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Preface

Sri Gopal Mohanty has made pioneering contributions to lattice path counting
and its applications to probability and statistics. This is clearly evident from
his lifetime publications list and the numerous citations his publications have
received over the past three decades.

My association with him began in 1982 when I came to McMaster Univer-
sity. Since then, I have been associated with him on many different issues at
professional as well as cultural levels; I have benefited greatly from him on both
these grounds. I have enjoyed very much being his colleague in the statistics
group here at McMaster University and also as his friend. While I admire him
for his honesty, sincerity and dedication, I appreciate very much his kindness,
modesty and broad-mindedness.

Aside from our common interest in mathematics and statistics, we both
have great love for Indian classical music and dance. We have spent numerous
hours discussing many different subjects associated with the Indian music and
dance. I still remember fondly the long drive (to Amherst, Massachusetts) I
had a few years ago with him and his wife, Shantimayee, and all the hearty
discussions we had during that journey.

Combinatorics and applications of combinatorial methods in probability and
statistics has become a very active and fertile area of research in the recent past.
This volume has been put together in order to (i) review some of the recent
developments in this area, (ii) highlight some of the new noteworthy results and
illustrate their applications, and (iii) point out possible new directions in this
fruitful area of research.

With these goals in mind, a number of authors actively involved in theory
and/or applications of combinatorial methods were invited to write an article
for this volume. The articles so collected have been carefully organized into
this volume in the form of 32 chapters. For the convenience of the readers, the
volume has been divided into following seven parts:
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e LATTICE PATHS AND COMBINATORIAL METHODS
e APPLICATIONS TO PROBABILITY PROBLEMS
e APPLICATIONS TO URN MODELS

APPLICATIONS TO QUEUEING THEORY

APPLICATIONS TO WAITING TIME PROBLEMS

APPLICATIONS TO DISTRIBUTION THEORY

e APPLICATIONS TO NONPARAMETRIC STATISTICS

From the above list, it should be clear to the readers that advances in both
theory and applications of combinatorial methods have received due attention
in this volume. Furthermore, it should also be stressed here that this volume is
not a proceedings, but rather a volume comprised of carefully collected articles
with specific editorial goals (mentioned earlier) in mind.

It has been a very pleasant experience corresponding with all the authors
involved, and it is with great pleasure that I dedicate this volume to Sri Gopal
Mohanty. I sincerely hope that this work will be of interest to mathemati-
cians, theoretical and applied statisticians, and graduate students working on
combinatorial methods and their applications to probability and statistics.

Acknowledgments: My sincere thanks go to all the authors who have con-
tributed to this volume, and provided great support and encouragement through-
out the course of this project. Special thanks go to Mrs. Debbie Iscoe for the
excellent typesetting of the entire volume. Thanks are also due to Shanti-
mayee, Pritidhara, Niharika and Suvankar Mohanty and Dr. Ihor Chorneyko
for providing help whenever needed. My final thanks go to Mr. Wayne Yuhasz
(Editor, Birkhauser) for the invitation to undertake this project, and to Ms.
Lauren Lavery for her assistance in the production of the volume.

N. BALAKRISHNAN
Hamilton, Ontario, Canada

December 1996



Sri Gopal Mohanty—Life and Works

Sri Gopal Mohanty was born on February 11, 1933 in the village of Soro in
Orissa, an eastern state of India on the Bay of Bengal. Orissa is also known as
the “land of temples.” Sri Gopal is the eldest of four children. His father was
a school teacher. His mother was his loving and stern teacher of family and
community values. He lived in a large household with his immediate family, two
paternal uncles, aunts, and cousins. The village life left an indelible impression
on Sri Gopal. Many experiences there would later have bearing: growing up
in a joint family, observations of the family’s involvement in village drama, his
artistic endeavors, and writing a published novel in his native tongue, Oriya.

Sri Gopal attended Satyananda High school in Soro. He earned his BA from
Fakhir Mohan College in a town nearby. While in New Delhi from 1951 to 1959,
Sri Gopal was working at the Ministry of Food and Agriculture, Directorate of
Economics and Statistics and received a diploma from the Indian Council of
Agricultural Research in 1957. He continued to work at the Ministry of Food
and Agriculture when he pursued and obtained his MA in Mathematics from
Punjab University in 1959. Subsequently, he went abroad and was conferred
with a PhD in Statistics (based on the Thesis entitled On some properties
of compositions of an integer and their application to probability theory and
statistics, written under the supervision of the late Prof. T. V. Narayana) by the
University of Alberta, Edmonton, Canada. He became an associate professor in
the University of Buffalo, USA in 1962. In 1963, he returned to Orissa to marry
Shantimayee Das. Shantimayee had been a lecturer in Botany after having
obtained her MSc. After the birth of their first child in 1964, they moved across
the border to Hamilton, Canada where Sri Gopal joined McMaster University
as an associate professor in Statistics. During the years 1966 to 1968, he took
a leave of absence and travelled to India with his small family to work at the
Indian Institute of Technology, Delhi. He resumed his position at McMaster
University in 1968 to become a full professor in the early 70’s. Until this day,
he still holds the position of professor in Statistics at McMaster.

Forging a path in a new country that had adapted multiculturalism as a
framework, Sri Gopal brought forth his talents and community values. Fostering
the Indian community in Hamilton was one of his passions. He led a local Indian
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community organization. He was also involved in numerous stage productions
for the Indian community and multi-ethnic events; he wore many hats for these
cultural productions: conceptualizer, director, and stage manager.

Drama ran in the blood after all. Sri Gopal’s eldest uncle, the patriarch
of his childhood home, was the village sponsor of local dramatic productions.
Sri Gopal’s cousin went on to become a movie and TV director in India. Sri
Gopal, himself, wrote, adapted, directed, and produced plays about the Indian
immigrant experience, women’s oppression, and Indian village life conflict.

Sri Gopal has spent considerable time in promoting his own culture and
heritage in North America: staging productions involving local community tal-
ents, encouraging and inspiring artists, creating awareness of Indian culture in
his community and the community at large. These efforts have also won him
recognition amongst the people of his state, Orissa, who are in North America:
he was awarded the Kalashree Award in 1995 by the Orissa Society of Amer-
icas. In 1996, he also won the Community Award of Excellence given by the
Hamilton Mayor’s Committee Against Racism and Discrimination.

Involvement in the local community at large was important too. He partici-
pated as an executive member in the Home and School Association, a Canadian
network of parents—teacher organization that advised and assisted schools. Con-
cerned about the age segregation observed in Canada, he encouraged a local
school to organize student visits to a nearby home for the elderly people. Sri
Gopal also arranged for cultural performances by children from the Canadian
Indian community at the elderly home.

Sri Gopal has an avid interest in travel and learning about all international
matters. He always encouraged his children to learn about the different peoples
and places of the world.

Sri Gopal and Shantimayee Mohanty have three children: Pritidhara, Ni-
harika, and Suvankar. Their eldest daughter, Pritidhara, currently works for
the US Environmental Protection Agency, in Washington, DC; Niharika is an
Odissi (style of Indian classical dance of Orissa) dancer completing her MA in
Dance at York University in Toronto; Suvankar is an undergraduate student in
Criminology at Carleton University in Ottawa.
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Lattice Paths and Faber Polynomials

Ira M. Gessel and Sangwook Ree

Brandeis University, Waltham, MA
SuWon University, Kyung-Ki-Do, Korea

Abstract: The r-th Faber polynomial of the Laurent series f(t) =t + fo +
fi/t + fa/t? + --- is the unique polynomial F,(u) of degree r in u such that
F.(f) = t" + negative powers of t. We apply Faber polynomials, which were
originally used to study univalent functions, to lattice path enumeration.

Keywords and phrases: Lattice path enumeration, ballot problem, Faber
polynomials

1.1 Introduction

The classical ballot problem [see, for example, Mohanty (1979)] asks for the
number B(m,n) of paths from (1,0) to (m,n) (where m > n), with unit steps
up and to the right, that never touch the line z = y. The number B(m,n) can
easily be computed by the recurrence

B(m,n) = B(m —1,n) + B(m,n—-1) for m>n >0, (m,n) # (1,0),

with the initial condition B(1,0) = 1 and the boundary conditions B(m, —1) =
0 and B(m,m) = 0 for all m > 0. Displaying these values on the corresponding
lattice points, we have the following array, showing B(m,n) for m > n > 0:

5 0
4 014
3 0 514
2 0259
1 01234
0|01 1111
n/m|{ 012 3 435
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Let us now extend the values of B(m,n) to the region in which n > m >0
so that the same recurrence is satisfied; this can be done in only one way, since
we may write the recurrence as B(m — 1,n) = B(m,n) — B(m,n — 1). We
obtain the following array:

-1 -4 -9 -14 -14 O
-1 -3 -5 -5 0 14
-1 -2 -2 0 5 14
-1 -1 0 2. 5 9
-1 0 1 2 3 4

0 1 1 1 1 1

We observe that the recurrence B(m,n) — B(m—1,n) — B(m,n—1) = 0 is now
satisfied for all m,n > 0 except (m,n) = (1,0) and (m,n) = (0,1), as long as
we take B(m,n) to be 0 for m < 0 or n < 0. In terms of generating functions,
the recurrence and initial conditions are equivalent to the formula

oo
(l—flt—y) Z B(m,n)xmynzm_y,

m,n=0

which gives

oo
S B(m,n)z™y" = Tl—i— . (1.1)
m,n=0 —zr-y
Following MacMahon, we may call (1.1) a “redundant generating function,”
since it contains some terms which are not part of the solution of the original
problem.

From (1.1) we may derive the well-known formula for the ballot numbers,

—1  + . —  —n(m+n
B(m,n):(m+n )_(m-i—n 1>=m n(m—}—n). (1.2)
m—1 m m+n\ m
There is a gap in our derivation of (1.1). It is clear that the numbers B(m,n)
defined by (1.1) do indeed have the property that for m > n > 0,

_J 1 if (m,n) =(1,0)

B(m,n) — B(m —1,n) — B(m,n—1) = { 0 otherwise.
However, we have not yet proved that the boundary condition B(m,m) = 0
is satisfied. This follows easily from the explicit formula (1.2), or from the
fact that the generating function (1.1) is anti-symmetric. The proof that the
coefficients of (1.1) are indeed the solution to our problem is now complete.

By exactly the same reasoning, we find that for any positive integer r and
any nonnegative integers m > n > 0, the number of paths from (r,0) to (m,n)
that never touch the line x = y is the coefficient of z™y" in (z"—y") /(1 -z —y).
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We can try a similar approach to paths that begin at (1,0) and stay below
the line z = 2y. Here the recurrence is again C(m,n) = C(m—1,n)+C(m,n—
1), but the boundary condition is C(2n,n) = 0. Extending the recurrence to
the region m < 2n, we obtain the following array:

-2 -5 -8 -10 -10 -7
-2 -3 -3 -2 0 3
-2 -1 0 1 2 3

0 1 1 1 1 1

o s =)

As before, we find that the extended function C(m,n), with C(m,n) = 0 for
m < 0 or n < 0, satisfies the recurrence C(m,n) = C(m — 1,n) + C(m,n —
1) everywhere except when (m,n) is (1,0) or (0,1), and thus the generating
function for the extended function is apparently

T —2y

iT—y ) (1.3)

from which we may derive the formula
Clm,n) = <m+n——1> _2<m+n- 1) _ m—-2n<m+n>.
m—1 m m+n n
To complete the proof, we must show that the coefficient of z2"y™ in (1.3) is
indeed zero. Although this may be seen from the explicit formula for the coef-
ficients, we use a different method that we will need later on. Let us substitute

xt for x and y/t2 for y in (1.3). Then it suffices to show that the constant term
in tin

zt — 2y/t?
1—xt—y/t2’

when expanded as a power series in x and y, is zero. But

ot — 2y /t? . d { 1 }

i VA log — ~
T—ai-g/2 G\ B T=mt =g/

and since the coefficient of 1/t in the derivative with respect to ¢ of a Laurent
series in t is 0, the desired conclusion follows.

Note that this approach cannot easily be applied to paths that are required
to stay below the line y = 2z: here we would require the boundary conditions
C(m,2m) = 0 and C(m,2m + 1) = 0, and this is not so easily achieved.
However, there is no problem with paths starting at (1,0) that stay below
the line z = py, where p is a positive integer, and we find in this case the
generating function (z — py)/(1 — z — y).

We now consider one final example before embarking on the general case.
Suppose we want to count paths from (3,0) to (m,n) that stay below the line
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x = 2y, where m > 2n. The same recurrence is satisfied, and as before, we
may extend its solution into the region where m < 2n, obtaining the following
array:
-2 -7 -15 -25 -35 —-42 —42
-2 -5 -8 -10 -10 -7 0
0 -3 -3 -2 0 3
0 O 0 1 2 3 4
0 0 0 1 1 1 1

\]

The recurrence is satisfied except at the points (3,0), (1,2), and (0,3), so the
generating function is apparently

z% — 3ncy2 - 2y3

l-z-y (1.4)

To prove this we must show that the coefficient of z2"y" in (1.4) is zero, which
we can do just as in the previous example: we replace x with xt and y with
y/t2. Then we have

343 _ 342 /13 — 23 /16 d 1
- 1 _x:t/_ y/t2y L dt {log T T P(t)2/2}  {19)

where P(t) = xt + y/t2, so the constant term in ¢ in (1.5) is zero.

In the remainder of this paper, we shall develop the general theory of which
(1.5) is a special case. It will turn out that the numerator in (1.5) and its gen-
eralizations are closely related to certain polynomials called Faber polynomials
which have been studied in connection with univalent functions [see Schiffer
(1948); and also Brini (1984), Jabotinsky (1953) and Schur (1945)]. Faber
polynomials were first applied to lattice path enumeration, in the special case
we consider in Section 1.5, by Ree (1994).

1.2 Faber Polynomials

Let
fi | fo

f(t)=t+fo+-7+t—2+~--.
In the original applications of Faber polynomials, the f; are complex numbers,
and the series converges in some neighborhood of infinity. However, for our
applications we take ¢ and the f; to be indeterminates; i.e., we work in the ring
of formal Laurent series C[[t, fo, f1/t, fo/t2,...]].
Let F(u) be a polynomial in u of degree r such that

F(f) =t" + negative powers of t.
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We say that F(u) is a Faber polynomial of f. It is easy to prove by induction
that there is exactly one Faber polynomial F,.(u) of degree v, which we call
the rth Faber polynomial of f. For example, we have Fj(u) = u — fy and
B(f) = v — 2fou+ (f2 - 2f1).

Schiffer (1948) gave the generating function

log 1) =% _ _{ZF,.(U)”_T. (1.6)

()

If we set f(v) = vh(1/v), so that h(w) = 1+ 32, fiw**! is a power series in
w, then (1.6) may be rewritten in terms of formal power series as

log{h(w) —uw} = — Z Fr(u)wTT . (1.7)
r=1

Expanding (1.6) or (1.7) gives the explicit formula

T . . .
; it (2—1+]0+]1+---)! L
F=3u > ()T e
i=0  i+jo+2j1+3j2+ =1 - Jo" J1:

1.3 Counting Paths

Let  be a positive integer and let k£ and n be nonnegative integers. Let S be a
subset of the set {1,0,—1,—2,---}. We call the elements of S steps. We want
to count sequences (s, S2, . .., Sp) of elements of S such that every partial sum
T+ 81+ 83+ -+ s; is positive and r + 51 + 82 + - -+ + 8, = k. We call such
a sequence of steps a good path of length n from r to k. The ballot problem is
equivalent to the case S = {1, —1}, with » = 1, and the other problems discussed
in Section 1.1 are all equivalent to specializations of the case S = {1, —p} for
various values of p, r, and k.

It is convenient to consider a somewhat more general problem: We take as
our set of steps the entire set {1,0,—1,—2,---}, but we assign to each path
(s1,82,...,5n) the weight f_, f_s, - f—s,, where fo, f1, fo,...are indetermi-
nates and f_; = 1. The condition that f_; = 1 simplifies all our formulas, but
does not lose any information.

Lemma 1.3.1 A path from r to k with weight fg° f‘ -+~ hask—r+j1+2ja+- -
steps equal to 1, and length k —r + jo + 251 + - - -

PROOF. Let j_; be the number of steps equal to 1. Since the path is from r to
k, we have 7 4+ j_1 — 0jp — 1j1 — 2jo — - -- = k, and the first assertion follows.
Then the length of the pathis j_1+j1+jo+--=k—7r+jo+251+---. N
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We now fix r throughout the rest of this section. Let G(n, k) be the sum of
the weights of all good paths of length n from r to k. Thus, the coefficient of
fg° ffl .-+ in G(n, k) is the number of good paths of length n from r to k with
Jjo steps equal to 0, j; steps equal to —1, and so on.

The following is clear.

Lemma 1.3.2
(i) G(n,0) =0 for all n;
(i) G(0,7) =1 and G(0,k) =0 for k #r;
(i11) Forn >0, G(n,k) =Y¥2_; fiG(n — 1,k +1).
Moreover, G(n, k) is uniquely determined by conditions (i)-(iii).

Now, let us define

o0
Gy = Z G(n, k).
n=0
By Lemma 1.3.1, we can recover G(n, k) from Gy as the sum of all terms in Gy
involving f°fJ*---, where k —r+jo+2j1 +- - =n.
Now let f(t), as in Section 1.2, be the formal Laurent series
f(t)=t+fo+é+{—22+---.

We use the notation [t']A(t) to denote the coefficient of #* in A(t).
Lemma 1.3.3 Let N(t) be a Laurent series in t such that

(a) N(t) =t" + negative powers of t

(b) [IN(#)/{1 - f(t)} =0.
Then for k > 0, Gy = [tF]N(t)/{1 — f(2)}.

PrROOF. Suppose that the hypotheses of the lemma are satisfied. For k > 0,
let

N(t)
k
gk =t
0
and for each integer n, let g(n,k) be the sum of all terms in gi involving
203 ... where
k—r+jo+2j1+---=n. (1.8)

By Lemma 1.3.2, it suffices to show
(i) g(n,0) =0 for all n;
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(ii) g(0,7) =1 and g(0,k) = 0 for k # r;
(iii) Forn >0, g(n,k) = "2_, fig(n — 1,k +1).

First note that (i) follows immediately from (b). By the definition of g, we

have
N(t)

1—-f(#)

where R(t) is a power series in t~1. Multiplying both sides by 1 — f(t), we get

o0
=Y gt* +t7'R(?),
k=1

N = {1- f(O} S gtk + 5(2),
k=1

where S(t) = {1 — f(¢)}t"1R(t) is a power series in t~!. Equating coefficients
of t* for k > 0 on both sides and using (a), we obtain

= f 1 ifk=r

i=—1

Extracting the terms in fg" fl .-+, where k — 7+ jo + 2j1 + - - - = n, we obtain

g(n, k) - Z f’ig(n - lak+7) =

i=—1

0 otherwise, (1.10)

{1 ifk=randn=0
since the nonzero case of (1.9) contributes to (1.10) only when k£ = r and
jo = j1 = --- = 0. This proves (iii). Finally, (ii) will follow from the n = 0
case of (1.10) once we show that g(—1,k) = O for all k. We show in fact that
g(n,k) =0 for all »n < 0: It is clear from (1.8) that g(n,k) =0 for n < —r. It
then follows from (1.10) by induction on n that g(n, k) = 0 for all negative n.
Thus, (ii) holds. |

Theorem 1.3.1 Gy is the coefficient of t* in

t d

where Fy.(u) is the r-th Faber polynomial of f.

PROOF. It follows from the definition of Faber polynomials that

t d
e F.(f) =t" + negative powers of t.

In view of Lemma 1.3.3, it is sufficient to show that

d
S R(D/a-1)
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is the derivative of some Laurent series in ¢, since this will imply that it has no

term in ¢t~1.
Let F.(u) = 3_g ciu’. Then

LR -1) = i S P = 3 e
i=1 §=0

=1 j=0

But fiH-1f = & f+3 /(i + j), so

d d 1C;
— F.(f)/1-f)=—= s n
dt (A d11;)7+3f

1.4 A Positivity Result

Let N, = % F.(f) be the numerator in Theorem 1.3.1. We know that N, =
t" — M,., where M, contains only negative powers of ¢.

Theorem 1.4.1 The coefficients of M., as a power series int~1, fo, f1,... are
nonnegative integers.

PROOF. By setting u = f(t) in Schiffer’s formula (1.6), and then differentiating
with respect to ¢, we obtain

HOBY0] ffl ZN . (1.11)
Thus,
o - 1) -]
t tf'(t)

=t

v—t  [f@) =) )
OEY 01 o it R

We shall show that the last two factors in (1.12) have positive coefficients
when expanded as power series in v~ and ¢t~!. First, we have

f(u—f Zﬁ( )_I_Zﬁ(_f 5%++£7>

i=—1

Thus, (v —t)/{f(v) — f(#)} has nonnegative coefficients.
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Next, we have

flo) - f(t) _ Z f1< —f”+1lt"3‘1>. (113)

(v—1)2 v—f P )2 v-—t

The coefficient of f; in (1.13) is zero for i = —1 and 7 = 0. It is easily verified
(by multiplying both sides by (v — #)?, for example) that for i > 1,

£ n‘_’ Lo¢
(v — t)2 o —1 Z —J+lf_]+1’

and thus it follows that the coefficients of (1.13) are nonnegative. |

1.5 Examples

Let us now return to the problem discussed in the first section: given positive
integers r and p, count paths in the plane with steps (1,0) and (0, 1), from (r, 0)
to (m,n), where m > pn, that never touch the line z = py. (Note that any
starting point below the line z = py would give an equivalent problem.) We can
convert this problem to an instance of the problem introduced in Section 1.3 by
representing a horizontal step by a step equal to 1 and a vertical step by a step
equal to —p. The transformed path will then go from r to k, where k = m —pn.
The solution to the transformed problem is then obtained by setting to zero
all the f; except f, in the general solution given in Theorem 1.3.1, where the
weight of the transformed path is fz’,‘. Explicitly, the required number is the
coefficient of t™7P" f in

t d

=S R+ £/ (L=t = fy/P), (L14)

where the Faber polynomials F;.(u) are given from (1.7) by
w +1
Z Fr(u)— = —log(l+ fpwP™ —uw)

(uw ~ fpwp+1)j/j

I
K

=1

= 553 C () oy
7j=1 i=0 J
o j Vi [

= EZ(_<> flwP+iyd—?,
j=1i=0 J
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Setting j = r — pi and equating coefficients of w”, we obtain

FT£U) — Z (—1)1" (’r —7177/) f;ur—(p+l)i,

i<r/(p+1) | P

and thus the numerator in (1.14) is

~ (4 fp/17)(1 = pfp/ ")

= Gophym) Y (- RN <T:.pi>f,§(t+fp/t”)’"("“)i"l

i<r/(p+1) rom
p ifr—pi—1)\ p\r—(p+1)i—1
= (t=ph/?") > (V' T |hE+ /) - (115)
i<r/(p+1) '

To recover a generating function in z and y, as in Section 1.1, we substitute
z for t and zPy for f,. Then, (1.14) and (1.15) give as the redundant generating
function for our problem

T — (r—pi—1 . .
el DNk ( i )(zpy)’(m Fyy L (116)
—T—-y. i
i<r/(p+1)
For example, if we take p = 2 and r = 3, (1.16) gives

2 _ 3 — 3zy? — 2°
l—z—y

)

as in (1.4). B B . B

Now, let (1.16) equal N, /(1 — z — y) and let N, = 2" — M,. Then, N, and
M can be obtained from N, and M, as defined in Section 1.4 by settlng t=r,
fp = 2Py, and f; = 0 for i # p. Since it is clear from (1.16) that N, and M, are
homogeneous of degree r in z and y, they are determined by the sums °, N,
and Y, M,. The formulas in the proof of Theorem 1.4.1 give

o0
7 z—py
N, = 1.1
Z:l l—z—y+zPy (1.17)

and

X __ - — 24 ... p—1

1-y(l+z+22+---+ 2P

For p =1, (1.18) gives Mr =y", so that NT = 1" —y", as we observed in Section
1.1. We can also obtain a simple explicit formula when p = 2. In this case,
(1.18) gives

& (2+2) _°°T 1 i+1
Lo = £ () ()
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Extracting the terms that are homogeneous of degree r and simplifying, we

obtain /2
M, = Z 2r — 31 (r - 1,) e

i=0 T—1 3

The method we have described can be used for counting paths in the plane
that stay below the line z = py, with arbitrary starting and ending points, and
an arbitrary set of allowed steps subject only to the condition that every step
(i,7) satisfies 1 — pj < 1. Another method, also using Laurent series, which is
not subject to the restriction on steps, but does not allow an arbitrary starting
point, is described in Gessel (1980).

References

1. Brini, A. (1984). Higher dimensional recursive matrices and diagonal
delta sets of series, Journal of Combinatorial Theory, Series A, 36, 315~
331.

2. Gessel, I. M. (1980). A factorization for formal Laurent series and lattice
path enumeration, Journal of Combinatorial Theory, Series A, 28, 321—
337.

3. Jabotinsky, E. (1953). Representation of functions by matrices. Appli-
cation to Faber polynomials, Proceedings of the American Mathematical
Society, 4, 546-553.

4. Mohanty, S. G. (1979). Lattice Path Counting and Applications, New
York: Academic Press.

5. Ree, S. (1994). Enumeration of lattice paths and P-partitions, Ph.D.
Thesis, Brandeis University.

6. Schiffer, M. (1948). Faber polynomials in the theory of univalent func-
tions, Bulletin of the American Mathematical Society, 54, 503-517.

7. Schur, I. (1945). On Faber polynomials, American Journal of Mathemat-
ics, 67, 33-41.



2

Lattice Path Enumeration and Umbral Calculus

Heinrich Niederhausen

Florida Atlantic University, Boca Raton, FL

Abstract: The Umbral Calculus is an excellent tool for solving systems of
difference equations with given initial values. Many lattice path enumeration
problems can be formulated as such systems. Examples are paths underneath a
boundary of straight lines, path inside a diagonal band, weighted paths, paths
with several step directions, and paths crossing some line a given number of
times.

Keywords and phrases: Umbral Calculus, lattice path enumeration, Kolmo-
gorov-Smirnov tests

2.1 Introduction

Twenty years ago, when I saw the “Finite Operator Calculus” [Rota, Kahaner
and Odlyzko (1973)] for the first time, I was captivated by its beauty and in-
spired by all the roads it opened up for further exploration. Sheffer polynomials
became the magic tools for my thesis work on Ballot problems and Kolmogorov-
Smirnov distributions, and I started to work on some generalizations, like piece-
wise polynomial Sheffer functions (“Sheffer splines”) and multi-indexed Sheffer
sequences. However, none of the generalizations I have studied were as satisfy-
ing to me as the specializations that lead to real applications. There is of course
a considerable amount of details necessary before we can actually calculate a
significance level, say, when we start with the Umbral Calculus.

All the results in this paper have been published earlier, except Theorem
2.5.1 on geometric Sheffer sequences, and perhaps formula (2.8) on counting
lattice path with weighted left turns staying above a parallel to the diagonal.
However, this paper is not intended to be a survey on lattice path problems,
but to show how the Umbral Calculus can serve as a tool in certain situations.
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2.1.1 Notation

A polynomial sequence {pn},~q is a sequence of polynomials such that deg p, =
nforalln=0,1,....
p(z,1) = ¥ pa(@)"
n>0

is the generating function of this polynomial sequence. For convenience, we will
henceforth assume that p, = 0 for negative n.

A delta operator B is a formal power series of order 1 in the derivative
operator D,

B(D;) = Dy +byD% + ...

A Sheffer sequence {sp} (for B) is a polynomial sequence such that
Bsp = sp-1

for all » = 0,1,.... The basic sequence {b,} (for B) is the Sheffer sequence
with initial values b,(0) = 8o,. Basic sequences and Sheffer sequences have
generating functions of the form

b(z,t) = €D, s(z,t) = s(t)e™P®)

where (3 is the compositional inverse of B, and s(t) = 3,5 sn(0)t" is a formal
power series of order 0. A straightforward consequence of those generating
functions is the binomial theorem for Sheffer sequences,

n

sa@+y) = 3 8i(@)baily) (2.1)

1=0

2.2 Initial Value Problems

In lattice path enumeration, we frequently have to solve the system of difference
equations
Brp(z) = rp_1(x)

for all n =0,1,..., where B is a given difference operator and rq is a non-zero
constant. This implies that {r,} is a Sheffer sequence for B. Finding a solution
to this system usually requires expanding r,(z) in terms of the corresponding
basic sequence {b,} such that certain initial values are met (which are set by
path boundaries),

Tn(Tn) = Yn
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say, for n. = 0,1,.... Such initial values uniquely determine {r,}. The binomial
theorem for Sheffer sequences in (2.1) can be utilized for such an expansion if
we know an initial value at the same input for all n, like r,(0) for example:

ra(@) = 3 75(0)bn_j(x). (2.2)
=0

The same theorem can help us now to recursively determine r,(0) from the
given initial values, because

Yn = Tn(2n) = 3 75(0)bn_; ().
=0

In other words, we must solve the matrix equation Y = AR for R, where Y =
(¥i)ico..mn>» BR=(ri(0)),—0_n,and A= (bi—j(“’i))i=0...n,,j=0...1: is lower-triangular.
Cramer’s rule will easily express r,(0) as a determinant (note that |A| = 1), if
necessary. However, here we do not consider the well-known determinant as an
explicit solution, because of its inherent recursive nature. To get () we need

another triangular matrix, C' = (bi—;(z)),_o_,, j=0..;» and find

(ri(2))izg..n = CR=CAT'Y.

We will see below that Umbral Calculus can find an ezplicit solution to the
initial value problem if the inputs z,, are piecewise affine in n. The size of the
initial values y, is of minor importance; suppose we know a family of Sheffer
sequences {f%’ )}n>0 for B with initial values f$,1)(T-,,+, ) =0bon foralli=0,1,....

Then it is straightforward to verify that

ra(z) = 3 it () (2.3)
=0

solves the original initial value problem.
It can be helpful to have a mental image of the solutions. In the context of
initial value problems, I visualize a Sheffer sequence as rows of values:

* * * ya=5 * * * * sa(r) quartic

* * * * * y3=3 * * s3(r) cubic
y2=3 * * * * * * * s2(z) quadratic

* * * * * * y1=2 * ... si(z) linear

1 1 1 1 =1 1 1 1 1 so(z) constant
tan2 -2 -1 tan4d tan0 1 tan3 tanl 2 X

Example: s,(tann) =n+1

An important aspect of this example is that the recurrence need not take
place in an integer-lattice. The difference operator and the derivative are both
delta operators. In other words, we can simultaneously study lattice paths
and empirical distribution functions as in the Kolmogorov two-sample and one-
sample tests.
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2.2.1 The role of ¢*

The Finite Operator Calculus [Rota, Kahaner and Odlyzko (1973)] is based on
the reference sequence {z"/n!} and its generating function e®*. The special
analytical properties of this generating function stand behind many interesting
results in the Finite Operator Calculus.

Suppose {b,} is the basic sequence for the delta operator B, with generating

function
Z by (z)t" = %),
n>0

It is of great importance for our initial value problem that D;e*#®) = z3/(t)e*F®),
because this implies that

pn(2) 1= ":1 bpt1(z) (2.4)

has the generating function 3'(t)e*®® | and therefore must be a Sheffer polyno-
mial. The linear combination
T—an—c

sn() :=bp(x — ¢) — app—1(z —¢) = — bp(z —¢)

of Sheffer polynomials is again a Sheffer polynomial for the same operator, and
solves the initial value

Bs, = sp—1, and sp(an+c) = 6o n

for alln = 0,1,..., where a and c are given constants. This solution has already
been given in Rota, Kahaner and Odlyzko (1973). In order to solve the problem

Brp, =rp_1, and rp(an+c¢) =y,
for alln =0, 1,... using the expansion (2.3), we must define tg)(m) := sp(z—ai)
and get

r—an—c¢

rn(z) = Z YisSn—i(z — ai) = Z Yi bn—i(z — ai — c). (2.5)

i=0 =0 T—-a@-—c

2.2.2 Piecewise affine boundaries

Suppose we want to solve the system with initial values first along the line
Tn = an + c given by
yn = rn(an +c)

for allm =0,...,L — 1, and thereafter on the line z, = an + ¢ given by

Yn = Tn(@n + ¢)
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for all n = L,..., where a,a,c,¢ and L are all given constants. By (2.5), the
beginning of the sequence can be calculated along the second line as

(@—a)yi+é—c . L
(@i + ¢) Zyj a1_aJ+c_cb-_j(a1,—aJ+c—c)

forall2=0,...,L —1, and applying (2.5) again gives for n. > L the expansion

L-1 ~ ~
.. . T—an —c T —an —=¢
T‘n(:L') = E r,;(az+c) ’L‘——&—?—C- bn_ 1(’L‘ ai—c¢ +Z Yi m bn_1(’12 av—c).
1=0 i ’ i=L ’

(2.6)
Substituting for r;(ai + ¢) from the beginning of the sequence into the first sum
in (2.6) finishes the expansion, but makes it into a double sum.

This procedure can be repeated for initial values on more affine pieces.
Obviously, the multiplicity of the summation will grow with the number of
pieces. In the example presented in Section 2.2, Dgsp(r) = sp—1(z) and
sn(tan(n)) = n + 1, and it suffices to use two pieces if we only want to find
sa(z) = grz* + .0737652° + 7899422 + 4. 2212z — 1. 1357:

Tn, = (tan2—tanl)n+2tanl—tan2 forn=20,1,2
zn, = (tan4 —tan3)n +4tan3 —3tand for n > 3.

2.2.3 Applications: Bounded paths

Some of the best known applications occur in the enumeration of lattice paths,
sequences of horizontal — and vertical 1 steps starting at the origin. Let r,(m)
be the number of paths that reach the point (m,n) under some kind of restric-
tion following the recurrence

ra(m) = ra(m —1) + rn_1(m).

