n 

k=n+l k=n+l 
where J-t is the measure generated by our process in L2 [0, 1]. 

Remark 12.1.5 In fact, we can rewrite our inequality 

where 
In ~ sin { kJrt} 

(n(w ,t) = v2~ak(w) k . 
k=l Jr 

It can be proved that a change of the basis of the space X does not improve 
the order of decrease of the value b.n,p . We plan to publish this result in a 
future article. 
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On Maximum of Gaussian Non-Centered Fields 
Indexed on Smooth Manifolds 

Vladimir Piterbarg and Sinisha Stamatovich 

M. V. Lomonosov Moscow State University, Moscow, Russia 
University of Montenegro, Montenegro, Yugoslavia 

Abstract: The double sum method of evaluation of probabilities of large devi­
ations for Gaussian processes with non-zero expectations is developed. Asymp­
totic behaviors of the tail of non-centered locally stationary Gaussian fields 
indexed on smooth manifolds are evaluated. In particular, smooth Gaussian 
fields on smooth manifolds are considered. 

Keywords and phrases: Gaussian fields, large excursions, maximum tail 
distribution, exact asymptotics 

13.1 Introduction 

The double-sum method is one of the main tools in studying asymptotic be­
havior of maxima distribution of Gaussian processes and fields; for example, 
see Adler (1998), Piterbarg (1996), Fatalov and Piterbarg and (1995) and ref­
erences therein. Until recently, only centered processes have been considered. 
It can be seen from Piterbarg (1996) and this Chapter that the investigation of 
non-centered Gaussian fields can be performed with similar techniques, which, 
however, are far from trivial. Furthermore, there are examples when the need 
for the asymptotic behaviour for non-centered fields arises. In Piterbarg and 
Tyurin (1993, 1999), statistical procedures have been introduced to test non­
parametric hypotheses for multi-dimensional distributions. The asymptotic de­
cision rules are based on tail distributions of maxima of Gaussian fields indexed 
on spheres or products of spheres. In order to estimate power of the procedures, 
one might have to have asymptotic behaviour of tail maxima distributions for 
non-centered Gaussian fields. 
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In this Chapter we extend the double sum method to study Gaussian pro­
cesses with non-zero expectations. We evaluate asymptotic behavior of the tail 
of non-centered locally (at, Dt)-stationary Gaussian field indexed on smooth 
manifolds, as defined below. In particular, smooth Gaussian fields on smooth 
manifolds are considered. 

13.2 Definitions, Auxiliary Results, Main Results 

Let the collection ai, ... , ak of positive numbers be given, as well as the collection 
it, ... , lk of positive integers such that 2:f=1 li = n. We set lo = O. These two 
collections will be called a structure; see Piterbarg (1996). For any vector 
t = (tl' ... , tn ) T its structural module is defined by 

It la = t ( ~ t;) ~i , 

i=1 j=E(i-l)+1 

(13.1) 

where E(i) = 2:;=0 lj, j = 1, ... , k. The structure defines a decomposition of 

the space Rn into the direct sum Rn = EBf=1 Rli, such that the restriction of the 
structural module on either of Rli is just Euclidean norm taken to the degree 
ai, i = 1, ... , k, respectively. For u > 0, denote by G~ the homothety of the 
subspace Rli with the coefficient u-2/ ai , i = 1, ... , k, respectively, and by gu, 
the superposition of the homotheties, gu = 07=1 G~. It is clear that for any 
tERn, 

(13.2) 

Let x( t), tERn, be a Gaussian field with continuous paths, the expected value 
and the covariance function are given by 

EX(t) = -Itla, Cov(x(t), X(s)) = Itla + Isla - It - sla, (13.3) 

respectively. Thus, X( t) can be represented as a sum of independent multi­
parameter drifted fractional Brownian motions (Levy-Shonberg fields) indexed 
on Rli, with parameters ai. 

To proceed, we need a generalization of the Pickands' constant. Define the 
function on measurable subsets of Rn , 

Ha(B) = exp "{sup X(t)} . 
tEE 

(13.4) 

Let D be a non-degenerate matrix n x n, and throughout we make no notational 
difference between a matrix and the corresponding linear transformation. Next, 
for any S > 0, we denote by 

[0, S]k = {t: 0:::; ti :::; S, i = 1, ... , k, ti = 0, i = k + 1, .. , n}, 
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a cube of dimension k generated by the first k coordinates in Rn. In Belyaev 
and Piterbarg (1972), it is proved that there exists a positive limit 

(13.5) 

where mesk(D[O, 8]k) denotes the k-dimensional Lebesgue measure of D[O, 8]k. 
We write shortly H~k) = H£Rk with I being the unit matrix. The constant 

Ha = H~n) is the Pickands' constant. Denoting 

(13.6) 

it is well known that 

as u -+ 00. (13.7) 

Lemma 13.2.1 Let, X(t), tERn, be a Gaussian homogeneous centered field. 
Let for a non-degenerate matrix A and a-structure on Rn , the covariance func­
tion r(t) of X(t) satisfies 

r(t) = 1 - IAtia + o(IAtla ) as t -+ o. (13.8) 

Then for any compact set TeRn and any function O(u) with O(u) -+ 1 as 
u -+ 00, 

p { sup X(t) > UO(U)} = Ha(AT)'l1(uO(u)) (1 + 0(1)) as u -+ 00. (13.9) 
tEguT 

Definition 13.2.1 Let an a-structure be given on Rn. We say that X(t), 
t ETc Rn , has a local (a, Dt)-stationary structure, or X(t) is locally (a, D t )­

stationary, if for any c > ° there exists a positive 6(c) such that for any sET 
one can find a non-degenerate matrix Ds such that the covariance function 
r(tl' t2) of X(t) satisfies 

1- (1 + c)IDs(tl - t2)la ~ r(tl, t2) ~ 1- (1 - c)IDs(tl - t2)la 

provided Iitl - sll < 6(c) and IIt2 - sll < 6(c). 

(13.10) 

It is convenient to cite here four theorems which are in use, and are suitable 
for our purposes. Before that, we need some notations. Let L be a k-dimensional 
subspace of Rn , for fixed orthogonal coordinate systems in Rn and in L, let 
(Xl, ... , Xk) T be the coordinate presentation of a point x E L, and (xl, ... x~) T 

be its coordinate presentation in Rn. Denote by M = M(L) the corresponding 
transition matrix, 
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i.e., M = ({hU8Xj, , i = 1, ... , n, j = 1, ... , k). 
Next, for a matrix G of size n x k we denote by V(G), the square root of the 

sum of squares of all minors of order k. This invariant transforms the volume 
when the dimension of vectors is changed, i.e., dt = V(G)-ldGt. Note that 
since both coordinate systems in Land Rn are orthogonal, V(M) = 1. 

Theorem 13.2.1 [Piterbarg (1996, Theorem 7.1)] Let X(t), tERn, be a 
Gaussian homogeneous centered field such that for some a, 0 < a :S 2 and a 
non-degenerated matrix D, its covariance function satisfies 

ret) = 1-IIDtW~ + o(IIDtIILt) as t --t 0, (13.11) 

Then for any k, 0 < k :S n, every subspace L ofRn with dimL = k, any Jordan 
set A c L, and every function w(u) with w(u)ju = 0(1) as u --t 00, 

P {suPX(t) > u + W(U)} 
tEA 

= Hik)V(DM(L))mesL(A)u 2: W(u + w(u))(l + 0(1)) 

as u --t 00, provided 

ret - s) < 1 for all t, sEA, t =I s, 

with A the closure of A. 

(13.12) 

(13.13) 

Theorem 13.2.2 [Michaleva and Piterbarg (1996, Theorem 1)] Let X(t), t E 
Rn , be a Gaussian centered locally (a, Dt)-stationary field, with a > 0 and a 
continuous matrix function Dt . Let M c Rn be a smooth compact of dimension 
k, 0 < k :S n . Then for any c, 

P {sup X(t) > u - c} 
tEM 

= Hik)u 2: W(u - c) 1M V(DtMt ) dt(1 + 0(1)) (13.14) 

as u --t 00, where Mt = M(Tt) with Tt the tangent subspace taken to M at the 
point t and dt is an element of volume of M. 

Theorem 13.2.3 [The Borell-Sudakov-Tsirelson inequality] Let X(t), t E T, 
be a measurable Gaussian process indexed on an arbitrary set T, and let numbers 
(J, m, a be defined by relations 

(J2 = sup VarX(t) < 00, m = sup EX(t) < 00, 
tET tET 

and 

P {suPX(t) - EX(t) ~ a} :S ~. 
tET 2 

(13.15) 
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Then for any x, 

p { ~~t X (t) > } ~ 2w (X - ; - a) . (13.16) 

Theorem 13.2.4 [Slepian inequality] Let X(t), Y(t), t E T, be separable 
Gaussian processes indexed on an arbitrary set T, and suppose that for all 
t,s E T, 

VarX(t) = VarY(t), EX(t) = EY(t), 

and (13.17) 

Cov(X(t),X(s)) < Cov(Y(t), Y(s)). 

Then for all x, 

P {suPX(t) < x} ~ P {sup Y(t) < x} . 
tET tET 

(13.18) 

We now turn to our main results. 

Theorem 13.2.5 Let X(t), tERn, be a Gaussian locally (a, Dt)-stationary 
field, with some a > 0 and continuous matrix function Dt . Let M c R n be a 
smooth k-dimensional compact, 0 < k ~ n. Let the expectation m(t) = EX(t) 
be continuous on M and attains its maximum on M at the only point to, with 

m(t) = m(to) - (t - to)B(t - to) T + O(llt - toI12+(3 ) as t ---t to, (13.19) 

for some (3 > 0 and positive matrix B. Then, 

P { sup X (t) > u} 
tEM 

7rk / 2 2k k 

~===::::::;:;;=::::::::==V(DtoM) H!})u a - 2w(u - m(to))(l + 0(1)) 
v'detMTBM 

as u ---t 00, where M = M(Tto) and Tto is the tangent subspace to M taken at 
the point to. 

Theorem 13.2.6 Let M c R n be a smooth k-dimensional compact, 0 < k ~ n. 
Let X(t), tERn, be a differentiable in square mean sense Gaussian field with 
VarX(t) = 1 for all t E M and r(t, s) < 1 for all t, s E M, t -I- s. Let the 
expectation m(t) = EX(t) be same as in Theorem 13.2.5. Then, 

P { sup X (t) > u} 
tEM 

JV(~AtoM) k 

= v' u 2w(u - m(to))(l + 0(1)) 
detMTBM 
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as u -; 00, with M as in Theorem 13.2.5 and Ato the covariance matrix of the 
orthogonal projection of the gradient vector of the field X (t) in point to onto 
the tangent subspace to the M taken at the point to. 

13.3 Proofs 

PROOF OF LEMMA 13.2.1. First, observe that if one changes gu on gu(}(u) , the 
lemma immediately follows from Lemma 6.1 of Piterbarg (1996). Second, ob­
serve that we can write guT = gu(}(u)(IuT ), where Ju is a linear transformation 
of Rn , which also is a superposition of homotheties of R ki with coefficients tend­
ing to 1 as u -; 00. Thus Ju tends to identity, and JuT tends to T in Euclidean 
distance. Third, note that Ha(T) is continuous in T in the topology of the space 
of measurable subsets of a compact, say K, generated by Euclidean distance. 
To prove that, observe that X is a.s. continuous and Ha(T) ~ Ha(K) < 00, for 
all T c K, and use the dominated convergence theorem. These observations 
imply the Lemma assertion. • 

PROOF OF THEOREM 13.2.5. Let Tto be the tangent plane to M taken at the 
point to. Let Mo be a neighbourhood of to in M, so small that it can be one-to­
one projected on Tto' We denote by P the corresponding one-to-one projector 
so that P Mo is the image of Mo. The field X(t), t E M, generates on P Mo 
a field X(t) = X(t), t = Pt. It is clear that EX(t) = m(t) = m(p-It). We 
denote by r(t, s) = r(t, s) the covariance function of X(t). Choose an arbitrary 
c: E (0, ~). Due to the local stationary structure, one can find 80 = 8(c:) > 0 
such that for all tl, t2 E Tto n 8(80, to), where 8(80, to) is centered at to ball 
with radius 80 , we have 

exp {-(1 + c:)IIDto(tl - t2)lla } ~ r(tl' t2) ~ exp {-(1 - c:)IIDto(tl - t2)lla}. 
(13.20) 

We also can assume 80 to be so small that we could let Mo = p-l [Tto n 8(80, to)] 
and think of P Mo as a ball in Tto centered at to = to, with the same radius. 
Denote MI = M \ Mo. Since m(t) is continuous, 

sup m(t) = m(to) - co, 
tEMl 

with Co > O. By Theorem 13.2.2, for Xo(t) = X(t) - m(t) we have 

p { sup X (t) > u} 
tEMl 

= P { sup Xo(t) + m(t) > u} 
tEMl 
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~ p { sup Xo(t) > u - m(to) + co} 
tEMl 

Hik)U 2': w(U - m(to) + co)(l + 0(1)) r V(DtMt ) dt 
1Ml 

o(w(u - m(to) + CI)), (13.21) 

for any CI with 0 < CI < Co. 
Now turn to Mo. Note that 

p { sup X(t) > u} = P {_ sup X(t) > u} . (13.22) 
tEMo tEPMo 

Introduce a Gaussian stationary centered field XH(t), tERn, with covariance 
function 

rH(t) = exp{ -(1 + 2c)IIDtotllD!}. 

From (13.22) by Slepian inequality, 

p {_ sup X(t) > u} ~ P { sup XH(t) + m(t) > u} . 
tEPMo tEPMo 

(13.23) 

It is clear that, without loss of generality, we can put the origin of Rn at the point 
to, so that the tangent plane Tto is now a tangent subspace and to = to = O. 
From this point on, we restrict ourselves to the k-dimensional subspace no and 
will drop the "tilde". Let now 8 = 8(0,8) be a ball in Tto centered at zero 
with radius 8 with 8 = 8(u) = u- I / 2 10gl / 2 u, and this choice will be clear later 
on. For all sufficiently large u, we have 8 c P Mo, and there exists a positive 
CI such that 

p { sup XH(V) + m(v) > u} 
vEScnPMo 

< P { sup XH(V) > U - m(to) + CI 82 (u)} 
vEscnPMo 

< P { sup XH(V) > u - m(to) + CI 82 (u)} . 
VEPMo 

(13.24) 

Applying Theorem 13.2.1 to the latter probability and making elementary cal­
culations we get 

p { sup XH(V) + m(v) > u} = 0 (w(u - m(to))) as u --> 00. (13.25) 
vEscnPMo 

Turn now to the ball 8. Let VI = (Vll, ... ,Vnl), ... , Vk = (VIk, ... ,Vnk) be an 
orthonormal basis in no given in the coordinates of Rn. In the coordinate 
system, consider the cubes 

~o = u-2/D![O, TJk, ~l = u-2/D! X~=I [lvT , (lv + l)T], 
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We have 

L P {Ai} - L P {AiAj} ::; P {SUPXH(V) + m(v) > u} ::; L P {Ai}, 
iEL ijEL' ,i;t'J vES iEL' 

(13.26) 

where Ai = {SUPVEAj XH(V) + m(v) > u}, L' is the set of multi-indexes i with 
~i n S i- 0, and L is the set of multi-indexes i with ~i C S. Using (13.19), we 
have 

P { sup XH(V) + m(v) > u} 
vEAj 

::; P {sup XH(V) + m(to) - min IIVBvI12 + Wl(U) > u} . 
VEA, vEAi 

Here, UWl(U) ~ 0 as u ~ 00 because of the choice of 6'(u) and the remainder 
in (13.19). By Lemma 13.2.1 and the equivalence 

(recall that we have assumed to = to = 0), there exists a function '/'1 ( u), with 
'Yl ( u) ~ 0 as u ~ 00, such that for all sufficiently large u and every i E L', 

P { sup XH(V) + m(v) > u} 
VELlI 

< (1 + "11 (u))Ha ((1 + c)l/a Dto [0, TJk) 

X \II (u -m(to) + min IIVBvI12 + Wl(U)) . 
vEAl 

(13.27) 

Using similar arguments, we obtain, that there exists 12(U) with 12(U) ~ 0 as 
u ~ 00, such that for all sufficiently large u and every i E L, 

P { sup XH(V) + m(v)u} 
vEAl 

> (1 - 12 (u))Ha ((1 + c)l/a Dto [0, T]k) 

X \II (u -m(to) + min IIVBvI12 + W2(U)) , 
vEAl 

(13.28) 

where UW2(U) ~ 0 as u ~ 00. 

Now, in accordance with (13.26), we sum right-hand parts of (13.27) and 
(13.28) over L' and L, respectively. Using (13.7), we get for all sufficiently large 
u 
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.LLI \II (u -m(to) + ~~ I I v'Bv 112 + W1(U)) 
IE 

:::; (1 + 'Y~ (U))\II(U - m(to))T-kU2k/o 

x L exp {-u min IIv'Bv112 + 0 (l/U)} T ku-2k/o , (13.29) 
• L' vEll.i IE 

where 'Yl(u) -+ 0 as u -+ 00. Changing variables w = JUt and using the 
dominated convergence, we get 

.LLI exp {-u ~~ IIv'Bv112 + 0 (l/U)} 
IE 

= T-k r exp{ -Bw, w}dwu2k/o-k/2(1 + 0(1)) 
1Tto 

(13.30) 

as u -+ 00. Note that dw means here k-dimensional volume unite in Tto' 

Similarly, 

L exp {-u min IIv'Bv112 + 0 (l/U)} 
. L vEll.i 
IE 

= T-k r exp{ -Bw, w}dwu2k/o-k/2(1 + 0(1)) 
1Tto 

(13.31) 

as u -+ 00. In order to compute the integral J", exp{ - Bw, w }dw, we note that 
.Lto 

w = Mt, where t denotes the vector w presented in the orthogonal coordinate 
system of Tto' and recall that in this case V(M) = 1. Hence, 

r exp{ -Bw, w}dw 
1Tto 

Thus, for all sufficiently large u, 

= r exp{-BMt,Mt}dt 
1Tto 

1rk/2 
---;:;===== =' e* 
Vdet(MT BM) . . 

(13.32) 

L P{Ai} :::; (1 +'Y?(u))Ho ((1 + €)1/0 Dto[O, tlk) e*T-ku2k/o-k/2\I1(u - m(to)) 
iEL' 

(13.33) 
and 

L P{ Ai} 2:: (1- 'Y? (u) )Ho ((1 + € )1/0 Dto [0, tlk) e*T-ku2k/o-k/2\I1( u - m(to)), 
iEL 

(13.34) 
where 'Y~(u) -+ 0 as u -+ 00. 
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Now we are in a position to analyze the double sum in the left-hand part of 
(13.26). We begin with the estimation of the probability 

p { sup XH(t) + m(t) > u, sup XH(t) + m(t) > u} , 
tEAl tEA2 

with 
.::\1 = u-2/ a X~=l [S~, T~], Sv < Tv, v = 1, ... , k, 

.::\2 = u-2/ a (w+ X~=l [S~,T~l), S~ < T~, v = 1, ... ,k, 

where w, Tv, Sv are such that p(.::\l' .::\2) > 0, with p(., .) being the Euclidean 
distance in Rk. Recall that .::\i n S(O, 8(u)) i- 0, i = 1,2. Estimation of this 
probability follow the proof of Lemma 6.3 of Piterbarg (1996), but since the 
expectation of the field varies, more details have to be discussed, and so we give 
complete computations. Denote 

We have 

p {sup XH(t) + m(t) > u, sup XH(t) + m(t) > u} 
tEAl tEA2 

:S P {sup XH(t) > u()(u), sup XH(t) > U()(U)} . (13.35) 
tEAl tEA2 

Introduce a scaled Gaussian homogeneous field ~(t) = X H ((1 + 2c:)-1/a Dt;;lt). 
Note that 

p {sup XH(t) > u()(u), sup XH(t) > U()(U)} 
tEAl tEA2 

= P { sup ~(t) > u()(u), sup ~(t) > U()(U)} . 
tE(l +e:)l/a DtoKl tE(l+e:)l/a DtOK2 

(13.36) 

We have for the covariance function of ~, 

as t ---+ O. 

Hence there exists co, co> 0, such that for all t E B(co/5) = {t: Iltlla < co/5}, 

(13.37) 

Let u be as large as 
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We have for the field Y(t, s) = ~(t) + ~(s), 

p {sup ~(t) > u()(u), sup ~(t) > U()(U)} :S p { sup Y(t,s) > 2U()(U)}. 
tEK~ tEK~ (t,S)EK~ xK~ 

(13.38) 
For all t E Kf, s E K 2, we have lit - sWl< :S 211tWl< + 211sll0< < co. Since Dto is 
non-degenerate, for some"" > 0 and all t, IIDtot11 2 ""lltll. The variance of Y 
equals a}(t, s) = 2 + 2r.;(t - s), hence for all t E Ki, s E K 2, we have 

(13.39) 

This implies that 
inf a 2 (t,s) 24 - 4co > 2 

(t,S)EK~ xK~ 
(13.40) 

provided cO is sufficiently small, and 

sup a2(t, s) :S 4 - u-2(1 + 2c)""o<pO«K1' K2) =: h(u, K1, K2) (13.41) 
(t,S)EK~ xK~ 

For the standardized field Y*(t,s) = Y(t,s)/a(t,s), we have 

p { sup Y(t, s) > 2U()(U)} 
(t,S)EK~ xK~ 

:S p { sup Y*(t,s) > 2U()(U)h-1/2(U,K1,K2)}. (13.42) 
(t,S)EK~ xK~ 

Algebraic calculations give 

(13.43) 

Let 171 (t), 172 (t), t ERn, be two independent identically distributed homoge­
neous Gaussian fields with expectations equal zero and covariance functions 
equal 

r*(t) = exp(-321Itlla). 

Gaussian field 

is homogeneous, and its covariance function is 

r**(t,s) = ~ (exp(-321Itlla +exp(-321Isll a). (13.44) 

As far as for the covariance function r***(t,s;t1,Sl) of the field Y*, we have 

(13.45) 
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for all (t, s), (t1, st) E Ki x K 2, for these (t, s), (t1' st) we also have that 

r***(t, s; t1, Sl) 2: r**(t - t1; s - Sl). 

Thus by Slepian inequality, 

P { sup Y*(t,s) > 2UfJ(U)h-1/2(U,K1,K2)} 
(t,S)EKi xK~ . 

::; P { sup 'I7(t,s) > 2UfJ(U)h-1/2(U,K1,K2)}. (13.46) 
(t,s)EKi xK~ 

Further, for sufficiently large u, 
0< 

4u2fJ2(u)h-1(u, K1, K2) 2: u2fJ2(u) + ~ pO«K1, K2). (13.47) 

Using the last two relations, Lemma 13.2.1 and (13.7), we get 

P { sup XH(t) + m(to + t)u, sup XH(t) + m(to + t)u} 
tE~l tE~2 

::; C\I!(ufJ(u))Ho«16(DtoKl X DtoK2)) exp ( - ~~PO«K1' K2)) 

:0 C, n (T~ - S~) n (T'; - S~) exp ( -7~ p"(K" K2 )) w( u8( u)), 

(13.48) 

which holds for all sufficiently large u and a constant C1, independent of u, K1, 
K 2. In order to estimate Ho«16(DtoKl x DtoK2)), we use here Lemmas 6.4 
and 6.2 from Pickands (1969). 

Now turn to the double sum 2:iJEL' P(AiAj). We break it into two sums. 
The first one, denoted by ~1, is the sum over all non-neighbouring cubes (that 
is, the distance between any two of them is positive), and the second one, 
denoted by ~2, is the sum over all neighbouring cubes. Denote 

Using (13.48), we get 

Xi = min IlvEtll, i E L'. 
tE~i 

P(AiAj) ::; CO<T2k exp (- f<i,100< TO< ( max lil/ - )1/1- 1)0<) \I!(ufJ(u)) =: fJij , 
lSVSk 

(13.49) 
where fJ(u) = 1 - c(u), c(u) = max{maxtE~i m(to + t), maxtE~j m(to + t)}. 
This estimation holds for all members of the first sum and all sufficiently large 
u. Using it and approximating the sum by an integral, we get 

'""" '""" * * k (f<i,0< 0<) 2k k ~1 ::; 2 L.,; L.,; fJij ::; c e T exp -lOT uC;--2"\I!(u - m(to)). 
iEL' jEL', i;;tj, Xi <Xj 

(13.50) 
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Now consider ~2' We can assume that maxtEb.j m(to+t) > maXtEb.j m(to+t). 
Denote 

Clearly, 

P{AjAj } :S P {s~; XH(t) > uB(u) } 

+P {s::r XH(t) > uB(u), s~; XII(t) > uB(u) }. (13.51) 

Using now Lemma 13.2.1, (13.51), (13.48) and approximating the sum by an 
integral, we get for all sufficiently large u 

(13.52) 

Taking into account (13.33), (13.34), (13.50) and (13.52), we get for all positive 
T 

(13.53) 

Now, letting T go to infinity and using (13.25), we obtain 

as u -700. 

P {sup XH(t) + m(t) > u} 
tES 

= (1 + 2c)ke*V(DtoM)Hik)u 2:_~W(U - m(to))(1 + 0(1)) 

(13.54) 
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Let now X1(t), tERn, be a homogeneous centered Gaussian field with the 
covariance function 'r'H(t) = exp (-(1 - 2c)IIDtotWI<). From Theorem 13.2.4, 
we have 

P {suPX(t) > u} 2: P {SUPX1(t) + met) > u}. 
tES tES 

(13.55) 

Proceeding as above for the latter probability, we get 

as u -+ 00. 

P { sup X1(t) + met > u} 
tEL:rr 

= (1 - 2c)ke*V(DtoM)H5xk)u 2:_~1l1(U - m(to))(l + 0(1)) 

(13.56) 

Now we collect (13.21), (13.23), (13.54), (13.55) and (13.56), and get 

< l' . f P {SUPtEM X(t) > u} 
1m III (k) 2k k 
u->oo e*V(DtoM)Ho: uC;--"21l1(u - m(to)) 

< l' P {SUPtEM X(t) > u} (1 2)k 
1m sup (k) 2k k :S + c . 
u->oo e*V(DtoM)Ho: uC;--"21l1(u - m(to)) 

(13.57) 

It follows from this the assertion of the Theorem. • 
PROOF OF THEOREM 13.2.6. Let X(t) be the field as it is defined in the proof 
of Theorem 13.2.5. Using Tailor expansion, we get 

X(t) =X(t) = X(to)+ (gradX(to))T(t-to)+o(llt-toll), t-+to. (13.58) 

From here, it follows that 

(13.59) 

where grad is the orthogonal projection of the gradient of the field X onto the 
tangent subspace Tto to the M at the point to. From (13.59), it follows that 

(13.60) 

where Ato is the covariance matrix of the vector gradX(to). Note that the 
matrix J Ato/2 is just the matrix Dto from Theorem 13.2.5. Now the proof 
repeats up to all details of the proof of Theorem 13.2.5. • 
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Typical Distributions: Infinite-Dimensional 
Approaches 
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Abstract: Some approaches to possible infinite-dimensional versions of the 
phenomenon of existence of typical distributions for vector spaces of random 
variables are under discussion and comparison. 

Keywords and phrases: Measure concentration, typical distributions 

14.1 Results 

The existence and the structure of typical distributions of linear functionals 
on high-dimensional vector spaces with second order probability measures [Su­
dakov (1978), Nagaev (1982), Makarova (1985) and Weizsacker (1997)] as well 
as the existence of typical distributions for finite-dimensional vector spaces of 
high dimension of 2nd order random variables [Sudakov (1994)] are manifesta­
tions of a general concentration of measure phenomenon, which was intensively 
studied last years by Gromov, Milman, Talagrand and others. The majority 
of the known theorems about the existence of typical distributions deal with 
finite-dimensional vector spaces (measure spaces or spaces of random variables). 
The wish to obtain an extension of these results to the infinite-dimensional case 
seems to be quite natural, though the very existence of such an adequate ex­
tension is not evident and not trivial. 

Let E be a finite-dimensional vector space of random variables X with 
finite variances. This space is endowed with the canonical Euclidean structure 
induced from L2(rl, F, P), and hence, the notion of the standard Gaussian 
measure IE on E is well defined as well as the notion of rotation invariant 
distributions on E. Let M = M(R) stand for the space of all probability 
measures on R with finite first moment. The Kantorovich-Rubinstein distance 
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"'(/1, v) = I IF/-L (u) - Fv (u) I du will be usually considered on M. Note that M 
consists of all probability measures on R such that their ",-distance from some 
(and, hence, any) O-measure is finite. For arbitrary separable metric space S, 
the space M (S) is defined in a similar way. 

The existence of typical distributions phenomenon consist in existence, for 
every arbitrary small e > 0 and every E of dimension d = dim E large enough 
(depending on conly), a probability distribution PEE M (depending on E) 
such that it is "(1 - c)-typical for distributions LeX) = Po x-1", X E E 
being chosen at random according to a "natural" probability distribution m on 
E. For instance, m may be the image of IE under the homothety E 3 X ~ 
(dim E)-1/2 X or the probability measure uniformly concentrated on the unit 
ball or on the unit sphere (on the surface of the ball) of E. Let mE denote 
the uniform probability distribution on the sphere. It is known that for large 
dimension these three kinds of "natural" distributions are close each to other 
(for instance, in sense of Kantorovich-Rubinstein distance). Here, "(1 - e)­
typical" means that m-measure of the set of all such random variables X from 
E, for which ",(PE, LeX) does not exceed e, is (1 - c)-massive: 

m( X E E : ",(PE, LeX)) ::; c) 2: 1 - e. 

The measure PEcan always be chosen from the set of all mixtures of centered 
Gaussian univariate distributions. Instead of the Euclidean structure on E 
generated by the measure P, any stronger Euclidean norm can be used for 
definition of the class MNE of "natural" (i.e. certain rotation-invariant with 
respect to this stronger norm) measures 'Tn on E with not worse (not larger) rate 
of increasing dCe) or, the same, with not smaller rate of increasing of typicalness 
in dimension d. 

In other words, the phenomenon of existence of typical distributions means 
that the image £m = m 0 £-1 of the measure m under the map £: E 3 X ~ 
LeX) E (M, "') is sharply ",-concentrated close to some element PE of M, which 
is just typical distribution for elements of E. 

Another form of manifestation of this phenomenon is the existence of "typ­
ical distributions of linear functionals", or "typical marginals". Given a vec­
tor space F = E' of large dimension with 2nd order probability measure P 
on it, consider the (Euclidean) trace of L2 (P)-norm on the conjugate space 
F' = E" = E. Then for large dimensions for "natural" (in the previous sense) 
distributions m on the Euclidean space E, the assertion about existence of a 
typical for linear functionals on E' distribution with respect to P holds similarly 
to the previous case. 

Trivial reformulations of the given finite-dimensional assertions for the infi­
nite-dimensional case are senseless or even wrong: m-typical "elements" of E 
turn out not to be random variables for seemingly reasonable m. The property 
of (1 - c)-typicalness of a distribution PE for e = 0 must mean something like 
"essentially all (in an appropriate sense) X E E have the same distribution PE", 
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what seems to be wrong for whatever reasonable sense. Indeed, in the separable 
infinite-dimensional Hilbert space H (corresponding to an infinite-dimensional 
E) there exists no non-trivial rotation-invariant measure. "The standard Gaus­
sian measure IH" (or "the Gaussian white noise") is only a "weak distribution" 
and not a count ably additive measure. Its "typical sample elements" may only 
be considered as elements of a suitable extension (the completion in a suitable 
weaker norm) of H and do not belong to H. They cannot be interpreted as 
linear functionals on E' or even as elements of LO(O" F, P). It is impossible to 
define their "distributions" with respect to P as elements of M. Thus, in the 
case of infinite-dimensional E, there is a problem to justify the term "essentially 
all X E E" in order to obtain a meaningful extension of the finite-dimensional 
assertion. 

One of the seemingly reasonable ways to formulate a reasonable infinite­
dimensional version for discussion is to define the notion of "the global limit 
distribution," or "the limit distribution in large" for the space E of second order 
random variables as follows. For infinite-dimensional separable Hilbert space E, 
we denote by IE the standard Gaussian white noise considered as a Gaussian 
measure on a Hilbert (with a weaker norm) superspace E :J E. We preserve 
the notation X for elements of ii, too. One can establish that IE is rotation 
invariant with respect to the Hilbert norm in E. Let 6 < 6 < ... , sUPi ~i = 
E, where ~i are finite measurable partitions of the probability measure space 
(E'IE), and E denotes the partition into points. It can be verified that every 
barycenter (the mean value) Ci,j E E of the conditional distribution IE( ·ICi,j), 
where Ci,j stands for the jth element of ~i, is, in fact, an element of E, i.e., 
Ilci,j11 < 00. 

We denote by m;~ the discrete probability measure on E concentrated 
at the normalized barycenters c?,j = Ilci,jll-1Ci,j, j = 1, ... , and such that 

m;~({c?,j}) = IE(Ci,j), j = 1, .... Similar to the above definition of .em, we 
define the corresponding distribution £m;~ = m;~ 0 £-1 on M. For X E E, 
let Ci(X) denote the element of the partition ~i containing X, and c?(X) its 
normalized barycenter. The map E:3 X I---t .e(c?(X)) EM is a step-function, 
and in the finite-dimensional case its distribution in M tends to .em as i ---t 00 

(here m is the uniform distribution on the unit sphere of E). For large dimen­
sions, the distribution .em is sharply concentrated close to a point P E which 
is just typical for random variables from E. 

If for an infinite-dimensional Hilbert space E of random variables there ex­
ists a distribution PEE M such that for every sequence ~i of finite partitions 
of (E'IE) the sequence .em;~ converges to the degenerate distribution concen­
trated at PE, we say that PE is the global limit distribution, or the limit in large 
distribution with respect to IE of elements of E. The simplest example: the 
global distribution for any Gaussian subspace of L2 is the standard Gaussian 
measure. 

In contrast to the finite-dimensional case, such a limit distribution exists 
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not for every infinite-dimensional space E. Still, the common point is that an 
arbitrary limit distribution, if it corresponds to any sequence of finite partitions, 
is always degenerate, i.e., the limit in measure of the sequence of step-maps is 
a constant map. It should be noted that another reasonable definition of such 
a limit distribution turned out to be equivalent to one given above [Sudakov 
(1977)]. 

Theorem 14.1.1 If for any sequence {~d of finite measurable partitions of the 
space (E"E) the sequence {£m~'e} of elements of M(M(R)) tends to a limit, 
then this limit is a degenerate (delta-) distribution, i. e., there exists a global 
limit distribution of elements of E. The global limit distribution is always a 
mixture of centered Gaussian ones. 

The question about criterion of existence of such a limit "in large" distri­
bution is open. 

Another and, probably, more rich in content approach to the infinite-dimen­
sional situation arose from efforts to find for the finite-dimensional case how the 
smallest possible dimension of the space E depends on E. Of course, estimates 
that do not depend on dimension are of particular interest. It is convenient 
to characterize the degree of possible typicalness of a distribution for a vector 
space E with respect to a measure m by the value of the average K;-distance 
between distribution laws of two elements of E chosen independently according 
to m, i.e., by the value of the integral 

I(m) = J J K;(£(X1 ), £(X2))(m ® m) d(Xl' X 2). 
E(J7E 

Here E EB E means the orthogonal sum of two copies of E, and Xl, X 2 is the 
notation of elements of these copies. Since in the infinite-dimensional case this 
expression is senseless for m = mE, it is important to study its behavior in m for 
finite-dimensional spaces E. For centered Gaussian measure ,on E, let qb) be 
the quadratic form on the conjugate space F = E', which is the restriction of the 
L 2(,)-norm. We also use the evident notation I(q); sometimes we shall write 
I(qb)) instead of Ib). We say that 11 < 12 if 12 = 11 * 13 for some Gaussian 
measure 13 (or, the same, q(2) = qbI) + q(3)). One can easily verify that in 
the one-dimensional case Ib) is monotonic in I (or in q). Also for arbitrary 
dimension d = dimE, any positive perturbation of q(z) = qo(z) = Ilzll~ (the 
case of the standard Gaussian measure) or, what is the same, of homothetical 
image of IE mentioned above leads to increasing of I(q). Since I(qo) can be well 
estimated, it would be very useful to prove the monotonicity in q property of the 
function I(q). In Sudakov (1979), one of the co-authors of this paper proposed, 
in particular, a short sketch of a supposed proof of such a monotonicity, which 
turned out to be wrong. The counterexample constructed by another co-author 
is based on the deduced explicit formula for the differential D(q)(q) of the 
function I(q) at an arbitrary point q and can be described as follows. 
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Let (fl,F,P) be a probability space with fl = {Wl,W2} and P({Wl}) = 
P ( { W2}) = ~. Let E = {(x, y)} be the Euclidean space of all functions on 
fl, i.e., the space R2 with corresponding weight norm. Let ex and ey denote 
coordinate functionals on E. Let the Gaussian measure "((ij8) be a univariate 
Gaussian measure on the straight line <5x - y = 0, where <5 is a small negative 
number. Let "((qe) be a univariate Gaussian measure specified by the quadratic 
form qe (ex, ey ) = c( ex - ey )2, i.e., for small c it is sharply concentrated on the 
straight line x + y = 0 near zero point. 

Theorem 14.1.2 If -<5 > 0 and c > 0 are sufficiently small, then I(ij8 + qe) -
I(ij8) < O. 

Differential of I(q) can be described as follows. Let for positive quadratic 
1 

form q the Laplace operator with respect to the Euclidean norm q'i is denoted 
by Llq. 

Proposition 14.1.1 The differential of I at the point q E Q+ (Q+ is the cone 
of positive quadratic forms) can be written in the form 

Here ij EEl ij denotes the quadratic form on (E EEl E)' = E' EEl E' such that (ij EEl 
ij)(h, h) = ij(h) + ij(h), "((ij EEl ij) = "((ij) ® "((ij). 

Eventhough the result of Theorem 14.1.2 is negative for our purpose, some 
theorems, which definitely can be considered as infinite-dimensional versions of 
the theorem about typical distributions, can be formulated and proved. They 
enable us to obtain the finite-dimensional versions with the best possible es­
timates of "the rate of convergence" in dimension and imply other interesting 
consequences. One of the possible directions of investigations is finding upper 
bounds for I(q) in terms of the spectral radius of the correlation operator of 
"((q), i.e., dimension free estimates of I(q) in terms of the first extremal value 
of q with respect to qQ. 

A convenient tool for investigation of the problems under consideration is 
the solution of the isoperimetric problem for Gaussian measures [Sudakov and 
Tsirel'son (1974)]; see also Borell (1975). This chapter just gave the solution 
of such an isoperimetric problem for the infinite-dimensional case. Recall the 
main result of this chapter related to the infinite-dimensional centered Gaussian 
measure I on a vector space E (( E, I) is always supposed to be a Lebesgue­
Rokhlin space; this always holds for separable metric E and Borel "(). If a 
measurable functional R: E ~ R obeys the I-Lipschitz condition 

Ve E e-y Vc > 0 I{ X E E : JR(J + ce) - R(e)J > c} = 0, 
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then the distribution law of R relative to , is sublaplacean, i.e., PiiI - <p- I is 
non-strictly decreasing function (here £"( denotes the "ellipsoid of dispersion of 
,", i.e., the unit ball of the reproduction kernel space H"(). Note that here the 
dimension plays no role as well as whatever topology on E. 

For an arbitrary (possibly, infinite-dimensional) subspace E c L2(0, F, P) 
with a centered Gaussian measure, = ,(p) (supposed in what follows to be 
"substandard", i.e. , obeying the condition p ::; po), the degree of concentration 
ofthe measure r = ,0(PoX-I)-1 = ,0C-l on the space M can be measured 
by the degree of concentration of the distribution of ,.,,( PI, P2), where PI, P2 are 
two elements of M chosen independently according to r. 

We say that /-L E Mis sublaplacean if /-L = ,00T-l , where ,0 is the univariate 
standard Gaussian measure and T is a Lipschitz map R ---t R with the Lipschitz 
constant 1. For a sublaplacean measure /-L, a constant c is called its (admissible) 
shift if, in the above representation of /-L, T can be chosen such that T(O) = c. 
For every sublaplacean measure /-L, the set of all its shifts is a segment, which 
is degenerate for /-L = ,0· 
Theorem 14.1.3 There exists a constant C with the following property. Let 
E C L2 (0, F, P) be an arbitrary closed subspace of random variables. Let 
, = ,(q) be an arbitrary centered Gaussian measure on E with covariance 
operator majorized by the unit operator (i.e., the eigenvalues of this covariance 
operator do not exceed 1, q ::; qo). Let Xl and X2 be two elements of E chosen 
independently from the distribution ,. Then the distribution of the random 
variable ,.,,(P 0 XlI, P 0 XiI) is sublaplacean with a shift less than or equal to 
C. 

The value of C is closely connected with some entropy-type properties of 
M. Theorem 14.1.3 allows us to obtain an upper bound of the value J(r) 
over the class of substandard (r ::; ,E) Gaussian measures for a space E of 
arbitrary dimension, though does not permit us to come to the conclusion that 
for finite-dimensional E the maximum value of J (,) is attained just at the 
standard Gaussian measure, = ,E. Still, Theorem 14.1.2 does not exclude 
such a possibility, though closes one of the approaches to prove it. 

As an application of this theorem, an estimate of the (random) ,.,,-distance 
between times of sojourn for two independently chosen sample functions of a 
centered Gaussian random process in terms of maximal eigenvalue of its co­
variance operator can be obtained. (The time of sojourn is the image of a given 
measure on the parametric set by a sample function. The density of time of 
sojourn is often called "the local time".) Proofs and consequences are to be 
published in Zapiski Nauchnykh Seminarov POM!. 

A different infinite-dimensional approach to the problem has been given in 
Weizsacker (1997). Here, we explain how to translate some part of Weizsacker 
(1997) into the present setting. That paper deals with a, not necessarily Gaus­
sian, random linear functional resp. cylindrical measure, on a Hilbert space 
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H. This corresponds to our '"Y which induces the canonical Gaussian cylindrical 
measure on its "reproducing kernel" or "Cameron-Martin" subspace H c L. 
Our abstract measure P is replaced in Weizsacker (1997) by a (not necessar­
ily second order) measure on H. In our setting, such a measure on H can 
be constructed as follows: Choose an orthonormal base (ei) of the Cameron­
Martin space H which is also an orthogonal system in L. Then the numbers 
0"[ = Ep(en are the eigenvalues of the correlation operator C of '"Y. We denote 
by p( C) the spectral radius maxi 0"[ and by tr( C) the trace Li 0"[. Since the op­
erator C is of trace class, the series S(w) = L ei(w)ei defines a square integrable 
random vector S on [2 with values in H. The image measure PoS-l is a second 
order measure which can take the role of the measure P in Weizsacker (1997). 
We need the following notation: For every positive number a, the symbol N(a) 
denotes the centered Gaussian distribution on the real axis R with variance a; 
for every measure q on the positive real axis R+, the symbol q x N denotes the 
measure on R+ x R given by 

q x N(A x B) = L N(a)(B) q(da). 

Theorem 14.1.4 Let d be any metric on the space P(R+ x R) which in­
duces convergence in law. Then there is a function cp: Rt ---+ R+ such that 
cp( r, t, c) ----t 0 as r ----t 0 for all t, c with the following property: For all '"Y and 
([2, F, P) as in Theorem 14.1.1, there is a square integrable random variable 0" 
on ([2, F, P) such that 

Remark 14.1.1 The random variable 0" is the H-norm of the vector S in the 
above construction. In particular, E(0"2) = tr(C). 

Thus, for '"Y most f, the law of f under P is close to the mixed nor­
mal Ep(N(0"2)) where the degree of closeness is determined alone by the pair 
(p(C), tr(C)). Note that, as indicated above, the theorem has an extension to 
certain non Gaussian measures which have near Gaussian average marginals. 
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Abstract: In this chapter, we prove local limit theorems for Gibbs-Markov 
processes in the domain of attraction of normal distributions. 
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15.1 Introduction 

It is well known that a random variable X belongs to the domain of attraction 
of a normal distribution DA(2) if its characteristic function satisfies 

1 
log Eexp[itX] = it,- 2"t2L(I/ltl) (15.1) 

for some slowly varying function L : R+ ---t R+ which is bounded below and 
some constant, E R; see Ibragimov and Linnik (1971). 

The normal (or classical) domain of attraction NDA(2) consists of the class 
L2, and is characterized by the boundedness of the slowly varying function L 
in (15.1). Here, we consider the 'non-normal' domain of attraction DA(2) \ 
NDA(2). 

The function L is unbounded and is determined (up to asymptotic equiva­
lence) by the tails of the distribution of X which satisfy 

1 - G(x) = P(X 2: x) '" CIX-2l(x), 

G(-x) = P(X ~ -x) '" c2x-2l(x) x ---t 00 (15.2) 
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for some constants q, c2 2': 0, Cl + c2 = 1 and some slowly varying function l, 
which in turn determines L by 

(15.3) 

It follows from (15.3) that 

l(x) = o(L(x)) (15.4) 

as x ---+ 00. 

Let Xl, X 2, ... be a stationary process of independent random variables with 
Xk E DA(p) (0 < p ~ 2). 

The local limit theorem (LLT) for the partial sums Sn := Xl + ... + Xn is 
well known, which is that there exist constants An, Bn E R, Bn ---+ +00 such 
that V I'L E R and I C R (an interval), 

kn-An 
BnP(Sn - kn E 1) ---+ IIlg(I'L) as ---+ I'L, 

Bn 

where g is a p-stable density on R. Extensions of the LLT to Markov chains are 
well known; for example, see Aaronson and Denker (1998) for a more detailed 
discussion. 

Aaronson and Denker (1998) have established LLT's for Gibbs-Markov func­
tionals (definition below) in the non-normal stable case (p < 2). 

In the normal case (p = 2), such extensions are only known when X k E 

NDA(2); see Aaronson and Denker (1998), Rousseau-Egele (1983), Guivarc'h 
and Hardy (1988), and Morita (1994). . 

Here, in this Chapter, we prove the LLT for Gibbs-Markov functionals 
Xl, X2, ... in the case when Xl E DA(2) \ NDA(2). 

15.2 Gibbs-Markov Processes and Functionals 

Definition 15.2.1 A mixing stationary process {Zn : n E N} is called Gibbs­
Markov if its state space E is at most countable and if 

• ( Markov property) 

P(ZI = a, Z2 = b) > 0 and P(ZI = b, Z2 = c) > 0 

===? P(ZI = a, Z2 = b, Z3 = c) > 0 

for all a, b, c E E and 

P(ZI = b) : a E E} > O. 
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• (Gibbs property) There exist constants M> 0 and 0 < r < 1 such that 

I P(ZI = aI, ... , Zn = anlZn+1 = bl, ... , Zn+k = bk) -11 s: Mr-min{l:q¥obl} 
P(ZI = aI, .. . , Zn = anlZn+1 = CI, ... , Zn+k = Ck) 

for all ai,bj,cj E E, 1 s: i s: n, 1 s: j s: k and all n,k ~ 1. 

Remark 15.2.1 

1. Recall that a process Z = {Zn : n ~ 1} is called mixing if for all square­
integrable functions f, g E L2(Z) one has 

Ef(Z)g(Zn, Zn+1, ... ) ~ Ef(Z)Eg(Z), 

where Lq(Z) (q E N U {oo}) is the space of functions g : EN ~ R which 
are q-integrable with respect to the distribution of Z. 

2. The coordinate process on EN of a probability preserving, mixing Gibbs­
Markov map [as in Aaronson and Denker (1998)] is a Gibbs-Markov pro­
cess in the sense of Definition 15.2.1. Conversely, the shift of a Gibbs­
Markov process (equipped with its mixing, shift-invariant distribution on 
EN) is a probability preserving, mixing Gibbs-Markov map. 

Definition 15.2.2 A function f : EN ~ R is uniformly Lipschitz on states 
(f E Lip) if 

D(f) := sup rmin{l:xl'l'Yl}lf(x) - f(y)1 < 00, 

aEE,x,yE[a] 

where [a] = {(XI,X2, ... ) E EN : Xl = a}. 

Definition 15.2.3 A stationary process {Xn : n E N} is called a Gibbs-Markov 
functional if there exists a Gibbs-Markov process Z = {Zn : n E N} and a 
function f E Lip such that 

The Frobenius-Perron operators pn : L1 (Z) ~ Ll (Z) are defined by 

(15.5) 

and the characteristic function operator for the function r.p : EN ~ R by 

Ptf = P(f exp[itr.p]). (15.6) 

Aaronson and Denker (1998) have shown that when r.p E Lip, Pt acts on 
£ .- Loo(Z) n Lip equipped with the norm Ilflle = Ilflloo + D(f). As an 
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operator on C, Pt has a unique eigenvalue of maximal modulus >.(t) for It I < E 

and a decomposition 

Pt J = >'(ttg(t)EJ(Z) + Qrf (It I < E), (15.7) 

where the spectral radius of Qt is uniformly bounded by some () < 1 and where 
g(t) is the normalized eigenfunction for >.(t). Pt is called the characteristic 
function operator, since 

where Sn = Xl + ... + X n. 

15.3 Local Limit Theorems 

In this section, we assume that {Xn : n ~ 1} is a Gibbs-Markov functional with 
Xl = J(Z) E DA(2), but EXr = 00. Let the operator Pt : C -+ C, >.(t) and g(t) 
be as defined (15.5)-(15.7) for It I < E and for ¢ = J. Moreover, let G denote the 
distrjbution function of Xl and land L the associated slowly varying functions 
as defined in (15.2) and (15.3). 

Theorem 15.3.1 

(15.8) 

as t -+ 0, where the constant 'Y E R is defined by 

'Y = i: xG(dx). (15.9) 

Remark 15.3.1 Theorem 15.3.1 may fail in the 'classical' case where EJ(Z) = 
o and EJ(Z)2 < 00. Indeed, suppose ¢ E C, then also J:= ¢oT - ¢ E C (here 
T denotes the shift on EN). As can be easily checked, 

Pt(eitcP) = eitcP , 

whence >.(t) = 1; see Aaronson and Denker (1998). On the other hand, Aaron­
son and Denker (1998) have indicated how to prove Theorem 15.3.1 in case 
J E Lip, EJ(Z) = 0, EJ(Z)2 < 00, and not of form J = ¢ 0 T - ¢. 

Remark 15.3.2 As a corollary, we obtain that under the conditions of Theo­
rem 15.3.1, 

I log >.(t) -log E exp[itXIll = o(ltl2 L(1/ltl)) as t -+ O. 
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Lemma 15.3.1 

as t ~ O. 

PROOF. This estimate follows from the expansion of E exp [itX 1]; see Theorem 
2.6.5 of Ibragimov and Linnik (1971). • 

PROOF OF THEOREM 15.3.l. Let fit = g(t)j Eg(t)(Z) denote the eigenfunction 
of Pt with eigenvalue ),(t) satisfying Efit(Z) = 1; then by (15.5) 

),(t) = ),(t)Efit(Z) = E,\(t)gt(Z) = EP[gteit<P](Z) = Egt(Z)eitXl . (15.10) 

By Theorem 4.1 of Aaronson and Denker (1998), and by Lemma 3.4, 

lifit - 11100 = O(ltl) as t ~ O. 

Denote by Fo the 17-algebra generated by Xl and let gt 0 Xl = E(fit(Z)IFo); 
then by (15.10) 

'\(t) = Egt(Xd exp[itX1] = i: gt(x) exp[itx]G(dx) , (15.11) 

Ilgt - lIILoo(G) :::; lifit - 11100 = O(ltl) as t ~ 0, 

and i: gt(x) G(dx) = 1 V t E R. 

It follows from (15.12) that for It I small enough, Re gt ~ O. Write 

gt = g[ + i9t - igi 

where gt- := max{±Im gt, O} ~ 0 and g[ = Re gt ~ O. 

(15.12) 

For * = r, +, -, we fix gt = g;. Then dGt := gtdG is a (positive) measure 
on R. Note that by (15.12) 

lim sup Igt(x) - KI = 0 
t--->°xER 

where K = K* = 1 for * = rand K = 0 otherwise. 
Define distribution functions Gj, Gi (j = 1,2) on R+ by 

Gi(x):= Gt(x) - Gt(O), G~(x):= Gt(O) - Gt(-x), 

G1(x) := G(x) - G(O), and G2(x):= G(O) - G( -x). 

We have that 

. . h·(x) 
Gi(oo) - Gi(x) = ~9j(t, x), 

x 
(15.13) 
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h .(x) ._ { x2(1 - G(x)) = (Cl + o(l))l(x) 
J .- x2G( -x) = (C2 + o(l))l(x) 

if j = 1 
if j = 2 

as x ~ 00, and 

._ Ix= gt(u) G(du) (t x) := I~::O gt(u) G(du). 
gl(t, x) .- Ix= G(du) , g2 , I~::O G(du) 

It follows from (15.12) again that SUPxER Igj(t, x) - KI ~ 0 as t ~ o. 
We need the following calculations. First note that 

fa (1 + itx - eitx ) Gt(dx) 

= 10=(1 + itx - eitx ) Gf(dx) + 10=(1- itx - e-itx ) G;(dx), 

and secondly that integration by parts (for j = 1,2) yields 

10=(1- (-l)jitx - exp[-(-l)jitx])Gi(dx) 

= -[(Gi (00) - Gi (x))(l - (-l)jitx - exp[-( -l)jitx])]o 

+ fo=(Gi(oo) - Gf(x))((-l)jitexp[-(-l)jitx]- (-l)jit)dx 

. {= ( .) h . (x) i(-l)1t Jo exp[-i(-l)Jtx]-l gj(t,x)~dx. 

We split the last integral into three parts: 

t {= (exP[-i( -l)jtx]- l)gj(t, x) hj~x) dx 
Jltl- 1 x 

Itl-l( . .) h'(x) + t 10 exp[-i( -l)Jtx] - 1 + i( -l)1tx gj(t, x)~dx 
Itl- 1 . h·( ) 

- t { i( -l)1txgj(t, x)4dx. Jo x 

For the first integral, we obtain using (15.4) 

t {= (exp[-i(-l)jtX]-l)gj(t,x)hj~x)dX 
J1tl-1 x 

= sgn(t) 1= (exP[-i(-l)jy sgn(t)] - 1 )gj(t, Ylltl) ~~~:i~~) dy 

= 0(1= ::hj(ylltl)dY) 

= 0(1= ::l(Ylltl)dY) 

= 0(t2l(1/It1)) = o(t2L(1/It l)). 
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Since l is slowly varying, 

Itl-1 
() It I 10 l(x)dx = 0 l(ltl-1) . 

From this and (15.4), we obtain for the second integral that 

j=l 

j=2 

where we used (15.2), (15.12) and (15.13). Finally, note that by (15.12) 

,t := faX9t(x)G(dX) =, + O(ltl) as t ---t 0 
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and, since G is not in the normal domain of attraction, we have t2 = 0(t2 L(l/ltl)). 
The proof of Theorem 15.3.1 is completed by using (15.11) and the previous 

estimates: 

log >.(t) - it, f"V >.(t) - 1- it, i: (eitx - 1 - itx )gt(x)G(dX) + 0(t2 L(1/ltl)) 

i: (eitx - 1 - itX) (g[(x) + i9t(x) - i9"t (x))G(dx) + 0(t2 L(1/ltl)) 

t 2 j 1t l -
1 

-2 x2g[(x)G(dx) + 0(t2 L(1/ltj)) 
-ltl- 1 

t2 L(1/ltl)(1 + 0(1)). • 
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Let 

(15.14) 

The following corollaries contain the local and central limit theorems. Their 
proofs are straightforward using Theorem 15.3.1; for example, see corresponding 
statements in Aaronson and Denker (1998). We write, as before, 

and denote by ¢> the density of the standard normal distribution. 

Corollary 15.3.1 [Conditional lattice local limit theorem] Suppose that Xl is 
aperiodic. 

Let An and Bn be as defined in (15.14), and suppose that kn E Z, knB~n -7 

/1, ERas n -7 00, then 

and, in particular, 

Corollary 15.3.2 [Conditional non-lattice local limit theorem] Suppose that 
Xl is aperiodic. 

Let An and Bn be as defined in (15.14), let I c R be an interval, and 
suppose that kn E Z, knB~n -7 K, ERas n -7 00, then 

where III is the length of I, and in particular, 

Corollary 15.3.3 [Distributional limit theorem] Let An and Bn be as defined 
in (15.14). Then, 

is asymptotically standard normal. 

Acknowledgement. This research was supported by a grant from G.LF., the 
German-Israel Foundation for Scientific Research and Development. 



Local Limit Theorem 223 

References 

1. Aaronson, J. and Denker, M. (1998). Local limit theorems for Gibbs­
Markov maps, Preprint. http://www.math.tau.ac.il/rvaaro 

2. Guivarc'h, Y. and Hardy, J. (1988). Theoremes limites pour une classe de 
chaines de Markov et applications aux diffeomorphismes d'Anosov, Ann. 
Inst. H. Poincare, 24, 73-98. 

3. Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Station­
ary Sequences of Random Variables (Ed., J. F. C. Kingman), Groningen, 
Netherlands: Wolters-Noordhoff. 

4. Morita, T. (1994). Local limit theorems and density of periodic points 
of Lasota-Yorke transformations, Journal of the Mathematical Society of 
Japan, 46, 309-343. 

5. Nagaev, S. V. (1957). Some limit theorems for stationary Markov chains, 
Theory of Probability and Applications, 2, 378-406. 

6. Rousseau-Egele, J. (1983). Un theoreme de la limite locale pour une 
classe de transformations dilatantes et monotones par morceaux, Annals 
of Probability, 11, 772-788. 



16 

On the Maximal Excursion Over Increasing Runs 

Andrei Frolov, Alexander Martikainen, and Josef Steinebach 

St. Petersburg State University, St. Petersburg, Russia 
St. Petersburg State University, St. Petersburg, Russia 
Philipps-Universitiit Marburg, Marburg, Germany 

Abstract: Let {(Xi, Yi)} be a sequence of LLd. random vectors with P(YI = 
y) = 0 for all y. Put Mn(j) = maxO:Sk:Sn-j(Xk+1 + ... + Xk+j)h,j , where 
h,j = I {Yk+1 :::; ... :::; Yk+j} , I { . } denotes the indicator function of the 
event in brackets. If, for example, Xi = Yi, i ~ 1, and Xi denotes the gain in 
the i-th repetition of a game of chance, then Mn(j) is the maximal gain over 
increasing runs of length j. We investigate the asymptotic behaviour of Mn(j) , 

j 
= jn:::; Ln, where Ln is the length of the longest increasing run in YI, ... , Yn. 

We show that the asymptotics of Mn(j) crucially depend on the growth rate of 
j, and they vary from strong non-invariance as in the Erdos-Renyi law of large 
numbers to strong invariance as in the Csorgo-Revesz strong approximation 
laws. 

Keywords and phrases: Increasing run, head run, monotone block, incre­
ments of sums, Erdos-Renyi laws, strong approximation laws, strong limit the­
orems 

16.1 Introduction 

Let (X, Y), (Xl, YI), (X2' 1'2), ... be a sequence of i.i.d. random vectors satis­
fying P(Y = y) = 0 for all y. Put 

k 

Sk = LXi, So = 0 . 
i=l 

Let Mn(j) be the "maximal excursion" of {Sk} over subintervals oflength jon 
which {Yi} increases, that is, 

(16.1) 
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where 1 :S j :S n, I { . } denotes the indicator function of the event in brackets, 
and [ . ] is the integer part function. 

The first question arising here is how long "increasing runs" may be for 
which the indicator in (16.1) equals one. The length of the longest increasing 
run in the first n observations of Y-values, that is, 

Ln = max{k I Yi+1 :S ... :S Yi+k for some i, 0 :S i :S n - k} , 

has been investigated by several authors. Pittel (1981), for instance, has proved 
that 

1· Ln 1 
1m -k( ) = a.s., 

n->oo n 

where k( n) = log nj log log n . A more precise result on the asymptotics of Ln 
has been given by Revesz (1983) and Novak (1992). 

Theorem 16.1.1 If l = In is the solution of lle-1(27fl)1/2 = n, then 

lim sup (Ln - In) = 0 a.s., 
n->oo 

liminf (Ln -In) = -2 a.s.; 
n->oo 

see, for example, Novak (1992, Corollary 2.2). 

One can check that 

In = logn - ~ 10g(27fe) 1 (n -+ (0) 
loglogn -10gloglogn-1+o(1) 2 

[Novak (1992, Remark 2.4)]. Hence, In rv k(n) as n -+ 00. 

(16.2) 

(16.3) 

(16.4) 

Results on the length of the longest increasing run in case of discrete distri­
butions have recently been obtained by Csaki and Foldes (1996). For asymp­
totics of the length of the longest increasing run in Rd , see Frolov and Mar­
tikainen (1998). 

It is interesting to investigate the growth rates of Mn(aLn) and Mn(aln), 
a = an E (0,1] . The above setting includes some important special cases. 
For example, if X = 1 a.s., then Mn(Ln) = Ln a.s., and precise limiting 
results are described above. Another special case of interest arises when Xi = 
Yi for all i. Then, {Xi} can be interpreted as a sequence of "gains" of a 
player in a game of chance, and the random walk {Sk} describes the player's 
fortune. So, Mn (j) gives the "maximal gain" of a player over increasing runs 
of length j. It turns out that some surprising phenomena can be observed. For 
instance, the maximal gain of a player is not always attained over increasing 
runs of maximal length Ln. Indeed, the optimal length may depend on the full 
underlying distribution. 
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Similar phenomena have been observed for the maximal (unrestricted) gain 
(say) Un over subintervals of length j = j(n), i.e. 

The asymptotic behaviour of Un(j) depends on the growth rate of j(n). Erdos 
and Renyi (1970) have investigated the case j = [clogn]. When j/logn ---+ 00, 

the asymptotics of Un(j) have been studied by Csorgo and Revesz (1981). The 
case j / log n ---+ 0 has been dealt with by Mason (1989). 

For the sake of comparison, we briefly describe these results here. Assume 
that 

(i) X is non-degenerate, 0 ~ EX < 00; 

(ii) to = sup{t: <p(t) = EetX < oo} > O. 

Denote 
F(x) = P(X < x) , w = ess sup X , 

((z) = sup{zt -log<p(t) : t ~ 0, <p(t) < oo}, 

J(x) = sup{z: ((z) ~ x}. 

The function J(x) is a concave, continuous and non-decreasing function on 
[0, (0) with J(x) ---+ w as x ---+ 00 [Mason (1989)]. 

Put 

to 

Co = 1/(/ tm'(t)dt) , (16.5) 
o 

where m(t) = <p'(t)/<p(t), 0 ~ t < to. It is known that Co = l/(Ato -log<p(to)) 
if to < 00 and A = limtito m(t) < 00. Furthermore, Co = -l/logP(X = A) if 
to = 00, A < 00 and P(X = A) > 0 (in this case, A = w). In all other cases, 
Co = 0 [see Deheuvels, Devroye and Lynch (1986)]. 

The following result has been proved by Erdos and Renyi (1970) for C > Co 
and by Deheuvels and Devroye (1987) for 0 < C ~ Co. See also Theorem 2.4.3 
of Csorgo and Revesz (1981). 

Theorem 16.1.2 Put j = [clogn]. Then, almost surely 

1. Un(j) {J(~) , 1m -- = 1 (1 1) n->oo J. A + - - - -to c co ' 

if C > co, 
if 0 < C ~ Co . 

Mason (1989) has extended the Erdos-Renyi law of large numbers as follows. 
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Theorem 16.1.3 Assume that j = j(n) and d = (logn)fj ---t 00. Then, 

1. Un(j) 
1m sup --:--(d) = 1 
n-->oo J'Y 

a.s. (16.6) 

Furthermore, one can replace lim sup by lim if w < 00 or if 

lim 'Y( -log(1 - F(x))) = 1 . 
x-->oo x (16.7) 

Remark 16.1.1 Mason (1989) has proved that (16.7) is equivalent to 

1· maxI <k<n Xk 1 1m = a.s., 
n-->oo 'Y (log n) 

which, in turn, is equivalent to (16. 6) with j = 1. 

The case j / log n ---t 00 has been investigated by Csorgo and Revesz (1981). 
The following one-sided generalization of their results is due to Frolov (1998). 

Theorem 16.1.4 Let EX = 0 and EX2 = 1. Assume that j = j(n) :::; n 
and j rv hn for a non-decreasing sequence {hn} such that {n/hn} is also non­
decreasing. {Note that j 's are integers, which usually do not satisfy the mono­
tonicity assumptions on hn .} 

If either, for some t > 0, 0 < (3 :::; 1, 

00 J exp{tx.B}dF(x) < 00 and j/(logn)2/.B-1 ---t 00 , 

o 

or, for some p > 2, 

then 

00 -n J xPdF(x) < 00 , 

o 
logn J x 2dF(x) ---t 0, 

-00 

and lim inf jn -2/p log n > 0 , 
n-->oo 

lim sup Un(j) = 1 
n-->oo (2j(log(nfj) + log log n ))1/2 

a.s. 

If additionally loglogn = o(log(nfj)), then limsup can be replaced by lim. 

Our attention focuses on the limiting behaviour of the maximal gain Mn(j) 
over increasing runs of length j = jn. Such statistics playa role in various 
contexts. For example, if {Sn} describes the log-return process of a certain 
portfolio, the investor might be interested in "maximal increasing draw-downs" 
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of {Sn} in order to estimate the risk of his investment [see, for example, Bin­
swanger and Embrechts (1994)]. Similar questions arise in connection with 
molecular sequence comparisons or in the change-analysis of engineering sys­
tems [Dembo and Karlin (1991)]. In any case, a.s. limiting relations of the os­
cillations of {Sn} provide strong measures of the randomness of the underlying 
sequences {Xi} or {(Xi, Yi)} . For corresponding results on the maximal gain 
over (so-called) "head runs", see Frolov, Martikainen and Steinebach (1998). 

Let us now describe the asymptotics of Mn(j) which crucially depend on 
the growth rate of j = jn = anln , an E (0,1) , In as in (16.4). It turns out 
that there are essentially three different cases: 

If (I-a) log log n ---t 00, Theorem 16.2.1 shows that the a.s. asymptotics de­
pend on the underlying distribution, a similar phenomenon as in Theorem 16.1.3 
above. It also demonstrates that the maximal gain over increasing runs is not 
necessarily attained during increasing runs of maximal length. It may hap­
pen that the maximal gain is attained over increasing runs of length aLn (or 
equivalently aln), with a coefficient a E (0,1) depending on the distribution 
of X. For example, a = 1/2 if X has a standard normal distribution, and 
a = (0: -1)/0: if X has a Weibull(o:,.x.) distribution with parameter 0: > 1. An­
other surprising phenomenon appears when the random variable X is bounded. 
By Theorem 16.2.1, the maximal gain over increasing runs of length aln (or 
aLn) a.s. increases faster whenever a < 1 is closer to 1. Nevertheless, by The­
orem 16.2.2, the maximal gain Mn(anln) suddenly can have a smaller growth 
rate if an ---t 1 faster than in Theorem 16.2.1. The case when j does not depend 
on n is also included in Theorem 16.2.1. Then, Mn(j) typically increases a.s. 
as Y'y(lognfj). 

