


Statistics for Industry and Technology

Series Editor

N. Balakrishnan

McMaster University

Department of Mathematics and Statistics
1280 Main Street West

Hamilton, Ontario L8S 4K1

Canada

Editorial Advisory Board

Max Engelhardt
EG&G Idaho, Inc.
Idaho Falls, ID 83415

Harry F. Martz

Group A-1 MS F600

Los Alamos National Laboratory
Los Alamos, NM 87545

Gary C. McDonald

NAO Research & Development Center
30500 Mound Road

Box 9055

Warren, MI 48090-9055

Peter R. Nelson

Department of Mathematical Sciences
Clemson University

Martin Hall

Box 341907

Clemson, SC 29634-1907

Kazuyuki Suzuki

Communication & Systems Engineering Department
University of Electro Communications

1-5-1 Chofugaoka

Chofu-shi

Tokyo 182

Japan



Asymptotic Methods
in Probability and
Statistics with Applications

N. Balakrishnan
I.A. Ibragimov

V.B. Nevzorov
Editors

Springer Science+Business Media, LLC



N. Balakrishnan L A. Ibragimov

Department of Mathematics V.B. Nevzorov
and Statistics Department of Mathematics and Mechanics
McMaster University St. Petersburg State University
1280 Main Street West St. Petersburg
Hamilton, Ontario L8S 4K1 Russia
Canada

Library of Congress Cataloging-in-Publication Data
Asymptotic methods in probability and statistics with applications / edited by
N. Balakrishnan, I.A. Ibragimov, V.B. Nevzorov.
p. cm. (Statistics for industry and technology)
Includes bibliographical references and index.
ISBN 978-1-4612-6663-1 ISBN 978-1-4612-0209-7 (eBook)
DOI 10.1007/978-1-4612-0209-7
1. Aymptotic distribution (Probability theory) I. Balakrishnan, N., 1956
IL. Ibragimov, L.A. (Idar Abdulovich) III. Nevzorov, Valery B., 1946— IV. Series.
QA273.6 .A78 2001
519.2—dc21 2001025400
CIP

Printed on acid-free paper. B ®
© 2001 Springer Science+Business Media New York

Originally published by Birkh&user Boston in 2001
Softcover reprint of the hardcover 1st edition 2001

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection
with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks
and Merchandise Marks Act, may accordingly be used freely by anyone.

SPIN 10785725

Production managed by Louise Farkas; manufacturing supervised by Jacqui Ashri.
Typeset by the editors in IKTEX.
Cover design by Vernon Press, Boston, MA.

987654321



Contents

Preface XV
Contributors xvil

PART I: PROBABILITY DISTRIBUTIONS

1 Positive Linnik and Discrete Linnik Distributions 3
Gerd Christoph and Karina Schreiber

1.1 Different Kinds of Linnik’s Distributions 3
1.2 Self-deomposability and Discrete Self-decomposability 6
1.3 Scaling of Positive and Discrete Linnik Laws 8
1.4 Strictly Stable and Discrete Stable Distributions as
Limit Laws 9
1.5 Asymptotic Expansions 11
References 15

2 On Finite-Dimensional Archimedean Copulas 19
S. V. Malov

2.1 Introduction 19
2.2 Statements of Main Results 22
2.3 Proofs 25
2.4 Some Examples 30
References 34

PART II: CHARACTERIZATIONS OF DISTRIBUTIONS

3 Characterization and Stability Problems for
Finite Quadratic Forms 39
G. Christoph, Yu. Prohorov, and V. Ulyanov

3.1 Introduction 39
3.2 Notations and Main Results 40



vi

3.3 Auxiliary Results 43
3.4 Proofs of Theorems 47
References 49

4 A Characterization of Gaussian Distributions by
Signs of Even Cumulants
L. B. Klebanov and G. J. Szekely

4.1 A Conjecture and Main Theorem 51
4.2 An Example 53
References 53

5 On a Class of Pseudo-Isotropic Distributions
A. A. Zinger

5.1 Introduction 55

5.2 The Main Results 56

5.3 Proofs 58
References 61

PART I1I: PROBABILITIES AND MEASURES IN

HiGH-DIMENSIONAL STRUCTURES

6 Time Reversal of Diffusion Processes in
Hilbert Spaces and Manifolds
Ya. Belopolskaya

6.1 Diffusion in Hilbert Space 65
6.1.1 Duality of time inhomogeneous
diffusion processes 69
6.2 Diffusion in Hilbert Manifold 72
References 79

7 Localization of Marjorizing Measures
Bettina Bihler, Wenbo V. Li, and Werner Linde

7.1 Introduction 81
7.2 Partitions and Weights 83
7.3 Simple Properties of ON(T) 84
7.4 Talagrand’s Partitioning Scheme 87
7.5 Majorizing Measures 88
7.6 Approximation Properties 89
7.7 Gaussian Processes 93
7.8 Examples 96
References 99

Contents

51

55

65

81



Contents

8 Multidimensional Hungarian Construction
for Vectors with Almost Gaussian
Smooth Distributions
F. Gétze and A. Yu. Zaitsev

8.1 Introduction 101

8.2 The Main Result 106

8.3 Proof of Theorem 8.2.1 112

8.4 Proof of Theorems 8.1.1-8.1.4 123
References 131

9 On the Existence of Weak Solutions for
Stochastic Differential Equations With
Driving L2-Valued Measures
V. A. Lebedev

9.1 Basic Properties of o-Finite LP-Valued
Random Measures 133

9.2 Formulation and Proof of the Main Result 135
References 141

10 Tightness of Stochastic Families Arising From
Randomization Procedures
Mikhail Lifshits and Michel Weber

10.1 Introduction 143

10.2 Sufficient Condition of Tightness in C[0,1] 145

10.3 Continuous Generalization 146

10.4 An Example of Non-Tightness in C[0,1] 147

10.5 Sufficient Condition for Tightness in LP[0,1] 149

10.6 Indicator Functions 151

10.7 An Example of Non-Tightness in LP, p € [1,2) 155
References 158

11 Long-Time Behavior of Multi-Particle Markovian
Models
A. D. Manita

11.1 Introduction 161
11.2 Convergence Time to Equilibrium 162
11.3 Multi-Particle Markov Chains 163
11.4 H and S-Classes of One-Particle Chains 165
11.5 Minimal CTE for Multi-Particle Chains 167
11.6 Proofs 168

References 176

vii

101

133

143

161



viii

12

13

14

Contents

Applications of Infinite-Dimensional
Gaussian Integrals
A. M. Nikulin

References 187

On Maximum of Gaussian Non-Centered Fields
Indexed on Smooth Manifolds
Vladimir Piterbarg and Sinisha Stamatovich

13.1 Introduction 189
13.2 Definitions, Auxiliary Results, Main Results 190
13.3 Proofs 194

References 203

Typical Distributions: Infinite-Dimensional Approaches
A. V. Sudakov, V. N. Sudakov, and H. v. Weizsicker

14.1 Results 205
References 211

PART IV: WEAK AND STRONG LIMIT THEOREMS

15

16

17

A Local Limit Theorem for Stationary Processes
in the Domain of Attraction of a Normal Distribution
Jon Aaronson and Manfred Denker

15.1 Introduction 215
15.2 Gibbs-Markov Processes and Functionals 216
15.3 Local Limit Theorems 218

References 223

On the Maximal Excursion Over Increasing Runs
Andrei Frolov, Alexander Martikainen, and Josef Steinebach

16.1 Introduction 225

16.2 Results 230

16.3 Proofs 232
References 240

Almost Sure Behaviour of Partial Maxima Sequences
of Some m-Dependent Stationary Sequences
George Haiman and Lhassan Habach

17.1 Introduction 243
17.2 Proof of Theorem 17.1.2 245
References 249

177

189

205

215

225

243



Contents ix

18

On a Strong Limit Theorem for Sums of Independent
Random Variables 251
Valentin V. Petrov

18.1 Introduction and Results 251
18.2 Proofs 253
References 256

PART V: LARGE DEVIATION PROBABILITIES

19

20

Development of Linnik’s Work in His Investigation
of the Probabilities of Large Deviation 259
A. Aleskeviciené, V. Statulevicius, and K. Padvelskis

19.1 Reminiscences on Yu. V. Linnik (V. Statulevi¢ius) 259
19.2 Theorems of Large Deviations of Sums of Random
Variables Related to a Markov Chain 260
19.3 Non-Gaussian Approximation 272
References 274

Lower Bounds on Large Deviation Probabilities for
Sums of Independent Random Variables 277
S. V. Nagaev

20.1 Introduction. Statement of Results 277

20.2 Auxiliary Results 283

20.3 Proof of Theorem 20.1.1 286

20.4 Proof of Theorem 20.1.2 291
References 294

PART VI: EMPIRICAL PROCESSES, ORDER STATISTICS, AND RECORDS

21

22

Characterization of Geometric Distribution Through
Weak Records 299
Fazil A. Aliev

21.1 Introduction 299
21.2 Characterization Theorem 300
References 306

Asymptotic Distributions of Statistics Based

on Order Statistics and Record Values and

Invariant Confidence Intervals 309
Ismihan G. Bairamov, Omer L. Gebizlioglu, and

Mehmet F. Kaya



X Contents

22.1 Introduction 309
22.2 The Main Results 312
References 319

23 Record Values in Archimedean Copula Processes 321
N. Balakrishnan, L. N. Nevzorova, and V. B. Nevzorov

23.1 Introduction 321

23.2 Main Results 323

23.3 Sketch of Proof 327
References 329

24 Functional CLT and LIL for Induced Order Statistics 333
Yu. Davydov and V. Egorov

24.1 Introduction 333
24.2 Notation 335
24.3 Functional Central Limit Theorem 335
24.4 Strassen Balls 339
24.5 Law of the Iterated Logarithm 343
24.6 Applications 345

References 347

25 Notes on the KMT Brownian Bridge Approximation
to the Uniform Empirical Process 351
David M. Mason

25.1 Introduction 351
25.2 Proof of the KMT Quantile Inequality 355
25.3 The Diadic Scheme 360
25.4 Some Combinatorics 363
References 368

26 Inter-Record Times in Poisson Paced F® Models 371
H. N. Nagaraja and G. Hofmann

26.1 Introduction 371

26.2 Exact Distributions 372

26.3 Asymptotic Distributions 374
References 381

PART VII: ESTIMATION OF PARAMETERS AND HYPOTHESES TESTING

27 Goodness-of-Fit Tests for the Generalized Additive
Risk Models 385
Vilijandas B. Bagdonavicius and Milhail S. Nikulin

27.1 Introduction 385



Contents

28

29

30

31

27.2 Test for the First GAR Model Based on the Estimated
Score Function 387

27.3 Tests for the Second GAR Model 391
References 393

The Combination of the Sign and Wilcoxon Tests
for Symmetry and Their Pitman Efficiency
G. Burgio and Ya. Yu. Nikitin

28.1 Introduction 395

28.2 Asymptotic Distribution of the Statistic G, 397

28.3 Pitman Efficiency of the Proposed Statistic 398

28.4 Basic Inequality for the Pitman Power 402

28.5 Pitman Power for G, 403

28.6 Conditions of Pitman Optimality 404
References 406

Exponential Approximation of Statistical Experiments
A. A. Gushchin and E. Valkeila

29.1 Introduction 409

29.2 Characterization of Exponential Experiments and
Their Convergence 412

29.3 Approximation by Exponential Experiments 415
References 422

The Asymptotic Distribution of a Sequential
Estimator for the Parameter in an AR(1) Model
with Stable Errors

Joop Mijnheer

30.1 Introduction 425

30.2 Non-Sequential Estimation 426

30.3 Sequential Estimation 431
References 433

Estimation Based on the Empirical
Characteristic Function
Bruno Rémillard and Radu Theodorescu

31.1 Introduction 435

31.2 Tailweight Behavior 436

31.3 Parameter Estimation 438

31.4 An Illustration 443

31.5 Numerical Results and Estimator Efficiency 446
References 447

xi

395

409

425

435



xii

32 Asymptotic Behavior of Approximate Entropy
Andrew L. Rukhin

32.1 Introduction and Summary 451

32.2 Modified Definition of Approximate Entropy and
Covariance Matrix for Frequencies

32.3 Limiting Distribution of Approximate Entropy 457

References

Part VIII: RANDOM WALKS

33 Threshold Phenomena in Random Walks

A. V. Nagaev

460

33.1 Introduction 465

33.2 Threshold Phenomena in the Risk Process
33.3 Auxiliary Statements
33.4 Asymptotic Behavior of the Spitzer Series
33.5 The Asymptotic Behavior of M_;

469

453

478

33.6 Threshold Properties of the Boundary

Functional

s 480

33.7 The Limiting Distribution for S 481

References

34 Identifying a Finite Graph by Its Random Walk

484

Heinrich v. Weizsdcker

References

490

PART IX: MISCELLANEA

35 The Comparison of the Edgeworth and

Bergstrom Expansions

468

471

Viadimir I. Chebotarev and Anatolii Ya. Zolotukhin

35.1 Introduction and Results 493

35.2 Proof of Lemma 35.1.1
35.3 Proof of Lemma 35.1.2

497
500

35.4 Proof of Theorem 35.1.1 505
References 505

36 Recent Progress in Probabilistic Number Theory

Jonas Kubilius

36.1 Results

507

Contents

451

465

487

493

507



Contents xiii

PART X: APPLICATIONS TO FINANCE

37 On Mean Value of Profit for Option Holder:
Cases of a Non-Classical and the Classical
Market Models 523
0. V. Rusakov

37.1 Notation and Statements 523
37.2 Models 524
37.3 Results 531

References 533

38 On the Probability Models to Control the
Investor Portfolio 535
S. A. Vavilov

38.1 Introduction 535

38.2 Portfolio Consisting of Zero Coupon Bonds:
The First Scheme 537

38.3 Portfolio Consisting of Arbitrary Securities:
The Second Scheme 541

38.4 Continuous Analogue of the Finite-Order
Autoregression 543

38.5 Conclusions 545
References 545

Index 547



Preface

Traditions of the 150-year-old St. Petersburg School of Probability and Statis-
tics had been developed by many prominent scientists including P. L. Cheby-
chev, A. M. Lyapunov, A. A. Markov, S. N. Bernstein, and Yu. V. Linnik. In
1948, the Chair of Probability and Statistics was established at the Department
of Mathematics and Mechanics of the St. Petersburg State University with Yu.
V. Linik being its founder and also the first Chair. Nowadays, alumni of this
Chair are spread around Russia, Lithuania, France, Germany, Sweden, China,
the United States, and Canada.

The fiftieth anniversary of this Chair was celebrated by an International
Conference, which was held in St. Petersburg from June 24-28, 1998. More
than 125 probabilists and statisticians from 18 countries (Azerbaijan, Canada,
Finland, France, Germany, Hungary, Israel, Italy, Lithuania, The Netherlands,
Norway, Poland, Russia, Taiwan, Turkey, Ukraine, Uzbekistan, and the United
States) participated in this International Conference in order to discuss the
current state and perspectives of Probability and Mathematical Statistics.

The conference was organized jointly by St. Petersburg State University, St.
Petersburg branch of Mathematical Institute, and the Euler Institute, and was
partially sponsored by the Russian Foundation of Basic Researches.

The main theme of the Conference was chosen in the tradition of the St.
Petersburg School of Probability and Statistics. The papers in this volume
form a selection of invited talks presented at the conference. The papers were
all refereed rigorously, and we thank all the referees who assisted us in this
process. We also thank all the authors for submitting their articles for inclusion
in this volume.
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Thanks are also due to Mr. Wayne Yuhasz and Ms. Lauren Schultz, both at
Birkh&auser (Boston), for their support and encouragement. Our final thanks go
to Mrs. Debbie Iscoe for her excellent camera-ready typesetting of this entire
volume.

Hamilton, Ontario, Canada N. Balakrishnan
St. Petersburg, Russia L A. Ibragimov
St. Petersburg, Russia V. B. Nevzorov
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PROBABILITY DISTRIBUTIONS



1

Positive Linnik and Discrete. Linnik Distributions

Gerd Christoph and Karina Schreiber
Otto—von—Guericke-Universitit Magdeburg, Magdeburg, Germany

I belong to the last generation of students learning the basic knowl-
edge of statistics by Yuri Vladimirovitsch Linnik. Only a few weeks
before he died, I took my examination in Statistics. I remember this
examination because Prof. Linnik welcomed me in German and he
asked me (in German) about properties of “Mazimum~—Likelihood—
Schatzungen.” Never before I had heard these German terms. I was
prepared to answer, as usually, in Russian. So, I learned from Prof.
Linnik not only to like statistics but also during the examination
that likelihood is an old English word for probability which is used
in German statistical terms too. Gerd Christoph

Abstract: In this chapter, (continuous) positive Linnik and (nonnegative in-
teger valued) discrete Linnik random variables are discussed. Rates of conver-
gence and first terms of both the Edgeworth expansions and the expansions
in the exponent of the distribution functions of certain sums of such random
variables with nonnegative strictly stable as well as discrete stable limit laws
are considered.

Keywords and phrases: Positive Linnik and discrete Linnik distributions,
discrete self-decomposability, discrete stability, rates of convergence, Edgeworth
expansions, expansions in the exponent with discrete stable limit law

1.1 Different Kinds of Linnik’s Distributions
Linnik (1963, p. 67) proved that the functions
o) =1 +1t")" for y€(0,2]

3
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4 Gerd Christoph and Karina Schreiber

are characteristic functions of real valued symmetric random variables, which
are called symmetric Linnik distributed. Later on, in Devroye (1990) some more
parameters were considered and it was proved that

o (t) =1 + clt|)™P for v€(0,2],¢>0,8>0

are characteristic functions of real valued symmetric random variables, too.
Pakes (1995, p. 294) called nonnegative random variables with Laplace—
Stieltjes transforms

Py(u) = (1 +ecu?) P u>0, for ve(0,1],¢>0, 8>0 (1.1)

positive Linnik distributed. Here, we restrict ourselves to the case v € (0, 1],
since the corresponding function v, (u) in case 1 < v < 2 is not completely
monotone. Hence, 1 (u) with 1 < v < 2 can not be a Laplace-Stieltjes trans-
form, see Feller (1971, p. 439).

Changing u in ¥ (u) by (1 — 2), it was shown that

g(z) =1 4+ c(1=2))"", |2|<1, for y€(0,1],¢>0,8>0 (1.2)

are probability generating functions of nonnegative integer valued random vari-
ables, which are called discrete Linnik distributed. See Devroye (1993) for the
case ¢ = 1 and Pakes (1995, p. 296).

In analogue to the generalized Pareto distribution, these random variables
are redefined in Christoph and Schreiber (1998b): A random variable L,); with
probability generating function

—z -8 r
(z:{(1+)\(1 )Y/B)~ 7, for 0< < 0, L<1. (13)

9Ly exp{—A(1—2)7}, for f =00,
is called discrete Linnik distributed with characteristic exponent vy € (0,1], scale
parameter A > 0 and form parameter 3 > 0.

In case 8 = oo, the discrete stable random variables denoted further by
X,’Y\ and introduced in Steutel and van Harn (1979) occur in (1.3) as a natural
generalization of the discrete Linnik distribution defined in (1.2) with ¢ = A/g.

If 8 =1, then (1.3) gives the probability generating function of the discrete
Mittag-Leffler distribution; see Jayakumar and Pillai (1995).

For v = 1, well-known distributions occur:

— Poisson(A) distribution if 8 = oo,
— negative binomial distribution with probabilities

P(L} =k) = (‘kﬁ) (- ﬁﬁ)k <_)\-f_ﬁ>ﬁ’ k=0,1,..., (1.4)

if 8 < 0o and as special case
— geometric distribution if § = 1.
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If v = 1, the probabilities (1.4) of the negative binomial random variable
L3 tend to the probabilities of the Poisson()\) random variable X{* as 3 — oo.

If v < 1, the probabilities of the discrete Linnik distributions with proba-
bility generating function (1.3) may be obtained by expanding the probability
generating function in a power series. Hence,

NN CTANEE Y TS AN AP A
P(L) = k) = (-1) J;)(J( ; )( B)’ k=0,1,...

if B < o0, or in the case of § = oo
P =k = (-1 S (V) 2 oo, 1.

In both cases, the series are absolutely convergent, but they can not be expressed
in a simple form. Again, we find

P(L)=k)>P(X)=k) as B—oo, k=0,1,...

For both the discrete Linnik random variable Lf; if 8 < oo and the discrete
stable random variable X,)Y‘ if 8 = oo, asymptotic formulas for the mentioned
probabilities are given in Christoph and Schreiber (1998b, 1998a). We have, as
k — oo:

[(»y-g:)/ﬂ <j - 1) (=1 N D(yj +1)sin(yjm)

1
A = = -—
P(Ly=k) = T j B9 kvit1

j=1
+O0(k™77?)

if 8 < 00, or in the case of 8 = oo

[(v+1)/7] (— 1)j+1 A (v . .
vJj+1)sin(yjm) —y—2
T L ) gy

In analogue to (1.3), we now redefine the positive Linnik distributions using
c¢=A/f in (1.1). A random variable W§\ with Laplace—Stieltjes transform

=l|»—‘

P(X2 =

(1+Auw/B)~#, for 0< < 0,

Ywy (u)= { exp{—Au}, for = o0, uz0 (16)

is called positive Linnik distributed with characteristic exponent v € (0, 1], scale
parameter A > 0 and form parameter 3 > 0.
In case B = oo, the nonnegative strictly stable random variables denoted

further by S?y‘ occur in (1.6) as a natural generalization of the positive Linnik
distribution.
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If 8 =1, (1.6) defines probability generating function of the Mittag—Leffler
distribution [see Pillai (1990) or Jayakumar and Pillai (1995)] with the corre-
sponding distribution function 1 — E,(—z"), where E, () is the Mittag—LefHler
function. In contrast, in Bingham, Goldie and Teugels (1987, p. 329 and p. 392)
Mittag—LefHler distributions as limit laws for occupation times of Markov pro-
cesses are defined by the corresponding Laplace-Stieltjes transform E.,(u) being
Mittag—Leffler functions. See also Pakes (1995, p. 294).

For v = 1 well-known distributions occur:

— degenerate distribution at the point A if 8 = oo,

— Gamma distribution with density (I'(3))~1 (8/A\)P e %8/ zf~1 as z > 0 if
B < oo with the special case of

— exponential distribution with parameter 1/A > 0 if § = 1.

1.2 Self-decomposability and Discrete
Self-decomposability

A real random variable W is said to be self-decomposable (or it belongs to the
so-called class L) if corresponding to every a € (0, 1) there exists a random
variable W, such that

WLaWw* + W,, (1.7)

where W* and W, are independent, W 2 W* and £ denotes the equality in
distribution. Nondegenerate self-decomposable random variables are known to
be absolutely continuous; see Fisz and Varadarajan (1963).

A real valued random variable S is called strictly stable if

SLas + (1 — Y78 forevery 0<a<1 (1.8)

with some 0 < v < 2, where $* and S** are independent with the same distri-
bution as §.

It follows from (1.7), (1.8) and Sp < (1 — a”)}/7 §** with some 0 < 7 < 2
and S 2§ **, that strictly stable random variables are self-decomposable.

Self-decomposable random variables are important as the only possible limit
laws of normalized partial sums of independent random variables. Moreover,
the stable random variables occur as the only possible limit laws of normalized
partial sums of independent and identically distributed (iid) random variables.

Strictly stable random variables S:Y\ with (1.8) are nonnegative only if v €
(0, 1]. Such random variables S?Y‘ have Laplace-Stieltjes transform (1.6) with
8 = oo.

Further, we restrict ourselves to nonnegative integer random variables, for
which discrete analogues of self-decomposability and stability were introduced
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by Steutel and van Harn (1979). In (1.7) and (1.8), the multiplication o X of
a nonnegative integer valued random variable X with a constant a € (0,1) is
replaced by a dot product o ® X, which is defined as a random partial sum of
the first X members of a sequence of iid Bernoulli random variables {Ng}i>1,
which are independent of X:

a®X<N +---+Nx with a=P(N;=1)=1-P(N; =0). (L.9)

Hence,

gaox(2) =gx(1—a+az)=gx(1 — a(l1-2)). (1.10)
Then, a nonnegative integer random variable X is called discrete self-decompos-
able, if corresponding to every a € (0, 1) there exist independent random vari-

ables X, and X* with X* dx such that
X200X" + X,. (1.11)

Further, a random variable X, is called discrete stable if for every oo € (0, 1)

there exist iid random variables X7 and X3* with X 4 X~ such that
XygaG)X; + (1 - aV)I/VGX;* for some 0<~vy<1. (1.12)

It follows from (1.11), (1.12) and X, 4 1 - a7 o X3* with some

0<vy<land X d X;*, that discrete stable random variables are discrete
self-decomposable. It was also proved in Steutel and van Harn (1979) that a
random variable X, is discrete stable iff the corresponding probability generat-
ing function has the form (1.3) in the case of 3 = oo.

The relations (1.3) and (1.6) show the connection between the Laplace—
Stieltjes transform of a positive Linnik random variable Ww)\ and the probability
generating function of a discrete Linnik random variable L%. For more details,
see van Harn, Steutel and Vervaat (1982) or Pakes (1995). In particular,

— degenerate distribution corresponds with Poisson law if 8 = oo and v = 1,

— gamma distribution corresponds with negative binomial law in case of 3 < oo
and v =1, and

— Mittag—Lefller distribution with discrete Mittag—Leffler one if 3 = 1.

Using the approach of Jayakumar and Pillai (1995) to prove the discrete self-
decomposability of the discrete Mittag-Leffler law with probability generating
function (1.3) for 8 = 1, we find for discrete Linnik laws with integer form
parameters [ = m:

¥ra(2) B 1-a” \™
vra(l—o7(1-2)) <Oﬂ TTaa —Z)"Y> '

The right-hand side is the weighted average of probability generating functions
of degenerate and discrete Linnik laws. Hence, the left-hand side defines a
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probability generating function The discrete self-decomposability of discrete
Linnik laws with integer form parameters m follows now from (1.10) and (1.11).
In the same manner, we obtain the self-decomposability of positive Linnik laws
with integer form parameter m too.

Using representation theorems for self-decomposable or discrete self~-decom-
posable random variables in terms of Laplace—Stieltjes transforms or probability
generating functions given in Steutel and van Harn (1979), it may be proved
that positive Linnik random variables are self-decomposable and discrete Lin-
nik are discrete self-decomposable for arbitrary form parameter 5. See also
Christoph and Schreiber (1998b, p. 8). Hence, these random variables are in-
finitely divisible.

Note that the other Mittag—LefHler laws with Mittag-Leffler functions E, (u)
as Laplace—Stieltjes transforms are not infinitely divisible; see Bondesson, Kris-
tiansen and Steutel (1996, Theorem 4.3).

1.3 Scaling of Positive and Discrete Linnik Laws

Let W be self-decomposable. It follows from Loéve (1977, p. 334) that if to W
there correspond a real number @ > 0 and a nondegenerate random variable
Wy, such that (1.7) holds, then @ < 1. For a = 1, the random variable W; in
(1.7) is degenerate at point 0. Nevertheless, the random variable o W is a well
defined for any a > 0.

For the positive Linnik random variable W,i‘, we find

A~ W,i‘ 4 W% for arbitrary A > 0. (1.13)

4
Consider now the discrete Linnik random variable L:‘; with probability gen-
erating function (1.3), then using (1.10) with arbitrary o > 0 we obtain

A"V e LQ\ 4 L} for arbitrary >0, (1.14)

but the dot product in (1.9) is defined only for A=Y/7 < 1, i.e. A > 1. We
may extend the definition of the dot product o ® X for such o > 1, whenever
the functions gaex(2) defined by (1.10) is a probability generating function In
dependency of X, there may exist an upper bound for such a that g,ox(2) is
a probability generating function. For more about scaling and the dot product,
see Christoph and Schreiber (1998d).

The scaling properties (1.13) and (1.14) of the positive Linnik random vari-
able WW)‘ and discrete Linnik random variable L$ allow to consider only the case
of A =1.
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Let p,(z; A, B) be the density of positive Linnik random variable W,i‘, then
by (1.13)
p’Y(wa )‘1 /6) = )‘_ l/vp’y()‘_ 1/7 .'13, ]-1 /6) .

For the probabilities of discrete Linnik random variable L:r\’ we find by (1.14)

oo

PI =k =Y (;) (1= NV7)imk XBY P(LL = ).
i=k

In order to avoid such difficulties, we formulate the following limit theorems
for arbitrary scaling parameter.

1.4 Strictly Stable and Discrete Stable
Distributions as Limit Laws

Both the positive Linnik random variable WW)‘ with Laplace—Stieltjes transform
(1.6) and the discrete Linnik random variable L$ with probability generating
function (1.3) belong to the domain of normal attraction of the nonnegative
strictly stable random variable Si‘ having Laplace—Stieltjes transform (1.6) with
3 = oo, since

Qp"WWA(n_l/"’u)ﬂe”’\m as n— oo (1.15)

and
w% (n=7w) = 92; (e ™ o U e M as n— oo, (1.16)

Following Steutel and van Harn (1979), the discrete Linnik random variable
L$ with probability generating function (1.3) belong to the discrete domain of
normal attraction of the discrete stable random variable Xi‘ having probability
generating function (1.3) with 8 = oo, since

gzé(l —n M 1-2)-e 070 a5 p o . (1.17)

Let Wi, Wy, ..., Wy, be iid copies of W2 and Ly, Ly, . .., Ly, be iid copies of
L:Y\. Then different limit statements follow from (1.15), (1.16) and (1.17):

Snzn_l/'Y(Wl—i—...—l—Wn)iSf} as n — oo, (1.18)
S;=n_l/7(Ll+...+Ln)i>S£‘ as m — 0o (1.19)

and
Xn=MN1+...+Np,+ +L, 4, Xi‘ as m — 00, (1.20)
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where in the later case the random variables L1, ..., L, are independent of the
iid random variables N1, Na,... with P(N; = 1) = nlr=1- P(N; =0) and

d . o e .
— denotes the convergence in distribution.

We may interpret (1.17) also as the sum of iid random variable L1, ..., Lnn
in the nth series of a triangular array {Lx,}, k=1,2,...,n,n=1,2,...
Xi=Lin+. .4 LonSX) as n— oo, (1.21)

where Lj, is discrete Linnik with with characteristic exponent +, scale param-
eter \/n and form parameter 3. Note that X, 4 X;.

Since the discrete Linnik random variable L$ is nonnegative integer with
span 1, the random variable .S}, is lattice with span n™ 1/7 but the limit random
variable S;\ in (1.19) is absolutely continuous for 0 < v < 1 or degenerate for
~v = 1, whereas both random variables X, and X,i‘ in (1.20) are nonnegative
integer with span 1. Relation (1.21) shows a special type of convergence to
nonnegative integer valued infinitely divisible random variables.

Proposition 1.4.1 For positive Linnik random variable W§\ with Laplace—
Stieltjes transform (1.6), if B < oo we have in (1.18)

|P(S, <z)-— P(Sfy‘ <z)|=0®"1) as n—oo.

For discrete Linnik random variable Lé with probability generating function
(1.3), we obtain in (1.19)

O(n™'), iff <oo,
IP(SZSw)—P(S?Y‘Sx)[: as n — oo.
O(n=17), iff=oc0,

Proposition 1.4.2 For discrete Linnik random wvariable L/v\ with probability
generating function (1.3), if B < oo we find in (1.20)

P(Xn<z)-— P(Xi‘ <z)|=0(n"1) as n—oo.

Since X, < X3, the same bound holds in (1.21).

Remark 1.4.1 The results are special cases of more general ones proved in
Christoph and Schreiber (1998c). They follow also from the corresponding
statements about asymptotic expansions given in the next section.

Remark 1.4.2 In the case v = 1 Proposition 1.4.1 gives a special type of rates
of convergence in the weak law of large numbers for gamma distribution and
negative binomial or Poisson distributions, because S, is the arithmetic mean
and the limit is the degenerate law at the point A.
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Remark 1.4.3 If y = 1 in Proposition 1.4.2 the convergence rate for the distri-
bution function of a random sum of Bernoulli random variables to the Poisson
law is obtained. More details about Poisson approximation see Lorz and Hein-
rich (1991), Vellaisamy and Chaudhuri (1996) or in the monograph by Barbour,
Holst and Janson (1992) and the references therein.

1.5 Asymptotic Expansions

It follows from Proposition 1.4.1 that for positive Linnik random variable WV)‘
and discrete Linnik random variable L?;, in case of 3 < co we obtain the same
rate of convergence to the distribution of the strictly stable random variable
S%‘. To see the difference between the continuous and discrete random variables
we consider asymptotic expansions up to such an order, where they differ.

Asymptotic expansions with a (continuous) stable limit law (corresponding
to 0 < v < 1) are well investigated; see Christoph and Wolf (1993, Ch. 4)
and references therein. In case of discrete stable limit laws, the Poisson limit
law (which is discrete stable with v = 1) is considered, when the underlying
random variables have second or more moments; see Lorz and Heinrich (1991)
or Aleskeviciene and Statulevicius (1995) and references therein. If v < 1, then
even the first moment does not exist.

Define m = [1/~], where [r] denotes the integer part of 7. Let

m+1 1 )
hn(w) = exp {’LU + fao Wuﬂ} (122)
and
hy(w) =e® - (1 + i Pj(w) n_j) , (1.23)
j=1

where the polynomials Pj(w) are defined by the formal equation

exp {Z j—ﬂjt}W:l—wj} = <1+Z Pj(w)n—j) ’

i=2 i=1
which leads to [see Christoph and Wolf (1993, p. 97)]

J m
Pj(w) = Z % Z H sp Lw™H (1.24)
m=1"""

s1+..+sm=m+j k=1

where the summation in the second sum of the right-hand side is carried over
all integer solutions (sy,...,sm) of the equation s; + ...+ s, = m + j with
sk>2,k=1,...,m.
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The first three polynomials are P, (w) = 1/(2 8) w?,
1 /1 4 1 4 1 /1 4 1 5 1
PZ(U’)—@<§U’ +§w)and1?3(w)—@<zgw tgw +Zw).

Remember that P (t) and @g, (t) are the characteristic functions of the strictly

stable random variable S:r\ and the normalized sum S,, defined in (1.18). Put
n(t) =In Ps (t), then

n(t) = — At exp{—i (my /2) sgnt } = — A(—it)",

sy (t) = gy (= it) and s, (t) = Yy (—itn ™) = (1 = n(8)/ (n B)) ™.

With Lemma 4.30 from Christoph and Wolf (1993), we find for |t| < e n1/7 with
sufficiently small £ > 0 that

95, (t) = hy(n(0)] < eon™ (PO [t ) e A4, (1.25)

where a > y(m + 2) and ¢; are some constants independent of |t| and n.
Consider now S} defined in (1.19) which is lattice with span n~1/7. The
characteristic function of the random variable L:r\ is given by ¢, (t) = 912 (e')

with the corresponding probability generating function (1.3). Using (1—e%)Y =
(=t)Y (1 — y(=1t)/2) + O(|t|*t?) as |t| — 0, we find similar to (1.25)

lpsi (1) — hiX(n(t))] < ean™ ™ (10D 4 [gff) e A /A, (1.26)
where b > y(m + 2) and ¢y are some constants independent of |t| and n and

he' (0()) = ha(n(8)) — yn(t) (—it)/2.

Let G;,(z) and G (z) be functions of bounded variation such that A% (n(¢)) and
h*(n(t)) are their Fourier-Stieltjes transforms:

hn(t) = [ e dGi(e) and K7 (n(t) = | e @),

Denote the distribution function of the strictly stable random variable S:} by
G”Y (:L', )‘)5

y ok+i )
G,.Y’J(:L';/\) = mG’Y(m,)\), k?:O,]. and 7j=0,1,...
and the Fourier-Stieltjes transform of Pj(n(t))gosé (t) by Qj(z;A). Then by
(1.23) and (1.24) the functions G} (z) and G£*(z) are linear combinations of
partial derivatives of the limit law G (z;A).
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Proposition 1.5.1 Let0 <y < 1.
i) For positive Linnik random variable Wv)\ with Laplace-Stieltjes transform

(1.6), if B < 0o we have
|P(Sn < z) — GX(z)] = O(n~ /-1 g5 n— oo,
where
(1/7] ,
Gr(@) = Gy(z;N) + > Qj(zsA)n.
=1
it) For discrete Linnik random variable L?Y‘ with probability generating function
(1.8), we obtain

O(n~ /M) for B < oo
|P(Sp <) — GRi(z)| = as n— oo,
O(n=2/) for B = o0

where, with jumps correcting function S(z) = [z] — =z + 1/2,
G2 (@) = Gal@) — (1/DC (@ Nn~ Y7 + S(ant/) GEO(a; An= 7
if B< o0, orif =00
Gyl (z) = Gy(z; X)) — (7/2) G%’l(m;)\)n_ 7 4 S nl/")G}y’o(ac;)\)n‘ U,

PrOOF.  The first part follows from Theorem 4.11 of Christoph and Wolf
(1993), which can not be used directly for the random variable Lf} since it
is lattice. Combining the proofs of Theorem 4.11 with that of Theorem 4.37
in Christoph and Wolf (1993) and changing the pseudomoment condition by
condition (1.26) on the behavior of the characteristic functions, we obtain the
second statement too. |

Remark 1.5.1 The Edgeworth expansions of the normalized sums of positive
Linnik or discrete Linnik random variables differ in a continuous term and a
term considering the jumps of S* both with the order n=1/7.

Consider now P(X, < z) = P(X} < z), where X,, and X;; are defined in

(1.20) and (1.21).
Using (14 u)~™" = exp{—7 In(1 + u)} and expanding In(1 + u) in series, we
obtain for |1 — 2| < € with sufficiently small £ > 0

19, (2) = hn(=A(1=2)")| S e[ =270t (127)
and expanding exp{}_} in hp(w) in (1.22) in series

195, (2) = ha(=A(1 = 2))| S ea (1 =27 + [1- 27, (1.28)
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where c3, ¢4 and d > (m + 2) v are positive constants independent of |¢| and n.

Let My(z) and M (x) be functions of bounded variation such that
(= A(1=2)7) = [ 27 dMa(a) and By(-A(1=2)) = [ % dM}(a)
0 0

The function M,(z) is an asymptotic expansion in the exponent; see Cekanavi-
cius (1997) and references therein which goes back to signed compound binomial
approximation by LeCam (1960).

With M} (x), we have an Fdgeworth expansion with discrete stable limit law
which coincides for v = 1 with the Poisson—Charlier expansion with the Poisson
limit law due to Franken (1964). See the also the references in Aleskeviciene
and Statulevicius (1995), where the approximating functions M, (z) with the
Poisson limit law and the constants in the remainder are calculated.

In Steutel and van Harn (1979), it was proved that all nonnegative integer
random variables with finite expectation are discrete normal attracted by the
Poisson law. In case 0 < v < 1, we do not have even the first moment:

The probabilities of the strictly stable random variable X,’Y\ are given in

(1.5). Hence, for m =1,2,..., we have
(A= exp{-A(1=20} = Salmt  (129)
k=0
with the jumps
ge(m) = (1) i (’Y (j;m)) E‘J)Tﬁ—ni k=0,1,... (1.30)
=0 '

It follows from (1.29) and (1.30) that Y 3> gx(m) = 0 for m = 1,2,.... Hence,
by (1.23) and (1.23) we may calculate the approximating functions M} (z) =
> o<k<z 9> Which are functions of bounded variation with jumps g, where

pRyady g = 1.

Proposition 1.5.2 For the discrete Linnik random variable L, with Laplace-
Stieltjes transform (1.6), if B < oo we have

|Fn(2) = Ma(z)] = O(n™ 7YY a5 n— o0

and
|Fn(z) — M ()| = O(n /1) a5 n— oo

PROOF. Since both the discrete Linnik and the discrete stable random vari-
ables are nonnegative integers, we make use of an analogue of Esseen’s smooth-
ing lemma for nonnegative integer valued random variables due to Franken
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(1964, Lemma 1). Let F(z) = Y <<z Pk be a lattice distribution function with
jumps pr > 0, G(z) = Yg<k<s Tk & function of bounded variation with jumps 7y
such that Y} g0 re =1 and both ¢r and pg the corresponding Fourier-Stieltjes
transforms, then

or(t) — pc(t)
T ‘ dt. (1.31)

Put F(z) = P(X, < z) and G(z) = My(z) or M;(z), then or(t) = ox, (1)
and pg(t) = hn(— A (1 — e®)7) or hA5(—A(1 — e*)7) . With (1.31) and (1.27)
or (1.28) we obtain the statements of Proposition 1.5.2. |

sup|F(z) - Ga)l < 5= [

27 Jon
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On Finite-Dimensional Archimedean Copulas

S. V. Malov
St. Petersburg State University, St. Petersburg, Russia

Abstract: We investigate general finite dimensional Archimedean copulas.
Some properties of generators of Archimedean copulas are under consideration.
We obtain necessary and sufficient conditions for the generators of Archimedean
copulas and give some properties of degenerate finite dimensional Archimedean
copulas. Some examples of degenerate finite dimensional Archimedean copulas
are also represented.

Keywords and phrases: Archimedean copula, complete monotone function,
copula, Laplace transformation

2.1 Introduction

Leta,b e ﬁd, a = (a1,az,...,aq), and b = (b1, be,...,by). Introduce the partial
ordering the following way. We say that a < bifa; < b; for all 1 = 1,2,...,d.
A d-box is the Cartesian product of d closed intervals. For @ < b, we define the
d-box [a,b] = {f € R’ :a < t < b} as the Cartesian product [a1,b1] X [ag, ba] X
... X |ag, bg] and the vertices of [, b] are the points 7 = (v1,vs, ...,v4) such that
each vp, is equal to either ay, or by,. Introduce the following definitions.

Let 2 = [a,b] be a nondegenerate n-box (i.e. a; < b; for alli =1,2,...,d).
Introduce the function sgngy : J — {—1,0,1}, where J is the set of vertices of
2, such that

sgng (7) = 1 if vm = am, for an even number of m’s,
Bnalv) =9 _1 i Um = am for an add number of m’s,

for any vertex v = (v1,v2,...,vq) of A. For degenerate n-box (i.e. a; = b; for
some i € {1,2,...,n}), we assume that sgny (o) =0 for all v € J.
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We say that a function F': D - R, D C ﬁd, is d-increasing if for any d-box
2AC D

Vo) & S seny(@) F@) > 0. 2.1)

v

Suppose that the set D has smallest element € : € < @ for all u € D.
The function F : D — R is said to be grounded if F(Z) = 0 for all z =

(x1,x2,...,1q) such that z; = e; for some i € {1,2,...,d}.
It is well known that the function F : R — [0,1] is the distribution function
of some random vector iff F' is d-increasing, grounded and F(oo,00,...,00) = 1.

We say that a function C : I¢ — [0, 1], where I¢ = [0,1] x [0,1] x ... x [0, 1]
is the d-dimensional unit cube, is a copula if it is d-increasing, grounded and

Cc@1,...,Lum,1,...,1) =um, um € [0,1],

foralm=1,2,...,d.
It is clear [see, for example, Schweizer and Sklar (1983)] that any distribution
function F' having marginals Fi, F3, ..., Fy can be represented using copula

F(z1,%9,...,2q) = C(F1(x1), Fo(z2),. .., Fa(zq)), x1,22,...,24 € R. (2.2)

A copula C is say to be Archimedean if there exist the functions B : Ry —
[0,1] and A : [0,1] — Ry such that B is continuous and strictly decreasing on
[0, A(0)], B(0) =1, lig%o)B(u) =0, B(u) =0 for all u > A(0) and

u—

d

C(u1,u2,...,uq) = B(Z A(Uj)), ul,u2,...uq € [0,1]. (2.3)
=1

It is not difficult to see that under continuous marginals B(z) = A~ (x) for
all z € [0, A(0)].

Remark 2.1.1 The function F given by (2.2) is a distribution function of a
random vector with marginals Fy, Fy, ..., Fg for any marginals if this property
takes place for some continuous marginals Fi, Fy, ..., Fy. Therefore, when we
prove the main results, we lose no generality by the assumption that all marginal
distribution functions

0, <0,
Fi(z) =U(x) = { z, = €(0,1], (2.4)
1, z>1

are the distribution functions of the uniform U(0,1) distribution for all i =
1,2,...,d.
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As was given by Schweizer and Sklar (1983), based on the result of Moynihan
(1978), the function C(u1,u2) defined by (2.3) for d = 2 is a copula iff B is a
convex function. Kimberling (1974) based on the results of Widder (1946) for
Laplace transformation, proved that C(uj,u2,...,uq) in (2.3) is a copula for all
d > 2 iff the function B is completely monotone, i.e. B is infinitely differentiable
on (0,00) and

(-1)*B®)(t) >0, t>0, (2.5)

for all £ € IN.

An (n)-differentiable function satisfying (2.5) for all k = 1,2,...,n is said
to be n-th order monotone on [0, 00) or simply n-th order monotone.

We say that the random vector having distribution function given by (2.2)
and (2.3) is an Archimedean copula vector. The process having finite dimen-
sional distributions given by (2.2) and (2.3) is said to be an Archimedean copula
process.

As was mentioned by Malov (1998), any Archimedean copula sequence can
be represented using the Laplace transformation via independent random vari-
ables (r.v.’s). Let Xj,Xo,...,Xn be the Archimedean copula process hav-
ing finite dimensional distributions given by (2.2) and (2.3). It is known [see,
for example, Feller (1971)] that any completely monotone function B(t) with
B(0) =1 and lim;—, B(t) = 0 can be represented as follows:

B(t) = /0+oo e 5t dG(s)

for some distribution function G such that G(0+) = 0.
Suppose that Yi,Ys,... are independent and identically distributed r.v.’s
having the distribution functions

Fi(z) = 1 - exp(—¢®), z € R,

and Y is some r.v. independent of {Yj }xen. Introducer.v.’s Z = exp(Y), Zy =
exp(Yx), and Ly = % for all k € N. Then

P(L1 > Ri(z1),L2 > Ra(x2),...,Ln > Rp(xy))
+oo
- / P(Z1 > sRi(21), Z2 > sRa(x2), ., Zn > 5Rn(®n)) dG(s)
0
+o00 n

exp (—sznz Rz(mz)) dG(s) = / exp(—s Z A(Fz(xz))) dG(s),

i=1 0 i=1

Il
o\—é—

where G(s) is the distribution function of Z; R;(z;) = A(F;(z;)), = € R, for all
i € IN. The suitable choice of the distribution of Y yields us that the process
RTY(Ly), Ry 1(Ly), ... is the desired Archimedean copula process.
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In the special case of proportional Archimedean copula, under the
condition R;(z) = o;R(z), = € R, for some function R : R — [0,1] and
some positive constants ai,a2,...,an, ¢ = 1,2,...,n, it is convenient to use
the following representation using the independent r.v.’s Y, Y1, Ys, ... with the
distribution functions

E,(x) =1- exp(_aiem)y T € R’

and the Y such that the distribution function of Z = exp(Y) is G. In this case
the sequence R™(L;), R™!(Ls),... is the Archimedean copula process.

In Sections 2.2 and 2.3, we obtain the class of functions B such that the
function C given by (2.3) is an Archimedean copula for finite d > 2. Also, we
investigate some degenerate cases. In Section 2.4 we present some examples of
Archimedean copulas.

2.2 Statements of Main Results

The following theorem gives us the class of functions which can be used to
generate a finite dimensional Archimedean copula.

Theorem 2.2.1 Let B : [0,00) — [0,1] be a continuous and strictly decreasing
function on [0, A(0)] such that B(0)=1, lim,_, 49y B(t) = 0 and B(t) = 0 for all
t > A(0). In this case, the function C given by (2.8) is an Archimedean copula
iff B is a (d—2)-differentiable function on (0,00) satisfying the conditions (2.5)
fork=1,2,...,d—2, and (—1)¢ B(4=2) is a convez function.

Now we consider the following example.
Example 2.2.1 Suppose that for d = 2

11—z, z€][0,1],
B(w):{O, x>[1, |

and the marginal distributions are both standard uniforms U(0,1), i.e. Fi(z)=
Fy(z)=U(z), z€R, where U(z) is as defined in (2.4). In this case, the function
A = B~ is given by

Ax)=1—-z, z €[0,1].

It is clear that B is a convex function. Therefore, the function

0, 1 <0,0rze <0, orx; +x2 <1,

z1+x2—1, 1 €(0,1], z2 € (0,1], 3 + 22 > 1,
F(xl,wg) =< I, z1 € (0, 1], x9 > 1,

z9, z1 > 1, 3 € (0,1],

L 1 >1, z20 > 1.



On Finite-Dimensional Archimedean Copulas 23

calculated by (1.2) and (1.3) is a two-dimensional distribution function, but
simple calculations bring us that this function is a distribution function of
the vector (X,1 — X), where X is the uniformly distributed on [0,1] (U(0,1))
random variable. Therefore, this distribution is concentrated on the segment
z14+x2 =1, 21 € [0,1] and the distribution function F(z1,z2) is not absolutely
continuous.

Remark 2.2.1 If we choose B as in Example 2.2.1, we obtain for absolutely
continuous distribution functions F; and F3 that the function

0 if F(z1)+ F(z2) <1
F = ) .
(21, 22) { Fi(z1) + Fa(ze) — 1, if F(z1) + F(az) > 1
defined by (2.2) and (2.3) is a distribution function of the vector (Fj (X),
Fy1(1 — X)) with X uniformly distributed on [0,1]. The distribution of this
vector is concentrated on a one-dimensional manifold and this distribution
function also is not absolutely continuous.

It is not difficult to see that the distribution function given by (2.2) and (2.3)
is absolutely continuous for any absolutely continuous marginals Fi, Fs, ..., Fy
if B is a monotone (d)-differentiable function satisfying the conditions (2.5) for
k=1,2,...,d. In this case, the corresponding density function can be obtained

as follows:

d
p(z1, 22, .., 2d) = B(d)(ZA(F x,)]’[ ) pi(zi), (2.6)
=1

J=1
for all z1,22,...,24 € R, where p; are the density functions corresponding

to F;,i=1,2,...,d, respectively.
Suppose that

B, ={t € Ry : there exists B™(t)}, n € N.

As was mentioned above, the function B must be (d — 2)-differentiable
and (—=1)? B2 must be a convex function. Therefore, By4_; is an every-
where dense set. Consequently, for any y € ®B,4_1, we can write left and right
derivatives

BUN(y) = lim B V() and B (y,) = lim BU).
tf_e,;fl_ t‘t—e’zl+

The following theorem gives some properties of Archimedean copulas in the
degenerate case.
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Theorem 2.2.2 Suppose that the function F(x1,x,...,z4) is a distribution

function defined by (2.2) and (2.8) of some random vector X1, Xa, ..., Xq with

absolutely continuous marginals Fi, Fa, ..., Fy, respectively. Then for all T =
d

(x1,2,...,24) € R such that Z A(Fj(z;5)) € Bg, there exists a density func-
j=1
tion and it is given by (2.6). For y € Ry \Bg4, we have

d d
P(Y 2z =y) = 5 8,8,
i=1 ‘

where
AyB@D = | BE@-D(y_) - BE-D(y,) |,

is the increment of (d—1)-th derivative of B in y, Z; = A(Fi(X;)), i =
1,2,...,d, and for any y € R4 \By_1 the conditional distribution of the vector
(21,23, ...,2Z4_1) under the condition Z1 + Zo+ ...+ Zg = y is uniform in the
set ® = {t1,tg,...,ta_1 20 : Y1t <y}

Remark 2.2.2 By Theorem 2.2.1, (—1)¢ B(4~2) js a convex function. There-
fore, under the condition that B is (d—1)-differentiable, it satisfies (2.5) for
k=1,2,...,d — 1, and B(@1 is a monotone function. Under the condition
that B(4~1) is absolutely continuous, the distribution function F defined by
(2.2) and (2.3) with absolutely continuous marginals is absolutely continuous

and the corresponding density function can be calculated by (2.6) for all Z’s,
d

such that Z A(Fj(z;)) € Bg4. For other Z’s the density function can be defined
Jj=1
arbitrary.

Corollary 2.2.1 Under the conditions of Theorem 2.2.2, the distribution of
the initial random vector is absolutely continuous iff B is (d—1)-differentiable
and B\@1) is an absolutely continuous function on R.

Corollary 2.2.2 Under the conditions of Theorem 2.2.2, the distribution
of the wector (Zy,23,...,2Z,) under the condition Z1 + Zas + ...+ Zg =y for
y € Ry\By_1 is uniform in the set D* = {t1,ta,...,t4 >0 : TL t; =y}

Usually in survival analysis, distributions are given by survival functions.
Suppose that X3, Xs,..., Xy is an Archimedean copula vector having the dis-
tribution function given by (2.2) and (2.3) with absolutely continuous
marginals. Introduce the rwv.’sY; : Y; = —X;, ¢ € N. Then as was
mentioned by Bagdonavicius, Malov and Nikulin (1997), the random vector
(Y1,Ys,...,Yy) : Y, =-X;, i=1,2,...,d, has the survival function
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S(ml;x%“';xd) = P(Yi. >$1,Yé >2'L'2,---,Yd >.'L'd)
P(X: < —x1,X2 < —22,..., X4 < —24q)

d d
B(3Y A(Fi(-22))) = B(Y ASi(a))),
i=1 i=1

where 51,92, ...,S4 are the survival functions of Y1,Ys,...,Y;. In this case,
(Y1,Ya,...,Yy) is said to be a survival Archimedean copula vector. Theorems
2.2.1 and 2.2.2 can be also formulated in terms of survival Archimedean copulas.

2.3 Proofs

When we prove Theorem 2.2.1, we lose no generality by assuming that
the marginal distributions are all the standard uniform U(0, 1).

PROOF OF THEOREM 2.2.1. Let (X1, X9,...,Xq4) be a random vector having
distribution function F' defined by (2.2) and (2.3) with the standard uniform
marginals. Introduce the following notation

R(z) = A(U(z)), = €R,
where U(z) is given by (2.4). Then for any n € {2,3,...,d}, the vectors

(Xi,, Xis, - - -, Xi,,) are Archimedean copula vectors with distribution functions
n

Fo(z1,29,...,2Zn) = B(Z R(:ci)), Z1,22,...,Zn € R (2.7)
Jj=1

for all populations of indexes {i1,i2,.-.,in} C {1,2,...,d}. We use induction

based on the case n = 2 which was given by Schweizer and Sklar (1983).
Suppose that we have proved that the function B is (n—2)-differentiable
function such that the conditions (2.5) take place for all k = 1,2,...,n—2, and

(=1)™ B(»=2) is a convex monotone function for some n € {2,3,...,d — 1}.
Then the distribution function of the vector X1, X2,...,Xn+1 can be repre-
sented as follows:

n+1 1 T2 En-2 n—2

B(Y. R()) = / / / B (Y R(t:)
J=1 —00 —00 —00 =1
n+1
+ 3 R(xj)) dR(z1) dR(z3) . ..dR(zn—2).
j=n—1

Using the convex property of B(™=2) the function under the integral can be
represented for any fixed t1,t2,...,tn—2 in the following way:
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n+1

n—2
B™ (Y R(t)+ Y Rlzy))

i=1 j=n—1

= / B(»-1) (75 R(t:) + R(zn) + R(wn+1)) dén-1,
i=1

(_Ooymn—ll
YeEBn_1

n—1
where ¥ = Z R(t;) + R(zpn) + R(zn+1). Therefore, it is possible to define the

=1
conditional distribution function a.s. on t1,t2,...,th_1:

Fg(xl,xz) = P(Xn+1 <z1,Xnp <x9 | X1 =t,Xo=1tg,...,Xp_1 = tn—l)

n—1
B(-1) (Z R(t;) + R(zxn) + R(wn+1))
1=1

= n—1 ) Tk+1, Tk € R.

B (Y R(t:)

i=1

In this case

P(Xnt1 € (z,y), Xn € (z,y) | X1 =t1, X2 =t2,..., Xn_1 = tn_1)

= [B("‘l) (nf R(t;)+R(y)+R(y))+B"Y (nf R(t;)+R(z)+R(z))
i=1 i=1

— 2B (nf R(t;) + R(z) + R(y))] / B(-1 (nf R(ti)). (2.8)

1= =1

1

By the properties of distribution functions,
P(Xiy1 € (z,y), Xk € (z,y) | X1 =1t1,X0=1t0,..., Xp_1 =tp_1) 2 0. (2.9)

The left side of this inequality is given by (2.8) a.s. for (t1,t2,...,tn_1) € R* L.
By letting t; —» 00, i =1,2,...,n — 1, we obtain by (2.8) and (2.9) that

B" D(2R(y)) + B" V(@2 R(z)) -2 B (R() + R(y))
ESE
=1

or

(~)"D (B D2 R(y)) + B" V(2 R(z)) - 2 B"D(R(z) + R(y))) > 0

a.s. for all z,y € R. Therefore, the function (—1)""! B 1 is a convex
function. Then B™~1) is continuous and satisfy the condition (2.5) for k =
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n — 1. By the condition tll)rgo B(t) = 0, we obtain that tli)rgo B(=1(¢) = 0 and
(=1)»~1 B(=1) is a monotone function.

Therefore, B is a (d — 2)-differentiable monotone function satisfying the
condition (2.5) for all k = 1,2,...,d—2, and (—1)% B(4-2) is a convex function.

Conversely, let B : [0,00) — [0, 1] be a continuous function, strictly decreas-
ing on [0, A(0)] and such that B(0) =1, lim,_, 40) B(t) = 0 and B(t) = 0 for
all t > A(0). Also we assume that it is (d—2)-differentiable and satisfy the
condition (2.5) for all k = 1,2,...,d—2 and (—1)¢ B(4~2) is a convex function.
It is easy to see that the function F(z1,x9,...,z,) defined by (2.2) and (2.3)
is continuous and satisfies the following conditions:

lim F(z1,z9,...,24) =0 forall i=1,2,...,d.

Ti—>—O0

and
z{grgo F(z1,z9,...,24)=1.
i=1,2,...,d

Now we need to prove that the condition (2.1) holds for an arbitrary chosen
set A = [a1,b1] X [az,b2] X ... X [aq4,bd] € R? such that a; < b; for all i =
1,2,...,d.

Introduce, for any fixed ¢ > 0, the function B, such that

B.(t) = (-1)*BYA(c+1), te R,.

Then B,(t) is a convex function for any ¢ > 0. Following the proof for d = 2
given in Schweizer and Sklar (1983), we obtain that for all [z1, 1] X [z2, y2] € R?
the condition

Bo(R(y1) + R(y2)) + Be(R(z1) + R(z2))
—Be(R(z1) + R(y2)) — Be(R(y1) + R(z2)) >0 (2.10)

holds for any ¢ > 0.

The function F(z1,zo,...,Z4) can be represented as
F(.’B],.’BQ, cee ,.'Bd)
Ty 2 Td—2 d—2
= / / / B(d_2)<ZR(ti)+R(ﬂvd_1) +R($d))
—00 —00 —o0 =1

dR(t1)dR(t2) ...dR(tg—2).

Then for any A = [a1,b1] X [ag,b2] X ... X [ag,bq] € R< such that a; < b; for all
1=1,2,...,d, the left hand side of (2.1) can be rewritten as follows:
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by ba bg—2

d—2
ny (3) F(3) = (d-2) ; -
> sgna(5) F() 1[ ai E (;R(t)+R(bd 1)+ R(ba))
+ B<d*2>(§R(m+R(ad_1)+R(ad))
=1
— Bld-2) <d~2 R(t:) + R(ba-1) + R(Gd))
i=1

d-2
— B4 (3 R(t:) + R(aa-1) + R(ba) )|
=1
dR(t1)dR(t2)...dR(tg—9)-

By choosing ¢ = %2 R(t;) in (2.10) we obtain that the function under this
integral is nonnegative for odd d and nonpositive for even d. Therefore, the last

integral is nonnegative and the condition (2.1) holds. Theorem is proved. M

PROOF OF THEOREM 2.2.2. Let (X1, Xa,...,X4) be a random vector with
a distribution function F' given by (2.2) and (2.3). It is clear that under the
condition that B is a (d)-differentiable function at some y € R, the function
F(zy,z2,...,24) defined by (2.2) and (2.3) has a d-th partial derivative with

d
respect to 1,9, ...,z4 for all a = (a1, aq,...,aq) such that ZA(Fi(ai)) =y,

=1
which can be calculated in the following way: '
OF (z1,3,. . .,14) (@) (& d dFy(z)
” =B A(Fi(a; A'(Fi(a;
5o a9 |, (g (Fi(as))) [[ 40 =5

Therefore, the density function for any Z € B4 can be calculated by (2.6).
Further, without loss of generality we assume that the random vector
(X1, Xa2,...,Xq) has the standard uniform marginal distributions [i.e. the dis-
tribution function of this vector is defined by (2.7)]. By Theorem 2.2.1, the
function B(42) is convex. Therefore, B(*~2) is absolutely continuous and

P(di1 R(X;) € Bgy) = 0.
i=1

Introduce for all y € B4_; and for all z;,2z9,...,24_1 a.s. the conditional
distribution function of the sum
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d
P(Z R(X;)<y| X1=z1,X2=22,...,Xd-1 =$d—1>

i=1
Bld-1) d-1
Y > R <y
i=1
0, in other cases.

Therefore, for any y € Bg_;

P(i R(X;) <)
=1

- / / . / B@D(y)dR(t1)dR(t2) . . . dR(ta-1)
R(tl)+R(t2)+...+R(td_.1)<y

= BU-D(y) / / / dR(t1)dR(tg) ...dR(t4_1)
R(t1)+R(t2)+..+R(ta—1)<y

= @ W

As was mentioned above, the set B4 1 is everywhere dense in Ry. Thus, we
can find two sequences {y;} and {2z} such that y;i ——v-, zi = U+ and
Vi, 2 € Bp_1 for all ¢ € N. Consequently,

P(Z1+Za+ ...+ Zqg=y)

yi! (d-1) 7! (d-1)

— 3 1 - Y ot - .
yi! d-1 d-1

= (7——1_)—!‘3( “Dyy) - B )(y—)l

’ y*! (d-1)

Now we assume that y € R\B4_;. In this case, P(Z?zl Z; =y) > 0, where
Z’s were defined above, and we can write the conditional distribution function
F(X1, Xa,...,X4-1) under the condition Z?=1 Z; =y as follows:

ﬁ’(:l,‘l,atz,.. .,:Bd_l)

= P(Zl <x1,22<x2,y...,44-1 < md_l,iZj = y)/ P(izj:y)
=1 =1

for all z1,29,...,Z4-1 € R.
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For any t € ®B,4_1, it is possible to calculate that

d
P(Zl<:L’1,Zz<x2, vy Ly <zxg_ 1,ZZ'<t)

// / Bld- 1) t)dtidty .. .dtg_q

t;€[0,x;),i=1,2,...,d—1
tit+ta+..+tg_1<t

= Bl (y) /// dtidts ... dtg_q.

t,-e[O,:v,-),i=1,2,...,d—1
tittat+...+tg_1<t

Then,
d
P(Z1 <, Zy < x9,. .. ,Zd—-l < xd—l»ZZj = y)
j=1
d
= P(Zl < .’L‘l,ZQ <T9,...,241< .’Ed_l,z Zj < y+)
j=1
d
—P(Zl <x1,29 < Zay...,24_1 < Tg_1, Z Zj < y_)
=1
— A B / / " / dtrdts ... dtg_s
t;€[0,z;),i=1,2,...,d—1
ti+Hto+.. g1 <t

and

P(Z1<:I}1,Zz<w2, v Ld—1<Td—1 l izj:y)

(d 1)' // / dridxo...dxrg_q.

t;€[0,z;),i=1,2,...,d—1
t1ttot..Htg_1<t

Consequently, the conditional distribution of (Z1,Zs,...,Z4_1) under the
condition Z?:l Z; =y is uniform in D = {t1,t,...,tq-1 >0 : SL t; <yl
Theorem is proved. |

2.4 Some Examples

Now we represent some examples of finite dimensional Archimedean copulas.
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Example 2.4.1 Let the function B : [0,00) — [0, 1] be such that
_1)2
B(t) = { (t-1)?2 teo,1),

0, in other cases.

By Theorem 2.2.1, this function can generate Archimedean copulas only for
d =2 and d = 3. For d = 2, the direct calculation (2.3) gives us the function
C :[0,1)? — [0,1] such that

C(.’L‘l,l’g) _—.{ (()\/113—1-{-\/_'1;_2—1)2, \/.’1/'_1-{—\/533> 1,

in other cases.

By Corollary 2.2.1, the distribution function F' defined by (2.7), viz.

0, 1 <0 or x9 <0,
0, 1 >0, 22 >0, /21 + /T2 < 1,
(VZ1+ /T —1)2, 21<0, 22 <0, /71 + /T2 > 1,
F(z1,22) = {
x1, 0<.’171§1,$2>1,
Z9, r1>1,0<29 <1,
L 1, in other cases,

of an Archimedean copula vector with U(0, 1) marginals is absolutely continuous
and the density function of this vector has the following form:

1
—— 0<z1<1,0<22<1, + > 1,
p(z1,22) = { 2\/T172 1= T2 V1 + /T2
0,

in other cases.

In the case d = 3, we obtain that

—9)2
clnn ) ={ (VET+ VI VA= 2% ALV V> D

in other cases.

Then the distribution function F' defined in (2.7) is

F(z1,12,23)
( (VT1+ VT2 + VT3 — 2)%, 21 €(0,1], 22 € (0,1], z3 € (0,1]
VET+ T3+ /T3> 2
(\/:—E‘l—+\/3:_2_1)2> .’216(0,1], 5626(0, l]a z3>1,
VZ1+/Z2>1,
(Va1 ++/Z3—1)%, z1€(0,1], z2>1, 23€(0,1],
' VEL+ T3>,
= { (Vo2+T3-1)%, zr1>1, z2€(0,1], z3€(0, 1],
VT2 + /T3> 1,
r1, z1 € (0, 1], o> 1, x3 > 1,
T9, z1>1, z2 € (0,1], 23 > 1,
x3, z1>1, 29 > 1, z3 € (0, 1],
1, r1>1, z9>1, z3> 1,
L 0, in other cases.
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It is easy to see that the absolutely continuous component of a
vector (X1, X2, X3) having distribution function F' is 0, and by Theorem 2.2.2

we obtain that X7 + vX2 + /X3 =2.