The (generalized) ballot problem requires the paths to remain below some
boundary line; this translates into initial conditions of the form r,(—1) = on
foralln=0,...,L—1,and rp(an+c)=0foralln=1,....

x ok %k x ox ok 409 1034 ... r5(z)
+ % o+ %+ O 52 132 248 409 625 ... r4(z)
£ O 6 1603 52 % U6 Bl N6 .
B 1 3 6 110 15 21 28 36 45 55 ...  rox)
o 1t1 2 3 4 5 6 7 8 9 10 ... r1(z)
111 1 1 1 1 1 1 1 1 1 ..
-1 0 1 2 3 4 5 6 7 8 9 ... x

Path boundary 3n — 8, with sample path
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Such initial value problems must be solved for calculating the exact distribu-
tion of the (one-sided) two-sample Kolmogorov-Smirnov test. The exact distri-
bution of the one-sample Kolmogorov-Smirnov test derives from the Lebesque
measure of certain empirical distribution functions instead of the counting mea-
sure of lattice paths; the same techniques apply, however the derivative operator
D, takes the place of the backwards difference operator. Sheffer sequences are
also employed for the exact distribution of some multivariate generalizations.
The two-sided distribution of the two-sample test has a “closed form”; why
that is not the case for the one-sample case is explained in Section 2.4.1. De-
tails about these applications can be found in Niederhausen (1979). A general
reference in this direction is Mohanty (1979); see also Mohanty (1968).

2.3 Systems of Operator Equations

In the last section, we discussed the rather simple system Br, = r,_1, for n =
0,1,... with relatively general initial conditions. In this section we concentrate
on finding basic solutions by, where b,(0) = 6o n, of more complicated systems
of the form

Qb, = Rbp_1 + Sby,_ (2.7)

for all »n = 0,1,..., where c is a positive integer, R and S are translation
invariant invertible operators (i.e., power series of order 0 in D,), and @ is a
delta operator. An example for R could be Rb,(z) = >"i_; pibn(z —r;) for some
given constants p1,...,px and 71,...,7¢. By a solution of (2.7), we mean an
expansion of b,(z) in terms of the basic sequence {g,} of Q.

Suppose the unknown solution {b,} is the basic sequence for some delta
operator B. If we can construct a solution under this hypothesis, then the
assumption will be justified. Because B and @Q are both delta operators, there
exists a translation invariant and invertible operator T" such that B = T'Q [see
Corollary 4 of Rota, Kahaner and Odlyzko (1973)]. Any such T which solves
the equation

I = RT + ST°Q°*™!

also solves the equation

@ = RTQ + ST°Q°

which is equivalent to the system (2.7) (any two translation invariant operators
commute). Equivalently, I — RT = (RT)°R=°SQ°~! and (RT)™° — (RT)!~¢ =
R~¢SQ°!. Lagrange inversion then gives

_  —k(c—1) n _ _
T " = z (n > R™ kchQk(c 1)
>0 k n—(c— 1k
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and the Transfer Formula [Section 4 of Rota, Kahaner and Odlyzko (1973)]
gives

o n—k(c—1 _

bu(z) = 2T~ ga(a) = 3 ( . )>R" B g k(e-(@)
k>0

[we need to use that {"—:lqm_l(x)} is a Sheffer sequence; see (2.4)]. It is now

easy to verify that this basic sequence really solves (2.7).

2.3.1 Applications: Lattice paths with several step directions

Counting (weighted) lattice paths with several step directions leads to recur-
rence relations of the form

T s
dn(T) = dn(z = 1)+ ) pibp_1(z —15) + > Oibn_c(z - s;)
i=1 i=1
if the step vectors are (1,0), (r1,1),...,(rr, 1),(s1,¢),...,(8s,¢). In this case,
Q =V, the backwards difference operator. More details about the simple case
r =1 = s are given in Niederhausen (1979). An application to a gamblers ruin
problem and expected game duration can be found in Niederhausen (1986).

2.4 Symmetric Sheffer Sequences

In Section 2.2.3, we mentioned the general ballot problem as an application
of formula (2.6). In the classical ballot problem, the paths stay below the
diagonal, or some line parallel to the diagonal. The initial values are, therefore,
rn(—1)=0foralln=1,...,L -1, and r,(n — L) =0 for all n > L.

* o« % 0 28 90 207 r5(m)
* *x 0 9 28 62 117 ra(m)
* 0 3 9 19 34 55 rr(m)
0 1 3 6 110 15 21 ro(m)
0o 11 2 3 4 5 6 r1(m)
1 71 1 1 1 1 1 ro(m)
-1 0 1 2 3 4 5 m

The ballot problem (L = 3), with sample path

However, the solution to this initial value problem is much simpler than the
sum in formula (2.6) indicates. It is given by

n+m n+m
o= ()= (225)
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This well-known solution is easily identified as a difference of two Sheffer poly-
nomials for the backwards difference operator V, and it is obviously zero at
m= —1foralln =1,...,L — 1. However, for n > L the initial values are
attained because of a very special property:

(n+n—L> <n+n—L> <n+n—L> (n—f—n—L)
rn(n—L) = - = - .
n n—L n n

In other words, for nonnegative integers n and m, we can interchange the degree
n with the argument m in the polynomial s,,(m) := (*I™), and get again a poly-
nomial sm(n) = (") = sp(m). We call such a Sheffer sequence symmetric—
obviously, all symmetric Sheffer sequences can be used to construct the very
simple solution s,(m) — sp—(L + m) to the above boundary problem. But
are there any other symmetric Sheffer sequences besides ("}*)? Niederhausen
(1996) has shown that, except for a scaling factor, there is only one parameter

that describes the whole class of symmetric Sheffer sequences.

Theorem 2.4.1 All symmetric Sheffer sequences are of the form
{as%" ) (a:)} -0’ where a is a nonzero scaling factor, and
n_

@ =3 (7) ()

(1 # 0). The corresponding delta operator QM) has the ezpansion

oW B8

u+A

in terms of the forward difference operator A.

2.4.1 Applications: Weighted left turns

If 4 = 1, we obtain sg,l)('n) = ("**) and QM) = V, the backwards difference

operator. In general, s (m) equals the weighted sum of lattice paths from (0, 0)

to (m,n), where every left turn — ! gets the weight p. Because of symmetry,
the classical ballot problem has a simple solution for this kind of weighted paths:

s (m) — s (m + L)
which is the weighted sum of lattice paths from (0,0) to (m,n) that stay below

the line m = n — L. Switching to paths above the line m = n + K is no longer
an equivalent problem (except if we also switch from weighted left turns to
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weighted right turns.)

1 1+43p 1+4+5p+3p2 146p+6p?+p% 1+6p+6p>+u® 0... ws(m)
1 1+42p 143u+pu? 1+ 3u+ p? 0 wa(m)
1 1+p 14+p 0 wy(m)
0 1 K 3 4 5... m

Counts of paths with weighted left turns above m = n + 2

However, it is easy to verify that the Sheffer polynomial

wn(m) := s (m) Zlu( o )( - (2.8)

solves the problem for m = 0,...,n+K—1, because it satisfies the necessary and
sufficient condition wn(n+ K — 1) = wn(n+ K —2). Note that w,(n + K) # 0.
More details and further references are present in Niederhausen (1996) and
Sulanke (1993). Related topics are correlated random walks, and nonintersect-
ing pairs of weighted lattice paths. The ¢-binomial coefficients are obviously
also symmetric. How to use transforms of operators [Freeman (1985)] to count
lattice paths with g-weighted left turns is explained in Niederhausen (1994).

2.4.2 Paths inside a band

The exact distribution of the two-sided two-sample Kolmogorov-Smirnov test
requires counting the number of lattice paths inside a band parallel to the
diagonal. This number can be described by piecewise polynomial functions.
The initial conditions are t,(—1) =0 for n=0,...,L -1, to,(n — L) = 0 for all
n > L, and t,(n + K) = 0 for all n.

* *x 0 21 55 89 ... ts(m)
* *x 0 8 21 734 34 ... ta(m)
* 0 3 8 13 118 0 ... tr(m)
0 1 3 5 15 0 ta(m)
0 T 1 2 2 0 tl('m,)
1 11 1 0 to(m)
-1 0 1 K 3 4 5 ... m

Paths inside a band (L = 3, K = 2), with sample path
Symmetry of the polynomials sg,,l)(x) = (":’) is the reason why a (relatively
simple) expansion of this function exists (in our view). We want to recall
this expansion, because it is so often omitted in the literature. We saw that

rn(m) = sg,,l)(m) - sS,ll_)L(m + L) is the number of lattice paths below the line
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m = n — L, and reaching (m,n); a ballot number. A sum gives the number of
such paths that also stay above m =n + K :

tn(m) =Y (rni+r)(m +i(K + L)) = Tm_i(k+1)-k (7 + (K + L) + K))
i>0

It is amazing that t,(m) satisfies the recurrence, and both types of boundary
values. The telescopic nature of this sum becomes essential if we verify the
condition t,(n — L) = 0 for n > L. For K = L, the formula was derived by
Koroljuk (1955). See Fray and Roselle (1971) for another proof of the general
case.

In the two-sided one-sample case, the distribution must be expanded in
terms of 2™ /n!. Because of its lack of symmetry, no closed form is known.

2.5 Geometric Sheffer Sequences

A Sheffer sequence {sp},~( is geometric if so = 1 and if there exists a pair of
constants a and & such that

sn(an) = asp—1(an)

foralln=1,2,....
5 15 35 2x35 126 ...  s4(x)
4 10 2x10 35 56 ... s3(z)
3 2x3 10 15 21 ... sy(z)
2x1 3 4 5 6 ... si(z)
1 1 1 1 1 ... sz
1 2 3 4 5 ... T

Example for a geometric Sheffer sequence (a = 1,4 = 2)

There exists a geometric Sheffer sequence for any delta operator B and
for any pair a,a (with a # 0) , because this initial value problem always has a
solution; it can be recursively calculated from the expansion (2.5). The following
theorem explains why they are called “geometric”.

Theorem 2.5.1 The Sheffer sequence {sn},>o with generating function
Yon>0Sn(T)t" = s(t)e®P®) is geometric iff a" is the coefficient of t™ in the
ezpansion of the formal power series 3, sn(an)tre 80

PROOF. E~® = e~%P= denotes the translation operator by —a,

E~"p(z) = p(z — a)
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for any polynomial p(z). {sn(an+ )}, is a Sheffer sequence for the delta
operator BE~?. Denote the compositional inverse of B(t)e™? by a(t). {s,} is
geometric iff

Z sp(an)t™ = 1+ Z asp—1(an)t" =1+ta Z sn(an +a)t"
n>0 n>1 n>0
= 1+ta| Y sn(an)t™ | e®.
n>0

Solving for 3~ sn(an)t™ gives },>q sn(an)t™ =1/ (1 atet™ t)) Substitute
B(t)e~ for t in order to get

—at\™ 1
TLXZ:Osn(an) (B(t)e t) = 1380 (2.9)

Finally, substituting (3(t) for ¢ yields

Z sn(an)t"e "0 =

n>0

Lo (2.10)
n

The above identities are special cases of Lagrange inversion [see Pélya and
Szeg6 (1972)]. We check some examples:

1. {z™/n!} is a geometric Sheffer sequence for D, with a = a, and B(t) =
t = B(t). Both identities give °,,>(nte ™)™ = 1 /(1—t) [Pblya and Szegd
(1972), Part III, Problem 214].

2. ("1®) is a geometric Sheffer sequence for V. = 1 — E~! with a + 1 =

a, and B(t) = —In(1 —¢). Identity (2.10): 3,50 (""" (1 — t)o" =
1/(1 — (a + 1)t) [PSlya and Szegd (1972), Part III, special case of Problem
216].

) M )} is a geometric Sheffer sequence for V with @ = 1. Identity

(2.9): Yps0 mmg (" (€7 — e~ (a+DH)" = ! [Pélya and Szegd (1972),

Part III, Problem 211].

3. {z:—a.n+1 (n+$

2.5.1 Applications: Crossings

Denote by D(n,m;l) the number of (restricted) lattice paths from (0,0) to
(m,n) with steps — and T that go through at least / of some given nodes in the
plane. It is usually not difficult to calculate D(n,m;!) recursively. Closed form
expressions are known if the nodes lie on a line, (n,an + ¢) for n > 7, where
a,c and 7 are given constants. Additional restrictions may be imposed on the
path; for example, the path may be required
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e to cross through the node coming from below,

— and leave in a vertical step,

e to stay above a line (or some line segments),

e to walk in a higher dimensional lattice.

The surprisingly “simple” closed forms for D(n,m;l) occur when D(n,m;0)
can be expressed by a geometric Sheffer polynomial s,(m). Only in this case
we get for paths terminating on a node the recurrence relation

n—1

D(n,an +¢l) = Z (D(ai + ¢,i;1 — 1) — D(ai + ¢, ;1)) sp—i(a(n — 7))

i=n+l-1
= aD(n—-1,an+¢l—-1)

which is essential for further simplifications in calculating D(n,m;l), m >
an+c. In statistical inference, tests based on the number of crossings are called
Takdcs tests [Takdcs (1971b)]. The above method applies to the one-sample
Takdcs distribution [Takdcs (1971a)] as well (empirical distribution functions
instead of lattice paths), because {z"/n!} is geometric too. More details are
given in Mohanty (1967, 1968, 1979) and Niederhausen (1982).
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The Enumeration of Lattice Paths With Respect
to Their Number of Turns

C. Krattenthaler

Institut fiir Mathematik der Universitat Wien, Vienna, Austria

Abstract: We survey old and new results on the enumeration of lattice paths
in the plane with a given number of turns, including the recent developments on
the enumeration of nonintersecting lattice paths with a given number of turns.
Motivations to consider such enumeration problems come from various fields,
e.g. probability, statistics, combinatorics, and commutative algebra. We show
that the appropriate tool for treating turn enumeration of lattice paths is the
encoding of lattice paths in terms of two-rowed arrays.

Keywords and phrases: Turns, lattice paths, nonintersecting lattice paths,
coin tossing, run statistics, non-crossing two-rowed arrays, determinantal rings,
pfaffian rings, Hilbert series, tableaux, plane partitions

3.1 Introduction

In this article we consider lattice paths in the plane consisting of unit horizontal
and vertical steps in the positive direction. We will be concerned with enumer-
ating such lattice paths which have a given number of turns. By a turn, we
mean a vertex of a path where the direction of the path changes. For example,
the turns of the path Py in Figure 3.1 are (1,1), (2,1), (2,3), (5,3), (5,4), and
(6,4). Distinguishing between the two possible types of turns, we call a vertex
of a path a North-East turn (NE-turn, for short) if it is the end point of a
vertical step and at the same time the starting point of a horizontal step, and
we call a vertex of a path an FEast-North turn (EN-turn, for short) if it is a
point in a path P which is the end point of a horizontal step and at the same
time the starting point of a vertical step. The NE-turns of the path in Figure
3.1 are (1,1), (2,3), and (5,4), and the EN-turns of the path in Figure 3.1 are
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(2,1), (5,3), and (6,4).

p [ ] [ ] L] [ ] [ ]
P
p [ ] L ] [ ]

Figure 3.1

There are various motivations to be interested in the turn enumeration of lat-
tice paths. We describe three such motivations, from probability, statistics, and
commutative algebra, respectively, in more detail, in Section 3.3. The examples
from probability and statistics (correlated random walk, run and Kolmogorov-
Smirnov statistics) in Section 3.3 lead to the enumeration of paths, with given
starting and end points, with a given number of turns, which are bounded by
lines. This is classical today. The example from commutative algebra (Hilbert
series of determinantal and pfaffian rings) however leads to the enumeration
of families of nonintersecting lattice paths, with given starting and end points,
with a given number of turns, and subject to certain restrictions. Interest in this
subject arose only recently, mainly due to the path-breaking work of Abhyankar
(1987, 1988). A number of remarkable formulas were discovered to solve most
of these problems. But there are still some important open questions.

The problem of turn enumeration of lattice paths was attacked in many
different ways. However, there is a uniform approach which is able to handle
all these problems, which is by encoding paths in terms of two-rowed arrays.
Actually, this is the way in which Narayana (1959, 1979, Section II.2), who
probably was the first to count paths with respect to their turns, used to see
turn enumeration problems. However, he did not use the combinatorics of two-
rowed arrays. His proofs are manipulatory and usually work by induction. The
purpose of this survey article is to show that two-rowed arrays allow to handle
turn enumeration in a purely combinatorial way. The combinatorics of two-
rowed arrays is able to explain all the existing formulas in a conceptual way.
What is very appealing is that all the standard techniques from ordinary path
counting, such as reflection principle, iterated reflection principle, interchanging
procedure for nonintersecting lattice paths, have their analogues in the “world
of two-rowed arrays.”

Another purpose of this survey is to show the wide diversity of connections
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and applications in other fields like combinatorics, representation theory, and
g-series. Moreover, it is not unreasonable to expect that the recent subject of
turn enumeration of nonintersecting lattice paths will also have its applications
in probability, statistics, or physics. Evidence for this feeling comes from the
fact that turn enumeration of (single) lattice paths is of importance in these
fields, and (plain) enumeration of nonintersecting lattice paths is too [see, for
example, Essam and Guttmann (1995), Fisher (1984), Karlin (1988) and Karlin
and McGregor (1959a,b)].

This exposition brings together ideas from several papers of this author and
Mohanty [see, for example, Krattenthaler (1989, 1993, 1995a, 1995b, 1996a)
and Krattenthaler and Mohanty (1993)] . The proof of Theorem 3.4.2 is new.

The paper is organized in the following way. In the next section, we in-
troduce some basic notations which we use throughout the paper. Section 3.3
contains the announced motivating examples. In Section 3.4, we address the
turn enumeration of (single) lattice paths. The results of Section 3.4 are then
applied in Section 3.5 to solve some of the problems in the mentioned examples.
Finally, Section 3.6 is devoted to turn enumeration of nonintersecting lattice
paths. The results of this section answer most of the problems of the third
example in Section 3.3. Open problems are listed at the end of Section 3.6.

3.2 Notation

Given two lattice points A and F, we denote the set of all lattice paths from A
to E by L(A — E). If P is a path from A to E, we will symbolize this sometimes
by P: A — E. If R is some property of paths, we use the “probability-like”
notation L(A — E | R) for the set of all paths from A to E satisfying property
R.

3.3 Motivating Examples

Example 3.3.1 A TWO COIN TOSSING GAME; CORRELATED RANDOM WALK.
Mohanty (1966) considered the following game. Take two coins 1 and 2 with
probabilities p; and py of obtaining heads, respectively. The rules for the game
are:

1. start with coin i, i = 1, 2;

2. if the last trial was a tail, then make the next trial with coin 1, otherwise
with coin 2;
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3. stop making further trials when for the first time the total number of
heads exceeds p times the total number of tails by exactly a, with a fixed
a>0.

The question is: Provided the game was started by tossing coin 7, i = 1 or 2,
what is the distribution of the duration of the game?

This game has also an equivalent formulation in terms of a “correlated”
random walk; see, for example, Mohanty (1979, Section 5.2). In sampling plan
terminology [DeGroot (1959)], these games describe sequential sampling plans
for binomial populations with y = px + a as the boundary line.

It is an easy observation that any game can be represented in terms of a
lattice path, by starting in (0,0) and proceeding by a horizontal step if tail
(T') was tossed and by a vertical step if head (H) was tossed. Thus, the game
THHHTHTHHHH (which is a game for 4 = 2 and a = 2) would be repre-
sented by the lattice path P» in Figure 3.2. The condition (3) is reflected by the
fact that any such lattice path, except for the final vertical step, stays below
the line y = pz + a — 1 (being allowed to touch it).

. b e o o y:;m'+a—l
o ¢ o o .
b e P,

Figure 3.2

The probability of a game of length (1 + 1)n +a (n tails and pn + a heads)
is given as follows. If the first toss was with coin 1, then the probability of a
game, corresponding to a path P as described above, is

pll\IE(P)+1(1 _ pl)n—NE(P)pl;n-i'a—NE(P)—l(1 — po)NE(P), (3.1)

where NE(P) denotes the number of NE-turns of P. On the other hand, if the
first toss was with coin 2, then the probability of a game, corresponding to path
P,is

pll\IE(P)Jrl(l _ pl)n_NE(p)._1p;2m+a—NE(P)—l(1 _ p2)NE(P)+1, (3.2)
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if the first toss resulted in tail, and

NE(P) (1 _

P n—NE(P) ;m+a—NE(P)(1 _ pz)NE(P), (3.3)

p1) Py
if the first toss resulted in head, respectively.

Therefore, to determine the probability of games of length (x+ 1)n + a, we
need to enumerate lattice paths from (0,0) to (n, un + a — 1) staying below the
line y = px + a — 1, being allowed to touch it, which have a given number of
NE-turns.

Example 3.3.2 RunNs AND KOLMOGOROV-SMIRNOV STATISTICS. Two com-
mon rank order statistics for nonparametric testing problems in the two-sample
case are the run statistics and the (one- and two-sided) Kolmogorov-Smirnov
statistics. We consider just the case of equal sample size. Recall [see, for
example, Mohanty (1979, Section 4.3)] that there are two sets of indepen-
dent and identically distributed random variables X = {X;, X,...,X,} and
Y ={1,Ys,...,Y,} of size n. These are then put together and ordered into
Z = (21, 2a,...,2Z9,) according to size. The run statistics counts the number of
maximal consecutive subsequences in Z the members of which belong to just one
of the sets X or V. Thus, ifn= 9, and if Z = (Xl,Yl, lfg,Yg,, XQ, X3,Y4, X4, X5,
Ys), then the number of runs in Z is 6. The one-sided Kolmogorov-Smirnov
statistic D;f ,, is defined by

1
'r-:-n == m,ax{ai - bi}7
) n i
where a; is the number of occurrences of X;’s in the initial segment Z;, Zs, . .., Z;

of Z, while b; is the number of occurrences of Yj;’s in this initial segment. The
two-sided Kolmogorov-Smirnov statistic Dy, ,, is defined by

1
Dy = — max {|a; — b;|}.
n 7

Thus, we have for our combined sample Z that DgL’5 =1/5 and D55 = 2/5.

Each such sequence Z can be represented by a lattice path in the obvious
way. Namely, start at (0,0), then read through the sequence from left to right
and proceed by a vertical step if some X is encountered and by a horizontal
step if some Y is encountered. Thus, the above set Z corresponds to the lattice
path P; in Figure 3.3. The run statistics obviously translates into the number
of maximal horizontal and vertical pieces in the corresponding path. The one-
sided Kolmogorov-Smirnov statistic is basically the maximal deviation from the
main diagonal in direction (1, —1). The two-sided Kolmogorov-Smirnov statistic
is basically the maximal deviation from the main diagonal, in either direction.
So in Figure 3.4, paths which stay in the region between the indicated lines
y =z+2 and y = z—2 correspond to sequences Z with two-sided Kolmogorov-
Smirnov statistic Dy, , < 2/5.
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Figure 3.3

Since the number of runs of a lattice path equals 1 plus the number of
turns of the path, we see that to determine the distribution of the run statistics
we need to count lattice paths from (0,0) to (n,n) with a given number of
turns (both, NE- and EN-turns). If, in addition, we want to know the joint
distribution of runs and the Kolmogorov-Smirnov statistic, then we have to
count paths from (0, 0) to (n,n) with a given number of turns which in addition
stay below a line y = = +t for the one-sided Kolmogorov-Smirnov statistic and
between lines y = z +t and y = = — t for the two-sided Kolmogorov-Smirnov
statistic.

Example 3.3.3 DETERMINANTAL RINGS. Determinantal rings are frequently
studied objects in commutative algebra and algebraic geometry. We start with
the classical case. Let X = (X ;)o<i<b, 0<j<a be a (b + 1) x (a + 1) matrix
of indeterminates. Let K[X] denote the ring of all polynomials over some
field K in the X;;’s, 0 < i < b, 0 < j < a, and let I41(X) be the ideal
in K[X] that is generated by all (n + 1) X (n + 1) minors of X. The ideal
In+1(X) is called a determinantal ideal. The associated determinantal ring
is Rp+1(X) := K[X]/In+1(X). This is a graded ring. The obvious question
to ask is what the dimensions of the homogeneous components R, 1(X); of
dimension ¢, £ = 0,1,..., of R,41(X) are. This information is recorded in
terms of the Hilbert series of R,+1(X), which is simply the generating function
Y900 dimg (Rny1(X)e) 28, It was shown in several ways [Abhyankar (1988),
Abhyankar and Kulkarni (1989), Conca and Herzog (1994), Kulkarni (1996),
Modak (1992) and also Ghorpade (1996)] that this problem relates to count-
ing lattice paths with respect to turns, more precisely, to counting families of
nonintersecting lattice paths with respect to turns. A family (Py, Ps,..., Pp,) of
paths P;, i = 1,2,...,n, is called nonintersecting if no two paths in the family
have a point in common, otherwise it is called intersecting.
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Theorem 3.3.1 Let A; = (0,n — i) and E; = (a —n +1,b), 1 = 1,2,...,n.
Then, the Hilbert series of the determinantal ring Rn41(X) = K[X]/In4+1(X)
equals

oo NE(P)
Y dimg (Rnt1(X)e) 2° = rpz ; (3.4)

=0 (1 — z)(a+brDn=2(3)

where the sum on the right-hand side is over all families P = (Py, Py, ..., Py,)
of nonintersecting lattice paths, with P; running from A; to E;, 1 =1,2,...,n.
Here, the number NE(P) is defined to be the total number i NE(P;) of NE-
turns of the family P.

Figure 3.4 contains an example of such a family of nonintersecting lattice
paths for @ = 13, b = 15, and n = 4. The NE-turns are marked by bold dots.

E1E2E3€4

L

Figure 3.4

Several generalizations of this concept have also been considered. These
pose even more difficult turn enumeration problems. We describe just one
such generalization in detail. Let a = (a1, a2,...,a,) and b = (b1, bs,...,b9)
be two vectors of nonnegative integers which are in strictly increasing order.
Let I:fl (X) denote the ideal in K[X] that is generated by all ¢ x ¢ minors
of the restriction of X to rows 0,1,...,a; — 1 and columns 0,1,...,b; — 1,
t=1,2,...,n,and by all (n+1) x (n+ 1) minors of X. What we considered
before is the special case a = (0,1,...,n —1) and b= (0,1,...,n — 1). Again,
the associated determinantal ring is R:}_)I(X ) = K[X]/ :fl(X ). For more
information on these rings, see Herzog and Trung (1992) and the references
therein. In the papers by Abhyankar (1988), Abhyankar and Kulkarni (1989),
Conca and Herzog (1994), and Kulkarni (1996), it is shown that this relates
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to counting lattice paths with respect to turns in much the same way. The
difference is that the starting and end points of the lattice paths now depend
on the vectors a and b, respectively.

Theorem 3.3.2 Let A; = (0,an—i+1) and E; = (a — bp—i+1,b), 1 =1,2,...,n.

Then, the Hilbert series of the determinantal ring R:fl (X) = K[X]/I:fl (X)
equals

S NE(P)
: a,b 0 ZP P
nglmx (Rp(X)e) 2" = (1- z)(“+"+1)”'“2?=1(ai+bi) ; (3.5)

where the sum on the right-hand side is over all families P = (Py, Ps, ..., Py)
of nonintersecting lattice paths, with P; running from A; to E;, i =1,2,...,n.

Finally, we remark that similar constructions are studied with minors of
“ladder-shaped” matrices, of symmetric matrices, and with minors of pfaffians.
It was shown by Abhyankar (1988) and Abhyankar and Kulkarni (1989) for the
ladder case, by Conca (1994) for minors of a symmetric matrix, and by Ghor-
pade and Krattenthaler (1996) for minors of pfaffians, that the computation
of Hilbert series for the resulting rings again requires enumeration of families
of nonintersecting lattice paths, restricted to certain regions, with respect to
their number of turns. In particular, the pfaffian case leads to the enumeration
of families of nonintersecting lattice paths with given starting and end points
which stay below a diagonal line.

3.4 Turn Enumeration of (Single) Lattice Paths

Examples 3.3.1 and 3.3.2 of the previous section, and the n = 1 case of Example
3.3.3, lead to the problem of turn enumeration of lattice paths, in some way, as
explained above. In the next section, we show that if one knows the answer for
the enumeration of lattice paths with a given number of NE-turns, then this
implies solutions for all the aforementioned enumeration problems. Therefore,
it is sufficient to concentrate on the enumeration of lattice paths with given
starting and end points, satisfying certain restrictions, and with a given number
of NE-turns. This is exactly what we do in this section.

The first question, namely ‘what is the number of paths from A = (a1, a3)
to E = (e1,e2) with exactly ¢ NE-turns’, is immediately answered by

[L((a1,02) = (ex,e2) | NE() = )| = (el ;‘“) (‘32 . “2). (36)

This comes from the observation that any path from (a;,a3) to (e,es) is
uniquely determined by its NE-turns. There are e; — a; integers from which
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we can choose the z-coordinates of the NE-turns, and there are es — as integers
from which we can choose the y-coordinates. And, we have to choose ¢ for each
of those. Thus (3.6) is explained.

The fact that paths with given starting and end points are uniquely deter-
mined by their NE-turns suggests that we should actually encode paths by their
NE-turns themselves, more precisely, by the coordinates of their NE-turns. Let
(p1,91), (P2,92), -- -, (Pe,qe) be the NE-turns of a path P. Then the NE-turn
representation of P is defined by the two-rowed array

p1 P2 ... D¢ (3.7)
a q ...

which consists of two strictly increasing sequences. Sometimes, we will also
use a one-line notation, (p1,...,p¢ | q1,-..,4¢), or even shorter (p | q) where
p=(p1,...,pe) and q = (q1,. .., Q).

Clearly, if P runs from (a1,a2) to (e1,e2), thena; <p; <p2 < ... < pp <
e1—landas+1 < ¢ < g <...<q < ey If wewish to make this fact
transparent, we write

ay < pP1 P2 ... D¢ <e —1 (3.8)
ap +1< Q 92 ... Qe <ea. ’

For a given starting point and a given end point, by definition the empty array
is the representation for the only path that has no NE-turn. For example, the
two-rowed array representation of the path in Figure 3.1 would be

1 25
1 3 4,
or with bounds included,
1< 1 2 5 <5
0< 1 3 4 <6.

Apparently, in order to find the distribution for the game of Example
3.3.1 with 4 = 1, and to find the joint distribution for runs and one-sided
Kolmogorov-Smirnov statistic, we need to count lattice paths, with given start-
ing and end point, and with a given number of NE-turns, which stay below a
given diagonal line. This is addressed in the following theorem.

Theorem 3.4.1 Let a; > as and e; > ea. The number of all lattice paths from
(a1, a2) to (e1,e2) staying below the diagonal line x =y (being allowed to touch
it) with exactly £ NE-turns is given by

|L((a1,a2) = (e1,e2) | = > y, NE() = 0)|

e1—a1\ ey —az e1—ag—1\[fes—a1 +1
- () () () e
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Remark 3.4.1 Before we sketch a proof of this theorem, a remark is in order.
Recall that plain enumeration of lattice paths from (a1, a2) to (e1, e2) staying
below z = y (without fixing the number of NE-turns) is usually done by means
of the reflection principle [see, for example, Comtet (1974, p. 22)]. We promised
to treat all the turn enumeration problems by using two-rowed arrays. In fact,
the proof below can be considered as the reflection principle for two-rowed
arrays.

PrOOF. The paths from (a;,as3) to (e1, e2) staying below z = y with exactly ¢
NE-turns by the NE-turn representation can be represented by

a1 < pP1 P2 ... D <e—1
3.10
ax+1< Q 9 ... q < ey, ( )
where
Di = qi, i=1,2,...,L (3.11)

The number of these two-rowed arrays is the number of all two-rowed arrays of
the type (3.10) minus those two-rowed arrays of the type (3.10) which violate
(3.11), i.e. where p; < ¢; for some i between 1 and £. We know the first number
from (3.6).

Concerning the second number, we claim that two-rowed arrays of the type
(3.10) which violate (3.11) are in one-to-one correspondence with two-rowed
arrays of the type

ars+1< T ... Ty <e -1

a1 < S0 S1 S2 ... S < es. (3.12)

The number of all these two-rowed arrays is (*1,%27") (% Zill‘*’l), as desired. So

it only remains to construct the one-to-one correspondence.
Take a two-rowed array (p | q) of the type (3.10) such that p; < g; for some
i. Let I be the largest integer such that p; < q;. Then map (p | q) to

Qe qr-1 Pr+1 ... Pe (3.13)
pr p2 ...... pr q1 qr+1  --- Qe-

Observe that both rows are strictly increasing because of q;_; < qr < qr41 <
pr+1 (since I is largest with pr < ¢7) and p; < q;. By a case by case analysis,
it can be seen that (3.13) is of type (3.12).

The inverse of this map is defined in the same way. Let (r | s) be a two-
rowed array of the type (3.12). Let J be the largest integer such that r; < s;.
If there is no such J, take J = 1. Then map (r | s) to

S0 - SJ-1 TJ+1 .- T (3.14)
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It is not difficult to check that the mappings (3.13) and (3.14) are inverses of
each other. This completes the proof of (3.9). [ |

In order to solve the generalized problem in Example 3.3.1 (where the game
is stopped when the number of heads exceeds p times the total number of
tails by exactly a), we need to count lattice paths, with given starting and end
points, and with a given number of NE-turns, which stay below a line of the form
y = px. As in the situation encountered for plain counting (i.e., disregarding
the number of turns), there is no nice formula for arbitrary starting and end
points. But, there is if the end point lies on the boundary line. Luckily, this is
exactly our situation in Example 3.3.1.

We formulate the result in an equivalent form. Namely, we consider paths
bounded by a line of the form z = py (instead of y = px) where the starting
point lies on the boundary. That this is indeed equivalent is obvious from
reversal of paths. Of course, we use two-rowed arrays in the proof. In contrast
to the proof of Theorem 3.4.1, this proof is not purely bijective, as is pointed
out in more detail after the proof. However, from the proof it can be seen very
clearly where the limitations are, and in particular, why it does not generalize
to an arbitrary location of the starting point.

Theorem 3.4.2 Let pu be a positive integer and let ey > pey. The number of all
lattice paths from (0,0) to (e1,e2) staying below the line x = py (being allowed
to touch it) with exactly £ NE-turns is given by

[L((0,0) = (ex,e2) | & > py, NE() = £)|
A e

PROOF. Again we represent our paths from (0,0) to (ej,e2) staying below
x = py with exactly ¢ NE-turns, by their NE-turn representation. It is

0< p1 p2 ... pe <e—1
3.16
1< qQ 92 .- Q < ey, (3.16)
where
Di > 4G, 1=1,2,...,° (3.17)

Once again, the number of these two-rowed arrays is the number of all two-
rowed arrays of the type (3.16) minus those two-rowed arrays of the type (3.16)
which violate (3.17), i.e. where p; < pg; for some 7 between 1 and £. We know
the first number from (3.6).