If (I-a) log log n ---t B with 0 < B < 00 , then Mn (In) is a.s. proportional to 
aln for some coefficient a analogous to the limiting constant in Theorem 16.1.2. 
In this sense, we obtain an Erdos-Renyi (1970) type analogue of Theorem 16.1.2, 
but it is important to keep in mind that, though in both Theorems 16.1.2 and 
16.2.2 the maxima are normed by the lengths of increments, these lengths have 
different order of growth, which is logn in Theorem 16.1.2 and logn/ loglogn 
in Theorem 16.2.2. It is worthwhile mentioning that the distribution of X can 
be uniquely determined by the limit function of Theorem 16.2.2 and therefore 
a.s. by the maxima Mn(j). 

If a = an ---t 1 fast enough, i.e. if (1 - a) log log n ---t 0, the asymptotics of 
Mn(j) do not depend on the distribution of X, provided EX = 0 and EX2 = 1. 
Theorems 16.2.3 and 16.2.4 give universal norming sequences in this case. This 
type of behaviour is similar to the Csorgo-Revesz results of Theorem 16.1.4. 
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16.2 Results 

Given a real sequence {an} with an E (0,1), put 

i(n) = [anln], c(n) = \(n~n logn, 

bn = i(n) 1'( c(n) ) . 

Note that, if i(n) ~ 00, then 

b an log n (1 - an I I ) 
n rv I I I' -- og og n as n ~ 00. 

og ogn an 

Recall that I' is concave, continuous and nondecreasing with 1'(00) = w. 

We assume in the sequel that the length of a run is at least 1, i.e. i(n) 2: 1. 

Theorem 16.2.1 Assume that {i(n)} is non-decreasing, and 

(1- an) loglogn ~ 00 as n ~ 00 . 

Then, 

a.s. (16.8) 

Moreover, one can replace lim sup in (16.8) by lim if w < 00 or if (16.7) 
holds. 

According to Mason (1989), (16.7) holds for the normal, geometric, Poisson 
and Wei bull distributions. He also gave an example of a distribution for which 
(16.7) fails, but (16.6) still holds. 

Examples 

(1) Normal distribution: X rv N(a, (J'2), a 2: 0, (J'2 > O. Here, 

(J'2t2 
'P(t) = exp{at + -2-} , 1"()=(z-a)2 

.., z 2(J'2' 

. / 2 logn 
bn rv y2(J' an(1- an) vI I . 

og ogn 

It follows that bn has maximal growth rate if an = 1/2. Hence, the maximal 
gain over increasing runs is attained in runs of length In/2. 
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(2) Weibull(a, A) distribution: P(X ~ x) = exp{ -AXa }, x > 0, A > 0, 
a > 1. It follows from (16.7) that 

Hence, 

( X)l/a 
')'(x) '" ~ as x--too. 

bn ", (if/a a;-l/a(1- an)l/a logn (loglogn )-1+1/a . 
The maximal gain over increasing runs is attained in the case of an = (a-I)la. 

(3) Exponential distribution: x'" E(A), A> o. Here, 

A 
r.p(t) = -, - ,t < A, 

A-t 
x 

')'(x) '" ~ as x --t 00 , 
1- an 

bn '" -A-log n . 

Here, it seems that the maximal gain is attained when an --t 0 and bn '" log nl A. 
Moreover, since Theorem 16.2.1 admits the case i(n) = 1, the maximal gain is 
already attained in a single game. 

Remark 16.2.1 One can replace Mn(anln) by Mn(anLn) in Theorem 16.2.1. 

Next, we study the case an --t 1 in more detail. 

Theorem 16.2.2 Let {an} be a sequence of real numbers such that an --t 1, 
and (1 - an) log logn --t B as n --t (0) 0 < B < 00. Put Bo = I/co) where Co 

is as in (16.5). Then) almost surely 

if B < Bo, 
if B ~ Bo. 

From here on, assumptions (i) and (ii) are not used any longer. 

Theorem 16.2.3 Assume that EX = 0) EX2 = 1 and) for some 0 < f3 :S 1) 
t> 0) 

00 J exp{tx13}dF(x) < 00. 

o 

Let {an} be a sequence of real numbers such that an --t 1) and 

(1 - an)(log n )2(1-13)/(2-13) ( log log n )13/(2-13) --t 0 . 

Then) 

a.s. , (16.9) 
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where dn = (2ln(ln - i(n) + 1) log In)I/2 . 
If, additionally, liminf(ln - i(n)) > 1 , then 

1· . f Mn(anln) > 1 Imm b _ a.s., 
n->oo n 

(16.10) 

where bn = (2In(ln - i(n) - 1) log In)I/2 . 

Corollary 16.2.1 If the assumptions of Theorem 16.2.3 are satisfied, and 
In - i(n) ~ 00 , then 

Theorem 16.2.4 Assume that EX = 0, EX2 = 1, and 

nPp(X > n) ~ ° for somep > 4, 

r x2dF(x) = 0(-1 1 ). 
Jlxl>n ogn 

Let {an} be a sequence of real numbers such that an ~ 1. 
If limsup(ln - i(n)) < (p - 2)/2 - 1, then (16.9) holds. 
If, additionally, liminf(ln - i(n)) > 1, then (16.10) holds. 

16.3 Proofs 

We first prove the following lemma. 

Lemma 16.3.1 For any x > 0, 

(16.11) 

PROOF. By independence and identical distribution of (Xl, YI), ... , (Xk, Yk) 
together with the continuity of the distribution of Y's we have, for any x > 0, 

P(Sk > x) 
11" perm. 

11" perm. 

k!P(XI + ... + Xk > x, YI < ... < Yk) 

k!P(SkI{YI ~ ... ~ Yd > x) . 
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This proves Lemma 16.3.1. • 
For sake of brevity, we put l = In, a = an. 

PROOF OF THEOREM 16.2.1. In the estimations below, Ci will always denote 
a positive constant. 

Assume first that w = 00. 

Let 

NijO = {n : 2j ~ n < 2j+l, i(n) = i, a ~ ,8}, 0 < ,8 < 1 , 

N - { . 2j 2j+l .( ) _ . r ijr - n. ~ n < , 2 n - 2, 1 1 2' ~ a < og og J 

r+ 1 } 
log log 2j , 

for log log 2j > r 2': ,8 log log 2j . 

Put nijr = min{n : n E N ijr }. For fixed c > 0 , we have 

P( max Mn(al)/bn 2': 1 + c) 
nENijO 

< P( max (Sk+i - Sk)I{Yk+l ~ ... ~ Yk+i} 
0~k9J+Li 

2': (1 + c) i ,((1 -,8) lognijo/i) ) 

< 2j+l P( SiI{Yl ~ ... ~ Yi} 2': (1 + c) i ,((1-,8) lognijo/i)) 

2j +1 
-.-, P( Si 2': (1 + c) i ,( (1 - ,8) log nijo/i) ) . 

2. 

By Lemma 2.3 in Mason (1989), we get 

PijO < 2j+1 exp{ -(1 + c)(l - ,8) lognijo} 

< 2exp{ log2j (1- (1- ,8)(1 + c))} ~ 21- ej/2 , (16.12) 

if,8 is chosen small enough to satisfy ,8 < c/2(1 + c). 
Now, we turn to the case of positive r. Put A ijr = maxnENijr an, aijr = 

minnENijr an· 
As before, we obtain 

~jr P( max Mn(al)/bn 2': 1 + c) 
nENijr 

2j +1 
< - .-, P( Si 2': (1 + c) i ,((1- Aijr) lognijr/i)) . 

2. 

By Stirling's formula and Lemma 2.3 in Mason (1989), we get 

Pijr ~ C02j exp{ -(i + 1/2) logi + i - (1 + c)(l- A ijr ) lognijr} . 

Recall k(n) = logn/ loglogn. By (16.4), 

i 2': aijrk(2j)(1 + log loglog2j / loglog2j ) 
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for large j. Since aijr 2: f3, we have 

i log i > aijrk(2j)(1 + log log log 2j / log log 2j ) 

x (log f3 + log log 2j - log log log 2j ) 

> Cl aijrk(2j) + aijr log 2j (1 - (log log log 2j / log log 2j )2) . 

The last inequality together with i :S 2Aijrk(2j) and nijr 2: 2j implies 

for large j. By the definition of Nijr, Aijr - aijr :S 1/ log log 2j . Note that 
1 - Ajr 2: 5/(E loglog2j ) for large j, by the assumption of Theorem 16.2.1, 
and therefore 

Pijr < Coexp{ log2j (Aijr - aijr - E)(1- Aijr )) + 3k(2j )} 

< Co exp{ -k(2j)} 

for large j. 
Since the right-hand sides of this estimate and (16.12) do not depend on i, 

we have 

P. J P( . max Mn(al)/bn 2: 1 + E) 
2J~n<2J+l 

f3 loglog2j ~r< log log 2j 

where mj = #{i : Nij =I 0}, Nij = Ur Nijr. Note that mj :S al2J+l :S aU + 
1) log 2 . This implies that the series Lj Pj converges. By the Borel-Cantelli 
lemma, we conclude that 

1· Mn(al) < 1 
1m sup b -
n-HXl n 

a.s. (16.13) 

Now, put i = i(n). For E > 0 , we have 

Q(n) P(Mn(al) < (1 + E)-3bn) 
n/i-l 

< p( n {(S(mH)i - Smi)I {Ymi+l :S ... :S y(mH)i} < (1 + E)-3bn}) 
m=O 

(P(SiI{Yl :S ... :S Yi} < (1 + E)-3bn)t/i- 1 

< exp{ -C2 .~, P(Si 2: (1 + E)-3bn)} 
't't. 

exp{ -C2 .~, P(Si 2: (1 + E)-3i,( c(n) ))} 
't't. 

< exp{ -C2 .~, (P(Xl 2: (1 + E)-3,( c(nn))i} . (16.14) 
't't. 
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Here, we have used Lemma 16.3.1 together with the inequalities 1 - x ~ e-X 

and P(Sm ~ mx) ~ (P(XI ~ x))m. 
By the method used in Lemma 2.5 of Mason (1989), we can construct a 

sequence {n r } of natural numbers such that 

and nr ~ r for all large r. 
By Stirling's formula and the definition of In, 

n 
. " zz, 

1 > C3l-1nexp{ -(i + 2) logi + i} 

1 
> C4l-1nexp{-(al+2)logl+al} 

> C4l-3/2nl-aexp{a(1ogn -llogl + l)} 

> C4l-3/2nl-a exp{ a log l/2} ~ C4l-3/2nl-a . 

On combining (16.14) and (16.15), we have 

Q(nr) < exp{ _C4l;;r3/2n~1-(Hc)-1)(1-anr)} 

< exp{ -C4l;;r3/2 exp{k(nr )}} ~ exp{ -C4k(nr)-3/2 exp{k(nr )}} 

for large r. Hence, the series l:r Q(nr ) converges. By the Borel-Cantelli lemma, 
it follows that 

. Mn(al) 
hm sup > 1 a.s. 

n->oo bn -

Taking (16.13) into account, we arrive at (16.8). 
Assume now that (16.7) holds. Replacing (1 +c)-3 in (16.14) by (1 +c)-2, 

we have 

R(n) P(Mn(al) < (1 + c)-2bn) 

< exp{ -Cs ,~, (P(XI ~ (1 + c)-2,( c(n) )))i} . 
zz, 

From the proof of Theorem in Mason (1989, p. 264), we adopt the inequality 

P(XI ~ (1 + c)-2,(c(n))) ~ exp{ -(1 + C-)-l c(n) } 

which, in combination with Stirling's formula and the definition of In again, 
implies convergence of the series l:n R( n). From the Borel-Cantelli lemma, we 
conclude that 

1· . f Mn(al) 1 
Imm b ~ a.s. 
n->oo n 

This completes the proof of Theorem 16.2.1 for the case w = 00. 
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In the case of w < 00 , choose ° < 61 < 1. As in (16.14), we obtain 

Q(n) P(Mn(al) < 61Wi) ~ exp {-C6 .~, P(Si 2: 61Wi)} 
't't. 

< exp {-C6 .~, (P(X1 2: 61W))i} . 
't't. 

Similar estimations as before then show that the series 2:n Q(n) converges. By 
Borel-Cantelli lemma, we have 

1· . f Mn(al) 
Imm I 2: aw a.s. 
n--->oo n 

This inequality, in combination with the definitions of Mn(al) and w, completes 
the proof of Theorem 16.2.1. • 

In the proof of our next result, we make use of the following theorem. Put 
, = ,(B) , and let t* = t*(,) be the solution of the equation m(t*) = ,. 

Theorem 16.3.1 [Petrov (1965)]. For any e > 0, 

1jJ (t*) 
P(Sn 2: n,) rv fo exp{ -nB} 

uniformly for, E [e, min{ A - e, l/e}]' where 1jJ(t*) is a finite positive constant 
depending only on t* and the distribution of Xl. 

For nonlattice distributions, 1jJ(t*) = l/(t*O"(t*)J27r) , while for lattice dis­
tributions with span H, 1jJ(t*) = H/({l-e-Ht*}O"(t*)J27r), where O"(t) = m'(t). 

PROOF OF THEOREM 16.2.2. For sake of brevity, we put i = i(n) = [all. 
Assume first that B < Bo. Making use of Theorem 16.3.1, Stirling's formula 

and the properties of ,(x), we have 

R(n) 
n 

P(Mn(i) 2: (1 + eh(B)i) ~ "1P(Si 2: (1 + eh(B)i) 
'to 

< C7 exp { (1 + ~) log I - 1 - (i + ~) log i + i - i (1 + 62) B } 

< C7 exp{ -63al} 

for anye > 0, some positive 62,63, and all large n. 
Put nj = max{n : i(n) = j}. Then the series 2:j R(nj) converges. By 

Borel-Cantelli lemma, 

Since a ~ 1 and Mn(i) ~ Mnj(anjlnJ for n such that i(n) = j, we conclude 
that 

limsup Mn(i) ~ ,(B) 
n--->oo I 

a.s. 
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On the other hand, by Theorem 16.3.1, Stirling's formula and the properties 
of ,,((x), we also have 

Q(n) P(Mn(i) < (1 - c)"((B)al) 

< exp {- a~i! P(Si ~ (1- c)"((B)al)} 

< exp { -Cs exp {(l + ~) log l - l - (i + ~) log i + i - i(l - 64)B} } 

< exp{ -Cs exp{ 6sal}} ~ n-2 

for all large n. Hence, the series 2:n Q(n) converges and, by Borel-Cantelli 
lemma, 

liminf Mn(i) ~ "((B) 
n--->oo l a.s. , 

which completes the proof in the first case. 
We now turn to the case B ~ Bo. Put 

1 
L = A + - (B - Bo) . 

to 

Since Bo = 1leo, Bo < 00 only if A < 00. 

Assume first that A < 00 and to = 00. Then A = w, L = A and we need 
only prove that 

1· Mn(i) L 
1m -- > a.s. 

n--->oo l - (16.16) 

To do so, we use the same arguments as in the proof of Theorem 16.2.1 and 
get 

Q(n) P(Mn(i) < (L - c)l) 

< exp {-Cg exp{(l - a + ClO 1 11 ) 10gn} 
og ogn 

for all large n. Since (1- a) loglogn -+ B, we have 

1 logn 
(1 - a + ClO ) log n = C11 ~ 2 log log n 

log log n log log n 

for all large n. This yields 

for all large n, and the series 2:n Q(n) converges. Then Borel-Cantelli lemma 
gives (16.16). 

Finally, assume that A < 00 and to < 00. Then, w = 00 and eo = 1/(Ato­
logcp(to)). Hence, Bo = Ato -logcp(to). 



238 A. Frolov, A. Martikainen, and J. Steinebach 

We have 

R(n) P(Mn(i) 2: (L + c)al):S ;P(Si 2: (L + c)al) 
2. 

< ;exp{ilog<p(to) - (L+c)al} 
2. 

< C12 exp {(l +~) logl-l- (i +~) logi + i + i log <p(to) - (L + c)al} 

< C12 exp{ -66al} 

for all large n. Here, we have used Markov's inequality and Stirling's formula. 
Applying the same arguments as in the case B < Bo, we get 

1· Mn(i) L 1m sup -- < a.s. 
n-->oo I -

Put>' = L - c, J-L = L + c. From Deheuvels and Devroye (1987, p. 1376), 
we adopt the following inequality. For any small 6 > 0, there exists a positive 
constant v such that 

for all large n. 
Then, we have 

Q(n) 

P(Mn(i) < (1 - c)Lal) :S exp {- a~i! P(Si 2: (1 - c)Lal) } 

< exp { -C13 exp { (l + ~) log I - I - (i + ~) log i + i - ~ log i _ ~~o~}} 

< exp { -C13 exp { 671(B - :~o6}} 

for all large n . Putting c = 1/ B, we get 

B J-LBo _ 1 1 J-L 
- A-6 - ~- CoA-6· 

In Deheuvels and Devroye (1987, p. 1377), it is proved that for any small c > 0 
there exists a small 6 > 0 such that 

So, 

! _ ~_J-L_ > 0 . 
c coA-6 

Q(n) :S exp{ - exp{ 6sl}} 

for all large n. Applying the same arguments as in the case B < Bo, we complete 
the proof of Theorem 16.2.2. • 



On the Maximal Excursion Over Increasing Runs 239 

Lemma 16.3.2 Assume (1- a) loglogn ---> O. Let dn and bn be as defined in 
Theorem 16.2.3. If, for some r > 1 , 

D2d2 
logP(Si ~ Ddn ) "'-T (16.17) 

for any 0 < D < r, then the conclusion of Theorem 16.2.3 holds true. 

PROOF OF LEMMA 16.3.2. Take e > 0 such that (1 + e)1/2 < r. We have for 
large n 

R(n) P(Mn(i) ~ (1 + 2e)1/2dn) ~ ~P(Si ~ (1 + 2e)1 /2dn) 
'/,. 

{( 1) (' 1). (l+e)d~} < C14 exp 1 + 2' log l-l- '/, + 2' log'/, + i - 2Z 

< C14 exp {-(I + eTn ) log l} , 

where Tn = 1 - i + 1 ~ 1. Here, we have used Stirling's formula together with 
(16.17). 

Fix q > 1. Setting Njk = {n : i(n) = j , ,qk ~ Tn < qk+1} , njk = max{n : 
n E Njk} , j ~ 2 , k ~ 0, we conclude that the series '2:. j,k R(njk) converges. 
By Borel-Cantelli lemma, 

1· Mnjk(anjklnjk) < 1 1m sup _ a.s., 
j--+oo dnjk 

uniformly over k. Since dn ~ dnjk/q and Mn(anl) ~ Mnjk(anjklnjk) for n E Njk' 
all large j, all k, we conclude that 

1. Mn(i) 
1m sup -- ~ q a.s .. 
n--+oo dn 

Since q > 1 is arbitrary otherwise, this yields (16.9). 
On the other hand, making use of Stirling's formula and (16.17) again, we 

get for large n 

Q(n) P(Mn(i) < (1 - e)bn ) ~ exp {- a~i! P(Si ~ (1 - e)bn)} 

< exp{-C15exp{(l+~)lOgl-l-(i+~)lOgi+i- (1-2~e)b~}} 
< exp{ _6gZCTn } , 

where Tn = 1 - i - 1. 
For Njk defined above, we put now nj = min{n: n E Njk}. Then the series 

'2:.j,k Q(njk) converges, and Borel-Cantelli lemma implies 

liminf Mnjk(anjklnjk) > 1 
j--+oo dnjk -

a.s. 
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uniformly over k. In the same way as before, we get 

1· . f Mn(i) 1 Imm -- > a.s. 
n->oo bn -

This completes the proof of Lemma 16.3.2. • 

PROOF OF THEOREMS 16.2.3 AND 16.2.4. Theorems 16.2.3 and 16.2.4 are 
immediate from Lemma 16.3.2 and the following results on large [Frolov (1998)J 
and moderate [Amosova (1979)J deviations. • 

Theorem 16.3.2 If the assumptions of Theorem 16.2.3 are satisfied, then, for 
any 8 > 0 and any sequence {xn} with Xn = o(nf3!(4-2{3»), the inequalities 

exp{ -(1 + 8)x~/2}:S P(Sn 2: XnVn) :S exp{ -(1 - 8)x~/2} 

hold for all large n. 

PROOF. If f3 = 1, see Feller's (1969) result. If f3 < 1, it follows from Lemma 2 
in §3 of Chapter VIII and relations (3.28), (3.30) in Petrov (1975, p. 241). • 

Theorem 16.3.3 If the assumptions of Theorem 16.2.4 are satisfied, then for 
anyc<~, 

P(Sn > xVn) rv 1 - q,(x) 

uniformly over 0 :::; x :::; cy'logn. Here, cp(x) denotes the standard normal 
distribution function. 
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Almost Sure Behaviour of Partial Maxima 
Sequences of Some m-Dependent Stationary 
Sequences 

George Haiman and Lhassan Habach 

Universite de Sciences et Technologies de Lille, Villeneuve d'Ascq, France 

Abstract: For some m-dependent stationary sequences, one can construct an 
i.i.d. sequence, with same marginal distribution, such that a.s. from a random 
range on the distribution tail, the corresponding partial maxima sequences co­
incide. In this chapter, we give a short presentation of the proofs of these 
results. 

Keywords and phrases: m-dependent, stationary, extremes, partial maxima 

17.1 Introduction 

Let {Xn} be a stationary m-dependent sequence of random variables (for any 

t 
~ 1, 0"( ... , X t ) and 0" (Xt+m+l , ... ) are independent). 

Suppose that F(x) = P(Xl ~ x) is continuous and there exist f3 > 0 and 
k > 0 such that for all 2 ~ i ~ m + 1 we have 

lim sup { sup P{Xl > u I Xi = v}( -log(l - F(U)))2+f3 } < 00, (17.1) 
u-+w u<v<cp(u) 

where w = Max{x;F(x) < I} and <p(u) is the solution of the equation 
1 - F(<p(u)) = (1 - F(u))Hk. 

The following Theorem 17.1.1 has been proved in Haiman (1987) [see also 
Haiman (1992) and Haiman et al. (1998)]. 

Theorem 17.1.1 Let {Xn} satisfy condition {17.i}. Then, one can construct, 
on the probability space on which {Xn} is defined, enlarged by independent 
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A C A 

factors, an i.i.d. sequence {Xn}n21, such that Xl = Xl and a.s. there exists a 
random range N such that for n 2 N we have 

(17.2) 

Several examples of sequences satisfying the following condition that is stronger 
than (17.1): there exist, > 0 and k > 0 such that for all 2 ~ i ~ m + 1, we 
have 

lim sup { sup P{XI > u I Xi = V}(P{XI > u} )-'} < 00, 
u->w u<v<cp(u) 

(17.3) 

as given in Haiman et al. (1998). 
Among these, for m = 1, examples of the form Xn = f(Un, Un+1) , n 2 1, 

where {Un}n>l is a sequence of i.i.d. uniformly on [0,1] distributed random 
variables, are Xn = Un + Un+l, Xn = Un X Un+1 and Xn = inf(Un , Un+l ). For 
sequences {Xn} which do not satisfy (17.1), such as Xn = Max(Un, Un+d, a 
similar result to Theorem 17.1.1 result was obtained in the above cited paper. 
Another example of I-dependent sequence satisfying (17.3) [see Haiman (1999)] 
is 

Xn = max (W(t) - W(t+ 1)) ,n 21, 
n-l::;t<n 

where W(t) is the Wiener process. 
Applied to this example, (17.2) means that for n 2 N we have 

Max (W(t) - W(t + 1)) = Max(Xl, ... , Xn) 
og~n 

and the Li.d. sequence {Xn} satisfies 

P{XI < x} = P{XI < x} = 1- c.px - 2'IjJ + c.px'IjJ _ c.p2 +'ljJ2, 

with c.p = c.p(x) = 1/V2iie-x2 /2 and'IjJ = 'IjJ(x) = 1-J~oo c.p(u)du. In Haiman and 
Habach (1999), the following Theorem 17.1.2 has been proved which completes 
Theorem 17.1.1. 

Theorem 17.1.2 The random variable N of Theorem 17.1.1 satisfies 

P(N > s) = O((logs)-!3I(4+J3»),s 2 2. (17.4) 

It may be easily seen that (17.3) implies (17.1) for any f3 > O. Thus, we have 
the following corollary. 

Corollary 17.1.1 If {Xn} satisfies (17.3), then for any 0 < E < 1 we have 

P(N) s) = o((logst-l), s 2 2. (17.5) 
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The proof of Theorem 17.1.2, quite long and complicated, is closely connected 
to the method of construction of the i.i.d. sequence {Xn }. 

In this Chapter we give a short presentation of the proofs of these results, 
leaving aside auxiliary technical aspects which may be found in the above cited 
papers. 

17.2 Proof of Theorem 17.1.2 

Let ro < w be fixed and consider the sequence {(Tn, Rn)}n2::1 of record times 
Tn and record values Rn of {Xn}, defined with respect to the initial threshold 
ro, as 

T1 inf{k ~ 1; Xk > ro}, R1 = XT1 

and for n ~ 1, 
Tn+1 = inf{k> Tn; Xk > R n},Rn+1 = XTn+l' (17.6) 

By the hypotheses, a.s. for any n ~ 1, Tn is finite. Let {(Tn, Rn) }n2::1 be 
a sequence of random vectors, taking values in N x R and having the same 
distribution as the records defined with respect to ro of an i.i.d. sequence, with 
same marginal distribution as {Xn }. 

It is well known that {(Tn, Rn)}n2::1 form a Markov chain such that for any 
integers 1 :S t1 < t2 < ... < tn+1 and any ro < r1 < ... < rn+1 < w we have 

P {Tn+1 = tn+1, Rn+1 > rn+1 I T1 = t1, R1 = r1,···, Tn = tn, Rn = rn} 

= P {Tn+1 = tn+1, Rn+1 > rn+1 I Rn = rn} (17.7) 

= (F(rn))tn +1-tn -1(1_ F(rn+1))' 

The construction in Theorem 17.1.1 easily follows from the following Theorem 
17.2.1. 

Theorem 17.2.1 Let {Xn} satisfy condition {17.1}. Then one can construct, 
on the probability space on which {Xn} is defined, enlarged by independent 
factors, a sequence {(Tn, R n)}, satisfying (iT 7), such that a.s. there exists a 
random range 1/ such that for n ~ 1/, we have 

Tn+1 inf{k > Tn; Xk > Rn} 

inf{k > Tn + m + 1; Xk > Rn} (17.8) 

and 
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Indeed, observe that, if (17.8) is satisfied, then there exist integers Vi and 
Q such that a.s. for n 2:: Vi we have 

Tn = Tn-Q and Rn = Rn-Q . 

Thus, since the Tn's are the instants when the Mn's change and the Rn's the 
corresponding values, it is not difficult to construct the final i.i.d. sequence 
{Xn} the records of which, with respect to '1'0, are {(Tn, Rn)}. 
The first step of the proof of Theorem 17.1.2 is the following Lemma 17.2.1. 

Lemma 17.2.1 The random variable v in Theorem 17.2.1 satisfies 

P{v > t} = O(t-(3/2), t > O. (17.9) 

PROOF. The construction in Theorem 17.2.1 is such that if en denotes the 
event en = (Tn+l i- inf{k > Tn, Xk > Rn} or Rn+l i- Xrf, ), we have 

~n+l 

and then the statement of the theorem follows by the first Borel Cantelli Lemma. 
But then, we also have 

P(v> t) ~ P( U en) = O(C(3/2) . 
n?:t 

• The next step involves proving the following Lemma 17.2.2. 

Lemma 17.2.2 We have for s 2:: 2, 

P{Tv > s} = O((1og s))-(3/(4+(3) . (17.10) 

PROOF. We first establish, for any n, the formula 

( F(ro) ) 1 - F(ro) d ( j')n) 
n - c + log 1 _ F(ro) + F(ro) + 2(F(ro))2 + 0 1 ~ 
:A(n,ro) , (17.11) 

with c = Euler constant, Idl ~ 1, and IO(x)1 ~ K(ro) Ixl. 
From (17.11) and the Markov inequality, we get 

A A(n, '1'0) 
P{Tn > s} ~ I ,s 2:: 2. 

ogs 
(17.12) 

The proof of (17.11) is based on the corresponding result obtained in Pfeifer 
(1984) for the classical record times sequence {Ln} of an i.i.d. sequence {Yn}. 
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{Ln} are defined as L1 = 1, Lk+1 = inf{t > Lk, yt > YL k }, k 2: 1 and Pfeifer's 
result is the formula 

The latter formula was improved in Nevzorov (1995) [see also Nevzorov and 
Balakrishnan (1998)], who obtained 

E(l/ Ln) = 21n + O(1/3n) . 

Notice that the Ln's are different from the record times defined with respect to 
an initial threshold. However, if {Tn}n;::::l is the record time sequence of {Yn} 
with respect to some initial threshold Uo (i.e. T1 = inf{ t 2: 1; yt > uo} and 
Tk+ 1 = inf {k > Tk ; Yk > YTk } ), then there exist 'TIo and q such that for n 2: 'TIo 
we have Ln = Tn- q . 

Going back to the proof of (17.10), for any t 2: 1 we have 

P(,Tv > s) ::; PCTv > s, v::; t) + P(v > t) , 

where, by (17.9), there is a constant Kl such that P(v > t) ::; KIC(3/2. Next, 

t 

P(Tv > s, v::; t) = L P(Tn > s, v = n) 
n=l 

t 

< LP(Tn>s). 
n=l 

(17.13) 

By (17.12), there is a constant K2 such that the last sum in (17.13) is majorized 
by K2t2/ log s. 

Thus, for any t 2: 1, 

P(Tv > s) ::; K1Cf3/2 + K2t2/ log s, s 2: 2. (17.14) 

Taking t = [(10gs)1/(2+(3/2)], (where [ ] stands for integer part), there is a 
constant K such that the right hand term in the above inequality is majorized 
by K(logs)-(3/(4+(3). • 

In order to prove (17.4) we now assume, without loss of generality, that the 
Xn's (thus the Xn's) are uniformly on [0,1] distributed. 

We are now in position to prove (17.4). Let 

L = inf{k ~ 0; Xr,,+k > MrJ. (17.15) 

Let 0 < 0: < 1 be a fixed constant and {Un}n>l, 0 < Un < 1, an increasing 
sequence, limn->oo Un = 1. We then have, for any s ~ 1, 

P(N) s) < P{Tv + L > s} (17.16) 

< P{(Tv + L > s) n (M[sa] < Ursa])} + P{M[sa] ~ Ursa]}. 
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Next, 

P{CTv + L > s) n (M[sa] < Ursa])} ::; P(A) + P{Tv > [san, 

where 
A = (Tv::; [sa]) n (Tv + L > s) n (M[sa] < U[sa]). 

By (17.10), we have 

Next, 

P{Tv > [san = o ((log s)-{3I(4+{3)) , s ~ 2. 

A C (Tv::; [sa]) n (L > s - [sa]) n (M[sa] < Ursa]) 

C {Tv::; [san n {Max(XTv+1'···' xT+s_[sa]) < Ursa]} 
[sa] 

C U {Max(X7 +1, ... , X 7 +s-[sa]) < U[sa]}. 
7=1 

Thus, by stationarity, 

Let 
(log n) -/3/(4+{3) 

un =l- . 
n 

Then, (17.19) implies that there exists a'Y > 0 such that 

(17.17) 

(17.18) 

(17.19) 

(17.20) 

(17.21) 

In order to bound the term P{M[sa] 2: Ursa]}, we apply the next Lemma, which 
is a consequence of Haiman (1987, Theorem 1). 

Lemma 17.2.3 If the sequence {Un}n>l is such that limn - HXl n(l - un) = 0, 
then 

lim P{Mn ~ un}/n(l- un) = 1. n-->oo (17.22) 

With {un} defined in (17.20), we then obtain 

P{M[sa] ~ Ursa]} = O((lOgs)-/3/(4+{3)). (17.23) 

Combining (17.16), (17.17), (17.18), (17.21) and (17.23), we get (17.4). 
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On a Strong Limit Theorem for Sums of 
Independent Random Variables 

Valentin V. Petrov 

St. Petersburg State University, St. Petersburg, Russia 

Abstract: This chapter examines the almost sure behaviour of sums of inde­
pendent non-identically distributed random variables. An extension of some 
results of Chung and Erdos is obtained. 

Keywords and phrases: Almost sure convergence, sums of independent ran­
dom variables, Chung-Erdos theorem 

18.1 Introduction and Results 

The set of functions 'l/J (x) that are positive and non-decreasing in the region 
x> Xo for some Xo and such that the series L l/(n'l/J(n)) converges (diverges) 
will be denoted by We (respectively, 'lid). 

Chung and Erdos (1947) proved that if {Xn} is a sequence of independent 
random variables having a common distribution function with non-zero abso­
lutely continuous component and if EX1 = 0, EIXl l5 < 00, then 

lim inf n1/2'l/J(n)ISnl > 0 a.s. 
n-->oo 

(18.1) 

for every function 'l/J EWe, but if'l/J E 'lid, then 

lim inf n1/2'l/J(n)ISnl = 0 a.s. 
n-->oo 

(18.2) 

Here, Sn = Xl + X2 + ... + Xn. Some analogues of these results were obtained 
by Cote (1955) for sequences of independent non-identically distributed random 
variables under severe assumptions including uniformly bounded moments 

of the 5th order. 
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In Petrov (1978a), and Petrov (1978b) [see also Petrov (1995a, p. 224)], it 
was proved that if {Xn} is a sequence of independent identically distributed 
random variables satisfying the Cramer condition 

then 

limsuplEeitX11 < 1, 
Itl~oo 

lim nl /21,b(n)ISnl = 00 a.s. 
n~oo 

(G) 

(18.3) 

for every 1,b E We; if the additional assumptions EXl = 0 and EXr < 00 are 
satisfied, then (18.2) holds for every 1,b E 'lid. 

In Petrov (1995b), sufficient conditions are given for relation (18.3) with 
1,b EWe in the case of independent non-identically distributed random variables. 
We shall be interested in sufficient conditions for (18.2) when 1,b E 'lid also in 
the case of independent non-identically distributed summands. 

Let {Xn, n = 1,2, ... } be a sequence of independent random variables with 
zero means and finite absolute third moments. We put 

n n 

Bn,k = l:= EX], Dn,k = l:= EIXj l3 (O:S k :S n - 1), 
j=k+! 

Bn = Bn,o. 
j=k+l 

Theorem 18.1.1 Suppose that 

Bn 2: con for all sufficiently large n, 

Dn,k :S Cl (n - k) for all sufficiently large n - k and k, 

where co and Cl are some positive constants. Moreover, we assume that 

Bn,k 2: (1 - <5)Bn-k 

(18.4) 

(18.5) 

(18.6) 

for every <5 > 0 and all sufficiently large n - k and k. Finally, we assume that 
the sequence {fn(t) , n = 1,2, ... }, where fn(t) = EeitXn , contains a subsequence 
Unm(t);m = 1,2, ... } with the following properties: (A) Ifnm(t) I :S Gltl-a 

for It I 2: R and some positive constants G, a and R (m = 1,2, ... ), (B) 
if rN(n) is the number of elements of the subsequence {fnm (tn in the set 
fN+! (t), ... , fN+n(t), then rN(n) 2: cn for all sufficiently large Nand n, where 
c is a positive constant not depending on nand N. 

Under the above-mentioned assumptions, relation (18.2) holds for every 1,b E 

'lid· 

It follows from Petrov (1995b) that conditions (A) and (B) with N = 0 are 
sufficient for relation (18.3) when 1,b EWe even without any moment conditions. 
More general results related to the case 1,b E We can be found in Petrov (1998) 
for arbitrary sequences of random variables without the independence condition 
and any moment assumptions. 
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18.2 Proofs 

In what follows, we assume that conditions of Theorem 18.1.1 are satisfied. 

( 1/2) ( 1/2) Lemma 18.2.1 Let a < b, a = 0 Bn,k and b = 0 Bn,k as n - k ~ 00. Then, 

b-a 
P(a::; Sn - Sk ::; b) = (27rBn,k)I/2 (1 + 0(1)) 

as n - k ~ 00. 

This lemma of independent interest is an extension of a result of Shepp 
(1964) obtained for independent identically distributed random variables un­
der weaker conditions. Its proof is lengthy and will be published elsewhere. 
Lemma 18.2.1 remains true if we replace condition (18.4) and (18.6) by the 
condition Bn,k 2: co(n - k) for all sufficiently large n - k and k. 

Lemma 18.2.2 Let c be an arbitrary positive constant. Then 

P(n1/21j1(n)ISnl ::; c i.o. ) = 1 

for every function 1j1 E W d. 

PROOF. We put 

Moreover, for any fixed sufficiently large integer N, we put 

k-l 

Gk = n Er (k> N), QN = PN, Qk = P(DkGk) (k> N), 
r=N 

PN,N = 1, PN,n = P(DnIDN) (n> N), 

Pk,n = P(DnIDkGk) (N < k < n). 

It is easy to show by induction that 

m m m 

L Pn = L Qk L Pk,n 
n=N k=N n=k 

for every m 2: N. 
We shall prove the following statement: 

for arbitrary c > 0, there exists an integer M such that 

Pk,n::; (1 + c)Pn-k 

(18.7) 

(18.8) 
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for k > M and n - k > M. 
Let "I be an arbitrary positive number. We represent the interval Ixl ~ An 

as the union of non-overlapping intervals Ij with length lj ~ "IAn for every j. 
Let Tj be an arbitrary interval with length tj ~ 2An + "I An that contains in the 
interval [-Ak - An, Ak + An]. 

Taking into account Lemma 18.2.1 and condition (18.6), we get 

(18.9) 

for all sufficiently large k and n - k. We put 

Obviously, 

j j 

We have 

p = P(DnDkGk) = {" P(G H~k))}-l" P(D G H(k)) 
k,n P(DkGk) ~ k J ~ n k J 

J J 

~{2:P(GkHy)) }-I2:P(GkHY) n [Sn - Sk E Tj ]) 

j j 

where Tj (j = 1,2, ... ) is an interval of length tj ~ 2An + "IAn containing in 
the interval [-Ak - An, Ak + An]. Since Xl, X2, ... is a sequence of independent 
random variables, we obtain 

and 
Pk,n ~ ma:xP(Sn - Sk E Tj). 

J 

Making use of (18.9) and definition of An, we get 

P 2(1 + "I )An-k 2(1 + "I)c 
kn< / < / ' - (2nBn-k) I 2 - (27fBn -k(n - k))l 2'lj;(n - k) 

(18.10) 

for all sufficiently large k and n - k. It follows from Lemma 18.2.1 that 

(18.11) 

for every positive fixed "I and for all sufficiently large n - k. Inequalities (18.10) 
and (18.11) imply (18.8). 
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Let c be an arbitrary fixed positive number. If Nand L are sufficiently 
large numbers, we obtain from (18.7) and (18.8) that 

m m k+L m 

LPn = L Qk{L Pk,n + (1 +E) L Pn- k } 
n=N k=N n=k n=k+ L+ 1 

m m 

~ L Qk { L + 1 + (1 + E) L Pr }. 

k=N r=L+l 

Therefore, 

m m 1 m 

L Qk '2 {L + 1 + (1 + E) L Pr } - LPn. (18.12) 
k=N r=L+ 1 n=N 

Taking into account inequality (18.11) and conditions (18.5) and'IjJ E Wd, we 
have 2.:.'::=N Pn = 00. Passing to the limit in (18.12) as m ---t 00, we get 

(18.13) 

Here, E is an arbitrary positive number. The left-hand side of (18.13) does not 
depend on E. Therefore, 2.:.~N Qk '2 1. Since 

00 00 

L Qk = P(Dn U ENDN+l U ENEN+IDN+2 U···) = P( U Dn), 
k=N n=N 

we have 

00 

P( U Dn) = 1. (18.14) 
n=N 

It follows from relations 

00 00 

U Dn::> U Dn::>' .. 
n=N n=N+l 

and 
00 00 n U Dn = limsupDn 

N=ln=N 

that there exists the limit 

00 

lim P( U Dn) = P(limsupDn). 
N--4OO 

n=N 

Applying equality (18.14), we conclude that P(lim sup Dn) = 1. Lemma 18.2.2 
is proved. • 
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Relation (18.2) readily follows from Lemma 18.2.2. 
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Development of Linnik's Work in His Investigation 
of the Probabilities of Large Deviation 

A. Aleskeviciene, v. Statulevicius, and K. Padvelskis 

Institute of Mathematics and Informatics, Vilnius, Lithuania 
Institute of Mathematics and Informatics, Vilnius, Lithuania 
Kaunas Vytautas Magnus University, Kaunas, Lithuania 

Abstract: In this chapter, we present some large deviation results for the dis­
tribution of the normed sum of random variables related to a Markov chain 
with the ergodicity coefficient under conditions similar to the case of indepen­
dent summands. The method of cumulants will be used to prove these results. 

Keywords and phrases: Large deviation, ergodicity coefficient, Markov chain, 
cumulants, factorial cumulants, Cramer series, partition, correlation function, 
factorial moments 

19.1 Reminiscences on Yu. Y. Linnik 
(Y. StatuleviCius) 

In the period of 1954-1957, I was a post-graduate student in the Ph.D. studies in 
Leningrad. The topic of my thesis was Local limit theorems for nonhomogeneous 
Markov chains. In the case when all transition probabilities Pij(n) 2: A. > 0, 
the local limit theorem was proved by Yu. V. Linnik himself. I succeeded to 
prove it in a rather general case (when a(n) En ---t 00, n ---t 00, where a(n) is the 
ergodicity coefficient), after introducing the so-called characteristic functions of 
transition. 

His post-graduate students used to go to his place in the evening to dis­
cuss some mathematical problems and to report on the work done. His wife 
Lyudmila Pavlovna usually treated us to very tasty tea. One such evening, Yu. 
V. Linnik, being in a good mood, told about himself. He said he liked to solve 
only difficult problems. Suppose a known mathematician formulates a problem 
the solution of which is of great importance to mathematics or its applications. 
Yu. V. Linnik said: "One year passes, the problem is not solved; another year 
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passes, no solution. Then I set to its solution myself!" He said that in applying 
the theory of complex functions, he was ready to outdo anyone. Having chosen 
the method of solution, he used to go straight out, without looking around. He 
reported his successful results at a seminar. However, he worried about where 
to publish his results since they were about 80 pages long. His post-graduate 
students such as A. A. Zinger, V. V. Petrov, I. A. Ibragimov, and the author 
of these lines curtailed the paper to 10 to 20 pages. In brief, if some 'loops' 
appeared in Linnik's proof, sometimes we succeeded in curtailing them (and to 
curtail the length of the paper). He did not like undisciplined, ungifted students 
in Mathematics. Once I recall him asking a student during an exam whether 
Doob was not his relative. The student swore he was not and he never knew 
Doob. It was his humor-the famous book Theory of Random Processes by 
D. Doob had been published at that time. In Russian, the word 'doob' ('dub') 
has another meaning, namely; 'blockhead'. A dull, uneducated man was called 
'doob'. I have already mentioned, academician Yu. V. Linnik was fond of 
solving delayed and difficult problems. So, if a post-graduate student got new 
good results, he used to send him for discussion with A. N. Kolmogorov or N. 
V. Smirnov (if it was a statistical reSUlt). This is how we got familiar with 
Moscow representatives of the school of probability theory and statistics which 
included A. N. Kolmogorov, N. V. Smirnov, B. V. Gnedenko, E. B. Dynkin, 
Yu. V. Prokhorov, R. L. Dobrushin, L. N. Bolshev, and others. If you were a 
success, he tried to 'settle you down on the track' and there was no way back; 
you could not help but work a lot. 

Based on the results I had obtained, I was awarded a prize with a nice 
diploma 'Laureate of Leningrad University prize', while the newspaper Evening 
Leningrad published an article entitled "A young scientist can be greeted with 
a good beginning." I think each of his students can tell such interesting stories 
with deep gratitude to Yu. V. Linnik, and we are always proud to say that we 
are Yu. V. Linnik's students. 

19.2 Theorems of Large Deviations for Sums of 
Random Variables Related to a Markov Chain 

On a probability space (O,F,P), let there be given a Markov process ~t(w) 
with the values from a measurable space (Xt, St), t = 1, ... , n, with transition 
probabilities Ps,t(x, B) = P{ ~t E B I ~s = x} from the state x E Xs at time s 
to a set of states BESt at time t, 0 ~ s < t ~ n, and the initial probability 
distribution Po (B) = P(~o E B), B E Bo. Let us introduce a-algebras Ft = 
a{~t} and F£ = a{~s, t ~ s ~ t'}. We consider random variables 
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related to a Markov chain ~t, t = 0,1, ... ,n, i.e., X t = gt(~t), t = 1, ... , n, 
where gt(x) is a real Bt-measurable function defined on X t. 

As a measure of dependence of random variables Xl, ... , X n , we will use 
the ergodicity coefficient of the transition function Ps,t(x, B) introduced by Do­
brushin (1956) given by 

as,t = 1 - sup !Ps,t(x, B) - Ps,t(Y, B)I. 
x,YEXs 

BEBt 

Denote a(n) = min at-l t. Let us introduce the following functions of a-
19:5n ' 

mixing, 'P-mixing, and'ljJ-mixing: 

a(8, t) = sup IP(AB) - P(A)P(B)I, 
AEFo,BEF[' 

( ) _ I P(AB) - P(A)P(B) I 
'I' 8, t - sup P(A) , 

AE.'FO ,BE.'F[' , 

P(A»O 

'ljJ(8, t) = I P(AB) - P(A)P(B) I 
sup 

AE.'FO,BE.'F[" P(A)P(B) . 
P(A»O,P(B»O 

It is known that 
a(8, t) ::; '1'(8, t) ::; 'ljJ(8, t). 

It is also easy to show that 

If we have inequalities connecting different mixing functions with the ergodicity 
coefficient as,t, we can obtain, as consequences, some propositions proved by 
applying these functions. Suppose that EXt = 0 and 0 < (5; = Exl < 00, t = 
1, ... , n. Let 

n 

Sn = LXt , 
t=l 

B~ = DSn , 

I 

Sk,l = L X t , 
t=k+1 

Zn = B;;lSn' 

o ::; k < l ::; n, 

We are interested in large deviation probabilities of the distribution FZn (x) = 
P(Zn < x) of the normed sum Zn ofrandom variables related to a Markov chain 
with the ergodicity coefficient an under conditions similar to the case of inde­
pendent summands. We will use the method of cumulants in the investigation. 

StatuleviCius (1969) obtained optimal results in the case of bounded random 
variables X t , i.e., when IXtl ::; en, t = 1, ... ,n with probability 1. To investi­
gate the behavior of cumulants of the sum Sn with respect to Bn, we used the 



262 A. AleskeviCiene, V. Statulevicius, and K. Padvelskis 

scheme of enlargement of summands Xt proposed by Dobrushin (1956). For 
unbounded X t , we have found another scheme of enlargement of summands. 

The case of a homogeneous chain is much simpler (because we can do with­
out the enlargement of summands) and has been studied in detail by Saulis and 
StatuleviCius (1989). 

Denote by ~(x) a (0,1) - normal distribution function, and by rk(~) a 
cumulant of order k of a random variable ~ given by 

1 dk 

rk(~) = ikdtk(1ogf~(t))lt=o' 
if EI~lk < 00. Here, f~(t) is a characteristic function of the random variable ~. 
Put 

{ 
Ft-1 ® Ft+1, if t = 1, ... , n - 1, 

F t -1,t+1 = 
Fn -1, if t = n. 

By C, C(-y), we denote finite positive not always the same constants absolute 
or dependent only on " respectively. 

Theorem 19.2.1 If a(n) > 0 and with probability 1 

E(IXt lk IFt _1,t+1) ::; (k!)l+'Y1 Hk (7;, t = 1, ... , n, k = 2,3, ... , 

k = 3,4, ... 

and, for 

, =,1, 

in the interval 
0::; x < ~, 

the following relations of large deviations 

hold. Here, 

1- FZn(x) 

1- ~(x) 
( x+ 1) exp{L,(x)} l+Bf(x)~, 

FZn(-x) 
~(-x) 

( x+ 1) exp{L,( -x)} 1 + Bf(x) ~ 

L,(x) = L )..kxk , 
3~k<p 

{ 
~+2, 

p= , 

00, 

if , > 0, 

if , = o. 

(19.1 ) 



Development of Linnik's Work 263 

The coefficients Ak are expressed by cumulants of the random variable Zn and 
are the same as those of the Cramer series, and 

Theorem 19.2.2 If a(n) > 0 and 1 

n 

L E*(IXtl k l.rt-l ,t+1) 
L t=l k,n = '---='----( n-) ':'"""k--:l'-B-k---

a n 

for some /2 2: 0 and ~n 2: e, then 2 

(k!)1+'Y2 
< 

~~-2 ' 

k '. (Cl~gn~n)k-2, .u k = 3,4, ... , 

k = 3,4, ... 

if /2 = 0 

< k! 
k = 3, 4, ... , 2 [~~+;'Y2 ] , if /2 > 0 

and, for 

~'Y = ~ = log ~n ' 
if / = 0 

{ 
C~n 

Ch) ~~-t2'Y, if / > 0 

in the interval 

0:::; x < ~'Y' 

the relations of large deviations in {19.1} hold, where 

p= {min{~+2' 2 [~~:2'Y]}, 
00, 

lE·(~ I F) = esssupE(~ I F) = sup E(~ I F). 
AEF, P(A»O 

2[X] denotes the integral part of the number x . 

if / > 0, 

if / = O. 



264 A. AleskeviCiene, V. StatuleviCius, and K. Padvelskis 

Remark. The multiplier I log ~nl is essential. As 12 = 0, the estimate for the k­
th order cumulant of the random variable Zn is unimprovable with an accuracy 
up to a constant [see Saulis arid Statulevicius (1989)], i.e., when investigating 
extremely large deviations Ixl = E ~n, as 12 = 0, additional we need conditions 
on individual pr~perties of the summands Xt , t = 1, ... , n, not just on mean 
characteristics Lk,n' 

Below, we present some main steps of the proof. 
In order to investigate the behavior of fk(Sn) with respect to Bn, we need 

the lower estimate for DSn . Since the random variables X t t = 1, ... , n, are cor­
related, the variance of sum Sn is not necessarily equal to the sum of variances 
of the summands. Therefore, we present Sn by the sum of enlarged summands 
so that B; will be of the same order as the sum of variances of these summands. 

Let 

i = 0, 1, 2, ... , N - 1, 

where the number N is defined by the inequalities 

rN-l < n ~ rN-l + [aln) + 1] . 
Let 

w.(l) - w.(2) - ° 0'- 0 - , 

and 
i = 1, ... , N. 

We determine random variables Wi, i = 0, 1, ... , N, as 

W' = min{IW.(l)1 W(2)}sign W .(l) t t , t t • 

We can the represent the sum Sn 

N Ti N 

Sn = L L X t = LSTi-l,Ti' 
i=lt=Ti_l+1 i=l 

When defining new random variables 

i = 1, ... , N -1, 

Y·-EY· t t, i = 1, ... , N, 
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we obtain 
N N 

Sn = LYi = LYi· 
i=l i=l 

The random variables Yl, ... , YN possess the following: properties 

(A) I EYkYi I ::; 2(1- ,Bk,I)~E~Y~Eh?, 1::; k::; 1 ::; N, 

where 0 < ,Bk,l < 1, 1 ::; k < 1 ::; N, and 1 - ,Bk,l ::; exp {-(l- k - I)}; 

(B) 1 . 2 < D'" < 36 2 
T2'! mIn (7t _ L i _~) max (7t , 
~u l:St:Sn a n l::;t:Sn 

i = 1, ... ,N; 

1 N 2 43 ~ (C) 24 L: DYi ::; Bn ::; -0 L." DYi. 
i=l i=l 

265 

(19.2) 

The random variables Yi are F;ii_1-measurable (i = 1, ... ,N). Suppose Fi = 

F~~-;I (i = 1, ... , N) and Fa = Fa. Next we evaluate the moments, centered 
moments, and k-th order cumulants of enlarged summands Yi, i = 1, ... , N. 

Lemma 19.2.1 

(i) If the estimate 

E(IXt lkIFt_l,t+1)::; (k!)1+'YIHk(7;, t = 1, ... ,n, k = 2, 3 ... 

holds with probability 1 for some 1'1 :2: 0 and H > 0, then with probability 
1 

E(IYilkIFi_l) ::; (k!)1+'Yl (lO(H))k max (7; (19.3) 
an l::;t:Sn 

for all i = 1, ... ,N and k = 2, 3 .... 

(ii) If 

k = 3,4, ... 

for some 1'2 :2: 0 and ~n :2: e, then, as 1'2 = 0, 

for all i = 1, ... ,N and k = 2,3, ... , and, as 1'2 > 0, 
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for all i = 1, ... , Nand k = 2, ... , s, s = 2 [~J+~,),2l. Here, 

(19.6) 

and x is the minimal integer 2: x. 

Let N = {I, ... , n} and 1= {tl, ... ,tk Itj EN, 1 ~ j ~ k}~ If for 

some k > 2, EIXtlk < 00, t = 1, ... , then the centered moment EXj is 
determined in the following way 

The sign ~ over rani om variables means that it is centered by its own math­

ematical expectation ~ = ~ - E~. 

In the case of independent random variables XtI , ... , X tk , E X h ... X tk 

differs from zero only as tl = ... = tk. 
If X t = 9t(~t), (t = 1, ... , n) are random variables related to a Markov 

chain ~t, then one can easily notice that 

k 

X II 9tj (Xj) (ptj-l. tj (Xj-l, dXj) - Ptj (dxj)) . 
j=2 

Here, Pt(B) = P(~t E B). 
We call an unordered collection of non-overlapping, non-empty sets {h, ... , 

v 
Iv} (1 ~ 1/ ~ k) such that U Ip = I as a partition. 

p=l 

Assume {II, 12, ... ,I~} (1 ~ 1/ ~ k) to be a set of all 1/ block parti-
tions of the set I' = {tl,.'" tk I tj EN}, tl ~ ... ~ tk, i.e. I; = 

{t~p), ... , t~)} , t~p) ~ ... ~ tC::, 1 ~ p ~ 1/, kl + ... + kv = k. 

Further, let £ = {h, ... , lr}, h < ... < lr, be the set of indices of the 
k-set 1'. Suppose that {£l' ... , £v} is a partition of the set £, corresponding 

to the partition {IL ... , I~} of the set 1', i.e., £p = {lip), ... , l~)} is the 

set of indices of the kp-set I' l(P) < ... < Z(p) 1 < P < 1/ rl + ... + rv >_ r. P' 1 rp ' _ _ , 
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Let (ml,'" ,mr ) be the index vector of the set £, ml + ... + mr = k and 

(mip), ... , m~)) be the index vector of the set I~, generated by the set £p, 

m Cp) + ... + m Cp) = k 1 < P < 1/. 1 rp p, - -

Now, let us consider the estimation of centered moments EYI~' 1 ~ P ~ 
1/ ~ k. 

Lemma 19.2.2 

(i) If, with probability 1, the estimate 

E(IXt l k IFt - 1,Hl) ~ (k!) 1+1'1 Hk 0';, t = 1, ... , n, k = 2, 3, ... 

holds for some '1'1 2: 0 and H> 0, then 

~ rp ( (.p) ,) 1+1'1 (40. 21'1 H) kp-Xlp (t1)-XIp (t2) 
IEYI~I ~ 2 II mJ • (n) 

j=1 a 

where 

XB(t) = { ~: 
(ii) If 

n 

L E*(IXt lk IFt _l,Hd 
L t=1 

k,n = ':"""'::"""--(n-)'k--l;-'B-k---
a n 

if t ¢. B, 
if t E B. 

< ..;.,...( k......:! ).,1+-,::1'_2 
- ~~-2' 

k = 3, 4, ... 

(19.7) 

(19.9) 
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for kp = 2, 3, ... , 2 [~~+~,),2l. Here, C(2) is as defined in (19.6), and 

if j = 1, 2, 

if j = 3, 4, ... , rp. 

For some k ~ 2, let EIXtl k < 00, t = 1, .... Then, r(Xtll ... , X tk ) is 
a correlation function (or a simple k-th order cumulant) of random variables 
Xi!, X t2 , ... , X tk -defined as follows: 

r(Xtll ... , XtJ 

.~ {)k log E exp {i t UjXt }I . 
'" {)U1··· ()Uk j=l J UI= ... =Uk=O 

Obviously, r(Xtl' ... , X tk ) is a symmetric function of its arguments. The 
k-th order cumulant of the sum Sn is defined by 

(19.10) 

Note that r(Xtl' ... , X tk ) can be expressed through the function E Xtl ... X tk 
by the following formula [see StatuleviCius (1969) and Saulis and StatuleviCius 
(1989)]: 

k v 

r(Xtll ... , X tk ) = L (-1t-1 L Nv(h, ... , Iv) II EXlp, (19.11) 
v=l 1/ p=l 

U Ip=I 
p=l 

where stands for the summation over all the v -block partitions 
v 

U Ip=I 
p=1 

{h, ... , Iv} of the set I; the integers Nv(h, ... , Iv), 

0::; N v (I1, ... , Iv) ::; (v - 1)!, 

depend only on the set {h, ... , Iv}, and moreover, if N v (I1,"" Iv) > 0, 
then t max (t;P) - t~P)) ~ max (tj - ti). 

1 t (p) t(P)EI l:::;i,j:::;k 
p= i ' j p 

From (19.10), (19.11) and (19.2), we get 

k 

rk(Sn) = L (-1t- 1 L Nv(h, ... , Iv) 
v=l 1/ 

U Ip=I 
p=1 

v 

x L II E~(p) ••• ~(p). 
l:::;tl, ... ,tk:::;Np=l I kp 

(19.12) 
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Next, we need the following formula, valid for any nonnegative symmetric 
function f(al,"" as), ai E N, i = 1, ... , 8 [see Saulis and StatuleviCius 
(1989)]: 

(19.13) 

and its consequence 

(19.14) 

It ought to be noted that for f == 1, (19.13) takes on the form 

nS = t L ,8!, (n). 
r=1 ml+ ... +mr=s mI· .. , m r · r 

Making use of (19.14), we obtain from (19.12) 

k 

Irk(Sn)1 ::; k! L L Nv(h, ... , Iv) (19.15) 

and using (19.13), we have from (19.12) 

k k! 

~I +L+ _kml! '" mrl r- ml ... m r -

k 

X L L Nv(h, ... , Iv) 
v=1 1/ 

U Ip=I 
p=l 

(19.16) 

Formulas (19.15) and (19.16) are the basic ones needed to prove the following 
lemma. 
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Lemma 19.2.3 

(i) If, with probability 1, 

E(IXt l k IFt _1 t+I) ~ (k!)l+'Yl Hk max 0';, 
, 19~n 

t = 1, ... ,n, k = 2, 3, ... 

for some 1'1 ~ 0 and H > 0, then 

(19.17) 

for all k = 3, 4, .... 

(ii) If 
n 

L E*(IXt lk IFt -1,HI) 
It=1 

k,n = .:........:'---a-(n-)k;---:1-B-~-- k = 3,4, ... 

for some 1'2 ~ 0 and L).n ~ e, then, as 1'2 = 0 , 

(19.18) 

for all k = 3, 4, ... , and as 1'2 > 0 , 

(19.19) 

for all k = 2, 3, ... ,2 [L).~+~'Y2l. Here, C(!'2) is defined earlier in 

(19.6). 

To prove the basic results, we also need the following lemma. 
Assume that there exist constants I' ~ 0 and L). > 0 such that the random 

variable ~ satisfies the condition 

k = 3,4, ... (19.20) 

Denote 

Lemma 19.2.4 [Saulis and StatuleviCius (1989)] If condition (19.20) is fulfilled 
for the random variable ~ with E~ = 0 and Ee = 1, then in the interval 
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the following relations of large deviations 

hold. Here, 

P(€ > x) 
1 - cp(x) 

P(€ < -x) 
cp( -x) 

(
X + 1) exp{L/x)} 1 + (}f(x) t;; , 

( x+ 1) exp{Ly(-x)} 1 + (}f(x) t;; 

60 ( 1 + 10 ~~ exp { - (1 - !.-y) JK:r}) 
f(x) = 1- ...£. ' 

.6.'1 

L,(x) = L AkXk , 

3::Sk<p 

{ 
~ + 2, if / > 0, 

p= / 

00, if / = o. 
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The coefficients Ak are expressed through the cumulants of the random variable 
€ and are the same as those of the Cramer series. For the coefficients Ak, 

the estimate 

k = 3,4, .... 

holds. As / > 0, we obtain Linnik zones. 

Theorems 19.2.1, 19.2.2 are proved by direct application of the results3 of 
Lemmas 19.2.1-19.2.4 and direct calculation of ~,. 

PROOF OF THEOREM 19.2.1. From (19.17), as /1 2': 0, we get 

k = 3,4, .... 

By applying Lemma 19.2.4, as / = /1 and 

we obtain the proposition of Theorem 19.2.1. • 
3N. N. Amosova showed that condition (19.20) was also necessary with an accuracy up to 

the constant C-y [see Lithuanian Mathematical Journal, (1999)]. 
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PROOF OF THEOREM 19.2.2. From (19.18) and (19.19), as Lln :2: e, we have 

k '. (Cl~gnLln)k-2, u k = 3,4, ... , if "12 = 0, 

< k! 
k = 3, = 4, ... , 2 [Ll~+;"(2 ], if "12 > 0. 

1 k 2' 
( C("(2) Ll~+2"(2) -

By applying Lemma 19.2.4, as ~ = Zn, "I = "12 and 

if "I = 0, 

"I> 0, 

we obtain the proposition of Theorem 19.2.2. • 
19.3 Non-Gaussian Approximation 

If the distribution of a random variable Xn (as n -t 00) converges to the 
Poisson distribution, then in the asymptotic analysis (the rate of convergence, 
asymptotic expansions, behaviour of the probabilities of large deviations) one 
has to employ factorial moments and factorial cumulants i\(xn ) , which are 
defined as coefficients of the expansion 

S r (X ) 
logEeitXn = L k ,n zf(t) + o(IW) 

k=l k. 

if EIXtl S < 00, where zl(it) = eit - l. 
In the normal approximation, we took Zl (it) = it and obtained simple cumu­

lants rk(Xn ). In the approximation by the Poisson law, general lemmas of large 
deviations, if we have the estimates for rk(Xn ), were proved by AleskeviCiene 
and StatuleviCius (1995). 

We can offer the general principle of choice of special cumulants for each 
approximation as follows: if we wish to approximate the distribution of random 
variable Xn by the distribution F with the characteristic function f(t), then 
we expand log EeitXn in a neighbourhood of the point 

( .t) = dlogf(t) It 
Zl 't d(it) o· 

Thus, for example, if the approximation law is the normal one, then f(t) = 
~ . 

e- T and Zl (it) = it; if it is the Poisson law, then z2(it) = >'(e~t - 1); and if it is 
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x~ with m degrees offreedom, then zl(it) = m1~~it as far as j(t) = fx~Jt) = 
1 

(1-2it) I¥ . 
Instead of multipliers ,\ and m, we can take 1, in which case ,\ and m will be 

included in the expression of coefficients which we declare as the corresponding 
cumulants. In the case of X~ approximation, we denote such cumulants by 
I'k(Xn ) [see Aleskeviciene and Statulevicius (1997)]. 

Let 

_ m (S~i))2 
Xn - L r,;; , 

i=l yn 

where S~i) = e(i-1)n + ... + ein, i = 1, ... , m, and 6,6, ... is a sequence of 
independent identically distributed random variables with E6 = 0, Eer = 1, 
satisfying the Cramer condition 

(19.21) 

for all k ~ 3. Obviously, Xn ~ X~. 

1 
Theorem 19.3.1 If {19.21} is fulfilled, then in the interval 1 < x < cons, the 
relation 

P(Xn ~ x) = P(X~ ~ x) (1 + eco :3) 
holds, where Co and Co depend only on m and H with lei ~ 1. 

The main idea of the proof is the following. The summands in (19.2) are 
_ S(l) 

independent, and therefore it suffices to estimate only r(y2), where Y = Fn' 
These cumulants are expressed by simple cumulants r lI(y2), 1/ = 1, ... , k, as 
follows: 

The cumulants r lI(y2) are expressed through the moments Ey2j, j = 1, ... ,1/, 
while the latter can be inversely expressed through the cumulants rz(Y), I = 
1, ... ,21/, of the random variable Y (which are trivially calculated and esti­
mated) 

rz(ez) k!Hl-2 
rl(Y) = (vIn)l-2 = e (vfn)1-2' lei ~ l. 

The majority of summands in (19.4) is reduced after transformations, and we 
finally find that 

II' (y2)1 (k!)2 Hf (k!)H~ 
k ~ k-1 + Is. , 

n n3 
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where HI and H2 depend only on H. Hence, we obtain the assertion of Theorem 
19.3.1. • 

These ideas are also applied in the investigation of the probabilities of large 
deviations for Pearson's X2 statistics 

Let a hypothetical distribution P(A) = P(~ E A) be completely determined, 
AI, ... ,Ar be a partitioning of the space of values of the random variable ~ into a 
finite number of parts (say r) without common points, Pi = P(Ai) and Vi be the 
number of incidences of the sample 6, ... ,~n values in the set Ai, i = 1, ... , r. 
If the assumption on the fact that the sample corresponds to the distribution 
P(A) is true, then, as it is known by Pearson's theorem, the distribution of 
statistic X2 tends to the X2-distribution with r - 1 degrees of freedom. In this 
case, it is possible to show that 

where 

r-I 

X2 = LYf, 
k=1 

[( Nk+2 ) 1 (Nk+1 ) 1] 2 -- - Ilk+2 -- + --- - Ilk+1 - , 
n 7rk+1 n 7rk 

7rk = PI + ... + Pk. Ilk+l = Pk+ I + ... + Pr, 

Nk+l = Vk+1 + ... + Vr , 

EYiYj = 0, i t= j, EY,? = 1, i, j = 1, ... ,r - 1. 

Random variables YI , ... , Yr are dependent though noncorrelated and, in order 
to estimate rk(X2), we have to use mixed cumulants [see Saulis and Statulevicius 
(1989)]. 
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Lower Bounds on Large Deviation Probabilities 
for Sums of Independent Random Variables 

S. V. Nagaev 

Sobolev Institute of Mathematics, Novosibirsk, Russia 

Abstract: In this chapter, we discuss some lower bounds on the probability 
P(S > x), where S = 2:/;=1 Xj with Xj's being independent random variables 
with zero means and finite third moments. 