In the following example, the function A from Example 2.4.1 is taken as a
generator of an Archimedean copula.

Example 2.4.2 Suppose that the function B : [0,00) — [0, 1] is defined by the
following relation

B(t):{ 1-v%, te o],

0, in other cases.

It is clear that the function B is convex but it is not differentiable for ¢t = 1
[B'(1-) = —1/2 and B’(14) = 0]. Therefore, the function B can generate an
Archimedean copula only for d = 2. This copula has the following form:

1=/ =22+ (1 -22)2, 1—-z1)?+(1—-22)2<1,
Clzr,22) = { 0, in other cases.
Calculate the corresponding distribution function with U(0,1) marginals
(0, 21 <0 or z9 <0,
0, z1 € (0,1], z2 € (0,1],

(1-z1)2+ (1 —xz2)2>1,
1—/(1—-z1)?+(1—22)?%, z1€(0,1], z2€(0,1],

Flon o) = (1=21)*+(1-2)2<1,
T, z1 € (0,1], 29 > 1,
z2, r > 11 T2 € (0) 1])
L 1, in other cases.
Then,
62F(:I71,.'172)
(9:171(9.’1)2

(1 —1)(z2 = 1)

((1-1)2+(22-1)2)
0, z1 ¢ (0,1] or z2 ¢ (0,1]

or (1—z1)2+ (1 —22)? > 1.

3/2° 1€ (O’ 1],:1726 (0’ 1], (1—$1)2+(1—$2)2< ]-,

Let (X1, X2) be the random vector with distribution function F. By Theorem
2.2.2, we obtain that P((1 — X1)2 + (1 — X3)? = 1) = 1/2. This fact is easy to
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obtain by direct calculations:
(1 —1)(z2— 1) dz1dz2
3/2
21€(0,1],22€(0,1] ((971 —1)2+(x2—1)2)

(1—w1)2+(1—m2)2<1
/2

1
:/dr/Sin¢cos¢d¢=1/2=1—1/2-
0 0

In the following example we consider the copula generated by a function
which is not differentiable at two points.

Example 2.4.3 Let the function B : [0,00) — [0, 1] be defined as follows:

{ (2t —1)2, telo,1/4],

BO=y 1=Vt Cqun

The function B is convex, but it has no derivative at the points ¢ = 1/4 and
t = 1. The copula generated by B is

C(x1,x2)

(11— /(1 -221)%+ (1 —2x2)2 z1 € (0,1/4], z5 € (0,1/4],

2 o (1=2:)2 4+ (1-229)% <1,
1— /(1= 221)2+ (1 - V/z2)/2, (fi gm(lo)’zlﬁ’l f‘?j&%/;égl
IR @S,
(11— +varz) [o, UL el 1,

z1€(1/4,1], zo€(1/4,1],

= 9

_ 2
(1 (\/371"‘\/372)) ) V1 + /T2 >3/2,
1, 1 >1or z9>1 or z3 > 1.
0, in other cases.

\

Then the distribution function given by (2.7) with U(0, 1) marginals is

0, 1 <0 or z; <0,

C(z1,z2), =1 € (0,1], z2 € (0,1],
F(zy1,29) = { 1, z1 € (0,1], 22 > 1,

T2, z1 > 1, z9 € (0,1],

1, z1>1, 29 > 1.

Let (X1, X2) be the Archimedean copula vector having the distribution function
F. In this example, A(t) = B(t), t € (0,1). Also, it is important to mention
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that Ay/4B = 3/2 and A1 B = 1/4. Therefore, by Theorem 2.2.2, P(A(X1) +
A(X2) = 1/4) = 3/8 and P(V X1 + VX2 = 3/2) = 1/4. Thus, 3/8 of unit
measure is concentrated on the manifold A(z1) + A(z2) = 1/4, z1 € [0, 1], and
1/4 of unit measure is concentrated on the manifold \/z1 + /72 = 3/2, z1 €
[1/4,1]. For any other point (z1,z2) € R2, the derivative of F(z1,z2) exists:

&?F(z1,x2)
61:18:132
(201 - 2a1)(1 - 2u2) 21 € (0,1/4], z2 € (0,1/4],

(=221 + (1 - 2002) " (1 - 221)% + (1 - 229)% < 1/4,

1-2x z1€(0,1/4], zo€(1/4,1],

(=20 + (1 )2 (1 -20)'s(-vaD)/2,

1229 ze(1/4,1], :526(0 1/4],

= 41— van)/2+ (1= 2z (1-222)°<(1-va1)/2,

1 z1€(1/4,1], z2€(1/4,1],

\,/33_1’*‘\/533/2,

128 \ /71 23 (1 — (V&1 + v/72)/2)3
T € (1/4a 1]7 T2 € (1/4’ 1]7

1/(2\/11»'112)7 \/a+\/$_2>3/27
0, in other cases
and
T T 8 F .’El .’Ez)
/ /  0x10zy dordez = 3/8.
-0 —O0
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Characterization and Stability Problems for Finite
Quadratic Forms

G. Christoph, Yu. Prohorov, and V. Ulyanov

Otto~von—Guericke-Universitit Magdeburg, Magdeburg, Germany
Steklov Mathematical Institute, Moscow, Russia
Moscow State University, Moscow, Russia

Abstract: Sufficient conditions are given under which the distribution of a
finite quadratic form in independent identically distributed symmetric random
variables defines uniquely the underlying distribution. Moreover, a stability
theorem for quadratic forms is proved.

Keywords and phrases: Quadratic forms, characterization problem, stability
problem

3.1 Introduction

Let Z1,...,Z, be independent identically distributed (i.i.d.) standard normal
random variables and a1, . . ., an, be real numbers with a?+...+a2 # 0. Suppose
that Xi,..., X, are i.i.d. random variables such that

a1Z1+...+anana1X1+...+aan,

where < denotes the equality in distribution. Then, by Cramér’s decomposition
theorem for the normal law [see Linnik and Ostrovski (1972, Theorem 3.1.4)],
the X; are standard normal too.

Lukacs and Laha (1964, Theorem 9.1.1) considered a more general prob-
lem. Namely, let Xi,..., X, be ii.d. random variables such that their linear
combination L = a1 Xj + ...+ an, X, has analytic characteristic function and

ai+...+a; #0 forall s=1,2,...

Then the distribution of X; is uniquely determined by that of L.
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The aim of this Chapter is to obtain a similar characterization property for
quadratic forms in i.i.d. random variables Z1, ..., Z,. Furthermore, we state a
stability property of such quadratic forms.

3.2 Notations and Main Results

Consider a symmetric matrix A = (a;;)7=; - Let

n
Q(xla oo ,xn) = Z Qi TiTj

,j=1
be a quadratic form in variables zi,...,Z,. Assume that @) is non-degenerate
in the sense that A is not a zero matrix. Suppose Zi, ..., Z, are i.i.d. random

variables with a symmetric distribution F'
We say that a pair (Q,F) has a characterization property (CP) iff for a

sequence of i.i.d. symmetric random variables X3, ..., X,, the equality
d
Q(Zr,...,Zn) = Q(X1,...,Xn) (3.1)
implies
7 2L x,.

Remark 3.2.1 We require in the definition of CP that the random variables
Xi,..., X, are symmetric. Otherwise the problem does not have solution even
in the case n = 1 and Q(z1) = 22. Equation (3.1) holds for X; = Z; as well as
for X; = |Z1|.

Remark 3.2.2 With a symmetric distribution F' an answer is trivial in the
one dimensional case, i.e. any pair (Q, F') has CP. Therefore we assume that
n > 2 everywhere below.

In this Chapter, sufficient conditions are given under which the pair (Q, F)
has CP. The solution of the problem depends also on the coefficients of the
matrix A, where the following possibilities occur:

1. a;; =0 foralli=1,2,...,n
2. a;; #0 for some i =1,2,...,n

2.1. o261 26+l a2kt L0 forall k=0,1,2,...
2.2. a11+ax+...+au, =0.
2.2.1. a;; =0 for all i # j.
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2.2.2. a;; # 0 for some i # j.
2.3. a2t 4 a2kt 4 4 a2kt = 0 for some k = 1,2, ...

Here, we consider cases 1, 2.1 and 2.2.1.

Define now a class F of probability distributions so that F' € F iff the
following two conditions are satisfied:

[ee]
(C1) F has moments ax = | zFdF(z) of all orders k.
—00
(C2) F is uniquely specified by a1, as, ...
The following examples demonstrate when probability distribution F' € F.
Example 3.2.1 If F has an analytic characteristic function, then F € F.
Remember [see Lukacs (1970, §7.2)] that a characteristic function is analytic iff

(i) the condition (C1) is satisfied and
(ii) limsup a;,/l@n) /(2n) < oo.
n—oo

The latter condition leads to (C2); see Lukacs and Laha (1964, Ch. 9).
We say that a probability distribution F' satisfies Cramér’s condition CC iff

/ exp{h|z|}dF(z) < oo for some h > 0.
— o0

Example 3.2.2 Let F satisfies CC, then F € F.

It follows from the fact that F satisfies CC iff its characteristic function is
analytic [see Lukacs (1970, §7.2)].

Example 3.2.3 If the moments {a} of F satisfy Carleman condition, i.e.

(o o]
> g/ = oo, (3.2)

n=1
then F' € F.

In fact, the condition (3.2) yields the uniqueness of the moment problem for F;
see, for example, Shohat and Tamarkin (1970, Theorem 1.10).

Note that Carleman condition is weaker than CC. Other examples of proba-
bility distributions belonging to F as well as detailed discussion concerning the
moment problem and other related topics; see Akhiezer (1965), Feller (1971,
Sec. VIL.3) and Stoyanov (1987, Sec. 8.12 and 11).

Theorem 3.2.1 Let F € F and the matrix A be such that a; = 0 for all
1=1,2,...,n. Then, (Q,F) has CP.



42 G. Christoph, Yu. Prohorov, and V. Ulyanov

Example 3.2.4 Let Z;, Z5, Z3 be i.i.d. standard normal random variables and
X1, X2, X3 be i.i.d. symmetric random variables such that

Z1Zy — ZaZ3 < X1 X3 — Xo X3,
then by Theorem 3.2.1 the random variables X1, X2, X3 are standard normal.

Theorem 3.2.2 Let F € F and the matriz A be such that for allk =0,1,2,...
aZitl 4 o261 4 42541 £ 0. Then, (Q, F) has CP.

Example 3.2.5 Let Z1, Z5 be i.i.d. random variables with distribution F' and
density function

p(z) = (1/4) exp{~|z|'/?}, =z € (- o0, 00) (3.3)

Then, F € F; see Stoyanov (1987, p. 98).
Let X7, X2 be i.i.d. symmetric random variables such that

27} + 4217y — Z3 22X + 4X1 Xy — X2,

Then by Theorem 3.2.2, the random variables X; and X, have the density
function defined in (3.3) too.

Theorem 3.2.3 Leta;; # 0 for somei =1,2,...,n, butaji+ag+...+anp, =0
and a;j = 0 for all i # j. Then for any F, the pair (Q, F) does not have CP.

Example 3.2.6 Let Z be a random variable with symmetric distribution F
independent of the random variable ¢ with P({ = 1) = P({ = —1) = 1/2 and
let ¢ > 0 be a real constant. Put

X =¢(2% + o)Y2.

Suppose now that both Z, 7, 2s,...,Z, are i.i.d. and X, X1, Xs,..., X, are
i.i.d. too. Under the conditions of Theorem 3.2.3 varying the constant ¢, we find
a family of symmetric distributions of X; such that (3.1) holds. In particular,
if

7 -2 £ X} - X3,

then the distributions of X; and Z; may differ.

Example 3.2.6 proves Theorem 3.2.3. The proofs of Theorems 3.2.1 and
3.2.2 are given in Section 3.4. They are based on the following:

a) If F € F, then X; has moments EX¥ of all orders k.
b) Under the given conditions, we have

EXF=EZF forall k=1,2,...
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Moreover, we also prove also a stability theorem.

Theorem 3.2.4 Suppose that the pair (Q,F) has CP. Let Xn1,...,XNn for
N =1,2,... be a series of i.i.d. symmetric random variables and

d
QXN s XNn) = Q(Z1,...,2Zn) as N — o0,
where 5 denotes the convergence in distribution. Then,
XN,1£>Z1 as N — 0.

Theorem 3.2.4 will be proved in Section 3.4 using the tightness of the con-
verging sequences of quadratic forms.

3.3 Auxiliary Results

At first, we give some simple relations for a quadratic form which enable us to
remove undesirable elements to get inequalities between tail probabilities of X3
and Q(Xi,...,Xs). Denote

trA:a11+...+ann and M:ma‘xla’lﬂ'
]

Lemma 3.3.1 We have

allx% + ...+ annm% =27" Z Q(e1z1, - . -, EnZn) (3.4)
e(1,n)

and

a1123 + ..+ Gl + 20192129 = 2277 Z Q(z1, 2,323, ...,6nTn), (3.5)
e(3,n)

where Y fori < n denotes the summation over all vectorse(i,n) = (&;,...,€n)

e(im)

with ej € {~1, 1}.
Lemma 3.3.2 Assume that trA = 0 and put

9 2
Q" (z1,...,Zn) =a1127 + ... + ann 25 + 2a1271 T2 .

Then
2a19 (.’1:1562 + x4+ ...+ .’1,‘2.'1,‘3)

=Q*(x1,22...,20) + Q*(Tn, 21 ..., Tn1) + ... + Q*(x2,23...,Zn,T1).
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Lemma 3.3.3 Let X1,..., X, be i.i.d. symmetric random variables. Then for
any permutation (i1,...,1,) of indices (1,...,n) and any vector (e1,...,en)
with €5 € {—1, 1}, we have

Q(X1,.. ., Xn) 2 Q1 Xs,, ..., enXs,).
Proofs of Lemmas 3.3.1-3.3.3 are obvious.

Lemma 3.3.4 If a1; #0, then

1Q(z1,...,2a)| > 0.75|as1|z? — c1(A)(z2 + ... +22),

PROOF. Since
Q(xl’ ceey xn) = allm% + 2.’171(0,12.’172 +...+ alnxn) + Q(O,.’L’Q, ceey mn) )
we find
Q(z1, -, za)| > lanr |z} — [2z1(a123 + ... + a1nTn)| = [Q(0, 22, ..., zn)] .

Using in the second term of the right hand side

1
2]ab| < a? + b? witha = 3 la1|z; and b =

2
_\/I_Tﬂ(amx? +...+a1nzn),

and 2|ay;a1z:7;] < af;z? + af a7, we obtain

1 4 &
1221 (1222 + . .. + a1nzn)| < Zlaulx% -— Z a%j(:v% +...+z2).
=2

laa1| =

The inequality 2|z;z;| < z7 + x? leads to

2<i<n

J

|Q(0, 2, ...,2,)| < max {Z laijl} (22 +...+22)
=2

which completes the proof of Lemma 3.3.4. |

We now prove inequalities between tail probabilities of both X; and Qx =
Q(.Xl, “e ,Xn).

Lemma 3.3.5 Let Xi,...,X, be t.i.d. symmetric random variables. For any
positive u, we have

P{lQx| > u} < nP{X} > u/(Mn®)}.
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PROOF. The obvious inequality
Q(z1, 22, ..., n)| Sn M (23 + ... +2}) (3.6)
leads to the statement. [ ]
Denote by m = medX? a median of X?, i.e.
P{X?2>m}>1/2 and P{X?<m}>1/2.

Lemma 3.3.6 There are positive constants c¢; and co depending only on the
elements of matriz A such that

(a) if ai =0 for alli =1,2,...,n, then for any u > 0 we have
P2{|X1| > vau} < 2" ?P{|Qx| > c1 u}; (3.7)
(b) if aii # 0 for some i =1,2,...,n, then for any u > 0 we have
P{X2>u+cy(n—1)m} <2 1P{|Qx| > c1u}. (3.8)

PROOF. Case a: Since A is not a zero matrix, there exists a;; # 0 with i # j.
Without lose of generality, we may assume aj2 # 0. Then using (3.5), we get

2|a12X1X2| < 22—n Z [Q(Xl,Xg,E;J,Xg, - ,EZan)I .
e(3,n)

Therefore, by Lemma 3.3.3, we have for any positive u
PY{|X1| > vu} < P{2|a1aX1Xa| > 2Jara|u} < 2" ?P{|Qx| > 2la1z|u}.
Case b: Without loss of generality, we assume aj; # 0. Put
a=4c(A)(n—1)m/@Blanl),

where c¢;(A) is defined in Lemma 3.3.4 and m is the median of X?2.
For any u > 0, we find now

P{X?>u+a} < 2"'P{XI>u+a,X2<m,...,X2<m}
< 2" P{|Qx| > 0.75 |a1| (u + @) — e1(A) (n — 1) m}
< onl P{|Q@x| > 0.75|a11|u}
and Lemma 3.3.6 is proved. |

Using the last two lemmas, we find the following statement which is of its
own interest.

Lemma 3.3.7 Random variables X, and |Qx|'/? satisfy or do not satisfy CC
stmultaneously.
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PRrOOF. It follows from Lemma 3.3.5 and the equality for any h > 0
o0
Eexp{h|X|}=1+h / exp{hu} P{|X| > u}du (3.9)
0
that |Qx|'/? satisfies CC if X7 satisfies CC.
Suppose now E exp{ho|@x|/?} < co and a;; =0 for all i =1,2,...,n. By
(3.9), (3.7) and the Markov inequality, we find

o0
Bep(hia) < 1420727 [Texplin} (PUQx? 2 o)) au
0

) 1/21\ /2
< 1+ 2("‘2)/2h/ exp{hu} <Eexp{h0]?/)2(| }) du < c0.
0 exp{hocy’” u}

Hence, CC holds with some 0 < h < hg ci/ 2,
Let now a;; # 0 for some ¢ = 1,2,...,n. Then by (3.9), (3.8) and P{|X;| >
u+ca(n — 1)m} < P{|X1]® > u?® + c2 (n — 1)m}, we find

© hu 12 < 172
E exp{h|Xy|} < cs + ¢4 / M P{Qx]Y? > ¢ Pu}du
0

with some finite constants c3 and c4. Hence, X satisfies CC. [ |

Lemma 3.3.8 Random variables X1 and Qx have moments of all orders si-
multaneously.

PROOF. Let X; have moments of all orders, then by (3.6) E|Qx|* < oo for
k=1,2,..., too. If Qx has moments of all orders, then the existence of the
absolute moments of all orders of X; follows now from the equality

e 0)
E|X|* = k/uk_lP{|X1| > u}du for any integer k>1,
0

Lemma 3.3.6 and Markov inequality in the same way as in the second part of
the proof of Lemma 3.3.7. |

Lemma 3.3.9 Leta; =0 for alli=1,2,...,n. Then, E Q%é“ is an increasing
function of Bor, = E X?* for all k=1,2,...

PROOF. We have
EQ% = Bp% + CPor + D (3.10)

forallk =1,2,..., where B,C and D depend on the matrix A and Box_g; With
1=1,2,...,k—1. It is enough to prove that B > 0 and C > 0.
We obtain

EQ%? = 2%*E Z Qi1 Xiy Xy -+ - Qiggegon Xing X » (3.11)

i<y’
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where Y denotes the summation over all 2k pairs:
i<y’

1<y <ii<n,...,1<dg <jor <n.
It is clear from (3.11) that B in the representation (3.10) equals

B=2"% %" a2f>0.
1<i<j<n

In order to prove that C > 0, we introduce notation for a finite set M =
{ma,...,my} of integers mi,...,m;. Let #(M) be the number of elements
in M and #*(M) be the number of different elements in M. For example, if
M = {3,2,2,1}, then #(M) =4 and #*(M) = 3.

The coefficient C in (3.10) up to factors Box oy with 1 =1,2,...,k—1lis a
sum of products 22 a;,;, ... a,, j,. [see (3.11)] such that the set of their indices
E = {i1,71,- .. ,%2k, jor } satisfies the following three conditions:

a) There is a subset £y C E with #(FE1) = 2k and #*(E;) = 1. This yields
that a corresponding summand in (3.11) has a factor fBa.

b) #*(E\ E1) > 2. It implies that we consider a summand with factor So,
but not $2;. Note that #*(E) = #*(E \ E1) + #*(E1).

c) Each value from the set E\ E; is taken by even number of elements from
E\ E;. Otherwise, the corresponding expectation equals to zero since the
random variables X;, j = 1,2,...,n, are symmetric and independent.

It follows from the above three conditions that C' > 0. Thus, Lemma 3.3.9 is
proved. |

A similar idea of monotony was used by Khakhubiya (1965).

3.4 Proofs of Theorems

PROOF OF THEOREM 3.2.1. We get from (3.1) and Lemma 3.3.8 that X; has
moments of all orders. Obviously, EX%"c+1 = EZ%’c+1 =0forall k=0,1,2,...

We now show that
EX?* =EZ# forall k=1,2,... (3.12)

Comparing moments of Qx = Q(Xi,...,Xp) and Qz = Q(Z1,...,2Zy), we
get (3.12). In fact, it follows from (3.1) that

EQ¥ =EQ¥ forall k=1,2,... (3.13)
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Since a;; = 0 for all 1 = 1,2,...,n,in E Q%“ there occur only moments EX{
up to order 2k. Taking k = 1 in (3.13), we get

(EX?)? tr(A%) = (E Z%)% tr(A?).

Therefore, we obtain (3.12) for £ = 1.

Then taking & > 2 in (3.13) and using Lemma 3.3.9, we get (3.12) for & > 2
by induction.

Since F' € F, it is uniquely specified by its moments. We proved that all
moments of X; and Z; coincide, respectively. Hence, the distribution of X is
uniquely defined by its moments too, and Theorem 3.2.1 is proved. |

PROOF OF THEOREM 3.2.2. Similar to the proof of Theorem 3.2.1, it is enough
to show that (3.12) holds. With (3.1), we find now

EQY =EQ% forall k=1,2,... (3.14)
Taking k£ =1 in (3.14), we obtain
EX?2trA=EZ? trA,

i.e. we get (3.12) for k = 1 since trA # 0.
The proof of (3.12) for k£ > 2 can be done by induction using (3.14) and the
conditions on the elements of matrix A. |

PRrROOF OF THEOREM 3.2.4. Put
QxN=Q(Xn1,...,Xnn) and Qz=Q(Z1,...,Zn).

Since Qx,n 4, Qz as N — oo, the sequence {Qx,n} is relatively compact. It
is known [see Prohorov (1956)] that {Qx,n} is relatively compact if and only if
{Qx,n} is tight, i.e.

supP{|Qxn| >v} =0 as v— +oo. (3.15)
N

In order to prove Theorem 3.2.4, it is enough to show that { X1} is also tight.
In fact, in this case for any infinite subset of {X 1} there exists a subsequence
{Xn, 1} which converges in distribution to some symmetric random variable
V1. Since @ is continuous in each argument, we have

QXNe1,-, XNem) 2 QVA, ..., V) as Ni — oo,

where V1,...,V, are i.i.d. symmetric random variables. From the assumption
of Theorem 3.2.4, we get

Q(‘/l;"-avn) g'Q(Zlv"',Z'n.)-
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It yields V; 4z 1. Therefore, any limit point of { Xv,1 } has the same distribution
as Z1, which proves the statement of Theorem 3.2.4.
In order to prove the tightness of {Xx 1}, we consider two cases with respect

to diagonal elements of A.
Case 1 ifa; =0 foralli =1,2,...,n. It follows from Case a of Lemma

3.3.6 that {X 1} is tight when (3.15) holds.

Case 2 if aj; # 0 for some 7 = 1,2,...,n. It follows from (3.8) that the
sequence {XIQ\,,1 —co(n—1)mpy} withmpy = med(XIQV)l) is also tight when (3.15)
holds. Therefore, it is enough to show that

supmpy < ¢ < 00 (3.16)
N .

with some absolute constant c.
Put

Qz1,...,2a) = > _(laa| — aii)a? + Q(=1, ..., Tn) .
=1

The quadratic form Q differs from @ only by the diagonal elements of the matrix
A, which are |ay| in Q instead of a;; in Q,4 =1,2,...,n. Using (3.4) of Lemma
3.3.1 and Lemma 3.3.3, we get

2™ < P{011X12V,1 > |all| MmNy ..., lann|X12V,n > IannlmN}
n n
< P { Y laul X3 > my Y laal
=1 =1
~ n
< P{2_" > QE1 XN, .. enXNp)| = MmN 2 |aii|}
e(1,n) i=1

~ n
< 2"P{|Qx,n| = mn Z}l |aii|} -

Comparing the last inequality with (3.15), we find (3.16). It proves the tightness
of {Xn,1} in this case too. Thus, Theorem 3.2.4 is proved. |
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A Characterization of Gaussian Distributions by
Signs of Even Cumulants

L. B. Klebanov and G. J. Szekely

St. Petersburg Architecture Building University, St. Petersburg, Russia
Bowling Green State University, Bowling Green, Ohio

Abstract: Let f(t) be a characteristic function, analytic in some neighborhood
of the origin, and let {rx2;}72; be a sequence of its even cumulants. According
to a classical result of Marcinkiewitz, if all but finitely many cumulants are
0, then f is Gaussian. In this chapter, we prove the following generalization.
Denote by A, the sequence of sign changes in the sequence {(—1)7 Koj}iey. If
f has no zeros on the real line and Y 52; 1/An < 00, then f is Gaussian. We
conjecture that for non-Gaussian characteristic functions f without zeros on
the real line, there is a fixed jo such that xg; > 0 for all j > jo.

Keywords and phrases: Cumulants, sign changes, Gaussian distribution

4.1 A Conjecture and Main Theorem

Let f(t) be a characteristic function, analytic in some neighborhood of the
origin and let {x2;}32; be a sequence of its even cumulants (by definition, x; =

(—i)? %@h:o). By a classical result of Marcinkiewitz (1938), if kg; = 0 for
all j > jo, then the corresponding distribution is Gaussian. In this Chapter, we
prove the following generalization. Denote by A, the sequence of sign changes
in the sequence {r3;}52;, where r3; = (1) kg, that is, Ay = 1, A = m if
K3m < 0, and the inequality x3; < 0 does not hold for j < m, A3 = n if k3, > 0
, and the inequality x3; > 0 does not hold for m < j < n, etc.

Suppose that an entire characteristic function f has no zeros. If j is big
enough, then ky; is strictly positive except the Gaussian case when kg; = 0 for
i=12 ...

For infinitely divisible distributions, this conjecture is a simple consequence
of Ramachandran (1969). What we can prove here is the following theorem.
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Theorem Let f(t) be a characteristic function, analytic in some neighborhood
of the origin, and let A\, be the sequence of sign changes of the sequence {K3;}521
If f has no zeros on the real line and Y521 1/Ap < 00 then f is Gaussian.

PROOF. First we suppose that f is a symmetric characteristic function.

We are going to show that f(¢) is an entire function. Suppose indirectly
that this is not true, and let {t : || < R} (0 < R < o) be the maximal circle
in which the function ¢(t) = log f(t) is analytic. According to Fabri’s theorem
[see, for example, Bieberbach (1955)], if an analytic function has real Taylor
coefficients and for the corresponding sequence A, of sign changes 1/\, — 0 as
n — oo, then ¢ = R is a point of singularity of ¢ . But f(¢) is analytic in a
circle centered at the origin, and (being a characteristic function) analytic in a
strip containing the real line. Since f has no real zeros, the point ¢ = R cannot
be a singularity of ¢ and, therefore, both ¢ and f are entire functions. Thus,
f cannot have any complex zeros.

Since f is an entire function,

M(r) = M(r; f) = max |f(¢)| = max(|f(ir)], | f(—ir)]).

[t]<r
Using the notation 7' = {z : |arg z| < mo'} where o > 0 is arbitrary, we have

max Reyp(z) < log(M(rsinmo)).
|z|<r, z€T

According to Carathéodory’s theorem [see Pdlya and Szegd (1964)].

max _|¢(z)] < Clog(M(rsinmo)).

|z|<r, 2€T

Sheremeta (1975) obtained the following result. Let an entire function f
have real Taylor coefficients and suppose Y noi 1/Ap < 0co. Then,

o 08 lo(@) _
z—oo log M(z; p)

In our case, this implies
log M (r;¢) < Cilog(M(rsinmo))

and consequently
M(r) < (M(rsinmo))°.

But o > 0 can be arbitrarily small and thus from the previous inequality, we
see that f has finite order. Hence, f is an entire characteristic function of finite
order and has no zeros. Thus by Marcinkiewicz’s theorem, it is Gaussian.



Signs of Even Cumulants 53

To complete the proof, observe that if f is not necessarily real valued, then
we can apply the proof above for the real valued f(t)f(—t), and finally apply
Cramér’s classical result: all components of Gaussian distributions are Gaus-
sian. |

4.2 An Example

Let us now give an example showing that the condition of our Theorem “f has
no zeros on the real line” is essential.

Consider the function (1 — 2)e™*"/2. Tt is easy to see that the function is a
characteristic function of the distribution with the density caz?e? ?/2 , Where ¢
is a normalizing constant. The function 1/(1 +#2) is the characterlstlc function
of Laplacian distribution. Therefore, it is clear that the function

1 - t2 —t2/2

1) =153

is a characteristic function of the corresponding convolution. We have

f(t) =exp (Z(m— —l)kk—li-l)t2k+2 t2/2).

From here, we see that x5, > 0 for all ¥ = 1,2,.... Now we see that the
condition on the zeros in the Theorem is essential.
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On a Class of Pseudo-Isotropic Distributions

A. A. Zinger

Aerocosmic Academy, St. Petersburg, Russia

Abstract: A class of distributions of random vectors in IR™, such that distri-
bution of any linear statistics belongs to the same multiplicative type, is con-
sidered. Results are then developed for the description of translated moments
of linear statistics.

Keywords and phrases: Linear statistics, pseudo-isotropic distribution, scale
function, negative definite function, translated moments

5.1 Introduction

Let X = (Xi,...,Xn) be a random vector in IR™ (n > 2) and L = t; X1 +
-+ +tp Xp, be a linear statistic with coeflicients vector t = (t1,...,t,). We will
be interested here in distributions of vectors X, for which the distributions of
linear statistics L belong to the same multiplicative type for any t € R, i.e.,

P{thl + - +tan < .’L'} = P{c(th" . 7tn)§ < .’13}, S ]R7 (51)

for some ¢ € IR™ and random variable £. Distribution of X, satisfying (5.1),
will be called pseudo-isotropic distribution, and the corresponding function ¢
will be called the scale function. Let us also denote (z,y) = z1y1 + - - + Zn¥yn,
|e| = (x,2)!/? for any = (z1,...,2Zn), ¥ = (W1,...,yn) € R™ A simple
example of the pseudo-isotropic distribution is spherically symmetric distri-
butions, corresponding to the scale function ¢(t) = |t|. These distributions
were described by Shoenberg (1938). Similar results were obtained in Camba-
nis, Kenner and Simons (1983) for the scale function ¢(t) = >°7_, [t;]. Fur-
ther investigations were mainly devoted to the case when the scale function
c(t) = (Xj= |tj[°‘)1/ %, see, for example, Kuritsin (1989), Koldobsky (1992),
and Gnating (1998). Special interest in this case is probably due to the con-
nection with l,-norms. In the general case, however, there is almost nothing
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known until now. The main goal of this chapter is to construct a sufficiently
wide class of pseudo-isotropic distributions corresponding to scale functions of
a general type. The results obtained here turn out to be useful for some prob-
lems, connected with linear statistics. One result in this direction will also be
presented. All investigations on this subject till now make an assumption of
existence of finite absolute power moment of some positive order ag < 2. The
case ap = 2 gives a scale function that is a positive definite quadratic form
and elliptically countered distributions as the corresponding pseudo-isotropic
distributions. So, we will assume that for some 0 < ag < 2

E|X|% < oco. (5.2)

It is known [see Kuritsin (1989)] that by assumption (5.2) the scale function
c(t) should be even, positive, continuous, and homogeneous of the first order,
admitting representation

c(t) = ( /S e e)|"‘°a(de))1/ao, tcR", (5.3)

where o is a finite measure on Borel subsets of the unit sphere S™~1. It is evident
that the characteristic function of the pseudo-isotropic distribution ¢(t) should
have a form

o(t) = h(c(t)), teR™

It is also known [see, for example, Kuritsin (1989)] that the class of pseudo-
isotropic distributions corresponding to the scale function ¢(t), given by (5.3)
is certainly non-empty, because the Levy-Feldhaim distribution with character-
istic function ¢g(t) given by

wo(t) = exp(q(c(t))*)

for any coefficient ¢ > 0, belongs to this class of distributions.

5.2 The Main Results

Before we go over to the main results of this paper, we should mention some
known facts. An even function w : R™ — IR is negative definite, if for any
integer k > 1 and for arbitrary ¢!, .. LtPeR™ uy,. .. up € R, ui+- - +ug = 0,
the inequality

k k
Y Y w@ -t <0

p=1 v=1
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holds. Negative definite continuous functions satisfy the known Levy represen-
tation, which gives in case of even functions

W)= [ | o (cosl(:2) = Ds(az),

where s is a o-finite measure on the class of Borel subsets of IR™ satisfying the
condition

/ 2P i) (5.4)
Re\{o} 1+ [a[? '
We will also use the formula [see Gradshtein and Ryzhik (1994)]
% 1 —cosap T |a|?
— PP = . .
c(z) /0 pE= 0 2F(1+z)sin§z’0<Rez<2 (5.5)

In this chapter, we will the prove the following results.

Theorem 5.2.1 Let w:IR™ — Ry be even, continuous, homogeneous of order
0<ag<2. Then

(i) e(t) = (w(t))/2° is a scale function of some nondegenerate pseudo-isotropic
distribution if w is negative definite, and the same is true for (w(t))®/®

(ii) for any complez z, satisfying the condition 0 < Rez < ay, the representa-
tion

/S te)Folde) = (w®)*/®,  teR" (5.6)

where o is a complez-valued finite measure on the class of Borel subsets
of the unit sphere S, holds.

Theorem 5.2.2 Letw be a function, satisfying the conditions of Theorem 5.2.1
with 0 < ag < 2 its homogeneity order. For any integer N > 1, let us take

complex K1,...,kN and z1,...,zn under the condition Rez; = a € (0, ),
ji=1,...,N, and construct the function
N
o(t) = exp{—Re Y _ k;(w(t))¥/*}. (5.7)
=1

Then, ¢(t) is a characteristic function of the pseudo-isotropic distribution with
scale function (w(t))Y/%, if

N
o =Re Z mjpzfc(zj)_lazj (5.8)
Jj=1

is a finite measure on Borel subsets of S ! for any p > 0, and 02 18 the
solution of (5.6) for z=2;, j=1,...,N.
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Note. The function ¢(t) in this theorem turns out to be an infinitely divisible
characteristic function. In this class of characteristic functions, the condition
of Theorem 5.2.2 is also necessary.

The stated results are closely connected with the problem of the reconstruc-
tion of reconstructing from means of translated moments of linear statistics,
considered earlier by Zinger (1997) [see also Kakosyan, Klebanov and Zinger
(1989)]. An application of the concept of negative definiteness is also produc-
tive here as it allows us to give a new simple condition for a function to be a
translated moment of linear statistics. We give here one possible result in this
direction.

Theorem 5.2.3 Let n > 1 be an integer and 0 < a < 2. Then, some even
function ¢ : R™1 — IR, may be presented in the form

Y(t1,. .., tn, 7) = E|(t, X) — 7|%, teR", 7eR (5.9)

for some random vector X in R™, iff ¢ is continuous, homogeneous of 00 order
a and negative definite.

5.3 Proofs

In this section, we provide proofs of the theorems stated in the last section.

Proof of Theorem 5.2.1. Necessity of (i) follows immediately from (5.3). If
(w(t))l/ @0 is a scale function, then

w®)= [ I(te) 00 (de), (5.10)

where 04, is a finite measure on Borel subsets of $"~!. Multiplying both sides
of (5.10) by ¢(ap), we will have

c(ao)w(t) = /R {1 - cos((t, 2))} Sao (d2), (5.11)
where
dp n—1
Sao (dz) = maao (de), r=pe, peERy, ec S

It follows from (5.11) that —w is negative definite (c,, > 0). For checking the
sufficiency of (i), let us consider the representation

w(t) = /R {1~ cos((t, 2))}S(de), (5.12)
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where the measure S satisfies (5.4), and deduce from (5.12) due to the homo-
geneity of w (for A > 0)

A%w(E) = / {1 = cos((t, /N\)}S(d). (5.13)

In the integral on the right hand side of (5.13), using the coordinates transfor-

mation
x=>Xe, peRy, ecS!

and then comparing the result with (5.12), we obtain
dp
S(dm) = I;mc'ao (de),
where 04, is some finite measure on Borel subsets of S”~!. This means that
w®)= [ It,)[*0u(de)

and ¢(t) = (w(t))'/?0 is a scale function of a pseudo-isotropic distribution in
which case, one can take the Levy-Feldhaim distribution with characteristic

function
po(t) = exp{-w(t)}. (5.14)

Next, let us consider (ii). Because of the positiveness and homogeneity of the

function w(t) we have
mft|* < w(t) < M[t[*

for some appropriate positive constants m and M. So, the distribution with
characteristic function ¢g(t) defined in (5.14) possesses an infinitely differen-
tiable density function

1 .
po(x) = W /}Rn exp{—i(t,z) — w(t)}dt.

This distribution, in addition, has finite absolute power moments of order 0 <
a < ag. We can rewrite the definition of pseudo-isotropic distribution with scale
function ¢(t) as follows: a random vector X has a pseudo-isotropic distribution
if

t,X)Lct)e, teR” (5.15)
for some random variable £. Here, the symbol 2 denotes equality in distribution.
We can take in (5.15) the random vector X (for X') with characteristic function

(5.14) and corresponding & (for £) random variable having symmetric stable
distribution with parameter ag. In this case, we obtain from (5.15)

E|(t, Xo)* = (w(t)) E|&|* (5.16)
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for complex z, satisfying condition 0 < Rez = a < a,. It is known [see Zolotarev
(1983)] that for such z

2 z 1.7
El&)? =2 (1 + 2)I'(1 — _ao)z sin 52 #0
and so we have from (5.16)

—1 z — z/ap
EloP /Rn |(t, 2)|"po(z)dz = (w(t))™ (5.17)

We obtain (5.6) from (5.17) immediately with

1

“@) = Fer

/R _ olpe)o™ dpy(de), (5.18)
+

where 7 denotes the uniform measure on S™1. It is obvious, that for real z,
(5.18) gives a measure. Now we will extend this result to the case Rez = ay.
We can proceed here in the same way as Kuritsin (1989), in spite of the fact,
that we have complex exponents. We fix z = a, + is and consider a sequence
{zr : k=1,2,..., zr = ax + 18, ok < o, k — oo}, from which may be
chosen the subsequence {zy, : v = 1,2,...}, such that there exists a weak
limit 04y44s for ok, by v — oo, where oy, satisfies (5.6), and this limit is finite
complex-valued measure on S™!, also satisfying (5.6). Concluding the proof
of Theorem 5.2.1, we should mention that in the class of solutions of (5.6) the
solutions are unique, which may be proved in the same way as Zinger (1997)
[see also Kakosyan, Klebanov and Zinger (1989)]. [ |

Proof of Theorem 5.2.2. We can deduce from (5.6), similar to (5.11), that

W) = —

1— t, (dz), t € R" 0 < Rez < agp, (5.19
T S oy (S (B2 (d2) ez < a0, (519)

where c(z) defined by (5.5) is nonzero, and

p ——0,(de), x = pe

(dw) 1+z

with o, as in (5.18). Using (5.19), we have

N y ~
Rej;1 ki (w(t)) = /Rn\{o}{l — cos(t, z)}5(dz),

where

3(dx) =Re Z njc_l (2) Uz’ls_z e)

7j=1
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Condition (5.8) provides § to be a measure, satisfying (5.4). This means that
(5.7) is a characteristic function of pseudo-isotropic distribution and this distri-
bution is infinitely divisible. It is easy to see that in this class of distributions,
(5.8) is also necessary.

Verification of (5.8) to be a measure becomes very simple, when we choose
zj = a +1id; for some dj >0, 7 =1,...,N. In this case, we need to deal with
positivity condition for trigonometric polynomials, which is well worked out.

Using characteristic function (5.7), we can essentially extend the variety of
pseudo-isotropic distributions. Multiplicative convolutions of pseudo-isotropic
distributions with arbitrary random coefficients once again, give again a pseudo-
isotropic distribution. More precisely, if ¢(t) is a characteristic function of a
pseudo-isotropic distribution, then

©n(t) = Ep(nt)

(for any random variable 7) is also a characteristic function of a pseudo-isotropic
distribution, with the same scale function. |

Proof of Theorem 5.2.3. We note that the situation is quite similar to one (i)
of Theorem 5.2.1. So, 9(t1,...,tn, T) belongs to the convex hull of |(¢, z) — 7|%,
t = (t1,...,tp) and & = (x1,...,2,) . For checking sufficiency one can notice
that the conditions of (i) of Theorem 5.2.1 are fulfilled, and the following the
presentation for ¢ [see Kuritsin (1989)]

W(t1, ety T) = / |(tre1 + - - + tnen + Tent1)|%o(de) (5.20)

is true. (5.9) follows from (5.20) after appropriate change of variables on the
right hand side of (5.20). In conclusion, we may mention that, in the same
manner one can also treat odd translated moments and probabilities to get into
half-spaces. But, we intend to present these results in our next paper. W
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Time Reversal of Diffusion Processes in Hilbert
Spaces and Manifolds

Ya. Belopolskaya
St. Petersburg Architecture Building University, St. Petersburg, Russia

Abstract: We describe some results of the theory of diffusion processes in infi-
nite dimensional Hilbert spaces and manifolds and apply them to investigation
of invariant measures and time reversal of diffusion processes.

Keywords and phrases: Hilbert space and manifold, diffusion process, in-
variant measure, time reversal

6.1 Diffusion in Hilbert Space

The development of the theory of infinite dimensional diffusion processes was
started by Gross and Dalecky and intensively developed during the last decades.
Nevertheless, there are still many open problems in the field both in the frame-
work of linear spaces and smooth manifolds. In this chapter, we follow the line
exposed in Belopolskaya and Dalecky (1990) and Dalecky and Fomin (1991)
and discuss problems concerning invariant measures of infinite dimensional dif-
fusion processes and description of their time reversal. We extend here the
results due to Dalecky and Steblovskaya (1996) concerning invariant measures
of diffusion processes using previous results from Belopolskaya (1998) as well.
In the construction of time reversal of a diffusion process, we use the approach
developed by Nagasawa (1961) in a finite dimensional framework. Notice that
our results are close as well to the results received by Follmer and Wakolbinger
(1986).

Let (2, F, P) be a complete probability space, Hy C H C H_ be a Gelfand
triple of Hilbert spaces with dense Hilbert-Schmidt imbedding, w(t) € H_ be
a standard Wiener process in H, and F; C F be a set of o-fields adopted to
w(t). Given nonrandom vector field a(t,z) € H and Hilbert-Schmidt operator
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field A(t,z), =z € H,t € [0,T) consider a Cauchy problem for SDE
d€ = a(t,£(t))dt + A(t,£(t))dw, £(0) =& € H. (6.1)

If a(t,z) and A(t,z) are smooth enough functions with sublinear growth in z,
then there exists the unique Markov solution £(¢) of (6.1) if £(0) = & € H is
Fo-measurable [see Belopolskaya and Dalecky (1990)].

Let B(H) and M(H) be the space of real valued bounded measurable func-
tions and Borel measures defined on H, and C*(H) and M*(H) denote spaces of
C*-smooth functions and measures correspondingly. Denote by P(s,z,t,G) =
P{&(t) € GIE(s) =2}, 0<s<t< T,z € H G € By, the transition probabil-
ity of the Markov process £(t) € H, and consider evolution families V (¢, s) and
V*(s,t)

V(9@ = EfEw) = [ JwPGatdy, feBH), (62)
V*(s,)(dy) = /H v(de)P(s,z,t,dy), veM(H) (6.3)

dual in pairing (f,v) = [y f(y)v(dy).

A measure v € M2(H) is said to be an invariant measure of the diffusion
process £(t) if V*(s,t)v = v. It is known [see Dalecky and Steblovskaya (1996)
and Belopolskaya (1998)] that a measure v is an invariant measure of £(t) if

m = div [% i V 41 (A*V) —av] = 0. (6.4)
k=1

Let Lo(H, v) be a Hilbert space of square integrable functions on H (with re-
spect to ) with the inner product ({(g, f)). Assume that A(¢,z) = A(z), a(t,z) =
a(x) and v is an invariant measure of the solution £(t) to (6.1). Define V'(t)
and V*(t) in Lo(H,v) by

[ 9@ [ 10)PGz dyvids) = 6,V = (VOT9.0) (63
H H

for any measurable bounded functions f and g.

Semigroups V; and Vfr are called dual with respect to the invariant measure
v if (6.5) holds.

We show that the evolution family V¥ (¢) coincides with the evolution family
V (t) generated by the time reversal of £(¢) and derive the stochastic equation
for the time reversal process.

Denote by £(t) the time reversal of £(t) given by £@) = &(T—t), telo,T).
The process £ (t) is a diffusion process as well. To check it, consider a partition
0=ty <t; <...<t, =T, denote by Ag(t) = tx — tx—1, and notice that
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Ef((to), .- -,€(tn))
= Ef(§(1—to),...,&(1 —tn))
_ P(t,z1,dzo) v(dz1)P(A1(2), 29, d1)
- / f(a:o,..., n (dl’o) I/(d.ro) zx(d:cl)

P(An(t)y Tn, dl’n—-l)

V(a7 1) v(dzy). (6.6)
Consider P(t,z,dy) = P(t,g:,(ccllxx))u(dy). It follows from (6.6) that
o &(tn)
/ f(xo, ..., zn)v(dzo) P(t1, z0,dz1) .. ZAn(t),xn_l,dxn)f(xo, ey Zn)

and hence P(t,z,dy) is the transition probability of the diffusion process £(t).
Finally,

(9, if) = /g(x / f(y)P(t,z,dy)v(dz)
-/ / 2t

= / Vitgly dy) (Vi'g, f)-
Thus, the following assertion is proved.

Theorem 6.1.1 Let v(dy) be an invariant measure of the process £(t). Let V;
and V; be evolution families in Lo(H,v) generated by the processes &(t) and £(t)
respectively. Then Vi = V,*, where V;* is given by (6.5).

Consider a pair of diffusion processes £(t) and 7(t) in H such that
d¢ = a(§(t))dt+ AE(t))dw, £(0) =& (6.7)

dn = a(n(t))dt+ A(n(t))dw, n(0) =& (6.8)

and let the distribution v of £y € H be a smooth measure with vector logarith-
mic derivative .

Theorem 6.1.2 Let v € M%(H) . Then v is an invariant measure for a pair
of diffusion processes £(t) and n(t) satisfying (6.7) and (6.8) if and only if the
drift coefficients a(z) and a(zx) satisfy

a(z) + a(z) = B(zx)A(z) + VAk(m)Ak(:c), B(z) = A*(z)A(x) (6.9)
and

div(a(z) - 4(z)) + (a(z) — a(z), A(z)) = 0. (6.10)
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PRrROOF. Consider generators of semigroups V; and V; having the form

L 1(2)(A(z), A*(2)) + Vo £ ()

Af(z) =3

and 1
Ag(x) = 5 ¢ (@)(A5(z), A*(2)) + V(g 2).

Here and below, we assume summing over all repeating indices. If V; and Vi
are dual then the relation (Ag, f), = (9, Af), should hold. Using integration
by part formula, one can check that if

%dw (V a0y A (2)) — div(a(z)) + %((VAk(m))\, Ak (z)) + (A¥ (), A (2)))
+ (vAk(x)Ak(x)a )‘)) - (&, )‘) =0,

(Var(myfr A¥(@)N) + Vy
hold, then

Ak(a:)f) = (a(z) + a(z), V)

AR (z)

[ 159" @)(44(z), 44(@) + Vagng (@) (2)v(do)
= [ 9l "@)(4*(2), A4(2) + Vo (@)v(da).

Notice that (6.4) and the invariance of v with respect to V;" yield (6.9). As
far as v is invariant with respect to V; as well, we have
1 N 1 .
m(y) = EBij[Vj)\i + XiAj] + (ViBij — a5) A + §V¢‘VjBij —diva

1 1
= §-B,;j[Vj)\i + )\i)\j] + (vz'Bij - aj))\j + —2—ViVjB¢j —diva=0

that yields (6.10). [ |

Remark 6.1.1 Given £(t) satisfying (6.7), the time reversal process ¢ (t) is
governed by (6.8). Denote by S and U two smooth scalar (potential) functions
such that VU = i\ and VS = %(a—d). Then both a and a could be represented
in terns of S and U as a = BV(U +S) and @ = BV(U —S). This representation
is very important in Nelson mechanics.

It is known due to Nagasawa (1961) that if an arbitrary measure v is choosen
(omitting the requirement that it should be invariant with respect to £(t)) to
define the time reversal process é (t), one has to to consider the random time
L(w) called co-optional time instead of the constant time 7" to get a homogenous
time reversal process. Using the co-optional time, it is possible as well to extend
the above consideration to time dependent drifts .
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By definition, L(w) is a co-optional time if {w : s < L —t} = {w : s
Lo¥t,t,s > 0}, where ¥ is the shift operator in the trajectory space X;w(s)
w(s + t). This property is equivalent to L o ¥ = (L —t)T,¢ > 0.

The following statements are proved similar to Nagasawa (1961).

<

Theorem 6.1.3 Let £(t) be a solution to (6.7) and the distribution v of &
has smooth vector logarithmic derivative A\. Then the time reversal process
£t ) from a cooptional time L(w) with £0)=¢& isa diffusion process and the
corresponding semigroup Vi is dual to V;, (g, Vif)m = (Vig, f)m with respect to
a measure m defined by m(G) = E[[5° xc(£(t))dt].

6.1.1 Duality of time inhomogenous diffusion processes

Consider SDE with time inhomogenous diffusion coefficients
dy = a(t,y(t))dt + b(t,v(t))dt + A(t,v(t))dw. (6.11)

Notice that we need two components in the drift coefficient since they are
responsible for different phenomena.

Let v(t) be a time inhomogenous diffusion process defined on the interval
[0,1] which satisfies (6.11) and at the moment s < t its value ~(s) be a ran-
dom variable with given distribution ps. Denote by P(s,z,t,G) = P{v(t) €
G|y(s) = z} its transition probability. The process y(t) gives rise to evolution
families

(2:0)@) = [ St 9Ps,atdy), (Z)ulldy) = [ a(de)Pls,z,t,dy).

Recall that a time inhomogenous diffusion process y(t) could be considered as a
component of the time homogenous process x(t) = (¢,~v(¢)) and hence we could
apply the above considerations to this new process choosing uo(dy) = v(dy),

pi(dy) = ((29)*v)(dy) and
m(dt, dy) = E /0 1oy (At dy) = pu(dy)t. (6.12)

Denote by (T'su)(z) = fol Sy u(T,y)P(s,z, 7,dy)dr and use the time homoge-
nous duality relation (g,T¢f)m = (T} g, f)m to derive

<97Z5f>,us = (nga f),ut = <(Z5)+ga f>,ut5 s <t. (613)
Here, Z8g(t,y) = [gg(s,z)P b(t,y, s, dz) and

P(s,z,t,dy)

}E’t, ,8,dx) =
thy ) pe(dy)

ps(dz). (6.14)
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Given the space-time process (t) = (¢,7(t)) and its time reversal, define
M, f(s,z) = Z,f(s,z), 7 > 0, and M,g(t,y) = Z"g(t,y), r > 0. Then

1-r
@M = [0, 2 Pt
1
= [ @2 Pt
1
= (@, Pt

A

= (Mrga f)m (615)
As a result, the duality relation
(9, Mrf)m = (Mrg, fim (6.16)

holds.
Let us compute the difference

/ i / [B(t) f(z)g(x) — f(x)B(t)g(x)|us(dz)dt
0 JH r .
= [ [ 1@9@@ o= [ [ f@)ato) +at,2

— ARt ) ARt 2)A (@, ) — V 40 AF), V() e (d)dt. (6.17)
Here
BO)S = 50+ 57745, 45) + b+ a, £ (6.18)
and
By = —g—’: + %,u”(A’”, AF) + div[(b+ a)p] + div(V 46 AR ), (6.19)

while the corresponding adjoint (in Lo(H, m)) operators have the form

Blt)g = -2 ~ 2"(4%, 4%) + (3~ ), V), (6:20)
Q% _ Qﬁ _ 1 e ak Aky e k N
(B*(t))u = 5 ~ 3k (A%, A®) — div (V 4 A%p) + div((@ — b)u).  (6.21)

Let us prove that the duality relations for a pair of space-time diffusion
processes have the form

a+d=B\+VAF, %+div(b+a;a)u=0. (6.22)
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To derive (6.22), consider the diffusion process v(t) and its dual in the
sense of (6.16) with respect to m(dt,dy) = ut(dy)dt. Since B*(t)u = 0 and
B*(t)u = 0, we deduce from (6.17) the first relation in (6.22). To derive the
second one, notice that

[ [ B @) - 1Bz

//f *(t)u) dxdt—/ /g ([a(t,z) + al(t, z)

- Ak x)A’“(t D), 8) = Var (o2 A° (1, 2)), V£ (2)) e (d)at.
(6.23)

Hence to ensure (6.16), we need
(BT)*(t)u = 0. (6.24)

Finally, taking into account (6.23) and (6.24), we get (6.22). Notice that on the
contrary, if (6.22) holds, then we can easily check with the help of (6.17) and
(6.23) that (6.16) is valid.

In applications, the case a(t,z) —a(t,z) = 2B(t,z)VS(t, ) with a potential
function S(t,z) is rather important.

Consider next symmetric semigroups generated by diffusion processes. Re-
call that M, is called symmetric with respect to m(dz, dt) = my(dz)dt if

T T
|| Mt agtapuide)de = [ [ 1t)Mgt, 2ot
o JH o JH
In other words, the semigroup M, is symmetric if M, = M;F. To derive the

conditions on coefficients of (6.11) and the measure y; to ensure M, = M~
consider the difference

[ [ Biaet, @ [ [ 5t28%0( aptaz)

where B and B are given by (6.18) and (6.20), respectively.
It is easy to check by differentiation by part formula that

[ [ Bt e = [ [ Bro(t2)50, )
+//fta: (t,x) M i (dx)dt
+ /0 /H £V ar gV e pie(d)dt
T
+ /0 /H Fodiv|(b+ a)ue(da)]dt.
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Consider in addition backward Kolmogorov equation B (t)g = 0 for time re-
versal process and forward Kolmogorov equation (B*(t))i = 0, where fis(dz) =

iu(dw)q(s,2,t,y),  q(s,2,t,y) = Eo2p0. Recall that
QL1 (s,z) = /H Ft,0)P(s, 0.t dy),  Olg(t,y) = /H o(s,z)B(t,y, s, dz)
and P(t,y,s,dz) = us(dm)%. Finally

[ @)t wuldn) = [ o5,2)@9 da) = [ g(s,2)a(s,2,t, phs(da)
H H H

and as a result we prove that [i;(dz) solves (6.21).

The invariance of m(dt,dy) = u:(dy)dt and the symmetry of M, yield
(M, f,9)m = (f, Myg)m and hence B* = B*.

In particular, consider the duality relations

ou ) a—a
%+dzv(b+7u) =0,

and
a(t,z) + a(t,z) = BA(t,z)

deduced from (6.22) for A(¢t,z) = A and T = 1. Choose b(t,z) = 0 and

1 T R . €T .
a(t,z) = EB)\(t,m) == a(t,z) = B
then £(t) and £(t) solve respectively SDE
_ 3 : 3
d¢ = Adw — zdt, dé = Adw — mdt.

Stochastic process £(t) with £(0) = 0 is called a Brownian bridge and the
above result for this process was derived in Follmer and Wakolbinger (1986).

6.2 Diffusion on Hilbert Manifold

Let M be a Hilbert manifold, B be its model space. We say that M is equipped
with a Hilbert-Schmidt structure if its model space has a structure of a rigged
Hilbert space Hy C HC H_ = B.

Denote by exp : TM — M an exponential mapping on M corresponding
to a fixed connection on M and assume that it is the Levi-Chivitta connection
generated by a metric G on M.
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Assume in addition that V denotes the covariant derivative corresponding
to this connection and moreover that the tangent bundle 7'M has a Hilbert-
Schmidt structure. Recall [see Belopolskaya and Dalecky (1990)] that it means
the following. Given a local trivialization of the Riemannian bundle over a
neighborhood Uy of a point y € M, one may choose a set of local sections
{er(z)}$2, that make an orthonormal basis in each Hy = v~ !(z),z € Uy, and
such that (ex(z), ex(z))n, = (ex(z), G(x)ex(x))z = dir (the Kronecker symbol).
Here (-, -); is a natural pairing between H, and H}, (-,-) is an inner product in
Hy.

Let ® be a section of L(v,v*). Given an orthonormal basis ex(z), define

oo

Trg®(z) = Z(ek(w),
k=1

B(z)er(@))e = )_(ex(),
k=1

G (@)e(2)er(2))w. = Tru,G™(2)®(z),

assuming that G~!(x)®(z) is a nuclear operator in H,. In the sequel, we omit
subscripts in notations (-, ), and (-, )z if it will not lead to any confusion.

A manifold M is said to be equipped with a Hilbert-Schmidt structure
(Tzy7Yz,1) [see Belopolskaya and Dalecky (1990)] if given the Hilbert bundle v
one may define a bundle embedding i : v — 7 with 7, 0 i = 7 possessing
the following property: for each € M, the map iz : Hy = v !(z) = TuM
belongs to Li2(Hg, Tz M) and igH, is a dense subset of T, M. This structure
is called nuclear if the map i, belongs to L11(Hz, TpM). In this case, given a
Riemannian bundle v with the inner product

(€23 M2)Hy = (€2, G(T)N2)z,

we say that the HS-structure is Riemannian. The affine connection on M
is called Hilbert-Schmidt affine connection if the local connection coefficient
possesses the property

F1=F;IB><H:B><H—>H,:E€U.
Introduce I'}" : B x H* — H* by
<z7F:EY* (y,’l))) = —<Pg(y,2),?)>.

Denote by ox(y) the class of vector fields belonging to ox(7) and valued in
Hz C TeM for each x € M. Given 7 € oi(7y) and £ € ox(T), put

Vin=Ven, Vin(z) =gl + (6 a)-

Hence, V{n € o (7) if T} is smooth enough.
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Let M be a manifold equipped with a Riemannian structure (v, 7,%). An
affine connection on the manifold is said to be compatible with this structure
if V2(¢,9) = (V16,%) + (¢, VI¥) holds for all ¢,% € a1(7), 2 € 01(7).

Consider 7 : v — 7 and * : 7* — v*. For each point x € X, we equip T, M
with an HS-structure

ang J2=Gzlit 144 iy

As aresult, we get a rigged Hilbert space H = G™1TM c H, ¢ T,M =H
with the pairing (g, h)x, = (g9, G(z)h).. Denote by o} () a class of vector fields
belonging to o (7) which satisfy the condition G(z)z, € *T; M.

We say that the divergence of the vector field n € o (y) exists if V'n|y is a
nuclear operator and define it by divgn(z) = TraGVn.

Notice that if both the Riemannian metrics and connection are nuclear,
then the vector field n € o} () possesses a finite divergence and divgn(z) =
(V,n(z))#,, where V = D +T and T is defined by (vz,7z)n, = Tr G(x)'Y(ns)
and

7= -G (2) ) T7 (ex(2), G(z)ex()).
k=1

Morover, if R(n1, ex,n2) is a curvature tensor of the given connection, then the
Ricci tensor R(n1,m2) = > (R(m, ek, n2), Gek )y is finite and it holds

k(z1,22) = Vy,divgze — divgV 5, 20 = R(21,22) — TrgVzaVz. (6.25)
Consider a diffusion process £(t) € M satisfying
d€ = expg(y (a(t,£(1))dt + A(t,£(1))dw),  £(0) = &o (6.26)
or in local chart

€ = a(t, E(0)dt + A(t, €(2))dw — ST(EW)(AXED), AF(E()))dt,£(0) = bo.
(6.27)

Here and below, we omit notations connected with a chart if it will not lead to
any confusion.

Let Li2(7,7) be the bundle of Hilbert-Schmidt operators acting from a
Hilbert subbundle v : K — M of the tangent bundle 7 : TM — M. We as-
sume that given sections a(t,x) and A(t,z) of TM and Lis(v,T), respectively,
are nonrandom, smooth and bounded. It is known that under these assump-
tions there exists a unique solution £(t) € M to (6.26) possessing the Markov
property. Denote by

P(s,z,t,K) = P{{(t) e K|£(0) =2},0<s<t< T,z € M,G € By

the transition probability of the process £(t).
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Denote by B(M) the space of measurable bounded scalar functions on M
and by M(M) the space of measures defined on a o-algebra By of Borel sets
of M. It is well known that

= [ $@)P(s,3,t,dy) = B (E() (6.25)
and
V*(s,t)v(dy) = /M v(dz)P(s,z,t,dy) (6.29)

is a pair of evolution families acting in B(M) and M(M), respectively. The
infinitesimal operator of V (¢, s) has the form

1
A(8)f(@) = 5V ar(s)V ax(s,2) ~ Vy Ak (s )l f(@) + Vs z (), (6.30)

Ak(s,z)

or in local chart

Af(z) = %[f”(fv)(Ak, AF) — (T(z) (A%, A), f'(@)] + (a, f'()).  (6.31)

To derive the expression for the infinitesimal operator of V*(s,t), notice
that V(¢,s) and V*(s,t) are dual in the natural pairing between M(M) and
B(M) given by (f,v) = [j; f(y)v(dy) and hence A*(t)v could be computed as
an adjoint operator to A(s) usmg differentiation by part formulas.

Given a measure p on B = H_, denote by Viu(dz) = D p(dx) = [N, 2)m +
divzlu(dz).

To make both terms in square brackets of the last relation invariant, rewrite
Vu(dz) in the form Viu(dz) = (A, 2)n, + divgz, where A = A — I't. Applying
integration by parts formula, we derive that the generator A* of V*(s,t) has
the form

1
Ap = S[VaeVier+ V5 i+ divg ARV + divg A ]

+ Vi (divg AF ) + 2divg AFV e p — divg (V 46 A¥) ]

— divgap — Vi
1 * * * . * 1 . .
= S[VaVin+Vy 4 1) + divg APV + 5[(dzng’“)(dngk)
+ [V gedivg A* — divgV 4x A¥)|p + divg AFVp — divgap — Viu.
(6.32)

The next question we are going to answer is how to formulate the conditions
on diffusion coefficients and the initial measure to ensure that the initial measure
is invariant with respect to V*(t,s). For this purpose, we could follow the
approach given in the previous section. We start with the case when coefficients
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A(t,z) = A(z) and a(t,z) = a(z) do not depend on time variable. Notice that
under the above condition, there exists a unique solution to

0

8—‘; = A, pol(dz) = v(dz). (6.33)
It results that the measure u:(dy) = V*(¢)v(dz) is absolutely continuous with
respect to v and hence could be represented in the form ¢ (dz) = v(¢, z)v(dz).

Let us derive the equation to govern the function v(¢,z). Direct computa-
tions show that
Olv(t,x)v(dz)]  Ou(t,z)

ot =~ V()

Vilv(t, 2)v(de)] = (v'(¢, @), 22)v(d) + v(t, 2) V3,v(dz),

and

Vi Vit aude) = (Var(t,a), 2)v(de)

+(’Ul(t, .’E), lez2)V(dx) + (’U/(t, .’E), ZQ)v:1V

+(v'(t,x), 21) V3, v(da) + v(t, ) V3, Vi, v(dz).
Finally, recall that Viv = [(A,2) + divgzly, V5 Vi v = [(V,A, 2)

+(A, Vy 20)+ Vi divgzolv + [(A, z1) + divgz1][(A, 22) + divgzs]v that yields
V:l V;2l/ — V*Vzl BV = (V4 A, 29) + V. divgze — divgV, 2o
+ [(A, z1) + divgz1][(A, z2) + divgz||v.

Substituting these relations into (6.33), we show that v(t,z) solves

Ov
5 = Fv, v(0,2)=1, (6.34)

1
Fv = E[VA"VA"U + VVAkAk’U + VAkv(A, Ak) + diUGAkVAkU] - vav

+ %[(A, V e AF) + V gedivg AF — divgV 4 A% + (A, AF)(A, AF)
+divg AFdivg A¥] + V 41 (A, AF) + divg A¥(A, AF) — divga — (a, A)]v.
(6.35)

Let us construct a probabilistic representation for the solution to (6.34) in
terms of a new stochastic process 7(t) which solves

dy = exp™ (b(v(t)dt + A(v(t))dw) (6.36)

with the same diffusion coefficient A(z) and a new drift coefficient b(x) given
by
b(z) = [(Az), A¥(2)) + V ax(z) + divg A*(z)] AF ().
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In terms of this process, the solution to (6.34) has the form

v(t, ) = exp| /O  a(y(r)drl, (6.37)
where

alz) = %[(A(x), V 4k @) AF (@) + V iy divg AF (z) — divgV 4 () AF ()
+ (A(x), Ak(m))(A(m), Ak(x)) + dichk(w)di'chk (2)]
+ VAk(ac)(A(w)’Ak(x))]
+ divgA¥(z)(A(z), A¥(z)) — divga(z) — (a(z), A(z))]. (6.38)

Finally, the condition a(z) = 0 ensures that v(t,z) = 1 satisfies (6.34) and
hence measure v is invariant with respect to the evolution family V*(¢).

In addition, we give another representation for the function a(x) in terms of
the initial measure itself rather then its vector logarithmic derivative. In these
terms, we derive

alz)v(dz) = %[VAkVAkV(d.T) + VvAkAw(dx)] + %[di’l)GAkvAk v(dz)
+ k(A% A¥)v(dz) + (divg A¥)(divg A¥)v(dz)), (6.39)

where (21, 22) has the form (6.25).