This time, we claim that there are as many two-rowed arrays of the type
(3.16) which violate (3.17) as p times the number of two-rowed arrays of the
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type

1< Ty ... Ty <e -1

0< So S1 S2 ... Sy < es. (3.18)
The number of all these two-rowed arrays is () (?:11), as desired. What
remains to be done is to find a (i : 1) correspondence between the two-rowed
arrays of type (3.16), violating (3.17), and those of type (3.18).

Take a two-rowed array (p | q) of the type (3.16) such that p; < ug; for
some 7. Let I be the largest integer such that p; < pqr. The two-rowed array
(p | q) then looks like

0< p1 oeven.l. prl.-.. pp <e -1

3.19
1< ¢t ... qgqala .. qg <e (3.19)

Now we fix the right portion, i.e., the entries py4+1,...,p7 and gy, ...,q. With
this fixed right portion, there are

par\ far—1
<I’><I_1> (3.20)
possible left portions.

On the other hand, let (r | s) be a two-rowed array of the type (3.18). Let
J be maximal with r; < usy (if there is no such J, take J = 1), so that (r | s)
looks like

1§ T2 o Ty Te _<_el—1

0< so s1 s2 ... sy_1|s; ... s <e (3.21)

Again, fix the right portion, i.e., the entries rj4+1,...,7¢ and sy,...,sp. Fur-
thermore, assume that the right portion in (3.21) is equal to the right portion in
(3.19),i.e., assume that J = I, r; =p;, i =I+1,...,f,and s; = ¢, i =I,... L.
With this fixed right portion in (3.21) there are

par—1\far\ _ 1(par)(qr—1
() () =57 ()

possible left portions. By comparing with (3.20), we see that, for a fixed right
portion, there are p times as many two-rowed arrays of the type (3.19), with
pr < pqr, as there are two-rowed arrays of the type (3.21), with r; < us; = uqy.
This proves our claim and hence completes the proof of the theorem. |

Remark 3.4.2 The above proof could be made purely bijective if one could
find a bijection for the binomial identity (3.22), i.e., for

(@-tE) e
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I have not been able to find any.

On the other hand, it is exactly identity (3.23) which constitutes the limi-
tations towards a formula for an arbitrary starting point. One may check that
there is no such binomial identity in this latter situation. The appearance of a
factor p on the left-hand side of (3.23) is rather special.

There is a companion of Theorem 3.4.2 for the enumeration with respect to
EN-turns. By a rotation by 180°, it can easily be transformed into a result for
counting paths which stay above the line x = uy with respect to NE-turns. We
state the result without proof. It can be established in much the same way as
Theorem 3.4.2.

Theorem 3.4.3 Let i1 be a positive integer and let e; > pea. The number of all
lattice paths from (0,0) to (e1,e2) staying below the line x = py (being allowed
to touch it) with exactly £ EN-turns is given by

[L((0,0) = (e1,€2) | = > oy, EN() = 0)

<elz 1) (e;—- 11) s (fe—l 1) (e;)' (3.24)

Now, in order to find the joint distribution of two-sided Kolmogorov-Smirnov
and run statistics, we need to count lattice paths, with given starting and end
points, and with a given number of NE-turns, which stay between two given
diagonal lines. The result which solves this problem is as follows.

Theorem 3.4.4 Letaij+t> a2 > ai+s andei+t > ey > e;+5. The number
of all paths from (a1,a2) to (e1,e2) staying below the line y = x +t and above
the line y = z+s (being allowed to touch them) with exactly £ NE-turns is given

by

}L((al,ag) — (e, e) |z +t>y >z +s NE() = /)l

= e1—a1—k(t—s)\ (ex—az+k(t—s)
- AT )

k=—00

3 e1—ay—k(t—s)+s—1\[ea—a1+k(t—s)—s+1
L+ k ?—k '

(3.25)

Remark 3.4.3 Again, a remark is in order before we begin the proof. Recall
that plain enumeration of lattice paths from (a1,a2) to (e1, e2) staying between
two diagonal lines is usually done by means of iterated reflection principle [see,
for example, Mohanty (1979, proof of Theorem 2 on p. 6)]. The proof below
can be considered as the analogue of iterated reflection principle for two-rowed
arrays.
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Proor. By the NE-turn representation, the paths under consideration are in
one-to-one correspondence with two-rowed arrays of the type

a1 < p1 ... pp Se—1
3.26
a+1< q ... @ <ey, (3-26)
where
Pi+t2>¢q 2piy1+S. (3.27)

The proof of this theorem is by a “cancelling” bijection on certain two-rowed
arrays, which we introduce now. In fact, there are two types of arrays. Let us
call two-rowed arrays of the type

a1 +k(t—s)< prg ... P14k ... P Ze1—1
for k>0
az+1—k(t—s)< Qk - Qe S €2 -
and
a1 +k(t—s) < Pi-k --- Pe Se1—1
for k<0
a+1-k(t—5)< quek .- @k - q e

type I arrays. Similarly, we call two-rowed arrays of the type

ag+1-—s+k(t-5)< pik ... P14k -.- Pt <e—1

for k>0
a1+s—k(t—s) < Qi4k -+ Q¢ <€ -
and
ag+1-s+k(t—s)< Pk --- pe Se—1
for k<0
ai+s—k(t-s)< qyr - @k .- q e

type II arrays. We shall set up a bijection between type I arrays not being of
the type (3.26) — (3.27) [which means that (3.27) must be violated if both rows
have equal length] and type II arrays. Given such a bijection, we could deduce

|[{type I arrays}| — |{type II arrays}| = |{arrays of type (3.26) — (3.27)}|.
(3.28)

The arrays of type (3.26) — (3.27) exactly correspond to the paths we are intend-
ing to enumerate. By definition of type I and type II arrays, the left-hand side
in (3.28) equals the right-hand side in (3.25). Thus (3.25) would be established.

The definition of the bijection and its inverse can be given in a unified form.
Let (p | q) be a type I array not of the type (3.26) — (3.27) or a type II array,
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(This representation has to be understood symbolically. k could be also neg-
ative, whence the upper row would be shorter.) Let I be the largest integer,
1 < I </, such that either

qgr >pr+t or I=-—k, (3.29)
or

gr<pry1+s or I=k. (3.30)
If (3.29) is satisfied, then map (p | q) to

(@ —1) oo (gr-1—=1t) pr+1 ... pe
(P1ok +1t) o (pr +1) 47 qe-

Note that both rows are strictly increasing because of q;—1 < qr+1 < pry1 +1¢
and p; +t < qr. If (3.29) is not satisfied, and hence (3.30) is, map (p | q) to

(@4 —58) ... (ar—8) pry1 ... pe
(P1—k+8) i (pr+s) arv1 .- Qe

Again note that both rows are strictly increasing, this time because of q; — s <
pr+1 and pr+ s < pry2 + 8 < qr41.

It is not difficult to verify that this mapping maps type I arrays not being of
type (3.26) — (3.27) to type II arrays not being of type (3.26) — (3.27), and vice
versa. Besides, by applying this map to some array twice, one would obtain
that array back. Therefore, this mapping is the desired bijection. |

Theorem 3.4.4 and its proof are basically from Krattenthaler and Mohanty
(1995). Actually, Theorem 1 of Krattenthaler and Mohanty (1995) provides
a g-analogue. A closely related paper is by Burge (1993). There, “restricted
partition pairs” are considered, which are nothing but two-rowed arrays with
restrictions very similar to (3.27). Burge proves a generating function result
for these restricted partitions. It turns out that the above proof generalizes to
prove Burge’s main theorem, also. (Burge gives a different, slightly involved
proof.) Remarkably, (among other results) Burge derives a number of identities
expressing a Gaussian binomial coefficient as difference of two terminating basic
hypergeometric sums. These identities combine two well-known but previously
unrelated identities into a single one. In particular, he finds an identity which
contains Rogers’ proof as well as Schur’s proof of the Rogers-Ramanujan iden-
tities, which were previously considered to be unrelated. Eventually, the notion
of partition pairs was generalized to r-tuples of partitions and were investigated
by Gessel and Krattenthaler (1996) under the name of “cylindric partitions”.
Again, these objects could be used to derive identities in a simple way. The
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resulting identities are identities for multiple basic hypergeometric series, some
of them known, but many of them new.

Counting paths subject to general boundaries with respect to NE-turns is
what is needed to compute the Hilbert series of ladder determinantal rings gen-
erated by 2 x 2 minors. “Nice” formulas cannot be expected here in general.
Solutions for “one-sided” ladders were proposed by Kulkarni (1993) and Krat-
tenthaler and Prohaska (1996). A solution for two-sided ladders is proposed
by Ghorpade (private communication). Niederhausen’s (1996) approach using
umbral calculus methods is also worth mentioning here, though it is formulated
only for EN-turns.

3.5 Applications

In this section, we apply the results from the previous section to solve (some
of) the problems mentioned in Section 3.3.

ad Example 3.3.1. We saw that any game of length (1 + 1)n + a corresponds
to a path from (0,0) to (n,un + a — 1) staying below the line y = puz +a — 1.
Equivalently, by reversal of paths, it corresponds to a path from (0,0) to (un +
a — 1,n) staying below the line z = py. Also, in (3.1)—(3.3), we expressed the
probability of a game of length (1 + 1)n + a in terms of the NE-turns of the
corresponding path. In particular, the probability that a game with first toss
by coin 1 has length (+ 1)n + a, is immediately obtained from Theorem 3.4.2
with e = un+a — 1 and ey = n:

A game starting with a toss of coin 1 has length (1+1)n+a with probability

i{(un-ﬂl— 1) <ﬂ> __N(,u.n—i—a—2> (n+1>}
= 0 ¢ 0—1 0+1
x p{+1(1 _pl)n-lpém+a—2—1(1 _p2)e. (331)

Of course, also games starting with a toss of coin 2 can be represented by
a path from (0,0) to (un + a — 1,n) staying below the line z = py. However,
we have a split expression, namely (3.2) and (3.3), for the corresponding prob-
abilities of the length of the game. The situation can be made uniform if we
attach a horizontal step at the end of each path, so that we now consider paths
P from (0,0) to (un+a,n) ending with a horizontal step and staying below the
line £ = py. Then it is easy to see that (3.2) and (3.3), in terms of P, become

NE(P) (1- pl)n—NE(P)pl;n'f'a—NE(P)(l _

Py p2)VEP), (3.32)

Since the number of paths in question which have £ NE-turns is just the differ-
ence of the number of paths from (0, 0) to (un+a, n) staying below = = uy and
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having ¢ NE-turns, minus the number of paths from (0,0) to (un + a,n — 1)
staying below x = uy and having ¢ NE-turns, we obtain from Theorem 3.4.2
by simplifying the difference:

A game starting with a toss of coin 2 has length (u+1)n+a with probability

" pn+a\fn-1 un+a—-1\[n
2 {(ylvan g ey iv)
x ph(1 —p1)" (L — po)t. (3.33)

ad Example 3.3.2. We have to convert our enumeration results for NE-turns
into ones for runs. Recall that the number of runs of a path is exactly one more
than the number of turns (both, NE-turns and EN-turns). To avoid case by case
formulation, depending on whether the number of runs is even or odd, we prefer
to consider generating functions. Suppose we know the number of all paths from
A to FE satisfying some property R and containing a given number of NE-turns.
Then we also know the generating function 3" p zNE(P)| where the sum is over
all paths P from A to E satisfying R. Let us denote it by F(A — E | R;x).
We define four refinements of F(A — E | R;z). Let Fj,(A — E | R; ) be the
generating function 3" p zNE(P) where the sum is over all paths in L(A — E | R)
that start with a horizontal step and end with a vertical step. Similarly define
Fph(A — E | Ryz), Fyp(A — E | R;z), and F,,y(A — E | R;z). The relation

between enumeration by runs and enumeration by NE-turns is given by

z _,L,runs(P) — -'ITth(A — E l R;-’L‘2) + ;1;2F},,U(A — F I R;.’L'2)
PEL(A—E|R)

+ Fou(A — E| R;2%) 4 zF,y(A — E | R; 2?).
(3.34)

All the four refinements of the NE-turn generating function can be expressed
in terms of NE-turn generating functions. This is seen by setting up a few linear
equations and solving them. Evidently,

F(A—-E|R;jz) = Fpp(A— E|R;z)+ Fpy(A— E | R;2)
+ Fyh(A— E | Ryz) + Fyy(A — E | R; ).

Besides, if £; = (1,0) and E5 = (0,1) denote the standard unit vectors, we
have

Fup(A— E | Riz) + Fpy(A— E | Ryz) = F(A+ Ey — E | R;x),
Fon(A—-E|Ryz)+ Fy(A— E|R;z) =F(A— E — E> | R;x),
Fpny(A— E|Rjz)=F(A+FEy — E— E> | R;x).
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Solving for Fyp, Fhy, Fyn and Fy,, we get

Fyw(A— E|R;z) = F(A+E1 — E|R;z)— F(A+E; —» E— Ey | R;2),
(3.35)
Fy(A— E|R;z) = F(A+ E1 — E - Ey | R; z), (3.36)
Fhw(A—FE|R;z) = FIA—E|Rjz2)+(A+E, - E—-Ey| R;x)
— F(A+FE, > E|R;z)—F(A— E—Ey | R;x),
(3.37)
Fw(A— E|R;z) = F(A—->E—-Ey|R;z)— F(A+ E1 — E — E3 | R;z).
(3.38)

Now, turning to the joint distribution of runs and two-sided Kolmogorov-
Smirnov statistics, we noted earlier that we have to count paths from (0,0) to
(n,n) staying between the lines y = z +t and y = = — ¢ and which contain
r runs. We do this by using (3.34) with A = (0,0), E = (n,n), R meaning
the property to ‘stay between y = z + ¢ and y = = — t’, then using Egs.
(3.35)—(3.38) for Fhp, Fhy, Fuh, Fuy, respectively, in (3.34), and finally applying
Theorem 3.4.4 to obtain explicit expansions for various generating functions
F(...). A comparison of coefficients of powers of z then gives, after some
manipulation of binomials:

For the joint distribution of runs, denoted by R,n., and the two-sided
Kolmogorov-Smirnov statistics Dy, 5, we have

<2:) Pr[Dppn < t/n, Ryppn=2r+1]

2

_ i": n—2kt—1\[n+2kt-1 + n—2kt—1\[n+2kt—1
a iy r+k r—k—1 r+k—1 r—=k

n—2kt+t—1\[n+2kt—t—1
) ,
r+k—1 r—k

(2:> Pr[Dpn <t/n, Rpp=2r]

_ i 2n—2kt—1 n+2kt—1\ (n—2kt+t—1\ n+2kt-1
N r+k-1 r—k—-1 r+k—2 r—k

k=—oc0

_ n—2kt+t—1\[(n+2kt—t—-1
r+k—-1 r—k-1 '
Thus, we recover the results of Vellore (1972, Theorems 8 and 9). She derived

these results by very different means. (The expressions therefore look differ-
ently. But it is not difficult to show that they are really equivalent.) The path

and
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of derivation we have chosen here is from Krattenthaler and Mohanty (1993)
where it was also used to obtain extensions and g-analogues of the above result.

ad Example 3.3.3. By Theorems 3.3.1 and 3.3.2, the case of n = 1 in Example
3.3.3, i.e., the case of rings generated by (at most) 2 x 2 minors in the way
described above, leads to the problem of enumerating paths with given starting
and end points which have a given number of NE-turns. Clearly, this is done
by (3.6).

Besides, we indicated that the case of pfaffian rings generated by 4 x 4
pfaffians leads to the enumeration of paths with given starting and end points
which have a given number of NE-turns and stay below a diagonal line. Clearly,
this is done by Theorem 3.4.1.

3.6 Nonintersecting Lattice Paths and Turns

Here, we complete the solutions to our Examples of Section 3.3. More precisely,
we address the problem of enumerating nonintersecting lattice paths with a
given number of NE-turns, which is the problem to be solved in order to com-
pute Hilbert series of determinantal and pfaffian rings, as we described earlier in
Example 3.3.3. If one forgets about the number of turns, i.e., if one is interested
in the plain enumeration of nonintersecting lattice paths with given starting and
end points, then the solution is a certain determinant. This is a classical re-
sult now [cf. Gessel and Viennot (1985 and 1989, Corollary 2); Stembridge
(1990, Theorem 1.2)]. In fact, it has been realized over the past ten years that
nonintersecting lattice paths have innumerable applications in combinatorics,
probability, statistics, physics, etc. [see the references in Krattenthaler (1996b)
for combinatorial applications, and the references in the Introduction for appli-
cations in physics and probability; in fact, most of the determinantal formulas in
probability and statistics, like “Steck’s determinants” [Mohanty (1971), Pitman
(1972) and Steck (1969, 1974)] follow easily from nonintersecting lattice paths;
see also Sulanke (1990)]. However, the method that is used for the plain enu-
meration [the “Gessel-Viennot involution”, which actually can be traced back
to Lindstrém (1973) and Karlin and McGregor (1959a)], is not appropriate to
keep track of turns. Still, the answers to “turn enumeration” are determinants.
But, alternative methods are needed now. It is the combinatorics of two-rowed
arrays which explains these determinants. In fact, it is the context of noninter-
secting lattice paths in which the usefulness of working with two-rowed arrays
becomes most striking. Interestingly, the techniques developed here arose in
the study of plane partition and tableaux generating functions [Krattenthaler
(1995a)] and of identities for Schur functions [Krattenthaler (1993)].

From Theorems 3.3.1 and 3.3.2, we know for the computation of the Hilbert

series for the determinantal rings R,41(X) and R:fl(X ) that we need to enu-
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merate families P = (Py, Ps, ..., P,) of nonintersecting lattice paths, where P;
runs from (0,an—i+1) to (@ — bp—it1,b), i = 1,2,...,n, where the total number
of NE-turns in P is some fixed number. Here, the starting points are lined up
vertically and the end points are lined up horizontally. In fact, we are able
to answer the problem even if the starting and end points are (basically) in
general position. Let A = (A1, Ag,...,A,) and € = (E1, Es, ..., E,) be points
in the two-dimensional integer lattice Z2. The restriction on the location of
the points which we have to impose is the one which is always necessary with
nonintersecting lattice paths [see Gessel and Viennot (1989) and Stembridge
(1990)]. Namely, we assume that the starting points are lined up north-west
to south-east, strictly from north to south, and that the end points are also
lined up north-west to south-east, but strictly from west to east. We have the
following theorem.

Theorem 3.6.1 Let A; = (agi),ag)) and E; = (egi),eg)), 1 =1,2,...,n, be
lattice points satisfying

agl) < ag2) << a&"), agl) > a?) > > aé"'),

and
R R B B )

The generating function ) p 2NE(P) where the sum is over all families P =

(Py, Pa, ..., P,) of nonintersecting lattice paths P; : A; — E;, equals

(%) @ 4 (4) () _ 5
e’ —ay +J] -1\ fey’ —ag’ — )+
13(:11:3'%11{2( k+j—i )( k )z } (3.39)

k>0

Remark 3.6.1 This theorem was independently proved by Kulkarni (1993),
who derived it from a theorem on determinantal rings due to Abhyankar, by
Modak (1992), who found a manipulatory proof, and for the first time by com-
binatorial means by Krattenthaler (1995b, 1996a), using two-rowed arrays. See
also Ghorpade (1996).

SKETCH OF PROOF. If we want to prove this theorem by means of two-rowed
arrays, we have to first work out how the condition of two paths to be nonin-
tersecting translates into the corresponding two-rowed arrays.

Let Py, P, be two paths, P, : A —» E, P, : B — F, where A = (a3, a9),
B = (b1,b2), E = (e1,e2), F = (fi1,f2), A located in the north-west of B
(strictly in direction north and weakly in direction west), and F located in the
north-west of F' (weakly in direction north and strictly in direction west), i.e.,
with

a1 < by, a2 > by, e1 < f1, e2 2 fo.
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Let the array representations of P; and P be

ap< p1 ... pr <er—1
b 3.40
! a2+1< ¢ ... g <e (3.40)
and
h<r ... nm <fi—-1
P - - .
2 bo+1< s1 ... 81 < fo, (341)
respectively.
Suppose that P; and P, intersect, i.e. have a point in common. Let M
be a meeting point of P; and P». For technical reasons, set pry; := e; and

qo := aa. (Note that the thereby augmented sequences a and b remain strictly
increasing.)

P,
P,
(r7,87) } 2
M
_
(pr,qr-1)

Figure 3.5

Considering the east-north turn (py,qs—1) in P; immediately preceding M
(and being allowed to be equal to M) and the north-east turn (r;,sy) in P,
immediately preceding M (and being allowed to be equal to M), we get the
inequalities (c¢f. Figure 3.5)

ry < pr (3.42)
q-1 < 8, (3.43)

where
1<I<k+1, 1<J<L (3.44)

Of course, k, 1, py,q1,77, 87, €tc., refer to the array representations of P; and
P,. It now becomes apparent that the above assignments for px,; and qg are
needed for the inequalities (3.42) and (3.43) to make sense for I = 1 or I = k+1.
Note that M = (pr, ss). Vice versa, if (3.42) — (3.44) are satisfied, then there
must be a meeting point between P; and P, (because of the particular location
of the starting and end points A, B, E, F).
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Summarizing, the existence of I, J satisfying (3.42) — (3.44) characterize
the array representations of intersecting pairs of paths. Therefore, we call two-
rowed arrays P; and P, of the form (3.40) and (3.41), respectively, intersecting
if (3.42) — (3.44) are satisfied, for some I and J, otherwise nonintersecting. The
point M = (pr, sy) is called their intersection point.

We also need to consider skew two-rowed arrays. For convenience, we in-
troduce some terminology. Let 7 > 0. We say that the two-rowed array P is of
the type j if P has the form

P-j+1 P-j+2 ... P-1 Po P1 -.. Dk
qq ... gk

for some k > 0. We say that P is of the type —j if P has the form

pPr ... Dk
g—j+1 9—j+2 --- 9-1 qo q1 ... Gk

for some k > 0. Note that the placement of indices is chosen such that non-
positive indices can occur only in one row of P, while the positive indices
occur in both rows of P. The meaning of non-skew two-rowed arrays being
intersecting, and nonintersecting, and of intersection points, is extended to skew
two-rowed arrays in the obvious way. In abuse of its actual literal meaning, we
define the “number of NE-turns” of a two-rowed array P to be one half of the
number of entries of P. (Recall that, under the correspondence between paths
and two-rowed arrays, the number of NE-turns of the path equals one half of
the number of entries of the corresponding two-rowed array.) We use the same
short notation NE(P) for this number.

Now, we are in the position to actually begin with the proof of (3.39). First,
we give the combinatorial interpretation of the determinant (3.39) in terms of
two-rowed arrays. Expanding the determinant in (3.39), we obtain

S cane i (<7~ 00 3) (6~ o9 4
i1 ki + 0’(7) —1 ki

o€ES,
= Z sgno zNE(P)| (3.45)
(o,P)

where S, denotes the symmetric group of order n, and the sum on the right-
hand side is over all pairs (P,o0) of permutations ¢ in S, and families P =
(P1, Py, ..., P,) of two-rowed arrays, P; being of type o(i) — i, and the bounds
for the entries of P; being as follows:

o’ ti-o)< ... pf) <) -1 (3.46)
+1< |

. e‘. .
o’ — i+ o (i) q) <ef,
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The outline of the proof is as follows. We show that in the sum on the
right-hand side of (3.45) all contributions corresponding to pairs (P, o) where
P is an intersecting family of two-rowed arrays cancel. (We call a pair (P, o)
intersecting if P = (P1, Py, ..., P,) contains two two-rowed arrays P; and P;y;
with consecutive indices that have an intersection point. Otherwise it is called
nonintersecting. In the sequel, two-rowed arrays with consecutive indices will
be called neighbouring two-rowed arrays.) This is done by constructing a sign-
reversing (with respect to sgno) involution on these pairs, which keeps the
total number of entries in the two-rowed arrays fixed. (Recall that, under the
correspondence between paths and two-rowed arrays, the number of NE-turns
of the path equals one half of the number of entries of the corresponding two-
rowed array.) Finally, it is shown that, in a pair (P,o) with ¢ # id, the
family P must be intersecting. This establishes that only pairs (P,id) where
P is a nonintersecting family of two-rowed arrays contribute to the sum on the
right-hand side of (3.45). But these pairs correspond exactly to the families of
nonintersecting paths under consideration, and hence Theorem 3.6.1 would be
proved.

Let (P, o) be a pair under consideration for the sum on the right-hand side
of (3.45). Besides, we assume that P contains two neighbouring two-rowed
arrays P; and P;;; that have an intersection point. Consider all intersection
points of neighbouring arrays. Among these points, choose those with maximal
z-coordinate, and among all those choose the intersection point with maximal
y-coordinate. Denote this intersection point by M. Let 7 be minimal such that
M is an intersection point of P; and P;y1. Let P, = (a | b) = (...ps | --.qs,)
and Piy1 = (c|d)=(...7q, | ...5¢.,,). Recall that P; is of type o(i) — i and
P, is of type o(i+1) —i —1 and that the bounds of the entries in P; and Pj4
are determined by (3.46). By (3.42) — (3.44), M being an intersection point of
P, and P, means that there exist I and J such that P; looks like

.aga(i)) +i—0o(@)< ... pr—1 pr ... P < eg) -1 (3.47)
aé"(z)) —i+o(@)+1< ... q-1 aqr ... q < eg)’ |
P, 11 looks like
o Lt 1o+ < rSoTa e Thy Sef -1
aézr(i+1)) —i40o(i+1)< ... SJ1 8] eeeennn. St S eg+1)’

(3.48)

M = (p1,85),
r < (3.49)
v s (3.50)

and

1<I<li+1, 0<J< /by (3.51)
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Because of the construction of M, the indices I and J are maximal with respect
to (3.49) — (3.51).

We map (P, o) to the pair (P,00(4,i+1)) [(i,i+1) denotes the transposition
interchanging i and i + 1], where P = (Py,..., P,_1, B;, Piy1, Pigo, . .. , Pn) with
P; being given by

ry—1 pr ... peg
: 3.52
sj-1+1 ar ... qu, (3:52)
P;,1 being given by
pr-1+1 ry41 ... Tlit1 (3 53)
q1_1—1 SJ Sli+1' )

First of all, this operation is well-defined, i.e., all the rows in (3.52) and (3.53)
are strictly increasing. To see this, we have to check r; —1 < pr, sj_1+1 < qy,
pr-1+1 < ry41, and gj—1 — 1 < sj. This is obvious for the first and last
inequalities, because of (3.49) and (3.50). As for the second inequality, let
us suppose sj—1 + 1 > qr. Then, by (3.49), we have r; < pr < pry1 and
qr < sj—1+1 < sy. This means that (p;41,sy) is an intersection point of P;
and P;;1, with an z-coordinate larger than that of M = (py, s;), contradicting
the “maximality” of M. Similarly, if we assume pr_; +1 > 7541, we have
ry+1 < pr-1 + 1 < pr and, by (3.50), gr—1 < sy < sj+1. This means that
(pr1,87+1) is an intersection point of P; and P;;;, with a y-coordinate larger
than that of M = (py,sy), again contradicting the “maximality” of M.

We claim that (P,o(i,i + 1)) is again a pair under consideration for the
generating function (3.45). That is, we claim that P; is of type (oo (i,i+1))(i) —
i =0(i+ 1) —1i, that Py is of type (60 (4,5 +1))(i+1)—i—1=0(i) —i —1,
and that the bounds for the entries of P; are given by

o’ pi—s(i+ )< . or=1 pr ooy <) -1 (3.54)
aga(H'l)) —i4+o(i+1)+1< ... sy1+1 g ... g, < eg'), .
and that those for P;,; are given by
a&a(i))+li+1—a(i)§ pr-1+1 ryp1 ... Ty, Segﬂ)—l
aga(z))—i—i-a(i)g e qr1—1 s T gegﬂ).
(3.55)

The claims concerning the types cf P; and P, are trivial. The claim concerning
the bounds requires some case-by-case analysis, which we leave to the reader.
One may also refer to Krattenthaler (1995b, 1996a). Obviously, the map (3.52)
— (3.53) reverses the sign of the associated permutation. Besides, it can be
checked that it is an involution. The proof that, given a pair (P,o), P =
(P1,Py,...,P,), 0 # id, there exist neighbouring two-rowed arrays P; and
P;;1 having an intersection point, is slightly technical. We refer the reader to
Krattenthaler (1995b, 1996a) for the details. |
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Remark 3.6.2 The map from (3.47) and (3.48) to (3.52) and (3.53) can be
considered as the analogue in the “world of two-rowed arrays” for the inter-
changing of paths which is usually done with nonintersecting lattice paths [see,
for example, Gessel and Viennot (1985), Stembridge (1990), and Krattenthaler
(1995a, Section 2.2)].

Another problem that is posed by Example 3.3.3 is the enumeration of
families of nonintersecting lattice paths which are bounded by a diagonal line
with respect to their number of turns. Recall that this is necessary for the
computation of the Hilbert series of pfaffian rings and of ladder determinantal
rings where the ladder restriction is a diagonal boundary. Also here, we have
a result where the location of the starting and end points is more general than
needed.

Theorem 3.6.2 Let A; = (agi),agi)) and E; = (e?),eg)), i=1,2,...,n, be
lattice points satisfying

o) <af) < <al”, o) > e > > el

1 2

egl) < e§2) <... < eg"), (1) > 6(2) > eg"'),
and agi) > ag), egi) > eg), i = 1,2,...,n. The generating function
>p 2NE(P) | yhere the sum is over all families P = (Py, Py,...,P,) of non-

intersecting lattice paths P; : A; — E;, which stay below the line = = y (being
allowed to touch it), equals

det Z egi)—agj)+j—i eg)—agj)—j+7ﬁ
1<4,j<n = k+j—1 k

_egi)—agj)—j—i+1 eg’:)—agj)+j+i—1 S
k—i k+j '

(3.56)

SKETCH OF PROOF. Again, we work with families of two-rowed arrays. This
time we consider triples (P, o,7), where ¢ is a permutation in S,, n € {-1,1}",
and P = (P, Py, ..., P,) is a family of two-rowed arrays, with P; being of type
nio (i) — 4 and the bounds of P; being given by

, for n = —1. (3.58)

(e(@) |, . .
ap H+i—o(i)< ... <e’ -1
. ) , for n =1, 3.57
a’ _ i+ o(i)+1< ... < egl) 7 (3:57)
and
o’ iy o(i)—1< < eg) -1
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Define sgnn := [[;=; 7;. It is easy to see that (3.56) is the generating function

Z sgnnsgno z2NeP), (3.59)
(P,om)

where the sum is over all triples which have been described above.

Now, the basic idea is as follows. We show that in the sum (3.59) all contri-
butions cancel which correspond to triples (P,o,7n), where P is an intersecting
family of two-rowed arrays, or where the two-rowed array P; “crosses” y = z,
by which we mean that there is an entry in the upper row of P; which is smaller
than its neighbour in the bottom row of P;. Again, this is done by constructing a
sign-reversing involution (with respect to sgn7nsgno) on those triples. Roughly
described, this involution combines the “reflection principle for two-rowed ar-
rays” with the “interchanging procedure for two-rowed arrays”. Namely, this
involution is defined to be the map (3.47) and (3.48) to (3.52) and (3.53) if P
contains neighbouring two-rowed arrays which are intersecting, and if not, but
the first two-rowed array P; “crosses” y = z, then it is defined to be basically
the map (3.13), applied to P;. It can be shown that in a triple (P, o,n) with
o #id or n # (1,1,...,1), the family P must be intersecting or P; “crosses
y = z”. This establishes that only triples (P,id, (1,1,...,1)), where P is a non-
intersecting family of two-rowed arrays which do not cross y = z, contribute to
the sum (3.59). But these triples exactly correspond to the families of noninter-
secting paths under consideration, and hence Theorem 3.6.2 would be proved.
We refer the reader to Krattenthaler (1995b, 1996a) for the details. |

As mentioned before, Theorem 3.6.2 can be applied to the computation
of the Hilbert series of certain ladder determinantal rings (one sided, with a
diagonal upper bound) and also of pfaffian rings. The computation of Hilbert
series of rings generated by minors of a symmetric matrix as considered by
Conca (1994) can also be solved by using the method of two-rowed arrays;
see Krattenthaler (1996a). For arbitrary one-sided ladders, there is a solution
when the starting points, and end points, are located “successively” (such as in
Figure 3.4) by Krattenthaler and Prohaska (1996) proving a remarkable formula
conjectured by Conca and Herzog (1994). For “generally” located starting and
end points, there is a solution in terms of a determinant with entries counting
certain two-rowed arrays by Krattenthaler (1996a). The case of two-sided ladder
determinantal rings appears to be out of reach by the method of two-rowed
arrays. Perhaps, the extension of the dummy path idea in Krattenthaler and
Mohanty (1995) will be useful in this context. Finally, we want to point the
reader to a refined turn counting for pairs of paths [Krattenthaler and Sulanke
(1996)] which relates this subject also to polyomino counting.



The Enumeration of Lattice Paths 55

References

1.

10.

11.

12.

13.

14.

15.

Abhyankar, S. S. (1987). Determinantal loci and enumerative combina-
torics of Young tableaux, In Algebraic Geometry and Commutative Alge-
bra in honor of M. Nagata, pp. 1-26.

. Abhyankar, S. S. (1988). Enumerative Combinatorics of Young Tableaur,

New York: Marcel Dekker.

. Abhyankar, S. S. and Kulkarni, D. M. (1989). On Hilbertian ideals, Linear

Algebra and its Applications, 116, 53-76.

Burge, W. H. (1993). Restricted partition pairs,Journal of Combinatorial
Theory, Series A, 63, 210-222.

. Comtet, L. (1974). Advanced Combinatorics, Dordrecht: Reidel.

. Conca, A. (1994). Symmetric ladders, Nagoya Mathematical Journal,

136, 35-56.

Conca, A. and Herzog, J. (1994). On the Hilbert function of determi-
nantal rings and their canonical module, Proceedings of the American
Mathematical Society, 122, 677-681.

DeGroot, M. H. (1959). Unbiased sequential estimation for binomial pop-
ulations, Annals of Mathematical Statistics, 30, 80-101.

Essam, J. W. and Guttmann, A. J. (1995). Vicious walkers and directed
polymer networks in general dimensions, Physical Review FE, 52, 5849—
5862.

