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Preface

The Challenge of Constraints

Willst du ins Unendliche schreiten,
Geh nur im Endlichen nach allen seiten.

If to the Infinite you want to stride,
Just walk in the Finite to every side.

Gott, Gemüt und Welt
Johann Wolfgang von Goethe

Constraints are common and are everywhere. Hard time-domain constraints on
actuators, sensors, and state variables of dynamic systems are the most ubiqui-
tous nonlinearities in practical control systems. Their impacts on stability, control
performance, and safety have been well recognized by both control engineers and
control theorists for many decades. The challenge of such constraints in analysis
as well as in design of control systems is intense and dauntingly formidable and
familiar; it needs no elaboration and explanation.

The primary focus of this book is on the problem of achieving simultaneous
internal and external stabilization of linear systems subject to constraints in both
semi-global and global framework. Our intended audience includes practicing en-
gineers, graduate students, and researchers in the field of systems and control. A
vast majority of the contents of this book are drawn from the research of the au-
thors, their coworkers, and students. Thus, it bears the signature of the authors and
has a recognizable identity and a coherence of point of view which can be char-
acterized as a structural view in both the analysis and design of dynamic systems.

No work of this magnitude and nature can be undertaken without many sac-
rifices. The deeds of this book absorbed our time infinitely more than the deeds
of our households. We thank our families for their tolerance and understanding.
Naturally, the debt of gratitude to our families is paid in some way by dedicating
this book to them. The PhD thesis work of Mr. Xu Wang reflects in many places,
needless to say that we are indebted to him enormously. Also, we are certainly
indebted to our editor, Dr. Tamer Başar, and the editorial staff at Birkhäuser. Our
special thanks go to the copy editor for a meticulous editing that improved the
text. Ali spent countless number of hours brooding over the manuscript of this
book at Bucer’s; the great coffee house of Moscow, Idaho. Ali acknowledges the
contribution of all the good people of Bucer’s, special thanks go to Ms. Pat Green-
field.
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1
Introduction

Constraints on inputs and other variables of a dynamic system are ubiquitous. Of-
ten they occur in the form of magnitude as well as rate saturation of a variable.
Clearly, the capacity of every device is capped. Valves can only be operated be-
tween fully open and fully closed states, pumps and compressors have a finite
throughput capacity, and tanks can only hold a certain volume. Force, torque,
thrust, stroke, voltage, current, flow rate, and so on, are limited in their activation
range in all physical systems. Servers can serve only so many consumers. In cir-
cuits, transistors and amplifiers are saturating components. Saturation and other
physical limitations are dominant in maneuvering systems like aircrafts. Every
physically conceivable actuator, sensor, or transducer has bounds on the magni-
tude as well as on the rate of change of its output. Thus, the saturation of a device
presents a hard constraint.

The first period of intense research that was focused on constraints on in-
puts was in the middle of last century, mainly via optimal control theory and
anti-windup compensation. The success of this period of research was somewhat
limited and control under constraints remained for a long time as a challenge to
control engineers. A second and intense period of research on constraints on in-
puts, primarily on control input magnitude and rate saturation, got started in the
early 1990s. For the next decade or so, control of linear systems subject to actuator
saturation both in magnitude and rate of change was the center of focus. Achiev-
ing internal (Lyapunov) stability as well as simultaneous internal and external
(Lp or `p) stability of a closed-loop linear system subject to such constraints has
been the impetus for much of the research performed. Internal as well as external
stabilization was pursued in both global and semi-global setting. This phase of re-
search has provided a rich variety of techniques for analysis and design of control
systems subject to constraints. Tremendous strides have been and are being made
to advance our understanding of such constraints. Both research monographs and
special issues of control journals document the results available in this early phase
of work.

Control of linear systems subject to constraints took another and important
turn a decade or so ago when constraints not only on actuator and sensor satu-
ration but also on state variables were imposed. This general type of constraints
is modeled by introducing what are termed as constrained outputs which are
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2 1 Introduction

linear combinations of inputs and state variables of the controlled system. Internal
stabilization of linear systems was sought with the constraint that the constrained
outputs be confined to subsets of their respective spaces. To be specific, consider
a linear system ˙ commonly described by

˙ W �x D Ax C Bu (1.1)

where x 2 Rn is the state and u 2 Rm is the control input and � x denotes dx
dt

for
continuous time and x.k C1/ for discrete time. Let us define next the constrained
output

z D Czx C Dzu; z 2 Rp (1.2)

with

z 2 S and
dz

dt
2 T or .z.k C 1/ � z.k// 2 T (1.3)

for all t > 0 or k > 0, where S and T are a priori given subsets of Rp. Thus, the
constrained output z captures constraints on both magnitude and rate of change
on a part of input u as well as on a part of state x. We observe next that, based on
the constrained output z, a taxonomy of constraints was also developed catego-
rizing and delineating the constraints into different groups. Such a categorization
of constraints paved distinct omnidirectional paths showing what can be achieved
and what cannot be achieved.

More recently, the saga of research on constraints got elevated to another orbit
when it embraced so-called sandwiched nonlinearities. Let us emphasize that
most if not all systems encountered in practice indeed consist of an interconnection
of components, or otherwise called subsystems, and some of these subsystems are
well characterized as linear, whereas others are more distinctly nonlinear. Clearly,
this results in a system configuration which is an interconnection of separable lin-
ear and nonlinear parts. In other words, a common paradigm of nonlinear systems
is that they are indeed linear systems in which nonlinear elements are sandwiched
or embedded. This provokes or motivates a thorough study of different types of
nonlinear elements or constraints. As pointed out earlier, one of the ubiquitous
static nonlinearities is saturation of a device. This implies that most often one
encounters as a system model a collection of linear systems in which saturation
nonlinearities are embedded or sandwiched. Thus, control of such systems for
internal stabilization or for other performance requirements emerged as another
immense focus of research.

In very recent years, based on a clear but very agonizing understanding of the
complexity of achieving external stabilization in the presence of sustained distur-
bances, the focus of research activity has been directed toward identifying a class
of sustained disturbances for which external stabilization of linear systems sub-
ject to constraints on control can be assured, while simultaneously assuring global
internal stabilization of such systems in the absence of such disturbances.

The goal of this book is to lay brick by brick a foundation for a systematic
analysis and design of linear systems subject to a variety of constraints while
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focussing mainly on internal stabilization as well as simultaneous internal and
external stabilization. To elaborate, this book is an ardent story of mainly four
topics:

� Internal stabilization of linear systems subject to constraints on control
input magnitude and rate saturation set in both global and semi-global
framework.

� Internal stabilization of linear systems subject to constraints on what we
termed earlier as constrained output consisting of input and state variables
of the system.

� Internal stabilization of linear systems sandwiched with static saturation
nonlinearities set in both global and semi-global framework.

� Simultaneous internal and external stabilization of linear systems subject
to constraints on control input saturation once again set in both global and
semi-global framework.

Most of the results presented are of recent origin and are due to the authors or their
coworkers and students. In this spirit, the book incorporates several published as
well as yet unpublished results of the authors and their colleagues. As such, as
can be expected, the exposition given is somewhat biased in the direction of the
research work of the authors carried over a period of two decades or more.

It is appropriate now to preview briefly the contents of the book. Chapter 2 on
preliminaries recalls several notations and notions of internal (Lyapunov) stability
and external (Lp or `p) stability, while Chap. 3 presents a special coordinate basis
(SCB) of linear systems and explores its properties. We emphasize that the SCB
of the given system exhibits clearly its finite and infinite zero structure and thus
plays a crucial role throughout the book in both analysis and design. Chapters 4–6
are devoted to internal stabilization of linear systems subject to control saturation,
both magnitude as well as rate of change of it. Internal stabilization is sought here
in both global and semi-global framework. Several control design methodologies
such as low gain, low-and-high gain, scheduled low gain, scheduled low-and-
high gain are developed by both direct as well as Riccati equation-based methods.
Chapters 7–9 deal also with internal stabilization; however instead of actuator
saturation, they consider input and state constraints. The constraints here are for-
mulated in terms of the constrained output z 2 Rp by imposing its magnitude
and rate of change be confined respectively to certain a priori prescribed sub-
sets S and T of Rp (see (1.2) and (1.3)). Chapter 10 continues further the theme
of internal stabilization. Here we face a multiple of saturation nonlinearities each
sandwiched between two linear systems, and hence, the scope of controller design
is an intricate extension of design methodologies developed in Chaps. 4–6.

The goal of the rest of the chapters (except Chap. 17) is achieving simultaneous
internal and external stabilization of linear systems subject to control saturation.
This is done both in global and semi-global framework. Let us be explicit about
this. Chapter 11 formulates precisely several internal and external stabilization
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problems. It is fitting to observe at this time that the external disturbance can
enter a given system either additive to the control input or nonadditive to it. For
the case of input additive external disturbance, Chap. 12 more or less resolves
and develops appropriate control design methods to solve all the internal and ex-
ternal stabilization problems formulated in Chap. 11. However, for the case of
non-input additive external disturbance, not all problems formulated in Chap. 11
are solvable for general linear systems subject to actuator saturation. Chapter 13
tackles and resolves some such problems by developing the needed controllers.
Chapter 14 explores the intricacies involved in the case of non-input additive
external disturbances by considering a canonical system, namely, a double inte-
grator. Among many results developed here, one key result is that while external
stabilization without finite gain is achievable for all Lp non-input additive distur-
bance signals with p 2 Œ1; 1/ (i.e., for all disturbances whose “energy” vanishes
asymptotically), it is not achievable for sustained disturbances (L1 disturbances).
It becomes imperative then to identify a class of sustained disturbances for which
the states of controlled system are bounded. Chapter 14 for the canonical double
integrator does identify a class of integral bounded non-input additive sustained
disturbances for which L1 stabilization can be attained. This theme of identify-
ing a class of sustained disturbances for which L1 stabilization can be attained is
pursued for general linear systems subject to actuator saturation in Chap. 15 for
continuous-time systems and in Chap. 16 for discrete-time systems.

Finally, as a prelude to future research, in Chap. 17, a stochastic framework is
initiated laying out a road map for simultaneous internal and external stabilization
of linear systems subject to constraints.



2
Preliminaries

In this chapter, we bring together the notations and acronyms used in this book as
well as various definitions and facts related to matrices, linear spaces, linear op-
erators, norms of deterministic as well as stochastic signals, norms of linear time-
or shift-invariant systems, saturation functions, internal (Lyapunov) stability, and
external stability.

2.1 A list of symbols

Throughout this book, we shall adopt the following conventions and notations:

R Set of real numbers

RC Set of nonnegative real numbers

ZC Set of nonnegative integers

C Entire complex plane

C� Open left-half complex plane

C0 Imaginary axis

CC Open right-half complex plane

C�0 Closed left-half complex plane

CC0 Closed right-half complex plane

C� Set of complex numbers inside the unit circle

C��� Unit circle

C˚ Set of complex numbers outside the unit circle

C˝ Set of complex numbers inside and on the unit circle

Cˇ Set of complex numbers outside and on the unit circle

B.r/ The set f x 2 Rn j kxk < r g
B.x0; r/ The set f x 2 Rn j kx � x0k < r g
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6 2 Preliminaries

I An identity matrix

Ik Identity matrix of dimension k�k
A0 Transpose of A

A� Complex conjugate transpose of A

�.A/ Set of eigenvalues of A

�max.A/ Maximum singular value of A

�min.A/ Minimum singular value of A

�.A/ Spectral radius of A

traceA Trace of A

kerA The null space of A

imA The range space of A

hA j imBi The controllability subspace of the pair .A;B/

hkerC jAi The unobservable subspace of the pair .A; C /

V? Orthogonal complement of a subspace V in Rn

E Œ�� The expectation of a stochastic vector

RŒs� Ring of polynomials with real coefficients

Rn�mŒs� Set of all n �m matrices with coefficients in RŒs�

R.s/ Field of rational functions with real coefficients

Rn�m.s/ Set of all n �m matrices with coefficients in R.s/

For any set C � Rn, int C denotes the interior of set C , @C the boundary of set
C , and C the closure of set C . For a dynamical system

�x D f .x; u/;

the � denotes the time-derivative

�x D d
dt
x

for continuous-time systems while it denotes the shift operator

.�x/.k/ D x.k C 1/

for discrete-time systems.

2.2 Matrices, linear spaces, and linear operators

In this section, we recall certain fundamental facts and properties of matrices,
linear spaces, and linear operators that are relevant to this book. We have done so
for the ease of readers and to establish the related notations used throughout the
book.
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We say a matrix A is injective or surjective if A is of full column rank or full
row rank, respectively. By rankK , we denote the rank of a matrix over the field K .
We shall write rank only for the case when K D R or K D C. Moreover, we use
the term normal rank or normrank for rankK whenever K D R.s/. We note that
if A 2 Cm�n, we have that imA D ker.A�/?.

We recall next the classical concept of the Jordan form of a general matrix A
and the concept of the multiplicity structure of an eigenvalue of a matrixA. Given
any matrixA of dimension n�n, we can always find a non-singular transformation
matrix X (see [40]) such that

X�1AX D J D

�
J1 0 � � � 0

0 J2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Jk

�
; (2.1)

where Ji , i D 1; : : : ; k are some ni � ni Jordan blocks,

Ji D

�
�i 1 0 � � � 0

0
: : :

: : :
: : :

:::
:::

: : :
: : :

: : : 0
:::

: : :
: : : 1

0 � � � � � � 0 �i

�
: (2.2)

We note that
kX

iD1

ni D n:

Then, the geometric multiplicity �� of an eigenvalue � 2 �.A/ is the number of
Jordan blocks associated with � in (2.1) as well as the number of linearly indepen-
dent eigenvectors associated with �. On the other hand, the algebraic multiplicity
�� is the total number of repetitions of � in �.A/; equivalently, the algebraic mul-
tiplicity is equal to the sum of the number of rows of all Jordan blocks associated
with �.

We introduce next what is known as the multiplicity structure of an eigenvalue.
For any given � 2 �.A/, let there be �� Jordan blocks of A associated with �. Let

n�;1 > n�;2 > � � � ; n�;��

be the dimensions of the corresponding Jordan blocks ordered in size. Then, � is
an eigenvalue of A with multiplicity structure S�

�
,

S�
� D fn�;1; n�;2; : : : ; n�;��

g: (2.3)
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If n�;1 D n�;2 D � � � D n�;��
D 1, then � is called a semi-simple eigenvalue

ofA. Moreover, we call an eigenvalue a simple eigenvalue if �� D 1 and n�;1 D 1

or equivalently if it has an algebraic multiplicity equal to 1.
The invariant factor �i .s/ of a matrix A is the monic polynomial of lowest

degree such that for each eigenvalue � with �� > i , �i .s/ has n�;i zeros in �.
We note that algebraic multiplicity �� satisfies

�� D n�;1 C n�;2 C � � � C n�;��
:

We recall next the following classic concepts of generalized eigenvectors and
the eigenvector chain associated with an eigenvalue of a matrix. A vector x is said
to be a generalized eigenvector of grade k associated with an eigenvalue � of a
matrix A if and only if

.A� �I/kx D 0 and .A� �I/k�1x ¤ 0:

A generalized eigenvector of grade one (i.e., k D 1) is a standard eigenvector as-
sociated with an eigenvalue of a matrix. Let vector x be a generalized eigenvector
of grade k associated with an eigenvalue � of a matrix A. Let

xk D x

xk�1 D .A � �I/V D .A � �I/xk

xk�2 D .A � �I/2V D .A � �I/xk�1

:::
:::

x1 D .A � �I/k�1V D .A � �I/x2:

Such a set of vectors fx1; x2; � � � ; xkg is called a chain of generalized eigen-
vectors of length k associated with an eigenvalue �.

For an eigenvalue � with the multiplicity structure S�
�

as given in (2.3), there
are �� chains of generalized eigenvectors with lengths n�;1, n�;2, � � � ; n�;��

.
The total number of generalized eigenvectors in these chains equals the alge-
braic multiplicity ��. Moreover, these �� generalized eigenvectors are linearly
independent.

If M is a subspace of Cn, then we define the orthogonal projection PM of
Cn onto M by PMu D u if u 2 M and PMu D 0 if u 2 M?. We note that
I � PM D PM ? .

A matrix U 2 Cn�n is said to be a unitary matrix if U � D U�1. For a matrix
A 2 Cm�n, the generalized inverse of A (or Moore–Penrose inverse of A) is
defined to be a unique matrix A� in Cn�m such that:

(a) AA� is an orthogonal projection onto imA.

(b) A�A is an orthogonal projection onto .kerA/? D imA�.

Another equivalent definition for a generalized inverse of A 2 Cm�n is a unique
matrix A� in Cn�m such that:
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(a) AA�A D A.

(b) A�AA� D A�.

(c) AA� is a symmetric matrix.

(d) A�A is a symmetric matrix.

Some basic properties of the generalized inverse of A 2 Cm�n are listed as
follows:

� .A�/� D A.

� .A�/� D .A�/�.

� If � 2 C, .�A/� D ��A�, where �� D 1
�

if � ¤ 0 and �� D 0 if � D 0.

� A� D A�AA� D A�AA�.

� .A�A/� D A�.A�/�.

� A� D .A�A/�A� D A�.AA�/�.

� .UAV /� D V �A�U �, where U and V are unitary matrices.

� imA D imAA� D imAA�.

� imA� D imA� D imA�A D imA�A.

� im.I � AA�/ D kerAA� D kerA� D kerA� D .imA/?.

� im.I � A�A/ D kerA�A D kerA D .imA�/?.

� If B 2 Cn�p , then .AB/� D .Pim A�B/�.APim B/
�.

� If A�ABB� D BB�A�A, then .AB/� D B�A�.

� If A D BC , where B 2 Cm�r and C 2 Cr�n, while r D rankA, then
A� D C �.CC �/�1.B�B/�1B�.

The following necessary and sufficient conditions for a partitioned matrix to
be positive semi-definite and positive definite are useful. Consider an arbitrarily
partitioned Hermitian matrix Q:

Q D
 
Q11 Q12

Q�
12 Q22

!
:

Then Q is positive semi-definite if and only if
8
<̂

:̂

Q22 > 0

Q12 D Q12Q
�
22Q22

Q11 > Q12Q
�
22Q

�
12;
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or, equivalently,Q is positive semi-definite if and only if
8
<̂

:̂

Q11 > 0

Q12 D Q11Q
�
11Q12

Q22 > Q�
12Q

�
11Q12:

Similarly,Q is positive definite if and only if
(
Q22 > 0

Q11 > Q12Q
�1
22Q

�
12

or, equivalently,
(
Q11 > 0

Q22 > Q
�
12Q

�1
11Q12:

Let us next discuss the addition of subspaces and the associated notations.
Suppose X, Y, and Z are some subspaces of Rn or Cn. Then,

X C Y D fx C y j x 2 X; y 2 Yg:
If Z D X C Y and X \ Y D f0g, then Z is called the direct sum of X and Y,
and, in this case, Z is written as X ˚ Y. Consider a subspace X in Rn. Then, the
orthogonal complement X? of the subspace X is defined as

X? D fu 2 Rn j hu ; vi D 0 for every v 2 Xg:
Let X and Y be two nontrivial subspaces of Rn. If the inner product of x and y
is zero for all x 2 X and y 2 Y, then the two subspaces X and Y are said to be
orthogonal, and this is denoted by X ? Y.

Next, for a matrix M 2 Rm�n, the linear transformationMX is defined as

MX WD fMx j x 2 Xg:
Also, for a matrix N 2 Rn�m,

N�1X WD fz 2 Rm j Nz 2 Xg:
The following relations will be useful in algebraic manipulations regarding

subspaces:
X \ .Y C Z/ � .X \ Y/C .X \ Z/

X C .Y \ Z/ � .X C Y/ \ .X C Z/

.X?/? D X

.X C Y/? D X? \ Y?

.X \ Y/? D X? C Y?

M.X \ Y/ � MX \MY

M.X C Y/ D MX CMY

N�1.X \ Y/ D N�1X \N�1Y

N�1.X C Y/ � N�1X CN�1Y:

(2.4)
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Also, let V be a subspace of dimensionm. Then we have

MX � V ” M 0V? � X? (2.5)

.M�1V/? D M 0V?: (2.6)

Let A D Rn�n. Then T , a subspace of Rn, is an A-invariant subspace if

AT � T :

The following properties of an A-invariant subspace are useful:

(a) A subspace T with T a matrix such that T D im T is A-invariant if and
only if a matrix X exists such that

AT D TX:

(b) Let T be anA-invariant subspace. Then a similarity transformationL exists
such that

zA WD L�1AL D
 zA11

zA12

0 zA22

!
and T D imL�1

 
I

0

!

with zA11 2 Rh�h, where h WD dim T .

The proofs of the above relations are simple and can be found in standard books
on vector spaces.

Consider a matrix A 2 Rn�n and an A-invariant subspace T � Rn�n. Then the
restriction of A to T is the linear map AT W T ! T defined by

AT x D Ax for all x 2 T :

The restriction of A to T is also often denoted by A j T .
Next, we would like to recall some elementary concepts regarding modal sub-

spaces. We first develop some notations used in continuous-time systems.
Consider a matrix A 2 Rn�n. Let ˛.s/ denote the characteristic polynomial of
A and factor it as ˛.s/ D ˛�.s/ � ˛C.s/, where ˛�.s/ has all its roots in the open
left-half complex plane C� and ˛C.s/ has all its roots in the closed right-half
complex plane CC0. Then the stable and unstable modal subspaces of Rn related
to A are

X�.A/ D ker ˛�.A/;
XC.A/ D ker ˛C.A/:

It is easy to show that X�.A/ is spanned by the real and the imaginary part of the
generalized eigenvectors of A corresponding to the eigenvalues in C�. Similarly,
XC.A/ is spanned by the real and imaginary parts of the generalized eigenvectors
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of A corresponding to the eigenvalues in CC0. These two modal subspaces are
complementary; that is, they are independent and their sum is Rn; thus,

Rn D X�.A/˚ XC.A/:

Standard numerical linear algebra can be used to compute the bases for modal
subspaces. For example, one can transform A via orthogonal transformation T to
a real Schur form

T 0AT D
 
A� ?

0 AC

!
; (2.7)

where the eigenvalues ofA� andAC are, respectively, located in C� and CC0 and
? denotes some matrix that is not necessarily zero. If we partition T in conformity
with the partitioning on the right-hand side of (2.7),

T D
�
T1 T2

�
;

then it is obvious that the columns of T1 form a basis for X�.A/. That is,

X�.A/ D im T1:

Analogously, we develop some notations used in discrete-time systems. Con-
sider a matrix A 2 Rn�n. Let ˛.z/ denote the characteristic polynomial of A and
factor it as ˛.z/ D ˛�.z/ � ˛ˇ.z/, where ˛�.z/ has all its roots within the unit
circle C� in the complex plane and ˛ˇ.z/ has all its roots on or outside the unit
circle Cˇ. Then the stable and unstable modal subspaces of Rn related to A are

X�.A/ D ker ˛�.A/;
Xˇ.A/ D ker ˛ˇ.A/:

It is easy to show that X�.A/ is spanned by the generalized real eigenvectors of
A corresponding to the eigenvalues in C�. Similarly, Xˇ.A/ is spanned by the
generalized real eigenvectors of A corresponding to the eigenvalues in Cˇ. These
two modal subspaces are complementary; that is, they are independent and their
sum is Rn; thus,

Rn D X�.A/˚ Xˇ.A/:

Again, as in the continuous-time case, standard numerical linear algebra can be
used to compute the bases for modal subspaces.

2.3 Norms of deterministic signals

Many measures are used to describe the size of a signal. The measures of size
are called norms. In this section, we recall some of the common norms for per-
sistent or transient continuous-time (discrete-time) vector signals. We consider
continuous-time vector signals y W RC ! Rn and discrete-time vector signals
y W ZC ! Rn.
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Definition 2.1 The Lp space, with p 2 Œ1;1/, consists of all vector-valued
continuous-time signals from RC to Rn for which

1Z

0

nX

iD1

jyi .t/jpdt

is well defined1 and finite. The spaceL1 consists of all vector-valued continuous-
time signals for which

ess sup
t2RC

max
1�i�n

jyi .t/j

is finite.
The `p space, with p 2 Œ1;1/, consists of all vector-valued discrete-time

signals from ZC to Rn for which

1X

kD0

nX

iD1

jyi .k/jp

is finite, and the space `1 consists of all vector-valued discrete-time signals for
which

sup
k2ZC

max
1�i�n

jyi .k/j

is finite.

Remark 2.2 We will sometimes use Lp Œt0;1/ to refer to vector-valued signals
from Œt0;1/ to Rn for which

1Z

t0

nX

iD1

jyi .t/jpdt

is well defined when p 2 Œ1;1/ or

ess sup
t2Œt0;1/

max
1�i�n

jyi .t/j

is finite in case p D 1.

1This integral needs to be well defined in the sense of Lebesgue. A reader who has no prior
acquaintance with the Lebesgue theory of measure and integration can simply think of all functions
encountered here as piecewise-continuous functions and of all integrals as Riemann integrals. This
would lead to no conceptual difficulties and no loss of insight except that occasionally some results
from Lebesgue theory would have to be accepted on faith.
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Similarly, we will sometimes use `pŒk0;1/ to refer to vector-valued signals
from f k 2 ZC j k > k0 g to Rn for which

1X

kDk0

nX

iD1

jyi .k/jp

is finite when p 2 Œ1;1/ or

sup
k2ZC;k>k0

max
1�i�n

jyi .k/j

is finite when p D 1.
However, we would like to note that Lp and `p will always refer to functions

from RC or ZC to Rn, respectively.

The spaces defined above are actually normed linear vector spaces if we define
the appropriate norms.

Definition 2.3 For a vector-valued continuous-time signal y 2 Lp with p 2
Œ1;1/, the Lp norm is defined as

kykp WD
0

@
1Z

0

nX

iD1

jyi .t/jpdt

1

A

1
p

;

For a vector-valued continuous-time signal y 2 L1, the L1 norm is defined as

kyk1 WD ess sup
t2RC

max
1�i�n

jyi .t/j:

Analogously, for a vector-valued discrete-time signal y 2 `p with p 2 Œ1;1/, we
define the `p norm as

kykp WD
 1X

kD0

nX

iD1

jyi .k/jp
! 1

p

:

Finally, for a vector-valued discrete-time signal y 2 `1, the `1 norm is defined
as

kyk1 WD sup
k2ZC

max
1�i�n

jyi .k/j:

The following lemmas are useful in concluding attractivity in dealing with Lp

stability to be defined shortly in a later section. These lemmas imply that if both
a continuous-time signal and its derivative are in Lp for some p 2 Œ1;1/, then it
vanishes as time tends to infinity, and moreover, it is in L1.
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Lemma 2.4 If � W Œ0;1/ ! R is absolutely continuous, �.t/ 2 Lp1
for

some p1 2 Œ1;1/, and its derivative T�.t/ 2 Lp2
for some p2 2 Œ1;1/, then

limt!1 �.t/ D 0.

Proof : Let ˛ D p1

�
1 � 1

p2

�
> 0. Then, ˛

p1
C 1

p2
D 1. By Hölder’s inequality,

1

˛ C 1

ˇ̌
�˛C1.	/ � �˛C1.s/

ˇ̌ D
ˇ̌
ˇ̌
ˇ̌

�Z

s

�˛.t/ T�.t/dt
ˇ̌
ˇ̌
ˇ̌

6

8
<

:

�Z

s

j�˛.t/j p1
˛ dt

9
=

;

˛
p1

8
<

:

�Z

s

j T�.t/jp2dt

9
=

;

1
p2

D
8
<

:

�Z

s

j�.t/jp1dt

9
=

;

˛
p1

8
<

:

�Z

s

j T�.t/jp2dt

9
=

;

1
p2

: (2.8)

Since � 2 Lp1
and T�.t/ 2 Lp2

, it is clear that f�˛C1.tk/g1
kD1

is a Cauchy
sequence for any sequence tk ! 1. Hence, we can assume that �˛C1.tk/ ! c

as k ! 1. That is, for all " > 0, there exists a K > 0 such that

ˇ̌
�˛C1.tk/� c

ˇ̌
<
"

2
; 8 k > K: (2.9)

Also, by choosing tK sufficiently large, we see from (2.8) that

ˇ̌
�˛C1.t/� �˛C1.tK/

ˇ̌
<
"

2
; 8 t > tK : (2.10)

Combining (2.9) and (2.10), we get

ˇ̌
�˛C1.t/ � c

ˇ̌
6
ˇ̌
�˛C1.t/ � �˛C1.tK/

ˇ̌C ˇ̌
�˛C1.tK/� c

ˇ̌
< "; 8 t > tK :

Hence, limt!1 �˛C1.t/ D c or limt!1 �.t/ D .c/
1

˛C1 . Since � 2 Lp1
, it is

obvious that c D 0.

Lemma 2.5 For �.t/ W Œ0;1/ ! R, if �.t/ 2 Lp1
for some p1 2 Œ1;1/ and its

derivative T�.t/ 2 Lp2
for some p2 2 Œ1;1/, then � 2 L1.
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Proof : Let ˛ D p1.1 � 1
p2
/. Then ˛

p1
C 1

p2
D 1. We have

1
˛C1

j�˛C1.t/ � �˛C1.0/j 6

ˇ̌
ˇ̌
ˇ̌

tZ

0

�˛.s/ T�.s/ds
ˇ̌
ˇ̌
ˇ̌ (2.11)

6

8
<

:

tZ

0

j�˛.s/j
p1

˛

9
=

;

˛
p1

8
<

:

tZ

0

j T�.s/jp2

9
=

;

1
p1

: (2.12)

This implies that

j�˛C1.t/j 6 j�˛C1.0/j C .˛ C 1/k�k˛
p1

k T�kp2
:

This completes the proof.

The square of the L2 or `2 norm of a signal y is commonly termed as the total
energy in the signal y. In many areas of engineering, the energy or square of the
L2 (`2) norm is used as a measure of the size of a transient signal y that decays
to zero as time progresses toward infinity. By Parseval’s theorem, kyk2 can also
be computed in the frequency domain as follows: for the continuous-time case,

kyk2 D
� 1
2


1Z

�1
Y.j!/�Y.j!/d!

�1=2

;

where Y is the Fourier transform of y; similarly, for the discrete-time case,

kyk2 D
� 1
2


�Z

��

Y.ej!/�Y.ej!/d!
�1=2

;

where Y is the z-transform of y.

Definition 2.6 A continuous-time signal y for which the following limit is well
defined and finite:

lim
T !1

1

T

TZ

0

y.t/0y.t/dt

is called an RMS (root mean square) or power signal. The RMS value of such a
continuous-time signal y is defined as

kykRMS D
�

lim
T !1

1

T

TZ

0

y.t/0y.t/dt
�1=2

: (2.13)
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Similarly, a discrete-time signal y for which the following limit is well defined
and finite:

lim
T !1

1

T

TX

kD0

y.k/0y.k/

is called an RMS or power signal. The RMS value of such a discrete-time signal
y is defined as

kykRMS D
�

lim
T !1

1

T

TX

kD0

y.k/0y.k/
�1=2

: (2.14)

Remark 2.7 Note that sometimes, the RMS is defined by

kykRMS D
�

lim sup
T !1

1

T

TZ

0

y.t/0y.t/dt
�1=2

and

lim sup
T !1

1

T

TX

kD0

y.k/0y.k/;

respectively, for continuous- and discrete-time systems. This has the advantage
that the class of signals for which the RMS is well defined and finite becomes a
linear vectorspace. This additional structure can sometimes be convenient. Using
limsup instead of the standard limit makes some of the derivations a bit more
involved, but generally speaking, all properties carry over to this more general
case.

The square of the RMS norm2 of y is commonly termed as the average power
of the signal y. Often, in engineering, the RMS norm or average power is used
for signals y which are persistent. We note that the RMS norm is a steady-state
measure of a signal and is not affected by any transients.

Remark 2.8 It is obvious that an L2 (`2) signal has a zero RMS value. Also, an
L1 signal does not necessarily have a finite or well-defined RMS value, whereas,
in contrast, an `1 signal always has a zero RMS value. Finally, for an L1 (`1)
signal, the RMS value need not be well defined. However, if we use the generalized
definition from Remark 2.7, then an L1 signal which is locally square Lebesgue
integrable has a well-defined and finite RMS value which is less than itsL1 norm.

2We would like to remark that the RMS norm is a pseudo-norm because the RMS norm of any
energy or transient signal is zero.
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There exist some relationships among Lp spaces for different values of p.
The Lp space can be visualized by a Venn diagram as clarified in the following
remark.

Remark 2.9 Consider a square in the Euclidean plane with vertices .0; 1/, .1; 0/,
.0;�1/, .�1; 0/; that is, the vertices of square satisfy jxj C jyj D 1. Then, we can
interpret the L1 space in a Venn diagram as the Œ�1; 1� interval on the vertical
axis and the L1 space as the Œ�1; 1� interval on the horizontal axis. Also, any Lp

space can be interpreted as the rectangle whose vertices are given by .˙1=p; 0/
and .0;˙1 	 1=p/; that is, .1=p; 0/; .�1=p; 0/; .0; 1 � 1=p/; .0;�1 C 1=p/.
Figure 2.1 illustrates this.

L1

L2

L3

L∞

L4

Figure 2.1: Venn diagram of Lp spaces

Note that Lp spaces for different values of p do not contain one another. Only
the intersection of L1 and L1 is contained in all Lp spaces. That is, the intersec-
tion of all Lp spaces is a single point in the Venn diagram which is equal to the
intersection of L1 and L1 spaces. In other words, we have

L1 \ L1 D
1\

pD1

Lp :
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Regarding the relationship among all `p spaces, we have for 1 < p < q < 1
that

`1 � `p � `q � `1:

To see this, note that y 2 `p implies that ky.k/k 6 kyk`p
for any k 
 0. Hence,

for p < q < 1,

1X

kD0

ky.k/kq �
1X

kD0

ky.k/kpkykq�p

`p
D kykq�p

`p
kykp

`p
D kykq

`p
< 1:

Obviously, unlike in the case ofLp space, each `p is a strict subset of `q whenever
p < q.

2.4 Norms of stochastic signals

For a vector signal that is modeled as a wide-sense stationary or an asymptotically
wide-sense stationary vector stochastic process (random sequence), the common
measure of size is the RMS norm. We recall below the needed definition.

Definition 2.10 For a wide-sense stationary vector stochastic process y with a
bounded variance, we define the stochastic RMS norm as

kykRMS D
�
E Œy.t/0y.t/�

�1=2

: (2.15)

Analogously, for a wide-sense stationary vector random sequence y with a boun-
ded variance, we define the stochastic RMS norm as

kykRMS D
�
E Œy.k/0y.k/�

�1=2

: (2.16)

Here E Œ:� denotes the expectation. For stochastic processes (random sequences)
that are only asymptotically wide-sense stationary as time goes to infinity [i.e.,
for asymptotically wide-sense stationary processes (random sequences)], (2.15)
and (2.16) need to be rewritten as

kykRMS D
�

lim
t!1 E Œy.t/0y.t/�

�1=2

(2.17)

and

kykRMS D
�

lim
k!1

E Œy.k/0y.k/�
�1=2

; (2.18)

respectively.
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Note that in (2.15) and (2.16), the result is independent of t or k because the
stochastic process (random sequence) is wide-sense stationary.

We note that if y is an ergodic stochastic process (random sequence), then
the deterministic RMS norm of any realization of the stochastic process (random
sequence) y is equal to the stochastic RMS norm of y with probability one.

Also, we note that the RMS value of a wide-sense stationary process y can be
expressed in terms of its autocorrelation matrix Ry.	/,

Ry.	/ WD E Œy.t/y0.t C 	/�;

or its power spectral density (PSD) Sy.!/,

Sy.!/ WD
1Z

�1
Ry.	/e

�j!� d	 :

That is,

kykRMS D
�

traceŒRy.0/�
�1=2 D

� 1
2


trace
h 1Z

�1
Sy.!/d!

i �1=2

:

Similarly, for a wide-sense stationary random sequence y, let the autocorrelation
matrix be

Ry.n/ WD E Œy.k/y0.k C n/�

and the power spectral density (PSD) be

Sy.!/ WD
1X

nD�1
Ry.n/e

�j!n; �
 � ! � 
:

Then,

kykRMS D
�

traceŒRy.0/�
�1=2 D

� 1
2


trace
h �Z

��

Sy.!/d!
i �1=2

:

2.5 Norms of linear time- or shift-invariant systems

We recalled above the definitions of norms of signals. A notion related to the size
of a signal is the gain of a transfer function of a linear time- or shift-invariant
system. As in the case of a signal, once again, various norms are used to measure
the size of a transfer function. In this section, we recall the definitions of certain
such norms. Also, we recall methods of computing them.
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Two well-known classic norms of linear time- or shift-invariant systems are the
H2 norm (which is the RMS value of the response of a system to white noise
input of unit PSD) and the H1 norm (which is the RMS gain of the system). The
definitions of these norms are recalled below.

Definition 2.11 Consider a continuous-time system˙ having a q�` stable trans-
fer function G. Then the H2 norm of the continuous-time system ˙ or, equiva-
lently, of the transfer matrix G is defined as

kGk2 D
� 1
2


trace

2

4
1Z

�1
G.j!/G�.j!/d!

3

5
�1=2

: (2.19)

We assign 1 as the H2 norm of an unstable continuous-time system.

We note that the H2 norm is induced by an inner product; that is, we have

kGk2 D hG;Gi1=2

with the inner product defined by

hG1; G2i D 1

2

trace

2

4
1Z

�1
G1.j!/G

�
2 .j!/d!

3

5 :

By Parseval’s theorem, the H2 norm of the transfer matrix G can equivalently
be defined as

kGk2 D
�

trace

2

4
1Z

0

g.t/g0.t/dt

3

5
�1=2

; (2.20)

where g.t/ is the inverse Laplace transform of the transfer matrix or the unit im-
pulse (Dirac distribution) response of the associated linear system. Thus, kGk2 D
kgk2. It is also known that kGk2 can be expressed in terms of the singular values
of the matrix G at each frequency,

kGk2 D
� 1
2


1Z

�1

minfq ;`gX

iD1

�2
i .G.j!//d!

�1=2

: (2.21)

where �i .G.j!// is the i th singular value of G.j!/.
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Remark 2.12 (Stochastic interpretation of the H2 norm of a continuous-time
system) Let us consider a continuous-time system with a stable transfer function
G. Let the input w to the system be a wide-sense stationary stochastic process.
Let z be the corresponding output. It is well known that

Sz.!/ D G.j!/Sw.!/G
�.�j!/; (2.22)

where Sw and Sz are the PSDs of w.t/ and z.t/, respectively. Then, theH2 norm
ofG.s/ can be interpreted as the RMS value of the output z when the given system
is driven by zero mean white noise with unit PSD. Note that formally, white noise
with unit PSD does not exist, but the above can be formalized using Brownian
motion and stochastic differential equations.

Remark 2.13 Note that theH2 norm of a stable continuous-time system or trans-
fer function G.s/ is finite if and only if it is strictly proper.

Definition 2.14 Consider a discrete-time system˙ having a q�` stable transfer
function G. Then the H2 norm of the discrete-time system ˙ or, equivalently, of
the transfer matrix G is defined as

kGk2 D
� 1
2


trace

2

4
�Z

��

G.ej!/G�.ej!/d!

3

5
�1=2

: (2.23)

We assign 1 to the H2 norm of an unstable discrete-time system.

Again, we note that theH2 norm is induced by an inner product; that is, we have

kGk2 D hG;Gi1=2

with the inner product defined by

hG1; G2i D
� 1
2


trace

2

4
�Z

��

G1.e
j!/G�

2 .e
j!/d!

3

5
�1=2

:

Again, by Parseval’s theorem, kGk2 can equivalently be defined as

kGk2 D
�

trace

" 1X

kD0

g.k/g0.k/
#�1=2

(2.24)

where g is the inverse z-transform of the transfer matrix which is equal to the unit
impulse response of the associated linear system. Thus, kGk2 D kgk2.
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Remark 2.15 (Stochastic interpretation of the H2 norm of a discrete-time
system) Let us consider a discrete-time system with a stable transfer function
G.z/. Let the input w.k/ to the system be a wide-sense stationary random
sequence. Let z.k/ be the corresponding output. Then, it is well known that

Sz.!/ D G.ej!/Sw.!/G
�.e�j!/; �
 � ! � 
; (2.25)

where Sw and Sz are the PSDs of w and z, respectively. Then, once again, the
H2 norm of G can be interpreted as the RMS value of the output z when the
given system is driven by a zero mean white noise random sequence having unit
variance.

State-space method for computing the H2 norm: We present here briefly some
results on the computation of the H2 norm of a transfer function matrix when
its realization is given in a state-space form (for details, see [15]). Consider the
transfer function G of a continuous-time system with realization .A;B; C;D/
whereA is Hurwitz stable. LetW c

obs denote the observability grammian of the pair
.A; C / andW c

con the controllability grammian of .A;B/. Note that D needs to be
zero for a finite H2 norm. We note that W c

obs and W c
con are the unique solutions of

continuous-time Lyapunov equations:

A0W c
obs CW c

obsAC C 0C D 0;

AW c
con CW c

conA
0 C BB 0 D 0:

The H2 norm of G.s/ can now be computed by

kGk2 D �
traceB 0W c

obsB
�1=2

D �
traceCW c

conC
0�1=2

:

The computation of the H2 norm of a transfer function G of a discrete-time sys-
tem with realization .A;B; C;D/ where A is Schur stable, can be given along
the same lines. That is, let W d

obs and W d
con be the unique solutions of discrete-time

Lyapunov equations:

A0W d
obsA�W d

obs C C 0C D 0;

AW d
conA

0 �W d
con C BB 0 D 0:

The H2 norm of G can now be computed by

kG.z/k2 D
�

traceŒB 0W d
obsB CD0D�

�1=2

D
�

traceŒCW d
conC

0 CDD0�
�1=2

:



24 2 Preliminaries

Definition 2.16 Consider a continuous-time system having a q�` stable transfer
function G. Then the H1 norm of G is defined as

kGk1 WD sup
!

�maxŒG.j!/�: (2.26)

Similarly, consider a discrete-time system having a q � ` stable transfer function
G. Then the H1 norm of G is defined as

kGk1 WD sup
���!��

�maxŒG.e
j!/�: (2.27)

For a continuous-time system having a stable transfer function G, let w and
z be energy signals that are, respectively, the input and the corresponding output
of the given system. Similarly, for a discrete-time system having a stable transfer
function G, let w and z be energy signals that are, respectively, the input and
the corresponding output. Then it is easy to see that kGk1 has the following
interpretation for both continuous-time and discrete-time systems (where k � k2

denotes the L2 and `2 norm, respectively):

kGk1 D sup
w¤0

kzk2

kwk2

:

Also, when the input and the corresponding output (i.e., w and z) are power
signals, the H1 norm of G turns out to coincide with its RMS gain, namely,

kGk1 D kGkRMS gain D sup
w

kwkRMS¤0

kzkRMS

kwkRMS

:

We have the following remarks.

Remark 2.17 An important property of the H1 norm, for both continuous-time
and discrete-time systems, is that it is submultiplicative. That is, for transfer
matrices G1 and G2, we have

kG1G2k1 6 kG1k1kG2k1:

Remark 2.18 It is interesting to contrast the H2 and H1 norms. Consider a
transfer matrix H . Then the fact that kHk1 < ˛ for some ˛ > 0 implies that

kHukRMS 6 ˛ for any input u with kukRMS 6 1:

In contrast, the H2 norm-bound specification kHk2 6 ˛ implies that

kHukRMS 6 ˛when input u is a white noise with unit intensity.
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State-space method for computing the continuous-time H1 norm:

Regarding the H1 norm computation for continuous time, there is a simple
method to determine whether the inequality specification kGk1 < � is satisfied.
To state this, given � > 0, we define the matrix

M� D
 

AC BR�1D0C ��2BR�1B 0

�C 0.I CDR�1D0/C �.AC BR�1D0C/0;

!

where R WD �2I �D0D > 0. Then, we have

kGk1 < � ” M� has no imaginary eigenvalues and �max.D/ < �: (2.28)

The above discussion provides a simple bisection algorithm that enables us to
compute the H1 norm numerically to any degree of numerical accuracy. In the
following algorithm, the first three steps represent initialization, whereas the last
step represents the bisection principle:

(i) Set i D 0, and set �` D kDk.

(ii) Choose any �0 > �`.

(iii) Use (2.28) to test whether kGk1 < �i . If so, �u D �i and continue with
step (d). Otherwise, set �iC1 D 2�i and i D i C 1 and continue with
step (iii).

(iv) Set � D .�u C �`/=2. Use (2.28) to test whether kGk1 < � . If so, set
�u D � and otherwise set �` D � and then repeat step (iv).

We observe from step (d) that kGk1 is within the interval Œ�`; �u�. After each
iteration, the size of the interval divides itself into half. Hence, one can stop the
iterations when the desired level of accuracy is reached.

For more details concerning the computation of the H1 norm, we refer to
[14, 16].
State-space method for computing the discrete-time H1 norm:

Similar to the continuous time, for discrete time, there is a simple method to
determine whether the inequality specification kGk1 < � is satisfied. To state
this, given � > 0, we define the matrix pencil

M� .z/ D

�
zI � A �B 0

C 0C C 0D I � zA0

D0C D0D � �2I �zB 0

�
:
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Then, we have

kGk1 < � ” M�.z/ has no zeros on the unit circle and

�max.D C C.I � A/�1B/ < �:

The above theorem provides a simple bisection algorithm that enables us to
compute the H1 norm numerically to any degree of numerical accuracy, which
is completely similar to the continuous-time case.

The computation of theH1 norm of a transfer matrix of a discrete-time system
through a bisection algorithm then follows similarly to the continuous-time case.

2.6 A class of saturation functions

As we said in Chap. 1, one of the most prevalent constraints is the one that arises
from actuator saturation. We introduce below the class of saturation functions we
consider throughout this book.

Definition 2.19 The function �1 W Rm ! Rm is called the standard saturation
function if

�1.s/ D

ˇ
sat1.s1/

sat1.s2/
:::

sat1.sm/

�
;

where

sat1.s/ D sgn.s/ minfjsj; 1g:
For convenience, we also introduce a scaled version of the standard saturation
function:

sat�.s/ D � sat
� s
�

�

and

��.s/ D

ˇ
sat�.s1/

sat�.s2/
:::

sat�.sm/

�
:

For ease of notation, we will often use �.s/ as abbreviation for ��.s/.
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In reality, a saturation occurring in some device will never be equal to the above
standard saturation function. Therefore, we introduce a class of saturation func-
tions satisfying some minimum characteristics which are common for all satura-
tion functions.

Definition 2.20 A function z� W Rm ! Rm is called a saturation function if:

(i) z�.u/ is decentralized, that is,

z�.s/ D

ˇ z�1.s1/

z�2.s2/
:::

z�m.sm/

�
:

(ii) z�i is globally Lipschitz, that is, for some ı > 0,

jz�i .s1/� z�i .s2/j 6 ıjs1 � s2j:
(iii) sz�i .s/ > 0 whenever s ¤ 0 and z�i .0/ D 0.

(iv) The two limits

lim
s!0C

z�i .s/

s
; lim

s!0�

z�i .s/

s

both exist and are strictly positive.

(v) lim inf
jsj!1

jz�i .s/j > 0.

Remark 2.21 Note that the above definition for a saturation function does not
enforce that a saturation function is bounded. Actually, z�.s/ D s satisfies all the
properties above. Especially when establishing necessary conditions, it is some-
times useful to require the additional condition:

(vi) There exists a M > 0 such that jz�i .s/j < M for all s 2 R.

Remark 2.22 In some cases, we actually use the following condition:

(vii) There exist 
 > 0 and  > 0 such that

jz�.s/j > minf 
 jsj;  g
which is a consequence of Condition (iv), which guarantees that j�.s/j is larger
than 
 jsj for some positive 
 for small s Condition (v), which guarantees that
�.s/ is bounded away from zero for large s and Condition (iii), which guarantees
that �.s/ is never equal to zero for s ¤ 0.
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2.7 Internal stability

In this section, we review various notions and definitions all pertaining to internal
stability. Most of the definitions and results presented here are classical and can
be found in many textbooks such as [58, 142, 189]. The most complete set of
results can be found in [44]. We concentrate here only on continuous-time sys-
tems; however, all the following definitions can be easily modified for discrete-
time systems.

We consider throughout this section a nonlinear ordinary differential equation
of the form

Tx D f .t; x/; x.t0/ D x0; (2.29)

where x.t/ 2 Rn, f W Œ0;1/ � Rn 7! Rn and

B.r/ D fx 2 Rn j kxk < rg:
Unless stated otherwise, we assume that the function f is such that, for all initial
conditions in some open neighborhood of the equilibrium, the system (2.29) pos-
sesses a unique solution x.t I t0; x0/ for all t0 > 0 and t > t0.

The system (2.29) is referred to as a time-varying system. We also consider the
case when the function f in (2.29) is not explicitly dependent on time t . In this
case, the resulting system (2.29) is referred to as a time-invariant system which
can be written as

Tx D f .x/; x.t0/ D x0: (2.30)

We have the following definitions.

Definition 2.23 A state xe is said to be an equilibrium state of the system (2.29) if

f .t; xe/ � 0 for all t > 0:

Definition 2.24 The equilibrium state xe of (2.29) is said to be an isolated equi-
librium state if there exists a constant ˛ > 0 such that the system (2.29) does not
contain any equilibrium other than xe in the region

B.xe ; ˛/ WD fx j kx � xek < ˛g � Rn:

Definition 2.25 The equilibrium state xe of (2.29) is said to be stable if for any
t0 > 0 and " > 0 there exists a ı > 0 such that for all x0 2 Rn with kx0�xek < ı,
we have that kx.t I t0; x0/� xek < " for all t 
 t0.
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Definition 2.26 The equilibrium state xe of (2.29) is said to be unstable if it is
not stable.

Definition 2.27 The equilibrium state xe of (2.29) is said to be uniformly stable
if for any " > 0, there exists a ı > 0 such that for all x0 2 Rn with kx0 �xek < ı,
we have kx.t I t0; x0/� xek < " for all t0 > 0 and for all t 
 t0.

Definition 2.28 The equilibrium state xe of (2.29) is said to be asymptotically
stable if:

(i) It is stable.

(ii) For every t0 > 0, there exists a ı > 0 such that for all x0 2 Rn with
kx0 � xek < ı, we have limt!1 kx.t I t0; x0/ � xek D 0.

Definition 2.29 For any t0 > 0, the set of all x0 2 Rn such that x.t I t0; x0/ ! xe

as t ! 1 is called the region of attraction at time t0 of the equilibrium state xe.
If condition (ii) of Definition 2.28 is satisfied, then the equilibrium state xe is said
to be attractive.

Definition 2.30 The equilibrium state xe of (2.29) is said to be uniformly asymp-
totically stable if

(i) It is uniformly stable.

(ii) For every " > 0, there exist T > 0 and ı0 > 0 such that for all initial
conditions x0 2 Rn with kx0 � xek < ı0, we have kx.t I t0; x0/ � xek < "

for all t0 > 0 and for all t 
 t0 C T .

Definition 2.31 The equilibrium state xe of (2.29) is said to be exponentially
stable if there exists an ˛ > 0 with the property that for every " > 0 there exists
a ı > 0 such that for all initial conditions x0 2 Rn for which kx0 � xek < ı,
we have

kx.t I t0; x0/� xek � "e�˛.t�t0/

for all t0 > 0 and for all t 
 t0.
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Definition 2.32 A solution x.t I t0; x0/ for some t0 > 0 and x0 2 Rn of (2.29) is
said to be bounded if there exists a ˇ > 0 such that kx.t I t0; x0/k < ˇ for all
t 
 t0.

Definition 2.33 The solutions of (2.29) are said to be uniformly bounded if for
any ˛ > 0, there exists a ˇ > 0 such that for all initial conditions x0 2 Rn for
which kx0k < ˛, we have kx.t I t0; x0/k < ˇ for all t0 > 0 and for all t 
 t0.

Definition 2.34 The set of solutions of (2.29) is said to be uniformly ultimately
bounded if there exists a B > 0 such that for any ˛ > 0, there exists a T > 0
such that for all initial conditions x0 2 Rn for which kx0k < ˛, we have
kx.t I t0; x0/k < B for all t0 > 0 and for all t 
 t0 C T .

Definition 2.35 The equilibrium state xe of (2.29) is said to be globally asymp-
totically stable if it is stable and every solution of (2.29) tends to xe as t ! 1
(i.e., the region of attraction of xe is all of Rn).

Definition 2.36 The equilibrium state xe of (2.29) is said to be uniformly glob-
ally asymptotically stable if:

(i) It is uniformly stable.

(ii) The solutions of (2.29) are uniformly bounded.

(iii) For all ˛ > 0 and " > 0, there exists a T > 0 such that for all initial
conditions x0 2 Rn satisfying kx0 �xek < ˛, we have kx.t I t0; x0/�xek <
" for all for all t0 > 0 and t 
 t0 C T .

Definition 2.37 The equilibrium state xe of (2.29) is said to be globally exponen-
tially stable if there exists an ˛ > 0 with the property that for any ˇ > 0, there
exists a k > 0 such that for all initial conditionsx0 2 Rn for which kx0�xek < ˇ,
we have

kx.t I t0; x0/ � xek � ke�˛.t�t0/

for all t0 > 0 and for all t 
 t0.
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Definition 2.38 The trajectory x.t I t0; x0/ is said to be stable (unstable, uni-
formly stable, asymptotically stable, uniformly asymptotically stable, exponen-
tially stable) if the equilibrium state ze D 0 of the system

Tz D f .t; z C x.t I t0; x0// � f .t; x.t I t0; x0//

is stable (unstable, uniformly stable, asymptotically stable, uniformly asymptoti-
cally stable, exponentially stable, respectively).

Definition 2.39 The system (2.29) is said to be internally Lp stable at t0 if the
trajectory x.t I t0; x0/ for any x0 2 Rn belongs to LpŒt0;1/.

Definition 2.40 The system (2.29) is said to be uniformly internally Lp stable if
it is internally Lp stable at t0 for all t0 > 0.

Remark 2.41 For autonomous systems, internal Lp stability implies global
attractivity of the origin when f is continuous at the origin (see Lemma 2.79).

It is easy to see that in the case of autonomous system (2.30), all the references
to the word “uniform” in the above definitions need not be evoked. That is, if the
equilibrium state xe is stable (asymptotically stable, exponentially stable, glob-
ally asymptotically stable), it is always uniformly stable (uniformly asymptot-
ically stable, uniformly exponentially stable, uniformly globally asymptotically
stable, respectively). Similarly, if the solution x.t I t0; x0/ is bounded, it is uni-
formly bounded as well.

2.7.1 Lyapunov’s direct method

The stability properties of the equilibrium state xe or the solution x.t I t0; x0/

of (2.29) can be verified by utilizing the well-known direct method of Lyapunov
(also called as the second method of Lyapunov). The method seeks to answer
various questions of stability by using the form of the function f .t; x/ in (2.29)
rather than the explicit knowledge of the solutions. We need the following addi-
tional definitions before we introduce the method.

Definition 2.42 A continuous function � W Œ0; 1/ 7! RC is said to belong to
class K (denoted by � 2 K) if:

(i) �.0/ D 0.

(ii) � is strictly increasing.
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Definition 2.43 A continuous function � W Œ0; 1/ 7! RC is said to belong to
class K1 (denoted by � 2 K1) if:

(i) �.0/ D 0.

(ii) � is strictly increasing.

(iii) lim
�!1�.	/ D 1.

Definition 2.44 Two functions �1; �2 2 K are said to be of the same order of
magnitude if there exist positive constants k1 and k2 such that

k1�1.r/ � �2.r/ � k2�1.r/;

for all r 2 Œ0; 1/.

Definition 2.45 A function V.t; x/ W RC � Rn 7! R with V.t; 0/ D 0 for all t 2
RC is said to be locally positive definite if there exists a subset V of Rn containing
0 in its interior and a continuous function � 2 K such that V.t; x/ 
 �.kxk/ for
all t 2 RC, x 2 V .
V.t; x/ is called locally negative definite if �V.t; x/ is positive definite.

Definition 2.46 A function V.t; x/ W RC � V 7! R with V.t; 0/ D 0 for all
t 2 RC is said to be locally positive semi-definite if if there exists a subset V of
Rn containing 0 in its interior such that V.t; x/ 
 0 for all t 2 RC, x 2 V .
V.t; x/ is called negative semi-definite if �V.t; x/ is positive semi-definite.

Definition 2.47 A function V.t; x/ W RC � Rn 7! R with V.t; 0/ D 0 for all
t 2 RC is said to be decrescent if there exists a subset V of Rn containing 0 in
its interior and a continuous function � 2 K such that V.t; x/ � �.kxk/ for all
t 2 RC and for all x 2 V .

Definition 2.48 A function V.t; x/ W RC � Rn 7! R with V.t; 0/ D 0 for all
t 2 RC is said to be positive definite if there exists a continuous function � 2 K

such that V.t; x/ 
 �.kxk/ for all t 2 RC and x 2 Rn.
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Definition 2.49 A function V.t; x/ W RC � Rn 7! R with V.t; 0/ D 0 for all
t 2 RC is said to be a radially unbounded positive definite function if there exists
a � 2 K1 such that

V.t; x/ 
 �.kxk/ for all t 2 RC and x 2 Rn:

In what follows, without loss of generality, we assume that xe D 0 is an equi-
librium point of (2.29). Also, we define TV as the time derivative of the function
V.t; x/ along the solution of (2.29), that is,

TV D @V

@t
C .rV /f .t; x/;

where

rV D @V

@x
D
�

@V
@x1

@V
@x2

� � � @V
@xn

�

is the gradient of V with respect to x.
The following theorem states the second method of Lyapunov.

Theorem 2.50 Suppose that there exists a locally positive definite function

V.t; x/ W RC � Rn 7! R

for some r > 0 with continuous first-order partial derivatives with respect to t
and x and V.t; 0/ D 0 for all t 2 RC. Then the following statements are true:

(i) If TV .t; x/ � 0 for all t 2 RC and all x in some open neighborhood of 0,
then xe D 0 is stable.

(ii) If V is decrescent and TV .t; x/ � 0 for all t 2 RC and all x in some open
neighborhood of 0, then xe D 0 is uniformly stable.

(iii) If V is decrescent and TV .t; x/ < 0 for all t 2 RC and all x in some open
neighborhood of 0, then xe D 0 is uniformly asymptotically stable.

(iv) If V is decrescent and there exist functions �1; �2; �3 2 K of the same
order of magnitude such that

�1.kxk/ � V.t; x/ � �2.kxk/ and TV .t; x/ � ��3.kxk/
for all t 2 RC and for all x in some open neighborhood of the origin, then
xe D 0 is exponentially stable.

Let us examine statement (ii) of Theorem 2.50. If we remove the restriction
of V being decrescent, we obtain statement (i). Therefore, one might be tempted
to expect that by removing the condition of V being decrescent in statement (iii),
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we obtain a condition for asymptotic stabilty, that is, TV < 0 implies that xe D 0 is
asymptotic stability. Such an intuitive conclusion is not true, as demonstrated by
a counterexample in [94], see also [44, Sect. 53], where a first-order differential
equation and a positive definite, non-decrescent function V.t; x/ are used to show
that TV < 0 alone does not imply that xe D 0 is asymptotic stable.

The condition in statement (iii) of the above theorem, namely, V.t; x/, is
decrescent, and TV .t; x/ < 0 is also equivalent to the existence of functions
�1; �2; �3 2 K , where �1; �2; �3 do not have to be of the same order of mag-
nitude, such that

�1.kxk/ � V.t; x/ � �2.kxk/ and TV .t; x/ � ��3.kxk/
for all t 2 RC and x 2 B.r/.

We recognize that, in the above theorem, the state x is restricted to a neighbor-
hood of the origin. As such, the results (i)–(iv) of Theorem 2.50 are referred to as
local results. The following theorems are concerned with the global results.

Theorem 2.51 Assume that the solution of (2.29) exists and is unique for each
x0 2 Rn. Suppose that there exists a decrescent, radially unbounded positive
definite function V.t; x/ W RC � Rn 7! RC with continuous first-order partial
derivatives with respect to t and x and V.t; 0/ D 0 for all t 2 RC. Then the
following statements are true:

(i) If TV .t; x/ < 0 for all t 2 RC and all x 2 Rn, then xe D 0 is uniformly
globally asymptotically stable.

(ii) If there exist functions �1; �2; �3 2 K1 of the same order of magnitude
such that

�1.kxk/ � V.t; x/ � �2.kxk/ and TV .t; x/ � ��3.kxk/
for all t 2 RC and x 2 Rn, then xe D 0 is globally exponentially stable.

The condition in statement (i) of the above theorem, namely, TV .t; x/ < 0, is
also equivalent to the existence of functions �1; �2 2 K1 and �3 2 K such that

�1.kxk/ � V.t; x/ � �2.kxk/ and TV .t; x/ � ��3.kxk/
for all t 2 RC and x 2 Rn.

Theorem 2.52 Let the solution of (2.29) be unique for each x0 2 Rn. Suppose
that there exists a decrescent, positive definite function V.t; x/ W RC � Rn 7!
RC with continuous first-order partial derivatives with respect to t and x and
V.t; 0/ D 0 for all t 2 RC. Then the following statements are true:

(i) If there exists a R > 0 such that TV .t; x/ � 0 for all t 2 RC and all x 2 Rn

with kxk > R, then xe D 0 is uniformly bounded.
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(ii) If there exists a R > 0 and � 2 K such that TV .t; x/ � ��.kxk/ for all
t 2 RC and all x 2 Rn with kxk > R, then xe D 0 is uniformly ultimately
bounded.

Theorems 2.50–2.52 also hold for the autonomous system (2.30) because it is
a special case of (2.29)). In the case of (2.30), however, V.t; x/ D V.x/, that is,
it does not explicitly depend on time t , and all references to the words “decres-
cent” and “uniform” could be deleted. This is because V.x/ is always decrescent
and the stability (respectively, asymptotic stability) of the equilibrium xe D 0 of
(2.30) implies uniform stability (respectively, uniform asymptotic stability). Also,
for (2.30), we can obtain a stronger result than Theorem 2.51 for global asymp-
totic stability. Before we state this result, let us have the following definition.

Definition 2.53 A set ˝ 2 Rn is invariant with respect to (2.30) if every solution
of (2.30) starting in ˝ remains in ˝ for all t .

Theorem 2.54 Let the solution of (2.30) be unique for each x0 2 Rn. Suppose
that there exists a positive definite and radially unbounded function V.x/ W Rn 7!
RC with continuous first-order partial derivatives with respect to x and V.0/ D 0.
If

(i) TV � 0 for all x 2 Rn.

(ii) The origin x D 0 is the only invariant subset of the set

˝ D fx 2 Rn j TV D 0g;

then the equilibrium xe D 0 of (2.30) is globally asymptotically stable.

All the above theorems are referred to as Lyapunov-type theorems. The func-
tion V.t; x/ or V.x/ that satisfies any Lyapunov-type theorem is referred to as a
Lyapunov function.

Lyapunov functions can also be used to predict the instability properties of an
equilibrium point xe . Several instability theorems based on the second method of
Lyapunov are given in [44].

2.8 External stability

Securing the stability of the equilibrium point of a given system or physical pro-
cess is central to any control system design. In this regard, the classical concept
of internal stability or otherwise often known as Lyapunov stability of a given
system, as discussed in Sect. 2.7, dwells on various notions of the stability of an
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equilibrium point. It is widely discussed in many text books. On the other hand,
another classical notion well known in the context of linear systems is the concept
of bounded input bounded output (BIBO) stability or input–output stability. It is
rooted in the requirement that a “small” excitation should cause only a “small”
response. Motivated by this, the notion of external stability is indeed an attempt
to bring a notion similar to BIBO to nonlinear systems as well by defining an
appropriate measure of “smallness”. Most of the literature considers the Lp (or
`p) norm as an appropriate measure of “smallness”. Thus, external stability seeks
the controlled output be in the Lp or `p space for p 2 Œ1;1� whenever the exter-
nal input or disturbance of a system is in the Lp or `p space. Moreover, one can
also define the notion of system gain as the induced norm of the mapping from
the external input to the controlled output. Owing to the use of the Lp (or `p)
norm as an appropriate measure, external stability is also known as Lp stability
for continuous-time systems or `p stability for discrete-time systems. Thus, the
notions of input–output stability, external stability, and Lp or `p stability tanta-
mount to the same.

To distinguish internal stability, or otherwise called Lyapunov stability, from
input–output stability, it is worth quoting here two paragraphs from J. C. Willem’s
book, The Analysis of Feedback Systems ([204], pp. 102–103), from which one
may gain a historical view on how the Lyapunov stability and input–output sta-
bility are distinguished and get separated.

