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Preface 

Sri Gopal Mohanty has made pioneering contributions to lattice path counting 
and its applications to probability and statistics. This is clearly evident from 
his lifetime publications list and the numerous citations his publications have 
received over the past three decades. 

My association with him began in 1982 when I came to McMaster Univer
sity. Since then, I have been associated with him on many different issues at 
professional as well as cultural levels; I have benefited greatly from him on both 
these grounds. I have enjoyed very much being his colleague in the statistics 
group here at McMaster University and also as his friend. While I admire him 
for his honesty, sincerity and dedication, I appreciate very much his kindness, 
modesty and broad-mindedness. 

Aside from our common interest in mathematics and statistics, we both 
have great love for Indian classical music and dance. We have spent numerous 
hours discussing many different subjects associated with the Indian music and 
dance. I still remember fondly the long drive (to Amherst, Massachusetts) I 
had a few years ago with him and his wife, Shantimayee, and all the hearty 
discussions we had during that journey. 

Combinatorics and applications of combinatorial methods in probability and 
statistics has become a very active and fertile area of research in the recent past. 
This volume has been put together in order to (i) review some of the recent 
developments in this area, (ii) highlight some of the new noteworthy results and 
illustrate their applications, and (iii) point out possible new directions in this 
fruitful area of research. 

With these goals in mind, a number of authors actively involved in theory 
and/or applications of combinatorial methods were invited to write an article 
for this volume. The articles so collected have been carefully organized into 
this volume in the form of 32 chapters. For the convenience of the readers, the 
volume has been divided into following seven parts: 
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• LATTICE PATHS AND COMBINATORIAL METHODS 

• ApPLICATIONS TO PROBABILITY PROBLEMS 

• ApPLICATIONS TO URN MODELS 

• ApPLICATIONS TO QUEUEING THEORY 

• ApPLICATIONS TO WAITING TIME PROBLEMS 

• ApPLICATIONS TO DISTRIBUTION THEORY 

• ApPLICATIONS TO NONPARAMETRIC STATISTICS 

From the above list, it should be clear to the readers that advances in both 
theory and applications of combinatorial methods have received due attention 
in this volume. Furthermore, it should also be stressed here that this volume is 
not a proceedings, but rather a volume comprised of carefully collected articles 
with specific editorial goals (mentioned earlier) in mind. 

It has been a very pleasant experience corresponding with all the authors 
involved, and it is with great pleasure that I dedicate this volume to Sri Gopal 
Mohanty. I sincerely hope that this work will be of interest to mathemati
cians, theoretical and applied statisticians, and graduate students working on 
combinatorial methods and their applications to probability and statistics. 

Acknowledgments: My sincere thanks go to all the authors who have con
tributed to this volume, and provided great support and encouragement through
out the course of this project. Special thanks go to Mrs. Debbie Iscoe for the 
excellent typesetting of the entire volume. Thanks are also due to Shanti
mayee, Pritidhara, Niharika and Suvankar Mohanty and Dr. Ihor Chorneyko 
for providing help whenever needed. My final thanks go to Mr. Wayne Yuhasz 
(Editor, Birkhauser) for the invitation to undertake this project, and to Ms. 
Lauren Lavery for her assistance in the production of the volume. 

N. BALAKRISHNAN 
Hamilton, Ontario, Canada 

December 1996 



Sri GopaJ Mohanty-Life and Works 

Sri Gopal Mohanty was born on February 11, 1933 in the village of SOl'O in 
Orissa, an eastern state of India on the Bay of Bengal. Orissa is also known as 
the "land of temples." Sri Gopal is the eldest of four children. His father was 
a school teacher. His mother was his loving and stern teacher of family and 
community values. He lived in a large household with his immediate family, two 
paternal uncles, aunts, and cousins. The village life left an indelible impression 
on Sri Gopal. Many experiences there would later have bearing: growing up 
in a joint family, observations of the family's involvement in village drama, his 
artistic endeavors, and writing a published novel in his native tongue, Oriya. 

Sri Gopal attended Satyananda High school in Soro. He earned his BA from 
Fakhir Mohan College in a town nearby. While in New Delhi from 1951 to 1959, 
Sri Gopal was working at the Ministry of Food and Agriculture, Directorate of 
Economics and Statistics and received a diploma from the Indian Council of 
Agricultural Research in 1957. He continued to work at the Ministry of Food 
and Agriculture when he pursued and obtained his MA in Mathematics from 
Punjab University in 1959. Subsequently, he went abroad and was conferred 
with a PhD in Statistics (based on the Thesis entitled On some properties 
of compositions of an integer and their application to probability theory and 
statistics, written under the supervision of the late Prof. T. V. Narayana) by the 
University of Alberta, Edmonton, Canada. He became an associate professor in 
the University of Buffalo, USA in 1962. In 1963, he returned to Orissa to marry 
Shantimayee Das. Shantimayee had been a lecturer in Botany after having 
obtained her MSc. After the birth of their first child in 1964, they moved across 
the border to Hamilton, Canada where Sri Gopaljoined McMaster University 
as an associate professor in Statistics. During the years 1966 to 1968, he took 
a leave of absence and travelled to India with his small family to work at the 
Indian Institute of Technology, Delhi. He resumed his position at McMaster 
University in 1968 to become a full professor in the early 70's. Until this day, 
he still holds the position of professor in Statistics at McMaster. 

Forging a path in a new country that had adapted multiculturalism as a 
framework, Sri Gopal brought forth his talents and community values. Fostering 
the Indian community in Hamilton was one of his passions. He led a local Indian 
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community organization. He was also involved in numerous stage productions 
for the Indian community and multi-ethnic events; he wore many hats for these 
cultural productions: conceptualizer, director, and stage manager. 

Drama ran in the blood after all. Sri Gopal's eldest uncle, the patriarch 
of his childhood home, was the village sponsor of local dramatic productions. 
Sri Gopal's cousin went on to become a movie and TV director in India. Sri 
Gopal, himself, wrote, adapted, directed, and produced plays about the Indian 
immigrant experience, women's oppression, and Indian village life conflict. 

Sri Gopal has spent considerable time in promoting his own culture and 
heritage in North America: staging productions involving local community tal
ents, encouraging and inspiring artists, creating awareness of Indian culture in 
his community and the community at large. These efforts have also won him 
recognition amongst the people of his state, Orissa, who are in North America: 
he was awarded the Kalashree A ward in 1995 by the Orissa Society of Amer
icas. In 1996, he also won the Community Award of Excellence given by the 
Hamilton Mayor's Committee Against Racism and Discrimination. 

Involvement in the local community at large was important too. He partici
pated as an executive member in the Home and School Association, a Canadian 
network of parents-teacher organization that advised and assisted schools. Con
cerned about the age segregation observed in Canada, he encouraged a local 
school to organize student visits to a nearby home for the elderly people. Sri 
Gopal also arranged for cultural performances by children from the Canadian 
Indian community at the elderly home. 

Sri Gopal has an avid interest in travel and learning about all international 
matters. He always encouraged his children to learn about the different peoples 
and places of the world. 

Sri Gopal and Shantimayee Mohanty have three children: Pritidhara, Ni
harika, and Suvankar. Their eldest daughter, Pritidhara, currently works for 
the US Environmental Protection Agency, in Washington, DC; Niharika is an 
Odissi (style of Indian classical dance of Orissa) dancer completing her MA in 
Dance at York University in Toronto; Suvankar is an undergraduate student in 
Criminology at Carleton University in Ottawa. 
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Lattice Paths and Faber Polynomials 

Ira M. Gessel and Sangwook Ree 

Brandeis University, Waltham, MA 
Su Won University, Kyung-Ki-Do, Korea 

Abstract: The r-th Faber polynomial of the Laurent series f(t) = t + fo + 
hit + hlt2 + '" is the unique polynomial Fr(u) of degree r in u such that 
Fr(f) = tr + negative powers of t. We apply Faber polynomials, which were 
originally used to study univalent functions, to lattice path enumeration. 

Keywords and phrases: Lattice path enumeration, ballot problem, Faber 
polynomials 

1.1 Introduction 

The classical ballot problem [see, for example, Mohanty (1979)] asks for the 
number B(m, n) of paths from (1,0) to (m, n) (where m > n), with unit steps 
up and to the right, that never touch the line x = y. The number B(m, n) can 
easily be computed by the recurrence 

B(m,n) = B(m -l,n) + B(m,n -1) for m > n ~ 0, (m,n) # (1,0), 

with the initial condition B(I, 0) = 1 and the boundary conditions B(m, -1) = 
o and B(m, m) = 0 for all m ~ O. Displaying these values on the corresponding 
lattice points, we have the following array, showing B(m, n) for m ~ n ~ 0: 

5 0 
4 o 14 
3 0 5 14 
2 0 2 5 9 
1 0 1 2 3 4 
0 0 1 1 1 1 1 

nlm 0 1 2 3 4 5 
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Let us now extend the values of B(m, n) to the region in which n > m ~ 0 
so that the same recurrence is satisfied; this can be done in only one way, since 
we may write the recurrence as B(m - 1, n) = B(m, n) - B(m, n - 1). We 
obtain the following array: 

-1 -4 -9 -14 -14 0 
-1 -3 -5 -5 0 14 
-1 -2 -2 0 5 14 
-1 -1 0 2 5 9 
-1 0 1 2 3 4 

0 1 1 1 1 1 

We observe that the recurrence B(m, n) - B(m-1, n) -B(m, n-1) = 0 is now 
satisfied for all m, n ~ 0 except (m, n) = (1,0) and (m, n) = (0,1), as long as 
we take B(m, n) to be 0 for m < 0 or n < O. In terms of generating functions, 
the recurrence and initial conditions are equivalent to the formula 

which gives 

00 

(l-x-y) L B(m,n)xmyn=x_y, 
m"n=O 

00 x-y L B(m, n)xmyn = -'-~ 
1-x-y m,n=O 

(1.1) 

Following MacMahon, we may call (1.1) a "redundant generating function," 
since it contains some terms which are not part of the solution of the original 
problem. 

From (1.1) we may derive the well-known formula for the ballot numbers, 

B(m, n) = (m + n - 1) _ (m + n - 1) = m. - n (m + n). (1.2) 
m-1 m m+n m 

There is a gap in our derivation of (1.1). It is clear that the numbers B(m, n) 
defined by (1.1) do indeed have the property that for m > n ~ 0, 

( ) ( ) ( ) { I if (m, n) = (1,0) 
B m, n - B m - 1, n - B m, n - 1 = 0 th . 

o erWlse. 

However, we have not yet proved that the boundary condition B(m, m) = 0 
is satisfied. This follows easily from the explicit formula (1.2), or from the 
fact that the generating function (1.1) is anti-symmetric. The proof that the 
coefficients of (1.1) are indeed the solution to our problem is now complete. 

By exactly the same reasoning, we find that for any positive integer rand 
any nonnegative integers m > n ~ 0, the number of paths from (r,O) to (m, n) 
that never touch the line :r; = y is the coefficient of ,T,myn in (xT - yT) / (1 - x - y). 



Lattice Paths and Faber Polynomials 5 

We can try a similar approach to paths that begin at (1,0) and stay below 
the line x = 2y. Here the recurrence is again C(m, n) = C(m-1, n) +C(m, n-
1), but the boundary condition is C(2n, n) = O. Extending the recurrence to 
the region m < 2n, we obtain the following array: 

-2 -5 -8 -10 -10 -7 0 
-2 -3 -3 -2 0 3 7 
-2 -1 o 1 2 3 4 

0 1 1 1 1 1 1 

As before, we find that the extended function C(m, n), with C(m, n) = 0 for 
m < 0 or n < 0, satisfies the recurrence C(m, n) = C(m - 1, n) + C(m, n -
1) everywhere except when (m, n) is (1,0) or (0,1), and thus the generating 
function for the extended function is apparently 

x - 2y 
1-x-y' 

from which we may derive the formula 

C(m,n) = (m+n-1) _2(m+n-1) = m-2n(m+n). 
m-1 m m+n n 

(1.3) 

To complete the proof, we must show that the coefficient of x2nyn in (1.3) is 
indeed zero. Although this may be seen from the explicit formula for the coef
ficients, we use a different method that we will need later on. Let us substitute 
xt for x and y/t2 for y in (1.3). Then it suffices to show that the constant term 
in t in 

xt - 2y/t2 

1 - xt - y/t2 ' 

when expanded as a power series in x and y, is zero. But 

xt-2y/t2 _ d {II} 
-:-----'--;-;::'2 - t - og 2 ' 
1 - xt - y/t dt 1 - .Tt - y/t 

and since the coefficient of l/t in the derivative with respect to t of a Laurent 
series in t is 0, the desired conclusion follows. 

Note that this approach cannot easily be applied to paths that are required 
to stay below the line y = 2x: here we would require the boundary conditions 
C(m,2m) = 0 and C(m, 2m + 1) = 0, and this is not so easily achieved. 
However, there is no problem with paths starting at (1,0) that stay below 
the line x = py, where p is a positive integer, and we find in this case the 
generating function (x - py)/(l - x - y). 

We now consider one final example before embarking on the general case. 
Suppose we want to count paths from (3,0) to (m, n) that stay below the line 
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x = 2y, where m > 271,. The same recurrence is satisfied, and as before, we 
may extend its solution into the region where m < 271" obtaining the following 
array: 

-2 -7 -15 -25 -35 -42 -42 
-2 -5 -8 -10 -10 -7 0 

0 -3 -3 -2 0 3 7 
0 0 0 1 2 3 4 
0 0 0 1 1 1 1 

The recurrence is satisfied except at the points (3,0), (1,2), and (0,3), so the 
generating function is apparently 

x3 - 3xy2 - 2y3 

1-x-y 
(1.4) 

To prove this we must show that the coefficient of x2nyn in (1.4) is zero, which 
we can do just as in the previous example: we replace x with xt and y with 
Ylt2. Then we have 

x3t3 - 3xy2/t3 - ;y31t6 = t ~ {log 1 _ P(t) _ P(t)2/2} , (1.5) 
1-xt-ylt dt 1-P(t) 

where P(t) = xt + Ylt2, so the constant term in t in (1.5) is zero. 
In the remainder of this paper, we shall develop the general theory of which 

(1.5) is a special case. It will turn out that the numerator in (1.5) and its gen
eralizations are closely related to certain polynomials called Faber polynomials 
which have been studied in connection with univalent functions [see Schiffer 
(1948); and also Brini (1984), Jabotinsky (1953) and Schur (1945)]. Faber 
polynomials were first applied to lattice path enumeration, in the special case 
we consider in Section 1.5, by Ree (1994). 

1.2 Faber Polynomials 

Let 
( h 12 f t) = t + fo + - + 2" + .... 

t t 
In the original applications of Faber polynomials, the fi are complex numbers, 
and the series converges in some neighborhood of infinity. However, for our 
applications we take t and the fi to be indeterminates; i.e., we work in the ring 
of formal Laurent series C[[t, fo, hit, 12/t2, .. . ]]. 

Let F(u) be a polynomial in u of degree r such that 

F(f) = tT + negative powers of t. 
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We say that F(u) is a Faber polynomial of f. It is easy to prove by induction 
that there is exactly one Faber polynomial Fr (u) of degree r, which we call 
the rth Faber polynomial of f. For example, we have F1(U) = u - fo and 
F2(f) = u 2 - 2fou + (f6 - 2!I). 

Schiffer (1948) gave the generating function 

1 f ( v) - u _ ~ F ( ) v-r 
og - - L r u-. 

V r=l r 
(1.6) 

If we set f(v) = vh(1/v), so that h(w) = 1 + L:~o /i wi+1 is a power series in 
w, then (1.6) may be rewritten in terms of formal power series as 

00 r 

log{h(w) - uw} = - L Fr(u)~ . 
r=l r 

(1. 7) 

Expanding (1.6) or (1.7) gives the explicit formula 

Fr(u) = ~ui " (-1)jo+h+·· r (i -1 +]0 + 11 + ... )! ;jOfj1 
L L ., . , . I... JO 1 .... 
i=O i+jO+2jl +3h+ .. =r 1,. Jo· J1· 

1.3 Counting Paths 

Let r be a positive integer and let k and n be nonnegative integers. Let S be a 
subset of the set {l,0,-1,-2,···}. We call the elements of S steps. We want 
to count sequences (Sl, S2, ... , sn) of elements of S such that every partial sum 
r + Sl + 82 + ... + 8i is positive and r + 81 + 82 + ... + 8 n = k. We call such 
a sequence of steps a good path of length n from r to k. The ballot problem is 
equivalent to the case S = {1, -1}, with r = 1, and the other problems discussed 
in Section 1.1 are all equivalent to specializations of the case S = {1, -p} for 
various values of p, r, and k. 

It is convenient to consider a somewhat more general problem: We take as 
our set of steps the entire set {1, 0, -1, -2,· .. }, but we assign to each path 
(81,82, ... ,8n ) the weight f-8 1 f- 82··· f-8 n , where fo, !I, 12, ... are indetermi
nates and f -1 = 1. The condition that f -1 = 1 simplifies all our formulas, but 
does not lose any information. 

Lemma 1.3.1 A path from r to k with weight f6° fi1 ... has k - r +]1 + 212 + ... 
steps equal to 1, and length k - r + ]0 + 2]1 + .... 

PROOF. Let ]-1 be the number of steps equal to 1. Since the path is from r to 
k, we have r + ]-1 - 0]0 - 1]1 - 212 - ... = k, and the first assertion follows. 
Then the length of the path is ]-1 + 11 + 12 + ... = k - r +]0 + 2]1 + . . .. • 
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We now fix r throughout the rest of this section. Let G(n, k) be the sum of 
the weights of all good paths of length n from r to k. Thus, the coefficient of 
f6° fll ... in G(n, k) is the number of good paths of length n from r to k with 
jo steps equal to 0, jl steps equal to -1, and so on. 

The following is clear. 

Lemma 1.3.2 

(i) G(n,O) = 0 for all n; 

(ii) G(O, r) = 1 and G(O, k) = 0 for k =1= r; 

(iii) For n > 0, G(n, k) = 2:~-1 fiG(n - 1, k + i). 

Moreover, G(n, k) is uniquely determined by conditions (i)-(iii). 

Now, let us define 
00 

Gk = L G(n, k). 
n=O 

By Lemma 1.3.1, we can recover G(n, k) from Gk as the sum of all terms in Gk 
involving f6° fll ... , where k - r + jo + 2JI + ... = n. 

Now let f(t), as in Section 1.2, be the formal Laurent series 

II h f (t) = t + fo + - + 2" + .... 
t t 

We use the notation [tilA(t) to denote the coefficient of ti in A(t). 

Lemma 1.3.3 Let N(t) be a Laurent series in t such that 

(a) N(t) = tT + negative powers oft 

(b) [tOlN(t)/{l - f(t)} = O. 

Then for k > 0, Gk = [tklN(t)/{l - f(t)}. 

PROOF. Suppose that the hypotheses of the lemma are satisfied. For k 2:: 0, 
let 

k N(t) 
gk = [t II _ f(t) 

and for each integer n, let g(n, k) be the sum of all terms in gk involving 
f6° fll ... , where 

k - r + jo + 2jl + ... = n. (1.8) 

By Lemma 1.3.2, it suffices to show 

(i) g(n,O) = 0 for all n; 
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(ii) g(O, r) = 1 and g(O, k) = 0 for k =1= r; 

(iii) For n > 0, g(n, k) = L~-llig(n -1, k + i). 

First note that (i) follows immediately from (b). By the definition of gk, we 
have 

N(t) ~ k -1 
_ f( ) = L...J gkt + t R(t), 

1 t k=1 

where R(t) is a power series in rl. Multiplying both sides by 1 - f(t), we get 

00 

N(t) = {I - f(t)} L 9ktk + S(t), 
k=1 

where S(t) = {I - f(t)}rl R(t) is a power series in rl. Equating coefficients 
of tk for k > 0 on both sides and using (a), we obtain 

~ {I ifk=r 
gk - i~1 figk+i = 0 if k =1= r. (1.9) 

Extracting the terms in f6° fi! .. " where k - r + jo + 2jl + ... = n, we obtain 

( ) ~ ( .) {I if k = rand n = 0 
9 n, k - L...J fig n - 1, k + '/, = 0 th . 

i=-1 0 erWlse, 
(1.10) 

since the nonzero case of (1.9) contributes to (1.10) only when k = rand 
jo = jl = ... = O. This proves (iii). Finally, (ii) will follow from the n = 0 
case of (1.10) once we show that g( -1, k) = 0 for all k. We show in fact that 
g(n, k) = 0 for all n < 0: It is clear from (1.8) that g(n, k) = 0 for n < -r. It 
then follows from (1.10) by induction on n that g(n, k) = 0 for all negative n. 
Thus, (ii) holds. • 

Theorem 1.3.1 Gk is the coefficient oftk in 

t d 
;: dt Fr (f)/(1 - /), 

where Fr(u) is the r-th Faber polynom.ial of f. 

PROOF. It follows from the definition of Faber polynomials that 

t d () r . - -d Fr f = t + negatIve powers of t. 
r t 

In view of Lemma 1.3.3, it is sufficient to show that 

~t Fr(f)/(1 - f) 
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is the derivative of some Laurent series in t, since this will imply that it has no 
term in C 1. 

Let Fr(u) = 2::i=oCiUi . Then 

But fi+j-l f' = ~ fi+j /(i + j), so 

~ Fr(f)/(l - f) = ~ t f . iCi . fi+j· 
dt dt '-1 '-0 1, + J 

1,- J-
• 

1.4 A Positivity Result 

Let N r = ~~t Fr(f) be the numerator in Theorem 1.3.1. We know that N r = 
tr - Mr, where Mr contains only negative powers of t. 

Theorem 1.4.1 The coefficients of Mr , as a power series in c 1, fo, iI, ... are 
nonnegative integers. 

PROOF. By setting u = f(t) in Schiffer's formula (1.6), and then differentiating 
with respect to t, we obtain 

tf'(t) ~ -r 

f(v) - f(t) = ~ Nrv . (1.11) 

Thus, 

~ [(~r -Nrv-r] 

t tf'(t) 
---
v-t f(v)-f(t) 

t v - t [f(V) - f(t) _ f'(t)] 
'f(v)-f(t) (v-t)2 v-t' 

(1.12) 

We shall show that the last two factors in (1.12) have positive coefficients 
when expanded as power series in v-I and C 1. First, we have 

f(v)-f(t) 00 (v-i_C i ) 00 (1 1 1) 
_ t = L Ii _ t = 1 - L fi fi + 2ti- 1 + ... + it . 

v, i=-1 v, i=1 v, v, V , 

Thus, (v - t)/{f(v) - f(t)} has nonnegative coefficients. 
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Next, we have 

f(v) - f(t) _ f'(t) _ 00 fi (V-i - C i + iCi - 1 ) 

(V-t)2 V-t-i~l (V-t)2 v-t' 
(1.13) 

The coefficient of fi in (1.13) is zero for i = -1 and i = O. It is easily verified 
(by multiplying both sides by (v - t)2, for example) that for i ~ 1, 

v-i _ Ci iCi - 1 i j 

(v - t)2 + v - t =]; vi- j+1tj+l' 

and thus it follows that the coefficients of (1.13) are nonnegative. • 

1.5 Examples 

Let us now return to the problem discussed in the first section: given positive 
integers rand p, count paths in the plane with steps (1,0) and (0,1), from (r,O) 
to (m, n), where m > pn, that never touch the line x = py. (Note that any 
starting point below the line x = py would give an equivalent problem.) We can 
convert this problem to an instance of the problem introduced in Section 1.3 by 
representing a horizontal step by a step equal to 1 and a vertical step by a step 
equal to -po The transformed path will then go from r to k, where k = m - pn. 
The solution to the transformed problem is then obtained by setting to zero 
all the Ii except fp in the general solution given in Theorem 1.3.1, where the 
weight of the transformed path is f;" Explicitly, the required number is the 
coefficient of tm-pn f; in 

! dd Fr(t + fp/tP)/(l - t - fp/tP), 
r t 

where the Faber polynomials Fr(-u,) are given from (1.7) by 

00 r 

L Fr(u)~ = -log(l + fpwP+1 -uw) 
r=l r 

00 

= L(uW - fpwP+1)j Ii 
j=l 

f t (_~)i (~) (fpwp+1)i(uw)j-i 
j=l i=O J '/, 

f t (_~)i (~)f;wpi+juj-i. 
j=l i=O J Z 

(1.14) 
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Setting j = r - pi and equating coefficients of wr , we obtain 

r 
L (_I)i. (r -. Pi)fiur-(P+l)i, 

r - p1, 1, p 
i::;r/(p+l) 

and thus the numerator in (1.14) is 

! F:(t + fp/tP)(1 - pfp/tp+1) 
r 

= (t - pfp/tP) L (_I)i r - (p +.I)i (r -. Pi) f~(t + fp/tpr-(p+l)i-l 
r -P't 1-i::;r/(p+1) 

= (t-pfp/tP) L (_I)i(r-~i-l)f~(t+fp/tpr-(p+l)i-l. (1.15) 

i<r/(p+l) 

To recover a generating function in x and y, as in Section 1.1, we substitute 
x for t and xPy for fp. Then, (1.14) and (1.15) give as the redundant generating 
function for our problem 

x-py L (_I)i(r-p.i-l)(XPy)i(x+yr-(p+l)i-l. 
1 - x - y i<r/(p+l) 1, 

(1.16) 

For example, if we take p = 2 and r = 3, (1.16) gives 

x - 2y ( )2 x 3 - 3xy2 - 2y3 
x+y = , 

l-x-y l-x-y 

as in (1.4). 
Now, let (1.16) equal Nr/(1 - x - y) and let Nr = xr - Mr. Then, Nr and 

Mr can be obtained from N r and Mr as defined in Section 1.4 by setting t = .1:, 
fp = xPy, and fi = 0 for i i- p. Since it is clear from (1.16) that Nr and Mr a,Ee 
homogeneous of degree r in x and y, they are determined by the sums Lr Nr 
and Lr Mr. The formulas in the proof of Theorem 1.4.1 give 

00 LNr = x-py 
r=l 1 - .1: - Y + xPy 

(1.17) 

and 

~ - p + (p - 1).1: + (p - 2)x2 + ... + xp- 1 
LMr=y . 
r=l 1 - y(1 + x + x 2 + ... + .1:p- 1) 

(1.18) 

For p = 1, (1.18) gives Mr = yr, so that Nr = .1:r _yr, as we observed in Section 
1.1. We can also obtain a simple explicit formula when p = 2. In this case, 
(1.18) gives 

fMr=y (2+x) = f xiyi+l [(~) + (i~l)l. 
r=l l-y(l+x) i,j=O J J 
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Extracting the terms that are homogeneous of degree r and simplifying, we 
obtain 

[r/2] 2 3' ( .) M _ '" r - ~ r - 1, i r-i 
r-~ .. . Ty , 

i=O r - 1, 1, 

The method we have described can be used for counting paths in the plane 
that stay below the line x = py, with arbitrary starting and ending points, and 
an arbitrary set of allowed steps subject only to the condition that every step 
(i,j) satisfies i - pj :S l. Another method, also using Laurent series, which is 
not subject to the restriction on steps, but does not allow an arbitrary starting 
point, is described in Gessel (1980). 
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Lattice Path Enumeration and U mbral Calculus 

Heinrich Niederhausen 

Florida Atlantic University, Boca Raton, FL 

Abstract: The Umbral Calculus is an excellent tool for solving systems of 
difference equations with given initial values. Many lattice path enumeration 
problems can be formulated as such systems. Examples are paths underneath a 
boundary of straight lines, path inside a diagonal band, weighted paths, paths 
with several step directions, and paths crossing some line a given number of 
times. 

Keywords and phrases: Umbral Calculus, lattice path enumeration, Kolmo
gorov-Smirnov tests 

2.1 Introduction 

Twenty years ago, when I saw the "Finite Operator Calculus" [Rota, Kahaner 
and Odlyzko (1973)] for the first time, I was captivated by its beauty and in
spired by all the roads it opened up for further exploration. Sheffer polynomials 
became the magic tools for my thesis work on Ballot problems and Kolmogorov
Smirnov distributions, and I started to work on some generalizations, like piece
wise polynomial Sheffer functions ("Sheffer splines") and multi-indexed Sheffer 
sequences. However, none of the generalizations I have studied were as satisfy
ing to me as the specializations that lead to real applications. There is of course 
a considerable amount of details necessary before we can actually calculate a 
significance level, say, when we start with the Umbral Calculus. 

All the results in this paper have been published earlier, except Theorem 
2.5.1 on geometric Sheffer sequences, and perhaps formula (2.8) on counting 
lattice path with weighted left turns staying above a parallel to the diagonal. 
However, this paper is not intended to be a survey on lattice path problems, 
but to show how the Umbral Calculus can serve as a tool in certain situations. 
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2.1.1 Notation 

A polynomial sequence {Pn} n>O is a sequence of polynomials such that deg Pn = 
n for all n = 0,1,.. .. -

p(x, t) = L Pn(x)tn 
n2:0 

is the generating function of this polynomial sequence. For convenience, we will 
henceforth assume that Pn == 0 for negative n. 

A delta operator B is a formal power series of order 1 in the derivative 
operator Dx , 

B(Dx) = Dx + b2D; + ... 

A Sheffer sequence {sn} (for B) is a polynomial sequence such that 

BSn = Sn-1 

for all n = 0,1, .... The basic sequence {bn } (for B) is the Sheffer sequence 
with initial values bn(O) = 80,n. Basic sequences and Sheffer sequences have 
generating functions of the form 

b(x, t) = ex(3(t) , s(x, t) = s(t)ex(3(t) 

where f3 is the compositional inverse of B, and s(t) = Ln2:0 sn(O)tn is a formal 
power series of order O. A straightforward consequence of those generating 
functions is the binomial theorem for Sheffer sequences, 

n 

sn(x + y) = L si(x)bn-i(y) (2.1) 
i=O 

2.2 Initial Value Problems 

In lattice path enumeration, we frequently have to solve the system of difference 
equations 

for all n = 0,1, ... , where B is a given difference operator and TO is a non-zero 
constant. This implies that {Tn} is a Sheffer sequence for B. Finding a solution 
to this system usually requires expanding Tn(X) in terms of the corresponding 
basic sequence {bn } such that certain initial values are met (which are set by 
path boundaries), 
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say, for n = 0,1, .... Such initial values uniquely determine {rn}. The binomial 
theorem for Sheffer sequences in (2.1) can be utilized for such an expansion if 
we know an initial value at the same input for all n, like rn{O) for example: 

n 

rn{x) = l: rj{O)bn_j{x). (2.2) 
i=O 

The same theorem can help us now to recursively determine rn{O) from the 
given initial values, because 

n 

Yn = rn{xn) = L rj{O)bn-j{xn). 
j=O 

In other words, we must solve the matrix equation Y = AR for R, where Y = 

{Yi)i=O ... n' R = {ri{O))i=O ... n' and A = (bi-j{Xi))i=O ... n,j=o ... i is lower-triangular. 
Cramer's rule will easily express rn{O) as a determinant (note that IAI = 1), if 
necessary. However, here we do not consider the well-known determinant as an 
explicit solution, because of its inherent recursive nature. To get rn{x) we need 
another triangular matrix, C = {bi-j{x))i=O ... n,j=O .. .i' and find 

(ri{x))i=O ... n = CR = CA-1y' 

We will see below that Umbral Calculus can find an explicit solution to the 
initial value problem if the inputs Xn are piecewise affine in n. The size of the 
initial values Yn is of minor importance; suppose we know a family of Sheffer 

sequences {t~)} n>O for B with initial values t~~){Xn+i) = 80,n for all i = 0,1, .... 

Then it is straightforward to verify that 
n 

rn{x) = l: Yit~~i{X) (2.3) 
i=O 

solves the original initial value problem. 
It can be helpful to have a mental image of the solutions. In the context of 

initial value problems, I visualize a Sheffer sequence as rows of values: 

* * * * Y4 = 5 * * * * S4(X) quartic 

* * * * * * Y3 = 3 * * S3(X) cubic 
Y2 = 3 * * * * * * * * S2(X) quadratic 

* * * * * * Yl = 2 * Sl(X) linear 
1 1 1 1 Yo = 1 1 1 1 1 so(x) constant 

tan 2 -2 -1 tan 4 tan 0 1 tan 3 tan 1 2 x 

Example: sn(tan n) = n + 1 

An important aspect of this example is that the recurrence need not take 
place in an integer-lattice. The difference operator and the derivative are both 
delta operators. In other words, we can simultaneously study lattice paths 
and empirical distribution functions as in the Kolmogorov two-sample and one
sample tests. 
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2.2.1 The role of eX 

The Finite Operator Calculus [Rota, Kahaner and Odlyzko (1973)] is based on 
the reference sequence {xn / n!} and its generating function ext. The special 
analytical properties of this generating function stand behind many interesting 
results in the Finite Operator Calculus. 

Suppose {bn } is the basic sequence for the delta operator B, with generating 
function 

L bn(x)tn = exf3(t). 
n2:0 

It is of great importance for our initial value problem that D tex{3(t) = x!3'(t)ex{3(t) , 
because this implies that 

(2.4) 

has the generating function !3'(t)ex {3(t) , and therefore must be a Sheffer polyno
mial. The linear combination 

x - an - C 
sn(x) := bn(x - c) - aPn-I(:r - c) = bn(x - c) 

x-c 

of Sheffer polynomials is again a Sheffer polynomial for the same operator, and 
solves the initial value 

BSn = Sn-I, and sn(an + c) = 80,n 

for all n = 0,1, ... , where a and c are given constants. This solution has already 
been given in Rota, Kahaner and Odlyzko (1973). In order to solve the problem 

BTn = Tn-I, and Tn(an + c) = Yn 

for all n = 0, 1, ... using the expansion (2.3), we must define t~)(x) := sn(x-ai) 
and get 

n n 
" " x-an-c Tn(X) = ~ YiSn-i(X - ai) = ~ Yi . bn-i(x - ai - c). (2.5) 
i=O i=O x - a~ - c 

2.2.2 Piecewise affine boundaries 

Suppose we want to solve the system with initial values first along the line 
Xn = an + c given by 

Yn = Tn(an + c) 

for all n = 0, ... ,L - 1, and thereafter on the line Xn = an + c given by 

Yn = Tn(an + c) 
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for all n = L, ... , where a,a,c,c and L are all given constants. By (2.5), the 
beginning of the sequence can be calculated along the second line as 

i (- ). -_. _ ~ a-a z+c-c _. ._ 
ri(az+c)=~Yj _. . _ bi_j(az-aJ+c-c) 

j=O az - aJ + C - C 

for all i = 0, ... ,L - 1, and applying (2.5) again gives for n ~ L the expansion 

L-l - - n --
~ x-an-c ~ x-an-c 

rn(x) = ~ ri(ai+c) _. _ bn-i(x-ai-c)+ ~ Yi _. _ bn_i(x-ai-c). 
i=O .T - az - c i=L .T - az - c 

(2.6) 
Substituting for r i (ai + c) from the beginning ofthe sequence into the first sum 
in (2.6) finishes the expansion, but makes it into a double sum. 

This procedure can be repeated for initial values on more affine pieces. 
Obviously, the multiplicity of the summation will grow with the number of 
pieces. In the example presented in Section 2.2, Dxsn(x) = Sn-l(X) and 
sn(tan(n)) = n + 1, and it suffices to use two pieces if we only want to find 
S4(X) = ;frx4 + .073765x3 + .78994x2 + 4. 2212x - 1. 1357: 

xn (tan 2 - tan 1) n + 2 tan 1 - tan 2 for n = 0, 1, 2 

Xn (tan 4 - tan 3) n + 4 tan 3 - 3 tan 4 for n ~ 3. 

2.2.3 Applications: Bounded paths 

Some of the best known applications occur in the enumeration of lattice paths, 
sequences of horizontal ---+ and vertical T steps starting at the origin. Let r n (m) 
be the number of paths that reach the point (m, n) under some kind of restric
tion following the recurrence 

rn(m) = rn(m - 1) + rn-l(m). 

The (generalized) ballot problem requires the paths to remain below some 
boundary line; this translates into initial conditions of the form rn( -1) = t50,n 
for all n = 0, ... , L - 1, and rn(an + c) = 0 for all n = L, .... 

* * * * * * * * 1JI 409 1034 r5(x) 

* * * * * [] 52 132 248 409 625 r4(x) 

* * 1JI 6 16 31 52 80 116 161 216 rL(.T) 
---+ ---+ ---+ ---+ ---+ ---+ 

[] 1 3 6 T 10 15 21 28 36 45 55 r2(x) 
---+ ---+ ---+ 

[] T 1 2 3 4 5 6 7 8 9 10 rl(x) 
1 T 1 1 1 1 1 1 1 1 1 1 ro(x) 

• 
-1 0 1 2 3 4 5 6 7 8 9 x 

Path boundary 3n - 8, with sample path 
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Such initial value problems must be solved for calculating the exact distribu
tion of the (one-sided) two-sample Kolmogorov-Smirnov test. The exact distri
bution of the one-sample Kolmogorov-Smirnov test derives from the Lebesque 
measure of certain empirical distribution functions instead of the counting mea
sure of lattice paths; the same techniques apply, however the derivative operator 
Dx takes the place of the backwards difference operator. Sheffer sequences are 
also employed for the exact distribution of some multivariate generalizations. 
The two-sided distribution of the two-sample test has a "closed form"; why 
that is not the case for the one-sample case is explained in Section 2.4.1. De
tails about these applications can be found in Niederhausen (1979). A general 
reference in this direction is Mohanty (1979); see also Mohanty (1968). 

2.3 Systems of Operator Equations 

In the last section, we discussed the rather simple system Brn = rn-l, for n = 

0, 1, ... with relatively general initial conditions. In this section we concentrate 
on finding basic solutions bn, where bn(O) = 80 ,11" of more complicated systems 
of the form 

Qbn = Rbn- l + Sbn- c (2.7) 

for all n = 0,1, ... , where c is a positive integer, Rand S are translation 
invariant invertible operators (i.e., power series of order 0 in Dx ), and Q is a 
delta operator. An example for R could be Rbn(x) = L:i=l Pibn(X - rd for some 
given constants PI, ... , Pk and rl, ... , rk. By a solution of (2.7), we mean an 
expansion of bn (x) in terms of the basic sequence {qn} of Q. 

Suppose the unknown solution {bn } is the basic sequence for some delta 
operator B. If we can construct a solution under this hypothesis, then the 
assumption will be justified. Because Band Q are both delta operators, there 
exists a translation invariant and invertible operator T such that B = TQ [see 
Corollary 4 of Rota, Kahaner and Odlyzko (1973)]. Any such T which solves 
the equation 

also solves the equation 

which is equivalent to the system (2.7) (any two translation invariant operators 
commute). Equivalently, 1- RT = (RT)CR-cSQc-1 and (RT)-C - (RT)I-c = 

R-c SQc-l. Lagrange inversion then gives 

T-n = L (n - k(c -1)) n Rn-kcBkQk(c-l) 
k?:.O k n-(c-1)k 
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and the Transfer Formula [Section 4 of Rota, Kahaner and Odlyzko (1973)] 
gives 

( ) -n -1 () ~ (n-k(C-1))Rn-kc k ( ) bn x = xT x qn X = ~ k B qn-k(c-1) x 
k~O 

[we need to use that {n~lqn+1(X)} is a Sheffer sequence; see (2.4)]. It is now 

easy to verify that this basic sequence really solves (2.7). 

2.3.1 Applications: Lattice paths with several step directions 

Counting (weighted) lattice paths with several step directions leads to recur
rence relations of the form 

r 8 

dn(x) = dn(x - 1) + L Pibn-1(X - ri) + L O'ibn-c(X - 8i) 
i=l i=l 

if the step vectors are (1,0), (rl, 1), ... ,(rr, 1), (81, c), . .. , (88 , c). In this case, 
Q = V', the backwards difference operator. More details about the simple case 
r = 1 = 8 are given in Niederhausen (1979). An application to a gamblers ruin 
problem and expected game duration can be found in Niederhausen (1986). 

2.4 Symmetric Sheffer Sequences 

In Section 2.2.3, we mentioned the general ballot problem as an application 
of formula (2.6). In the classical ballot problem, the paths stay below the 
diagonal, or some line parallel to the diagonal. The initial values are, therefore, 
r n ( -1) = 0 for all n = 1, ... , L - 1, and r n (n - L) = 0 for all n 2: L. 

* * * 0 28 90 207 r5 (m) 
* * 0 9 28 62 117 r4(m) 
* 0 3 9 19 34 55 r d m) 

--+ --+ --+ 

o 
o 
1 

-1 

1 3 6 i 10 15 21 r2(m) 
--+ --+ --+ 

i 1 
i 1 
o 

2 
1 
1 

3 
1 
2 

4 5 6 r1(m) 
1 1 1 ro(m) 
3 4 5 m 

The ballot problem (L = 3), with sample path 

However, the solution to this initial value problem is much simpler than the 
sum in formula (2.6) indicates. It is given by 
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This well-known solution is easily identified as a difference of two Sheffer poly
nomials for the backwards difference operator \7, and it is obviously zero at 
m = -1 for all n = 1, ... , L - 1. However, for n :2 L the initial values are 
attained because of a very special property: 

r n (n _ L) = (n + n - L) _ (n + : - L) = (n + n - L) _ (n + n - L) . 
n n L n n 

In other words, for nonnegative integers nand m, we can interchange the degree 
n with the argument m in the polynomial sn(m) := (n~m), and get again a poly
nomial sm(n) = (m~n) = sn(m). We call such a Sheffer sequence symmetric
obviously, all symmetric Sheffer sequences can be used to construct the very 
simple solution sn(m) - sn-L(L + m) to the above boundary problem. But 
are there any other symmetric Sheffer sequences besides C!X)? Niederhausen 
(1996) has shown that, except for a scaling factor, there is only one parameter 
that describes the whole class of symmetric Sheffer sequences. 

Theorem 2.4.1 All symmetric Sheffer sequences are of the form 

{as~)(x)} ,where a is a nonzero scaling factor, and 
n2:0 

(f-t # 0). The corresponding delta operator 0(1L) has the expansion 

in terms of the forward difference operator ~. 

2.4.1 Applications: Weighted left turns 

If f-t = 1, we obtain s~1)(x) = (n!x) and 0(1) = \7, the backwards difference 

operator. In general, s~) (m) equals the weighted sum of lattice paths from (0,0) 

to (m, n), where every left turn --+ b gets the weight f-t. Because of symmetry, 
the classical ballot problem has a simple solution for this kind of weighted paths: 

which is the weighted sum of lattice paths from (0,0) to (m, n) that stay below 
the line m = n - L. Switching to paths above the line m = n + K is no longer 
an equivalent problem (except if we also switch from weighted left turns to 
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weighted right turns.) 

1 1 + 3Jl 1 + 5Jl + 3Jl2 1 + 611, + 6Jl2 + Jt3 1 + 6Jl + 6Jl2 + Jl3 0 ... w3(m) 
1 1 + 2Jl 1 + 3Jl + Jl2 1 + 3Jl + Jl2 0 w2(m) 
1 l+Jl l+Jl 0 wl(m) 
1 1 0 wo(m) 
0 1 K 3 4 5 ... m, 

Counts of paths with weighted left turns above m = n + 2 

However, it is easy to veri(y that the Sheffer polynomial 

( ) ._ (JL)( ) _ '" i (m -K + 2) (n + K - 2) Wn m .- sn m ~JL. . 
i~l '/, + 1 1, - 1 

(2.8) 

solves the problem for m = 0, ... , n+K -1, because it satisfies the necessary and 
sufficient condition wn(n+K -1) = wn(n+K -2). Note that wn(n+K) of: O. 

More details and further references are present in Niederhausen (1996) and 
Sulanke (1993). Related topics are correlated random walks, and nonintersect
ing pairs of weighted lattice paths. The q-binomial coefficients are obviously 
also symmetric. How to use transforms of operators [Freeman (1985)J to count 
lattice paths with q-weighted left turns is explained in Niederhausen (1994). 

2.4.2 Paths inside a band 

The exact distribution of the two-sided two-sample Kolmogorov-Smirnov test 
requires counting the number of lattice paths inside a band parallel to the 
diagonal. This number can be described by piecewise polynomial functions. 
The initial conditions are tn( -1) = 0 for n = 0, ... , L -1, tn(n - L) = 0 for all 
n 2: L, and tn(n + K) = 0 for all n. 

* * * 0 21 55 89 t5(m) 

* * 0 8 21 i 34 34 t4(m) 

* 0 3 8 13 
-> 

i 13 0 tL(m) 

0 1 3 5 i 5 0 t2(m) 
-> -> -> 

0 i 1 2 2 0 tl(m) 
1 i 1 1 0 to(m) 

-1 0 1 K 3 4 5 ... m 

Paths inside a band (L = 3, K = 2), with sample path 

Symmetry of the polynomials s~~) (x) = (n~x) is the reason why a (relatively 
simple) expansion of this function exists (in our view). We want to recall 
this expansion, because it is so often omitted in the literature. We saw that 

rn(m) = s~l)(m) - s~~2L(m + L) is the number of lattice paths below the line 



24 Heinrich Niederhausen 

m = n - L, and reaching (m, n); a ballot number. A sum gives the number of 
such paths that also stay above m = n + K : 

tn(m) = 2)rn-i(K+L)(m + i(K + L)) - rm-i(K+L)-K(n + i(K + L) + K)) 
i~O 

It is amazing that tn(m) satisfies the recurrence, and both types of boundary 
values. The telescopic nature of this sum becomes essential if we verify the 
condition tn(n - L) = 0 for n 2: L. For K = L, the formula was derived by 
Koroljuk (1955). See Fray and Roselle (1971) for another proof of the general 
case. 

In the two-sided one-sample case, the distribution must be expanded in 
terms of xn In!. Because of its lack of symmetry, no closed form is known. 

2.5 Geometric Sheffer Sequences 

A Sheffer sequence {sn} n>O is geometric if So == 1 and if there exists a pair of 
constants a and a such that 

Sn(an) = aSn-1(an) 

for all n = 1, 2, .... 

5 15 35 2 x 35 126 S4(X) 
4 10 2 x 10 35 56 S3(X) 
3 2 x 3 10 15 21 S2(X) 

2 x 1 3 4 5 6 Sl (x) 
1 1 1 1 1 so(x) 
1 2 3 4 5 .x 

Example for a geometric Sheffer sequence (a = 1, a = 2) 

There exists a geometric Sheffer sequence for any delta operator Band 
for any pair a, a (with a =1= 0) , because this initial value problem always has a 
solution; it can be recursively calculated from the expansion (2.5). The following 
theorem explains why they are called "geometric". 

Theorem 2.5.1 The Sheffer sequence {sn}n>O with generating function 

Ln>o sn(x)tn = s(t)ex{3(t) is geometric iff an is the coefficient of t n in the 

exp~nsion of the formal power series Ln~O sn(an)tne-n{3(t). 

PROOF. E-a = e-aDx denotes the translation operator by -a, 

E-ap(x) = p(x - a) 
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for any polynomial p(x). {sn(an + x)}n>O is a Sheffer sequence for the delta 
operator BE-a. Denote the compositional inverse of B(t)e-at by o:(t). {sn} is 
geometric iff 

1 + L aSn_l(an)tn = 1 + to, L sn(an + a)tn 
n~l n~O 

1 + to, (L sn(an)tn) eaa:(t). 

n~O 

Solving for L:n~o sn( an)tn gives L:n~o sn( an)tn = 1/ (1 - ateaa:(t)). Substitute 

B(t)e-at for t in order to get 

'" ( _at)n 1 ~ sn(an) B(t)e = _ ~ B( ) 
n~O 1 a t 

(2.9) 

Finally, substituting f3(t) for t yields 

(2.10) 

• 
The above identities are special cases of Lagrange inversion [see P6lya and 

Szego (1972)]. We check some examples: 

1. {xn In!} is a geometric Sheffer sequence for Dx with a = a, and f3(t) = 

t = B(t). Both identities give L:n>o(nte-t)n = 1/(I-t) [P6lya and Szego 
(1972), Part III, Problem 214]. -

2. C~x) is a geometric Sheffer sequence for \7 = 1 - E-l with a + 1 = 
a, and f3(t) = -In(l - t). Identity (2.10): L:n~o c',~~n)tn(l - t)an = 
1/ (1 - (a + l)t) [P6lya and Szego (1972), Part III, special case of Problem 
216]. 

3. {X~?:l (n~x) } is a geometric Sheffer sequence for \7 with 0,= 1. Identity 

(2.9): L:n~o an~l (n~an)(e-at - e-(a+1)t)n = et [P6lya and Szego (1972), 
Part III, Problem 211]. 

2.5.1 Applications: Crossings 

Denote by D(n, m; l) the number of (restricted) lattice paths from (0,0) to 
(m,n) with steps ---+ and i that go through at least 1 of some given nodes in the 
plane. It is usually not difficult to calculate D( 71" m; l) recursively. Closed form 
expressions are known if the nodes lie on a line, (71" an + c) for 71, > ii, where 
a, c and ii are given constants. Additional restrictions may be imposed on the 
path; for example, the path may be required 
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• to cross through the node coming from below, 

- and leave in a vertical step, 

• to stay above a line (or some line segments), 

• to walk in a higher dimensional lattice. 

The surprisingly "simple" closed forms for D(n, m; l) occur when D(n, m; 0) 
can be expressed by a geometric Sheffer polynomial Sn ( m). Only in this case 
we get for paths terminating on a node the recurrence relation 

n-l 

D(n, an + c; l) L (D(ai + c, i; l - 1) - D(ai + c, i; l)) sn-i(a(n - i)) 
i=iHI-l 

aD(n - 1, an + c; l - 1) 

which is essential for further simplifications in calculating D(n, m; l), m ~ 
an + c. In statistical inference, tests based on the number of crossings are called 
Takacs tests [Takacs (1971b)]. The above method applies to the one-sample 
Takacs distribution [Takacs (1971a)] as well (empirical distribution functions 
instead of lattice paths), because {xn / n!} is geometric too. More details are 
given in Mohanty (1967, 1968, 1979) and Niederhausen (1982). 

References 

1. Fray, R. D. and Roselle, D. P. (1971). Weighted lattice paths, Pacific 
Journal of Mathematics, 37, 85-96. 

2. Freeman, J. M. (1985). Transforms of operators on K[x][[t]], Congressus 
Numerantium, 48, 115-132. 

3. Koroljuk, V. S. (1955). On the discrepancy of empiric distributions for 
the case of two independent samples, Izv. Akad. Nauk SSSR Ser. Mat., 
19, 81-96 [IMS f3 AMS Selected Translations in Mathematical Statistics 
and Probability, 4 (1963), 105-122]. 

4. Mohanty, S. G. (1966). On a generalized two-coin tossing problem, Biome
trische Zeitschrijt, 8, 266-272. 

5. Mohanty, S. G. (1967). Restricted compositions, Fibonacci Quarterly, 5, 
223-234. 

6. Mohanty, S. G. (1968). On some generalization of a restricted random 
walk, Studia Scientiarum Mathematicarum Hungarica, 3, 225-241. 



Lattice Path Enumeration and Umbral Calculus 27 

7. Mohanty, S. G. (1979). Lattice Path Counting and Applications, New 
York: Academic Press. 

8. Niederhausen, H. (1979). Lattice paths with three step directions, Con
gressus Numerantium, 14, 753-774. 

9. Niederhausen, H. (1981). Sheffer polynomials for computing exact Kolmo
gorov-Smirnov and Renyi type distributions, Annals of Statistics, 9, 923-
944. 

10. Niederhausen, H. (1982). How many paths cross at least 1 given lattice 
points? Congressus Numerantium, 36, 161-173. 

11. Niederhausen, H. (1986). The enumeration ofrestricted random walks by 
Sheffer polynomials with applications to statistics, Journal of Statistical 
Planning and Inference, 14, 95-114. 

12. Niederhausen, H. (1992). Fast Lagrange inversion, with an application to 
factorial numbers, Discrete Mathematics, 104, 99-110. 

13. Niederhausen, H. (1994). Counting intersecting weighted pairs of lattice 
paths using transforms of operators, Congressus Numerantium, 102, 161-
173. 

14. Niederhausen, H. (1996). Symmetric Sheffer sequences and their applica
tions to lattice path counting, Journal of Statistical Planning and Infer
ence, 54, 87-100. 

15. P6lya, G. and Szego, G. (1972). Problems and Theorems in Analysis-I, 
New York: Springer-Verlag. 

16. Rota, G.-C., Kahaner, D. and Odlyzko, A. (1973). On the foundations of 
combinatorial theory, VIII. Finite operator calculus, Journal Mathemati
cal Analysis and Applications, 42, 684-760. 

17. Sulanke, R. A. (1993). Refinements of the Narayana numbers, Bulletin of 
the ICA, 7,60-66. 

18. Takacs, L. (1971a). On the comparison of a theoretical and an empirical 
distribution function, Journal of Applied Probability, 8, 321-330. 

19. Takacs, L. (1971b). On the comparison of two empirical distribution 
functions, Annals of Mathematical Statistics, 42, 1157-1166. 



3 

The Enumeration of Lattice Paths With Respect 
to Their Number of Turns 

c. Krattenthaler 

Institut fur Mathematik der Universitiit Wien, Vienna, Austria 

Abstract: We survey old and new results on the enumeration of lattice paths 
in the plane with a given number of turns, including the recent developments on 
the enumeration of nonintersecting lattice paths with a given number of turns. 
Motivations to consider such enumeration problems come from various fields, 
e.g. probability, statistics, combinatorics, and commutative algebra. We show 
that the appropriate tool for treating turn enumeration of lattice paths is the 
encoding of lattice paths in terms of two-rowed arrays. 

Keywords and phrases: Turns, lattice paths, nonintersecting lattice paths, 
coin tossing, run statistics, non-crossing two-rowed arrays, determinantal rings, 
pfaffian rings, Hilbert series, tableaux, plane partitions 

3.1 Introduction 

In this article we consider lattice paths in the plane consisting of unit horizontal 
and vertical steps in the positive direction. We will be concerned with enumer
ating such lattice paths which have a given number of turns. By a turn, we 
mean a vertex of a path where the direction of the path changes. For example, 
the turns of the path Po in Figure 3.1 are (1,1), (2,1), (2,3), (5,3), (5,4), and 
(6,4). Distinguishing between the two possible types of turns, we call a vertex 
of a path a North-East turn (NE-turn, for short) if it is the end point of a 
vertical step and at the same time the starting point of a horizontal step, and 
we call a vertex of a path an East-North turn (EN-turn, for short) if it is a 
point in a path P which is the end point of a horizontal step and at the same 
time the starting point of a vertical step. The NE-turns of the path in Figure 
3.1 are (1,1), (2,3), and (5,4), and the EN-turns of the path in Figure 3.1 are 
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(2,1), (5,3), and (6,4). 

• • • • • • • 
• • • • • 
• • • • • 
• • • • • 

PI 
• • 
• • • • • • 

• • • • • 

Figure 3.1 

There are various motivations to be interested in the turn enumeration of lat
tice paths. We describe three such motivations, from probability, statistics, and 
commutative algebra, respectively, in more detail, in Section 3.3. The examples 
from probability and statistics (correlated random walk, run and Kolmogorov
Smirnov statistics) in Section 3.3 lead to the enumeration of paths, with given 
starting and end points, with a given number of turns, which are bounded by 
lines. This is classical today. The example from commutative algebra (Hilbert 
series of determinantal and pfaffian rings) however leads to the enumeration 
of families of non intersecting lattice paths, with given starting and end points, 
with a given number of turns, and subject to certain restrictions. Interest in this 
subject arose only recently, mainly due to the path-breaking work of Abhyankar 
(1987, 1988). A number of remarkable formulas were discovered to solve most 
of these problems. But there are still some important open questions. 

The problem of turn enumeration of lattice paths was attacked in many 
different ways. However, there is a uniform approach which is able to handle 
all these problems, which is by encoding paths in terms of two-rowed arrays. 
Actually, this is the way in which Narayana (1959, 1979, Section 11.2), who 
probably was the first to count paths with respect to their turns, used to see 
turn enumeration problems. However, he did not use the combinatorics of two
rowed arrays. His proofs are manipulatory and usually work by induction. The 
purpose of this survey article is to show that two-rowed arrays allow to handle 
turn enumeration in a purely combinatorial way. The combinatorics of two
rowed arrays is able to explain all the existing formulas in a conceptual way. 
What is very appealing is that all the standard techniques from ordinary path 
counting, such as reflection principle, iterated reflection principle, interchanging 
procedure for nonintersecting lattice paths, have their analogues in the "world 
of two-rowed arrays." 

Another purpose of this survey is to show the wide diversity of connections 
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and applications in other fields like combinatorics, representation theory, and 
q-series. Moreover, it is not unreasonable to expect that the recent subject of 
tum enumeration of nonintersecting lattice paths will also have its applications 
in probability, statistics, or physics. Evidence for this feeling comes from the 
fact that tum enumeration of (single) lattice paths is of importance in these 
fields, and (plain) enumeration of nonintersecting lattice paths is too [see, for 
example, Essam and Guttmann (1995), Fisher (1984), Karlin (1988) and Karlin 
and McGregor (1959a,b)J. 

This exposition brings together ideas from several papers of this author and 
Mohanty [see, for example, Krattenthaler (1989, 1993, 1995a, 1995b, 1996a) 
and Krattenthaler and Mohanty (1993)J . The proof of Theorem 3.4.2 is new. 

The paper is organized in the following way. In the next section, we in
troduce some basic notations which we use throughout the paper. Section 3.3 
contains the announced motivating examples. In Section 3.4, we address the 
tum enumeration of (single) lattice paths. The results of Section 3.4 are then 
applied in Section 3.5 to solve some of the problems in the mentioned examples. 
Finally, Section 3.6 is devoted to tum enumeration of nonintersecting lattice 
paths. The results of this section answer most of the problems of the third 
example in Section 3.3. Open problems are listed at the end of Section 3.6. 

3.2 Notation 

Given two lattice points A and E, we denote the set of all lattice paths from A 
to E by L(A --+ E). If P is a path from A to E, we will symbolize this sometimes 
by P : A --+ E. If R is some property of paths, we use the "probability-like" 
notation L(A --+ E I R) for the set of all paths from A to E satisfying property 
R. 

3.3 Motivating Examples 

Example 3.3.1 A TWO COIN TOSSING GAME; CORRELATED RANDOM WALK. 

Mohanty (1966) considered the following game. Take two coins 1 and 2 with 
probabilities PI and P2 of obtaining heads, respectively. The rules for the game 
are: 

1. start with coin i, i = 1,2; 

2. if the last trial was a tail, then make the next trial with coin 1, otherwise 
with coin 2; 
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3. stop making further trials when for the first time the total number of 
heads exceeds f-t times the total number of tails by exactly a, with a fixed 
a> O. 

The question is: Provided the game was started by tossing coin i, i = 1 or 2, 
what is the distribution of the duration of the game? 

This game has also an equivalent formulation in terms of a "correlated" 
random walk; see, for example, Mohanty (1979, Section 5.2). In sampling plan 
terminology [DeGroot (1959)], these games describe sequential sampling plans 
for binomial populations with y = f-tx + a as the boundary line. 

It is an easy observation that any game can be represented in terms of a 
lattice path, by starting in (0,0) and proceeding by a horizontal step if tail 
(T) was tossed and by a vertical step if head (H) was tossed. Thus, the game 
THHHTHTHHHH (which is a game for f-t = 2 and a = 2) would be repre
sented by the lattice path P2 in Figure 3.2. The condition (3) is reflected by the 
fact that any such lattice path, except for the final vertical step, stays below 
the line y = f-tx + a - 1 (being allowed to touch it). 

• y = f-tX + a - 1 

• 
• 
• 
• 
• 
• 
• 
• 

Figure 3.2 

The probability of a game of length (f-t + 1)11, + a (11, tails and f-tn + a heads) 
is given as follows. If the first toss was with coin 1, then the probability of a 
game, corresponding to a path P as described above, is 

NE(P)+1(l )n-NE(P) J-Ln+a-NE(P)-I(l )NE(P) 
PI - PI P2 - P2 , (3.1) 

where NE(P) denotes the number of NE-turns of P. On the other hand, if the 
first toss was with coin 2, then the probability of a game, corresponding to path 
P, is 

NE(P)+1(l )n-NE(P)-I J-Ln+a-NE(P)-I(l )NE(P)+1 
PI - PI P2 - P2 , (3.2) 
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if the first toss resulted in tail, and 

NE{P) (1 )n-NE{P) J.tn+a-NE{P) (1 )NE{P) 
PI - PI P2 - P2 , (3.3) 

if the first toss resulted in head, respectively. 
Therefore, to determine the probability of games of length (/-L + 1)n + a, we 

need to enumerate lattice paths from (0,0) to (n, /-Ln + a - 1) staying below the 
line Y = /-LX + a - 1, being allowed to touch it, which have a given number of 
NE-turns. 

Example 3.3.2 RUNs AND KOLMOGOROV-SMIRNOV STATISTICS. Two com
mon rank order statistics for non parametric testing problems in the two-sample 
case are the run statistics and the (one- and two-sided) Kolmogorov-Smirnov 
statistics. We consider just the case of equal sample size. Recall [see, for 
example, Mohanty (1979, Section 4.3)] that there are two sets of indepen
dent and identically distributed random variables X = {Xl, X2, ... , Xn} and 
y = {YI, Y2,"" Yn} of size n. These are then put together and ordered into 
Z = (Zl' Z2,' .. ,Z2n) according to size. The run statistics counts the number of 
maximal consecutive subsequences in Z the members of which belong to just one 
of the sets X or y. Thus, if n = 5, and if Z = (XI, YI, Y2, Y3 , X2, X 3 , Y4 , X 4 , X5, 
Y5), then the number of runs in Z is 6. The one-sided Kolmogorov-Smirnov 
statistic D;tn is defined by 

where ai is the number of occurrences of X/s in the initial segment ZI, Z2,' .. ,Zi 
of Z, while bi is the number of occurrences of Yj's in this initial segment. The 
two-sided Kolmogorov-Smirnov statistic Dn,n is defined by 

Thus, we have for our combined sample Z that Dt,5 = 1/5 and D5,5 = 2/5. 
Each such sequence Z can be represented by a lattice path in the obvious 

way. Namely, start at (0,0), then read through the sequence from left to right 
and proceed by a vertical step if some Xj is encountered and by a horizontal 
step if some Yj is encountered. Thus, the above set Z corresponds to the lattice 
path P3 in Figure 3.3. The run statistics obviously translates into the number 
of maximal horizontal and vertical pieces in the corresponding path. The one
sided Kolmogorov-Smirnov statistic is basically the maximal deviation from the 
main diagonal in direction (1, -1). The two-sided Kolmogorov-Smirnov statistic 
is basically the maximal deviation from the main diagonal, in either direction. 
So in Figure 3.4, paths which stay in the region between the indicated lines 
y = X + 2 and y = x - 2 correspond to sequences Z with two-sided Kolmogorov
Smirnov statistic Dn,n :S 2/5. 
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y=x+2 
• • • • • • • 
• • • • • 
• • • 

y=x-2 
• • • • 
• • • 
• • • • 

• • • • • 

Figure 3.3 

Since the number of runs of a lattice path equals 1 plus the number of 
turns of the path, we see that to determine the distribution of the run statistics 
we need to count lattice paths from (0,0) to (71,,71,) with a given number of 
turns (both, NE- and EN-turns). If, in addition, we want to know the joint 
distribution of runs and the Kolmogorov-Smirnov statistic, then we have to 
count paths from (0,0) to (71,,71,) with a given number of turns which in addition 
stay below a line y = x + t for the one-sided Kolmogorov-Smirnov statistic and 
between lines y = x + t and y = x - t for the two-sided Kolmogorov-Smirnov 
statistic. 

Example 3.3.3 DETERMINANTAL RINGS. Determinantal rings are frequently 
studied objects in commutative algebra and algebraic geometry. We start with 
the classical case. Let X = (Xi,j)O~i9, O~j~a be a (b + 1) x (a + 1) matrix 
of indeterminates. Let K[X] denote the ring of all polynomials over some 
field K in the Xi/S, 0 ::; i ::; b, 0 ::; j ::; a, and let In+! (X) be the ideal 
in K[X] that is generated by all (71, + 1) x (71, + 1) minors of X. The ideal 
In+! (X) is called a determinantal ideal. The associated determinantal ring 
is Rn+! (X) := K[X]/ In+l (X). This is a graded ring. The obvious question 
to ask is what the dimensions of the homogeneous components Rn+l (X)I! of 
dimension f, f = 0,1, ... , of Rn+!(X) are. This information is recorded in 
terms of the Hilbert series of Rn+ I (X), which is simply the generating function 
L:~o dimK (Rn+l(X)I!) zl!. It was shown in several ways [Abhyankar (1988), 
Abhyankar and Kulkarni (1989), Conca and Herzog (1994), Kulkarni (1996), 
Modak (1992) and also Ghorpade (1996)] that this problem relates to count
ing lattice paths with respect to turns, more precisely, to counting families of 
nonintersecting lattice paths with respect to turns. A family (PI, P2, . .. ,Pn ) of 
paths Pi, i = 1,2, ... ,71" is called nonintersecting if no two paths in the family 
have a point in common, otherwise it is called intersecting. 
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Theorem 3.3.1 Let A = (O,n - i) and Ei = (a - n + i,b), i = 1,2, ... ,no 
Then, the Hilbert series of the deterrninantal ring Rn+l (X) = K[X]/ 1n+l (X) 
equals 

(Xl L zNE(P) L dim (Rn (X)) z{ - _--=P'--_----;-::-:-
{=o K +1 { - (1 _ z)(a+b+l)n-2(~) , 

(3.4) 

where the sum on the right-hand side is over all families P = (PI, P2, ... ,Pn ) 
of nonintersecting lattice paths, with Pi running from Ai to E i , i = 1,2, ... ,n. 
Here, the number NE(P) is defined to be the total number Lr~l NE(Pi ) of NE
turns of the family P. 

Figure 3.4 contains an example of such a family of nonintersecting lattice 
paths for a = 13, b = 15, and n = 4. The NE-turns are marked by bold dots. 

• • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • 
• • • • 

• 

• • 

Figure 3.4 

Several generalizations of this concept have also been considered. These 
pose even more difficult turn enumeration problems. We describe just one 
such generalization in detail. Let a = (aI, a2, ... , an) and b = (bl , b2, ... ,b2) 
be two vectors of nonnegative integers which are in strictly increasing order. 
Let 1!+hl (X) denote the ideal in K[X] that is generated by all txt minors 
of the restriction of X to rows 0,1, ... , at - 1 and columns 0,1, ... , bt - 1, 
t = 1,2, ... , n, and by all (n + 1) x (n + 1) minors of X. What we considered 
before is the special case a = (0,1, ... , n - 1) and b = (0,1, ... , n - 1). Again, 

the associated deterrninantal ring is R~~l (X) := K[X]j 1!:1 (X). For more 
information on these rings, see Herzog and Trung (1992) and the references 
therein. In the papers by Abhyankar (1988), Abhyankar and Kulkarni (1989), 
Conca and Herzog (1994), and Kulkarni (1996), it is shown that this relates 
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to counting lattice paths with respect to turns in much the same way. The 
difference is that the starting and end points of the lattice paths now depend 
on the vectors a and h, respectively. 

Theorem 3.3.2 Let A = (0, an-i+l) and Ei = (a - bn-i+t, b), i = 1,2, ... , n. 

Then, the Hilbert series of the determinantal ring R~~l (X) = K[X]/ I!ft (X) 
equals 

where the sum on the right-hand side is over all families P = (PI, P2, ... ,Pn) 
of nonintersecting lattice paths, with Pi running from Ai to Ei , i = 1,2, ... ,n. 

Finally, we remark that similar constructions are studied with minors of 
"ladder-shaped" matrices, of symmetric matrices, and with minors of pfaffians. 
It was shown by Abhyankar (1988) and Abhyankar and Kulkarni (1989) for the 
ladder case, by Conca (1994) for minors of a symmetric matrix, and by Ghor
pade and Krattenthaler (1996) for minors of pfaffians, that the computation 
of Hilbert series for the resulting rings again requires enumeration of families 
of nonintersecting lattice paths, restricted to certain regions, with respect to 
their number of turns. In particular, the pfaffian case leads to the enumeration 
of families of nonintersecting lattice paths with given starting and end points 
which stay below a diagonal line. 

3.4 Turn Enumeration of (Single) Lattice Paths 

Examples 3.3.1 and 3.3.2 of the previous section, and the n = 1 case of Example 
3.3.3, lead to the problem of turn enumeration of lattice paths, in some way, as 
explained above. In the next section, we show that if one knows the answer for 
the enumeration of lattice paths with a given number of NE-turns, then this 
implies solutions for all the aforementioned enumeration problems. Therefore, 
it is sufficient to concentrate on the enumeration of lattice paths with given 
starting and end points, satisfying certain restrictions, and with a given number 
of NE-turns. This is exactly what we do in this section. 

The first question, namely 'what is the number of paths from A = (at, a2) 
to E = (el' e2) with exactly.e NE-turns', is immediately answered by 

(3.6) 

This comes from the observation that any path from (aI, a2) to (el' e2) is 
uniquely determined by its NE-turns. There are el - al integers from which 
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we can choose the x-coordinates of the NE-turns, and there are e2 - a2 integers 
from which we can choose the y-coordinates. And, we have to choose £ for each 
of those. Thus (3.6) is explained. 

The fact that paths with given starting and end points are uniquely deter
mined by their NE-turns suggests that we should actually encode paths by their 
NE-turns themselves, more precisely, by the coordinates of their NE-turns. Let 
(PI, ql), (p2, q2), ... , (P.e, qe) be the NE-turns of a path P. Then the NE-turn 
representation of P is defined by the two-rowed array 

(3.7) 

which consists of two strictly increasing sequences. Sometimes, we will also 
use a one-line notation, (PI,··· ,P.e I ql,···, q.e), or even shorter (p I q) where 
p = (PI, ... ,P.e) and q = (ql,'''' q.e). 

Clearly, if P runs from (aI, a2) to (el' e2), then al ~ PI < P2 < ... < P.e ~ 
el - 1 and a2 + 1 ~ ql < q2 < ... < q.e ~ e2· If we wish to make this fact 
transparent, we write 

(3.8) 

For a given starting point and a given end point, by definition the empty array 
is the representation for the only path that has no NE-turn. For example, the 
two-rowed array representation of the path in Figure 3.1 would be 

1 2 5 
1 3 4, 

or with bounds included, 

1~ 1 2 5 ~5 

O~ 1 3 4 ~ 6. 

Apparently, in order to find the distribution for the game of Example 
3.3.1 with fL = 1, and to find the joint distribution for runs and one-sided 
Kolmogorov-Smirnov statistic, we need to count lattice paths, with given start
ing and end point, and with a given number of NE-turns, which stay below a 
given diagonal line. This is addressed in the following theorem. 

Theorem 3.4.1 Let al :2 a2 and el :2 e2. The number of all lattice paths from 
(a I, a2) to (el' e2) staying below the diagonal line x = y (being allowed to touch 
it) with exactly £ NE-turns is given by 

IL((al,a2) -+ (el,e2) 1·1::2 y, NE(.) = £)1 

( el - al ) (e2 - a2) _ (el - a2 - 1) (e2 - al + 1) . 
£ £ p - 1 £ + 1 (3.9) 
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Remark 3.4.1 Before we sketch a proof of this theorem, a remark is in order. 
Recall that plain enumeration of lattice paths from (aI, a2) to (el, e2) staying 
below x = y (without fixing the number of NE-turns) is usually done by means 
of the reflection principle [see, for example, Comtet (1974, p. 22)]. We promised 
to treat all the turn enumeration problems by using two-rowed arrays. In fact, 
the proof below can be considered as the reflection principle for two-rowed 
arrays. 

PROOF. The paths from (aI, a2) to (el' e2) staying below x = y with exactly E 
NE-turns by the NE-turn representation can be represented by 

(3.10) 

where 

i = 1,2, ... ,E. (3.11) 

The number of these two-rowed arrays is the number of all two-rowed arrays of 
the type (3.10) minus those two-rowed arrays of the type (3.10) which violate 
(3.11), i.e. where Pi < qi for some i between 1 and E. We know the first number 
from (3.6). 

Concerning the second number, we claim that two-rowed arrays of the type 
(3.10) which violate (3.11) are in one-to-one correspondence with two-rowed 
arrays of the type 

(3.12) 

The number of all these two-rowed arrays is (elL~i-l)(e2l~i+1), as desired. So 
it only remains to construct the one-to-one correspondence. 

Take a two-rowed array (p I q) of the type (3.10) such that Pi < qi for some 
i. Let I be the largest integer such that PI < qI. Then map (p I q) to 

PI P2 
qI-I PHI 

PI qI qHI 
(3.13) 

Observe that both rows are strictly increasing because of qI-I < qI < qHI ::; 

PHI (since I is largest with PI < qI) and PI < qI. By a case by case analysis, 
it can be seen that (3.13) is of type (3.12). 

The inverse of this map is defined in the same way. Let (r Is) be a two
rowed array of the type (3.12). Let J be the largest integer such that r J < SJ. 

If there is no such J, take J = 1. Then map (r Is) to 

So SJ-I 

r2 ... r J SJ 

rJ+I ... 
(3.14) 
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It is not difficult to check that the mappings (3.13) and (3.14) are inverses of 
each other. This completes the proof of (3.9). • 

In order to solve the generalized problem in Example 3.3.1 (where the game 
is stopped when the number of heads exceeds J.t times the total number of 
tails by exactly a), we need to count lattice paths, with given starting and end 
points, and with a given number ofNE-turns, which stay below a line of the form 
y = J.tx. As in the situation encountered for plain counting (i.e., disregarding 
the number of turns), there is no nice formula for arbitrary starting and end 
points. But, there is if the end point lies on the boundary line. Luckily, this is 
exactly our situation in Example 3.3.1. 

We formulate the result in an equivalent form. Namely, we consider paths 
bounded by a line of the form x = J.ty (instead of y = J.tx) where the starting 
point lies on the boundary. That this is indeed equivalent is obvious from 
reversal of paths. Of course, we use two-rowed arrays in the proof. In contrast 
to the proof of Theorem 3.4.1, this proof is not purely bijective, as is pointed 
out in more detail after the proof. However, from the proof it can be seen very 
clearly where the limitations are, and in particular, why it does not generalize 
to an arbitrary location of the starting point. 

Theorem 3.4.2 Let J.t be a positive integer and let el 2: J.te2. The number of all 
lattice paths from (0,0) to (el, e2) staying below the line x = J.ty (being allowed 
to touch it) with exactly t NE-turns is given by 

(3.15) 

PROOF. Again we represent our paths from (0,0) to (el, e2) staying below 
x = J.ty with exactly f NE-turns, by their NE-turn representation. It is 

where 

PI P2 
ql q2 

pp. 
qp. 

i=1,2, ... ,f. 

(3.16) 

(3.17) 

Once again, the number of these two-rowed arrays is the number of all two
rowed arrays of the type (3.16) minus those two-rowed arrays of the type (3.16) 
which violate (3.17), i.e. where Pi < J.tqi for some i between 1 and t. We know 
the first number from (3.6). 

This time, we claim that there are as many two-rowed arrays of the type 
(3.16) which violate (3.17) as J.t times the number of two-rowed arrays of the 
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type 

rp 
sp 

C. Krattenthaler 

(3.18) 

The number of all these two-rowed arrays is (er~} )(ei:/) , as desired. What 
remains to be done is to find a (p : 1) correspondence between the two-rowed 
arrays of type (3.16), violating (3.17), and those of type (3.18). 

Take a two-rowed array (p I q) of the type (3.16) such that Pi < pqi for 
some i. Let I be the largest integer such that PI < pqI. The two-rowed array 
(p I q) then looks like 

......... 1£.J .. . 
... qI-I IQl .. . (3.19) 

Now we fix the right portion, i.e., the entries PHI, ... ,PP and qI,"" qp. With 
this fixed right portion, there are 

(3.20) 

possible left portions. 
On the other hand, let (r I s) be a two-rowed array of the type (3.18). Let 

J be maximal with r J < PSJ (if there is no such J, take J = 1), so that (r I s) 
looks like 

......... ~ .. . 
... SJ-1 rs:J .. . 

rf 

Sp 
(3.21) 

Again, fix the right portion, i.e., the entries r J+1, ... , rp and SJ, ... , Sp. Fur
thermore, assume that the right portion in (3.21) is equal to the right portion in 
(3.19), i.e., assume that J = I, ri = Pi, i = 1+1, ... ,e, and Si = qi, i = I, ... ,e. 
With this fixed right portion in (3.21) there are 

( pqI - 1) (qI) = ~ (pqI) (qI - 1) 
I-I I p I I-I 

(3.22) 

possible left portions. By comparing with (3.20), we see that, for a fixed right 
portion, there are p times as many two-rowed arrays of the type (3.19), with 
PI < pqI, as there are two-rowed arrays of the type (3.21), with rI < PSI = pqI. 
This proves our claim and hence completes the proof of the theorem. • 

Remark 3.4.2 The above proof could be made purely bijective if one could 
find a bijection for the binomial identity (3.22), i.e., for 

(3.23) 
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I have not been able to find any. 
On the other hand, it is exactly identity (3.23) which constitutes the limi

tations towards a formula for an arbitrary starting point. One may check that 
there is no such binomial identity in this latter situation. The appearance of a 
factor J.L on the left-hand side of (3.23) is rather special. 

There is a companion of Theorem 3.4.2 for the enumeration with respect to 
EN-turns. By a rotation by 1800 , it can easily be transformed into a result for 
counting paths which stay above the line x = I-ty with respect to NE-turns. We 
state the result without proof. It can be established in much the same way as 
Theorem 3.4.2. 

Theorem 3.4.3 Let I-t be a positive integer and let el ~ l-te2. The number of all 
lattice paths from (0,0) to (eI, e2) staying below the line x = I-ty (being allowed 
to touch it) with exactly £ EN-turns is given by 

IL((O, O) -t (eI, e2) I x ~ I-ty, EN(.) = £)1 

= (e l ; 1) (e; ~ 11) _ I-t (£ ~ 1) (e£2) . (3.24) 

Now, in order to find the joint distribution of two-sided Kolmogorov-Smirnov 
and run statistics, we need to count lattice paths, with given starting and end 
points, and with a given number of NE-turns, which stay between two given 
diagonal lines. The result which solves this problem is as follows. 

Theorem 3.4.4 Let al + t ~ a2 ~ al + sand el + t ~ e2 ~ el + s. The number 
of all paths from (aI, a2) to (el' e2) staying below the line y = x + t and above 
the line y = x+s (being allowed to touch them) with exactly £ NE-turns is given 
by 

IL((aI, a2) -t (el' e2) I x + t ~ Y ~ x + s, NE(.) = £)1 

= f= {(el -al -k(t-S))(e2 -a2 +k(t-S)) 
k=-oo £ + k f - k 

_ (e l - a2 - k( t - s) + s - 1) (e2 - al + k( t - s) - s + 1) } . 
£+k £-k 

(3.25) 

Remark 3.4.3 Again, a remark is in order before we begin the proof. Recall 
that plain enumeration of lattice paths from (aI, a2) to (eI, e2) staying between 
two diagonal lines is usually done by means of iterated reflection principle [see, 
for example, Mohanty (1979, proof of Theorem 2 on p. 6)]. The proof below 
can be considered as the analogue of iterated reflection principle for two-rowed 
arrays. 
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PROOF. By the NE-turn representation, the paths under consideration are in 
one-to-one correspondence with two-rowed arrays of the type 

(3.26) 

where 

Pi + t ~ qi ~ PH 1 + s. (3.27) 

The proof of this theorem is by a "cancelling" bijection on certain two-rowed 
arrays, which we introduce now. In fact, there are two types of arrays. Let us 
call two-rowed arrays of the type 

al+k(t-s):::; Pl-k ... P1+k Pi :::; el-1 
for k ~ 0 

a2+ 1 - k (t-s):::; q1+k qi :::; e2 

and 

al+k(t-s):::; Pl-k Pi :::; el-1 
for k < 0 

a2 + 1 - k(t - s) :::; q1+k ., . ql-k qi :::; e2 

type I arrays. Similarly, we call two-rowed arrays of the type 

a2+ 1 - s + k (t-s):::; Pl-k ... P1+k Pi :::; el -1 
for k ~ 0 

al+s-k(t-s):::; ql+k qi :::; e2 

and 

a2 + 1 - s + k(t - s) :::; Pl-k Pi :::; el-1 
fork<O 

al+s-k(t-s):::; q1+k ... ql-k qi :::; e2 

type II arrays. We shall set up a bijection between type I arrays not being of 
the type (3.26) - (3.27) [which means that (3.27) must be violated if both rows 
have equal length] and type II arrays. Given such a bijection, we could deduce 

J{type I arrays}J-J{type II arrays}J = J{arrays of type (3.26) - (3.27)}J. 

(3.28) 

The arrays of type (3.26) - (3.27) exactly correspond to the paths we are intend
ing to enumerate. By definition of type I and type II arrays, the left-hand side 
in (3.28) equals the right-hand side in (3.25). Thus (3.25) would be established. 

The definition of the bijection and its inverse can be given in a unified form. 
Let (p J q) be a type I array not of the type (3.26) - (3.27) or a type II array, 

Pl-k Pi 
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(This representation has to be understood symbolically. k could be also neg
ative, whence the upper row would be shorter.) Let I be the largest integer, 
1 ~ I ~ f, such that either 

qI > PI + t or 1= -k, 

or 

qI < PHI + s or I = k. 

If (3.29) is satisfied, then map (p I q) to 

(q1+k - t) 
(PI-k + t) 

(3.29) 

(3.30) 

PHI 

Note that both rows are strictly increasing because of qI-I < qHI ~ PHI + t 
and PI + t < qI. If (3.29) is not satisfied, and hence (3.30) is, map (p I q) to 

(ql+k - s) ... 
(PI-k + s) 

(qI - s) PHI 
(PI + s) qHI 

Again note that both rows are strictly increasing, this time because of qI - s < 
PHI and PI + s < PH2 + s :S qHI· 

It is not difficult to verify that this mapping maps type I arrays not being of 
type (3.26) - (3.27) to type II arrays not being of type (3.26) - (3.27), and vice 
versa. Besides, by applying this map to some array twice, one would obtain 
that array back. Therefore, this mapping is the desired bijection. • 

Theorem 3.4.4 and its proof are basically from Krattenthaler and Mohanty 
(1995). Actually, Theorem 1 of Krattenthaler and Mohanty (1995) provides 
a q-analogue. A closely related paper is by Burge (1993). There, "restricted 
partition pairs" are considered, which are nothing but two-rowed arrays with 
restrictions very similar to (3.27). Burge proves a generating function result 
for these restricted partitions. It turns out that the above proof generalizes to 
prove Burge's main theorem, also. (Burge gives a different, slightly involved 
proof.) Remarkably, (among other results) Burge derives a number of identities 
expressing a Gaussian binomial coefficient as difference of two terminating basic 
hypergeometric sums. These identities combine two well-known but previously 
unrelated identities into a single one. In particular, he finds an identity which 
contains Rogers' proof as well as Schur's proof of the Rogers-Ramanujan iden
tities, which were previously considered to be unrelated. Eventually, the notion 
of partition pairs was generalized to r-tuples of partitions and were investigated 
by Gessel and Krattenthaler (1996) under the name of "cylindric partitions". 
Again, these objects could be used to derive identities in a simple way. The 
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resulting identities are identities for multiple basic hypergeometric series, some 
of them known, but many of them new. 

Counting paths subject to general boundaries with respect to NE-turns is 
what is needed to compute the Hilbert series of ladder determinantal rings gen
erated by 2 x 2 minors. "Nice" formulas cannot be expected here in general. 
Solutions for "one-sided" ladders were proposed by Kulkarni (1993) and Krat
tenthaler and Prohaska (1996). A solution for two-sided ladders is proposed 
by Ghorpade (private communication). Niederhausen's (1996) approach using 
umbral calculus methods is also worth mentioning here, though it is formulated 
only for EN-turns. 

3.5 Applications 

In this section, we apply the results from the previous section to solve (some 
of) the problems mentioned in Section 3.3. 

ad Example 3.3.1. We saw that any game of length (f-L + l)n + a corresponds 
to a path from (0,0) to (n, f-Ln + a-I) staying below the line Y = f-LX + a - 1. 
Equivalently, by reversal of paths, it corresponds to a path from (0,0) to (f-Ln + 
a-I, n) staying below the line x = f-LY. Also, in (3.1)-(3.3), we expressed the 
probability of a game of length (f-L + l)n + a in terms of the NE-turns of the 
corresponding path. In particular, the probability that a game with first toss 
by coin 1 has length (f-L + l)n + a, is immediately obtained from Theorem 3.4.2 
with el = f-Ln + a-I and e2 = n: 

A game starting with a toss of coin 1 has length (f-L + l)n + a with probability 

t {(f-Ln + a-I) (n) _ f-L(f-Ln +_a - 2) (n + I)} 
~o £ £ £ 1 £+1 

X £+1(1 )n-.e jLn+a-.e-l(l ).e PI - PI P2 - P2 . (3.31) 

Of course, also games starting with a toss of coin 2 can be represented by 
a path from (0,0) to (f-Ln + a-I, n) staying below the line x = f-LY. However, 
we have a split expression, namely (3.2) and (3.3), for the corresponding prob
abilities of the length of the game. The situation can be made uniform if we 
attach a horizontal step at the end of each path, so that we now consider paths 
P from (0,0) to (Vn + a, n) ending with a horizontal step and staying below the 
line x = f-LY. Then it is easy to see that (3.2) and (3.3), in terms of P, become 

NE(P) (1 )n-NE(P) jLn+a-NE(P) (1 )NE(P) PI - PI P2 - P2 . (3.32) 

Since the number of paths in question which have £ NE-turns is just the differ
ence of the number of paths from (0,0) to (f-Ln + a, n) staying below x = f-LY and 
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having £ NE-turns, minus the number of paths from (0,0) to (p:n + a, n - 1) 
staying below x = /-LY and having £ NE-turns, we obtain from Theorem 3.4.2 
by simplifying the difference: 

A game starting with a toss of coin 2 has length (/-L+ l)n+a with probability 

(3.33) 

ad Example 3.3.2. We have to convert our enumeration results for NE-turns 
into ones for runs. Recall that the number of runs of a path is exactly one more 
than the number of turns (both, NE-turns and EN-turns). To avoid case by case 
formulation, depending on whether the number of runs is even or odd, we prefer 
to consider generating functions. Suppose we know the number of all paths from 
A to E satisfying some property R and containing a given number of NE-turns. 
Then we also know the generating function L P xNE(P) , where the sum is over 
all paths P from A to E satisfying R. Let us denote it by F(A -t E I R; .x). 
We define four refinements of F(A -t E I R; x). Let Fhv(A -t E I R; x) be the 
generating function Lp xNE(P) where the sum is over all paths in L(A -t E I R) 
that start with a horizontal step and end with a vertical step. Similarly define 
Fhh(A -t E I R; x), Fvh(A -t E I R; x), and Fvv(A -t E I R; .x). The relation 
between enumeration by runs and enumeration by NE-turns is given by 

L .xfuns(P) 

PEL(A-->EIR) 

+ Fvh(A -t E I R; x2) + xFvv(A -t E I R; x2). 

(3.34) 

All the four refinements of the NE-turn generating function can be expressed 
in terms of NE-turn generating functions. This is seen by setting up a few linear 
equations and solving them. Evidently, 

F(A -t E I R;x) = Fhh(A -t E I R;x) + Fhv(A -t E I R;x) 

Besides, if El 
have 

+ Fvh(A -t E I R; x) + Fvv(A -t E I R; x). 

(1,0) and E2 = (0,1) denote the standard unit vectors, we 

Fhh(A -t E I R;x) + Fhv(A -t E I R;x) = F(A+ El -t E \ R;x), 

Fhv(A -t E I R;x) + Fvv(A -t E I R;.x) = F(A -t E - E2\ R;x), 

Fhv(A -t E I R;x) = F(A + El -t E - E2 I R; x). 
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Solving for Fhh, Fhv, Fvh and Fvv , we get 

F(A + El ---> E I R; x) - F(A + El ---> E - E2 I R; x), 

(3.35) 

Fhv(A ---> E I R; x) = F(A+El--->E-E21 R;x), (3.36) 

Fvh(A ---> E I R; x) = F(A ---> E I R;x) + (A + El ---> E - E21 R;x) 

- F(A + El ---> E I R;x) - F(A ---> E - E2 I R;x), 

(3.37) 

Fvv(A ---> E I R; x) = F(A ---> E - E2 I R; x) - F(A + El ---> E - E2 I R; x). 

(3.38) 

Now, turning to the joint distribution of runs and two-sided Kolmogorov
Smirnov statistics, we noted earlier that we have to count paths from (0,0) to 
(11,,11,) staying between the lines y = x + t and y = x - t and which contain 
r runs. We do this by using (3.34) with A = (0,0), E = (11,,11,), R meaning 
the property to 'stay between y = x + t and y = x - t', then using Eqs. 
(3.35)-(3.38) for Fhh, Fhv, Fvh, Fvv , respectively, in (3.34), and finally applying 
Theorem 3.4.4 to obtain explicit expansions for various generating functions 
F( . .. ). A comparison of coefficients of powers of z then gives, after some 
manipulation of binomials: 

For the joint distribution of runs, denoted by Rn,n, and the two-sided 
Kolmogorov-Smimov statistics Dn,n, we have 

C:) Pr[Dn,n ::; tin, Rn,n = 2r + 1] 

= f {(n - 2kt - 1) (11, + 2kt - 1) + (11, - 2kt - 1) (11, + 2kt - 1) 
k=-oo r + k r - k - 1 r + k - 1 r - k 

_ 2 (11, - 2kt + t - 1) (11, + 2kt - t - 1) }, 
r+k-1 r-k 

and 

(2;') Pr[Dn,n ::; tin, Rn,n = 2r] 

f {2 (11, - 2kt - 1) (11, + 2kt - 1) _ (11, - 2kt + t - 1) (11, + 2kt - 1) 
k=-oo r + k - 1 r - k - 1 r + k - 2 r - k 

_ (11, - 2kt + t - 1) (11, + 2kt - t - 1) }. 
r+k-1 r-k-1 

Thus, we recover the results of Vellore (1972, Theorems 8 and 9). She derived 
these results by very different means. (The expressions therefore look differ
ently. But it is not difficult to show that they are really equivalent.) The path 
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of derivation we have chosen here is from Krattenthaler and Mohanty (1993) 
where it was also used to obtain extensions and q-analogues of the above result. 

ad Example 3.3.3. By Theorems 3.3.1 and 3.3.2, the case of n = 1 in Example 
3.3.3, i.e., the case of rings generated by (at most) 2 x 2 minors in the way 
described above, leads to the problem of enumerating paths with given starting 
and end points which have a given number of NE-turns. Clearly, this is done 
by (3.6). 

Besides, we indicated that the case of pfaffian rings generated by 4 x 4 
pfaffians leads to the enumeration of paths with given starting and end points 
which have a given number of NE-turns and stay below a diagonal line. Clearly, 
this is done by Theorem 3.4.1. 

3.6 Nonintersecting Lattice Paths and Turns 

Here, we complete the solutions to our Examples of Section 3.3. More precisely, 
we address the problem of enumerating nonintersecting lattice paths with a 
given number of NE-turns, which is the problem to be solved in order to com
pute Hilbert series of determinantal and pfaffian rings, as we described earlier in 
Example 3.3.3. If one forgets about the number of turns, i.e., if one is interested 
in the plain enumeration of nonintersecting lattice paths with given starting and 
end points, then the solution is a certain determinant. This is a classical re
sult now [cf. Gessel and Viennot (1985 and 1989, Corollary 2); Stembridge 
(1990, Theorem 1.2)]. In fact, it has been realized over the past ten years that 
nonintersecting lattice paths have innumerable applications in combinatorics, 
probability, statistics, physics, etc. [see the references in Krattenthaler (1996b) 
for combinatorial applications, and the references in the Introduction for appli
cations in physics and probability; in fact, most of the determinantal formulas in 
probability and statistics, like "Steck's determinants" [Mohanty (1971), Pitman 
(1972) and Steck (1969, 1974)] follow easily from nonintersecting lattice paths; 
see also Sulanke (1990)]. However, the method that is used for the plain enu
meration [the "Gessel-Viennot involution", which actually can be traced back 
to Lindstrom (1973) and Karlin and McGregor (1959a)], is not appropriate to 
keep track of turns. Still, the answers to "turn enumeration" are determinants. 
But, alternative methods are needed now. It is the combinatorics of two-rowed 
arrays which explains these determinants. In fact, it is the context of noninter
secting lattice paths in which the usefulness of working with two-rowed arrays 
becomes most striking. Interestingly, the techniques developed here arose in 
the study of plane partition and tableaux generating functions [Krattenthaler 
(1995a)] and of identities for Schur functions [Krattenthaler (1993)]. 

From Theorems 3.3.1 and 3.3.2, we know for the computation of the Hilbert 

series for the determinantal rings Rn+l (X) and R~~l (X) that we need to enu-
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merate families P = (PI, P2, ... ,Pn) of non intersecting lattice paths, where Pi 
runs from (0, an-HI) to (a - bn-HI, b), i = 1,2, ... ,n, where the total number 
of NE-turns in P is some fixed number. Here, the starting points are lined up 
vertically and the end points are lined up horizontally. In fact, we are able 
to answer the problem even if the starting and end points are (basically) in 
general position. Let A = (AI, A2, ... , An) and £ = (EI, E2, ... ,En) be points 
in the two-dimensional integer lattice Z2. The restriction on the location of 
the points which we have to impose is the one which is always necessary with 
nonintersecting lattice paths [see Gessel and Viennot (1989) and Stembridge 
(1990)]. Namely, we assume that the starting points are lined up north-west 
to south-east, strictly from north to south, and that the end points are also 
lined up north-west to south-east, but strictly from west to east. We have the 
following theorem. 

Theorem 3.6.1 Let A 
lattice points satisfying 

( (i) (i») d E al ,a2 an i ( (i) (i») el ,e2 ,i 1,2, ... , n, be 

and 
(1) < (2) < < (n) el el . . . eI' 

The generating function LP zNE(P) , where the sum is over all families P 
(PI, P2, ... ,Pn ) of nonintersecting lattice paths Pi : Ai ---t Ei, equals 

{ (
e(i) - a(j) + J' - i) (e(i) - a(j) - J' + i) } 

qet 2: 1 1.. 2 2 zk . 
I~l.,J~n k'20 k + J - 1, k 

(3.39) 

Remark 3.6.1 This theorem was independently proved by Kulkarni (1993), 
who derived it from a theorem on determinantal rings due to Abhyankar, by 
Modak (1992), who found a manipulatory proof, and for the first time by com
binatorial means by Krattenthaler (1995b, 1996a), using two-rowed arrays. See 
also Ghorpade (1996). 

SKETCH OF PROOF. If we want to prove this theorem by means of two-rowed 
arrays, we have to first work out how the condition of two paths to be nonin
tersecting translates into the corresponding two-rowed arrays. 

Let PI, P2 be two paths, PI : A ---t E, P2 : B ---t F, where A = (aI, a2), 
B = (bI' b2), E = (eI' e2), F = (h, h), A located in the north-west of B 
(strictly in direction north and weakly in direction west), and E located in the 
north-west of F (weakly in direction north and strictly in direction west), i.e., 
with 
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Let the array representations of PI and P2 be 

PI : 
al ~ PI Pk ~ el- 1 

a2 + 1 ~ ql qk ~ e2 
(3.40) 

and 

P2 : 
b1 ~ rl rl ~ 1I-1 

b2+ 1 ~ 81 81 ~h, 
(3.41) 

respectively. 
Suppose that PI and P2 intersect, i.e. have a point in common. Let M 

be a meeting point of PI and P2. For technical reasons, set Pk+l := el and 
qo := a2· (Note that the thereby augmented sequences a and b remain strictly 
increasing. ) 

,.....-----Pl 

M 

(PI. qI-l) 

Figure 3.5 

Considering the east-north turn (PI, qI -1) in PI immediately preceding M 
(and being allowed to be equal to M) and the north-east turn (r J , 8 J) in P2 
immediately preceding M (and being allowed to be equal to M), we get the 
inequalities (cf Figure 3.5) 

where 

r J < PI, 

qI-l < 8J, 

1 ~ I ~ k + 1, 1 ~ J ~ l. 

(3.42) 

(3.43) 

(3.44) 

Of course, k, l,PI, qI, r J, 8J, etc., refer to the array representations of PI and 
P2. It now becomes apparent that the above assignments for Pk+l and qo are 
needed for the inequalities (3.42) and (3.43) to make sense for I = 1 or I = k+ 1. 
Note that M = (PI,8J). Vice versa, if (3.42) - (3.44) are satisfied, then there 
must be a meeting point between PI and P2 (because of the particular location 
of the starting and end points A, B, E, F). 
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Summarizing, the existence of I, J satisfying (3.42) - (3.44) characterize 
the array representations of intersecting pairs of paths. Therefore, we call two
rowed arrays PI and P2 of the form (3.40) and (3.41), respectively, intersecting 
if (3.42) - (3.44) are satisfied, for some I and J, otherwise nonintersecting. The 
point M = (PI. sJ) is called their intersection point. 

We also need to consider skew two-rowed arrays. For convenience, we in
troduce some terminology. Let j > O. We say that the two-rowed array P is of 
the type j if P has the form 

P-j+l P-j+2 ... P-l Po PI Pk 
ql qk 

for some k :2 O. We say that P is of the type -j if P has the form 

PI Pk 
q-j+l q-j+2 ... q-l qo ql qk 

for some k :2 O. Note that the placement of indices is chosen such that non
positive indices can occur only in one row of P, while the positive indices 
occur in both rows of P. The meaning of non-skew two-rowed arrays being 
intersecting, and nonintersecting, and of intersection points, is extended to skew 
two-rowed arrays in the obvious way. In abuse of its actual literal meaning, we 
define the "number of NE-turns" of a two-rowed array P to be one half of the 
number of entries of P. (Recall that, under the correspondence between paths 
and two-rowed arrays, the number of NE-turns of the path equals one half of 
the number of entries of the corresponding two-rowed array.) We use the same 
short notation NE( P) for this number. 

Now, we are in the position to actually begin with the proof of (3.39). First, 
we give the combinatorial interpretation of the determinant (3.39) in terms of 
two-rowed arrays. Expanding the determinant in (3.39), we obtain 

" II el - al a z - z e2 - a2 - a Z 1, k' 
n ((i) (a(i)) + (.) .) ((i) (a(i)) (.) + .) 

L sgna . . z' 
S '-I ki+a(t)-t ki aE n t-

= L sgn a zNE(P), (3.45) 
(a,P) 

where Sn denotes the symmetric group of order n, and the sum on the right
hand side is over all pairs (P, a) of permutations a in Sn., and families P = 
(PI, P2,· . . , Pn ) of two-rowed arrays, Pi being of type a(i) - i, and the bounds 
for the entries of Pi being as follows: 

(a(i)) + . (.) < al 1, - a 1, _ 

(a(i)) _ . + (.) + 1 < a2 Z a Z _ 
(3.46) 

i = 1,2, ... ,no 
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The outline of the proof is as follows. We show that in the sum on the 
right-hand side of (3.45) all contributions corresponding to pairs (P, 0") where 
P is an intersecting family of two-rowed arrays cancel. (We call a pair (P, 0") 
intersecting if P = (PI, P2, . .. , Pn ) contains two two-rowed arrays Pi and Pi+I 

with consecutive indices that have an intersection point. Otherwise it is called 
nonintersecting. In the sequel, two-rowed arrays with consecutive indices will 
be called neighbouring two-rowed arrays.) This is done by constructing a sign
reversing (with respect to sgn 0") involution on these pairs, which keeps the 
total number of entries in the two-rowed arrays fixed. (Recall that, under the 
correspondence between paths and two-rowed arrays, the number of NE-turns 
of the path equals one half of the number of entries of the corresponding two
rowed array.) Finally, it is shown that, in a pair (P,O") with 0" -=I id, the 
family P must be intersecting. This establishes that only pairs (P, id) where 
P is a nonintersecting family of two-rowed arrays contribute to the sum on the 
right-hand side of (3.45). But these pairs correspond exactly to the families of 
nonintersecting paths under consideration, and hence Theorem 3.6.1 would be 
proved. 

Let (P, 0") be a pair under consideration for the sum on the right-hand side 
of (3.45). Besides, we assume that P contains two neighbouring two-rowed 
arrays Pi and Pi+I that have an intersection point. Consider all intersection 
points of neighbouring arrays. Among these points, choose those with maximal 
x-coordinate, and among all those choose the intersection point with maximal 
y-coordinate. Denote this intersection point by M. Let i be minimal such that 
M is an intersection point of Pi and Pi+ 1· Let Pi = (a I b) = ( ... P.ei I ... q.eJ 

and Pi+I = (c I d) = ( ... rfii+l I ... Sfii+1 )· Recall that Pi is of type 0"( i) - i and 
Pi+! is of type 0"( i + 1) - i - 1 and that the bounds of the entries in Pi and Pi+I 

are determined by (3.46). By (3.42) - (3.44), M being an intersection point of 
Pi and Pi+I means that there exist I and J such that Pi looks like 

(a(i» + . (.) < < e(i) _ 1 al 1, - 0" 1, _ PI-I PI Pfi i _ 1 
(3.47) 

(a(i» _ . + (.) + 1 < < (i) a2 1, 0" 1, _ qI-I qI q.ei _ e2 , 

Pi+I looks like 

a~a(i+!» + i + 1 - O"(i + 1) ~ 
(a(i+I» _ . + (. + 1) < a2 1, 0" ~ _ . .. SJ-I SJ 

rJ < PI 

qI-I < SJ 

and 

1 ~ I ~ Pi + 1, o ~ J ~ .(ii+I. 

< (i+I) 1 _ e l -

< (i+I) 
_ e2 , 

(3.48) 

(3.49) 

(3.50) 

(3.51) 
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Because of the construction of M, the indices I and J are maximal with respect 
to (3.49) - (3.51). 

We map (P, 0') to the pair (1), O'o(i, i+l)) [(i, i+l) denotes the transposition 
interchanging i and i+ IJ, where I> = (PI, ... , Pi-I, Pi, PHI, PH2, ... , Pn) with 
Pi being given by 

PHI being given by 

r J -1 PI 
8J-l + 1 qI 

PI-l + 1 r J+1 . . . r£i+1 
. .. qI-l - 1 8J 8£i+1' 

. (3.52) 

(3.53) 

First of all, this operation is well-defined, i.e., all the rows in (3.52) and (3.53) 
are strictly increasing. To see this, we have to check r J -1 < PI, 8J-l + 1 < qI, 
PI-l + 1 < r J+I, and qI-l - 1 < 8J. This is obvious for the first and last 
inequalities, because of (3.49) and (3.50). As for the second inequality, let 
us suppose 8J-l + 1 ~ qI· Then, by (3.49), we have r J ~ PI < PHI and 
qI ~ 8 J -1 + 1 ~ 8 J. This means that (PHI, 8 J) is an intersection point of Pi 
and PH 1, with an x-coordinate larger than that of M = (PI, 8 J ), contradicting 
the "maximality" of M. Similarly, if we assume PI-l + 1 ~ r J+I, we have 
r J+1 ~ PI-l + 1 ~ PI and, by (3.50), qI-l ~ 8J < 8J+1' This means that 
(PI,8J+1) is an intersection point of Pi and PHI, with a y-coordinate larger 
than that of M = (PI, 8 J ), again contradicting the "maximality" of M. 

We claim that (I>, 0'( i, i + 1)) is again a pair under consideration for the 
generating function (3.45). That is, we claim that Pi is of type (O'o(i,i+1))(i)
i = O'(i + 1) - i, that PHI is of type (0' 0 (i, i + 1))(i + 1) - i -1 = O'(i) - i-I, 
and that the bounds for the entries of Pi are given by 

a~U(i+1»+i_0'(i+1)~ rJ-1 PI 

a~U(i+1» _ i + O'(i + 1) + 1 ~ ... 8J-l + 1 qI 

and that those for PHI are given by 

a~U(i)) + i + 1 - O'(i) ~ 
(u(i» . (.) < 1 a2 - ~ + 0' 1, _ ... qI-l-

PI-l + 1 

8J 

rJ+l « HI) 1 _ el -

« HI) 
_ e2 • 

(3.55) 

The claims concerning the types cf A. and Pi +1 are trivial. The claim concerning 
the bounds requires some case-by-case analysis, which we leave to the reader. 
One may also refer to Krattenthaler (1995b, 1996a). Obviously, the map (3.52) 
- (3.53) reverses the sign of the associated permutation. Besides, it can be 
checked that it is an involution. The proof that, given a pair (P,O'), P = 
(PI, P2, ... ,Pn ), 0' i= id, there exist neighbouring two-rowed arrays Pi and 
~+1 having an intersection point, is slightly technical. We refer the reader to 
Krattenthaler (1995b, 1996a) for the details. • 
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Remark 3.6.2 The map from (3.47) and (3.48) to (3.52) and (3.53) can be 
considered as the analogue in the "world of two-rowed arrays" for the inter
changing of paths which is usually done with nonintersecting lattice paths [see, 
for example, Gessel and Viennot (1985), Stembridge (1990), and Krattenthaler 
(1995a, Section 2.2)]. 

Another problem that is posed by Example 3.3.3 is the enumeration of 
families of nonintersecting lattice paths which are bounded by a diagonal line 
with respect to their number of turns. Recall that this is necessary for the 
computation of the Hilbert series of pfaffian rings and of ladder determinantal 
rings where the ladder restriction is a diagonal boundary. Also here, we have 
a result where the location of the starting and end points is more general than 
needed. 

Theorem 3.6.2 Let Ai = (aii) , a~i)) and Ei = (eii ) , e~i»), i = 1,2, ... , n, be 
lattice points satisfying 

ail) :::; ai2) :::; ... :::; ain) , a~I) > a~2) > ... > a~n), 

(1) < (2) < < (n) (1) > (2) > > (n) el e l . . . eI , e2 _ e2 _... _ e2 , 

d (i) (i) (i) (i). 1 2 '7'1.. 'f' an al ~ a2' el ~ e2' 1, = " ... ,n. .l ne generatmg unctwn 
L:p zNE(P) , where the sum is over all families P = (PI, P2, . .. ,Pn) of non
intersecting lattice paths Pi : Ai -+ Ei, which stay below the line x = y (being 
allowed to touch it), equals 

SKETCH OF PROOF. Again, we work with families of two-rowed arrays. This 
time we consider triples (P, 0', 17), where 0' is a permutation in Sn, 17 E {-1, 1 Y , 
and P = (PI, P2, ... , Pn) is a family of two-rowed arrays, with Pi being of type 
17iO'(i) - i and the bounds of Pi being given by 

(u(i» + . (') < :::; eii) - 1 al 1, - 0' 1, _ 
for 17 = 1, (3.57) 

(u(i» '+ C) + 1 < < (i) a2 -1, 0' '/, _ _ e2 

and 

(u(i» + . + C) - 1 < :::; eii) - 1 a2 1, 0'1, _ 
for 17 = -1. (3.58) (u(i» _ '_ (') + 2 < < (i) al 1, 0' 1, _ _ e2 
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Define sgn", := I1f=I "'i. It is easy to see that (3.56) is the generating function 

L sgn", sgn u zNE(P) , 

(P,U,71) 

where the sum is over all triples which have been described above. 

(3.59) 

Now, the basic idea is as follows. We show that in the sum (3.59) all contri
butions cancel which correspond to triples (P, u, "'), where P is an intersecting 
family of two-rowed arrays, or where the two-rowed array PI "crosses" y = x, 
by which we mean that there is an entry in the upper row of PI which is smaller 
than its neighbour in the bottom row of Pl. Again, this is done by constructing a 
sign-reversing involution (with respect to sgn", sgn u) on those triples. Roughly 
described, this involution combines the "reflection principle for two-rowed ar
rays" with the "interchanging procedure for two-rowed arrays". Namely, this 
involution is defined to be the map (3.47) and (3.48) to (3.52) and (3.53) if P 
contains neighbouring two-rowed arrays which are intersecting, and if not, but 
the first two-rowed array PI "crosses" y = x, then it is defined to be basically 
the map (3.13), applied to Pl. It can be shown that in a triple (P, u, "') with 
u # id or '" # (1,1, ... ,1), the family P must be intersecting or PI "crosses 
y = x". This establishes that only triples (P, id, (1, 1, ... ,1)), where P is a non
intersecting family of two-rowed arrays which do not cross y = x, contribute to 
the sum (3.59). But these triples exactly correspond to the families of noninter
secting paths under consideration, and hence Theorem 3.6.2 would be proved. 
We refer the reader to Krattenthaler (1995b, 1996a) for the details. • 

As mentioned before, Theorem 3.6.2 can be applied to the computation 
of the Hilbert series of certain ladder determinantal rings (one sided, with a 
diagonal upper bound) and also of pfaffian rings. The computation of Hilbert 
series of rings generated by minors of a symmetric matrix as considered by 
Conca (1994) can also be solved by using the method of two-rowed arrays; 
see Krattenthaler (1996a). For arbitrary one-sided ladders, there is a solution 
when the starting points, and end points, are located "successively" (such as in 
Figure 3.4) by Krattenthaler and Prohaska (1996) proving a remarkable formula 
conjectured by Conca and Herzog (1994). For "generally" located starting and 
end points, there is a solution in terms of a determinant with entries counting 
certain two-rowed arrays by Krattenthaler (1996a). The case of two-sided ladder 
determinantal rings appears to be out of reach by the method of two-rowed 
arrays. Perhaps, the extension of the dummy path idea in Krattenthaler and 
Mohanty (1995) will be useful in this context. Finally, we want to point the 
reader to a refined turn counting for pairs of paths [Krattenthaler and Sulanke 
(1996)] which relates this subject also to polyomino counting. 
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Lattice Path Counting, Simple Random Walk 
Statistics, and Randomization: 
An Analytic Approach 

Wolfgang Panny and Walter Katzenbeisser 

University of Economics, Augasse 2-6, Vienna 

Abstract: In this paper an approach to lattice paths, simple random walks and 
randomized random walks is presented, which emphasizes the common features 
and permits to treat various aspects in a unified framework. 

Keywords and phrases: Lattice paths, simple random walks, randomized 
random walks, rank order statistics, Dwass's method 

4.1 Introduction 

The purpose of this paper is to present an approach which has proved useful in 
dealing with various aspects of the simple random walk. The approach involves 
generating functions and is mainly of an analytical nature. A striking feature is 
that the simple random walk results happen to essentially comprise their lattice 
path counterparts as special cases, wich is due to the use of generalized trinomial 
coefficients. Moreover, the simple random walk results can be taken as a starting 
point to derive their continuous time counterparts by a limiting process, which 
takes us to randomized random walks. Our randomization procedure, in fact, 
may be seen as an alternative to Feller's randomization technique. 

Our plan is as follows. In Section 4.2 we confine ourselves to the lattice path 
context, while in Section 4.3 we present the general method for simple random 
walks. Section 4.4 is devoted to a presentation of our randomization procedure. 
Each section also includes an example in order to illustrate the application. 
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4.2 Lattice Paths 

Consider the lattice points (0, Yo), (1, Yl), (2, Y2), ... in the (x, y)-grid. We 
are dealing with lattice paths (yo, Yl, Y2,· .. ,Yn) with Yr;. = YIt-l + fit where 
fit E {-I, +1}, /'i, = 1,2, ... , n and YO = 0, Yn = f. Such a lattice path starts at 
the origin and leads to f after n steps. Confining to Yo = 0 actually constitutes 
no restriction at all. So, this assumption will be made in the sequel if not 
explicitly stated otherwise. Of course, IYltl ~ /'i, and Ylt = /'i,(2). In particular, 
Yn = f may only be reached if If I ~ nand f = n(2). 

All results contained in this section are based on the generating function 

Wh,m/(Z) = 2: N(h, m, f, n)zn, h, m > O. 
n~O 

N(h, m, f, n) counts the number of lattice paths starting at the origin and lead
ing to the point (n, f), where these paths are subject to the following restriction: 

-m < Yo = 0 < h, -m < Yl < h, ... , -m < Yn-l < h, -m < Yn = f < h. 

The above definition shows that the paths must lie entirely within the stripe 
defined by the lines Y = -m and Y = h, where the paths are not even allowed 
to touch these lines. 

y =h 
V 

V (11. 
l"-

,l) 

(0,0) V I" 
V 

I" v,,/ 

y =-m 

Figure 4.1: Example of a lattice path 

Considering all those points from which the point (n, f) can be reached by 
the next step, we are led to the following system of recurrence relations for W: 

1 -z Wh,m,h-l 0 
-z 1 -z Wh,m,h-2 0 

-z 1 -z Wh,m,-l 0 
-z 1 -z Wh,m,O = 1 

-z 1 -z Wh,m,l 0 

-z 1 -z Wh,m,-m+2 0 
-z 1 Wh,m,-m+l 0 
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The matrix of this system has order (h + m - 1) x (h + m - 1) and will be 
denoted by Ah+m(Z). It is not hard to find out that 

_ 1 [(1 + Vl- 4Z2)k _ (1- Vl- 4Z2)k] 
IAk(Z)1 - VI _ 4z2 2 2' 

IAdz)1 is a polynomial of degree 2r~1 - 2. Incidentally, IAk(Z)1 = Fk(z2), 
where Fj(z) denotes the j-th Fibonacci polynomial [see Panny (1984)]. The 
Fibonacci polynomials are connected to the Fibonacci numbers Fj by Fj( -1) = 

Fj. Applying Cramer's rule, we get 

The substitution 
v 

z=g(v)=I+v2 ' (4.1) 

is crucial for our approach because it considerably simplifies the original gener
ating function, which now becomes 

The generating function also comprises the one-sided cases, viz. 