Let Lo(M,v) be a space of square integrable functions on M. Assume that
A(t,z) = A(z), a(t,z) = a(z) and the measure v is invariant with respect to
the solution £(t) of (6.26) with time homogenous coefficients. Define V' (¢) and
V+(t) in Lo(M,v) by

[ 9@ [ f@PEs o) = 0 VOH = V0o (640)
M M

for any measurable bounded functions f and g. A pair of semigroups V; and
V;T is said to be dual with respect to the invariant measure v if (6.40) holds.
We show that the evolution family V() coincides with the evolution family
V (t) generated by the time reversal of £(t) and derive the stochastic equation
for the time reversal process.
Let £(t) = £(T —t), t € [0,T). By considerations similar to those used in
the last Section, one could check that £ (t) is a diffusion process as well, and

P(t,z,dy) = ﬂt—’%’f'lc%'d@ is its transition probability. Finally,
whi@) = [ sl Zemua))
[ 16 [, s@"C55 i) = [ G i)

Thus, the following assertion is proved.
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Theorem 6.2.1 Let v(dy) be an invariant measure of the process £(t) € M.
Let V; and Vi be evolution families in Lo(M,v) generated by the processes (t)
and £(t), respectively. Then V; = V,t, where V;t is given by (6.40).

Consider a pair of diffusion processes £(¢) and 7(¢) in M which solve
dé = exp™ (a(&(t))dt + A(E(t))dw),  £(0) = &, (6.41)
and
dn = exp™ (a(n(t))dt + A(n(t))dw), n(0) = &, (6.42)

respectively, and let the distribution v of g € M be a smooth measure with
vector logarithmic derivative A. Finally, we state the conditions on drift coeffi-
cients a and G which ensure that V;f(z) = Ef(£(t)) and Vig(z) = Eg(n(t)) are
dual with respect to the invariant measure v.

Theorem 6.2.2 Let v € M?(M) . Then v is an invariant measure for a pair
of diffusion processes £(t) and n(t) satisfying (6.41) and (6.42) if and only if
the drift coefficients a(z) and a(z) satisfy

a(z) + a(z) = B(x)A(z) + VAk(w)Ak(fL'), B = A*A, (6.43)
and
divg(a(z) — a(z)) + (a(z) — a(x), A(z)) = 0. (6.44)

PROOF. Recall that generators of the semigroups V; and Vi have the form
(6.30). If V; and V; are dual, then the relation (Ag, f), = (g, Af), should hold.
Using integration by part formula, we check that

/M[% (Var@)Var@) = Vv 4, 44@)9(2) + Va9 ()] f(2)v(dz)
= /Mg[“;'(vAk(m)vAk(a:)’VVAk(x)Ak(w)) (»’C)'i‘de(VAk(m)A (2))f(z)
+ ((vAk(cc)Ak( ), Vf(z)) — dive(a(z)) f(z) — Vaf(z)
+ (@)l ((VAk( )A(z), A¥(2)) + (A¥(@)A(z), A¥(z)A(x))
+ de(VAk(m)Ak(x)) (Var @) A¥(2), A(2))) — (a(z), A(2)))|v(da)
= [ 9l (V) Vst = V9, 26 @) + Vag (@)

Ak (z)

As a result,

3460 (V 1) A8 (2) — divg(a(a)) + 1 (VA" (2)A, A%(z)
+(A*(@)A, AF(2)A) + (V gy AF (), A)) — (a,A) = 0
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and

(V£,B(z)A+ V gr(zyA* (2)) = (a(z) + a(z), V).

Notice that (6.33) and the invariance of the measure v with respect to V;* yield
(6.43). As far as v is invariant with respect to V; as well, we have

1 1 L,
m = §Bij [Vin + A,'Aj] + (Vz'Bij - flj)Aj + =V;V,;B;; — divga

2
1 1
= §Bij[Vin + AiAj] + (V,‘Bij - aj)Aj + ;ViVjBij —divga =0

and hence (6.44) is valid. [ |
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Localization of Majorizing Measures
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Abstract: A fundamental result of Fernique and Talagrand characterizes the
a.s. boundedness and continuity of Gaussian processes by properties of their
covariance. Basic tools are either majorizing measures or quantities defined by
partitions and weights. Our objective in this chapter is to investigate general-
izations of those expressions. As a consequence, we get a deeper understanding
of the structure of precompact metric spaces as well as of Gaussian processes.

Keywords and phrases: Gaussian processes, majorizing measure, metric
entropy

7.1 Introduction

Let Y = (Yi)ieT be a centered Gaussian process over an arbitrary index set 7.
Then, Y is (up to equivalence) completely determined by its covariance. It is
natural and important to find criteria (only depending on the covariance) which
will ensure the existence of a.s. bounded or continuous (if 7" is metric) versions
of Y. By standard methods [Ledoux and Talagrand (1991)], it may be reduced
to the special case in the Hilbert space setting. Let H be a separable Hilbert
space and let X = (X;)icyg be an isonormal Gaussian process defined on H.
For example, let X be given by

Xe=) &t f;), teH, (7.1)

=1

where (§;)52; are independent and identically distributed as standard normal
and ( fj)?’?_—l is any ONB in H. Then, one needs geometric characterizations of
subsets T in H for which (X;)ter has either a bounded or a bounded and uni-
formly continuous version (in the terminology of Dudley (1967), those sets were
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called GB- or GC-sets, respectively). Metric entropy conditions are used but
it only led to sufficient [cf. Dudley (1967)] or necessary conditions [cf. Sudakov
(1969)] due to the fact that it is a very rough tool to describe the detailed struc-
ture of a set T precisely. Consequently, finer (and more complicated) quantities
were necessary. After basic work of Fernique [cf. Fernique (1975)], the problem
was finally solved in Talagrand (1987). For example, the process X = (X)ser
has an a.s. bounded version iff there is a probability measure y on T’ (majorizing

measure) with
/ = LI,
su og ——————de < © 7.2
e ) R Ie:Ters) (72)

where B(t;e) := {s€ T : |t —s|g < e} is the closed e-ball centered at ¢t €
T. Recently, Talagrand [cf. Ledoux (1996) and Talagrand (1996)] presented
other conditions which are equivalent to (7.2) and are much easier to handle
in concrete situations. For example, a very useful quantity ©(T) [see (7.4)] is
defined by a countable increasing sequence of partitions of 7" and corresponding
weights. Then the existence of a bounded version of X over T in H is equivalent
to ©(T') < co. This is a remarkable result, but it has the disadvantage that it
neither tells something about the size of sets T" when ©(T') = oo, nor does it
give any additional information about the structure of 7" when ©(T") < oo. This
led us to modify the definition of ©(T') in a simple and effective way. Instead
of taking partitions and weights starting at a fixed level No(T'), we investigate
partitions and weights ranging from a certain level N to a (possible finite) level
M, thus getting quantities ©%(T) for any choice of —co < N < M < oo.
When ©(T) = oo, the behavior of ©¥ (T) — co as M — oo leads to detailed
information about 7". And when ©(T") < oo, the speed of convergence of O (T")
as N — oo provides the desired information. Hence, we finally obtain a tool
which describes the finer structure of any precompact T C H, and this has
already turned out to be very useful in the study of the size of the convex hull
of a precompact set [cf. Li and Linde (1998)].

The organization of this chapter is as follows. After introducing ©¥ (T)
and proving some elementary properties of this quantity, we extend Talagrand’s
partitioning scheme to our more general setting. As a consequence, we get a
majorizing measure characterization for ©% (T') similar to (7.2). Although all
these quantities originate in the study of Gaussian processes, they also make
sense in arbitrary metric spaces (T, d), and we shall investigate these expressions
in this more general setting. Only when we treat their relations to Gaussian
processes, the metric d is assumed to be generated by a scalar product. In this
case, we get a probabilistic characterization of @% (T') completing the classical
relation between majorizing measures and Gaussian processes. Finally, some
examples show how our results apply in concrete situations.



Localization of Majorizing Measures 83

7.2 Partitions and Weights

Throughout this chapter, (T, d) denotes a metric space with

0 < diam(T") := sup d(s,t) < oo .
s,teT
If B(t;€) is the closed e-ball centered in t € T' (w.r.t. the metric d), the covering
numbers of a set A C T are defined by

N(Ae) ::inf{neN: dt,...,th €T st. AC UB(tk;e)}
k=1

and its metric entropy is defined by H(A,¢) := log N(A4,¢).
Here and in the sequel, g is a sufficiently large fixed number and all constants
¢ > 0 (with or without subscript) are assumed to depend on this number g only.
For integers N, M with —oo < N < M < o0, let A = (An41,...,Apm) for
M < ococor A= (AN+1,AN+2,...) for M = oo be a sequence of partitions of T
possessing the following properties:

(i) Each A; is finite and consists of measurable (w.r.t. the Borel-o—algebra
on T') subsets.

(ii) Given A € Aj;, there is a t € T such that A C B(t;q77), i.e. we have
N(A,q77) =1 and, hence, diam(4) < 2¢77.
(iii) Each Aj4 refines A;.

Let ZM(T) or ZM (T, d) be the set of sequences A which possess properties (i),
(ii) and (iii) from above. Given t € T and A € Z¥(T), then for each finite j
with N < j < M we find a unique A;(t) in A; with ¢t € A;(t). Note that in
view of (iii), necessarily A;1+1(t) C A4;(2).

If A e ZM(T), a sequence w = (Wnt1, ..., W) OF W = (WN+41, WN+2, - --)
is called weight sequence adapted to A provided

(i) each w; maps A; into [0,1] and
(ii) for all finite j with N +1 < j < M, we have Y AeAa; w;(A4) < 1.

Denote by W(A) the set of all those sequences adapted to some .A. Basic
examples of weight sequences are those defined by probability measures y on
T. Indeed, if A € Z¥(T), setting for all j’s

wi(A) = (), A€ 4, (7.3)

we always obtain a sequence w € W(A).
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Now we are in position to introduce the main quantity of this chapter: Given
A€ ZM(T) and w € W(A), set

M
1
©4w(T) :=sup g7 /log ————
w@i=s 3 47T

with A;(t) as above. Finally, we define
ON(T) = inf {©4u(T) : A€ ZY(T), w e W(A)}

where the numbers N and M indicate that we use partitions from level N + 1
to level M. Observe (and this is the main difference to former investigations)
that the optimal choices for A4 and w may heavily depend on N and M. Thus,
in general, there is no natural relation between A’s and w’s being optimal for
different indices.

Two choices of N and M are of special interest:

(1) Let No = No(T) be defined by
Ng := sup{j €Z:N(T,q%) = 1} .

For N < Ng and N < j < Ny, we may choose A; = {T'} and w; = 1, hence
oM(T) = @)*]"V{)(T) in this case. So without loss of any generality, we can
always assume N > No(T). Then for any precompact space T the quantity
G)]A\’,IO(T), M < o0, is finite and its behaviour as M — oo measures the degree of
compactness of 7.

(2) Another case of interest is M = co. Here, one may ask for the behaviour of
OX(T) as N — oo.

Combining these two cases, i.e. N = No(T) and M = oo, we obtain the
classical quantity

o(T) := 0y, (T) | (7.4)
investigated in Ledoux (1996) and Talagrand (1996).

7.3 Simple Properties of O (T)

As we mentioned above, every probability measure p on T defines via (7.3) a
sequence w € W(A). A first result tells us that it suffices to investigate weight
sequences generated in this way. Let P(T) be the set of Borel probability
measures on 7. Then the following is valid:
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Proposition 7.3.1 We have

Ox (T)

INA

M
. 1
inf I, log———: A Z¥(T), p e P(T
i {fé?j:%:ﬂq Ay AT e P )}

IN

c-o¥(T) .

PROOF. The left hand inequality follows easily by setting w;j(A) = p(A). For
the right hand inequality, let A € Z¥(T) and w € W(A) be arbitrary. We
choose some point t4 € A for any A € A; and set

M
po= Y. 277N N w;i(A) 6.
j=N+1 A€A;

Then we get po(7) < 1, thus there exists a u € P(T) with u > pp. Using
N > Ny, we find an A € Ayy; with wy4+1(A) < 1/2, which clearly implies
O4w(T) > ¢ V~1VIn2. Now using the fact p(A;(t)) > 277+ Nw;(A;(t)) and
standard methods [cf. Ledoux (1996)], we obtain the desired inequality with

O .
c=qzlq_3\/7+1. [ ]
J:

The next result answers the natural question as to how ©% (T') depends on
the indices N and M, respectively.

Proposition 7.3.2

(@ If N+1< M < oo, then O (T) < OY(T) < ¢ O, ,(T). Thus, the
asymptotic behaviour of @f‘(;’ (T) as M — oo does not depend on the special
choice of N.

(b) For N < M < o0, we have

oM (T) < ONH(T) < ¢ OY(T) + ¢4\ /H(T,g ) |

PROOF. Both left hand sides are trivial. For the right hand side of (a), we use
Proposition 7.3.1 and An+42(t) € An+1(%), hence p(An+2(t)) < u(An+1(%))
for any u € P(T). To prove the right hand side of (b), let A € Z¥(T) and
w € W(A) be arbitrary. Choose a partition B of T which is induced by a
covering with N (T, ¢~ 1) balls of radius g™ ~1. Then we set

AM+1={AHB : AEAM,BEB,AHB#@}

and 4)
wpm
A =
'LUM-|-1( mB) N(T, q_M_l) )
and get A= (AN+1,-- -, Am+41) € ZIZ\\//[+1(T) and W = (WN+41,.-.,Wp+1) In

W(A). Thus we obtain

015(T) < (1+1/0)@un(T) +q M\ /H(T, -1
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as desired. |

In view of property (ii) in the definition of A’s in Z¥(T), the inclusion
S C T does not necessarily imply ©¥(S) < ©¥(T). But we have the following
result.

Proposition 7.3.3 For S CT and N < M, we have
ON_1(S) < q ON(T).

PROOF. Let A € Z¥(T) and w € W(A) be arbitrary. For N~1<j< M —1
we define

A;={ANS : A€ Aj;1,ANS #0}.

Then we obtain AN S C B(s;q~7) for some s € S as follows: By definition of
Z}(T), we have A C B(t;q77") for some ¢ € T. Using AN S # 0, we find
s € S with d(s,t) < g1 so that ANS C B(s;2¢777!) C B(s;q™7). Hence,

=(An,...,Ap-1) € ZN (S, disxs), and by setting w;(ANS) = w;y1(A),
we get 0~ ’{J(S) < q © 4,4 (T') which completes the proof. [ |

Let (T,d) be precompact. Then there exists a tight connection between
OM(T) and quantities defined by the metric entropy of 7. To make this more
precise, let Ayy1 be generated by an optimal g~V ~"1—cover, i.e. Any1 consists
of suitable intersections of ¢~V~!-balls and card(An+1) = N(T,q~N-1). If
A;, j < M, is already defined, we divide any A € A; in the same way by an
optimal g~7~1—cover of A. In this way, we obtain a sequence A € Z¥ (T) with

card(A;) < N(T,q"7") -+ N(T,q7).
If j = N+1,...,M, we define adapted weights by w;(4) := (card(A;))~* for
all A € A, and it is easy to see that

—-N-1

OanT<c [ JHT

q

This is the classical Dudley bound in the case of Gaussian processes when
N = Np and M = oco. Also a lower Sudakov bound is valid in this more general
setting. This can be seen using N(A,q7) =1for A € A;, A€ Z¥(T), so that
we find ¢(A) € T with

Tc | Ac U BA);q7).
AG.AJ' AGAj

Thus N(T,q77) < card(A;), and for each j there exists a set A € A; with
w;j(A) < (N(T,g77))~!. Summing up, the following holds.
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Proposition 7.3.4 We have
X q
sup ¢ I\/H(T,q9) < @M(T) < ¢ / H(T.)de . 75
N (T,q77) < ON(T) rie (T,e) (7.5)

Let us state a consequence of this proposition, which has been used in Carl,
Kyrezi and Pajor (1997) in a weaker form.

Corollary 7.3.1 Let o >0 and 8 € R. Then, H(T,¢) < c e~*(log(1/¢))? iff
OR(T) < c ¢VO/PUNP2 | N - 0,

for0 < a <2, and iff
ON(T) <c g™ DMP? M — o0,

for 2 < a < o0.

Remark. The estimates in (7.5) do not yield similar assertions in the critical
case a = 2. For special T, this problem has been investigated in Li and Linde
(1998).

7.4 Talagrand’s Partitioning Scheme

Given a metric space (T,d) and N < M < oo, it is a highly non-trivial task to
construct optimal A € ZY(T) and w € W(A). As mentioned before, partitions
and weights generated by optimal g~/—covers do not lead to sharp results in
general. The deeper reason for this is that those weights do not suffice to
describe the finer structure of T'. Fortunately, Talagrand found a general scheme
for constructing optimal A’s in Z§? (T') and w € W(A) [cf. Talagrand (1996)].
The same ideas also apply in our more general situation. To be more precise,
we need the following.

Given N, M as above, a sequence yp,...,pp+1 of functions from T into
[0,00) satisfies the Talagrand condition (for some x > 0) if they possess the
following property:

For N <j<M-—1,allte€T and any points t1,...t, € B(t,q~7) with
d(t,tx) > g7~ for 1 < k < I < n, we have

0;(t) > k ¢7/logn + 1r<nliéln wi+a(tl) (7.6)

Theorem 7.4.1 Let ¢ = (¢n,...,pm+1) be a sequence of functions satisfying
the Talagrand condition (7.6) with k > 0. Let

oll :=sup sup  @;(2).
teT N<j<M+1
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Then there exist A € Z¥(T) and w € W(A) such that

O4u(T) < c (n-l Il +a~ N JHT,a-N) + 1) . (7.7)

PROOF. The proof follows almost exactly as for N = Ny and M = oo in
Talagrand (1996), but with one important difference. If N = Ny, then there
exist a natural partition Ay, = {T'} and a natural weight wy, = 1 to start
with. Then A; and wj, j > Np, are constructed inductively by dividing sets
in A;_1 and by splitting w;_;. But, in our situation, N > Ny, we have to
find a natural partition to start the partitioning procedure. We choose Ay as
partition generated by an optimal ¢~V—cover and set wy = (N(T,q~N )L
This leads for N > Ny(T') to the additional term ¢=~y/H(T,q=N) on the right
hand side of (7.7). Then we may proceed as in the classical case. One should
also observe that only ¢n,...,¢;j+1 are needed to construct Ay,...,A;. |

7.5 Majorizing Measures

Recall that first characterizations of metric spaces T' with ©(T") < oo were via
(7.2) by using special probability measures on T' (called majorizing measures).
Similar results also hold in our more general situation. Given u € P(T) and
No < N < M < oo, we define

Nu(T) = i‘é%? - \/ ECD) z GO

¥ (T) = inf {TY,(T) : p e P(T)} . (7.8)
Theorem 7.5.1 There are ¢1,co > 0 such that
a I¥(T) < O¥(T) < e TMTY(T) .

and

PROOF. The first inequality is easy to prove by using A4;(t) C B(t;2¢™7) and
Proposition 7.3.1. For the second inequality, we set

©;(t) =sup{/2q—J ’/log B( ))de seT, dst)<2q“3}

for N < j < M+ 1. As in Talagrand (1996), it can be proved that these
functions satisfy |¢|| < IM +1(T) as well as the Talagrand condition with cor-
responding constant x = (q —8)/(2¢%). Furthermore, it is easy to prove that

INTHT) > ¢ ¢ Ny/H(T,qN) +1,
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so the result follows by applying Theorem 7.4.1. |

Remark. Letting

— (T f / ,
) =IR(T) = Suf, sup Ve u(B(ts

then the classical majorizing measure theorem reads now

a1 I(T) < &(T) < ez I(T). (7.9)

7.6 Approximation Properties

Let (T, d) be a metric space with ©(T") < co. Then the behaviour of OF(T') as
N — 00 should tell us more about the degree of compactness of T'. The first
aim of this section is to make this more precise.

Lemma 7.6.1 Suppose that T = U§=1 T; for some disjoint T;’s. Then we have
OR(T) <c ( sup O(T;) +q V' /log k) :
1<5<k

PROOF. Let p1, ..., uk be probability measures on 71, ..., T. Then we define a
probability measure p on T by p := k™! Zf L1y Let AJ = {A}VH,A%,H .. }

be partitions of T}, 1 < j < k. Setting A; := UJ_1A we get a sequence
A= {Ant1, AN2,...} In ZF(T). If t € T}, we have

Ai(t) = Al@t), i=N+1,N+2,...,

hence by using Proposition 7.3.1

o
) k
foe) -1 —
N¥(T) < sup sup q og 7%
1<j<kteT; iz;_m (A (t))

o0
< sup su - ‘/l —I-\/lo
lﬁjzktef—’l’)ji:;_lq < J(AJ( ® )

Since the partitions and the measures on each T; were chosen arbitrarily, this
completes the proof by taking the infimum over all partitions and measures,
and by using Proposition 7.3.1 again. ]

Theorem 7.6.1 If T is a metric space, then

e1 OF(T) < sup O(B(; e+ ¢ NHT, ¢ N) < e OF(T) . (7.10)
te
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PROOF. To verify the left hand side, let T = Ule B(tj;qg7N) for k = N(T,q~V)
and t1,...,% in T. Then we obtain disjoint sets T; C B(tj;q"N ) covering T'.
Hence, Lemma 7.6.1 implies

eR(T) < ¢ <1i1]1_1<)k@(3(tj§q_N))‘f‘q—N\/H(T,q—N))
c <sup O(B(t;q™N)) +q N\ /H(T, ¢V ))

teT

IA

as claimed.
Conversely, by Propositions 7.3.3 and 7.3.2 we have

sup O(B(t;q)) = sup OR(B(t;97V)) < ¢ OF(T)
teT teT

and Proposition 7.3.4 implies ¢~V~1,/H(T,q~V) < O (T), hence
sup©(B(t;q™™)) + ¢ Ny/H(T,q~N) < c ©2(T),
tqu((q ) +q " H(T,qN) < c OF(T)

completing the proof. [ ]

Remark. Note that entropy term in (7.10) is indeed necessary. For example, if
all points of T are e-separated with € > ¢, then this yields O(Bt;qM) =0
fort € T, yet OR(T) > 0 if card(T) > 1.

Corollary 7.6.1 Let (T,d) be precompact. Then it holds limy_q ex([T) =0

of
lim sup ©(B(t;¢)) = 0.
€20 ¢eT

PROOF. We have to show that lim._,osup,cr ©(B(t;¢)) = 0 implies

lim 6,/H(T, 8) = 0.

This can be done by using
N(T,6) < N(T,e) sup N(B(t;e), )
teT

and Proposition 7.3.4 [cf. the proof of Corollary 3.19 in Ledoux and Talagrand
(1991)]. |

If T is precompact and ©(T') = oo, then the behavior of ©¥(T) as M — o
should describe how badly T' is behaved, i.e., how far it is away from a set S
with ©(S) < co. Before making this more precise, we need the following lemma.
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Lemma 7.6.2 Suppose we have T = U?‘;I T; for some disjoint measurable
subsets T; C T. Let p be a metric on N such that for B C N we have

diamg( U Tj) < diam,(B) + 4¢~ M1 (7.11)
JjEB
for some M € Z. Then this implies
ON(T) < c O "'(N) < c OF(N) ,

PROOF. Let B = {Bn+1,.--,Bum+1} be a sequence of partitions in Z%“(N, )
and let v = (uN41,-- ., Vnm+1) be asequence of adapted weights. Given B € B,y
for some i € {N,..., M}, we define a subset Ap := U;cgT; C T. Then by
(7.11), diamg(Ap) < 2¢~*"1 +4¢=M~1 < ¢~ provided ¢ > 6. Defining now

A;:={Ap:B€B;;1} for i=N+1,...,M,

we get a sequence A € Z¥(T,d). Next let w;(Ag) = vi+1(B) for B € Biy1.
Given t € T, there is a unique j € N such that ¢ € T;. Hence, if B;11(j) is
the unique set in B;4; such that j € B;11(j), we have A (t) = Ap,,,(j) by the
construction. Consequently, for each fixed t € T

M+1
log < g sup log ————
Z

z——N+1 jEN ;- N+1 (B

so after taking the supremum over all ¢ € T" on the left-hand side, we get the
desired estimate by taking the infimum over all partitions and weights on the
right-hand side. |

Theorem 7.6.2 Let T be a subset of a metric space (E,d) and suppose that
there is a countable set S C E such that

Tc | B(s;2a7™)
seS

for some M € Z. Then this implies
ON(T) < c Oy (S) < c OF(S) -

PROOF. Of course, we may assume B(s;2¢"M~1)NT # @ for any s € S.
Writing S = {s1, s2,...}, there exist disjoint subsets Tj; C B(s;;2¢~ 1) such
that T' = {U;en T Define a distance p on N by

p(%,7) := d(s;,s5) fori,j e N.
Then estimate (7.11) holds by the construction and we obtain
ON(T) < c ONTHN) = c- 0N T1(9)
completing the proof. |

Next, we view our results in a uniform way.
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Proposition 7.6.1 We have

C1 @11\\/}, (T)

IA

inf{ N¥(S): T C U B(s;2¢7 M1, 8 countable}
ses

< inf{@j'\?(S) :TC|JB(s;2¢7M71),8¢T, 8 countable}

IA

inf{@‘f\?(S) :T C U B(s;2¢7M7Y), ScrT, Sﬁnite}

INA

co ONTY(T) .

PROOF. It only remains to prove the last inequality. For that purpose, let
A= (ANt1, .-, Apry1) € ZMTHT) and w = (w41, -- -, wips1) € W(A) be
arbitrary. For any A € Apr4+1, we choose an element t4 € A and denote the set
{ta : A€ Apy1} by S. Obviously S C T, S finite and diam(A) < 2¢~M~1 so
that T' C Useg B(s;2¢7M~1). Thus, it suffices to prove e,Z,{B(S) <c-O4u(T)

for suitable 4 € Z$(S, disxs) and W € W(A). We define
A ={ANS : Ac Ajy} for N<j<M

and N
Aj={{s} : €8} for M<j<oo

and claim that the .Kj ’s generate a sequence of partitions in Z§7(.S). Indeed, if
j <M and A€ Aj;q, then ANS C B(s;q77) for a suitable s € S. This easily
follows from AN S C B(t;q~77 ") for some t € T. Set W;(ANS) = wjt1(A) for
N<j<M, Ae Aj;1 and w;j({s}) = wym41(A) for j > M and s =t4 € S.
Thus,

©34(5)
M+1 -M-1
;i 1 q 1
< sup|gq g 74/log + \/ log
ves ( 2T VE @ T 1= o o )
< ¢ Oy4(T)
completing the proof. |

Corollary 7.6.2 For every finite S there exists some M < oo (depending on
S) with
OR(S) <c-ON(S).
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7.7 Gaussian Processes

As already mentioned, the quantities ©(7") and Z(T') originate in the theory of
Gaussian processes. More precisely, if ' C H, H separable Hilbert space, and

d(s,t):=|t—sllg, steT,

then the famous theorem of Fernique and Talagrand [cf. Ledoux (1996) or Ta-
lagrand (1996)] asserts the following.

Theorem 7.7.1 Let (Xi)icm be the isonormal process on H defined in (7.1).

Then, we have

c1 O(T) <EsupX; <c2 OT) (7.12)
teT

with some universal cy,co > 0.

The expression E sup;cr X; in (7.12) should be understood throughout as

sup{E supXs:SCT, S ﬁnite} .
seS

In view of (7.9), the estimate (7.12) remains true with Z(7") instead of ©(T),
which was the original form of Theorem 7.7.1 in the language of majorizing
measures [cf. Fernique (1975) and Talagrand (1987)]. Let us recall the im-
portant and well-known fact that Theorem 7.7.1 applies by standard argu-
ments [cf. Ledoux and Talagrand (1991)] to any centered Gaussian process
Y = (Yy)ter provided the (pseudo)-metric d on T is generated by Y via
d(s,1) = (B Y = Ys|)'/2.

The aim of this section is to compare ©¥ (T) with quantities generated by
(Xt)ter, similarly as in (7.12). Let us start with the case N > No(7) and
M = oco. If t € T, the modulus of continuity (w.r.t. (X¢)ier) at t is defined as
function of € > 0 below:

wr(t;e) :=E sup Xs=E sup (Xs— X3).
seT

seT
d(s,t)<e d(s,t)<e

Similarly, the modulus of uniform continuity may be defined by

ur(e) :==E sup |Xi— Xs|]=E sup (Xi— X;). (7.13)
s,teT s,teT
d(s,t)<e d(s,t)<e

Theorem 7.7.2 For any N > No(T),

¢ OR(T) < igqng(t;q‘N)+q‘N\/H(T,q‘N) (7.14)
< upq M)+ ¢ NVH(T,gV) <o OF(T) . (7.15)
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PROOF. The first inequality is a direct consequence of Theorem 7.6.1 and
O(B(t;g™)) < cwr(tig™),

which follows from Theorem 7.7.1. Of course, sup;cr wr(t;€) < ur(e) < ur(2e),
hence it remains to prove the last estimate. To do so, we use the following result
which is a direct consequence of (5.2.6) in Fernique (1997): If x € P(T') and
€ > 0, then

£
=E X —Xs| L log ———d
ur(e) =B sup W=l e mp |y e T
s,t)<e

i.e., we have ur(2¢™") < ¢ IR(T) where I (T) was defined in (7.8). Using
Proposition 7.3.4 and Theorem 7.5.1, we have the proof. |

Remark. Since the term ¢~V {/H(T,q~") in (7.14) and (7.15) is indeed nec-
essary, ©%(T) is a combination of the local quantities sup;eqpwr(t;q™)

ur(2¢~N) and of ¢~V \/H(T,q=V) measuring the global size of T..

or

Combining Theorem 7.7.2 with Corollary 7.6.1, the following holds.
Corollary 7.7.1 LetT C H be precompact. Then the following are equivalent:
(i) imy—oo OF(T) =0,
(ii) lime_osups;erwr(t;e) =0,
(iii) limegur(e) =0 and

(iv) (Xt)ter has an almost surely uniformly continuous version.

Our next objective is to investigate the case M < oo. A first natural
question is about the relation between ©%(T') and sup ., OX (T). Of course,
restricting any A € Z32(T) and w € W(A), we obtain partitions in Z¥ (T for
any M < oo (and adapted weights), i.e. it always holds

sup OM(T) < ©X(T) . (7.16)
M<o

But it is far from clear whether or not the converse of (7.16) is true as well. To
verify this, one has to construct optimal A’s in Z§7(T') out of optimal partitions
in ZM(T) for every M < oo. This seems to be complicated, so we use a different
approach.
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Proposition 7.7.1 There is a constant ¢ > 0 such that

O%(T) < c sup ON(T) .
M<oo

Especially, we have ©(T) < 00 iff suppr<oo OM(T) < oo for one (each) N.

ProOOF. Of course,
ur(e) =sup {us(e) : SC T, S finite};

hence by Theorem 7.7.2 it follows

o (T) <c (sup {u5(2q_N) :SCT, S ﬁnite} +q N\ H(T, q—N)> .

Proposition 7.3.4 implies ©¥(T) > g N-L/H(T,q~N) for any M > N. Thus,
it remains to show that

sup {ug(2q_N) : SCT, S ﬁnite} <c Ajlip eM(T).

Applying Theorem 7.7.2 for S, we obtain us(2¢™) < ¢ ©%(S). Since S is
finite, by Corollary 7.6.2 we find an M < oo such that OF(S) < ¢ oM (9).
Now, Proposition 7.3.3 completes the proof. |

Remark. The last proof depends heavily on the special choice of T" as subset
of a Hilbert space, i.e. on the fact that the metric d on T is generated by a
scalar product. Using refined methods [cf. Biihler (1998)], one can show that
Proposition 7.7.1 remains valid for general metric spaces (T, d). Note also that
one big advantage of Proposition 7.7.1 is that the weights can depend on M
and sometimes this make the construction much easier. An explicit example is
given in the paper of Li and Linde (1998).

Let us formulate, for simplicity, the next result for N = No(7T') only. Here,
B(e) = B(0;¢) denotes the closed e-ball in H centered at zero.

Theorem 7.7.3 If M < oo, then

c1 inf {E sup X : T C S+B(2q_M)}
seS

< @%IO(T) < cp inf {E supX,:TC R+ B(2q‘M—1)} ’
r€R

where the sets S and R may be chosen as finite or countable subsets of H or
T, respectively.
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PROOF. Applying Proposition 7.6.1, we obtain

@%0 (T) <c inf {@j’&; (R): TCR+B(2¢ M) R countable}
and

ON (T) > c inf {@j'\?o(S) :TCS+B(2g™), SCT, S finite} .
By using Theorem 7.7.2 for R and N; = Ny(R), we get

C1 e?\/ol (R) < E supXr <E sup IXr - Xt| <c @?\?1 (R)7
reR rteER

analogous for S and Ny = Ny(S). Thus, it remains to show that
%, (R) < c O, (R) and OR(S) > c 6% (S).
By definition of Ny, we find ¢;, ¢y € T satisfying
T C B(t;;¢7™) and d(ty,t9) > g~ No—1,

We choose 71,70 € R with d(r;,t;) < 2¢7M~1 and obtain d(ry,re) > 2¢~No—2,
thus N1 < Np + 2. By using Proposition 7.3.2, this yields i (R) < c OF (R).
Furthermore, we get S C B(s,q~™ + 2¢=M) C B(s,q~ 1) for some s € S
satisfying d(s,t1) < 2¢™™. Hence, No > Ny — 1 and by using Proposition 7.3.2
again this completes the proof. |

7.8 Examples
We first treat the case
T ={aje;:j=1,2,..}U{0} C H,

where a1 > ag > -+ > 0 tends to zero and (€j)52; is an ONB in H. Note that
this set corresponds to the stochastic process Y = (Yn)n>1 with Y, = ané,,
where ¢1,&y, ... are i.i.d. N(0,1). Instead of T', we may use N U {co} with

d(i,§) = (0 +ad)? fori#j and d(i,0) = os. (7.17)

Proposition 7.8.1 IfT = NU{oo} is endowed with metric d defined by (7.17),
then for N < M < oo we have

oM < ¢ (sup {aj\/logj-l— 1:g M1« aj < q_N}

+ q*N\/logcard({j oy >q N+ 1) .
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PROOF. Let
o(K):= max{j tay > q—K}

and define S C T by S = {1,...,0(M + 1),00}. Then we have the inclusion
T C S+ B(2¢g~M~1) , hence Proposition 7.6.1 implies oM (T) < c OF(S) . Now
using Theorem 7.7.2 for the metric space (S, djsxs), We get

OF(S) <c <sglelgws(j;q‘N)+q_N\/H(S,d|5xs,q‘N)) :
J

For j € S with a; > ¢~V (that means for j = 1,...,0(N)), the g N-ball
around j consists of j only, thus ws(j;¢~N) = 0 in this case. Furthermore, it
holds B(oo,¢g¥)NS ={o(N)+1,...,0(M +1),00} . Hence,

H(S,djsxs,q ") =log(a(N) +1)

and

ox(S)<c (E sup aj €] + g Ny/log(c(N) + 1)) . (7.18)

o(N)+1<j<o(M+1)

By Theorem 9 in Linde and Pietsch (1974) and by the closed graph theorem,

we have
E sup Bilékl <c sup y/log(k+1) Bk
1<k<n 1<k<n

for any 81 > -+ > B, > 0. Applying this to (7.18), the proof is complete. B

Remark. Observe that H(T,q %) = log(c(k) + 1), hence Proposition 7.8.1
yields

oM < ¢ <sup {ozj\/log(j +1) :qg < < gL N<I< M}
+q Ny H(T,qV ))

< ¢ sup ¢ WH(T,q.
N<IKM+1

In view of Proposition 7.3.4, this tells us that the estimate in Proposition 7.8.1
is nearly optimal.

Our next example treats the set
T= {(810&1,820&2,...) L€ = :‘:1} (7.19)

for a non-increasing square summable sequence ()72, of positive real num-
bers. In different words, T consists of the corners of an infinite dimensional block
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in l3. A corresponding Gaussian process is Y = (Ye)eep with E = {—1,1}*®
and

(e o]
Yo=Y aje&; for e= ()21 € E.
i=1

Lemma 7.8.1 Let T be deﬁned by (7.19) with o;’s satisfying the regularity

condition
aj <y ag; (7.20)

for some v > 1. Then we have
/ JH(T,8) ds < c Z o,
k=0o(e)

where
o(e) = card{ Z ol >e } . (7.21)

PROOF. If we define the strictly decreasing sequence (8,)S2; by

)
B = Z a% )
k=n

it follows By(c)41 < €2 as well as N(T,2¢) < 2°() | hence H(T,2) < ¢ o(e).
This implies

/O,/H(T,a) & < 22;(6)/ JH(T,25) d
< 2 Z <\//8_k—\/ﬁk+1) H(T,24/Br+1)
k=o(e)
< c i VE(\/—ﬁ_k—\/ﬁkﬂ)
k=o(e)

00 2 )

SCZ %k <cZak

in view of (7.20) and completes the proof. ]

Lemma 7.8.2 Let T C Iy be defined by (7.19) with a;’s as before (we do not
suppose (7.20) here). Then for this set T, its modulus of uniform continuity ur
(cf. (7.13) for the definition) satisfies

oo
ur(2e) > ¢ Z o

k=o(e)+1

with o(g) given by (7.21).
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PROOF. By the definition

UT(2€) =E sup lXt Xs|=E sup lel

t,s€T VEAe
d(t,s)<2e
where
Ac = (ron, p0s,...) 1 05 € {-1,0,1}, Y al <’ b .
3;70
If we set
Be:= {(d101,6202,...) 101 = -+ = 85 = 0, §j = £1,§ > 0(e) |,

then the choice of o(¢) implies B, C A.. Hence
2 oo
ur(26) 2 E sup |Xo| =4/ = Z o
vEB: T k=o(e)+1

which completes the proof. |

Proposition 7.8.2 Let T be as in (7.19) with positive non—increasing o;’s sat-
isfying (7.20). If

on:=o(g N —card{ Za >q_2N}
k=n

then

Z ak<® (T <c Z Q.

k—O'N+1 k—O'N+1

ProOF. This follows directly by combining Lemma 7.8.1 and 7.8.2 with Theo-
rem 7.7.2 and Proposition 7.3.4. |
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Multidimensional Hungarian Construction for
Vectors With Almost Gaussian Smooth
Distributions

F. Gotze and A. Yu. Zaitsev

University of Bielefeld, Bielefeld, Germany
Steklov Mathematical Institute, St. Petersburg, Russia

Abstract: A multidimensional version of the results of Komlés, Major, and
Tusnady for sums of independent random vectors with finite exponential mo-
ments is obtained in the particular case when the summands have smooth dis-
tributions which are close to Gaussian ones. The bounds obtained reflect this
closeness. Furthermore, the results provide sufficient conditions for the exis-
tence of i.i.d. vectors Xi, Xa,... with given distributions and corresponding
i.i.d. Gaussian vectors Y1, Ys,... such that, for given small &,

n n
P{lizri)so%p lo;n lJZ_:lXj —;l@’ Ss} =1.

Keywords and phrases: Multidimensional invariance principle, strong ap-
proximation, sums of independent random vectors, Central Limit Theorem

8.1 Introduction

This chapter is devoted to an improvement of a multidimensional version of
strong approximation results of Komlés, Major and Tusnddy (KMT) for sums of
independent random vectors with finite exponential moments and with smooth
distributions which are close to Gaussian ones.

Let F; be the set of all d-dimensional probability distributions defined on
the o-algebra By of Borel subsets of R%. By F(t), t € RY we denote the
characteristic function of a distribution F' € ;. The product of measures is
understood as their convolution, i.e., FG = F x G. The distribution and the
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corresponding covariance operator of a random vector £ will be denoted by L£(£)
and cov€ (or cov F| if FF = L£(£)). The symbol I; will be used for the identity
operator in R%. For b > 0, we denote log* b = max {1, logb}. Writing z € R?
(resp. C%), we shall use the representation z = (z1,...,24) = z1€1 + ...+ z4€q,
where z; € R! (resp. C!) and the e, are the standard orthonormal vectors.
The scalar product is denoted by (z,y) = 217, + ... + 247, We shall use the
Euclidean norm ||z| = (z, z)l/ ? and the maximum norm |z| = max |zj|. The
symbols ¢, c1,c2,... will be used for absolute positive constantsT]’T‘he letter ¢
may denote different constants when we do not need to fix their numerical
values.

Let us consider the definition and some useful properties of classes of dis-
tributions Ag4(7) C F4, 7 > 0, introduced in Zaitsev (1986); also see Zaitsev
(1995, 1996, 1998a). The class A4(7) (with a fixed 7 > 0) consists of distribu-
tions F' € Fy for which the function

olz) = p(F,2) =log | e P{da}  (p(0) =0)

is defined and analytic for ||z||7 < 1, z € C%, and
|dud? p(2)| < |ul|T (Dv,v)  forall u,v € R and |z||7 < 1,
where D = cov F, and the derivative dyp is given by

It is easy to see that 71 < 7o implies Ag4(m1) C Ag4(m2). Moreover, the
class A4(7) is closed with respect to convolution: if Fi, Fy € A4(7), then Fi F;
€ A4(7). The class A4(0) coincides with the class of all Gaussian distributions
in R%. The following inequality can be considered as an estimate of the stability
of this characterization: if F € A4(7), 7 > 0, then

m(F, ®(F)) < cd®r log*(t71), (8.1)

where 7(-,-) is the Prokhorov distance and ®(F') denotes the Gaussian dis-
tribution whose mean and covariance operator are the same as those of F.
Moreover, for all X € By and all A > 0, we have

F{X} < ®F){X*}+cd*exp ( - cd);r ), (8.2)
B(F){X} < F{X*}+cd*exp ( - #) (8.3)

where X* = {y € R?: 12)f{ |z —y|l < A} is the A-neighborhood of the set X;
T
see Zaitsev (1986).
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The classes Ag(7) are closely connected with other natural classes of mul-
tidimensional distributions. In particular, by the definition of A4(7), any
distribution L£(¢) from Ag(7) has finite exponential moments Ee(£) for
|lk||7 < 1. This leads to exponential estimates for the tails of distributions;
see, for example, Lemma 8.3.3 below. On the other hand, if E e < oo, for
h € A C R% where A is a neighborhood of zero, then F = L(¢) € Aqg(T(F))
with some 7(F') depending on F' only.

Throughout we assume that 7 > 0 and &;1,&s,... are random vectors with
given distributions L£(&) € A4(7) suchthat E& =0, cové, =14, k=1,2,....
The problem is to construct, for a given n, 1 < n < 0o, on a probability
space a sequence of independent random vectors Xi,...,X, and a sequence
of i.i.d. Gaussian random vectors Yi,...,Y, with £L(X}) = L(&), EYy =0,
covY, =14, k=1,...,n, such that, with large probability,

1<r<n‘ZXk—ZYk\

is as small as possible.
The aim of this Chapter is to provide sufficient conditions for the following

Assertion A.

Assertion A There exist absolute positive constants c1, c2 and c3 such that,
for 7d3/2 < ¢y, there exists a construction with

co A(n)

E exp( B,

) < exp(cglog*d log*n). (8.4)

Using the exponential Chebyshev inequality, we see that (8.4) implies
P{c3A(n) > 7d%?(c3 log*dlog*n+z)} <e™®, x> 0. (8.5)

Therefore, Assertion A can be considered as a generalization of the classical
result of Komlés, Major and Tusnady (1975, 1976). Assertion A provides a
supplement to an improvement of a multidimensional KMT-type result of Ein-
mahl (1989) presented by Zaitsev (1995, 1998a) which differs from Assertion A
by the restriction 7 > 1 and by another explicit power-type dependence of the
constants on the dimension d. In a particular case, when d = 1 and all sum-
mands have a common variance, the result of Zaitsev is equivalent to the main
result of Sakhanenko (1984), who extended the KMT construction to the case of
non-identically distributed summands and stated the dependence of constants
on the distributions of the summands belonging to a subclass of A;(7). The
main difference between Assertion A and the aforementioned results consists in
the fact that in Assertion A we consider "small” 7, 0 < 7 < ¢1d~3/2. In previ-
ous results, the constants are separated from zero by quantities which are larger
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than some absolute constants. In Komlés, Major and Tusnéddy (1975, 1976), the
dependence of the constants on the distributions is not specified. From the con-
ditions (1) and (4) in Sakhanenko (1984, Section 1), it follows that Var & < A ™2
(A~! plays in Sakhanenko’s paper the role of 7) and, if Var{y = 1, then
A~l > 1. This corresponds to the restrictions a~! > 2 in Einmahl [1989,
conditions (3.6) and (4.3)] and 7 > 1 in Zaitsev (1995, 1998a, Theorem 1).

Note that in Assertion A we do not require that the distributions £(&)
are identical, but we assume that they have the same covariance operators; see
Einmahl (1989) and Zaitsev (1995, 1998a). A generalization of the results of
Zaitsev (1995, 1998a) and of this chapter to the case of non-identical covariance
operators appeared recently in the preprint Zaitsev (1998b).

According to (8.1)—(8.3), the condition L(&x) € A4(7) with small 7 means
that L(&x) are close to the corresponding Gaussian laws. It is easy to see that
Assertion A becomes stronger for small 7 (see as well Theorem 8.1.4 below).
Passing to the limit as 7 — 0, we obtain a spectrum of statements with the
trivial limiting case: if 7 = 0 (and, hence, L(£) are Gaussian), we can
take X =Y; and A(n) =0.

We show that Assertion A is valid under some additional smoothness-type
restrictions on L(&). The question about the necessity of these conditions
remains open. The case 7 > 1 considered by Zaitsev (1995, 1998a, Theo-
rem 1) does not need conditions of such kind. The formulation of our main
result—Theorem 8.2.1—includes some additional notation. In order to show
that the conditions of Theorem 8.2.1 can be verified in some concrete simple
situations, we consider at first three particular applications—Theorems 8.1.1,
8.1.2 and 8.1.3.

Theorem 8.1.1 Assume that the distributions L(&k) € Aq(T) can be repre-
sented in the form
L&) = Hx G, k=1,...,n,

where G is a Gaussian distribution with covariance operator covG = b21; and
b2 > 2107243 Jog* % Then, Assertion A is valid.

The following example deals with a non-convolution family of distributions
approximating a Gaussian distribution for small 7.

Theorem 8.1.2 Let 1 be a random vector with an absolutely continuous dis-
tribution and density

_ (4t iz)?) exp (~lIz]*/2)

d
pr(z) = eniE @t 7d) , z€R~ (8.6)
Assume that L(&) = L(n/v), k=1,...,n, where
2
2 _ 4+72(d+2) 0. (8.7)

(4+72d)

Then, Assertion A is valid.
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The proof of Theorem 8.1.2 can be apparently extended to the distributions
with some more general densities of type P(72||z||?) exp (- c ||z||?), where
P(-) is a suitable polynomial.

Theorem 8.1.3 Assume that a random vector { satisfies the relations
E¢(=0, P{lKI<ti} =1,  H:=L() € Aalb) (8.8)

and admits a differentiable density p(-) such that

sup |dup(z)| < b3 |lu|, for all ue R, (8.9)
z€R4
with some positive by, by and b3. Let (3,(9,... be independent copies of (.
Write
T =bym /2, (8.10)

where m is a positive integer. Assume that the distributions L(&) can be
represented in the form

L&) =L®P, k=1, n, (8.11)
where
LW e Ayr) and P=L(({+...+Cm)/Vm). (8.12)

Then there exist a positive by depending on H only and such that m > by
implies Assertion A.

Remark 8.1.1 If all the distributions L(*) are concentrated at zero, then the
statement of Theorem 8.1.3 (for 7 = bm~/2 with some b = b(H)) can be
derived from the main results of Komlds, Major and Tusnady (1975, 1976) (for
d = 1) and of Zaitsev (1995, 1998a) (for d > 1).

A consequence of Assertion A is given in Theorem 8.1.4 below.

Theorem 8.1.4 Assume that &, £1,&2,... are i.i.d. with a common distribu-
tion L(§) € Aq(7). Let Assertion A be satisfied for &,...,&, for all n with
some ¢y, ¢y and c3 independent of n. Suppose that T7d3? < ¢;. Then, there
exists a construction such that

1
PJl
{timsup

n n
1> % -3 | <crdogrd) =1 (8.13)
j=1 j=1

with some constant c4 = c4(c,c3).
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From a result of Bartfai (1966), it follows that the rate O(logn) in (8.13)
is the best possible if L£(£) is non-Gaussian. In the case of distributions with
finite exponential moments, this rate was established by Zaitsev (1995, 1998a,
Corollary 1). Theorems 8.1.1-8.1.3 and 8.2.1 provide examples of smooth dis-
tributions which are close to Gaussian ones and for which the constants cor-
responding to this rate are arbitrarily small. The existence of such examples
has been already mentioned in the one-dimensional case; for example, see Ma-
jor (1978, p. 498).

This Chapter is organized as follows. In Section 8.2 we formulate Theo-
rem 8.2.1. To this end, we define at first a class of distributions Ay(r, p) used
in Theorem 8.2.1. The definition of this class is given in terms of smoothness
conditions on the so-called conjugate distributions. Then we describe a multi-
dimensional version of the KMT dyadic scheme, cf. Einmahl (1989). We prove
Theorem 8.2.1 in Section 8.3. Section 8.4 is devoted to the proofs of Theorems
8.1.1-8.1.4.

A preliminary version of this work appeared as a preprint of Gotze and
Zaitsev (1997).

8.2 The Main Result

Let F = L£(§) € Ag(7), |h|T < 1, h € R% The conjugate distribution
F = F(h) is defined by

F{dz} = (EeM9) 1D plagy. (8.14)

Sometimes, we shall write F, = F(h). It is clear that F(0) = F. Denote by
&(h) arandom vector with £(€(h)) = F(h). From (8.14), it follows that

E fE(R) = (Ee™) T E f(§) e (8.15)
provided that E|f(¢)e& | < co. It is easy to see that
if Uy,Up€ Ag(t), U=UUs, then U(h)=U;i(h)Us(h). (8.16)

Below we shall also use the following subclasses of A44(7) containing distri-
butions satisfying some special smoothness-type restrictions. Let 7 > 0, § > 0,
p >0, h € R% Consider the conditions

3 (272 7 d3/2

Bo)|de< 2T -
|t Td> Fae] b < o (detD)1/2 (8.17)
plitllrd>1

~ (27r)d/27_2d2

foldrs 02 (det D)/2 (8.18)

plitlrd=1
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(2m)4/2 <D"1v,v)1/2
5 (det D)1/2 ’

|(t,v) Fy(t)| dt < for all v € RY, (8.19)

plitlrd>1
where Fj = F(h) and 02 = 02(F) > 0 is the minimal eigenvalue of D = cov F.
Denote by Ay(t,p) (resp. A%(7,8,p)) the class of distributions F' € Ag(T)

such that the condition (8.17) [resp. (8.18) and (8.19)] is satisfied for h € R,
lk|| 7 < 1. It is easy to see that

rdl/?

Ay(1,0,p) C Aa(T,p)  if <1 (8-20)

In the present work, the class A4(7,p) plays the role of the class A%(7,9,p)
which was used by Zaitsev (1995, 1998a); see also Sakhanenko [1984, inequal-
ity (49), p. 9] or Einmahl [1989, inequality (1.5)]. Note that (8.15) implies

Fu(t) = E (it.E(R) — (Eem) LR htitd), (8.21)

The dyadic scheme. Let N be a positive integer and {&1,...,&n } be a
collection of d-dimensional independent random vectors. Denote

k
So=0; Sk=>& 1<k<2V; (8.22)
=1

Unik = g(k+1)~2m — Skam, 0<k<2¥ ™ 0<m<N. (8.23)

In particular, Ujy = &k+1, UNo = §2N =& + ...+ &n~. In the sequel, we
shall use the term block of summands for a collection of summands with indices
of the form k-2™+1,...,(k+1)-2™, where 0 < k < 2N-™ 0<m < N.
Thus, Uy, , is the sum over a block containing 2™ summands. Put

Uk =Un 1ok — Up 19641, 0<k<2¥™™ 1<n<N. (8.24)
Note that
Up 1ok +Un 1ok =Unp,  0<k<2¥" 1<n<N. (8.25)
Introduce the vectors
Usx = (Up_top Up_1okp1) ER™, 0<k<2V™ 1<n< N, (8.26)

with the first d coordinates coinciding with those of the vectors U, *—1,2k and

with the last d coordinates coinciding with those of the vectors m—12k+1"
Similarly, denote

Uhi=(Unr, Upp) R, 0<k<2¥™ 1<n<N. (8.27)
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Introduce now the projectors P; : R®* — R! and P, : R®* — RY, for ¢, j =
1,...,s, by therelations P,z = z;, P;z = (21,...,2;), wherez = (z1,...,%s)
€ R® (we shall use this notation for s =d or s = 2d).

It is easy to see that, according to (8.24)—(8.27),

rr=AU;, eR™ 0<k<2V™™ 1<n<N, (8.28)
where A : R24 — R2d is a linear operator defined, for z = (z1,...,794) € R,
as follows:
P;Az = zj + x4¢5, ji=1,...,d,
PiAz = zj — z444, j=d+1,...,2d. (8.29)
Denote

U =P U,

. *( = . i=1,...,2d. 8.30
U:;J,k = (U;E,lc),...,Un(’i)) =P;Us, e R, J (8.30)

Now we can formulate the main result of the Chapter.

Theorem 8.2.1 Let the conditions described in (8.22)-(8.30) be satisfied, T >
0 and E& =0, covér =14, k=1,...,2N. Assume that
LUY) € Ai(r,4)  for 0<k<2V™" 1<n<N,d<j<2d,
(8.31)

and
LUY,) € Aj(r,4)  for 1<j<2d. (8.32)

Then there exist absolute positive constants cs, cg and cy such that, for Td3/?
< ¢5, one can construct on a probability space sequences of independent random
vectors Xi,...,Xon and i.i.d. Gaussian random vectors Y1,...,Yon so that

L(Xk)=L(E), EYp=0, covY=1I,, k=1,...,2Y  (8.33)

and

ce A(2N)

W) < exp (c7N log*d), (8.34)

E exp(

T T
here A(2N) = X — S Y|
where A(2") , 2232(1\, k2=:l k 1;::1 k’

Theorem 8.2.1 says that the conditions (8.31) and (8.32) suffice for Asser-
tion A. However, these conditions require that the number of summands is 2.
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For an arbitrary number of summands, one should consider additional (for sim-
plicity, Gaussian) summands in order to apply Theorem 8.2.1.
Below, we shall prove Theorem 8.2.1. Suppose that its conditions are satis-

fied.
At first, we describe a procedure of constructing the random vectors {Un,k}
with L({Unx}) = L({U;;}), provided that the vectors Y1,...,Ypn are al-

ready constructed (then we shall define Xy = Upp—1, k=1,..., 2N). This pro-
cedure is an extension of the Komlds, Major and Tusnddy (1975, 1976) dyadic
scheme to the multivariate case due to Einmahl (1989). For this purpose, we
shall use the so-called Rosenblatt quantile transformation [see Rosenblatt (1952)
and Einmahl (1989)].

Denote by P %(a:l P{P; Uno <71 }, oz € R!, the distribution func-
tion of the first coordinate of the vector Un,o- Introduce the conditional distri-
butions, denoting by F](Vj,)o( - |@1,...,2j-1), 2 < j <d, the regular conditional
distribution function (r.c.d.f.) of P; Uy, given P, UNo = (=1,.-.,25-1)-
Denote by ﬁ‘rgf,z( - |z1,...,xj-1) the rc.d.f. of P;j U;‘l’k, given P;_; U;‘l’k =
(z1,...,2j-1), for 0<k<2VN" 1<n<N,d+1<j<2d Put

k
Te=) Y, 1<k<2V (8.35)

Vm (V,,.'(,Ll;c, .. V( ) ) T(k+1).2m - Tk.gm,
0<k<2V-™ 0<m<N;

(8.36)
Vik = (Vaet,26 Vact2e41) = (Vo0 ..., VED) e RY,
0<k<2V ™ 1<n<N;
(8.37)

and
Var = (VO VD)= AV, eRM,  0<k<2¥™" 1<n<N.
(8.38)

Note that, according to the definition of the operator A, we have [see (8.24)—
(8.29) and (8.35)-(8.38)]

Vik = (Vor Var) €ERM, 0<k <2V 1<n<N, (8.39)
where
=V, _
Yn,k n 1,2k+Vn 1,2k+1, 0<k< 2N—n’ 1<n<N, (840)

Vn,k = Vn—l,2k - Vn—1,2k+1,
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and
Vno=Y1+...+ Yon. (8.41)

Thus, the vectors Vi, , \N/'n,k and V,, ; can be constructed from the vectors Y7,
, Yon by the same linear procedure which was used for constructing the
Vectors U;, U .k and U? nk from the vectors &i,...,&n.
It is obv1ous that for fixed n and k,

cov Uy, = cov Vi, = 2" Iyg (8.42)

and, hence, the coordinates of the Gaussian vector V, ; are independent with
the same distribution function ®yn/2(-); here and below,

xr
_ 1 Yy 1
x)—/ o exp( 2O’z)dy, zeR, o>0,
—00

is the distribution function of the normal law with mean zero and variance o2.

Denote now the new collection of random vectors X as follows. At first,
we define

UI(\},)O = (Flg,l,z))_l({)?mg (V]%)) and, for 2 < j <d,
(8.43)
U = ()™ (2o (V) Ut -, U )

(here (FI(VI}))_I(t) =sup {z: F](\,l,%)(x) <t}, 0<t<1, and so on). Taking into
account that the distributions of the random vectors £1,...,&n~ are absolutely
continuous, we see that this formula can be rewritten in a more natural form
[see Sakhanenko (1984, p. 30-31)] as

FGLUSY) = Sana (Vi)

(8.44)
FOWDIUD, ..., UgD) = S (V)),  for 2<j<d.
Suppose that the random vectors
Unge = (UL),...,U)),  0<k<2N™, (8.45)

corresponding to blocks containing each 2" summands with fixed n, 1 <n < N,
are already constructed. Now our aim is to construct the blocks containing each
2"—1 summands. To this end, we define

U =Pl =UY), 1<5<d, (8.46)

n
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and, for d+1<j < 2d,
U§3}c _ (ﬁ,g{,g (@2 (VIDIUY), Uﬁ,{;” ). (8.47)

It is clear that (8.47) can be rewritten in a form similar to (8.44). Then, we
put

Upp = (Uf,}’i,...,Uf",?) c R

Ul = <Ug{;€,...,ugg3c> =P, U reRI, j=1,...,2d

oY) =uliY, =14,

Ui = (O, ..., TY) e R? (8.48)

and

Un—l,?k = (Un,k + fjn,k)/2a
Un—1,2k+1 = (Un,k - Un,k)/z (849)

Thus, we have constructed the random vectors Up—1, 0 < k < oN-ntl  After
N steps, we obtain the random vectors Upg, 0 < k < 2N, Now we set

k
Xe=Uopk-1, So=0, Se=> X, 1<k<2V (8.50)
=1

Lemma 8.2.1 [Einmahl (1989)] The joint distribution of the constructed vec-
tors Unjk and Upy coincides with that of the vectors Uy, and Uj . In

particular, Xg, k=1,...,2N, are independent and L(Xy) = L(&).
Moreover, according to (8.24) and (8.25), we have

Ungk = Un—1,2k — Un—1,2k+1,
Unjk = Un—12k + Un—12k+1 = S(ky1).2n — Skan, (8.51)

for 0 < k < 2V-" 1 <n < N [it is clear that (8.51) follows from (8.49)].
Furthermore, putting

Unk = (Un—19k Un—12%+1) € R%, 0<k<2V™ 1<n<N, (852
we have [see (8.26) and (8.28)]
Uk =AU, eR*  0<k<2¥ ™ 1<n<N. (8.53)

Note that it is not difficult to verify that, according to (8.29),
1 1
Al = =7 = 1A% = T3 = V2, (8.54
A= A T )

where the asterisk is used to denote the adjoint operator A* for the operator A.
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Remark 8.2.1 The conditions of Theorem 8.2.1 imply the coinadence of the
corresponding first and second moments of the vectors U = {Upx, Un, Upnx }
and V = {Vp 1, Vo, Vo } since the vectors U can be restored from vectors
X1,...,Xon by the same linear procedure which is used for reconstruction of
the vectors V from Yi,...,Yyn. In particular, EU = EV =0.

Lemma 8.2.2 [Einmahl (1989) Lemma 5, p. 55] Let 1 < m = (2s+1)-2" < 2V,
where s,r are non-negative integers. Then,

Sm= o5 52N+ Z Yo Un s (8.55)
n=r+1

where v, = vn(m) € [0,Y%] and the integers Ilnm are defined by
ln’m * 2n <m S (ln7m + 1) * 277,. (8.56)

The shortest proof of Lemma 8.2.2 can be obtained with the help of a
geometrical approach due to Massart (1989, p. 275).

Remark 8.2.2 The inequalities (8.56) give a formal definition of I, ,,. To
understand better the mechanism of the dyadic scheme, one should remember
another characterization of these numbers: U, , .. is the sum over the block of
2" summands which contains X,,, the last summand in the sum S,,.

Corollary 8.2.1 Under the conditions of Lemma 8.2.2,

1
| Sm = T | < |Unjo = Vivol + 5 Z | Un o = Vo s m=1,...,2.
n=r+1

This statement evidently follows from Lemmas 8.2.1 and 8.2.2 and from the
relations (8.22)—(8.25), (8.35) and (8.36).

8.3 Proof of Theorem 8.2.1

In the proof of Theorem 8.2.1, we shall use the following auxiliary Lemmas
8.3.1-8.3.4 [Zaitsev (1995, 1996, 1998a)].

Lemma 8.3.1 Suppose that L(§) € Au(7), y € R™, a € R!. Let M: R4 >
R™ be a linear operator and § € R* be the vector consisting of a subset of
coordinates of the vector £. Then,

LIME +y) € An([IM] 7), where  ||M]| = s [Mz]|,

L(a€) € Ay(le|T), L(€) € Ax(7).
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Lemma 8.3.2 Suppose that independent random vectors €%, k = 1,2, satisfy
the condition L(E®)) € Ay (1). Let € = (¢€M, @) € R4+ pe the vector
with the first di coordinates coinciding with those of €1 and with the last
dy coordinates coinciding with those of £€2). Then, L(£) € Ady1d,(T).

Lemma 8.3.3 (Bernstein-type inequality) Suppose that L(§) € A1(7), E€=0
and E&2 =02, Then,

P{|¢| >} <2 max{exp(—2%40?), exp( —z/47)}, z>0.

Lemma 8.3.4 Let the distribution of a random vector ¢ € R with E¢ =
0 satisfy the condition L(€) € Ay(1,4), T > 0. Assume that the variance
o? = Efft > 0 of the last coordinate &5 of the vector £ is the minimal eigenvalue
of cov&. Then, there exist absolute positive constants cs,...,c12 such that the
following assertions hold:

a) Let d > 2. Assume that &; is not correlated with previous coordinates
&1,...,&4-1 of the vector €. Define B = cov Py_1£ and denote by F(z|x),
z € RY, the r.c.df of & for a given value of Pg_1& =x € R¥1. Let
LPy_18) € Ag_1(1,4). Then there exists y € R such that

2
— T
o1 < co B2z < o5 r 121 (8:57)

and
(2 —7(2)) < F(z+ylz) < @62 +7(2)) (8.58)

for —’%/—2— <cg, |B~12z| < B, 2| < —Clgf_’—z, where

v(z) = 12T <d3/2 +dé (1 + '—zl) + i) §=|BY2z|. (8.59)
o o2 )’

b) The assertion a) remains valid for d = 1 with F(z|z) = P {& < 2} and

y =3 =0 without any restrictions on B, Py_1£ and x.

Remark 8.3.1 In Zaitsev (1995, 1996), the formulation of Lemma 8.3.4 is in
some sense weaker; see Zaitsev (1995, 1996, Lemmas 6.1 and 8.1). In particular,
instead of the conditions

L) € Ag(r,4)  and  L(Pg1€) € Ag-1(7,4), (8.60)
the stronger conditions
L(€) € Ay(1,4,4)  and  L(P4-1€) € Aj_1(7,4,4) (8.61)

are used. However, in the proof of (8.57) and (8.58) only the conditions (8.60)
are applied. The conditions (8.61) are necessary for the investigation of quan-
tiles of conditional distributions corresponding to random vectors having coin-
ciding moments up to third order which has been done in Zaitsev (1995, 1996)
simultaneously with the proof of (8.57) and (8.58).
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Lemma 8.3.5 Let Sy =X1+...+ Xk, k=1,...,n, be sums of independent
random vectors X; € R? and let q(-) be a semi-norm in RY. Then,

P{ max q(Sg) >3t} <3 max P{q(Sx) >t}, t>o0. (8.62)

Lemma 8.3.5 is a version of the Ottaviani inequality; see Dudley (1989,
p. 251) or Hoffmann-Jgrgensen (1994, p. 472). In the form (8.62), this inequality
can be found in Etemadi (1985) with 4 instead of 3 (twice). The proof of
Lemma 8.3.5 repeats those from the references above and is therefore omitted.

Lemma 8.3.6 Let the conditions of Theorem 8.2.1 be satisfied and assume
that the vectors Xi, k=1,...,2N, are constructed by the dyadic procedure de-
scribed in (8.35)—(8.50). Then there exist absolute positive constants ci3, ..., ci7
such that:

a) If Td%%/2N/2 < ¢q, then
|Uno — Vivo| < c13d®27 (14 27N |Uno)?) (8.63)

provided that |Un| < %34%;
b) If 1<n <N, 0< k< 2N, 7d32/272 < ¢15, then
|Unk = Vo] < e16d¥27 (14277 | Up|?) (8.64)
provided that |Up | < %577%.
In the proof of Lemma 8.3.6, we need the following auxiliary Lemma 8.3.7
which is useful for the application of Lemma 8.3.4 to the conditional distribu-

tions involved in the dyadic scheme.

Lemma 8.3.7 Let F(-) denote a continuous distribution function and G(-)
an arbitrary distribution function satisfying for z € B € By the inequality

G(z— f(2)) < F(z+w) < G(z + f(2))

with some f: B — R! and w € R*. Let n € R, 0 < G(n) <1 and
¢ =F~YG(n)), where F~Y(z) =sup {u: F(u) <z}, 0 <z <1. Then,

E—nl < fl-w)+|w| if E-—weB.