Keywords and phrases: Large deviation, law of iterated logarithm, Mills's 
function 

20.1 Introduction. Statement of Results 

Let Xl, X2, ... Xn be independent random variables with zero expectations and 
finite third moments, and let S = E Xj. Here and in the sequel E denotes Ej, 
the case n = 00 is not excluded. 

We shall deal with lower bounds on the probability P(S > x). Denote 
o} = EX], B2 = Eo}, {3j = EIXjI3, and C = E{3j. Let L = C/B3 be a 
Lyapunov ratio. 

In what follows, we omit the index j in definitions and statements relative 
to every 1 ::; j ::; n, i.e. write 0"2 instead of O"J, X instead of Xj, and so forth. 
We use the notations a V b := max(a, b), a 1\ b := min(a, b). 

Let q,(x) be a standard normal law. Denote q,l(X) the Mills function 

v'27f(1- q,(x))ex2 / 2. Let 'l1(x) = Xq,l(X). 
The first lower bound on the probability P(S > x) was obtained by Kol­

mogoroff (1929) for uniformly bounded random variables IXjl < M in con­
nection with proving the law of the iterated logarithm. In our notation, the 
Kolmogoroff inequality looks as follows: if x2 > 512 and a = xM/ B ::; 1/256, 
then 

P(S > xB) > exp{ - x; (1 + E)}, 
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where f. = max{ 64va, 32v'lnx2 /x}. The result stated below is due to Lenart 

(1968). 
If IXkl < M and 0 < xM/ B < 1/12, then 

P(S > xB) = exp{ - ~2 Q(x)} (1 - <p(x) + T(M/ B)e-x2 / 2) , (20.1) 

where Q(x) = 2:.'1 qkxk, ql < M/3B, qk < k(12M/B)k, k = 2,00, ITI < 7.465 
[see also Petrov (1972, p. 308), in this connection]. 

This result coincides in form with that by Feller (1943) and differs from the 
latter in somewhat lesser values of constants. It is easy to derive from (20.1) 
the inequality 

P(S> Bx) ~ (1- <P(x)) exp{ _(--y)M;3}(1_7.465J21f B~~))' (20.2) 

where 1 < x < 'YB/M, c(--y) = 1/6 + 9"1/(1- 12"1), "I < 1/12. 
Estimating the right hand side of (20.2) in terms of f. which is present in 

Kolmogoroff inequality, we arrive after rather complicated calculations at the 
inequality 

exp{ -(1 + 545 . W-5f.)x 2 /2} 
P(S> Bx) > J27r ' , 2~ 

where 16V2 < x < B/256M. 
Compare now the bound (20.2) with that from the recent paper [Rozovskii 

(1997)] 

P(S> Bx) > exp{ -(1 + 50a) ~2} 
which holds under the condition 

1 aM -2 
~ < X < 13' 0 < a < 10 . 

(20.3) 

Under this condition, the inequality (20.2) leads to the bound which is much 
sharper than (20.3) 

exp{ -(1 + 0.099a)x2 /2} 
P(S> Bx) > J27r . 

2~ . 

Thus the bound (20.2) is sharper than (20.3). 
Up to now, we dealt with lower bounds for uniformly bounded summands. 

Proceed to the case that this restriction does not hold. 
Under the Bernstein condition 

E IX 'l k < k! rr2ck-2 J' = I..!.. n k 3 4 J - 2 VJ' ., =, ... 
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one can derive a lower bound from the paper of Statulevicius (1966) [see in 
this connection Arkhangel'skii (1989)]. The essential advance was obtained by 
Arkhangel'skii (1989) who replaced the condition of the uniform boundedness 
of summands by the condition sup EIXj 12+8 fa; < 00, c5 > o. 

J 

Theorem 20.1.1 Let the conditions 

0< x < (1- 4,)(I /\ m::a.) , ,< 1~' ea2 < ~. (20.4) 
j J 

hold. 
Then 

P(S> Ex) 

> (1 - <P(x)) exp { - (cl(,)L + C2(" a) L aJ / B 3)x3 } 

( 
( C3 ( , ) L + q (a) L aJ / B3 ) X) 

x 1- \]1 (x) , 

(20.5) 

where cl(f) :S 1.2/(1- 4,)3, c2(f,a) :S 2a/(1- 4,)3, c3(f) :S 9.79 + 76.26" 
q(a) :S 106a. 

The close result have been stated in Nagaev (1979), but without specifying 
the values of constants. 

Corollary 20.1.1 If the conditions (20.4) hold, then 

where 

(1.2 + 2a) 
Cl(a,,):S (1- 4,)3 ' c2(a,,) :S 9.79 + 76.26, + 106a. (20.7) 

Putting in (20.4) , = 1/20, a = 1/20 and taking into account that \]1(1.7) > 
0.805, we obtain the following result. 

Corollary 20.1.2 If1.7<x< (1/25)(1/L/\(B/mFaj), then 

P(S> Bx) > (1- <p(x))e-2.55Lx3(1_ 23.4Lx) > 0.06(1- <p(x))e-2.55Lx3. 

(20.8) 
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If the random variables Xi'S are identically distributed, then 

crj 1 3 (3 
m~ B = r;;:;:::; C / B = 3 r;;:;' 

J yn cr yn 

where cr2 and (3 are, respectively, the second and third absolute moments of Xi. 

If IXil < M, i = 1, n, then 

Thus, one can exclude B / max crj from condition (20.4) in both the above­
J 

mentioned cases. The following bounds are then obtained as a result. 

Corollary 20.1.3 If Xi'S are identically distributed and 

then 

P(S> Bx) 

1 cr3 
1.7 < x < - 'n­- 25 yn (3 , (20.9) 

> (1- <l>(x)) exp{ _ (2.35(3/~+ 0.2)x3} (1 _ (16.88(3/~ + 6.58)X). 

Corollary 20.1.4 If IXjl < M and 

then 

1 B 
1.7 < x <-­- 25M' 

P(S> xB) > (1- <l>(x)) exp{ -2.35 M;3} (1 - 23.4 ~). 

(20.10) 

(20.11) 

(20.12) 

Not very complicated calculations show that for 1.7 < x < (2/25)M/B, the 
inequality (20.2) implies slightly sharper bound than in Corollary 20.1.4 

P(S> xB) > (1 - <l>(x)) exp{ -1.291 M;3} (1- 23.2~X). 

It is possible to exclude B / maxcrj from condition (20.4) in the general case as 
well, however at the cost of considerable increase in constants, viz. the following 
bound holds. 
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Theorem 20.1.2 If 3/2 < x < '"'( / L, and'"'( < 1/144, then 

P(S> Ex) > (1 - <1>(x)) exp{ -c1('"'()Lx3 }(1- c2(,",()Lx), 

where 

() 23 + 53yfY 14 () 0.63 
CI '"'( ~ (1- 28'"'()3 + yfY' C2 '"'( ~ 60 + 1630'"'( + 647yf)7 + yfY. 

Corollary 20.1.5 If 3/2 < x < 'Y / L, and'"'( < 1/144, then 

P(S > Ex) > (1 - <1> (x) ) exp{ -215Lx3 }(1- 133Lx). 
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(20.13) 

(20.14) 

It is better to apply the above stated lower bounds combining them with 

1 
P(S> Ex) 2 2" LP(Xj > 2Bx), (20.15) 

J 

which holds at least for x > 2 [see Nagaev (1979, p. 759)]. 
If the distributions of Xj'S have heavy tails, then the bounds suggested in 

this Chapter are sharper than the bound (20.15) only for rather small x. 
Assume for simplicity that Xj'S are identically distributed, and 

c 
P(X > x) > t' x> 1, t> 3. 

x 

If x > bJln n, where b> (J(t - 2)1/2, then for sufficiently large n 

nP(X > 2(Jxvn) > 2(1 - <1>(x)). 

Therefore, for x > bJln n, the bound (20.15) turns out to be shaper than the 
bounds (20.10), if n is sufficiently large. 

Consider now the specific example. Let the density p(x) be defined by 

() { 0, Ixl < 1, 
p x = 2/lxI5 , Ixl21. 

Compare the bounds (20.10) and (20.15) for x = 3 in the case when X/s 
are identically distributed with density p( x). In the case under review, (J2 = 
2, (3 = 4. 

For 'Y = 1/16, the bound (20.10) is applicable, if n 2 213 = 8192. The 
inequality (20.10), for n = 213 , takes the form 

P(S> 3J2ri") > 0.57e-1.92 (1- <1>(3)) > 0.156(1- <1>(3)) > 21· 10-5 . 

On the other hand, using the inequality (20.15), we get, for n 2 213 , the bound 

P(S> 3J2ri") > ~P(X > 6J2ri") > 34~20 rv 11.10-9. 
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We observe that, for x = 3, n = 213 , the bound (20.10) is 104 times sharper 
than (20.15). Note that in the example considered, 

x < (j((t - 2) In n)1/2. 

Look what the Berry-Esseen bound 

1<1>(3) - P(S > 3ffn) 1 < co!!;, 
where constant Co = 0.7655, does yield in this case. 

Putting n = 213 , we obtain the trivial bound 

P(S> 3ffn) > 1 - <1>(3)) - 0.01197 > -0.01062. 

Nontrivial bound takes place only for n > 643 . 103 . Our reasonings show once 
more what important part constants play in practical calculations. At first 
glance, the bound 3/64 in the condition (20.9) is not too small, but nevertheless 
the latter is responsible for the inequality (20.10) being valid only for large n. 

It should be remarked that (20.5) and (20.13) do not cover all possible cases. 
For example, let 

P(X = 1)= P(X = -1) = p, P(X = 0) = 1 - 2p. 

Evidently, in this case L = ~. Therefore, the inequality (20.5) is applicable 

only if x < 634 y'2pn , if x > y'2jiii> 1. On the other hand, the inequality (20.13) 
implies the trivial bound P(S > x) 2 o. 

Now we state a bound which supplements the above-mentioned inequalities. 

Theorem 20.1.3 Let Xj'S be identically distributed, X being symmetric, and 
p = P(X 2 b) < 1/2, b> o. Then, 

1 
P(S> x) >"2 L C~pk(l- 2Pt-k. 

,x/b<ksn 

Let X S be the symmetrization of X. By using the symmetrization inequality, 
we get the following bound. 

Corollary 20.1.6 If Xj 's are identically distributed, then 

P(ISI > x) > ~ L C~pk(l - 2p)n-k, 
2x/b<ksn 

where p = P(XS 2: b) < 1/2. 
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In the sequel, we need the following definitions and notations. Define the 

truncation X (y) of X by the equality 

X(y) = {X, X ~ y, 
0, X> y. 

Put r(h, y) = EehX(y) , a(h, y) = EX(y)ehX(Y) , ()"2(h, y) = EX2(y)ehX(Y), and 

/3(h, y) = EIX(y)13ehX(y) /r(h , y). 

Denote a(y) = a(O, y), ()"2(y) = ()"2(0, y), /3(y) = /3(0, y). Let A(y) = 

L: aj(y), B 2(y) = L: ()"2(y). Put m(h, y) = a(h, y)/r(h, y) = -Ar(h, y), 

M(h, y) = L: mj(h, y), b2(h, y) = ()"2(h, y)/r(h, y) - m2(h, y) == .£:x In r(h, y). 

Note that M(h, y) does not increase as function of h since 

a ",,2 
ahM(h,y) = L-bj(h,y) > 0. 

On the other hand, M(O, y) = A(y) ~ 0. Therefore, the equation with respect 

to h 
M(h ,y)=x 

has (for y fixed) the unique solution which we denote by h(x, y). 

Put F(x) = P(X < x), B2(h,y) = L:b;(h,y). Let 
J 

20.2 Auxiliary Results 

In this section we state, without proof, several lemmas which we need in Sections 

20.3 and 20.4. 

Lemma 20.2.1 If 0< h ~ l/y, then 

eh2()"2(y) 
0< r(h, y) - 1 - a(y)h < 2 . (20.16) 

Put /3+ = E{X3;X > a}, /3- = E{X3;X < a}. 

Lemma 20.2.2 If ° < h ~ l/y, then 

a(h, y) 2: a(y), (20.17) 

/3_h2 2 (e - 2) eh2 
-2- < a(h, y) - a(y) - ()" (y)h < /3+ y2 /\ 2· (20.18) 
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Lemma 20.2.3 Let 0 < h < l/y, 

-1 ) C 2 
y> (0: ffiaxO"j V B2' eo: < 'Y. 

J 'Y 
(20.19) 

Then, for every 'Y < 1, 

(20.20) 

Lemma 20.2.4 Let the conditions, (20.19) hold. Then, for every 'Y ~ 1/4, 

(20.21) 

if 
(1 - 4'Y)B2 

x< . 
- y 

(20.22) 

Put Q(h, y) = L,(rj(h, y) -1). 

Lemma 20.2.5 If h < l/y, then 

A(y)h + B2~)h2 _ C:3 < Q(h, y) < eB;h2. (20.23) 

Lemma 20.2.6 Let 0 < 'Y < 1/16, 

(20.24) 

(20.25) 

(20.26) 

Then, for h = h(x, y), 

x2 (X)3 
Q(h, y) - hx > - 2B2 - 1.2C (1 _ 4'Y)B2 . (20.27) 

Lemma 20.2.7 Let 0 < h < l/y and the conditions in (20.19) hold. Then, 
for 0:2 < 1, 

(1 - 0:2)x 
h(x,y) > (1 + e'Y/2)B2· (20.28) 

Lemma 20.2.8 If the conditions in (20.19) and (20.24) hold, then for h < l/y 

(20.29) 



Lower Bounds on Large Deviations 

Lemma 20.2.9 If 0 < h:S l/y, then 

_ 0-2 < a(h,y) < 0-2(eh/\ (e-1)). 
y y 

Lemma 20.2.10 Let 0 < h :S l/y and the conditions 

hold. Then, 

maXO-j 1 
Y > _J~_ 0:2 <­

, 16e 

max Imj(h, y)1 < 1.760:0-. 
J 

Lemma 20.2.11 Under conditions of Lemma 20.2.10, 

C(h, y) < 2.782C + 190: L 0-1 

if 1< 1/16. 

Lemma 20.2.12 If h :S l/y, then 

(e - l)f3y > 0-2(h, y) - 0-2(y) > -f3h. 
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(20.30) 

(20.31) 

(20.32) 

(20.33) 

(20.34) 

Lemma 20.2.13 Let 0 < h :S l/y and the conditions in (20.19) hold with 
1< 1/16. Then, 

(20.35) 

Lemma 20.2.14 Let 0 < h < l/y and the conditions in (20.19) hold with 
I < 1/16. Then, 

M(h,y) 3.320:2:0-]h C 
IhB(h, y) - B(y) I < By + 1.686 B y2' (20.36) 

Lemma 20.2.15 For every 0 < Ul :S U2, 

(20.37) 

Lemma 20.2.16 For every 0 < Ul < U2, 

(20.38) 

Define 
3 

-X(x).= (1 - ax)e-CX (1 - <I>(x)), 

where a and c are some constants. 
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Lemma 20.2.17 If a> 0, then the function >.(x) is convex for 0 < x ::; l/a. 

Lemma 20.2.18 For every 0 < x < 1, 

e-x - x2 /(1-x) < I-x. (20.39) 

Lemma 20.2.19 If the condition maxO"j < BE holds, then for every h > 0 
J 

Ih f e-hx(p(S < x) - <J>(X/B))dxl 

L(E) 2.473C2h 
< 3/2 + B5 

6J27f( 1- 0.27L2/3(E») 7r 

L 2/ 3 
+~ (0.607e-O.82L-2/3 + 0.304e-1.64L-2/3)+L2e-.0225L -2, 

(20.40) 

20.3 Proof of Theorem 20.1.1 

P(S> x) ~ P(S(y) > x), (20.41) 

where S(y) = L Xj(y). Let G(x; y) = P(S(y) < x). It is not hard to show that 

P(S(y) > x) = R(h; y) i= e-huGh(du) , 

where R(h, y) = EehS(y) = IIrj(h, y), Gh(du) = ehuG(du; y)/ R(h; y). Putting 
Gh(U) = Gh(U + x), we have 

(20.42) 

The distribution function G h is the convolution of the distribution functions 
Fj(u; h, y), j = 1, n, where F(du; h, y) = ehu F(du; y)/r(h, y). It is easily seen 
that 

Hence, the expectation M (h, y) = L mj (h, y) and the variance B2 (h, y) 
L bJ (h, y) correspond to the distribution function G h. 
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In what follows, we assume that y satisfies (20.24). Put now h = h(x, y). 
Then according to the definition, x = M(h, y) (see Section 20.1). 

Without loss of generality, one may assume that 

x ~ 1.7. (20.43) 

In fact , according to Berry-Esseen bound 

( coL ) P(S > x) > (1 - <I>(x)) 1 - 1- <I>(x) , (20.44) 

where Co < 0.7915 [see Shiganov (1982)]. On the other hand, c3b) in (20.5) 
can not be less than 9.79. Therefore, the bound (20.44) is sharper than (20.5) 
provided (1/y'27r)e-x2 / 2 > co/9.79, i.e. x < 1.7. 

Consider the identity 

1000 e-hud<I>(u/ B(h, y)) + h 1000 e-hurh(U)du - rh(O) 

h + hh - rh(O), (20.45) 

where rh(u) = Gh(U) - <I>(u/B(h,y)). It is not hard to show that 

h = _1_eh2B2 (h,Y)/2 roo e-h2/2du = <I>l(hB(h,y)). 
y'27r JhB(h,y) y'27r 

(20.46) 

Let /l(h, y) = hB(h, y) - M(h, y)/ B(y). Suppose that /l(h, y) > O. In view 
of Lemma 20.2.14 and formula (20.24) 

/l(h, y)B(y) x( 1.686C + 3.320 E an x( (1.686 + 20,),)C + 5.910 Eo}) 
x < (1 - 4')')2 B4 < B4 . 

Letting Ul = x/ B(y), and U2 = hB(h, y) in Lemma 20.2.15 and applying the 
previous bound, we have 

v'2ifh <I>l(hB(h,y)) 

{ 
((1.686 + 20,),)C + 5.910 E a}) X} 

> <I>l(x/B(y))exp - B4\I!(x/B) . 

(20.47) 

We took into account here that \I!(x/B) < \I!(x/B(y)). Let now Ul = x/B, 
and U2 = x/ B(y). Substituting these values into inequality (20.37), we obtain 

{ 1-B/B(y)} 
<I> 1 (x/B(y)) > <I>l(x/B)exp - \I! (x/B) . 
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By using identity (20.24) and the inequality 

we get 

Thus, 

( (1 + 6.76')')CX) 
<Pl(x/B(y))><Pl(X/B) 1- 2w(x/B)B4 . (20.48) 

It follows then from (20.47) and (20.48) that 

{ 
((2.186 + 23.38,),)C + 5.91a l: O"J) X} 

v'2iih><Pl(x/B)exp - B4w(x/B) . (20.49) 

If tl(h,y) < 0, then <Pl(hB(h,y) > <P1(x/B(y)). Hence, by using (20.48), 
we obtain that for tl(h, y) < 0 

tn= ((1 + 6.76')')CX) 
v21fh > <Pl(x/B) 1- 2w(x/B)B4 . (20.50) 

We now proceed to estimate h. For this purpose, we apply Lemma 20.2.19 
to the sum of independent random variable Gh. It is not hard to see that 
Lyapunov ratio L(h,y) corresponding to Gh is equal to C(h,y)/B3(h,y). It 
follows from Lemma 20.2.11 that for a 2 < 1/16e, 

C(h, y) < 5.67C. (20.51) 

Put Br(h,y) = i~f(B2(h,y) - b;(h,y)). By Lemma 20.2.13 

Bi(h,y) > 0.777(B2 - supO"J). 
J 

Note that in view of (20.4), x/B < 3a(B/4maxO"j). Hence, by (20.43) 

(ma;;Ui)' < (4:)'(>2 < 0.008. (20.52) 

Thus, 
Bi(h,y) > 0.769B2. (20.53) 

Combining (20.51) and (20.53), we have 

C2~3(h,y) <4.15L2/3. 
B1 (h,y) 

(20.54) 
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By (20.4) and (20.43) 
3 

L < 64x < 0.037. (20.55) 

Combining (20.54) and (20.55), we obtain as a result of rather simple cal­
culations 

L1(h,y) 
R1 := 3/2 < 0.081L1(h,y), 

6V21f(1- 0.27Li/3(h,y») 
(20.56) 

where L1(h,y) = C(h,y)/Bf(h,y). 
By (20.35) and (20.52), 

Br(h, y) > 0.96B2(1 - 2, - 3.2a2). (20.57) 

It is not hard to show that 

1 1 
(1 - 2, _ 3.2a2)3/2 < (1 _ 3.178,)3/2 < 1 + 6.3, < 1.394. (20.58) 

It follows from (20.33), (20.57) and (20.58) that 

(2.96 + 18.7,)C + 28.2a L a-J 
L1(h,y) < B3 (20.59) 

Comparing (20.56) and (20.59), we obtain 

(0.24 + 1.515,)C + 2.285a L a-J 
R1 < B3 (20.60) 

By (20.4), (20.21) and (20.24), h(x, y) < x/(l - 4,)B2 < ,B2/C < B 2/16C. 
Hence, taking into account (20.33) and (20.35), we conclude that 

hC2(h, y) 2.7822C + 38· 2.782a + 361a2 L a-J 
B5(h, y) < 1.08 16(1 _ 3.178,)5/2 B3 

Therefore, 

2.473hC2(h, y) (0.412 + 4.89,)C + 14.91a L a-J 
----::;-:--~:....:.. < ------,:------=-

1fB5(h, y) B3 
(20.61) 

Substitute now L(h, y) and L1 (h, y) into the right-hand side of (20.40) in place 
of L and L(E), respectively. The first two summands are estimated via (20.60) 
and (20.61). As to the other three, calculations show that one may ignore them. 
As a result, we are led to the bound 

(0.652 + 6.1,)C + 17.195a L a-J 
hlhl < B3 (20.62) 
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Further, according to the Berry-Esseen bound 

(20.63) 

Applying now Lemmas 20.2.11 and 20.2.13, we get 

1.08co(2.782C + 19a L: 0-]) (2.38 + 15,)C + 22.65a L: 0-] 
Irh(O)1 < (1- 2, _ 3.5(2)3/2B3 < B3 

(20.64) 
Incidentally, one can use in inequality (20.63) hh as well since hlhl < sup Ir(u)l. 

u 
Up to now, everyone proceeded in this manner, beginning with fundamental 

work of Kramer (1938). However, one loses an accuracy in doing so. It is 
sufficient to compare the bounds (20.62) and (20.64) to be sure. 

One can prove with the aid of Lemma 20.2.1 that for ea2 < " and, < 1/16 

1 
Ir(h,y) -11 < 32· 

Hence, by using Lemma 20.2.18 and the inequality 1 + x > ex - x2 / 2 , where 
o :S x :S 1/2, we get 

R(h,y) > exp{ Q(h,y) - ~~ L(rj(h,y) _1)2}, (20.65) 

(see the definition of Q(h,y) before Lemma 20.2.5). By (20.16) and (20.29) 

eh2(J'2 (J'2 h e(J'2 
Ir(h,y) -11 < -2- V y:S 2y2· 

Hence, by using (20.16) and the conditions (20.24) and (20.25), we have 

4 '" 3 2 e 2 x max(J'1 L..J (J'j e 2 

L(rj(h,y) -1) < (2") y-4 mF O"ILO"J < (1 ~4,)4B8 (2") 
1.85ax3 L: O"J 

< (1 - 4,)3 B6 . (20.66) 

It follows from (20.27), (20.65) and (20.66) that 

-hx { x2 (1.2C + 1.91a L: O"J)x3 } 
e R(h,y»exp -2B2- (1-4,)3B6 . (20.67) 

Combining (20.41), (20.42), (20.45), (20.49), (20.50), (20.62), (20.64) and 
(20.67), we obtain 

[( ) { 
((2.186 + 23.38,)C.+ 5.91a L: O"J)x} 

P(S> x) > (1- ip(x/B) exp - B4'f!(x/B) 
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_x2/2B2 ( )] - e B3 (3.032 + 21.1,)C + 39.845a L a} 

{ 
(1.2C + 1.98a ~ o})x3 } 

x exp - (1- 4,)3B6 . 

Hence, taking into account that 

-x2/2B2 _ "2(1- if!(x/B))x 
e - V:!.1f iI!(x/ B)B ' 

we are led to the desired result. • 
20.4 Proof Theorem 20.1.2 

Let the numbers, and a > 0 be such that, = a 2. Assume that the inequality 

holds. 
Define 

,B4 

x<C 

{ a2B2} N(x) = j: ~j < ~ . 

(20.68) 

Put Sl = ~' Xj, and S2 = ~" Xj. Here and in what follows, ~' = ~ and 
jEN(x) 

~"= ~ . Let Br = ~' ~;, B~ =~" ~;, and C1 = ~' /3j. Then 
N-N(x) 

2 2xC ,B2 2 
B2 < B2 < 2- = 2y'rB . a a 

If, < 1/36, then B~ < B2 /3, that is, 

Put ,I = 3.5,. Clearly, 

B2 2B2 
1>3· 

(1 - 4,daBr 4(1 - 14,) ...:..--...:........:..-..:::.. > > x 
max ~j - 3 

jEN(x) 

if, :::; 1/56. Further, for ,I < 5/56, 

,B4 (3)2 ,1Bt (1 - 4,lh1 Bt 
C < "2 3.5C1 < 01 . 

(20.69) 

(20.70) 
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Thus, for "I < 1/56("(1 < 1/16), the condition 

x < (1 - 4'YdBr ("11 BUCI /\ ex/ max O"j) 
JEN(x) 

8. V. Nagaev 

holds, i.e. condition (20.4) with "I = "II is fulfilled for 8 1 and x which satisfies 
condition (20.68). Applying now Corollary 20.1.1 to Sl, we conclude that for 

Bl < x < w = (1 - 4'Yl)B?('YlB?/Cl /\ ex/ max O"j) 
JEN(x) 

where Cj(-'·) are defined by (20.7). Hence, denoting P(Si ~ x) = Ci(X), i = 
1,2, we get 

P(S> x) = i: (C l (x-u))dG2(u) > 1~2 f(X-U) dG2(U)+ f(x)(I- G2(U2)), 

(20.71) 
where Ul = x - w, and U2 = x - Bl. According to Lemma 20.2.17, the function 
f(x - u) is convex in u for Ul ~ U < x. Therefore, by the Young inequality 

l U2 f(x - U)dG2(U) > pf(x - q), 
Ul 

(20.72) 

where p = G2(U2) - C2(Ul), and q = J::]2 udG2(U)/p. If 3B/2 < x < w/2, then 
lUll> w/2 > 3B/2 and by (20.69) 

(20.73) 

Estimate now the quantity q. If x> B, then by (20.69) 

l u2 B2 3B2 6C 
- udG2(U) < --..1. < _2 < --2. 

Ul U2 x y'tB 
(20.74) 

Further, p > 1 - BVuy /\ u§. In view of (20.69), for 3B/2 < x < w/2 

B2 4 B2 4B2 
-i- < -9 v'1, -i- < B22 < 4v'1. 
ul u2 

Thus, 
p> 1- 4v'1> 0.465 (20.75) 

provided 3B/2 < x < w/2, and "I < 1/56. It follows from (20.74) and (20.75) 
that 

12.91C 
-q < y'tB2 = 'fl. (20.76) 
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By using Lemma 20.2.16 and the bound in (20.76), we conclude that for 3B/2 < 
x < w/2, and, < 1/56 

( ) { 1 xT} T}2) Cl(a"I)(x+T})3C} 
f(x - q) > 1- ib(x/ Bl) exp - W(3/2) (Br + Br - B? 

x (1 _ c2(a, ,1)(X + T})C) 
BtW(3/2) . 

(20.77) 

In view of condition (20.68), for, < 1/56 

Cx 1 
INB4 < v'r < I'1T y, 2y14 

Hence L/ y'r < 1/3v'l4, since x > 3B/2. Therefore, 

T} T}2 T} 14.98C 
B < 1.16, B2 < 1.16 B < y'rB3' (20.78) 

By (20.78) and (20.70), 

x'rf + T}2 Cx Cx3 
Br < 63.76 y'rB4 < 27.89 y'rB6 (20.79) 

and 
x + 'rf < x + 1.16B < 1. 774x. (20.80) 

In view of (20.70), (20.79) and (20.80), it follows from (20.77) that 

f(x - q) > 

(20.81) 

By using (20.69), (20.70) and Lemma 20.2.16, we conclude that 

( ) { Bix2 } 
> 1- ib(x/ B) exp Br B(BI + B2)W(3/2) 

( ) { 3V3Cx3 } 
> 1 - ib(x/ B) exp - J2-YB6W(3/2) , (20.82) 

provided that 3B /2 < x < , B4 /2C, and , < 1/36. Combining the bounds 
(20.71), (20.73), (20.81) and (20.82), we obtain that for 3B/2 < x < ,B4/2C, 
and, < 1/56 

P(S> x) > (1 - ib(x/ B)) exp{ _ ci (a;l cx3 } (1- C2(a~~)Cx), 
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where 
I ( ) . ( ) 3.68 36.07 

Cl a" = 18.85cl a,3.5, + v'I'lJ(3/2) + v'I ' 

I ( ) _ 4c2(a, 3.5,) 0.89 _ r,:;; 
c2 a" - 'lJ(I) + v'I' a - V" 

Now, substituting for Cl(',') and C2(',') their expressions in (20.7), we get the 
desired inequality. • 
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Characterization of Geometric Distribution 
Through Weak Records 

Fazil A. Aliev 

Ankara University, Ankara, Turkey 

Abstract: Let Xl, X2, '" be a sequence of independent and identically dis­
tributed random variables (r.v.'s) taking on values 0,1, ... with a distribution 
function F such that F(n) < 1 for any n = 0, 1, ... and EXI < 00. Let XL(n) be 
the n-th weak record value. In this chapter we show that Xl has a geometric 
distribution iff E(XL(n+2) - XL(n) I XL(n) = i) = a for some n > 0, a > ° and 
for all i 2: 0. 

Keywords and phrases: Records, weak records, characterization of geometric 
distribution 

21.1 Introduction 

A lot of papers in the field of records are devoted to characterizations of distri­
butions via records; for example, Ahsanullah (1995), Ahsanullah and Holland 
(1984), Aliev (1998), Arnold, Balakrishnan and Nagaraja (1998), Kirmani and 
Beg (1984), Korwar (1984), Nagaraja (1998), Nevzorov (1987), Nevzorov and 
Balakrishnan (1998), Stepanov (1994), and Vervaat (1973). Great interest in 
these records exists because they are widely available and they often provide a 
degree of mathematical accuracy. 

Let Xl, X2, ... be a sequence of independent and identically distributed ran­
dom variables (r.v.'s) taking on values 0,1, ... with a distribution function F 
such that F(n) < 1 for any n = 0,1, ... and EXI < 00. Define the sequence of 
weak record times L(n) and weak record values XL(n) as follows: 

L(l) = 1, L(n + 1) = min {j > L(n) : Xj 2: XL(n)} - n = 1,2,.... (21.1) 
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If we replace the sign 2:: by > in (21.1), then we obtain record times and 
record values instead of weak record times and weak record values. Let Pk = 
P { X I = k} and F (k) = 1 - F (k) (k 2:: 0). 

It is known that 

(1) Xl has a distribution of the form 

for some 0: > 0, (32:: 0, and m = 1,2, ... , iff E(XL(n+1) - XL(n) I XL(n) = 
8) = 0: + (38, for all 8 = 0,1 , ... (n > 0); see Stepanov (1994). If (3 = 0, 
this result corresponds to the geometric distribution, 

(2) If {Ai}~O is any sequence of positive numbers such that (t~A~) < 1 for 
<Xl 

all i and DI (1~5!.i) = 0, then Xl has distribution of the form 

for all m = 1,2, ... iff E {XL(n+l) - XL(n) I XL(n) = 8} = As for all 8 = 
0,1, ... (n 2:: 1); see Aliev (1998). In the case of As = 0: + (38, this result 
implies the above stated result of Stepanov (1994) . 

In this paper, we first give a characterization of geometric distribution in 
terms of E{XL (n+2) - XL(n) I XL(n) = 8} instead of E{XL(n+l) - XL(n) I XL(n) 

= 8}. 

21.2 Characterization Theorem 

Theorem 21.2.1 A necessary and sufficient condition for a random variable 
X I to have a geometric distribution is that 

E {XL(n+2) - XL(n) I XL(n) = 8} = 0: (21.2) 

for some n 2:: 1, 0: > 0 and all 8 = 0, 1, .... 

PROOF. Let us consider the probability P {XL(n+2) - XL(n) = k, XL(n) = 8} 
(k, s 2:: 0). We have 

P {XL(n+2) - XL(n) = k, XL(n) = 8} 
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P {XL(n+2) = k + s, XL(n) = S} 
00 

L P {XL(n+2) = k + S,XL(n) = s,L(n) = d} 
d=n 

00 00 

L L P{XL(n+2)=k+S,XL(n)=S,L(n)=d,L(n+2)=m} 
d=n m=d+2 

00 00 m-l 

L L L P{Xm = k + S,Xd = s,L(n) = d, 
d=n m=d+2 l=d+l 

L(n+1) =l,L(n+2) =m} 
00 00 m-l k+s 

L L L L P{Xm = k + s, Xd = S, XL(nH) = t, L(n) = d, 
d=n m=d+2 l=d+ 1 t=s 

L(n+1) =l,L(n+2) =m} 
00 00 m-l k+s 

L L L LP{Xm = k + S,Xd = S,XI = t,L(n) = d, 
d=n m=d+2 l=d+l t=s 

L(n+1) =l,L(n+2) =m}. 

(21.3) 

The probability under summation may be rewritten as 

P(Xm = k + S,Xd = S,XI = t,L(n) = d,L(n + 1) = l,L(n + 2) = m) 

P(Xd = s, L(n) = d, XdH < s, ... , XI- 1 < s, 
Xl = t,XI+1 < t, ... ,Xm-l < t,Xm = k + S). (21.4) 

Note that the event {Xd = s, L(n) = d} is defined only by the random variables 
X 1 ,X2 , ... ,Xd and, therefore, is independent of 

{Xd+l < S, ""Xl-l < S,XI = t,Xl+l < t, ... ,Xm-l < t,Xm = k + s}, 

and consequently we have from (21.4) 

P{Xm = k + S,Xd = S,XI = t,L(n) = d,L(n + 1) = l,L(n + 2) = m} 
P {Xd = s, L(n) = d} P{Xd+1 < s, ... , XI- 1 < s, 

Xl = t,XI+1 < t, ... ,Xm-l < t,Xm = k + s} 
P{Xd = s, L(n) = d} FI-d-1(s) Fm-I-1(t) P(XI = t) P(Xm = k + s) 
PtPk+sP{Xd = s,L(n) = d} FI-d-1(s) Fm-I-1(t). 

(21.5) 

From (21.3) and (21.5), upon changing the order of summation for t, land 
m, one can write 
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P {XL(n+2) - XL(n) = k, XL(n) = S} 

= f: f: y:1 ~ {PtPk+SP {Xd = s, L(n) = d} F1-d-1(S) Fm-1-1(t)} 
d=n m=d+2 l=d+l t-s 

00 k+s 00 00 

Pk+s L P{Xd = s,L(n) = d} LPt L F1-d-1(S) L Fm-1-1(t). 
d=n t=s l=d+l m=l+l 

(21.6) 

Using the obvious facts 

00 1 
L Fm-1-1(t) = =--, 

m=l+l F(t) 

00 1 
L F1-d-1(s) = =--

l=d+l F(s) 

and 
00 

P(XL(n) = s) = L P {Xd = s, L(n) = d} 
d=n 

in (21.6), we obtain 

1 k+s 
P {XL(n+2) - XL(n) = k, XL(n) = s} = P(XL(n) = s) Pk+s F(s) ~ :/t)' 

or, equivalently, we have for the conditional probability 

1 k+s 
P{XL(n+2) - XL(n) == k I XL(n) = s} = Pk+s F(s) ~ ~tt)' (21.7) 

Note that, since this probability does not depend on n, we may, without 
loss of any generality, assume that n = 1. 

From (21.7), the conditional expectation becomes 

(21.8) 

By changing the order of summation in (21.8) and taking k + s = Z , one can 
write 

00 00 

L L zpzPl 
l=s z=l F(s)F(I) - s. 
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Therefore, the basic formula for the conditional expectation for future references 
IS 

{ } ~~ ZpzPI 
E X L (3) - Xl I Xl = s = ~ ~ () () - s. 

l=s z=l F s F l 
(21.9) 

NECESSITY. Let Xl have a geometric distribution with Pk = P(XI = k) = pqk, 
k = 0,1, ... , where q = 1 - p. Then, it is obvious that F(s) = qS for all s 2:: o. 

00 I l+ l+l 
Using the known formula that 'f)zqZ) = pq land (21.9), it may be easily 

seen that 

which proves the necessity part of the theorem. 

SUFFICIENCY. Let condition (21.2) hold. Also using (21.9), we take the equality 

00 00 L L zpzPI 
l=s z=l F(s)F(l) - s = a, 

or, equivalently, 

00 00 2:: 2:: ZpzPI 

l=s z=l F(s)F(l) 

a+s for all s 2:: o. (21.10) 

Rewriting (21.10) for s = k, we have 
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a+k 
CXJ CXJ 

B = ~~ ZpzPI 
k - 6 ~ F(k)F(l) 

CXJ CXJ CXJ 

L ZpzPk + L L ZpzPI 
z=k F(k)F(k) l=k+1 z=l F(k)F(l) 

CXJ 00 00 

Pk ~ ( ) ~ ~ ZpzPI 
~ ~ ZPz + ~ ~ F(k)F(l) 
F (k) z=k l=k+l z=l 

Pk ~ F(k+ 1) ~ ~ ZpzPI 
F2(k) f;;k(zpz) + F(k) l~l ~ F(k + l)F(l) 

Pk CXJ F(k + 1) 
-2( ) L(zpz) + F(k) Bk+l' 
F k z=k 

(21.11) 

By condition (21.10), Bk+1 = a + k + 1, and therefore, from (21.11) for all 
k 2: 0, one can write 

Pk ~ F(k+ 1) 
a + k = ~ ~ (zPz) + () (a + k + 1). 

F (k) z=k F k 

Observing that F(k + 1) = F(k) - Pk, (21.12) gives the identity 

Pk ~ F(k)-Pk 
a + k = ~ ~ (zPz) + () (a + k + 1), 

F (k) z=k F k 

or, equivalently, 

CXJ 

Pk ~ Pk 
a + k = ~ ~ (zPz) + a + k + 1 - _( ) (a + k + 1). 

F (k) z=k F k 

From the last identity, we may write 

Pk (a + k + 1- F~k) E(Zpz)) = F(k) for all k 2: o. 

Here, in the case of k = 0, we have 

or 

1- Po 
EX1+--=a, 

Po 

(21.12) 

(21.13) 
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and rewriting (21.13) in the form 

1 -(po + ... + Pk-I) 1 (1 -Po ~( )) Pk = - 0: - -- - ~ ZPz , 
0:+k+1 1-(po+···+Pk-l) Po z=1 

we have a recurrence relation for determining Pk for any given Po. It is clear 
that the set of probabilities PO,PI,P2, ... must satisfy the conditions 

IX) 1 - Po 
Po + PI + P2 + P3 + ... = 1 and I:(zpz) + -- = 0:. 

z=1 PO 
(21.14) 

For proving that such a set of PO,Pl,P2, ... exists and is unique, rewrite (21.13) 
in terms of F(k). Using the obvious equality 

kPk + (k + 1)Pk+1 + (k + 2)Pk+2 + ... 
F(k) 

(k _ 1) F(k) + F(k + 1) + F(k + 2) + F(k + 3) + ... 
+ F(k) 

with (21.13) and the identity Pk = F(k) - F(k + 1), we get 

{F(k) - F(k + 1)} 
x (0:+2- F(k)+F(k+1)+~~~~2)+F(k+3)+ ... ) =F(k). 

This equality may be equivalently changed to 

- - - - F(k)F(k + 1) 
o:F(k) = F(k + 1) + F(k + 2) + F(k + 3) + ... + () ( ) (21.15) 

Fk -Fk+1 

Now using (21.15) for k and k + 1 and subtracting, we take 

0: (F(k) _ F(k + 1)) _ F(k + 1) _ F(k)F(k + 1) = _ F(k + 1)F(k + 2) . 
F(k) - F(k + 1) F(k + 1) - F(k + 2) 

Denoting (3k = F(k + 1)F(k) (k ~ 0), noting that F(k + 1) = (3kF(k) and that 
F(k + 2) = (3k(3k+1F(k), we have the recurrence relation for (3k 

(3k(1 - fA) 
(3k+1 = 1 + 0:(1 - (3k)2 - 3(3k + 2(3~ . (21.16) 

Consider the second part of condition (21.14) for (3k. Note that (30 = 1 - Po = 
F(1), (30(31 ... (3k = F(k + 1) and 0 ::; (3k ::; 1 for all k. The second part of (21.14) 
together with the fact that 

00 00 

I:(zpz) = EXI = I: F(k), 
z=l k=l 
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we have 

{3o 
{3o + {30{3l + ... + {30{3l···{3k + ... + 1 _ {3o = a. (21.17) 

In this step, first note that taking {3o = a~2 in (21.16) we have {3o = {3l = (32 = 
... = a~2 which implies that F(k) = (a~2)k-l. So, at least one solution for 
(21.16) and (21.17) (also satisfying (21.13), (21.14) and (21.15)) exists. This 
solution corresponds to the geometric distribution with Po = P = a~2. Let us 
show that this solution is unique. Consider the real-valued function f(x) = 1 + 
a(1-:5t;~+2x2 (0 ~ x ~ 1) with two points of discontinuity. For all continuity 
points x of f (x), we may write 

f ') a(1 - x)2 + x 2 0 x - > 
( - (a(1 - x)2 - 3x + 2x2)2 . 

Therefore, f(x) is a monotonically increasing function in continuity intervals. 
Let Xl and X2 (Xl ~ X2) be the discontinuity points of f(x). It may be verified 
then that these points are different, Xl E (0,1) and X2 > 1 for any a > o. 
Furthermore, f(x) > 1 for 0 < X < Xl and from (21.17) we may have {3o > 0 
and {3o < 1. Eq. (21.16) may be written as (3k+1 = f({3k) from which we have 
{3o > Xl, and vice versa we have {3l > 1, which contradicts with condition 
o ~ {3l ~ 1. By the same process, it may be seen that from the condition 
0< (3l = f({3o) , we have (3o > 1-(a+l)-1/2. Note that last point 1-(a+1)-1/2 
is the smaller one of the two roots of the equation f(x) = O. For all X such that 
1 - (a + 1) -1/2 < X < 1, f (x) is strictly increasing function and (21.17) then 
becomes 

{3o + (3o f({3o) + (3o f({3o) f(f({3o)) 

+ ... + (3o f({3o) ... f( .. ·f(f({3o)) ... ) + ... + (30{3 = a. 
1- 0 

(21.18) 

Because f({3o) is a monotonically increasing function of {3o and 19~o is also 
monotonically increasing expression of {3o (0 ~ (3o ~ 1), we have the left hand 
side of (21.18) to be monotonically increasing expression of {3o. Therefore, for 
the constant right hand side of (21.18), we may have only one {3o satisfying 
(21.18), which completes the proof of the Theorem. • 
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Abstract: In this chapter, we establish limit theorems for some statistics based 
on order statistics and record values. The finite-sample as well as asymptotic 
properties of statistics based on invariant confidence intervals are investigated 
and their use in statistical inference is outlined. 
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22.1 Introduction 

Let Xl, X2, ... , X n , ... be a sequence of independent and identically distributed 
(Li.d.) random variables with continuous distribution function F. Let X(l), X(2), 

... , X(n) be the order statistics obtained from Xl, X2, ... , X n . Define a sequence 
of random variables U(n), n = 1,2, ... , as follows: U(l) = 1, U(n) = min{j : j 

> U(n -1) , Xj > XU(n-l) , n > I}. The random variables U(l), U(2), ... , U(n), 
... are called upper record times, and X U(I),XU(2), ... ,XU(n), ... are the record val­

ues of sequence Xl, X2, ... , X n , .... Great interest in records exists because 
we often come across them in our everyday life so that singling out and fix­
ing record values proves to be meaningful. In this chapter, limit distributions 
of some statistics based on order statistics and record values are obtained. 
These results are generalized for statistics based on invariant confidence inter­
vals containing the main distributed mass of a general set. For more details 
on the theory of order statistics and records, one can refer to David (1981), 
Galambos (1987), Nevzorov (1987), Nagaraja (1988), Nevzorov and Balakrish-

309 

N. Balakrishnan et al. (eds.), Asymptotic Methods in Probability  and Statistics with Applications

© Birkhäuser Boston 2001



310 1. G. Bairamov, 0. L. Gebizlioglu, and M. F. Kaya 

nan (1998), Arnold, Balakrishnan and Nagaraja (1992, 1998), and Ahsanullah 
(1995), among others. 

Let XI, X2, ... , Xn be a sample from a continuous distribution with dis­
tribution function F, and Yl, Y2, ... , Ym be a sample from a continuous dis­
tribution with distribution function G. Let XCI) ::; X(2) ::; ... ::; XCn) and 
y(1) ::; y(2) ::; ... ::; Y(m) be the respective order statistics. It is well known that 
under the hypothesis Ho : F = G, 

P {Yk E (XCi)' XCi))} = ~ ~ ~, 1::; i < j ::; nj k = 1,2, ... , m, 

that is, the random interval6ij = (XCi)' XCi)) is an invariant confidence interval 
containing the main distributed mass for a class of continuous distributionsj see 
Bairamov and Petunin (1991). 

Let us consider the following random variables: 

if Yk E (XCi)' XU)) 
if Yk ~ (X(i) , XCi)) 

, 1::; i < j ::; nj k = 1,2, ... , m. 

Denote S:?" Lk=1 ~~. It is clear that S:?" is the number of observations 
Yl, 112, ... , Ym falling into interval (X(i) , XCi)). The following theorem is a special 
case of Theorem 22.2.2 that will be proved later in Section 22.2. 

Theorem 22.1.1 For any rand s satisfying 1 ::; r < s ::; n, 

lim sup Ip {Sr;:: ::; x} - P {G(X(s)) - G(X(r)) ::; x} I = O. 
m---+oo O:::;x:::;1 m 

Corollary 22.1.1 Under the hypothesis Ho : F = G, 

lim sup Ip {sr;:: ::; x} - P {Wrs ::; x} I = 0, 
m---+oo O:::;x:::;1 m 

where Wrs = F(X(s))- F(X(r))' 

It is known that Wrs has the probability density function [see David (1981)] 

f( ) - B(s-r,n-s+r+l)wrs - W rs - W rs -{
I s-r-l (1 )n-s+r 0 < < 1 

Wn - . . o otherWIse 

Let us consider the random intervals 60 = (-00, X(I)), 61 = (X(I) , X(2)) 
, ... ,6n = (X(n-l) , X(n)), 6n+l = (X(n) , 00). For Wi-l,i = F(X(i)) - F(X(i_l)), 
one can clearly obtain from Corollary 22.1.1 that 

P{W;-l';:;X}~{ ~-(l-X)n 
where X(O) = -00, X(n+l) = 00 . 

if x::; 0 
if x E (0,1) , 
if x 2: 1 
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Theorem 22.1.2 Under the hypothesis Ho : F = G, for 1 ::; i ::; n + 1 

lim lim P m ::; X - Fo(x) = 0, I { nSi-l,i} I 
n-+oom-+oo m 

where Fo(x) = 1 - e-x , x ~ O. 

Let Xl, X2, ... , X n , ... be a sequence of independent and identically dis­
tributed random variables with continuous distribution function F. Consider 
the r-th record value XU(r)' Let X U(r)+1, X U(r)+2, ... , XU(r)+m be the next m 
observations that come after XU(r)' It is not difficult to prove that XU(r) , 

XU(r) +1 , X U(r)+2, ... , XU(r)+m are mutually independent and XU(r)+k has the 
same distribution F for any k = 1,2, ... , m. Let us define the following random 
variables for a given r: 

~i(r) = 1 if XU(r)+i < XU(r) and ~i(r) = 0 if XU(r)+i ~ XU(r) i = 1,2, ... , m, 

and let Sm(r) = E~l ~i(r). It is clear that Sm(r) is the number of observations 
X U(r)+1' X U(r)+2, ... , XU(r)+m which are less than XU(r)' Note that the random 
variables 6(r), 6(r), ... , ~m(r) are generally dependent. In the work of Bairamov 
(1997) the finite-sample and asymptotic properties of the statistic Sm(r) are 
given. We will mention here some of these results. 

Theorem 22.1.3 For any m, r = 1,2, ... , 

k=0,1,2, ... ,m. 

Let us denote S~(r) = S-;,;(r)<.ES,((;), Then, ES~(r) = 0, and var(S~(r)) = var Sm r) 

1. Denote a = lr and b = ..j iT - ~. 

Theorem 22.1.4 [Bairamov (1997)] The statistic S~(r) has a continuous lim­
iting distribution as m --+ 00, with probability density function t as 

J*(x) = { (r~l)! [In a!bX]r-1 if x E labl, %] 
O 'f d a-I a 

2 X"'F b'li 

Theorem 22.1.5 [Bairamov (1997)] It is true that 

{ S (r ) } 1 loX [ 1] r-l 
lim sup P ~::; x - ( )' In(--) du = O. 

m-+oo o:::;x:S1 m r - 1. 0 1 - u 
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Analogous statistics based on invariant confidence intervals is considered in 
this chapter. 

Let Xl,X2, ... , Xn be a sample from a distribution with distribution function 
F E ~,where ~ is some class of distribution functions. Suppose h(Ul,U2, ... , un) 
and 12(ul,u2, ... ,un) are two Borel functions with the property that 

(22.1) 

Let X n+1 be a new sample point obtained from F which is independent of 
Xl ,X 2 , ... , X n . If 

P {Xn+1 E (h(Xl,X2 , ... , X n), 12(X1,X2, ... , Xn)} = a for all F E ~, 

then (h(Xl,X2, ... ,Xn),12(Xl,X2, ... ,Xn)) is called an invariant confidence in­
terval containing the main distributed mass for class of distributions ~ with 
confidence level a. 

It is known that [see Bairamov and Petunin (1991)] if hand 12 are contin­
uous, symmetric and different on every set with a non-zero Lebesgue measure 
functions of n arguments, only the order statistics form invariant confidence 
intervals for ~c, the class of all continuous distribution functions. 

Properties of invariant confidence intervals for nonparametric class ~c are 
used in many applications since a test statistic can be found and criteria can 
be established on the training samples for problems of classification of new 
observations [see Bairamov and Petunin (1991) and Bairamov (1992)]. Similar 
applications can also be extended to generalized Bernoulli schemes in variation 
statistics [see Matveichuk and Petunin (1990) and Matveichuk and Petunin 
(1991)]. 

The solution for the problem of the significance estimation of the indices 
used for diagnosis of the breast cancer on the basis of investigation of the 
DNA distribution in the interphase nuclei cells is obtained by using criteria and 
statistics introduced in by Petunin, Timoshenko and Petunina (1984) and using 
invariant confidence intervals and results obtained by Bairamov and Petunin 
(1991a). 

In the next section, the finite-sample and asymptotic properties of statis­
tics based on invariant confidence intervals are investigated and their use in 
statistical inference is also discussed. 

22.2 The Main Results 

Let h(Ul' U2, ... , un) be a real-valued integrable n-dimensional function. Con­
sider a functional 



Asymptotic Distributions 313 

where F is some class of distribution functions. The properties of the functional 
HF(h) are 

(i) HF (1) = 1 

(ii) HF(Clhl (.) + c2h2 (.)) = clHF(hl) + C2HF(h2), where hj (.) are distinct 
functions and Cj'S are real valued numbers. 

Denote the random samples from the distributions F (u) and Q (u) as 
(Xl, X2, ... , Xn) and (Yl,}2, ... , Ym), respectively. Let!1 and 12 be two functions 
as mentioned in (22.1). The probability of a random event 

is 

J ... J [Q(12(ul, U2, ... , un)) - Q(!1(Ul, U2, ... , Un))] 

dF( Ul )dF( U2) .... dF( Un), 

which is clearly independent of k. If we take the above definition of HF(h) into 
consideration, the required probability is calculated by 

P(Ak) = p = HF [Q(12(u)) - Q(!1(u))] = HF(Q~~(U)), 

where u = (Ul,U2, ... ,un) and Q(12(u)) - Q(!1(u)) = Q~~(u). Denoting 

{ 
0, if random event Ak is observed 

~k = 1, if random event Ak is not observed 

and defining a new random variable as l/m = 6 + 6 + ... + ~m, which can take 
values from the set {O, 1,2, ... , m} , we can investigate the likelihood of having 
new sample values falling into a designated interval. Note that the random 
variables 6,6, ... , ~m are dependent. 

Theorem 22.2.1 For k = 0, 1,2, ... , m, 

P{l/m = k} = C~HF ([Q~~(u)r [1- Q~(u)]m-k) , 

h Ck (m) m! were m = k = k!(m-k)· 

PROOF. Let Aik = {J'ik E (!1(Xl,X2, ... ,Xn),12(Xl,X2, ... ,Xn))}. The proba­
bility that k of Yl,}2 ... ,Ym fall in the interval (!1(Xl,X2, ... ,Xn), 
12(Xl, X2, ... , Xn)) is then 

P {l/m = k} = L P(Ail n Ai2 n ... n Aik n Aik+l n Aik+2 n ... n Aim), 

(22.2) 
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where A denotes the complement of A. Let us denote 

(k) _ -- -- --
Pi1 ,i2, .. ,im - P(Ail n Ai2 n ... n Aik n Aik+l n Aik+2 n ... n Aim)' 

In this case, we have 

where 

h(Xl,X2, ... ,Xn) < Yip < h(Xl,X2, ... ,Xn),p = 1,2, ... , k; 

Yi j tJ. (h(Xl, X2, ... , Xn), h(Xl, X2, ... , Xn)), j = k + 1, k + 2, ... , m}. 
Yl, Y2 ... , Ym and Xl, X2 ... , Xn have the following joint distribution function due 
to independence: 

So, we can write 

J ... J [Q(h(Ul, U2, ... , un)) - Q(h(Ul, U2, ... , un))]k 

A 
X [1- Q(h(Ul,U2, ... ,un)) + Q(h(Ul,U2, ... ,un)]m-k 

X dF(Ul) ... dF(un) 

( [ h ] k [h ] m-k) HF Qh(Ul,U2, ... ,Un) l- Qh(Ul,U2, ... ,Un) . 

This shows that the probabilities Pi~~L.,im in (22.2) are independent of ii, i2, ... , 
i m . 

Hence, the theorem. • 
The low-order moments of interest for further uses are expressed as follows: 
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Now, we find that 

f kC~ [Q~~(U)t [1- Q~~(U)]m-k 
k=O 

m f C~-=-\ [Q~~(U)t-l [1- Q~~(U)]m-k [Q~~(U)] 
k=l 

mQ~~(u) y:1 C:n-l [Q~~(U)r [1- Q~~(U)](m-l)-i 
i=O 

mQ~~(u) 
using which, we obtain 

100 100 h 
m -00'" -00 Q h (Ul, U2, ... , un)dF(Ul) ... dF(un) 

mHF [Q~~(Ul,U2' ... ,un)]. 

Similarly, we also find 

E(v!) = m 2 HF [Q~~(Ul' U2, ... , un)r - mHF [Q~~(Ul,U2' ... , un)r 

+ mHF [Q~~(Ul,U2, ... ,Un)]. 

Therefore, the mean and the variance of Vm are obtained as 

and 

E(vm) = mHF(Q~~(U)) 

m 2 [(HF(Q~~(u))2) - (HF(Q~~(u)))2] 
- m [( H F ( Q~~ (u) ) 2) - (H F ( Q~~ (u) ) )] . 

Lemma 22.2.1 The characteristic function of Vm is 

_ (( ( it ) h )m) <pvm(t)-HF 1+ e -1 Qh(Ul,U2, ... ,Un) . 

PROOF. By definition, 

E (exp( itvm )) 

m 

315 
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In order to carry out the necessary calculation, the summation term is first 
found as 

Then, we have 

'PVm (t) 

f exp(itk)C~ [Q~~(u)t [1- Q~~(u)]m-k 
k=O 

f C~ [exp(it)Q~~(u)t [1- Qk (u)] m-k 
k=O 

(exp(it)Q~~(u) + (1- Q~~(u)))m 

(1- Q~~(u) (1- exp(it)))m. 

i: ... i: (1- Q~~ (Ul, U2, ... , un) (1- exp(it))) m 

X dF(Ul) ... dF(un) 

HF (1 + (exp(it) - 1) Q~~(Ul' U2, ... , Un)) m . 

Hence, the lemma. • 
Now, let us define the standardized form of Vm as v:n = vm-E(vm) with 

Jvar(vm ) 

E(v:n) = 0 and var(v:n) = 1. Denote 

C(x) p {Q~~(Xl' X2, ... , Xn) ::; x} 

P{Q(12(X1 ,X2, ... ,Xn)) - Q(h(Xl,X2, ... ,Xn) ) ::; x}. 

Theorem 22.2.2 Let hand 12 be continuous junctions, and F and Q be con­
tinuous distribution junctions. Then, 

lim sup /p{Vm::;x}_C(x)/=o. 
m--->oo O::;x:9 m 

PROOF. By using Lemma 22.2.1, the characteristic function of ~ can be 
written as 

'P~ (t) = E(ei-!nvm) = HF (1 + (exp(i ~) - 1) Q~~ (u)) m . (22.3) 

Let us now denote Wm(t) = (1 + (exp(i!) -1) Q~~(u))m. Using the Taylor 

expansions eX = 1 + x + o(x) and In(l + x) = x + o(x), we can write 

m In ( 1 + (exp (i ~) - 1) Q~~ (u) ) 

( ( it it ) ) mIn 1 + m + o(m) Q~~(u) 
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and so 

\lIm(t) = exp (itQ~~ (u)) + O(~). 
It then follows from (22.3) that 

<p~(t) = Hp (\lIm(t)) = Hp (exp (itQ~~(u))) + O(~). (22.4) 

Letting m ~ 00 in (22.4), we obtain 

~~oo<p~ (t) = Hp (exp (itQ~~ (u))) == \lI(t). (22.5) 

It easy to see that \lI(t) is continuous at t = O. In fact, one has 

i2t2 (Qh (u))2 
exp (itQh(u)) = 1 + itQh(u) + h + o(t2) 

h h 2! 

and \lI(t) = Hp (exp (itQ~~ (u))) ~ 1 = \lI(O) if t ~ O. 

Let F~(x) be the distribution function of statistic l/m, where x - ! ' 
k = 0,1,2, ... , m. By using Levy-Cramer theorem for characteristic functions [see 
Petrov (1975, Theorem 10, p.15)], one can show that F~(x) ~ F*(x),x E [0,1], 
and F* has a characteristic function 

I 

\lI(t) = J eitxdF* (x). 
o 

On the other hand, from (22.5), we have 

\lI ( t ) H p (exp (itQ~~ ( u) ) ) 

i:··· i: exp (itQ~~(UI,U2' ... ,Un)) dF(UI) ... dF(U2) 

E [exp (itQ~~ (Xl, X2, ... , Xn))] 
I 

(22.6) 

J eitxdP{Q~~(XI,X2, ... ,Xn) ::;x}. (22.7) 

o 
Therefore, from (22.6) and (22.7), we have 

F*(x) P {Q~~ (Xl, X2, ... , Xn) ::; x} 

P {Q (h(XI, ... , Xn)) - Q (h(XI, ... , Xn)) ::; x}. 

• 
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Corollary 22.2.1 Let (f1(XI,X2, ... ,Xn),h(XI,X2, ... ,Xn)) be the invariant 
confidence interval for some class of distributions CS with confidence level aI, 
that is, 

Let a2 = PF{Xn+1,Xn+2 E (!1(XI,X2, ... ,Xn),h(XI,X2, ... ,Xn))} , where 
Xl, X2, ... , X n, X n+1, X n+2 is the random sample from distribution with dis­
tribution function F E CS. Let F = Q and F E CS and X = (Xl, X2, ... , Xn). 
Then 

where 

if 

G2(X) = P{F(h(X)) - F(!1(X))::; x}, if { 

0, 

1, if 

Remark 22.2.1 Let P=CSc, where CSc is the family of all continuous distribu­
tions. Let !1(XI,X2 , ... ,Xn) = X(i) and h(XI,X2 , ... ,Xn) = X(j), 1::; i < j::; 
n . With these, we can then show that [see Bairamov and Petunin (1991)] 

and 

P {Xn+l , X n+2, ... , Xn+m E (X(i), X(j))} 

n!(m+j-i-l)! _ (m) 
-:-....:..--~.,.---~ - a· . 
(j - i-I)! (m + n)! - ~J • 

If . - 1 d' - h - n-l d (2) _ (n-l)n '/, - an J - n, t en al,n - n+l' an al,n - (n+I)(n+2) 

Remark 22.2.2 Let Xl, X2, ... , Xn be a sample with distribution function 
F E P = CSc, where CSc is the family of all continuous distributions. Let 
!1 (Xl, X 2, ... , Xn) = X(i) and h(XI, X2, ... , Xn) = X(j), 1 ::; i < j ::; n. In this 

case, C(x) in Theorem 22.2.2 takes the form C(x) = PF {Q(X(j)) - Q(X(i)) ::; x} 
and we have Theorem 22.1.1. If F = Q, then 

and we have Corollary 22.1.1. 
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Record Values in Archimedean Copula Processes 

N. Balakrishnan, L. N. Nevzorova, and V. B. Nevzorov 

McMaster University, Hamilton, Ontario, Canada 
St. Petersburg Humanitarian University of Trade Unions, St. Petersburg, 
Russia 
St. Petersburg State University, St. Petersburg, Russia 

Abstract: We investigate the asymptotic behavior of record values X(n) for 
some types of Archimedean copula processes. It is shown that the set of all 
limit distribution functions for X(n), normed and centered in a suitable way, 
under some restrictions on parameters of these processes, coincides with the 
corresponding set of asymptotic distributions of record values in the sequences 
of Li.d. random variables. 

Keywords and phrases: Archimedean copula process, extremes, record in­
dicators, record times, record values 

23.1 Introduction 

Let Xl, X 2 , •.. be a sequence ofrandom variables and M(n) = max{XI , ... , Xn} 
for n = 1,2, .... We define (upper) record times L(n), record values X(n) and 
record indicators ~n as follows: 

L(I) 1, L(n + 1) = min{j > L(n) Xj > XL(n)}, n = 1,2, ... ; 

X(n) XL(n) = M(L(n)), n = 1,2, ... ; 

6 1, ~n = I{M(n»M(n-l)}, n = 2,3, .... 

Consider also random variables 

N(n)=6+···+~n, n=I,2, ... , 

where N(n) represents the number of records among Xl •... , X n. 
Beginning from the pioneering paper by Chandler (1952), there are now 

about 350 papers on records. The most updated reviews of the literature on 
records can be found in Ahsanullah (1995), Arnold, Balakrishnan and Nagaraja 
(1998) and Nevzorov and Balakrishnan (1998). 
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Majority of the work on records consider record times and record values in 
sequences of independent identically distributed random variables Xl, X2, .... 
Moreover, the theory of records from dependent or/and nonidentically dis­
tributed X's have been connected with the independence property of record 
indicators ~n and maxima M(n). This property, for example, was the basis 
for dependent record schemes of Ballerini and Resnick (1987), Deheuvels and 
Nevzorov (1994), Ballerini (1994), and Nevzorova, Nevzorov and Balakrishnan 
(1997). The last two of these are based on the so-called Archimedean copula 
( A C) processes. 

A sequence Xl, X 2, ... with marginal distribution functions Fl, F2, ... is said 
to be an AC process if, for any n = 1,2, ... , the joint distribution function 

has the following form: 

n 

H(tl, ... , tn) = B(I: A(Fi(ti))), (23.1) 
i=l 

where B is a completely monotone function such that B(O) = 1, and A = B-1 

is the inverse of the function B. 
Ballerini (1994) has studied in detail the particular AC processes with 

B(s) = exp(-sl/8), 82:1, 

and 

Fi(X) = (F(x))a(i), i = 1,2, ... , (23.2) 

where a(l), a(2), ... are any positive constants and F is a continuous distribu­
tion function. When 8 = 1, Ballerini's scheme coincides with the so-called F a -

scheme which was initiated by Yang (1975) and developed by Nevzorov (1984, 
1985, 1986, 1995), Pfeifer (1989, 1991), and Deheuvels and Nevzorov (1993, 
1994). It is known that in the Fa-scheme, random variables Xl,X2, ... are 
independent and have distribution functions (23.2). Ballerini called his model 
as the dependent Fa -scheme. He proved that record indicators 6,6, ... , ~n 
and maximum M(n), in the dependent Fa-scheme, are independent for any 
n = 1,2, .... 

Nevzorova, Nevzorov and Balakrishnan (1997) investigated a much more 
general set of AC processes and found the necessary and sufficient conditions 
under which the random variables 6,6, ... , ~n and M(n) are independent for 
any n = 1,2, .... It appears that this independence property takes place for AC 
processes with the joint distributions 

n 

H(tl, ... , tn) = B(I: CiA(F(ti))), (23.3) 
i=l 
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where B and A are as defined in (23.1), F is any continuous distribution func­
tion, and Ci are any positive constants. This case includes Ballerini's situation, 
of course, when B(s) = exp( _sl/8), 

It is not difficult to prove that 

Pk = P{~k = I} = 1- P{~k = O} = 1- ,(k - l)h(k), k = 1,2, ... , (23.4) 

where ,(n) = Cl + ... + en, for AC processes with dependence function (23.3). 
The independence of record indicators has been used to examine some mar­

tingale and asymptotic properties of random variables N(n) and L(n) for the 
Fa-scheme; see, for example, Balakrishnan and Nevzorov (1997), Deheuvels 
and Nevzorov (1993), Nevzorov (1995), and Nevzorov and Stepanov (1988). 
Arguments which are in Section 23.3 show that almost all of these results can 
be reformulated for AC processes in (23.3). 

For the Fa--scheme, using the independence of record indicators and max­
ima, Nevzorov (1995) has found the set of all possible limit distributions of 
record values X(n), centered and normalized in a suitable way. Here we gener­
alize his results for the AC processes. There are standard methods for proving 
such theorems; see, for example, Resnick (1973a,b) and Nevzorov (1995). The 
first step in this direction is to find the limit distribution of X (n) for some 
convenient initial distribution (in Resnick's and Nevzorov's papers, the expo­
nential distribution was used for this purpose). After that, arguments based 
on the Smirnov transformation and the well developed theory of extremes will 
enable one to construct the bridge from this special distribution to the general 
case. It appears that for AC processes in (23.3), unlike the classical record 
schemes, it is convenient to take the first step with the following analogue of 
the exponential distribution function: 

F(x) = B( -log(l - exp( -x))). 