Fisher, M. E. (1984). Walks, walls, wetting, and melting, Journal of
Statistical Physics, 34, 667-729.

Gessel, I. M. and Krattenthaler, C. (1996). Cylindric partitions, Trans-
actions of the American Mathematical Society (to appear).

Gessel, I. M. and Viennot, X. (1985). Binomial determinants, paths, and
hook length formulae, Advances in Mathematics, 58, 300-321.

Gessel, I. M. and Viennot, X. (1989). Determinants, paths, and plane
partitions, Preprint.

Ghorpade, S. R. (1996). Young bitableaux, lattice paths and Hilbert
functions, Journal of Statistical Planning and Inference 54, 55-66.

Ghorpade, S. R. and Krattenthaler, C. (1996). On pfaffian ideals, Preprint.



56

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

C. Krattenthaler

. Herzog, J. and Trung, N. V. (1992). Grobner bases and multiplicity of
determinantal and Pfaffian ideals, Advances in Mathematics, 96, 1-37.

Karlin, S. (1988). Coincident probabilities and applications in combina-
torics, Journal of Applied Probability, 25, 185-200.

Karlin, S. and McGregor, J. L. (1959a). Coincidence probabilities, Pacific
Journal of Mathematics, 9, 1141-1164.

Karlin, S. and McGregor, J. L. (1959b). Coincidence properties of birth-
and-death processes, Pacific Journal of Mathematics, 9, 1109-1140.

Krattenthaler, C. (1989). Counting lattice paths with a linear boundary,
Part 2: g-ballot and ¢g-Catalan numbers, Sitz. ber. d. OAW, Mathnatur-
wiss. Klasse, 198, 171-199.

Krattenthaler, C. (1993). Non-crossing two-rowed arrays and summations
for Schur functions, In Proceedings of the 5th Conference on Formal Power
Series and Algebraic Combinatorics, Florence, 1993 (Eds., A. Barlotti, M.
Delest and R. Pinzani), pp. 301-314, Universita di Firenze: D.S.I.

Krattenthaler, C. (1995a). The Major Counting of Nonintersecting Lat-
tice Paths and Generating Functions for Tableauz, Providence, Rhode
Island: Memoirs of the American Mathematical Society, 115.

Krattenthaler, C. (1995b). Counting nonintersecting lattice paths with
respect to weighted turns, Seminaire Lotharingien Combin., 34, paper
B34i, 17 pp.

Krattenthaler, C. (1996a). Non-crossing two-rowed arrays, Preprint.

Krattenthaler, C. (1996b). Nonintersecting lattice paths and oscillating
tableaux, Journal of Statistical Planning and Inference 54, 75-85.

Krattenthaler, C. and Mohanty, S. G. (1993). On lattice path counting
by major and descents, Furopean Journal of Combinatorics, 14, 43-51.

Krattenthaler, C. and Mohanty, S. G. (1995). Counting tableaux with
row and column bounds, Discrete Mathematics, 139, 273-286.

Krattenthaler, C. and Prohaska, M. (1996). A remarkable formula for
counting nonintersecting lattice paths in a ladder with respect to turns,
Transactions of the American Mathematical Society (to appear).

Krattenthaler, C. and Sulanke, R. A. (1996). Counting pairs of noninter-
secting lattice paths with respect to weighted turns, Discrete Mathematics
153, 189-198.



The Enumeration of Lattice Paths 57

30. Kulkarni, D. M. (1993). Hilbert polynomial of a certain ladder-determinantal
ideal, Journal of Algebraic Combinatorics, 2, 57-72.

31. Kulkarni, D. M. (1996). Counting of paths and coefficients of Hilbert
polynomial of a determinantal ideal, Discrete Mathematics, 154, 141-
151.

32. Lindstrém, B. (1973). On the vector representations of induced matroids,
Bulletin of the London Mathematical Society, 5, 85-90.

33. Modak, M. R. (1992). Combinatorial meaning of the coefficients of a
Hilbert polynomial, Proceedings of the Indian Academy of Science (Math-
ematical Sciences), 102, 93-123.

34. Mohanty, S. G. (1966). On a generalised two-coin tossing problem, Biome-
trische Zeitschrift, 8, 266-272.

35. Mohanty, S. G. (1971). A short proof of Steck’s result on two-sample
Smirnov statistics, Annals of Mathematical Statistics, 42, 413-414.

36. Mohanty, S. G. (1979). Lattice Path Counting and Applications, New
York: Academic Press.

37. Narayana, T. V. (1959). A partial order and its applications to probability
theory, Sankhya, 21, 91-98.

38. Narayana, T. V. (1979). Lattice path combinatorics with statistical appli-
cations, Mathematical Statistics Expositions, No. 28, Toronto: University
of Toronto Press.

39. Niederhausen, H. (1996). Symmetric Sheffer sequences and their applica-
tions to lattice path counting, Journal of Statistical Planning and Infer-
ence 54, 87-100.

40. Pitman, E. J. G. (1972). Simple proofs of Steck’s determinantal expres-
sions for probabilities in the Kolmogorov and Smirnov tests, Bulletin of
the Astralian Mathematical Society, 7, 227-232.

41. Steck, G. P. (1969). The Smirnov tests as rank tests, Annals of Mathe-
matical Statistics, 40, 1449-1466.

42. Steck, G. P. (1974). A new formula for P(R; <b;, 1 <i<m|m,n,F =
G*), Annals of Probability, 2, 155-160.

43. Stembridge, J. R. (1990). Nonintersecting paths, pfaffians and plane par-
titions, Advances in Mathematics, 83, 96-131.

44. Sulanke, R. A. (1990). A determinant for g-counting lattice paths, Dis-
crete Mathematics, 81, 91-96.



58 C. Krattenthaler

45. Vellore, S. (1972). Joint distributions of Kolmogorov-Smirnov statistics
and runs, Studia Scientiarum Mathematica Hungarica, 7, 155-165.



4

Lattice Path Counting, Simple Random Walk
Statistics, and Randomization:
An Analytic Approach

Wolfgang Panny and Walter Katzenbeisser

University of Economics, Augasse 2-6, Vienna

Abstract: In this paper an approach to lattice paths, simple random walks and
randomized random walks is presented, which emphasizes the common features
and permits to treat various aspects in a unified framework.

Keywords and phrases: Lattice paths, simple random walks, randomized
random walks, rank order statistics, Dwass’s method

4.1 Introduction

The purpose of this paper is to present an approach which has proved useful in
dealing with various aspects of the simple random walk. The approach involves
generating functions and is mainly of an analytical nature. A striking feature is
that the simple random walk results happen to essentially comprise their lattice
path counterparts as special cases, wich is due to the use of generalized trinomial
coefficients. Moreover, the simple random walk results can be taken as a starting
point to derive their continuous time counterparts by a limiting process, which
takes us to randomized random walks. Our randomization procedure, in fact,
may be seen as an alternative to Feller’s randomization technique.

Our plan is as follows. In Section 4.2 we confine ourselves to the lattice path
context, while in Section 4.3 we present the general method for simple random
walks. Section 4.4 is devoted to a presentation of our randomization procedure.
Each section also includes an example in order to illustrate the application.
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4.2 Lattice Paths

Consider the lattice points (0,y0), (1,41), (2,%2), ... in the (z,y)-grid. We
are dealing with lattice paths (yo,y1,%2,-..,Yn) With yx = yc_1 + €x where
ex € {—1,41}, k=1,2,...,n and yo = 0, y, = £. Such a lattice path starts at
the origin and leads to ¢ after n steps. Confining to yo = 0 actually constitutes
no restriction at all. So, this assumption will be made in the sequel if not
explicitly stated otherwise. Of course, |yx| < « and y, = k(2). In particular,
yn = £ may only be reached if |¢| < n and £ = n(2).
All results contained in this section are based on the generating function

Upme(z) = Z N(h,m,€,n)z", h,m >0.
n>0
N (h,m,£,n) counts the number of lattice paths starting at the origin and lead-
ing to the point (n, £), where these paths are subject to the following restriction:
—m<yYy=0<h, —-m<y1<h, ..., = m<yp_1<h, - m<y,=£<h.

The above definition shows that the paths must lie entirely within the stripe
defined by the lines y = —m and y = h, where the paths are not even allowed
to touch these lines.

(0,0)

y=-m

Figure 4.1: Example of a lattice path

Considering all those points from which the point (n,£) can be reached by
the next step, we are led to the following system of recurrence relations for ¥:

1 -z Uh m,h—1 0
-z 1 -z Uh mh—2 0
-2z 1 -z Uhm—1
-2z 1 -z U mo =11

-z 1 -z Uhm,1 0
-z 1 -z Uh m,—m+2 0

|

N
—
i
>

3
|

3

s
=)
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The matrix of this system has order (h +m — 1) x (h + m — 1) and will be
denoted by Apim(2). It is not hard to find out that

i () ()]

|Ak(2)| is a polynomial of degree 2[%] — 2. Incidentally, |Ax(2)| = Fx(2?),
where F)j(z) denotes the j-th Fibonacci polynomial [see Panny (1984)]. The
Fibonacci polynomials are connected to the Fibonacci numbers F; by F;(—1) =
F;. Applying Cramer’s rule, we get

|Ak(2)] =

_Am—qe—02(2)| |AR—_(e140)/2(2)] Ny

q’h,m,[(z) - |Ah+m(z)|
The substitution ’
z=g(v) = T+02 (4.1)

is crucial for our approach because it considerably simplifies the original gener-
ating function, which now becomes

_ M 1402 (1 —o2m=(l=0)(1 — y2h=(lE1+0))
1 -2 1 — p2(htm)

Uhm,e(2) (4.2)

The generating function also comprises the one-sided cases, viz.

_ 2m=(i-2)
Wooim(2) = o1 (14 07) 22—

1—122 ’
1 — p2h—~(le1+0)
— |2 2
nooelz) = o (140%) ———,
and the unrestricted case
1+v
v = ol .
00,00,(2) 1= 2

These generating functions may be taken as building blocks to derive appropri-
ate generating functions for various path counting problems, as will be shown
by the following example. As direct results, they furnish explicit expressions
for the numbers N(h,m,¢,n) by applying Cauchy’s integral formula

1 ‘I/h,'m,,l(z)

N(h,m,n) = 5— f —hml2 ds. (4.3)

Since v &~ z when |z| < 1, we may change variables in (4.3). From (4.1), we

have
dz g'(v) 1 — 2

— — 2\n—-1
T = g () dv = o) (143" dv
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and, hence,

N(h,m,¢,n) = 271rz f ———\IJ’;:_KI(‘(QU(;)) g (v) dv.

Technically, this means that

N(h,m, £,n) = ["] {vlll (1402)" (1-02m-04-0) (1—v2h—(|e|+e>)} |

1 — p2(htm)

where [v"] {P(v)} denotes the coefficient of v™ in P(v). Consequently,

N(h,,m,ﬁ,n) = _ Z |:<n+l +]d> <n+£ h+jd>] (44)

7=0,%1,...
n n
n n
N(h,o0,4,n) = <n_+g)—(n_+g_h>, (4.6)
2 2 g
N(o0,00,8,n) = (ﬂe) (4.7)
2

where d = h + m.

Of course, the formulas (4.4)—(4.7) are usually derived by path combinatorial
arguments [see Mohanty (1979)]. In particular, (4.5) and (4.6) can be obtained
using the method of reflections due to André. (4.4) may be found by applying
this method repeatedly.

As a further remark, we would like to mention that (4.2) gives us the right
clues on the location of the poles of ¥, ¢(2). Hence, (4.2) may be taken as
a starting point for deriving the partial fraction expansion of W, ¢(2), which
furnishes the following expression for N(h,m,¥¢,n) and £ = n(2):

4 ra4mi—1
—_— z sin h6; sin(h — £)0; (2 cos §;)",
h+m i

where 6; = jn/(h +m). Consequently, the asymptotic behavior as n. — oo can
be described by

) , — £ n
N(h,m,€,n) ~ 4 sin h 7rsinh 7r<2cos Wm>.

h+m  h+m h+m h +
Example 4.2.1 Let D denote the maximum of the lattice path, i.e. D} =
max{yo,y1,---,Yn} and let @, denote the number of times that the maximum

is reached. We are interested in the number N(D;" =k, Q, = r) of paths with
D} =k and Q, = r, where yop = 0 and y, = £. Of course, one always has
k >0,k >¢and r > 0. Now, we will illustrate the usefulness of the generating
functions ¥4, ¢(2) in such counting problems.
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Let us first consider the case k > 0,k > ¢. The following figure shows an
appropriately decomposed path (with @, = 3).

| &
\

1

Figure 4.2: Number of times where the maximum is achieved

A path with D} =k, @, = r can symbolically be written as SA(BA)""'E.
The generating functions for the individual segments are

Ts(2) = Proop-1(2) = (1+ 020,
2

— .2 _ v
Talz) = 2°= —.(1 ol
Te(z) = VYim0(z)=1+ v?,
TE(Z) = ‘IJl,oo,Z—k+1(Z) = (]_ + 'U2)'Uk_1_e_

Hence, the generating function ¢ ¢, (z) for N(Df =k, Qn =71), k>0, £ <k,
is
Ys(2)Ta(2)T5 " (2)Te(2),
which yields 1
Ok or(2) = (1 + v2) T 2Artk—1)—¢

The remaining three cases are £ < k =0, =k > 0, and £ = k = 0. These
cases can be investigated in the same way as the first case. It turns out that the
generating function ¢y ¢ ,(2) in fact applies for all cases, i.e. for £ > 0, £ < k.
The coeflicient of 2" can be most conveniently extracted by means of Cauchy’s
integral formula. We only have to take into account that

on+l - gn+1(,u) T pntl

dz _ _9(2) , (1_”2)(1+v2)"—1dv.

Consequently, N(D;} = k, @, = r) can be expressed as

21?% v2(7;+;7l'<:11)—1? (1 B vz) <1 + vz)n—rdv .

Determining the coefficient of v™ in v2(™tF=1)=¢(1 — 2)(1 + v2)"™" yields

+ = = noT - e
N(Dy =k, Qn=r) (%li_k——r—i-l) ("—'zﬂ“’“"') 0
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or, equivalently,

n-—r
N(DF >k Qn=r)= (13—!-1;-7«>' (4.9)

Summation over all possible values of k (i.e., over all k¥ > max{0,£}) leads to
[Mohanty (1979, p. 93)]:

N@Qn=r)= (ﬁ,ﬁf " 1) . (4.10)

2

The above results are comparatively easily obtained by our approach, since
the generating functions become rather simple owing to the substitution z =
g(v) and because concatenation and summation is implicitly done by power
series algebra. Since the substitution z = g(v) is compatible with Cauchy’s
integral formula, we still may apply it to determine the coefficients of interest.

Katzenbeisser and Panny (1996) have shown that all results on rank order
statistics given by Dwass (1967) can be obtained by this approach as well.
Moreover, all of Dwass’s results have been extended to arbitrary endpoints
(n,£), enabling one to deal with rank order statistics for unequal sample sizes
also.

4.3 Simple Random Walks

Let Xi, k=1,2,..., be independent and identically distributed random vari-
ables with

PriXg=1=a, Pr[Xx=0]=08, Pr[Xig=-1=1,

where a + 8+ v = 1. Consider the random walk

k
Sk=S+Y X;, k=12,...,n, with S,=¢,
j=1

i.e., a simple random walk in the sense of Cox and Miller (1965) starting at
So and leading to £ after n steps. Confining to Sy = 0 actually constitutes no
restriction at all. So, this assumption will be made in the sequel if not explicitly
stated otherwise. In this section, ¥, , ¢(z) denotes the probability generating
function
U me(2) = Zp(h,m,f, n)z", h,m >0,
n>0
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where p(h, m,£,n) gives the probability that a particle obeying a random walk
with absorbing barriers at —m and h reaches the state ¢ when it started from
state 0, i.e.,

p(h,m,€,n) = Pr[-m<Si1<h,...,—m<S,_1<h,-m<S, =£<h|Sy=0].

The definition of p(h,m,£,n) shows that it is not even admissible to touch the
barriers. Following Barton and Mallows (1965), this type of absorption could
be termed as strong sense absorption.

)
y=h
(n,0)
(0,0)
y=-m

Figure 4.3: Sample path of a simple random walk

In the following, we show how the approach adopted earleir for path counting
can be generalized to determine the probabilities p(h,m,#,n). It is not hard to
see [Panny (1984) and Katzenbeisser and Panny (1984)] that the matrix of the
system of recurrence relations for ¥ becomes

(1-82) -—az
—vz (1-8z) —az
Apom(z) = —vz .'(1 - ,Bz).. —az-'
—yz (1-p82) —az
—vz  (1-02)

in the present setting. As before, Ak(z) is of order (k — 1) x (k — 1). The

determinant is . .
1[/a+b\" a—b\"
o= 5[5 - (5]

where a = 1 — Bz and b = /a? — 4ay2?. Again, |Ax(z)| can be expressed by
means of the Fibonacci polynomials as

2
Ar(2)l = (1= B R | o).
Al = 0= g B
By Cramer’s rule, we get

le] A o—02(2)| |Ap_ N /o (2
Unme(z) = (ay) B p 10 Am= ")/liih)”(zh) |(IZI+!')/2( )|
.+,

(4.11)
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The substitution
v

Z=g('l))= —_———av2+ﬂv+7

is now the counterpart of (4.1). Applying this substitution to (4.11) again
results in a considerable simplification as

le+e Lt _lge
o (2) = P av?+Bu+y (1=(p?)™ 7 )(1—(pv?)h—"2) (4.12)
h,m,¢ 1 — pv? 1-— (pv2)h+m TovE

As before, the generating function also comprises the one-sided cases, viz.

It aym_ le=t
2 1- 2
Veorme(z) = L oMl(? 4 o-4) T
1—pv
lete o\h— L8t
p 2 1-(pv 2
Uh,o00,(2) = — vl(av®+Bu+7) (1 _)pvz

and the unrestricted case

£]+€

P2k av?+Bu+y
v 1-p2

\I’oo,oo,l (z) =

Again, these generating functions prove very useful in deriving appropriate
generating functions for more intricate problems connected with simple random
walks, as shall be illustrated by the following example. As direct results, of
course, they furnish explicit expressions for the probabilities p(h,m, £,n) by an
application of Cauchy’s integral formula as

1 v z
plhm, €,n) = z— f ”z+f1(l dz . (4.13)

Since v & z when |z| < 1, we may change variables in (4.13). Since

dz g’ (v) 1- PU2 2 —1
2n+1 = g"'H('U) =7 pn+1 (av +ﬁv+7)n ’
we have (6))
1 Vhme(g(v ,
h bn)= — ¢ ——— 2 .
p(hm, b,m) = 5 § =AETLE ' (0) do

Technically, this means that p(h,m,£,n) is

(1ot (1= o252

1-—- (pv2)h+m

[AE24
"] { "5 o (av? + Bu-+7)"
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Consequently,

p(h,m,¢,n) = ‘Jd (4.14)

n;a IB i h n;a,IB77
n+0+2jd) " \n+0-2n+2jd )|’
_ [ma,8,y n;a, B,y
p(oo,m,l,n) = ( .y ) <n+/+2m> (4.15)

n;a, B3,y n;a, B,
<n+€ 2h> (4.16)

p(h,00,4,n) = (n—+—£
(4.17)

(naﬂv

p(00,00,4,n) .y

where d = h + m and where generalized trinomial coeflicients (GTC) are used.
They have the generating function (av?+Bv+v), i.e

(";O‘,’f | ”) = [o*)(av?+ 8o+,

which, of course, entails

= (nse, 8,7\
> < e >_1. (4.18)

k=-n

of course. GTC are quasi-symmetric, i.e.,

na, B\ | _p[ma, B,y
<n—k)_p <n+k> (4.19)
and comprise binomial coefficients as a special case, viz.
;1/2,0,1/2 ,
("’ /2,0, /)= (")2—". (4.20)
2m m

They are connected to ordinary trinomial coefficients by the relation

n;a’ﬂ77 _ g anpb.c
(n+k>_ Z (abc) G

a,b,c>0
a+b+c=n
a—c=k

which allows the following representation as a hypergeometric function:

n;a, B,y okt < n—k n-k-1 4@1{)
R R P O 5]
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An integral representation is

(nf;a,ﬂ,'y> _ (a/)*?

™
n
otk - /0 coskf (B + 2/aycos6)" db , (4.21)

which corresponds to the well-known integral representation of binomial coeffi-
cients [see Gradshteyn and Ryzhik (1980, p. 374)]:

" —2"1/7rcosk0(cos¢9)"d9

Both integral representations can easily be verified by means of the residue
theorem.

We would like to mention that the formulas (4.14)-(4.17) can all be obtained
by reflection arguments as well. At first sight, one would think that these
arguments are not applicable to the problem treated here, since the paths are no
longer symmetrical. However, the classical reflection approach can be modified
by interchanging the probabilities @ and v in the reflected parts of the paths
[see Panny (1984)].

In accordance with the preceding section, we would like to mention here an
alternative representation of p(h,m,£,n), based on partial fraction expansion
of ¥p, m ¢(z), which can conveniently be derived from (4.12), as

p(h,m,f,n) = parige J; sin h6; sin(h — £)6; (B + 2. /a7y cos 6;)",

where 6; = jn/(h + m). Hence, the asymptotic behavior of p(h,m,¥,n) as
n — oo can be described by

2AB)pE . h h—¢

. T \"
p(h,m,€,n) ~ et m s1nh+m7r31nh+m7r<ﬁ+2,/a'ycosh+m) ,

where the indicator function

A(ﬂ):{l B>0

2 B=0

is necessary, since for the case 3 = 0 the contribution of 04,1 = 7 — FI_m has
to be taken into account, too.

Example 4.3.1 In the following, we generalize Example 4.2.1 for simple ran-
dom walks. Let D denote the maximum of the random walk, i.e., D} =
maxo<k<n{Sk} and let Q, denote the number of times that the maximum is
reached. We are interested in the probability Pr[D; = k, Q,, = r] for a random
walk with Sp = 0 and S,, = £. Of course, one always has k >0,k > fand r > 0.
However, regarding the possibility of horizontal steps, the definition of Q,, must
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be properly adapted: The maximum is achieved if S = Sky1 = Sk42 = ... =
Sk+m = D} and Sk_1,Skim+1 < D}, 0 < k < k+m < n. If there should
be one or more consecutive horizontal steps coinciding with the line y = D;"
(i.e. m > 0), this counts only as a single maximum. By definition, if Sy = D;}
the path starts with a maximum; similarly, if S, = D} the path ends with a
maximum.

Let us first consider the case k > 0, k > £. The following figure shows an
appropriately decomposed sample path (with @, = 3).

SN2 N

Figure 4.4: Number of times where the maximum is achieved

A path corresponding to the event D;} = k, @, = r can symbolically be
written as SA(BA)""LE. The probability generating function for the individual
segments are

Ts(z) = Yreok-1(2),
Ta(z) = oy2®¥110(2),
Te(2) = ¥Yie00(2),

Te(z) = P100e—k+1(2).

Hence, the probability generating function ¢ r(2) for Pr[D} = k, Q, = 7],
k>0,k>1¥,is

Ys(2)Ta(2) Y5 (2)YE(2),
which yields
1 (av? +Bv+7) (p'u2)r+k_1

¢k,€,r(z) = ; ot 1+ p'U2)r

A separate investigation of the remaining cases shows that the last formula in
fact covers all cases, i.e., k > 0, £ < k. Extracting

[vn] (OZ'U2 + ,B'U + ,Y)'n, (1 _ /)U2) (pU2)7‘+k—~1
ot (1 +p’U2)T

yields the following expression for Pr[D} =k, Qn, = ]

ktr—1 T n;o, B, B n;a, B,
p Zp]<j)[<n+f—2k—2r—2j+2> P<n+£_2k_2r_2j>], (4.22)

320
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or, equivalently,

+ _ _ k+r i =T n;a,ﬂ,’y
Pr[D} > k,Qn=71]=p ;)y(j)(nlw_zk_%_%). (4.23)

Since the range of all possible values of k is given by k > max{0,¢}, the last
formula yields at once

_ _ ,,._1+_|ﬂ+_‘ i T n;a,ﬂ,7
Pr[Qn.=r]=p g jgop](j>(n—|£|—2r—2j+2>' (4.24)

Clearly, formulae (4.22), (4.23), and (4.24) translate to the corresponding for-
mulae (4.8), (4.9), and (4.10) after an application of the identity in (4.20) and
Vandermonde’s convolution formula. The last two formulae also comprise the
pertaining results [viz. VIII(a) and VIII(b)] due to Dwass (1967) as special
cases. This can be checked by specializing on o = v = 1/2, £ = 0, substi-
tuting 2n for n and dividing by the probability of the conditioning event, viz.
Pr[Syn, = 0| Sp = 0] = 2727 (3).

It has been shown by Katzenbeisser and Panny (1996) that this method
allows to generalize all of Dwass’s results by considering arbitrary endpoints
(n,£), introducing horizontal steps as third step type and assigning arbitrary
probabilities a, 3, 7y to the three step types. Regarding these extensions, Dwass’s
rank order statistics in fact are extended to simple random walk statistics.

4.4 Randomized Random Walks

In the present section, it will be shown as to how the results on simple random
walks can be translated to randomized random walks by means of a limiting
process. In the following, our randomization approach will be put forward.
However, we confine ourselves to a presentation of the basic ideas and skim
over the details. The reader interested in a rigorous proof is referred to the
papers Bohm and Mohanty (1994) and Bohm and Panny (1996).

Usually, the z-axis of a random walk is interpreted as time. Accordingly,
the simple random walk corresponds to discrete time. This may be visualized
by dividing a time interval of lenght ¢t = 1, say, in » time slots, each of which
has length 1/n. Each slot j has an associated random variable X; (and S;). If
X; =1or X; = —1, we have a jump (up or down). Of course, the number of
jumps follows a binomial distribution given by
n

Pr[number of jumps = k] = (k

)(a + 1 —a—y)"F.
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It has been shown in the preceding section that for an unrestricted simple
random walk, we have

ny;o, l—a—y,
pr[5n=k]=< e 77)_

Let us now consider the limiting process n — oo, a — 0, v — 0, where the
expectation of the number of jumps within the interval of length t is kept
constant, i.e., an = At and yn = ut. Intuitively, this means that the division of
the interval becomes finer and finer, whereby the proportion of time slots with
no jumps tends to 1. In the limit, we arrive at

Pr[number of jumps = k] = lim <:) (a+ 7)’6(1 —a— )k
O+t e
k!

or equivalently

L -0,

+p
In other words, this limiting process takes us from a simple random walk Sy in
discrete time k£ = 0,1,...,n to a randomized random walk S(¢) in continuous

time ¢ > 0, where the term randomized random walk is used in the sense of
Feller (1971, p. 58).

Pr[time between two consecutive jumps < ¢] =1 —

y="h
1 1
10 1 L o (t,0)
(0,0) f—1 T 1 [T |
1L [
1 |
[ T
y=-m

Figure 4.5: Sample path of a randomized random walk
It is well-known that for a randomized random walk, we have
Pr[S(t) = k] = p*/2e ML 28/ Ap),

where Iy () denotes the modified Bessel-function of order k and p = a/y = \/p.
This suggests us to apply the same limiting process to the generalized trinomial
coefficients. It turns out that this limit is well-defined and, in fact, we get

. nia,1—a—=%,%\ _ o (gt
a_{é’l)anio:\t ( otk ) =p'ce I (2t Ap). (4.25)

7—0,yn=pt
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This relation is most conveniently established by using the integral representa-
tion (4.21) for the generalized trinomial coefficients given by

e 1—a— k/2 ,m
(77, “ " +ak L 7) = %/0 coskf (1—a—~ + 2\/aycosf)"db .
The sequence of functions fr(f) = (coskf)(l—a—~ + 2,/aycosf)" converges
uniformly for all real 8. Hence, the order of taking the limit and integration
may be interchanged. Putting @ = At/n and 7 = pt/n results in

—(A+ p)t + 2t/ Apcosd

l-a—y+2,/aycosf =1+ -

which eliminates the dependent variables. Since

lim
n—oo

(1 N —(A+ p)t + 2t/ Apcos 0)” _ e—(/\+,u)te2t\/)\—,u00597

n

we have to determine
pk/2e—()\+u)t

™
/ (cos k@)X V cost gg.
T J0

But, it is well-known that the modified Bessel function has the integral repre-
sentation [Spanier and Oldham (1987, p. 481)]

™
Ii(2) = ;lr'/o (cos kB)e*<>s? dp.

The above proof has first been given by Mohanty and Panny (1990). An al-
ternative proof of (4.25) based on the Taylor series expansion of the modified
Bessel function has been given by Mohanty and Panny (1989).

It should be noted that (4.25) also covers the cases A = 0 or u = 0. This
can be shown by considering the asymptotic behavior of Ix(z) as z — 0, viz.

k
Ik(z)N(ig—)— as z—0

[Spanier and Oldham (1987, p. 495)]. If 4 — 0, the right-hand side of (4.25)

consequently equals
t k
{ (A ) €_>\t k>0

k!
0 k<O.

Correspondingly, if A — 0, the right-hand side of (4.25) becomes

Ikl

|k|!
0 k>0.
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Also, the quasi-symmetry property (4.19) of the GTC is reflected by the mod-
ified Bessel functions, since I_k(z) = Ix(z) whenever the order k is an integer.
Moreover, it is well-known [see Spanier and Oldham (1987, p. 479)] that

+00
e~ (A+m)t Z pk/2 I (2t \/m) =1,

k=—00

which corresponds to property (4.18).

Hence, the above limiting process in fact constitutes an alternative approach
to Feller’s randomization technique. A nice point about this approach is that
the discrete time results can be taken as a starting point to derive their continu-
ous time counterparts through a limiting process. In particular, the generalized
trinomial coefficients make it possible to express the discrete time results in
quite a natural and simple way. Hence, Eq. (4.25) is fundamental for our ran-
domization approach since it links together the discrete and continuous time
results and in many cases allows to derive the continuous time results by more
or less mechanically translating the pertaining discrete time results, as will be
shown in the following examples. Proceeding this way, we perfectly conform to
a suggestion expressed by Meisling (1958) in his last remark: “It is even conceiv-
able that some continuous-time problems could be solved more simply by first
considering the discrete-time case and then obtaining the continuous-time result
by a limiting process.” Recently, some interesting problems in queueing theory
have been solved by adopting similar approaches; see, for example, Mohanty
and Panny (1989, 1990), Bohm and Mohanty (1990, 1993, 1994), Kanwar Sen,
Jain and Gupta (1993), Jain and Gupta (1993), and Mohanty, Parthasarathy
and Sharaf Ali (1990).

Example 4.4.1 In the following, we want to extend Example 4.3.1 for ran-
domized random walks. We first have to adapt the definitions of D and Q
in the following way: Let D;" denote the maximum of the randomized ran-
dom walk, i.e., D} = maxo<;<:{S(7)} and let Q; denote the number of times
that the maximum is reached. The maximum is achieved if there is an interval
I=]a,b),0<a<b<t, suchthat S(I) = D; and the interval is maximal with
respect to this property. Accordingly, Q; counts the number of such intervals
in [0, ¢]. The following figure shows a sample path with Q; = 3.

We are interested in the probability Pr[D;}f > k, Q; = r] for a randomized
random walk with S(0) = 0 and S(t) = £. As before, the possible cases are
characterized by £k > 0, k > ¢ and r > 0. The corresponding result (4.23) for
simple random walks reads

N _ _ k+1‘ [ =T n;a,,@,")’
Pr[Dy > k,Qn=r]=0p Zp’( ’)(n,—%/.—-?k—??‘—z?‘).

>0 \J



74 Wolfgang Panny and Walter Katzenbeisser

Eeyd

T T T i

Figure 4.6: Number of times where the maximum is achieved

Applying the limiting process in this case boils down to an application of
(4.25), which furnishes at once

_ -T
Pr[D?’ > k,Q = 'r'] = pf/2e (Ap)t z ( i >IZ—2k—2r—2j(2tV A,LL)

320

The same can be done for Pr[@Q = r|. In the preceding section, we have
derived the discrete time result [cf. (4.24)]

_ — T—1+J£Lt£ i(—T ”";a,ﬂ,’)’
Pr{Qn =r]=p"7 §ﬂ<j><n.—|£|—2r—2j+2)

which, through an application of (4.25), translates to

- -Tr
Pr[Qt = 'r] = plf/2e (A+p)t Z ( j >I|g|+2r+2j_2(2t\/ AL).

320

The usefulness of this approach has been demonstrated by Bohm and Panny
(1996) by considering various statistics for randomized random walks and by
deriving the pertaining distributional results by means of the above random-
ization procedure.
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Combinatorial Identities: A Generalization of
Dougall’s Identity

Erik Sparre Andersen and Mogens Esrom Larsen

University of Copenhagen, Denmark

Abstract: In this paper, I will discuss combinatorial identities as a tool for
individuals working with combinatorial problems. I will also present a general-
ization of Dougall’s (1907) identity. In the notations of this paper, the general
combinatorial identity established is the following:
Ifp=b+c+d+e—n+1isanon-negative integer then we have:

n

> (Z) [n + 2a)k[b + alk[c + alk[d + alk
k=0
X [" = 2a]p—k[b — a]n—k[c — a]n_k[d — a]n—_k[e — a]n—k(n + 2a — 2k)

= (-1)"[n+ 2a|zn+1[b+d — pln—plb+ € — pln—pld + € — Pln—p

XZ( )["]J[c+a lile — a];[b + e = nlp—j[d + e — n]p—j[d + e — n],_j,

where [z]; denotes the descending factorial. Dougall’s identity, which is usually
written in terms of a hypergeometric series, corresponds to the case p = 0.

Keywords and phrases: Combinatorial identities, Dougall’s identity, Zeil-
berger’s algorithm, Pfaff-Saalschiitz’s identity

5.1 Introduction

We shall discuss combinatorial identities as a tool for individuals working on
combinatorial problems. It is important to mention here that we are well aware
of Zeilberger’s algorithm for proving combinatorial identities for sums of hy-
pergeometric type. The generalization of Dougall’s (1907) identity, which we
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shall prove, however, cannot be proved using Zeilberger’s algorithm. This may
change in the future, but the version described by Petkoviek, Wilf and Zeil-
berger (1996) does not work in this case.