1 v2m-(I£I-£) 
Woom £(z)=vl£I(1+v2) - 2 ' , , 1- v 

1 - v2h-(I£IH) 
Wh,oo,£(Z) = vl£1 (1 + v2) 1 _ v2 ' 

and the unrestricted case 

_ 1£1 1 + v2 
Woo 00 £(z) - V --2' , , 1- v 

These generating functions may be taken as building blocks to derive appropri
ate generating functions for various path counting problems, as will be shown 
by the following example. As direct results, they furnish explicit expressions 
for the numbers N(h, m, £, n) by applying Cauchy's integral formula 

N(h {)) 1 f Wh,m,£(Z) d 
"m".r.,n = -. +1 z. 

27l'Z zn 
(4.3) 

Since v ~ Z when Izi « 1, we may change variables in (4.3). From (4.1), we 
have 

dz g' ( v ) _ 1 - v2 2 n-l 
gn+1(v) dv - vn+1 (1 + v) dv 



62 Wolfgang Panny and Walter Katzenbeisser 

and, hence, 
1 f Whmf(g(V)) , 

N(h, m, e, n) = -. ' ~1() 9 (v) dv. 
27TZ gn v 

Technically, this means that 

{ 
(1_v2m-(I£I-f)) (1_v 2h-(lfl+f))} 

N(h,m,e,n) = [vn] v1fl (1+v2f 1_v2(h+m) , 

where [vn ] {P(v)} denotes the coefficient of vn in P(v). Consequently, 

N(h,m,e,n) = ._ L [(ntf71~jd) - (ntf _71~,+jd)l, (4.4) 
J-O,±I, ... 

N(oo,m,e,n) 

N( h, oo,e, n) 

N(oo,oo,e,n) 

where d = h + m. 

( ntf) - ( ntf 71~ m) , 

( ntf) - ( ntt~ h) , 

(ntf) , 

(4.5) 

(4.6) 

(4.7) 

Of course, the formulas (4.4)-(4.7) are usually derived by path combinatorial 
arguments [see Mohanty (1979)]. In particular, (4.5) and (4.6) can be obtained 
using the method of reflections due to Andre. (4.4) may be found by applying 
this method repeatedly. 

As a further remark, we would like to mention that (4.2) gives us the right 
clues on the location of the poles of Wh,m,f(Z). Hence, (4.2) may be taken as 
a starting point for deriving the partial fraction expansion of Wh,m,£(Z), which 
furnishes the following expression for N(h, m, e, n) and e == n(2): 

rh~ml-l 

L sin h()j sin(h - e)(}j (2 cos OJ t, 4 

h+m j=1 

where OJ = j7T /(h + m). Consequently, the asymptotic behavior as n -t 00 can 
be described by 

( ) 4 h h-fl ( 7T)n 
N h, m, e, n '" -h -- sin -h --7T sin -h --7T 2 cos -h--

,+m ,+m ,+m ,+m 

Example 4.2.1 Let D:j; denote the maximum of the lattice path, i.e. D:j; = 
max{yo, Yl, ... , Yn} and let Qn denote the number of times that the maximum 
is reached. We are interested in the number N(D:j; = k, Qn = r) of paths with 
D:j; = k and Qn = r, where Yo = 0 and Yn = fl. Of course, one always has 
k ~ 0, k ~ fl and r > O. Now, we will illustrate the usefulness of the generating 
functions Wh,m,f(Z) in such counting problems. 
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Let us first consider the case k > 0, k > R.. The following figure shows an 
appropriately decomposed path (with Qn = 3). 

s A B A B A E 

k 
k-l~--~~~~--------~~~----~~-,~~~~----+ 

l 
o 

Figure 4.2: Number of times where the maximum is achieved 

A path with D:% = k, Qn = r can symbolically be written as SA(BAy-1 E. 
The generating functions for the individual segments are 

Ts(z) = Wk,oo,k-1(Z) = (1 + v2)vk-1, 
v2 

TA(Z) 2_ - Z - (1 + v2)2 , 

TB(Z) = W1,oo,O(Z) = 1 + v2, 

TE(Z) = W1,oo,l-k+1(Z) = (1 + v2)vk- 1- i . 

Hence, the generating function cPk,i,r(Z) for N(D:% = k, Qn = r), k > 0, R. < k, 
is 

T S(Z)TA(Z)T~-l(z)TE(Z), 

which yields 
cPk,l,r(Z) = (1 + v2) 1-r v2(r+k-1)-i. 

The remaining three cases are R. < k = 0, R. = k > 0, and.e = k = 0. These 
cases can be investigated in the same way as the first case. It turns out that the 
generating function cPk,i,r(Z) in fact applies for all cases, i.e. for k 2': 0, .e ~ k. 
The coefficient of zn can be most conveniently extracted by means of Cauchy's 
integral formula. We only have to take into account that 

dz g'(z) (1 - v2) ( 2)n-1 
-- = dv = 1 + v dv. zn+1 gn+ 1 ( v) vn+1 

Consequently, N(D:% = k, Qn = r) can be expressed as 

1 f v2(r+k-l)-i ( 2) ( 2)n-r 
-2 . +1 1 - v 1 + v dv . 

7rZ vn 

Determining the coefficient of vn in v2(r+k-l)-i(1 - v2)(1 + v2t-r yields 

( + _ _ ) _ ( 'T/,-r ) ( 'T/,-r ) 
N Dn - k, Qn - r - n!i _ k _ r + 1 - n!i _ k _ r (4.8) 
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or, equivalently, 

( + ( n-r ) N Dn > k, Qn = r) = nt£ _ k _ r . (4.9) 

Summation over all possible values of k (i.e., over all k ~ max{O, £}) leads to 
[Mohanty (1979, p. 93)]: 

( n-r ) 
N(Qn = r) = n~I£1 _ 1 . (4.10) 

The above results are comparatively easily obtained by our approach, since 
the generating functions become rather simple owing to the substitution z = 
g( v) and because concatenation and summation is implicitly done by power 
series algebra. Since the substitution z = g( v) is compatible with Cauchy's 
integral formula, we still may apply it to determine the coefficients of interest. 

Katzenbeisser and Panny (1996) have shown that all results on rank order 
statistics given by Dwass (1967) can be obtained by this approach as well. 
Moreover, all of Dwass's results have been extended to arbitrary endpoints 
(n,£), enabling one to deal with rank order statistics for unequal sample sizes 
also. 

4.3 Simple Random Walks 

Let Xk, k = 1,2, ... , be independent and identically distributed random vari
ables with 

Pr[Xk = 1] = Q, Pr[Xk = 0] = (3, Pr[Xk = -1] = 1, 

where Q + (3 + 1 = 1. Consider the random walk 

k 

Sk = So + L Xj, k = 1,2, ... , n, with Sn = £, 
j=1 

i.e., a simple random walk in the sense of Cox and Miller (1965) starting at 
So and leading to £ after n steps. Confining to So = 0 actually constitutes no 
restriction at all. So, this assumption will be made in the sequel if not explicitly 
stated otherwise. In this section, Wh,m,£(Z) denotes the probability generating 
function 

Wh,m,£(Z) = LP(h,m,£,n)zn, h,m > 0, 
n20 
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where p(h, m, f, 71,) gives the probability that a particle obeying a random walk 
with absorbing barriers at -m and h reaches the state f when it started from 
state 0, i.e., 

p(h, m,f,n) = Pr[-m<Sl <h, ... , -m<Sn-l <h, -m<Sn = f<h I So = 0]. 

The definition of p(h, m, f, 71,) shows that it is not even admissible to touch the 
barriers. Following Barton and Mallows (1965), this type of absorption could 
be termed as strong sense absorption. 

y =h 

[" 1/" I, (n 
V 

, l) 

(0,0) I'.. I'.. 

I" 
V 

y= -m 

Figure 4.3: Sample path of a simple random walk 

In the following, we show how the approach adopted earleir for path counting 
can be generalized to determine the probabilities p( h, m, f, 71,). It is not hard to 
see [Panny (1984) and Katzenbeisser and Panny (1984)] that the matrix of the 
system of recurrence relations for \II becomes 

(1 - (3z) -az 

-"(Z (l-(3z) -az 

Ah+m(Z) = 
(1 - (3z) -az 

(1 - (3z) -az 

-"(z (1 - (3z) 

in the present setting. As before, Ak (z) is of order (k - 1) x (k - 1). The 
determinant is 

where a = 1 - (3z and b = Ja2 - 4a"(z2. Again, IAk(Z)1 can be expressed by 
means of the Fibonacci polynomials as 

k-l a"( z ( 2) IAk(Z)1 = (1 - (3z)' Fk (1 _ (3z)2 . 

By Cramer's rule, we get 

(4.11) 
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The substitution 
v 

z = g(v) = --:::---
av2 + (3v +, 

is now the counterpart of (4.1). Applying this substitution to (4.11) again 
results in a considerable simplification as 

IIIH 2 2 111-1 2 h 111+1 
W (z) = ~ vl£1 av +{3v+, (l-(pv )m- 2 )(l-(pv) - 2 ) 

h,m,£ , 1 _ pv2 1 _ (pv2 )h+m (4.12) 

As before, the generating function also comprises the one-sided cases, viz. 

IIIH 2 _ 111-1 
P 2 1£1 l-(pv)m 2 

Woom£(Z) = -- v (av2+{3v+,) 2 , " 1-pv 

ItlH h Itl+l 
P-2- 1-(pv2) --2-

Wh 00 £(Z) = -- vl£l(av2+{3v+,) --'---'-~-
, " 1 - pv2 

and the unrestricted case 

IIIH 2 
W (z) = ~ vl£1 av +(3v+, 

00,00,£ 1 2 , - pv 

Again, these generating functions prove very useful in deriving appropriate 
generating functions for more intricate problems connected with simple random 
walks, as shall be illustrated by the following example. As direct results, of 
course, they furnish explicit expressions for the probabilities p(h, m, £, 11,) by an 
application of Cauchy's integral formula as 

1 f Wh,m,£(Z) 
p(h,m,£,n) = -2 . n+l dz. 

7n. Z 
(4.13) 

Since v ~ z when Izl « 1, we may change variables in (4.13). Since 

dz g' ( v) 1 - pv2 
-- - - , (av 2 + (3v + , t-1 , zn+l - gn+l(v) - vn+1 

we have 
1 I W h m £ (g ( v ) ) , 

p(h,m,£,n) = 27l'i. ;n~l(v) 9 (v) dv. 

Technically, this means that p(h, m, £, 11,) is 
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Consequently, 

p(h,m,£,n) L -jd [( n; ct, (3, 'Y ) h( n; ct, (3, 'Y )] 
j=o,±t. n+£+2jd -p n+£-2h+2jd ' 

(4.14) 

p(oo,m,£,n) ( n; ct, (3, 'Y) _ p-m ( n; a, (3, 'Y ), 
n+£ n+£+2m 

(4.15) 

p( h , 00, £, n) ( n;a,(3,'Y) _ ph( n;a,(3,'Y), 
n +£ n+£ - 2h 

( 4.16) 

p(oo,oo,£,n) = ( n; a, (3, 'Y), 
n+£ 

( 4.17) 

where d = h + m and where generalized trinomial coefficients (GTC) are used. 
They have the generating function (av 2 + (3v +'Y)n, i.e. 

which, of course, entails 

t (n; a, (3, 'Y) = l. 
k=-n n + k 

of course. GTC are quasi-symmetric, i.e., 

( n;a,(3,'Y) =p_k(n;a,(3,'Y) 
n-k n+k 

and comprise binomial coefficients as a special case, viz. 

(n; 1/2,0,1/2) = (n) 2-n . 

2m m 

They are connected to ordinary trinomial coefficients by the relation 

( n;a,(3,'Y) 
n+k a,b,c2':O 

a+b+c=n 
a-c=k 

which allows the following representation as a hypergeometric function: 

( n;a,(3,'Y) = k(3n-k(n) F (_n-k _n-k-1. . 4a'Y) 
n + k a k 2 1 2' 2 ' k + 1, (32 . 

( 4.18) 

(4.19) 

(4.20) 
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An integral representation is 

(4.21) 

which corresponds to the well-known integral representation of binomial coeffi
cients [see Gradshteyn and Ryzhik (1980, p. 374)]: 

( ntk) = 2n ~ lo7r cos kO (cos ot dO. 

Both integral representations can easily be verified by means of the residue 
theorem. 

We would like to mention that the formulas (4.14)-(4.17) can all be obtained 
by reflection arguments as well. At first sight, one would think that these 
arguments are not applicable to the problem treated here, since the paths are no 
longer symmetrical. However, the classical reflection approach can be modified 
by interchanging the probabilities 0: and , in the reflected parts of the paths 
[see Panny (1984)]. 

In accordance with the preceding section, we would like to mention here an 
alternative representation of p(h, m, f, 11,), based on partial fraction expansion 
of W h,m'£( z), which can conveniently be derived from (4.12), as 

2 ~ h+m-l 

p(h, m, f, 11,) = _P - L sinhOj sin(h - f)Oj ((3 + 2..fo1cos Ojt, 
h+ m j=l 

where OJ = j7r/(h + m). Hence, the asymptotic behavior of p(h,m,f,n) as 
11, --+ 00 can be described by 

t 

( ) 2b.((3)p2. h . h - f ((3 ;;:;;;:::; 7r) n 
p h, m, f, 11, rv h + m sm h + m 7r sm h + m 7r + 2y 0:, cos h + m 

where the indicator function 

b.((3) = { ~ (3)0 

(3=0 

is necessary, since for the case (3 = 0 the contribution of 0h+m.-l = 7r - h~m has 
to be taken into account, too. 

Example 4.3.1 In the following, we generalize Example 4.2.1 for simple ran
dom walks. Let D-:j; denote the maximum of the random walk, i.e., D-:j; = 
maxO:=;k:=;n {Sd and let Qn denote the number of times that the maximum is 
reached. We are interested in the probability Pr[D-:j; = k, Qn = r] for a random 
walk with So = 0 and Sn = f. Of course, one always has k 2 0, k 2 f and r > O. 
However, regarding the possibility of horizontal steps, the definition of Qn must 
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be properly adapted: The maximum is achieved if Sk = Sk+1 = Sk+2 = ... = 
Sk+m = D;i and Sk-l,Sk+m+1 < D;i, 0 :S k :S k + m :S n. If there should 
be one or more consecutive horizontal steps coinciding with the line y = D;i 
(i.e. m > 0), this counts only as a single maximum. By definition, if So = D;i 
the path starts with a maximum; similarly, if Sn = D;i the path ends with a 
maximum. 

Let us first consider the case k > 0, k > f. The following figure shows an 
appropriately decomposed sample path (with Qn = 3). 

s A B A B A E 

k 
k-lr---~~-f--~~'-~--~~~--~~~--~r-----+ 

o 

Figure 4.4: Number of times where the maximum is achieved 

l 

A path corresponding to the event D;i = k, Qn = r can symbolically be 
written as SA(BAr-1 E. The probability generating function for the individual 
segments are 

Ts(z) 

TA(Z) 

TB(z) 

Tdz) 

Wk,oo,k-l(Z), 

a'Yz2 Wl,l,O(Z), 

Wl,oo,O(Z), 

W 1,oo,i-k+l (z). 

Hence, the probability generating function (Pk,i,r(Z) for Pr[D;i = k, Qn = rJ, 
k > 0, k > f, is 

T s(z)TA(z)T'B-1(z)T E(Z), 

which yields 

,J.. (z) = ~ (av2 + (3v + 'Y) (pv2)r+k-l 
'l-'k,i,r 'Y vi (1 + pv2f 

A separate investigation of the remaining cases shows that the last formula in 
fact covers all cases, i.e., k 2: 0, f :S k. Extracting 

[vn] {(av2 + {3v + 'Y)n (1- pv2) (pV2)r+k-l} 
vi (1 + pv2f 

yields the following expression for Pr[D;i = k, Qn = r]: 

/+H ~pi( 7) [(n+e-~;k'::~;~2j+2) -p(n+e~;~~~~-2j)l' (4.22) 
J_ 
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or, equivalently, 

Pr[D;t" > k, Qn = r] = l+r L pi (-.r) ( 71,; 0:, (3, I .) . 
'>0 J 71, + f - 2k - 2r - 2J 

J_ 

(4.23) 

Since the range of all possible values of k is given by k ~ max{O,f}, the last 
formula yields at once 

Pr[Qn = r] = pr-1+~ L pi (-.r) ( 71,; 0:, (3, I. ) . 
'>0 J 71, - If I - 2r - 2J + 2 

J_ 

( 4.24) 

Clearly, formulae (4.22), (4.23), and (4.24) translate to the corresponding for
mulae (4.8), (4.9), and (4.10) after an application of the identity in (4.20) and 
Vandermonde's convolution formula. The last two formulae also comprise the 
pertaining results [viz. VIII(a) and VIII(b)] due to Dwass (1967) as special 
cases. This can be checked by specializing on 0: = I = 1/2, f = 0, substi
tuting 271, for 71, and dividing by the probability of the conditioning event, viz. 
Pr[S2n = 0 I So = 0] = 2-2n (2:). 

It has been shown by Katzenbeisser and Panny (1996) that this method 
allows to generalize all of Dwass's results by considering arbitrary endpoints 
(71" f), introducing horizontal steps as third step type and assigning arbitrary 
probabilities 0:, (3, I to the three step types. Regarding these extensions, Dwass's 
rank order statistics in fact are extended to simple random walk statistics. 

4.4 Randomized Random Walks 

In the present section, it will be shown as to how the results on simple random 
walks can be translated to randomized random walks by means of a limiting 
process. In the following, our randomization approach will be put forward. 
However, we confine ourselves to a presentation of the basic ideas and skim 
over the details. The reader interested in a rigorous proof is referred to the 
papers B6hm and Mohanty (1994) and B6hm and Panny (1996). 

Usually, the x-axis of a random walk is interpreted as time. Accordingly, 
the simple random walk corresponds to discrete time. This may be visualized 
by dividing a time interval of lenght t = 1, say, in 71, time slots, each of which 
has length 1/71,. Each slot j has an associated random variable Xj (and Sj). If 
Xj = 1 or Xj = -1, we have a jump (up or down). Of course, the number of 
jumps follows a binomial distribution given by 

Pr[number of jumps = k] = (~) (0: + l)k(l - 0: -IY',-k. 



Lattice Path, Simple Random Walk and Randomization 71 

It has been shown in the preceding section that for an unrestricted simple 
random walk, we have 

Pr[Sn = kJ = (71,; a, l-a-')',')'). 
n+k 

Let us now consider the limiting process 71, ~ 00, a ~ 0, ')' ~ 0, where the 
expectation of the number of jumps within the interval of length t is kept 
constant, i.e., an = At and ')'71, = J.d. Intuitively, this means that the division of 
the interval becomes finer and finer, whereby the proportion of time slots with 
no jumps tends to 1. In the limit, we arrive at 

Pr[number of jumps = kJ = 

= 

or equivalently 

lim (;,) (a + ')')k(1 - a - ')')n-k 

(A+J..L)k t k -(.HJ.L)t 
k! e 

Pr[time between two consecutive jumps ~ tJ = 1 - A ~ J..L e-().+J.L)t. 

In other words, this limiting process takes us from a simple random walk Sk in 
discrete time k = 0,1, ... ,71, to a randomized random walk S(t) in continuous 
time t ~ 0, where the term randomized random walk is used in the sense of 
Feller (1971, p. 58). 

II 
I r 

(0.0) II 

III 

Figure 4.5: Sample path of a randomized random walk 

It is well-known that for a randomized random walk, we have 

Pr[S(t) = k] = pk/2e-().+J.L)t h(2t~), 

Y =h 

(t. l) 

y=-m 

where Ik(x) denotes the modified Bessel-function of order k and p = al')' = AI J..L. 
This suggests us to apply the same limiting process to the generalized trinomial 
coefficients. It turns out that this limit is well-defined and, in fact, we get 

J.L~ (71,; a, ~.~ak-')" ')') = l/2e-(A+J.L)t Ik(2t.;>:ji.). 
a-+O,an=).t 
"(-+O,"(n=J.Lt 

(4.25) 
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This relation is most conveniently established by using the integral representa
tion (4.21) for the generalized trinomial coefficients given by 

(
11,; a, 1-ak-",) = (a/T)k/2 r cos kB (l-a-, + 2vcry cos Bt dB. 

11, + ' 7r fo 

The sequence of functions f n (B) = (cos kB) (1-a -, + 2.y7YY cos Bt converges 
uniformly for all real B. Hence, the order of taking the limit and integration 
may be interchanged. Putting a = At/n and, = pt/n results in 

2 r;;::;; II - (A + p) t + 2t JAii. cos B 
1-a-, + va,cosu = 1 + , 

11, 

which eliminates the dependent variables. Since 

1. ( -(A + p)t + 2tJAii.cos B)n -(A+fL)t 2t 0:j;.cos() 1m 1 + = e e V "'/-' , 
n-->oo 11, 

we have to determine 

p e (cos kB)e2t~cos() dB. 
k/2 -(A+fL)t /'7r 

7r . 0 

But, it is well-known that the modified Bessel function has the integral repre
sentation [Spanier and Oldham (1987, p. 481)] 

h(z) = - (cos kO)eZ cos () dO. 1 j'7r 
7r 0 

The above proof has first been given by Mohanty and Panny (1990). An al
ternative proof of (4.25) based on the Taylor series expansion of the modified 
Bessel function has been given by Mohanty and Panny (1989). 

It should be noted that (4.25) also covers the cases A = 0 or p = O. This 
can be shown by considering the asymptotic behavior of Idz) as z -+ 0, viz. 

(Z/2)k 
h(z) ""' -- as z -+ 0 

k! 

[Spanier and Oldham (1987, p. 495)]. If p -+ 0, the right-hand side of (4.25) 
consequently equals 

{ 
(At)k -At 

kle 
o 

k~O 

k < O. 

Correspondingly, if A -+ 0, the right-hand side of (4.25) becomes 

k::;O 

k > O. 
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Also, the quasi-symmetry property (4.19) of the GTe is reflected by the mod
ified Bessel functions, since Lk(Z) = h(z) whenever the order k is an integer. 
Moreover, it is well-known [see Spanier and Oldham (1987, p. 479)] that 

+00 
e-(MJ.L)t L //2 h (2t.;>:p,) = 1, 

k=-oo 

which corresponds to property (4.18). 
Hence, the above limiting process in fact constitutes an alternative approach 

to Feller's randomization technique. A nice point about this approach is that 
the discrete time results can be taken as a starting point to derive their continu
ous time counterparts through a limiting process. In particular, the generalized 
trinomial coefficients make it possible to express the discrete time results in 
quite a natural and simple way. Hence, Eq. (4.25) is fundamental for our ran
domization approach since it links together the discrete and continuous time 
results and in many cases allows to derive the continuous time results by more 
or less mechanically translating the pertaining discrete time results, as will be 
shown in the following examples. Proceeding this way, we perfectly conform to 
a suggestion expressed by Meisling (1958) in his last remark: "It is even conceiv
able that some continuous-time problems could be solved more simply by first 
considering the discrete-time case and then obtaining the continuous-time result 
by a limiting process." Recently, some interesting problems in queueing theory 
have been solved by adopting similar approaches; see, for example, Mohanty 
and Panny (1989, 1990), B6hm and Mohanty (1990, 1993, 1994), Kanwar Sen, 
Jain and Gupta (1993), Jain and Gupta (1993), and Mohanty, Parthasarathy 
and Sharaf Ali (1990). 

Example 4.4.1 In the following, we want to extend Example 4.3.1 for ran
domized random walks. We first have to adapt the definitions of D+ and Q 
in the following way: Let Dt denote the maximum of the randomized ran
dom walk, i.e., Dt = maxo::::T~;t{S(T)} and let Qt denote the number of times 
that the maximum is reached. The maximum is achieved if there is an interval 
1 = [a, b), 0 ::; a < b::; t, such that S(1) = Dt and the interval is maximal with 
respect to this property. Accordingly, Qt counts the number of such intervals 
in [0, t]. The following figure shows a sample path with Qt = 3. 

We are interested in the probability Pr[Dt > k, Qt = r] for a randomized 
random walk with S(O) = 0 and S(t) = f. As before, the possible cases are 
characterized by k ~ 0, k ~ f and r > O. The corresponding result (4.23) for 
simple random walks reads 

Pr[D;' > k, Qn = r] = /+r L pi (-.r) ( n; a, (3, 'Y .) . 
">0 ) n + f - 2k - 2r - 2) 

J_ 
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s A B A B A E 

k 
k-lr---~~+--+~.-----~~~~----.-.n~~,---r-r-+ 

o 

Figure 4.6: Number of times where the maximum is achieved 

Applying the limiting process in this case boils down to an application of 
(4.25), which furnishes at once 

The same can be done for Pr[Q = r]. In the preceding section, we have 
derived the discrete time result [cf (4.24)] 

Pr[Qn = r] = pr-1+¥ L pi (-.r) ( n; Ct, j3, 'Y. ) 
'>0 J n - If I - 2r - 2J + 2 

J_ 

which, through an application of (4.25), translates to 

The usefulness of this approach has been demonstrated by Bohm and Panny 
(1996) by considering various statistics for randomized random walks and by 
deriving the pertaining distributional results by means of the above random
ization procedure. 
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Combinatorial Identities: A Generalization of 
Dougall's Identity 

Erik Sparre Andersen and Mogens Esrom Larsen 

University of Copenhagen, Denmark 

Abstract: In this paper, I will discuss combinatorial identities as a tool for 
individuals working with combinatorial problems. I will also present a general
ization of Dougall's (1907) identity. In the notations of this paper, the general 
combinatorial identity established is the following: 

If p = b + C + d + e - n + 1 is a non-negative integer then we have: 

t (n) [n + 2a]k[b + a]k[c + a]k[d + a]k 
k=O k 

x [n - 2a]n-k[b - a]n-k[C - a]n-k[d - a]n-k[e - a]n-k(n + 2a - 2k) 

(-l)n[n + 2al2n+1[b + d - P]n-p[b + e - P]n-p[d + e - P]n-p 

x t (~) [n]j[c + a]j[c - a]j[b + e - n]p_j[d + e - n]p_j[d + e - n]p_j, 
j=O J 

where [X]k denotes the descending factorial. Dougall's identity, which is usually 
written in terms of a hypergeometric series, corresponds to the case P = o. 

Keywords and phrases: Combinatorial identities, Dougall's identity, Zeil
berger's algorithm, Pfaff-Saalschiitz's identity 

5.1 Introduction 

We shall discuss combinatorial identities as a tool for individuals working on 
combinatorial problems. It is important to mention here that we are well aware 
of Zeilberger's algorithm for proving combinatorial identities for sums of hy
pergeometric type. The generalization of Dougall's (1907) identity, which we 
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shall prove, however, cannot be proved using Zeilberger's algorithm. This may 
change in the future, but the version described by Petkovsek, Wilf and Zeil
berger (1996) does not work in this case. 

Combinatorial sums may be written in many ways. It is therefore important 
to define - if possible - a standard form of a sum. This is not always possible, 
but for sums of hypergeometric type it is possible. The quotient between two 
consecutive terms of a hypergeometric sum may be written as the quotient 
between two polynomials in the summation variable k. This has resulted in the 
adoption of finite hypergeometric series as a standard form. We prefer to write 
finite hypergeometric combinatorial sums using descending factorials 

[X]n = x(x - 1) ... (x - n + 1). 

If the sum has arbitrary natural limits m and n and the quotient between the 
(k + 1 )th term and kth term has the form 

(n - k)(al + m - k) ... (ap_l + m - k) 
..,....---'----,-;..,.-'--------'-----'-.:..,,-------'---.,.. z, (5.1) 
(m - 1 - k) (n - 1 - bl - k) ... (n - 1 - bq- l - k) 

then we use as standard form of the sum: 

t (~=:) [al]k-m ... [ap-l]k-m[bl]n-k ... [bq-l]n-k( _1)q(k-m)zk-m. (5.2) 
k=m 

If a combinatorial sum has (5.2) as standard form, we shall say that it is of Type 
II(p, q, z)N, where II represents hypergeometric sums and N stands for natural 
limits. The descending factorial is more natural for combinatorial problems than 
the ascending factorial used in connection with hypergeometric series. It is also 
an advantage to avoid division. It may be mentioned here that all the results 
in this paper are valid (and with essentially the same proof) if the parameters 
in (5.2), 

(5.3) 

all belong to a commutative ring which contains the natural numbers as ele
ments. 

Except for rearrangements of the a's and the b's, there is a one-to-one 
correspondence between the sum (5.2) with m = 0 and the hypergeometric 
series 

pFq-l( -n, -aI, ... , -ap-l; bl - n + 1, ... , bq- l - n + 1; (-1)p+qz). 

We shall say that the sum (5.2) is balanced if p = q and there exist a number 
a such that, with a suitable ordering of the parameters aI, ... , ap-l, bl , ... , bp- l , 
we have: 

ap-l n + 2a 

bp- l n - 2a 

aj bj + 2a for j = 1, ... , p - 2. 
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A balanced sum when written as a finite hypergeometric series is well-poised 
according to the terminology introduced by Whipple (1926). In a balanced 
sum, we prefer to introduce 

1 
Cj = "2(aj + bj ) for j = 1, ... ,p - 2. 

The sum (5.2) may then be written as 

t (;, = :) [71, - m + 2a]k_m [CI + a]k_m ... [Cp-2 + a]k-m 
k=m 

X [ 2] [ ] [ ] ( l)p(k-m) k-m 71, - m - a n-k CI - a n-k ... Cp-2 - a n-k - z. 

(5.4) 

If, furthermore Cp-2 = n-;m -1, we shall say that the sum (5.2) is well-balanced. 
In this case, we have 

[Cp-2 + a]k_m [Cp-2 - a]n_k 

[71, - m, ] [71, - m, ] 
-2- + a-I k-m -2- - a-I n-k 

--+a-1 -1)' , --+a-k [n-m, ] (n-k (n+m ) 
2 n-m-I 2 

The sum (5.4) multiplied by 

2( _1)n-m 

[ !!:.....!!l + a - 1J 2 n-m-I 

may then be written as 

k~ (;, = :) [71, - m + 2a]k_m [q + a]k-m ... [Cp-3 + a]k_m [71, - m - 2a]n_k 

x [q - a]n-k ... [Cp-3 - al n_ k (71, + m + 2a - 2k)( _l)(p-l)(k-m) zk-m. 

(5.5) 

In this paper, we prefer the form (5.5) to the standard form (5.2) for a well
balanced sum. 

The basic tool in this paper is the Chu-Vandermonde convolution given by 

n ( ) 
n-m, L k _ m [xh-m [Y]n-k = [x + Y]n-m 

k=m 
(5.6) 

which we shall use without proof. 
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5.2 The Generalized Pfaff-Saalschiitz Formula 

For a proof of the generalized Pfaff-Saalschiitz formula due to H. M. Srivastava 
(1989), we need the following lemma. 

Lemma 5.2.1 Let 

Then 

and 

Sn(al,a2,bl,b2) = Sn(a2,al,bl,b2) = Sn(al,a2,b2,bl ) = Sn(a2,al,b2,bl ). 

(5.9) 

PROOF. To prove (5.8), we use the fact that [aIlk (_I)k = [-al + k - Ilk and 
apply the Chu-Vandermonde convolution to write [-al + k - Ilk as 

(5.10) 

Replacing [aIlk (_I)k in the right-hand side of (5.7) by (5.10) and interchanging 
the order of summation, and after using the identities 

and 

we obtain 

Sn(al, a2, bl , b2) 

= t (~,) [n - al - bl - Ilj [a2lj [bIln _ j t, (~=~) [a2 - jlk-j [b2l n-k' 
)=0 J k=) J 

(5.11) 

The inner sum in (5.11) is a Chu-Vandermonde-sum and equals 

(5.12) 
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Using this, we obtain from (5.11) that 

Sn(aI. a2, bI. b2) 

= (_I)n t (~) [11, - al - bi - l]j [a2]j [bl]n_j [11, - a2 - b2 - l]n_j (-I)j 
j=o J 

= (-I)nSn(n-al-bl-l,a2,bl,n-a2-b2-1). (5.13) 

The formula (5.9) is now obvious. 

We are now prepared to prove the generalized Pfaff-Saalschiitz identity. 

Theorem 5.2.1 If al + a2 + bi + b2 - 11, + m + 1 = P E {O, 1,2, ... }, then 

kt (~=:) [aI]k_m [a2]k_m [bl]n_k [b2]n_k (_I)k-m 

- t (~=:) [al]k-m [a2]k_m [bl]n_k 
k=m 
x [11, - m + p - al - a2 - bi - l]n-k (_I)k-m 

- f;, (=) [n - mi. [a,l.lai +hI - pln-m-' 

x [11, - m - a2 - bi - l]n-m-k (_I)k 

- [al + bi - P]n-m-p [11, - m - a2 - bi -1]n-m-p 

• 

x t (i) [11, - m]k [a2]k [al + bi - n + m]p_k [P - a2 - bi - l]p_k (_I)k. 
k=O 

(5.14) 

We shall call P as the excess of the generalized Pfaff-Saalschiitz sum. 

PROOF. It is sufficient to prove Theorem 5.2.1 for m = O. Using the nota
tions in Lemma 5.2.1, we may write the left-hand side of (5.14) for m = 0 as 
Sn(al, a2, bl, b2)' From Lemma 5.2.1, it then equals 

(-ltSn(n - al - bi - 1, a2, bl , 11, - a2 - b2 - 1) 

= (-I)nSn(n - al - bi -1, a2, 11, - a2 - b2 -1, bl)' (5.15) 

We now apply the Lemma 5.2.1 to the right-hand side of (5.15) to obtain 

Sn(aI. a2, bl, b2) 

= (-l)nSn(n - al - bi - 1, a2, 11, - a2 - b2 - 1, bl) 

- Sn(al + a2 + bi + b2 - 11, + 1, a2, 11, - a2 - b2 - 1,11, - a2 - bi - 1) 

- Sn(P, a2, al + bi - p, 11, - a2 - bi - 1). (5.16) 
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In the last step, we have used the condition in the theorem twice. 
Using the fact that (~) [Plk = m [nlk' we obtain the middle expression in 

(5.14) with m = O. The right-hand side of (5.14) with m = 0 is obtained upon 
using 

and 

Note that the right-hand side of (5.14) is the product of two factorials both 
of length n - m - p and a polynomial in n - m of degree p. 

5.3 A Modified Pfaff-Saalschiitz Sum of 
Type 11(4,4, l)N 

For the proof of the generalized Dougall's identity, we shall use the following 
result. 

Theorem 5.3.1 If al + a2 + bl + b2 - n + 1 = P E {O, 1,2, ... }, then 

to (~) [allk [a2lk [blln - k [b2ln- k [c + kl p (_I)k 

to (~) [nlk [a21k [P - al - c -Ilk 

x [al + bl - pln-k [n - a2 - bl - Il n- k [clp_k' (5.17) 

The sum on the left-hand side of (5.17) is a generalized Pfaff-Saalschiitz 
sum, where the terms have the extra factor [c + kl p . For p = 0, (5.17) reduces 
to the Pfaff-Saalschiitz identity. 

PROOF. We use the Chu-Vandermonde identity to write [c + klp in the left
hand side of (5.17) as Ej=o (~) [kl j [cl p_j to obtain a double sum. We change 
the order of summation and use the identities 

(~) Ik]; In]; (~ = ~ ), 
[allk = [all j [al - jlk-j , 

[a2lk [a2lj [a2 - jlk-j , 
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to obtain 

(5.18) 

The inner sum is a generalized Pfafi'-Saalschiitz sum with excess p - j. Using 
this, we obtain for the left-hand side of (5.17) the expression 

We now use [nJj [71, - jJh = [nJj+h and [a2J j [a2 - jJh = [a2Jj+h and substitute 
k - j for h. We next change the order of summation to obtain 

k (k) xL: [aIJ j [c - P + kJk-j . 
j=O J 

(5.20) 

In (5.20), the inner sum is a Chu-Vandermonde-sum and using the identity, we 
then obtain 

'to (~) [nJk [a2Jk [al + bi - pJn-k [al + b2 - pJn-k 

x [CJp_k [al + C - P + klk (_I)k. (5.21) 

Since [al + C - P + kJk (_I)k = [p - al - C - IJk' we finally obtain the right
hand side of (5.17). This proves the theorem. • 

5.4 A Well-Balanced 11(5,5, l)N Identity 

The following theorem is a special case of an evaluation of an infinite well-poised 
hypergeometric series found in Slater (1966, p. 56). 
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Theorem 5.4.1 For arbitrary a, b, c and integers m and n with m ::; n, we 
have 

kt (; = :) [n - m + 2alk_m [b + al k- m [c + alk-m 

x [b - aln-k [c - aln-k [n - m - 2aln_k (n + m + 2a - 2k) 

= [n - m + 2abn-2m+l [b + cl n - m . (5.22) 

PROOF. Once again, we may assume that m = O. We use the original Pfaff
Saalschiitz identity to replace [b + alk [c + alk in the left-hand side of (5.22) 
by 

t (~) [n + 2a - kl j [n - b - c - Ilj [b - a - n + klk-j 
j=O J 

x [c - a - n + klk_j (-I)j. 

Upon using the identities 

[n + 2alk [n + 2a - kl j = [n + 2abj [n + 2a - 2jlk_j , 

[b - aln-k [b - a - n + klk_j = [b - al n_j , 

[c - aln-k [c - a - n + klk_j = [c - al n_j , 

(5.23) 

and interchanging the order of summation, we obtain the following double sum 
for the left-hand side of (5.22): 

t (~,) [n + 2ab [n - b - c - Ilj [b - al n_j [c - al n_j (-I)j 
j=O J 

x t (; =~) [n + 2a - 2jlk_j [n - 2a]n_k (n + 2a - 2k). 
k=j J 

(5.24) 

Writing (n + 2a - 2k) as (n + 2a - 2j) - 2(k - j), the inner sum may be written 
as 

n ( .) n-J L k _. [n + 2a - 2j]k_j [n - 2a]n_k (n + 2a - 2j) 
k=j , J 

n ( ") 
n-J - L k _" [n + 2a - 2jJk_j [n - 2a]n_k 2(k - j) 

k=j J 

n-J 
n ( ") (n + 2a - 2j) t; k _ j [n + 2a - 2j]k_j [n - 2aln_k 
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- 2(n - j)(n + 2a - 2j) t (n - ~ -1) 
k=j+l k - J - 1 

x [n + 2a - 2j - l]k-j-l [n - 2a]n_k. (5.25) 

In the right-hand side of (5.25), both sums are Chu-Vandermonde sums and, 
hence, we obtain for the inner sum the expression 

(n + 2a - 2j) (l2n - 2j]n_j - 2(n - j) [2n - 2j - l]n-j-l) . (5.26) 

It is easily seen that (5.26) vanishes for j = 0,1, ... , n - 1. For j = n, (5.26) 
reduces to (n + 2a - 2n)(1- 0) = 2a - n. The sum (5.24), therefore, reduces to 
a single term given by 

(_1)n [n + 2ahn+1 [n - b - c - lln = [n + 2ahn+1 [b + cln . 

This completes the proof, which might be replaced by a proof using Zeil-
berger's algorithm. • 

5.5 A Generalization of Dougall's Well-Balanced 
11(7,7, l)N Identity 

For p = 0, this result was proved by Dougall (1907). 

Theorem 5.5.1 Let 

S = E (~) [n + 2alk [b + alk [c + alk [d + alk [e + alk 

If 

then 

x [n - 2aln_k [b - aln- k [c - aln-k [d - aln-k [e - aln-k (n + 2a - 2k). 

(5.27) 

b + c + d + e - n + 1 = P E {O, 1,2, ... }, (5.28) 

S = (_l)n [n + 2al2n+l 

X t;. (~) Inl. Ie + al. Ie ~ al. Ib + d ~ Pln~' Ib + e ~ Pln-. Id + e ~ pln-. 

(_l)n [n + 2ahn+1 [b + d - pln-p [b + e - pln-p [d + e - pln-p 

x t;. (~) Inl.!e + al. Ie ~ al.!b + d ~ nlp_' Ib + e ~ nlp_.!d + e ~ nip-, . 

(5.29) 
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PROOF. From the Pfaff-Saalschiitz identity, it follows that 

[d + alde + al k = t (~) [71, + 2a - kl j [71, - d - e - 1L 
j=O J 

x [d - a - 71, + k 1 k- j [e - a - 71, + k 1 k- j ( -l)j . 

(5.30) 

Replacing [d + alk [e + alk in S by the right-hand side of (5.30) and simplifying 
as we did in the earlier proofs, we obtain 

S = t (~,) [71, + 2ahj [b + alj [c + alj [71, - d - e - llj 
j=O J 

x [d - aln- j [e - al n_j (-l)j 

x t. (~ = ;) [71, + 2a - 2jlk_j [b + a - jlk-j [c + a - jlk-j 
k=J . 

X [71, - 2aln_k [b - aln-k [c - aln-k (71, + 2a - 2k). (5.31) 

The inner sum is well-balanced and we can use Theorem 5.2.1 to observe that 
this sum reduces to 

[71, - 2j + 2abn-2j+l [b + c - jln-j . (5.32) 

Replacing the inner sum in (5.31) by (5.32) and simplifying, we find that 

S = [71, + 2abn+l t (~,) [b + alj [c + alj [71, - d - e - llj 
j=O J 

x [d - al n_j [e - al n_j [b + c - jln-j (-l)j. 

We now use condition (5.28) and find that 

[71, - d - e - llj [b + c - jln-j 

[71,-d-e- 1ln_p [b+c-jlp 

(5.33) 

= [71,-d-e-1ln_p[p-b-c-1+jlp(-1)p. (5.34) 

Using (5.34), we may rewrite (5.33) as 

S = [71, + 2ahn+1 [71, - d - e - lln_p 

x t (~,) [b + alj [c + alj [d - aln_j [e - aln_j 
j=O J 

x [p - b - c -1 + jlp (-l)P-j. (5.35) 
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The sum in the formula (5.35) may be simplified upon using Theorem 5.3.1 
since condition (5.28) ensures the applicability of this theorem. We then obtain 

S = (-1)P[n+2abn+l[n-d-e-l]n_p 

x E (~) [n]k [c + ah [c - a]k [b + d - P]n-k 

x [n - c - d - l]n-k [p - b - c - l]p_k' 

From condition (5.28), we also have 

[n - c - d - l]n-k = [b + e - P]n-k 

and 
[p - b - c - l]p_k = [d + e - n]p_k' 

Using now the simplification 

(5.36) 

(-l)P [n - d - e -l]n_p [d + e - n]p_k (-It [d + e - P]n-p [d + e - n]p_k 

(-It [d + e - P]n-k' 

we obtain the first expression in (5.29). The second expression in (5.29) is 
readily obtained upon using the identities 

and 

[b + d - P]n-k = [b + d - P]n-p [b + d - n]p_k ' 

[b + e - P]n-k = [b + e - P]n-p [b + e - n]p_k 

[d + e - P]n-k = [d + e - P]n-p [d + e - n]p_k . 

If e is eliminated using condition (5.28), then the right-hand side of (5.29) takes 
the form of a product of four factorials and a polynomial in n of degree at most 
p. • 
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A Comparison Of Two Methods For Random 
Labelling of Balls by Vectors of Integers 

Doron Zeilberger 

Temple University, Philadelphia, PA 

Abstract: Kirk (1993) raised the question of comparing the following two ways 
for labelling balls. Given r pre-determined positive integers ni (1 ~ i ~ r), and 
given N balls (N large), consider two ways to randomly assign r-component 
vectors of integers (al,"" aT) to them, such that 1 ~ ai ~ ni. We will call 
these vectors labels. Of course, altogether there are I1i=l ni possible labels. 

Keywords and phrases: Urn models, combinatorial methods for finding mo
ments 

6.1 First ~ay 

You put all the balls in one big pot. For i = 1, ... , r, at the i-th iteration, line 
up ni smaller pots, each with capacity N jni balls, and labeled with labels 1 
through ni, and, uniformly at random, distribute them into these smaller pots. 
Assign the i-th component of the vector-label of each ball, ai, to be the label 
of the pot in which it was dropped. Having done that, you dump all the balls 
back into the big pot, and go on to the next iteration. 

6.2 Second ~ay 

Do the same as above for i = 1, except that at the end of the first iteration 
you do not dump back the balls into the large ball but proceed as follows. 
For i = 2, ... , r, assuming that the balls have already received their first i-I 
components, leaving the balls in their pots from the (i - l)-th iteration, you 
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line-up ni new pots, each with a capacity of N Ini balls, and labeled with labels 
1 through ni. For each of the ni-l pots from the previous iteration, individually, 
we uniformly at random, distribute their contents into the new pots, each of 
the ni new pots getting exactly N 1 (ni-l ni) balls from each of the ni-l pots 
from the previous (i - l)-th iteration. 

Note that in the First Way, assuming that we can reuse the pots, we need 
1 + max( nl, ... , nr ) pots, one of which should have a capacity of N balls, while 
in the Second Way, we need max(l + nl, nl + n2, . .. ,nr-l + nr) pots. 

The goal is to maximize the 'equal representation' of all the possible nr=l ni 
vector-labels. It is obvious that, with either way, the probability of a ball to be 
assigned any given label is nr=l nil, and hence that the expected number of 
balls to be given label v, for each of v E nr=l [1, nil, is N nr=l nil. 

It is intuitively obvious that in the Second Way the 'spread' in the distri
bution is less than in the First Way. In fact, when r = 2, the Second Way gives 
a perfect way of equi-distribution. We are guaranteed that the number of balls 
given any particular label (aI, a2) is exactly N l(nln2). 

Throughout this note we assume that N is divisible by lcm(nl'n2, n2n3, 
... , nr-l nr ). For any statement P, x( P) is 1 or 0 according as whether P is 
true or false, respectively. 

The way to quantify 'spread' is via standard deviation, or its square, the 
variance. By symmetry, it is enough to pick anyone fixed label v, say v = 
(1, ... ,1). 

The 'random variable' on a given 'experiment' is the 'number of balls la
belled v'. To compute its variance, we will use an old trick, described beautifully 
in Section 8.2 of the modern classic by Graham, Knuth and Patashnik (1993). 
This trick can also be used to find the average (i.e., first moment), in which 
case it is even easier to use, and higher moments, in which case it is (usually) 
harder to use. 

Let S denote the set of all possible outcomes of the 'labelling experiment'. 
The total number of outcomes in the First Way is 

For each outcome s, let o(s) be the quantity 'number of balls that receive the 
(fixed) label v'. 

Let us first compute the average of this quantity (even though we know 
the answer, just as a warm-up for the calculation of the variance, that would 
follow). We have 

N 

LO(S) L L x(the j-th ball is labelled v) 
sES sESj=l 
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(6.1) 
j=l SESj 

where the inner sum extends over the set of outcomes, say Sj, of s E S for 
which the j-th ball was labelled v. By symmetry, this inner sum is independent 
of j, and equals 

r (N - I)! g ((N/ni) - l)!(N/ni)!ni -l ' 

since at each iteration one of the balls (the j-th) is committed to lend in one of 
the pots (Pot Vi in the i-th iteration.) 

Hence the sum in (6.1) equals 

N r (N -I)! g ((N/ni) - l)!(N/ni)!ni -l ' 

and hence the average is 

ave. 

as expected. 

6.3 Variance and Standard Deviation 

Let us recall a few elementary facts about variance. The standard deviation is 
defined to be the square root of the variance. Suppose that we have a finite 
set S, and there is some numerical attribute (random variable) X (s) for every 
element s E S. Then the variance, V(X), is the 'average of the squares of the 
deviation from the average', i.e. 

V(X) = L::sES(X(S) - ave.)2 
lSI ' 

where lSI is the number of elements of S. 
It is easier to compute the related quantity 

'" (X(s») 
W(X) = USES 2 

lSI 
Simple algebra shows that 

V(X) = 2W(X) + ave. - ave.2 . 

Now we are ready to compute W(a). 
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We have 

_1 '""" (a(s)) W(a) = ~ 
lSI sES 2 

_1 '""" '""" = ~ ~ x(the i-th and j-th balls are both labelled v) 
lSI sES l~i<j~N 
1 = lSI L [Number of outcomes with the i-th and j-th 

l~i<j~N 

balls both labelled v]. ( 6.2 ) 

By symmetry, the summand is independent of (i, j) and is easily seen to be 
equal to 

r (N - 2)! g ((Nlnd - 2)!(Nlni)!ni -1 

since, at each of the r iterations, two balls are committed to lend at a prede
termined pot (the vi-th pot at the i-th iteration.) 

Simple algebra yields 

W(a) = (N) IT n:;2 (1 - nilN) 
2 i=l (1 - liN) 

It then follows that 

N N 2 ITr -2 (1- ndN) 
V(a) = ave.-ave.2+2W(a) = I1i=l ni I1':- n2 +N(N -1). ni (1 - liN) . 

7.-1 7. 7.=1 

Assuming that N is large, so that liN is small, and using the approximation 
1/(1 - x) = 1 + x + O(x2), we get the following proposition. 

Proposition 6.3.1 The average number of occurrences of any given vector v 
as a label, in the First Way, is N I nr=l ni, and its variance is 

6.4 Analysis of the Second Way 

In this case, the total number of outcomes is 
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Using an analogous argument as before, the number of outcomes with the 
i-th and j-th balls labelled v equals 

(N - 2)! IT ((N/ni-I) - 2)! 
((N/nl) - 2)!(N/nl)!n1-l i=2 ((N/ni-lnd - 2)!(N/(ni_l ni))!ni -l 

[ 
(N/ni-l)! ]ni-1-l 

x (N/(ni_lni))!ni . 

Simple algebra then yields that 

W(a) = (N) IT n:;2 (1 - ndN) IT (1 - ni-lni/N ) , 
2 i=l (1 - l/N) i=2 (1 - ni-dN) 

which, as before, leads to the following proposition. 

Proposition 6.4.1 The average number of occurrences of any given vector v 
as a label, in the Second Way, is N / IU=l ni, and its variance is 

which is slightly smaller. 
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On The Ballot Theorems 

Lajos Takacs 

Case Western Reserve University, Cleveland, OH 

Abstract: The discovery of various ballot theorems has had great impact on 
several areas of combinatorics and probability theory. This paper deals with the 
historical background and the development of these theorems, analyzes various 
proofs and gives some applications. 

Keywords and phrases: Classical ballot theorem, general ballot theorem, 
historical development, applications, combinatorial identities 

7.1 Introduction 

In this paper we discuss the historical development of various ballot theorems, 
provide several proofs for these theorems, and give some applications. It is very 
surprising that the various ballot theorems have so many useful applications in 
many areas of mathematics, such as combinatorics, the theory of random walks, 
queuing theory, order statistics, and the theory of graphs. The simplicity and 
the generality of the ballot theorems might explain their wide range of uses. 

7.2 The Classical Ballot Theorem 

The following theorem is usually called the classical ballot theorem. 

Theorem 7.2.1 If in a ballot candidate A scores a votes and candidate B 
scores b votes where a ~ bl-l and I-l is a positive integer, then the probability that 
throughout the counting the number of votes registered for A is always greater 
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than p times the number of votes registered for B is given by 

a-bp 
P(a,b,p) = --b ' a+ 

provided that all the possible voting records are equally probable. 

Lajos Takacs 

(7.1) 

PROOF. Every voting record can be represented by a sequence of a letters A 
and b letters B, where an A stands for a vote for A and a B stands for a vote 
for B. The number of possible voting records in which A scores a votes and B 
scores b votes is 

( a + b) = (a + b)! 
b a!b!· 

(7.2) 

Let us denote by N(a, b, /1-) the number of favourable voting records, that is, 
voting records in which throughout the counting the number of votes registered 
for A is always greater than /1- times the number of votes registered for B. Then 

(7.3) 

If we take into consideration that the last vote is registered for either A or B, 
then we obtain that 

N(a, b, /1-) = N(a - 1, b, /1-) + N(a, b - 1, /1-) (7.4) 

for a > b/1- and b ~ 1. Furthermore, we have N(b/1-, b, /1-) = 0 for b ~ 1, and 
N(a, 0, p) = 1 for a ~ 1. The recurrence formula (7.4) makes it possible to 
calculate N(a, b, p) for a > bp. Table 7.1 contains N(a, b, 1) for 0 ~ b ~ a ~ 6. 

1rable 7.1: N(a,b, 1) 

a\b 0 1 2 3 4 5 6 
0 -
1 1 0 
2 1 1 0 
3 1 2 2 0 
4 1 3 5 5 0 
5 1 4 9 14 14 0 
6 1 5 14 28 42 42 0 

After the publication of Blaise Pascal's famous Treatise on the Arithmetic 
Triangle in 1665 [Pascal (1908a,b)], it has became generally known that the 
binomial coefficients 

F(a b) = (a + b - 1) = (a + b - I)! 
, b (a-1)!b! (7.5) 
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defined for a ~ 1 and b ~ 0 can be calculated by the recurrence formula 

F(a, b) = F(a - 1, b) + F(a, b - 1) (7.6) 

where a ~ 1, b ~ 1, F(a, 0) = 1 for a ~ 0, and F(O, b) = 0 for b ~ 1. In other 
words, (7.5) is uniquely determined by (7.6) and by the boundary conditions. 
See Table 7.2 for F(a, b) for a :::; 6 and b :::; 6. 

Table 7.2: F(a, b) 

a\b 0 1 2 3 4 5 6 
0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 
2 1 2 3 4 5 6 7 
3 1 3 6 10 15 21 28 
4 1 4 10 20 35 56 84 
5 1 5 15 35 70 126 210 
6 1 6 21 56 126 252 462 

We observe that both F(a, b) and F(b, a) satisfy (7.4). Therefore, if F(a, b) 
is defined by (7.5), then 

N(a, b, IL) = F(a, b) -ILF(b, a) (7.7) 

also satisfies (7.4) whenever a > blL > O. Moreover, (7.7) satisfies the boundary 
conditions N(blL, b, IL) = 0 for b ~ 1 and N(a, 0, IL) = 1 for a ~ 1. Accordingly, 
by (7.5) we obtain that 

N(a,b,IL) = (a+~-l) _1L(a+!-l) (7.8) 

if a ~ blL. Finally, by (7.3) we get 

P(a, b, IL) = (a - blL)/(a + b) (7.9) 

if a ~ blL. This proves (7.1) for any positive integer IL. • 
In the particular case when IL = 1, formula (7.1) was discovered by Bertrand 

(1887), and was proved in the same year by Andre (1887). Also Barbier (1887) 
noticed that if IL is a positive integer, then (7.1) holds. However, Barbier did 
not prove (7.1). Its proof was given only in Aeppli (1923, 1924). Aeppli's proof 
is in his dissertation which he wrote under the supervision of Professor Gyorgy 
P6lya. Thanks to Professor P6lya, I have a copy of Aeppli's dissertation and I 
believe that this is the first paper which gives an account of Aeppli's remarkable 
proof. As we have shown, Theorem 7.2.1 can be proved simply by making use of 
only a fundamental property of the arithmetic triangle. Although the classical 



100 Lajos Takacs 

ballot theorem attracted considerable attention at the time, it required 37 years 
to accomplish the task of proving it. 

The numbers F(a, b) defined in (7.5) are known as figurate numbers or bi
nomial coefficients. Printed tables for F(a, b) were already available in the 
sixteenth and seventeenth centuries. See, for example, Apianus (1527) for 
a + b ~ 10, Cardano (1570, p. 135) for a + b ~ 12, Mersenne (1635-1636, Libr. 
VII, p. 134) for a ~ 25 and b ~ 12, and Pascal (1908, p. 446) for a + b ~ 10 . It 
has been known for a long time that the numbers F(a, b) have also combinatorial 
interpretations. In particular, F(a, b) is the number of different arrangements 
of a-I letters A and b letters B in a row. 

7.3 The Original Proofs of Theorem 7.2.1 

In the particular case of fL = 1, Theorem 7.2.1 was proved by Andre (1887). 
His proof was highly appreciated. In his book, Bertrand (1889, pp. 18-20) 
presented Andre's proof and praised Andre for his ingenious demonstration. 
Poincare (1912, pp. 21-26) also included Andre's proof in his book. 

PROOF OF BERTRAND'S THEOREM BY D. ANDRE. In what follows we 
describe the original proof of Andre (1887). He demonstrated that 

(7.10) 

for a 2: b 2: 1. 
His reasoning is as follows: Every voting record can be described by a 

sequence of a letters A and b letters B if an A stands for a vote for A and a B 
stands for a vote for B. The total number of voting records is given by (7.2). 
Andre showed that the number of unfavourable voting records is 

(7.11 ) 

Consequently (7.10) is true, and (7.10) implies (7.1). 
To prove (7.11) let us observe that the set of unfavourable voting records 

can be divided into two disjoint subsets: The first subset contains all the voting 
records in which the first letter is B and in addition there are a letters A and 
b - 1 letters B. The second subset contains all the unfavourable voting records 
in which the first letter is A and in addition there are a-I letters A and b 
letters B. 

There is a one-to-one correspondence between the voting records in these 
two subsets. This can be seen as follows: If a voting record belongs to the 
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second subset, then counting the letters from left to right, there is a shortest 
subsequence which contains an equal number of letters A and B. The last 
letter in this shortest sequence is necessarily B. In this shortest sequence, let 
us remove all the letters except the last B and put them at the end of the voting 
record in the same order. Then we obtain a voting record which belongs to the 
first subset. 

Conversely, if a voting record belongs to the first subset, then counting 
letters from right to left, there is a shortest subsequence which contains one 
more letter A than B. The first letter in this shortest sequence is necessarily A. 
Let us remove all the letters in this shortest sequence and put them in the same 
order at the beginning of the voting record. Then we obtain a voting record 
which belongs to the second subset. 

It is evident that this mapping is one-to-one, and therefore both subsets 
contain (a+!-l) voting records. Thus the total number of unfavourable voting 
records is given by (7.11). • 

For IL 2': 1, Theorem 7.2.1 was proved by Aeppli (1923, 1924). 

PROOF OF THEOREM 7.2.1 BY A. AEPPLI. This proof is a somewhat 
modified version of the original proof of Aeppli (1924). Among the first r votes 
recorded, denote by a r the number of votes for A and by f3r the number of 
votes for B. Then (7.1) can also be expressed as 

(a - bIL) 
P(a, b, IL) = Pr[ar > f3rIL for r = 1,2, ... , a + bJ = (a + b) (7.12) 

if a 2': bIL. To prove (7.12), define 'Yr = a r - f3rIL for r = 1,2, ... , a + b. Then 

P(a, b, IL) Pr['Yr > 0 for all r = 1,2, ... , a + bJ 
1 - Prl"fr ~ 0 for some r = 1,2, ... , a + bJ. 

We have 

Prl"fr ~ 0 forsomer = 1,2, ... ,a + bJ 
J.L-l 

(7.13) 

= Prl"fl = -ILJ + L Prl"fr > 0 for 0 < r < s, 'Ys = -f for some s 2': 2J. 
1'=0 

(7.14) 

In the sum, each term is equal to 

(a + b - 1) / (a + b) Prl"fl = -ILJ = b _ 1 b = b/(a + b). (7.15) 

This can be seen as follows: If for a fixed f = 0,1, ... ,IL - 1, we consider the 
set of voting records in which 'Yr > 0 for 0 < r < sand 'Ys = -f for some 
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s 2:: 2, and if in each voting record we reverse the order of the first s votes, then 
we obtain a voting record which belongs to the set of voting records in which 
II = -fl· Conversely, if a voting record belongs to the set of voting records in 
which II = -fL, then for each fixed P. = 0,1, ... , fL - 1, there exists a smallest 
s 2:: 2 such that IS = -P.. Let us reverse the order of the first s votes in such a 
voting record. Then we obtain a voting record for which IT > 0 for 0 < r < s 
and IS = -P.. There is a one-to-one correspondence between the voting records 
in the two sets. Thus 

P(a, b, fL) = 1 - (fL + 1) Pr[rl = -fL] = (a - fLb)/(a + b) (7.16) 

for a 2:: bfL. This proves (7.12). • 

7.4 Historical Background 

The origin of the classical ballot theorem can be traced back to a problem in 
games of chance. In 1708, De Moivre (1711, pp. 262-263 and 1984, pp. 260-261) 
solved the following problem of games of chance: Two players A and B agree 
to play a series of games. In each game, independently of the others, either 
A wins a counter from B with probability p or B wins a counter from A with 
probability q where p > 0, q > 0 and p + q = 1. Let us suppose that initially A 
has an unlimited number of counters and B has only k counters where k is a 
positive integer. If B is ruined, that is, if B loses all of his counters, the series 
ends. Denote by p(k) the duration of the games, that is, the number of games 
played until B is ruined. If B is never ruined, then p(k) = 00. The problem is 
to determine the distribution of p(k). De Moivre (1711, Problem XXV, p. 262 
and 1984, Problem 25, p. 260) discovered that 

Pr[p(k) :::; n] = L (. : k)piqn-j + L (~)piqn-j (7.17) 
k~j«n+k)/2)' (n+k)/2~j~n ) 

for 1 :::; k :::; n; see also Hald (1984). De Moivre (1718, Problem XL, pp. 119-
122, 1738, Problem LXIV, pp. 179-181 and 1756, Problem LXV, pp. 208-210) 
also expressed (7.17) in the following form 

Pr[p(k) :::; n] = L _k_. (k ~ 2j )pk+jqj 
O~j~(n-k)/2 k + 2) ) 

(7.18) 

for 1 :::; k :::; n. From (7.18), it follows that 

(7.19) 
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for j ~ 0 and k ~ 1. We note that Pr[p(k) < 00] = 1 if p ~ q. If p < q, then 
Pr[p(k) < 00] = (p/q)k. 

De Moivre stated (7.17) and (7.18) without proof. Formula (7.18) was 
proved only in 1773 by Laplace (1776, pp. 188-193; 1812, p. 235, and 1814, 
p. 238). Both (7.17) and (7.18) were proved by Lagrange (1777, pp. 230-238). 
It is interesting to recall Ampere (1802, p. 9) who describes formula (7.19) as 
remarkable for its simplicity and elegance. See also Takacs (1969). 

The probability that in k + 2j games A wins k + j games and B wins j 
games is 

( k + 2j ) k+j j . p q. 
J 

(7.20) 

The conditional probability that B will be ruined at the (k + 2j)th game, given 
that in the k + 2j games A wins k + j games and B wins j games, is 

Q(k + j,j) = k/(k + 2j). (7.21) 

Let us imagine that two candidates A and B play a series of games of 
chance. Suppose that A has an unlimited number of counters and B has only 
a - b ~ 0 counters and A wins a games and B wins b games until B is ruined. 
Let us consider the a + b games in reverse order and suppose that a win for A 
corresponds to a vote for A, and a win for B corresponds to a vote for B. Then 
we can see immediately that P(a, b, 1) = Q(a, b) = (a - b)/(a + b). 

Although De Moivre's books were widely known, it escaped the attention 
of contemporary mathematicians that De Moivre's results can be used to solve 
the ballot problem for I-L = 1. It also escaped attention that for I-L = 1, Theorem 
7.2.1 can also be deduced from some results of Whitworth (1879) for random 
walks. 

The method of reflection is widely used in the theory of random walks, and 
it seems interesting to mention how Theorem 7.2.1 can be proved for I-L = 1 
simply by using the reflection principle. 

PROOF OF BERTRAND'S THEOREM BY THE REFLECTION PRINCIPLE. A 
voting record is favourable if the first vote is for A and if in the course of 
counting no tie occurs. Let us consider the set of voting records in which the 
first vote is for A. The number of such voting records is 

( a+b-1) = (a+b-1)! 
b (a - 1)!b! . 

(7.22) 

Among these voting records, 

( a + b - 1) = (a + b - 1)! 
a a!(b - 1)! 

(7.23) 
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are not favourable. To prove this, let us consider the first tie in an unfavourable 
voting record. After the first tie, let us change every vote into opposite. Then 
we obtain a voting record which contains a votes for Band b votes for A and 
the first vote is registered for A. The number of such voting records is given 
by (7.23). Conversely, if we consider a voting record of the latter type, and if 
after the first tie in this voting record we change every subsequent vote into 
opposite, then we obtain an unfavourable voting record. There is a one-to-one 
correspondence between the voting records in these two sets. Consequently, 

(7.24) 

which is in agreement with (7.8). As we have already seen, (7.1) follows from 
(7.8). In the above proof, when after the first tie we changed each subsequent 
vote into its opposite, we actually applied the reflection principle. 

Now we have several different proofs for Theorem 7.2.1 if 11 ~ 1. In 1947 
Dvoretzky and Motzkin (1947) observed that if we consider any voting record 
which contains a votes for A and b votes for B where a > bl1 and if we form all 
the a + b cyclic permutations of this voting record, then there are exactly a - bl1 
cyclic permutations which are favourable, that is, throughout the counting the 
number of votes recorded for A is always greater than 11 times the number 
of votes recorded for B. Hence, (7.1) immediately follows. For a geometric 
interpretation of this proof, see Grossman (1950), Yaglom and Yaglom (1954, 
pp. 172-175 and p. 184) and Mohanty (1966). 

7.5 The General Ballot Theorem 

The following theorem which is a generalization of Theorem 7.2.1 is usually 
called the general ballot theorem. 

Theorem 7.5.1 Let us suppose that a box contains n cards marked with non
negative integers kl' k2, ... , kn respectively, where kl + k2 + ... + kn = k :::; n. 
All the n cards are drawn without replacement from the box. Denote by lIr the 
number obtained at the r-th drawing (r = 1,2, ... , n). Then 

Pr[lIl + lI2 + ... + lIr < r for r = 1,2, ... , nJ = (n - k)/n, (7.25) 

provided that all the possible results are equally probable. 

To demonstrate that Theorem 7.2.1 is a particular case of Theorem 7.5.1, 
let us consider a box which contains a cards marked 0 and b cards marked 11 + 1. 
We draw all the a + b cards from the box without replacement, assuming that 
all the possible results are equally probable. Let us suppose that a card marked 
o corresponds to a vote for A, and a card marked 11 + 1 corresponds to a vote 
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for B. If among the first r drawings there are a r cards marked 0 and f3r cards 
marked J-l + 1, then arO + f3r(J-l + 1) < r = a r + f3r holds if and only if a r > f3rJ-l. 
Now, al + a2 + ... + aa+b = a and f31 + f32 + ... + f3a+b = b. If a ~ bJ-l and if in 
(7.25) we put n = a + band k = b(J-l + 1), we obtain 

Pr[ar > f3rJ-l for r = 1,2, ... , a + b] = (a - bJ-l)j(a + b) 

which is in agreement with (7.1). See Takacs (1961, 1962). 
We can formulate Theorem 7.5.1 in the following equivalent way: 

(7.26) 

Theorem 7.5.2 Let us suppose that n cards are marked with non-negative in

tegers kl' k2, . .. ,kn respectively, where kl + k2 + ... + kn = k ~ n. Among the 
n! permutations of the n cards, there are exactly 

S(n, k) = (n - k)(n - I)! (7.27) 

permutations in which the sum of the numbers on the first r cards is less than 
r for every r = 1,2, ... , n. 

PROOF. We can prove by mathematical induction that S(n, k) does not depend 
individually on kl' k2, . .. ,kn, it depends only on their sum k and their number 
n, and is given by (7.27). Obviously, S(I,O) = 1 and S(I,I) = O. Let us 
suppose that S(m, k) = (m - k)(m - I)! for 0 ~ k ~ m ~ n - 1 where n ~ 2. 
If we take into consideration that the last card in the n! permutations of the n 

cards may be marked kl' k2, ... ,kn, then we can write down that 

n 

S(n, k) = L S(n - 1, k - ki ) (7.28) 
i=l 

for k < nand S(n, n) = O. If k < n, then by the induction hypothesis 

n 

S(n, k) = L(n - 1 - k + ki)(n - 2)! = (n - k)(n - I)!. (7.29) 
i=l 

Consequently, (7.27) is true for all n = 1,2, ... and 0 ~ k ~ n. • 
If in Theorem 7.5.2 we replace the n! permutations by n cyclic permutations, 

we obtain the following result. 

Theorem 7.5.3 Let us suppose that n cards are marked with non-negative in

tegers kl' k2, ... ,kn respectively, where kl + k2 + ... + kn = k ~ n. Among the 
n cyclic perrnutations of the n cards, there are exactly n - k in which the sum 
of the numbers on the first r cards is less than r for every r = 1,2, ... ,n. 

PROOF. Let kr+n = kr for r = 1,2, ... and set 'Pr = kl + k2 + ... + kr for 
r = 1,2, ... ; 'Po = O. Define 

Or = {01 if i - 'Pi > r - 'Pr for i > r, 
otherwise, 

(7.30) 
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and 
'ljJr = inf {i - <Pi for i 2: r} (7.31) 

for r = 0,1,2, .... Evidently, 8r = 'ljJr+1 -'ljJr . Since <Pr+n = <Pr + <Pn, we have 
8r+n = 8r and 'ljJr+n = 'ljJr + n - k for r = 0,1,2, .... Therefore, among the n 

cyclic permutations of (k1' k2, ... ,kn ), there are exactly 
n 

L 8r = 'ljJn+ 1 - 'ljJl = n - k (7.32) 
r=l 

for which the sum of the first r elements is less than r for r = 1,2, ... ,n. • 

Obviously, Theorem 7.5.3 implies Theorem 7.5.2. Theorem 7.5.3 can also 
be formulated in the following more general way. 

Theorem 7.5.4 Let 111,112, .. . , lin be interchangeable or cyclically interchange
able discrete random variables which take on non-negative integers only. Write 
N r = III + 112 + ... + IIr for r = 1,2, ... ,n and No = O. We have 

Pr[Nr < r for 1 ~ r ~ nand Nn = n - i] = ~ Pr[Nn = n - i] 
n 

for 0 ~ i ~ nand n = 1,2, .... 

The following result is a Corollary of Theorem 7.5.4. 

(7.33) 

Theorem 7.5.5 Let 111,112, . .. ,lin be interchangeable discrete random variables 
which take on non-negative integers only. Write N r = III + 112 + ... + IIr for 
r = 1,2, ... ,n and No = O. We have 

n 1 
Pr[Nr < r for at least one r = 1,2, ... , n] = L -:- Pr[Ni = i - 1] 

i=l 1, 

for n = 1,2, .... 

(7.34) 

PROOF. The event that N r < r for some r = 1,2, ... , n can occur in several 
mutually exclusive ways: there is an i = 1,2, ... ,n such that Ni = i - 1 and 
Ni - Nr < i - r for 0 ~ r < i. Since 111,112, •.. ,lin are interchangeable random 
variables, we have 

Pr[Nr < r for at least one r = 1,2, ... ,n] 
n 

= L Pr[Ni - N r < i - r for 0 ~ r < i and Ni = i - 1] 
i=l 

n 

= L Pr[Nr < r for 1 ~ r ~ i and Ni = i - 1] 
i=l 

and by (7.33) 

Pr[Nr < r for 1 ~ r ~ i and Ni = i - 1] = ~ Pr[Ni = i - 1]. 
1, 

for 1 ~ i ~ n. This proves (7.34). 

(7.35) 

(7.36) 

• 



On The Ballot Theorems 107 

7.6 Some Combinatorial Identities 

First Passage Time 

By using Theorem 7.5.4, we can prove the following general result. 

Theorem 7.6.1 Let VI, V2, ... , Vr, ... be interchangeable discrete random vari
ables which take on non-negative integers only. Write Nr = VI + V2 + ... + Vr 
for r ~ 1 and No = O. Let Sr = r - Nr for r ~ 0 and define 

p(k) = inf{r: Sr = k,r ~ O} (7.37) 

for k = 0, 1,2, .... If Sr < k for all r ~ 0, then p(k) = 00. We have 

Pr[p(k) = n] = '!.. Pr[Sn = k] 
n 

(7.38) 

for n ~ 1 and k ~ O. 

PROOF. If k > n, then both sides of (7.38) are O. If 0 ::; k ::; n, and n ~ 1, 
then by (7.33) 

Pr[p(k) = n] = Pr[r - Nr < k for 0::; r < nand Nn = n - k] 

= Pr[Nn - Nr < n - r for 0 ::; r < nand Nn = n - k] 

Pr[Ni < i for 1 ::; i ::; nand Nn = n - k] 
k 
- Pr[Nn = n - k]. (7.39) 
n 

• 
Two Identities 

If in Theorem 7.6.1, we assume that VI, V2, . .. ,Vr, . .. are independent and iden
tically distributed discrete random variables which take on non-negative integers 
only, then we have the following identities: 

n 

Pr[p(k + l) = n] = L Pr[p(k) = j] Pr[p(l) = n - j] 
j=O 

and 
n 

Pr[Sn = k + l] = L Pr[p(k) = j] Pr[Sn-j = l] 
j=O 

for k ~ 0, 1 ~ 0 and n ~ o. 
The first identity is valid, because 

p(k + l) = p(k) + [p(k + l) - p(k)] 

(7.40) 

(7.41 ) 

(7.42) 

where p(k) and p(k+l) - p(k) are independent and p(k+l) - p(k) has the same 
distribution as p(l). The second identity is valid, because Sn -Sj is independent 
of Sj and has the same distribution as Sn-j. 
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The Identities of Rothe and Hagen 

If we use the notation 

Am(a,j3) = (a + 13m) a , 
m a+{3m 

(7.43) 

then by the results of Rothe (1793), SchHifii (1847), Hagen (1891, pp. 64-68), 
Gould (1956b, 1957) and Blackwell and Dubins (1966), we have 

m 

L Ai(a, (3)Am- i(r, (3) = Am(a + /, (3), (7.44) 
i=O 

and by the results of Hagen (1891) and Gould (1956b, 1957), 

m 
" ma ~iA(a,{3)Am-i(r,{3) = --Am(a+/,{3) 
i=O a + / 

(7.45) 

for m = 1,2, ... and arbitrary a, {3 and J. If a = /, then (7.44) implies (7.45) 
and conversely. 

Both (7.44) and (7.45) can be proved by using the general ballot theorem. 
As a matter offact, (7.44) is a particular case of (7.40), and (7.45) is a particular 
case of (7.41). To demonstrate this let us assume that 

Pr[lIr = b] = p and Pr[lIr = 0] = q (7.46) 

where p > 0, q > 0, p + q = 1, and b is a positive integer. Then {Sn, n ~ O} is a 
random walk. We have 

P '[S - k] - (mb + k) m m(b-l)+k I mb+k - , - p q , 
m 

(7.47) 

and by (7.38), 

Pr[p(k) = mb + k] = k Pr[Smb+k = k] = Am(k, b)pmqm(b-l)+k (7.48) 
mb+k 

for k ~ 0 and m ~ O. 
Now by (7.40), 

m 

Pr[p(k+l) =mb+k+l] = LPr[p(k) =ib+k]Pr[p(l) = (m-i)b+l]. (7.49) 
i=O 

This proves (7.44) for a = k, / = land (3 = b. By (7.41), 
m, 

Pr[Smb+k+l = k + l] = L Pr[p(k) = ib + k] Pr[S(m-i)b+l = l]. (7.50) 
i=O 

This proves (7.45) for a = k, / = land {3 = b. Since (7.44) and (7.45) are 
polynomials in a, {3 and /, the identities (7.44) and (7.45) are valid for any real 
or complex a, {3 and /. 
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An Identity of Chung 

In 1946 K. L. Chung proposed a problem for solution in the American Mathe
matical Monthly. His problem can be restated as follows: Prove that 

(bn) = t ~ (bk) (bn - bk) 
n k=l bk - 1 k n - k (7.51) 

for b = 2,3, ... and n = 1,2, .... If n = 1 or n = 2, then (7.51) is trivially true. 
If n > 2, then it is easy to check that the identity (7.51) follows from either 
(7.44) or (7.45) where m = n - 2, 0: = 'Y = b - 1 and /3 = b. 

The problem of Chung (1946) was solved by Gould (1956a,b). See also Guy 
(1984). Gould (1956a,b) proved also (7.44) and (7.45), and generalized these 
formulas. For further extensions of (7.44) and (7.45), see Gould and Kaucky 
(1966) and Knuth (1992). 

7.7 Another Extension of The Classical Ballot 
Theorem 

Let us suppose again that in a ballot, candidate A scores a votes and candidate 
B scores b votes and all the possible (atb) voting records are equally probable. 
Denote by O:r and /3r the number of votes registered for A and B respectively 
among the first r votes counted. Let J.l be a positive real number and define 

Pj(a, b, J.l) = Pr[O:r > /3rJ.l for j subscripts r = 1,2, ... ,a + b] (7.52) 

for j = 0, 1,2, ... ,a + b. We can write that 

Pj(a, b, J.l) = Nj(a, b, J.l) / (a ; b) (7.53) 

for j = 0,1,2, ... ,a + b. In what follows, we discuss the problem of finding 
Pj(a, b, J.l) for j = 0,1,2, ... , a + b. For a survey of this topic, see Chao and 
Severo (1991) and Takacs (1967). 

If Po(a, b, J.l) and Pa+b(a, b, J.l) are known for a ;::: ° and b;::: 0, then we can 
determine Pj(a, b, J.l) for j = 1,2, ... , a + b - 1 by the following equation 

Nj(a, b, J.l) = L Nj(j - s, s, J.l)No(a + s - j, b - s, J.l), 
o <::;8 <::;j 

or by the equivalent formula 

Pj(a, b, J.l) = L Pr[/3j = s]Pj(j - s, s, J.l)Po(a + s - j, b - s, J.l), 
0<::; 8 <::;j 

(7.54) 

(7.55) 
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where 
(j) (a+b-j) (a ) (b) 

Pr[/3j = S] = s (at~S = j(~tb)s (7.56) 

whenever 0 :::; s :::; j and j - a :::; s :::; b. 
Formula (7.55) can be proved by making use of the following auxiliary the-

orem. 

Theorem 7.7.1 Let 6,6, ... , ~n be interchangeable real random variables. De
fine (r = 6 + 6 + ... + ~r for r = 1,2, ... , nand (0 = O. Denote by bon the 
number of subscripts r = 1,2, ... , n for which (r > O. Then, 

Pr[bon = j] = Pr[(r < (j for 0:::; r < j and (r :::; (j for j :::; r :::; n]. (7.57) 

PROOF. Formula (7.57) was proved by Andersen (1954). In Feller (1959), he 
deduced (7.57) from a simple elementary combinatorial theorem. • 

Since the random variables 6, 6, ... , ~n are interchangeable, we can express 
(7.57) in the following equivalent form: 

(7.58) 

If in the ballot problem, we define (r = a r - /3rfl = r - /3r(fl + 1) for 
r = 1,2, ... , a + band (0 = 0, then Theorem 7.7.1 can be applied to the 
random variables (r (0 :::; r :::; a + b). Under the condition that /3j = s, that 
is, (j = j - S(fl + 1), where 0 :::; S :::; j, we obtain that minl::;r<j (r > 0 is 
satisfied if and only if a r > /3rfl for 1 :::; r < j, and aj = j - sand /3j = s, and 
also maxj::;r::;n((r - (j) :::; 0 is satisfied if and only if a r - aj :::; (/3r - /3j)fl for 
j :::; r :::; a + b, and aa+b - aj = a + S - j and /3a+b - /3j = b - s. Consequently, 
in this case (7.57) proves (7.55). 

If, in particular, fl is a positive integer, then by Theorem 7.2.1 

(7.59) 

for a > bfl and Pa+b(a, b, fl) = 0 if a:::; bfl. Thus, in formula (7.55), we have 

(7.60) 

if 0 :::; S < j / (fl + 1) and Pj (j - s, s, fl) = 0 otherwise. 
If, in particular, fl is a positive integer, then by Theorem 7.5.5 we can prove 

that 

(7.61) 
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where 

No(a,b,fL) = ( a + b) _ L (SfL + S + 1) 
b O:::;s:::;(a+b-I)j(j.L+1) S 

x (a + b - sfL - S - 1) 1 
b-s (SfL+s+l) 

(7.62) 

if a ~ bfL and No(a, b, fL) = 0 if a > bfL. To obtain (7.62), let us suppose that 
in Theorem 7.5.5, n = a + b and define the random variables lII, lI2, ... ,lIa+b in 
the following way: lIr = 0 if the rth vote is cast for A and lIr = fL + 1 if the rth 
vote is cast for B. Then N r = f3r(fL + 1) and ar > f3rfL if and only if r > N r . 
Thus, by Theorem 7.5.5, 

a+b 1 
Po(a, b, fL) = 1 - L -:- Pr[Ni = i - IJ 

i=l Z 

(7.63) 

where now 
(7.64) 

and the distribution of f3i is determined by (7.56). In (7.64), necessarily i = 

s(fL + 1) + 1 where 0 ~ S ~ (a + b -1)/(fL + 1). By substituting a + S - j for a 
and b - S for b in (7.62), we obtain Po(a + S - j, b - s, fL) in (7.55). 

The solutions of the above mentioned ballot problems make it possible, for 
example, to find the distributions of the local times and the sojourn times for 
various stochastic processes. 

References 

1. Aeppli, A. (1923). A propos de l'interpretation geometrique du probleme 
du scrutin, L 'Enseignement Mathematique, 23, 328-329. 

2. Aeppli, A. (1924). Zur Theorie verketteter Wahrscheinlichkeiten. Markoff
sche K etten hoherer Ordnung, Dissertation, Eidgenossische Technische 
Hochschule, Zurich. 

3. Ampere, A. M. (1802). Considerations sur la Theorie Mathematique de 
Jeu, Lyon et Paris. 

4. Andersen, E. S. (1954). On fluctuations of sums of random variables. II, 
Mathematica Scandinavica, 2, 195-223. 

5. Andre, D. (1887). Solution directe du probleme resolu par M. Bertrand, 
Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 
(Paris), 105, 436-437. 



112 Lajos Takacs 

6. Apianus, P. (1527). Ein newe und wolgegriindte Underweisung aZZer Kauff
mannfl Rechnung in dreien Biichern, Ingolstadt. 

7. Barbier, E. (1887). Generalisation du probleme resolu par M.J. Bertrand, 
Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 
(Paris), 105,407 and 440 (errata). 

8. Bertrand, J. (1887). Solution d'un probleme, Comptes Rendus Hebdo
madaires des Seances de l'Academie des Sciences (Paris), 105, 369. 

9. Bertrand, J. (1889). Calcul des Probabilites, Paris, Second edition, 1907. 
[Reprinted by Chelsea, NY, 1973.] 

10. Blackwell, D. and Dubins, L. (1966). An elementary proof of an identity 
of Gould's, Boletin de la Sociedad Matematica Mexicana, 11, 108-110. 

11. Cardano, H. (1570). Opus Novum de Proportionibus Numerorum, Basel. 

12. Chao, C. C. and Severo, N. C. (1991). Distributions of b"allot problem 
random variables, Advances in Applied Probability, 23, 586-597. 

13. Chung, K. L. (1946). Problem 4211, The American Mathematical Monthly, 
53,397. 

14. De Moivre, A. (1711). De mensura sOltis, seu, de probabilitate eventuum 
in Iud is a casu fortuito pendentibus, Philosophical Transactions, 27, 213-
264. 

15. De Moivre, A. (1718). The Doctrine of Chances: or, A Method of Calcu
lating the Probability of Events in Play, First edition, London. 

16. De Moivre, A. (1738). The Doctrine of Chances: or, A Method of Calcu
lating the Probabilities of Events in Play, Second edition, London. [Reprinted 
by Frank Cass, London, 1967.] 

17. De Moivre, A. (1756). The Doctrine of Chances: or, A Method of Calcu
lating the Probabilities of Events in Play, Third edition, London. [Reprinted 
by Chelsea, New York, 1967.] 

18. De Moivre, A. (1984). On the measurement of chance, or, on the proba
bility of events in games depending upon fortuitous chance, International 
Statistical Review, 52, 237-262. [English translation of A. De Moivre 
(1711) by B. McClintock.] 

19. Dvoretzky, A. and Motzkin, Th. (1947). A problem of arrangements, 
Duke Mathematical Journal, 14, 305-313. 



On The Ballot Theorems 113 

20. Feller, W. (1959). On combinatorial methods in fluctuation theory, Prob
ability fj Statistics: The Harald Cramer Volume (Ed., U. Grenander), pp. 
75-91, Stockholm: Almqvist and Wiksell. 

21. Gould, H. W. (1956a). A finite sum. Solution of Problem 4211, The 
American Mathematical Monthly, 63, 126-127. 

22. Gould, H. W. (1956b). Some generalizations of Vandermonde's convolu
tion, The American Mathematical Monthly, 63, 84-91. 

23. Gould, H. W. (1957). Final analysis of Vandermonde's convolution, The 
American Mathematical Monthly, 64, 409-415. 

24. Gould, H. W. and Kaucky, J. (1966). Evaluation of a class of binomial 
coefficient summations, Journal of Combinatorial Theory, 1 233-247. [Er
rata Journal of Combinatorial Theory, Series A, 12 (1972) 309-310.] 

25. Grossman, H. D. (1950). Another extension ofthe ballot problem, Scripta 
Mathematica, 16, 119-124. 

26. Guy, R. K. (1984). A pentagonal pot-pouri of perplexing problems, pri
marily probabilistic, The American Mathematical Monthly, 91, 559-563. 

27. Hagen, J. G. (1891). Synopsis der hoheren Mathematik, Volume 1, Berlin. 

28. Hald, A. (1984). A. de Moivre: 'De mensura sOltis' or 'On the measure
ment of chance', International Statistical Review, 52, 229-236. 

29. Knuth, D. E. (1992). Convolution polynomials, The Mathematica Jour
nal, 2, 67-78. 

30. Lagrange, J. L. (1777). Recherches sur les suites n~currentes dont les 
termes varient de plusieurs manieres differentes, ou sur l'integration des 
equations lineaires aux differences finies et partielles; et sur l'usage de ces 
equations dans la theor'ie des hasards, Nouveaux Memoires de l'Academie 
Royale des Sciences et Belles-Lettres de Berlin, annee 1775, 183-272. 
[Oeuvres de Lagrange, IV. Gauthier-Villars, Paris, 1869, pp. 151-251.] 

31. Laplace, P. S. (1776). Recherches sur l'integration des equations differentielles 
aux differences finies et sur leur usage dans la theor'ie des hasards, M emoires 
de l'Academie Royale des Sciences de Paris, annee 1773, 7,43-163. [Oeu
vres Completes de Laplace. Tome VIII. Gauthier-Villars, Paris, 1891, pp. 
69-197.] 

32. Laplace, P. S. (1812). Theorie Analytique des ProbabilitEs, COUlTier, 
Paris. [Reprinted by Culture et Civilisation, Bruxelles, 1967.1 



114 Lajos Takacs 

33. Laplace, P. S. (1814, 1820). Theorie Analytique des ProbabiliUs, Courcier, 
Paris. [Oeuvres Completes de Laplace. Tome VII. Gauthier-Villars, Paris, 
1886.] 

34. Mersenne, M. (1635-1636). Harmonicorum Libri, Paris. 

35. Mohanty, S. G. (1966). An urn problem related to the ballot problem, 
The American Mathematical Monthly, 73, 526-528. 

36. Pascal, B. (1665). TraiU du Triangle Arithmetique, avec quelques autres 
petits traitez sur la mesme matiere, Paris. [B. Pascal (1908) T. III. Paris, 
1908, pp. 433-593.] 

37. Pascal, B. (1908-1925). Oeuvres, Tomes I-XIV (Edited by L. Brun
schwicg, P. Boutroux and F. Gazier), Hachette, Paris. [T. III (1908).] 

38. Poincare, H. (1896). Calcul des ProbabiliUs, Paris: Gauthier-Villars. Sec
ond edition, 1912. 

39. Rothe, H. A. (1793). Formulae de serierum reversione demonstratio uni
versalis signis localibus combinatorio-analyticorum vicariis exhibita, Dis
sertation, Leipzig. 

40. Schlafii, L. (1847). Bemerkungen tiber die Lambertsche Reihe, Archiv 
der Mathematik und Physik, 10, 332-340. [Reprinted in Ludwig Schliifti 
(1814-1895) Gesammelte Mathematische Abhandlungen, Band I. Birkhauser, 
Basel, 1950, pp. 38-45.] 

41. Takacs, L. (1961). The probability law of the busy period for two types 
of queuing processes, Operations Research, 9, 402-407. 

42. Takacs, L. (1962). A generalization of the ballot problem and its appli
cation in the theory of queues, Journal of the American Statistical Asso
ciation, 57, 327-337. 

43. Takacs, L. (1967). Combinatorial Methods in the Theory of Stochastic 
Processes, New York: John Wiley & Sons. 

44. Takacs, L. (1969). On the classical ruin problems, Journal of the Ameri
can Statistical Association, 64, 889-906. 

45. Whitworth, W. A. (1879). Arrangements of m things of one sort and n 
things of another sort, under certain conditions of priority, Messenger of 
Mathematics, 8, 105-114. 

46. Yaglom, A. M. and Yaglom, I. M. (1964). Challenging Mathematical 
Problems with Elementary Solutions, Volume I, Combinatorial Analysis 
and Probability Theory, San Francisco: Holden-Day. [English translation 
of the Russian original published in Moscow, 1954.] 



8 

Some Results for Two-Dimensional Random Walk 

Endre Csaki 

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, 
Hungary 

Abstract: We present some results for simple symmetric two-dimensional ran
dom walk. Our treatment is based on results concerning independent simple 
symmetric one-dimensional random walks. 

Keywords and phrases: Linear random walk, planar random walk 

8.1 Introduction 

Though the treatment of the two-dimensional random walk has a long history 
and goes back to P6lya (1921), McCrea and Whipple (1940), Dvoretzky and 
Erdos (1950), Erdos and Taylor (1960), Spitzer (1964), and others, there are 
some recent results of combinatorial nature like those of DeTemple and Robert
son (1984), Csaki, Mohanty and Saran (1990), Breckenridge et al. (1991), Guy, 
Krattenthaler and Sagan (1992), Barcucci and Verri (1992), Kreweras (1992) 
and Saran and Rani (1994) concerning simple symmetric two-dimensional ran
dom walk. Further results can be found in Gupta and Sen (1977, 1979), Revesz 
(1990) and Di Crescenzo, Giorno and Nobile (1992). 

In this paper we present a treatment of two-dimensional (planar) random 
walk problems based on stochastically independent one-dimensional (linear) 
random walks. In fact, there are two ways of doing this. Let 

be a sequence of i.i.d. random vectors with the distribution 

Pr[Xi = (0, l)J Pr[Xi = (0, -1)] = Pr[Xi = (l,O)J 

Pr[Xi = (-l,O)J = 1/4. 

(8.1) 

(8.2) 
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Then To = 0, Tn = L:r=l Xi, n = 1,2, ... is called a two-dimensional simple 

symmetric, or planar random walk (PRW). Let Tn = (TJl) , T~?)), i.e. TJj) = 
L:r=lxF), j = 1,2. Then we have the following result [cf. Spitzer (1964)]. 

Proposition 8.1.1 

S(l) = r(l) + r(2) 
n n n' n= 1,2, ... 

s(2) = r(1) - r(2) n n n' n = 1,2, ... 

are two stochastically independent one-dimensional simple symmetric, or linear 
random walks (LRW). 

Thus if A = Al n A2, where Aj are events measurable with respect to SCi), 
j = 1,2, then 

(8.3) 

The other way is to consider the coordinates TJl) and T2) as one-dimensional 
random walks with possible steps -1,0, 1. By eliminating the zero steps, we 
obtain two LRW-s, HI, H2, ... (from T(l)) and VI, V2, ... (from T(2)) with ±1 

steps. Let lin denote the number of non-zero steps in Ti2) , ... , TJ2) (number of 
vertical steps in the first n steps of PRW). Obviously, n - lin is the number of 

non-zero steps in Ti2) , ... ,TJ2) (number of horizontal steps in the first n steps of 
PRW). Given lin = k, the LRW-s HI, ... , Hn-k and Vb ... , Vk are conditionally 
independent. Clearly, 

1 (n) Pr[lIn = k] = 2n k . (8.4) 

Therefore, if B = Bl n B2, where Bl is an event measurable with respect to 
HI, . .. , Hn- vn and B2 is an event measurable with respect to VI, ... , Vvn , then 

(8.5) 

We illustrate by simple examples how the basic identities (8.3) and (8.5) 
will be used. Let A = {Tn = (c, d)}, i.e., the PRW path ends at the point (c, d). 

We have {Tn = (c, d)} = {S~l) = C + d} n {S~2) = c - d}, and so by (8.3) we 
obtain the well-known formula 

Pr[Tn = (c, d)] = 4: (n~+d ) ( n+~-d)' (8.6) 

where the binomial coefficient (~) is meant to be zero if k is not an integer 
satisfying ° ~ k ~ n. On the other hand, it is easy to see that under the 
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condition {Vn = k} we have {Tn = (e, d)} = {Hn-k = e} n {Vk = d}, and hence 
we obtain 

Pr[Tn = (c,d)] = 4~ E (~) (k~d) (:~~:) (8.7) 

Comparing (8.6) with (8.7) we obtain the binomial identity 

~ (n) ( k ) (n -k) (n) ( n ) f;o k ktd n-;+c = n+~+d n+~-d' (8.8) 

which can also be obtained from Vandermonde convolution [ef. Gould (1972)]. 
The identity (8.3) was used in Csaki, Mohanty and Saran (1990) to derive 

some distributions concerning the boundaries y = x + a and y = -x + b. For 
further (joint) distributions concerning these boundaries, one may refer to Saran 
and Rani (1994). 

In Breckenridge et al. (1991), Guy, Krattenthaler and Sagan (1992) and 
Barcucci and Verri (1992), bijections between PRW and LRW paths were given 
to derive certain results concerning the boundaries .r = 0, y = 0. It was shown 
among others that for PRW paths not crossing the .r-axis, we have 

(2) . _ _ 1 (2n + 1) Pr[Ti ~ 0, 1, - 1, ... , n] - 4n n (8.9) 

[see also Sands (1990)]. In view of Proposition 8.1.1, this is equivalent to 

(1) (2). _ _ 1 (2n + 1) 
Pr[Si ~Si ,1,-I, ... ,n]- 4n n . (8.10) 

Pairs of LRW paths were studied in Karlin and McGregor (1959), Raifaizen 
(1972), Shapiro (1976a) and Karlin (1988). In Raifaizen (1972), a bijection is 
given between a pair of LRW paths each of length n and one LRW path of length 
2n as follows: Let Y2i = Yi(l) and Y2i- 1 = Yi(2) , i = 1, ... ,n, where Yi(j) is the 
i-th step of S(j). Then Zk = Y1 + Y2 + ... + Yk, k = 1, ... ,2n, is a LRW path in 
which steps are taken from S(1) and S(2) alternatively. This bijection combined 
with Proposition 8.1.1 gives a direct bijection between PRW paths of length 
nand LRW paths of length 2n. Similar bijections were given in Breckenridge 
et al. (1991), Guy, Krattenthaler and Sagan (1992) and Barcucci and Verri 

(1992). For example, a PRW path satisfying ~(2) ~ 0, i = 1, ... , n, can be 
transformed into a LRW path satisfying Z2k ~ 0, k = 1, ... , n, or equivalently 
Zk ~ -1, k = 1, ... ,2n, giving (8.10). 
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8.2 Identities and Distributions 

First we put together known results to derive certain binomial identities. It 
follows from Guy, Krattenthaler and Sagan (1992) that 

Pr[T.(2) = r] = ~( 21'1, ). 
n 4n 1'1, + r (8.11) 

On the other hand, {T~2) = r} = {Viln = r} and so by (8.5) we have the identity 

1 ( 21'1,) ~ 1 (1'1,) 1 ( k ) 
4n 1'1, + r = 6 2n k 2k ktr (8.12) 

[see also 3.22 in Gould (1972)]. We note that the identity (8.12) is equivalent 
to 

~ ( 21'1, ) = t (1'1, - 1) 2n- k- 1'::' (k:r), 
1'1, 1'1, + r k=l k - 1 k -2-

(8.13) 

giving an identity for the ballot numbers Br,n = ~ (n2~'r)' Putting r = 2 into 
(8.13), we obtain an identity of Touchard (1928) that 

" (1'1, - 1) 2n-1-2kC = C 
~ 2k k n, 
(k) 

(8.14) 

where en = (1'1,+1)-le:) is the 1'1,-th Catalan number; see also Shapiro (1976b), 
Breckenridge et al. (1991) and Barcucci and Verri (1992). For other extensions 
of Touchard's identity, one may refer to Gould (1977). 

Now we determine the probability that a PRW path stays in a strip -a < 
1i(2) < b and ends on the x-axis after 1'1, steps. For a > 0, b > 0, we can write 
by (8.5) 

[_ (2) . _ (2) - ] Pr a < Ti < b, 1, - 1, ... ,1'1" Tn - 0 

= L 21n (;~) Pr[-a < Vi < b, i = 1, ... , 2k, V2k = 0]. 
(k) 

(8.15) 

It is well-known that the latter probability can be given as [ef. Mohanty (1979)] 

Pr[-a < Vi < b, i = 1, ... , 2k, V2k = 0] 

1 f= {( 2k ) ( 2k ) } 
22k j=-oo k + j (a + b) k + a + j (a + b) . 

(8.16) 
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Using this in (8.15) and applying the identity (8.12), we get 

P .[- T(2) b' - 1 T(2) - 0] I a < i <, 1, - , ••• , n, n -

1 f {( 2n ) ( 2n ) } 
= 4n j=-oo n+2j(a+b) - n+2a+2j(a+b) . (8.17) 

Next we determine the distribution of the number of times a PRW path 

crosses the x-axis. We say that a crossing occurs at i if either TP) > 0, Ti~~ = 
(2) _ (2) (2) (2) _ (2) _ (2) . 

. . . Ti+j-l - 0, Ti+j < 0 or Ti < 0, Ti+1 - ... ~+j-l - 0, Ti+j > 0 for some 
j > 1. Let An denote the number of such crossings completed before the n-th 
step. Then from (8.5), we have 

Pr[An = £ - 1, T~2) = 0] = L ;n (;~) Pr[A~~ = f - 1, V2k = 0], 
(k) 

(8.18) 

where A~~ is the number of times the LRW path Vi, ... , V2k crosses O. Using 
the result 

(2) _ _ _ 1 2£ ( 2k ) 
Pr[A2k - £ - 1, V2k - 0] - 22k k k + f (8.19) 

from Csaki and Vincze (1961) and the identity (8.13), we get 

Pr[A = f _ 1 T(2) = 0] = ~ 4£ + 2 ( 2n + 2 ). 
n 'n 4n n + 1 n + 2£ + 2 

(8.20) 

Now let Pk denote the time of k-th visit to the x-axis by a PRW path, i.e., 
Po = 0 and 

. {" T(2) O} Pk = mm 1,: 1, > Pk-l, i = . (8.21) 

Then by Proposition 8.1.1, the event {Pk = n} is the same as {S(l) and S(2) 

meet k-th time at n}. Its probability is given in Raifaizen (1972) from which 

[ ] 1 k (2n - k) 
PI' Pk = n = 22n-k 2n _ k n . (8.22) 

This distribution is the same as that of the k-th visit to zero by a LRW path 
(replacing n by 2n). 

Let t;n denote the number of visits to the x-axis by a PRW path, i.e., 

t;n = #{ i: 1:S i :S n, ~(2) = O}. (8.23) 

Then (8.22) also gives 

Pr[t; = k T(2) = 0] = _1_ k (2n - k) 
n 'n 22n-k 2n - k n . (8.24) 
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Moreover, it follows that the distribution of ~n is the same as that of the number 
of visits to zero of a LRW up to time 271,. Hence we have [cf. Feller (1968)] 

1 (271, - k) Pr[~n = k] = 22n-k 71, ' k = 0,1, ... ,71,. (8.25) 

One can similarly see that for Tn, the last visit to the x-axis before the n-th 
step we have the arcsine law 

1 (2k) (271, - 2k) Pr[Tn = k] = 22n k 71, - k ' k = 0,1, ... ,71,. (8.26) 

Other distributions can be derived similarly. 

8.3 Pairs of LRW Paths 

In this section, we study certain properties of pairs of independent LRW -s and 
apply the results for PRW. Let {SP)}~l and {S;2)}~1 be two independent 
LRW-s. First, consider the probability 

(1) _ (2) _ (1) (2). _ (1) _ (2) _ 
Pr[So - 2a, So - 0, Si > Si ,1, - 1, ... ,271" S2n - 2a + 2£, S2n - 2kJ, 

where a> 0, a+£ > k, i.e., the probability that the two paths with given start
ing and terminating points do not meet in the first 271, steps. For determining the 
probability of the complement, i.e. that the two paths meet somewhere in the 
first 271, steps, we use a version of the reflection principle due to Karlin and Mc
Gregor (1959): Let K, be the smallest i for which S}1) = S?) and decompose both 

th . t t ·t . (S(j) S(j) S(j)) (S(j) S(j))· - 1 2 L . th pa s In 0 wo par s. 0' 1 , ... , K, , 11'+ l' . .. 2n ,J - , . eaving e 
first parts as they are and interchanging the second parts, we get two new paths 

(1) (1) (1) (2) (2) (2) (2) (2) (1) (1) 
as (So ,SI , ... , SK, ,SK,+1"'" S2n) and (So ,SI , ... , SK, ,SK,+1"'" S2n)' 
Now the endpoints of the two paths interchange and hence the new paths should 
meet somewhere. Hence, this is a bijection showing that 

(1) _ (2) _ (1) (2). _ 
PI' [So - 2a, So - 0, Si > Si ,1, - 1, ... , 271" 

S(1) = 2a + 2£ S(2) = 2k] 2n , 2n 
= Pr[S(1) = 2a S(2) = ° S(1) = 2a + 2£ S(2) = 2k] o '0 '2n -, 2n . 

- Pr[S(I) = 2a S(2) = ° S(I) = 2k S(2) = 2a + 2£] o '0 '2n " 2n 

1 {( 271, ) ( 271,) ( 271, ) ( 271, ) } 
= 42n 71, + k 71, + £ - 71, + a - k 71, + a + £ . 

(8.27) 
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This is a particular case of the determinant formula of Karlin and McGregor 
(1959). From this, we can find the probability 

Pr[8(1) = 8(2) = 0 SP) > S~2) i = 1 271 8(1) = 8(2) = 0] o 0 't - t' , ... , "2n 2n 

= 4~ { e:,r -V:1)'} = ~: en; 1) (8.28) 

by shifting the path of S(l) two units upwards and putting a = 2, k = .e = 0 
into (8.27). 

By putting a = 2, k = 0 into (8.27) and summing up for .e we obtain 

Pr[Sa1) = Sa2) = 0, sJI) 2:: S?), i = 1, ... ,271" S~~ = 0] 

On 1 (271,) (271, + 1) 
= 22n+1 + 24n+1 71, n' (8.29) 

In view of Proposition 8.1.1, (8.28) also gives the probability that a PRW 
path does not cross the x-axis and returns to the origin after 271, steps and 
(8.29) gives the probability that a PRW does not cross the x-axis and ends on 
the half-diagonal x = y 2:: O. So we have 

(2) . On (271, + 1) Pr[1i 2:: 0, ~ = 1, ... ,271" T2n = (0,0)] = 42n 71, (8.30) 

and 

(2) . _ (1) _ (2) _ On 1 (271,) (271, + 1) Pr[1i 2:: 0, ~ - 1, ... ,271" T2n - T2n ] - 22n+1 + 24n+1 71, 71, . 

(8.31) 
(8.30) and (8.31) also give 

P [T(2) O' - '7"'(1) - '7"'(2)] r i 2:: ,~- 1, ... ,271" .L 2n - ±.L 2n 
= P [T(l)T(2) O' - 2 '7"'(1) - '7"'(2)] 

I' i i 2:: ,~- 1, ... , 71" .L 2n -.L 2n 

= g: + 4;n(n2:'1)(2nn~1). (8.32) 

Next, consider PRW paths not crossing both the x- and y- axes. Guy, 
Krattenthaler and Sagan (1992), using reflection principle, give the formula 

Pr[1i(l) 2:: 0, 1i(2) 2:: 0, i = 1, ... ,71" T~,l) = C, TA2) = d] 

= 4: {( n+~+d) (n+~-d) - (n+~~ + 1) (n+~~ -1) 

- ( n~ + 1) (n+~~ + 1) + ( n~+~ + 2) ( n+~-d ) } 
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1 {( n )(n+2) ( n+2)( n )} = 4n n+~-d n-~-d - n+~-d + 1 n-~-d - 1 . 

(8.33) 

They note also that for c = d = 0, replacing n by 2n, we obtain 

(1) (2) . _ (1) _ (2) _ ] _ 1 
Pr[Ti ;::: 0, Ti ;::: 0, Z - 1, ... , 2n, T2n - T2n - 0 - 42n CnCn+!. (8.34) 

By Proposition 8.1.1, these are equivalent to 

Pr[Sp) ;::: sf2) ;::: _S}1) , i = 1, ... ,n, SAl) = c + d, SA2) = c - d] 

1 {( n )(n+2) ( n+2)( n )} = 4n n+~-d n-~-d - n+~-d + 1 n-~-d - 1 

(8.35) 

and 

. (1) (2) (1). _ (1) _ (2) _ ] _ 1 
PI lSi ;::: Si ;::: -Si ,1, - 1, ... , 2n, S2n - S2n - 0 - 42n CnCn+!. (8.36) 

Now putting d = c into (8.35), replacing n by 2n and summing up for c, 
we obtain for the probability that a PRW path remains in the first quadrant 
x ;::: 0, y;::: 0 and terminates on the diagonal x = y after 2n steps: 

[ (1) (2). (1) rp(2)] PrTi ;:::0, Ti ;:::0, z=1, ... ,2n, T2n =.L2n 

_ (1) (2) (1). _ (2) _ _ Cn 
- Pr[Si 2 Si 2 -Si ,1, - 1, ... , 2n, S2n - 0] - 22n · (8.37) 

From the independence of S(l) and S(2), Proposition 8.1.1 and well-known 
properties of Catalan numbers, we also have 

and 

[S(l) S(2) . - S(l) - S(2) - ] Pr i ;::: -1, i ;::: 0, 1, - 1, ... , 2n, 2n - 2n - 0 

Pr[T?) ;::: TP) ;::: -li(l) - 1, i = 1, ... , 2n, TJ~) = TJ~) = 0] 
1 

42n CnCn+1 (8.38) 

(2). (2) 
Pr[Si ;::: 0, 1, = 1, ... , 2n, S2n = 0] 

_ . (1) (2). _ (1) _ (2) _ Cn 
- PI [li ;::: Ti ,Z - 1, ... ,2n, T2n - T2n ] - 22n . (8.39) 

It would be interesting to give a direct bijective proof for the equivalence of 
(8.36) and (8.38), and also for that of (8.37) and (8.39). 
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Random Walks on 8L(2, F2) and Jacobi Symbols 
of Quadratic Residues 

Toshihiro Watanabe 

Gifu University, Gifu, Japan 

Abstract: The Euclidean algorithm with respect to the modulus 4 is given 
as random walks on the group 8L{2, F2)' The quadratic reciprocity law and a 
simple part of Zolotareff's Theorem are proved in terms of values on each step 
in the walks. 

Keywords and phrases: Euclidean algorithm with respect to the modulus 4, 
quadratic reciprocity law 

9.1 Introduction 

In the theory of quadratic residues, the number of proofs already exceeds fifty 
since Gauss gave seven distinct proofs for the famous quadratic reciprocity law 
of the Legendre symbol (m/M) 

(:) (:) = (-l)t {M-l)(m-l} for odd M and m > 0, (9.1) 

[ef. Bachmann (1921), Hasse (1980), Frobenius (1914), Takagi (1903), Rousseau 
(1994) and Zolotareff (1872)]. The reciprocity law also holds for the Jacobi 
symbol, which is a generalization of the Legendre symbol. In their papers, 
Zolotareff (1872), Lerch (1896) and Riesz (1953) gave a relation between the 
Jacobi symbols (m/M) and the character X{UM,m) of the permutation groups 
defined by 

uM,m(k) = km (mod M). 
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Zolotareff's Theorem. For coprime integers M and m, 

_ { (~), if M is odd, 
X(O"M,m) - (_l)~(m-l)(m'-l), if M = 2m'. (9.2) 

This note gives a proof of the quadratic reciprocity law and the exponent 
~ (m - 1) (m' - 1) in Zolotareff's Theorem, through a unified representation 
of characters X(O"M,m) , X(O"M-m,m) and X(O"m,M-m), which may be called a 
correlation of random walks on the group SL(2, F2). 

In Section 9.2, we take the Euclidean algorithm for coprime integers M and 
m as a random walk on the Cayley digraph [ef. Coxeter and Moser (1972)J 
of the group SL(2,F2), shortly called a random walk on the group SL(2,F2). 
Proposition 9.2.1 shows that each of the integers M and m with respect to the 
modulus 4 becomes a sum of values on the steps belonging to the corresponding 
coset in the group SL(2, F2). 

In Section 9.3, the exponents of characters X(O"M,m) , X(O"M-m,m) and 
X(O"m,M-m) are given a unified representation as a sum of products of two values 
[ef. Theorem 9.3.1J. In the case of even M, the exponent of character X(O"M,m) 
becomes a product of two sums of values on cosets in the group SL(2, F2) [ef. 
Proposition 9.3.1]' which yields the exponent ~ (m - l)(m' - 1) in Zolotareff's 
Theorem [ef. Corollary 9.3.1J. A kind of expectation on the random walks also 
becomes a similar product [ef. Proposition 9.3.1]' which yields the exponent 
t (M - l)(m - 1) in the quadratic reciprocity law (9.1). 

9.2 Preliminaries 

Let M and m be any fixed coprime integers satisfying M > m > O. Then, the 
Euclidean algorithm for M and m gives 

(Mm) = (a In 01 ) ... (aID 01 ) (01), ai: integer > 0, i = 0, ... , n. 

(9.3) 

In this section, we shall get, from a calculation with respect to the modulus 
4 of (9.3), a random walk on the group SL(2, F2) and a value on each step in 
this walk. These will be used later in Section 9.3. 

First, let us introduce the notations and terminology. Set in (9.3), the 
following: 

(9.4) 
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(9.5) 

Let 

I=(~ ~). 
Then, the matrices Jo and J 1 satisfy the relation 

and generate the group 8L(2, F2), where F2 is a field with two elements. 
In the 2-dimensional Euclidean space over the field F2, the inner product is 

denoted by the symbol (, ), and the vectors ei (i = 0, 1) are the unit vectors 

The symbol == is a congruence with respect to the modulus 2 unless the 
modulus is given. Let the group H be an isotropy subgroup {I, JoJl} of the 
group 8L(2, F2): 

H = {g E 8L(2, F2): geo = eo}. 

From (9.3), we use the following for 0 :S j :S n: 

gj Jaj .•• Jao ; an element in the group 8L(2, F2). 

Wj = ( ~;) ... (~~); a biword, i.e., a sequence of two letters. 

A( Wj) ( (~;), gjeO ) + aj; a function from the above biwords 

into the field F2. 
O~i~j 

L A(wd, k = 1,2; a sum on the coset H Jf 
giEHJf 

in the field F2. 

Aj ( ~; ~; ~g ); a vector in the 2-dimensional Euclidean 

space over the field F2• 

We note that 

(9.6) 

For coprime integers Nand n, the permutation O"N,n on a set {I, ... ,N} is 
defined by 

O"N,n(k) == kn (mod N). 
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We also use the usual notations and terminology in number theory [see, for 
example, Hasse (1980)J. 

The Euclidean algorithm (9.3) with respect to the modulus 2 gives a random 
walk on the group 8L(2, F2), and the algorithm with respect to the modulus 4 
is determined by each sum of values A(Wk) on cosets H Jt, i = 1,2, in the group 
8L(2, F2) as follows: 

Proposition 9.2.1 In (9.3), set 

Then 

M _ Co + 2do (mod 4), 

m _ CI + 2dl (mod 4), 

(Cco1) - 9neoj 

Co, do E {O, I}; 

CI, dl E {O, I}. 

(~~) == 9n JfAn. 

PROOF. Eq. (9.7) clearly holds. Let us now prove (9.8). In (9.3), set 

(~) = (~n ~) (:~} 
m' = C2 + 2d2 (mod 4), 

Thus, we have 

Since the integers m and m' are coprime, it follows that 

Hence, 

anclc2 + bnCI - (an + bn)CI + anc2 + an 

- ((::),Jan(~~)) +an · 

Eq. (9.11), therefore, becomes 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 
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Using (9.12) successively, we get 

Since 

n 

L Jan··· Jak+l eO>'(Wk) 
k=O 

n 

9n L 9k1eo>'(Wk). 
k=O 

9-1eo == J1ieo for any 9 E H Jt, i = 0, 1,2, 
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(9.13) 

we obtain (9.8) from (9.13) • 

9.3 A Calculation of the Character x(aM,mJ and Its 
Relation 

In this section, we give two relations for the numbers >'(Wk) over the field F2, and 
as a result we have the simpler part in Zolotareff's Theorem and the quadratic 
reciprocity law (9.1) of quadratic residues. 