PROOF. Put { = ¢ —w. The continuity of F implies that F(F~!(z)) = z for
0 < z < 1. Therefore,

(e€B=G((-f(Q)<FE)=CGn)=(-f{)<n=E-n<f)+w
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and
(€EB=Gn)=FE)<G(+f)=n<{+f)=n-¢§<f({)—w.
This completes the proof of the lemma. |

PROOF OF LEMMA 8.3.6. At first, we note that the conditions of Theorem 8.2.1
imply that

covU,j =2"Ip;, for 1<n<N, 0<k<2V™™,
and, hence [see (8.42)],
covUl , =2"1;,  for 1<j<2d (8.65)
Let us prove the assertion a). Introduce the vectors
UNO_(UJ(\il)O""’UI(Vj,)O)’ VNO_(VJ\(ll())"' VO)) (8.66)

consisting of the first j coordinates of the vectors Un,, Vi 0, respectively. By
(8.65), (8.46) and (8.48),

Uno=PaUnp (8.67)
and
Uko=Ukyo  covUho=2"L;, for 1<j<d. (8.68)
Moreover, according to Lemma 8.2.1, Remark 8.2.1, (8.68) and (8.32), the distri-
butions E(UIJ\,,O), j=1,...,d, satisfy in the j-dimensional case the conditions
of Lemma 8.3.4 with 02 = 2 and B = cov U]J\, o =2N1;_; (the last equality
for j > 2).

Taking into account (8.43) and applying Lemmas 8.3.4 and 8.3.7, we obtain
that
v, — v U
|Uxp ~ Vil < cror (14 —5—) (8.69)

. N
if 59 <co, |U [(\}%)I < @uZ_ | Furthermore,

-1 y9)
|U(J) _V(J) < e10T j3/2 +j3/2 |U]]\”O_ (1 |—__|)
NOo T~ YNOl = €12 oN/2 9N/2
(4)

Uy — il ‘
+ —2—1\,——]—) + |y;| (8.70)
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if
74302 - | Uf;{ol c1o - 2N/2
oNjz = 9 oNfz = T 3y
.9N
(UG, — 5] < cl—lﬁ— 2<j<d, (8.71)
where
|Ufio I .
|y;] < cs7j ——]2\’1\?— 2<j<d. (8.72)
Obviously,
UGy < max {|U§5 |, 1UNGI} = 1URol < Ul 2<i<d (8.73)

see (8.45) and (8.66). Using (8.69), (8.70), (8.72) and (8.73), we see that one
can choose c13 to be so large and ¢4 to be so small that

|U§ <J> <J)|<c13d3/2 (1+27N|Unol?) (8.74)

if %5'/; <ey, |Unp| < —h 1 < j < d. The inequality (8.63) immediately
follows from (8.74), (8.36) and (8.45).
Now we shall prove item b). According to Lemma 8.2.1, Remark 8.2.1,

(8.31), (8.45) and (8.65), the distributions L(U?, ), j = d+1,...,2d, satisfy in

the j- dlmensmnal case the conditions of Lemma 8.3.4 Wlth o2 = 2",

B= covUnk =2"1;_
Using (8 47) and applymg Lemmas 8.3.4 and 8.3.7, we obtain that

: ~ . 4 UL U9, — g5
IUgL—Vg“ < 612T<33/2+J3/2 ( Ionk BT )

[U(J) —y; I
on . )‘Hyj' (8.75)
if
/2 Uk | . n/? o
J n.k €10 G) _, | < L1
gZ S Toup S T apy Uk -l < =——, (®76)
where
j— 1|2
lyy|<CSTJ——;£—, d+1<j<2d (8.77)
Obviously,

max {|UI, [UYL|} = |UJ | < |Upyl (8.78)
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see (8.48). Using (8.75), (8.77) and (8.78), we see that one can choose c15 and
c17 to be so small and ¢ to be so large that

|U£33c - Vfﬁcl < e16d®?7 (1427 | Uni ) (8.79)

if % < c1s, |Ung| < 952, d+1 < j < 2d. The inequality (8.64)

immediately follows from (8.79), (8.38), (8.39) and (8.48). [ |

PROOF OF THEOREM 8.2.1. Let Xj, k = 1,...,2N, denote the vectors
constructed by the dyadic procedure described in (8.35)—(8.50). Denote

_ A(ON) — _
A=A@2Y) = e, | Sk — Tk |, (8.80)

. . 18 1
C5 = min {695 015}1 C1g = min {6147 C17, 1}1 Yy = d3/27' < ?a (881)

fix some z > 0 and choose the integer M such that
z < 4y-2M < 22. (8.82)

We shall estimate P {A > z}. Consider separately two possible cases:
M >N and M < N. Let, at first, M > N. Denote

A=  Jax, |Skl, A= D | T |- (8.83)

It is easy to see that A < A;+ Az and, hence,
P{A>z} < P{A;>z/2}+ P{Ay>z/2}. (8.84)

Taking into account the completeness of classes Aq4(7) with respect to convo-
lution, applying Lemmas 8.3.5, 8.3.1 and 8.3.3 and using (8.81) and (8.82), we
obtain that 2V < 2M < z/2y and
Ay >zx/2} < P{|S;|>z/6
P{A12c/2} <3 max P{|5>z/6}

x?

< 6d exp (—min { 775w 577 )
< 6dexp (- %’%) (8.85)

Since all d-dimensional Gaussian distributions belong to all classes A4(7),
T > 0, we automatically obtain that

P{Ay>2/2} <6dexp (- %%) (8.86)
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From (8.84)—(8.86), it follows in the case M > N that

P{AZx}Sleexp(—%). (8.87)

Let now M < N. Denote

L =max{0, M} (8.88)
and
B3 = O<kean-L 19125L [Skar4t = Sparl, (8.89)
A= O<heaN-L 12125 | Tigrst = Tpar |, (8.90)
A5 = lsﬂ%_L ISk.gL - Tk.gL l (891)

Introduce the event
A={w: Ukl <y-2F, 0<k <2V L} (8.92)

(we assume that all considered random vectors are measurable mappings of w €
2). For the complementary event we use the notation A =Q\ A.

We consider separately two possible cases: L = M and L =0. Let L = M.
It is evident that in this case

A< A3+ As+ As. (8.93)
Moreover, by virtue of (8.93), (8.82), (8.89) and (8.92), we have
Ac{w:As>z/4}. (8.94)
From (8.93) and (8.94), it follows that
P{A>z} < P{As>z/4}+ P{As>z/4} + P{A5>z/2, A}. (8.95)

Using Lemmas 8.3.5, 8.3.1 and 8.3.3, the completeness of classes A4(7) with
respect to convolution and the relations (8.81) and (8.82), we obtain, for 0 <
k< 2N-L that 2L =2M < /2y and

P{ max |Sk.2L+[—Sk.2L|Z$/4}

1<I<2L
<3 12}2}2{1, P{|Sk'2l'+l - S}c.ng > :17/12}
. IE2 T
< 6d exp (- min{ =7, 1)
C0T
<6dew (- ). (8.96)
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Since all d-dimensional Gaussian distributions belong to classes Ag(7) for all
7 > 0, we immediately obtain that

C0T
P{ max, | Tyoor 41 — Tor| > 2/4} < 6d exp ( - W)‘ (8.97)

From (8.89), (8.90), (8.96) and (8.97), it follows that

P{As>z/4}+ P{As>x/4} <2V 12d exp (- %ﬁ—) (8.98)

Assume that L = 0. Then, according to (8.80) and (8.91), A = A5 and,
hence, we have the rough bound

P{A>z}<P{A}+P{As>2z/2 A} (8.99)

In this case, U x = Xk11, 28 =1>2M, y > /4 [see (8.81), (8.82) and (8.88)].
Therefore, by (8.92) and by Lemmas 8.3.1 and 8.3.3,

_ 2N 1 N
P{A} < Y P{|Uxl>y-2"} =3 P{|Xx|2y}
k=0 k=1
2
< 2N+1dexp(—min{—%—,%})
. (Y
< 2N+1dexp(—m1n{—lg, - })
T
< 2N+1dexp<——$f/12—7_). (8.100)

It remains to estimate P {As > z/2, A} inbothcases: L=M and L =0
[see (8.95) and (8.98)—(8.100)]. Let L defined by (8.88) be arbitrary. Fix an
integer k satisfying 1 < k <2V~ and denote for simplicity

j=7jk) =k 2L (8.101)

By Corollary 8.2.1, we have

1 X -
|Skar = Thor| =185 = T < [Uvo = Vol + 5 32 1Unny = Vit |
n=L+1

(8.102)

where I, ; are integers, defined by lnj-2" < j < (In; +1)-2" [see (8.56)].
By virtue of (8.81) and (8.92), for w € A we have

c18 * oL min{cy4, 17} - oL
i EEY d3/2r ’

0<l<oN-L
(8.103)

IUL,l[ <y'2L=
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and, by (8.49)-(8.93), UL, are sums over blocks consisting of 2/ summands.
Moreover, U,; (resp. ﬁn,z), L+1<n<N,0<1<2N " are sums
(resp. differences) of two sums over blocks containing each 2"~! summands.
These sums and differences can be represented as linear combinations (with
coefficients 41) of 2"~L sums over blocks containing each 2 summands and
satisfying (8.103). Therefore, for w € A, L+1<n< N, 0<1I< oN-" we
have [see (8.46) and (8.48)]

min{ci4, c17} - 2"

|Ung| = max {|Upyl, |Ung|} < 2" Fy 28 =y-2" < B2,

(8.104)

Using (8.104), we see that if w € A, the conditions of Lemma 8.3.6 are satisfied
for 7, Uno and Upy, if L+1<n < N, 0<1<2V~" By (8.102), (8.104)
and by Lemma 8.3.6, for w € A we have

18; =T < e13d®?r(1+27N|Unpol?)

N
+ 3 ced?r (1427 max {|Ung,, [°, [Ons, I°})
n=L+1

N-1
< cd3/2T<N+1+2_N|UN,0|2+ > 2 (U™ P + | Uy 12)),

n=L
(8.105)
where
U™ — Unt, U = Un,l],j’ (8.106)
and
g L 2ln’j, if ln_l’J == 2ln’J + 1,
-1 = { st 1, if ln1j=20ns, L<n<N (8107)

(it is easy to see that l,_1; can be equal either to 2I,; or to 2l,; + 1, for
given I ;). In other words, U™, [ < n < N, is the sum over the block
of 2" summands which contains X;. The sum U,y does not contain X; and

gt — gy 4 Uty L<n<N (8.108)

[see (8.93)]. The equality (8.108) implies

n—L-1
vm=u®+ N Upyy, L<n<N. (8.109)
s=0
It is important that all summands in the right-hand side of (8.109) are the sums
of disjoint blocks of independent summands. Therefore, they are independent.
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Put 8 = 1/v/2. Then, using (8.109) and the Holder inequality, one can

easily derive that, for L <n < N,

n—L-1
|lﬂn”25<a2<5_m_L”LﬂL”2+' > ﬁ—m'L—U+S“ﬁL+QF
s=0

o
with coo = Y 37 = 7—% It is easy to see that
=0 -

N
Z 9—n g=(n—L) |U(L) |2 <ecgp 277 942 |2_

n=L
Moreover,
N n-L-1 9
—n g—(n—L~1
> X TR U )|
n=L+1 s=0
N-L-1 N

=Y Y e ey

N-L- )
< co2 g~ (LH1+s) |Uinrs)l™
s=0

It is clear that the inequalities (8.110)—(8.112) imply

—

N-1
27N Unol* + 3 27 (UM P+ Uy )

n=L
—I— 2 N-1 2
IU(L)|2 N IU(L+3)| |U(n)|
< (b + > ) > o
vBP = | Uw |
< c( 2L + Z on )
n=L

From (8.105) and (8.113), it follows that for w € A we have

_ 2
IU(L)I2 -|—NZI |U(n)| )

L
2 B A

lSj—le 5023d3/2T(N+1+
Denote (for 0<n < N, 0< 1< 2V ™)

W l = 2—n|Un>l|2’ if lUn,l| S y.2n,
i 0, otherwise.

Let us show that

Eexp(tWy;) <2d+1 for OStS%.

> (8.110)

(8.111)

(8.112)

(8.113)

(8.114)

(8.115)

(8.116)
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Indeed, integrating by parts, we obtain
y2A2n
E exp(tWy;) = 1+ / texp(tu) P{W,; > u}du
0

y2‘2n

< 1+ % / exp (u/8) P {|Un;| > 2V2V/u} du.
0
(8.117)

Taking into account (8.93), (8.81) and using Lemmas 8.3.1 and 8.3.3, we obtain
that

P{|Uny| > 22\/u} <2dexp ( - min{ 427; , 2“227}/5 })
< 2dexp<—min{%i—,zg-’—r-})
= 2dexp (- %) (8.118)

if 0 < u < y?-2" The relation (8.116) immediately follows from (8.117)
and (8.118).

The relations (8.103), (8.104) and (8.115) imply that, for L < n < N,
0<l<2N-" we A,

27| Upit | = Wy (8.119)
Thus, according to (8.106), we can rewrite (8.114) in the form
N-1
ISJ"‘TjI ch3d3/2T<N+1+W(L)+ Z W(n)), we A, (8.120)

n=L

where

W =Wy, ., Wey=W 7 (8.121)

’I’L,ln’j :

Putting now t* = (8¢co3d®?7)™1 and t = t* - c33d®?7 = 1/8, taking into
account that the random variables W(E), Wy, --., Win—1) are independent
and applying (8.116), (8.120) and (8.121), we obtain

P{{w:]8; -1y > z/2} n A}

< P{623d3/2T(N+1+W(L) +NZ_1W(n)) > l‘/2}
n=L

IA

P{t(w®+ NZ_:IW(,,)) > t'w/2—t(N +1)}
n=L
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N-1
< E exp(t (W(L) + ZW(n))>/exp(t*x/2 —t(N +1))
n=L

N-1
= Eexp(tW) ][] E exp(tW(n))/exp (t'z/2 —t(N+1))

n=L
N +1 x
N+1
< (3d) exp( 8 " 160 PPr ) (8.122)

From (8.91), (8.101), and (8.122) it follows that

N+1 T
P > /2, A} < 2N (3q)NT! - . (812
{852 2/2, 4} <2V B exp (g - g ). (8129)
Using (8.87), (8.95), (8.98)—(8.100) and (8.123), we obtain that
N+1 oz
P{A >z} < (19d) exp( T ) x>0, (8.124)

where we can take cy4 = max {16¢co3, ¢y, Cog, Co1» 2} Let the quantities
€, o > 0 be defined by the relations

1

1
— < ETO _ N+l. .
s S qr € =099 (8.125)

Integrating by parts and using (8.124) and (8.125), we obtain

o0
E 2 :/ e P{A>z}dz+1,
0

xo zo
/ e P{A>z}dz < / ce®dr =% — 1 = (19d)V ! — 1,
0 0
o0 00
[Fee s atars [Teetemay
xo z0
and, hence,
Ee < (190N +1 < (20a)VH.

Together with (8.80) and (8.125), this completes the proof of Theorem 8.2.1.
|

8.4 Proofs of Theorems 8.1.1-8.1.4
We start the proofs of Theorems 8.1.1-8.1.3 with the following common part.

BEGINNING OF THE PROOFS OF THEOREMS 8.1.1, 8.1.2 AND 8.1.3. At first,
we shall verify that under the conditions of Theorems 8.1.2 or 8.1.3 we have
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L(&) € Ag(7). For Theorem 8.1.3, this relation is an immediate consequence of
Lemma, 8.3.1, of the completeness of classes A4(7) with respect to convolution,
and of the conditions (8.8) and (8.10)—(8.12). In the case of Theorem 8.1.2, we
denote K = L(n). One can easily verify that B = cov K = v21,, where 72 is
defined by (8.7) and, hence,

1<4*<3. (8.126)
Moreover,
2 = -
_ (zm) — (4+T (d+ <z’z>)) eXp(<Za Z>/2) d
o(K,z) =log Ee log @10 , z € C%
(8.127)
Using (8.126) and (8.127), we obtain
|dudi (K, 2)| = |dudy log (4+7°(d+ (2,2)))]
< e llullllv])? < [lull7(Bo,v) (8.128)

for ||z]|7 < 1, if ¢; involved in Assertion A is sufficiently small. This means
that K = L(n) € Ag(7). The relation L(&) = L(n/y) € Aa(1), k=1,...,n,
follows from (8.126) and from Lemma 8.3.1.

The text below is related to Theorems 8.1.1, 8.1.2 and 8.1.3 simultaneously.
Without loss of generality we assume that the amount of summands is equal to
2N with some positive integer N. It suffices to show that the dyadic scheme
related to the vectors &,...,&n~ satisfies the conditions of Theorem 8.2.1 with
7% = /27 instead of 7. According to Lemma 8.2.1, we can verify the condi-
tions (8.31) and (8.32) for the vectors U7, ; and Uy, instead of U/, and Uy .
To this end, we shall show that

L(UL,) € A;(V2r,4) for 0<k<2V™ 1<n<N, 1<j<2d.
(8.129)

Recall that Uy, = Aﬁn,k, where A is the linear operator defined by (8.29)
and satisfying (8.54). Furthermore, INJn,k = (Un-12k, Un—1,2k+1) € R2¢ where
the d-dimensional vectors Up—_19r and U,—_12k+1 are independent. The rela-
tion L(Upy) € A24(v27) can be therefore easily derived from the conditions
of Theorems 8.1.1, 8.1.2 and 8.1.3 with the help of Lemmas 8.2.1, 8.3.1 and 8.3.2
[see (8.54)] if we take into account the completeness of classes A4(7) with re-
spect to convolution and their monotonicity with respect to 7. It is easy to see
that U;’ k= Fj Uy k, where the projector Fj :R2? 5 RJ can be considered
as a linear operator with ||P;|| =1 [see (8.48)]. Applying Lemma 8.3.1 again,
we obtain the relations £(U?, ;) € A;(v27), 1< j <2d.
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It remains to verify that, for h € R7, ||h|| V27 < 1, the following inequality
holds

27153/2
/ | Fu(t)] dt < detD)l L= (8.130)
T={teR7:4|t]|vV2rj>1}, (8.131)

where F' = ,C(Ufl’k), and o2 is the minimal eigenvalue of D = cov ng,k' Note
that, according to (8.65), we have

D =2"1;, o?=2" detD=2". (8.132)
Introduce 2"~ ! random vectors

X, = (Xp, Xon-14,) € R¥,  r=2""1.2k+1,..., 2" (2k + 1).
(8.133)

Obviously, these vectors are independent. According to (8.50), (8.162) and
(8.133),

on=1(2k+1)

tV;rn,k = (Un—l,Qk, Un—1,2k+l) = Z Xr- (8134)
r=2n—1.2k+1

Denote R,(ls) = L(X)(h), for s = 1,...,2N, heR% and M(T) =
LXK (R), Q) = LAX(h), for r =277 1.2k+1,...,27" 1 (2k+1), h € R
As usually, we consider only such h for which these distributions exist. Us-
ing (8.21), we see that, for all ¢ € R2¢

O () = Eexp((h+it,AX,)) _  Eexp({(A*h+iA* X,))
E exp ({h,AX;)) E exp ((A*h,X,))
= M, A%). (8.135)

By (8.16) and (8.134), we have (for j = 2d)

27—1(2k+1)

Bol= I 1Y) (8.136)

r=2n-1.2k+1

Split ¢ = (t1,...,t4) € R¥ as t = (tM, t?), where t1) = (¢1,...,ts) and
t®) = (tg41,...,t2q) € R% Using (8.133), (8.21) and introducing a similar
notation for h € R?¢, it is easy to check that

r =(r ~(Qn—14,
M( )( t) = R}(L()l)(t(l))R}(f@) * )(t@)). (8.137)
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Note that

[ R AR T (8.138)

END OF THE PROOF OF THEOREM 8.1.1. Let now the distributions L(&;)
satisfy the conditions of Theorem 8.1.1. In this case, according to (8.16), we

have Rgf) = H,(h)G(h). It is well-known that the conjugate distributions
G(h) of the Gaussian distribution G are also Gaussian with covariance opera-
tor covG(h) = covG = b?> 1. Therefore,

IBO(0)] < exp(—B2[ItI2/2), theRY, [hlr<1.  (8.139)

Using (8.137)—(8.139), we get, for t,h € R¥, ||n| T < 1,

1M ()] < f[ exp (— b | tW]?/2) = exp (= b*[I£]?/2).  (8.140)
p=1

Applying (8.54), (8.135) and (8.140) with ¢ = A*u and h = A*~, we see that
Q%) (u)| < exp (= 2| A%ul?/2) < exp (= b [|ull*) (8.141)

for u,v € R¥, ||v]| V27 < 1. The relations (8.136) and (8.141) imply that
|Eh)| <exp( -0 ||t)*-2"72), t,heRI, |h|V2T<1l. (8.142)

It is clear that it suffices to verify (8.142) for j = 2d [for 1< j < 2d, one
should apply (8.142) for j = 2d and for t,h € R*, with h, = tm = 0,
m=7+1,...,2d.
Using (8.131), (8.132) and (8.142), we see that
5 2 2m8 SR
/IFh(t)|dt < exp(—w)/ex;)(—b 12 273 e
T RJ
o)/ b2 2n
__@mi exp( - oay )
(b2 .9n 2)3/2 28 7.2]2
< (27r)j/2 42" < (2m)i/2 7
= (detD)Y/2725 = 2n/2(det D)!/2

(8.143)

if ¢; is small enough. The relations (8.132) and (8.143) imply (8.130). It
remains to apply Theorem 8.2.1 to complete the proof of Theorem 8.1.1. |

END OF THE PROOF OF THEOREM 8.1.2. Let now the distributions L£(&5)
satisfy the conditions of Theorem 8.1.2. In this case, according to (8.21)
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and (8.127), we have

1RO )| = t (4472 @HIAIP 423, )= 11)) exp ((IRI2+2ih, ) —111%)/2) ’
h (4472 @+IIn12)) exp (I1R1%/2)
< (24 t1?) exp (- [1£%/2)
< o5 exp(— [1t)%/4), [All 7 < 1. (8.144)

The rest of the proof is omitted. It is similar to that of Theorem 8.1.1 with
b?> = /5. The presence of co5 in the right-hand side of (8.144) can be easily
compensated by choosing c; to be sufficiently small. |

END OF THE PROOF OF THEOREM 8.1.3. Consider the dyadic scheme with
L(&)=L(Xs)=L®P, s=1,...,2Y. (8.145)

Putting H = L(¢), vYn(z) =€ p(z), h,z € R? and integrating by
parts, we see that (for t € R%, t # 0)

Bot) = (Beh)™ [0 gy (@) da
||| <b1

— _(Ee(h,C))_l

llzl|<b

et d 8.146
W twh(w) Z, ( . )

where Hj = H(h). Besides, using (8.9), we see that

sup sup |devn(z)| <bs|t]. (8.147)
lzll<by [[R]lb2<1
As in the formulation of Theorem 8.1.3, we denote by b, different positive
quantities depending on H. Note that the quantities depending on the dimen-
sion d can be considered as depending on H only as well. From (8.146) and
(8.147), it follows that

sup | Ha(t)| < be [It] 7 (8.148)
|R]lb2<1

(note that, by the Jensen inequality, Ee(®<) > e¢E(¢) = 1), The inequal-
ity (8.148) implies that

~ -1
sup |Hp(t)| < (1 + M) for ||t|| > b7y =2bs (8.149)
Iallba<1 by

and

sup  sup |ﬁh(t)| < Y. (8.150)
Rllb2<1 |It]|>b7
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Since the distributions H}, are absolutely continuous, the relation |Hh )| =
1 can be valid for ¢ =0 only. Furthermore, the function |Hj(t)| considered as
a function of two variables h and t is continuous for all h,t € Rd. Therefore,

sup sup  |Hp(t)| < by < 1, (8.151)
IRllb2<1 bs<|It]| <b7

where
bs = (4v2byd)™" and by > Ya. (8.152)
The inequalities (8.150) and (8.151) imply that

sup sup |Hp(t)]| <bg:=e0 <1, (8.153)
[IR1152<1 [It]| >bs

Denoting L;Ls) = LB)(h), h e RY s =1,...,2", and using (8.11), (8.12),
(8.16) and (8.21), it is easy to see that

RE(8) = (B ymt/Nvm) " I (t). (8.154)

The relations (8.10), (8.149), (8.153) and (8.154) imply that

s [RPO]< (1 O iz (s155)

and

sup sup _|RPY ()] < e (8.156)
[RlT<1 ||t]|>bgy/m

Using (8 137), (8.138), (8.145) and (8.155), we get, for r = 2771 .2k +
1,...,2" 1 (2k+1), ||t]l > brv2m, t € R¥,

v t®| [t \-m
M) < min (1+ | <(1+4 ——=) . (8157
Ihllr<1 | Ol< min ( bry/m ) - ( by x/2m) (8.157)

Moreover,

sup sup | M, (T) )| < e~ (8.158)
IR <1 ||t|| >bgv2m

Using (8.54), (8.135), (8.157) and (8.158), we see that, for the same r and for
te R¥, |t > by v/m,

30 < (14 Ay 8.159
Lol Ol (1+ 4 =) (8.159)
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and

sup sup Qi (1)] < e, (8.160)
IhlrvE<L 1412 bsm

It is easy to see that the relations (8.136), (8.159) and (8.160) imply that,
for he RY, ||h||v27T <1, and for t € RY, ||t| > by /m,

- Ity
F; <{1 .
and
sup | Fn(t)] < e ™m0 (8.162)
lit]| >bsv/m

It suffices to prove (8.161) and (8.162) for j = 2d [for 1 < j < 2d, one should
apply (8.161) and (8.162) for j = 2d and for h € R*, ||n| V271 <1, t € R*
with Ay, =tm =0, m=j+1,...,2d].

Note now that the set T' defined in (8.131) satisfies the relation

Tc{teR:|t| > bgv/m} (8.163)

[see (8.10) and (8.152)]. Below [in the proof of (8.130)] we assume that ||h| V27
< 1. According to (8.162) and (8.163), for ¢t € T we have

| B (t)|M/? < emmbr02*72 (8.164)

Taking into account that |ﬁh(t)] <1, and m > b4, choosing by to be suffi-
ciently large and using (8.10), (8.132), (8.161) and (8.164), we obtain

JRLXOIE
T
; iy
< B on—2 / I d/2>
< exp(—mbyo-2 )< | (1+ b7\/m) dt + biim
RJ
< bpamd/? exp (— mbyg - 2"‘2)

(2m)/2V/2be % (2m)i2 V27537
ml/2.9n/2.9n5/2 g (det D)1/2

IN

(8.165)

The inequality (8.130) follows from (8.165) immediately. It remains to apply
Theorem 8.2.1. [ ]

PROOF OF THEOREM 8.1.4. Define mg,m1, mo,... and nj,no,... by

mo=0, mg=2%, ng=mg—me, s=12,.... (8.166)
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It is easy to see that

logns < logms = 2° log 2, s=1,2,.... (8.167)
By Assertion A [see (8.5)], for any s = 1,2,... one can construct on a proba-
bility space a sequence of i.i.d. X fs) o Xn ( ) and a sequence of i.i.d. Gaussian

Yl(s) Y( %) 5o that E(X,(:)) = L(§), EY(S) =0, cov Yk(s) =1, and
P{ca Ay >7d*?(c3log*d logns +z)} <e®, >0, (8.168)

where

(s) ()]

Ag = = max ‘ Z X, Z Y, (8.169)

It is clear that we can define all the vectors mentioned above on the same

probability space so that the collections E; = {Xl(s), ceey XT(LSS); Y] s), ceey Yé:) }

s =1,2,... are jointly independent. Then, we define X;, Xo,... and Y7,Ys,...
by

Xomooaik = X,

Y Y(s) k-:l,...,ns, 3:1,2,.... (8.170)
ms_1+k =

In order to show that these sequences satisfy the assertion of Theorem 8.1.4, it
remains to verify the equality (8.13).

Put
Cos = (CSL;H)—, Co6 = czsgrl/? = \0/2_25—‘_/51 (8.171)
and introduce the events
Aj={w: A0 > 2 ey 7d¥?10g*d}, 1=1,2,..., (8.172)
where
r r
AD — max };Xj - szlyj I (8.173)

According to (8.169), (8.170) and (8.173), we have

AD <A ...+ AL (8.174)
Taking into account the relations (8.167), (8.171), (8.172), (8.174) and applying
the inequality (8.168) with z = 2(5t0/2 we get

l
P{A4} < Y P{A;>26 ey 7d%*10g"d}

s=1

I
< ) exp(-— 26+0/2) < ¢ exp (- 2/2). (8.175)
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The inequality (8.175) implies that Z P{A;} < oo, Hence, by the Borel-

Cantelli lemma, with probability one a ﬁnlte number of the events A; occurs
only. This implies the equality (8.13) with ¢4 = 2c26/log2 [see (8.166), (8.172)
and (8.173)]. [ |
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On the Existence of Weak Solutions for Stochastic
Differential Equations With Driving L*-Valued

Measures

V. A. Lebedev

M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: For Eq. (9.4) with a o-finite L2-valued random measure 6 in the
sense of Bichteler and Jacod (1983), a theorem on the existence of its weak
solution in terms of the decomposition of 8 according to Theorem 1 of Lebedev
(1995) is proved.

Keywords and phrases: o-finite LP-valued random measure, stochastic dif-
ferential equation, weak solution, extension of a stochastic basis

9.1 Basic Properties of o-Finite LP-Valued Random
Measures

Let (Q, F,F,P) be a stochastic basis consisting of a probability space (2, F, P)
and of a right-continuous filtration F = (F)ier,, and let O and P be the
F-optional and the F-predictable o-algebra on Q x Ry, respectively.

Let (E,£) be a measurable space and 6 be a o-finite LP-valued random
measure on (2 X Ry x E,P® &) in the sense of Bichteler and Jacod (1983) for
some p > 0, i.e., a family 6 = (6;)icr, satisfying the following conditions:

(a) for every t € Ry 6, is a o-finite measure on (2 x Ry x E,P ® £) with
values in LP(Q, F,P), i.e., there is a strictly positive P ® £-measurable
function V on  x Ry x E such that if (P® E)y={¢: P ® E-measurable,
¢/V is bounded} then we have:

[(a~1)] 6; is a linear mapping from (P ® £)y into LP(Q, F;, P),

[(a-2)] if (pp) is a sequence in (P ® &)y with |p,| < V converging
pointwise to 0 then 6;(¢,) — 0 in LP(Q, F, P);
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134 V. A. Lebedev

(b) Os(p) = Oc(plypq) for all p € (P®E)y and s < t;

(c) O:(plaxixe) = 1abi(plaxixe) forall p € (PRE)y andt € Ry if A € F
and I =R or if A € Fs and I =|s, s'| with s < s’

In particular when V' =1 6 is called a finite LP-valued random measure. Let
us denote by SP (respectively by SP) the space of all o-finite (finite) LP-valued
random measures on (2 x Ry x E,PQ®¢).

We put for § € SP

o0

lellzio@ = D (LA sup 16 (%)lp)

and denote by L1'P(6) the set of P ® £-measurable functions ¢ for each of which
there is a sequence (¢n) C (P ® €)v with [l — ¢l|11.(9) — 0. Then for each
t € Ry, 0:(pn) tends to a limit in LP(, F;, P) which does not depend on the
choice of (pn) for the given ¢ and is denoted by 6;(¢). In addition, if p < ¢
and 0 € 84, then 6 € 8P and L14(6) c L7(6).

Let us introduce an example which is important for the further development
of the theory. Let E = {1}, i.e., let it consist of one point, so that we con-
sider random measures on (2 x Ry, P). Then, by the Dellacherie-Mokobodzki—
Bichteler theorem [for example Bichteler (1981, Theorem 7.6)], there is a bijec-
tive correspondence between the sets of finite L%-valued random measures on
(22 x Ry, P) and of defined up to indistinguishability semimartingales by the
formula

6;(H) = H - X; (9.1)

for any bounded predictable H at every t € Ry. As far as o-finite L%-valued
random measures are concerned, they are called usually formal semimartingales.
Let § € S? and ¢ € LYP(6). Then the equality

(p* 0):(H) = 6,(Hop) (9.2)

for H € P; defines the family ¢+ as a finite LP-valued measure on (2 X Ry, P)
for which by the preceding example there is a semimartingale denoted also by
@ * 0 and called the stochastic integral process for o with respect to 6, and by
(9.1)

0% 0 = (1 0)i(1) = B4().

We can define integrals with respect to 6 € SP for a wider class of P ® &-
measurable functions than L1P(). Let us introduce the set L2(8)={¢p: P ® &-
measurable, and there is a strictly positive predictable process K such that
Ky € LYP(0)}. Then the equality (9.2) for predictable H with bounded H /K
defines ¢ * 0 as a o-finite LP-valued random measure on (Q x Ry, P), i.e., as a
formal semimartingale. Now we select the set LP(6) C L?(6) of such ¢ for which
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p*0 is a finite LP-valued random measure on (2 x Ry, P), i.e. a semimartingale.
Obviously, L*P(8) c LP(0) and L4(6) C LP(6) for p < gq.

So let 6 € S2 be given on (2 x Ry x E,P ® &) in the case when (E, &)
is a Lusin space with its Borel o-algebra. Then according to Theorem 1 of
Lebedev (1995), there exist a predictable increasing process X! and starting
at 0 square-integrable martingales X* for 7 > 2 with (X% X7) = 0 for i # j
and regular (signed) transition measures p’ from (Q x Ry, P) to (E,&) such
that for every ¢ € fﬂ(@) its sections are p'-integrable almost everywhere in the
measures P x dX! and P x d(X?, X*) for i > 2 respectively, and

90*0=Z/Esopi(w,dU)-X’} (9.3)
=1

the series converging unconditionally in S2, i.e. in H? from Emery (1979) on
each finite interval. Besides, we choose the martingales X* for i = 3k — 1 to
be continuous, for ¢ = 3k to be purely discontinuous and quasi-left-continuous,
and for 4 = 3k + 1 to be purely discontinuous and accessible. Let B be some
predictable increasing process with respect to which X! and (X%, X?) are ab-
solutely continuous for all ¢ > 2. The main result of this Chapter will be
formulated just in these terms.

9.2 Formulation and Proof of the Main Result

Now let Q be the set of all R%-valued functions on Ry, F be its Borel o-algebra
for the Tikhonov topology, F be the filtration of o-algebras F; for t € Ry
each of which is the intersection for s > ¢ of sub-o-algebras of F generated by
restrictions to [0, s] of functions from Q). Then, let X be the canonical process
on Q,ie. Xy(@) =& Letalso Q=QxQ, F=FQF, F = Nest(Fs @ Fs),
and F = (F)ser, - ) .
Now, let us consider a P(F) ® £-measurable d-vector function h on Q2 x E
and the equation
X=N+hx0 (9.4)

for 6 € 32, where N is a given R%valued F-progressively measurable process
playing the role of an initial condition. Then analogous to Lebedev (1983),
Lebedev (1996) or Jacod and Mémin (1981), we can define a weak solution of
(9.4). Namely, a solution-measure (or a weak solution) of (9.4) is a probability
measure P on (Q, F) such that its Q-marginal P|q is equal to P, Eq. (9.4) keeps
its sense on (Q, F,F,P), and the canonical process X, being substituted into A
instead of W € €, is a solution-process of (9.4). Keeping the sense by Eq. (9.4)
means holding the following two conditions:
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(a) 0 admits an extension to (2 x Ry x E, P(F) ®€) as a o-finite L(Q, F, P)-
valued random measure, i.e., there exists a strictly positive P ® £-measur-
able function V on Q x R} x E belonging to L9(8, F) and such that for
all P®E-measurable ¢ on QX Ry X E with |¢| < V the stochastic integral
processes ¢ * 6 on F and F coincide;

(b) if a P ®E-measurable function ¢ on Q x Ry x E belongs to LO(6, F), then
it belongs also to L0(0 F) and besides the stochastic integral processes
@+ 0 on F and F also coincide.

According to Theorem 3 of Lebedev (1995), Condition (b) holds in particular
when (Q, F,F,P) is a very good extension of the stochastic basis (Q,F,F,P),
i.e., when any F-martingale is a F-martingale. In this case the solution-measure
itself is also said to be very good.

Let us formulate the main result of this Chapter.

Theorem 9.2.1 Let for 6 € 5’3 and for Eq. (9.4) the following assumptions
hold:

1)
2 d Xz Xz)

aB ¢

‘/h,odu i/hp

P X dB-a.e. on Q x Ry at all & € Q for a P-measurable process ¢ with a
P-a.s. finite for any t € Ry integral ¢ - By;

(2) the functions [z hp*(du) are continuous in @ € Q for the U-topology al-
most everywhere in the measures P x dX' and P x d(X*, X*) fori>2 on
Q x Ry respectively, and P x dB-a.e. on ) X Ry the series

o0 2 d<X3lc—1 X3k:——1>
3k—1 )
2 J o) aB

and 3k 3k
/ h o (du) | _EL

converge uniformly in & on each subset of Q of the form N(w)+ K, where
K is compact respectively for the U- and Ji-topology respectively.

Then for Eq. (9.4), there exists a very good solution-measure.
Let us note that for this solution-measure P the extension of the measure 6

to (Qx Ry x E,P(F)®E&) by Theorem 3 of Lebedev (1995) is also an L2-valued
random measure.
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The proof of the theorem is carried out quite analogously to Theorem 9.20
of Lebedev (1996) or Theorem 1 of Lebedev (1983). First of all, analogous to
Lemma 9.22 of Lebedev (1996) or Lemma 1 of Lebedev (1983) the process N
can be eliminated from Eq. (9.4). The following generalization of Lemma 9.24
of Lebedev (1996) or Lemma 3 of Lebedev (1983) is less trivial.

Lemma 9.2.1 Le~t there ezxist a very good solution-measure of FEq. (9.4) with
N = 0 and § € S2 under the additional assumption that the o-algebra F is
separable. Then, it exrists without this assumption.

The proof of Lemma 9.2.1 uses the following strengthening of Theorem 2.55
of Lebedev (1996) or Lemma 2 of Lebedev (1983).

Lemma 9.2.2 Let (E,£) be a measurable space and f be a P(F)QE- or O(F)®
E-measurable function on Q x Ry x E taking values in a separable metric space
S. Then, there exists a separable o-algebra G C F such that

(a) f is P(G) ® E- or O(G) ® E-measurable respectively, where G = (G N
Ft)teRy s

(b) any G-martingale is an F-martingale [that is, the stochastic basis
(Q,F,F,P) is a very good extension of (Q, F,G,P)].

PROOF. (a) is proved quite similarly to Theorem 2.55 of Lebedev (1996) or
Lemma 2 of Lebedev (1983). Now, let (g be a separable g-algebra with which
instead of G (a) is satisfied, A = (An)nen be a countable algebra generating the
o-algebra G(g), and G(1) be the o-algebra generated by G(g) and right-continuous
martingales (P(An|Ft))ier, for An € A. Since the o-algebra G(g) is separable
and the martingales (P(Ap|F:)) are determined completely by their values at
rational ¢, the o-algebra G() is also separable. Now, let Gy be the o-algebra
obtained from G(;) similar to G(1) from G(g), and so on, and G = V72 G(n)-
Property (a) is obviously preserved under extension of the o-algebra G, and
since Q(O) C @G it holds for the given G. Now it is sufficient to prove that
any bounded G-martingale is an F-martingale. Let M be an arbitrary right-
continuous bounded G-martingale. Then there exists P-a.s. My, = lim;_ oo M}
and the random variable M, can be chosen bounded and G-measurable. To
show that M is an F-martingale, it suffices to verify that for every ¢t € Ry
the random variable E(M|F;) is G-measurable upto P-null sets. Let H be
the set of bounded G-measurable random variables X for which E(X|F;) are
G-measurable upto P-null sets for all t € Ry. Then H is obviously linear, closed
under the uniform and the bounded monotone convergences and contains all
random variables of the form 14 for A € Gy, n =0,1,2,.... Let M consist of
such random variables. Since Gr,) C G(n) for m < n, the set M is closed under
multiplication, generating also the o-algebra G. Hence, by the monotone class
theorem H contains all G-measurable variables which gives the required result.

]
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PROOF OF LEMMA 9.2.1. First of all, we apply Lemma 9.2.2 to a strictly
positive P(F) ® £-measurable function V, belonging to LY2(), to the P(F)-
measurable processes ¢, B, X!, (X*, X*) for i > 2,

/E‘ lc'jﬂrkpl (du) - X!

and
/E lcjmpkpl(du) (X' XY

for i > 2, j,k € N, where C; = {V > 1} and for j > 2 C; = {277+ <
V < 279%2}, and T}, € £ constitute an algebra generating the o-algebra &, to
the O(F)-measurable processes X for i > 2, and also to the P(F) ® F ® &-
measurable function h. Let G C F be a separable o-algebra such that all
enumerated functions are adapted properly to the filtration G = (G;):er, with
G = GNF; and (Q,F,F,P) is a very good extension of (Q, F,G,P). Then
the function V is P(G) @ £)-measurable so that Eq. (9.4) keeps its sense under
passage from F to G, and the decomposition (9.3) for ¢ € L2(f, G) remains
such also with respect to G so that the conditions of the theorem also keep
their sense with respect to G.

By hypothesis, there exists a probability measure P on (2, G) with G = GQF
which is a very good weak solution of Eq. (9.4) with N = 0 with respect to G,
and 6 admits an extension to (2 x Ry x E,P(G) ® ) as a o-finite L2(Q, G, P)-
valued random measure. This means that the equality

X =h(X) %9, (9.5)

where the stochastic integral process is taken on the filtration G constructed
from G similarly to F from F, is valid up to P-indistinguishability and the
measure P admits the factorization

P(dw x dw) = P(dw) Q(w, d) (9.6)

with a regular transition measure Q from (2, G) to (2, F), for every t € Ry and
F € F; the function Q(-, F) being Gi-measurable up to P-null sets from G.
Now we construct the measure P on (Q,F) with the factorization (9.6)
and with the measure P on F instead of G. It remains be to proved that the
measure § admits an extension to (2x Ry x E, P(F)®&) and that the stochastic
integral process on G in the right-hand member of (9.5) remains such on F.
First of all, for ¢ € L2(6,F) by Theorem 1 of Lebedev (1995), we have the
decomposition (9.3), where the series converges unconditionally in S?(F) and,
in particular, for ¢ € L?(9, G) in S2(G). For a P(F)® £-measurable function ¢
on Q x Ry x E with |p| < V we define ¢ *6 by formula (9.3) and prove that the
series in (9.3) converges unconditionally in S?(F). At first, we can show that
by regularity (the very good property) of the passage from F to F the measure
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6 admits an extension to F and, in particular, to G as a o-finite L?(Q, F, P)-
valued random measure, as such it is extended uniquely, and V € LY“2(F). By
applying Theorem 1 of Lebedev (1995) on F for ¢ with |¢| < V, we obtain the
decomposition

o0 o0
gp*GZZ/Egpp;(w,du)-X“}—Z/Egoﬁg(w,du)-XJ, (9.7)
=1 j=1

where X7 are martingales on (Q, 7, F, P) orthogonal one to another and to X*
for 4 > 2, and p’ are the corresponding transition measures, both series con-
verging unconditionally in S?(F'). But the first series in the right-hand member
of (9.3) gives already an extension of the measure 6 to F and by its uniqueness
the second series in (9.7) is equal to 0 identically up to P-indistinguishability.
Besides that, the integral in the right-hand member of (9.5) has the same de-
composition of the form (9.3) on G and F. The lemma has been proved. M

So let N = 0 and the o-algebra F be separable. Let us introduce P(F) ® &-
measurable d-vector functions A,y on 2 X F by the formula

h(n)t (w,w) = ht(w, ‘Dtn)s

where t, = k/n if k/n <t < (k+1)/n, and ¢, = 0 if ¢t = 0. Then analogous
to Lemma 9.26 of Lebedev (1996) or the corresponding fragment of the proof
of Theorem 1 of Lebedev (1983), for each n € N the equation

XZh(m*@

has a unique solution-process X, on the original stochastic basis (2, 7, F, P).
Now let
Xty = JehmXw) p!(du) - X1,
X(cn) = fozl fE h’(n)(X(n)) p3l.—1(du) : X&_l’
Xy =221 s hny (X)) 3 (du) - X3,
Xy =221 Jehm)(Xm) p¥F (du) - X3

Then analogous to Lemma 9.28 of Lebedev (1996) or the corresponding frag-
ment of the proof of Theorem 1 of Lebedev (1983), Condition (1) of the theorem
ensures the tightness of the sequence of distributions on D[O’oo[(R‘id) with the

Skorokhod J;-topology of processes Rpy = (Xz’n), fn),XE]n),Xgn)), and the
condition of uniform convergence of the corresponding series on a Ji-compact
set ensures also the tight majorization of jumps for the sequence (R ,))nen-
Now let n be a random element of some compact metric space generating
the o-algebra F and now we apply the generalized Skorokhod theorem for the
weak-strong convergence of probability measures [Theorem 5.13 with account
of Remark 5.15 of Lebedev (1996), or Lemma 4 of Lebedev (1983)] to some
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subsequence extracted from the sequence (1, R(,)). Let (n©®, R) be the corre-
sponding limiting random element on a probability space (Q, F, 13), Gifort € Ry
be the o-algebra generated by random variables go(n(o)) for which ¢(n) are F;-
measurable, G; be the intersection for s > t of o-algebras generated by G, and
R, at 0<r <5, G=(G)ir, and G = (Gt)ier,. Let R = (X¥, X, X, XY)
and X = X” + X¢+ X7+ XJ. We must prove that any G-martingale is a
G-martingale [i.e., the stochastic basis (Q, F,G, 13) is a very good extension for
(Q,F,G,P)] and
X =h(n®,X)x0n®)

or,

X = Z / hn @, X) pi(n®, du) - X (n©), 9.8)

the series converging unconditionally in S?(G) under the proper G-localization.

The G-regularity in this sense of the stochastic basis (€2, 7, G,P) can be
proved as in Theorem 9.20 of Lebedev (1996) or in Theorem 1 of Lebedev (1983)
without any changes. We prove analogously [which is also analogous to limit
relations for stochastic integrals in §5 of Chapter IX of Jacod and Shiryaev
(1987)] that

X0 = [ @, %) 0 (1, dw) - X (),
E

that X¢, X9 and X’ are locally square-integrable martingales on (Q F,G,P P)
and that for alli € N and K € N

(x¢, x3-1(50)y)
/ h(n@, X) p* (@, du) - (X371 (@), X3 (nO)),
E

(X9, X% (5 )
[ 0@, ) 0% (0, ) - (X ), X% (),

(X7, XS (7))
[ h®, %) 05 (10, du) - (X ), X (0O,
E

(X<, Xk(n@)) = 0, (X9, X*n®)) = 0 and (X7, X*(n®)) = 0, respectively,
for k # 3i—1, k # 3i and k # 3¢+ 1 with some ¢ € N. Hence, we conclude that

Xc = Zfil fE h’(n(o)a X) P3i_1(77(0)a du’) : XSi—l(n(O)z + Xc,
1 [z hm®, X) p*(n©@, du) - X% (@) + X9,
®. [z h(®, X) p¥*1(n©), du) - X3+ (n(©)) 4 X7,

oo
I
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where X¢, X9 and X7 are locally square-integrable martingales on (Q, F, G, 13)
orthogonal to every X i(n(©) for i > 2, all series converging unconditionally in
S?(G) under the proper G-localization. From the continuity of functions

0 ) 2d Xz Xz'
/hp?n—l(du)} < de >

and > 2d(Xt, X%
3 )

2 [ o an)| A

in o € Q for the U-topology following from Condition (2) of the theorem,
we obtain that X¢ = 0 and X? = 0. Moreover, increments of (X7, X7) are
concentrated on the union of graphs of G-predictable stopping times exhausting
jumps of (X3*1 X3+1) for all n € N but X7 has no jumps on this set, and
hence X7 = 0. Thus, (9.8) holds as required. So, we have constructed the
solution-process X of Eq. (9.4) on the very good extension (Q,F,G,P) of the
stochastic basis (Q, F, G, P) isomorphic to the original (Q,F,F,P), which is
equivalent analogously to Proposition 9.16 of Lebedev (1996) or Theorem 2.18
of Jacod and Mémin (1981) to the existence of a very good solution-measure of

Eq. (9.4). -
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Tightness of Stochastic Families Arising From
Randomization Procedures

Mikhail Lifshits and Michel Weber

St. Petersburg State University, St. Petersburg, Russia
Université Louis-Pasteur, Strasbourg, France

Abstract: We consider the laws of Gaussian random elements arising from
randomization procedures in ergodic theory and real analysis. We find sufficient
conditions for the tightness of the corresponding families in the spaces C[0, 1]
and LP[0, 1] and demonstrate some crucial situations where tightness does not
take place.

Keywords and phrases: Gaussian random functions, measures in functional
spaces, randomization procedure, tightness

10.1 Introduction

Let (X, A,u) be a measure space with u(X) = 1, endowed with an ergodic
measure-preserving transformation T : X — X. Let also {£;, j € N} be a stan-
dard Gaussian i.i.d. sequence defined on another probability space (2, B, P).
To each element f € LP(u), we associate the following sequence of LP(u)-valued
random elements defined on €2

VI > 1, V(w,z) € Qx X, FY (w,z) = Z&; ().
_7<J

One should regard this object as a randomized version of classical averages,
JY i<a f oTY(z). The similar elements were introduced by Stein (1961, The-
orem 1) in the study of the continuity principle for ergodic transformations
where they played a key role in the probabilistic proof of his main result (to be
precise, Stein used Rademacher sequence as ;). More recently, by combining
this randomization technique with the theory of Gaussian processes, Bourgain
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(1988, Propositions 1 and 2) discovered a remarkable and useful entropy crite-
rion for the study of the almost everywhere convergence in ergodic theory and
related problems of real analysis. He considered more general randomizations

Frp(w,z) = % 3 6(w)(8if) (@),

<J

related to different sequences of linear operators .S;.

The tightness properties of the laws of the family {Fjf,J € N} led to
various refinements of Bourgain’s entropy criterion in Weber (1994, 1996). We
refer the interested reader to the recent monograph of Weber (1998) containing
detailed exposition of applications of F ;.

Although the role of Gaussian elements {Fjs} in ergodic theory is now
self-evident, they constitute a remarkable class of Gaussian random functions
independently of this kind of applications. In our opinion, the study of their
behavior may successfully contribute to the general theory of Gaussian random
functions. In Lifshits and Weber (1998), we adopted a “J-trajectory approach”
(with fixed z € X and integer variable J) and studied the oscillations of the
corresponding random sequences.

Inspired with several most interesting examples in Bourgain (1988) where
the sequences of shift operators S; appear in the definition of F s, we consider
in this work the families of random elements

J
FJ’f’)\("D) = J 12 Z flz+ /\J,j)fj
Jj=1

in the space LP[0,1] (or C0,1]) for f € LP|0,1] (or C]0,1] according to the
context), A € A, where A is the class of all triangular arrays taking values in
[0,1], J € N and §; a standard Gaussian i.i.d. sequence. We investigate the
tightness of the laws of these elements in the corresponding spaces (in what
follows, we identify the tightness of the family of random elements of vector
space with the tightness of the family of the corresponding laws).

There are two types of arrays of special interest coming from Bourgain
(1988): the sequences A\j; = A; and the array corresponding to randomized
Riemann sum Aj; = j/J.

We consider [0, 1] as a circle equipped with the structure of additive group.
This factorization enables to treat f(z + A ;) properly for all A;; and z.

Denote || - || the LP-norm for f € L? and let || - || denote LP-norm or C[0, 1]-
norm according to the context. Define for f € LP the modulus of continuity

wr(u) = sup [If(-+h) = f()llp.
0<h<lu

The modulus of continuity of the function f € C|[0, 1] coincides with that of the
space L*[0,1].
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10.2 Sufficient Condition of Tightness in C[0, 1]

We prove the following result.

Proposition 10.2.1 Let f be a continuous 1-periodic function. Assume that
its modulus of continuity wy(-) satisfies

/wa(u)/ (u |logu|) du < 0.

Let &; be a standard Gaussian i.i.d. sequence. Then the family of the processes

J
& = {Fj(x) =JV2N G f(@+Ngg), JEN A€ A}

=1
is tight in the space C|0, 1].

Remark 10.2.1 Moreover, if A\j; = A\;—0 and J—o0, this family converges
to the law of the degenerated process &; f(+).

PROOF OF THE PROPOSITION 10.2.1. For all J € N, z,y € [0, 1], we have

J
Var;(z,y) = Var(Fs(z)—Fi(y)=J""Y_[fl@+A5) — fly+ A )]
Jj=1

< sup[f(z + Ayy) — fFy+ M) < wpllz — yl)2

J

Hence,
Var(z,y) < wi(|jz —y|)2.

We deduce now the estimate for Dudley integral [see Lifshits (1995, Section 15)
for the definition; one could also use Fernique integral] which will be uniform
over J and A. Indeed, for each r > 0 and each J the intervals of length w;l(r)
form a covering of [0, 1] by the sets of diameter not exceeding r with respect
to the metric generated by the process Fj. Since the number of intervals is
1 /ijl(r), the Dudley integral ¢7(R) admits the estimate

Yy(R) < /OR \/log(l/w}?l(r))dr = /OR \/llogw}‘l(r)}dr.

By the variable change 7 = ws(u) and integration by parts, we obtain

w7 H(R)
vs(R) < /0 7 Nog(w)ldwy (w)

wT(R) w;I(R) w (U)
_ 1 ; / g
wr(wy/llog(u)] [+ [ e
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Moreover, the integral term is dominating, since the function wy is monotone
and we have for each u

wi(w)y/|log(u |<2/ W

Letting u = w;l(R), we obtain

w I(R)I/Q
J(R) SQ/ ! —wf—(u)—du—>0, (R—0).
0 [ log(u)]

Since the obtained estimate of 1 ;(R) is J-uniform, the tightness easily follows
via classical estimates of modulus of continuity using 1 ;(R); see, for example,
Lifshits (1995, Theorem 15.1, p. 216). ]

10.3 Continuous Generalization

We can transform the parameter A from the statement of Proposition 10.2.1 in
a continuous object. Let M denote the class of probabilistic measures on [0, 1].
For each measure p € M, let W, denote the white noise with variance u, and
define a random function

e / Fl@+ W, (dN).

Then the family
‘I’}M = {Ffupn € M}

is tight in C|0, 1] since, for each yu € M and z,y € [0, 1],
1
Var(Fyu(z) — Fru(y)) = Var /0 (F@+X) = Fy+2) W)
1
= [ 15X =y + V@) < wplle - yl)?
and the arguments of Proposition 10.2.1 work without further changes. Recall

that ® is a part of <I>}\", corresponding to the measures p = J 1 Z}'I=1 Oz, for
integer J and A € A.
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10.4 An Example of Non-Tightness in C|0, 1]

We start our construction with the following definition.

Definition 10.4.1 Let {d;} and {\;} be two positive sequences. We call a
continuous 1-periodic function f on (—o00,00) a function with (d, A)-complete
system of values if for each J € N and for each sequence {¢;} € {—1;+1}’
there exists « € [0,1] such that f(z + \;) =d;je;,1 < j < J.

This property means that all possible combinations of values appear simul-
taneously.

Proposition 10.4.1 Let {)\;} be arbitrary sequence and the sequence {d;} be
such that

J
limsup J~1/?2 Zdj = 00.

Let f be a function with (d, \)-complete system of values. Let &; be a standard
Gaussian i.i.d. sequence. Then the set of processes

J
by = {FJ(ZE) = J—1/2Zf(£l:+ )\j)fj, J > 1}

Jj=1
is not tight in C[0,1].

PROOF OF PROPOSITION 10.4.1. For all J € N, w € §2, we have

IFs()Il = sup JU/2
z€[0,1]

J
Z F(z+ X5)&;

j=1

J
D f@e 4+ X5)&

=1

J—-l/2

v

bl

where z, = .(w) is such that f(z. + \;) = d; sign(§;). Moreover,

J J
TN flaa+ )\j)fjl =J72Y " djlg)
j=1 Jj=1

and hence

J J
E|F;() 2 I Y4Bl = 2/n )Y dj.

j=1 j=1
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It follows that
limsup E||F(-)|| = oc.

J—0o0

[ |
The latter property is incompatible with tightness of Gaussian measures.

Proposition 10.4.2 Let {\; = 2 - 877} and assume that the sequence {d;}

satisfies
lim d; = 0.

J—00

Then there exists a function f with (d, \)-complete system of values.

Corollary 10.4.1 Let d; = Y3, Then, lim SUp ;o J /2 23]:1 d; = oo and
lim; o d; = 0. Assumptions of Propositions 10.4.1 and 10.4.2 are verified.
Thus, we obtain a family F; which is not tight.

PROOF OF PROPOSITION 10.4.2. We base our construction on the continuous
function g : R'— [~1, 1] defined as follows. Let

(a) g(t) =0o0n (—o00,1/8]U[4/8,5/8] U1, 00);
(b) g(t) =1 on [2/8,3/8] and g(t) = —1 over [6/8,7/8];

(c) gislinear on each of the remainder intervals [1/8,2/8], [3/8,4/8], [5/8,6/8],
and [7/8,1].

For each z € R!, consider the expansion
o0
T = zg + Z en ()87, zz € Z, cn(z) € [0..7] .
n=1

Denote |z| = 0 for integer x and
|z| = sup{n : cp(z) > 0} < 0

for non-integer zx.
Introduce a set of Cantor type

X :{x €[0,1) : |a| < 00, calx) € {0} U{4} ¥n}.

All possible combinations of values will appear on the elements of X.
Finally, define the function f on [0,1) by

fly) = Z dn z gm,n(y)

n=0  zeX(|z|<n
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with
gen(y) = g(8"(y — z))

and extend f periodically on R!.
It is easy to verify that the support Sz n of gz n is

- {yreiv) = @) € {0 U4} G =1 mi ena(v) & {0} U {41}

It follows that the supports of functions g » with different n are disjoint. In
particular, this observation confirms that the series which defines f, is uniformly
convergent.

It is also easy to see that for all y € Sz we have

gm,n(y) =+1 if cpt1(y) =2

and
gz,n(y) =-1 if cpra(y) =6.

It follows that for each j > 1 and for each z € X we have
f@+Xj) = djga; 5-1(z + Ag)
where z; = Y227} ¢,(2)8". We also obtain
fle+x) =d; if ¢(z)=0,
flx+ X)) =—d; if cj(x)=4.

This is sufficient to derive that 2 points {z € X, |z| < J} provide all possible
combinations €;d;, €; = £1 of the values f(z + A;). The system of values of f
is therefore (d, A)-complete. [ |

Remark 10.4.1 It is interesting to compare the variety of the values f(z+ \;)
with identity f(z) = 0 that holds for all z € X.

10.5 Sufficient Condition for Tightness in LP[0, 1]

We consider now the tightness of the same families of random elements F 1,1 (z)
in the space LP[0,1], for f € LP[0,1],\; € A. We start from some general
conditions providing tightness. For a,8 € [0,1], write « < B or a < (B if
B—ac€0,1/2) or B—a € (0,1/2), respectively. In these cases, we understand
[, 0] as {z : o < z < B} etc.

Let || - || or || - ||, denote LP-norm and for f € LP let us use the notion of
LP-modulus of continuity ws(u) as stated in the introduction.

Recall some basic results about the relative compactness of sets in LP[0, 1].
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Theorem 10.5.1 Let p € [1,00) and F be a subset of LP[0,1]. Then F is
relatively compact if and only if it is uniformly bounded, that is,

sup || f]| < oo,
]:'

and uniformly continuous, that is,

ili%s‘}pwf(“) =0.

This LP-version Arzela-Ascoli theorem [see the proof in Dunford and Schwartz
(1958, p. 298)] will not be applied directly, but it is useful for better understand-
ing of the following criterion of the tightness of the family of the measures.

Theorem 10.5.2 Letp € [1,00). A family ® of random functions with sample
paths in LP is tight if and only if

lim sup P{||F||>M}=0
M—oo ped
and for each € > 0
lim sup P{wp(u) >¢e}=0.

u—0 peco

This criterion yields the following simplified Gaussian version.

Theorem 10.5.3 Let p € [1,00). A family ® of centered Gaussian random
functions is tight in L? if

sup E||F|? < o (10.1)
Fed
and
lim sup Ewp(u)? =0. (10.2)
u—=0 ped

In what follows, we always verify (10.1) and (10.2). In our special case, for
(10.1) we have the estimate

1
E|Fjallf = E/O |Fy £ (2)|Pdz
1 J
- /0 JPPE|Y f(z + Ay g Pdz
j=1

1 J
= cpJ—p/Q/[ f($+>\J7j)2]p/2da?
0 ¢

J=1

with ¢, = E[&|P.
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It is good enough for p > 2, since discrete Holder inequality yields

7 7 2/p ; q1-2/p
S flm+ A < {Z |f(z+ )\J,j)lp} {Z 1]
j=1 J=1

=1

which implies

p/2 J
[Z flz+ )\J,j)2} < JPPIN | f(z 4 Agg)IP

J=1 J=1

and

1 J
Bl <6 [ DI+ ApPde =l (103)
J=1

The latter inequality serves as a powerful instrument of “closure”, i.e., for
the passage from the “nice” functions to arbitrary ones.
In the case p € [1,2), we still have a Holder estimate

E||FspallP < [BIFs PP < 1 £113 (10.4)

which is not always efficient, especially for f € LP\L?. However, in certain
situations, it is also useful (see a counter-example for LP below).

Remark 10.5.1 The interested reader may compare Theorem 10.5.3 with al-
ternative tightness criteria for LP-spaces, [cf. Baushev (1987), Nguyen, Tarieladze,
and Chobanyan (1978), and Suquet (1998).]

10.6 Indicator Functions

We show now that indicator functions f, = 1jo4) generate tight families in
LP, 1 < p < oo. Closing procedure will enable to extend this result on the class
of arbitrary functions f in LP, 2 < p < oo, while for 1 < p < 2 the general
result is false.

Theorem 10.6.1 The family of random functions
P = {FJyfm)\, ac [0,1),)\ eNJE€ N}

is tight in each LP, p € [1,00).
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PROOF OF THEOREM 10.6.1. In order to keep transparent notations for inter-
vals, we consider only the case 0 < a < 1/2; there is no loss of generality. We
fix and abandon during this proof the indices J,a, A for F. Our estimates will
be uniform over these parameters.

We apply Theorem 10.5.3. Let us estimate the moments and the modulus
of continuity. For the moments, we already have by (10.3) and (10.4)

E[|F|P < ¢cq [I£117, ¢ =max{2,p}.

This bound is uniform over ®. Now we pass to the modulus of continuity.
Take an integer M > 5, let u = M~L. For each integer k € [0..M — 1], let
tx = k/M and Ij = [tg,tx + 2u). Then for each = € I, we have

ﬂ@—F@)ngWL > & - > 4

SJ,&—AJ,jG(tk,JI] jSJ,—AJ,jE(tk,Z]
=J4Www—muﬁ

Next,

sup |F(z) — F(y)|
z,y€l)

< T sup W) - W1+ s Wi o) - W]
z,y€l} z,y€ly

The oscillations of the processes W,;F , W are bounded by the numbers of terms
in the corresponding sums,

Nf =#{ji < Ja—Xj; € (tr, trsa)},

Ny =#{j < J,=Xs; € (tk, tet2)} -
By evident reasons,
M-1 M-1
max{ZN,j;ZNk_}_<_2J.
k=0 k=0

Since the process W,j is a composition of consecutive sums of standard Gaussian
i.i.d. variables, we bound its oscillation with oscillation of a Wiener process W.

Remark 10.6.1 This idea could also work for non-Gaussian §; with symmetric
distribution and finite moments of all orders.
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We have

E sup |Wy () - W ()l
x7yelk

Il

P
E <sup W (z)+ sup(—W,:r(y)))
€} y€lk

< 71E <sup Wit (z)P + sup(—W,j(y))”)
€l y€Elx

= 2PE(sup W (z))? < 2PE( sup W(z))P
k
zeli 0<z<N;

PE|W (NP = 2Pc,(N;)P/2.

Similarly,
E sup |W; (z) — Wi ()P < 2Pcy (N )P/2.
mvyelk

Now we are able to calculate the mean oscillations of the functions F'. For each
h € [0,u], we have

IFC+R) = FOI = [ P+ )~ Fa)Pds
0
M-1

- ¥ / \F(z + h) — F(z)Pdz
=0 Jteotetw)
M-1
< uw ) sup |F(z)—F(y)P
k=0 :l:,yEIk

and

Ewp(u)? = EilipllF('+h)—F(')llp

M-1
< PepPPu Y (NP + (NG )PP,
k=0

If p > 2, we have

M-1 M—1 p/2 M—1 p/2
STUNG PR+ (NP < (Z (NJ)) + (Z <N,:)) < 2(2J)?/?

k=0 k=0 k=0

and
Ewp(u)? < 23p/2+1cpu — 0 (u—0)

uniformly over FF € ®. If p € [1,2), the estimate is not so good but still
sufficient:

M—1 M—1 p/2 M-1 p/2
STUNHPR+ (NDP?) < M[(Z N:/M) +<Z N::/M) }
k=0

k=0 k=0
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M-1 P/2 a1 /2
MP/2 [(Z N,j) + (Z N,;) ]
k=0 k=0
< P12 J)P/?
and
Ewp(u)? < 23"’/2“0,,1;”/2 - 0 (u—0)
uniformly over F' € ®. Condition (10.2) is verified and application of Theorem

10.5.3 completes the proof. |

Corollary 10.6.1 Let f be a function in LP, p > 2. Then the family of random

functions
b, = {Frfrn, A€EAJE N}

is tight in LP.
PROOF. First, let
f(@) =1gttq(), 0<t<it+a<l

Then &7 = {Fys,2(-—1t), A€ A, J € N} and the tightness follows from
Theorem 10.6.1. Next, recall that tightness is a property stable with respect
to linear operations on random vectors (linear combination of compact sets is
a compact). Therefore, we obtain the result for any function of the type
M-1
9(@) = > gkl ey k1)) (@) (10.5)
k=0

Let now f be an arbitrary function. Inequality (10.1) for ® follows directly
from closure inequality (10.3). Next, for arbitrary € > 0, choose g of type (10.5)
such that || f — g|| < e. Then we have

wFJ,f)\ (U) S wFJ,g,)\ (U) + 2“FJ,f—g,)\“’

Bwr,,,@f < 277 (Bur,,,@? + 2°E|Fiy_galP)
or-1 (E Wy, 5 WP + 2pap)

AN

and hence

lim sup Ewp, ; , (u)?P < 2P~1 | lim sup Ewp, _ , (u)P + 2PeP | = 22~ 1P,
u—0 g3 A u—0 g3 9

Since € could be chosen arbitrarily small, we obtain (10.2) for ®;.