Combinatorial sums may be written in many ways. It is therefore important
to define — if possible — a standard form of a sum. This is not always possible,
but for sums of hypergeometric type it is possible. The quotient between two
consecutive terms of a hypergeometric sum may be written as the quotient
between two polynomials in the summation variable k. This has resulted in the
adoption of finite hypergeometric series as a standard form. We prefer to write
finite hypergeometric combinatorial sums using descending factorials

[z]n =z(x —1)..(z —n+1).

If the sum has arbitrary natural limits m and n and the quotient between the
(k + 1)th term and kth term has the form

(n—k)(a1 +m —k)...(ap—1 + m — k)
(m—-1—-k)(n—1-=b; —k)..(n—1—bg_1 — k)

then we use as standard form of the sum:

i (Z : :::) [al]k—m---[ap—l]k—m[bl]n_k...[bq_l]n_k(_.l)‘I(k—m)zk—m_ (5-2)
k=m

z, (5.1)

If a combinatorial sum has (5.2) as standard form, we shall say that it is of Type
I1(p,q,z)N, where II represents hypergeometric sums and N stands for natural
limits. The descending factorial is more natural for combinatorial problems than
the ascending factorial used in connection with hypergeometric series. It is also
an advantage to avoid division. It may be mentioned here that all the results
in this paper are valid (and with essentially the same proof) if the parameters
in (5.2),
a1,...,ap_l,bl,...,bq_l,z, (5.3)
all belong to a commutative ring which contains the natural numbers as ele-
ments.
Except for rearrangements of the a’s and the b’s, there is a one-to—one

correspondence between the sum (5.2) with m = 0 and the hypergeometric
series

pFy—1(—n,—a1,...,—ap_1;b1 —n+1,...,bg_1 —n+1; (=1)P*92).

We shall say that the sum (5.2) is balanced if p = q and there exist a number
a such that, with a suitable ordering of the parameters ay, ..., ap_1, b1, ..., bp_1,
we have:
ap-1 = n+2a
bp-1 = n—2a
aj = bj+2a forj=1,..,p-2.
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A balanced sum when written as a finite hypergeometric series is well-poised
according to the terminology introduced by Whipple (1926). In a balanced
sum, we prefer to introduce

1
¢j=5laj+b) forj=1,..,p-2.

The sum (5.2) may then be written as

Z <: : Z) [n—m+2a),_, [c1+alg_, . [cp—2+a],_,,

k=m

X [n—m—2a],_ylc1—al,_g..[cp2 —a]__, (—1)PE-™)k-m,
(5.4)

If, furthermore c,_o = 25™ —1, we shall say that the sum (5.2) is well-balanced.
In this case, we have

[CP—2 + a]k—m [CP—2 - a’]n—k

n—m n—m
= +a—1} [ —a—l]
= [n_m+a—1] (—1)"'_k<n+m+a—k>
n—m-—1 2

The sum (5.4) multiplied by

2(_1)n—m
= +o-1]

n—m-—1
may then be written as
n
n—m
Z (k - m) {n -m+ 2a]k_m [Cl + a]k—m [CP—3 + a’]k—m {77 -m - 2a]n,—k:
k=m Y

X le1—al,_y - [cp-3—a],_; (n+m+2a— 2k) (—1) P~ k=m) Jk—m
(5.5)

In this paper, we prefer the form (5.5) to the standard form (5.2) for a well-
balanced sum.
The basic tool in this paper is the Chu—Vandermonde convolution given by

Z (n ~ m) {x]k—m {y]n—k‘, = ["I" + y]n—m (56)

= k—m

which we shall use without proof.
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5.2 The Generalized Pfaff-Saalschiitz Formula

For a proof of the generalized Pfaff-Saalschiitz formula due to H. M. Srivastava
(1989), we need the following lemma.

Lemma 5.2.1 Let

n

Sn(a1,a2,b1,b2) = ) (n) [a1]y, [az]x [Ba] [b2) i (1) (5.7)

k=0

Then
Sn(a1,az,b1,b2) = (-1)"Sp(n—ay — by — 1,a9,b1,n —ag — by — 1), (5.8)
and

Sn(ala a, b1’b2) = S'n(a'21a1a bl,b2) = S’ﬂ-(alaa21 b27 bl) = Sn(a21a11 b?a bl)
(5.9)

PROOF. To prove (5.8), we use the fact that [a1], (=1)¥ = [-a; + k — 1], and
apply the Chu-Vandermonde convolution to write [—a; + k — 1], as

k

S () -o-b -l -t (5.10)

J=0

Replacing [a1];, (—1)F in the right-hand side of (5.7) by (5.10) and interchanging
the order of summation, and after using the identities

[bl]n—k [bl -n+t k]k—j = [bl]n—j
and
[az], = [‘12]]' [az — j]k—j’
we obtain

Sn(a1,az,b1,bs)

n

= jgo <:) [n — a1 — b1 — 1]; [ag]; [b1],,_; Z < ) a2 — 5]k [b2],,
(5.11)

The inner sum in (5.11) is a Chu—Vandermonde-sum and equals

[az + by —jl, ;= [ —az—by—1],_; (-1)". (5.12)
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Using this, we obtain from (5.11) that

S’n(a’la a?a bla b?)

n

= (—l)n z <Z> [TL —ay — b1 - 1]j [a2]j [bl]n—j [TL —ag — b2 - 1]71.—]' (—l)j

j=0
= (—1)"Sn(n —a] — b1 - 1,a2,b1, n-—ag— b2 - 1). (513)
The formula (5.9) is now obvious. [ |

We are now prepared to prove the generalized Pfaff-Saalschiitz identity.

Theorem 5.2.1 Ifaj+ay+bi+bp—n+m+1=pec{0,1,2,..}, then

Zn: (7]: : :) [01]k—m [82]5—m [D1]—, (2] (=1)F7

k=m
n

= ) (Z : Z) [@1]k—pm [@2)k—m [01]5 &

k=m
Xn—m+p—ay—ay—b —1], (—1)k-m
P (p
= > <k> [n — m]j [a2]i (@1 + b1 — Pl
k=0 '
x[n—m=—ay—by—1],_ . (-1)F

= [al +b - p]'n,—m—-p [TI -m—az—b - 1]n—m—p
P
X Z (i) [n —m[agly [a1 +b1 —n+m], ;[p—as—b — 1]p—k: (-1)*.
k=0
(5.14)

We shall call p as the excess of the generalized Pfaff-Saalschiitz sum.

ProoF. It is sufficient to prove Theorem 5.2.1 for m = 0. Using the nota-
tions in Lemma 5.2.1, we may write the left-hand side of (5.14) for m = 0 as
Sn(a1,as, b1, b2). From Lemma 5.2.1, it then equals

(—1)"Sn(n —a — b1 - l,ag,bl, n-—ag— b2 - 1)
= (—1)"Sn(n—a1 —by—1,a9,n —ag — by — l,bl). (5.15)
We now apply the Lemma 5.2.1 to the right-hand side of (5.15) to obtain
Sn(al,Gstl,bQ)
= (—1)"57,,(77, —a] — b1 - 1,0,2,77, —ag — b2 - 1,b1)
= Splar+ag+bi+by—n+1la,n—ay—by—1,n—ay—b —1)
= S‘n(pa az,a; + bl —p,n—az — bl - 1) (516)
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In the last step, we have used the condition in the theorem twice.

Using the fact that (%) [p], = (§) [7];, we obtain the middle expression in
(5.14) with m = 0. The right-hand side of (5.14) with m = 0 is obtained upon
using

[(11 +b - p]n—k = [al + b1 - p]n—p [al +b— n]p—k

and
[n—ag—-b1—1], y=n-a—bi—1], J[p—ar—b—1],_;. .

Note that the right-hand side of (5.14) is the product of two factorials both
of length n — m — p and a polynomial in n» — m of degree p.

5.3 A Modified Pfaff-Saalschutz Sum of
Type [1(4,4,1)N

For the proof of the generalized Dougall’s identity, we shall use the following
result.

Theorem 5.3.1 Ifa;+as+bi+bs—n+1=p€{0,1,2,...}, then
> . | (3l [azli 0] (b2l e + K], (=1)

k=0
P (p
> (k) [n]i [a2]i [p — a1 —c = 1],

k=0
X [al + bl - p]'n,—k [n —az - bl - 1]n—k [c]p—k : (517)

The sum on the left-hand side of (5.17) is a generalized Pfaff-Saalschiitz
sum, where the terms have the extra factor [c + k],,. For p = 0, (5.17) reduces
to the Pfaff-Saalschiitz identity.

PROOF. We use the Chu-Vandermonde identity to write [c + k], in the left-

hand side of (5.17) as 3°F_, () k], [c],—; to obtain a double sum. We change
the order of summation and use the identities

n n-—j
(k) M, = [, (k_j),

[aa]y = la1];lo1 = jli—y
[ao], = [aZ]j[a2"j]k_j,
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to obtain
P p .
Z (]) [n]; [a1]; [a2]; [c],—; (—1)?

Jj=0

* (Z :j> [o2 = j]k—j [a2 - j]k—j [b1]_ [b2) (—1)*=3.
k=J ’
(5.18)

The inner sum is a generalized Pfaff-Saalschiitz sum with excess p — j. Using
this, we obtain for the left-hand side of (5.17) the expression

p

(’j) ) o] fazl ] (<17

7=0

pP—J P —J
X Z ( h ) [n — j]p la2 = j]p (a1 + b1 — p]n—j—h [ag + b2 — p]n—j—h (—1)h-
h=0 '

(5.19)

We now use [n]; [n — j], = [n];,,, and [ag]; [a2 — 5], = [a2];,, and substitute
k — j for h. We next change the order of summation to obtain

P
Z (p) [n)i [a2] [@1 + b1 — pl,,_i [a2 + b2 — P, 4 (“1)k [C]p-—k
k=0 k

F (k
X Z (J) [a1]j[c =P+ klk_; - (5.20)
=0

In (5.20), the inner sum is a Chu-Vandermonde-sum and using the identity, we
then obtain

P
Z (l;:) [n]y, [az2]y [a1 + b1 — pl, g [a1 + b2 — p],,_;
k=0 \""
x [e],— [a1 +c—p+k] (1) (5.21)

Since [a1 +c—p+ k], (—1)* = [p— a1 —c —1];, we finally obtain the right-
hand side of (5.17). This proves the theorem. [

5.4 A Well-Balanced [1(5,5,1)N Identity

The following theorem is a special case of an evaluation of an infinite well-poised
hypergeometric series found in Slater (1966, p. 56).
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Theorem 5.4.1 For arbitrary a,b,c and integers m and n with m < n, we
have

n

Z (Z : :) [77 -mt 2a]k_m [b + a’]k—m [C + a]k—m

k=m

x[b—-al,_plc—al,_;[»—m—2a],_,(n+m+2a— 2k)
= [n —m+ 2a]2n—2m+1 [b + C]n—m . (5'22)

PROOF. Once again, we may assume that m = 0. We use the original Pfaff-
Saalschiitz identity to replace [b+ a] [c + a], in the left-hand side of (5.22)
by

k
J;)(j) [n+2a—k]j[n—b—-c— l]j[b—a—n-i-k]k_j
xle—a—n+k]_; (-1)7. (5.23)

Upon using the identities

(D6 -6)6=5)

[n + 2a]; [n + 2a — k]; = [0 + 2aly; [0 + 22 — 2], _;,

[b—al, x[b—a-n+k)_;=[b—al,_;,
[c-al, ylc—a-n+k,_ ;=[c—adl,_;,

and interchanging the order of summation, we obtain the following double sum

for the left-hand side of (5.22):

n

3~ (;) [n+2aly; [n —b—c—1];[b—al,_;[c —a,_; (~1)

=0

X kz (2 _ j) [n+ 20~ 2j]_;[n ~ 2], (n + 22 - 2k).  (5.24)
=j

Writing (n + 2a — 2k) as (n+2a —2j) —2(k — j), the inner sum may be written
as

n

Z (Z : j) [7 + 2a - 2j]k—j [n —2a),_j (n+ 2a — 2j)
k=j \""

— ,;7 (Z : ;) [77 + 2a — 2jlk—j [n — 2a]n—k 2(k‘ _ ])
= (n+2a-2j) Xn: (: _ J) [ +2a — 2j];_; [n — 2a],,_,
k=; \"7J
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: N (n—j-1
- 2(n —j)(n+ 2a — 2j) Z (k—J'—1>
k=j+1 J
X[n+2a—2j—1];_, 1[n—2a], 4. (5.25)

In the right-hand side of (5.25), both sums are Chu—Vandermonde sums and,
hence, we obtain for the inner sum the expression

(n + 2a — 25) ([2n = 2j],_; — 2(n — j) [2n — 2j — 1]n_j_1) . (5.26)

It is easily seen that (5.26) vanishes for j = 0,1,...,n — 1. For j = n, (5.26)
reduces to (n+2a —2n)(1—0) = 2a —n. The sum (5.24), therefore, reduces to
a single term given by

(=1)"[n+2a]p,4q [0 —b—c~1], = [n+2a]y,,, [b+d],.

This completes the proof, which might be replaced by a proof using Zeil-
berger’s algorithm. [

5.5 A Generalization of Dougall’s Well-Balanced
I1(7,7,1)N Identity

For p = 0, this result was proved by Dougall (1907).
Theorem 5.5.1 Let

S = z": <:> [n + 2a) [b+ a] [c + a; [d + a, [e + a],

k=0
X 1= 2], [b = Gl (¢ = Al [d = @l e — ]y (0 + 20— 2K).
(5.27)
If
b+c+d+e—n+1=pe{0,1,2,..}, (5.28)
then

§=(-1)"[n+2dy,,

X kz: (1;:) [Plilc+alglc—al[b+d—pl,_[b+e—pl,_[d+e—pl,
=0

= (_1)11 [77 + 2a]2’n.+1 [b +d- p]n—p [b t+e— p]n—p [d t+e— p]
P
X I;) (Z) [l lc+alglc—alb+d—n], y[b+e—n], ;[d+e— nlp k-

(5.29)

n-—p
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PRrOOF. From the Pfaff-Saalschiitz identity, it follows that

k
[d+a]ile+al, = Y (j) [n+2a—k];[n—d—e—-1];
=0
X[d—a—-n+kl_;le—a—n+k]_; (=1)7.

(5.30)

Replacing [d + a], [e + a]; in S by the right-hand side of (5.30) and simplifying
as we did in the earlier proofs, we obtain

n

S = Z(;) [n+2a]y; [0 +a];[c+a];[n—d—e—1];

7=0
X [d - a’]n—] [ a’]n—] ( l)J
Y (Z:j) 20 =2l ot o =gyt a sl

k=j

X [n —2a], 4 [b— ]n elc—al,_i (n+2a — 2k). (5.31)

The inner sum is well-balanced and we can use Theorem 5.2.1 to observe that
this sum reduces to

[n - 2.7 + 2a]2n—2j+1 [b +c— j]n,—j . (532)

Replacing the inner sum in (5.31) by (5.32) and simplifying, we find that

S = [n+2a2n+12<>[b+a]1[c+a] [n—d —e——l]
X [d - a]n—j [e - a]n—j [b +c— J]n—] (_l)j' (533)
We now use condition (5.28) and find that

[n—d-—e-1];[b+c—jl],_;
= [n-d-e-1], ,[b+c-j],
[n—d-e-1], ,[pP—b—c—1+j],(-1)" (5.34)

Using (5.34), we may rewrite (5.33) as

S = [n + 2(1‘]27'1,+1 ['FI —a—e€e-— l]n—p

xZ( )[b-}—a C+a]j[d_a]n—j[e_a’]n—j

X[p-b-c—1+j], (-1 (5.35)
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The sum in the formula (5.35) may be simplified upon using Theorem 5.3.1
since condition (5.28) ensures the applicability of this theorem. We then obtain

S = (—1)p["'+2a]2n+1[”_d_e_1]n—p

2 (p
x> (k) [l le+alyle—aly b +d —pl, 4
k=0 \"
x[p—c—d=1], y[p-b-c—1],_4. (5.36)

From condition (5.28), we also have
[n —c—d- 1]'n—k = [b te -p]n,—k

and

Using now the simplification

(_1)1) [Tl —d—e— 1]n,—p [d t+e— n]p—k = (_1)71 [d t+te— p]'n,—p [d t+e— n]p—k
(=1)"[d+e—pl,_y,

we obtain the first expression in (5.29). The second expression in (5.29) is
readily obtained upon using the identities

b+d-pl, py=0b+d-pl, ,b+d=—n],_,,

b+e—pl, ,=[b+e- p]n—p [b+e— "]P—k
and
[d +e— p]n_k = [d + e — p]n—p [d +e— n]p_k .

If e is eliminated using condition (5.28), then the right-hand side of (5.29) takes
the form of a product of four factorials and a polynomial in n of degree at most
p. |
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A Comparison Of Two Methods For Random
Labelling of Balls by Vectors of Integers

Doron Zeilberger

Temple University, Philadelphia, PA

Abstract: Kirk (1993) raised the question of comparing the following two ways
for labelling balls. Given r pre-determined positive integers n; (1 <7 <), and
given N balls (N large), consider two ways to randomly assign r—component
vectors of integers (ai,...,ar) to them, such that 1 < a; < n;. We will call
these vectors labels. Of course, altogether there are [];_; n; possible labels.

Keywords and phrases: Urn models, combinatorial methods for finding mo-
ments

6.1 First Way

You put all the balls in one big pot. For i = 1,...,r, at the i-th iteration, line
up n; smaller pots, each with capacity N/n; balls, and labeled with labels 1
through n;, and, uniformly at random, distribute them into these smaller pots.
Assign the i-th component of the vector-label of each ball, a;, to be the label
of the pot in which it was dropped. Having done that, you dump all the balls
back into the big pot, and go on to the next iteration.

6.2 Second Way

Do the same as above for 7 = 1, except that at the end of the first iteration
you do not dump back the balls into the large ball but proceed as follows.
For 7 = 2,...,r, assuming that the balls have already received their first i — 1
components, leaving the balls in their pots from the (i — 1)-th iteration, you
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line-up n; new pots, each with a capacity of N/n; balls, and labeled with labels
1 through n;. For each of the n;_; pots from the previous iteration, individually,
we uniformly at random, distribute their contents into the new pots, each of
the n; new pots getting exactly N/(n;—in;) balls from each of the n;_; pots
from the previous (i — 1)-th iteration.

Note that in the First Way, assuming that we can reuse the pots, we need
1+ max(ny,...,n,) pots, one of which should have a capacity of N balls, while
in the Second Way, we need max(1 + n1,n1 + ng,...,nr—1 + ny) pots.

The goal is to maximize the ‘equal representation’ of all the possible [];_; n;
vector-labels. It is obvious that, with either way, the probability of a ball to be
assigned any given label is [];_; n; 1 and hence that the expected number of
balls to be given label v, for each of v € [[7_;[L,m], is N ]f_; n; L.

It is intuitively obvious that in the Second Way the ‘spread’ in the distri-
bution is less than in the First Way. In fact, when r = 2, the Second Way gives
a perfect way of equi-distribution. We are guaranteed that the number of balls
given any particular label (a1, ag) is ezactly N/(ning).

Throughout this note we assume that N is divisible by lem(ning, nang,
...,Np_1n;). For any statement P, x(P) is 1 or 0 according as whether P is
true or false, respectively.

The way to quantify ‘spread’ is via standard deviation, or its square, the
variance. By symmetry, it is enough to pick any one fized label v, say v =
(1,...,1).

The ‘random variable’ on a given ‘experiment’ is the ‘number of balls la-
belled v’. To compute its variance, we will use an old trick, described beautifully
in Section 8.2 of the modern classic by Graham, Knuth and Patashnik (1993).
This trick can also be used to find the average (i.e., first moment), in which
case it is even easier to use, and higher moments, in which case it is (usually)
harder to use.

Let S denote the set of all possible outcomes of the ‘labelling experiment’.
The total number of outcomes in the First Way is

. N!
1=

i=1

For each outcome s, let a(s) be the quantity ‘number of balls that receive the
(fixed) label v’.
Let us first compute the average of this quantity (even though we know

the answer, just as a warm-up for the calculation of the variance, that would
follow). We have

N
Z a(s) = Z Z X (the j-th ball is labelled v)
seS seS j=1
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N
YN, (6.1)
7=1 SGSj
where the inner sum extends over the set of outcomes, say S;, of s € S for
which the j-th ball was labelled v. By symmetry, this inner sum is independent
of 7, and equals
ﬁ (N —-1)!
i1 ((N/nq) = DUN/ng)ime=t 2
since at each iteration one of the balls (the j-th) is committed to lend in one of
the pots (Pot v; in the i-th iteration.)
Hence the sum in (6.1) equals

N 1)!
N H (N/ns) = DI )1

and hence the average is

r (N-1)!
+— T
ave. N]] ((NV/ni) 1()!1\;)1;7/m>!

"1
= NJ|[—

as expected.

6.3 Variance and Standard Deviation

Let us recall a few elementary facts about variance. The standard deviation is
defined to be the square root of the variance. Suppose that we have a finite
set S, and there is some numerical attribute (random variable) X (s) for every
element s € S. Then the variance, V(X), is the ‘average of the squares of the
deviation from the average’, i.e.

Loes(X(s) — ave.)?
5] ’

V(X) =

where |S| is the number of elements of S.
It is easier to compute the related quantity

ZSES (X§S)) )

WX ===5

Simple algebra shows that
V(X) = 2W(X) + ave. — ave.? .

Now we are ready to compute W(a).
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We have
W(a) = L (a(s)>
IS| =%\ 2
- é_ S" Y x(the i-th and j-th balls are both labelled v)
| | s€S 1Ki<j<N
= i Z [Number of outcomes with the i-th and j-th
|51 1<i<j<N

balls both labelled v]. (6.2)

By symmetry, the summand is independent of (i,j) and is easily seen to be
equal to

- (N —2)!
H ((N/ni) = 2)}(N/n;)Imi—1

since, at each of the r iterations, two balls are committed to lend at a prede-
termined pot (the v;-th pot at the i-th iteration.)
Simple algebra yields

(N _o(1—ni/N)
v = () I 53

i=1

It then follows that

2 T
V(a) = ave.—ave.2+2W (a) = ,N - TN =+N(N-1) H n;?
i=1

=1 1li=17

(1 =n;/N)
=i/

Assuming that N is large, so that 1/N is small, and using the approximation
1/(1 — ) = 14 z + O(z?), we get the following proposition.

Proposition 6.3.1 The average number of occurrences of any given vector v
as a label, in the First Way, is N/ [[;_; ni, and its variance is

HTNn- - ,,N > <l+z(ni - 1)) +0(1) .
i=1"" i=1

=17

6.4 Analysis of the Second Way
In this case, the total number of outcomes is

_ N! T (N/(m_l)' i1
51 = o L o]

=2
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Using an analogous argument as before, the number of outcomes with the
i-th and j-th balls labelled v equals

(N =2)! ﬁ ((N/ni—1) = 2)!
((N/n1) = 2)}(N/nq)tm=1 225 ((N/ni—ins) — 2)UN/(ni—1n;))mi=1

e

Simple algebra then yields that

_ [N\ {7y 2 01—=m/N) {7 (1 —n;_ini/N)
W(a)'<2>n"'i2 vy ey et

which, as before, leads to the following proposition.

i=1 =2

Proposition 6.4.1 The average number of occurrences of any given vector v
as a label, in the Second Way, is N/ []i—; ni, and its variance is

N__ an2 (m + i(m - 1)"'i—1> +0(1),

T .
i=1"" =17 i=2

which is slightly smaller.
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7.1 Introduction

In this paper we discuss the historical development of various ballot theorems,
provide several proofs for these theorems, and give some applications. It is very
surprising that the various ballot theorems have so many useful applications in
many areas of mathematics, such as combinatorics, the theory of random walks,
queuing theory, order statistics, and the theory of graphs. The simplicity and
the generality of the ballot theorems might explain their wide range of uses.

7.2 The Classical Ballot Theorem

The following theorem is usually called the classical ballot theorem.

Theorem 7.2.1 If in a ballot candidate A scores a votes and candidate B
scores b votes where a > by and p is a positive integer, then the probability that
throughout the counting the number of votes registered for A is always greater
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than p times the number of votes registered for B is given by

a—bu

P(a,b,pu) = Pt

(7.1)

provided that all the possible voting records are equally probable.

PRrOOF. Every voting record can be represented by a sequence of a letters A
and b letters B, where an A stands for a vote for A and a B stands for a vote
for B. The number of possible voting records in which A scores a votes and B

scores b votes is
a+b\ (a+d)
< b ) T oalk (7.2)

Let us denote by N(a,b, ) the number of favourable voting records, that is,
voting records in which throughout the counting the number of votes registered
for A is always greater than p times the number of votes registered for B. Then

P@am=N@am/«zv. (7.3)

If we take into consideration that the last vote is registered for either A or B,
then we obtain that

N(a,b,n) = N(a—1,b,u) + N(a,b—1,p) (7.4)

for a > by and b > 1. Furthermore, we have N(bu,b,u) = 0 for b > 1, and
N(a,0,u) = 1 for a > 1. The recurrence formula (7.4) makes it possible to
calculate N(a,b, ) for a > bu. Table 7.1 contains N(a,b,1) for 0<b<a <6.

Table 7.1: N(a,b,1)

ab|0[L]2[3[4]5]6
0 -

1 |10

2 [1]1]0

3 (1220

4 [1]3|5]|5]0

5 [1|4]9|14]14]0

6 |1|5]14|28|42]|42]0

After the publication of Blaise Pascal’s famous Treatise on the Arithmetic
Triangle in 1665 [Pascal (1908a,b)], it has became generally known that the
binomial coefficients

a+b—1>_(a+b—1ﬂ (7.5)

wa=< b ) @-1w
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defined for a > 1 and b > 0 can be calculated by the recurrence formula
F(a,b) = F(a —1,b) + F(a,b—1) (7.6)

where a > 1, b > 1, F(a,0) =1 for a > 0, and F(0,b) = 0 for b > 1. In other
words, (7.5) is uniquely determined by (7.6) and by the boundary conditions.
See Table 7.2 for F(a,b) for a < 6 and b < 6.

Table 7.2: F(a,b)

a\b]0]1]2]3] 456
0 [1|0]0]0] 0] 0] o0
1 1(1]1 1 1 1 1
2 |1|2|3|4]|5 |6 |7
3 |1|3|6|10] 15|21 | 28
4 |1]|4]10[20]| 35 | 56 | 84
5 |1|5]15(35]| 70 | 126 | 210
6 |1]6]21]56]|126 252|462

We observe that both F(a,b) and F(b, a) satisfy (7.4). Therefore, if F(a,b)
is defined by (7.5), then

N(a,b,n) = F(a,b) — uF(b,a) (7.7)

also satisfies (7.4) whenever a > by > 0. Moreover, (7.7) satisfies the boundary
conditions N (bu,b,u) =0 for b > 1 and N(a,0,u) =1 for a > 1. Accordingly,
by (7.5) we obtain that

N(a,b) = (“*Z”) —u(“+2'1> (78)

if @ > bu. Finally, by (7.3) we get
P(a,b,1) = (a — bs)/(a +b) (7.9)
if @ > bu. This proves (7.1) for any positive integer u. [

In the particular case when p = 1, formula (7.1) was discovered by Bertrand
(1887), and was proved in the same year by André (1887). Also Barbier (1887)
noticed that if p is a positive integer, then (7.1) holds. However, Barbier did
not prove (7.1). Its proof was given only in Aeppli (1923, 1924). Aeppli’s proof
is in his dissertation which he wrote under the supervision of Professor Gyorgy
Pdlya. Thanks to Professor Pélya, I have a copy of Aeppli’s dissertation and I
believe that this is the first paper which gives an account of Aeppli’s remarkable
proof. As we have shown, Theorem 7.2.1 can be proved simply by making use of
only a fundamental property of the arithmetic triangle. Although the classical
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ballot theorem attracted considerable attention at the time, it required 37 years
to accomplish the task of proving it.

The numbers F(a,b) defined in (7.5) are known as figurate numbers or bi-
nomial coefficients. Printed tables for F(a,b) were already available in the
sixteenth and seventeenth centuries. See, for example, Apianus (1527) for
a + b < 10, Cardano (1570, p. 135) for a + b < 12, Mersenne (1635-1636, Libr.
VII, p. 134) for a < 25 and b < 12, and Pascal (1908, p. 446) fora+b < 10. It
has been known for a long time that the numbers F'(a, b) have also combinatorial
interpretations. In particular, F(a,b) is the number of different arrangements
of a — 1 letters A and b letters B in a row.

7.3 The Original Proofs of Theorem 7.2.1

In the particular case of 4 = 1, Theorem 7.2.1 was proved by André (1887).
His proof was highly appreciated. In his book, Bertrand (1889, pp. 18-20)
presented André’s proof and praised André for his ingenious demonstration.
Poincaré (1912, pp. 21-26) also included André’s proof in his book.

PROOF OF BERTRAND’S THEOREM BY D. ANDRE. In what follows we
describe the original proof of André (1887). He demonstrated that

N(a,b,1) = (azb> —2<a+b_1) (7.10)

a

fora>b>1.

His reasoning is as follows: Every voting record can be described by a
sequence of a letters A and b letters B if an A stands for a vote for A and a B
stands for a vote for B. The total number of voting records is given by (7.2).
André showed that the number of unfavourable voting records is

2<a+b_1). (7.11)

a

Consequently (7.10) is true, and (7.10) implies (7.1).

To prove (7.11) let us observe that the set of unfavourable voting records
can be divided into two disjoint subsets: The first subset contains all the voting
records in which the first letter is B and in addition there are a letters A and
b— 1 letters B. The second subset contains all the unfavourable voting records
in which the first letter is A and in addition there are a — 1 letters A and b
letters B.

There is a one-to-one correspondence between the voting records in these
two subsets. This can be seen as follows: If a voting record belongs to the
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second subset, then counting the letters from left to right, there is a shortest
subsequence which contains an equal number of letters A and B. The last
letter in this shortest sequence is necessarily B. In this shortest sequence, let
us remove all the letters except the last B and put them at the end of the voting
record in the same order. Then we obtain a voting record which belongs to the
first subset.

Conversely, if a voting record belongs to the first subset, then counting
letters from right to left, there is a shortest subsequence which contains one
more letter A than B. The first letter in this shortest sequence is necessarily A.
Let us remove all the letters in this shortest sequence and put them in the same
order at the beginning of the voting record. Then we obtain a voting record
which belongs to the second subset.

It is evident that this mapping is one-to-one, and therefore both subsets
contain (“"'2_1) voting records. Thus the total number of unfavourable voting
records is given by (7.11). [ ]

For 11 > 1, Theorem 7.2.1 was proved by Aeppli (1923, 1924).

ProOF oF THEOREM 7.2.1 BY A. AEppPLL. This proof is a somewhat
modified version of the original proof of Aeppli (1924). Among the first 7 votes
recorded, denote by a, the number of votes for A and by (3, the number of
votes for B. Then (7.1) can also be expressed as

(a —bp)

P(a,b,u)=Pr[ar>[3r,u.forr=1,2,...,a+b]=(a—+g)—

(7.12)

if a > bu. To prove (7.12), define v, = a, — Brp for r =1,2,...,a +b. Then

P(a,b,u) = Prly, >0forallr=1,2,...,a+ b
1—Pr[y, <Oforsomer =1,2,...,a+]. (7.13)

We have
Pr[y, < 0forsomer =1,2,...,a+ b
p—1
= Prly1=—p]+ Z Prly, >0for0 <r < s, y; = —¢ forsome s > 2.
=0

(7.14)

In the sum, each term is equal to

Prlyi = —p = (“ Zf; 1)/(“ ';” b) = b/(a +b). (7.15)

This can be seen as follows: If for a fixed £ = 0,1,...,u — 1, we consider the
set of voting records in which 7, > 0 for 0 < r < s and 75 = —/ for some
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s > 2, and if in each voting record we reverse the order of the first s votes, then
we obtain a voting record which belongs to the set of voting records in which
~v1 = —p. Conversely, if a voting record belongs to the set of voting records in
which 4; = —pu, then for each fixed £ = 0,1,...,u — 1, there exists a smallest
s > 2 such that s = —£. Let us reverse the order of the first s votes in such a
voting record. Then we obtain a voting record for which 7, > 0for0 <r < s
and s = —¢. There is a one-to-one correspondence between the voting records
in the two sets. Thus

P(a,b,p) =1~ (p+1)Pr[y1 = —p] = (a — pb)/(a + b) (7.16)

for a > bu. This proves (7.12). [ |

7.4 Historical Background

The origin of the classical ballot theorem can be traced back to a problem in
games of chance. In 1708, De Moivre (1711, pp. 262-263 and 1984, pp. 260-261)
solved the following problem of games of chance: Two players A and B agree
to play a series of games. In each game, independently of the others, either
A wins a counter from B with probability p or B wins a counter from A with
probability ¢ where p > 0,9 > 0 and p+ g = 1. Let us suppose that initially A
has an unlimited number of counters and B has only k& counters where k is a
positive integer. If B is ruined, that is, if B loses all of his counters, the series
ends. Denote by p(k) the duration of the games, that is, the number of games
played until B is ruined. If B is never ruined, then p(k) = co. The problem is
to determine the distribution of p(k). De Moivre (1711, Problem XXV, p. 262
and 1984, Problem 25, p. 260) discovered that

Prlp(k) <n]= ) (j K k)ﬁq"'j + Y <7>qu”" (7.17)

k<j<(n+k)/2 (n+k)/2<j<n

for 1 < k < n; see also Hald (1984). De Moivre (1718, Problem XL, pp. 119-
122, 1738, Problem LXIV, pp. 179-181 and 1756, Problem LXV, pp. 208-210)
also expressed (7.17) in the following form

k k+25 .

Prip(k) < 77] = Z m( . ]>:Dk+1q] (7.18)
0<j<(n-ky/2 " I\

for 1 < k < n. From (7.18), it follows that

. k k+25 o
Prlp(k) = k +2j] = m( i J)I’kﬂqJ (7.19)
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for j > 0 and k > 1. We note that Pr[p(k) < oo] = 1if p > q. If p < g, then
Pr{p(k) < oo] = (p/q)*.

De Moivre stated (7.17) and (7.18) without proof. Formula (7.18) was
proved only in 1773 by Laplace (1776, pp. 188-193; 1812, p. 235, and 1814,
p. 238). Both (7.17) and (7.18) were proved by Lagrange (1777, pp. 230-238).
It is interesting to recall Ampere (1802, p. 9) who describes formula (7.19) as
remarkable for its simplicity and elegance. See also Takédcs (1969).