23.2 Main Results 

Let a sequence Xl,X2, ... form an AC process with the joint distributions as 
given in (23.3). In this case, 

P{M(n) < x} = B{T(n)A(F(x))} = H{G'y(n) (x)}, (23.5) 

where 
H(x) = B(-logx) 

and G(x) = exp{ -A(F(x))} is a distribution function. It follows from (23.5) 
that P{M(n) - an < bnx}, as n ~ 00, converges to a nondegenerate limit 
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distribution R(x) = H(T(x)), if 

G'Y(n) (xbn + an) ~ T(x) as n ~ 00. (23.6) 

It is well known that if ')'(n) = n, then there are three classical types of limit 
distributions on in the RHS of (23.6), which have the following form: 

n(x) = exp(-exp(-gi(X))), i = 1,2,3, 

where 

gl(X) x, (23.7) 

g2(X) g2,o:(X) = alogx if x> 0, and g2(X) = -00 if x < 0, (23.8) 

g3(X) 93,o:(X) = -alog(-x) if x < 0, and g3(X) = 00 if x> 0, 

(23.9) 

and a > ° in (23.8) and (23.9). In this situation (viz., ')'(n) = n), all pos­
sible limit distributions for M (n), centered and normalized in a suitable way, 
evidently have the form 

Hi(X) = B( -log(T(x))) = B(exp( -gi(X))), i = 1,2,3, 

where functions gi(X) are as defined in (23.7)-(23.9). Green (1976) has shown 
that for any fixed nondegenerate distribution function T, it is possible to find 
a continuous distribution function G and sequences an, bn and ')'(n) such that 
(23.6) holds. His construction requires a very fast increase of coefficients ')'( n). 
In Green's example [see also Example 2.6.5 in Galambos (1978)] 

')'(n) "-' exp(exp An), A> 0, n ~ 00. 

Note also that if ')'(n) ~ ,)" ° < ')' < 00, then for any fixed distribution function 
T, one can take F(x) = B(A(T(x))h) and get the limit relation 

limP{M(n) < x} = T(x) as n ~ 00. 

For record values X(n) = M(L(n)), one can easily prove that if 

limP{M(n) - an < bnx} = R(x) as n ~ 00, 

then 
limP{X(n) - aL(n) < bL(n)x} = R(x) as n ~ 00. 

Let us consider the asymptotic behavior of X (n) under nonrandom centering 
and normalizing. 
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Denote An = 2::k=l Pk and Bn = 2::k=l P~, n = 1,2, ... , where Pn are as 
given in (23.4). 

In the sequel, we will study AC processes in (23.4) with coefficients Cn 

satisfying one of two following sets of restraints: 

( ) 0 Bn/An1/2 ---+ 0 "( n ---+ 00, Pn ---+ , as n ---+ 00; (23.10) 

n n 

Pn ---+ P (0 < P < 1), I)p - Pk)/n1/2 ---+ 0, I)p - Pk)2/n1/2 ---+ 0 
k=l k=l 

as n ---+ 00. (23.11) 

Note here, in comparison to Green's construction where log"((n) has the ex­
ponential rate of increasing, that "((n) ---+ 00 and log"((n) = O(n) as n ---+ 00, 

under conditions in (23.10) and (23.11). 
First, we get some asymptotic results for the partial case when G(x) = 

exp{ -A(F(x))} coincides with 1 - exp( -x) for any positive x. It means that 

F(x) = B( -log(1- exp( -x))) if x> 0 and F(x) = 0 if x < O. 

Let <I> denote the distribution function of the standard normal law. The 
following results then true. 

Theorem 23.2.1 If F(x) = B( -log(1 - exp( -x))) and conditions in (23.10) 
hold, then for any fixed x and y, 

P{X(n) -log"((L(n)) < x, log "((L(n)) - n < yn1/ 2} ---+ B(e-X)<I>(y). 

(23.12) 

Theorem 23.2.2 Let F(x) = B(-log(1- exp(-x))) and that conditions in 
(23.11) hold. Then for any fixed x and y, 

P{X(n) -log"((L(n)) < x, P log "((L(n)) + nlog(1- p) 

< y( -log(1 - p))(n(1 - p))1/2} ---+ B(e-X)<I>(y). (23.13) 

It is evident that for B(s) = exp( -s), which corresponds to the Fa-scheme, 
F(x) = B( -log(1- exp( -x)) coincides with the standard exponential distribu­
tion function. Hence, Theorems 23.2.1- Theorem 23.2.2 generalize Theorems 7 
and 8 of Nevzorov (1995). 

Corollary 23.2.1 Let F(x) = B( -log(1 - exp( -x)) and that conditions in 
(23.10) hold. Then for any fixed x, 

P{X(n) - n < xn1/2} ---+ <I>(x) (23.14) 

as n ---+ 00. 
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In fact, 
(X(n) - n)/n1/2 = I/n/n1/2 + /-In, 

where I/n = (X(n) -log "((L(n))) and /-In = (log ,,((L(n)) - n) /n1/2. It is evident 
now that asymptotic normality of (X(n) - n)/n1/2 easily follows from (23.13). 

Corollary 23.2.2 If F(x) = B(-log(1-exp(-x)) and conditions in (23.11) 
hold, then for any fixed x, 

P{pX(n) + nlog(1- p) < x(-log(1- p))((1- p)n)I/2} -4 <I>(x) (23.15) 

as n -4 00. 

In this situation, 

where 

and 

(pX(n) + nlog(1 - p))/( -log(1- p))(n(1- p))1/2 

= p1]n/( -log(1 - p))(n(1 - p))1/2 + Tn, 

TIn = X(n) -log"((L(n)) 

Tn = (p log ,,((L(n)) + n log(1 - p)) /( -log(1 - p) )(n(1 _ p) )1/2. 

All we need to do now is to apply (23.13). 
The standard arguments based on the Smirnov transformation [see Resnick 

(1973a,b) and Nevzorov (1995)] allow us to obtain from (23.14) and (23.15) 
the limit distributions of record values X (n) for any continuous distribution 
function F. 

Theorem 23.2.3 For AC processes in (23.3), with coefficients c(n) satisfying 
(23.10) or (23.11), the record values X(n), centered and normalized in a suit­
able fashion, can have only three types of non degenerate asymptotic distribution 
functions 

Ri(x) = <I>(gi(X)) , i = 1,2,3, 

where gi(X) are as given in (23.7)-(23.9) and <I> is the distribution function of 
the standard normal law. 



Record Values in Archimedean Copula Processes 327 

23.3 Sketch of Proof 

Let us compare indicators 6,6,... and maxima M (n) for AC processes in 
(23.3) with record indicators (denoted by G'~2"") and maxima M*(n) in the 
Fa-scheme with exponents an, n = 1,2, ... , which coincide with coefficients Cn 
of the corresponding AC process. Both the sets of indicators have the same 
distributions and these distributions do not depend on distribution function 
F, which enters in the definitions of the Fa-scheme and AC process in (23.3). 
Random variables 6, 6, ... as well as indicators ~r, ~2' ... are independent and 

Hence, for any n = 1, 2, ... , distributions of the vectors (6, ... ,~n) and (~r, ... , 
~~) coincide. It implies that the same situation is true for the random variables 
N(n) = 6 + ... + ~n and N*(n) = ~r + ... + ~~. Moreover, record times 
L(n) and L*(n) have the same distribution because we can apply the following 
inequalities: 

P{L*(n) > m} = P{N*(m) < n} = P{~i + ... + ~~ < n} 

= P{6 + ... + ~m < n} = P{N(m) < n} = P{L(n) > m}, 

(23.16) 

which are valid for any n = 1,2, ... and m = 1,2, .... The random variables 
L*(n) and N*(n) in (23.16) as well as record values X*(n) and maxima M*(n) 
correspond to the Fa-scheme. 

It therefore follows from (23.16) that all results which hold for record times 
L* (n) and numbers of records N* (n) in the Fa-scheme with exponents aI, a2, ... 
can be reformulated for L(n) and N(n) in the case when these record statistics 
correspond to AC process in (23.3) with coefficients Cn = an, n = 1,2, . " . 

Let us compare now record values X*(n) and maxima M*(n) for the Fa -

scheme with record values X(n) and maxima M(n) for AC process in (23.3). 
From (23.5), one knows that the maximal value M(n) for the AC process in 
(23.3) has the following form: 

P{M(n) < x} = Bb(n)A(F(x))} = H{G''Y(n) (x)}, 

where H(x) = B( -log x), G(x) = exp{ -A(F(x))} and ')'(n) = C1 + ... + Cn. For 
the Fa-scheme with exponents an = Cn, n = 1,2, ... , and distribution function 
F* , 

M~(x) = P{M*(n) < x} = (F*(x)p(n). 

The formulae and arguments given above show that there exists a duality be­
tween AC process in (23.3) with coefficients Cn and distribution function F, and 
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the FCl'-scheme with exponents an = en, n = 1,2, ... , and distribution func­
tion FCl'(x) = G(x) = exp{ -A(F(x))}. As we mentioned above, distributions 
of record times coincide for these two cases. Besides, we have the following 
relation between distributions of M (n) and M* (n): 

Mn(x) = P{M(n) < x} = H(M~(x)). 

The analogous equalities are valid for asymptotic distributions. If M~(xbn +an) 
converges to a limiting distribution T*(x) under some constants an and bn, then 
Mn(xbn + an) converges to distribution function T(x) = H(T*(x)). Note also 
that in this situation, as n -7 00, 

P{(X*(n) - aL* (n))/bL* (n) < x} -7 T*(x) (23.17) 

and 

P{(X(n) - aL(n))/bL(n) < x} -7 H(T*(x)). (23.18) 

One important fact that we must recall is that: for any n = 1,2, ... , in­
dicators ~t,~~, ... ,~~ and maximum M*(n) are independent [see, for example, 
Ballerini and Resnick (1987)], as well as the indicators 6,6, ... , ~n and maxi­
mum M(n) are independent in the case of AC processes in (23.3) [see Nevzorova, 
Nevzorov and Balakrishnan (1997)]. 

Therefore, we just need to trace the proof of Theorems 7 and 8 in Nevzorov 
(1995)) for the FCl'-scheme which correspond to our Theorems 23.2.1 and 23.2.2 
with some slight changes due to the differences in (23.17) and (23.18). In the 
theorems of Nevzorov (1995), relation (23.17) was used for the special case when 
F*(x) = 1 - exp(-x), x> 0, and it has the form 

P{X*(n) -log,(L*(n)) < x} -7 exp(-exp(-x)) (23.19) 

as n -7 00. Then, F(x) = B( -log(1 - exp( -x))) from Theorems 23.2.1 and 
23.2.2 is a dual function for F*(x), and in this situation, (23.18) can be rewritten 
as 

P{X(n) -log,(L(n)) < x} -7 H(exp( - exp( -x))) = B(e- X ) (23.20) 

as n -7 00. All the other arguments are the same for both situations and 
the difference of the RHS in (23.19) and (23.20) is the only reason why the 
limit expressions in (23.12) and (23.13) have the form B(e-X)<p(y), while the 
corresponding limit for the FCl'-scheme is exp( - exp( -x) )<p(y). 

There is a standard method to find the set of all possible nondegenerate limit 
distributions for record values X (n), centered and normalized in a suitable way. 
In the classical situation, when the original random variables Xl, X2, ... are 
independent and identically distributed, this method was suggested by Resnick 
(1973 a,b). For the FCl'-scheme, it was developed by Nevzorov (1995). 
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We will now consider the asymptotic distribution of X (n) under the restric­
tions of Theorem 23.2.1. First, let F(x) = Fo(x) = B( -log(1 - exp( -x))), 
x > o. It follows from Corollary 23.2.1 that the corresponding record values 
(for the sake of convenience in this situation we denote them as Zen)) satisfy 
the following relation: 

P{Z(n) - n < xn1/ 2 } --t <I>(x) (23.21) 

as n --t 00. Then, due to Smirnov transformation, record values X (n) for any 
continuous distribution function F (x) can be expressed via random variables 
Zen) as follows: X(n) = R(Z(n)), where R(x) = F-1(B( -log(1 - e-X ))) 

and F-1 is the inverse function of F. If there exist some normalizing and 
centering constants an and bn such that P{X(n) - an < xbn } converges to 
some distribution T(x), then this fact can be rewritten as 

P{(Z(n) - n)jn1/ 2 < (UF(an + xbn ) - n)jn1/ 2 } --t T(x), (23.22) 

where UF(X) = -log(1-exp( _B-1(F(x)))) and B-1 is the inverse of B. Com­
paring (23.21) and (23.22), one can see that (23.22) holds if and only if there 
exists the following limit: 

g(x) = lim(UF(an + xbn ) - n)jn1/ 2 , as n --t 00. (23.23) 

Moreover, it means that all asymptotic distribution T for X(n) must have the 
form T(x) = <I>(g(x)). Now one can recall that the problem finding all possible 
limits in (23.23) has already been solved by Resnick. It appears that the set 
of limit functions 9 is restricted by three types of functions as in (23.7)-( 23.9). 
This completes the proof of Theorem 23.2.3 under the restraints in (23.10). 

The same arguments show that this theorem is also true if the conditions 
in (23.11) are posed. • 
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Functional CLT and LIL for Induced Order 
Statistics 

Yu. Davydov and V. Egorov 

Universite de Sciences et Technologies de Lille, Villeneuve d'Ascq, France 
Electrotechnical University, St. Petersburg, Russia 

Abstract: The asymptotic behavior of three processes defined by induced 
order statistics is studied. We prove for these processes a functional central 
limit theorem and a Strassen-type functional law of the iterated logarithm. 
The result about weak convergence is a large generalization of Bhattacharya's 
one (1974). The entropy technique and sharp estimates for weighted empirical 
processes are used. Here, we present an abridged version of our work. 

Keywords and phrases: Functional limit theorem, Strassen-type FLIL, in­
duced order statistics 

24.1 Introduction 

Let Zi = (Xi, Yi), i = 1,2 ... , be independent copies of a random vector Z = 
(X, Y) such that X E RI, Y E Rd. Denote Xn,l :S X n,2 :S ... :S Xn,n for 
the order statistics of the sample (Xi, i :S n) and Yn,l, Yn,2, ... , Yn,n for the 
corresponding values of the vectors Y. The random variables (Yn,i, i :S n) are 
called induced order statistics (lOS). 

This generalization of order statistics was first introduced by David (1973) 
under the name of concomitants of order statistics and simultaneously by Bhat­
tacharya (1974). While the asymptotic theory of induced order statistics have 
been discussed in great detail by David and Galambos (1974), Galambos (1987), 
Sen (1976), Yang (1977), Egorov and Nevzorov (1982, 1984), finite sample re­
sults have been presented by David et al. (1977) and Yang (1977). Barnett et 
al. (1976), David (1981), Gomes (1981), Kaminsky (1981), and Balakrishnan 
(1993) have provided further interesting discussions on these subjects. Inter­
ested readers may also refer to Bhattacharya (1984), David (1992) and David 
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and Nagaraja (1998) for extensive reviews on the developments of lOS. One 
should mention new unexpected connections of lOS with the problems of "con­
vexification" of random walks consided by Davydov and Vershik (1998) (see 
below for more detailed discussion). 

In this chapter, we study the asymptotic behavior of three processes con­
structed by the induced order statistics Yn,i, i ~ n : 

n 
'fln(t) = E 01[O,t) (Xj), (24.1) 

j=l 
1 [nt] 

~n(t) - EYn,j, (24.2) 
n . 1 J= 

1 [nt] 
an(t) ~ E(Yn,j - m(Xn,j)), (24.3) 

j=l 

where met) = E(Y I X = t), t E [0,1]. 
It is not difficult to see (and it follows from the results of our work) that 

with probability one 
an ~ 0, ~n ~ j, 'fln ~ j 

uniformly in [0,1], where jet) = J~ m(s)ds. 
Our main goal is to prove a functional central limit theorem (FCLT) and a 

Strassen-type functional law of the iterated logarithm (FLIL) for the processes 

(24.4) 

where bn =..;n if the weak convergence is considered and bn = Jnj(2loglogn) 
in the case of convergence with probability one. 

Our results about the weak convergence represent a large generalization of 
Bhattacharya's ones (1974,1976): the moment condition is reduced to EIIYI1 2 < 
00, the dimension d can be more than 1 and the regression function m(x) is 
permitted to be unbounded. The result about the FLIF, as it seems, is the first 
result on this subject for lOS. 

Finally, we would like to mention something about the methods applied in 
this chapter. We use entropy technique [modern results of Ossiander (1987) 
and Ledoux and Talagrand (1991)J and sharp estimates for weighted empirical 
processes [see Shorack and Wellner (1986)J. 

The Chapter is organized as follows. After notation (Section 24.2) in Section 
24.3 we formulate and discuss Theorem 24.3.1. This theorem states the weak 
convergence (in the uniform topology) of the processes (24.4) to continuous 
Gaussian processes which admit integral representations in terms of the d -
dimensional Wiener process and the Brownian bridge. Strassen balls for d 
-dimensional random Gaussian processes are described in Section 24.4. The 



Functional CLT and LIL for Induced Order Statistics 335 

FLIL (Theorem 24.5.1) is investigated in Section 24.5. Section 24.6 is devoted 
to examples. Some simple lemmas are stated without proofs. 

24.2 Notation 

X n1 ~ ... ~ Xn,n - order statistics for Xi, i ~ n 
Yn1 , ... , Yn,n - induced order statistics 
an, ~n, 'r/n - see (24.1), (24.2), (24.3) 
an, tn.rln - see (24.4) 
Fn(t) - empirical distribution function 
Un(t) = Fn(t) - t 

Vn(t) = Xn,[ntj - t 
V (t) - Brownian bridge 
W (t) - standard Wiener process 
m(8) = E(YIX = 8) 
0"2(8) = cov(YIX = 8) - conditional covariance matrix 
0"(8) - the positive square root of 0"2(8) : 0"(8)0"(8)T = 0"2(8) 
D~ - variance of random variable ~ 
11£11 - Euclidean norm in Rd 
IIXII~ = sUPa<t<b IX(t)1 
B[O, 1] - space of bounded functions with the norm II fila 
bn = Vn/(2loglogn),n > 3 
wf(a) = SUPlt-TI<a If(t) - f(7)1 
C, C1, ... - positive constants 
lOS - induced order statistics 
S x - Strassen ball for the random process X 
f+(x) = max(j(x), 0), f-(x) = max(-f(x),O) 

24.3 Functional Central Limit Theorem 

We begin by supposing that X is uniformly distributed on the interval [0,1]. 
The inverse probability transformation permits easily to pass from this case to 
general one. We recall that Y is supposed to have a finite second order moment. 
Let 

0"2(8) = E{(Y - m(X))(Y - m(X))T I X = 8} 

be the conditional covariance matrix of Y and 0"(8) be the positive matrix such 
that 0"(8)0"(8)T = 0"2(8). 



336 Yu. Davydov and V. Egorov 

All our limit processes being continuous, it is well known that in this case the 
convergence in uniform and Skorokhod topologies are equivalent [see Billingsley 
(1968)], hence we use the uniform metric. The symbol => denotes the weak 
convergence in the uniform topology of the corresponding Skorokhod space or 
simply the convergence in distribution of random variables. 

Theorem 24.3.1 Suppose that EIIYI12 < 00. Then 

(1) fjn => fj , an => a, 
where 

aCt) = lot o-(s)dW(s), fj(t) = aCt) + lot m(s)dV(s), (24.5) 

W is the d-dimensional standard Wiener process, V is the Brownian 
bridge independent of W. 

(2) If, in addition, m is continuous in the open interval (0,1) and for some 
C > 0, a E (0,1/2) 

(24.6) 

then 

where 
t(t) =fj(t) - m(t)V(t). (24.7) 

We set here m(O)V(O) = m(l)V(l) = o. 

Remark 24.3.1 Due to the condition EIIYI12 < 00, the function m and matrix­
valued function (J" are square integrable. It means that the integrals (24.5) are 
well defined. 

Remark 24.3.2 If X has a continuous distribution function F of general type, 
we introduce the variables Uj = F(Xj). Then the processes an, tn, fjn coincide 
with ones of Theorem 24.3.1 constructed by the vectors (Yl, UJ) with the 
functions m, (J" replaced by moF-1, (J"oF-1 respectively. The same modifications 
are needed for the limit processes a, t, fj. The condition (24.6) turns into the 
following condition: 

for some C> 0, a E (0,1/2), 

(24.8) 

Remark 24.3.3 The statements of Theorem 24.3.1 remain valid if the pro­
cesses an, tn and fjn are constructed by means of the continuous polygonal 
interpolation. 
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PROOF OF THEOREM 24.3.1. Due to Cramer-Wold device, it is sufficient to 
prove this theorem only for d = 1. 

Next we need two lemmas. 

Lemma 24.3.1 If (24.6) holds, then 

(a) vnm(·)UnO => m(·)V(·). 

(b) For any random sequence Tn such that Tn lOin probability 

p 
SUPtE [O,!'n]U[l-!'n ,1] vnlm(t)Un(t)1 -t 0. 

(c) The statements (a) and (b) are still valid with Un replaced by Vn . 

PROOF OF LEMMA 24.3.1. First note that the Holder condition for Vet) is 
fulfilled a.s. for any A, ° < A < 1/2. Then, the random process m(t)V(t) is a.s. 
continuous for t E [0,1]. 

The statement a) and the corresponding part of the statement c) follow from 
O'Reilly (1974) [see also Shorack and Wellner (1986, p. 462)]' if we take in their 
result q(t) = t f3 (I- t)f3 for some 13 E (a,I/2) and notice that ml(t) = m(t)q(t) 
is continuous for t E [0,1]. 

The statement b) is a simple consequence of a). • 

Lemma 24.3.2 Let j3n be a sequence of random processes such that j3n => 13, 
where 13 is a continuous random process. If the processes {Tn(t), t E [0, I]} are 

such that Tn(t) E [0,1] for any t E [0,1] and IITn - lila'!'" ° where let) == t, t E 

[0,1]' then 

1. Now consider the processes 'r/n, which are (generalized) empirical pro­
cesses. Therefore, we can apply the general result of Ossiander (1987) for 
processes of this type to obtain the weak convergence. 

Let H B (u, S, p) denotes the metric entropy with bracketing and S, p, for the 
processes 'r/n are defined as follows: 

{ht(x, y), x E [0,1]' y E Rl : ht(x, y) = y1[o,t) (x)}, 

(E(ht(X, Y) - hsCX, y))2)1/2. 

According to this work, we must prove the inequality 

(24.9) 
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for more details, see Ossiander (1986). It is not difficult to show that 

B 1 H (u,S,p)::; Clog-. 
u 

Hence, by Ossiander's theorem, 

where fl is the Gaussian process, Efl(t) = 0, E(fl(t),fl(r)) = Kl(t,r), and 
K 1 (t, r) is the covariance function of every summand in the sum 

n 

n'TJn(t) = L Yil[o,t) (Xi). 
1 

Elementary calculations show that 

(24.10) 

{tM {tM (t r 
Kl(t, r) = Jo (J2(s)ds + (Jo m2(s)ds - Jo m(s)ds Jo m(s)ds) 

and that K 1 (t, r) is the covariance function of the random process fl defined in 
(24.5). 

2. The second step is to consider the processes ~n. Note that 

Hence, due to Lemma 24.3.2, 

and 
{Xn,[ntJ ( 1 ) 

~n(t) = 'TJn(t) + Jt m(s)ds + a ..;n (24.11) 

uniformly for t E [0,1] in probability. 
Using Lemma 24.5.4 , Lemma 24.5.5 and Part (c) of Lemma 24.3.1, we get 

vnll l Xn
, [ntJ (m(s) - m(t))dsll~ & 0, n -> 00. (24.12) 

Due to (24.11) and (24.12), 

tn(t) = fln(t) + vnm(t)Vn(t) + 0(1). (24.13) 

We have proved already that the summands in (24.13) converge, hence they 
are tight. Then, tn is tight too. Thus, to prove the weak convergence tn to t 
it is sufficient to show the convergence of their finite-dimensional distributions. 
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- p - -
Moreover, since ~n(t) -+ 0 = e(O) = ~(1) for t = 0 and t = 1, we can consider 
only t E (0,1). Then by virtue of the Kiefer-Bahadur theorem [see Shorack and 
Wellner (1986, p. 586)], we can replace in (24.13) Vn by -Un. Hence, 

~n(t) = Tln(t) - vnm(t)Un(t) + 0(1). (24.14) 

We can also represent ~n in the form 

_ 1 n 

~n(t) = ~ L(U(t; Xi, Yi) - E(U(t; Xi, Yi))) + 0(1), 
yn i=l 

(24.15) 

where 
U(t; X, Y) = (Y - m(t))l[O,t)(X). 

Now consider the k-dimensional distribution of {n for 0 < tl < ... < tk < l. 
The multivariate central limit theorem for Li.d. random variables gives the 
asymptotic normality with zero mean. The limiting covariance matrix is equal 
to the covariance matrix of the random vector {U(tj; X, Y), j = 1,2, ... , k}, 
that is, it is equal to the matrix {cOV(U(ti;X, Y), U(tj;X, Y))}f,j=l. 

Hence, the covariance function of { is equal to 

(tM 
K2(t, T) = K1(t, T) - (m(t) + m(T)) 10 m(s)ds 

+tm(t) foT m(s)ds + Tm(T) fot m(s)ds + m(t)m(T)(t 1\ T - tT). 

It is easy to show that K2(t, T) is the covariance function of the process ~ 
defined by (24.7). 

3. Consider the random processes an. They are the same as the processes 
{n provided Yn are replaced by Yn = Yn - m(Xn), n = 1,2, .... Since m(s) = 
E(YnIXn = s) = 0, the weak convergence for an follows from one for {no • 

24.4 Strassen Balls 

In Section 24.5, we shall derive a Strassen-type functional law of the iterated 
logarithm (FLIL) for the processes defined by lOS. It is known that the limit 
sets in the FLIL are the Strassen balls for the corresponding limit Gaussian 
processes. That is why in this section we give a detailed description of the 
Strassen balls for multivariate Gaussian processes. 

Consider a random Gaussian-centred element X of a separable Banach space 
B. Let K be its covariance operator, that is, 

K: B* -+ B, (Kx*,y*) = E((X,x*) (X,y*)) , 
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for x*, y* E B* ,where (x, x*) = x* (x) is the corresponding bilinear form. Let 
L be a Hilbert space, I : L ---+ B be a linear operator, I* : 8* ---+ I: be the 
operator which is adjoint for I. Assume that K = II*. 

Definition 24.4.1 The set 

Sx = {x E B I x =I(£), £ E 1:, 1I£ILe:S oo} 

is called the Strassen ball of the Gaussian vector X. 

The definition is correct because this set does not depend on the choice of 
the space L [see Lifshits (1995, Th. 9.4.)]. Sx is also called the ellipsoid of 
concentration of the distribution Px of X. 

There is an alternative approach to describing of Strassen balls based on 
the concept ofreproducing kernel spaces [see Aronszajn (1950) and Vakhaniya, 
Tarieladze and Chobanyan (1985)] or in terms of abstract Wiener space [see 
Kuelbs and Le Page (1973)]. 

Consider now 

a zero mean d-dimensional Gaussian process with continuous sample paths. 
Obviously, X is an element of the space B = Cd[O, 1]. Then the covariance 
function of X is a matrix function 

K(t, s) = (Ki,j(t, S))f,j=l 

where Kij(t, s) = EXi(t)Xj(s). 
Let L be some Hilbert space, Ld be the space of vectors £ = (£1, ... , Pd), 

£i E L, i :S d, Md(L) be the space of d x d-matrix with the elements from L. 
Assume that for GI, G2 E Md(L) and P E Ld, the products GIG2 and GIPT 

are defined as the usual matrix product provided the products of their elements 
£1,£2 E L equal (£1,£2)L. In this case, we write simply Pl£2. Obviously, Ld with 
the inner product (£, k)Ld = £kT is a Hilbert space. 

Definition 24.4.2 The set {Gt I Gt E Md(L), t E [0, I]} is called the model of 
the process X iff K(t, s) = GtGI for t, s E [0,1]. 

If d = 'I, then it is the usual model of the real Gaussian process X [see 
Lifshits (1995, §9)]. 

The notion of model is crucial for the constructive description of Strassen 
balls. 

Proposition 24.4.1 Let {Gt , t E [0, I]} be a model of X, Sx be the corre­
sponding Strassen ball. Then, 

Sx = {h I h E Cd[O, 1], h(t) = GtF, £ E Ld, (£,£)Ld:S I}, 

where L = L2[0, 1]. 
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PROOF. It is clear that the dual space B* can be interpreted as vector space 
with elements J.l = (J.ll, J.l2, ... , J.ld), where J.li, i ~ d, are finite charges. Thus if 
x E B = Cd[O, 1], J.l E B*, then 

1 d 1 

(x, J.l) = 10 J.l(dt)x(t) = ~ 10 Xi (t)J.li(dt). (24.16) 

Define the operators I* and I by the formulas 

I* ::B* ~ Ld, I*J.l = 101 J.l(dt)Gt = ((Gt,l,J.l), (Gt,2,J.l), ... , (Gt,d,J.l)) 

where Gt,i , i ~ d, are the columns of Gt, 

I: Ld ~ B, If = GtF. 

It is not difficult to check that the operators I and I* are adjoint. Furthermore, 

I(I*J.l)(t) Gt(I*J.lf = Gt (101 J.l(dS)Gs) T = 101 GtG; J.lT(ds) 

101 K(t,s)J.lT(ds) = E(1ol X(t)XT(s)J.lT(ds)). (24.17) 

Then for J.l, v E B*, 

(II*J.l, v) = E(1ol v(dt) 101 X(t)XT(s)J.l(ds)) = E((X,J.l)(X, v). (24.18) 

Hence K = II* . • 
Corollary 24.4.1 Assume that 

X(t) = 1019tdW, (24.19) 

where W = (Wi, ... , Wd)T is a standard d-dimensional Wiener process, 9t E 
Md(L), L = L2[0, 1]. Then,9t is a model of the process X and 

Sx = {h I hE B, h(t) = 9tfT, f E Ld, (f,f)Ld ~ I}. 

Corollary 24.4.2 Assume that 

X(t) = 101 rtdW = 101 9tdW, (24.20) 

where W is the one-dimensional Wiener process, rT E Ld, L = L2[0, 1], rtdw = 
(rt,l dw , ... , rt,ddwf, 9t = (9ij(t, ·))f,j=l' 9ij(t,') = ri(t;·) for j = 1, 9ij(t,.) = ° for j = 2, ... ,d, W(t) = Wi (t), where Wi (t) is the first component of the 
standard d-dimensional Wiener process W(t) = (Wi (t), ... , Wd(t))T. Then,9t 
is a model of the process X and 

Sx = {h E B I h(t) = (hi (t), ... , hd(t)f, hi(t) = (rt,i, fh, f E L, (f, f)L ~ I}, 
(24.21) 
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Corollary 24.4.3 Assume that 

XT = {(X[(t), X!(t)), t E [0, I])}, 

where Xl and X2 are independent random Gaussian processes, Xl (t) E Rdl, 
X2(t) E Rd2. Let gt be a model for Xl, ht be a model for X2. Then 

( gt 0) 
o ht 

is a model for X. 

Corollary 24.4.4 Let XT = (Xf(t), X!(t)), where Xl, X2 are independent 
d-dimensional random processes. Let Y(t) = Xl(t) + X2(t), gt, ht are models 
in Md(L) of Xl and X2. Suppose that gi,j(t,') and hk,.e(S,,) are orthogonal for 
any t i- s, i,j, k, f:::; d. Then gt + ht is a model ofY. 

Corollary 24.4.5 Provided the hypotheses of Corollary 24.4.4 are valid, except 
of the orthogonality hypothesis, we have 

T fiT - d --Sy={h!hEB,h=gtf +htf, f,fEL, (f,fhd+(f,fhd:::;I}, 

where L = L2[0, 1]. 

Now we can give the representation of the Strassen balls for the processes 
ii, ij, t [see (24.5) and (24.7)]. 

Proposition 24.4.2 There are the following Strassen balls representations: 

(24.22) 

where O't,i,j (s) = O'i,j (s) 1 [O,t) (s), i, j = 1, ... , d and the product of the d-dimen­
sional vector and the scalar is the componentwise inner product; 

T - d- --Sij = {h E B! h(t) = O'tf + g(t)f, f E L ,f E L, (f,fhd + (f,f)L:::; I}, 
(24.23) 

where g(t) = (gl (t), ... , 9d(t))T, gi(t, s) = mi(s )1[0,t) (s) - JJ mi(s )ds, i:::; d; 

T - d- --
S~ = {h E B! h(t) = O'(t)f +r(t)f, f E L ,f E L, (f,fhd + (C,f)L):::; I}, 

(24.24) 
where r(t) = (n (t), ... , rd(t))T, ri(t, s) = (mi(s) -mi(t) )1[0,1) (s) - JJ mi(s )ds+ 
tmi(t), i :::; d. 

PROOF. (24.22) follows immediately from Corollary 24.4.1, (24.23) follows from 
Corollaries 24.4.2 and 24.4.5 and the representations 

V(s) ,4 W(s) - sW(I), 

lot mi(s)dV(s) ,4 fo\mi(s)1[0,t)(s) - lot mi(u)du)dW(s). 

The proof of (24.24) is the same as that of (24.23). • 
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Remark 24.4.1 Without loss of generality, we can suppose in (24.23) and 
(24.24) that J~ l(s)ds_= O. In fact, if 11(s) = l(s) - Jcil(s)ds, then (ll,iI) ::; 1. 
If we replace £(s) by £1(s), then h does not change and we can then put 

24.5 Law of the Iterated Logarithm 

In this Section we give a Strassen type law of the iterated logarithm for the 
processes defined by lOS. 

Definition 24.5.1 Let {Xn}, Xn = (Xn(t), t E [0,1]), be a sequence of ran­
dom processes with sample paths from a Banach functional space B. We say 
that this sequence approximates a function set S C B and write Xn ~ S, iff 
with the probability one the set {Xn (.)} is relatively compact and the set of its 
limit points coincides with S. 

Definition 24.5.2 Let {Xn}, Xn = (Xn(t), t E [0,1]), be a sequence of cen­
tered random processes such that Xn/ vn converges weakly (in uniform topol­
ogy) to a Gaussian process X. We say that the functional law of the iter­
ated logarithm (FLIL) is valid for {Xn/an} iff the sequence {Xn/an}, an = 
J2nloglogn, approximates Strassen ball Sx of the process X. 

Theorem 24.5.1 Assume that the hypotheses of Theorem 24.3.1 are satisfied. 
Then the FLIL for the processes an, fjn, tn are valid. The description of the 
corresponding Strassen balls Sij, St, Sf} are given in Section 24.4 (Proposition 
24·4.2). 

The proof of this theorem is based on Lemmas 24.5.1-24.5.6 below, on 
Theorem 4.2 of Ossiander (1988). It is long and tedious and therefore will be 
omitted here. 

Lemma 24.5.1 Let the conditions of Lemma 24.3.1 be valid. Set 

bn = Vn /(2loglogn). 

Then 

(a) 

where 

K = {J: f(O) = f(l) = 0, f is absolute continuous, fal (J'(t))2dt::; 1}, 

mK = {h: h(t) = m(t)f(t), f E K}. 
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(b) limsuPn->oo SUPtE[O,'Y]U[l-'Y,l] bnlm(t)Un(t) I --+ 0 a.s., as [ t o. 

PROOF OF LEMMA 24.5.1. First note that m(t)f(t) is continuous for any 
f E K, t E [0,1]. It follows from the inequality 1!(t)1 ~ y'2t(1 - t), which is 
true for any f E K. 

(a) follows from James (1975) or Shorack and Wellner (1986 p. 517). 

(b) We prove the statement (b) only for t E [O,[] because for t E [1 -[,1] 
the proof is similar. Due to (a) and Shorack and Wellner (1986 p. 517), 
with probability one 

lim sup bn limUn l13 = sup IImfl13 ~ C sup lira fl13 ~ c[1/2-a --+ 0 
n->oo JEK JEK 

as [ --+ O. • 
Lemma 24.5.2 If 

fln""-'* K, 

where K is a set of equicontinuous functions and the processes {Tn(t), t E [0, I]} 
are such that Tn(t) E [0,1] for any t E [0,1] and IITn - 1115 --+ 0 with probability 
one, then 

Lemma 24.5.3 Set tn = n-(3, where 0 < fl < 1. Then 

Xn,[ntn ] = O(tn) a.s. (n --+ 00). 

PROOF OF LEMMA 24.5.3. Set nk = 2k, mk = [4nktnJ. It is easy to check the 
inequality 

Chebyshev inequality therefore· implies 

Lemma follows from these relations and the Borel-Cantelli lemma. • 

Lemma 24.5.4 If [ E [0,1], 0 < y < x, then 

Ix'Y _ 'YI < 2(x - y) . 
y - x1-'Y + yl-'Y 
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Lemma 24.5.5 
(a) If fJn(t) = fJn(t,w) .!:" 0, n -+ 00 for all positive t, then there exists a 

p 
real sequence tn 10 such that fJn(tn) -+ O. 

(b) If for all positive t fJn(t) -+ 0 with probability one, then there exists a 
sequence tn = tn(w) s.uch that fJn(tn) -+ 0 with probability one. 

(c) Assume that fJn(t) are deterministic functions such that fJn(t) ~ 0, 
fJn(t) 1 ° for every n as t 1 ° and limsuPn-+oo fJn(t) ::; r.p(t) where r.p(t) 10, t 1 0. 
Then fJn(tn ) -+ ° as tn -+ 0. 

Lemma 24.5.6 Let B be a Banach space. Let {Pn}, {li:n} and for any N E N 
{p;;} , {Ii:;;} be sequences of B-valued random vectors such that for some com­
pact subsets S, SN of B with the probability 1 

PN~SN n , 

lim lim sup IIPn - p;;11 = 0, lim lim sup Illi:n - 1i:;;11 = 0. 
N -+00 n-+oo N -+00 n-+oo 

Then, 
Pn~S. 

24.6 Applications 

(24.25) 

(24.26) 

(24.27) 

Statistical applications of our results involve the applications described by Bhat­
tacharya (1974, 1976). He considered: 

(1) tests for the regression function m(x) = mo(x), 
(2) estimation of the function f(t) = JJ m(s)ds = E(Y; X:::; t), 

and 
(3) constructions of confidence sets for it . 

Note that our results justify better these applications due to the less restrictive 
conditions. For example, for the processes tn we can not apply Bhattacharya 
theorems for a normal vector Z, with the exception of the case when X and Y 
are independent, since m(x) is then not bounded. 

Besides, by virtue of Theorem 24.5.1, the random processes ~n and 'f7n are 
consistent estimates with probability one of the function f, and the deviations 
from f have order Jloglogn/n. Due to Theorems 24.3.1 and 24.5.1, we can 
get similar results for multivariate vectors Y. 

It is not difficult to extend the above mentioned applications to censored 
samples. Consider, for example, the test for regression function. Suppose that 
d = 1 and for a constant T, T ::; 1 

Yn,l, Y n,2,"" Yn,[nTl' 
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is a set of induced order statistics. 
If we test the hypothesis m(s) = mo(s) against the general alternative, we 

can construct the test of the form 

{ 
1 ~ } max vnl "'(Yn i -mo(Xn i))1 > A d;j A(A). 

O<t<T n ~, , 
- - 2=1 

Let 'l1(t) = fJ (T2(s)ds. Then, similar to Bhattacharya (1974), we have under 
the hypothesis 

P(A(A)) ~ P{ max IW(t)1 > ('l1(T))-1/2 A}. 
099 

Here, we can use instead of 'l1(T) its estimate 

(24.28) 

To prove the relation (24.28), set "fi = Ii - m(Xi) and note that due to the law 
of large numbers 

Then for any 6 > 0, with the probability one 

lim sup IAn(T) - JJn(T) I = lim sup IJJn(Xn,[nTj) - JJn(T) I 
n--+oo n->oo 

Hence, (24.28) is valid. 
The convexification of random walks is another domain of applications for 

induced order statistics. Let (Ii, i E N) be Li.d. random variables in R2. Let 
(pi, (}i) be the polar coordinates of Ii. We denote (}n1, ... , (}nn for the values 
(}i rearranged by growth and consider the polygonal continuous line Ln defined 
by the points So = 0, Sk = L:f=l Yn,i, k = 1, ... , n. This line has the same 
origin and end as the initial random walk So = 0, Sk = L:f=l Ii, k = 1, ... ,n, 
and represents exactly what one could call the convexification of the random 
walk (Sk). The asymptotic behavior of convexifications Ln and geometrical 
properties of their limits have been studied by Davydov and Vershik (1998). 

It is clear that Yn,i are the order statistics induced by (}s's and the processes 
Ln are analogues to processes ~n. Thus, this construction is a very particular 
case of one studied in this Chapter. For example, Theorem 5 of Davydov 
and Vershik (1998) is a direct consequence of our Theorem 24.3.1. On the 
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other hand, the geometrical interpretation and the relations with Minkowski 
addition of convex sets used by Davydov and Vershik (1998) could be very useful 
for subsequent investigation of induced-order statistics when the second-order 
moment does not exist. In Davydov, Paulauskas and Rachkauskas (1998), this 
geometric construction is applied to the estimation of parameters of multivariate 
p-stable laws with p < 1. 

Acknowledgments. This work was partially supported by Russian Founda­
tion of Fundamental Research, grants N. 96-01-00549, N. 99-01-00724 and N. 
96-01-0672. The authors express their gratitude to Professor Va. Nikitin for 
the careful reading of the manuscript and valuable comments. 

References 

1. Aronszajn, N. (1950). Theory of reproducing kernels, Transactions of 
the American Mathematical Society, 68, 337-404. 

2. Balakrishnan, N. (1993). Multivariate normal distribution and multivari­
ate order statistics induced by ordering linear combinations, Statistics f3 
Probability Letters, 17, 343-350. 

3. Balakrishnan, N. and Cohen, A. C. (1991). Order Statistics and Inference: 
Estimation Methods, Boston: Academic Press. 

4. Barnett, V. (1976). The ordering of multivariate data, Journal of the 
Royal Statistical Society, Series A, 139, 318-354. 

5. Barnett, V., Green, P. J. and Robinson, A. (1976). Concomitants and 
correlation estimates, Biometrika, 63, 323-328. 

6. Bhattacharya, P. K. (1974). Convergence of sample paths of normalized 
sums of induced order statistics, The Annals of Statistics, 2, 1034-1039. 

7. Bhattacharya, P. K. (1976). An invariance principle in regression analysis, 
The Annals of Statistics, 4, 621-624. 

8. Bhattacharya, P. K. (1984). Induced order statistics: Theory and appli­
cations, In Handbook of Statistics (Eds., P. R. Krishnaiah and P. K. Sen), 
4, pp. 383-403, Amsterdam: North-Holland. 

9. Bickel, P. J. (1967). Some contributions to the theory of order statistics, 
In Proceedings of the Fifth Berkeley Symposium on Mathematics, Statis­
tics and Probability, 1, pp. 575-591, Berkeley, California: University of 
California Press. 



348 Yu. Davydov and V. Egorov 

10. Billingsley, P. (1968). Convergence of Probability Measures, New York: 
John Wiley & Sons. 

11. David, H. A. (1973). Concomitants of order statistics, Bulletin of the 
International Statististical Institute, 45, 295-300. 

12. David, H. A. (1981). Order Statistics, Second edition, New York: John 
Wiley & Sons. 

13. David, H. A. (1992). Concomitants of order statistics: Review and recent 
developments, 

14. David, H. A. and Galambos, J. (1974). The asymptotic theory of con­
comitants of order statistics, Journal of Applied Probability, 11, 762-770. 

15. David, H. A. and Nagaraj a, H. N. (1998). 

16. David, H. A., O'Connell, M. J. and Yang, S. S. (1977). Distribution and 
expected value of the rank of a concomitant of an order statistic, The 
Annals of Statistics, 5, 216-223. 

17. Davydov, Yu. and Vershik, A. M. (1998). Rearrangements convexes des 
marches aleatoires, Annales Inst. Henri Poincare, 34, 73-95. 

18. Davydov, Yu., Paulauskas, V. and Rachkauskas, A. (1998). More on 
p-stable random convex compact sets in Banach spaces, 0 < p < 1 , 
Prepublications IRMA, Lille, 45. 

19. Egorov, V. A. and Nevzorov, V. B. (1982). Some theorems on induced 
order statistics, Theory of Probability and Its Applications, 27, 633-639. 

20. Egorov, V. A. and Nevzorov, V. B. (1984). Convergence to the normal 
law of sums of induced order statistics, Journal of Soviet Mathematics, 
25, 1139-1146. 

21. Galambos, J. (1987). The Asymptotic Theory of Extreme Order Statistics, 
Second edition, Malabar, Florida: Krieger. 

22. Gomes, M. 1. (1981). An i-dimensional limiting distribution function of 
largest values and its relevance to the statistical theory of extremes, In 
Statistical Distribution in Scientific Work (Eds., C. Taillie et al.), 6, pp. 
389-410, Dordrecht: Reidel. 

23. James, B. (1975). A functional law of the iterated logarithm for weighted 
empirical distributions, Annals of Probability, 3, 762-772. 

24. Harter, H. L. (1961). Expected values of normal order statistics, Biometri­
ka, 48, 151-165. [Correction, Biometrika, 48, 476.] 



Functional CLT and LIL for Induced Order Statistics 349 

25. Harter, H. L. (1970). Order Statistics and Their Use in Testing and 
Estimation, Vols. 1 and 2, Washington, DC: U.S. Government Printing 
Office. 

26. Harter, H. L. and Balakrishnan, N. (1996). CRG Handbook of Tables for 
Order Statistics and , Boca Raton, Florida: CRC Press. 

27. Kaminsky, K. S. (1981). A note on concomitants of order statistics in 
two bivariate normal samples, 43rd Session of International Statistical 
Institute at Buenos Aires, I, 161-164. 

28. Kuelbs, J. and Le Page, R. (1973). The law of the iterated logarithm for 
Brownian motion in a Banach space, Transactions of American Mathe­
matical Society, 185, 253-264. 

29. Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces, New 
York: Springer-Verlag. 

30. Lifshits, M. A. (1995). Gaussian Random Functions, Amsterdam, The 
Netherlands: Kluwer. 

31. Ossiander, M. (1987). A Central limit theorem under metric entropy with 
L2 bracketing, The Annals of Probability, 15, 897-919. 

32. O'Reilly, N. (1974). On the weak convergence of empirical processes in 
sup-norm metrics, The Annals of Probability, 2, 642-651. 

33. Sen, P. K. (1976). A note on invariance principles for induced order 
statistics, The Annals of Probability, 4, 474-479. 

34. Shorack, G. and Wellner, J. (1986). Empirical Processes with Applications 
to Statistics, New York: John Wiley & Sons. 

35. Vakhaniya, N. N., Tarieladze, V. 1. and Chobanyan, S.A. (1985). Proba­
bility Distributions in Banach Spaces, Moscow: Nauka (in Russian). 

36. Yang, S. S. (1977). General distribution theory of the concomitants of 
order statistics, The Annals of Statistics, 5, 996-1002. 



25 

Notes on the KMT Brownian Bridge 
Approximation to the Uniform Empirical Process 

David M. Mason 

University of Delaware, Newark, Delaware 

Abstract: Koml6s, Major, and Thsnady [KMTJ (1975) published a Brownian 
bridge approximation to the uniform empirical process. However, the majority 
of the often very technical details of the proof were left to the reader. This has 
sometimes discouraged the acceptance and informed use of this very powerful 
approximation tool. The aim of these notes is to gain a wider audience for this 
beautiful result by making its proof more accessible. This is done by providing 
the details of the proof and pointing the reader to published work where they 
can be found. 

Keywords and phrases: Uniform empirical process, Brownian bridge, quan­
tile function, exponential inequalities 

25.1 Introduction 

In two remarkable papers, Koml6s, Major, and Thsnady [KMT] (1975, 1976) 
established powerful and nearly unimprovable results on the strong approxima­
tion of the partial sum process by a Wiener process via a diadic construction 
scheme. In the process, they also sketched how their methods yield strong 
approximations to the uniform empirical process by a Kiefer process and a 
Brownian bridge. Of most interest to statisticians has been their Brownian 
bridge approximation. 

To formulate this result, let U, Ul, U2, ... , be independent uniform (0,1) 
random variables. For each integer n 2: 1, let 

n 

Gn(t) = n-1 L l{Ui < t}, for t E JR, (25.1) 
i=l 
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denote the empirical distribution function based on Ul, ... , Un, and 

(25.2) 

be the corresponding uniform empirical process. KMT (1975) stated the follow­
ing Brownian bridge approximation to an, along with a brief description (less 
than three pages) of its proof. 

Theorem 25.1.1 There exists a probability space (n, A, P) with independent 
uniform (0, 1) random variables Ul, U2, ... , and a sequence of Brownian bridges 
Bl, B2, ... , such that for all n ~ 1 and x E 1R 

P { sup lan(t) - Bn(t) I ~ n-l/2(alogn + X)} ~ bexp( -cx), 
099 

where a, band c are suitable positive constants. 

(25.3) 

Mason and van Zwet (1987) obtained the following refinement to Theorem 
25.1.1 and in doing so published many of the missing details of the proof for 
the original approximation. 

Theorem 25.1.2 On the probability space of Theorem 25.1.1, for all n ~ 1, 
1 ~ d ~ n and x E IR, 

P { sup lan(t) - Bn(t)1 ~ n-l/2(a log d + X)} :S bexp( -cx), 
09~d/n 

(25.4) 

with the same inequality holding when the supremum is taken over [1 - din, 1] 
and where the constants a, band c are as in Theorem 25.1.1. 

[Bretagnolle and Massart (1989) and Rio (1994) have been able to provide 
specific values for the constants a, b and c.] 

The main impetus behind Mason and van Zwet's work was to obtain the 
following weighted approximation result. For any 0 ~ v < 1/2 and n ~ 2, let 

(25.5) 

Using their inequality one can readily verifly that on the probability space of 
Theorem 25.1.1 one has 

(25.6) 

[Mason (1998) has recently shown that Theorem 25.1.2 leads to an exponential 
inequality for D.n,v.] 
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Weighted approximations have proved to be very useful in establishing 
asymptotic distribution results in probability theory and statistics; see, for 
example, Part II of the proceedings volume edited by Hahn, Mason and Weiner 
(1991) and the monograph by M. Csorgo and Horvath (1993), along with the 
many references therein. 

KMT (1975) described the diadic scheme which leads to the construction of 
the probability space of Theorem 25.1.1 and stated the basic quantile approx­
imation result for binomial random variables upon which a proof of inequality 
(25.3) can be based. It was this approach that Mason and van Zwet (1987) 
followed to achieve their refined inequality (25.4). 

Another approach was described in the Tusnady (1977) dissertation using 
an alternate quantile approximation especially tailored for binomial random 
variables. This is the so-called Tusnady lemma, cf. Lemma 4.4.2 of Csorgo and 
Revesz (1981) and Lemma 4 of Bretagnolle and Massart (1989). It was through 
the Tusnady lemma that Bretagnolle and Massart (1989) and Rio (1994) ob­
tained their results. 

To state the two basic binomial quantile approximations, we need to intro­
duce some notation. For any integer m ~ 1, let Ym denote a random variable 
having the binomial distribution with parameters m and 1/2, written B(m, 1/2). 
Set for x E IR 

Pm (x) = P{Ym < x} 

and denote the inverse distribution function or quantile function of Pm by 

Hm(s) = sup{x : Pm(X) ~ s} for 0 ~ s < 1, 

and Hm(1) = Hm(1-). Notice, in particular, that Hm(s) = 0 for 0 ~ s < 
Pm(1), and i for Pm(i) ~ s < Pm(i + 1), i = 0, ... , m. 

Let Z denote a standard normal random variable, <J? be its distribution 
function and <P its density function. Since <J?(Z) =d U, we see that for each 
m~ 1 

For this reason, we will from now on write for convenience 

Hm(<J?(Z)) = Ym and 8m = Ym - m/2. 

KMT (1975) stated towards the bottom of page 130 of their paper the basic 
quantile result will lead to their Brownian bridge approximation to the uniform 
empirical process. We cite it here as Proposition 25.1.1. 

Proposition 25.1.1 There exist a 0 < C < 00 and an 0 < c < 00 such that 
for all integers m ~ 1, whenever 

(25.7) 
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we have 

Is - y'riiZI < CS~ + C. 
m 2 - m 4 (25.8) 

Next, for comparison, we state the Tusnady (1977) lemma as Proposition 
25.1.2. 

Proposition 25.1.2 For all integers m 2:: 1 

(25.9) 

and 

s _ y'riiZ < 1 + Z2 . 
m 2 - 8 (25.10) 

Tusnady (1977) did not provide a fully detailed proof of his lemma. In fact, 
Csorg8 and Revesz (1981) remark in their monograph on strong approximations, 
"Although the proof of the inequality is elementary, it is not simple. It will not 
be given here however." When Bretagnolle and Massart (1989) published a 
proof of the Thsnady lemma, it indeed was not simple. [See Lemma 3.1.5 of M. 
Csorg8 and Horvath (1993) for an extended version of their proof.] 

KMT (1975) remark that the result stated in Proposition 25.1.1 can be de­
duced from their more general Lemma 1, which was designed for the purpose 
of obtaining their Wiener process strong approximation to the partial sum pro­
cess. We will see in Section 25.2 that if one is only interested in the specific 
result stated in Proposition 25.1.1 for the B(m, 1/2) quantile function, that it 
follows rather straightforwardly from an extended version of a large deviation 
theorem of Petrov (1972), along with some routine bounds on the tail of the 
standard normal distribution function. 

In Section 25.2, we provide a detailed proof of Proposition 25.1.1, which in 
our opinion, is much easier than that of the Thsnady lemma. Then in Section 
25.3, we describe the basic diadic scheme which leads to the probability space 
of the Theorem 25.1.1 and prove the main lemma that connects Proposition 
25.1.1 to the diadic scheme. Next, in Section 25.4, we present proofs of some 
combinatorial results needed to fill in certain details in the Mason and van Zwet 
(1987) paper. 

Since the KMT (1975) Brownian bridge approximation continues to have 
wide ranging applications in statistics and probability, it is essential that an 
accessible and detailed proof for this important result be available in the pub­
lished literature. Bretagnolle and Massart (1989) follow the Tusnady (1977) 
path towards Theorem 25.1.1. The present notes, when combined with the 
Mason and van Zwet (1987) paper, provide a complete proof along the lines 
sketched in the original KMT (1975) paper, yielding the refinement of Theorem 
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25.1.2. In fact, these notes are best read in tandem with the Mason and van 
Zwet (1987) paper. 

In writing these notes, the author benefited from the write-ups of the diadic 
scheme found in Delporte (1980) and Koltchinskii (1994). He also found Borisov 
(1978) useful as a guide as to what to do and the technical report of Einmahl 
(1986) helpful for some of the details. Much of Section 25.2 was adapted from 
the Diplomarbeit of Richter (1978). These notes were largely written while the 
author was visiting the University of Munich in 1984-1986 and to a lesser extent 
during his research stay at the University of Bielefeld in 1993-1994. 

25.2 Proof of the KMT Quantile Inequality 

In this Section, we prove Proposition 25.1.1. Let Fm denote the distribution 
function of Sm. Notice that since 

to establish (25.8) subject to (25.7) it is enough to show that 

Writing mx/2 = Sm, this last inequality becomes 

_ C:x2 _~ < ~x _ V;<I>-l(Fm(~x +)) 

< mx _ y'm <I>-l(F (mx)) < Cmx2 + C 
22 m 2 - 4 4' 

or 
(25.11) 

where 
Cy'mX2 C 2 D 

u = 2 + 2y'm =: DVmx + y'm. 

To finish the proof of Proposition 25.1.1, we will need the following special 
case of Theorem A of KMT (1975) (stated there without proof), which is an 
extension of a large deviation theorem of Petrov (1972). This result can be 
obtained by a modification of the proof of Theorem 8.1.1 of Ibragimov and 
Linnik (1971) or that of Theorem 1 in Chapter VIII of Petrov (1972). For a 
detailed proof, see Einmahl (1986). 
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Theorem 25.2.1 There exists an 0 < 'f] < 00 such that jar all 0 ::; x ::; 'f] 

P{Sm> ~x} = (1 - <I> ( v'mx)) exp (mx3 A(X) + O((x + m-I / 2)) , (25.12) 

and 

P{Sm < - ~x} = <I> ( -v'mx) exp (-mx3 A( -x) + O((x + m-I/2)), (25.13) 

where A(X) is a power series in x with coefficients depending on the cumulants 
ojYI. 

We also require a number of lemmas. 

Lemma 25.2.1 For any fixed integer mo 2: 1, there exist 0 < EI < 00 and 
0< DI < 00 such that jar all x E [-EI, Ell and 1 ~ m ~ mo we have 

mx mx 
<I> ( v'mx + u) 2: Fm( 2+) 2: Fm( 2) 2: <I> ( v'mx - u), (25.14) 

where u = DI(v'mx2 +m-I/2). 

PROOF. Choose EI = 1/(2mo). We see that for Ixl ~ 1/(2mo) and 1 ~ m ~ mo, 

Fm(mx/2) 2: P{Ym < -1/4 + m/2} 2: P{Ym = O} = 2-m 2: 2-mo 

and 

Fm(mx/2+) < P{Ym ~ 1/4 + m/2} = P{Ym ~ m/2} 
1- P{Ym > m/2} ::; 1- P{Ym = O} = 1- 2-m ::; 1 - 2-mo . 

Choose DI sufficiently large so that 

<I>( __ 1_ +~) > 1- 2-mo and <I>(_1 __ ~) < 2-mo . 
2v'mo rmo - 2v'm o v'mo-

Since Ixl ~ 1/(2mo) and 1 ~ m ~ mo, 

<I>(v'mX+DI(v'mX2 + ~))2:<I>(-2 ~+ ~) 
ym ymO ymO 

and 
2 1 1 DI 

<I>(v'mx - DI(v'mx + -)) ~ <I>(-- - -), ..;m 2v'm o v'mo 

we have (25.14). • 
Lemma 25.2.2 For any x > 0 

1( 1) 1-<I>(x) 1 
- 1 - 2" < "'() < -. x X ,+,x X 

(25.15) 
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[This is the classic Mill 's ratio. Refer, for instance, to Giinssler and Stute 
(1977).] 

Lemma 25.2.3 The function 

¢(x) 
Wl(X) := 1- cf?(x) is increasing (25.16) 

and the function 

W2(X) := :~:~ is decreasing. (25.17) 

PROOF. First consider (25.16). We see that 

which when x :S 0, is obviously> 0, and when x > ° is positive by (25.15). 
Thus we have (25.16). Assertion (25.17) follows from the fact that Wl(X) := 
¢( -x)jcf?( -x) = W2(X). • 

Lemma 25.2.4 For all 0 < A < 00, there exists an integer mo ~ 1, an 0 < 
C2 < 00 and a 0 < D2 < 00 such that for all 0 :S x :S c2 and m ~ mo we have 

log (1- cf?(fox - u)) > A(mx3 + x + m-1/2) 
1 - cf?(fox) - , (25.18) 

PROOF. Notice that 

log (1 -cf?( fox - u)) = u¢(f;,) 
1 - cf? ( fox ) 1 - cf? (0 ' 

(25.19) 

where ~ E [fox - u, fox]. 
First assume that 0 :S x :S m-1/ 2 . Obviously for any 0 < D2 < 00, we have 

~ E [-2D2/fo, 1]. Thus by (25.16) 

u¢(~) > u¢(-2D2/fo) =D (rrnx2 +m-1/ 2)w (-2D / rrn) 
1- cf?(O - 1- cf?(-2D2/fo) 2 ym 1 2 ym , 

which, since fox :S 1, is 

Now assume that (4D2)-1 ~ x ~ m-1/2. Since x 2m > 1, we have 

(25.20) 
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Applying (25.15), we have 

¢(yrnx - u) 
1- <I>(yrnx _ u) ~ Vmx - u, 

so using (25.16), (25.19) and (25.20) we get 

log (1- <I>(yrnx - u)) 
1- <I>(yrnx) > u(Vmx - u) 

> uVmx/2 = 2-1 D2(mx3 + x) 
> 4-1 D2(mx3 + x + m-1/2). 

Choose D2 large enough so that 4-1D2 > A and 2-1D2Wl(-1) > A, and m 
large enough so that -2D2/yrn > -1. Hence with E2 = 1/(4D2), inequality 
(25.18) holds for all large enough m. • 

Lemma 25.2.5 For all 0 < A < 00, there exists an integer mo ~ 1, an 0 < 
E2 < 00 and a 0 < D2 < 00 such that for all 0 :S x :S E2 and m ~ mo we have 

log (1- <I>(yrnx + U)) < -A(mx3 + x + m-1/2) 
1- <I>(yrnx) - , (25.21) 

PROOF. Let mo, E2 and D2 be chosen as in Lemma 25.2.4. Choose 0 :S x :S E2 
and m ~ mo. We need only show that 

log ( 1- cI>(vmx ) ) > log (1- cI>(vmx - U)) . 
1- <I>(yrnx + u) - 1- <I>(yrnx) 

Now 
log (1- <I>(yrnx - U)) = u¢(6) 

1 - <I> ( yrnx) 1 - <I>(6) , 

where 6 E [yrnx - u, yrnx] and 

log ( 1- <I>(vmx) ) _ u¢(6) 
1- <I>(yrnx +u) - 1- <I> (6) , 

where 6 E [yrnx, yrnx + u]. 

(25.22) 

Since 6 :S 6, (25.22) follows from (25.16). Assertion (25.21) follows from 
(25.18). • 

Lemma 25.2.6 For all 0 < A < 00, there exists an integer mo ~ 1, an 0 < 
E2 < 00 and a 0 < D2 < 00 such that for all 0 :S x :S E2 and m ~ mo we have 

log (<I>( -yrnx + U)) ~ A(mx3 + x + m-1/2) 
<I>(-vmx) 

(25.23) 
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and 

log :S -A(mx + x + m-1 2), ( <1>(-yrnX-U)) 3 / 

<1>( -yrnx) 
(25.24) 

PROOF. Assertions (25.23) and (25.24) follow from (25.18) and (25.21) and the 
facts that 

log (<1>( -yrnx + U)) = log (<1>( yrnx - U)) 
<1>( -yrnx) 1 - <1>( yrnx) 

and I ( <1> ( - yrnx - U)) I (1 -<1> (yrnx + u) ) og = og . 
<1>( -yrnx) 1 - <1>( yrnx) 

• 
We are now ready to complete the proof of Proposition 25.1.1. By Theorem 

25.2.1 and Lemmas 25.2.4,25.2.5 and 25.2.6, we can choose an integer mo ~ 1, 
an 0 < C2 < 00, an 0 < A < 00 and a 0 < D2 < 00 such that for all 0 :S x :S C2 
and m ~ mo we have 

Fn (-mx/2) ~ <1>(-y'ffix)exp(-A(mx3 +x+m-1/ 2 )), 

Fn( -mx/2+) :S <1>( -y'ffix) exp(A(mx3 + x + m-1/ 2)), 

1 - Fn (mx/2) ~ (1 - <1>( y'ffix)) exp( -A(mx3 + x + m-1/ 2)), 

1 - Fn (mx/2+) :S (1 - <1>( y'ffix)) exp(A(mx3 + x + m-1/ 2 )), 

(25.25) 

(25.26) 

(25.27) 

(25.28) 

and (25.18), (25.21), (25.23) and (25.24) hold, which imply that for all 0 :S x :S 
C2 and m ~ mo 

<1>(-y'ffix+U) ~ Fn (-mx/2+) ~ Fn (-mx/2) ~ <1>(-y'ffix-u) (25.29) 

and 

l-<1>(y'ffix-U) ~ 1-Fm (mx/2) ~ 1-Fm (mx/2+) ~ l-<1>(y'ffix+u). (25.30) 

We easily see now from the preliminary discussion above that (25.8) holds with 
C = 2D2 and C = c2/2 as long as m ~ mo. For 1 :S m :S mo, we apply 
Lemma 25.2.1 to obtain 0 < Cl < 00 and 0 < Dl < 00 such that (25.14) holds, 
which in turn implies that (25.8) holds with C = 2Dl and C = cl/2. Letting 
c = min{cl/2, c2/2} and C = max{2D1, 2D2}, we see that (25.8) is valid for 
all m ~ 1 with this choice of C and c. This completes the proof of Proposition 
25.1.1. • 
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Remark 25.2.1 Notice that the proof of Proposition 25.1.1 only uses the bino­
mial assumption in Lemma 25.2.1. It is clear then that an extended version of 
Proposition 25.1.1 can be formulated for sums of Li.d. nondegenerate random 
variables possessing a moment generating function finite in a neighborhood of 
zero. For versions of Proposition 25.1.1 under this more general assumption, 
where the inequality is asserted to hold for all large enough m, refer to Sakha­
nenko (1984) or Einmahl (1986). 

Remark 25.2.2 Theorem 25.2.1 was only used to derive inequalities (25.25)­
(25.28). Instead, we could have applied the somewhat less precise result given 
in Theorem 6.3.1 of Arak and Zaitsev (1988). 

25.3 The Diadic Scheme 

Let 
(25.31) 

be an indexed set of independent standard normal random variables. As in the 
Introduction for each integer m 2: 1, let Hm denote the inverse distribution 
function of a B(m, 1/2) random variable. Define Ho = 0. Set 

No = Hn(iP(Z)) and Nl = n - Hn(iP(Z)). 

Next for each i E {a, l}j, j 2: 1, let 

Notice that n = No + Nl and for each i E {a, l}j, j 2: 1, Ni = Ni ,O + Ni,l; and 
No is B(1/2,n) and for each i E {a, l}j,j 2: 1, Ni,o is B(1/2,ni) given Ni = ni. 
This implies that for each j 2: 1 

{Ni : i E {a, 1 }j} is multinomial (2- j , ... , 2-j , n). 

Given any set of standard normal random variables, we can construct for any 
n 2: 1 a uniform empirical distribution function Gn from this sequence of nested 
multinomials. Define for j 2: 1, k = 1, ... , 2j , 

where 
j 

Ai,k = {i E {a, l}j : L 2-sis :S k2-j with i = (iI, ... ,ij)}. 
s=l 
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From this one readily constructs Gn(t) for any tE [0,1] by taking limits. Next, 
one obtains the order statistics Ul,n ::; ... ::; Un,n of n independent uniform 
(0,1) random variables by inverting Gn and then, as in KMT (1975), n indepen­
dent uniform (0,1) random variables Ul, ... , Un by taking a random permutation 
of the order statistics. 