The characters x(a) of permutations a are given by the number l(a) of 
inversions of the permutation a as follows: 

x(a) = (_1)1(0") 

[see Berge (1971)]. 
For the coprime integers M and m in (9.3), set 

io(wn ) = 

i 1 (wn ) 

i2(Wn ) 

Then, we have the following theorem. 

Theorem 9.3.1 

where 

I(am,M-m); 

l(aM-m,m); 

l(aM,m). 

o if 9k9i1 E H, 
1 otherwise. 

j = 0,1,2, 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 
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We note the following: 

(i) 

where the symbol [ 1 is the Gaussian Klammer; 

(ii) We have for d1 in Proposition 9.2.1 

d1 (by (9.13)) 

(e1,g".JrAn) (by Proposition 9.2.1) 

(g;l eo , JoJr An), (9.19) 

where, in the last equation, we use the relation 

Since we prove this theorem by a substitution of words or an automaton 
and needs preliminaries, we will give the proof in another paper. 

The following proposition is the main result of this paper. 

Proposition 9.3.1 The following equations hold: 

(9.20) 

(9.21) 

PROOF. Since the statements that { :; } = 1, and gk and gj are not in the 

same coset H Jl are equivalent, we get (9.20) by (9.6). 
For a proof of (9.21), let us first prove the following: 

(((Jrgk)-l + I)eo,JoJrAk) == (((Jrgk)-l +I)eo,JOJrAk+1) 

for any k ~ O. 

For any j, we have 
HJj {Jj T J j- 1} 1 = 1,"0 1 ; 

(9.22) 
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Thus, we have 

Using 

HJJ+1(HJj- 1) ·f Jj( T J j - 1) gk+1 Ell 1 gk = 1 JO 1 . 

if gk E H Ji; 
if gk = J j . , l' 
l·f T J j - 1 gk = JO 1 . 

J + II + Jr == 0, 

we have the following: 

( i) Jr Jo((Jr Ji)-l + J)eo == { °J2- j 
1 eO 

(ii) 2 (( 2 j-1)-1 ) { ° J1 Jo J1 JoJ1 + J eo == J-j 
1 eo 

Using (i), (ii) and (9.23), we obtain for any k 2': 0, 

if j = 1, 
if j =I- 1; 

if j = 2, 
if j =I- 2; 
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(9.23) 

(9.24) 

(Jr JO((Jrgk)-l + J)eo, Ak) == (Jr JO((Jrgk)-l + I)eo, Ak+1); (9.25) 

that is, Eq. (9.22). 
Since 

we have from (9.22) 

ak+1 (gk~l eo, JoJr Ak+1) 

gk~l (J + Jak+1)J1 eO 

ak+1gk~1 eo (by (9.24)), 

(((Jrgk+1)-l + J)eo, JoJrAk+1) + (((Jrgk)-l + I)eo, JoJrAk). 
(9.26) 

Since, by (9.19), the left hand side of (9.21) is 

L ak(gk1eo , JoJr Ak), 
n;::k;::O 

by using (9.26) successively, we obtain (9.21). 

In the case of even M, Proposition 9.2.1 gives 

(eo, gneo) == 0, that is, gn = Jo or Jr. 

• 
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So, 

and 
d = {An(HJf) if gn = Jo, 

1 - An(HJl) if gn = J'f. 

Thus, we have 

Since 

for gn E {Jo, In, 
from Theorem 9.3.1, Proposition 9.3.1 and Eq. (9.27), we have 

i2(Wn ) 

An(H Jl)An(H Jl) 

(do + 1)d1 

1 , 
2" (m - 1)(m - 1). 

where M = 2m'. Thus, we obtain the simple part of Zolotareff's Theorem. 

Corollary 9.3.1 

x(aM,m) = (-1)~ (m-l)(m'-1) for M = 2m'. 

By (9.24), Eq. (9.21) in Proposition 9.3.1 gives the following. 

Corollary 9.3.2 

2 

L ij(wn) == (((Jlgn)-1 + J)eo, JoJl An). 
j=O 

In the case of odd M and m, Proposition 9.2.1 gives 

that is, gn = J 1 or Joh. 

So, 

and 

for gn = Joh· 

(9.28) 



Random Walks on 8L{2, F2) and Jacobi Symbols 

Thus, for 9n in {JI, JOJl }, we have 

Since, for 9n in {Jl' JOJl}, 

{(Jr9n)-1 + J)eo == 0 and ((::), 9k9;1 Jleo) + ak == A{Wk), 

from Proposition 9.3.1, Corollary 9.3.2 and Eq. (9.29), we have 

il{Wn) == An{Hlt)An{HJr) dodl; 

io{wn ) + i2{Wn ) - dodl. 

Hence, 
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(9.29) 

(9.30) 

Using the known property (M/m) = (M - m/m) of the Jacobi symbol [see 
Hasse (1980)], we have 

(~) = (_l)io(wn ). 

Therefore, from Eq. (9.30), we obtain the quadratic reciprocity law. 

Corollary 9.3.3 For odd M and m, 

Remark. When the exponents ij{wn ), j = 0, 1, 2, of characters of groups G'M,m, 

G'M-m,m and G'm,M-m are put in a unified form (9.17), and we take it in terms 
of random walks, we can easily deduce the simple part of Zolotareff's Theorem 
and the quadratic reciprocity law of quadratic residues. Shanks (1985) made 
some comments on the quadratic reciprocity law while Kubota (1992) raised 
some questions in the class field theory. It is important to note that the unified 
form in (9.17) has these (and possibly some other) relations. 
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Rank Order Statistics Related to a Generalized 
Random Walk 

J agdish Saran and Sarita Rani 

University of Delhi, Delhi, India 

Abstract: This paper deals with the derivation of the joint and marginal 
distributions of certain rank order statistics related to the generalized random 
walk with steps + 1 and - f..L by using the extended Dwass technique evolved by 
Mohantyand Handa (1970). These generalize and extend the results of Saran 
and Rani (1991a,b). 

Keywords and phrases: Extended Dwass technique; generalized random 
walk; rank order statistics - up crossing of height a, upward crossing of height 
a, positive reflection at height a; run of up crossings of height a; run of upward 
crossings of height a; run of positive reflections at height a (a> 0). 

10.1 Introduction 

Let Xl, X2, .. ·, XJ.Ln and YI , Y2,"" Yn be two independent random samples of 
sizes f..Ln and n (where f..L is a positive integer) from the same population having 
continuous distribution function. Let FJ.Ln(x) and Gn(x) be the corresponding 
empirical distribution functions of the two samples. Define the rank order 
indicator of {Xl, X2, ... , XJ.Ln, YI , Y2,"" Yn} as a vector (Zl, Z2, . .. ,Z(J.L+1)n) 
such that 

if the j-th minimum among {Xl, ... ,XJ.Ln, YI, ... , Yn} 
is Xt for some t E {I, 2, ... ,f..Ln} 
if the j-th minimum among {Xl, ... ,XJ.Ln, Yl, ... , Yn} 
is Yt for some t E {I, 2, ... , n}, 

j = 1,2, ... , (f..L + l)n. Obviously (Zl, Z2, ... ,Z(J.L+I)n) is a sequence of f..Ln 
(+l)'s and n (-f..L)'s which we call a sequence of rank order indicators. Un
der the assumption, the ((J.L~I)n) possible sequences of rank order indicators 



136 Jagdish Saran and Sarita Rani 

are equally likely. Any random variable defined on the rank order indicator 
(Zl, Z2, . .. ,Z(Il+1)n) is called a rank order statistic. Defining 

-00 < U < 00, 

we note that statistics defined through H Il,n ( u) can be treated as rank order 
statistics. 

Dwass (1967) developed a new technique (other than the combinatorial one) 
based on the simple random walk with independent steps, in order to derive 
the distributions of some rank order statistics for the case of equal sample 
sizes (i.e., for IL = 1) which are defined on Hl,n(U). Mohanty and Handa 
(1970) extended the technique of Dwass (1967) to the case when one sample 
size is an integer multiple of the other and derived the distributions of a few 
rank order statistics. For this purpose, they considered the generalized random 
walk {Sj : Sj = "L1=1 Wi, So = Wo = O} generated by a sequence {Wd of 
independent random variables with common probability distribution 

Pr[Wi = +1] = p, Pr[Wi = -IL] = q = 1 - p, 1 ~ i < 00. 

Further, Saran and Sen (1979), Kaul (1982, Ch. IV), Pratap (1982, Ch. IV), 
Sen and Saran (1983), Sen and Kaul (1985) and Saran and Rani (1990, 1991b) 
have derived the joint and marginal distributions of some rank order statistics 
related to the generalized random walk {Sd with steps +1 and -IL. In this 
paper, we consider the above mentioned generalized random walk with steps 
+1 and -IL and derive the joint distributions of the number of upcrossings of 
height a and their runs, the number of positive reflections at height a and their 
runs, and the number of upward crossings of height a and their runs (a > 0), by 
employing the extended Dwass technique given by Mohanty and Handa (1970). 
These generalize and extend the earlier work by Saran and Rani (1991 b) in 
which the above mentioned distributions have been derived for the special case 
a= O. 

10.2 Some Auxiliary Results 

The basic results needed in the sequel are quoted from Mohanty and Handa 
(1970) and Sen and Saran (1983); see also Saran and Rani (1991b). 

(i) For any 0: and {3, 

00 

L Ak ( 0:, (3) Ok = x a , 

k=Q 
(10.1) 
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where 

_ 0: (0: + k(3) _ f3 Ak(O:, (3) - 0: + k(3 k ' 0 - (x - l)/x 

and 101 < 1((3 - 1)f3-1/(3 f3 1, 

the last inequality assuring the convergence of the series. 

(ii) The probability generating function (pgf) for the first return to the origin 
in the generalized random walk with steps + 1 and -1-£ is 

F(t) = (1-£ + 1)~qxJ.LtJ.L+1, (10.2) 

where 

(iii) The probability of never returning to the origin is 

(10.3) 

where y is the value of x when t = 1. 

(iv) The probability of ever reaching k is 

G(l,k) = (py)k, k = 1,2, .... (10.4) 

(v) The probability of ever returning to the origin with 8 1 = -1-£ is given by 

(10.5) 

(vi) The probability of ever returning to the origin with 8 1 = +1 and having 
one crossing of the origin at a non-lattice point in a generalized random 
walk with steps + 1 and - 1-£ is given by 

(10.6) 

(vii) The probability of ever returning to the origin with 81 = +1 and without 
crossing the origin before is given by 

(10.7) 

(viii) The probability of a particle starting from the origin with a positive step 
and returning to the origin with a positive step with the condition that 

(a) it crosses the origin only once, and 
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(b) it is allowed to reach the origin before the crossing and it is not 
allowed to reach the origin after the crossing except at the end, 

is given by 

(10.8) 

(ix) The following power series expansion is also useful: 

1 - (J-l + l)pJ.LqyJ.L 
(10.9) 

where (x) is the smallest integer greater than or equal to x. 

10.3 The Technique 

The main theorem of Mohanty and Handa (1970) which plays a vital role for 
finding the distributions of rank order statistics is presented below; see also 
Saran and Rani (1991b). 

Theorem 10.3.1 Suppose VJ.L,n is a rank order statistic for every nand VJ.L 
is the corresponding function defined on the random walk which is completely 
determined by WI, W2, ... , WT and does not depend on WT+} , WT+2, ... , when
ever T > 0 (where T is the time for the last return to zero in the random walk). 

Define 

p < J-l/(J-l + 1). (10.10) 

Then we have the following power series (in powers of pJ.Lq) expansion: 

h(p) = f E(V, n) ((J-l + l)n) (pJ.Lqt, 
1 - (J-l + l)pJ.LqyJ.L n=O J.L, n 

(10.11) 

where y is as in (10.2) and (10.3). 
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10.4 Definitions of Rank Order Statistics 

The following is the list of rank order statistics whose distributions will be 
derived. In what follows, we shall use the dual notation VtL , VtL,n for these rank 
order statistics as mentioned in Section 10.3. 

1. 

II. 

III. 

IV. 

the number of up crossings of height a 
the number of indices i for which HtL,n(Zi) = a + 1 
and HtL,n(Zi-l) = a, i = 1,2, .... 

the number of positive reflections at height a 
the number of indices i for which HtL,n(Zi) = a, 
HtL,n(Zi-l) = a + J-L and HtL,n(Zi+d = a + 1, 
i = 1,2, .... 

the number of upward crossings of height a 
the number of indices i for which HtL,n(Zi) = a, 
HtL,n(Zi-d = a - 1 and HtL,Tl,(Zi+l) = a + 1, 
i = 1,2, .... 

the number of runs of up crossings of height a of type 
I whose number is N:'~ (a) 
the number of sequences of (consecutive) up crossings 
of height a with indices increasing by J-L + 1. A se
quence of up crossing indices ik, ik+ 1, ... ,ic will be 
said to form a run of up crossings if 
(i) ij - ij-l = J-L + 1, j = k + 1, k + 2, ... ,c, 
(ii) ik > ik-l + J-L + 1 and 
(iii) iC+l > ic + J-L + 1, c = 1,2, .... 

V. Rf:'n(a) the number of runs of positive reflections of height a 
of type II whose number is At,n(a) 

= the definition IV with 'positive reflection' in place of 
'upcrossing' . 

= the number of runs of upward crossings of height a of 
type III whose number is N;,n (a) 
the definition IV with 'upward crossing' in place of 
'upcrossing' . 
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10.5 Distributions of NJt~,(a) and R~,~,(a) 

Theorem 10.5.1 

((IL: 1)71,) Pr [N:'~(a) = c, R~,~(a) = k] 

(~ = ~)ILC-I ~ (k ~ 1) (_l)i{ nfl ((IL + 1): -a-I) 
1,=0 r=((a+1)/ J1.) 

x An-(c-l)-r(p(k - i-I) + a + k - i, P + 1) 

nfl ((p+1)S-a-2) 

s=((a+2)/ J1.) S 

x An-(c-l)-s(p(k - i-I) + a + k - i + 1, p + 1) 

+~ ~ ((p+1)t-at-1- j + P) 

j=l t=((a+1+j-J1.)/J1.) 

x An_c_t (p(k-i-1)+k-i+a+j+1,p+1) }. (10.12) 

PROOF. To establish (10.12), let OPIP2 ... PcD (Figure 10.1) be a generalized 
random walk path with N:* (a) = c, Rt* (a) = k as stipulated in the theorem, 
where PI, P2, ... ,Pc are the up crossing points of height a and D is the point 

Figure 10.1: A sample path for the event N:*(a) = c, Rt*(a) = k 

where the particle reaches height a + 1 for the last time. If Pc itself is the point 
of last return to height a + 1, then the point D will coincide with Pc and the 
segment PcD as shown in Figure 10.1 will not exist. The path is thus divided 
into c + 2 segments (see Figure 10.1) by the c up crossings of height a as follows: 
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(a) One segment in the beginning up to the first up crossing of height a, i.e., 
OP1 and it may be of any length and it occurs with probability (py )a+1 , 
by (10.4); 

(b) c - k segments, each of length f.L + 1 (like P1P2 in Figure 10.1) and each 
with probability f.LpJ.Lq; 

(c) k - 1 segments, each of length> f.L + 1 (like P2P3 in Figure 10.1) and each 
with probability 

by (10.5) and (10.8); 

(d) one segment from the last up crossing point to D, i.e., PeD and it may be 
of any length and will occur with probability 

( e) the last segment from D to 00 is such that the particle crosses height a + 1 
only once and thereafter it does not reach height a + 1. This segment has 
the following two contingencies: 

(i) when the last crossing takes place at a lattice point, 

(ii) when the last crossing takes place at a non-lattice point. 

In case (i), the last segment from D to 00 occurs with probability 

q{l - (py)J.L} 

and in case (ii), it occurs with probability 

J.L-1 J.L-1 
L (py)jq{l - (py)J.L-j} = L plqyj - (f.L - l)pJ.LqyJ.L, 
j=l j=l 

by using an argument similar to the one used by Sen and Saran (1983, 
Lemma 3). Thus, the probability of the last segment from D to 00 equals 

J.L-1 
q{l - (py)J.L} + L plqyl- (f.L - l)pJ.LqyJ.L. 

j=l 
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Now (c - k) segments each of length f.L + 1 are to be combined with k - 1 
segments each of length > f.L + 1 so as to form k runs of total c up crossings 

h· h . 'bl' (c-k+k-1) (c-1) Th w lC IS POSSI e III ~-k = k-1 ways. us, 

(10.13) 

Hence, identifying h(p) as PI' [N:* (a) = c, R;* (a) = k] , we have 

h(p)/8 = 

On comparing the coefficient of (pp'q)n on both sides, and using Theorem 10.3.1, 
we get the desired result in (10.12). • 

Deductions 

(A) Putting f.L = 1 in (10.13), we get 

h(p)/(l - 2p) = (~= ~) (pq)c-2k-a-1p3k+2a(2 _ p)k-1, (10.14) 

which is in agreement with Saran and Rani (1991a). 

(B) Summing (10.13) over k, we get 

PI' [N:*(a) = c] /8 

(f.LpI-Lq )c-1ya+ 1+(I-L+ 1)( c-1} pa+ 1 

X {1- py - (" - l)p"qy"+1 + ~ rqll+1 } /6 
(10.15) 

in which the coefficient of (pI-Lq)n gives 
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((Il:,l)71,) Pr[Nt,;,(a) = c] 

= IlC- 1{ nf1 ((Il + 1)9 - a-I) 
g=((a+1)/ J.l) 9 

X An - g - c+1 (a + 1 + (Il + l)(c - 1), Il + 1) 

_ nf1 ((1l+1)h-a-2) 

h=((a+2)/ J.l) h 

x An - h- c+1(a + 2 + (Il + l)(c - 1), Il + 1) 

- (1l- 1) I: ((1l+ 1)9- a -1) 
g=((a+1)/J.l) 9 

X An_g_c(a + 1 + (Il + l)c, Il + 1) 

+ ~ I: ((Il + l)m - a - j + 1l- 1) 

j=l m=((a+j-J.l+1)/J.l) m 

X An - m - c (a + j + 2 + (Il + 1) (c - 1), Il + 1) }, 

which is equivalent to the result of Kaul (1982). 

(C) Summing (10.13) over c, we have 

h2(p)/8 = PI' [Rt*(a) = k] /8 

= (py)a+1(yJ.l+l _ l)k-l f (c -1) (llpJ.l q)C-l 
c=k k - 1 

x {I -py - (I' - 1)p"qy"+1 + ~ piqyi+l } /6 
= (pyt+1(yJ.l+1 _ 1)k-1 ~ (k + ~ - 1) (llpJ.lq)k+r-l 

x {I -py - (I' - 1)p"qy"+1 + ~ piqyi+l } /6 
= (py)a+1(yJ.l+1 _ 1)k-1(1 _ llpJ.lq)-k(llpJ.lq)k-1 
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x {I- PY - (I' -1)p"qy"+1 + %piqyi+1} /6 
(10.16) 
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in which the coefficient of (pf.Lq)n gives 

((JL:, l)n) Pr [R~,~(a) = k] 

~ ~ ~ (k ~ 1) (k+~ -1)(_1)'~k+H 
x { n-~+l ((JL + 1): -a-I) 

s=(a+l)/ f.L) 
x An- k- r+1-s(JL(k - i-I) + a + k - i, JL + 1) 

_ n-I:'+l ((JL + l)t~ - a - 2) 
t=(a+2)/f.L) 

x An- k- r+1-t(JL(k - i-I) + a + k - i + 1, JL + 1) 

-(JL-l) n~r ((JL+l)Ss-a-l) 

s=(a+1)/f.L) 
x An-k-r-s(JL(k - i) + a + k - i + 1, JL + 1) 

+I: n~r ((JL+l)g-a-l- j + JL) 

j=l g=(a+1+j-f.L)/f.L) 9 

x An_k_r_g(JL(k-i-l)+k-i+a+j+l,JL+l) }. 

10.6 Distributions of At,n(a) and Rt:'n(a) 

Theorem 10.6.1 

((JL: l)n) Pr [A~,n(a) = r, Rf;J,n(a) = k] 

= I: f: t (r = 1) (k ~ 1) (s + i + 1) (s) (_I)k-l-i+s-gJLg 
i=O s=o g=O k 1 1. S 9 

X { f: ((JL + ~b - a) 
b=(a/f.L} 

X An-b-r-s-l(JL(S + i + 2) + a + 9 + 1, JL + 1) 

_ JL f: ((JL + l)~ - a-I) 
c=(a+1)/f.L} 
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x An-c-r-s-1 (f-L(S + i + 2) + a + 2 + g, f-L + 1) 

+ I! f ((f-L + l)d ~ a - j + f-L) 

j=l d=((a+j-J.£)/J.£) 

X An-d-r-s-1(f-L(S+I+i)+a+g+j+l,f-L+1)}. (10.17) 

PROOF. Let OP1P2 ... Pr be a generalized random walk path with At(a) = r, 
Rf:(a) = k as stipulated in the theorem, Pi (i = 1,2, ... , r) being the positive 
reflection points at height a. The path is thus divided into r + 1 segments by 
these r positive reflections. Of these r + 1 segments, there will be 

(i) one segment in the beginning from the origin to the first positive reflec
tion at height a, i.e., OP1 and it may be of any length and occurs with 
probability 

(py)a f(pJ.£qyJ.£)i f { (f-L - l)pJ.£qyJ.£ f(pJ.£qyJ.£)i 
i=O j=O i=O 

+ pJ.£qyJ.£ t(pJ.£qyJ.£)i r pJ.£qyJ.£ by (lOA), (10.5) and (10.6) 
1.=1 

= (py)apJ.£qyJ.£+1 /(1 + pJ.£qyJ.£ _ f-LpJ.£qyJ.£+1). 

(ii) r - k segments, each of length f-L + 1 and each with probability pJ.£q. 

(iii) k - 1 segments, each of length> f-L + 1 and each with probability 

t, { [(,.. -1 )pI'qyP + (pI'qyP)'] ~(P"qy")i r pl'qyP - pl'q 

pJ.£q [yJ.£ - (1 + pJ.£qyJ.£ - f-LpJ.£qyJ.£+1 )] 
- 1 + pJ.£qyJ.£ - f-LpJ.£qyJ.£+1 

by (10.5), (10.6) and (ii) above. 

(iv) One segment at the end from Pr to 00 (i.e., from the last positive reflection 
at height a to 00) and it may be of any length and with probability 

t, {(,.. -l)pI'qyP ~(P"qyP)i + pl'qy" t,(P"qyP)i r 
= 

x {P"qyP(l- py) + ~(PY)jq{l- (PY)"-H'}} 

pJ.£qyJ.£(1 - py) + L,j~f(py)jq{l - (py)J.£-j+1} 

1 - f-LpJ.£qyJ.£+1 + pJ.£qyJ.£ 
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Further, r positive reflections will form k runs in (~=i) ways. Thus, on 

identifying h(p) as PI' [At(a) = r, Rf;(a) = k], we have 

h(p)/8 = (r -1) (py)a pJ.LqyJ.L+I I (pJ.Lq)r-k 
k - 1 1 + pJ.LqyJ.L - p,pJ.LqyJ.L+ 

X {pJ.Lq[yJ.L - (1 + pJ.LqyJ.L - p,p!-LqyJ.L+I )] }k-I 
1 + pJ.LqyJ.L - p,pJ.LqyJ.L+I 

1 
x ------~~-----

1 - p,pJ.LqyJ.L+I + pJ.LqyJ.L 

x {P"qY"(I- Py) + ~(PYFq{1 - (py)p-H'} } /6 
(~ = ~) (pJ.Lqr(py)ayJ.L+I [yJ.L _ 1 - pJ.LqyJ.L + p,p!-LqyJ.L+1 t- I 

x {1 + pJ.LqyJ.L _ p,p!-LqyJ.L+I } -(HI) 

x {pI'Qy"(1 - py) + ~(Py)jQ{I- (py)p-H'} } /6 (10.18) 

in which the coefficient of (pJ.Lqt, by Theorem 10.3.1, gives the desired result 
in (10.17). • 

Deductions 

(A) Putting p, = 1 in (10.18), we get 

h(p)/(l - 2p) = ( r - 1) (pqr-a- k- 2p2a+2k+2(1 + p)k-I 
k-1 

x (1 _ p2 /q)-k+1, 

which is in agreement with Saran and Rani (1991a). 

(B) Summing (10.18) over k, we get 

h l (p)/8 = Pr[At(a) = r]/8 

= (pJ.L qr payJ.Lr+a+1 {I + pJ.LqyJ.L _ p,pJ.LqyJ.L+1} -(r+1) 

X {pI'QY"(1 - py) + ~(PY)jQ - (I' - I)Q(Py)"+' } /6 
f t (8: r) (8) (_1)S-9 p,9(pJ.Lqr+spa yJ.L(r+s)+a+9+1 
s=o 9=0 9 



Rank Order Statistics Related to a Generalized Random Walk 147 

{ 
J.L-1 } 

x pJ.LqyJ.L(I_ py) + ~(Py)jq{1 - (py)J.L-j+1} /8 
(10.19) 

in which the coefficient of (pJ.Lq)n gives 

((JL :,I)n) Pr [At,n(a) = r] 

= f t (s:r) (s)(_I)S-9 JL9 
s=o 9=0 9 

X { f ((JL + l1A - a) 
>..=(a/J.L) 

x An- r- s- 1->..(JL(r + s + 1) + a + 9 + 1, JL + 1) 

- f ((JL+l)~l-a-l) 
>"1=((a+1)/J.L) 1 

X An- r- s- 1->"1 (JL(r + s + 1) + a + 9 + 1, JL + 1) 

+~ f ((JL+l)A2- a -j+JL) 

j=l >"2=((a+1-j)/J.L) A2 

X An- r- s- 1->"2(JL(r + s) + a + 9 + I,JL + 1) 

_ (JL - 1) f ((JL + 1)~1 - a-I) 
>"1 =((a+1)/ J.L) 1 

X An-r-s-l-Al(JL(r+l+s)+a+g+2,JL+l)}. 

(C) Summing (10.18) over r, we get 

h2(p)/8 = PI' [Rf:(a) = k] /8 

= (py)a yJ.L+l{pJ.Lq/(1 _ pJ.Lq)}k {yr _ 1 _ pJ.LqyJ.L + JLpJ.LqyJ.L+I} k-l 

X {I + pJ.LqyJ.L _ JLpf.Lqyf.L+1 } -(HI) 

X {pI'qyI'( 1 - py) + E (py)i q{ 1 - (py).-1+1) } /6 (10.20) 

in which the coefficient of (pf.Lq)n gives 
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((JL: l)n) Pr [Rf:'n(a) = k] 

= f ~ f t (k + : - 1) (k ~ 1) (s + ! + 1) (s) 
t=O ~=O s=o g=O 9 

x (_l)k-l-i+s-g JLg { f ((JL + ~b - a) 
b=(a/p.} 

X An-b-k-t-s-l(JL(S + i + 2) + a + 9 + 1, JL + 1) 

f ((JL + l)c - a -1) 
- JL c=((a+1)/JL} c 

x An-c-k-t-s-l(JL(S + i + 2) + a + 9 + 2, JL + 1) 

+ ~ f ((JL+1)d~a-j+JL) 
j=l d=((a+j-p.)/p.} 

X An-d-k-t-s-l(JL(S + 1 + i) + a + 9 + j + 1,JL + 1) }. 

10.7 Distributions of N;,n (a) and R~,n (a) 

Theorem 10.7.1 

((JL: l)n) Pr [N;,n(a) = c, R~,n(a) = k] 

= (~= ~) ~ ~ (k ~ 1) (!) (_l)k-l-s(JL _ 1r-1- i JLs 

x { ~ f ((JL + l)r - 2JL - a + j) 
j=O r=((2p.+a-j)/p.} r 

x An-r-c(JL(i + 1) + a + S + i - j + 2, JL + 1) 

f ((JL + l)t - 2JL - a - 1) 
- JL t=((2p.+a+1)/p.} t 

x An- t- c(JL(i+1)+a+s+i+3,JL+1) }. (10.21) 

PROOF. A path contributing to (10.21) comprises c + 1 independent segments 
as follows: 
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(a) The first segment from the origin to the first upward crossing of height a 
and will be with probability 

00 

(py)a I)plLqylL)i = paya+1 by (lOA) and (10.5); 
i=O 

(b) c - k segments each of length j.L + 1 and each with probability (j.L - 1 )plLq; 

(c) k - 1 segments each of length> j.L + 1 and each with probability 
00 00 

'L (plL qyIL) i (j.L - 1 )pIL qyIL 'L (plL qyIL)i 
i=O i=l 

00 00 

+ 'L(pILqyIL)i 'L(plLqylL)i - (j.L - 1)plLq 
i=l i=l 

= [(j.L - 1 + pILqyIL)plLqylL - (1 - plLqylL)2(j.L - 1)plLqJy2; 

(d) the last segment from the last upward crossing to 00 with probability 

00 {IL-l } {IL-l } {;o(plLqylL)iq 'f;o(py)IL-i - j.L(py)IL+1 = qy 'f;o(py)IL-i - j.L(py)IL+1 . 

Now (c - k) segments each of length j.L + 1 are to be combined with k - 1 
segments each of length > j.L + 1 so as to form k runs of total c upward crossings, 
which is possible in (~=~) ways. Thus, on identi(ying h(p) as Pr[N;(a) = 
c, R~(a) = kJ, we have 

h(p)/8 = (~= ~)paya+1{(j.L _1)plLqy-k 

x {(j.L - 1 + pILqyIL)pILqyIL - (1 - pILqyIL)2(j.L _ 1)plLq}k-ly2k-2 

X qy {f,(PY)h -,,(PY)"+1} /. 

= (c -1) (j.L _ l)c-k(pILqr-lpaya+l {(j.Ly _ l)yIL+1 _ (j.L _ l)}k-l 
k-1 

x qy {};(py)h _ ,,(PY)1'+1 } /6 
= (c = 1) ~ t (k ~ 1) (i) (_1)k-1-8(j.L _ 1)c-i-lj.L8(plLq)CplL+a 

k 1 i=O 8=0 1, S 

X y" .. 0+_+<+2 {}; (py )"-; _ ,,(py )"+1 } / 6 (10.22) 

in which the coefficient of (pILq)n gives the desired result in (10.21). • 
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Deductions 

(A) Summing (10.22) over k, we have 

hl(p)j8 = Pr[N;(a) = c]j8 

(pp'q)c-lpaya+1+(c-l)(J.L+1)(/-LY _ 1r-1qy 

x {];.(PY}"-; -1'(py}"+1 } /8 (1O.23) 

in which the coefficient of (pJ.Lq)n gives 

((/-L:,l)n) PI' [N;,n(a) = c] 

= I: (c ~ 1) (_l)C-l-i/-Li{~ f ((/-L + l)r - a + j) 
i=O 1, j=O r=((a-j)/J.L) r 

x An- c- r Cuc + a + c + i - j + 1, /-L + 1) 

f ((/-L+1)S-a-1) 
- /-L s=((a+1)/ J.L) S 

X An- c- s(/-Lc+a+c+i+2,/-L+1)}. 

(B) Summing (10.22) over c, we get 

h2(p)j8 = Pr[R;(a) = k]j8 

f (k + 9 - 1) (/-L _ l)k+g-l(pJ.Lq)k+g-lpaya+1 
g=O 9 

x {(/-LY - l)yJ.L+l - (/-L - l)}k-lqy 

X { ];.(py}"-; -1'(py}"+1} /8 (1O.24) 

in which the coefficient of (pJ.Lq)n gives 

((/-L:,l)n) Pr[R;,n(a) = k] 

= f I: t (k ~ 1) (:) (k + 9 - 1) 
g=O 1,=0 s=o 9 

x (_l)k-l-s(/-L _l)k+g-i-l/-Ls 

x {~ f ((/-L+1)r-2/-L-a+ j ) 

j=O r=((2J.L+a-j)/J.L) r 
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x An-r-k-g(p,(i + 1) + a + s + i - j + 2, p, + 1) 

_ p, f= ((p, + l)t -t2P, - a-I) 
t=((2j.L+a+l)/j.L) 

x An-t-k-g(p,(i + 1) + a + s + i + 3, p, + 1) }. 
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On a Subset Sum Algorithm and Its Probabilistic 
and Other Applications 
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Institute of Pure and Applied Mathematics, Almaty, Kazakhstan 
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Abstract: An algorithm for constructing partitions of an integer by arbitrary 
positive integers has been considered. The algorithm helps in introducing a 
class of discrete probability distributions which are useful in a sampling survey 
of populations, in constructing probability models describing texture images, 
etc. It can also be used in integer programming, cryptography, and some other 
problems. 

Keywords and phrases: Diophantine equation, discrete probability distri
bution, compositions, cryptography, generating function, knapsack problem, 
partitions, subset sum problem 

11.1 Introduction 

Some problems of the construction of usual partitions and their use in proba
bility and statistics have been considered by Voinov and Nikulin (1994, 1995, 
1996). In this note, we emphasize problems relating to partitions of integers 
by an arbitrary given set of positive integers. One such problem, called the 
knapsack problem, attracted the attention of mathematicians for many years 
due to its implication in public-key cryptography. Diffie (1988) wrote: "Given 
a cargo vector of integers a = (aI, a2, . .. ,an), it is easy to add up the elements 
of any specified subvector. Presented with an integer S, however, it is not easy 
to find a subvector of a whose elements sum to S, even if such a subvector is 
known to exist. This knapsack problem is well known in combinatorics and 
is believed to be extremely difficult in general. It belongs to the class of NP
complete problems, problems thought not to be solvable in polynomial time on 
any deterministic computer." 
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Actually, there exists a well-known and simple algorithm solving this prob
lem in exponential time. In this note, we describe a possibly new approach for 
this algorithm derivation and point out some of its applications. 

In Section 11.2, we derive an algorithm for constructing such partitions 
and discuss its potential applications in genetics, integer programming, cryp
tography, etc. In Section 11.3, we introduce a class of discrete probability 
distributions relating to such partitions. These distributions turn out to be 
useful in a sampling survey of populations, in constructing probability models 
describing texture images, radioactive contamination of lands, etc. Finally, in 
Section 11.4, we consider some approaches to summation procedures used in 
the construction of partitions. 

11.2 A Derivation of the Algorithm 

Consider the problem of representing a positive integer n as a sum of at most 
M ~ n given arbitrary positive integers aI, a2, ... , ai, l E Z+, the set of positive 
integers. In other words, we would like to consider all integral representations 
of n as 

(11.1) 

where 81 + 82 + ... + 81 ~ M and 8i, i = 1,2, ... , n, are non-negative integers. 
The generating function for the number Rn (M, l) of compositions of n such as 
in (11.1) is [see, for example, Voinov and Nikulin (1995)] 

MmaXl::;;::;I{a;} 

wa(z) = (1 + za1 + ... + zal-l + za1)M = L Rn(M, l)zn. (11.2) 
n=O 

Here, by compositions, we mean partitions taking order of summands into ac
count. 

Writing Wa(z) as 

Wa(z) = [(1 + za1 + ... + za1- 1 ) + za1]M 

and applying the binomial formula, we get 
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Mmaxl~i9{ai} 

L /tn,(M, l)zn, 
11,=0 

where [xl denotes the greatest integer part of x, We have also used the fact 
that 

if n - al81 > (M - 81) max {ai}. 
1::;i::;I-1 

Strictly speaking, the upper limit of the summation over 81 is min{M, [njatJ}. 
Since, by definition, (~) = 0 for 81 > M, we prefer to use for simplicity [njatJ 
as the upper limit. 

From the above, we obtain the recurrence relation 

(11.3) 

This recurrence relation gives 

x (M - 81) ... (M - 81 - ... - 83) 

81-1 82 

X Rn-slal-"'-s2a2(M - 8[ - ... - 82, 1). (11.4) 

Evidently, 

(1+ z·,)M = ~ (~}." = %;: R,,(M, l)zn = E R.,k(M, l)z"', 

where 

Hence, 

Since 

R k(M 1) = { (~) 
al " 0 

if k = ~ is a non-negative integer, 
otherwise. 

(M-SI~"'-S2) 

o 
if 81 = n-slal~~"-s2a2 is non-negative integer, 

otherwise. 

( M) (M - 81) ... (M - 81 - ... - 83) (M - 81 - ... - 8 2) 

8[ 8[-1 82 81 

M! 

(11.5) 

(11.6) 
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from Eqs. (11.4), (11.5) and (11.6) we obtain 

[.!!:..) [n-s!aq 
al al-1 

[n-S1a l -···-S3 a 3 ] 
a2 M! 

fln(M,l) = L L ... 
8!=081_1=0 

L (M - 81 - ... - 81)!81!82! ... 81! 

(11.7) 
if 81 + 82 + ... + 81 :::; M, 81 = (71, - 8lal - ... - 82a2)/a1 being a non-negative 
integer, and is zero otherwise. 

From this, we see that for all sets {82, 83, ... , 8l} defined by sums in (11.7) 
such that 81 + ... + 8l :::; M, the number of parts in (11.1) is less than or equal 
M and 

Hence, sets {82, 83, ... ,81} define all partitions of 71, such as in (11.1) and terms 

M! 

count all compositions of 71, for fixed 81,82, ... ,8l. 

Hence, the partitions may be written down in the form 

(11.8) 

where {82, ... , 8l} are sets of summation indices of (11.7) and 81 = (71, - 8lal

... - 82a2)/a1 is a non-negative integer. Notation (11.8) means that in each 
partition there will be M - 81 - ... - 81 zeros, 81 terms will be al, 82 terms will 
be a2, and so on. 

Example 11.2.1 Let a1 = 2, a2 = 5, a3 = 3, M = 5 and 71, = 17. By formula 
(11.7), for l = 3 we have 

where 81 = (17 - 582 - 383)/2 and 81 + 82 + 83 :::; 5. 
For this example, there are 15 sets {81, 82, 83} but only 3 of them satisfy the 

conditions that 81 is a non-negative integer and that 81 + 82 + 83 :::; 5; these are 
{I, 3, O}, {2, 2, I} and {O, 1, 4}. Using (11.8), we then obtain three partitions of 
71, = 17 (with at most 5 parts) as 

{Ol,21,53,30} = 1.2+3.5=17, 

{OO,22,52,31} 2.2+2.5+1.3=17, 

{00, 20, 51, 34} 1.5+4.3=17. 
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Formula (11.7) can be easily transformed for the construction of partitions 
of n with exactly M parts. Since the generating function in this case is 

Wa(z) = (za1 + ... + zal)M = zMal (1 + za2 -a1 + ... + zal-a1)M 
Mmax{ai-al} Mmax{ai} 

= zMal L Rn(M, l-l)zn = L Rn-Mal (M, l- l)zn, 

using (11.7) we obtain 

[n-Ma! j [n-Ma1-sl(al-a1)j 
al-al al_l al 

[n-Mal-SI(al-al)-"·-S4(a4-al)j 
a3 al 

Rn-Mal(M,I-l) = 2: 2: 2: 
81=0 81-1=0 83=0 

M! 
(11.9) 

where 82 + 83 + ... + 81 ::; M and 

is a non-negative integer, l ~ 3. 
The partitions n = al8l + ... + al8l may then be written as 

(11.10) 

Example 11.2.2 Let al = 2, a2 = 4, a3 = 3, a4 = 6, M = 5 and n = 26. By 
formula (11.9), for 1 = 4 we have 

where 82 = (16 - 484 - 83)/82 and 82 + 83 + 84::; 5. 
There are 45 sets of {82, 83, 84} and only two of them satisfy the conditions 

that 82 is a non-negative integer and that 82 + 83 + 84 ::; 5; these are {2, 0, 3} 
and {O, 0, 4} which give the two partitions 

{2°,42,3°,63} = 2·4+3·6 = 26, 

{2l ,4°,3°,64} = 1· 2 + 4·6 = 26, 

of n = 26 on exactly 5 parts. 
The algorithm for the construction of partitions defined by (11.7) and (11.9) 

shows that the subset sum problem is solvable at least in principle. 
A variant of the subset sum or knapsack problem considered above has found 

applications in public-key cryptography [Diffie (1988)J. 
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This problem is usually posed as follows [Brickell (1985)]. Let a set of 
positive integers aI, a2, ... , an be an unordered knapsack. To cryptanalyze the 
system, we are to solve the subset sum problem for any sum S, i.e. to find a 
vector (81, ... ,8n ), with 8i E {0,1}, such that 

if such a vector exists. The density of a set of weights a1, . .. , an is defined by 

Since there will be in general many subsets of weights with a sum S when 
d> 1, only the case d ~ 1 is used in cryptography [Coster et at. (1992)]. 

Evidently, for every d this problem is solved in principle by formula (11.7), 
which in this case becomes 

min(l [LJ) min(l,[ S-an 8 n J) 
, an an-l 

min(1,[S-an.n~ ... -a383 ]) 

Rs(n,n) L L L 
n! 

(11.11) 

for 81 + .. '+8n ~ nand 81 = S-8nan~"'-82a2 being ° or 1, and is zero otherwise. 

Example 11.2.3 Let a1 = 30, a2 = 29, a3 = 32, a4 = 31, a5 = 33, n = 5 and 
S = 90. The density in this case is d = 5/ log2 32 = 1. From (11.11), we have 

. (1 [90-33'5 J) . (1 [90-3385-3184 J) . (1 [90-33'5-31'4-3283J) 1 mill, 31 mill, 32 mill , 29 

Rgo(5,5) = L L L L 
85=0 83=0 

5! 

where 81 + ... + 85 ~ 5 and 

90 - 3385 - 3184 - 3283 - 2982 
81 = 

30 

From these, we find 11 sets of {81, ... ,85} and only the set {1,1,0,1,0} 
satisfies the conditions that 81 + ... + 85 ~ 5 and 81 is ° or 1. From (11.8), with 
M = n = 5 we have the following unique solution of this knapsack 

An algorithm given by formula (11.11) is inapplicable in cryptography since 
its computational complexity is of the order of 2n-1. Nevertheless, it can be 
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used in combination with other integer programming techniques. At present, 
some algorithms are known [Coster et al. (1992)] which solve almost all subset 
sum problems of density d < 0.9408 ... in polynomial time. 

An interesting application of the subset sum problem arises while construct
ing a mathematical model of universal genetic code [Shcherbak (1994-1996)]. 
The model is described by a system of 22 linear Diophantine equations of 25 
non-negative variables Xj, j = 1,2, ... ,25, and some inequalities imposed on Xj 

describing the nucleon sums of the 23 amino acids. The problem is to find all 
the solutions of this system. 

Many techniques are known for solving such systems; see, for example, 
Smith (1861), McClellan (1973), Phrumkin (1976) and Votyakov and Phrumkin 
(1976). The algorithm of Votyakov and Phrumkin (1976) gives the general 
discrete solution of a system of linear equations in polynomial time, but the 
problem of enumerating all the solutions still remains open. In view of this, the 
exponential algorithm given by (11.7) and (11.8) which enumerates all solutions 
of Eq. (11.1) naturally becomes useful for solving the above problem, since its 
solution is defined by the intersection of sets of solutions of every equation of 
the system which satisfies inequalities imposed on some variables. 

11.3 A Class of Discrete Probability Distributions 

Suppose that an urn contains balls. The balls bear fixed positive numbers 
a},a2, ... ,al, l E Z+. Let Pi be the probability that a ball bearing the number 
ai will be drawn (i = 1,2, ... , l) with L~=l Pi = 1. Let the random variable X 

take the value r if, of n balls drawn with replacement, TI bear the number aI, 

r2 bear the number a2, and so on, and L~=l airi = r with L~=l ri = n. The 
probability that the summation of numbers on balls drawn is r (nih ::; r ::; 
na2, i'h = minl::;i::;l{ ad, a2 = maxl::;i::;l{ ai}) is 

(11.12) 

where 

and is zero if L~:i ri > n. If can be easily shown, using the arguments of 
Panaretos and Xekalaki (1986), that (11.12) is a proper probability distribution; 
see also Johnson, Kotz and Balakrishnan (1997). 
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Its probability generating function G(8) is 

(11.13) 

All n{a2-al)+1 probabilities of (11.12) can naturally be defined by (11.13); 
for example, 

_ 1 ana1 G(8) 
Pr[X = nal] = -( -)' a - 18=0. 

nal. 8na1 

To simplify the evaluation of probabilities in (11.12), one may use the al
gorithm derived in the last section. Using Eqs. (11.9) and (11.1O), with n = r, 
M = n the distribution in (11.12) becomes 

Pr[X=r] 

[ r-na1j [r-nal-81(al-al)j 
al -al al_l al 

L L 
[r-nal-81(al-al)-"'-S4(a4-al)j 

a3 al 

L 
81=0 81-1 =0 83=0 

n! n-82-"'-81 82 81 
PI P2 ... PI 

(n - 82 - 83 - ... - 81)!82!83! ... 81! ' 

(11.14) 

where 82 + 83 + ... + 81 :::; n, l 2:: 3 and 

r - nal - 81{al - al) - ... - 83{a3 - al) 
82=--------~----~--------~--~ 

a2 - al 

is a non-negative integer. 
This probability model is suitable if a set of possible numbers on balls is 

confined to a small ordered or disordered set of positive integers, even excluding 
zero. Suppose one has to plan a cloth production. Having obtained sample 
estimates of probabilities PI, ... ,PI of heights al, ... , ai, he/she will now be 
able to evaluate the probability that the average height of individuals belongs 
to a prescribed interval. 

The model is also applicable for describing radioactive contamination of 
lands where, due to the natural background, digitized levels of measured ra
dioactivity belong to a set with a similar property as above. Due to the stochas
tic nature of radioactive fields, probabilities of summed levels can describe these 
fields more adequately. 

11.4 A Remark on a Summation Procedure When 
Constructing Partitions 

Suppose we have to construct partitions of an integer k on at most n parts with 
each part less than or equall. This problem is a particular case of (11.1) with 
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al = 1, a2 = 2, ... , al = land w(z), the generating function for the number 
ak (n, l) of partitions, being 

nl 
w(z) = (1 + z + z2 + ... + zl(' = L ak(n, l)zk. 

k=O 

Using (11.7), we then have 

[f] [kl~;lJ [k-IS I-;"-3S3] 

L L ... L 
n! 

(11.15) 

where 

Sl = k - 2S2 - ... - lSI and Sl + 82 + ... + 81 ~ n. (11.16) 

Partitions can be represented in this case as 

(11.17) 

The way of summation by partitions [summation by 81, 81-1, ... , S2 in (11.15)] 
is well-known. An alternate way of summation by the same partitions has been 
proposed by Voinov and Nikulin (1994, 1995) and can be written as follows [see, 
for example, Voinov and Nikulin (1995, Formula 7)] 

ak(n, l) 

[(1-2)1 1 ] 
I-I 

L 
II =k-n 12=(211 -k)+ 11- 1 =(211- 2-11- 3 )+ 

n! 

(n - k + h)!(k - 2h + l2)!(ll - 212 + l3)!·· . (l1-2 - 2l1-1)!ll-1!' 
(11.18) 

with partitions being 

(11.19) 

The way of summation in (11.18) is more suitable than in (11.15) and (11.16) 
in the sense that it saves considerable computing time. Let, for example, l = 3, 
n = 6 and k = 14. In this case, formula (11.15) enumerates 24 sets {h, l2, l3} 
but only four of them, viz. {O, 4, 2}, {I, 2, 3}, {2, 0, 4} and {O, 1, 4}, satisfy the 
condition in (11.16). Formula (11.18) does not have a condition like (11.16) and 
enumerates for this example exactly four sets {h, l2}, viz. {8, 2},{8, 3},{8, 4} 
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and {9,4}. Naturally, we obtain the same partitions in both cases, which by 
formulas (11.17) and (11.19) are 

{00, 10,24,32}, {00, 11, 22, 33}, {00, 12,20,34}, {Ol, 1°,21,34 }. 

Acknowledgements. The authors would like to thank Professors N. Balakr
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I and J Polynomials in a Potpourri of 
Probability Problems 

Milton Sobel 

University of California, Santa Barbara, CA 

Abstract: Some new methodology is developed for Network Reliability prob
lems and for random paths on finite lattices. In terms of stopping sets which 
define different (random) ways of reaching a goal in a geometrical setting, cer
tain I and J polynomials are developed which give rise to the probability dis
tribution (and its moments) of the waiting time (WT) needed to reach the 
preassigned goal. These new techniques have many different applications from 
Network Reliability to Recreational problems of tic-tac-toe and attacking all 
the squares on a chess board with randomly placed rooks or knights or queens, 
etc. Failure probabilities need not be equal and random sampling can be carried 
out with replacement, without replacement or by P6lya sampling schemes. 

Keywords and phrases: Network reliability, waiting time problems in a ge
ometrical setting, Dirichlet methodology, random paths on lattices 

12.1 Introduction 

In a recent paper by Boehme, Kossow and Preuss (1992), the concept of system 
reliability for consecutive k-out-of-n: F systems was generalized and applied to 
linear and circular lattice networks. The consecutive idea was extended to any 
consecutive set connected by bonds in a preassigned linear or circular lattice 
network. In the present paper, one of the goals is to continue with this ap
proach without restricting ourselves to any special classes of lattice networks. 
Actually, the central theme of this paper is waiting time (WT) problems and 
we regard reliability as an important application of these problems. We in
troduce I and J polynomials which reduce a large class of inverse sampling 
WT problems to a small finite linear combination of solvable fixed-sample-size 
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problems with sample-size parameter n. Basically the argument depends on 
inclusion-exclusion, but Dirichlet methodology, introduced in Sobel, Uppuluri 
and Frankowski (1977, 1985), is useful in the final steps to get numerical so
lutions. With a little extra work, it is shown that the method of I and J 
polynomials can also handle reliability problems with unequal failure proba
bilities for the individual units. If a problem can be regarded as a sampling 
WT problem, then we give three different expectation E[WT] answers for each 
problem depending on whether the sampling is carried out without replacement 
(H) or with replacement (M) or by Polya sampling (P), i.e., putting back two 
(or more) of the same for each item removed. All of these results, including 
the variance (T2(WT) and Pr[WT ~ n + 1], are derived from one appropriate I 
or J polynomial. The reason for considering both the I and the J polynomial 
is that each pair of I and J polynomials defines a pair of dual problems with 
related results. This problem-duality is not the same as graphic-duality, which 
defines equivalent problems; both dualities are illustrated by several examples 
in the paper. The I and/or J polynomial method can also be used in path 
problems and percolation problems on a finite lattice network. The results are 
exact in all cases; no asymptotic results have yet been obtained for very large 
lattice sizes. 

Aside from the basic references Sobel, Uppuluri and Frankowski (1977, 1985) 
for Dirichlet methodology, there are two places in the literature where the above 
method of inclusion-exclusion was successfully employed; one is Sobel and Up
puluri (1974), where we wait for X-rays to hit each of the 4 cells in a local 2 x 2 
structure within a larger structure. The other is GIeser et al. (1989), where a 
single die is marked on its 6 sides with the pairs (1,2), (1,3), (1,4), (2,3), (2,4) 
and (3,4); we are interested in the waiting time to see all the four digits 1, 2, 
3, 4, each at least once. 

12.2 Guide to the Problems of this Paper 

Problems 12.1, 12.2 and 12.3, are explained with Tables 12.1, 12.2 and 12.3, 
respectively. Each illustrates the concept of the problem-dual; thus Problems 
12.1A and 12.1B are dual Problems as are 12.2A and 12.2B and also 12.3A and 
12.3B. For each pair, under H-sampling the expected waiting times (WT) add 
to one more than the original number of sampling elements and the variances 
of WT are equal for H-sampling. This problem-duality is not to be confused 
with graph-duality which is also included in the tables. For example, under 
graph-duality the 6 faces and 8 vertices of a cube are interchanged with the 6 
vertices and 8 faces of a regular octahedron; the number of edges is 12 in both 
cases. 

The explanation of the derivation of the 1- and J- polynomials is given step-
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by-step in Problem 12.4A, which deals with a triangular array problem. The 
reason for considering such an array was to show that we are not limited to 
the consideration of only linear (i.e., rectangular) and circular (or cylindrical) 
arrays of nodes as in Boehme, Kossow and Preuss (1992). Problem 12.4 is 
then extended to show that the method of J- and J-polynomials "works" in 
a multivariate setting with unequal parameters. However, different sampling 
methods no longer yield intuitively comparable results. 

Problem 12.5, dealing with the edges of a square with diagonals that do 
not intersect, illustrates the fact that the concept of problem duality can be 
extended to different levels (d = 1,2, ... ). 

More examples of problem-duality are given in Problems 12.6, 12.7 and 12.8. 
Problems 12.9, 12.10, 12.11 and 12.12 are problems of percolation type. 

They all deal with a rectangular or square lattice and in each case the J- and/or 
J- polynomials gives exact answers for the expected waiting time (in terms 
of number of observations) needed to complete anyone of the specified class 
of paths. Variance of WT and percentiles (which can be treated as upper 
confidence limits ofWT) are all obtained from either the J- or the J-polynomial. 

P6lya sampling with c = 1 in Tables 12.1, 12.2 and 12.3 means that you put 
back 2 items (or 1 extra) for each item removed for sampling. 

It should be noted in Tables 12.1, 12.2 and 12.3 for each pair of J J-dual 
problems (like 12.1A and 12.1B) that if the sampling set is the same (as it 
is in all 3 Tables), then for H-sampling (Le., without replacement) we have 
(i) the variances u 2(WT) are the same for A and B, and (ii) the sum of the 
expectations E(WT) for A and B is V + 1, E + 1, F + 1 or C + 1 depending on 
whether the common sampling set is a set of vertices, edges, faces or cells; the 
capital letter denotes the size of this sampling set. 

In Tables 12.2 and 12.3, system reliability (for sampling without replace
ment) is included. If we place JO by pO for each u (where p = 1 - q = unit 
reliability), then we obtain the system reliability in terms of the unit reliability. 
If we replace JO by (E;;:-o)/(!) for each u, then we obtain Pr[WT 2: n + 1], 
where WT is the waiting time until system failure; here, E = 12 (edges) in 
both tables. By summing the latter on n, we obtain the E[ReliabilityJ or the 
expected number of failures the system will survive if we are sampling without 
replacement. 
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Table 12.1: Sampling the V = 8 vertices of a regular cube; dual problems 
One-at-a-time sampling method used 

Graph-dual problems W /0 replacement W /replacement Polya W/c = 1 
are grouped together (H) (M) (P) 
below 
Problem 12.1A: SVC: Sample vertices of a cube until 1 complete face is 
obtained. 
Graph-dual problem: Sample the faces of an octahedron until you obtain all 4 
associated with anyone vertex 
E[WT] 197/35 = 5.628571 9.000000 20.600000 
Mode (WT), 6, 1/7 = 0.142857 7,0.129956 8,0.066201 
Pr{mode} 
Min(WT), Max(WT) 4, 7 4,00 4,00 
a 2(WT) 846/1225 = 0.690612* 13.688889 00 
I-polynomial 614 - 12I6 + 817 - IS (Sum of Coeff's = 1) = ~<>a<> 1<> 
J -polynomial 4J2 + 8J3 - 36J4 + 40J5 - 16J6 + JS 

(Sum of Coeff's = 1) = ~<>b<> J<> 
(Dual) Problem 12.1B: SVC: Sample the vertices of a cube until 
1 vertex is obtained on each face. 
Graph-Dual Problem: Sample the faces of an octahedron until you obtain at least 
1 face associated with each vertex 
E[WT] 118/35 = 3.371429 4.142857 5.553333 
Mode (WT), 3, 3/7 = 0.428571 3, 0.248047 3,0.222222 
Pr{Mode} 
Min(WT), Max(WT) 2, 5 2,00 2,00 
a2(WT) 846/1225 = 0.690612* 2.925172 14.648889 
Sum of expect. V + 1 = 9* - -

for A, B 
I-polynomial 412 + 813 - 3614 + 4015 - 1616 + IS 
J -polynomial 6J4 - 12J6 + 8J7 - JS 
* Note also that the variances are equal under H-sampling 

Common diagram Stopping sets for Pr[WT ;::: n + 1] under Polya (c = 1) 
Problem 12.1A Sampling 

5 6 
(1, 2, 3, 4) 

1/1 < (1, 2, 5, 6) PA = I::=2 b<>(:)/(n!7) + Dno , 
(2, 3, 6, 7) : 
(3, 4, 7, 8) PB = I::=4 aCt (:) / (n!7) - Dno. 1 

1 
~~---77 (1, 4, 5, 8) 

'" (5, 6, 7, 8) 4 3 6 stopping sets 
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Table 12.2: Sampling the E = 12 edges of a cube to get a square face 
One-at-a-time sampling method used 

Graph-dual problems W /0 replacement W /replacement Polya W/c = 1 
are grouped together (H) (M) (P) 
below 

169 

Problem 12.2A: SEC: Sample the edges of a cube until a complete square face is 
obtained. 
Graph-dual problem: Sample the edges of an octahedron until you obtain 4 
associated with anyone vertex 
E[WT] 505/56 = 7.651515 11.752814 22.147619 
Mode (WT), 8, 0.312121 10, 0.106282 12, 0.049368 
Pr{Mode} 
Min(WT), Max(WT) 4,10 4,00 4,00 
(T2(WT) 1.608861 18.304525 406.287735 
I-polynomial 614 - 1217 - 3IB + 819 + 12110 - 12111 + 2112 = L:aaa Ia 
J-polynomial 8J3 + 66J4 - 348J5 + 672J6 - 684J7 + 381JB - 92J9 

-12JlO + 12J11 - 2J12 = L:aba Ja 
System reliability 1 - 6q4 + 12q7 + 3qB - 8q9 - 12qlO + 12q11 _ 2q12; 

q = Pr{ failed item or edge} = 1 - P 
(System fails if each edge in any square face fails.) 

(Dual) Problem 12.2B: SEC: Sample the edges of a cube until you have 
at least 1 edge from each face. 
Graph-Dual Problem: Sample the edges of an octahedron until you obtain at least 
1 edge associated with each vertex 
E[WT] 5.348484 6.904329 9.752381 
Mode (WT), 5, 0.312121 5,0.190008 5, 0.125824 
Pr{Mode} 
Min(WT), Max(WT) 3, 9 3,00 3,00 
(T2(WT) 1.608861 7.837761 54.186303 
Sum of expect. E + 1 = 13 - -

for A, B 
I-polynomial 813 + 6614 - 34815 + 67216 - 68417 + 38UB - 9219 

-12110 + 12111 - 2112 
J-polynomial 6J4 - 12J7 - 3JB + 8J9 + 12JlO - 12J11 + 2J12 

Common diagram Stopping sets for Pr[WT ~ n + 1] under Polya (c = 1) 
Problem 12.2A Sampling 

7 (1, 2, 3, 4) 

;!VI 3 -1{' (1, 5, 9, 12) P = L:11 b (l1)/(n+11) - 28 A a=3 a a a on, 
I (2, 6, 9, 10) 

61 4 8 (3, 7, 10, 11) P = L: ll (l1)/(n+ll) + 28 
2 

I B a=4 aa a a on· 
I 5 (4,8, 11, 12) 9,...;""---1--

,... 
12 (5, 6, 7, 8) 

1 6 stopping sets 
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Table 12.3: Sampling the E = 12 edges of an octahedron to get a triangular 
face; One-at-a-time sampling method used 

Graph-dual problems 
are grouped together 
below 

W /0 replacement 
(H) 

W /replacement 
(M) 

Polya W/c = 1 
(P) 

Problem 12.3A: SEO: Sample the edges of an octahedron until a complete 
triangular face is obtained. 
Graph-dual problem: Sample the edges of a cube until you obtain 3 
edges associated with anyone vertex 
E[WT] 6.005195 8.118182 12.271424 
Mode(WT), Pr{Mode} 6,0.270563 7,0.140900 7,0.086080 
Min(WT), Max(WT) 3, 9 3, 00 3, 00 
(T2(WT) 1.84760 14.857948 83.045486 
I-polynomial 813 - 1215 - 1616 + 2417 + 1818 - 2419 - 6J1o + 1211 

J-polynomial 

System reliability 

_3112 = ~",a", I'" 
9J4 + 36J5 - 152J6 + 168J7 - 27 J8 - 84J9 + 72Jlo 
-24J11 + 3J12 = ~",b", J'" 
1 - 8q3 + 12q5 + 16q6 - 24q7 - 18q8 + 24q9 + 6qlO 
-12q11 + 3q12; 
q = Pr{failed edge} = 1 - P 
(System fails if each edge in any triangular face fails.) 

(Dual) Problem 12.3B: SEO: Sample the edges of a rectangular octahedron until 
you obtain at least 1 edge from each face. 
Graph-Dual Problem: Sample the edges of the cube until you obtain at least 
1 edge associated with each vertex 
E[WT] 6.994808 
Mode(WT), Pr{Mode} 7,0.270563 
Min(WT), Max(WT) 4, 10 
(T2(WT) 1.84760 
Sum of expect. E + 1 = 13 

10.233756 
8,0.124446 
4,00 
16.806357 

17.952381 
9,0.067437 
4,00 
318.759635 

for A, B 
I-polynomial 914 + 3615 - 15216 + 16817 - 2718 - 8419 + 72110 

-24111 + 3112 

J-polynomial 

Common diagram 

8J3 - 12J5 - 16J6 + 24J7 + 18J8 - 24J9 - 6JlO 
+ 12J11 - 3J12 

Stopping sets for 
Problem 12.3A 

(1, 2, 9) 
(1, 4, 12) 
(2, 3, 10) 
(3, 4, 11) 
(5, 6, 9) 
(5, 8, 12) 
(6, 7, 10) 
(7, 8, 11) 

8 stopping sets 

Pr[WT ;::: n + 1] under Polya (c = 1) 
Sampling 

P = ",11 b (l1)/(n+11) + 38 
A L..",=4 '" '" '" on, 

P = ",11 a (l1)/(n+11) - 38 
B L..",=3 '" '" '" on· 



I and J Polynomials in a Potpollrri of Probability Problems 171 

12.3 Triangular Network with Common Failure 
Probability q for Each Unit 

Problem 12.4: Consider the given diagram with 6 nodes representing inde
pendent units. 

4 6 

The system fails if any connected (by the bonds shown) subset of size s = 3 has 
only failures. The eight possible stopping sets of size s = 3 are (I, 2, 3), (I, 2, 
4), (I, 2, 5), (I, 3, 5), (I, 3, 6), (2, 3, 5), (2, 4, 5) and (3, 5, 6). The principal 
interest is for H-sampling, but if we do M or P-sampling, then we stop if any 
of these triples has had at least one failure at each of its three nodes. Equal 
probability of failure and independence of the units are still assumed; we simply 
assume that the node numbers are marked on balls put into an urn and under 
P-sampling there can be more than one ball with the same number. 

Unions of these 8 triples j at-a-time (j = 1,2, ... ,8) gives rise to the Prelude 
to Inclusion-Exclusion Table on the next page, where the last row is obtained 
by alternately adding and subtracting the items in each column. This gives our 
I-polynomial, namely, 

(12.1) 

If we replace JD' by (1- J)et (0: = 3,4,5) and take a complement, we obtain the 
J-polynomial, namely, 

(12.2) 

In both (12.1) and (12.2), the sum of the coefficients is unity. Pl(I) repre
sents the probability of stopping in at most n observations, if the sampling 
parameters are properly appended to it; P2(J) represents the complement, i.e., 
Pr[WT 2: n + 1] with the sampling parameters put in. We only use the J
polynomial at present. Each Jet on the right side of (12.2) is under H-sampling 
a standard probability that if we start with N = 6 balls (one at each node) and 
take a sample of size n (without replacement and at random, of course) we will 
miss 0: specified balls, which is C(N -0:, n)/C(N, n), where C denotes the usual 
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Prelude 

Size of the union 
# at-a-time 3 4 5 6 

1 8 0 0 0 

2 0 16 10 2 

3 0 6 32 18 

4 0 1 28 41 

5 0 0 12 44 

6 0 0 2 26 

7 0 0 0 8 

8 0 0 0 1 

8 -11 4 0 

Total 
Frequency 

G) = 8 

@ =28 

(~) = 56 

(~) = 70 

(~) = 56 

(~) = 28 

(~) = 8 

(~) = 1 

Sum of 
Coeff's = 1 

Milton Sobel 

binomial coefficient, or can be obtained by an algorithm developed in Sobel, 
Uppuluri and Frankowski (1977) where the notation used is H Ji~(I, n). For 
M-sampling we can write the answer as a multinomial with commo~ probability 
1/ N for each unit or we can use an algorithm developed in Sobel, Uppuluri and 

Frankowski (1985), where the notation used is Ji~(I, n). For P-sampling, the 
same probability is C(N - a + n - 1, n)/C(N + 'n - 1, n) and we can use the 

notation P Ji~(1, n). Since all three represent Pr[WT ~ n + 1] and all three 
can be summ~d either directly or by the results in the references cited, we can 
obtain E[WT]. We also can use the variance formula for non-negative random 
variables 

00 

I)2n + 1) Pr[WT ~ n + 1]; 

(12.3) 

The results in tabular form are as follows: 
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Problem 12.4 

E[WT] 
Mode(WT), Pr{Mode} 
Min(WT), Max(WT) 
a 2(WT) 

Table 12.4A: 

One-at-a-time sampling method used 
W /0 replacement W /replacement Polya (c = 1) 

(H) (M) (P) 
3.73333 5.300000 8.000000 

4,0.466667 
3, 5 

0.462222 

4,0.240741 
3,00 

5.630000 

4,0.150794 
3,00 

00 

For the distribution of WT and in particular the Mode (WT), in Table 
12.4A, we use the three formulas for n ~ 0: 

= {~ 1, 1, 1, U,) for n = 0, 1,2,3,4 

for n ~ 5, 
(12.4) 

(2) (3) (4) (5) 
2J1/ 6 (1, n) + 4J1/ 6 (1, n) - 9J1/ 6 (1, n) + 4J1/ 6 (1, n) 

= (2)R (l)R (l)R (l)R 2"3 +4 2 -9"3 +4 (; (12.5) 

2(5) 4(5) 9(!) 4(~) 
Pp[WT ~ n + 1] = C!5) + C!5) - C!5) + ct5) (12.6) 

Note that the answers in Table 12.4A and in Eqs. (12.4), (12.5) and (12.6) are 
all obtained from the one J-polynomial in (12.2). If we use q for the common 
probability of any unit failure to conform with the notations used in Boehme, 
Kossow and Preuss (1992), then we can also make use of the J polynomial in 
(12.1). Thus, if we replace JQ by qQ (a = 3,4,5) and take a complement, we 
can write the reliability function for the system that fails when any 3 connected 
units fail as 

(12.7) 

this concept makes more sense under H-sampling, i.e., without replacement, 
and we will assume H-sampling when using it. Here, q can be obtained from 
a common distribution of unit life-time by inserting some fixed time point to. 
The subscript 1/6 on each J in (12.5) corresponds to the q in (12.7). Although 
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this is often denoted by p as in Sobel, Uppuluri and Frankowski (1985), we are 
trying to conform with the notations in Boehme, Kossow and Preuss (1992) by 
using q in the reliability application. 

Next, we wish to show with the same example how the 1- and J-polynomial 
method also "works" for unequal unit failure probabilities. We again start with 
the sampling aspect and sampling any unit will correspond to a failure for that 
unit. 

Suppose that in the same triangular network as above there are two different 
sampling (or failure) probabilities: q for nodes 1, 2 and 3 and Q for nodes 4, 5 
and 6. This presents little or no difficulty for M-sampling; we merely assume 
that 3q + 3Q = 1. In order to continue to apply simple random sampling from 
an urn, we assume there are r units at each of nodes 1, 2 and 3 and s units 
at each of nodes 4, 5 and 6. At each node, the units are in parallel so that 
for node 1 (respectively, 2, 3, 4, 5, 6) to fail we need (at least) r (respectively, 
r, r, s, s, s) failures, regardless of whether the sampling is H or M or P. In 
general, we could have Bl original units at each of nodes 1, 2 and 3 and B2 
original units at each of nodes 4, 5 and 6 for the hypergeometric (H) model. 
For system failure, we need 3 connected nodes to fail as before. Note that q and 
Q are now probabilities of node failures, not unit failures and the two types of 
nodes will be referred to as Type 1 (nodes 1, 2, 3) and Type 2 (nodes 4, 5, 6). 
For H-sampling, we consider a special case with Bl = 1 and B2 = 2 (call it Ho) 
so that N = 3 Bl + 3B2 = 9. The prelude table based on the same 8 triples as 
above now has the same 8 rows and for r = 1 and s = 2 it has 9 columns with 
column headings (q3, q2Q, qQ2, q3Q, q2Q2, qQ3, q3Q2, q2Q3, q3Q3). Using 
exactly the same method as before, we obtain an "I-polynomial" with powers 
replaced by 2-vectors, namely 

PI (I) = 1(3,0) + 51(2,1) + 21(1,2) _ 51(3,1) _ 61(2,2) + 41(3,2), (12.8) 

the remaining 3 terms having cancelled by the plus and minus addition. These 
I-functions, written out for general rand s, take the Dirichlet form 

1(3,0) 

1(2,1) 

1(1,2) 

I~~~)(r, s, n) = IJ3)(r, n), 

1(2,1) ( ) 
q,Q r, s, n , 

(1,2) ( ) 
Iq,Q r, s, n , etc. (12.9) 

and are the same multinomial functions studied in Sobel, Uppuluri and 
Frankowski (1985) for which algorithms can be made available. If the nodes are 
operating independently and r = 1, s = 2, then the coefficients of (12.8) give 
us the system reliability R(q, Q) for the Ho-sampling model in terms of q and 
Q, namely, 
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Since in our new Ho-model we altered the original set-up by setting B2 = 2 
(i.e., by putting 2 items in parallel at each of nodes 4, 5 and 6), it is no longer 
clear which of several multinomial models is comparable with Ho. We consider 
three different possibilities, Ml, M2 and M3. Under M 1, we have N = 9 units 
(1 marked 0: for 0: = 1, 2, 3 and 2 marked 0: for 0: = 4, 5, 6), r = 1, s = 2 and 
q = Q = 1/9. Under M2, we have N = 6 units with r = 1, s = 2, q = 1/9 
and Q = 2/9. Under M3, we have N = 6 units with r = s = 1, q = 1/9, 
and Q = 2/9. The aim in doing this is to show that the derivation of a single 
J-polynomial, which we now derive, enables us to get formulas and numerical 
results for all 4 models, Ho, Ml, M2 and M3. 

To obtain the J-polynomial corresponding to (12.8), which is based on our 
rule for system failure, we use inclusion-exclusion to change each I in (12.8) 
into J-form; the first 3 terms (without coefficients) are transformed as follows: 

1(3,0) 1 3 = (1 - J)3 = 1 - 3J(I,0) + 3J(2,0) _ f 3,0), 

1(2,1) 1 _ 2J(I,0) _ J(O,I) + J(2,0) + 2J(I,1) _ J(2,1) , 

1(1,2) 1- J(1,O) - 2J(0,1) + J(0,2) + 2J(1,1) - J(1,2), etc. (12.11) 

Then, using the coefficients in (12.8) to linearly combine these J-expressions 
and taking the complement of the result gives our J-polynomial, namely 

P2 (J) = J(2,0) + J(1,l) + 2J(2,1) + 2J(1,2) - 3J(3,1) - 6J(2,2) + 4J(3,2), 

(12.12) 

the remaining terms having cancelled. We use (12.12) to obtain Pr[WT ~ n+1 I 
Model] for all 4 models: Ho, M1, M2, M3 after inserting the appropriate values 
of r, s; for the H-model, we also need B 1, B2, N and for the M-models we 
also need q and Q. J(b,c), under Ho, is the probability that in a sample of size 
n we get less than one (or zero) from b specified cells and less than 2 from a 
disjoint set of c specified cells. Hence, we obtain for n ~ 0 under Ho 

Pr[WT ~ n+ 1] 

(~) + [(~) + 2(n~1)] + 2 [(~) + 2(n~1)] 

+2 [ (~) + 4(n~1) + 4(n~2)] - 3 [(~) + 2(n~1)] 

-6 [ (~) + 4(n~1) + 4(n~2)] + 4 [(~) + 4(11,=-1) + 4(11,=-2)] 

(12.13) 

The I and J notation is the same as that used in Sobel, Uppuluri and Frankowski 
(1977,1985), except that, in the latter, HI and HJ are used for the H-models 
and, in the former, I and J are used for the M-models; since we only wrote 
superscripts in (12.8) and (12.12), we were able to use I and J for both Hand 
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M models. For MI, we first write the answer in terms of general q showing the 
coefficients (1,1,2,2, -3, -6,4) from (12.12) and then insert q = 1/9 for the 
final result in terms of 17, (17, = 0,1, ... ), obtaining 

Pr[WT 2:: 17, + 1 I MIl 

= (1 - 2qt + [(1- 2qt + nq(1 - 2qt-l] + 2 [(1 - 3q)n + nq(1 - 3q)n-l] 

+ 2 [(1- 3q)n + 2nq(1- 3qt-1 + 17,(17, _1)q2(1- 3qt-2] 

- 6 (1 - 4q)n + 2nq(1 - 4qt-1 + 17,(17, - 1)q2(1 _ 4q)n-2] 

+ 4 [(1 - 5q)n + 2nq(1 - 5qt-1 + 17,(17, - 1)q2(1 - 5q)n-2] 

(~)n '!!:. (~)n-I (~)n 217, (~)n-I 2n(n _ 1) (~)n-2 
2 9 + 9 9 + 4 9 + 3 9 + 81 9 

( 5)n 5 (5)n-1 217,(17, -1) (5)n-2 (4)n - 9 - - -17, - - - +4-
9 3 9 27 9 9 

~ (~)n-I 417,(17, _ 1) (~)n-2 
+ 917, 9 + 81 9 . (12.14) 

Summing on 17, from 0 to 00 gives by straightforward algebra 

EMI[WTl = 10.864333. (12.15) 

If we multiply (12.14) by 2n + 1 before summing, then by similar algebra, we 
obtain 

(Titl (WT) = 23.634986. (12.16) 

Using (12.12) again for models M2 and M3 we obtain, corresponding to (12.14), 

Pr[WT 2:: 17, + 1 I M2l 

= ( ~) n + (~) n + 2;, (~) n-I + 2 (~) n + ~ (~) n-I 

+ 2 (~) n + 4n (~) (~) n-I 

+ 2n{n -1) (~r (~) n-2 _ 3 (~) n _ 317, (~) (~) n-I 
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(3)n (2) (3)n-1 (2)2 (3)n-2 -6 '9 -12n'9 '9 -6n(n-l) '9 '9 

(2)n (2) (2)n-1 (2)2 (2)n-2 +4 '9 +8n"9"9 +4n(n-l)"9 "9 ,(12.17) 

(12.18) 
We present the numerical results for all 4 models in tabular form as follows. 

Table 12.4B: Triangular array problem with unequal parameters, 4 models 
One-at-a-time sampling method used 

W /0 replacement W /replacement W /replacement W / replacement 
(Ho) (Ml) (M2) (M3) 

N = 9, r - 1, N - 9, r = 1, N = 6, r = 1, N=6, 
s = 2, s = 2, s = 2, r = s = 1, 

Bl = 1, B2 = 2 q = Q = 1/9 q = 1/9, q = 1/9, 
Q = 2/9 Q= 2/9 

E[WT] 6.007937 10.864333 8.243288 6.342857 
Mode(WT), 6,0.325397 7,0.099028 6, 0.158569 4,0.192958 
Pr{Mode} 
Min(WT), 
Max(WT) 3, 8 3,00 3,00 3,00 
(T2(WT) 1.436439 23.634986 11.766017 11.920339 

Note that the value of N is included for the 3 multinomial models to explain 
the contents of the urn being sampled. Note also for multinomial sampling that 
if we had 9 equiprobable items with r = s = 1, with 2 marked a for each of 
nodes a =4, 5 and 6 and one for each of the other 3 nodes, then the result would 
be the same as for Model M3 in the last column of the table. In contrast to 
these three M-sampling solutions, the original M-sampling solution of Problem 
12.4 had N = 6, r = s = 1 and q = Q = 1/9. 

12.4 Duality Levels in a Square with Diagonals That 
Do Not Intersect: Problem 12.5 

This square has V = 4 vertices and E = 6 edges associated with it as shown in 
the following diagram. Define the set S(Vl) associated with vertex VI as (1, 2, 
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5) and similarly (2, 3, 6), (3, 4, 5) and (1, 4, 6) represent the sets S(vaJ, a = 
2, 3, 4, respectively. Let d denote the level of duality, so that d = 1, 2, etc. We 
define the problem duals Ad and Bd for this set-up. 

2 4 

3 

Problem 12.5Ad: Sample the 6 edges until you get d complete sets from the 
sets S(vaJ (a = 1,2,3,4). 

Problem 12.5Bd: Sample the 6 edges until you get at least 1 edge for each 
vertex in any set of V + 1 - d = 5 - d different vertices. 

Thus, for level d = 1, the stopping sets for Problem 12.5Al are the 4 triples 
mentioned above. Note that for Problem 12.5Bl, any set becomes the set and we 
have to add the pair (5, 6) to these same 4 triples for the stopping set; however, 
we don't use this since we obtain results for Problem 12.5Bl by duality. It 
is also interesting to note that for d = 2 under H-sampling the expectation 
is 5 for Problem 12.5A2 and 2 for Problem 12.5B2 without any variance (i.e., 
O'k(WT) = 0), but the duality still holds, namely, 

For level d = 1, the 1- and J-polynomials are easily shown to be 

Pl(l) = 413 - 615 + 316 ; P2(J) = 3J2 + 4J3 -15J4 + 12J5 - 3J6 , 

(12.19) 

PH[WT ~ n +11 ~ [3(:) H(!) -15(!) + 12(~) -360.]1 (!), 
(12.20) 

( 4)n (3)n (2)n (l)n PM[WT ~ n + 1] = 3 6 + 4 6 - 15 6 + 12 6 - 30on, 

(12.21) 



I and J Polynomials in a Potpourri of Probability Problems 179 

15(~) 12(~) 
C'15) + (nt5) - 38on . 

(12.22) 

For Problem 12.5Bl, the results are the same except that the coefficients are 
taken from the I-polynomial instead of the J-polynomial in (12.19). In tabular 
form, the numerical results for Problems 12.5Al and 12.5Bl are as follows. 

Table 12.5: Sampling the edges of a square with diagonals that do not 
intersect; One-at-a-time sampling method used 

Problem 12.5Al : Stop 
with anyone of the 4 W /0 replacement W /replacement Polya W/c = 1 
vertex sets (Ho) (Ml) (P) 
S(vo<) (0 = 1, 2, 3, 4) 
E[WT) 4,000000 5.900000 12.000000 
Mode(WT), Pr{Mode} 4,0.600000 4,0.222222 (3,4)*, 0.119048 
Min(WT), Max(WT) 3, 5 3,00 3,00 
(7'2 (WT) 0.400000 6.350000 00 •• 

I-polynomial: 413 - 615 + 3IB 

J-polynomial: 3J2 + 4J3 - 15J4 + 12J5 - 3JB 

Problem 12.5Bl: Stop 
with at least 1 edge associated (For J-polynomial, use 4J3 - 6J5 + 3JB ) 

with each of the 
4 vertices 
E[WT) 3.000000 3.800000 5.500000 
Mode(WT), Pr{Mode} 3,0.600000 3,0.361111 3,0.250000 
Min(WT), Max(WT) 2, 4 2,00 2,00 
(7'2 (WT) 0.400000 2.480000 11.250000 •• 
Sum of E+1=7 - -

Expectations A,B . double mode 
•• The power 2 on J leads to an infinite variance, but not the power 3. 

Some other problem dualities are stated but not solved here; recall that this 
duality is only for H-sampling. Consider a regular polyhedron (RP) with F 
faces. 

Problem 12.6A: Sample the faces of RP until you see f different faces, each 
at least once. 

Problem 12.6B: Sample the faces of RP until you see F + 1- f different faces, 
each at least once. 
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Here, the sum of the expectations of WT is F + 1 and the variances are 
equal. Suppose that the RP has Iv faces associated with each vertex. Then 
another pair of dual problems is 

Problem 12.1 A: Sample the faces until you get a complete set of Iv faces for 
anyone vertex. 

Problem 12.1B: Sample the faces until you get at least 1 face associated with 
each vertex. 

Here, the sum of the expectations of WT is again F + 1 and the variances are 
equal. Suppose the RP has E edges and F faces. Can we generalize Problem 
12.2 to the following dual pair? 

Problem 12.8A: Sample the E edges of RP until you get I completed faces. 

Problem 12.8B: Sample the E edges of RP until you get at least 1 edge for 
F + 1 - I different faces. 

Problem 12.9: Random solo tic-tac-toe with one or two players. 

The method of 1- and/or J-polynomials has a broad application. Suppose 
a single player wishes to randomly put X symbols on a square tic-tac-toe board 
of size 8 x 8 (8 = 3, 4, 5). We number the squares in a systematic manner (for 
convenience only) and write the same 82 integers on otherwise indistinguishable 
balls in an urn. Balls are then drawn one-at-a-time using H- or M- or P{c = 1)
sampling. We are interested in the expectation and variance of the WT until a 
row, column or diagonal of X's is obtained. The following table of numerical 
results is based on the J-polynomial which is derived in the usual manner. 
Thus, for any 8 there are 28 + 2 stopping 8-triples and for 8 = 3 with systematic 
numbering, these are (1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7), (2, 5, 8), (3, 6, 9), 
(1, 5, 9) and (3, 5, 7). 

The "Prelude Table" for 8 = 3 is on the next page. From this table, the l
and J-polynomials are easy to obtain and they are given in Table 12.6. Table 
12.6 also contains results for two-player problems, provided each player plays 
on his own tic-tac-toe board. Then, the goal is to find the sooner of the two 
waiting times under independence. 

The method of 1- and J-polynomials has also been applied to some more 
challenging finite lattice problems and gives exact answers to path problems and 
percolation-type problems. The only limitation is that the process of forming 
unions has to be accurate and once this is put on the computer, many more and 
different problems can be solved exactly. The tables that follow indicate at least 
4 different problems (with variations on each one) and give the J-polynomial 
for each problem. 
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Distribution of sizes of the unions for all possible combinations 

# at-a-time 3 4 5 6 7 8 9 Total Row 
Frequency 

1 8 0 0 0 0 0 0 m =8 

2 0 0 22 6 0 0 0 (~) = 28 

3 0 0 0 16 38 0 2 (~) = 56 

4 0 0 0 0 22 37 11 (~) = 70 

5 0 0 0 0 2 24 30 (~) = 56 

6 0 0 0 0 0 4 24 (~) = 28 

7 0 0 0 0 0 0 8 (~) = 8 

8 0 0 0 0 0 0 1 (~) = 1 

Problem 12.10: Boundary-connection problems. 

For a finite rectangular lattice of size (m + 1 by n + 1), the total number 
2mn + m + n of unit segments consists of 2(m + n) boundary segments and 
N = 2mn - (m + n) internal segments. The former are "free" and the latter are 
numbered 1 through N and balls with these same numbers are drawn one-at-a
time from the urn with H- or M- or P(c = I)-sampling. Any internal segment 
can be used (to form a path) only after its number is observed on a ball taken 
from the urn. The stopping rule is to continue sampling until we have obtained 
for each of the (m - 1) (n - 1) internal vertices at least one path to any boundary 
point; the paths need not be disjoint. This has been done for several different 
sizes of rectangular lattices. We do depend on a clearly defined set of vertices 
each of which is one unit away from the boundary but do not require that the 
lattice be rectangular in shape. 

Problem 12.11: Center-connection problems. 

Using the same set-up as in Problem 12.10, if m and n are both odd, then 
the lattice has a center and stop sampling as soon as we have obtained a path 
from the center point to any boundary point. 
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Table 12.6: Expected waiting time for random solo tic-tac-toe: Problem 12.9 

Square Sampling E[WT] O"'-(WT) I-I and/or J-polynomial 
Lattice Method = Pr[WT 2 n+ 1] 

Size 

One-player problems 

3x3 w /0 rep!. (H) 4.769841 1.107352 1 - [8r - 22[0 + 10[0 + 181 -17r 
w/repl. (M) 6.45357 6.40328 +419 ] = 2J3 + 16J4 - 32J5 + 4J6 

Polya (P) 10.04444 77.89010 +26f - 19J8 + 4J9 

4x4 H 9.00318 2.88891 1 - [lOT' - 321 - 131" + 241" + 881 lV 

M 13.02964 21.04164 -56111 - 78112 + 48113 + 36114 - 32115 

P 21.49950 219.00857 +6116] = 10J4 + 112J5 - 328J6 - 328f 
+2503J8 - 4464J9 + 3960J10 - 1616J11 

-182J12 + 552J13 - 276J14 
+64J15 _ 6J16 

5x5 H 14.89717 6.45994 48J" + 1216JD - 5136J - 7846J" + 96261J" 
M 22.64750 74.14346 -282980J10 + 409240J11 - 176660J12 

P 39.34026 544.44663 -508124J13 + 1291728J14 - 1652824J15 

+1412693J16 - 848996J17 + 347932J18 

-80248J19 - 3700J20 + 11036J21 - 4528J22 
+ 1008J23 - 126J24 + 7 J25 

Two-player problems 
(Each on their separate boards, playing alternately and waiting for the first winner) 

3x3 H 4.16786 0.77133 Square the numerical results from 
M 5.11576 2.39427 above for 3 X 3 to get 
P 6.51813 10.07817 Pr[WT 2 n+ 1] 

4x4 H 8.05527 2.29823 Square the numerical results from 
M 10.51772 9.70097 above for 4 X 4 to get 
P 14.66697 46.24823 Pr[WT 2 n+ 1] 

5x5 H 13.47674 5.40445 Square the numerical results from 
M 18.66348 26.49544 above for 5 X 5 to get 
P 27.86007 145.67330 Pr[WT > n+ 1] 

Problem 12.12: Top to bottom-connection problems. 

In this case, only the top and bottom boundaries are free; the rest are all 
put into the urn. We stop sampling as soon as we have obtained a path from 
any point on the top boundary to any point on the bottom boundary. 

Problem 12.13: Corner to corner-connection problems. 

In this case, there are no free boundaries; all segments go into the urn. We 
stop sampling as soon as we have obtained a path from the lower left corner to 
the upper right corner of the rectangular lattice. 
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For each of Problems 12.10-12.13, in addition to numerical results and 
the J-polynomial for each problem, percentiles of the WT needed are given 
corresponding to 5 selected probability levels. These can be regarded as confi
dence limits that the goal will be reached in the indicated (decimal) number of 
observations, the decimals being obtained by linear interpolation between two 
successive integers. 

We also consider some modifications of Problems 12.10-12.13. The symbol 
TS stands for True Sponge and indicates that initially you sample only among 
segments that have one endpoint on the boundary. Subsequently, you can 
sample among segments that are attached to those already observed. Being a 
restriction, the TS model answer should be a little larger than the unrestricted 
answer in many cases, but this may not be true in general. If we allow all 
internal segments from the outset but are forced to replace those not attached 
to a boundary point without using them to form a path but only in calculating 
WT, then we have a clear upper bound and it is denoted by UB in the table. 
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Tables 12.7A, 12.8A, 12.9A and 12.10A: Exact (finite lattice) results for 
hypergeometric and multinomial percolation-type problems 

(Unrestricted model) 

w/oRepI. (H) 
2x2 w/Repi. (M) 

w/oRcpI. (H) 
2x3 w/Repi. (M) 

w/oRepI. (H) 
2x4 w/Repi. (M) 

w/oRepI. (H) 
3x3 w/Repi. (M) 

w/oRepI. (H) 
2x5 w/Repi. (M) 

w/oRcpI. (H) 
3x4 w/Repi.(M) 

w/oRepI. (H) 
4x4 w/ReDi. (M) 

w/oRcpI. (H) 
3x3x3 w/Rcpi. (M) 

w/oRcpI. (H) 
2x4 w/Rcpi. (M) 

w/oRcpI. (H) 
4x4 w/Repi. (M) 

w/oRepI. (H) 
2x2 w/Repi. (M) 

w/oRepI. (H) 
2x3 w/Repi. (M) 

w/oRepI. (H) 
2x4 w/Repi. (M) 

w/oRepI. (H) 
3x3 w/Rcpi. (M) 

w/oRepI. (H) 
2x5 w/Repi. (M) 

Mode and ilS 
Probability 

Boundary-Connection Problems 

1.00000 0 1,(1.000000) 
1,1,4 1.00000 0 1,(1.000000) 

2.34286 0.33959 2,(.714286) 
2,4,7 2.66667 1.19444 2,(.612245) 

3.84286 0.95150 3,(.466667) 
3,7,10 4.67460 3.88155 3,(.336000) 

5.08918 1.31817 4,(.387879) 
4,9,12 6.43420 6.41954 5,(,229167) 

5.44328 1.79573 4,(.295882) 
4,10,13 6.91295 8.15306 5,(.204130) 

8.02947 2.79713 7,(.251028) 
6,14,17 10.74160 10.98445 8,(.139145) 

12.47031 5.42662 11,(.171931) 
9,21,24 17.59274 36.84103 14,(.086465) 

13.15964 11.89919 11,(.128178) 
8,31,36 16.55286 41.16427 13,(.086163) 

Center-Connection Problem 

2.61508 1.57485 2,(.311111) 
3,7,10 3.00397 3.60678 2,(.280000) 

7.96578 9.82154 7,(13S792) 
2,21,24 9.88069 26.10307 7,(.098105) 

Top to Bottom - Connection Problems 

3.73571 0.95158 4,(.407143) 
2,6,8 4.80000 4.71360 4,(.238769) 

4.35584 1.58507 5,(.287446) 
2,8,11 5.41151 5.69986 4,(.191517) 

4.90643 2.28262 5,(.250750) 
2,10,14 5.96115 6.75415 5,(.172268) 

8.50039 4.50027 9,(.194826) 
3,15,18 1l.51828 22.55859 10,(.103220) 

5.40836 3.03378 5,(.208985) 
2,12,17 6.46594 7.86899 6,(.151460) 

Comer to Comer - Connection Problems 

8,(.255051) 
10,(.091205) 

TS:True 
Spong 

(Inward) 

1.00000 
1.00000 
2.40000 
2.7SOOO 
3.97143 
4.93750 

TS: Inward 

2.61786 
3.20313 

UB: Upper 
Bound 

1.00000 
1.00000 
2.66667 
2.91667 
4.65625 
5.31250 

6.83458 
8.00042 

TS: Outward 

1.66667 
1.68750 

TS: Downward TS: Downward 

3.52698 4.46032 
4.15697 4.85326 

TS: One Direction TS: Two Directions 
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Tables 12.7B, 12.8B, 12.9B and 12.10B: Percentiles of the waiting time 
(WT): The confidence level is P* that the number of observations needed is 

less than the value shown 
(Unrestricted model) 

Lattice Size I Sampling Type I pL.501 P*= .751 p* =.90 I P' = .951 p* = .991 

Boundary-Connedion Problems 

2x2 H 1.00000 1.00000 1.00000 1.00000 1.00000 
M 1.00000 1.00000 1.00000 1.00000 1.00000 

2x3 H 1.70000 2.15625 2.81250 3.12500 3.82500 
M 1.81667 2.60577 3.65270 4.45971 6.33874 

2x4 H 3.10769 3.91538 4.81250 5.37500 6.30000 
M 3.63863 4.96324 6.76867 8.06921 11.21840 

3x3 H 4.36275 5.29878 6.30000 6.88729 7.94063 
M 5.27541 6.98649 9.24201 10.90407 14.83740 

2x5 H 4.70194 5.78069 6.87941 7.61818 8.80312 
M 5.69224 7.67413 10.14035 11.98640 16.36269 

3x4 H 7.25068 8.58464 9.91049 11.78116 13.25833 
M 9.29569 12.02328 15.46567 17.98360 23.91981 

4x4 H 11.64363 13.48504 15.30625 16.40300 18.22871 
M 15.75442 19.96957 25.08410 28.81947 37.25682 

3x3x3 H 12.07150 14.61777 17.35385 19.18453 23.15504 
M 14.60759 18.84424 24.09082 28.13257 38.50038 

Center-Connection Problem 

2x4 H 1.96429 2.87755 3.85965 4.54167 5.72500 
M 2.08929 3.35385 4.91261 6.15270 9.13039 

4x4 H 7.24814 9.31000 11.43566 12.83264 15.63887 
M 8.46074 11.77240 15.79323 18.88406 26.52547 

Top to Bottom - Connection Problems 

2x2 H 3.26316 3.87719 4.60870 4.91304 5.72000 
M 3.86708 5.33419 7.06918 8.45505 11.62887 

2x3 H 3.86170 4.73268 5.56333 5.94833 6.89419 
M 4.52978 6.12508 7.97715 9.39799 12.59344 

2x4 H 4.40837 5.48607 6.42285 6.92003 7.95970 
M 5.08600 6.86681 8.85227 10.27671 13.51386 

3x3 H 7.99830 9.37885 10.71273 11.63000 13.52522 
M 10.25040 13.32707 16.94746 19.76802 26.77742 

2x5 H 4.89870 6.12798 7.18860 7.83618 8.97493 
M 5.60185 7.56581 9.66704 11.09655 14.40471 

Comer to Comer - Connection Problem 
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Tables 12.7C, 12.8C, 12.9C and 12.10C: Dirichlet generating functions * 
(Unrestricted model) 

Lattice Size 
Boundary-Connection Problems 

2,,2 t 
2,,3 i 2t+t-21 
2,,4 3t+2f-41 _4f+4J'0 
3,,3 4r + 4)" - 81 + 3)" - 16)" + 4J'0 + 24J" - 14J12 

2,,5 4t + 3t -61 -f - 8f + 7J'0 - 2J" + 12J" - 8J" 
3,,4 6t + 7t - 14J + 4f - 40" + 2U'0+ 8J" + 7J12 + 126J" -76J" - 270J" + 320J'6 - 981" 
4,,4 st + ~f - 17~ + 4361 -79BJ' + 964" - 744J'0 - 33lJ + 1682J" - 16161" + l11lJ" - 964J" + 

293SJ"- 9OS2J" + 88881" - 1012J'0 + 7105J20 - 2461lJ2I + 26024J22 - 11984i" + 2096J24 

801' - 6481 + 25881' -~,. + 9132J - 9304J" + 66llJ12 - 3888J" + 26841 - 21441" 
3,,3,,3 + 1392J" - 972J" + 12681'8 - 1608J'0 + 1818J20 - 1224J2I - 456J22 + 2292J23 - 259U24 _ 36J25 

+ 4368126 - 8437J21 + 7353J2I + 6408J'" - 32864J20 + 570181" - 61284J32 + 47412J» - 28164J" + 
11415J" - 217SJ" 

Center-Connection Problems 

+ 516J + 440J - 135lJ + 

Top to Bottom - Connection Problems 

2,,2 2J]+4t - 2f -131"+ 14J - 4f 
2,,3 21 + 61 + 21' - 181 - 151'+ 5li" - 36J'0 + 81" 
2,,4 2f + B1' + 81 - 201' -44" + 3U' + 116J" - 172J" + 88J" - 16J' 
3,,3 1St -7~f + 270,:".- 360J -1351' + 882" - 148U + 2046J" - 993J12 - 3028J" + 6764J' 

- 6390JIS + 32821'6 - 898J" + 103J'8 
2,,5 21' + 10J + 161' - 16" - 80J'· - 20J" + 199J" + 86J" - 532J + 512j'>- 208J16+ 32J 

Comer to Comer - Connection Problems 

2 x 2 I 2J' + 14J3 - lit + 2J' + 20t + sol' - 145]* + ISO! - 82J1o + 24J" - 3J" 

*Foreach goal (and each lattice) one polynomial in J gives rise to all the answers for both types of sampling, H and M. 
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Table 12.11: Expected waiting time for selected card and die combinations 

('Ibe original is the usual deck of 52 One-at-a-time Sampling Procedwe Used 
cards) 

W/o tlHl WlReolaccment(M) Polya W/c = 1 (P) 
1. Any black card 53127 - 1.962963 2.000000 51125 = 2.040000 
2. An Ace lila Spade 53/17 = 3.117647 3.250000 51115 2 3.400000 
3. AnySpade 53/14 - 3.785714 4.000000 51/12 - 4.2SOOOO 
4. Any Picture Card 53/13 = 4.076923 4.333333 51/11 = 4.636364 
5. An Ace ora KiM 5319 = 5.888889 6.500000 51n = 7.285714 
6. AnyAce 53/5 = 10.600000 13.000000 5113 = 17.000000 
7. Either One of the Two Black 5313 = 17.666667 26.000000 5111-51.000000 

Aces 
8. The Ace of Spades 5312 - 26.500000 52.000000 Finite or Infinite?? 

(or anv .....,ffi"" ""nI'\ 

9. A Black Ace l!!!d a Red Ace 371115 = 24.733333 39.000000 102.000000 
10. Any Two Aces 
(i) dilIerent suits 10615 = 21.200000 30.333333 39.666667 
(ii) same suit -- 41.843751 105.764286 
(iii) same or difl'erent 21.2000000 26.000000 29.750000 
11. Four Aces 
(i) dilIerent suits 42.400000 108.333333 Finite or Infinite?? 
(ii) same suit 113.497039 1311.441274 
(iii) same or difI'erent 42.40000 52.000000 98.175000 
12. Fifty one difI'erent cards 51.000000 183.978285 2601.000000 

(The six numbers (1.2 •...• 6) from a die are put on balls in an urn at the outset; then M-sarnpJing is the usual 
tossing ofa die). 
13. l'IIRc difI'erent Numbers 3.000000 3.700000 2013 = 666667 
14. Four difI'erent Numbers 4.000000 5.700000 236121 = 11.238095 
15. Five difl"erent Numbers 5.000000 8.700000 66.302438 
16. All Six different Numbers 6.000000 14.700000 Finite or Infinite?? 
17. Six same Numbers -- 19.737384 Finite or Infinite?" 
18. Seven same Numbers - 24.224483 Finite or Infinite?" 

·Hard Computations; Need the distribution of Max Cell Frequency for Polya Sampling. 
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Abstract: Stirling numbers and generalized Stirling numbers and their prop
erties are briefly described first. Then some relationships between Stirling num
bers and record times are presented. Finally, we show that generalized Stirling 
numbers of the first kind describe distributions of some record statistics in the 
so-called FQ-scheme . 
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13.1 Stir ling Numbers 

In this section, we first present definitions and some basic properties of Stirling 
numbers of the first and second kinds; for more details, see Goldberg, Neiman 
and Heinsvort (1964), and the excellent review article by Charalambides and 
Singh (1988) concerning Stirling numbers and their generalizations. 

Stirling numbers of the first kind s(n, k) and Stirling numbers of the second 
kind S(n, k) are given by the following equalities: 

n 

x(x - 1) ... (x - n + 1) = L s(n, k)xk (13.1) 
k=O 

and 
n 

xn = L S(n, k)x(x - 1) ... (x - k + 1), n = 0,1,2, .... (13.2) 
k=O 

It is easy to show that 

~ k-£ (k) £n ~ k-£ gn 
S(n, k) = ~(-1) £ k! = ~(-1) £!(k _ f)! 
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and 

~ £ (11, - 1 + £) ( 211, - k ) 8(n,k) = t:o(-I) n-k+£ n-k-£ 8(n-k+£,£). 

In particular, we have 

8(11,,1) 1, 8(11,,11,)=1, 8(11,,11,-1)=(;), 

8(11,,1) = (-It-1(n - 1)!, 8(11,,11,) = 1, 8(11,,11,- 1) = - (;). 

Furthermore, we have the generating functions of these numbers to be 

00 

{log(1 + x)}k Ik! L 8(11" k)xn In!, Ixl < 1, 
n=k 

00 

L 8(11" k)xn In!, 
n=k 

and 

1 = f: 8(n,k)xn-k, Ixl < 11k. 
(1 - x)(1 - 2x) ... (1 - kx) n=k 

From (13.1) and (13.2), we also readily have the recurrence relations 

8(n+l,k) 

S(n+1,k) 

8(11" k - 1) - 11, 8(11" k), 11, 2 k 2 1, 

k 8(11" k) + 8 (11" k - 1), 11, 2 k 2 1. 

Finally, we have the following asymptotic (as 11, --t 00) expressions: 

18(11" k)1 r-..J (11, - 1)!{log n}k-1/(k - I)! and 8(11" k) r-..J kn In!. 

13.2 Generalized Stirling Numbers 

Let a be any sequence (ao, aI, ... ). Let 

(13.3) 

(13.4 ) 

(13.5) 

po(x, a) = 1 and Pk(X, a) = (x - ao)(x - al) ... (x - ak-l), k = 1,2, .... 
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Generalized Stirling numbers of the first kind 8(11" k, a) and generalized Stirling 
numbers of the second kind 8(11" k, a) are then defined as follows: 

and 

n 

Pn(x, a) = L8(n,k,a)xk, 
k=O 

n 

11,= 0,1, ... , 

xn = L 8(11" k, a)Pk(x, a). 
k=O 

(13.6) 

(13.7) 

For a = (0,1,2, ... ), definitions in (13.6) and (13.7) coincide with those in 
(13.1) and (13.2), respectively. It is easy to observe that 

8(11" 0, a) (-l)naoal" .an-l, 
n-l 

8(11,,1, a) = (_l)n-l aoal ... an-l L l/ak, 
k=O 

n-l 

s(n,n - 1, a) - L ak, 

8(11"11,, a) 

8(11" 0, a) 

8(n,1,a) 

8(11,,11, -l,a) 

8(11"11,, a) 

l' , 
k=O 

n ao, 

(al- aO)/(al - ao), 
n-l 

Lak, 
k=O 
1. 

(13.8) 

(13.9) 

The following recurrence relations are also satisfied by these generalized Stirling 
numbers: 

8(11, + 1, k, a) = s(n, k - 1, a) - an 8(11" k, a) (13.10) 

8(11, + 1, k, a) = 8(11" k - 1, a) + ak8(n, k, a). (13.11) 

For more elaborate details on these generalized Stirling numbers of the first and 
second kinds, interested readers may refer to the review article by Charalam
bides and Singh (1988). 

Remark 13.2.1 One can see from (13.6) that numbers 8(11"11,, a), 8(11,,11, -
1, a), ... change signs and (-ly,·-m8(n, m, a) > a if elements ak of the vector a 
are all positive. In this case, the following equality holds: 

n 

(x + ao)(x + al) ... (x + an-d = L 18(11" k, a)lxk (13.12) 
k=O 
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and, consequently, 

n 

L Is(n, k, a)1 = (1 + ao)(l + aI) ... (1 + an-I). 
k=O 

For the classical Stirling numbers of the first kind, relation (13.12) can be 
rewritten as 

n 

x(x + 1) ... (x + 71, - 1) = L Is(n, k)lxk. 
k=O 

Let us introduce random variables X(n), 71, = 1,2, ... , such that 

Pr[X(n) = k] = 
Is(n, k, a)1 

Ek=o Is(n, k, a)1 
Is(n, k, a)1 k = 0 

(1 + ao)(l + aI) ... (1 + an-I)' , ... , n. 

It follows from (13.12) that 

E[sX(n)] = (s + ao)(s + ad· .. (s + an-I) . 
(1 + ao)(l + aI) ... (1 + an-I) 

Hence, if ak (k = 0,1,2, ... ) are nonnegative, then X(n) can be represented as 
a sum of 71, independent random variables YI, Y2, ... ,Yn each of them taking 
values 0 and 1 with 

1 
Pr[Yk = 1] = 1 - Pr[Yk = 0] = , 

1 + ak-I 
k=1,2, .... 

As a result, we readily have 

n-I 1 n-I 

E[X(n)] = L -- and Var(X(n)) = L ( ak )2' 
k=O 1 + ak k=O 1 + ak 

Rusinski and Voigt (1990) established that, if ao ~ 0 and ak = ao + r with 
ro and ao + r > 0, an analogous result holds for generalized Stirling numbers of 
the second kind 8(71" k, a). In this situation, all the roots XI,n, X2,n,' .. ,xn,n of 
the equation 

n 

L 8(71" k, a)xk = 0 
k=O 

are all real and nonpositive. Therefore, random variables Zn (71, = 1,2, ... ) such 
that 

[ ] 8(n,k,a) 
Pr Zn = k = En 8( k ) , k = 0,1, ... ,71" 

k=O 71"., a 
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also can be represented as a sum VI + ... + Vn of independent random variables 
taking values 0 and 1 with probabilities 

1 
Pr[Vk = 1] = 1 - Pr[Vk = 0] = , 

1 - Xk,n 
k = 1,2, ... ,n. 

13.3 Stirling Numbers and Records 

Stirling numbers of the first kind are very closely connected with records. In the 
recent years, considerable amount of research has been done on records and re
lated statistics; see, for example, Nevzorov (1987), Nagaraja (1988), Arnold and 
Balakrishnan (1989), Arnold, Balakrishnan and Nagaraja (1992), Ahsanullah 
(1995), and Arnold, Balakrishnan and Nagaraja (1997). 

Let us introduce the concept of records. For a sequence of random variables 
Xl, X2, . .. , the record times L(n) and record values X(n) are defined as 

L(l) = 1, L(n + 1) = min{j : Xj > XL(n)}, n = 1,2, ... , 

and 
X(n) = XL(n), 

respectively. Also, let us introduce the record indicators 

~k = I {Xn is a record value} 

for k = 1,2, ... , where 1(·) is the indicator function. Then, the variable 

N(n) = 6 + ... + ~n 

denotes the number of records amongst the variables Xl, X 2 , ... , X n , for n = 

1,2, .... 
Renyi (1962) then obtained the following important result. 

Lemma 13.3.1 If X I ,X2, ... are independent random variables with a com
mon continuous distribution function PO, the record indicators 6,6, ... are 
all independent and 

1 
Pr[~k = 1] = 1 - Pr[~k = 0] = k' k = 1,2, .... 

Since the random variables N(n) and L(n) have the relationships 

Pr[L(n) > k] = Pr[N(k) < n] 
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and 
Pr[L(n) = kJ = Pr[N(k -1) = n -1,~k = 1], 

the distributions of record times L(n) can be expressed in terms of independent 
random variables as follows: 

Pr[L(n) > kJ = Pr[6 + ... + ~k < nJ (13.13) 

and 

Pr[L(n) = kJ 
1 = 'kPr[N(k - 1) = n - IJ 

1 
= 'kPr [6 + ... + ~k-l = n -IJ. (13.14) 

Using the independence of record indicators presented in Lemma 13.3.1, Renyi 
(1962) then derived the probability generating function of the random variable 
N(n) as 

E[SN(n)J = s(s + 1) ... (s + n - 1)/n!. 

This readily implies that 

Pr[N(n) = kJ = Is(n, k)l/n! 

and, as n -t 00, 

Pr[N(n) = k] '" (n - 1)1(10g n)k-l = (log n)k-l . 
n!(k - I)! n(k - I)! 

Relations (13.14) and (13.16) immediately yields 

and, as k -t 00, 

Pr[L(n) = kJ = Is(k - 1, n - 1)I/k! 

(log k)n-2 
Pr[L(n) = kJ '" (n _ 2)!k2' 

In a similar vein, Shorrock (1972) obtained the following result: 

(13.15) 

(13.16) 

(13.17) 

Pr[L(n) = k1X1, X2,' .. ,XnJ = ~; ~~~! (1 - e-Tn )k-1Is(k - 1, n - 1)1, 
.Tn 

(13.18) 

where Tn = -log{1 - F(Xn)}. In order to prove (13.18), Shorrock used the 
generating function of Stirling numbers of the first kind presented in (13.3). 
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13.4 Generalized Stirling Numbers and Records in 
the Fa-scheme 

In the last section, we observed that the Stirling numbers of the first kind are 
closely connected with the distribution of record times in the classical record 
scheme (viz., when the underlying Xi'S are Li.d.). In this section, we will show 
how the generalized Stirling numbers of the first kind come into the distri
bution theory of records arising from an Fa-scheme. Here, we use the conven
tional notation Fa-scheme to denote the case when the underlying independent 
random variables Xl, X 2, ... have distribution functions Fl, F2, ... , such that 
Fn = Fa(n), n = 1,2, ... , where F is any continuous distribution function and 
the coefficients a(l), a(2), ... are arbitrary positive numbers. The case of equal 
values for a(l), a(2), . .. corresponds to the classical record scheme discussed in 
the last section. Note that we can take F = FI and, therefore, without loss of 
any generality, we can take a(l) = 1. This Fa-scheme, which is a generaliza
tion of Yang's (1975) record model, was suggested and discussed by Nevzorov 
(1984, 1985, 1986). A variety of results concerning the records arising from 
this Fa-scheme have been developed by Pfeifer (1989, 1991), Deheuvels and 
Nevzorov (1993), Nevzorov (1990, 1993, 1995), and Nevzorova, Nevzorov and 
Balakrishnan (1997); see also Arnold, Balakrishnan and Nagaraja (1997) for a 
concise review of these developments. It needs to be mentioned here that Bal
lerini and Resnick (1987) and Deheuvels and Nevzorov (1994) have suggested 
some further generalizations of this Fa-scheme. 

Let us denote A(O) = 0, A(n) = a(l) + ... + a(n), n ~ 1. Furthermore, 
as in the last section, let 6,6, ... be the record indicators and N(n) = 6 + 
6· + ... + ~n denote the number of records amongst (Xl, X2,' ", Xn). Then, 
Nevzorov (1984) has proved that the independence of the record indicators (see 
Renyi's Lemma 13.3.1) continues to hold in this Fa-scheme. 

Lemma 13.4.1 In the Fa-scheme, the record indicators 6,6, ... are all sta
tistically independent with 

a(n) 
Pn = Pr[~n = 1] = 1 - Pr[~n = 0] = () ( )' n = 1,2, .... 

a1 +···+an 

Lemma 13.4.1 immediately yields the probability generating function of 
N(n) as 

n n 

E[sN(n)] = II E[s~r] = II (1 - Pr + Prs ) 
r=l r=l 
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where 
A(r) 

ar = 
a(r + 1) 

A(r) 
r = 0, 1, .... 

A(r+l)-A(r)' 

Since the elements of the vector a = (ai, a2, ... ) are all nonnegative and that 

n-l n rr (8 + ar) = L 18(71" k, a)lxk 
r=O k=O 

[from (13.12)], we have 

n n 

E[8NCn )] = rr Pr L 18(71" k, a)lxk 
r=l k=O 

and 

n 

Pr[N(n) = k] 18(71" k, a)1 rr Pr 
r=l 

= rrn ( A(r-l)) 
18(71" k, a)1 r=l 1 - A(r) ,1 :S k :S 71" (13.19) 

where the Stirling numbers 8(71" k, a) are generated by the sequence 

A(r) 
ao=O, ar = A(r+l)-A(r)' r=I,2, .... 

Independence of the record indicators in the Fa-scheme and (13.19) readily 
imply that 

Pr[L(n) = k] Pr[N(k - 1) = 71, - 1] Pr[~k = 1] 

rrn ( A(r-l) 
18(71, -I,m -1,a)1 r=l 1- A(r) ,k ~ n. 

(13.20) 

S· - ACr) d 1 ACr-l) - 1 . h . h h d mce ar - A(r+l)-A(r) an - A"(T) - l+ar -l' we can wnte t e ng t- an 
sides of (13.19) and (13.20) in terms of coefficients ar as follows: 

and 

Pr[N(n) = k] = 18(71" k, a)1 
I1~=1 (1 + ar-l) 

Pr[L(n) = k] = 18(n~ - 1, k - 1, a)l. 
I1r=l (1 + ar-l) 

(13.21) 

(13.22) 
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Thus, for any coefficients a(I), a(2), ... of the ptl<-scheme, we have shown 
that the generalized Stirling numbers of the first kind, s(n, k, a), which were 
used in (13.21) and (13.22), can be generated by the sequence 

ao = 0, 
a(l) + ... + a(r) 

ar = a(r + 1) ,r = 1,2, .... 

On the other hand, if we take the generalized Stirling numbers of the first kind, 
s(n, k, a), for any given vector a = (ao, al, ... ) with nonnegative elements, we 
have also shown that it is possible to construct the corresponding Fa-scheme for 
which equations (13.21) and (13.22) are satisfied. In this case, the coefficients 
of the Fa-scheme must satisfy the following equalities: 

a(l) = 1 and a(n) = _I_IT (1 +~), n = 2,3, .... 
an-l r=l ar 

In fact, from 

we obtain 

and 

1 
ar = a(r+l){a(I)+ ... +a(r)}, r=I,2, ... , 

A(r - 1) 

A(r) 

a(l) + ... + a(r - 1) = ar-Ia(r), 

= A(r - 1) + a(r) = A(r - 1) (1 + _1_) 
ar-l 

A(I) (1 + _1 ) (1 + _1 ) ... (1 + ~) 
ar-l ar-2 al 

= (1 + _1 ) (1 + _1 ) ... (1 + ~) 
ar-l ar-2 al 

a(r) = A(r) - A(r - 1) = _1_ (1 + _1_) ... (1 + ~) . 
ar-l ar-2 al 

(13.23) 

13.5 Record Values from Discrete Distributions and 
Generalized Stirling Numbers 

Let YI , Y2, ... be a sequence of independent and identically distributed discrete 
random variables taking on values 2,3, ... with positive probabilities P2,P3, ... . 
Let the record values generated by these variables be denoted by Y(I), Y(2), ... . 
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For the sake of simplicity, let us assume that Y(l) = 1. Now, let the sequence 
of random variables XI,X2, ... form an Fa-scheme with coefficients 

a(l) = 1, 
1 

a(n) = Pr[Y > 71,] 

1 
Pr[Y > 71, -1]' 

71, = 2,3, ... , 

and let L(n) denote the record times in this sequence. Nevzorov (1985) [see also 
Deheuvels and Nevzorov (1993)] has then proved that, for any 71, = 1,2, ... , 

d 
{Y(l), Y(2), ... , Y(n)} = {L(l), L(2), ... , L(n)}. 