“Lyapunov stability considers stability as an internal property of a system, and
inputs and outputs do not play a role. This formulation accounts for the early de-
velopment and great historical importance of this type of stability. The study of
systems without inputs and outputs is indeed basic to classical dynamics. The tra-
ditional question of the stability of the solar system, for example remains a long
standing challenge and does not involve inputs in any way. It is thus more than
natural that stability of control systems has been studied in this context; namely,
as a condition on undriven classical dynamical systems. This is in spite of the fact
that its founders, Lyapunov and Poincaré, were not primarily interested in control.
It should be noted that this dynamical-system point of view is supported by the
work of Maxwell and much of the subsequent work on regulators. Although Lya-
punov stability remains important and very useful in many control applications,
its basic philosophy can often be challenged and is somewhat out of line with
the modern approach to systems, where inputs and outputs are the fundamental
variables and the state is merely an auxiliary variable that essentially represents
the contents of a memory bank. The development and success of input–output
stability should thus come as no surprise. This does not exclude that for many ap-
plications Lyapunov stability does represent a very satisfactory type of stability,
and thus its study will remain both important and fruitful.”

“Input–output stability is, from an engineering point of view, a very signif-
icant and important type of stability. The informal definition of stability given
for instance by Nyquist in his classic paper on Regeneration Theory is essen-
tially that of input–output stability. It is intimately related to the idea of stability
under constant disturbances and thus has some classical—although not system
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oriented—foundations. The concept of input–output stability stands in direct
competition with the idea of stability in the sense of Lyapunov. Input–output sta-
bility considers the disturbance entering the system as a constantly acting input,
where as stability in the sense of Lyapunov considers the initial conditions as the
disturbance to the system. Which of these two types of stability is to be preferred
clearly depends on the particular application. In a sense, input–output stability
protects against noise disturbances, whereas Lyapunov stability protects against a
single impulse-like disturbance.”

Our concern in this section is to recall several definitions all pertaining to input–
output stability or external stability or some other notions of stability related to it.

Throughout this section, we consider a system ˙ of the form,
(
�x D f .x; d/; x.0/ D x0

z D g.x; d/;
(2.31)

with f .0; 0/ D 0 and g.0; 0/ D 0, where, as before, � denotes the time derivative
(�x D d

dt
x) or the shift operator (.�x/.k/ D x.k C 1/) for continuous-time and

discrete-time systems, respectively. Here x is the state, d is the input, and z is the
controlled output.

At first, we start with various notions of Lp or `p stability where initial con-
ditions are fixed; in fact as is customary, the initial conditions are fixed at the
origin.

Definition 2.55 Let p 2 Œ1;1�. Consider a continuous-time system ˙ as given
in (2.31). Then, it is said to be Lp stable with fixed initial condition and without
finite gain if, given any input d 2 Lp and x.0/ D 0, there exists a unique solution
x such that the controlled output z 2 Lp.

Similarly, consider the discrete-time system ˙ as given in (2.31). Then, it is
said to be `p stable with fixed initial condition and without finite gain if, given
any input d 2 `p and x.0/ D 0, the unique solution x is such that the controlled
output z 2 `p.

Remark 2.56 We note that if the continuous-time system (2.31) has an Lp input,
the classical condition of f being locally Lipschitz might not suffice to ensure the
existence and uniqueness of solution. This can be shown in the following example.
Consider

Tx D .1 � x/d 3; x.0/ D 0:

The above system has a right hand side which obviously is nicely differentiable.
Let

d D
( �

1
1�t

� 1
3 t < t0;

0 t > t0;



38 2 Preliminaries

where t0 > 1. It is easy to verify that we have d 2 L1. One solution with this
input is

x.t/ D satt0.t/:

Another solution is

x.t/ D sat1.t/;

where sat� is a standard saturation function with saturation level � as defined in
Definition 2.19. Both of these solutions are so-called weak solutions in the sense
that

x.t/ D
tZ

0

.1 � x.	//d 3.	/ d	:

We should note that if we impose that d 2 Lp \L1, then the solution is unique.

Definition 2.57 Let p 2 Œ1;1�. Consider a continuous-time system ˙ as given
in (2.31). Then, it is said to be Lp stable with fixed initial condition with finite
gain and with zero bias if, given any input d 2 Lp and x.0/ D 0, there exists a
unique solution x such that the controlled output z 2 Lp and, moreover, if there
exists a positive constant �p such that the following holds:

kzkp � �pkdkp; for all d 2 Lp :

Furthermore, the infimum over all such �p’s is called the Lp gain of the system.
Similarly, consider the discrete-time system ˙ as given in (2.31). Then, it is

said to be `p stable with fixed initial condition with finite gain and with zero
bias if, given any input d 2 `p and x.0/ D 0, the unique solution x is such that
the controlled output z 2 `p and, moreover, if there exists a positive constant �p

such that the following holds:

kzkp � �pkdkp; for all d 2 `p:
Furthermore, the infimum of such �p’s is called the lp gain of the system.

Definition 2.58 Let p 2 Œ1;1�. Consider a continuous-time system ˙ as given
in (2.31). Then, it is said to be Lp stable with fixed initial condition with finite
gain and with bias if, given any input d 2 Lp and x.0/ D 0, there exists a unique
solution x such that the controlled output z 2 Lp and, moreover, if there exist
positive constants �p and bp such that the following holds:

kzkp � �pkdkp C bp; for all d 2 Lp:

Furthermore, the infimum over all such �p’s is called the Lp gain of the system.
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Similarly, consider the discrete-time system ˙ as given in (2.31). Then, it is
said to be `p stable with fixed initial condition with finite gain and with bias
if, given any input d 2 `p and x.0/ D 0, the unique solution x is such that the
controlled output z 2 `p, and moreover, if there exist positive constants �p and
bp such that the following holds:

kzkp � �pkdkp C bp; for all d 2 `p:
Furthermore, the infimum of such �p’s is called the `p-gain of the system.

Remark 2.59 Definitions 2.57 and 2.58 are equivalent for linear systems as one
implies the other and conversely.

Remark 2.60 In the literature, Lp or `p stability with fixed initial condition and
without finite gain is often simply referred to as Lp or `p stability. Also, Lp or `p
stability with fixed initial condition and with finite gain is often simply referred to
as Lp or `p stability with finite gain. In this book, we do the same.

In the definitions of Lp or `p stability given above, we assumed that the initial
conditions of the given system are fixed at zero, that is, the system is at rest.
Nevertheless, one can modify easily the above definitions by setting the initial
conditions at any fixed nonzero point. This is done in the literature by Shi [149].
In this regard, we observe here one important aspect as pointed out by Shi and
others (see [151]); that is, if a given system is Lp-stable in some sense for one
fixed initial condition, it does not necessarily imply that it is Lp stable in the
same sense for another fixed initial condition. The following example illustrates
this.

Example 2.61 Consider the double integrator with a linear feedback control law
and external input d :

8
<̂

:̂

Tx1 D x2

Tx2 D �.�x1 � x2/C ı�.d/

z D x1;

(2.32)

where �.:/ is a standard saturation function. This system is globally asymptot-
ically stable and locally exponentially stable if d D 0. Hence, given the zero
initial condition x.0/ D 0, there exists a sufficiently small ı > 0 such that for all
d 2 Lp, we have x 2 Lp for all p 2 Œ1;1�. However, it is shown in Chap. 14
and in [169] that if p > 2, then, no matter how small ı is, there exist a d� 2 Lp

and an initial state .x�
1 ; x

�
2 / such that the state trajectory of the closed-loop system

diverges to infinity. Thus, z 62 Lp .
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To create an example for any p > 1 where Lp stability depends on the choice
of the initial condition, we simply modify the above system. Consider the same
double integrator but with the input passing through a nonlinear element .�/p=3

for some p > 1 and with a nonlinear output:
8
<̂

:̂

Tx1 D x2

Tx2 D �.�x1 � x2/C ı�.dp=3/

z D jx1j3=p:

(2.33)

Consider the initial condition .x�
1 ; x

�
2 / and define d D jd�j3=p sgn.d�/ where

d� 2 L3 is an external signal for the system (2.32), which drives the state from
initial condition .x�

1 ; x
�
2 / to infinity. Since d� 2 L3, obviously d 2 Lp . By

construction, for initial condition .x�
1 ; x

�
2 /, the state x of (2.33) diverges, and

hence, z 62 Lp. This establishes that the system (2.33) is not Lp stable for initial
condition .x�

1 ; x
�
2 /.

On the other hand, we claim that the system (2.33) is Lp stable for zero initial
conditions. After all, for any d 2 Lp , we have d� D dp=3 2 L3. We know that
system (2.32) with zero initial conditions and input d� yields a state x 2 L3. But
this clearly yields that the system (2.33) with zero initial conditions and input d
yields a state x 2 L3 and an output z 2 Lp. Hence, the system (2.33) is Lp stable
for zero initial condition.

It is clear from the above discussion that the initial conditions of the given
system play a dominant role in achieving or not achieving external stability (in
one sense or other), and hence, any definition of external stability must take into
account the initial conditions. Motivated by this, Shi [149] not only defines exter-
nal stability by setting the initial conditions at a fixed point but also when initial
conditions are arbitrary. That is, Shi [149] defines what is now known as external
stability with arbitrary initial conditions. These definitions are recalled below.

Definition 2.62 Let p 2 Œ1;1�. Consider a continuous-time system ˙ as given
in (2.31). Then, it is said to be Lp stable with arbitrary initial conditions and
without finite gain if for any input d 2 Lp and for any arbitrary initial condition
x0 2 Rn, there exists a unique solution x such that the controlled output z 2 Lp.

Similarly, consider the discrete-time system ˙ as given in (2.31). Then, it is
said to be `p stable with arbitrary initial conditions and without finite gain if
for any input d 2 `p and for any arbitrary initial condition x0 2 Rn, the unique
solution x is such that the controlled output z 2 `p.

Following the above definitions, a recent paper [126] defines external stability
with arbitrary initial conditions with finite gain and with bias.
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Definition 2.63 Let p 2 Œ1;1�. Consider a continuous-time system ˙ as given
in (2.31). Then, it is said to be Lp stable with arbitrary initial conditions with
finite gain and with bias if the following hold:

(i) There exists a unique solution x for any x.0/ D x0 2 Rn.

(ii) There exists a positive constant �p and a class K-function bp such that for
any x.0/ D x0 2 Rn, the following holds:

kzkp � �pkdkp C bp.kx0k/; for all d 2 Lp:

Furthermore, the infimum of such �p’s is called the Lp gain of the system.
Similarly, consider the discrete-time system ˙ as in (2.31). Then, it is said to

be `p stable with arbitrary initial conditions with finite gain and with bias if
there exists a positive constant �p and a class K-function bp such that for any
x.0/ D x0 2 Rn, the following holds:

kzkp � �pkdkp C bp.kx0k/; for all d 2 `p:
Furthermore, the infimum of such �p’s is called the `p gain of the system.

More recently, some other notions of external stability are introduced. These
notions are similar to the definitions of Lp or `p stability with arbitrary initial
conditions as they incorporate within them in some sense or other the notion of
internal stability in the absence of disturbance or external input d . One such def-
inition is introduced in [156] and is called input-to-state stability (ISS). It makes
an attempt to marry both the notions of internal Lyapunov stability and the L1
stability or `1 stability. We first need to recall the definition of a KL-function
before we recall the definition of ISS.

Definition 2.64 A continuous function  W RC ! RC is said to be of class L if it
is monotonically decreasing and limr!1  .r/ D 0. A function ˇ W RC � RC !
RC is a class KL-function if it is class K with respect to the first argument and
class L with respect to the second argument.

Definition 2.65 Consider the continuous-time system ˙ as given in (2.31) where
f W Rn � Rs ! Rn. Then,˙ is said to be input-to-state stable (ISS) if there exist
a class KL-function ˇ W RC � RC ! RC and a class K-function ˛ such that,
for each input d 2 L1 and for each initial condition x.0/ D x0 with x0 2 Rn,
there exists a unique solution x.t I x0; d / of ˙ satisfying

kx.t I x0; d /k 6 ˇ.kx0k; t/C ˛.kdkL1
/ (2.34)

for each t > 0.
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Definition 2.66 Consider the discrete-time system ˙ as given in (2.31) where
f W Rn � Rs ! Rn. Then,˙ is said to be input-to-state stable (ISS) if there exist
a class KL-function ˇ W RC � RC ! RC and a class K-function ˛ such that,
for each input d 2 `1 and for each initial condition x.0/ D x0 with x0 2 Rn,
the unique solution x.kI x0; d / of ˙ satisfies

kx.kI x0; d /k 6 ˇ.kx0k; k/C ˛.kdk`1
/ (2.35)

for each integer k 2 ZC.

Remark 2.67 Note that, by causality, the same definition would result if one
would replace (2.35) by

kx.kI x0; d /k 6 ˇ.kx0k; k/C ˛.kdŒk�1	k`1
/;

where k > 1 and, for each r > 0, dŒr	 denotes the truncation of d at r; that is,

dŒr	.j / D
(
d.j / if j 6 r;

0 if j > r:

Remark 2.68 By definition, an immediate consequence of an ISS system is that,
for any arbitrarily fixed initial state x0 2 Rn, any bounded input d must produce
a bounded state. Moreover, when the input d is identically zero, the ISS implies
the global asymptotic stability of the zero equilibrium point.

Before we present another notion of external stability which is married in some
sense or other to the notion of internal stability, let us next recall a well-known fact
in linear system theory that global asymptotic stability implies that any vanishing
external input produces a vanishing state and as such, external inputs that vanish
as time progresses affect only the transient behavior of a given system. In general,
such a behavior is not true for nonlinear systems. This is what is behind the notion
of converging input converging state (CICS) stability as recalled shortly.

Let us first introduce some notation.

Definition 2.69 The set of function f W RC ! Rs with the property that

lim
t!1f .t/ D 0

is denoted by C0. Similarly, the set of function f W ZC ! Rs with the property
that

lim
k!1

f .k/ D 0

is denotd by c0.
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We have the following CICS definitions.

Definition 2.70 Consider the continuous-time system ˙ as given in (2.31) where
f W Rn � Rs ! Rn. We say that the system ˙ satisfies the CICS stability if for
each input d 2 C0 and for any initial condition x.0/ D x0 with x0 2 Rn, there
exists a unique solution x.t I x0; d / that satisfies x.�I x0; d / 2 C0.

Definition 2.71 Consider the discrete-time system ˙ as given in (2.31) where
f W Rn � Rs ! Rn. We say that the system ˙ satisfies the CICS stability if for
each input d 2 c0 and for any initial condition x.0/ D x0 with x0 2 Rn, the
solution x.kI x0; d / of ˙ satisfies x.�I x0; d / 2 c0.

Remark 2.72 We note that, in the absence of any disturbance d , CICS stability
implies global attractivity of the origin.

Remark 2.73 Various concepts of external stability are formulated above. In
these formulations, the space of external signals or disturbances has no restric-
tions, that is, it is the entire such possible space. In that sense, these results are
global results even though we did not explicitly add “global” in the terminol-
ogy. On the other hand, one can restrict the space of external signals to a cer-
tain proper subset of the entire possible space. Such a restriction can be useful
to define semi-global rather than global external stability concepts, the study of
which will be undertaken in detail in subsequent chapters. An example of a ver-
sion of local external stability will be seen in the next section.

2.9 Relationship between internal stability
and external stability

Sections 2.7 and 2.8 deal respectively with various definitions of internal stability
and external stability. One natural question that arises at this stage is whether there
exists any relationship between these two notions of stability. We remark that a
well-known result in linear system theory is that any asymptotically stable system
has very good external stability properties. That is, for linear systems under some
mild conditions, the notions of internal stability and external stability are very
highly coupled and in fact simply coalesce. However, for nonlinear systems, as
readers will observe in subsequent chapters, in general, just having internal sta-
bility in one sense or other does not necessarily imply external stability in some
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sense or another. One can generate several examples to illustrate this. To quote
an example as given in Liu et al. [89, 90], consider a nonlinear system (a linear
system subject to actuator saturation),

Tx1 D �.�3x1 C 7x2 C d1/; Tx2 D �.�x1 C 2x2 C d2/;

where d1 and d2 are some inputs and �.:/ is a standard saturation function with
˙1 as the saturation level. It is easy to see that in the absence of d1 and d2, such
a system is locally asymtotically stable with the origin as its equilibrium point.
On the other hand, one can find for some finite T some input functions d1.t/ and
d2.t/ on the interval Œ0; T � such that the origin Œ0; 0�0 of the considered system
at t D 0 can be steered to Œ1; 1�0 at t D T . By defining d1 D 0 and d2 D 0 on
.T;1/, we have the solution of the considered system as x1 D t � T C 1 and
x2 D t � T C 1. Thus, when we consider d1.t/ and d2.t/ as external input or
disturbance signals, the considered system is not Lp stable for any 1 � p � 1
in the traditional sense of Lp stability with fixed initial conditions.

Then, another immediate query arises: Suppose the given system is externally
stable in some sense. Does such an external stability have any consequences for
internal stability of the given system in the absence of external input signals? In
this regard, we have already remarked that having ISS implies global asymptotic
stability of zero equilibrium point of a given nonlinear system in the absence
of any external input signals. Additionally, if a nonlinear system is CICS stable,
then it also has the property of global attractivity of the origin in the absence of
any external input signals. However, it is not clear yet, whether having external
stability in the classical sense of Lp stability with fixed initial conditions has any
consequences for internal stability in some sense or other. It turns out that under
some mild conditions on the given nonlinear system, external stability does imply
certain properties of internal stability. We pursue such properties in this section
based on the recent work of [191].

To be specific, in this section, for a nonlinear system that isLp stable, our inter-
est is to investigate the internal stability of the autonomous system (i.e, the given
nonlinear system with the input zero). Our work here in this respect evolves along
two main lines. The first line starts with Lp stability without finite gain. An im-
portant prior result in this direction is that in [89], which under a fairly restrictive
condition on the structural property of the system, shows that Lp stability without
finite gain implies global attractivity of the equilibrium point. Indeed, it turns out
that this result of [89] can be obtained under weaker conditions. We show here
that under mild conditions, global Lp stability without finite gain ensures attrac-
tivity of the equilibrium point in the absence of input and attractivity of the origin
with any Lp input.

The other line emanates fromLp stability with finite gain. There is a large body
of work in the literature in this direction; see, for instance, [25, 46, 89, 190]. Along
this line of research, the objective here is to conclude local asymptotic stability of
the equilibrium point based on Lp stability with finite gain. It was shown in [46]
that under a uniform reachability condition, global Lp stability with finite gain
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implies local asymptotic stability of the equilibrium point. In [190], the notion
of small-signal Lp stability with finite gain was introduced and its connection to
attractivity of the equilibrium point was established. This concept of small-signal
Lp stability was extended in [25] by so-called gain-over-set stability, and it was
shown that finite-gain Lp stability over a set in Lp space yields local asymptotic
stability of the equilibrium point. We prove here a result on the relationship be-
tween Lyapunov stability and local Lp stability with finite gain, which further
extends, to some extent, the result in [25].

We consider a nonlinear system

˙1 W Tx D f .x; d/; x.0/ D x0; (2.36)

where x 2 Rn and d 2 Rm. We assume that for all x0 2 Rn,˙1 has a unique solu-
tion defined on Œ0;1/, which is absolutely continuous on any compact
interval. Moreover, we assume that f .x; d/ is continuous with respect to x. Let
x.t I t0; x0; d / denote the trajectory of ˙1 initialized at time t0 with input d and
initial condition x0. If t0 D 0, we will use x.t I x0; d / instead of x.t I t0; x0; d /.

We shall investigate the internal stability of the unforced system

˙2 W Tx D f .x; 0/; x.0/ D x0; (2.37)

under the assumption that ˙1 is Lp stable in some sense.
We first recall some preliminaries. We defined several types of Lp stability

earlier in Sect. 2.8. These were basically all global definitions even though, for
brevity, we did not explicitly use the word “global.” Here global is in the sense
that d 2 Lp is not bounded in size. Below, we define a local version of Lp

stability.

Definition 2.74 The system ˙1 is said to be locally Lp stable with fized initial
condition and with finite gain if there exists a ı and a � such that for x0 D 0 and
any d with kdkLp

6 ı, a unique solution exists and kx.t I 0; d/kLp
6 �kdkLp

.

The region or domain of attraction as defined in Definition 2.29 is denoted by
A.˙2/ for the system ˙2, that is,

A.˙2/ D fx0 2 Rn j x.t I x0; 0/ ! 0 as t ! 1g: (2.38)

Definition 2.75 A point � 2 Rn is an Lp-reachable point of system ˙1 if there
exist a finite T , and an M , and a measurable input d W Œ0; T � ! Rm such that
x.T I 0; d/ D � and

TZ

0

kd.t/kpdt 6 M:

The set of all Lp-reachable points of ˙1 is called the Lp-reachable set of ˙1,
which is denoted as Rp.˙1/.
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Remark 2.76 The requirement in Definition 2.75 is a weak condition that ensures
that the integral of kd.t/kp over the interval Œ0; T � is finite. For example, any x0

that is reachable via a signal d.t/ that is essentially bounded on Œ0; T � is Lp-
reachable for any p 2 Œ1;1/.

The following definition of small-signal local Lp reachability is adapted
from [25].

Definition 2.77 The system ˙1 is said to be small-signal locally Lp reachable if
for any " > 0, there exists a ı such that for any � 2 Rn with k�k 6 ı, we can find
a finite time T and a measurable input d W Œ0; T � ! Rm such that x.T I 0; d/ D �

and kdkp 6 ".

We have the following result.

Theorem 2.78 Suppose the system ˙1 is globally Lp stable with fixed initial
condition without finite gain for some p 2 Œ1;1/. Then A.˙2/ � Rp.˙1/.

In order to prove Theorem 2.78, we need the following lemma:

Lemma 2.79 Consider the system ˙2. If x.t I x0; 0/ 2 Lp for some p 2 Œ1;1/,
then x.t I x0; 0/ ! 0.

Proof of Lemma 2.79 : For simplicity, we denote in this proof, x.t I x0; d / and
f .x.t/; 0/ by x.t/ and f .x.t//, respectively. Suppose, for the sake of establishing
a contradiction, that x.t/ ! 0 does not hold. Then there exists a ı > 0 such that,
for any arbitrarily large T > 0, there is a 	 > T such that kx.	/k > 2ı. Let m be
a bound on kf .x/k on the closed ball B.2ı/. This bound exists due to continuity
of f .x/ with respect to x.

For some 	 such that kx.	/k > 2ı, let t2 > 	 be the smallest value such that
kx.t2/k D ı, and let t1 be the largest value such that t1 < t2 and kx.t1/k D 2ı.
Such t1 and t2 exist because x.t/ is absolutely continuous and x 2 Lp. Since
kx.t/k 2 B.2ı/ for all t 2 Œt1; t2�, we have, due to the absolute continuity of the
solution,

kx.t1/k � kx.t2/k 6 kx.t2/� x.t1/k D
������

t2Z

t1

f .x.	// d	

������

6
t2Z

t1

kf .x.	//k d	 6 .t2 � t1/m:
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Hence, t2 � t1 > .kx.t1/k � kx.t2/k/=m D ı=m. Clearly, kx.t/k > ı for all
t 2 Œ	; t2�, and furthermore, t2 � 	 > t2 � t1 > ı=m. It follows that for each 	
such that kx.	/k > 2ı, we have kx.t/k > ı for all t 2 Œ	; 	 C ı=m�.

Let T be chosen large enough that

1Z

T

kx.t/kp d	 <
ıpC1

m
: (2.39)

Such a T must exist, since x.t/ 2 Lp . Let 	 > T be chosen such that kx.	/k >
2ı. We have

1Z

T

kx.t/kp d	 >
�Cı=mZ

�

kx.t/kp d	 > ıpC1

m
:

This contradicts (2.39), which proves that x.t/ ! 0.

Proof of Theorem 2.78 : For any x0 2 Rp.˙1/, there exist finite T , M , and an
input d0.t/ for t 2 Œ0; T � such that x.T I 0; d0/ D x0 and

TZ

0

kd0.t/kpdt 6 M:

Define

d.t/ D
(
d0.t/; t 2 Œ0; T �;
0; t > T:

Clearly, d 2 Lp. Since ˙1 is globally Lp stable with fixed initial condition with-
out finite gain, we have x.�I 0; d/ 2 Lp . On the other hand, d.t/ D 0 for t > T

implies that after T the system ˙1 is equivalent with system ˙2 initialized at x0,
that is, x.t I 0; d; 0/ D x.t � T I x0; 0/ with t > T . Therefore, x.t I x0; 0/ 2 Lp

over Œ0;1/. It follows from Lemma 2.79 that x.t I x0; 0/ ! 0 as t ! 1. This
completes the proof.

Corollary 2.80 If Rp.˙1/ D Rn, then the origin of ˙2 is globally attractive.

The next theorem shows that under a certain condition on the structure of
f .x; d/, the origin of ˙1 is attractive for any input d 2 Lp.
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Theorem 2.81 Suppose that ˙1 is globally Lp stable with fixed initial condition
without finite gain for some p 2 Œ1;1/. If there exist ı, m1, m2, and q 2 Œ0; p/

such that for any x with kxk 6 ı and for any d ,

kf .x; d/k 6 m1 Cm2kdkq; (2.40)

then for x0 D 0 and any d 2 Lp, x.t; 0; d; 0/ ! 0 as t ! 1.

Proof : Define a generalized saturation function x� W Rn ! Rn 2 C 1 as

x�.x/ D

2

664

x�1.x1/
:::

x�n.xn/

3

775 ; x�i .xi / D

8
<̂

:̂

� 2ı
�
; xi < �ı

2ı
�

sin. �
2ı
xi /; jxi j 6 ı

2ı
�
; xi > ı:

Consider xx.t/ D x�.x.t; 0; d; 0//. Note that xx.t/ is still absolutely continuous
on any compact interval. Let xxi and fi denote the i th element of xx and f .x; d/
respectively. We have

j Txxi .t/j D
(
0; jxi .t/j > ı
j cos. �

2ı
xi /fi .x.t/; d.t//j 6 m1 Cm2kd.t/kq ; jxi .t/j 6 ı;

Therefore, k Txx.t/k 6
p
n.m1 C m2kdkq/ for all t > 0. Note that kd.t/kq 6

1 C kd.t/kp , and hence, kdkq is locally uniformly integrable. Then it follows
from [182] that xx.t/ ! 0 as t ! 0. This implies that x.t; 0; d; 0/ ! 0 as t ! 0.

Remark 2.82 In [89], in order to prove the same result as in Theorem 2.81, the
following condition was imposed on f .x; d/: there exist ı1, K1, K2, and ˛ 2
Œ0; p� such that for x 2 Rn with kxk 6 ı1 and d 2 Rm,

kf .x; d/k 6 K1.kxk C kdk/CK2.kxk˛ C kdk˛/:

Theorem 2.81 shows that the dependence on kxk in the upper bound of the above
condition is not necessary.

An immediate consequence of Theorem 2.81 is the next theorem.

Theorem 2.83 Suppose that ˙1 is globally Lp stable with fixed initial condition
without finite gain and Rp.˙1/ D Rn for some p 2 Œ1;1/. If there exist ı, m1,
m2 and q 2 Œ0; p� such that for any x with kxk 6 ı and for any d ,

kf .x; d/k 6 m1 Cm2kdkq;
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then ˙1 is globally Lp stable without finite gain with arbitrary initial condition.
Moreover, for any x0 2 Rn and any d 2 Lp, x.t I x0; d / ! 0 as t ! 1.

Proof : Since Rp.˙1/ D Rn, for any x0 2 Rn, there exist finite T , M , and a
measurable input d0 W Œ0; T � ! Rm such that x.T I 0; d0/ D x0 and

TZ

0

kd0.t/kp dt 6 M:

For any d 2 Lp, define

xd.t/ D
(
d0.t/; t 2 Œ0; T �
d.t � T /; t > T:

Then we have x.t I x0; d / D x.t C T; 0; xd; 0/. Clearly, xd 2 Lp. This implies
that x.�I 0; xd/ 2 Lp, and hence, x.�I x0; d / 2 Lp. This proves Lp stability with
arbitrary initial condition and it follows from Theorem 2.81 that x.t I 0; xd/ ! 0

as t ! 1 and therefore x.t I x0; d / ! 0 as t ! 1.

In what follows, we prove a theorem that is a slight generalization of results
of [25].

Theorem 2.84 Suppose that ˙1 is locally Lp stable with fixed initial condition
and with finite gain and small-signal locally Lp reachable. Then the origin of ˙2

is locally asymptotically stable.

Proof : Let " be an arbitrary positive real number. We need to show that there
exists a ı > 0 such that kx0k 6 ı implies that kx.t I x0; 0/k 6 " for all t > 0.
Toward this end, let ı 6 "

2
be chosen such that for any x0 2 Rn with kx0k 6 ı,

there exist a finite time T and a measurable input d W Œ0; T � ! Rm such that

x.T I 0; d/ D x0 and kdkLp
< "

2�

�
"

2M."/

� 1
p
:

This is possible due to Lp local reachability.
Set d.t/ D 0 for t > T . Since ˙1 is locally Lp stable with finite gain, from

Definition 2.74, there exists a � such that

1Z

T

kx.t I 0; d/kp dt 6
1Z

0

kx.t I 0; d/kp dt 6 �pkdkp
Lp
< "pC1

2pC1M."/
:
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For t > T , the system ˙1 is equivalent to ˙2 initialized at x.0/ D x0, that is,
x.t I 0; d/ D x.t � T I x0; 0/. Hence, we have

1Z

0

kx.t I x0; 0/kp dt < "pC1

2pC1M."/
: (2.41)

It immediately follows from Lemma 2.79 that x.t I x0; 0/ ! 0 as t ! 1.
We proceed to show that kx.t I x0; 0/k < " for all t > 0. Suppose, for the sake

of establishing a contradiction, that there exists a 	 such that kx.	 I x0; 0/k > ".
Let t1 < 	 be the largest value such that kx.t1I x0; 0/k D "=2, and let t2 6 	 be
the smallest value such that t2 > t1 and kx.t2I x0; 0/k D ". Such t1 and t2 exist
because kx0k 6 "

2
. Then "=2 6 kx.t I x0; 0/k 6 " for all t 2 Œt1; t2�. Let M."/

be a bound on f .x; 0/ for kxk 6 ". We have, owing to the absolute continuity of
x.t I x0; 0/,

kx.t2I x0; 0/k � kx.t1I x0; 0/k 6 kx.t2I x0; 0/ � x.t1I x0; 0/k

6

������

t2Z

t1

f .x.t/; 0/ dt

������
6

t2Z

t1

M."/ dt 6 M."/.t2 � t1/:

This gives that t2 � t1 > "
2M."/

and, hence, that

1Z

0

kx.t I x0; 0/kp dt >
t2Z

t1

kx.t I x0; 0/kp dt >
t2Z

t1

� "
2

�p

dt D "pC1

2pC1M."/
;

which contradicts (2.41). Hence, kx.t I x0; 0/k < " for all t > 0, which completes
the proof.

Remark 2.85 Compared with the result in [25], Theorem 2.84 only requires a
finite gain within an arbitrary small neighborhood of the origin of Lp space.

Remark 2.86 We assume here that f .x; d/ is continuous with respect to x, which
covers a large class of dynamical systems. In fact, it can be seen from the proof
that we only need continuity of f .x; d/ with respect to x at x D 0.



3
A special coordinate basis (SCB)
of linear multivariable systems

3.1 Introduction

What is called the special coordinate basis (SCB) of a multivariable linear
time-invariant system plays a dominant role throughout this book; hence a clear
understanding of it is essential. The purpose of this chapter is to recall the SCB as
well as its properties pertinent to this book. The SCB originated in [138, 140, 141]
and was crystallized for strictly proper systems in [139] and for proper systems in
[132]. Our presentation of SCB here omits all the proofs that can be found in the
literature.

What is SCB? It is a fine-grained structural decomposition of a multivariable
linear time-invariant system. It partitions a given system into separate but inter-
connected subsystems that reflect the architectural mapping of inner workings of
the system. By this we mean that the SCB identifies all pertinent structural el-
ements of a system and their functions, and most significantly, it also displays
the interconnections among all such structural elements. In doing so, the SCB
representation explicitly reveals the system’s finite and infinite zero structure and
invertibility properties. Since its introduction, the SCB has been used in a large
body of research, on topics including loop transfer recovery, timescale assign-
ment, disturbance rejection, H2 control, and H1 control. It has also been used
as a fundamental tool in the study of linear systems theory. For details on these
topics, we refer to the books [18, 19, 123, 133, 136], all of which are based on
the SCB, and the references therein. Other topics include multivariable root loci
[138, 140], decoupling theory [139], factorization of linear systems [20], squaring
down of nonsquare systems [130, 132, 139], and model order reduction [111]. As
will be clear to the readers, the influence of the SCB will be felt amply throughout
this book and often from different angles.

3.2 The SCB

We present the SCB in this section. For readers unfamiliar with the topic, the
complexities of the SCB may initially appear overwhelming. This is only a re-
flection, however, of the inherent complexities that exist in general multivariable

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__3,
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linear time-invariant systems. In the following exposition, significant complexity
is added to accommodate general non-strictly proper multivariable systems. To
get an overview of the SCB of progressively complex systems, we recommend
first reading the SCB of uniform rank systems [138], the SCB of invertible sys-
tems [140], the SCB of strictly proper systems [139], and then the SCB of general
multivariable systems as presented shortly. Also, the complexities encountered
can be dissipated by carefully following various notations used.

We consider a linear time-invariant system ˙� characterized by a quadruple
.A;B; C;D/. Let the dynamic equations of ˙� be

˙� W
(
�x D Ax C Bu

y D Cx C Du;
(3.1)

where � is an operator indicating the time derivative d
dt

for continuous-time sys-
tems and a forward unit time shift for discrete-time systems. Also, x 2 Rn is the
state, u 2 Rm is the control, and y 2 Rp is the output. Without loss of generality,
we assume that .B 0 D0/0 and .C D/ have full rank.

Next, it is simple to verify that nonsingular transformations zU and zV exist such
that

zUD zV D
 
Im0

0

0 0

!
; (3.2)

where m0 is the rank of matrix D. Hence, hereafter, without loss of generality, it
is assumed that the matrix D has the form given on the right-hand side of (3.2).
As such, without loss of generality, we can focus on a system ˙� of the form

˙� W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�x D Ax C
�
B0

yB1

� u0

yu1

!

 
y0

yy1

!
D
 
C0

yC1

!
x C

 
Im0

0

0 0

! 
u0

yu1

!
,

(3.3)

where the matrices B0, yB1, C0, and yC1 have appropriate dimensions.
By nonsingular transformation of the state, output, and input, the system (3.3)

can be transformed to the SCB. We use the symbols zx, zy, and zu to denote the state,
output, and input of the system transformed to the SCB form. The transformations
between the original system (3.3) and the SCB are called �s, �y , and �u, and we
write x D �s zx, y D �y zy, and u D �uzu.

The state zx, output zy, and input zu are partitioned as

zx D

˙
xa

xb

xc

xd

�
; zy D

�
y0

yd

yb

�
; zu D

�
u0

ud

uc

�
:
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Each component of state zx represents a particular subsystem described in the next
section. In the partition of output zy, y0 is the original part of output as given in
(3.3), yd is the output from the xd subsystem, and yb is the output from the xb

subsystem. Similarly, in the partition of input zu, u0 is the original part of input
as given in (3.3), ud is the input to the xd subsystem, and uc is the input to
the xc subsystem. Because u0 appears first in both u and zu, �u is of the form
diag.Im0

; x�u/, for some nonsingular x�u.

3.2.1 Structure of the SCB

Consider first the case when the general system ˙� as given in (3.1) is strictly
proper, that is, the matrix D D 0, and consequently u0 and y0 do not exist in
(3.3). The meaning of the four subsystems can be explained as follows:

� The xa subsystem represents the zero dynamics. This part of the system is
not directly affected by any inputs nor does it affect any outputs directly.
It may be affected, however, by the outputs yb and yd from xb and xd

subsystems.

The state xa can be partitioned further into three substates x�
a , x0

a , and
xC

a . These substates x�
a , x0

a , and xC
a are associated respectively with the

dynamics of zeros which are in the open left-hand complex plane, on the
imaginary axis, and in the open right-hand complex plane for continuous-
time systems and are within the unit circle, on the unit circle, and outside
the unit circle for discrete-time systems.

� The xb subsystem has a direct effect on the output yb , but it is not directly
affected by any inputs. It may be affected, however, by the output yd from
the xd subsystem. The xb subsystem is observable from the output yb . The
existence of xb subsystem renders the given system˙� non-right invertible.
That is, ˙� is right invertible whenever xb subsystem is nonexistent.

� The xc subsystem is directly affected by the input uc , but it does not have
a direct effect on any outputs. It may also be affected by the outputs yb and
yd from the xb and xd subsystems, as well as the state xa. However, the
influence from xa is matched with the input uc (i.e., the influence from xa

is additive to that of the input uc ). The xc subsystem is controllable from
the input uc . The existence of xc subsystem renders the given system ˙�
non-left invertible. That is, ˙� is left invertible whenever xc subsystem is
nonexistent.

� The xd subsystem represents the infinite zero structure. This part of the
system is directly affected by the input ud , and it also affects the output
yd directly. The xd subsystem can be further partitioned into md single-
input single-output (SISO) subsystems with states xi and outputs yi for
i D 1; : : : ; md . Each of these subsystems consists of a chain of integra-
tors of length qi , from the i ’th element of ud (denoted by ui ) to the i ’th
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element of yd (denoted by yi ). Each integrator chain may be affected at
each stage by the output yd from the xd subsystem, and at the lowest level
of the integrator chain (where the input appears), it may be affected by all
the states of the system. The xd subsystem is observable from yd and con-
trollable from ud .

The structure of strictly proper SCB systems is summarized in Table 3.1. For non-
strictly proper systems, the structure is the same, except for the existence of the
direct-feedthrough output y0, which is directly affected by the input u0 and can
be affected by any of the states of the system. It can also affect all the states of the
system.

Table 3.1: Summary of strictly proper SCB structure

Subsystem Input Output Interconnections

xa – – yb , yd

xb – yb yd

xc uc – yb , yd , xa
a

xd ud yd xa
a, xa

b
, xa

c

The Interconnections column indicates influences from other subsystems.
aMatched with input

A block diagram of the SCB is given in Figs. 3.1–3.4. Figure 3.1 expresses the
zero dynamics. Figure 3.2 represents the dynamics that is present if and only if
the system ˙� is not right invertible. Figure 3.3 represents the dynamics that is
present if and only if the system˙� is not left invertible. Finally, the dynamics in
Fig. 3.4 is related to the infinite zero structure. In this last figure, a signal given
by a double-edged arrow is some linear combination of outputs yi , i D 0 to md ,
whereas the signal given by the double-edged arrow with a solid dot in it is some
linear combination of all states.

3.2.2 SCB equations

The SCB representation of the system ˙� as given in (3.3) is articulated by the
following theorem.

Theorem 3.1 For any given system ˙� characterized by the matrix quadruple
.A;B; C;D/, there exist;

(i) Unique coordinate-free nonnegative integers:
na�.˙�/, naı.˙�/, naC.˙�/, nb.˙�/, nc.˙�/, nd .˙�/, md 6 m � m0,
and qi , i D 1; : : : ; md .
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Aaa

Ba0y0 + Labyb + Ladyd

xa

Figure 3.1: Zero dynamics

Abb

Bb0y0 + Lbdyd

xb
Cb

yb

Output

Figure 3.2: Non-right-invertible dynamics

Bc

Acc

Bc0y0 + Lcdyd

uc + E−
cax

−
a + E0

cax
0
a + E+

cax
+
a + Rcbyb

xc

Figure 3.3: Non-left-invertible dynamics

ui xiqi
xiqi−1 xi1 = yi

Output

Output

u0 y0

Figure 3.4: Infinite zero structure
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(ii) Nonsingular state, output, and input transformations �s, �y , and �u that
take the given ˙� into the SCB that displays explicitly both the finite and
the infinite zero structures of ˙� as well as its invertibility properties.

The SCB is described by the following set of equations:

�x�
a D A�

aax
�
a C B�

a0y0 C L�
adyd C L�

abyb ; (3.4)

�x0
a D A0

aax
0
a C B0

a0y0 C L0
adyd CL0

abyb ; (3.5)

�xC
a D AC

aax
C
a C BC

a0y0 CLC
ad
yd C LC

ab
yb; (3.6)

�xb D Abbxb C Bb0y0 CLbdyd ; (3.7)

�xc D Accxc C Bc0y0 C Lcdyd

C Bc.E
�
cax

�
a C E0

cax
0
a CEC

cax
C
a CRcbyb/C Bcuc ; (3.8)

y0 D C�
0ax

�
a C C 0

0ax
0
a C CC

0ax
C
a C C0bxb C C0cxc C C0dxd C u0; (3.9)

yb D Cbxb ; (3.10)

and for each i D 1; : : : ; md ,

�xi D Aqi
xi C Li0y0 C Lidyd

C Bqi

0

@ui C Eiaxa C Eibxb C Eicxc C
mdX

j D1

Eijxj

1

A ; (3.11)

yi D Cqi
xi : (3.12)

Here the states x�
a , x0

a , xC
a , xb , xc , and xd have dimensions na�.˙�/, naı.˙�/,

naC.˙�/, nb.˙�/, nc.˙�/, and nd .˙�/ D Pmd

iD1 qi , respectively, whereas xi is
of dimension qi for each i D 1; : : : ; md . The control vectors u0, ud , and uc have,
respectively, dimensions m0, md , and mc D m � m0 � md , whereas the output
vectors y0, yd , and yb have, respectively, dimensions p0 D m0, pd D md , and
pb D p � p0 � pd . Also, we have

x D �s zx; y D �y zy; u D �uzu;

zx D

˙
xa

xb

xc

xd

�
; xa D

�
x�

a

x0
a

xC
a

�
; xd D

ˇ
x1

x2

:::

xmd

�
;

zy D

�
y0

yd

yb

�
; yd D

ˇ
y1

y2

:::

ymd

�
;
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zu D

�
u0

ud

uc

�
; ud D

ˇ
u1

u2

:::

umd

�
:

The xi (i D 1; : : : ; md ) together form xd and, similarly, the yi (i D 1; : : : ; md )
together form yd , and

yd D Cdxd ; where Cd D

�
Cq1

0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Cqmd

�
: (3.13)

The matrices Aqi
, Bqi

, and Cqi
have the following form:

Aqi
D
 
0 Iqi �1

0 0

!
; Bqi

D
 
0

1

!
; Cqi

D
�
1 0

�
: (3.14)

(Obviously, for the case when qi D 1, we have Aqi
D 0, Bqi

D 1, and Cqi
D 1.)

Clearly, (Aqi
,Bqi

) and (Cqi
,Aqi

) form, respectively, controllable and observable
pairs. This implies that all the states xi are both controllable and observable.
Assuming that the xi are arranged such that qi 6 qiC1, the matrix Lid has the
particular form

Lid D
�
Li1 Li2 � � � Li i�1 0 0 � � � 0

�
:

The last row of each Lid is identically zero. Furthermore, the pair .Acc ; Bc/ is
controllable, and the pair .Cb; Abb/ is observable. Moreover, for continuous-time
systems, we have �.A�

aa/ 2 C�, �.A0
aa/ 2 C0, �.AC

aa/ 2 CC, whereas for
discrete-time systems, we have �.A�

aa/ 2 C�, �.A0
aa/ 2 C���, and �.AC

aa/ 2 C˚.

3.2.3 A compact form

We can rewrite the SCB given by Theorem 3.1 in a more compact form as a
system characterized by the quadruple . zA; zB; zC; zD/:

8
ˆ̂̂
<

ˆ̂̂
:

�zx D zAzx C zB

�
y0

ud

uc

�

zy D zC zx C zDzu;
(3.15)
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where

zA WD � �1
s .A� B0C0/�s D�
A�

aa 0 0 L�
ab
Cb 0 L�

ad
Cd

0 A0
aa 0 L0

ab
Cb 0 L0

ad
Cd

0 0 AC
aa LC

ab
Cb 0 LC

ad
Cd

0 0 0 Abb 0 LbdCd

BcE
�
ca BcE

0
ca BcE

C
ca BcRcbCb Acc LcdCd

BdE
�
da

BdE
0
da

BdE
C
da

BdEdb BdEdc Add

�
; (3.16)

and where

Add D

�
Aq1

0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Aqmd

�
C LddCd C BdEdd ; (3.17a)

Bd D

�
Bq1

0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Bqmd

�
; (3.17b)

zB W D � �1
s

�
B0

yB1

�
�u D

�
B�

a0 0 0

B0
a0 0 0

BC
a0 0 0

Bb0 0 0

Bc0 0 Bc

Bd0 Bd 0

�
; (3.18)

zC WD � �1
y

 
C0

yC1

!
�s D

�
C�

0a C 0
0a CC

0a C0b C0c C0d

0 0 0 0 0 Cd

0 0 0 Cb 0 0

�
; (3.19)

and

zD WD � �1
y D�u D

�
Im0

0 0

0 0 0

0 0 0

�
: (3.20)



3.3 Properties of the SCB 59

In the above equations, if one needs expanded expressions for the matrices E�
da

,
E0

da
,EC

da
, Edb,Edc , andEdd , they can easily be obtained from (3.11). Note that

we always have that .Acc; Bc/ and .Add ; Bd / are controllable while .Cb; Abb/ is
observable.

Admittedly, the SCB of Theorem 3.1 looks complicated with all its innate de-
compositions of state, output, and input variables. However, as will be evident
throughout the book, the SCB of a linear system displays clearly the underlying
structure of it. In fact, the proofs of several theorems, lemmas, and properties
stated in later chapters will be hard to follow without having endured the intrica-
cies of the SCB.

3.3 Properties of the SCB

The SCB is closely related to the canonical form of Morse [103], which is ob-
tained through transformations of the state, input, and output spaces and the ap-
plication of state feedback and output injection. A system in the canonical form
of Morse consists of four decoupled subsystems that reflect essential geometric
properties of the original system. The SCB form of a system largely reflects the
same properties; however, the SCB is obtained through transformations of the
state, input, and output spaces alone, without the application of state feedback
and output injection. Thus, the SCB is merely a representation of the original sys-
tem in a different coordinate basis, and it can therefore be used directly for design
purposes.

Some properties of the SCB, which correspond directly to the properties of the
canonical form of Morse, are first summarized as follows:

� The invariant zeros of the system ˙� given in (3.1) are the eigenvalues
of the matrix Aaa. Hence, the system is minimum-phase if and only if
the eigenvalues of Aaa are located in the open left-half complex plane for
continuous-time systems and within the unit circle for discrete-time sys-
tems.

� The system˙� given in (3.1) is right invertible if and only if the subsystem
xb is nonexistent.

� The system ˙� given in (3.1) is left invertible if and only if the subsystem
xc is nonexistent.

� The system˙� given in (3.1) is invertible if and only if both the subsystem
xb and the subsystem xc are nonexistent.

� The system˙� given in (3.1) hasm0 infinite zeros of order 0 and ixqi infinite
zeros of order i , where xqi is the number integrator chains of length i in the
xd subsystem.
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By studying the dynamics of the xa subsystem and its connections to the rest of
the system, one obtains a precise description of the invariant zero dynamics of the
system and the classes of input signals that may be blocked by these zeros. The
information thus obtained goes beyond what can be obtained through the notions
of state and input pseudo zero directions (see [92, 122]).

The representation of the infinite zero structure through integrator chains in
the xd subsystem allows for the explicit construction of high-gain controllers and
observers in a general multiple-input multiple-output setting (see, e.g., [131]).
This removes unnecessary restrictions of square-invertibility and uniform relative
degree that are found in much of the high-gain literature.

We next describe in detail the pertinent properties of the SCB as summarized
above; each main property is stated in a subsection devoted to it. The properties
discussed below are true for both continuous- and discrete-time systems. How-
ever, sometimes, for convenience of writing, we use the notations commonly used
for continuous-time systems. The reader can easily decipher the corresponding
notations for discrete-time systems. For clarity, whenever it is needed, we repeat
our discussion for discrete-time systems.

3.3.1 Observability (detectability) and controllability
(stabilizability)

In this subsection, we examine the issues related to observability, detectability,
controllability, and stabilizability of a system via its SCB. Note that we simply
use detectability and stabilizability, which for continuous-time systems refers to
C�-detectability and C�-stabilizability, whereas for discrete-time systems, this
refers to C�-detectability and C�-stabilizability.

We have the following property.

Property 3.2 We note that .Cb; Abb/ and .Cqi
; Aqi

/ form observable pairs. Un-
observability can arise only in the variables xa and xc . In fact, the given system
˙� is observable (detectable) if and only if .Cobs; Aobs/ is observable (detectable),
where

Aobs D
 
Aaa 0

BcEca Acc

!
; Aaa D

�
A�

aa 0 0

0 A0
aa 0

0 0 AC
aa

�
;

Cobs D
 
C0a C0c

BdEda BdEdc

!
; C0a D

�
C�

0a C 0
0a CC

0a

�
;

Eda D
�
E�

da
E0

da
EC

da

�
; Eca D

�
E�

ca E0
ca EC

ca

�
:

Similarly, .Acc; Bc/ and .Aqi
; Bqi

/ form controllable pairs. Basically, the vari-
ables xa and xb determine the controllability of the system. In fact, ˙� is
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controllable (stabilizable) if and only if .Acon; Bcon/ is controllable (stabilizable),
where

Acon D
 
Aaa LabCb

0 Abb

!
; Bcon D

 
Ba0 Lad

Bb0 Lbd

!
;

Ba0 D

�
B�

a0

B0
a0

BC
a0

�
; Lab D

�
L�

ab

L0
ab

LC
ab

�
; Lad D

�
L�

ad

L0
ad

LC
ad

�
:

3.3.2 Left and right invertibility

In this subsection, we examine the invertibility properties of ˙� via its SCB. Let
us first recall from [104] the definition of right and left invertibility.

Definition 3.3 Consider a linear system ˙�:

� Let u1 and u2 be any inputs to the system ˙�, and let y1 and y2 be the
corresponding outputs (for the same initial conditions). Then ˙� is said to
be left invertible if y1.t/ D y2.t/ for all t � 0 implies that u1.t/ D u2.t/

for all t � 0.

� The system ˙� is said to be right invertible if, for any yref.t/ defined on
Œ0;1/, an input u and a choice of x.0/ exist such that y.t/ D yref.t/ for
all t 2 Œ0;1/.

� The system ˙� is said to be invertible if the system is both left and right
invertible.

Remark 3.4 One can easily deduce the following:

(i) ˙� is right invertible if and only if its transfer function matrix is a surjective
rational matrix.

(ii) ˙� is right invertible if and only if the rank of P˙�
.s/ D nC p for all but

finitely many s 2 C, where the polynomial matrixP˙�
.s/ is the Rosenbrock

system matrix of ˙� defined as

P˙�
.s/ WD

 
sI � A �B
C D

!
:

(iii) ˙� is left invertible if and only if its transfer function matrix is an injective
rational matrix.

(iv) ˙� is left invertible if and only if the rank of P˙�
.s/ D n C m for all but

finitely many s 2 C.
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We have the following property connecting these properties to the SCB:

Property 3.5 The given system ˙� is right invertible if and only if xb and hence
yb are nonexistent (nb D 0, pb D 0), left invertible if and only if xc and hence
uc are nonexistent (nc D 0, mc D 0), and invertible if and only if both xb and
xc are nonexistent. Moreover,˙� is called degenerate if it is neither left nor right
invertible.

3.3.3 Finite zero structure

In this subsection, we recall first the definition of invariant zeros of a system and
their generalized associated right state and input zero direction chains, and then
we discuss how SCB exhibits them in its structure.

The invariant zeros of a system ˙� that is characterized by .A;B; C;D/ are
defined via the Smith canonical form of the Rosenbrock system matrix P˙�

.s/.
Let us first briefly recall the Smith canonical form for any polynomial matrix
P.s/ 2 Rn�mŒs�. It is well known (see, e.g., [40]), that for any P.s/ 2 Rn�mŒs�,
there exist unimodular1 matrices U.s/ 2 Rn�nŒs�, V.s/ 2 Rm�mŒs� and �.s/ 2
Rn�mŒs� with the latter of the form

�.s/ D

˙
 1.s/ 0 � � � � � � � � � 0

0
: : :

: : :
:::

:::
: : :  r .s/

: : :
:::

:::
: : : 0

: : :
:::

:::
: : :

: : : 0

0 � � � � � � � � � 0 0

�
;

such that

P.s/ D U.s/�.s/V .s/:

Here �.s/ is called the Smith canonical form of P.s/ when the  i .s/ are monic
polynomials with the property that  i .s/ divides  iC1.s/ for i D 1; : : : ; r � 1,
and r is the normal rank of the matrix P.s/. The polynomials i .s/ are called the
invariant factors of P.s/. Their product  .s/ D  1.s/ 2.s/ � � � r .s/ is called
the zero polynomial of P.s/. Each invariant factor  i .s/, i D 1; 2; : : : ; r , can be
written as a product of linear factors

 i .s/ D .s � �i1/
˛i1.s � �i2/

˛i2 � � � .s � �iki
/˛iki ; i D 1; 2; : : : ; r ;

1A polynomial matrix in Rn�mŒs� that is invertible with a polynomial inverse is called unimod-
ular.
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where �ik ¤ �i` (k ¤ `) are complex numbers and ˛ik (k; ` 2 f1; : : : ; ki g) are
positive integers. Then the complete set of factors, .s��ik/

˛ik , k D 1; 2; : : : ; ki ,
and i D 1; 2; : : : ; r , is called the elementary divisors of the polynomial matrix
P.s/.

Now we are ready to recall the definition of the invariant zeros [92] of˙�.

Definition 3.6 The roots of the zero polynomial  .s/ of the (Rosenbrock) system
matrix P˙�

.s/ are called the invariant zeros of ˙�.

Remark 3.7 It is obvious from the above definition that an alternative way of
defining an invariant zero of ˙� is as follows: � 2 C is called an invariant zero
of ˙� if the rank of P˙�

.�/ is strictly smaller than the normal rank of P˙�
.s/.

Note that the normal rank is defined as the rank of a polynomial or rational matrix
in all but finitely many s 2 C.

The SCB of Theorem 3.1 shows explicitly the invariant zeros of the system. To
be more specific, we have the following property.

Property 3.8 Invariant zeros of ˙� are the eigenvalues of Aaa. Moreover, for
continuous-time systems, the invariant zeros in C�, C0, and CC are the eigenval-
ues of A�

aa, A0
aa, and AC

aa, respectively. Similarly, for discrete-time systems, the
invariant zeros that are in C�, C���, and C˚ are, respectively, the eigenvalues of
A�

aa, A0
aa, and AC

aa.

For continuous-time systems, if all invariant zeros of a system ˙� are in C�,
then we say ˙� is minimum phase; otherwise, ˙� is said to be non-minimum
phase. Those invariant zeros that are in C� are called the stable invariant zeros.
Also, those that are not in C� are called the unstable invariant zeros. Analogously,
for discrete-time systems, if all the invariant zeros of a system˙� are in C�, then
we say˙� is minimum phase; otherwise,˙� is said to be of non-minimum phase.
Those invariant zeros that are in C� are called the stable invariant zeros. Also,
those that are not in C� are called the unstable invariant zeros.

The following definition introduces the notions of algebraic and geometric mul-
tiplicities [57] of an invariant zero and its multiplicity structure.

Definition 3.9 The algebraic multiplicity �z of an invariant zero z is defined as
the degree of the product of the elementary divisors of P˙�

.s/ corresponding
to z. Likewise, the geometric multiplicity �z of an invariant zero z is defined as
the number of the elementary divisors of P˙�

.s/ corresponding to z. Moreover,
the invariant zero z is said to have a semisimple structure if its algebraic and
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geometric multiplicities are equal. Otherwise, it is referred to as an invariant zero
with nonsimple structure.

Given an invariant zero z, let nz;i be the degree of .s � z/ in the invariant
factor �i .s/ of the Rosenbrock system matrix. Then the multiplicity structure of
an invariant zero is defined as

S�
z D fnz;1; nz;2; : : : ; nz;�z

g: (3.21)

If nz;1 D nz;2 D � � � D nz;�z
D 1, then we say z is a semisimple invariant zero of

the given system ˙�. It is called a simple invariant zero if �z D 1 and nz;1 D 1.

We discuss next the invariant zeros together with their multiplicity structure of
the system ˙� as displayed by the SCB.

Property 3.10 Consider the system ˙� with its associated SCB. Then, z is an
invariant zero of˙� with multiplicity structure S�

z if and only if z is an eigenvalue
of Aaa with multiplicity structure S�

z .

We need to recall next the notion of the right state and input zero directions
and left state and input zero directions [57] associated with an invariant zero of a
system. We focus first on the right state and input zero directions associated with
an invariant zero for a left-invertible system ˙� (left invertibility is discussed in
Definition 3.3).

Definition 3.11 Consider an invariant zero z with a semisimple structure of a
left-invertible system ˙�. Then the associated right state and input zero direc-
tions, xz ¤ 0 and uz , of ˙� are defined as those that satisfy the condition

P˙�
.z/

 
xz

uz

!
D
 
zI � A �B
C D

! 
xz

uz

!
D 0:

Some papers in the literature extend the above definition to non-left-invertible
systems. This is incorrect as argued in [122].

Whenever an invariant zero has a nonsimple multiplicity structure, a concept of
generalized right state and input zero direction2 chain associated with that invari-
ant zero exist. A proper definition of this is given in [122]. At this time, we would
like to point out that although some researchers (e.g., see [92] and [157] among

2Generalized right state and input zero directions are also called pseudo-right state and input zero
directions.
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others) define the generalized right state and input zero direction chains as xj
R and

w
j
R , j D 1; � � � ; �z � �z , satisfying

P˙�
.z/

 
x

j
R

w
j
R

!
D �

 
x

j �1
R

0

!
; j D 1; : : : ; �z � �z : (3.22)

However, this is also incorrect for non-left-invertible systems as argued in [122].
In what follows, we identify the right state and input zero direction chain as-

sociated with an invariant zero z of a general system whether it is left invertible
or not, and whether z has a semisimple multiplicity structure or not. However, as
discussed, in the absence of a precise definition that is not based on any SCB, we
caution that Property 3.12 can be viewed either as a definition or as a property.

Let us start by defining the eigenvector chain associated with an eigenvalue of
the matrix Aaa. Given an invariant zero z of the system ˙� (i.e., the eigenvalue
z of the matrix Aaa), for each i D 1 to �z , a set of vectors in Rna that satisfies
the following condition (3.23) is the eigenvector chain of Aaa associated with the
invariant zero z:

Aaax
z
i;1 D zxz

i;1; and .Aaa � zIna
/xz

i;j C1 D xz
i;j ; j D 1; : : : ; nz;i � 1:

(3.23)
We have the following property regarding the right state and input zero direction
chain associated with an invariant zero of a system.

Property 3.12

(i) For each i 2 f1; : : : ; �zg, a set of vectors in Rn given in (3.24) is the gener-
alized right state zero direction chain of ˙� associated with the invariant
zero z

xz
ij D �s

ˇ
xz

ij

0
:::

0

�
j 2 f1; : : : ; �z;ig: (3.24)

Also, xz
i1 is the right state zero direction of ˙� associated with z.

(ii) For each i 2 f1; : : : ; �zg, a set of vectorswz
ij , j D 1 to nz;i , in Rm as given

in (3.25) is a generalized right input zero direction chain of˙� associated
with the invariant zero z:

wz
ij D ��y

 
Eda

Edc

!
xz

ij ; (3.25)

whereEda is as defined in Property 3.2. Also,wz
i1 is said to be a right input

zero direction of ˙� associated with z.
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The following property gives a dynamical interpretation of finite zero structure
of a system. It is formulated for continuous-time systems. An analogous formula-
tion is valid for discrete-time systems as well.

Property 3.13 (Dynamical interpretation of finite zero structure) For a system
˙� that is not necessarily left invertible, given that the initial condition, x.0/ D
xz

i˛ for any ˛ � nz;i and the input

u D
X̨

j D1

wz
ij t

˛�j exp.zt/

.˛ � j /Š for all t > 0; (3.26)

where z is any invariant zero of the system and nz;i 2 S�
z , we have

y � 0

and

x.t/ D
X̨

j D1

xz
ij t

˛�j exp.zt/

.˛ � j /Š for all t > 0: (3.27)

One can define the left state and input zero direction chain associated with an
invariant zero of ˙� as follows.

Definition 3.14 The left state and input zero direction chain associated with
each invariant zero of ˙� are defined as the corresponding right state and input
zero direction chain of the dual system ˙�d .

Remark 3.15 We can connect the list of structural invariant indices due to Morse
[103] to the SCB. In particular, the list I1 of Morse is exactly equal to the invari-
ant factors of Aaa.

Next, we would like to recall the definition of the input decoupling zeros and
the output decoupling zeros of a system.

Definition 3.16 The zeros of the matrix pencil
�
�I �A �B

�
;

that is, the values of � for which the above pencil loses rank, are called the input
decoupling zeros of ˙�. They are also referred to as the input decoupling zeros
of the pair .A;B/.
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The zeros of the matrix pencil

 
�I � A

C

!
;

that is, the values of � for which the above pencil loses rank, are called the output
decoupling zeros of ˙�. They are also referred to as the output decoupling zeros
of the pair .C;A/.

Remark 3.17 In the literature, input decoupling zeros are also referred to as
uncontrollable eigenvalues, whereas the output decoupling zeros are referred to
as unobservable eigenvalues.

Note that as we have done for invariant zeros, we can also associate a multi-
plicity structure with an input- or output-decoupling zero. The precise definition
should be obvious from the above and hence is not included here.

The following property shows how input decoupling zeros and output decou-
pling zeros of ˙� are displayed by the SCB.

Property 3.18 Consider a system ˙� with corresponding special coordinate ba-
sis. Define Acon; Bcon; Aobs, and Cobs according to Property 3.2.

(i) The input decoupling zeros of ˙� are the input decoupling eigenvalues of
the pair .Acon; Bcon/. Also, input decoupling zeros of .Abb; Lbd / are con-
tained in the set of input decoupling zeros of ˙�. Some of the input decou-
pling zeros of ˙� could be contained among its invariant zeros.

(ii) The output decoupling zeros of ˙� are the output decoupling eigenvalues
of the pair .Cobs; Aobs/. Also, output decoupling zeros of .BdEdc; Acc/ are
contained in the set of output decoupling zeros of .Cobs; Aobs/. Some of
the output decoupling zeros of ˙� could be contained among its invariant
zeros.

Remark 3.19 As it is obvious from Property 3.18, it is crucial to realize that the
input decoupling zeros and the output-decoupling zeros of a system need not be
invariant zeros.
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3.3.4 Infinite zero structure

In this subsection, we examine the infinite zero structure of a system and how it
is displayed by the SCB. Let us first recall some pertinent information from the
literature. Infinite zeros are defined either in association with root-locus theory or
as Smith–McMillan zeros of the transfer function at infinity.

Let us first view the infinite zeros from the viewpoint of root-locus theory. For
this, consider a strictly proper system˙� subject to a high-gain feedback u D z�y
for a scalar gain z�. It can then be shown (see, e.g., Hung and MacFarlane [50])
that the unbounded closed-loop poles of the feedback system can be listed as

sj`.z�/ D z�1=�j
	j` C 
j`.z�/ for ` D 1; : : : ; �j ; j D 1; : : : ; m;

where

lim
z�!1

z��1=�j 
j`.z�/ D 0:

Here sj` is termed an infinite zero of order �j . Actually, until recently, the infinite
zeros defined this way were considered to be fictitious objects introduced for the
convenience of visualization.

Let us next consider the infinite zeros from the viewpoint of Smith–McMillan
theory. To define the zero structure of the system ˙� at infinity, one can use the
familiar Smith–McMillan description of the zero structure at finite frequencies of
the corresponding transfer matrixH , which need neither to be square nor strictly
proper. A rational matrixH.s/ possesses an infinite zero of order k whenH.1=z/
has a finite zero of precisely that order at z D 0; see [29, 115, 120, 188].

The number of zeros at infinity together with their orders indeed defines an infi-
nite zero structure. It is important to note that for strictly proper transfer matrices,
the above two definitions of the infinite zeros and their structure are consistent.

Owens [110] related the orders of the infinite zeros of the root loci of a square
system with a nonsingular transfer function matrix to the C� structural invariant
indices list I4 of Morse [103]. This connection reveals that the structure at infinity
is in fact the topology of inherent integrations between the input and the output
variables. The SCB of Theorem 3.1 explicitly shows this topology of inherent
integrations. The following property pinpoints this.