The trick is to do this in a way so that the corresponding empirical process 
is very close to a Brownian bridge. This is what KMT (1975) tell us how to 
do. This is accomplished by forming the set of standard normals Z through a 
fixed Brownian bridge B and verifying by means of a quantile inequality that 
the resulting processes are close with high probability. 

To do this, we begin by setting Z = 2B(I/2) and for i E {O, l}j, j 2: 1, we 
let 

Z . = 2J/2{2B(2k+ 1) _ B( 2k ) _ B(2(k+ I))} 
t 2J+l 2J+l 2J+l 

where 
j 

k2- j " 2-8 • 'th' (. . ) = ~ 28 WI 2 = 21, ... , 2j . (25.32) 
8=1 

It is readily checked that these form a set as in (25.31) of independent standard 
normal random variables. We define 

and for i E {O, l}j, j 2: 1, with k as in (25.32), 

Ni,O = n{Gn((2k + 1)/2j+1) - Gn(2k/2j+1)} = HNi(Zi) 

and 

Now we switch to the notation of KMT (1975). Set for k = 0, 1, ... , 2j - 1; 
j = 1,2, ... , 

and 

VJ,k = B((k + 1)/2j ) - B(k/2j) and Vj,k = VJ+1,2k - VJ+l,2k+l; 

Ul,O = nGn(1/2) and Ul,1 = n - nGn(I/2), 

Uj,k = n{Gn((k + 1)/2j ) - Gn(k/2 j )}, 

fJ· k = U'+12k - U·+12k+l. J, J, J, 

The following lemma ties these two sets of random variables together. This is 
Lemma 2 of KMT (1975), where it is stated without proof. From this lemma 
Mason and van Zwet (1987) obtain Theorem 25.1.2 through a series of prob­
ability inequalities, which include an exponential inequality due to YurinskiT 
(1976) and one for sums of squares of standardized multinomials. 
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Lemma 25.3.1 There exist finite positive constants C 1, C2 and TJ such that 

(25.33) 

whenever 

(25.34) 

PROOF. Write nj,k = Uj,k. First notice that when nj,k 2:: 1 

and 

Observe that 
1~ 

2- U -k = U -+1 2k - n -k/2 ), ), ), 

and that given nj,k, Uj+1,2k is binomial with parameters nj,k and 1/2. Moreover, 
2j / 2Vj,k is a standard normal random variable. Now choose E and C as in 
Proposition 25.1.1. We see that as long as 12-1Uj,kl ~ Enj,k and nj,k 2:: 1, we 
have 

Now let TJ = min{E, 1/2}. Notice that whenever 

Inj,k - n2-j I = I Uj,k - n2-j I ~ TJn2- j , (25.35) 

which insures that nj,k 2:: 1, and 

(25.36) 

we have 1/2 ~ n2-j /nj,k ~ 2, which implies that 12-1Uj,kl ~ TJnj,k ~ Enj,k. 
Thus whenever (25.35) and (25.36) hold, we get from the above inequalities 
that 

IU- k - ..;nV- kl ), ), 

~ CV22jn-1 (Uj,k)2 + C/2 + 2-12jn-1(Uj ,k - n2-j )2 + 2-12jn-1(Uj,k)2. 

Setting C 1 = c/2 + 1/2 and C2 = C /2, we see that the proof is complete. • 
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25.4 Some Combinatorics 

In this Section, we prove some combinatorial results needed to fill in some 
missing details in the Mason and van Zwet (1987) paper. We begin by verifying 
an identity that appears as equation (19) on page 880 of their paper. For any 
function f defined on [0,1] and nonnegative integers i and 1 such that 

(2l + 1)/2i+1 < 1, 

set 
~(i, l, j) = 2f((2l + 1)/2i+1) - f(l/2i ) - f((l + 1)/2i ). 

Then the following identity holds: 

Proposition 25.4.1 For nonnegative integers j, k and p such that 

2-(j+l) < (2k + 1)/2P :S 2- j , 

f((2k+1)/2P) = {2-2 j +1-P(2k+1)}f(1/2j+l) 

+ {2j+l-p(2k + 1) - 1} f(1/2 j ) 

p-l 
+ 2: c(i,p, k)~(i, h(k, i,p), j), 

i=j+1 

where 0 :S c(i,p, k) :S 1 for i = j + 1, ... ,p - 1 are independent of f and 

h(k, i,p) = [(2k + 1)/2P- i ] for i = j + 1, ... ,p - 1, 

(25.37) 

with [x] denoting the integer part of x and the summation is defined to be 0 if 
j = p and k = O. 

PROOF. We shall require a couple of lemmas. 

Lemma 25.4.1 Let k be a nonnegative integer. Whenever 2(k + 1) = 21b, 
where b is odd and 1 ~ 1 is an integer, then 

[b/28 ] = [(2k + 1)/21+8 ], for s = 1,2, ... 

PROOF. By the division algorithm and the fact that 2k + 1 is odd 

2k + 1 = [(2k + 1)/21+8 ]21+8 + r, 
where 1 :S r < 21+8 • Thus 

2k + 2 = [(2k + 1)/21+8 ]21+8 + r + 1, 

so 
b/28 = (2k + 2)/28+1 = [(2k + 1)/21+8 ] + (r + 1)/21+8 • 

(25.38) 

Since b is odd, we must have 0 < (r + 1)/21+8 < 1, which gives (25.38). • 
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Lemma 25.4.2 Let k be a nonnegative integer. Whenever 2k = 2m c, where c 
is odd and m 2: 1 is an integer, then 

[c/2S ] = [(2k + 1)/2m +s ], for s = 1,2, ... (25.39) 

PROOF. As above, we can write 

2k + 1 = [(2k + 1)/2m +s ]2m +s + r, 

where 1 ::; r < 2m+s. Hence 

2k = [(2k + 1)/2m +s ]2m +s + r - 1, 

which gives 

Observing that (r - 1)/2s+m < 1, we have (25.39). • 
We now turn to the proof of the identity. First it is easy to see that it holds 

when k = 0, that is, when (2k + 1)/2P = 2-j . In this case, we have 

f((2k + 1)/2P) = f(1/2 j ), for j = p 

for any value of p 2: 1. 
Next we assume that k 2: 1, Le. 1/2j+l < (2k + 1)/2P < 1/2j . In this case, 

necessarily p - j 2: 2, which implies 

1/2j - (2k + 1)/2P = (2p- j - (2k + 1))/2P 2: 1/2P, 

and therefore (2k + 1)/2P + 1/2P ::; 1/2j, from which we get that 

1/2j+l < 2(k + 1)/2P ::; 1/2j . 

Also since p - j 2: 2 

which gives 

(25.40) 

(25.41) 

The proof of the identity (25.37) will be completed using induction. Keep j 2: 0 
fixed and assume that for some p 2: j + 1 the identity is true for all k 2: 0 and 
p - 1 2:' pi 2: j such that 

(25.42) 

It is easy to check that (25.37) holds for the choice p = j + 1. 



KMT Approximation 365 

We shall prove now that (25.37) holds whenever for some k > 0 inequality 

(25.42) holds with pi = p. Choose k such that 

1/2)+1 < (2k + 1)/2P S 1/2j . 

We can assume that k ~ 1. Notice that 

f((2k + 1)/2P) f((2k + 1)/2P) - 2-1 (f(2k/2P) + f(2(k + 1)/2P)) 

+ 2-1 (f(2k/2P) + f(2(k + 1))/2P)), 

which equals 

2-1 b.(p - 1, k, J) + 2-1 f(2k/2P) + Tl f((2(k + 1)/2P) 

= 2-1b.(p-l,h(k,p-l,p),J) +2-1f(2k/2 P) +Tlf(2(k+ 1)/2P ). 

Write 
2(k + 1) = 21(2d + 1) and 2k = 2m(2e + 1), 

and set PI = P -l and P2 = P - m. Since by (25.40) and (25.41) 

1/2]+1 < (2d + 1)/2P1 S 1/2j and 1/2j +1 S (2e + 1)/2P2 S 1/2j , 

we have by the inductive hypothesis that 

and 

f(2(k + 1)/2P) = f((2d + 1)/2P1 ) 

= {2 - 2j +1-Pl (2d + I)} f(I/2)+1) 

+ {2)+I-P1 (2d + 1) - I} f(I/2 j ) 

Pl-l 

+ L C(i,Pl, d)b.(i, h(d, i,Pl), J) 
i=j+1 

f(2k/2P) = f((2e + 1)/2P2 ) = f(I/2 j +1) , if (2e + 1)/2P2 = 1/2)+1, 

and otherwise by the inductive hypothesis we see that 

f(2k/2P) = f((2e + 1)/2P2 ) 

= {2 - 2)+1-P2 (2e + I)} f(I/2]+1) 

+ {2]+1-P2 (2e + 1) - 1}f(1/2j) 

P2-1 
+ L C(i,P2,e)b.(i,h(e,i,P2),f)· 

i=)+1 

Notice that by Lemma 25.4.1, assuming j + 1 S PI - 1, we have for i = j + 
1, ... ,PI - 1, 

h(d, i,P2) = [(2d + 1)/2P1 - i j = [(2k + 1)/2P- i j = h(k, i,p) 
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and similarly by Lemma 25.4.2, assuming j + 1 :s; P2 - 1, we have for i 
j+1, .. ·,P2- 1, 

h(e, i,P2) = h(k, i,p). 

Observe that since either k + 1 or k is odd, either l = 1 or m = 1, so that 
max{PI,P2} = P - 1. Set 

C(i,PI, d) = 0 for i ~ PI and C(i,P2, e) = 0 for i ~ P2, 

and let 

c(i,p, k) = 2-I{c(i,PI, d) + C(i,P2, e)} for i = j + 1, ... ,p - 2 

and c(i,p,p - 1) = 1/2. By adding terms, we see that we have (25.37). • 

Notice that when f(O) = f(1) = 0, the identity (25.37) becomes 

p-I 

f(1/2 P) = 2:: 2j b.(j, 0, j)2-p . 

j=O 

Next we turn to an essential distributional identity which is stated without 
proof on lines 9 and 10 from the bottom on page 882 of Mason and van Zwet 
(1987). 

Proposition 25.4.2 For any nonnegative integers j, k and P satisfying 

(25.43) 

{(Ui,k(i), (Ui,k(i))2) : i = j + 1, ... ,p - 1} =d {(Ui,O, (Ui,0)2) : i = j + 1, ... ,p - 1}, 
(25.44) 

where k(i) := h(k, i,p) = [(2k + 1)/2P- i ] for i = j + 1, ... ,p - 1. 

PROOF. Notice that for any x ~ 0 

[x] :s; [2xl/2 < (2[x] + 1)/2 :s; [x] + 1, 

with equality holding exactly on one end or the other. To see this, write x = 

[x]+r and note that if 0 :s; r < 1/2, [2x] = 2[x] and if 1/2 :s; r < 1, [2x] = 2[x]+1. 
Using this fact, one finds that for any j + 1 :s; i :s; P - 2 either 

Case 1. 

in which case 

k( i) /2i 

k(i) = k(i + 1)/2, 

k(i + 1)j2i+1 < (2k(i + 1) + 1)j2i+2 < (2k(i) + 1)/2i+1 

(k(i + 1) + 1)/2i+1 < (k(i) + 1)/2i; 
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Case 2. 
k(i) < k(i + 1)/2, 

in which case 

k(i)/2i < k(i + 1)/2i+1 = (2k(i) + 1)/2i+1 < (2k(i + 1) + 1)/2i+2 

< (k(i + 1) + 1)/2i+1 = (k(i) + 1)/2i. 

Write 

367 

and 1(3) = 1~1) U 1(2) In Case 1 both 1(1) and 1(2) are subsets of 1(1) and 
t t t' , t+ 1 t+ 1 t 

(3) (1). (1) (2) (2) (3) (2) 
Ii+1 = Ii ; and III Case 2, both Ii+1 and Ii+1 are subsets of Ii and Ii+! = Ii . 
In either case, 

Ii~)l C Ii(3) and P{U E Ii(3)} = 2-i . (25.45) 

For any subinterval I C [0, 1], write 

n 

nGn(I) = L l{Ui E I}. 
i=l 

Notice that with this notation 

and 

Thus in Case 1 

and in Case 2 

Therefore, 

(Ui,k(i) , (Ui,k(i))2) = (nGn(Ii(3)), (2nGn(Ii~1) - nGn(Ii(3)))2). (25.46) 

Now clearly by (25.45) 

(nGn(Ij~l)' ... , nGn(I~3))) =d (nGn(2- j - 1), ... , nGn(TP)). 

Hence on account of (25.45) and (25.46), we have (25.44). • 
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Inter-Record Times in Poisson Paced Fa Models 

H. 
N. N agaraja and G. Hofmann 

Ohio State University, Columbus, Ohio 
Universidad de Concepcion, Concepcion, Chile 

Abstract: Let {Xn,n ~ I} be a sequence of independent random variables 
such that Xn has cdf Fa(n) , where F is a continuous distribution function and 
a(n) is a positive constant. Suppose Xn is observed at the occurrence of the 

(n 
- 1 )th event of an independent Poisson process P. We describe the exact as 

well as asymptotic distributions of the inter-arrival times of upper record values 
from such an Fa record model. 

Keywords and phrases: Inter-record times, nonhomogeneous Poisson pro­
cess, stochastic convergence, record values, exponential distribution 

26.1 Introduction 

Let 
{Xn, n ~ I} be a sequence of independent random variables such that Xn 

has 
cdf Fa(n) , where F is a continuous distribution function and a( n) is a 

positive constant. An observation will be called an upper record if it exceeds 

all 
previous observations. We define the record indices Tn and the record values 

Rn 
as follows: 

TI = 1, Tn = min{j > Tn-I: Xj > XTn_l} ,n ~ 2, 

and Rn = XTn, n ~ 1. This setup is known as the Fa model, formally intro­
duced by Nevzorov (1985), and investigated quite extensively in recent years. 
Yang (1975) had earlier studied such a model in a very special case of geomet­
rically increasing a's. 

Now suppose Xl is observed at time 0 and for n ~ 2, Xn is observed at 

the 
time of occurrence of the (n - 1 )th event in a Poisson process P with 

mean function A(t) and positive intensity function A(t) (t ~ 0), where P is 
independent of the Xn sequence. Let {Vn, n ~ I} be the sequence of inter­
arrival times associated with P. Record statistics arising from such a setup 
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was first studied by Pickands (1971) who took P to be a homogeneous Poisson 
process and assumed the Xn's to be i.i.d. continuous random variables. Since 
then, point process paced record models where P is a common simple point 
process have been studied by several researchers. However, almost all of this 
research has been directed to the Li.d. case. For an overview of the Fa and 
the point process paced record models, see Arnold, Balakrishnan, and Nagaraja 
(1998; Chapters 6 and 7). 

Recently, Hofmann (1997) and Hofmann and Nagaraja (1999) have consid­
ered the Fa setup in the context of point process models. Here, we consider 
the Fa model paced by an independent Poisson process observed over [0,(0). 
We investigate the properties of the sequence of record inter-arrival times Un = 

L:r~t~ -1 Vi, n ~ 1, and the sequence of record arrival times Wn = L:i=l Ui. 
In order that the Un's are well defined, we assume that A(t) ---+ 00 as t ---+ 00. 

We also assume that A(t) is finite for all real t. We present some exact and 
asymptotic results describing the distributional structure of the sequence of 
inter-arrival times of the records. For related work and proofs of some of the 
results reported here, we refer you to Hofmann and Nagaraja (1999). 

Let s(n) = 00(1) + ... + oo(n) and S(t) be a function with positive derivative 
defined for all t > 0 such that for a positive integer n, S(n) = s(n). (Later we 
provide an algorithm to produce such a function.) Let Pn = oo(n)js(n) repre­
sent the record accrual probability at the arrival of X n, and A(n) = L:i=l Pi, 
B(n) = L:i=lPT. Further, we let \lI(t) = A-1(t) = inf {s: A(s) > t}, and 
T(t) = log S(A(t)), t > O. We denote by Exp(O) an exponential random vari­
able with mean 1 j O. 

26.2 Exact Distributions 

Observe that W~ = A(Wn), n 2: 1, behave like the record arrival times associ­
ated with a homogeneous Poisson pacing process with unit intensity. Conse­
quently, we have the following result. 

Theorem 26.2.1 For the Poisson process Fa model, the joint density of the 
inter-record times, U1, ... , Un, is given by 

n 

exp (-A(U1 + ... + un)) IT >'(U1 + ... + Ui) 
i=l 

x f 00(1) ft oo(1+k1 + ... +ki ) 

s(l + k1 + ... + kn) . S(k1 + ... + ki) kl,···,kn =l 2=1 

X r(~i) (A(U1 + ... + Ui) - A(U1 + ... + Ui_1))ki -1 . (26.1) 
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PROOF. Basically the proof involves two steps. First we consider the homoge­
neous P with unit intensity and condition on the Ti and show that (26.1) holds 
when A(t) = t. Next we make a time transformation (Wn = w(W~)) to obtain 
the above equation for a general A(t). Details may be found in Hofmann and 
Nagaraja (1999). • 

When a(l) = c (> 1), and a(n) = (c-1)cn - 1 , n 2: 2, s(n) = cn is increasing 
geometrically and Pn is a constant (1 - c-1). Then (26.1) simplifies to 

n 

X II '\(U1 + ... + Ui). 
i=l 

From (26.2) and the expression for the joint density of record values [see Arnold, 
Balakrishnan and Nagaraja (1998, p. 10)], it follows that the record arrival 
times (W's) behave like record values and the U's behave like spacings of record 
values generated from an i.i.d. sequence of random variables having the failure 
rate function given by (1 - c-1 )'\(t). This leads to characterizations of homo­
geneous Poisson process based on the properties of U1 and U2. For example, 
when s(n) = cn , the following three statements are equivalent: (i) U1 and U2 are 
independent, (ii) U1 and U2 are identically distributed, (iii) '\(t) is a constant, 
see, Hofmann and Nagaraja (1999, Theorem 4.1). 

When P is a unit Poisson process and the record accrual probability Pn 
equals n-1, there exists a distributional representation for the logarithms of 
the first n inter-record times: 

(26.3) 

where Aj and Bj, 1 :s: j :s: n, are all i. i. d. Exp(l), and Cj = ~{=1 Bi [see, for 
example, Arnold, Balakrishnan and Nagaraja (1998, Theorem 7.4.1)]. Similar 
representation holds even when p;;,l is a linear function of n of the form a(n -
2) + b where a > 0 and b> 1. More precisely, the following result holds. 

Theorem 26.2.2 Let P be a homogeneous Poisson process with unit intensity 
and let the record rate Pn = c(d+n- 2)-1, 0 < c < d, for n 2: 2. Suppose Aj are 
Exp(1), 1 :s: j :s: n, Bj are i. i. d. Exp(c) , 2 :s: j :s: n, and B1 has characteristic 
function 

E(ezB1 ) = f(d)f(c - z) 
f(c)f(d - z)' 

(26.4) 

where z is imaginary. Further, assume that all these random variables are 
mutually independent. Then 

(26.5) 
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PROOF. See Hofmann and Nagaraja (1999). • 
Remarks. 

(a) The record rate of Pn = c(d + n - 2)-1, n > 2, corresponds to the a 

sequence given by 

and 

cal 
a2 = -d-' -c 

cal nrr-3 d + i 3 
an = , n> . 

d-c+n-2. d-c+i -
t=O 

(b) The characteristic function in (26.4) corresponds to a random variable Bl 
that has the density function 

f(x) = f(d) e-cx(1- e-xYd-c-l, x> o. 
f(c)f(d - c) 

When d and c are positive integers, Bl behaves like the (d - c )th order 
statistic from a random sample of size (d - 1) from a standard exponential 
distribution. When d - c is a positive integer k, B1 is the sum of k 
independent exponential random variables with parameters c, ... , (d - 1). 

(c) Using the time axis transformation A(t), we can obtain distributional 
representations for (U1, ... , Un) for arbitrary A when Pn = c(d+ n - 2)-1. 
It follows from (26.5) that 

(Ul,U2, ... ,Un ) d ('l1(AleCl),'l1(AleCl+A2eC2)-'l1(AleCl), ... 

. . . , 'l1 (t AjeCj ) - 'l1 (I: AjeCj )) , 
)=1 )=1 

where Ai and Ci are as described in Theorem 26.2.2. 

26.3 Asymptotic Distributions 

For the LLd. Poisson paced record model, assuming limt->oo ~~~1 = c E (0,00), 
Bunge and Nagaraja (1992a) showed that Un has an exponential limit. We will 
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now look at some classes of combinations of a-structures and mean functions 
of the Poisson pacing process that lead to a limit for Un. 

We begin by presenting a smooth S(t) that matches s(n) for all n 2: 1. Let 
s(O) = 0, and for 0 ~ n ~ t ~ (n + 1), define S(t) = s(n) + a(n + 1) J~ in(x)dx, 
where in is a density function on [n, n + 1]. This should produce a continuous 
function and differentiable almost everywhere. But we need a differentiable 
function with positive derivative everywhere (or at least for all large t) for our 
purpose. This would be accomplished by choosing in(x) such that it is a density 
of the form cnednx and satisfies the condition a(n+1)fn(n) = a(n)fn-1(n). The 
first constraint implies Cn = endn (~'dn -1) and the second ensures that the right 

and left derivatives of S(t) at t = n are equal. Such an S(t) is presented in the 
following lemma. 

Lemma 26.3.1 Let 

S(t) a(l)t, 0 ~ t ~ 1 
n-1 edn(t-n) _ 1 

s(n) + a(l) exp (L: di) d ' n ~ t ~ n + 1, n 2: 1, 
i=O n 

where do = 0 and the dn are determined sequentially using the relation 

a(n + 1) (_ ~ d.) 
a(l) exp £:0 t 

(26.6) 

en, say. 

The function S(t) defined above is such that S'(t) > 0 for all t > 0 and S(n) = 

s(n) for all positive integer n. 

Since the function g(y) = (eY - l)/y is strictly increasing for y E (-00, (0) 
with range (0, (0), there is a unique dn satisfying (26.6). When en is greater 
(less) than 1, bn is positive (negative), and when en = 1, bn is to be interpreted 
as 0 and S(t) takes on the form s(n) + a(n + l)(t - n) . Also, in the interval 
(n, n+ 1), S(t) is always either convex or concave (or linear). Further, S' (t) is al­
ways bounded by limit superior and inferior of the sequence {a(l) exp(2:i=l dd, 
where di are defined by (26.6). 

Recently, Hofmann and Nagaraja (1999) proved the following asymptotic 
result for the inter-record times that does not require any normalization of Un. 

Theorem 26.3.1 Let liminft->oo ~m > 0 and TO(t) = logS ([A(t)]), where [x] 
is the greatest integer ~ x. Suppose 

L(a) = lim TO(t) 
t->oo TO(t + a) 
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exists for all a > 0 (or equivalently, for all a in some interval (0, E), E > 0). 

Then Un ~ U, and the distribution function ofU is given by Fu(a) = l-L(a), 
(a> 0). Further, one of the following holds: 

U=.O and 

U=.oo and 

U '" Exp (c) and 

T(t) ---+ 00 (t ---+ (0) 
t 

T(t) = o(t) 

T(t) ~ ct. 

(26.7) 

(26.8) 

(26.9) 

If (26.9) holds, (CUn+1, ... , cUn+k) ~ (E1, ... , Ek) for any finite k, where Ei 
are i. i. d. Exp(l) random variables. 

The condition lim inft--4oo ~m > 0 in the above theorem is not necessary 
for the asymptotic exponential distribution of Un. For example, when P is 
homogeneous Poisson and the record accrual probability Pn remains a constant 
(as it happens for geometrically increasing a's), Uj are LLd. exponential random 
variables for all j [Bunge and Nagaraja (1992b)]. 

When Un ---+ 0 and Un ---+00, as in (26.7) and (26.8), respectively, we would 
like to know how fast this convergence occurs. In particular, we now ask whether 
it is possible to find norming constants an, bn(> 0) such that (Un - an)/bn 
goes in law to a nondegenerate distribution. As shown in our next theorem, 
it is indeed possible with some additional conditions on the a-structure itself. 
However, first we need to establish the following lemma. 

Lemma 26.3.2 In a Poisson paced Fa model, suppose 

(a) Pn = S(~) ---+ 0, J17l) ---+ 0, 

(b) T(t) = logS(A(t)) is differentiable and T'(t) > 0 for all large t, 
(c) there exists a function h with h(n) ---+ 00 as n ---+ 00, and 

where 

Kn [S-l (en-foh(n») -2V2S-1 (en-foh(n»)log(n-vnh(n)), 

S-l (en+foh(n») + 2V2S- 1 (en+foh(n») log (n + vnh(n))]. 

Then 

I Un - w(Tn+1) - w(Tn) I£.o 
bn bn ' 

where bn = 7'(7 \n»· 
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PROOF. Since W~ = vt + '" + VTn+1-1 where the Vj*'s are i. i. d. Exp(l) 
variables and Tn -+ 00 a. s., it follows from the law of the iterated logarithm 
[see, for example, Chung (1974, Theorem 7.5.1)] that 

1· IW~ - (Tn+1 - 1)1 < 1 or 1m sup a. s. 
n-->oo y'2(Tn+1-1)loglog(Tn+l -1) -

lim sup IW~ - Tn+11 < 1 a. s. 
n-->oo J2Tn+1log log Tn+1 -

Hence, there exists an no such that 

IW~ - Tn+11 ::; 2V2Tn+1loglogTn+1 a. s. for all (Tn 2:) n > no, 

where 

1'l1(W~) - 'l1(Tn+l) 1 V '1' b ::; 2 2Tn+1loglogTn+17 (7- (n)) sup 'l1 (~) a. s. 
n ~EJn 

(26.11) 
and 

If the right-hand side goes to zero in probability, so does the left-hand side. 
However, from Nevzorov (1995), 

log S(';/ - n -.!:..." N(O, 1). 

Therefore, for any h(n) -+ 00 (n -+ 00), 

log S(Tn) - n POd log S(Tn+l) - n P 0 
~y'ri-:n=-h-:'(n;""')- -+ an y'rih(n) -+, 

which imply that 
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Hence, the right hand sides of (26.11) and (26.12) go in probability to zero if 
In -+ o. Recall that Un = "Il1(W~) - "Il1(W~_l). From (26.11) and (26.12), it now 
follows that 

I Un _ "Il1(Tn+1) - "Il1(Tn) I 
bn bn 

I "Il1(W~) - "Il1(Tn+1) _ "Il1(W~_l) - "Il1(Tn) I 
bn bn 

< I "Il1(W~) ~n"ll1(Tn+1~ I + I "Il1(W~-lL- "Il1(Tn) I ~ o . 

• 
Note that in view of Lemma 26.3.1, we can always define S(t) such that 

r'(t) > 0 as long as A(t) > 0 for all t. Thus, condition (b) in Lemma 26.3.2 is 
always satisfied. 

Theorem 26.3.2 In a Poisson paced F Ci model, let the conditions (a)-(c) of 
Lemma 26.3.2 hold. Further, suppose for all x> 0 there exists a function 9x(n) 
with 9x(n) -+ 00 (n -+ 00) such that 

bn inf r'(t) -+ 1 and bn sup r'(t) -+ 1, 
tEln tEln 

(26.13) 

where 

Then 
Un .c b;; ---+ Exp(1). 

PROOF. Let x > O. Assuming Pn -+ 0, and . ~ -+ 0, Nevzorov (1986, 1995) 
yA(n) 

has shown that IOgS~)-n ~ N(O, 1). Therefore, 

log S(Tn) - n = r("Il1(Tn)) - n ~ O. 
y'n9x(n) y'n9x(n) 

Hence 
P (-1 < r("Il1(Tn)) - n < 1) -+ 1 

- y'n9x(n) - , 

P (n - y'n9x(n) ::; r("Il1(Tn)) ::; n + Vn9x(n)) -+ 1, 

P (r-l(n - Vn9x(n)) ::; "Il1(Tn) ::; r- 1(n + Vn9x(n))) -+ 1, 

and 

P (bn inf r'(t) ::; bnr'("Il1(Tn) + ~nxbn) ::; bn sup r'(t)) -+ 1 V~n E [0,1]. 
tEln tEln 
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Since we assumed that both upper and lower bounds go to one, 

However, 

Yn T('l1(Tn) + bnx) - T('l1(Tn)) 

XbnT'('l1(Tn) + ~nxbn) for some ~n E [0,1]' 

which means Yn ~ x and e-Yn ~ e-x . Since T is strictly increasing, Yn 2:: o. 
Hence le-Yn I ::; 1 and e-Yn also converges in Ll [Chung (1974, Theorem 4.1.4)] 

lim Ee-Yn = e-x Vx > o. 
n->oo 

(26.14) 

Now let us look at (Un/bn). From Lemma 26.3.2, it follows that 

lim P (Ubn > x) 
n->oo n 

00 

lim '" P (Tn+1 > A('l1(Tn) + bnx)ITn = i) n~oo~ 
i=n 

n-><Xl 

lim Ee-Yn = e-x . 
n->oo 

• 
Remark. The conditions (26.10) in Lemma 26.3.2 and (26.13) in Theo­
rem 26.3.1 look cumbersome, but are usually not very hard to check. In all the 
situations we have considered, the choice of gx(n) = h(n) = nE , E E (0,1/2) and 
gx(n) = h(n) = logn work. Below are a few examples. 

Example 26.3.1 Let S(x) = x (classical model), A(t) = e(F) - 1, r > O. 
( 

r ) (tr) It follows that T(t) = log e(t) -1 ~ tr, T'(t) = rtr- 1 e(~r)_1 ~ rtr- 1 , and 

b 1 en 1 [1 (n 1)]1_1 1 1-1 
n = '( 1()) = --1- og e + r ~ -n r • 

T T- n en + r r 
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Note that r'(t) is strictly increasing for large t (r > 1), constant (r = 1) or 
strictly decreasing (r < 1). Therefore, to check (26.13), we only have to check 
whether bnr'(r-1(n - yngx(n))) and bnr'(r-1(n + yngx(n)) + bnx) go to one: 

bnr'(r-1(n - yngx(n))) ~ ~n~-l r ([log (en-fogx(n) + 1)] ~ r-1 

~ n~-l [log (en-fogx(n) + 1)] 1-~ 
-t 1 for all gx(n) = n E , E E (0,1/2). 

Also, 

and hence converges to 1 as n -t 00 for gx(n) = n E , E E (0,1/2). To check (26.9), 
note that 

w(t) = [log(t + 1)] ~, S-l (x) = x, w' (t) = (log(~ + 1) ~ ~-1 
rt+1 

Since W' (t) is strictly decreasing, 

sup W'(~) = W' (en-foh(n) - 2V2en-foh(n) log(n - Vnh(n))) . 
€EKn 

Hence, 

In ~ V2en-foh(n) log(n - Vnh(n))rn1-~ [n - Vnh(n)J~-l -t ° 
ren-foh(n) 

for h(n) = n E , E E (0,1/2). 

It follows that rf2 ~ Exp(l). Notice that bn (and Un) go to zero for r > 1 
nr 1 

and to 00 for r < 1. 

1 t 1 
Example 26.3.2 Let S(x) = x r , A(t) = e:;:e - 6, r> 0. It follows that 

1 t 

( ) - I (let 1) '() _ ere t "" t b "" 1 - 1 S(rn1)-r t - r og e r - e r , r t - 1 tIe "" e, n "" - Pn - - S -
ere -€r n n 

1- (n~;r -t 0, ~ -t ° also holds. Since r'(t) is strictly increasing for large 
yA(n) 

t, 
1 

bn }nlf r'(~) ~ _e!og(n-fogx(n)) -t 1 for gx(n) = nE , E E (0,1/2) . 
."E n n 

Similarly, bn sUP(E1n r'(~) -t 1 for gx(n) as above. Now, 
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and S-l(x) = x~. Hence, 

sup 'l1'(~) ~e 
f,EKn 

n-v'nh(n) 
r 

1 
1 (n-ynh(n)) , og r 

_n+v'nh(n) (n+foh(n)) _n-v'nh(n) 1 
2e r log r ne r log (n-~h(n)) 

approaches 0 for h(n) = n E , E E (0,1/2). Therefore nUn ~ Exp(1). 
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Example 26.3.3 When T(t) = logt, it follows that T'(t) = t is strictly de­
creasing T-1(t) = et b = en and , ,n, 

bn sup T'(~) = ene-(n-yngx(n)) = eyngx(n) ---+ 00 for all gx with gx(n) ---+ 00. 

f,E1n 

Hence, (26.13) fails to hold and Theorem 26.3.2 cannot be applied. This hap­
pens for the classical record model (S(t) = t) associated with the homoge­
neous Poisson pacing process (A(t) = t). In this case, recall from (26.3) that 

Un 4. AneCn , where An rvExp(1), Cn rvGamma(n, 1), and An and Cn are inde­
pendent. Hence, EUn = 00 for all n, and indeed there cannot exist sequences 
an, bn such that Unb;.an has an exponential limit. 

Remark. When Pn ---+ P E (0,1), techniques used in proving Lemma 26.3.2 
w(w*) weT ) p and Theorem 26.3.1 do not work because n bn n+l f+ O. However, if we 

let s(n) = cn (c > 1), then Pn = (c - 1)c-1 E (0,1), and it follows from Bunge 

and Nagaraja (1992b) that (1 - c 1 )Un ~ Exp(1). We conjecture therefore 
that there exist bn's such that Un/bn has an exponential limit in a much larger 
class of combinations of a-structures and intensities of the Poisson process than 
given here. 
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Goodness-of-Fit Tests for the Generalized 
Additive Risk Models 

Vilijandas B. Bagdonavicius and Mikhail S. Nikulin 
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Abstract: Goodness-of-fit tests for accelerated life models and generalizing 
or alternative to the additive risk model are proposed. 

Keywords and phrases: Accelerated life testing, additive risk, goodness-of­
fit, resource 

27.1 Introduction 

One of the models used to investigate the effects of stresses on failure occurrency 

is 
the additive risk (AR) model introduced by Aalen (1980). Under this model, 

the hazard rate function for the time to failure Tx (.) associated with a possibly 
time-varying stress x(·) = (XI(')' ... ,xm(-))T specifies the form 

ax(.)(t) = ao(t) + f3T x(t), (27.1) 

where ao(-) denotes the unspecified baseline hazard rate function and f3 
= (f3I, ... , f3m)T is a vector of unknown regression parameters. This model is not 

natural in accelerated life testing for aging items. Really, if Xo and Xl 
are constant in time usual and accelerated stresses, respectively, that is, Sxo (t) 
~ SXl (t) for all t ~ 0 and 

is 
a step-stress, then under the AR model for all tl ~ 0 and t ~ tl we have 

ax(.)(t) = axo(t). So, for any moment tl of switch off from accelerated stress 
Xl to the normal stress Xo, the hazard rate after this moment is the same as 

in 
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the case when the stress is normal until the moment tl and after it. So, it is 
not natural for aging items. 

For the purpose of generalization, we formulate the AR model in other 
terms. Put 

Then the random variable R = AxC.)(TxCo)) has the standard exponential distri­
bution which doesn't depend on x(·). So R is called the exponential resource 
and AxO(t) is called the exponential resource used until the moment t under 
the stress x(·). In terms ofresource usage, the AR model (27.1) can be written 
in the following manner : 

A~O(t) = A~(t) + IF x(t). (27.2) 

This means that exponential resource usage rate under the stress x(·) at the 
moment t depends only on some baseline rate and the value of the stress in this 
moment. 

Natural generalization of this model would be a model which states that the 
resource usage rate at the moment t could depend on the resource used up to 
this moment. We will consider two possible generalizations. 

We formulate the first generalized additive risk (GAR) model 

axCo)(t) = q{AxCo) (t)}(ao(t) + (JT x(t)), (27.3) 

where the nonnegative function q doesn't depend on x(·). 
The function q can be specified or parametrized in some form as, for exam­

ple, 

1 
q(u) = 1 ' ,2:0. +,u 

q(u) = e'u, , E R; q(u) = 1 + ,U, ,2:0; 

The function q can be specified by using relations between GAR and generalized 
additive (GA) [see Bagdonavicius and Nikulin (1995)] models. Really, suppose 
that G is some fixed survival function, H = G-l is the inverse function for G. 
If instead of AxCo)(t) = -lnSxCo)(t), we take j~o)(t) = (H 0 SxO)(t), then the 

random variable RG = j~o)(TxCo)) has the survival function G, which doesn't 

depend on x(·) and RG is called the G-resource used until the moment t. The 
AR model (27.2) can be generalized by considering the GA model: 

aj~.) (t) _ ajf(t) (JT () 
at - at + xt, (27.4) 

where 8f !£tCt) denotes the unspecified baseline rate. 
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It is easy to show that the GA model is equivalent to the GAR model. 
Relations between the functions q and Hare 

r- 1nu dv 
q(u) = -euG' 0 H(e-U

), H(u) = 10 q(v)· (27.5) 

So, through taking specified survival functions G, the function q can be speci­
fied. 

Another possible generalization is obtained by supposing that the hazard 
rate at the moment t is influenced not only by the stress but also by the resource 
used until this moment: 

(27.6) 

We'll call this model the second generalized additive rate model. Two-sample 
goodness-of-fit tests for the AR model was considered in Kim and Lee (1998). 
In this Chapter, we consider goodness-of-fit tests 

(a) for the model (27.3) with specified q and the unidimensional stress; 

(b) for the model (27.6) with possibly multidimensional stress. 

27.2 Test for the First GAR Model Based on the 
Estimated Score Function 

Consider construction of test for the GAR model when q is specified and x(·) 
is unidimensional. 

Suppose that two groups of items are tested. The i-th group of ni items 
is tested under a stress Xi(·); Xl(-) could be a constant in time under normal 
stress or a step-stress with alternating normal and accelerated constant stresses, 
X2 ( .) could be a constant in time under accelerated or a step-stress with various 
alternating accelerated constant stresses. 

Denote by Tij and Cij the failure and censoring times, 

5·· = I{T,·· < C··} tJ tJ - tJ' 

Y; ·(t) = I{X·· > t} tJ ~J - , 

ni ni 

Ni(t) = L Nij(t), Yi(t) = L Yij(t), 
j=l j=l 

where IA denotes the indicator of the event A. Then, 
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are the numbers of observed failures in the interval [0, t] and items "at risk" 
before the moment t, respectively, for the aggregated data. Denote by 

the N elson-Aalen estimator of the accumulated hazard function Ai (t) = AXi (.) (t), 

2 2 

S(O)(u) = L Yi(U)q(Ai(U- )), S(l)(u) = L Xi(u)Yi(u)q(Ai(U- )), 
i=l i=l 

_ S(l)(u) 
E(u) = S(O)(u)' 

Denote by IF = {Ft, t ~ O} the filtration generated by the processes Nij and 
Yij and suppose that censoring is independent, i.e. the IF-compensators Aij of 
Nij are absolutely continuous and 

Then [ef. BagdonaviCius and Nikulin (1995)] an estimator ~ of the parameter 
13 can be obtained from estimating equations U(j3, T) = 0, where 

and it is in explicit form as 

Denote by 130 the true value of 13· 

Assumptions A: 

(a) there exist nonnegative functions Yi, continuous and positive on [0, T] such 
that 

sup I Yi(t) - Yi(t) I.!: 0, as n ---t 00, 
09:::;r n 

(b) AO(T) < 00; 

n' 
-.!:. ---t li E (0, 1); 
n 

(c) the function q(u) is positive and continuously differentiable on [0, T]; 
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Under Assumptions A, 

where 

sup I 2:.S(j)(U) - s(j)(U) I ~ 0, 
uE[O,rj n 

n ---+ 00, 

sup I E(u) - e(u) I ~ 0, n ---+ 00, 
uE[O,rj 

2 2 

S(O)(U) = LYi(u)q(Ai(u)); S(l)(U) = LXi(U)Yi(U)q(Ai(u)), 
i=l 

S(l)(U) 
e(u) = s(O)(u). 

i=l 

Similar to BagdonaviCius and Nikulin (1997), it can be shown that 

1 1 2 it ~U((3o, t) = ~ L hi(v; (3o)dMi(V) + op(1) 
yn yni=l 0 

uniformly on [0, TJ; here, Mi(U) = Ni(U) - ax; (u)}i(u) and 

hi ( u; (30) 

389 

= Xi(U) - e(u) + ---:--(1 ) it (Xi(V) - e(v))q'(Ai(V))Yi(v)(ao(v) + (3xi(v))dv. 
Y2 u U 

Put 

2 

s(2)(u) = L X;(U)Yi(u)q(Ai(U)), v(U) = s(2)(u) - s(l)(u)e(u). 
i=l 

It can be verified that 
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uniformly on [0, T]. The predictable variation is 

where 

Put 

a(t) = lot v(u)du. 

We have 

1 ~ D a(·) 
y'riU(-) -+ W(g(·,(3o)) - a(T) W(g(T,(30)) in D[O,TJ, 

where W denotes the standard Wiener process. Then 

U(.) E. W (g(.) ) - a(·) W(1) in D[O, T]. 
y'ng(T) g(T) a(T) , 

Denote 
"1.( ) = a(g-l(g(T)U)) [] 
If' U a(T)' U E 0,1. 

Then 

sup 1 ; 1 E. sup 1 W(u) -1jJ(u)W(1) 1 = V?jJ. 
tE[O,T] ng T UE[O,l] 

The function 1jJ : [0,1] -+ [0,1] is increasing, with 1jJ(0) = 0 and 1jJ(1) = 1. We 
have 

where 

U(t) V 
T = sup 1 ~ 1-+ V7jJ, 

tE[O,T] ng t 

1~ r 2 ~ ~ ~ ~ 
g(t) = ~ iSl io Hi (u;(3)}i(U)q(Ai(U))(dAo(u) + (3xi(u)du), 

Hi(u;~) = Xi(U) - E(u) + }i~u) It (Xi(V) - E(v))q'(Ai(v))}i(V) 

(dAo(v) + ~xi(v)dv) , 
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A dN(v) - ~s(l)(v)dv 
dAo(v) = S(O)(v) . 

Denote by V'IjI,Q the a-quantile of the random variable V'IjI, 

where 
g-l(S) = sup{u: g(u) < s}. 

The quantiles V.I, Q can be approximated by V.i, which can be obtained by sim-
0/, 0/,0 

ulating the standard Wiener process in the jump points of -J;. The approximate 
critical region with the significance level a is T > V~,l_Q' 

27.3 Tests for the Second GAR Model 

Suppose that data are the same as in Section 27.2. Consider the model 

where Xi(t) = (Xil(t), ... , Xim(t))T, (3 = ((31, ... ,(3m)T and ao is unknown. Put 
0= ((3T, "()T, Zi(t) = (xf(t) , Axi(·)(t))T. So we treat the accumulated hazard 
rate function AXi(-)(t) as an additional covariate. Using the method of Lin 
and Ying (1994) generalized by Bagdonavicius and Nikulin (1995), we define 
the weighted estimator aK of the parameter 0 as the solution of estimation 
equations UK(O, T) = 0, where 

where Zi(U) = (Xi(t), AXi(.)(t))T, E(u) = 2:i Zi(U)1'i(U)/Y(u) and the weight 
function K(u) is a iF-predictable stochastic process that converges in proba­
bility to a nonnegative bounded function K(u) uniformly in u E [0, T]. For 
example, K(u) = e-Ao(u), where Ao(u) is an estimator of 

Ao(u) = lou ao(v)dv. 

Denote by 00 the true value of O. Under the model (27.6), both the unweighted 
estimator {h (obtained when K(u) = J(u) == 1) and the weighted estimator 
aK (K =f:. 1) are asymptotically normal with the same mean 00. Under alter­
natives, both estimators aJ and aK should be also asymptotically normal but 
with different means, and so a test statistic may be constructed in terms of the 
difference a J - a K . 
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Denote by 

Proposition 27.3.1 Suppose that the model (27.6) is true. Then under as­
sumptions (a), (b), (d), and nonsingularity of Ak and AI, 

where 

, It hki(V;()O) = k(V)(Zi(V) - e(v)) + ~() k(U)(Zi(U) - e(u))Yi(u)du. 
Yt V v 

SKETCH OF THE PROOF. Denote by 

Using methods similar to those of BagdonaviCius and Nikulin (1997), we have 

uniformly on [0, TJ, where 

, It hki(V) = k(V)(Zi(V) - e(v)) + ~() k(U)(Zi(U) - e(u))Yi(u)du. 
Yt V v 
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The predictable covariation is 

and 

So, taking into account that 

we have 

The limiting covariance matrix of vin(OK - OJ) is ~kj. 
The test statistic can be defined as 

where 

~** UKJ 

dAo(v) 

393 

The distribution of the statistic Tn is approximated by the chi-square distribu­
tion with (m + 1) degrees of freedom. 
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Abstract: We consider the efficiency properties of the test of symmetry based 
on the sequence of statistics Gn = aSn +bWn, where Sn and Wn are the classical 
sign and Wilcoxon statistics and a and b are some constants. Pitman efficiency 
of this test with respect to the student test in the case of location alternatives 
and its maximum with respect to a and b are calculated. This generalizes the 
classical results of Hodges and Lehmann (1956). We also find the form of the 
alternative distributions under which the new test is Pitman optimal. 

Keywords and phrases: Pitman efficiency, sign test, Wilcoxon test, U­
statistic, rate of convergence, location alternative 

28.1 Introduction 

Consider the classical problem of testing of symmetry with respect to zero of 
the univariate sample Xl, ... , X n . Most known and simple test statistics for this 
problem are the sign statistic 

n 

Sn = n-l L l{xi>o} 
i=l 

and the Wilcoxon signed rank statistic which is asymptotically equivalent to 
the statistic 

Their properties are well explored and described in many sources; see, for ex­
ample, Hajek and Sidak (1967), Lehmann (1975) and Hettmansperger (1984). 
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The aim of the present chapter is to consider the following combination Gn 

of these statistics: 
Gn = aSn +bWn 

for some constants a and b, a2 + b2 > O. For definiteness, let us consider only 
b ~ O. 

The idea of taking the linear combination of Sn and Wn to obtain a more 
flexible test with better power and efficiency properties is certainly not new; see 
Hemelrijk (1950) and Hajek and Sidak (1967), and Section 3.5 of the latter for 
the discussion of early papers on the subject. A typical example of subsequent 
publications is the article of Doksum and Thompson (1971). They considered 
the statistic equivalent to 

DTn = Wn - (1/2)Sn (28.1) 

and established its asymptotic minimax properties for a special class of alter­
natives. Doksum and Thompson (1971) refer also to some other papers with 
similar considerations. Interesting examples of estimation via linearly combin­
ing two given statistics are presented in Baksalary and Kala (1983) and in Gross 
(1998). 

However it seems that the general statistic Gn for testing of symmetry with 
arbitrary coefficients a and b has never been investigated from the point of view 
of Pitman efficiency and optimality. 

Our approach is primarily based on the theory of U-statistics. This the­
ory was initiated by Hoeffding (1948) and was strongly developed in last few 
decades. Considering en as a seqence of U-statistics with the kernel 

(28.2) 

we prove its asymptotic normality under arbitrary distribution of the initial 
sample. This enables us to find the general formula for the Pitman efficacy 
of the proposed test for contiguous parametric alternatives and to make some 
calculations for the location alternative generalizing the classical results known 
for the Pitman efficiency of the sign and Wilcoxon tests from the paper of 
Hodges and Lehmann (1956). 

For any density fa of the observations under the null-hypothesis, we find 
the best values of the constants a and b for which the test based on en has the 
highest possible Pitman efficiency with respect to the t-test. This efficiency is 
essentially higher than the efficiency of Sn and Wn alone, and this is a serious 
argument in favor of the proposed combined test. 

Moreover, using the results of Rao (1963, 1965), we explore the problem of 
asymptotic optimality of the proposed test. Under certain regularity conditions 
and some restrictions on parameters a and b, it is found that the test based on 
en is Pitman optimal iff the initial observations have the symmetric density 

lI(b + a)(b + a/2) exp(lIlxl) 1 
fa,b(x) = ((b + a) exp(lIlxl) + b)2 ,lI > 0, x E R ,a + b > O. 
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The particular cases of this three-parameter family of densities are the Laplace 
density when a = 1, b = 0 and the logistic density when a = 0, b = 1. It is well 
known that the sign and Wilcoxon test are locally most powerful and Pitman 
optimal signed-rank tests for these two densities in case of location alternatives 
[see, for example, Hajek and Sidal (1967) or Hettmansperger (1984)]. Thus, 
our characterization generalizes these classical results. 

28.2 Asymptotic Distribution of the Statistic Gn 

It is clear that the statistic en can be represented in the form 

en = (C~)-l L <I>a,b(Xi,Xj), 
l~i<j~n 

where the kernel <I>a,b(S, t) is given by ( 28.2). 
Denote by F the distribution function and by f the density of the initial 

observations XI,X2, .... Let us find the expressions for some standard charac­
teristics of this kernel. First of all, we need 

J.La,b = Ep<I>a,b(XI, X2) = aPp(XI > 0) + bPp(XI + X2 > 0) 
= a(1 - F(O)) + b(1 - F * F(O)), 

where * is the symbol of convolution. 
We are also interested in the so-called canonical function of the kernel given 

by 
Wa,b(t) = Ep[<I>a,b(XI, X2)IXI = t] 

= a(l{t>o} + 1 - F(0))j2 + b(1 - F( -t)). 

Clearly, 

1+00 

EpWa,b(XI) = a(1 - F(O)) + b -00 (1 - F( -x))dF(x). 

We can now calculate the variance 

O"~,b = VarpW~,b(XI) = Ep{a(I{Xl>O} - (1- F(0))j2 
+b(l- F( -Xl) - f~:-(1- F( -y))dF(y))}2. 

Suppose that for given a, band F we have O"~,b > 0 so that the kernel <I>a,b 
is nondegenerate. Then the distribution of the U-statistic en may be approxi­
mated by the normal law. Using the central limit theorem for U-statistics from 
Hoeffding (1948) or Denker (1985), we see that uniformly in x 

1 jX Pp( ..fii,(Gn - J.La,b)j20"a,b < x) --- f(L exp (_u2 j2)du, n ----+ 00. (28.3) 
v27f -00 
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Relying on (28.3), we may construct the symmetry test based on Gn for suffi­
ciently large samples. 

28.3 Pitman Efficiency of the Proposed Statistic 

In order to make the Pitman efficiency calculation, we should make the for­
mulation of the statistical problem quite precise. Suppose that under the null 
hypothesis of symmetry Ho the initial distribution function F is absolutely 
continuous and is symmetric with respect to zero, hence for every x 

1- F(x) - F(-x) = O. 

We suppose that under the alternative HI the observations have the common 
distribution function F(x, 0), 0 ~ 0, such that F(x, 0) = Fo(x) for some sym­
metric distribution function Fo with continuous density fo only for 0 = O. For 
simplicity, we consider only the case of location alternative when 

F(x,O) = Fo(x - 0). 

Other smooth parametric families may be treated in an analogous way as shown 
in Nikitin (1995, Ch. 6). 

As usual, when calculating the Pitman efficiency we take the parameter 0 
in the form 0 = On = b /..;n for some b ~ O. It is assumed that the condition 

1+00 

-00 f6 (y )dy < 00 (28.4) 

is valid all along this work. 
In the case of location alternative, the expressions for Ma,b and O"~,b become 

simpler if we use the symmetry of Fo as follows: 

Ma,b(O) ::::; aFo(O) + bFo * Fo(20), 
O"~ b(O) = a2 Fo(O)(l - Fo(0))/4 , 

+ab fo+oo Fo(y + O)dFo(Y - 0) - abFo(O) f~: Fo(y + O)dFo(Y - 0) 

+b2(J~: F3(y + O)dFo(Y - 0) - (J~: F3(y + O)dFo(Y - 0))2). 

Using Lemma 3.4 from Mehra and Sarangi (1967), we obtain due to condi­
tion (28.4) that 

d J+oo dOMa,b(O) = afo(O) + 2b -00 fo(y - 20)fo(y)dy. (28.5) 
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Because of uniform convergence with respect to e of the integral in (28.5), this 
expression is continuous in e and hence 

1+00 

J-L~,b(O) = aJo(O) + 2b -00 J6(y)dy. 

In the sequel, we always assume that a and b are such that 

1+00 

J-L~,b(O) = aJo(O) + 2b -00 J6(y)dy> 0 (28.6) 

(this condition ensuring the consistency of our test is always required when 
calculating the Pitman efficiency). Moreover, it is quite clear that the function 
e ---t (j~,b (e) is continuous in e and 

(j~ b(O) = a2/16 + b2/12 + 3ab/8 - ab/4 = (3a2 + 6ab + 4b2)/48 > O. (28.7) , 

We underline (it will be used in Section 28.4) that for sufficiently small e 
one still has (j~ b (e) > 0 and hence our statistic is asymptotically normal both 
under Ho and Ih for small e. We see that all requirements necessary for the 
existence of Pitman efficiency are fulfilled [see, for example, Lehmann (1975) 
or Hettmansperger (1984)]. 

The measure of Pitman efficiency called Pitman efficacy equals therefore 

2( f ) = ( I (0)/2 (0))2 = 12(aJo(0) + 2b r~:: J6(y)dy)2 
/'i, J 0 J-La,b (j a,b 3a2 + 6ab + 4b2 

It is clear that the simple particular cases of this formula are the well-known 
efficacies 4J6(0) for the sign test and 12(J~:: f6(y)dy)2 for the Wilcoxon test 
if we take a = 1, b = 0 and a = 0, b = 1 correspondingly. 

Now it is possible to compare our test with any other with known efficacy 
as Pitman efficiency is the ratio of efficacies. 

The famous example first discussed by Hodges and Lehmann (1956) is the 
Pitman efficiency of the sign test and the Wilcoxon test with respect to the 
t-test. Arguing as in Hodges and Lehmann (1956), we get for the Pitman 
efficiency eP(G, t) the following formula: 

(28.8) 

where (j2 stands for the variance of the underlying density fo. In case of stan­
dard normal density fo(x) = (27r)-1/2 exp( _x2 /2), we have 

eP(G, t) = l(a, b) = 6(a + V2b)2/[7r(3a2 + 6ab + 4b2 )]. 

Let us find the maximal value of this expression. As argued above, we may 
consider only the case when a2 +b2 > O. Put z = a/b and consider the auxiliary 
function 

r(z) = (z + V2)2/(3z2 + 6z + 4). 
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Clearly, it attains its maximal value when 

z = z* = (4 - 3V2)/(3V2 - 3) ~ -0.1953 < O. 

Substituting this value in r(z), we obtain 

maxr(z) = (10/3) - 2V2. 
z 

Consequently 
maxeP(G, t) = (20 - 12V2)/7r ~ 0.9643 

and this maximum is attained for a = bz*. It is well known from Hodges 
and Lehmann (1956) or Lehmann (1975) that in the case of the normal law, 
the Pitman efficiency of the sign test and the Wilcoxon test with respect to 
Student's test are correspondingly 2/7r ~ 0.6366 and 3/7r ~ 0.9549. Hence, we 
can improve by approximately 0.01 the already very high value of efficiency of 
Wilcoxon test due to the combination effect. 

In the general case, similar arguments show that the maximum value in a 

and b of Pitman efficacy /';,2(fO) in terms of u = fo(O) and v = J!: f6(y)dy is 
attained for 

alb = (6v - 4u)/(3u - 6v) 

and is equal to 

(28.9) 

Hence, the relative Pitman efficiency of the "best" test statistic with respect 
to a and b (let us denote it by G~) with respect to the t-test is 

(28.10) 

It is an interesting unsolved problem of finding the minimum in symmetric fo of 
this efficiency. This maxmin value would be the analogue of the famous lower 
bound 0.864 from Hodges and Lehmann (1956). 

Now we want to calculate the Pitman efficiency of a best combined test 
given by ( 28.10) for the case of a very interesting family of densities, namely, 
for the normal distributions of order p with the density 

where 
~p = ~p-l/p[r((1/p)/r(3/p)11/2, 

x E Rl, ~ > 0 and () are arbitrary real parameters and the "structural" param­
eter p is from [1,00). Clearly, for p = 2 we have the classical normal distribution 
and for p = 1 the double-exponential or the Laplace distribution. See Burgio 
(1996) and Burgio and Nikitin (1998) for other efficiency calculations connected 
with this distribution. 
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Simple calculations give 

fp(O) = prl / 2 (3/p)/2oT3/ 2(1/p), 
r~:: X2 fp(x )dx = (}2, 

Substituting these values in (28.9), we obtain for this family that 
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Clearly, in the normal case of p = 2, we obtain the value of efficiency 0.9643 
obtained above. 

Now let us compare in efficiency the "best" test based on G~ with the 
efficacy (28.9) with the sign test and the Wilcoxon test. 

We confine ourselves to weakly unimodal symmetric densities fo [see Hodges 
and Lehmann (1956, p. 327)]. Consider the density-quantile function 

¢(U) = fo(Fo1(u)), 0:::; u:::; 1. (28.11) 

The inequality 

/
+00 lol 1,1 v = /J(y)dy = ¢(x)dx = 2 ¢(x)dx:::; ¢(1/2) = fo(O) = u 

-00 0 1/2 

shows that either u/v ~ 1 or v/u :::; 1. Hence, the Pitman efficiency of the 
"best" combined test with respect to the sign test satisfies the inequality 

the equality being attained for v /u = 1/2. 
Quite analogously, in case of the Wilcoxon test we have 

e(G*, W) = 4(3v2 - 3uv + u2 )/3v2 ~ 1 

with the equality for u/v = 3/2. 
In practice, we do not know the true values of u and v. But we can estimate 

them from data. Denote the corresponding estimators Un and vn . It is an open 
question what the properties are of the test of combined type with 

We may suppose that they are similar to that of G~. 
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28.4 Basic Inequality for the Pitman Power 

Consider again the sequence of LLd. observations XI,X2, ... taking values in 
RI and having the common density f(x, e), e ~ O. Denote by 'Yn(e) the power 
function, evaluated at the point e = eo + 6n- I /2, of a test for the hypothesis 
Ho : e = eo, based on Xl, ... ,Xn, and with significance level a E (0,1). It is 
proved in Rao (1963), under some regularity conditions imposed on f(x, e) and 
discussed below, that for every fixed 6 i: 0 

(28.12) 
n->oo 

where Za is the quantile of order 1 - a of the standard normal distribution 
function cI>, and i is the Fisher information in the point eo, that is, 

.- r (81n f (x,e))2f( £J)d I 
~ - ) Rl {}e x, u x (}=(}o· 

We will always assume that 0 < i < +00. 
The limit of the sequence of functions 'Yn(eo + 6n- I /2), if it exists, is known 

as the Pitman power of the test and the inequality (28.12) gives the upper 
bound for the Pitman power of any test of level a for testing Ho. 

We now turn to check the fulfilment of regularity assumptions given by 
Rao (1963), that are sufficient for the inequality (28.12). All these conditions 
are rather similar requirements imposed on the density f(x, e). Therefore, we 
discuss only Assumption I from Rao (1963). The reader can find there the 
formulation of remaining conditions. See also Conti and Nikitin (1997) for 
similar research in the case of testing for independence. 

For the sake of brevity, let us introduce the quantity 

a(x,e) = {}lnf(x,e)/{}e. 

With these notation, the Fisher information is given by 

The first set of conditions in Rao (1963) looks as follows. 

Assumption I. As e ~ 0, 

(i) E(}a(X,O) = ei + o(e) 
(ii) Var(}a(X, 0) = i + 0(1) 
(iii) COV(} [a(X, e), a(X, 0)] = i + 0(1). 

We see that this is a set of regularity conditions valid for many densities such 
as normal, Cauchy, and logistic. The same is true in ca(Se of other regularity 
assumptions. 
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Denote by :F the class of densities f(x, B) for which all these conditions are 
true. Hence, the inequality (28.12) is true for this class. 

28.5 Pitman Power for Gn 

In this Section, we find the Pitman power for Gn using general results from 
Section 7a.7 of Roo (1965). As a consequence of condition (28.6), we con­
sider only one-sided tests of Ho, assuming significant large values of Gn . The 
generalization for the two-sided case is straightforward. 

Denote by i;{(B) the power function of the test of Ho against HI with 
significance level a in the point B for the statistic Gn . 

Our next aim is to prove that 

lim i;;(8/Vri) = 1- <p(za - 8K,(fo)), n--->CXJ (28.13) 

where 

J+CXJ 
K,(fo) = J12[afo(O) + 2b -CXJ f6(y)dy]jV3a2 + 6ab + 4b2• 

This relationship follows from the following theorem that is the combination 
of Conditions (II) and (III) in Section 7a.7 of Roo (1963). 

Theorem 28.5.1 Let Tn be a test statistic with the critical region of the form 
{Tn 2 An}. Suppose that 

(a) limn--->CXJ Po (Tn 2 An) = a for fixed a E (0,1); 

(b) There exist such functions /-l( B) and CJ'( B) that 

Po(Vri(Tn -/-l(B)) < y(J(B)) = <p(y) 

uniformly in 0 :::; B :::; T, where T > 0 is arbitrary small; 

(c) J.t(B) has a positive derivative /-l'(O) in the point 0 and (J(B) is continuous 
in this point. 

Then 

In order to verify the conditions of this theorem for the statistic Gn , observe 
that the asymptotic normality of the sequence Gn both under hypothesis and 
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close alternative follows from (28.3) since the variance ()~ b( 0) is positive. It 
follows that we can take as An from (a) the value ' 

An = J-la,b(O) + 2Za(}a,b(0)fo(1 + 0(1)) 
= (a + b)/2 + zaJn(3a2 + 6ab + 4b2)/12(1 + 0(1)), n --t 00. 

Moreover, the convergence in distribution to the normal law is uniform for 
sufficiently close alternatives because of the Berry-Esseen-type estimate for the 
rate of convergence in the Central Limit Theorem for nondegenerate U-statistics 
obtained by Callaert and Janssen (1978). Hence, we have (b). Finally, (c) 
follows from (28.6) and (28.7). 

Comparing (28.12) and (28.13), we easily obtain the inequality 

(28.14) 

In the left-hand side of (28.14), we recognize the Pitman efficacy of Gn as 
obtained above. The statistic Gn is Pitman-optimal when the right-hand side 
of (28.14) is equal to 1. 

28.6 Conditions of Pitman Optimality 

In this Section, we will explore the following rather natural question: under 
what density fo the sequence of statistic Gn is Pitman optimal? In other 
words, we should find for which fo the inequality (28.14) turns out to be equal­
ity. Clearly, we need consider only the densities fo from :F with finite Fisher 
information i. 

Analogous problems were discussed and solved in Nikitin (1995, Ch. 6) in 
another context connected with Bahadur efficiency. 

To simplify the problem, let use once again the auxiliary function (28.10). 
It is known from Lemma 4.2.1 of Albers (1974), that if (28.4) holds and i < 00 

then 

¢(O) = ¢(1) = o. (28.15) 

The inequality (28.14) in terms of ¢ may be rewritten as 

Let us minimize the functional J~ ¢' 2(u)du subject to the norming condition 

101 {a¢' (u) 1 [0,1/2] (u) + 2b¢(y)}dy = 1 
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and boundary conditions (28.15). This is the classical variational problem on 
conditional extremum. The existence of solution in the space W2,dO, 1J may be 
proved as in Nikitin (1995, Section 6.2). The application of Lagrange princi­
ple leads for any "test" function h to the following equation for the extremal 
function </J, where >. is the indeterminate Lagrange multiplier: 

101 {2</J'(t)h'(t) + a>.1[0,1/2j(t)h'(t) + 2b>'h(t))dt = O. 

It follows from the main lemma of variational calculus [see, for example, Young 
(1969, Lemma 7.1)J that 

2</J'(t) - 2b>.t + a>.1[0,1/2j(t) + C = 0, 

where C is some constant. Integrating and using the boundary conditions, we 
get easily the solution of our extremal problem, namely, 

</J(s) = C((b - a/2)s - bs2 + amin(s, 1/2)). (28.16) 

Now let us return from function </J to the distribution function Fo and the 
density fo, namely consider the equations equivalent to (28.16), namely, 

F6 = C((b + a/2)Fo - bF(5) , Fo ::; 1/2 

F6 = C((b - a/2)Fo - bF(5 + a/2), Fo ~ 1/2. 

To avoid non-probabilistic solutions, let us now assume that a + b > o. 
Hence, a/2 + b > 0 also. 

To solve the first of our differential equations, let us rewrite it in the form 

dx = dFo/ Fo(b + a/2) + bdFo/(b + a/2)(b + a/2 - bFo). 

Integrating, we obtain easily 

Fo(x) = (b + a/2) exp (vx)/(b + a + bexp (vx)), x::; o. 

The expression for the solution Fo in the domain x ~ 0 may be obtained 
analogously. Finally, we get the following expression for the extremal density 
fa giving Pitman optimality: 

fo(x) = v(b + a)(b + a/2) exp (vlxl)/((b + a) exp (vlxl) + b)2, a + b > O. 

Clearly, for b = 0 we obtain the Laplace density known to give optimality for the 
sign test and for a = 0 we obtain the logistic density known to give optimality 
for the Wilcoxon test [see Hajek and Sidak (1967) or Hettmansperger (1984)J. 
Thus, we get another generalization of classical results. 
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In the case of Doksum-Thompson statistic (28.2), we obtain a curious bi­
modal density given by 

Jo(x) = 3exp(lxl)/2(exp(lxl) + 2)2, 

An open question is to find the density fo (if it exists) giving the Pitman 
optimality of the test based on the "best" choice of coefficients a and b. 
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Exponential Approximation of Statistical 
Experiments 

A. A. Gushchin and E. Valkeila 

Steklov Mathematical Institute, Moscow, Russia 
University of Helsinki, Helsinki, Finland 

Abstract: We study conditions under which a sequence of statistical exper­
iments can be approximated in a certain sense by experiments generated by 
exponential families with a convex canonical parameter space or weakly con­
verges to such an experiment. 

Keywords and phrases: Exponential family, Hellinger integral, Kullback 
information 

29 .1 Introduction 

Exponential families, especially the Gaussian shift experiments, often occur in 
asymptotic statistics as limit models. They are also used as approximating 
models for the original experiments. Thus, it is of interest to study general 
conditions when a sequence of experiments weakly converges to the experiment 
corresponding to an exponential family or can be approximated by such exper­
iments. 

Here, we deal with the situation when exponential families are parameterized 
by their canonical parameter and the corresponding parameter space is an open 
convex subset of ~k. This allows us to characterize exponential families via 
their extremal property which goes back to Cencov (1982) (Proposition 29.2.1). 
Using this characterization, we give necessary and sufficient conditions for a 
sequence of experiments to be "asymptotically exponential" (Theorem 29.3.1). 
Finally, we prove that such a sequence may be approximated in a stronger sense 
by exponential families if e = ~k (Theorem 29.3.2). 