Remark 10.6.2 For p € [1,2), this method only yields the tightness of ®; in
L? for f € L2. This is trivial, since for f € L? we have obtained the tightness
in L2-topology which is stronger than LP-topology.
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Continuous generalization

We trace here a “continuous” generalization analogous to that described above
for C[0,1]. Recall that M denotes the class of all probabilistic measures on
[0, 1], W, is the white noise with variance u € M, and

1
Fyu(z) = /0 @+ W (V).

The family @}M = {Ffu, 1 € M} contains ®; and is still tight in LP, p > 2. The
proof of tightness remains almost the same. In particular, for closure inequality
(p > 2) we have

1 1 p/2 .
E|F, P = /0 E|F} ,(z)Pdz = / [/0 Fo+ 02| da

/(;1 {/01 f(z + ,\)|p,u(d)\)] dz = || f|I3.

IN

Estimating the modulus of continuity for the key case f(z) = 1jgq)(z) and
using old notations for M,u,tk, Iy, one obtains the representation

Fyu(x) = Wy[-z,—x +a)
and for x € I
Ffu(x) — Fypu(te) = Wul-z, —tk) — Wul-z + a, —tx + a).

Observe that these expressions are the processes with independent increments of
argument x. Next, the proof follows the old way but instead of NV, ,:r and N, one
should control the variances N,::u = u[—tg42,tx) and Ni,= pl—tgro+a,tpg+a);
the sum of expressions of each type is bounded by 2.

10.7 An Example of Non-Tightness in L?, p € [1,2)

Consider the tightness of the families of random elements

J
Fipal@) =J72Y " fla + A
i=1
in the space L?[0,1], for f € LP[0,1],{\;} € [0,1]*,J € N. We give a para-
metric series of examples of functions f € LP[0,1], p € [1,2) and sequences A

such that the family
&= {Fs JeN}

is not tight in LP[0, 1].
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Construction

Fixpe [1,2),q € [p,2) and let for m € N
Mm = 2m2/q, lm - m—22_m2, km - m2m2.

Consider the function

f@)=> Mnly, . 10 (@)
m=1
and the sequence

Y = {=1, =20, ey =KLt ey =l ooy — kil .-

We have immediately

1B <IfIE< S Mol =3 m™ < oo
m=1 m=1

and hence f € L9[0,1] C LP[0, 1].

Estimation

Consider the subsequence J, = Y 1 km.-
From now on, fix n and omit Jy, A in the notation thus replacing Fj, 4\ by
simple F,;. We have

f=Fh+fa+ fs,
where
n—1 ’ 0o
A=) Mnly 0y, fo=Mdy 0y, fs= >, Muly -
m=1 m=n+1

In fact, we wish to get rid of fi, f3. Towards this aim, write

n—1 n—1
1413 = Y Mi(m—lmi1) <Y Milnm
m=1 m=1

n—1
= Z 9(2/g-1)m?  —2 < 23(2 —_ q)—-12(2/q—1)(n—1)2‘

m=1
By closure inequality (10.4), we have
E|Fy, |12 < || f1]5 < 2%P/2(2 — q)~P/22(p/a=p/2)(n=1)?,

On the other hand, let U denote the support of the function Fy,. Then U is
contained in the union of J,, intervals

(=X =Aj + ], 1<j< Jy.
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We obtain a bound for Lebesgue measure of U,
mesU < Jplny1 < 2kplny1 < gl4n?—(n+1)2 <2 < (4n)‘1.

On the other hand, for the main term we have

Jn
Fr(z) = J72Y fale + X))
7=1
Jn-l

j=1

kn
+ I M S Lkt (e 1)) (B)Ed 4k
k=1

= Fa(z)+ Fp(z)
where the functions F)4 and Fp are symmetric and independent. Let

kn

I=Jllns1 + kin, (k+ 1)ln).
k=1

Then
mes I = kn(ln — lny1) > knln/2 = (2n) 7L

We start the key estimate with

1
E|Ffll; = | ElFfitfo+5(2)Pde 2 E|Ff 15, (2)Pda.
0 1-U

By linearity,

|Ff2| = |F—f1 —+ Ff1+f2| < |Ff1| —+ |Ff1+f2|a
|FplP < 2P7N(|Fg P+ |FryyplP),
\Fripl? = 2V7P|FplP — |Fp P

and we obtain for the expectations

BIFIE = [ 2 7E|Fy, ()P Bl Fy

v

(mes I — mesU)217P alcrelgElFA(ﬂi) + Fp(2)[P — E||Fy [}
) 71217 inf B|F(z)|” — EllFy |15

v

v

(4n
(4n)‘121‘pJ,:p/2M,’L’cp —2%/2(9 q)—17/22(q/p—p/2)(n—1)2
(4n) 1217 (2k,) P2 MPc, — 2%P/2(2 — q)~P/2(a/p-p/D)(n-1)?

vV v

n—l-p/2cpg—1—317/2+(zo/q—p/Q)n2 — 93p/2(9 — q)~P/29(a/p-p/2)(n~1)?

— O
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when n—oo. Therefore, we have obtained

3 p 3 y -
limsup Bl Fyfallp 2 lim Bl Fy, allf = oo

and the tightness does not take place.

Acknowledgement. The work of the first author was supported by Russian
Foundation of Basic Research and INTAS, Grants 96-01-672, 95-0099.
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Long-Time Behavior of Multi-Particle Markovian
Models

A. D. Manita

M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: We find convergence time to equilibrium for wide classes of large
multi-particle Markovian systems. We show that if a “one-particle” state space
is large, then the long-time behavior of the multi-particle Markovian system
strongly depends on the type of stochastic evolution of a single particle.

Keywords and phrases: Convergence time to equilibrium, multi-particle
Markov chains, nonreversible Markov chains, Monte Carlo Markov chains, queue

ing models

11.1 Introduction

From the standpoint of computer simulation of Markovian stochastic systems,
it is important to estimate the number of steps which are needed to approach
the stationary distribution. This problem is important for dynamic Monte
Carlo methods, Metropolis—Hastings algorithms, simulated annealing and im-
age analysis. The special feature of these simulations is that the state space of
a simulated system is finite but very large. This is the reason why this problem
attracts widespread attention of experts in statistical physics, applied statistics
and theory of computer algorithms.

In the majority of Markovian models of networks and multi-component sys-
tems in statistical physics, besides the standard Markovian property, there is
some additional structure. This structure is determined by features peculiar to
the state space and to the transitions between states. Undoubtedly, this struc-
ture exerts qualitative effect on convergence time to equilibrium. The notion of
convergence time to equilibrium [see Manita (1996, 1999)] is an mathematical
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formalization of “the number of steps of an algorithm needed for approaching
the stationary distribution”.

By a multi-particle Markov chain, we mean a system consisting of M(N)
particles, each evolving on large “one-particle” state space K(N). We are
interested mainly in the situation when both M(N) and |K(N)| tend to oo
as N — oo. In this setting, the term “particle” is a matter of convention. It is
used only to invoke physical intuition. The role of particles can be played by
messages in large communication network or by customers in a queueing sys-
tem with large number of nodes. Here we consider the case when an interaction
between different particles is absent. A presence of interaction generally creates
additional mathematical difficulties. The present work should be considered as
the first step in studying the convergence time to equilibrium for more general
Markovian systems of particles with interaction.

11.2 Convergence Time to Equilibrium

We consider sequences L(N), N =1,2,..., where L(N) is a finite Markov chain
on state space X (N). We assume that | X (N)| — oo as N — oo. In this Section,
we recall the notion of convergence time to equilibrium (CTE) for the sequence
of Markov chains L(N).

Let Py be a transition matrix of the Markov chain £(N). Let y = (uq, @ €
X(N)) denote an initial distribution of £(N). Then distribution of the chain
at time ¢ is equal to u P}, where P} is the t-th power of the matrix Py.

We assume that each chain £(N) is irreducible and aperiodic. Hence, each
chain £(N) is ergodic. Denote by 7V = (), a € X(N)) the stationary distri-
bution of L(N).

The wvariation distance between two probability distributions v and p is
defined as follows:

1
lv=pl= suwp [(B)=pB)l=5 > |v=—psl.
BCX(N) 2€X(N)

In the sequel, we denote by P(X) the set of probability distributions on a
finite set X.

Definition 11.2.1 [Manita (1999)] We say that a function T'(N) is a conver-
gence time to equilibrium if for any function ¥(N) T oo

sup || pPy ™Y — 7V |- 0, N oo, (11.1)
m
where sup is taken over all initial distributions of the chain L(N): u € P(X(N)).

The convergence time to equilibrium T'(N) is called a minimal CTE if for
any function T"(N) satisfying (11.1), we have T(N) = O(T'(N)) as N — oo.
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Remark 11.2.1 The minimal CTE is unique up to the following equivalence
relation:

. Ti(N)
< limsup ——= < 4+
To(N) = Nowe To(N)

Ti(N) ~ To(N) €& 0 < lim inf Ti(N)
—00

Note that for any fixed N, the function sup || uP% — 7 || decreases mono-
tonically in ¢. Hence, we have the following s"éatement.
Proposition 11.2.1 Let a function §(N) be such that sup || MP;(),(N)—WN |I— 0,
as N — oco. Then, 8(N) is the CTE in the sense of De;?m’tion 11.2.1.

The next proposition follows from Definition 11.2.1.

Proposition 11.2.2 A function T(N) is the minimal CTE iff condition (11.1)
holds and for any function ¢(N) — oo

sup | wPy®I N | 0, N — o

Remark 11.2.2 To show that CTE T'(N) is minimal, it is sufficient to prove
the following statement: there exist a sequence of initial distributions {3},
v € P(X(N)), and a sequence of sets of states Ay, Ay C X(N), such that

1. for any function ¢(N) — oo,

MNPJ%;(N)NS(N)(AN)_)O, N = oo;

2. ™V(AN) — 1, N — 0.

In [Manita (1996, 1999)] the CTE T(N) was found for sequences of fi-
nite Markov chains {£(NN)} that are truncations of some geometrically ergodic
countable chain. Moreover, in Manita (1999) some queueing applications of the
obtained results were considered. Other examples are given in Section 11.4 of
the present paper (see Remark 11.4.2 and Examples 11.4.1-11.4.3).

11.3 Multi-Particle Markov Chains

Let K be a finite set, X = {£(¢),t € Z;} be an irreducible aperiodic Markov
chain on K with transition matrix R = (r;;). It is well known that such a
Markov chain is ergodic. Denote by v = (v,j € K) € P(K) the stationary
distribution of the chain K. We shall interpret the random variable £(t) as a
position of some particle at time t. We assume that this particle moves over
the set K according to the law of the chain K.
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Now we are going to consider a system L(K, M) consisting of M noninter-
acting particles moving according to the law of the “one-particle” Markov chain
K. This system of particles can be described in two different ways: in terms of
distinguishable or indistinguishable particles.

Let £1(t),...,6M)(t) be M independent copies of the Markov chain K.
Consider a new Markov chain £(t) = (€M (2),...,6M)(t)) on state space

KME{kZ(kla"-akM): km € K, m=1,,M}

By assumption, the one-particle chain £(¢) is ergodic. This implies that the
chain &(t) is also ergodic.

The Markov chain &(t) describes the evolution of a system consisting of M
noninteracting particles. Therewith particles are numbered, and £™)(¢) is a
position of the particle m at time t. Such representation of the system of non-
interacting particles will be called the representation in terms of distinguishable
particles or briefly the &-representation. Sometimes, we shall use the notation
Le(K, M) for the chain {£(t),t € Z } to point out its dependence on K and M.

Sometimes, in the situation when particles are identical, it is more conve-
nient to consider another state space. Let n;(t) be the number of particles of
the process &(-) situated at state j at time ¢. Consider the random sequence

n(t) = (n;(t),j € K), t=0,1,2,....

It is easy to check that n(t) is a Markov chain on the state space

NK, M) {y: (nieK) eZ¥: Su :M}.
1eK

Under such choice of state space, we are interested only in that how many
particles are placed at a specified state. On contrast to the case of §-representa-
tion, here particles are indistinguishable. Such representation of a system of
noninteracting particles will be called the n-representation. To point out the
dependence of this construction on the one-particle chain X and the number of
particles M, we shall denote sometimes the chain {n(t),t € Z;} by L,(K, M).

Below we consider systems consisting of many particles under the assump-
tion that one-particle chains may be “large”. More precisely, let {C(N)} be
a sequence of finite one-particle chains with state spaces K(IN), and {M(N)}
be some sequence of positive integers. The subject of our investigation is the
system L(KX(N), M(N)) consisting of M (N) noninteracting particles moving ac-
cording to the law of the chain (V). We shall always assume that M(N) — oo
or |[K(N)| = o0 as N — oco. Our aim is to find the CTE for the sequence

L(N) % £(x(N), M(N)). Tt will be seen from Sections 11.4 and 11.5 that the
form of this CTE depends on the nature of chosen sequence X(N). All results
of this chapter hold for both (£ and n) representations.
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11.4 H and S-Classes of One-Particle Chains

Let K(N) be a irreducible aperiodic finite Markov chain with state space K(N),
transition matrix By = (ri;(N)); jek(v) and stationary distribution vV =
(), § € K(N)).

Let h(N) > 0 be a monotone function increasing to oo.

Definition 11.4.1 We say that a sequence of Markov chains KC(IN) belongs to
the H-class with function h = h(N), and write {IC(N)} € H(h), if the following
conditions hold:

1. There exist Cy,v2 > 0 such that

sup || Ry — vV | < Co M exp (—yot) Wi
voeP(K(N))

2. There exist constants a1,as > 0 and sequences of states {ixy} and {jn},

in,jn € K(IN), such that |’r$NjN —Vjy| > a1 >0 Vt<agh(N);

3. There exist constants C1,71 > 0, a sequence of states {kx}, ky € K(N),
and Ng € N such that uniformly in N > Ny

Irknky — Viw| > Crexp (—mt) Vi

Condition 1 of Definition 11.4.1 is typical for sequences of Markov chains
IC(N) that are truncations [see Manita (1999)] of some countable geometrically
ergodic Markov chain K which possesses a Liapunov function. Markov chains
characterized by Condition 2 have “bounded” one-step transitions in the sense
that it is impossible to do transition between “widely separated” states in a
limited time. Examples are provided by random walks with bounded jumps.
Verifying of the fulfilment of Condition 3 is a particular problem.

Let s(N) > 0 be a monotone function increasing to oco.

Definition 11.4.2 We say that the sequence of Markov chains X(N) belongs
to the S-class with function s = s(IN), and write {K(N)} € S(s), if the following
conditions hold:

1. There exist Ca,v2,a0 > 0 such that for all ¢t > ags(N)

sup | Ry — vV || < Coexp (—yat/s(N));
0
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2. There exist constants C1,71 > 0, a sequence of states {kn}, kv € K(N),
and a sequence of sets {By}, B~ C K(IV), such that for sufficiently
large N

|P {£(t) € Bn|€(0) = kn} — v(Bn)| > Crexp (‘713&)) vi.

Remark 11.4.1 Condition 2 of Definition 11.4.2 is equivalent to the following
condition: there exist constants C1,v1 > 0 and a sequence of initial states {kn},
kn € K(N), such that for all sufficiently large N

N i
||TZN-—V | > Crexp <_7ls_(—]_\f—5) Vt.

[Here 7. € P(K(N)) is the distribution of K(N) at time ¢, provided that the
chain is located at time 0 at the initial state k]

Remark 11.4.2 If {K(N)} € H(h), then the minimal convergence time to
equilibrium for the sequence of one-particle chains K(N) is equal to Tic(N) =
h(N). If {K(N)} € S(s), then Tic(N) = s(N).

Example 11.4.1 Markov chain K(N) in this example is the discrete ana-
logue of the queueing system M|M|1|N. Namely, consider a set K(N) =
{0,1,...,N} = [0,N] N Z and a Markov chain K(N) with state space K(NV)
and the following transition probabilities: 7;;41(N) = p for 0 < i < N,
rii-1(N) = ¢, for 0 < i < N, riz(N) =7, for 0 < i < N, roo(N) = g+,
rNN(N)=p+r,p+q+7r =1 If p#q, then {K(N)} € H(N).

Example 11.4.2 Let X(N) be the same as in Example 11.4.1, but p = ¢ =
(1 —r)/2. In this case, {K(N)} € S(N?).

Example 11.4.3 Consider the discrete circle Zon1 = Z/(2N + 1)Z and the
simple random walk on it. More precisely, as an one-particle chain K(N), we
consider the random walk £(t) on the set K(N) = {0,...,2N} with periodic
boundary conditions and the following jump probabilities:

Ti,j(N)Z% for j—i==%1 (mod 2N +1)

and 7;;(N) = 0 for any other pair (4,7). As in Example 11.4.2, one can show
that {KC(N)} € S(N?).

Details can be found in Manita (1997).
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11.5 Minimal CTE for Multi-Particle Chains

Let Tx(N) denote the minimal CTE for the sequence of one-particle chains

K(N). Consider the sequence of multi-particle chains £L(N) 4 L(K(N), M(N)).
We shall deal with the situation when at least one of sequences {M(N)} and
{IK(N)|} tends to oo as N — oco. Let T(N) denote the minimal CTE for the
sequence L(N). Our main results about large multi-particle Markov chains are
summarized in the following theorem.

Theorem

1. If M(N) = M = const (i.e., the number of particles is fired), then T(N)
= Txc(N).

2. If K(N) =K (i.e., the one-particle chain is fized), then T(N) =
log M(N).

8. If {K(N)} belongs to the H-class, then T(N) = max(Tic(N),log M(N)).

4. If {K(N)} belongs to the S-class, then T(N) = Txc(N) log M(N).

Statements of the theorem hold for both (¢ and n) representations of the
multi-particle chain L(K(N), M(N)). Comparing items 3 and 4 of the theorem
with item 2, we see that in the situation when one-particle chain is large the
nature of {K(N)} is important for the CTE T(N).

Proofs are given in Section 11.6.

Remark 11.5.1 Item 2 of the above theorem generalizes Proposition 7.7 in
Aldous and Diaconis (1987) wherein random walks on finite groups were studied
and result similar to item 2 was obtained for the case when K is a random walk
on a finite group. In our theorem, K is an arbitrary finite ergodic Markov
chain. Methods of this chapter are different from methods used by Aldous and
Diaconis (1987).
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11.6 Proofs

Preliminary results

Denote by P = (pk1)y jckn the transition matrix of the chain L¢(K, M) and by
7w = w(K, M) € P(KM) its stationary distribution. It is easy to see that

M
Pkl = H Tkpmlm s k:(k‘l,...,k‘M), l:(ll,---,lM),
m=1

M=VUX- XV, le, Mx=Ug: Vg, (11.2)
M

Lemma 11.6.1 sup |[pP'—=| < M sup |woR!—v|.
HEP(KM) r€eP(K)

PROOF. Let (i1,...,ip) € KM. Then

>

M M
H Tfljl - H Vii
=1

jlr--:jM =1
M M M
= Z (rfljl — V1) H rfzjz + Vi, (H 'rfzjt - H le) ‘
M M
¢ ¢
< Z [riljl — Vil + Z Hriljl - Hl/j,
J J25eendn 11=2 1=2
M M
< 2sup|lwR! —v|| + Z Hrfljl — H V|-
" Gasenibr 11=2 i=2
Using this line of reasoning, we obtain Lemma 11.6.1. |

Let us introduce the map x : KM — N(K, M),

x(k) = (xj(k),j €K),  xj(k)=#{m: km =j},

where #A = |A| is the cardinality of the finite set A. For any distribution
p € P(KM), denote p» def pox~t e PIN(K, M)).

Lemma 11.6.2 [[p" =" < [lo—nll  Vp,n € P(KM).
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PROOF. It is easily noted that

o™ =" = sup |p"(D)—n"(D)|
DeN(K,M)
= sup |p(x"'D)—n(x"'D)]
DeN(K,M)

< sup |p(B)=n(B)| = |lo—nll
BeKM
]

It is easy to check that n(t) = (n;(t),j € K) = x(£(¢)) and #* =mwoxlis
the stationary distribution of the Markov chain £,(K, M). Moreover, 7™ has
the polynomial form

(Ui)yi
iek IV
Denote e; = (0,...,0,1,0,...,0) € R 7t = rfj and np(t) = Y n,;(t).
2 jE€B jEB
Lemma 11.6.3 If 6 > %,6 > 0 then uniformly ini € K, BCKandte N
1
P {InB(t) — Mrig| > eM’ | n(0) = Mei} < M1

PROOF. At given initial condition, at time ¢ each of M particles is at the
set B with probability r{; independently of other particles. Since np(t) =

M
S 1(6(™)(t) € B), we have that the conditional distribution of np(t) as bi-
m=1

nomial: P{ng(t) =1|n(0) = Me;} = C,(rig)'(1 —rig)M 1 =0,1,..., M.
Hence E (np(t)) = M rig and Var (np(t)) = M rig(1 —rig) < M/4 uniformly
in 7, B and t. Now statement of the lemma easily follows from the Chebyshev

inequality. |
Remark 11.6.1 It follows from (11.3) the stationary distribution of n; is bi-
nomial, namely, 7V {n; = r} = v (1= vy r =0,1,...,M. Hence,

Exng = Mv(B), Varz(ng) = Mv(B)(1 — v(B)), where np = Y n;. Using the
j€B
Chebyshev inequality, we get the following uniform estimate:
1 1
Vi > §,€>0 7\'“(|TLB-MU(B)I>€MK)SW.
Let {IC(N)} be a sequence of finite one-particle chains with state spaces
K(N), and {M(N)} be some sequence of positive integers. We shall always
assume that M(N) — oo or |K(N)| — oo as N — o0o. Consider the system of
M (N) noninteracting particles moving according to the law of the chain C(N).
As already noted in Section 11.3, this system of particles can be described in
terms of distinguishable or indistinguishable particles. The following question
arises: does the convergence time to equilibrium depend on the choice of the
representation or not ?

(11.4)
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Proposition 11.6.1

1. Suppose that a function TE’(N ) is the convergence time to equilibrium for
the sequence of chains L¢(K(N),M(N)). Then, the function T¢(N) is
the convergence time to equilibrium for the sequence of chains L£,(K(N),
M(N)).

2. Suppose that a function T,(N) is the minimal convergence time to equi-
librium for the sequence Ln,(K(N), M(N)) and is the convergence time to
equilibrium for the sequence L¢(KC(N), M(N)). Then, the function T,(N)
is the minimal convergence time to equilibrium for the sequence of Markov
chains L¢(K(N), M(N)).

Proposition 11.6.1 is an easy consequence of Definition 11.2.1 and Lemma
11.6.2.

General idea

Let us fix some notation. Let K(N) denote the state space of one-particle

Markov chain K(N), Rx = (rij(N)); jek(n) be its transition matrix, and vV =

(VJN , J € K(IV)) be its stationary distribution. Consider a sequence of multi-

particle systems {L(K(N), M(N)), N € N}. In &-representation: the state

space of the multi-particle chain L¢(K(N), M(N)) is the set X (N) = K(N)M M),
M(N

transition probabilities have the form py; = py(N) = ( 1) Tkmim (IV), the sta-
m=

tionary distribution is

™ =(m,le X(N)=vN x---x V.
N’
M(N)

In n-representation: the state space of the chain £,(K(N), M(N)) is the set
Xn(N) = N(K(N), M(N)), the stationary distribution defined in (11.3) will be
denoted by ™% and the state of the chain at time ¢ will be denoted by n? (¢).

Proof of each item of the main theorem will consist of the following steps.

Step 1: We prove that the function T (N) is the CTE for the sequence
Le(K(N), M(N)). To do this, we shall use Lemma 11.6.1.

Step 2: We prove that the function T'(N) is the minimal CTE for the
sequence L,(K(N),M(N)). By Proposition 11.2.2 and Remark 11.2.2 it is
sufficient to show that there exist a sequence of initial states y}' € X,(N) and
a sequence of sets of states Ay C X,(IN) such that the following conditions
hold:

e For any function of the form ¢(N) = T(N)/¢(N), where ¢(N) is an
arbitrary function tending to oo, we have

P {nN(t(N)) ¢ Ay|n™(0) =y } -1 (N — ). (11.5)
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7 N(Ay) =1 (N - ). (11.6)

Then it will follow from Proposition 11.6.1 that T'(/N) is the minimal CTE
for both (£ and n) representations of the multi-particle system L(X(N), M(N)).

The case when the number of particles is fixed

Here we prove item 1 of the main theorem. It is assumed that the one-particle
chain K(N) depends on N but the number of particles M is fized, i.e. L(N) =
L(K(N), M). This case is rather simple.

Let us prove that T'(N) = Tx(N) is the CTE for the multi-particle chain
L¢(K(N),M). By Lemma 11.6.1 for any function %(N) 1 co we have

sup “/.LP£(N)¢(N) _ 71.N“ < M sup 'IVOR}:{,C(NW(N) _ I/N”.
peP(X(N)) €P(K(N))
By definition of CTE the r.h.s. of the bound vanishes as N — oo. Step 1 is

thus proved.

Let us show now that the function T'(N) = Tic(N) is the minimal CTE for
the multi-particle chain £,(K(N), M). By assumption, Tx(N) is the minimal
CTE for the sequence of chains K(N). The application of Proposition 11.2.2
yields that for any function ¢(N) — oo

sup || R M) N 450, N - co.
vo

It immediately follows that there exist sequences iy € K(N) and By C K(N)
such that

N
Z 7;il;,vc](N)/dK )(N)—VN(BN)
JEBN

#— 0, N — 0. (11.7)

Consider a sequence of states y}y = Me;, € X,(N) and a sequence of sets

Av={y: Y yi=M}C Xa(N).
i€By

It is easy to see that 7™V (Ay) = (VN(BN))M and
M
P{n"(t) € AninV(0) =y} = ( > rfNj<N>) -
JEBN
Recall that M is fixed. Hence, using (11.7) we get
[P {nN (@c(N)/6(N)) € Anln™ (0) = y§'} — 7™V (Ay)| £ 0, N = co.

Step 2 thus proved. Now, item 1 of the theorem follows from Proposition 11.6.1.



172 A. D. Manita

The case when one-particle chain is fixed

Here we prove item 2 of the main theorem. The one-particle chain K is fized
but the number of particles M tends to infinity. By assumption, the finite
Markov chain K is ergodic. It is well known [Karlin (1968)] that such Markov
chain converges exponentially fast to its stationary distribution, i.e., there exist
C > 0 and v > 0 such that

sup ||rk. — V|| < Cexp(—nt). (11.8)
k

Moreover, with the exception of the trivial case which we exclude from consid-
eration, this convergence can not be faster than the exponential one, viz., there
exist 1 € K, o > 0 and ¢y > 0 such that

Irf — v|| > exp(—at) Vit > to. (11.9)

We show first that the function T'(M) = log M is the CTE for the se-
quence of multi-particle chains £¢(K, M). Indeed, taking into account (11.8)
and Lemma 11.6.1, we obtain

sup ”,U’P]I\;(M)w(M)_WM” < M sup ”VORlogMdJ(M)_V“
neP(X(M)) voeP(K)

< Cexp(—ylog My(M) + log M).

Since (M) 1 oo as M — oo, the r.h.s. of the bound tends to 0. Step 1 is
completed.

Let us prove now that T (M) = log M is the minimal CTE for the sequence
of multi-particle chains £,(K, M). Consider the following set of states Aps =
{y: ly—M-vjy < iM%} C X,(M), where ||, is the Li-norm in RIXI,

K
lyla & kzl lyk|- If M is sufficiently large, then the set Ajs is not empty. Let 4

be the same as in (11.9). Put y}/ = Me; € X,(M). Let us prove that for the
sequences Ay and y!, conditions (11.5) and (11.6) hold.
Let us show first that uniformly in ¢

P {In(t) — Mot < ML —1 (M > o), (11.10)
To do this, let us note that

{Int) = M sty < M3} > () {Ins(t) - M - rly| < M/},
jeK
where K = |K|. Recall that K is fixed and does not depend on M. Hence, it is
sufficient to show that Vj € K P {]nj(t) - M- rfjl > M2/3/K} —0as M — oo.
This easily follows from Lemma 11.6.3.
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It follows from (11.9) that
|M -7t — M -v|; > M - exp(—at). (11.11)

Fix any function ¢(M) such that ¢(M) — oo as M — co. Put (M) =
log M /¢(M). It follows from (11.10) and (11.11) that

P{In(t(M)) = M - vl > M - exp(-at(M)) - M** |n(0) =y} } — 1.

Let us choose My > 26 such that a/¢(M) < 1/6 for M > My. Then for
M > My, we have

M -exp(—at(M)) — M?3 = M. exp(—(alog M)/¢(M)) — M?/3
= M. -M~/¢M) _ pp2/3
> MS/6 _ A2 > %MS/G.

Now condition (11.5) easily follows. To prove condition (11.6), note that the
event By = {|yj —y;M| < 2K)1M5/8vj ¢ K} is imbedded into the event
Ap. Let us show that the stationary probability of the negation of the event
By tends to zero: w™M {m} — 0. Indeed,

jeK
>ow M {ly; —vM| > (2K) 7 M5}
jekK

M By} = anM { UAly; —viM| > (2K)“1M5/6}}

IA

Let us show that each term in the r.h.s. tends to zero. Fix any j and consider
M {[yj —viM| > (2K)“1M5/6}. It follows from (11.4) that this probability

is bounded by K2M~%/3 and thus tends to 0 as M — co. Condition (11.6) is
proved and step 2 is completed.
Statement 2 of the main theorem is thus proved.

H-class of one-particle chains

We prove here item 3 of the theorem. Now the one-particle Markov chain K(N)
is growing and the number of particles M(N) tends to infinity as N — oo. It
is assumed that {IC(N)} € H(h), where h(N) > 0 is some monotone function
increasing to oo.

Let us show that' T(N) = log M(N) V h(N) is the CTE for the sequence
of chains L¢(K(N), M(N)). It follows from Lemma 11.6.1 and Definition 11.4.1

lavbh e max(a, b).
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that

sup  uPh -7V < M(N)- ™) exp(—yat) (11.12)
HEP(X(N))

= 2exp (log M(N)+ h(N)log Cy — 7at) .

If we put ¢t = (log M(N) V h(N)) -9(N), where ¥)(N) T oo, (N — 00), then the
r.h.s. of (11.12) will tend to zero. Step 1 is thus completed.

Let us prove that the function T'(N) = log M(N) V h(N) is the minimal
CTE for Ln,(K(N), M(N)). Let us introduce sequences of states {un}, {In},

N7 kw, if log M(N) > h(N), ) kn, if logM(N) > h(N),

and sequence of sets Ay = {y: lyiy — M(N)y,| < b- (M(N))5/6}. Let us
show that there exists b > 0 such that, for the sequence of sets Ay and the
sequence of initial states y}' = M(N)ey,, conditions (11.5)—(11.6) hold. First
we test the validity of condition (11.5). It follows from Lemma 11.6.3 that
P{Infy (t) = M(N)rt, 1, | < (M) [0V ©0) =y} — 1 (11.13)
uniformly in ¢ as N — oo. Fix any function ¢(N), A}im ¢(N) = oo, and put
—00
t(N) = (log M(N)Vh(N))/#(N). Let us prove now that for sufficiently large N
) | > e (M(N))~V8, (11.14)

unly

where ¢ > 0 does not depend on N. It is necessary to consider two cases.
Let N be such that log M(N) < h(N). In this case, t(N) = h(N)/¢(N).
Since ¢(N) — oo, we have ¢(N) > 1/ag for sufficiently large N. Hence, by
Condition 2 from Definition 11.4.1, for such N we get

t(N)
unln

| — Yyl >a1>0. (11.15)

Let N be now such that log M(N) > h(N), i.e. t(N) =log M(N)/$(N). Using
Condition 3 from Definition 11.4.1, we obtain

t(N)
uNlN

> Crexp(—vilog M(N)/$(N))
= C) - (M(N))™n/e®) (11.16)
> Cp-(M(N))~V/6 for large N.

IT‘ - I/le

Combining (11.15) and (11.16), we get (11.14). Let us show now that (11.13)
and (11.14) imply the validity of (11.5). Indeed, the probability that the fol-
lowing inequality holds

I (6(N)) — MNP ) | < (M (V)3

unln
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tends to 1 as N — oo. On other hand, by (11.14), it follows that for large N
IM(N)r™ — M(N)uy| > c- (M(N))¥C.

unln

Choosing b < ¢, we have that
Infy, (H(N)) = M(N)yy | > ¢ (M(N))*/® = (M(N))*® > b- (M(N))*°

with probability which tends to 1 as N — co. This proves (11.5).
Using (11.4), we can estimate 7™ (Ay):

1

7 (lyiy — M(N)wiy | > b (M(N))®)
The validity of (11.6) is proved. Step 2 is completed, thus providing. This
completes the proof of statement 3 of the theorem.

S-class of one-particle chains

We prove here item 4 of the theorem. Situation is similar to the previous case
but now {K(N)} € S(s), where s(N) > 0 is some monotone function increasing
to co. Applying Lemma 11.6.1 and using Condition 1 of Definition 11.4.2, we
obtain

sup luPy =1 < exp (log MN) + ogCa = mars )

EP(X(N)) s(N)

From this estimate, it follows that the function T'(N) = s(N)log M(N) is the
CTE for the sequence of chains L¢(K(N), M(N)). Step 1 is completed.

To prove that T'(N) = s(N) log M (N) is minimal CTE for £,(C(N), M(N)),

it is sufficient to show that, for the sequence of initial states yY = M(N)ek,

and the sequence of sets Ay = {y | ¥ yi—M(N)v(Bn)| < QL(M(N))5/6},
leBn

statements (11.5) and (11.6) hold. Similarly to the previous case, statement
(11.5) will follow from the next two statements:

P{|nk, (1) - M(N)rl, 5| < MN)¥? Y (0) =y} —1  (11.17)
uniformly in t as N — oo, and
IP{¢(t(N)) € Bn£(0) = kn} — v(Bn)| > C1(M(N)) ™, (11.18)

where the constant C; > 0 is the same as in Definition 11.4.2 and N is suffi-
ciently large. Statement (11.17) follows from Lemma 11.6.3. To prove (11.18),
let us use Condition 2 of Definition 11.4.2. We have

IP{£(t(N)) € Bn|€(0) = kn} —v(Bn)| > Chrexp(—mt(N)/s(N))
= Crexp(—mlog M(N)/#(N))
> Ci(M(N))~1/e
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for large N. Statement (11.6) follows from (11.4).
This completes step 2 and the proof of the theorem. |
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Applications of Infinite-Dimensional Gaussian
Integrals

A. M. Nikulin
St. Petersburg State Technical University, St. Petersburg, Russia

Abstract: In this chapter, the difference between an absolute moment of any
Gaussian measure on the Hilbert space and the same moment of its projection
onto some finite-dimensional subspace is evaluated.

Keywords and phrases: Gaussian measure, Hilbert space, Banach space,
infinite-dimensional Gaussian integral

Let X = Ls be the separable Hilbert space and u be a Gaussian measure
on X. Suppose that the mean value of the measure p is equal to zero: a, = 0.

The correlative operator K, is a symmetric positive kernel operator: its
eigenvectors form an orthogonal basis, its eigenvalues A\ are positive and

o0
Z)\k<oo, A >,0 ke lN.
k=1

In this case, it is natural to choose the following orthonormal basis {ex}7>; of
the space X that eg, k = 1,2, ... are the eigenvectors of K, which is enumerated
in decreasing order of the corresponding eigenvalues:

AL X>...2 02> ...

Note that

o0
A(n) = Z A — 0, n—oo.
k=n+1
In the case supp 4 = X, our measure is a product measure. Consider the system
of projectors

{m}32i, mn:X — X, =Span{er,ez,...,en},
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where

) n
'/Tn(x) =Tn (Z .’Iikek> - Z Tkeg, TEX, zT|p= ($,€k)
k=1

k=1

and (-,-) is the scalar product in X.
Let || - || be the Hilbert norm in X, || - || the semi-norm in X,, generated by
T, n € IN, and

h(z) = l|lzllP,  hn(z) = [m(@)|P = lz]f, P21, =z€X.
Theorem 12.1.1 Under these conditions, we have
Vp>1 3C1pu <00, Copyu < oo

such that

C]_’p,'uA(n) S An,p = S C?,p,,uA(n)'

[ @) du@) = [ ha(a) duta)

X X

For the proof of this theorem, we need the following result [see Fernique
(1970) and Ledoux and Talagrand (1991)]

Theorem [Fernique (1970)] Let (E,B) be a measurable vector space, X be a
Gaussian vector with values in E, and N be a semi-norm in E. Then if the
probability P{N(X) < oo} is strongly positive, there ezxists € > 0 such that

Va <e: E{exp(aN?(X))} < oo.

Using this result we obtain
Vp>0: / Iz|Pdu(z) < oo.
X

Note that
Anp = [ bz} du(z) = [ ha(z) dutz)
X X

because
Vne N, Vp>1 |z[} <=

For the proof, it is necessary to prove some auxiliary results.

Lemma 12.1.1 Ve, y >0, Vp>1,

1 _ _
sy@+y)P Tt < (@ +y)P -2 <py(z +y)P
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The proof of Lemma 12.1.1 is evident;

oo 2 o0
Iz = > (@, en)en|| =D a2
n=1 n=1
With the notation -
> =,
k=n+1
we notice that
[0, ] o0
[w@adu@) = [ ¥ sddu@ = > / 23du(z)
D¢ D¢ k=n+1 lc—n+1X
o0
= Y (Kuer,ex) = Z A=A
k=n+1 k=n+1

Lemma 12.1.2 For all p > 0, there exist K, < oo and Cp < oo such that
KpA(n) < /ln(x)llxll”du(w) < GpA(n).
X

PrROOF OF LEMMA 12.1.2. Let us find the upper bound. Denote

(o ]
&= Z z? and a:Zx?.
i=n+1 i=1
Then it is sufficient to show that
E{¢(a+ g)g} < Const Et.

Let m € IN, p/2 < m. We decompose the mathematical expectation in the
sum

E{éa+0)%}

E{¢la+8%pya+O}+E{a+ by a+6)}
< EE+E{f(a+&™ =1+ L.

By the independence of a and &, there is
m m
1'2 — Z C:angk-i-lam—k — Z C;anam—kEgk-f'l‘
k=0 k=0

Because -
a< fo and E¢ = A(n),
—
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it is sufficient to show that there exists a constant independent of n and, prob-
ably, independent of the measure i, but depending on m:
3 Const = Const(m) < oco: E&¥ < Const EE.
Let v; = 2, i€ IN, and it is evident that ; are independent;
k
[e.e] o0
E¢ Y v = Y Eyoom,
i=n+1 T T |

Evi, v = Evgt gt = B Eng? - Bl

for

l
817&827&...7&81, Zmi:k.

i=1
Therefore, we can compute

1 k
Ev;, - H Exzmj = H 2m; — 1)”)‘2? = Cmy,..omy H iy -
Jj=1 =

It is clear that
le,...,ml < {(Zk)'}k = A < Ap,.

Thus we obtain

o0 k o0 k-1
E¢* < A, { > )\i} < AmA(n) {Z )\i} = Const E¢,
i=n+1 i=1

where

. k—1
Const = A,, {Z )\i} .
=1

Now we can look for the lower bound. We have

/z z|Pdu(z) = I + I,

where

L= / n(@)|2|Pdp(z), I = / (@) |2 [Pdp(z),

A={x€X:O< lz|| < 1}, Bz{wGX:HxHZl}.
It is evident that

IQ>/ln(x) du(ﬂ?)=/{1n( ) }2du(z) {/l )2du(z } :
B B



Applications of Infinite-Dimensional Gaussian Integrals 181

We first look at I;: By Cauchy-Schwartz inequality, we obtain

2
{ / zn<z>%du<w>} < [@lalPdu@) [ 2] Pduo).
A A A

For estimating a lower bound of Ij, it is sufficient to prove that the second
factor is finite. It is clear that, without loss of generality, we can suppose that
Aj > 0 for infinite numbers of j. In this case, for any m > 0

pllzll <€) < C(m)e™

Thus, form >p+1

/ Py / ERCTORDY I Pdp()
k=0 wrslel<z
< Yk 1)Pu(lel < l)
k=0
< Z (k+1)P— +1) < co.

Consequently,
Vp >0 / |z ~Pdu(z) < oo
X

So we have proved that

3C, < o0 /ln Mz ||Pdu(x) > p{/ln 2du } .
A

Therefore,

2
3Kp < o0: /ln(flj )lz||Pdu(z) > {/ln(fc 2du(av)} ;
for example

(a + b)?).

DN =

. T 1
K, = min {%—’, 5} (since a? 4 b% >

Now let us find the lower bound for integral

2
J= { / zn<w>%du<x>} .
X
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By the Holder inequality, we get

[in@)dutz) = [ (@)@ due)
X

A
——
—
SN
~~
&

L]

QL
<
=
&
——

win
——
&
=
8
N—r
o
u
=
&
——
[T

X
Thus 3
2 {gmmwmﬁ
In(z)2du(z >
{! (@) M)} e

The numerator of the fraction is equal to

3
{/auwmm}:ﬂmmf.
X
I= /ln(x)Qdu(x)
X

Now if we consider

then

oo

1 - (f: ) ( )3 ) duw)= Y [ad Y dutz)
¥ \k

k=n+1 k=n+1% j=n+1

= i {Emk+/xkdu :c)/ Z zdu(m’)}

x J=n+lj#k
= Z {Exf + M (M) - M)}, Bal =X, zx € N(O, ).
=n+1
It is known that Ez} = 3)\2. Then
oo o0
=Y {33+ xMAam - =3 {28+ A

In other words,

=Am)??+2 Y A <3A(n)?
k=n+1

2
{/Mw%mw}ngm,

X

from which we conclude
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so that
[ @lzlPdu@) 2 Kph(n).
X

Remark 12.1.1 In the proof of Lemma 12.1.2, a stronger bound was obtained
E¢F < Ap{A(n)}F, k<m.

Remark 12.1.2 In fact, our constant Const = Const(m) is depending on the
measure [, since the covariate operator and its eigenvalues are defined only by
the measure .

Remark 12.1.3 In this lemma, it was shown that if we have a sequence
{An}52;, such that

Yne N M\, >0, ZAn<oo
n=1

and a sequence {z,}%2; i.i.d. standard Gaussian random variables
VneIN z, € N(0,1),

we get
1

vneIN (E oO>\‘4’§2>1°0A
n e { {kzzn kzk} } _ggl k-
We need the following result
Lemma 12.1.3 With the same notations, we have
Vpe [0,1] 3K, <oo, Cp< oo
such that

In(x)
J Tl

KpA(n) < du(z) < CpA(n). (+)

PROOF OF LEMMA 12.1.3. Let us find the upper bound. Therefore, we de-
compose the integral in (x) into the sum of two integrals

/ In(z)
J Talp

. ln(if) _ In(z)
L= Z L@, k= Z o)

du(z) = Iy + I,

where
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A={reX:0<|z]| <1}, B={ze€ X :|z| >1}.
Consider each integral separately; by the Cauchy-Schwartz inequality, we obtain

1

hi= {/ln(m)zdu(ﬂv)} {/“9«”“_2’7@@)} = JiJa.
A A

It must be noted that in Lemma 12.1.2 we have proved that
Vp >0 / 2]l ~Pdu(z) < oo
X

Therefore, J < co. Using Remark 12.1.1, we obtain El,(z)? < const{A(n)}?,
hence J; < CpA(n). It is evident that

IL< /zn@s du( / In A(n),

so I = I + I < CpA(n) holds. Now we go on to find the lower bound of
our integral. For that we decompose it into the sum of the same two integrals:
I = I + I. Consider each integral separately as

I1>/l ) du(x {/ln(x'zd,u }

Furthermore, we estimate I5:

Thus

2
)[iln_afl%)du(x) > const, {}[ln(:c)%d,u(x)} , const, < oo,

and by using the result of Lemma 12.1.2

2
{/ln(ﬂv)%du(x)} 2 CA(n), C <o,
X



Applications of Infinite-Dimensional Gaussian Integrals 185

we conclude that there exists a constant I~('p < oo such that

2 n), 0<p<l
/uxuv ph(n), 0<p

PROOF OF THEOREM 12.1.1. The special case p = 2
Anz = / Jol%du(e) / o l2du(z) / 1(z) dp(z) = A(n)

delivers the result of our theorem. Let p > 1, p # 2. Then

p n P
Zxk+ Z xk} —{Zx%}
k=1 k=n+1 k=1
z]|? + l|lz[I% '

Izl — [l = {

By using Lemma 12.1.1, let us estimate the numerator of this fraction:

%ln(ﬂ«")HxIIQ’“_2 < [l = 2l < pla() ]|~

and note that
)P < llzl|P + ||l|h < 2[=|”-

Therefore,

1 _ -
Fn@lel” 2 < |allP - ||=lf, < pla(@) 22, p2 1.

By using Lemma 12.1.2 (when p > 2) or the Lemma 12.1.3 (when 1 < p < 2),
we obtain constants Cj,, < oo and (s < 00 so that

CrpA(n) < App < CapA(n),
which concludes the proof. |

Now we shall give some applications. Consider the Brownian motion &(t) in
the interval ¢ € [0,1]. Let u be the distribution of £ in the space L20, 1].

In this case, the correlative operator is the integral operator with the kernel
[see Gikhman and Skorohod (1971)]

B(t,s) = min(t, s).

Tts eigenvectors are the functions [see Gikhman and Skorohod (1971)]

(en®)20 oal®) = VEsin{ (n+ 3} wt ],
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and its eigenvalues corresponding are

1

{Mntnzoy Ao = ey

Thus, we can decompose our process in the orthogonal sum

sin {(n + %)mﬁ}
(n+ )

o0
E(w,t) = ﬁZan(w) ,
n=0

where {an(w)}52, is the sequence of i.i.d. standard Gaussian random variables.
At any fixed time ¢, we have the convergence with probability 1. Furthermore,
we have the uniform convergence in [0, 1] and the limit (continuous almost sure)
is the Wiener process in [0, 1].

Let h be the norm in the space L2[0,1]. By using Theorem 12.1.1, we obtain

CipAm) < [ el = lol2l du(e) < Coph(n), 21,
X

I-IT=1"llzo, Crp<oo, Cop<ox,

A(n) = i Ap =

k=n+1 k=n+1

i 1 Const
(n+ 3)2n2 n

)

where p is the Wiener measure in the space L2[0, 1].
Remark 12.1.4 In fact, we can rewrite our inequality
CrpA(n) S EE|P — Ellénll” < CopA(n), p=1

where
sin {(k + %)mﬁ}
CEE

én(w,t) = \/_Q-i ak(w)
k=0

Now we look at another example. Let { = {{(¢), t € [0,1]} be the random
process connected with the Brownian motion

¢(t) = £(t) — (1),

(it is the Brownian bridge). Then, ( is the Gaussian process and its correlative
operator is the integral operator with the kernel

Bi(t,s) = min(t, s) — ts.

Its eigenvectors are {pn,(t)}32; and its eigenvalues are {A,}52; [see Gikhman
and Skorohod (1971)]

1
on(t) = \/§sin{n7rt}, Ap = ) n e IN.
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Thus, we can decompose our process into the orthogonal sum
sm {nmt}
=2 Z )—

where {an(w)}2, is the sequence of i.i.d. standard Gaussian random variables.
By using Theorem 12.1.1, we obtain

CipA(n) S/IIlelp— 27l du(z) < C3pAn), P21,
X

-1 =1 N2 Cf,p < 00, C§,p < 00,

e e 1 Const*
E )‘k — E ~ ,
n2m? n
k=n+1 k=n+1

where p is the measure generated by our process in Ly [0,1].
Remark 12.1.5 In fact, we can rewrite our inequality
CI,pA(n) < E“CHP - E“CTl”p < C;,pA(n)s p > 17

where
sm {kﬂ't}

WZ

It can be proved that a change of the basis of the space X does not improve
the order of decrease of the value A, , . We plan to publish this result in a
future article.
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On Maximum of Gaussian Non-Centered Fields
Indexed on Smooth Manifolds

Vladimir Piterbarg and Sinisha Stamatovich

M. V. Lomonosov Moscow State University, Moscow, Russia
University of Montenegro, Montenegro, Yugoslavia

Abstract: The double sum method of evaluation of probabilities of large devi-
ations for Gaussian processes with non-zero expectations is developed. Asymp-
totic behaviors of the tail of non-centered locally stationary Gaussian fields
indexed on smooth manifolds are evaluated. In particular, smooth Gaussian
fields on smooth manifolds are considered.

Keywords and phrases: Gaussian fields, large excursions, maximum tail
distribution, exact asymptotics

13.1 Introduction

The double-sum method is one of the main tools in studying asymptotic be-
havior of maxima distribution of Gaussian processes and fields; for example,
see Adler (1998), Piterbarg (1996), Fatalov and Piterbarg and (1995) and ref-
erences therein. Until recently, only centered processes have been considered.
It can be seen from Piterbarg (1996) and this Chapter that the investigation of
non-centered Gaussian fields can be performed with similar techniques, which,
however, are far from trivial. Furthermore, there are examples when the need
for the asymptotic behaviour for non-centered fields arises. In Piterbarg and
Tyurin (1993, 1999), statistical procedures have been introduced to test non-
parametric hypotheses for multi-dimensional distributions. The asymptotic de-
cision rules are based on tail distributions of maxima of Gaussian fields indexed
on spheres or products of spheres. In order to estimate power of the procedures,
one might have to have asymptotic behaviour of tail maxima distributions for
non-centered Gaussian fields.
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In this Chapter we extend the double sum method to study Gaussian pro-
cesses with non-zero expectations. We evaluate asymptotic behavior of the tail
of non-centered locally (o, Dt)-stationary Gaussian field indexed on smooth
manifolds, as defined below. In particular, smooth Gaussian fields on smooth
manifolds are considered.

13.2 Definitions, Auxiliary Results, Main Results

Let the collection aj, ..., ak of positive numbers be given, as well as the collection
ly, ..., of positive integers such that Z{Ll l; =n. We set [p = 0. These two
collections will be called a structure; see Piterbarg (1996). For any vector
t = (t1, ..., tn) | its structural module is defined by

k E() 3+
Itla=Z( > t?) : (13.1)

i=1 \j=E(i—1)+1

where E(i) = Zj‘zo lj, 5 = 1,...,k. The structure defines a decomposition of

the space R™ into the direct sum R” = @¥_; R¥, such that the restriction of the
structural module on either of R% is just Euclidean norm taken to the degree
a;, i = 1,..., k, respectively. For u > 0, denote by G? the homothety of the
subspace RY with the coefficient uw~%/% 4 =1, .. k, respectively, and by g,
the superposition of the homotheties, g, = Q{.“___l Gi. Tt is clear that for any
t € R,

|gut]e = u™2|t|q- (13.2)

Let x(t), t € R™, be a Gaussian field with continuous paths, the expected value
and the covariance function are given by

Ex(t) = —ltla,  Cov(x(t),x(s)) = |tla + |sla — |t — sla, (13.3)

respectively. Thus, x(t) can be represented as a sum of independent multi-
parameter drifted fractional Brownian motions (Lévy-Shénberg fields) indexed
on RY, with parameters o;.

To proceed, we need a generalization of the Pickands’ constant. Define the
function on measurable subsets of R,

H,(B) = exp {fgg x(t)} . (13.4)

Let D be a non-degenerate matrix n X n, and throughout we make no notational
difference between a matrix and the corresponding linear transformation. Next,
for any S > 0, we denote by

0,9 ={t: 0<t:; <8, i=1,..kt;=0,i=k+1,.,n},
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a cube of dimension k generated by the first £ coordinates in R™. In Belyaev
and Piterbarg (1972), it is proved that there exists a positive limit

k
0< H(?Rk := lim Ha(DI0, 5T°)

S—oc0 mesg(D[0, SJ¥) oo (13:5)

where mes;(D[0, S]*) denotes the k-dimensional Lebesgue measure of D[0, S]*.
We write shortly P = HéRk with I being the unit matrix. The constant
H, = én) is the Pickands’ constant. Denoting

v 1 * ”ﬁd 13.6
= — 2 .
W=—= [ e, (13.6)

it is well known that
1 u?
U(u) = e 7(1+o0(l)) asu— oo (13.7)
2Tu

Lemma 13.2.1 Let, X(t), t € R, be a Gaussian homogeneous centered field.
Let for a non-degenerate matriz A and a-structure on R™, the covariance func-
tion r(t) of X (t) satisfies

r(t) =1 — |At|o + o(|At|a) as t — 0. (13.8)

Then for any compact set T C R™ and any function 8(u) with O(u) — 1 as
u — 00,

P{ supTX(t) > u9(u)} = Ho(AT)¥(ub(u))(1 +0(1)) as u— oo. (13.9)
tEgu

Definition 13.2.1 Let an a-structure be given on R®. We say that X (t),
t € T C R™, has a local (o, Dy)-stationary structure, or X (t) is locally (a, Dy)-
stationary, if for any € > 0 there exists a positive d(¢) such that for any s € T
one can find a non-degenerate matrix Dg such that the covariance function
r(t1,ts) of X (t) satisfies

1— (1+€)|Ds(t1 — t2)]a < r(t1,82) <1— (1 —&)|Ds(tr — t2)|a  (13.10)

provided ||t; —s|| < d(€) and |[t2 —s|| < d(¢).

It is convenient to cite here four theorems which are in use, and are suitable
for our purposes. Before that, we need some notations. Let L be a k-dimensional
subspace of R", for fixed orthogonal coordinate systems in R™ and in L, let
(z1,..,2x) " be the coordinate presentation of a point x € L, and (z},...z},)"
be its coordinate presentation in R™. Denote by M = M(L) the corresponding
transition matrix,

(), ..al) T = M(zy, ..., zx) ",
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ie, M = (0z;/0zj,, i=1,...,n,j=1,..,k).

Next, for a matrix G of size n x k we denote by V(G), the square root of the
sum of squares of all minors of order k. This invariant transforms the volume
when the dimension of vectors is changed, i.e., dt = V(G) 'dGt. Note that
since both coordinate systems in L and R™ are orthogonal, V(M) = 1.

Theorem 13.2.1 [Piterbarg (1996, Theorem 7.1)] Let X(t), t € R", be a
Gaussian homogeneous centered field such that for some a, 0 < a < 2 and a
non-degenerated matrix D, its covariance function satisfies

r(t) = 1— [|Dt]|* + o(||Dt]|*) as t — O, (13.11)

Then for any k, 0 < k < n, every subspace L of R® with dimL = k, any Jordan
set A C L, and every function w(u) with w(u)/u = o(1) as u — oo,

P {supX(t) >u+ w(u)}

tecA
= HPV(DM(L))mes,(A)u=(u+ww)(l+o(1) (13.12)
as u — 00, provided
r(t—s) <1 forall t,s€ A, t#s, (13.13)
with A the closure of A.

Theorem 13.2.2 [Michaleva and Piterbarg (1996, Theorem 1)] Let X (t), t €
R™, be a Gaussian centered locally (o, Dy)-stationary field, with o > 0 and a
continuous matriz function Dy. Let M C R™ be a smooth compact of dimension
k,0< k <mn . Then for any c,

P{supX(t)>u——c}

temM
— HWuEW(u—c) /M V(D M) dt(1 + o(1)) (13.14)

as u — oo, where My = M(Tt) with Ty the tangent subspace taken to M at the
point t and dt is an element of volume of M.

Theorem 13.2.3 [The Borell-Sudakov-Tsirelson inequality] Let X (¢), t € T,
be a measurable Gaussian process indezed on an arbitrary set T, and let numbers
o, m, a be defined by relations

02 =supVarX(t) < oo, m=supEX(t) < oo,

teT teT

and

(13.15)

l\’)lv——l

P {supX(t) -EX(t) > a} <
teT
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Then for any z,
P {supX(t) >} < 2U (-x—_—m—_—ﬁ) . (13.16)
teT o

Theorem 13.2.4 [Slepian inequality] Let X(t), Y(t), t € T, be separable
Gaussian processes indexed on an arbitrary set T, and suppose that for all
t,seT,

VarX (t) = VarY (t), EX(t) = EY(t),
and (13.17)
Cov(X(t),X(s)) < Cov(Y(t),Y(s)).

Then for all x,

P {supX(t) < x} <P {squ(t) < x} . (13.18)
teT teT

‘We now turn to our main results.

Theorem 13.2.5 Let X(t), t € R", be a Gaussian locally (o, Dy)-stationary
field, with some a > 0 and continuous matriz function Dy. Let M C R™ be a
smooth k-dimensional compact, 0 < k < n. Let the expectation m(t) = EX(t)
be continuous on M and attains its mazimum on M at the only point to, with

m(t) = m(to) — (t — to) B(t —to) " + O(|[t — to|[**P) as t —to, (13.19)

for some 3 > 0 and positive matriz B. Then,

P {sup X(t) > u}
temM

7l'k/2 k 2k _k
= WB—M—V(D%M) HPu= 20 (u — m(to))(1 + o(1))

as u — oo, where M = M(Ty,) and Ty, is the tangent subspace to M taken at
the point tg.

Theorem 13.2.6 Let M C R™ be a smooth k-dimensional compact, 0 < k < n.
Let X(t), t € R™, be a differentiable in square mean sense Gaussian field with
VarX(t) =1 for allt € M and r(t,s) < 1 for all t,s € M, t #s. Let the
expectation m(t) = EX(t) be same as in Theorem 13.2.5. Then,

P{sup X(t) > u}
teM

VvV AtOM)

\/detMTBM

U(u —m(to))(1+o(1))
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as u — oo, with M as in Theorem 13.2.5 and Ay, the covariance matriz of the
orthogonal projection of the gradient vector of the field X (t) in point to onto
the tangent subspace to the M taken at the point tg.

13.3 Proofs

PROOF OF LEMMA 13.2.1. First, observe that if one changes g, on Gub(u), the
lemma immediately follows from Lemma 6.1 of Piterbarg (1996). Second, ob-
serve that we can write g,T' = gug(u)(IuT), where I, is a linear transformation
of R™, which also is a superposition of homotheties of R¥ with coefficients tend-
ing to 1 as u — oo. Thus I, tends to identity, and I, T tends to T in Euclidean
distance. Third, note that H,(T') is continuous in 7T in the topology of the space
of measurable subsets of a compact, say K, generated by Euclidean distance.
To prove that, observe that x is a.s. continuous and H(T) < H,(K) < oo, for
all T C K, and use the dominated convergence theorem. These observations
imply the Lemma assertion. |

PROOF OF THEOREM 13.2.5. Let Ti, be the tangent plane to M taken at the
point tg. Let Mg be a neighbourhood of tg in M, so small that it can be one-to-
one projected on Tt,. We denote by P the corresponding one-to-one projector
so that PMy is the image of My. The field X (t), t € M, generates on PM
a field X (t) = X(t), t = Pt. It is clear that EX(t) = m(t) = m(P~'t). We
denote by 7(t,8) = r(t,s) the covariance function of X (). Choose an arbitrary
e € (0,1). Due to the local stationary structure, one can find do = d(g) > 0
such that for all t1,t2 € Ty, N S(do, to), where S(do, to) is centered at tg ball
with radius &g, we have '

exp {—(1+&)|1Dt (b1 — &)1} < 7(E1, B2) < exp {—(1 = &)| Do (b1 — E2)11°} -

(13.20)
We also can assume dy to be so small that we could let Mo = P~1 [Ty, N S(8o, to)]
and think of PMj as a ball in Ti, centered at to = to, with the same radius.
Denote M; = M \ Mp. Since m(t) is continuous,

sup m(t) = m(to) — co,
teM;

with ¢ > 0. By Theorem 13.2.2, for Xy(t) = X (t) — m(t) we have

P{ sup X(t) >u}

teM;

= P{ sup Xo(t) +m(t) > u}
teM;
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<P { sup Xo(t) > u—m(to) + co}
teM;

= H®WEU(u - m(to) + co)(1 + o(1)) /M V(Dy My) dt
= o(¥(u—m(to) + c1)), (13.21)

for any ¢; with 0 < ¢; < ¢.
Now turn to Mg. Note that

P{ sup X(t) > u} = P{ sup X(t) > u} . (13.22)
teMo tePMo
Introduce a Gaussian stationary centered field X (t), t € R™, with covariance
function

ra(t) = exp{—(1 + 2¢)|| Dy, t[|*}.

From (13.22) by Slepian inequality,

P { sup X(t) > u} <P { sup Xg(t) +m(t) > u} . (13.23)
tePMyg tePMp

It is clear that, without loss of generality, we can put the origin of R™ at the point
to, so that the tangent plane T, is now a tangent subspace and to = to = 0.
From this point on, we restrict ourselves to the k-dimensional subspace T}, and
will drop the “tilde”. Let now S = S(0,6) be a ball in T, centered at zero
with radius § with § = §(u) = u=1/2log'/? u, and this choice will be clear later
on. For all sufficiently large u, we have S C PMy, and there exists a positive
c1 such that

P { sup  Xg(v)+m(v) > u}
veSeNPMop

< P { sup Xp(v)>u-—m(ty) + 0162(u)}
vESSNP My

< P { sup Xpg(v) > u—m(ty) + 0162(u)} . (13.24)
veP My

Applying Theorem 13.2.1 to the latter probability and making elementary cal-
culations we get

P { sup Xg(v)+m(v) > u} =0 (¥(u—m(tg))) as u— oo. (13.25)
veSeNPMy

Turn now to the ball S. Let vi = (v11,..,%n1), .oy V& = (Vik, ..., Unk) be an
orthonormal basis in T;, given in the coordinates of R®. In the coordinate
system, consider the cubes

Ao = w220, Tk, Ay =uw¥xk_| [T, (1, + 1)T),
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1=(ly,...It) € ZF, T > 0.
We have

Y P{a}- ) P{AA}<P{supXH(v)+m(v)>u}<ZP{A}
ieL iLjeL’ i#j iel’

‘ (13.26)
where A4; = {supveAi Xa(v) +m(v) > u}, L' is the set of multi-indexes i with

A;NS #0, and L is the set of multi-indexes i with A; C S. Using (13.19), we
have

P { sup Xg(v) +m(v) > u}

vEA;

< P { sup Xg(v) +m(to) — ‘r,renAn IVBV||? + w1 (u) > u} .

VEA]

Here, uw;(u) — 0 as u — oo because of the choice of §(u) and the remainder
in (13.19). By Lemma 13.2.1 and the equivalence

t=t+O([f]?) as t -0

(recall that we have assumed to = to = 0), there exists a function 71 (u), with
v1(u) — 0 as u — o0, such that for all sufficiently large u and every i € I/,

P { sup Xg(v) +m(v) > u}

VEA]

< (1+m@W)Ha ((1+2)°Dy, [0, T]%)
U (u ~ m(to) + mip VB[ + wl(u)> . (13.27)

Using similar arguments, we obtain, that there exists yo(u) with yo(u) — 0 as
u — 00, such that for all sufficiently large v and every i € L,

P { sup Xg(v) + ﬁz(v)u}

vEA)
> (1-2(w)Ha ((1+€)/°Dy 0,T1)

T (u—m(to) + i VB -I—wg(u)), (13.28)

where uwa(u) — 0 as u — oo.

Now, in accordance with (13.26), we sum right-hand parts of (13.27) and
(13.28) over L' and L, respectively. Using (13.7), we get for all sufficiently large
u
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3 \1;( m(to) + min ||\/—v||2+w1(u))

iel’
< (1471 (w) ¥ (u — m(to)) T~ Fu?/®

X Z exp {—u min ||[VBv||? + o (1/u)} Tku =2k (13.29)
VEA;

iel’

where 4} (u) — 0 as u — oo. Changing variables w = \/ut and using the
dominated convergence, we get

Z exp {—u min ||\/§V||2 + 0(1/U)}

icr/ Ve

=17 [ expl-Buw,whdwa (14 o(1) (1330
t

0

as u — oo. Note that dw means here k-dimensional volume unite in Tg,.
Similarly,

- 2
Z exp {—ugrélAni |IVBv| +o(1/u)}

ieL
=T* / exp{—Bw, w}dwu?*/>%/2(1 + o(1))  (13.31)
T(-_O

as u — oo. In order to compute the integral fT exp{—Bw, w}dw, we note that
w = Mt, where t denotes the vector w presented in the orthogonal coordinate
system of Tt,, and recall that in this case V(M) = 1. Hence,

/ exp{—Bw,w}dw =/T exp{—BMt, Mt} dt
to to
k/2
= T = e, (13.32)
\/det(MT BM)

Thus, for all sufficiently large u,

3 P{A} < (1491 W) Ha ((1+0)/2Dy[0.4¥) & T~/ H20(u —m(to))

iel’
(13.33)
and

5" P} > (1=} (w) Ha ((1+ )/ Deg[0, ) € T2 H 20 (= m(t0),

ieL
(13.34)
where 77 (u) — 0 as u — oo.
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Now we are in a position to analyze the double sum in the left-hand part of
(13.26). We begin with the estimation of the probability

P { sup Xg(t) +m(t) > u, sup Xg(t) + m(t) > u} ,
teA, teAs

with
Ay =u 2 xk_[SLTY, S, <T,, v=1,..k,

Do = (woa kL SLTY), SE<TL =1,k

where w, T, S, are such that p(A1,Ag) > 0, with p(-,-) being the Euclidean
distance in R*. Recall that A; N.S(0,5(u)) # 0, i = 1,2. Estimation of this
probability follow the proof of Lemma 6.3 of Piterbarg (1996), but since the
expectation of the field varies, more details have to be discussed, and so we give
complete computations. Denote

K, = x,’le [Sy, T,], Ko =w+ Kj, c(u) = max m(t), O(u) =1— —=.
We have

P { sup Xy (t) +m(t) > u, sup Xg(t) + m(t) > u}
teA; teAs

<P { sup Xg(t) > ub(u), sup Xp(t) > u@(u)} . (13.35)
teA, teAs

Introduce a scaled Gaussian homogeneous field £(t) = Xz ((1 + 2¢)~Y/ O‘Dt_olt).
Note that

P { sup Xg(t) > ub(u), sup Xg(t) > u0(u)}
teA; teAs

t€(1+€)1/°‘DtOK1 tG(l-}-e)l/aDtng

=P { sup &(t) > ub(u), sup &(t) > u@(u)} .
(13.36)
We have for the covariance function of &,
re(t) =1—[[t||* +o([[t][*)  ast—0O.
Hence there exists g, €9 > 0, such that for all t € B(eo/5) = {t : ||t||* < &o/5},
1= 2Jl|° < re(t) < 1~ gl (13.37)
Let u be as large as

Ki = (1+2)Y°Dy, K1 C B(eo/5) and Kb = (1+2¢)/*Dy, Ky C B(eo/5).
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We have for the field Y (t,s) = £(t) + £(s),

P { sup &(t) > ub(u), sup £(t) > UG(U)} <P { sup Y(t,s)> 2u9(u)} .

teK] teK) (t,;s)EK] x K}
(13.38)

For all t € K}, s € K}, we have ||t — s||* < 2||t]|* + 2[[s||* < €. Since Dy, is
non-degenerate, for some x > 0 and all t, ||D¢,t|| > &l|t||. The variance of Y’
equals 0% (t,s) = 2+ 2r¢(t —s), hence for all t € K1, s € K3, we have

4— 4|t —s||* < o?(t,s) < 4— ||t —s||* (13.39)
This implies that

inf 2(t,8) > 4 —4egp > 2 13.40
(t,s)elrfl{{xKéO- ( S) - £0 ( )

provided &y is sufficiently small, and

sup  o2(t,s) <4—u"2(1+2)k%* (K1, K2) =: h(u, K1, Ka) (13.41)
(t,8)EK] x K}

For the standardized field Y*(t,s) = Y (t,s)/o(t,s), we have

P { sup Y(t,s) > 2u0(u)}
(t,8)e K, x K},

SP{ sup  Y*(t,s) >2u0(u)h*1/2(u,K1,K2)}. (13.42)
(t,s)eK|x K}

Algebraic calculations give
E(Y*(t,s) — Y*(t1,s1))2 < 16(||t — t1]|* + ||s — s1]|%)- (13.43)

Let m1(t), n2(t), t € R™, be two independent identically distributed homoge-
neous Gaussian fields with expectations equal zero and covariance functions

equal
r*(t) = exp(—32[¢[|*).