Property 3.20 Let q0 D m0. Let qj be the integer such that exactly qj elements
of fq1; : : : ; qmd

g are equal to j . Also, let � be the smallest integer such that
qj D 0 for all j > � . Then there are q0 infinite zeros of order 0 and jqj number
of infinite zeros of order j, for j D 1; : : : ; � . Moreover, the C� structural invariant
indices list I4 of Morse is given by

I4 D f
q0‚ …„ ƒ

0; 0; : : : ; 0;

q1‚ …„ ƒ
1; 1; : : : ; 1; : : : ;

q�‚ …„ ƒ
�; �; : : : ; �g:
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Remark 3.21 The state vector xd in the SCB of a system is nonexistent if and
only if the given system does not have infinite zeros of order greater than or equal
to one.

3.3.5 Geometric subspaces

Geometric theory is concerned with the study of subspaces of the state space with
certain invariance properties, for example, A-invariant subspaces (which remain
invariant under the unforced motion of the system), .A;B/-invariant subspaces
(which can be made invariant by the proper application of state feedback), and
.C;A/ invariant subspaces (which can be made invariant by the proper applica-
tion of output injection) (see, e.g., [184, 205]). Prominent examples ofA-invariant
subspaces are the controllable subspace (i.e., the image of the controllability ma-
trix) and the unobservable subspace (the kernel of the observability matrix).

The development of geometric theory has in large part been motivated by the
challenge of decoupling disturbance inputs from the outputs of a system, either
exactly or approximately. Toward this end, a number of subspaces have been iden-
tified, which can be related to the different partitions in the SCB. Of particular
importance in the context of control design for exact disturbance decoupling is
the weakly unobservable subspace, which, by the proper selection of state feed-
back, can be made not to affect the outputs, and the controllable weakly unobserv-
able subspace, which has the additional property that the dynamics restricted to
this subspace is controllable. Of particular importance in the context of observer
design for exact disturbance decoupling is the strongly controllable subspace,
which, by the proper selection of output injection, is such that its quotient space
can be rendered unaffected by the system inputs, and the distributionally weakly
unobservable subspace, which has the additional property that the dynamics re-
stricted to its quotient space is observable.

We proceed now to connect some classic subspaces from the geometric theory
of linear systems to SCB. That is, in what follows, we show certain intercon-
nections between the decomposition of the state space as done by the SCB and
various invariant subspaces from the geometric theory. To do so, we recall the first
two subspaces. The subspaces Vg.˙�/ and Sg.˙�/ are classic subspaces and are
crucial elements of geometric theory of linear systems. Also, later on, we recall
two more subspaces, V�.˙�/ and S�.˙�/, which are recently introduced in the
context of H1 theory.

Definition 3.22 Consider a linear system ˙� characterized by the matrix quad-
ruple .A;B; C;D/. Then,

(i) The Cg-stabilizable weakly unobservable subspace Vg.˙�/ is defined as
the largest subspace of Rn for which a matrix F exists such that the sub-
space is .A C BF / invariant, contained in ker.C C DF/, whereas the
eigenvalues of .AC BF /jVg are contained in Cg � C.
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(ii) The Cg -detectable strongly controllable subspace Sg.˙�/ is defined as
the smallest subspace of Rn for which a matrix K exists such that the sub-
space is .ACKC/ invariant, contains im.B CKD/, and is such that the
eigenvalues of the map that is induced by .A C KC/ on the factor space
Rn=Sg are contained in Cg � C.

For the case when Cg D C, Vg and Sg are, respectively, denoted by V� and S�;
also, for the case when Cg D C�, Vg and Sg are, respectively, denoted by V�
and S�, whereas for the case Cg D C�0, Vg and Sg are, respectively, denoted
by V�0 and S�0. Analogously, for the case when Cg D C�, Vg and Sg are,
respectively, denoted by V� and S�, whereas for the case Cg D C˝, Vg and Sg

are, respectively, denoted by V˝ and S˝.
Finally, let a Cg be chosen such that it has no common elements with the set

of invariant zeros of ˙�. Then the corresponding Vg.˙�/, which is always in-
dependent of the particular choice of such a Cg is referred to as the strongly
controllable subspace R�.˙�/.

Remark 3.23 We note that Vg.˙�/ and Sg.˙�/ are dual in the sense that

Vg.˙�d / D Sg.˙�/?;

where ˙�d is the dual system of ˙�.
Moreover, it can be shown that R�.˙�/ equals V�.˙�/ \ S�.˙�/.

Remark 3.24 It is easy to observe that Vg.˙�/ and Sg.˙�/ are invariant under
state feedback and output injection.

Remark 3.25 We should note that if .A;B/ is Cg stabilizable, then for Vg.˙�/,
a matrix F exists that satisfies the conditions stated in Definition 3.22 and, more-
over, AC BF is Cg stable. An analogous comment can be made for Sg.˙�/.

Remark 3.26 It is easily shown that the subspaces Vg.˙�/ and Sg.˙�/ satisfy
the following:

 
A

C

!
Vg.˙�/ � �

Vg.˙�/˚ f0g�C im

 
B

D

!
(3.28)

and
ker

�
C D

�
\
�
A B

� �
Sg.˙�/˚ Rm

� � Sg.˙�/: (3.29)
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Remark 3.27 In literature [101, 102], two geometric subspaces, namely,
maximum uncontrollable subspace (MUCS) and maximum unobservable subspace
(MUS) of ˙�, are defined as follows: Consider the controllability matrix Qc.L/

of ˙� with output injection matrix L,

Qc.L/ D
�
B .AC LC/B : : : .AC LC/n�1B

�
:

Let L be chosen such that the null space of Qc.L/
0 is of maximal order. Such

a null space is called MUCS of ˙�. Similarly, consider the observability matrix
Qo.F / of ˙� with state feedback gain F :

Qo.F / D

ˇ
C

C.ACBF /
:::

C.AC BF /n�1

�
:

Let F be chosen such that the null space of Qo.F / is of maximal order. Such a
null space is called the MUS of ˙�.

We observe that MUS equals V� while MUCS is the orthogonal complement
of S�.

We define below the notion of strong (also called perfect or ideal) controllabil-
ity.

Definition 3.28 A given system ˙� is said to be strongly controllable if it is con-
trollable under any arbitrary output injection matrix L, that is, the pair .A C
LC; B C LD/ is controllable for every L of appropriate dimensions.

Analogously, we define below the notion of strong (also called perfect or ideal)
observability.

Definition 3.29 A given system ˙� is said to be strongly observable if it is ob-
servable under any arbitrary state feedback gainF , that is, the pair .ACBF; CC
DF / is observable for every F of appropriate dimensions.

The above properties can be characterized in terms of the geometric subspaces
defined above:

Theorem 3.30 Consider a linear system˙� characterized by the matrix quadru-
ple .A;B; C;D/. Then,
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� The system is strongly controllable if and only if V.˙�/ D Rn.

� The system is strongly observable if and only if V.˙�/ D f0g.

By now it is clear that the SCB decomposes the state space into several distinct
parts. In fact, the state space X is decomposed as

X D X�
a ˚ X0

a ˚ XC
a ˚ Xb ˚ Xc ˚ Xd :

Here X�
a is related to the stable invariant zeros, that is, to the eigenvalues of

A�
aa, which are the stable invariant zeros of ˙ . Similarly, X0

a ˚ XC
a is related

to the unstable invariant zeros of ˙ . On the other hand, Xb is related to right
invertibility, that is, the system is right invertible if and only if Xb D f0g, whereas
Xc is related to left invertibility, that is, the system is left invertible if and only if
Xc D f0g. The latter two equivalence are true provided that, as assumed before,
.B 0 D0/0 and .C D/ are of full rank. Finally, Xd is related to zeros of ˙ at
infinity.

We focus next on certain interrelationships between the SCB and some basic
ingredients of the geometric control theory.

Property 3.31 Consider a system ˙� that has already been transformed in the
SCB.

(i) X�
a ˚ X0

a ˚ XC
a ˚ Xc is equal to V�.˙�/.

(ii) X�
a ˚Xc is equal to V�.˙�/ or V�.˙�/ for continuous- and discrete-time

systems, respectively.

(iii) X�
a ˚ X0

a ˚ Xc is equal to V�0.˙�/ or V˝.˙�/ for continuous- and
discrete-time systems, respectively.

(iv) Xc ˚ Xd is equal to S�.˙�/.

(v) XC
a ˚ Xc ˚ Xd is equal to S�0.˙�/ or S˝.˙�/ for continuous- and

discrete-time systems, respectively.

(vi) X0
a ˚XC

a ˚Xc ˚Xd is equal to S�.˙�/ or S�.˙�/ for continuous- and
discrete-time systems, respectively.

(vii) Xc is equal to R�.˙�/.

Remark 3.32 In view of Property 3.5, it is obvious that˙� is left invertible if and
only if

R�.˙�/ D 0 and

 
B

D

!
is injective
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or equivalently

V�.˙�/\ B kerD D 0 and

 
B

D

!
is injective:

Similarly, ˙� is right invertible if and only if

V�.˙�/C S�.˙�/ D Rn and
�
C D

�
is surjective

or equivalently

S�.˙�/C C�1 imD D Rn and
�
C D

�
is surjective:

We recall now two more geometric subspaces V�.˙�/ and S�.˙�/ that were
introduced in [144].

Definition 3.33 For any � 2 C, we define

V�.˙�/ D
(

 2 Cn

ˇ̌
ˇ̌
ˇ 9 ! 2 Cm W 0 D

 
A� �I B

C D

! 



!

!)
(3.30)

and

S�.˙�/ D
(

 2 Cn

ˇ̌
ˇ̌
ˇ 9 ! 2 CnCm W

 



0

!
D
 
A� �I B

C D

!
!

)
: (3.31)

We note that the geometric subspaces V�.˙�/ and S�.˙�/ are associated with
the right state zero directions of ˙� if � is an invariant zero of ˙�. These sub-
spaces can also be displayed by the SCB of˙� as given in the following property.

Property 3.34 We have

V�.˙�/ D im

8
ˆ̂̂
<

ˆ̂̂
:
�s

˙
Xa� 0

0 0

0 Xc�

0 0

�9
>>>=

>>>;
; (3.32)

where Xa� is a matrix whose columns form a basis for the subspace,

f
a 2 Cna j.�I �Aaa/
a D 0 g (3.33)

and
Xc� D .Acc CBcFc � �I/�1Bc ; (3.34)



74 3 A special coordinate basis (SCB) of linear multivariable systems

with Fc a matrix with suitable dimensions such thatAccCBcFc has no eigenvalue
at �. We note that the existence of such an Fc is guaranteed since .Acc ; Bc/ is
controllable.

Also, we have

S�.˙�/ D im

8
ˆ̂̂
<

ˆ̂̂
:
�s

˙
�I � Aaa 0 0 0

0 Yb� 0 0

0 0 Inc
0

0 0 0 Ind

�9
>>>=

>>>;
; (3.35)

where
imYb� D kerCb.Abb CKbCb � �I/�1; (3.36)

with Kb a matrix with suitable dimensions such that Abb CKbCb has no eigen-
value at �. We note that the existence of such a Kb is guaranteed since (Cb, Abb)
is observable.

Clearly, if � is not an eigenvalue of Aaa, then we have

V�.˙�/ � R�.˙�/ (3.37)

and
S�.˙�/ 	 V�.˙�/C S�.˙�/: (3.38)

Next, we would like to note that V�.˙�/ and S�.˙�/ are dual in the sense that
V�.˙�d / D S�.˙�/?. Also, S�.˙�/ D V�.˙�d /

?.
The subspaces S�.˙�/ and V�.˙�/ are the subspaces of Cn when we consider

complex eigenvalues.
We have a precise characterization of this subspace. We factorize

X0
a D X01

a ˚X02
a

such that X02
a is defined by

X02
a D ˚

v 2 Rnaı

ˇ̌9� 2 C0 such that v0A0
aa D �v0 � :

Then we obtain
�
S�.˙�/C V�0.˙�/

�\ f\�2C0S�.˙�/g D S�.˙�/C V�.˙�/CX01
a

D X�
a ˚X01

a ˚Xc ˚Xd :

Note that we will use later that the above structure results in a specific structure
for A0

aa,

A0
aa D

 
A11 A12

0 A22

!
; B0

a0 D
 
B1

B2

!
;

with " 
A11 A12

0 A22

!
;

 
0

B2

!#

controllable. The eigenvalues of A11 are contained in the set of eigenvalues of
A22 with at least the same geometric multiplicity. Finally, A22 is diagonalizable.
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3.3.6 Miscellaneous properties of the SCB

Several properties of linear multivariable time-invariant systems can trivially be
visualized using the SCB of Theorem 3.1. We give below some of these proper-
ties.

Property 3.35 The normal rank of ˙� is equal to md Cm0. Moreover, it is easy
to see the following:

(i) normrankP˙�
.s/ D nC normrankŒC.sI �A/�1B CD�.

(ii) The normal rank of ˙� is equal to p if and only if ˙� is right invertible.

(iii) The normal rank of ˙� is equal to m if and only if ˙� is left invertible.

Property 3.36

(i) ˙� is right invertible, and minimum phase ) ˙� is stabilizable.

(ii) ˙� is left invertible, and minimum phase ) ˙� is detectable.

(iii) ˙� is invertible, and minimum phase ) ˙� is stabilizable and detectable.

(iv) ˙� is right invertible, and the invariant zeros are disjoint from the eigen-
values (or unstable eigenvalues) of A) ˙� is controllable (stabilizable).

(v) ˙� is left invertible, and its invariant zeros are disjoint from the eigenvalues
(or unstable eigenvalues) of A) ˙� is observable (detectable).

(vi) ˙� is invertible, and its invariant zeros are disjoint from the eigenvalues
(or unstable eigenvalues) of A ) ˙� is controllable and observable (sta-
bilizable and detectable).

(vii) The feedthrough matrix D in ˙� is injective ) ˙� is left invertible and
has no infinite zeros of order greater than or equal to one.

(viii) The feedthrough matrix D in ˙� is surjective )˙� is right invertible and
has no infinite zeros of order greater than or equal to one.

We connected in Sects. 3.3.3 and 3.3.4 the lists I1 and I4 of Morse [103] to
SCB. The following property connects the lists I2 and I3 of Morse to SCB.

Property 3.37

The list I2 of Morse D The controllability indices of the pair .Acc ; Bc/:

The list I3 of Morse D The observability indices of the pair .Cb; Abb/:
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We have also the following remark.

Remark 3.38 The integers

na�.˙�/; naı.˙�/; naC.˙�/; nb.˙�/; nc.˙�/; nd .˙�/;md ;

and qi .i D 1; : : : ; md /

are structurally invariant with respect to state feedback and output injection.
Moreover, the integers na.˙�/ D na�.˙�/ C naı.˙�/ C naC.˙�/, nb.˙�/,
nc.˙�/, and nd .˙�/ are, respectively, equal to the number of elements in the
lists I1, I2, I3, and I4 of Morse. For further details, one can refer to [103] and
[129].

3.3.7 Additional compact forms of the SCB

Finally, let us observe that, depending on some specific properties a given system
satisfies, SCB can be written compactly in different formats. For convenience, we
present below some such formats so that we can use them directly in later chapters
as the need arises.

We will sometimes use the SCB in a more compact form where the special
structure of xd is not made explicit and where x0

a and xC
a are viewed together as

x0C
a . In this case, we get

� �1
s .A� B0C0/�s D

�
A�

aa 0 L�
ab
Cb 0 L�

ad
Cd

0 A0C
aa L0C

ab
Cb 0 L0C

ad
Cd

0 0 Abb 0 LbdCd

BcE
�
ca BcE

0C
ca BcRcbCb Acc LcdCd

BdE
�
da

BdE
0C
da

BdEdb BdEdc Add

�
;

(3.39)

� �1
s

�
B0

yB1

�
�u D

�
B�

a0 0 0

B0C
a0 0 0

Bb0 0 0

Bc0 0 Bc

Bd0 Bd 0

�
; (3.40)

� �1
y

 
C0

yC1

!
�s D

�
C�

0a C 0C
0a C0b C0c C0d

0 0 0 0 Cd

0 0 Cb 0 0

�
; (3.41)

and

� �1
y

 
Im0

0

0 0

!
�u D

�
Im0

0 0

0 0 0

0 0 0

�
: (3.42)



3.3 Properties of the SCB 77

As discussed, the eigenvalues of A�
aa and A0C

aa are the invariant zeros of the given
system˙�. Moreover, for continuous-time systems, the eigenvalues of A�

aa are in
the open left-half complex plane, whereas the eigenvalues ofA0C

aa are in the closed
right-half complex plane. Similarly, for discrete-time systems, the eigenvalues of
A�

aa are within the unit circle, whereas the eigenvalues of A0C
aa are on the unit

circle or outside the unit circle.
If the given system˙� is left invertible, then the decomposition in (3.39)–(3.42)

simplifies because xc is no longer present (see Property 3.5), and we obtain the
following structure:

� �1
s .A� B0C0/�s D

˙
A�

aa 0 L�
ab
Cb L�

ad
Cd

0 A0C
aa L0C

ab
Cb L0C

ad
Cd

0 0 Abb LbdCd

BdE
�
da

BdE
0C
da

BdEdb Add

�
; (3.43)

� �1
s

�
B0

yB1

�
�u D

˙
B�

a0 0

B0C
a0 0

Bb0 0

Bd0 Bd

�
; (3.44)

� �1
y

 
C0

yC1

!
�s D

�
C�

0a C 0C
0a C0b C0d

0 0 0 Cd

0 0 Cb 0

�
; (3.45)

and

� �1
y

 
Im0

0

0 0

!
�u D

�
Im0

0

0 0

0 0

�
: (3.46)

Similarly, we will sometimes use the SCB in another more compact form where
this time x�

a and x0
a are viewed together as x�0

a . In this case, we get

� �1
s .A� B0C0/�s D

�
A�0

aa 0 L�0
ab
Cb 0 L�0

ad
Cd

0 AC
aa LC

ab
Cb 0 LC

ad
Cd

0 0 Abb 0 LbdCd

BcE
�0
ca BcE

C
ca BcRcbCb Acc LcdCd

BdE
�0
da

BdE
C
da

BdEdb BdEdc Add

�
;

(3.47)

� �1
s

�
B0

yB1

�
�u D

�
B�0

a0 0 0

BC
a0 0 0

Bb0 0 0

Bc0 0 Bc

Bd0 Bd 0

�
; (3.48)
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� �1
y

 
C0

yC1

!
�s D

�
C�0

0a CC
0a C0b C0c C0d

0 0 0 0 Cd

0 0 Cb 0 0

�
; (3.49)

and

� �1
y

 
Im0

0

0 0

!
�u D

�
Im0

0 0

0 0 0

0 0 0

�
: (3.50)

Once again, as discussed, the eigenvalues of A�0
aa and A0

aa are the invariant zeros
of the given system ˙�. Moreover, for continuous-time systems, the eigenvalues
of A�0

aa are in the closed left-half complex plane, whereas the eigenvalues of AC
aa

are in the open right-half complex plane. Similarly, for discrete-time systems, the
eigenvalues of A�0

aa are on the unit circle or within the unit circle, whereas the
eigenvalues of AC

aa are outside the unit circle.
If the given system˙� is left invertible, then the decomposition in (3.47)–(3.50)

simplifies because xc is no longer present (see Property 3.5), and we obtain the
following structure:

� �1
s .A� B0C0/�s D

˙
A�0

aa 0 L�0
ab
Cb L�0

ad
Cd

0 AC
aa LC

ab
Cb LC

ad
Cd

0 0 Abb LbdCd

BdE
�0
da

BdE
C
da

BdEdb Add

�
; (3.51)

� �1
s

�
B0

yB1

�
�u D

˙
B�0

a0 0

BC
a0 0

Bb0 0

Bd0 Bd

�
; (3.52)

� �1
y

 
C0

yC1

!
�s D

�
C�0

0a CC
0a C0b C0d

0 0 0 Cd

0 0 Cb 0

�
; (3.53)

and

� �1
y

 
Im0

0

0 0

!
�u D

�
Im0

0

0 0

0 0

�
: (3.54)

3.4 Software packages to generate SCB

While the SCB provides a fine-grained decomposition of multivariable linear
time-invariant systems, transforming an arbitrary system to the SCB is a com-
plex operation. A constructive algorithm for strictly proper systems is provided in
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[139] based on a modified Silverman algorithm [152]. This algorithm is lengthy
and involved and includes repeated rank operations and construction of nonunique
transformations to divide the state space. Thus, the algorithm can realistically be
executed by hand only for very simple systems.

To automate the process of finding transformations to the SCB, numerical algo-
rithms were developed and implemented as part of the Linear Systems Toolkit for
Matlab. The first among such work is by [80], and the resulting software was com-
mercialized in early 1990s [79]. The Toolkit was revised subsequently twice each
time with further improvements; the first revision was reported in [19, 28] and
the second revision in [91]. Although these numerical algorithms are invaluable
in practical applications, engineers also often operate on systems where some or
all of the elements of the system matrices have a symbolic representation. There
are obvious and definite advantages in being able to obtain symbolic representa-
tion of SCB without having to insert numerical values in place of symbolic vari-
ables. Furthermore, the numerical algorithms are based on inherently inaccurate
floating-point operations that make them prone to numerical errors. Ideally, if the
elements of the system matrices are represented by symbols and exact fractions,
one would be able to obtain an exact SCB representation of that system, also rep-
resented by symbols and exact fractions. To address these issues, Grip and Saberi
[42] developed recently a procedure for symbolic transformation of multivariable
linear time-invariant systems to the SCB, using the commercial mathematics soft-
ware suite “Maple.” The procedure is based on the modified Silverman algorithm
from [139], with a modification to achieve a later version of the SCB that in-
cludes an additional structural property (see, e.g., [122]) and an extension to SCB
for non-strictly proper systems [132]. Symbolic transformations are useful com-
plement to available numerical tools [19, 28]. Also, symbolic transformation to
the SCB makes it possible to work directly on the SCB representation of a system
without first inserting numerical values, thereby removing an obstacle to more
widespread use of SCB such as squaring down of nonsquare systems and asymp-
totic timescale assignment and other topics where the SCB has previously been
applied and to some other topics where the SCB has not yet been applied.

The “Maple” software code and its development are described in Sect. 3.A.

3.A “Maple” implementation

This Appendix in its entirety is the work of Grip and Saberi [42]. The intent here
is to obtain, by utilizing the commercial mathematics software suite “Maple”,
various transformation matrices and dimensions of variables involved to trans-
form a given multivariable linear time-invariant system to its SCB form as given
in Theorem 3.1. Before we present the “Maple” code in detail, we describe first
the concepts behind the algorithms used.

There are some notational changes here from those given in Sect. 3.2. In order
to be transparent of these changes, we rewrite (3.3) that describes the given mul-
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tivariable linear time-invariant system in the form given below where, for clarity,
only the notation of continuous-time system is given:

Tyx D yAyx C yByu;
yy D yC yx C yDyu; (3.55)

where as usual yx 2 Rn is the state, yu 2 Rm is the input, and yy 2 Rp is the output.
We assume without loss of generality that the matrices Œ yB 0; yD0�0 and Œ yC ; yD� are
of full rank.

For simplicity in the non-strictly proper case (i.e., yD ¤ 0), we assume here that
the input and output are partitioned as

yu D
 
u0

yu1

!
and yy D

 
y0

yy1

!
;

where u0 and y0 are of dimensionm0, and furthermore that yD has the form yD D
diag.Im0

; 0/ as in (3.3). Then we may write

yy D
 
y0

yy1

!
D
 
C0 yx C u0

yC1 yx

!
; (3.56)

where C0 consists of the upper m0 rows of yC , and yC1 consists of the remain-
ing rows of yC . The special form in (3.56) means that the input–output map is
partitioned to separate the direct-feedthrough part from the rest: the output y0 is
directly affected by u0, and the remainder of the output yy1 is not directly affected
by any input. Note that by substituting u0 D y0 � C0 yx, we can write the system
(3.55) in the alternative form:

Tyx D . yA � B0C0/yx C yB
 
y0

yu1

!
;

yy D yC yx C yDyu;
(3.57)

where B0 consists of the leftm0 columns of yB . In the strictly proper case, B0 and
C0 are nonexistent.

By nonsingular transformation of the state, output, and input, the system (3.55)
can be transformed to the SCB. We use the symbols x, y, and u to denote the
state, output, and input of the system transformed to SCB form (note that there is
a change in notation; in the main text we used zx, zy, and zu instead). The transfor-
mations between the original system (3.55) and the SCB are called �1, �2, and
�3 (note again that there is a change in notation; in the main text we used �s , �y ,
and �u instead), and we write yx D �1x, yy D �2y, and yu D �3u.

The state x is partitioned as x D .xa
0; xb

0; xc
0; xd

0/0, where each compo-
nent represents a particular subsystem of SCB. The output is partitioned as y D
.y0

0; yd
0; yb

0/0, where y0 is the original output y0 from (3.55), yd is the output
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from the xd subsystem, and yb is the output from the xb subsystem. The input is
partitioned as u D .u0

0; ud
0; uc

0/0, where u0 is the original input u0 from (3.55),
ud is the input to the xd subsystem, and uc is the input to the xc subsystem. Be-
cause u0 appears first in both yu and u, �3 is of the form diag.Im0

; x�3/, for some
nonsingular x�3.

3.A.1 Pretransformation of non-strictly proper systems

We assumed in the above equations that the input and output vectors yu and yy
have a special partitioning that separates the direct-feedthrough part from the rest,
as shown in (3.56). A strictly proper system already has this form, but given a
general non-strictly proper system, a pretransformation may have to be applied to
put the system in the required form. Suppose that we initially have a system with
input zu, output zy, input matrix zB , and output matrices zC and zD. Then there are
nonsingular transformations U and Y such that zu D U yu and zy D Y yy, where
yu and yy have the structure required in (3.56). The dimension m0 of u0 and y0

is the rank of zD. The matrices yB , yC , and yD are obtained from zB , zC , and zD by
yB D zBU , yC D Y �1 zC , and yD D Y �1 zDU (we caution that the matrix zU in (3.2)

is denoted here as Y �1 and, similarly, the matrix zV in (3.2) is denoted here as U ).
Our “Maple” procedure, in addition to returning the matrices A, B , C , and D of
the SCB system (in the main text, the matrices of the SCB system are denoted by
zA, zB , zC , and zD), the transformations �1, �2, and �3 to transform (3.55) to SCB

form, and the dimension of each subsystem, returns the transformationsU and Y
as well to take a general non-strictly proper system to the form required in (3.55).

3.A.2 “Maple” procedure

Our “Maple” procedure is invoked as follows:

A, B, C, D, G1, G2, G3, U, Y, dim WD scb(Ai, Bi, Ci, Di)

The inputs Ai, Bi, Ci, and Di are system matrices describing a general multi-
variable linear time-invariant system. The outputs A, B, C, and D are the system
matrices describing the corresponding SCB system. The outputs G1, G2, and G3
are the transformation matrices �1, �2, and �3 between the system (3.55) and the
SCB. The outputs U and Y are the pretransformations that must be applied to the
system to put it in the form required of (3.55), as described earlier. Finally, the
output dim is a list of four integers representing the dimensions of the xa, xb , xc ,
and xd subsystems, in that order.

The modified Silverman algorithm for transformation to the SCB is much too
long to be presented here. For the details of the algorithm, we refer to [139].
In the following, we shall present a broad outline of the steps of the algorithm,
and discuss issues that require particular attention in a symbolic implementation.
Much of the algorithm consists of tedious but straightforward manipulation of
matrices, which is not explicitly discussed here.
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Throughout the algorithm, we identify a large number of variables that are lin-
ear transformations of the original state. We keep track of these by storing the
matrices that transform the original state to the new variables. For example, the
temporary variable yi0, given by the expression yi0 D Ci yx, is represented inter-
nally by a “Matrix” data structure containing Ci . The procedure is not written to
perform well on floating-point data. For this reason, all floating-point elements of
the matrices passed to the procedure are converted to exact fractions before any
other operations are performed, using “convert” function of “Maple”. In many
cases, we need to store a whole list of matrices, representing variables obtained
during successive iterations of a particular part of the algorithm. To do this, we
use the “Maple” data structures “Vector” and “Matrix” which can be used to store
vectors or matrices whose elements are “Matrix” data structures.

Strictly proper case

We first consider the strictly proper case. The algorithm for this case is imple-
mented as “scbSP.” The first part of this algorithm identifies the two subsystems
that directly influence the outputs, namely, the xb and xd subsystems, through
a series of steps that are repeated until the outputs are exhausted. The algorithm
works by identifying transformed input and output spaces such that each input
channel is directly connected to one output channel by a specific number of in-
herent integrations.

Let the strictly proper system passed to the “scbSP” procedure be represented
by the state equations Tyx D yAyxC yByu, yy D yC yx. In the first iteration, we start with
the output y10 D yC yx and determine whether its derivative Ty10 D yC yAyx C yC yByu
depends on any part of the input yu. If so, we use a transformation xS1 to separate
out a linear combination of outputs and inputs that are separated by one inte-
gration in a linearly independent manner. This will create an integrator chain of
length one, as part of the xd subsystem. A transformed part of the output deriva-
tive that is not directly influenced by the input is denoted zC1 yx and is processed
further. We use a transformation x�1 to separate out any part of zC1 yx that is lin-
early dependent on y10. This will create states that are part of the xb subsystem.
After the linearly dependent components are separated out, the remaining part of
the output derivative is given the name y20. In the next iteration, we process y20

in the same fashion as y10 to identify integrator chains of length two and possi-
bly further additions to the xb subsystem. The algorithm continues in this fashion
until the outputs are exhausted.

Constructing transformation matrices: strictly proper case

When implementing these steps in “Maple”, the main part of each iteration con-
sists of constructing transformation matrices xSi and x�i . In particular, we are faced
with the following problem at step i : given a matrix Ci of dimension pi 
n and a
matrix xDi�1 of dimension xqi�1 
m of maximal rank xqi�1, let xqi be the rank of
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Œ xD0
i�1; .Ci

yB/0�0, and let qi D xqi � xqi�1. Find a nonsingular matrix xSi such that

xSi

 xDi�1

Ci
yB

!
D

� xDi�1

yDi

0

�
; xSi D

 
Ixqi �1 0

Sia Si

!
; Sia D

 
0

Sib

!
; Si D

 
Si1

Si2

!
;

where yDi is a qi 
m matrix of maximal rank and where Si1, Si2, and Sib are of
dimensions qi 
 pi , .pi � qi / 
 pi , and .pi � qi / 
 xqi�1. The meaning of the
various dimensions are not important in this context. In general, xSi is not unique.

The rank of the matrix Œ xD0
i�1; .Ci

yB/0�0 can be obtained with the “Rank” func-
tion in the LinearAlgebra package. To construct the matrix xSi , the first observation
we make is that, since Sib

xDi�1 C Si2Ci
yB D 0, the rows of the matrix ŒSib; Si2�

must belong to the left null space of Œ xD0
i�1; .Ci

yB/0�0. If Œ xD0
i�1; .Ci

yB/0�0 has full
rank xqi�1 Cpi , then Sib and Si2 are empty matrices, and we may select Sia D 0

and Si1 D Ipi
. Otherwise, we can obtain a set of linearly independent basis vec-

tors for the left null space of Œ xD0
i�1; .Ci

yB/0�0 or, equivalently, for the right null
space of its transpose, using the “NullSpace” function of the LinearAlgebra pack-
age. The transpose of the basis vectors can then be stacked to form the matrix
ŒSib; Si2�, which can be split up to form Sib and Si2. However, the null space
basis is not unique and, moreover, the order in which the basis vectors are re-
turned by “Maple” is not consistent. This may cause our procedure to produce
different results on different executions with the same matrices, which is unde-
sirable. To avoid this, we first stack the transpose of the basis vectors and then
transform the resulting matrix to the unique reduced-row echelon form by using
the “ReducedRowEchelonForm” function of the LinearAlgebra package. Since
the transformation involves a finite number of row operations, the rows of the
matrix in reduced-row echelon form remain in the left null space.

Since xSi should be a nonsingular matrix, the submatrix Si must be nonsingular.
This requires that Si2 has maximal rank, which is confirmed as follows: if any of
the rows of Si2 are linearly dependent, a linear combination of rows in ŒSib; Si2�

can be constructed to create a row vector v such that vŒ xD0
i�1; .Ci

yB/0�0 D 0, where
the rightmost pi columns of v are zero. However, since the rows of xDi�1 are lin-
early independent, this implies that v D 0, which in turn implies that ŒSib; Si2�

must have linearly dependent rows. Since this is not the case, Si2 must have max-
imal rank.

We continue by constructing the matrix Si1. Nonsingularity of Si requires that
the rows of Si1 must be linearly independent of the rows of Si2. One way to
produce Si1 is to choose its rows to be orthogonal to the rows of Si2, which can
be achieved by using a basis for the right null space of Si2. However, since the
matrix xSi will be used to transform the state of the original system, it is generally
desirable for this matrix to have the simplest possible structure. This helps avoid
unnecessary changes to the original states, and thus it generally produces more
appealing solutions. We therefore construct Si1 by the following procedure: we
start by initializing Si1 as the identity matrix of dimension pi 
 pi . We then
create a reduced-row echelon form of Si2 and iterate backward over the rows of



84 3 A special coordinate basis (SCB) of linear multivariable systems

this matrix. For each row, we search along the columns from the left until we
reach the leading 1 on that row. We then delete the row in Si1 corresponding to
the column with the leading 1. This ensures that Si D ŒS 0

i1; S
0
i2�

0 is nonsingular,
with Si1 consisting of zeros except for a single element equal to 1 on each row.
The construction of xSi is now easily completed.

At each step, we must also construct a nonsingular matrix x�i . The problem of
finding this matrix is analogous to the problem of finding xSi , and we therefore use
the same procedure. Finding the transformations xSi and x�i constitutes the most
important part of finding the states xb and xd . After xb and xd are identified,
finding the output transformation �2 is straightforward, based on [139]. We also
find an input transformation � 0

3 based on [139] and write yu D � 0
3Œud

0; xu0
c �

0, where
xuc is a temporary input. Unlike [139], we shall apply a further transformation
of xuc to achieve an input uc that is matched with the influence from xa on the
right-hand side of the xc equation.

Constructing the xa and xc states – strictly proper case

After finding the transformations from the original states to the xb and xd states,
the next step is to find a transformation to a temporary state vector xs that will
be further decomposed into the states xa and xc . The requirements on xs are that
it must be linearly independent of the already identified states xb and xd , so that
xs , xb , and xd together span the entire state space, and that its derivative Txs must
only depend on xs itself, plus yb , yd , and xuc , because those are the only quantities
allowed in the derivatives of xa and xc in the strictly proper case.

Suppose that .xb
0; xd

0/0 D �bd yx. The procedure for finding xs is to start with
a temporary state vector x0

s D � 0
s yx that is linearly independent of xb and xd .

Hence, we select � 0
s such that Œ.� 0

s /
0; � 0

bd
�0 is nonsingular. To do so in our

“Maple” procedure, we use the same technique as for finding Si1 based on Si2

as discussed earlier.
The derivative of x0

s , written in terms of the states x0
s , xb , and xd , and the

inputs uc and ud , can be written as

Tx0
s D A0

�
x0

s

xb

xd

�
C B0

 
ud

xuc

!
D A0

sx
0
s C A0

bxb C A0
dxd C B0

dud C B0
c xuc ;

for some matrices A0 D ŒA0
s ; A

0
b
; A0

d
� and B0 D ŒB0

d
; B0

c �. In our “Maple” pro-

cedure, we can easily calculate A0 D � 0
s

yA.Œ.� 0
s /

0; � 0
bd
�0/�1 and B0 D � 0

s
yB� 0

3

and then extract the matrices A0
s , A0

b
, A0

c , B0
d

, and B0
c . To do so, we use the “Ma-

trixInverse” function of the LinearAlgebra package.
To conform with the SCB, we need to modify x0

s to eliminate the input ud in
Tx0
s . To eliminate ud , we create a temporary state vector xd0 D �d0 yx, consist-

ing of the lowermost level of each integrator chain in the xd subsystem (i.e., the
point where the input enters the integrator chain). According to Theorem 3.1,
we then have Txd0 D ud C Ad0Œx

0
s

0
; xb

0; xd
0�0, for some matrix Ad0. There-

fore, by defining a new temporary state x1
s D x0

s � B0
d
xd0, we have Tx1

s D
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.A0 � B0
d
Ad0/Œx

0
s

0
; xb

0; xd
0�CB0

c xuc . Hence, the derivative of the new temporary
state vector x1

s is independent of ud , bringing us one step closer to obtaining xs .
The elimination procedure is continued in a similar fashion, as described in [139],
until we obtain a state xs such that Txs depends only on xs , yb , yd , and xuc .

The final step is to decompose xs into two subsystems, xa and xc , and to
transform the input xuc into uc in such a way that xa is unaffected by uc and
xc is controllable from uc . Furthermore, the influence of xa on xc should be
matched with uc , as seen in Theorem 3.1. If xuc is nonexistent, then we sim-
ply set xa D xs . If xuc does exist, we proceed by first finding the derivative
Txs D Assxs C Asbxb C Asdxd C Bscuc for some matrices Ass , Asb , Asd , and
Bsc . We then obtain the proper transformations by calling “scbSP” recursively on
the transposed system with system matrix A0

ss, output matrix B 0
sc , and an empty

input matrix. This recursive call returns a system consisting only of an xa and an
xb subsystem. It is easily confirmed that, when transposed back again, this system
has the desired structure. We therefore let Œxa

0; xc
0�0 D � ?

1
0
xs and uc D � ?

2
0xuc ,

where � ?
1 and � ?

2 are the state and output transformations returned by the recur-
sive call.

Non-strictly proper case

To handle the non-strictly proper case, the first step is to find the pretransformat-
ion matrices U and Y , described in Sect. 3.A.1. Suppose that the matrices passed
to the procedure “scb” are yA, zB , zC , and zD. We need to find nonsingularU and Y
such that, according to Sect. 3.A.1, yB D zBU , yC D Y �1 zC , and yD D Y �1 zDU ,
where yD is of the form diag.Im0

; 0/. The rankm0 of zD is found using the “Rank”
function.

Let Y �1 D ŒY 0
1; Y

0
2�

0, where Y1 hasm0 rows. Then we have the equations

Y �1 zDU D
 
Y1

zDU
Y2

zDU

!
D
 
Im0

0

0 0

!
:

To solve these equations, we choose the rows of Y2 from the left null space of
zD, using the functions “NullSpace” and “ReducedRowEchelonForm” as before,

and we select Y1 such that ŒY 0
1; Y

0
2�

0 is nonsingular, using the same procedure as
for finding Si1 given Si2 as discussed earlier for strictly proper case. This leaves
us to solve the equation Y1

zDU D ŒIm0
; 0� with respect to some nonsingular U .

Let U�1 D ŒU 0
1; U

0
2�

0 such that U1 has m0 rows. We select U1 D Y1
zD, and we

select U2 such that ŒU 0
1; U

0
2�

0 is nonsingular, by the same procedure as before. It is
then straightforward to confirm that Y1

zDU D ŒIm0
; 0�. We can now calculate the

matrices yB , yC , and yD that conform with the required structure of (3.55).
Let B0 consist of the leftm0 columns of yB , and let yB1 consist of the remaining

columns of yB . Similar to (3.57), we can write the system equations (3.55) as

Tyx D . yA � B0C0/yx C B0y0 C yB1 yu1;

y0 D C0 yx C u0;

yy1 D yC1 yx:
(3.58)



86 3 A special coordinate basis (SCB) of linear multivariable systems

Suppose we obtain the SCB form of the strictly proper system described by the
matrices . yA�B0C0/, yB1, and yC1 by invoking the procedure “scbSP” and suppose
the transformation matrices returned for this system are x�1, x�2, and x�3. Substitut-
ing yx D x�1x, yy1 D x�2Œyd

0; yb
0�0, and yu1 D x�3Œud

0; uc
0�0 in (3.58) yields

Tx D x� �1
1 . yA� B0C0/ x�1x C x� �1

1 B0y0 C x� �1
1

yB1
x�3

 
ud

uc

!
;

y0 D C0
x�1x C u0; 

yd

yb

!
D x� �1

2
yC1

x�1x:

It is easily confirmed that this system conforms to the SCB by defining A D
x� �1

1 . yA � B0C0/ x�1, B D x� �1
1 ŒB0; yB1

x�3�, C D ŒC 0
0; .

x� �1
2

yC1/
0�0 x�1, and D D

diag.Im0
; 0/. Defining the transformations for the non-strictly proper system as

�1 D x�1, �2 D diag.Im0
; x�2/, and �3 D diag.Im0

; x�3/, we obtainA D � �1
1 . yA�

B0C0/�1, B D � �1
1

yB�3, C D � �1
2

yC�1, and D D � �1
2

yD�3, which are the
proper expressions relating the matrices yA, yB , yC , and yD to the SCB matrices.

3.A.3 Examples

In this section, we apply the SCB decomposition procedure to several example
systems.

Example: linear single-track model

A widely used model for the lateral dynamics of a car is the linear single-track
model (see, e.g., [60]). For a car on a horizontal surface, this model is described
by the equations

Tvy D 1

m
.Ff C Fr/ � rvx ;

Tr D 1

J
.lfFf � lrFr/;

where vy is the lateral velocity at the center of gravity, r is the yaw rate (angular
rate around the vertical axis), m is the mass, J is the moment of inertia around
the vertical axis through the car’s center of gravity, lf and lr are the longitudinal
distances from the center of gravity to the front and rear axles, and Ff and Fr are
the lateral road-tire friction forces on the front and rear axles. The longitudinal
velocity vx is assumed to be positive and to vary slowly enough compared to the
lateral dynamics that it can be considered a constant. The friction forces can be
modeled by the equations

TFf D cf

Tr
.ıf � vy

vx

� lf
r

vx

/ � 1

Tr
Ff;

TFr D cr

Tr
.�vy

vx

C lr
r

vx

/ � 1

Tr
Fr;
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where ıf is the front-axle steering angle, cf and cr are the front- and rear-axle
cornering stiffnesses, and Tr is a speed-dependent tire relaxation constant (see,
e.g., [112]). In modern cars with electronic stability control, the main measure-
ments that describe the lateral dynamics are the yaw rate r and the lateral accel-
eration ay D 1

m
.Ff C Fr/. Considering ıf as the input, the system is described

by

yA D

˙
0 �vx

1
m

1
m

0 0 lf
J

� lr
J

� cf
Trvx

� lfcf
Trvx

� 1
Tr

0

� cr
Trvx

lrcr
Trvx

0 � 1
Tr

�
; yB D

˙
0

0
cf
Tr

0

�
;

yC D
 
0 1 0 0

0 0 1
m

1
m

!
; yD D

 
0

0

!
:

If we pass these matrices to our “Maple” procedure, we obtain SCB system ma-
trices

A D

ˇ
� 1

Tr
1 0 Trlfm

cr.lfClr/

� lrcr.lfClr/
vx TrJ

0 1 lfm
cr.lfClr/

� cr.lfClr/
TrJ

0 0 1
vx

cr.lrcr�lfcf/.lfClr/

mT 2
r vxJ

0 � cfCcr
mTr

� 1
Tr

�
; B D

˙
0

0

0

1

�
;

C D
 
0 0 0 1

1 0 0 0

!
; D D

 
0

0

!
;

and the transformations

�1 D

ˇ
0 0 vx 0

cr.lfClr/
TrJ

0 0 0

� cr
T 2

r

cr
Tr

0 m

cr
T 2

r
� cr

Tr
0 0

�
; �2 D

 
0 cr.lfCcr/

TrJ

1 0

!
; �3 D mTr

cf
:

The dimension list “dim” returned by the procedure is 0; 3; 0; 1, meaning that the
first three states belong to the xb subsystem and the last state is an integrator chain
of length 1 belonging to the xd subsystem. Inspection of the SCB system imme-
diately reveals that the system is observable, since both the xb and xd subsystems
are always observable. The system is left invertible, since the state xc is nonex-
istent, meaning that the steering angle can be identified from the outputs if the
initial conditions are known. The system is not right invertible, since it has an xb

subsystem, reflecting the obvious fact that the yaw rate and lateral acceleration
cannot be independently controlled from a single steering angle. There exists no
state feedback that keeps the outputs identically zero, since the system has no zero
dynamics subsystem xa.
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If we add rear-axle steering by augmenting the yB matrix with an additional
column Œ0; 0; 0; cr

Tr
�0, the “Maple” procedure returns the SCB system matrices

A D

ˇ
0 1 �vx 0

� cfCcr
mTrvx

� 1
Tr

lrcr�lfcf
mTrvx

0

0 0 0 1

lrcr�lfcf
J Trvx

0
l2
f cfCl2

r cr

J Trvx
� 1

Tr

�
; B D

˙
0 0

1 0

0 0

0 1

�
;

C D
 
0 1 0 0

0 0 1 0

!
; D D

 
0 0

0 0

!
;

and the transformations

�1 D

˙
1 0 0 0

0 0 1 0

0 lrm
lfClr

0 J
lfClh

0 lfm
lfClr

0 � J
lfClh

�
; �2 D

 
0 1

1 0

!
; �3 D

 
lrTrm

cf.lfClr/
TrJ

cf.lfClr/
lfTrm

cr.lfClr/
� TrJ

cr.lfClr/

!
;

with dimensions 1; 0; 0; 3. This means that the first state of the system belongs to
the zero dynamics xa, and the remaining three states belong to the xd subsystem.
The xd subsystem consists of two integrator chains: one of dimension one and
one of dimension two. We conclude that the system is invertible due to the lack of
xb and xc subsystems. The Aaa matrix is identically 0, meaning that the system
has a zero at the origin. Hence, the relationship between the steering angle inputs
and the yaw rate and lateral acceleration outputs is non-minimum-phase.

Referring back to our discussion of geometry theory, we see that the weakly
unobservable subspace is spanned by the vector Œ1; 0; 0; 0�0. Transformed back
to the original coordinate basis, this corresponds to the state vy . We therefore
know that a hypothetical disturbance occurring in Tvy can be decoupled from the
outputs ay and r by state feedback (and the SCB representation tells us exactly
how to do it). However, we also know that the resulting subsystem would not be
asymptotically stable, since the non-minimum phase zero would become a pole
of the closed-loop system.

Example – DC motor with friction

According to [32], a DC motor process can be described by the equations
T̋ D !;

J T! D u � F;
where ˝ is the shaft angular position, ! is the angular rate, u is the DC motor
torque, F is a friction torque, and J D 0:0023 kg m2 is the motor and load inertia.
The friction torque can be modeled by the dynamic LuGre friction model,

F D �0z C �1 Tz C ˛2!;

Tz D ! � �0zj!j

.!/

;
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where 
.!/ D ˛0 C ˛1 exp.�.!=!0/
2/. Numerical values for the friction

parameters are �0 D 260:0Nm=rad, �1 D 0:6Nm s=rad, ˛0 D 0:28Nm, ˛1 D
0:05Nm, ˛2 D 0:176Nm s=rad, and !0 D 0:01 rad=s. The system can be viewed
as consisting of a linear part with a nonlinear perturbation �0zj!j=
.!/. Assum-
ing that only the shaft position ˝ is measured, a nonlinear observer can be de-
signed for this system by using the timescale assignment techniques from [131].
To do so, it is necessary to find the SCB form of the system, with the nonlinear
perturbation �0zj!j=
.!/ considered as the sole input. The original system with
the nonlinear perturbation as the input is described by the matrices

yA D

�
0 1 0

0 � 1
J
.˛2 C �1/ � 1

J
�0

0 1 0

�
; yB D

�
0

1
J
�1

�1

�
; (3.59a)

yC D
�
1 0 0

�
; yD D 0: (3.59b)

Inserting numerical values and using the Linear Systems Toolkit [91] yields the

SCB matrices

A �

�
�433:3 �592:7 0

0 0 1

�1:1 � 105 �1:5 � 105 95:9

�
; B D

�
0

0

1

�
;

C D
�
0 1 0

�
; D D 0;

where the first state belongs to the zero dynamics subsystem xa, and the remaining
two states consist of an integrator chain of length two, in the xd subsystem. As
suggested by the large elements in the system matrices, the problem is poorly
conditioned, and we find that we require very large gains to stabilize the system.
Using our “Maple” procedure, we obtain the SCB matrices

A D

�� �0

�1
� �0.�0J ��1˛2/

�3
1

0

0 0 1

��0

J
� �0.�0J ��1˛2/

J�2
1

�0J ��1˛2��2
1

J�1

˘
; B D

�
0

0

1

�
;

C D
�
0 1 0

�
; D D 0:

This reveals that a source of the conditioning problem is powers of the small
parameter �1 appearing in the denominators, even though it does not appear in
any denominators in (3.59). In particular, we see that �1 acts as a small regular
perturbation that results in singularly perturbed zero dynamics, which happens
when a regular perturbation reduces a system’s relative degree [143]. Setting �1 D
0 results in a dramatically different structure, with the SCB consisting of a single
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integrator chain of length three, represented by the SCB matrices

A D

�
0 1 0

0 0 1

0 ��0

J
� ˛2

J

�
; B D

�
0

0

1

�

C D
�
1 0 0

�
; D D 0:

Proceeding with the observer gain selection based on this system, we obtain good
results without using high gains.
Example – tenth-order system Our last example is a strictly proper, tenth-order
system from [139]:

yA D

�
0 0 0 0 1 1 0 0 0 0

�1 0 0 0 1 0 1 0 0 0

1 1 �1 �1 0 0 �1 0 0 0

0 1 1 1 0 0 0 0 0 0

�1 2 0 �1 2 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

�1 �1 0 0 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

�
;

yB D

�
0 1 0 1

0 0 0 0

0 0 0 0

0 1 0 1

0 2 0 1

0 0 1 0

0 0 0 0

0 0 0 0

1 0 1 0

0 0 0 0

�
; yC 0 D

�
�1 0 0 0

�1 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

2 1 0 0

0 1 0 1

0 0 0 0

0 0 0 0

�
:
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The “Maple” procedure gives the SCB system matrices

A D

�
1 0 0 0 1 �1 0 �1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 �1 1 0 1 0 0

2 �12 0 2 �8 8 0 8 0 0

2 �4 �2 1
2

�2 1 1 1 1 0

0 0 0 0 0 0 1 0 0 0

2 �2 �2 0 0 �1 1 �1 1 �1
0 0 0 0 �1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 2 0 �1
2

2 �2 0 �2 0 0

�
;

B D

�
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 1

�
; C D

�
0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

�
;

and the dimensions 1; 2; 1; 6. Hence, the first state belongs to the xa subsystem,
and we can therefore easily see that the system has a non-minimum-phase invari-
ant zero at 1. The next two states belong to the xb subsystem; thus, the system is
not right invertible. The fourth state belongs to the xc subsystem; thus, the system
is not left invertible. Finally, the last six states consist of three integrator chains of
length 1, 2, and 3, respectively, belonging to the xd subsystem.

3.A.4 Numerical issues

The procedure described in this Appendix uses exact operations only; thus, there
is no uncertainty in the results produced by the decomposition algorithm. The al-
gorithm is primarily based on rank operations and the construction of bases for
various subspaces. Rank operations are discontinuous in the sense that arbitrarily
small perturbations to a matrix may alter its rank. This implies that, when a de-
composition is carried out using exact operations, arbitrarily small perturbations
to system matrices may fundamentally alter the identified structure of a system.
This is in contrast to decompositions based on floating-point operations, which
may be insensitive to small perturbations to the system matrices.
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Whether exactness is desirable or not depends on the application. When the
input data is exact or the system model is based on first principles, an exact de-
composition may help to reveal fundamental structural properties of the system
and how these properties are affected by various quantities in the system matrices.
If, on the other hand, the system matrices have been derived based on experimen-
tal system identification, an exact decomposition may not be desirable, and it may
even provide misleading information about the system structure. Thus, the exact
procedure presented here is not a replacement for numerical tools developed for
the same purpose.

Throughout the decomposition algorithm, a number of nonunique transforma-
tion matrices must be constructed. In the “Maple” procedure, these matrices are
constructed with the goal of having a simple structure based on the assumption
that fewer changes to the original states will result in the less complicated sym-
bolic expressions in the computed SCB system. Depending on the structure and
dimensions of the system, however, the procedure may still result in complicated
expressions, and if the original system matrices contain complicated expressions,
these will in general not be simplified.

A precise analysis of the computational complexity of the procedure is diffi-
cult due to the complex nature of the decomposition algorithm and the underlying
“Maple” functions. However, it is possible to make some practical observations
regarding this issue. Executed in “Maple 12” on an Intel Pentium processor with
two 2MHz cores, the total CPU time needed for decomposition of the single-
track model was approximately 0:30 s for the single-input case and 0:21 s for
the double-input case. For the DC motor example, the total CPU time was ap-
proximately 0:19 s, and for the tenth-order example, approximately 0:48 s. These
execution times illustrate that an increase in the order of the system does not au-
tomatically result in a large increase in execution time; the structure of the system
and the complexity of the expressions in the system matrices have a greater im-
pact on execution time. For example, randomly generated, strictly proper systems
with 20 states, 4 inputs, and 4 outputs, with the system matrices made up of in-
tegers between �10 and 10 with 25% density, are generally decomposed in less
than 0:4 s. If, on the other hand, the number of inputs is reduced to 3, the decom-
position generally takes around 50 s. The reason for this large difference is that,
in the former case, the computed SCB systems generally consist of an xa subsys-
tem with 16 states and an xd subsystem with four states, which requires only a
single iteration of the algorithm for identifying xb and xd (described earlier when
discussing strictly proper case). In the latter case, the computed SCB systems
generally consist of an xb subsystem with 17 states and an xd subsystem with
three states, which requires 17 increasingly complex iterations of the algorithm
for identifying xb and xd .

3.A.5 “Maple” code

# Maple source code for structural decomposition of linear
# multivarible systems, version 0.2
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#
# Copyright (C) 2009 Haavard Fjaer Grip and Ali Saberi
#
# Written and tested for Maple 12.0 with LinearAlgebra
# package
#
# Usage: A, B, C, D, G1, G2, G3, U, Y,
# dim := scb(Ai, Bi, Ci, Di);
#
# !!! Important: Ai, Bi, Ci, and Di must be of type Matrix
# (not scalars)
#
# This software is provided "as is", without warranty of any
# kind, either expressed or implied, including, without
# limitation, warranties of merchantability or fitness for a
# particular purpose. The entire risk as to the quality and
# performance of the software is with you.
# Should the software prove defective in any respect,
# you assume the cost of any necessary servicing, repair, or
# correction.
#
# Under no circumstances will any of the copyright holders,
# developers, or any other party that modifies or conveys
# the software be liable to any person for damages,
# including any general, indirect, special, incidental, or
# consequential damages of any kind, including, without
# limitation, damages for lost profits, loss of goodwill,
# work stoppage, computer failure or malfunction, even if
# such party has been informed of the possibility of such
# damages.

# Procedure to convert matrix M, possibly containing
# floating-point numbers, to matrix with only exact
# fractions:
# Use of floating-point elements in matrices is highly
# discouraged.
mconvert := proc (M)

local n, m, i, j, Mr;
uses LinearAlgebra:

# Get matrix dimensions
n, m := LinearAlgebra:-Dimension(M);

# Create empty matrix
Mr := Matrix(n, m);

# Iterate over all rows
for i to n do

# Iterate over all columns
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for j to m do
# Convert each element
Mr[i, j] := convert(M[i, j], rational, exact);

end do;
end do;
Mr;

end proc:

# Procedure to find matrix S1 such that [S2’ S1’]’
# is nonsingular, with S1 consisting of an identity
# matrix with rank(S2) missing rows:
nonsingular := proc(S2)

local S2E, S1, n, m, i, j:
uses LinearAlgebra:

# Find dimensions of S2
n, m := LinearAlgebra:-Dimension(S2):

# Get reduced row echelon form of S2
S2E := LinearAlgebra:-ReducedRowEchelonForm(S2):

# Start by making S1 an m x m identity matrix
S1 := LinearAlgebra:-IdentityMatrix(m):

# Iterate from last row of echelon matrix
for i from n by -1 to 1 do

# On each row, iterate from leftmost column toward
# the right for j from 1 by 1 to m do

# If we encounter an element equal to 1,
# then delete the row in S2 corresponding to
# the column that we are currently at
if S2E[i,j] = 1 then

S1:= LinearAlgebra:-DeleteRow(S1,j):
break:

end if:
end:

end do:

# Return S1
S1:

end proc:

# Procedure for transformation to SCB for strictly proper
# systems
# Notation corresponds to Sannuti and Saberi (1987)
scbSP := proc(Ahi,Bhi,Chi)

local p, n, m;
local C, Cs, pp, pb, q, S, Dh, S1, S2, Sla, Slb, CCh, Ct, S01,
S02, S0;
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local phi, philb, phila, phi1, phi2, Db, PPsi, Cb, qb, r;
local alpha, beta, ggamma, xcfs, ycfs, xbcfs, xbiscfs, xifcfs;
local i, j, l, kern, kernmatrix, cfs;
local alphatmp, betatmp, gammatmp, qic, pic, K;
local x0, xf, xb, nf, nb, ns, na, nc;
local Gamma1, Gamma2, Gamma3;
local T, P0, P1;
local pf, rc, tmp, xs0, B0, Bu0, xs1, qc;
local X2, A2, R, As, Bs, Ctr, M, cspc, nspc, T1, T2, xs3, xa,
xc, Dt, xs2;
local A_scb, B_scb, C_scb, dim, Ah, Bh, Ch, xftmp;
local Gamma2inv, At, Bt, Gamma1t, Gamma2t, Gamma3t, dimt,
Gamma1inv, udim;
uses LinearAlgebra;

# Recast inputs as matrices, in case we received vectors
# or scalars
Ah := Matrix(Ahi):
Bh := Matrix(Bhi):
Ch := Matrix(Chi):

# Find system dimensions
p, n := LinearAlgebra:-Dimension(Ch):
n, m := LinearAlgebra:-Dimension(Bh):

# Create storage for various quantities used in the algorithm
C := Vector(n+1):
Cs := Vector(n+1): # C^*
pp := Vector(n+1): # p
pb := Vector(n+1): # \bar p
q := Vector(n):
S := Vector(n):
Dh := Vector(n): # \hat D
S1 := Vector(n): # S_i1
S2 := Vector(n): # S_i2
Sla := Vector(n): # S_ia
Slb := Vector(n): # S_ib
CCh := Vector(n): # \hat C
Ct := Vector(n): # \tilde C
phi := Vector(n):
philb := Vector(n): # \phi_ib
phila := Vector(n): # \phi_ia
phi1 := Vector(n): # \phi_i1
phi2 := Vector(n): # \phi_i2
Db := Vector(n): # \bar D
PPsi := Vector(n): # \Psi
Cb := Vector(n): # \bar C
qb := Vector(n): # \bar q
r := Vector(n):
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alpha := Matrix(n, n):
beta := Matrix(n, n):
ggamma := Matrix(n, n):
xcfs := Matrix(n+1, n+1): # x_ij (coefficients)
(index+1)
ycfs := Matrix(n+2, n+2): # y_ij (coefficients)
(index+1)
xbcfs := Matrix(n+1, n+1): # x_bij (coefficients)
index+1)
xbiscfs := Vector(n): # x_bis (coefficients)
xifcfs := Vector(n): # xif (coefficients)

# Check that \hat B matrix and \hat C matrix are of
# maximal rank. If not, throw exception
if LinearAlgebra:-Rank(Ch) < p then

error "Matrix C must be of maximal rank"
elif LinearAlgebra:-Rank(Bh) < m then

error "Matrix B must be of maximal rank"
end if:

C[1] := Ch;
Cs[1] := Ch;
pp[1] := p;
pb[1] := p;
ycfs[1+1, 0+1] := C[1];

i := 1: # i counts the steps

# Step 1
if pp[1] > 0 then

# Find rank q_1 of C_1*\hat B
q[1] := LinearAlgebra:-Rank(C[1].Bh):

#
# S_12 must lie in left null space of C_1*\hat B.
# Find basis for left null space and select S_12
# as reduced-row echelon form of basis transpose
kern := LinearAlgebra:-NullSpace(LinearAlgebra:-
Transpose(C[1].Bh));
kernmatrix := LinearAlgebra:-ReducedRowEchelon
Form(Matrix(pp[1]-q[1], pp[1],
LinearAlgebra:-Transpose(Matrix(pp[1], pp[1]-q[1],
[kern[]]))));

S2[1] := kernmatrix;

# Get S_11 such that [S_11’ S_12’]’ is nonsingular
S1[1] := nonsingular(S2[1]);
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# Define S_1 by stacking S_11 and S_12
S[1] := Matrix([[S1[1]], [S2[1]]]);

# Calculate \hat C_1, \tilde C_1, and \hat D_1
CCh[1] := S1[1].C[1].Ah:
Ct[1] := S2[1].C[1].Ah:
Dh[1] := S1[1].C[1].Bh;

# Find rank \bar p_2 of [Cs_1^*’ \tilde C_1’]’ and
# calculate p_2 and r_1
pb[2] := LinearAlgebra:-Rank(Matrix([[Cs[1]], [Ct[1]]])):
pp[2] := pb[2]-pb[1]:
r[1] := pp[1]-q[1]-pp[2]:

# [\phi_1b \phi_12] must lie in the left null space of
# [C_1^*’ \tilde C_1’]’.

# Find basis for left null space of [C_1^*’ \tilde C_1’]’
# and find reduced-row echelon form of basis transpose
kern := LinearAlgebra:-NullSpace(LinearAlgebra:
-Transpose(Matrix([[Cs[1]], [Ct[1]]])));
kernmatrix := LinearAlgebra:-ReducedRowEchelonForm
(Matrix(r[1], pb[1]+pp[1]-q[1],
LinearAlgebra:-Transpose(Matrix(pb[1]+pp[1]-q[1],
r[1], [kern[]]))));

# Choose \phi_1b as left \bar p_1 columns
philb[1] := kernmatrix[1 .. r[1], 1 .. pb[1]];

# Choose \phi_2 as right p_1-q_1 columns
phi2[1] := kernmatrix[1 .. r[1], pb[1]+1 ..
pb[1]+pp[1]-q[1]];

# Define \phi_1a by stacking an appropriately sized
# zero matrix with \phi_1b
phila[1] := Matrix([[LinearAlgebra:
-ZeroMatrix(pp[2], pb[1])], [philb[1]]]);

# Get phi_11 such that [phi_11’ phi_12’]’ is
# nonsingular
phi1[1] := nonsingular(phi2[1]);

# Define \phi_1 by stacking \phi_11 and \phi_12
phi[1] := Matrix([[phi1[1]], [phi2[1]]]);

# Calculate C_2 and transformation to y_20
C[2] := phi1[1].Ct[1]:
ycfs[2+1, 0+1] := C[2]:
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# Calculate \Psi_1 and transformation to x_10,
# y_11, and x_b10
PPsi[1] := LinearAlgebra:-DiagonalMatrix
([<LinearAlgebra:-IdentityMatrix(q[1])>,
<phi[1]>]).S[1]:
cfs := PPsi[1].C[1]:
xcfs[1+1, 0+1] := cfs[1 .. q[1], 1 .. n]:
ycfs[1+1, 1+1] := cfs[q[1]+1 .. q[1]+pp[2], 1 .. n]:
xbcfs[1+1, 0+1] := cfs[q[1]+pp[2]+1 .. q[1]
+pp[2]+r[1], 1 .. n]:

# In preparation for next step, find C_2^s,
# \bar D_1, and \bar C_1
Cs[2] := Matrix([[Cs[1]], [C[2]]]):
Cb[1] := CCh[1]:
Db[1] := Dh[1]:

qb[1] := q[1];

i := 2:

# Step 2,3,...

# Repeat steps until p_i = 0
for i from 2 while pp[i] > 0 do

# Find rank \bar q_i of [\bar D_{i-1}’ C_i*\hat B’]’
# and calculate q_i
qb[i] := LinearAlgebra:-Rank(Matrix([[Db[i-1]],
[C[i].Bh]]));

q[i] := qb[i]-qb[i-1];

# [S_ib S_i2] must lie in the
# left null space of [\bar D_{i-1}’ C_i*\hat B’]’.
# Find reduced-row echelon form of basis
transpose
kern := LinearAlgebra:-NullSpace(LinearAlgebra:
-Transpose(Matrix([[Db[i-1]], [C[i].Bh]])));
kernmatrix := LinearAlgebra:
-ReducedRowEchelonForm(Matrix(pp[i]-q[i], pp[i]+qb[i-1],
LinearAlgebra:-Transpose(Matrix(pp[i]+qb[i-1],pp[i]-q[i],
[kern[]]))));