The probability that in k£ + 2j games A wins k + j games and B wins j

games is
k+2j g
( *; J>p’“+ﬂq1. (7.20)

The conditional probability that B will be ruined at the (k +27)th game, given
that in the k + 2j games A wins k + j games and B wins j games, is

Q(k +5,9) = k/(k +2§). (7.21)

Let us imagine that two candidates A and B play a series of games of
chance. Suppose that A has an unlimited number of counters and B has only
a — b > 0 counters and A wins a games and B wins b games until B is ruined.
Let us consider the a + b games in reverse order and suppose that a win for A
corresponds to a vote for A, and a win for B corresponds to a vote for B. Then
we can see immediately that P(a,b,1) = Q(a,b) = (a — b)/(a +b).

Although De Moivre’s books were widely known, it escaped the attention
of contemporary mathematicians that De Moivre’s results can be used to solve
the ballot problem for 4 = 1. It also escaped attention that for 4 = 1, Theorem
7.2.1 can also be deduced from some results of Whitworth (1879) for random
walks.

The method of reflection is widely used in the theory of random walks, and
it seems interesting to mention how Theorem 7.2.1 can be proved for p = 1
simply by using the reflection principle.

PROOF OF BERTRAND’S THEOREM BY THE REFLECTION PRINCIPLE. A
voting record is favourable if the first vote is for A and if in the course of
counting no tie occurs. Let us consider the set of voting records in which the
first vote is for A. The number of such voting records is

a+b-1\ (a+b-1)!
( . >_m (7.22)

Among these voting records,

a+b-1\ (a+b-1)
< a )“ A6 1) (7.23)



104 Lajos Takécs

are not favourable. To prove this, let us consider the first tie in an unfavourable
voting record. After the first tie, let us change every vote into opposite. Then
we obtain a voting record which contains a votes for B and b votes for A and
the first vote is registered for A. The number of such voting records is given
by (7.23). Conversely, if we consider a voting record of the latter type, and if
after the first tie in this voting record we change every subsequent vote into
opposite, then we obtain an unfavourable voting record. There is a one-to-one
correspondence between the voting records in these two sets. Consequently,

N(a,b,1) = <a+:_ 1) - (‘”b“ 1) (7.24)

a

which is in agreement with (7.8). As we have already seen, (7.1) follows from
(7.8). In the above proof, when after the first tie we changed each subsequent
vote into its opposite, we actually applied the reflection principle.

Now we have several different proofs for Theorem 7.2.1 if 4 > 1. In 1947
Dvoretzky and Motzkin (1947) observed that if we consider any voting record
which contains a votes for A and b votes for B where a > by and if we form all
the a + b cyclic permutations of this voting record, then there are exactly a —bu
cyclic permutations which are favourable, that is, throughout the counting the
number of votes recorded for A is always greater than p times the number
of votes recorded for B. Hence, (7.1) immediately follows. For a geometric
interpretation of this proof, see Grossman (1950), Yaglom and Yaglom (1954,
pp. 172-175 and p. 184) and Mohanty (1966).

7.5 The General Ballot Theorem

The following theorem which is a generalization of Theorem 7.2.1 is usually
called the general ballot theorem.

Theorem 7.5.1 Let us suppose that a box contains n cards marked with non-
negative integers ki, ks, ..., k, respectively, where ki + ko +---+ k, = k < n.
All the n cards are drawn without replacement from the box. Denote by v, the
number obtained at the r-th drawing (r = 1,2,...,n). Then

Priyi+we+-- -+ <rforr=1,2,...,n] = (n—-k)/n, (7.25)
provided that all the possible results are equally probable.

To demonstrate that Theorem 7.2.1 is a particular case of Theorem 7.5.1,
let us consider a box which contains a cards marked 0 and b cards marked p+1.
We draw all the a + b cards from the box without replacement, assuming that
all the possible results are equally probable. Let us suppose that a card marked
0 corresponds to a vote for A, and a card marked p + 1 corresponds to a vote
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for B. If among the first r drawings there are o, cards marked 0 and (3, cards
marked g+ 1, then 0.0+ 3, (p+1) < r = ar + 3, holds if and only if a, > Bru.
Now, a1 +ag+ -+ agrp=aand B1+ P2+ + Basp = b. If a > by and if in
(7.25) we put n =a + b and k = b(u + 1), we obtain

Prioy > Bruforr=1,2,...,a+b] = (a — bu)/(a+b) (7.26)

which is in agreement with (7.1). See Takédcs (1961, 1962).
We can formulate Theorem 7.5.1 in the following equivalent way:

Theorem 7.5.2 Let us suppose that n cards are marked with non-negative in-
tegers ki, ks, ..., kn respectively, where ky + ko + -+ k, =k < n. Among the
n! permutations of the n. cards, there are exactly

S(n,k) = (n—k)(n-1)! (7.27)

permutations in which the sum of the numbers on the first r cards is less than
r for everyr =1,2,...,n.

PROOF. We can prove by mathematical induction that S(n, k) does not depend
individually on ki, ko, ..., ky, it depends only on their sum k and their number
n, and is given by (7.27). Obviously, S(1,0) = 1 and S(1,1) = 0. Let us
suppose that S(m,k) = (m —k)(m — 1)! for 0 < k <m < n — 1 where n > 2.
If we take into consideration that the last card in the n! permutations of the n.
cards may be marked ki, ko, ..., ky, then we can write down that

S(n,k)=>_S(n—1,k—k) (7.28)
i=1
for k < n and S(n,n) =0. If k < n, then by the induction hypothesis

S(n, k) = i(n —1—-k+k)n=-21=(n-k)(n-1). (7.29)
i=1

Consequently, (7.27) is true for all n =1,2,... and 0 < k < n. n

If in Theorem 7.5.2 we replace the n! permutations by 7 cyclic permutations,
we obtain the following result.

Theorem 7.5.3 Let us suppose that n. cards are marked with non-negative in-
tegers k1, ka, ..., kn respectively, where k1 + ko +---+ kn =k <n. Among the
n cyclic permutations of the n cards, there are exactly n. — k in which the sum
of the numbers on the first r cards is less than v for everyr =1,2,...,n.

Proor. Let kryp = kr for r = 1,2,... and set ¢, = k; + kg + --- + k, for
r=1,2,...;p0 = 0. Define

5 = 1 ifi—p;>r—p,fori>r,
"7 ] 0 otherwise,

(7.30)
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and
Yr = inf{i — ¢; for i > r} (7.31)

for r =0,1,2,.... Evidently, 6, = ¥r4+1 — ¥r. Since ¢ri1n = @r + @n, we have
Or4n = 6, and Yryp = Y +n —k for r =0,1,2,.... Therefore, among the n

cyclic permutations of (ky, kg, . .., kn), there are exactly
n
Y b =thhr1—p1=n—k (7.32)
r=1
for which the sum of the first r elements is less than r for r =1,2,...,n. ®

Obviously, Theorem 7.5.3 implies Theorem 7.5.2. Theorem 7.5.3 can also
be formulated in the following more general way.

Theorem 7.5.4 Let vy,vs,...,vy, be interchangeable or cyclically interchange-
able discrete random variables which take on non-negative integers only. Write
N, =v1+uvo+---+v forr=1,2,...,n and Ny = 0. We have

Pr[N, <rforl1<r<mnand N, =n—i]= % Pr[N, =n —1i] (7.33)

for0<i<mandn=12,....
The following result is a Corollary of Theorem 7.5.4.

Theorem 7.5.5 Let vy, v9,...,, be interchangeable discrete random variables
which take on non-negative integers only. Write N, = vi +vo + -+ + vy for
r=1,2,...,n and Ny =0. We have

n
Pr[N, < rfor at leastoner =1,2,...,n] = Z 1l Pr[N;=i-1] (7.34)
=1 "

forn=1,2,....

ProOOF. The event that N, < r for some r = 1,2,...,n can occur in several
mutually exclusive ways: there is an 7 = 1,2,...,n such that N; =4 — 1 and
N; — N, <i—rfor 0 <r <i. Since v1,vs,...,v, are interchangeable random

variables, we have

Pr[N, < r for at least oner = 1,2,...,n]

n
=ZP1’[N1-—NT<1Z—rfor0§r<iandNi=i—1}

i=1
=Y PrN,<rforl<r<iand N; =i—1] (7.35)
i=1
and by (7.33)
Pr[N, <rforl1<r<iand N;=i-1] = l Pr[N; =i -1]. (7.36)

2
for 1 <4 < n. This proves (7.34). [ |
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7.6 Some Combinatorial Identities

First Passage Time

By using Theorem 7.5.4, we can prove the following general result.

Theorem 7.6.1 Let vq,vs,...,Vy,... be interchangeable discrete random vari-
ables which take on non-negative integers only. Write N, = v +vo+ -+ + vy
forr>1 and Ng=0. Let S, =r — N, forr > 0 and define

p(k) = inf{r: S, = k,r > 0} (7.37)
fork=0,1,2,.... If Sy < k for all™ > 0, then p(k) = co. We have

Pr{p(k) = n] = % Pr[S, = K] (7.38)

forn>1and k > 0.
PROOF. If k > n, then both sides of (7.38) are 0. If 0 < k < m, and n > 1,
then by (7.33)
Prjp(k)=n] = Prr—N,<kfor0<r<mnand N, =n—k]|
Pr[N, - N, <n—-rfor0<r <nand N, =n— k|
= Pr[N;<iforl<i<mnandN,=n—k|
k

= = Pr[N, =n —k]. (7.39)
|

Two Identities
If in Theorem 7.6.1, we assume that vy, vs,..., Uy, ... are independent and iden-

tically distributed discrete random variables which take on non-negative integers
only, then we have the following identities:

Prjp(k+1) =n] = ZPI [p(k) = j]Pr[p(l) = n — j] (7.40)

and

Pr[S,=k+1] = Zpr 31 Pr[Sn_; =1] (7.41)

for k > 0,1 >0 and n > 0.
The first identity is valid, because
p(k+1) = p(k) + [p(k + 1) — p(k)] (7.42)

where p(k) and p(k+1) — p(k) are independent and p(k+1) — p(k) has the same
distribution as p(I). The second identity is valid, because S, —S; is independent
of S; and has the same distribution as S,,_;.
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The Identities of Rothe and Hagen

If we use the notation

Am(a, B) = (a tnﬂ m>a fﬂm , (7.43)

then by the results of Rothe (1793), Schlafli (1847), Hagen (1891, pp. 64-68),
Gould (1956b, 1957) and Blackwell and Dubins (1966), we have

i Ai(e, B)Am—i(7,8) = Am(a +7, ), (7.44)
=0

and by the results of Hagen (1891) and Gould (1956b, 1957),

m

: ma
D440 9)Am-i(1, ) = T An(a +7.6) (7.45)
for m = 1,2,... and arbitrary a, 8 and . If a =+, then (7.44) implies (7.45)
and conversely.
Both (7.44) and (7.45) can be proved by using the general ballot theorem.
As a matter of fact, (7.44) is a particular case of (7.40), and (7.45) is a particular
case of (7.41). To demonstrate this let us assume that

Prjy, = bl =pand Prly, =0] =¢ (7.46)

where p > 0,q > 0,p+ ¢ = 1, and b is a positive integer. Then {S,,n >0} is a
random walk. We have

mb+ k _
Pr[Smpix = k] = ( . ) pmgmO-1+k (7.47)

and by (7.38),

Pr[p(k) = mb+ k] = o

Pr[Smpsk = k| = Am(k, b)p™qmCD+k  (7.48)

for £ > 0 and m > 0.
Now by (7.40),

Prjp(k+1) =mb+k+1] = iPr{p(k) =1b+ k] Prlp(l) = (m —14)b+1]. (7.49)
1=0

This proves (7.44) for a = k,y =1 and 8 = b. By (7.41),
m
Pr(Smbskst = k+1] = _ Pr[p(k) = ib+ k] Pr[Spn_ipps1 = I]. (7.50)
=0
This proves (7.45) for o = k,v = | and 8 = b. Since (7.44) and (7.45) are

polynomials in «, 3 and v, the identities (7.44) and (7.45) are valid for any real
or complex «, 3 and 7.
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An Identity of Chung

In 1946 K. L. Chung proposed a problem for solution in the American Mathe-
matical Monthly. His problem can be restated as follows: Prove that

bn. . b—1 (bk) [bn —bk
F-mas)t) e
for b=2,3,...and n=1,2,.... If n =1 or n = 2, then (7.51) is trivially true.
If n > 2, then it is easy to check that the identity (7.51) follows from either
(7.44) or (7.45) where m=n—-2, a=vy=b—-1and B =0.
The problem of Chung (1946) was solved by Gould (1956a,b). See also Guy
(1984). Gould (1956a,b) proved also (7.44) and (7.45), and generalized these

formulas. For further extensions of (7.44) and (7.45), see Gould and Kaucky
(1966) and Knuth (1992).

7.7 Another Extension of The Classical Ballot
Theorem

Let us suppose again that in a ballot, candidate A scores a votes and candidate
B scores b votes and all the possible (“z'b) voting records are equally probable.
Denote by a, and (3, the number of votes registered for A and B respectively

among the first 7 votes counted. Let p be a positive real number and define
Pj(a,b, u) = Pr{ay > Brp for j subscripts r = 1,2,...,a + b] (7.52)

for j =0,1,2,...,a +b. We can write that

Py(a,b) = Nyfa,b p) / ( . ”) (7.53)

for 7 =0,1,2,...,a + b. In what follows, we discuss the problem of finding
Pj(a,b,p) for j = 0,1,2,...,a +b. For a survey of this topic, see Chao and
Severo (1991) and Takécs (1967).

If Py(a,b, ) and P,yp(a,b, p) are known for a > 0 and b > 0, then we can
determine Pj(a,b,p) for j =1,2,...,a + b — 1 by the following equation

Nj(a,b,p) = Y Nj(j —s,su)Nola+s—j,b—s,u), (7.54)
0<s<j

or by the equivalent formula

Pj(av b, “‘) = Z PI[/BJ = S]PJ(J - S, syl-l‘)PO(a +s— J,b - S,ﬂ), (755)
0<s<y
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where
00 (0
P [/BJ - ] - (az_b) = (a;—b)

(7.56)

whenever 0 < s<jand j—a <s<b.
Formula (7.55) can be proved by making use of the following auxiliary the-
orem.

Theorem 7.7.1 Leté&y,&o,..., &, be interchangeable real random variables. De-
fine G =&+ &+ ---+& forr =1,2,...,n and (p = 0. Denote by A, the
number of subscripts r = 1,2,...,n for which {; > 0. Then,

Pr[Ap=j]=Pr[(; < (for0<r<jand { < (jforj<r<mn]. (7.57)

Proor. Formula (7.57) was proved by Andersen (1954). In Feller (1959), he
deduced (7.57) from a simple elementary combinatorial theorem. |

Since the random variables &1, &, . .., &, are interchangeable, we can express
(7.57) in the following equivalent form:

Pr[A, =j]=Pr lmig_(r >0and max (¢ —¢j) <0]. (7.58)
j

<r j<r<n

If in the ballot problem, we define ¢, = o, — B = r — Br(pu + 1) for
r =1,2,...,a+b and {; = 0, then Theorem 7.7.1 can be applied to the
random variables ¢, (0 < r < a +b). Under the condition that 8; = s, that
is, ¢ = j — s(u+ 1), where 0 < s < j, we obtain that mini<,<;{ > 0 is
satisfied if and only if a, > Brp for 1 <r < j, and oj = j — s and B; = s, and
also max;<r<n(¢r — (j) < 0 is satisfied if and only if o, — o < (8- — B;)u for
J<r<a+b,and ag4p —a; =a+s—j and Bu4p — Bj = b — 5. Consequently,
in this case (7.57) proves (7.55).

If, in particular, p is a positive integer, then by Theorem 7.2.1

Pats(a,b,p) = (a —bu)/(a +b) (7.59)
for a > by and Puyp(a,b,u) = 0 if a < bu. Thus, in formula (7.55), we have

Pi(j—s,s,u) = —sp—s)/j (7.60)
if 0 < s <j/(n+1) and Pj(j — s, s, u) = 0 otherwise.

If, in particular, p is a positive integer, then by Theorem 7.5.5 we can prove
that

PO(a’ b, :u‘) = NO(aa b’/"')/ (a : b)a (761)
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where

Mwb = (70> (et

0<s<(a+b-1)/(u+1)

a+b—sp—s—1 1
( bos >@+—+1) (7.62)
if a < bu and No(a,b, ) = 0 if a > bu. To obtain (7.62), let us suppose that
in Theorem 7.5.5, n = a + b and define the random variables vq,vs,...,Vayp in
the following way: v, = 0 if the rth vote is cast for A and v, = p+ 1 if the rth
vote is cast for B. Then N, = (1 + 1) and o, > Bru if and only if r > N;.
Thus, by Theorem 7.5.5,

a+b

Py(a,bp)=1-) —:-Pr[Ni =i—1] (7.63)
i=1
where now
Pr[N; =i —1] =Pr[Bi(u+ 1) =i — 1] (7.64)

and the distribution of §; is determined by (7.56). In (7.64), necessarily i =
s(u+1)+1where0<s<(a+b—-1)/(n+1). By substituting a + s — j for a
and b — s for b in (7.62), we obtain Py(a + s — j,b — s, 1) in (7.55).

The solutions of the above mentioned ballot problems make it possible, for
example, to find the distributions of the local times and the sojourn times for
various stochastic processes.
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Some Results for Two-Dimensional Random Walk

Endre Csdaki

Mathematical Institute of the Hungarian Academy of Sciences, Budapest,
Hungary

Abstract: We present some results for simple symmetric two-dimensional ran-
dom walk. Our treatment is based on results concerning independent simple
symmetric one-dimensional random walks.

Keywords and phrases: Linear random walk, planar random walk

8.1 Introduction

Though the treatment of the two-dimensional random walk has a long history
and goes back to Pélya (1921), McCrea and Whipple (1940), Dvoretzky and
Erdés (1950), Erdés and Taylor (1960), Spitzer (1964), and others, there are
some recent results of combinatorial nature like those of DeTemple and Robert-
son (1984), Cséki, Mohanty and Saran (1990), Breckenridge et al. (1991), Guy,
Krattenthaler and Sagan (1992), Barcucci and Verri (1992), Kreweras (1992)
and Saran and Rani (1994) concerning simple symmetric two-dimensional ran-
dom walk. Further results can be found in Gupta and Sen (1977, 1979), Révész
(1990) and Di Crescenzo, Giorno and Nobile (1992).

In this paper we present a treatment of two-dimensional (planar) random
walk problems based on stochastically independent one-dimensional (linear)
random walks. In fact, there are two ways of doing this. Let

(%0 = (x, x@)} 1)

n=1
be a sequence of i.i.d. random vectors with the distribution

Pr(X; =(0,1)] = Pr[X;=(0,-1)] = Pr[X; = (1,0)]
= Pr[X; = (-1,0)] = 1/4. (8.2)
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Then Tp =0, T, = Y1 Xi, n=1,2,. .. is called a two-dimensional simple
symmetric, or planar random walk (PRW). Let T,, = ( 7(11),T,(l2)), ie. TV =
—1 X,;(] ) j=1,2. Then we have the following result [cf. Spitzer (1964)].

Proposition 8.1.1
SO=T® 47O,  n=12,...

S@ =1 _T@ =12,

are two stochastically independent one-dimensional simple symmetric, or linear
random walks (LRW).

Thus if A = A; N Ay, where A; are events measurable with respect to S @),

7 =1,2, then
Pr[A] = Pr[A; N Ag] = Pr[A;] Pr[Ay)]. (8.3)
The other way is to consider the coordinates f(ll) and T,(f) as one-dimensional
random walks with possible steps —1,0,1. By eliminating the zero steps, we

obtain two LRW-s, Hy, Hy, ... (from TM) and V4, V3, ... (from T®) with +1
(2) (2)

steps. Let v, denote the number of non-zero steps in 77, ..., 7"’ (number of
vertical steps in the first n steps of PRW). Obviously, n — vy, is the number of
non-zero steps in T(2), ceey 7?) (number of horizontal steps in the first » steps of
PRW). Given v, = k, the LRW-s Hy,...,Hp_t and V,. .., Vi are conditionally
independent. Clearly,
1 [n
Prjv, = k| = F(k) (8.4)
Therefore, if B = B; N B, where B; is an event measurable with respect to
Hy,...,H,_,, and B; is an event measurable with respect to V3,...,V,, , then
"1 (n
Pr(B] =) 7 (k) Pr[Bi|vn = k| Pr[Ba|v, = K. (8.5)
k=0 '

We illustrate by simple examples how the basic identities (8.3) and (8.5)
will be used. Let A = {T}, = (¢,d)}, i.e., the PRW path ends at the point (c,d).

We have {T,, = (¢,d)} = {Sy(,,l) =c+d}n {57(12) = ¢ — d}, and so by (8.3) we
obtain the well-known formula

1 n n

Pi[T,, = (c,d)] = Zf'»(“—*%ﬂ> <1+_§—_d_> (8.6)

where the binomial coefficient (}) is meant to be zero if k is not an integer
satisfying 0 < k < n. On the other hand, it is easy to see that under the
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condition {v, = k} we have {T,, = (¢,d)} = {Hn—r = ¢} N {Vx = d}, and hence

we obtain
PI{T, = (e, d)] = 3 Y (Z) ( &) (;’%f) (8.7)

k=0 2
Comparing (8.6) with (8.7) we obtain the binomial identity

Z (Z) (é) <:—;+k;> = <n+7c7l+d> (n-:cl—d)’ (88)
k=0 2 2 2 2

which can also be obtained from Vandermonde convolution [cf. Gould (1972)].

The identity (8.3) was used in Cséki, Mohanty and Saran (1990) to derive
some distributions concerning the boundaries y = z + a and y = —z + b. For
further (joint) distributions concerning these boundaries, one may refer to Saran
and Rani (1994).

In Breckenridge et al. (1991), Guy, Krattenthaler and Sagan (1992) and
Barcucci and Verri (1992), bijections between PRW and LRW paths were given
to derive certain results concerning the boundaries x = 0, y = 0. It was shown
among others that for PRW paths not crossing the z-axis, we have

- 4n n

PrT® >0, i=1,...,n] i<2” + 1) (8.9)

[see also Sands (1990)]. In view of Proposition 8.1.1, this is equivalent to

1 (2n

PrisM >8P i=1,...n= 4—n< :1) (8.10)
Pairs of LRW paths were studied in Karlin and McGregor (1959), Raifaizen
(1972), Shapiro (1976a) and Karlin (1988). In Raifaizen (1972), a bijection is
given between a pair of LRW paths each of length n and one LRW path of length
2n as follows: Let Ys; = Yi(l) and Yy, = Yi(2), i=1,...,n, where Yi(j) is the
i-th step of SU). Then Zy = Y1 +Ya+...4Ys, k=1,...,2n, is a LRW path in
which steps are taken from S() and S alternatively. This bijection combined
with Proposition 8.1.1 gives a direct bijection between PRW paths of length
n and LRW paths of length 2n. Similar bijections were given in Breckenridge
et al. (1991), Guy, Krattenthaler and Sagan (1992) and Barcucci and Verri
(1992). For example, a PRW path satisfying Ti(z) >0,7=1,...,n, can be
transformed into a LRW path satisfying Zox > 0, k = 1,...,n, or equivalently

Zx > —1,k=1,...,2n, giving (8.10).
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8.2 Identities and Distributions

First we put together known results to derive certain binomial identities. It
follows from Guy, Krattenthaler and Sagan (1992) that

Pr[T® =] = 1‘% <n2:r)‘ (8.11)

On the other hand, {T,S,2) =r} = {V,, = r} and so by (8.5) we have the identity

1( 2n "1 (n\1/( k
H2)-S08e) e

[see also 3.22 in Gould (1972)]. We note that the identity (8.12) is equivalent

rf2n\ _&K(n—1\ppar( k
) EE ). e

giving an identity for the ballot numbers B, = %(nzl’;

(8.13), we obtain an identity of Touchard (1928) that

> ("‘ 2'k 1) n-1-2kCy = C, (8.14)
(k) '

). Putting r = 2 into

where Cp, = (n+1)71! (2:) is the n-th Catalan number; see also Shapiro (1976b),
Breckenridge et al. (1991) and Barcucci and Verri (1992). For other extensions
of Touchard’s identity, one may refer to Gould (1977).

Now we determine the probability that a PRW path stays in a strip —a <

T,-,(2) < b and ends on the z-axis after n steps. For a > 0, b > 0, we can write
by (8.5)

Prl—a<T® <b, i=1,...,n, T® = (|

1(n .
= %:)‘2—71(%) Prl—a<V;<b, i=1,...,2k, Vor =0]. (8.15)

It is well-known that the latter probability can be given as [cf. Mohanty (1979)]

Prl-a<V,<b,i=1,...,2k Vy =0
1 & 2k 2k
= o 2 {(k+j(a+b)>_<k+a+j(a+b)>}‘ (8.16)

j=—c0
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Using this in (8.15) and applying the identity (8.12), we get

PI‘[—(], < :1";(2) < b, i=1,...,n, T7S2) — O]

1 & 2n, om
) 4_nj=—oo{(7l+2j(a+b)> B <n—+—2a+2j(a+b)>}~ (8.17)

Next we determine the distribution of the number of times a PRW path
73 _

crosses the z-axis. We say that a crossing occurs at 4 if either Ti(z) >0, T, =
T2 =0, T® <0or T® <0, T = ...T2_; = 0, T?, > 0 for some

2

j > 1. Let A, denote the number of such crossings completed before the n-th
step. Then from (8.5), we have

1
Pr[\, =21, T,S?) =0] = Z on (2k> PI[)\2,c =0—-1, Vorp, =0], (8.18)
(k)

where )\gc) is the number of times the LRW path Vj,..., Vo, crosses 0. Using
the result

22k Kk \k+¢
from Csédki and Vincze (1961) and the identity (8.13), we get

PrAD =01, Vo= 0] = = 2{( 2k ) (8.19)

PriA\, =¢—-1, T? =0] = (8.20)

1 4Z+2 2n + 2
4n n—i—l n+204+2/)

Now let pr denote the time of k-th visit to the x-axis by a PRW path, i.e.,
po =0 and
pr =min{i: i > pg_1, T;;(2) = 0}. (8.21)

Then by Proposition 8.1.1, the event {px = n} is the same as {S(!) and S®
meet k-th time at n}. Its probability is given in Raifaizen (1972) from which

1 k 2n — k

n

This distribution is the same as that of the k-th visit to zero by a LRW path
(replacing n by 2n).
Let &, denote the number of visits to the z-axis by a PRW path, i.e.,

En=#{i: 1<i<n, T —0} (8.23)

Then (8.22) also gives

Prltn =k, T = 0] = L(2 . k) (8.24)
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Moreover, it follows that the distribution of &, is the same as that of the number
of visits to zero of a LRW up to time 2n. Hence we have [cf. Feller (1968)]

1 2n — k
Pr[£n=k]=227,?<,n ), k=0,1,...,'n:. (8.25)

n

One can similarly see that for 7,,, the last visit to the z-axis before the n-th
step we have the arcsine law

1 (2k\ (2n -2k
Pr[Tnzk]=§2—n<k><:_k>’ k=0,1,...,n. (826)

Other distributions can be derived similarly.

8.3 Pairs of LRW Paths

In this section, we study certain properties of pairs of independent LRW-s and
apply the results for PRW. Let {S{V}%, and {S®}%, be two independent
LRW-s. First, consider the probability

Pr[S{Y = 2a, S =0, SV >8P i=1,...,2n, S&) =2a+20, SP = 2k],

where a > 0, a+£ > k, i.e., the probability that the two paths with given start-
ing and terminating points do not meet in the first 2n steps. For determining the
probability of the complement, i.e. that the two paths meet somewhere in the
first 2n steps, we use a version of the reflection principle due to Karlin and Mc-

Gregor (1959): Let « be the smallest i for which S(l) 8(2) and decompose both
paths into two parts: (S(J) S9 ... 89y, (S,E?_Zl, . S(J)) j =1,2. Leaving the
first parts as they are and interchanging the second parts, we get two new paths

as (50,50, ... 50 5@ ' g®) ana (5@, 5@, sD g0 | gy

K41
Now the endpomts of the two paths 1nterchange and hence the new paths should

meet somewhere. Hence, this is a bijection showing that
Pr(S{" =24, $? =0, SV > 5P i=1,... 2n,
S = 94 420, S = 2k]
=Pr[S{") =24, S =0, SV =24 +2¢, SP = 2k
— Pr[SY =24, S =0, S =2k, S =24+ 2/

& {2 () )

(8.27)
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This is a particular case of the determinant formula of Karlin and McGregor
(1959). From this, we can find the probability

Pr(ss) = 5P =0, SV >8P, i=1,...,2n, 5{) = 5% = 0]

2 2
1 2n 2n Cn(2n+1
_Zﬁ{<n> _<n+1> }—42_"< n ) (8.28)

by shifting the path of S() two units upwards and putting a = 2, k = £ = 0
into (8.27).
By putting a = 2, k =0 into (8.27) and summing up for £ we obtain

Pr(s{) = 5% =0, SV > 5P, i=1,...,2n, 5&) =]
C 1 (2n)\(2n+1
=22"%+W<n)< . ) (8.29)

In view of Proposition 8.1.1, (8.28) also gives the probability that a PRW
path does not cross the z-axis and returns to the origin after 2n steps and
(8.29) gives the probability that a PRW does not cross the z-axis and ends on
the half-diagonal z = y > 0. So we have

C, (2 1
PT® >0, i=1,...,2n, Tan = (0,0)] = 42n< n n+ ) (8.30)
and
2 . 1 2 Chn 1 2n\ (2n+1
Pri® 20, i=1,....20, ) = T = 2 0g + oy < .
8.31)

(8.30) and (8.31) also give

PrT® >0, i=1,...,2n, T = T
= PiTIT® >0, i=1,...,2n, T = TP

Cn 1 2n, 2n+1
= 2%'*‘4%(”’4_1)( n ) (8.32)
Next, consider PRW paths not crossing both the z- and y- axes. Guy,
Krattenthaler and Sagan (1992), using reflection principle, give the formula

PrT) >0, TP >0, i=1,...,n, TV =¢, T® =d]

1 n n n, n
T n+§+d n+§—d - n+§+d +1 n+§—d -1
n n, n n
- n+§+d +1 n+c— +1 + n+§+d ) n+§—d
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1 n n+ 2 n+ 2 n
- 4—n n+§—d n—;—d - n+c— +1 n—;—-d -1 .
(8.33)

They note also that for ¢ = d = 0, replacing n by 2n, we obtain
PrTM >0, T® >0, i=1,....2n, T =T? =) = 42n CnCri1. (8.34)
By Proposition 8.1.1, these are equivalent to

Pr[S,;(l) > Si(2) > —S,;(l), i=1,...,n, SV =c+d, S® =c— d

1 n n+ 2 n+ 2 n
= an n+§—d n—;—d - n+§—d +1 n—;—d -1

n CnCn+1 (836)

(8.35)

and

PV > 5@ > —sW i=1,... 20, S =P =0 = 42

Now putting d = ¢ into (8.35), replacing n by 2n and summing up for c,
we obtain for the probability that a PRW path remains in the first quadrant
z >0, y > 0 and terminates on the diagonal = = y after 2n steps:

Prr) >0, T® >0, i=1,...,2n, T =T

= pris > s? > —S,;(l), i=1,...,2n, S =0] = Cn

o - (8:37)

From the independence of S and S@, Proposition 8.1.1 and well-known
properties of Catalan numbers, we also have

Prs) > -1, P >0, i=1,...,2n, S =52 =0
Prr® >T7® > 1V _ 1, i=1,... 20, TV =T = (]
1

= o= CnCana (8.38)

and
Pris? >0, i=1,...,2n, S =0
1 2) . 1
PrTV >T?, i=1,... 20, T¥ = TP = 2% . (8.39)

It would be interesting to give a direct bijective proof for the equivalence of
(8.36) and (8.38), and also for that of (8.37) and (8.39).
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Random Walks on SL(2, F3) and Jacobi Symbols
of Quadratic Residues

Toshihiro Watanabe
Gifu University, Gifu, Japan

Abstract: The Euclidean algorithm with respect to the modulus 4 is given
as random walks on the group SL(2, F3). The quadratic reciprocity law and a
simple part of Zolotareff’s Theorem are proved in terms of values on each step
in the walks.

Keywords and phrases: Euclidean algorithm with respect to the modulus 4,
quadratic reciprocity law

9.1 Introduction

In the theory of quadratic residues, the number of proofs already exceeds fifty
since Gauss gave seven distinct proofs for the famous quadratic reciprocity law
of the Legendre symbol (m/M)

(%) (-Z—) = (=1)TM=D(m=1) " for 6dd M and m > 0, (9.1)

[¢f. Bachmann (1921), Hasse (1980), Frobenius (1914), Takagi (1903), Rousseau
(1994) and Zolotareff (1872)]. The reciprocity law also holds for the Jacobi
symbol, which is a generalization of the Legendre symbol. In their papers,
Zolotareff (1872), Lerch (1896) and Riesz (1953) gave a relation between the

Jacobi symbols (m/M) and the character x(oprm) of the permutation groups
defined by

omm(k) = km (mod M).
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Zolotareff’s Theorem. For coprime integers M and m,

(m), if M is odd,
X(O’M,m) = { (_1)%(m—1)(m'—1), if M =2m'. (92)

This note gives a proof of the quadratic reciprocity law and the exponent
%(m — 1)(m’ — 1) in Zolotareff’s Theorem, through a unified representation
of characters x(oam,m), X(OM=-m,m) and X(0m pM—m), which may be called a
correlation of random walks on the group SL(2, F?).

In Section 9.2, we take the Euclidean algorithm for coprime integers M and
m as a random walk on the Cayley digraph [¢f. Coxeter and Moser (1972)]
of the group SL(2, F»), shortly called a random walk on the group SL(2, F3).
Proposition 9.2.1 shows that each of the integers M and m with respect to the
modulus 4 becomes a sum of values on the steps belonging to the corresponding
coset in the group SL(2, F).

In Section 9.3, the exponents of characters x(oarm), x(0mM-mm) and
X(0'm M—m) are given a unified representation as a sum of products of two values
[¢f. Theorem 9.3.1]. In the case of even M, the exponent of character x(oa,m)
becomes a product of two sums of values on cosets in the group SL(2, F3) [cf.
Proposition 9.3.1], which yields the exponent %(m —1)(m' — 1) in Zolotareff’s
Theorem [cf. Corollary 9.3.1]. A kind of expectation on the random walks also
becomes a similar product [c¢f. Proposition 9.3.1], which yields the exponent
1

7 (M —1)(m — 1) in the quadratic reciprocity law (9.1).