Our methods rely heavily on the convexity of the parameter space. Other 
assumptions on the set of parameters are of minor importance (except Theorem 
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29.3.2); see Remark 29.2.1 below. 
Since the canonical parameter space is assumed to be convex, our methods 

fit poorly to analyze curved exponential families. Curved exponential families 
often appear in limiting experiments of different models of stochastic processes, 
for example, if the model satisfies the local asymptotic mixed normality condi­
tion or, more generally, if it is locally asymptotically quadratic. In this situa­
tion, the just mentioned disadvantage of our approach can be avoided to some 
extent by modifying it in the context of filtered statistical experiments. Since 
this modified approach is quite complicated and technical - it is based on the 
heavy use of stochastic calculus - we shall discuss it elsewhere. 

To avoid misunderstanding, let us mention that the expression "asymptot­
ically exponential experiments" is used in the statistical literature not only in 
connection to exponential families but also in a completely different sense in 
connection to exponential distributions. 

Let us fix a notation and recall some basic facts from the theory of statis­
tical experiments, for which we refer to Strasser (1985), LeCam (1986), and 
Torgersen (1991). 

For nonnegative measures J.L and 1/ on a measurable space (0, F), we denote 
by dl/ / dJ.L the density of the absolutely continuous part of 1/ with respect to J.L. 
Unless otherwise specified, II . II is the total variation norm 

where A dominates both J.L and 1/. 

C(~IP) is the distribution of a random variable (or vector) ~ under P. The 
weak convergence of distributions is denoted by =}. 

If ~n and 'TIn are random variables on probability spaces (on, .1'n, pn), we 

write ~n ~ 0 as n ~ 00 if limn -+oo pn(l~nl > c) = 0 for every c > 0 and 

~n = 'TIn + opn(1), n ~ 00, if ~n - 'TIn ~ O. These definitions also make sense 
if ~n take values in the extended real line. We say that the sequence (~n, pn) is 
uniformly integrable if 

lim sup J I~nl dpn = O. 
a-+oo n 

I~nl>a 

A statistical experiment lE is a collection lE = (0,.1', (PO)OE9), where (0,.1') 
is a measurable space and Po is a probability measure on (0, F) for each () E 8. 
Sometimes, we use the notation (PO)OE9 to designate the experiment. 

We say that a collection a = (ao )OE9 of nonnegative numbers is a multi­
index if let == {(): ao i- O} is finite and i:OEla ao = 1. A+ = A+(8) is the set of 
all multi-indices over 8. If 8 is a subset of a linear space, (a) is the barycentre 
of a: (a) = i:OEla ao(). . 
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Let IE = (0" F, (Po)oEe) be a statistical experiment. The Hellinger trans­
form of IE is defined by 

J (dPo)ae 
H(a; IE) = II dv dv, 

OElo 

where v is any nonnegative measure that dominates all the Po, e E la. 
If 8 = {1, 2, ... ,m}, then A+(8) can be identified with the simplex 8 m == 

{a = (al, ... ,am):ai ~ 0, i = 1, ... ,m, L:~lai = 1}. In this case we 
alternatively write H(a; H, ... , Pm), a E 8m, instead of H(a; IE), a E A+. 
Moreover, for m = 2 we write H(u; PI, P2), u E (0,1), instead of H((u, 1 -
u); PI, P2). 

The quantity H(u; P, P'), u E (0,1), is the Hellinger integral of order u 
between P and P'. Define also the Kullback information K(P', P) by 

J dP' (dP') K(P', P) = dP log dP dP 

if P' is absolutely continuous with respect to P; otherwise, put K(P', P) = +00. 

Here and below we use the conventions log 0 = -00, 0 . 00 = O. It is well 
known [see, for example, Liese and Vajda (1987, Section 2)J that I-H(~;P,PI) is 
a decreasing finction in u E (0,1) and 

lim 1- H(u; P, P') = K(P', P). 
utO u 

(29.1) 

Equivalence and weak convergence of experiments are denoted by rv and 
~, respectively. Recall that the space of experiments (more exactly, of equiv­
alence classes of experiments) over the same parameter space is compact with 
respect to the weak convergence, IE rv IE' if and only if H(a; IE) = H(a; IE') for 
every a E A+(8), En ~ E if and only if limn-->oo H(a; lEn) = H(a; IE) for 
every a E A+(8). 

An experiment IE = (0"F, (Po)oEe) is said to be pairwise imperfect if Po 
and PTJ are not singular for all e, 'rJ E 8. IE is regular if for every finite set 
{el , ... ,em} ~ 8 there is a nonnegative measure v i- 0 such that v is absolutely 
continuous with respect to all the POi' i = 1, ... ,m. We note that IE is regular 
if and only if H(a; IE) does not vanish for all a E A+. Finally, IE is homogeneous 
if Po and PTJ are equivalent for all e, 'rJ E 8. 

Assume that IE = (0" F, (H, ... ,Pm)) is a regular experiment. Then for any 
a = (al, ... , am) E 8m, there is a unique probability measure P such that 

dP 1 m (dPi)O<i 
-= . II - , 
dv H(a; PI, ... , Pm) i=l dv 

where v is an arbitrary nonnegative measure dominating PI, ... , Pm. Ac­
cording to Cencov (1982, Definition 18.2, p. 270), P is the weighted geodesic 
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mean of PI, ... ,Pm with weights al, ... ,am . We denote this measure P by 
G(a; PI, ... , Pm). The weighted geodesic mean of P and pI with weights u and 
1 - u, where u E (0,1), is denoted by G(u; P, PI). If E = (0, F, (PO)OE8) 
is a regular experiment with an arbitrary parameter set 8, we denote by 
G(a; E), a E A+(8), the weighted geodesic mean of POI' ... ' POrn with weights 
aol , ••• , aom , where (h, ... ,Om are the points that constitute Ia. 

The following extremal properly of weighted geodesic means is essentially 
due to Cencov (1982, Lemma 20.5, p. 296). 

Lemma 29.1.1 Let E = (0, F, (PI, ... , Pm)) be a regular experiment and R a 
probability measure on (O,F). Then, for every a = (al, ... ,am) E Sm, 

m 

K(R, G(a; H, ... , Pm)) = L aiK(R, Pi) + log H(a; H, ... , Pm). 
i=l 

In particular, 
m 

L aiK(R, Pi) + log H(a; PI, ... ,Pm) 2:: 0 
i=l 

and the equality holds if and only if R = G(a; PI, ... ,Pm). 

The following lemma is a simple exercise. It is also valid for nets of experi­
ments. 

Lemma 29.1.2 Assume that En = (on,?, (P;)OE8) ~ E = (O,F, (Pe)eE8), 
where E is a regular experiment. Define G = (O,F, (G(a;E))aEA+(8)), Gn = 
(on, F n, (G(a; En))aEA+(8)), A+(8) = {a E A+(8): H(a; En) > O}. Then, 
Gn~G. . 

Finally, let N(m, (/2) be the normal distribution with mean m and variance 
(/2, 1A the indicator function of A, avb and al\b the maximum and the minimum 
of numbers a and b, and D. T the transpose of a vector D. E ]Rk. 

29.2 Characterization of Exponential Experiments 
and Their Convergence 

Let 8 be an open convex set in ]Rk. An experiment E = (0, F, (Pe)eE8) is 
an exponential experiment if there are a nonnegative measure von (0, F) and 
measurable functions h: ° ~ ]R+ and S: ° ~ ]Rk such that Pe « v and 

dPe = C(O)hexp(OT S) 
dv 

(29.2) 
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for all 0 E e for suitable constants C(O); see Strasser (1985, Definition 26.1, 
p. 115). 

Every exponential experiment is homogeneous. 
The following lemma is a simple consequence of the above definition. 

Lemma 29.2.1 Let lE = (n, .1', (Pe)eEe) and lE' = (n', .1", (P~)eEe) be expo­
nential experiments. Assume that I is a subset of e such that its affine hull 
aff I contains e. Then, 

lE rv lE' iff 

The idea to characterize exponential experiments using weighted geodesic 
means and their extremal property from Lemma 29.1.1 is due to Cencov (1982). 

Proposition 29.2.1 Let lE = (n, .1', (Pe)eEe) be a pairwise imperfect exper­
iment, where e is an open convex set in jRk. The following properties are 
equivalent: 

(a) lE is an exponential experiment; 
(b) for all 0, rJ E e and u E (0, 1), 

P(l-U)O+UTJ = G(u; Pe, PTJ); 

(c) for all 0, rJ E e and u E (0,1), 

(l-u)K(P(l-u)O+UTJ' Pe)+uK(P(l-u)O+UTJ' PTJ)+log H(l-u; Pe, PTJ) 'S O. (29.3) 

If these conditions are satisfied then, for every a E A+, 

p(a) = G(a; lE) (29.4) 

and 
L aeK(p(a) , Pe) + log H(a; lE) = O. (29.5) 

£lEla 

In particular, we have equality in (29.3). 

Remark 29.2.1 There are variations on that proposition. First, whether or 
not e is open, the representation (29.2) implies other statements of the propo­
sition. Next, assume that e is a convex subset of an arbitrary linear space V 
and lE is pairwise imperfect. Then (b) and (c) are still equivalent and imply the 
regularity of lE, (29.4) and (29.5). But, in general, they do not imply the homo­
geneity of lE. This extra property is automatically satisfied under (b) or (c) if, 
for any two points in e, there is an open interval containing these points (if V 
is Euclidean, this means that e is relatively open in the affine hull generated by 
e). Finally, if e is a convex subset of a Euclidean space and the homogeneity 
assumption is satisfied, then (b) or (c) imply the representation (29.2). 
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PROOF. Properties (b) and (c) are equivalent due to Lemma 29.1.1. By the 
same reason, (29.4) and (29.5) are equivalent if JE: is regular. It is easy to see 
that (a) implies (29.4) and, in particular, (b). 

It remains to show the implication (b)=?(a). Since 8 is open and the mea­
sures G(u; Po, Pry), u E (0,1), are mutually absolutely continuous, JE: is homoge­
neous. Now an easy induction over 110<1 gives that (b) implies (29.4). To prove 
that (29.4) implies (a) is easy: see the details in Gushchin and Valkeila (1998) . 

• 
Proposition 29.2.1 has important consequences. 

Corollary 29.2.1 Let 8 be an open convex set in ~k and JE: = (n,F, (Po)oEe) 
an exponential experiment. If JE:' = (n /, F', (P~)oEe) is another experiment, 
then 

JE: rv JE:' iff (Po, Pry) rv (P~, P~) for all (), rJ E 8. 

PROOF. Only sufficiency has to be checked. By Proposition 29.2.1, (29.3) is 
satisfied for JE: and hence for JE: /, which implies (29.5) both for JE: and JE: /, and we 
obtain H (ex; JE:/) = H (ex; JE:) for all ex E A+. • 

Corollary 29.2.2 Let 8 be an open convex set in ~k and JE: = (n, F, (Po)oEe) 
an exponential experiment. If JE:n = (nn,p, (Pl))oEe) is a sequence of experi­
ments, then 

iff 

PROOF. The statement follows from Corollary 29.2.1 and weak compactness 
arguments. • 

For the notion of a Gaussian shift experiment on a Hilbert space, we refer to 
Strasser (1985, p. 343). It can be easily checked that Gaussian shift experiments 
satisfy property (b) in Proposition 29.2.1. Taking into account Remark 29.2.1 
and the arguments in the proof of Corollaries 29.2.1 and 29.2.2, we obtain the 
following. 

Corollary 29.2.3 Let H be a Hilbert space with the norm II . II. 
(1) An experiment JE: = (n,F, (PO)OEH) is a Gaussian shift experiment if 

and only if 

C (lOg ~~: p,) = N ( Jlry ~ Oil' , Ilry - BII' ) for all (), rJ E 8. 

(2) A sequence JE:n = (nn,Fn, (Pl))OEH) weakly converges to a Gaussian 
shift experiment if and only if 

C (lOg ~~~ Pi!) => N ( _"ry ~ Oil' , Ilry - 011') for all (), rJ E 8. 
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29.3 Approximation by Exponential Experiments 

In this Section, we describe the situation where a sequence of experiments 
(over an open convex parameter set) can be approximated in a certain sense by 
a sequence of exponential experiments. 

Theorem 29.3.1 Let ]En = (nn,Fn, (P'C')9Ee) be a sequence of experiments, 
where 8 is an open convex set in jRk. Assume that 

lim sup lIP; - P; II < 2 
n->oo 

for all e, 'f} E 8. (29.6) 

The following statements are equivalent: 
(AI) all weak accumulation points of the sequence ]En are exponential exper­

iments; 
(A2) there are probability measures pn on (nn, F n), random vectors ~n 

with values in jRk, random variables In and real-valued functions cPn(e), e E 8, 
such that, for all e E 8, the sequences (P;)n?l and (pn)n?l are mutually 
contiguous and 

dP; T 
log dpn = e ~n -,n - cPn(e) + opn(I), n ---+ 00; 

(B) for all e, 'f} E 8 and U E (0,1), 

(C) for all e, 'f} E 8, U E (0,1), (3 E (0,1), 

. (1 - (1 - u)H(f3; Pf/, p(1-u)9+u1)) - uH(f3; P;, P(1-u)9+u1)) 
hmsup f3 

n->CXl 

+IOgH(I-U;Pf/,P;)) :::;0. (29.7) 

Moreover, if these conditions are satisfied, then: 
(1) the sequence ]En is weakly sequentially compact; 
(2) (A2) is valid with pn = P't, where ( is an arbitrary point in 8; the 

vectors ~n and variables Tn can be chosen in such a way that the laws £(~nIP't) 

and £bnIP't) are tight in jRk and in jR, respectively; 
(3) for every 0: E A+, 

liminf H(o:; ]En) > 0, 
n->oo 

(29.8) 

lim IIP(~) - G(o:;]En)11 = 0, 
n->oo 

(29.9) 
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and 

(
1 - EOEI aoH ({3j P[j, P(:x)) ) 

li~-->s~p a (3 +logH(ajlEn) ::;0 (29.10) 

for any (3 E (0,1). 

Remark 29.3.1 The condition (29.6) guarantees that the measures G(Uj P[j, 
p:n in (B) are well defined for n large enough. Similarly, (29.8) guarantees 
that the weighted geodesic means G(aj lEn) in (29.9) are well defined for n large 
enough. 

PROOF. Let {el, ... , ek} be the canonical basis in Rk. 

(1) Assume (AI). 
Take an arbitrary ( E e and choose a 8 > 0 such that (+ 8ei E e for 

i = 1, ... , k. The sequence lEn (and every its subsequence) contains a subse­
quence lEnj such that the experiments (P[j)OE{(,(+8el, ... ,(+8ed weakly converge 
as j -+ 00. Then the sequence lEnj is weakly convergent since it has a unique 
accumulation point in view of Lemma 29.2.1. Thus, the sequence lEn is weakly 
sequentially compact. 

If lEnj ~ lE = (0., F, (Po)oEe) for a subsequence (nj), then lE is an exponen­
tial experiment by the assumption. In particular, given a E A+, we have 

.lim H(ajlEnj) = H(ajlE) > 0, 
)-->00 

.lim IIP(;) - G(ajlEnj)1I = IIP(a) - G(ajlE)11 = 0 )-->00 

(passing to the limit is possible because of Lemma 29.1.2) and 

. (1 -EOEla aoH({3j p;j, p(;)) . ) 
.hm (3 + log H(aj lEn]) 

)-->00 

= 1 - EOEla a o;({3j Po, p(a)) + log H(aj lE) 

::; L aoK(P(a), Po) + log H(aj lE) = 0, (3 E (0,1), 
OEla 

by Proposition 29.2.1. Standard contradiction arguments together with the 
sequential compactness of lEn yield (29.8)-(29.10). 

(2) Let us show that both (B) and (C) imply (AI). Let lE = (0., F, (Po)oEe) 
be an accumulation point of the sequence lEn. Then lE is pairwise imperfect in 
view of (29.6). If (29.7) holds, then passing to the limit in this inequality we 
get 

1 - (1 - u)H({3j Po, P(l-u)O+ury) - uH({3j Pry, P(1-u)O+ury) 
(3 

+ log H(1 - Uj Po, Pry) ::; 0, 
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which implies (29.3) in view of (29.1). Similarly, (B) together with Lemma 29.1.2 
implies P(1-u)8+u7) = G(u; Po, P7)). In the both cases, lE is exponential by Propo­
sition 29.2.1. 

(3) The next step is to show that (A2) implies (AI). Take an arbitrary 
( E 8 and choose a 0 > 0 such that ( + oei E 8 for i = 1, ... , k. It follows 
from (A2) and standard contiguity arguments that, for all () E 8, the sequences 
(P[fk?l and (Pt)n?l are mutually contiguous and 

dP[f T 
log dPt = (() - () L\n - 'lj;n(()) + op(,(1), n -t 00, (29.11) 

where 'lj;n(()) = cPn(()) - cPn((). This relation will not change if we replace L\n 
by L\n - 0-1 ('lj;n(() + oe1), ... , 'lj;n(() + oek))T and 'lj;n(()) by 'lj;n(()) - 0-1 ('lj;n(() + 
oed, ... , 'lj;n(() + oek))(() - (). After this replacement, 'lj;n(() + oei) = 0 for 
i = 1, ... , k. Now (29.11) implies the tightness of the laws £(L\nIPt) since 

limiting distributions of the sequence £ ( ~~~ Ipt) are carried by (0,00) in view 

of the contiguity. 
Let lE = (O,.r, (Po)oEe) be an accumulation point of the sequence lEn, that 

is, there is a net (lEn>, )'>'EA, A is a directed set, such that lim.>. n.>. = 00 and 
lEn>, ~ lE. In view of the contiguity, the measures Po and Pc; are mutually 
absolutely continuous. Using the weak convergence and (29.11) for () E {( + 
oe1, ... , (+ oed, we get 

A ~ .\"-1 (1 dPC;+c5el 1 dPC;+c5ek) 
Ll u og dPC; , ... , og dPC; . 

Applying (29.11) for an arbitrary () E 8 and the contiguity, we obtain that 

and 
dPo T 
dPC; = exp((() - () L\ - 'lj;(())). 

The claim follows. 
(4) It remains to prove the implication (Al)::::}(A2) with pn = Pt, where ( 

is an arbitrary point in 8. Fix a 0> 0 such that (+ oei E 8, i = 1, ... , k. Put 

n dP[f 
Zo = dpn' 

C; 

zn = { z~, if z~ > 0, 
o 1, otherwise, 

and define L\n = 0-1 (log Z( +c5el ' ... , log Z( +c5ek) T . 

Since all accumulation points of (lEn) are homogeneous experiments, the 
sequences (P[f) and (Pt) are mutually contiguous for every () E 8. In particular, 
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P['(z(f t= Z(f) -t 0 as n -t 00. Therefore, 

dPl/ T 
log dpn = (O-() ~n+oP2(1), n -t 00, 0 E {(+oel, ... ,(+oek}. (29.12) 

( 

Let 0 belong to the convex hull 3 generated by ( and (+oei, i = 1, ... , k, i.e. 
there is an a = a(O) E A+ such that 0 = (a) and JOt ~ {(, (+ oel, . .. , (+ oed. 
By the definition of weighted geodesic means, if H(a; lEn) > 0, 

dG(a·lEn) dpn 
log d;n = L ao log dP~ -log H(a; lEn). 

( OElo\{O ( 

Substituting (29.12), we get 

dG(a;lEn) T 
log dP[, = (0 - () ~n - 'l/Jn(O) + oP2(1), n -t 00, 

where 'l/Jn(O) = logH(a;lEn). In view of (29.9), which has been already proved 
under (AI), we obtain that 

dPl/ T 
log dP[, = (0 - () ~n - 'l/Jn(O) + 01((1), n -t 00, o E 3. (29.13) 

Now assume that 0 E e \ 3. It is easy to find two vectors 01,02 E 3 and a 
number u E (0,1) such that 

If H(u; Pl/, P~) > 0, then 

dG(u; Pl/, P~) _ dPl/ dP~ . n n 
log dpn -ulog dpn +(I-u)logdpn -logH(u,Po ,Po2 ), 

( ( ( 

thus 

dP~ _ dPl/ dP~ . n n 
log dP[, - ulog dP[, + (1- u) log dP[, -log H(u, Po, P(2 ) + oP2(1), n -t 00, 

in view of (B) (which has also been proved under (AI)). Since (29.13) holds for 
01 and 02, we get 

dpn 
log dPt = (0 - () T ~n - 'l/Jn(O) + oP2(1), n -t 00, 

with 'l/Jn(O) = u-l'l/Jn(fh) - u- l (1 - U)'l/Jn(02) - u-llog H(u; Pl/, P~). • 

Let a sequence (lEn) satisfy the statements of the previous theorem. It 
follows from (29.9) that, for every set 3 that is a convex hull of a finite set, one 
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can construct a sequence iEn = (nn,Fn, (Plf)BES) of exponential experiments 
such that 

lim IIPlf - Plfll = 0, e E 3. 
n 

A natural question arises whether one can approximate En by exponential ex­
periments in the same sense on the whole parameter set 8. Such approximations 
are well known and play an important role in the case of local asymptotic nor­
mality. In the next theorem, we give a positive answer on the question posed 
if 8 = ~k. In the case where (En) is a weakly convergent sequence, another 
approximating construction was suggested in Gushchin and Valkeila (1998) for 
an arbitrary convex 8. 

Theorem 29.3.2 Assume that 8 = ~k and that a sequence of experiments 
En = (nn,Fn, (Plf)BEe) satisfies conditions (A1)-(C) of Theorem 1. Then there 
is a sequence of exponential experiments iEn = (nn,Fn, (Plf)BEe) satisfying 

lim IIPlf - Plfll = 0, e E 8. 
n->oo 

(29.14) 

The proof of Theorem 29.3.2 is based on the following lemma. 

Lemma 29.3.1 Let ~n and 'f]n, n ~ 1, be nonnegative random variables on a 
probability space (nn,Fn,pn). Assume that 

pn 
~n - 'f]n -----> 0, n ---+ 00, (29.15) 

and the sequence ('f]n, pn) is uniformly integrable. Then there are positive num­
bers an such that limn->oo an = (X) and the sequence (~n 1\ an, pn) is uniformly 
integrable. 

PROOF. Let En be the expectation with respect to pn. If En~n > En'f]n, define 
bn as any nonnegative number such that En(f;n 1\ bn) = EnTln ; otherwise, put 
bn = +00. First, we establish that 

(29.16) 

Assume the converse. Since the laws £('f]nlpn) are tight, the laws £(~nlpn) 
are also tight in view of (29.15). Thus, there is a subsequence (nj) such that 
the laws £(~nj 1\ bnj , ~nj - (~nj 1\ bnJ Ipnj) weakly converge, say, to £(~, eIP), 
where p(e > 0) > ° by the assumption. In particular, (bnj ) is bounded for 
sufficiently large j owing to the tightness of £(~nlpn). This implies 

E~ = .lim Enj(~n' 1\ bn ·) = lim Enj'f]n" )->00 J J )->00 J 

where the last equality follows from the choice of (bn ). On the other hand, 
£('f]nj IFnj) =? £(~ + eIP), hence 

lim Enj'f]n' = E(~ + e), )->00 J 
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and we arrive at a contradiction. 
Now we can conclude that limn-too Enl(~n 1\ bn) - 'l7nl = 0 and therefore the 

sequence (~n 1\ bn, pn) is uniformly integrable. Indeed, 

Enl(~n 1\ bn) - 'l7nl En((~n 1\ bn) - 'l7n) + 2En('I7n - (~n 1\ bn))1{1)n;:::~nl\bn} 

< 2En('I7n - (~n 1\ bn))1{1)n;:::~nl\bn}· 

The right-hand side of the previous inequality tends to zero since it is non­

negative and bounded by 'l7n and 'l7n - (~n 1\ bn) ~ 0 in view of (29.15) and 
(29.16). 

It follows from the above considerations that the sequence ((bn+1)1{~n>bn+1}' 
pn) is uniformly integrable and limn-too pn(~n > bn + 1) = O. Therefore, 

Now choose numbers Cn ~ 1 such that limn-too Cn = 00 and 

(29.17) 

Put an == (bn+1)cn. Clearly, limn-tooan = 00. We have ~nl\an ~ (~nl\bn)+1+ 
an1{~n>bn+l}. The sequence (an1{~n>bn+l}' pn) is uniformly integrable since its 
Ll(pn)-norms tend to zero as n ---t 00 in view of (29.17). Therefore, (~nl\an, pn) 
is also uniformly integrable. • 

PROOF OF THEOREM 29.3.2. Let el, ... , ek be the standard basis vectors in ~k. 
dpn 

Put z(f = ~, e E ]Rk. According to Theorem 29.3.1, the sequences (P;)n;:::l 

and (P~)n;:::l are mutually contiguous. In other words, this means that, for 
every e E ~k, 

the sequence (zo, P~)n;:::l is uniformly integrable, 

lim Eozo = 1 n-too 

(Eo is the expectation with respect to P~) and 

limiting distributions of £(zo I Po) are concentrated on (0, (0). 

(29.18) 

(29.19) 

(29.20) 

The idea of our construction is standard. Let 0 < an,i ~ An,i < 00, i = 
1, ... ,k, n = 1,2, ... , be numbers satisfying 

Put 

lim an i = 0, lim An i = 00, i = 1, ... , k. 
n---+oo' n-+oo' 

if an,i ~ z~ ~ An,i, 
otherwise. 

(29.21) 

(29.22) 
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k 

Yon = II (Yn,i)O;, 
i=l 

Due to (29.20)-(29.22), 

Z(l = E~~n' dPe = Z(ldPo· 
o 0 

lim Po(Yni-::FZ;) =0, i=l, ... ,k. 
n-+oo ' t 
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(29.23) 

It follows from (A2) (with pn = Po; see also (29.11)) and (29.20) that there 
are positive constants \Iln,o such that 

rrk (zn )0; 
n _ t=l e; + (1) Zo - \II oPo ' 

n,O 
n -+ 00, (29.24) 

and 
o < lim inf \II n,O ::; lim sup \II n,O < 00 

n~oo n-too 
(29.25) 

for a given e E ~k. In view of (29.23), 

n Y: ( ) Zo = ~ + 0 Po 1, n -+ 00. 
n,O 

(29.26) 

The trick of the proof is to choose numbers an,i and An,i in such a way that 
they satisfy (29.21) and 

the sequence (Yon, PO)n?l is uniformly integrable for every e E ~k. (29.27) 

Then the sequence lEn = (on, Fn, (Pe )OElftk) satisfies the conditions of the the­
orem. Indeed, it is evident that lEn is an exponential experiment. In view of 
(29.26), (29.18), (29.27), (29.25) and (29.19), 

1· E'OYon 1 
1m --= , 

n-+<X) \Iln,o 

hence 

n n Po 
Z() - Z () ----+ 0 and lim IIPe - Pell = 0, n-+<X) (29.28) 

Fix a number i E {I, ... , k}. Since Nei E e for every N = 1,2, ... , 

in view of (29.24). Taking into account (29.18) and (29.25), we can apply 
Lemma 29.3.1 with ~n = (z;JN and TJn = ZNe; \Iln,Ne; and to find numbers 
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A~) 2: 1 such that limn--->oo A~) = (Xl and the sequence (( z~ /\ A~») N , PC!) 
n>l 

is uniformly integrable. -
The next step is to find numbers An,i 2: 1 such that 

lim Ani = (Xl 
n-i-CX) , 

(29.29) 

and 

the sequence ((z~ /\ An i)N, Po)n>l is uniformly integrable 
" -

(29.30) 

for every N = 1,2, .... This can be done as follows. Define 

where (MN)N>l, Ml = 0, is a strictly increasing sequence of integer numbers. 

Then we have (29.30) since An,i ~ A~) for n 2: MN. To ensure (29.29), define 

recursively MN ~ 1 + max{n: A~l? /\ .' .. /\ A~) ~ N} V MN-l, N 2: 2, where 
max 0 ~ O. By the construction, MN-l < M; < (Xl and An,i 2: N if n 2: MN. 

Using the same construction for negative N, we construct similarly numbers 
an,i ~ 1 such that 

limani=O 
n-i-OO ' 

and the sequence ((z~. V ani)N,pC!)n>l is uniformly integrable for every N = " -
-1,-2, ... . 

Now, if Yn ,i are defined according to (29.22), we have (Yn,i)N ~ (z~ /\ 
An,i)N + 1 if N = 1,2, ... , and (Yn,i)N ~ (z~ V an,i)N + 1 if N = -1, -2, .... 
This means that (29.27) holds if () E {Nei: i = 1, ... , k, N = ±1, ±2, ... } and, 
hence, if () belongs to the coordinate axes. The same statement for all () E ~k 
follows now from the inequality 

k 

Yon ~ 1()1-1 L 10il(Yn,i)IOI sign 0; , 

i=l 

The proof is completed. 
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The Asymptotic Distribution of a Sequential 
Estimator for the Parameter in an AR(l) Model 
With Stable Errors 

J 
oop Mijnheer 

Leiden University, Leiden, The Netherlands 

Abstract: We consider the AR(l) model Xk = ,Xk-1 + ek , k = 1,2, ... , 

Xo 
= 0 a.s. and ek are LLd. with a stable distribution. We obtain the limit 

distribution of a sequential estimator for , . 

Keywords and phrases: AR(l) model, stable errors, sequential estimator 

30.1 Introduction 

A 
random variable € has a stable distribution function F(·; a, (3) if its 

characteristic function f is given by 

{ 
-ltIQ{l- i(3sign(t)tan(7ra/2)} if a E (0,1) U (1,2) 

log f(t) = (30.1) 
-Itl- i(3(2/7r)tlog(t) if a = 1 

and 1(31::; 1. Let e1, ... , en be independent and identically distributed 
(LLd.) with common distribution function F( . ; a, (3). Then, for all n, we 
have, for a =I- 1 , 

d 1 
e1 + ... + en n Q e1 (30.2) 

and, for a = 1 , 

(30.3) 
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d Here, denotes "has the same distribution as." In the notation of Samorod-

nit sky and Taqqu (1994), we have Cl 4 So«l, (3, 0). In this chapter, we restrict 
ourselves to those values for (Ct, (3) where the stability property (30.2) holds. 

We consider the following AR(l) model. 

Model I. 

Xo = 0 a.s. 

k = 1,2, .... 

Ck ' k = 1,2, ... , are LLd. with distribution function F( . ; Ct, (3) and satisfy 
the property (30.2). 

In this case, we also have the following stability property. 
For s, t > 0, 

(30.4) 

In Section 30.2, we give the limit distribution of a non-sequential estimator 
of , and in Section 30.3, for a sequential estimator. 

30.2 Non-Sequential Estimation 

The case q = 2 

In this case, we assume that ck ' k = 1,2, ... , are i.i.d. with a standard 
normal distribution. Let 1,1 < 1. Then, for n = 1,2, ... , 

(30.5) 

has a normal distribution with E Xn = 0 and (J'2(Xn) = (1- ,2)-1(1- ,2n) . 
For the maximum likelihood estimator or least-squares estimator in for " 
we obtain 

(30.6) 

From the model, we obtain 

n n n 

X~ + (1 - ,2) L X~_1 . 2, L X k-l C k + L c~ . (30.7) 
k=1 k=1 k=1 
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n 
First, we remark that L: X k _ 1 Ek is a martingale so that the martingale central 

k=l 
limit theorem implies, for n -? (X) , 

n 

_1 '" X ~ (1 - '"V2)-~ U . n 2 ~ k-lEk I (30.8) 
k=l 

Here, ~ denotes convergence in distribution, and U has a standard normal 
distribution. 
As a consequence, we have 

n 

n-1 L Xk_lE k ~ 0 for n -? (X) , 

k=l 

where ~ denotes convergence in probability. 

We also have n-1X;, ~ 0 for n -? O. The strong law of large numbers 
n 

gives us n-l L: Ei -? 1 a.s. for n -? (x). As a consequence we have, for 
k=l 

n -? (X) , by non-random normalization 

(30.9) 

This result was proved - without martingale results - in Anderson (1959); see 
also Lai and Siegmund (1983) and Shiryaev and Spokoiny (1997). From (30.7) 
and the assertions above, we have for n -? (X) , 

Therefore, by random normalization 

d 
---+ U . (30.10) 

The case a =I- 2 

First, we make two remarks on differences with the case a = 2. 

Remark 30.2.1 If El and E2 have distribution function F(·; a, (3), then 
"(El + E2 has the same distribution as 

for "( > 0 and 
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for "I < 0, where E has distribution function F(·; a, (3) with /3 = 
(3 (1 - I'YIO<) (1 + 1"110<)-1. Thus, for negative values for "I the characteristic 
exponent a, measuring the "fatness" of the tail(s), does not change but the 
parameter (3, measuring the "skewness", changes. This was already noticed in 
Mijnheer (1997b). In that paper, a related problem has been solved. To avoid 
this complication, we restrict ourselves from now on to the case 0 < "I < 1 . 

Remark 30.2.2 For stable laws, we have ElclP = 00 for p > a. Thus we 
can not use martingale techniques. 

Using (30.5) and the stability property (30.4), we obtain that 

Xn ,g, (1- 'Yno<)~ (1- 'YO<)-~ C1 . 

Thus, for n -> 00 , 

-.1X2 P 0 no< n--> . 

(30.11) 

(30.12) 

Since cI is in the domain of normal attraction of the stable law F(.;~, 1), 
we obtain for n -> 00 , 

d 
--> stable law F(·; -r, 1) (30.13) 

for some constant c. 
In order to obtain the limit distribution of 'Yn, we make use of the following 

proposition and theorem. 

Proposition 30.2.1 Let C1 and E2 be two independent random variables 
with distribution function F(·; a, (3). Let pO< + qO< = 1 and (3 = pO< _ qO< • 
Then, E1 E2 is in the domain of (non-normal) attraction of the stable law 

- - .1 1 F( .; a, (3), where (3 = (p20< + q20<) 0< - 2apq. 

PROOF. Let Y1 and Y2 be two Li.d. random variables with the distribution 
function given by 

{
I -0< 

P(Y, :0: Y) ~ 0 ~ Y 
, otherwise . 

It is a simple exercise to show that, for y> 1, 

In the case 0 < a < 1 and (3 = 1, we have P(E1 > 0) = 1 and, for x -> 00, 

(30.14) 
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see Chapter 2, Section 4 of Feller (1971). Then the result easily follows. In all 
other cases 0 < 0: < 2 and 1,61 i= 1, we have the tail behavior as given in 
the right hand side (rhs) of (30.14) for both tails. In the case where 1,61 = 1, 
one of the tails has the behavior as given in (30.14) and this tail dominates 
the other tail. The assertion follows from the criterium for random variables to 
belong to the domain of attraction of a stable law. See, for example, Theorem 1 
in Chapter 9, Section 8 in Feller (1971). • 

Theorem 30.2.1 Consider Model I as given in the Introduction. Let 0:,,6 
and /3 be as in Proposition 30.2.1. Then, for n ---+ 00 and some constant c, 

n 

C (nlogn)-i- L X k _ 1 Ck ~ S1 , 

k=1 

where 81 has distribution function F(·; 0: ,(3) . 

PROOF. There are in the literature results on stable limits for partial sums 
of dependent random variables. Most of them are for stationary sequences of 
random variables; see, for example, Davis (1983) and Jakubowski (1993, 1997). 

Consider Model II. 

k=1,2, ... 

cO, C1 , '" are i.i.d. with distribution function F(·; 0:,,6). In this model, we 

have stationarity. We have Xk 4 Xo for k = 1,2, .... 

Let (f: X k _ 1 Ck)' stand for summation in model i, i = I or II. We 
k=l t 

write 
n n 

(L X k _ 1 ck)u = (L X k _ 1 ck)r + Rn . 
k=l k=l 

Then 

( n-l ) d ( na l a _1-Rn = Xo C1 + "/C2 + ... + "/ cn = 1 - "/ ) 0; C1 C2 (1 - "/ ) 0; • 

Applying the result obtained in Proposition 30.2.1 we have, for n ---+ 00, 

(nlogn)-i- Rn ~ O. The assertion follows from the results in Davis (1983). 
We may also use the results of Jakubowski (1993, 1997) to show that there ex­
ists an asymptotic independent representation and then apply classical results 
for sums of independent random variables. • 
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In order to make use of the matrix notation, we introduce e~ = (cI , ... ,cn) , 
e~ = (cn+! , .. . ,c2n) and 

o 
1 

1 , 

o 1 

1 
1 
o 

(symmetric) . 

With this notation, we have 

where 

Q 2 (,n-IC1 + ... +cn) (cn+! + ... +,n-lc2n) 

d 2 2 
2 (1 _,na)a (1 _,a)-a Clc2 . 

Applying Proposition 30.2.1, we obtain (nlogn)--i- Q ~ 0 for n -+ 00. 

From the independence of the random variables Cl, ... , c2n and the struc­
ture of the matrix r2n, we deduce that e~ r n en and e~ r n en are independent 
and identically distributed. Let Yl and 1'2 be two independent copies of 

1 
lim {(nlogn)-a e~rnen}. From the foregoing assertions, we easily obtain 

n-+oo 

Yl + Y2 ~ 2 -i- YI. This assertion may be extended to m independent copies 
Yl, ... , Ym . Even if we take m = mn = logn, we can show 

Although we consider Model I, in which X k _ 1 ck ' k = 1,2, ... , is not a sta­
tionary sequence, we may use the foregoing results to check the two conditions 
in Theorem 9.1 in Jakubowski (1993) or Theorem 2.1 in Jakubowski (1997) 
applied to Model II in which X k _ 1 ck ' k = 1,2, ... , IS a stationary sequence. 

Now we are ready to formulate (the first part) of the limit behavior of in. 
As a consequence of the assertion in Theorem 30.2.1 we have, for n -+ 00, 

n 
_.a. '" X p 0 n a ~ k-l ck --t . 

k=l 

Using this result, together with (30.12) and (30.13), we obtain for some constant 
c and n -+ 00, 

cn-i- (logn)--i- (in -,) ~ BIlBo 

with Bo having distribution function F(·;~, 1) and Bl as in Theorem 30.2.1. 
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Remark 30.2.4 This result was, in the case 13 = 0, obtained in Davis and 
Resnick (1986). They also proved that 80 and 81 are independent! This 
will be proved in the following theorem. 

Theorem 30.2.2 

a. f= (X k-l C k ,ck
2 ) has an asymptotic independent representation. 

k=l II 

~ (81,80) where 

80 and 81 are indepen-

PROOF. In the proof of Theorem 30.2.1 we have mentioned the papers by 
Jakubowski (1993, 1997). In Jakubowski, Nagaev and Zaigraev (1997) these 
results are generalized to multivariate stable distributions. In the same way one 
may generalize these results to bivariate stable distributions where the marginal 
distributions have different characteristic exponents (i.e., the parameter a in 
F( . ; a, 13)). I do not know ifthere exists a reference in the literature. Now we 
apply Theorem 4 of Resnick and Greenwood (1979). We still have to compute 
the limit in (4.14) of Part iii of that Theorem. This is done in Proposition 3.1 
of Davis and Resnick (1986). • 

30.3 Sequential Estimation 

In the case of non-sequential estimation, we distinguish the cases 11'1 < 1, 
11'1 = 1, 11'1 > 1 and I'n = e~. In those cases, the least-squares estimator has 
different limit distributions. In the case of sequential estimation, we have in the 
first three cases the same limit distribution; see Shiryaev and Spokoiny (1997). 
They prove even stronger assertions. In Mijnheer (1997a), we summarize the 
results for the (non-sequential) least-squares estimator in the case of innovations 
with a stable distribution. 

We define for each h > 0 

n 

T(h) = inf {n ~ 1 : L XZ_ l ~ h} 
k=l 

(30.15) 

For a = 2 and 11'1 < 1 we have 

P-y a.s. (30.16) 
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This is Theorem 4.1, Part (i) of Lai and Siegmund (1983). In the same paper, 
they prove, for 111 ~ 1 (note the ~ sign) 

d 
~U, 

for h ~ 00. In Theorem 2.l.a of Shiryaev and Spokoiny (1997), this assertion 
is extended to the case 1,1 > 1. For 1,1 ~ 1, the limit behavior of T(h) is 
different from (30.16). 

Now we consider the case a 1= 2 and 0 < , < 1. The next theorem is 
the analogue of (30.16) in this case. 

Theorem 30.3.1 Let T(h) be defined by (30.15). Then) for x> 0) 

1!...~P(h-~T(h) ~x) = p((1_,2)~S~~ ~x), 

where So has distribution function F(.;!, 1) . 

n 
PROOF. Consider formula (30.7). One easily sees that l:: X2 dominates 

k=l k-1 
n 

X;' and applying Theorem 30.2.2 we obtain that l:: X k _ 1 ck is dominated 
k=l 

n 
by l:: c~. Take x fixed, then, for h ~ 00 , 

k=l 

[h~X] 
P(h-~ T(h) ~ x) P ( L X~_l? h) 

k=l 

[h~X] 
rv P ( L c~ ~ (1 - ,2) h) . 

k=l 

The assertion now easily follows if we notice that c~ is in the domain of normal 
attraction of F(.;!, 1) . • 

Remark 30.3.1 From the proof, it is clear that we also can define T by 

T(h) = inf {n ~ 1 : c~ + ... + c~ ~ h} . 

n 
Since E c~ = 00, the strong law of large numbers gives us n -1 l:: c2 ~ 00 

k=l k 
a.s. Thus, T(h) ~ 00 a.s. for h ~ 00. 

The main result of this Chapter is the following theorem. 
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Theorem 30.3.2 Let T(h) be defined by (30.15). Then, 

where 80 and 81 are as in Theorem 30.2.2. 

PROOF. Applying Theorem 2.3.b and Theorem 2.5.7 of Embrechts, Kliippelberg 
and Mikosch (1997), we have 

T(h) 
(T(h) logT(h))--!. L X k _ 1 ck 

k=1 

Now we use Theorem 30.3.1. Theorem 2.5.7 of Embrechts, Kliippelberg and 
Mikosch (1997) requires independence of (Xk_ 1 ck)~1 and T(h). Parts a and 
b Theorem 30.2.2 part a and b give us that this assumption causes no problems 
since there exists an asymptotic independent representation with independent 
components. • 
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Abstract: There exist distributions for which standard estimation techniques 
based on the probability density function are not applicable. As an alternative, 
the characteristic function is used. Certain distributions whose characteristic 
functions can be expressed in terms of Itla are such examples. Tailweight pro­
perties are first examined; it is shown that these laws are Paretian, their tail 
index 0: being one of the parameters defining these laws. Estimators similar to 
those proposed by Press (1972) for stable laws are then used for the estimation 
of the parameters of such laws and asymptotic properties are proved. As an 
illustration, the Linnik distribution is examined. 

Keywords and phrases: Characteristic function, consistent estimator, distri­
bution theory, Linnik distribution, order statistic, Paretian distribution, P6lya 
distribution, stable distribution, Sibuya distribution, tailweight 

31.1 Introduction 

There exist distributions for which standard estimation techniques based on 
the probability density function are not applicable. As an alternative, the 
characteristic function is used. 

The setting of this paper is more general than that in Jacques, Remillard, 
and Theodorescu (1999). Its plan is as follows. In Section 31.2, we show that 
certain distributions whose characteristic functions can be expressed in terms 
of Itla are Paretian and, as a special case, we consider the symmetric two­
parameter stable distribution, the three-parameter Linnik distribution, and the 
two-parameter Sibuya distribution. It turns out that 0:, one of the parameters 
of these laws, is their tail index. In Section 31.3, we examine the estimation of 
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the parameters of such distributions, by making use of some ideas concerning 
the adaptive estimators proposed by Press (1972) for stable laws [for an exten­
sive survey see Csorgo (1984)]. This method essentially uses the characteristic 
function. We also prove asymptotic properties of our estimators. As an illus­
tration, in Section 31.4 we consider the Linnik distribution. Finally, in Section 
31.5, we mention numerical results and we comment on estimator efficiency. 
Our approach is valid for the univariate as well as for the multivariate case. 
Here we restrict ourselves to the univariate case; for the multivariate case, see 
Jacques, Remillard, and Theodorescu (1999, Subsection 4.2). 

31.2 Tailweight Behavior 

Let a be a positive real number and let Po. denote the family of all random 
variables X for which we have the following tailweight property: 

lim xo.P(X > x) = c, 
x->oo 

where C is a positive constant, generally depending on a and eventually on other 
parameters. According to Mandelbrot (1962), we refer to Po. as the Paretian 
family of index a. 

Stable random variables are the most common representatives of the family 
Po.. For a E (0,2], Ibl ::; 1, and "I > 0, let So.Ar be a (centered) stable random 
variable with log characteristic function given by [Hall (1981)] 

log¢(t, a, b, "I) = -1"Itlo. [1 - ibsgn(t)w(t, a)] , t E R, (31.1) 

with 
w(t a) = { tan(7ra/2) for a # 1, 

, -27r-1log It I for a = 1. 

We have 

(31.2) 

Consequently, So.,b,,,( E Po. for every a E (0,2). 
Let now a E (0,2], {3, "I > ° and let us consider the function f : R ---+ R 

defined by 

(31.3) 

Linnik (1963, p. 67) showed that f(', a, 1, 1) is a characteristic function. 
Devroye (1990) proved in a short and elegant manner that if Lo.,(3,"( is a random 
variable distributed as the product So.,Q,"(T1/0. of two independent random vari­
ables, where T = T(3 is gamma({3, 1) distributed, then it has the characteristic 
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function (31.3). The symmetric distribution associated with (31.3) is called the 
Linnik distribution with parameters a, /3, "Y and is denoted by Linnik( a, /3, "Y). 
This distribution is continuous, symmetric, unimodal about zero, and its mo­
ment behavior is controlled by the tail index a. Also for /3 ---t 00 and an 
appropriate choice of "Y, we are led to a symmetric stable random variable. 
Moreover, the distribution Linnik(a, 1,"Y) is closed under geometric compound­
ing [Anderson (1992)]. 

Devroye's (1990) representation plays an important part in simulating 
La, (3, 'Y' Sa,O,'Y can be generated by means of the algorithm of Chambers, 
Mallows, and Stuck (1976) which is essentially based on a representation of 
Sa,O,'Y due to Zolotarev (1966); for the gamma distributed T, there exist good 
generators. 

We now examine the effect of multiplication on the asymptotic behavior of 
the upper tail probability. Let T be an arbitrary nonnegative random variable 
independent of Sa,O,'Y and consider the product Sa,o,'YTl/a. For such laws the 
asymptotic behavior of their upper tails is similar to that of the stable family. 
Indeed, if E(T) < 00, we obtain [Jacques, Remillard, and Theodorescu (1999, 
Proposition 2.5)] a result similar to (31.2): 

lim xa P (Sa o'VT1/ a > x) = "Ya f(a)E(T) sin(7ra/2). 
x~oo ' " 7r 

In particular if T = T(3, then 

lim xa P(La (3 'V > x) = /3"Ya f(a) sin(7ra/2). 
x~oo ' " 7r 

The characteristic function f of the product Sa,o,lTl /a has the form L(ltla), 
where L(u) = E[exp( -uT)] is the Laplace transform of T [see also Pakes (1998, 
p. 214) in connection with mixture representations for Linnik laws]. Observe 
also that such characteristic functions arise in connection with limits of sums 
of a random number of random variables; see Gnedenko (1983). 

Not all characteristic functions of the form L(ltla) come from products of 
the form Sa,o,lTl /a. For example, if L(t) is one of the covariance functions of 
a stationary Gaussian reciprocal process [Carmichael, Masse, and Theodorescu 
(1982)]' i.e., L(t) = max{O, 1 - Itl}, then L is not a Laplace transform but 

t E R, (31.4) 

is a characteristic function for any a E (0,1], 'Y > O. Such expressions also 
concern P6lya-type distributions [Lukacs (1970, p. 87)] whose simulation was 
dealt with by Devroye (1986, pp. 186-190 and p. 718). By analogy with the 
discrete case [Devroye (1993, p. 350)], we shall call the' distribution with the 
characteristic function (31.4) the Sibuya distribution with parameters a and "Y 
and we shall denote it by Sibuya( a, "Y) . 
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Whenever the right derivative of L exists at 0 and is negative, then 
n-IjOl I:~=l Xi converges in law as n -t 00 to 801 ,0,,,( with "(01 = -L'(O) , where 
the Xi 'S are independent and identically distributed copies of a random variable 
X with characteristic function L(ltI Ol ). Under these hypotheses, it follows from 
Feller (1971, Theorem la, p. 313) that 

lim xOl P(X > x) = -L'(O)r(a) sin(7ra /2) . 
x-->oo 7r 

The converse is also true. If X is a symmetric random variable in the Paretian 
family POI and n- I j Ol I:~=l Xi converges in law as n -t 00 to 801 ,0,,,(, then the 
right derivative of L at zero exists and "(01 = -£'(0). 

31.3 Parameter Estimation 

Standard parameter estimation techniques are not applicable to stable, Linnik, 
and Sibuya distributions since their probability density functions cannot be 
written in a simple form except for special cases. For these distributions, the 
parameter a is the tail index. So we may use any consistent tail index estimator, 
for instance de Haan's estimator, regardless whether the other parameters are 
known or not. This estimator is one possible choice among other estimators 
with nice properties. 

Let Xl, ... , Xn be a sample of size n from a random variable X and let 
Xn,l, ... , Xn,n be the associated ordered sample. De Haan's estimator (1981) 
for a is given by 

v logr 
a r = . 

log Xn,n - log Xn-r,n 

If X is Paretian, then for a suitable sequence kn the estimator akn -t a E (0,00] 
with probability one (Jacques, Remillard, and Theodorescu (1999, Theorem 
3.2)). Moreover log kn(a/akn - 1) converges in law to an extreme value ran­
dom variable with distribution function exp{ _e-X } [Jacques, Remillard, and 
Theodorescu (1999, Theorem 3.4)]. 

A possible estimation procedure is based on the papers of Press (1972), 
Paulson, Holcomb, and Leitch (1975), and Leitch and Paulson (1975) who dealt 
with stable distributions. Essentially, this procedure reduces to a minimizing 
problem (in the parameters of the law) of a weighted norm of the difference 
fn(t) - f(t), where fn is the empirical characteristic function. Anderson and 
Arnold (1993) examined the Linnik law with (3 = "( = 1. 

Quite a different estimation procedure relies on some ideas concerning the 
adaptive estimators proposed by Press (1972) for stable distributions [for an 
extensive survey, see Csorgo (1984)]. From now on, we shall follow this path. 
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Since all estimations are based on the real part Un of the empirical characteristic 
function fn, we begin with a result on the asymptotic behavior of Un - f. 

From Csorgo (1981, Theorem 3, p. 133), we have the following. 

Proposition 31.3.1 Suppose that f is the characteristic function of a sym­
metric random variable X such that for some a > 0, x Ct p (X > x) is bounded. 
If T > ° is given and n ---t 00, then SUPtE[O,rj IUn(t) - f(t)1 converges a.s. to 
zero and n1/2(Un(t) - f(t)) converges in law in C([O, TJ) to a centered Gaussian 
process Q(t) with covariance function v(t, s) = [f(t+s) + f(t - s) - 2f(t)f(s)J/2 
onR2. 

In view of (31.1), (31.3), and (31.4), we observe that the characteristic 
functions of symmetric stable, Linnik, and Sibuya distributions can be written 
in a unified form as functions of ItICt • 

Estimating a and "y (L known) 

Let Xl, ... , Xn be a sample of size n from a distribution whose probability 
density function is of the form f(t) = L(¢(t)), where ¢(t) = l')'tlCt and L is a 
known function. For the Linnik law, L is known when f3 is known. Suppose there 
exists an open interval I = L-1((0, 1)) such that L is continuously differentiable 
on I and is a one-to-one mapping of I onto (0,1). 

In order to formulate our results, we need the following notations: 

Y(t) = 

a(t) = 

c 

v(t,s) 

w(t,s) 

{ log L-1(f(t)) = a(log')' + log It I) for f(t) E (0,1), (31.5) 
1 otherwise, 

{ logL-1(Un(t)) for Un(t) E (0,1), 
1 otherwise, 

1 
L-1 (f(t))£'(L-1 (f(t)) , 

2::3=11hlog Itil- c)2' 

[j(t + s) + f(t - s) - 2f(t)f(s)J/2, 

a(t)a(s)v(t, s) 

for f(td, Un(ti) E (0,1), 1 ~ i ~ q, q ~ 2, such that 2::3=1 (log Itjl - c)2 > 0; 
T stands for transposition. 
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For our three particular distributions, we have the following: 

law I L(t) L-l(t) a(t) 

stable (0,00) e-t -logt 
1 

f(t) log f(t) 

Linnik (0, (0) (1 + t)-f3 C 1/f3 - 1 
f(t)-I/ f3 -1 

{3(j(t)-I/f3 - 1) 

Sibuya (0,1) 1-t 1-t 
1 

1 - f(t) 

Further, set 

q 

a; = L Yn(tj)bj 
j=1 

and 

An argument similar to the one in Jacques, Remillard, and Theodorescu 
(1999, Proposition 4.1) yields the following. 

Proposition 31.3.2 Let L be known. Then, a~ and ')'~ are a.s. consistent 
estimators of a and,)" respectively. 

Further, by using a Slutski-type argument [Jacques, Remillard, and Theodo­
rescu (1999, Theorem 4.2)], we obtain the following normality property. 

Theorem 31.3.1 Let L be known. Then, n1/2 (a~ - a, ')'~ - ')') T converges in 
law as n ---* 00 to a bivariate centered Gaussian vector with covariance matrix 
WI = (wl(i,j)), 

wl(1,1) 

WI (1,2) = WI (2,1) 

wl(2, 2) 

bTWb , 
2(1/q - b(c + log')')) T Wb, 
a 

( ~ ) 2 (1/ q _ b( c + log ,) ) T W (1/ q - b( c + log')') ) , 

where W = (W(ti' tj)) and 1 = (1, ... , 1)T. 
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Remark 31.3.1 Simultaneous asymptotic confidence intervals for a and'Y may 
be obtained by using Theorem 31.3.1. In practice, because of rounding errors, 
we recommend to estimate WI in the following way: n-1 Ei=I(Zn - Z)(Zn­
Z)T, where 

( 
q 'YP q ) T 

Zn = j; an (tj)bj COS(tjXi) , a~ j; an(tj)(1/q - bj(c + log'Y;)) cOS(tjXi) , 

and 
1 

an(t) = - L -1 (Un(t))L'(L -1 (Un(t)) . 

Remark 31.3.2 Suppose that for a certain family of distributions, the possible 
range of a is (O,ao], where ° < aD :S 2. In this case, take an = min{a~,ao} 
and construct confidence intervals [an - 1.960"nn-1/ 2 , an + 1.960"nn-1/ 2 j for a. 
Then the empirical significance level, i.e., the relative frequency, Pa of those 
intervals which do not contain a converges a.s. to 0.05 if a < aD and to 0.025 
if a = aD. Here, 0"; is an estimation of b T Wb. 

Estimating L (0 or one of its consistent estimators known) 

Suppose that U(t) = Re f(t) can be expressed as a unknown function L of 
4>(t) = ta , where a or one of its consistent estimators is known; in either case, 
we set an to denote it. Here we use the same symbols Land 4> with a slightly 
different meaning. For the symmetric stable law and the Sibuya law, this means 
that 'Y is unknown and for a Linnik law that f3 and 'Yare unknown. 

Set Ln(t) = Un (t 1/ an ) and £(t) = Q(t1/ a ). 

Theorem 31.3.2 Let an be a consistent estimator of a and suppose that 

Sn(an - a, Un(t) - U(t)) => (A, hQ(t)) (31.6) 

in R x C([O, 1]) as n ---t 00, where => stands for convergence in law, A is a 
random variable, and 

snn-1/ 2 ---t h E [0, (0). 

If P(A t= 0) > 0, suppose in addition that L is continuously differentiable on 
(0, (0). Then, sn(an - a, Ln(t) - L(t)) converges in R x C([O, (0)) as n ---t 00 
to (A,1t(t)), where 1t(t) = X(t)A + h£(t) and X( .) is a continuous function 
defined by X(t) = L'(t)ta-1 Iogt, t> 0, and X(O) = 0. 

If the differentiability condition is replaced by the assumption that L admits 
right and left derivatives D± L which are respectively right-continuous and left­
continuous on (0,00) and if lim D±L(t)tlog t = 0, then for any T > 0, 

tlO 

sup Isn(Ln(t) - L(t)) - max{O, sn(an - a)}x+(t) 
Og~T 

-Sn (Un(t1/ a ) - U(t1/ a )) - min{O,sn(an - a)}x-(t)1 
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converges in probability to zero, where X±( . ) is the function defined by X±(t) = 

D± L(t)ta-1log t, t> 0, and X±(O) = 0. 

PROOF. Since sn(Ln(t) - L(t)) can be written as the sum of sn(L(ta/an ) - L(t)) 
and Sn(Un(t1/an ) - U(t1/an)), and since 

sup ISn(Un(t1/an) - U(t1/an )) - Sn(Un(t1/a) - U(t1/a)) I 
tE[O,T] 

converges in probability to zero by Proposition 31.3.1, the result follows from 
the hypotheses on D± L, from a Slutski-type argument [Jacques, Remillard, and 
Theodorescu (1999, Theorem 4.2)], and from the following representation: 

sn(L(tan ) - L(t)) 

max{O, sn(an - I)} 101 D+ L(t1+u (an-1))t1+u (an-1) logtdu 

+ min{O, sn(an - I)} 101 D-L(t1+u (an-1))t1+u (an-1) log t du, 

• 
Remark 31.3.3 If h = 0, (31.6) is equivalent to the convergence in law of 
Sn(an -a) to a random variable A as n ---t 00. If L is continuously differentiable 
on (0, (0), then the limit in Theorem 31.3.2 is (A, X( • )A). 

Remark 31.3.4 If a is known, we take Sn = n-1/ 2 and (31.6) is satisfied with 
A = ° and h = 1. In this case n-1/2 (Ln(t) - L(t)) converges in C([O, (0)) as 
n ---t 00 to £(t). 

Remark 31.3.5 In view of applications, observe that if X is a random variable 
with characteristic function L(ltl a ) and if E(IXIP) < 00 for some p > 1, then L 
is differentiable, so X+(t) = X-(t) = X(t) may be consistently estimated by 

t 2: 0, 

since Xn(t) converges in probability to X(t), t 2: 0, as n ---t 00. An interesting 
application where we do not have to estimate X is the test Ho : L = Lo versus 
HI : L i- Lo, for a known function Lo. 

Let us be more specific about the function L in a parametric context. Sup­
pose that U(t) = L(ltla , e), where e E e c Rk is an open subset. The goal is 
to estimate e. To this end suppose that, for some t1, ... , tk, the mapping 
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is of class CIon 8 and that 'ljJ'(e) is invertible for all e E 8. It follows that 
'ljJ(8) is open and that for fixed (j E 8 and b = 'ljJ(e), there exist open sets U and 
V, depending on e such that (j E U, b E V, 'ljJ is one-to-one on U, 'ljJ(U) = V. 
Moreover if r = 'ljJ-1, it is uniquely defined on V by r 0 'ljJ(e) = e for all e E U, 

- -1 - -
and r is of class Clan V. Finally r'(b) = ('ljJ') 0 g(b) for all bE V. 

In view of this discussion, set 

and define (jn by r(bn) = 'ljJ-1(bn) for bn E 'ljJ(8) and (jn = (jo otherwise for a 
fixed (jo E 8. 

We obtain immediately the following. 

Proposition 31.3.3 Under the preceding hypotheses, (jn is a consistent 
(a.s. consistent) estimator of (j if O:n is a consistent (a.s. consistent) estimator 
of 0:. 

The following asymptotic result also holds. 

Theorem 31.3.3 Under the hypotheses of Theorem 31.3.2, sn((jn - (j) con­
verges in law to '7r(b) (H(td, ... , H(tk)) T as n ---t 00, where '7r is the matrix 
with entries ~, 1 ~ i,j, ~ k. 

J 

31.4 An Illustration 

To illustrate the last result, let us consider Linnik laws when {3 is not known. 
Here, L(t, (3, '1) = (1 + '1t)-f3. Note that this notation is consistent with the 
previous one if we set 'YO: = '1. 

Suppose that 0: or one of its consistent estimators is known and in either 
case set it as O:n. Consider (j = ({3,'Y)T E 8 = (0,00)2 and for 0 < t1 < t2, let 
us examine the mapping 

The range of 'ljJ is 

The mapping 'ljJ is invertible if (Sl' S2) E W or equivalently 
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where Si = L(td = (1 +..yti)-.8, i = 1,2. 
Further, the mapping 

-1//3 
(3- s1 - 1 . ( log S1) 

---+ - 'In 0,--
s"21/f3 _ 1 log S2 

is increasing, so there is a unique solution 71 (S1' S2) (in 13) of the equation 

Set 

and 

for 

(31.7) 

and (3~ = iX = 1 otherwise. Next, denote by D the expression 

Then the entries of the matrix \7 T are given by 

Proposition 31.4.1 Let a or one of its consistent (a.s. consistent) estimators 
be known; in either case, denote it by an. If (31. 7) holds, then (3~, 'Y~, and 
'Y~ = ('Y~)l/an are consistent (a.s. consistent) estimators of (3, 1', and 'Y = 

('Y)1/a respectively. 

PROOF. We apply Proposition 31.3.3. • 
Set q(t) = (1 + t) log[(l + t)/tJ, t> O. We also have the following. 

Theorem 31.4.1 Let an be a consistent estimator of a and suppose that 

Sn(an - a, Un(t) - U(t)) =? (.4, hQ(t)) 
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in R x C([O, 1]) as n --t 00 in such a way that 

Snn-1/ 2 --t h E [0, (0). 

Then, Sn (,6~ - ,6, -y~ - -y) T converges in law to 

as n --t 00, where 

,T _ ( (1 + -ytl)!3+1 _ (1 + -yt2)!3+1 ) 
- -ytl(q(-yt2) - q(-ytl)) ' -yt2(q(-yt2) - q(-ytt)) , 

T ( q(-yt2) (1 + -ytl)!3+1 q(-ytt)(1 + -yt2)!3+1 ) 
1] = - ,6tl(q(-yt2) - q(-ytl)) ' ,6t2(q(-yt2) - q(-ytt)) , 

and 
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here, (£(tt),£(t2))T is distributed as a centered bivariate Gaussian random 

vector with covariance matrix V = (v(1 - t~/D<, 1 - t}/D<)). 

Moreover, Sn (,6~ - ,6,,~ - ,) T con verges in law to 

PROOF. The result follows from the preceding calculations of Y'T and Theorem 
31.3.3. • 

Remark 31.4.1 Since L(t) = (1 + ,t)-!3 is the Laplace transform of a gamma 
random variable with parameters ,6 and " observe that Proposition 31.4.1 
and Theorem 31.4.1 concern the estimation of the parameters of a gamma 
distribution from estimates of its Laplace transform. 

Remark 31.4.2 Take an = min{akn' 2}. In order to construct 95% confidence 
intervals for ,6 and " we proceed as follows: if an = 2, apply Theorem 31.4.1 
with Sn = n 1/ 2 and A = 0; if an < 2, apply Theorem 31.4.1 with h = O. Since 
P(an = 2) --t 1 when the true value of a is 2 and P(an = 2) --t 0 when the 
true value of a is less than 2, we obtain that the asymptotic significance of the 
confidence intervals for ,6 and, constructed by this method is 95%. 

In the case h = 0, Theorem 31.4.1 can be restated in the following way. 
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Theorem 31.4.2 Let an be a consistent estimator of a and suppose that 
sn(an - a) converges in law to a random variable A as n ---+ 00 in such a 
way that snn-1/ 2 ---+ O. Then, sn(an - a, (3; - (3,1'; - ')')T converges in law to 

e'A, where e'T = (l,e) E R3 with e given by (31.8). 

Remark 31.4.3 Theorem 31.4.2 yields simultaneous asymptotic confidence in­
tervals for a, (3, and ')'. 

31.5 Numerical Results and Estimator Efficiency 

For Sibuya laws, we simulated samples of size n = 102 , 5 X 102 , 103 , and we 
estimated a and')' using Theorem 31.3.1 with two points tl and t2' The results 
are shown below. It appears that the estimations are quite good, even for small 
samples. 

Empirical significance level POt, P-y corresponding 
to a theoretical significance level of 5% 

(A) Simulated samples with a = 0.4, ')' = 5.0 

100 0.01 0.1 0.0561 0.0615 
500 0.01 0.1 0.0539 0.0552 

1000 0.01 0.1 0.0493 0.0499 

(B) Simulated samples with a = 0.8, ')' = 2.0 

100 0.01 0.1 0.0407 0.0635 
500 0.01 0.1 0.0416 0.0495 

1000 0.01 0.1 0.0511 0.0498 

(C) Simulated samples with a = 1.0, ')' = 0.3 

100 0.05 0.5 0.0322 0.2593 
500 0.05 0.5 0.0265 0.0618 

1000 0.05 0.5 0.0263 0.0358 
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For the estimation of 0:, we used the minimum between o:~ and 1. The results 
are consistent with Remark 31.3.2. 

In Jacques, Remillard, and Theodorescu (1999, Subsection 4.3), we sim­
ulated several samples of size n = 102, 5 X 102 , 103, 5 X 103 , 104, 105 from 
univariate Linnik laws. We considered two points tl and t2. Generally, we 
were satisfied with the estimations obtained for 0:, {3, and'Y for n ;::: 5 x 103 , 

although the estimations showed a high degree of variability with respect to 
tl and t2. When (3 was known, this variability diminished tremendously. For 
certain 0: < 1, we obtained most satisfactory results even for n = 102 . For 
104 samples, we scored a satisfactory percentage of estimations within the 95% 
confidence interval. From the expression of Yn and from (31.5), we deduce that 
tl and t2 should be restricted to a region where Yn(t) is 'linear' with respect to 
log Itl. 

The asymptotic efficiency of the adaptive Press-type estimators depends on 
the chosen finite point set ti, 1 ::; i ::; q. A possible approach may follow the 
line indicated by Csorgo (1984) for stable laws, namely, take a 'good' estimator 
(j of the parameter () we are concerned with, find the expression of its limiting 
variance and determine the ti's which are minimizing the expression obtained 
by replacing in this variance f by Un, say tHn), 1 ::; i ::; q, under appropriate 
conditions ensuring uniqueness. Let us go back to our estimator replacing 
the ti's by the values tHn)'s and prove that consistency and other asymptotic 
properties still hold. 
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Asymptotic Behavior of Approximate Entropy 

Andrew L. Rukhin 

University of Maryland at Baltimore County, Baltimore, Maryland 

Abstract: In this chapter, a new concept of approximate entropy is modified 
and applied to the problem of testing the randomness of a string of binary 
bits. This concept has been introduced in a series of papers by Pincus and 
co-authors. The corresponding statistic is designed to measure the degree of 
randomness of observed sequences. It is evaluated through incremental con­
trasts of empirical entropies based on the frequencies of different patterns in 
the sequence. Sequences with large approximate entropy must have substan­
tial fluctuation or irregularity. Alternatively, small values of this characteristic 
imply strong regularity, or lack of randomness. Tractable small sample distribu­
tions are hardly available, and testing randomness is based, as a rule, on fairly 
long strings. Therefore, to have rigorous statistical tests of randomess based on 
this approximate entropy statistic, one needs the limiting distribution of this 
characteristic under the randomness assumption. Until now, this distribution 
remained unknown and was thought to be difficult to obtain. The key step 
leading to the limiting distribution of approximate entropy is a modification of 
its definition based on the frequencies of different patterns in the augmented 
or circular version of the original sequence. It is shown that the approximate 
entropy as well as its modified version converges in distribution to a x2-random 
variable. 