# Define S_ib as left \bar q_{i-1} columns
Slb[i] := kernmatrix[1 .. pp[i]-q[i], 1 .. qb[i-1]];

# Define S_i2 as right p[i] columns
S2[i] := kernmatrix[1 .. pp[i]-q[i], qb[i-1]+1 ..
pp[i]+qb[i-1]];



3.A “Maple” implementation 99

# Define S_ia by stacking appropriately sized zero
# matrix with S_ib
Sla[i] := Matrix([[LinearAlgebra:-ZeroMatrix(q[i],
qb[i-1])], [Slb[i]]]);

# Get S_i1 such that [S_i1’ S_i2’]’ is nonsingular
S1[i] := nonsingular(S2[i]);

# Define S_i by stacking S_i1 and S_i2
S[i] := Matrix([[S1[i]], [S2[i]]]);

# Calculate \tilde C_i
Ct[i] := Slb[i].Cb[i-1]+S2[i].C[i].Ah;

# Find rank \bar p_{i+1} of [C_i^s’ \tilde C_i’]’
pb[i+1] := LinearAlgebra:
-Rank(Matrix([[Cs[i]], [Ct[i]]]));

# Calculate \hat C_i and \hat D_i
CCh[i] := S1[i].C[i].Ah;
Dh[i] := S1[i].C[i].Bh;

# Calculate p_{i+1} and r_i
pp[i+1] := pb[i+1]-pb[i];
r[i] := pp[i]-q[i]-pp[i+1];

# [\phi_ib \phi_i2] must lie in the left null
# space of [C_i^*’ \tilde C_i’]’.
# Find reduced-row echelon form of basis for
# left null space of [C_1^*’ \tilde C_i’]’
kern := LinearAlgebra:-NullSpace
(LinearAlgebra:-Transpose(Matrix([[Cs[i]],
[Ct[i]]])));
kernmatrix := LinearAlgebra:
-ReducedRowEchelonForm(Matrix(r[i],
pb[i]+pp[i]-q[i],
LinearAlgebra:
-Transpose(Matrix(pb[i]+pp[i]-q[i], r[i],
[kern[]]))));

# Choose \phi_ib as left \bar p_i columns
philb[i] := kernmatrix[1 .. r[i], 1 .. pb[i]];

# Choose \phi_i as right p_i-q_i columns of null
# space basis
phi2[i] := kernmatrix[1 .. r[i], pb[i]+1 ..
pb[i]+pp[i]-q[i]];

# Define \phi_ia by stacking an appropriately
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#sized zero matrix with \phi_ib
phila[i] := Matrix([[LinearAlgebra:
-ZeroMatrix(pp[i+1], pb[i])], [philb[i]]]);

# Get phi_i1 such that [phi_i1’ phi_i2’]’ is
# nonsingular
phi1[i] := nonsingular(phi2[i]);

# Define \phi_i by stacking \phi_i1 and \phi_i2
phi[i] := Matrix([[phi1[i]], [phi2[i]]]);

# Calculate C_{i+1} and transformation to y_{i+1 0}
C[i+1] := phi1[i].Ct[i];
ycfs[i+1+1, 0+1] := C[i+1];

# Find \Psi_i and store full alpha, beta, and gamma
matrices

# temporarily (to be broken up)
PPsi[i] := LinearAlgebra:-DiagonalMatrix([
<LinearAlgebra:-IdentityMatrix(q[i])>, <phi[i]>]).S[i];
alphatmp := Matrix(pp[i+1], qb[i-1], phi1[i].Slb[i]);
betatmp := Matrix(r[i], qb[i-1], phi2[i].Slb[i]);
gammatmp := Matrix(r[i], pb[i], philb[i]);

# Iterate over j=1,..,i-1 and break out individual
matrices of

# width q_j from alpha and beta matrices
qic := 0; # qic is the cumulative sum of q_k,
k = 1,..,j-1

for j from 1 by 1 to i-1 do
alpha[i, j] := Matrix(pp[i+1], q[j],
alphatmp[1 .. pp[i+1], qic+1 .. qic+q[j]]);
beta[i, j] := Matrix(r[i], q[j],
betatmp[1 .. r[i], qic+1 .. qic+q[j]]);
qic := qic+q[j];

end do;

# Iterate over j=1,..,i and break out individual matrices
of

# width p_j from gamma matrix
pic := 0; # pic is the cumulative sum of p_k,
k = 1,..,j-1

for j from 1 by 1 to i do
ggamma[i, j] := Matrix(r[i], pp[j],
gammatmp[1 .. r[i], pic+1 .. pic+pp[j]]);
pic := pic+pp[j];

end do;

# Iterate over l=1,...,i-1 and compose transformations to
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# x_{i-l l}, y_{i-l l+1}, and x_{bi-l l}
for l from 0 by 1 to i-1 do

# First calculate the transformation to
#[x_{i-l,l}’ y_{i-l l+1}’ x_{bi-l l}’]’, excluding
the

# terms from alpha, beta, and gamma
cfs := PPsi[i].ycfs[i-l+1, l+1];

# Break the transformation into individual
transformations

# for x_{i-l l}, y_{i-l l+1}, and x_{bi-l l}
# (still excluding the terms from alpha, beta,
and gamma)

xcfs[i-l+1, l+1] := cfs[1 .. q[i], 1 .. n];
ycfs[i-l+1, l+1+1] := cfs[q[i]+1 .. q[i]+
pp[i+1], 1 .. n];
xbcfs[i-l+1, l+1] := cfs[q[i]+pp[i+1]+1 .. q[i]+
pp[i+1]+r[i], 1 .. n];

# Add the terms from alpha and beta
for j from l+1 by 1 to i-1 do

ycfs[i-l+1, l+1+1] :=
ycfs[i-l+1, l+1+1]+alpha[i, j].xcfs[j-l+1, l+1];
xbcfs[i-l+1, l+1] :=
xbcfs[i-l+1, l+1]+beta[i, j].xcfs[j-l+1, l+1]

end do;

# Add the terms from gamma
for j from l+2 by 1 to i do

xbcfs[i-l+1, l+1] :=
xbcfs[i-l+1, l+1]+ggamma[i, j].ycfs[j-l-1+1,
l+1+1]

end do
end do;

# In preparation for next step,
# find C_{i+1}^s, \bar C_i, and \bar D_i
Cs[i+1] := Matrix([[Cs[i]], [C[i+1]]]);
Cb[i] := Matrix([[Cb[i-1]], [CCh[i]]]);
Db[i] := Matrix([[Db[i-1]], [Dh[i]]]);

end do:
end if:

# Define K as the number of steps taken
K := i-1:

# Find coefficients for x_f and x_b subsystems

# Define matrix to hold the x_i0 coefficients
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# (to be used later)
x0 := Matrix(0, n):

# Iterate over all chain lengths
for i from 1 to K do

# Compose matrices of coefficients for
# x_if and x_bis, for each i=1,...,K
xifcfs[i] := Matrix(0, n);
xbiscfs[i] := Matrix(0, n);
for j to i do

xifcfs[i] := Matrix([[xifcfs[i]],
[xcfs[j+1, i-j+1]]]);
xbiscfs[i] := Matrix([[xbiscfs[i]],
[xbcfs[j+1, i-j+1]]])

end do;

# Add coefficients for x_i0 to x0 matrix
x0 := Matrix([[x0], [xcfs[i+1, 0+1]]])

end do:

# Create matrices for x_f and x_b coefficients
# and add the coefficients
xf := Matrix(0, n):
xb := Matrix(0, n):
for i from 1 to K do

xf := Matrix([[xf], [xifcfs[i]]]);
xb := Matrix([[xb], [xbiscfs[i]]])

end do:

# Determine dimensions of x_f and x_b subsystems
nf, n := LinearAlgebra:-Dimension(xf):
nb, n := LinearAlgebra:-Dimension(xb):

# Find Gamma_2

# Different approach depending on whether K > 0 or not
if K > 0 then

# If K > 0, define storage for matrices T_i, i=1,...,K
T := Vector(K):

# Set T_K as the identity matrix and
# define T_i, i=1,...,K-1 recursively
T[K] := LinearAlgebra:-IdentityMatrix(pp[K]):
for i from K-1 by -1 to 1 do

T[i] := LinearAlgebra:-DiagonalMatrix([
<LinearAlgebra:-IdentityMatrix(q[i])>, <T[i+1].PPsi[i+1]>,
<LinearAlgebra:-IdentityMatrix(r[i])>])

end do:
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# Define cumulative counter p_f for the number of
# measurements from the x_f chain
pf := q[1]:

# Define vector rc with each element i containing
# the sum of r_j j=0,...,i-1, with r_0 defined as 0
rc := Vector(K+1):

# Initialize components 1 and 2 of rc
rc[1] := 0:
rc[2] := r[1]:

# Create p_f and rc vector
for i from 2 to K do

pf := pf+q[i]:
rc[i+1] := rc[i-1+1]+r[i]

end do:

# Use rc to create P_0 matrix, with identity
#matrices of size r_i along the reversed diagonal
P0 := Matrix(0, rc[K+1]):
for i from K by -1 to 1 do

tmp := Matrix([LinearAlgebra:-ZeroMatrix(r[i],
rc[K+1]-rc[i+1]), LinearAlgebra:
-IdentityMatrix(r[i]),
LinearAlgebra:-ZeroMatrix(r[i], rc[i-1+1])]);
P0 := Matrix([[tmp], [P0]])

end do:

#Define P_1 from P_0 and identity matrix
P1 := LinearAlgebra:-DiagonalMatrix([
<LinearAlgebra:-IdentityMatrix(pf)>, <P0>]):

# Create Gamma_2
Gamma2inv := P1.T[1].PPsi[1];
Gamma2 := simplify(LinearAlgebra:
-MatrixInverse(Gamma2inv)): else
# If K = 0, meaning p = 0, define Gamma_2
# as empty matrix
Gamma2 := LinearAlgebra:-IdentityMatrix(p,p);
Gamma2inv := Gamma2;

end if:

# Find Gamma_3

# Different approach depending on whether K > 0
# or not
if K > 0 then

# \tilde D should be defined such that
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# [\bar D_K’ \tilde D’]’ is nonsingular.
# Hence, we may choose \tilde D’ from the null
# space of \bar D_K. Find basis for null space
Dt := nonsingular(Db[K]);

# Calculate Gamma_3 as inverse of [\bar D_K’ Dt’]’
Gamma3 := simplify(LinearAlgebra:
-MatrixInverse(Matrix([[Db[K]], [Dt]]))):

else
# If K = 0, define Gamma_3 as the identity matrix
Gamma3 := LinearAlgebra:-IdentityMatrix(m);

end if:

# Different approach depending on whether K > 0
# or not
if K > 0 then

# Define dimension n_s of x_a and x_c subsystem
ns := n-pb[K]:

# Find coefficients for x_s subsystem. Start by defining
# coefficients for initial system x_s^0

# The coefficients \tilde Gamma of x_s^0 should be
# chosen so that [C_K^*’ \tilde Gamma’]’ is nonsingular.
# Hence, we may choose \tilde Gamma’ from null space
# of C_K^*. Find basis for null space
xs0 := nonsingular(Cs[K]);

# Find input matrix for x_s^0 system with respect to
# new input vector [u’ v’]’
B0 := xs0.Bh.Gamma3:

# Split out input matrix for u input
Bu0 := B0[1 .. ns, 1 .. qb[K]]: else
# If K = 0, the entire system is part of the x_s subsystem.
# Define the transformation to x_s^0 as identity matrix
ns := n;
xs0 := IdentityMatrix(n);

# Find input matrix for x_s^0 system with respect to
# new input vector [u’ v’]’
B0 := xs0.Bh.Gamma3;

# There is no u input
Bu0 := Matrix(ns,0);

end if:

# Define new state x_s^1 by canceling nonzero
# occurences in Bu0, using x0
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# (which describes x_i0 states)
xs1 := xs0-Bu0.x0:

# Define new state x_s^2 as x_s^1, to be
# recursively modified to remove occurences
# non-outputs from x_b and x_f subsystems
# in derivative
xs2 := xs1:

# We start by taking chains of length j = 2 and up,
# continue with 3 and up, and so forth,
# to eliminate remaining unwanted occurences
for j from 2 by 1 to K do

# Initialize counters qc and rc, to represent the
# number of states in levels below
# the one currently processed
qc := 0:
rc := 0:

# Add number of states in chains that are
# shorter than j
for i from 1 by 1 to j-1 do

qc := qc+i*q[i];
rc := rc+i*r[i];

end do:

# Iterate over all chains of length j and up
for i from j by 1 to K do

# Calculate coefficient matrix for current
# version of x_s^2
X2 := Matrix([[xs2], [xb], [xf]]);
A2 := xs2.Ah.LinearAlgebra:-MatrixInverse(X2);

# If there is an x_f chain of length i,
# remove occurences of x_{i-j+2 j-2} by
# subtracting linear combination of x_{i-j+1 j-1}
if q[i] > 0 then

R := Matrix(ns, q[i], A2[1 .. ns,
ns+nb+qc+(i-j+1)*q[i]+1 .. ns+nb+qc+(i-j+2)*q[i]]):
xs2 := xs2-R.xf[qc+(i-j)*q[i]+1 .. qc+
(i-j+1)*q[i], 1 .. n]:

end if:

# If there is an x_b chain of length i,
# remove occurences of x_{bi-j j-2} by
# subtracting linear combination of x_{b i-j+1 j-1}
if r[i] > 0 then

R := A2[1 .. ns, ns+rc+(i-j+1)*r[i]+1 ..
ns+rc+(i-j+2)*r[i]]:
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xs2 := xs2-R.xb[rc+(i-j)*r[i]+1 .. rc+(i-j+1)*r[i],
1 .. n]:

end if:

# Add to counters qc and rc
qc := qc+i*q[i];
rc := rc+i*r[i];

end do;
end do:

# Change the order of the x_f system so that
# we have SISO integration chains

# Create new variable to be built up with new sorting
xftmp := Matrix(0, n):
qc := 0:
# qc counts the number of elements in chains already processed

# Iterate over all chains
for i from 1 to K do

# Iterate over each level in integration chain i
for j from 1 by 1 to q[i] do

# Iterate over each component at level j of
# integration chain i
for l from 0 by 1 to i-1 do

# Add component to xftmp
xftmp := Matrix([[xftmp], [xf[qc+l*q[i]+j, 1 ..n]]]);

end do:
end do:
# Add number of elements in chain i to cumulative counter
qc := qc+i*q[i];

end do:
# Define x_f as xftmp
xf := xftmp;

# Transform x_s subsystem to Kalman controllable form

# Find coefficients of derivative of x_s in new coordinates
X2 := Matrix([[xs2], [xb], [xf]]):
A2 := xs2.Ah.LinearAlgebra:-MatrixInverse(X2);

# Separate out n_s\times n_s coefficient matrix for
# x_s subsystem
As := A2[1 .. ns, 1 .. ns]:

# Find input matrix for x_s subsystem with respect
# to new [u’ v’]’ inputs
Bs := xs2.Bh.Gamma3:
if K > 0 then
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udim := qb[K];
Bs := Bs[1 .. ns, qb[K]+1 .. m]:

else
udim := 0;

end if:

if LinearAlgebra:-Rank(Bs) = 0 then
xa := xs2;
xc := Matrix(0,n);
na := ns;
nc := 0;

else
At, Bt, Ct, Gamma1t, Gamma2t, Gamma3t,
dimt := scbSP(LinearAlgebra:-Transpose(As),
Matrix(ns,0), LinearAlgebra:-Transpose(Bs));
xs3 := LinearAlgebra:-Transpose(Gamma1t).xs2;
na := dimt[1];
nc := ns-na;
xa := xs3[1 .. na, 1 .. n]:
xc := xs3[na+1 .. ns, 1 .. n]:
Gamma3 := Gamma3.LinearAlgebra:-DiagonalMatrix([
<LinearAlgebra:-IdentityMatrix(udim)>,
<LinearAlgebra:-MatrixInverse(LinearAlgebra:
-Transpose(Gamma2t))>]);

end if:

# Calculate Gamma_1
Gamma1inv := Matrix([[xa], [xb], [xc], [xf]]);
Gamma1 := simplify(LinearAlgebra:
-MatrixInverse(Gamma1inv)):

# Calculate (simplified) system matrices for
# new SCB system
A_scb := simplify(Gamma1inv.Ah.Gamma1):
B_scb := simplify(Gamma1inv.Bh.Gamma3):
C_scb := simplify(Gamma2inv.Ch.Gamma1):

# Create vector containing dimensions of
# x_a, x_b, x_c, and x_f subsystems
dim := [na, nb, nc, nf]:

# Return SCB system matrices, state transformations,
# and dimensions of subsystems
A_scb, B_scb, C_scb, Gamma1, Gamma2, Gamma3, dim:

end proc:

# Procedure for finding SCB representation and state
# transformation for general multivariable LTI systems
scb := proc(Ai,Bi,Ci,Di)
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local Ah, Bt, Ct, Dt, m0, C0, Ch1, U1, U2, Y1, Y2,
kern, kernmatrix, p, n, m, Bh, B0, Bh1, D;
local U, Y, AsSP, BsSP, A, B, CsSP, C, G1, G2, G3, dim,
Gamma1SP, Gamma2SP, Gamma3SP;
uses LinearAlgebra;

# Recast inputs as matrices, in case we received vectors or
# scalars, and convert any floating-point elements to
# exact fractions
Ah := mconvert(Matrix(Ai)):
Bt := mconvert(Matrix(Bi)):
Ct := mconvert(Matrix(Ci)):
Dt := mconvert(Matrix(Di)):

# Find system dimensions
p, n := LinearAlgebra:-Dimension(Ct):
n, m := LinearAlgebra:-Dimension(Bt):

# Check that [\hat B’ \hat D’]’ matrix and [\hat C \hat D]
# matrix are of maximal rank. If not, throw exception
if LinearAlgebra:-Rank(Matrix([Ct, Dt])) < p then

error "Matrix [C, D]’ must be of maximal rank"
elif LinearAlgebra:-Rank(Matrix([[Bt], [Dt]])) < m then

error "Matrix [B’, D’]’ must be of maximal rank"
end if:

# Start by treating non-strictly proper case

# Find rank of \tilde D
m0 := LinearAlgebra:-Rank(Dt):

# Y2 must lie in left null space of matrix \tilde D.
# Find basis for null space, and select Y2 as reduced-row
# echelon form of that basis
kern := LinearAlgebra:-NullSpace(LinearAlgebra:
-Transpose(Dt)):
kernmatrix := LinearAlgebra:-ReducedRowEchelonForm
(Matrix(p-m0, p, LinearAlgebra:-
Transpose(Matrix(p, p-m0, [kern[]])))):
Y2 := kernmatrix:

# Get Y1 such that [Y1’ Y2’]’ is nonsingular
Y1 := nonsingular(Y2);

# Compute Y
Y := MatrixInverse(Matrix([[Y1], [Y2]]));

# Select U_1 as Y_1\tilde D
U1 := Y1.Dt;
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# Compute U_2 such that [U_1’ U_2’]’ is nonsingular
U2 := nonsingular(U1);

# Compute U
U := LinearAlgebra:
-MatrixInverse(Matrix([[U1], [U2]]));

# Find matrices C_0 and \hat C_1
C0 := Y1.Ct:
Ch1 := Y2.Ct:

# Find matrix \hat B and split it into B_0
# and \hat B_1
Bh := Bt.U;
B0 := Bh[1 .. n, 1 .. m0];
Bh1 := Bh[1 ..n, m0+1 .. m];

# Find transformations for strictly proper
# part of system
AsSP, BsSP, CsSP, Gamma1SP, Gamma2SP, Gamma3SP,
dim := scbSP(Ah-B0.C0, Bh1, Ch1);

# Construct transformations matrices for
# non-strictly proper system
G1 := Gamma1SP;
G2 := simplify(LinearAlgebra:-DiagonalMatrix([
<IdentityMatrix(m0)>, <Gamma2SP>]));
G3 := simplify(LinearAlgebra:-DiagonalMatrix([
<IdentityMatrix(m0)>, <Gamma3SP>]));

# The SCB matrix for the non-strictly proper system
# is the same as returned by scbSP
A := AsSP;

# Calculate the remaining SCB matrices using all the necessary
# transformations, including U and Y
B := simplify(LinearAlgebra:-MatrixInverse(G1).Bt.U.G3);
C := simplify(LinearAlgebra:-MatrixInverse(Y.G2).Ct.G1);
D := simplify(LinearAlgebra:-MatrixInverse(Y.G2).Dt.U.G3);

# Return SCB matrices, transformations and dimensions
A, B, C, D, G1, G2, G3, U, Y, dim:

end proc:





4
Constraints on inputs: actuator
saturation

4.1 Introduction

This chapter is concerned with designing controllers for linear systems subject to
input saturation with the purpose of achieving internal stabilization. This is a pre-
lude to most of the subsequent chapters, and presents basic problem statements
of global and semi-global internal stabilization, necessary and sufficient condi-
tions under which such a stabilization can be achieved, as well as control design
methodologies that can be utilized for an appropriate design.

To start with, it is prudent to observe that control magnitude saturation or
actuator saturation is pretty common and indeed is ubiquitous in engineering
applications, and as such, it has been recognized ever since the beginnings of
industrial revolution and automation. To exemplify this, let us note that the ca-
pacity of every device is capped. Valves can only be operated between fully open
and fully closed states, pumps and compressors have a finite throughput capacity,
and tanks can only hold a certain volume. Force, torque, thrust, stroke, voltage,
current, flow rate, and so on, are limited in their activation range in all physical
systems. Servers can serve only so many consumers. In circuits, transistors and
amplifiers are saturating components. Saturation and other physical limitations
are dominant in maneuvering systems like aircrafts. Every physically conceivable
actuator, sensor, or transducer has bounds on the magnitude as well as on the rate
of change of its output. Note that bounds on the rate of change and sensor satura-
tion will be discussed in subsequent chapters. This chapter concentrates only on
input magnitude saturation.

One of the foremost tasks of any control system design is to make sure that the
given system under the designed control law is internally stable. In this regard,
we recognize that most of the control theoretic concepts are developed for linear
systems. Thus, in this framework, often, nonlinear elements are approximated
as linear elements. Once the analysis or design of the resulting linear systems
are complete, one tries to gauge the effect of nonlinearities on such an analysis
or design. Such an ad hoc approach cannot always lead to satisfactory results.
In fact, ignoring constraints can be detrimental to the stability and performance
of control systems, and can lead to catastrophic events. A classical example for
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the detrimental effect of neglecting constraints is the Chernobyl unit four nuclear
power plant disaster in 1986. As such, direct methods of design are necessary to
regulate and stabilize linear systems subject to actuator saturation. That is, the
challenge is to take actuator saturation into account directly at the onset of design
rather than resorting to ad hoc methods of design.

Although internal stabilization of linear systems subject to actuator saturation
by direct methods rather than by ad hoc methods is an important problem, the ar-
rows of history did not pierce through it for a very long time when Fuller in 1969
aimed an arrow and successfully hit it [38]. Fuller’s seminal paper established
that a chain of integrators with order higher than two cannot be globally asymp-
totically stabilized by any saturating linear static state feedback control law with
only one input channel. Once that is done, history fell silent once more for about
20 years, and its arrows floated dimly overhead. The monumental work of Fuller,
unfortunately, was not widely recognized in the following 20 years although re-
searchers working in optimal control area were then making tremendous efforts
to develop system theoretic criteria for global asymptotic stabilization of general
linear time-varying systems by constrained controls, see [66, 145] among others.

In 1990, continuing the theme of Fuller, Sontag and Sussman [155] (see also
[174]) established that, for continuous-time systems, in general, global asymp-
totic stabilization for linear systems with bounded inputs cannot be achieved
using linear feedback laws, it is possible only by using nonlinear control laws.
More precisely, they established that in general global asymptotic stabilization
for linear systems with bounded inputs can be achieved using nonlinear feedback
laws if and only if the system in the absence of saturation is stabilizable and
critically unstable (equivalently, asymptotically null controllable with bounded
control (ANCBC)). In the discrete-time setting, an analogous result is established
by Yang [209, 210]. It states that a linear discrete-time system subject to input
saturation can be globally asymptotically stabilized via nonlinear feedback if and
only if it is stabilizable and all its poles are located inside or on the unit circle.
A nonlinear globally stabilizing control law for such a system is also explicitly
constructed in [209]. Let us emphasize that Sontag, Sussman, and Yang mostly
point out the existence of controllers that would solve the global internal stabiliza-
tion problem of linear systems with bounded controls under a set of necessary and
sufficient conditions. However, methodologies to design appropriate controllers
that achieve global internal stabilization are not clearly formulated.

The works of Sontag, Sussman, and Yang unleashed a flurry of activity in
internally stabilizing linear systems subject to actuator saturation. Along one
direction, Teel [179] proposed certain design methodologies to design appropri-
ate controllers for global stabilization. Along another direction, Saberi and his
students queried as to what can be achieved by utilizing linear feedback control
laws. In this respect, they [74, 75, 77] proposed and emphasized a semi-global
rather than a global framework for stabilization using bounded controls. Let us
note that the concept of global asymptotic stabilization is well known. In con-
trast to global asymptotic stabilization, the possibility of semi-global exponential
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stabilization means that for any bounded set, we can find a controller which
achieves local exponential stabilization of the system while the domain of attrac-
tion of the closed-loop system contains an a priori given bounded set. Relaxing the
requirement of global stabilization to that of semi-global stabilization enables the
utilization of linear feedback control laws. That is, Saberi et al. established that
the semi-global exponential stabilization can be achieved by bounded controls,
while utilizing linear feedback laws, under the same necessary and sufficient con-
ditions required to achieve global asymptotic stabilization by nonlinear feedback
laws. In other words, they established that for a linear system subject to actuator
saturation there exists a family of linear feedback laws which achieves internal
exponential stability if and only if it is stabilizable and has all its open-loop poles
in the closed left-half plane for continuous-time systems and within or on the unit
circle for discrete-time systems.

We observe that relaxing the requirement of global stabilization to that of semi-
global stabilization not only enables the utilization of linear feedback control
laws, but it also makes sense from an engineering point of view, since in gen-
eral a plant’s model is usually valid in some region of the state space. Moreover,
it allows a stronger stability property for the closed-loop system, that is, the expo-
nential stability of the closed-loop system, rather than mere asymptotic stability.
In Sect. 4.7, we return to the question whether we can find linear controllers that
achieve global stability.

Let us discuss next the available methods for designing controllers that can
achieve semi-global stabilization. One method was proposed and detailed in [75]
and [76]. It is based on the eigenstructure assignment and is referred to as a direct
method of design for low-gain controllers. However, later on, algebraic Riccati
equation (ARE)-based methods utilizing H2 and H1 optimal control theory for
designing low-gain controllers were also proposed independently in [88] and
[181]. Also, the works of [74, 77, 78, 128] introduced yet another design tech-
nique, the so-called low-and-high-gain design technique. This design technique
was basically conceived for semi-global control problems beyond stabilization
and was related to the performance issues such as semi-global stabilization with
enhanced utilization of the available control capacity of the system, semi-global
disturbance rejection, and robustness of stability with respect to uncertainties.
All these works have led to the development of low-gain and low-and-high-gain
design methodologies now popular in this area (see [71, 135]). On the other hand,
several nonlinear bounded feedback laws also were constructed explicitly for
global asymptotic stabilization of linear systems with input saturation. Teel pro-
posed a nested saturation design for a chain of integrators with bounded control
[180]. This technique was later generalized by Sussman et al. to general linear
systems [173]. Megretski came up with a scheduling-based nonlinear control law
based on the H1 Riccati equation, which automatically increases the gain as
the state approaches the origin [98] (such a control law also turns out to be cru-
cial for external L2 disturbance rejection). Two special issues published by the
International Journal of Robust and Nonlinear Control have collected some
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contributions pertinent to this area [8, 134]. In particular, reference [7] has a
comprehensive bibliography reflecting the earlier works on systems with satu-
rating actuators.

The purpose of this chapter is to review this early phase of research dealing with
global and semi-global internal stabilization of linear systems subject to satura-
tion. In particular, we recall here the precise problem formulations of global and
semi-global internal stabilization and various design methodologies to achieve
such a stabilization and then review clearly the results obtained.

4.2 Problem statements and their solvability results

We consider a linear system subject to actuator saturation described by

�x D Ax C B�.u/

y D Cx;
(4.1)

where, as usual, x 2 Rn is the state, u 2 Rm is the control input to the saturator,
and y 2 Rp is the measurement output. Also, �x denotes dx

dt
for continuous-time

case and x.k C 1/ for discrete time. Moreover, the function �.:/ W Rn ! Rn is
the saturation function defined in Definition 2.20.

There exist in the literature a number of saturation functions and some of the
general ones are collected in Sect. 2.6. Most of the early results use the following
standard saturation function:

�.s/ D sat�.s/; (4.2a)

where

sat�.s/ D � sat
� s
�

�
(4.2b)

and

sat.s/ D

ˇ
sat1.s1/

sat1.s2/
:::

sat1.sm/;

�
(4.2c)

where � > 0 is a constant and

sat1.s/ D

8
<̂

:̂

�1 for s < �1
s for jsj 6 1

1 for s > 1:

(4.2d)
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Although early results are based on the above saturation function (4.2), most
of the results which are obtained for the above saturation function can easily be
re-obtained for a general saturation function as described in Sect. 2.6. This will
be addressed in Chap. 5.

As pointed out in the introduction, although internally stabilizing a linear system
subject to actuator saturation is an important problem, historically, no definite
work existed until Fuller [38] established that a chain of integrators with order
higher than two cannot be globally asymptotically stabilized by any saturating
linear control law. In 1990, continuing the theme of Fuller, Sontag and Sussman
[155] (see also [174]) formulated and solved the following problem:

Problem 4.1 Consider the system (4.1) in either continuous or discrete time. The
global asymptotic stabilization problem via state feedback is to find, if pos-
sible, a state feedback (possibly nonlinear or time-varying) u.t/ D f .x.t/; t/ or
u.k/ D f .x.k/; k/ such that the equilibrium point x D 0 of the closed-loop
system is asymptotically stable.

Regarding the above problem, by now two facts (one positive, one negative)
are well known, owing to the works of Sontag and Sussman [155] and Sussman
and Yang [174]:

Fact 1: The global asymptotic stabilization problem via state feedback (Problem
4.1) is solvable if and only if the given linear system subject to magnitude
saturation of the actuator is stabilizable and has all its open-loop poles in
the closed left-half plane for continuous-time systems and within or on the
unit circle for discrete-time systems.

Fact 2: The global asymptotic stabilization problem via state feedback (Problem
4.1) is, in general, not solvable by a linear state feedback but, whenever it
is solvable, it can be done with a nonlinear, static, and time-invariant state
feedback.

We will prove the necessity of Fact 1 at the end of this section. The suffi-
ciency of Fact 1 and Fact 2 follows immediately from the construction of suit-
able controllers in the following sections. The fact that that we cannot always
restrict attention to linear controllers for continuous-time systems is due to [38].
For discrete-time systems, this is a very strong conjecture.

It is worth pointing out here that in the literature a system is said to be asymp-
totically null controllable with bounded controls (ANCBC) if it is stabilizable,
and has all its open-loop poles in the closed left-half plane for continuous-time
systems and within or on the unit circle for discrete-time systems. This means
that we can restate Fact 1 as follows: The global asymptotic stabilization problem
via state feedback (Problem 4.1) is solvable if and only if the given system is
asymptotically null controllable with bounded controls.



116 4 Constraints on inputs: actuator saturation

Remark 4.2 For sample data systems with zero order hold and with sampling
period T non-pathological,1 if the given continuous-time system is ANCBC, so is
the resulting sample data system.

The case of measurement feedback instead of state feedback was not immedi-
ately obtained after the work of Sontag, Sussman, and Yang but was formulated
and solved later on. The problem can be stated clearly as follows:

Problem 4.3 Consider the system (4.1) in either continuous or discrete time.
The global asymptotic stabilization via dynamic measurement feedback is to
find a dynamic measurement feedback control law (possibly nonlinear and time-
varying) of the form

Tp.t/ D `.p; y; t/

u.t/ D g.p; y; t/;

for continuous-time systems or of the form

p.k C 1/ D l.p.k/; y.k/; k/

u.k/ D g.p.k/; y.k/; k/;

for discrete-time systems, such that the equilibrium point .x; p/ D .0; 0/ of the
closed-loop system is globally asymptotically stable.

Analogous to state feedback control problem, we can state the following facts
regarding the measurement feedback control problem:

Fact 3: The global asymptotic stabilization problem via measurement feedback
(Problem 4.3) is solvable if and only if the given linear system subject to
magnitude saturation of the actuator is stabilizable, detectable, and has all
its open-loop poles in the closed left-half plane for continuous-time systems
and within or on the unit circle for discrete-time systems.

Fact 4: The global asymptotic stabilization problem via measurement feedback
(Problem 4.3) cannot, in general, be solved by a linear measurement feed-
back of the form of a stabilizing state feedback combined with an observer.

Clearly, Fact 4 follows immediately from Fact 2. Fact 3 was introduced in [155]
for continuous-time systems. We will prove the necessity of Fact 3 at the end of
this section. The sufficiency follows immediately from the construction of suitable
controllers in the following sections.

1Non-pathological sampling period T implies that there is no pair of distinct poles of the given
continuous-time system, say �1 and �2, such that jim �1 � im �2j equals k2�

T
for some integer k.
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As we discussed in introduction, the work of Sontag, Sussman, and Yang
unleashed a flood of activity. As pointed out above, by Facts 2 and 4, global
asymptotic stabilization of linear system subject to magnitude saturation of the
actuator requires nonlinear feedback control laws which are inherently cumber-
some to implement. This implementation issue prompted Saberi and his students
to ask a fundamental question of how to weaken this requirement and be able to
utilize only linear feedback control laws. This leads to the formulation of semi-
global internal stabilization problems as recalled below.

Problem 4.4 Consider the system (4.1) in either continuous or discrete time. The
semi-global exponential stabilization problem via state feedback is to find,
if possible, for any arbitrarily large bounded set X � Rn, a state feedback law
u.t/ D f .x.t/; t/ or u.k/ D f .x.k/; k/, such that the equilibrium point x D 0

of the closed-loop system is locally exponentially stable with X contained in its
domain of attraction.

Problem 4.5 Consider the system (4.1) in either continuous or discrete time. The
semi-global exponential stabilization via dynamic measurement feedback is
to find, if possible, an integer q such that, for any arbitrarily large bounded set
V � RnCq, there exists a controller of the form,

Tp.t/ D `.p; y; t/; p.t/ 2 Rq

u.t/ D g.p; y; t/;

for continuous-time systems or of the form,

p.k C 1/ D l.p.k/; y.k/; k/; p.t/ 2 Rq

u.k/ D g.p.k/; y.k/; k/;

for discrete-time systems, such that the equilibrium point .x; p/ D .0; 0/ of
the closed-loop system is locally asymptotically stable and V is contained in its
domain of attraction.

Note that the problem defined above considers nonlinear time-varying feedback
controllers and arbitrary state dimension. However, from the work of Saberi and
Lin [74, 75, 77], we can state the following:

Fact 5: The above state as well as measurement feedback semi-global stabiliza-
tion problems (Problems 4.4 and 4.5) are solvable under the same condi-
tions for which the respective global stabilization problems are solvable.
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Fact 6: The above state as well as measurement feedback semi-global
stabilization problems (Problems 4.4 and 4.5), if solvable, are always solv-
able by linear controllers, and, in the measurement feedback case, we can
always choose q D n.

We will prove the necessity of Fact 5 at the end of this section. The sufficiency
follows immediately from the construction of suitable controllers in the following
sections. The above gives credence to a semi-global framework over a global
framework as it utilizes only linear feedback while still yielding an arbitrary large
domain of attraction. Moreover, we can achieve exponential stabilization rather
than asymptotic stabilization.

In view of the above discussion, before we proceed further, we make the fol-
lowing standard assumptions on the triple .A;B; C / of the system 4.1:

Assumption 4.6 The pair .A;B/ is stabilizable.

Assumption 4.7 The eigenvalues ofA are all located in the closed left-half plane
for continuous-time systems and within or on the unit circle for discrete-time
systems.

In the literature, the above two assumptions are equivalently combined into one
assumption as given by the following:

Assumption 4.8 The pair .A;B/ is asymptotically null controllable with boun-
ded controls. That is:

(i) All the eigenvalues ofA are located in the closed left-half plane in the contin-
uous time, while they are all located inside or on the unit circle in the discrete
time.

(ii) The pair .A;B/ is stabilizable.

Assumption 4.9 The pair .A; C / is detectable.

The rest of this chapter is devoted to discuss several design methodologies we
employ throughout this book as well as their application for semi-global or global
stabilization of linear systems subject to actuator saturation as described in the
system (4.1). The primary design methodologies introduced early on into the liter-
ature are low-gain designs. Fundamentally, there are two different ways low-gain
design can be accomplished:
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� Direct eigenstructure assignment method as discussed in Sect. 4.3.

� Algebraic Riccati equation (ARE)-based methods as discussed in Sects. 4.4
and 4.8. This ARE-based method can utilize either the H2 or H1 Riccati
equation.

As discussed in detail later on, low-gain design methods underutilize the avail-
able control capacity. To rectify this and to utilize better the available control
capacity, low-and-high-gain design methods were introduced [74, 77, 78, 128].
Both the low-gain design methods as well as low-and-high-gain design methods
lead to linear controller designs. The low-gain design depends on what is called a
low-gain parameter ", while the low-and-high-gain design depends on " as well
as on a parameter ˛ called a high-gain parameter. By utilizing the freedom in
choosing the parameters " and ˛ appropriately, low-gain, and low-and-high-gain
design methods have successfully been used, in connection with linear systems
with saturating actuators, for internal stabilization [75, 76], simultaneous inter-
nal and external stabilization [86], robust stabilization [68, 78, 128], disturbance
rejection [87], output regulation [88], etc.

Mainly, all of the above work is confined to a semi-global framework. In the
next phase of research, the tuning parameters " and ˛ have been adapted or sched-
uled to depend on the state x or its estimate, and in so doing, nonlinear controllers
have been designed [67, 70, 98, 126]. This is done to elevate the design framework
from semi-global to global, both internally and externally.

We review in several subsequent sections the essence of low-gain, and low-
and-high-gain design methods as well as scheduled-low-and-scheduled-high-gain
design methods and their applications in early phase of research.

Proof of necessity of Facts 1–6 : To prove the necessity of Fact 1 in continuous
time, it is immediate that .A;B/ needs to be stabilizable. Next, assume that � is an
eigenvalue of A in the open right-half plane with corresponding left eigenvector
p, i.e., pA D �p. Then we have

d

dt
px.t/ D �px.t/C v.t/;

where

v WD pB�.u/:

There clearly exists an zM > 0 such that kv.t/k 6 zM for all t > 0 since �.u/ is
bounded. But then,

jpx.t/j >
ˇ̌
ˇe�t

ˇ̌
ˇ

 
jpx.0/j �

zM
Re �

!
C

zM
Re�

;
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which does not converge to zero since Re� > 0, provided the initial condition is
such that

jpx.0/j >
zM

Re�
:

Note that this is valid for all controllers, and therefore, we can clearly not achieve
global stability. In discrete time, the argument is similar. It is again immediate
that .A;B/ needs to be stabilizable. Next, assume that � is an eigenvalue of A
outside the closed unit disc, i.e., j�j > 1, with corresponding left eigenvector p,
i.e., pA D �p. Then we have

px.k C 1/ D �px.k/C v.k/;

where

v WD pB�.u/:

There clearly exists an zM > 0 such that kv.k/k 6 zM for all t > 0 since �.u/ is
bounded. But then,

jpx.k/j >
ˇ̌
ˇ�k

ˇ̌
ˇ

 
jpx.0/j �

zM�

� � 1

!

which does not converge to zero since j�j > 1, provided the initial condition is
such that

jpx.0/j >
zM�

� � 1 :

Note that this is again valid for all controllers, and therefore, we can clearly not
achieve global stability.

The necessity of Fact 3 follows directly from the above since this argument
is independent of the use of state or measurement feedback controllers. It also
yield the necessity of the conditions for semi-global stabilization since the above
argument identifies initial conditions that cannot be stabilized, and hence, semi-
global stabilization is impossible as well.

4.3 Semi-global stabilization: direct eigenstructure
assignment

In this section, we recall the low-gain design method by direct eigenstructure
assignment that enables us to construct a family of state as well as measurement
feedback control laws; semi-global stabilization can be achieved by utilizing a
member of either of such a family of control laws. The low-gain design method-
ology was originally introduced by Lin and Saberi in [75]. Since this early work,
there have been several variations of the method [76, 83, 84, 86–88].
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4.3.1 Continuous-time systems

We first consider continuous-time systems and proceed to describe what is referred
to as a direct method of design based on an eigenstructure assignment method.

Consider a linear system

Tx D Ax C Bu; x 2 Rn; u 2 Rm; (4.3)

where we assume that .A;B/ is stabilizable and all the eigenvalues of A are in the
closed left-half plane. Then, the low-gain design is carried out in the following
three steps:
Step 1: Find a state transformation �x and an input transformation �u (a varia-
tion of the canonical forms presented in [56, Sect. 6.4.6]) such that � �1

x A�x and
� �1

x B�u are in the following form:

� �1
x A�x D

�
A1 A1;2 � � � A1;q 0

0 A2

: : :
:::

:::
:::

: : :
: : : Aq�1;q

:::
:::

: : : Aq 0

0 � � � � � � 0 AqC1

�
; (4.4)

� �1
x B�u D

�
B1 0 � � � 0 B1;qC1

0 B2

: : :
:::

:::
:::

: : :
: : : 0

:::

0 � � � 0 Bq Bq;qC1

BqC1;1 � � � BqC1;q�1 BqC1;q BqC1;qC1

�
; (4.5)

where q is an integer, and for i D 1; 2; : : : ; q,

Ai D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

�ai
ni

� � � �ai
3 �ai

2 �ai
1

�
; Bi D

�
0
:::

0

0

1

�
:

Clearly, .Ai ; Bi / is controllable. The transformation �x is such that all the eigen-
values of Ai are on the imaginary axis, and all the eigenvalues of AqC1 have
strictly negative real parts.
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Step 2: For each .Ai ; Bi /, let F"i ;i 2 R1�ni be the state feedback gain such
that the eigenvalues of Ai C BiF"i ;i can be obtained from the eigenvalues of
Ai by moving any eigenvalue �i on the imaginary axis to �i � 2" while all the
eigenvalues in the open left-half plane remain at the same location.

We note here that such a gain F"i ;i exists and is unique. Moreover, it can be
obtained explicitly in terms of "i . The uniqueness follows since .Ai ; Bi / is a
single-input controllable pair.

Step 3 : The family of low-gain state feedback control laws parameterized in " is
defined by

u D F"x; (4.6)

where the state feedback gain matrix F" is given by

F" D �u

�
F"1;1 0 � � � � � � 0

0 F"2;2

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : : F"q ;q 0

0 � � � � � � 0 0

�
� �1

x ; (4.7)

where "q D ", while for i D 2; : : : ; q, we have

"i�1 D "
2Cri

i ;

where ri is the largest algebraic multiplicity of the eigenvalues of Ai .
In order to show that the controller constructed above has certain desired prop-

erties, we first present and prove a crucial lemma:

Lemma 4.10 Consider a linear single-input system in the controller canonical
form:

Tx D Ax C Bu;

where

A D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

�an � � � �a3 �a2 �a1

�
; B D

�
0
:::

0

0

1

�
;
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with all eigenvalues of A in the closed left-half plane. Let F" be the unique matrix
such that the eigenvalues of A C BF" can be obtained from the eigenvalues of
A by moving any eigenvalue �i on the imaginary axis to �i � 2" while all the
eigenvalues in the open left-half plane remain at the same location.

Then, there exist ˇ, � , and "� such that for all 0 < " 6 "�, we have

���F"e
.ACBF"/t

��� 6 "ˇe�"t (4.8)

and
���e.ACBF"/t

��� 6 �

"r�1
e�"t (4.9)

for all t > 0, where r is the largest algebraic multiplicity among the eigenvalues
of A.

Proof : Define F0 D 0 and

p".s/ D det.sI � A� BF"/:

Since the state feedback moves all eigenvalues 2" to the left, we note that p".s/ D
p0.s C 2"/, where p0 is obtained from p" by setting " D 0. We define

q.s/ D

ˇ
1

s
:::

sn�1

�
:

Due to the structure of A and B , we have

.AC BF"/q.s/ D sq.s/ � Bp".s/ (4.10)

for any s 2 C. If �";i is an eigenvalue of ACBF" with algebraic multiplicitymi ,
then we can immediately obtain from (4.10) by differentiation,

.ACBF"/q.�";i / D �";iq.�";i /

.ACBF"/q
.1/.�";i / D �";iq

.1/.�";i /C q.�";i /

:::
:::

.AC BF"/q
.mi �1/.�";i / D �";iq

.mi �1/.�";i /C q.mi �2/.�";i /:
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If �";1; : : : ; �";k are the eigenvalues of A C BF" with multiplicity m1; : : : ; mk ,
then,

q.�";1/; : : : ; q
.m1�1/.�";1/; : : : ; q.�";k/; : : : ; q

.mk�1/.�";k/ (4.11)

form a basis of Cn. We note that

e.ACBF"/tq.j /.�";i / D e�";i t

jX

kD0

tk

kŠ
qj �k.�";i /:

Also, we note that
ˇ̌
ˇe�";i t

ˇ̌
ˇ 6 e�2"t ;

and that there exists a z� > 0 such that

tke�"t 6 z�
"k

(4.12)

for k D 0; : : : ; r � 1 and for all t > 0. Therefore, all the coefficients of the matrix
e.ACBF"/t with respect to the basis (4.11) are bounded by

�

"r�1
e�"t

for some constant� > 0 provided that " < 1. The basis transformation associated
with the basis (4.11) is continuous in " and converges to the identity as " converges
to zero. Hence, there exists a � such that (4.9) is satisfied.

Using (4.10), we find that

F"q.s/ D .F" � F0/q.s/ D p0.s/� p".s/ D p0.s/� p0.s C 2"/

for all s 2 C. If �";i is an eigenvalue of A of multiplicitymi , then it is also a zero
of p0 of multiplicitymi , and we find that there exists a M > 0 such that

ˇ̌
ˇp.j /

0 .�";i � 2"/� p
.j /
0 .�";i /

ˇ̌
ˇ 6 M"mi �j

for all sufficiently small ". But this implies that
���F"q

.j /.�";i /
��� 6 M"mi �j : (4.13)

We then have

F"e
.ACBF"/tq.j /.�";i / D e�";i t

jX

kD0

tk

kŠ
F"q

.j �k/.�";i /;
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and, using (4.13), we find that

���F"e
.ACBF"/tq.j /.�";i /

��� 6 e�2"t

jX

kD0

tk

kŠ
M"mi �j Ck :

Using that mi � j > 0, we find that

���F"e
.ACBF"/tq.j /.�";i /

��� 6 e�2"t

jX

kD0

tk

kŠ
M"kC1:

Using (4.12), this implies the existence of a M1 > 0 such that, for all t > 0,
we have

���F"e
.ACBF"/tq.j /.�";i /

��� 6 M1"e
�"t :

The basis transformation associated with the basis (4.11) is continuous in " and
converges to the identity as " converges to zero. The above bound then yields (4.8)
for some suitably chosen constant ˇ.

The parameterized state feedback gain F" as given by (4.7) is termed as a low-
gain feedback, the name low-gain for F" is justified soon by (4.16). The low-gain
F" has several inherent properties that enable its utilization to stabilize a linear
system with constraints. These properties are addressed by the following theorem:

Theorem 4.11 Consider the linear system as given by (4.3). Suppose that .A;B/
is stabilizable and all the eigenvalues of A are in the closed left-half plane. Then
we have the following properties:

(i) The closed-loop system matrix AC BF" is Hurwitz stable for all " > 0.

(ii) There exist constants M1 > 0, M2 > 0, and "� > 0 such that for all " 2
.0; "�	 and t � 0, we have

���e.ACBF"/t
��� 6 M1

"
r1

1

e�"1t ; (4.14)

kF"e
.ACBF"/tk 6 M2"qe

�"1t : (4.15)

We note that (4.15) implies that, for t D 0, we have

kF"k 6 M2"q: (4.16)
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Proof : From Lemma 4.10, it immediately follows that

kxq.t/k D
���e.AqCBqF"q ;q/txq.0/

��� 6 M1;q

"
rq
q

e�"q tkx.0/k

and

kF"q ;qxq.t/k D
���F"q ;qe

.AqCBqF"q;q/txq.0/
��� 6 M2;q"qe

�"qt kx.0/k:

Next, we will apply a recursion. Assume that for k > i , we have

kxk.t/k 6 M1;k

"
riC1

iC1

e�"iC1t kx.0/k;

and

kF"k ;kxk.t/k 6 M2;k"qe
�"iC1t kx.0/k:

Next, we consider xi .t/. We have

Txi .t/ D .Ai C BiF"i ;i /xi .t/C di .t/;

where di .t/ is a linear combination of xiC1.t/; : : : ; xq.t/ and hence satisfies

kdi .t/k 6
zM1;i

"
riC1

iC1

e�"iC1t kx.0/k: (4.17)

We find that

xi .t/ D e.Ai CBi F"i ;i /txi .0/C
tZ

0

e.Ai CBi F"i ;i /.t��/di .
/ d
:

Combining Lemma 4.10 and (4.17) we get

kxi .t/k 6 �i

"
ri �1
i

e�"i t

"
1C

zM1;i

"
riC1

iC1

1

"iC1 � "i

#
kx.0/k;

and, using that "i D "
2CriC1

iC1 , we get

kxi .t/k 6 .1C 3 zM1;i/�i

"
ri

i

e�"i t kx.0/k: (4.18)
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Similarly, we find that

kF"i ;ixi .t/k 6 ˇi"ie
�"i t

"
1C

zM1;i

"
riC1

iC1

1

"iC1 � "i

#
kx.0/k;

and hence,

kF"i ;ixi .t/k 6 .1C 3 zM1;i /ˇi"iC1e
�"i t kx.0/k: (4.19)

Therefore, by recursion, we find that (4.18) and (4.19) hold for i D 1; : : : ; q. It is
then easy to show that we also have

kxqC1.t/k 6 zM2;qC1e
�"1t kx.0/k:

The bounds we have obtained for the solution of the differential equation then
immediately yield the two bounds presented in the theorem.

Remark 4.12 The above theorem brings into light important properties of low-
gain matrix. Although such properties are obvious, to be explicit, we would like
to describe them here in simple words. Justifying the name low-gain, (4.16) states
that the magnitude or norm of the gain F" can be rendered as small as necessary
by selecting the tuning parameter " as small as needed. Similarly, (4.14) shows
that the norm of the transition matrix of the closed-loop system under the low-gain
control law (4.6) goes to zero exponentially as time tends to infinity but exhibits
a peaking phenomenon for t small. However, even though the state might exhibit
peaking, (4.15) shows that the norm of the feedback control can be rendered as
small as necessary once again by appropriately selecting the parameter ". These
properties ensure that for an " sufficiently small the actuator will not be driven to
its saturation level.

We can easily construct now the observer-based measurement feedback con-
trollers based on the state feedback design (4.6). The family of low-gain measure-
ment feedback control laws take the form,

(
Tyx D Ayx CBuCK.y � C yx/
u D F" yx;

(4.20)

where the state feedback gain F" is given by (4.7) and the observer gain K is
any matrix such that A�KC is Hurwitz stable. Note that another observer-based
measurement feedback controller is also regularly used:

(
Tyx D Ayx C B�.u/CK.y � C yx/
u D F" yx:

(4.21)
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The advantage of (4.20) is that the controller is completely linear. The advantage
of (4.21) is that the observer is always such that

Tx � Tyx D .A �KC/.x � yx/; (4.22)

while in the case of (4.20), the observer error only satisfies (4.22) if we guarantee
that the saturation does not get activated. Therefore, the analysis to prove, for
instance, stability is often easier when using (4.21).

The following theorem shows that the family of state feedback laws given
in (4.6) solves Problem 4.4, namely, the problem of semi-global exponential stabi-
lization via linear static state feedback. Also, it shows that the family of measure-
ment feedback laws given in (4.20) solves Problem 4.5, namely, the problem of
semi-global exponential stabilization via linear dynamic measurement feedback.

Theorem 4.13 Consider the continuous-time system given in (4.1). Assume that
the pair .A;B/ is stabilizable and the eigenvalues of A are all located in the
closed left-half plane. Then the family of linear static state feedback laws given
in (4.6) solves the problem of semi-global stabilization via state feedback as
defined in Problem 4.4. More specifically, under the state feedback (4.6), for any
given (arbitrarily large) bounded set X � Rn, there exists an "� 2 .0; 1	 such
that for all " 2 .0; "�	, the equilibrium point x D 0 of the closed-loop system is
locally exponentially stable with X contained in its domain of attraction.

Also, under the additional assumption that the pair .C;A/ is detectable, the
family of linear dynamic measurement feedback laws given in (4.20) solves the
problem of semi-global stabilization via measurement feedback, as defined in
Problem 4.5. More specifically, under the measurement feedback law (4.20), for
any given (arbitrarily large) bounded set X� yX � R2n, there exists an "� 2 .0; 1	
such that for all " 2 .0; "�	, the equilibrium point .0; 0/ of the closed-loop system
is locally exponentially stable with X � yX contained in its domain of attraction.

Proof : Given a bounded set X � Rn, choose "� such that for " < "� we have

M2"qkxk < 1

for all x 2 X, where M2 is as defined in Theorem 4.11. Then for all initial
conditions x.0/ 2 X, we have

���F"e
.ACBF"/tx.0/

��� < 1;

and therefore, the saturation never gets activated. This implies that

x.t/ D e.ACBF"/tx.0/

for all t > 0, and hence, (4.14) implies that the state converges to zero exponen-
tially as t tends to infinity.
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In the case of measurement feedback, we will also establish that the saturation
will never get activated. If the saturation does not get activated, we note that (4.22)
is satisfied. Since A �KC is stable, we find that

kx.t/ � yx.t/k 6 M3e
��t kx.0/ � yx.0/k

for some constantsM3 and � > 0. Using

kF"x.t/k 6 kF"e
.ACBF"/t kkx.0/kC

tZ

0

F"e
.ACBF"/.t��/kBF"kkx.t/�yx.
/k d
;

we find that

kF"x.t/k 6 M2"q

�
kx.0/k C M2M3"qkBk

� � "1

kx.0/� yx.0/k
�
:

Hence, for " small enough, we have

kF" yx.t/k 6 kF"x.t/k C kF" .x.t/ � yx.t// k < 1

for all t > 0. This implies that the saturation does not get activated for all initial
conditions satisfying x.0/ 2 X and yx.0/ 2 yX . This immediately yields the
exponential convergence and the domain of attraction as presented in the theorem.

Remark 4.14 In view of the above theorem, we can emphasize one aspect of the
low-gain design. The state and measurement feedback laws (4.6) and (4.20) are
parameterized in a single tuning parameter ". One can include any a priori given
(arbitrarily large) bounded set inside the basin of attraction of the closed-loop
system equilibrium point (origin) by choosing the value of the tuning parameter
" sufficiently small. In this sense, the low-gain design described in this section is
a “one shot” design as the design by itself does not depend on the a priori given
set X or .X; yX/.

4.3.2 Discrete-time systems

We consider next discrete-time systems and proceed to describe a direct method
of design based on an eigenstructure assignment method. Our development here
parallels that for continuous-time systems.

Consider a linear system

x.k C 1/ D Ax.k/C Bu.k/; x 2 Rn; u 2 Rm; (4.23)
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where we assume that .A;B/ is stabilizable and all the eigenvalues of A are in the
closed unit disc. The low-gain design is carried out in three steps:

Step 1 : Find a state transformation �x and an input transformation �u (a varia-
tion of the canonical forms presented in [56, Sect. 6.4.6]) such that � �1

x A�x and
� �1

x B�u are in the following form:

� �1
x A�x D

�
A1 A1;2 � � � A1;q 0

0 A2

: : :
:::

:::
:::

: : :
: : : Aq�1;q

:::
:::

: : : Aq 0

0 � � � � � � 0 AqC1

�
;

� �1
x B�u D

�
B1 0 � � � 0 B1;qC1

0 B2

: : :
:::

:::
:::

: : :
: : : 0

:::

0 � � � 0 Bq Bq;qC1

BqC1;1 � � � BqC1;q�1 BqC1;q BqC1;qC1

�
;

where q is an integer, and for i D 1; 2; : : : ; q,

Ai D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

�ai
ni

� � � �ai
3 �ai

2 �ai
1

�
; Bi D

�
0
:::

0

0

1

�
:

Clearly, .Ai ; Bi / is controllable. The transformation �x is such that all the eigen-
values of Ai are on the unit circle, and all the eigenvalues of AqC1 are strictly
inside the unit circle.

Step 2 : For each .Ai ; Bi /, let F"i ;i 2 R1�ni be the state feedback gain such that
the eigenvalues of Ai C BiF"i ;i can be obtained from the eigenvalues of Ai by
moving any eigenvalue �i on the unit circle to .1�2"/�i while all the eigenvalues
in the open unit disc remain at the same location.

We note here that such a gain F"i ;i exists and is unique. Moreover, it can be
obtained explicitly in terms of "i . The uniqueness follows since .Ai ; Bi / is a
single-input controllable pair.
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Step 3 : The family of low-gain state feedback control laws parameterized in " is
defined by

u D F"x; (4.24)

where the state feedback gain matrix F" is given by

F" D �u

�
F"1;1 0 � � � � � � 0

0 F"2;2

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : : F"q ;q 0

0 � � � � � � 0 0

�
� �1

x ; (4.25)

where "q D " while, for i D 2; : : : ; q, we have

"i�1 D "
2Cri

i ; (4.26)

where ri is the largest algebraic multiplicity among the eigenvalues of Ai .

Lemma 4.15 Consider a linear single-input system in the controller canonical
form,

x.k C 1/ D Ax.k/C Bu.k/;

where

A D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

�an � � � �a3 �a2 �a1

�
; B D

�
0
:::

0

0

1

�
;

with all eigenvalues of A in the closed unit disc. Let F" be the unique matrix such
that the eigenvalues of A C BF" can be obtained from the eigenvalues of A by
moving any eigenvalue �i on the unit circle to .1�2"/�i while all the eigenvalues
in the open unit disc remain at the same location. Then, there exist ˇ, � , and "�
such that for all 0 < " 6 "� we have

���F".ACBF"/
k
��� 6 "ˇ.1� "/k; (4.27)
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and
���.AC BF"/

k
��� 6 �

"r�1
.1 � "/k (4.28)

for all k > 0, where r is the largest algebraic multiplicity among the eigenvalues
of A.

Proof : Define F0 D 0 and

p".s/ D det.sI � A� BF"/:

Note that

p".s/ D .1 � 2"/np0

� s

1� 2"

�

where p0 is obtained from p" by setting " D 0. We define

q.s/ D

ˇ
1

s
:::

sn�1

�
:

Due to the structure of A and B , we have

.AC BF"/q.s/ D sq.s/ � Bp".s/ (4.29)

for any s 2 C. If �";i is an eigenvalue of ACBF" with algebraic multiplicitymi ,
then we have,

.AC BF"/q.�";i / D �";iq.�";i /

.AC BF"/q
.1/.�";i / D �";iq

.1/.�";i /C q.�";i /

:::
:::

.AC BF"/q
.mi �1/.�";i / D �";iq

.mi �1/.�";i /C q.mi �2/.�";i /;

which is immediately obtained from (4.29) by differentiation with respect to s
and noting that p".s/ has a zero in �";i of order mi . If �";1; : : : ; �";k are the
eigenvalues of AC BF" with multiplicity m1; : : : ; mk , then

q.�";1/; : : : ; q
.m1�1/.�";1/; : : : ; q.�";k/; : : : ; q

.mk�1/.�";k/ (4.30)
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form a basis of Cn. We note that

.AC BF"/
kq.j /.�";i / D

min.j;k/X

`D0

 
k

`

!
�k�`

";i q
j �`.�";i /:

Also, we note that
ˇ̌
ˇ�k

";i

ˇ̌
ˇ 6 .1� 2"/k 6 .1 � "/2k:

Moreover,

kX

`D0

 
k

`

!
.1 � "/k�`"` D ..1 � "/C "/k D 1;

and hence,
 
k

`

!
.1 � "/k�`"` 6 1:

This implies that
 
k

`

!
.1 � "/k�` 6 1

"`
6 1

"r�1
(4.31)

for ` D 0; : : : ; r � 1 and for k > `. Therefore, all the coefficients of the matrix
.AC BF"/

k with respect to the basis (4.30) are bounded by

�

"r�1
.1 � "/k

for some constant� > 0 provided that " < 1. The basis transformation associated
with the basis (4.30) is continuous in " and converges to the identity as " converges
to zero. Hence, there exists a � such that (4.28) is satisfied.

Using (4.29), we find that

F"q.s/ D .F" � F0/q.s/ D p0.s/ � p".s/ D p0.s/ � .1 � 2"/np0

� s

1 � 2"

�

for all s 2 C. If �i is an eigenvalue of A of multiplicity mi , then it is also a zero
of p0 of multiplicitymi . We have

F"q.�";i / D p0..1 � 2"/�i/:
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Using that p0 has a zero in �i of multiplicitymi , we find that

ˇ̌
ˇ̌
ˇ

dj

d"j
p0..1� 2"/�i/

ˇ̌
ˇ̌
ˇ
"D0

D 0

for j < i . We find that there exists a M > 0 such that

���F"q
.j /.�";i /

��� 6 M"mi �j (4.32)

for all sufficiently small ". We have

F".ACBF"/
kq.j /.�";i / D

min.j;k/X

`D0

 
k

`

!
�k�`

";i F"q
j �`.�";i /;

and, using (4.32), we find that

���F".AC BF"/
kq.j /.�";i /

��� 6
min.j;k/X

`D0

 
k

`

!
.1 � 2"/k�`M"mi �j C`:

Using that mi � j > 0, we find that

���F".AC BF"/
kq.j /.�";i /

��� 6 M".1� "/k
min.j;k/X

`D0

 
k

`

!
.1 � "/k�`"`;

which implies that

���F".AC BF"/
kq.j /.�";i /

��� 6 M".1� "/k�j 6 2M".1� "/k

for " sufficiently small. The basis transformation associated with the basis (4.30)
is continuous in " and converges to the identity as " converges to zero. The above
bound then yields (4.27) for some suitably chosen constant ˇ.

The parameterized state feedback gain F" as given by (4.25) is termed as a
low-gain feedback. It has several inherent properties that enable its utilization to
stabilize a linear system with constraints. These properties are addressed by the
following theorem:

Theorem 4.16 Consider the linear system as given by (4.3). Suppose that .A;B/
is stabilizable and all the eigenvalues of A are in the closed unit disc. Then we
have the following properties:
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(i) The closed-loop system matrix AC BF" is Schur stable for all " > 0.

(ii) There exist constants M1 > 0, M2 > 0 and "� > 0 such that for all
" 2 .0; "�	 and t � 0, we have

���.AC BF"/
k
��� 6 M1

"
r1

1

.1 � "1/
k (4.33)

kF".AC BF"/
kk 6 M2"q.1 � "1/

k : (4.34)

We note that (4.34) implies that, for k D 0,

kF"k 6 M2"q: (4.35)

Proof : From Lemma 4.15 it immediately follows that

kxq.t/k D
���.Aq CBqF"q ;q/

kxq.0/
��� 6 M1;q

"
rq
q

.1 � "q/
kkx.0/k;

and

kF"q ;qxq.t/k D
���F"q ;q.Aq C BqF"q ;q/

kxq.0/
��� 6 M2;q"q.1 � "q/

kkx.0/k:

Next, we will apply a recursion. Assume that for j > i we have

kxj .k/k 6 M1;j

"
riC1

iC1

.1 � "iC1/
kkx.0/k;

and

kF"j ;jxj .k/k 6 M2;j "q.1 � "iC1/
kkx.0/k:

Next, we consider xi .k/. We have

xi .k C 1/ D .Ai C BiF"i ;i /xi .k/C di .k/;

where di .k/ is a linear combination of xiC1.k/; : : : ; xq.k/ and hence satisfies

kdi .k/k 6
zM1;i

"
riC1

iC1

.1 � "iC1/
kkx.0/k: (4.36)
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We find that

xi .k/ D .Ai C BiF"i ;i /
kxi .0/C

kX

`D0

.Ai C BiF"i ;i /
k�`di .`/:

Combining Lemma 4.15 and (4.36), we get

kxi .k/k 6 �i

"
ri �1
i

.1 � "i /
k

"
1C

zM1;i

"
riC1

iC1

1

"iC1 � "i

#
kx.0/k;

and, using that "i D "
2CriC1

iC1 , we get

kxi .k/k 6 .1C 3 zM1;i/�i

"
ri

i

.1 � "i /
kkx.0/k: (4.37)

Similarly, we find that

kF"i ;ixi .k/k 6 ˇi"i .1 � "i /
k

"
1C

zM1;i

"
riC1

iC1

1

"iC1 � "i

#
kx.0/k;

and hence,

kF"i ;ixi .k/k 6 .1C 3 zM1;i /ˇi"iC1.1 � "i /
kkx.0/k: (4.38)

Therefore, by recursion, we find that (4.37) and (4.38) hold for i D 1; : : : ; q. It is
then easy to show that we also have

kxqC1.k/k 6 zM2;qC1.1� "1/
kkx.0/k:

The bounds we have obtained for the solution of the difference equation then
immediately yield the two bounds presented in the theorem.