9.2 Preliminaries

Let M and m be any fixed coprime integers satisfying M > m > 0. Then, the
Euclidean algorithm for M and m gives

MY (on 1 apg 1 1 o
<m>—< 1 0)( 1 0)(()), o;: integer >0, i =0,...,n.

(9.3)

In this section, we shall get, from a calculation with respect to the modulus
4 of (9.3), a random walk on the group SL(2, F;) and a value on each step in
this walk. These will be used later in Section 9.3.

First, let us introduce the notations and terminology. Set in (9.3), the
following:

ar = a +2br  (mod 4), ag, b, € {0,1}; (9.4)
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1
o, = ( ‘;’“ 0 ) (9.5)

=(42)

Then, the matrices Jy and J; satisfy the relation

Let

=7 =(JJ1) =1 (mod?2),

and generate the group SL(2, F,), where F; is a field with two elements.
In the 2-dimensional Euclidean space over the field F5, the inner product is
denoted by the symbol (, ), and the vectors e; (i = 0, 1) are the unit vectors

() ()

The symbol = is a congruence with respect to the modulus 2 unless the
modulus is given. Let the group H be an isotropy subgroup {I, JoJ?} of the
group SL(2, F):

H={geSL(2,F2): gey=ep}

From (9.3), we use the following for 0 < j < n:

gi = Ja;--.Ja; an element in the group SL(2, F»).
wj = (Zj > - (Z()); a biword, i.e., a sequence of two letters.
j 0
AMw;) = <(Zj ), gjeo> + a;; a function from the above biwords
J
into the field F.
0<isy
Aj(HJ{“) = Z AMw;), k=1,2; a sum on the coset HJF
giEHJ{C
in the field Fs.
A;j(HJh) . . . .
A, = J ; a vector in the 2-dimensional Euclidean
? (Aj(H J? )>

space over the field Fs.
We note that
AMwg)=0 if g€ H. (9.6)

For coprime integers N and n, the permutation on, on a set {1,...,N} is
defined by
onn(k) =kn (mod N).
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We also use the usual notations and terminology in number theory [see, for

example, Hasse (1980)].

The Euclidean algorithm (9.3) with respect to the modulus 2 gives a random
walk on the group SL(2, F»), and the algorithm with respect to the modulus 4
is determined by each sum of values A(wg) on cosets HJ}, i = 1,2, in the group

SL(2, F») as follows:
Proposition 9.2.1 In (9.3), set

M

m

co+2dyp (mod 4), co,dp € {0,1};
c1+2d; (mod 4), c1,d € {0,1}.

Co _ .
1 = Ggneéo;
do
d;

PROOF. Eq. (9.7) clearly holds. Let us now prove (9.8). In (9.3), set

(5 - (7))

m = cp+2dy (mod 4), co,dp € {0,1}.

Then

gnJ?An,.

Thus, we have

d d
0 = Ja, 1 + eo(anclcz + an1)-
dy da

Since the integers m and m’ are coprime, it follows that
cica+c1+ce+1=0.
Hence,

ancica +bpcr = (an+bp)er +ance +ay

((5) () o

d
" <d;> + eoA(wp).

Eq. (9.11), therefore, becomes

(@)

I
&

(9.9)

(9.10)

(9.11)

(9.12)
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Using (9.12) successively, we get

d n
<d0> = Z Ja,, --- Jak+leo)\(wk)
1 k=0

n
= 00 Y 07 "eoM (). (9.13)
k=0
Since . '
g leg = Ji'eg for any g € HJ;, i=0,1,2,
we obtain (9.8) from (9.13) [ |

9.3 A Calculation of the Character x(ojm) and Its
Relation

In this section, we give two relations for the numbers A(wg) over the field F», and
as a result we have the simpler part in Zolotareff’s Theorem and the quadratic
reciprocity law (9.1) of quadratic residues.

The characters x(o) of permutations ¢ are given by the number I(o) of
inversions of the permutation o as follows:

x(0) = (~1))

[see Berge (1971)].
For the coprime integers M and m in (9.3), set

io(wn) = I(omM-m); (9.14)
i(@n) = I(OMomm); (9.15)
io(wn) = I(omm). (9.16)

Then, we have the following theorem.

Theorem 9.3.1

s 9k9n Ji€o ) +ak ,g1e0 ) +ai |,
n2k>l20{ gt } <<<bk ! b

j=0,1,2, (9.17)

ij(wn)

1]
™

where

{ 9k }={ 0 if grg ' € H, (9.18)

1 otherwise.
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We note the following:

(1)

9k - -1
= €, €
{ a } (e1,9k9; "€o)
= [a'k—la oo 7al+1]’
where the symbol [ ] is the Gaussian Klammer;

(i1) We have for d; in Proposition 9.2.1

> { In })‘(Wk) = Y (e1,9n95 "e0)A(wi) (by (i) above)

n>ke0 Ik n>k>0

d; (by (9.13))

(e1,9nJ?A,) (by Proposition 9.2.1)

= (g, €0, JoJfAn), (9.19)

where, in the last equation, we use the relation

Jolg Jy=g ' forany g e SL(2, F3).

Since we prove this theorem by a substitution of words or an automaton
and needs preliminaries, we will give the proof in another paper.

The following proposition is the main result of this paper.

Proposition 9.3.1 The following equations hold:

{g'f }A(wk)A(wj) = An(HD)AL(HJID); (9.20)
n>k>g20 U 97

> ak{g’? })\(wj) = (((F2gn)"' + Deo, JoJ?An).  (9.21)

n>k>;>0 9i

9k

9j

same coset HJ! are equivalent, we get (9.20) by (9.6).
For a proof of (9.21), let us first prove the following:

PROOF. Since the statements that { } =1, and gx and g; are not in the

(JPge) ™" + Deo, JoJiAe) = (((Jigr)™" + Deo, JoJEAk+1)
for any k > 0. (9.22)

For any j, we have _ , )
HJ = {J],JoJi )



Random Walks on SL(2, Fy) and Jacobi Symbols 131

ges1 € HITHHI T if g = J{ (S0 7).

Thus, we have

Ak1(HI) = M(HA)  if gr € HIY
Aerr(HI ) = M(HET) i ge=J; (9-23)
Ay (HITY = A(HITTY if g = JoJi ™1
Using
I+ +J2=0, (9.24)
we have the following:
: 0 if j=1
. 2 2 77\—1 — _ J )
(@) RaRR) D= Qo 02

g 2 27 7i—1y—1 _J o0 if j=2
(7‘7‘) ']1 JO((Jl JOJl ) +I)60 = { Jl—JeO if j 76 2:
Using (i), (ii) and (9.23), we obtain for any k£ > 0,
(JEJo((J7gk) ™" + Deo, Ax) = (JTJo((J7gr) ™ + Deo, Ar1);  (9.25)

that is, Eq. (9.22).
Since

(JEger1) '+ Deo+ (JFgr) ™+ Deo = gy (T + Jay,,)J1eo
= akt+195,41€0 (by (9.24)),
we have from (9.22)

ak+1(9r €05 JoJE Aky1)
= (((JEge+1)"" + Deo, JoJiAks1) + ((JEgr) ™! + Ieo, JoJZAx).

(9.26)
Since, by (9.19), the left hand side of (9.21) is
> aklgy 'eo, Jo P Ak),
n>k>0
by using (9.26) successively, we obtain (9.21). |

In the case of even M, Proposition 9.2.1 gives

(€0, gneo) =0, that is, g, = Jo or J?.
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So,
do = An(HJ1) + An(HJI?)  for g, € {Jo, J2}
and
&= An(HJ?) if gn=Jo,
Y2\ An(HT) i g =J2
Thus, we have
(do + 1)d1 = Ap(HJ1)An(HJ?)  for g, € {Jo, J?}. (9.27)
Since

<<Z:) ,gk9;1J1260> +ag = ANwg) for gn € {Jo, JT},

from Theorem 9.3.1, Proposition 9.3.1 and Eq. (9.27), we have

I(O‘M,m) = 7:2(wn)
= An(HJ)An(HJ?)
= (do+1)d1
= 2 m—1)(m' D).

where M = 2m/. Thus, we obtain the simple part of Zolotareff’s Theorem.

Corollary 9.3.1
X(UM,'”L) — (_1)%— (m—l)(m’_l) fOT M — 2m/.
By (9.24), Eq. (9.21) in Proposition 9.3.1 gives the following.

Corollary 9.3.2
2
Y ij(wn) = (((J2gn) ™" + Deo, JoJ7 An). (9.28)
§=0

In the case of odd M and m, Proposition 9.2.1 gives

gneo = €g + e1, that is, ¢, = Jy or JoJi.
So,
d
( 0) =A, for g, = Jy,
d;
and

d
( °> = JoAn  for gn = JoJi.
dy
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Thus, for g, in {J1, JoJ1}, we have
dod; = A (HJ)A(HJ?). (9.29)
Since, for g, in {J1, JoJ1},

qa

((J2gn)™' +I)ep = 0 and <(b:> ,gk9;1J1€o> + ar = Awg),

from Proposition 9.3.1, Corollary 9.3.2 and Eq. (9.29), we have

i1(wn) = A (HI)AR(HJ?) = dody;
io(wn)+i2(wn) = dpd;.

Hence,

I(Um,M—m) + I(O’M’m) = io(wn) + iz(wn) = dod;
= %(M— 1)(m - 1). (9.30)

Using the known property (M/m) = (M — m/m) of the Jacobi symbol [see
Hasse (1980)], we have
<M> = (—1)foln),

m,

Therefore, from Eq. (9.30), we obtain the quadratic reciprocity law.
Corollary 9.3.3 For odd M and m,

<%> (%) _ (—1) -1

Remark. When the exponents i;(wn), j = 0, 1,2, of characters of groups o p,m,
OM-m,m and oy, pf—m are put in a unified form (9.17), and we take it in terms
of random walks, we can easily deduce the simple part of Zolotareff’s Theorem
and the quadratic reciprocity law of quadratic residues. Shanks (1985) made
some comments on the quadratic reciprocity law while Kubota (1992) raised
some questions in the class field theory. It is important to note that the unified
form in (9.17) has these (and possibly some other) relations.
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Rank Order Statistics Related to a Generalized
Random Walk

Jagdish Saran and Sarita Rani
University of Delhi, Delhi, India

Abstract: This paper deals with the derivation of the joint and marginal
distributions of certain rank order statistics related to the generalized random
walk with steps +1 and —p by using the extended Dwass technique evolved by
Mohanty and Handa (1970). These generalize and extend the results of Saran
and Rani (1991a,b).

Keywords and phrases: Extended Dwass technique; generalized random
walk; rank order statistics - upcrossing of height a, upward crossing of height
a, positive reflection at height a; run of upcrossings of height a; run of upward
crossings of height a; run of positive reflections at height a (a > 0).

10.1 Introduction

Let X1,X2,...,Xun and Y7,Y3,...,Y, be two independent random samples of
sizes un and n (where 4 is a positive integer) from the same population having
continuous distribution function. Let F,,(z) and G,(z) be the corresponding
empirical distribution functions of the two samples. Define the rank order
indicator of {Xl,Xz, e ,X#n,Yl, Y, ... ,Yn} as a vector (21, Zs, ... ,Z(“+1)n)
such that
+1 if the j-th minimum among {X1,..., X,n, Y1,..., Y5}

is X; for some t € {1,2,...,un}
—p  if the j-th minimum among {X1,..., X,n, Y1,..., Y5}

is ¥; for some t € {1,2,...,n},

j =12,...,(g + 1)n. Obviously (Zl,Zg,...,Z(“H)n) is a sequence of un
(+1)’s and n (—p)’s which we call a sequence of rank order indicators. Un-
der the assumption, the ((““;1)") possible sequences of rank order indicators
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are equally likely. Any random variable defined on the rank order indicator
(21,22, .-, Z(us1)n) is called a rank order statistic. Defining

Hyn(u) = np [Fun(u) — Gn(u)], —00 < u < 00,

we note that statistics defined through H, »(u) can be treated as rank order
statistics.

Dwass (1967) developed a new technique (other than the combinatorial one)
based on the simple random walk with independent steps, in order to derive
the distributions of some rank order statistics for the case of equal sample
sizes (i.e., for p = 1) which are defined on Hj,(u). Mohanty and Handa
(1970) extended the technique of Dwass (1967) to the case when one sample
size is an integer multiple of the other and derived the distributions of a few
rank order statistics. For this purpose, they considered the generalized random
walk {S; : S; = Y1, W;, So = Wp = 0} generated by a sequence {W;} of
independent random variables with common probability distribution

PrW; =+1]=p, Pr[W; = —p]=q=1-p, 1 <i < o0.

Further, Saran and Sen (1979), Kaul (1982, Ch. IV), Pratap (1982, Ch. IV),
Sen and Saran (1983), Sen and Kaul (1985) and Saran and Rani (1990, 1991b)
have derived the joint and marginal distributions of some rank order statistics
related to the generalized random walk {S;} with steps +1 and —p. In this
paper, we consider the above mentioned generalized random walk with steps
+1 and —u and derive the joint distributions of the number of upcrossings of
height a and their runs, the number of positive reflections at height a and their
runs, and the number of upward crossings of height a and their runs (a > 0), by
employing the extended Dwass technique given by Mohanty and Handa (1970).
These generalize and extend the earlier work by Saran and Rani (1991b) in
which the above mentioned distributions have been derived for the special case
a=0.

10.2 Some Auxiliary Results

The basic results needed in the sequel are quoted from Mohanty and Handa
(1970) and Sen and Saran (1983); see also Saran and Rani (1991b).

(i) For any a and f3,

> Ag(a, B)6F = z°, (10.1)
k=0
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where

«a a+ kB

A = —— s 0 =\ — o ﬁ
and |8] < |(8 - 1)°71/8°),

the last inequality assuring the convergence of the series.

(ii) The probability generating function (pgf) for the first return to the origin
in the generalized random walk with steps +1 and —u is

F(t) = (u+ 1)pHqzrt+tl (10.2)
where

gttt = (2 — 1)/2*! and |t|FTpPq < pH/(p + 1)*TL.
L

(iii) The probability of never returning to the origin is
§=1-F(1)=1- (p+ 1)ptqy*, (10.3)
where y is the value of z when ¢t = 1.
(iv) The probability of ever reaching k is

G(1,k) = (py)k, k=1,2,.... (10.4)

(v) The probability of ever returning to the origin with S; = —pu is given by
F~(1) = p*qy*. (10.5)

(vi) The probability of ever returning to the origin with S; = +1 and having
one crossing of the origin at a non-lattice point in a generalized random
walk with steps +1 and —p is given by

FF(1) = (p - Dptgy”. (10.6)

(vii) The probability of ever returning to the origin with S; = +1 and without
crossing the origin before is given by

Fyf (1) = ptayt. (10.7)

(viii) The probability of a particle starting from the origin with a positive step
and returning to the origin with a positive step with the condition that

(a) it crosses the origin only once, and
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(b) it is allowed to reach the origin before the crossing and it is not
allowed to reach the origin after the crossing except at the end,

is given by
Playt(k — 1+ p*qy*)/(1 — pHay¥). (10.8)

(ix) The following power series expansion is also useful:

k 00
b4 (u+1)n— k)
= E : " k>0, 10.9
1 - (u + l)p#qyﬂ- v ( n (p#Q) ( )

where (z) is the smallest integer greater than or equal to z.

10.3 The Technique

The main theorem of Mohanty and Handa (1970) which plays a vital role for
finding the distributions of rank order statistics is presented below; see also
Saran and Rani (1991b).

Theorem 10.3.1 Suppose V,,,, is a rank order statistic for every n and V,
is the corresponding function defined on the random walk which is completely
determined by W1, Wa, ..., Wr and does not depend on Wry1, Wrya,..., when-
ever T > 0 (where T is the time for the last return to zero in the random walk).

Define
h(p)=EW.), p<p/(p+1). (10.10)

Then we have the following power series (in powers of p#q) expansion:

) > 5w (YT e, oy

1= (u+ Dpray* nzzo

where y is as in (10.2) and (10.3).
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10.4 Definitions of Rank Order Statistics

The following is the list of rank order statistics whose distributions will be
derived. In what follows, we shall use the dual notation V,,, V},, for these rank
order statistics as mentioned in Section 10.3.

L Niie) =

I Af,(a)

Il Ni,(a) =

IV. Rft(a) =

V. Rfi.(a) =

VL. Ri.(a) =

the number of upcrossings of height a
the number of indices i for which H,,(Z;) = a+ 1
and H#,n(Zi_l) =a, 1= 1,2, cee e

the number of positive reflections at height a
the number of indices 7 for which H, »(Z;) = a,
Hyn(Zic1) =a+pand Hyn(Zig1) =a+1,
1=1,2,....

the number of upward crossings of height a

the number of indices 7 for which H, »(Z;) = a,
Hyn(Zic1) =a—1and Hyn(Zig1) =a+1,
i=1,2,....

the number of runs of upcrossings of height a of type
I whose number is N, (a)

the number of sequences of (consecutive) upcrossings
of height a with indices increasing by u + 1. A se-
quence of upcrossing indices ik, k41, -.,% Will be
said to form a run of upcrossings if
()ij—iji=p+1,i=k+1Lk+2,...,c

(ii) 4 > k-1 + p+ 1 and

(ifi) dep1 >dc+pu+1,c=1,2,... .

the number of runs of positive reflections of height a
of type II whose number is A}, (a)

the definition IV with ‘positive reflection’ in place of
‘upcrossing’.

the number of runs of upward crossings of height a of
type III whose number is Nj; ,,(a)

the definition IV with ‘upward crossing’ in place of
‘upcrossing’.
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10.5 Distributions of N}/ (a) and R} (a)

1,7 (1%}

Theorem 10.5.1

<(“ J;l)") Pr[Nii(a) =c, Rin(e) = k|

c—1\ (k-1 N p+lr—a-1
- (D)eg (e (Y,
i=0 \ r=((@+1)/n)

x An—(c—l)—r(.u'(k —i—1)+a+k—ipu+ 1)

B "’fl ((,u+1)s—a—2>

s=((a+2)/p)
X An—(c—l)—s(:u’(k —i- 1) +a+k—i+ Lp+ 1)

u—l n—c ( .

p+lt—a-1-j5+p

SIS SN (i
7=1 t=((a+1+j—p)/m)

X Anoot(plk—i—1)+k—itatj+lputl) } (10.12)

PROOF. To establish (10.12), let 0P, P, ... P.D (Figure 10.1) be a generalized
random walk path with N; *(a) =¢, R;‘[*(a) = k as stipulated in the theorem,
where Py, P, ..., P, are the upcrossing points of height @ and D is the point

Figure 10.1: A sample path for the event Nf*(a) = ¢, R}*(a) = k

where the particle reaches height a + 1 for the last time. If P, itself is the point
of last return to height a + 1, then the point D will coincide with P, and the
segment P.D as shown in Figure 10.1 will not exist. The path is thus divided
into ¢+ 2 segments (see Figure 10.1) by the ¢ upcrossings of height a as follows:
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(a) One segment in the beginning up to the first upcrossing of height a, i.e.,
OP; and it may be of any length and it occurs with probability (py)3*!,
by (10.4);

(b) ¢ — k segments, each of length p + 1 (like P; Py in Figure 10.1) and each
with probability up*gq;

(c) k—1 segments, each of length > p+1 (like P,P; in Figure 10.1) and each
with probability

p“qy“( — 1+ pHqy*)

mn
pHayt — T puqy#

— (n = 1)ptq,

by (10.5) and (10.8);

(d) one segment from the last upcrossing point to D, i.e., P.D and it may be
of any length and will occur with probability

i[Fz'*(l)]r S S

= 1 — ptqy#

(e) the last segment from D to oo is such that the particle crosses height a+1
only once and thereafter it does not reach height a + 1. This segment has
the following two contingencies:

(i) when the last crossing takes place at a lattice point,

(i) when the last crossing takes place at a non-lattice point.
In case (i), the last segment from D to oo occurs with probability
{1 - (py)*}
and in case (ii), it occurs with probability
Z py)a{l — (py)* 7} = Zp’qy — (k= 1)ptqy*,
j=1 7=1

by using an argument similar to the one used by Sen and Saran (1983,
Lemma 3). Thus, the probability of the last segment from D to co equals

p—1
{1 - (py)*} + ) Py — (u—1)ptay™.

Jj=1
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Now (c — k) segments each of length ;2 + 1 are to be combined with k£ — 1

segments each of length > p + 1 so as to form k runs of total ¢ upcrossings

which is possible in (*™¥T*=1) = (¢71) ways. Thus,

Pr[N*(a) = ¢, R} *(a) = K]

c—1 _ _ @ _
= (k_ 1)#"' Yp*q)  (py) T (! — 1)F

-1
X {1 —py — (p— Dprqy**t + Zp]qy”l}. (10.13)

i=1
Hence, identifying h(p) as Pr {N;*(a) =c¢, R}*(a) = k], we have

k-1
h(p)/(s _ (Z — 1>uc—l(puq)c Z (k — 1) (_1) a+1y(,u+1)(k:—1',—1)+a+1

i=0 7
x {1 —py — (u— 1)ptgy*t! + Zp’qy1+1}/5

On comparing the coefficient of (p*q)™ on both sides, and using Theorem 10.3.1,
we get the desired result in (10.12). [ |

Deductions

(A) Putting =1 in (10.13), we get

h(p)/(1 - 2p) = (,jj i) (pg)°~2-2"1p%+2e(2 _ pk-1, (10.14)

which is in agreement with Saran and Rani (1991a).

(B) Summing (10.13) over k, we get

m(p)/6 = Pr|[Ni*(a)=¢|/6

)c—l a+1+(#+1)(c—1)pa+1

= (uptq

p—1
x {1 —py — (u— Dptey*t + prqy”l}/é

j=1

y

(10.15)

in which the coefficient of (p#q)™ gives
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<(ﬂ‘ + 1)") P [N+* — C]

uc—l{ "fl ((u+1)g—a—1>

o={(a+1)/1) J
X Ap—g-ct1(@+1+ (p+1)(c—1),p+1)

n—c+1 Dh—a—2
_ Z ((N‘*‘ )h )

h=((a+2)/1)
X Ap—ph—ct1(@+2+ (p+1)(c~1),p+1)

—(u-1) Z_: ((/“*‘1)9—“"1)
)

9=((a+1)/u g
X Ap—g-c(la+1+(p+1)c,p+1)

+”Z_:1 "Z_:c ((,u+1)m—a—j+u—1>

=1 m=((a -t 1)/ "
X Anmecla+ i+ 2+ (ur D=+ 1) |,
which is equivalent to the result of Kaul (1982).

(C) Summing (10.13) over ¢, we have
ha(p)/6 = Pr|Ri*(a)=1k]| /s

— ( )a+1 pu+l l)k 12( ) puq)c—l

c=k

x {l—py (u —l)p“qy"+1+2p’qy’“}/5

j=1

= (py a+1 y“'H k 12 <k+7” - 1) up q)k+"‘1

{1 py — (p— Dptqy*t! + Zp’qy”“}/c?

j=1
= (py)* (W - P - pptq) F (upte)

{1 py — (b — Dptqy*t! + Zp’qy”l}/é

(10.16)
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in which the coefficient of (p#q)™ gives

<(/l'+ 1)n> Pr [RI;,(G) _ k]

n

_ "ii( ><k+r_1)(—1)’pk+’"‘1

=0 r=0 r

x{ " '“zf“ ((u+1)ss—a—1)

s=((a+1)/1s)
X Ap—k-rs1-s(u(k—i—1)+a+k—i,p+1)

”"“X‘:’“ <(u +1)t—a-— 2)
t=((at2) /1) t
X An—k—r+1—t(/“"(k —i- 1) +at+k—1+ Lp+ 1)

n—k—r —a—
_ (IL— 1) Z <(/.L+1)$ 1)

s=((a+1)/p) y
X An—k—r—s(u(k —i) +a+k—i+1,p+1)

+"§ _}kf ((u+1)g—a—1—j+u)

i=1 g=((at+1tj—k)/u) g

X Aniorglu(k=i= 1)+ b=itatj+1u+1) .

10.6 Distributions of Af, (a) and Rf},(a)

Theorem 10.6.1

((,u—;l)n) Pr [A;‘;n(a) =r, Rf;n(a) = k]

k—1 oo )
Yy Z (r - 1) ( ' 1) (s + Z+ 1) (;>(_1)k_1—i+s-gug
i=0 s=0 g=0 k

x{ i ((u+1b)b—a)

b=(a/n)
X An—b—'r—-s—l(lll(s +1i4+ 2) +a+ g + 1,“ + 1)

o i ((,u+1)c—a—1>

e=((a+1)/p) €
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X Ap—cr-s-1(u(s +i+2)+a+2+g,p+1)

[.L—l o0 ( .
p+ld-—a—j+pu
£y 3 (e
=1 d=((a+j-p)/K)

J
X An—dorst(p(s +14+1) +a+g+j+1u+1) } (10.17)

PROOF. Let OP1P;... P, be a generalized random walk path with Af(a) =,
Rf}(a) = k as stipulated in the theorem, P; (i = 1,2,...,) being the positive
reflection points at height a. The path is thus divided into r 4+ 1 segments by
these r positive reflections. Of these 7 + 1 segments, there will be

(i) one segment in the beginning from the origin to the first positive reflec-
tion at height a, i.e., 0P; and it may be of any length and occurs with
probability

(py)* i(p"qy“)" i{ (b — Dptay™ (P ay™)
i=0 J=0 =0

+ pHqy* Z(p“qy“)i}Jp“qy“ by (10.4), (10.5) and (10.6)

i=1

= (py)*"pHay* /(1 + ptay* — uptay*th).

(ii) r — k segments, each of length 1 + 1 and each with probability ptq.

(iii) k& — 1 segments, each of length > u + 1 and each with probability

o 0 j
> { (= Dp*ay* + (0#ay)?] Z(p“qy“)i} Pay* - v'q
=0 i=0

_ plaly - (1+ptay* — ptayth)
1+ phqyt — uptqyr+!

by (10.5), (10.6) and (ii) above.

)

(iv) One segment at the end from P, to oo (i.e., from the last positive reflection
at height a to 0o) and it may be of any length and with probability

i {(u — 1)p*qy* i(p"qy")i + pray* i(p“qy“)i}
i=1

“—1 . .
x ¢ play*(1—py) + Y (py) q{1 — (py)*—7+1}
j=1
p'qy*(1 - py) + S42] (py)ia{1 — (py)»—3+1}
1 — pptqyt+t + prqyk '
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Further, r positive reflections will form k runs in (;_]) ways. Thus, on

identifying h(p) as Pr [Aj(a) =r, Rff(a) = k], we have

_ r—1 p/"qy#"‘l un \r—k
ho)/5 = (k )coy) o 04

k—1
y {p"q[y" — (1 + ptqy* — pp*qy**th)] }

1+ phqy* — uptqyrt!
1

X
1 — pprqys*t + prayt

pu—1
{p“qy (1-py) +Z py)Y q{l — (py)*~ ”“}}/5

=1

k-1
< ) ) (py)*y ! [y — 1 - phay* + pptayt ]
X

—(k+1)
{1+ pay* — wptay'}

pu—1
X {p ay"(1—py) + D (py)q{1 - (py)*~ ’“}}/5 (10.18)

j=1

in which the coefficient of (p#q)", by Theorem 10.3.1, gives the desired result
n (10.17). |

Deductions

(A) Putting =1 in (10.18), we get

1
X (1 - p2/q)_k+la

which is in agreement with Saran and Rani (1991a).

h(p)/(1-2p) = (k B} 1) (pg) 2Pt 21 4 )

(B) Summing (10.18) over k, we get
hi(p)/6 = Pr[Af(a) =7]/8
r. a, ur+a =(r+1)
= (g Py {1+ prayt — eyt
p—1
X {p“qy"(l —py)+ Y (pyYq — (u — 1)q(py)*+! } / 8
=1

— Z Z <S +T> < ) l)s—g'ug(p q)r+spa yp.(r+s)+a+g+l

s=0 g=0
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p—1 . .
X {p“qy“(l —py)+ ) (pyYa{l — (py)“"“}}/é

i=1

(10.19)

in which the coefficient of (p#q)™ gives
(k+1)n
( n Pr [A:;n(a) = r]
-5 5 (7))

5=0 g=0 Y
— [(k+DA-a
1> ( )
A=(a/w)

X An—r—s—l-—)\(/-"(r +s+ 1) ta+g+1pu+ 1)

_ i <(u+1)/\1—a—l>
A=((a+1)/p) M
X Ap—r—s—1-n(u(r+s+1)+a+g+1,p+1)

p—1 oo .
(+Dre—a—j+p
DD VN (s

3=1 Xe=((a+1-j)/m)
X Ap—res—1-a(u(r+s)+a+g+1,p+1)

- (p—1) i <(#+1)/}\11_a— 1)

M=((a+1)/p)

X Aprs—1-npr+1+s)+a+g+2,u+1) }

(C) Summing (10.18) over r, we get
ha(p)/§ = Pr [R )=k /6
= (py)y* e/ (1 - PO} {y" — 1 - play* + pup qy““}k

—(k+1)
x {1+ptqy* - pp'qy"*'}

p—1
X {p ay*(L—py) + Y (py)Y q{1 — (py)*~ “1}}/5 (10.20)

j=1

in which the coefficient of (p#q)™ gives
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SEEEECTIC0
x (—1)k—1—i+s-yug{ 3 ((u+ Db~ a)

b=(a/n)
X Ap—b—k—t-s—1(u(s +i+2)+a+g+1,u+1)

o0
(+1ec—a-1
S ( i
e=((a+1)/1)
X Ap—c—k—t-s-1(p(s+i+2)+a+g+2,p+1)

[.l.—‘l o0 ( s

p+l)d—a—j+p

3 (e
3=1 d=((a+j—p)/m)

X Ap—d—k-t-s—1(p(s+1+i)+a+g+j+1,pu+1) }

10.7 Distributions of N}, (a) and R}, (a)

Theorem 10.7.1

(m + l)n) Pr [N;’n(a) =c, R,’:,n(a) = k]

n

(B BT

n—1 ( _ _ .
p+r—2p—a+j
T (e
3=0 r=((2p+a—j)/m)
X Aprc(p(@+1)+a+s+i—j+2,40+1)

— i ((#+1)t—t2,u—a—l>

t=((2p+a+1)/u)

X Aptc(p(i+1)+a+s+i+3,p+1) } (10.21)

PROOF. A path contributing to (10.21) comprises ¢ + 1 independent segments
as follows:
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(a) The first segment from the origin to the first upward crossing of height a
and will be with probability

(py)* > (P*qy*) = p*y*t! by (10.4) and (10.5);
=0

(b) ¢—k segments each of length p2+ 1 and each with probability (x — 1)p#g;

(c) k — 1 segments each of length > 1 + 1 and each with probability

o0 o0
> (r*ay*) (n - Vptay* Y (p*ay*)
1=0 7j=1

oo

o0
Z (P*ay*)' Y (P ay*) — (k- 1)pHq
=1 j= 1

= [(u — 1+ ay")ptay* — (1 - pPay*)*(n — 1)pPqly?;
(d) the last segment from the last upward crossing to co with probability
oo ' p—-1 . p—1 ‘
Yo ay)'a g Yoyl — plpy) b =ay Y (py)* T — p(py)Ht
i=0 3=0 j=0
Now (c — k) segments each of length p + 1 are to be combined with k — 1

segments each of length > p+1 so as to form k runs of total ¢ upward crossings,

which is possible in (Zj) ways. Thus, on identifying h(p) as Pr[Nj(a) =

¢, R;(a) = k|, we have

h(p)/6 = (; - 1)? y (- 1)ptg}e*

x {(u— 1+ pPqy*)ptay” — (1 — ptay*)*(u — 1)ptq}rty? 2

p—1 .
X qy {Z(Py)“” — u(py)““} / 5

§=0

N <Ic¢ : 1) (6 = 1) () p%y™ ! {(uy — 1)yt — (-1

pu—1 _
< ay {_}:@yw-f - u(;vy)““} /s

_ (C - 1) Z Z < ’ ) < ) 1)’“_1—5(/_1, _ l)c—i—I#S(puq)cpu+a

=0 s=0
I
x ym+a+s+1,+2 {Z(py) py ,u+1}/6 (10_22)

in which the coefficient of (p#q)™ gives the desired result in (10.21). [ ]
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Deductions
(A) Summing (10.22) over k, we have
hi(p)/6 = Pr[Ny(a)=c]/6
— (p“q)c—lpaya+1+(°'1)("+l)(,uy — 1) lgy

u—1 .
X { > oy -u(py)““} / 6 (10.23)

=0

in which the coefficient of (pq)™ gives

<(N -;l)n,> Pr [N;;,n(a) _ C]

c-1 p—1 00 .
C — 1 —1—i 1 + ]. r—a-+
=Z< . )(_l)c 1 #{Z Z <(/~" ),,. .7)
=0 ' 3=0 r=((a—j)/u)

X Ap—cr(pc+a+c+i—j+1,p+1)

y i ((,u+1)s—a—1>

s=((a+1)/s) s

X An—c—s(ﬂc+a+0+i+2,,u-+1) }

(B) Summing (10.22) over c, we get
ha(p)/6 = Pr[R}(a) = K|/6

_ i (k + g — 1) (,u _ 1)k+g_1(puq)k+g—1paya+1

g=0 g

x {(uy — D)yt — (u - 1)1y
p—1

x { > (py)H 7 - u(py)"“} / § (10.24)
=0

in which the coefficient of (p*q)" gives

<(“ J;l)"’) Pr(R}, o (a) = K]

SR 5700

0
x (_1)k—1—3('u _ 1)k+g—i—1#s

x{lil i ((u+l)r—2u—a+j)

=0 r=((2u-+a—j)/u) 4
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X Ap—rk—g(u@@+1)+a+s+i—j7+2,u+1)

L i <(,u+1)t—t2u—a—1>

t=((2n+a+1)/p)

X Ap_t—k—gp(@+1)+a+s+i+3,pu+1) }
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On a Subset Sum Algorithm and Its Probabilistic
and Other Applications

V. G. Voinov and M. S. Nikulin

Institute of Pure and Applied Mathematics, Almaty, Kazakhstan
Université Bordeaur 2, Bordeauz, France

Abstract: An algorithm for constructing partitions of an integer by arbitrary
positive integers has been considered. The algorithm helps in introducing a
class of discrete probability distributions which are useful in a sampling survey
of populations, in constructing probability models describing texture images,
etc. It can also be used in integer programming, cryptography, and some other
problems.