Gaussian field
1
t,s) = — (m(t) + n2(s)), t,s) € R" x R™.
n(t,s) \/-2—(771( ) +m2(s)) (t,s)
is homogeneous, and its covariance function is
1

r**(t,s) = 5 (exp(—32|[t]|* + exp(—32||s||?) . (13.44)

As far as for the covariance function 7***(t,s; t;,s;) of the field Y*, we have

T (t,s5t1,81) > 1= 8(||t — t1]|* + ||s — s1l|*) (13.45)
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for all (t,s), (t1,s1) € K] x K3, for these (t,s), (t1,s1) we also have that
r***(t,s;t1,81) > (t — t1;s —s1).

Thus by Slepian inequality,

P { sup  Y*(t,s) > 2uf(u)h V% (u, K1, K;;)}
(t,8)eK, x K}, ,

SP{ sup n(t,s)>2u9(u)h_1/2(u,K1,K2)}. (13.46)
(t,s)eK| x K}

Further, for sufficiently large u,
(63
44202 (u)h " (u, K1, Ka) > u?6%(u) + ’fs—pa(Kl, K>). (13.47)

Using the last two relations, Lemma 13.2.1 and (13.7), we get

P { sup Xpg(t) + m(to + t)u, sup Xg(t) + m(to + t)u}
teh; tels

< CU(uh(u)) Ha(16(Dsy K1 X DeyKa)) exp (—%pa(Kl,Kg))

k k a
< J] @) - b T1 32 - Shexp (= 150° (K1, Ka) ) W(u(w),

v=1 v=1

(13.48)

which holds for all sufficiently large v and a constant C7, independent of u, K,
K. In order to estimate H,(16(Dy, K1 X Dy, K2)), we use here Lemmas 6.4
and 6.2 from Pickands (1969).

Now turn to the double sum 7, ;e P(AjA4;). We break it into two sums.
The first one, denoted by ¥i, is the sum over all non-neighbouring cubes (that
is, the distance between any two of them is positive), and the second one,
denoted by Yo, is the sum over all neighbouring cubes. Denote

z; = min ||V Bt||, ieL’
ted;
Using (13.48), we get

o
P(44) < C°T™exp (-%Ta(gf%(k iy = ] — 1)0) W) = b,
(13.49)
where 6(u) = 1 — c(u), c(u) = max{maxsen; M(to + t), maxsen; M(to + t)}.
This estimation holds for all members of the first sum and all sufficiently large
u. Using it and approximating the sum by an integral, we get

. K 2k _k
¥ < 2‘2 . Z 05 < c'e T* exp (——1-6T0‘> we " 2W(u —m(to)).
iel! JeL',i#j, zi<z;

(13.50)
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Now consider ¥9. We can assume that maxsea; M(to+t) > maxsen; m(to+t).
Denote

Aj=us (0T, 0T+ VT) x xE_ 0T, (ipu+ 1)T])  and A} = A;\ Af.

Clearly,
P{A;4;} <P {sup Xp(t) > u9(u)}
Ay

+P {sup Xp(t) > u&(u),sxp Xy (t) > u@(u)} . (13.51)
Al j

Using now Lemma 13.2.1, (13.51), (13.48) and approximating the sum by an
integral, we get for all sufficiently large u
xk—1/2 %, 2E_k
Yo < C3T e*ua"2¥(u — m(to))

aTa
+OLT e u= % exp {— t 5 } U(u—mlt)).  (13.52)

Taking into account (13.33), (13.34), (13.50) and (13.52), we get for all positive
T

H, (1 +2€)Dt0 [O,t]k e
( Tk: ) _ —CIT"’ exp {-—— 10 } _ C;T_I/Q
arpo
P {st g
< liminf DASUPees ifHk(t) + m(to +t) > u}
T eru’a 20 (u —m(to))
< limsup EASPres Xu(t) +mlto +¢) > u}
- erus ™2 ¥(u —m(to))
Ha ((1+26) Dy, [0,1)%)
= Tk .

(13.53)

Now, letting T' go to infinity and using (13.25), we obtain

P {supXH({:) + m(t) > u}
tes

= (14 2¢)%€"V(De, M) HE w5 =30 (u — m(to)) (1 + o(1))
(13.54)

as u — oQ.
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Let now Xf(t), t € R™, be a homogeneous centered Gaussian field with the
covariance function r3(t) = exp (—(1 — 2¢)||Dg,t||*). From Theorem 13.2.4,
we have

P {sup X(t) > u} >P {sup X5 (t) +m(t) > u} . (13.55)
tes tes
Proceeding as above for the latter probability, we get
P { sup X3 (t) +m(t > u}
teXn
= (1 - 26)%e*V(Dg, M) HEu 5 =50 (u — m(to))(1 + o(1))
(13.56)

as u — 00.
Now we collect (13.21), (13.23), (13.54), (13.55) and (13.56), and get

(1—2¢)% < liminf P {SUPEE)MK () >}
U= eV (DyyM)Hy 'u'= ~2 0 (u — m(to))
P {supycpq X (t) > u}

< limsup < (14 2¢)*.
u—co e*V Dy M)HPuS 30 (u — m(to))
(13.57)
It follows from this the assertion of the Theorem. [ |

PROOF OF THEOREM 13.2.6. Let X (t) be the field as it is defined in the proof
of Theorem 13.2.5. Using Tailor expansion, we get

X(t) = X (t) = X (to) + (gradX (to)) T (t —to) +o(||t — tol[), t— to. (13.58)
From here, it follows that
X () - X (to) = (gradX (t0)) "(E— to) +o(|[E - Foll), t—to,  (13.59)

where g;;d is the orthogonal projection of the gradient of the field X onto the
tangent subspace Tt, to the M at the point to. From (13.59), it follows that

Ft—to) =1- %(E —t0) T Ag, (E—t0) +o(I[E —toll), t—to,  (13.60)

where Ay, is the covariance matrix of the vector g?z;dX (to). Note that the
matrix y/A¢,/2 is just the matrix Dy, from Theorem 13.2.5. Now the proof
repeats up to all details of the proof of Theorem 13.2.5. |
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Typical Distributions: Infinite-Dimensional
Approaches

A. V. Sudakov, V. N. Sudakov, and H. v. Weizsacker

Steklov Mathematical Institute, St. Petersburg, Russia
Steklov Mathematical Institute, St. Petersburg, Russia
University of Kaiserslautern, Kaiserslautern, Germany

Abstract: Some approaches to possible infinite-dimensional versions of the
phenomenon of existence of typical distributions for vector spaces of random
variables are under discussion and comparison.

Keywords and phrases: Measure concentration, typical distributions

14.1 Results

The existence and the structure of typical distributions of linear functionals
on high-dimensional vector spaces with second order probability measures [Su-
dakov (1978), Nagaev (1982), Makarova, (1985) and Weizsacker (1997)] as well
as the existence of typical distributions for finite-dimensional vector spaces of
high dimension of 2nd order random variables [Sudakov (1994)| are manifesta-
tions of a general concentration of measure phenomenon, which was intensively
studied last years by Gromov, Milman, Talagrand and others. The majority
of the known theorems about the existence of typical distributions deal with
finite-dimensional vector spaces (measure spaces or spaces of random variables).
The wish to obtain an extension of these results to the infinite-dimensional case
seems to be quite natural, though the very existence of such an adequate ex-
tension is not evident and not trivial.

Let E be a finite-dimensional vector space of random variables X with
finite variances. This space is endowed with the canonical Euclidean structure
induced from L?(Q,F,P), and hence, the notion of the standard Gaussian
measure vg on F is well defined as well as the notion of rotation invariant
distributions on E. Let M = M(R) stand for the space of all probability
measures on R with finite first moment. The Kantorovich-Rubinstein distance
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k(p,v) = [|Fu(u) — F,(u)|du will be usually considered on M. Note that M
consists of all probability measures on R such that their k-distance from some
(and, hence, any) d-measure is finite. For arbitrary separable metric space S,
the space M(S) is defined in a similar way.

The existence of typical distributions phenomenon consist in existence, for
every arbitrary small € > 0 and every E of dimension d = dim E large enough
(depending on ¢ only), a probability distribution P € M (depending on E)
such that it is “(1 — &)-typical for distributions £L(X) = Po X~!” X € E
being chosen at random according to a “natural” probability distribution m on
E. For instance, m may be the image of vg under the homothety £ 5 X
(dim E)~1/2X or the probability measure uniformly concentrated on the unit
ball or on the unit sphere (on the surface of the ball) of E. Let mg denote
the uniform probability distribution on the sphere. It is known that for large
dimension these three kinds of “natural” distributions are close each to other
(for instance, in sense of Kantorovich-Rubinstein distance). Here, “(1 — €)-
typical” means that m-measure of the set of all such random variables X from
E, for which x(Pg, L(X) does not exceed ¢, is (1 — €)-massive:

m(X € E:k(Pg,L(X))<e)>1-=¢.

The measure Pg can always be chosen from the set of all mixtures of centered
Gaussian univariate distributions. Instead of the Euclidean structure on E
generated by the measure P, any stronger Euclidean norm can be used for
definition of the class MNE of “natural” (i.e. certain rotation-invariant with
respect to this stronger norm) measures m on E with not worse (not larger) rate
of increasing d(g) or, the same, with not smaller rate of increasing of typicalness
in dimension d.

In other words, the phenomenon of existence of typical distributions means
that the image £m = m o L~! of the measure m under the map £L: E > X
L(X) € (M, k) is sharply x-concentrated close to some element Pgr of M, which
is just typical distribution for elements of E.

Another form of manifestation of this phenomenon is the existence of “typ-
ical distributions of linear functionals”, or “typical marginals”. Given a vec-
tor space F' = FE’ of large dimension with 2nd order probability measure P
on it, consider the (Euclidean) trace of L?(P)-norm on the conjugate space
F' = E" = E. Then for large dimensions for “natural” (in the previous sense)
distributions m on the Euclidean space E, the assertion about existence of a
typical for linear functionals on E’ distribution with respect to P holds similarly
to the previous case.

Trivial reformulations of the given finite-dimensional assertions for the infi-
nite-dimensional case are senseless or even wrong: m-typical “elements” of E
turn out not to be random variables for seemingly reasonable m. The property
of (1 — &)-typicalness of a distribution Pg for € = 0 must mean something like
“essentially all (in an appropriate sense) X € E have the same distribution Pg”,
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what seems to be wrong for whatever reasonable sense. Indeed, in the separable
infinite-dimensional Hilbert space H (corresponding to an infinite-dimensional
E) there exists no non-trivial rotation-invariant measure. “The standard Gaus-
sian measure yg” (or “the Gaussian white noise”) is only a “weak distribution”
and not a countably additive measure. Its “typical sample elements” may only
be considered as elements of a suitable extension (the completion in a suitable
weaker norm) of H and do not belong to H. They cannot be interpreted as
linear functionals on E’ or even as elements of L%(Q, F, P). It is impossible to
define their “distributions” with respect to P as elements of M. Thus, in the
case of infinite-dimensional F, there is a problem to justify the term “essentially
all X € E” in order to obtain a meaningful extension of the finite-dimensional
assertion.

One of the seemingly reasonable ways to formulate a reasonable infinite-
dimensional version for discussion is to define the notion of “the global limit
distribution,” or “the limit distribution in large” for the space F of second order
random variables as follows. For infinite-dimensional separable Hilbert space E,
we denote by yg the standard Gaussian white noise considered as a Gaussian
measure on a Hilbert (with a weaker norm) superspace E > E. We preserve
the notation X for elements of A , too. One can establish that g is rotation
invariant with respect to the Hilbert norm in E. Let & < & < ..., sup; & =
€, where & are finite measurable partitions of the probability measure space
(E,'YE), and € denotes the partition into points. It can be verified that every
barycenter (the mean value) ¢; ; € E of the conditional distribution vg( - |C; ;),
where C; ; stands for the jth element of &, is, in fact, an element of E, i.e.,
llei sl < oo

We denote by mé;‘E the discrete probability measure on E concentrated
at the normalized barycenters C?,j = |leijl~teij, 5 = 1,..., and such that
m%s({cgj}) = ve(Csj), § = 1,.... Similar to the above definition of Lm, we
define the corresponding distribution £m§;E = m§;E oLl on M. For X € E,
let C;(X) denote the element of the partition &; containing X, and c?(X) its
normalized barycenter. The map E 3 X — L(9(X)) € M is a step-function,
and in the finite-dimensional case its distribution in M tends to Lm as i — oo
(here m is the uniform distribution on the unit sphere of E). For large dimen-
sions, the distribution £m is sharply concentrated close to a point Pg which
is just typical for random variables from F.

If for an infinite-dimensional Hilbert space E of random variables there ex-
ists a distribution Pgr € M such that for every sequence &; of finite partitions
of (E‘, ~E) the sequence ngtE converges to the degenerate distribution concen-
trated at Pg, we say that Pg is the global limit distribution, or the limit in large
distribution with respect to yg of elements of E. The simplest example: the
global distribution for any Gaussian subspace of L? is the standard Gaussian
measure.

In contrast to the finite-dimensional case, such a limit distribution exists
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not for every infinite-dimensional space E. Still, the common point is that an
arbitrary limit distribution, if it corresponds to any sequence of finite partitions,
is always degenerate, i.e., the limit in measure of the sequence of step-maps is
a constant map. It should be noted that another reasonable definition of such
a limit distribution turned out to be equivalent to one given above [Sudakov
(1977)].

Theorem 14.1.1 If for any sequence {&;} of finite measurable partitions of the
space (E,vg) the sequence {Lm_} of elements of M(M(R)) tends to a limit,
then this limit is a degenerate (delta-) distribution, i.e., there erists a global
limit distribution of elements of E. The global limit distribution is always a
mixzture of centered Gaussian ones.

The question about criterion of existence of such a limit “in large” distri-
bution is open.

Another and, probably, more rich in content approach to the infinite-dimen-
sional situation arose from efforts to find for the finite-dimensional case how the
smallest possible dimension of the space E depends on €. Of course, estimates
that do not depend on dimension are of particular interest. It is convenient
to characterize the degree of possible typicalness of a distribution for a vector
space E with respect to a measure m by the value of the average r-distance
between distribution laws of two elements of E chosen independently according
to m, i.e., by the value of the integral

tm)= [ [ RE0), £06)(m ©m) d(X2, Xa)

Here E @ F means the orthogonal sum of two copies of F, and X;, X» is the
notation of elements of these copies. Since in the infinite-dimensional case this
expression is senseless for m = mg, it is important to study its behavior in m for
finite-dimensional spaces E. For centered Gaussian measure v on E, let g(vy) be
the quadratic form on the conjugate space F' = E’, which is the restriction of the
L%(7y)-norm. We also use the evident notation v(q); sometimes we shall write
I(q(y)) instead of I(y). We say that 1 < 9 if v9 = 71 * 7y3 for some Gaussian
measure 73 (or, the same, ¢(v2) = ¢(71) + ¢(73)). One can easily verify that in
the one-dimensional case I(v) is monotonic in < (or in g). Also for arbitrary
dimension d = dim E, any positive perturbation of q(z) = go(z) = ||z[|% (the
case of the standard Gaussian measure) or, what is the same, of homothetical
image of yg mentioned above leads to increasing of I(g). Since I(gp) can be well
estimated, it would be very useful to prove the monotonicity in g property of the
function I(g). In Sudakov (1979), one of the co-authors of this paper proposed,
in particular, a short sketch of a supposed proof of such a monotonicity, which
turned out to be wrong. The counterexample constructed by another co-author
is based on the deduced explicit formula for the differential D(§)(q) of the
function I(q) at an arbitrary point ¢ and can be described as follows.
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Let (Q,F, P) be a probability space with @ = {w;,w2} and P({w:1}) =
P({w2}) = 1. Let E = {(z,y)} be the Euclidean space of all functions on
Q, i.e., the space R? with corresponding weight norm. Let e, and ey denote
coordinate functionals on E. Let the Gaussian measure y(gs5) be a univariate
Gaussian measure on the straight line éx — y = 0, where ¢ is a small negative
number. Let v(ge) be a univariate Gaussian measure specified by the quadratic
form gc(ez,ey) = €(ez — €y)?, i.e., for small € it is sharply concentrated on the
straight line  + y = 0 near zero point.

Theorem 14.1.2 If —§ > 0 and £ > 0 are sufficiently small, then I(gs + gc) —
1(gs) < 0.

Differential of I(g) can be described as follows. Let for positive quadratic

form g the Laplace operator with respect to the Euclidean norm q% is denoted
by Ag.

Proposition 14.1.1 The differential of I at the point ¢ € Q4 (Q+ is the cone
of positive quadratic forms) can be written in the form

DI@@ =3[ [, AL, L)@ (X2, Xo).

Here § ® § denotes the quadratic form on (E @ E)' = E' ® E' such that (G ®
q)(f1, f2) = a(f1) +a(f2), (@@ @) =v(2) ® ().

Eventhough the result of Theorem 14.1.2 is negative for our purpose, some
theorems, which definitely can be considered as infinite-dimensional versions of
the theorem about typical distributions, can be formulated and proved. They
enable us to obtain the finite-dimensional versions with the best possible es-
timates of “the rate of convergence” in dimension and imply other interesting
consequences. One of the possible directions of investigations is finding upper
bounds for I(g) in terms of the spectral radius of the correlation operator of
v(g), i.e., dimension free estimates of I(g) in terms of the first extremal value
of g with respect to gg.

A convenient tool for investigation of the problems under consideration is
the solution of the isoperimetric problem for Gaussian measures [Sudakov and
Tsirel'son (1974)]; see also Borell (1975). This chapter just gave the solution
of such an isoperimetric problem for the infinite-dimensional case. Recall the
main result of this chapter related to the infinite-dimensional centered Gaussian
measure vy on a vector space E ((E,~) is always supposed to be a Lebesgue-
Rokhlin space; this always holds for separable metric £ and Borel «). If a
measurable functional R: E — R obeys the y-Lipschitz condition

Vec & Ve>0 v{X € E:|R(f+ece)— R(e)| >e} =0,
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then the distribution law of R relative to + is sublaplacean, i.e., Fg 1o 1is
non-strictly decreasing function (here £, denotes the “ellipsoid of dispersion of
7", i.e., the unit ball of the reproduction kernel space H,). Note that here the
dimension plays no role as well as whatever topology on E.

For an arbitrary (possibly, infinite-dimensional) subspace E C L?(Q, F, P)
with a centered Gaussian measure v = y(p) (supposed in what follows to be
“substandard”, i.e., obeying the condition p < pg), the degree of concentration
of the measure I' = yo (PoX!)~! = vo£L~! on the space M can be measured
by the degree of concentration of the distribution of x(P;, P2), where P;, P, are
two elements of M chosen independently according to I'.

We say that 4 € M is sublaplacean if 1 = y9oT ™!, where g is the univariate
standard Gaussian measure and 7' is a Lipschitz map R — R with the Lipschitz
constant 1. For a sublaplacean measure p, a constant c is called its (admissible)
shift if, in the above representation of y, T' can be chosen such that 7'(0) = c.
For every sublaplacean measure p, the set of all its shifts is a segment, which
is degenerate for p = 7o.

Theorem 14.1.3 There exists a constant C with the following property. Let
E C L*(Q,F,P) be an arbitrary closed subspace of random wvariables. Let
v = ~v(q) be an arbitrary centered Gaussian measure on E with covariance
operator majorized by the unit operator (i.e., the eigenvalues of this covariance
operator do not exceed 1, ¢ < qp). Let X, and Xy be two elements of E chosen
independently from the distribution v. Then the distribution of the random
variable k(P o X| L Po Xy 1) 15 sublaplacean with a shift less than or equal to
C.

The value of C is closely connected with some entropy-type properties of
M. Theorem 14.1.3 allows us to obtain an upper bound of the value I(7)
over the class of substandard (y < g) Gaussian measures for a space E of
arbitrary dimension, though does not permit us to come to the conclusion that
for finite-dimensional E the maximum value of I(vy) is attained just at the
standard Gaussian measure v = «yg. Still, Theorem 14.1.2 does not exclude
such a possibility, though closes one of the approaches to prove it.

As an application of this theorem, an estimate of the (random) k-distance
between times of sojourn for two independently chosen sample functions of a
centered Gaussian random process in terms of maximal eigenvalue of its co-
variance operator can be obtained. (The time of sojourn is the image of a given
measure on the parametric set by a sample function. The density of time of
sojourn is often called “the local time”.) Proofs and consequences are to be
published in Zapiski Nauchnykh Seminarov POMI.

A different infinite-dimensional approach to the problem has been given in
Weizsicker (1997). Here, we explain how to translate some part of Weizsacker
(1997) into the present setting. That paper deals with a, not necessarily Gaus-
sian, random linear functional resp. cylindrical measure, on a Hilbert space
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‘H. This corresponds to our v which induces the canonical Gaussian cylindrical
measure on its “reproducing kernel” or “Cameron-Martin” subspace H C L.
Our abstract measure P is replaced in Weizsdcker (1997) by a (not necessar-
ily second order) measure on H. In our setting, such a measure on H can
be constructed as follows: Choose an orthonormal base (e;) of the Cameron-
Martin space ‘H which is also an orthogonal system in L. Then the numbers
0?2 = Ep(e?) are the eigenvalues of the correlation operator C of 4. We denote
by p(C) the spectral radius max; o and by tr(C) the trace 3, o2. Since the op-
erator C is of trace class, the series S(w) = 3 e;(w)e; defines a square integrable
random vector S on Q with values in H. The image measure PoS~! is a second
order measure which can take the role of the measure P in Weizsicker (1997).
We need the following notation: For every positive number a, the symbol N (a)
denotes the centered Gaussian distribution on the real axis R with variance a;
for every measure ¢ on the positive real axis R+, the symbol ¢ x A/ denotes the
measure on R, x R given by

g x N(Ax B) = /A N(a)(B) g(da).

Theorem 14.1.4 Let d be any metric on the space P(Ry X R) which in-
duces convergence in law. Then there is a function cp:R‘j’r — Ry such that
o(r,t,e) — 0 asr — 0 for all t,e with the following property: For all vy and
(Q,F,P) as in Theorem 14.1.1, there is a square integrable random variable o
on (2, F, P) such that

Y f:dLpe?, 1), Lp(a?) x N) > €} < o(p(C), tr(C), €).

Remark 14.1.1 The random variable ¢ is the H-norm of the vector S in the
above construction. In particular, E(c?) = tr(C).

Thus, for v most f, the law of f under P is close to the mixed nor-
mal Ep(N (%)) where the degree of closeness is determined alone by the pair
(p(C),tr(C)). Note that, as indicated above, the theorem has an extension to
certain non Gaussian measures which have near Gaussian average marginals.
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A Local Limit Theorem for Stationary Processes
in the Domain of Attraction of a Normal
Distribution

Jon Aaronson and Manfred Denker

Tel Aviv University, Tel Aviv, Israel
Universitdat Gottingen, Géttingen, Germany

Abstract: In this chapter, we prove local limit theorems for Gibbs-Markov
processes in the domain of attraction of normal distributions.

Keywords and phrases: Local limit theorem, domain of attraction of normal
distribution

15.1 Introduction

It is well known that a random variable X belongs to the domain of attraction
of a normal distribution DA(2) if its characteristic function satisfies

log B explitX] = ity — %ﬁm/m) (15.1)

for some slowly varying function L : R+ — Ry which is bounded below and
some constant v € R; see Ibragimov and Linnik (1971).

The normal (or classical) domain of attraction NDA(2) consists of the class
Lo, and is characterized by the boundedness of the slowly varying function L
in (15.1). Here, we consider the ‘non-normal’ domain of attraction DA(2) \
NDA(2).

The function L is unbounded and is determined (up to asymptotic equiva-
lence) by the tails of the distribution of X which satisfy

1-G(z) = P(X > 2) ~ iz 2l(z),
G(-z)=P(X < —z) ~epz™l(z) 2 — o0 (15.2)
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for some constants c1,c3 > 0,¢1 + ¢ = 1 and some slowly varying function [,
which in turn determines L by

L(z) = / © 24Py (u). (15.3)

—T

It follows from (15.3) that
I(z) = o(L(z)) (15.4)

as r — o0.
Let X1, X9, ... be a stationary process of independent random variables with
Xre€DA(p) (0<p<2).
The local limit theorem (LLT) for the partial sums S, := X; + ...+ X, is
well known, which is that there exist constants A,, B, € R, B, — +00 such
that V k € R and I C R (an interval),

BnP(Sp —kn € 1) — |I|g(k) as B ,

where g is a p-stable density on R. Extensions of the LLT to Markov chains are
well known; for example, see Aaronson and Denker (1998) for a more detailed
discussion.

Aaronson and Denker (1998) have established LLT’s for Gibbs-Markov func-
tionals (definition below) in the non-normal stable case (p < 2).

In the normal case (p = 2), such extensions are only known when Xj €
NDA(2); see Aaronson and Denker (1998), Rousseau-Egele (1983), Guivarc’h
and Hardy (1988), and Morita (1994). '

Here, in this Chapter, we prove the LLT for Gibbs-Markov functionals
X1, Xa, ... in the case when X; € DA(2) \ NDA(2).

15.2 Gibbs-Markov Processes and Functionals

Definition 15.2.1 A mixing stationary process {Z, : n € N} is called Gibbs-
Markov if its state space F is at most countable and if

e (Markov property)
P(Zi=a,Z,=b)>0 and P(Zi=bZs=c)>0
= P(Zi=a,Z2=0b,Z3=¢)>0
for all a,b,c € E and

inf{ > P(Zy=b):a € E}>0.
bEE;P(Z1=0,Z2=b)>0
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e (Gibbs property) There exist constants M > 0 and 0 < r < 1 such that

P(Zl S Zn = anIZn+1 = bl, . Zn+k = bk-) — 1| < Mr~ min{l:c;#b;}
P(Zy =a1,...; Zn = an|Znt1 = C1, ooy Zntk = Ck)

for all aj,bj,c;j € E,1<i<n,1<j<kandallnk>1

Remark 15.2.1

1. Recall that a process Z = {Z,, : n > 1} is called mizing if for all square-
integrable functions f,g € La(Z) one has

Ef(Z)g(Zn, Zn+1, ) - Ef(Z)Eg(Z):

where Ly(Z) (g € N U{co}) is the space of functions g : EN — R which
are g-integrable with respect to the distribution of Z.

2. The coordinate process on EN of a probability preserving, mixing Gibbs-
Markov map [as in Aaronson and Denker (1998)] is a Gibbs-Markov pro-
cess in the sense of Definition 15.2.1. Conversely, the shift of a Gibbs-
Markov process (equipped with its mixing, shift-invariant distribution on
EN) is a probability preserving, mixing Gibbs-Markov map.

Definition 15.2.2 A function f : EN — R is uniformly Lipschitz on states
(f € Lip) if

D(f):= sup rminlEmAud|f(z) - f(y)] < oo,
a€E,z,y€(a]

where [a] = {(z1,22,...) € EN : 21 = a}.

Definition 15.2.3 A stationary process { X, : n € N} is called a Gibbs-Markov
functional if there exists a Gibbs-Markov process Z = {Z, : n € N} and a
function f € Lip such that

Xn = f(Zn, Zn+1, -..)-
The Frobenius-Perron operators P" : Li(Z) — L1 (Z) are defined by
EP"“f(Z,,Z3,..)9(Z1, Zs,...) = Ef(Z1,22,...)9(Zn41, Zn+2,...),  (15.5)
and the characteristic function operator for the function ¢ : EN — R by
P.f = P(f explity]). (15.6)

Aaronson and Denker (1998) have shown that when ¢ € Lip, P; acts on
L = Ly(Z) N Lip equipped with the norm | f|lz = || flloo + D(f). As an
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operator on £, P; has a unique eigenvalue of maximal modulus A(¢) for |¢| < e
and a decomposition

Bf=2M0)"9()Ef(Z) +Q¢f  (It| <e), (15.7)

where the spectral radius of @; is uniformly bounded by some § < 1 and where
g(t) is the normalized eigenfunction for A(¢). P; is called the characteristic
function operator, since

PP1= PreitSh = A\(t)"q(t) + Q71

where S, = X1 + ... + X,.

15.3 Local Limit Theorems

In this section, we assume that {X, : n > 1} is a Gibbs-Markov functional with
X; = f(Z) € DA(2), but EX? = co. Let the operator P; : £ — £, A(t) and g(t)
be as defined (15.5)-(15.7) for |t| < € and for ¢ = f. Moreover, let G denote the
distribution function of X; and [ and L the associated slowly varying functions
as defined in (15.2) and (15.3).

Theorem 15.3.1
1
log A(t) = ity — §|t|2L(|t|*1)(1 +0(1)) (15.8)
as t — 0, where the constant v € R is defined by
o
y= / 2G(dx). (15.9)

Remark 15.3.1 Theorem 15.3.1 may fail in the ‘classical’ case where E f(Z) =
0 and Ef(Z)? < oo. Indeed, suppose ¢ € L, then also f := ¢oT — ¢ € L (here
T denotes the shift on EN). As can be easily checked,

Pt(eit¢) — eitzl)7

whence A(t) = 1; see Aaronson and Denker (1998). On the other hand, Aaron-
son and Denker (1998) have indicated how to prove Theorem 15.3.1 in case
f € Lip, Ef(Z) =0, Ef(Z)? < o0, and not of form f = ¢oT — ¢.

Remark 15.3.2 As a corollary, we obtain that under the conditions of Theo-
rem 15.3.1,

|log A(t) — log EexplitX1]| = o(Jt|*L(1/|t])) ast— 0.
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Lemma 15.3.1 .

E(]1 - %)) = 0(Jt])
ast — 0.

PROOF. This estimate follows from the expansion of F exp|itX1]; see Theorem
2.6.5 of Ibragimov and Linnik (1971). |

PROOF OF THEOREM 15.3.1. Let g = g(t)/Eg(t)(Z) denote the eigenfunction
of P; with eigenvalue A\(t) satisfying Eg:(Z) = 1; then by (15.5)

A(t) = Mt)Ege(Z) = EA(t)§(Z) = EP[§:e™™](Z) = Egq(Z)e***. (15.10)
By Theorem 4.1 of Aaronson and Denker (1998), and by Lemma 3.4,
|9t — 1l|oo = O(Jt]) ast — 0.

Denote by Fo the o-algebra generated by X; and let g 0 X1 = E(g:(Z)|Fo);
then by (15.10)

(e9)

A(t) = Eg(X1) exp[it X1] =/ gt(z) explitz]G(dz), (15.11)

—0Q0

19¢ = 1l Loo(e) < 11 — Llloo = O(J2]) ast — 0, (15.12)

and

(e o]
/ a(z) Gdz) =1 VteR.
—00
It follows from (15.12) that for |¢| small enough, Re g; > 0. Write
g = g; +igl —igr

where g := max{+Im §,0} > 0 and g/ = Re § > 0.
For x = r, 4+, —, we fix g; = gf. Then dG; := g;dG is a (positive) measure
on R. Note that by (15.12)

lim sup |g:(z) — K| =0
t=02eR

where K = K, =1forx=rand K = 0 otherwise.
Define distribution functions G?, G7 (5 = 1,2) on R, by

Gi () := Gi(z) — Gi(0), Gi(x) := G4(0) — Ge(~w),
G (z) := G(z) — G(0), and G*(z) := G(0) — G(~=z).

We have that

Gi(oo) - Gl(x) = M2 g,0,2), (15.13)
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where
hj(z) = { 22(1-G(2)) = (1 +o(1)i(z)  ifj=1
T 22G(=3) = (e2 + o(1))i(x) if j=2

as ¢ — 00, and

_ Jo gt(u) G(du) 25 gi(u) G(du)
g1(t,z) := R go(t, z) := 7 o)

It follows from (15.12) again that sup,cg |g;(¢t,z) — K| — 0 as t — 0.
We need the following calculations. First note that

/ (1 + itz — %) Gy(dx)
R

= /000(1 + itz — €®) G1(dz) + /Ooo(l — itz — e”%%) G2(dx),

and secondly that integration by parts (for j = 1,2) yields
/0 Y (1 = (=1)itz — exp|—(~1Yita]) G (dz)
= —[(G(o0) = G{(x))(1 — (=1) itz — exp|—(—1)itz])]§
+ [ (GHo0) - Gl)(~1Yitexpl(~Vita] ~ (~Vit)do

= i1 [ (explit-1ta] - 1)g50,0) P s

We split the last integral into three parts:

t/l::(exp[ i(— l)th]—1>gg(t z) 3( ) dz

Y A R EN
hj(;c) dr

— [T g

For the first integral, we obtain using

t/loo <exp[—i(—1)jtx] - l)gj(t,w)

-1

5.4)
(z

(1
hj(z) ,

dx
II?

— sen(t /oo(exp[._ - ysgn(t)]—l)gy( y/lt]) ((/ylé:)tl) Y

of /1 —22 w1ty )
oS
<t21(

i/t )
1/14)) = o(£2(1/1e))-
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Since [ is slowly varying,

] /0 U @)z = o(z(m-l)).

From this and (15.4), we obtain for the second integral that

t Oltl—1 exp[—i(—1)tz] — 1 + i(—l)jtx>gj(t’x)h§c(:) e

= O<t3/0|tl_1 h; (x)da:)
- 0(t21(1/|t1)) - o<t2L(1/|t|)>.

The third integral, multiplied by i(—1)7, is equal to
L hy(z)
t? / (t,2)—L5=d

A zg;(t, ) 2 T
|¢]—1 . .

— / 2(Gl(c0) — Gl (z))dz
0

[t =1

2 j ot~ t2 2vj
= lGi(o0) = Gi(2))ze + 5 A 2°Gy (dx)

It =1

_ g 22Gi(dz) + o(PL(1/|t]))

_ {( oG I 2Gda) + o(LA/IH))  j=1
(K + o) 2y a2Gd) + o(LAJM) =2
2

= (K+o(1 )) L(1/]t)),
where we used (15.2), (15.12) and (15.13). Finally, note that by (15.12)
o= /Rasgt(x)G(d:r) —y+O(lt]) ast—0

and, since G is not in the normal domain of attraction, we have t2 = o(t2L(1/|t|)).
The proof of Theorem 15.3.1 is completed by using (15.11) and the previous
estimates:

log A(t) — ity ~ A(t) — 1 — ity
_ / > (eitw - itx)gt(x)G(dx) + o(2L(1/]4]))

= /_ Z (em -1- itw) (g7 (z) +ig; (z) — ig; (2))G(dzx) + o(t>L(1/|t]))
It
= 5 )y H @G ) oL/ ))

2L/t + o(1)). [ ]
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Let
nL(B,) = B, A,=n~n. (15.14)

The following corollaries contain the local and central limit theorems. Their
proofs are straightforward using Theorem 15.3.1; for example, see corresponding
statements in Aaronson and Denker (1998). We write, as before,

Sp=X1+ Xo+ ... + X,
and denote by ¢ the density of the standard normal distribution.

Corollary 15.3.1 [Conditional lattice local limit theorem| Suppose that X, is
aperiodic.

Let Ay, and By, be as defined in (15.14), and suppose that k,, € Z, Engf‘—" —
k € R as n — oo, then

1 BrP™(1j5,=kn]) — (K)[lcc = 0 asn — oo,
and, in particular,
BnEl(s,=k,] — ¢(k) asn — oo.

Corollary 15.3.2 [Conditional non-lattice local limit theorem| Suppose that
X1 is aperiodic.
Let A, and By, be as defined in (15.14), let I C R be an interval, and

suppose that k, € Z, Eﬂ%n — kK €R asn — oo, then

BnP"(1[s,eko+1) = |¢(k) asn — oo,
where |I| is the length of I, and in particular,
BnEl(s,ek,+1) = [|$(K) as n — oo.

Corollary 15.3.3 [Distributional limit theorem| Let A,, and B, be as defined

in (15.14). Then,
Sn - An

By,

1s asymptotically standard normal.

Acknowledgement. This research was supported by a grant from G.I.F., the
German-Israel Foundation for Scientific Research and Development.
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On the Maximal Excursion Over Increasing Runs
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Abstract: Let {(X;,Y;)} be a sequence of i.i.d. random vectors with P(Y; =
y) = 0 for all y. Put My(j) = maxo<k<n—j(Xi+1 + - + Xk+j)Ik,; , where
Inj = {Yep1 < -+ < Yiq;} , I{ -} denotes the indicator function of the
event in brackets. If, for example, X; = Y;, ¢ > 1, and X; denotes the gain in
the i-th repetition of a game of chance, then M,(j) is the maximal gain over
increasing runs of length j. We investigate the asymptotic behaviour of M, (j),
j = jn < Ly, where L, is the length of the longest increasing run in Y3,...,Y,.
We show that the asymptotics of My (j) crucially depend on the growth rate of
j, and they vary from strong non-invariance as in the Erd6s-Rényi law of large
numbers to strong invariance as in the Csorgé—Révész strong approximation
laws.

Keywords and phrases: Increasing run, head run, monotone block, incre-
ments of sums, Erdés-Rényi laws, strong approximation laws, strong limit the-
orems

16.1 Introduction
Let (X,Y), (X1,Y1), (X2,Y32),... be a sequence of i.i.d. random vectors satis-
fying P(Y =y) =0 for all y. Put

k

Sk=>_Xi, So=0.

i=1
Let Mp(j) be the “maximal excursion” of {Si} over subintervals of length j on
which {Y;} increases, that is,

Mn(5) = Osfggf_j(skﬂj] = Se){Yi11 <+ < Y} (16.1)
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where 1 < j <, I{ -} denotes the indicator function of the event in brackets,
and [ -] is the integer part function.

The first question arising here is how long “increasing runs” may be for
which the indicator in (16.1) equals one. The length of the longest increasing
run in the first n observations of Y-values, that is,

L, =max{k | Yij1 <--- <Yy forsomei, 0<i<n—k},
has been investigated by several authors. Pittel (1981), for instance, has proved

that

n

lim

=1 a.s.
n—00 k(n) a5,

where k(n) = logn/loglogn . A more precise result on the asymptotics of Ly,
has been given by Révész (1983) and Novak (1992).

Theorem 16.1.1 If | =1, is the solution of lle"l(27rl)1/2 =n, then

limsup (Lp, —I,) =0 a.s., (16.2)
n—oo
lim inf (Ln—1p) =-2 a.s; (16.3)

see, for example, Novak (1992, Corollary 2.2).

One can check that

logn — % log(2me) 1
= - 16.4
‘n loglogn —logloglogn —1+o0(1) 2 (n = o0) (16.4)

[Novak (1992, Remark 2.4)]. Hence, I, ~ k(n) as n — oo.

Results on the length of the longest increasing run in case of discrete distri-
butions have recently been obtained by Csdki and Féldes (1996). For asymp-
totics of the length of the longest increasing run in R?, see Frolov and Mar-
tikainen (1998).

It is interesting to investigate the growth rates of My(aL,) and My(aly,),
a = an € (0,1] . The above setting includes some important special cases.
For example, if X = 1 a.s., then Mp(L,) = L, a.s., and precise limiting
results are described above. Another special case of interest arises when X; =
Y; for all i. Then, {X;} can be interpreted as a sequence of “gains” of a
player in a game of chance, and the random walk {Si} describes the player’s
fortune. So, My (j) gives the “maximal gain” of a player over increasing runs
of length j. It turns out that some surprising phenomena can be observed. For
instance, the maximal gain of a player is not always attained over increasing
runs of maximal length L,. Indeed, the optimal length may depend on the full
underlying distribution.
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Similar phenomena have been observed for the maximal (unrestricted) gain
(say) U, over subintervals of length j = j(n), i.e.

Un(y) = 2nax_(Sk+; = Sk)-

The asymptotic behaviour of Uy,(j) depends on the growth rate of j(n). Erdés
and Rényi (1970) have investigated the case j = [clogn]. When j/logn — oo,
the asymptotics of Uy,(j) have been studied by Csorgé and Révész (1981). The
case j/logn — 0 has been dealt with by Mason (1989).

For the sake of comparison, we briefly describe these results here. Assume
that

(i) X is non-degenerate, 0 < EX < oc;
(ii) to = sup{t : p(t) = Ee!X < 0o} > 0.
Denote
Flz)=P(X<z),w=esssup X,
¢(2) = sup{zt —log p(t) : t 2 0, (t) < oo},
v(z) = sup{z: {(z) < z}.

The function vy(z) is a concave, continuous and non-decreasing function on
[0,00) with y(z) — w as £ — oo [Mason (1989)].
Put

to
co = 1/( / tm’(t)dt) , (16.5)
0

where m(t) = ¢’'(t)/¢(t), 0 < t < tp. It is known that ¢y = 1/(Ato — log ¢(to))
if to < 0o and A = lim¢yy, m(t) < oo. Furthermore, ¢g = —1/log P(X = A) if
to = 00, A < 0o and P(X = A) > 0 (in this case, A = w). In all other cases,
co = 0 [see Deheuvels, Devroye and Lynch (1986)].

The following result has been proved by Erdés and Rényi (1970) for ¢ > c¢o
and by Deheuvels and Devroye (1987) for 0 < ¢ < ¢g. See also Theorem 2.4.3
of Csorgé and Révész (1981).

Theorem 16.1.2 Put j = [clogn]. Then, almost surely

Un(4) {'r(%), ife>co,

lim - = )
nsoo  j A+tl0<%——c%), if0<c<co.

Mason (1989) has extended the Erdés—-Rényi law of large numbers as follows.
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Theorem 16.1.3 Assume that j = j(n) and d = (logn)/j — oo . Then,

lim sup ———Un(g) =1

meup ) a.s. (16.6)

Furthermore, one can replace limsup by lim if w<oo orif

o (= log(1 = F(z))

T—00 T

=1. (16.7)

Remark 16.1.1 Mason (1989) has proved that (16.7) is equivalent to

. MmaXi<k<n Xk
lim —===""" —

o fy(log n) a.s.,

which, in turn, is equivalent to (16.6) with j = 1.

The case j/logn — oo has been investigated by Csorgé and Révész (1981).
The following one-sided generalization of their results is due to Frolov (1998).

Theorem 16.1.4 Let EX = 0 and EX? = 1. Assume that j = j(n) < n
and j ~ hy, for a non-decreasing sequence {hn} such that {n/hn} is also non-
decreasing. (Note that j’s are integers, which usually do not satisfy the mono-
tonicity assumptions on hy.)

If either, for somet>0,0< (<1,

o0
/exp{txﬁ}dF(m) <oo and j/(logn)??! - o,
0

or, for some p > 2,

oo -n
/xde(x) <oo, logn / z2dF(z) -0,
0 —00

and liminf jn?/Plogn >0,
n—oo

then

lim sup Un(4)
n—oo  (2j(log(n/j) + loglogn ))1/2

If additionally loglogn = o(log(n/j)), then limsup can be replaced by lim .

=1 a.s.

Our attention focuses on the limiting behaviour of the maximal gain M, (5)
over increasing runs of length j = j,. Such statistics play a role in various
contexts. For example, if {S,} describes the log-return process of a certain
portfolio, the investor might be interested in “maximal increasing draw—downs”
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of {Sy,} in order to estimate the risk of his investment [see, for example, Bin-
swanger and Embrechts (1994)]. Similar questions arise in connection with
molecular sequence comparisons or in the change-analysis of engineering sys-
tems [Dembo and Karlin (1991)]. In any case, a.s. limiting relations of the os-
cillations of {S,} provide strong measures of the randomness of the underlying
sequences {X;} or {(X;,Y;)} . For corresponding results on the maximal gain
over (so—called) “head runs”, see Frolov, Martikainen and Steinebach (1998).

Let us now describe the asymptotics of M,(j) which crucially depend on
the growth rate of j = jn, = anly, a, € (0,1), I, asin (16.4). It turns out
that there are essentially three different cases:

If (1—a) loglogn — oo, Theorem 16.2.1 shows that the a.s. asymptotics de-
pend on the underlying distribution, a similar phenomenon as in Theorem 16.1.3
above. It also demonstrates that the maximal gain over increasing runs is not
necessarily attained during increasing runs of maximal length. It may hap-
pen that the maximal gain is attained over increasing runs of length aL, (or
equivalently al,), with a coefficient a € (0,1) depending on the distribution
of X. For example, a = 1/2 if X has a standard normal distribution, and
a=(a—1)/aif X has a Weibull(a, \) distribution with parameter o > 1. An-
other surprising phenomenon appears when the random variable X is bounded.
By Theorem 16.2.1, the maximal gain over increasing runs of length al, (or
aLy) a.s. increases faster whenever a < 1 is closer to 1. Nevertheless, by The-
orem 16.2.2, the maximal gain My (anl,) suddenly can have a smaller growth
rate if a, — 1 faster than in Theorem 16.2.1. The case when j does not depend
on n is also included in Theorem 16.2.1. Then, M,(j) typically increases a.s.
as jy(logn/j).

If (1—a)loglogn — Bwith0 < B < 0o, then My(l,) is a.s. proportional to
aly, for some coefficient a analogous to the limiting constant in Theorem 16.1.2.
In this sense, we obtain an Erdés-Rényi (1970) type analogue of Theorem 16.1.2,
but it is important to keep in mind that, though in both Theorems 16.1.2 and
16.2.2 the maxima are normed by the lengths of increments, these lengths have
different order of growth, which is logn in Theorem 16.1.2 and logn/ loglogn
in Theorem 16.2.2. It is worthwhile mentioning that the distribution of X can
be uniquely determined by the limit function of Theorem 16.2.2 and therefore
a.s. by the maxima M, (j).

If a = a, — 1 fast enough, i.e. if (1 —a) loglogn — 0, the asymptotics of
M,(5) do not depend on the distribution of X, provided EX =0 and FX? = 1.
Theorems 16.2.3 and 16.2.4 give universal norming sequences in this case. This
type of behaviour is similar to the Csorg6—Révész results of Theorem 16.1.4.
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16.2 Results

Given a real sequence {an} with a, € (0,1), put

i(n) = ok, e(n) = 5 logn,

b =i(n)v(c(n)) .
Note that, if i(n) — oo, then

anlogn (1

~ v — 9% Joglo n) as n— oo
" loglogn g8 '

Qn

Recall that v is concave, continuous and nondecreasing with v(c0) = w.

We assume in the sequel that the length of a run is at least 1, i.e. i(n) > 1.

Theorem 16.2.1 Assume that {i(n)} is non-decreasing, and
(1—ap) loglogn - 00 as n—oo.
Then,

lim sup —Mn(anln)

n—0o0 b'n,

=1 a.s. (16.8)

Moreover, one can replace limsup in (16.8) by lim if w < oo or if (16.7)
holds.

According to Mason (1989), (16.7) holds for the normal, geometric, Poisson
and Weibull distributions. He also gave an example of a distribution for which
(16.7) fails, but (16.6) still holds.

Examples

(1) Normal distribution: X ~ N(a,0?), a >0, 02 > 0. Here,

o242  (z-a)?

ot) =explot+ T}, ()= S

5 , () =Vv202z+a,

logn
Voglogn
It follows that b, has maximal growth rate if a, = 1/2. Hence, the maximal
gain over increasing runs is attained in runs of length [, /2.

b,n ~ 20'2an(1 - an)
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(2) Weibull(a, \) distribution: P(X > z) = exp{—Xz®}, £ > 0, A > 0,
a > 1. It follows from (16.7) that

7(:17)’\4(§)1/a as T — 00.

Hence,
1
bn ~ (%) /aa}{-l/a(l — a’n)l/a log'n, ( loglogn )—l—l—l/a )

The maximal gain over increasing runs is attained in the case of a, = (a—1)/a.

(3) Exponential distribution: X ~ E(X), A > 0. Here,

l_an

go(t):)\—é—,t<>\, 7(x)~§ as r—00, by~ logn .

t

Here, it seems that the maximal gain is attained when a,, — 0 and b, ~ logn/A.
Moreover, since Theorem 16.2.1 admits the case i(n) = 1, the maximal gain is
already attained in a single game.

Remark 16.2.1 One can replace My,(anl,) by My(anLy) in Theorem 16.2.1.
Next, we study the case a,, — 1 in more detail.

Theorem 16.2.2 Let {a,} be a sequence of real numbers such that a, — 1,
and (1 — ay) loglogn — B asn — 00, 0 < B < 00. Put By = 1/cp, where co
is as in (16.5). Then, almost surely

My (@nln) _ {v(B) : if B< By,

Jim A+i(B-By), #B>Bo.

n—oo n

From here on, assumptions (i) and (ii) are not used any longer.

Theorem 16.2.3 Assume that EX =0, EX? =1 and, for some 0 < 3 < 1,
t>0,

/exp{txﬁ}dF(:c) < 00.
0

Let {an} be a sequence of real numbers such that an, — 1, and
(1= an)(log ,n)2(1—,3)/(2_;3)( loglogn )'3/(2‘3) —0.
Then,

lim sup ______Mn(anln)

n—oo dn

<1 a.s., (16.9)
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where dyp, = (2ln(In —i(n) + 1)logly)1/? .
If, additionally, lim inf(l,, — i(n)) > 1, then

Mn(anln)

n

lim inf
n—oo

>1 a.s., (16.10)

where by, = (2, (In — i(n) — 1) logl,)1/2 .

Corollary 16.2.1 If the assumptions of Theorem 16.2.3 are satisfied, and
I, —i(n) — oo, then

lim —A—/{E—(an—lnz =1 a.s.
n—o0 bn
Theorem 16.2.4 Assume that EX =0, EX? =1, and

n?P(X >n) — 0 for somep >4, (16.11)
1
2
z“dF(z) = o(—) .
/M)n (@) = olip7)
Let {an} be a sequence of real numbers such that anp — 1.

If limsup(l, —i(n)) < (p—2)/2 -1, then (16.9) holds.
If, additionally, liminf(l, —i(n)) > 1, then (16.10) holds.

16.3 Proofs

We first prove the following lemma.

Lemma 16.3.1 For anyz > 0,

P(S{Yi < <Yi}>z) = %p(sk > 7).

PROOF. By independence and identical distribution of (Xi,Y1),...,(Xk, Yx)
together with the continuity of the distribution of Y’s we have, for any =z > 0,

P(Sy>1z) = Z P(X;+ -+ Xg >z, Y7r(1)<"'<Y1r(k))
™ perm.
= Z P(X,,,(l) ++ Xag) > 2, Ya) <00 < Yw(k))
T perm.

= kIPX1+-+Xpg>z, V1<---<Yy)
= KP(SiI{1 < <Y} >12).
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This proves Lemma 16.3.1. |
For sake of brevity, we put | = lp, a = an.

PROOF OF THEOREM 16.2.1. In the estimations below, C; will always denote
a positive constant.

Assume first that w = oo.

Let

Nijo={n:2 <n< 2t in)=4,a<p}, 0<B<1,
) ) +1
A .9) < Jj+1 ='_T_,< _T__}
Nigr {n <n <27, in) =1, loglog2/ — @< log log 27
for loglog2/ >r > f3 loglog2’ .
Put n;j, =min{n:n¢€ N;jr}. For fixed € > 0, we have
Pjo = P(nrélz%ffoM"(“l)/b"Z l1+e¢)

= i <. .. <L .
- P( OSkI;lia.?")‘ic'l_i(Sk+7’ Sk)I{Yk+1 = s Yk-H,}

> (L+¢)iv((1 — B) lognijo/1) )
P P(SI{Y1 <--- <Yi} > (L+¢€)i7((1 = B)lognijo/7) )
o
_ %_ P(S; > (1+¢)iv((1 - B)lognijo/i)) -

IA

By Lemma 2.3 in Mason (1989), we get

Pjo < 27t! exp{—(1+¢)(1 - B)lognijo}
< 2exp{log? (1 - (1-B)(1+¢))} < 2175972, (16.12)

if B is chosen small enough to satisfy 8 < €/2(1 + €).

Now, we turn to the case of positive 7. Put Ajjr = maXpeN;;, An,y Gijr =
minpeN;;, an-

As before, we obtain

Pjr = P( max Mp(al)/bn > 1+e¢)
nGN“-T
97+1
< i P(S8;> (1+¢)iy((1 — Ayr) lognijr/i) ) -
By Stirling’s formula and Lemma 2.3 in Mason (1989), we get
Pijr < Co2 exp{—(i+1/2)logi+i— (1 +¢)(1 — Aijr) lognijr} -
Recall k(n) =logn/loglogn . By (16.4),

12> az’jrk(?j)(l + log loglog 2’ / loglog2?)
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for large j. Since aijr > (3, we have

ilogi > a;rk(27)(1+ log loglog2? / loglog2’ )
x (log 8 + loglog2’ — log loglog2’)
> Craijrk(2) + aijr log 27 (1 — (log loglog2? / loglog 27 )?) .

The last inequality together with 7 < 2Aijrk(2j ) and njr > 27 implies
Pyjr < Coexp{log2’ (1 —agr — (1 +¢&)(1 — Aijr)) + 3k(2%)}

for large j. By the deﬁnj’cion of Nijr, Aijr — aijr < 1/ loglog 27 . Note that
1— Ajjr > 5/(e loglog2? ) for large j, by the assumption of Theorem 16.2.1,

and therefore

Py < Coexp{log2 (Aijr — aigr — €)(1 — Ayr)) + 3k(27)}

<
< Coexp{—k(2)}

for large j.
Since the right-hand sides of this estimate and (16.12) do not depend on 1,
we have

P, = P(_ ma;2< My (al)/bn > 1+¢)

< 2m;2759/2 4 Com, 3 exp{—k(2)},
B loglog 27 <r< loglog 27

where m; = #{i : Ni; # 0}, Nij = U, Nijr. Note that m; < algj+1 < a(j +
1)log2 . This implies that the series >_; P; converges. By the Borel-Cantelli

lemma, we conclude that

limsup Mn(al) <1

n—oo n

a.s. (16.13)

Now, put i = i(n). For € > 0, we have

Q(n) = P(My(al) < (1+¢)"%b)
nfi—1

< p( n {(Smsy = Smi) I {¥rmis1 < -+ < Yimpayi} < (1+€) %0 })
= (P(SJ{YI < <Y} < (14€)7%,))/i 1

< exp{—Cy ;% P(S; > (1+¢)%b,)}

= exp{-Cs 3  P(Si > (1+€)iv(e(n)))}

< exp{-Cy — (P(X1 > (1+¢)3y(c(n))))'}. (16.14)
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Here, we have used Lemma 16.3.1 together with the inequalities 1 —z < e’ ”*
and P(Spm > mz) > (P(X1 > z))™.

By the method used in Lemma 2.5 of Mason (1989), we can construct a
sequence {n,} of natural numbers such that

(P(X1 > (1+)3(c(ny)))) 8™ /™) > exp{—(1 +¢) ' logn,} (16.15)

and n, > r for all large 7.

By Stirling’s formula and the definition of /s,

1
Csl *nexp{—(i + —2-) logi + 1}

|
i\

13!

v

Cyl 'nexp{—(al + %) log! + al}

Cal™32n "% exp{a(logn — llogl + 1)}
C4l=32n % exp{alogl/2} > Cyl™3/?n}~2.

v v

On combining (16.14) and (16.15), we have

Qny) < exp{—Cyl;3/2n{l-(1+e) N(1-an)y
< exp{—Cal;3/* exp{k(n,)}} < exp{—Cak(n,)"3/* exp{k(n,)}}

for large 7. Hence, the series ¥, Q(n,) converges. By the Borel-Cantelli lemma,
it follows that

lim sup Mn(al)

n—00 n

>1 as.

Taking (16.13) into account, we arrive at (16.8).
Assume now that (16.7) holds. Replacing (1 +¢)~3 in (16.14) by (1 +e)72,
we have
R(n) = P(My(al) < (1+¢)%by)
n _ .
< exp{=Cs — (P(X1 2 (1+¢) 2v(e(n))))'} -

From the proof of Theorem in Mason (1989, p. 264), we adopt the inequality
P(X1 2 (1+¢) 2y(c(n))) > exp{—(1+¢) 7" ¢(n) }

which, in combination with Stirling’s formula and the definition of I/, again,
implies convergence of the series Y, R(n). From the Borel-Cantelli lemma, we
conclude that

My (al)

n

lim inf
n—oo

>1

This completes the proof of Theorem 16.2.1 for the case w = oo.
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In the case of w < 0o , choose 0 < d; < 1. As in (16.14), we obtain
Q(n) = P(Mp(al) < d1wi) < exp {—Ce 2_12' P(S; > 510.)2')}

< exp {—Cﬁ % (P(X1 > 51‘0))i} .

Similar estimations as before then show that the series 3, Q(n) converges. By
Borel-Cantelli lemma, we have

lim inf M > aw a.s.
n—oo In

This inequality, in combination with the definitions of M, (al) and w, completes
the proof of Theorem 16.2.1. | |
In the proof of our next result, we make use of the following theorem. Put
v =~(B) , and let t* = t*(y) be the solution of the equation m(t*) = ~.
Theorem 16.3.1 [Petrov (1965)]. For any e > 0,
P(t*)
vn

P(S, > nvy) ~ n

exp{—nB}

uniformly for v € [e,min{A — ¢,1/e}], where ¥ (t*) is a finite positive constant
depending only on t* and the distribution of X;.

For nonlattice distributions, ¥ (t*) = 1/(t*a(t*)v/2r), while for lattice dis-
tributions with span H, ¥(t*) = H/({1—e B }o(t*)v/2r), where o (t) = m/(t).

PROOF OF THEOREM 16.2.2. For sake of brevity, we put i = i(n) = [al].
Assume first that B < Bp. Making use of Theorem 16.3.1, Stirling’s formula
and the properties of v(z), we have

R(n) = P(Ma(i) 2 (1+€)7(B)i) < ZP(S; 2 (1+€)Y(B)i)

< Crexp {(l + %) logl—1—-(+ %)logi +i—3(1+ (52)B}
< Crexp{—dsal}

for any € > 0, some positive ds, 3, and all large n.
Put n; = max{n : i(n) = j}. Then the series }°; R(n;) converges. By
Borel-Cantelli lemma,

lim sup ————————Mn" (anj Ing )
j—o0 5 lnj

<~v(B) as.

Since a — 1 and My (i) < My, (an,ln,;) for n such that i(n) = j, we conclude

that Mo
lim sup Mn(2) <%(B) as.
n—00 l



On the Maximal Excursion Over Increasing Runs 237

On the other hand, by Theorem 16.3.1, Stirling’s formula and the properties
of y(z), we also have

Q(n) = P(My(i) < (1-¢)y(B)al)
< ep{- o P(5i2 (- n(Blal)
< exp {—Cg exp {(l + %)logl —1-(+ g) logi+1i—14(1— 64)B}}
< exp{—Csexp{dsal}} < n~2

for all large n. Hence, the series >, Q(n) converges and, by Borel-Cantelli
lemma,

lim inf M?(Z) >~v(B) as.,

n—oo

which completes the proof in the first case.
We now turn to the case B > By. Put

L=A+—1—(B—Bo).
to
Since By = 1/¢g, By < oo only if A < oo.
Assume first that A < oo and tg = co. Then A = w, L = A and we need
only prove that

lim _Aﬁ;@ >L as. (16.16)

To do so, we use the same arguments as in the proof of Theorem 16.2.1 and
get

Q(n) = P(Mnp(i) <(L-¢)l)
< exp {—Cg exp{(l —a+ Olo_l-o—gilo—g—h—) log n}

for all large n. Since (1 — a) loglogn — B, we have

logn

—=— > 2 logl
loglogn — g8 ™

(I-a+Cho )logn = Chy

loglogn

for all large n. This yields
Qn) <n”?

for all large n, and the series },, @(n) converges. Then Borel-Cantelli lemma
gives (16.16).

Finally, assume that A < oo and tp < co. Then, w = o0 and ¢y = 1/( Aty —
log ¢(to)). Hence, By = Atg — log ¢(to).
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‘We have
R(n) = P(M,(i)> (L+¢)al) < ,’;—,P(si > (L +€)al)
< Zexp{ilogp(to) — (L +¢)al}

1 1
< Cizexp {(l + §)logl —l—-(+ E)logi +i+ilogp(ty) — (L + 6)al}
< Craexp{—deal}

for all large n. Here, we have used Markov’s inequality and Stirling’s formula.
Applying the same arguments as in the case B < By, we get

lim sup Mn(3)
n—oo l
Put A =L —¢, u = L +¢. From Deheuvels and Devroye (1987, p. 1376),
we adopt the following inequality. For any small § > 0, there exists a positive
constant v such that

<L as.

wBok

P(Sk > kX) > vk~ 2 exp{— s

for all large n.
Then, we have

Q(n)
—  P(My(i) < (1—¢)Lal) < exp {— T P(Si2 (1 e)Lal)}

< exp {"Clsexp {(H %)logl —-1-(i+ g)logiﬂ'— logi — 420 }}

2 A-6
< exp {—013 exp {57Z(B — X?Oé}}

for all large n. Putting ¢ = 1/B, we get

In Deheuvels and Devroye (1987, p. 1377), it is proved that for any small € > 0
there exists a small § > 0 such that

1 1 u
-————>0.
c cA-9
So,
Q(n) < exp{—exp{dsl}}
for all large n. Applying the same arguments as in the case B < By, we complete
the proof of Theorem 16.2.2. [ |
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Lemma 16.3.2 Assume (1 —a) loglogn — 0. Let d, and b, be as defined in
Theorem 16.2.3. If, for somer > 1,

D2d?
21
for any 0 < D < r, then the conclusion of Theorem 16.2.3 holds true.

log P(S; > Ddy) ~ — (16.17)

PROOF OF LEMMA 16.3.2. Take ¢ > 0 such that (1 +¢)/2 < r. We have for
large n

R(n)

P(Mn(i) 2 (1+2¢)"/%dn) < %P(Si > (1+ 2¢)Y%d,)

1+ e)di}

1 1
< — -1 - (2 —_ 3 ) —
< Cl4exp{(l+2)logl l (2+2)logz+z 5]

< Cuexp{—(1+em)logl} ,

where 7, = [ — i+ 1 > 1. Here, we have used Stirling’s formula together with
(16.17).

Fix g > 1. Setting Njxr ={n:i(n) =17, ,qF < T < 1}, njx = max{n :
n € Njx}, j =2, k> 0, we conclude that the series > ;k B(njk) converges.
By Borel-Cantelli lemma,

lim sup —-——Mnj k (anj klnj ‘)

Jj—o0o Mk

<1 as,

uniformly over k. Since dn > dn,, /q and My (anl) < My, (anlny,) for n € Njg,
all large j, all k, we conclude that

lim sup Mg(z) <q as..

n—oo n
Since ¢ > 1 is arbitrary otherwise, this yields (16.9).
On the other hand, making use of Stirling’s formula and (16.17) again, we
get for large n

Qn) = P(Ma(s) < (1—€)bn) < exp {— T P(Si 2 (1- s)bn)}

1 3 1 — 2¢)b2
< exp{—C’15exp{(l+ §)logl—-l— (¢ + §)logi+i— -(—2;)—'5}}

< exp{_59l€Tn } )

where 7, =1 —i—1.
For Nji defined above, we put now n; = min{n : n € Nj3}. Then the series
>k @(njk) converges, and Borel-Cantelli lemma implies

M, (an., ln.
liming Mrse@nsebnse) o4
j—oo ik
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uniformly over k. In the same way as before, we get

Mall)

n

lim inf
n—oo

a.s.

This completes the proof of Lemma 16.3.2. [ |

PROOF OF THEOREMS 16.2.3 AND 16.2.4. Theorems 16.2.3 and 16.2.4 are
immediate from Lemma 16.3.2 and the following results on large [Frolov (1998)]
and moderate [Amosova (1979)] deviations. |

Theorem 16.3.2 If the assumptions of Theorem 16.2.3 are satisfied, then, for
any 8 > 0 and any sequence {xn} with z, = o(n?/4=2P)), the inequalities

exp{—(1 +8)z/2} < P(Sn > zav/n) < exp{—(1 - 0)z2/2}
hold for all large n.