Remark 4.17 We can essentially repeat Remark 4.12 which pertains to the direct
method of design for continuous-time systems. To do so, all we need to do is to
replace (4.14), (4.15) and (4.16), respectively, with (4.33), (4.34), and (4.35).

We can easily construct now the observer-based measurement feedback
controllers based on the state feedback design (4.24). The family of low-gain
measurement feedback control laws take the form:

(
yx.k C 1/ D Ayx.k/C Bu.k/CK Œy.k/ � C yx.k/	
u.k/ D F" yx.k/;

(4.39)
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where the state feedback gain F" is given by (4.25) and the observer gain K is
any matrix such that A � KC is Schur stable. Note that another observer-based
measurement feedback controller is also used often, and is given by

(
yx.k C 1/ D Ayx.k/C B� .u.k//CK Œy.k/ � C yx.k/	
u.k/ D F" yx.k/:

(4.40)

Like in the continuous time, the advantage of (4.39) is that the controller is com-
pletely linear. The advantage of (4.40) is that the observer is always such that

x.k C 1/� yx.k C 1/ D .A�KC/.x.k/� yx.k//; (4.41)

while in the case of (4.39), the observer error only satisfies (4.41) if we guarantee
that the saturation does not get activated. Therefore, the analysis to prove, for
instance, stability is often easier when using (4.40).

The following theorem shows that the family of state feedback laws given
in (4.24) solves Problem 4.4, namely, the problem of semi-global exponential
stabilization via linear static state feedback. Also, it shows that the family of mea-
surement feedback laws given in (4.39) solves Problem 4.5, namely, the problem
of semi-global exponential stabilization via linear dynamic measurement
feedback.

Theorem 4.18 Consider the discrete-time system given in (4.1). Assume that the
pair .A;B/ is stabilizable and the eigenvalues of A are all located in the closed
unit disc. Then the family of linear static state feedback laws given in (4.24)
solves the problem of semi-global stabilization via state feedback as defined in
Problem 4.4. More specifically, under the state feedback (4.24), for any given
(arbitrarily large) bounded set X � Rn, there exists an "� 2 .0; 1	 such that for
all " 2 .0; "�	, the equilibrium point x D 0 of the closed-loop system is locally
exponentially stable with X contained in its domain of attraction.

Also, under the additional assumption that the pair .C;A/ is detectable, the
family of linear dynamic measurement feedback laws given in (4.39) solves the
problem of semi-global stabilization via measurement feedback, as defined in
Problem 4.5. More specifically, under the measurement feedback law (4.39), for
any given (arbitrarily large) bounded set X� yX � R2n, there exists an "� 2 .0; 1	
such that for all " 2 .0; "�	, the equilibrium point .0; 0/ of the closed-loop system
is locally exponentially stable with X � yX contained in its domain of attraction.

Proof : Given a bounded set X � Rn, choose "� such that for " < "� we have

M2"qkxk < 1
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for all x 2 X, where M2 is as defined in Theorem 4.16. Then, for all initial
conditions x.0/ 2 X, we have

���F".AC BF"/
kx.0/

��� < 1;

and therefore, the saturation never gets activated. This implies that

x.k/ D .AC BF"/
kx.0/

for all k > 0, and hence, (4.33) implies that the state converges to zero exponen-
tially as t tends to infinity.

In the case of measurement feedback, we will also establish that the saturation
will never get activated. If the saturation does not get activated, we note that (4.41)
is satisfied. Since A �KC is stable, we find that

kx.k/ � yx.k/k 6 M3.1 � �/kkx.0/ � yx.0/k

for some constantsM3 and � 2 .0; 1	. Using

kF"x.k/k 6 kF".ACBF"/
kkkx.0/kC

kX

`D0

F".ACBF"/
k�`kBF"kkx.`/�yx.`/k ;

we find that

kF"x.k/k 6 M2"q

�
kx.0/k C M2M3"qkBk

� � "1

kx.0/� yx.0/k
�
:

Hence, for " small enough, we have

kF" yx.k/k 6 kF"x.k/k C kF" .x.k/ � yx.k// k < 1

for all k > 0. This implies that the saturation does not get activated, and hence, we
find exponential convergence to zero for all initial conditions satisfying x.0/ 2 X

and yx.0/ 2 yX .

Remark 4.19 In view of the above theorem, once again as in Remark 4.14, we
can emphasize that the low-gain design described in this section is a “one shot”
design as the design by itself does not depend on the a priori given set X or
.X; yX/.
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4.4 Semi-global stabilization: Riccati-based methods

As described in the previous section, direct method of designing low-gain feedback
depends on directly assigning appropriate eigenstructure to the closed-loop
system. To do so, it transforms the given system to a particular form (comprising
of matrices in companion form) which reveals the innate structure of it. Although,
the design method is straightforward and numerically efficient (see Remark 4.22
to follow), it is not very elegant to describe it. On the other hand, algebraic Riccati
equation (ARE)-based methods of designing low-gain feedback can be described
elegantly but lack numerical simplicity.

We describe in this section Riccati-based methods of designing low-gain
feedback. As we said earlier, there exist in literature two types of Riccati-based
methods, one method based on H2 ARE and the other on H1 ARE. Although
both the ARE-based methods are conceptually similar, they differ in details. Both
of these methods are described below for both continuous- and discrete-time
systems. The connections between the H2- and H1-based low-gain feedbacks
are further explored in Sect. 4.8.

4.4.1 H2 ARE-based methods in continuous time

We consider anH2 ARE-based method for continuous-time systems. We state the
following lemma which plays an important role in the development to follow:

Lemma 4.20 Let Q" W .0; 1	 ! Rn�n be a continuously differentiable matrix-
valued function such that

Q" > 0 and
dQ"

d"
> 0

for any " 2 .0; 1	. Also, let

lim
"!0

Q" D 0:

Assume that .A;B/ is stabilizable and A has all its eigenvalues in the closed
left-half plane. Then the H2 continuous-time algebraic Riccati equation (CARE)
defined as

PACA0P � PBB 0P CQ" D 0 (4.42)

has a unique positive definite solution P" for any " 2 .0; 1	. Moreover, this posi-
tive definite solution P" has the following properties:

(i) For any " 2 .0; 1	, the unique solution P" > 0 is such that A � BB 0P" is
Hurwitz-stable.

(ii) lim
"!0

P" D 0.
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(iii) P" is continuously differentiable with respect to " and

dP"

d"
> 0; for any " 2 .0; 1	: (4.43)

Proof : The existence and uniqueness of a positive semi-definite solution P" is
well known and follows, for instance, from [133]. It is also known (see [133])
that P" is the unique solution for which A � BB 0P" has all its eigenvalues in
the closed left-half plane. For " D 0, it is trivial to see that the positive semi-
definite solution of the CARE (4.42) is equal to P0 D 0 since, by assumption,
A�BB 0P0 D A has all its eigenvalues in the closed left-half complex plane. The
fact that lim"!0 P" D 0 follows from standard continuity arguments. Note that
for " > 0 the solution is actually positive definite and is such that A�BB 0P" has
all its eigenvalues in the open left-half plane.

Thus, we need to prove here only part (iii). To do so, we observe that the con-
tinuous differentiability ofP" for " > 0 follows from the fact that the Hamiltonian
matrix associated with the CARE (4.42) is a continuously differentiable function
of " and for " > 0 the Hamiltonian matrix has no eigenvalues on the imaginary
axis (see [64]). In order to show (4.43), we differentiate the CARE (4.42) to obtain
the Lyapunov equation,

dP"

d"
.A� BB 0P"/C .A� BB 0P"/

0 dP"

d"
D �dQ"

d"
:

Now, (4.43) follows from the above equation since A � BB 0P" is asymptotically
stable and dQ"

d"
> 0 for all " > 0.

A family of low-gain state feedback control laws parameterized in " is defined
by

u D F"x (4.44a)

where

F" WD �B 0P"; " 2 .0; 1	; (4.44b)

withP" being the positive definite solution of the algebraic Riccati equation (4.42).
This family of state feedback gains (4.44) has the following property.

Theorem 4.21 Consider the system (4.45),

Tx D Ax CBu (4.45)
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where the state x 2 Rn and the input u 2 Rm. Assume that .A;B/ is stabilizable
and A has all its eigenvalues in the closed left-half plane. Then, if we apply the
state feedback law given by (4.44) to the system (4.45), the resulting closed-loop
system,

Tx D .AC BF"/x; (4.46)

is asymptotically stable for all " > 0. Moreover, there exist �" > 0 and �" > 0

with �" ! 0 as " ! 0 such that for all " 2 .0; 1	,

kF"e
.ACBF"/t k 6 �"e

��"t : (4.47)

Proof : The internal stability of the closed-loop system (4.46) follows trivially
from Lemma 4.20. Next, we need to show (4.47). Using the CARE (4.42), we
find that, for " 2 .0; 1	,

d

dt
x0.t/P"x.t/ D �kB 0P"x.t/k2 � x0.t/Q"x.t/

6 �x0.t/Q"x.t/

6 ��"x
0.t/P"x.t/;

where �" D �min.Q"/kP1k�1. Hence

kP 1=2
" x.t/k 6 e��"tkP 1=2

" x.0/k: (4.48)

Finally,

kF"e
.ACBF"/tx.0/k D kB 0P"x.t/k

6 kBkkP 1=2
" ke��"t kP 1=2

" x.0/k: (4.49)

Since (4.49) is true for all x.0/ 2 Rn, it follows trivially that

kF"e
.ACBF"/tk � kBkkP 1=2

" k2e��"t D kBkkP"ke��"t : (4.50)

The proof is then completed by taking �" D kBkkP"k.

For measurement feedback, the family of observer based low-gain measure-
ment feedback control laws take the form,

(
Tyx D Ayx CBuCK.y � C yx/
u D �B 0P" yx;

(4.51)
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where, as before, P" is the positive definite solution of the continuous-time
algebraic Riccati equation (4.42) andK is any matrix such thatA�KC is Hurwitz
stable. As noted before, the alternative form,

(
Tyx D Ayx C B�.u/CK.y � C yx/
u D �B 0P" yx;

(4.52)

is also often used in the literature since it is easier to analyze but for the moment
we concentrate on the completely linear controller (4.51).

Remark 4.22 We would like to emphasize here the numerical advantages of di-
rect method in designing low-gain feedback compared to Riccati equation-based
methods. As described earlier, in direct method, step 1 transforms the given sys-
tem to a particular form. This obviously requires some numerical computations;
however, such computations are independent of the parameter ", and hence, they
need to be done only once. Steps 2 and 3 where eigenstructure is assigned and the
parameter " is embedded are simple and straightforward, and thus do not involve
much computational burden. In view of this, as the parameter " varies, the de-
sign can easily be adapted. In contrast, in ARE-based methods, the pertinent ARE
must be solved every time the parameter " changes. This renders the design by
ARE-based methods numerically expensive compared to the direct methods of
eigenstructure assignment. Also, for a small value of the parameter ", it is known
that algebraic Riccati equations are numerically stiff to solve.

In Theorem 4.13, we established that the low-gain feedback control laws based
on the direct method solve the posed problems of semi-global stabilization via
either linear state or measurement feedback. The following theorem presents the
same result but relies on low-gain feedback laws designed via the H2 algebraic
Riccati equation:

Theorem 4.23 Consider the continuous-time system given in (4.1). Assume that
the pair .A;B/ is stabilizable and the eigenvalues of A are all located in the
closed left-half plane. Then the family of linear static state feedback laws given
in (4.44) solves the problem of semi-global stabilization via state feedback as
defined in Problem 4.4. More specifically, under the state feedback (4.44a), for
any given (arbitrarily large) bounded set X � Rn, there exists an "� 2 .0; 1	 such
that for all " 2 .0; "�	, the equilibrium point x D 0 of the closed-loop system is
locally exponentially stable with X contained in its domain of attraction.

Also, under the additional assumption that the pair .C;A/ is detectable, the
family of linear dynamic measurement feedback laws given in (4.51) solves the
problem of semi-global stabilization via measurement feedback, as defined in
Problem 4.5. More specifically, under the measurement feedback law (4.51), for
any given (arbitrarily large) bounded set X� yX � R2n, there exists an "� 2 .0; 1	
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such that for all " 2 .0; "�	, the equilibrium point .0; 0/ of the closed-loop system
is locally exponentially stable with X � yX contained in its domain of attraction.

Proof : Let us first consider the state feedback case. Under the state feedback
law (4.44), the closed-loop system takes the following form:

Tx D Ax C B�.�B 0P"x/; " 2 .0; 1	: (4.53)

Consider the Lyapunov function

V".x/ D x0P"x; (4.54)

and let c > 0 be such that

c � sup
x2X;"2.0;1�

x0P"x: (4.55)

Such a c exists because X is bounded and, by Lemma 4.20, lim"!0 P" D 0. Let
"� be such that, for all " 2 .0; "�	,

x 2 LV .c/ D fx 2 Rn W x0P"x � cg

implies that kB 0P"xk � 1, and hence, �.�B 0P"x/ D �B 0P"x. The existence
of such an "� owes to the fact that lim"!0 P" D 0. It then follows that for all
" 2 .0; "�	 and for x 2 LV .c/, the closed-loop system (4.53) behaves linearly
and can be written as

Tx D .A� BB 0P"/x: (4.56)

The evaluation of TV" along the trajectories of this closed-loop system gives

TV" D �x0Q"x � x0P"BB
0P"x 6 ��min.Q"/kxk2 (4.57)

for all x 2 LV .c/. This shows that, for all " 2 .0; "�	, the equilibrium point x D 0

of the closed-loop system is locally exponentially stable with LV .c/ contained in
its domain of attraction.

Finally, by observing that X � LV .c/, we conclude our proof for the state
feedback case.

Let us next consider the measurement feedback case. Under the output feed-
back law (4.51), the closed-loop system takes the form:

(
Tx D Ax CB�.�B 0P" yx/
Tyx D Ayx � BB 0P" yx CK.y � C yx/;

(4.58)
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which, in the new coordinates .x; e/ where e D x � yx, becomes
(

Tx D Ax C B�.�B 0P".x � e//

Te D .A�KC/e C BŒ�.�B 0P".x � e//C B 0P".x � e/	:
(4.59)

Let PK > 0 be the unique solution to the Lyapunov equation:

.A�KC/0PK C PK.A �KC/ D �I: (4.60)

The existence of such a PK owes to the fact that A�KC is Hurwitz stable.
Consider now the Lyapunov function,

V".x; e/ D x0P"x C e0PKe; (4.61)

and let c > 0 be such that

c � sup
.x;yx/2X� yX;"2.0;1�

�
x0P"x C e0PKe

�
: (4.62)

Such a c exists because X and yX are bounded and lim"!0 P" D 0. Let "�
1 be such

that, for all " 2 .0; "�
1	 and

.x; e/ 2 LV .c/ D f.x; e/ 2 R2n W x0P"x C e0PKe 6 cg;

we have kB 0P".x � e/k 6 �. The existence of such an "�
1 again owes to the fact

that lim"!0 P" D 0. The above immediately implies that

�.�B 0P".x � e// D �B 0P".x � e/;

and hence, for all " 2 .0; "�
1	 and for all .x; e/ 2 LV .c/, the closed-loop system

(4.59) behaves linearly and can be written as
(

Tx D .A� BB 0P"/x CBB 0P"e

Te D .A�KC/e:
(4.63)

The evaluation of TV" along the trajectories of this closed-loop system gives, for
all .x; e/ 2 LV .c/ and for all " 2 .0; "�

1	,

TV" D �x0Q"x � x0P"BB
0P"x C 2x0P"BB

0P"e � e0e
6 ��min.Q"/kxk2 � .1� kB 0P"k2/kek2: (4.64)

Let "� 2 .0; "�
1	 be such that for all " 2 .0; "�	, 2kB 0P"k2 < 1. Once again, the

existence of such an "� owes to the fact that lim"!0 P" D 0. It then follows that,

TV � ��min.Q"/kxk2 � 1
2
kek2; 8.x; e/ 2 LV .c/ and 8" 2 .0; "�	: (4.65)
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This shows that, for all " 2 .0; "�	, the equilibrium point .x; e/ D .0; 0/ of the
closed-loop system is locally exponentially stable with LV .c/ contained in its
domain of attraction.

Finally, we conclude our proof by observing that .x; yx/ 2 X � yX implies that
.x; e/ 2 LV .c/.

4.4.2 H2 ARE-based methods in discrete time

We consider here an H2 ARE-based method for discrete-time systems. Our de-
velopment here for discrete-time systems is conceptually analogous to the one
presented in the previous section for continuous-time systems.

We first state the following lemma which plays an important role in the devel-
opment to follow:

Lemma 4.24 Let Q" W .0; 1	 ! Rn � n be a continuously differentiable matrix-
valued function such that

Q" > 0 and
dQ"

d"
> 0

for any " 2 .0; 1	. Also, let

lim
"!0

Q" D 0:

Assume that .A;B/ is stabilizable and A has all its eigenvalues inside or on
the unit circle. Then the H2 discrete-time algebraic Riccati equation (DARE)
defined as

P D A0PACQ" � A0PB.B 0PB C I /�1B 0PA (4.66)

has a unique positive definite solution P" for any " 2 .0; 1	. Moreover, this posi-
tive definite solution P" has the following properties:

(i) For any " 2 .0; 1	, the unique matrix P" > 0 is such that

A � B.B 0P"B C I /�1B 0P"A

is Schur stable.

(ii) lim
"!0

P" D 0.

(iii) For any " 2 .0; 1	, we have

kP
1
2

" AP
� 1

2
" k 6

p
2:
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(iv) For any " 2 .0; 1	,
�i .Q"/ 6 �i .P"/:

Moreover, strict inequality holds whenever A is non-singular.

(v) P" is continuously differentiable with respect to " and

dP"

d"
> 0; for any " 2 .0; 1	:

Proof : The existence and uniqueness of a positive semi-definite solution P" is
well known and follows from, for instance, [133]. It is also known (see [133])
that P" is the unique solution for which

A� B.B 0P"B C I /�1B 0P"A

has all its eigenvalues on or inside the unit circle. For " D 0, it is trivial to see that
the DARE (4.66) has a solution P0 D 0 since by assumption,

A� B.B 0P0B C I /�1B 0P0 D A

has all its eigenvalues inside or on the unit circle. The fact that lim"!0 P" D 0

follows from standard continuity arguments. Note that for " > 0 the solution is
actually positive definite and is such that A�B.B 0P"B C I /�1B 0P"A has all its
eigenvalues inside the unit circle.

To show part (iii), we observe that by pre- and post-multiplying both sides
of (4.66) with P�1=2

" , we obtain

V"

h
I � P 1=2

" B.B 0P"B C I /�1B 0P 1=2
"

i
V 0

" D I � P�1=2
" Q"P

�1=2
" ; (4.67)

where V" D P
�1=2
" A0P 1=2

" . Since lim"!0 P" D 0, it follows from the above
equation that there exists an "� > 0 such that for all " 2 .0; "�	,

V"V
0

" 6 2I � P�1=2
" Q"P

�1=2
" 6 2I:

This implies that

kV"k �
p
2:

This completes the proof of part (iii).
Property (iv) follows from (4.67) since the left-hand side is clearly positive

semi-definite for small ", and therefore,

P�1=2
" Q"P

�1=2
" 6 I
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or, equivalently, Q" 6 P". The proof of Property (v) follows along the same
lines as that of its continuous-time counterpart given in the proof of Lemma 4.20.
More specifically, we note that the fact that P" is continuously differentiable
for " > 0 follows from the fact that the Hamiltonian matrix associated with
the DARE (4.66) is a continuously differentiable function of ", and for " > 0,
the Hamiltonian matrix has no eigenvalues on the unit circle. Then, in order to
prove Property (v) of Lemma 4.24, we need to show that dP"

d"
> 0. To show this,

we observe that

d.B 0P"B C I /�1

d"
D �.B 0P"B C I /�1B 0 dP"

d"
B.B 0P"B C I /�1: (4.68)

Now, differentiating (4.66) with respect to ", and using equality (4.68), we get

dP"

d"
D .A0 C F 0

"B
0/

dP"

d"
.ACBF"/C dQ"

d"
; (4.69)

where F" D �.B 0P"B C I /�1B 0P"A. Noting that AC BF" is Schur stable, and
that dQ"

d"
> 0, we get dP"

d"
> 0.

The family of low-gain state feedback control laws parameterized in " is defined
by

u" D F"x; (4.70a)

where

F" WD �.B 0P"B C I /�1B 0P"A; " 2 .0; 1	; (4.70b)

and where P" is the positive definite solution of DARE (4.66). We refer to the
control laws (4.44) and (4.70) as low-gain state feedback laws and " as the low-
gain parameter since, in view of Lemmas 4.20 and 4.24, one can make the norm
of the feedback gain matrix F" arbitrarily small by choosing " sufficiently small.

The family of state feedback gains (4.70) has the following property.

Theorem 4.25 Consider the system

x.k C 1/ D Ax.k/C Bu.k/; (4.71)

where the state x 2 Rn and the input u 2 Rm. Assume that .A;B/ is stabilizable
and A has all its eigenvalues within the closed unit circle. Then, if we apply the
state feedback law given by (4.70) to the system (4.71), the resulting closed-loop
system,

x.k C 1/ D .AC BF"/x.k/; (4.72)
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is asymptotically stable for all " > 0. Moreover, there exist positive-valued con-
tinuous functions �" > 0 and 0 < �" < 1 satisfying lim"!0 �" D 0 such that

���F"ŒAC BF"	
k
��� 6 �"�

k
" : (4.73)

Proof : The internal stability of the closed-loop system (4.72) follows trivially
from Lemma 4.24. Next, we need to show (4.73). Using the DARE (4.66), we
find that, for " 2 .0; 1	,

x0.k C 1/P"x.k C 1/� x0.k/P"x.k/ D �kF"x.k/k2 � x0.k/Q"x.k/

6 �x0.k/Q"x.k/

6 ��"x
0.k/P"x.k/;

where �" D �min.Q"/kP1k�1. Hence,

kP 1=2
" x.k/k 6 �k

" kP 1=2
" x.0/k: (4.74)

Finally,

kF".AC BF"/
kx.0/k 6

��B 0P"Ax.k/
��

6 kB 0P 1=2
" kkP 1=2

" AP�1=2
" kkP 1=2

" x.k/k
6

p
2kB 0P 1=2

" kkP 1=2
" x.0/k�k

" : (4.75)

Since (4.75) is true for all x.0/ 2 Rn, it follows trivially that

kF".AC BF"/
kk �

p
2kBkkP 1=2

" k2�k
" D

p
2kBkkP"k�k

" : (4.76)

The proof is then completed by taking �" D
p
2kBkkP"k.

The observer-based low-gain measurement feedback control laws take the form

(
yx.k C 1/ D Ayx.k/C Bu.k/CK.y.k/ � C yx.k//
u.k/ D �.B 0P"B C I /�1B 0P"Ayx.k/;

(4.77)

where, as before, P" is the positive definite solution of the DARE (4.66) and K
is any matrix such that A � KC is Schur stable. As noted before, the alternative
form,

(
yx.k C 1/ D Ayx.k/C B�.u.k//CK.y.k/ � C yx.k//
u.k/ D �.B 0P"B C I /�1B 0P"Ayx.k/;

(4.78)
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is also often used in the literature since it is easier to analyze, but for the moment,
we concentrate on the completely linear controller (4.77).

Remark 4.26 We can repeat here Remark 4.22 regarding the numerical advan-
tages of direct method in designing low-gain feedback compared to the above
ARE-based methods.

The following theorem shows that the family of state feedback laws given
in (4.70) solves Problem 4.4, namely, the problem of semi-global exponential
stabilization via linear static state feedback. Also, it shows that the family of mea-
surement feedback laws given in (4.77) solves Problem 4.5, namely, the problem
of semi-global exponential stabilization via linear dynamic measurement
feedback.

Theorem 4.27 Consider the discrete-time system given in (4.1). Assume that the
pair .A;B/ is stabilizable and the eigenvalues of A are all located in the closed
unit disc. Then the family of linear static state feedback laws given in (4.70)
solves the problem of semi-global stabilization via state feedback as defined in
Problem 4.4. More specifically, under the state feedback (4.70a), for any given
(arbitrarily large) bounded set X � Rn, there exists an "� 2 .0; 1	 such that for
all " 2 .0; "�	, the equilibrium point x D 0 of the closed-loop system is locally
exponentially stable with X contained in its domain of attraction.

Also, under the additional assumption that the pair .C;A/ is detectable, the
family of linear dynamic measurement feedback laws given in (4.77) solves the
problem of semi-global stabilization via measurement feedback, as defined in
Problem 4.5. More specifically, under the measurement feedback law (4.77), for
any given (arbitrarily large) bounded set X� yX � R2n, there exists an "� 2 .0; 1	
such that for all " 2 .0; "�	, the equilibrium point .0; 0/ of the closed-loop system
is locally exponentially stable with X � yX contained in its domain of attraction.

Proof : The proof follows along the same lines as the proof of Theorem 4.23 that
pertains to continuous-time systems with some subtle differences.

Let us first consider the state feedback case. Under the state feedback law (4.70),
the closed-loop system takes the following form

x.k C 1/ D Ax.k/C B�.�.B 0P"B C I /�1B 0P"Ax.k//: (4.79)

Consider the Lyapunov function

V".x/ D x0P"x; (4.80)
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and let c > 0 be such that

c � sup
x2X;"2.0;1�

x0P"x: (4.81)

Such a c exists because X is bounded and, by Lemma 4.24, lim"!0 P" D 0. Let

x 2 LV .c/ D fx 2 Rn W x0P"x � cg:

We have

��.B 0P"B C I /�1B 0P"Ax
�� 6

��B 0P"Ax
�� 6 kB 0P

1
2

" kkP
1
2

" AP
� 1

2
" kkP

1
2

" xk:

Using (4.81) and Property (iii) of Lemma 4.24, we get

��.B 0P"B C I /�1B 0P"Ax
�� 6

p
2ckB 0P

1
2

" k:

Let "� be such that, for all " 2 .0; "�	, we have
p
2ckB 0P

1
2

" k 6 �. The existence
of such an "� is guaranteed by the fact that lim"!0 P" D 0. It then follows that
for all " 2 .0; "�	 and for all x 2 LV .c/, the closed-loop system (4.79) behaves
linearly and can be written as,

x.k C 1/ D .A� B.B 0P"B C I /�1B 0P"A/x.k/: (4.82)

We get

V".x.k C 1//� V".x.k// D �x0Q"x � x0F 0
"F"x 6 ��min.Q"/kxk2 (4.83)

for all x 2 LV .c/. This shows that, for all " 2 .0; "�	, the equilibrium point x D 0

of the closed-loop system is locally exponentially stable with LV .c/ contained in
its domain of attraction.

Finally, by observing that X � LV .c/, we conclude our proof for the state
feedback case.

Let us next consider the measurement feedback case. Under the output feed-
back law (4.77), the closed-loop system takes the form,

(
x.k C 1/ D Ax.k/CB�.F" yx.k//
yx.k C 1/ D Ayx.k/C BF" yx.k/CK.y.k/ � C yx.k//;

(4.84)

which, in the new coordinates .x; e/ where e D x � yx, becomes

(
x.k C 1/ D Ax.k/C B�.F".x.k/ � e.k///

e.k C 1/ D .A�KC/e.k/C BŒ�.F".x.k/ � e.k///� F".x.k/ � e.k//	:

(4.85)
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Let PK > 0 be the unique solution to the Lyapunov equation:

PK D .A �KC/0PK.A�KC/C I: (4.86)

The existence of such a PK owes to the fact that A�KC is Schur stable.
Consider now the Lyapunov function,

V".x; e/ D x0P"x C e0PKe; (4.87)

and let c > 0 be such that

c � sup
.x;yx/2X� yX;"2.0;1�

�
x0P"x C e0PKe

�
: (4.88)

Such a c exists because X and yX are bounded and lim"!0 P" D 0. Let "�
1 be such

that, for all " 2 .0; "�
1	,

.x; e/ 2 LV .c/ D f.x; e/ 2 R2n W x0P"x C e0PKe 6 cg:

We have kF".x � e/k 6 �, and hence,

�.F".x � e// D F".x � e/:

The existence of such an "�
1 again owes to the fact that lim"!0 P" D 0. Using

(4.88) and Property (iii) of Lemma 4.24, we get

��.B 0P"B C I /�1B 0P"A.x � e/
�� 6 M kB 0P

1
2

" k

for some constantM independent of ", and hence, for " small, we get kF".x � e/k
6 � since lim"!0 P" D 0.

It then follows that for all " 2 .0; "�
1	 and for all .x; e/ 2 LV .c/, the closed-

loop system (4.85) behaves linearly and can be written as

(
x.k C 1/ D .AC BF"/x.k/ � F"e.k/

e.k C 1/ D .A�KC/e.k/:
(4.89)

The evaluation of V" along the trajectories of this closed-loop system gives, for
all .x; e/ 2 LV .c/ and for all " 2 .0; "�

1	,

V".x.k C 1/; e.k C 1//� V".x.k/; e.k//

D �x0.k/Q"x.k/ � e0.k/e.k/ � x0.k/F 0
"F"x.k/

C 2x0.k/.AC BF"/
0P"BF"e.k/C e0.k/F 0

"B
0P"BF"e.k/

6 �x0.k/Q"x.k/ � e0.k/e.k/C e0.k/F 0
".I C B 0P"B/F"e.k/:
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Let "� 2 .0; "�
1	 be such that for all " 2 .0; "�	,

kF 0
".I C B 0P"B/F"k < 1

2
:

Once again, the existence of such an "� owes to the fact that lim"!0 P" D 0.
It then follows that,

V".x.kC 1/; e.kC 1//� V".x.k/; e.k// 6 ��min.Q/kx.k/k2 � 1
2
ke.k/k2;

for all .x; e/ 2 LV .c/ and for all " 2 .0; "�	. This shows that, for all " 2 .0; "�	,
the equilibrium point .x; e/ D .0; 0/ of the closed-loop system is locally expo-
nentially stable with LV .c/ contained in its domain of attraction.

Finally, we conclude our proof by observing that .x; yx/ 2 X � yX implies that
.x; e/ 2 LV .c/.

4.4.3 H1 ARE-based methods in continuous time

We consider here an H1 ARE-based method for continuous-time systems. We
state the following lemma which plays an important role in the development to
follow.

Lemma 4.28 Let Q" W .0; 1	 ! Rn�n be a continuously differentiable matrix-
valued function such that

Q" > 0 and
dQ"

d"
> 0

for any " 2 .0; 1	. Also, let

lim
"!0

Q" D 0:

Assume that .A;B/ is stabilizable and A has all its eigenvalues in the closed
left-half plane. Then, there exists a positive real number �� such that the H1
continuous-time algebraic Riccati equation (CARE) defined as

PAC A0P � PBB 0P C ��2PEE 0P CQ" D 0; (4.90)

has a unique positive definite solution P�;" such that

A� BB 0P�;" C ��2EE 0P�;" (4.91)
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is Hurwitz stable for any � > �� and " 2 .0; 1	. Moreover, this positive definite
solution P�;" has the following properties:

(i) For any " 2 .0; 1	, the unique solution P�;" > 0 is such that A � BB 0P�;" is
also Hurwitz stable.

(ii) lim
"!0

P�;" D 0.

(iii) P�;" is continuously differentiable with respect to " and

dP�;"

d"
> 0; for any " 2 .0; 1	: (4.92)

Remark 4.29 Note that the matrix E can be arbitrarily chosen. In subsequent
chapters,E is chosen appropriately to guarantee secondary goals such as distur-
bance rejection.

Proof : Using the results of [34], since Q1 is positive definite, there exists a ��
such that, for each � > ��, there exists a unique P�;1 > 0 satisfying (4.90) for
which (4.91) is asymptotically stable. Since Q" 6 Q1 for " 2 .0; 1	, it implies
that, for each � > �� and for " 2 .0; 1	, there exists a unique P�;" > 0 satisfy-
ing (4.90) for which (4.91) is asymptotically stable. We note that

P�;".A � BB 0P�;"/C .A � BB 0P�;"/
0P�;"

D �P�;"BB
0P�;" � ��2P�;"EE

0P�;" �Q" < 0;

and then, standard properties of the Lyapunov equation guarantee thatA�BB 0P�;"

is asymptotically stable.
To establish Property (ii), we first note that, by Lemma 4.20, there exists, for

each " 2 .0; 1	 a unique positive-definite matrix P1;" satisfying

P1;"AC A0P1;" � P1;"BB
0P1;" CQ" D 0: (4.93)

Moreover,

lim
"!0

P1;" D 0: (4.94)

It has been established in [161, Lemma 3.5] that

P�;" � �2

�2 � .��/2
P1;": (4.95)

Property (ii) follows immediately from (4.94) and (4.95).
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In order to show (4.92), we differentiate the CARE (4.90) to obtain the
Lyapunov equation

dP�;"

d"
.A� BB 0P�;" C ��2EE 0P�;"/C .A � BB 0P�;" C ��2EE 0P�;"/

0 dP�;"

d"

D �dQ"

d"
:

Now, (4.92) follows from the above equation since (4.91) is asymptotically stable
and dQ"

d"
> 0 for all " > 0.

A family of low-gain state feedback control laws parameterized in " is defined
by

u D F�;"x; (4.96a)

where

F�;" WD �B 0P�;"; " 2 .0; 1	; (4.96b)

with P�;" the positive definite solution of the CARE (4.90). This family of state
feedback gains (4.96) has the following property.

Theorem 4.30 Consider the system

Tx D Ax C Bu; (4.97)

where the state x 2 Rn and the input u 2 Rm. Assume that .A;B/ is stabilizable
and A has all its eigenvalues in the closed left-half plane. Then, if we apply the
state feedback law given by (4.96) to the system (4.97), the resulting closed-loop
system,

Tx D .AC BF�;"/x; (4.98)

is asymptotically stable for all " > 0. Moreover, there exist ��;" > 0 and ��;" > 0

with ��;" ! 0 as " ! 0 such that for all " 2 .0; 1	,

kF�;"e
.ACBF�;"/t k 6 ��;"e

���;"t : (4.99)

Proof : The internal stability of the closed-loop system (4.98) follows trivially
from Lemma 4.28. Next, we need to show (4.99). Using the CARE (4.90), we
find that, for " 2 .0; 1	,

d

dt
x0.t/P�;"x.t/ D �kB 0P�;"x.t/k2 � ��2kE 0P�;"x.t/k2 � x0.t/Q"x.t/

6 �x0.t/Q"x.t/

6 ���;"x
0.t/P�;"x.t/;
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where ��;" D �min.Q"/kP�;1k�1. Hence,

kP 1=2
�;" x.t/k 6 e���;"t kP 1=2

�;" x.0/k: (4.100)

Finally,

kF�;"e
.ACBF�;"/tx.0/k D kB 0P�;"x.t/k

6 kBkkP 1=2
�;" kkP 1=2

�;" x.0/ke���;"t : (4.101)

Since (4.101) is true for all x.0/ 2 Rn, it follows trivially that

kF�;"e
.ACBF�;"/tk � kBkkP 1=2

�;" k2e���;"t D kBkkP�;"ke���;"t : (4.102)

The proof is then completed by taking ��;" D kBkkP�;"k.

For measurement feedback, the family of observer-based low-gain measure-
ment feedback control laws take the form,

(
Tyx D Ayx CBuCK.y � C yx/
u D �B 0P�;" yx;

(4.103)

where, as before, P�;" is the positive definite solution of the CARE (4.90) and K
is any matrix such that A�KC is Hurwitz stable. As noted before, the alternative
form,

(
Tyx D Ayx C B�.u/CK.y � C yx/
u D �B 0P�;" yx;

(4.104)

is also often used in the literature since it is easier to analyze, but for the moment,
we concentrate on the completely linear controller (4.103).

The following theorem shows that the family of state feedback laws given
in (4.96) solves Problem 4.4, namely, the problem of semi-global exponential
stabilization via linear static state feedback. Also, it shows that the family of mea-
surement feedback laws given in (4.103) solves Problem 4.5, namely, the problem
of semi-global exponential stabilization via linear dynamic measurement feed-
back.

Theorem 4.31 Consider the continuous-time system given in (4.1). Assume that
the pair .A;B/ is stabilizable and the eigenvalues of A are all located in the
closed left-half plane. Then the family of linear static state feedback laws given
in (4.96) solves the problem of semi-global stabilization via state feedback as
defined in Problem 4.4. More specifically, under the state feedback (4.96a), for
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any given (arbitrarily large) bounded set X � Rn, there exists an "� 2 .0; 1	 such
that for all " 2 .0; "�	, the equilibrium point x D 0 of the closed-loop system is
locally exponentially stable with X contained in its domain of attraction.

Also, under the additional assumption that the pair .C;A/ is detectable, the
family of linear dynamic measurement feedback laws given in (4.103) solves
the problem of semi-global stabilization via measurement feedback as defined in
Problem 4.5. More specifically, under the measurement feedback law (4.103), for
any given (arbitrarily large) bounded set X� yX � R2n, there exists an "� 2 .0; 1	
such that for all " 2 .0; "�	, the equilibrium point .0; 0/ of the closed-loop system
is locally exponentially stable with X � yX contained in its domain of attraction.

Proof : Let us first consider the state feedback case. Under the state feedback
law (4.96), the closed-loop system takes the following form

Tx D Ax C B�.�B 0P�;"x/; " 2 .0; 1	: (4.105)

Consider the Lyapunov function

V�;".x/ D x0P�;"x; (4.106)

and let c > 0 be such that

c � sup
x2X;"2.0;1�

x0P�;"x: (4.107)

Such a c exists because X is bounded and, by Lemma 4.28, lim"!0 P�;" D 0. Let
"� be such that, for all " 2 .0; "�	,

x 2 LV .c/ D fx 2 Rn W x0P�;"x � cg

implies that kB 0P�;"xk � 1, and hence, �.�B 0P�;"x/ D �B 0P�;"x. The exis-
tence of such an "� owes to the fact that lim"!0 P�;" D 0. It then follows that
for all " 2 .0; "�	 and for x 2 LV .c/, the closed-loop system (4.105) behaves
linearly and can be written as,

Tx D .A � BB 0P�;"/x: (4.108)

The evaluation of TV�;" along the trajectories of this closed-loop system gives,

TV�;" D �x0Q"x � x0P�;"BB
0P�;"x � ��2x0P�;"EE

0P�;"x

6 ��min.Q"/kxk2

for all x 2 LV .c/. This shows that, for all " 2 .0; "�	, the equilibrium point x D 0

of the closed-loop system is locally exponentially stable with LV .c/ contained in
its domain of attraction.
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Finally, by observing that X � LV .c/, we conclude our proof for the state
feedback case.

Let us next consider the measurement feedback case. Under the output feed-
back law (4.103), the closed-loop system takes the form

(
Tx D Ax C B�.�B 0P�;" yx/
Tyx D Ayx � BB 0P�;" yx CK.y � C yx/;

(4.109)

which, in the new coordinates .x; e/ where e D x � yx, becomes

(
Tx D Ax C B�.�B 0P�;".x � e//

Te D .A �KC/e C BŒ�.�B 0P�;".x � e//C B 0P�;".x � e/	:
(4.110)

Let PK > 0 be the unique solution to the Lyapunov equation

.A�KC/0PK C PK.A �KC/ D �I: (4.111)

The existence of such a PK owes to the fact that A�KC is Hurwitz stable.
Consider now the Lyapunov function,

V�;".x; e/ D x0P�;"x C e0PKe; (4.112)

and let c > 0 be such that

c � sup
.x;yx/2X� yX;"2.0;1�

�
x0P�;"x C e0PKe

�
: (4.113)

Such a c exists because X and yX are bounded and lim"!0 P�;" D 0. Let "�
1 be

such that, for all " 2 .0; "�
1	,

.x; e/ 2 LV .c/ D f.x; e/ 2 R2n W x0P�;"x C e0PKe 6 cg;

we have kB 0P�;".x � e/k 6 �, and hence,

�.�B 0P�;".x � e// D �B 0P�;".x � e/:

The existence of such an "�
1 again owes to the fact that lim"!0 P�;" D 0. It then

follows that for all " 2 .0; "�
1	 and for all .x; e/ 2 LV .c/, the closed-loop system

(4.110) behaves linearly and can be written as

(
Tx D .A � BB 0P�;"/x CBB 0P�;"e

Te D .A �KC/e:
(4.114)
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The evaluation of TV�;" along the trajectories of this closed-loop system gives, for
all .x; e/ 2 LV .c/ and for all " 2 .0; "�

1	,

TV�;" D �x0Q"x � x0P�;"BB
0P�;"x � ��2x0P�;"EE

0P�;"x

C 2x0P�;"BB
0P�;"e � e0e

6 ��min.Q"/kxk2 � .1 � kB 0P�;"k2/kek2:

Let "� 2 .0; "�
1	 be such that for all " 2 .0; "�	, 2kB 0P�;"k2 < 1. Once again, the

existence of such an "� owes to the fact that lim"!0 P�;" D 0. It then follows that,

TV � ��min.Q"/kxk2 � 1
2
kek2; 8.x; e/ 2 LV .c/ and 8" 2 .0; "�	: (4.115)

This shows that, for all " 2 .0; "�	, the equilibrium point .x; e/ D .0; 0/ of the
closed-loop system is locally exponentially stable with LV .c/ contained in its
domain of attraction.

Finally, we conclude our proof by observing that .x; yx/ 2 X � yX implies that
.x; e/ 2 LV .c/.

4.4.4 H1 ARE-based methods in discrete time

We consider here an H1 ARE-based method for discrete-time systems. Our de-
velopment here for discrete-time systems is conceptually analogous to the one
presented in the previous section for continuous-time systems.

We first state the following lemma which plays an important role in the devel-
opment to follow:

Lemma 4.32 Let Q" W .0; 1	 ! Rn � n be a continuously differentiable matrix-
valued function such that

Q" > 0 and
dQ"

d"
> 0

for any " 2 .0; 1	. Also, let

lim
"!0

Q" D 0:

Assume that .A;B/ is stabilizable and A has all its eigenvalues inside or on the
unit circle. Then, there exists a positive real number �� such that theH1 discrete-
time algebraic Riccati equation (DARE),

P D A0PACQ" � A0P
�
B E

�
G� .P /

�1

 
B 0

E 0

!
PA; (4.116a)
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where

G� .P / D
 
B 0PB C I B 0PE
E 0PB E 0PE � �2I

!
(4.116b)

with

R WD �2I � E 0PE C E 0PB.B 0PB C I /�1B 0PE > 0; (4.116c)

has a unique positive definite solution P�;" for any " 2 .0; 1	 such that

A�
�
B E

�
G�1

� .P�;"/

 
B 0

E 0

!
P�;"A (4.117)

is asymptotically stable. Moreover, this positive definite solution P�;" has the
following properties:

(i) For any " 2 .0; 1	, the unique matrix P�;" > 0 is such that

A �
�
B 0

�
G�1

� .P�;"/

 
B 0

E 0

!
P�;"A

is also Schur stable.

(ii) lim
"!0

P�;" D 0.

(iii) For any " 2 .0; 1	, we have

kP
1
2

�;"AP
� 1

2
�;" k 6

p
2:

(iv) For any " 2 .0; 1	,
�i .Q"/ 6 �i .P�;"/:

Moreover, strict inequality holds whenever A is non-singular.

(v) P�;" is continuously differentiable with respect to " and

dP�;"

d"
> 0; for any " 2 .0; 1	:

Remark 4.33 Like in the continuous time, the matrixE can be arbitrarily chosen.
In subsequent chapters, E is chosen appropriately to guarantee secondary goals
such as disturbance rejection.
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Proof : Using the results of [160], since Q1 is positive definite, there exists a ��
such that, for each � > ��, there exists a unique P�;1 > 0 satisfying (4.116) with
" D 1 for which (4.117) is asymptotically stable. Since Q" 6 Q1 for " 2 .0; 1	,
it implies that, for each � > �� and for " 2 .0; 1	 , there exists a unique P�;" >

0 satisfying (4.116) for which (4.117) is asymptotically stable. Property (i) is a
standard result which can be found in [160] as well.

To establish Property (ii), we first note that, by Lemma 4.20, there exists, for
each " 2 .0; 1	 a unique positive-definite matrix P1;" satisfying

P1;" D A0P1;"ACQ" � A0P1;"B.B
0P1;"B C I /�1B 0P1;"A: (4.118)

Moreover,

lim
"!0

P1;" D 0: (4.119)

It has been established in [161, Lemma 9.7] that

P�;" � �2

�2 � .��/2
P1;": (4.120)

Property (ii) follows immediately from (4.119) and (4.120).
To show part (iii), we observe that by pre- and post-multiplying both sides

of (4.116) with P�1=2
" , we obtain

V�;"

"
I � P 1=2

�;"

�
B E

�
G� .P�;"/

�1

 
B 0

E 0

!
P 1=2

�;"

#
V 0

�;" D I � P�1=2
�;" Q"P

�1=2
�;" ;

(4.121)
where V�;" D P

�1=2
�;" A0P 1=2

�;" . In view of Property (ii), it follows from the above
equation that there exists an "� > 0 such that for all " 2 .0; "�	,

V�;"V
0

�;" 6 2I � P�1=2
�;" Q"P

�1=2
�;" 6 2I:

This implies that

kV�;"k �
p
2:

This completes the proof of part (iii).
Property (iv) follows from (4.121) since the left hand side is clearly positive

semi-definite for small " and therefore

P�1=2
�;" Q"P

�1=2
�;" 6 I;

or, equivalently, Q" 6 P�;". The proof of Property (v) follows along the same
lines as that of its continuous-time counterpart given in the proof of Lemma 4.28.
More specifically, we note that the fact that P�;" is continuously differentiable
for " > 0 follows from the fact that the dependence on " > 0 of the symplectic
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pencil associated with the DARE (4.116) is continuously differentiable, and for
" > 0, this symplectic pencil has no zeros on the unit circle. Then, in order to
prove Property (v) of Lemma 4.32, we need to show that dP�;"

d"
> 0. To show this,

we observe that

dG�1
� .P�;"/

d"
D �G�1

� .P�;"/

 
B 0

E 0

!
dP�;"

d"

�
B E

�
G�1

� .P�;"/: (4.122)

Now, differentiating (4.116) with respect to ", and using equality (4.122), we get

dP�;"

d"
D A0

�;"

dP�;"

d"
A�;" C dQ"

d"
(4.123)

where

A�;" D A �
�
B E

�
G� .P�;"/

�1

 
B 0

E 0

!
P�;"A:

Noting that A�;" is Schur stable, and that dQ"

d"
> 0, we get dP�;"

d"
> 0.

The family of low-gain state feedback control laws parameterized in " is
defined by

u D F�;"x; (4.124a)

where

F�;" WD �.B 0P�;"B C I /�1B 0P�;"A; " 2 .0; 1	; (4.124b)

and where P�;" is the positive definite solution of DARE (4.116). We refer to the
control laws (4.96) and (4.124) as low-gain state feedback laws and " as the low-
gain parameter since, in view of Lemmas 4.28 and 4.32, one can make the norm
of the feedback gain matrix F" arbitrarily small by choosing " sufficiently small.

The family of state feedback gains (4.124) has the following property.

Theorem 4.34 Consider the system

x.k C 1/ D Ax.k/C Bu.k/; (4.125)

where the state x 2 Rn and the input u 2 Rm. Assume that .A;B/ is stabilizable
and A has all its eigenvalues within the closed unit circle. Then, if we apply the
state feedback law given by (4.124) to the system (4.125), the resulting closed-
loop system,

x.k C 1/ D .ACBF�;"/x.k/; (4.126)
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is asymptotically stable for all " > 0. Moreover, there exist positive-valued
continuous functions ��;" > 0 and 0 < ��;" < 1 satisfying lim"!0 ��;" D 0

such that ���F�;"ŒAC BF�;"	
k
��� 6 ��;"�

k
�;": (4.127)

Proof : The internal stability of the closed-loop system (4.126) follows trivially
from Lemma 4.32. Next, we need to show (4.127). Using the DARE (4.116), we
find that, for " 2 .0; 1	,

x0.k C 1/P�;"x.k C 1/� x0.k/P�;"x.k/

D �kF�;"x.k/k2 � x0.k/Q"x.k/

� x0.k/A0
FP�;"ER

�1E 0P�;"AF x.k/

6 �x0.k/Q"x.k/

6 ���;"x
0.k/P�;"x.k/;

where AF DACBF�;", R is defined by (4.116c), and ��;" D�min.Q"/kP�;1k�1.
Hence,

kP 1=2
�;" x.k/k 6 �k

�;"kP 1=2
�;" x.0/k: (4.128)

Finally,

kF�;".AC BF�;"/
kx.0/k 6

��B 0P�;"Ax.k/
��

6 kB 0P 1=2
�;" kkP 1=2

�;" AP
�1=2
�;" kkP 1=2

�;" x.k/k
6

p
2kB 0P 1=2

�;" kkP 1=2
�;" x.0/k�k

�;": (4.129)

Since (4.129) is true for all x.0/ 2 Rn, it follows trivially that

kF�;".AC BF�;"/
kk �

p
2kBkkP 1=2

�;" k2�k
�;" D

p
2kBkkP�;"k�k

�;": (4.130)

The proof is then completed by taking ��;" D
p
2kBkkP�;"k.

The observer-based low-gain measurement feedback control laws the following
form:

(
yx.k C 1/ D Ayx.k/C Bu.k/CK.y.k/ � C yx.k//
u.k/ D �.B 0P�;"B C I /�1B 0P�;"Ayx.k/;

(4.131)
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where, as before,P�;" is the positive definite solution of the DARE (4.116) andK
is any matrix such that A � KC is Schur stable. As noted before, the alternative
form,

(
yx.k C 1/ D Ayx.k/C B�.u.k//CK.y.k/ � C yx.k//
u.k/ D �.B 0P�;"B C I /�1B 0P�;"Ayx.k/;

(4.132)

is also often used in the literature since it is easier to analyze, but for the moment,
we concentrate on the completely linear controller (4.131).

Remark 4.35 We can repeat here Remark 4.22 regarding the numerical advan-
tages of direct method in designing low-gain feedback compared to the above
ARE-based methods.

The following theorem shows that the family of state feedback laws given
in (4.124) solves Problem 4.4, namely, the problem of semi-global exponential
stabilization via linear static state feedback. Also, it shows that the family of mea-
surement feedback laws given in (4.131) solves Problem 4.5, namely, the problem
of semi-global exponential stabilization via linear dynamic measurement feed-
back.

Theorem 4.36 Consider the discrete-time system given in (4.1). Assume that the
pair .A;B/ is stabilizable and the eigenvalues of A are all located in the closed
unit disc. Then the family of linear static state feedback laws given in (4.124)
solves the problem of semi-global stabilization via state feedback as defined in
Problem 4.4. More specifically, under the state feedback (4.124a), for any given
(arbitrarily large) bounded set X � Rn, there exists an "� 2 .0; 1	 such that for
all " 2 .0; "�	, the equilibrium point x D 0 of the closed-loop system is locally
exponentially stable with X contained in its domain of attraction.

Also, under the additional assumption that the pair .C;A/ is detectable, the
family of linear dynamic measurement feedback laws given in (4.131) solves
the problem of semi-global stabilization via measurement feedback as defined in
Problem 4.5. More specifically, under the measurement feedback law (4.131), for
any given (arbitrarily large) bounded set X� yX � R2n, there exists an "� 2 .0; 1	
such that for all " 2 .0; "�	, the equilibrium point .0; 0/ of the closed-loop system
is locally exponentially stable with X � yX contained in its domain of attraction.

Proof : The proof follows along the same lines as the proof of Theorem 4.31 with
some subtle differences.
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Let us first consider the state feedback case. Under the state feedback law
(4.124), the closed-loop system takes the following form:

x.k C 1/ D Ax.k/C B�.F�;"x.k//: (4.133)

Consider the Lyapunov function

V".x/ D x0P�;"x; (4.134)

and let c > 0 be such that

c � sup
x2X;"2.0;1�

x0P�;"x: (4.135)

Such a c exists because X is bounded and, by Lemma 4.32, lim"!0 P�;" D 0. Let

x 2 LV .c/ D fx 2 Rn W x0P�;"x � cg:

We have

��.B 0P�;"B C I /�1B 0P�;"Ax
�� 6

��B 0P�;"Ax
��

6 kB 0P
1
2

�;"kkP
1
2

�;"AP
� 1

2
�;" kkP

1
2

�;"xk:

Using (4.135) and Property (iii) of Lemma 4.32, we get

��.B 0P�;"B C I /�1B 0P�;"Ax
�� 6

p
2ckB 0P

1
2

�;"k:

Let "� be such that, for all " 2 .0; "�	, we have
p
2ckB 0P

1
2

�;"k 6 �. The existence
of such an "� is guaranteed by the fact that lim"!0 P�;" D 0. It then follows that
for all " 2 .0; "�	 and for all x 2 LV .c/, the closed-loop system (4.133) behaves
linearly and can be written as,

x.k C 1/ D .A � B.B 0P�;"B C I /�1B 0P�;"A/x.k/: (4.136)

We get

V".x.k C 1//� V".x.k//

D �x0.k/Q"x.k/ � x0.k/F 0
�;"F�;"x.k/

� x0.k/A0
FP�;"ER

�1E 0P�;"AF x.k/

6 ��min.Q"/kxk2

for all x 2 LV .c/. This shows that, for all " 2 .0; "�	, the equilibrium point x D 0

of the closed-loop system is locally exponentially stable with LV .c/ contained in
its domain of attraction.
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Finally, by observing that X � LV .c/, we conclude our proof for the state
feedback case.

Let us next consider the measurement feedback case. Under the output feed-
back law (4.131), the closed-loop system takes the form,

(
x.k C 1/ D Ax.k/C B�.F�;"x.k//

yx.k C 1/ D Ayx.k/CBF�;" yx.k/CK.y.k/ � C yx.k//
(4.137)

which, in the new coordinates .x; e/ where e D x � yx, becomes

8
<̂

:̂

x.k C 1/ D Ax.k/C B�.F�;".x.k/ � e.k///
e.k C 1/ D .A �KC/e.k/

CBŒ�.F�;".x.k/ � e.k///� F�;".x.k/ � e.k//	:
(4.138)

Let PK > 0 be the unique solution to the Lyapunov equation,

PK D .A �KC/0PK.A�KC/C I: (4.139)

The existence of such a PK owes to the fact that A�KC is Schur stable.
Consider now the Lyapunov function,

V".x; e/ D x0P�;"x C e0PKe; (4.140)

and let c > 0 be such that

c � sup
.x;yx/2X� yX;"2.0;1�

�
x0P�;"x C e0PKe

�
: (4.141)

Such a c exists because X and yX are bounded and lim"!0 P�;" D 0. Let "�
1 be

such that, for all " 2 .0; "�
1	,

.x; e/ 2 LV .c/ D f.x; e/ 2 R2n W x0P�;"x C e0PKe 6 cg;

we have kF�;".x � e/k 6 �, and hence,

�.F�;".x � e// D F�;".x � e/:

The existence of such an "�
1 again owes to the fact that lim"!0 P�;" D 0. Using

(4.141) and Property (iii) of Lemma 4.32, we get

��.B 0P�;"B C I /�1B 0P�;"A.x � e/
�� 6 M kB 0P

1
2

�;"k

for some constantM independent of ", and hence, for " small, we get kF�;".x � e/
k 6 � since lim"!0 P�;" D 0.
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It then follows that for all " 2 .0; "�
1	 and for all .x; e/ 2 LV .c/, the closed-loop

system (4.138) behaves linearly and can be written as

(
x.k C 1/ D .AC BF�;"/x.k/ � F�;"e.k/

e.k C 1/ D .A �KC/e.k/:
(4.142)

The evaluation of V" along the trajectories of this closed-loop system gives, for
all .x; e/ 2 LV .c/ and for all " 2 .0; "�

1	,

V�;".x.k C 1/; e.k C 1//� V�;".x.k/; e.k//

D �x0.k/Q"x.k/ � e0.k/e.k/ � x0.k/F 0
�;"F�;"x.k/

� x0.k/A0
FP�;"ER

�1E 0P�;"AF x.k/

C 2x0.k/.AC BF�;"/
0P�;"BF�;"e.k/C e0.k/F 0

�;"B
0P�;"BF�;"e.k/

6 �x0.k/Q"x.k/ � e0.k/e.k/C e0.k/F 0
�;".I C B 0P�;"B/F�;"e.k/:

Let "� 2 .0; "�
1	 be such that for all " 2 .0; "�	,

kF 0
�;".I C B 0P�;"B/F�;"k < 1

2
:

Once again, the existence of such an "� owes to the fact that lim"!0 P�;" D 0. It
then follows that

V�;".x.k C 1/; e.k C 1//� V�;".x.k/; e.k// 6 ��min.Q"/kx.k/k2 � 1
2
ke.k/k2;

for all .x; e/ 2 LV .c/ and for all " 2 .0; "�	. This shows that, for all " 2 .0; "�	,
the equilibrium point .x; e/ D .0; 0/ of the closed-loop system is locally expo-
nentially stable with LV .c/ contained in its domain of attraction.

Finally, we conclude our proof by observing that .x; yx/ 2 X � yX implies that
.x; e/ 2 LV .c/.

4.5 Semi-global stabilization by low-and-high-gain
design

The low-gain design method discussed in previous sections has one serious draw-
back. Although it helps to internally stabilize a given system, it does not make use
of the available control capacity fully. Let us expand on this. The semi-globally
stabilizing state or measurement feedback controllers are constructed by linear
low-gain feedback in such a way that the control input does not saturate for a
priori given arbitrarily large bounded set of initial conditions. As a result, the
closed-loop system operates as a linear system. This leads to control capacity be-
ing not utilized fully. More specifically, in the low-gain design, for a large given
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set of initial conditions, the gain of the feedback is chosen sufficiently low so that
the control magnitude will not saturate. Consequently, because of the linearity,
whenever the state is close to the origin, the control magnitude will be far from its
fully allowed value, and thus, the closed-loop system will be operating far from
its full capacity. This is a critical issue in view of the fact that the control capacity
of systems subject to input saturation is closely tied to performance issues such as
fast response, disturbance rejection, and robustness in the face of uncertainties.

For continuous-time systems, the abovementioned drawback of low-gain feed-
back lead the researchers to develop an improved design method which can
appropriately be termed as low-and-high-gain design method. Such a low-and-
high-gain design method was basically conceived for semi-global control
problems beyond stabilization and was related to the performance issues such as
semi-global stabilization with enhanced utilization of the available control capac-
ity, semi-global disturbance rejection, and robustness of stability with respect to
uncertainties [74, 77, 78, 128]. The low-and-high-gain control laws are composite
control laws. Namely, they are composed by adding a low-gain control law and
a high-gain control law. The design is sequential. First, a low-gain control law
is designed as in the previous sections while using a tuning parameter ". Then,
utilizing an appropriate Lyapunov function for the closed-loop system under such
a low-gain control law, a high-gain control law is constructed by embedding an-
other tuning parameter ˛. Thus, both the low-gain and high-gain controllers are
equipped with tuning parameters. The role of the low-gain and that of the high-
gain controller are completely separated. The role of the low-gain control law is
to ensure, independent of the high-gain controller:

1. The asymptotic stability of the equilibrium of the closed-loop system.

2. That the basin of attraction of the closed-loop system contains an a priori given
bounded set.

In fact, the tuning parameter " in the low-gain controller can be tuned to enlarge
the basin of attraction of the equilibrium of the closed-loop system such that it
includes any a priori given (arbitrarily large) bounded set. On the other hand,
the role of the high-gain controller is to achieve performance beyond stabilization
such as disturbance rejection, robustness, and improved transient response. Again,
this performance is achieved by appropriate choice of the tuning parameter ˛ of
the high-gain controller. We must mention that the low-gain parameter basically
determines the domain of attraction. The high-gain parameter primary focus is to
speed up the performance.

Obviously, one cannot have low-and-high-gain control laws for discrete-time
systems in the same way as one does for continuous-time systems. This is so
because one cannot arbitrarily increase gain for discrete-time systems. As men-
tioned above, the high-gain component of low-and-high-gain design is basically a
“Lyapunov design”. Recognizing this, one can produce the high-gain component
for discrete-time systems although with profoundly different features than those
obtained for the continuous-time case. This is what has been done in [84, 85] and
will be reviewed shortly.
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As in the case of designing low-gain control laws, there exist two methods
of designing low-and-high-gain control laws, one based on direct eigenstructure
assignment and the other ARE-based. We first describe the direct eigenstructure
assignment method.

4.5.1 Direct eigenstructure assignment: continuous time

In Sect. 4.3, we designed low-gain feedback control laws that solve the semi-
global stabilization problem. By reducing the parameter " as close to zero as
needed, we obtain as large a domain of attraction as needed. However, smaller
" also implies that the feedback gain becomes smaller, and hence, we have slow
convergence to the equilibrium. We first present a preliminary lemma.

The following lemma gives a method to speed up the performance of the system
by introducing a high-gain parameter:

Lemma 4.37 Consider a linear system

Tx D Ax C Bu; x.t/ 2 Rn

with all eigenvalues of A in the closed left-half plane. Let FL;" be a matrix such
that there exists aQ" > 0 such that the solutionP" > 0 of the Lyapunov equation,

.AC BFL;"/
0P" C P".AC BFL;"/CQ" D 0;

has the property that

lim
"!0

P" D 0; (4.143)

and

P" > F 0
L;"FL;" (4.144)

for all " > 0, then the feedback controller

u D FL;"x C ˛FH;"x; (4.145)

where FH;" D �B 0P", Then, for any compact set X there exists an "� such that,
for all 0 < " < "� and all ˛ > 0, the system

Tx D Ax C B�.u/; x.t/ 2 Rn

with controller (4.145) is locally asymptotically stable with X contained in its
domain of attraction.
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Proof : Consider the set

V" WD
˚
x 2 Rn j x0P"x < 1

	
:

We choose " sufficiently small such that X � V". This is possible due to (4.143).
We note that V" is a positively invariant set in the sense that x.t/ 2 V" implies

that x.
/ 2 V" for all 
 > t . In order to establish this, we first note that

d

dt
x0.t/P"x.t/ D �x0.t/Q"x.t/C 2x0.t/P"Bv.t/;

where

v.t/ D � .FL;"x.t/C ˛FH;"x.t// � FL;"x.t/:

Since x.t/ 2 V", we have

x0.t/F 0
L;"FL;"x.t/ 6 x0.t/P"x.t/ < 1;

where we use (4.144), and hence, kFL;"x.t/k < 1. This implies that

�..FL;"x.t/C ˛FH;"x.t// D FL;"x.t/C

�
�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �m

�
˛FH;"x.t/

with �i 2 Œ0; 1	 for i D 1; : : : ; m. This implies that

d

dt
x0.t/P"x.t/ D �x0.t/Q"x.t/

� ˛2x0.t/P"B

�
�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �m

�
B 0P"x.t/;

and hence,

d

dt
x0.t/P"x.t/ 6 �x0.t/Q"x.t/ < 0:

Therefore, in the set V", we have x0.t/P"x.t/ exponentially decaying to zero,
which implies that we do not leave V" and also that we have local exponential
stability, and, by construction, the set X is contained in the domain of attraction.
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Note that from the proof we can see that for ˛ large, the input we choose
approaches the input which minimizes

d

dt
x0.t/P"x.t/:

In other words, we maximize the decay of the Lyapunov function.
The above theorem does not make explicit how to find P" and Q" with the

required properties. In the direct method to follow, our aim is to make the con-
struction explicit and also make the dependency on " explicit. This is the next
phase of this section.