It, therefore, follows from Eqs. (13.22), (13.23) and (13.24) that 

where 

Pr[Y(n) = k] = IS(77~ - 1, k - 1, a)1 , 
TIr=1 (1 + ar-I) 

k = 2,3, ... , 

_ 0 - a(l) + ... + a(r) _ Pr[Y > r + 1] _ 2 
ao - ,ar - ( ) - P [Y ]' r - 1, , ... , ar+1 r =r+1 

(13.24) 

(13.25) 

and s(n, k, a), k = 1,2, ... , are the generalized Stirling numbers of the first kind 
corresponding to the sequence a = (ao, al,"') as given in (13.25). 
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Abstract: This paper surveys some key developments that have occurred per
taining to urn models in probabilistic, statistical and biological literatures dur
ing the past two decades. It should be regarded as a compact sequel to the 
book Urn Models and Their Applications by Johnson and Kotz (1977) and as 
a natural companion to the two chapters in the book Discrete Multivariate 
Distributions by Johnson, Kotz and Balakrishnan (1997) dealing with multi
variate P6lya-Eggenberger distributions and multivariate Ewens distributions, 
respectively. 
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els, Applications 

14.1 Introduction 

Since the publication of the book Urn Models and Their Applications by John
son and Kotz (1977), the theory as well as applications of urn models received 
increased attention and intensive research from probabilists, statisticians and 
applied scientists alike. As a result, numerous theoretical results as well as new 
applications were discovered during the last two decades. A complete bibli
ography of these developments, if compiled, would include around 800 papers 
and a booklength account will be necessary to elaborate on all the pertinent 
details. In this paper, we restrain ourselves to discussing a selected subset of 
these advancements. We sincerely hope that this admittedly biased subset will 
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reveal to researchers and students the flavor and directions of current research 
in the area of urn models and will stimulate further advances in this interesting 
field of research. We have knowingly given somewhat more attention to less 
accessible papers in this survey. We have included a somewhat selected bibliog
raphy in this paper while a more comprehensive bibliography can be obtained 
by writing to either one of us. 

We begin with some brief historical remarks. The concept of urn models 
dates back to biblical times [see Rabinovitch (1973)] and the ancient Greek pe
riod [see Sambursky (1956)]. The first explicit mention of urn models seems to 
have been made by James Bernoulli (1713) who, in the third book of his Ars 
Con.iectandi, discusses the problem of drawing "calculi" out of urns. In a letter 
dated 3 December 1703, Leibniz questioned Bernoulli on his use of a posteriori 
probabilities and forced him to clarify the assumptions which in his opinion 
legitimated the mathematics of posterior probabilities. Leibniz's criticisms im
plicitly questioned the adequacy of Bernoulli's urn model of probability and 
causation. Since urn models have since become a staple of the literature on 
probability, a stock way of conceptualizing more intricate problems involving 
chance, it is important to note that Bernoulli's use of the now familiar urn 
example to model the relation between underlying causes and observed effects 
was perhaps the first quantitative attempt to construe a chance mechanism 
metaphorically. Thereafter, probabilists and statisticians have treated lotter
ies, dice games, and coin tosses at the immediate level of practical problems, 
not as analogues for more general processes in nature. Bernoulli's appropria
tion of the urn example to describe the processes linking inaccessible causes to 
observed effects expanded not only the domain of problems upon which prob
abilists and statisticians might test their skills, but also the conceptual tools 
for extending the range of the theory's applications still further [Daston (1988)] 
as this review article will hopefully amply testify. Bernoulli also used the term 
"urn models" in his Meditationes which was republished in 1975 as Vol. 3 of Die 
Werke von Jakob Bernoulli. In the third book of Ars Con.iectandi, Bernoulli 
formulated the first and the third problems in the language of urn problems. 
Also, Problem 6 is a reformulation of Problem 4 at the end of the classical 1657 
treatise of Huygens [see, for example, Maistrov (1980) for more details]. Huy
gens, however, did not use the term "urns"; hence, the priority in this respect 
belongs to J. Bernoulli. An important point to be made in this connection is 
that Bernoulli used the term "urn model" as equivalent to models involving 
a die or an "abstract" die introduced by de Moivre, cards, etc. The essential 
idea behind this is that these models assure "equipossibility" which was the 
basic supposition for the notions of chance and probability in late seventeenth 
century. Later on, Laplace, who owes much to Bernoulli's earlier contributions, 
provided the required prominence to urn models. The formal definition of urn 
models-random allocation of balls into urns-does not of course capture the 
variety and richness of the concept. Stigler (1986, p. 124) has elaborated on 
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beautifully this role that Bernoulli played with regard to urns and also ex
plained how Bayes's structure differed from that of Bernoulli in order to treat 
the problem of binomial directly. 

An urn model proposed by the English mathematician, Augustus De Morgan 
in 1838, is closely related to the Laplace rule of succession and the Ewens 
sampling formula described later in Section 14.11 of this paper. An excellent 
analysis of De Morgan's urn model in connection with these problems and the 
problem of random partitions has been given by Zabell (1992). 

It is possible to assign urn models to a majority of chance experiments, 
particularly those with a countable sample space. The urn model idea plays a 
fundamental role in many problems for the following main reasons: 

• It is an efficient way to describe the concept of "random choice" which can 
be tested a posteriori but which is in principle inaccessible to an absolute 
mathematical definition; 

• Urns and chance experiments can be compounded into new ones-hyper
urns, in P6lya's (1963) terminology-corresponding to compounded ex
periments. As P6lya ably displayed over thirty years ago, it allows one 
to "simulate" such complex random (chance) processes as the course and 
pattern of weather as a sequence of urns; 

• The term "simulation" can be interpreted as a statistical equivalent to 
the basic mathematical concept of isomorphism which is intrinsically as
sociated with urn models. 

As emphasized by Karlin and Leung (1991) and by Holst on numerous oc
casions [Blom and Holst (1991) capture the flavor of Holst's technique], many 
ball-in-urn distributional problems can be handled expeditiously via an embed
ding into an appropriate system of independent Poisson processes or equiva
lently to distributing a Poisson distributed number of balls in the urns and 
from this it is easy to obtain the corresponding results for a fixed number of 
balls from. This technique, quite an old one, has been explained in the book 
by Johnson and Kotz (1977). It is well known that the embedding into Poisson 
processes is equivalent to distributing a Poisson number of balls into the urns, 
and it is easy to obtain the corresponding results for a fixed number of balls 
from this fact. We shall return to this point later in Section 14.2 when dealing 
with generalizations of the P6lya-Eggenberger urn model. 

As mentioned earlier, we will not discuss multivariate urn problems in this 
paper; interested readers may refer to the recent book by Johnson, Kotz and 
Balakrishnan (1997) for a detailed discussion on this topic. Another related 
topic that has not been covered in this article is the generalized ballot problem 
investigated by Mohanty (1979) [see also Watanabe (1986)] and closely related 
to the so-called Takacs' urn model [Takacs (1962, 1967)]. The review article of 
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this topic by Takacs, published in this volume, provides an excellent up-to-date 
treatment to this topic. 

14.2 P61ya-Eggenberger Urns and Their 
Generalizations and Modifications 

The P61ya-Eggenberger urn model was originally applied to problems dealing 
with the spread of contagious diseases; see Eggenberger and P61ya (1923). In 
this classical model, an urn initially contains a total of to balls of which Wo are 
white and the remaining to - Wo are black. This model has been generalized in 
the following manner: 

A ball is drawn at random from the urn and its color is noted and 
returned back into the urn. If the color is white, a white balls and 
b black balls are added to the urn; if it is black, c white balls and 
d black balls are added to the urn. It should be noted that a, b, 
c and d can take on negative values indicating that some balls can 
be thrown away from the urn. Now, denote by Wn the number of 
white balls in the urn after n draws. 

The probability distribution of Wn is known for some special cases; see Sections 
4.3 and 6.3 of Johnson and Kotz (1977). 

In an interesting paper dealing with applications of these urn models in 
computer data structures, Bagchi and Pal (1985) defined a tenable P6lya
Eggenberger model as one described above satisfying the following conditions: 

(i) a + b = c + d = s ~ 1 - that is, the same number of balls is added to the 
urn at every stage; 

(ii) to ~ 1, Wo ~ 1 ; 

(iii) a # c - that is, Wn is non-deterministic; 

(iv) b > 0, c > 0, 

and a somewhat artifical condition 

(v) If a < 0, then a divides c and also wo; if d < 0, then d divides b and also 
to - Wo· 

Assumption (iv) is a natural one in the sense that if b < ° (say) there may 
not be any more black balls left in the urn to throwaway in which case the model 
gets into difficulty. Assumption (v) protects against the possibility, when a 
white ball is drawn from the urn, of having fewer than -a white balls in the urn. 
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Observe that b = c = 0 corresponds to the classical (simple) P6lya-Eggenberger 
model which has been studied extensively. The case min(b, c) = 0 < max(b, c) 
presents some technical difficulties and in this case the asymptotic distribution 
of Wn has been discussed by Gouet (1989, 1993). 

The tenable P6lya-Eggenberger model represents the process of random in
sertions of "keys" into a 2-3 tree (a rooted oriented tree in which each internal 
node has 2 or 3 sons and every path from the root to a leaf has the same length). 
Such trees are widely used data structures for storage organizations in comput
ers and consequently P6lya-Eggenberger models could be used for estimation of 
memory requirements; see Bagchi and Pal (1985) for details. The replacements 

in this model are controlled by a deterministic matrix R = (~ ~). Aldous, 

Flannery and Palacios (1988) have modelled 2-3 trees using an urn scheme with 
non-negative R. It turns out that the distribution of the standardized random 
variable corresponding to Wn converges asymptotically (as n ---+ (0) to standard 
normal distribution whenever q == a, - c :S s/2. Bagchi and Pal (1985) have 
proved this result by using the method of moments. Their main idea was to 
determine the higher-order moments of the variable 

Yn = Wn - (b: J tn, where tn = to + ns, (14.1) 

with the help of which the asymptotic values of the higher-order central mo
ments of W n and hence of 

can be computed. Note that 

Zn = Wn - E(Wn) 
a(Wn) 

Zn = Wn - E(Wn) = Yn - E(Yn) 
a(Wn) a(Yn) , 

(14.2) 

(14.3) 

where a(Wn) and a(Yn) denote respectively the standard deviations of the 
random variables Wn and Yn. Bagchi and Pal (1985) have shown, in particular, 
that for even r 2:: 2 

where 
eT = 1 ·3· .. (r - 1) e;/2 and e2 = bc( -b q )2/(8 - 2q), 

+c 
and for odd r 2:: 1 

E(J7.T ) = O(tT / 2). n n' 

(14.4) 

(14.5) 

(14.6) 

further, a(Wn ) rv C1t;!2 for q < 8/2 and rv C2(tn In(tn ))1/2 for q = 8/2. Thus, 
the moments E(Z~) ---+ 1 ·3· .. (r - 1) for r even and ---+ 0 for r odd. This 
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property of the central moments, of course, uniquely characterizes the standard 
normal distribution [see Johnson, Kotz and Balakrishnan (1994)]. 

Gouet (1989) corrected some of the statements made by Bagchi and Pal 
(1985) and showed in particular that for all tenable P6lya-Eggenberger models 

with the replacement matrix R = (~ ~) such that max(b, e) > 0 

Wn e 
- -+ -b - a.s. (strong convergence), 
Tn +e 

(14.7) 

where Tn = Bn + Wn. [Recall that for the classical P6lya model (a = d = a> 0, 
b = e = (3 = 0), ~ converges strongly to a beta random variable; for example, 
see Blom and Holst (1991)]. Gouet's approach is based on martingale arguments 
and does not require moment expressions. The strong convergence ~: -+ 0 (for 

e=O) can be improved to Wn/T:;,/d -+ Z, where Z is a non-degenerate random 
variable. In a more recent paper, Gouet (1993) established the asymptotic 
normality of the standardized Wn using martingale theory and extended the 
convergence result to a functional limit theorem. The normalizing constant 
and the limiting Gaussian process have been shown to depend on the ratio of 
the eigenvalues of the replacement matrix R given above, and more specifically 
on p = T and the product be. 

A typical result established by Gouet (1993) is as follows: 

If (Wn ) is a tenable urn process such that R = (~ ~) where 

d > a > 0 with be = 0 and max(b, e) > 0, then 

n-p/ 2(W[nt1/ p ] - 11hZ) -+ W • ¢(t), (14.8) 

where W • ¢(t) denotes the continuous Gaussian martingale with 
covariance function ¢(min(s, t)) with ¢(t) = aZt and Z as a non
degenerate positive random variable independent of W. 

The case of the classical P6lya urn model (b = e = 0) was studied earlier by 
Heyde (1977) and Gouet (1993) in fact used Heyde's methodology in his proof 
(in particular, the idea that yields a functional central limit theorem for the 
tail of an a.s. convergent martingale. 

Pemantle (1990a) has generalized the original P6lya-Eggenberger urn pro
cess (in which only one ball of the color initially selected is added to the urn) by 
assuming that the number of extra balls added of the color drawn is a function 
of time. He has suggested this model for the American presidential primary 
election procedure. To this end, let us assume an initial amount of popular 
support for each candidate that dictates that candidate's chance of winning the 
first primary and then assume that the support increases proportionally to the 
size of the states won by the candidate in each primary. 
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Formally, let F : Z ~ 0 -+ (0, 00) be any function. Let Zll, Zl2, ... denote the 
successive proportions of red balls in an urn that begins with R red balls and 
B black balls and evolves as follows: at discrete times n = 1,2, ... , a ball is 
drawn and replaced in the urn along with F(n) balls of the same color. (Allow 
F to take non-integral values by defining the probability of drawing a red ball 
still to be proportional to the total mass of red balls in the urn.) The usual 
P6lya urn scheme is the case where F(n) = 1 for all n. Pemantle (1990a) has 
then shown that Zln must converge for any F and that the limit has no atoms 
except possibly at 0 and 1. Here, Zln is the proportion of red balls at time n 

and 8n = R+B:~~~ol F(i) are fractional additions. Rigorously stated, the limit ZI 

is such that Pr[ZI = 0] = 1 - Pr[ZI = 1] = R!B iff L~=l 8;, = 00 and that the 
distribution of ZI has no atoms in (0,1). As a counterexample, let us consider 
R = B = 1 and F( n) = n; in this case, clearly the probability that all draws 
result in the same color is ~ . ~ . i~ ... > 0, but in view of the above stated 
result is not entirely concentrated on {0,1}. 

Hill, Lane and Sudderth (1980) discussed the following related generalization 
of the P6lya-Eggenberger urn model: 

An urn containing red and black balls has a given initial composi
tion. At each new time, a ball is drawn from the urn and replaced 
along with another ball of the same color. The draws are not exactly 
representative of the contents of the urn but are determined by the 
contents in the following manner. Let the number of red and black 
balls at time n be Rn and Bn, respectively, and let Zln = &. 
Instead of drawing a red ball with probability Zln, draw a red ball 
with probability f(Zln), where f is any function mapping [0,1] into 
itself. 

Hill, Lane and Sudderth (1980) have then shown that, under a condition on 
the discontinuities of f, Zln converges almost surely to a random variable ZI for 
which f(ZI) = ZI. On the other hand, if f(p) = p and is a point satisfying 
f(x) < x for x < p and f(x) > x for x > p in some neighborhood of p (i.e., p is 
an "up crossing" for f), then Pr[Zln -+ p] = O. 

A generalization of this model to urns of more than two colors has been 
discussed by Arthur, Ermoliev and Kaniovskii (1983). As Pemantle (1990b) 
correctly pointed out, this generalization considered by Arthur, Ermoliev and 
Kaniovskii (1983) was already present in a somewhat disguised form in the book 
of Nevel'son and Hasminskii (1973) in the language of stochastic approxima
tion rather than urn models. The recent work of Benaim and Hirsch (1995) 
concerning the dynamics of Morse-Smale urn processes needs to be mentioned 
here as it explains the generic behavior of three-color urn models. 

Finally, another interesting modification of the P6lya urn model is the can
nibal model discussed originally by Green (1980) and more recently by Pit tel 
(1987). In this model, we have an urn which initially contains n balls of which 
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r are red and the remaining w = 71, - r are white. At each step, a white ball 
is removed and one more ball is selected at random from the remaining balls; 
this ball is then painted red if it was white and then put back into the urn. 
After at most w draws, all balls become red at which time the process termi
nates. Here, red balls are interpreted as cannibals and painting a white ball red 
means that one more member of the population has become a cannibal with 
the removed white ball representing a victim. The interest lies in this case in 
the random variable Xnr denoting the terminal number of red balls (remember 
that at each stage a white ball is removed from the run). This model differs 
from other generalizations and modifications of the P6lya-Eggenberger scheme 
because the two balls at each draw are not selected at random and also because 
the total number of draws is random and not fixed. 

Closed-form expressions of the distribution of Xnr and its moments are not 
available yet. However, Green's (1980) conjecture that in the case when r = 1 
(i.e., the urn initially contains only one red ball) the limiting distribution of 
Xnr (as 71, -t (0) is normal with mean ne-1 and variance n{3e-2 - e-1} was 
verified to be true by Pittel (1987). Specifically, Pittel (1987) has shown that, 
as 71, -t 00 and r is such that p = rln is bounded away from 1, the random 
variable {Xnr - 71, cjJ(p)} I vT. n'l/)(p)} converges in distribution to the standard 
normal variables; here, cjJ(x) = ex- 1 and 'I/)(x) = e2(x-l)(x2 - 3x + 3 - e1- x). 
Note that if r is close to 71, (i.e., p is close to 1), E(Xnr) should be close to 71, 
and the variance of Xnr should be small. Actually, we have cjJ(l) = 1 and '1/)(1) 
= O. However, the function '1/;(.7:) attains its maximum when x ::::: 0.259 which 
means that the variance of Xnr is maximum when the cannibals constitute 
initially 26% of the whole population. Pittel's proof of the result, which involves 
Laplace transforms, is based on the observation that the first step of the process 
results in the number of red balls present in the urn either being the same or 
increasing by one with the corresponding probabilities r I (71,-1) and 1-r I (71,-1), 
respectively. The final step involves the use of a theorem of Curtiss (1942) on 
the moment generating function, and then noting that exp{u2cjJ(p)/2} is indeed 
the Laplace transform of a normal distribution with mean 0 and variance cjJ(p). 

For a P6lya urn model containing 71, balls all of different colors in which balls 
are drawn randomly one at a time and each drawn ball is replaced together 
with one more of the same color, one of the most elegant results is due to Holst, 
Kennedy and Quine (1988) which is based on an earlier seminal paper by Holst 
(1979). For further details, see Section 14.7 dealing with an unified approach for 
limit theorems. In this model, let us use Xi(r) to denote the number of balls of 
color i obtained from r draws, and let Nr be the number of colors not obtained, 
i.e., Nr = 2:i=l I(Xi(r) = 0), where Ie) denotes the indicator function. Then, 
a combinatorial argument yields 

(14.9) 



Advances in Urn Models During the Past Two Decades 

and 
n-1 

Pr[Xi(r) = OJ = -n-;-r---1 
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(14.10) 

Now, with E(Nr ) = ~~;j -+ .x > 0 (i.e, r rv 71,2/ .x), Nr -+ P(.x) in distribution. 
The rate of convergence has been shown by Holst, Kennedy and Quine (1988) 
to be as follows: 

(14.11) 

where 
d(Nr, N;) = sup 1 Pr[Nn E AJ - Pr[N~ E AJ I, (14.12) 

A 

N; is Poisson with parameter ~~;!{ and C = C(.x) > O. Their proof of this 
result is based on the classical methodology of imbedding P6lya drawings into 
71, independent birth processes with intensities 1,2,3, .... 

Ivchenko and Ivanov (1995) have investigated the following model: An urn 
initially contains a given number of balls of N colors. At each trial, a ball is 
randomly selected from the urn independently of other trials. For a ball drawn 
of a specific color, before the next trial, the number of balls of the same color 
in the urn is changed according to a certain rule. This is done by determining 
a levell/j for each color j (j = 1,2, ... ,N) where the quantities 1/1, ... ,I/N are 
integer-valued random variables. The procedure then stops when the numbers 
of balls of arbitrary K colors attain or exceed the corresponding levels for the 
first time. In other words, I/m (N, k) is the number of balls required to be 
thrown into N urns in order to get for the first time k urns containing no less 
than m balls each. Several papers have been published about this waiting time 
variable I/m(N, k); see, for example, Ivanov, Ivchenko and Medvedev (1985) and 
Ivchenko (1993) and the references therein. 

In particular, the generalized urn scheme defined by Ivchenko and Ivanov 
(1995) involves an urn containing initially aj,o balls of color Aj (j = 1,2, ... ,N) 
so that a = L:.f=1 aj,O is the total number of balls in the urn at the beginning 
of the procedure. Balls are then drawn at random from the urn with each ball 
having the same probability of being selected. After each draw, the contents 
of the urn is changed so that if a ball of color Aj is drawn for the n-th time, 
the number of balls of color Aj is changed from aj,n-l to aj,n, 71, = 1,2, ... , 
j = 1,2, ... , N. Note that if the color Aj has already been drawn kj times, 
j = 1,2, ... ,N, the vector of probabilities of drawing a ball of the corresponding 
color at the next trial is 

(14.13) 

For the stopping time, a level I/j for color Aj is determined before the starting 
of trials and, as mentioned earlier, I/j (j = 1,2, ... , N) are all integers. The 
trials stop when the frequencies of k unspecified colors attain or exceed the 
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corresponding level for the first time, where k (1 S; k S; N) is a given parameter 
of the stopping time. Now, let 1u(n) denote the observed frequency of balls of 
color Aj after n trials, j = 1,2, ... ,N. Evidently, 1U(0) = O. The stopping time 
is defined here as 

N 

v(N, k) = min{n : "LJ(7u(n) ~ Vj) ~ k}, 
j=1 

(14.14) 

where Ie) once again denotes the indicator function. Let "7j = "7j(v(N, k)),j = 
1,2, ... ,N, be the frequencies of the corresponding colors at the stopping time. 
Then, under this very general set-up, Ivchenko and Ivanov (1995) have studied 
the so-called decomposable statistics, a term introduced earlier by Medvedev 
(1970), defined as 

N 

LNk = L gj(7U)· (14.15) 
j=1 

Observe that there are three components involved in the construction of de
composable statistics: (i) the parameters {ajn} reflecting the generality of the 
generalized urn scheme, (ii) the stopping rule expressed by the distribution of 
{Vj} and the parameter k, and (iii) the specific characteristic of the decompos
able statistic expressed by the functions {gj}. Examples which are particular 
cases include: 

• Sampling with replacement when aj,n = aj,o, n = 1,2, ... , j = 1,2, ... , N. 
Here, Pj = aj,oja, j = 1,2, ... , N and the vector ("71(n), "72(n), . .. , "7N(n)) 
has a multinomial distribution; see Chapter 35 of Johnson, Kotz and 
Balakrishnan (1997). 

• Sampling without replacement when aj,n = aj,n-1 -1 = aj,O - n if n < aj,o 
and aj,n = 0 if n ~ aj,o, j = 1,2, ... ,N. If the observed frequencies of the 
colors are denoted by k1, ... ,kN(kj S; aj,O, j = 1,2, ... ,N), then provided 
L:~1 k i = n < a, the probability of drawing a ball of color Aj in the next 
trial is (aj,o - kj)j(a - n),j = 1,2, ... , N), and 

Pr["7j(n) = kj, j = 1,2, ... , N] = (a) -1 IT (akj,O) , with t kj = n, 
n j=1 ') j=1 

(14.16) 
is the multivariate hypergeometric distribution; see Chapter 39 of John
son, Kotz and Balakrishnan (1997). 

• P6lya sampling when aj,n = aj,n-1 + s = aj,o + sn, n = 1,2, ... , j = 
1,2,· .. , N. The probability of drawing a ball of color Aj in the next trial 
is (aj,o + skj)j(a + sn), j = 1,2, ... , N, where n = L:~1 ki . In this case, 
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Pr[rlj(n) = kj, j = 1,2, ... , N] 

= ((a/S)+n-1)-lfi ((a j ,O/S)+kj -1), 
n j=l kJ 

(14.17) 

which is the generalized P6lya distribution; see Chapter 40 of Johnson, 
Kotz and Balakrishnan (1997) . 

• The waiting time is a special case of the decomposable statistic LNk when 
gj(x) = x, j = 1,2, ... , N. 

Ivchenko and Ivanov (1995) have noted that the colors AI, A2,· .. , AN are in
dependent pure birth processes with intensities {aj,n, n 2:: O} for Aj-process. 
When an event occurs in an Aj-process, j = 1,2, ... ,N, it can be interpreted 
as a ball of the corresponding color is drawn from the urn and the urn scheme 
is thus embedded in the process A = (AI, A2,· .. , AN). The stopping time is 
then the k-th order statistic T(k) of 

Tj = min{t: 'l/Jj(t) 2:: ZJj}, j = 1,2, ... , N, (14.18) 

where 'I/)j(t) is the number of births in the Aj-process in the interval (0, t] 
('I/)j(O) = 0). This interpretation allows to determine E(eiTLNk) which is the 
characteristic function of the decomposable statistic LNk. The binomial, beta 
and mixture distributions appear prominently in various representations dis
cussed by Ivchenko and Ivanov (1995). Their work is closely related to the 
seminal paper in this topic by Holst and Husler (1985) who were successful in 
obtaining exact as well as asymptotic results. 

Ling (1993) succeeded in deriving the probability distribution function of 
the waiting time variable under frequency quota defined in a P61ya-Eggenberger 
urn model. In his terminology, let Ws(K, e, c) be the minimum of drawings 
until a frequency of Kl white balls or a frequency of K2 black balls has been 
drawn whichever comes first ("sooner" in Ling's terminology); the urn initially 
contains w white balls and b black balls, and c balls are added after each draw. 
Here, e = (w,b) and K = (Kl,K2). A similar set-up with "sooner" replaced 
by "later" introduced the waiting time variable WdK, e, c). Observe that 
WS((Kl,OO),e,c) and WL((Kl,O),e,c) are identical, representing the waiting 
time for a frequency of Kl white balls to occur. Explicit expressions for the 
distributions of the variables Ws and WL and the corresponding expected values 
of Ws and WL are provided only in some special cases. For example, if Kl = 

K2 = 2, then Ws(K, e, c) is shown by Ling (1993) to have the same distribution 
as 2 + X, where X is a Bernoulli random variable with parameter (w+b )1~~b+c) . 
It has also been shown that 

4 
Pr[WL((2, 2), (1, 1), 1) = n] = ( ) for n = 4,5,6, ... , nn+1 (14.19) 
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which readily shows that the mean of WL((2, 2), (1, 1), 1) does not exist. Ling 
has additionally presented some partial results on the distributions of Ws(K, r, c) 
and WL(K, r, c) by starting with a P6lya-Eggenberger model initially contain
ing rj (> 0) balls of color Aj (j = 1,2, ... ,m), where r = (rl' r2, ... ,rm ) and 
K = (KI' K2, . .. ,Km) are non-negative integers. Additional research is needed 
in this area. 

An elementary but illuminating exposition of the general urn model with 
multi color balls with specified drawing procedure with a quota stopping has 
been presented by Blom and Holst (1991). Specifically, a population of M balls 
is considered of which mi are of color i (i = 1,2, ... , s) with L::f=l mi = M. Balls 
are drawn from this urn one by one according to some prescribed procedure. 
We assign a stopping rule as follows: With ql, q2, . .. ,qs denoting given positive 
integers, when qi balls of color i have been obtained, the color i has reached 
its quota. The drawings terminate when K arbitrary colors have reached their 
corresponding quotas. In this case, the distribution of the number of drawings 
until the stopping (N) is of interest. Blom and Holst (1991) have then discussed 
the cases of drawings with replacement, drawings without replacement, and 
the P6lya-Eggenberger urn model. They have utilized embedding techniques 
by embedding the drawings into either Poisson process, order statistics from 
uniform distribution, or Yule process. The essential part of this methodology 
is to draw at random times instead of drawing at fixed times 1,2,3, .... This 
technique is then used to derive the first two moments of N in a very elegant 
manner. The key step is to show that the sequence of colors generated by 
the superposed process is probabilistically equivalent to the sequence of colors 
generated by the deterministically specified drawing procedure. 

Shur (1984) has discussed the probability distribution that arises from the 
P6lya-Eggenberger urn model with just one change-viz., the s additional balls 
that are added after each drawing are of the opposite color instead of being of 
the same color, thus producing a negative contagion model. 

Johnson and Kotz (1991) observed that the standard P6lya-Eggenberger 
urn model (with w white balls and n + 1 - w black balls with a single ball of 
the chosen color added) produces the distribution of the number of white balls 
T in the course of m drawings with replacements, given by 

(m) q[tl(n + 1 _ q)[m-tl 
Pr[T=t]= t (n+1)[ml fort=0,1, ... ,n. (14.20) 

This is equivalent to Matveychuk and Petunin's (1990) model which is as fol
lows: 

Let X = (Xl, X2,.·., Xn) and Y = (YI , Y2,"" Ym) be random 
samples from absolutely continuous distributions with cumulative 
distribution functions Fx(x) and Fy(y), respectively. Let X(l) ::; 
X(2) ::; ... ::; x(n) be the order statistics of X, and let Ji,q == 
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(X(i), X(i+q)). Under the assumption that Fx(x) = Fy(y), let T 
denote the number of Yi's falling in the interval Ji,q. 
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Then, the distribution of T is indeed the P6lya-Eggenberger distribution in 
(14.20). Special cases of this statistic arise in connection with several standard 
rank-order tests in nonparametric statistical inference. 

Wei (1979) discussed the following generalized P6lya-Eggenberger urn de
sign in the course of developing a nonparametric treatment assignment in com
paring k('2:. 2) treatments in medical trails. This type of a scheme tends to put 
more patients on better treatments: 

An urn has balls of K different colors. We start with Wi balls of 
color i, i = 1,2, ... , K. When an eligible patient arrives at the 
experimental site, a ball is selected at random from the urn. We 
observe its color i and return the ball to the urn. Treatment i is 
then assigned to this patient. When the response of a previous 
patient to treatment i is available, we perform one of the following 
operations: (i) if the response is a success, we add 0: (> 0) balls of 
color i, and (ii) if the response is a failure, we add (3 (> 0) balls of 
each color j, where j = 1,2, ... , K and j I: i. 

This treatment assignment rule is called a generalized P6lya's urn design and 
is denoted by GPUD(W,o:,(3), where W = (Wl,W2, ... ,WK). Obviously, this 
design is applicable when we have delayed responses from patients to the treat
ments. 

Robbins and Whitehead (1979) considered a sequence of i.i.d. random vari
ables Xl,X2 , ... with common distribution function F(·). After m observations 
have been made, fix attention to the i-th smallest and denote its value by £, 
which is simply the i-th order statistic of (Xl, X2, ... ,Xm). Let Rn be its rank 
when n random variables have been seen where n '2:. m. Thus, Rm = i and 

Rn = i + Yl + Y2 + ... + Yn- m, 71, = m, m + 1, ... , (14.21) 

where}j = 1 if X m +j :::; £ and = 0 otherwise, for j = 1,2, .... For any 71, '2:. m, 
the observations (Xl, X2, ... ,Xn) divide the real line into (71, + 1) intervals, and 
the next observation, X n+1, has an equal probability of falling into anyone of 
these intervals. If it falls into one of the first Rn, then Rn+l = Rn + 1, while if it 
falls into one of the remaining (71, + 1 - Rn) intervals, then Rn+1 = Rn. Hence, 
by identifying intervals with balls, this process can be modelled by a P6lya 
urn scheme. Observe the similarity of this model with the Matveychuk-Petunin 
model described earlier. The limiting distribution of the variable Rn/n has been 
studied, among many others, by Gumbel (1958) in the order statistics literature; 
see also Johnson and Kotz (1977). The limiting variable is a beta random 
variable with parameters (i, m-i+1). It should be mentioned here that Robbins 
and Whitehead (1979) studied the probability that the limiting proportion of 
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black balls ever exceeds a, i.e., the probability that the observation of interest 
ever leaves the bottom 100a% of observations. 

Multinomial allocations of r balls into n boxes with probability Pk of hitting 
the kth box and the accuracy of Poisson approximations to the distribution of 
the number of boxes with a given content have been discussed in some detail 
by Barbour, Holst, and Janson (1992). 

14.3 Generalizations of the Classical Occupancy 
Model 

Maindonald (1990) revisited the classical occupancy model of placing balls into 
urns (or birthdays into 365 days of the year) expressing it in the language of 
egg laying procedure carried out by a certain species of parasitic wasps. In this 
case, the urns are housefly pupae in which a female parasitic wasp places one or 
more eggs. It turns out that the wasp tends to avoid pupae already parasited 
leading to avoidance-modified urn models. 

Specifically, assuming the availability of H urns (pupae), let p(x, ro) be the 
probability that after depositing x balls (eggs), ro urns remain empty. Each 
new ball of placed with probability 1/ H in anyone of the H available urns. 
Using the notation p(ro) = ro/ H, Maindonald (1990) established the recurrence 
relation 

p(x + 1, ro) = p(x, ro){1 - p(ro)} + p(x, ro + l)p(ro + 1). (14.22) 

This is easily observed by noting that after depositing the (x + l)th ball, ro 
urns will remain empty if either ro + 1 urns had previously been empty, and 
with probability p(ro + 1) = (ro + 1)/ H the (x + l)th ball was placed in an 
unoccupied urn, or ro urns had been empty prior to this (.1:+ l)th ball, and with 
probability 1 - p(ro) = 1 - ro/H the (x + l)th ball was placed in an already 
occupied urn. 

Maindonald (1990) then noted that the recurrence relation in (14.22) can 
be easily adapted to avoidance-modified urn model situation. Assume that the 
wasp chooses pupae at random but lays an egg with certainty only if the pupa is 
"unparasitized." Otherwise, she lays with probability 8 < 1. Then, p(ro) above 
should be interpreted as the probability that the next oviposition will eventually 
occur in one of the ro unparasitized pupae. We thus have the generalization 

p(x + 1, ro, 8) = p(x, ro){1 - p(ro)} + p(x, ro + l)p(ro + 1), (14.23) 

with 
ro ro 

p(ro) = H + (1 - H)(1 - 8)p(ro), 
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that is, 
ro 

p(ro) = ro + 8(H - ro)' 

Maindonald (1990) has presented an extensive numerical analysis of this recur
rence relation. 

Next, he generalized this model by assuming that the encounters with pupae 
occur according to a Poisson process with parameter),. [The model (14.23) 
corresponds to stopping the process when a total of x ovipositions had occurred.] 
This is the so-called Poisson embedding popularized among others by Holst 
(1986) (as already mentioned in the last section) for deriving theoretical results 
for classical urn problems. Maindonald (1990) arrived at an estimator of ), to 
be 5. = -In(rol H). 

Maindonald's recurrence relation in (14.22) corresponds to Harkness's "falling 
through model" (when a ball falls through with some probability 1 - ¢ and is 
unavailable to fill the urn) if we take p( r) = ¢r I H. The relation 

(14.24) 

may correspond to the situation in which up to the (r - l)-th successive en
counter with an already parasitized pupae the wasp will not lay an egg, while 
on the r-th such encounter she will lay an egg. Other choices of p(r) as well as 
of p(x, ro, rl)-the probability that after depositing x balls, ro urns are unoc
cupied and rl urns are singly occupied-are discussed in this elementary and 
fruitful paper. 

A somewhat different generalization of occupancy models is discussed by 
Fang (1982). He tackles the so-called restricted occupancy problem when m 
urns and n balls are given and each urn consists of k cells. The balls are 
assigned to the urn in such a manner that each cell will have at most one ball. 
Denote by Mt the number of urns containing exactly t balls (t = 0, 1,2, ... ,k). 
Several cases depending on whether empty urns are permitted or not, and 
whether the cells, urns and balls are distinguishable or not, have been provided 
by Fang (1982). The distribution of Mt depends on T(n, m, k)-the number of 
ways of distributing the n balls among m urns under the restricted model, and 
Q(n, m, k, r, t)-the number of ways of distributing the n balls among the m 
urns so that exactly r urns have exactly t balls. Evidently, Pr[Mt = r] = Q IT. 
Fang (1982) expressed Pr[Mt = r] in terms of T and the function g(n, k, t, a). 
For example, for the restricted model when empty urns are allowed and the urns 
are distinguishable but the balls and the cells are not (the well-known Bose
Einstein system-see Section 14.10), by making use of the inclusion-exclusion 
principle, we have 

(14.25) 
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and in this case g(n, k, t, a) = 1. Also, 

PriM, ~ rJ ~ (;) Ea( -1); (m; r) T(n-(r+j)t, m-(r+j), k) g(n, k, t, r+j), 

(14.26) 
once again by applying the inclusion-exclusion principle. Further, expressions 
for moments and the moment generating function [generalizing the old result 
of Freund and Pozner (1956)] have also been provided by Fang (1982). 

In a remarkable paper, Nishimura and Sibuya (1988) extended the classical 
occupancy problem to the case when two types of balls are placed. Given two 
types of balls, say, nl white balls and n2 red balls, the balls are drawn at 
random and independently into one of m urns with probability 11m. Let S 
denote the number of urns with balls of both colors. For the famous birthday 
problem (nl boys and n2 girls in the sample), the event S > 0 means that there 
is at least one birthday which a boy and a girl have in common. Nishimura and 
Sibuya (1988) provided an interesting interpretation of this urn model in terms 
of security evaluation of authentication procedures in electronic communication 
networks. In their model, each ball enters an urn with or without balls of the 
different color. In the former case, however, we have a collision between the 
two different colors. The number of balls that collide with white but not with 
red will be denoted by nl - YI , and that collide with red but not with white by 
n2-Y2. Nishimura and Sibuya (1988) have then shown that the joint probability 
mass function Pr[(S, RI, R2, Yl, l2) = (8, rl, r2, Yl, Y2); m, nl, n2], where RI is 
the number of urns containing white balls but no red balls, and R2 is the 
number of urns containing red balls but no white balls, is given by 

1 (nl) (n2) (YI) (nl - YI) (Y2) (n2 - Y2) m!8! 
m n1+n2 YI Y2 8 rl 8 r2 (m - rl - r2 - 8)! . 

(14.27) 
Note also that Ti = S + ~ (i=1,2) (with 1 ::; Ii ::; min(ni, mi), i = 1,2) has 
the classical occupancy distribution 

(14.28) 

and, similarly, 

P [S R R - ] _ (nl + n2) m(u) ( ) ( ) r + I + 2 - 'U - + ,1::; 'U ::; min m, nl + n2 14.29 
'U mn1 n2 

and the crucial point is to realize that, given TI = tl, Y2 follows a binomial 
distribution with parameters n2, tI/m. 

Upon using the exponential generating function of (~), n = m, m + 1, ... 

(n) zn (eZ _1)m L -, = " m=1,2, ... , 
n m n. m. 

(14.30) 
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one can derive 

(14.31) 

where V' is the backward difference operator. Similarly, upon noting that the 
event S = 0 is equivalent to the event YI = 0 or Y2 = 0, we have 

(14.32) 

where ti denotes the number of urns randomly occupied by ni balls (i = 1,2). 
In particular, Pr[S = 0; m, nI, n2], with m and ni + n2 fixed, decreases as 
Ini - n21 decreases. With NI and N2 denoting the number of balls of each type 
thrown one by one when the first collision between the two types of balls occurs 
in one of the m urns, Nishimura and Sibuya (1988) have then shown that 

NIN2 
Pr[-- ::; w] ---+ 1 - e-w for 0 < w < M 

m 
(14.33) 

for any positive M > 0 as m ---+ 00. It should be noted that a "rule of choice" 
according to which the white and the red balls are thrown one by one into the 
urns is determined by nIj and n2j-the number of white and red balls thrown 
up to the j-th step. The assumption is that nIjn2j > 0 after some finite number 
of steps. However, if white and red balls are thrown alternatively, the distribu
tion of NIl y'm or N2/ y'm is asymptotically Rayleigh with probability density 
function 2we-w2 , w > 0 [see Chapter 18 of Johnson, Kotz and Balakrishnan 
(1994)]. 

14.4 Ehrenfest Urn Model 

The Ehrenfest urn model and its modifications as described in Johnson and Kotz 
(1977) (actually a model involving an exchange between two urns) have contin
ued to fascinate researchers in combinatorial probability theory during the past 
two decades. This model I, appropriately designated as "An Urn Problem of 
Paul and Tatiana Ehrenfest" by Takacs (1979) among other authors, was orig
inally proposed for resolving the apparent discrepancy between irreversibility 
and recurrence in Ludwig Boltzmann's theory of gases [Kac (1947) and Takacs 
(1979) supply interesting details in this connection.] Briefly, there are m balls 
numbered 1 to m distributed between two urns (I and II). Choose an integer 
between 1 to m (the integers are assumed to be equi-probable) and transfer the 

lwhich provides a simple model of heat exchange between two isolated bodies of unequal 
temperatures. Temperatures correspond to the number of balls in the urn while heat exchange 
corresponds to transference of balls. 
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ball with this number to the other box. Let P( n, m, i, k) denote the probability 
that box I, originally containing i balls, contains k balls after n transferences. 
Note that !n is the probability that a ball is transferred from urn I to urn II 
when urn I contains i balls and the probability of transferences from urn II to 
urn I is m~i. Thus, the system is equivalent to a random walk in which the 
state of the system is the number of balls in urn I and the single-stage transi
tion probabilities from state i to state i-I (i + 1) is !n (m;;;:-i). The n-stage 
transition probability from state i to state k is given by P(n, m, i, k). Takacs 
(1979) has provided a novel short derivation of an expression for P(n, m, i, k), 
thus simplifying Kac's (1947) classical derivation. Takacs ingenious proof of 
Kac's classical result is based on the notion of a Poisson process and by con
necting the transition probabilities of the homogeneous Markov chain generated 
by the Ehrenfest urn model and a homogeneous Markov process representing 
on the time interval [0,00) machines which operate independently with work
ing and idle periods being mutually independent exponential random variables 
with cumulative distribution function 

F(x) = 1 - e-x , x 2: o. 

Goulden and Jackson (1986) have provided an elegant combinatorial deriva
tion of the Kac-Takacs form for P( n, m, i, k) as 

where 

1 m (2 .)n 
P(n, m, i, k) = 2m L aijajk 1 - -.1.. , 

. 0 rn, 
J= 

m, 

L aijZj = (1 - z)(l + z)m-i. 
j=O 

(14.34) 

The mathematical tool used is continued fractions to enumerate lattice weighted 
paths and combinatorial bijections between them and permutations [see, for 
example, Fran<;on and Viennot (1979)] and pairings [a concept due to Read 
(1979) and independently by Flajolet (1980)]. 

In an obscure (for a non-Scandinavian reader) Swedish journal by name 
Elementa, Matsoms (1988) conjectured that when m = 2N the "average time" 
(provided the balls are transferred at each time-point t = 0,1,2, ... and the 
process starts at state Eo) tk required for transition from Eo to Ek (k balls are 
in urn II, k = 0,1, ... ,m) satisfies 

N-l 1 
tN=NL --. 

j=l 2j + 1 
(14.35) 

Blom (1989) provided a general representation for tk in the form of a definite 
integral in terms of a type of beta function (applying a recursive formula for 
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the expectation of a one-step transition) as 

(14.36) 

The above integral reduces to I:f=c/ 2j~1 for the case m = 2N showing that 
Matsoms' conjecture is indeed correct, and also leading to the neat expression 

m-l 2j 
tm=m'L-.

j=O J + 1 
(14.37) 

for the case k = m. Observe that for m = 10, t5 = 8.9 while tlO = 1186.5. 
Evidently, the final terms are the dominant ones in the expression for tm . 

It needs to be mentioned here that an alternative formula for the mean 
passage times for the Ehrenfest urn model was derived by Kemperman (1961) 
in terms of Krawtchouk polynomials 

11 (-n)j(-.x)j (l)j 
K 11 (x,p, N) = 2Fl( -n, -N; -.x; lip) = 'L "( -N). -

j=O J. J p 
(14.38) 

where (-x)j is as defined and used by Johnson, Kotz, and Kemp (1992). Voit 
(1996) has recently discussed the asymptotic distributions for the Ehrenfest 
urn model and some related random walks. His method, based on Krawtchouk 
polynomials and a version of the Diaconis-Shahshahani upper bound lemma, 
also gives exact asymptotic error rate. 

Motivated by the works of Kemperman and Blom, Krafft and Schaefer 
(1993) defined a generalized two parameter Ehrenfest model. As earlier, there 
are n balls distributed in two urns I and II. Consider a Markov chain which is 
in state i when there are i balls in urn I. At each time point, one ball is chosen 
with equal probability. If it is in urn I, it is then placed in urn II with proba
bility t and returned to urn I with probability 1 - t. If the selected ball is in 
urn II, it is then placed in urn I with probability s and returned to urn II with 
probability 1 - s. (Visualize-if you will-a vessel separated by a diaphragm 
which has a different permeability from either side). For the case s = t = 1, we 
get the classical Ehrenfest urn model, while the case s + t = 1 corresponds to 
the one-parameter Ehrenfest urn model discussed by Karlin (1968) in his classi
cal text. Krafft and Schaefer (1993) have then shown that the above described 
generalized two-parameter Ehrenfest urn model corresponds to a homogeneous 
Markov chain with state space (0, ... ,n) and transition probabilities 

P = (1 - -ni.) s i,j 

= it 
11 

_ (l-s)11+i(s-t) 
11 

=0 

if j = i + 1 

if j = i - 1 

if j = i 
otherwise, 
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and derived general formulas for the expected first passage times and transi
tional probabilities of quite a different structure as compared to those of Blom 
or Kemperman. 

Yet another generalization of the Ehrenfest urn model was given earlier by 
van Beek and Starn (1987) wherein the model is modified by drawing r (> 1) 
balls at a time. The authors have then shown that the stationary distribution 
on E = {O,l}N of all sequences x = (XI, ... ,XN), where Xi = 1 means that 
the ball i is in urn I and Xi = 0 means that the ball is in urn II, is uniform on 
E---exactly the same as in the classical case corresponding to r = 1. 

Dette (1994) generalized the Krafft-Schaefer model by allowing the transi
tion probabilities Pi,i-l and Pi,i+l to be quadratic functions of the current state 
i. It turns out that the results obtained by Krafft and Schaefer (1993) also 
hold for Dette's model, with the change that the Krawtchouk polynomials in 
the two parameter Ehrenfest urn model replaced by the so-called Hahn discrete 
orthogonal polynomials defined in terms of 3F2 functions [see Johnson, Kotz, 
and Kemp (1992) for a definition of 3F2 function]. The transition probabilities 
in Dette's generalization are given by 

Pi,j = (1 - lv) N~~~t~211 
_ i N+b+l-i 1I 
- N N+a+b+2 - 1 - (1 _.i.) a+1+i 1I - .i. N+b+l-i 1I 
- N N+a+b+2 N N+a+b+2 

=0 

if j = i + 1 

if j = i-I 
if j = i 
otherwise, 

where a, b are real numbers such that either a, b >-1 or a, b <-N, and 1I > 0 is 
arbitrary assuring that Pi,j E [0,1] for all i, j E {O, 1, ... ,N}. Setting a = s~t' 
b = st~t and 1I = S + t and taking the limit as 1/, ---t 00, we arrive at the 
Krafft-Schaefer generalization of the Ehrenfest urn model. 

Palacios (1994) observed that the evolution of the Ehrenfest urn model could 
be viewed as a simple random walk on a cube. Using a "full description" with 
2n states representing the possible configurations by n-tuples i = (il, ... , in) 
where ik = 1 or 0 if ball k is in urn I or II, one may identify the states with the 
vertices of the n-cube. Palacios utilized an electric approach [see, for example, 
Doyle and Snell (1984)] to random walks on graphs to compute the hitting 
times (or first passage times). Using this approach, in particular, the expected 
time to move all balls from urn II to urn I can be shown to be 

(14.39) 

Another related result shows that the expected time for an urn full but for one 
ball to get the very last ball to be 

(14.40) 
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thus showing that it is indeed very difficult for an urn to get the very last ball. 
In fact, more generally, 

2:k-1 (n) 
E T. = j=O j 

k-l k (n-l) 
k-l 

(14.41) 

Note that Ek_lTk-the expected time to increase by one (from k -1) the count 
of balls in urn I-forms a strictly increasing sequence in k which follows easily 
from the inequality 

(14.42) 

Inequality (14.42) becomes an equality for s = k -1. Thus, the increase is slow 
for 1 ::; k ::; n/2 [since both numerator and denominator in (14.41) increaseJ 
and is rapid for k > n/2 [since numerator increases but denominator decreases 
in (14.41)J. This means that EoTn/2 is much smaller than EoTk for k > n/2 as 
observed earlier by Blom (1989) for k = n. 

In an interesting paper, Bingham (1991) interpreted the Ehrenfest urn 
model as a random walk on the unit cube in n dimension and focussed his 
attention on the "fluctuation theory" of model (behavior on unusual states) 
and, in particular, on the first passage time to the opposite vertex (Ton) and 
its continuous time analog. Bingham noted the importance of the latter con
cept in reliability theory [see Keilson (1979) and Takacs (1979)J and in genetics 
[Donnelly (1983)J. 

Bingham's results include: 

• The probability generating function of TOn is 

(14.43) 

• The fact that 2-nTon .!!:" exponential(l) as n ---t 00. 

It is important to note that the Ehrenfest urn model can be described by 
a Markov chain at two levels: "full description" with 2n states (all possible 
configurations by n-tuples of O's and l's) and a "reduced description" with 
n + 1 states counting the number of balls in urn 1. In the reduced description, 
the Ehrenfest matrix P = ((Pi,j)) is given by 

Pi,j n-i 
.n 

1... 
n 

=0 

if j = i + 1 
if j = i - 1 
otherwise 
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and has eigenvalues ).,j = 1 - ¥, j = 0,1, ... , n. In particular, for j = n we 
have the eigenvalue -1 reflecting periodicity of period 2, as well as the Perron
Frobenius eigenvalue equal to 1 for j = O. 

Continuous time formulations (not discussed here for brevity) yield different 
limiting results; refer to Bingham (1991) for details. 

In a not so widely known paper, Uppuluri and Wright (1987) discussed the 
following extension of the Ehrenfest urn model. Given an urn with Wo white 
balls and bo black balls with the total number of balls N = Wo + bo being 
constant, a ball is selected at random in the first trial-if it is white, it is 
replaced by a black (white) ball with probability 0:1(1 - 0:1); if it is black, it 
is replaced by a white (black) ball with probability 0:2(1 - 0:2). An analogous 
procedure is carried out at the i-th trial. Let Wn(Bn) denote the number of 
white (black) balls in the urn after the n-th trial (Bn = N - Wn). Then the 
expected number of white and black balls that we can expect to have in the 
urn after n trials is given by 

J-Ln = E ( W ) n Bn = [I + ~ A r J-Lo, (14.44) 

where A = (-0:1 0:2 ) and J-Lo = ( wb 0 ). Evidently, this result can 
0:1 -0:2 0 

be easily derived from Krafft and Schaefer's (1993) model by reformulating 
the problem in terms of two urns, but the latter authors apparently were not 
aware of Uppuluri and Wright's work. After receiving a copy of Uppuluri and 
Wright's (1987) note from the authors of this survery, Krafft and Schaefer (1996) 
(in a yet unpublished manuscript) provided more tractable formulas for the 
expected value and the variance of the number of white balls after n trials 
in their framework of Markov chains (by utilizing the generating functions of 
Krawtchouk polynomials). 

Uppuluri and Wright (1987) viewed their generalization of the Ehrenfest 
urn model as a flexible sampling scheme which leaves the choice of replacement 
at each trial to chance and at the same time achieves a predetermined goal 
about the desirable proportion of white balls. An explicit expression for E[WnJ 
is easy to derive by using Blatz's (1968) result which asserts that for any matrix 

M=(~ ~), 
\ n \ n \ n-1 \ n-1 

M n - /\1 - /\2 M _ /\1 - /\2 ).,1).,21 
- ).,1 - ).,2 ).,1 - ).,2 ' 

(14.45) 

where ).,1 and ).,2 are the eigenvalues of M and 1 is a (2 x 2) identity matrix. 
Using this expression, one could then easily determine 0:1 and 0:2 which would on 
an average yield a predetermined "goal" value for E[WnJ after a predetermined 
number of trials n in a particular urn. Some numerical values for (0:1, 0:2) are 
given by Uppuluri and Wright (1987). 
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14.5 P6lya Urn Model with a Continuum of Colors 

P6lya urn model with a continuum of colors was introduced by Blackwell and 
MacQueen (1973). However, only after 20 years later, an important investiga
tion of this model was carried out by Yamato (1993). This model, briefly stated, 
is as follows [for motivation and more details, one may refer to Johnson and 
Kotz (1977)]: A color is initially selected from a continuous probability distri
bution Q (on a d-dimensional space Rd ) and r balls of this color are thrown into 
an empty urn. Next, after n draws with probability ~nr a color is selected 
from the distribution Q and r balls of this color are thrown into the urn or with 
probability M7nr a ball is drawn from the urn and returned to it with r balls 
of the same color. We thus arrive at Xl, X2,' .. , X n, .. . , a sequence of chosen 
colors. The important characteristic of this model is C(ml,'" ,mn ; n) which 
denotes the set of the first n trials in which ml colors appear once, m2 colors 
appear twice, and in general mi colors appear i times, where 2:?=1 i mi = n. 

Let (Xi,l,"" Xi,mJ be the mi colors appearing i times given that (Xl, ... , 
Xn) belongs to C(ml,"" m n; n). A formal definition of the sequence of colors 
X I, ... ,Xn is as follows: 

• Pr[XI E A] = Q(A), where Q is a continuous probability distribution on 
Rd and the Borel set A ~ Rd; 

• [ _ _ ] _ MQ(A)+r 2:~-1 IXi (A) 
Pr Xn+l E A\XI - Xl,···, Xn - .Tn - M+nr ,(14.46) 

where Ix(A) is the indicator function taking on the value 1 if X E A and 
o otherwise. 

It is clear that, by introducing the parameter M* = M/r, r can be chosen to 
be 1 without loss of any generality. If we now introduce the variable Dn for 
the number of distinct colors among the sequence Xl, ... ,Xn , it is evident that 
Dn = 2:~~1 mi if (Xl, ... ,Xn ) belongs to C(ml,' .. , m n; n). The important 
point here is to realize that the event {Dn = k} is equivalent to the union of 
the events {(Xl, ... ,Xn ) E C(ml"" ,mn;n)} over (ml,'" ,mn ) satisfying the 
conditions L7.~1 imi = n and L7.~1 mi = k. This readily leads to the Stirling 
numbers of the first kind s(n, k) and a result of the type 

Mk 
Pr[Dn = k] = \s(n, k)\ M[n] 

as shown by Yamato (1993). 

(14.47) 

Another sequence of interest in this model is YI , Y2 , ... corresponding to the 
sequence of new colors. Clearly, YI , Y2 , ... ,Yk are the distinct colors amongst 
Xl, X2, . .. ,Xn if (Xl,' .. , Xn) belongs to C(ml," ., m n; n) under the condition 
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L::i=l mi = k. A very interesting result in this model, due to Yamato (1993), 
is that the random variables Yl, Y2, . .. are all independent and identically dis
tributed random variables with the distribution Q. Yamato (1993), as a matter 
of fact, applied this result to estimate the parameters M and Q. In particu
lar, Dn is a complete sufficient statistic for the parameter M. The maximum 
likelihood estimator M of M is obtained by maximizing 

(14.48) 

When Dn = 1, M = 0 and when Dn = n, M = 00 which are intuitively clear. 
Also, since (Xl, ... , Xn) E C(ml, ... , mn; n) does not depend on the continuous 
distribution Q, the empirical distribution function based on the distinct colors 
Xij, i = 1, ... , n, j = 1, ... , mi, is the "best" estimator of Q. 

14.6 Stopping Problems in Urns 

A typical stopping problem in urns was considered by Simons (1987) which 
is described below exactly in his formulation. Suppose an urn contains m 
( -1) 's and p (+ 1) 'so (Note how each author uses different terminology which 
often causes confusion.) We draw at random without replacement and we are 
free to stop at anytime. The objective is to maximize the sum. The values 
m and p are pre-assigned and we are free not to carry out any drawings at 
all. The problem that Simons tried to solve (and succeeded only partially) is 
to determine whether the expected return R( m, p) under optimal stopping is 
strictly positive. Starting with R(m,O) = 0 (m = 0,1, ... ) and R(O,p) = p 
(p = 0,1, ... ), the recurrence relation 

( m p m- p ) R(m,p) = max 0, --R(m - l,p) + --R(m,p - 1) - --
m+p m+p m+p 

(14.49) 

will enable the determination of R( m, p) easily. Simons (1987) observed that 
R(m,p) can be positive even when m > p. [Obviously, R(m,p) > 0 when 
p > m.l Since the sampling is without replacement, it may be desirable to 
proceed with a policy more sophisticated than making a fixed number of draws 
that depends upon the outcomes of the draws. Combining earlier results of 
Shepp (1969) and Boyce (1973), Simons (1987) suggested the following first 
(second)-order asymptotic stopping rules: Let n = m + p and ex ~ 0.83992 be 
the unique solution of the equation 

(14.50) 
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Then, stop as soon as the current values of k and n satisfy k > ay'n (first 
order rule), or as soon as k 2:: ay'n - 0.5 (second order rule), or as soon as 
k 2:: ay'n - 0.5 + f3c(n) (third order rule), where c(n) goes to zero with nand 
f3 is an empirically determined constant which depends on c(n). 

Simons (1987) determined all favorable urns (satisfying R(m,p) > 0 under 
the optimal stopping rule) for sizes n ::; 54, 000 (some 196 urns). There are 
about 1458,081,000 urns of size n ::; 54,000. The procedure took about 100 
hours of computing time on an IBM-AT. Simons has cautiously recommended 
the choice c(n) = n-1/ 2(logn)2 with corresponding f3 satisfying the inequality 
0.008890 ::; f3 ::; 0.008976. 

Samuel-Cahn (1993) discussed the following more refined problem. An urn 
contains N balls, labelled 1,2, ... ,N. The balls are drawn one at a time. Let 
Mk be the maximal label seen by time k. The payoff function f(k, m) (i.e., 
reward when stopping after k draws and largest number seen by then is m) 
is assumed throughout to be nondecreasing in m for each k. The problem 
discussed is about the optimal stopping rules for sampling with or without 
replacement. Let n ::; N denote the total permissible "horizon", i.e, the latest 
draw by which one must stop. It has been shown inter alia that for any horizon 
under optimal stopping, sampling without replacement yields a larger expected 
value than under sampling with replacement. Samuel-Cahn also investigated 
the conditions under which the optimal rule has the simple form 

for some constant qk (the so-called threshold rule). A sufficient (but not neces
sary) rule for sampling with replacement is 

m, 
N 6. (k, m) ::; 6.(k - 1, m) for k = 2, ... , n, m = 1, ... , N - 1, (14.51) 

where 6.(k, m) = f(k, m + 1) - f(k, m). Evidently, this condition holds when 
6.(k, m) is nonincreasing in k for every fixed m. Samuel-Cahn (1993) has also 
briefly investigated the limiting behavior (as N ---+ 00), generalizing the earlier 
result of Chen and Starr (1980). 

14.7 Limit Theorems for Urns with Random 
Drawings 

Shortly after the publication of the volume by Johnson and Kotz (1977), Holst 
(1979) provided a unified approach for proving limit theorems for a variety of 
urn models. 

Consider an urn containing balls of N different colors numbered 1,2, ... ,N. 
Balls are drawn at random one at a time. There are three schemes considered: 
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the chosen ball is returned (scheme M), the chosen ball is not returned (scheme 
H), and the chosen ball is returned together with s balls of the same color 
(scheme P). The urn initially contains A balls. After n drawings, let us denote 
the number of selected balls of different colors by Xl, X 2, ... , X N. 

For a given function 10 and integer M ~ N, Holst (1979) considered the 
random variable 

M 

ZM = LI(Xk). 
k=l 

If 1(0) = 1 and l(j) = 0 otherwise, then ZM represents the number of colors 
amongst the first M that did not occur in the n drawings-that is, we have 
an occupancy problem, with the classical occupancy problem being the special 
case when M = N, 1(0) = 1 and I(j) = 0 otherwise under scheme M. Holst 
then derived an expression for the characteristic function of ZM, E[eivZM ], in 
terms of E[eiu(Y -n/N)], where (i) Y is a Poisson random variable in the case of 
scheme M, (ii) Y is a binomial random variable in the case of scheme H, and 
(iii) Y is a negative binomial random variable in the case of scheme P. He also 
presented a limit theorem for ZM (as M, Nand n -t 00) by using a general 
method originally devised by Le Cam (1958). Holst then illustrated his result 
for a variety of classical urn models. Since then, most of the limit theorems 
in the literature mainly dealt with cases which can not be proved from Holst's 
theorem. For example, limit theorems for sequential occupancy and for infinite 
urn models are two such cases. These are discussed in the next two sections. 

14.8 Limit Theorems for Sequential Occupancy 

Limit theorems for sequential occupancy [see Johnson and Kotz (1977, p. 353)] 
are based on the classical result of Erdos and Renyi (1961). Balls are succes
sively thrown, independently and uniformly, in n given urns labeled 1,2, ... , n. 
Let Nn,m, 1 ~ n, m < 00, be the number of throws required to obtain at least m 
balls in each urn, in which case the urns are said to be covered m times. Erdos 
and Renyi (1961) proved the following limit law: 

Let Nn,m = nlogn + (m - l)n log log n + nXn,m. Then, 

lim Pr[X < x] = e-e-x/(m-l)!. 
n--+oo n,m, -

Observe that the above given limiting distribution of Xn,m is an extreme value 
distribution; for example, see Chapter 22 of Johnson, Kotz and Balakrishnan 
(1995). Newman and Shepp (1960) derived the asymptotic behavior of the 
expectation E[Nn,m] as 

E[Nn,m] = nlogn + (m - l)n log log n + nCm + o(n) as n -t 00, 
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where em = 'Y - log(m - I)!, 'Y being Euler's constant. This is also imme
diately evident from the limiting distribution of Xn,m being an extreme value 
distri bu tion. 

The above results reveal at once the rather surprising feature that, up to 
first order terms, it takes n log n throws for the first cover, each subsequent cover 
requiring only an additional nloglogn throws. To obtain a better understanding 
of this phenomenon, Flatto (1982) derived limiting theorems for N~"m' N~,m 
conditioned on Nn,m, where N~"m' N~,m are respectively defined to be the 
number of urns containing precisely m balls upon completion of the Nn,m-th 
throw, and the number of throws past the Nn,m-th one required to obtain at 
least one more ball in each of N~"m urns. Thus, Nn,m+l = Nn,m + N~,m for all 
n,m. 

Flatto (1982) established that, given Nn,m = [n log n + (m - l)n log log n + 
nx], [xl denoting the largest integer contained in x, 

N~"m,r rv e-x(lognr-m+1lr! in probability, (14.52) 

where N~"m,r' r ;::: m, equal the number of urns containing exactly r balls upon 
completion of the Nn,m-th throw. More precisely, let N = N(n, m, x) balls 
be thrown into n urns. The probability of hitting a specific urn is lin. As 
n ~ 00, the number of balls in a given urn becomes Poisson distributed with 
parameter).. = Nln. Hence, given Nn,m = N(n,m,x), the number of urns 
with r balls should be rv e-x(1ogny-m+llr!. Flatto (1982) also proved that 
N~,m rv n log log n in probability, and established the following result: 

Let 1 :s; k :s; n, -a :s; x :s; a, where a > O. Let N~ be the number 
of throws necessary to obtain at least one ball in each of the urns 
1, 2, ... , k, the balls being thrown independently and uniformly into 
the urns 1,2, ... ,n. Then, 

lim I Pr[ N~ :s; n log k + nx 1 - e _e- X I = 0 uniformly in n and x . 
k-->oo 

(14.53) 

Finally, Flatto (1982) also provided a heuristic explanation of the Erdos-Renyi 
(1961) result as follows: Let m > 1. Since N~"l,m-l will be much larger than 
N~ 1 r' 1 :s; r < m - 1, Nn,m should roughly equal Nn,1 + N~ 1 m-l' where 
N~:l:m-l is the number of throws past the Nn,l-th one required to obtain at 
least one addtional ball in each of the N~"l,m-l urns. Then, upon using the 
asymptotic result for N~"m,r presented above, Flatto (1982) in fact arrived at a 
generalization of the Erdos-Renyi theorem. 

Flatto's limit theorem clarified and provided an insight into the limiting 
behavior of classical sequential occupancy models. 
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14.9 Limit Theorems for Infinite Urn Models 

Infinite urn models were studied in the classical paper of Karlin (1967) where 
in covergence in distribution to the standard normal was established. Among 
recent results generalizing Karlin's contributions, Dutko's (1989) results seem 
to be noteworthy. 

71, balls are placed independently in an infinite set of urns and each ball has 
probability Pk > 0 of being assigned to the kth urn, k = 2,3, .... It is assumed, 
without loss of any generality, that the urns are arranged in decreasing order so 
that Pk 2: PHI and L~I Pk = 1. Let Xn,k be the number of balls in the kth urn 
after 71, throws. If the number of throws is a Poisson random variable with mean 
71, denoted by N(n), then XN(n),k is the number of balls in the kth urn after 
N(n) throws. Note that the random variables {Xn,d where the sample size 71, 

is fixed and k varies are not independent, while {XN(n),d, k = 1,2,3, ... are 
mutually independent Poisson random variables with respective means {npk}. 
Finally, let Zn = L~I <p(Xn,k) , where <p(n) equals 0 if n = 0 and equals 1 if 
n > 0, and analogously ZN(n) = L~I <p(XN(n),k). That is, Zn (ZN(n») is the 
number of occupied urns after 71, (N(n)) balls have been thrown. Let us denote 
E[ZnJ = !-In, Var(Zn) = a;,; similarly, E[ZN(n)J = !-l(n) and Var(ZN(n») = a2(n). 

One of Karlin's (1967) results is that Znb~l.Ln ---+ N(O,l) in distribution for 

all {pd E A = {{Pk}la(x) = XT'L(.T) , 0 < 'Y < 1}, where a(x) = max{klpk 2: ~} 
and LrY:N ---+ 1 as x ---+ 00 for any fixed c > 0 (that is, a( x) is of regular variation 
in the Karamata sense) and bn ---+ 00 and bn rv an as 71, ---+ 00; see Karlin (1967, 
p. 386) for an explicit formula. 

Dutko succeeded to show that Z;;)n ---+ N(O, 1) in distribution for all 

The class A is wider than B. Roughly speaking, the class A contains sequences 
{pd where a2(n) ---+ 00 for 71, ---+ 00, but the smoothness condition a(x) = 

xrL(x), 0 < 'Y < 1, does not hold. The fact that for Pk E B,a2(n) ---+ 00 as 
71, ---+ 00 had been established earlier by Karlin (1967). Normalization by means 
of a2(n) instead of by a;, is done in order to take advantage of the fact that 
XN(n),k (instead of Xn,k) are independent. Dutko's (1989) proof involves two 

steps: First one shows that ZN(;{:r(n) ---+ N(O, 1) in probability as 71, ---+ 00 for all 

{pd E A essentially via Lindeberg's criterion for convergence, and the second 
step shows that limn--->oo[!-ln - !-l(n)J = 0 for appropriately defined sequences 
{Pk}. 
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14.10 Urn Models with Indistinguishable Balls 
(Bose-Einstein Statistics) 
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Indira and Menon (1988a,b) and Menon and Indira (1990) investigated the 
limiting distribution of the number of cells containing k balls each in the case 
when n indistinguishable balls are distributed into m cells. Their work is a 
continuation of the unpublished work of Park (1976) as described in Johnson 
and Kotz (1977); they have used in part the general methodology of proving 
limit theorems of this kind developed by Holst (1979) (described earlier) and 
an elementary method of Menon (1973) relating to the maximum of Stirling 
numbers of the second kind. 

Two closely related models have been investigated: 

Model I: The n indistinguishable balls are distributed into m cells such that 
all the (m~~11) possible distinguishable arrangements are equi-probable. 
Let Mk == Mk(n, m) denote the number of cells containing exactly k balls 
each (k 2:: 0) (the occupancy variable). 

Model II: The n distinguishable balls are distributed into m cells such that 
no cell remains empty and all the (;;;,-=-~) possible distinguishable arrange
ments are equally likely. Let Mk == Mk(n, m) denote the number of cells 
containing exactly k balls each (k 2:: 1). 

Evidently, Mk(n,m) = Mk_l(n-m,n) have the same probability distribu
tions. Let a = n/m, where we regard n as a function of m. 

These models are referred to in the classical literature [for example, see 
Feller (1968) and Johnson and Kotz (1977)] as Bose-Einstein statistics. Indira 
and Menon (1988a) have shown that the possible limit laws for the occupancy 
variables Mk and Mk (as m -+ 00) are normal, Poisson or degenerate. More 
precisely, the possible limit forms for the sequence a = a(m) as m -+ 00 are 
0,00 or aD E (0,00) in Model I, and 1,00 or aD E (1,00) in Model II. If a -+ 

aD, the variables Mk and Mk are asymptotically normal and in the other two 
cases, the variables are either Poisson or degenerate in the limit. A distinction 
between the Poisson or degenerate limit for Model I is given by the condition 
a -+ 0, ma2 = n2/m -+ ° yielding the degenerate distribution at 0, while the 
condition a -+ 0, ma2 -+ .\ results in a Poisson limit law; and analogously, 
the condition a -+ 00, m/ a -+ ° results in a degenerate distribution, while the 
condition a -+ 00, m/ a -+ .\ results in a Poisson distribution. Similar results 
are obtained for Mk. 

Indira and Menon (1988b) have also investigated in great detail the local 
central limit theorem and expansions related to this central limit theorem for 
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the random variable Mk and the random variable Nk, where Nk = Ndn, m) 
denotes the number of urns containing at least k balls (k Z 2). Asymptotic 
normality of Mk and Nk follow from the general result of Holst (1979) described 
earlier. For example, they have shown that, as m --t 00 and n/m --t ao > 0, 

Pr[Mk ::; mam + xy'mBm] = <I>(x) + R, (14.54) 

where <I>(.) denotes the standard normal distribution function, R = 0((1 + 
x2)/y'm) and ~ --t 0 as m --t 00. Here, am and Bm are functions of a = n/m 
and k which are given by 

a k 2 {{ (k - a)2 } } 
am = (1 + a)k+l' Bm = am 1- 1 + a(l + a) am , (14.55) 

with mam + xy'mBm being an integer. As a corollarly, they also obtained the 
result that 

1 
Pr[Mk = mam + xy'mBm] f'V y' B </J(x), 

m'm 
(14.56) 

where </J(.) denotes the standard normal density function. They have also recom
mended a continuity correction of the form ~ and provided tables revealing that 
the approximations they proposed are quite satisfactory even for M2(120, 30) 
in which case the mean and variance 3.84 and 3.24, respectively (almost the 
Poisson case as the mean and variance are almost equal). 

Menon and Indira (1990) also examined the approximation of Pr[Mk = r] 
and Pr[M - k ::; r] by the corresponding quantities obtained from the limiting 
Poisson distribution. One of their useful results is as follows: 

Let n --t 00, m, --t 00, a = n/m --t 00, and )..2/m --t 0, where 
).. = m 2 /(m + n); then, their Poisson approximation to Mo is given 
by 

1 )..4 
Pr[Mo = r] - p(r;)..) = -{).. - (r - )..)2} + 0(-2 )p(r; )..), (14.57) 

m m 

where p(r;)..) denotes the Poisson (with mean )..) probability mass 
function at r. Prasad and Menon (1985), realizing that there is a 
Poisson limit for the distribution of Mo when ;:" --t 00 in the case 
of the randomized occupancy model, have discussed some approxi
mations to the distribution of Mo when m is large but finite. 

Similar results for Mk have also been developed by these authors. 
For example, the following two tables present a few numerical comparisons 

for the case when m = 30, n = 300, a = 10, ).. = 2.5: 

r Pr[Mo = r] p(r; )..) r Pr[M2 = r] p(r; )..) 
0 0.071 0.082 0 0.072 0.083 
3 0.231 0.214 3 0.228 0.213 
6 0.018 0.028 6 0.021 0.027 
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14.11 Ewens Sampling Formula and Coalescent Urn 
Models 

One of the most famous and celebrated applications of urn models that has 
emerged during the last two decades is the Ewens Sampling Formula, due to 
Ewens (1972). Indeed, the qualifier "celebrated" is almost universally used 
whenever the term Ewens sampling formula is mentioned. Ewens laid the foun
dation for the use of urn models in population genetics in his treatment of the 
infinite-alleles model at equilibrium [Fisher, Corbet and Williams (1943)]. In 
this section, we shall concentrate on a very small sample of representative pa
pers that appeared during the last two decades rather than trying to exhaust 
the variety of very ingenious and mathematically intricate contributions that 
have appeared in the literature. As a matter of fact, the literature on this topic 
is overwhelming and interested readers may refer to Chapter 41 of Johnson, 
Kotz and Balakrishnan (1997) for a concise review. 

Ewens sampling formula was developed by Ewens (1972) and has been de
scribed by the originator in the book by Johnson and Kotz (1977). It is as
sociated with a partition structure of population genetics. Stated in biological 
terms, it asserts that [see, for example, Donnelly (1986)]: 

If n gametes in a sample from a biological population are classified 
according to the gene at a particular locus, then under suitable 
conditions the probability that al alleles will be represented once, 
a2 twice, etc., is given by 

(14.58) 

for some parameter () > o. 

The remarkable fact about the above given Ewens sampling formula is that it 
has been shown to apply to a wide variety of models for reproduction provided 
only that the population size N is large compared to n, mutation is nonrecurrent 
(the infinite alleles models), all alleles are selectively neutral, and the population 
is in equilibrium. The parameter () is typically related to the mutation rate. 

The main result that has emerged in the recent past concerning the Ewens 
sampling formula is that it may be generated by a P6lya-like urn model. Specif
ically: At the start, the urn contains one black ball of mass () > O. Successively 
balls are drawn from the urn at random (Le., in proportion to their masses). 
After every draw, the selected ball is returned to the urn together with an ad
ditional ball of mass 1, whose color is the same except when the black ball has 
been drawn. In this case, the new ball is painted with a color not yet present in 
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the urn. The natural numbers are used to label the colors in order of their need. 
[This is in essence the Hoppe-Donnelly urn model; see Hoppe (1984, 1987) and 
Donnelly (1986); see also Zabell (1992) for illuminating historical remarks.] 

For n E N, let Xn be the number of the color of the n-th ball added. Then, 
(Xn)nEN is a stochastic process on N with Xl == 1 and 

Pr[Xn+1 = klXn = X n , ... , Xl = Xl] = fk(n), k ~ f(n) 
O+n 

o 
--, k = f(n) + 1 
O+n 
0, otherwise, 

for every realization Xl,.'" Xn of Xl"'" X n, n E N, and kEN, where 

f(n) = max{xil1 ~ i ~ n} and fk(n) = #{ilxi = k, 1 ~ i ~ n}. 

The colors of the balls in the urn after n trials induce a random partition 

(14.59) 

where Ci is the number of colors belonging to exactly i balls, 1 ~ i ~ n. Then, 
(TIn)nEN is Markovian, and every TIn is distributed according to the Ewens 
sampling formula, i.e., 

n! n oaj 
Pr[TIn = 7r] = -[n] II ~ 

Un j=l J aJ • 
(14.60) 

for all partitions 7r = (al, ... , an) of m, where [O]n = 0(0 + 1) ... (0 + n - 1), 
n E N. We thus equate the labelling of balls in the urn to the partition 
by age of alleles in the sample. Moreover, as has been shown by Donnelly 
(1986), the Ewens sampling formula is the only partition structure which can 
be constructed via the urn described above. 

In late seventies, partition structures were introduced by Kingman (1977, 
1978). Denote by On the set of all partitions of an integer nand P n the set of 
all distributions on On. A sample of size n is taken from a biological population 
consisting of k different types, and the corresponding sample model consists 
of specifying a probability distribution Pn E P n for the observed partition of 
n. Since there is nothing special about a particular value of the sample size 
n, a sequence of consistent family of distributions (PI, P2, . .. ) is known as a 
partition structure, introduced by Kingman (1977, 1978). The main result of 
Kingman is that all partition structures may be constructed via a generalized 
"paintbox". Specifically, with each partition structure we associate a unique 
representing measure J.L on the space 'Va of sequences .r, = (xn; n = 0,1,2, ... ) 
satisfying 

00 

Xo 2: 0, Xn 2: Xn+l 2: 0 (n 2: 1), L Xn = 1. (14.61) 
n=O 
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For x E 'Vo and let ~r (r = 1,2, ... ) be independent random variables with 
distributions 

Pr[~r = 71,] = Xn (71, ~ 1), Pr[~r = -r] = Xo. (14.62) 

For 71, ~ 1, 1f = (aI, a2, . .. , an) E On, define 'P~(x) to be the probability that 
among the values of the random variables 6,6, ... , ~n" exactly aj integers are 
represented j times (j = 1,2, ... ,71,). We may then write 

(14.63) 

All known partition structures of biological interest have representing mea
sures concentrated on the subset 'V of 'V 0 corresponding to those sequences 
described in (14.63) with Xo = O. Kingman (1977) termed such partition struc
tures representable. 

Now, as Donnelly (1986) and Hoppe (1987) have shown, the P6lya urn model 
generating the Ewens sampling formula parallels the construction of Kingman 
using a Poisson-Dirichlet distribution "paintbox". Specifically, the paintbox is 
constructed as follows: Consider a representable partition structure. Choose a 
point x = (Xl, X2, X3, ... ) E 'V according to the distribution f.L and imagine a 
hypothetical infinite population in which one type has frequency .Xl, a second 
type has frequency X2, and so on. When averaged over the distribution f.L of 
x, the partition of n induced by a sample of size n taken from the infinite 
population will have distribution Pn . Equivalently, one can think of coloring 
balls by dipping a paintbrush at random into a paintbox of which a fraction Xl of 
the paint is of one color, X2 of a second color, and so on. The partition induced 
by the colors of the first 71, balls will have distribution Pn (when averaged over 
the distribution f.L of the colors). 

The Poisson-Dirichlet distribution can be obtained from a symmetric Dirich
let D( 0:; k) (see below for its definition) as follows: Arrange the population 
frequencies in decreasing order as p(l) ~ P(2) ~ ... P(k)' It can be shown 
[see, for example, Kingman (1975)] that for each fixed j, (Pi,?'I, ... ,P!) as 
k ---t 00, 0: ---t 0, ko: ---t (), and this vector is the j-th joint marginal of a 
random probability P*, termed by Kingman (1975) as the Poisson-Dirichlet 
distribution. It was actually Watterson (1976) who first associated the Ewens 
sampling formula with the Poisson-Dirichlet distribution. He actually conjec
tured that the Ewens sampling formula could be derived by directly sampling 
from the population described by D( 0:, k )-asymmetric Dirichlet distribution 
with density 

r(ko:) { k-l }a-l k-l a.-l 

rk(o:) 1- {;Pi g Pi' , (14.64) 

where ro is the complete gamma function-over the simplex {(PI, ... ,Pk-l) : 
Pi ~ 0 and L:~;:-l Pi :S I} rather than proceeding indirectly by letting k ---t 00. 

A proof of this conjecture was provided subsequently by Kingman (1977). 
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A related urn model is an urn model with coalescent, which was introduced 
by Kingman (1982a,b,c) motivated by mimicing the procedure of tracing a 
sample's ancestry backwards in time and noting the appearance of common 
ancestors or new mutants (until one reaches a single common ancestor). An 
extension of this model has been provided recently by Branson (1994) as follows: 

Suppose an urn originally contains m balls of the same size but 
each of a different color (not black) representing a sample of size 
m taken from the population. We remove the balls from the urn 
in m stages, which we label successively as stage m, stage m - 1, 
... , stage 1 (so that stage i commences with i balls in the urn). 
In stage m, we remove one ball chosen at random and designate it 
an "offspring" ball. We replace it with a black ball whose size is 
such that the relative probabilities of picking the black ball or any 
particular colored ball are in the ratio 8 : 1. We now remove a 
second ball: if it is black, stage mends (the interpretation will be 
that the "offspring" was a mutant); (if it is colored, we designate 
it a "parent" ball, replace it in the urn, by removing the black 
interpreted as a coalescence). This completes the initial stage m. 

We continue in a similar fashion. In stage i, the urn contains i balls, 
and the probability that any particular ball is chosen as "offspring", 
followed by the black ball is 

1 8 
- x -:-----
i 8+i-l 

(14.65) 

On the other hand, the probability that any particular ball is chosen 
as "offsping" and any other particular ball as "parent" is 

1 1 
-x . 
i 8+i-1 

(14.66) 

If any stage results in a coalescence, we recolor with the "par
ent's" color not only the "offspring" at that stage but also all pre
viously removed balls of the same color (which are "offspring" of 
"offspring" ... ). For example, at stage m, we may remove the blue 
ball as offspring and the red ball as parent, so we replace the red ball 
but change the color of the offspring ball from blue to red. At a later 
stage, we may remove the red ball as offspring and the green ball 
as parent. We replace the green ball but change to green the color 
of both balls that are now red (that is not only green's "child" but 
also its "grandchild" originally colored blue). Thus, at any stage, 
we have painted with the same color a parent (in the urn) and all 
its progeny of succeeding generations (outside the urn). 

After stage 1, the urn will be empty. Outside the urn there will be 
m balls of £ (say) different colors if the black ball was chosen on 
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f occasions. The balls carrying the same color represent a single 
family descended from an originating mutant ancestor. 
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While Hoppe-Donnelly model mimics the drawing of a sample at some fixed 
time from a Poisson-Dirichlet distribution and also is equivalent to the reversed 
jump chain of the coalescent, Branson's (1992) model directly mimics the coales
cent itself (rather than its time reversal). Further, it provides a computational 
tool in those cases where, in tracing backwards through time, the coalescent 
does not run its full course and so there are some old "genes" remaining-viz., 
when the urn is being only partly emptied. Branson (1992) also provided a 
direct proof for the relationship between the Ewens sampling formula and the 
Poisson-Dirichlet distribution. 

In an interesting paper, Trieb (1992) discussed the concept of n-coalescent 
with mutation (which is a continuous-time Markov chain taking values in the 
set En of all equivalence relations on {I, 2, ... , n}; two individuals are in the 
same equivalence class at time t if and only if they have a common ancestor 
not more than t time units in the past and if their lines of descent go back to 
this common ancestor without intervening mutations) and its connection to the 
Hoppe-Donnelly urn and the Ewens sampling formula. He found some incon
sistencies in Hoppe's (1987) arguments relating to genealogy of the coalescent 
with mutation. 

14.12 Reinforcement-Depletion (Compartmental) 
Urn Models 

A study conducted by Bernard of the Health and Safety Division at the Oak 
Ridge National Laboratory [Bernard (1977)] generated a flood of papers and, as 
a result, provided a number of useful and far-reaching generalizations from theo
retical as well as applied points of view. It involved a single compartment model 
with bulk arrivals and departures, known in the literature as reinforcement
depletion urn model or replenishment-depletion urn model. It was originally 
introduced in connection with radioactive atoms and stable atoms in humans, 
to model, for example, the uptake of radioactive iodine by the thyroid in hu
mans. 

The original basic model of Bernard (1977) is as follows: Initially, there are 
b black balls and w white balls in the urn. At each stage, a fixed number (r) 
of black balls is added to the urn (reinforcement) and (b + w + r) balls are 
uniformly mixed. Next, a random sample of r balls is then removed (depletion) 
from the urn. The main interest centers on the number of white balls at each 
stage and the time (stage) when all the white balls have first been removed. 
Note that we are considering here a constant reinforcement-depletion size. The 
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reinforcement-depletion cycle mimics a birth and death process, and in the 
simplest case the depletion always equals the reinforcement cycle by cycle. As it 
was pointed out by Bowman, Shenton and Bernard (1985), in urn models related 
to the daily ingestion of radioiodine in humans, reinforcements and depletions 
are of order 1012 or so, and Shenton (1983) has taken reinforcement at the j-th 
cycle to be rj = 1021 + K(j -1)1017, j = 1,2, ... ,7300 with K ~ 2. These sizes 
make it extremely difficult to connect the possible configurations at a cycle to 
those at a previous cycle, which makes the recursive approach an attractive 
one. In models for the uptake of radioactive iodine atoms by the thyroids of 
humans at different ages, the uptake of iodine is usually taken to be about twice 
the depletion, and the problem when the daily depletion is significantly less 
than the reinforcement is of interest (which leads to a natural generalization 
of Bernard's urn model). Finally, we note that reinforcement-depletion are 
sometimes assumed to occur in discrete time (as in the case of Bernard's original 
model) while at other times at the instances of a time-homogeneous Poisson 
process [see, for example, Donnelly and Whitt (1989).] 

Denoting by Wn the number of white balls remaining in the urn after n 
stages, it is relatively easy to derive simple expressions for the mean and vari
ance of the variable Wn . In fact, 

E[Wn ] = w(l- pf\ 
Var(Wn) = w{(l - pt - (1 - apt} + w2{(1 - aPt - (1 _ p)2n}, 

where 
r w+b 

p = w + b + r and a = 1 + w + b + r - 1 ; 

see, for example, Leitnaker and Purdue (1985) and Donnelly and Whitt (1989). 
The distribution of Wn has been derived by Shenton (1981) and Leitnaker and 
Purdue (1985) and is given by 

Pr[Wn = k] = 

(14.67) 

for k = 0, 1, ... ,w. Shenton (1981) used generating function approach to arrive 
at the form of the distribution in (14.69) while Leitnaker and Purdue (1985) 
used a more elementary and direct approach by utilizing an indicator function 

Ii(n) = 1 if ball i is in the urn after the n-th R-D cycle 

= 0 otherwise (14.68) 

in order to derive the distribution in (14.69). Analogous, but more complicated 
expressions, are available in the case of random independent and identically 
distributed reinforcements; see, for example, Leitnaker and Purdue (1985). 
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In a more general case, as it was mentioned earlier, reinforcement sizes will 
depend on the stage 17,; let these sizes be denoted by {Rn : 17, 2: I}. Assume 
that the reinforcement size vectors (RI,"" Rn) have independent marginals 
and means (rI,"" rn). It can then be shown that E(W:-) is minimized by 
using the deterministic reinforcement sizes (rl,"" rn). Moreover, among all 
the deterministic reinforcement sequences (rl,' .. ,rn) with rl + ... + rn = nr 
for some integer r, E(W:-) is is minimized by using the constant deterministic 
sequence (r., ... ,r.); see Donnelly and Whitt (1989). By allowing r, the number 
of particles being transferred, to be random with 

Pr[Ri = rj] = Pj where LPj = 1, 
j 

Leitnaker and Purdue (1985) showed that 

Pr[Wn = k] = (w) ~ ( -1) i (w ~ k) 
k i=O '/, 

X { (b + w)! }n E {(b + w + RI - k - i)!} . 
(b + w - k - i)! b + w + RI)! 

(14.69) 

Assuming that the sequence {Rn : 17, 2: I} are i.i.d. random variables, the 
following results have been obtained: 

where 

The w2 term in the above expression for the variance of Wn can be made large 
by increasing the variance of R i . It needs to be mentioned here that Purdue 
(1981) had discussed earlier a model under which the times at which the R-D 
cycles occur are determined by a Poisson process with rate A. 

Some asymptotic results are very revealing here. If the distribution of RI 
is independent of wand if w -+ 00 so that b~w -+ P > 0, then E[WnJ - w '" 
-pnE[RIJ. 
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In many applications, the original Bernard model underrepresents the vari
ability in the observed data; hence, attempts were made to modify the model 
to increase the variability as measured by the squared coefficient of variation. 
In the model with {Rn : n ~ I} being Li.d. described above, the squared co
efficient of variation of the number of white balls remaining is asymptotically 
negligible as w --t 00, while the squared coefficient of variation of the number of 

white balls removed (r;~~~~I~) is not so small for any fixed n. As a matter 

of fact, the number of white balls removed (w - Wn ) approaches the number of 
successes in a random number of Bernoulli trials with parameter p. Note that, 
in the cases just discussed, the distribution of Rl remains fixed as w --t 00. If, 
on the other hand, the distribution of Rl grows with w-that is, if Rj = wXj 
where Xj (j ~ 1) are Li.d. integer-valued random variables independent of w-a 
significantly greater variability is obtained. For more details, one may refer to 
Donnelly and Whitt (1989). 

Ball and Donnelly (1988) emphasized that in the original Bernard model 
with a fixed r, Wn can be expressed as 

w 

Wn = LXi(n), n = 0,1, ... , 
i=l 

(14.70) 

where Xi (n) is just an indicator variable taking the value 1 if white ball i is 
present in the urn after state n and the value 0 otherwise (compare this with 
Ii(n) defined earlier). Although the variability of the model will be increasing 
with Cov(Xl(n),X2(n)), it is intuitively clear and also straightforward to verify 
in this case that Cov(Xl(n),X2(n)) is negative and thus the model displays less 
variation than a model with "independent" balls. 

In the case when the size of the reinforcement-depletion at the n-th stage is 
given by a random variable Rn, with R!, R2, ... being an i.i.d. sequence, 

{ [ a(a-1) ]}n { [ a ]}2n 
Cov(Xl(n),X2(n))= E (a+Rl)(a+Rl-1) - E a+Rl ' 

(14.71) 
where a = b + w; in this case, the covariance may be positive (for example, 
when R has distribution concentrated at zero and some large integer). 

Shenton (1981, 1983), followed by a series of papers by Bowman and Shen
ton (1986a,b) and by Shenton and Bowman (1985, 1996a,b), have all provided 
a deep and comprehensive discussion of the distributional properties of the 
Bernard R-D urn. Of particular interest amongst these is the paper by Shenton 
and Bowman (1985) in which the authors have discussed the case of an urn 
containing balls of three colors (red, white and blue). At the j-th cycle, the 
reinforcement consists of TI-j balls: rj red, Wj white and bj blue. The urn then 
randomly depletes of dj balls (if dj > 0 exceeds the number of balls in the urn, 
the cycles cease). Note that, in this case, the size of each total reinforcement is 
fixed. 
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Formulas for the multivariate factorial moment generating function (fmgf) 
for the state of the urn at the mth cycle were one of the main foci of Shenton and 
Bowman's investigations. Let us first consider the elementary joint probability 
function p(Xl' X2) for depletion at the first cycle: 

(14.72) 

Now, the fmgf for 0:1 red balls and 0:2 white balls remaining in the urn after 
the first cycle is 

!I(0:1, 0:2) = L L 0:~1-Xlo:~1-X2p(Xl' X2), (14.73) 
Xl X2 

and 

(14.74) 

An alternate useful expression is 

(14.75) 

with tl = 11,1 = rl + WI + bl and Ei == Ey;' == Yi + 1 (the shift operator), and 
x(a) = .1:(x - 1)··· (.1: - a + 1) (the a-th descending factorial of x). 

An useful but rather complicated recurrence relation (in an obvious nota
tion) for the fmgf at the j-th cycle is 

(14.76) 

is the reinforcement fmgf at the j-th cycle, 0:1,0:2 are the numbers of red and 
white balls respectively (the third color is omitted since rj + Wj + bj = 77j and 
I j (0:1,0:2) will have nj as the highest coefficient in 0:1 and 0:2). 

Bowman and Shenton (1986a) observed that in the two-color model when 
the urn initially has a red balls and w white balls and from which at the jth 
cycle only white balls receive increment Wj and dj balls are randomly removed 
and the contiguity condition Wj = dj - 1 +dj (j = 2,3, ... ,m) is present, then the 
distribution of red balls in this model is hypergeometric. This may also serve 
as an approximation to the "general" reinforcement-depletion two-color urn 
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model and especially so when the reinforcements of white balls are about double 
the random depletions. Approximations of this kind suggest that the half-life 
distribution of red balls is nearly normal N (~, ~) provided that M = W+Wl -dl 
is fixed and the initial number is large. 

Shenton and Bowman (1996b) discussed the two-color case when replenish
ments are positive random variables with given factorial moments. This results 
in a variety of discrete distributions including the hypergeometric. In their most 
recent paper, Shenton and Bowman (1996b) investigated the two-color urn in 
equilibrium: The R - D phase may result in a closed system; thus R = D at 
a cycle, so that the total number of balls in the system at the completion of 
any cycle is constant. This is the urn in equilibrium ultimately. Under what 
circumstances do simple solutions exist? Initially, there are 0 balls of color Cl, 
and k balls of color C2 . At the jth cycle, the replenishments are p balls of Cl, 
and q balls of C2, with depletion p + q. In the equilibrium urn (p = q), as k (the 
initial number of C2 balls) becomes large, the following numerical values were 
obtained by Shenton and Bowman (1996b) for the mean, standard deviation 
and the coefficient of kurtosis (the coefficient of skewness is 0 in all cases). 

k p Mean Std. Dev. Kurt. 
16 3 8 1.5422 2.9432 

5 8 1.5927 2.9416 
25 8 1.8053 2.9167 
50 8 1.8820 2.9021 

50 3 25 2.5820 2.9811 
5 25 2.6231 2.9814 
25 25 2.8964 2.9800 
50 25 3.0695 2.9766 

Shenton and Bowman (1996b) also observed a rather "curious similarity" 
of the probability mass function of the number of balls of color C l given by 

Pr[Nl =s] = (:)(k +p)(S)(k +p)(k-s)/(2k + 2p)(k) (s=O,l, ... ,k) (14.77) 

corresponding to the symmetric urn distribution in equilibrium, with that of 
the P6lya-Eggenberger probability mass function given by 

Pr[X = x] = (:) a[x]/1[n-x] /(a + /1)[11,], 

where a[x] = a(a+ 1)··· (a+x -1). This is so eventhough the basic structures 
of the two distributions are quite different. 

A summary of their main findings is as follows: A new distribution in equi
librium arises when there are two colors, each reinforced by the same amount 
with R = D. With R = D, there is asymptotic normality (k > p, k --t (0) and 
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asymptotic binomiality (p = q -t 00, k fixed). In general, the symmetric urn is 
such that the distribution of balls of color Cl has skewness zero and kurtosis a 
little less than three (but being very close to three suggests close proximity to 
the normal distribution). 

In concluding this section, we mention about the relationship with the Con
sul urn models discussed by Consul (1974), Consul and Mittal (1975, 1977) and 
Famoye and Consul (1989) in which a strategy (or decision) of individuals alter 
the structure of the urn model and the ultimate probability process. The most 
recent paper by Consul (1995) deals with the two-color case in this framework. 
This class of urns generate numerous discrete distributions as well. Mishra and 
Sen (1987) modified Consul's urn model in such a way that, in the resulting 
quasi-binomial distribution, the probability of success may even decrease with 
the number of successes. Such a model may be applied to a situation where a 
particular type of species (say, 81) of living beings migrates to a place where 
they reside with another type of species (say, 82). Naturally, 82 would protest 
against the migrating group while other 81 species living already there might 
welcome. 

14.13 Urn Models for Interpretation of 
Mathematical and Probabilistic Concepts 
and Engineering and Statistical Applications 

We describe five urn models in this short section which, of course, is a very small 
sample of papers dealing with various applications of urn models in interpreta
tion of basic mathematical and probabilistic concepts and also in engineering 
and statistical applications. 

1. Zaman (1981, 1984) used urn models to describe the concept of Markov 
exchangeability. A probability of finite strings of letters is said to be 
Markov exchangeable if it assigns the same probability to strings which 
have the same initial letter and the same transition counts (for example, 
abbaab, abbaabb, aabbab, or aababb). Diaconis and Freedman (1980) con
sidered the problem of expressing the extreme points of the set of Markov 
exchangeable probability measures. The general solution was posed as an 
unsolved problem, though they gave an urn model for a two letter alpha
bet. A solution to the general alphabet was given by Zaman (1981) in 
terms of the following urn model: 

Let V be a finite set and {U(U)}uEV be a collection of urns. 
Each urn U (u) contains a total of LVEV aUV balls, with aUV 
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of them labeled v. Choose a fixed Xl E V and construct a 
random sequence Xl, X2, ... , Xn by letting Xi+! be the label 
on a ball drawn from the urn U (Xi). It is clear that the resulting 
sequence is a Markov chain if the draws are done at random with 
replacement. When the draws are done without replacement, 
after some draw Xn the urn U(Xn) will be empty, so that the 
ball Xn+l cannot be drawn. The probability distribution on 
these finite random sequences, with some modification (viz., 
conditioning on the event that n = 1 + 'E auv , i.e. all balls from 
all urns are used), is an example of a Markov exchangeable 
distribution. 

Zaman (1984) then noted that the set of Markov exchangeable measures 
forms a convex set and provided rather complicated and contorted con
struction of an urn model to represent extremal Markov exchangeable 
measures. These representations, in fact, reveal that Markov chains and 
Markov exchangeability are indeed fundamental but quite different con
cepts. He then concluded his paper by stating that the classical Li.d. 
condition cannot be universally replaced by exchangeability (as claimed 
by some researchers working on foundations of probability and statistics) 
eventhough the i.i.d. condition is sometimes overused in cases where ex
changeability is more natural. 

2. Paik (1983) used an urn model construction to clarify some paradoxes 
associated with the concept of infinity. 
For example, let us consider the following problem: Suppose, on day 1, 
you put in an urn 10 balls numbered 1-10 and withdraw the ball numbered 
nl. On day 2, 10 more balls numbered consecutively 11-20 are put in the 
urn with the ball numbered n2 being withdrawn at the same time, and 
so on. Then, how many balls are there in the urn in the limit? Infinitely 
many or none? 
The paradox is that in the first experiment with ni = lOi, the answer is 
infinitely many, while in the second experiment with ni = i, the answer is 
none. The two different answers are disturbing since the number of balls 
remaining in the urn increases steadily and exactly in the same manner in 
each of the two situations. Paik (1983) then pointed out that the problem 
here is due to a singular behavior of a function at 00 similar to sequence 
of functions on the positive real line 

1 if x E [n + 1, IOn] 

o otherwise. (14.78) 

Hence, the limit of the integral Jooo fn(x)dx is 00, but the integral of the 
limit, f(x) = limn->oofn(x), is O. 
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However, as aptly displayed by Paik (1983), an urn model interpretation 
provides a more vivid description of the breakdown which occurs at 00. 

3. An interesting urn model with applications to modeling outliers in the 
context of robustness was discussed by Small (1985). This is somewhat 
similar to the Shur modification of the P6lya-Eggenberger urn model in 
order to achieve negative contagion. Small's urn model is as follows: 
Suppose an urn initially contains c white and c black balls. If, on trial m, 
a white ball is selected, set Um = 1. If it was black, set Um = 2. Before 
the (m + 1 )th selection, a ball of opposite color to that of trial m is put in 
the urn. The sequence Ul, U2, ... can be continued indefinitely. Now, let 
Sni = #{ m : Um = i, m ::; n} for i = 1,2. Small (1985) then showed that 
such urn models can be used to model outliers in data. The occurrence 
of an outlier in the collection of data can also be allowed to increase or 
decrease the probability of outliers on subsequent observations. Actually, 
the behavior of outliers is governed by the quantities Sni. 

4. An ingenious single urn model, motivated by an imperfect debugging 
scheme, in which the balls represent flaws in a system has been described 
by Siegrist (1987). To be specific, let us consider a single urn model in 
which the number of balls in the urn at time 17,+ 1 is determined as follows: 

• First, each ball in the urn at time 17" independently of all others, is 
removed with probability 1 - Pn+l (0 ::; Pn+! ::; 1). The balls are 
first removed with probability that depends on the time value . 

• Next, a random number of new balls are added to the urn, indepen
dently of the number of balls remaining after the first step. 

A similar perfect debugging model (with no new balls added and a con
stant Pn) was studied earlier by Siegrist (1986a,b). 

In the general model described above, Siegrist (1987) concentrated on the 
distribution and moments of the number of balls in the urn at time 17, and 
the asymptotic behavior as 17, -> 00. The key equation is 

X n+1 = (Xn - Un+1 ) + Vn+1, 17, = 0, 1, ... , 

where Xn is the number of balls in the urn at time 17, (17, = 0,1, ... ) 
and Un+! (Vn+!) is the number of balls removed (added) at time 17, + 1. 
Evidently, Xo = Vo (the number of balls in the urn initially). Moreover, 
the distribution of Xn - Un+!, given X n , is binomial with parameters Xn 

and Pn+!, and Vn+! is independent of Xn - Un+1 for 17, = 0,1, .... This 
leads to the equation 

Fn(s) = IT Gk (1 - (1 - s) . IT Pi) , 
k=O t=k+l 

(14.79) 



246 Samuel Kotz and N. Balakrishnan 

where Fn{s) = E[sXn] and Gn{s) = E[sVn] are the probability generating 
functions of Xn and Vn, respectively. 

Denoting by Xnk the number of balls added at time k that are still present 
in the urn at time n (n ~ k), it is easy to show that 

11. 

E[Xnk] = E[VkJ IT Pi (14.80) 
i=k+l 

(obviously, the conditional distribution of Xnk, given Vk, is binomial with 
parameters Vk and I1f=k+1 Pi) and 

11. 11. 

Var{Xnk) = {Var{Vk) - E[Vk]} IT P; + E[VkJ IT Pi· (14.81) 
i=k+1 i=k+1 

Thus, we get 
11. 11. 

E[XnJ = 2: E[VkJ IT Pi, (14.82) 
k=O i=k+1 

and 

Var(Xn) = fa {(Var(Vk) - E[V.]) ,it p1 + E[V.[ '~~, p,}. (14.83) 

Note that Xn = Lf=o Xni. Limiting distributions of Xn depend on the 
limiting behavior of the sequences Vn (n = 0,1, ... ) and Pn (n = 1,2, ... ). 
Siegrist (1987) discussed the following two cases: 

• Ek::o Vk converges weakly to a proper random variable; 

• Ek::o Vk diverges weakly to 00. 

The first case corresponds to I1k::O G k (s) > ° for s E (O, 1) while the 
second case corresponds to I1k::OGk{S) = ° for s E (0,1). 

Of particular interest is the result that, when the limiting distribution of 
Vn is Poisson with parameter A and Pn ~ P < 1 with E[VnJ bounded. in 
n, the limiting distribution of Xn is Poisson with parameter l~P' This 
result could be anticipated based on intuitive grounds. In addition to this 
result, Siegrist (1987) also discussed the following interesting finite cases: 

• If Vk'S are Poisson with parameters Ak > ° for k = 0, 1,2, ... , then Xn 
is Poisson with parameter J-Ln = Lk=O I1f=k+1 Pi and if J-Ln converges 
to J-L, the limiting distribution of Xn is Poisson{J-L)j 

• If Vk'S are binomial with parameters Mk and Ok (with Mk being an 
integer and Ok E [0,1]) for k = 0,1,2, ... , there are no explicit forms 
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available for distributions; in this case, the results are given in terms 
of moment generating functions of the type 

(14.84) 

There is a need for additional studies in this direction. 

The case Vk = 0 for k = 1,2, ... corresponds to a special case of a sub
critical Galton-Watson process in varying environments studied earlier by 
Jagers (1974). 

5. Urn model techniques playa natural role in the analysis of a technique, 
called perfect hashing, for organizing data in computer files. Here, consid
ertable attention has been paid to the computation of probability of no 
overflows. To be specific, let us consider a traditional urn model. There 
are n balls to be randomly distributed into m urns, each urn having a 
capacity of at most b balls. Let each ball be randomly tossed into an urn 
so that the probability of a ball falling into a particular urn is ~, and 
independent of the outcome of other tossings. If an urn already contains 
b balls, any subsequent ball tossed into the urn is said to overflow. Let 
P(n, m, b) denote the probability of a random distribution of n balls into 
m urns of size b resulting in no overflows. Let X be the random variable 
denoting the number of balls in the urn (or urns) containing the maximum 
number of balls. Then, it is evident that Pr[X :::; b] = P(n, m, b). Barton 
and David (1959) and David and Barton (1962) discussed a combinato
rial extreme-value problem in this case, while Kolchin, Sevast'yanov and 
Chistyakov (1978) have examined the asymptotic behavior of P(n, m, b). 
The exact computation of this probability distribution has been discussed 
by Ramakrishna (1987) and Monahan (1987). 
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A Unified Derivation of Occupancy and 
Sequential Occupancy Distributions 

Ch. A. Charalambides 

University of Athens, Panepistemiopolis, Athens, Greece 

Abstract: Consider a supply of balls randomly distributed in 11, + r distin
guishable urns and assume that the number X of balls distributed in any 
specific urn is a random variable with probability function Pr[X = j] = qj, 

j = 0,1,2, .... The probability function and factorial moments of the num
ber Ki of urns occupied by i balls each, among 11, specified urns, given that 
a total of Sn+r = m balls are distributed in the 11, + r urns, are expressed in 
terms of finite differences of the u-fold convolution of qj,j = 0,1,2, .... As a 
particular case, the probability function and factorial moments of the num
ber K = 11, - Ko of occupied urns (by at least one ball), among n specified 
urns, given that Sn+r = m, are deduced. Further, when balls are sequentially 
distributed, the probability function and ascending factorial moments of the 
number Wk of balls required until a predetermined number k of urns, among 11, 

specified urns, are occupied, are also expressed in terms of finite differences of 
the u-fold convolution of qj, j = 0, 1, 2, .... Finally, the conditional probability 
function Pr[Wk+1 - Wk = jlWk = m], j = 1,2, ... , is derived. Illustrating these 
results, the cases with qj, j = 0, 1, 2, ... , the Poisson, geometric, binomial and 
negative binomial distributions are presented. 

Keywords and phrases: Finite differences, non-central Stirling numbers, 
non-central C-numbers, random occupancy models, urn models 

15.1 Introduction 

Barton and David (1959a), considering a supply of balls randomly distributed 
in 11, distinguishable urns and assuming that the number X of balls distributed 
in any specific urn is a random variable obeying a Poisson, binomial or negative 
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binomial law, derived the probability function and factorial moments of the 
number K of occupied urns (by at least one ball), in these three cases, given 
that a total of Sn = m balls are distributed in the n urns; these distributions 
are the classical, restricted and pseudo-contagious occupancy, respectively. In 
sequential occupancy, Barton and David (1959b), derived in the preceding three 
cases, the probability function and cumulants or factorial moments of the num
ber Wk of balls required until a predetermined number k of urns are occupied. 
Charalambides (1986) derived in the general case Pr[X = j] = qj, j = 0,1,2, ... 
the probability function and factorial moments of K given that Sn = m. 

In the present paper a unified derivation of occupancy and sequential oc
cupancy distributions is presented. More precisely, considering a supply of 
balls randomly distributed in n + r distinguishable urns, the probability func
tion and factorial moments of the number Ki of urns occupied by i balls each, 
among n specified urns, given that Sn+r = m, are obtained in the general 
case Pr[X = j] = qj, j = 0,1,2, .... Then the occupancy probability function 
and factorial moments of the number K of occupied urns, among n speci
fied urns, given that Sn+r = m, are deduced. Further, the sequential occu
pancy probability function and ascending factorial moments of the number Wk 
of balls required until a predetermined number k of urns, among n specified 
urns, are occupied, are obtained. Finally, the conditional probability function 
Pr[Wk+1 - Wk = jlWk = m], j = 1,2, ... , is derived. 

15.2 Occupancy Distributions 

Consider a supply of balls randomly distributed in n + r distinguishable urns 
among which n are specified. Suppose that the number X of balls distributed in 
any specific urn is a random variable with known probability function Pr[X = 
j] = qj, j = 0, 1,2, . ... Let Sn+r be the total number of balls distributed in the 
n + r urns with Pr[Sn+r = m] = qm(n + r), m = 0,1,2, .... Assuming that the 
occupancy of each urn is independent of the others, the probability qm(n + r), 
m = 0,1,2, ... , is given by the sum 

qm(n+r) = L%qi2· ··Qjn+r' (15.1) 

where the summation is extended over all integers js 2:: 0, s = 1,2, . .. , n + r, 
such that jl + j2 + ... + jn+r = m. Notice that the conditional joint probability 
q(jl> h, ... , jn+r; m) that the s-th urn contains js 2:: 0 balls, s = 1,2, .. . , n + r, 
given that m balls are distributed in the n + r urns, is given by 

( .. . ) qjl qi2 ... qjn+r 
q )1,)2,···,)n+r;m = ( ). 

qm n+r 
(15.2) 

Under this model, let Ki be the number of urns, among the n specified urns, 
occupied by i balls each and 
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Pk(m, n, r, i) = Pr[Ki = klSn+r = m], k = 0,1,2, ... , n. (15.3) 

With (u)j = u(u -1) ... (u - j + 1), the (descending) factorial of u of degree j, 
let us denote by 

(15.4) 

the j-th factorial moment of the conditional probability function (15.3). 
An expression of the probability function (15.3) in terms of finite differences 

of the convolutions (15.1) is obtained in the following theorem. As regards this 
expression notice that the difference operator with unit increment, denoted by 
~, is defined by ~a( u) = a( u + 1) - a( u); its powers are defined recursively by 
~na(u) = ~[~n-la(u)], n = 2,3 .... The shift operator with unit increment, 
denoted by E, is defined by Ena(u) = a(u + n), n = 1,2,.... Therefore, 
~ = E -1 and 

(15.5) 

In the presence of more than one variable the symbols ~u and Eu are used, with 
the subscript indicating the variable with respect to which the corresponding 
operator is performed. 

Theorem 15.2.1 (aj The conditional probability Pk(m,n,r,i) that k urns, 
among the n specified urns, are occupied by i balls each, given that m balls 
are distributed in the n + r urns, k = 0,1,2, ... ,n, is given by 

( .) ( ~ ) [A n-k n+r-u ( )] Pk m, n, r, 1, = ( ) Uu qi qm-in-ir+iu U u=r' 
qm n+r 

(15.6) 

(bj The j-th factorial moment /L(j)(m, n, r, i), j = 1,2, ... , of the probability 
function Pk(m, n, r, i), k = 0, 1,2, ... , n, is given by 

. ( .) _ (n)jqfqm-ij(n + r - j) 
/L(J) m,n,r,?' - () . . qm n+r 

(15.7) 

PROOF. (a) The conditional probability Pk(m, n, r, i), on using (15.2), may be 
written as 
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where the summation is extended over all nonnegative integers js # i, s = 

1,2, ... , n - k and js, s = n + 1, n + 2, ... ,n + r such that j1 + j2 + ... + jn-k + 
jn+} + jn+2 + ... + jn+r = m - ik. Considering the events: As that the s-th 
urn contains i balls, s = 1,2, ... , n - k, when m - ik balls are distributed in the 
n + r - k urns, then, applying the inclusion-exclusion principle, this sum may 
be expressed as 

Pk(m, n, r, i) = 

= 
(n) 

n-k ( ) k _ j n - k k+j .. . _ _. 
( ) L ( 1) . qi qm-tk-tJ ( n + r k J) 

qm n + r j=O J 

(~) ~(_1)n-k-j(n-k) n-j ... ( .) 
( + ) ~ . qi qm-m+tJ r + J . 

qm n r j=O J 

The last expression, by virtue of (15.5), implies (15.6). 
(b) The j-th binomial moment bj(m,n,r,i) = /-l(j)(m,n,r,i)/j! is equal to 

the sum of the conditional probabilities that any j urns, among the n specified 
urns, are occupied by i balls each, given that m balls are distributed in the 
n + r urns. Hence, 

b .( .) _ (n) qfqm-ij(n+r-j) 
J m, n, r, Z -. () 

J qm n+r 

and since /-l(j)(m, n, r, i) = j!bj(m, n, r, i), (15.7) is deduced. • 
The generating function of the bivariate probability function 

Pk,m(n, r, i) Pr[Ki = k, Sn+r = m] 

( n) [tJ. n-k n+r-u ( )] k u qi qm-in-ir+iu U u=r, 

k = 0, 1,2, ... , min{ n, [m/i]}, m = 0, 1,2, ... , (15.8) 

is derived in the next Theorem. 

Theorem 15.2.2 The double generating function of the sequence Pk,m(n, r, i), 
k = 0,1,2, ... , s, s = min{n, [m/i]}, m = 0,1,2, ... is given by 

00 s 

gn,r,i(t, u) = L LPk,m(n, r, i)tkum = [g(uW[g(u) + qiUi(t -1)t, (15.9) 
m=Ok=O 
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PROOF. Since 
s s 

L Pk(m, n, r, i)tk = L /-L(j)(m, n, r, i)(t - 1)j / j! 
k=O j=O 

and Pk,m(n, r, i) = Pk(m, n, r, i)qm(n + r), it follows from (15.7) that 

Hence, 

gn,r,i(t, u) f: t (~) qfqm-ij(n + r - j)(t - 1)jum 
m=Oj=O J 

= f (~) [qiUi(t - 1)]1 f: qm-ij(n + r - j)um- ij 
. 0 J .. J= m=1.J 

= t (~) [q{U,i(t -1)]1[g(u)]n+r-j 
j=O J 

= [g(uW[g(u) + qiUi(t - 1)]n 

which proves the theorem. 