PROOF. If 8 =1, see Feller’s (1969) result. If 8 < 1, it follows from Lemma 2
in §3 of Chapter VIII and relations (3.28), (3.30) in Petrov (1975, p. 241). W

Theorem 16.3.3 If the assumptions of Theorem 16.2.4 are satisfied, then for
any ¢ < \/p—2,

P(Sp > zvn) ~1— ®(x)

uniformly over 0 < z < cy/logn. Here, ®(z) denotes the standard normal
distribution function.
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Almost Sure Behaviour of Partial Maxima
Sequences of Some m-Dependent Stationary
Sequences

George Haiman and Lhassan Habach

Université de Sciences et Technologies de Lille, Villeneuve d’Ascq, France

Abstract: For some m-dependent stationary sequences, one can construct an
i.i.d. sequence, with same marginal distribution, such that a.s. from a random
range on the distribution tail, the corresponding partial maxima sequences co-
incide. In this chapter, we give a short presentation of the proofs of these
results.

Keywords and phrases: m-dependent, stationary, extremes, partial maxima

17.1 Introduction

Let {Xn} be a stationary m-dependent sequence of random variables (for any
t>1,0(...,Xt) and 0(X¢4m+1,-..) are independent).

Suppose that F(z) = P(X; < z) is continuous and there exist 8 > 0 and
k > 0 such that for all 2 < i < m+ 1 we have

limsup{ sup P{Xi>u|X;=v}(-log(l- F(u)))2+ﬁ} < oo, (17.1)
uU—w u<v<p(u)

where w = Max{z;F(z) < 1} and ¢(u) is the solution of the equation
1 - Fp(u) = (1 — F(u))'**.

The following Theorem 17.1.1 has been proved in Haiman (1987) [see also
Haiman (1992) and Haiman et al. (1998)].

Theorem 17.1.1 Let {X,} satisfy condition (17.1). Then, one can construct,
on the probability space on which {X,} is defined, enlarged by independent
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factors, an i.i.d. sequence {Xn}nZI; such that X, £ X1 and a.s. there ezists a
random range N such that for n > N we have

Max (X1, ..., Xn) = Max(X1,..., Xn). (17.2)

Several examples of sequences satisfying the following condition that is stronger
than (17.1): there exist v > 0 and k > 0 such that for all 2 <3 < m+ 1, we
have

Iimsup{ sup P{Xi>u|X;=v}P{X1> u})_7} <0, (17.3)
u—w u<v<p(u)

as given in Haiman et al. (1998).

Among these, for m = 1, examples of the form X,, = f(Up,Upy1),n > 1,
where {Up}n>1 is a sequence of i.i.d. uniformly on [0,1] distributed random
variables, are X, = U, + Up+1, Xn = Up X Up41 and X, = inf(U,, Up41). For
sequences {X,} which do not satisfy (17.1), such as X, = Max(Un, Un+1), a
similar result to Theorem 17.1.1 result was obtained in the above cited paper.
Another example of 1-dependent sequence satisfying (17.3) [see Haiman (1999)]
is

X, = n_I?th<n(W(t) — W(t + 1)),TL >1,

where W (t) is the Wiener process.
Applied to this example, (17.2) means that for n > N we have

~

Max (W (t) = W(t+1)) = Max(X1, ..., Xn)

0<t<n
and the i.i.d. sequence {X,} satisfies
P{X) <z} =P{X1 <z} =1-px—2¢+ oz — o> + 9%,

with ¢ = () = 1/v2re**/2 and ¢ = ¥(z) = 1— [*__ p(u)du. In Haiman and
Habach (1999), the following Theorem 17.1.2 has been proved which completes
Theorem 17.1.1.
Theorem 17.1.2 The random variable N of Theorem 17.1.1 satisfies

P(N > s) = O((log s)#/(4+8)y s > 2. (17.4)

It may be easily seen that (17.3) implies (17.1) for any 8 > 0. Thus, we have
the following corollary.

Corollary 17.1.1 If {X,} satisfies (17.8), then for any 0 < € < 1 we have

P(N > s) = o((log s)<71), s> 2. (17.5)
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The proof of Theorem 17.1.2, quite long and complicated, is closely connected
to the method of construction of the i.i.d. sequence {X,}.

In this Chapter we give a short presentation of the proofs of these results,
leaving aside auxiliary technical aspects which may be found in the above cited
papers.

17.2 Proof of Theorem 17.1.2

Let 79 < w be fixed and consider the sequence {(T7, Ry)}n>1 of record times
T, and record values R, of {X,}, defined with respect to the initial threshold

To, as

T = inf{k>1; Xi>ro}, R1 = X,

and for n > 1,
Tn+1 = 1nf{k‘ >Th; Xi > Rn}, Rn+1 = XTn+1' (176)

By the hypotheses, a.s. for any n > 1, T, is finite. Let {(Tn,Rn)}nzl be
a sequence of random vectors, taking values in IN X R and having the same
distribution as the records defined with respect to rg of an i.i.d. sequence, with
same marginal distribution as {X,}.

It is well known that {(Tn, Rn)}nZl form a Markov chain such that for any
integers 1 <t <ty < -+ <tpy1 and any 7o <11 < --- < Tp41 < w we have

P{Tn+1 = tn+17én+1 > Tnt | Ti=t, R =r1,.... T =tn, Rn = Tn}
=P {Tn-l—l = tnt1, Bng1 > Tng1 | Rn = Tn} (17.7)
= (F(ra) ™71 (1 = F(ras)

The construction in Theorem 17.1.1 easily follows from the following Theorem
17.2.1.

Theorem 17.2.1 Let {X,} satisfy condition (17.1). Then one can construct,
on the probability space on which {X,} is defined, enlarged by independent
factors, a sequence {(Tn,ﬁﬁn)}, satisfying (17.7), such that a.s. there erists a
random range v such that for n > v, we have

~

Tny1 = inf{k> Ty; Xz > Ry}
= inf{k>T+m+1; Xx> Rn} (17.8)
and

Roy1 = X7 -
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Indeed, observe that, if (17.8) is satisfied, then there exist integers ’ and
Q@ such that a.s. for n > 1/ we have

Thus, since the T3,’s are the instants when the M,,’s change and the R,’s the
corresponding values, it is not difficult to construct the final i.i.d. sequence
{X,} the records of which, with respect to ro, are {(T}, Ry}

The first step of the proof of Theorem 17.1.2 is the following Lemma 17.2.1.

Lemma 17.2.1 The random variable v in Theorem 17.2.1 satisfies
P{v>t}=0@t"P?),t>0. (17.9)

PRrROOF. The Aconstruction in TheoremA 17.2.1Ais such that if C,, denotes the
event Cp = (Tph4+1 # inf{k > Ty, Xy > Rp} or Rpy1 # XTn+1)’ we have

P(Cy) = 0(n~'777%)

and then the statement of the theorem follows by the first Borel Cantelli Lemma.
But then, we also have

P(v>1t) < P(|J Cn) = 0(t™P72).

n>t
]
The next step involves proving the following Lemma 17.2.2.
Lemma 17.2.2 We have for s > 2,
P{T, > s} = O((log s))~P/(*+#) | (17.10)
PROOF. We first establish, for any n, the formula
A F(ro) ) 1— F(ro) d
E(logT,) = n—c-l—lo( +0(1/2"
(log T E\1=F(ro) F(ro)  2(F(ro))? (/2%
= :A(n,r), (17.11)
with ¢ = Euler constant, |d| < 1, and |O(z)| < K(ro) |z|.
From (17.11) and the Markov inequality, we get
P{Ty > s < AT0) (o (17.12)

logs ’

The proof of (17.11) is based on the corresponding result obtained in Pfeifer
(1984) for the classical record times sequence {L,} of an i.i.d. sequence {Y;}.
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{Ly,} are defined as Ly = 1, Lyy; = inf{t > L, Y; > Yz, },k > 1 and Pfeifer’s
result is the formula

E(logL,) =n —c+ O(E(1/Ly)), where E(1/L,) = O(n?/2").

The latter formula was improved in Nevzorov (1995) [see also Nevzorov and
Balakrishnan (1998)], who obtained

E(1/Ly) = Qi +0(1/3M).

n

Notice that the L,’s are different from the record times defined with respect to
an initial threshold. However, if {7,}n>1 is the record time sequence of {¥,}
with respect to some initial threshold uy (ie. 71 = inf{t > 1;Y; > ug} and
Tk+1 = inf{k > 7 ; Yi > Y, } ), then there exist 79 and ¢ such that for n > ng
we have L, = T,—q.

Going back to the proof of (17.10), for any ¢ > 1 we have

P(T,>s) < P(T, >s,v<t)+ P >t),
where, by (17.9), there is a constant K such that P(v > t) < K1t~#/2. Next,

t
P(T,>sv<t) = ZP(Tn>s,V:n)

n=1
t
< Y P(Tn>s). (17.13)
n=1

By (17.12), there is a constant K3 such that the last sum in (17.13) is majorized
by Kst?/logs.
Thus, for any t > 1,

P(T, > s) < Kit ™% + Kot*/logs,  s>2. (17.14)

Taking t = [(logs)/(2+8/2)], (where [ ] stands for integer part), there is a
constant K such that the right hand term in the above inequality is majorized
by K (logs)=A/(4+8), [

In order to prove (17.4) we now assume, without loss of generality, that the
X,’s (thus the X,,’s) are uniformly on [0, 1] distributed.
We are now in position to prove (17.4). Let

L=inf{k>0; Xz ., > My }. (17.15)

Let 0 < o < 1 be a fixed constant and {unp}n>1, 0 < up < 1, an increasing
sequence, lim,_,o, 4, = 1. We then have, for any s > 1,

P(N>s) < P{T,+L>s} (17.16)
< P{I,+L>s)N (M[Sa] < u[sa])} + P{M[sa] > ’U,[sa]}.
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Next,
P{(T,, + L > 8) N (Mge) < use))} < P(A) + P{T,, > [s%]}, (17.17)
where X X
A= (T, <[s¥)N (I, +L>s)N (M[sa] < u[sa]) .
By (17.10), we have

P{T, > [s°]} = O((log s)P/(4+R)) s > 2. (17.18)

Next,

A

(T, < [s*DN (L > s = [s°]) N (Mse) < ufse))
{ < [ a]} N {Ma’x( T,4+10° XT+s—[s°‘]) < u’[sa]}
[s°]

C U {Ma,X(X7-+1, ceey X7-+s_[sa]) < U[sa]} .

=1

A C
C

Thus, by stationarity,

P(A) < s P{M,_{sa) < ufse)} < 8% (uea)) D72, (17.19)
Let ~p/(@+5)
Un =1— %—. (17.20)

Then, (17.19) implies that there exists a v > 0 such that
P(A) = O(Sa . e_s’y) = 0((log 3))_B/(4+B)) (1721)

In order to bound the term P{M[s] > U[sa]}, we apply the next Lemma, which
is a consequence of Haiman (1987, Theorem 1).

Lemma 17.2.3 If the sequence {un}n>1 s such that lim, oo n(l — us) = 0,
then

With {u,} defined in (17.20), we then obtain
P{Mjsa) > Ufge]} = O((log s)~#/ (4+/3)) . (17.23)

Combining (17.16), (17.17), (17.18), (17.21) and (17.23), we get (17.4).
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On a Strong Limit Theorem for Sums of
Independent Random Variables

Valentin V. Petrov
St. Petersburg State University, St. Petersburg, Russia

Abstract: This chapter examines the almost sure behaviour of sums of inde-
pendent non-identically distributed random variables. An extension of some
results of Chung and Erdds is obtained.

Keywords and phrases: Almost sure convergence, sums of independent ran-
dom variables, Chung—Erdos theorem

18.1 Introduction and Results

The set of functions 1 (z) that are positive and non-decreasing in the region
z > zo for some xg and such that the series > 1/(ny(n)) converges (diverges)
will be denoted by ¥, (respectively, ¥y).

Chung and Erdds (1947) proved that if {X,} is a sequence of independent
random variables having a common distribution function with non-zero abso-
lutely continuous component and if EX; = 0, E|X1|> < oo, then

liminf n'/?$(n)[Sa] > 0 a.s. (18.1)
for every function ¢ € ¥, but if ¢ € ¥y, then

liminf n'/24(n)|S,| =0 a.s. (18.2)

n—oo

Here, S, = X1 4+ X2+ -+ X,,. Some analogues of these results were obtained
by Cote (1955) for sequences of independent non-identically distributed random
variables under severe assumptions including uniformly bounded moments of
the 5th order.
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In Petrov (1978a), and Petrov (1978b) [see also Petrov (1995a, p. 224)], it
was proved that if {X,} is a sequence of independent identically distributed
random variables satisfying the Cramér condition

limsup |Ee®X| < 1, (@)
[t|—o0
then
T}Lrgonl/zw(n)lSnl =00 a.s. (18.3)

for every 1 € W; if the additional assumptions EX; = 0 and EX? < oo are
satisfied, then (18.2) holds for every ¢ € ¥,.

In Petrov (1995b), sufficient conditions are given for relation (18.3) with
1 € U, in the case of independent non-identically distributed random variables.
We shall be interested in sufficient conditions for (18.2) when ¢ € ¥4 also in
the case of independent non-identically distributed summands.

Let {Xn,n =1,2,...} be a sequence of independent random variables with
zero means and finite absolute third moments. We put

n n
Bux= Y. EX}, Dnr= Y, EIX;> (0<k<n-1), By=Bnp.
J=k+1 J=k+1

Theorem 18.1.1 Suppose that

B, > con for all sufficiently large n, (18.4)
Dpx < ci(n—k) for all sufficiently large n —k and k, (18.5)

where co and c1 are some positive constants. Moreover, we assume that
Bag > (1-8)Baoi (18.6)

for every § > 0 and all sufficiently large n — k and k. Finally, we assume that
the sequence { fn(t),n = 1,2,...}, where fo(t) = EeX, contains a subsequence
{fn@);m = 1,2,...} with the following properties: (A) |fn, ()] < C[t|™*
for |t| > R and some positive constants C, a and R (m = 1,2,...), (B)
if rn(n) is the number of elements of the subsequence {fn,, (t)} in the set
IN+1(E), - .., FN4n(t), then ry(n) > cn for all sufficiently large N and n, where
c is a positive constant not depending on n and N.

Under the above-mentioned assumptions, relation (18.2) holds for every ¢ €
U,

It follows from Petrov (1995b) that conditions (A) and (B) with N =0 are
sufficient for relation (18.3) when ¢ € ¥, even without any moment conditions.
More general results related to the case i) € ¥, can be found in Petrov (1998)
for arbitrary sequences of random variables without the independence condition
and any moment assumptions.
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18.2 Proofs

In what follows, we assume that conditions of Theorem 18.1.1 are satisfied.

Lemma 18.2.1 Leta<b, a = o(B:%/,?) and b = o(BTIL{,?) asn—k — oo. Then,

b—a

————(szn o172 (1+0(1))

P(a< Sn—Sk<b)=

asn —k — oo.

This lemma of independent interest is an extension of a result of Shepp
(1964) obtained for independent identically distributed random variables un-
der weaker conditions. Its proof is lengthy and will be published elsewhere.
Lemma 18.2.1 remains true if we replace condition (18.4) and (18.6) by the
condition By, > co(n — k) for all sufficiently large n — k and k.

Lemma 18.2.2 Let ¢ be an arbitrary positive constant. Then
P(n'?y(n)|S,| < cio. ) =1
for every function ¢ € ¥y .

PROOF. We put

c
)\n = nl/g_—w(n), Dn = “Snl S )\n]; En = ['Sn| > )\n], Pn - P(Dn)
Moreover, for any fixed sufficiently large integer N, we put
k—1
Gr= () Er (k>N), Qv =Py, Qr=P(DxGy) (k> N),
r=N

PN,N =1, PN,n = P(Dn|DN) (n > N),
Pipn = P(Dp|DrGr) (N < k <n).
It is easy to show by induction that

m m m
YoP=Y QY Pin (18.7)
n=N k=N n==k

for every m > N.
We shall prove the following statement:
for arbitrary e > 0, there exists an integer M such that

Pk,n <(1+¢)P, & (18.8)
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for k> M and n—k > M.

Let v be an arbitrary positive number. We represent the interval |z| < A,
as the union of non-overlapping intervals I; with length I; < v\, for every j.
Let T} be an arbitrary interval with length ¢; < 2\, + v\, that contains in the
interval [—Ag — An, Ak + An].

Taking into account Lemma 18.2.1 and condition (18.6), we get

2(1 +’y)

max P(S, — Sy € Ty) <

for all sufficiently large k and n — k. We put
k
HJ( ) = [Sk € Ij].
Obviously,
UH® =15kl < Ml = Dy, ZP ")
J

‘We have

P(DnDyGk) (k (k)
Pk‘,n == W {Z P(G H } ZP(DnGkH )

g{ > PGRHM)} T P(GkHJ(.k) 0[S — Sk € T}])
J J
where Tj (j = 1,2,...) is an interval of length ¢; < 2\, + v\, containing in

the interval [—Ax — An, Ak + Ap]. Since X1, X»,... is a sequence of independent
random variables, we obtain

P(GxHP N [Sy — Sk € Ty)) = P(GxH " )P(Sn — Sk € Ty)

and
Py < max P(S, — Sk € TJ)
J

Making use of (18.9) and definition of \,, we get

20+ Nk _ 2(1+9)c

P < (27 Bp_)1/?2 = (27 Bu_k(n — k))Y2(n — k) (18.10)

for all sufficiently large k and n — k. It follows from Lemma 18.2.1 that

2(1 —9)c
(27 Bp_k(n — k))Y24p(n — k)

Pk,n > (1811)

for every positive fixed v and for all sufficiently large n — k. Inequalities (18.10)
and (18.11) imply (18.8).
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Let ¢ be an arbitrary fixed positive number. If N and L are sufficiently
large numbers, we obtain from (18.7) and (18.8) that

m m k+L m
S Pu=), k{zpkn 1+e) Y, Pn_k}
n=N k=N n=k n=k+L+1
m m
<Yy ofL+1+01+e) Y B}
k=N r=L+1
Therefore,
m
S > {r+1++e) Z B} ZP (18.12)
k=N r=L+1

Taking into account inequality (18.11) and conditions (18.5) and ¢ € ¥4, we
have Y2 \ P, = co. Passing to the limit in (18.12) as m — oo, we get

°° 1
> Qr> : (18.13)
Pt 1+4¢

Here, ¢ is an arbitrary positive number. The left-hand side of (18.13) does not
depend on e. Therefore, Y pony Qr > 1. Since

3" Qw=P(DnUENDN41 UENEN 11Dy U---) = P( | Da),
k=N n=N
we have
P(| Dn) =1 (18.14)
n=N

It follows from relations

UDnD U Dy D

n=N+1

and
(o o] o0
ﬂ U D, =limsup D,
N=1n=N
that there exists the limit

]\}113100 P( nUN D,) = P(limsup Dy,).

Applying equality (18.14), we conclude that P(limsup D) = 1. Lemma 18.2.2
is proved. [ |
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Relation (18.2) readily follows from Lemma 18.2.2.
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Development of Linnik’s Work in His Investigation
of the Probabilities of Large Deviation

A. Aleskeviéiené, V. Statulevi¢ius, and K. Padvelskis

Institute of Mathematics and Informatics, Vilnius, Lithuania
Institute of Mathematics and Informatics, Vilnius, Lithuania
Kaunas Vytautas Magnus University, Kaunas, Lithuania

Abstract: In this chapter, we present some large deviation results for the dis-
tribution of the normed sum of random variables related to a Markov chain
with the ergodicity coefficient under conditions similar to the case of indepen-
dent summands. The method of cumulants will be used to prove these results.

Keywords and phrases: Large deviation, ergodicity coefficient, Markov chain,
cumulants, factorial cumulants, Cramer series, partition, correlation function,
factorial moments

19.1 Reminiscences on Yu. V. Linnik
(V. Statuleviéius)

In the period of 1954-1957, I was a post-graduate student in the Ph.D. studies in
Leningrad. The topic of my thesis was Local limit theorems for nonhomogeneous
Markov chains. In the case when all transition probabilities p;;(n) > A > 0,
the local limit theorem was proved by Yu. V. Linnik himself. I succeeded to
prove it in a rather general case (when a(™ B, — co,n — oo, where a(™ is the
ergodicity coefficient), after introducing the so-called characteristic functions of
transition.

His post-graduate students used to go to his place in the evening to dis-
cuss some mathematical problems and to report on the work done. His wife
Lyudmila Pavlovna usually treated us to very tasty tea. One such evening, Yu.
V. Linnik, being in a good mood, told about himself. He said he liked to solve
only difficult problems. Suppose a known mathematician formulates a problem
the solution of which is of great importance to mathematics or its applications.
Yu. V. Linnik said: “One year passes, the problem is not solved; another year
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passes, no solution. Then I set to its solution myself!” He said that in applying
the theory of complex functions, he was ready to outdo anyone. Having chosen
the method of solution, he used to go straight out, without looking around. He
reported his successful results at a seminar. However, he worried about where
to publish his results since they were about 80 pages long. His post-graduate
students such as A. A. Zinger, V. V. Petrov, I. A. Ibragimov, and the author
of these lines curtailed the paper to 10 to 20 pages. In brief, if some ‘loops’
appeared in Linnik’s proof, sometimes we succeeded in curtailing them (and to
curtail the length of the paper). He did not like undisciplined, ungifted students
in Mathematics. Once I recall him asking a student during an exam whether
Doob was not his relative. The student swore he was not and he never knew
Doob. It was his humor—the famous book Theory of Random Processes by
D. Doob had been published at that time. In Russian, the word ‘doob’ (‘dub’)
has another meaning, namely; ‘blockhead’. A dull, uneducated man was called
‘doob’. 1 have already mentioned, academician Yu. V. Linnik was fond of
solving delayed and difficult problems. So, if a post-graduate student got new
good results, he used to send him for discussion with A. N. Kolmogorov or N.
V. Smirnov (if it was a statistical result). This is how we got familiar with
Moscow representatives of the school of probability theory and statistics which
included A. N. Kolmogorov, N. V. Smirnov, B. V. Gnedenko, E. B. Dynkin,
Yu. V. Prokhorov, R. L. Dobrushin, L. N. Bolshev, and others. If you were a
success, he tried to ‘settle you down on the track’ and there was no way back;
you could not help but work a lot.

Based on the results I had obtained, I was awarded a prize with a nice
diploma ‘Laureate of Leningrad University prize’, while the newspaper Fvening
Leningrad published an article entitled “A young scientist can be greeted with
a good beginning.” I think each of his students can tell such interesting stories
with deep gratitude to Yu. V. Linnik, and we are always proud to say that we
are Yu. V. Linnik’s students.

19.2 Theorems of Large Deviations for Sums of
Random Variables Related to a Markov Chain

On a probability space (2, F,P), let there be given a Markov process & (w)
with the values from a measurable space (X¢,B;), t = 1,...,n, with transition
probabilities Psi(z, B) = P{{ € B | §; = z} from the state x € X, at time s
to a set of states B € B; at time t, 0 < s < t < n, and the initial probability
distribution Py(B) = P(& € B), B € By. Let us introduce o-algebras F; =
o{&} and F] = o{&, t < s <t'}. We consider random variables

X1,...Xn,
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related to a Markov chain &, t = 0,1,...,n, ie., X; = g(&), t = 1,...,n,
where g:(z) is a real Bi-measurable function defined on X;.

As a measure of dependence of random variables Xji,..., X,, we will use
the ergodicity coefficient of the transition function Ps¢(z, B) introduced by Do-
brushin (1956) given by

Qst = 1- sup lPs,t(-'L'y B) - Ps,t(y, B)|

T,yELNs
BeB;

Denote o = llé’ltlél at—1¢. Let us introduce the following functions of a-
Stsn

mixing, ¢-mixing, and ¢-mixing:

a(s,t)= sup |P(AB)—-P(A)P(B)),

AcFs BeFp
P(AB) - P(A)P(B) '
yt) = )
#(s,t) Aef?,lzzperp, P(A)
Pay>o
P(AB) - P(A)P(B) l
1) = .
viet) = S ‘ P(A)P(B)

P> P)>o

It is known that
a(s,t) < (s, t) < P(s,t).

It is also easy to show that

1
21— a0) < pls,t) S 1- e

If we have inequalities connecting different mixing functions with the ergodicity
coefficient o, ¢, we can obtain, as consequences, some propositions proved by
applying these functions. Suppose that EX; =0 and 0 < 0 = EX? < 00, t =
1,...,n. Let

n l
Sn=>_Xi, Ski= > Xy, 0<k<i<n,
t=1 t=k+1

B’IQI. == DSn, Zn == ;1Sn.

We are interested in large deviation probabilities of the distribution Fz_ (z) =
P(Z, < z) of the normed sum Z, of random variables related to a Markov chain
with the ergodicity coefficient o, under conditions similar to the case of inde-
pendent summands. We will use the method of cumulants in the investigation.

Statulevi¢ius (1969) obtained optimal results in the case of bounded random
variables X;, i.e., when |X;| < Cp, t =1,...,n with probability 1. To investi-
gate the behavior of cumulants of the sum S, with respect to B,, we used the
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scheme of enlargement of summands X; proposed by Dobrushin (1956). For
unbounded X:, we have found another scheme of enlargement of summands.
The case of a homogeneous chain is much simpler (because we can do with-
out the enlargement of summands) and has been studied in detail by Saulis and
Statulevi¢ius (1989).
Denote by ®(z) a (0,1) — normal distribution function, and by I'x(£) a
cumulant of order k of a random variable £ given by

k
Th(€) = 5 5 (08 £e(9)

if E|¢|¥ < co. Here, fe() is a characteristic function of the random variable &.

Put .
Fic1®Fiq1, if t=1,...,n—1,
Fi1p41 =

‘t:O’

f n—1, if t=n.
By C, C(v), we denote finite positive not always the same constants absolute
or dependent only on ~, respectively.

Theorem 19.2.1 If a™ > 0 and with probability 1
E(|X:|*|Fic1p01) < B MHRGE, t=1,...,n, k=23, ...,
for some v1 > 0 and H > 0, then

ClomH g o) ™
n)| < (k! +m — = -
|Fk(Z )| = (k) Ot(n)Bn ’ k 3a 4a
and, for .
_ A — [ Ce™B, T
TEMN v H max oy
1<t<n
in the interval
0<z< A,
the following relations of large deviations
1-Fz, () z+1
Fz,(-z) z+1

hold. Here,

1
-+2, if v>0,
Ly(z) = Z rzF, p=1< 7

3<k<p 00, if v=0.
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The coefficients A\ are expressed by cumulants of the random variable Z, and
are the same as those of the Cramer series, and

_ 60 (1 +10 A2 exp {— (1 - Zz;) \/K;})

f(=) — . bI<t
A’Y
Theorem 19.2.2 If o™ > 0 and !
= k
L EOE ),
Lk,n - a(n)k_lB"ki — 5_2 9 k —_— 3, 4, . e
for some y3 > 0 and Ap, > e, then 2
ITk(Zn)|
log Ap\F2
k!(C—"—g——"> . k=34,..., if 72 =0
An
< k!

2
—, k=34, ...,Q[A,i””], if 12>0

(C(’Yz) #_;75)

and, for

CAn ,
T if v=0
v=m, A, =K = {080

1
Cy)Ar™, if v>0
in the interval
0<z<A,,

the relations of large deviations in (19.1) hold, where

3
L) =Y /\kxk+9(£——) ,
)

3<k<p

1 2
min{—+2,2[ ﬁ““’]}, if v>0,
p= v

00, if y=0.

1E*(¢ | F) =esssupE(¢ | F)= sup E(¢|F).
4aeF, Pay>o
2[z] denotes the integral part of the number z.
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Remark. The multiplier | log A,| is essential. As -y = 0, the estimate for the k-
th order cumulant of the random variable Z, is unimprovable with an accuracy
up to a constant [see Saulis and Statulevi¢ius (1989)], i.e., when investigating
extremely large deviations |z| = € Ap, as y2 = 0, additional we need conditions
on individual properties of the summands X;, t=1,..., n, not just on mean
characteristics Ek,n-

Below, we present some main steps of the proof.

In order to investigate the behavior of I'x(S,) with respect to By, we need
the lower estimate for DS,,. Since the random variables X; t =1, ...,n, are cor-
related, the variance of sum S, is not necessarily equal to the sum of variances
of the summands. Therefore, we present S, by the sum of enlarged summands
so that B2 will be of the same order as the sum of variances of these summands.

Let

|1 .
T,;:Z[:X—(-ﬁ')'-i-].], Z—O,].,Q,...,N—l,
where the number N is defined by the inequalities

ry_1<n < rN_1+[a71;;+1].

Let
wh.=w? =0,
W/i(l) =EX1+-+ Xr, | Fr),
and )
W = B(Xr il o+ Xl | F)y i=1,0, N,
We determine random variables W;, i=0,1,..., N, as

Wi = min (W, WP }sign .

We can the represent the sum Sy,

N Ti N
S1=3 3 K=Y
i=

=1 t=7‘,‘,_1+1

When defining new random variables

?i = Wi-—l+S1",~_1,n_W’i, i‘:]-a"'?N_l’
YN = WN_]- +STN—17TN:

Y, = V,-EY,, i=1,..., N,
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we obtain
N _ N
Sn=)Yi=> Y. (19.2)
i=1 i=1
The random variables Y3, ..., Yy possess the following: properties

(A) |[EVY)| <2(1- B)?E2Y2EZY?, 1<k<I<N,
where 0 < Bk <1,1<k<I<N,and 1—fy; <exp{—-(I-k—1)};

(B) 1161r<nt1£1 02 <DY; < :(36) 1<axat2, i=1,...,N;

(©) Q%ingnsB%s 453,-?1])”"'

The random variables Y; are F7?  -measurable (i = 1,..., N). Suppose Fi =

Fril (i=1,...,N) and Fo = Fo. Next we evaluate the moments, centered
moments, and k-th order cumulants of enlarged summands Y;, ¢=1,..., N.

Lemma 19.2.1
(1) If the estimate
E(|X¢*|Fio1e41) < B)VMH*62, t=1,...,n, k=2,3...

holds with probability 1 for some v1 >0 and H > 0, then with probability

1
10H
k 1+ 2
E(|Yj| |~Fz 1) < (k1) 71( (n)) 1Sf‘§n0t (19.3)
foralli=1,...,N and k=2,3....
(i) If
= * k
B t_zlE (1X¢|*|Ft=1,641) (k)2
Ly, == 1 < s k=3,4,...
’ am® " Bk An~
for some v2 > 0 and A, > e, then, as v =0,
~ 29 ./ 40B,log Ap\*
E(Yil*|Fim) < SR <——° o 0k ") (19.4)
n

foralli=1,...,N and k=2,3,..., and, as 2 > 0,

L \*
E*(|Y;|*|Fio1) < &! (20 C(v2) BnAn + 72) \ (19.5)
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2
forall i=1,...,N and k=2,...,s, s=2[AnI 272}. Here,

C(y2) = max { 51T, e (1+7m) (%) (19.6)

and X is the minimal integer > x.

Let N ={1,...,n} and I = {t1,...,t|t; € N, 1< j <k} If for
some k>2, E|Xy|* <oo, t=1,..., then the centered moment E X is
determined in the following way

A
7’ N

~~
EX;=EX;...X;, = EXy Xp... Xe,_, X, -

The sign ~~~ over random variables means that it is centered by its own math-
ematical expectation § =¢ - E¢.

In the case of independent random variables Xj,,..., Xt,, E Xty . Xty
differs from zero only as ¢} = --- = t.

If X; = ge(&), (¢t = 1,..., n) are random variables related to a Markov
chain &, then one can easily notice that

EX; = EX,...X,

= /f-~-/gt1(:cl)Ptl(d$1)
T

k
x T1 9t 23) (Piyos, s (@51, daj) — By, (dzy)) .
7=2
Here, P;(B) =P(& € B).
We call an unordered collection of non-overlapping, non-empty sets {Is, ...,

14
I,} (1 < v <k)suchthat {J I =1 as a partition.
p=1
Assume {I{, I}, ..., I'} (1 < v < k) to be a set of all v block parti-
tions of the set I’ = {t1,..,telt; € N}, t1 < -+ < tg, ie. 11’7 =
{#,. 80}, P <-<tP), 1<p<y, kit tho=k
Further let £={l,...,l+:}, 11 <---<l, be the set of indices of the
k-set I'. Suppose that {L1,..., £,} is a partition of the set £, corresponding
to the partition {I,...,I)} of theset I', ie., Ly, = {l§”), ceeh l,(f)} is the

set of indices of the ky-set Iz’» l?’)< --~<l,(~5), 1<p<Lv, m+---+r, 21
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Let (my, ..., m,) be the index vector of the set £, my + ---+ m, = k and
(m(p ) mP )) be the index vector of the set I, generated by the set Lp,
(p)+ +m(p)—k 1<p<vw.

Now, let us consider the estimation of centered moments EYI: 1<p<
v<k.

Lemma 19.2.2
(i) If, with probability 1, the estimate
E(| X% Fic1e01) < (R)TMHRGE, t=1,...,n, k=2,3,...
holds for some v1 >0 and H >0, then

B 15yl (40 2H ke Xip () )
, = !
lE}/Ipl —<— 2 H( ] ) ( "_‘—a(n) )

x H (1 — ﬁ(p) . ) Engp(tl)yfl 2XIp(t2)Y2(max O't)

PR e! 1<t<n
(19.7)
where )
wo={ 7 }ii5
(ii) If
* k
- ;E (1 Xe )" | Fe-1,641) -y .
a1k k=2 1%

for some 9 >0 and Ap > e, then, as v2 =0,

|EY | < ( )Tpl'pI (p)|(160Bn10gAn)kp Xtp (t1)=x1 (2)
l < —_—

i An
! (l—ﬁzg-m,z%) E>nY, En®Y;,  (19.8)
Jj=1

and as vz > 0,

~ Tp 1 kp—x1, (t1)—X1p (t2)
|EY| < 1'[—(”)' (800(72)B A, TP )

s % 1 1
I (“ﬁl;f’%z;-ﬁ) EpOy2Exn()Y2  (19.9)
j=1
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2
for kp=2,3,...,2 [An”g’n]. Here, C(7y2) is as defined in (19.6), and

i m(-p), if j=3,4,...,7p.

=) _ { m§p) -x5,(t;), if 3=1,2,
J

For some k > 2, let E|X;[* < 00, t = 1,.... Then, I'(Xy,, ..., Xt,) is
a correlation function (or a simple k-th order cumulant) of random variables
X1, Xtyy ..., Xi, -defined as follows:

D( Xty ooy Xty)
1 ok L
= i—kmbﬁe’“’{@a X,

Obviously, I'(X,, ..., Xt,) is a symmetric function of its arguments. The
k-th order cumulant of the sum S, is defined by

Te(Sn)= Y. T(Xegs oo Xep). (19.10)

1<ty, ..., tk<n

u1=--=ur=0

Note that I'(X3,, ..., Xt,) can be expressed through the function Eth Xy
by the following formula [see Statulevi¢ius (1969) and Saulis and Statulevicius
(1989)]:

k v
I(Xey, ooy X)) =D (-1 Y N, ..., L) [ EXy,,  (19.11)
v=1 0 L=r p=1
p=1
where > stands for the summation over all the v -block partitions

) =1
p=1
{L, ..., I,} of the set I; the integers N,(I1, ..., I,),
0< No(Tt, oy 1) < (v = 1),

depend only on the set {Ii, ..., I,}, and moreover, if N,(I1, ..., I,) > 0,
then
3 max (t(p) - t(p)> > max (tj —t;).
Po1 P Per, J v ) T 1<ig<k
—1t;" ¢

From (19.10), (19.11) and (19.2), we get

k
Fk(Sn) = Z ("1)'/—1 Z Nu(Ila ERRE) Iv)
p=1
x > ]I EY .. Yo (19.12)
P

1<ty, ..., tx, <N p=1
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Next, we need the following formula, valid for any nonnegative symmetric
function f(ai,...,as), a;i € N, i=1,...,s [see Saulis and Statulevi¢ius
(1989)]:

Z flay, .., as)

1<ai,...,as<n
i Z s!
r=1 my+-+mr=s m]_! . mr!
x 3 Sy a) (19.13)

1<a1<<ar<n ma ,n‘{r

and its consequence

Z f(ai, ..., as) < 8! Z f(a, ..., as). (19.14)

1<a1, ..., as<n 1<a1<-+<as<n

It ought to be noted that for f =1, (19.13) takes on the form

S s! n
ns_—_z 2 my! ... my! <r)

r=1mi+--+mr=s
Making use of (19.14), we obtain from (19.12)

v

k
k() <KD D No(hy .y L) Y |EYL|  (19.15)
v=l v 1<t <<t <N p=1
U L=I
p=1

and using (19.13), we have from (19.12)

k k!
ITx(Sn)| < z Z mal . m

r=1 my+-tm=k ..

k v
X Y > NL,...,L) Y J]IEYL.

v=1 1<h<<lr<N p=1
U I=I St rSIV P
p=1

(19.16)

Formulas (19.15) and (19.16) are the basic ones needed to prove the following
lemma.
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Lemma 19.2.3
(i) If, with probability 1,

E(IXe/f|Fm1ee1) S (R)TMHR max of,  t=1,...,m, k=23, ...

for some v1 >0 and H >0, then

568 - 271 H max o k=2
T (S,)| < 171 (k)1 = stsn B? (19.17)
forall K=3,4,....
(i) If

n
Y EX(1Xel*| 1) -

Ly, =52 < W k=34

n a(n)k—lBﬁ = ﬁ—z ’ U

for some v >0 and A, >e, then, as v2 =0,

k-2
D% (Sn)] < 171 %! (40902&’&) B (19.18)
n
forall k=3,4,...,and as v2>0,
5 1 k-2
IT%(Sn)| < 171 k! (1136 C(v2) An m“’?) Bk (19.19)

2
forall kK =2,3,...,2 [AnI 272]. Here, C(v2) is defined earlier in

(19.6).

To prove the basic results, we also need the following lemma.
Assume that there exist constants v > 0 and A > 0 such that the random
variable ¢ satisfies the condition

N1+y
ITk(6)] < UZ—i_r, k=3,4,... (19.20)

Denote .
1 ——
A, =cy ATFY, cv:%(%@)wzv'

Lemma 19.2.4 [Saulis and Statulevi€ius (1989)] If condition (19.20) is fulfilled
for the random variable € with B =0 and E€? =1, then in the interval

0<z <Ay
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the following relations of large deviations

TEE — exp(Ly(e) (1 +05(@) 1) ,

5(%‘)1) = exp{Ly(~2)} (1 +05(z) 3’; 1)

hold. Here,

60 (1+10A2 exp {~ (1- £) /A3 })
f(@) = — ,

o] <1,

1

-+2, if v>0,
Ly(z) = Z AezF, p=47
3<k<p o, i ¥=0.

The coefficients A\ are expressed through the cumulants of the random variable
& and are the same as those of the Cramer series. For the coefficients Ai ,

the estimate

2 (16)+2
< —|= N7 =
Mz (F) @rny, k=34

holds. As v > 0, we obtain Linnik zones.

Theorems 19.2.1, 19.2.2 are proved by direct application of the results® of
Lemmas 19.2.1-19.2.4 and direct calculation of A,.

PROOF OF THEOREM 19.2.1. From (19.17), as +1 > 0, we get

nl+m 1sts<n —
|Fk(Zn)| S (k) ( a(")Bn ’ k 3, 4’ .

C(v1)H max at) k=2

By applying Lemma 19.2.4, as v =; and

1
(n) 142+
A - (cma Bn) |

H max o
1<t<n

we obtain the proposition of Theorem 19.2.1. |

3N. N. Amosova showed that condition (19.20) was also necessary with an accuracy up to
the constant ¢, [see Lithuanian Mathematical Journal, (1999)].
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PROOF OF THEOREM 19.2.2. From (19.18) and (19.19), as A, > e, we have

'Fk(Zn)l
k-2
k!(%) . k=3,4,..., if 79 =0,
= k!

2
. , k=3,=4,...,2|A,2|, if v9>0.
(Clm) A7)

By applying Lemma 19.2.4, as £ =2,, v=2 and

CA,
— if v=0,
A, = log A,
—1_
Cly) An*™, if v>0,
we obtain the proposition of Theorem 19.2.2. |

19.3 Non-Gaussian Approximation

If the distribution of a random variable X, (as m» — o0) converges to the
Poisson distribution, then in the asymptotic analysis (the rate of convergence,
asymptotic expansions, behaviour of the probabilities of large deviations) one
has to employ factorial moments and factorial cumulants f’k(Xn), which are
defined as coefficients of the expansion

. -
logEe™X = 3 P’“i".‘"’z{«t) + o([t]*)
k=1 :

if E|X;|® < oo, where 2 (it) = e — 1.

In the normal approximation, we took z; (it) = it and obtained simple cumu-
lants I'y(Xy,). In the approximation by the Poisson law, general lemmas of large
deviations, if we have the estimates for f‘k(Xn), were proved by Aleskeviciené
and Statulevi€ius (1995).

We can offer the general principle of choice of special cumulants for each
approximation as follows: if we wish to approximate the distribution of random
variable X, by the distribution F' with the characteristic function f(t), then
we expand log Ee®*X» in a neighbourhood of the point

dlog f(t) ’t

alit) = =30 o

Thus, for example, if the approximation law is the normal one, then f(t) =

2 .
e 7T and 2 (it) = it; if it is the Poisson law, then 29(it) = A(e® — 1); and if it is
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X2, with m degrees of freedom, then z; (it) = mlzglt as far as f(t) = fy2 (t) =
1

(1-2it) T
Instead of multipliers A and m, we can take 1, in which case A and m will be

included in the expression of coefficients which we declare as the corresponding
cumulants. In the case of x2, approximation, we denote such cumulants by
Tk(Xn) [see Aleskevitiené and Statulevicius (1997)].

Let
m T(li) 2
an < ) 3
2\

where S =&u-1nt+ - +&n, t =1,...,m, and &,&2,... is a sequence of
independent identically dlstrlbuted random variables with E¢; = 0, E¢2 = 1,
satisfying the Cramer condition

|[E€?| < kIHF2 (19.21)
for all £ > 3. Obviously, X, 4 X%u

Theorem 19.3.1 If (19.21) is fulfilled, then in the interval 1 < z < con%, the
relation

3
P(Xn>1z) =P(x% > ) (1 + 900%)

holds, where cy and Cy depend only on m and H with |6] < 1.

The main idea of the proof is the following. The summands in (19.2) are

- (1)

independent, and therefore it suffices to estimate only T'(Y?2), where Y = §nﬁ
These cumulants are expressed by simple cumulants I',(Y?2), v = 1,...,k, as

follows:

k
= —vekp [ =1\ T, (Y?) _

k 2y — L _1\k—vok—v v _1\e=1lok=1/7. _ 1\
2FT1(Y2) k.;;_;( )52 (V_ 1) o+ (CDF2E N (R - 1)tk
The cumulants T', (Y2) are expressed through the moments EY%, j =1,...,v,
while the latter can be inversely expressed through the cumulants I'\(Y), [ =
1,...,2v, of the random variable Y (which are trivially calculated and esti-

mated)
(&) klH"2
=60 <1
v~ e s
The majority of summands in (19.4) is reduced after transformations, and we
finally find that

(y) =

k! 2H kYHE
IP (YQ)f ( k 11+( )EZ’

n3
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where H; and Hs depend only on H. Hence, we obtain the assertion of Theorem
19.3.1. [ |

These ideas are also applied in the investigation of the probabilities of large
deviations for Pearson’s x? statistics

i=1 np;

Let a hypothetical distribution P(A4) = P(¢ € A) be completely determined,
A1, ..., Ar be a partitioning of the space of values of the random variable £ into a
finite number of parts (say r) without common points, p; = P(A4;) and v; be the
number of incidences of the sample £i,...,&, values in the set A;,i=1,...,r.
If the assumption on the fact that the sample corresponds to the distribution
P(A) is true, then, as it is known by Pearson’s theorem, the distribution of
statistic x2 tends to the x2-distribution with r — 1 degrees of freedom. In this
case, it is possible to show that

r—1
X2 = Z Yk:?7
k=1

where

NMET Ny 1 Nk 1172
Y2 = Tk [( +2 Hk+2) LI ( 41 Hk+1> _] ,
Pr+1 n Tk+1 n Tk

Te=p1+ -+ Dk Het1 =Pey1+ -+ pry
Nit1 = Vg1 + -+ v,
EY;Y; =0, i#j, EY?=1, 4,j=1,...,r—1

Random variables Y7, ..., Y, are dependent though noncorrelated and, in order
to estimate I'x(x?), we have to use mixed cumulants [see Saulis and Statulevicius
(1989)).
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Lower Bounds on Large Deviation Probabilities
for Sums of Independent Random Variables

S. V. Nagaev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: In this chapter, we discuss some lower bounds on the probability
P(S > z), where § = }°7_; X; with X;’s being independent random variables
with zero means and finite third moments.

Keywords and phrases: Large deviation, law of iterated logzirithm, Mills’s
function

20.1 Introduction. Statement of Results

Let X3, X, ...X, be independent random variables with zero expectations and
finite third moments, and let S = }_ X;. Here and in the sequel }_ denotes Z;‘,
the case n = oo is not excluded.

We shall deal with lower bounds on the probability P(S > z). Denote
0? = EX?, B> = Y0, ; = E|X;|°, and C = 3. 8;. Let L = C/B% be a
Lyapunov ratio.

In what follows, we omit the index j in definitions and statements relative
to every 1 < j < m, i.e. write 02 instead of U?,X instead of X, and so forth.
We use the notations a V b := max(a,b), a Ab:= min(a,b).

Let ®(z) be a standard normal law. Denote ®;(z) the Mills function
\/ﬁ(l - @(x))emQ/z. Let ¥(z) = z®;(z).

The first lower bound on the probability P(S > z) was obtained by Kol-
mogoroff (1929) for uniformly bounded random variables |X;| < M in con-
nection with proving the law of the iterated logarithm. In our notation, the
Kolmogoroff inequality looks as follows: if 22 > 512 and a = 2M/B < 1/256,
then

$2

P(S>zB) > exp{ 5 (1 +6)},
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where € = max{64\/5, 32V In z? x} The result stated below is due to Lenart
(1968).
If | Xx| < M and 0 < zM/B < 1/12, then

P(S > zB) = exp{—-a—;iQ(x)}(l - ®(z) + T(M/B)e_m2/2), (20.1)

where Q(z) = Y5° qea®, g1 < M/3B, g < §(12M/B)*, k = 2,00, |7| < 7.465
[see also Petrov (1972, p. 308), in this connectlon]

This result coincides in form with that by Feller (1943) and differs from the
latter in somewhat lesser values of constants. It is easy to derive from (20.1)
the inequality

M z
P(S > Bz) > (1 - @(w)) exp{ ('y) }(1 — 7.465V2m BU( )), (20.2)
where 1 <z <vyB/M, c(v) =1/6+9y/(1 —12y), v < 1/12.
Estimating the right hand side of (20.2) in terms of € which is present in
Kolmogoroft inequality, we arrive after rather complicated calculations at the
inequality

exp{—(l + 545 - 10_56)372/2}
P(S > Bx) > ;
( . z) VT

where 16v/2 < x < B/256M.
Compare now the bound (20.2) with that from the recent paper [Rozovskii

(1997)] .

P(S > Bz) > exp{—(1+ 5001)%—} (20.3)

which holds under the condition

l<a:< M}0<a<m4.
« B

Under this condition, the inequality (20.2) leads to the bound which is much
sharper than (20.3)

exp{—(l + 0.099a)a:2/2}
Nors .

Thus the bound (20.2) is sharper than (20.3).

Up to now, we dealt with lower bounds for uniformly bounded summands.
Proceed to the case that this restriction does not hold.

Under the Bernstein condition

P(S > Bz) >

E|X;* < 2 j=1+n, k=3/4..
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one can derive a lower bound from the paper of Statulevicius (1966) [see in
this connection Arkhangel’skii (1989)]. The essential advance was obtained by
Arkhangel’skii (1989) who replaced the condition of the uniform boundedness
of summands by the condition sup E|X;|*t9/ OJZ < 00, §>0.

j

Theorem 20.1.1 Let the conditions

7 aB

L  maxo;
J

) v < L ea? < L. (20.4)

0<:E<(1—4’y)< TR 5

hold.
Then
P(S > Bz)
> (1—<I>(x))exp{ ( 1(V)L +e2(v, @) 203/33) }

(03(7)L + c4(a) Zo?/Bs))a:
X <1 - T (2) ),

(20.5)

where c1(v) < 1.2/(1 — 47)3, ca(y, @) < 2a/(1 — 47)3, c3(y) < 9.79 + 76.26,
cq(a) < 106

The close result have been stated in Nagaev (1979), but without specifying
the values of constants.

Corollary 20.1.1 If the conditions (20.4) hold, then

P(S > Bz) > (1 - <I>(a:)) exp{-—cl(a,'y)Lx3} <1 - %ﬁf), (20.6)

where

(1.2 + 2a)

C1 (a7 7) S

Putting in (20.4) v = 1/20, a = 1/20 and taking into account that ¥(1.7) >
0.805, we obtain the following result.

Corollary 20.1.2 If1.7<xz < (1/25)(1/L A (B/ maxaj), then
j

P(S > Bz) > (1- &(x))e>%°(1 - 23.4Lx) > 0.06(1 — B(x))e~25L2°,
(20.8)
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If the random variables X;’s are identically distributed, then

max % 1 s
\/— 0_3\/17’
where 02 and 3 are, respectively, the second and third absolute moments of X;.
If | X;| < M, i =1,n, then

<C/B®=

B3 B’ ] B B’

Thus, one can exclude B/ maxo; from condition (20.4) in both the above-
J

mentioned cases. The following bounds are then obtained as a result.

Corollary 20.1.3 If X;’s are identically distributed and

1 3
17<x<—\/_0—

Vg (20.9)

then

P(S > Bz) ,
(2.353/03 +0.2)z3 (16.883/03 + 6.58)x
> (1 - <I>(:c)) exp{—— N }<1 - NG .
(20.10)
Corollary 20.1.4 If |X;| < M and
1 B
then
Mz3 M

P(S > zB) > (1- @(x)) exp{-235 ; (123, 4?‘”) (20.12)

Not very complicated calculations show that for 1.7 < z < (2/25)M/B, the
inequality (20.2) implies slightly sharper bound than in Corollary 20.1.4

P(S > 2B) > (1- @(z)) exp{-1. 291-"\%—-}(1 — 23, Q-A—JB—”’-)

It is possible to exclude B/ max¢; from condition (20.4) in the general case as
well, however at the cost of considerable increase in constants, viz. the following
bound holds.
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Theorem 20.1.2 If3/2 < x <~/L, and v < 1/144, then

P(S > Bz) > (1 - <I>(ac)) exp{—cl('y)Lx?’}(l — es(y)La),

23+ 53,/7 0.63
a(y) < —————+ , ca(y) < 60 + 1630y + 647,/7 + —.  (20.13

Corollary 20.1.5 If3/2 <z <~v/L, and v < 1/144, then
P(S > Bz) > (1 - <I>(a:)) exp{—215Lm3}(1 — 133La). (20.14)
It is better to apply the above stated lower bounds combining them with

P(S > Bzx) ZP(X > 2Bz), (20.15)

which holds at least for > 2 [see Nagaev (1979, p. 759)].
If the distributions of X;’s have heavy tails, then the bounds suggested in
this Chapter are sharper than the bound (20.15) only for rather small z.
Assume for simplicity that X;’s are identically distributed, and

P(X>:c)>—,x>1 t>3.

If £ > bv/Inn, where b > o(t — 2)1/2, then for sufficiently large n
nP(X > 20zy/n) > 2(1 — &(z)).

Therefore, for z > bvInn, the bound (20.15) turns out to be shaper than the
bounds (20.10), if n is sufficiently large.
Consider now the specific example. Let the density p(z) be defined by

_ 0, |z|<1,
p@)_{ 2/lal®, |zl > 1.

Compare the bounds (20.10) and (20.15) for z = 3 in the case when X;’s

are identically distributed with density p(z). In the case under review, o2 =

2, B=4.
For v = 1/16, the bound (20.10) is applicable, if n > 213 = 8192. The
inequality (20.10), for n = 213, takes the form

P(S > 3v2n) > 0.57e71%%(1 — ®(3)) > 0.156(1 — ®(3)) > 21-107°.

On the other hand, using the inequality (20.15), we get, for n > 2'3, the bound

1
P(S > 3v2n) > —-P X > 6v2n) > zops ~11-107,
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We observe that, for z = 3, n = 23, the bound (20.10) is 10* times sharper
than (20.15). Note that in the example considered,

z < o((t—2)Inn)/2,

Look what the Berry-Esseen bound

2
®(3) -~ P(S > 3\/2n)} < co\/;,
where constant cp = 0.7655, does yield in this case.

Putting n = 213, we obtain the trivial bound

P(S > 3v2n) > 1 — ®(3)) — 0.01197 > —0.01062.

Nontrivial bound takes place only for n > 643 - 103. Our reasonings show once
more what important part constants play in practical calculations. At first
glance, the bound 3/64 in the condition (20.9) is not too small, but nevertheless
the latter is responsible for the inequality (20.10) being valid only for large n.

It should be remarked that (20.5) and (20.13) do not cover all possible cases.
For example, let

P(X=1)=PX=-1)=p, P(X=0)=1-2p.

Evidently, in this case L = \/—Qlﬁ Therefore, the inequality (20.5) is applicable
only ifz < %\/QW, if z > 1/2pn > 1. On the other hand, the inequality (20.13)
implies the trivial bound P(S > z) > 0.

Now we state a bound which supplements the above-mentioned inequalities.

Theorem 20.1.3 Let X;’s be identically distributed, X being symmetric, and
p=P(X >b)<1/2, b>0. Then,

P(S>z)>z Y. CkFa-2p "

z/b<k<n

[NCR

Let X be the symmetrization of X. By using the symmetrization inequality,
we get the following bound.

Corollary 20.1.6 If X;’s are identically distributed, then

P(S|>z)>5 > CipF(1-2p),

22/b<k<n

L

where p =P (X* >b) < 1/2.
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In the sequel, we need the following definitions and notations. Define the
truncation X (y) of X by the equality

X, X<y,
X(y):{ 0 X>z.

Put r(h,y) = EeX®, a(h,y) = EX(y)th(y), a2(h,y) = EXQ(y)th(y), and
B(h,y) = EIX (y)[2"*® [r(h,y)-

Denote a(y) = a(0,y), o*(y) = d(0,y), Bly) = BO,y). Let Aly
Say(y), BAy) = Lo’(y). Put m(hy) = alhy)/r(hy) = Zr(h,
M(hy) = Smy(hyy), B(hy) = 02(hy)/r(h,y) = m*(h,y) = Fzlnr(h
Note that M(h,y) does not increase as function of h since

0
M () = S b3 (h,y) > 0.

On the other hand, M (0,y) = A(y) < 0. Therefore, the equation with respect
to h

);
).

Y
Y

M(h,y) =x

has (for y fixed) the unique solution which we denote by h(z,y).
Put F(z) = P(X < z), B2(h,y) = Eb?(h,y). Let
J

%) X3(y) 3
C(h,y) =) E —m— —mj(h,y)| -

20.2 Auxiliary Results

In this section we state, without proof, several lemmas which we need in Sections
20.3 and 20.4.

Lemma 20.2.1 If0 < h <1/y, then

2.2
0 <r(hy) —1—a(y)h < e—h—%—@- (20.16)
Put §; = B{X% X > o}, b= E{X%X < 0}.
Lemma 20.2.2 If0 < h < 1/y, then
a(h,y) > a(y), (20.17)
_h? e—2) eh?
B _ oty —aly) — 2k < B 2 A G (20.18)

2 2
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Lemma 20.2.3 Let 0 < h < 1/y,

C
y> (! mjax aj) VvV poyeEk ea® < 7. (20.19)

Then, for every v < 1,
2
M(h,y) > ((1—27)h - ?7)32. (20.20)
Lemma 20.2.4 Let the conditions, (20.19) hold. Then, for every v < 1/4,
T+2yB%/y 1

h(z,y) < 2985 < ” (20.21)
if 2
Q-4 37)3 . (20.22)

Put Q(h,y) = X(rj(h,y) — 1)
Lemma 20.2.5 If h < 1/y, then
B?(y)h? B Ch? eB?h?

2
Ah+ = = < Qlhy) < = (20.23)
Lemma 20.2.6 Let 0 <y < 1/16,
_ 2
Y= (L_4_’Y_)_li_, (20.24)
z
(2B e
z < (1-47)B%( = A maxo_j), (20.25)
J
ea’ < 7. (20.26)
Then, for h = h(z,y),
2 T 3
Q(h,y) — hz > 382 1-20('(‘1—_:7)?) . (20.27)

Lemma 20.2.7 Let 0 < h < 1/y and the conditions in (20.19) hold. Then,
for o® < 1,

(1-a?)zx
h(z,y) > At e /2B (20.28)
Lemma 20.2.8 If the conditions in (20.19) and (20.24) hold, then for h < 1/y
1
Lo 14+e/2 40 (20.29)

vy~ (1-47)(1-a?)
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Lemma 20.2.9 If0 < h < 1/y, then

_g_2_ < a(h,y) < o* (eh A (e— 1)) (20.30)
Yy Y

Lemma 20.2.10 Let 0 < h < 1/y and the conditions

mjaxaj , ]
— 20.31
V> T Y S T6e (2031)
hold. Then,
max |m;(h,y)| < 1.76a0. (20.32)
j

Lemma 20.2.11 Under conditions of Lemma 20.2.10,
C(h,y) < 2.782C +19a Y o3 (20.33)
if v < 1/16.
Lemma 20.2.12 If h < 1/y, then
(e — 1)y > d(h,y) — o2(y) > —Bh. (20.34)

Lemma 20.2.13 Let 0 < h < 1/y and the conditions in (20.19) hold with
v < 1/16. Then,

2
B2%(h,y) > %(1 — 2y —3.20%)B2. (20.35)

Lemma 20.2.14 Let 0 < h < 1/y and the conditions in (20.19) hold with
v < 1/16. Then,

_ M(hy) < 3.32ay 0%h C

hB(h, +1.686—. 20.36
' ( y) B(y) By By2 ( )
Lemma 20.2.15 For every 0 < uj < uog,
D1 (u1) U — Uy
1< ——= < expy————17. 20.37
®1(ug) p{u%q’l(ul) } ( )

Lemma 20.2.16 For every 0 < u1 < ug,

1 — ®(u2) o (u1 — ug)ug
=) > p{_—_—‘I’(m) } (20.38)

Define ,
AMz) = (1 - az)e™™ (1 - &(z)),

where a and ¢ are some constants.
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Lemma 20.2.17 Ifa > 0, then the function \(z) is convex for 0 < z < 1/a.
Lemma 20.2.18 For every 0 <z < 1,
e @/(1=2) 1 _ g (20.39)

Lemma 20.2.19 If the condition maxo; < Be holds, then for every h > 0
J

}h/ooo e_hw<P(S <z)-— @(w/B))dac

L(e) 2.473C%h
3/2 5
6v2r(1— 0.27L2/3(c)) / B
L3 —0.82L~2/3 —1.64L—2/3 2 _—.0225L~2
+T(O.6O7e : +0.304e )+L e ,
(20.40)
where L(e) = C/B2, B? = (1 - €?)B2.
20.3 Proof of Theorem 20.1.1
Since X;(y) < Xj,
P(S> 1) > P(S(y) > z), (20.41)

where S(y) = Y. X,(y). Let G(z;y) = P(S(y) < ). It is not hard to show that
P(S() > 2) = R(hy) [ e ™G(du),

where R(h,y) = EelS®) = Irj(h,y), Grldu) = e"G(du; y)/R(h;y). Putting
Gh(u) = Gp(u + z), we have

P(S(y) > z) = R(h;y)e" /O MG (). (20.42)

The distribution function G}, is the convolution of the distribution functions
Fj(u;h,y), j = 1,n, where F(du;h,y) = e"F(du;y)/r(h,y). It is easily seen
that

[ wPuy) =miny), [ (- m(h,v) Flausg) = o*(h)

Hence, the expectation M(h,y) = Y m;j(h,y) and the variance B%(h,y) =
> b?(h, y) correspond to the distribution function Gj,.
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In what follows, we assume that y satisfies (20.24). Put now h = h(z,y).
Then according to the definition, z = M (h,y) (see Section 20.1).
Without loss of generality, one may assume that

z>1.7. (20.43)

In fact, according to Berry-Esseen bound

PS> 1) > (1—8(z)) (1 - 1_0_2;@) (20.44)

where ¢p < 0.7915 [see Shiganov (1982)]. On the other hand, c3(v) in (20.5)
can not be less than 9.79. Therefore, the bound (20.44) is sharper than (20.5)
provided (1/v/2m)e~%"/2 > c0/9.79, ie. x < 1.7.

Consider the identity

/Oo e MdGL(u) = /Oo e Md®(u/B(h,y)) + h/oo e~ My (u)du — r4(0)
0 0 0
= I + hly — r4(0), (20.45)

where 7 (u) = Gp(u) — ®(u/B(h,y)). It is not hard to show that

1 2p2 o0 _h2 @, (hB(h,y))
I — h2B?(h,y)/2 / R /2gy = YD) 20.46
! v 27re hB(h,y) ¢ “ VT ( )

Let A(h,y) = hB(h,y) — M(h,y)/B(y). Suppose that A(h,y) > 0. In view
of Lemma 20.2.14 and formula (20.24)

A(h,y)B(y) x<1.6860 +3.32a ), 05?) x((1.686 +207)C +5.91a ) a?) '

z 1 — 47258 < B

Letting u1 = z/B(y), and ug = hB(h,y) in Lemma 20.2.15 and applying the
previous bound, we have

Vorl = ®1(hB(h,y))

(1.686 + 209)C + 5.91a Y o3
> @1<w/3<y>>exp{—< e J)x}

(20.47)

We took into account here that ¥(z/B) < ¥(z/B(y)). Let now u; = z/B,
and up = 2/B(y). Substituting these values into inequality (20.37), we obtain

@(2/B(v) > ®1(x/B) p{-l—;ﬁ—gg@}
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By using identity (20.24) and the inequality
M(h,y) > ((1 -=2y)h — — ) B*,
() > (-2 =)

we get
i—l— B? — B2(y) C < Cz
B(y) ~ B()(B+B(y) 2yBy)  2(1-7)1-4y)B*
Thus,

&1 (z/B(y)) > &, (z/B) (1 _ %ﬁ). (20.48)
It follows then from (20.47) and (20.48) that
2.186 + 23.387)C + 5.91a Y o3
Verl > ®(z/B) exp{— (( 34711) ) ¢ U’) $} (20.49)

If A(h,y) < 0, then ®(hB(h,y) > ®1(x/B(y)). Hence, by using (20.48),
we obtain that for A(h,y) <0

(20.50)

Vorl > ®,(z/B) (1 _a+ 6'767)035).

2U(z/B)B*

We now proceed to estimate Io. For this purpose, we apply Lemma 20.2.19
to the sum of independent random variable G,. It is not hard to see that
Lyapunov ratio L(h,y) corresponding to G}, is equal to C(h,y)/B3(h,y). It
follows from Lemma 20.2.11 that for a? < 1/16e,

C(h,y) < 5.67C. (20.51)

Put B?(h,y) = inf(B2(h, y) — b3(h, y)) By Lemma 20.2.13
j
B}(h,y) > 0.777(B? - supo?).
J

Note that in view of (20.4), /B < 3a(B/4maxc;). Hence, by (20.43)

2 2
maxo; 3 9
— .008. .52
( - ) <(4m)a<0008 (20.52)
Thus,

B?(h,y) > 0.769B2. (20.53)

Combining (20.51) and (20.53), we have

2/3

CUhY) g q5p2, (20.54)

Bi(h,y)
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By (20.4) and (20.43) 5
— .037. 20.
L<64x<0037 (20.55)
Combining (20.54) and (20.55), we obtain as a result of rather simple cal-

culations

Rl = Ll(h) Z)B 373 < 0081L1(h, y)’ (2056)
6\/27r(1 —0.27L23(h, y))

where Li(h,y) = C(h,y)/Bi(h,y).
By (20.35) and (20.52),

B2(h,y) > 0.96B%(1 — 2y — 3.202). (20.57)

It is not hard to show that

1 1

1+6. 1.394. 20.
(1 -2y — 3.2a2)3/2 < (1 — 3.178v)3/2 <1+63y<139 (20:58)

It follows from (20.33), (20.57) and (20.58) that

(2.96 + 18.77)C + 28.2a: 3" 03
Li(h,y) < JE L. (20.59)
Comparing (20.56) and (20.59), we obtain
0.24 + 1.5157)C + 2.285 3
By < ) 2.9 (20.60)

B3

By (20.4), (20.21) and (20.24), h(z,y) < z/(1 — 4y)B? < vB?/C < B2/16C.
Hence, taking into account (20.33) and (20.35), we conclude that

hC?(h,y) <1 082.78220 +38-2.7820 4 361a* 3 o
B3(h,y) 16(1 — 3.178v)5/2B3

Therefore,

2.473hC%(h,y)  (0.412+4.8%)C + 14.91a ) o}
< .

B ) 5 (20.61)

Substitute now L(h,y) and L;(h,y) into the right-hand side of (20.40) in place
of L and L(e), respectively. The first two summands are estimated via (20.60)
and (20.61). As to the other three, calculations show that one may ignore them.
As a result, we are led to the bound

(0.652 + 6.1)C +17.195a Y o3
B3 '

h|I2| < (20.62)
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Further, according to the Berry—Esseen bound

COC(h’ y)
< = 20.
Applying now Lemmas 20.2.11 and 20.2.13, we get

1.08¢9(2.782C + 19> 03)  (2.38+157)C +22.650 Y o3
(1-2v—3.5a2)3/2B3 B3 '

Irn(0)] <

(20.64)

Incidentally, one can use in inequality (20.63) hls as well since h|I2| < sup |r(u)].
u

Up to now, everyone proceeded in this manner, beginning with fundamental
work of Kramer (1938). However, one loses an accuracy in doing so. It is
sufficient to compare the bounds (20.62) and (20.64) to be sure.

One can prove with the aid of Lemma 20.2.1 that for ea® < y, and vy < 1/16

) =11 < 5.

Hence, by using Lemma 20.2.18 and the inequality 1 + z > 2%/ 2 where
0<z<1/2 we get

R(h,y) > exp{Q(h, y) — g% Z(rj(h,y) - 1)2}, (20.65)

(see the definition of Q(h,y) before Lemma 20.2.5). By (20.16) and (20.29)

eh?02  o2h ec?