A design algorithm for a single-input system

We first consider single-input systems and then consider the general case. Con-
sider a single input system .A;B/ in the following controllable canonical form:

A D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

�an � � � �a3 �a2 �a1

�
; B D

�
0
:::

0

0

1

�
; (4.146)

with all eigenvalues of A in the closed left-half plane. Let FL;" be the matrix such
that any eigenvalue �i on the imaginary axis is moved to �i � 2", while all the
eigenvalues in the open left-half plane remain at the same location. We consider
the equation

.AC BFL;"/
0P" C P".AC BFL;"/CQ" D 0:

Borrowing the earlier construction from Sect. 4.3.1, we introduce the basis trans-
formation �" associated with the basis (4.11) such that

� �1
" .AC BFL;"/�" D

�
J";1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 J";k

�
;
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where J";i is a Jordan block associated with the eigenvalue�i �2" of sizemi �mi .
We introduce

� 0
"P"�" D zP" D

�
zP";1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 zP";k

�
and

� 0
"Q"�" D zQ" D

�
zQ";1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 zQ";k

�
:

We get the equation

J 0
";i

zP";i C zP";iJ";i C zQ";i D 0:

If Re�i < 0, then we choose zQ";i D "I , and we obtain that zP";i D " xPi for all
" > 0 with xPi > 0.

If Re�i D 0, we observe that the Lyapunov equation is equal to

. xJ � 2"I /0 zP";i C zP";i . xJ � 2"I /C zQ";i D 0;

where xJ is a Jordan block associated with eigenvalue 0 of size mi �mi . In other
words, the imaginary part of �i does not play a role in the equation. In this case,
we choose zQ";i D "2mi I , and we note that zP";i is polynomial in ":

zP";i D
2mi �1X

j D1

"j xPi;j :

This can be established using the recursion

4 xPi;j D xJ 0 xPi;j C1 C xPi;j C1
xJ

for j D 1; : : : ; 2mi �2 with xPi;2mi �1 D 1
4
I . The fact that xPi;0 D 0 follows from

the fact that xJ is nilpotent and hence xJmi �1 D 0.
In order to apply Lemma 4.37 to establish that we obtain in this way a proper

low-and-high-gain design, we need to verify that P" ! 0 as " ! 0 and that

P" > F 0
L;"FL;": (4.147)
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The fact that P" ! 0 as " ! 0 is a trivial consequence of our construction.
In order to establish (4.147), we first note that

FL;"�" D
�

zF";1 � � � zF";k

�
;

and (4.13) implies that there exists a M > 0 such that

k zF";ie`k 6 M"mi �`C1

for i D 1; : : : ; k and ` D 1; : : : ; mi where e1; : : : ; emi
is the standard basis for

Rmi . Next, we note that our recursion implies that there exists a m > 0 such that

e0
h

xPj e` D 0

for hC ` < 2mi � j C 1 and e0
h

xPj e` > m for hC ` D 2mi � j C 1. This implies
that

e0
h

zP";ie` > m"
2mi C1�h�`

for h; ` D 1; : : : ; mi and " sufficiently small. Combined with

e0
h

zF 0
";i

zF";ie` < M
2"2mi C2�h�`;

we find that for " small enough, we have

zF 0
";i

zF";i 6 zP";i

and hence, (4.147) is satisfied. Therefore, Lemma 4.37 can be applied, and we
can conclude that this design has the required properties.

A design algorithm for multi-input systems

We use the same initial state transformation as in Sect. 4.3.1, i.e., a state transfor-
mation �x and an input transformation �u such that the matrices � �1

x A�x and
� �1

x B�u are in the following form:

� �1
x A�x D

�
A1 A1;2 � � � A1;q 0

0 A2

: : :
:::

:::
:::

: : :
: : : Aq�1;q

:::
:::

: : : Aq 0

0 � � � � � � 0 AqC1

�
;
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� �1
x B�u D

�
B1 0 � � � 0 B1;qC1

0 B2

: : :
:::

:::
:::

: : :
: : : 0

:::

0 � � � 0 Bq Bq;qC1

BqC1;1 � � � BqC1;q�1 BqC1;q BqC1;qC1

�
;

where q is an integer, and for i D 1; 2; : : : ; q,

Ai D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

�ai
ni

� � � �ai
3 �ai

2 �ai
1

�
; Bi D

�
0
:::

0

0

1

�
:

Clearly, .Ai ; Bi / is controllable. The transformation �x is such that all the eigen-
values of Ai are on the imaginary axis, and all the eigenvalues of AqC1 have
strictly negative real parts.

Step 2: For each .Ai ; Bi /, let FL;";i 2 R1�ni be the state feedback gain such that
the eigenvalues of Ai C BiFL;"i ;i can be obtained from the eigenvalues of Ai

by moving any eigenvalue �i on the imaginary axis is to �i � 2" while all the
eigenvalues in the open left-half plane remain at the same location.

We note here that such a gain FL;";i exists and is unique. Moreover, it can be
obtained explicitly in terms of ". The uniqueness follows since .Ai ; Bi / is a single
input controllable pair.

Step 3 : The family of low-gain state feedback control laws parameterized in " is
defined by

u D FL;"x; (4.148)

where the state feedback gain matrix FL;" is given by

FL;" D �u

�
FL;"1;1 0 � � � � � � 0

0 FL;"2;2

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : : FL;"q ;q 0

0 � � � � � � 0 0

�
� �1

x ; (4.149)
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where "qC1 D " while for i D 1; : : : ; q, we have

"i D "
6riC1C1

iC1 ; (4.150)

where ri is the largest algebraic multiplicity among the eigenvalues of Ai for
i D 1; : : : ; q while rqC1 D 1. Moreover, we construct P";i andQ";i such that

.Ai C BiF"i ;i /
0P"i ;i C P"i ;i .Ai C BiF"i ;i /CQ"i ;i D 0

with P"i ;i ! 0 as "i ! 0 and

P"i ;i > F 0
"i ;iF"i ;i

for i D 1; : : : ; q such that there exist constants xm1; xm2, and xm3 such that

xm1"
2ri �1I 6 P"i ;i 6 xm2"iI (4.151)

and

Q";i > xm3"
2ri I: (4.152)

The algorithm presented earlier for the single-input case tells us how to construct
P"i ;i and Q"i ;i . We define

FH;"i ;i D �B 0
iP"i ;i ;

and the family of low- and high-gain state feedback control laws parameterized in
" is defined by

u D FL;"x C ˛FH;"x; (4.153)

where the state feedback gain matrix FL;" is given by (4.149), and

FH;" D �u

�
FH;"1;1 0 � � � � � � 0

0 FH;"2;2

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : : FH;"q ;q 0

0 � � � � � � 0 0

�
� �1

x : (4.154)

We defineQ";qC1 D "I and P";qC1 is such that

A0
qC1P";qC1 C P";qC1AqC1 CQ";qC1 D 0;
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and define rqC1 D 1. We also define

P" D �x

�
P"1;1 0 � � � 0

0 P"2;2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 P"qC1;qC1

�
� �1

x : (4.155)

The initial conditions are in the compact set X. This implies that for " small
enough, the initial conditions satisfy

x.0/ 2 1

2
V" D



x 2 Rn j x0P"x 6 1

2

�
: (4.156)

For i D q C 1, we have

x0
i .t/P"i ;ixi .t/ 6 e�"

2ri
i

t (4.157)

given (4.156). Using (4.151), this yields

kxi .t/k 6 xm1

"
ri �1=2
i

e�"
2ri
i

t=2: (4.158)

We will prove (4.157) and (4.158) for i D 1; : : : ; q through an induction argu-
ment. Assume that (4.157) and (4.158) are satisfied for i D j C 1; : : : ; qC 1. We
will establish that this inequality is also satisfied for i D j .

To establish this, we consider the j ’th subsystem

Txj D Ajxj CBjuj C wj ; (4.159)

where

wj D Aj;j C1xj C1 C � � � C Aj;qxq (4.160)

while wq D 0. Using (4.158) for i D j C 1; : : : ; q, we obtain that there exists a
Mj such that

kwj .t/k 6 Mj

"
rj C1�1=2

j

e
�"

2rj C1

j C1
t=2

for all t > 0. We obtain in the set V"

d

dt
x0

j .t/P"j ;jxj .t/ D �x0
j .t/Q"j ;jxj .t/C 2x0

j .t/P"j ;jBj vj .t/

C 2x0
j .t/P"j ;jwj .t/;
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where

vj .t/ D �
�
FL;"j ;jxj .t/C ˛FH;"j ;jxj .t/



� FL;"j ;jxj .t/:

Since by assumption x.t/ 2 V", we have

x0
j .t/F

0
L;"j ;jFL;"j ;jx.t/ 6 x0

j .t/P";jxj .t/ < 1;

where we use (4.144), and hence, kFL;"j ;jxj .t/k < 1. This implies that

�.
�
FL;"j ;jxj .t/C ˛FH;"j ;jxj .t/



D FL;"j ;jxj .t/C �˛FH;"j ;jxj .t/

with � 2 Œ0; 1	. This in turn implies that

d

dt
x0

j .t/P"j ;jxj .t/ D �x0
j .t/Q"j ;jxj .t/C 2x0

j .t/P"j ;jwj .t/

� �˛2x0
j .t/P"j ;jBjB

0
jP"j ;jxj .t/;

and hence,

d

dt
x0

j .t/P"j ;jxj .t/ 6 �x0
j .t/Q"j ;jxj .t/C 2x0

j .t/P"j ;jwj .t/: (4.161)

By (4.151) and (4.152), we find that

x0
jQ"j ;jxj > m3

m2

"2rj �1x0
jP"j ;jxj > 2"2rj x0

jP"j ;jxj ;

where the last equality holds for sufficiently small " > 0. Next, we note that

2x0
jP"j ;jwj 6 2

�
x0

jP"j ;jxj


1=2 p
m2

p
"j

Mj

"
rj C1�1=2

j C1

e
�"

2rj C1

j C1
t=2

6
�
x0

jP"j ;jxj


1=2 2
p
"j

"
rj C1

j C1

e
�"

2rj C1

j C1
t=2

for sufficiently small ". We define

Vj .t/ D x0
j .t/P"j ;jxj .t/;

and we obtain using the above two bounds and (4.161) that

V 0
j .t/ 6 �2"2rj

j V.t/C
2
p
"j

"
rj C1

j C1

e�"
2rj C1

j C1
t=2
p
V.t/:
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This yields

.V
1=2

j /0 6 �"2rj

j V
1=2

j C
p
"j

"
rj C1

j C1

e
�"

2rj C1

j C1
t=2
:

Therefore,

V
1=2

j .t/ 6 e�"
2rj

j
t

2

4V 1=2
j .0/C

4
p
"j

"
3rj C1

j C1

3

5 6 e�"
2rj

j
t

given (4.150) and (4.156). This yields, for " small enough, (4.157) and (4.158) for
i D j , where we use for the latter (4.151). This recursively establishes (4.157)
and (4.158) for i D 1; : : : ; q C 1 given (4.156). Since X � 1

2
V", we find that for

all initial conditions in X, we stay inside V" and converge to zero exponentially.
This establishes the required properties of our design.

A design algorithm for measurement feedback

In case of measurement feedback we have,

Tx D Ax C B�.u/

y D Cx:
(4.162)

We need to build an observer that can be used in conjunction with the low-and-
high-gain state feedback designed before. To be more precise, we need a high-gain
observer which yields fast performance. In addition to earlier assumptions that
.A;B/ is stabilizable and all eigenvalues of A being inside the closed left-half
plane, we assume that the pair .C;A/ is observable. For this purpose, we trans-
form the system to the so-called Brunovski canonical form. That is, we choose a
state transformation �x , an output transformation �y , and an output injection K
such that � �1

x .A �KC/�x and � �1
x B�u are in the following form:

� �1
x .A�KC/�x D xA D

�
A1 0 � � � 0

0 A2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Aq

�
;

�yC�x D xC D

�
C1 0 � � � 0

0 C2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Cq

CqC1;1 � � � CqC1;q�1 CqC1;q

�
;
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where q is an integer, and for i D 1; 2; : : : ; q,

Ai D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

0 � � � � � � 0 0

�

Ci D
�
1 0 � � � � � � 0 0

�
:

Clearly, .Ai ; Ci / is observable. This transformation is closely related by duality
to the transformation used to obtain (4.4) and (4.5). However, due to the output
injection, we could obtain a block diagonal structure in the A matrix. In the state
feedback case, when obtaining (4.4) and (4.5), we consider low-gain feedback,
and we did not have the freedom to apply arbitrary preliminary state feedback
laws. The consequence of this is that we could only obtain a block upper-diagonal
matrix.

ChooseKi such thatAi �KiCi is Hurwitz for i D 1; : : : q and let xK be given by

xK D

�
K1 0 � � � 0 0

0 K2

: : :
:::

:::
:::

: : :
: : : 0 0

0 � � � 0 Kq 0

�
:

Next, we introduce

Si .`/ D

�
` 0 � � � 0

0 `2
: : :

:::
:::

: : :
: : : 0

0 � � � 0 `pi

�
where pi equals the number of columns of Ai and

S` D

�
S1.`/ 0 � � � 0

0 S2.`/
: : :

:::
:::

: : :
: : : 0

0 � � � 0 Sq.`/

�
:
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In that case, it is easy to verify that

S�1
`

� xA� S`
xK xC

�
S` D `. xA � xK xC/;

and hence, the output injection

K` D K C �xS`
xK�y

has the property that

S�1
` � �1

x ŒA�K`C 	�xS` D `. xA� xK xC/:

We apply the measurement feedback controller

Tyx D Ayx C B�.u/CK`.y � C yx/
u D FL;" yx C ˛FH;" yx

(4.163)

to the system (4.162). We have the following result.

Theorem 4.38 Consider the system (4.162) where .A;B/ is stabilizable, .C;A/
is observable and the eigenvalues of A are in the closed left-half plane. Then for
any compact sets X and yX, there exists an "� such that for all " < "� and ˛ > 0
we can find `�."; ˛/ for which the controller (4.163) achieves local exponential
stability and a domain of attraction containing X � yX provided that ` > `�."; ˛/.

We establish here only a proof for the single-input case where a relatively sim-
ple Lyapunov-based proof can be given. In the general multi-input case, we need
the same complex proof of the state feedback case establishing stability recur-
sively for the subsystems (4.159), but in this case, the error term (4.160) contains
an extra term due to measurement error.

Proof of the single-input case : In the single-input state feedback case, we have
constructed P" and Q" such that

.AC BFL;"/
0P" C P".ACBFL;"/CQ" D 0

while

P" > F 0
L;"FL;"; lim

"!0
P" D 0

and

FH;" D �B 0P":
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Under the output feedback law (4.163), the closed-loop system takes the form

(
Tx D Ax C B�.FL;" yx � ˛B 0P" yx/
Tyx D Ayx C B�.FL;" yx � ˛B 0P" yx/CK`.y � C yx/;

(4.164)

which, in the new coordinates .x; e/ where e D x � yx, becomes

(
Tx D Ax C B�..FL;" � ˛B 0P"/.x � e//

Te D .A �K`C/e:
(4.165)

Local exponential stability then immediately follows since A � K`C and A C
BFL;"�˛BB 0P" are both Hurwitz. It remains to consider the domain of attraction.
We define

z D `nS�1
` � �1

x e:

Then, the closed-loop system can be rewritten as

(
Tx D Ax C B�..FL;" � ˛B 0P"/.x � `�nS`�xz//

Tz D `. xA� xK xC/z:
(4.166)

Since � is bounded and x.0/ 2 X, there exists a bounded set zX such that
x.1/ 2 zX for all initial conditions

.x.0/; yx.0// 2 X � yX

and independent of ˛ and `. We have

z.1/ D e`. xA� xK xC /`nS�1
` � �1

x e.0/

with e.0/ bounded. Hence, for an arbitrary compact set Z, there exists an `�
1

such that for ` > `�
1 we have z.1/ 2 Z. After all, e`. xA� xK xC / converges to zero

exponentially as ` ! 1 while `nS�1
`

only grows polynomially in `.
Consider now the Lyapunov function,

V".x/ D x0P"x C z0Rz; (4.167)

where R is such that

. xA � xK xC/RCR. xA� xK xC/C I D 0;

and let c > 0 be such that

c � sup
x2 zX;z2Z;"2.0;1�

x0P"x C z0Rz: (4.168)
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Such a c exists because zX and Z are bounded. Moreover, P" is bounded by P1

for " 2 Œ0; 1	. Let "�
1 be such that, for all " 2 .0; "�

1	,

.x; z/ 2 LV .c/ D fx 2 Rn; z 2 Rn W x0P"x C z0Rz 6 cg;

we have

kFL;".x � `�nS`�xz/k 6 �

for all ` > `�
1 . The existence of such an "�

1 is due to the fact that `�nS` is small
for large ` while lim"!0 FL;" D 0.

We will establish that for all t > 1 we have .x.t/; z.t// 2 LV .c/ with x.t/ !
0, z.t/ ! 0 as t ! 1. Note that for .x; z/ 2 LV .c/, we have

�.FL;".x � `�nS`�xz// D FL;".x � `�nS`�xz/;

and hence,

�..FL;" � ˛B 0P"/.x � `�nS`�xz// D .FL;" � ˛�B 0P"/.x � `�nS`�xz//

for some � 2 Œ0; 1	, provided that .x; z/ 2 LV .c/. It follows then that for all
" 2 .0; "�

1	 and for all .x; z/ 2 LV .c/, the closed-loop system (4.166) can be
written as
(

Tx D .AC BFL;" � ˛�BB 0P"/x C B.FL;" � ˛�B 0P"/`
�nS`�xz

Tz D `. xA� xK xC/z:
(4.169)

The evaluation of TV" along the trajectories of this closed-loop system gives, for
all .x; z/ 2 LV .c/ and for all " 2 .0; "�

1	,

TV" D �x0Q"x � 2˛�x0P"BB
0P"x

� 2x0P"B.FL;" � ˛�B 0P"/`
�nS`�xz � `z0z

6 �x0Q"x C
p
` x0Q1=2

" z � `z0z
6 �1

2
x0Q"x � 1

2
`z0z;

provided that ` is large enough such that

kP"B.FL;" � ˛�B 0P"/`
�nS`�xk 6 1

2

p
` �min.Q"/

1=2:

The above can be clearly achieved since the left-hand converges to zero while the
right-hand side converges to infinity as ` ! 1. This implies that .x; z/ remains
in the set LV .c/ for all t > 0 and that V".t/ ! 0 as t ! 1 for ` sufficiently
large. Therefore, we find that x.t/ ! 0 as t ! 1. This completes the proof of
our result.
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The above observer, in general, has a large overshoot. This makes it sensitive
to disturbances. But another example, presented in Chap. 5, is the case when the
saturation function is not exactly known. The latter also causes the above high-
gain observer to behave badly in some cases. If we assume that the given system
is left invertible and of minimum phase, then these problems can be avoided.

We note that if the system .A;B; C; 0/ is left invertible and minimum phase,
then there exists a basis transformation �s such that

� �1
s A�s D

 
A0 L0C1

B1E1 A1

!
; � �1

s B D
 
0

B1

!
; C�s D

�
0 C1

�

with A0 asymptotically stable. This follows from Chap. 3 where

�sx D
 
x1

x2

!
; x1 D xa; x2 D

 
xb

xd

!

in the notation of SCB. Note that xc is missing because the system is left invertible
and A0 is Hurwitz because the system is minimum phase.

Next, we note that the subsystem .A1; B1; C1; 0/ based on the SCB has the
following structure:

A1 D

�
Abb 0 0 � � � 0

Bq1
E1b Aq1

0 � � � 0
::: 0

: : :
: : :

:::
:::

:::
: : :

: : : 0

Bqmd
Emd b 0 � � � 0 Aqmd

�
;

B1 D

�
0 0 � � � 0

Bq1
0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Bqmd

�
;

C1 D

�
0 Cq1

0 � � � 0

0 0 Cq2

: : :
:::

:::
:::

: : :
: : : 0

0 0 � � � 0 Cqmd

Cb 0 0 � � � 0

�
;
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where q is an integer, and for i D 1; 2; : : : ; md ,

Aqi
D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

0 � � � � � � 0 0

�
Bqi

D

�
0
:::

0

0

1

�
;

Cqi
D
�
1 0 � � � � � � 0 0

�
:

ChooseKqi
such that Aqi

�Kqi
Cqi

is Hurwitz for i D 1; : : : md and let Kd;1 be
given by

Kd;1 D

�
Kq1

0 � � � 0

0 Kq2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Kqmd

�
:

Next, we introduce

Si .`/ D `�pi

�
` 0 � � � 0

0 `2 : : :
:::

:::
: : :

: : : 0

0 � � � 0 `pi

�
;

where pi equals the number of columns of Aqi
and

Sd;` D

�
S1.`/ 0 � � � 0

0 S2.`/
: : :

:::
:::

: : :
: : : 0

0 � � � 0 Smd
.`/

�
:

Finally, choose nb distinct complex numbers �1; : : : ; �nb
in the open left-half

plane such that the set is symmetric with respect to the real axis. Choose Kb;`

such that Abb � Kb;`Cb has eigenvalues `�1; : : : `�nb
which is possible since

.Cb; Abb/ is observable. Then there exists a Sb;` such that

S�1
b;`.Abb �Kb;`Cb/Sb;` D `.Abb �Kb;1Cb/;
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where, without loss of generality, we choose Sb;` such that kSb;`k D 1. Putting
the above together, it is easy to verify that

S�1
1;`

�
A1 �K1;`C1

�
S1;` D `.A1 � xK1C1/;

where

S1;` D
 
Sb;` 0

0 Sd;`

!
; xK1 D

 
0 Kb;1

Kd;1 0

!
;

and the output injectionK1;` is given by

K1;` D
 

0 Kb;`

S1;`Kd;1 0

!
:

Clearly, by construction, S1;` also has the property that

S�1
1;`B1 D B1:

Moreover, there exists a M , independent of `, such that kS`k < M for all ` > 1.
In order to conclude, we define

K` D �s

 
L0

K1;`

!
;

and we choose the feedback (4.163). With the new observer gain, the controller
still has the properties of Theorem 4.38. This can be seen using the same argu-
ments as in the proof of Theorem 4.38. The advantage of this new observer comes
when we apply it to a system with input-additive disturbance d :

Tx D Ax C B�.u/C Bd

y D Cx:

If we apply the controller (4.163) to this system, we obtain

x � yx D �s

 
I 0

0 S1;`

! 
ze1

ze2

!
;

where

Tze1 D A0ze1 (4.170)

Tze2 D `.A1 � xK1C1/ze2 C B1.d CE1ze1/: (4.171)

We note that increasing ` speeds up the convergence of ze2 to zero without increas-
ing the effect of the disturbances. Since S1;` is bounded, we see also that x � yx
converges to zero faster without increasing the effect of the disturbances. Actu-
ally, by increasing `, we see that the effect of the disturbances on the observer
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error can be made arbitrarily small. This is the advantage of this new observer
which can only be obtained under the additional assumptions of left invertibility
and minimum phase.

4.5.2 Direct eigenstructure assignment: discrete time

We note that one cannot have low-and-high-gain control laws for discrete-time
systems in the same way as one does for continuous-time systems. This is because,
for discrete-time systems, the closed-loop stability implies that the linear part of
closed-loop system has poles within the unit circle rather than having arbitrar-
ily large magnitude in the negative half plane as in the case of continuous-time
systems. As before, we split the design into single- and multi-input systems.

A design algorithm for a single input system

The following lemma gives a method to speed up the performance of the system
by introducing a high-gain parameter:

Lemma 4.39 Consider a single-input linear system

x.k C 1/ D Ax.k/C Bu.k/; x.k/ 2 Rn

with all eigenvalues of A in the closed unit disc. Let FL;" be a matrix such that
the solution P" > 0 of the Lyapunov equation,

P" D .ACBFL;"/
0P".AC BFL;"/CQ";

has the property that

lim
"!0

P" D 0; (4.172)

and

P" > F 0
L;"FL;" (4.173)

for all " > 0, then the feedback controller

u D FL;"x C ˛FH;"x (4.174)

with ˛ 2 Œ0; 2	 where

FH;" D �.B 0P"B/
�1B 0P".AC BFL;"/
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is such that for any compact set X there exists an "� such that for all 0 < " < "�
and all ˛ 2 Œ0; 2	, the system

x.k C 1/ D Ax.k/C B�.u.k//; x.k/ 2 Rn

with controller (4.174) is locally asymptotically stable with X contained in its
domain of attraction.

Proof : Consider the set

V" WD
˚
x 2 Rn j x0P"x < 1

	
:

We choose " sufficiently small such that X � V". This is possible due to (4.172).
We note that V" is a positively invariant set in the sense that x.k/ 2 V" implies

that x.i/ 2 V" for all i > k. In order to establish this, we first note that

x0.k C 1/P"x.k C 1/ D x0.k/P"x.k/� x0.k/Q"x.k/

C 2x0.k/.AC BFL;"/
0P"Bv.k/C v0.k/B 0P"Bv.k/;

where

v.k/ D � .FL;"x.k/C ˛FH;"x.k// � FL;"x.k/:

Since x.k/ 2 V", we have

x0.k/F 0
L;"FL;"x.k/ 6 x0.k/P"x.k/ < 1;

where we use (4.173), and hence, kFL;"x.k/k < 1. This implies that

�..FL;"x.k/C ˛FH;"x.k// D FL;"x.k/C �˛FH;"x.k/

with � 2 Œ0; 1	. This in turn implies that

x0.k C 1/P"x.k C 1/ D x0.k/P"x.k/� x0.k/Q"x.k/

� .2�˛ � �2˛2/x0.k/.AC BFL;"/
0P"B.B

0PB/�1B 0P".AC BFL;"/x.k/:

Since � 2 Œ0; 1	 and ˛ 2 Œ0; 2	, we find 2�˛ > �2˛2, and hence,

x0.k C 1/P"x.k C 1/ 6 x0.k/P"x.k/ � x0.k/Q"x.k/ < x
0.k/P"x.k/:

Therefore, in the set V", we have x0.k/P"x.k/ exponentially decaying to zero.
This implies that we do not leave V", and also, we have local exponential stability,
and, by construction, the set X is contained in the domain of attraction.
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The above lemma does not make explicit how to find P" and Q" with the
required properties. In the direct method to follow, our aim is to make the con-
struction explicit and also make the dependency on " explicit. This is the next
phase of this section.

Consider a single input system .A;B/ in the following controllable canonical
form:

A D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

�an � � � �a3 �a2 �a1

�
; B D

�
0
:::

0

0

1

�
; (4.175)

with all eigenvalues of A in the closed unit disc. Let FL;" be the matrix such that

�.AC BFL;"/ D .1 � 2"/�.A/ � C�:

We consider the Lyapunov equation

P" D .AC BFL;"/
0P".AC BFL;"/CQ":

Borrowing the earlier construction from Sect. 4.3.2, we introduce a slightly mod-
ified basis transformation z�" associated with the basis

q.�";1/; �";1q
.1/.�";1/; : : : ; �

m1�1
";1 q.m1�1/.�";1/; : : : ;

q.�";k/; �";kq
.1/.�";k/; : : : ; �

mk�1
";1 q.mk�1/.�";k/ (4.176)

instead of the basis (4.30) such that

z� �1
" .AC BFL;"/ z�" D

�
J";1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 J";k

�
;

where J";i D �";i
xJmi

where xJmi
is a Jordan block associated with the eigenvalue

1 of size mi �mi . We introduce

z� 0
"P"

z�" D zP" D

�
zP";1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 zP";k

�
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and

z� 0
"Q"

z�" D zQ" D

�
zQ";1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 zQ";k

�
:

We get the equation

zP";i D J 0
";i

zP";iJ";i C zQ";i :

If j�i j < 1, then we choose zQ";i D "I , and we obtain zP";i D " xPi for all " > 0

with xPi > 0.
If j�i j D 1, we note that the Lyapunov equation is equal to

zP";i D .1 � 2"/2 xJ 0
mi

zP";i
xJmi

C zQ";i :

In other words, the phase angle of �i does not play a role in the equation. We
define zJmi

D xJmi
� I which is a Jordan block associated with the eigenvalue 0

and a nilpotent matrix. We get

.2"� "2/ zP";i D .1 � 2"/2
�

zJ 0
mi

zP";i C zP";i
zJmi

C zJ 0
mi

zP";i
zJmi

�
C zQ";i :

Define

ı D 2"� "2

.1 � 2"/2 ;
zQ";i D ı2mi

.1 � 2"/2
I;

and we get

ı zP";i D
�

zJ 0
mi

zP";i C zP";i
zJmi

C zJ 0
mi

zP";i
zJmi

�
C ı2mi I:

In this case, we note that zP";i is a polynomial in ı:

zP";i D
2mi �1X

j D1

ıj xPi;j :

This can be established using the recursion

xPi;j D zJ 0
mi

xPi;j C1 C xPi;j C1
zJmi

C zJ 0
mi

xPi;j C1
zJmi

for j D 1; : : : ; 2mi � 2 with xPi;2mi �1 D I . The fact that xPi;0 D 0 follows from
the fact that xJmi

is nilpotent, and hence, xJmi �1 D 0.
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In order to apply Lemma 4.39 to establish that we obtain in this way a proper
low-and-high-gain design, we need to verify that P" ! 0 as " ! 0 and

P" > F 0
L;"FL;": (4.177)

The fact that P" ! 0 as " ! 0 is a trivial consequence of our construction (note
that " ! 0 trivially implies that ı ! 0). In order to establish (4.177), we first
note that

FL;"
z�" D

�
zF";1 � � � zF";k

�
;

and (4.32) implies that there exists a M > 0 such that

k zF";ie`k 6 M"mi �`C1

for i D 1; : : : ; k and ` D 1; : : : ; mi where e1; : : : ; emi
is the standard basis for

Rmi . Next, we note that our recursion implies that there exists a m > 0 such that

e0
h

xPj e` D 0

for hC ` < 2mi � j C 1 and e0
h

xPj e` > m for hC ` D 2mi � j C 1. This implies
that

e0
h

zP";ie` > m"
2mi C1�h�`

for h; ` D 1; : : : ; mi and " sufficiently small. Combined with

e0
h

zF 0
";i

zF";ie` < M
2"2mi C2�h�`;

we find that for " small enough, we have

zF 0
";i

zF";i 6 zP";i ;

and hence, (4.177) is satisfied. Therefore, Lemma 4.39 can be applied and we can
conclude that this design has the required properties.

A design algorithm for multi-input systems

We use the same initial state transformation as in Sect. 4.3.2, i.e., a state transfor-
mation �x and an input transformation �u such that the matrices � �1

x A�x and
� �1

x B�u are in the following form:

� �1
x A�x D

�
A1 A1;2 � � � A1;q 0

0 A2

: : :
:::

:::
:::

: : :
: : : Aq�1;q

:::
:::

: : : Aq 0

0 � � � � � � 0 AqC1

�
;
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� �1
x B�u D

�
B1 0 � � � 0 B1;qC1

0 B2

: : :
:::

:::
:::

: : :
: : : 0

:::

0 � � � 0 Bq Bq;qC1

BqC1;1 � � � BqC1;q�1 BqC1;q BqC1;qC1

�
;

where q is an integer, and for i D 1; 2; : : : ; q,

Ai D

�
0 1 0 � � � 0
:::

: : :
: : :

: : :
:::

:::
: : : 1 0

0 � � � � � � 0 1

�ai
ni

� � � �ai
3 �ai

2 �ai
1

�
; Bi D

�
0
:::

0

0

1

�
:

Clearly, .Ai ; Bi / is controllable. The transformation �x is such that all the eigen-
values of Ai are on the unit circle, and all the eigenvalues of AqC1 are strictly
inside the unit circle.

Step 2: For each .Ai ; Bi /, let FL;";i 2 R1�ni be the state feedback gain such that

�.Ai CBiFL;"i ;i / D .1 � 2"i /�.Ai / � C�:

We note here that such a gain FL;"i ;i exists and is unique. Moreover, it can be
obtained explicitly in terms of ". The uniqueness follows since .Ai ; Bi / is a single
input controllable pair.

Step 3 : The family of low-gain state feedback control laws parameterized in " is
defined by

u D FL;"x; (4.178)

where the state feedback gain matrix FL;" is given by

FL;" D �u

�
FL;"1;1 0 � � � � � � 0

0 FL;"2;2

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : : FL;"q ;q 0

0 � � � � � � 0 0

�
� �1

x : (4.179)
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Here, "qC1 D ", and for i D 1; : : : ; q we have

"i D "
6riC1C1

iC1 ; (4.180)

where ri is the largest algebraic multiplicity among the eigenvalues of Ai for
i D 1; : : : ; q while rqC1 D 1. Moreover, we construct P"i ;i andQ"i ;i such that

P"i ;i D .Ai C BiF"i ;i /
0P"i ;i .Ai C BiF"i ;i /CQ"i ;i

with P"i ;i ! 0 as " ! 0 and

P"i ;i > F 0
"i ;iF"i ;i

for i D 1; : : : ; q such that there exist xm1; xm2, and xm3 for which

xm1"
2ri �1I 6 P";i 6 xm2"I (4.181)

and

Q"i ;i > xm3"
2ri I: (4.182)

The algorithm presented earlier for the single-input case tells us how to construct
P"i ;i and Q"i ;i . We define

FH;"i ;i D �.B 0
iP"i ;iBi /

�1B 0
iP"i ;i D .Ai C BiF"i ;i /;

and the family of low-and-high-gain state feedback control laws parameterized in
" is defined by

u D FL;"x C ˛FH;"x; (4.183)

where the state feedback gain matrix FL;" is given by (4.179), and

FH;" D �u

�
FH;"1;1 0 � � � � � � 0

0 FH;"2;2

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : : FH11;"q ;q 0

0 � � � � � � 0 0

�
� �1

x : (4.184)

We defineQ";qC1 D "I and P";qC1 such that

P";qC1 D A0
qC1P";qC1AqC1 CQ";qC1
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and define rqC1 D 1. We also define

P" D �x

�
P"1;1 0 � � � 0

0 P"2;2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 P"qC1;qC1

�
� �1

x : (4.185)

The initial conditions are in the compact set X. This implies that for " small
enough, the initial conditions satisfy

x.0/ 2 1

2
V" D



x 2 Rn j x0P"x 6 1

2

�
: (4.186)

For i D q C 1, we have

x0
i .k/P"i ;ixi .k/ 6 .1 � "

2ri

i /k (4.187)

given (4.186). This yields

kxi .k/k 6 xm1

"
ri �1=2
i

.1 � "2ri

i /k=2 (4.188)

using (4.181). We will prove (4.187) and (4.188) for i D 1; : : : ; q through an in-
duction argument. Assume (4.187) and (4.188) are satisfied for i D jC1; : : : ; qC
1. We will establish that this inequality is also satisfied for i D j .

In order to establish this, we consider the j ’th subsystem

xj .k C 1/ D Ajxj .k/C Bjuj .k/C wj .k/;

where

wj D Aj;j C1xj C1 C � � � C Aj;qxq

while wq D 0. Using (4.188) for i D j C 1; : : : ; q, we obtain that there exists a
Mj such that

kwj .k/k 6 Mj

"
rj C1�1=2

j

.1� "
2rj C1

j C1 /k=2

for all k > 0. We obtain in the set V"

x0
j .k C 1/P"j ;jxj .k C 1/ D x0

j .k/P"j ;jxj .k/ � x0
j .k/Q"j ;jxj .k/

C 2x0
j .k/.Aj C BjFL;"j ;j /

0P"j ;jBj vj .k/C v0
j .k/B

0
jP"j ;jBj vj .k/

C 2x0
j .k/.Aj C BjFL;"j ;j /

0P"j ;jwj .k/C w0
j .k/P"j ;jwj .k/

C 2v0
j .k/B

0
jP"j ;jwj .k/;
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where

vj .k/ D �
�
FL;"j ;jxj .k/C ˛FH;"j ;jxj .k/



� FL;"j ;jxj .k/:

Since by assumption x.k/ 2 V", we have

x0
j .k/F

0
L;"j ;jFL;"j ;jxj .k/ 6 x0

j .k/P"j ;jx C j.k/ < 1;

where we use (4.173), and hence, kFL;"j ;jxj .k/k < 1. This implies that

�.
�
FL;"j ;jxj .k/C ˛FH;"j ;jxj .k/



D FL;"j ;jxj .k/C �j˛FH;"j ;jxj .k/

with �j 2 Œ0; 1	, and hence,

x0
j .k C 1/P"j ;jxj .k C 1/ 6 x0

j .k/P"j ;jxj .k/ � x0
j .k/Q"j ;jxj .k/

C 2x0
j .k/.Aj C BjFL;"j ;j /

0P"j ;jwj .k/C w0
j .k/P"j ;jwj .k/

C 2v0
j .k/B

0
jP"j ;jwj .k/: (4.189)

By (4.181) and (4.182), we find that

x0
jQ"j ;jxj > m3

m2

"2rj �1x0
jP"j ;jxj > "2rj x0

jP"j ;jxj ;

where the last equality holds for sufficiently small " > 0. Using the Lyapunov
equation, we note that

x0
jP"j ;jxj > x0

j .k/.Aj CBjFL;"j ;j /
0P"j ;j .Aj C BjFL;"j ;j /xj .k/:

Next, we note that

2x0
j .Aj CBjFL;"j ;j /

0P"j ;jwj

6 2
�
x0

jP"j ;jxj


1=2 p
m2

p
"j

Mj

"
rj C1�1=2

j C1

.1 � "
2rj C1

j C1 /k=2

6
p
"j

3"
rj C1

j C1

.1 � "
2rj C1

j C1 /k=2;

where we use the fact that, by assumption, x 2 V". The last inequality follows for
sufficiently small ". We also note that

w0
jP"j ;jwj 6 m2"j

M 2
j

"
2rj C1�1

j C1

.1 � "2rj C1

j C1 /k
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and

2v0
j .k/B

0
jP"j ;jwj .k/ 6 �j˛x

0
jFH;"j ;jB

0
jP"j ;jwj

6 2kwj kkP 1=2
"j ;j kkP"j ;j .Aj C BjFL;"j ;j /xj k

6 2kwj kkP 1=2
"j ;j kkP"j ;jxj k

6 2
p
m2

p
"j

Mj

"
rj C1�1=2

j C1

.1 � "2rj C1

j C1 /k=2

6
p
"j

3"
rj C1

j C1

.1 � "
2rj C1

j C1 /k=2;

where we again use that x 2 V", and for the last inequality, we have to make sure
that " is sufficiently small. We define

Vj .k/ D x0
j .k/P"j ;jxj .k/;

and we obtain using the above bounds and (4.189) that

Vj .k C 1/ 6 .1 � "2rj

j /V .k/C
p
"j

"
rj C1

j C1

.1 � "
2rj C1

j C1 /k=2:

Therefore,

Vj .k/ 6 .1 � "2rj

j /k

2

64Vj .0/C
1X

iD0

p
"j

"
rj C1

j C1

0

B@

q
1 � "

2rj C1

j C1

1 � "
2rj

j

1

CA

i3

75 ;

which gives us

Vj .k/ 6 .1� "
2rj

j /k

2

4Vj .0/C
2
p
"j

"
3rj C1

j C1

3

5 :

This yields, for " small enough, (4.187) and (4.188) for i D j , where we use
(4.180) and (4.181). This establishes recursively (4.187) and (4.188) for i D 1;

: : : ; q C 1 given (4.186). Since X � 1
2
V", we find that for all initial conditions

in X, we stay inside V" and converge to zero exponentially. This establishes the
required properties of our design.

A design algorithm for measurement feedback

In case of measurement feedback, we have the system,

x.k C 1/ D Ax.k/CB�.u.k//

y.k/ D Cx.k/:
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We need to build an observer that can be used in conjunction with the low-and-
high-gain state feedback designed before. In addition to earlier assumptions that
.A;B/ is stabilizable and all eigenvalues of A being inside or on the unit circle,
we assume that the pair .C;A/ is observable. We construct the observer-based
controller as

yx.k C 1/ D Ayx.k/C B�.u.k//CK.y.k/ � C yx.k//
u.k/ D FL;" yx.k/C ˛FH;" yx.k/;

whereK is such that the eigenvalues of A�KC are all in the origin. This implies
that x.n/ D yx.n/. Given a bounded set X of initial conditions for x.0/, we
know that x.n/ is contained in some compact set zX given the fact that �.u.k//
is bounded for all k. Then we choose " small enough to guarantee that zX is
contained in the domain of attraction. Finally, we choose ˛ 2 Œ0; 2	, and it is clear
that this controller will achieve the required semi-global stability.

So far, we pursued low-and-high-gain feedback design based on direct eigen-
structure assignment method. We present next another low-and-high-gain design
method which, however, is based on solving a parameterizedH2 ARE.

4.5.3 ARE-based methods: continuous time

As in the previous subsections, a low-and-high-gain feedback law is a composite
control law. It is composed by adding together a low-gain feedback control and
a high-gain feedback control. For continuous-time systems, the low-gain state
feedback gain FL;" is defined as

FL;" WD �B 0P"; (4.190)

where, as in (4.44b), P" is the positive definite solution of the following CARE:

PAC A0P � PBB 0P CQ" D 0; (4.191)

where Q" > 0 for all " > 0 and Q" ! 0 as " ! 0. The high-gain state feedback
gain FH;" is simply defined as

FH;" WD �˛B 0P"; (4.192)

where, as in (4.190), P" is the positive definite solution of the CARE (4.191).
As in the previous section, we use the qualifier high to the above state feedback
gain because of the presence of the parameter ˛ which can possibly take high
values. For the same reason, ˛ is called the high-gain parameter.

The family of parameterized low-and-high-gain state feedback laws is com-
posed of families of low-gain and high-gain state feedback laws, and is defined by

u D FLH;";˛x; (4.193a)
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where

FLH;";˛ WD FL;" C FH;" D �.1C ˛/B 0P": (4.193b)

Remark 4.40 The CARE-based low-and-high-gain state feedback design formu-
lated above is actually an optimal design for the linear system .A;B/ in the
absence of input saturation with appropriately chosen Qn and Rn. More specif-
ically, choosing Rn D I=.1C ˛/ and Qn D Q C ˛PBB 0P , it is easy to verify
that P is the solution to the new CARE:

A0P C PA � PBR�1
n B 0P CQn D 0;

and hence, u D �.1 C ˛/B 0Px D �R�1
n B 0Px is an optimal control for each

fixed ˛ > 0.

Once again, as in the previous subsections, we emphasize the roles played by
the low-gain and high-gain parameters " and ˛. We note from [74, 77, 78, 128]
that, in the context of semi-global internal stabilization of linear systems with sat-
urating actuators, the parameter ˛ does not play any role in influencing the domain
of attraction which, indeed, is basically controlled by the low-gain parameter ".
However, the parameter ˛ plays a crucial role in the context of issues other than
the internal stabilization, such as external stabilization, robust stabilization, dis-
turbance rejection, and other performance-related issues.

Theorem 4.41 Consider the continuous-time system (4.1). Let Assumption 4.8
hold, i.e., the pair .A;B/ is stabilizable and the eigenvalues of A are in the
closed left-half plane. Then the family of linear low-and-high-gain state feedback
laws given by (4.193) solves Problem 4.4. More specifically, under the state feed-
back (4.193), for any given (arbitrarily large) bounded set X � Rn, there exists
an "� 2 .0; 1	 such that for all " 2 .0; "�	 and for all ˛ � 0, the equilibrium point
x D 0 of the closed-loop system is locally exponentially stable with X contained
in its domain of attraction.

Proof : Consider the Lyapunov function

V".x/ D x0P"x (4.194)

and let c > 0 be such that

c � sup
x2X;"2.0;1�

x0P"x: (4.195)

Such a c exists because X is bounded and, by Lemma 4.20, lim"!0 P" D 0. Let
"� be such that, for all " 2 .0; "�	, having

x 2 LV .c/ D fx 2 Rn W x0P"x � cg
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implies that kB 0P"xk � �, and hence,

�.�B 0P"x/ D �B 0P"x; (4.196)

where� is the actuator saturation level. We note that LV .c/ is a positively invari-
ant set in the sense that x.t/ 2 V" implies that x.
/ 2 V" for all 
 > t . In order
to establish this, we first note that

d

dt
x0.t/P"x.t/ D �x0.t/Q"x.t/C 2x0.t/P"Bv.t/;

where
v.t/ D � .FL;"x.t/C ˛FH;"x.t// � FL;"x.t/:

Since x.t/ 2 LV .c/, we have (4.196), and hence, kFL;"x.t/k < �. This implies
that

�..FL;"x.t/C ˛FH;"x.t// D FL;"x.t/C

�
�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �m

�
˛FH;"x.t/

with �i 2 Œ0; 1	 for i D 1; : : : ; m. Therefore,

d

dt
x0.t/P"x.t/ D �x0.t/Q"x.t/

� ˛2x0.t/P"B

�
�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �m

�
B 0P"x.t/;

and hence,

d

dt
x0.t/P"x.t/ 6 �x0.t/Q"x.t/ < 0:

The above yields that in the set LV .c/ we have x0.t/P"x.t/ exponentially decay-
ing to zero, which implies that we do not leave LV .c/, and also that we have local
exponential stability and, by construction, the set X is contained in the domain of
attraction.

We proceed now to construct a family of parameterized low-and-high-gain
measurement feedback control laws. We first present a preliminary lemma.
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Lemma 4.42 Let the pair .A; C / be observable. Also, let Q` be the solution of
the following dual algebraic Riccati equation:

0 D .AC `I /QCQ.AC `I /0 �QC 0CQC I: (4.197)

Then, we have for sufficiently large `

���e.A�Q`C 0C /t
��� 6 e�`t=2 (4.198)

for all t > 1.

Proof : Standard properties of the CARE (4.197) imply that

AC `I �Q`C
0C

is asymptotically stable, and hence, the eigenvalues of A � Q`C
0C have real

part strictly less than �`. It is also easy to verify that Q` is increasing in ` since
differentiating the Riccati equation with respect to ` yields

.A �QC 0C/ TQC TQ.A �QC 0C/0 C 2Q D 0:

To show (4.198), we note that Q` has an interpretation as the optimal cost of the
following optimal control problem:

Tx D A0x C C 0u; x.0/ D 


and


 0Q`
 D inf
u

tZ

0

ke`sx.s/k2 C ke`su.s/k2ds C e2`tx.t/0Q`x.t/:

There exists a M > 0 such that for any 
 there exists an input u such that
x.1=2/ D 0, kuk2 < M k
k and kxk2 < M k
k. When we choose this sub-
optimal input in the above optimization problem, we find that


 0Q`
 6 2e`=2M 2k
k2:

On the other hand, for the optimal input u D �CQ`x, we get

x.t/ D e.A0�C 0CQ`/t
;

and therefore,

e2`t
 0e.A�Q`C 0C /tQ`e
.A0�C 0CQ`/t
 D e2`tx.t/0Q`x.t/ 6 
 0Q`


6 2e`=2M 2k
k2:
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Hence, there exists a N > 0 such that

e.A�Q`C 0C /te.A0�C 0CQ`/t 6 Ne.A�Q`C 0C /tQ1e
.A0�C 0CQ`/t

6 Ne.A�Q`C 0C /tQ`e
.A0�C 0CQ`/t

6 2e�3`t=2NM 2

since t > 1 and Q` is increasing in `. Therefore, we find for sufficiently large `
that (4.198) is satisfied.

A family of parameterized high-gain observer based low-and-high-gain mea-
surement feedback control laws take the form

(
Tyx D Ayx C B�.u/CK`.y � C yx/
u D FLH;";˛ yx;

(4.199)

where the state feedback gain FLH;";˛ is as given by (4.193b) and the observer
gainK` D Q`C

0 whereQ` is the solution of the algebraic Riccati equation (4.197).
We have the following theorem pertaining to semi-global stabilization:

Theorem 4.43 Consider the continuous-time system (4.1). Let Assumption 4.8
hold, i.e., assume that the pair .A;B/ is stabilizable and the eigenvalues of A are
in the closed left-half plane. Moreover, assume that .C;A/ is observable.

In that case, the family of linear dynamic measurement feedback laws given
in (4.199) solves Problem 4.5. More specifically, under the measurement feedback
law (4.199), for any given (arbitrarily large) bounded set .X; yX/ � R2n, there
exists an "� 2 .0; 1	 such that, for all ˛ � 0 and for all " 2 .0; "�	, there exists an
`� such that for ` > `� the equilibrium point .0; 0/ of the closed-loop system is
locally exponentially stable with .X; yX/ contained in its domain of attraction.

Proof : Under the output feedback law (4.51), the closed-loop system takes the
form,

(
Tx D Ax C B�.�.1C ˛/B 0P" yx/
Tyx D Ayx C B�.�.1C ˛/B 0P" yx/CK`.y � C yx/

(4.200)

which, in the new coordinates .x; e/ where e D x � yx, becomes
(

Tx D Ax C B�.�.1C ˛/B 0P".x � e//
Te D .A�K`C/e:

(4.201)

Local exponential stability then immediately follows since A � K`C and A�
.1C ˛/BB 0P" are both Hurwitz. It remains to consider the domain of attraction.
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Since � is bounded and x.0/ 2 X, there exists a bounded set zX such that
x.1/ 2 zX for all initial conditions

.x.0/; yx.0// 2 X � yX

and independent of ˛ and `. Next, we note from Lemma 4.42 that

ke.t/k 6 zMe�`t=2

for all t > 1 where zM only depends on X and yX and is independent of ` and ˛.
Consider now the Lyapunov function,

V".x/ D x0P"x; (4.202)

and let c > 0 be such that

c � sup
x2 zX;"2.0;1�

x0P"x: (4.203)

Such a c exists because zX is bounded. Moreover, P" is bounded by P1 for " 2
Œ0; 1	. Let "�

1 be such that, for all " 2 .0; "�
1	,

x 2 LV .c/ D fx 2 Rn W x0P"x 6 cg

and e with kek < zM we have 2kB 0P".x � e/k 6 �. The existence of such an "�
1

again owes to the fact that lim"!0 P" D 0.
We will establish that for all t > 1, we have x.t/ 2 2LV .c/ with x.t/ ! 0 as

t ! 1. Note that for x 2 2LV .c/ and kek < zM , we have �.B 0P".x � e// D
B 0P".x � e/, and hence,

�.�B 0P".x � e// D �B 0P".x � e/ � ˛

�
�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �m

�
B 0P".x � e/

with �i .t/ 2 Œ0; 1	 for i D 1; : : : ; m and for all t > 0, provided that x 2 LV .c/

and e satisfies kek < zM . Define

M D

�
�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �m

�
:
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It then follows that for all " 2 .0; "�
1	 and for all x 2 2LV .c/ and kek < zM , the

closed-loop system (4.201) can be written as
(

Tx D .A � BB 0P" � ˛BMB 0P"/x C BB 0P"e C ˛BMB 0P"e

Te D .A �K`C/e:
(4.204)

The evaluation of TV" along the trajectories of this closed-loop system gives, for
all .x; e/ 2 LV .c/ and for all " 2 .0; "�

1	,

TV" D �x0Q"x � x0P"B.I C 2˛M/B 0P"x � 2x0P"B.I C ˛M/B 0P"e

6 �ıV" � x0P"B.I C ˛M/B 0P"x � 2x0P"B.I C ˛M/B 0P"e

6 �ıV" C e0P"B.I C ˛M/B 0P"e

for some ı > 0. Using (4.198), we find given " and ˛ there exists a xM > 0 such
that

e.t/0P"B.I C ˛M/B 0P"e.t/ 6 xMe�`t

for t > 1. Moreover, V".1/ 6 c. But then

TV" 6 �ıV" C xMe�`t

implies that

V".t/ 6 e�ıtV".1/C
xM

` � ı

�
e�ıt � e�`t

�

for t > 1. This yields that V".t/ < 2c and V".t/ ! 0 as t ! 1 for ` sufficiently
large. Therefore, we find that x.t/ ! 0 as t ! 1, and combined with the fact
that e.t/ ! 0 as t ! 1, we obtain that X � yX is contained in the domain of
attraction. This completes the proof of our result.

4.5.4 ARE-based methods: discrete time

As we said earlier, one cannot have low-and-high-gain control laws for discrete-
time systems in the same way as one does for continuous-time systems. As in
Sect. 4.5.2, however, by utilizing the ARE-based method, we develop here a
family of improved low-gain control laws. An improved low-gain control law
is a composite control law consisting of a low-gain control law and another part
akin to what we termed as high-gain control law in the case of continuous-time
systems.

For discrete-time systems, a family of low-gain state feedback control laws
by H2 ARE-based method is developed in Sect. 4.4.2. It is given by (4.70) and
repeated below as

uL D FL;"x; (4.205a)
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where

FL;" WD �.B 0P"B C I /�1B 0P"A; " 2 .0; 1	; (4.205b)

and where P" is the positive definite solution of DARE:

P D A0PACQ" � A0PB.B 0PB C I /�1B 0PA: (4.206)

In order to improve the above low-gain control law, we add to it another part and
formulate a family of composite state feedback control laws as

u D ŒFL;" C ˛ xFH;"	x; ˛ 2
�
0;

2

kB 0P"Bk

�
; (4.207)

where

xFH;" D FL;" D �.B 0P"B C I /�1B 0P"A: (4.208)

Note that we can rewrite this controller for the case of single-input systems in the
form

u D ŒFL;" C z̨ zFH;"	x;

with z̨ 2 Œ0; 2	 and where

zFH;" D �.B 0P"B/
�1B 0P"Ac

with Ac D A C BFL;". This follows immediately from the fact that for single-
input systems,

1

kB 0P"Bk D .B 0P"B/
�1:

We should note that in our earlier work elsewhere we have used

u D ŒFL;" C z̨�.x/ zFH;"	x; (4.209)

where � W Rn ! RC is defined as

�.x/ D max
z2Œ0;1�

fz W kŒFL;" C ˛zFH;"	xk1 6 �g: (4.210)

If, in the above maximization, there exists no z for which the inequality is sat-
isfied, then z is chosen equal to 0. Note that (4.209) has the disadvantage over
(4.207) that the resulting controller is nonlinear. However, this nonlinear feedback
does have a slightly larger range for the high-gain term.

We emphasize that, unlike in continuous-time systems, for discrete-time
systems, the parameter ˛ (or in the single-input case z̨) is limited in its range.
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In the direct design, our method decouples the different inputs by using different
timescales. Therefore, the issue with the nonlinear term � does not show up. In the
current design, we do not have these different timescales and then the nonlinear
term � is needed in the multi-input case.

Remark 4.44 Clearly, when ˛ D 0, the new composite state feedback laws as
given in (4.207) reduce to the low-gain-based linear state feedback laws as given
in (4.205). In connection with output regulation problems, it is demonstrated
in [84, 85] that the choice of FH;" as given above and a value of

˛ 2
�
0;

2

kB 0P"Bk

�

represents fuller utilization of the control capacity and leads to an improved
closed-loop transient performance.

Theorem 4.45 Consider the discrete-time system (4.1). Let Assumption 4.8 hold,
i.e., assume that the pair .A;B/ is stabilizable and the eigenvalues ofA are within
or on the unit circle. Then the family of linear static state feedback laws given
in (4.207) solves Problem 4.4. More specifically, under the state feedback (4.207),
for any given (arbitrarily large) bounded set X � Rn, there exists an "� 2 .0; 1	
such that, for all

" 2 .0; "�	 and ˛ 2
�
0;

2

kB 0P"Bk

�
;

the equilibrium point x D 0 of the closed-loop system is locally exponentially
stable with X contained in its domain of attraction.

Proof : Consider the closed-loop system under the state feedback law (4.207):

x.k C 1/ D Acx C BŒ�.FL;"x C ˛ xFH;"x/ � FL;"x	: (4.211)

Also, consider the Lyapunov function

V1.x/ D x0P"x; (4.212)

and let c1 > 0 be such that

c1 � sup
x2X;"2.0;1�

x0P"x: (4.213)

Such a c1 exists since lim"!0 P" D 0 by Lemma 4.24 and X is bounded. We note
here that such a c1 guarantees that X � LV1

.c1/, 8" 2 .0; 1	, where the level set
LV1

.c1/ is defined as LV1
.c1/ D fx 2 Rn W V1.x/ � c1g. Let "�

1 be such that
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for all " 2 .0; "�
1	, x 2 LV1

.c1/ implies that kFL;"xk1 � �. Such an "�
1 exists

because of Lemma 4.24 and the fact that lim"!0 P" D 0. Note also that from the
DARE (4.206), it follows that,

A0
cP"Ac � P" D �Q" � F 0

L;"FL;": (4.214)

The evaluation of the difference V1.�x/ � V1.x/ along the trajectories of this
linear closed-loop system shows that, for x 2 LV1

.c1/,

V1.�x/ � V1.x/ D �x0Q"x � �.u/0�.u/
C Œ�.u/ � FL;"x	

0 .I CB 0P"B/ Œ�.u/ � FL;"x	 ; (4.215)

where, as usual, �x.k/ means x.k C 1/. Defining ı D kB 0P"Bk, we get

V1.�x/ � V1.x/

6 �x0Q"x � �.u/0�.u/C .1C ı/ Œ�.u/ � FL;"x	
0 Œ�.u/ � FL;"x	

D �x0Q"x C ı
����.u/ � 1Cı

ı
FL;"x

���
2

� 1Cı
ı

kFL;"xk2: (4.216)

Since

jFL;"xj 6 j�.u/j 6
�

2
ı

C 1


jFL;"xj

componentwise, and since �.u/ and FL;"x, also componentwise, have the same
sign, it follows that

k�.u/ � 1Cı
ı
FL;"xk 6 1

ı
kFL;"xk:

Using this in (4.216) yields,

V1.�x/ � V1.x/ 6 �x0Q"x � kFL;"xk2;

for all x 2 LV1
.c1/ which implies that the closed-loop system (4.211) is locally

exponentially stable with X contained in its basin of attraction. We note here that
the choice of ˛ determines the decay rate of V1.x.kC1//�V1.x.k//, and hence,
the freedom in choosing ˛ can be utilized to ensure fast convergence.

The family of observer-based measurement feedback control laws take the
form,

(
yx.k C 1/ D Ayx.k/C B�.u.k//CK.y.k/ � C yx.k//
u.k/ D ŒFL;" C ˛ xFH;"	yx.k/;

(4.217)

where FL;" and xFH;" are as in (4.208) and K is a matrix such that all the eigen-
values of xA D A�KC are at the origin.
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The following theorem shows that the family of measurement feedback laws
given in (4.217) solves Problem 4.5, namely, the problem of semi-global expo-
nential stabilization via linear dynamic measurement feedback:

Theorem 4.46 Consider the discrete-time system (4.1). Let Assumption 4.8 hold,
i.e., assume that the pair .A;B/ is stabilizable and the eigenvalues ofA are within
or on the unit circle. Moreover, assume that the pair .C;A/ is observable.

In that case, the family of linear dynamic measurement feedback laws given
in (4.217) solves Problem 4.5. More specifically, under the measurement feedback
law (4.217), for any given (arbitrarily large) bounded set .X; yX/ � R2n, there
exists an "� 2 .0; 1	 such that for all

" 2 .0; "�	; ˛ 2
�
0;

2

kB 0P"Bk

�
;

the equilibrium point .0; 0/ of the closed-loop system is locally exponentially
stable with .X; yX/ contained in its domain of attraction.

Proof : With the family of measurement feedback laws as given by (4.217), the
closed-loop system is given by

8
<̂

:̂

x.k C 1/ D Ax.k/C B�.u.k//

yx.k C 1/ D Ayx.k/C B�.u.k//CK.y.k/ � C yx.k//
u.k/ D .FL;" C ˛FH;"/yx.k/:

(4.218)

We then adopt the invertible change of state variables,

zx D x � yx;

and rewrite the closed-loop system (4.218) as
(
x.k C 1/ D Ax.k/C B�..FL;" C ˛FH;"/yx.k/
zx.k C 1/ D .A�KC/zx.k/:

(4.219)

Since all eigenvalues of xA D A�KC are at the origin, it is easy to verify that for
time k � n, zx.k/ 	 0. As a result, for k � n, yx.k/ 	 x.k/. On the other hand,
for all x.0/ 2 X and yx.0/ 2 yX, x.n/ belongs to a bounded set zX since �.u/
is bounded. Hence, the rest of the proof becomes the same as the proof for state
feedback case as long as we guarantee that zX is in the domain of attraction.
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4.6 Global stabilization

Let us summarize briefly what has been done so far in this chapter. As discussed
earlier, low-gain design methodology can be utilized successfully to achieve
semi-global stabilization of linear systems subject to actuator saturation. The low-
and-high-gain design has been put forward to improve transient performance.
However, all these techniques only yield semi-global stabilization. In this section,
our intent is to address global stabilization.

In the seminal work of Fuller [38], as discussed earlier, it was established that
global stabilization in general requires nonlinear feedback control laws. In this
section, we first present a result for neutral systems which form a class of sys-
tems for which linear feedback control laws can still achieve global stabilization.
Note that we cannot limit ourselves to linear feedback control laws if we want to
address global stabilization for more general classes of systems. Since our design
methodologies of low-gain and low-and-high-gain feedback yield linear feedback
controllers, it might seem that these techniques are unsuitable to achieve global
stabilization. However, it is transparent that both the low-gain and high-gain pa-
rameters " and ˛ have an asymptotic nature, and as such, for readers familiar with
the adaptive control literature, it is clear that one can possibly adapt or sched-
ule these parameters to depend on the state x or its estimate. This has been done
in literature. The low-gain parameter " is adapted (scheduled) to achieve global
internal stabilization [98]. In subsequent chapters, we will also address control
problems where it is useful to adapt also the high-gain parameter. In view of the
above discussion, we review in this section a certain method of adapting the low-
gain parameter " to depend on the state x. This is done to construct globally stabi-
lizing controllers. Obviously, whenever " is adapted to depend on x, the resulting
controllers are nonlinear.

4.6.1 Linear feedback controllers for neutral systems

As mentioned before, it was already established in [38] that in general nonlinear
feedback control laws are needed for global stabilization. In the literature, some
researchers study, for what class of systems with input saturation, global stabi-
lization can be achieved via linear feedback controllers. In this subsection, we
look at neutral systems for which it has been known for a long time that global
stabilization can be achieved by linear feedback controllers. Even though we re-
strict attention to neutral systems, it should be noted that global stabilization can
be achieved with linear feedback control even for more general classes of systems
such as continuous-time systems for which all imaginary-axis poles are semi-
simple (Jordan blocks of size at most 1) except for the origin where Jordan blocks
of size 2 are allowed (see Sect. 4.7.1).

Let us first mention that the linear feedback control laws we use in this sub-
section for global stabilization of neutral systems fall into the class of low-gain
and low-and-high-gain feedback control laws after we generalize them. Before
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we proceed to the said generalization, let us first briefly recall the ARE-based
design we introduced earlier. For continuous-time systems, we introduced earlier
the CARE,

A0P" C P"A� P"B
0BP" CQ" D 0; (4.220)

and then introduced low-gain feedback control laws of the form

u D �B 0P"x: (4.221)

Also, we introduced low-and-high-gain feedback control laws of the form

u D �.1C ˛/B 0P"x; (4.222)

where P" is the solution of CARE (4.220) and where Q" is a positive-definite
matrix for all " > 0 with the property that Q" ! 0 as " ! 0.

We observe that the above ARE-based low-gain or low-and-high-gain design
methodology can be generalized to allow Q" to be positive semi-definite, pro-
vided that .Q"; A/ is detectable and Q" ! 0 as " ! 0. How does such a
generalization of allowing Q" to be positive semi-definite help us? As we shall
see shortly, such a generalization leads us to a generalization of low-and-high-gain
feedback control laws of the type (4.222). Then, such generalized control laws,
although they are linear feedback control laws, can be used to globally asymptot-
ically stabilize neutral systems.

To proceed with our development, let us first consider a continuous-time linear
system subject to actuator saturation:

Tx D Ax C B�.u/: (4.223)

Neutral systems are linear systems which are already stable but not yet asymptot-
ically stable. That is, the system matrixA has all its eigenvalues in the closed left-
half plane, but those eigenvalues on the imaginary axis are semi-simple
(Jordan blocks of size at most 1). It is well known that this implies that there
exists a positive definite matrix P such that

A0P C PA 6 0: (4.224)

In order to develop our new generalized design methodology, let us first choose,

Q" D �".A0P C PA/C "2PBB 0P; (4.225)

where P is a positive definite solution of (4.224). We note that the above chosen
Q" satisfies the properties: (1) Q" is positive semi-definite, (2) .Q"; A/ is de-
tectable, and (3) Q" ! 0 as " ! 0. With Q" as chosen above, it is easy to verify
that the positive definite solution P" of CARE (4.220) is given by

P" D "P: (4.226)
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With such a solution ofP", we can rewrite the low-and-high-gain feedback control
law (4.222) as

u D �.1C ˛/"B 0Px: (4.227)

The above control law can in turn be written as

u D ��B 0Px; (4.228)

in which the low-gain parameter " and high-gain parameter ˛ are merged into
a new parameter � D .1 C ˛/". Note that this merging has occurred crucially
because of the fact that the selection of positive semi-definite Q" as in (4.225)
resulted in the solution P" of CARE (4.220) as "P ; consequently, " can be easily
merged with .1C ˛/ in order to create a new parameter �.