263 

• 
Consider now the number K of urns, among the n specified urns, occupied 

by at least one ball each. Since K = n-Ko, the conditional probability function 

Pk(m, n, r) = Pr[K = klSn+r = m], k = 0,1,2, ... , n, 

and its factorial moments 

v(j)(m, n, r) = E[(K)jISn+r = m], j = 1,2, ... 

may be deduced from (15.6) and (15.7) respectively. 

Corollary 15.2.1 (a) The conditional probability Pk(m, n, r) that k urns, among 
the 11, specified urns, are occupied (by at least one ball) given that m balls are 
distributed in the 11, + r urns, k = 0,1,2, ... ,11" is given by 

( ) ( ~ ) [ A k n+r-u ()] 
Pk m,n,r = ( ) uuqo qm U u=r· 

qm n+r 
(15.10) 

(b) The j-th factorial moment v(j)(m, 11" r), j = 1,2, ... , of the probability 
function Pk(m, n, r), k = 0, 1,2, ... , m, is given by 

( ) _ (n)j [Aj n+r-u ()] v(j) m,n,r - ( ) uuqo qm U u=n+r-j. 
qm n+r 

(15.11) 
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PROOF. (a) The probability function (15.10) follows directly from (15.6) by 
putting i = 0 and replacing n - k by k. 

(b) The k-th factorial moment J..t(k)(m, n, r) = E[(Ko)kISn+r = m] of the 
number Ko of empty urns, among the n specified urns, by virtue of (15.7), is 
given by 

( ) _ (n)kq~qm(n + r - k) 
J..t(k) m, n, r - () . qm n+r 

Since v(j)(m, n, r) = E[(K)jISn+r = m] = E[(n - KO)jISn+r = m] may be 
written as v(j)(m, n, r) = (-l)j E([Ko - n]jISn+r = m), where [u]j = u(u + 
1) ... (u + j - 1), on using the expression [Charalambides (1986)] 

j () 
. k n - k 

E([Ko - m]jISn+r = m) = 2)-1)1- . _ k E[(Ko)kISn+r = m], 
k=O ] 

it follows that 

v(j)(m, n, r) = ( j! )~) _l)k (~) (~= ~) q~ qm (n + r - k) 
qm n + r k=O ] 

(n)j ~ k(j) k 
( ) L..,. ( -1) k qo qm (n + r - k) 

qm n + r k=O 

(n)j t(-l)j-k (j) q~+r-(n+r-j+k) 
qm(n + r) k=O k 

x qm(n + r - j + k). 

The last expression, by virtue of (15.5), yields (15.11). • 
Example 15.2.1 Poisson probabilities. Let the number X of balls allocated 
in any specific urn is a Poisson random variable with 

qj = Pr[X = j] = e->' Aj Ii!, j = 0, 1, 2, ... , (A> 0). 

Its u-fold convolution is again a Poisson random variable with 

qm(u) = Pr[Su = m] = e-u>'(uA)m 1m!, m = 0, 1,2, ... 

Notice that the conditional joint probability that the s-th urn contains js ~ 0 
balls, s = 1,2, ... , n + r, given that m balls are distributed in the n + r urns, 
by virtue of (15.2), is given by 

m' 1 .. . 
q(jbh, .. ·,jn+r;m) = . ,.,'. '( )' ]1+]2+"·+]n+r=m. ]1.]2 .... ]n+r. n + r m 

Therefore, this random occupancy model with the assumption of Poisson prob
abilities is equivalent to the classical occupancy model where a fixed number m 
of distinguishable balls are randomly distributed in n + r distinguishable urns. 



Occupancy and Sequential Occupancy Distributions 265 

The conditional probability that k urns, among the n specified urns, are 
occupied by i balls each, given that m balls are distributed in the n + r urns, 
by virtue of (15.6), is given by 

Pk(m, n, r, i) = ( n) m! [~n-k um-in-ir+iu 1 
k (n + r)m u (i!)n+r-u(m - in - ir + iu)! u=r 

( n) m! ~(-lt-k-j (n~k) 
k (n+r)m j=O ) 

(j + r)m-in+ij 

x ('I)n-'( . . ')1 '/,. J m - 1,T/, + 1,) . 

This probability, under the classical occupancy model, is given in the par
ticular case r = 0, by Feller (1968, p. 112). 

The j-th factorial moment of the probability function Pk(m, n, r, i), k = 
0,1,2, ... , n, by (15.7), is given by 

. (n)jm! (n + r _ j)m-ij 
f-t(j)(m,n,r,1.) = ("I)j( _. ')1 ( ) 

1.. m 1,). n + r m 

This moment, for r = 0, is given by Riordan (1958, p. 101). 
The conditional probability Pk(m,n,r) that k urns, among the n specified 

urns, are occupied (by at least one ball) given that m balls are distributed in 
the n + r urns, by virtue of (15.10), is given by 

Pk(m, n, r) = (n)k(n + r)-mS(m, k, r), k = 0, 1,2, ... , n, 

where 

k 

S(m, k, r) = k\ [~~um] = = k\ L) _1)k-j (~) (r + j)m 
. u r .. 0 ) 

J= 

is the non-central Stirling number of the second kind [Koutras (1982)]. This 
probability function was derived by Barton and David (1959a). For r = 0, this 
is the very well-known classical occupancy distribution. 

The j-th factorial moment of Pk(m, n, r), k = 0, 1,2, ... , n, by (15.11), is 

v(j)(m,n,r) = (n)j(n+r)-mS(m,j,n+r - j), j = 1,2, .... 

Example 15.2.2 Geometric probabilities. Assume that the number of balls 
allocated in any specific urn obeys a geometric distribution with 

qj = Pr[X = j] = pqj, j = 0,1,2, ... (q = 1 - p, ° < P < 1). 

Its u-fold convolution obeys a negative binomial distribution with 
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Notice that the conditional joint probability that the s-th urn contains js 2: 
o balls, s = 1,2, ... ,n + r, given that m balls are distributed in the n + r urns, 
by virtue of (15.2), is given by 

(.. . ) II (n + r + m - 1) .. . q Jl,]2,··· ,In+r;m = m ' Jl + J2 + ... + In+r = m. 

Thus, this random occupancy model with the assumption of geometric prob
abilities is equivalent to the occupancy model where a fixed number m of in
distinguishable (like) balls are randomly distributed in n + r distinguishable 
urns. 

The conditional probability that k urns, among the n specified urns, are 
occupied by i balls each, given that m balls are distributed in the n + r urns, 
by virtue of (15.6), is given by 

Pk(m, n, r, i) = (~) [~~-k (u + m - in - ir + iu - 1)] 
( n + r : m - 1 ) 11, - 1 u=r 

= (;) I:(-J)"-k-; (n ~ k) 
( n + r : m - 1 ) j=O J 

x (n+r+m-j~~+l)-l). 
m -1-] 

Its j-th factorial moment, by (15.7), is given by 

. ( .) = ( ). (n + r + m - j (i + 1) - 1) I (n + r + m - 1) /L(J) m, n, r, 1, n J . . . 
m-zJ m 

The conditional probability that k urns, among the n specified urns, are 
occupied (by at least one ball), given that m balls are randomly distributed in 
the n + r urns, by virtue of (15.10), is given by 

Its j-th factorial moment, by (15.11), is 

v(j)(m, n, r) = (n)j[~t(u+m-1)] ./(n+r+m-1) 
m u=n+r-J m 

= (n).(n+r+m- j-1)/(n+r+m-1). 
J n+r-1 m 
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These probability functions, under the assumption that a fixed number m of 
like balls are randomly distributed in n + r distinguishable balls, were given, in 
the case r = 0, in terms of certain bivariate generating functions by Riordan 
(1958, p. 103). These generating functions are closely related to the bivariate 
generating function (15.9). 

Notice that the random occupancy model with the assumption of geometric 
probabilities truncated to the right at the point B, that is, with 

j = 0, 1,2, ... , B, 

whence 

m = 0, 1,2, ... , BU, 

where 

L( m, u, B) = i) -1)i ( ~) (u + m -uj ~B 1+ 1) - 1 ) , 
)=0 J 

is equivalent to the occupancy model where a fixed number m of indistinguish
able (like) balls are randomly distributed in n+r distinguishable urns each with 
capacity limited to B balls. The corresponding occupancy probabilities can be 
similarly deduced from (15.6) and (15.10). 

15.3 Sequential Occupancy Distributions 

Suppose now that balls are sequentially distributed at random in the n + r 
distinguishable urns until a predetermined number k of urns, among the n 
specified urns, are occupied (by at least one ball) and let Wk be the number of 
balls required. Consider the probability function 

qm(k,n,r) = Pr[Wk = m], m = k,k + 1, ... (15.12) 

and its j-th ascending factorial moment 

j = 1,2, ... , (15.13) 

where [uJi = u( u + 1) ... (u + j - 1) is the ascending factorial of u of degree j. 
Notice that for a discrete waiting time distribution the ascending factorial mo
ments, in general, can be computed more easily than any other moments. This 
computation is facilitated by the consideration of the conditional probability 

nq~+r-'lJ.-l ql qm-l ( u) 
Pm(u,n,r) = () ,m=1,2, ... , 

mqm n+r 
(15.14) 

that one ball is distributed at the m-th allocation in an urn among the n 

specified urns and m-1 balls are distributed in u specific urns (among the other 
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n + r -1 urns), given that m balls are distributed in the n + r urns. Further, 
consider the j-th ascending factorial moment of the sequence of probabilities 
Pm(u, n, r), m = 1,2, ... , 

00 

0Lil(u, n, r) = L [m]jPm(u, n, r), j = 1,2, ... (15.15) 
m=l 

Notice that the sequence of probabilities Pm ( u, n, r), m = 1, 2, ... , does not 
necessarily add to unity. 

In the next theorem the probabilities (15.12) and the factorial moments 
(15.13) are expressed in terms of finite differences of the convolution probabili
ties qm(u), m = 0,1,2, ... , and the factorial moments (15.15), respectively. 

Theorem 15.3.1 (a) The probability qm(k, n, r) that m balls are sequentially 
distributed in the n + r urns until k urns, among the n specified urns, are 
occupied (by at least one ball), m = k, k + 1, ... , is given by 

(k ) - (n -1) nql [Ak-l n+r-u-l ()] qm ,n, r - k 1 ( ) LJou qo qm-l u . - mqm n+r u=r 
(15.16) 

(b) If the conditional probability (15.14) is a polynomial in u of degree 
m-l, then the j-th ascending factorial moment /l-Lil(k,n,r), j = 1,2, ... , of 
the probability function qm(k, n, r), m = 1,2, ... , is given by 

/l-Lil(k, n, r) = (~= ~) [~~-laLil(u" n, r)L=r' (15.17) 

where aLil(u,n,r) is given by {is. 15). 

PROOF. (8.) The probability qm(k, n, r) that m balls are sequentially distributed 
in the n + r urns until k urns, among the n specified urns, are occupied is equal 
to the product 

qm(k, n, r) = Pm(n, r)Pk-l (m - 1, n - 1, r), 

where 
_ nqlqm-l(n + r - 1) 

Pm(n,r)=Pm,(n+r-l,n,r)= () 
mqm, n+r 

is the conditional probability that one ball is distributed at the m-th allocation 
in an urn among the n specified urns and m - 1 balls are distributed in the 
other n + r - 1 urns, given that m balls are in the n + r urns and 

Pk-l(m - 1, n - 1, r) 

is the conditional probability that k - 1 urns among n - 1 specified urns are 
occupied given that m - 1 balls are allocated in the n + r - 1 urns. Thus, on 
using (15.10), the expression (15.16) is deduced. 
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(b) From the definition of JL[j](k, 71" r), on using (15.16) and (15.14), it follows 
that 

I'lil(k, n, r) = (~:: D [L;.~-1 fk1m];Pm(U, n, r) L 
Further, the assumption that the probability Pm(u, 71" r) is a polynomial in 

u of degree m - 1 implies b.~-1 Pm(u, 71" r) = 0, m = 1,2, ... ,k - 1 and hence 

Thus, by (15.15), the expression (15.17) is deduced. Hence, the theorem. • 

The number Wk of balls required to be sequentially distributed in the 71, + r 
urns until a predetermined number k of urns, among the 71, specified urns, are 
occupied may be expressed as a sum 

k = 1,2, ... , (15.18) 

where Yi is the number of balls required to be distributed in the n+r urns after 
(i - 1)-st urn, among the 71, specified urns, empty before receives one ball and 
until the i-th urn, among the 71, specified urns, receives one ball, i = 1,2, .... 
Some light into the structure of the distribution of Wk can be shed by the 
conditional distribution of Yk+1 given Wk. In the next theorem, the conditional 
probability function 

Qjjm(k, 71" r) = Pr[Yk+l = jlWk = m], j = 1,2, ... (15.19) 

is expressed in terms of the convolution probabilities qm( u), m = 0,1,2, .... 

Theorem 15.3.2 The conditional probability qjjm (k, 71" r) that j additional balls 
are sequentially distributed in the 71, + r urns until the (k + 1)-th urn, among 
the 71, specified urns, is occupied (by one ball) given that m balls are sequentially 
distributed in the 71, + r urns until the k-th urn, among the 71, specified urns, is 
occupied (by one ball), j = 1,2, ... , is given by 

qjjm(k, 71" r) = (71, - k)?lqm+j-l(k + r)/qm(k + r) . 
(m + J )qoqm+j(n + r)/qm(n + r) 

(15.20) 

PROOF. Notice first that the conditional probability qjjm(n, k, r) is equal to 
the conditional probability that j - 1 additional balls are distributed in k + r 
specific urns (which are the k occupied urns, among the 71, specified urns, and the 
r unspecified urns) and one ball is distributed at the j-th additional allocation 
in the remaining 71, - k (empty) urns given the j additional balls are distributed 
in the 71, + r specific urns. This conditional probability is, in turn, equal to the 
quotient 

Qjjm(k, 71" r) = Pm+j(k + r, 71, - k, r)/Qm(k + r, 71, + r), 
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where Pm+j(k + r, n - k, r) is the conditional probability that m + j - 1 balls 
are distributed in k + r specific urns (which are k specific urns among the n 

specified urns and the r unspecified urns) and one ball is distributed at the 
(m + j)-th allocation in the n - k remaining urns given that m + j balls are 
distributed in the n + r urns and Qm(k + r, n + r) is the conditional probability 
that m balls are in k + r specific urns given that m balls are distributed in the 
n + r urns. Since 

Pm+j(k + r, n - k, r) 
(n - k)q~-k-lqlqm+j_l(k + r) 

(m + j)qm+j(n + r) 

q~-kqm(k + r) 

qm(n + r) 

the expression (15.20) is deduced. Hence, the theorem. 

Example 15.3.1 Poisson probabilities. As in Example 15.2.1, assume that 

whence 

qm(U) = Pr[Su = m] = e-UA(u),)m 1m!, m = 0, 1,2, .... 

• 

Then, by virtue of (15.16), the probability that m balls are sequentially dis
tributed in the n + r urns until k urns, among the n specified urns, are occupied 
(by at least one ball) is given by 

qm(k, n, r) = (n)k(n + r)-mS(m - 1, k - 1, r), m = k, k + 1, ... , 

where S(m, k, r) is the non-central Stirling number of the second kind. For 
r = 0, this is the classical waiting time occupancy distribution [Barton and 
David (1959b)]. 

For the computation of the moments of the distribution qm(k, n, r), m = 
k, k + 1, ... , note first that the probability (15.14) reduces to 

Pm(u, n, r) = ~ (_u_)m-l , m = 1,2, ... , 
n+r n+r 

which is a polynomial in u of degree m - 1. Since, by (15.15), 

a(j](u,n,r) = n ~ [m] ( u )m-l 
n+r ~l j n+r 

j!n f (j+m-1) ( u )m-l 
n + r m=l m - 1 n + r 

= j!n (1 __ U_) -j-l 
n+r n+r 
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it follows from (15.17) that 

JL[j](k, n, r) = j!n (n - 1) [~~-1(1 _ _ U_)_j_l] . 
n + r k - 1 n + r u=r 

j!n (n-l)~(_l)k-i-l (k-:-l) (1- i+r)-j-l 
n + r k - 1 i=O 1, n + r 

The conditional probability function (15.19) reduces to 

n-k(k+r)j-l . 
qijm(k,n,r) = -- -- , J = 1,2, ... 

n+r n+r 
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Therefore Wk, according to (15.18), is a sum of independent geometric random 
variables with varying success probability [Johnson and Kotz (1977, p. 155)]. 

Example 15.3.2 Binomial and negative binomial probabilities. Assume that 

j = 0,1,2, ... , 

where s is a positive integer and 0 < p < 1, q = 1 - p (binomial distribution) 
or S,p < 0, q = 1- p (negative binomial distribution). Its u-fold convolution is 

() ( su ) m. su-m 0 1 2 qm u = m, p q , m, = , , ,... . 

Notice that the conditional joint probability that the i-th urn contains ji 2: 0 
balls, i = 1,2, ... , n + r, given that m balls are distributed in the n + r urns, by 
virtue of (15.2), is given by 

q(jl, 12, ... , jn+r; m) 

(;1) (~) ... (jn:r) / ( sn;, sr) , jl + 12 + ... + jn+r = m. 

Therefore, this random occupancy model with the assumption of binomial or 
negative binomial probabilities is equivalent to the occupancy model where 
a fixed number m of like (indistinguishable) balls are randomly distributed in 
n + r distinguishable cells each with s distinguishable compartments of capacity 
limited to one ball (binomial distribution) or with -s distinguishable compart
ments of unlimited capacity (negative binomial distribution with s a negative 
integer). A particular case of this model for s = -1 is examined in Example 
15.2.2. 

The probability qm(k, n, r) that m balls are sequentially distributed in the 
n + r urns until k urns, among the n specified urns, are occupied (by at least 
one ball), by virtue of (15.16), is given by 

s(n)k 
qm(k,n,r) = ( ) C(m-l,k-l,s,rs), m=k,k+l, ... , 

sn + sr m 
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where 

1 [k I ] C(m - 1, k - 1, s, rs) (k _ 1)! flu - (SU)m-1 u=r 

= (k ~ I)! E,(-I)k+l (k j 1) (sj+ sr)m-l 

is the non-central C-number [cf. Charalambides and Koutras (1983) where this 
distribution was also derived as a waiting time coupons collector distribution]. 
The expression of the probability function qm(k, n, r) in view of the expression of 
the non-central C-numbers conforms with the corresponding expression derived 
by Barton and David (1959b) in the case r = O. 

For the computation of the moments of the distribution qm(k,n,r), m = 
k, k + 1, ... , note first that the probability (15.14) reduces, in this case, to 

D ( ) _ sn(sU)m-1 2 
rm U, n, r - ( )' m = 1, , ... , 

sn+ sr m 

which is a polynomial in U of degree m -1. Its j-th ascending factorial moment 
(15.15), on using the combinatorial identity 

f(k+i-1) (X)i = (Z)k 
i=O i (Z-k)i (Z-X)k' 

with k = j + 1, x = SU, Z = sn + sr + j, reduces to 

sn f [mlj (SU)m-1 
sn + sr m=1 (sn + sr - 1)m-1 

j!sn f (j + m -1) (SU)m-1 
sn+srm=1 m-1 (sn+sr-1)m_1 

= 

= j!sn f (j +i) (SU)i 
sn + sr i=O i (sn + sr - 1)i 

j!sn(sn + sr + j)j+1 j!sn(sn + sr + j)j 

(sn + sr)(sn + sr - su + j)j+l (sn + sr - su + j) HI· 

Thus, from (15.17) it follows that 

J.Lb](k,n,r) = (n-1) [flk- I j!sn(sn+sr+j)j 1 
k - 1 u ( sn + sr - su + j) j+ I u=r 

= (n =: 1) I:( _1)k-i-1 (k ~ 1) j!sn(sn:- sr.~ j)j 
k 1 i=O 1, (sn - S1, + J)3+1 

The conditional probability function (15.19) reduces, in this case, to 

(k ) (sn - sk)(sk + sr - m)j-I 
qjjm , n, r = ( )' j = 1,2, . .. . 

sn+sr -m j 
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Note that this distribution for s a positive integer is a particular case of a 
waiting time hypergeometric with support {1, 2, ... , sk + sr - m + 1} while for 
s < 0 is a Waring distribution with parameters () = -s(n + r) + m > 0 and 
a = -s(k + r) + m > 0 [Johnson and Kotz (1977, p. 88)]. 
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Abstract: The relation of Bonferroni-type inequalities to combinatorial prob
lems is demonstrated. An urn model in this setting leads to a statistical paradox 
as well as to an open problem concerning a statistical test of goodness of fit. An 
extension of Bonferroni-type inequalities to quadratic inequalities is discussed, 
which are then applied to the analysis of the structure of pairwisely independent 
events and of exchangeable events. 
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16.1 Basic Relations 

Let AI, A2 , •.. , An be events on a given probability space. Let X 
Xn(A) denote the number of those Aj which occur. Set 

where r ~ 0 and k ~ 0 are integers. Another form for Sk is the sum 

k ~ 1, 

(16.1 ) 

(16.2) 

where E* signifies summation over all subscripts 1 :S il < i2 < ... < ik :S n, 
and 

(16.3) 
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The equivalence of (16.1) and (16.2) for 5k easily follows by observing that, 
upon introducing the indicator variables 

I. = { 1 if Aj occurs 
J 0 if Aj fails, 

and denoted by I{il, i2, . .. , ik) = IiIli2 .. ·Iik the indicator of the intersection 
on the right hand side of (16.3), the identity 

(16.4) 

holds. By taking expectations on both sides of (16.4), the equivalence of (16.1) 
and (16.2) follows. 

Let us write the formulae at (16.1) in detail. We have 

5k = t. (~)pr (16.5) 

and 
11. 

mk = 2: rkPr. (16.6) 
r=O 

We also have 51 = ml, 252+51 = m2, and in general, a sequential computation 
yields that the sequences {5k }1 and {mdl uniquely determine each other. An 
easy combinatorial argument also yields that the sequences {5k} and {Pr}, too, 
determine each other. Indeed, by the identities 

and 

t (_l)k(t) = { 
k=O k 

we get 

~ {_l)k (k + u) 5 6 k+1J. 
k=O u 

1 if t = 0 
o if t > 0, 

(16.7) 

The inversion formula (16.8) becomes an inequality if we sum on the extreme 
left hand side up to a number d < n - u. However, since we want to discuss 
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more general inequalities than just those stemming from (16.8), we do not carry 
out the details of computation. 

In addition to Pr, we shall discuss bounds on 

qr = Pr[X ~ r] = Pr + Pr+1 + ... + Pn· 

In spite of the preceding close relation between Pr and qr, the literature treated 
bounds on Pr and qr as two separate problems. I shall quote a recent result of 
Galambos and Simonelli (1996b) that provides a tool for combining these two 
lines of research. 

16.2 Linear Inequalities in Sk, Pr and qr 

Let Ck = ck(n, r) and dk = dk(n, r), 1 :S k :S n, 0 :S r :S n, be two sequences of 
real constants. Let a and b be two coefficients taking one of the values 1, 0, or 
-1. Then, the linear inequalities 

and 

n 

apr + L CkSk ~ 0 
k=O 

n 

bqr + L dkSk ~ 0 
k=O 

(16.9) 

(16.10) 

will be referred to as Bonferroni-type inequalities if they are valid on every prob
ability space for an arbitrary choice of the underlying events Aj , 1 :S j :S n. 
Note that, due to the choice of a and b, (16.9) and (16.10) cover both lower and 
upper bounds on Pr and qr, respectively, or they may be just inequalities among 
binomial moments. It also has to be stressed that the coefficients Ck and dk 
may take the value zero, so (16.9) and (16.10) may involve a few binomial mo
ments only. Since the recent book of Galambos and Simonelli (1996a) discusses 
Bonferroni-type inequalities in great detail, I wish to limit my statements to 
those aspects which are relevant from a combinatorial point of view. When a 
correct inequality of the kind of (16.9) and (16.10) is set up, its actual proof can 
be done by turning to indicator variables: we apply (16.4), prove the resulting 
combinatorial inequality and take expectations. This method is known as the 
method of indicators, which we demonstrate on two simple inequalities. First, 
we probe 

(16.11) 
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When we turn to indicators, both sides of (16.11) become zero if X = 0, and 
thus we have to prove that 

if X ~ 1. 

But clearly, the right hand side of (16.12) equals 1 if X = 1 or 2, while 

X _ (X) = X(3 - X) < 0 
22- if X ~ 3. 

(16.12) 

This proves (16.12) and the expected value in (16.12) becomes (16.11). An 
improvement over (16.11) is provided by the parametric family of inequalities 

2 2 
q1 > -- 81 - 82 -u+1 u(u+1) , 

1 :S u < n integer. (16.13) 

Note that (16.13) reduces to (16.11) if u = 1. In order to see that (16.13) is 
indeed valid, we once again turn to indicators. Since (16.13) is zero on both 
sides if we go to indicators and if X = 0, we again assume that X ~ 1, and 
then 

2 X 2 (X) 
u+1 u(u+1) 2 

X(2u+1-X) X(2u+1-X) 
-:.........,,.....--:--~ < max 

u(u + 1) - l::;X::;n u(u + 1) 

u(2u+1-u) =1 
u(n + 1) , 

where the maximum in the penultimate equation is computed from the fact 
that X(2u + 1 - X) is a parabola in X, whose maximum is taken at X = u or 
u + 1 (both X and U are integers). By taking expectations in the preceding 
inequalities, we get (16.13). 

The fact that (16.13) contains the best lower bound on q1 by means of 8 1 and 
82 is not an easy argument [for a purely combinatorial argument for optimality, 
see Galambos (1977)]. Given that (16.13) contains the optimal lower bound, 
an elementary argument yields that the best bound is achieved by choosing 
u = [282/81] + 1, where [y] signifies the integer part of y. 

We can see clearly from the preceding proofs that linear inequalities like 
(16.9) and (16.10) are actually nonprobabilistic ones. Another way of expressing 
this fact is to observe that (16.9) or (16.10) is valid on an arbitrary probability 
space if it is valid on the trivial probability space (0, A, P), A containing 0 and 
the empty set 0 only. Now, the trivial space is a subspace of every probability 
space, so an inequality like (16.9) and (16.10) is valid on an arbitrary space 
if it is valid on a single specific probability space. In particular, if (16.9) or 
(16.10) is valid on a space in which A is generated by a single sequence of 
n independent events Aj with Pr[Aj ] = p for each j, on which space (16.9) 
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and (16.10) become polynomial inequalities in p, we established that (16.9) and 
(16.10) are essentially polynomial inequalities. This simple logic already implies 
the quite surprising conclusion that (16.7), which is a combinatorial formula, 
(16.8) with u = 0, which is known as the method of inclusion and exclusion, 
and the algebraic formula 

(16.14) 

are equivalent. In particular, the fact that (16.7) implies (16.14) is quite sur
prising. This analysis can be carried further which led to the following general 
result [Galambos and Simonelli (1996b)]. 

Theorem 16.2.1 Assume that 

n 

apo + L Ck(n)Sk ~ 0 (16.15) 
k=O 

is a Bonferroni-type inequality. Then, for arbitrary 0 ~ r ~ n, 

(16.16) 

and 

n-r (k + r -1) 
aqr + L Ck (n - r) Sk+r ~ 0 

k=O r - 1 
(16.17) 

are also valid on an arbitrary probability space, i.e., Bonferroni-type inequalities. 

The significance of Theorem 16.2.1 is that it provides a uniform rule of 
generating bounds on Pr and qr concurrently, utilizing the coefficients of (16.15). 
Just think it over for a variety of urn problems: if one can get good bounds by 
means of binomial moments on the probability of having no urn empty, then 
we automatically have bounds on the probabilities of having exactly r, or at 
least r urns empty. For the classical urn models, this does not provide new 
asymptotic results but it does simplify and shorten several proofs. 

As an example, let us go back to (16.11) and write Po = 1 - q1. This way, 
(16.11) is of the form (16.15) and thus we have 

(r+2) Pr ~ Sr - (r + 1)Sr+1 + 2 Sr+2, 

in which the first term Sr comes from 1 = So. We also have 
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The emphasis here is that the preceding two inequalities do not need proof; they 
are consequences of (16.11). As a consequence of (16.13), the just established 
inequalities remain valid if we multiply (in either one) 8 r H by 2/(u + 1) and 
8 r +2 by 2/u(u + 1), 1 ~ u < n integer. 

16.3 A Statistical Paradox and an Urn Model with 
Applications 

Let Y, Yl and Y2 be three independent random variables with a common con
tinuous distribution function F(x). Then Pr[Y < Yl] = Pr[Y < Y2] = 1/2. 
However, if we place the variables Y, Yl and Y2 onto the real line and we ob
serve that Y < Y1, then Pr[Y < Y2] = 2/3. Indeed, given that Y < Yl, then 
Y2 will fall with equal probabilities below Y, between Y and Yl, and over Y1 

(if logic is not sufficiently convincing, condition on the variables Y = y and 
Y1 = Z, Y < z, and use the continuous total probability rule). I usually refer 
to this phenomenon as the magnet effect of Y1 on Y2: although Y1 and 112 are 
independent, once Yl took up its position relative to Y, then Y1 pulls Y2 onto 
its own side of Y. 

If we continue with dropping further independent copies of Y into the real 
line, an urn model develops: assume that Y, Yl, Y2, .. " Yn-l have been placed 
(independently) on the real lines, and if their order statistics are Yl:n < Y2:n < 
... < Y n:n , then Yn will fall with equal probabilities into the line segments 
(lj:n, lj+l:n), 0 :S j ~ n, where YO: n = -00 and YnH:n = +00. That is, if the 
preceding line segments are urns, and the sequentially placed lj are balls, then 
the n-th ball is placed into the available n + 1 urns with equal probabilities, 
i.e., into each urn with probability l/(n + 1). This leads to the Bose-Einstein 
statistic of physics for which a large number of results is available. However, 
instead of relating the model to physics, I wish to suggest to use the model 
for tests of significance. This is not entirely new since related urn models are 
used for such tests, several versions can be developed from this urn model and 
I want to point to one such possibility that is both simple and sensitive for the 
null hypothesis. 

Take n independent variables from the population F (either observations 
or random numbers), and form the urns as described. Place another set of 
n independent observations Zl, Z2,"" Zn, say, into the urns, and we want to 
test the null hypothesis that the Zj also come from F. If their distribution is 
indeed F, then the last urn will remain empty with probability 1/2. This is 
true regardless of the value of n (why not paired comparison then 7). However, 
if the Zj did not come from the population F, then the number of balls in the 
last urn is very sensitive to n. Namely, the last urn compares the maxima in the 
original population (which is F) and in the Z-sample, and extremes soon show 
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divergence if the samples are from different populations. In particular, such a 
test should be very powerful when one wants to make a decision between two 
specific distributions for the Zj (for example, normal versus Weibull, or deciding 
between two extreme value distributions). Since the computations involved are 
combinatorial (using the urn model), it appears appropriate to propose this 
model here even if the details are yet to be worked out. 

16.4 Quadratic Inequalities 

Even though the simple quadratic inequality 

(16.18) 

which is just the Cauchy-Schwarz inequality applied to Sf = E2[X J(X 2: 1)J 
(recall that 2S2 + Sl = m2), has been applied in the literature for generating 
the best available Borel-Cantelli lemma, quadratic inequalities failed to induce 
an activity similar to Bonferroni-types. Since we would like to revive interest in 
this field, we included a section on such inequalities in Galambos and Simonelli 
(1996a). Here, I would like to include an application of quadratic inequalities 
different from the ones in the cited book. 

Just as in the linear case, we want to establish inequalities which are 
quadratic in the sequences Pr, qr and Sk and which are valid on every proba
bility space and for all choices of the underlying events. The indicator method 
does not work and thus, contrary to Bonferroni-type inequalities, quadratic in
equalities are probabilistic in nature. Yet, one does not have to prove them on 
an arbitrary probability space. Namely, the following result is true [Galambos 
(1969)J. 

Theorem 16.4.1 If a quadratic inequality in the sequences Pr, qr and Sk, Q 2: 
0, is of the form 

Q = 11,p2 + vpq + wq2 with 11, 2: 0, v 2: 0, w 2: ° 
on a probability space that carries at least one nontrivial event A with Pr[AJ = p 
and q = 1 - p = Pr[Ac], ° < p < 1, whenever the 11,nderlying events A j , 

1 :S j :S n, consist of at least one A or at least one AC (the rest are n's and 
0's), then Q 2: ° on an arbitrary probability space and for every choice of the 
basic events A j . 

Just to demonstrate the application of Theorem 16.4.1, let us prove the 
following extension of (16.18) 

(16.19) 
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Let m of the Aj be chosen as A with Pr[A] = p, s of the Aj as AC, t of the Aj 
as n and the rest R = n - m - s as 0. We assume that t + r < n, and each of 
m, s, t and R is nonnegative. Now, 

where ~a,b = 1 if a ~ b, and it is zero otherwise. Furthermore, 

S . _ (m+t) (s+t) J - . p+ . q. 
J J 

(16.20) 

Hence, if Q is the difference of the left hand side and the right hand side of 
(16.19), then easy algebraic manipulation yields that Q is indeed of the required 
form of Theorem 16.4.1, so (16.19) is a universal inequality. 

Evidently, (16.19) continues to hold if we replace qk by 1. In this new form, 
we apply (16.19) to the first n terms of an infinite sequence of exchangeable 
events Aj , j ~ 1. Put 

By exchangeability, Sk = (~)Wk' and thus (16.19) entails 

(k + 1) (k: 1) wk+l + k (~) Wk ~ (nwl - k + 1) (~) Wk· 

Dividing the preceding inequality by (k!)-lnk+l and letting n --t +00, we get 

(16.21) 

In particular, W2 ~ w¥ which is known as positive dependence of the indicator 
variables I(A j ). While this is a well known property of infinite exchangeabil
ity, its usual proof depends on de Finetti's representation theorem for infinite 
exchangeable sequences. 

A reversed form of (16.19) is the inequality [see Galambos and Simonelli 
(1996a, Chapter X)] 

kSk ~ SlSk-l + 2 (~ = ~) [S2 - (~l) 1 ' k ~ 2. (16.22) 

Its proof by Theorem 16.4.1 is a simple combinatorial calculation after utilizing 
(16.20). Now, if we divide (16.22) by nk /(k - 1)! and let n --t +00, we get 

k ~ 2. (16.23) 

An immediate consequence of the combination of (16.21) and (16.23) is that 
pairwisely independent infinite sequences of exchangeable events are completely 
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independent. This, once again, follows from de Finetti's representation theorem, 
but such an elementary proof for this property appears here for the first time. 

It is interesting to look at (16.21) and (16.23) from a numerical point of 
view. It is a long-standing problem that, given a finite sequence of exchange
able events, whether they can be extended into an infinite sequence with
out violating exchangeability. We can now conclude from (16.21) and (16.23) 
that if AI. A2 , ..• , An, for some n 2: 3, are exchangeable with Pr[Aj ] = 0.5, 
Pr[Ai n Aj] = 0.3 and Pr[Ai n Aj n Ak] = 0.26 (i, j and k are distinct), then 
the sequence Aj , 1 ~ j ~ n, cannot be extended into an infinite exchangeable 
sequence. Here, the inequalities of (16.21) are satisfied but (16.23) fails. In 
fact, we must have WIW2 = 0.15 ~ W3 ~ WIW2 + 2(W2 - wr) = 0.25. 

We also get an insight into pairwisely independent events via (16.19) and 
(16.22) even if the underlying events are not exchangeable. Let AI, A2, ... be 
an infinite sequence of events with Pr[Aj ] = p for each j and assume that the 
Aj are pairwisely independent. Then, by arguing as in the exchangeable case, 
we get from (16.19) and (16.22) that on a subsequence on which 

1 ~ k ~ T, say, 

exist (such subsequence always exists because the 'averages' on the left hand 
side are bounded), Wk = pk, 1 ~ k ~ T. Here, T can be arbitrarily large. 
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Nonintersecting Paths and Applications in 
Queueing Theory 

Walter Bohm 

University of Economics, Augasse, Vienna 

Abstract: In this paper, some applications of nonintersecting lattice paths 
to queueing problems are presented. In particular, we derive a determinant 
formula for non-coincidence probabilities of non-identically distributed Poisson 
processes from which, in an almost elementary way, zero-avoiding transition 
probabilities in a Markovian tandem queue can be found. Finally, we present a 
result about D / M /1 queues, where the arrival instances are not equally spaced. 

Keywords and phrases: Nonintersecting paths, tandem queues, D / M /1 
queues 

17.1 Introduction 

The correspondence between two-dimensional lattice paths and the sample 
paths of certain Markovian queueing systems is now a well established fact. 
Several authors have applied this correspondence together with the powerful 
and elegant tools of lattice path combinatorics successfully to the analysis of 
the time dependent behavior of such types of queueing systems. It was Profes
sor Mohanty (1979) who initiated most of the research work in this field and 
he himself has contributed many valuable results. 

However, it is less well known that, besides simple lattice path counting, 
counting results regarding sets of nonintersecting paths are also of some signif
icance in the theory of queues. 

In this paper, I will to present some examples of queueing problems which 
may be solved easily using representations in terms of nonintersecting lattice 
paths. 



288 Walter Bobm 

To clarify matters, let us first state a theorem, which is now regarded as a 
key result in modern path combinatorics. 

Theorem 17.1.1 Let S be a set of steps in Z2. Furthermore, let A = (AI, A2, '" 
An) and E = (E1' E2, ... ,En) be sequences of lattice points in Z2 and consider 
the families P = (PI, P2, . .. , Pn) of lattice paths, where Pi has steps in Sand 
leads from Ai to Ei, i = 1,2, ... , n. Assume that the sequences A and E are 
such that any permutation of the origins Ai other than the identity implies that 
at least two paths in P intersect each other, i. e. have a point in common. Then, 
the number of families P which are nonintersecting is given by the determinant 

(17.1 ) 

where L(Aj ---t Ei ) denotes the number of lattice paths from Aj to Ei. 

This theorem is due to Gessel and Viennot (1985). An analogue of (17.1) for 
sample paths of identically distributed strong Markov processes is due to Karlin 
and McGregor (1959); see also Karlin (1988). 

Our plan is as follows. In Section 17.2, we will derive a determinant formula 
for non-coincidence probabilities of sets of dissimilar Bernoulli and Poisson pro
cesses by means of Theorem 17.1.1. This way, we extend the Karlin-McGregor 
theorem to a special case of non i.i.d. Markov processes. These results are then 
used in Section 17.3 to derive a formula for zero-avoiding transition probabili
ties in a simple Jackson network. In Section 17.4, we apply Theorem 17.1.1 to 
determine the probability that a stationary Poisson process avoids a finite set 
of taboo points. In the last section, we demonstrate how an interesting problem 
in connection with DIM/1 queues can be solved. 

17.2 Dissimilar Bernoulli Processes 

Consider r ~ 2 independent Bernoulli processes Sl(n), S2(n), ... , Sr(n), which 
start at time zero in positions m1 < m2 < ... < mr and terminate at time n 
in positions k1 < k2 < ... < kr. The process Si(n) is assumed to have success 
probability Pi, 1 :S i :S r. Let Sn = (Sl(n), ... , Sr(n)) and let 

[S, 0, m]---t [S, n, k] 

denote the event that the processes Si move simultaneously from mi to ki' 
i = 1,2, ... ,r, in the time interval (O,n), where m= (ml, ... ,mr ) and k = 
(k1' ... ,kr)' 

We want to find a formula for 

PI' [[S, 0, m]---t [S, 71" kJ, without coincidence] , (17.2) 
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where without coincidence means that no two of the processes Si occupy the 
same state at the same time. To determine this probability, it will be convenient 
to encode the sample paths of the processes Si(n) by lattice paths in the plane, 
which 

(i) have step set S = {(1,0), (1, l)}j 

(ii) start at heights mi and terminate after n steps at heights ki' i = 1, ... ,r. 

The number of families of lattice paths satisfying (i) and (ii), which in addition 
do not touch each other, will be denoted by NT(m, k, n). Once this number 
is known, we also know (17.2), because a particular path of process Si has 
probability p:i- mi (1-Pi)n-ki+mi . Hence, by independence, any family of paths 
has probability 

T 

IIp:i-mi(l- Pi)n-ki+mi. 
i=l 

However, since the number of paths from mi to k j with n steps is trivially 
(kj~mJ, it follows from Theorem 17.1.1 that 

Hence, 

Pr [[8,0, m] ~ [8, n, k], without coincidence] 

det II (k.: m.) II IT p~v-mv(l_ Pllt-kv+mv . 
J 1. TXT 11=1 

(17.3) 

In what follows, it will be helpful to rewrite (17.3) in terms of the transition 
functions Pi(m, kj n) of the processes Si, viz., 

Pi(m, kj n) = Pr[Si(n) = kISi(O) = m] 

= (k: m)P~-m(l- Pi)n-k+m. 

By applying elementary transformation rules for determinants, we obtain suc
cessively 

Pr [[8,0, m] ~ [8, n, kJ, without coincidence] 

= det II (kj : mJ II g p~-kv+mv (1 - PII )n-kv+mv 
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(17.4) 

Similarly, we get a second, equivalent formula: 

Pr [[S, 0, m] - [S, n, k], without coincidence] 

det Ilpi(mi, k j ; n) (1 ~i pJ ki-kj II. (17.5) 

Observe that these are determinant formulas for the non-coincidence probabil
ities of a special class of dissimilar Markov processes. 

From (17.4) and (17.5), we obtain with almost no additional efforts the 
transition probability function of a set of non-coincident and dissimilar Poisson 
processes. 

In fact, put Pi = ¥ for some real number Ai > 0 and let n - 00 while 
keeping t fixed. Setting L1i = pi/(l - Pi), we may rewrite (17.4) as 

r 

det IIPj(mi, kj; n)L1Ti-mj II = det IIPj(mi, kj; n)L1ji II II L1;;mv 
11=1 

(17.6) 

Since this determinant is a finite sum of finite products, we may apply the limit 
to the generic component in (17.6). 

By the Poisson limit theorem, we have, as n - 00, 

and 
~ (1-~) L1' p·1-Pi n n A' _J= __ J ____ = _...1.. 

L1i 1 - Pj Pi ( 1 - ¥) ¥ Ai' 

Thus, 

Hence, we have proved the following theorem. 
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Theorem 17.2.1 Let N(t) = (Nl(t), N2(t), ... , Nr(t)) be a vector of r > 2 
independent Poisson processes, with E[Ni(t)] = Ait. Then, 

(17.7) 

(17.8) 

where {17.8} follows, if we perform the limit in {17.5}. 

17.3 The r-Node Series Jackson Network 

Using the results of the last section, it is not difficult to analyze the transient 
behavior of a Markovian tandem queue during time periods where all service 
stations are continuously busy. By a tandem queue or feed-forward network, 
we mean an arrangement of service stations along a line, such that the output 
of one node is the input of the next node. There is one external arrival stream 
at the first node, and customers leaving the last node are leaving the system 
also. The system we are going to discuss has at each node a single exponential 
server, and we assume that the external arrival process is Poisson. A scheme of 
this system is given in Figure 17.1 below. 

- 11110- 11110- ... 11110-

Figure 17.1: A tandem queue 

Before we analyze this queueing system in more detail, it is instructive to 
have a look first at the simple MIMI1 model, which is, of course, a special case 
of the tandem system. 

Let A(t) denote the arrival process of an MIMI1 queueing system, i.e. A(t) 
equals the accumulated number of arrivals in the interval (0, t). Similarly, let 
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D(t) denote the service process, the number of completed services in (0, t). 
During time periods where the server is continuously busy, the processes are 
Poisson with rates>.. and p, respectively. Furthermore, let us define a random 
stopping time 

Tm = inf{t: m + A(t) - D(t) = O}, 

where m > 0 is the number of customers waiting at time zero, and define Q(t) 
to be the number of customers in the system at time t. 

Our first task will be to rederive a well-known formula for the zero-avoiding 
transition probabilities of the process Q(t), 

pO(m,k;t) = Pr[Q(t) = k,Tm > tIQ(O) = m], (17.9) 

which playa fundamental role in the general transient analysis of this queueing 
system. 

For this purpose, observe that the following identity holds: 

{Q(t) = k, Tm > tIQ(O) = m} 

== {m + A(t) - D(t) = k, m + A(s) > D(s), 0 :S s :S t}. (17.10) 

Thus, the zero avoiding transition probabilities are just non-coincidence prob
abilities of the processes m + A(t) and D(t). Figure 17.2 illustrates this corre
spondence. 

r-----r-- A(t) = m + n 

k 

.----.....I.....-_D(t) = m + n - k 

m+---J 

Figure 17.2: Two non-touching sample paths 

Now assume that there are n ~ 0 arrivals in (0, t), then the process m+A(t) 
moves from m to m+n, and similarly, D(t) moves from 0 to m+n-k. Hence, 
if we apply (17.7), we obtain 

e-At(At)n e-/-Lt(f.Lt)n-k (l!:.)m 
n! (n-k)! X 

e-At(At)m+n e-/-Lt(f.Lt)m+n-k 
(m+n)! (m+n-k)! 

e -(Mf.L)t L r' ' - L ---,-:..r'_....,.--,-_---,-_ [ 
>..n"m-k+ntm-k+2n Anl/m-k+ntm-k+2nj 

n~O n!(m - k + n)! n~O (n - k)!(m + n)! . 
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Putting p = >..j J.L (the traffic intensity of the M I M 11 system) and using the 
definition of the modified Bessel functions 

we arrive finally at 

(zI2)k+2n 
h(z) = I: '( k)" 

n::::O n. n+ ' . 

a well-known formula; see, for example, Prabhu (1965, p. 15). 

(17.11) 

Exactly the same argument may be used to derive the multivariate analogue 
of (17.11) for the tandem system. 

To fix notation, let No(t) denote the arrival process at the first node and 
Ni(t), i = 1, ... , r, the accumulated number of services in (0, t) at node i. Dur
ing time periods where all servers are continuously busy, these processes are 
Poisson with rates Ai, i = 0, ... , r. We assume that at time zero there are 
mi > ° customers already waiting at node i. Furthermore, let Qi(t) denote the 
number of customers at node i at time t and define (in full analogy to simple 
MIM/l) the random stopping times 

Ii inf{t: Qi(t) = 0IQi(O) = mi} 

inf{t: mi + Ni-1(t) - Ni(t) = O}. 

Put T = minl::;i::;r Ii and define zero-avoiding transition probabilities for the 
tandem system 

pO(m, k; t) = Pr[Q(t) = k, T > tIQ(O) = m], (17.12) 

with 

and ki > O,i = 1, ... ,r. We will show now that (17.12) is again a sum of 
non-coincidence probabilities, but this time, of the set of independent and dis
similar Poisson processes No(t), N1(t), ... , Nr(t). Figure 17.3 illustrates this 
correspondence for a simple two node network. 

Let Nr(t), the service process at the last node, start at height zero. At time 
zero, there are already mr customers waiting at this node. Furthermore, the 
output process of node r -1 is the input process at node r. So, we let the service 
process at node r - 1 start at height m r . Since we require that the server at 
node r is continuously busy in (0, t), the sample paths of the processes Nr-l(t) 
and Nr(t) must not touch. Similarly, let Nr-2 start at height mr + mr-l, since 
there are mr-l customers already waiting at node r -1. Again, we require that 
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Figure 17.3: Zero-avoiding transitions of a two-node network 

the processes N r -2(t) and N r -1(t) to be non-coincident in (0, t). In general, 
the process Ni (t) starts at height 

r 

L mil, 
lI=i+1 

where we agree to interpret an empty sum as zero. 

(17.13) 

Now assume that there are n 2: 0 arrivals at the first node during (0, t). 
Thus, the process No(t) starts at height L:~=1 mil and terminates at height 
n + L:~=1 mil· Since there must be k1 customers left at node 1 at time t, the 
service process at node 1, N1 (t), must terminate at height m + L:~=1 mil - k1, 
and in general, the process Ni(t) terminates at height 

r i 

n + L mil - L k ll , i = 0,1, ... ,r. (17.14) 
11=1 11=1 

Again, an empty sum is to be taken as zero. 
Thus, we are left with a set of r + 1 independent and dissimilar Poisson 

processes which start at heights (17.13), terminate at heights (17.14), and which 
are not allowed to have coincidences. Using (17.8), we immediately obtain 

where 
r 

ai = L mil, 
lI=i+1 

(17.15) 

r i 

bi = n + L mil - L k ll , i = 0,1, ... , r, 
11=1 11=1 

which is the desired formula. Essentially, this formula has been derived by 
Bohm, Jain and Mohanty (1993) using the k-candidate ballot theorem. An 
equivalent formula in terms of lattice Bessel functions, the multivariate gener
alizations of the modified Bessel functions, has been given by Massey (1987). 
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17.4 The Dummy Path Lemma for Poisson 
Processes 

295 

A very useful result in path combinatorics is the dummy path lemma; see Krat
tenthaler and Mohanty (1992) and Stanley (1986, p. 84). It is an immediate 
consequence of Theorem 17.1.1. 

Lemma 17.4.1 Let Cl, C2 , •. . , Cn be pairwise distinct points in Z2. Then, the 

number of lattice paths with step set 5, which lead from (a, b) to point (c, d) and 
avoid points Ci, i = 1,2, ... , n, is given by the determinant 

det IIL(Aj -+ Edll , 
O::;I"J::;n 

(17.16) 

where L(Aj -+ E i ) denotes the number of paths from point Aj to point Ei , and 

Ao (a,b), A=Ci, i=1,2, ... ,n 

Eo (c,d), Ei=Ci, i=1,2, ... ,n. 

Consider now a Bernoulli process S(n) with success probability p, which 
starts at time zero in state zero and terminates after n steps in state k 2:: o. As 
before, we will represent the sample paths of S(n) by lattice paths with step 
set 5 = {(I, 0), (1, I)}. 

Let Ci = (Ui, ai), i = 1,2, ... , r, be a sequence of pairwise distinct points, 
such that 

o ~ Ul ~ lL2 ~ ... ~ Ur ~ n, ai E No, i = 1,2, ... , r, 

and define Cr = {C 1, C2, ... , Cr }. By the dummy path lemma, the number of 
paths with step set 5, which lead from (0,0) to (n, k) and avoid the points in 
Cr , is given by the (r + 1) x (r + 1) determinant 

(~) (n-Ul) 
k-al C-U2) k-a2 

C-Ur ) k-a r 

(~~) 1 0 0 

Dn,k = (~~) (U2-Ul) 1 0 a2-al 

1 

Any such path has probability pk(l - p)n-k, and thus 

Pr[S(n) = k, S(i) ¢ Cr , i = 1, ... , n] = Dn,kpk(l - pt-k, (17.17) 
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where S(i) rf. Cr denotes the event (i, S(i)) rf. Cr. Absorbing the term pk(l -
P )n-k into the first row of Dn,k and transforming the resulting determinant by 
applying elementary rules, we obtain 

Pr[S(n) = k, S(i) rf. Cr, i = 1, ... ,11,] 
P(n, k) P(n - Ul, k - al) 

1 o 

= o 

1 

(17.18) 

where 

P(i,j) = G)pi(l - p)i- j . 

Now, put tlt = tfn and >..tfn = p. Also, set uitlt = Si, i = 1, ... , rand 
let 11, -+ 00. To perform this limit, consider the generic component in the 
determinant (17.18), viz., limn->ooP(ui - Uj,ai - aj). We have 

Now, since Ui = 7ft = ¥, we get 

(Ui - Uj)(Ui - Uj -1) ... (Ui - Uj - ai + aj + 1) >..ai-ajtai-aj 
(ai - aj)! n,ui-aj 

(n¥ - 11,1: )(n¥ - 11,1: - 1) ... (n¥ - 11,1: - ai + aj + l)>..ai-ajtai-aj 

(ai - aj)!nai - aj 

Furthermore, 

( 
>..t)Ui-Uj-ai+aj 

1--11, 

= exp [(Ui - Uj - ai + aj) In(l- ~~)] 
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Thus, 

->'(S'-S')['( )la'-a' e • J A s· - s· , J 

lim P(Ui - Uj,ai - aj) = (~ )' J 
_00 ~-~. 

(17.19) 

which is simply the transition function of a Poisson process with rate A, which 
moves from state aj to ai in the time interval (Sj, Si). 

Hence, we have the following interesting result for Poisson processes. 

Theorem 17.4.1 Let N(t) be a Poisson process with rate A > 0 and let 

be a sequence of pairwise distinct points such that 

Then, 

Pr[N(t) = k, N(s) ¢ Crl 
tk !t-slt-a1 !t-s2t-a2 
k1" (k-ad! (k-a2)! 
al 

~ 1 0 

= e->.t Ak sa2 
~ 1 

!t-srt-ar 
(k-ar )! 

o 

o 

1 

17.5 A Special Variant of DIMI1 Queues 

(17.20) 

Stadje (1995) considered the following queueing system: customers arrive at 
deterministic, but not necessarily equidistant arrival times 0 < al < ... < an 

at a single exponential server with mean service time 1/ /-t. Stadje derived a 
determinant formula for the distribution of the number of customers served 
during a busy period initiated by m > 0 customers. In this section, we give 



298 Walter Bohm 

a formula for zero-avoiding transition probabilities of this type of queueing 
system, from which Stadje's result follows as a special case. 

Let D(t) denote the number of services completed up to time t during a time 
interval where the server is continuously busy. Furthermore, let Q(t) denote the 
number of customers in the system at time t and define the random stopping 
time 

Tm = inf{t: Q(t) = OIQ(O) = m}, 

the duration of a busy period, if there were m > 0 customers present at time 
zero. Assume that a customer arriving at time ai joins the system at time ai+ 
and define zero-avoiding transition probabilities 

pO(m, k; t) = Pr[Q(t) = k, Tm > tIQ(O) = m]. 

Figure 17.4 shows that the sequence of arrival times gives rise to a sequence of 
taboo points, which must not be touched by the Poisson process D(t). 

k 

r--------'~D(t) = m + n - k 
m+----... 

t 

Figure 17.4: Zero-avoiding transitions of D / M /1 

Thus, it follows immediately from Theorem 17.4.1 that 

pO(m, k; t) = Pr[D(t) = m + n - k, D(s) ~ en], 

where 

Hence, 

t m+n- k (t-al)n-k (t_ a2)n-k-l 
(m+n-k)! (n-k)! (n-k-I)! 

am 

~ 1 0 

X am+1 
a2,a] 1 (~+1)! l. 

m+n-l {an-alt- 1 (an-a2t-2 all 
(m+n-I)! (n-I)! (n-2)! 

{t-an)-k+ 1 
(-HI)! 

o 

o . (17.22) 

1 
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Finally, it should be remarked here that exactly the same technique may be 
used to determine zero-avoiding transition probabilities in a M / D /1 system, if 
the service times are deterministic but not necessarily equally spaced. 
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Transient Busy Period Analysis of Initially 
Non-Empty MIGll Queues-Lattice Path 
Approach 

Kanwar Sen and Manju Agarwal 

University of Delhi, Delhi, India 

Abstract: This paper aims at transient busy period analysis of M/G/1 queue
ing systems starting initially with i customers through lattice path approach. 
The service time distribution is approximated by a 2-phase Cox distribution, 
C2. Distributions having rational Laplace-Stieltjes transforms and square coef

ficient of variation lying in [!, 00) form a very wide class of distributions. As 

any distribution of this class can be approximated by a C2, that has Markovian 
property, amenable to the application of lattice paths combinatorial analysis, 
the use of C2 therefore has led us to achieve transient results applicable to 
almost any real life queueing system M/G/l. 

Keywords and phrases: Transient analysis, busy period, M/G/1 queues, 
Cox distribution C2 , lattice path approach 

18.1 Introduction 

As of today, the study of time-dependent behaviour of non-Markovian queues 
has not been done much, though for real-life systems, such as computer systems 
and communication systems, time-dependent solutions are even more important 
than their steady-state solutions. This scarcity of time-dependent solutions is 
mainly due to the fact that the non-Markovian queues are harder to analyze 
for their time-dependent behaviour. 

Takacs (1962) and Benes (1963), in their classic works, analyze the time
dependent behaviour of the M/G/1 queue via two-dimensional transforms. Lu
cantoni, Choudhury and Whitt (1994) further extended Takacs results for the 
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more general arrival process - Batch Markovian Arrival Process (BMAP), i.e., 
analyzed BMAP /G/1 queue through two-dimensional transforms to numeri
cally compute the transient queue length and waiting time distributions. Then, 
Logothetis, Mainkar and Trivedi (1996) also developed numerical computational 
algorithms for the time-dependent solutions of the queue length distribution for 
a class of such non-Markovian queueing systems for which the queue length pro
cess is Markov regenerative. For their purpose, they took general distributions 
to be deterministic and considered standard finite capacity queues M/G/1/K 
and GI/M/1/K. They also showed that their algorithms can as well be fur
ther extended to BMAP, and multiclass queueing systems. Dalen and N atvig 
(1980) derived the transient waiting times for a GI/M/1 priority queue. Be
sides, whatever other time-dependent solutions for the non-Markovian queues 
are available, they are simply for M/G/1 type queues and that too in terms of 
Laplace-Stieltjes transforms (LSTs) [see Takagi (1991, 1993a,b), Neuts (1989) 
and Bohm (1993)]. As such before one implements them in practice, their inver
sion is required. Finding their inversion reduces to the difficult task of locating 
the roots of a function, polynomial or transcendental. Naturally, this raises the 
question that what good is the model if its implementation is difficult? 

In fact, all the well-known techniques applied to analyze non-Markovian 
systems reduce to solving a set of probability differential difference equations 
governing the system behaviour. The standard top-to-bottom approach [see 
Bohm and Mohanty (1994b)] of solving these equations runs into difficulties 
because of several types of constraints. Therefore, a bottom-to-top approach 
[see Bohm and Mohanty (1994a)] of splitting the process at suitable renewable 
epochs for analysis and combining them using Lattice Paths (LPs) combinatorial 
analysis is worthwhile. This is exactly what is being done here by representing 
a realization of the process by a LP. A distinctive feature of the LP approach is 
that it yields explicit transient solutions which are amenable to computations 
as well as probabilistic interpretations. Through the LP approach, this paper 
attempts in studying the transient behaviour of a non-Markovian queue, though 
recently, transient solutions of Markovian queueing models, viz. M/M/1 types, 
have been successfully obtained by Sen and his coauthors (1993, 1994, 1996). 

For the purpose of analyzing M/G/1 queue through the LP approach, the 
service time distribution G can be approximated by a k-phase Cox distribution 
Ck, that has Markovian property. Moreover, the distributions Ck are highly 
versatile, as any probability distribution function having rational LST can be 
approximated as closely as one wishes by a Ck [Cox (1955)], and as such they 
generalize all well-known distributions; for example, generalized hyperexponen
tial of order k (GHEk), generalized Erlang of order k (GEk), mixed-generalized 
Erlang of order k (MGEk), PH (phase type) and kk (distribution functions 
whose LSTs are reciprocals of polynomials of degree k) [Botta, Harris and Mar
chal (1987)]. The distribution Ck consists of k independent exponential phases 
with service rate J1.j at phase j (1 ~ j ~ k) as shown below (Figure 18.1). After 
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completing service in phase j, the unit either enters phase j + 1 with probability 
LXj or completes service with probability {3j (= 1 - LXj). 

1 

Figure 18.1: k-phase Cox distribution 

Cox distributions cover multistage queueing processes where feedback may 
occur as in manufacturing processes where quality control inspections are per
formed after certain stages and parts that do not meet quality standards are 
sent back for reprocessing. Cox has shown that no further generality is intro
duced with feedback and feed forward concept over that of the system in the 
above figure. 

In this paper, we are concerned mainly with the busy period analysis of 
M/C2/1 queues. The 2-phase distributions C2, which have 3 parameters only, 
are desirable both from a theoretical point of view due to ease of analysis 
as well as practical applications. Moreover, the complexity of the statistical 
estimation of parameters also reduces considerably [Khoshgoftaar and Perros 
(1987) J. Besides, they also cover a wide class of distributions that have CV2, 

the square of coefficient of variation, lying in [!, 00) [Marie (1978, 1980)J. As 
such, the investigations carried out in this paper are fundamental and have a 
significant role in solving a wide variety of problems occurring in almost any 
real life situation. A distinctive feature of our paper, in relation to previous 
papers on transient behaviour of M/G/1 type queues, is that our results are 
explicit and computable. 

It may be mentioned here that results for M/Ck/1 and C2/M/1 queues are 
also under investigation and will be reported by Sen and Agarwal (1996a,b). 

The remainder of the paper is organized as follows. In Section 18.2, we 
describe the LP approach. Section 18.3 contains the discretized model M/C2/1 
giving the transition probabilities and results on the LP counting. In Section 
18.4, the busy period density for the continuous M/C2/1 model is derived as a 
limiting case. In Section 18.5, some particular cases are discussed. 
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18.2 Lattice Path Approach 

To conduct transient analysis, we first discretize the system time, i.e., segment 
the time interval (0, tJ into a sequence of t/h (an integer) time slots each of 
duration h (> 0). In a time slot, the following are the possible events: 

(i) either arrival of a new customer 

(ii) or a departure, after either phase 1 or phase 2 of service 

(iii) or an entry into phase 2 of service 

(iv) or none of these. This would be termed as a stay. 

Obviously, due to the properties of exponential distribution, stochastic pro
cesses involving Cox distributions (whose branching probabilities are real) are 
Markovian. By discretizing the system-time, the process sample paths can be 
represented as 2-dimensional LPs enabling us to apply LP Counting Principle. 
Then, by a limiting process, the desired transient solution for continuous time 
can be obtained. The discretized system can be viewed as 2-dimensional LPs 
representing an arrival, departure, entry into phase 2 service of a customer and 
stay at a time slot by a horizontal, vertical, diagonal and a point on LP, re
spectively; see, for example, Figure 18.2. However, the counting of such LPs 
would depend on the skeleton path (see Figure 18.3) obtained by ignoring the 
diagonals in Figure 18.2. After the counting of stipulated LPs, appropriate tran
sition probabilities are to be associated with them yielding the desired results 
for the discretized model. Further, their limiting forms provide corresponding 
continuous time results. 

18.3 Discretized M/C2/1 Model 

18.3.1 Transition probabilities 

If (x, y) (x 2:: y and x 2:: i) denotes a vertex, at the end of a time slot, of the 
LP representing the M/C2/1 queueing process, then in the next time slot, the 
following transitions are possible: 
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arrival 

departure from phase 

departure from phase 2 

/ entry into phase 2 

departures 

(i,O) arrivals 

i=2 
n = 18 
k=5 
j = 2 
r = 4 

(n,n) 

( 

n-k = 13 arrivals 
n-k = 13 departu res 

k = 5 departures from phase 2 
n-2k = 8 departures from phase 1 

Note: 1. Two or more consecutive diagonals will not occur. 
2. Two or more consecutive dotted verticals will not occur. 
3. In any runs of arrivals not more than one diagonal will occur. 

Figure 18.2: Lattice path representation 
(Illustration for busy period) 
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departures 
(n-k, n-k) 

(i,O) arrivals 

Figure 18.3: Skeleton lattice path 
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(x, y + 1) - if there is a departure either from phase 1 or phase 2 

(x + 1, y + 1) - if the unit enters into phase 2 of service 

1<:....-_______ (x + 1, y) - if there is an arrival. 

(x, y) - if there is no movement, i.e., stay 

Figure 18.4: Possible transitions from the vertex (x, y) 

Let 

>..: exponential inter-arrival rate of customers 
/1-1: exponential service rate in phase 1 
/1-2: exponential service rate in phase 2 
a: Pr[a customer goes to phase 2 after completing phase 1 service] 
z: number of customers initially in the system. 

Therefore, the model assumptions lead to 

(i) Pr[(x, y) -t (x + 1, y)] = Pr[an arrival] = >"h + O(h) 

(ii) Pr[(x, y) -t (x, y + 1) if departure from phase 1] = j3/1-1h + O(h) 

(iii) Pr[(x, y) -t (x, y + 1) if departure from phase 2] = /1-2h + O(h) 

(iv) Pr[(x, y) -t (x + 1, y + 1)] = Pr[entry into phase 2] = a/1-1h + O(h) 

(v) Pr[(.x, y) -t (x, y) if a customer is in phase 1 service] 
= 1 - (>.. + /1-1)h + O(h) 

(vi) Pr[(x, y) -t (x, y) if a customer is in phase 2 service] 
= 1 - (>.. + /1-2)h+O(h). 

(18.1) 

Stays occurring in (v) and (vi) will be called as type 1 and type 2, respectively. 

18.3.2 Counting of lattice paths 

In the counting of LPs, concept of run and the following formula will be used: 

Run: A sequence of consecutive horizontal (vertical) steps bounded on each 
side by a vertical (horizontal) step (see Figure 18.3) is called a horizontal (verti
cal) run of arrivals (departures), respectively. Moreover, the sequence of arrivals 
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starting from the origin followed by the first vertical as well as the sequence 
of departures at the end following the last arrival, are also regarded as run of 
arrivals and run of departures, respectively. 

Formula: The number of ways of distributing r similar balls into n cells is 
given by [Feller (1968, p. 38)] 

( r + n -1). 
n-l 

(18.2) 

Theorem 18.3.1 For nonnegative integers i, n; k,j; a, b; r (~ 1), h, 12, ... , lr; 

Ll,L2,· .. ,Lr, let (LP(i,n;k,j;r,L;a,b)), where L = (l1,l2, ... ,lr;Ll,L2, ... ,Lr ), 
denotes the number of LPs from (i,O) to (n, n) remaining below the line y = x, 

each comprising of n - k horizontal steps (including those from (0,0) to (i,O)), 
n - k vertical steps and k diagonals, such that 

(a) n - k horizontal steps form r runs of lengths it, 12, ... , lr, respectively, 

satisfying II ~ i, 12, 13, ... , lr > 0 and ~~=llm = n - k 

(b) n - k vertical steps form r runs of lengths L 1, L2, ... , L r , respectively, 

satisfying Ll, L2, ... , Lr > 0 and ~~=1 Lm = n - k 

(c) h ~ max(i, Ll + 1), ~~lli > ~~1 Li, m = 2, ... , r - 1, and ~r=lli = 

~r=1 Li = n - k 

(d) j diagonals are inserted one each in any j out of r horizontal runs (in
cluding the vertices at both ends of the runs) 

(e) the remaining k - j diagonals are inserted at vertices along the vertical 
runs 

(f) 'b' stays of type 2 are distributed at vertices following the k diagonal steps 

and preceding the subsequent vertical steps 

(g) 'a' stays of type 1 are distributed at the remaining vertices which follow 

the subsequent vertical steps mentioned in case (f) and preceding the next 

diagonal including those preceding the first diagonal as well as those fol
lowing the last subsequent vertical, i. e., at vertices other than those used 

in case (f) for type 2 out of the total 2n - k - i vertices. 

Then, for r ~ 1 and k > 0, 

( LP(i,n;k,j;r,L;a,b)) 

= L L (n~~~r) 
R7 Rs J 
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x (a + (2n - k - i) - L;~l (~. - ki. + 1) - (k - j) - 1) 

x e + I:~=l (lis - kis b+ 1) + (k - j) - 1) (18.3) 

where 

R7: {(i},i2,'" ,ij ): 1 ~ il < i2 < ... < i j ~ r}, 

Rs: {(kip ki2 ,···, kij ) : 0 ~ kis ~ lis, S = 1,2, ... ,j} 

and for r ~ 1 and k = 0 (=> j = 0) 

( ) ( a + (2n - i) - 1) 
LP(i n'O O'T L'a 0) = . , , , " , , a (18.4) 

PROOF. To prove (18.3), let us suppose that the skeleton path from (i,O) to 
(n - k, n - k) (see Figure 18.3) consists of r horizontal as well as r vertical runs 
of lengths Ii and Li (i = 1, 2, ... , r), respectively. It is obvious that there will 
be only one unique path with r runs of each type of given fixed lengths. Now, 
for the insertion of j diagonals, out of the total k, in any j horizontal runs, 
we suppose that these j diagonals are inserted into runs numbered iI, i2, ... , ij, 
respectively, of lengths IiI' li2' ... , lij, at distances kil' ki2 , ... , kij , from their 
extreme left end points. Further, as the remaining k - j diagonal steps would 
therefore be inserted into any k - j vertices out of the remaining n - k - r 

vertices available, the number of possible ways of doing so is (nk~7). It is 
easy to see that 'b' stays of type 2, as stated in (f), would be distributed 

into [I:~=l (lis - kis + 1) + (k - j)] vertices. By identifying stays with balls 

and vertices with cells and then using result (18.2), 'b' stays of type 2 can be 

distributed into [I:~=l (lis - kis + 1) + (k - j)] vertices in 

e+ I:~=l(lis - kisb+ 1) + (k - j) -1) (18.5) 

ways. Similarly, according to (g), 'a' stays of type 1 are to be distributed in 

[(2n - k - i) - (I:~=l (lis - kis + 1) + (k - j))] vertices in 

( a + (2n - k - i) - I:~=l (I a is - kis + 1) - (k - j) - 1) 
(18.6) 

ways. 
Multiplying (nk~7) with (18.5) and (18.6) and then summing over all pos

sible j-tuples (i}, i2, ... , ij) and (kil , ki2' ... , kij ), we get (18.3). 
For (18.4) it is easily seen that when k = 0, i.e., there is no diagonal in the 

LP, all 'a' stays of type 1 will be distributed into (2n - i) vertices. Thus, the 
theorem is proved. • 
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The following corollary is an immediate consequence of Theorem 18.3.1. 

Corollary 18.3.1 Let (LP(i,n;k;a,b)) denote the number of LPs from (i,O) to 

(n, n), remaining below the line y = x, each comprising of n - k horizontal 
steps [including horizontal steps from (0,0) to (i,O)), n - k vertical steps and k 
diagonals satisfying conditions (f) and (g) of Theorem 18.3.1. Then, summing 
(18.3) over r, j and L, we have 

( LP(i,n;k;a,b)) = L L L ( LP(i,n;k,j;r,L;a,b)) , 
Ri Rs & 

where R4 = {r : 1 ::; r ::; n - i}, R5 = {j : ° ::; j ::; min(r, k)} and 

R6 = {L: h ~ max(i,Ll + 1) :~12 (t.Zi > ~Li) 

n (~li = ~ Li = n - k) }, 
and summing (18.4) over rand L [Narayana (1959)), we get 

( LP(i,n;o;a,O)) = L L (a + (2n - i) - 1) 
R.t R6 a 

( a + (2n - i) - 1) _i . (2n - i) . 
a 2n -1, n 

18.3.3 Busy period probability 

(18.7) 

(18.8) 

We now derive the main result, i.e., the probability that k time slots elapse 
before the system with initially i customers becomes empty for the first time, 
i.e., busy period is of length tlh, in Theorem 18.3.3 below. 

Theorem 18.3.2 Let Pi,n;k(tlh) denote the probability that the discretized 
M/C2/1 system starting initially with i customers has busy period of length 
tlh encountering n - k - i arrivals and n - k departures of which k are through 
phase 2. Then, for k > 0, 

Pi,n;k(tlh) = L [ (LP(i,n;k;a,b)) ()..ht- k- i ( cxl-tlhlU3l-tlh )n-2k(1-t2h)k 
R3 

X (1 - ().. + I-tl)hf(1 - ().. + 1-t2)h)b] + O(h), (18.9) 

where 

a = tI/h, b = tlh - (2n - k - i) - tI/h 
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and 
R3 = {tI/h : 0 :::; tI/h :::; tlh - 2n - k - i} 

and, for k = 0, 

Pi,n;o(tlh) = ( t I h ~ 1 ) _i . (211, - i) ()"h) n-i 
(2n - 2) - 1 2n - 1, n 

x ({3f.Llh,y'·(1- ().. + f.Ll)h)t/h-2n+i + O(h). (18.10) 

PROOF. Here, the total number of time slots is t I h. Let tIl h be the number 
of time slots, out of tlh slots, in which the system has type 1 stays. The total 
number of transitions in the remaining tlh - tI/h time slots is 2n - k - i, 
leading obviously to tlh - tI/h - 2n - k - i stays of type 2. The number of LPs 
stipulated in the theorem is given by (18.7) for k > 0 and by (18.8) for k = O. 
Therefore, from (18.1), for the case k > 0 the probability of occurrence of 

(i) tI/h type 1 stays is (1 - ().. + f.Ll)h)tl/h + O(h) 

(ii) tlh-tI/h-2n - k - i type 2 stays is (1-()..+f.L2)h)t/h-tl/h-2n-k-i+O(h) 

(iii) (n - k - i) arrivals is ()..h)n-k-i + O(h) 

(iv) 11, - 2k departures through phase 1 is ({3f.Llh)n-2k + O(h) 

(v) k entries into phase 2 is (af.Llhl + O(h) 

(vi) k departures through phase 2 is (f.L2hl + O(h). 

Thus, multiplying the number of stipulated LPs from (18.7) by the above 
transition probabilities, and then summing over tI/h, we get (18.9). Similarly 
from (18.8), (18.10) easily follows for the case k = O. • 

Theorem 18.3.3 Let h(tlh) denote the probability that the busy period is of 
length tlh units for the discretized M/C2/1 model starting initially with i cus
tomers. Then, for the case when at least one customer receives service in both 
the phases 

h(tlh) = LLLLLLLL (n~~~r) 
Rl R2 R3 Rt R5 Rt; R7 Rs ,J 

x (tI/h + (2n - k - i) - L~=l(lis - kis + 1) - (k - j) - 1) 
tI/h 

(
tlh - (2n - k - i) - tI/h + L~=l(lis - kis + 1) + (k - j) -1) 

x tlh-(2n-k-i)-tI/h 

x ()"ht-k-i(af.Llh)k({3f.Llht-2k(f.L2hl(1- ().. + f.Ll)h)tl/h 

x (1 - ().. + f.L2)h)t/h-(2n-k-i)-tl/h + O(h), (18.11) 
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and when all customers leave the system after phase 1 service 

fi (~) = L _i . (2n - i) ( tjh ~ 1 ) ()..h)n-i 
Rl 2n - 1, n (2n - 1.) - 1 

x ((3J.Llh)n(1- ().. + J.Ll)h)t/h-(2n-i) + O(h), (18.12) 

where 

and 

R2 = { k : 1 ~ k ~ [~]} , 
where [xl denotes the largest integer in x. 

PROOF. As envisaged in the theorem, the expression (18.11) for fi(tjh) is 
obtained by summing (18.9) over k and n and then using (18.7) and (18.3). Eq. 
(18.12) follows from (18.10) by summing it over n. • 

18.4 Continuous M/C2/1 Model 

On using a limiting process as h --+ 0 [Meisling (1958)], we obtain the expression 
for the busy period density function as given in the following theorem. 

Theorem 18.4.1 The probability density function of the busy period for MIGll 
system starting initially with i customers is given by 

The first term in (18.13) corresponds to the case when no unit receives service 
in phase 2 and the second term in (18.13) corresponds to the case when at least 
one unit receives service in phase 2. 
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18.5 Particular Cases 

(i) M/M/l: Taking Q = 0, f3 = 1, /-Ll = /-L, /-L2 = 0 and hence k = j = 0, 
(18.13) reduces to 

(18.14) 

This result is the same as that obtained by Saaty (1961, p. 128) and Sen 
and Jain (1993). 

(ii) Similarly, busy period density for M/GE2/1 model can be obtained from 
(18.13) by taking Q = 1, f3 = o. 

(iii) For the M/HE2/1 model, the busy period density can also be obtained 
from (18.13) by taking Q = q(/-Ll - /-L2)//-Ll, where the pdf of HE2 is given 
by p/-Lle-J.l.l X + q/-L2e-J.l.2X (p + q = 1), x> o. 
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Single Server Queueing System with Poisson 
Input: A Review of Some Recent Developments 

J. Medhi 

Institute of Advanced Study in Science fj Technology, Guwahati, India 

Abstract: The classical single-server queue with Poisson input has been ex
tended to include several types of generalizations, to which attention has been 
paid by several researchers. It would be worthwhile to look into some sort of 
unified approach of the results of several models. It is also of interest to in
vestigate a few important performance measures through heuristic 'mean value 
analysis' only without looking through the 'Laplacian Curtain'. The purpose of 
this paper is to make a comprehensive survey of many interesting results that 
have appeared recently with a view to unify the results and to derive some new 
ones. The review is based on recent contributions as listed in the References. 

Keywords and phrases: N (threshold)-policy, vacations, residual distribu
tion 

19.1 Introduction 

In this paper some extensions and generalizations of the classical MIG/1 queue
ing system are discussed. In a series of papers, Takagi (1991, 1992, 1993), 
Takine, Takagi and Hasegawa (1993) extended classical MIG/1 to cover cases 
of models with vacations as well as those with finite buffer or finite calling popu
lation or both. Lee et al. (1994, 1995, 1996) and Chae and Lee (1995) discussed 
M X IG/1 systems with batch arrivals and with vacations. While they confined 
to continuous systems in steady state, in a series of papers, using combinatorial 
methods, B6hm and Mohanty (1993, 1994a,b), and Mohanty and Panny (1989, 
1990) discussed transient analysis of Markovian systems in discrete time. They 
observed that the results for continuous time processes can be obtained from 
those of discrete time processes by appropriate limiting procedure. B6hm and 
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Mohanty assert that for certain systems at least, such as digital communica
tion and data transmission, discrete time analysis is more appropriate while 
continuous time treatment is at best an approximation. 

Here we shall be concerned mainly with systems in continuous time and in 
steady state, and also to some specific performance measures only. A survey of 
some results of finite systems as obtained by Takagi, Takine et ai. and others 
is given in Medhi (1994). 

The notation and terminology used are as described below. Units 
(customers/messages) arrive at a single server service facility in a Poisson 
stream with rate).. In case of batch arrival we shall assume Poisson streams 
of arrivals at rate )., with random group size X, that is, compound Poisson 
arrivals with rate). E(X). For arrival rate, we shall use). E(X) in place of). in 
case of batch Poisson arrivals. Service time B is general having B(·) for its dJ. 
and B*(·) as its LST. The mean service time is b (= 1/J-L) and higher moments 
are b(r) = E(Br), r = 2,3, .... The offered load is a = )'b, and the utilization 
factor (fraction of time the server is busy) is denoted by p. A busy period T 
is the period during which the server remains busy; ordinarily it commences 
with the start of service of a unit that arrives to an empty system and lasts 
till the system becomes empty again. This concept needs to be modified in 
case of vacation and/or control policy queues. The idle period (of the server) 
is denoted by J and the cycle time by C (= T + J), the average waiting time 
in the queue (queueing time) of a unit by WQ, and the average number in the 
queue by LQ. Pk denotes the probability that the system (queue and service) 
contains k units at an arbitrary point of time. Po denotes the probability that 
the system is empty. Once WQ is found, the average waiting time in the sys
tem W can be found; by employing Little's law, the average number in the 
queue and system can be obtained. One can thus have some of the important 
performance measures. 

It may be recalled that for M/G/l system, the following hold: p = a, 
E(I) = 1/)" and 

E(T) _1_ = _b = (_a ) E(I) 
J-L-)' I-a I-a 

(_P-) E(I) (since p = a); 
I-p 

(19.1) 

when the busy period starts with m (> 1) in the system the expected busy 
period equals m{b/(1 - an. 

The average waiting time in the queue (of a test customer) is easily seen to 
be 

WQ = LQE(B) + E(BR ) Pr[AJ, (19.2) 

where Pr[AJ is the probability that the server is busy and BR is the residual 
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service time of the unit in service as seen by the test customer on arrival. Now 

E(B2) b(2) 

2E(B) 2b 

is the expectation of the forward recurrence time of the service time (or residual 
service time of the unit in service). Using LQ = AWQ, one gets 

or 

w. = _1_ (Ab(2)) = Ab(2) 
Q 1 - a 2 2(1 - p) , (19.3) 

which is the Pollackzek-Khinchine Formula. 

19.2 Exceptional Service for the First Unit in Each 
Busy Period 

Takagi (1991, 1992) examined this problem considered earlier by Welch. The 
service time of the first unit in each busy period is Bo with mean bo and E(Bo) = 
bt), r = 2,3, ... , while the service time of the subsequent units is denoted by 
B [with E(Br) = b(r), r = 2,3, ... , E(B) = bJ. While E(I) = 1/ A, 

E(T) = bo + (Abo)b = ~ 
I-a I-a' 

(19.4) 

p = 
E(T) Abo 

(19.5) 
E(I) + E(T) 1 + Abo - a 

and 

I-a 
Po = 1- p = . 

1 + Abo - a ' 
(19.6) 

further, E(T) = t:p E(I) holds. 
Denote 

Bl = generalized service time 

Bo or B according as the unit is the first to be served in a busy 

period or not; 
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by conditioning, we get 

E(B1) boPo + b(1 - Po) 
bo p 

= 1 + Abo - a = ~ ; 

that is, p = AE(Bl)' Further, 

E(Bn = b~2) Po + b(2)(1 - Po) 

(1 - a)b~2) + AbOb(2) 

1 + Abo - a 

Thus the mean residual (generalized) service time is given by 

E(B ) = E(Bf) = (1 - ao)b~2) + AbOb(2) 
lR 2E(Bl) 2bo 

J. Medhi 

(19.7) 

(19.8) 

(writing BIR as the residual generalized service time). One gets as in (19.2) 

or 
p p E(Bf) 

WQ = 1 _ a E(BIR) = 1 - a 2E(B1) 

which can be put in the form 

(19.9) 

When Bo == B, then the second term vanishes and (19.9) reduces to (19.3). 
Considering that the first unit of the busy period has service time B + ~, 

where {~} is a sequence of Li.d. random variables independent of other random 
variables, that is, Bo = B + ~, one gets the same result as above. 

19.3 MIG/1 With Random Setup Time S 

Here the first message (customer) in a busy period needs a setup time of random 
duration S before service is started. The expected idle and busy periods are, 
respectively, 

E(I) 
1 

(19.10) = ~ + E(S) 

E(T) = 
AE(I)b 

= 
{I + AE(S)}b b + aE(S) 

(19.11) 
I-a I-a I-a 
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and the utilization factor p = Ecn~l(I) = a, which equals the probability 
that the server is busy in a standard M/G/1 queue without setup time. The 

utilization factor is not affected by the setup time; further E(T) = (~) E(I) 
holds. Consider that the delay cycle D starts as soon as a unit arrives to 
an empty system and continues till the system becomes empty again. It is 
generated by the setup period and the first service time. Thus 

E(D) = {E(S) + b} + [A{E(S) + b}]b = _1_ {E(S) + b}. 
1-p 1-p 

The delay cycle D and the empty period (duration of state 0) L form an alter
nating renewal process. Thus 

E(L) 1- p 

Po = E(L) + E(D) = 1 + AE(S) (19.12) 

so that Po = 1 - p, only when E(S) == 0, that is, when there is no setup time. 
The expected waiting time in the queue W Q is given by 

where 

We get 

and 

Thus 

WQ = LQE(B) + E(Residual service time) Pr[server is busy] 

+ {E(setup time) Pr[A] 
+ E(Residual setup time) Pr[B]} Pr[server is idle], 

A event that the test customer is the first to arrive 

in the idle period, 

B = event that the test customer arrives during the 

setup time. 

Pr[A] = 

= 

1 
Expected no. of arrivals in the idle period 

1 

1 + AE(S) 

PI' B = E(setup period) = E(S) 
[] E(idleperiod) (l/A)+E(S) 

AE(S) 
1 + AE(S) 

b(2) [E(S) E(S2) AE(S) 1 
(1 - a)WQ = p 2b + (1 - p) 1 + AE(S) + 2E(S) 1 + AE(S) 
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and since p = a, we get 

(19.13) 

The second term is the expected delay due to the setup time; it vanishes when 
there is no setup time. 

19.4 MIG/1 System Under N-Policy 

System with control (threshold) policy was first considered by Yadin and Naor 
(1963). Heyman (1968) investigated some of its optimal properties. Here, the 
server, after termination of a busy period, waits until there are a specified 
number N ~ 1 (a pre-assigned number called threshold) of arrivals; it starts 
service with the arrival of the N-th unit, and the busy period starts and lasts 
till none is left in the system (exhaustive service discipline). More general 
service disciplines have also been considered in the literature [Takagi (1991)]. 
We shall confine here to exhaustive service discipline. 

We have 

E(I) = NjA and 

The utilization factor 

E(T) 
p = E(T) + E(J) = Ab = a, 

is independent of N. Agam E(T) = G E(J) holds. 
The expected waiting time is given by 

WQ = LQE(B) + E(BR) Pr[server is busy] + E(IR) Pr[server is idle], 

(19.14) 

where BR == residual service period, and JR == residual idle (buildup) period 
(that is, the duration from the instant of arrival of the test customer to the 
instant when N-th customer arrives). Conditioning on the order in which the 
test customer arrives, we get 

( N - 1 N - 2 1) 1 N - 1 
E(IR) = --+--+···+-+0 - =--A A A N 2A· 

(19.15) 

The mean system size during an idle period equals E~(/ i (1) = Nil so that 

E(IR) = (mean system size during an idle period)j(arrival rate). 



Single Server Queueing System with Poisson Input 323 

From (19.14) one gets 

b(2) (N - 1) 
(1- a)WQ = p - + (1- p) --

2b 2A 

or 

Ab(2) N-1 

WQ = 2(1 - p) + --v:- . (19.16) 

The second term is due to the threshold N; it vanishes when N = 1. 

19.5 MIG/1 Under N-Policy and With Setup Time 

Here, once the system becomes empty the server waits till exactly N (a pre
assigned number) units have accumulated: this is the buildup period which is 
followed by a setup period S. The buildup and setup periods together constitute 
the idle period. Thus 

and 

E(I) = (N/A) + E(S) = {N + AE(S)}/A 

E(T) = {N + AE(S)}b , 
1-a 

(19.17) 

since the busy period starts with an expected number of N + AE(S) customers. 

Further, p = E(n<Jl(I) = a, independent of threshold and setup time. That 
the utilization factor is independent of the buildup period and setup period was 
shown by Medhi and Templeton (1992). Thus, E(T) = (t-:p) E(I) holds. 

The expected waiting time is given by 

WQ = LQE(B) + E(residual service time) Pr[server is busy] 

+ [E(residual buildup period plus the setup period) 

x Pr[A I server is idle] 

+ E(residual setup period) Pr[B I server is idle]] 

x Pr[server is idle], 

where A is the event that the test customer arrives in the buildup period, and 
B is the event that the test customer arrives in the setup period. Now 