Keywords and phrases: Covariance, entropy, generalized inverse, X2-distrib­
ution 

32.1 Introduction and Summary 

In this chapter, we investigate the asymptotic behavior of approximate entropy 
which is used in the problem of testing for randomness a sequence of binary 
(or s-ary) bits. This problem is interpreted as testing for uniformity of the 
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distribution of all templates (words) of a given length. The suggested statistic 
is based on the comparison of the templates in the sequence that are similar 
with those corresponding to the length incremented by one unit. 

This characteristic, the so-called approximate entropy, was suggested by 
Pincus and Singer (1996) as a measure of the degree of randomness of a se­
quence. Actually versions of it are studied in a series of papers by Pincus and 
co-authors [Pincus (1991), Pincus and Huang (1992), and Pincus and Kalman 
(1997)]. 

To elucidate the use of the approximate entropy in the problem of testing for 
randomness, denote by Ek, k = 1,2, ... ,n, the observed sequence of independent 
random variables taking values in the finite set {I, ... , 8}. For a given word, 
Yi(m) = (Ei, ... , EHm-t) , i ~ n - m + 1, let 

Di = 1 # {j : 1 ~ j < n - m, Yj(m) = Yi(m)} 
n+1-m 

and put 
1 n+l-m 

<I>(m) = L log Di, 
n + 1- m i=l 

Thus, Di is the relative frequency of occurrences of the template Yi(m) in 
the sequence, and _<I>(m) is the entropy of the empirical distribution arising 
on the observed subset of the set of all 8 m possible patterns of length m. For 
Yi(m) = (il, ... , im ), let V:1 ... i m = Di denote the relative frequency of this 
pattern in our string. Then <I>(m) can be written in an alternative form 

<I>(m) - '" v' . log v' . - L...J 'l.l···l,m 1.1 "·'lm . 

il···im 

The approximate entropy ApEn of order m, m 2 1, is defined as 

ApEn(m) = <I>(m) - <I>(m+1) 

with ApEn(O) = -<I>(1). "ApEn(m) measures the logarithmic frequency with 
which blocks of length m that are close together remain close together for 
blocks augmented by one position. Thus, small values of ApEn(m) imply strong 
regularity, or persistence, in a sequence. Alternatively, large values of ApEn( m) 
imply substantial fluctuation, or irregularity .. " [Pincus and Singer (1996, p. 
2083)]. 

Pincus and Kalman (1997) defined a sequence to be m-irregular (m-random) 
if its approximate entropy ApEn(m) takes the largest possible value. They 
evaluated quantities ApEn(m) , m = 0,1,2 for binary and decimal expansions 
of e, 7r, J2 and v'3 with the surprising conclusion that the expansion of v'3 
demonstrated much more irregularity than that of 7r. 

Since -<I>(m) is the entropy of the empirical distribution which under ran­
domness assumption must be approximately uniform, one should expect that 
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for fixed m , ~(m) rv -m log s and ApEn(m) = ~(m) - ~(m+l) ~ logs. Indeed, 
this convergence follows from Theorem 2 in Pincus (1991). 

Pincus and Huang (1992, p. 3072) indicate that "analytic proofs of asymp­
totic normality and especially explicit variance estimates for ApEn appear to 
be extremely difficult." However, the limiting distribution of ApEn(m) -log s 
is needed to have rigorous statistical tests of randomness based on this statistic, 
especially since testing randomness is based, as a rule, on fairly long sequences. 

32.2 Modified Definition of Approximate Entropy 
and Covariance Matrix for Frequencies 

The important step leading to the form of the limiting distribution of approxi­
mate entropy is a modification of its definition as follows. The modified version 
of the empirical distribution entropy _~(m) is 

~(m) - ~ I/' - log 1/- -- ~ 11- --1m 11- --1m , (32.1) 
il -- -im 

where vil ---im = Wil---im/n denotes the relative frequency of the template 
(iI, ... ,im ) in the augmented (or circular) version of the original string, that 
is, in the string (El, . •. , En, 101, ... , Em-I). 

Observe that under this definition wil --- im = Ek wil ---imk , so that for any m, 
Eil---im wil ---im = n. 

Define the modified approximate entropy as 

ApEn(m) = <i>(m) - <i>(m+1) . (32.2) 

By Jensen's inequality, log s 2: ApEn(m) for any m, whereas it is possible that 
log s < ApEn( m). Therefore the largest possible value of ApEn( m) is merely 
log s, which is attained when n = sm and the distribution of all m-patterns is 
uniform. This is a definite advantage of ApEn(m) . Also when calculating the 
approximate entropy for several values of m, it is very convenient to have the 
sum of all frequencies of m-templates to be equal to n. 

The maximally random sequences under the definition (32.2) have the em­
pirical distribution of all patterns of a given length (in a circular version of 
the sequence) as close as possible to the uniform distribution. For example, 
from the point of view of ApEn(l) the maximally random binary strings with 
n = 5, which have three zeros and two ones, are (O , O , l,l,~and (0,1 , 1,0,0) 
[see Pincus and Singer (1996, p. 2084)]. According to ApEn(m), one should 
add two sequences (1,1,0, 0,0) and (1,0,0,0,1). 
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Still when n is large, ApEn(m) and ApEn(m) cannot differ much. Indeed, 
one has with w~ . = (n - m + 1)7/~ . Zl" 'Zm Zl " 'Zm 

L w~l"'im=n-m+l, 
il .. ·im 

(32.3) 

which suggests that for a fixed m, <p(m) and ~(m) must be close for large n. 
Therefore, Pincus' approximate entropy and (32.2) also are close, and their 
asymptotic distributions must coincide. 

The derivation of this distribution is based on the limiting covariance matrix 
of the joint distribution of wil .. . im. Clearly 

n 

wil .. ·im = L 6'(il ···im),(€J" " '€J+m-l) 
)=1 

with 6'i,£ denoting the Kronecker symbol for two m-indices, i and f. For any fixed 
m-pattern, i1 ... i m , the random variables 6'(il ... im),(EJ ... EJ+m-l) are m-dependent, 
so that for Ii - kl 2:: m 

Cov (6'(il ... im),(Ei'''',€i+m-I)' 6'(jl .. -jm),(€k,- .. ,Ek+m-l)) = o. 

As E6'(il .. . i m ),(€i ... € i+m-l) = 8-m , one has for r = Ii - kl < m when i ~ k 

Cov (6'(il ... im),(€i, ... ,Ei+m-l)' 6'(jl .. -jm),(€k, ... ,Ek+m_ 1)) 

1 1 
= 8 m +r 6'(ir+l ... im) ,(jl .. . jm-r) - 82m ' 

Therefore, 

n n 
COV (Wil· .. im, Wjl .. -jm) = m6'(il .. ·im),(jl .. . jm) - 2m 

8 8 

m-1 1 1 2 
+ n L [6'(ir+l .. . im),(i!- .. jm-r) 8m+r + 6'(il .. ·im- r ),(jr+l ... jm) 8m+r - 82m ]' 

r=l 

Now we introduce the matrix ~ = ~m formed by n-1Cov (Wi1 .. ·im , Wjl .. -jm) , i.e. 
by the elements 

1 2m-l 
O"il ... im)·l"')·m = -6'(. .) ( . .) - -.,,----8m Zl"'Zm, )l .. ·)m 8 2m 

m-1 1 
+ L [6'(ir+1' .. im),(jl ... jm-r) + 6'(il ... im- r ),(jr+l ... jm)] 8m+r' 

r=l 

(32.4) 
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Observe that because of our definition of counting the frequencies, the ele­
ments of the matrix 2:m+ 1 are related to those of 2:m by the formula 

L (JiIoooiTnijloo-jTnj = (JiIoooiTnjloo-jTn' 
ij 

The rank of the matrix 2:m+l is 8m +! - 8m . Indeed, let the 8 m+1-dimensional 
vector em+ 1 have all coordinates equal to one. Then it belongs to the null space 
of 2:m+! as for any iI, ... , im+! 

L (JiIoooiTn+dloo-jTn+! = O. 
jIoo-jTn+! 

Consider the vectors whose (il ... im+d-th coordinate has the form 

6(iIoooim),(kloookm) - 6(i2oooim+I),(kloookm) for some k1, ... , km . Then 

L (JiIoooim+dloo-jm+1 6(h oo-jm),(kloookm ) 
jIoo-jm+! 

L (JiIoooim+lkloookmj 
j 

1 2m 
8m+1 6(iIoooim),(kloookm) - 82m+! 

(32.5) 

m 1 m-l 1 
+ ~ 6(ir+Ioooim+!),(kloookm+!_r) 8m+r + ~ 6(iIoooim_r),(kr+loookm) 8 m+r +1 

2m m-l 1 
- 2m+l + L [6(ir+2oooirn+l),(kloookrn_r) + 6(iloooirn_r),(kr+loookm)] m+r+l 

8 r=O 8 

~ m 1 
- 2m+l + L [6(ir+Ioooim+I),(kloookm_r+l) + 6(iIoOoiTn_r+!),(kroookTn)] m+r 

8 ~l 8 

L (JiIoooim+dkloookm = L (JiIoooiTn+dloo-jTn+1 6(j2ooojm+I),(kloookm)' (32.6) 
j jIoo-jm+1 

Thus all these vectors also belong to the null space of 2:m+ 1, and, as one can 
show, together with em+! they span this space. As there are 8 m - 1 linearly 
independent vectors of the form above, the dimension of the null space is 8 m . 

Thus 2:m+ 1 is not invertible, but we show now that its generalized inverse 
2:;;;'+ 1 has the form 

(32.7) 

with the 8 m+ 1 X 8 m+ 1 block-diagonal matrix Q formed by 8m blocks Qo of size 
8 x 8, 

Qo = 811 - elef, 
Here, 11 denotes the identity matrix of size 8 x 8. Thus 

Q = 81m+!- E. 
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Here E is a block-diagonal matrix formed by sm blocks formed by ones each of 
size s x s. 

Indeed we show now that 

or that 
(32.8) 

Because of (32.5), the elements of the matrix in the left-hand side have the form 

m 

L L O"il .. oim+1kl oo okm+l [8(kr+loo okm),(jloooim_r) + 8(kl oookm_r),(ir+1 oooim)] sIr 
r=l kloookm+l 

with i1 ... im+1 and j1 ... jm+1 denoting the the row and the column respectively 
of this matrix. 

On the other hand, the corresponding elements of sm~m+1E~m+1 are by 
(32.6) 

sm L O"iloooim+lkloookm+lO"kl oo okmR.il oo -jm+1 
kloo okm+lR. 

L O"iloooim+lkloookm+l [- s:":-l 
kloookm+l 

m 1 
+ L (8(kr+1oookm),(iloooim_r) + 8(klo oo km_r),(ir+loooim») sr] 

r=l 
m 

L L O"ilo ooim+lkloookm+1 
r=l kl oo okm+l 

X [8(kr+1 oookm),(i! oo oim_r) + 8(kl oookm_r),(jr+l oo oim)] :r' 
Thus both matrices in (32.8) coincide, and a generalized inverse of ~m+1 is 
given by (32.7). 

We will use the formulas (32.4) and (32.7) in the next Section to obtain 
the limiting distribution of the approximate entropy. Note that (32.7) is a 
generalized inverse for a more general class of covariance matrices including 
~m+1' For example, it is also a generalized inverse for the covariance matrix of 
frequencies corresponding to non-overlapping words, that is, to the covariance 
matrix of a multinomial distribution [Rukhin (1998)J. 



Asymptotic Behavior of Approximate Entropy 457 

In this chapter, we show that the asymptotic distribution of 2n[log s -

ApEn(m)] is the familiar X2-distribution. As n[ApEn(m) - ApEn(m)] = 
o p (n -1) , the limiting distributions of Pincus' approximate entropy and of 

ApEn(m) coincide. This fact leads to an easily implement able statistical tests 
of randomness via the approximate entropy. See Knuth (1981) for a description 
of classical test procedures for randomness. 

32.3 Limiting Distribution of Approximate Entropy 

We prove here that the limiting distribution of 2n[log s - ApEn(m)] coincides 
with that ofax2-random variable, X2(sm+1 - sm), with sm+l - sm degrees of 
freedom. 

Theorem 32.3.1 For fixed m, as n ---t 00, one has the following convergence 
in distribution 

Also 
n[ApEn(m) - ApEn(m)] = Op (n- l ) , 

so that 

PROOF. Let us start with the limit theorem for ApEn(m). One has 

~(m) - "1/' . log 1/' . 
- ~ ~l'''~m ~l"'~m 

il"·im 

with vil".im denoting the relative frequency of the pattern (il,···, i m ) in the 
string of bits (EI, ... , En, EI, ... , Em-I). 

Let 

Zil,,·im = vn [Vi1"'im - s~] . 
Then by the Central Limit Theorem for m-dependent random vectors [Ibragi­
mov and Linnik (1971)], the vector formed by Zil'''im has the asymptotic mul­
tivariate normal distribution with zero mean and the covariance matrix I:m as 
in (32.4). Since with probability one, L Zil".im = 0, 

2mZ2 ( 1 ) m S il".im S 2 
- 2 + Op 3/2] '" -m log s + -2 L Zil,,·im · n n n. . 

~l"'~m 
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Using a similar notation for patterns of length m + 1, let lIilo " imim+l be the 
relative frequencies, and let Z = (Ziloooimim+l) denote the vector formed by cor­
responding differences between empirical and theoretical probabilities. Then, 
because of our convention for counting the frequencies 

and 

Thus 

s 

Zil oooim = L Ziloooimk 
k=l 

sm+l 
~(m+l) rv -(m + 1) log s + 2;;:- ° ?= Z[l oooimim+1. 

tlo oo tmtm+l 

~(m) _ ~(m+l) 

log s - ~: [0 ~ (Lk Ziloooimk) 2 - S ° ?= Z[lOOOimim+1] 
tlo ootm tloo otmtm+l 

sm 
logs- _ZTQZ 

2n 

with the sm+l x sm+l matrix Q defined by (32.7) so that smQ is a generalized 
inverse of I:m+l. It is well known [see, for example, Rao and Mitra (1971, 
Theorem 9.2.2)] that the asymptotic distribution of ZT~;:;;'+l Z must be the 
X2-distribution with the degrees of freedom equal to the rank of I:m+l. 

Therefore 
2n [logs - ApEn(m)] rv x2(sm+l_ sm). 

The estimate (32 .3) shows that if ZIl oooim = ..;n [lII1 ooo im - s-m] , then 

and 

which completes the proof of Theorem 32.3.1. 

S2m(m - 1)2 

~ 2(n-m+1)2' 

• 
Theorem 32.3.1 provides the basis for statistical tests of randomness via the 

approximate entropy. Thus, say, if for the observed value ApEn(m), X2(obs) 
= 2n [log s - ApEn(m)], then the null hypothesis of randomness is rejected for 
large values of X2 (obs). 

The asymptotic distribution of the statistic 2n [log s - ApEn( m) (m)] , eval­
uated under the alternative according to which the probability of the word 
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il ... im+l has the form 7ril ... im+l = s-m-l + n-1/2'rJil ... i m+l with 'rJTem+l = 0, 
is the noncentral X2-distribution with sm+l - sm degrees of freedom and the 

noncentrality parameter <5 = sm+ 1 ['rJT 'rJ] . Indeed, the limiting distribution of 

Zil···im+l is normal with the mean J..l formed by coordinates 'rJil ... i m+ 1, and the 
covariance matrix ~m+l. Thus, because of Theorem 9.2.~ of Rao and Mitra 
(1971), the distribution of the quadratic form sm ZTQZ is that of a noncentral 
x2-random variable with smtr(Q~m+l) = sm+l - sm degrees of freedom and 
the noncentrality parameter equal to SmJ..lTQJ..l. An easy calculation shows that 

QJ..l = SJ..l, so that indeed <5 = sm+l ['rJT 'rJ] . 
This fact allows for an approximate power function of the test of randomness 

based on approximate entropy. A similar test can be derived from the following 
considerations. 

Let the block-diagonal matrix R of size sm+l x sm+l be formed by sm-l 
blocks Ro of size s2 x s2, 

Then the matrix 
u = sm [sIm+1 - 2E + s-lR] 

possesses the following property 

(32.9) 

Indeed, since sm [sIm+l - E] is the genralized inverse of ~m+l, to prove (32.9) 
it suffices to show that 

(32.10) 

with 
V=sm[E-s-1R] . 

This result can be derived from the fact that the matrix ~m+l V is idempotent. 
Indeed, the elements of ~m+ 1 V have the form 
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m-l 1 
"8(· . )(.. )-~ tr+l···tm+l, Jl ... Jm+l-r sr+l 
r=2 
m-l , 1 
L 6(il···im- r ),(jr+1 ... jm-l£) sr+2 
r=2 

- 8(i2···im+l),(jl ... jm-l£) s12 - 8(il···im-l),(h .. jm-l£) s13] 

" [8(. . ) ( . . ) [8· . - 8· "] ~ ~ tl···tm-l, Jl···Jm-l tm,Jm tm,~ m 
£ S 

m-l 1 
+ "[8(· . ) ( . .) - 8(· . ) ( . . ")]-~ tl···tm- r , Jr+l.·.Jm tl···tm- r , Jr+l···Jm-l~ sr+2 

r=l 

+ [8(· . ) ( . .) - 8(· . ) ( . . ")] ~] t2··· tm+l , Jl···Jm t2··· tm+l , J2···Jm-l~ s3 
1 

8(il···im_l),(jl ... jm_l)[s8im ,jm - 1] s2 

m-2 1 
+ L 8(il···im- r-l),(jr+l ... jm-l) [s8im_r ,jm - 1] sr+2 

r=l 

+ 8(i2···im),(jl ... jm-l) [s8im+dm - 1]12 + [s8idm - 1] ~+l. 
S S 

The form of these elements allows to check that L:m+ 1 VL:m+ 1 V = L:m+ 1 V, 
which implies that (L:m+l V)3 = (L:m+l V)2. Thus (32.10) is valid, and by 
Theorem 9.2.1 of Rao and Mitra (1971) the distribution of the quadratic form 
ZTUZ is a X2-distribution with tr(UL:m+l) = sm+l - 2sm + sm-l degrees of 
freedom. This corresponds to the test statistic of the form _ci>(m-l) + 2ci>(m) -
ci>(m+l) , having a X2-distribution with sm+l - 2sm + sm-l degrees of freedom. 
Thus, this statistic also can be readily used for testing randomness. However, 
this fact does not extend to higher order finite differences. 

Observe that _ci>(m-l) +ci>(m) also has a X2-distribution (with tr(VL:m+d = 

sm - sm-l degrees of freedom.) 
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Threshold Phenomena in Random Walks 

A. V. Nagaev 

Nicholas Copernicus University, Torun, Poland 

Abstract: A parametric family of transient random walks is considered. We 
focus on the properties of the ladder functionals that appear when a transient 
random walk becomes closer and closer to a recurrent one. Within the adopted 
approach the crucial role is played by the so-called Spitzer series. The latter 
are studied with the help of a Fuk-N agaev inequality for the large deviation 
probabilities. 

Keywords and phrases: Spitzer series, transient and recurrent walk, ladder 
epoch and height, ruin probability, Cramer transformation 

33.1 Introduction 

Let 0,81,82, ... be a random walk in R1 generated by the successive sums of 
Li.d. variables 6,6, ... , that is, 

8n = 6 + ... + ~n, n ~ 1. 

It is supposed that all the variables are defined on a measurable space (0., B). 
Consider a family of measures Ps , s_ ::; s ::; s+, defined on B. Denote by a(s) 
the expectation of 81 = 6 with respect to Ps . We assume that a(s) is continuous 
and strictly increases in [B-, s+l. Assume also that 0 E [B-, s+l and a(O) = o. 

Obviously, s controls the behavior of the random walk. In particular, if 

s 
= 0, then the walk is recurrent, that is, 

inf 8 n = -00, sup8n = 00, Po - a.s .. 
n n 

It means that the walk visits both half-lines (-00,0) and (0,00) infinitely many 
times. If s ::/= 0, the walk is transient, that is, for all s E [B-,O) 

inf 8n = -00, 0::; sup 8n < 00, Ps - a.s. 
n n 
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while for S E (0, [s+] 

-00 < inf Sn ~ 0, supSn = 00, Ps - a.s .. 
n n 

The basic properties of the random walk can be found in Feller (1971, Ch. 12). 
It is natural to regard the case s = ° as threshold as well as the phenomena 

which arise as s -+ O. Threshold phenomena arise in queuing theory, branching 
processes, mathematical models of epidemics, etc. Within the context of the 
random walk, they were studied in Mogulski (1973) and Nagaev (1978, 1979). 

Consider the boundary functionals that play a key role in the random walk 
theory 

v = min(n: Sn > 0), X = Sv. 

They are called the ladder epoch and the ladder height, respectively. It is the 
threshold properties of the ladder pair (v, X) that are in the focus of our at­
tention. Here, in contrast to Nagaev (1978, 1978), we study the case of the 
lower threshold behavior where s i O. In this case, Ps(v = 00) > 0, that is, the 
distribution of the ladder pair is defective. 

Let 'lj;s(t, z) denote the moment generating function of (v, X). More precisely, 

'lj;s(t, z) = Es(e-tv-zx, v < 00). 

Denote 
00 

Ma = Ma(s) = L naPs(Sn > 0) (33.1) 
n=l 

and 
00 00 

Maf3 = Maf3(s) = L nO! J u f3 dPs(Sn < u). (33.2) 
n=l 0 

Following Lai (1976), we call the series (33.1) and (33.2) the Spitzer series. 
From the well-known representation [see, for example, Feller (1971, Lemma 
18.1)] 

it follows that for s E [B-, 0) 

(33.3) 

Furthermore 

Es(v, v < 00) (33.4) 

(33.5) 

(33.6) 
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while 

M e-M-l. 
-1,1 , 

(M M 2 )e-M-l. -1,2 - -1,1 , 

467 

(33.7) 

(33.8) 

(33.9) 

Since Eov = 00, we expect that the moments (33.4)-(33.6) grow to infinity as 
8 i O. One of our goals is to study how fast they grow. 

In Mogulski (1973) (see Theorem 1 and Corollary), it was shown that under 
certain conditions 

(33.10) 

Below, we try to establish (33.10) by means of direct asymptotic analysis of the 
Spitzer series (33.7)-(33.9). 

If 8 E [8_,0), then the moment generating function of S = max(O, Sl, S2, ... ) 
admits the following representation [see, for example, Feller (1971, Theorem 
18.2)] 

(33.11 ) 

Let us also refer to 

00 00 

~(t) = L n-1 J (e-tu - 1)dPs(Sn < u). 
n=l 0 

(33.12) 

as a Spitzer series. 
Below, by means of direct asymptotic analysis of (1.13), we establish the 

limiting, as 8 i 0, distribution for S. In other words, we give a third proof of a 
fact proven earlier in Borovkov (1972) and Asmussen (1987). 

It is worth noting that the asymptotic analysis of all the considered Spitzer 
series is implemented by the same scheme in which one of the well-known Fuk­
Nagaev inequalities plays a dominant role. Such a scheme proved to be very 
useful in the case of the upper threshold behavior considered in Nagaev (1978, 
1979). 

The Chapter is organized as follows. In Section 33.2, we discuss a model of 
the risk process in which the threshold phenomena for the random walk appear. 
In Section 33.3, a number of auxiliary results is established. Sections 33.4 and 
33.5 are devoted to the asymptotic analysis of the Spitzer series. In Section 
33.6, on the basis of that analysis, we give some threshold properties of the 
basic boundary functionals. 
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33.2 Threshold Phenomena in the Risk Process 

It should be noted that the case s 1 0 was motivated in the already mentioned 
works Nagaev (1978, 1979). Here, we give an example that motivates our 
attention to the threshold phenomena arising as s i O. 

Let r/j, j = 1,2, ... , be i.i.d. positive random variables interpreted as the 
successive claims on an insurance company. Denote by Tj the occurence-time 
of the claim rlj. It is assumed that the inter-occurence times t:::.j = Tj - Tj-l 

are i.Ld. and TO = o. It is assumed that the sequences {'Tlj} and {t:::.d are also 
independent. 

Denote by x(t) the capital of the company at time t, and let x = x(O) be 
its initial capital. The inter-occurrence capital increment is determined as ct:::.j , 
where c is called the gross risk premium rate. It is obvious that for Tj-l ~ t < Tj 

x(t) = X(Tj-l) + c(t - Tj-l) 

and 
X(Tj - 0) - X(Tj) = -r/j, 

Le., the sample paths of the risk process x(t) are piecewise linear right-continuous 
and have jumps at the points Tj. The company is ruined at t = Tjo if 

Tjo = inf(t : x(t) < 0). 

The ruin probability is defined as 

R(x) = P(inf x(t) < 0). 
t 

It is convenient to transfer to the process y(t) = x - x(t) and the, related 
to it, embedded random walk 0,81,82 , ... , where 8n = 6 + ... + ~n and ~j = 
rlj - ct:::. j , j = 1,2, .... 

Let 
S = sup(O, 81, 82, ... ). 

Then the ruin probability can be rewritten as 

R(x) = P(S > x). 

It is evident that R(x) < 1 iff ErJl -CEt:::.l < O. The condition c > Co = ErJ/Et:::. 
is called safety loading. For more details about the risk process, see Embrechts, 
Kliippelberg and Mikosch (1997), Grandell (1991) and Kalashnikov (1997). 

Consider a problem that can be regarded as inverse to that of evaluating 
R( x). Notice that the insurance company can to some extent control the risk 
process evolution by varying gross risk premium rate. If the company is eager 
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to attract more clients, it should be possible reduce the gross risk premium 
rate under reasonable risk. However, choosing c close to Co makes the ruin 
probability greater. To compensate it, the company has to dispose of a greater 
initial capital. The question arises: how great must be the initial capital given 
a gross risk premium rate? 

Let us state a formal set-up of the problem. Suppose that the above se­
quences {7lj} and {~d are defined on a probability space (0" B, P). Obviously, 
r/j -C~j, j = 1,2 ... , and map (0" B) to a measurable space (0,', B'). Denote by 
Pc, c < Co, the probability measure generated by this mapping. Furthermore, 

where Ec and E correspond respectively to Pc and P. Then the ruin probability 
is 

R(x, c) = Pc(S > x). 

Let 
xp(c) = inf(u : R(u) ::; p), 0< p < 1, (33.13) 

be the intial capital that guarantees a pregiven risk p. If c 1 Co then, obvi­
ously, xc(p) -t 00. The problem is to evaluate xp(c) or at least to establish an 
asymptotic expression for it. 

Set s = Co - c. If S i 0, then Ec~ = a(s) = SE~l i O. Therefore, we have a 
typical lower threshold case. Obviously, in order to judge how fast xp(c) grows, 
it suffices to establish the limiting distribution for S. We will return to this 
problem in Section 33.7. 

33.3 Auxiliary Statements 

In what follows, the following condition is assumed to be fulfilled. 

Condition A. We say that Condition A is fulfilled if 

(AI) a(s) -t 0 as S i 0; 

(A2) 0 < infs_:Ss:Soo-(s)::; sUPs_:Ss:so(J(s) < 00; 

(A3) e is uniformly integrable with respect to Ps , B- ::; S ::; O. 

Sometimes, Condition A stands in combination with the following one 

sup Es (max(O, 6))8 < 00,8> 2. 
s-:Ss:SO 

(33.14) 

We need an inequality that easily follows from the well-known Fuk-Nagaev 
inequalities. 
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Lemma 33.3.1 If Condition A is fulfilled, then for any, E (0,1) 

Ps(Sn ~ u) ~ nPs(~ ~ ,(u + nlal)) + c'Yn1/2'Y(u + nlal)-lh, 0 < c'Y < 00. 

PROOF. Setting in Eq. (47) of Fuk and Nagaev (1971) 

t = 2, Yi = ,X, i = 1, ... , n, 

we obtain 

Ps(Sn + nlal ~ x) ~ nPs(~ ~ ,x) 

1 ( 2 2 ) -1/2"1 ( 2 ) 

+2 n J(r uJd;s(~ < u) + 1 + exp - 8e2n JO'YX:2 Ps(~ < u) . 

It remains to implement obvious estimates. The lemma is proved. • 

Lemma 33.3.2 If Condition A is fulfilled, then there exist c > 0 and no such 
that for n ~ no 

sup supPs(x ~ Sn < X + 1) ~ cn-1/2. 
B-~S~O x 

PROOF. From Condition A, it follows that there exists no such that 

sup supPs(x ~ Sno < X + 1) ~ 1/2. 
s_~s~O x 

Set n = kno + r, 0 ~ r ~ no - 1. For n ~ 2no, we have k ~ 2~o. From Kesten 
(1969) [see also Petrov (1975, Ch. III, 5.5)], it follows that there exists c' > 0 
such that 

supPs(x:::; Sn < X + 1) < supPs(x:::; Skno < x + 1) :::; 
x x 

< c'n-1/2(1- sup supPs(x ~ Sno < X + 1))-1/2 
s_<s~o x 

and the lemma follows. • 
From Lemma 33.3.2, it follows that the series 

00 

M = L n-1 Ps(Sn = 0) 
n=l 

converges uniformly in s, s_ < s ~ O. 

Lemma 33.3.3 If Condition A is fulfilled, then 

00 

L n-1(Ps (Sn > na(s)) - 1/2) 
n=l 

converges uniformly in s, B- < S ~ O. 

PROOF. In order to prove the lemma, one should verify that all the estimates 
established in Rosen (1962) hold uniformly in s. • 
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33.4 Asymptotic Behavior of the Spitzer Series 

From now on, c denotes any positive constant whose concrete value is of no 
importance. It means that, say, C + C = c, c2 = c, etc. By w(t), we denote any 
non-negative function such that limt-->o w(t) = 0 while f) denotes any variable 
varying within [-1, IJ. 

We begin with the series (33.1). 

Theorem 33.4.1 Let Condition A hold. If -1 < a ~ 0, then as s i 0 

But if a > 0, then the statement is valid under Condition A combined with 
(33.14) where 8 = 2 + a. 

PROOF. Let us write for brevity a and 0" instead of, respectively, a(s) and O"(s). 
Partition the sum on the right-hand side as 

00 

L= + L 

where 0 < c < 1. With the help of the central limit theorem, we have 

From Lemma 33.3.1, we obtain 

Further, 

'E21 

~2 ~ c L na+1 Ps(~ 2:: ,),nlal) + lal-Il! 
na2a-2 >I/c 

X L na - I / 2"( = C('E21 + ~22)' 
na2 a-2 >1/c 

nlal:2:(1/c)a2 /lal 

< /a/-a-2joo ua+1 Ps(~ ~ '"'(u)du. 
e/lal 
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If -1 < a::; 0, then 

00 

J ua+l Ps(~ ~ ,u)du ::; clal-a 1= uPs(~ ~ ,u)du. 
ellal ellal 

From (A3), it follows that 

= J uPs(~ ~ ,u)du ::; ~ 1= u2dPs(~ < u) = 0(1) 
ellal ellal 

as s i 0 and, therefore, 

If a> 0, then 

00 

J ua+1 Ps(~ ~ u)du ::; a: 2100 ua+2dPs(~ < u) 
v 

and in view of (33.14) 
L;21 = 0(lal-2(a+l)). 

If we choose in Lemma 33.3.1 0 < 2, < 1/(a + 1), then 

L;22 ::; w(E')lal-2(a+l). 

Thus for all sufficiently small lsi, we have 

It is obvious that 

Since E' is arbitrary, we arrive at 

Straightforward calculations give 

The theorem is proved. 

The series (33.2) need a little bit more complicated estimates. 

• 
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Theorem 33.4.2 Let a 2: -1, f3 > 1. Assume that Condition A and (33.14), 
with <5 = a + f3 + 2 are fulfilled. Then, as s i 0 

Maf3 = Caf30'(s)2a+2f3+2Ial-2a-f3-2(1 + 0(1)), 

where 
00 

caf3 = B(2a + f3 + 2, f3 + 1) J luI 2(a+f3+1) <p( u )du. 
-00 

But if -a = f3 = 1, then (33.14) is superfluous and the statement is valid under 
only Condition A. 

PROOF. Integration by parts yields 

1 _ ~ a roo f3-1 (8 ) 
fjMaf3 - ~ n 10 u Ps n 2: u duo 

Represent the series as 
1 
fjM;;f3 = ~l + ~2, 

where ~l and ~2 correspond to the regions ((n,u) : n 2: 1, 0 < u < Knl/2) 
and ((n, u) : n 2: 1, Kn1/ 2 ::; u < 00). Partition ~l as 

From the central limit theorem, it follows 

Hence, 

0'2a+2f3+2Ial-(2a+f3+2) 
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where 
00 

Ckm = J v a+!3I2(J; (u - JV)f3-1(1 - if!(u))du)dv. 

o 
By means of straightforward calculations, we easily obtain 

00 

1 _ B(2a + 13 + 2, (3) J I 12(a+f3+1) ( )d 
Ca f3- 2(a+f3+1) u cpu u. 

-00 

Further, 

From Lemma 33.3.1, 

n?cc;- llal- l 

+lal-1h L na +!3I2-1/2'"Y) 

n?ce-Ilal- l 

CKm(2:~2 + 2:~2). 

Taking into account (33.14), 
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< lal-a-f3/2-21°° Ua +!3I2+1 Ps(( ~ u)du 
clal-Ie- l 

< clal-a-21°° ua+f3+1 Ps(( ~ u)du. 
clal-Ic;-l 

Since a + 13 ~ 0, we have 

"I _ (I 1-2a-f3-2) 612 - 0 a . 

If we choose in Lemma 33.3.1 0 < 'Y < 1/(2a + 13 + 2), then 

2:~2 ~ clal-1h (ca2)1/2'"Y-a -!3I2-1 = w(f)lal-2a- f3 - 2. 

Thus, for all sufficiently small lsi 

Further, 
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It remains to estimate ~2 . From Lemma 33.3.1 , we get 

It is easily seen that 

Since 

we have, taking into account (33.14) , 

Further, 

~22 f: n a+1/2 r (uJn - nlal) ,B-lu-1h du 
n=l iK+lalfo 

< f: n a+,B/2 r u,B-l-lh du 
n=l iK+lalfo 

CXl 
c L n a+,B/2(K + laIJn) ,B-lh 

n=l 

< clal-2a- ,B-2 foCXl ua+,B/2(K + u) ,B-lh du 

w(l/ K)lal-2a- ,B-2 
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(33.15) 

provided, in Lemma 33.3.1, 0 < I min(l , 2/(2a + 3.8)). Since K and c: are 
arbitrary, the theorem follows. • 

It remains to study (33.12). 
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Theorem 33.4.3 If Condition A is fulfilled, then as s i 0 

L;(tlalo--2) = 2t1(t) + 0(1) 

uniformly in t, 0 ~ t ~ T < 00, where 

I(t) = 1000 100 
e-tv(u-v) (1 - <I>(u))dudv. 

PROOF. Let us set for brevity z = tlalo--2 . Integration by parts yields 

Represent the series as 
L;(z) = L;l + L;2, 

where L;l and L;2 correspond to the regions ((n,u) : n ~ 1, 0 < u < Knl/2) 
and ((n, u) : n ~ 1, Kn1/2 ~ u < 00). Partition L;l as 

From the central limit theorem, we have for na2 ::::: 1 

Hence, 

It is evident that 

L;12~cKz L n-l/2ps(Sn~O). 
na2a-2"21/E 
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In view of Lemma 33.3.1, we obtain 

~12 ~ cKz( 2: nl/2ps(~ ~ 'Ynlal) 
na2a-2~1/c 

+lal-1h 2: n-1/ 2- 1/ 2,) 

Further, 

nlal~cc-llal-l 

< la l- 3/ 2 1°O U1/ 2 Ps(~ ~ 'Yu)du 
cc-1Ial-1 

< ccl/2Ial-ll°O uPs(~ ~ 'Yu)du. 
cc-1Ial-1 

From (A3), we obtain 

Obviously 
~~2 ~ cc-1/ 2+l/2'lal-1 = w(c)lal-1. 

Hence, for all sufficiently small lsi, 

Further, 

~12 ~ Kw(c)t. 

~13 ~ Kz 2: n-1/ 2 ~ cKzc1/ 2Ial-1 = Kw(c)t. 
1~n~cca2 

Thus, for all sufficiently small lsi, 

~l = t(2I(t) + w(l/ K) + BKw(c)). 

It remains to estimate ~2. In accordance with Lemma 33.3.1, 

It is easily seen that 
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From (A3), it follows that [ef (33.15)] 

00 00 00 

J J Ps(~ ~ 'Y(u + v))dudv ~ c J rPs(~ ~ cr)dr < c 
o 0 0 

uniformly in s. Therefore, 

Further, 

00 

I:22 C L n-1/ 2(K + lalv'n)-lh+1 
n=l 

< clal-1 1000 u-1/2(K + yfU)-lh+1du 

w(l/ K)lal-1 

provided 0 < 'Y < 2/3. So 

I:2 = tOw(l/ K). 

Since K and E are arbitrary, the theorem follows. • 

33.5 The Asymptotic Behavior of M-l 

It turns out that the behavior of M-1 as s i 0 is very sensitive to local irregu­
larities of Ps (Sn < u). 

Theorem 33.5.1 If Condition A is fulfilled, then as s i 0 

00 

M_ = L n-1Ps(Sn > 0) = In(O"(s)/la(s)l) + 0(1). 
n=l 

But if additionally 

(33.16) 

and 

Ps(na(s) < Sn ~ 0) -7 PO(Sn = 0) (33.17) 

then 

00 

M_ = In(O"(s)/la(s)1) + In 2-1/ 2 + L n-1(1/2 - PO(Sn < 0)). 
n=l 
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PROOF. As in the proof of Theorem 33.4.1, we have 

L n-1 Ps(Sn > 0) = 100 x-1(1 - <p( y'X))dx + 0(1). 
na2 cr- 2 >c c 

So, it remains to estimate 

~3 = L n-1 Ps(Sn > 0). 
na2 cr-2 <c 

We represent it as 

na2 cr-2 <c 

~31 - ~32. 

Further, 

~31 = 

From Lemma 33.3.3, it follows that 

1 1 
~31 = In(o-jlal) + "21nE + R(s) + "2E + 0(1), 

where 
00 

R(s) = L n-1(Ps(Sn ~ na(s)) - 1/2) 
n=l 

and E is the Euler constant. From Lemma 33.3.2, we have 

Hence, 

while 

L n-1 Ps(na < Sn ~ 0) 
l:Sn<l/iai 

-1 n . 

L n-1Ps(na<Sn~0)+ce L n-3/ 2• 

l:SnSN N <n<l/iai 

Thus, 
N 

~32 = L Ps(na < Sn ~ 0) + w(l/N) + w(c). 
n=l 
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Therefore, 

M-I = In(o-jlal) + 100 x- I (l - <1>( vx))dx + ~ Inc + R(s) 

1 - L n- I Ps(na < Sn ::; 0) + 2E + w(l/N) + w(c) + 0(1). 
lsnsN 

Taking into account Lemmas 33.3.2 and 33.3.3, we arrive to the first assertion 
of the theorem. 

Further, consider the function 

{ 
1/2 

J(x) = 0 

ifO<x<l 

otherwise. 

Then 

100 x-I(l - <1>( VX))dx + ~ Inc = 1000 x-I( <1>( -VX) - J(x))dx + W(E). 

In Nagaev (1978), it was shown that 

roo X-I (<1>(-VX) - J(x))dx + ~E = ~ln2. 10 2 2 

It remains to take advantage of (33.16) and (33.17) and to recall that c and N 
are arbitrary. The theorem is proved. • 

33.6 Threshold Properties of the Boundary 
Functionals 

Let us apply the just proved theorems. From Theorem 33.5.1 and (33.3), it 
follows that under Condition A 

Ps(v = (0) ;:( la(s)l. 

If we assume also that (33.16) and (33.17) are fulfilled, then 

Ps(v = (0) = 2I / 2e-R(O)(la(s)l/o-(s))(1 + 0(1)) 

while in view of (33.4)-(33.6) 

Es(v, v < (0) T I / 2e-R (O)(o-(s)/la(s)I)(1 + 0(1)); 
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If solely Condition A takes place, then we may state only that 

According to (33.4) and (33.7), we have 

Es(X, v < 00) _ M-1,1 

Es(v, v < 00) Mo 

Applying Theorems 33.4.1 and 33.4.2, we get 

Es(X, v < 00) = ia(s)i(l + 0(1)). 
Es(v, v < 00) 
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This relation may be regarded as an analogue of the well-known Wald identity 
EX = E~Ev that takes place when E~ > O. 

Let Condition A and (33.16), (33.17) be fulfilled. Then from Theorems 
33.4.2 and 33.5.1 we have, taking into account (33.7), 

Es(X, v < 00) = T 1/ 2e-R (O)(1 + 0(1)), 

i.e., [see Feller (1971, Th. 18.1)J 

Es(X, v < 00) = EoX + 0(1). 

It should be noted that we established the continuity of Es(X, v < 00) with no 
assumption that Ps(6 < u) weakly converges as s i 0 [see Mogulskii (1973, 
Theorem and Corollary) J . 

Unfortunately, Theorem 33.4.2 does not allow us to establish the continuity 
of the higher order moments. For example, from the theorem it follows only 
that in accordance to (33.7) and (33.8) 

In order to establish the continuity of Es(Xk , v < 00), k 2:: 2, at s = 0, we need 
at least the next term of the asymptotic expansion for M a f3. 

33.7 The Limiting Distribution for S 
From (33.11), (33.12) and Theorem 33.4.3, it follows that the moment gen­
erating function of iaia--2S converges to g(t) = exp( -2tI(t)). Note that I(t) 
does not depend on the underlying distribution. We are going to verify, as if 
there were no proofs of Borovkov and Asmussen, that g(t) corresponds to the 
exponential distribution. 
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Consider a particular case. Let 6 have the density of the form 

It is easily seen that 

and 

p(u) = 
{ 

eS-U 

eS +1 

eU 

eS +1 

if u 2: 0 

if u < O. 

eS -1 
a(8) = --1 

eS + 

0-2(8) = 2 + 0(1) as 8 i O. 

(33.18) 

From Theorem 33.5.1, it follows that under (33.18) 

qs = la(8)1(1 + 0(1)) (33.19) 

as s i O. 
If 6 has the density (33.18), then 

and for k 2: 2 

Ps(v = k;X > x) 

Hence, 

and 

Ps(v = I;X > x) = Ps(v = l)e-X , 

[0= dPs(S1 :S 0; ... ; Sk-2 :S 0; Sk-1 < u; ~k > X - u) 

e-x [0= dPs(S1 :S 0; ... ; Sk-2 :S 0; Sk-1 < u; ~k > -u) 

Ps(v = k)e-x . 

(33.20) 

Let (Vj, Xj) 4. (v, X) be i.i.d. variables. The random variable VI + ... + Vk 
is called the kth ladder epoch of the random walk 0, S1, S2, .... If 8 < 0, then 
the total number of the ladder epochs is finite Ps- a.s. . Denote it by J.L. 

It is evident that 
S = Xl + ... + XJ.L' 

Therefore, 
00 

L Ps (X1 + ... + Xk > x) 
k=l 

= L qs(l- qs)kps(XI + ... + Xk > XIJ.L = k) 
k=l 
00 

L qs(1 - qs)kps(X~ + '" + X~ > x), 
k=l 
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where 
Ps(xj < x) = Ps(x < xlv < 00). 

Then, in view of (33.20), 

00 

'Ps(t) = Ese-tS = L qs(l - qs)k(l + t)-k. 

It is easily seen that as s i 0 

or, in view of (33.19), 

Thus, we have 

k=l 

1 
'Ps(tlal) --> -1 -. 

+t 

'Ps(tlal/2) --> get) = 1/(1 + t/2). 

On the other hand due to Theorem 33.4.3, 

'Ps(tlal/2) --> g(t) = exp (-2tI(t)) 

and we arrive at the curious identity 

00 00 

exp(_2t!!e- tV(U-V) (1- <p(u))dudv) = 1 . 
1 + t/2 o v 

Thus, we have proved that 

The identity (33.21) seems to be unknown. 
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(33.21) 

(33.22) 

It remains to make remarks on the problem discussed in Section 33.2. As­
sume that Var(7]l) and Var(L\l) are finite. Then 

Var(c6) = Var(7]d + c6Var(L\1) + 0(1), C --> co. 

Obviously, Condition A holds with s = Co - c. Then from (33.13) and (33.22), 
it follows that for any p E (0,1) 

xp(C) rv Kln(l/p), 
C - Co 

where 



484 A. V. Nagaev 

References 

1. Asmussen, S. (1987). Applied Probability and Queues, Chichester: John 
Wiley & Sons. 

2. Borovkov, A. A. (1972). Stochastic Processes in Queueing Theory, Moscow: 
Nauka (in Russian). 

3. Embrechts, P., Kliippelberg, C. and Mikosch, T. (1997). Modelling of 
Extremal Events, Berlin: Springer-Verlag. 

4. Feller, W. (1971). An Introduction to Probability Theory and Its Applica­
tions, Volume 2, New York: John Wiley & Sons. 

5. Fuk, D. Kh. and Nagaev, S.V. (1971). Probabilistic inequalities for sums 
of independent random variables, Probability Theory and Applications, 
16, 660-675 (in Russian). 

6. Grandell, J. (1991). Aspects of Risk Theory, New York: Springer-Verlag. 

7. Kalashnikov, V. V. (1997), Geometric Sums: Bounds for Rare Events 
with Applications, Dordrecht: Kluwer Academic Publishers. 

8. Kesten, H. (1969). A sharper form of the Doeblin-Levy-Kolmogorov­
Rogozin inequality for the concentration function, Mathematica Scandi­
navica, 25, 133-144. 

9. Lai, T. L. (1976). Asymptotic moments of random walks with applications 
to ladder variables and renewal theory, Annals of Probability, 4, 51-66. 

10. Mogulskii, A. A. (1973). Absolute estimates for moments of some bound­
ary functionals, Probability Theory and Applications, 18,350-357 (in Rus­
sian). 

11. Nagaev, A. V. (1978). Integral limit theorems for sums of ladder epochs, 
In Stochastic Processes and Mathematical Statistics, Fan, Tashkent, pp. 
110-122 (in Russian). 

12. Nagaev, A. V. (1979). Local limit theorems for sums of ladder epochs, 
In Limit Theorems, Stochastic Processes and Their Applications, Fan, 
Tashkent, 162-170 (in Russian). 

13. Nagaev, A. V. (1985). On a method for the ladder heights moments cal­
culating, Probability Theory and Applications, 30, 535-538 (in Russian). 

14. Petrov, V. V. (1975). Sums of Independent Variables, Berlin: Springer­
Verlag. 



Threshold Phenomena in Random Walks 485 

15. Rosen, B. (1962). On the asymptotic distribution of sums of independent 
identically distributed random variables, Arkiv for Matematik, 4, 323-
332. 



34 

Identifying a Finite Graph by Its Random Walk 

Heinrich v. Weizsacker 

University of Kaiserslautern, Kaiserslautern, Germany 

Abstract: In this chapter, we illustrate by two examples and simplify the 
statement of the main result of a joint paper with Peter Scheffel [Scheffel and 
Weizsacker (1997)]. 

Keywords and phrases: Finite graph, random walk, vertex set, Markov chain 

Let ro = (S, Eo) and rl = (S, El) be two connected directed graphs with 
the same vertex set S and the two sets Eo, El of edges. Suppose we observe 

n 
+ 1 points Xo, ... , Xn of S which are produced by the random walk on one of 

the two graphs. We want to infer which graph was used and the mathematical 
goal is to compute the asymptotic behaviour of the error probabilities. As soon 
as the walk makes a step which is impossible for one of the two graphs, one 
knows it was the other graph. On the other hand, if all previous steps were 
possible for both models, then the number of competing possibilities becomes 
important. 

This is a particular case of the following problem. Let 7fO and 7fl be two finite 
irreducible Markov transition matrices on the same state space. Fix an initial 
distribution f...l and let Pi(n) denote the law on sn+l of the Markov chain with 

initial measure f...l and transition matrix 7fi. Clearly, the two laws pcin) and pin) 
become more and more singular to each other. The following result determines 

the exponential rate at which the overlap 2 -IIPcin) - pin) II (which can also be 
described as the sum of the error probabilities of the natural likelihood test) 
converges to zero. In the following, the symbol p(A) denotes spectral radius of 
matrix A. 

Theorem 34.1.1 The laws pcin) and pin) become singular at the rate 

r = lim .!.log(2 - IlPcin) - pin) II) = max inf log p( 7ft!) 
n-+oo n IES O<t<1 ' 
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where 7rt,! is the elementwise logarithmic convex combination 

( ( . . )l-t ( . . )t) 
7ro 1" J 7r1 1" J i,jEI 

and S denotes the system of all subsets I of 8 which are maximal with respect to 
the property that I can be completely covered by a single path which has positive 
probability under both models. 

The proof uses an extension of the Large Deviation Theorem for the empir­
ical pair distribution of ergodic Markov chains [see, for example, Dembo and 
Zeitouni (1993)]. This extension is needed for those cases in which some of the 
zero entries of one matrix are positive in the other matrix. This is always true 
in the graph problem. The above definition of the system S is much simpler 
than the one in Scheffel and Weizsacker (1997). 

If both 7ro and 7r1 are strictly positive, or more generally if one can get from 
every point in 8 to every other point by transitions which are possible for both 
7ro and 7r1, then the only element of the system S is the set 8 itself and the 
result simplifies accordingly. As an example, for 181 = 3, consider the three 
matrices 

7r1 = (t ~ t), 7r2 = (P ~). 
44 0 31 0 

The first matrix differs from 7r1 strongly in a single row and from 7r2 in two 
rows but not so strongly. Intuitively, it is not clear which pair of Markov chains 
is better separated asymptotically. A numerical calculation of the corresponding 
spectral radii show that the rate of separation is given by r ~ -.0115 when 
comparing 7ro and 7r1 , and by r ~ -.0096 when comparing 7ro and 7r2. This 
shows that the matrix 7ro is, empirically, more easily separated from 7r1 than 
from 7r2. 

Now let us consider the following two directed graphs r 0 (left) and r 1 (right) . 

• • •• • It •• 

~/ ~/ 
• • 

I I 
• • 

/~ /~ 
• • •• • • I • 



Identifying a Finite Graph by Its Random Walk 489 

The only difference between the two graphs consists in the direction of the 
two long vertical edges. The random walk on these graphs leads to the transition 
matrices 

0 1 1 0 1 0 0 1 1 0 0 0 3 ¥ 3 2" t 1 0 0 0 1 1 0 0 0 0 
¥ 3 3 t 2" 

1 0 1 0 0 1 0 1 0 0 3 3 3 3 3 3 7l'o = 
0 0 0 0 1 1 7l'1= 

0 0 0 0 1 1 
2" t 2" t 0 0 0 1 0 1 0 0 1 0 t 2" 3 ¥ 3 

0 0 0 1 0 0 1 0 1 0 2" 2" 3 3 3 

and hence we have 

0 3t - 1 3t - 1 
0 0 0 2' 2' 

3t - 1 
0 

3t - 1 
0 0 0 T 2' 

1 0 1 0 0 3 3 3 7l't= 
0 0 0 0 1 1 

2" 2" 
0 0 0 

2t - 1 
0 

2t - 1 

3t 3t 
0 0 0 

2t - 1 2t - 1 
0 3t 3t 

Consider a finite path which visits first all vertices in the upper part, then 
descends via the middle edge and finally visits all lower vertices. Such a path 
has positive probability under both models, provided the starting point has 
positive weight for the initial distribution /1. Therefore, in this case, the family 
S contains (only) the full set S. Thus, one has to compute the spectral radius 
of 7l't and then pass to the infimum over t. Due to the block structure of 
7l't, its spectral radius is the maximum of the spectral radii of the upper left 
3 x 3-submatrix and the similar lower right submatrix. It is easily seen that 
the upper left spectral radius is increasing in t and the lower right spectral 
radius decreases in t. Therefore, the infimum in t of the maximum of these two 
functions is attained at that value of t at which the two values coincide. If, 
however, the initial distribution is concentrated on the lower triangle, then the 
family S contains (only) the set which consists of these three lower points. In 
this case, one has to consider only the lower right submatrix of 7l't. Due to the 
monotonicity mentioned above the rate r in this case is given by the logarithm 
of the spectral radius of the lower right submatrix of 7l'1. 

In the general graph problem, the set S typically is of a more complex 
structure. It is easy to construct examples in which it contains two different 
sets which then will automatically have nontrivial relative complements with 
respect to each other. 
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The Comparison of the Edgeworth and Bergstrom 
Expansions 

Vladimir I. Chebotarev and Anatolii Ya. Zolotukhin 

Far-Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russia 

Abstract: Uniform lower and upper bounds of remainders and terms of the 
Edgeworth and Bergstrom expansions in R are obtained. The case in which 
the Bergstrom expansion is allowed, but the Edgeworth one is absurd, is inves­
tigated. 

Keywords and phrases: Edgeworth expansion, Bergstrom expansion, re­
mainder terms, lower and upper bounds, uniform metric 

35.1 Introduction and Results 

It is well known that the Edgeworth expansion for the real random variables is 
formed with the help of the Chebyshev-Hermite polynomials, which depend on 
the cumulants of higher order when the number of the expansion terms is more 
[see, for instance, Petrov (1972, p . 173)]. On the other hand, the Bergstrom 
expansion terms are defined by the convolutions of a normal distribution with 
the difference between the initial distribution and the corresponding normal 
one [Bergstrom (1951)]. So in this expansion the order of the higher moment, 
on which the error depends, is defined not with the number of expansion terms, 
but with the number of the first moments of the initial distribution coinciding 
with the moments of the normal one. This circumstance may be a decisive 
cause influencing on the accuracy of the approximation. Furthermore, there 
are distributions for which, with the help of the Bergstrom expansion, one 
can obtain the approximation of any preassigned order (with respect to the 
number of the summands) while with the help of the Edgeworth expansion the 
approximation will be of at most of some fixed order. 

We obtain lower and upper bounds of the remainders and the terms for these 
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expansions in R. We also investigate the case when the Bergstrom expansion 
is allowed, but the Edgeworth one is absurd. 

We shall use the following notations: <P is the distribution function of 
the standard normal random variable 0::1, <PO,b(X) = <p(x/b), <p(x) = Dx<p(x), 

H m (x) = (_l)m exp { :2} D~ exp { - x; } is the Hermite polynomial of the or­

der m, L is the sum over all sequences of non-negative integers J-Ll,J-L2, ... , 
{qlLq}~=l 

V 

J-Lv, such that L qJ-Lq = v, /'i,q(~) is the cumulant of ~ of the order q, 
q=l 

v 

Qv(Xi~) = L hv+2s-1 (x) II [kq+2(~) / (q + 2)!]lLq / J-Lq!, 
{qlLq }~=1 q=l 

v 

where hj(x) = -<p(x)Hj(x), s = L J-Lq. 
q=l 

(35.1) 

Let Xl, X2, ... be independent copies of a random variable X, EX = 0, 
b2 = D(X), EIXIIL+2 < 00. Recall that 

En(J-Li Xi X) = p (~"~ XJ" < x) - <Po b(X) - "IL n-v/2Qv(x/bi X/b) 
yin L...-J=l ' L...-v=l 

is the remainder in the Edgeworth expansion, J-L = 1, 2, .... Denote 

Qv,n(x/b; X/b) = (:) (F - <PO,b)*V * <p~~-v) (xFn) . 

The quantity 

Bn(J-Li Xi X) = p (_1 "n XJ" < x) - <Po b(X) - "IL Qvn(x/bi X/b) (35.2) 
yin L...-J=l ' L...-v=l' 

is the remainder in the Bergstrom expansion, J-L = 1,2, ... [Bergstrom (1951)]. 
Define v(t) = Eexp{itX}, 

E(n' . X) = eO(IL) {2E [IXIIL+2 I ] + E[I X II-'+3I{lxl<bv"i}] 
,J-L, bl-'+2 {IXI2:byln} byln 

+ bIL+2 (sup {lv(t)1 : It I ~ b2 } + ~)n n{IL+(1L+2)(1L+3)}/2} 
l2ElxI3 2n ' 

where eO(J-L) is the constant from Osipov's estimate [Osipov (1972), Petrov 
(1972, p. 173)]. In view of this estimate, the following formulas are valid: 

sup lEn (J-Li Xi X) I ::; n -1L/2 E( ni !-Li X) = 0 ( n -1L/2) as n ---+ 00 
x 

(35.3) 
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if EIXIJ.L+2 < 00, and 

sup {lv(t)1 : It I ~ b
2 

} < 1. 
12Elxl3 

(35.4) 

Notice that the behavior of error in the Edgeworth expansion was investi­
gated in many works; besides Osipov (1972) and Petrov (1972), see, for example, 
Rozovskii (1976, 1978) and Hall and Nakata (1986). 

In Bergstrom (1951), the estimate Bn(,.J,; x; X) = 0 (n-~) is obtained 

under the condition that the distribution of X is non-singular and EIXI 3 < 00. 

Before formulating the main statements, we introduce the following nota­
tions and definitions. Let {Xn} be a sequence of random variables (in what 
follows, we shall mean the triangular array). Define Fn(x) = P(Xn < x), 

. ~ ~2 

vn(t) = Eexp{ztXn }, bn = EXn, 

Theorem 35.1.1 Let {Xn} be a sequence of random variables, such that EXn = 

EX~ = 0, DXn = b;, EX~ < 00. Let the following three conditions be fulfilled: 

(35.5) 

there exists a constant, such that for all n, 

(35.6) 

lim (Bf(n; fJ,; 3) + B2(n; fJ,; 3)) = O. 
n->(X) 

(35.7) 

Then 

n 2 sup IEn(3; x; Xn)1 ---> 00, (35.8) 
x n--->oo 

while for every fJ, ~ 1, 

(35.9) 

The proof of Theorem 35.1.1 is based on the following two statements. 
In the sequel QJ.L(x) = QJ.L(x/b;X/b). 
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Lemma 35.1.1 Let EIXIIl+2 < 00 for some integer J-L 2: 2. Represent QIl(x) 
in the form 

11-1 

QIl(x) = L h2j+1l+1(xlb) b2j+1l+1,1l' (35.10) 
j=O 

where bk,1l are coefficients, depending on the cumulants of X of order not more 
than (k + 1) A (J-L + 2). Then there exist positive numbers MIL and MIL such that 

11-1 

MIL V IbJrl-2jt1,1l1- E(n; J-L) :::; n ll / 2 sup l£n(J-L - 1; x; X)I 
j=O x 

11-1 

:::; MIL V IbJrl-2jt1,IlI+ E (n;J-L), (35.11) 
j=O 

where E(n;J-L) = E(n;J-L;X). In particular, ifEX3 = 0 and EX6 < 00, then 

MX { 1::1 V (::) 2} - E(n; 4) :::; n2 s~p I£n(3; x; X)I 

-0 {IK61 V (K4)2} :::; M4 b6 b4 + E(n;4), (35.12) 

where MX > 4.10-5, ~ < 0.02. 

Define hj = sup Ihj(x)l, 
x 

(35.13) 

(35.14) 

(35.15) 

(35.16) 

Lemma 35.1.2 Let EX4 < 00. Then for 2 :::; J-L + 1 :::; n12, 

In 1- sup IBn(J-L - 1; x; X)I - h3!L-1 ( IEX3 1) III :::; B1 (n; J-L; 3) + B2(n; J-L; 3). 
x Il! b3 3! 

Now we shall give an example of the sequence {Xn} satisfying the conditions 
of Theorem 35.1.1. 
Example. Consider Xn = Q:1 vx;", where An, n = 1,2, ... , are random 
variables having density functions 

x E (1, lien]' 
x E (1, lien]' 
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n = 1, 2, ... , En is a sequence, such that En ~ 0 monotonically and, moreover, 

E~l = (nanP V 3, 0 < I < 1, an = EAn = ~ (1 - E~+en), 0:1 and An are 
2+en 

assumed to be independent. 

Since EA~ ---> 00, lim an =~, lim EA~ = 3, then /'i;3(An) = E(An - an)3 = 
n--->oo n--->oo 2 n--->oo 

EA~ -an(3EA; -2a;) ---> 00. It follows from here that the formula (35.5) is ful-
n--->oo 

[ ~6 ] E[IXn I7 I {IXn l<bnfo}] 
filled. One can show that E XnI{IX I>b In} ---> 0, ~ C1 

n _ ny" n--->oo bnfo 

for all n, Eexp{itXn} = Eexp{- t2An} ~ exp{-~( b~ )2} for It I ~ 
2 2 12EIXn l3 

b2 ~ 3/2 
~ ,EIXn 13 = EI0:113 EAn < C2. Therefore, (35.6) holds. The formula 

12Elxn l3 
(35.7) follows from the boundedness of the sequences of the moments EIXnl3 

~ 

and EX~, and also from the inequality I: ItI 3J.L+2 I vn(t/Jn) I 2 dt ~ i: ItI 3J.L+2 exp{ -~} dt, which is correct when J.1, ~ n/2. 

Similar results relating to the special case of mixtures of normal distributions 
are obtained in Chebotarev and Zolotukhin (1996) and Nagaev et al. (1997). 
The computer calculations in these papers and in the present one are provided 
by Zolotukhin. 

35.2 Proof of Lemma 35.1.1 

Lemma 35.2.1 Let EIXIJ.L+3 < 00 for some integer J.1, ~ 1. If condition (35.4), 
is fulfilled then lim n(J.L+1)/2 f n(J.1,;x;X) = QJ.L+1(x) uniformly in x E R. More-

n--->oo 
over, 

(35.17) 

PROOF. It follows from (35.3) that 

s~p I n(J.L+1)/2fn(J.1,;x;X) - QJ.L+1(X) I~ E(n;J.1, + 1). (35.18) 

Thus, we obtain the first statement of the lemma. 
It is well known that if f, g are elements of a normed space (with the norm 

II . II), then 

111f1l-lIglll~ IIf - gil· (35.19) 
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Denote g(x) = QJL+l(X), f(x) = n(JL+l)/2En (p,; x; X), II~II = sup 1~(x)l. By 
x . 

(35.19) and (35.18), we have Illfll - Ilglll~ E(n; p, + 1), i.e. (35.17). 

By virtue of Lemma 35.2.1 and (35.3), the problem of obtaining a lower 
estimate for sup lEn (p,; x; X) I will be decided (under condition EIX IJL+3 < 00), 

x 
if we decide the same problem for sup IQJL+1(x) I, p, ~ 1. 

x 
Notice that taking into account (35.1), one can find with the help of in-

3v-2 
duct ion that for v = 1,2, ... Q2v-l(X) = L h2j(x/b) b2j,2v-l, Q2v(X) = 

where "'v == "'v(X). 
In the following lemma, we suggest a method of lower estimation of 

sup IQJL(x)1 for arbitrary p, 2': 2. Let ~(x) be a density function. The sym-
x 

bol A = A (p,; ~) will denote a matrix p, x p, with elements 

ajk = i: h2J+JL+l(X)h2k+JL+1(X)~(x)dx, (35.21) 

j, k = 0, ... , p, - 1. The integral J(p,;~) = ~ 100 Q~(x) ~(x/b) dx is the 
b -00 

quadratic form with matrix A with respect to the coordinates of the vector 
bJL = (bJL+l,JL' bJL+3,JL' ... ' b3JL-l,JL) [see (35.10)]. We assume that bJL -I O. Since 
the function QJL(x) is the product of <p(x/b) and the polynomial (of the power 
3p, - 1), then for every interval (a, b) C R, there exists a point Xo E (a, b) such 
that QJL(xo) -10. Consequently, for any given density function~, A is a positive 
definite matrix [see also Cramer (1976, p. 149)]. Let p(p,;~) be the minimal 
eigenvalue of matrix A. 

Lemma 35.2.2 IfEIXIJL+2 < 00, then for every density function ~(x), 

JL-l JL-l 
p(p,;~) L b§j+JL+l,JL 2': J p(p,;~) V Ib2J+JL+l,JL I· 

j=O j=O 
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PROOF. Evidently, 
J(/-l;7jJ) :S SUpQ~(X). 

x 
(35.22) 

f.l-l 

We shall estimate J(/-l; 7jJ) below. Notice that J(/-l; 7jJ) = L ajkdjdk, where dj = 
j,k=O 

b2)+f.l+l,f-l' Denote by J the column vector with the coordinates do, ... ,df.l- l ' 

Let U be an orthogonal matrix, reducing A to the diagonal form, i.e. U A U' = 
V, where V is a diagonal matrix, U' is the conjugate matrix. Denote by 
vo, VI, ... ,vf.l- l the diagonal e~ments of V, and by do, dl , ... ,df.l- l the co-

ordinates of the column vector d == U J. Then 

(35.23) 

Lemma 35.2.2 follows from (35.22) and (35.23). 

Lemma 35.2.3 If EX6 < 00, then there exists a constant M4 , v~z. M4 = 
0.053 ... , such that 

PROOF. Existence of M4 > 0 follows from Lemma 35.2.2. Indeed, let us take 
in Lemma 35.2.2 7jJ(x) = cp(x). Calculations with the help of computer give us 
[see (35.21)] the matrix 

( 

2.314... -13.340... 96.561 .. . 
A = -13.340.. . 83.221 ... -645.440 .. . 

96.561 ... -645.440 . .. 5317.6 .. . 
-838.564... 5963.1 ... -51866.7 .. . 

-838.564... ) 
5963.1 .. . 

-51866.7 .. . 
531152.9 .. . 

and its determinant det(A) = 258376.641... . In fact, the elements of the 
matrix are calculated with seventeen precise decimal points, and the determi­
nant at least with four decimal points. The eigenvalues of A are calculated 
at least with four precise decimal points: vo = 0.0029 ... , VI = 0.6081 ... , 
V2 = 267.0463 ... , V3 = 536288.492 .... By virtue of Lemma 35.2.2, 

3 3 

sup !Q4(X)! 2: Jp(4;cp) V !b2)+5,4!2:0.053 V !b2j+5,4!' 
x j=O j=O 

Using (35.20) we obtain now the statement of Lemma 35.2.3. 
Notice that there possibly exists a density function 7jJ such that p( 4; 7jJ) is 

considerably greater than 0.0029. 
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PROOF OF LEMMA 35.1.1. It follows from (35.17) that 

sup IQJL(x)l- E(n; J-l) ~ nJL/2 sup l£n(J-l- 1; x; X)I ~ sup IQJL(x) I + E(n; J-l). 
x x x 

,..--_ JL-1 
By Lemma 35.2.2, sup IQJL(x) I 2 VP(J-l;'I/J) V Ib2j+JL+1,JL I, where p(J-l;'I/J) # o. 

x j=O 
Moreover, it is easy to see from (35.10) that 

Thus we obtain (35.11). 
Let J-l = 4, EX3 = O. Then by (35.11), (35.20) and Lemma 35.2.3, 

where M4 = 0.053 > 4.10-5 . Moreover, by virtue of (35.20), 
( 4!)22 

since h5 < 2.4, h7 < 14.2. Therefore, we have proved (35.12). 