We emphasize that the feedback control law given in (4.228) is obtained indeed
from a generalization of ARE-based low-and-high-gain feedback design method-
ology in which the matrix Q" is allowed to be positive semi-definite. However,
low-gain parameter " and high-gain parameter ˛ collapsed into a single parame-
ter � which can take any positive value. As such, we refer to the feedback control
law given in (4.228) as a generalized low-and-high-gain linear state feedback law,
and simply treat � as a design parameter. Note that such a merging obviously
obliterates the upper bound on low-gain parameter that dictates the domain of at-
traction of the closed-loop system. As such, this generalized linear state feedback
law (4.228) leads to global stabilization in the case of neutrally stable systems.
This is formalized below in Theorem 4.47. In fact, the following two theorems
show that, for neutral systems of the form (4.223) which are subject to actuator
saturation, the linear state feedback controller (4.228) is globally stabilizing for
any � > 0 while, when combined with a suitable observer, it results in a globally
stabilizing linear measurement feedback controller:

Theorem 4.47 Consider the system (4.223) with .A;B/ stabilizable, while A has
all its eigenvalues in the closed left-half plane, and those eigenvalues on the imag-
inary axis are semi-simple (Jordan blocks of size at most 1). In that case, the state
feedback controller (4.228), where P satisfies (4.224) and � > 0, achieves global
asymptotic stability.

Proof : We consider the candidate Lyapunov function,

V.x/ D x0Px;

and we find that

d

dt
V .x.t// D x0.A0P C PA/x � 2�x0PB�.B 0Px/ 6 0
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for all x. In order to prove global asymptotic stability, we apply LaSalle’s invari-
ance principle. Consider the closed-loop system

Tx D Ax C B�.��B 0Px/: (4.229)

If this system satisfies

d

dt
V .x.t// D 0

for all t , then we find that B 0Px D 0 and .A0P C PA/x D 0. Therefore, x.t/ is
a solution of the differential equation

Tx D Ax:

In view of the above equation and noting that PAx D �A0Px and F 0B 0Px D 0

for any matrix F , we have

P Tx D PAx D �.A0Px C F 0B 0Px/ D �.A0 C F 0B 0/Px: (4.230)

Let F be any matrix such that A C BF is asymptotically stable. Since �.A0 C
F 0B 0/ has all its eigenvalues in the open right-half plane, (4.230) implies that
Px is exponentially growing which yields a contradiction since x0Px is bounded
and P > 0. Hence, LaSalle’s invariance principle yields that the closed-loop
system (4.229) is globally asymptotically stable.

Theorem 4.48 Consider the system

Tx D Ax C B�.u/

y D Cx;

where .A;B/ is stabilizable, .C;A/ is detectable, while A has all its eigenvalues
in the closed left-half plane, and those eigenvalues on the imaginary axis are
semi-simple (Jordan blocks of size at most 1). Consider the dynamic measurement
feedback controller

(
Tyx D Ayx C B�.u/CK.y � C yx/
u D ��B 0P yx;

(4.231)

where A�KC is asymptotically stable, P satisfies (4.224), and � > 0. Then, the
controller (4.231) achieves global asymptotic stability.

Proof : The closed-loop system can be written as

Tyx D Ayx � B�.�B 0P yx/CKCe

Te D .A �KC/e;
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where e D x�yx. The feedback is clearly locally asymptotically stable, and hence,
there exist ı1; ı2 > 0 such that if at time t0 we have

yx.t0/0P yx.t0/ 6 ı2
1; ke.t0/k 6 ı2; (4.232)

then yx.t/ ! 0 and e.t/ ! 0 as t ! 1. In order to prove global asymptotic
stability, we only need to establish that for any initial condition, there exists a
t0 > 0 for which (4.232) is satisfied.

Consider arbitrary initial conditions. Choose T such that

1Z

T

ke.t/k dt <
ı1

2 z̨ ; ke.t/k 6 ı2 for t > T;

where z̨ D 2kP 1=2KCk. Consider x1 and x2 with x1.T / D x2.T / D yx.T /
while

Tx1 D Ax1 � B�.�B 0Px1/CKCe

Tx2 D Ax2 � B�.�B 0Px2/;

where e is the error signal defined before. Clearly, this implies that x1 D yx. We
find that V D .x1 � x2/

0P.x1 � x2/ satisfies

TV D .x1 � x2/
0.A0P C PA/.x1 � x2/

� 2.x1 � x2/PB
�
�.�B 0Px1/ � �.�B 0Px2/

�
C 2.x1 � x2/

0PKCe
6 2.x1 � x2/

0PKCe
6 z̨V 1=2kek:

This yields

d

dt
V .t/1=2 6 z̨ke.t/k:

Recalling that x1 D yx, we find that

yx.t/0P yx.t/ 6 2.yx.t/ � x2.t//
0.yx.t/ � x2.t//C 2x2.t/

0Px2.t/

6 ı2
1

2
C 2x2.t/

0Px2.t/

for all t > T . Since x2.t/ ! 0 as t ! 1, we find that there exists a t0 > T

such that (4.232) is satisfied, and hence, we are inside the domain of attraction,
and therefore, yx.t/ ! 0 and e.t/ ! 0 as t ! 1. Since this holds for all initial
conditions, we obtain global asymptotic stability.
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We proceed now to address neutral systems for discrete time. Our development
parallels the one for continuous-time systems. Consider the linear system subject
to actuator saturation:

x.k C 1/ D Ax.k/C B�.u.k//: (4.233)

As said earlier, neutral systems are linear systems which are already stable but not
yet asymptotically stable. That is, for discrete-time systems, the system matrix A
has all its eigenvalues in the closed unit disc, but those eigenvalues on the unit
circle are semi-simple (Jordan blocks of size at most 1). It is well known that this
implies that there exists a positive definite matrix P such that

A0PA 6 P: (4.234)

We will then consider the following state feedback controller:

u D ��B 0PAx; (4.235)

where

� 2
�
0;

2

kB 0PBk

�
: (4.236)

The above design methodology, as in the case of continuous-time systems, can
be related to low-and-high-gain design methodology based on AREs as devel-
oped in the previous sections by an appropriate choice of Q and R matrices in
DARE (4.206) (we note that, in DARE (4.206), we had chosen R as identity
matrix, but it can be chosen differently as long as the matrix remains positive
definite). For example, for simplicity of presentation and without loss of gener-
ality, let us assume that all the eigenvalues of A in (4.233) are simple and are on
the unit circle, that is, A0A D I . It is shown in [5, 26] that the linear feedback
controller

u D ��B 0Ax
achieves global stabilization if

�B 0B 6 2I: (4.237)

Choose

R" D .2C "kB 0Bk/I � "B 0B; Q" D "2

2C"kB0BkA
0BB 0A:

Then the DARE,

P" D A0P"ACQ" � A0P"B.B
0P"B CR"/

�1B 0P"A;

has a unique positive definite solutionP" D "I . Following the design in Sect. 4.5.4,
we can construct a low-and-high-gain feedback for discrete-time neutrally stable
system as

u D �.1C ˛/.B 0P"B CR"/
�1B 0P"Ax D �.1C ˛/ "

2C"kB0BkB
0Ax;
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where

˛ 2
h
0; 2

"kB0Bk
i
:

Define

� D .1C ˛/ "
2C"kB0Bk ;

and hence,

u D ��B 0Ax:

As in continuous-time case, the low-gain and high-gain parameters merge into
one parameter � which satisfies

� D .1C ˛/ "
2C"kB0Bk 6 2

kB0Bk : (4.238)

This is exactly the condition (4.237).
The following two theorems show that the linear state feedback controller given

in (4.235) is globally stabilizing for neutral systems subject to actuator saturation,
while, when combined with a suitable observer, it results in a globally stabilizing
linear measurement feedback controller:

Theorem 4.49 Consider the system (4.233) with .A;B/ stabilizable, while A has
all its eigenvalues in the closed unit disc, and those eigenvalues on the unit circle
are semi-simple (Jordan blocks of size at most 1). In that case, the state feed-
back controller (4.235) where P satisfies (4.234) and � satisfies (4.236) achieves
global asymptotic stability.

Proof : We consider the candidate Lyapunov function,

V.x/ D x0Px;

and we find that

V.x.k C 1//� V.x.k// D x0.A0PA � P/x � 2x0A0PB�.�B 0PAx/
C �.�B 0PAx/0B 0PB�.�B 0PAx/

6 x0.A0PA� P/x

� �.�B 0PAx/0
�
2

�
� B 0PB

�
�.�B 0PAx/

6 0

where, in the above, x is an abbreviation for x.k/. In order to prove global asymp-
totic stability, as in the case of continuous-time systems, we apply LaSalle’s in-
variance principle. Consider the closed-loop system,

x.k C 1/ D Ax.k/C B�.��B 0PAx.k//: (4.239)
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If this system satisfies

V.x.k C 1//� V.x.k// D 0

for all k, then we find that B 0PAx D 0 and A0PAx D Px. Therefore, x.k/ is a
solution of the difference equation

x.k C 1/ D Ax.k/:

In view of the above equation and noting that A0PAx D Px and F 0B 0PAx D 0

for any matrix F , we have

.AC BF /0PAx.k C 1/ D A0PAx.k C 1/ D Px.k C 1/ D PAx.k/: (4.240)

Let F be any matrix such that A C BF is asymptotically stable. Since A C BF

has all its eigenvalues inside the unit circle, (4.240) implies that PAx is exponen-
tially growing which yields a contradiction since x0Px is bounded and P > 0.
Hence, LaSalle’s invariance principle yields that the closed-loop system (4.239)
is globally asymptotically stable.

Theorem 4.50 Consider the system

x.k C 1/ D Ax.k/C B�.u.k//;

y.k/ D Cx.k/;

where .A;B/ is stabilizable, .C;A/ is detectable, while A has all its eigenvalues
in the closed unit disc, and those eigenvalues on the unit circle are semi-simple
(Jordan blocks of size at most 1). Consider the dynamic measurement feedback
controller

(
yx.k C 1/ D Ayx.k/C B�.u.k//CK.y.k/ � C yx.k//
u.k/ D ��B 0PAyx.k/;

(4.241)

whereA�KC is asymptotically stable,P satisfies (4.234), and � > 0 satisfies the
bound (4.236). Then, the controller (4.241) achieves global asymptotic stability.

Proof : The closed-loop system can be written as

yx.k C 1/ D Ayx.k/ � B�.�B 0PAyx.k//CKCe.k/

e.k C 1/ D .A �KC/e.k/;
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where e D x�yx. The feedback is clearly locally asymptotically stable, and hence,
there exist ı1 > 0 and ı2 2 .0; 1/ such that if at time k0 we have

yx.k0/
0P yx.k0/ 6 ı2

1; ke.k0/k 6 ı2; (4.242)

then yx.k/ ! 0 and e.k/ ! 0 as k ! 1. In order to prove global asymptotic
stability, we only need to establish that for any initial condition, there exists a
k0 > 0 for which (4.242) is satisfied.

Consider arbitrary initial conditions. For any k1 > 0, consider x1 and x2 with
x1.k1/ D x2.k1/ D yx.k1/ while

x1.k C 1/ D Ax1.k/ � B�.�B 0PAx1.k//CKCe.k/

x2.k C 1/ D Ax2.k/ � B�.�B 0PAx2.k//:

Clearly, we have x1 D yx. We find that V D .x1 � x2/
0P.x1 � x2/ satisfies

V.k C 1/� V.k/ 6 .x1 � x2/
0.A0PA � P/.x1 � x2/

C 2.x1 � x2/
0A0PKCe C e0C 0K 0PKCe

� 2e0C 0K 0PB
�
�.�B 0PAx1/ � �.�B 0PAx2/

�

6 2 z̨kekV.k/1=2 C z̨2kek2

for some suitably chosen z̨. Here, we use that

ke0C 0K 0PB
�
�.�B 0PAx1/ � �.�B 0PAx2/

�
k

6 kekkC 0K 0P 1=2kkP 1=2Bkk�B 0PA.x1 � x2/k
6 �kekkC 0K 0P 1=2kkB 0PBkkP 1=2A.x1 � x2/k

6 �kekkC 0K 0P 1=2kkB 0PBk
�
.x1 � x2/

0A0PA.x1 � x2/
�1=2

6 �kekkC 0K 0P 1=2kkB 0PBkV.k/1=2

6 2kekkC 0K 0P 1=2kV.k/1=2:

This yields

V.k C 1/ 6
�
V.k/1=2 C z̨kek

�2

;

and hence,

V.k C 1/1=2 � V.k/1=2 6 z̨ke.k/k:
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The above derivation was independent of k1 and, in particular, we could choose
z̨ independent of k1. However, we now choose k1 such that

1X

kDk1

ke.k/k < ı1

2 z̨ ; ke.k/k 6 ı2 for k > k1:

and, as before, x1.k1/ D x2.k1/ D yx.k1/. Recalling that x1 D yx, we find that

yx.k/0P yx.k/ 6 2.yx.k/ � x2.k//
0.yx.k/ � x2.k//C 2x2.k/

0Px2.k/

6 ı2
1

2
C 2x2.k/

0Px2.k/

for all k > k1. Since x2.k/ ! 0 as k ! 1, we find that there exists a k0 > K

such that (4.242) is satisfied, and hence, we are inside the domain of attraction,
and therefore, yx.k/ ! 0 and e.k/ ! 0 as k ! 1. Since this holds for all initial
conditions, we obtain global asymptotic stability.

4.6.2 Nonlinear feedback controllers based on adaptive-low-gain
design methodology

In the previous subsection, we used linear feedback controllers to achieve global
asymptotic stability for neutral systems. However, this is not always possible for
general linear systems subject to actuator saturation. In this subsection, we con-
sider nonlinear feedback controllers obtained by modifying the low-gain feedback
design methodology we studied in earlier sections. This is done by a suitable adap-
tation (scheduling) of the low-gain parameter. In what follows, by a scheduled pa-
rameter or hereafter called an adaptive-low-gain parameter, we mean a function
"a.x/, from Rn ! .0; 1	. As discussed above, in order to elevate the low-gain
design from a semi-global framework to a global framework, for continuous-time
systems, one should look for an adaptive-low-gain parameter "a.x/ to have the
following properties:

(i) "a.x/ 2 C 1:

(ii) "a.x/ D 1 for all x in an open neighborhood of the origin.

(iii) For any x 2 Rn, we have

kB 0P"a.x/xk1 6 �:

(iv) "a.x/ ! 0 as kxk1 ! 1.

(v) f x 2 Rn j x0P"a.x/x 6 c g is a bounded set for all c > 0.
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(vi) For any x1; x2 2 Rn,

x0
1P"a.x1/x1 6 x0

2P"a.x2/x2

implies "a.x1/ > "a.x2/.

In item (iii), P" is the positive definite solution of the CARE given in (4.42). Here,
as usual, � is the saturation level.

A particular choice2 for the adaptive-low-gain parameter "a.x/ having all the
above properties was introduced by Megretski [98] for continuous-time systems
and it is given by

"a.x/ D maxf r 2 .0; 1	 W .x0Prx/ traceB 0PrB 6 �2 g: (4.243)

Note that this is a nontrivial choice since Property (iii) requires that ".x/ con-
verges to 0 fast enough yet Properties (v) and (vi) restrict the speed with which "
can converge to 0. An option is to replace traceB 0PrB by kB 0PrBk which has
been used in the literature. However, using this latter choice, we run into difficul-
ties deriving a key technical bound given in Lemma 12.54.

For discrete-time systems, one should look for an adaptive-low-gain parameter
"a.x/ to have the following properties:

(i) "a.x/ 2 C 1:

(ii) "a.x/ D 1 for all x in an open neighborhood of the origin.

(iii) For any x 2 Rn, we have

k.I C B 0P"a.x/B/
�1B 0P"a.x/Axk1 6 �:

(iv) "a.x/ ! 0 as kxk1 ! 1.

(v) f x 2 Rn j x0P"a.x/x 6 c g is a bounded set for all c > 0.

(vi) For any x1; x2 2 Rn,

x0
1P"a.x1/x1 6 x0

2P"a.x2/x2

implies "a.x1/ > "a.x2/.

In item (iii), P" is the positive definite solution of DARE given in (4.66). For
discrete-time systems, one can also give an example of adapting the low-gain
parameter "a.x/ satisfying the above properties. This is given by

"a.x/ D maxf r 2 .0; 1	 W x0Prx traceB 0PrB 6 1
2
�2 g: (4.244)

2In several papers, the same scheduling is used with the trace of B0Pr B instead of the norm.
This alternative has the same properties as the scheduling presented in (4.243).
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In order to establish Property (iii) for this adaptation, we need to use Property (iii)
of Lemma 4.24. This can be seen from the following analysis:

k.I C B 0P"a
B/�1B 0P"a

Axk21 6 k.I C B 0P"a
B/�1B 0P"a

Axk2

6 kB 0P"a
Axk2

6 kB 0P 1=2
"a

k2kP 1=2
"a

AP�1=2
"a

k2kP 1=2
"a

xk2

6 2kB 0P"a
Bkx0P"a

x 6 �2:

There are other possibilities for the scheduling. An option is to replace the term
traceB 0PrB by kB 0PrBk in (4.244) which has been used in the literature.
However, using this latter choice, we run into difficulties deriving a key technical
bound (12.61) in Chap. 12.

State feedback:

Having introduced the adaptive-low-gain parameter "a.x/, we can now formulate
new state feedback control laws by an appropriate modification of the low-gain
state feedback control law (4.44). Thus for continuous-time systems, we have an
adaptive-low-gain feedback control law given by

u WD �B 0P"a.x/x; (4.245)

where P"a.x/ is the positive definite solution of the CARE (4.42) when " is re-
placed by "a.x/ as defined in (4.243).

Similarly, for discrete-time systems, we can introduce what can be termed as
an adaptive-low-gain feedback control law as

u WD �.B 0P"a.x/B C I /�1B 0P"a.x/Ax; (4.246)

where P" is the positive definite solution of the DARE (4.66) when " is replaced
by "a.x/ as defined in (4.244).

We emphasize that both the above adaptive-low-gain feedback control laws are
nonlinear state feedback control laws. Utilization of these control laws lead to the
following results.

Theorem 4.51 Consider the continuous-time linear system subject to input
saturation

Tx D Ax C B�.u/;

where the pair .A;B/ is stabilizable and the eigenvalues of A are in the closed
left-half plane. Let "a.x/ be as defined in (4.243). Then, the zero equilibrium point
of the closed-loop system with the nonlinear control law

u.x/ D �B 0P"a.x/x (4.247)

is globally asymptotically stable and locally exponentially stable.
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Proof : We first note that if "a.x.t// is increasing, then we have

x0.s/P"a.x.s//x.s/ traceB 0P"a.x.s//B D �2 (4.248)

for all s in a sufficiently small open neighborhood of t and, since "a.x.t// in-
creasing implies that P"a.x.t// is increasing, we get from (4.248) that

x0.t/P"a.x.t//x.t/ (4.249)

is decreasing in t . If we reverse this implication, we find that if (4.249) is nonde-
creasing, i.e., constant or increasing, then "a.x.t// is nonincreasing. If we apply
the feedback control (4.247), then we get

d

dt
x0.t/P"a.x.t//x.t/ D �x0.t/Q"a.x.t//x.t/

� x0.t/P"a.x.t//BB
0P"a.x.t//x.t/C x0.t/

�
d

dt
P"a.x.t//

�
x.t/:

As argued above, if (4.249) is nondecreasing, then "a.x.t// is nonincreasing, and
hence, also P"a.x.t// is nonincreasing. This implies that

d

dt
x0.t/P"a.x.t//x.t/ 6 �x0.t/Q"a.x.t//x.t/ < 0;

which yields a contradiction. We conclude that (4.249) is decreasing. This imme-
diately implies asymptotic stability. Let us observe the fact that, in a neighborhood
of the origin, "a.x/ D 1 and the system is locally linear and exponentially stable.
This yields local exponential stability.

Theorem 4.52 Consider the discrete-time linear system subject to input
saturation

x.k C 1/ D Ax.k/C B�.u.k//;

where the pair .A;B/ is stabilizable and the eigenvalues of A are in the closed
unit disc. Let "a.x/ be as defined in (4.244). Then, the zero equilibrium point of
the closed-loop system with the nonlinear control law

u.x/ D FL;"a.x/x D �
�
B 0P"a.x/B C I


�1
B 0P"a.x/Ax; (4.250)

is globally asymptotically stable and locally exponentially stable.
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Proof : We first note that if "a.x.k// is increasing, then P"a.x.k// is increasing.
We then find that

2x0.k/P"a.x.k//x.k/ traceB 0P"a.x.k//B D �2

> 2x0.k C 1/P"a.x.kC1//x.k C 1/ traceB 0P"a.x.kC1//B

> 2x0.k C 1/P"a.x.kC1//x.k C 1/ traceB 0P"a.x.k//B;

which yields

x0.k/P"a.x.k//x.k/ > x0.k C 1/P"a.x.kC1//x.k C 1/:

If we reverse this implication, we find that if x0.k/P"a.x.k//x.k/ is nondecreasing
then "a.x.k// is nonincreasing. If we apply the feedback control (4.250), then
we get

x0.k C 1/P"a.x.kC1//x.k C 1/� x0.k/P"a.x.k//x.k/ 6 �x0.k/Q"a.x.k//x.k/

C x0.k/
�
P"a.x.kC1// � P"a.x.k//

�
x.k/:

As argued above if x0.k/P"a.x.k//x.k/ is nondecreasing, then "a.x.k// is nonin-
creasing, and hence, also P"a.x.k// is nonincreasing. This implies that

x0.kC1/P"a.x.kC1//x.kC1/�x0.k/P"a.x.k//x.k/ 6 �x0.k/Q"a.x.k//x.k/ < 0;

which yields a contradiction. We conclude that x0.k/P"a.x.k//x.k/ is decreasing.
This immediately implies asymptotic stability. Let us observe the fact that, in
a neighborhood of the origin, "a.x/ D 1 and the system is locally linear and
exponentially stable. This yields local exponential stability.

Measurement feedback:

Theorems 4.51 and 4.52 pertain to state feedback control. However, in many
cases, we are restricted to measurement feedback. In this case, we clearly need
to introduce an observer. However, it turns out that it is better to modify the
low-gain state feedback in such a way that the observer error does not cause any
problems. We will use hereH1 ARE-based scheduled or adaptive-low-gain feed-
back controls (adaptive versions of those introduced in Sects. 4.4.3 and 4.4.4 for
continuous-time and discrete-time systems, respectively) instead of theH2 ARE-
based adaptive-low-gain feedback control laws used in Theorems 4.51 and 4.52.
In the H1 control problem, we deal with worst-case disturbances, while in the
H2 control problem, we only deal with white-noise disturbances. The measure-
ment error can be handled easily in theH1 control context since it does not have
white-noise characteristics.
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We will use the same way of scheduling or adapting the low-gain parameter
"a.x/ as before. Thus, for continuous-time systems, we have an adaptive-low-
gain observer-based measurement feedback control law as

u D FL;"a.yx/ yx D �B 0P�;"a.yx/ yx; (4.251)

where to start with P�;" is the positive definite solution of CARE (4.90) with
E D I , such that (4.91) is asymptotically stable. Here � is chosen such that
(4.90) has a unique positive definite solution for which (4.91) is asymptotically
stable for all " 2 .0; 1	. The existence of such a � is discussed in Lemma 4.28.
Next, in order to obtainP�;"a.yx/, at first " is replaced by "a.x/ of (4.243) wherePr

is replaced byP�;r , and then "a.x/ is replaced by "a.yx/. We connect this low-gain
feedback with an observer,

Tyx D Ayx C B�.u/CK.y � C yx/; (4.252)

where K is such that A �KC is asymptotically stable.
Similarly, for discrete-time systems, we can introduce an adaptive-low-gain

observer-based measurement feedback control law as

u D FL;"a.yx/ yx D �.B 0P�;"a.yx/B C I /�1B 0P�;"a.yx/Ayx; (4.253)

where to start with P�;" is the positive definite solution of DARE (4.116) with
E D I such that (4.117) is asymptotically stable. Here, � is chosen such that
(4.116) has a unique positive definite solution for which (4.117) is asymptotically
stable for all " 2 .0; 1	. The existence of such a � is discussed in Lemma 4.32.
Next, in order to obtain P�;"a.yx/, at first, " is replaced by "a.x/ of (4.244) where
Pr is replaced by P�;r and then "a.x/ is replaced by "a.yx/. We connect this low-
gain feedback with an observer

yx.k C 1/ D Ayx.k/C B�.u.k//CK.y.k/ � C yx.k//; (4.254)

where K is such that A �KC is asymptotically stable.

Theorem 4.53 Consider the continuous-time linear system subject to input
saturation,

Tx D Ax C B�.u/

y D Cx;

where the pair .A;B/ is stabilizable, .C;A/ is detectable, and the eigenvalues of
A are in the closed left-half plane. Let � be chosen such that (4.90) with E D I

has a unique positive definite solution such that (4.91) is asymptotically stable for
all " 2 .0; 1	, and define "a.x/ by

"a.x/ D max
˚
" 2 .0; 1	 W x0P�;"x

��B 0P�;"B
�� 6 �2

	
: (4.255)
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Then, the zero equilibrium point of the closed-loop system with the nonlinear
control law given by (4.251) and (4.252) is globally asymptotically stable and
locally exponentially stable.

Proof : The closed-loop system is given by

Te D .A�KC/e

Tyx D Ayx � B�.B 0P�;"a.yx/ yx/CKCe;

where e D x � yx. We consider the candidate Lyapunov function,

V.x; yx/ D yx0P�;"a.yx/ yx C ˇe0PKe;

where PK is such that

.A �KC/0PK C PK.A�KC/C I D 0:

As in the state feedback case, we distinguish two cases. If "a.yx/ is increasing,
then yx0P�;"a.yx/ yx is decreasing. Moreover, it is trivially verified that e0PKe is de-
creasing as well. This implies that V.x; yx/ is decreasing.

On the other hand, if "a.yx/ is nonincreasing, then P�;"a.yx/ is nonincreasing and
hence,

d

dt
V .x; yx/ 6 �yx0Q"a.yx/ yx � yx0P�;"a.yx/BB

0P�;"a.yx/ yx

� 1

�2
yx0P 2

�;"a.yx/ yx C 2yx0P�;"a.yx/KCe � ˇe0e: (4.256)

We have

2yx0P�;"a.yx/KCe 6 1

�2
yx0P 2

�;"a.yx/
yx C �2e0C 0K 0KCe

6 1

�2
yx0P 2

�;"a.yx/ yx C ˇ

2
e0e;

provided that we choose ˇ > 2�2kKCk2. Using this in (4.256), we get

d

dt
V .x; yx/ 6 �yx0Q"a.yx/ yx � ˇ

2
e0e;

which is clearly negative. We find that the function V is always decreasing and
hence is a Lyapunov function for the system proving global asymptotic stability.
We observe that in an open neighborhood of the origin, we have "a.yx/ D 1, and
hence, the feedback is locally linear. Then, local exponential stability immediately
follows.
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Theorem 4.54 Consider the discrete-time linear system subject to input
saturation

x.k C 1/ D Ax.k/CB�.u.k//

y.k/ D Cx.k/;

where the pair .A;B/ is stabilizable, .C;A/ is detectable, and the eigenvalues
of A are in the closed unit disc. Let � be chosen such that (4.116) has a unique
positive definite solution for E D I for which (4.117) is asymptotically stable for
all " 2 .0; 1	, and define "a.x/ by

"a.x/ D max
˚
" 2 .0; 1	 W 2x0P�;"x

��B 0P�;"B
�� 6 �2

	
: (4.257)

Then, the zero equilibrium point of the closed-loop system with the nonlinear
control law given by (4.253) and (4.254) is globally asymptotically stable and
locally exponentially stable.

Proof : The closed-loop system is given by

e.k C 1/ D .A �KC/e.k/
yx.k C 1/ D Ayx.k/C B�

�
FL;"a.yx.k// yx.k/



CKCe.k/;

where e D x � yx. We consider the candidate Lyapunov function,

V.x; yx/ D yx0P�;"a.yx/ yx C ˇe0PKe;

where PK is such that

PK D .A �KC/0PK.A�KC/C I:

As in the state feedback case, we distinguish two cases. If "a.yx/ is increasing,
then yx0P�;"a.yx/ yx is decreasing. Moreover, it is trivially verified that e0PKe is de-
creasing as well. This implies that V.x; yx/ is decreasing.

On the other hand, if "a.yx/ is nonincreasing, then P�;"a.yx/ is nonincreasing,
and hence,

VkC1 � Vk 6 �yx0Q"a.yx/ yx � kF�;"a.yx/ yxk2 C 2yx0A0
FP�;"a.yx/KCe

� yx0A0
FP�;"a.yx/R

�1
�;"a.yx/P�;"a.yx/AF yx � ˇe0e; (4.258)

where we abbreviate yx.k/ and e.k/ by yx and e, respectively, while

Vk D V.x.k/; yx.k//
AF D A� B.B 0P�;"a.yx/B C I /�1B 0P�;"a.yx/A

R�;" D �2I � P�;" C P�;"B.B
0P�;"B C I /�1B 0P�;" > 0:



4.6 Global stabilization 223

Since R�;" is bounded away from 0, we can find � independent of " 2 Œ0; 1	 such
that

R�;" 6 �I

for all " 2 Œ0; 1	. We have

2yx0AFP�;"a.yx/KCe 6 1

�
yx0A0

FP
2
�;"a.yx/AF yx C �e0C 0K 0KCe

6 yx0A0
FP�;"a.yx/R

�1
�;"a.yx/P�;"a.yx/AF yx C ˇ

2
e0e;

provided that we choose ˇ > 2�kKCk2. Using this in (4.258), we get

d

dt
V .x; yx/ 6 �yx0Q"a.yx/ yx � ˇ

2
e0e;

which is clearly negative. We find that the function V is always decreasing and
hence is a Lyapunov function for the system proving global asymptotic stability.
We observe that in an open neighborhood of the origin, we have "a.yx/ D 1, and
hence, the feedback is locally linear. Then, local exponential stability immediately
follows.

4.6.3 Adaptive-low-gain and high-gain design methodology

As we discussed in earlier sections, use of high-gain enhances the utilization of
available control capacity, and in so doing renders the transient response to die
faster. In this regard, we utilize below the adaptive-low-gain feedback as con-
structed in the previous section, however, with an additional high-gain part. This
leads to control laws referred to as “adaptive-low-gain and high-gain” control
laws. As in the previous sections, the high-gain part does not interfere with global
stabilization, its purpose as demonstrated in subsequent chapters is to achieve fast
transient response and for disturbance quenching.

State feedback:

For continuous-time systems, the adaptive-low-gain feedback control law intro-
duced in (4.245) can be modified by adding a high-gain component. The resulting
adaptive-low-gain and high-gain control law is given by

u WD �.1C ˛/B 0P"a.x/x; (4.259)

where, as in (4.245), P"a.x/ is the positive definite solution of the CARE (4.42)
when " is replaced by "a.x/ of (4.243), while ˛ is a high-gain parameter.
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Similarly, for discrete-time systems, the adaptive-low-gain feedback control law
introduced in (4.246) can be modified by adding a high-gain component. The re-
sulting adaptive-low-gain and high-gain control law is given by

u WD �.1C ˛/.B 0P"a.x/B C I /�1B 0P"a.x/Ax; (4.260)

where, as in (4.246), P" is the positive definite solution of the DARE (4.66) when
" is replaced by "a.x/ of (4.244), while ˛ is a high-gain parameter satisfying

˛ 2
�
0;

2

kB 0P1Bk

�
: (4.261)

We emphasize once again that both the above control laws are nonlinear state
feedback control laws. The following results show that the addition of a high-gain
component does not interfere with global stabilization as long as the high-gain
parameter ˛ > 0 for discrete-time systems satisfies the bound in (4.261).

Theorem 4.55 Consider the continuous-time linear system subject to actuator
saturation

Tx D Ax C B�.u/;

where the pair .A;B/ is stabilizable and the eigenvalues of A are in the closed
left-half plane. The zero equilibrium point of the closed-loop system with the non-
linear control law (4.259) is globally asymptotically stable and locally exponen-
tially stable.

Proof : As in the proof of Theorem 4.51, we note that if "a.x.t// is increasing,
then

x0.t/P"a.x.t//x.t/ (4.262)

is decreasing in t . If we reverse this implication, we find that if (4.262) is nonde-
creasing, i.e., constant or increasing, then "a.x.t// is nonincreasing. If we apply
the feedback (4.259), then we get

d

dt
x0.t/P"a.x.t//x.t/ D �x0.t/Q"a.x.t//x.t/C x0.t/

�
d

dt
P"a.x.t//

�
x.t/

using similar arguments as in the proof of Theorem 4.41. As argued above, if
(4.262) is nondecreasing, then "a.x.t// is nonincreasing, and hence, alsoP"a.x.t//

is nonincreasing. This implies that

d

dt
x0.t/P"a.x.t//x.t/ 6 �x0.t/Q"a.x.t//x.t/ < 0;



4.6 Global stabilization 225

which yields a contradiction. We conclude that (4.262) is decreasing. This imme-
diately implies asymptotic stability. Let us observe the fact that, in a neighborhood
of the origin, "a.x/ D 1 and the closed-loop system is locally linear and expo-
nentially stable. This yields local exponential stability.

Theorem 4.56 Consider the discrete-time linear system subject to actuator satu-
ration

x.k C 1/ D Ax.k/C B�.u.k//;

where the pair .A;B/ is stabilizable and the eigenvalues of A are in the closed
unit disc. Let "a.x/ be as defined in (4.244). Then, the zero equilibrium point of
the closed-loop system with the nonlinear control law (4.260) is globally asymp-
totically stable and locally exponentially stable.

Proof : As in the proof of Theorem 4.52, we note that if "a.x.k// is increasing,
then

x0.k/P"a.x.k//x.k/ > x0.k C 1/P"a.x.kC1//x.k C 1/:

If we reverse this implication, we find that if x0.k/P"a.x.k//x.k/ is nondecreasing
then "a.x.k// is nonincreasing. If we apply the feedback (4.244), then we get

x0.k C 1/P"a.x.kC1//x.k C 1/� x0.k/P"a.x.k//x.k/

6 �x0.k/Q"a.x.k//x.k/C x0.k/
�
P"a.x.kC1// � P"a.x.k//

�
x.k/:

As argued above, if x0.k/P"a.x.k//x.k/ is nondecreasing, then "a.x.k// is nonin-
creasing, and hence, also P"a.x.k// is nonincreasing. This implies that

x0.kC1/P"a.x.kC1//x.kC1/�x0.k/P"a.x.k//x.k/ 6 �x0.k/Q"a.x.k//x.k/ < 0

which yields a contradiction. We conclude that x0.k/P"a.x.k//x.k/ is decreasing.
This immediately implies asymptotic stability. Let us observe the fact that, in a
neighborhood of the origin, "a.x/ D 1 and the closed-loop system is locally linear
and exponentially stable. This yields local exponential stability.

Measurement feedback:

Theorems 4.55 and 4.56 pertain to state feedback control. However, in many
cases, we are restricted to measurement feedback. In this case, we clearly need to
introduce an observer. However, it turns out that it is better to modify the low-gain
state feedback in such a way that the observer error does not cause any problems.
We will use hereH1 ARE-based adaptive-low-gain feedback control laws (as in
the previous subsection).
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We will use the same way of adapting the low-gain parameter "a.x/ as before.
However, this time we add a high-gain parameter. Thus, for continuous-time sys-
tems, we have an adaptive-low-gain and high-gain observer-based measurement
feedback control law as

u D .1C ˛/FL;"a.yx/ yx D �.1C ˛/B 0P�;"a.yx/ yx; (4.263)

where to start with P�;" is the positive definite solution of the CARE (4.90) with
E D I such that (4.91) is asymptotically stable. Here, � is chosen such that (4.90)
has a unique positive definite solution for which (4.91) is asymptotically stable for
all " 2 .0; 1	. The existence of such a � is discussed in Lemma 4.28. Next, in order
to obtain P�;"a.yx/, at first, " is replaced by "a.x/ of (4.243) where Pr is replaced
by P�;r and then "a.x/ is replaced by "a.yx/. We connect this low-and-high-gain
feedback with an observer:

Tyx D Ayx C B�.u/CK.y � C yx/; (4.264)

where K is such that A �KC is asymptotically stable.
Similarly, for discrete-time systems, we can introduce an adaptive-low-gain and

high-gain feedback control law as

u D .1C ˛/FL;"a.yx/ yx D �.1C˛/.B 0P�;"a.yx/B C I /�1B 0P�;"a.yx/Ayx; (4.265)

where to start with P�;" is the positive definite solution of the DARE (4.116) with
E D I such that (4.117) is asymptotically stable. Here, � is chosen such that
(4.116) has a unique positive definite solution for which (4.117) is asymptotically
stable for all " 2 .0; 1	. The existence of such a � is discussed in Lemma 4.32.
Next, in order to obtain P�;"a.yx/, at first, " is replaced by "a.x/ of (4.244) where
Pr is replaced by P�;r , and then "a.x/ is replaced by "a.yx/. Finally,

˛ 2
�
0;

2

kB 0P�;1Bk

�
:

We connect this low-and-high-gain feedback with an observer,

yx.k C 1/ D Ayx.k/C B�.u.k//CK.y.k/ � C yx.k//; (4.266)

where K is such that A �KC is asymptotically stable.

Theorem 4.57 Consider the continuous-time linear system subject to input satu-
ration

Tx D Ax C B�.u/

y D Cx;
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where the pair .A;B/ is stabilizable, .C;A/ is detectable, and the eigenvalues of
A are in the closed left-half plane. Let � be chosen such that (4.90) with E D I

has a unique positive definite solution such that (4.91) is asymptotically stable for
all " 2 .0; 1	 and define "a.x/ by

"a.x/ D max
˚
" 2 .0; 1	 W x0P�;"x

��B 0P�;"B
�� 6 �2

	
: (4.267)

Then, the zero equilibrium point of the closed-loop system with the nonlinear
control law given by (4.263) and (4.264) is globally asymptotically stable and
locally exponentially stable.

Proof : The closed-loop system is given by

Te D .A �KC/e
Tyx D Ayx � B�..1C ˛/B 0P�;"a.yx/ yx/CKCe;

where e D x � yx. We consider the candidate Lyapunov function,

V.x; yx/ D yx0P�;"a.yx/ yx C ˇe0PKe;

where PK is such that

.A �KC/0PK C PK.A�KC/C I D 0:

As in the state feedback case, we distinguish two cases. If "a.yx/ is increasing,
then yx0P�;"a.yx/ yx is decreasing. Moreover, it is trivially verified that e0PKe is de-
creasing as well. This implies that V.x; yx/ is decreasing.

On the other hand, if "a.yx/ is nonincreasing, then P�;"a.yx/ is nonincreasing and
hence,

d

dt
V .x; yx/ 6 �yx0Q"a.yx/ yx � yx0P�;"a.yx/BB

0P�;"a.yx/ yx

� 1

�2
yx0P 2

�;"a.yx/ yx C 2yx0P�;"a.yx/KCe � ˇe0e: (4.268)

We have

2yx0P�;"a.yx/KCe 6 1

�2
yx0P 2

�;"a.yx/ yx C �2e0C 0K 0KCe

6 1

�2
yx0P 2

�;"a.yx/ yx C ˇ

2
e0e;
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provided that we choose ˇ > 2�2kKCk2. Using this in (4.268), we get

d

dt
V .x; yx/ 6 �yx0Q"a.yx/ yx � ˇ

2
e0e;

which is clearly negative. We find that the function V is always decreasing, and
hence is a Lyapunov function for the system proving global asymptotic stability.
We observe that in an open neighborhood of the origin, we have "a.yx/ D 1, and
hence, the feedback is locally linear. Then, local exponential stability immediately
follows.

Theorem 4.58 Consider the discrete-time linear system subject to input
saturation

x.k C 1/ D Ax.k/CB�.u.k//

y.k/ D Cx.k/;

where the pair .A;B/ is stabilizable, .C;A/ is detectable, and the eigenvalues
of A are in the closed unit disc. Let � be chosen such that (4.116) has a unique
positive definite solution for E D I for which (4.117) is asymptotically stable for
all " 2 .0; 1	 and define "a.x/ by

"a.x/ D max
˚
" 2 .0; 1	 W 2x0P�;"x

��B 0P�;"B
�� 6 �2

	
: (4.269)

Then, the zero equilibrium point of the closed-loop system with the nonlinear
control law given by (4.265) and (4.266) is globally asymptotically stable and
locally exponentially stable.

Proof : The closed-loop system is given by

e.k C 1/ D .A �KC/e.k/
yx.k C 1/ D Ayx.k/C B�

�
FL;"a.yx.k// yx.k/



CKCe.k/;

where e D x � yx. We consider the candidate Lyapunov function,

V.x; yx/ D yx0P�;"a.yx/ yx C ˇe0PKe;

where PK is such that

PK D .A �KC/0PK.A�KC/C I:

As in the state feedback case, we distinguish two cases. If "a.yx/ is increasing,
then yx0P�;"a.yx/ yx is decreasing. Moreover, it is trivially verified that e0PKe is de-
creasing as well. This implies that V.x; yx/ is decreasing.
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On the other hand, if "a.yx/ is nonincreasing, then P�;"a.yx/ is nonincreasing,
and hence,

VkC1 � Vk 6 �yx0Q"a.yx/ yx � kF�;"a.yx/ yxk2 C 2yx0A0
FP�;"a.yx/KCe

� yx0A0
FP�;"a.yx/R

�1
�;"a.yx/P�;"a.yx/AF yx � ˇe0e; (4.270)

where we abbreviate yx.k/ and e.k/ by yx and e, respectively, while

Vk D V.x.k/; yx.k//
AF D A� B.B 0P�;"a.yx/B C I /�1B 0P�;"a.yx/A

R�;" D �2I � P�;" C P�;"B.B
0P�;"B C I /�1B 0P�;" > 0:

Since R�;" is bounded away from 0, we can find � independent of " 2 Œ0; 1	

such that

R�;" 6 �I

for all " 2 Œ0; 1	. We have

2yx0AFP�;"a.yx/KCe 6 1

�
yx0A0

FP
2
�;"a.yx/

AF yx C �e0C 0K 0KCe

6 yx0A0
FP�;"a.yx/R

�1
�;"a.yx/P�;"a.yx/AF yx C ˇ

2
e0e;

provided that we choose ˇ > 2�kKCk2. Using this in (4.270), we get

d

dt
V .x; yx/ 6 �yx0Q"a.yx/ yx � ˇ

2
e0e;

which is clearly negative. We find that the function V is always decreasing and
hence is a Lyapunov function for the system proving global asymptotic stability.
We observe that in an open neighborhood of the origin, we have "a.yx/ D 1, and
hence, the feedback is locally linear. Then, local exponential stability immediately
follows.

4.7 Issues on global stabilization of linear systems
subject to actuator saturation

There are still unresolved issues on global stabilization of linear systems subject
to actuator saturation. One specific issue is whether such a stabilization can be
accomplished utilizing linear feedbacks or requires nonlinear feedbacks. Let us
briefly recollect what has been done. In the introductory section of this chapter
(Sect. 4.1), we recalled a result of [38] which says that a chain of integrators with
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order greater or equal to three cannot be globally stabilized by any saturating
linear static state feedback control law with only one input channel. Also, we
recalled a result of [155] which states that, global stabilization of continuous-time
linear systems with bounded input can be achieved if and only if the linear system
in the absence of actuator saturation is stabilizable and critically unstable (that is,
asymptotically null controllable with bounded control (ANCBC)). In general, this
requires nonlinear feedback control laws.

In view of the results of [38, 155], one can enquire whether linear globally
stabilizing feedback control laws exist for any class of linear systems subject to
actuator saturation. For certain cases, global stabilization can indeed be achieved
by linear feedback control laws. In fact, in Sect. 4.6.1, both for continuous- and
discrete-time linear neutral systems, we constructed bounded linear static state
feedbacks as well as bounded observer-based linear measurement feedback con-
trol laws that achieve global asymptotic stabilization. Moreover, for continuous-
time systems which are ANCBC, the results of [186] state, but without a full
proof, that global asymptotic stabilization can be achieved by linear static state
feedback control laws if all nonzero eigenvalues on the imaginary axis are semi-
simple (Jordan blocks of size at most 1) while zero is allowed to be an eigenvalue
whose Jordan blocks can be at most of size 2�2 (which are associated with double
integrators). In this section, we will present for continuous-time systems which
are ANCBC, the recent work of [206] which goes beyond the work of [186],
and presents constructive globally stabilizing saturating linear static state feed-
back control laws for linear systems which consist of a mix of single integrators,
double integrators, and neutrally stable dynamics.

We also observe that, in the literature, there is this general belief for continuous-
time systems that if there are Jordan blocks of size greater or equal to three asso-
ciated with an eigenvalue at zero, then one needs nonlinear feedback control laws
to globally stabilize such linear systems subject to actuator saturation. This is a
misconception. Such a misconception is possibly based on a misreading of the
result of [38]. One should emphasize that the beautiful result of Fuller does not
claim or consider anything beyond static state feedbacks for a chain of integrators
with a single input. We will present in this section our recent work [206] which
reexamines this classical issue and resolves the general misconception that the
size of Jordan block associated with a zero eigenvalue determines whether linear
control laws or nonlinear control laws are needed for globally stabilizing a linear
system subject to actuator saturation.

Global asymptotic stabilization of discrete-time systems subject to actuator
saturation turns out to be much more complex than that of continuous-time
systems. A discrete-time version of the classical result of Fuller is still not avail-
able. There is a large class of linear feedback control laws which achieve local
asymptotic stability for the discrete-time equivalent of the double integrator but
fail to achieve global asymptotic stability. This result is indeed in direct contrast
with continuous-time case where local asymptotic stability for the double inte-
grator always implies global asymptotic stability. We will present this recent work
from [207] which completely classifies which linear feedback laws result in global
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asymptotic stability for the discrete-time equivalent of the double integrator. As far
as we know today, the discrete-time equivalent of the double integrator and the
class of linear neutral systems (Sect. 4.6.1) are the only discrete-time systems
which can be rendered globally asymptotically stable by bounded linear feedback
controllers.

As of this writing, it is fair to say that there still exist two general unresolved
open problems:

� Under what conditions one can utilize a linear static state feedback control law
to globally stabilize a linear system subject to actuator saturation?

� Under what conditions one can utilize a linear dynamic state feedback control
law to globally stabilize a linear system subject to actuator saturation?

4.7.1 Mixed case of single integrators, double integrators,
and neutrally stable dynamics

In continuous-time case, it is clear that both double integrator and neutrally stable
systems subject to actuator saturation can be globally stabilized by linear static
state feedback control laws. However, the mixture of these cases is not well stud-
ied. As recalled above, for the mixed case, [186] gave a sufficient condition that
guarantees global stability of the closed-loop system by using linear static state
feedback control laws, but this result is not studied from a design point of view.
In this subsection, we present a linear static state feedback control design method-
ology to globally stabilize the mixed system subject to actuator saturation based
on the very recent work of [206].

To start with, we present an algorithm which gives us a methodology for de-
signing a linear static state feedback control laws for so-called mixed systems,
namely, systems with double integrators, single integrators, and neutrally stable
dynamics subject to actuator saturation. We then prove via a Lyapunov argument
that such a control law globally stabilizes a mixed system subject to actuator sat-
uration.

Consider a continuous-time linear system called mixed system subject to actu-
ator saturation:

Tzx D zAzx C zB�.zu/; (4.271)

where zx 2 Rn, zu 2 Rm and � is the standard saturation function defined in
Definition 2.19.

As in the previous sections, we assume here as well that the pair . zA; zB/ is sta-
bilizable, and the eigenvalues of zA are all located in the closed left-half complex
plane (i.e., the pair . zA; zB/ is ANCBC). Furthermore, we assume that zA has eigen-
value zero with geometric multiplicity m and algebraic multiplicity m C q with
no Jordan blocks of size larger than 2 while the remaining eigenvalues are simple
purely imaginary eigenvalues. Obviously, for such systems, stabilizability of the
pair . zA; zB/ is equivalent to controllability of the pair . zA; zB/.
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The algorithm for designing a linear static state feedback control law to globally
stabilize the system described in (4.271) is carried out in three steps:
Step 1: We can obviously find a basis transformation �x such that

A D � �1
x

zA�x D

�
Ad 0 0

0 As 0

0 0 A!

�

with

Ad D
 
0 I

0 0

!
;

while As D 0 and A! satisfies A! CA0
! D 0. With respect to this basis transfor-

mation, we obtain

B D � �1
x

zB D

�
Bd

Bs

B!

�
;

with

Bd D
 
Bd;1

Bd;2

!

compatible with the structure ofAd . The system in the new coordinates is given by

Tx D Ax C B�.u/: (4.272)

Step 2: Design K such that

K D

ˇ
K1

K2

:::

Km

�

satisfies

KAC B 0� D 0

KB C .KB/0 < 0;

where � is a diagonal matrix such that

� D

�
�1 0 0

0 0 0

0 0 I

�
;
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with

�1 D
 
0 0

0 I

!

compatible with the structure of Ad . The existence of such a K is shown in the
proof of Theorem 4.61.
Step 3: Construct the linear static state feedback control law

u D zKzx; (4.273)

where zK D K� �1
x . The control law (4.273) globally stabilizes the system

described in (4.271).
To prove that the above algorithm generates a zK that globally stabilizes the

system described in (4.271), we need the following lemmas. These two lemmas
are very well known and can be found in [63] and [58], respectively.

Lemma 4.59 Given two matrices X and Y , there exists a matrix Z such that

ZX D Y

if and only if

kerX � kerY;

where kerA is the null space of a matrix A 2 Rm�n defined as

kerA WD fx 2 Rn j Ax D 0g : (4.274)

We present next a special case of LaSalle’s invariance principle, where V.x/ is
positive definite, which is also known as Krasovskii Theorem.

Lemma 4.60 Consider the system

Tx D f .x/;

where f W Rn ! Rn. Let x D 0 be an equilibrium point. Let V W Rn ! R be
a continuously differentiable, radially unbounded, positive definite function such
that TV .x/ 6 0 for all x 2 Rn. Let S D f x 2 Rn j TV .x/ D 0 g and suppose that
no solution can stay in S for all t > 0 other than the trivial solution x.t/ D 0 for
all t > 0. Then, the origin is globally asymptotically stable.

Next, we prove that the design given in the above algorithm has the desired
properties.
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Theorem 4.61 Consider a linear system as given in (4.271) with input u.t/ 2
Rm. Assume that the pair . zA; zB/ is controllable. Moreover, we assume that zA has
eigenvalue zero with geometric multiplicity m and algebraic multiplicity m C q

with no Jordan blocks of size larger than 2 while the remaining eigenvalues are
simple purely imaginary eigenvalues. The linear state feedback control law u D
zKzx given in (4.273) can globally stabilize the system (4.271).

Proof : Through step 1 of the algorithm, we can transfer the system (4.271)
into (4.272) as

Tx D Ax C B�.u/:

The state vector has a decomposition

x D

�
xd

xs

x!

�

compatible to the decomposition of A. Moreover,

xd D
 
xd;1

xd;2

!
:

We prove the theorem via Lyapunov argument. Consider a Lyapunov candidate

V.x/ D 1

2
x0

!x! C 1

2
x0

d;2xd;2 C
mX

iD1

Ki xZ

0

�1.y/dy: (4.275)

The evaluation of TV .x/ along the trajectories of the closed-loop system yields,

TV .x/ D x0
! Tx! C x0

d;2 Txd;2 C � 0.Kx/K Tx:

With some algebra, we can write the above equation in the matrix form as

TV .x/ D � 0.Kx/.KAx C B 0�x/C � 0.Kx/KB�.Kx/: (4.276)

In order to make TV .x/ nonpositive, it is sufficient to guarantee that the gain
matrix K satisfies

KAC B 0� D 0

KB C .KB/0 < 0:
(4.277)
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Let us write (4.277) in matrix equality form,

K
�
A B

�
D
�
�B 0� S

�
; (4.278)

where S is any matrix satisfying S C S 0 < 0. We get

KB C .KB/0 D S C S 0 < 0:

Now, let us show that a K which satisfies (4.278) exists. From Lemma 4.59, we
see that the solvability of (4.278) is equivalent to showing

�
�B 0� S

� x
u

!
D 0 (4.279)

given
�
A B

� x
u

!
D 0: (4.280)

Since the pair .A;B/ is controllable, from the Hautus test [45], we know that

rank
�
A B

�
D n:

Moreover, from the structure of matrices A and B , we know that rankA D n�m
and rankB D m. Thus,

imA\ imB D 0;

where imZ is the range space of a matrix Z 2 Rm�n defined as

imZ WD fZx j x 2 Rng :

Therefore, (4.280) implies that Ax D 0 and Bu D 0. Clearly, Ax D 0 implies
that xd;2 D 0 and x! D 0 which yields�x D 0. Hence,

�B 0�x D 0:

Moreover, rankB D m while B has m columns. This implies that B is injective.
Therefore, Bu D 0 implies u D 0, and thus, Su D 0. Hence, (4.279) is satisfied,
and we have shown that (4.278) is solvable. Since .A B/ is surjective, for any
given S , we have a unique solutionK for (4.278) such that

TV .x/ D � 0.Kx/KB�.Kx/ 6 0;

provided that S C S 0 < 0. In order to prove asymptotic stability, we apply
Lemma 4.60. Clearly, our Lyapunov candidate function V.x/ given in (4.275)
is continuously differentiable, radially unbounded, and is positive definite.
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Next, we note that the TV .x/ D 0 if and only if Kx D 0. When Kx D 0, the
dynamics obviously becomes Tx D Ax. We need to show that there exists no initial
condition x.0/ D x0 ¤ 0 such that Kx.t/ D 0 for all t > 0 while Tx.t/ D Ax.t/.
We have

x.t/ D

˙
xd;1.0/C txd;2.0/

xd;2.0/

xs.0/

x!.t/

�
:

Since x!.t/ is only related to nonzero eigenvalues, we get from Kx.t/ D 0 for
all t > 0 that

K

˙
xd;2.0/

0

0

0

�
D 0; K

˙
xd;1.0/

xd;2.0/

xs.0/

0

�
D 0: (4.281)

The first equality in (4.281) implies that

0 D K

˙
xd;2.0/

0

0

0

�
D KA

˙
0

xd;2.0/

0

0

�
D �B 0

˙
0

xd;2.0/

0

0

�
;

which yieldsB 0
d;2
xd;2.0/ D 0. Controllability of the pair .A;B/ implies thatBd;2

must be surjective. Hence, B 0
d;2

is injective, and we obtain xd;2.0/ D 0. Next, we
note that the second equality in (4.281) yields˙

xd;1.0/

0

xs.0/

0

�
D Ax C Bu where x D

˙
x1

x2

x3

x4

�

for suitably chosen x and u since .A B/ is surjective (because of controllabil-
ity). Obviously, this implies that 0 D Bd;2u while x4 satisfies

x4 D �A�1
! B!u:



4.7 Issues on global stabilization of linear systems subject to actuator saturation 237

We find that

0 D u0K

˙
xd;1.0/

0

xs.0/

0

�
D u0K ŒAx C Bu	

D �u0B 0�x C u0Su
D �u0B 0

d;2x2 � u0B 0
!x4 C u0Su

D u0B 0
!A

�1
! B!uC u0Su

D u0Su;

where we used that Bd;2u D 0 and the fact that A�1
! is skew-symmetric. Since

S C S 0 < 0, we find u D 0. But this immediately yields that xs.0/ D 0. Using
that xs.0/ D 0 and xd;2.0/ D 0, we get from the second equality in (4.281) that

0 D K

˙
xd;1.0/

0

0

0

�
D KA

˙
0

xd;1.0/

0

0

�
D �B 0

˙
0

xd;1.0/

0

0

�
;

which yields B 0
d;2
xd;1.0/ D 0. As noted before, B 0

d;2
is injective, and therefore,

xd;1.0/ D 0.
It remains to show that x!.0/ D 0. We note that

K

˙
0

0

0

x!.0/

�
D K!x!.0/ D 0;

where K! is the gain matrix associated with neutrally stable dynamics. We know
that x.t/ remains in the kernel of K with u.t/ D 0. Hence,

KA

˙
0

0

0

x!.0/

�
D K!A!x!.0/ D 0:

But since KA D �B 0�, this yields

B 0
!x!.0/ D 0:

Hence, if x!.0/ ¤ 0, we have a nontrivial A!-invariant subspace which is con-
tained in kerB 0

! . Using the skew symmetry of A! , we find that this subspace
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is also A0
!-invariant. However, the existence of a nontrivial A0

! invariant
subspace contained in kerB 0

! yields a contradiction with the observability of the
pair .B 0

! ; A
0
!/ or, equivalently, a contradiction with the controllability of the pair

.A! ; B!/. Therefore, x!.0/ D 0.
Hence, the origin is the only solution within the subset of Rn for which TV

.x/ D 0. Hence, the global asymptotic stability of the closed-loop system follows
from Lemma 4.60.

Let us consider an example, which contains two double integrators, one single
integrator, and neutrally stable dynamics with A and B as follows:

A D

�
0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 �1 0

˘
; B D

�
0 1 3

0 0 5

1 2 4

0 1 6

0 0 1

1 1 0

1 0 1

˘
:

It is easy to check that the pair .A;B/ is controllable. Also, we observe that
since S is arbitrary such that S C S 0 < 0, the solution for (4.278) is not unique.
Therefore, the linear static state feedback control laws which can globally stabi-
lize the closed-loop system are not unique either. However, for a given S , we have
a unique solution for (4.278); therefore, we have an associated unique linear static
state feedback control law which can globally stabilize the closed-loop system.

For this example, we choose

S D

�
�1 �1 1

1 �3 1

�1 �1 �53

�
:

Then, the unique possible globally stabilizing linear static state feedback control
law is u D Kx, where

K D

�
K1

K2

K3

�

with K1, K2, and K3 as given below:

K1 D
�
�1 0 �1 3 �11 �1 1

�
;

K2 D
�
�2 �1 0 �1 17 0 1

�
;

and K3 D
�
�4 �6 0 4 �35 �1 0

�
:
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Figure 4.1: Global stabilization via a linear static state feedback

For the initial condition

x0 D
�
100 �100 �100 100 100 �100 100

�0
;

the dynamics are shown in Fig. 4.1, which clearly is consistent with our result that
the closed-loop system is asymptotically stable.

4.7.2 Triple integrator with multiple inputs

As pointed out earlier, there exists a general belief that for a system which has
an eigenvalue at zero with associated Jordan block of size greater or equal to
three, there does not exist a saturating linear static state feedback control law
which can globally stabilize the system. We claim that this is a misconception.
More precisely, in simple words, whether a saturating linear static state feedback
control law exists or not does not merely depend on the size of Jordan block. We
prove here that there exists a saturating linear static state feedback control law
which can globally stabilize a triple-integrator system with two inputs.

We present first a useful Lemma 4.62 from [155] (see also [172]).

Lemma 4.62 Assume that T� D f .�; v/ has a globally Lipschitz right-hand side,
and that the origin is a globally asymptotically stable state for T� D f .�; 0/. Then
there exists some � > 0 such that every solution of T� D f .�; v/ converges to zero,
for every v such that kv.t/k 6 �e��t .

We present next a theorem pertaining to a triple integrator with two inputs.
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Theorem 4.63 Consider a triple integrator subject to actuator saturation, with
two input channels, described by�

Tx1

Tx2

Tx3

�
D

�
0 1 0

0 0 1

0 0 0

��
x1

x2

x3

�
C

�
0 0

0 1

1 0

� 
�1.u1/

�1.u2/

!
; (4.282)

where, as usual, for each i D 1; 2, �1.ui / is the standard saturation function:

�1.ui / D sgn.ui /min f1; jui jg :

A linear static state feedback control law can globally stabilize the system (4.282).

Proof : We will present two proofs for Theorem 4.63. Let us proceed now with
the first proof.

Consider a linear static state feedback control law

u1 D ��x3

u2 D �z̨x1 � ˇx2;

where z̨ > 0, ˇ > 0, and � >> 0. By applying this particular state feedback
control law, we get the closed-loop system as

Tx1 D x2 (4.283a)

Tx2 D x3 C �1.�z̨x1 � ˇx2/ (4.283b)

Tx3 D �1.��x3/: (4.284)

The asymptotic stability of the closed-loop system follows from the fact that the
poles of the linearized system are in the open left-half plane. In order to prove
global asymptotic stability of the closed-loop system, we need to show that the
closed-loop system is globally attractive.

We can view the system comprising of (4.283) and (4.284) as two subsystems,
where the dynamics of subsystem 2 (4.284) consisting of x3.t/ is decoupled from
the dynamics of subsystem 1 (4.283) which consists of x1.t/ and x2.t/ and in
which the dynamics of x3.t/ is viewed as a disturbance.

In order to prove the global attractivity of the whole system, we use Lemma
4.62. To do so, let us first check all the conditions of the Lemma 4.62. Consider
the subsystem 1. Let us define

f .�; v/ D
 

x2

x3 C �1.�z̨x1 � ˇx2/

!
; � D

 
x1

x2

!
and v D x3:

We then have the dynamics of subsystem 1 as T� D f .�; v/.
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Clearly, the origin is globally asymptotically stable for T� D f .�; 0/, since for
v D 0, it becomes a double-integrator subject to actuator saturation with arbitrary
negative linear state feedback control law, for which it is well known that the
closed-loop system is globally asymptotically stable. It is also easily verified that
f is globally Lipschitz.

In order to apply Lemma 4.62, we must guarantee kx3.t/k 6 �e��t for some
� determined by the dynamics of subsystem 1. First, choose � > �.

Obviously, we see that for big initial condition kx3.0/k, the subsystem 2 given
by (4.284) is subject to actuator saturation at the beginning, kx3.t/k decays lin-
early up to certain point; once it gets out of saturation region, kx3.t/k decays
exponentially fast to zero, with a rate � > �. Thus, we can choose � sufficiently
large such that kx3.t/k 6 �e��t . We automatically see that all the conditions
of Lemma 4.62 are satisfied; therefore, every solution of the first subsystem con-
verges to zero. Thus, the closed-loop system is globally attractive. Hence, we
have proved that the closed-loop system is globally asymptotically stable. This
completes our first proof.

We proceed next to present the second proof by constructing a Lyapunov func-
tion. The Lyapunov approach followed here guarantees stability for all z̨; ˇ; � > 0
while the first proof given above proves stability only for � sufficiently large. This
proof demonstrates also the fact that searching for a Lyapunov function even for
a simple (low order) linear system subject to actuator saturation is very compli-
cated.