Pr[A I server is idle] 
N/A N 

~~~--~=----~~ 
(N / A) + E(S) N + AE(S) 

(19.18) 

AE(S) 
N +AE(S) . 

Pr[B I server is idle] = (19.19) 



324 J. Medhi 

Thus, we get 

(1- a)WQ b(2) [{ N - 1 } 2b p+ (1- p) ~ +E(S) 
N 

N +)"E(S) 

E(S2) )"E(S) ] 
+ 2E(S) N + )"E(S) . 

Thus, 

w. _ )..b(2) N(N -1) + 2)"NE(S) + )..2E(S2) 
Q - 2(1- p) + 2)"[N + )"E(S)] (19.20) 

which is the result obtained by Takagi (1992); this result was obtained earlier 
by Yadin and Naor (1963). 

Putting N = 1, one gets the corresponding result for the system without 
threshold in (19.13); putting E(S) = E(S2) = 0, one gets the corresponding 
result for the system without setup time in (19.16). 

19.6 Queues With Vacation: MIG/1 Queueing 
System With Vacation 

Consider a situation in which the server, as soon as the system become empty, 
goes on a vacation of random duration V, where V is the generic random 
variable of the sequence of vacation periods VI, V2, . .. , which are i.i.d. random 
variables. At the termination of the first vacation period the server returns to 
the service facility. First, consider the situation where the server, finding no one 
when he returns from the first vacation, goes for a second vacation, then a third 
vacation and so on till he finds one or more waiting at the end of a vacation, 
each vacation period being of the same random duration V. This is a case of 
multiple vacations. Secondly, if he finds none waiting at the termination of the 
first vacation, he does not take any further vacation but waits till an arrival 
occurs and begins service. This is the case of single vacation. An MIG/1 
queueing system with multiple vacation is denoted by MIG/1 - Vm and that 
with a single vacation by MIG 11- Vs. In either case it is assumed that service 
is exhaustive, that is, the service will continue until none is left in the system. 
For a survey on vacation queue, refer to Doshi (1986) and for an exhaustive 
account to Takagi (1991, Vol. I). 
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19.7 M/G/l- Vm, System 

The server idle period J is the duration of time from the instant the server 
leaves for a vacation until the instant the next service begins. 

We have 

V*('x) = roo e->'tdV(t) 
.10 

= Pr[no customer arrives during a vacation period V] 
(19.21) 

and 1-V*(,X) = Pr[at least one arrives during the period V]. Thus lis the sum 
of a random number of vacation periods, that is, the sum of random number 
of i.i.d. random variables. The number is a geometric random variable with 
probability of success 1 - V*(,X) and having mean 1/[1 - V*('x)]. Thus, 

E(I) = E(V) 
1 - V*(,X) 

(19.22) 

and the average number of arrivals during an idle period is ,XE(J). Thus, the 
expected busy period equals 

T _ 'xE(V) ( b ) _ aE(V) 
E( ) - 1 _ V*(,X) 1 - a - (1 - a)[l - V*(,X)] (19.23) 

and that p = E('n~k(I) = a, independent of the vacation policy. That p = a 
holds is intuitively clear. Bohm and Mohanty (1994b) show that p = a holds in 
the discrete time M/M/1 queue with vacation. It follows that E(T) = t-:p E(I) 
holds. 

The expected waiting time is given by 

Thus 

WQ = LQ E(B) + E(residual service time) Pr[server is busy] 

+ E(residual vacation time) Pr[server is idle]. 

1 [b(2) E(V2) 1 
1 - a 2b p + 2E(V) (1 - p) 

'xb(2) E(V2) 
2(1 - p) + 2E(V) . 

The second term is due to the vacation policy. 

(19.24) 
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19.8 M/G/l- Vm, With Exceptional First Vacation 

Lee (1988) considered such a model. Here the server, as soon as the system 
becomes empty, goes for a vacation of random duration V. If, on return from 
the first vacation, he finds some unit(s) waiting he starts service till the system 
becomes empty again; if however, he does not find anyone waiting at the end 
of the first vacation, he goes for a second vacation and then for a third vacation 
and so on until he finds some unit(s) waiting on return from a vacation, the 
duration of the second and subsequent vacations being of random duration U. 
Here the first vacation is of exceptional length given by random variable V, and 
subsequent vacations of random duration given by i.i.d. random variable U. 
When V == U, we get the case discussed in the preceding section. The model is 
applicable in a situation where at the end of a busy period, the server takes a 
vacation of random duration V and if he finds none waiting on return from the 
first vacation he goes for other jobs, each of which is of random duration U. 

Since V*(A) and U*(A) give, respectively, the probability that no one arrives 
during the first vacation of duration V and subsequent vacations each of which 
is of duration U, we get, on conditioning 

E(I) = [1 - V*(A)]E(V) + V*(A) ( E(V) + 1 ~~~A)) 

E(V) + V*(A) (1 ~~~A)) . (19.25) 

The expected number of arrivals during an idle period is AE(I) and thus the 
expected length of a busy period is given by 

E(T) = AE(I) (_b_) = _a_ E(I). 
I-a I-a 

Thus 
E(T) 

P = E(T) + E(J) = a, 

which is independent of the vacation policy, and that 

holds. 

E(T) = _P- E(I) 
I-p 

The expected waiting time WQ is given by 

WQ = LQ E(B) + E(residual service time) Pr[server is busy] 

+{E(residual first vacation) Pr[AIC] 

+E(residual vacation other that the first) Pr[BIC]} 

x Pr[server is idle], 

(19.26) 

(19.27) 
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where 

A is the event that server is on first vacation, 
B is the event that server is on a vacation other than the first, 
C is the event that server is idle. 

We have 

E(V) E(V)[1 - U*(A)] 
Pr[AIC] = E(I) = E(V)[1 - U*(A)] + V*(A)E(U) 

and 
Pr[BIC] = 1 - Pr[AIC]. 

From (19.27), one gets 

Ab(2) [1 - U*(A)]E(V2) + V*(A)E(U2) 

WQ = 2(1 - p) + 2[E(V){1 - U*(A)} + V*(A)E(U)] 

When V == U, (19.29) reduces to (19.24). 

19.9 MIG/1 - Vs System 

327 

(19.28) 

(19.29) 

In a Poisson input system, where, the server, at the end of a busy period, goes 
for a single vacation of random duration V, the expected idle period of the 
server can be obtained, by conditioning, as 

E(J) = [1 - V*(A)]E(V) + V*(A)[E(V) + 1/ A] 

= E(V) + V*(A)/A. 

The expected busy period is given by 

so that 

and 

E(T) = AE(I) _b_ = _a_ E(I) 
1-a 1-a 

E(T) 
p = E(T) + E(I) = a 

E(T) = _P- E(I). 
1-p 

The expected waiting time is given by 

WQ = LQ E(B) + E(residual service time) Pr[server is busy] 

+ E(residual vacation time) 

x PI' [server on vacation I server is idle] 

x PI' [server is idle]. 

(19.30) 

(19.31) 
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Now 

Pr[server on vacation I server is idle] = ~~~1 . 
Thus, 

b(2) E(V2) E(V) 
(1- a)WQ = 2b p + 2E(V) E(J) (1 - p) 

so that 

(19.32) 

19.10 MIGI1 System With Vacation and Under 
N -Policy (With Threshold N) 

The system has been considered by Kella (1989) and the more general case with 
batch arrivals by Lee et al. (1994) and recently by Chae and Lee (1995). 

We examine the system M/G/1 - Vm under N-policy. In the approach 
adopted in the two latter papers they consider grand vacation and grand va
cation process. A grand vacation G starts at the instant the system becomes 
empty and the server leaves for the first vacation VI and then for a second 
vacation and so on until the server finds one or more customers after returning 
from a vacation. A grand vacation comprises of m vacations (the duration of 
these being Li.d. random variable V) such that there is no arrival in the first 
m - 1 vacations and there are one or more arrivals only in the m-th vacation, 
m = 1,2, .... Clearly, the number M of vacations comprised in a grand vacation 
is a geometric random variable such that 

Pr[M = m] = ao- I (1- aD), m = 1,2, ... , 

an = roo e-)..t (>.tt dFv(t), n = 0,1,2, ... , (19.33) 
10 n. 

Fv(-) being the dJ. of V and aD = V*(>'), LST of V(·); an gives the probability 
that the number of arrivals during a vacation V (with dJ. Fv(·)) is n, n = 
0,1,2, .... It follows that the expected length of a grand vacation is given by 

E( G) = E(V) = E(V) 
1 - aD 1 - V*(>.) 

(19.34) 

The probability that j customers arrive during a grand vacation is aj/(1 -
aD). Let 13k be the probability that the grand vacation process passes through 
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state k, with k = 1,2, ... , N - 1 and since it passes through state 0, {3o = 1. 
Conditioning on the arrival size during the first grand vacation, one gets 

k 

13k = L {3k-j[ak/(1 - ao)], 
j=l 

Thus, 13k'S can be computed. 

k = 1,2, ... , N - 1. (19.35) 

Lee et at. show that the expected number of grand vacations during an idle 
period is given by l:f=ol {3j. Using Wald identity, the expected length of idle 
period J is seen to be 

[
N-1 1 E(V) 

E(I) = ]; {3j 1 _ V*()') . (19.36) 

Now the expected number of customers at the initiation of a busy period is 
given by )'E(I), so that the expected busy period is given by 

from which it follows that 

E(T) = _a_ E(I) 
I-a 

E(T) 
P = E(T) + E(I) = a, 

independent of vacation policy and threshold N and that 

E(T) = _P- E(I) . 
I-p 

(19.37) 

The probability that there are j customers in the system at a vacation initiation 
point equals {3j / [l:~o 1 {3i]. The ratio 

N-1 N-1 

L j{3j / L {3j 
j=o j=o 

(19.38) 

can be interpreted as the mean state of the grand vacation process during an 
idle period. We have seen in Section 19.4 (N-policy system without vacation) 
that the expected residual buildup (dormant) period equals 

[the mean system size during an idle period]/[the arrival rate]. 

Here residual idle period comprises of residual vacation period and residual 
buildup period. Thus, we get that the mean residual idle period E(IR) in case 
of N-policy multiple vacation queue 

E(J ) = E(V ) + ~ l:f=ol j{3j 
R R). "N-1{3' 

L.J]=O ] 

(19.39) 
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Now from 

we get 

or 

WQ = LQ E(B) + E(BR) Pr[server is busy] 

+ E(IR) Pr[server is idle], 

J. Medhi 

(19.40) 

(19.41) 

The first term corresponds to expected waiting time in a standard M/G/l 
queue, the second term involves vacation random variable, so that, the first two 
terms give WQ for M/G/l - Vm system; the third term is due to the N-policy: 
when N = 1, this term vanishes. 

Now we consider the M/G/l - Vs system under N-policy with single vaca
tion. Let Tn be the probability that in a buildup (dormant) period after the 
completion of vacation period, the system size is 71" 71, = 0,1, ... ,N - 1. Then 
TO = ao = probability that no one arrives in the vacation period; and if the 
number of arrivals in the vacation period is k « N), then the buildup (dor
mant) period begins and the system at the stage is like one without vacation 
and under (N - k)-policy. Thus, 

n 

Tn = 2..: ak9n-k, 

k=O 

(19.42) 

where 9n is the probability that the system without vacation and under (N - k)
policy passes through the state 71, during the buildup period. It is shown that 
"E,;;,;:"l Tn is the mean number of arrivals during a dormant period, and that the 
mean duration of dormant period is 

mean number of arrivals during dormant period ~l / 
= =L~~ 

mean arrival rate n=O ' 

so that the expected idle period is given by 

N-l 

E(I) = E(V) + 2..: Tn/~. (19.43) 
n=O 

The expected busy period equals 

E(T) = ~E(I) (_b_) = _a_ E(I) 
I-a I-a 
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so that the utilization factor is given by 

E(T) 
P = E(T) + E(1) = a, 

independent of the vacation and the N-policy. Further, 

and 

Pr[VII] = PI' [server is on vacation I server is idle] 

E(V) 

Pr[DII] 

E(1) , 

Pr[system is in dormant period I server is idle] 

'L,;;':d Inl A 
E(1) 

The mean system size during the dormant period equals 

N-l /N-l 

L n,n LIn 
n=O n=O 

and the meantime for mean system size to accumulate is 

N-l N-l 

(II A) L n,nl L,n. 
n=O n=O 
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(19.44) 

(19.45) 

(19.46) 

Thus, the mean residual idle period (after the arrival of the test customer) is 
given by 

Now 

which gives 

Ab(2) E(V2) E(V) 1 ~n,n ~/nl A 
W Q = + + - -- ----'----

2(1 - p) 2E(V) E(V) + ~/n I A A ~/n E(V) + ~/nl A 
Ab(2) AE(V2) 1 ~n,n 

= 2(1 - p) + 2[AE(V) + ~/n] + >: AE(V) + ~/n . (19.47) 

For details, see Chae and Lee (1995). 
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19.11 M X IGll System With Batch Arrival 

In case of compound Poisson arrivals, Poisson streams of customers arrive in 
batches and the test customer has to wait for completion of service of the unit 
in service, if any, and of those in the queue that he finds on arrival (in a batch), 
but also has to wait for completion of the service of those arriving in the same 
batch but are served ahead of him. 

Thus, in place of (19.2) for single arrivals, in case of compound Poisson 
arrivals, the mean waiting time in the queue (of the test customer) is found to 
be 

WQ = [LQ + E(XR)]E(B) + E(BR) Pr[server is busy], (19.48) 

where XR is the number of customers in the group in which the test customer 
in the group arrives and are to be served ahead of the test customer. E(X;t), 
which is the mean residual group size, is given by 

(19.49) 

The mean delay due to this group is bE(XR) [see also Medhi (1991)]. 
With P = AE(X)E(B) = aE(X), LQ = AE(X)WQ, one gets 

1 
WQ = 1 _ P [E(XR)E(B) + E(BR)p] 

= AE(X)b(2) b [E(X2 - X)] 
2(1 - p) + 2(1 - p) E(X) . 

(19.50) 

The second term is due to the expected delay for the service of the residual 
group sizej it does not occur in case of a single arrival system, since E(XR) = 0 
for single arrival case. 

19.12 M X IGll Under N-Policy 

The system was considered by Lee and Srinivasan (1989) and also by Lee et 
al. (1994). The arrivals occur in a batch of size X at Poisson input instants 
with rate A, and hi = Pr[X = i]j the arrival rate is AE(X). The server, as 
soon as the system becomes empty, is idle and waits till there are at least N 
arrivals. This duration is the idle period I. Let 7rj be the probability that the 
number in the system is j in an idle period. Then 7ro = 1, since the idle period 
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always begins at state OJ by conditioning on the first group size i, one gets 
7rj = 'E{=l Pr[X = i]7rj-i = 'E{=l h i 7rj-i, j = 1,2, ... , N - 1. Thus since 7ro 
is known, 7rj's can be obtained recursively. It can be seen that 'Ef="(/7rj gives 
the mean number of arrival groups during an idle period, and with A as the 
arrival rate for groups, the mean duration for the arrival of these mean number 
of batches is 'Ef::c/ 7rj / A, which gives the mean idle period as 

N-l 

E(I) = (1/ A) L 7rj. 
j=O 

(19.51) 

The mean number of arrivals during an idle period is E(J)[AE(X)], so that the 
mean busy period equals 

1 P 
E(T) = AE(X)E(J) 1-£ _ AE(X) = 1 _ P E(J). 

Now, the mean residual idle period, given that the server is idle, is 

mean system size during an idle period 
= 

arrival rate 
"N-l / "N-l 
Lm=O n7rn Lm=O 7rn 

AE(X) 
(19.52) 

Thus the mean waiting time can be obtained from (19.50) by adding a term 
corresponding to the residual idle period. We have 

WQ = _1_[{expected residual service time}Pr[server is busy] 
1-p 
+{ expected service time of the residual group in which 

the test customer arrives and who are served prior to him} 

+{ expected residual idle period} Pr[server is idle]] 

1 [b(2) 1 E(X2 - X) L,'rI,7rn/E7rn] 
= 1 - P P 2b + '2 E(X) b + (1 - p) AE(X) . 

(19.53) 

When Pr[X = 1] = 1 (for single arrivals), the second term becomes 0 and 
7rj = 1, j = 0,1,2, ... ,N - 1, so that the last term becomes 

(N -1) (l-p) 2:\ 

and (19.53) reduces to (19.16). 
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Here as in the case of M/G/1 - Vm (Section 19.7), we have 

and 

E(I) = E(V)/[l - V*('\)] 

E(T) = _P- E(I). 
1-p 

In computing queueing time, we have also to include the delay for residual 
vacation time VR, should the test customer arrive during a vacation time with 
the server lying idle. Making this adjustment one gets, from (19.50), 

1 
WQ = 1 _ p[E(B)E(XR) + E(BR)p + E(VR) Pr[VII](l - p)]. (19.54) 

In case of M/G/1 - Vs system, 

Here, 

E(I) 

E(T) 

E(V) + V*('\)/'\ 

-p- E(I). 
1-p 

Pr[VII] = PI' [server on vacation I server is idle] 
E(V) E(V) (1 - p) 
E(I) (1 - p) = E(V) + V*('\)/'\ . 

Taking this into consideration, one can get (as in Section 19.9) 

_ 1 (2) b E(V2) 
WQ - 2(1 _ p) '\E(X)b + 1 _ p E(XR) + 2E(I) . 

For single arrival, E(XR) = 0, E(X) = 1; one then gets (19.32). 

(19.55) 

(19.56) 

19.14 M X /0/1 Vacation Queues Under N-Policy 

The analysis is identical with that of the corresponding system with single 
arrivals. Writing '\E(X) for .\ in (19.41), p = aE(X) and adding the term due 
to the delay for the residual group size (those arriving in the same group but 
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served prior to the test customer) given by the last term in (19.50), one gets 
for N-policy MX /G/1 - Vm queue with vacation, 

>'E(X)b(2) b 2 

2(1- p) + 2E(X)(1- p) E(X - X) 

E(V2) 1 E;;,:l nf3n 

+ 2E(V) + >'E(X) E;;':Ol f3n . 
(19.57) 

Consider now N-policy M X /G/1 - Va queue with vacation. 
We note that E;;':Ol In (defined in Section 19.10) gives the mean number 

of arrival groups so that mean staying time will still be ~/n/ >. so that E(l), 
Pr[Vll] and Pr[Dll] will remain unchanged [as in Eqs. (19.43), (19.44), (19.45)]. 
Writing >'E(X) for>. in the first factor of the last term of (19.47) and adding 
the term due to the delay for the residual group size as given by the last term 
of (19.50), one gets 

>'E(X)b(2) b 2 

WQ = 2(1 _ p) + 2E(X)(1 _ p) E(X - X) 

E(V2) >'E(V) 
+ 2E(V) >'E(V) + ~/n 

1 ~n,n ~/n 

+ >'E(X) ~/n >'E(V) + ~/n 
>'E(X)b(2) b 2 

= 2(1 _ p) + 2E(X)(1 _ p) E(X - X) 

>'E(V2) 1 ~n,n 
+ 2[>'E(V) + ~/n] + >'E(X) >'E(V) + ~/n . 

(19.58) 

The first two terms give the expected waiting time for M X /G/1 system without 
threshold and vacation [as given in (19.50)]. The result for N-policy M /G /1-Va 
system can be obtained by putting E(X) = E(X2) = 1. 

19.15 Concluding Remarks 

Here we have used heuristic approach to find some important performance mea
sures of an important class of queueing systems without going into decompo
sition property. This important property, first established by Fuhrmann and 
Cooper (1985) for M/G/1 system with vacation, has been extended for more 
general case of N-policy M X /G/1 system with vacations, multiple as well as 
single, by Lee et al. (1994, 1995) to which reference may be made for detailed 
analysis. In a very recent paper, Lee et al. (1996) consider continuous dif
fusion approximation for more general G I / G /1 queue with batch arrival and 
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N-policy. In another, Lee et al. (1996) also consider fixed batch service queues 
with vacations. Further results on general batch service [Medhi (1991)] queues 
would be of interest. 
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Recent Advances in the Analysis of Polling 
Systems 

Diwakar Gupta and Yavuz Giinalay 

McMaster University, Hamilton, Ontario, Canada 

Abstract: This article summarizes some recent advances in the analysis of 
polling models in which the server uses system-state information to affect its 
behavior. Literature dealing with a special class of such models in which the 
server lies dormant upon finding the system empty, and reactivates only when 
the system is populated by a critical number of customers, is closely examined. 
Rather than provide a broad review of literature, the focus of this article is on 
providing insights, on building bridges with earlier literature, and on identifying 
common underlying principles. 

Keywords and phrases: Polling models, state dependent server scheduling, 
threshold start-up, threshold setups, dormant/patient server, descendant sets, 
queueing theory 

20.1 Introduction 

Polling systems is the name given to queueing systems with multiple customer 
classes, in which each customer class forms its own separate queue (station). 
There is typically only one server that travels from one queueing station to the 
next in a cyclic fashion. A strictly cyclic protocol is one in which each sta
tion is visited exactly once in a complete tour (by the server) of all stations. 
Many variations of this basic routing policy are possible, for example, rout
ing according to a polling table-a generalization of cyclic protocol in which 
some stations might be visited more than once in a cycle; and state-dependent 
routing- e.g., server travelling directly (jumping) to the longest queue, or to 
the nearest non-empty queue next. 

Inter-station travel times are usually non-zero and are called switch over 
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times. When the server arrives at a station, it is often required to complete a 
setup before it can start serving customers at that station. Once it sets up, the 
server satisfies a certain number of customers depending on the service policy 
in effect. A majority of service policies that have been studied in literature 
require only local queue information. Some common examples are exhaustive
where server empties the queue before moving on to another, gated-where it 
serves only those customers that it finds waiting upon completing the setup, 
K-limited-where it serves either exactly K customers or empties the queue, 
whichever occurs first, and timer-Limited-where the server stays at a queue 
for a prespecified length of time or until it empties the queue, again, whichever 
occurs first. However, advances in computer technology permit modern systems 
to acquire increasing amounts of system information at negligible cost. In 
other words, information concerning status of all queues in the system can 
be collected at great speed (often much faster than the speed with which the 
server moves), and at negligible additional cost. Therefore, more information
hungry policies, i.e., policies based on the status of all queues in the system are 
becoming increasingly more practical. An example of this kind of service policies 
is the globally gated policy-where server attends to only those customers that 
were present at the queue when it finished setting up for a home station, the 
starting point of its tour [Borst (1995) and Boxma, Weststrate and Yechiali 
(1993)]. 

In addition to the various combinations of routing and service policies that 
are possible, the class of polling models is further enriched by novel features 
that come from new applications of these models. For example, when modelling 
manufacturing systems, the server (which would be a machine, a robot, or a 
transportation device such as an automated guided vehicle (AGV)) might turn 
itself off (lie dormant), upon finding no pending requests for service in the 
entire system, in order to conserve energy Icost. Furthermore, when faced with 
a one time startup cost, the server might not reactivate until the number of 
new arrivals to the system exceeds a certain threshold. Similarly, the server 
might decide to setup for the next class of customers only if the number of 
waiting customers of that class is more than a certain minimum. Otherwise, the 
server passes through that station without setting up and polls the next queue, 
at which the same protocol is applied once more. The minimum number of 
customers necessary to warrant a setup might be different at different stations. 
A feature that is common to all these models is the fact they use information 
about the state of the system 1 to affect server behavior. 

Polling models emerged from the telecommunications field as tools for mod
eling and evaluating performance of computer and communications networks 
(for example, Local Area Networks). The term polling systems evolved from 
models of decentralized communication networks having a single multiple-access 
channel in which communication is provided by having the token (bus) poll 

lState is described by the number of customers in each of the queues of the system. 
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(query/response) each terminal (node) and then transmit messages according 
to some prespecified protocol, e.g., exhaustive. In these situations, the speed 
with which the server (token) travels from station to station is extremely fast 
and polling is the only mechanism by which the server can ascertain the num
ber /length of messages waiting to be transmitted. Naturally, polling models 
were developed with a variety of routing/service policies, but in these early 
models, the server did not utilize any system-state information to determine its 
behavior. 

With the enlargement of the set of potential applications of polling models 
[see Benjaafar and Gupta (1996a,b), Bozer and Srinivasan (1991), Federgruen 
and Katalan (1996), Sarkar and Zangwill (1991) and Srinivasan and Gupta 
(1996) for some recent examples and Levi and Sidi (1990) for some standard 
ones], and availability of cheaper and faster information, it is now practical 
to consider state-dependent server scheduling rules [Ferguson (1986), Giinalay 
and Gupta (1996a,b) and Gupta and Srinivasan (1996b)]. The objective of this 
article is to review some recent developments in the analysis of such models, 
focusing on providing insights, on building bridges with earlier literature, and 
on identifying common underlying principles. Clearly, this is a biased view and 
colored by the authors' own endeavors in this area of research. 

This article is not a basic review of the analysis of polling models, which 
has been a very fertile area of research over the last several decades. It has 
spawned hundreds of research articles, and the pace has been getting faster over 
the last several years. Takagi (1986) first reviewed and summarized literature 
until 1986 and since then he has twice updated his review to include recent 
developments: Takagi (1990) until 1990, and Takagi (1994) for advances in 
1990-1993. Practically, all of the studies which have been summarized in this 
article are more recent. Thus, this article assumes a rudimentary familiarity 
with basic polling models literature, with a focus on providing an in-depth 
analysis of significant recent trends. Readers who are not at all familiar with 
polling models literature will benefit greatly by consulting the previous reviews 
by Takagi (1986, 1990, 1994) before proceeding further. 

The organization of the rest of this article is as follows. Notations and 
model details are provided in the next Section. This Section also contains an 
important decomposition result [from Fuhrmann and Cooper (1985)] which is 
used often in the analysis of polling models. The main results are presented 
in Section 20.3. The approach outlined in this article is quite versatile and 
extends easily to cover many different variations of the basic model described 
here. Some examples of such alternate models that are motivated by well-known 
applications are mentioned in Section 20.4. Section 20.5 is devoted to building 
bridges with other polling systems literature. The last Section of this article 
contains a few thoughts on important future directions for research in this field. 
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20.2 Notations and Preliminaries 

A polling system with M stations (customer classes) is considered in which each 
station behaves like an M/G/1 queue. That is, station i has an independent 
Poisson arrival stream of rate Ai, service time Si, and busy period 8i. The du
ration of a setup at station i, if performed, is denoted by Ti, and the switchover 
time from station i to station i + 1 is denoted by Ri. All time length random 
variables, i.e., Si, Ti and 14, are assumed to have finite means and variances 
and time-stationary distributions that are independent of each other and of the 
arrival process. Load at station i is denoted by Pi = AiE[Si], and the system 
load by P = 'L~1 Pi' RT = 'Lt!1 Ri and A = 'Lt!1 Ai denote, respectively, 
the total switchover time per cycle and the total arrival rate. Since arrivals are 
Poisson, Pi = Ad A is the probability that an arbitrary arrival to the system is 
a type i customer. The performance measure of primary interest is the mean 
station waiting time, denoted by E[Wi] for station i. 

The notational conventions used in this article are as follows. For a random 
variable A, notation A(t), A*(s), E[A] and E[A2] are used to denote the cumula
tive distribution function, the Laplace-Stieltjes transform (LST), the mean, and 

the second moment, respectively. If A is discrete, then A(z) ~ E[zA] denotes 
its probability generating function (PGF). Single and double prime notation is 
used to denote, respectively, first and second derivative with respect to z. The 
notation n, (or z) represents a 1 x M vector of ni's (or Zi'S). 

This article concentrates on polling models in which the server always moves 
along a fixed path and visits stations in a strict cyclic order. Also, it primarily 
deals with the exhaustive service policy. The analysis of the gated service regime 
is very similar to what is presented here, as discussed briefly in Section 20.4.3. 

Exhaustive policy is a good straw policy to consider when fairness is not an 
issue; this is typically true in manufacturing environments wherein customers 
are not people but jobs waiting for machining, or other types of processing. Liu, 
Nain and Towsley (1992) have shown that the exhaustive policy minimizes the 
total unfinished work in system. Another reason for choosing strictly cyclic
exhaustive service model is that for this model, Altman, Konstantopoulos and 
Liu (1992) have shown P < 1 to be both necessary and sufficient condition 
for stability of the queueing system, i.e., for the existence of the stationary 
joint distribution of station queue lengths. This is true irrespective of the du
ration of setups/switchovers, of whether setups are done in a state-dependent 
or independent fashion, and whether or not the server stops upon finding the 
system empty. When either the server routing is done in a dynamic fashion 
(different from cyclic or polling table) and/or service policy is other than ex
haustive/gated, the stability of the system requires additional conditions [see 
Altman, Konstantopoulos and Liu (1992) for details] that depend on the mag-
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nitude of setups/switchovers. 

In many applications, switchover times are either negligible or unavoidable 
since the server needs to switch to ascertain the status of the next queue. 
Whenever a setup always follows switchover from the previous queue, setup 
and switchover times can be treated as one by defining a new switchover time 
which is the sum of Ri and Ii+!. What we get is a model with state-independent 
switchover /setup overheads, and this fact greatly simplifies the mathematical 
analysis. However, the server may postpone a setup if it does not find at 
least a critical number of waiting customers upon polling the station. Such 
models are particularly suitable for modelling manufacturing systems and have 
been studied in two recent papers [Giinalay and Gupta (1996a) and Gupta and 
Srinivasan (1996b)]. However, their analysis is difficult, and mathematically 
exact analysis of systems with infinite buffers and M> 2 is not yet available. 

Belonging to the set of cyclic-exhaustive polling models is another distinc
tion of the server behavior that deserves special mention: continuously roving 
server-where the server never stops, and patient server-where the server stops 
upon finding the system empty [Srinivasan and Gupta (1996)]. Within the pa
tient class of models, several variations are possible. The server could stop at 
the same station where it first observes the system empty, or move to a preferred 
station and stop only if the system is still empty. If the system is repopulated 
before the server has had a chance to reach its preferred station, the server 
ignores the fact that the system became momentarily empty. Typically, if we 
are modelling a robot that is attending to several tasks, we might wish it to 
stop immediately upon discovering that there are no more pending jobs. On 
the other hand, if we are modelling AGVs, it would make sense to have them 
stop only at the designated park area (station). 

Additional variations could arise from differences in monitoring frequency 
while the system is idle, as well as in the criterion used to restart the server. 
For example, if in the dormant state the server attends to other (possibly lower 
priority) tasks, it might only be able to monitor the state periodically (or react 
to changes in system state periodically). Alternatively, it is also possible to 
have continuous monitoring. In each case, the server could either start as soon 
as there is at least one customer in the system, or until the system is populated 
by at least a critical number of customers. Also, it could either travel in the 
fixed cyclic path or jump directly to the first non-empty queue upon restarting 
[Eisenberg (1994)]. 

In this survey article, we shall take a close look at cyclic-exhaustive polling 
systems with state-independent setups and continuous monitoring. Thus, when 
the system restarts after being dormant for some time, it will always have the 
same number of customers, N 2:: O. This model is also known as the thresh
old startups model and N is called the startup threshold [Giinalay and Gupta 
(1996a)]. Several special instances of this model are well known in queueing 
literature. When N = 0, we obtain a model with a continuously roving server 
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[this model has been reviewed extensively by Takagi (1986, 1990, 1994)]; when 
N = 1, the corresponding model is called the patient/stopping server model 
[studied first by Eisenberg (1971) for M = 2, and later by Eisenberg (1994) 
and Srinivasan and Gupta (1996) for any general M]; and finally when there is 
a single customer class, i.e., M = 1, and N > 0, we obtain the M/G/1 queue 
with a N-policy [studied by Heyman and Sobel; see Heyman and Sobel (1982, 
pp. 445) for waiting time characteristics of this model, and Heyman and Sobel 
(1984, Section 7.2) for a discussion of optimality of this policy within the class 
of server control policies with a removable server]. Models with periodic mon
itoring, and those with state-dependent setups, are discussed in Section 20.4. 
We also show how these different models relate to the threshold startup model. 

Lying dormant after the system becomes empty is an example of server con
trol policies that allow the server to idle. More general forms of idling behavior 
are certainly possible, e.g., idling at an empty station even when system is not 
empty. It is intuitively straightforward to reason that idling at a non-empty 
station is never advisable [see Liu, Nain and Towsley (1992) for discussion and 
proof] so long as the objective is to minimize total work in the system. Anal
ysis of polling models, in which server idling does not necessarily commence 
when the system is empty, is mathematically difficult and only some heuristic 
solutions have been reported to date [see, for example, Duenyas and Van Oyen 
(1996)]. We shall revisit idling issues in Section 20.5 when we discuss forced 
server idling and its sometimes paradoxical impact on system performance: 
forced idling can sometimes reduce mean customer waiting times. 

Before closing this Section, it is useful to discuss the Fuhrmann-Cooper 
Stochastic Decomposition Theorem [Fuhrmann and Cooper (1985)] for M/G/1 
queues and its relevance to the analysis of polling models. Fuhrmann and 
Cooper have shown that the decomposition property, i.e., the fact that the sta
tionary number of customers present at a random observation epoch in M/G/1 
queues with server vacations is a sum of two or more random variables, one of 
which is the number of customers present in the corresponding standard M/G/1 
queue (with no vacations), holds for a large class of M/G/1 models including 
several polling models [see Cooper (1970) for the first discovery of this princi
ple in the context of polling models]. Whenever applicable, this decomposition 
principle greatly simplifies the analysis of polling models. The amount of time 
that the server is away from a station (serving other stations, switching, setting 
up, or idling) is treated as a vacation from that station. Station performance 
measures can be obtained by imbedding Markov chains at the start and end 
of service at each station (which is also the end and start of a server vaca
tion, respectively, from that station), rather than imbedding it at every service 
completion epoch. 

Consider the Markov chains imbedded at the start- and the end-of-server
vacation from each station. These instances correspond, respectively, to the 
time epochs when the server completes service at a station to either move 
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to the next station or to lie dormant at that same station, and the moment 
when it returns to a station, or reactivates at that station, to start a new 
round of service. Let ki(i'i,) and 9i(fi,) denote the probabilities that an arbi
trary start/end of server vacation instant happens to be at station i and that 
there are fi, customers (with elements ni ~ 0 V i) in the system. Similarly, 
ki(z) and 9i(Z) will denote the partial PGFs of queue lengths at start/end 

of server vacation epochs, i.e., ki(z) ~ L:~=o··· L:~M=O ki(fi,) TIJ!,1 z;j and 

( -) b,. ",,00 ",,00 (-) TIM nj 9i Z = L.ml=O· .. l..JnM=O 9i n j=1 Zj . 

In what follows, we shall develop relationships to determine stationary queue 
length distribution at station 1. Setting station index to 1 causes no loss of 
generality and other stations can be treated in a like manner, or simply by 
renumbering stations such that the station we wish to analyze is always in
dexed 1. Let 1I1(Z) denote the PGF of stationary queue lengths at a departure 
instant of an arbitrary type-1 customer. Then, from Fuhrmann and Cooper's 
Proposition 2 [Fuhrmann and Cooper (1985)], we obtain [additional details can 
be found, for example, in Giinalay and Gupta (1996a, Section 4.1)] 

(20.1) 

Differentiating (20.1) with respect to Z and then setting z = 1, we get the 
expected queue length of station 1 at a customer departure instant, which is 
also the average queue length at station 1 at an arbitrary observation epoch in 
a large number of models (see Section 20.4.1 for a model for which this does 
not apply). Distributions of queues left behind by a departing customer and 
those observed at arbitrary observation epochs coincide due to two important 
properties [see, for example, Cooper (1990, pp. 186-188)]: PASTA (Poisson 
Arrivals See Time Averages) property and the single-arrival single-departure 
property (i.e., there can be at most one arrival or departure at any observation 
instant). In such cases, Little's Law can be used to obtain the mean waiting 
time of type-1 customers as 

k1(I) AIE[Sr] 
2Alk~ (1) + 2(1 - PI) . 

(20.2) 

The reader should note that the decomposition in (20.1) also applies to the 
waiting time distribution for certain models with N :::; 1 [see, for example, 
Srinivasan and Gupta (1996, Eq. 1, pp. 441)]. However, it is no longer true 
when N > 1. Details of this important observation are worked out in Exercise 
12, Part h, pp. 222-223 of Cooper (1990). 

Following the simplification made possible by Fuhrmann-Cooper decomposi
tion, the major effort in recent articles involving steady state analysis of polling 
models has been on determining the PGFs, ki(z)'s, and their moments. 
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20.3 Main Results 

In this section, some important results and insights are presented for the M 
station polling system with a patient server that restarts only after exactly N 
new arrivals occur following the start of idle state of the server. It is assumed, 
in this central analysis, that the server always restarts at the station at which it 
idles and cycles around to the first non-empty station in case the idling station 
is empty at the moment it is reactivated. Various other models that could be 
analyzed using essentially this very framework are discussed in the next section. 

The most promising method to emerge in recent years to compute ki (z) 's and 
their moments is the descendant sets method. It was first applied to the stan
dard polling model by Konheim, Levi and Srinivasan (1994). Since then, it has 
been successfully used to model many variations; for example, Duenyas, Gupta 
and Lennon (1995) used it to model tandem queues, Srinivasan and Gupta 
(1996) modelled patient server systems, and Giinalay and Gupta (1996a,b) de
veloped models with state-dependent setups and threshold startups. 

The main idea of the descendant sets method is straightforward. It begins 
by recognizing two types of customers (within each customer class). Original 
customers are those that arrive either during a setup/switchover time, or at a 
time when the server is idle. Non-original customers, on the other hand, are 
those that arrive during the service time of another customer, and therefore 
belong to the descendant set of an original customer. If we now examine an 
arbitrary end-of-server-vacation epoch at station 1, which is called the reference 
point, all type 1 customers who are waiting in the queue at that time must either 
be original customers or descendants of past original customers. Since counting 
of the size of the descendant set is a simple branching process, the task of 
finding the PGF of the queue length reduces to that of computing contributions 
(subsets of the descendant sets of original customers) in a recursive fashion. 

The concept of a cycle plays an important role in the descendant sets 
method. At station i, a server cycle, Gi, is defined as the amount of time that 
elapses between any two end-of-server-vacation instances that are preceded by a 
switch from station i - 1, i.e., when neither one corresponds to a server startup 
instance at station i following an idle period there. A consequence of this def
inition is that the cycle index does not advance when the server reactivates 
following an idle period. Since the routing protocol is strictly cyclic, it is easy 
to see that E[Gi ] = E[G] is the same for all stations. This is, however, not true 
for higher moments of the cycle length. 

Let ~,c denote the number of customers in queue 1 at reference point who 
have descended from original customers that arrived during a switchover from 
station i to station i + 1, c cycles prior to the reference point. Then, ~,c(z), 
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its PGF, can be written as 

( 
M i ) 

Ri,c(z) £:, Ri j~}Aj - AjLj,c(z)] + j;[Aj - AjLj,c-1(Z)] , 

i=l, ... ,M, c2:::0. (20.3) 

Eq. (20.3) follows from the fact that type j ::; i arrivals are served in the 
next cycle, but type j > i are served in the same cycle, i.e., the cycle indexed 
c. The term Lj,c(z) denotes the PGF of the contribution to station 1 queue, at 
reference point, from a customer that is served at station j, c cycles ago. We 
define Li,c(z) as follows: 

Li,c(z) £:, 8i (. f [Aj - AjLj,c(z)] + ~[Aj - AjLj,C-1(Z)]) , 
J=I+1 J=l 

i = 1, ... ,M, c 2::: O. (20.4) 

Alternatively, Li,c(Z) can also be written as 

s; (~[A; - A;L;Az)] + %[A; - A;L;,,_l(Z)]) , 

i = 1, ... ,M, c 2::: O. (20.5) 

The difference between these two equivalent representations is that in the for
mer, we treat the busy period as the amount of time that each customer engages 
the server. Hence, we do not need to account for the off spring that arrive dur
ing the service period of a customer. These offspring receive service in the same 
cycle (though, in reality, this may not happen immediately after the service of 
the parent). In the latter representation, every off spring of a customer is ex
plicitly modeled. This method of counting contributions is particularly suitable 
when considering customer routing, which is discussed in Section 20.4.1. 

The boundary conditions for starting recursive counting of contributions 
are: Ll,-l(Z) = Z and Li,-l(Z) = 1, for all i > 1. This follows from the facts 
that the reference point is the start of service at station 1 in the cycle indexed 
-1, that all customers present at station 1 at this moment have a contribution 
of exactly 1, and that the customers present at other stations at the start of 
the -l-th cycle do not get a chance to contribute to the station 1 queue length. 

Counting contributions going backward in time, we know that the total con
tributions would amount to TI~o TIi'!l ~,c(z) if the server never idles [see, for 
example, Konheim, Levi and Srinivasan (1994) for formal arguments]. In our 
model, the server stops, every time the system is empty. Since only contribu
tions from that moment onwards are non-zero, this means that we only need 
to worry about counting contributions from the most recent moment (prior to 
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reference point) at which the server became idle. Now, first conditioning on 
most recent server idling incident being at station i, c. cycles before reference 
point, and then summing carefully over all such possibilities, we can calculate 
the total contribution, if the server is allowed to idle. These arguments lead to 
the following identity: 

k 1(z, 1, ... ,1) 

00 M M c-l M 

+ L L {)i L p(ij,)Ui,c(fI" z) II Rj,c(z) II II Rk,I(Z) 
c=O i=1 fi.EU(N) j=i 1=0 k=1 

+ {)1 L p(fI')Zn1]. 

7iEUl(N) 

(20.6) 

Although the preceding arguments are quite intuitive, several terms in (20.6) 
need to be explained further. <I> is simply the probability that an arbitrary end
of-server-vacation instant happens to be at station 1 and that it occurs after 
a switch from station M; {)i is the ratio of 9i(O) and <I> , and it represents the 
fraction of new cycles beginning at station 1 during which the system becomes 
empty at station i. U(N) represents the set of all states with exactly N cus
tomers in the system. Note that this is the set of startup states, following a 
server idle period. p(fI,) represents the probability of observing state fI, E U(N) 
at a start-up instant, and Ui,c(fI" z) denotes the PGF of the total contribution to 
station 1 queue at reference point from this state when the server is at station i, 
c cycles prior to the reference point. p(fI,) and Ui,c(fI" z) are defined as follows: 

(20.7) 

and 

M i-I 

ui,c(fI" z) = II {Lj,c(z)}n j II {Lj ,c_l(Z)}nj , i = 1, ... , M, c ~ O. (20.8) 
j=i j=1 

The first two terms on the right hand side of (20.6) denote the contribution 
to station 1 queue at reference point, if the system never becomes empty (the 
second term is necessary to eliminate the possibility of the system becoming 
empty at a start-of-server-vacation instance at anyone of the M stations in 
each previous cycle); the third term accounts for the contributions from the 
moment system starts again, and the fourth and last term accounts for the fact 
that the reference point could be a end-of-server-vacation in which the server 
restarts at station 1, following an idle period there. Next, we find the first two 
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derivatives of k1(z,1,···,1), substitute in (20.2), and simplify to obtain the 
mean waiting times. The 1Ji'S are determined from the fact that system is never 
empty at the end-of-server-vacation instances at each station, and <I> turns out 
to be a function of 1Ji 's only [see Giinalay and Gupta (1996a) for details]. We 
have 

E[Wl] 

1 - PI [E[RT]] 2 + AIE[Sf] + [Var(RM) + N(N - 1)1JI/ A2]j E[G] 
2E[G] 1 - P 2(1 - PI) 

+ f (r;) AiE[Sr] + [Var(Ri-d ~ N(N -1)1JdA2]jE[G] 
i=1 Pi 2(1 PI) 

+ f N 1Ji f 'Yi,cti,c , 
i=1 AE[G] c=o Pi(l - PI) 

where 'Yi,c = (Ad Al)L~,c(1), i = 1, ... , M, c 2:: -1, 

and 

E[G] = 2:f!IE[Ri] + (N1Ji )/A 
1-p 

(20.9) 

(20.10) 

(20.11 ) 

(20.12) 

The 'Yi,c terms are obtained recursively from the following relationship [see Srini
vasan and Gupta (1996) for details]: 

'Yi,c = Pi (t 'Yj,c + ~ 'Yj ,C-l) , i = 1, ... , M, c 2:: o. (20.13) 
)=1, )=1 

Finally, the pseudo-conservation law, is given as follows: 

M 

LPjE[Wj] 
j=1 

P M ( 2 N(N -1)1Jd A2) pE[Rfl 
2(1 - p) t; AiE[Si] + E[G] + 2(1 - p)E[G] 

E[RT] (2 ~ 2) ~ NPi~ 
+ 2(1 - ) P - L Pi + L ~' 

P t=1 t=1 P 

w here ~ is defined as 

(20.14) 

i = 1, ... ,M. 

(20.15) 
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20.4 Some Related Models 

In this Section, some variations of server and customer behavior are discussed 
that can be treated by slight modifications to the procedure described in Section 
20.3. 

20.4.1 Customer routing 

Suppose that the customers do not leave the polling system upon receiving a 
single service. Instead, with probability 'rJij, type i customers join station j 
queue to receive a type j service. We assume that 'L-J'!=1 'rJi,j < 1 and therefore, 

the customer leaves the system with probability 1 - 'L-J'!=1 'rJi,j' The effective 

mean arrival rate at station i is now ).i = Ai + 'L-J'!=1 'rJj,i).j and the stability 
condition has to be defined with respect to this new arrival rate. Surprisingly, 
there is very little that needs to be changed in our methodology described in 
Section 20.3. Essentially, we redefine (20.5) to account for the fact that a type 
i customer changes into other types of customers (including another of its own 
kind) as follows: 

Li,c(Z) = S; (t[Aj - AjLj,c(z)] + ~[Aj - AjLj,C-1(Z)]) 
J=I J=l 

x [~~iJLj,"(Z) + ~~iJLj'"-l(Z)l. (20.16) 

Using the above definition in (20.6), we obtain the PCF of station 1 queue length 
at a end-of-server-vacation instant at that station. However, since arrivals are 
no longer Poisson, the decomposition relationship in (20.1) does not apply. 
Therefore, a different method is needed to obtain mean waiting times. 

It is possible to find the mean waiting times using a variation of the method 
described in Sidi, Levi and Fuhrmann (1992, pp. 128). In this method, we first 
find the mean queue length at station 1, conditioning on the three possible 
server states that could be observed at an arbitrary observation epoch. The 
server could either be serving some type j customers, performing a switchover, 
or else idling at an arbitrary station. These conditional mean queue lengths 
can be expressed in terms of moments of k1 (Zl' Z2,' . " ZM) and the latter can 
be found using an equation similar to (20.6), but with vector arguments, i.e., 
Z = (Zl,Z2,···,ZM). The start of Li,c(z) recursions occur with Li,-l(Z) = Zi. 
Next, utilizing the fact that the start of a new cycle is a regeneration point, it 
is easy to see that the proportion of time server spends in each state during a 
cycle is also the long run proportion of time it is in that state. Therefore, upon 
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unconditioning, we obtain the arbitrary time mean queue length at station 1. 
Finally, applying Little's law, we can also obtain the mean waiting time. 

A special case of such customer routing when "li,i+l = 1, for all i = 1,2, ... , 
M - 1, and external arrivals occur only at station 1, gives rise to the tandem 
queue model [see Duenyas, Gupta and Lennon (1995) for the model with N = 1]. 
The model with arbitrary customer routing, but where the server never stops, 
i.e., N = 0, has been studied by Sidi, Levi and Fuhrmann (1992). 

20.4.2 Stopping only at a preferred station 

Suppose that the server stops only if it finds no customers in the system when it 
is ready to begin a vacation from station 1. In this case, although the system can 
be empty when the server is at other stations, it simply ignores that information 
unless it happens to be at station 1. This situation can be modeled with a slight 
change in our model in Section 20.3. We simply set all {}j (j :j:. 1) to zero in 
Eqs. (20.9)-(20.15). Thus, we make server behavior at stations 2, ... , M 
independent of whether the system is empty or not. Note that now system 
cannot be empty only at a end-of-server-vacation instant from station 1, i.e., it 
could very well be empty at end-of-server-vacation instances from other stations. 
In the end, we have one equation in one unknown which could be solved easily 
[Giinalay and Gupta (1996a)]. 

The ideas described above are easy to extend to situations in which there 
is more than one preferred station. 

20.4.3 Gated or mixed service policy 

Suppose that at a subset of stations, the server practices a gated service strategy. 
It is assumed that it continues to render exhaustive service at the remaining 
stations. Although Fuhrmann and Cooper's Stochastic Decomposition Theorem 
[Fuhrmann and Cooper (1985)] still applies, the queue is not necessarily empty 
at the start of a server vacation from a station at which the gated regime is 
followed. Therefore, the PGF ofthe queue length at station i (with gated service 
regime) at a customer departure instant is somewhat different from (20.1), as 
shown below: 

(20.17) 

As before, the mean waiting time of type i customers is derived using the mean 
queue length of station i, which is obtained from Eq. (20.17). The result is as 
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follows: 

(1 + pdk?(I) 
2/\kH1) 

(20.18) 

Eq. (20.6) is also valid for stations with gated service. Therefore, we can 
calculate the first and second moments of queue lengths by differentiating (20.6). 
The main difference from previous approach is that Li,c(z), c 2': 0, are now 
defined as follows: 

Li,o(Z) ~ Si (~1 [Aj - AjLj,o(z)] + ~ [Aj - AjLj,O_l(Z)]) . 

(20.19) 

For systems with mixed service strategies, i.e., some stations operating un
der exhaustive and others under gated policy, we simply use either (20.2) and 
(20.5) or (20.18) and (20.19), depending on which service regime is in effect. De
tails of similarities between exhaustive and gated systems can be found in Kon
heim, Levi and Srinivasan (1994), Srinivasan and Gupta (1996) and Giinalay 
and Gupta (1996a). 

20.4.4 State-dependent setups 

Suppose we have a polling system in which switchover times are unavoidable, 
but setups can be postponed. In this model, after the server polls a station, it 
sets up only if that queue is not empty. For example, an AGV must travel along 
its fixed route, but it does not need to set up to load/unload at a station if there 
are no jobs to pick up/deliver. The server may move among stations either 
according to a continuously roving or patient server protocol. Although the 
framework of Section 20.3 applies to polling models with state-dependent setups 
as well, their analysis is much harder. The major difficulty lies in calculating 
queue length distributions at the end-of~server-vacation instances. 

Before presenting the new k1 (z, 1, ... , 1), we need to define the following 
new notation. Let Ti,c denote the total contributions to station 1 queue at the 
reference point, from the arrivals during a type i setup period, c cycles prior to 
the reference point. Then, its PGF can be written as 

Ti* (t [Aj - AjLj,c(z)] + ~ [Aj - AjLj,C-1(Z)]) , 
J=t J=l 

i=l, ... ,M, c2':O. (20.20) 

Also, FPc(z) is defined as the PGF of the total contributions of all customers , 
in the system at the instant the server polls station i, c cycles ago, and finds 
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no customers waiting at that queue, i.e., 

o l:::,. F (z) = t,C 

1 
<pki(L1,c-1(Z), ... ,Li-1,c-1(Z), 1,Li+1,c(Z), ... ,LM,c(Z)), 

i = 1, ... ,M, c ~ O. (20.21) 

Similarly, FP -1 (z) denotes the probability that at the reference point, station 1 
is empty but' not the system, i.e., F~_l(Z) = k1(0, 1, ... , 1)/<p. Recall that <p is 
the probability that an end-of-server-vacation instant happens to be at station 
1 and that it is not a start-up instant at station 1. 

Now we are ready to update k1 (z, 1, ... , 1), given in (20.6), as follows: 

k1(z, 1, ... ,1) 

= <p [Ti(A1 - A1Z) (g n 1i,c(z)~,c(z) - ~ t, Fi~c(z)Ti,c(z)Ei,c(Z) 

where 

00 M 00 M 

- L L {)iEi,c(Z) + L L {)i L p(f/,)ui,c(n" Z)Ei,c(Z) 
c=o i=l c=o i=l r;,EU(N) 

+ t. t, Fi~"(Z)Ei'"(Z)) + (1 - Ti(Al - AIZ))FP'_l (z) 

+ {)1 L p(n')Znl] , 
nEUl(N) 

M c-1 M 

Ei,c(Z) = Ri,c(z) II Rj,c(z)Tj,c(z) II II Rk,I(Z)Tk,l(Z). 
j=i+1 1=0 k=l 

(20.22) 

(20.23) 

Notice that relationship (20.22) is identical to (20.6), but for the second, 
fifth and sixth terms on the right hand side of (20.22). These extra terms 
are needed to account for the fact that the server skips empty stations, without 
performing a setup, but continues to switch from one station to the next, so long 
as the system is not empty. Eq. (20.22) subsumes several variations of polling 
models with state-dependent server behavior, e.g., by setting FPc(z) = 0 and 
1i,c(z) = 1 (i.e., setting Ti = 0) for all i = 1, ... , M and c ~ -1, ~e obtain the 
N-threshold startup model of Section 20.3, and by setting N = 0, or N = 1, 
or N> 1, we obtain different state-dependent setups models [see Bradlow and 
Byrd (1987), Eisenberg (1971), Ferguson (1986), Giinalay and Gupta (1996a,b) 
and Gupta and Srinivasan (1996b)]. 

Notice that the partial PGF's, Fi~C(Z)'s, are unknown and difficult to obtain 
in terms of system parameters. The only known results are for a two station 
(M = 2) polling system [see Eisenberg (1971) for patient server model, and 
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Gupta and Srinivasan (1996b) for continuously roving server model]. All of the 
remaining methods proposed in the literature are approximations [Ferguson 
(1986), Gupta and Srinivasan (1996b), Bradlow and Byrd (1987) and Giinalay 
and Gupta (1996b)]. Giinalay and Gupta (1996b) have provided a near-exact 
numerical algorithm to obtain mean customer waiting times in a patient server 
model with state-dependent setups. 

Threshold setups model is a generalization of the state-dependent setups 
model. Here, the server sets up only if the number of waiting customers at 
the polled station exceeds a minimum threshold. This model is related to the 
Stochastic version of the Economic Lot Scheduling problem, which is known to 
be a hard problem even in the deterministic setting [see, for example, Feder
gruen and Katalan (1996)]. A framework for analyzing this model, and a near
exact numerical algorithm to calculate the mean waiting times can be found in 
Giinalay (1996). Other studies dealing with the threshold setups polling model 
include Hofri and Ross (1987), who examine a two station polling system, and 
Coffman, Puhalskii and Reiman (1995a, 1995b), who use a heave-traffic ap
proximation. The model is considerably more complex, and therefore it is not 
discussed in detail here. 

20.4.5 Periodic monitoring during idle period 

Suppose there are some lower priority jobs that the server attends to, whenever 
the polling system becomes empty. As a result, the server is unavailable for 
a period of V time units, every time the system becomes empty. As opposed 
to the continuous monitoring strategy, here the server checks the system state 
periodically, i.e., every V time units until it finds at least one customer in 
the system. Then, it reactivates at the same station where it resided before 
attending to the lower priority customers. Note that with this strategy the 
start-up population is not fixed. This is how the periodic monitoring model 
differs from the continuous monitoring model of Section 20.3 in which the server 
always reactivates with exactly N customers in the system. When the system 
is not empty, we assume that the server sets up in a state-independent fashion. 

The following expression presents the PGF of the queue length at station 1 
end-of-server-vacation instances for the polling model with periodic monitoring: 

k1(Z, 1, ... ,1) 

[ 

00 M 00 M M c-1 M 

<P g!J Ri,c(z) - ~t; 19i }l Rj,c(z) Do [[1 Rk,I(Z) 

00 M M c M 1 
+ ~~ 19i Vi ,c(Z)!! Rj,c(z) un Rk,I(Z) + 191 vt(Al - A1Z) , 

(20.24) 
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where Vi,c(z) is the PGF of the contributions to station 1 queue at reference 
point, which come from arrivals during the time server is away attending to 
lower priority customers. The server departs from station i, c cycles prior to 
the reference point, i.e., 

V;,,(z) = V' (~[A; - A;Lj,,(z)] + % [Aj - A;L;,,_l(Z)[) , 

i = 1, ... ,M, c 2: O. (20.25) 

Using Eqs. (20.24) and (20.25) in Section 20.3, we can obtain the mean wait
ing times for this model. Fuhrmann and Moon (1990) studied polling models 
with an arbitrary start-up distribution, and presented periodic monitoring as 
an example of what might cause an arbitrary start-up distribution. However, 
they modelled a microprocessor based system and therefore, assumed switchover 
times to be zero (negligible). Therefore, the above formulation reduces to their 
model upon setting Ri,c(z) = 1 for all i = 1, ... ,M, c 2: 0 in (20.24). 

20.5 Insights 

In Eqs. (20.9) and (20.14), by putting N = 0 we get, respectively, the mean 
waiting time and the pseudo-conservation law for the system in which the server 
never stops [Boxma and Groenendijk (1987)]. Similarly, when N = 1 is substi
tuted, we get the corresponding results for the patient server model [Srinivasan 
and Gupta (1996)]. Note that, Srinivasan and Gupta (1996) have defined the 
switchover times differently: in their notation, station i ~ i + 1 switchover time 
is denoted by Ri+!. 

Next, if we let ~ = R, Si = S and Ai = A, i = 1, ... , M, we get a symmetric 
polling system. Then, Ai = AIM, Pi = plM and Pi = 11M. Furthermore, the 
empty system probabilities, fh, are the same for all stations, and we denote them 
by rJ(N), N 2: O. Similarly, let E[W(N)] denote the mean waiting time at an 
arbitrary station. The last two quantities have an argument N, to explicitly 
recognize the dependence of these parameters on the start-up threshold N. 
Now, we can greatly simplify expression (20.9) for the mean station waiting 
time to obtain 

E[W(N)] = 
(N -1 + (M - l)AE[R])NrJ(N) + A2(E[R2] + (M - 1)E[R]2) 

2A(NrJ(N) + AE[R]) 

AE[S2] + p(M - l)E[R] (20.26) 
+ 2(1 - p) . 

If we had only one station, i.e., E[R] = 0 and rJ(N) = 1, we can further 
simplify (20.26) by setting M equal to 1. Upon performing these simplifications, 
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we obtain 

E[W(N)] = 
(N - 1) AE[S2] 

2A + 2(1 - p)" (20.27) 

Accounting for differences in notation, Eq. (20.27) is the same as Eq. (1l-1l7a) 
of Heyman and Sobel (1984, Volume I, p. 445) for the mean waiting time in a 
MIG/1 queue operating under N-policy. 

Next, consider a symmetric polling system in which N = 1 and the server 
is forced to idle while it is in the process of switching between every pair of sta
tions. Forced idling described above adds to the server overhead and effectively 
amounts to an increase in switchover time R. Intuitively, we would expect the 
mean waiting times to increase as switchover times increase. Surprisingly, this 
is not always the case. While it is true that '19(1), the empty system probability, 
decreases as R increases, the combined effect of these changes on E[W(l)] is 
not always monotonic. This can be seen when (20.26) is simplified for N = 1, 
to obtain 

E[W( )] = M - 1 E(R) AE[R2] AE(S2) + p(M - l)E(R) 
1 2 + 2['19(1) + AE(R)] + 2(1 - p) . 

(20.28) 
It is easy to see that the first and the third terms in (20.28) are increasing in 
E(R). However, since ['19(1) + AE(R)] could increase in E(R), the second term 
does not change in a monotonic fashion when E(R) is increased. For a more 
rigorous analysis, consider the derivative of E[W(l)] with respect to E[R] given 
by 

, M - 1 AE[R21' 
E[W(l)] = 2(1 _ p) + 2('19(1) + AE[R]) 

AE[R2](A + '19(1)') 
2('19(1) + AE[R])2 . 

(20.29) 

Since '19(1)' < 0 and E[R2]' > 0, the above relationship can be either positive or 
negative depending on the magnitude of E[R2] with respect to E[R]. Therefore, 
the change in mean waiting time is not monotonic when we increase the mean 
switchover times. 

Similar observations also apply to the case when N > 1 and when the system 
is asymmetric. However, the relationships are not so transparent in that case 
and it is therefore not so easy to see this counter-intuitive effect of forced idling 
on those systems. 

Observations similar to the ones reported above were first made by Sarkar 
and Zangwill (1991) in the context of a polling system with N = O. In fact, 
Sarkar and Zangwill noticed that reducing setup times can increase mean wait
ing time. Later, similar results were also observed in systems with N = 1 by 
Srinivasan and Gupta (1996). Gupta and Srinivasan (1996a) called this phe
nomenon the variance paradox since it usually occurs when switchover time 
variance is high. If switchover times are constant, i.e., E[R] = R, E[R2] = R2, 
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and E[R21' = 2R, Eq. (20.29) yields 

E[W( )]' = M - 1 AR(219(1) + AR - R19(1)') 
1 2(1 - p) + 2(19(1) + AR)2 . 

(20.30) 

The right hand side of (20.30) is always positive, proving that forced idling only 
increases mean waiting times when switchover times are constant. Gupta and 
Srinivasan have also provided a detailed discussion of this phenomenon and its 
implications for production theory. From recent results of N-threshold start
up polling systems (with N > 1), is it also possible to show that the variance 
paradox exists even in models involving a threshold start-up. 

20.6 Future Directions 

Polling models continue to gain popularity on account of their new applications 
in modelling of manufacturing, transportation, and storage/retrieval systems. 
The need to develop analysis of new models that are suitable for these environ
ments is growing. Also, in these applications, system optimization (choosing 
system parameters and control policies) is important. However, optimization
for example, in determining optimal start-up and setup thresholds in order to 
minimize mean unfinished work in system-remains a difficult and open prob
lem. Similarly, among the various server control policies, server idling behavior 
needs to be further investigated. These aspects of polling systems are substan
tially under-researched and more vigorous research effort is likely to occur in 
the next several years. 

References 

1. Altman, E., Konstantopoulos, P. and Liu, Z. (1992). Stability, monotonic
ity and invariant quantities in general polling systems, Queueing Systems, 
11,35-57. 

2. Benjaafar, S. and Gupta, D. (1996a). Workload allocation in multi
product, multi-facility production systems with setup times, IIE Trans
actions (submitted for publication). 

3. Benjaafar, S. and Gupta, D. (1996b). Scope versus focus: Issues of flex
ibility, capacity, and number of production facilities, IIE Transactions 
(submitted for publication). 



358 Diwakar Gupta and Yavuz Giinalay 

4. Borst, S. C. (1995). A globally gated polling system with a dormant 
server, Probability in the Engineering and Information Sciences, 9, 239-
254. 

5. Boxma, O. J. and Groenendijk, W. P. (1987). Pseudo-conservation laws 
in cyclic-service systems, Journal of Applied Probability, 24, 949-964. 

6. Boxma, O. J., Weststrate, J. A. and Yechiali, U. (1993). A globally gated 
polling system with server interruptions, and applications to the repair
man problem, Probability in the Engineering and Information Sciences, 
7, 187-208. 

7. Bozer, Y. and Srinivasan, M. M. (1991). Tandem configurations for au
tomated guided vehicle systems and the analysis of single vehicle loops, 
IIE Transactions, 23, 72-82. 

8. Bradlow, H. S. and Byrd, H. F. (1987). Mean waiting time evaluation of 
packet switches for centrally controlled PBX's, Performance Evaluation, 
7,309-327. 

9. Coffman, E. G., Jr., Puhalskii, A. A. and Reiman M. I. (1995a) Polling 
Systems with Zero Switchover Times: A Heavy Traffic Averaging Princi
ple, Annals of Applied Probability, 5, 681-719. 

10. Coffman, E. G., Jr., Puhalskii, A. A. and Reiman M. I. (1995b) Polling 
Systems in Heavy-Traffic: A Bessel Process Limit, Working Paper, AT&T 
Bell Labs. 

11. Cooper, R. B. (1970). Queues served in cyclic order: Waiting times, The 
Bell System Technical Journal, 49, 399-413. 

12. Cooper, R. B. (1981). Introduction to Queueing Theory, Second edition, 
Amsterdam: North-Holland. Reprinted by CEE Press of The George 
Washington University, 1990. 

13. Duenyas, I., Gupta, D. and Lennon, T. (1996). Control of a single-server 
tandem queueing system with setups, Operations Research (to appear). 

14. Duenyas, I. and Van Oyen, M. P. (1996). Heuristic scheduling of parallel 
heterogeneous queues with set-ups, Management Science, 42, 814-829. 

15. Eisenberg, M. (1971). Two queues with changeover times, Operations 
Research, 19, 386-401. 

16. Eisenberg, M. (1994). The polling system with a stopping server, QUESTA, 
18, 387-431. 



Recent Advances in the Analysis of Polling Systems 359 

17. Federgruen, A. and Katalan, Z. (1996). The stochastic economic lot 
scheduling problem: Cyclical base-stock policies with idle times, Man
agement Science, 42, 783-796. 

18. Ferguson, M. J. (1986). Mean waiting time for a token ring with station 
dependent overheads, In Local Area and Multiple Access Networks (Ed., 
R. L. Pickholtz), pp. 43-67, Computer Science Press. 

19. Fuhrmann, S. W. and Cooper, R. B. (1985). Stochastic decompositions 
in the M/G/1 queue with generalized vacations, Operations Research, 33, 
1117-1129. 

20. Fuhrmann, S. W. and Moon, A. (1990). Queues served in cyclic order with 
an arbitrary start-up distribution, Naval Research Logistics, 37, 123-133. 

21. Giinalay, Y. (1996). State dependent server scheduling rules in polling 
systems, Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada. 

22. Giinalay, Y. and Gupta, D. (1996a). Threshold startup control policy for 
polling systems, Management Science (submitted for publication). 

23. Giinalay, Y. and Gupta, D. (1996b). Polling systems with a patient server 
and state dependent setup times, lIE Transactions (to appear). 

24. Gupta, D. and Srinivasan, M. M. (1996a). The variance paradox and its 
implications for Japanese production theory, Interfaces, 26, 69-77. 

25. Gupta, D. and Srinivasan, M. M. (1996b). Polling systems with state
dependent setup times, Queueing Systems (to appear). 

26. Heyman, D. P. and Sobel, M. J. (1982). Stochastic Models in Operations 
Research, Volume I: Stochastic Processes and Operating Characteristics, 
New York: McGraw-Hill. 

27. Heyman, D. P. and Sobel, M. J. (1984). Stochastic Models in Operations 
Research, Volume II: Stochastic Optimization, New York: McGraw-Hill. 

28. Hofri, M. and Ross, K. W. (1987) On the Optimal Control of Two Queues 
with Server Setup Times and Its Analysis, SIAM Journal on Computing, 
16, 399-420. 

29. Konheim, A. G., Levi, H. and Srinivasan, M. M. (1994). Descendant set: 
An efficient approach for the analysis of polling systems, IEEE Transac
tions on Communications, 42, 1245-1253. 

30. Levi, H. and Sidi, M. (1990). Polling systems: Applications, modelling 
and optimization, IEEE Transactions on Communications, 38, 1750-
1760. 



360 Diwakar Gupta and Yavuz Giinalay 

31. Liu, Z., Nain, P. and Towsley, D. (1992). On optimal polling policies, 
QUESTA, 11,59-83. 

32. Sarkar, D. and Zangwill, W. I. (1991). Variance effects in cyclic produc
tion systems, Management Science, 37, 444-453. 

33. Sidi, M., Levi, H. and Fuhrmann, S. W. (1992). A queueing network with 
a single cyclically roving server, Queueing Systems, 11, 121-144. 

34. Srinivasan, M. M. and Gupta, D. (1996). When should a server be pa
tient?, Management Science, 42, 437-451. 

35. Takagi, H. (1986). Analysis of Polling Systems, Cambridge, MA: The 
MIT Press. 

36. Takagi, H. (1990). Queueing analysis of polling models: An update, In 
Stochastic Analysis of Computer and Communication Systems (Ed., H. 
Takagi), pp. 267-318, Amsterdam: North-Holland. 

37. Takagi, H. (1994). Queueing Analysis of Polling Models: Progress in 
1990-93, Institute of Socio-Economic Planning, University of Tsukuba, 
Japan. 



PART V 

ApPLICATIONS TO WAITING TIME PROBLEMS 



21 

Waiting Times and Number of Appearances of 
Events in a Sequence of Discrete Random 
Variables 

Markos V. Koutras 

University of Athens, Athens, Greece 

Abstract: In this article, the probability and moment generating functions 
of the number of appearances of a pattern e in a sequence of discrete random 
variables (repeated trials) are expressed in terms of the generating function 
of the waiting time for the r-th occurrence of e. The special case of delayed 
recurrent events is also examined in some detail. Finally, the general theory is 
employed for a systematic investigation of success runs enumeration problems 
in a sequence of binary outcomes arising from a first-order Markov chain. 

Keywords and phrases: Recurrent events, success runs, Markov dependence, 
distributions of order k, patterns, waiting time distributions 

21.1 Introduction 

Let ZQ, Zl, Z2,'" be a sequence of repeated trials with possible outcomes E j , 

j = 1,2,.... We suppose that it is feasible in principle to continue the trials 
indefinitely whereas there is no particular need to assume that they are indepen
dent (as a matter of fact, certain applications to Markov dependent outcomes 
will be of special interest in the sequel). The term a pattern e will refer to a 
specific string (succession of outcomes) composed of characters E j , j = 1,2, .... 
Given a sequence of outcomes E = Ejl Eh ... E jk , we shall say that the pattern 
e (or, allowing an abuse of the language, the event e) has occurred in E, if 
there exists a substring of E that matches exactly with e. 

In the pattern matching area, there are two different classes of problems 
one could look upon. In the first, the interest focuses on the waiting time until 
the first, or in general the r-th occurrence of the event e. In the second, the 
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random variable of primary interest enumerates the appearances of the event & 
in a fixed number of trials. 

The importance of those variables arises from their wide applicability in 
many scientific areas, which include meteorology, molecular biology, radar de
tection, quality control, psychology, reliability theory, computer science, etc. It 
is not therefore surprising that, during the last decades, an increasing research 
activity has been observed on related problems. Waiting times for appearances 
of patterns and runs (a special pattern consisting of alike symbols) have been 
studied by numerous authors; see, for example, Aki (1992), Blom and Thorburn 
(1982), Feller (1968), Gerber and Li (1981), Glaz (1983), Guibas and Odlyzko 
(1980, 1981), Koutras (1996a) and Solovev (1966) for the case of independent 
and identically distributed (i.i.d.) trials, and Aki (1992), Aki, Balakrishnan and 
Mohanty (1996), Balasubramanian, Viveros and Balakrishnan (1993), Banjevic 
(1988), Benevento (1984), Chryssaphinou and Papastavridis (1990), Koutras 
and Alexandrou (1997), Koutras (1996b), Mohanty (1994), Schwager (1983) 
and Viveros, Balasubramanian and Balakrishnan (1994) for Markov dependent 
trials. The second of the aforementioned problems, i.e., the investigation of 
the number of occurrences of a pattern or run in a fixed sequence of outcomes 
has also been treated by many authors including Charalambides (1994), Chen 
and Glaz (1997), Chryssaphinou and Papastavridis (1988), Dembo and Karlin 
(1992), Fu (1996), Godbole (1991), Godbole and Schaffner (1993), Hirano and 
Aki (1993) and Mohanty (1994). In an excellent monograph by Barbour, Holst 
and Janson (1992), several (Poisson) approximations to the distributions men
tioned above are described. For a recent comprehensive list of publications on 
these and related problems, we refer to Godbole (1994). The upcoming book 
by Balakrishnan and Koutras (1997) presents a lucid and elaborate account of 
various developments relating to runs and patterns with applications. 

In this paper, we investigate the interrelation between the distributions of 
the waiting times and the number of appearances of a pattern in a sequence 
of repeated trials. After the introduction of the necessary notations in Sec
tion 21.2, we proceed to the derivation of formulae associating the generating 
function of the waiting time for the r-th appearance of a pattern to the gen
erating function of the number of appearances distribution (Section 21.3). In 
addition, the first and second order moment generating functions of the latter 
are expressed in terms of the double generating function of the waiting time 
distribution. In Section 21.4, we specialize to a wide class of patterns (delayed 
recurrent events) and establish formulae involving the single recurrence time 
generating functions. Section 21.5 serves as an illustration of how the general 
theory of Section 21.4 can be employed for deriving results relating to success 
runs enumeration in sequences of Markov dependent trails. Finally, in Section 
21.6, some concluding remarks and possible directions for further research are 
discussed briefly. 
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21.2 Definitions and Notations 

Let Zo, Zl, Z2, ... be a sequence of repeated trials with possible outcomes Ej, 
j = 1,2, ... , and £ be a specific pattern (single or composite) such that with 
probability 1, £ occurs at least once in an indefinitely prolonged sequence of 
trials. Then, the waiting time T until the first occurrence of £ is a random 
variable with probability mass function 

h(n) = Pr[T = n], n = 1,2, .... 

Let us denote by Tr (r = 1,2, ... ) the waiting time for the r-th occurrence 
of £ and its probability mass function by 

n= 1,2, .... 

Clearly, Tl = T and h1(n) = h(n). For our convenience and also for facilitating 
the derivation of more compact formulae, we impose the convention 

r = 0,1, ... (21.1) 

(Oij is the Kronecker's delta function) which makes hr(n) meaningful for all 
non-negative integers n and assigns To a degenerate probability mass function. 
The single and double generating functions of Tr , r = 0,1, ... , will be denoted 
by Hr(z) and H(z, w), respectively; i.e., 

00 00 

Hr(z) = E[zTr ] = L Pr[Tr = n]zn = L hr(n)zn, r 2 1, Ho(z) == 1, 
n=O n=O 
00 00 00 

H(z,w) = LHr(z)wr = L L Pr[Tr = n]znwr. 
r=O r=O n=O 

Another random variable of primary interest in the present context is the 
number Xn of occurrences of event £ in the first n trials. Its probability mass 
function will be defined by 

9n(X) = Pr[Xn = x], x = 0,1, ... 

and the corresponding single and double generating functions by 

00 00 

L Pr[Xn = x]WX = L9n(X)WX , n 21, 
X=O 

00 00 00 

G(z,w) = L Gn(w)zn = L L Pr[Xn = x]wxzn. 
n=O n=O x=o 
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We conventionally set Go(z) = 1 for all w, which is equivalent to 

Pr[Xo = xJ = Dx,o, x = 0,1, .... (21.2) 

21.3 General Results 

In this section, we will investigate the connection between the distributions of Tr 
and X n . Our basic results provide expressions for certain generating functions 
relating to the distribution of Xn in terms of Hr(z) and H(z, w). The key point 
for establishing these results is the obvious identity 

Pr[Xn ~ rJ = Pr[Tr :::; nJ, n,r ~ 1. (21.3) 

Theorem 21.3.1 The single generating function of the sequence 
{Pr[Xn = x]}n;:::O is given by 

00 1 L Pr[Xn = xJzn = 1 _ z [Hx(z) - Hx+1(z)J, x = 0, 1,.... (21.4) 
n=O 

PROOF. For x ~ 1 we get, by virtue of (21.3), 

Pr[Xn = xJ = Pr[Xn ~ xJ - Pr[Xn ~ x + 1J = Pr[Tx :::; nJ - Pr[Tx+1 :::; nJ 
n n 

= L Pr[Tx = iJ - L Pr[Tx+1 = iJ, n ~ 1, 
j=l j=l 

and, therefore, 
00 oon oon 

L Pr[Xn = xJzn = L L Pr[Tx = jJzn - L L Pr[Tx+1 = jJzn. (21.5) 
11.=1 n=l j=l n=l j=l 

Interchanging the orders of summation in the RHS, it is easy to verify that [see 
also (21.1)J 

00 n 

L L Pr[Tx = iJzn 
n=l j=l 

= -l-~Pr[Tx =iJzj = -11 Hx(z), 
1-z~ -z 

3=1 

~ ~Pr[Tx+1 =iJzn = -l-~Pr[Tx+1 =jJzj = _1_ HX+1(z). 
~ ~ 1-z~ 1-z n=l j=l 3=1 

We now substitute these expressions into (21.5) and use the convention in (21.2) 
to obtain the formula in (21.4) for x ~ 1. For the special case x = 0, we first 
notice that 

n 

Pr[Xn = OJ = 1 - Pr[T1 :::; nJ = 1 - L Pr[T1 = jJ, n ~ 1, 
j=l 
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which readily yields 

00 1 L Pr[Xn = O]zn = -1 + 1 _ z [1 - H1(z) + Pr[Tl = 0]]. 
n=l 

Taking into account conventions (21.1) and (21.2) to complete the series in the 
LHS and eliminating the last summand of the RHS, we obtain the formula in 
(21.4) for x = O. • 

As an example, let event t: stand as an abbreviation for "a success occurs" 
in a sequence of Bernoulli trials with success probability p = 1 - q. Then, Tr 
follows a negative binomial distribution with probability generating function 

and expanding 

00 n (pZ)r Hr(z) = L Pr[Tr = n]z = --
1- qz 

n=O 

we get, in view of Theorem 21.3.1, 

(21.6) 

-an identity reestablishing the well-known fact that the number Xn of successes 
in 11, trials follows a binomial distribution. 

Theorem 21.3.2 The double generating function G(z, w) of the probability 
mass function gn(x) can be expressed in terms of the double generating function 
H(z, w) of the probability mass function hr(n) as 

G( ) = (w -1)H(z,w) + 1 
z, w w(1- z) . (21.7) 

PROOF. Multiplying (21.4) by W X and summing over all x = 0,1, ... yields 

and since 

00 1 00 

L HX+1(z)wX = w L H.7:(z)WX = (H(z, w) - 1 )/w, 
x=o x=l 

the previous formula can be rewritten as 

G(z,w) = 1 ~ z [H(z,w) - ~ (H(z,w) -1)] 
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which proves the desired result. • 
It should be noted that the inversion of formula (21. 7) produces an expres

sion of H(z, w) in terms of G(z, w) as 

H(z, w) = w(1- z)G(z, w) - 1 
w-1 

In view of Theorem 21.3.2, it is clear that, should the probability mass 
functions hr(n), n = 0,1, ... , be known for all r = 0,1, ... , the probability 
mass functions 9n(X), x = 0,1, ... , can be identified through (21.7), and vice 
versa. Therefore, while investigating the occurrences of specific patterns t: in 
a sequence of trials, it suffices to study either the waiting times for the r-th 
occurrence or the number of occurrences in a fixed number of trials. In most 
of the cases, the first problem offers greater simplicity; in addition, as will 
be demonstrated in the next section, for a wide class of repetitive patterns, 
the probability mass function hr(z) can be directly established through the 
distributions of waiting times for the first appearance of t:. 

Before closing this section, let us give some formulae expressing the gener
ating functions of the first two moments of Tr and Xn by means of the double 
generating function H(z, w). 

Theorem 21.3.3 The generating functions of the means E[Trl and E[Xnl are 
given by 

r=O 

PROOF. It is simple to note that 

[:z H(z,w)L=l' 

H(z, 1) - 1 
1-z 

:z H(z, w) = f H:(z)wr 

r=O 
(21.8) 

and the first formula of the theorem is readily ascertainable from the well-known 
identity 

E[Trl = H:(1). 

In a similar way, 

and the proof is completed upon differentiating (21. 7) with respect to wand 
then substituting w = 1. • 
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It is worth mentioning that the second formula of Theorem 21.3.3 could also 
be established without making use Theorem 21.3.2. To achieve this, it suffices 
to observe that 

00 00 

E[Xn] = L Pr[Xn ~ r] = L Pr[Tr :S n] 
r=l r=l 

which yields 
00 

E[Xn]- E[Xn-l] = L Pr[Tr = n]. 
r=l 

Multiplying by zn and summing up for n = 1,2, ... , we get 

00 00 

L[E(Xn) - E(Xn_l)]Zn = L Hr(z) = H(z, 1) -1 
n=l r=l 

or, equivalently, 
00 

(1 - z) L E[Xn]zn = H(z, 1) - 1 
n=O 

which reestablishes the second part of Theorem 21.3.3. 

Theorem 21.3.4 The generating functions of the second order moments E[T;] 
and E[X~] are given by 

r=O 

PROOF. The first formula is an immediate consequence of the obvious identities 

= f (:z [zH'(Z)]) wr, 
r=l 

= :z [zH'(Z)Jlz=l. 

Employing the same arguments for X n , we get 

f E[X;]zn =: [w : G(z,w)] 
n=O uW uW w=l 

and the second part of the theorem is then easily established by noting from 
(21.7) that 

o 1 [0 ] w Ow G(z, w) = (1 _ z)w w(w - 1) Ow H(z, w) + H(z, w) - 1 
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differentiating with respect to wand then setting w = 1. • 

As an application of Theorems 21.3.2-21.3.4, let us demonstrate how one 
can derive the probability mass function and the first two moments of the 
binomial distribution, through the double generating function of the negative 
binomial distribution. It is easily seen that in this special case [cf. (21.6)] 

00 r 1 - qz 
H(z,w) = LHr(z)w = 1 ( ) 

r=O -zq+pw 
(21.9) 

and substituting this expression in (21.7), we get 

This expression simply implies that the generating function of Xn is 

and, therefore, 

Pr[Xn = x] = (:)pxqn-x. 

On the other hand, using (21.9) in Theorems 21.3.3 and 21.3.4, and then ex
panding the resulting expressions in power series, we get 

00 

n=O 
(1 ~zz)2 = E(np)zn, 

p(p - q)z2 + pz ~ { 2 } n 
= (1-z)3 =f:1 (np) +npq z 

which reveals the well-known formulae E[Xn] = np and E(X;) = (np)2 + npq, 
n~1. 

21.4 Waiting Times and Number of Occurrences of 
Delayed Recurrent Events 

The results presented in the last section are fairly general in the sense that no 
particular assumption has been made about the original trials Zo, Zl, Z2, . .. (it 
is not necessary that they be independent or have the same distribution) or 
about the nature of the pattern &. There are, however, naturally arising event 
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sets (patterns) & for which a special mention would be worthwhile; one such 
category is the subject of this section. 

A patter & is called recurrent event if after each occurrence of & the trials 
start from scratch, i.e., the trials following an occurrence of & form a replica of 
the whole experiment. It is understood that the waiting time between successive 
occurrences of & (recurrence times) are mutually independent random variables 
having the same distribution. Feller (1968) introduced a slight extension of 
the notion of recurrent events by allowing the first occurrence of & to have 
a distribution different from the distribution of the recurrence times of the 
subsequent appearances of &. Such a pattern was named delayed recurrent event 
since now the definition of recurrent event applies only if the trials leading up 
to the first occurrence of & are disregarded. 

It is clear that the waiting time Tr for the r-th appearance of a delayed 
recurrent event is the sum of r random variables (recurrence times) which are 
independent although the distribution of the first one might be different from 
the common distribution of the rest r - 1. Accordingly, the probability gener
ating function of Tr can be expressed as 

00 

Hr(z) = L Pr[Tr = n]zn = H(z)Ar- 1(z), r"2 1 (21.10) 
n=O 

where H(z) and A(z) are proper generating functions. Under this assumption, 
the outcomes of the analysis discussed earlier take a more appealing form as it 
is illustrated in the following three theorems. 

Theorem 21.4.1 The single generating function of the sequence {Pr[Xn 
x]}n2:0 for a pattern & satisfying (21.10) is given by 

00 n {H(Z)AX-l(Z) l~~{Z) for x "2 1 L Pr[Xn = x]z = I-H{z) z 
n=O ---r=z for.1: = o. 

PROOF. The result follows instantly from (21.4) with the aid of (21.10). • 

It is worth noticing that for a pure (not delayed) recurrent event &, we have 
A(z) = H(z) and the aforementioned generating function then simplifies to 

00 1- H(z) 
"Pr[Xn = x]zn = HX(z) ------'--'-
L 1-z n=O 

[see also Feller (1968, p. 340)]. 

Theorem 21.4.2 The double generating function G(z, w) of the probability 
mass function gn(x) for a pattern & satisfying (21.10) is given by 

1 [ 1-w ] G(z, w) = - 1 - H(z) A( ) . 1-z 1-w z 
(21.11) 
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PROOF. From (21.10), we obtain 

00 00 

H(z, w) = 1 + L Hr(z)wr = 1 + H(z)w L[wA(zW-1 

r=l 

= 1 + wH(z) 
1- wA(z) 

which, when used in (21.7), gives 

r=l 

1 [ ( WH(Z)) ] G(z,w)=w(1_z) (w-1) 1+1-wA(z) +1. 

(21.12) 

Eq. (21.11) is readily obtained after some algebraic simplification. • 

For a recurrent event £, the double generating function G(z, w) in (21.11) 
reduces to 

1- H(z) 1 
G(z, w) = 1- z 1- wH(z) . 

Theorem 21.4.3 The generating functions of the first two moments of Xn for 
a pattern £ satisfying (21.10) are given by 

00 H(z) 
LE[Xn]zn (21.13) 

(1 - z){1 - A(z)} , n=O 
00 H(z){1 + A(z)} 
LE[X~]zn (21.14) 

(1 - z){1 - A(z)}2 . n=O 

PROOF. The generating function in (21.13) follows immediately if we use the 
second part of Theorem 21.3.3 in conjunction with (21.12). To derive the gen
erating function in (21.14), begin by differentiating (21.12) with respect to w 

to obtain 
o H(z) 

ow H(z, w) = (1- wA(z))2 

and then substitute both H(z, w) and its derivative (evaluated at w = 1) in the 
second formula of Theorem 21.3.4. • 

Needless to say, both (21.13) and (21.14) could also be established by con
sidering proper (partial) derivatives of (21.11) at w = 1 (cf. proofs of Theorems 
21.3.3 and 21.3.4). 

Subtracting (21.13) from (21.14), one may easily produce an expression for 
the generating function of the second descending factorial moments of Xn as 

~ n 2H(z)A(z) f:o E[Xn(Xn - 1)]z = (1 - z){1- A(z)}2 . (21.15) 
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Similarly, the generating function of the second ascending factorial moments of 
Xn can be obtained as 

00 n 2H(z) 
~ E[Xn(Xn + l)]z = (1 _ z){l - A(z)}2 (21.16) 

which reveals that 

00 00 

{I - A(z)} L E[Xn(Xn + l)]zn = 2 L E[Xn]zn. (21.17) 
n=O n=O 

Apparently, the last expression leads to simple recursive relations for the second 
ascending factorial moments of X n . 

In closing, we mention that, on setting A(z) = H(z) we deduce the gener
ating functions of the second order moments of Xn for a recurrent event t: [see 
also Feller (1968, p. 341)]. 

21.5 Distribution of the Number of Success Runs 
in a Two-State Markov Chain 

This section is designed to serve as an illustration of how the general theory, 
presented thus far, can be applied in a systematic manner to success runs enu
meration problems in a sequence of Markov dependent trials. 

Let Zo, Zl, Z2," . be a time homogeneous two-state Markov chain with tran
sition probabilities 

Pij = Pr[Zt = j I Zt-l = i], t ~ 1, 0 :S i, j :S 1 

and initial distribution Pj = Pr[Zo = j], j = 0,1. Any uninterrupted sequence 
of k consecutive l's (successes) will be called success run of length k (k is a 
positive integer). The classical scheme for enumerating runs of fixed length is 
the one proposed by Feller (1968). According to this, we start counting from 
scratch each time a succession of k consecutive l's is observed (non-overlapping 
counting). Ling (1988) proposed an alternative enumeration technique in which 
an uninterrupted sequence of l ~ k successes preceded and followed by a failure 
accounts for l - k + 1 runs (overlapping counting). Finally, a third enumeration 
procedure can be initiated by viewing a succession of at least k consecutive 1 's 
as a single run, i.e., once the number of consecutive l's exceeds k, we don't care 
about the actual length of the run. 

The distributions of the number of success runs of length k in a sequence of 
independent Bernoulli trials have been recently termed as binomial distributions 
of order k, while the corresponding waiting time distributions as geometric and 
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negative binomial distributions of order k. Clearly, the special case k = 1 leads 
to the classical binomial, geometric and negative binomial distributions. For 
more details on this subject, an authoritative reference is Johnson, Kotz and 
Kemp (1992). 

Run related problems under Markovian dependence set-ups have been stud
ied among others by Aki and Hirano (1993), Aki , Balakrishnan and Mohanty 
(1996), Balasubramanian, Viveros and Balakrishnan (1993), Hirano and Aki 
(1993), Koutras and Alexandrou (1997), Rajarshi (1974), Schwager (1983) and 
Uchida and Aki (1995). A combinatorial development to this problem was 
recently given by Mohanty (1994). 

In a recent paper, Koutras (1996b), using the Markov chain imbedding tech
nique introduced by Fu and Koutras (1994) and subsequently refined by Koutras 
and Alexandrou (1995), conducted a unified study of success runs waiting time 
problems in a sequence of Markov dependent trials. A careful inspection of the 
results given there reveals that for all three enumeration schemes mentioned 
above, the probability generating function of Tr can be expressed in the form 
(21.10). Consequently, one can make use of the results presented in Section 21.4 
to study the distributions of the number of success runs in a fixed number of 
Markov dependent trials. We now proceed to a brief analysis of these problems 
from this point of view. 

21.5.1 Non-overlapping success runs 

In this case, the probability generating function of Tr is given by [Koutras 
(1996b)] 

where 

with 

H(z) = 

A(z) = 

r 2: 1, 

P(Z)(PllZ)k-1 

Q(z) 

(POlZ) (PllZ)k-1 

Q(z) 

P(z) = PI + (POPOI - PIPOO)Z, 

Q(z) 
k 

1 2 "'( )i-2 - POOz - POlPIOZ ~ PllZ . 
i=2 

(21.18) 

(21.19) 

(21.20) 

(21.21 ) 

Evidently, H(z) is the probability generating function of TI, while A(z) is the 
probability generating function of the waiting time for the occurrence of a suc
cess run of length k in a sequence of Markov dependent trials with initial dis
tribution 

Pr[Zo = 0] = 1, Pr[Zo = 1] = o. 
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Applying Theorem 21.4.2, we may easily verify that the double generating func
tion G(z, w) of X n, the number of non-overlapping success runs of length k in 
a sequence of n Markov dependent trials, can be expressed as 

G(z, w) = _1_ [1 _ (1 - W)(PllZ)k-l P(z) ]. 
1 - z Q(z) - W(pOlZ) (PllZ)k-l 

For the special case of Li.d. Bernoulli trials (po = 1, PI = 0, POI = Pll = p, 
PIO = POO = q, P + q = 1), this formula reduces to 

G(z w) = 1 - (pzl 
, 1 - z + [qz - w(1 - pz)](pz)k 

and coincides with the one given by Koutras and Alexandrou (1995). 
For the benefit of a practical minded reader, we use this occasion to develop 

some simple recurrence relations for J-Ln = E[Xn]. From Theorem 21.4.3, it 
follows that 

f: E[Xn]zn = P(Z)(PllZ)k-l 
n=O (1- z)[Q(z) - (pOlZ)(pl1Z)k-l] 

(21.22) 

Replacing P(z) and Q(z) in (21.22) by the expressions in (21.21) and carrying 
out some algebra, we get 

00 k-l k-l ( ) k-l k 
'" n PIPll Z + POPOI - PIPOO Pll z 
~ J.lnZ = k+l . 
n=O 1 + Ei=l O'.i Z1, 

where, for our convenience, we have set 

0'.1 -POO - 1, 0'.2 = POO - POlPlO, 
2 i-3 3 < ' < k 1 Q:i POIPlOPl1 ' _ ~ _ - , 

O'.k = POIP~13(PlO - Pll), O'.k+1 = pOIP~12. 

Next, we multiply both sides of the generating function by the denominator 
of the RHS and perform the classical analysis on the resulting power series to 
obtain the recurrence relation 

k+l 
J.ln = - L O'.iJ-Ln-i, 

i=l 

n~k+1. 

This relation can be used in conjunction with the initial conditions 

(21.23) 
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to compute any /-Ln = E[Xn] in a simple recursive manner. For an alternate 
recurrence relation, we could write Q(z) as 

2 1 - (pnzl- l 
Q(z) = 1 - POoZ - POlPlOZ 

1- Pnz 

and substitute into (21.22) to get 

~ n [PI + (POPOI - plpoo)z](l - Pnz)(pnz)k-l 
~ /-Ln z = k I 
n=O (1 - z)2[1 + (POI - pn)z - POIPll zk] 

On introducing the notation b = POI - Pn, c = pOIP~ll, we obtain 

(21.24) 

00 k-l k-l [P (1 )] k-l k ( ) k k+1 L n PIPn z + 01 - PI + Pn Pn z - POPOI - PIPOO Pn z 
/-Ln Z = k k k n=O 1 + (b - 2)z + (1 - 2b)z2 + bz3 - cz + 2cz +1 - cz +2 

which yields the recurrence relation 

The initial conditions required are given again by (21.23) with the additional 
entry 

(21.25) 

21.5.2 Success runs of length at least k 

As Koutras (1996b) indicated, the probability generating function of Tr is of 
the form (21.18) with 

A(z) = PlOZ (pOlz)(pnz)k-l, 
1 - pnz Q(z) 

where H(z) and Q(z) are as defined in (21.19) and (21.21), respectively. The 
double generating function G(z, w) of X n , the number of success runs of length 
at least k in a sequence of n Markov dependent trials, can be directly deter
mined via Theorem 21.4.2 and can be easily shown to be consistent with Hirano 
and Aki's (1993) conditional generating function formulae. However, due to a 
different set-up used there, some slight discrepancies are observed which can be 
instantly adjusted by a proper shift of the numbering and modification of the 
initial distribution. 

For the generating function of the means /-Ln = E[XnJ, we substitute H(z) 
and A(z) into Eq. (21.13) and use (21.24) to obtain the final expression 

~ n [PI + (POPOI - PIPoo)z](l - pnz)(pnz)k-l 
~/-LnZ =~--~~~~--~~------~~~--
n=O (1 - z)2[l + (1 - POO - pn)z] 

(21.26) 
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Proceeding as we did in (a), we may easily verify that J.Ln satisfies the recurrence 
relation 

J.Ln = (0: + 2)J.Ln-l - (20: + 1)J.Ln-2 + 0:J.Ln-3, n 2 k + 2, 

where 0: = POO + Pn - 1. The initial conditions required to conduct numerical 
computations through this recurrence relation are given again by (21.23) and 
(21.25). 

Eq. (21.26) may also be used for the development of non-recursive expres
sions for J.Ln. More specifically, using the expansion 

00 

(1 - z)-2 = 2:(j + l)zj 
j=O 

and the geometric series for (1 - o:z)-l, it is possible to write 

00 00 

2: J.LnZn = [PI + (POPOl - PlPOO)Z] (1 - pnZ)(Pl1 Z)k-l 2: Cnzn, 
n=O n=O 

where 

_ ~( _. ) j _ (n + 1) - (n + 2)0: + o:n+2 
Cn - ~ n J + 1 0: - ()2 

. 0 1-0: 
J= 

It now follows immediately that 

(21.27) 

for all n 2 k + 2; this expression holds true for n :::; k + 1 as well, if we set 
Cn = 0 for all n < O. 

In the special case of Li.d. Bernoulli trials (po = 1, PI = 0, POI = Pn = p, 
PlO = POO = q, P + q = 1), we have 0: = 0 and Cn = n + 1, and in this case our 
formula reduces to 

which coincides with the one mentioned in Goldstein (1990) and Hirano and 
Aki (1993). 

The second order moments of Xn can be investigated by making use of ex
pressions (21.14)-(21.16). It is perhaps easier though to employ (21.17) instead, 
which in our case becomes 

00 

{I - (0: + l)z + o:z2} 2: E[Xn(Xn + 1)]zn 
n=O 

00 

2 [1 - (0: + 1) z + o:z2 + POlPlOP~ll zk+ 1] 2: J.LnZn 

n=O 
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and produce the following recurrence relation for the second ascending factorial 
moments 7l'n = E[Xn(Xn + 1)] 

7l'n - (a + 1)7l'n-l + a7l'n-2 

= 2J.Ln - 2(a + 1)J.Ln-l + 2aJ.Ln-2 + 2POIPIOP~11J.Ln-k-1' n2::k+1. 

From this, the forgone analysis for J.Ln, and the initial conditions 7l'n = 2J.Ln, 
o ::; n ::; k, the evaluation of all 7l'n'S [and therefore E[X~] and Var(Xn)] is 
easily achieved. 

21.5.3 Overlapping success runs 

Starting from the probability generating function of Tr given by 

(POlZ)(Pl1 Z) -
{ 

k 1 }r-l 
Hr(z) = H(z) Pl1 Z + PIOZ Q(z) , 

[see Koutras (1996b)], we can readily derive the double generating function 
G(z, w) of Xn and its moment generating function as 

G( ) = _1_ [1 - (1 - w)P(Z)(pl1 Z)k-l 1 
z,w k 1 ' 

1 - z (1 - WPl1Z)Q(Z) - WPlOPOlPll zk+l 

~ E[Xn]zn = P(z) (Pl1Z)k-l 
~ (1 - z)2(1 - az) 

where P(z), Q(z) and a are as defined earlier. The first formula could also be 
established by combining the two conditional double generating functions given 
by Hirano and Aki (1993) (after some modifications to adjust for the different 
set-up used therein). The second formula immediately yields the following 
expression for the mean J.Ln = E[Xn]: 

[en's are as given in (21.27)]. 

21.5.4 Number of non-overlapping windows of length at most 
k containing exactly 2 successes 

This random variable, say X n , is a special case (s = 2) of the so-called (discrete) 
s-scan statistic which has recently received considerable attention, due to its 
applications in DNA sequencing, quality control, reliability, queueing theory etc 
[see, Chao, Fu and Koutras (1995), Dembo and Karlin (1992), Glaz (1989), Glaz 
and Naus (1983), Koutras and Alexandrou (1995)]. Even in the simple LLd. 
case with s = 2, the derivation of generating functions for Xn is quite involved. 
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But, as Koutras (1996a) indicated, the respective waiting time problem for the 
first and r-th appearance of the event we are interested in (i.e., the occurrence 
of two successes separated by at most k - 2 failures), can be easily analyzed by 
elementary techniques in both i.i.d. and Markov dependent cases with initial 
distribution 

Pr[Zo = 0] = 1, Pr[Zo = 1] = o. 
One can readily adjust the methodology put forward there to the slightly more 
general Markov dependent model considered in this section and prove that the 
probability generating function of Tr takes on the form 

where 
+ 2 ",k ( )i-3 

B( ) _ PllZ POlPIOZ L..,i=3 Pooz 
Z - k 2 

1 - POOZ - POIPIOPOO zk 

Clearly, Hr(z) satisfies (21.10) with 

H(z) = P(z)B(z), A(z) = POlzB(z) 

and we are thus in possession of a machinery to analyze the respective enumer
ating random variable X n . So, the double generating function G(z, w) becomes, 
by virtue of Theorem 21.4.2, 

G(z w) = _1_ [1 _ (1 - W)P(Z)B(Z)] 
, 1 - z 1 - POlwzB(z) 

whereas the generating function of J.Ln = E[Xn] is readily computed to be 

00 P( ) k-2 k-l " n Z z Pn - o:z - POIPIOPoo z ' 
L J.Ln Z = ( )2 k 2 k n=O 1 - z 1 + (POI - poo)z - O:POlz2 - POIPIOPOO z' 

with P(z) and 0: as defined before. The above expressions for k = 2 are in 
concordance with the respective formulae of the non-overlapping success runs 
of length 2. Moreover, the last generating function may be used for developing 
simple recurrence relations for the mean J.Ln and second order moments of Xn 
[employing (21.14)-(21.17)]. The details are left to the reader. 
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21. 6 Conclusions 

The general formulae developed in Sections 21.3 and 21.4 offer very powerful 
tools for the study of one kind of problem, viz. distribution of the number of 
events in a fixed number of trials, when the exact solution for the corresponding 
waiting time problems is known. This was clearly illustrated in Section 21.4 
wherein four success runs related problems were treated. It should be mentioned 
that the method presented here is applicable to more general problems and set
ups as well; the consideration of the special case of two state trials and first-order 
Markov dependence was for the convenience of presentation only. 

We now proceed to review a few typical generalizations and variations which 
deserve special attention for further investigation. 

First of all the assumption of two different outcomes in each trial might be 
relaxed by considering multistate trials and general patterns instead of runs. 
Some work in this direction has already been done by Fu (1996) and Schwager 
(1983). The elegant generating function approach taken by Aki (1992) and the 
results of Chryssaphinou and Papastavridis (1990), Guibas and Odlyzko (1981) 
and Solovev (1966) pertaining to waiting time problems, offer instrumental 
tools for advancing to the study of the number of occurrences analogues, by 
the technique introduced here. The special case of sooner waiting time prob
lems, discussed earlier by Aki and Hirano (1993), Balasubramanian, Viveros 
and Balakrishnan (1993) and Koutras and Alexandrou (1997), is also of great 
importance, leading by our approach to results for the total number of success 
and failure runs. 

Another possible direction for extension of the basic models is offered by 
considering higher-order Markov dependent trials, in the lines put forward re
cently by Aki, Balakrishnan and Mohanty (1996). 

A final variation of some interest arises by placing the outcomes of the trials 
in a circular (instead of linear arrangement). For a few results in the special case 
of circular success runs, we refer to the recent works by Koutras, Papadopoulos 
and Papastavridis (1994, 1995) and the references therein. 
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On Sooner and Later Problems Between Success 
and Failure Runs 

Sigeo Aki 
Osaka University, Osaka, Japan 

Abstract: Let Xo, Xl, X2, . .. be a sequence of {O, 1 }-valued Markov chain. 
Let EI denote a run of "1" of length k and Eo denote a run of "0" of length 
r. We observe which run comes sooner or later in the sequence Xo, Xl, X2, .... 
The exact distributions of the numbers of overlapping sooner runs and non
overlapping sooner runs until the later run occurs (for the first time) are derived. 
Let PI be a success run of length k or more and let Po be a failure run of length 
r or more. The exact distribution of the number of occurrences of the sooner 
event until the first occurrence of the later event between PI and Po is also 
studied. Further, when X's have more than two values, more general problems 
are discussed and the exact joint distribution of the numbers of occurrences of 
the first, the second, ... , and the j-th runs until the j-th run occurs (for the 
first time) is obtained in the case of independent trials. 

Keywords and phrases: Probability generating function, geometric distribu
tion, discrete distributions, Markov chain, waiting time, geometric distribution 
of order k 

22.1 Introduction 

Let XO,Xl,X2, ... be a sequence of {O,I}-valued Markov chain with the fol
lowing probabilities: for i = 1,2, ... , 

Po = Pr[Xo = 0], PI = Pr[Xo = 1] (= 1- po) and 

Pxy = Pr[Xi = yjXi - 1 = x] for x, y = 0, 1. 

We assume that 0 < Pxy < 1. We call Xn the n-th trial and we say success and 
failure for the outcomes "1" and "0", respectively. Let k and r be given positive 
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integers greater than 1. We denote by EI a success run of length k and by Eo 
a failure run of length r. We are interested in two kinds of runs. This problem 
was investigated in a paper by Ebneshahrashoob and Sobel (1990) wherein the 
distributions of the numbers of trials until the sooner and later events firstly 
occur were derived when Xl, X2 .. . are independent identically distributed ran
dom variables. The waiting time problems have been generalized for dependent 
trials and some results were obtained by Aki (1992), Balasubramanian, Viveros 
and Balakrishnan (1993), Aki and Hirano (1993), Mohanty (1994) and Aki, 
Balakrishnan and Mohanty (1996). 

In this paper we investigate the distribution of the number of occurrences 
of the sooner event until the later event occurs for the first time. 

We now give a practical example for the problem. 

Example 22.1.1 Suppose we have two machines (e.g., cars), say A and B. 
Only one of the machines is randomly selected every day and used (by cus
tomers). The machines A and B are supposed to be possibly damaged enough 
for us to admit preventive maintenance if they are used consecutively k and 
r days, respectively. Since it is convenient for us to make preventive mainte
nance on both machines simultaneously, our basic strategy is to wait until the 
occurrence of the later event between events EA and EB, where EA is the event 
that the machine A is used k days consecutively and EB is the event that the 
machine B is used r days consecutively. However, if the sooner event occurs 
many times until the later event occurs for the first time, the sooner machine 
may be completely damaged by then and have to be replaced at a great cost. 
Then, it is important to know the distribution of the number of occurrences of 
the sooner event until the first occurrence of the later event in this example. 

It is well known that there are different ways of counting the numbers of 
runs such as overlapping counting, non-overlapping counting, etc. [cf. Hirano 
and Aki (1993) and Fu and Koutras (1994)]. 

This paper is organized as follows: In Section 22.2 we derive the probability 
generating functions (p.g.f.'s) of the distributions of numbers of overlapping 
and non-overlapping occurrences of the sooner run between EI and Eo until 
the later run occurs for the first time in Xo, XI, X2, .... Let PI be a success run 
of length k or more and let Po be a failure run of length r or more. The p.g.f. of 
the distribution of the number of occurrences of the sooner event until the first 
occurrence of the later event between PI and Fo is also provided. In Section 
22.3 more general problems are discussed when X's have more than two values. 
The p.g.f. of the joint distribution of the numbers of occurrences of the first, 
the second, ... , and the j-th runs until the j-th run occurs for the first time is 
obtained in the case of independent trials. 
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22.2 Number of Occurrences of the Sooner Event 
Until the Later Waiting Time 

First, we derive the distribution of the number of overlapping occurrences of the 
sooner run. Let cI?(t) be the p.g.f. of the number of occurrences of the sooner run 
until the later run occurs for the first time in Xo, Xl, X2, . ... For x = 0,1, let 
<Px(t) be the p.g.f. of the conditional distribution of the number of overlapping 
occurrences until the later run occurs for the first time in Xo, Xl, X2, . .. given 
that Xo = x. Let i be an integer such that 1 ~ i ~ k - 1 and let j be an integer 
such that 1 ~ j ~ r -1. Suppose we have currently "1" -run of length i and the 
sooner event has not occurred yet. Then, we denote by <Pl,i = <Pl,i(t) the p.g.f. 
of the number of occurrences of the sooner run from this time until the later run 
occurs for the first time. Suppose we have currently "0" -run of length j and the 
sooner event has not occurred yet. Then, we denote by <Po,j = <Po,j(t) the p.g.f. 
of the number of occurrences of the sooner run from this time until the later 
run occurs for the first time. For:r = 1 or 0, we consider the following cases. 
Suppose that we have currently "1" -run of length i, that the sooner event is 

Ex, and that Ex has already occurred. Then, we denote by <pi~} = <pi~}(t) the 
p.g.f. of the conditional distribution of the number of overlapping occurrences 
of the sooner run from this time until the later run occurs for the first time. 
Suppose that we have currently "0" -run of length j, that the sooner event is 

Ex, and that Ex has already occurred. Then, we denote by <Pb~] = <Pb~](t) the 
p.g.f. of the conditional distribution of the number of overlapping occurrences 
of the sooner run from this time until the later run occurs for the first time. 

From the definition, we see that <Pl(t) = <Pl,l(t) and <Po(t) = <PO,l(t). From 

the definitions of cI?(t), <Pl,i(t), <Po,j(t), <pi~l and <Pb~J(t), we have the following 
system of equations: 

cI?(t) = Pl<Pl,l + PO<PO,l, (22.1) 

{ 
<Pl,l pn<Pl,2 + PlO<PO,l 

<Pl,2 Pn <Pl,3 + PlO<PO,1 

<Pl,k-l 
(1 ) 

Pn t<Pl k-l + PlO<PO,1, , 

(22.2) 

{ 
<P0,1 POI <Pl,l + POO<P0,2 
<P0,2 P01<Pl,l + POO<P0,3 

<PO,r-l 
(0) 

= POl<Pl,l + Poot<PO,r-l' 

(22.3) 

(1) (1) (1) 
<PI k-l = Pn t<Pl k-l + PlO<PO l' , , , (22.4) 
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and 

1 ¢(l) 

(1) (1) = Pm ¢1,1 + POO¢0,2 0,1 
¢(1) (1) (1) 

= Pm ¢1,1 + POO¢0,3 0,2 

(1) (1) 
¢O,r-l = Pol ¢1,1 + POO, 

(0) (0) (0) 
¢o r-l = POl¢11 + poot¢o r-l' , , , 

1 ¢(O) 

(0) (0) = Pn ¢1 2 + PlO¢O 1 1,1 
¢(O) (0) (0) 

1,2 Pn ¢1,3 + PlO¢O,1 

(0) (0) 
¢1,k-l = Pn + PlO¢O,1 , 

1 
ll) (1) (1) = Pl1¢12 + PI0¢0 1 1,1 
¢(1) (i) (i) 

1,2 pn¢I,3 + PlO¢O,1 

(1) (1) (1) 
¢1,k-l = pnt¢l,k-l + PlO¢O,I' 

1 
¢(O) 

0,1 
¢(O) 

0,2 

",(0) = 
'l'O,r-l 

(0) (0) 
POl¢11 + PoOt¢Or-1' , , 

From (22.8) and (22.9) we obtain 

",(1) _ ",(1)(1 _ k-l) + k-1 t ",(I) '1'1,1 - '1'0,1 Pn Pn "I'l,k-l 

and 
¢~~i = ¢l~i(1- POOl) + Poolt¢~~;_l' 

From (22.4) and (22.6) we obtain 

¢(1) = PI0 ¢(1) 
l,k-l 1 _ pnt 0,1 

and 
",(0) _ Pol ",(0) 
'l'O,r-l - 1 _ poot '1'1,1' 

Sigeo Aki 

(22.5) 

(22.6) 

(22.7) 

(22.8) 

(22.9) 

(22.10) 

(22.11) 

respectively. By substituting these expressions into (22.10) and (22.11), we get 

k-l t 
¢(1) _ ¢(1)(1 _ k-l) + Pn PI0 ¢(1) 

1,1 - 0,1 Pn 1 _ Pn t 0,1 (22.12) 

and 

(22.13) 



On Sooner and Later Problems Between Success and Failure Runs 389 

From (22.5) and (22.12) we obtain 
k-I t 

Pr-I (1 _ pk- I + Pll PIO ) 
",(1) _ 00 11 I-put 
'1"11 - k I 

, 1 - (1 _ pk-I)(1 _ pr-I) _ Pu PIot(1 _ pr-I) 
U 00 I-put 00 

From (22.7) and (22.13), we similarly obtain 

Pk-I(1 _ pr- I + POOIpoIt) 
",(0) _ 11 00 I-poot 
'1"01 - r I 

, 1- (1- p~l1)(1- POOl) - Pf~:a~t(1- p~lI) 

Eqs. (22.4) and (22.5) imply 

",(1) _ (1 - POOl )PlO ",(1) + PIOPooI 
'1"1 k 1 - '1"1 1 . , - 1 - P11 t ' 1 - Pu t 

Eqs. (22.6) and (22.7) similarly imply 

(1 k-I) k-I 4>(0) _ - P11 POI 4>(0) + POIP11 
O,r-I - 1 - Poot 0,1 1 - poot . 

From (22.2) and (22.3), we now obtain 

'" _ pkI(1- PooI)t4>~~LI + Poolt4>~~LI 
'1"0,1 - 1 (1 k-I)(1 r-I) - - Pu - Poo 

and 
r-I (1 k-I)t"'(O) k-It",(I) 

'" _ Poo - Pu 'f'O,r-I + Pu 'f'I,k-I 
'1"1,1 - 1 _ (1 k-I)(1 r-I) - Pu - Poo 

By substituting (22.14) into (22.16), we get 

(1) 
4>I,k-I 

(22.14) 

(22.15) 

(22.16) 

(22.17) 

(22.18) 

(22.19) 

- (1- put) - (1- put)(1- p~l1)(1- POOl) - (1- POOI)P~lIplOt 
r-I + PIOPOO 

1- P11t 

By substituting (22.15) into (22.17), we similarly get 

(0) 
4>O,r-I 

P Pk-I(1 _ pk-l)(1 _ pr- I + POOIpolt) 
01 U 11 00 I-poot 

- (1- poot) - (1- poot)(1- pkI)(1- Pool) - (1- P~11)poolp01t 
k-I + POIP11 

1- poot 

Making use of these expressions in (22.18) and (22.19), we obtain the following 
result. 
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Theorem 22.2.1 The p.g.f. of the distribution of the number of overlapping 
occurrences of the sooner run until the first occurrence of the later run in 
Xo, Xl, X2, . .. is given by 

<P (t) = PI <Pl,1 + PO<PO,l , 

where 

1 
<PO,l = 1 (1 k-l)(l r-l) - - Pn - Poo 

{ 
Pk-lp pr-l(1_pr-l)2t(1_pk-l + P~llplOt) 

11 10 00 00 n I-put 
X 

(1 - pnt) - (1 - pnt)(l - p~ll)(l - POOl) - (1- POOl)P~llplOt 

k-l r-l(l r-l)t + Pn PlOPOO - Poo ' 
1 - P11t 

pr-lp pk-l(l _ pk-l)t(l _ pr-l + poplpOlt) + 00 01 11 n 00 l-poot 

(1- poot) - (1 - poot)(l- pkl)(l- POOl) - (1 - P~ll)pOOlp01t 

+ Poo P01P11 ' , r-l k-l t } 

1 - Poot 

and 

1 
<Pl,l = 1 (1 k-l)(l r-l) - - Pn - Poo 

{ 
Pk-lp pr-l (1 _ pr-l)t(l _ pk-l + P~llplOt) 

11 10 00 00 11 I-put 
X 

(1 - P11t) - (1 - pnt)(l - p~ll)(l - POOl) - (1 - Pool)pklplOt 

k-l r-lt + P11 PlOPOO ' 
1 - Pnt 

Pr-lp pk-l(l _ pk-l)2t(1 _ pr-l + pQplpOlt) + 00 01 n 11' 00 l-poot 

(1- poot) - (1- poot) (1 - p~ll)(l- POOl) - (1- P~ll)pOOlp01t 

+ Poo POlPn - Pn . r-l k-l(l k-l)t} 

1 - poot 

Let <p(t) be the p.g.f. of the distribution of the number of overlapping occur
rences of the sooner event until the first occurrence of the later run in Xl, X2, .... 
For x = 0, 1, let <px(t) be the p.g.f. of the conditional distribution of the number 