35.3 Proof of Lemma 35.1.2 

Define Ef(W) = I: f(x) d(F - <T?O,b) (x) for every measurable function f. We 

shall also use the abbreviation s = it/vin. 

Lemma 35.3.1 Let integer N 2 3, EWP = 0 for p = 2, ... , N -1, EIXIN+1 < 

00. Then (Eexp{sW})IL = (~EWN)JL + R1 for every integer J-l 2 1, where 

IR11 ~ IsIJLN+1 VN+1 (VN)JL-1. 
J-l (N+1)! N! 

PROOF. By the Taylor formula, 

Ro _ s-NEexp{sW}=_l- (1(1_0)N-1E(WN exp{OsW}) dO 
(N-1)! io 

aO + a1 s, 
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where ao = ~EWN, and al = ~ rl (1- O)NE (WN+l exp{Os W}) dO. Using 
N! N! 10 

J.L-l 

the algebraic formula (x + y)J.L = xJ.L + Y L x j (x + y)J.L-l-j, we obtain 
j=O 

J.L-l 

where a2 = al L a~ Rt;-l-j. Since 
j=O 

J.L-l 

(35.24) 

I I VN+l ~ j RJ.L-l-j < f.1 (Iaol V IRol)J.L-l, laol V IRol < VN, al ::; (N+l)!' ~ ao 0 - - N! 
j=O 

we get 
VN+l VN ( )

J.L-l 

la21 ::; f.1 (N+l)! N! (35.25) 

The statement of Lemma 35.3.1 follows from (35.24) and (35.25). 
1 (EWN)J.L Define BJ.L N(X) = - -- hJ.LN-l (x). In the next lemmas, we shall use 

, J.L! bN N! 
the notations (35.13)-(35.16). 

Lemma 35.3.2 Let the conditions of Lemma 35.3.1 be fulfilled. Then for every 
x E R and integer f.1 such that 1 ::; f.1 ::; n/2, 

1 n~(N-2) QJ.L,n(x/bi X/b) - BJ.L,N(X) I::; Bl(ni f.1i N), (35.26) 

B N 1 (VN )J.L-l [VN+l VN] EIQlIIlN+l2t=.!Y_l where l(n·/I.· )-- -- -- + - 2 (11.+ 2) ,,..,, -.,;rn bN N! bN+l bN (J.L-l)! N! ,..,. 

PROOF. Denote D.J.L,n(x) = (F - <I>O,b)*{t * <I>~~~-J.L\x). By virtue ofthe inversion 
formula, for all Xl, X2 E R 

D.J.L,n (X2 Vn) - D.J.L,n (Xl Vn) 
1 100 (E {W})J.L {(n-J.L)t2b2 } exp{ -itxd-exp{ - itx2} d = - exp s exp - t. 

27l" -00 2n it 

(35.27) 

We have 
(35.28) 

J.L 2 2 {J.Lt2b281 } where R2 = -t b exp -- , 0 < 01 < 1. Using the equality (35.28), 
2n 2n 

Lemma 35.3.1 and the formula (n) = nil (1 + R3), where 
J.L {t! 

R3=-~~krr (1_j82»_~(J.L-l), 0<02<1., 
n k=l jlk n n 2 
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we obtain 

(35.29) 

Using Lemma 35.3.1, we obtain 

IR41:::; _1 exp{- (n-J.L)t 2b2
} {(l:r::. VN)J.L _1 [t2b2 J.L + (J.L-1)] 

J.L! fo 2 n N! fo 2 2 

+ ItlJ.LN+1JL(;:11)! (~)J.L-1 (1 + ~ (J.L;1))}. (35.30) 

By (35.27) and (35.29), 

(,6.J.L,n (X2 Vn) - ,6.J.L,n (Xl Vn) ) (:) n~(N-2) 
_ 1 100 [1 ((it)N EWN) J.L {t2 b2 } R] exp{ -itxl}-exp{ - itx2} - - - - exp -- + 4 dt. 

27r -00 J.L! N! 2 it 

(35.31) 

Using (35.30) and the equality 

_1_1CXl exp{- t 2 c?} Itll dt = Elall1 

v'27r -00 2 c1+1 ' 
c> 0, (35.32) 

we find 

_1 100 R4 exp{-itxl}-exp{-itX2} dt 1100 IR41 ~ :::; - - dt :::; B1 (n; JL; N), 
211" -CXl it 11" -CXl It I 

(35.33) 

where 

B1(n; JL; N) 

x 



The Comparison of the Expansions 503 

Since ~ 1(Xl (it)k exp{ _t2 /2 - itx} dt = (_l)k D~<p(x) = -hk(X), then 
27r _(Xl 

Consequently, 

_1_, 1(Xl ((it)~ EWN)fJ. exp{- t2b2 } exp{-itxd~exp{-itX2} dt 
27rfJ.. -(Xl N . 2 tt 

= BfJ.,N(X2/b) - BfJ.,N(xI/b). (35.34) 

It follows from (35.31), (35.33) and (35.34) that 

(~fJ.,n (X2 v'n) - ~fJ.,n (Xl v'n) ) (:) n~(N-2) 
= BfJ.,N(X2/b) - BfJ.,N(xI/b) + R6(n; Xl; X2), (35 .35) 

where IR6(n;xl;x2)1 ~ Bl(n;/-L;N). Since u.!!~(Xl ~fJ.,n(u) = 0, u.!!~(Xl BfJ.,N(U) = 

0, then putting Xl -t -00, X2 = X in (35.35), we have for every X E R 

~fJ.,n (x v'n) (:) n~(N-2) 
BfJ.,N(X/b) + lim R6(n; Xl; X), Xl-->-(Xl 

where I lim R6(n;Xl;X) I~ Bl(n;/-L;N). It is easy to see that Bl(n;/-L;N) ~ Xl-->-(Xl 
Bl (n; /-L; N) if 1 ~ /-L ~ n/2. The lemma is proved. 

Lemma 35.3.3. Let the conditions of Lemma 35.3.1 be fulfilled. Then for 
every X E R and integer /-L such that 1 ~ /-L ~ n/2 - 1, 

PROOF. It follows from the definition (35.2), that 

(35.37) 

Denote ~fJ.,v,n(X) = (F - <I>O,b)*(fJ.+l ) * <I>o~ * F*(n-fJ.-v- l ) (x). The following 
identity holds 

(35.38) 
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[see Bergstrom (1951)]. Similar to (35.27), 

.6.J.L,v,n (X2 y'n) - .6.J.L,v,n (Xl y'n) 

!...1°O (Eexp{ sW} )J.L+lexp{_ vt2 b2 
} 

271" -00 2n 

X H;..) ) n-p-"-';,.P{-itXd:~P{-itX'} dt. 

It follows from here that for all X E R 

1.6.J.L,v,n (x y'n) I 
:::; _ IEexp{sW}IJ.L+l exp __ v - v _ -. 1 100 { t2b2 } I ( t ) In-J.L-V-l dt 

71" -00 2n Vn It I 
(35.39) 

SN 100 11 Since Eexp{sW}=-- xN (1_0)N-l exp{Osx}dOd(F-<I>o,b)(X), then 
(N-l)! -00 0 

( )
N It I VN 

IEexp{sW}I:::; - -. 
Vn N! 

By virtue of (35.39) and (35.40), 

Taking into account (35.32), we obtain from (35.41) 

f2( VN )J.L+l( 1 )(J.L+l)N 
1.6.J.L,v,n (x y'n) I :::; V -;; bN N! Vn J(F; n; p,; N). 

(35.40) 

(35.41) 

(35.42) 

n-J.L-l( ) (' ) v+J.L n n!,+l 
Since L = < --, then using (35.38) and (35.42) we find for 

v=o J.L J.L+1 (J.L+1)! 
allxER 

n!(N-2) Bn(P,;x;X):::; B2(n;p,;N). (35.43) 

The inequality (35.36) follows from (35.26), (35.37) and (35.43). 

PROOF OF LEMMA 35.1.2. The statement of the lemma follows from (35.36) 
and (35.19). 
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35.4 Proof of Theorem 35.1.1 

The formula (35.8) follows from (35.12) and the conditions (35.5) and (35.6). 
The equality (35.9) follows from Lemma 35.1.2 and the conditions EX~ = 0 
and (35.7). Theorem 35.1.1 is proved. 
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Abstract: Methods of probabilistic number theory are discussed, and a review 
of the most important results is given. 

Keywords and phrases: Asymptotic density, additive arithmetical function, 
probabilistic number theory 

36.1 Results 

I will discuss on the connection between the theory of numbers and the proba­
bility theory. At first sight, it seems impossible to say anything but trivial on 
this subject. Seemingly, there is nothing more determinate than the sequence 
of positive integers 1,2,3, .... 

Long ago it was noticed that certain results of the number theory can be 
interpreted probabilistically. The reason for such an interpretation is the fol­
lowing. Let A be a finite or infinite sequence of positive integers. Denote by 

vn{m E A} := #{m ::::; n, mEA}, 
n 

the frequency of numbers of the sequence A, not exceeding n. The limit 

lim vn{m E A} = D(A), 
n->oo 

if it exists, is called asymptotic density of the sequence A. 
Thus, the density of positive integers, divisible by a positive integer k, is 

equal to 11k. 
Let kl,"" kr be positive integers. Suppose that every two of them are 

coprime. Then the density Dkl ... kr of positive integers, divisible by the product 
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kl ... kr, is equal to the product of the densities Dkj (j = 1, ... , r) of positive 
integers, which are divisible by kj: 

So, we could speak on the probability that a positive integer, taken at 
random, is divisible by a given number k. The events that a positive integer, 
taken at random, is divisible by given numbers k1 , ... , kr, may be considered 
as independent in probability-theoretic sense, if every two of these numbers are 
coprime. 

For a long time, the role of probabilistic arguments in the theory of numbers, 
based essentially on this remark, was almost exclusively that of a heuristic 
device. Sometimes, it led to erroneous conclusions. 

I shall give an example. In 1905, Edmund Landau proved the following 
result. Denote by w(m) the number of solutions of the equation m = x 2 + y2 in 
integers. Landau proved that the frequency of positive integers m ~ n which 
are representable as the sum of two squares 

C 
vn{w(m) > O} rv r,----

vlnn 

for some constant C. In 1939 Paul Levy gave a simple heuristic derivation of 
this result. His argument also led him to the conjecture that if k is a positive 
integer, then 

vn{w(m) = k} e->")...k 

vdw(m) > O} rv k! 
where)... = cyln n, c being a constant. In probabilistic terms, this means 
roughly that, out of the integers m for which w(m) > 0, those for which w(m) 
has specified value, have a Poisson distribution. However, this is not true. 
The distribution of the specified values of w(m) depends on the arithmetical 
structure of k. The frequency considered is equal to 

(In In n)Q-l, if k = 2Qkl, 2 Vk1 ; 

Ck 
(In n)Q 

if k = 3Qkl, 2 Vk1, 3 Vk1 ; 
y'ri 

, 
Ylnn· 

1 
y'ri' 

if 2 Vk, 3 Vk; 

here, Ck is a constant depending on k. 
This example shows that heuristic probabilistic arguments are not always 

useful. Even such a distinguished mathematician as Paul Levy was in the wrong 
way. 

The main difficulty of applications of probability theory to the number the­
ory consists in the fact that asymptotic density is not count ably additive. For 
example, consider the finite sets Ak = {k} (k = 1,2, ... ), where Ak consists of 
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the single number k. Obviously, we have D(Ak) = O. The union of the sets 
Ak is the set of all positive integers. The asymptotic density of it is 1. This 
phenomenon does not permit any non-trivial direct application of probability 
theory to number theory. Nevertheless, it is possible to obtain some interest­
ing and deep results through some methods. We shall show this in the case of 
distribution theory of arithmetical functions. 

As it is well known, an arithmetical function (in the simpliest case) is a 
sequence of real or complex numbers h : N ----+ C. There are two classes of 
arithmetical functions which are interesting for the theory of numbers, namely, 
additive and multiplicative functions. An arithmetical function f(m) is called 
additive if for any pair of relatively prime integers m and n 

f(mn) = f(m) + f(n). 

If 
_ a1 as m - PI .. ·Ps 

is the canonical representation of m as the product of prime powers, then 

f(m) = f(pf1) + ... + f(p~s). 

If the values of f(pa) = f(p) for all p and all 0: = 1,2, ... , then it is called 
strongly additive. In this case, we obviously have 

f(m) = f(pI) + ... + f(ps)· 

Similarly, an aritmetical function g( m) is called multiplicative whenever 

g(mn) = g(m)g(n) 

provided m, n are coprime. Usually, one supposes that g(m) is not identically 
zero, or (what is the same) g(l) = 1. Analogously, we have the representation 

I shall give some examples. 

1. For any fixed s, the function m S is multiplicative. 

2. Euler's function r.p(m) (the number of positive integers not greater than 
m and prime to m), the number T(m) of all positive divisors of m, the 
Moebius' function ft(m) (ft(l) = 1, ft(m) = 0 if m is divisible by a 
square greater than 1; ft(m) = (-It if m is the product of r different 
prime factors) are all multiplicative. 

3. w(m)/4 is multipicative. 
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4. The logarithms of positive multiplicative functions (for example, logm, 
log 'P( m), log T( m)) are additive. 

5. The number w(m) of distinct prime divisors of m is a strongly additive 
function. 

6. Let us denote by Oem) the total number of prime divisors of m (multiple 
divisors being counted according to their multiplicity). It is an additive 
function. 

From "canonical" representations, it follows that additive and multiplicative 
functions are completely determined by giving their values !(pet), g(pet) for 
prime powers pet. It also follows that the values of such functions depend on 
the multiplicative structure of the argument and therefore the distribution of 
the values of these functions is very complicated. If we follow the change in 
the values of these functions as the argument runs through positive integers 
in order, we obtain a very chaotic picture which is usually observed when the 
additive and multiplicative properties of integers are examined jointly. 

Nevertheless, it turns out that, in general, the distribution of values of many 
of these functions are subject to certain simple laws, which can be formulated 
and proved by using ideas and methods of probability theory. 

In the classical research, in studying the distribution of values of number­
theoretical functions, mathematicians usually limited themselves to two prob­
lems: 

1. One looked for two simple (in some sense) functions 'l/Jl(m) and 'l/J2(m) such 
that the inequalities 

hold for all or at least for all sufficiently large m. It is required that these 
inequalities were as exact as possible. 

For example, it is easy to see that 

1 ~ w(m) ~ m - 1 (m = 2,3, ... ). 

The equality w(m) = 1 holds for infinitely many m (for all prime powers). The 
upper estimate is not exact. One can prove that 

1. w(m) In In m 
1m sup 1 = l. 
m-+CXl nm 

It follows from the fact that in case m is product of k first primes, m = PI ... Pk, 

Inm 
w(m) = 1 1 (1 + 0(1)). 

nnm 
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2. Beginning with Gauss and Lejeune-Dirichlet in studying the distribution of 
values of number-theoretical functions h(m), mathematicians usually considered 
the behavior of the sum 

1 n - L h(m) 
n m =l 

for n --t 00 and looked for an asymptotic expression by means of simple func­
tions of n. 

For the function w (m), we have 

1 n - L w(m) = In In n + 0(1). 
n m=l 

This sum is the mean of the function w(m) on the segment 1,2, ... , n of the 
sequence of positive integers. Thus, the mean value of the function w(m) is 
approximately In In n while the function can oscillate about the mean value 
within very wide bounds from 1 to approximately In n / (In In n). 

It is natural to consider the law of distribution 

vn{h(m) E B} 

where h( m) is an arithmetical function, B is any Borel set on the real line and 

vn{B} = #{m::; n, h(m) E B} 
n 

is the frequency of natural numbers m not exceeding n and satisfying the con­
ditions written in the braces. 

The most interesting cases are the following two: integral laws 

vn{h(m) < x} 

or, more generally 

where en and Dn are normalizing constants, and local laws 

vn{h(m) = a}. 

We are interested in investigating the asymptotic behavior of these laws as 
n --t 00. 

It is difficult now to give a full review of the results. My first book on this 
subject contained about 200 pages. And the book of Elliott, written two decades 
ago, has more than one thousand pages. At the present time, there are many 
new important results. In this regard, the names of many mathematicians, 
including first of all (in alphabetic order) Delange, Elliott, Erdos, Halasz, Kac, 
Manstavicius, Ruzsa, Tunin, Timofeev, must be mentioned. 
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I shall confine myself to integral laws of additive functions. I shall give 
principal ideas of some methods for the discussion of integral laws. 

The simpliest method is the one of moments. Let us consider the distribu­
tion functions 

There exists the moments of all orders 

(k=1,2, ... ). 

The calculation of the moments reduces to the sums 

1;1 (£mf(POl)' 
= L· .. L f(pfl) ... f(p~k)#{m:S n,pf11Im, ... ,p~kllm}. 

p~l p;k 

If, for example, we could prove that J.tk(n), converges to 0 as n tends to infinity 
for all odd k's and to (k-l)!! for all even k's, then it would follow that functions 
Fn(x) converge to the standard normal law <I>(x). 

However, there are many distribution functions which do not have moments. 
Another method uses the ideas of sieve method. As mentioned earlier, the 

main difficulty in applying probability theory to number theory consists in 
the fact that asymptotic density of sets of natural numbers is not completely 
additive. Sometimes, it is possible to overcome this difficulty in the following 
way. I shall consider only strongly additive functions f (m). 

Let n = N = {I, 2, ... } be the set of elementary events. Suppose that 
r = r(n) is a positive function which tends to infinity with the tendency being 
not very quick: 

In r(n) = o(ln n). 

Let 
Q = IIp, E(P) = {m: plm}. 

p5.r 

Let A be the set algebra generated by E(p), p:S r. For every klQ, let 

Ek = (nE(p)) n (n EC(p)) = {m: kim, (m, ~) = I}. 
plk pl~ 

The sets Ek are disjoint for different k. The algebra A consists of all finite 
unions of the sets Ek 
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We take two probability measures: vn{A} and 

P(A) = L D(EkJ. 
k i 

By the sieve method, it is possible to prove that 

Let 

where 

sup Ivn{A} - P(A)I :::; C exp (- lInn In lIn n + n-1/ 15). 
AeA nr nr 

f(m)r = L f(p) = L f(p)(m) 
plm,p::;r p::;r 

if plm, 
otherwise. 

513 

Then, f(m)r and f(p)(m) are measurable with respect to A. Thus, they are 
random variables with respect to {N, A, P}: 

~ = f(p)( ) = {f(p) with probability lip, 
P m 0 with probability 1 - lip. 

So 
vn{j(m)r E B} = p( L ~p E B) + 0(1) 

p::;r 

uniformly for all Borel sets B on the real line. For a large class of functions, 
the quantity 

L f(p)(m) 
r(n)<p::;n 

may be neglected. By means of the inequality 

t (f(m) - L f(P)) 2 :::; C1 L f2(p) , 
m=l p::;n p p::;n p 

it is possible to prove that in some cases the asymptotic laws for f(m) and 
f(m)r are the same. 

The third method uses characteristic functions and generating Dirichlet se­
ries. Let Fn (x) = Vn {j (m) < x}. Let us consider the Fourier transform 

'Pn(t) = /00 eitxdFn(x) = .!.. L eitf(m). 
-00 n m=l 

The summands are values of multiplicative functions. We may use the method 
of generating Dirichlet series 

_ 00 eitf(m) _ ( eitf(p) eitf (p2) ) 
Z(s) - '" - II 1 + + 2 + .. , , L...t mS pS p S 

m=l p 
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where s = (J" + iT, (J" > 1. Halasz proved that there exists a function A = An(t) 
such that 

niAZ(1 + 1/ In n + A) 
'Pn(t) = (1 + iA)((1 + 1/ In n) + 0(1). 

In some cases, it is possible to prove that the estimate 0(1) is uniform for 
t E [-T,T]. 

Now we shall discuss integral laws for real additive arithmetical functions 
f(m). Let Cn and Dn > 0 be two sequences ofreal numbers. We shall consider 
the distribution functions 

(36.1) 

It is proved that if they converge weakly to a distribution function, then Dn 
tends to a finite or infinite limit. 

In the first case (when Dn tends to a finite limit), it is sufficient to consider 
the case Dn == 1. In this case, necessary and sufficient conditions for the 
existence of the limit law are known. 

Theorem 36.1.1 There exist constants Cn such that 

vn{f(m) < Cn + x} (36.2) 

converge weakly to a distribution function if and only if there exists a constant 
A such that the series 

1 A2 
2:= p-l +\2 

p p 

converges; here, Ap = f (p) - A In p. The constants Cn must have the form 

with C being a constant. The constants Cn are determined uniquely with ex­
actness of the summand C + 0(1). The characteristic function of the limit law 
equals 

1 - - e-ttAp 
e-iCt ( 1)., 00 eitJ(pQ) 

1 + iAt I} (p E pa(l+itA) , 

where 

{ 
Ap 

\1 - if IApl < 1, 
Ap = IP 

otherwise. 

The limit law is degenerate if and only if f(m) == O. It is pure which means 
that it may be absolutely continuous or singular or discrete. All three cases 
really do exist. 
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The limit law is discrete if and only if the series 

1 l: - < 00. 

f(p)#O P 
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However there are no criteria to distinguish between the absolutely continuous 
and singular cases. It is interesting to note that the limit law is not always 
infinitely divisible. 

Two special cases are of interest. 

Theorem 36.1.2 The distribution functions 

vn{f(m) < l: f(p) + x} 
p:<:;n,lf(p)l<l p 

converge weakly to a distribution function if and only if 

1 j2(p) 
"'- <00 L- p 1 + j2(p) . 

P 

(36.3) 

Theorem 36.1.3 The distribution functions 

vn{f(m) < x} 

converge weakly to a distribution law if and only if the series (36.3) and the 
senes 

l: f(p) 

If(p)l<l P 
converge. 

Obviously, the convergence of the series (36.3) is equivalent to the conver­
gence of the following two series 

l: ~, 
If(p)l~l P 

j2(p) 

If(p)l<l 
p 

So we have an analogue of the three series theorem. (It is called Erdos-Winter 
theorem.) 

The case Dn ~ 00 is more complicated. We do not know necessary and 
sufficient conditions for the existence of the limit law for (36.1). It is known 
that Dn cannot increase quickly, namely 

This order is exact in the sense that for given Dn satisfying this condition, there 
exists an additive function f(m) for which (36.1) with suitably chosen en have 
a limit law. It is known that the limit law is absolutely continuous or singular. 
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We know necessary and sufficient conditions for the convergence to the 
degenerate law 

() { 0, if x:S 0, 
c x = 1, if x> o. 

Theorem 36.1.4 The frequencies 

as n --7 00 if and only if there exists a sequence An = 0(1) such that 

as n --7 00. 

min {I, (M_ An Inp)2} L Dn = 0(1), 
p::;;n p 

an = An+ L 
p:5,n 

1~->'nlnpl<l 

f(p) _ Alnp 
Dn + 0(1) 

p 

In general case, we have many results giving sufficient conditions. I shall 
mention some simple results. Let 

Theorem 36.1.5 If for every fixed c > 0 

(36.4) 

(an analogue of the Lindeberg condition), then 

(36.5) 

If (36.4) is true, then En is slowly increasing function of logarithm, En = 
x(ln n). Conversely, if Bn is such a function and (36.5) holds, then (36.4) is 
true. 

There are examples with En '" .Jln n for which (36.5) holds, but (36.4) is 
not true. 

It is possible to generalize this theorem. 
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Theorem 36.1.6 Let Bn = x(ln n). The distribution functions 

converge weakly to a distribution function with variance 1 if and only if there 
exists a non-decreasing function K(u), -00 < u < 00, K(-oo) = 0, K(oo) = 
1, such that for all uf=.O the sums 

1 
B2 2: 

n p:;'n,J(p)<uBn 

j2(p) 
p 

converge to K{u). The characteristic function of the limit law equals 

The following example is of interest. The functions of distribution 

Vn { 2:(1np)1! < x(lnn)I!}, (! > 1, (! f=. 1, 
plm 

converge to a limit law with characteristic function 

1 1,1 +ioo eZ (11 eitue - 1 ) -. -exp e-UZdu dz. 
21T'2 1-ioo Z 0 U 

It is not infinitely divisible. 
There are some results on the rate of convergence to the limit laws. I shall 

consider the case of the normal law. 

Theorem 36.1.7 Let f(m) be a real-valued strongly additive arithmetical func­
tion and let 

(36.6) 

as n ---t 00. Then 

or more exactly 

uniformly for all real numbers x. 
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Drawing an analogy with the theory of summation of independent random 
variables, it was supposed that for any real-valued additive arithmetical function 
the remainder term in (36.6) may be changed into O(fln), where 

. __ 1_ " IP(p)1 
fln·- 3/2 ~ . 

En p:::;n P 

However, this is not always true. The following theorem holds. 

Theorem 36.1.8 Let f(m) be a real-valued strongly additive arithmetical func-
tion and let 

L .= _1 " fn(P)fn(q) 
n· D ~ 

n p,q:::;n,pq>n pq 

where the summation extend over all primes p, q satisfying the indicated condi­
tions. Then 

There are some theorems on the asymptotic expansion of the distribution 
laws. I shall give just one of them. 

Theorem 36.1.9 Let f(m) be an integer-valued strongly additive arithmetical 
function. Suppose that there exists an c > 0 such that 

L lnp = O(lnn)l-e, 
p:::;n,J(p)#l p 

for an s ~ 1. Then 

{ ~} ~ Qk(X) (lnlnlnn) 
l/n f(m) < lnlnn+xvlnlnn = <I>(x) + t:J. (Inlnn)k/2 +0 (In In n)(s+l)/2 . 

Here, Qk(X) are some functions not depending on n. One can write them ex­
plicitly. 

I shall now give a theorem on large deviations. 

Theorem 36.1.10 Let f(m) be an integer-valued strongly additive arithmetical 
function such that for a positive <5 there exists an E > 0 such that 

"ecllf(p)llnp 1 
~ --~ = O(lnn) -e). 

p:::;n,J(p)#l p 
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Then for x = o( Vlnln n), 

Vn {f(m) < In In n + xVlnln n} 

in case x :S 0, and 

Vn {f(m) > In In n + xVlnln n} 

in case x ~ 0, are equal to 

where 

and 

x2 
Rn(x) = 2 + (( - (1 + () In(l + ()) In In n 

(= x 
vlnlnn ' 
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On Mean Value of Profit for Option Holder: 
Cases of a Non-Classical and the Classical Market 
Models 

O. V. Rusakov 

St. Petersburg State University, St. Petersburg, Russia 

Abstract: We consider an investor operating in a bond-stock market with 
derivatives who is going to buy/sell a stock. His decision problem is whether 
to buy or not to buy the corresponding option. We define the mean profit 
of such a potential option holder as a mean difference between his outlay for 
the stock in the cases of both owning the option or not owning. We consider 
market models: the classical Cox-Ross-Rubinstein, the classical Black-Scholes, 
and a non-classical continuous time model driven by the geometric integral 
Ornstein-Uhlenbeck process. For a defined class of contingent claims, we obtain 
conditions on non-negative/non-positive values of the mean profit. 

Keywords and phrases: Mean profit, geometric integral Ornstein-Uhlenbeck 
process, the Black-Scholes formula, risk-neutral measures 

37.1 Notation and Statements 

In this chapter, we are interested in a problem of an investor's decision making. 
We consider an investor operating in a bond-stock (B,S) market. Suppose that 
the investor is going to buy a lot of shares of the stock. In the case he has a 
call type option with respect to this lot of the stock, will it be cheaper or not? 
We will consider this problem from the point of view of market expected value 
of buying stock at a horizon time T in cases when the investor owns the option 
or not. 

Let X be a contingent claim given in a bond-stock market (Bt, St), 0 :::; t :::; 
T < (Xl , Bt E R+, St E R+. 
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At initial moment t = 0, a customer buys one share of stock option corre­
sponding to X (thus he becomes an option holder) and at the terminal moment 
T, he is going to buy one share of stock S. The aim of this chapter is to consider 
the mean profit of such option holder, when the mathematical expectation (E) is 
calculated under the market (not necessarily risk-neutral) probability measure. 

Let us denote the random variable ~T = ST - X for the cost of one share of 
stock allowing for the contingent payment X. The mean profit for the option 
holder is defined as 

R == R(S,T,X) = E{BT1ST - BTl~T - CT}, (37.1) 

where CT is a rational value of the contingent claim X. In cases when CT 
is a rational value calculated as mathematical expectation over risk-neutral 
probabilities (E), elementary transformations of (37.1) give 

(37.2) 

Our interest lies in assumptions under which the mean profit R takes posi­
tive and negative values. 

Assume that stochastically the contingent claim X depends only on the 
terminal value of stock ST E R and monotonically increasing function on ST. 
Assume that in frames of the given (B, S)-model, there exists an unique rational 
value CT of X at the initial moment t = 0. The class of such contingent claims 
is denoted by X. 

For the particular case of the standard European call option with a strike 
constant K, it is easy to calculate 

~T = ST1C-oo,O)(ST - K) + Kl[o,oo)(ST - K). 

And it easy to check that the contingent claim for the standard European call 
option (ST - K)+ belongs to the class X. 

Remark that in the case of American options, a mean profit depends on 
a stopping time T chosen by the investor. His mean profit for the standard 
American call option equals 

where AT is the rational initial value of this option. 

37.2 Models 

In present chapter, we consider the following three models. 
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I. The classical Cox-Ross-Rubinstein (CRR) model [Cox, Ross and Rubin­
stein (1976)] : 

t = 0, 1, .. . , T, 
(37.3) 

t = 0, 1, ... , T, 

where the interest rate r > 0, and ((t) is a sequence of i.i.d. binomial random 
variables with a common distribution: (t = 1 + u , with "market" probability 
p and (t = 1 + d, with "market" probability (1 - p). The values "up" and 
"down" are connected by the inequality -1 < d < r < u < 00. The risk-neutral 
probabilities for the CRR model are, respectively, given by 

r-d 
P=--d' u-

1 - u-r 
-p=--. 

u-d 

II. The classical Black-Scholes model [Black and Scholes (1973)] : 

{ 
St = So exp{J..lt +o-Wt - c;2 t }, 

B t = exp {rt} , 

0':5: t ':5: T, 

(37.4) 

(37.5) 

where Wt is the standard Brownian motion, J..l E R is the expected return, 0-> 0 
is the volatility, and r > 0 is the interest rate. 

For this model, we suppose that the (B , S)-market model defined on a com­
plete stochastic basis {fl, (Ft ) , F , P} , and P is a equivalent to P martingale 
measure. 
III. The pricing model driven by the integral Ornstein-Uhlenbeck process: 

{ 
St = So exp {J..lt + 0- J~ Usds - c;2t }, 

B t = exp {rt}, 

0:-:; t:-:; T , 

0':5: t ':5: T, 

(37.6) 

where Us is the standard Ornstein-Uhlenbeck process with zero mean, the vari­
ance equaling to 1 and with a viscosity m > 0, i.e. cov(Us , Ut) = exp{ -mlt-sl}. 
The coefficients J..l E R, 0-> 0, and r > 0 play the same role as in the Black­
Scholes model. 

This model describes a behavior of a multiagents market and can be pre­
sented as a limit of mixtures of geometrical random walks. Each component of 
the mixture is naturally embedded into a binomial tree equipped by constant 
coefficients of "up" and "down" events. So we are able to determine risk­
neutral probabilities for the limit process (37.6) of geometric integral Ornstein­
Uhlenbeck process. Although this model is arbitrary, we can slightly perturb 
a behavior of this stock price by a process with independent increments (with 
small variations of the increments) and make the model arbitrarily free. 
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Vasicek (1977) introduced a conditional geometric integral of the Ornstein­
Uhlenbeck process to describe behavior of prices of zero-coupon bonds. Folmer 
and Schweizer (1993) gave from a view of stochastic differential equations a 
micro economic motivation to consider the geometric Ornstein-Uhlenbeck pro­
cess as a stochastic component in a class of stock price models. We justify 
the Ornstein-Uhlenbeck process from the view of limit theorems of probability 
[Rusakov (1998)J. More detailed description of a construction of the pricing 
model is introduced below. 

Consider a market model with N agents, where N is a sufficiently large 

natural number. At any discrete time t E {O, 1, ... M} ~ 1', each agent buys 
or sells an asset which is called below a stock. Thus, each agent has a trading 
policy with respect to the stock, and the agents' trading policies form the stock 
prices. The moment M is a horizon time of our economy, possibly equal to 
infinity. In the market, there exists a factor which influences the trading policy 
of every agent. This factor has certain internal as well as external properties 
affecting the market agents. The role of the factor is that every agent may 
change his trading policy under its influence. 

The main postulate of the model is that instantaneously, at any moment 
t E l' , few agents are affected by the factor described above, and revise their 
trading policies accordingly. The remaining majority of agents keep their trad­
ing policies unchanged. So, every agent from the market does not react to 
events during a random period and continues his trading policy until a random 
moment when he is affected by the factor. 

Further, we assume that all asset values are discounted, i.e., they are ex­
pressed in units of a risk-less security (bond). 

We now describe explicitly the model of the market. At the moment t E 1', 
each agent has his own trading policy on the market: to buy or to sell stock. 
By trading, each agent contributes to the evolution of the stock price: 

if the agent buys a stock, then the value of the stock is multiplied 
by U> 1; 

if the agent sells the stock, then the value of the stock is multi­

plied by ° < D < 1. 

The values U, D depend on the time scale of the interval l' in accordance 
with the standard asymptotic assumptions. This means that for the discrete 
time interval 1', the physical unit of scale is proportional to the square root of 
the value U - D. On the other hand, the probabilities of U and D are not 
dependant on n and are fixed: at any t E 1', the probability of buying stock is 
p> 0, and the probability of selling stock is q = 1 - p. The values of U, D,p, q 
are the same for all agents. 

Thus, we can assume that the trading policy of an i-th agent (i = 1, ... , N) 
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at moment n E 1l' is a random variable with distribution 

p 
q. 
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(37.7) 

After receiving information about the factor, each agent decides for himself 
and only for himself whether to accept this information or remain indifferent 
whether not to accept this information. An agent who is not affected by the 
factor continues his previous trading strategy and an agent who is affected by 
the factor revises his trading policy and 'ruffle' (think about and decide anew) 
to buy or to sell a stock again. In the case when an agent is affected by the factor 
directly, i.e., for instance, he drives a bargain on the stock with another agent, 
we assume that such situations are equivalent to acceptance of the information 
about the factor. 

At the initial moment t = 0, all trading policies over N agents are assumed 
to be independent in total. Agents affected by the factor retry to implement 
their trading policies independently. Thus, we suppose that trading policies 
e~), n = 0,1, ... , M, i = 1, ... , N, are conditionally independent given the 
'information about the factor'. In view of these arguments, we can formulate 
two first key assumptions about the model. 

(A) The random vector (eal) , ea2), ... , eaN )) consists of LLd. binomial random 
variables distributed according to (37.6). 

(B) Let r n denote the a-algebra of events which are generated by influence 
of the factor to agents within moments 0,1, ... ,n. Given the condition r n, 

the random vectors (~ai), di), ... , ~~)) are conditionally independent over the 

family of indices {i}. 

Next we define random variables k~), n = 0,1, ... , M - 1, i = 1, ... , N, as 
indicators of the events: {At moment n the i-th agent is affected by the factor}. 
The equality k~) = 1 means that the i-th agent revises his trading policy from 
the moment n up to the moment n + 1, and k~) = ° means that the trading 
policy of the i-th agent remains the same. 

In the model we suppose that Vn all influences of the factor until moment n 
inclusively are independent of influences of the factor at moment n + 1. There­
fore, 

( ) -. ~ ((1) (2) (N)).. _ C the random vectors kJ - kj ,kj , ... , kj ,J - 0,1, ... , M - 1, are 
independent in total over the family of indices {j}. 

( ) yo. ~ ((1) k(2) k(N)) . _ . D Denote I'vJ - a kj , j , ... , j ,J - 0,1,.... It IS assumed that 
r n = Ko ® ... 0 Kn . 

In this chapter, we consider the case where the vectors (ka1), ka2) , ... , kf/) 
have the following identical distribution concentrated on {O, l}N : 
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(E) Every vector {kj } consists of m units and N - m nulls exactly. The rule 
of choice of units from the set {1, 2, ... , N} is random, uniform, and without 
replacements (without loss of generality). 

The assumption (E) means that at any moment nET, exactly m agents 
who have random numbers revise their trading policies. This assumption makes 
agents dependent through the factor. The condition "m is a constant" may be 
interpreted as follows: exactly m agents are dealing with the stock at any fixed 
moment nET. The limit theorems below will also be obtained in the case 
where m is a random number with finite mathematical expectation as N -- 00. 

Here, one must change m to Em. 

Equilibrium in the model is achieved in a certain sense. By the law of large 
numbers, the number of revised values 'buy' of trading policies is approximately 
equal to the number of revised values 'sell' during a sufficiently large period of 
time {O, 1, ... }. 

The sequence of trading policies can be described by the following two­
dimensional table of random variables 

(37.8) 

such that: 

(a) The initial row consists of independent random variables having the iden­
tical distribution as in (37.7). 

(b) For n = 1,2, ... and E {1, ... , N}, the elements of the table are defined 
by the rule of replacement to independent copies 

if k(i) = 0 
n-l 

(37.9) 

if k(i) = 1 
n-l . 

(c) Two-dimensional set of random variables (T/) consists of mutually inde­
pendent random variables. 

(d) The initial row (~61), ... , ~6N)) is independent of totality of the random 
variables (T/). 

(e) The random variables (T/) are LLd. with common distribution given by 
(37.7). 

(J) The upper index of random variables ~ corresponds to the number of 
agent and it may be interpreted as a "local time", and the lower index of 
random variables ~ corresponds to the moment of real time. 
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(g) The number N is called the order of the table in (37.8), or order of the 
model. 

It is easy to see that, for any N, the rows in the table in (37.8) form a 
strictly stationary and Markovian sequence of random vectors. 

Next, we assume that every agent makes equivalent contribution to pricing 
of stock S by his trading policy. 

(G) At any fixed moment n E 1', each agent's contribution to pricing is 
defined as evolution of his trading policy during the time interval {O, 1, ... ,n} 

n 

Zn(i) = IT ~3i), i = 1, ... ,N, (37.10) 
j=O 

The following assumption is more important in the construction of model. 

(F) At any moment n E 1', the value of the stock is equal to the geometric 
mean of contributions to pricing over N agents 

( 
N ) liN 

Sn = S !! Zn(i) ( 
N n ) liN 

= S !! 1! ~3i) , (37.11) 

o 
where S is a starting point of the stock price. 

The main objective of the chapter, is to investigate the limit behavior of 
the distribution of Sn as N ~ 00. We use the parameterization of time n = 

[Nt] for any real 0 ::; t ::; T ::; 00 ([.] denotes an integer part). Thus, such 
parameterization implies that for any fixed 0 ::; t ::; T during time 0,1, ... , n = 
[Nt] the number of revising points in the table in (37.8) is proportional to the 
number of agents N. In addition, we will consider the table in (37.8) in a sense 
of scheme of series (N being the index of the series) equipped with the constant 
probability measure (p, q) of trading policies. 

(H) The parameter m defined by assumption (E) is assumed to be fixed as 
N~oo. 

The assumption (H) can be interpreted as "the agents are strongly inert". 
At every fixed instant, a very small number of agents revise their trading poli­
cies. On the other hand, during the physical time interval [0, t], a sufficiently 
significant proportion of agents revise their trading policies. Mean value of this 
proportion is equal in asymptotics to 1 - exp{ -mt} as N ~ 00. This is a 
straightforward implication of the theory of allocation of balls into cells e.g., 
Gnedenko (1983, pp. 167-176). 
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On the next step, we define smallness of the trading policies ~~i) as N ---> 00. 

Order of the smallness is the same as in the classical limit transition from the 
eRR model to the Black-Scholes model. 

So, let ~ be a random variable with distribution (37.7). Introduce parame­
ters a and v > 0 by the following equalities 

v2 = (U - D)2 pq, } (37.12) 
av2 + 1 = Up + Dq. 

It is easy to see that v 2 = D~. By analogy to the classical limit transition, we 
assume that v2 == v2 (N) = (75/N, where (70 is a volatility constant independent 
of N. The parameter a, named as relative risk, characterizes difference between 
"market" measure (p, q) and "risk-neutral" measure (p, ij), i.e. the numbers p 
and ij are defined by Up + Dij = 1 ij = 1 - p. In correspondence with the 
classical case, we assume that 

f.-l- r 
a == a(N) ---> --2-' N ---> 00; 

(70 
(f.-l - r) E R, r > 0 , (37.13) 

where f.-l is an expected rate of stock return, and r is an interest rate of discount 
bond: Bt = exp{ rt}. 

In accordance with the assumption of time parameterization and with as­
sumption (G), for the order of the model N we define the value of the stock at 
time moment t E [0, T] by the following geometric mean 

( 
N )l/N 

~ S g Z[Nt] (i) ( 
N [Nt] ) liN 

= s II II ~)i) 
i=l j=O 

(37.14) 

So, by (37.14) we have defined a family of piecewise broken lines. Let D[O,T] (C) 
denote the space of function from D[O,Tj equipped with the uniform metric. We 
consider the broken lines (37.14) as elements of D[O,Tj(C)' 

The market probabilities (p,q) induces a distribution PN == PN(S[Ntj,O ~ 
t ~ T) concentrated on the broken lines {S[Ntj}' Analogously, the risk-neu~ral 

measure (p, ij) induces a distribution P N == PN(S[Ntj, 0 ~ t ~ T) concentrated 
on the same broken lines {S[Ntj}' 

Recall, Us denotes the standard Ornstein-Uhlenbeck process with the vis­
cosity coefficient m. 

Theorem 37.2.1 Convergences of the broken lines to the geometric integral 
Ornstein-Uhlenbeck process and the rational option value. 

(i) (The case of the market probabilities) 
Under the above assumptions about the model, the following weak convergence 
is valid as N ---> 00: 

o { rt (72 } 
PN ==} S exp (f.-l - r)t + (70 10 Usds - 20 t , o ~ t ~ T. (37.15) 
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(ii) (The case of the risk-neutral probabilities for discounted values of "up" 
and "down") 
Under the assumptions about the model for the family of distributions {PN }, 

the following weak convergence is valid as N ---t 00 

o {r 0"2 } PN ===? S exp 0"0 io Usds - 2° t , 0-:5: t -:5: T. (37.16) 

(iii) (Analogue of the Black- Scholes formula for the model.} 
Let CT denote the rational value at moment 0 of the Standard European Call 
Option with the contingent claim (ST - K) +. Denote the variance of the integral 
of the Ornstein-Uhlenbeck process by 

0-:5: t -:5: T. 

Then there exists an unique rational value CT that is calculated as mathematical 
expectation of the limit (37.16) of the risk-neutral distributions PN , and it equals 

o {v2 (T) 0"2} 
CT = S exp T - 20T <I>(p + vm(T)) - K exp{ -rT}<I>(p) , (37.17) 

where 

6, In S - In K + rT - 0"6T /2 
p = vm(T) ; 

and <I> ( .) denotes the cumulative distribution function of the standard normal 
law. 

For details and a proof of Theorem 37.2.1, we refer to Rusakov (1998). 

37.3 Results 

Proposition 37.3.1 Let the contingent claim X E X. 

(i) In the case of the Cox-Ross-Rubinstein model, the mean profit R ~ 0 iff 
p~p. 

(ii) In the case of the Black-Scholes model, the mean profit R ~ 0 iff the 
market expected return J.L of the stock is not less than the interest rate r. 

(iii) Consider the case above of the Inert Market Agents model. Then the 
mean profit R ~ 0 iff the coefficient J.L is not less than the interest rate r. 
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Analogous relations take place for the standard European put options under 
changing the inequality R ~ 0 to R ~ o. 

PROOF. Prove Proposition 37.3.1. Assume for simplicity that So = 1 for all 
considered cases of the models I-III. 

The case of the CRR model is trivial since the left-side tail of the binomial 
distribution L:j=o CfxT- j (l-x)j is a strictly monotonic function on x E (0,1) 
for any 0 < k ~ T. 

Consider the Black-Scholes model. Let Zt be the process of density of the 
equivalent martingale measure P with respect to market probabilities P, 

Zt = exp { /L ~ r Wt _ ~ (/L ~ r) 2} , 
and VA E FT risk-neutral probability is defined P(A) = fA ZtdP. With respect 
to P, the process Wt = Wt+(/L-r)t/O" is the standard Brownian motion. Under 
the measure P, the stock price process represents 

_ _ 0"2 

St = exp {rt + O"Wt - Tt }. 

Let us denote the function £ (x) based on the Dolean exponent 

0"2 

£(x) = exp{O"x - TT}, x E R. 

So, for the Black-Scholes model, the terminal values of the stock ST and ST 
can be represented in a form 

ST = £(lVT)exp{rT} , ST = £(WT) exp{/LT } (37.18) 

and random variables ST exp{ - /LT} and ST exp{ -rT} are identically distributed. 
Now we consider the model of type III. From (37.15) and (37.16), it follows 

that the risk-neutral stock price process forms 

St = exp {rt + 0" lot Usd8 _ ~2 t }, 

where Us is also the standard Ornstein-Uhlenbeck process with the viscosity 
m. 

So, Theorem 37.2.1 allows us to use the chang in the market measure by the 
risk-neutral probabilities and to conclude analogously (37.18), and that random 
variables ST exp{ - /LT} and ST exp{ -rT} are identically distributed. 

As X E X, then one can represent X in a form X = g(ST), where g(8) is a 
monotonicly increasing function as 8 i. Change probabilities from risk-neutral 
to the market ones, 

E{g(erT . (STe-rT ))} 

E{g(erT . (STe-J1.T))}. 
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Substitute ET in the definition of R(S, T, X) and change measures, 

BTR(S,T,X) E{g(ST)} - E{g(erT . (STe-rT ))} 

E{g(ST)} - E{g(erT . (STe- ILT ))} 

E{g( e-rT ST) - g( e(r-IL)T ST) }. 

It involves that R(S, T, X) ~ 0 iff J-L ~ r. 

533 

• 
Acknowledgements. The author expresses his deep appreciation to A. A. 
Gushchin, A. V. Melnikov, A. A. Novikov, A. N. Shiryaev, E. Valkeila, and S. 
A. Vavilov for helpful discussions. The financial support provided by RFBR 
grant N 96-01-01809 is gratefully acknowledged. 

References 

1. Black, F. and Scholes, M. (1973). The pricing of options and corporate 
liabilities, Journal of Political Economy, 81, 637-659. 

2. Cox, J. C., Ross, R. A. and Rubinstein, M. (1976). Option pricing: A 
simplified approach, Journal of Financial Economics, 3, 229-263. 

3. Folmer, H. and Schweizer, M. (1993). A microeconomic approach to 
diffusion models for stock prices, Mathematical Finance, 3, 1-23. 

4. Gnedenko, B. V. (1983). On the limits theorems for a random number 
of random variables, Lecture Notes in Mathematics, No. 1021, Berlin: 
Springer-Verlag. 

5. Rusakov, O. V. (1998). A model of market pricing with randomly dis­
tributed information and the geometric integral of the Ornstein-Uhlenbeck 
process, Preprint 184, University of Helsinki. 

6. Vasicek, O. (1977). An equilibrium characterization of the term structure, 
Journal of Financial Economics, 5, 177-188. 



38 

On the Probability Models to Control the Investor 
Portfolio 

s. A. Vavilov 

St. Petersburg State University, St. Petersburg, Russia 

Abstract: We introduce the robust feed-back control schemes based on the 
current dynamics of the security prices to provide the stable increasing of the 
portfolio value. The portfolio value is defined as the value of securities plus the 
amount of cash, which can be negative as the borrowing of money is not pro­
hibited. It is assumed that the price of securities follows the class of stochastic 
processes. The control is realized by varying respectively the number of securi­
ties and cash in the portfolio. 

Keywords and phrases: Investor portfolio, stochastic control 

38.1 Introduction 

There are at least three basic strategies to operate with the investor portfolio. 
The first strategy prescribes to arrange portfolio by making use of the expec­
tations of security prices and their variances on the fixed moment of time in 
the future. Such approach can be regarded as passive one because the scheme 
does not imply any operation with the portfolio over the corresponding time 
interval. It is possible to realize the pointed out strategy following the number 
of works which include Markowitz (1952) and Tobin (1958) as basic ones. 

The second strategy is based on the relatively frequent variation of the types 
of securities and consequently their number in the portfolio. Such variation is 
realized due to the currently expected dynamics of prices to provide constantly 
the maximum value of the portfolio on the whole operating period. Usually, the 
resources to buy the new types of securities are mainly provided by selling the 
available and less profitable at the present moment assets from the portfolio so 
that the borrowing of money is not necessary and the number of cash in the 
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portfolio is equal to zero. The machinery of technical analysis as presented for 
instance in Murphy (1986) for the basis for such an approach. 

The third strategy which is scrutinized in the present chapter deals as the 
first one with the fixed types of securities. However, the control in this scheme 
is to be realized perpetually over the whole operating period by varying re­
spectively the number of securities and cash in the portfolio. It is based on the 
current dynamics of security prices and is to provide the stable increasing of the 
portfolio value when the borrowing of money and short sales are not prohibited. 
Here, the portfolio value is defined as the value of the securities plus the amount 
of cash which is negative when the money is borrowed. In contrast to the first 
and the second strategy, this approach is based not on the prediction of prices 
but on the feed-back control basic principle. In the present chapter, two such 
robust feed-back control schemes are constructed. The first one (Section 38.2) 
is derived to operate with the portfolio consisting of zero coupon bonds and 
cash. The second one (Section 38.3) is conceived to be realized for arbitrary 
securities under the reasonable assumptions on the price dynamics. 

Both algorithms imply the current price of security to follow the class of 
random processes which is described by a stochastic differential equation of the 
form 

dXt = c(t, (F)(t))xtdt + a(t)xtdWt , (38.1) 

where Wt is a standard Wiener process. Coefficient c is supposed to be an arbi­
trary function of t and rather general operator F which can describe the effects 
of delay, memory, stochastic integration, and so forth. The only reasonable 
restriction on the right-hand side of (38.1) is the existence of a solution to the 
corresponding Cauchy problem. 

To consider the case of different types of securities constituting portfolio, 
we will supply the corresponding notions in (38.1) with index i 

n 

dXti = Ci(t, (F) (t))Xtidt + L aij(t)XtidWtj , 
j=l 

i = 1, .. ,n. (38.2) 

A number of models of market pricing including geometric Brownian motion 
[Black and Scholes (1973)] and those as presented in Vasicek (1977) and Rusakov 
(1998) are relevant to (38.1). It is worth noting that the pricing models based 
on the Ornstein-Uhlenbeck process and the multivariate Ornstein-Uhlenbeck 
process which have been employed lately for a description of security value 
evolution by a number of authors [for example, Lo and Wang (1995) and Folmer 
and Schweizer (1993)] belong to the pointed out class of stochastic processes. 
In Section 38.4, it will be shown that the pricing model Xt = exp(ht ), where 
ht is the continuous analogue of the autoregression of each finite order, is also 
covered by Eq. (38.1). 
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It is remarkable that the stochastic control schemes studied in this chap­
ter do not use, at least explicitly, the basic notion of the cost function [Davis 
(1977)]. On the other hand, the straightforward applications of the dynamic 
programming methods [Fleming and Rishel (1975)] are well-known in financial 
economics [Merton (1971)]. On these grounds, we can suppose that the ques­
tions arising in the investor portfolio management pose new problems in the 
stochastic control theory which have no analogues in the classical domains of 
it's applications, for instance, in physics and mechanics. 

This chapter can be regarded as the extended and remade version of the 
results published in Vavilov (1998). 

38.2 Portfolio Consisting of Zero Coupon Bonds: 
The First Scheme 

Consider portfolio at an arbitrary moment t consisting of a number at of a zero 
coupon bond and an amount of cash. The bond is characterized by the maturity 
date corresponding to the time interval [0, T*] and the unit maturity value f3 
[Hull (1993)]. Without loss of generality, the starting point of the portfolio 
control can be chosen at t = o. Along with T*, we introduce the quantity T 
which is taken in a close left-hand side vicinity of T*. It is assumed that on the 
time interval [0, T] the bond price follows the class of random processes which is 
described by the stochastic differential equation (38.1). Moreover, we suppose 
that the bond price belongs to the strip [a, f3] with a relatively narrow width 
6 = f3 - a (6/a is small). 

In this section, we dwell on the trading strategy which implies the portfolio 
value it to satisfy the relationship 

(38.3) 

It means that the instant variance of the portfolio value is due only to the 
instant variance of the bond price. 

The quantity 
(38.4) 

may be interpreted as an amount of cash in the portfolio. 
Here, we do not impose any restrictions on the sign of at and Ut so that short 

sale of bonds and borrowing money is not prohibited. Beside this, transaction 
costs and the interest rate for borrowing are not taken into account. 

The problem under consideration is to construct the robust feed-back control 
scheme based on the current dynamics of the bond price which provides the 
stable increasing of the portfolio value. The control is to be realized by varying 
respectively the number of bonds and cash in the portfolio. 
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Along with (38.3), by making use of the Ito formula [Ikeda and Watanabe 
(1989)] for the function f(t,x), where x is supposed to satisfy (38.1), one can 
write down 

df (f' j' 1 A 2 2j" )d A j'dTXT t+ CX X+2"O"X xx t+O"xx Ht 

1 u: + 2"o-2x2 f;x)dt + f~(cxdt + o-xdWt) 

(f' + ~o-2x2f" )dt + j'dx t 2 xx X' 
(38.5) 

By comparing (38.5) and (38.3), one can easily see that the trading strategy 
(38.3) implies the relationships 

j ' 1 A 2 () 2j" 0 t + 2"0" t x xx = , 

at = f~. 

(38.6) 

(38.7) 

It is remarkable that (38.6) depends on 0- but not on C in (38.1). This fact 
turns out to be the crucial point for operating at financial markets where the 
dynamics of price trends is hardly predictable. Moreover, because the width 8 
of the corresponding strip for the bond price is relatively small, Eq. (38.6) will 
be substituted by 

(38.8) 

where O"(t) = o-(t)o:. 
To specify the appropriate function f(t,x) satisfying (38.8), one can pose 

boundary conditions by making use of the following arguments. 
When the price of the bond tends to the lower bound of the strip, the 

reasonable trading strategy prescribes to invest money in bonds. On the other 
hand, when the price of the bond tends to the unit maturity value (3, it is 
lucrative to convert bonds in cash. Keeping in mind (38.4) and (38.7), the 
latter remarks yield the fulfilment of boundary conditions 

f(t,o:) = 0 (38.9) 

and 
8f 
8x (t, (3) = O. (38.10) 

Eventually when t = T, we set the ultimate profile of the portfolio 

f(T, x) = cp(x), (38.11) 

where the choice of function cp(x) will be specified below. 
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By solving (38.8) subject to the boundary conditions (38.9), (38.10) and con­
dition (38.11) [Tikhonov and Samarskii (1963)], the expressions for the portfolio 
value and the number of bonds can be written down, respectively, as 

f(t, x) (38.12) 

T-t 

00 1f 1 -2h-(~+Trk)2 J a2(T-s)ds [1 1f ] L Ck( - + 1fk)-e 0 cos -( - + 1fk)(x - 0:) , 
k=O 2 6 6 2 

(38.13) 

where 
2 r(3 [1 1f ] 

Ck = J In <p(x) sin J("2 + 1fk)(x - 0:) dx. (38.14) 

Formulas (38.13) and (38.14) constitute the desirable feed-back control trading 
strategy as one can easily see from (38.12) the stable exponential growth of the 
portfolio value in time. The choice of concrete function <p(x) can be realized to 
provide the optimal (in some sense) growth of the portfolio value in time. 

To pose the problem using condition (38.11) is reasonable when we define 
the initial number of bonds to be acquired in order to provide the desirable 
portfolio value <p({3) at the date of maturity. On the other hand, under con­
crete circumstances it is possible to modify the statement of the problem. For 
instance, consider that the investor has already No bonds at the moment t = 0. 
To realize the stochastic control of such initial portfolio in the future, one can 
follow Eq. (38.8) subject to the conditions 

of of 
f(t,o:) = 0, ox (t, {3) = 0, ax (0, x) = N(x) (38.15) 

while N(xo) = No. It is easy to write down the solution to this problem in a 
form analogous to (38.12). For instance, when 

( ) cos[i-~(x - 0:)] 
N x = No 1 ' 

cos[()~(xo - 0:)] 

the solution to the problem (38.15) contains only one harmonic in the corre­
sponding Fourier series and we arrive at the relationship 

while 
t 

26 & J a2 (s)ds sin[i~(x - 0:)] 
f(t,x) = -Noe 0 --..,;1::....::.----

1f cos[()~(xo - 0:)] 
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The choice of the concrete initial number of bonds profile N(x) can be 
realized as earlier on the same grounds of the acceptable growth of the portfolio 
value by the date of maturity. 

Now consider the situation when the portfolio includes n different types of 
zero coupon bonds. The analogue of trading strategy (38.3) can be written 
down as 

n 

dft = L atidxti. (38.16) 
i=I 

Then by making use of the Ito formula for the function f(t, Xl, ... , xn), where 
Xi are supposed to satisfy (38.2), and reiterating the same arguments as in 
(38.5), it is possible to write down 

,In 82 f n 8f 
df = (ft + - L (Jik (t)(Jjk (t) 8 '8 ' )dt + L -8 ,dXi, 

2 , 'k-I Xt XJ '-I Xt t ,), - 1-

(38.17) 

where (Jik(t) = O'ik(t)ai. 
By comparing (38.16) and (38.17) , the following relationships are obtained: 

lIn 82f 
ft + -2 L (Jik (t)(Jjk (t) 8 .a ,= 0 , 

, 'k-I X t XJ 't,J, -

(38.18) 

8f 
ati = -8 . 

Xi 
(38.19) 

Introducing the new variable 8 = T - t and following the previous one­
dimensional case arguments, we arrive at the initial-value problem 

subject to the boundary conditions analogous to (38.9) and (38.10) : 

f(s, Xl, .. , Xi, .. , Xn) = 0 

when Xi = ai, i = 1, ... , n, and 

when Xi = f3i, i = 1, ... , n. 

8f 
-8 (S,XI, .. ,Xi, .. ,Xn)=O 

Xi 

(38.20) 

(38.21) 

(38.22) 

(38.23) 

It is worth noting that the fulfilment of condition (38.22) implies to invest 
cash and securities of all other types in the i-th type security when the price of 
the latter one tends to the lower bound of the strip [ai, f3i]. 
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Unfortunately, because of the mixed partial derivatives in Eq. (38.20), the 
separation of variables is not possible and generally speaking the problem in 
(38.20)-(38.23) is to be solved numerically. 

Anyhow, in the case when correlation matrix in (38.2) is diagonal the cross­
terms in (38.20) disappear. If additionally, O'ii(t) are constants, the separation 
of variables turns out to be valid and the solution to the problem in (38.20)­
(38.23) can be written down explicitly [Tikhonov and Samarskii (1963)] in the 
form analogous to the representation (38.12), (38.14). 

38.3 Portfolio Consisting of Arbitrary Securities: 
The Second Scheme 

In this Section, we consider portfolio consisting of a number of arbitrary securi­
ties whose price follows the class of random processes described by the stochastic 
differential equation (38.1). Additionally, it is supposed that the price of secu­
rity during the period of control belongs to the interval [a,,8] with a relatively 
narrow width 6 =,8 - a (6/a is small). 

It is worth noting that the interval [a,,8], as one can see further, is not to 
be given in advance for the whole time of the control but can be varied as a 
step function in the process of operating with the investor portfolio. 

In contrast to (38.3), another trading strategy which will be scrutinized in 
the present Section implies that 

(38.24) 

where the presence of the additional term Vtdt means that the instant variance 
of the portfolio value is also due to some given in advance schedule of "pumping" 
cash into the portfolio. The latter remark leads to the relationship 

Vt = v(t, Xt) = l(t), (38.25) 

where the velocity of such "pumping" l(t) is a known function. 
Turning to the trading strategy defined by formula (38.24) and reiterating 

the arguments of the previous Section, we arrived at the differential equation 

ff + ~0'2(t)f;x = v(t,x) (38.26) 

subject to the boundary conditions 

f(t, a) = 0 (38.27) 

and 
of 
AX (t,,8) = O. (38.28) 
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Now in contrast to strategy (38.3), the initial portfolio is supposed to be empty 

j(O, x) = O. (38.29) 

The fulfilment of boundary conditions (38.27) and (38.28) yields specification 
of function v( t, x) 

(38.30) 

where N is an arbitrary positive integer. 
By making use of (38.30), the solution to the problem in (38.26)-(38.29) 

can be written down as [Tikhonov and Samarskii (1963)J 

and, consequently, the number of securities in the portfolio is defined by the 
formula 

t-'T 

N r 2h(~+7rk)2 J 0'2(s)ds 1 7r [1 7r ] 

at = EJo e 0 Vk(T)dTJ(2"+7rk)cos J(2"+7rk)(x-a) . 

(38.32) 
Along with (38.13), we have also obtained the desired trading strategy (38.32) 
as formula (38.31) provides the stable exponential growth of the portfolio value 
in time. 

To define functions Vk(T), one should maximize the right-hand side of (38.31) 
for t, x predesigned under the restriction 

(38.33) 

where 1 (T) is a given function and Xr is a current security price on the interval 
[0, tJ. 

When N = 0, the latter problem is trivial and instead of (38.32), one arrives 
at the relationship 

7r lot 1\"2 rt-'T 2 ( )d 1 ( T ) [1 7r ] at = - e~ Jo 0' S S dT cos --(x - a). (38.34) 
28 0 sin [i ~ (x ( T) - a)] 8 2 .. 

It is remarkable that even in the case of the Markovian character of the stochas­
tic process defined by (38.1), the trading strategy (38.34) turns out to memorize 
the dynamics of prices on the whole operating period. 
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By making use of the machinery elaborated in Section 38.2, one can easily 
write down the analogue of the problem in (38.26)-(38.30) in the situation when 
the portfolio contains different types of securities. For the sake of brevity, we 
confine ourselves to the case when the multidimensional version of the repre­
sentation (38.30) contains the first harmonic only. Reiterating the arguments 
of Section 38.2, one arrives at the equation 

subject to the initial 

and boundary conditions 

f(t, Xl, ... , Xi, ... , Xn) = 0 

when Xi = ai, i = 1, ... , n, and 

when Xi = i3i , i = 1, ... ,n. 

of 
~(t, Xl, ... , Xi, ... , Xn) = 0 
UXi 

(38.35) 

(38.36) 

(38.37) 

(38.38) 

In the case when correlation matrix in (38.2) is diagonal and (Jii(t) are 
constants, the cross-terms in (38.35) disappear and the separation of variables 
towards the problem in (38.35)-(38.38) is applicable. Then the solution to the 
latter problem can be written down explicitly [Tikhonov and Samarskii (1963)] 
in the form analogous to the representation (38.31) when N = O. 

38.4 Continuous Analogue of the Finite-Order 
Autoregression 

The goal of this Section is to prove that the pricing model Xt = exp(ht ), where 
ht is the continuous analogue of each finite order autoregression, is covered by 
Eq. (38.1). 

Consider the n-order autoregression of the form 

(38.39) 

where ct is a white noise and ~ is a difference interval. 
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It is well-known [Box and Jenkins (1970)] that the relationship (38.39) can 
be rewritten in differences with one-to-one correspondence between coefficients 
Ci and ai 

al,rht + a2\ln-1ht + ... + an-l \lht + anht = et, (38.40) 

where \lk+1ht = \l(\lkht ) and \lht = ht - ht-fj.. 
Write down the continuous analogue of the difference equation (38.40) as 

follows: 

ndnht n-l dn-1ht dht 
al~ dtn + a2~ dtn- 1 + ... + an-l~ dt + anht = et . (38.41) 

The solution to Cauchy problem for Eq. (38.41) on the interval [0, t] can be 
presented in the form 

t 

ht = t.p(t) + j G(t - s)dWs, (38.42) 

o 
where t.p(t) is a deterministic function and G(t - s) is the function of response 
as an integrand in Ito's integral. 

Consider t to be fixed and introduce the new notation F(s) = G(t - s) for 
the convenience. As F(s) is a deterministic function, it is possible to apply inte­
gration by parts to Ito's integral in the expression (38.42). Thus, the following 
calculations are valid: 

t 

j G(t - s)dWs 
o 

and we arrive at the relationship 

t 

j F(s)dWs 
o 

t 

F(t)Wt - j WsF(s)ds 
o 

t 

G(O)Wt + j WsG(t - s)ds 
o 

t t 

G(O) j dWs + j WsG(t - s)ds 
o 0 

t t 

d[j G(t - s)dWs] = G(O)dWt + WtG(O)dt + {j WsG(t - s)ds}dt. 
o 0 

Ultimately, keeping in mind (38.42), the stochastic representation for ht is de­
rived as 

t 

dht = [cp(t) + WtG(O) + j WsG(t - s)ds]dt + G(O)dWt. 
o 



On the Probability Models to Control the Investor Portfolio 545 

Evidently, Xt = exp(ht ) satisfies stochastic differential equation of the form 
(38.1). 

38.5 Conclusions 

Considering variety of the pointed out strategies, we should recognize that the 
choice of one or the other is strongly motivated by the concrete situation at the 
financial market. For instance, when there are strongly pronounced trends in 
the dynamics of prices, it seems that one will prefer the first two strategies to the 
third one. On the contrary, when the trends of security prices are feebly marked 
it seems reasonable to choose the latter approach. Nevertheless, as it has been 
shown in the present study, the third strategy can provide the increasing of 
the portfolio value even in the case when the trend of a security price goes 
down. Moreover, the approach analyzed in this chapter prescribes the number 
of a security in the portfolio to depend not only on the price but on the time 
interval of the trading also. For example, it makes reasonable to launch an 
even number of portfolios operating with the same securities but separated in 
time to diminish the amount of borrowed money. Furthermore, the proposed 
approach may be helpful to arrange hedging strategies by striking futures and 
options. Ultimately, the rapid swap of cash flows inside one system operating 
with different strategies is probably not the worst solution while gambling. 
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