-1 AL iy
Ir(hy) =11 < S v 2 < 7

Hence, by using (20.16) and the conditions (20.24) and (20.25), we have

4 3

) . z* max oy 3 0 en2
Z(rj(h,y)—l) < (5) Y 4m,ax0120’3°"< mzs—(i)
1.8502°Y 02

2 (20.66)
It follows from (20.27), (20.65) and (20.66) that
2 1.2C +1.91a Y 03)z8
—h z (
e R(h,y) > exp{ - 557 — (TR } (20.67)

Combining (20.41), (20.42), (20.45), (20.49), (20.50), (20.62), (20.64) and
(20.67), we obtain

P(S>z) >

2.186 + 23.387)C + 5.91a 3 03
((1—<I>(ac/B))eXp{—(( i B4’\;l)(ac/—’l_3) = J)m}
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e—2%/2B?

-5 ((3.032 +21.17)C + 39.845a. ) 039-’)}

(1.2C +1.98a Y o}q-’)m‘q’
X exp{ — A= 4,)7E° .

Hence, taking into account that

s2jomr—(1—®(x/B))x
R C ey T

we are led to the desired result. |

20.4 Proof Theorem 20.1.2

Let the numbers v and o > 0 be such that v = a2. Assume that the inequality

vB*
z < o (20.68)
holds.
Define

o?B?
N =<j:0; .
(‘T) {J O'] < 2 }

Put S; =Y Xj, and S2 = 3" X;. Here and in what follows, ' = 3 and

jEN(2)
Z” = Z . Let B% = E’o‘?, B2 = E”o‘?, and Cj = Elﬁj- Then
J€N(z)
s _22C _ B _ 2
B; < g2 < 2 = 2/vB*. (20.69)
If v < 1/36, then B2 < B?/3, that is,
5. 2B?

Put vy, = 3.5v. Clearly,

(1—4m)aBf _ 4(1—14y)

max o; 3
jeN(2)

>z

if v < 1/56. Further, for v, < 5/56,

vyB* - (3)2 v1 Bt L A—4ymBt

C 2] 350, G
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Thus, for v < 1/56(y; < 1/16), the condition
— 2 2 )
z < (1—4v)Bj (flel/Cl A a/jgll\?i}i) a,)

holds, i.e. condition (20.4) with v = ; is fulfilled for S; and 2 which satisfies
condition (20.68). Applying now Corollary 20.1.1 to S1, we conclude that for

p— — 2 2 j

P(S >2)> (1 @(x/Bl))CXp{—M}<1 - M) = f(x),

B} B{U(1)

where c;(-,-) are defined by (20.7). Hence, denoting P(S; < z) = Gj(z), i =
1,2, we get

(e9) U

2
f(@—w)dGa(u) + f(z)(1 - Ga(u2)),
(20.71)
where u; = 2 —w, and us = x — B;. According to Lemma 20.2.17, the function
f(z — u) is convex in u for u; < u < z. Therefore, by the Young inequality

(Gl (x—u))ng(u) > /

ul

P(S>x):/

—00

ug
[ #@-wdGa(w) > pf( - a), (2072
w
where p = Ga(ug) — Ga(u1), and q = [* udGa(u)/p. If 3B/2 < & < w/2, then
|ui| > w/2 > 3B/2 and by (20.69)

B? 8 z2C
Estimate now the quantity ¢. If z > B, then by (20.69)
U2 B} 3B}  6C
— [ wdGolu) < =2 < 2 < . 20.74
[, wdGat) < T2 < 22 < 2 (20.74)
Further, p > 1 — B2 /u? A u3. In view of (20.69), for 3B/2 < z < w/2
B2 4 _ B? 4B?
222, 2 < 22 <4 /7
11,%<9\/?’11,%<B2<\/’7
Thus,
p>1-4/7> 0465 (20.75)
provided 3B/2 < z < w/2, and v < 1/56. It follows from (20.74) and (20.75)
that 12.91C
: (20.76)
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By using Lemma 20.2.16 and the bound in (20.76), we conclude that for 3B/2 <
z <w/2,and v < 1/56

z o T 3
f(x_'Q)> <1—(I’($/Bl))exp{ \D(;/Q)( n n ) ( ,’71)( +77) C}

B? BY
c2(e,m)(z +n)C
— . 20.
x(l 5R3/2) (20.77)
In view of condition (20.68), for v < 1/56
Czx 1
— < < —==.
B VTS 5t
Hence L/,/¥ < 1/3V/14, since = > 3B/2. Therefore,
n U 14.98C
B <116, 3 <1165 < g (20.78)
By (20.78) and (20.70),
zn +n? Cx3
27.89——— 20.
B% < 63. '76\/_34 < 789ﬁ36 (20.79)
and
z+n<z+1.16B < 1.774x. (20.80)

In view of (20.70), (20.79) and (20.80), it follows from (20.77) that
36.07 Cz?
flx—q) > (1 - @(x/Bl)) exp{—(w + 18.85¢1 (a, fyl))ﬁ}

402(&,’)’1)0.’13

By using (20.69), (20.70) and Lemma 20.2.16, we conclude that

B2x?
1-8(z/B1) > (1-%(z/B)) eXp{‘B%B(Bl n Bz)‘I’(3/2)}

3v3Cz3
> (1 - @(x/B)) exp{—m},

provided that 3B/2 < z < vB*/2C, and v < 1/36. Combining the bounds
(20.71), (20.73), (20.81) and (20.82), we obtain that for 3B/2 < z < vB*/2C,
and v < 1/56

(20.82)

¢i(e,7)Ca® } (1 _ (e, fy>0x)

P(S >z) > (1 - <I>(w/B)) exp{~ B Bt
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368, 36.07
VTe(3/2) A

4deo(a, 3.5 0.89
CIQ(aaly) = 2(\]:](1) ’Y) + \/’71 o = ﬁ

ci(a,vy) = 18.85¢1 (e, 3.57) +

Now, substituting for ¢;(-,-) and ca(+, ) their expressions in (20.7), we get the
desired inequality. [ ]
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Characterization of Geometric Distribution
Through Weak Records

Fazil A. Aliev

Ankara University, Ankara, Turkey

Abstract: Let X, Xo,... be a sequence of independent and identically dis-
tributed random variables (r.v.’s) taking on values 0,1, ... with a distribution
function F" such that Fi(n) < 1for anyn =0,1,... and EX; < co. Let X, be
the n-th weak record value. In this chapter we show that X; has a geometric
distribution iff E(X1(ny2) — Xr(n) | X1(n) = 1) = c for some n > 0, > 0 and
for all i > 0.

Keywords and phrases: Records, weak records, characterization of geometric
distribution

21.1 Introduction

A lot of papers in the field of records are devoted to characterizations of distri-
butions via records; for example, Ahsanullah (1995), Ahsanullah and Holland
(1984), Aliev (1998), Arnold, Balakrishnan and Nagaraja (1998), Kirmani and
Beg (1984), Korwar (1984), Nagaraja (1998), Nevzorov (1987), Nevzorov and
Balakrishnan (1998), Stepanov (1994), and Vervaat (1973). Great interest in
these records exists because they are widely available and they often provide a
degree of mathematical accuracy.

Let X3, X, ... be a sequence of independent and identically distributed ran-
dom variables (r.v.’s) taking on values 0,1, ... with a distribution function F
such that Fi(n) < 1 for any n = 0,1, ... and EX; < oco. Define the sequence of
weak record times L(n) and weak record values X ) as follows:

L) =1, Lin+1)=min{j>L(n): X; > Xgm} - n=1,2,... (211)
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If we replace the sign > by > in (21.1), then we obtain record times and
record values instead of weak record times and weak record values. Let p, =
P{X1 =k} and F(k)=1- F(k) (k> 0).

It is known that

(1) X; has a distribution of the form

m m -1
P{X;>m}= (H(a + (i — l)ﬁ) (H(l + a+z’,6’))

i=1 i=1

for some a >0, 8> 0,and m = 1,2,..., iff E(Xpmy1) — Xim) | Xim) =
s) =a+ fs, for all s =0,1,... (n > 0); see Stepanov (1994). If 8 = 0,
this result corresponds to the geometric distribution,

(2) If {A;};2, is any sequence of positive numbers such that Zﬁ_XJ < 1 for

[e.°]
all ¢ and Ai_ — 0, then X; has distribution of the form
il;Il T+A) 1

mg
P{X; > = =

for all m = 1,2,... ift B{Xpnt1) = Xy | Xrny =5} = A, for all s =
0,1,... (n > 1); see Aliev (1998). In the case of A; = a + s, this result
implies the above stated result of Stepanov (1994).

In this paper, we first give a characterization of geometric distribution in
terms of E{XL(n+2) — XL(n) | XL(n) = s} instead of E{XL(n+1) - XL(n) | XL(n)

= s}.

21.2 Characterization Theorem

Theorem 21.2.1 A necessary and sufficient condition for a random variable
X1 to have a geometric distribution is that

E {XL(n+2) = Xim) | Xpn) = 8} =a (21.2)
for somen>1,a>0and all s=0,1,....

PROOF. Let us consider the probability P{X1(nt2) = Xp(m) =k, Xp(m) =5}
(k,s > 0). We have

P {XL(n+2) —Xim) =k Xpm) = 3}
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= P{XL(n+2) =k +37XL(n) = 3}

= Y P {XL(n+2) =k+8 Xpm =s,L(n) = d}

d:
OOn oo
= 2 Y P{Xpmin) =k +5 Xpm =5, L) =d, L(n+2) = m}
d=n m=d+2
00 o m—1

=Y > > P{Xm=k+sXa=5L(n)=d

d=n m=d+2 [=d+1
Lin+1)=1,L(n+2) =m}

[eS) 0o m—1 k+s

- Z Z Z ZP{Xm:k‘*‘S,Xd:S,XL(nH)=t,L(n)=d,

d=n m=d+2 l=d+1 t=s
Lin+1)=1,L(n+2)=m}

0o oo m—1 k+s

= Z Z Z ZP{X =k+sXg=5X,=tL(n) =d,

=n m=d+2 l=d+1 t=s
Lin+1)=1,L(n+2) =m}.
(21.3)

The probability under summation may be rewritten as

P(Xm=k+sXg=5X=tLn)=d Ln+1)=1Ln+2)=m)
= P(Xd = s,L(n) =d, Xd+1 < 8.y Xj—1 < 8y
X =t,Xi11 <ty Xma1 <t, Xm=k+ s). (21.4)

Note that the event { Xy = s, L(n) = d} is defined only by the random variables
X1, X3, ..., X4 and, therefore, is independent of

{Xd+1 <8, Xi1<8,X1=t, X111 <t,., Xm—1 <, Xm=k+ s},
and consequently we have from (21.4)

P{Xm=k+s8Xs=5X =tLn)=d,Lin+1)=1,L(n+2)=m}
= P{Xg=s,L(n)=d} P{Xgq1 <58,..., X1—1 <,
Xi=t, X <t.,.Xma<t,Xm=k+ s}
= P{Xyg=s,Ln)=d} F7Ys) F"71(t) P(X; =t) P(Xm =k + 8)
= pprssP {Xq=s,L(n)=d} F741(s) F™I71(e).
(21.5)

From (21.3) and (21.5), upon changing the order of summation for ¢, [ and
m, one can write
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P {XL(n+2) =Xy =k Xy = S}
Ie9) m—1 k+s

= Z Z Z Z{PtkarsP{Xd—s L(n) =d} Fl—d—l(s) Fm—l—l(t)}

d=n m=d+2 l=d+1 t=s

k+s o oo
= Dhis ZP{Xd_sL =d}Y . p Y Frls) Y Fml)
d=n t=s |=d+1 m=Il+1
(21.6)
Using the obvious facts
o 1 (e o]
Fm_l_l(t) ==, Fl —d- 1
mgzzﬂ F(t) zzd: (s)
and -
P(Xpmy=5) =Y P{Xa=s,L(n) =d}
d=n
n (21.6), we obtain
P {XL(n+2) = X1n) =k, XL(m) = 8} =P(Xpn)=8) Phts =~ D _ =~

F(s) i F(t)
or, equivalently, we have for the conditional probability

v 1 k+s D
P{Xr(ni2) = XLn) =k | XL(n) =8} = Prts 7o) > F(tt)' (21.7)

t=s

Note that, since this probability does not depend on n, we may, Wlthout
loss of any generality, assume that n = 1.
From (21.7), the conditional expectation becomes

1 o k+s o
E {XL(3) -X1 | X1 = s} = e . Z (kpk+3 Z :F:@) . (21.8)

k=0 l=s

By changing the order of summation in (21.8) and taking k£ + s = z, one can
write

E{Xp@—-X1| X1 =5} = ﬁx(%’(’l—) 2 (e=9) pz))
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Therefore, the basic formula for the conditional expectation for future references
is

E {XL(3) - X1 I Xl = 8} IZZI F’(zspgzgl(l) S. (21.9)

NECESSITY. Let X have a geometric distribution with py = P(X1 = k) = pg¥,
k =0,1,..., where ¢ = 1 — p. Then, it is obvious that F(s) = q° for all s > 0.
1+1

x 1
Using the known formula that 2q7) = P4t and (21.9), it may be easil
g pCY 51— and (21.9) y y

seen that

E{XL(g)—XllX1:8} _ Z Zzpqpq

l=s 2=l
pzoo o)
= SZqu
l=s 2=l
_ P Xipd + g
- L
q,_s p
= —SZ(lpq’Jrq’“)—s
q l=s
P, L i1
= q—sZ(lQ)‘l'&;Zqu -5
l=s l=s
_ opsp+gtt g 2
= 5 5 —t-o—-s=—
q p p p

which proves the necessity part of the theorem.

SUFFICIENCY. Let condition (21.2) hold. Also using (21.9), we take the equality

i i 2PzPL .
= lF(s F(l) ’
or, equivalently,
B = i i zpzpl
° — = F(s)F(l)
= a+s for all s > 0. (21.10)

Rewriting (21.10) for s = k, we have
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o _ = ZP=Di
t ;cz, FOF(Q)
— o __RP2Pk ZPzPl
B Z F(k)F(k) ,%1 Zl F(k)F(1)
_ szpl
(k)z—k 1okt = F
_ +F F(k+1) ZD2py
B k) = F(k) I;H; F(k+1)F(D)
= ;c( ——-k(Z)I)BkH. (21.11)

By condition (21.10), Bx+1 = a + k + 1, and therefore, from (21.11) for all
k > 0, one can write

S ‘Fk Fk+1)
Z FE (a+k+1). (21.12)

Observing that F(k + 1) = F(k) — px, (21.12) gives the identity

F(k) — px

a+ a+k+1

P S R @D

or, equivalently,

a+k—_2 Z(zpz)+a+k+1— (a+k+1).
(k) z=k F )
From the last identity, we may write
Dk <a+k+1 Z( 2D, ) = for all £ > 0. (21.13)

F(k) z=k

Here, in the case of kK = 0, we have

1—
EX: + p0=a,
Po

or

— 1—po
Z(sz) + =«
z2=1

Po
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and rewriting (21.13) in the form

1— (po+ ... + pr—1) 1 1-py =
— — a — - < )
Pk a+k+1 1—(p0+...+pk_1) Do ;( pz)

we have a recurrence relation for determining pjy for any given pg. It is clear
that the set of probabilities pg, p1, p2, ... must satisfy the conditions

oo 1 _
po+pi+p2+ps+..=1and Y (ep.)+ popo =a. (21.14)
z=1

For proving that such a set of pg,p1,p2, ... exists and is unique, rewrite (21.13)
in terms of F(k) Using the obvious equality

Zp _ koot (k4 Dpepa + (k+2)pryo + ...
F “ F(k)

- Fk)+F(k+1)+F(k+2)+ F(k+3)+
F(k)

= (k=1+

with (21.13) and the identity px = F(k) — F(k + 1), we get

{F(k) - Flk+1)}
<a+2_ F_(k)+77_(k+1)+’F;(k-+2)+F(k»+3)+...)
F(k)

=F(k).

This equality may be equivalently changed to

Fk+1)+F(k+2)+F(k+3)+...+ _F_l(*“k()lc)_Fgc(;ﬂ)

oF (k) (21.15)

Now using (21.15) for k and k + 1 and subtracting, we take

N = Fk)F(k+1) _ Flk+1)F(k+2)
o (F(k) = F(k+1)) = F(k+1) - TG0 - TaiD-TGiT
Denoting 0, = F(k+ 1)F(k) (k > 0), noting that F(k + 1) = BxF (k) and that
F(k+2) = BrPri1F(k), we have the recurrence relation for 8y

Br(1 — B)
a(l— Br)? — 30k + 267
Consider the second part of condition (21.14) for Bx. Note that By =1 —pg =

F(1), Bopi.--Bx = F(k+1) and 0 < B¢ < 1 for all k. The second part of (21.14)
together with the fact that

Bep1 =1+ (21.16)

oo

> (ep:) = EX; = ZF

z=1
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we have

Bo
1 - fo

In this step, first note that taking Gy = E-Oﬁi in (21.16) we have By = 81 = B2 =

= 33 Wwhich implies that F(k) = (QLH)’C_I. So, at least one solution for
(21 16) and (21.17) (also satisfying (21.13), (21.14) and (21.15)) exists. This
solution corresponds to the geometric distribution with py = p = a_-2|-_2 Let us
show that this solution is unique. Consider the real-valued function f(z) =1+

Jl_%alfg—cﬁz—xg (0 < z <1) with two points of discontinuity. For all continuity
points z of f(x), we may write

Bo + Bobr + ... + Bofr--Br + ... + = o (21.17)

a(l —z)? + 22

a(l—z2-3z 12522

fz) =

Therefore, f(z) is a monotonically increasing function in continuity intervals.
Let z; and z9 (21 < z2) be the discontinuity points of f(z). It may be verified
then that these points are different, z; € (0,1) and 22 > 1 for any a > 0.
Furthermore, f(z) > 1 for 0 < z < z; and from (21.17) we may have Gy > 0
and Sy < 1. Eq. (21.16) may be written as Bx4+1 =f(08k) from which we have
Bo > x1, and vice versa we have #; > 1, which contradicts with condition
0 < (1 < 1. By the same process, it may be seen that from the condition
0 < B1 = f(Bo), we have By > 1—(a+1)"1/2. Note that last point 1—(a+1)1/2
is the smaller one of the two roots of the equation f(z) = 0. For all  such that
1-(a+1)"12 <z <1, f(x) is strictly increasing function and (21.17) then
becomes

Bo + Bo f(Bo) + Bo f(Bo) f(f(Bo))

+m+%fm»“ﬂmﬂﬂ%»q+m+1§%_a.
(21.18)
Because f(8p) is a monotonically increasing function of 5y and 16 % is also

monotonically increasing expression of Gy (0 < [y < 1), we have the left hand
side of (21.18) to be monotonically increasing expression of (3p. Therefore, for
the constant right hand side of (21.18), we may have only one [y satisfying
(21.18), which completes the proof of the Theorem. |
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Asymptotic Distributions of Statistics Based on
Order Statistics and Record Values and Invariant
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Abstract: In this chapter, we establish limit theorems for some statistics based
on order statistics and record values. The finite-sample as well as asymptotic
properties of statistics based on invariant confidence intervals are investigated
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22.1 Introduction

Let X;, X, ..., X, ... be a sequence of independent and identically distributed
(i.i.d.) random variables with continuous distribution function F. Let X (1), X(9),
.-y X(n) be the order statistics obtained from X1, X, ..., X;,. Define a sequence
of random variables U(n),n = 1,2, ..., as follows: U(1) =1, U(n) = min{j : j >
U(n—1), X; > Xym-1),n > 1}. The random variables U(1), U(2), ..., U(n), ...
are called upper record times, and Xy 1), Xy (2), ---» X(n), --- are the record val-
ues of sequence X;, Xa,..., Xp,.... Great interest in records exists because
we often come across them in our everyday life so that singling out and fix-
ing record values proves to be meaningful. In this chapter, limit distributions
of some statistics based on order statistics and record values are obtained.
These results are generalized for statistics based on invariant confidence inter-
vals containing the main distributed mass of a general set. For more details
on the theory of order statistics and records, one can refer to David (1981),
Galambos (1987), Nevzorov (1987), Nagaraja (1988), Nevzorov and Balakrish-
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nan (1998), Arnold, Balakrishnan and Nagaraja (1992, 1998), and Ahsanullah
(1995), among others.

Let Xi,Xo,...,X, be a sample from a continuous distribution with dis-
tribution function F, and Y1,Ys,...,Y,, be a sample from a continuous dis-
tribution with distribution function G. Let Xa) £ X@g £ ... £ X(n) and
Y(l) < Y(;;) < .. <Yy be the respective order statistics. It is well known that
under the hypothesis Hy : F' = G,

I
P{Y,c € (X(i),X(j))} = 1<i<j<mk=12..m,
that is, the random interval é;; = (X(3), X(;)) is an invariant confidence interval
containing the main distributed mass for a class of continuous distributions; see
Bairamov and Petunin (1991).

Let us consider the following random variables:

o1 it Yie (X, Xn) o
Y- ) (@)1 () 1<i<ji<n;k=12,..m.
fk { 0 if Y}c ¢ (X(t))X(J)) ’ = J= g Ly ooy
Denote S = Y7 &7 It is clear that S¥ is the number of observations
Y1,Ys, ..., Ym falling into interval (X(;), X(;)). The following theorem is a special
case of Theorem 22.2.2 that will be proved later in Section 22.2.

Theorem 22.1.1 For any r and s satisfying 1 <r < s < n,

lim sup =0.

Corollary 22.1.1 Under the hypothesis Hy : F = G,

m

P{ﬁ < :v} - P{G(X(S)) - G(X(T)) < :v}

lim sup =0,

where  Wyrs = F(X(5))— F(X(r)) -

STS

It is known that W,s has the probability density function [see David (1981)]

otherwise

f(wrs) = { B S—T’n1_3+r+liw:5_r—l(1 - wrs)n—s+r 0w <1 .
0

Let us consider the random intervals dp = (—00, X(1)), &1 = (X(1), X(2))
oy On = (X(n=1), X(n))» On+1 = (X(n),00). For Wj_1; = F(X5)) — F(X(i-1)),
one can clearly obtain from Corollary 22.1.1 that

0 if <0
P{Wigi<z}={ 1-(1-2)" i z€(,1) ,
1 if z>1

where X(g) = —00, X(n41) =0 .
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Theorem 22.1.2 Under the hypothesis Hy: F =G, for1<i<n+1

i—14

P{"Sm < x} — Fy(z)| =0,
m

lim lim
n—oom—0o0

where Fy(z) =1—e %,z > 0.

Let X, X9,...,Xn,... be a sequence of independent and identically dis-
tributed random variables with continuous distribution function F. Consider
the r-th record value Xy (). Let Xy(ryy1, Xv(r)+2) -+» Xv(r)4+m be the next m
observations that come after Xy(,. It is not difficult to prove that Xy,
Xu(r)+1> XU(r)+2) s XU(r)+m are mutually independent and Xy (r)4x has the
same distribution F' for any k = 1,2,...,m. Let us define the following random
variables for a given r:

&(r)y=1if Xv@r)+i < Xu(r) and &(r) =0if Xvm)i 2 Xu@) 1= 1,2,..,m,

and let Sy, (r) = Y 1%, &(r). It is clear that Sp,(r) is the number of observations
Xu(r)+1» XU(r)+25 -+ XU(r)+m Which are less than Xys(,). Note that the random
variables &1 (1), £&2(7), ..., Em(r) are generally dependent. In the work of Bairamov
(1997) the finite-sample and asymptotic properties of the statistic Sy, (r) are
given. We will mention here some of these results.

Theorem 22.1.3 For any m,r =1,2,...,

P{Sm(r) =k} = (’:) (r—1)! fo 7 amk (1 g2k,

k=0,1,2,..m.
Let us denote S}, (r) = 5\7—%——% Then, ES;,(r) =0, and var(S;,(r)) =
1. Denotea=-2-1; and b= 3%-5%7

Theorem 22.1.4 [Bairamov (1997)] The statistic Sk,(r) has a continuous lim-
iting distribution as m — oo, with probability density function f as

Theorem 22.1.5 [Bairamov (1997)] It is true that

S o) L L]

e o9

0 if ¢ %J—l,

S

r—1
f*(:v):{ w nads] ¥ ‘”E&%

=0.

lim sup
m—00 (<zp<]
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Analogous statistics based on invariant confidence intervals is considered in
this chapter.

Let X1, X3, ..., X, be a sample from a distribution with distribution function
F € 3, where 3 is some class of distribution functions. Suppose fi(uj usg, .., un)
and fa(uy,ug, ..., upn) are two Borel functions with the property that

fi(uyug, ..., un) < fo(ur,ug, ..., un) V (u1,ug, ..., un) € R™ (22.1)

Let Xn4+1 be a new sample point obtained from F which is independent of
X1,Xo,..., Xp. If

P{Xn+1 € (fl(Xl,Xg, ...,Xn), fQ(X]_’XQ, ...,Xn)} =a for all F e 8‘,

then (f1(X1,X2, ..., Xn), f2(X1,X2, ..., Xp)) is called an invariant confidence in-
terval containing the main distributed mass for class of distributions & with
confidence level a.

It is known that [see Bairamov and Petunin (1991)] if fi and f2 are contin-
uous, symmetric and different on every set with a non-zero Lebesgue measure
functions of n arguments, only the order statistics form invariant confidence
intervals for 3¢, the class of all continuous distribution functions.

Properties of invariant confidence intervals for nonparametric class 3. are
used in many applications since a test statistic can be found and criteria can
be established on the training samples for problems of classification of new
observations [see Bairamov and Petunin (1991) and Bairamov (1992)]. Similar
applications can also be extended to generalized Bernoulli schemes in variation
statistics [see Matveichuk and Petunin (1990) and Matveichuk and Petunin
(1991)].

The solution for the problem of the significance estimation of the indices
used for diagnosis of the breast cancer on the basis of investigation of the
DNA distribution in the interphase nuclei cells is obtained by using criteria and
statistics introduced in by Petunin, Timoshenko and Petunina (1984) and using
invariant confidence intervals and results obtained by Bairamov and Petunin
(1991a).

In the next section, the finite-sample and asymptotic properties of statis-
tics based on invariant confidence intervals are investigated and their use in
statistical inference is also discussed.

22.2 The Main Results

Let h(u1,ug,...,us) be a real-valued integrable n-dimensional function. Con-
sider a functional

Hp(h) = / / h(u1, 49, ooy ) dF (u1)dF (ug)....dF (un) , F € F |
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where F is some class of distribution functions. The properties of the functional
Hp(h) are

(i) Hr(1) =1

(ii) Hp(cihi () + c2h2 () = c1Hp(h1) + coHp(h2), where hj (.) are distinct
functions and c;’s are real valued numbers.

Denote the random samples from the distributions F' (u) and @ (u) as
(X1, Xo, ..., Xpn) and (Y1, Y2, ..., Yrn), respectively. Let fi; and f, be two functions
as mentioned in (22.1). The probability of a random event

A = {Yk € (fl(Xl,X2a --~,Xn),f2(X1,X2, "',Xn))}’ k= 1’2’ M
p=P(A) = / / [Q(fa(ur, uz, ..., un)) — Q(f1 (u1, u2, ..., un))|
dF (ur)dF (us)....dF (),

which is clearly independent of k. If we take the above definition of Hr(h) into
consideration, the required probability is calculated by

P(Ax) = p = Hr [Q(f2(2)) - Q(A(3))] = Hr(Q% (@),
where @ = (u1,u, ..., un) and Q(f2(3)) — Q(f1(a@)) = QP (). Denoting

£ = 0, if random event Ay is observed
k= 1, if random event Ay is not observed

and defining a new random variable as vy, = & + £ +... + &m, which can take
values from the set {0,1,2,...,m}, we can investigate the likelihood of having
new sample values falling into a designated interval. Note that the random
variables &1, &2, ..., & are dependent.

Theorem 22.2.1 For k=0,1,2,...,m,
k m—k
P{vm =} = Chtr ([ @] [1- Qf@]™) |

where Ck, = WESY r’nn'_k .

PROOF. Let Ay = {Yix € (f1(X1, X2, ..., Xn), f2(X1, X2, ..., X3.))} . The proba-
bility that k of Yi,Ys..,Y,, fall in the interval (f1(X1,X2,...,Xn),
fo(X1, Xa, ..., Xp)) is then

Plum=k}= DY  PAaNApN..NAxNA;, N4, N..N4),
ilai2a“)im

(22.2)
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where A denotes the complement of A. Let us denote

NA; .,

PR —PAxNApn.. NAxNA .

211,225 tm

W NA;).

Tk+1 zk+2

In this case, we have

k
Iji(l,zz,,,,im = /"'/dF(yil,yiza"'7y'im7x1’x2a---amn)a

where
A = {(Yiy, Yigs +er Yimy L1, L2y o0y Tp) : —00 < ; < 00, 1=1,2,...,n
fl(xlyx% "'axn) < Yip < f?(xlyx% ""xn)’p =1,2,.., k;

Yi; ¢ (fl(xl,x% ---,-'I:n)7 fQ(xl’ T2, "'7"1:71))’ j=k+Lk+2,.., m} .

Y1, Ys..., Y, and X1, Xs..., Xp, have the following joint distribution function due
to independence:

F(yil’y'im ey Yimy L1, T2, ...,.'Iln) = Q(yl)Q(yg)Q(ym)F(xl)F(xg)F(a:n)

So, we can write

P = [ [1QUa(ur, gy ) = QA (w1, oy u)]*
A

X [1— Q(fa(u1,us, s un)) + Q(f1(u1, us, -.ry un)™
x dF(u1)...dF (up)

o (G W (T T e B

This shows that the probabilities P(k) i, in (22.2) are independent of 71, i, ...,

11,12,
im.-
Hence, the theorem. |

The low-order moments of interest for further uses are expressed as follows:

E(vm) = ikP{l/m:k}
S [ [ bl

x [1 — QP (ur,up, yu )]m dF (uy)...dF (uy)

:/ / <Zk’0k Qf1 UL, U2, vevy U )]k

X [1 - fo (u1,ug, ...,un)]m )dF(ul)...dF(un).
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Now, we find that

’fjkoa Q@] [1 - ek@]"
=0

—k

_ ch @] - ek@)]" " [Qh@)

- k@ S Gy [QE@)] [t - @] "

=0
= mQ%()

using which, we obtain

Bom) = m [ o [~ Qs ua, e un)dPwr)..dP(un)

= mHp [Qfl(ul,u% aun)]'

Similarly, we also find

E(W}) = m?Hp [Q (u1,u, .. ,un)] —mHFp [Qﬁ(uh?&, . n)]2

+ mHp [Qfl(ulau%-"aun)] .
Therefore, the mean and the variance of vy, are obtained as
E(vm) = mHF(QF (@)
and
2
varn) = m? |(Hr(@QE @) - (Hr@E@))]
- m[(Hr@QF@)?) - (HF@QE(@)].-
Lemma 22.2.1 The characteristic function of vy, is
m
me(t) ((1+ ( 1) Qﬁ(uhu?a'",un)) ) .
PROOF. By definition,
Pum(t) = E (exp(itvm))
m
= Z exp(itk) P(vm = k)

Jm—k

- Zexp(ztk)C’k Hr [QF (u)] [1-Qf @)

= / / Zexp(itk)Cfn [Qfé(uhum---,un)]k

® k=0
—k
X [1 - fo(ul,w, ...,un)]m dF (uy)...dF (up).

315
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In order to carry out the necessary calculation, the summation term is first
found as
- . k [Af2pn]" Fap ™k
> exp(ith)CE [QF@)] [1- @7 @)

k=0

— zm: ck [exp(z't)ij (a)] ¢ [1 -QF (ﬂ)]

k=0
= (exp(zt)Q (@) + (1 - Q (u)))
(1 -Qf@)(1- exp(lt)))

m—k

Then, we have

on® = [ [T (1= @, upy ) (1 - explit))”
X dF(u1)...dF(un)
= Hp (1 + (exp(it) — 1) Qfl (u1,ug, ... un))m
Hence, the lemma. n

Now, let us define the standardized form of vy, as v}, = 1’%%’% with
E(v},) =0 and var(v},) = 1. Denote

Clr) = P{QE(X1,Xs,.., Xn) <}
= P{Q(f2(X17X27 7Xn)) - Q(fl(XhXQa ---,Xn) ) < 113} .

Theorem 22.2.2 Let fi and fo be continuous functions, and F and Q be con-
tinuous distribution functions. Then,

P{-’/ﬁ Sm} - C(z)

m

lim  sup =0.

M= 0<r<1

PROOF. By using Lemma 22.2.1, the characteristic function of = can be
written as

pum (1) = E(e) = Hy <1+ (exp(z—)—l)Q (u)) S (223)

Let us now denote U,,(t) = (1 + (exp(it) — 1) Q { ))m Using the Taylor
expansions € =1+ z +o(z) and In(1+2) =z + o(m), we can write

In¥,(t) = mln (1 + (exp(z— - 1) (u))
Qf

= min (14 (L1 o) Qh@)
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it gy t
= mln (1 + (-T-n-in(u) + o(-n—l)>)
(PN t
m(ZQh@ +o))

= #QE@ +0(=)

and so 1
U (t) = exp ( Q% (@) + 0(=).
It then follows from (22.3) that

. _ 1
w%(t) = Hp (Yn(t)) = Hp (exp ('LtQﬁ (u))) + O(E) (22.4)
Letting m — oo in (22.4), we obtain
lim oun (t) = Hp (exp (@} (a))) = T(t). (22.5)
It easy to see that U(t) is continuous at ¢ = 0. In fact, one has
) 2
22 (QF (@)

exp (itQ% (@) = 1+itQf (@) + 5 +o(?)

and U(t) = Hr (exp (itQ(7))) — 1= 0(0) if t - 0.

Let F} (x) be the distribution function of statistic vy,, where z = % ,
k=0,1,2,...,m. By using Levy-Cramer theorem for characteristic functions [see
Petrov (1975, Theorem 10, p. 15)], one can show that Fy,(z) — F*(z),z € [0,1],

and F* has a characteristic function
1

O(t) = / AR (z). (22.6)
0
On the other hand, from (22.5), we have

() = Hr (exp (itQﬁ(a)))
- /:; g /: exp (Q% (w1, 42, - un) ) dF (u1)..dF (u2)

= E [exp (’itQ}tf(Xth, ---,Xn))]
1
_ / e'2dP {Q (X1, Xs,..., Xa) < z}. (22.7)
0

Therefore, from (22.6) and (22.7), we have
F'(z) = P{QR(X1Xa ... Xy) <z}
= P{Q (f?(le ey Xn)) - Q (fl(Xh 7Xn)) S .’L'} .
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Corollary 22.2.1 Let (f1(X1, Xo, ..., Xp), fo(X1, X2, ..., X)) be the invariant
confidence interval for some class of distributions S with confidence level o,
that is,

Pr{Xn+1 € (fi(X1, X2,y Xn), f2(X1, X2, ..., X))} = a1 for any F € S.

Let ag = Pp {Xn+1,Xn+2 € (fl(Xl,Xz,...,Xn),f2(X1,X2,...,Xn))} , where
X1,X2,...; Xn, Xnt1,Xn+2 is the random sample from distribution with dis-
tribution function F € S. Let F = Q and F € § and X = (X1, X2, ..., Xp).
Then

lim sup P{ _ < x} - Ga(z)| =0,
m—oo 4 \/mQ(QQ - al) - m(a2 — al)
where
G2(.'17) = P{F(fQ(X)) - (fl(X)) < a:}, if z€ ( \/ 2 az \/a;alaz
1, if T > \/ﬁ .

Remark 22.2.1 Let P=S, where 3. is the family of all continuous distribu-
tions. Let f1(X1, X2,...,Xn) = X(i) and fa(X1,X2,...,Xn) = X(j), 1<i<j<
n . With these, we can then show that [see Bairamov and Petunin (1991)]

Hp (F:(%) (Ul,UZ,...,un)) P {Xn+1 € (X(l)’X(J))} T4+ 1
and

Hp [(F;‘(")) (U1,U2,...,un))m] = P{Xn+1,Xn+2,---,Xn+m € (X(i)’X(j))}
nlm+j—i-1)! _ o™
G—i-Dm+n) %

Ifi=1and j =n, then Qln = n+1’ and a(2) - in-lzll—-iflniﬁ ’

Remark 22.2.2 Let X;, X,..., X, be a sample with distribution function
F € P = Q., where Q. is the family of all continuous distributions. Let
filX1, X, .., Xpn) = X () and fo(X1, Xo, .., Xp) = Xy 1 <i<j < n. In this
case, C(z) in Theorem 22.2.2 takes the form C(z) = Pp {Q(X(j)) - QX)) < a:}
and we have Theorem 22.1.1. If F = @, then

C(z) = P{F(X;) - F(X(y) < 3} = P{Wy; <z}

and we have Corollary 22.1.1.
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Record Values in Archimedean Copula Processes

N. Balakrishnan, L. N. Nevzorova, and V. B. Nevzorov

McMaster University, Hamilton, Ontario, Canada

St. Petersburg Humanitarian University of Trade Unions, St. Petersburg,
Russia

St. Petersburg State University, St. Petersburg, Russia

Abstract: We investigate the asymptotic behavior of record values X (n) for
some types of Archimedean copula processes. It is shown that the set of all
limit distribution functions for X (n), normed and centered in a suitable way,
under some restrictions on parameters of these processes, coincides with the
corresponding set of asymptotic distributions of record values in the sequences
of i.i.d. random variables.

Keywords and phrases: Archimedean copula process, extremes, record in-
dicators, record times, record values

23.1 Introduction

Let X1, Xo,... be asequence of random variables and M (n) = max{X3, ..., X,}
forn =1,2,.... We define (upper) record times L(n), record values X (n) and
record indicators &, as follows:
L(1) = 1, Ln+1)=min{j > L) X; > Xrm}, n=1,2...;
X(n) = Xpwp =M(L®), n=12..;
& = 1, &=Lyum>Mn-1} 7=23,....
Consider also random variables

Nn)=&+---+&, n=12,...,

where N (n) represents the number of records among X7,..., X,,.

Beginning from the pioneering paper by Chandler (1952), there are now
about 350 papers on records. The most updated reviews of the literature on
records can be found in Ahsanullah (1995), Arnold, Balakrishnan and Nagaraja
(1998) and Nevzorov and Balakrishnan (1998). /
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Majority of the work on records consider record times and record values in
sequences of independent identically distributed random variables X7, Xo,....
Moreover, the theory of records from dependent or/and nonidentically dis-
tributed X’s have been connected with the independence property of record
indicators &, and maxima M(n). This property, for example, was the basis
for dependent record schemes of Ballerini and Resnick (1987), Deheuvels and
Nevzorov (1994), Ballerini (1994), and Nevzorova, Nevzorov and Balakrishnan
(1997). The last two of these are based on the so-called Archimedean copula
(AC) processes.

A sequence X1, X9, ... with marginal distribution functions Fy, Fs, . .. is said
to be an AC process if, for any n = 1,2,..., the joint distribution function

H(tl,...,tn) =P{X1 <t1,...,Xn <tp}

has the following form:

n

H(t1,...,tn) = B)_ A(Fi(t))), (23.1)

=1

where B is a completely monotone function such that B(0) = 1, and A = B!
is the inverse of the function B.
Ballerini (1994) has studied in detail the particular AC processes with

B(s) = exp(—s"?), 6>1,
and
Fi(z) = (F(2))*®, i=1,2,..., (23.2)

where a(1),a(2),... are any positive constants and F' is a continuous distribu-
tion function. When § = 1, Ballerini’s scheme coincides with the so-called F®—
scheme which was initiated by Yang (1975) and developed by Nevzorov (1984,
1985, 1986, 1995), Pfeifer (1989, 1991), and Deheuvels and Nevzorov (1993,
1994). It is known that in the F*-scheme, random variables X7, Xo,... are
independent and have distribution functions (23.2). Ballerini called his model
as the dependent F*-scheme. He proved that record indicators &1,€9,...,&n
and maximum M (n), in the dependent F®-scheme, are independent for any
n=12,....

Nevzorova, Nevzorov and Balakrishnan (1997) investigated a much more
general set of AC processes and found the necessary and sufficient conditions
under which the random variables £1,£a,...,&, and M(n) are independent for
any n = 1,2,.... It appears that this independence property takes place for AC
processes with the joint distributions

Hitr, .. ta) = B cA(F(5))), (23.3)
1=1
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where B and A are as defined in (23.1), F is any continuous distribution func-
tion, and ¢; are any positive constants. This case includes Ballerini’s situation,
of course, when B(s) = exp(—s'/?),

It is not difficult to prove that

Pe=P{l=1}=1-P{& =0 =1-v(k-1)/v(k), k=12,..., (23.4)

where y(n) = ¢ + ...+ ¢p, for AC processes with dependence function (23.3).

The independence of record indicators has been used to examine some mar-
tingale and asymptotic properties of random variables N(n) and L(n) for the
F*—scheme; see, for example, Balakrishnan and Nevzorov (1997), Deheuvels
and Nevzorov (1993), Nevzorov (1995), and Nevzorov and Stepanov (1988).
Arguments which are in Section 23.3 show that almost all of these results can
be reformulated for AC processes in (23.3).

For the F*—scheme, using the independence of record indicators and max-
ima, Nevzorov (1995) has found the set of all possible limit distributions of
record values X (n), centered and normalized in a suitable way. Here we gener-
alize his results for the AC processes. There are standard methods for proving
such theorems; see, for example, Resnick (1973a,b) and Nevzorov (1995). The
first step in this direction is to find the limit distribution of X (n) for some
convenient initial distribution (in Resnick’s and Nevzorov’s papers, the expo-
nential distribution was used for this purpose). After that, arguments based
on the Smirnov transformation and the well developed theory of extremes will
enable one to construct the bridge from this special distribution to the general
case. It appears that for AC processes in (23.3), unlike the classical record
schemes, it is convenient to take the first step with the following analogue of
the exponential distribution function:

F(z) = B(~ log(1 - exp(—a))).

23.2 Main Results

Let a sequence X1, Xs,... form an AC process with the joint distributions as
given in (23.3). In this case,

P{M(n) < 2} = B{Y(n)A(F(z))} = H{G"™(a)}, (23.5)

where
H(z) = B(—logx)

and G(z) = exp{—A(F(z))} is a distribution function. It follows from (23.5)
that P{M(n) — an < bpz}, as n — 00, converges to a nondegenerate limit
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distribution R(z) = H(T'(x)), if
"™ (b, + an) — T(z) asn — . (23.6)

It is well known that if y(n) = n, then there are three classical types of limit
distributions on in the RHS of (23.6), which have the following form:

Ti(z) = exp(—exp(—gi(x))), i=1,2,3,
where

gi(z) = =, (23.7)

a2(z) = @ul@)=alogzifz >0, and go(z) = —0 ifz <0, (23.8)

g93(z) = g3a(x) =—alog(—z)if z <0, and g3(z) =00 if z > 0,
(23.9)

and o > 0 in (23.8) and (23.9). In this situation (viz., y(n) = n), all pos-
sible limit distributions for M(n), centered and normalized in a suitable way,
evidently have the form

Hy(z) = B(—1log(T(z))) = B(exp(-gi(2))), i=1,23,

where functions g;(x) are as defined in (23.7)—(23.9). Green (1976) has shown
that for any fixed nondegenerate distribution function 7', it is possible to find
a continuous distribution function G and sequences an, b, and 7(n) such that
(23.6) holds. His construction requires a very fast increase of coefficients y(n).
In Green’s example [see also Example 2.6.5 in Galambos (1978)]

v(n) ~ exp(expAn), A>0, n— co.

Note also that if v(n) — v,0 < v < 0o, then for any fixed distribution function
T, one can take F'(z) = B(A(T'(z))/7) and get the limit relation

lim P{M(n) <z} =T(z) asn — oo.
For record values X (n) = M(L(n)), one can easily prove that if
lim P{M(n) — an < bpz} = R(z) asn — oo,

then
lim P{X(n) - arm) < brm)z} = R(z) asn — oo.

Let us consider the asymptotic behavior of X (n) under nonrandom centering
and normalizing.
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Denote A, = >.%_1pk and B, = Y p_;p%, n = 1,2,..., where p, are as
given in (23.4).

In the sequel, we will study AC processes in (23.4) with coefficients ¢,
satisfying one of two following sets of restraints:

v(n) > 00, pn—0, Bp/AY2 50 asn— oo; (23.10)

n

n
PP (0<p<1), Y (p—pk)/n* =0, Y (p—pr)?/nt/? =0
k=1 k=1
as n — oo. (23.11)

Note here, in comparison to Green’s construction where logy(n) has the ex-
ponential rate of increasing, that y(n) — oo and logy(n) = O(n) as n — oo,
under conditions in (23.10) and (23.11).

First, we get some asymptotic results for the partial case when G(z) =
exp{—A(F(x))} coincides with 1 — exp(—z) for any positive z. It means that

F(z) = B(—log(1l — exp(—z))) ifz > 0 and F(z) =0ifz < 0.

Let ® denote the distribution function of the standard normal law. The
following results then true.

Theorem 23.2.1 If F(z) = B(—log(l — exp(—z))) and conditions in (23.10)
hold, then for any fized x and vy,

P{X(n) — logy(L(n)) < z,log¥(L(n)) — n < yn/*} — B(e™")®(y).
(23.12)

Theorem 23.2.2 Let F(z) = B(—log(1 — exp(—=z))) and that conditions in
(23.11) hold. Then for any fized x and y,

P{X(n) —logy(L(n)) <z, plogv(L(n)) + nlog(1 - p)
<y(-log(1 = p))(n(1 - p))'/?} = B(e™")2(y). (23.13)
It is evident that for B(s) = exp(—s), which corresponds to the F**—scheme,
F(z) = B(—log(1—exp(—=z)) coincides with the standard exponential distribu-

tion function. Hence, Theorems 23.2.1- Theorem 23.2.2 generalize Theorems 7
and 8 of Nevzorov (1995).

Corollary 23.2.1 Let F(z) = B(—log(l — exp(—x)) and that conditions in
(23.10) hold. Then for any fized x,

P{X(n) —n < zn'/?} - &(z) (23.14)

as n — oo.
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In fact,
(X (n) —n)/n'"? = v /n? + i,

where v, = (X(n) —logy(L(n))) and pn = (logy(L(n)) —n)/n/2. It is evident
now that asymptotic normality of (X (n) — n)/n!/? easily follows from (23.13).

Corollary 23.2.2 If F(z) = B(—1log(1 — exp(—z)) and conditions in (23.11)
hold, then for any fized x,

P{pX(n) + nlog(1 — p) < z(~log(1 — p))((1 — p)n)"/?} — &(z) (23.15)

In this situation,

(pX (n) + nlog(1 — p))/(—log(1 - p))(n(1 — p))*/2
= pin/(—log(1 — p))(n(1 — p))/% + 1,

where
M = X (n) — logv(L(n))

and

Tn = (plog7(L(n)) + nlog(1 — p))/(~log(1 — p))(n(1 — p))*/>.

All we need to do now is to apply (23.13).

The standard arguments based on the Smirnov transformation [see Resnick
(1973a,b) and Nevzorov (1995)] allow us to obtain from (23.14) and (23.15)
the limit distributions of record values X (n) for any continuous distribution
function F'.

Theorem 23.2.3 For AC processes in (23.8), with coefficients c(n) satisfying
(23.10) or (23.11), the record values X (n), centered and normalized in a suit-
able fashion, can have only three types of nondegenerate asymptotic distribution
functions

where g;(z) are as given in (23.7)-(23.9) and ® is the distribution function of
the standard normal law.
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23.3 Sketch of Proof

Let us compare indicators &1,&s,... and maxima M (n) for AC processes in
(23.3) with record indicators (denoted by &7, €3, . ..) and maxima M*(n) in the
F*-scheme with exponents ap,n = 1,2,..., which coincide with coefficients ¢,

of the corresponding AC process. Both the sets of indicators have the same
distributions and these distributions do not depend on distribution function
F', which enters in the definitions of the F*—scheme and AC process in (23.3).
Random variables &1, &a, ... as well as indicators £7,£3, . . . are independent and

P{gn:1}:Cn/(cl+"'+cn)=0¢n/(041+“‘+04n)=P{f;:=1}-

Hence, for any n = 1,2, ..., distributions of the vectors (£1,...,&,) and (&7, ...,
&) coincide. It implies that the same situation is true for the random variables
Nn) =&+ ...+ & and N*(n) = & + ...+ &;. Moreover, record times
L(n) and L*(n) have the same distribution because we can apply the following
inequalities:

P{L*(n) >m} =P{N*(m) <n} =P{&+...+ &, <n}
=P{&+...+&n <n} = P{N(m) <n} = P{L(n) > m},
(23.16)

which are valid for any n = 1,2,... and m = 1,2,.... The random variables
L*(n) and N*(n) in (23.16) as well as record values X*(n) and maxima M*(n)
correspond to the F'®*—scheme.

It therefore follows from (23.16) that all results which hold for record times
L*(n) and numbers of records N*(n) in the F**—scheme with exponents a1, aa, . ..
can be reformulated for L(n) and N(n) in the case when these record statistics
correspond to AC process in (23.3) with coefficients ¢, = ap, n =1,2,....

Let us compare now record values X*(n) and maxima M*(n) for the F*-
scheme with record values X (n) and maxima M (n) for AC process in (23.3).
From (23.5), one knows that the maximal value M(n) for the AC process in
(23.3) has the following form:

P{M(n) <z} = B{y(n)A(F(z))} = H{G"™(2)},

where H(z) = B(—logz),G(z) = exp{—A(F(z))} and v(n) = ¢1 + ... + ¢p. For
the F*-scheme with exponents a, = ¢,, n = 1,2,..., and distribution function
F~,

M;(z) = P{M*(n) < g} = (F*(z))"™.
The formulae and arguments given above show that there exists a duality be-
tween AC process in (23.3) with coefficients ¢, and distribution function F, and
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the F®—scheme with exponents a, = c,, n = 1,2,..., and distribution func-
tion F*(z) = G(z) = exp{—A(F(z))}. As we mentioned above, distributions
of record times coincide for these two cases. Besides, we have the following
relation between distributions of M (n) and M*(n):

My (z) = P{M(n) < z} = H(My(z)).

The analogous equalities are valid for asymptotic distributions. If M} (zb,+ay)
converges to a limiting distribution 7*(z) under some constants a,, and b, then
M, (zby, + ap) converges to distribution function T'(z) = H(T*(z)). Note also
that in this situation, as n — oo,

P{(X*(n) = arx(n)) /brr(n) < x} = T*(x) (23.17)

and
P{(X(n) — ar(n))/br(n) < z} = H(T*(z)). (23.18)
One important fact that we must recall is that: for any n = 1,2,..., in-
dicators &7,&3, . . ., & and maximum M*(n) are independent [see, for example,
Ballerini and Resnick (1987)], as well as the indicators &1, &2, ..., &, and maxi-

mum M (n) are independent in the case of AC processes in (23.3) [see Nevzorova,
Nevzorov and Balakrishnan (1997)].

Therefore, we just need to trace the proof of Theorems 7 and 8 in Nevzorov
(1995)) for the F*-scheme which correspond to our Theorems 23.2.1 and 23.2.2
with some slight changes due to the differences in (23.17) and (23.18). In the
theorems of Nevzorov (1995), relation (23.17) was used for the special case when
F*(z) =1 — exp(—z), z > 0, and it has the form

P{X*(n) —logy(L*(n)) < z} — exp(— exp(—z)) (23.19)

as n — 0o. Then, F(z) = B(—log(1 — exp(—z))) from Theorems 23.2.1 and
23.2.2 is a dual function for F*(z), and in this situation, (23.18) can be rewritten
as

P{X(n) —logv(L(n)) < z} — H(exp(—exp(—z))) = B(e™®)  (23.20)

as n — 00. All the other arguments are the same for both situations and
the difference of the RHS in (23.19) and (23.20) is the only reason why the
limit expressions in (23.12) and (23.13) have the form B(e™*)®(y), while the
corresponding limit for the F®*—scheme is exp(— exp(—z))®(y).

There is a standard method to find the set of all possible nondegenerate limit
distributions for record values X (n), centered and normalized in a suitable way.
In the classical situation, when the original random variables X7, Xs,... are
independent and identically distributed, this method was suggested by Resnick
(1973 a,b). For the F®-scheme, it was developed by Nevzorov (1995).
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We will now consider the asymptotic distribution of X (n) under the restric-
tions of Theorem 23.2.1. First, let F(z) = Fo(z) = B(—log(l — exp(—z))),
x > 0. It follows from Corollary 23.2.1 that the corresponding record values
(for the sake of convenience in this situation we denote them as Z(n)) satisfy
the following relation:

P{Z(n) = n < zn/?} - &(z) (23.21)

as n — 00. Then, due to Smirnov transformation, record values X (n) for any
continuous distribution function F(z) can be expressed via random variables
Z(n) as follows: X(n) = R(Z(n)), where R(z) = F~}(B(-1log(l — e7?)))
and F~! is the inverse function of F. If there exist some normalizing and
centering constants a, and by such that P{X(n) — a, < zbp} converges to
some distribution T(z), then this fact can be rewritten as

P{(Z(n) — n)/n'/? < (Up(an + zbn) — n)/n'/?} - T(z), (23.22)

where Up(z) = — log(1—exp(—B~1(F(z)))) and B! is the inverse of B. Com-
paring (23.21) and (23.22), one can see that (23.22) holds if and only if there
exists the following limit:

9(2) = im(Up(an + aby) —n) /2, as n— oo. (23.23)

Moreover, it means that all asymptotic distribution T" for X (n) must have the
form T'(z) = ®(g(x)). Now one can recall that the problem finding all possible
limits in (23.23) has already been solved by Resnick. It appears that the set
of limit functions g is restricted by three types of functions as in (23.7)-(23.9).
This completes the proof of Theorem 23.2.3 under the restraints in (23.10).
The same arguments show that this theorem is also true if the conditions
in (23.11) are posed. [ |
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Functional CLT and LIL for Induced Order
Statistics

Yu. Davydov and V. Egorov

Université de Sciences et Technologies de Lille, Villeneuve d’Ascq, France
Electrotechnical University, St. Petersburg, Russia

Abstract: The asymptotic behavior of three processes defined by induced
order statistics is studied. We prove for these processes a functional central
limit theorem and a Strassen-type functional law of the iterated logarithm.
The result about weak convergence is a large generalization of Bhattacharya’s
one (1974). The entropy technique and sharp estimates for weighted empirical
processes are used. Here, we present an abridged version of our work.

Keywords and phrases: Functional limit theorem, Strassen-type FLIL, in-
duced order statistics

24.1 Introduction

Let Z; = (X;,Y;), i = 1,2..., be independent copies of a random vector Z =
(X,Y) such that X € R, Y € R4 Denote Xp1 < Xp2 < --+ < Xnp for
the order statistics of the sample (X;,i < n) and Y, 1,Yn2,...,Ysn for the
corresponding values of the vectors Y. The random variables (Yy,i < n) are
called induced order statistics (108).

This generalization of order statistics was first introduced by David (1973)
under the name of concomitants of order statistics and simultaneously by Bhat-
tacharya (1974). While the asymptotic theory of induced order statistics have
been discussed in great detail by David and Galambos (1974), Galambos (1987),
Sen (1976), Yang (1977), Egorov and Nevzorov (1982, 1984), finite sample re-
sults have been presented by David et al. (1977) and Yang (1977). Barnett et
al. (1976), David (1981), Gomes (1981), Kaminsky (1981), and Balakrishnan
(1993) have provided further interesting discussions on these subjects. Inter-
ested readers may also refer to Bhattacharya (1984), David (1992) and David
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and Nagaraja (1998) for extensive reviews on the developments of I0S. One
should mention new unexpected connections of IOS with the problems of “con-
vexification” of random walks consided by Davydov and Vershik (1998) (see
below for more detailed discussion).

In this chapter, we study the asymptotic behavior of three processes con-
structed by the induced order statistics Yy ;, i <n:

mE) = Y Yiloy(X)), (24.1)
Jj=1
1 [ni]
&) = EZYT‘J’ (24.2)
7=1
1 [nt]
an(t) = oy Z(Yn,j - m(Xn,j))a (24.3)
j=1

where m(t) = E(Y | X =t),t €0,1].
It is not difficult to see (and it follows from the results of our work) that
with probability one

oan—0, & —f,m—f

uniformly in [0, 1], where f(t) = [¢ m(s)ds.
Our main goal is to prove a functional central limit theorem (FCLT) and a
Strassen-type functional law of the iterated logarithm (FLIL) for the processes

fin = bn(n — f), &0 =bn(€n— f), Gn = bpan, (24.4)

where b, = /7 if the weak convergence is considered and b, = /n/(2loglogn)
in the case of convergence with probability one.

Our results about the weak convergence represent a large generalization of
Bhattacharya’s ones (1974, 1976): the moment condition is reduced to E|Y||? <
oo, the dimension d can be more than 1 and the regression function m(z) is
permitted to be unbounded. The result about the FLIF, as it seems, is the first
result on this subject for IOS.

Finally, we would like to mention something about the methods applied in
this chapter. We use entropy technique [modern results of Ossiander (1987)
and Ledoux and Talagrand (1991)] and sharp estimates for weighted empirical
processes [see Shorack and Wellner (1986)].

The Chapter is organized as follows. After notation (Section 24.2) in Section
24.3 we formulate and discuss Theorem 24.3.1. This theorem states the weak
convergence (in the uniform topology) of the processes (24.4) to continuous
Gaussian processes which admit integral representations in terms of the d -
dimensional Wiener process and the Brownian bridge. Strassen balls for d
-dimensional random Gaussian processes are described in Section 24.4. The
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FLIL (Theorem 24.5.1) is investigated in Section 24.5. Section 24.6 is devoted
to examples. Some simple lemmas are stated without proofs.

24.2 Notation

Xn1 £ -++ £ Xpp — order statistics for X;, i <n
Yn1,...,Yan — induced order statistics

an,&n, M — see (24.1), (24.2), (24.3)

G, En, Tin — see (24.4)

F,(t) — empirical distribution function

Un(t) = Fu(t) — ¢

Va(t) = Xn,[nt] -t

V(t) — Brownian bridge

W (t) — standard Wiener process

m(s) =E(Y|X =s)

02(s) = cov(Y|X = s) - conditional covariance matrix
o(s) — the positive square root of o2(s) : o(s)o(s)T = o2(s)
D¢ — variance of random variable &

4] = Euclidean norm in R?

1X ] = supycecs X (1)

BI[0,1] — space of bounded functions with the norm || f||
bn = v/n/(2loglogn),n >3

wr(a) = supy_ <q 1£(t) — £(7)|

C,(Cy,...— positive constants

IOS - induced order statistics

Sx — Strassen ball for the random process X

f+(z) = maz(f(z),0), f-(z) = maz(-f(),0)

24.3 Functional Central Limit Theorem

We begin by supposing that X is uniformly distributed on the interval [0, 1].
The inverse probability transformation permits easily to pass from this case to
general one. We recall that Y is supposed to have a finite second order moment.
Let

a*(s) = E{(Y - m(X))(Y —m(X))" | X = s}

be the conditional covariance matrix of Y and o(s) be the positive matrix such
that o(s)a(s)T = o2(s).
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All our limit processes being continuous, it is well known that in this case the
convergence in uniform and Skorokhod topologies are equivalent [see Billingsley
(1968)], hence we use the uniform metric. The symbol = denotes the weak
convergence in the uniform topology of the corresponding Skorokhod space or
simply the convergence in distribution of random variables.

Theorem 24.3.1 Suppose that E||Y]||? < co. Then
(1) ﬁnéﬁa &n=>&;
where

t _ ¢
at) = /0 o(s)dW (s), (L) = &lt) + /0 m(s)dV (s), (24.5)

W is the d-dimensional standard Wiener process, V is the Brownian
bridge independent of W.

(2) If, in addition, m is continuous in the open interval (0,1) and for some
C>0,a€c(0,1/2)

[m(t)] < Ct™%(1—1)"%, t € (0,1), (24.6)
then _ _
én =&
where _
£@t) =7(t) —m@)V (). (24.7)

We set here m(0)V(0) = m(1)V(1) =0.

Remark 24.3.1 Due to the condition E||Y||? < oo, the function m and matrix-
valued function o are square integrable. It means that the integrals (24.5) are
well defined.

Remark 24.3.2 If X has a continuous distribution function F of general type,
we introduce the variables U; = F(X;). Then the processes én, én, fin coincide
with ones of Theorem 24.3.1 constructed by the vectors (YjT,UJT ) with the
functions m, o replaced by moF~1, 0o F~! respectively. The same modifications
are needed for the limit processes &,¢,7. The condition (24.6) turns into the
following condition:

for some C >0, a € (0,1/2),

Im(s)| < CF~%(s)(1 — F(s))™®, s € RL. (24.8)

Remark 24.3.3 The statements of Theorem 24.3.1 remain valid if the pro-
cesses O, &, and 7, are constructed by means of the continuous polygonal
interpolation.
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PROOF OF THEOREM 24.3.1. Due to Cramer-Wold device, it is sufficient to
prove this theorem only for d = 1.
Next we need two lemmas.

Lemma 24.3.1 If (24.6) holds, then

(a) Vrm(-)Un(-) = m(-)V ().
(b) For any random sequence Yn such that v, | O in probability

P
SUP€[0,yn]U[l—ym,1] VRIMU(E)Un(t)| = 0.
(c) The statements (a) and (b) are still valid with Uy, replaced by V.

PROOF OF LEMMA 24.3.1. First note that the Holder condition for V(t) is
fulfilled a.s. for any A, 0 < A < 1/2. Then, the random process m(t)V (¢) is a.s.
continuous for ¢ € [0, 1].

The statement a) and the corresponding part of the statement c) follow from
O’Reilly (1974) [see also Shorack and Wellner (1986, p. 462)], if we take in their
result g(t) = t?(1 — t)? for some 3 € (a,1/2) and notice that my(t) = m(t)q(t)
is continuous for ¢ € [0, 1].

The statement b) is a simple consequence of a). |

Lemma 24.3.2 Let 3, be a sequence of random processes such that B, = (3,
where B is a continuous random process. If the processes {n(t), t € [0,1]} are

such that Ta(t) € [0,1] for any t € [0,1] and |70 — I||§ £ 0 where It)=t, te
[0,1], then
dn = 1Ba(ra()) = Ba()lI6 = 0.

1. Now consider the processes 7,, which are (generalized) empirical pro-
cesses. Therefore, we can apply the general result of Ossiander (1987) for
processes of this type to obtain the weak convergence.

Let HB(u, S, p) denotes the metric entropy with bracketing and S, p, for the
processes 7, are defined as follows:

S = {ht(xay)’ S [Oa 1]:2/ € Rl : ht(iL’,y) = yl[O,t)(x)}’
plhe,hs) = (E(h(X,Y) = ho(X,Y))D)2.

According to this work, we must prove the inequality

1
/ (log HB (u, 8, p))}?du < oo; (24.9)
0
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for more details, see Ossiander (1986). It is not difficult to show that
HB(u,8,p) < Clog %
Hence, by Ossiander’s theorem,
Tin = 7,

where 7] is the Gaussian process, Efj(t) = 0, E(7j(t),7(r)) = Ki(t,7), and
K, (t,7) is the covariance function of every summand in the sum

mnn(t) = 3 Yl (Xa). (24.10)
1

Elementary calculations show that

Ki(t,7) = /otAT o2(s)ds + (/OMT m?(s)ds — /Otm(s)ds /OT m(s)ds)

and that K (t, ) is the covariance function of the random process 7 defined in
(24.5).

2. The second step is to consider the processes £,. Note that
1 n
n(t) = ~ Y Yl x, ) (Xi) = (X, [nt))-
=1

Hence, due to Lemma 24.3.2,

”ﬁn(Xn,[nt]) - ﬁn(t)”(lJ 2) 0

Wt =me) /txn,[nt] m(s)ds + o (%) (24.11)

uniformly for ¢ € [0,1] in probability.
Using Lemma 24.5.4 , Lemma 24.5.5 and Part (c) of Lemma 24.3.1, we get

\/ﬁnftxn’[m] (m(s) — m(t))ds”(l) £0, n— . (24.12)

Due to (24.11) and (24.12),
En(t) = Tin(t) + VEm(t)Vu(t) + o(1). (24.13)

We have proved already that the summands in (24.13) converge, hence they
are tight. Then, &, is tight too. Thus, to prove the weak convergence &, to &
it is sufficient to show the convergence of their finite-dimensional distributions.
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Moreover, since &(t) Zo= £(0) = £(1) for t = 0 and ¢ = 1, we can consider
only ¢ € (0,1). Then by virtue of the Kiefer-Bahadur theorem [see Shorack and
Wellner (1986, p. 586)], we can replace in (24.13) V,, by —U,. Hence,

€n(t) =1 (t) — vVAm()Un(t) + o(1). (24.14)

We can also represent &, in the form
- 1 X
&n(t) = NG > (U X3, Ys) — E(U(E; X4, ¥3))) + o(1), (24.15)
i=1

where
Ut X,Y) = (Y —m(t)) 1 (X).

Now consider the k-dimensional distribution of §~n for0<t; <--- <t <1
The multivariate central limit theorem for i.i.d. random variables gives the
asymptotic normality with zero mean. The limiting covariance matrix is equal
to the covariance matrix of the random vector {U(tj; X,Y),j = 1,2,...,k},
that is, it is equal to the matrix {cov(U(t;; X,Y),U(t;; X,Y))}¥ ;.

Hence, the covariance function of £ is equal to

Ky(t,7) = Ki(t,7)— (m(t) +m(r)) /OtAT m(s)ds
+tm(t) /0 " m(s)ds + Tm(r) /0 *m(s)ds + mEm(r)(EA T — tr).

It is easy to show that Ka(t,7) is the covariance function of the process &
defined by (24.7).

_ 3. Consider the random processes an. They are the same as the processes
&n provided Y, are replaced by Y, =Y, — m(Xn), n=1,2,.... Since m(s) =
E(Yn|Xn = s) =0, the weak convergence for &, follows from one for &,. [ ]

24.4 Strassen Balls

In Section 24.5, we shall derive a Strassen-type functiona