of overlapping occurrences of the sooner run until the later run occurs for the 
first time in XI, X2, ... given that Xo = x. Then, it is easy to see that 

<P PI <PI + Po<Po, 

<PI Pn<Pl,l + PlO<PO,l, 
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and 

<Po = POl<P1,1 + POO<PO,l. 

Corollary 22.2.1 The p.g.f. of the distribution of the number of overlapping 
occurrences of the sooner run until the first occurrence of the later run in 
Xl, X2, ... is given by 

<P = (plPU + POPOl)<P1,1 + (P1PlO + POPOO) <PO, I, 

where <P1,1 and <P0,1 are as given in Theorem 22.2.1. 

Next, we investigate the distribution of the number of non-overlapping oc
currences of the sooner run. 

Let 'IT(t) be the p.g.f. of the number of non-overlapping occurrences of the 
sooner run until the later run occurs for the first time in Xo, XI, X2, .... For 
x = 0,1, let 'I/)x(t) be the p.g.f. of the conditional distribution of the number of 
non-overlapping occurrences of the sooner run until the later run occurs for the 
first time in Xo, XI, ... given that Xo = x. 

As done in the case of overlapping counting, we define the p.g.f. 's of the 
conditional distribution of the number of non-overlapping occurrences of the 

sooner run, '1h,i(t), 'I/)O,j(t), 'I/)i~2, 'I/)~~) for i = 1, ... , k - 1; j = 1, ... , r - 1, and 
x = 0,1. 

Further, we define 'I/)(x) for x = 0,1 as follows: Suppose the sooner event is 
Ex and Ex has just occurred. Then we denote by 'I//x) = 'I//x)(t) the p.g.f. of 
the conditional distribution of the number of non-overlapping occurrences from 
this time until the later run occurs for the first time. 

In this case, we have the following system of equations: 

w(t) = P1'1/)1,1 + PO'l/)O,l, (22.20) 

{ 
'1/)1,1 = Pll'l/)1,2 + PlO'I/)O,l 
'1/)1,2 = Pll'l/)1,3 + PlO'I/)O,l 

'I/)1,k-1 = Pllt'l//l) + PlO'I/)O,l, 

(22.21) 

{ 
'1/)0,1 = POl'l/)l,l + POO'l/)0,2 
'1/)0,2 = POI '1/)1, 1 + POO'l/)0,3 

'I/)0,r-1 = POl '1/)1, 1 + poot'l//O) , 

(22.22) 

(1) (1) (1) 
'1/) = PU'I/)l,l + PlO'I/)O,l' (22.23) 

(0) (0) (0) 
'1/) = POl'l/)l 1 + poo'l/)o 1 , , , (22.24) 
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r(ll (1) (1) 
/01 POl'lj)I,1 + POO'lj)0,2 

7/ (i) (1) (1) 
/0,2 POl'lj)1 1 + poo'lj)O 3 (22.25) , , 

(1) (1) 
'lj)O,r-l POl'lj)I,1 + POO, 

! 
7/ (0) (0) (0) 
/11 pn'lj)1,2 + PI0'lj)0,1 

7/ (0) (0) (0) 
/1,2 = pn'lj)1,3 + PlO'lj)O,1 (22.26) 

(0) (0) 
'lj)I,k-l = Pn + PlO'lj)o, 1 , 

! 
7/ (1) (1) (1) 
/11 pn'lj)1,2 + PI0'lj)0,1 

7/ (i) (1) (1) 
/1,2 pn'lj)1,3 + PI0'lj)0,1 (22.27) 

(1) 
Pn t'ljP) + PlO'lj)a1i, 'lj)I,k-l , 

and ! V (01 

(0) (0) 
/01 POl'lj)I,1 + POO'lj)0,2 

7/ (0) (0) (0) 
/0,2 = POl'lj)I,1 + POO'lj)0,3 (22.28) 

(0) POl'lj)ioi + poot'lj/O) . 'lj)O,r-l , 

From (22.25) and (22.27), we obtain 

(1 k-l) r-l + k-l t7/ (1) 'ljP) _ - Pn POO Pn' J (22.29) 
1,1 - 1 (1 k-l)(1 r-l) - - Pn - Poo 

and 
(1 r-l) k-l to' (1) + r-l 

o~(I) _ - Poo Pl1 'jJ Poo 
V-O,1 - 1 (1 k-l)(1 r-l) - - Pll - Poo 

(22.30) 

Similarly, from (22.26) and (22.28), we obtain 

(1 k-l) r-l to' (0) + k-l 'lj}0) _ - Pll Poo ' ~) Pl1 
1,1 - 1 (1 k-l)(1 r-l) - - Pll - Poo 

(22.31) 

and 
(1 r-l) k-l + r-l to' (0) 'lj}0) _ - Poo Pll Poo ~) 

0,1 - 1 (1 k-l)(1 r-l) - - Pll - Poo 
(22.32) 

Eqs. (22.23), (22.29) and (22.30) imply 

r-l(1 k ) 
41) = Poo - Pll 
v- k-l + r-l k-l r-l k-l(1 r-l)t . 

Pn Poo - Pn Poo - Pll - PI0POO ' 
(22.33) 
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Similarly, Eqs. (22.24), (22.31) and (22.32) imply 

k-l(l r) 
1//0) _ Pu - Poo 

- k-l r-l k-l r-l r-l(l k-l)t 
Pu + Poo - Pu Poo - Poo - POIPU ' 

By solving (22.21) and (22.22), we obtain 

and 

(1 - P~11 )p~olt1/)O) + P~11t1/)(1) 
1/)1,1 = 1- (1- p~11)(1- p~OI) 

(1 - p~OI )P~11t1/)(I) + p~olt1/)O) 
1/)0,1 = 1 (1 k-l)(l r-l) - - Pu - Poo 

(22.34) 

(22.35) 

(22.36) 

Making use of the expressions in (22.35) and (22.36) in (22.20), we get the 
following result. 

Theorem 22.2.2 The p.g.f. of the distribution of the number of non-overlapping 
occurrences of the sooner run until the first occurrence of the later run in 
XO,Xl,X2, ... is given by 

w = Pl1/)I,1 + Po 1/)0, 1 , 

where 1/)1,1 and 1/)0,1 are as given in {22.35} and {22.36}, and 1/)(1) and 1/)0) are 
as given in {22.33} and {22.34}, respectively. 

Similar to Corollary 22.2.1, we now have the following result. 

Corollary 22.2.2 The p.g.f. of the distribution of the number of non-overlapping 
occurrences of the sooner run until the first occurrence of the later run in 
Xl, X2, ... is given by 

Remark 22.2.1 When we set PI = Pu = POI = P and Po = PI0 = Poo = q, the 
sequence reduces to independent sequence with success probability p. Then, 
from Theorem 22.2.2 it is easy to see that 

where 

and 
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This formula can be proved directly by using the independence of the sequence. 
Aki and Hirano (1994, p. 196) have noted that the number of occurrences of Eo 
until the first occurrence of El follows a geometric distribution with parameter 
Po, where 

qr-l(1 _ pk) 
Po = Pr[Eo comes sooner] = ( k-l)( -1) 1 - 1 - p 1- qr 

By changing the roles of Eo and El, we note that the number of occurrences 
of El until the first occurrence of Eo follows the geometric distribution with 
parameter PI, where PI = 1 - Po. We denote by Vo the number of occurrences 
of Eo until the first occurrence of El , and by VI the number of occurrences of 
El until the first occurrence of Eo. Then, we have 

Pr[N = n] Pr[N = n, Eo comes sooner] + Pr[N = n, El comes sooner] 

Pr[Eo comes sooner] Pr[N = n\Eo comes sooner] 

+ Pr[El comes sooner] Pr[N = n\El comes sooner] 

Pr[Eo comes sooner] Pr[vo = n\vo ~ 1] 

+ Pr[El comes sooner] Pr[vl = n\vl ~ 1] 

{ Pr[vo = n] +0 Pr[vl = n] if n ~ 1 
if n = 0 

{ PlPfJ +0 Pl'Po if n ~ 1 
if n = 0 . 

Next, we study the distribution corresponding to the occurrences of "1"
run of length k or more and "0" -run of length r or more. It needs to be 
mentioned that many results have been derived based on overlapping as well as 
nonoverlapping counting [ef. Goldstein (1990), Hirano and Aki (1993), Fu and 
Koutras (1994) and Uchida and Aki (1995)]. 

We denote by Fl a success run of length k or more and by Fo a failure run 
of length r or more. The waiting time distributions for the sooner and later 
problems between Fl and Fo were obtained by Uchida and Aki (1995). 

Now we study the distribution of the number of occurrences of the sooner 
event until the first occurrence of the later event. 

Let 3(t) be the p.g.f. of the number of (non-overlapping) occurrences of the 
sooner run until the later run occurs for the first time in Xo, Xl, X2, . ... Similar 
to the previous two cases, we define the p.g.f.'s of the number of occurrences 

of the sooner run, 6,j, ~O,j, ~i~), ~6~] for i = 1, ... , k - 1, j = 1, ... , r - 1, and 

x = 0,1. Further, we define ~(x) for.x = 0,1 as follows: Suppose the sooner event 
is Fl and Fl has already occurred (though it may not have finished yet) and we 
have currently "1"-run of length k or more. Then we denote by ~(l) = ~(l)(t) 
the p.g.f. of the conditional distribution of the number of occurrences of Fl 
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from this time until the later run (Fo) occurs for the first time. Suppose the 
sooner event is Fo and Fo has already occurred and we have currently "0" -run of 
length r or more. Then, we denote by ~(O) = ~(O)(t) the p.g.f. of the conditional 
distribution of the number of occurrences of Fo from this time until the later 
run (F1) occurs for the first time. 

From the definitions of the p.g.f.'s of the conditional distributions, we have 
the following system of equations in this case: 

3(t) = P1~1,1 + PO~0,1 (22.37) 

{ 
6,1 P116,2 + PlO~0,1 
6,2 = P116,3 + P10~0,1 

6,k-1 Pl1t~(1) + PlO~0,1 

(22.38) 

{ 
~0,1 P016,1 + POO~0,2 
~0,2 P016,1 + POO~0,3 

~0,r-1 = P016,1 + poot~(O) 

(22.39) 

~(1) = Pl1~(l) + p10~a1{ , (22.40) 

~(O) = P01d~{ + poo~(O) (22.41) 

! 
~(1) (1) (1) 

= P01~1,1 + POO~0,2 0,1 
~(1) (1) (1) 

0,2 POl~I,1 + POO~0,3 

(1) (1) 
~O,r-l POl~l,1 + Poo 

(22.42) 

! 
~(O) (0) (0) 

1,1 Pl1~1 2 + PlO~O 1 
~(O) (0) (0) 

1,2 Pl1~1,3 + PlO~O,l 

(0) (0) 
~1,r-1 = Pl1 + P10~0,1 

(22.43) 

! 
~(1) (1) (1) 

= Pl1~I,2 + P10~0,1 1,1 
~(1) (1) (1) 

= Pl1~1,3 + P10~0,1 1,2 

(1) Pl1t~(1) + PlO~g{ ~1,r-1 

(22.44) 

and 

! 
~(O) P01~(O) + poo~(O) 0,1 1,1 0,2 
~(O) (0) (0) 

0,2 P01~1,1 + POO~0,3 

(0) P01~io{ + poot~(O). ~O,r-l , 

(22.45) 
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From (22.42) and (22.44), we obtain 

(1 k-l) r-l + k-ltc(l) 
~(l) _ - Pn PO~ Pn ,<" 

1,1 - 1- (1 - p~ll)(l - p~Ol) 
(22.46) 

and 
(1 r-l) k-ltc(l) + r-l 

~(l) _ ~(l) _ - PO~ Pn ,<" PO~ 
- 0,1 - 1 (1 k-l)(l r-l) - - Pn - PO~ 

(22.47) 

From (22.43) and (22.45), we similarly obtain 

(1 k-l) r-ltc(O) + k-l 
~(O) _ ~(O) _ - Pil PO~ <" Pn 

- 1,1 - 1 (1 k-l)(l r-l) - - Pn - PO~ 
(22.48) 

and 
(1 r-l) k-l r-ltc(O) 

~(O) _ - PO~ Pn + PO~ ,<" 

0,1 - 1 - (1 - p~ll)(l - p~Ol) 
(22.49) 

Eq. (22.47) implies 

r-l 
dl) _ PO~ 
<" - k-l + r-l k-l r-l (1 r-l) k-l t . 

Pn PO~ - Pn PO~ - - PO~ Pn 
(22.50) 

Eq. (22.48) similarly implies 

k-l 
dO) _ Pn 
<" - k-l + r-l k-l r-l (1 k-l) r-lt . 

Pu POD - Pu POD - - Pu POD ' 
(22.51) 

By solving (22.38) and (22.39), we get 

(1 - P~ll)p~Olt~(O) + P~llt~(l) 
6,1 = 1 (1 k-l)(l r-l) - - Pn - PO~ 

and 
p~olt~(O) + p~ll(l - p~Ol)t~(l) 

~O,l = 1 (1 k-l)(l r-l) - - Pn - PO~ 

Making use of these expressions in (22.37), we get the following result. 

Theorem 22.2.3 The p.g.f. of the distribution of the number of occurrences of 
the sooner run until the later run occurs for the first time between Fl and Fo 
in X o, Xl, X2, ... is given by 

';::;' t _ p~olt(l - PlP~ll )~(O) + p~llt(l - POP~Ol )~(l) 
~( ) - 1 (1 k-l)(l r-l) , - - Pu - PO~ 

where ~(1) and ~(O) are as given in (22.50) and (22.51), respectively. 
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22.3 Joint Distribution of Numbers of Runs 

Let Xl, X2, ... be a sequence of i.i.d. random variables with Pr[Xl = i] = Pi, 

i = 1,2, ... ,m, where PI + ... + Pm = 1. For i = 1, ... , m, we are interested in 
runs of i of length ki. We denote by Ei a run of i of length ki . Let Ti be the 
waiting time (the number of trials) for the i-th event. For notational conve
nience, we let TO = O. Fix a permutation a E Sm, where Sm is the permutation 
group on {1, 2, ... , m}. When the first event is Eu(l) among E l , ... ,Em, we 
denote by Nfl the number of occurrences of the first event Eu(l) in (TO, Tl]. Sim
ilarly, when the first and the second events are Eu(l) and Eu (2), the numbers of 
occurrences of EU(l) and Eu(2) in (Tl' T2] are denoted by Nf2 and N22 , respec
tively. More generally, when the first, the second, ... , and the j-th events are 
Eu(l), Eu(2) , ... , Eu(j) , the numbers of occurrences of Eu(l), Eu(2), . .. , Eu(j) in 
(Tj-l, Tj] are denoted by NU, .. · ,N'h- Let q/{(tt) be the (improper) p.g.f. of Nfl 
and let ¢j(tb .. . , tj) be the (improper) conditional joint p.g.f. of (NU,· .. , Nh) 
given that the first event is Eu(l), ... , the (j - l)-th event is Eu(j-l). 

Remark 22.3.1 Nfl is defined only when the first event is Eu(l). Hence, we see 
that ¢1(1) = Pr[the first event is EU(l)]. Similarly, the conditional probability 
of (NU, ... , Nh) can be considered only when {the j-th event = Eu(j)}. Then, 
we have ¢j(l, 1, ... ,1) to be the conditional probability that the j-th event is 
Eu(j) given that the first event is Eu(l), ... , the (j - l)-th event is Eu(j-l). 

Proposition 22.3.1 The above (improper) p.g.f. 's are given by 

¢l(t l) = Pu(l)tl, 

and 

(j 2 2), 

where 
k· 

Pi t(l_p;) 
P. _ I-Pi 

1, - k. , 
",m p/ (l-pj) 
L..Jj=l k 

l-p/ 

i = 1,2, ... , m,. 

PROOF. ¢l(tl) = Pu(l)tl is clear, since the first event is Eu(l) and Pi is the 
probability that the first event is Ei. The first possible event after Tj-l is one 
of the events Eu(l), ... ,Eu(j) and they are mutually exclusive. Therefore, we 
have 

¢j(tl, ... ,tj) = Pu(l)tl·¢j(tl, ... ,tj) 

+ Pu(2)t2 . ¢j(tl, ... , tj) + ... 
+ Pu(j-1)tj-l· ¢j(tl, ... , tj) + Pu(j)tj. 
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By solving the equation, we have the result. This completes the proof. • 

When the first event is Eu(I), ... , the j-th event is Eu(j) , the number of 
occurrences of the i-th event EU(i) until Tj is Nfi + Nf,i+1 + ... + Ntj' Then we 
have the following result. 

Theorem 22.3.1 For j = 1,2, ... ,m, the p.g.f. of the joint distribution of the 
numbers of occurrences of the first, the second, ... , the j-th events until Tj, is 
given by 

</J(tl, ... ,tj) = L </Jl(t l)cf/2(tl, t2)'" cf/J-I (tl,"" tj-I)cf/J(tl, ... , tj), 
uESj 

where Sf means the totality of permutations of j different letters in 
{1,2, ... ,m}. 

In particular, by setting j = m, we get the following result. 

Corollary 22.3.1 The joint p.g.f. of the number of occurrences of the first, the 
second, ... , the (m - 1)-th events until the last event occurs for the first time 
is given by 

</J( tl, ... , tm-I) 

L cf/[(td</J2(tl' t2) ... </J~-I (tl, ... , tm-I)</J~(tl, ... , tm-I, 1). 
uESm 

Example 22.3.1 When we set m = 2, Corollary 22.3.1 gives the p.g.f. of the 
number N of occurrences of the sooner event until the later event occurs for 
the first time as 

By taking the coefficient of tr, we have 

Pr[N = 11,] = Pf P2 + PIPr 

See also Remark 22.2.1. 

for 11, 2: 1. 

Example 22.3.2 By setting m = 3 in Corollary 22.3.1, we see that the joint 
p.g.f. of the numbers (Nl, N2) of occurrences of the first and the second events 
until the third event occurs for the first time is given by 

</J(tl, t2) = L </Jl(t l)</J2(tl, t2)</Ja(tl, t2, 1) 
uESa 

"" Pu(2)t2 Pu(3) 
= ~ P (l)tl . . ---=-_.....:......:.--=---

uESa u 1 - Pu(l)tl 1 - Pu(l)tl - Pu(2)t2 
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For simplicity, we take the typical term for cr = identity. Note that 

The coefficient oftft~ in the above formula is the probability Pr[Nl = x, N2 = y, 
(1st, 2nd, 3rd) = (El' E2, E3)]. Then, the probability is given by 

P P. P. ~ pn ( X - n + y - 2 ) px-n-l py-l 
12 3L...., 1 y-1 1 2 

n=O 

= px Py p." a = x + y - 1 px Py P. . x+y-2 ( ) ( ) 
1 2 3 L...., y-1 y 1 2 3 

a=O 

For the last equality, we used the formula for binomial coefficients 

~(a)=(n+1) f=o b b+1' 
Therefore, we have 
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Abstract: The distributions of numbers of overlapping and non-overlapping 
occurrences of success-runs of length I, and the distributions of numbers of 
occurrences of success-runs of exact length I and of length I or more until the 
first occurrence of success-run of length k in the m-th order Markov dependent 
trials are studied. When m :S I < k, the derived distributions do not depend 
on the initial distribution of the m-th order Markov chain and they are shown 
to be equal to the corresponding distributions considered in independent trials 
with a success probability whose value is given by the transition probability 
that a success occurs after a success-run of length m in the m-th order Markov 
chain. When I < m, the distributions depend on the initial distribution of the 
m-th order Markov chain and are not necessarily so simple as the above case. 
A method for deriving the probability generating function of the conditional 
distribution of the number of overlapping occurrences of success-runs of length 
I until the first occurrence of success-run of length k under each initial condition 
is given. 

Keywords and phrases: Probability generating function, discrete distribu
tions of order k, success and failure runs, higher order Markov chain 

23.1 Introduction 

Currently exact discrete distribution theory of runs has been developed. In the 
simplest case of independent and identically distributed Bernoulli trials with 
success probability p, the distribution of the number of trials until the first con
secutive k successes is well known [see, for example, Feller (1968) and Johnson, 
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Kotz and Kemp (1992)J. Philippou, Georghiou and Philippou (1983) called it 
the geometric distribution of order k. The binomial distribution of order k is 
the distribution of the number of occurrences of success-runs of length k un
til the n-th trial. Discrete distributions of order k such as the geometric and 
the binomial distributions of order k have been studied by many authors in 
more general situations. Some of the results on these distributions are closely 
related to problems on reliability of the consecutive-k-out-of n:F systems [Hi
rano (1994), Chao, Fu and Koutras (1995)], and on evaluation of the start-up 
demonstration test [Viveros and Balakrishnan (1993) and Balakrishnan, Bala
subramanian and Viveros (1995)J. 

Further exact discrete distribution theory has been investigated even in the 
case of dependent trials such as the homogeneous Markov chain and the binary 
sequence of order k [Rajarshi (1974), Schwager (1983), Aki (1985), Aki and 
Hirano (1993), Balasubramanian, Viveros and Balakrishnan (1993), Hirano and 
Aki (1993), Mohanty (1994), Koutras and Alexandrou (1995), Uchida and Aki 
(1995) and Aki, Balakrishnan and Mohanty (1996)J. Multivariate distributions 
of order k and related issues have been reviewed recently by Johnson, Kotz and 
Balakrishnan (1997). 

Aki and Hirano (1994) showed that, when {O, 1 }-sequence follows the first 
order Markov chain, the distribution of the number of overlapping occurrences 
of success-runs of length I until the first consecutive k successes is the shifted ge
ometric distribution of order k-l with the support {k-l+ 1, k-I+2, . .. }, where 
we usually regard the value 1 as success and the value ° as failure. Further, 
Aki and Hirano (1995) extended the result and studied the joint distributions 
of the numbers of trials and of outcomes such as successes, failures and success
runs until the first consecutive k successes in the first order Markov dependent 
trials. Now suppose that {O, 1 }-sequence follows the m-th order Markov chain. 
Then, the purpose of this paper is to examine the distribution of number of 
occurrences of success-runs of length I until the first occurrence of success-run 
of length k. 

Throughout the paper, let k, I and m be fixed positive integers such that 
I, m < k. We denote by Gk(P) the geometric distribution of order k, and by 
Gk(p, a) the shifted geometric distribution of order k so that its support begins 
with a. Here the geometric distribution, to be denoted by G(p), is defined as 
the distribution of the number of failures preceding the first success. Note that 
G(p) = G1(p, 0). 

There are different ways of counting the numbers of success-runs of length k 

[see, for example, Fu and Koutras (1993)J. Feller (1968, Chapter XIII) defined 
a way of counting the number of runs exactly of length k as counting the 
number from scratch every time a run occurs. For example, the sequence SSS I 
SFSSS I SSS I F contains 3 success-runs of length 3. In Goldstein (1990), the 
number of success-runs of length 3 or more in the sequence SSSS I FSSSSSS I 
F is 2. Ling (1988) defined a way of counting the number of success-runs 
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of length k by the overlapping way of counting. By Ling's way of counting, 
the sequence SSSSFSSSSSSF contains 6 success-runs of length 3. In Mood 
(1940), the number of success-runs of exact length 3 in the above sequence 
SSSSFSSSSSSF is O. 

In Section 23.2, when m ~ l < k, we investigate the distributions of numbers 
of overlapping and non-overlapping occurrences of success-runs of length l, the 
distributions of numbers of occurrences of success-runs of exact length l and of 
length l or more. In Section 23.3, when l < m, we give a method for deriving the 
probability generating function of the conditional distribution of the number of 
overlapping occurrences of success-runs of length l under each initial condition 
until the first occurrence of success-run of length k. 

23.2 Numbers of Success-Runs in Higher Order 
Markov Chain 

In this Section, suppose that m ~ k. Let X-m+l , X-m+2, ... , Xo, Xl, X 2, ... 
be {O, 1 }-valued m-th order Markov chain with 

1T"Xl, ... ,Xm Pr[X_m+1 = Xl, X-m+2 = X2,···, Xo = Xm], 

PXl, ... ,xm = Pr[Xi = llXi- m = Xl, X i - m+l = X2,··· ,Xi - l = Xm], 

= 1 - qXl, ... ,Xm ' 

for Xl, ... ,Xm = 0,1 and i = 1,2, .... For Xl, ... , Xm = 0,1, we assume that 
0< PXl, ... ,Xm ' qXl, ... ,xm < 1. We denote by T the number of trials until the first 
consecutive k successes in Xl, X 2 , . ... 

First, we derive the distribution of the number of overlapping occurrences 
of "1"-runs of length l until T. Let ¢(Xl, ... ,xm)(t) be the probability generating 
function (p.g.f.) of the conditional distribution of the number of overlapping 
occurrences of "1"-runs of length l until T given that X-m+l = Xl, X-m+2 = 
X2, .. . ,Xo = Xm. Suppose we have currently "I" -run oflength i in Xi, Xi-I, .... 
Then, we denote by ¢i(t) the p.g.f. of the conditional distribution of the number 
of overlapping occurrences of "1"-runs of length l from this time until T. 

Theorem 23.2.1 Ifm ~ l < k, then the distribution of the number of overlap
ping occurrences of "1" -runs of length l until the first occurrence of the "1" -run 
of length k in Xl, X2, . .. is the shifted geometric distribution of order k - l, 

Gk-I(Pll ... I, k -1 + 1). 

PROOF. We are waiting for the first occurrence of "1"-run of length k and 1 is 
less than k. Then, starting from any initial state (Xl, ... , Xm) we observe the 
first occurrence of "1"-run of length l somewhere in Xl, XI+ I , ... with probabil
ity 1. By considering the m-th order Markov chain just after the first occurrence 
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of "I" -run of length l, we see that 

q/Xl, ... ,Xm) = t¢l for each initial state (XI, ... ,xm). 

This shows that all the conditional distributions are equal to each other and 
they do not depend on their initial conditions. Hence, we denote ¢ == t¢l = 
¢(Xl, ... ,Xm). Then, it is easy to see that 

r 
= PIl...lt¢l+1 + qll ... l¢ 

¢l+l = PIl...lt¢l+2 + qll ... l¢ 

¢k-l = Pll ... lt + qll ... l¢. 

By solving this system of equations, we obtain 

1 - ( t)k-l 
'" _ '" PIl...I' + ( t)k-l 'l'l - qll...l'l' 1 _ t PIl...I'· 

PI l... I , 

Then, ¢ = t¢l implies 

k-l tk- l+1 (1 - t) ¢ = PIl...I PI !... I , 

1 - t + qll...lt(Pll ... lt)k-l 

This completes the proof. • 
Similarly, we can derive the distribution of the number of non-overlapping 

occurrences of "I"-runs of length 1 until T. Let 'ljJ(Xl, ... ,xm)(t) be the p.g.f. of 
the conditional distribution of the number of non-overlapping occurrences of 
"l"-runs of length 1 until T given that X-m+l = XI,X-m+2 = X2, ... ,Xo = 
X m . Suppose we have currently "I" -run of length i in Xi, Xi-I, . ... Then, 
we denote by 'ljJi(t) the p.g.f. of the conditional distribution of the number of 
non-overlapping occurrences of "l"-runs of length 1 from this time until T. 

Theorem 23.2.2 Suppose that m ::; 1 < k. Let k = vl + J-L, where v and J-L 

are nonnegative integers and 0 ::; J-L < l. Then, the p.g./. of the distribution of 
the number of non-overlapping occurrences of "1" -runs of length 1 until the first 
occurrence of "l"-run of length k in XI,X2, ... is given by 

(23.1) 

where P = PI1...I· 

PROOF. From the same reason as in the overlapping case, we see that 

for each initial state (XI, x2, ... , Xm). 
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Since all the p.gJ. 's of the conditional distributions are the same, we denote it 
by"p. Of course, V) is the (unconditional) p.gJ. of the number of non-overlapping 
occurrences of "I" -runs of length l until T regardless of the initial distribution. 

Then, we see that the following systems of equations hold: 

r 
= 

V)I+l = 

V)21-l 

{ 
V)21 

V)21+1 = 

V)31-l = 

{ 

V)(v-l)1 

V)(v-l)l+1 = 

V)vl-l 

= 

= 

{ 

V)vl 

V)vl+1 

V)vl+l1--l 

PU ... 1 V)I+1 + qU ... l V) 

PI !... 1 V)I+2 + qU ... l V) 

PU ... ltV)21 + qU ... lV) 

PI!... 1 "p21+1 + qU ... l V) 

PI !... 1 V)21+2 + qU ... l V) 

PU ... ltV)31 + qU ... lV) 

PI!... 1 V)(v-l)l+l + qU ... l V) 

PU ... 1 V)(v-l)I+2 + qU ... l V) 

PU ... ltV)vl + qU ... lV) 

PI!... 1 V)vl+1 + qU ... l V) 

PI!... 1 V)vl+2 + qU ... l V) 

PI !... 1 1 + qU ... l V) . 

By solving (23.2), (23.3), (23.4) and (23.5), we have 

'~(1- I) 1 - (PU ... l1t)v-l + .~( It )v-l(1 _ 11-) 
'I' PI !... 1 1 _ It 'I- Pl!...l - PI !... 1 

Pl!...l ' 

+ P l(v-l)+l1-tv - l 
11 ... 1 . 

Then, t'Ij)1 = V) implies (23.1), which completes the proof. 

Remark. It is easy to see that the formula (23.1) agrees with 

1 - (1 - p) I:~~J pit[i/lj , 

(23.2) 

(23.3) 

(23.4) 

(23.5) 

• 

which was derived as p.gJ. of the distribution of the number of non-overlapping 
occurrences of "I" -runs of length l until T in independent trials with success 
probability P [cf. Corollary 3.2 of Aki and Hirano (1995)]. 

Here, we give a recurrence formula of probabilities of this distribution. 
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Proposition 23.2.1 We denote by P(n) the probability that the number of 
non-overlapping occurrences of ((1" -runs of length 1 until the first occurrence of 
((1" -run of length k is n. Then, the following recurrence formula holds: 

{ ;~:j 
= 0 for n < 1/ 

P(I/+1) = 
P(n) 

pk-i 

_pk + pk-i _ aP(1) 

P(n - 1) - aP(n - 1/) - f3P(n - 1/ - 1) 

where a = (pJ.L - pi)pi(v-I) and f3 = pvi _ pk. 

PROOF. It is easily seen that (23.1) can be rewritten as 

We set 
k-i kt 00 

p - p '" f( )tn 
1 - t + atV + f3tv+ I = f;:o n , 

for n ~ 1/ + 2, 

and then multiply 1 - t + atV + f3tv+1 on both sides. Then, by comparing the 
coefficient of t n we see that 

{ 
f(O) = pk-i 

f(1) - f(O) + af(1 - 1/) + f3f( -1/) = _pk 
f(n) - f(n - 1) + af(n - 1/) + f3f(n - 1/ - 1) = 0 (n ~ 2). 

This completes the proof. • 

Next, we study the distribution of the number of occurrences of "1"-runs 
of exact length 1 until T. Let 6 (1 = m, m + 1, ... , k - 1) be the number of 
occurrences of "1" -runs of exact length 1 until T. We denote by <p(Xl, ... ,xm)(t) the 
p.g.f. of the conditional distribution of 6 given that X-m +! = Xl, ... ,Xo = Xm . 

Let <Pi (t) be the p.g.f. of the conditional distribution of ~.e given that we start 
with a "1"-run of length i, where i ~ m. As in the previous cases, we observe 

(23.6) 

Here, we note that <p(Xl, ... ,Xm) does not depend on initial condition X-m+l , 

... ,Xo. So, we set <p(Xl, ... ,Xm) = <po Furthermore, we have the following system 
of equations: 

PI 1... I <Pi+! + qll...l t<p 

PI 1...1 <Pi+2 + q11 ... 1 <p 

PI 1... I + ql1...1 <p . 

(23.7) 
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From (23.6) and (23.7), we obtain 

k-I 
PI 1... 1 

cP = k-I + - t PI 1... 1 ql1 ... l ql1 ... l' 

Hence, we have the following result. 
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Theorem 23.2.3 For l = m, m + 1, ... ,k - 1, let ~I be the number of oc
currences of "l"-runs of exact length l until the first occurrence of "l"-run 
of length k. Then the distribution of 6 is the geometric distribution, i. e., 
C "-' G( k-I/( k-I + )) <.,,1 PI l... I PI l... 1 ql1 ... I· 

Finally, we examine the distribution of the number of occurrences of "1"
runs of length l or more until T. Let VI (l = m, m+ 1, ... ,k-l) be the number of 
occurrences of "1"-runs of length l or more until T. We denote by p(Xl, ... ,Xm)(t) 

the p.g.f. of the conditional distribution of VI given that X-m+l = Xl, . .. ,Xo = 
X m . Let Pi(t) be the p.g.f. of the conditional distribution of VI given that we 
start with a "I" -run of length i, where i ~ m. Then, we observe 

(23.8) 

Here, we note that p(Xl, ... ,xm ) does not depend on the initial condition X-m +1, 

... ,Xo. So, we set p(Xl, ... ,xm ) = p. Furthermore, we have the following system 
of equations: 

{

PI 

PHI 

Pk-l 

Pl1 ... lPI+1 + ql1 ... l tp 

Pl1 ... lPI+2 + ql1 ... l tp 

= Pll. .. l t + Qll. .. 1t p . 

From (23.8) and (23.9), we obtain 

k-lt _ _ P:....-l1_ .. _.1_--;-' --;P= 1 - t + PI l... 1 k-It 

We can state this result as follows. 

(23.9) 

Theorem 23.2.4 For l = m, m + 1, ... , k - 1, let VI be the number of occur
rences of "1" -runs of length l or more until the first occurrence of "1" -run of 
length k. Then the distribution of VI is the geometric distribution of order 1, 
i. e., VI "-' GI (Pl1 ... 1 k-I). 
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23.3 Case l < m 

In the last section we investigated the distributions of the numbers of over
lapping and non-overlapping occurrences of success-runs of length l and of the 
numbers of success-runs of exact length l and of length l or more until T in the 
m-th order Markov dependent trials when l 2: m. We are interested in the case 
l < m. However, in general, when l < m, the distributions depend on the initial 
condition of the m-th order Markov chain and are not necessarily so simple as 
the case l 2: m. 

In this section we give a method for deriving the p.g.f. of the conditional 
distribution of the number of overlapping occurrences of success-runs of length 
l under each initial condition until T in the m-th order Markov dependent trials 
when l < m. 

A sequence which follows the m-th order Markov chain depends on the 
past occurrences of length m. A set of {O, 1 }-sequence of length m consists of 
2m elements, and can be uniquely regarded as a binary number. Further we 
translate it into a decimal number. For example, when m = 3, P101 = P5. Let 
Nm = {O, 1, 2, ... , 2m -I} and let Ii (i = 0, 1) be the mapping from Nm to Nm 

such that 

and define 91 by 

Ji(x) = 2x + i (mod 2m ), for i = 0,1 

( .) {j -l + 1 
91 J = o 

if j 2: l 
if j < l. 

We denote by ¢(x) (for each x E Nm ) the p.g.f. of the conditional distribution 
of the number of overlapping occurrences of success-runs of length l until T. 

Then we have the following system of 2m equations of conditional p.g.f. 's 

by considering all possibilities of the first occurrence of O. In this case, the 
system is linear with respect to the conditional p.g.f's, and so we can solve 
it by using computer algebraic systems. An illustrative example is given in 
Hirano, Aki and Uchida (1996). 
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On Multivariate Distributions of Various Orders 
Obtained by Waiting for the r-th Success Run of 
Length k in Trials With Multiple Outcomes 

Demetrios L. Antzoulakos and Andreas N. Philippou 

University of Crete, Rethymno, Greece 
University of Patms, Patms, Greece 

Abstract: A sequence of independent trials with m + 1 mutually exclusive 
outcomes S, FI, F2, ... , Fm is considered until the occurrence of the r-th non
overlapping success run of length k, and the distributions of related random 
vectors are derived. First a new genesis scheme is established for the multivari
ate negative binomial distribution of order k, type I, of Philippou, Antzoulakos 
and Tripsiannis (1988). It is shown that it is the distribution of the sum of 
two random vectors: the i-th component of the first one is the number of oc
currences of Fi and the i-th component of the second one is the total number 
of S's which precede directly the occurrences of Fi but do not belong to any 
success run oflength k (1 ::; i ::; m). Furthermore, we obtain exact distributions 
of random vectors whose components are numbers of failures, non-overlapping 
runs of failures, successes, overlapping success runs of length l and success runs 
of length at least l. The majority of the above problems are also treated in 
the case of the generalized sequence of order k and corresponding results are 
established regarding the multivariate extended negative binomial distribution 
of order k of Philippou and Antzoulakos (1990). The present paper generalizes 
several results of Aki and Hirano (1994, 1995). 

Keywords and phrases: Multivariate distributions of order k, type I, ex
tended, negative binomial, geometric, genesis scheme, success, failure of type i, 
run 



412 Demetrios L. Antzoulakos and Andreas N. Philippou 

24.1 Introduction 

The exact probability mass function of the number of trials until the occurrence 
of the first success run of length k in Bernoulli trials was obtained by Philip
pou, Georghiou and Philippou (1983), who called it the geometric distribution 
of order k and derived from its study the negative binomial distribution of or
der k and the Poisson distribution of order k [also see Philippou (1983, 1984)]. 
Since then, a substantial number of papers have appeared on univariate distri
butions of order k; we mention the papers by Aki (1985), Aki, Balakrishnan 
and Mohanty (1996), Aki, Kuboki and Hirano (1984), Balakrishnan, Mohanty 
and Aki (1997), Balasubramanian, Viveros and Balakrishnan (1993), Char
alambides (1986), Ebneshahrashoob and Sobel (1990), Fu and Koutras (1994), 
Godbole (1990), Hirano (1986), Ling (1988), Mohanty (1994), Panaretos and 
Xekalaki (1986), Philippou (1988), Philippou and Makri (1986) and references 
therein. The distribution theory of the multivariate distributions of order k 
was initiated by Philippou, Antzoulakos and Tripsiannis (1988), who obtained 
appropriate multivariate analogs for several univariate distributions of order k. 
Further results and/or new multivariate distributions of order k were obtained 
by Antzoulakos and Philippou (1994), Ling and Tai (1990), Philippou and 
Antzoulakos (1990), Philippou and Tripsiannis (1991), Philippou, Antzoulakos 
and Tripsiannis (1990) and Tripsiannis (1993). A comprehensive review of these 
developments can be found in the recent book by Johnson, Kotz and Balakr
ishnan (1997). 

In the present paper, we establish new genesis schemes for two specific 
multivariate distributions of order k. The first one is the multivariate nega
tive binomial distribution of order k, type I, of Philippou, Antzoulakos and 
Tripsiannis (1988) [also see Antzoulakos and Philippou (1991)]. It was de
noted there by MNBk,I(r;Ql,Q2, ... ,Qm) but it will be denoted here by 
M N Bk(r; ql, q2, ... ,qm)' This distribution is the multivariate analog of the 
(suitably shifted) negative binomial distribution of the same order of Philip
pou, Georghiou and Philippou (1983) which is denoted here by N Bk(r;p). 
The second one is the multivariate extended negative binomial distribution 
of order k of Philippou and Antzoulakos (1990). It was denoted there by 
MEN Bk(r; ql1, ... ,qmk) but it will be denoted here by MEN Bk(r; ql1, .. . ,qmk). 
This distribution is the multivariate analog of the (suitably shifted) extended 
negative binomial distribution of the same order of Aki (1985) which is denoted 
here by ENBk(r;pl,P2, ... ,Pk). We note that the support of the above men
tioned univariate distributions begins with O. For k=l, the above mentioned 
multivariate distributions reduce of course to the usual multivariate negative 
binomial distribution [see, for example, Patil et al. (1984, p. 107)] which is 
denoted here by MN B 1(r; ql, q2,···, qm). 
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In Section 24.2, we consider a sequence of independent trials with m + 
1 possible outcomes S, FI, F2, ... , Fm until the occurrence of the r-th non
overlapping S-run of length k. In Theorem 24.2.1, we obtain a new genesis 
scheme of MN Bk(r; ql, q2, ... , qm). It is shown that it is the distribution of the 
sum of two random vectors Y = (YI, Y2, ... , Ym) and Z = (Zl, Z2, ... Zm): Y;; 
(1 :::; i :::; m) denotes the number of occurrences of Fi , and Zi (1 :::; i :::; m) 
denotes the total number of S's which precede directly the occurrences of Fi 
but do not belong to any S-run of length k. The distribution of each one of 
the above mentioned random vectors is also obtained (see Propositions 24.2.1 
and 24.2.2). We also obtain distributions of random vectors whose components 
are numbers of overlapping S-runs of length l, and S-runs of length at least 
l which precede directly the occurrences of Fi but do not belong to any S
run of length k (see Propositions 24.2.3 and 24.2.4). Furthermore, the joint 
distribution of the numbers of non-overlapping Fi-runs of length ki (1 :::; i :::; m) 
is obtained (see Proposition 24.2.5). In Section 24.3, we treat the majority 
of the above problems in the case of the generalized sequence of order k and 
we establish corresponding results regarding the MEN Bk(r; qll,' .. ,qmk) (see 
Theorem 24.3.1 and Proposition 24.3.1). 

The results of Sections 24.2 and 24.3, for r = 1, may be specialized to new 
results regarding the multivariate geometric distribution of order k, type I, of 
Philippou, Antzoulakos and 'fripsiannis (1988) and the multivariate extended 
geometric distribution of order k of Philippou and Antzoulakos (1990), respec
tively. We shall not discuss this specialization here, however, due to lack of 
space. We mention that our present paper generalizes several results of Aki 
and Hirano (1994, 1995), who employed other methods for their derivations. 
Also see Antzoulakos and Philippou (1995). 

In order to avoid unnecessary repetitions, we mention here that in this paper 
Xij (1 ::; i ::; m and 1 ::; j ::; k) are non-negative integers as specified, and m, k, r 
and l are fixed positive integers, and l ::; k - 1. In addition, whenever sums 
and products are taken over i and j, ranging from 1 to m and from 1 to k, 
respectively, we shall omit these limits for notational simplicity. 

24.2 Independent Trials 

Consider a sequence of independent trials each of which has m + 1 mutually 
exclusive outcomes S, FI, F2, ... , Fm , where Pr[S] = p and Pr[Fi] = qi, 1 ::; 
i :::; m (0 < qi < 1, 0 < Liqi < 1 and p = 1- Liqi). We call success and 
failure of type i the outcomes Sand Fi, respectively. In the following theorem, 
we obtain a new genesis scheme of MNBk(r; ql, Q2, ... , qm). 

Theorem 24.2.1 Consider the above sequence of independent trials until the 
occurrence of the r-th non-overlapping success run of length k. Let Y;; and 
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Zi (I ~ i ~ m) be random variables denoting, respectively, the number of 
failures of type i and the total number of successes which precede directly the 
occurrences of failures of type i but do not belong to any success run of length 
k. Set Xi = Yi + Zi (I ~ i ~ m). Then, the random vector X is distributed as 
MNBk{rj qI, q2, ... , qm), i.e., for Xi = 0,1,2, ... , 1 ~ i ~ m, 

PROOF. For any fixed non-negative integers Xl, X2, ... , Xm, a typical element 
of the event (X = x) is an arrangement, 

al a2 ... a r - l + Ei E; Xi; ~, 
k 

(24.1) 

of the outcomes S, Fl, F2, ... , Fm such that r - 1 of the a's are of the form 
ek = ~, Xij of the a's are of the form eij = ~Fi (I ~ i ~ m and 

k j-l 

1 ~ j ~ k), and 

(24.2) 

Fix Xij, 1 ~ i ~ m and 1 ~ j ~ k (r is fixed). Then, the number of the above 
arrangements is 

( Ei E j Xij + r - 1 ) 
xn, ... , Xmk, r - 1 ' 

(24.3) 

and each one of them has probability 

( )
x.. (q.) E· Xi; krn.n. ...J-l "3 _ n. Xi"": 3 P ~ J q%p - ~p , 

P 
(24.4) 

by the independence of the trials, the definition of eij and ek, Pr[Fil = qi 
(I ~ i ~ m) and Pr[Sl = p. The theorem then follows directly from (24.2)
(24.4). • 

Remark 24.2.1 For m = 1, Theorem 24.2.1 reduces to a variant of Theorem 
3.1{a) of Philippou (1984) regarding the genesis of the (suitably shifted) neg
ative binomial distribution of order k, and for r = 1 it provides a new type of 
genesis of the multivariate geometric distribution of order k, type I, of Philip
pou, Antzoulakos and Tripsiannis (1988). 

In the following proposition, we obtain the distribution of the random vector 
Y. 

Proposition 24.2.1 Consider the sequence of independent trials and the ran
dom variables Yi (I ~ i ~ m) as in Theorem 24.2.1. Then, the random vector Y 
is distributed as MN Bl{rj ql, q2, ... , qm), where qi = qi (1 - pk) {I - p)-l, 1 ~ 
i~m. 
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PROOF. For any fixed non-negative integers Y1, Y2, ... , Ym, a typical element 
of the event (Y = y) is an arrangement as (24.1) with the conditions (24.2) on 
the non-negative integers Xij substituted by Lj Xij = Yi, 1 ~ i ~ m. Therefore, 
proceeding along the same lines as those in the proof of Theorem 24.2.1, we 
have 

Pr[Y = y] 

kr (Li Yi + r - I)! 
= P IIiYi!(r - I)! 

by the multinomial theorem. The last relation establishes the proposition. • 

In the following proposition, we obtain the distribution of the random vector 
Z. 

Proposition 24.2.2 Consider the sequence of independent trials and the ran
dom variables Zi (1 ~ i ~ m) as in Theorem 24.2.1. Then, the random vector 
Z is distributed as MNBk_1(r; q1, q2, ... ,qm)' 

PROOF. For any fixed non-negative integers Z1, Z2, ... , Zm, a typical element 
of the event (Z = z) is an arrangement as (24.1) with the conditions (24.2) 
on the non-negative integers Xij substituted by L}:i jXi,j+1 = Zi, 1 ~ i ~ m. 
Therefore, proceeding along the same lines as those in the proof of Theorem 
24.2.1, we have 

Pr[Z = z] = 

(24.5) 

where ')'1 = r - 1 + Li L}:i Xi,j+1 and Ll means sum over all non-negative 
integers Xil, 1 ~ i ~ m. Now, using successively the identity 

f= (')' ~ j) x j = (1 - x)-h+1) , 1 x 1< 1, 
j=o J 

(24.6) 
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[see, for example, Abramowitz and Stegum (1965, p. 822)]' we have that 

Therefore, from (24.5) and (24.7), we get 

p(k-l)r L ( Li LJ:t Xi,j+! + r -1 ) 
k-l . X12, ... , Xlk, ... , Xrn2, ... , Xrnk, r - 1 

Lj=l JXi,j+l =Zi 

Pr[Z = z] = 

rr .rrk- 1 ( . ...J_1)Xi,j+l x Z j=1 q1.1' , 

and this establishes the proposition. • 
In the following proposition, we are dealing with overlapping success runs 

of length l (1 ::; k - 1). This counting scheme of runs was proposed by Ling 
(1988) [also see Fu and Koutras (1994), Godbole (1992) and Hirano et al. 
(1991)]. Consider the sequence of independent trials as in Theorem 24.2.1 
and let Ui (1 ::; i ::; m) be random variables denoting the total number of 
overlapping success runs of length 1 which precede directly the occurrences of 
failures of type i but do not belong to any success run of length k. As an 
example, for the case k = 5, r = 2, m = 2 and 1 = 2, we give the sequence 
SSSSSF1SSSF2SF1SSSF1SSSSF2SSSSS, where Ul = 2 and U2 = 5. 

Proposition 24.2.3 The random vector U is distributed as M N Bk-l(r; Ql, Q2, 

... ,Qrn). 

PROOF. For any fixed non-negative integers UI, U2, ... , Urn, a typical element 
of the event (U = u) is an arrangement as (24.1) with the conditions (24.2) 
on the non-negative integers Xij substituted by LJ:f jXi,j+l = Ui, 1 ::; i ::; m. 
Therefore, proceeding along the same lines as those in the proof of Theorem 
24.2.1, we have 

Pr[U = u] = 
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where 12 = r - 1 + Li L;:f xi,Hl, 81 = 0, 8i = L~-==\ L;=1 Xnj for i ;::: 2, and 
L2 means sum over all non-negative integers Xij, 1 :S i :S m and 1 :S j :S l. 
Using successively (24.6), we get 

(24.9) 

Therefore, from (24.8) and (24.9), we get 

Pr[U = u] 

= p(k-l)T L ( Li L;:f xi,Hl + r - 1 ) 
k-l . Xl,l+I,' .. , Xlk,···, Xm,I+I,'" ,Xmk> r - 1 

Lj=l JXi,j+I=Ui 

rr .rrk - 1 ( . ..J_1 )Xi,j+1 x 1. j=1 qzY , 

and this establishes the proposition. • 
Remark 24.2.2 Proposition 24.2.3, for l = 1, reduces to Proposition 24.2.2. 

In the following proposition, we are dealing with success runs of length at 
least l (l :S k -1). This counting scheme of runs is of great statistical importance 
[see, for example, Gibbons (1971) and Goldstein (1990)]. Consider the sequence 
of independent trials as in Theorem 24.2.1 and let Wi (1 :S i :S m) be random 
variables denoting the total number of success runs of length at least l which 
precede directly the occurrences of failures of type i but do not belong to any 
success run of length k. As an example, for the case k = 5, r = 2, m = 2 and 
l = 2, we give the sequence SSSSSHSSSSF2SF1SSFlSSSF2SSSSS, where 
WI = 1 and W2 = 2. 

Proposition 24.2.4 The random vector W is distributed as MNB1 (r; iiI, ;12, 
... ,lim), where iii = qi (1 - pk-l) (1 - p)-I, 1 :S i :S m. 

PROOF. For any fixed non-negative integers WI, W2, ... , Wm, a typical element 
of the event (W = w) is an arrangement as (24.1) with the conditions (24.2) 
on the non-negative integers Xij substituted by L;=/+1 Xij = Wi, 1 :S i :S m. 
Therefore, proceeding along the same lines as those in the proof of Theorem 
24.2.1, we have 
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where L3 means sum over all non-negative integers Xij, 1 :S i :S m and 1 :S 
j :S l. Following the proof of Proposition 24.2.3, we can easily show that 

Next, using the proof of Proposition 24.2.1 and the multinomial theorem, we 
get 

Pr[W=w] 
(Lj=l+l Xij)! 

IIjXij! 

k ( '_I_l)Xi j 
X IIj =l+1 QilY 

(k-I)r (Li Wi + r - I)! II. ("k .",J-I-l)Wi 
P II. "( _ 1)' t 0)=1+1 qtY . 

tWt. r . 

The last relation establishes the proposition. • 
Corollary 24.2.1 Consider the sequence of independent trials as in Theorem 
24.2.1 and let Y, Z, U and W be random variables denoting, respectively, 
the number of failures of any type, the number of successes, the number of 
overlapping success runs of length l, and the number of success runs of length 
at least l, which do not belong to any success run of length k. Then, 

(a) Y is distributed as NBl(r;pk); 

(b) Z is distributed as NBk-l(r;p); 

(c) U is distributed as NBk-l(r;p); 

(d) W is distributed as NBl(r;pk-I). 

PROOF. It is an immediate consequence of Propositions 24.2.1-24.2.4 by not
ing that (a) Y = Li Ii, Z = Li Zi, U = Li Ui, and W = Li Wi and (b) 
if X is distributed as MN Bk(r; Ql, q2, ... , qm), then Li Xi is distributed as 
N Bdr;p), where p = 1 - Li qi [see, Philippou, Antzoulakos and Tripsiannis 
(1990)]. • 

Next, we obtain the joint distribution of the numbers of non-overlapping 
runs of failures of type i of length ki (1 :S i :S m and ki ;::: 1). 

Proposition 24.2.5 Consider the sequence of independent trials as in Theo
rem 24.2.1 and let Vi (1 :S i :S m) be random variables denoting the number 
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of non-overlapping runs of failures of type i of length k i (ki ~ 1). Then, the 
random vector V is distributed as MNBl(r;ii1. ii2, ... , iim), where 

i = 1,2, ... ,m. 

PROOF. We denote by Eo and Ei (1 :S i :S m) a non-overlapping success 
run of length k and a non-overlapping run of failures of type i of length ki' 
respectively. Let Wr be a random variable denoting the number of trials until 
the r-th occurrence of Eo. Let Pn(h), 0 :S n :S m, be the probability of the event 
that at the h-th trial the sooner event between Eo, E l , ... , Em occurs and the 
sooner event is En. Then, 

Pr[V = V, Wr = w] = 0 if some Vi < 0 (1 :S i :S m), or w < kr, 
Pr[V = V, Wr = kr] = 0 if some Vi =I 0 (1 :S i :S m), 
Pr[V = 0, Wr = kr] = pkr, 

w-k(r-l) 

Pr[V = v, Wr = w] = l: po{h) Pr[V = v, Wr-l = w - h] 
h=k 

w-kr 

+ Ei l: Pi{h)Pr[V = v -Ii, Wr = w - h], 

(24.1O) 

where 0 = (0,0, ... ,0), and Ii (I :S i :S m) denotes the m-dimensional vector 
with a "I" at the i-th entry and "0" elsewhere. Set 

00 00 

go(t) = l: po{h)th and gi{t) = l: pi(h)th , i = 1,2, ... , m, (24.11) 
h=k h=ki 

and 
00 00 00 

Gr{s, t) = l: ... l: l: Pr[V = v, Wr = w]tWIIis~i. (24.12) 
VI =0 Vm=O w=kr 

Using (24.10)-(24.12), we get 

00 00 00 w-k(r-l) 

Gr{s, t) = l: ... l: l: l: po{h) Pr[V = v, Wr-l = W - h]tWIIis~i 

w-kr 

l: Pi(h)Pr[V = v -Ii, Wr = W - h] 
i VI=O vm=O w=kr h=ki 

X tWII,;s~i 
• 7. 

00 00 00 00 

- l: po(h)th l: ... l: l: Pr[V = v, Wr-l = W - h] 
h=k VI=O vm=O w=k(r-l)+h 
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X tw-hrris~i 
00 00 00 00 

+ L LPi(h)th L ... L L Pr[V = v - ti, 
Vl=O Vm=O w=kr+h 

TXT _ hltW-hrr. Vi 
Vl'r - W - , ~Si 

and 

G, (8, t) = 9O(t) (1 _ ~ S;g;(t)) -1 

From (24.13) and (24.14), we get 

(24.13) 

(24.14) 

(24.15) 

Eq. (24.15) implies that V is distributed as MNBl(r;ih, i12, ... , iim), where 
iii = 9i(1), 1 ::; i ::; m. By setting t = 1, Xi = 1 and Xj = 0 (0::; j i i < 00) in 
the expression of ¢(t) in Theorem 2.1 of Aki (1992), we obtain 

i=1,2, ... ,m, 

and this establishes the proposition. • 
Remark 24.2.3 Propositions 24.2.1-24.2.5, for r = 1, yield new results re
garding the multivariate geometric distribution of order k, type I, of Philip
pou, Antzoulakos and 'fripsiannis (1988). Also, Propositions 24.2.1-24.2.5 and 
Corollary 24.2.1, for m = 1 and r = 1, yield respective results of Aki and Hirano 
(1994), and Corollary 24.2.1 for r = 1 reduces to respective results of Aki and 
Hirano (1995). 

24.3 Generalized Sequence of Order k 

In this section, the majority of the problems of Section 24.2 are treated in the 
case of the generalized sequence of order k of Phili ppou and Antzoulakos (1990). 
This sequence is an extension of independent trials with multiple outcomes and 
may be suitable for considering succession events in practical situations where 
independence of trials cannot be assumed. We recall first the definition of this 
sequence from Philippou and Antzoulakos (1990). 
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Definition 24.3.1 An infinite sequence {Tn}~=o of {O, 1,2, ... , m}-valued ran
dom variables is said to be the generalized sequence of order k with parameters 
qij, 0 < qij < 1 for 1 :::; i :::; m and 1 :::; j :::; k, and Li Qij < 1, if 

(a) To # 0 almost surely and 

(b) PI' [Tn = i I Tn- l = tn-I,· .. , TI = tl, To = to] = qij, 
i = 1,2, ... , m, n;::: 1, 

where j = c - k [(c - 1) /k], c is the smallest integer which satisfies tn - c # 0, 
and [x] denotes the greatest integer in x. 

We call success and failure of type i the outcomes 0, 1, 2, ... ; m, respectively. 
A direct consequence of the above definition is that 

where j is as above, and that the conditional distribution ofTn+l, Tn+2, ... given 
that Tn # 0 is equal to the distribution of TI, T2, ... . Also, the generalized 
sequence of order k, for m = 1, reduces to the binary sequence of order k of 
Aki (1985) [also see Dhar and Jiang (1995)]. 

In the following theorem, a new genesis scheme of MEN Bk(r; qll, ... , qmk) 
is obtained. 

Theorem 24.3.1 Consider the above generalized sequence of order k until the 
occurrence of the r-th non-overlapping success run of length k, and let Xi (1 :::; 
i :::; m) be as in Theorem 24.2.1. Then, the random vector X is distributed as 
MENBk(r; qll, ... , qmk), i.e., for Xi = 0,1,2, ... , 1:::; i :::; m, 

Pr[X = x] = 

with the convention that Po = 1. 

PROOF. For any fixed non-negative integers Xl, X2, ... , Xm , a typical element 
of the event (X = x) is an arrangement 

of the outcomes 0,1,2, ... , m such that r - 1 of the o:'s are of the form ek = 
~, Xij of the o:'s are of the form eij = ~i, and Lj jXij = Xi, (1 < 

k j-l 
i :::; m and 1 :::; j :::; k). 

Fix Xij, 1 :::; i :::; m and 1 :::; j :::; k (r is fixed). Definition 24.3.1 implies that 
(i) the probability of the pattern eij is POPIP2' .. Pj-lQij since the previously 
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first occurring failure of any type is 1 + sk (0 :::; s :::; r - 1) places before it, 
and (ii) the probability of the pattern ek is always PIP2" . Pk. Therefore the 
probability of each one of the above arrangements is 

The theorem then can be easily established by means of the proof of Theorem 
24.2.1. • 

Remark 24.3.1 Theorem 24.3.1, for r = 1, gives a new proof of Proposition 
3.1 of Philippou and Antzoulakos (1990) regarding the genesis of the multi
variate extended geometric distribution of order k. For m = 1, it gives a new 
genesis scheme of the (suitably shifted) extended negative binomial distribution 
of order k of Aki (1985). 

In the sequel, we obtain results for the generalized sequence of order k which 
correspond to those of Propositions 24.2.1-24.2.4 of Section 24.2. 

Proposition 24.3.1 Consider the generalized sequence of order k as in The

orem 24.3.1 and the random variables }i, Zi, Ui and Wi (1 :::; i :::; m) as in 
Propositions 24.2.1-24.2.4, respectively. Then, 

(aj Y is distributed as MNB1(r;(h, (h, ... , Om); 

(bj Z is distributed as MENBk-l(r;Q12, ... ,qlk, ... ,qm2, ... ,qmk); 

(cj U is distributed as MENBk-l(r;Ql,I+1, ... ,Qlk, ... ,Qm,l+l, ... ,Qmk); 

(dj W is distributed as MNBl(r;{h, (h, ... , Om); 

A - k . 
where Qi = L,j POPIP2'" Pj-l%, and Qi = L,j=l+1 Pl+1Pl+2'" Pj-lqij, 1 :::; 1. :::; 

m, with the convention that Po = 1 and for j = l + 1, Pl+lP1+2' .. Pj-l = 1. 

PROOF. The proof follows along the same lines as those in the proofs of Propo
sitions 24.2.1-24.2.4. • 

Corollary 24.3.1 Consider the generalized sequence of order k as in Theorem 

24.3.1 and let Y, Z, U and W be random variables denoting, respectively, 
the number of failures of any type, the number of successes, the number of 

overlapping success runs of length l, and the number of success runs of length 
at least l, which do not belong to any success run of length k. Then, 

(aj Y is distributed as NBl(r;PlP2"'Pk); 

(b) Z is distributed as ENBk-l(r;P2,P3, ""Pk); 

(cj U is distributed as EN Bk-l(r;Pl+l,Pl+2, ... ,Pk); 

(dj W is distributed as NB1(r;Pl+1Pl+2'" Pk). 



On Multivariate Distributions of Various Orders 423 

Remark 24.3.2 The generalized sequence of order k reduces to the case of 
independent trials of Section 24.2 if we set % = qi, 1 ~ i ~ m and 1 ~ j ~ k, 
which implies PI = P2 = ... = Pk = P = 1 - Li qi. So, the corresponding 
results of Section 24.2 can be regarded as corollaries of those in this section. 
Also, Proposition 24.3.1, for r = 1, gives new results regarding the multivariate 
extended geometric distribution of order k ofPhilippou and Antzoulakos (1990), 
and Corollary 24.3.1, for r = 1, gives respective results of Aki and Hirano (1995). 
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A Multivariate Negative Binomial Distribution of 
Order k Arising When Success Runs are Allowed 
to Overlap 

Gregory A. Tripsiannis and Andreas N. Philippou 

Democritus University of Thrace, Alexandroupolis, Greece 
University of Patras, Patras, Greece 

Abstract: Ling (1989) introduced and studied a negative binomial distribu
tion of order k, type III, which he denoted by NBk,III(r,p), as the probability 

distribution of the number of Bernoulli trials M$k) until the occurrence of r 
possibly overlapping success runs of length k [see also Hirano et al. (1991)]. 
In the present paper, independent trials are considered with m + 1 possible 
outcomes and the multivariate negative binomial distribution of order k, type 
III, say MNBk,III(r;ql, ... ,qm), is introduced as the distribution of a random 

vector Y which is a multivariate analogue of Y = M$k) - (k + r - 1). The 
probability generating function, mean and variance-covariance, and several dis
tributional properties of Yare established. The present paper generalizes to 
the multivariate case shifted versions of results of Ling (1989) and Hirano et al. 

(1991) on NBk,III(r,p). Three new results on NBk,III(r,p) or/and its shifted 
version are derived first; another one arises as a corollary of a proposition on 
MNBk,III(r;ql, ... ,qm)' 

Keywords and phrases: Multivariate distributions of order k, type III nega
tive binomial, probability generating function, mean, variance-covariance, dis
tributional properties, limiting case 

25.1 Introduction 

The study of multivariate distributions of order k was initiated by Philippou, 
Antzoulakos and Tripsiannis (1988, 1990), who introduced and studied the 
multivariate negative binomial, Poisson, k-point, logarithmic series and modi-
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fied logarithmic series distributions of order k. These two papers generalized 
several results of Sibuya, Yoshimura and Shimizu (1964), Patil and Bildikar 
(1967), Philippou (1986, 1988), Philippou, Georghiou and Philippou (1983), 
Aki, Kuboki and Hirano (1984), Aki (1985) and Hirano and Aki (1987) on 
multivariate distributions and distributions of order k. 

Since then, a number of papers have appeared dealing with new (or the 
above) multivariate distributions of order k. Ling and Tai (1990) derived bivari
ate binomial distributions of order k, while Philippou and Antzoulakos (1990), 
Philippou and Tripsiannis (1991) and Antzoulakos and Philippou (1994) gen
eralized to the multivariate case the respective work of Aki (1985), Philippou, 
Tripsiannis and Antzoulakos (1989) and Godbole (1990). One may refer to the 
recent book of Johnson, Kotz and Balakrishnan (1997) for a comprehensive 
review of developments on multivariate distributions of order k. 

All those of the above-mentioned papers which discuss success runs consider 
them to be non-overlapping. Ling (1988, 1989) allowed success runs to overlap. 
In the first paper, he derived and studied the binomial distribution of order k, 
type II. In the second one, he introduced and studied the negative binomial 
distribution of order k, type III, denoted by N Bk,I II( r, p), as the distribution 

of the number of Bernoulli trials M;k) until the occurrence of the r-th possibly 
overlapping success run of length k. Among other results, he obtained its 
probability generating function, mean and variance. 

In the present paper, we also allow success runs to overlap. In Section 25.2, 
we reconsider M;k) and we establish a new formula for its probability distri
bution function (see Theorem 25.2.1). Next, we introduce a related random 
variable Y which lends itself to a multivariate generalization, and we note that 
it is distributed as the (shifted) negative binomial distribution of order k, type 
III, say N Bk,III(r,p) (see Theorem 25.2.2). Finally, we derive the multivariate 
negative binomial distribution of order k, type III, say M N Bk,III(r; ql, ... ,qm), 

as the distribution of the multivariate analogue of Y = M;k) - (k + r - 1) (see 
Theorem 25.2.3). In Section 25.3, we first derive the probability generating func
tion, and hence the mean and variance-covariance of MNBk,III(r;ql, ... ,qm) 
(see Theorem 25.3.1), and then we show that Y can be represented as a sum 
of independent random vectors (see Theorem 25.3.2). We also establish a new 
genesis scheme of NBk,III(r,p) as a corollary to Proposition 25.3.1, and we find 
the limit of MNBk,III(r;ql, ... ,qm) when qi -t 0 and rqi -t Ai as r -t 00 (see 
Theorem 25.3.3). 

The present paper extends several results of Ling (1989) and Hirano et 
al. (1991) on the shifted versions of type III negative binomial distribution 
of order k to the multivariate case. It also generalizes several results on the 
multivariate negative binomial distribution [see, for example, Patil et al. (1984) 
and Johnson, Kotz and Balakrishnan (1997)] to the corresponding results on 
order k distributions. 

In order to avoid unnecessary repetitions, we mention here that in this paper 
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whenever sums and products are taken over i and j ranging from 1 to m and 1 
to k + r - 1, respectively, we shall omit these limits. Also, vectors and random 
vectors are always m-dimensional vectors. 

25.2 Multivariate Negative Binomial Distribution of 
Order k, Type III 

We first derive an exact formula for the probability distribution function of the 
negative binomial distribution of order k, type III, which is an alternative to 
that given by Ling (1989). 

Theorem 25.2.1 Let M$k) be a random variable denoting the number of 
Bernoulli trials until the occurrence of the r-th possibly overlapping success 
run of length k. Then, for n ~ k + r -1 

where the inner summation is taken over all non-negative integers nI, ... ,nk+r-l 
such that 

k+r-l k+r-l 
L jnj + 1 = nand L (j - k)nj + 1 = k + r -1, k ~ 1 ~ k + r-1. 
j=1 j=k+l 

(25.1) 

PROOF. For any fixed non-negative integer n, a typical element of the event 
(M$k) = n) is an arrangement 

ala 2··· anl+·o+nk+r_l~ 
I 

of the letters F (Failure) and S (Success), such that nj of the a's are ej -
~F (1 ~ j ~ k + r -1) and they satisfy (25.1). 

j-l 
Fix nj (1 ~ j ~ k+r-l) (r is fixed). Then the number of such arrangements 

is 

( nl + ... + nk+r-l ) 
nI, ... ,nk+r-l 

and each one of them has probability pn(q/p)n1+o+nk+r_l. 

The theorem then readily follows, since the non-negative integers nj (1 ~ 
j ~ k + r - 1) may vary subject to (25.1). • 

We have the following simple corollary from Theorem 25.2.1. 
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Corollary 25.2.1 Let M;k) be the random variable as in Theorem 25.2.1, and 

let Y = M;k) - (k+r-l). Then, Y is distributed as the shifted negative binomial 
distribution of order k, type III, NBk,III(r,p), i.e. for y;::: 0, 

Pr[Y = yl = kfl L ( Yl + ... + Yk+r-l ) py+k+r-l (~)Yl+.+Yk+r-l , 
l=k Yl,· .. ,Yk+r-l p 

where the inner summation is taken over all non-negative integers VI, ... , Yk+r-l 
such that 

k k+r-l k+r-l 
LjYj + k L Yj = Y and L (j - k)Yj + l = k + r - 1, k '.5: l '.5: k + r-l. 
j=1 j=k+l j=k+l 

We now present the following theorem which may be generalized to the 
multivariate case (as will be seen later). 

Theorem 25.2.2 In a sequence of independent Bernoulli trials with success 
probability p (0 < p < 1) until the occurrence of the r-th (r ;::: 1) possibly 
overlapping S-run of length k (k ;::: 1), consider random variables X and Lj 
(1 '.5: j '.5: X) denoting the number of outcomes F and the length of the S
run preceding directly the j-th occurrence of F, respectively. Furthermore, let 
£j = min{Lj, k - I}, L = £1 + ... + Lx, and Y = X + L. Then, the random 
variable Y is distributed as N Bk,III(r, p). 

PROOF. It may be established along the same lines as those in the proof of 

Theorem 25.2.1, or by noting that Y= M;k) - (k + r -1). • 

The next result generalizes Theorem 25.2.2 to the multivariate case and 
provides a genesis scheme for a new multivariate distribution of order k. 

Theorem 25.2.3 In a sequence of independent trials with m + 1 possible out
comes FI, ... ,Fm and S with probabilities qi = Pr[Fil and p = Pr[Sl (0 < qi < 1 
for 1 '.5: i '.5: m, L.iqi < 1 and p = 1-L.iqi) until the occurrence of the r-th (r ;::: 1) 
possibly overlapping S-run of length k (k ;::: 1), consider random variables Xi 
(1 '.5: i '.5: m) and Lij (1 '.5: i '.5: m and 1 '.5: j '.5: Xi) denoting the number of 
outcomes Fi and the length of the S-run preceding directly the j-th occurrence 
of Fi, respectively. Furthermore, let £ij = min { Lij , k - I}, Li = £il + ... + £iXi' 
and Yi = Xi + L i . Then, for Yi = 0,1, ... (1 '.5: i '.5: m), we have 

P [Y = Y. = 1 = k~l" (L.iL.jYij)! EiYi+k+r- 1II (qi) EiYii 
r 1 Yl,···, m Ym ~ ~ II.II ... , P , 

l=k t J YtJ . i P 

where the inner summation is taken over all non-negative integers Yij (1 '.5: i '.5: 
m and 1 '.5: j '.5: k + r - 1) such that 

k k+r-l 
L jYij + k L Yij = Yi (1 '.5: i '.5: m) 
j=1 j=k+l 
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and 

k+r-l 

L L (j - k)Yij + l = k + r -1, 
i j=k+1 

k~l~k+r-1. 

431 

(25.2) 

PROOF. For any fixed non-negative integers Yl. ... , Ym, a typical element of the 
event (Yl = Yl. ... , Ym = Ym) is an arrangement 

ala2 ... ar:,.r:.y .. SS ... S 
3 '3"'-..-' 

I 

of the letters Fl, ... , Fm and S, such that Yij of the a's are eij = §..§.:;.:3Fi 

j-l 

(1 ~ i ~ m and 1 ~ j ~ k + r - 1), and satisfy (25.2). 
The proof of the theorem then follows along the same lines as those in the 

proof of Theorem 25.2.1. • 

For k = 1, Theorem 25.2.3 simply reduces to a sampling derivation of the 
multivariate negative binomial distribution [see, for example, Patil et al. (1984, 
p. 107) and Johnson, Kotz and Balakrishnan (1997)]; further, for m = 1, it 
reduces to the derivation of the (shifted) negative binomial distribution of order 
k, type III. We therefore introduce the following definition. 

Definition 25.2.1 A random vector Y = (Yl, ... , Ym )' is said to have the 
multivariate negative binomial distribution of order k, type III, with parameters 
r, q1. ... , qm (r 2: 1, 0 < qi < 1 for 1 ~ i ~ m, ~iqi < 1 and p = 1 - ~iqi)' 
to be denoted by M N Bk,III{r; ql. ... ,qm) if Pr[Y = y] is given by (25.2) for 
Yi = 0,1, ... (1 ~ i ~ m). 

We observe that 

(25.3) 

where the latter denotes the multivariate geometric distribution of order k, 
type I, of Philippou, Antzoulakos and Tripsiannis (1988); also, Theorem 25.2.3 
provides a new genesis scheme for this distribution for the case r = 1. 

25.3 Characteristics and Distributional Properties 
of M N Bk,III(r; Ql, ... ,Qm) 

In this section we derive the probability generating function (pgf) , the mean 
and variance-covariance, as well as several distributional properties of the mul
tivariate negative binomial distribution of order k, type III. We first establish 
the following lemma. 
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Lemma 25.3.1 Let y(r) = (yt), ... , yJ;))" r 2: 1, be a random vector dis
tributed as MNBk,III(r;ql, ... ,qm), and let W = (Wl, ... , Wm)' be a random 
vector distributed as MGk,I(ql, ... , qm). Then, for r 2: 2, 

Pr[y(r) = y(r-l)] = p and Pr[y(r) = y(r-l) + k i + W] = qi (1 ~ i ~ m), 

where ki is an m-dimensional vector with its i-th component equal to k and 
all of its other components equal to 0, and Yi(r-l) and Wi (1 ~ i ~ m) are 
independent random variables. 

PROOF. Suppose it is given that y(r-l) = y(r-l). Either the next outcome 
is S, or it is Fi (1 ~ i ~ m). If the next outcome is S, which occurs with 
probability p, then y(r) = y(r-l) or equivalently y(r) = y(r-l). Therefore, 
Pr[y(r) = y(r-l)] = p. If the outcome is Fi (1 ~ i ~ m), which occurs with 
probability qi, then for 1 ~ s i- i ~ m we have 

or equivalently 

Yi(r) = Yi(r-l) + k + Wi and y}r) = ys(r-l) + W s , 1 ~ s i- i ~ m. (25.4) 

Therefore, Pr[y(r) = y(r-l) + ki + W] = qi (1 ~ i ~ m). We also note that 

Yi(r-l) (Wi) depends on the independent trials before (after) the occurrence of 

the outcome Fi . Therefore, Yi(r-l) and Wi (1 ~ i ~ m) are independent, and 
this completes the proof of the lemma. • 

We note that Lemma 25.3.1 generalizes a shifted version of Lemma 3.1 of 
Ling (1989). 

The following result provides a recurrence relation on r for the pgf of the 
random vector y(r), 9y(r)(.), an exact formula for 9y(r) (.), and the mean and 

variance-covariance of y(r). 

Theorem 25.3.1 Let y(r), r 2: 1, be a random vector distributed as 
MNBk,III(r;ql, ... ,qm) with P9f 9y(r) (t). Then, for r 2: 2, we have 
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(iv) Var(Yi(r)) = !fj L.j=d(j - 1)pJ-I + ~ (L.j=ljpJ-I) 2 + !fj L.j=dpJ-I 

+ (r - 1)qik2 + (r - 1)(1 - p)!fj (L.j=ljpJ-I + L.j=lj(j -1)pJ-I) 

+ (r - 1)~ (kpk + (1 - P)L.j=ljpJ-I) ((1 + P)L.j=ljpJ-I - kpk) , 
1 ::; i ::; m; 

(v) Cov(Yi(r) , Ys(r)) = 3(r - 1)k ~ L.j=ljpJ-I - (r - 1)~ 

x (kpk + (1 - P)L.j=ljpJ-I) 

- (r - 1)~ (kpk + (1 - P)L.j=ljpJ-I) (L.j=dpJ-I) 

+ [3{r(1- p) + p} - 2] ~ (L.j=ljpJ-I) 2 
, 1::; i i= s::; m. 

PROOF. For Itil ::; 1 (1 ::; i ::; m) we have, by means of Lemma 25.3.1 and 
relation (25.4) 

"" [ yt-I)+WI y(r-I)+k+Wi y'(r-I)+W] + ~ qiE tl ... ti ' ... tr/(' m 

i 

[ 
y'(r-l) y'(r-l)] 

pE tIl ... tmm 

"" k [y'(r-l) y'(r-l)] [ W W ] + ~qitiE tIl .. ·tmm E tl I .. ·tmm 

t 

= gy(r-l) (t) (p + gy(1) (t) ~ qit~) , 

which establishes Part (i) of the theorem. 
Next, using successively Part (i), it can be seen that 

But, y(l) is distributed as MGk,I(ql, ... , qm), because of (25.3). Therefore, 

Itil ::; 1, 1::; i ::; m 

[see Philippou, Antzoulakos and Tripsiannis (1988)]. The last two relations 
establish Part (ii) of the theorem. 

Parts (iii)-(v) follow very simply from the expression of gy(t) in Part (ii) . 

• 
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For m = 1, Theorem 25.3.1 gives the pgf, mean and variance of the shifted 
negative binomial distribution of order k, type III, which are consistent with 
the corresponding results of Ling (1989) [see also Theorem 4.1 of Hirano et 
al. (1991)]. In addition, for k = 1, it provides the pgf, mean and variance
covariance of the usual multivariate negative binomial distribution [see, for 
example, Patil et al. (1984, p. 108) and Johnson, Kotz and Balakrishnan (1997, 
Chapter 36)]. 

Next, we represent the random vector Y, which is distributed as 
.......,..,........,'" 
MN Bk,III(r; ql," ., qm), as a sum of r independent random vectors which are 
related to MGk,I(ql, ... , qm). 

Theorem 25.3.2 Let Y be a random vector distributed as MNBk,III(r;ql, 

... ,qm), r ~ 2. Also, let W(j) = (Wi j ), ... , wM))', 1 :S j :S r, be indepen
dent random vectors distributed as MGk,I(ql,"" qm). Now, consider random 
variables Zj (1 :S j :S r - 1) such that 

Pr[Zj = i] = qi and Pr[Zj = 0] = P (1:S i :S m and 1 :S j :S r - 1). 

Suppose that W?) and Zj (1 :S i :S m and 1 :S j :S r) are mutually independent. 
Next, for each 1 :S i :S m and 1 :S j :S r - 1, define random vectors X (j) as 
follows: 

X J = 1. ( .) {k. + W(j) 
o 

if Zj = i, 
if Zj = 0, 

where k i is a vector with its i-th component equal to k and all of its other 
components equal to 0, and 0 is a vector whose components are all O. Then, 
X(1), ... ,X(r-I), W(r) are independent random vectors and 

Y = X(I) + ... + X(r-I) + W(r). 

PROOF. For Itil :S 1, 1 :S i :S m and 1 :S j :S r - 1, we have 
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since W(j) (1 ~ j ~ r) is distributed MGk,I(ql, .. . , qm). The independence of 
X(1), ... , x(r-l), w(r), which follows from their definition, implies that 

g X(l) +.+x(r-l) + w(r) (t) = 

which is the pgf of Y by Part (ii) of Theorem 25.3.1. Therefore, 

Y = X(1) + ... + X(r-l) + W(r), 

which completes the proof of the theorem. • 
For m = 1, Theorem 25.3.2 reduces to a result for NBk,III(r,p), which 

corresponds to Theorem 4.2 of Hirano et al. (1991) regarding NBk,III(r,p). 
The following proposition, which can be easily derived from Part (ii) of 

Theorem 25.3.1, provides a new genesis scheme for the multivariate negative 
binomial distribution of order k, type III, with proper parameters. 

Proposition 25.3.1 Let Y = (Yl, . .. , Ym )' be a random vector distributed as 
MNBk,III(r;ql, ... ,qm). Further, let rO,rl, ... ,rn (71, 2: 1) be non-negative 
integers such that ° = ro < rl < ... < rn = m, and let Z = (ZI, . .. , Zn)' be a 
random vector such that Zs = L~!'rS_l+l Yi (1 ~ s ~ 71,). Then, Z is distributed 

as MN Bk,III(r; Ql, . .. , Qn), where Qs = L~!'rS_l+l qi for 1 ~ s ~ n. 

For n = 1, Proposition 25.3.1 yields the following corollary, which provides 
a new genesis scheme for NBk,III(r,p). 

Corollary 25.3.1 Let Y = (Y1, ... , Ym )' be a random vector distributed as 
MNBk,III(r;ql, ... ,qm). Then, Y = LiYi is distributed as NBk,III(r,p), 
where p = 1 - ql - ... - qm· 

We finally give a limit theorem for MNBk,III(r;ql, ... ,qm), which gener
alizes the shifted version of a corresponding result of Hirano et al. (1991) on 
NBk,III(r,p) to the multivariate case. 

Theorem 25.3.3 Let y(r) = (yt), ... , yJ;»), be a random vector distributed 

as MNBk,III(r;ql, ... ,qm), and let ZI, ... ,Zm be independent random vari
ables such that 

Zi = 0, 1, ... (>\i > 0, 1 ~ i ~ m). 

Set Z = (ZI, ... , Zm)' and assume that qi - ° and rqi - Ai as r - 00. Then, 

Pr[y(r) = y] _ Pr[Z = ky], Yi = 0, 1, ... (1 ~ i ~ m). 
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PROOF. For Itil :s; 1, 1 :s; i :s; m, we have from Part (ii) of Theorem 25.3.1 

as r ---t 00, 

which is the pgf of Z. Hence, the theorem. • 
For k = 1, Theorem 25.3.3 reduces to a known result on the multivariate 

negative binomial distribution [see, for example, Patil et al. (1984, p. 109) and 
Johnson, Kotz and Balakrishnan (1997, Chapter 36)]. 

Acknowledgement. The authors wish to thank Dr. Demetrios Antzoulakos 
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PART VI 

ApPLICATIONS TO DISTRIBUTION THEORY 



26 

The Joint Energy Distributions of the 
Bose-Einstein and of the Fermi-Dirac Particles 

I. Vincze and R. Taros 

Mathematical Institute of the Hungarian Academy of Sciences, Budapest 
Research Institute of Technical Chemistry of the Hungarian Academy of 
Sciences, Budapest 

Abstract: Vincze (1959, 1961) derived the Planck-Bose-Einstein (PBE) proba
bility density function for the energy distribution of black body radiation. This 
derivation was based on an expression for the information measure (negentropy) 
belonging to a continuous random variable and on the Bose-Einstein statistics; 
the quantum hypothesis of Planck was not needed. The present note considers 
the joint distribution of several variables. In earlier works, the method for solv
ing the extreme value problem happened with a method due to Kullback and 
Leibler (1951) and the result did not agree with the formula given by Planck 
(1900), unless certain element was neglected. In this paper, the authors consider 
again the extreme value problem but through Lagrange method of the theory 
of variation which yields the PBE formula exactly. For the Fermi-Dirac case, 
the procedure goes on the same line. As a consequence, one has the property 
"indistinguishability of the particles" as a tool for arriving at the results, but 
the dependence of the random variables is essential. This suggests that our pro
cedure is appropriate even for gases which are neither bosons nor fermions, but 
the particles influence each other and their distributions are not independent 
[see Wilczek (1991)]. 

Keywords and phrases: Joint probability distribution, Bose-Einstein statis
tic, statistical physics, information, entropy 

26.1 Introduction 

The original derivation of the energy distribution in the case of the black body 
radiation was given by Planck (1900); he used the maximum entropy princi
ple introduced by Boltzmann (1896). Planck, for avoiding combinatorial dif-
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ficulties, assumed the famous quantum hypothesis; he dropped essentially the 
mechanical character of the mechanism based on the phase space. Several fur
ther derivations of Planck's formula followed over the years, but first of them 
was given by Einstein; recognizing the genious idea of Bose, he has given a 
procedure for obtaining Planck's result adding also an interpretation (indis
tinguishable particles) referring to the combinatorial tool used in the method. 
This justifies the name Planck-Bose-Einstein (PBE) distribution. Vincze (1959, 
1961) extended the Boltzmann (Shannon) discrete entropy formula for continu
ous random variables based on the Kolmogorov measure theoretical foundation 
of the probability theory using the fact: while the entropy term when refining 
the partition of space of elementary events tends to infinity in fairly regular 
cases, the complementary notion of the information (negentropy) may tend to 
a finite value. In formulas: 

or 

En + In = logn, 
n 

Pi 
with In = LPi log 1 

i=l n 

(26.1) 

26.2 Derivation of the Joint Distribution and of the 
J oint Entropy 

26.2.1 On the method 

Let us have a sequence of independent, identically distributed random variables 

(26.2) 

From now on, Xi will be the energy of a particle of a gas system c. Let 
Pr[Xi < x I To] = </J(x), the common distribution of Xi's under an initial state 
To of c. Due to an external effect, the common distribution of the Xi'S became 
Pr[Xi < x I T] = F(x), i.e., C turns to be in the state T. We now assume the 
following: 

(a) The basic distribution of the random variables in (26.2) will be </J(x) , but 
after an external effect their actual distribution will be F( x), which is the 
consequence of the constraint. The situation is completely analogous to 
the mechanics: having a field, the path of a particle will be determined by 
the law of the field in spite of the fact that a constraint is present, which 
will influence the actual path in a noticeable fashion. 



Joint Energy Distributions 443 

(b) The set of possible values of the random variables in (26.2) will remain 
unchanged under a durable effect of the external factor. This means the 
existence of the Radon-Nikodym derivative '1jJ(x) = ~:~? 

Constructing the empirical distribution function ¢N(X) from the first N 
terms of (26.2) which, according to the theorem of Glivenko, tends to ¢(x) 
uniformly on the whole real line. But due to the external effect, ¢N(X) will be 
close to a distribution function F(x) different from ¢(x). The probability of 
this event is small, and it tends to zero when N ~ 00, but its N-th root may 
tend to a finite limit. This is expressed in the large deviation theorem of Sanov 
(1961) which has the form 

lim lim N1 logPr [sup I¢N(X) - F(x)1 < c] 
<:->0 N->oo x 

Joo dF(x) 
= - -00 log d¢(x) dF(x), (26.3) 

i.e., asymptotically, 

[ ] 
N }'oo I dF(x) dF( ) 

Pr s~p I¢N(X) - F(x)1 < c ~ e - -00 og~ x. (26.4) 

This is the mathematical form of our assumption (a), when the variables are 
independent and satisfy simple requirements. 

The exponent is - N times the information, which corresponds in the dis
crete case to In in (26.1). 

Eq. (26.3) is valid both for discrete and for continuous random sequences. 
Now the maximum entropy principle (the maximum probability principle) 

corresponds to the minimum information principle; i.e., they are equivalent: 

JOO 1 dF(x) dF() .. 
-00 og d¢(x) x = mimmum, 

under the conditions: i: dF(x) 1, (26.5) 

i: xdF(x) = m i= j~: xd¢(x) = mo· (26.6) 

The solution to this problem leads to the Boltzmann distribution in the discrete 
case, and to the Gibbs-distribution in the continuous case [Kullback-Leibler]. 

Now adopting the heuristic approach given by Bose and Einstein, we turn 
to the dependent, multivariate case. We accept as information the left hand 
side in {26.3} or {26.4} and we shall determine this "distance" in the same way 
as was done by Sanov: dividing the real axis into n parts, we calculate the 
probability of the random variable Vi which is the number of particles having 
energies falling into the i-th interval among the N sample elements. Then, we 
let nand N tend to infinity. 
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26.2.2 Joint distribution of the number of particles in energy 
intervals 

Considering a large system of particles, the characteristic of the particles was the 
energy as a random variable to be investigated. We assume they are identically 
distributed and the particles are indistinguishable. We now take a large number 
(say N), of samples of size s. 

Denoting the i-th characteristic in the k-th sample by Xk,i, i = 1,2, ... ,s, 
we have the vectors 

k = 1,2, ... ,N. (26.7) 

Our aim is to determine the joint distribution of these s random variables 
under the assumptions mentioned above that they are identically distributed 
and the particles indistinguishable. Let us denote the joint distribution by 

Pr[Xk,1 < Xl, Xk,2 < X2,·· ., Xks < Xs] 

= F{xI, X2, ... ,Xs) = F{Xil' Xi2' ... ,Xi.), (26.8) 

for any permutation (iI, i2, ... , in) of (I, 2, ... , n) which means that the indis
tinguishability implies the exchangeability of the random variables. 

The determination of the joint distribution will happen - as usual in the 
physics - in such a way that we determine the empirical distribution based on 
the sample of size N. Then we let N to infinity and in the limiting case we 
consider the "distance" of the probability under the actual distribution (state T) 
from the distribution under the original state (To). The latter will be denoted 
by 

(26.9) 

For the determination of F{XI, X2, . .. , xs), we need the knowledge of ¢(XI, X2, 
... , xn ), but as in number of cases this is unknown. So some assumption 
(hypothesis) will be taken on it whose validity can be justified by a com
parison of the experimental data with the theoretical values computed under 
¢(XI, X2, . .. , xs). This is the method we explained in our earlier section and we 
now turn to the calculation. 

Our sample vectors are elements of the positive quadrant of the Euclidean 
space Ed". We divide the s real axis (O, 00) into n parts by means of the system 
of points 

0::; YlO < Yll < Yl2 < ... < Yin = 00, I = 1,2, ... ,s; n = 1,2, ... 

This system divides the positive quadrant Ed" into n S s-dimensional cubes. Such 
a cube will be called a cell and the question is how the N observations will be 
distributed into the nS cells. Following Bose and Einstein, we shall divide each 
cell into z parts (which corresponds to a refinement of the energy levels). 
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We assume that each - original - cell has the same probability ;s; this 
means that in the case of s = 2, the following relation holds (here we have two 
axis only, which will be denoted by Xl and X2): 

where 

fl.</J(X1,i, X2,j) = </J(X1,i+1, x2,j+d - </J(X1,i, X2,j+1) 

- </J(X1,i+1, X2,j) + </J(X1,i, X2,j), 

i, j = 0, 1, 2, ... ,71, - 1. 

We shall use the notation Vilh, ... ,is for the random variable, which is the 
number of vectors X K falling into the corresponding cell of Ed (i j = 1,2, ... ,71,; 

j = 1,2, ... ,s, k = 1,2, ... ,N). According to the Bose-Einstein principle, the 
probability that 

with 
n n n 

L L'" L Nil/2, ... ,is = N, 
i1 =1 i2=1 i s =l 

has the value 

(26.10) 

For the sake of simplicity the choice N = n S z will be taken, where 71, and z will 

tend to infinity. Making use of Stirling's formula in the form N! ~ (~) N V27r N, 

we obtain 

NN(nh _1)nS z-1 

(N + nSz - 1)N+ns z-1 

n n 

II II· .. 
i1=1 i2=1 

n ( Nil 'fj ... ,is + ~ ) Nil ,i2,· .. ,i.+z 

l11 (Nil,!; ... ,is )N;1,;2, ... ,iS (71\ r 
For the N-th root of the term before the product sign, we have the asymptotic 
value i. 

This probability then has the form 

1 n n 

N II II .. · 
4 . 1 . 1 tl = 1'2= 

( ) 
N·· . +z ( ) z n 1 '1,'2,""'S N·· . _ '1.1,'1.2,···,'1.8 

II 1 + N n S 
. ~ 

'1.1,'1.2,· .. ,1.8 _ 

is=l N n S 
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As 

N 

we obtain the following relation 

1 1 
N log Pn • ,N '" log '4 

n n n [ (~¢ ) ~F] + ~ .L···.L (~F + ~¢) log 1 + ~F + ~¢ log ~¢ . 
t=l t2=1 z.=l 

From now on we assume that when N -+ 00, the two joint distributions induce 
measures on Ed, which are absolutely continuous with respect to each other, 
i.e., the Radon-Nikodym derivative 

(26.11) 

exists. 
With Nand z tending to infinity, we obtain for the logarithm of the infor

mation according to Vincze (1959) 

l [ 1/1(X) 1 HB-E = -k dF(x) log 1 , 

. Et (1 + 1/)(x))1+~ 
(26.12) 

where 
x = (Xl, X2, ... ,xs ) E E-:-. 

Through a similar procedure, we come to the thermodynamic probability of the 
Fermi-Dirac statistic 

/, ~(x) 
HF-D = -k dF(x) log Q , 

Et (1- i1/)(x))~ 
(26.13) 

where a constant is larger than the maximum of ~(x). 
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26.3 Determination of the Limit Distributions 

The solution of the extremum problem may happen in two ways. 

(a) The Kullback-Leibler method 

Using the Lagrange multipliers A, /.L for mi = J xidF{x), J dF = 1, we obtain 
the unconditional problem 

IB-E + /.L ( dF{x I T) + { (A, x)dF{x IT) = minimum 
JEt JEt 

(26.14) 

which can be written in the form 

( dF{x I T) log dF{x I T) 1 = min, (26.15) 
JEt e- IL-(A,X){1 + 1/){x))1+~dF{x I To) 

where A = (AI, A2, .. " As) abbreviation was used and (A, x) denotes the scale 
product. 

(26.14) is the Bose-Einstein case, while 

1 dF{x I T) 
dF{x I T) log Q = min (26.16) 

Et e- IL-(A,X){1 - !; 1/){x))I-~ dF{x I To) 

in the Fermi-Dirac case. 
Choosing /.L in both cases so that the denominator is a density function, we 

can again conclude that the minimums are zero: 

(26.17) 

in the Bose-Einstein, and 

(A ) ( 1 )1-..p(X) dF{x I T) = e- IL- ,x 1 - ~ ¢(x) dF{x I To) (26.18) 

in the Fermi-Dirac case. Unfortunately, these expressions are not linear in 
the unknown dF{x I T), and so the solution can be obtained using numerical 
calculations. 

It can be seen easily that neglecting the exponents ~ and ~ , respectively, in 
(26.17) and (26.18), we obtain exactly the Bose-Einstein and the Fermi-Dirac 
formula. 
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(b) The Euler-Lagrange method 

We have to solve the minimization problem in (26.14) under the specified con
ditions by using the standard method of the theory of variation. For this, we 
suppose the existence of the density functions assuming the necessary continuity 
properties. Then we have 

IB-E = /" f(x I T) log f(x I T) 1 dx. 
JEt f(x I To)(l + 1/)(x))1+~ 

As the term df(fJT) does not occur, we have the equation 

log f(x I T) -log(f(x I T) + f(x I To)) + (f..l + (A, x)) = 0 

and hence 

f(x I T) = f(x I To) 
elL+(A,X) - 1 

which has the form of Planck's formula 

f(x, T) = f(x, To) 
elL+(A,X) + 1 

O! 

26.4 Discussion 

(26.19) 

(26.20) 

(26.21) 

(26.22) 

The final results of this paper are the entropy formulae HB-E in (26.12), HF-D 

in (26.13) and the joint distributions in (26.17) and (26.18) [or (26.21) and 
(26.22)]. Both formulae contain the a priori distribution F(x, To) or the den
sity function f(x, To). The comparison of results with experiments (or the 
numerical results) require the knowledge of a priori distribution. Here, it was 
assumed as a constant ;8. The calculations of physics, however, use for a pri
ori densities f(x, To) rv .;x in case of massive particles and f(x, To) rv x2 in 
case of Planck normal spectrum. Now the generalization of a priori densities in 
case of joint distribution of energies Xl, X2, • .. ,Xs requires further efforts. The 
present results are that taking f(x, To) rv x~x~ for s = 2 does not yield the 
Planck distribution of normal spectrum (black hole radiation). In our opinion, 
the knowledge of a priori density means the knowledge of a deeper natural law. 
The next step is therefore to find that function so that the deduced Planck 
distribution would agree with the well known distribution. This is-among 
others--our future work. 
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On Modified q-Bessel Functions and Some 
Statistical Applications 

A. W. Kemp 

University of St Andrews, St Andrews, Scotland 

Abstract: The paper defines two modified q-Bessel functions and uses their 
properties in the study of the distribution of the differences of (i) two Euler 
variables, (ii) two Heine variables (these are q-analogues of Poisson variables); 
three-term recurrence relations for the probabilities are obtained and the logcon
cavity of the distributions is established. A particular case of (ii) is the bilateral 
discrete normal distribution-this involves Jacobi's triple product. The Euler 
and the Heine distributions are both special cases of the generalized Euler dis
tribution. The difference of two generalized Euler variables is discussed briefly; 
other special cases lead to Ramanujan's l'lh sum and to its finite form. 

Keywords and phrases: q-Poisson distribution, Euler distribution, Heine dis
tribution, generalized Euler distribution, bilateral discrete normal distribution, 
q-Bessel functions, Jacobi's triple product, Ramanujan's l'l/JI sum 

27.1 Introduction 

The distribution of the difference of two independent Poisson random variables 
Xl and X2, with parameters (h and (h, was first investigated by Irwin (1937) 
for the special case fh = (h. The more general case (h i= (h has been studied 
by Skellam (1946), de Castro (1952), Prekopa (1952), and others, who showed 
that 

where InO is the modified Bessel function of the first kind. This distribution 
arises when a physical effect is measured by the difference of two independent 
counts which are modelled by Poisson random variables. 
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Strackee and van der Gon (1962) have commented, "In a steady state the 
number of light quanta, emitted or absorbed in a definite time, is distributed 
according to a Poisson distribution. In view thereof, the physical limit of per
ceptible contrast in vision can be studied in terms of the difference between two 
independent variates each following a Poisson distribution." Since 1962 there 
has been a great deal of research concerning the behaviour of subatomic par
ticlesj this has led to the development in the physics literature of a q-Poisson 
distribution with probability mass function (pmf) 

Pr[X = x] = ()X Pr[X = 0] 
(1 -q)(1 - q2) ... (1 _qX)' 

x = 0, 1, ... , (27.1) 

where Pr[X = 0] = TI j ;:::o(1 - ()qj) , 0 < () < 1, and 0 < q < Ij for example, see 
Jing (1994). It is the same distribution as that introduced into the statistical 
literature under the name Euler distribution by Benkherouf and Bather (1988) 
as a prior distribution for a stopping time strategy when sequentially drilling 
for oil. Benkherouf and Bather also put forward the Heine distribution with 
pmf 

rJ y qy(y-l)/2 Pr[Y = 0] 
Pr[Y = y] = , (1 - q)(l - q2) ... (1 -qY) 

y = 0, 1, ... , (27.2) 

where Pr[Y = 0] = TI j ;:::o(1 + rJqj)-l, 0 < rJ, 0 < q < 1 as a feasible prior. 
For properties and other modes of genesis of the two distributions, see Kemp 
(1992a,b)j both can be regarded as q-analogues of the Poisson distribution. 
More recently, Benkherouf and Alzaid (1993) have developed a third type of 
prior distribution which they called a generalized Euler distribution. This has 
the pmf 

()W(1- a)(1 - aq) ... (1 - aqw-l) Pr[W = 0] 
Pr[W=w] = , (1 - q)(1 - q2) ... (1 _ qW) 

w =0,1, ... , 

(27.3) 
where Pr[W = 0] = TI j ;:::o(l - ()qj)/(l - a()qj) , 0 < a < 1, 0 < () < 1, 0 < q < Ij 
Benkherouf and Alzaid remarked that the Euler and the geometric distributions 
are the special cases a = 0 and a = q, respectively. Its existence and modes of 
genesis under less restrictive parameter conditions are studied in Kemp (1996a)j 
the Heine distribution arises when a ---+ 00, () ---+ 0-, and when a ---+ -00, () ---+ 0+ 
such that a() = -rJ, rJ > O. 

The aim of the present paper is to study the differences of (i) two Euler 
random variables, (ii) two Heine random variables, using q-analogues of the 
ordinary modified Bessel function of the first kind 

Iv(z) = e-iV"tr/2Jv(zei7r/2) = A~~~) OFl(-jV+ I jz2/4), -1r < argz::; 1r/2, 

and to comment briefly on the distribution of the difference of two generalized 
Euler random variables. 
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Section 27.2 sets out the notation used in the paper, defines the modified 
q-Bessel functions and gives their properties. Section 27.3 deals with the dis
tribution of the difference of two Euler random variables; Section 27.4 does the 
same for the distribution of the difference of two Heine random variables and 
notes that Jacobi's triple product occurs in a particular case. Special cases 
of the difference of two generalized Euler random variables are mentioned in 
Section 27.5; these involve Ramanujan's l1/JI sum and a finite form of it. 

27.2 Notation 

The Gasper-Rahman definition of a basic hypergeometric function (q-series) 
[Gasper and Rahman (1990)] will be used throughout: 

'" (a l , ... , aA . ) 
A'fJB b b' q, Z 

1,···, B 

A <P B ( aI, ... , a A; bl, ... , b B; q, z) 

= f: (al;q)j ... (aA;q)jzj [(_l) j qW]B-A+1, 

j=O (bl; q)j ... (bB; q)j(q; q)j 

where (a;q)o = (a)q,o = 1, (a;q)j = (a)q,j = (1 - a)(l - aq)··· (1 - aqj-l). 

When A = B + 1, this agrees with the Bailey-Slater definition [Bailey (1935) 
and Slater (1966)] that was adopted in Erdelyi et al. (1953), Johnson, Kotz 
and Kemp (1992), and Kemp (1992a,b): 

;r;. [a l , ... , aA. 1 
A':l'B b b' q,z 

1> .•• , B 

f: (al;q)j ... (aA;q)jzj . 

j=O (bl; q)j ... (bB; q)j(q; q)j 

Where B < A-1 (B > A-1) in the Bailey-Slater notation, Gasper and Rahman 
add A - B-1 extra denominator (B - A + 1 extra numerator) parameters 
equal to zero. Thus, all expressions in the Bailey-Slater notation can be stated 
in the Gasper-Rahman notation but not all expressions in the Gasper-Rahman 
notation can be stated in the Bailey-Slater notation. 

Similarly, Gasper and Rahman (1990) define the bilateral basic hypergeo
metric function (q-series) as 

r'ljJs ( ab1.···, abr ; q, z) 
1. ... , s 

= f: (al; q)j ... (ar ; q)j zj (_1)(s-r)jq(s-r)j(j-l)/2. 

j=-oo (bl ; q)j ... (bs; q)j 
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Work on the q-Bessel functions lSI) (z; q) and lS2) (z; q) has been carried out 
in various notations from Jackson (1904) and Hahn (1949) onward; here we use 
Ismail's (1981) notation. 

We define 

k = 1,2, (27.4) 

where 

Izl < 2, 0 < q < 1, giving 

(27.5) 

(27.6) 

The relationship between the two functions is 

(27.7) 

this follows as in Hahn (1949). Also 

Izl < 2, k = 1,2. (27.8) 

The following recurrence and logconcavity properties will be required. 

Property 27.2.1 

Izi < 2, k = 1,2. 

(27.9) 

This is a direct result of the q-contiguous relationships between the q-series and 
can be easily proved by comparison of the coefficients of zj. 

Property 27.2.2 

(k) (k) 
f ( ) = In-I (z; q)In+1 (z; q) < 1 

n Z - (k) (k) , 
In (z;q)In (z;q) 

Izl < 2,0 < q < 1, k = 1,2. (27.10) 
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When n > 0, x = z/2, then from (27.7) 

( 1- qn) 24>1(0,0;qn+2;q,x2) 04>1(-;qn;q,x2qn) 
fn(z) = 1 1 2 2 1-qn+ 24>1(0,0;qn+ ;q,x )04>1(-;qn+1;q,x qn+1) 

= 
(1- qn) [1 + 2:j:2:1(q2n+1+j;q)jX2j{(q;q)j(qn;q)j(qn+2;q)j}-1] 

(1- qn+1) [1 + 2:j:2:1(q2n+1+j;q)jX2j{(q;q)j(qn+1;q)j(qn+l;q)j}-1]' 

(27.11) 

Subtracting the numerator from the denominator of (27.11) gives 

and so (27.10) is true for n > O. From (27.8), it is also true for n < O. Finally, 
when n = 0, from (27.8) and (27.7) 

fo(z) = ( I~k)(Z;q))2 
16k)(z; q) 

x2 24>1 (0,0; q2; q, x2) 04>1 (-; q2; q, x2q2) 

(1 - q)2 24>1 (0,0; q; q, x2) 04>1 (-; q; q, x2q)' 

Subtracting the numerator from the denominator now gives 

(27.12) 

This establishes the 10gconcavity and hence the unimodality of IAk) (z; q), Izl < 2, 
0<q<1, k = 1,2. 

Property 27.2.3 

(27.13) 

From the limiting form € --+ 0 of Heine's transform 

24>1(a, 0; c; q, y) lim 24>1(a, €; c; q, y) 
E--->O 

1. (€;q)oo(ay;q)(Xl '" ( / ) 
1m ( ) ( ) 2'f'1 C €, y; ay; q, € 

E--->O c; q (Xl y; q 00 

(ay; q)(Xl '" ( ) 
( ) ( ) 1'f'1 y;ay;q,c, 
c; q (Xl y; q (Xl 

(27.14) 
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it follows, with a = 0, that IA1)(z;q) can be expressed in terms of a confluent 
basic hypergeometric function 

1(1)( . ) - (z/2)n ,J. ( 2/4' O' n+1). 
n z,q - ( . ) (2/4') 1'f'1 Z "q,q , q,qooz ,qoo 

remembering (27.7), this gives (27.13). 

Remark 27.2.1 When z2/4 = q, then 

Lemma 27.2.1 

(27.15) 

(g;q)oo 1<P1(0;g;q,h) = (h;q)oo 1<P1(0;h;q,g), Igl < 1, Ihl < 1. (27.17) 

Using (27.14) and Heine's transform again, 

lim 2<P1(C,0;g;q,h/c) 
c-+oo 

1· (h; q)oo ,J. (h/ h ) = 1m ( ) 1 'f'1 c;; q, 9 . 
c-+oo g; q 00 

27.3 The Distribution of the Difference of Two 
Euler Random Variables 

From (27.1), the probability generating function (pgf) of the Euler distribution 
is 

o < e < 1,0 < q < 1, 

by Heine's theorem. The pgf of the difference of two independent Euler random 
variables with parameters (>., q) and (p" q) is therefore 

GE(S) = (>.;q)oo (p,;q)oo l<PO(O;-;q,>.s) l<PO(O;-;q,p,/s). (27.18) 

The moment properties can be obtained via the factorial cumulant generating 
function 

KE(t) 

= InGE(1 + t) 
= L [In(1 - >.qj) + In(1- p,qj) -In{1 - >.qj(1 + tn -In{1- p,ql /(1 + tn] 

j2:0 

- ~ [In (1- 1 ~qi:qj) +In (1 + I_tp.qj) - In(1 +tll· 
J_ 
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Hence or otherwise, 

, 
/Ll = 

etc. 

Multiplying together the two q-series in (27.18) and collecting together the 
terms in s gives 

11.=-00 

and hence 

[(27.21) holds for n negative as well as positive.] 
From the recurrence relation (27.9), it follows that 

The logconcavity property (27.10) shows that 

PnPn+2 f ( ~) 
2 = 11.+ 1 2 Y)../L < l. 

Pn+l 

(27.20) 

(27.21) 

(27.22) 

(27.23) 

The distribution of the difference of two independent Euler variables is therefore 
logconcave. This implies that it is unimodal and that it has an increasing hazard 
(failure) rate. 

There is an alternative way of expressing Pn as a series. From (27.21) and 
the confluent property (27.15), 

_ ()..;q)oo (/L;q)oo )..11. '" (' .0. 11.+1) 
Pn - (.) ('.) 1'/"1 A./L, ,q, q ,n = 0,1,2, ... ; 

q, q 00 A./L, q 00 

(27.24) 
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this will generally converge more rapidly than (27.20). When n is negative, the 
roles of >. and J-L are interchanged. For >'J-L = q, (27.24) gives 

_ {>.jq)oo (ql>'jq)oo >.n [1- n+1 + 2n+3 _ 3n+6 + ... J 
Pn - {(qjq)oo}2 q q q , (27.25) 

cf. (27.16). We note the relationship to Andrews' (1986) expansion 

00 (1 n)2 00 IT - q = '" (-lr+N zN q(r2-N2 )/2+(r+N)/2 (27.26) 
_ (1 - zqn)(l - z-lqn-l) ~ , 

n-l N,r--oo 

where the summation over N and r is constrained by r 2': INI and where 1 < 
Izl < Iql-l. Andrews obtained this expansion by carrying out a partial fraction 
decomposition of the left hand side and applying geometric series expansions 
to the denominators in the partial fraction decomposition. 

27.4 The Distribution of the Difference of Two 
Heine Random Variables 

The Heine distribution has the pgf 

{ )1 ( ) ( -'f/Sj q)oo 
o¢o -j -jq, -'f/S o¢o -j -;q, -'f/ = ( .) , 

-'f/,q 00 
0< 'f/, 0 < q < 1, 

cf (27.2), by Heine's theorem. The difference of two independent Heine random 
variables with parameters (>', q) and (J-L, q) therefore has the pgf 

GH{S) = o¢o{ -j -; q, ->.s) o¢o{ -j -j q, -J-LI s) I {( ->.j q)oo {-J-Lj q)oo} (27.27) 

and the factorial cumulant generating function 

KH(t) 

= InGH {1 + t) 
- L [In{l + >.qi(l + tn + In{l + J-Lqj 1(1 + tn -In(l + >.qi) -In(l + J-Lqi)] 

j?:O 

- L {In (1 + 1 >.q; j) + In (1 + 1 t j) -In(l + t)} . 
j?:o + q + J-Lq 

The mean and variance are 

J-L2 
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Multiplication of the two q-series in (27.27) and collection of the terms in s 
gives 

GH(S) = {(-A;q)oo (-JL;q)oo}-l x [oc/JI(-;q;q,AJL) 

00 (AnSn + JLnS-n)qn(n-l)/2 1 
+ L ( . ) olPI ( -; qn+ \ q, AJLqn) . 

n=l q,qn 

(27.28) 

Therefore, 

Anqn(n-l)/2 
Pn = {(-A;q)oo (-JL;q)oo}-l ( ) oc/JI(_;qn+1;q, AJLqn) 

q;q n 

n = 0,1,2, ... , (27.29) 

(27.30) 

[(27.30) holds for n negative as well as n positive.] The recurrence relation 
between these probabilities is [from (27.9)]' cf. (27.22), 

We now have 

PnPn+2 
2 

Pn+l 

(27.31) 

(27.32) 

(27.33) 

by (27.10). The difference of two independent Heine variables therefore also has 
a logconcave, unimodal distribution with an increasing hazard (failure) rate. 

From (27.30) and (27.13) 

and similarly with A and JL interchanged for n negative. When AJL = q, this 
becomes 

(27.35) 

This is the bilateral discrete normal distribution of Kemp (1996b). Summing 
over n gives Jacobi's triple product 

00 

(-A;q)oo (-q/A;q)oo (q;q)oo = L Anqn(n-l)/2. (27.36) 
n=-oo 
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27.5 Comments on the Distribution of the 
Difference of Two Generalized 
Euler Random Variables 

The Euler distribution is the special case a = 0 of the generalized Euler distri
bution with pgf 

lcPo(a; -; q, Os) 
lcPo(a; -; q, 0) 

(aOs;q)oo (O;q)oo 
(Os; q)oo (aO; q)oo' 

cf. (27.3). Kemp (1996a) has found that the parameter constraints of Benkh
erouf and Alzaid (1993) can be relaxed to (i) a < 1, 0 < 0 < 1, 0 < q < 1, (ii) 
a = q-m, mE Z+, 0 < 0,0 < q < 1. 

The difference of two independent generalized Euler random variables with 
parameters (A,)', q) and (B, p" q) therefore has the pgf 

(),;q)oo (p,;q)oo '" (A ), ) '" (B / ) 
(A)'.) (B.) 1'1-'0 ; -;q, s 1'1-'0 ; -;q,p, s 

,q 00 p" q 00 

(),;q)oo (p,;q)oo [" (A;q)n ),nsn '" (A n B. n+l. ),) 
(A), ) (B ) L () 2'1-'1 q, , q ,q, p, ; q 00 p,; q 00 n2:0 q; q n 

" (B; q)n p,ns-n '" (A B n n+l ')] + L ( .) 2'1-'1, q;q ;q,AP, . 
n2:1 q,qn 

(27.37) 

The factorial cumulant generating function follows as before by taking the log
arithm of the pgf and substituting 1 + t for s. 

From (27.37), the probabilities are 

(),; q)oo (p,; q)oo (A; q)n ),fl' '" (A n B n+l ') 
Pn= ( ) 2'1-'1 q, ;q ;q,AP" (A),;q)oo (Bp,;q)oo q;q n 

(27.38) 

for 17, = 0,1,2, ... and similarly, with interchange of parameters, for 17, negative; 
they are not directly related to the modified q-Bessel functions. Certain special 
cases are examined for their inherent interest. 

As noted earlier, the Euler and Heine distributions are particular cases of the 
generalized Euler distribution. The pgf of the difference formed by subtracting 
a Heine random variable from an Euler random variable is therefore the special 
case of (27.37) with A = 0, B --+ -00, p, --+ 0+, Bp, = -/3. From (27.38) 

_ (),;q)oo ),n '" (0. n+l. '/3) _ Pn- (-/3.) -( -. -) 1'1-'1 ,q ,q,-A ,17,-0,1,2, ... , ,qoo q,qn 
(27.39) 
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and hence from Lemma 27.2.1 

_ (Aj q)oo (-A{3j q)oo ,n A. (0' '(3' n+1) - 0 1 2 . 
Pn- (-(3') (.) /\ 1'f/1 ,-/\ ,q,q ,n-" '''., ,qoo q,qoo 

(27.40) 

similarly, with interchange of parameters, for n negative. The series in (27.40) 
has alternating signsj also it will generally converge more rapidly than (27.39). 

For a second special case, let ABAJ-l = q. Then the 2rP1(-) series in (27.37) 
can be summed by the q-Gauss sum, 

A. ( b" -lb-1) _ (claj q)oo (clbj q)oo 
2'f/1 a, ,c, q, ca - ( .) ( -lb-I. ) , c, q 00 ca ,q 00 

and (27.37) becomes 

(Ajq)oo (qA-1B-1A-1jq)00 
G2(s) = 

(AAj q)oo (qA-1 A-1 j q)oo 

= 

00 (Aj q)n Ansn(qA-1j q)oo (qn+1 B-1j q)oo 

x n];oo (qj q)oo (qA-1 B-1 j q)oo 

(Aj q)oo (qA-1 B-1 A-1j q)oo (qA-1j q)oo (qB-1j q)oo 
(AAj q)oo (qA-1 A-1 j q)oo (qj q)oo (qA-1 B-1 j q)oo 

x 11/JI(AjqB-\q,AS). (27.41) 

Setting s = 1 in (27.41) gives Ramanujan's 1 'l/JI sum. 
If B -t -00, J-l-t 0+, such that BJ-l = qA-1A-1, then we have a generalized 

Euler random variable minus a Heine random variable and the corresponding 
pgf is 

G ( ) (Aj q)oo (qA-1; q)oo (A A ) 
3 S = (AA') (A-lA-I.) (.) l'l/JI jOjq, s. ,q 00 q ,q 00 q, q 00 

(27.42) 

A Heine random variable with parameters (0, q) minus a generalized Euler 
random variable with parameters (B, J-l, q), where -0 = qB-1 J-l-1, has the pgf 

(_qo-1 B-1; q)oo (qB-1; q)oo 00 onsnqn(n-1)/2 
G4 (s) = L 

(-Ojq)oo (_qo-1jq)00 (q;q)oo n=-oo (qB-1 jq )n 

(_qo-1 B-1j q)oo (qB- 1j q)oo -1 
= ( .) ( -1.) (.) o'lh(-jqB ;q,-os); -o,q 00 -qo ,q 00 q,q 00 

(27.43) 

this is, of course, the previous distribution with (A, A) and (B, J-l) interchanged 
and the support reversed. Putting s = 1 provides a summation formula for a 
o'lh (-) series. 

Finally, consider the second set of parameter constraints for the generalized 
Euler distribution. Suppose that A = q-m, B = q-.e, A < 0, J-l < 0, where 
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m, f E Z+. Suppose also that >"1-£ = q. Both generalized Euler distributions are 
now finite convolutions of Bernoulli random variables and their difference has 
finite support. The pgf of their difference is 

14>O(q-m j -j q, >..s) 14>O(q-lj -j q, q>.. -Is-I) 

14>O(q-m j -j q, >..) 14>O(q-lj -j q, q>..-l) 

1 m (q-m j q)n >..nsn 

= (q-m>..jq)m (q1-lj>"jq)l n~l (qjq)n 

x 24>1 (qn-m, q-lj qn+1j q, q) 

(qj q)m+l m (_>..)nsnq-(m-nHl+n)-n(n+1)/2 

- (q-m>"jq)m (q1-lj>"jq)l n~l (qjq)m-n (qjq)l+n 

(27.44) 

by the q-Vandermonde summation formula. Setting s = 1 gives a doubly finite 
form of Ramanujan's l'I/JI(ajbjq,z) sum without the usual restrictions Ibjal < 
Izl < 1. 
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A q-Logarithmic Distribution 

c. David Kemp 
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Abstract: The distribution considered here is obtained by replacing the or
dinary Gaussian hypergeometric function by an appropriate q-hypergeometric 
(basic hypergeometric) function in the Kemp (1968) formulation of the probabil
ity generating function for the logarithmic distribution. Properties of the result
ing q-logarithmic distribution are examined; a birth-and-death process model 
for group sizes is proposed whose equilibrium distribution is the q-logarithmic. 

Keywords and phrases: Basic hypergeometric function, q-analogues of dis
tributions, q-logarithmic distribution, group size model 

28.1 Introduction 

The AFB hypergeometric function is defined as 

where 

AFB [ ab1,'" 'baA; z] = AFB(al, ... , aA; bI, ... , bB; z) 
1,"" B 

() _{1 ifn=O 
an - . 

a (a + 1) ... (a + n - 1) If n = 1, 2, .... 

(28.1) 

(28.2) 

Gasper and Rahman (1990) defined an ArPB q-hypergeometric function as 
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f (al;q)n ... (aA;q)n Zn [(_1)nq(;)]B-A+1, 
n=O (bl; q)n ... (bB; q)n( q; q)n 

(28.3) 

where 

{ 
1 ifn=O 

(a; q)n = (1- a)(1 - aq) ... (1- aqn-l) if n = 1,2, ... (28.4) 

The Gasper-Rahman definition is a generalization of the definition which 
had been in use for many years and which did not include the expression in 
square brackets. In the important cases where A = B+1, the previous definition 
and (28.3) are identical. In particular, 

(1 - a)(1 - b) (1 - a)(1 - aq)(1 - b)(1 - bq) 2 

24>1(a,b;c;q,z) =1+ (1-c)(1-q)z+ (1-c)(1-cq)(1-q)(1- q2)z + .... 
(28.5) 

Note that 

lim ((qa; q))n = a(a + 1) ... (a + n - 1) = (a)n, 
q----l 1 - q n 

(28.6) 

and hence 
(28.7) 

(the usual Gaussian hypergeometric function). 
The theory of basic hypergeometric functions arose from the study of par

titions in the 18th century, but it is only recently that they have begun to be 
seriously applied in discrete statistical distribution theory. 

Nearly thirty years ago, A. W. Kemp (1968) showed how the study of a 
very wide family of discrete distributions could be unified by expressing their 
probability generating functions (pgf's) in terms of generalized hypergeometric 
functions. The simple limiting relationship between q-hypergeometric and ordi
nary hypergeometric functions exemplified by (28.7) above suggests the study of 
q-analogues of the Kemp family of distributions. In the sequel, we examine an 
obvious q-analogue of the logarithmic distribution and indicate an application 
to group-size distributions. 
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28.2 A q-Logarithmic Distribution 

The logarithmic distribution [see, for example, Johnson, Kotz and Kemp (1992, 
Chapter 7)] is an important discrete distribution, which has many practical 
applications. It is inter alia a member of the Kemp family of distributions. Its 
pgf is 

G(s) _ log(1 - Os) = s2Fl(l, 1; 2; Os) 
log(1 - 0) 2Fl(l, 1; 2; 0) 

{ 0282 03 s3 } 
= a Os + -2- + -3- + ... , (28.8) 

where 0 < 0 < 1 and a = -[log(1 - O)tl. 
Consider the distribution with pgf 

(28.9) 

where C = [02cPl(q,q;q2;q,O)]-1. 
It is immediately apparent from (28.7) that 

lim H(s) = G(s), 
q-+l 

(28.10) 

hence we regard the distribution with pgf H (8) as a q-analogue of the logarith
mic distribution and refer to it as the q-Iog distribution. It is this distribution 
that is the main concern of this paper. 

The probability mass function (pmf) of the q-Iog distribution is 

{ /
X-l 

_ COx L: qi x = 1,2,3, ... 
Px - i=O , 

o elsewhere 
o < q < 1, 0 < 0 < 1. (28.11) 

Like those of the logarithmic distribution, the q-Iog probabilities {Px} form a 
strictly monotonic decreasing sequence and the distribution is reverse J-shaped. 
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Suppose that we shift the q-log distribution one unit to the left, so that the 
first non-zero probability is Po rather than Pl. Then, for x > 0, 

Px-IPx+1 

Px2 = 
(1 _ qx)2 

(1 - qx-l )(1 _ qx+l) 

> 1, 

since 

hence, the distribution is log-convex. 

(28.12) 

(28.13) 

It is well-known that if the logarithmic distribution is similarly shifted then 
the resultant distribution is infinitely divisible. Log-convexity is a sufficient 
condition for infinite divisibility of any distribution for which Px > 0, x ~ 
O. Hence the shifted q-log distribution must also be infinitely divisible. Log
convexity also implies that the distribution has a decreasing hazard (failure) 
rate. 

While the q-log distribution approaches the logarithmic distribution as q --t 

1, when q --t 0 it approaches the geometric distribution with pgf 

and pmf 

(1 - ()) 
K(s) = s (1 _ (}s) 

_ { (1 - (})(}x-l :1: = 1,2,3, . .. . 0 < () < 1 
Px - 0 elsewhere' 

(28.14) 

(28.15) 

[for properties of the geometric distribution, see Johnson, Kotz and Kemp (1992, 
Chapter 5)]. 

If we apply a standard Heine transformation [see, for example, Gasper and 
Rahman (1990, p. 241)] to 2¢JI(q,qjq2jq, (}s), we can show that 

H(s) = C(l _ q) { () s(l - (}) + q(} s(l - q(}) 
(1 - ()) (1- (}s) (1 - q(}) (1- q(}s) 

q2(} s(1 _ q2(}) q3(} s(1 _ q3(}) } 

+ (1 - q2(}) (1 - q2(}s) + (1 - q3(}) (1 - q3(}s) + ... 
(28.16) 

Hence, the q-log distribution can be interpreted as a mixture of geometric dis
tributions where the weights are the expected values of the respective distribu
tions. 

Although there is no simple summation formula for 2¢JI(q, qj q2j q, (}), nu
merical computation of the {px} of the q-log distribution is straightforward for 
most (q, ()) combinations. It is very simple to compute, store, and sum the 
terms (}X / Lj~J qj sequentially until individual terms become negligibly small 
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(say, < 10-8). Individual terms are then multiplied by the reciprocal of the 
sum to give the {Px}. 

While it is not possible to obtain closed expressions for the moments of the 
distribution, we can obtain the following expression for the mean from (28.16) 
by remembering that H'(l) = E[X] and H(l) = 1: 

(28.17) 

In the same way, we use H"(l) to obtain 

(28.18) 

We can proceed similarly for higher order factorial moments. 
Alternatively, for any (q, ()) it is easy to compute values for the moments 

directly as the {Px} are being computed. 
For constant (), as q is increased from 0 to 1 the mean decreases from 1/(1-(}) 

to a(} / (1- ()) and both the variance and the third central moment also decrease. 
For a constant mean, however, as q increases both () and the variance also 
increase. For example, if () is held constant at 0.743, the mean and variance 
of the limiting geometric distribution are 3.89 and 11.23, while those of the 
limiting logarithmic are 2.13 and 3.75. But if the mean is held constant at 
3.89 (the limiting geometric value above), then the value of () for the limiting 
logarithmic distribution is 0.900 and the variance also increases to 23.50. For 
a constant mean, the distribution becomes shorter-tailed as q decreases. 

Given empirical data which are assumed to have been generated by a q-Iog 
model, the ease with which the probabilities and hence the likelihood can be 
computed suggests the use of direct search methods for the maximum likelihood 
estimation of the parameters. 

28.3 A Group Size Model for the Distribution 

Group size models have received considerable attention in the statistical liter
ature since Yule (1924); for information and references see, for example, Kemp 
and Kemp (1992) and Morgan (1976, 1993). A typical statistical model regards 
the group size distribution as the equilibrium distribution arising from a birth
death process. We adopt this approach. We assume that the minimum size of 
a group is unity, so the process starts with a group of size x 2: 1, and that the 
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following birth and death rates Ai, J..li apply: 

J..ll 0 
- (~) J..lx - J..l l-q 

x> 1, (28.19) 

i.e., for fixed q, both the birth and death rates increase as group size increases 
but reducing q reduces all the rates except the first. 

Standard results for a birth-death process enable us to obtain the probabil
ities of the equilibrium distribution of group size as 

AIA2' .. Ax-l Ax- 1 ( 1 - q ) 
Px =Pl =Pl -- --- . 

J..l2J..l3· .. J..lx J..lx- 1 1 - qX 
(28.20) 

Hence, the pgf must be 

00 (A) x-I ( 1 _ ) (A ) H(s) = SPl:L - 1 _ ~ sx-l = SPI2¢1 q, q; q2; q, -s , (28.21) 
x=1 J..l q J..l 

i.e., the equilibrium distribution of group size is q-logarithmic. 
This model can also be reformulated in terms of a random walk whose 

analysis results in the same distribution. 
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Bernoulli Learning Models: Uppuluri Numbers 

K. G. Janardan 
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Abstract: When an operator works on a machine, it is reasonable to assume 
that in a learning situation the probability of making an error changes from 
trial to trial, thus leading to a general Bernoulli process. In this paper, some 
results concerning two random variables - Sn, the number of errors made in a 
fixed number n of trials and T r , the waiting time for the r-th success in this 
general Bernoulli process are studied. The probability distributions of Sn and 
T r satisfy certain recursive relations and lead to interesting connections with 
the results found in combinatorial theory. The details of some interesting results 
which lead to what we call Uppuluri numbers, and in some special cases, relate 
to signless Stirling numbers of the first kind and to Pascal's triangle are also 
presented. 

Keywords and phrases: Learning process, probability models, Stirling num
bers, Pascal triangle 

29.1 Introduction 

Mathematical models for natural or social phenomena facilitate the develop
ment of any science when a sufficient body of quantitative information has been 
collected. This collection can be used to point out the direction in which models 
should be constructed and to test the adequacy of such models. These models 
in turn, are often used in organizing and interpreting data and in proposing 
new direction for experimental research. Among the areas of social sciences, 
psychology is one area where numerous attempts have been made to construct 
quantitative models for learning phenomena when learning is viewed as a prod
uct of experience. 

Parvin and Grammas (1980) defined the technical progress as a learning 
process and examined this view in the context of the theory of learning in 
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psychology. They developed interesting models for the production of a service 
or goods where man and machine are input factors. In particular, they offered 
a mathematical model in which they assumed the probability that an operator 
makes an error changes from trial to trial. In fact they assumed that the 
probability that the operator makes an error at the 17,-th trial is 1/(17, + 1) and 
studied the distribution of the random variable S, the number of errors made 
in a fixed number of trials. 

In this paper, the probability distributions of the random variable Sn, which 
counts the number of errors made when the probability Pi changes from trial to 
trial, and that of the random variable Tr , the waiting time for the r-th success, 
are obtained in a general Bernoulli process. Parvin and Grammas results form 
special cases of our model. The probability distributions of Sn and Tr satisfy 
certain recursive relations in terms of what we call Uppuluri numbers, and lead 
to interesting connections with results found in combinatorial theory. 

29.2 The General Model 

Consider a sequence of random variables {Xn; 17, = 1,2, ... } that are indepen
dent and assume the values only 0 or l. In general, the event {Xn = I} implies 