Keywords and phrases: Diophantine equation, discrete probability distri-
bution, compositions, cryptography, generating function, knapsack problem,
partitions, subset sum problem

11.1 Introduction

Some problems of the construction of usual partitions and their use in proba-
bility and statistics have been considered by Voinov and Nikulin (1994, 1995,
1996). In this note, we emphasize problems relating to partitions of integers
by an arbitrary given set of positive integers. One such problem, called the
knapsack problem, attracted the attention of mathematicians for many years
due to its implication in public-key cryptography. Diffie (1988) wrote: “Given
a cargo vector of integers a = (a1, as,...,ay), it is easy to add up the elements
of any specified subvector. Presented with an integer S, however, it is not easy
to find a subvector of a whose elements sum to S, even if such a subvector is
known to exist. This knapsack problem is well known in combinatorics and
is believed to be extremely difficult in general. It belongs to the class of NP-
complete problems, problems thought not to be solvable in polynomial time on
any deterministic computer.”
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Actually, there exists a well-known and simple algorithm solving this prob-
lem in exponential time. In this note, we describe a possibly new approach for
this algorithm derivation and point out some of its applications.

In Section 11.2, we derive an algorithm for constructing such partitions
and discuss its potential applications in genetics, integer programming, cryp-
tography, etc. In Section 11.3, we introduce a class of discrete probability
distributions relating to such partitions. These distributions turn out to be
useful in a sampling survey of populations, in constructing probability models
describing texture images, radioactive contamination of lands, etc. Finally, in
Section 11.4, we consider some approaches to summation procedures used in
the construction of partitions.

11.2 A Derivation of the Algorithm

Consider the problem of representing a positive integer n as a sum of at most
M < n given arbitrary positive integers ay, as, . ..,a;, | € Z*, the set of positive
integers. In other words, we would like to consider all integral representations
of n as

s1a1 + s2a2+ -+ 810, =1, (11.1)
where s;1 +s2+ -+ < M and s;,7 = 1,2,...,n, are non-negative integers.
The generating function for the number R,(M, ) of compositions of n such as
in (11.1) is [see, for example, Voinov and Nikulin (1995)]

MmaxlSiS,{ai}

Ua(2) = (L4 2% 4o 4 2%-1 4 29)M = Z R,(M,1)2". (11.2)

n=0

Here, by compositions, we mean partitions taking order of summands into ac-
count.
Writing U, (2) as

\I/a(z) = [(]_ 4+ 2% 4.+ zal"l) + za[]M

and applying the binomial formula, we get

M
M
Va(z) = <k>z“l’“(1+zal )
k=0 ’

Il
Mk

M (M—k)max;<i<i—1{ai}
<k>za’k > Ry(M —k,1—1)2"

k=0 t=0

= >, X

n=0 5;=0

M max;<i<i{ai} [7?7]
M
( )R”—szaz(M — s, - 1)}F"

81
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M max) <;<i{ai}

> Ra(M,D)2",

n=0

where [z] denotes the greatest integer part of z. We have also used the fact
that

Rn_g5(M — 55,1 —1) =0 ifn—aisp > (M —gp) 13111:12?(—1{%}'

Strictly speaking, the upper limit of the summation over s; is min{M, [n/a;]}.
Since, by definition, (Is‘ll ) =0 for s; > M, we prefer to use for simplicity [n/a,]
as the upper limit.

From the above, we obtain the recurrence relation

(2]
M
Ro(M,1)= )" (s!)Rn_slal (M — 53,1 —1). (11.3)
Sl=0
This recurrence relation gives
C e B ey Y
R.,(M,l) = Z Z ( )
sl=0 Sl-l=0 32=0 Sl
M — s M—Sl—~‘-—-33
S1-1 52
X Rosjay——spay(M — s — -+ — 59, 1). (11.4)
Evidently,
M M M k Ma1 n
(1+22)M=3" ( k)zal =Y Ra(M,1)2" = ) Rayx(M,1)2%F,
k=0 n=0 k=0
where
My - . .
f k = X is a non-negative integer
M= ) k=3 8 8en .
R (M. 1) { 0 otherwise. (11.5)
Hence,
Rn—-slal—---—szaz(M —s—---—8g,1)= Rsjo,(M — 81—+ —s92,1)
™ 7T if sy = P=AA=22% s non-negative integer,
0 otherwise.
Since
M M — s M—Sl-—---—33 M—Sl—"'—$2
S Si—1 S2 S1
M!
= (11.6)

(M —sp—---—s1)lsy!sg! -+ 5"
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from Egs. (11.4), (11.5) and (11.6) we obtain

(2] ["a—ls’fL] [
ROL=Y ¥ Y =
51=0 5,-1=0 s2=0 (M B sl)!31!32! - 8!
(11.7)
ifsy+so+---+8 <M, sy =(n—sa —- - — saaz)/a; being a non-negative

integer, and is zero otherwise.

From this, we see that for all sets {s2, s3,...,s;} defined by sums in (11.7)
such that s; +--- + s; < M, the number of parts in (11.1) is less than or equal
M and

n — sja; — -+ — 8209
a1s1 +az82+ -+ a8 =ax . +ags2 + -+ a8, = n.
1
Hence, sets {s2, s3, - -, 51} define all partitions of n such as in (11.1) and terms
M!
(M —s7—---—s))ls1lsg!-- - 5!
count all compositions of n for fixed sy, s9,..., 5.

Hence, the partitions may be written down in the form
{OM—sl—-.._sl’a.{l’”.’a?l}, (118)

where {so, ..., s} are sets of summation indices of (11.7) and s; = (n — sja; —

- — sgag)/a1 is a non-negative integer. Notation (11.8) means that in each
partition there will be M — sy — - - - — s; zeros, s; terms will be a1, sg terms will
be a9, and so on.

Example 11.2.1 Let aj =2, a3 =5,a3 =3, M =5 and n = 17. By formula
(11.7), for I = 3 we have

[17 333]
5!
Ri7(5,3) = Z Z Tsi1solsal’
$3=0 s3=0 — 81 — 82 — 83).81.32.83.

where s; = (17 — 5s9 — 3s3)/2 and s; + s + s3 < 5.

For this example, there are 15 sets {s1, s2, s3} but only 3 of them satisfy the
conditions that s; is a non-negative integer and that s; + sy + s3 < 5; these are
{1,3,0},{2,2,1} and {0, 1,4}. Using (11.8), we then obtain three partitions of
n = 17 (with at most 5 parts) as

{01,21,5%30} = 1.2+43.5=17,

{0°,22)52,3'} = 2.2+42.-5+1-3=17,
{00,205 3%} = 1.5+4.3=17.
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Formula (11.7) can be easily transformed for the construction of partitions
of n with exactly M parts. Since the generating function in this case is

\Ila(z) — (zal 4. —}-Zal)M — ZMa1(1+za2—a1 +_._+za[—-a1)M
M max{a;—a1} M max{a;}
= M1 3 R.(MI-1)72"= Y Rnp_pa(M1-1)2",
n=0 n=Ma;

using (11.7) we obtain

n—May [n—Mal—s[(a[—al)] n—Maj—s;(aj—aj)—---—sg(ag—aq)
=t a_1—a1 [ a3—a] ]
Rn—Ma,(M,1=1) = Z Z Y
51=0 81-1=0 s3=0
- (11.9)
11.9
(M — sy —8i—1— - — s2)lsalsg! - s’

where s9 +s3+ -+ 5 < M and

n— May — si(a; —a1) —--- — s3(az — a1)

SS9 =
az —aq

is a non-negative integer, [ > 3.
The partitions n = a181 + - - - + a;s; may then be written as

{at" 27" 030, a)'). (11.10)

Example 11.2.2 Let a; =2,a3 =4, a3 =3,a4 =6, M =5 and n = 26. By
formula (11.9), for I = 4 we have

4 16—4s4 51

R16(573) = Z Z

84:0 83 =0

(5 — 59 — 83 — 84)!s9!s3!s4!”

where s = (16 — 4s4 — s3)/s2 and sy + s3 + s4 < 5.

There are 45 sets of {s9, s3, s4} and only two of them satisfy the conditions
that sp is a non-negative integer and that sy + s3 + s4 < 5; these are {2,0,3}
and {0,0,4} which give the two partitions

{2°,42,3%6%} =2.4+3-6 =26,
{21,4°,30 64 =1-2+4-6 = 26,

of n = 26 on exactly 5 parts.

The algorithm for the construction of partitions defined by (11.7) and (11.9)
shows that the subset sum problem is solvable at least in principle.

A variant of the subset sum or knapsack problem considered above has found
applications in public-key cryptography [Diffie (1988)].
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This problem is usually posed as follows [Brickell (1985)]. Let a set of
positive integers a1, a2, ...,a, be an unordered knapsack. To cryptanalyze the
system, we are to solve the subset sum problem for any sum S, i.e. to find a
vector (s1,.-.,8n), with s; € {0,1}, such that

s1a1 + Sgag + -+ -+ Span = S

if such a vector exists. The density of a set of weights aq,...,a, is defined by

n

" log, maxi<i<n{ai}

Since there will be in general many subsets of weights with a sum S when
d > 1, only the case d <1 is used in cryptography [Coster et al. (1992)].

Evidently, for every d this problem is solved in principle by formula (11.7),
which in this case becomes

min(1,[Z]) min(l,[ST‘r‘:iL:E]) min(l’[s_ans,,;.__a )
Sn:O sn_1=0 32=0
n!
11.11
(“—31—---—81,,)!31!---3"! ( )
for s+ +sn < mand 5 = S5 a_l..._s 92 being 0 or 1, and is zero otherwise.

Example 11.2.3 Let a; = 30, a2 = 29, a3 =32, a4 =31, a5 =33, n =15 and
S = 90. The density in this case is d = 5/logy, 32 = 1. From (11.11), we have

. 90-33 . 90-—33 5—31 4 . 90-—33. 5—31 4—32 3
1 mln(]-v[—'Tsi]) mln(L[ ;2 = ]) mln(]-’[ = 29 > > ])

Ryo(5,5) = ) > >

s5=0 s4=0 s3=0 s2=0
5!
(5—51 —----—85)!31!-“85!,

where s; +---+ s5 <5 and

_ 90 — 3385 - 3184 - 3283 — 2982
B 30 '

From these, we find 11 sets of {s1,...,s5} and only the set {1,1,0,1,0}
satisfies the conditions that sy +---+s5 <5 and s; is 0 or 1. From (11.8), with
M = n = 5 we have the following unique solution of this knapsack

S1

{0%,30%,29',320 311, 33%} = 30 + 29 + 31 = 90.

An algorithm given by formula (11.11) is inapplicable in cryptography since
its computational complexity is of the order of 2"~!. Nevertheless, it can be
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used in combination with other integer programming techniques. At present,
some algorithms are known [Coster et al. (1992)] which solve almost all subset
sum problems of density d < 0.9408... in polynomial time.

An interesting application of the subset sum problem arises while construct-
ing a mathematical model of universal genetic code [Shcherbak (1994-1996)].
The model is described by a system of 22 linear Diophantine equations of 25
non-negative variables z;, j = 1,2,...,25, and some inequalities imposed on z;
describing the nucleon sums of the 23 amino acids. The problem is to find all
the solutions of this system.

Many techniques are known for solving such systems; see, for example,
Smith (1861), McClellan (1973), Phrumkin (1976) and Votyakov and Phrumkin
(1976). The algorithm of Votyakov and Phrumkin (1976) gives the general
discrete solution of a system of linear equations in polynomial time, but the
problem of enumerating all the solutions still remains open. In view of this, the
exponential algorithm given by (11.7) and (11.8) which enumerates all solutions
of Eq. (11.1) naturally becomes useful for solving the above problem, since its
solution is defined by the intersection of sets of solutions of every equation of
the system which satisfies inequalities imposed on some variables.

11.3 A Class of Discrete Probability Distributions

Suppose that an urn contains balls. The balls bear fixed positive numbers
ai,as,...,a;, | € Z%. Let p; be the probability that a ball bearing the number
a; will be drawn (i = 1,2,...,1) with 3>'_, p; = 1. Let the random variable X
take the value r if, of n balls drawn with replacement, r; bear the number a;,
r9 bear the number ag, and so on, and 25:1 a;r; = r with Zf;zl r; = n. The
probability that the summation of numbers on balls drawn is r (na; < r <
7’7,5,2, &1 = minlsisl{ai}, &2 = maxls,;sl{ai}) is

l
PrX=r]= Y < " Tl)Hp;i, (11.12)
’ i=1

. r1,7T2,...
Zi:l a;ri=r

where

n n!
TLT20T) il g (0= i)

and is zero if Y'_17; > n. If can be easily shown, using the arguments of
Panaretos and Xekalaki (1986), that (11.12) is a proper probability distribution;
see also Johnson, Kotz and Balakrishnan (1997).
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Its probability generating function G(s) is

l n
G(s) = (Zp,-sai) : (11.13)
i=1

All n(@z—a;)+1 probabilities of (11.12) can naturally be defined by (11.13);
for example, i
1 0™G(s)
(na;)! Qdsma
To simplify the evaluation of probabilities in (11.12), one may use the al-
gorithm derived in the last section. Using Egs. (11.9) and (11.10), with n = r,
M = n the distribution in (11.12) becomes

Pr[X =na;] =

|s=0-

[r—naI] ['r—ﬂal—sl(al-al)] ["—"“‘1"sl(“l"“l)—"“'-94(“4—“1)]
aj—aj aj—1—a1 ag—aj
Px=r = Y Y - >
5=0 s1-1=0 s3=0
|
. n—8sy—-—Sy 82 S
(n—52—53—---—sl)!sz!s;:,!---sl!pl Pz b
(11.14)
where so +s3+---+5<n,l >3 and
oy = T —si(ai—a1) —--- —s3(ag —a1)
ag — ap

is a non-negative integer.

This probability model is suitable if a set of possible numbers on balls is
confined to a small ordered or disordered set of positive integers, even excluding
zero. Suppose one has to plan a cloth production. Having obtained sample
estimates of probabilities py,...,p; of heights ai,...,a;, he/she will now be
able to evaluate the probability that the average height of individuals belongs
to a prescribed interval.

The model is also applicable for describing radioactive contamination of
lands where, due to the natural background, digitized levels of measured ra-
dioactivity belong to a set with a similar property as above. Due to the stochas-
tic nature of radioactive fields, probabilities of summed levels can describe these
fields more adequately.

11.4 A Remark on a Summation Procedure When
Constructing Partitions

Suppose we have to construct partitions of an integer k on at most n parts with
each part less than or equal /. This problem is a particular case of (11.1) with
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a1 = l,ay = 2,...,a; = | and ¥(z), the generating function for the number
ak(n, 1) of partitions, being

nl
U(z)=(1+z+22+ - +2)" =) a(n,1)F.
k=0

Using (11.7), we then have

(k) (gt (A=t
ar(n,l) = . Z
51=0 5_,=0 52=0
!
(n—s1 —---—n:sl)!sl!sQ!---sl!’ (11.15)
where
s1=k—2s9—---—1Is; and s;+sa+---+5 <n. (11.16)
Partitions can be represented in this case as
(U RV AL AL S (11.17)
The way of summation by partitions [summation by s;, s;_1,.. ., s2 in (11.15)]

is well-known. An alternate way of summation by the same partitions has been
proposed by Voinov and Nikulin (1994, 1995) and can be written as follows [see,
for example, Voinov and Nikulin (1995, Formula 7)]

(DL Il a2

ar(n,l) = Z Z Z

l1=k—n l2=(2l1—k)+ l[_1=(2ll_2—l[_3)+

n!
(n—k+ 1)k — 20 + 1)1 — 20 + 1) (2 — 24!
(11.18)
with partitions being
{On_k+l1, 1k—2l1+l2, . (l _ 1)ll—2—'2ll—1, lll-l}. (1119)

The way of summation in (11.18) is more suitable than in (11.15) and (11.16)
in the sense that it saves considerable computing time. Let, for example, I = 3,
n = 6 and k = 14. In this case, formula (11.15) enumerates 24 sets {l1, 12,13}
but only four of them, viz. {0,4,2},{1,2,3},{2,0,4} and {0, 1,4}, satisfy the
condition in (11.16). Formula (11.18) does not have a condition like (11.16) and
enumerates for this example exactly four sets {l1,l2}, viz. {8,2},{8,3},{8,4}
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and {9,4}. Naturally, we obtain the same partitions in both cases, which by
formulas (11.17) and (11.19) are

{00,1°, 24,32}, {00, 11, 22,33}, {0°,12,2°, 3%}, {0!, 19, 2, 3%}.

Acknowledgements. The authors would like to thank Professors N. Balakr-
ishnan, S. Kotz and A. M. Odlyzko for their helpful discussions.

References

1.

10.

Brickell, E. F. (1985). Breaking iterated knapsacks, In Advances in Cryp-
tology: Proceedings of Crypto’84 (Eds., G. R. Blakley and D. Chaum),
pp. 342-357, Berlin: Springer-Verlag.

Coster, M. J., Joux, A., LaMacchia, B. A., Odlyzko, A. M., Schnorr, C.
P. and Stern, J. (1992). Improved low-density subset sum algorithms,
Journal of Computational Complezity, 2, 111-128.

. Diffie, W. (1988). The first ten years of public-key cryptography, Proceed-

ings of the IEEE, 76, 560-577.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multi-
variate Distributions, New York: John Wiley & Sons.

. McClellan, M. T. (1973). The exact solution of systems of linear equa-

tions, Journal of the Association of Computing Machinery, 20, 563-588.

. Panaretos, J. and Xekalaki, E. (1986). On generalized binomial and multi-

nomial distributions and their relation to generalized distributions, Annals
of the Institute of Statistical Mathematics, 38, 223-231.

. Phrumkin, M. A. (1976). An algorithm solving systems of linear equa-

tions in integers, In Investigations on Discrete Optimization, pp. 97-127,
“Nauka”, Moscow. (in Russian)

. Shcherbak, V. I. (1994). Sixty-four triplets and 20 canonical amino acids

of the genetic code: the arithmetical regularities, Journal of Theoretical
Biology, 166, 475-477.

. Shcherbak, V. I. (1995). A mathematical model of the universal genetic

code, Ph.D. Thesis (N 0495 RK 00500), Kazakh State Institute of Scien-
tific and Technical Information, Almaty, Kazakhstan.

Shcherbak, V. 1. (1996). An analytical formula of the genetic code, Jour-
nal of Theoretical Biology (submitted for publication).



Subset Sum Algorithm and Its Probabilistic and Other Applications 163

11.

12.

13.

14.

15.

Smith, H. (1861). On systems of linear indeterminate equations and con-
gruences, Philosophical Transactions, 151.

Voinov, V. G. and Nikulin, M. S. (1994). On power series, Bell polyno-
mials, Hardy-Ramanujan-Rademacher problem and its statistical appli-
cations, Kybernetika, 30, 343-358.

Voinov, V. G. and Nikulin, M. S. (1995). Generating functions, prob-
lems of additive number theory and some statistical applications, Rev.
Roumaine Math. Pures Appl., 40, 107-147.

Voinov, V. G. and Nikulin, M. S. (1996). Unbiased Estimators and Their
Applications. Volume 2: Multivariate Case, Dordrecht: Kluwer Academic
Publishers.

Votyakov, A. A. and Phrumkin, M. A. (1976). An algorithm giving a
general integer solution of a system of linear equations, In Investigations
on Discrete Optimization, pp. 128-141, “Nauka”, Moscow. (in Russian)



12

I and J Polynomials in a Potpourri of
Probability Problems

Milton Sobel
University of California, Santa Barbara, CA

Abstract: Some new methodology is developed for Network Reliability prob-
lems and for random paths on finite lattices. In terms of stopping sets which
define different (random) ways of reaching a goal in a geometrical setting, cer-
tain I and J polynomials are developed which give rise to the probability dis-
tribution (and its moments) of the waiting time (WT) needed to reach the
preassigned goal. These new techniques have many different applications from
Network Reliability to Recreational problems of tic-tac-toe and attacking all
the squares on a chess board with randomly placed rooks or knights or queens,
etc. Failure probabilities need not be equal and random sampling can be carried
out with replacement, without replacement or by Pélya sampling schemes.

Keywords and phrases: Network reliability, waiting time problems in a ge-
ometrical setting, Dirichlet methodology, random paths on lattices

12.1 Introduction

In a recent paper by Boehme, Kossow and Preuss (1992), the concept of system
reliability for consecutive k-out-of-n: F' systems was generalized and applied to
linear and circular lattice networks. The consecutive idea was extended to any
consecutive set connected by bonds in a preassigned linear or circular lattice
network. In the present paper, one of the goals is to continue with this ap-
proach without restricting ourselves to any special classes of lattice networks.
Actually, the central theme of this paper is waiting time (WT) problems and
we regard reliability as an important application of these problems. We in-
troduce I and J polynomials which reduce a large class of inverse sampling
WT problems to a small finite linear combination of solvable fixed-sample-size
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problems with sample-size parameter n. Basically the argument depends on
inclusion-exclusion, but Dirichlet methodology, introduced in Sobel, Uppuluri
and Frankowski (1977, 1985), is useful in the final steps to get numerical so-
lutions. With a little extra work, it is shown that the method of I and J
polynomials can also handle reliability problems with unequal failure proba-
bilities for the individual units. If a problem can be regarded as a sampling
WT problem, then we give three different expectation E[WT] answers for each
problem depending on whether the sampling is carried out without replacement
(H) or with replacement (M) or by Polya sampling (P), i.e., putting back two
(or more) of the same for each item removed. All of these results, including
the variance 02(WT) and Pr[WT > n + 1], are derived from one appropriate I
or J polynomial. The reason for considering both the I and the J polynomial
is that each pair of I and J polynomials defines a pair of dual problems with
related results. This problem-duality is not the same as graphic-duality, which
defines equivalent problems; both dualities are illustrated by several examples
in the paper. The I and/or J polynomial method can also be used in path
problems and percolation problems on a finite lattice network. The results are
exact in all cases; no asymptotic results have yet been obtained for very large
lattice sizes.

Aside from the basic references Sobel, Uppuluri and Frankowski (1977, 1985)
for Dirichlet methodology, there are two places in the literature where the above
method of inclusion-exclusion was successfully employed; one is Sobel and Up-
puluri (1974), where we wait for X-rays to hit each of the 4 cells in a local 2 x 2
structure within a larger structure. The other is Gleser et al. (1989), where a
single die is marked on its 6 sides with the pairs (1,2), (1,3), (1,4), (2,3), (2,4)
and (3,4); we are interested in the waiting time to see all the four digits 1, 2,
3, 4, each at least once.

12.2 Guide to the Problems of this Paper

Problems 12.1, 12.2 and 12.3, are explained with Tables 12.1, 12.2 and 12.3,
respectively. Each illustrates the concept of the problem-dual; thus Problems
12.1A and 12.1B are dual Problems as are 12.2A and 12.2B and also 12.3A and
12.3B. For each pair, under H-sampling the expected waiting times (WT) add
to one more than the original number of sampling elements and the variances
of WT are equal for H-sampling. This problem-duality is not to be confused
with graph-duality which is also included in the tables. For example, under
graph-duality the 6 faces and 8 vertices of a cube are interchanged with the 6
vertices and 8 faces of a regular octahedron; the number of edges is 12 in both
cases.

The explanation of the derivation of the I- and J- polynomials is given step-
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by-step in Problem 12.4A, which deals with a triangular array problem. The
reason for considering such an array was to show that we are not limited to
the consideration of only linear (i.e., rectangular) and circular (or cylindrical)
arrays of nodes as in Boehme, Kossow and Preuss (1992). Problem 12.4 is
then extended to show that the method of I- and J-polynomials “works” in
a multivariate setting with unequal parameters. However, different sampling
methods no longer yield intuitively comparable results.

Problem 12.5, dealing with the edges of a square with diagonals that do
not intersect, illustrates the fact that the concept of problem duality can be
extended to different levels (d = 1,2,...).

More examples of problem-duality are given in Problems 12.6, 12.7 and 12.8.

Problems 12.9, 12.10, 12.11 and 12.12 are problems of percolation type.
They all deal with a rectangular or square lattice and in each case the I- and/or
J- polynomials gives exact answers for the expected waiting time (in terms
of number of observations) needed to complete any one of the specified class
of paths. Variance of WT and percentiles (which can be treated as upper
confidence limits of WT) are all obtained from either the I- or the J-polynomial.

Pélya sampling with ¢ = 1 in Tables 12.1, 12.2 and 12.3 means that you put
back 2 items (or 1 extra) for each item removed for sampling.

It should be noted in Tables 12.1, 12.2 and 12.3 for each pair of IJ-dual
problems (like 12.1A and 12.1B) that if the sampling set is the same (as it
is in all 3 Tables), then for H-sampling (i.e., without replacement) we have
(i) the variances 0?(WT) are the same for A and B, and (ii) the sum of the
expectations E(WT) for Aand Bis V+1, E4+1, F+1 or C +1 depending on
whether the common sampling set is a set of vertices, edges, faces or cells; the
capital letter denotes the size of this sampling set.

In Tables 12.2 and 12.3, system reliability (for sampling without replace-
ment) is included. If we place J* by p® for each a (where p = 1 — ¢ = unit
reliability), then we obtain the system reliability in terms of the unit reliability.
If we replace J* by (%) /() for each a, then we obtain Pr[WT > n + 1],
where WT is the waiting time until system failure; here, E = 12 (edges) in
both tables. By summing the latter on n, we obtain the E[Reliability] or the
expected number of failures the system will survive if we are sampling without
replacement.
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Table 12.1: Sampling the V = 8 vertices of a regular cube; dual problems
One-at-a-time sampling method used

W /replacement
(M)

Polya W/c=1
(P)

W/O replacement
(H)

Graph-dual problems
are grouped together
below

Problem 12.1A: SVC: Sample vertices of a cube until 1 complete face is
obtained.

Graph-dual problem: Sample the faces of an octahedron until you obtain all 4
associated with any one vertex

E[WT] 197/35 = 5.628571 9.000000 20.600000
Mode (WT), 6, 1/7 = 0.142857 7, 0.129956 8, 0.066201
Pr{mode}

Min(WT), Max(WT) 4,7 4, 00 4, 00
o%(WT) 846/1225 = 0.690612*  13.688889 ()

614 — 1215 + 817 — I8 (Sum of Coeff’s = 1) = Tqa, I
4J% +8J% — 36J* + 40J° — 16J° + J8
(Sum of Coeff’s = 1) = Lobo J

I-polynomial
J-polynomial

(Dual) Problem 12.1B: SVC: Sample the vertices of a cube until

1 vertex is obtained on each face.

Graph-Dual Problem: Sample the faces of an octahedron until you obtain at least
1 face associated with each vertex

I-polynomial
J-polynomial

E[WT] 118/35 = 3.371429 4.142857 5.553333
Mode (WT), 3, 3/7 = 0.428571 3, 0.248047 3, 0.222222
Pr{Mode}

Min(WT), Max(WT) 2,5 2, 00 2,
a?(WT) 846/1225 = 0.690612*  2.925172 14.648889
Sum of expect. V+1=9* - -

for A, B

4% + 8I° — 36I* + 40I° — 1616 + I®

6J* — 12J% +8J7 — J®

* Note also that the variances are equal under H-sampling

Common diagram | Stopping sets for | Pr[WT > n + 1] under Polya (¢ = 1)
Problem 12.1A Sampling
5 6 (1’ 2’ 3’ 4)
| (1,2,5,6) Py = EZ=2 ba(;)/(n:7) + bno,
1 : p) (2,3,6,7)
7 n
l (3,4,7,8) Ps =3 0e10a(a)/("37) = bno-
§j____¢__ 7 (1’ 4) 5a 8)
4 < 3 (5,6,7,8)
6 stopping sets
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Table 12.2: Sampling the E = 12 edges of a cube to get a square face
One-at-a-time sampling method used

Graph-dual problems W/O replacement  W/replacement Polya W/c=1

are grouped together (H) (M) (P)

below

Problem 12.2A: SEC: Sample the edges of a cube until a complete square face is
obtained.

Graph-dual problem: Sample the edges of an octahedron until you obtain 4
associated with any one vertex

E[WT] 505/56 = 7.651515 11.752814 22.147619

Mode (WT), 8, 0.312121 10, 0.106282 12, 0.049368

Pr{Mode}

Min(WT), Max(WT) 4, 10 4, 0o 4, 00

o2(WT) 1.608861 18.304525 406.287735

I-polynomial 614 — 1217 — 318 4 81° + 1210 — 1211 4+ 2]'2 = ¥ a, I®

J-polynomial 8J3% + 66J% — 348J° + 672J° — 684J7 + 381J8 — 92J°
—12J10 4 12J11 — 2J12 = £, b, J

System reliability 1 —6q% 4+ 129" + 3¢® — 8¢° — 12¢1° + 12¢'! — 2¢'2;

q = Pr{failed item or edge} =1 -p
(System fails if each edge in any square face fails.)
(Dual) Problem 12.2B: SEC: Sample the edges of a cube until you have
at least 1 edge from each face.
Graph-Dual Problem: Sample the edges of an octahedron until you obtain at least
1 edge associated with each vertex

E[WT] 5.348484 6.904329 9.752381
Mode (WT), 95, 0.312121 5, 0.190008 5, 0.125824
Pr{Mode}
Min(WT), Max(WT) 3,9 3, 00 3,
a%(WT) 1.608861 7.837761 54.186303
Sum of expect. E+1=13 - -
for A, B
I-polynomial 813 4 661* — 348I° + 67216 — 68417 + 38118 — 921°
—127%0 + 12711 — 2512
J-polynomial 6J4 —12J7 — 3J8 +8J° + 12J10 — 12J11 4 212
Common diagram | Stopping sets for | Pr{WT > n + 1] under Polya (¢ = 1)
Problem 12.2A Sampling
7 (1a 21 3a 4)
BT | (15,919 | Pa= TR (/M) ~ 26
| (2, 6,9, 10)
, 6i 4 |8 (3,7 10,11) P =Y aa((D)/ (™) + 260
9/)___§__ (4, 8, 11, 12)
< 12 (5,6, 7,8)
1 6 stopping sets
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Table 12.3: Sampling the £ = 12 edges of an octahedron to get a triangular
face; One-at-a-time sampling method used

Graph-dual problems W/O replacement W /replacement Polya W/c=1
are grouped together (H) (M) (P)
below

Problem 12.3A: SEO: Sample the edges of an octahedron until a complete
triangular face is obtained.

Graph-dual problem: Sample the edges of a cube until you obtain 3

edges associated with any one vertex

E[WT] 6.005195 8.118182 12.271424

Mode(WT), Pr{Mode} 6, 0.270563 7, 0.140900 7, 0.086080

Min(WT), Max(WT) 3,9 3, 0o 3, 00

o?(WT) 1.84760 14.857948 83.045486

I-polynomial 8I% — 12I° — 1616 + 2417 + 1818 — 241° — 6110 4 1211
—3I2 =X, a, I

J-polynomial 9J4 + 36J° — 152J6 + 168J7 — 27J8 — 84J° + 72J1°
—24J1 4+ 3J12 = $,b, J©

System reliability 1—8¢3 4 12¢° + 16¢% — 24¢" — 18¢® + 24¢° + 64'°

—12¢" + 3¢'2;

q = Pr{failed edge} =1—p

(System fails if each edge in any triangular face fails.)
(Dual) Problem 12.3B: SEO: Sample the edges of a rectangular octahedron until
you obtain at least 1 edge from each face.
Graph-Dual Problem: Sample the edges of the cube until you obtain at least
1 edge associated with each vertex

E[WT] 6.994808 10.233756 17.952381

Mode(WT), Pr{Mode} 7, 0.270563 8, 0.124446 9, 0.067437

Min(WT), Max(WT) 4, 10 4, 00 4, 0

a?(WT) 1.84760 16.806357 318.759635

Sum of expect. E+1=13 - -

for A, B

I-polynomial 9I* + 3615 — 15215 + 16817 — 2718 — 841° + 72I'°
—241 4 3112

J-polynomial 8J3 —12J5 — 16J° +24J7 + 18J8 — 24J° — 6J1°

+12J11 — 3J12

Common diagram | Stopping sets for | Prf[WT > n + 1] under Polya (c = 1)
Problem 12.3A Sampling
(1,2,9)
(1, 4,12) Pa =003 ba () /("E) + 360m,
(2, 3, 10)
(3, 4, 11) Pg =Yt saa(t)/ (") — 36m.
(5,6,9)

8 stopping sets
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12.3 Triangular Network with Common Failure
Probability g for Each Unit

Problem 12.4: Consider the given diagram with 6 nodes representing inde-
pendent units.

The system fails if any connected (by the bonds shown) subset of size s = 3 has
only failures. The eight possible stopping sets of size s = 3 are (1, 2, 3), (1, 2,
4), (1, 2, 5), (1, 3, 5), (1, 3, 6), (2, 3, 5), (2, 4, 5) and (3, 5, 6). The principal
interest is for H-sampling, but if we do M or P-sampling, then we stop if any
of these triples has had at least one failure at each of its three nodes. Equal
probability of failure and independence of the units are still assumed; we simply
assume that the node numbers are marked on balls put into an urn and under
P-sampling there can be more than one ball with the same number.

Unions of these 8 triples j at-a-time (j = 1,2,...,8) gives rise to the Prelude
to Inclusion-Exclusion Table on the next page, where the last row is obtained
by alternately adding and subtracting the items in each column. This gives our
I-polynomial, namely,

Py(I) = 8I° — 11I* + 41°. (12.1)

If we replace I® by (1 —J)* (a = 3,4,5) and take a complement, we obtain the
J-polynomial, namely,

Py(J) = 2J% +4J3 — 9J* +4J5. (12.2)

In both (12.1) and (12.2), the sum of the coefficients is unity. P;(I) repre-
sents the probability of stopping in at most n observations, if the sampling
parameters are properly appended to it; Po(J) represents the complement, i.e.,
Pr[WT > n + 1] with the sampling parameters put in. We only use the J-
polynomial at present. Each J* on the right side of (12.2) is under H-sampling
a standard probability that if we start with N = 6 balls (one at each node) and
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