that the success has occurred on the 17,-th trial. In the learning model situation 
of the type discussed in Parvin and Grammas, the event {Xn = I} may be 
interpreted as the event that the performance of the task (job) resulted in no 
error on the 17,-th execution of the task. The event {Xn = O} then implies that 
an error has occurred on the 17,-th operation. Let Pn be the probability no error 
is made on the 17,-th operation (trial): 

Pn = Pr[Xn = 1] (29.1) 

Let qn denote the probability that an error is made on the 17,-th operation: 

qn = Pr[Xn = 0]. (29.2) 

Clearly Pn + qn = 1 for each 17,. Each Xn is one of the simplest kinds of random 
variables, a Bernoulli random variable. 

Now, for each 17" define the random variable Sn as follows: Let Sn be the 
number of error free executions of the task (number of successes) in 17, operations 
(trials). It is of interest to find the probability distribution of Sn and other 
statistical properties. In particular, what can be said of Pr[Sn = k] for k 
= 0,1, ... ,17, (the probability of exactly k successes in 17, trials) and the mean 
E(8n.) and the variance V(Sn) of Sn? 

It follows from the well known properties, for 0 ::; Sn ::; 17" 

(29.3) 
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n 
E(Sn) ~Pj (29.4) 

j=l 
n 

V(Sn) = ~Pjqj (29.5) 
j=l 

A closed expression for the probability distribution of Sn does not exist in 
the literature. Our objective is to obtain one. However, in the case of constant 
success probability, Pn = P for all 17" the general model reduces to well known 
binomial distribution: 

(29.6) 

To find an expression for the general case, we first construct a recurrence 
relation. The event {Sn+ 1 = k} can occur in exactly one of two mutually 
exclusive ways. Either {Sn = k} already occurred and a failure occurs on the 
(17, + 1) trial or {Sn = k - I} occurred and a success occurs on the 17,-th trial. 
Then using standard laws of probability, we get 

Pr[Sn+1 = k] = qn+1 Pr[Sn = k] + Pn+1 Pr[Sn = k - 1] (29.7) 

In applying this, it is important to note that the probability of any Sn taking 
a negative value or a value greater than 17, is zero. 

The recursion in (29.7) can be used to develop the probability distribution 
of Sn for small 17, [see Uppuluri and Piziak (1984)]. From (29.7), it can be shown 
that 

and 

Now define 

Thus, 

n 

Pr[Sn = 0] = II qj 
j=l 

n 

Pr[Sn = 17,] = II Pj 
j=l 

R(n, k) = Pr[Sn = k] 
Pr[Sn = 0] 

n 

Pr[Sn = k] = R(n, k) II qj. 
j=l 

Some easy algebra converts the recursion in (29.7) to 

R(n + 1, k) = R(n, k) + (3n+1R(n, k - 1) 

where (3n is the odds ratio: (3n = ~. 

(29.8) 

(29.9) 

(29.10) 

(29.11) 

(29.12) 
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It follows from the recursion relation in (29.12) 

{ 
R(n,O) = 1 
R( n, n) = IFj=l{3j 
R(n,1) = Lj=l {3j . 

The solution of the recursion relation can be shown to be 

U(n,k;f3) = 

(29.13) 

(29.14) 

with U(n,O;f3) = R(n,O) = 1. The sum in (29.14) denotes the sum of all 
products for every subset {iI, i2, ... ,ik} of values from the set {1, 2, ... ,n} 
such that il < i2 < ... < ik, for 1 ::; k ::; n. We call the expression in 
(29.14) Uppuluri numbers. It may be noted that if we take {3j = j (i.e., Pj = 

jqj), U(n, k;f3) reduces to the signless or absolute Stirling numbers of the first 
kind: s(n, k) = L ili2 .. ' ik where summation is extended over all combinations 
{iI, i2, ... , id of positive integers {1, 2, ... , n}. 

Even more interesting is that, given {3's and the relation (29.14), a general 
probabilistic learning model can be constructed as 

Pr[Sn = k] = 'Pn U(n, k; f3) for k = 0, 1, ... ,n (29.15) 

where 'Pn = IIj=l qj and U (n, 0; f3) = 1. 
If we define Ii as reciprocal of {3i, i.e., Ii = ;;; for all i, then we can also 

write the probability function of Sn as 

(29.16) 

where On = TIi=l Pi and Ul = Lil <i2< .. -<in-k liIli2 ... lin-k' 

It may be noted here that the Uppuluri numbers Ul(n,k;,) are calculated 
from the elements which are reciprocals of the ones used in the definition of 
U(n, k; f3). 

29.2.1 Special cases of the general probabilistic model 

The Parvin-Grammas Model 

If we take Pi = i~l and qi = i~l for i = 1,2, ... n, then the mean and variance 
of Sn, are given by 

(29.17) 

These expressions are the same as those obtained in Parvin and Grammas 
(1980). 
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In this case, the recursion in (29.12) reduces to 

8(n + 1, k) = 8(n, k) + (n + 1)8(n, k - 1) (29.18) 

where 8( n, k) is the signless Stirling numbers of the first kind, and the general 
learning model (29.15) reduces to 

[S k] 1"... 8(n,k) 
Pr n = , = ( )' L 21 1'2··· 2k· = ( )' n+l. n+l. 

(29.19) 

This shows that the model considered by Parvin and Grammas leads to 
signless Stirling numbers of the first kind. 

The Binomial Model 

If we assume no learning occurs from trial to trial, the probabilities Pi are 
constant, i.e., Pi = p, for all i, then the recursion relation in (29.12) reduces to 

U(n + 1, k;,6) = U(n, k;,6) + ,6U(n, k - 1;,6) (29.20) 

where ,6 = ~ and U(n, k;,6) in (29.14) reduces to 

G) (p)k 
U(n,k;,6) = L -

j=l q 
(29.21) 

and the general learning model reduces to the binomial model as in (29.6). If,6 
is taken as equal to 1 in the recurrence relation (29.20), (i.e., when P = q = 1/2), 
(29.20) reduces to the familiar Pascal's triangle identity: 

(n + 1) = (n) + ( : ). 
k k k 1 

(29.22) 

The First Generation Rumor Model 

If we take Pi = (}/(() + i) and hence Ii = i/(} in (29.16), then the probability 
function reduces to 

(}k 
Pr[Sn = k] = 8(n, k) -[-] , 

(}n 
for k = 1,2, ... ,n (29.23) 

where (}[n] = ()( () + 1) (() + 2) ... (() + n - 1). Let n be the total number of persons 
hearing a rumor, with 

() = Intensity of source transmission 
Intensity of between individual transmission 

then the number of those who have heard the rumor from the source will have 
the probability model given by (29.23) [see Bartholomew (1982)]. 
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The Random Record Model 

Let Yo, Y1, . .. be independent and identically distributed random variables with 
common distribution function F. Define the upper record Xj by letting 

X. = { 1 if Yi > Yk for k = 0, 1,2, ... ,j - 1 
J 0 otherwise 

Then Xi's are independent and Pr[Xj = 1] = j!l. Let Sn be the number 
of records up to n. Since Sn = '£";-=1 X j , the probability distribution of Sn is 
[see Westcott (1977)] same as (29.19). 

29.3 Waiting Time Learning Models 

Let us now consider the general case of the waiting times learning models with 
arbitrary choice of probabilities from operation to operation (trial). Specifically, 
assume 

Pr[an error is made on the n-th operation] = qn, 

and 

Pr[no error is made on the n-th operation] = Pn, qn + Pn = 1. 

Let the random variable Tr denote the waiting time (i.e., number of machine 
operations required before) the r-th error-free execution of a task. From (29.3) 
we know that Sn denotes the number of error-free executions in n trials. Thus, 

Pr[Tr+1 = n + 1] = Pr[Sn = r]Pn+1 (29.24) 

or 
Pr[Tr+1 = n + 1] - P [S - ] -'--------.:. - r n - r 

Pn+1 
(29.25) 

where Pr[Sn = r] satisfies the recurrence relation: 

Pr[Sn = r] = qn Pr[sn-1 = r] + Pn Pr[Sn-1 = r - 1]. (29.26) 

Applying (29.25) to (29.26) we can write (29.26) as 

Pr[Tr+1 = n + 1] qn 
----='---'-----....:. = - Pr[Tr+1 = n] + Pr[Tr = n] 

Pn+1 Pn 
(29.27) 

and 

Pr[Tr = r] = P1P2·· ·Pr· (29.28) 
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By taking n = r + 1 in (29.27), we can write (29.27) as 

Pr[Tr+l = r + 2] 
-~",:""::,,,------=. = P1P2·· ·Pr+1Qr+l + Pr+2Pr[Tr = r + 1] 

Pn+2 

for r = 1,2,3, ... 
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(29.29) 

Successive evaluation of probabilities in (29.29) in terms of p's and q's allows 
reduction of (29.29), eventually, to 

( q1 q2 qr) Pr[Tr =r+1] = PIP2···Pr+l -+-+ ... +-
PI P2 Pr 

Or+lh1 + 'Y2 + ... + 'Yr) 
r 

Or+1 2..= 'Yj 
j=l 

where Or+1 = IIj!ipj and 'Yi = ;;;, for i = 1,2, ... ,r. 
Similarly, we can show that 

(Ttl) 

Pr[Tr = r + 2] = Or+2 2..= 'Yil 'Yi2' 
i l <i2 

(29.30) 

(29.31) 

Next we begin developing interesting connections with results in combina
torial theory. A look at the expressions in (29.30) and (29.31) suggests two 
ideas. First, there is an algorithm for constructing the probability distribution, 
Pr[Tr = r + m] for any m; and second, the number of summands in each case, 
are r+:-I ). For m = 1, we get the number of summands in (29.30) as rand 
for m = 2, the number of summands in (29.31) as rt 1 ). Thus, 

Pr[Tr = r + m] = Or+m (29.32) 

where the number of terms in the sum is r+:- I ). 

Hence, to pursue the interesting connection between the waiting time learn
ing models and certain classes of numbers in combinatorial theory, we restate 
the Uppuluri numbers as defined in (29.14): 

U(n,m;,) = (29.33) 

where the sum denotes the sum of all products 'Yil 'Yi2 ... 'Yim for every subset 
{iI, i2, .. . , im } of values from the set {I, 2, ... , n} such that i1 < i2 < ... < im , 

1::::; m::::; n. 
Therefore, the probability distribution of Tr can be defined as 

(29.34) 

where Ok = IIJ=IPj , U(k -1, k - r; ,) is as defined in (29.33) , and 'Y/s are the 
odds ratios, 'Yj = ;; for all j. 
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29.3.1 Special cases of waiting time learning models 

The Parvin and Grammas Model 

If we make Parvin and Grammas assumption that Pk = k~l and qk = k~l for 

k = 1,2, ... , then (}k = (k~!l)! and 'Yk = k. Hence, the probability distribution 

in (29.34) reduces to 

(29.35) 

From the properties of Stirling numbers of the first kind, [see Charalambides 
and Singh (1988)] we have 

(k - 1)! L 1 . L i1i2 ... i r-1 = s(k - 1, r - 1) 
il <i2<···<ik_r 2122 .. . 2k-r il <i2 ... ir-l 

Substituting (29.36) into (29.35) we obtain 

1 
Pr[Tr = k] = (k -1)!(k + 1) s(k -1,r -1) 

(29.36) 

(29.37) 

This result shows that the distribution of Tr , under Parvin and Grammas 
assumption, is again related to the absolute Stirling numbers of the first kind. 
The first few terms of s(n, m) are [see Parvin and Grammas (1980)]: 

{ 
( 1) - n(n+1) 

S n, - 2 

( 2) - n(n+1) (n-1)(3n+2) 
S n, - 2 12 

( 3) _ [n(n+1)] 2 (n-1)(n-2) 
S n, - 2 12 

(29.38) 

Using (29.38) we can obtain the probability distribution of T1 the waiting 
time for the first success as 

1 
Pr[T1 = k] = (k _ 1)!(k + 1) 

k 
(k + 1)! ' for k = 1,2, ... (29.39) 

The probability distribution of T2, the waiting time for 2 successes can be 
shown to be 

k2(k - 1) 
Pr[T2 = k] = 2(k _ 2)!(k + 1) , for k = 2,3, ... (29.40) 

These results agree with those obtained by Uppuluri and Janardan (1985). 
The expected values of T1 and T2 can be derived as E(T1) = (e - 1) and 
E(T2) = ~ e-l. The variances ofT1 and T2 can be shown to be V(T1) = 3e-e2 

and V(T2) = e(26 - ge)/4. 
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Similarly, the probability distribution of T3 , the waiting time for the third 
success can be derived as 

[ _ ] _ k2(k - l)(k - 2)(3k - 1) 
PrT3 - k - 24(k + I)! ' for k = 3,4, ... (29.41) 

and E(T3) = 4.3233 (using Maple software). 

The Random Record Waiting Time Model 

In the record model considered in Section 29.2.1, let Tr denote the waiting time 
before the r-th upper record is obtained. Then the probability distribution of 
Tr is as given in (29.37). 

The Negative Binomial Model 

If we assume that no learning occurs from trial to trial, the probabilities Pi are 
constant, i.e., Pi = p, for all i. Then, in (29.33) 'Y = ~, (h = pk and 

(k-l) 
r-l (k - 1) U(k -l,r -1;'Y) = L (qjp)k-r = qk-rp-k+r. 
j=l r - 1 

(29.42) 

Thus, the distribution of the random variable Tr reduces to the negative 
binomial distribution: 

PrTr = k = p q [ ] ( k - 1) r k-r 
r-1 

for k = r, r + 1, .... (29.43) 

The Waiting Time Model for the First Generation Rumor 

In the first generation rumor model considered in Section 29.2.1, let Tr denote 
the number of people required to be sampled before the r-th person who has 
heard the rumor from the source is found, then the probability distribution of 
Tr is given by 

kok-r 
Pr[Tr = k] = (0 + l)[kJ s(k - 1, r - 1), for k = r,r + 1, ... (29.44) 

The special cases discussed above are only a few among several of the learn
ing models of interest. Based on the general results in (29.15) and (29.34), one 
can develop several other learning models. These are left to the reader. 
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Linear Nonparametric Tests Against Restricted 
Alternatives: The Simple- Tree Order and The 
Simple Order 

S. Chakraborti and W. Schaafsma 

University of Alabama, Tuscaloosa, AL 
University of Groningen, Groningen, The Netherlands 

Abstract: The problem of testing homogeneity of distributions against some 
ordered alternatives is considered without making specific parametric model 
assumptions. The alternatives of interest include the simple-tree order and the 
simple order. The approach is based on a reformulation of the testing problems, 
regarding them as being composed of a finite number of two-sample sub-testing 
problems. The Mann-Whitney-Wilcoxon test is used, as an example, for the 
component problems, the main issue being how to combine dependent test 
statistics into a single efficient overall test. Keeping the practitioner's needs 
in mind, a linear function of the individual test statistics is considered and 
the Abelson-Tukey-Schaafsma-Smid principle (of minimizing "the maximum 
shortcoming") is applied to derive the optimal (minimax) coefficients in the 
linear combination. The advantages of using optimal weights are illustrated by 
making ARE comparisons with the J onckheere-Terpstra-Tryon-Hettmansperger 
test. The restriction to the class of linear combinations is attractive from the 
practitioner's viewpoint but the theoretical statistician will argue that such 
linear combinations leading to "somewhere" most powerful tests makes them 
questionable from an overall point of view. Hence, alternative approaches are 
discussed, at least to some extent. The main purpose of the paper, however, 
is to assist the practitioner who has decided to use a linear combination but 
worries about the weights to be chosen. It is argued that the restriction by 
linearity is less questionable for the simple order than for the simple-tree order. 

Keywords and phrases: Nonparametric, one-way data, patterned alterna
tives, many-to-one problem, upward trend problem, most stringent somewhere 
most powerful test, combination of dependent tests; positive orthant 
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30.1 Introduction 

Let XQ1, XQ2, ... , XOno ' ... , Xkl, Xk2, ... , Xknk be (k+1) independent random sam
ples, where Xhj, j = 1,2, ... , nh, are from a population with a continuous cu
mulative distribution function Fh, h = 0, 1, ... , k. An observation Xhj may rep
resent, for example, the response measured on the j-th unit receiving the h-th 
treatment. In some applications, especially in the development of new drugs, 
there is often a control or a standard treatment with some special significance. 
In such situations, we shall use the index 0 to denote the control treatment. 

In this paper, we consider testing problems associated with the hypothe
sis that the treatments are homogeneous against some directional alternatives. 
Thus, the null hypothesis 

Ho : Fo = Fl = ... = Fk 

is tested against some "one-sided" alternative hypothesis. Although our ap
proach is more generally applicable, we focus, for clarity, on the two one-sided 
alternatives to homogeneity that have received a great deal of attention in the 
literature. The first of these concerns the situation where one of the treatments 
is a control. The remaining k treatments are compared with the control so as 
to ascertain whether any of these is better than the control, when it is known, 
a-priori, that none of these can be any worse. This is commonly known as the 
"comparison of treatments with a control" or the "many-to-one" problem. We 
assume that "better" means "higher" and formulate the testing problems as 
follows. 

Testing Problem 1: Test Ho against 

with at least one strict inequality. This means that under the alternative there 
exists at least one treatment that is better than the control, in other words, 
there exists at least one i = 1,2, ... , k such that Fo(x) > Fi(x), for at least one 
real x. 

The second problem we consider may be relevant in situations where it is 
postulated, a-priori, that the distributions are in an increasing order, say from 0 
to k. In the literature, this is often referred to as the "upward trend" problem. 

Testing Problem 2: Test Ho against 
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with at least one strict inequality. Under the upward trend alternative, Xhi 

is stochastically smaller than Xh+I,j for i = 1,2, ... , nh, j = 1,2, ... , nh+I and 
h = 0, 1, ... , k - 1. 

30.2 Background 

The testing of Ha is usually considered with the "unrestricted" alternative H3 
in mind (explicitly or implicitly) where Ha U H3 implies that 

Frr(a) 2': Frr(I) 2': ... 2': Frr(k) 

holds for some permutation 7r of {O, 1, ... , k}. The Kruskal-Wallis test is one of 
the possible tests in this case. The problem (Ha, H2) can then be regarded as a 
modification of (Ha, H3), requiring a trend analogue of the Kruskal-Wallis test 
(see Remark 30.6.3). The restricted alternatives HI and H2 are related in the 
sense that HI is much wider than H2 or, in logical terms, H2 implies HI. These 
restricted alternatives should conform with the experimenter's prior knowledge 
which, of course, may be more or less vague. It is a common belief, however, 
that this vagueness does not exclude the possibility that violations of certain 
almost logical inequalities are impossible. These inequalities are incorporated 
in the inference mechanism by using them to define the parameter space. Since 
the parameter space under a specific set of inequalities is smaller than that 
induced by the global alternative, one should be able to improve upon the 
classical solution in the sense that the power of the test is increased, at least 
for the major part of the alternative hypothesis. 

During the fifties and the sixties, there was considerable interest in such test
ing problems and many ad hoc procedures were proposed. Bartholomew (1961) 
gave a survey emphasizing the use of the likelihood-ratio principle, which, un
fortunately, does not lead to easy null distributions. Many ad hoc proposals 
have been based on test statistics of a linear type. These tests were identified 
as "somewhere most powerful" in Schaafsma and Smid (1966). A minimax 
principle for determining the optimum weights in such a linear test statistic 
was explored in Abelson and Tukey (1963). In terms of the Neyman-Pearson 
theory, their "maximin-r" principle becomes that of minimizing the maximum 
shortcoming. Hence, maximin linear statistics correspond to most stringent 
somewhere most powerful tests. One might prefer to construct the most strin
gent test in the class of all level-a tests. Such constructions were made by 
Van Zwet and Oosterhoff (1967) and Schaafsma (1968, 1971). If the alternative 
hypothesis is "not too wide", then being somewhere most powerful is not too 
harmful and the best linear test may be preferable over the most stringent, as 
well as over the likelihood-ratio test-its maximum shortcoming will be larger 
than that of its competitors. But in the greater part of the interior of the 
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alternative, especially in the neighborhood of the parameter values where the 
most stringent linear test is most powerful, the power properties of the best 
linear test may be preferable. Much depends on the wideness of the alterna
tive. We shall argue that HI may be too wide while H2 is sufficiently narrow 
to wholeheartedly recommend the use of such best linear tests. 

There is a considerable literature about testing problems with inequality 
constraints on the parameter space. The reader might consult the monographs 
of Schaafsma (1966), OosterhofI (1969), Barlow et al. (1972), Snijders (1979), 
Robertson, Wright and Dykstra (1988) and Akkerboom (1990). The last men
tioned reference is about a compromise between various principles: the atten
tion is restricted to a class of manageable "circular likelihood-ratio" tests and 
from this class the most stringent one is chosen. Circular likelihood-ratio tests 
have been advanced by Pincus (1987). The problem of comparing treatments 
with a control has been studied in some of these references as an application of 
the "simple-tree" order whereas the problem of upward trend has been studied 
under the heading of "simple" order. 

In the present, paper a less ambitious perspective is chosen. We assume that 
the practitioner has decided to use a linear test because he/she wants to have 
a complete understanding of the null distribution "without having to study too 
much literature." Concerning the choice of weights in the linear test statistic, 
he/she might make a subjective choice based on the knowledge of the problem 
or he/she might consult the present paper where a choice is recommended on 
the basis of the special mathematical form of the alternative. 

30.3 Objectives 

Our objective is to consider a relatively new approach to the Testing Problems 
1 and 2. The procedures to be developed for Problem 1 are somewhat question
able whereas those for Problem 2 can be firmly recommended. The approach 
is based on a reformulation of the testing problems, regarding them as being 
composed of a finite number (k) of sub-testing problems, each of which is a 
two-sample problem. This is appealing since suitable two-sample test statis
tics are available for the sub-testing problems. However, these statistics are 
dependent and thus the main question becomes how to combine the k depen
dent component test statistics to construct one efficient overall test for testing 
Ho against HI (or H2)' The approach leads to relatively easy elaborations and 
a deeper understanding of some theory already available. 



Linear Nonparametric Tests Against Restricted Alternatives 487 

30.4 Exploration and Reformulation 

It is useful to note that for the simple-tree problem, the null hypothesis Ho and 
the model Ho U HI can be regarded as the intersections of the sub-null hypothe
ses, HOI, H02, ... , HOk and the sub-models HOI U Hll , ... , HOk U HIk, respectively, 
where 

HOh : Fo = Fh and HIh : Fo 2:: Fh, with Fo(x) > Fh(X) for some x. 

For the upward trend problem, the null hypothesis Ho and the alternative 
hypothesis H2 can similarly be regarded as the intersections of the sub-null and 
the sub-alternative hypotheses, HOI, H02 , ... , HOk and H21 , H22 , ... , H2k, respec
tively, where 

HOh : Fh-I = Fh and H2h : Fh-I 2:: Fh, with Fh-I(X) > Fh(X) for some x. 

It has been suggested that the choice of these sub-problems (HOh, HIh) and 
(HOh' H2h) is somewhat intuitive and that alternative choices might lead to dif
ferent theory and solutions. We agree to some extent with this criticism. The 
alternative choices to be discussed, however, are not very natural. The purely 
formal mathematical-statistical approaches discussed in Schaafsma (1968) or 
Snijders (1979) are either inexact (the first reference) or mathematically in
volved and complicated (the second reference). We do not claim that the present 
paper is the first that considers the optimal choice of weights in a nonparamet
ric setting. This problem has already been discussed in some papers including 
Johnson and Mehrotra (1971) and Tl'yon and Hettmansperger (1973). The two 
testing problems are treated separately as follows. 

30.5 Test for the Simple-Tree Problem 

The problem of testing HOh against HIh is a two-sample problem with a one
sided alternative, between samples 0 and h, with no and nh observations, re
spectively. Intuitively, a test for this problem should be based on the two 
samples (XOI, ... , XOno) and (Xhl' ... , Xhnh)' In this paper, we assume that the 
experimenters do not wish to make any parametric model assumptions about 
the underlying distributions and therefore a nonparametric test is the preferred 
option, probably one based on the ranks. The most popular two-sample rank 
test is the Wilcoxon rank-sum test which can be based on the Mann-Whitney 
statistic: 

nh no 

Th = 2..: 2..: J(Xhr 2:: XOs ), h = 1,2, ... , k. 
r=ls=1 
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The Mann-Whitney statistics will be used to exemplify the proposed theory. 
Other two-sample statistics (such as Chernoff-Savage statistics) can be chosen 
as well, but they will require some adaptation. Our approach leads to an overall 
test statistic which is a linear combination of T1, T2, ... , Tk, say ~~=1 ChTh. The 
choice of the weights C1, C2, ... , Ck is the main issue. Note, however, that such 
linear tests may have poor power characteristics for some sub-alternatives at 
or near the "edges" of the space defined by the alternative. As this alternative 
is very wide, linear tests for this problem are subject to considerable criticism. 
This is why considerable attention has been paid in the literature to some 
non-linear types of tests. Nevertheless, as far as applications are concerned, 
practitioners usually prefer the linear tests due to their ease of implementation 
and interpretation. 

The moments of Th, under the null hypothesis, can be obtained using stan
dard methods and are 

and 
cov(Tg, Th) = ngnhno/12. 

It will be convenient to consider the standardized two-sample statistics 

8 Th - (nhno/2) 
h-

- Jnhno(nh + no + 1)/12 ' 

h = 1,2, ... , k. It is easy to see that 

where 

cov(8g, 8hl Ho) = corr(8g , 8hl Ho) = 'Ygh = { 1 
agah 

ah = n;!2(no + nh + 1)-1/2. 

if 9 = h 
if 9 =1= h, 

(30.1) 

With respect to the alternative hypothesis, for any choice of (Fo, Fh), the ex
pectation of 8h is given by E[8hl = J12noah1l'h = !-lh, say, where 

1l'h = P(Xhr ~ Xos) - 1/2 = / FodFh - 1/2 = /(1- Fh)dFo - 1/2. 

The distribution of T = (T1, T2, ... , Tk)' (hence of S = (81,82 , ... , 8k)') can 
be approximated, in large samples, using results in the literature of nonpara
metric statistics [see for example, Puri (1965)]. It follows that for any fixed 
alternative Fo, F1, ... , Fk, the distribution of S can be approximated by a k
variate normal distribution with mean J-t = (!-l1, !-l2, ... , !-lk)' and some covariance 
matrix. Under Ho, the covariance matrix is r = ((,gh)), given in (30.1). In 
terms of the standardized statistics, the testing problem Ho against HI can be 
restated (at least globally) as testing 

Ho : J-t = 0 against Hi: J-t ~ 0, with J-t' J-t =1= 0, (30.2) 
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which resembles the well-known combination of tests problem, the difference 
being that the test statistics are now dependent. 

A useful approximation is obtained by making the assumption that S has 
a Nk(p" r) distribution, where r is exactly given by (30.1) and Ho is tested 
against Hi. This is an important step and a justification of this approach, 
for large samples, can be given via contiguity theory [the reader is referred to 
Snijders (1979) for details]. Intuitively, when sample sizes are large, S will be 
approximately normally distributed with covariance matrix r under a sequence 
of contiguous alternatives. Alternatives (Fa, F1, ... , Fk) are contiguous (to the 
hypothesis Ha) if the difference between Fh and Fa is of the order of (nh + 
na)-1/2, h = 1,2, ... , k. 

The reader will have noticed that intuitive arguments are involved here. It 
is indeed true that Ho and Hi are "practically" but not logically equivalent to 
Ha and HI, the practical equivalence being generated by the restriction to the 
statistics T or S. 

A canonical form 

For motivational purposes, the testing problem Ho against Hi in terms of 
S rv Nk(p" r) is transformed such that a "canonical form" appears with r = h, 
the k x k identity matrix. Since r is nonsingular, there exists a matrix B = 
(b1' b2, ... , bk) with columns bh such that Br B' = h and hence B' B = r-1. 

Defining V = BS, we arrive at the canonical formulation where V rv Nk(e, h) 
and H : e = 0 has to be tested against A : e E K, where K denotes the convex 
polyhedral cone 

spanned by the columns of B. An advantage of the treatment in this canonical 
formulation is that we can discuss the problem using usual (Euclidean) geomet
rical arguments. Disadvantages are that a more or less arbitrary matrix B is 
involved and that the solutions need to be reformulated in terms of S = B-1 V. 

Remark 30.5.1 Recall that the null covariance matrix of Sis r, where r gg = 1 
and rgh = agah, as mentioned earlier. The matrix r can be expressed as 6.+aa' 
where 6. is the diagonal matrix with 6.hh = 1 - a~, and a = (aI, a2, ... , ak)'. It 
can be shown that the inverse of the matrix r is 

A-I , A -1 r-1 = 6.-1 _ u aa u 

1 + a'6.-1a 

Some useful simplifications result by noting the following. First, 

(30.3) 

(30.4) 

Secondly, a'6. -1 is the row vector with h-th element ah(1 - at)-l and hence 
6. -laa'6. -1 is a k x k matrix with diagonal element at(1-at)-2, h = 1,2, ... , k. 
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Finally, 
a' ~ -la = L;~,=la~(1 - a~)-l. (30.5) 

Noting that ah = n~,/2(no+nh+1)-1/2, we then have ~hh = (no+1)-1(nh+no+ 

1),ah(1-a~)-1 = (no+1)-lnh/2(nh+no+1)1/2,a~,(1-a~)-1 = (no+1)-lnh, so 
that a' ~ -la = (no + 1)-1L;~=1 nh. Therefore, from (30.3), the (h, h)-th element 
of the inverse of r is 

rhh = (no + 1)-1(N + 1)-1(11,0 + nh + 1)(N - nh + 1), h = 1,2, ... k, (30.6) 

where N = L;~,=onh is the total sample size. These expressions will be useful in 
computations later on. 

30.5.1 Some particular cases 

Casel 

For illustrative purposes, first consider the problem of testing Ho : I.t = 0 
against some fixed alternative Ai : I.t = I.t(l) , on the basis of S, where I.t(l) 2 o. 
In the canonical form, this corresponds to testing e = B I.t = 0 against e = 
e(l) = BI.t(l) E K. In this case, applying the Neyman-Pearson Fundamental 
Lemma, it is easy to show that the most powerful size 0: test rejects Ho in favor 
of Al if 

(30.7) 

where Za is the upper o:-th quantile of the standard normal distribution and 
(x, y) and 11.11 denote the Euclidean inner product and norm, respectively. The 
above test can be expressed as 

l.t(l)B'V 

IIBI.t(l) II 
(30.8) 

Thus, the optimal (most powerful) size 0: test is based on a linear function of 
the standardized two-sample statistics. 

Case 2 

Next consider the case where the experimenter has a less specific alternative in 
mind than in Case 1. If, for example, Fl = F2 = ... = Fk is considered relevant, 
because the treatments are only slight variations of a given one whereas the 
control corresponds to a placebo, then one may be interested in testing Ho 
against Fo 2 Fl = F2 = ... = Fk. In this situation, one may decide to pool 
the k treatment samples together and calculate the usual "two-sample" Mann
Whitney statistic between the pooled sample and the control sample. It can be 
seen that this statistic is given by L;~=l Th. Intuitively, any reasonable approach 
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via 8 and B8 should result (at least asymptotically) in the same solution. That 
this is the case with our approach is now illustrated. 

If Fl = F2 = ... = Fk, then J.t(l) = ra, where T = (12no)1/2{J FodFh -1/2}. 
Hence, eel) = T Ba and the linear test statistic in (30.8) simplifies to 

It follows from (3) that a'r-l = a' /j. -1/(1 + a' /j. -la) and hence a'r-la = 
a' /j. -la/(1 + a' /j. -la). Thus, we obtain 

a' /j. -18/ {a' /j. -la(1 + a' /j. -la) }1/2, (30.9) 

which is a linear function of the standardized two-sample statistics Sh. 
Using the fact that for ah = n~./2(nh + no + 1)-1/2, a' /j. -18 = 1:~=lah(1 -

a~)-lSh = 1:~=1 (no+1)-ln~./2(nh+no+1)1/2Sh and that a' /j. -la = 1:~=1 {a~(1-
a~)-l} = (no + 1)-11:~=lnh' the statistic in (30.9) further simplifies to 

1:~=ln~2(nh + no + 1)1/2Sh _ 1:~=lTh - no(1:~=lnh)/2 
J(1:t.=lnh)(1:~=lnh + no + 1) Jno(1:t.=lnh)(~~=lnh + no + 1)/12' 

which is just the standardized two-sample Mann-Whitney test statistic com
puted between the control sample and the k treatment samples combined (see 
the formulas for the expectation and the variance of n. at the beginning of this 
section). This verifies our earlier statement. Indeed, such a test statistic has 
been proposed by Fligner and Wolfe (1982). 

Case 3 

Finally, consider the situation where there is no "reason" or "information" avail
able, a-priori, to focus on some specific sub-alternative of A. This, for example, 
is the case where k essentially different treatments are compared with a control 
(the placebo). The situation is similar to what Hettmansperger and Norton 
(1987) called "specifying a vague pattern." It is obvious that no uniformly 
optimal test procedure will exist in this case because the optimal test statistic 
(e(l)/lIe(l)ii, V) depends on the choice of the "direction" e(l)/lIe(l)1I in K or, 
equivalently, on the "half-line" l = {peel) j p > O} spanned by it. If we still 

wish to use a linear combination 1:~=lChVh (or 1:~=lC~Sh or 1:~=lc~Th)' then 
we need to discuss which choice of ~(l) or half-line l is most appropriate. From a 
geometrical point of view, various proposals can be made. Note that, in a sense, 
the convex cone K = {1:~=lJ.thbhj 1-£1, 1-£2, ... , J.tk ~ O} has to be "represented" by 
some half-line l. A geometrically attractive proposal is to consider the centroid 
line 
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The axis of the inscribed cone and the axis of the circumscribed cone (if it is 
inside K) are two other possibilities. 

From a statistical point of view, it seems reasonable to focus on the half-line 
lo c K which minimizes the maximum angle w(l, m), as a function of l, the 
maximum being taken over any other half-line me K. It can be shown that the 
optimal half-line lo coincides with the axis of the circumscribed cone if lo C K. 
Abelson and Tukey (1963) motivated this approach by arguing that a minimum 
correlation is maximized by such a choice. Schaafsma (1966) approached the 
problem from a Neyman-Pearson point of view and showed that the test which is 
most powerful level a against lo has the smallest maximum shortcoming among 
all somewhere most powerful level a tests, the shortcoming of a test being 
defined in the usual way as the difference between the envelope power and the 
power actually achieved. Such a test is called the most stringent somewhere 
most powerful level a (MSSMPa) test. The main arguments behind obtaining 
the MSSMP test are as follows. 

Note that for some fixed v, the most powerful size a test of v = 0 against 
a fixed simple alternative v E K, is 

{
I if v'v ~ zallvll 

¢l= 
o otherwise. 

(30.10) 

Let 1 = {pv; p > O} denote the half-line spanned by v. Similarly, let m = 
{P1J; P > O} denote the half-line spanned by some other fixed 1J E K. It is easy 
to see [originally observed by Smid and explicitly shown in Schaafsma (1966)] 
that the maximum of the shortcoming of the test ¢l, on the half-line m, is an 
increasing function of the angle 

() -1 { (v,1J) } 
w l, m = cos IIVIIII1J11 

between land m. Hence, the maximum of the shortcoming of ¢l as a function of 
1J E K is attained on the half-line m which maximizes w(l, m). In the Schaafsma
Smid theory, the optimal half-line l = lo is chosen as that half-line l C K such 
that maxmw(l, m) is minimized. In principle, lo can be obtained by applying 
the equiangular-or-closer principle described by Abelson and Tukey (1963). The 
edges €1, €2, ... , €k of K are given by €h = {pbh; p > O} and the equiangular 
half-line lb is obtained by equating the angles w(lb, €h), h = 1,2, ... , k. If the 
solution of these equations satisfies lb C K, then lb = lo is the required minimax 
half-line. 

As we noted before, a drawback of this presentation is that it is based on a 
canonical formulation: a matrix B has to be chosen from the collection of all B 
such that Br B' = h. The solutions obtained will have to be translated back 
to S = B-1 V. These somewhat cumbersome steps can be avoided by using a 
more direct approach for testing Ho : p. = 0 against Hi : p. ~ 0 on the basis 
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of S rv Nk(p" r), if Rk is endowed with the inner product (x, y) = x'r-1y. 
Using this representation, the equiangular half-line lo is now obtained. The k 
equations to be solved are 

J(eh, eh)(p" p,) 
e~r-1p, 

J (e~r-1eh)(p,'r-1p,) 
c, h=1,2, ... ,k, 

where c is some constant to be determined later. For our case of the positive 
orthant, the edge eh is given by {p(O, ... ,0,1,0, ... ,0)'; p > O}, where the one is in 
the h-th position. The constant c has an important geometrical and statistical 
interpretation. It is the cosine of the minimax angle (if the solution to the above 
system of equations lies in the k dimensional positive orthant) and it determines 
the maximum shortcoming of the most stringent somewhere most powerful test. 
In fact, this maximum shortcoming can be shown [Schaafsma (1966, p. 38)] to 
be approximately equal to (1 - a)(l - c). Thus, if the minimax angle is small, 
then c is large (close to 1) and the maximum shortcoming of the MSSMP test is 
small. On the other hand, if the minimax angle is large, then c is small and the 
maximum shortcoming of the MSSMP test is large. In the present situation, 
but not in Section 30.6, the minimax angle turns out to be large and hence the 
efficacy of any linear test is questionable; the relevance of the restriction to the 
class of somewhere most powerful (linear) tests is doubtful. See Section 30.7 for 
some alternative, from a theoretical viewpoint, less questionable, approaches. 

However, as an applied statistician will be reluctant to go beyond the class 
of linear test statistics, it may make sense to continue with the derivation of 
the best linear test, even if this is known to be unsatisfactory from a theoretical 
point of view, as is the case in the simple-tree problem. 

30.5.2 Derivation of the MSSMP test 

Recall that to find the MSSMP weight vector v, we need to solve the equations 

cosW(lo, eh) = c, h = 1,2, ... , k, 

where eh = p(O, ... ,0,1,0, ... ,0)'. This leads to the equations 

h = 1,2, ... ,k, 

if p, or (v) is normalized such that c is (p,'r-1p,) -1/2. The above system of 
equations can be expressed as 

(30.11) 
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where 
6 = (JrIT, v'r22 , ... , v'rkk )'. 

The solution to (30.11) is given by 

J.L = r6, (30.12) 

where we need to verify that J.L = r6 ~ O. For the simple-tree problem, this veri
fication is a matter of straightforward computation (since in this case both rand 
6 have nonnegative components) and can be made for every design 17,0,17,1, ... , nk. 
Rewriting the test given by the critical region 

J.L'r-1s 
.....:-;=::::;==~> Z _ / 'r 1 - Ct, v J.L - J.L 

in terms of 6 by using (30.12), we obtain the following. 

Result 30.5.1 The approximate M88MPa test for the simple-tree problem 
(Ho, HI) (based on Mann- Whitney- Wilcoxon statistics) is given by 

h S (8 8 8 )' 8 Th -nOnh 2 and 'Ph ·,·s the Mann-were = 1 , 2, ... , k, h , .L i I. 

nhn o(nh+n o+1)/12 
Whitney statistic between sample 0 and sample h. The minimax weights are 
given by 

8h = v'rhh = )(1 + ~)(1- ~), 
17,0+1 N+l 

and 6'r6 = J.L'r-1 J.L = c-2 is equal to 

(no + 1)~~_I(N - nh + 1) + {~~=1 v'nh(N - nh + 1)}2 
(no + 1)(N + 1) 

(30.13) 

(30.14) 

Remark 30.5.2 When rq = 17,2 = ... = nk,8h is a constant and the approxi
mate MSSMP test is based on the sum of the 8h or equivalently on the sum of 
the Mann-Whitney statistics Th. 

Remark 30.5.3 The maximum shortcoming of the approximate MSSMP test 
is attained on each of the k edges of the positive orthant. The cosine of the 
minimax angle is given by 

where 6'r6 is given in (30.14). The quantity c determines the maximum short
coming of the MSSMPa test. In general, the minimax angle depends on k and 
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the sample sizes. When 11,1 = 11,2 = ... = nk = ano, 0 < a < 1, from (30.14) we 
find 

c-2 = k (1 _ ano ) (1 + k ano ). 
N+1 11,0+1 

(30.15) 

Hence for large no and N, the cosine of the minimax angle, c, can be approxi
mated by 

{k(1 + ak - a)} -1/2. (30.16) 

Remark 30.5.4 It may be noted that 8~ = rhh, so that the weights for the 
approximate MSSMPa test are determined by the diagonal elements of the in
verse of the (asymptotic) null correlation matrix of S. This leads to the following 
result. 

Proposition 30.5.1 Suppose S is (asymptotically) normally distributed with 
mean I-' and a correlation matrix r* and that Ho : I-' = 0 is to be tested against 
Hi : I-' ~ 0 on the basis of S. Let r be the (asymptotic) correlation matrix of S 
under Ho. The approximate MSSMPa test for testing Ho against Hi is given 
by 

~k 8 S 
h=l h h > z 
J IYrl5 - 0<, 

where 
co-factor of (h, h)-th element of r 

determinant of r 
provided rl5 ~ O. The cosine of the minimax angle c is given by (l5'fl5)-1/2. 

Remark 30.5.5 From Proposition 30.5.1, in general, the approximate most 
stringent (or minimax) weights 8h are proportional to 

Jco-factor of (h, h)-th element of r. 

Thus, as far as the minimax weights are concerned, attention can be restricted 
to the co-factors of the diagonal elements of the null correlation matrix of the 
standardized statistics. This allows easier computation of the minimax weights 
in a number of applications, including the next one with the simple-order. Of 
course, the condition that rl5 ~ 0 still needs to be verified. 
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30.6 Test for the Simple Order Problem 

We now consider Testing Problem 2 or the problem of testing homogeneity 
against the simple order alternative (upward trend). In this case, the problem 
of testing HOh against H2h is a two-sample problem with a one-sided alter
native between samples h - 1 and h, with nh-l and nh observations, respec
tively. The test statistic for this problem will be based on the adjacent samples, 
(Xh-l,1, ... , Xh-l,nh_l) and (Xhl, ... , Xhnh)' As in the case of the simple-tree al
ternative, we use the Wilcoxon rank-sum test based on the Mann-Whitney 
statistic 

'T' _ "nh "nh-1I(X > X ) .Lh-l,h - L...r=l L...s=l hr _ h-l,s, 

between the (h - 1)th and the hth sample, h = 1,2, ... , k. The reader might 
observe that some intuition is involved in these choices. We agree that alter
native choices are possible and that our choice is something "unique" or "most 
appropriate." The standardized statistic is 

Uh = Th-l,h - nh-lnh/2 

, vnh-lnh(nh-l + nh + 1)/12 
(30.17) 

Observe that for any (Fh-l, Fh), 

where 

and 

7rh = Pr[Xh,r 2: Xh-l,s] - 1/2 

./ Fh-ldFh - 1/2 = ./(1- Fh)dFh-l - 1/2. 

It is known that [see, for example, Tryon and Hettmansperger (1973)] 

h=1,2, ... ,k-1. 

Therefore, COV(Uh, Uh+1IHo) equals 

'Yh,h+l = 'Yh+l,h = -

h = 1,2, .... , k - 1, and all other covariances (or correlations) among the Uh 
are 0, while var(Uh) = 1. For any fixed alternative Fo, Fl , ... , Fk, the asymptotic 
distribution ofthe random vector of standardized statistics U = (Ul , U2, ... , Uk)' 
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can be obtained from the results of Puri (1965). The asymptotic distribution is 
a k-variate normal distribution with mean vector JL = (J.Ll,J.L2, ... ,J.Lk)' and some 
correlation matrix. Under Ho, the correlation matrix is r = ((')'gh)), where Igh 
is specified above. 

Thus, as in the simple-tree case, the problem (Ho, H2) of testing against 
the simple order can be recast in terms of the standardized statistics as testing 
He; : JL = 0 against Hi : JL ~ 0, JL' JL i= O. In other words, the testing problem at 
hand is approximately equivalent to testing against the positive orthant on the 
basis of dependent test statistics. Again, we may proceed as in Cases 1 and 2 
to derive the approximately most powerful size a tests for the two alternatives: 
(i) where JL is specified, and (ii) where the Fi's are equi-distant (in some sense); 
the details are omitted. We, however, concentrate on the "vague pattern," 
namely the situation where no a-priori information is available to focus on any 
sub-alternative of A. In this case, we can obtain the approximately MSSMPa 
test by applying Proposition 30.5.1. This is illustrated below. 

30.6.1 Derivation of the (A)MSSMP test 

From Proposition 30.5.1, the minimax weights (apart from the condition r6 > 
0, which has to be verified) are given by 8h = Jrhh and therefore the problem 
reduces to finding the diagonal elements of the inverse of the null correlation 
matrix r. To this end, by Remark 30.5.5, it is sufficient to find the co-factors 
of the diagonal elements of r. Now, observe that for large sample sizes, Ih,h+1 
is approximately equal to 

nh-lnh+l _ d 
(nh-l + nh)(nh + nh+1) - h, 

say. Thus, the null correlation matrix r is approximately equal to 

{
I if 9 = h 

I gh = dg if h = 9 + 1, 9 = 1, 2, ... , k - 1 
o if 19 - hi ~ 2. 

(30.18) 

(30.19) 

The approximation to Ih,h+1 is useful because it simplifies calculation of the 
inverse of the matrix r. To this end, it may be noted that r is a k x k band 
symmetric matrix of bandwidth 3 with elements dl, ... , dk-l on the super and 
sub diagonals (above and below the main diagonal consisting of l's), dh being 
given by (30.18), and zero's elsewhere. Let tlh denote the determinant of a 
h x h band symmetric matrix with elements dl, ... , dh-l on the super (and the 
sub) diagonal, with tlo = tll = 1. The required co-factors can be obtained from 
the following result. 

Lemma 30.6.1 The co-factor of the (h, h)-th element of r is given by 

Ghh = tlh-l (d1, d2, ... , dh-2)tlk- h(dh+1, dh+2, ... , dk-l). 
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Using the special form of dh, it can be established that 

TI~==-l ni ( 1 1) Chh = k-1 Sh-1(N - Sh-I) - + -- , 
TIi=o (ni + ni+1) nh nh-1 

(30.20) 

h = 1,2, ... , k, where Sh = ~;=ong and Sk = N. 

A proof of this Lemma is given in the Appendix. 
Proposition 30.5.1 can be applied provided we can verify that r6 2:: O. After 

some algebraic manipulations, it can be seen that this condition is equivalent 
to the condition that the MSSMP weights for the simple order problem are 
nondecreasing, as observed in Schaafsma (1966). A proof of the latter (for every 
design no, ... , nk) can be found in the same reference on page 74. However, as 
the algebraic manipulations are somewhat involved and the cited reference may 
not be easily available, we give an indication of the proof of this fact in the 
second part of the appendix. 

Result 30.6.1 The approximate MSSMPa test for the simple order problem 
(Ho, H2) (based on Mann- Whitney- Wilcoxon statistics) is 

~~=18hUh > z 
V6'r6 - (}, 

where Uh is given by (30.17) and the most stringent (minimax or maximin) 
weights are proportional to 

..j Sh-1 (N - Sh-1) / ~ + _1_, h = 1,2, ... , k. V nh nh-1 
(30.21) 

Remark 30.6.1 When no = 71,1 = ... = nk, we have dh = -1/2, and the 
minimax weights are proportional to 

..jh(k+1-h), h=1,2, ... ,k, (30.22) 

so that the approximate MSSMP test for the simple order problem, with equal 
sample sizes, is based on 

S = ~~=l..jh(k + 1 - h)Th-1,h, (30.23) 

where we recall that n-1,h is the Mann-Whitney statistic between the adjacent 
samples h - 1 and h, h = 1,2, ... , k. 

Remark 30.6.2 When no = 71,1 = ... = nk, the cosine of the minimax angle, 
c, can be shown to be equal to 

(k + 1)1/2 
(30.24) 

[2:~~N J(i - 1)(k + 2 - i) - Ji(k + 1- i)PP/2 
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Remark 30.6.3 For the simple order problem with equal sample sizes, an 
alternative test may be based on 

k 

T = 2: Jh(k + 1- h)(Rh - Rh-l), (30.25) 
h=l 

where Rh is the average of the ranks assigned to sample h in the combined 
ranking of the k + 1 samples. It can be shown that, for fixed k and large sample 
sizes, ARE(S, T) = 1, so that the tests based on Sand T are equally efficient. 

For the simple order problem, linear combinations of pairwise Mann-Whitney 
(more generally, Chernoff-Savage) statistics have been considered by Tryon and 
Hettmansperger (1973). They show that, when Fi(X) = F(x - ()i) and sample 
sizes are equal, corresponding to every linear combination of pairwise Mann
Whitney statistics ~j:J~~.=j+19jhTjh' there is an "equivalent" statistic based 

on adjacent Mann-Whitney statistics ~~=lahTh-l,h' where 

~h-l~k 
ah = LJi=O LJj=h9ij, h = 1,2, ... ,k. 

Further, they show that when the spacings ()i-()i-l are equal for i = 1,2, ... k, the 
maximum Pitman efficacy is achieved when 9jh = 1 for all j and h (equivalently 
when ah = h( k - h + 1)). Thus, the popular non parametric test for the simple 
order (upward trend) problem proposed by Terpstra (1952) [also by Jonckheere 
(1954) and more generally by Puri (1965)] which is based on 

J ~k-l~k T = j=O h=j+1 jh, 

has the maximum Pitman efficacy among the class of linear combinations of 
Mann-Whitney statistics, when the spacings and the sample sizes are equal. It 
follows that when sample sizes are equal, an asymptotically equivalent form of 
the J statistic is 

H = ~~.=lh(k + 1 - h)Th-l,h, (30.26) 

which is a linear combination of the adjacent Mann-Whitney statistics. It is 
clear that the test based on H is an asymptotically somewhere most powerful 
nonparametric test and is different from the MSSMP test based on S. Thus, a 
power comparison between the two tests is of interest. 

30.6.2 Power comparisons 

For large sample sizes, a comparison between Sand H can be made in terms of 
the Pitman asymptotic relative efficiency (ARE). Using asymptotic means and 
null variances and proceeding, for example, as in Chakraborti and Desu (1991), 
it can be shown that for local alternatives 
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with at least one of the D's being positive, the ARE is given by 

(30.27) 

where ah = y'h(k + 1 - h), bh = a~, and Ah = limN-HX> (nh/N ). We evaluate 
the ARE when the sample sizes are equal for two configurations of the D's: (i) 
where all the Dh'S are zero except the first one, and (ii) where the Dh's are all 
equal (the equal spacings case). The ARE values are given in Table 30.1. 

Table 30.1: ARE(S,H) at a = .05 

k AREI ARE2 
3 1.08514 .97195 
4 1.18990 .94231 
5 1.30104 .91535 
6 1.41432 .89158 
7 1.52808 .87069 
8 1.64157 .85225 
9 1.75443 .83586 
10 1.86654 .82119 

It is seen that in the first case (see AREl) the MSSMP test is consider
ably more efficient (especially for k 2:: 5) than the J onckheere-Terpstra-Ttyon
Hettmansperger test. It should be noted, however, that these alternatives with 
a jump between populations 0 and 1 and no jump elsewhere are somewhat ex
treme. In the second case (see ARE 2), the MSSMP test is at an obvious loss of 
power and the statistic H is more efficient, especially for large k. In general, it is 
difficult to choose between such somewhere most powerful tests on the basis of 
ARE alone and some further research on the small-sample power comparison, 
may provide more insight. Nevertheless, the idea of minimizing the maximum 
shortcoming is found to have some useful appeal. 

It may be noted that Johnson and Mehrotra (1971) also considered some 
nonparametric tests for the problem of simple order. They proposed a class 
of linear tests (hereafter referred to as M tests) based on the Abelson-Tukey
Schaafsma-Smid weights and the sum of scores associated with the observations 
from the i-th sample. For equal sample sizes, Johnson and Mehrotra compared 
(see their Table 3.2) the asymptotic power of their normal scores test with the 
asymptotic powers of Bartholomew's LR Ce) test, Puri's test and the global 
(X2) test for k = 3,4,8 and 12. The conclusions may be summarized as follows. 
For small to moderate k, say for k :S 5, the M test and Puri's test are more 
powerful than the LR test when the parameters are equally spaced, with Puri's 
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test being slightly more powerful than the M test. The situation is reversed 
when there is only a single change in the parameters, in which case the LR 
test is more powerful with the IN test running a close second, especially when 
k ;::: 5. As expected, all of the three tests are more powerful than the global test 
in all cases. 

30.7 Extending the Class of SMP Tests 

As noted earlier, the class of SMP (linear) tests has the advantage that prob
ability distributions, power properties, etc., are easily obtained. However, the 
property of linear tests being somewhere most powerful is somewhat peculiar. 
On the one hand, it is nice to know that a test is optimal at least somewhere 
(for the MSSMP test along lo) in the parameter space, but on the other hand 
it is obvious that reducing the shortcoming to 0 along the half-line lo C K will 
have the effect that considerable shortcoming may be expected elsewhere in the 
parameter space, in particular along the edges. Put differently, the MSSMP 
test is uniformly most powerful against the alternative e E 10 and hence it is a 
useful test provided that lo is a "good" representation of the entire convex cone 
K. It follows that the MSSMP test will be questionable if the convex cone K 
is very wide or, equivalently, if the minimax angle is very large. 

For the simple-tree problem, the cone K is indeed very wide so that the 
MSSMP test has large shortcomings on or near the edges. This can be expressed 
more succinctly by computing c, say, in the case where no = nl = ... = nk. For 
equal sample sizes we have, from (30.16), c = k-1. If k = 3, for example, then 
c = 0.33 and the minimax angle \lIo = cos-1(c) equals 70.73 degrees. Hence, 
the maximum shortcoming of the MSSMP.05 test is approximately 0.63. This 
is unsatisfactorily large; it is even larger than the maximum shortcoming of the 
(global) X2 test which is 0.28 [see Akkerboom (1990, Table 4.3.2, p. 179)]. 

For the simple order problem, however, the situation is quite different. To 
illustrate, again assume k = 3 and equal sample sizes. In this 4-sample case, 
from (30.24), we find c = 0.81, so that the minimax angle \lIo equals 36.21 
degrees. Hence the maximum shortcoming of the MSSMP.05 test is, approxi
mately, 0.18 and thus the MSSMP test seems acceptable for the simple order 
problem though, of course, the maximum shortcoming is still considerable. 

In view of the above findings, some statisticians have concluded that in sit
uations like the ones considered, linear tests are not satisfactory (unless there 
are good reasons to focus on the half-lines where they are most powerful, like 
in the case of the H test). Giving up linearity, however, makes things extremely 
complicated. In Van Zwet and Oosterhoff (1967) and Schaafsma (1968), the 
most stringent (MS) level a tests were constructed without making any other 
restrictions than the level a one. Bartholomew (1959, 1961a,b) and other au-
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thors have explored the likelihood-ratio (LR) principle. For the simple order 
problem, Chacko (1963) proposed a rank analogue of Bartholomew's LR test 
which can be used when the sample sizes are equal. Shorack (1967) extended 
Chacko's procedure to the case of unequal sample sizes. However, although 
it is relatively easy, in some cases, to compute the outcome of the LR test 
statistic, it is often far less easy to study its null distribution. It may be noted 
that for equal samples sizes, the critical values for the LR test can be found in 
Robertson, Wright and Dykstra (1988) for the simple order and the simple-tree 
order, when 3 :::; k :::; 24 and 2 :::; k :::; 23, respectively. For unequal sample sizes 
Robertson, Wright and Dykstra (1988) tabulated the critical values for the sim
ple order when k equals 3 and 4. Critical values for the simple-tree order can 
be obtained from these tables. In general, for unequal sample sizes, one may 
use the FORTRAN programs by Bohrer and Chow (1978) and Sun (1988) to 
compute the P-values for the LR tests. These, however, underscore some of 
the difficulties a practitioner might face when implementing the LR tests. As a 
result, many ad hoc proposals and approximations have been considered in the 
literature. The reader is again referred to the book by Robertson, Wright and 
Dykstra (1988) for a review of these developments. 

Akkerboom (1990) contains an elaboration of what might be called a "mid
dle of the road" approach, incorporating some features of the extensiveness 
of the cone K without sacrificing too much of the simplicity of the (linear) 
MSSMP tests. Instead of focusing in on the (pointed) cone K (and the half
line lo), Akkerboom considered a circular cone 

C = C(lo,w) = {e E Rk : b'e 2: lIellcos(w)}, 

where b is the unit vector along lo = P.b : A 2: O}, the axis of C, and 2w is the 
opening angle of C (b E Rk; 0 :::; w :::; 7r /2). The semi-angle w can be chosen such 
that the likelihood ratio test for H : e = 0 versus A : e E C, which had been 
studied earlier by Pincus (1987), has minimum maximum shortcoming among 
all tests of this type, on the alternative K we are really interested in. 

We will not discuss the details of the Akkerboom approach because these 
are well documented. We simply conclude this section by remarking that the 
Akkerboom-Pincus approach tends to provide a considerable reduction of the 
maximum shortcoming. For instance, for the simple-tree problem when k = 

3 and no = 11,1 = 11,2 = 11,3 = 1 as before, c = 0.33, Wo = 70.73 degrees and 
Akkerboom's procedure suggests taking w equal to 70 degrees, whereby the 
maximum shortcoming is reduced to about 0.27 [see Akkerboom (1990), Table 
4.3.2, p. 179)]. The resulting test is what he called an approximately most 
stringent circular likelihood ratio (MSCLR) test. Calculations such as the one 
above suggest that some improvements can be achieved by going beyond the 
linear tests. In practice, however, researchers are likely to be attracted by the 
simplicity of the linear tests because this allows easy computation of P-values, 
and by the related idea that the true parameter value e, though not exactly on 
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some half-line l, will not be "too far from l." In the present paper, our attention 
therefore has been focused on linear tests, the most stringent somewhere most 
powerful one in particular. 
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Appendix 

Part 1 

First, we prove Lemma 30.6.1 about the co-factor of the (h, h)-th element of r 
for the upward trend problem. Note that for particular values of k = 2,3,4, 
etc., the formula for Ghh can be verified by direct algebraic manipulations. For 
a general proof, observe that the first expression for Ghh can be obtained by 
inspection, however, the second expression [Eq. (30.20)] needs verification. It 
is clear that the proof will be complete if we can show the following: 

(30.28) 

and 

(30.29) 

We prove Eq. (30.28), Eq. (30.29) can be proved in a similar manner. It is clear 
that proving (30.28) is equivalent to proving 

(30.30) 

We apply complete induction to prove (30.30). First, we can directly show that 
the formula holds for k = 2,3,4 and h = 1,2, ... , k. Now assume that for any 
given k, the formula holds for some h. We then need to show that it also holds 
for h + 1. Thus, we need to show that 

(30.31 ) 
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Because of the structure of f, it can be seen that 

Substituting for D.h-l and D.h-2 and noting that 

we see that (30.30) holds iff 

which can be shown to be true after some routine algebraic manipulations. 

Part 2 

Here, we prove that f6 ~ 0 for the simple order problem. To verify this, or 
equivalently that, (f6)h ~ 0, h = 1,2, ... , k, we focus on h = 2,3, ... , k - 1. The 
values h = 1 and h = k require a separate treatment which is not too difficult. 
The crux of the matter is that 

(f6)h Ih,h-lOh-l + Oh + Ih,h+l Oh+1 

dh-lOh-l + Oh + dhoh+1, 

where dh is given by (30.18) and Oh is given by (30.21). To establish the pos
itivity of this expression, Oh has to be split up into two parts. Substitution of 
(30.18) and (30.21) and elementary computations provide that the expression 
is equal to 

nh-lnh [VSh-l(N - sh-d - V Sh-2(N - Sh-2) 

nh-l + nh nh-l 

_ V sh(N - Sh) - V Sh-l (N - Sh-l)] 

nh 

which is positive since the function x --t vx(N - x) is concave and hence "dif
ference quotients are decreasing". (Note that a difference of difference quotients 
is involved.) This is the proof originally conceived by Smid and briefly indicated 
in Schaafsma (1966, p. 74). 
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Abstract: Consider the one-way random effects model Zij = I-L + O:i + Eij, 

i = 1,2, ... ,m, j = 1,2, ... ,n, where O:i and Eij are mutually independent and 
distributed with mean zero and variance O'~ and 0';, respectively. An estima
tion procedure is developed for estimating p2 = O'~/ 0';, the ratio of variance 
components, using a method similar to that proposed by Shorack (1969) for 
estimating the ratio of two scale parameters. An extensive Monte Carlo study 
is carried out in order to investigate the performance of the proposed method 
when compared with the other two methods provided by Groggel, Wackerly 
and Rao (1987) and Bhattacharyya (1977). The study suggests that the pro
posed method is superior to those two alternative methods for certain ranges 
of the model parameters. Finally, we propose a small-sample adjustment which 
improves the performance of the estimation method. 

Keywords and phrases: Random effects model, non parametric method, 
Hodges-Lehmann type of estimator, variance component ratio, Moses rank like 
test 

31.1 Introduction 

The statistical technique known as analysis of variance was initially developed 
by R. A. Fisher for facilitating the analysis and interpretation of data obtained 
from field trials and laboratory experiments in agricultural and biological re
search. Now this research tool is widely used in almost every discipline. The 
principal interest of analysis of variance lies in estimating (or testing hypothe
sis about) linear functions of the effects in the assumed model. If the assumed 
model is a random effects model, the prime interest concerning the effects be-
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comes estimating or testing hypothesis about the variances of the random ef
fects, known as variance components. 

For example, a laboratory experiment is designed to study the maternal 
ability of mice. Suppose the experiment uses litter weights of ten-day old litters 
as the measure of maternal ability as in Young, Legates and Farthing (1965) 
and that six litters from each of four dams, all of one breed, constitute the data. 
A suitable model for analyzing the data is the one-way balanced random effects 
model which can be represented as 

i = 1,2, ... , m, j = 1,2, ... , n, (31.1) 

where Zij is the weight of the i-th litter from the j-th dam, f..l an unknown 
constant, (Xi the effect due to i-th litter, and the error terms, tij, are mutually 
independent random variables having the same distribution. The general null 
hypothesis we usually want to test concerning variance components is 

for all i,j 

where C > 0 is specified. Furthermore, the standard analysis of variance tech
niques require the assumption that both (Xi and tij are normally distributed 
with zero means. The rejection or acceptance of the above null hypothesis con
cludes only that p2 = o';j a; either greater or smaller than the specified value of 
C, where a; and 0; are the variances of (Xi and tij, respectively. On the other 
hand, an estimate of p2 provides the actual relative magnitudes of the variance 
components which is more informative than saying it is greater or smaller than 
a certain value. 

There are certainly many situations in which normality assumptions regard
ing random effects are fully justified, and in such cases the analysis of variance 
is the preferred technique. However, certainly there are situations in which the 
normality assumption is not at all justified and in those cases, use of the analysis 
of variance technique can provide misleading results. Hence, it is important to 
derive distribution-free methods for estimating (or for testing hypothesis about) 
p2 and in this paper we provide one such method of estimation. The proposed 
estimation procedure does not require normality assumption but does require 
the assumption of independence between the two random effects. Also, this pro
cedure ensures the non-negativity of the estimates which is another advantage 
over the classical analysis of variance estimates. 

Hodges and Lehmann (1963) considered an estimation procedure for the 
two-sample location parameters in the case where Xl, X2, ... ,Xm and YI, Y2, 
... ,Yn are independent random samples from populations having continuous 
distribution functions Fx(t) = w((t - v)/al) and Fy(t) = w((t - TJ)/02), re
spectively, with v and TJ as the respective location parameters (medians) and 0l 

and a2 as the respective scale parameters. They derived a test statistic h(X, Y) 
which has a symmetric distribution under the null hypothesis. If h(X, Y) is the 
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number of pairs (i, j) such that Xi < 1j (1 ::; i ::; m; 1::; j ::; 71,), then the test 
based on h(X, Y) becomes Wilcoxon's rank-sum test for the two-sample loca
tion problem. The estimate of the difference between two location parameters 
is then the median of the set of mn differences 1j - Xi. Several researchers tried 
to improvise this estimating procedure of the difference between two location 
parameters for the two-sample scale problem. 

One of those attempts was initiated by Bhattacharyya (1977), who intro
duced a version of the Hodges-Lehmann estimator for estimating the ratio of 
the two scale parameters (p = a2/al) by applying it to the Ansari-Bradley test 
statistic. The resulting estimator of p is the median of all the ratios (x / y) where 
(x, y) are all 'relevant pairs' for the observed outcome. A relevant pair is a pair 
(x, y) where x and yare both positive. Ansari and Bradley (1960) introduced 
a distribution-free rank test for the two-sample dispersion problem where it is 
assumed that the location parameters v and 17 or v - 17 are known. In order to 
make the combined sample symmetric about zero, we need to know the value 
of the location parameters. 

Moses (1963) introduced a rank-like distribution-free test of the ratio of two 
scale parameters, which does not require any assumption regarding the location 
parameters. Shorack (1969) derived an estimator based on Moses' rank-like 
test by adopting techniques provided by Hodges and Lehmann (1963). This 
estimation procedure divides both samples into subgroups of equal size. The 
estimator then becomes the median of all possible ratios of the group sample 
variances. 

A recent attempt to improvise the Hodges-Lehmann estimator to the scale 
problem is due to Groggel, Wackerly and Rao (1987). The authors used the 
model (31.1) where ai and Eij are independent random variables with contin
uous distributions which are symmetric about zero and have variances a; and 
a;, respectively, and they also assumed that ad a a and Eij / a E have the same 
distribution. This implies that ai and pEij (or In lai I and In IPEij I) have the 
same distributions. Hence, In lail and In IEijl have distributions which differ 
only in the location parameter, namely, In p. Thus, the authors reduced the 
two-sample scale problem to a two-sample location problem where In fJ2 is the 
median of the sets of In I pEij I - lIn ai I· 

Section 31.2 explains the computational procedure of the proposed method. 
In Section 31.3, we present a summary of a Monte Carlo study which compares 
the estimates obtained from the proposed method with those of Groggel, Wack
erly and Rao (1987) and Bhattacharyya (1977). The last section provides an 
adjustment for the proposed estimation procedure so as to reduce the bias of 
the estimates. 
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31.2 Proposed Estimation Procedure 

Both Bhattacharyya (1977) and Shorack (1969) introduced a Hodges-Lehmann 
type of estimator based on two independent random samples from two pop
ulations. In addition to that, Bhattacharyya's method requires information 
about location parameters, but Shorack's method does not require this infor
mation. The objective of this study is to develop an estimation procedure for 
p2 = O'~/a;, the ratio of the variance components in one-way balanced random 
effect model in (31.1). Let us assume that the treatment effects (ai) and the 
error terms (Eij) are independently distributed with continuous distributions 
Fcr(t) = \lI((t - lI)/O'cr) and F€(t) = \lI((t - 1I)/0'€). Further, let us assume that 
the location parameters which are means are equal to zero. Note that, under 
the above assumptions, the distributions differ only in scale parameters. 

The values of ai and Eij in the model (31.1) are not observable since we 
observe only the values of Zij which come from a single population. So, we 
cannot apply Shorack's method directly to this model since it requires that 
the samples must come from two populations which are symmetric. In order 
to apply Shorack's method for estimating p2, we assume that ai and Eij are 
independent random variables with distribution \lI that is symmetric about 
zero. Also, we need to have two independent samples, one consisting of ai's 
and another consisting of Ei/S, but the individual ai and Eij are not observable. 
To construct two independent samples of observations ai and Eij, we introduce 
the "pseudosamples" as defined by Groggel, Wackerly and Rao (1987) which are 
transformed Zi/S, such that for large m and n, the transformed Zi/S behave 
essentially like independent samples of ai of size m and that of Eij of size 
n = mn. Although there are different ways in which these pseudosamples can 
be constructed, we will use the method called as 'means method' as described 
by Groggel, Wackerly and Rao (1987). 

Define 

and 

11. 

Zi. = n-1LZij, 
j=l 

11. 

= n-1LEij, 
j=l 

m 11. 

Z.. = (mn)-l L L Zij, 
i=l j=l 
m 11. 

€.. = (mn)-lL LEij, 

m 

a = m-1 Lai. 
i=l 

i=l j=l 

Then, the pseudosamples based on means are formed as 

(31.2) 
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and 

Yi = Zi. - Z .. = O'.i + Ei. - a - E .. , i = 1,2, ... ,m, j = 1,2, ... ,n. (31.3) 

Since the first moment of the underlying distribution is assumed to be zero, 
it is clear that, for large m and n, Ei., E .. and a all converge in probability 
to zero. Hence, for large m and n, Eij (= X ij ) and O'.i (= Yi) become two 
independent random samples of size N = mn and m, respectively, generated 
by the transformed Zij'S. Now, we are ready to apply Shorack's procedure for 
estimating the ratio of the variance components. 

The proposed estimation procedure, for the ratio of the variance compo
nents, consists of the following steps: 

Step 1. We select a positive integer 2 :s: k :s: m and randomly divide the 
pseudosamples X ij and Yi into N' and m' subgroups of size k, respectively. 
We will discard any extra observations. Note that N' = [N/kJ and m' = 

[m/k]' where [aJ indicates the largest integer contained in a. 

Step 2. Let X p1, X p2,"" Xpk denote the p-th subgroup of X-pseudosamples 
for p = 1,2, ... ,N' and let Y q1 , Yq2, . .. , Yqk denote the q-th subgroup of 
Y-pseudosamples for q = 1,2, ... , m'. 

k 

P = 1,2, ... , N', where Xp = 2:)Xp8 /k). 
8=1 

Step 4. Define D 1 , D 2 , ... , Dm' by 

k 

q = 1,2, ... , m', where Yq = I)Yqt!k). 
t=l 

Step 5. Form the m' N' ratios Dq/Cp for q = 1,2, ... ,m' and p = 1,2, ... ,N'. 

Step 6. Let U(l) :s: U(2) :s: ... :s: u(m' N') denote the ordered values of Dq / Cp 
and let p2 be the Hodges-Lehmann type estimator of p2 = a;/a;. Then, 
if m' N' is odd, say m' N' = 2r + 1, we have p2 = u(r+1) and if m' N' is 
even, say m'N' = 2r, then p2 = [u(r)u(r+1)J 1/ 2. 
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31.3 Monte Carlo Comparison 

An extensive Monte Carlo study was carried out in order to compare the various 
methods of point estimates of p2 = cr':"/a:. Using SAS/IML (Statistical Anal
ysis System/Interactive Matrix Language) procedure, random numbers were 
generated from four distributions that are symmetric about zero. The four 
distributions used were normal, uniform, logistic, and double-exponential. In 
each case, the resulting random numbers were used to form responses in the 
balanced one-way random effect model (31.1). Without loss of generality, we 
assumed f.L = O. Hence, the model (31.1) becomes 

i = 1,2, ... , m, j = 1,2, ... , n. 

The mn responses in each model were formed by generating m + mn random 
numbers from one of the selected distributions. Throughout this simulation 
study, we assumed that a: = 1 for simplicity so that p2 = a;. Multiplying the 
first m of these random numbers by a constant (which is, in fact, p2 = a;), 
we obtained the simulated values of ai. The multiplier for the remaining mn 
numbers is one (because we fixed a: = 1). These mn numbers provided the 
simulated values of Eij. The simulated responses were then obtained by adding 
the ai and Eij values. The multipliers used were 0.10, 0.25, 0.50 and 1.00 in 
order to obtain the effects for different values of p2. 

For each of the four distributions, various size models were generated. The 
size of the model was determined by the combination of m (the number of 
treatments) and n (the number of observations per treatment). Three different 
values used for both m and n were 6, 12 and 18. The different subgroup sizes, 
denoted by k, that were used are 2, 3, 4, 6, 12 and 18, depending on the 
treatment size m. 

For every combination of distribution, model size (m, n) and p2-value , 3000 
sets of responses were generated and the point estimates of p2 were computed 
using the proposed estimation method with different k (subgroup size), and the 
methods described in Groggel, Wackerly and Rao (1987) and Bhattacharyya 
(1977). Note that Bhattacharyya estimated the ratio of two scale parameters. 
To apply this procedure for estimating the ratio of the two variances, we as
sumed the location parameters to be means instead of medians and a: and a; 
to be variances of the underlying distributions. 

A summary of the Monte Carlo study is presented in Tables 31.1 - 31.4. The 
tables present the mean, standard deviation and mean square error (m.s.e.) for 
the estimate of p2 for each selected distribution, for different model size and 
p2. The average estimates obtained from the methods of Groggel, Wackerly 
and Rao (1987) and Bhattacharyya (1977) were found to be consistently very 
close to each other with similar standard deviation for all of the four selected 
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distributions. Hence, for the rest of the discussion, we will call these two meth
ods as the G-B methods. As expected, all procedures yielded average estimates 
which approach the desired values as model size (m,n) and p2 increase with 
decreasing standard deviations. For each distribution, higher subgroup size k 

produced a better estimate for the ratio of variance components among all k in 
the proposed method. The subgroup size k 2 4 yielded highly biased estimates 
with high standard deviations for all m. In all distributions, for all p2 and m, 
the G-B methods failed to perform well in most cases when compared to the 
proposed method with respect to the standard deviation of the estimates for 
k 2 6. 

For each model size (m, 71,) and each p2, the proposed method yielded slightly 
higher average estimates as compared to the G-B methods, but, the standard 
deviation of the estimates remained consistently smaller for k 2 6. Notice 
here that the proposed as well as the G-B methods produced average estimates 
which are positively biased. But the amount of bias decreased when both model 
size and p2 increased so that the mean square error (m.s.e.) of the estimates 
reduced significantly when compared to those of the G-B methods. Except for 
a few smaller model sizes, the mean square errors of the estimates remained 
consistently smaller for the proposed method for k 2 6 when compared with 
those of the G-B methods. 

The findings for the logistic distribution (see Table 31.2) are quite similar 
to those in the case of the normal distribution (see Table 31.1) for all proce
dures except the corresponding average estimates and standard deviations of 
the estimates are a little higher than those for the normal distribution case. 
The results obtained for the uniform distribution (see Table 31.3) produced 
small bias, but significantly smaller standard deviation when compared with 
those obtained for the normal distribution. The findings in the case of double
exponential responses were similar to those of the uniform distribution for all 
procedures except that the corresponding average estimates are slightly smaller 
than those for uniform responses. 

In summary, the proposed method with largest subgroup size which equals 
m produces best results among all k within the proposed method. When com
pared with the G-B methods, the case when k 2 6 performs better for each 
distribution. The G-B methods consistently performed poorly with respect to 
the standard deviation of the estimates for all selected distributions and for ev
ery m and p2. Finally, all of the findings suggest choosing the largest possible 
subgroup size k which equals the treatment size m in order to obtain the best 
estimates; however, when m 2 12, the proposed estimates were found to be 
better than those of the G-B methods for subgroup size k as small as 6. 
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31.4 Adjustment for Bias 

From the pseudosamples (31.2) and (31.3), it is clear that the expression on 
the right hand side of (31.4) and (31.5) approach a; and a~, respectively, when 
both m and n become large: 

Var(Xij) 

Var(Yi) 

Hence, for large m and n, 

n-1(n - 1)a; 

m-1(m - 1)a; + (mn)-l(m - 1)a;. 

However, for small or moderate model sizes, the ratio 

Var(Yi)/Var(Xij) = [ (m -1)a~ + (m - 1)a;] [(n - 1)a;]-1 
m, mn n 

(31.4) 

(31.5) 

n(m - 1) [p2 + ~] = jP (say), (31.6) 
m(n - 1) n 

where p2 is the actual value of p2 when we use pseudosamples. Hence, for small 
or moderate model sizes, we may be estimating values which are quite different 
from those desired, i.e., we are estimating p2, instead of p2. 

Using (31.6), we propose the following small-sample adjustment in estimat
ing the ratio of two variance components: 

Ad ' A2 m(n - 1) A2 1 
'Jp= p--, 

n(m -1) n 
(31.7) 

where p2 is the estimate of p2 obtained from the sample observations. Notice 
that Adj p2 depends on model size (m, n). If m and n are very small, then for 
small p2, the adjustment (31.7) may produce negative estimates. In order to 
avoid negative estimates, we impose the restriction 

A2 m-1 
p > ----:--. 

- m(n -1) 
(31.8) 

Hence, if the estimate obtained from sample data satisfies (31.8), we perform the 
small-sample adjustment in (31.7); otherwise, we leave the estimate unadjusted. 
The adjustment in (31. 7) will improve the performance of the proposed method 
by reducing the bias since p2 overestimates the desired value. 

Concluding Remarks. The inference may depend on the particular grouping 
into subsamples. However, for m large (say ~ 25), this should not influence 
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the inference. Miller (1968) has given a jackknife estimate of log of the ratio of 
variances. Using this estimate as a test criterion for testing the null hypothesis 
of equality of the variances, Miller (1968, pp. 574-575) surmised that his test 
may be slightly more efficient than that of Shorack (1969), especially when the 
underlying populations are light-tailed (the reverse may be true for heavy-tailed 
distributions such as contaminated normal distributions). 

Also, in defining the pseudosamples given by (31.2) and (31.3), they could 
have been based on deviations from sample medians. 
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Table 31.1: Mean, standard deviation and mean square error of 3000 
estimates for p2 when population is normal 

m -12 In - 18 

I'IapoIed ... wIl ... PropooecIIIIIimaI<o WhOD 

n 

0.10 6 mooD.5063 .4165 .3169 .3471.3407.3704 .3589 .3511 .3419 .3376 .3332 .3481 .3371 .3346 .3341 .3277 .3247 
lid .6665 .3165 .2931 .3030 .3183 .2324 .2074 .1149 .1670 .1910 .2033 .1807 .1455 .1389 .1310 .1552 .1574 
.. .6093 .2495 .1613 .1532 .1593 .1271 .1101 .0916 .0199 .0957 .0957 .0942 .0777 .0701 .0720 .0759 .0753 

12 _ .2944 .2535 .2372 .2125 .2067 .2268 .2234 .2194 .2166 .2069 .2044 .2159 .2107 .2012 .2075 .2013 .1996 
lid .2959 .2070 .1644 .1644 .1669 .1359 .1204 .1079 .0916 .1130 .1149 .1060 .0143 .0795 .0757 .0924 .0926 
.. .1253.0Ii64 .0451 .0397 .0392 .0345 .0297 .0259 .0233 .0242 .0241 .0247 .0193 .0177 .0173 .01" .0185 

II mooD .2311.2048 .1911 .1619 .1674 .1853 .1119 .1785 .1773 .1703 .1685 .1767 .1744 .1733 .1721 .1677 .1666 
lid .2358 .1631 .1210 .1297 .1317 .1092 .0956 .0164 .0101 .0922 .0921 .0124 .0683 .0640 .0601 .0729 .0729 
.. .0721 .0371 .0247 .0216 .0219 .0192 .0151 .0141 .0124 .0134 .0133 .0127 .0102 .0094 .0011 .0099 .0097 

0.25 6 mooD.7960 .6447 .6014 .5396 .5365 .5767 .5576 .5491 .5450 .5255 .5218 .5443 .5274 .5223 .5219 .5122 .5104 
lid 1.021 .6025 .4581 .4691 .41120 .3646 .3244 .2172 .2591 .3064 .3140 .2118 .2259 .2130 .2024 .2413 .2457 
.. 1.356.51 .. .3334 .3046 .3242 .2396 .199' .1576 .1545 .1691 .1725 .1660 .1210 .1095 .1149 .1270 .1212 

12 ........ 5406 .4611 .4332 .3163.3825 .4121 .4064 .3985 .3940 .3760 .3730 .3928 .3831 .3719 .3776 .3655 .3636 
lid .5585 .3757.3043 .3021 .3110 .2413 .2195 .1942 .1783 .2069 .2096 .1919 .1524 .1448 .1379 .1~2 .1649 
.. .3963 .1860 .1262 .1099 .1143 .0882 .0727 .0598 .0525 .0517 .0590 .0572 .0410 .0364 .0353 .0403 .0410 

18 mooD .4473 .4010.3751 .3336 .3313 .3632 .3516 .3509 .3410 .3341 .3323 .3410 .3421 .3401 .3381 .3219 .3277 
lid .4591.3182 .2532 .2608 .2645 .2106 .1161 .1610 .1557 .1796 .1809 .1626 .1341 .1250 .1190 .1415 .1417 
moo .2503 .1241 .0798 .0750 .0766 .0572 .0464 .0401 .0339 .0393 .0395 .0360 .0266 .0238 .0219 .0262 .0261 

0.50 6 ...... D 1.2671.021 .9595 .1634 .1721 .9179 .... 9 .8761 .8716 .8376 .8369 .8736 .8429 .8357 .8356 .1193 .8184 
... 1.613 .9694 .7367 .7558 .7982 .5858 .5161 .4562 .4158 .4892 .5015 .4523 .3605 .3371 .3222 .3161 .3923 
..... 3.193 1.211.7538 .7034 .7756 .5171 .4175 .3135 .3110 .3532 .3650 .3441 .2476 .2015 .2164 .2510 .2553 

12 - .9476 .1100 .7603 .6759 .6744 .7212 .7115 .6971 .6895 .6573 .6555 .6901 .6706 .6633 .6611 .6381 .6374 
lid .9970 .6595 .5390 .5396 .5507 .4535 .3855 .3316 .3114 .3613 .3660 .3333 .2664 .2529 .2414 .2834 .2842 
moo \.194 .5311 .3512 .3221 .3337 .2369 .1933 .1531 .1329 .1553 .1582 .1472 .1001 .0169 .0842 .0996 .0997 

11 ....... .1113 .7315 .6117 .6061 .6049 .6594 .6519 .6385 .6325 .6079 .6072 .6343 .6228 .6183 .6145 .5987 .5976 
lid .8334 .5711 .4610 .4184 .4863 .3793 .3369 .3032 .2120 .3256 .3270 .2970 .2431 .2274 .211i5 .2587 .2594 ..... .7915 .3877 .W5 .2401 .2475 .1692 .1366 .1161 .0971 .1177 .1184 .1062 .0745 .0657 .0600 .0767 .0761 

1.00 6 ..... D 2.209 1.799 1.676 1.519 1.549 1.597 1.550 1.532 1.524 1.461 1.472 1.534 1.473 1.463 1.463 1.434 1.439 ... 2.769 1.708 1.291 1.342 1.426 1.023 .8960 .7965 .7297 .1600 .8854 .7926 .6293 .5192 .5633 .6744 .6849 
lIIIO 9.1343.5562.142 2.067 2.335 1.404 1.105 .1012 .1078 .9525 1.006 .9134 .6199 .4141 .5324 .6433 .6623 

12 meaD 1.755 1.505 1.415 1.253 1.260 \.339 1.320 1.295 1.210 l.ll9 1.221 1.284 1.244 1.233 1.228 1.\ 85 1.111 ... 1.170 1.234 1.009 1.015 1.037 .1030 .714' .6272 .57.2 .6722 .6814 .6152 .4925 .4700 .4479 .5210 .5239 ..... 4.061 1.771 1.190 1.095 1.143 .7597 .6137 .4806 .4129 .5001 .5133 .4597 .3022 .2625 .2526 .3060 .3100 

1. ...... D 1.536 \.391 1.294 1.152 1.157 1.251 1.241 1.213 1.201 1.\56 1.157 1.206 1.112 1.\73 1.167 1.131 1.139 ... 1.516 1.091 .1763 .9123 .9212 .7194 .6395 .5744 .5346 .6175 .6221 .5677 .4647 .4321 .4120 .4955 .4979 ..... 2.103 1.360 .8548 .1556 .8162 .5110 .4672 .3959 .3264 .4057 .4119 .3650 .2492 .2170 .1976 .2646 .2673 

• lillimara. obraiDocl by Ibo IIIIIbad orGroael eI at (1917) . 
• I!aIimora. obrainod by Ibo IIIIIbad or "'lIICIwyya (\977). 



Nonparametric Estimation of the Ratio of Variance Components 517 

Table 31.2: Mean, standard deviation and mean square error of 3000 
estimates for p2 when population is logistic 

m - 6 m - 12 m - 18 

Propoaod ell. ,.,hen Propoocd ollima", when Propooed ellimate when 

fJ' n t-2 k-3 t-6 Gr.> Bb.' k-3 k-4 k-6 t-12 Gr.> Sh.' t-3 k-6 t-9 k-18 Gr. > Sh.' 

0.10 6 .... n . .,421 .4421 .4026 .38.,1 .3798 .3813 .3728 .3619 .3598 .3618 .3575 .3660 .3531 .3472 .3458 .3574 .3.,34 
lid .6927 .4324 .3030 .3383 .3.,94 .246., .2171 .1938 .1832 .2167 .2205 .1907 .1.,11 .1403 .1367 .1674 .1692 
DIll .67.,3 .3040 .1833 .1957 .2074 .1399 .1218 .0996 .1011 .1155 .1149 .1071 .0869 .0764 .0791 .0943 .0928 

12 ....... .3129 .2713 .2.523 .2366 .233., .2429 .2344 .2283 .22.58 .2266 .2239 .2288 .2212 .2179 .2153 .22.54 .2231 
lid .3.,91 .2332.1873 .19.,3 .2030 .1456 .1330 .1173 .1104 .127., .1285 .1146 .0962 .0894 .0862 .1055 .10.,5 ..... .1742.0831 .0513 .0561 .0590 .0416 .0358 .0302 .0280 .0323 .0319 .0297 .0239 .0214 .0207 .0268 .0263 

II ....... .2.538 .2230 .2091 .1986 .1956 .1989 .19"1 .18., .1877 .1889 .1873 .1852 .1797 .1764 .17.,1 .lal2 .1804 
lid .2774.1938 .l.567 .16l.5 .1626 .120., .1103 .0999 .0957 .11 03 .1103 .0911 .0762 .0717 .0695 .0816 .0821 ..... .1006 .0527 .0364 .03.,8 .0356 .0243 .0212 .011S .0169 .0201 .0198 .0156 .0121 .0110 .0105 .0133 .0132 

0.2.5 6 - .1S02 .6934 .6321 .5938 .5957 .5928 .5792 ..5656 . .,643 .5576 ..55.,8 .5681 .5487 ..5429 .5422 ..5461 .5420 
lid 1.108 .7138 ..5041 ..5381 .5758 .3963 .3490 .3169 .3052 .3444 .3548 .3028 .2462 .2313 .2286 .262.5 .2653 ..... 1..589 .7062 .4001 .4077 .4510 .2746 .2302 .1826 .1919 .2132 .2194 .1929 .1499 .1274 .1376 .1566 .1556 

12 ....... ..5642 .4919 .4626 .4271 .4245 .4380 .4229 .4131 .4\13 .4026 .3994 .4092 .3983 .3942 .3914 .3983 .3960 
lid .6.,67 .4377 .3693 .360" .3775 .2721 .2469 .2204 .2142 .2335 .2366 .2060 .1791 .1684 .1652 .1~8 .1914 - . .,300 .2.502 .1116 .1613 .1729 .1094 .0908 .0752 .0719 .0778 .0783 .0678 .0.,41 .0475 .0473 .0584 .0579 

18 .... n .4963 .4359 .4121 .3839 .3811 .3829 .3774 .3687 .3684 .3608 .3585 .3575 .3483 .3438 .3431 .3436 .3423 
lid .5673 .3943 .3260 .3230 .3267 .2361 .2187 .2035 .1971 .2136 .2144 .1779 .1539 .1451 .1431 .1589 .1601 
IDIO .382.5 .1900 .1326 .1222 .1239 .0734 .0641 .0580 .0529 .0579 .0577 .0432 .0333 .0298 .0291 .0340 .0341 

0 . .,0 6 ....... 1.352 1.107 1.016 .9437 .9595 .9413 .9229 .9045 .9049 .8793 .8819 .9009 .8741 .8659 .8691 .852.5 .8520 
lid 1.782 1.187 .1S26 .8934 .9728 .6493 .572.5 .5268 .5131 .5536 .5721 .4904 .4061 .3858 .3857 .4190 .4271 
moe 3.903 1.779 .9936 .9951 1.157 .6164 .5066 .3929 .4272 .4503 .4731 .4012 .3049 .2498 .2150 .2997 .3063 

12 moan .9865 .8597 .8\38 .7400 .7435 .7610 .7363 .7215 .noo .6937 .6916 .7080 .6921 .6871 .6848 .6812 .6799 
lid 1.146 .7798 .6765 .6312 .6628 .4838 .4364 .3957 .3890 .4094 .4148 .3610 .3181 .3004 .2979 .3300 .3323 - 1..550.7375."561 .4561 .4986 .3022 .2463 .2056 .1998 .2052 .2088 .1736 .1381 .1200 .1229 .1417 .1428 

11 ....... .8979 .7872 .7504 .6902 .6897 .6896 .6795 .6678 .6688 .6445 .6430 .6429 .6294 .6231 .6232 .612.5 .6114 
lid 1.035 .7226 .6090 ..5944 .6027 .4291 .3981 .3777 .3660 .3821 .3852 .3234 .2836 .2684 .2665 .2869 .2891 
IDIO 1.229 .6047 .4336 .3895 .3993 .2201 .1907 .1796 .1625 .1669 .1688 .1250 .0972 .0872 .0862 .0949 .0960 

1.00 6 mean 2.367 1.939 1.787 1.638 1.702 1.639 1.603 1.581 1.586 1.589 1.534 1.561 1.525 1.513 1.522 1.460 1.467 
lid 3.146 2.126 1.560 1.608 1.709 1.149 1.016 .9462 .9317 .9729 1.006 .8697 .7302 .6989 .7033 .7349 .7543 
IDIO 11.77 5.403 3.053 2.993 3.700 1.729 1.396 1.078 1.211 1.216 1.299 1.071 .8091 .6435 .7675 .7521 .7877 

12 mean 1.824 1.598 1.5 17 1.362 1.384 1.407 1.360 1.337 1.338 1.275 1.278 1.304 1.278 1.272 1.271 1.244 1.246 
lid 2.101 1.4671.293 1.175 1.233 .9081 .8126 .7487 .7392 .7614 .7755 .6722 .5967 .5643 .5637 .6035 .6096 ..,.. 5.096 2.5121.940 1.512 1.669 .9904 .7903 .6744 .6608 .6554 .6791 .5444 .4338 .3740 .3914 .4238 .4324 

18 - 1.699 1.491 1.427 1.299 1 .307 1.299 1.280 1.265 1.269 1.211 1.213 1.212 1.190 1.182 1.183 1.151 1.151 
lid 1.975 1.378 1.174 1.133 1.151 .8141 .7565 .7242 .7031 .7174 .72.53 .6169 .5436 .5149 .5138 .5442 .5478 .... 4.392 2.142 1.562 1.374 1.420 .7522 .6512 .6274 .5668 .5593 .5715 .4255 .3319 .2985 .2977 .3190 .3229 

> EoWna",. oblainod by Ibe melbod of G",,,,,I 0' II (1987). 
• Eocimate. oblaincd by Ibo method of BhIDichlryy. (1977). 
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Table 31.3: Mean, standard deviation and mean square error of 3000 
estimates for p2 when population is uniform 

m - 6 m - 12 m - 18 

PropoICd ... ",be" PropoICd eOlimate wben Proposed estimate whe" 

p' " 1e-2 1e-3 1e-6 Gr.- lb.' 1e-3 1e-4 1e-6 1e-12 Gr.- Bh.' 1e-3 le36 1e-9 1e-18 Gr.· Bh.' 

0.10 6 ..... " .4894.3918 .3647 .2958 .2892 .3345 .3286 .3289 .3313 .2733 .2685 .3271 .3212 .3248 .3285 .2752 .2712 
ltd .6300 .3612 .2750 .2803 .2916 .2116 .1878 .1725 .1577 .1662 .1683 .1673 .1356 .1280 .1229 .1338 .1347 
IDle .5485 .2156 .1457 .1169 .1208 .0998 .0875 .0770 .0784 .0577 .0567 .0796 .0673 .0633 .0673 .0486 .0475 

12 mean .2682.2250.2119 .1623 .1585 .2121 .2OS8 .2058 .2059 .1659 .1633 .2010 .2009 .2040 .2052 .1665 .1650 
ltd .2846 .1704 .1341 .1227 .1234 .1201 .1053 .0943 .0882 .0886 .0891 .0942 .0769 .0704 .0677 .0718 .0722 
IDle .1093 .0447.0305 .0189 .0186 .0270 .0223 .0201 .0190 .0122 .0119 .0191 .0161 .0155 .0156 .0095 .0094 

18 - .2215 .1881 .Im .1364 .1337 .I7OS .1665 .1677 .1688 .1361 .1647 .1659 .1637 .1659 .1666 .1369 .1361 
ltd .2190 .1366 .1060 .0969 .0972 .0930 .0807 .0712 .0670 .0687 .0689 .0733 .0596 .0543 .OS 19 .0553 .OS53 
I1l1O .0627 .0264 .0173 .0107 .0106 .0136 .0109 .0099 .0092 .0060 .0059 .0097 .0076 .0072 .0071 .0044 .0043 

0.25 6 ..... " .7588 .6006 .5534 .4499 .4426 .5280 .5 172 .5153 .5164 .4427 .4375 .5 170 .5055 .5084 .5126 .4476 .4443 
ltd .9792 .5473 .3908 .3845 .3980 .3198 .2788 .2550 .2300 .2530 .2557 .2531 .2024 .1881 .1783 .2043 .2071 
I1l1O 1.217 .4224 .2448 .1878 .1955 .1795 .1491 .1241 .1239 .1011 .1005 .1353 .1062 .0943 .1007 .0808 .0807 

12 mean .5127.4152.3902 .3067 .3019 .3927 .3796 .3761 .3740 .3204 .3173 .3744 .3686 .3719 .3723 .3238 .3224 
ltd .5460 .3OS4 .2375 .2212 .2234 .2117 .IBOO .1580 .1455 .1584 .1594 .1679 .1295 .1178 .1122 .1289 .1295 
I1l1O .3671 .1206 .0761 .0522 .0526 .0652 .0492 .0409 .0366 .0300 .0299 .0437 .0308 .0279 .0276 .0221 .0220 

18 ..... " .4393 .3717 .3476 .2747 .2716 .3410 .3323 .3309 .3311 .2836 .2817 .3332 .3247 .3266 .3273 .2869 .2857 
ltd .4295 .2534 .1899 .1824 .1842 .1759 .1493 .1286 .1184 .1319 .1325 .1404 .1079 .0976 .0918 .1063 .1070 
IDle .2203 .0790 .0456 .0339 .0344 .0392 .0291 .0241 .0206 .0185 .0186 .0266 .0172 .0154 .0144 .0127 .0127 

0.50 6 - 1.203 .9551 .8760 .7324 .7312 .8587 .8366 .8272 .8252 .7405 .7396 .8319 .8148 .8152 .8189 .7534 .7521 
ltd 1.513 .8324 .5794 .5968 .6225 .5048 .4292 .3862 .3427 .4006 .4070 .3956 .3081 .2837 .2646 .3220 .3267 
IDle 2.784 .9000 .4771 .4102 .4410 .3835 .2975 .2303 .2232 .2183 .2230 .2715 .1940 .1621 .1717 .1679 .1703 

12 mea" .9053 .7299 .6796 .5479 .5438 .6952 .6720 .6594 .6543 .5830 .5806 .6646 .6488 .6512 .6505 .5932 .5924 
ltd .9370.5140 .3852 .3755 .3817 .3649 .3027 .2623 .2363 .2729 .2752 .2874 .2131 .1934 .1824 .2220 .2235 ..... 1.042.3170.1807 .1433 .1476 .1713 .1212 .0942 .0797 .0813 .0823 .1097 .0676 .0581 .0559 .0580 .0585 

18 mean .8035 .6782 .6306 .5077 .5049 .6266 .6086 .602S .60 14 .5329 .5311 .6127 .5944 .5948 .5950 .5415 .5406 
ltd .7796 .4477 .3262 .3244 .3289 .3141 .2619 .2229 .2016 .2358 .2376 .2518 .1863 .1677 .1563 .1908 .1917 ..... .6999 .2322 .1235 .1053 .1082 .1147 .0804 .0633 .0509 .0567 .0574 .0761 .0436 .0371 .0335 .0381 .0384 

1.00 6 mel" 2.093 1.671 1.522 1.309 1.335 1.523 1.481 1.452 1.443 1.349 1.357 1.488 1.434 1.429 1.431 1.380 1.386 
ltd 2.579 1.399 .9429 1.015 1.088 .8687 .7329 .6400 .5595 .6979 .7111 .6785 .5150 .4683 .4301 .5593 .5682 
IDle 7.8502.409 1.161 1.126 1.297 1.028 .7689 .5434 .5096 .6092 .6338 .6988 .4541 .3556 .3710 .4578 .4720 

12 mean 1.683 1.358 1.257 1.309 1.335 1.300 1.256 1.227 l.214 1.111 1.113 l.245 1.209 1.210 1.206 1.133 1.134 
SId 1.701 .9275 .6750 .6804 .6992 .6709 .5444 .4696 .4145 .4994 .5075 .5248 .3768 .3414 .3192 .4071 .4103 
IDle 3.363 .9888 .5221 .4638 .4901 .5405 .3621 .2722 .2179 .2617 .2705 .3356 .1860 .1S41 .1444 .1836 .1865 

II mean 1.537 1.292 1.196 .9751 .9768 1.197 1.161 1.145 1.141 1.032 1.032 l.l72 1.13S l.l31 l.l30 1.052 I.OS3 
SId 1.482 .8375 .5965 .6090 .6184 .5895 .4866 .4107 .3665 .4441 .4475 .4734 .3423 .3071 .2838 .3596 .3619 
IDle 2.485 .7867 .3945 .J715 .3830 .3865 .2629 .2002 .1544 .1982 .2014 .2538 .1354 .1116 .0976 .1321 .1338 

• Estimate. obuioed by the melbod ofGI'OUCI •• II (1987). 
, Estima .... obuioed by Ibe melbod of Bbal1lcharyyl (1977). 
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Table 31.4: Mean, standard deviation and mean square error of 3000 
estimates for p2 when population is double-exponential 

m - 12 m - 18 

~ ... w"'" ~ .1IUna18 ",hI" ~ ellUnal8 ",be .. 

.. 
0.10 6 ....... .$037.3905 .3634 .2139 .2753 .3306 .3244 .3261 .3292 .2601 .2550 .3234 .3189 .3239 .3279 .2623 .2514 

lid .7007.3638.2716 .2663 .2662 .2094 .11S4 .1699 .iS53 .1612 .1632 .1658 .1340 .1273 .1215 .1295 .1299 
I11III .6540 .2167 .1431 .1041 .1016 .0970 .0141 .0750 .0767 .0516 .0506 .0774 .0658 .0627 .0667 .0431 .0420 

0.25 

0.50 

1.00 

12 ....... 2726.2229.2019 .iS13 .1471 .2012 .2021 .2041 .2041 .US7 .1537 .1984 .1993 .2032 .2046 .1570 .!S59 
lid .2902 .1768 .1339 .1159 .1158 .1160 .1022 .0924 .0163 .0121 .0133 .0920 .0755 .0691 .0664 .0674 .0676 
I11III .1140 .0464 .0298 .0161 .0156 .02S2 .0209 .0194 .0114 .0099 .0098 .oI82 .0156 .0151 .0153 .fK1T7 .0076 

18 ....... 2236.1121 .1711 .1232 .1201 .1675 .1634 .1667 .1677 .1271 .1266 .1632 .1620 .1649 .1659 .1219 .1212 
lid .2271 .1348 .102S .0197 .0197 .0901 .0779 .0693 .0652 .0631 .0639 .0710 .0579 .0527 .0504 .0514 .0516 
I11III .0669 .02S0 .0156 .0015 .0014 .0127 .0101 .0095 .0011 .0048 .0047 .0090 .0071 .0069 .0068 .0034 .0034 

6 ....... .7671 .5938 .5487 .4310 .4236 .5221 .5115 .5113 .5129 .4242 .4203 .5125 .5018 .5066 .5114 .4304 .4279 
lid 1.002 .5412 .31S3 .3738 .3864 .3146 .2734 .248\ .2237 .2422 .2464 .2417 .\963 .1846 .174\ .1945 .1977 ..... 1.273 .4110 .2377 .172S .1795 .1730 .1431 .1192 .1191 .0190 .0197 .1307 .1020 .0924 .0986 .0704 .0707 

12 ....... .5153 .4112 .3147 .2192 .2160 .3861 .3736 .3726 .3719 .3049 .3018 .3705 .3661 .3703 .3712 .3109 .3095 
lid .5470 .2969 .2235 .2058 .2093 .2027 .1724 .1524 .1396 .1461 .1472 .1619 .1241 .1130 .1077 .1189 .1194 
I11III .3696 .1141 .0681 .0439 .0451 .0596 .0450 .0313 .0343 .0244 .0243 .0407 .0291 .0265 .0263 .0'178 .0171 

18 ...... .4422 .3620 .3412 .2576 .2544 .3355 .3268 .3285 .3289 .2712 .2692 .3215 .3222 .3248 .3259 .2760 .2741 
lid .4330.2398.1787 .1659 .1670 .1690 .1417 .1221 .1124 .1204 .1213 .1343 .1031 .0926 .0171 .0975 .0913 
moe .2244 .0701 .0402 .0276 .0279 .0359 .0260 .0222 .0189 .0149 .om .0242 .0158 .0142 .0133 .0102 .0103 

6 mean 1.214.9461 .8677 .0737 .7032 .8413 .8219 .8209 .8193 .7167 .7176 .1328 .8093 .8122 .8\68 .7349 .7350 
lid 1.523 .8203 .5636 .5715 .5915 .4921 .4167 .3713 .3213 .3785 .3863 .3849 .2953 .2734 .2542 .3028 .3085 
moe 2.130 .8718 .4529 .3682 .3911 .3635 .2118 .2169 .2097 .\902 .1965 .2589 .1829 .1557 .1650 .1469 .1504 

12 mean .1943 .7169 .6673 .5170 .5164 .6135 .6611 .6539 .6503 .5619 .5594 .651S .6446 .6486 .6414 .5771 .5764 
lid .9414.4960 .3590 .3465 .3564 .3462 .2147 .2486 .2225 .2415 .25 II .2757 .2018 .1826 .1716 .2019 .2040 
I11III 1.041 .2930 .1569 .1203 .1273 .1535 .1070 .0155 .0721 .0656 .0669 .1012 .0617 .0535 .0515 .0467 .0474 

18 moa .. .8054 .6601 .6188 .4714 .4755 .6156 .5989 .5977 .5974 .5145 .5121 .6043 .5900 .5917 .5926 .5271 .5260 
lid .7152.4114 .3018 .2909 .2956 .2982 .2457 .2093 .1875 .2128 .2146 .2396 .1747 .1564 .1453 .1724 .1740 
I11III .7097.2007.1052 .DlSI .0180 .1023 .0702 .0561 .0446 .0455 .0462 .0613 .0386 .0329 .0297 .0304 .0310 

6 mea .. 2.110 1.652 1.506 1.l67 1.294 1.507 1.468 1.441 1.432 1.322 1.334 1.481 1.426 1.424 1.427 1.365 1.372 
lid 2.643 1.366 .9030 .9598 1.018 .8454 .7029 .6063 .5270 .6525 .6727 .6600 .4855 .4445 .4057 .5213 .5317 
I11III 8.220 2.293 1.071 .9929 1.123 .9721 .7137 .4991 .4651 .5296 .5643 .6669 .4174 .3343 .3471 .4053 .4216 

12 ....... 1.693 1.334 1.236 .9812 .9848 1.279 1.236 1.215 1.207 1.079 1.082 1.234 1.202 1.204 1.202 1.113 1.116 
lid 1.734.1118.6226 .6186 .6351 .6333 .5059 .4385 .3133 .4494 .4564 .5020 .3524 .3174 .2951 .3660 .3702 ..... 3.491 .1897 .4435 .3830 .4036 .4792 .3\18 .2319 .1199 .2013 .2150 .3072 .1652 .1367 .1210 .1469 .1505 

II ....... 1.532 1.256 1.\ 73 .9233 .9260 1.177 1.\42 1.135 1.134 1.002 1.004 1.157 1.\26 1.124 1.125 1.031 1.032 
lid 1.493 .7710 .5445 .5425 .5540 .5589 .4527 .3101 .3354 .3964 .4010 .4490 .3164 .2824 .2595 .3205 .3240 ..... 2.513 .6701 .3267 .3002 .3 124 .3440 .2253 .1722 .1305 .1571 .1608 .2265 .1161 .0954 .0132 .1037 .1060 

• EoIima ... obllu.d by IIlo melbod of 0 ....... 101 oJ (1917). 
, EoIimaI8' obllinod by dI. mcdlod of hll.lcharyya (1977). 
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Limit Theorems for M-Processes Via Rank 
Statistics Processes 

M. Huskova 

Charles University, Praha, Czech Republic 

Abstract: The purpose of this paper is to study limit behavior of processes 
related to M-estimators using certain properties of related rank statistics pro
cesses proved in Huskova (1996b). The results are then employed to obtain 
the limit distribution of M-statistics for change point problem, particularly, to 
get the limit behavior of the test statistics for detection of a change and limit 
behavior of estimators of the change. 

Keywords and phrases: M-statistics, rank statistics, weighted maxima, lo
cation model 

32.1 Introduction 

Let X!, ... , Xn be independent random variables with distribution functions 
F(·; (h), .. . , F(·; On), where 0l. ... , On are parameters belonging to an open in-
terval e ~ Rl. 

Consider the M-statistics 

k 

Sk('I/)) = L 'I/)(Xi ; On('I/))), k = 1, ... ,n, (32.1) 
i=l 

where '1/) is a score function fulfilling certain conditions and On('IjJ) is the M
estimator generated by the score function 'IjJ defined as any solution of the 
equation 

n 

L '1/) (Xi; 0) = 0 (32.2) 
i=l 

or some asymptotically equivalent estimator. 
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We show that, under quite mild conditions, the limit behavior of various 
weighted supremum and Lp- functionals of Sk('ljJ) , k = 1, ... , n, is the same as 
the respective functionals of partial sums of independent variables. 

The proofs are based on the fact that if (h = ... = On (i.e., if Xl, ... ,Xn 
are i.i.d. random variables) then the random vector {E~=l 'ljJ(Xi ; O~); k = 

1, ... ,n} has the same distribution as {E~=l 'ljJ(XR;.; O~); k = 1, ... ,n}, where 
(RI,' .. , Rn) is a random permutation of (1, ... , n) independent of (X!, ... , Xn) 
and O~ is a symmetric statistic of Xl, ... ,Xn . Then given (X!, ... , X n ), the 
random vector {E~=l 'ljJ(XR;.; O~); k = 1, ... , n} is the vector of two-sample rank 
statistics, because 

1 
Pr[RI = rl, ... , Rn = rnl = , 

n. 

for any permutation (rI, .. . , rn) of (1, ... , n), asymptotic results on two-sample 
rank statistics processes [H uskova (1996b) 1 under the hypothesis of randomness 
can be employed. 

As a consequence, the results on the tests and estimators for the change 
point problem based on M-statistics (32.1) proved in Antoch and Huskova 
(1994) and Huskova (1996a) are shown to hold true under weaker assump
tions. The present proofs are also much simpler. Some new results are also 
derived. 

Results on other procedures for the problem formulated in (32.15) and 
(32.16) below are quoted in references. 

In the following section we study separately the case 01 = ... = On - the 
null hypothesis (Section 32.2) and the case 01 = ... = Om i= Om+l = ... = On -
the alternative hypothesis (Section 32.3). 

32.2 Case (h = ... = On 

In this section, we suppose that Xl, ... , Xn are i.i.d. random variables with 
common distribution F(x;()o), i.e., ()l = ... = On (= (0 ),00 E e. 

Define the process 

tE(O,l), (32.3) 

where 

(32.4) 

At first, we modify Theorem 1 and Theorem 2 in Huskova (1996b) in a way 
suitable for our purposes. 
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'lj)(x; 0) be a score function such that, as n - 00, 

(32.5) 

and 

(32.6) 

for some c > 0 and for some ~ > O. 

(i) Then, as 11, - 00 

d 
{Vn(t); t E (0, I)} - {B(t); t E (0, I)}, 

where {B(t); t E (0, I)} is a Brownian bridge. 

(ii) Let q be a positive function, defined on (0,1), increasing in a neighbour
hood of zero and decreasing in a neighbourhood of one. Then, 

fr'l 1 {cq2 (t) } 
IO,l(q,C) = ( ) exp - ( ) dt < 00 

.0 t1-t t1-t 
(32.7) 

for some c> 0 if and only if, as n - 00, 

sup {!Vn(t)I/q(t)} ~ sup {IB(t)l/q(t)}, (32.8) 
O~t~l O~t~l 

where {B(t); t E [0, I]} is a Brownian bridge. 

(iii) Assertion (32.8) with q(t) = 1, t E (0,1), remains true even if in (32.6) 
~ = 0 and 

(32.9) 

are fulfilled. 

(iv) Let w be a positive function on (0,1) and 0 < ex < 00. Then, as 11, - 00, 

.~l!Vn(tW' /w(t)dt ~ .~1 (IB(t)lt /w(t) dt (32.10) 

if and only if 

1,1 (t(l - t)yJtj2 
( ) dt < 00 . 

. 0 w t 
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Theorem 32.2.2 Let the assumptions of Theorem 32.2.1 be satisfied. 

{i} If 0 < tl(n) < t2(n) < n and as n -+ 00 

u(n) = (n - tl(n))t2(n) -+ 00, 

tl(n)(n - t2(n)) 

then for any y E RI, as n -+ 00, 

Pr[J2Iog log u(n) max {~k( n k) ~(./) ISk('ljJ)I} tl(n)sk<t2(n) V k(n - k) an ifJ 

1 1] :::; y+2Ioglogu(n) + 2" log log log u(n) - 2"log(7r) 

-+ exp{ -2 exp( -y)}. 

(32.11) 

{ii} If moreover, as n -+ 00, 

e -+ 00, (32.12) 

then, as n -+ 00, for any y E RI 

Pr [j2 log en max { ~ ~(./) ISk('ljJ) - Sk-G('ljJ)I} 
G<ksn ve an lP 

n 1 n 1] { (} < y + 2 log - + - log log - - -log 7r -+ exp -2 exp -y) - e 2 e 2 
(32.13) 

and 

where a;(a) is defined in {32.4}. 

PROOF OF THEOREMS 32.2.1 AND 32.2.2. Since Xl, ... , Xn are i.i.d. random 
variables, the distribution of {L:7=1 'ljJ(Xi;(}n('ljJ)); k = 1, ... , n} is the same as 
that of {L:7=1 'ljJ(XR;; ()n( 'ljJ)); k = 1, ... , n}, where (RI, ... , Rn) is a random per
mutation of (1, ... , n) independent of (Xl, ... , Xn). Then given (Xl,' .. , Xn) 
the random vector {L:7=1 'ljJ(XRi;()n('ljJ)); k = 1, ... ,n} forms a vector of rank 
statistics 

k = 1, ... ,n, 
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where a{ i) = 1/J{Xij (}n{ 1/J)), i = 1, ... , n. Notice that, due to the definition of 
(}n{1/J) , an = k Ei=l a{i) = O. In view of the assumptions (32.5), (32.6) and 
(32.9), these scores fulfill assumptions of Theorem 1 and Theorem 2 in Huskova 
(1996b) and hence Theorem 32.2.1 and Theorem 32.2.2 both hold true. • 

Remark 32.2.1 The assertions of Theorem 32.2.1 and Theorem 32.2.2 remain 
true if 1/J{Xij (}n{1/J)) is replaced by 'ljJ{Xij (}~) - 'ljJn, i = 1, ... , n, where (}~ is any 
symmetric function of Xl, .. ,Xn and 'ljJn = k Ei=l 'ljJ{Xij(}~). 

The assumptions (32.5) and (32.6) are quite mild, and they are fulfilled by 
various sets of assumptions. Typically we need slightly more than these for 
the asymptotic normality of the estimator (}n{1/J). One of the possible sets is 
formulated in the following theorem in terms of the assumptions on the score 
function 'ljJ{Xj (}) and the distribution functions F{xj (}). 

Theorem 32.2.3 Let Xl. ... , Xn be i.i.d. random variables with common dis
tribution function F{xj (}o), (}o E 8, where 8 is an open interval, and let 'ljJ{Xj (}) 
be a score function fulfilling 

A.1 the score function 'ljJ{Xj (}) is nondecreasing in the second argument; 

A.2 the function >.(t) = J 'ljJ{Xj (}o + t)dF{xj (}o), t E RI is continuously differ
entiable at t = 0, >'(O) = 0 and the derivative >.'{O) > OJ 

A.3 J 'ljJ2{Xj (}o+t)dF{xj (}o) is bounded away from 0 in a neighborhood oft = 0; 

A.4 J 11/J{Xj (}o+t)I2+.6.dF{xj (}o) is bounded in a neighborhood oft = 0 for some 
~>O. 

Then {32.5} and {32.6} hold true. 

PROOF. The proof is quite simple. The assumptions of the theorem guarantee 
the asymptotic normality and the Vn-consistency of the estimator (}n{'ljJ) [see 
Theorem 7.2.2A in Serfling (1981)] which together with the assumptions implies 
(32.5) and (32.6). • 

The above theorems provide limit distributions under the null hypothesis 
(and also approximations for the critical values) for the test statistics used for 
the testing problem 

Ho : (}l = ... = (}n = {(}o) (32.15) 

against 

HI: there exist 1 ~ m < n such that 
{(}o) = (}l = ... = (}m =1= (}m+! = ... = (}n{= (}o + 8n ), 

(32.16) 

where m, (}o and 8n are unknown parameters. This problem is known as the 
change point problem and m is called the change point. 
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At the end, we recall the test statistics based on Sk('ljJ) for this testing 
problem: 

T3(G) = 

sup {lVn(t)l/q(t)} 
099 

/llVn(tW' /w(t)dt 
./0 
max {~ 1(0/) ISk('ljJ) - Sk-G('ljJ)I} 
G<k~n y GUn .p 

max {~~(O/) ISk+G('ljJ) - 2Sk('ljJ) + Sk-G('ljJ)I}. 
G<k<n-G y 2G Un ~~ 

These statistics as the test statistics for the testing problem (32.15) and (32.16) 
are discussed in Antoch and Huskova. (1994) and Huskova. (1996a). 

32.3 Change Point Alternatives 

Applying similar arguments as in the previous section, we derive the limit be
havior of TI(qv), T3(G) and T4(G) and some related statistics under alternative 
(32.16), where qv(t) = {t(l- t)}V, 0 ~ v ~ 1/2. 

We consider the following assumptions. 

B.l X!, ... , Xn are independent random variables such that Xl, ... , Xm have 
common distribution function F(x; (0) and Xm+l, ... , Xn have common 
distribution function F(x; 00 + bn ), where m, bn and 00 E 8, are unknown 
parameters, 8 is an open interval; 

B.2 there exists TJ E (0,1) such that m = [nTJ]' where [a] denotes the integer 
part of a; 

B.3 as n - 00, 

bn - 00; J n I I loglogn 

B.4 as n - 00, 

1 n p 
c2 - 2: 'ljJ 2(Xi; On ('ljJ)) -n i=l 

(32.17) 

1 m p 
c2 - 2: 'ljJ 2(Xi; On('ljJ)) -m'i=l 

(32.18) 

for some c2 > 0; 
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B.5 as n ---t 00, 

n ( ) p 
m(n _ m)on Sm 'l/J ---t b, b# O. 

The assumptions (B.1) - (B.5) correspond to the alternative (32.16) when 
the magnitude of the change On is small (on ---t 0). 

We shall study here also the following estimators of the change point m that 
are related to the statistics TI (qv) and T4 (G): 

min {k; min {ISi+c('l/J) - 2Si('l/J) + Sn,i-C('l/J) I} 
C<t-;5.n-C 

= ISk+c('l/J) - 2Sk('l/J) + Sk-C('l/J) I }. (32.20) 

The estimators corresponding to the other test statistics can be introduced 
and studied accordingly [see Antoch and Huskova (1994) and Huskova (1996a)]. 
They have anticipated properties. 

Theorem 32.3.1 Let assumptions (A.i), (B.i) - (B.5) and (32.6) be satisfied. 
Then the limit distribution of TI (qv) is the same as that of 

for 0 :::; v :::; 1/2 and 

b202 d 
c2n (ml(qv) - m) ---t min {z E RI; max {W(t) -ltI9v(t), t E RI} 

= W(z) -lzI9v(Z)}, (32.21) 

where 0 :::; v :::; 1/2, 

(t) _ { (1- v)(l-TJ) +vTJ, t < 0, 
9v - (l-v)TJ+v(l-TJ), t>O, 

and 

W(t) = { WI( -t), t < 0, 
W2(t), t > 0, 

with {WI(t), t > O} and {W2(t), t> O} being independent Wiener processes. 

PROOF. Since Xl, ... ,Xm are i.i.d. random variables and ()n('ljJ) is a symmetric 
function of Xl,"" Xn, the vector n=~=l 'l/J(Xi; ()n('l/J)); k = 1, ... , m} has the 
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same distribution as the random vector n:=f=l 'ljJ(XK -; ()n('ljJ)); k = 1, ... , m}, , 
where (R1, ... , R;;) is a random permutation of (1, ... , m). 

Similarly, since X1+m, '" Xn are Li.d. random variables, ()n('ljJ) is a symmetric 
function of XI, ... , Xn and since 

k n 

L 'ljJ(Xi; ()n('ljJ)) = - L 'ljJ(Xi; ()n('ljJ)), k = 1, ... ,17" 

i=l i=1+k 

the vector {L:f=l 'ljJ(Xi; ()n('ljJ)); k = 1 + m, .. . , n} has the same distribution 
as the random vector {-L:f=1+k'ljJ(XR+;()n('ljJ)); k = 1 + m, ... ,n}, where , 
(Rt+m"'" R:j;) is a random permutation of (m + 1, ... ,17,). 

Denote 

where 

Notice that 

Z+(k) 
Z-(k) 

a(i) 
a+-m, 

L:f=1+k(a(Rt) - ~), k = m + 1, ... ,17, 
L:f=l (a(Ri) - am), k = 1, '" m, 

i = 1,2, ... ,17" 

- 1 ,\,m (') am = in L"i=l a 1, . 

n-m."..-t- m __ 
-- am + - am = O. 17, 17, 

Then given Xl, ... , Xn, the random vectors {Z+(k); k = 1 + m, ... , n} and 
{Z-(k); k = 1, ... , m} are independent vectors of two-sample-like rank statis-
tics with 

1 , ' m. 

1 
(n-m)! ' 

where (rl, .. . , rm) and (rm+l, ... , rn) are any permutations of (1, ... , m) and 
(m + 1, ... ,17,), respectively. 

Thus the assumptions of this theorem ensure those of Theorem 32.2.1 and 
Theorem 32.2.2 (i) hold true for {Z+(k); k = 1 + m, ... , n} and {Z-(k); k = 
1, ... ,m}. 

Now, we are ready to prove (32.21). By Theorem 32.2.1 applied to Z+(k), 
k = m+ 1, ... ,17" and Z-(k), k = 1, ... ,m, conditionally given (XI, ... ,Xn), 
we have as 17, -+ 00 

(32.22) 

(32.23) 
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{ IZ-(k)1 } 
l::;k::;~~nO;;2 (m - k)18nl 

= op(l ), (32.24) 

(Z+(k))2 

m+Rnrr:~::;k<n {(71, - k)(k - m)8~} op(l), (32.25) 

(Z+(k) )2 
op(l), (32.26) max { } 

m<k::;m+Rno;;2 71, - k 

{ IZ+(k)1 } op(l) (32.27) max = 
m+Rno;;2::;k<n (k - m)18nl 

for any Rn -t 00, Rn(8~71,)-l. 
Applying slightly modified Theorem 32.2.1 (i) to {Z+(k); k = m+ 1, ... ,71,} 

and {Z-(k); k = 1, ... , m}, we observe given (XI, ... , Xn that as 71, -t 00 

(32.28) 

and 
(32.29) 

where {W2(t); t E [0, A]} and {W2(t); t E [0, A]}, are independent Wiener 
processes, A > O. The relations (32.22) - (32.29) holds true also unconditionally. 

Then using these relations we proceed along the line of proof of Theorem 1 
in Gombay and Huskova (1996); namely, (32.22) - (32.27) imply the consistency 

(32.30) 

and the limit distribution of ml (qv) can be concluded from (32.23), (32.26), 
(32.28) and (32.29). The assertion (32.21) is proved. 

Concerning the limit distribution of Tl (qv), we notice that by (32.30) as 
71, -t 00 

P(Tl(qv) = max { ISk(,~i))1 }) -t 1 
Ik-ml::;Ano;;2 ..jiian(,t/J)qv(kj71,) 

for any An -t 00. Now, by (32.23), (32.26) and by assumption (B.5), we have 

max {ISk(1/J) - Sm(1/J) I} 
Ik-ml::;Ano;;2 

= Op( Ik-mry::;a:nO;;2 {ISk(1/J) - ~, Sm(1/J)I}) + Op(ISm(1/J)1 ~~) 

= Op(8:;n)· 

Then choosing An such that An -t 00 and o~);i -t 0 and realizing that qv(t) 
has a finite and bounded away from zero derivative in a neighborhood of t = 'TI, 
we conclude that Tl (qv) has the desired limit distribution. • 
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Theorem 32.3.2 Let assumptions (A.l), (B.l) - (B.5), (32.6) and (32.12) be 
satisfied and let as n ~ 00 

(32.31) 

Then the limit distribution of T4 (G) is the same as that of 

and 

b282 
c2 n (m4 (G) - m) .!; min {z E Rl; max{W(t) -ltl/v'6, t E Rl} 

= W(z) -lzl/v'6}, (32.32) 

where {W (t), t E Rl} is the process defined in Theorem 32.3.1. 

PROOF. It is very similar to that of Theorem 32.3.1 and therefore is omitted . 

• 
The assumptions in Theorems 32.3.1 and 32.3.2 are quite mild. As in Section 

32.2, there exist several sets of assumptions ensuring the validity of (B.4) and 
(B.5). One of the possible sets is formulated in the following theorems in terms 
of the score function 'tj)(x; 0) and the distribution function F(x; 0). 

For this purpose we introduce the functions: 

J 'tj}(x; 00 + t)dF(x; 00 + v), 
J l'tj)(x; 00 + t)12+~dF(x; 00 + v), 

It Al(t,V), 

for some ..6. > 0. 

(t,v) E R2, i = 1,2, 
(t, v) E R2, 

(t, v) E R2, 

Theorem 32.3.3 Let assumptions (A.l) and (B.l) - (B.3) be satisfied and let 

C.l the first partial derivatives of Al(t, v) are continuous in a neighborhood of 

(t, v) = (0,0), Al (0,0) = 0, Ail) (t, 0) > 0 in a neighborhood of t = ° and 

a _ (1) . 
av Al(t,v)l(t,v)=(O,O) - -AI (t,O), 

C.2 A2(t, v) is positive and continuous at (t, v) = (0,0); 

C.3 A2+dt, v) is bounded in a neighborhood of (t, v) = (0,0) 
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also be satisfied. 
Then the assertion (32.21) remains true with b = A~ (0,0) and c = A2(0, 0) 

and if, moreover, as n --+ 00 

(32.33) 

and 
(32.34) 

for some f3 > 0, DI > 0, D2 > 0, then as n --+ 00 

(32.35) 

PROOF. First, we show that the assumptions (B.4) and (B.5) are satisfied and 

that b = All) (0,0), C = A2(0, 0). 
Using standard methods one can derive that as n --+ 00 

(32.36) 

which together with the assumptions (A.l), (C. 1) - (C.3) implies as n --+ 00 

1 m 
- (2)11/)2(Xi ; On( '1,/;)) 12+fl - A2+fl( On( 1/)),0) 
n i=l 

n 

+ L (11/)2(Xi ;On(1/)))1 2+fl - A2+fl(On(1/)),8n)) = op(l). (32.39) 
i=m+l 

Applying again the representation (32.36) and assumption (C.l), we obtain as 
n --+ 00 

AS( On( 1/)),0) 

As( On( 1/)), 8n) 

As(O, 0)) + op(l), 

As(O,O) + op(l), 

s = 2,2 + b., 

s = 2,2 + b.. 

These relations together with (32.37) - (32.39) imply the assertions. 
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If additionally (32.33) and (32.34) are satisfied, we have the following rep
resentation 

and then 

This together with Theorem 32.3.1 and (32.37) ensures that (32.35) holds true . 

• 
Theorem 32.3.4 Let assumptions {A.l}, {B.l} - {B.3}, {C.l} - {C.3}, {32.12} 
and {32.31} be satisfied, then {32.31} remains true with b = >.i1) (0, 0) and c = 
>'2(0,0). If, moreover, {32.33} and v'n18nl1+.B ---; 0 hold true, then as n ---; 00 

(1) ( 
T. (G) - VG8 >'1 0, 0) ~ N(O 1). 

4 n )2>'2(0,0) , 

PROOF. It is very similar to that of Theorem 32.3.3 and hence is omitted. • 

Remark 32.3.1 If the parameter 0 is a shift in location, i.e., F(x; 0) = F(x -
0), and 'I/)(x; 0) = 'I/)(x - 0), then the assumptions can be further simplified. 

Remark 32.3.2 Concerning the choice of '1/), we take either one of the '1/) func
tions considered in robust statistics or we put 

f'(x,O) 
'1/) (x; 0) = f(x,O) , 

where f'(x; 0) = Jo f(x; 0). In the later case, the test procedure based on 
T1(q1/2) is asymptotically equivalent to the maximum likelihood test for the 
problem formulated at the end of Section 32.2 and the estimator m1(1/2) is 
asymptotically equivalent to the maximum likelihood estimator of m. 
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