Let us partition R3 into 4 regions:

R1 D
˚
.x1; x2; x3/ 2 R3jx2x3 > 0; j�x3j > 1

	
;

R2 D
˚
.x1; x2; x3/ 2 R3jx2x3 < 0; j�x3j > 1

	
;

R3 D
˚
.x1; x2; x3/ 2 R3jx2x3 > 0; j�x3j < 1

	
;

R4 D
˚
.x1; x2; x3/ 2 R3jx2x3 < 0; j�x3j < 1

	
:

Consider a Lyapunov candidate

V.x/ D
z̨x1Cˇx2Z

0

�1.y/dy C z̨
2
x2

2

C z̨
�

max f 0; x2x3; x2x3j�x3j g C r max
˚
.�x3/

2; .�x3/
4
	
; (4.285)

where r > 0 is to be suitably selected shortly in subsequent development. We
want to show that the Lyapunov candidate shown in (4.285) is indeed a Lyapunov
function; thus, the global asymptotic stability of the closed-loop system follows.
First, it is easy to see that V.x/ is continuous and positive definite. Also, V.x/ is
radially unbounded.
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In order to show global asymptotic stability of the closed-loop system, we need
to show that TV .x/ in each region is negative. In regions R1 and R2, the system is
described by

Tx1 D x2

Tx2 D x3 C �1.�z̨x1 � ˇx2/

Tx3 D � sgn.�x3/:

For the regionR1, the evaluation of TV .x/ along the trajectories of the closed-loop
system yields

TV D �1.z̨x1 C ˇx2/Œz̨x2 C ˇ.x3 � �1.z̨x1 C ˇx2//	

C z̨x2Œx3 � �1.z̨x1 C ˇx2/	

C z̨Œx3 � �1.z̨x1 C ˇx2/	x3jx3j
� 2 z̨x2x3 � 4r� j�x3j3

D ˇx3�1.z̨x1 C ˇx2/ � ˇ�2
1 .z̨x1 C ˇx2/ � z̨x2x3

C z̨jx3j3 � z̨�1.z̨x1 C ˇx2/x3jx3j � 4r� j�x3j3:

For j�x3j > 1, the following hold:

x3�.z̨x1 C ˇx2/ 6 jx3j 6 1

�
j�x3j 6 1

�
j�x3j3;

��1.z̨x1 C ˇx2/x3jx3j 6 jx3j2 D 1

�2
j�x3j2 6 1

�2
j�x3j3:

We then get

TV 6 �ˇ�2
1 .z̨x1 C ˇx2/� z̨x2x3 � .4r� � z̨

�2
� z̨
�3

� ˇ

�
/j�x3j3:

Choosing r such that

4r�4 > z̨� C z̨ C ˇ�2; (4.286)

we get TV < 0.
For the regionR2, the evaluation of TV2 along the trajectories of the closed-loop

system yields

TV D �1.z̨x1 C ˇx2/Œz̨x2 C ˇ.x3 � �1.z̨x1 C ˇx2//	

C z̨x2Œx3 � �1.z̨x1 C ˇx2/	 � 4r� j�x3j3

D ˇx3�1.z̨x1 C ˇx2/ � ˇ�2
1 .z̨x1 C ˇx2/C z̨x2x3

� 4r� j�x3j3

6 �ˇ�2
1 .z̨x1 C ˇx2/C z̨x2x3 � .4r� � ˇ

�
/j�x3j3:
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Choosing r such that

4r�2 > ˇ; (4.287)

we get TV < 0.
In regions R3 and R4, the system is described by

Tx1 D x2

Tx2 D x3 C �1.z̨x1 � ˇx2/

Tx3 D ��x3:

For the region R3, the evaluation of TV3 along the trajectories of the closed-loop
system yields

TV D �1.z̨x1 C ˇx2/Œz̨x2 C ˇ.x3 � �1.z̨x1 C ˇx2//	

C z̨x2Œx3 � �1.z̨x1 C ˇx2/	

C z̨
�
Œx3 � �1.z̨x1 C ˇx2/	x3

� z̨x2x3 � 2r�3x2
3

D .ˇ � z̨
�
/x3�1.z̨x1 C ˇx2/ � ˇ�2

1 .z̨x1 C ˇx2/

C .
z̨
�

� 2r�3/x2
3 :

In this case, let us choose an � small enough such that

�

2
jˇ � z̨

�
j 6 ˇ

2
:

Next, using

jx3�1.z̨x1 C ˇx2/j 6 �

2
�2

1 .z̨x1 C ˇx2/C 1

2�
x2

3 ;

we get

TV 6 �ˇ
2
�2

1 .z̨x1 C ˇx2/C
�
1

2�
jˇ � z̨

�
j C z̨

�
� 2r�3

�
x2

3 :

Choosing r such that

2r�3 >
1

2�
jˇ � z̨

�
j C z̨

�
; (4.288)

we get TV < 0.
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For the regionR4, the evaluation of TV4 along the trajectories of the closed-loop
system yields

TV D �1.z̨x1 C ˇx2/Œz̨x2 C ˇ.x3 � �1.z̨x1 C ˇx2//	

C z̨x2Œx3 � �1.z̨x1 C ˇx2/	 � 2r�3x2
3

D ˇx3�1.z̨1 C ˇx2/� ˇ�2
1 .z̨x1 C ˇx2/

C z̨x2x3 � 2r�3x2
3

6 ˇ

2
Œx2

3 C �2
1 .z̨x1 C ˇx2/	 � ˇ�2

1 .z̨x1 C ˇx2/

C z̨x2x3 � 2r�3x2
3

D �ˇ
2
�2

1 .z̨x1 C ˇx2/C z̨x2x3 � .2r�3 � ˇ

2
/x2

3 :

Choosing r such that

4r�3 > ˇ; (4.289)

we get TV < 0.
Thus, by choosing r sufficiently large such that all the inequalities (4.286)–

(4.289) are satisfied, we get TV .x/ < 0 for all four different regions. Therefore,
TV .x/ is negative for the entire region R3 � f0g. Thus, the closed-loop system

is globally asymptotically stable. Hence, the triple-integrator subject to actuator
saturation can be globally asymptotically stabilized via linear static state feedback
control laws.

4.7.3 Discrete-time equivalent of the double integrator

There exists a vast difference between a discrete-time double integrator subject
to actuator saturation and its counterpart in continuous time. In continuous time,
any linear state feedback control law which locally stabilizes the double integra-
tor, also globally stabilizes the double integrator in the presence of actuator sat-
uration. In discrete time, the equivalent of the double integrator has intrinsically
different behavior. Some linear feedbacks which locally stabilize the double inte-
grator, also globally stabilize the double integrator in the presence of actuator sat-
uration. However, some other linear feedbacks which locally stabilize the double
integrator, do not globally stabilize the double integrator in the presence of actua-
tor saturation. In this subsection, we classify a large class of linear feedback laws
which achieve global stability. But, on the other hand, we also classify a class of
linear feedback laws which achieve local stability but yield nonzero periodic so-
lutions in the presence of actuator saturation and therefore cannot achieve global
asymptotic stability. This subsection is based on the recent work of [207, 208].
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Consider a discrete-time double integrator subject to actuator saturation
described by

(
x1.k C 1/ D x1.k/C x2.k/

x2.k C 1/ D x2.k/C �.u.k//;
(4.290)

where, as usual, �.u.k// is the standard saturation function

�.u.k// D sgn.u.k//min f1; ju.k/jg ;

and

u.k/ D f1x1.k/C f2x2.k/ (4.291)

with f1 and f2 as feedback gains.
Let us first consider the system (4.290) with the feedback control law (4.291)

in the absence of actuator saturation. From Jury’s test, we see that any feedback
control law (4.291) with f1 and f2 which satisfy the following conditions:

f1 < 0

f1 � 2f2 < 4

jf2 � f1 C 1j < 1
1 � .f2 � f1 C 1/2 > j.f2 C 2/.f1 � f2/j

or, equivalently, which satisfy the condition

1

2
f1 � 2 < f2 < f1 < 0; (4.292)

stabilizes the system (4.290) in the absence of actuator saturation or, in other
words, achieves local asymptotic stability for the closed-loop system.

The question is whether such feedback control laws also globally stabilize
the system (4.290) subject to actuator saturation. The motivation for studying
the discrete-time double integrator subject to actuator saturation comes from the
well-known result on its counterpart in continuous-time setting (see previous sub-
section). For contrast, let us first clearly state the result for the continuous-time
double integrator subject to actuator saturation.

Theorem 4.64 Consider the system

(
Tx1 D x2

Tx2 D �.f1x1 C f2x2/;
(4.293)

where f1 and f2 are constants. For any f1; f2 < 0, the system (4.293) is globally
asymptotically stable.
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From the above theorem, we see that an arbitrary linear state feedback control
law which stabilizes a continuous-time double integrator in the absence of actu-
ator saturation (which is equivalent to the conditions f1; f2 < 0) also globally
stabilizes the system subject to actuator saturation. Then, an important question
that arises is the following: Is this also true for a discrete-time double integra-
tor subject to actuator saturation? As shown in this subsection, the answer to this
question is indeed negative. In this regard, we first show that the system (4.290) is
not globally stabilized for all feedback control laws (4.291) which locally stabilize
the system (4.290).

Theorem 4.65 If f1 and f2 satisfy Jury’s condition (4.292) plus the following
condition:

f2 >
3
2
f1; (4.294)

then the closed-loop system exhibits nonzero limit cycles, that is, there exist initial
conditions that yield nonzero periodic solutions; hence, the closed-loop system is
not globally asymptotically stable.

The above theorem considers the case f2 > 3
2
f1. An obvious question that

arises next is “what can we expect if f2 <
3
2
f1?”. The following theorem answers

this question:

Theorem 4.66 If f1 and f2 satisfy Jury’s condition (4.292) plus the following
condition:

f2 <
3
2
f1; (4.295)

then the closed-loop system is globally asymptotically stable.

The above results can be illustrated by Fig. 4.2. Note that in Fig. 4.2, line AB is
f2 D f1, line BC is f2 D 1

2
f1 � 2, line AD is f2 D 3

2
f1, and line AC is f1 D 0.

Jury’s test establishes that whenever f1 and f2 take their values within the triangle
ABC, the closed-loop system is locally asymptotically stable, otherwise unstable.
The triangle ABC can be bisected into two regions, triangle ABD (Region II)
and triangle ADC (Region III). As shown by Theorem 4.65, whenever f1 and
f2 take their values within the triangle ABD, there exist initial conditions that
lead to nonzero periodic solutions, and hence, global asymptotic stability of the
closed-loop system is impossible. On the other hand, as shown by Theorem 4.66,
whenever f1 and f2 take their values within the triangle ADC, the closed-loop
system is globally asymptotically stable. Theorem 4.65 can be illustrated by the
following example:
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Figure 4.2: Stability characteristics as a function of f1 and f2

Example 4.67 Consider the system (4.290) with a state feedback control law
(4.291) with gain parameters f1 D �1 and f2 D �1:2. The system has a periodic
solution of period T D 56 for the following initial conditions: 3:6 6 x1.0/ 6
10:4 and x2.0/ D �14. The state trajectory for x1.0/ D 10:4 and x2.0/ D �14
is given in Fig. 4.3, where we clearly see the symmetric periodic orbit. Note that
the state trajectory moves clockwise along the periodic orbit shown in Fig. 4.3.
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Figure 4.3: Periodic orbit of period 56

The proofs of the above theorems are considered next with the proofs of two
technical lemma diverted to an appendix.
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Proof of Theorem 4.65 : We will prove Theorem 4.65 by explicitly constructing
nonzero periodic solutions. The periodic solution with an even period T D 2m

that we will construct is such that the system is always in saturation, and the
saturated input sequence is composed of 1 for the first m steps, followed by �1
for the nextm steps. For such a solution, we always have x2.T / D x2.0/. In order
to have x1.T / D x1.0/, it is easily verified that we must have that x2.0/ D �m

2
.

Clearly, this will yield the required periodic solution if x1.0/; f1 and f2 satisfy
the following 2m inequalities: u.k/ > 1 for k D 0; : : : ; m� 1 and u.k/ 6 �1 for
k D m; : : : ; 2m � 1, which guarantee that the periodic solution has the required
characteristic of the saturated input being 1 for the first m steps and �1 for the
next m steps. We basically have three unknowns, x1.0/, f1, and f2. However, if
we view f1x1.0/, f1, and f2 as the unknown variables, then the above inequalities
become linear inequalities. Next, we note that the above 2m inequalities can be
reduced to only two inequalities. Note that for k D 1; : : : ; m,

x1.k/ D x1.0/C kx2.0/C k.k�1/
2

x2.k/ D x2.0/C k

since by construction the input saturate to 1 for the firstm steps. We then note that
Jury’s conditions (4.292) imply that f2 < f1 and f1 < 0. This implies that f2 <

f1 � 1
2
kf1 for k D 0; : : : ; m� 1. This yields f1x2.0/C f2 <

1
2
f1.�m� k C 2/

since x2.0/ D �m
2

. We knowm�k�1 > 0 and multiplying the above inequality
on both sides with m � k � 1 yields

f1.m � k � 1/x2.0/C f2.m � k � 1/ 6 f1

h
k.k�1/

2
� .m�1/.m�2/

2

i
:

This is equivalent to

u.m � 1/ D f1x1.m � 1/C f2x2.m � 1/ 6 f1x1.k/C f2x2.k/ D u.k/

for k D 0; : : : ; m � 1. Hence, u.m � 1/ > 1 implies that u.k/ > 1 for k D
0; : : : ; m�1. A similar argument shows that u.2m�1/ 6 �1 implies that u.k/ 6
�1 for k D m; : : : ; 2m � 1.

Therefore, we have a periodic solution for the given f1 and f2 provided that
there exists a x1.0/ such that

u.m � 1/ D f1Œx1.0/C .m� 1/x2.0/C .m�1/.m�2/
2

	

C f2Œx2.0/C .m � 1/	 > 1

u.2m � 1/ D f1Œx1.0/� x2.0/� 1	C f2Œx2.0/C 1	 6 �1:

Using that x2.0/ D � m
2

, we find a periodic solution if we can find a x1.0/ such
that the following two inequalities are satisfied:

f1Œx1.0/� .m � 1/	C f2Œ
m
2

� 1	 > 1

f1Œx1.0/C m
2

� 1	C f2Œ� m
2

C 1	 6 �1;
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which is equivalent to

1Cf1.m� 1/� f2Œ
m
2

� 1	 6 f1x1.0/ 6 �1� f1Œ
m
2

� 1	Cf2Œ
m
2

� 1	: (4.296)

Clearly, a suitable x1.0/ exists if and only if

1C f1.m � 1/� f2Œ
m
2

� 1	 6 �1 � f1Œ
m
2

� 1	C f2Œ
m
2

� 1	:

This implies that

f1.3m � 4/� f2.2m � 4/ 6 �4;

which, form > 2, is equivalent to

3m�4
2m�4

f1 C 2
m�2

6 f2: (4.297)

From (4.294), it is clear that

lim
m!1.

3m�4
2m�4

f1 C 2
m�2

/ D 3
2
f1 6 f2:

Therefore, for any f1; f2 which satisfy Jury’s condition (4.292) and the additional
condition (4.294), there exists a m sufficiently large such that (4.297) is satisfied.
But in the above, we have seen that this implies that the system (4.290) with a
feedback control law (4.291) exhibits periodic behavior for certain initial condi-
tions with period 2m. Hence, the system (4.290) can never be globally asymptot-
ically stabilized by the feedback control law (4.291) if f1 and f2 satisfy (4.292)
and (4.294).

In order to prove Theorem 4.66, we need to establish asymptotic stability in
the region III depicted in Fig. 4.2. A basis transformation turns out to be useful
for establishing this result. We define y1.k/ D u.k/ and y2.k/ D f1x2.k/. The
closed-loop system is then given by

(
y1.k C 1/ D y1.k/C y2.k/C f2�.y1.k//

y2.k C 1/ D y2.k/C f1�.y1.k//:
(4.298)

We sometimes denote

y.k/ D
 
y1.k/

y2.k/

!
;

and y, y1, or y2 without explicitly indicating time will refer to y.k/, y1.k/, or
y2.k/, respectively. We first establish asymptotic stability for the region IV, as
depicted in Fig. 4.4, by constructing a classical Lyapunov function.
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Figure 4.4: Stability characteristics as a function of f1 and f2

Lemma 4.68 Consider system (4.290) with a feedback control law (4.291). If feed-
back gains f1 and f2 satisfy Jury’s condition (4.292) and the following condition:

.f2 � f1 C 1/2 � 1 < f1; (4.299)

then the closed-loop system is globally asymptotically stable.

Proof : Without loss of generality, we write the closed-loop system as (4.298).
Next, we consider the following Lyapunov candidate:

Vk D V.y.k// D 2y1.k/�.y1.k// � �2.y1.k// � 2�.y1.k//y2.k/ � 1
f1
y2

2 .k/:

Then with some algebra, we get

VkC1 D 2y1�.zy1/C 2.f2 � f1/�.y1/�.zy1/� �.zy1/
2 � 1

f1
y2

2

� 2y2�.y1/ � f1�
2.y1/;

where to simplify notation we have used zy1 D y1.kC 1/, while y1.k/ and y2.k/

are abbreviated to y1 and y2, respectively. We find that

�V D VkC1 � Vk D 2y1�.zy1/C 2.f2 � f1/�.y1/�.zy1/ � �.zy1/
2

� 2y1�.y1/� .f1 � 1/�2.y1/:

Next, we show that �V 6 0 by considering three different cases: case I: y1 > 1,
case II: y1 6 �1, and case III: jy1j < 1.
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In case I, using condition (4.299), we get

�V D 2y1�.zy1/C 2.f2 � f1/�.zy1/ � �.zy1/
2 � 2y1 � .f1 � 1/

D 2.y1 � 1/.�.zy1/ � 1/� .�.zy1/� f2 C f1 � 1/2 C .f2 � f1 C 1/2

� .f1 C 1/

6 .f2 � f1 C 1/2 � .f1 C 1/ < 0:

In case II, using condition (4.299), we get:

�V D 2y1�.zy1/ � 2.f2 � f1/�.zy1/� �.zy1/
2 C 2y1 � .f1 � 1/

D 2.y1 C 1/.�.zy1/C 1/� .�.zy1/C f2 � f1 C 1/2 C .f2 � f1 C 1/2

� .f1 C 1/

6 .f2 � f1 C 1/2 � .f1 C 1/ < 0:

Finally, in case III, using (4.299), we get

�V D 2.f2 � f1 C 1/y1�.zy1/� �.zy1/
2 � .f1 C 1/y2

1

D �Œ�.zy1/ � .f2 � f1 C 1/y1	
2 C Œ.f2 � f1 C 1/2 � .f1 C 1/	y2

1 6 0:

We also see that equality holds only if y1 D 0 and zy1 D 0 which implies that
x1 D x2 D 0. Hence, the global asymptotic stability of the closed-loop system
follows.

In order to prove Theorem 4.66, it remains to show that the closed-loop system
is globally asymptotically stable in region V as depicted in Fig. 4.4. As before
we assume the closed-loop system is given by (4.298). Next, let us consider a
Lyapunov candidate in the presence of saturation, which is based on the linearized
system as follows:

Vk D V.y.k// D 2y1.k/�.y1.k// � �2.y1.k//

C 2b�.y1.k//y2.k/ � 1
f1
y2

2.k/: (4.300)

We choose

b D
(

2
f2

f 2
2 C 4f1 > 0

� f2

2f1
f 2

2 C 4f1 < 0:
(4.301)

It is easily verified that in the triangle ADC of Fig. 4.4, we have b 2 Œ�1;�0:5/
while for b D �1 we get the Lyapunov function used in Lemma 4.68, and in
region V of Fig. 4.4, we have b 2 .�1;�0:5/. We sometimes refer to the first
case, when f 2

2 C 4f1 > 0, as the real case since in that case the linearized system
has real eigenvalues while the second case, when f 2

2 C 4f1 < 0, is referred to as
the complex case since in that case the linearized system has complex eigenvalues.
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It is easy to see that the Lyapunov candidate (4.300) works for the linearized
closed-loop system. In order to be a valid Lyapunov function, it is necessary that
it must work when �.y1/ stays at 1 or at �1 in two consecutive time instants. It is
easy to verify that in that case,

�V D .2b � 1/f1 C 2f2; (4.302)

where .�V /.k/ D VkC1 � Vk , while Vk D V.y.k//. Thus, �V D .f 2
2 C

4f1/=f2 C .f2 � f1/ < 0 in the real case while �V D f2 � f1 < 0 in the
complex case.

Therefore, the Lyapunov candidate (4.300) has the required properties when
�.y1/ is in saturation for two consecutive time instants or is out of saturation
for two consecutive time instants. Note that for a continuous-time problem, we
would be done since y1 is continuous. However, for discrete-time systems, y1

obviously jumps from one time to the other, and hence, if �.y1.k// saturates,
then it might well be that �.y1.k C 1// is out of saturation or conversely. This is
intrinsically different from the continuous-time case. Thus, we have to show that
the Lyapunov candidate (4.300) also decreases when y1 jumps. The traditional
Lyapunov argument is to show that VkC1 � Vk < 0 for all initial conditions.
However, this approach does not work here. For the real case, if f2 < �2, there
exist initial conditions such that VkC1�Vk > 0. A similar problem can arise in the
complex case. Thus, we need a different technique. The main idea is to show that
V decreases over a specifically chosen number of time steps, and V is bounded
in the interim. In order to proceed with this idea, we first choose suitable time
instants ki . The formal definition of ki is given next.

Definition 4.69 k0 D 0, and ki is the smallest integer larger than ki�1, such that
either

� jy1.ki /j < 1; or

� y1.ki /y1.ki C 1/ < 0 and jy1.ki C 1/j > 1.

In other words, ki is defined as the first time instant k > ki�1 where y1.k/

either gets out of saturation or where y1.k/ switches the sign. It is easily seen that
ki is well defined given ki�1 since the only way ki would not be well defined is
if y1.k/ > 1 for all k > ki�1 or if y1.k/ < �1 for all k > ki�1. It is easily
seen from the dynamics (4.298) that this is not possible. Instead of a classical
Lyapunov design, we will study whether Vki

is decreasing as a function of i .
Before we formally prove Theorem 4.66, we present two crucial lemmas.
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Lemma 4.70 Let the Lyapunov candidate V be defined in (4.300) and assume
that the feedback gains f1 and f2 are in region V of Fig. 4.4, that is, (4.292)
and (4.295) are satisfied and

.f2 � f1 C 1/2 � 1 > f1: (4.303)

In that case, if jy1.ki /j 6 1 and Vki�1
¤ 0, then

Vki
� Vki�1

< 0:

Proof : Since the proof is very lengthy, for the readability, we give the proof in
Appendix 4.A.

Lemma 4.71 Let the Lyapunov candidate V be defined in (4.300) and assume
that the feedback gains f1 and f2 are in region V of Fig. 4.4, that is, (4.292)
and (4.295) are satisfied and

.f2 � f1 C 1/2 � 1 > f1:

In that case, if jy1.ki /j > 1 and Vki�1
¤ 0, then

Vki
� Vki�1

< 0 or VkiC1
� Vki�1

< 0:

Proof : Since the proof is very lengthy, for the readability, we give the proof in
Appendix 4.B.

Remark 4.72 Note that if the feedback gains f1 and f2 take their values within
the triangle ABD (region II) in Fig. 4.2, there actually exist initial conditions for
which VkiC1

�Vki�1
D 0 since kiC1 �ki�1 is precisely the period of the periodic

behavior as constructed in the proof of Theorem 4.65.

Proof of Theorem 4.66 : We already know that the system is locally asymp-
totically stable from Jury’s test. It remains to show global attractivity of the ori-
gin. If (4.299) is satisfied, Lemma 4.68 guarantees global asymptotic stability.
Therefore, we only need to consider the case where (4.303) is satisfied in addition
to (4.292) and (4.295).

We first note that (4.300) can be rewritten as

V.y/ D 2�.y1/ Œy1 � �.y1/	C Œ�.y1/C by2	
2 �

�
b2 C 1

f1

�
y2

2 :
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It is easy to show that for f 2
2 C4f1 ¤ 0, we have b2 C 1

f1
> 0. This immediately

implies V.y/ > 0 if y ¤ 0. Lemmas 4.70 and 4.71 imply that either VkiC1
�

Vki
< 0 or VkiC2

� Vki
< 0 if y.ki / ¤ 0. This results in a sequence

˚xki

	

such that VxkiC1
< Vxki

for all i . This clearly implies that Vxki
is bounded, and

hence, xkiC1 � xki is bounded as well. This implies that Vxki
! 0 as i ! 1. Local

asymptotic stability implies that if Vxki
is small enough for some i , then y.k/ ! 0

as k ! 1, and therefore, we have global attractivity.
For the case that b2 C 1

f1
D 0, we have V.y/ > 0, and V.y/ D 0 implies

y1 C by2 D 0 and y1 2 Œ�1; 1	. Lemmas 4.70 and 4.71 imply that either VkiC1
�

Vki
< 0 or VkiC2

� Vki
< 0 if Vki

¤ 0. Similar to as before, we can show
that V.k/ ! 0 as k ! 1. Let X denote the compact set of y 2 R2 for which
V.y/ D 0. Then, it is easily verified that y.k/ 2 X implies that y.kC1/ 2 X and,
moreover, y.k0/ 2 X implies that y.k/ ! 0 as k ! 1. Then a minor variation
of the classical LaSalle argument implies that the system is globally attractive.

4.8 H2 and H1 low-gain theory

We understand from previous sections that, whenever it is feasible, semi-global
stabilization of linear systems subject to input saturation can be achieved by an
appropriate low-gain state feedback. So far, we presented in this chapter three
distinct methods of low-gain design, namely, direct eigenstructure assignment
method and continuous-timeH2 andH1 algebraic Riccati equation (ARE)-based
methods. Recently, another method of low-gain design was developed based on a
parametric Lyapunov equation [215, 216]. Although these four methods of low-
gain design were proposed and developed independently in literature, it turns out
that they are all rooted in and can be unified under two fundamental control the-
ories, H2 and H1 theory. Our intension here is to show this. Also, all the above
four methods consider only the case where low-gains are demanded by all the
input channels. Hence, they all require the asymptotic null controllability with
bounded input (ANCBC) of the given system. Here, in this section, we introduce
the concept of H2 and H1 low gains in a general setting where only some or all
the input channels are engaged with low gain. Then, we provide explicit existence
conditions and design methods which yield the classical ANCBC condition and
the aforementioned four design methods as special cases.

Let us emphasize that the aforementioned unification via H2 and H1 theory
not only brings the existing low-gain methods together but also reveals the in-
terconnections between them. Also, by making explicit the connection between
the proposed low-gain design methodologies and stabilization of linear systems
subject to saturation, it also gives the necessary and sufficient conditions for semi-
global stabilization of linear systems when only some but not necessarily all the
input channels are subject to saturation; this aspect has never been considered in
the literature. This section follows the recent work of [202] and [201].
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Throughout this section, we consider the following linear time invariant system:

˙ W
(
�x D Ax C Bu

z D Du;
(4.304)

where x 2 Rn, u 2 Rm and z 2 Rm0 . Here, the variable z represents a desired
variable that can be constrained as required. Without loss of generality, we assume
that

D D
�
Im0

0
�
:

This is because for a general D, there always exist non-singular matrices U and
V such that UDV D .Im0

0/.
In what follows, a state feedback gain such as F" parameterized in a parameter

" is called a gain sequence since as " changes, one obtains a sequence of gains.
We define below formally what we mean by H2 and H1 low-gain sequences.

Definition 4.73 For the system ˙ in (4.304), the H2 low-gain sequence is a se-
quence of parameterized static state feedback gains F" for which there exists an
"� such that for any " 2 .0; "�	 the following properties hold:

(i) For continuous-time case, there exists a M such that kF"k 6 M ; no such
bound is needed for discrete-time case.

(ii) AC BF" is Hurwitz stable for continuous time or Schur stable for discrete
time.

(iii) For any x.0/ 2 Rn, the closed-loop system with u D F"x satisfies

lim
"!0

kzk2 D 0:

The H1 low-gain sequence will depend on an a priori given data � ; hence, we
define it as a � -level H1 low-gain sequence to explicitly indicate such a depen-
dence. When we refer to H1 low-gain sequence, we always imply � -level H1
low-gain sequence.

Definition 4.74 For the system ˙ in (4.304) and an arbitrary given E 2 Rn�p,
define an auxiliary system,

˙1 W
(
�x D Ax C BuC E!

z D Du;
(4.305)

and the infimum

�� D inf
F

˚
kDF.sI � A� BF /�1Ek1 j �.AC BF / 2 C�	 (4.306)
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for continuous time, or the infimum

�� D inf
F

˚
kDF.zI �A � BF /�1Ek1 j �.ACBF / 2 C�	 (4.307)

for discrete-time case.
For the system ˙ in (4.304), and for a � > ��, the �-level H1 low-gain

sequence is a sequence of parameterized static state feedback gains F".E; �/ for
which there exists an "� such that for any " 2 .0; "�	 the following properties
hold:

(i) For continuous-time case, there exists a M such that kF".E; �/k 6 M ; no
such bound is needed for discrete-time case.

(ii) A C BF".E; �/ is Hurwitz stable for continuous time or Schur stable for
discrete time.

(iii) Consider a signal ! in L2 space (continuous time) or in `2 space (discrete
time). For the system ˙1 with any x.0/ 2 Rn,

lim
"!0



sup

!
.kzk2

2 � �k!k2
2/

�
D 0:

Remark 4.75 Unlike continuous time, for discrete-time systems, we do not re-
quire boundedness of F" or F".E; �/ as a function of ". However, from the per-
spective of applications, a bounded F" or F".E; �/ is desirable and in fact can
always be constructed.

4.8.1 Properties of H2 and H1 low-gain sequences

The first theorem given below shows the relationship between theH2 andH1-� -
level low-gain sequences.

Theorem 4.76 For the system ˙ in (4.304) with a given E 2 Rn�p and a � >
�� where �� is as defined in (4.306) for continuous-time case or in (4.307) for
discrete-time case, a sequence of feedback gains F".E; �/ is a � -level H1 low-
gain sequence only if it is an H2 low-gain sequence.

Proof : By setting ! D 0 in the definition of H1� -level low-gain sequence, we
immediately conclude this result.
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Remark 4.77 The inverse of Theorem 4.76 is not true. For any given E, we can
always construct a �1-levelH1 low-gain sequence with �1 > � which, according
to Theorem 4.76, is an H2 low-gain sequence but not a � -level H1 low-gain
sequence.

Theorem 4.76 can be visualized by the Venn diagram in Fig. 4.5. The next
theorem shows that for the closed-loop consisting of system ˙ in (4.304) and
either an H2 low-gain controller u D F"x or an H1 low-gain controller u D
F".E; �/x, the magnitude of z and DF" or DF".E; �/ can be made arbitrarily
small.

Theorem 4.78 The closed-loop system comprising (4.304) and either u D F"x

or u D F".E; �/x satisfies the following properties:

(i) lim"!0 kzk1 D 0.

(ii) lim"!0DF" D 0 and lim"!0DF".E; �/ D 0.

H2 low-
gain seq. H∞ -    level

low-gain seq.

Figure 4.5: Venn diagram

Proof : Owing to Theorem 4.76, we only need to prove these two properties for
an H2 low-gain sequence.

Let us first consider the continuous-time case. The fact that kzk2 ! 0 as " ! 0

for any x.0/ implies that

lim
"!0

kF"e
.ACBF"/t k D 0:

Since kF"k is bounded for all " 2 .0; "�	, kA C BF"k is also bounded for all
" 2 .0; "�	. We have

lim
"!0

kF".AC BF"/e
.ACBF"/tk D 0:
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This implies that Tz 2 L2, and moreover, lim"!0 kTzk2 D 0. Applying Cauchy-
Schwartz inequality as

ˇ̌
kz.t/k2 � kz.0/k2

ˇ̌
D 2

ˇ̌
ˇ̌
ˇ̌

tZ

0

Tz.
/0z.
/d


ˇ̌
ˇ̌
ˇ̌

6 2

0

@
tZ

0

kTz.
/k2d


1

A
1=20

@
tZ

0

kz.
/k2d


1

A
1=2

; (4.308)

we find that

kz.0/k2 6 2kTzkŒ0;t �
2 kzkŒ0;t �

2 C kz.t/k2:

Let " be fixed and t ! 1. Since ACBF" is Hurwitz, kz.t/k ! 0. We then have

kz.0/k2 6 2kTzk2kzk2:

Then let " ! 0. We conclude that for any x.0/ 2 Rn,

lim
"!0

kz.0/k2 D lim
"!0

kDF"x.0/k2 D 2 lim
"!0

kTzk2kzk2 D 0;

and hence, lim"!0DF" D 0.
On the other hand, (4.308) also yields

kz.t/k2 6 2kTzkŒ0;t �
2 kzkŒ0;t �

2 C kz.0/k2 6 2kTzk2kzk2 C kz.0/k2:

Therefore,

lim
"!0

kzk1 D 0:

Let us next consider the discrete-time case. Since

kzk1 6 kzk2;

the fact that kzk2 ! 0 as " ! 0 for any x.0/ immediately yields (i). Moreover,

kz.0/k D kDF"x.0/k 6 kzk1:

Therefore, kzk1 ! 0 as " ! 0 for any x.0/ implies that kDF"k ! 0 as " ! 0.
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Remark 4.79 If F" is not bounded for continuous time, the above theorem is not
true in general. Consider the example of a system

8
<̂

:̂

 
Tx1

Tx2

!
D
 
0 1

0 0

! 
x1

x2

!
C
 
0

1

!
u1 C

 
1

0

!
u0

z D u0:

Choosing u0 D "x2 yields

8
<̂

:̂

 
Tx1

Tx2

!
D
 
0 1C "

0 0

! 
x1

x2

!
C
 
0

1

!
u1

z D "x2:

Choose u1 D � 1
.1C"/"2 x1 � 1

"
x2. Define

y1.zt/ D "x1.t/; y2.zt/ D .1C "/"2x2.t/ and zt D 1
"
:

The closed-loop system in the new coordinates and in the new time scale is given
by  

Ty1

Ty2

!
D
 
0 1

�1 �1

! 
y1

y2

!
: (4.309)

We first verify that the controller .u0; u1/ is an H2 low-gain controller. Note that

ky.0/k 6 "kx.0/k;

provided that " is small. There exists a �2 independent of " such that

ky2k2 6 �2ky.0/k 6 "�2kx.0/k:

Then

kzk2
2 D "2kx2k2

2 D "2

1Z

0

y2
2

.zt/

.1C"/2"4 " dzt 6 1
"
ky2k2

2 6 "�2kx.0/k:

Therefore, for any x.0/, we have lim"!0 kzk2 D 0. However, if we fix initial
condition at .x1.0/; x2.0// D .1; 0/, we get

.y1.0/; y2.0// D ."; 0/ and ky2k1 D "�1;

where

�1 WD ky2k1 with

 
y1.0/

y2.0/

!
D
 
1

0

!
:
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Note that �1 is independent of ". Then

kzk1 D " 1
.1C"/"2 "�1 D �1

1C"
;

and kzk1 cannot be reduced to zero.

Theorem 4.78 enables us to connect to the literature and explain why the H2

and � -level H1 sequences as defined in Definitions 4.73 and 4.74 are termed as
“low-gain” sequences. As we alluded to in the beginning of this chapter, the name
low-gain sequence arose or has roots in one of the classical problems, namely, the
problem of semi-globally stabilizing a linear system subject to actuator saturation.
To be precise, let us consider a linear system

�xx D xAxx C xB�.xu/; (4.310)

where the function �.�/ denotes a standard saturation. Let the pair . xA; xB/ be sta-
bilizable and xA has all its eigenvalues in the closed left-half plane for continuous-
time systems or within or on the unit disc for discrete-time systems. Consider a
state feedback controller

xu D xF" xx; (4.311)

where xF" is a parameterized sequence with the parameter as ". If the feedback
sequence xF" satisfies all the three conditions posed in Theorem 4.11 (continuous
time) or in Theorem 4.16 (discrete time), it is known as a “low-gain” feedback
in the context of stabilization of linear systems subject to saturation. In fact, the
state feedback controller xu D xF" xx, where xF" is such a low-gain sequence, semi-
globally stabilizes (4.310) for a small enough value of ". That is, there exists
an "� such that for all " 2 .0; "�/, the closed-loop system comprising (4.310)
and (4.311) is semi-globally stable with a priori given (arbitrarily large) bounded
set ˝ being in the region of attraction, and moreover, the smaller the value of "
the larger can be the a priori prescribed set ˝ .

Having recalled above the classical semi-global stabilization problem of a lin-
ear system with saturating linear feedbacks, we can now emphasize its connection
to Theorem 4.78. As is done in classical semi-global stabilization problem, let us
first assume that all the control channels are subject to saturation. Then, to see the
connection between such a semi-global stabilization problem and Theorem 4.78,
set D D Im and thus take z D u as the constrained variable subject to saturation.
Then, Theorem 4.78 shows that the H2 and � -level H1 sequences as defined in
Definitions 4.73 and 4.74 satisfy all the three conditions posed in Theorems 4.11
and 4.16, and hence, they can appropriately be termed as low-gain sequences. Fur-
thermore, as is evident from Theorem 4.78, they can readily achieve semi-global
stabilization of a linear system where all control inputs are subject to saturation
whenever it is achievable.

We now proceed with the general setting, where we assume without loss of
generality D D .Im0

0/ for some m0 < m. This means, in the scenario of a
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linear system subject to input saturation, all the input channels are not necessarily
constrained, that is, some are constrained and others are not. To be precise, we
can assume the following system configuration:

�
 D A
 C B0�.u0/C B1u1; (4.312)

where 
 2 Rn, u0 2 Rm0 , u1 2 Rm�m0 , and B D .B0 B1/. Some inputs as rep-
resented by u0 are subject to saturation. In other words, we have the constrained
variable z D Du D u0. In this case, properties of Theorem 4.78 imply that for an
initial condition x0 in a given set and a prespecified saturation level�, there exists
an "� such that for all " 2 .0; "�/ the closed-loop system satisfies the following:

kz.t/k D ku0.t/k D kDF"e
.ACBF"/tx0k 6 �

for all t > 0 for continuous-time systems and

kz.k/k D ku0.k/k D kDF".AC BF"/
kx0k 6 �

for all k > 0 for discrete-time systems. This implies that the saturation can be
made inactive for all the time, and hence, the closed-loop system can in fact be
linear. Therefore, the stability of the closed-loop system directly follows from
Definitions 4.73 and 4.74.

4.8.2 Existence of H2 and H1 low-gain sequences

We have the following theorem regarding the existence of H2 and H1 low-gain
sequences.

Theorem 4.80 For the system ˙ in (4.304) with an arbitrarily given E 2 Rn�p

and � > �� where �� is defined in (4.306) for continuous-time systems or in
(4.307) for discrete-time systems, the H2 and � -level H1 low-gain sequences
exist if and only if

(i) .A;B/ is stabilizable.

(ii) .A;B; 0;D/ is at most weakly non-minimum phase.

Remark 4.81 In the special case of D D Im, the invariant zeros of .A;B; 0; I /
coincide with the eigenvalues of A. Hence, condition (ii) requires that all the
eigenvalues of A are in the closed left-half plane for continuous time and within
the closed unit disc for discrete time. In this case, a system that satisfies condi-
tions (i) and (ii) is indeed asymptotically null controllable with bounded control
(ANCBC).
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Proof : Consider the case of H2 low-gain sequence. For continuous time, de-
fine ��

2 D
p

trace.P / where P is the unique semi-stabilizing solution to the
continuous-time linear matrix inequality (CLMI)3

 
A0P C PA PB

B 0P D0D

!
> 0: (4.313)

For discrete time, define ��
2 D

p
trace.P / where P is the unique semi-stabilizing

solution to the discrete-time linear matrix inequality (DLMI)

 
A0PA � P A0PB
B 0PA D0D C B 0PB

!
> 0: (4.314)

It was shown in [133] that H2 low-gain sequence exists if and only if ��
2 D 0,

i.e., P D 0. This is equivalent to the conditions that .A;B/ is stabilizable and

rank

 
sI �A �B
0 D

!
D normrank

 
sI �A �B
0 D

!

for any s 2 CC for continuous time or for any s 2 C˚ for discrete time, i.e.,
.A;B; 0;D/ is at most weakly non-minimum phase.

Consider next the case of � -levelH1 low-gain sequence. For continuous-time
case, it is shown in [161] that given � > ��, the � -levelH1-low-gain sequences
exist if and only if, P D 0 is a semi-stabilizing solution to the continuous-time
quadratic matrix inequality (CQMI)

 
A0P C PAC ��2PEE 0P PB

B 0P D0D

!
> 0:

Similarly, for discrete-time case, following [162], we can easily verify that given
� > ��, the discrete-time � -level H1-low-gain sequences exist if and only if
P D 0 is a semi-stabilizing solution to the discrete algebraic Riccati equation
(DARE)

P D A0PA �
 
B 0PA
E 0PA

!0
G.P /	

 
B 0PA
E 0PA;

!

where

G.P / D
 
D0D 0

0 ���2I

!
C
 
B 0

E 0

!
P
�
B E

�
:

3The definition of a semi-stabilizing solution of a CLMI or a DLMI is given in [133].
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The above properties are equivalent to the conditions that .A;B/ is stabilizable
and that the matrix pencil

 
sI � A �B
0 D

!

does not have any zeros in CC for continuous time or in C˚ for discrete time,
i.e., the system is at most weakly non-minimum phase.

Remark 4.82 As shown in the foregoing discussion, the low-gain sequences a-
chieve semi-global stabilization of linear systems subject to input saturation. Con-
sider the system (4.310). In order to design a low-gain sequence for this system,
one can choose D D Im in (4.304). The above theorem then shows that the
necessary and sufficient conditions for semi-global stabilization are that .A;B/
is stabilizable and all the invariant zeros of .A;B; 0; Im/ are in the closed left-
half plane (continuous time) or in the closed unit disc (discrete time). It is known
that the invariant zeros of .A;B; 0; Im/ coincide with eigenvalues of A. Hence,
condition (ii) implies that all the eigenvalues of A are in the closed left-half plane
(continuous time) or in the closed unit disc (discrete time). Note that in this partic-
ular case of D D Im, conditions (i) and (ii) are well known as classical ANCBC
conditions as discussed in previous sections.

However, in general, all the system inputs may not have to be subject to satu-
ration as given in (4.312). To design a low-gain feedback sequence for this type
of system, we can choose D D .Im0

0/ in (4.304). Then the necessary and suf-
ficient conditions as required in Theorem 4.80 are that .A;B/ is stabilizable and
the invariant zeros of .A;B; 0;D/ are in the closed left-half plane (continuous
time) or in the closed unit disc (discrete time). It can be shown that the invariant
zeros of .A;B; 0;D/ in this case are a subset of eigenvalues of A (see [139]).
Therefore, only some eigenvalues of A have to be constrained while the others
can be completely free. Moreover, Theorem 4.80 identifies those eigenvalues that
need to be restricted. This can be illustrated by the following example. Consider
a linear system with some components of input subject to saturation:˙

�x1

�x2

�x3

�x4

�
D

˙
0 1 0 0

�1 0 0 0

0 0 2 1

1 2 0 3

�˙
x1

x2

x3

x4

�
C

˙
0

1

1

0

�
�.u0/C

˙
0

0

0

1

�
u1: (4.315)

Clearly, .A;B/ is stabilizable. Matrix A has eigenvalues .j;�j; 2; 3/. It can be
identified that .j;�j / are the invariant zeros of .A;B; 0;D/, which are obvi-
ously on the imaginary axis (continuous time) and are also on the unit circle
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(discrete time). Hence, the two conditions in Theorem 4.80 are satisfied while the
other two eigenvalues .2; 4/ are clearly in the right-half plane (continuous time)
and are also outside the unit circle (discrete time).

4.8.3 Design of H2 low-gain sequences

We consider here design methods of H2 low-gain sequences in this subsection
while the next subsection considers the design of H1 low-gain sequences. We
emphasize that for each design, we present different alternate procedures. Thus,
the designer has a choice of choosing one method or the other. The design pro-
cedures we develop here yield the classical low-gain design methods as special
cases.

From the definition, designing an H2 low-gain sequence for the system ˙

in (4.304) is equivalent to designing a bounded H2 suboptimal control for the
following auxiliary system:

˙2

(
�x D Ax C BuC !

z D Du:

Such an H2 suboptimal controller for ˙2 can be constructed using either direct
eigenstructure assignment method or perturbation method (see [82, 133]).

Direct eigenstructure assignment method:
The design basically follows the “H2 suboptimal state feedback gain sequence”
(H2-SOSFGS) algorithm developed in [81, 82] (see also Sect. 4.3). There exists
a non-singular state transformation .x0

a; x
0
c/

0 D T1x such that the system ˙2 can
be transformed into a compact special coordinate basis (SCB) form:

ẋ
2 W

8
<̂

:̂

 
�xa

�xc

!
D
 
Aa 0

? Ac

! 
xa

xc

!
C
 
0

Bc

!
u1 C

 
Ba

Bac

!
u0 C T1!

z D u0;

(4.316)

where xa 2 Rna , xc 2 Rnc , u0 2 Rm0 , uc 2 Rmc , na C nc D n, and m0 C
mc D m and ? denotes matrix of not much interest. The eigenvalues of Aa are
the invariant zeros of the system˙ . When the given system is in the form of SCB,
Theorem 4.80 implies that .Aa; Ba/ is stabilizable and Aa has all its eigenvalues
in the closed left-half plane (continuous time) or in the closed unit disc (discrete
time). Moreover, it follows directly from the properties of the SCB that .Ac ; Bc/

is controllable (see Chap. 3).
In order to use the eigenstructure assignment method, we need to perform an-

other transformation .xx0
a; x

0
c/

0 D T2.x
0
a; x

0
c/

0 such that the system can be trans-
formed further into
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ż
2 W

8
<̂

:̂

 
�xxa

�xc

!
D
 

xAa 0

? Ac

! 
xxa

xc

!
C
 
0

Bc

!
u1 C

 
xBa

Bac

!
u0 C T!

z D u0;

where T D T2T1, xAa and xBa are in the following form:

xAa D

�
A1 A12 � � � A1` 0

0 A2 � � � A2` 0
:::

:::
: : :

:::
:::

0 0 � � � A` 0

0 0 0 0 Ao

�
;

xBa D

�
B1 0 � � � 0 B1;o

0 B2 � � � 0 B2;o

:::
:::

: : :
:::

:::

0 0 � � � B` B`;o

Bo;1 Bo;2 � � � Bo;` Bo

�
; (4.317)

and where Ao is Hurwitz stable for continuous time or Schur stable for discrete
time, .Ai ; Bi / is controllable, and Ai has all its eigenvalues on the imaginary axis
for continuous time or on the unit circle for discrete time. Moreover, .Ai ; Bi / is in
the controllability canonical form (which has the same structure for continuous-
and discrete-time systems) as given by

Ai D

�
0 1 � � � 0 0

0 0
: : :

::: 0
:::

:::
: : : 1

:::

0 0 � � � 0 1

�˛i;0 �˛i;1 � � � �˛i;ni�2 �˛i;ni �1

�
; Bi D

�
0

0
:::

0

1

�
:

(4.318)

For each pair .Ai ; Bi /, let the feedback gain Fi ."/ be such that

�.Ai C BiFi ."// D �" � �.Ai /

for continuous time, or

�.Ai C BiFi ."// D .1 � "/�.Ai /

for discrete time.
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Define

Fa;" D

�
F1."1/ 0 � � � 0 0

0 F2."2/
: : :

:::
:::

:::
: : :

: : : 0 0

0 � � � 0 F`."`/ 0

0 � � � 0 0 0

�
;

where "i D "2`�1.riC1C1/���.r`C1/ for i D 1; : : : ; ` � 1 and "` D " where ri is the
largest algebraic multiplicity of eigenvalues of Ai .

Since .Ac; Bc/ is controllable, we can choose a bounded Fc such that Ac C
BcFc is Hurwitz stable for continuous time or Schur stable for discrete time, and
has a desired set of eigenvalues.

The sequence of feedback gains for the system ˙2 can then be constructed as

F" D
 
Fa;" 0

0 Fc

!
T2T1:

Clearly, F" is bounded and A C BF" is Hurwitz stable for continuous time or
Schur stable for discrete time. It follows from Sect. 4.3 (see also [82]) that F"

also satisfies Property (iii) in Definition 4.73, namely, for any x.0/ 2 Rn,

lim
"!0

kzk2 D 0:

Therefore, F" is an H2 low-gain sequence.

Remark 4.83 In the special case of D D Im, the above design procedure recov-
ers the direct eigenstructure assignment method in the classical low-gain design
developed in Sect. 4.3 for linear systems subject to input saturation.

To highlight the explicit nature of the above method and to illustrate the con-
structive procedure, we design an H2 low-gain sequence for the discrete-time
example given in (4.315). Note that for this system, A and B are already in the
form of (4.317) and (4.318) where

A1 D
 
0 1

�1 0

!
; Ac D

 
2 1

0 3

!
; B1 D

 
0

1

!
; Bc D

 
0

1

!
:

With a bit of algebra, we find

F1."/ D
�
1 � .1� "/2 0

�
:
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It is easy to verify that A1 C B1F1."/ has eigenvalues at ..1 � "/j;�.1 � "/j /.
Choose Fc D .�3:75 �5/ so that Ac C BcFc has eigenvalues at .0:5;�0:5/.
The discrete H2 low-gain sequence can then be constructed as

F" D
 
1 � .1 � "/2 0 0 0

0 0 �3:75 �5

!
:

Perturbation methods
There exists a classical perturbation method that has long been used in H2 sub-
optimal controller design (see, for instance, [133]). The philosophy of pertur-
bation methods used in H2 low-gain design is the same as for H2 suboptimal
controller design, that is, to perturb the data of the system so that an H2 optimal
controller exists for the perturbed system, and then, based on continuity argu-
ment, we can obtain a sequence of H2 low-gains for the original system utilizing
H2 optimal control design techniques developed in [133].

For a given quadruple .A;B; C;D/, let a sequence of perturbed data (A", B",
C", D") be such that A" ! A, B" ! B , xQ" ! xQ0 as " ! 0 and xQ" is
continuous at " D 0 where

xQ0 D
�
C D

�0�
C D

�
; xQ" D

�
C" D"

�0�
C" D"

�
: (4.319)

In order for this perturbation .A"; B"; C";D"/ to be admissible for H2 low-gain
design, it has to satisfy the following conditions:

(i) For continuous-time systems, the solution P";2 to the CLMI,

 
A0

"P";2 C P";2A" P";2B" C C 0
"D"

B 0
"P";2 CD0

"C" D0
"D"

!
> 0; (4.320)

converges to 0. Similarly, for discrete-time systems, the smallest positive
semi-definite semi-stabilizing solution P";2 to the DLMI,

 
C 0

"C" CA"
0P";2A" � P";2 A0

"P";2B" C C 0
"D"

B 0
"P";2A" CD0

"C" D0
"D" C B 0

"P";2B"

!
> 0; (4.321)

converges to 0.

(ii) AnH2 optimal state feedback controller of a static type F" exists for the per-
turbed system characterized by .A"; B"; C";D"; I /. One can construct the F"

using, for instance, the .COGFMDZ/ or .COGFMDZ/nli algorithms for
left-invertible and non-left-invertible continuous-time systems, respectively.
Similarly, we have the .DOGFMDZ/ or .DOGFMDZ/nli algorithm for
discrete-time systems. Further details are in Chap. 7 of [133].
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Moreover, the obtained F" should satisfy the next three conditions:

(iii) F" is bounded for continuous-time systems; although it is desirable, it need
not be bounded for discrete-time systems.

(iv) F" is such that A C BF" is Hurwitz stable for continuous-time systems or
Schur stable for discrete-time systems.

(v) F" satisfies that k.C CDF"/.sI �A � BF"/
�1k2 ! 0 as " ! 0.

If .A"; B"; C";D"/ and one of the correspondingly constructed F" satisfy all the
5 conditions stated above, such an F" is an H2 low-gain sequence.

Remark 4.84 Since F" is obtained fromH2 optimal controller design, we imme-
diately see thatA" CB"F" is Hurwitz stable for continuous-time systems or Schur
stable for discrete-time systems, and k.C" CD"F"/.sI �A" � B"F"/

�1k2 ! 0.
But these do not necessarily imply thatACBF" is Hurwitz stable for continuous-
time systems or Schur stable for discrete-time systems, and that k.CCDF"/.sI �
A � BF"/

�1k2 ! 0 as " ! 0 even though the continuity is satisfied.

Specifically in our problem, for the system ˙ in (4.304) characterized by (A,
B , C , D) with C D 0, we can use two perturbation methods to design an H2

low-gain sequence.

Perturbation method I: The classical perturbations used in H2 suboptimal con-
trol are of the form .A;B; C";D"/ where C" andD" are such that .A;B; C";D"/

has no zero structure (that is, neither invariant zeros nor infinite zeros), xQ" ! xQ0

as " ! 0, and there exists a ˇ such that

xQ"1
6 xQ"2

; for 0 6 "1 6 "2 6 ˇ: (4.322)

This leads to a perturbed system

˙"
2 W
(
�x D Ax C BuC w

z" D C"x CD"u:

For this perturbation, we have:

� Since C" and D" satisfy (4.322), condition (i) follows from Theorems 4.103
and 4.105 in Appendix 4.D.

� Since the quadruple .A;B; C";D"/ does not have zero structures (that is, nei-
ther invariant zeros nor infinite zeros), condition (ii) follows from Theorem
4.101 in Appendix 4.D.

� Since we do not perturb A and B , condition (iv) is obvious.
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� Since u D F"x is an H2 optimal state feedback for the perturbed system and
P";2 ! 0, we have k.C" C D"F"/.sI � A � BF"/

�1k2 ! 0. Then, (4.322)
implies that

k.C CDF"/.sI � A� BF"/
�1k2 6 k.C" CD"F"/.sI � A� BF"/

�1k2:

Therefore, k.C CDF"/.sI � A� BF"/
�1k2 ! 0 as " ! 0.

We find that conditions (i), (ii), (iv), and (v) are always satisfied by this type
of perturbation. It remains to verify condition (iii). We note that since we can
select C D 0 in our problem, we can always find a .C";D"/ such that a bounded
F" can be constructed following .COGFMDZ/ or .COGFMDZ/nli algorithm
for continuous-time systems or .DOGFMDZ/ or .DOGFMDZ/nli algorithm
for discrete-time systems [133]. In what follows, we give two examples for this
type of perturbation which recover, in the special case of D D Im, the standard
H2-ARE low-gain design for linear systems subject to input saturation.

Example 1. Consider the perturbed system ˙"
2 defined earlier where

C" D

�
0

0p
Q"

�
; D" D

�
D

"I

0

�
;

and Q" 2 Rn�n is such that

Q" > 0 and lim
"!0

Q" D 0: (4.323)

Clearly, .A;B; C";D"/ does not have any zero structure (that is, neither invariant
zeros nor infinite zeros), and .C";D"/ satisfies (4.322). Hence, we only need to
check condition (iii) for continuous-time systems. For such systems, define the
H2 optimal static state feedback for the perturbed system as

F" D �.D0
"D"/

�1B 0X";2;

where X";2 is the positive definite solution of H2 CARE:

A0X";2 CX";2ACQ" � X";2B
0.D0

"D"/
�1BX";2 D 0: (4.324)

Although we do not need boundedness of F" for discrete-time systems, we can
similarly define the H2 optimal static state feedback for the perturbed system as

F" D �.B 0X";2B CD0
"D"/

�1B 0X";2A;

where X";2 is the positive definite solution of H2 DARE:

X";2 D A0X";2ACQ" � A0BX";2.B
0X";2B CD0

"D"/
�1X";2B

0A: (4.325)

When m0 D m, that is, D D Im, F" is bounded for " 2 Œ0; 1	 and hence is
an H2 low-gain sequence. Moreover, it recovers the standard H2-ARE-based
low-gain design for linear systems subject to input saturation as discussed in
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Sect. 4.4. However, whenm0 < m, the boundedness of F" needs to be proved for
continuous-time systems. In the next example, we present an alternative perturba-
tion of .C";D"/ which automatically generates a bounded F" for anym0 6 m.

Example 2. First, we can transform the system into the form (4.316) with trans-
formation .x0

a; x
0
c/

0 D T1x. Then consider a perturbed system based on (4.316) as

ẋ"
2;I W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

 
�xa

�xc

!
D
 
Aa 0

? Ac

! 
xa

xc

!
C
 
0

Bc

!
uc C

 
Ba

Bac

!
u0 C T1!

 
z0

z";1

!
D
 

0 0p
Q" 0

! 
xa

xc

!
C
 
Im0

0

0 0

! 
u0

uc

!
;

where Q" satisfies (4.323). In this case,

C" D
 

0 0p
Q" 0

!
; D" D

 
Im0

0

0 0

!
:

The perturbed system does not have zero structure (that is, neither invariant zeros
nor infinite zeros) and .C";D"/ satisfies (4.322). We proceed to check condi-
tion (iii).

For continuous-time systems, define the H2 optimal static state feedback for
the perturbed system as

F" D
 

�B 0
aX";2 0

0 Fc

!
T1;

where X";2 is the positive definite solution of H2 CARE:

A0
aX";2 CX";2Aa CQ" � X";1BaB

0
aX";2 D 0;

and where Fc is bounded such that Ac C BcFc is Hurwitz stable. Although we
do not need boundedness of F" for discrete-time systems, we can similarly define
the H2 optimal static state feedback for the perturbed system as

F" D
 

�.I CB 0
aX";2Ba/

�1B 0
aX";2Aa 0

0 Fc

!
T1;

where X";2 is the positive definite solution of H2 DARE:

X";2 D A0
aX";2Aa CQ" � A0

aX";2Ba.I C B 0
aX";2Ba/

�1B 0
aX";2Aa;

and where Fc is bounded such that Ac C BcFc is Schur stable.
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We note that F" selected above is bounded for any m0 6 m and " 2 Œ0; 1	.
Therefore, it is an H2 low-gain sequence.

When m0 D m, that is when D D Im, the above perturbation method also
recovers the standardH2-ARE low-gain design developed in Sect. 4.4.

Perturbation method II for continuous-time systems: In perturbation method
I, we utilize fictitious outputs to remove zero dynamics completely. However, we
can also directly perturb system dynamics to move those invariant zeros on the
imaginary axis without adding fictitious outputs. Consider a perturbation (A", B",
0, D") which leads to the following perturbed system:

ẋ"
2;II W

(
�xx D A"xx C B"uC !

xz D D"u;
(4.326)

where

A" D .1C "/A; B" D .1C "/B; D" D .1C "/D;

and " small enough such that ..1C "/A; .1C "/B/ is stabilizable. For the sake of
clarity, we focus on this particular choice of perturbation. The conditions required
for perturbation can be verified as follows:

� Since .A"; B; 0;D/ always has the same normal rank as that of .A;B; 0;D/,
condition (i) follows from Theorem 4.102 in Appendix 4.D.

� Since .A"; B; 0;D/ does not have any invariant zeros on the imaginary axis
and has no infinite zeros, condition (ii) follows from Theorem 4.101 in
Appendix 4.C.

� Note that

DF"e
.ACBF"C "

2
I/t D e

"
2

t
DF"e

.ACBF"/t :

By the definition of H2 norm, this implies that

kDF".sI � A� BF"/k2 6 kDF".sI �A � "
2
I � BF"/k2:

Therefore, kDF".sI �A�BF"/k2 ! 0 if kDF".sI �A� "
2
I �BF"/k2 ! 0.

We find that condition (v) is satisfied.

� Obviously, A C BF is Hurwitz stable if A C BF C "
2
I is Hurwitz stable.

Therefore, condition (iv) is satisfied.

Therefore, the conditions (i), (ii), (iv), and (v) can be satisfied. For this per-
turbation, we can always construct a bounded H2 optimal controller following
.COGFMDZ/nli algorithm. This can be done as follows:
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We first find a non-singular state transformation independent of "�
x�

a

x���
a

xc

�
D T2x

such that the perturbed system can be transformed into its SCB form

ẋ"
2;II W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

�
Tx�
a

Tx���
a

Txc

�
D

�
A�

a C "
2
I 0 0

0 A���
a C "

2
I 0

? ? Ac C "
2
I

��
x�

a

x���
a

xc

�

C

�
0

0

Bc

�
uc C

�
B�

a

B���
a

Bac

�
u0 C E!

z D u0;

where A�
a is Hurwitz stable, the pairs .A���

a ; B
���
a / and .Ac ; Bc/ are controllable,

and the eigenvalues ofA���
a are on the imaginary axis. The eigenvalues of .1C"/A���

a

and .1 C "/A�
a are the invariant zeros of the perturbed system. For a small ",

.1 C "/A�
a is also Hurwitz stable. Let X";2 be the positive definite solution of

CARE:

.A���
a C "

2
I /0X";2 CX";2.A

���
a C "

2
I / �X";2B

���
a B

���0

a X";2 D 0: (4.327)

It is shown in [215] that X";2 strictly decreases to zero as " goes to zero, and
hence, X" is bounded. Choose a bounded Fc such that Ac C BcFc is Hurwitz.
The H2 low-gain sequence F" can then be constructed as

F" D
 
0 �B���0

a X";2 0

0 0 Fc

!
T2:

Obviously, the bounded condition (iii) on F" is satisfied.

Remark 4.85 In the special case when D D Im, the above perturbation method
recovers the parametric Lyapunov approach to low-gain design developed in [215]
for linear systems subject to input saturation.

Perturbation method II for discrete-time systems: As in the case of continuous-
time systems, for clarity, we focus on a particular perturbation as given in the
system (4.326). The conditions required for perturbation can then be verified:

� Since ..1 C "/A; .1 C "/B; 0; .1 C "/D/ has the same normal rank as that of
.A;B; 0;D/, condition (i) follows from Theorems 4.102 and 4.104 in
Appendix.
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� Since ..1C"/A; .1C"/B; 0; .1C"/D/ does not have any invariant zeros on the
unit circle and has no infinite zeros, condition (ii) follows from Theorem 4.101
in Appendix.

� Obviously, any F" for which .1C "/AC .1C "/BF" is Schur stable also yields
that AC BF" is Schur stable. Therefore, condition (iv) is satisfied.

� Note that

.1C "/DF"..1C "/AC .1C "/BF"/
k D .1C "/kC1DF".AC BF"/

k:

By the definition of the H2 norm, this implies that

kDF".zI �A�BF"/k2 6 k.1C "/DF".zI � .1C "/A� .1C "/BF"/k2:

Therefore, kDF".zI �A � BF"/
�1k2 ! 0 if

k.1C "/DF".zI � .1C "/A� .1C "/BF"/
�1k2 ! 0:

We find that condition (v) is satisfied.

Hence, there exists an "� such that for any " 2 .0; "�	, conditions (i), (ii), (iv), and
(v) are satisfied. For this specific perturbation, following the .DOGFMDZ/nli

algorithm, we can directly construct a discrete-time H2 optimal sequence con-
troller. This can be done as follows: the perturbed system can be transformed into
its compact SCB form using a non-singular state transformation. Let

�
x�0

a x���0

a x0
c

�0
D T3x

be such that

ẋ"
2;II W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

�
�xx�

a

�xx���
a

�xxc

�
D .1C "/

�
A�

a 0 0

0 A���
a 0

? ? Ac

��
xx�

a

xx���
a

xxc

�
C T3!

C .1C "/

�
0

0

Bc

�
uc C .1C "/

�
B�

a

B���
a

Bac

�
u0

xz D .1C "/u0;

(4.328)

where A�
a is Schur stable, the pairs .A���

a ; B
���
a / and .Ac ; Bc/ are controllable, and

the eigenvalues of A���
a are on the unit circle. The eigenvalues of .1 C "/A���

a and
.1C"/A�

a are the invariant zeros of the perturbed system. For a small ", .1C"/A�
a

is also Schur stable. Moreover, T3 is independent of ". Let X";2 be the positive
definite solution of DARE,

1
.1C"/2X";2 D A���0

a X";2A
���
a �A���0

a X";2B
���
a .I C B���0

a X"B
���
a /

�1B���0

a X";2A
���
a ;
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and choose a bounded Fc such that Ac CBcFc is Schur stable. The discrete-time
H2 suboptimal controller sequence F" can then be constructed as

F" D
 
0 �.I C B���0

a X";2B
���
a /

�1B���0

a X";2A
���
a 0

0 0 Fc

!
T3:

Clearly, F" is bounded for any " 2 .0; "�	; therefore, condition (iii) is satisfied.
We conclude that F" is an H2 low-gain sequence.

Remark 4.86 In the special case whenD D Im, the above perturbation methods
recover the parametric Lyapunov approach to low-gain design developed in [215]
for linear systems subject to input saturation.

4.8.4 Design of H1 low-gain sequences

We consider here design of � -level H1 low-gain sequences. As in the preceding
subsection, we give here different alternate procedures. The design procedures we
develop here recover the classical H1 ARE low-gain design methods discussed
in Sect. 4.4 as special cases.

The direct eigenstructure assignment method of � -level H1 low-gain design
can be found in [18]. We focus here on designing � -levelH1 low-gain sequences
using perturbation methods.

Perturbation methods
The philosophy of perturbation methods is similar to that in H2 low-gain design.
However, the conditions imposed on perturbations are more restrictive. For the
auxiliary system ˙1 of (4.305), consider a sequence of perturbations (A", B",
C", D", E") which leads to the following perturbed system. Let

˙"1 W
(
�x D A"x C B"uC E"w

z" D C"x CD"u
(4.329)

be such that A" ! A, B" ! B , E" ! E, and xQ" ! xQ0, where xQ" and xQ0 are
defined in (4.319). The quintuple .A"; B"; C";D"; E"/ is admissible for � -level
H1 low-gain design if it satisfies the following conditions:

(i) For continuous-time systems, define

��
" D inf

F

˚
k.C" CD"F /.sI � A" � B"F /

�1E"k1 j

�.A" C B"F / 2 C�g :
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Similarly, for discrete-time systems, define

��
" D inf

F

˚
k.C" CD"F /.zI � A" � B"F /

�1E"k1 j

�.A" C B"F / 2 Cˇ	 :

Given � > �� where �� is defined in (4.306) or (4.307), for a sufficiently
small ", we have ��

" < � .

(ii) Let � > ��
" . For continuous-time systems, the solution P";1 of the CQMI,

�
A0

"P";1 C P";1A" C C 0
"C" C ��2P";1E"E

0
"P";1 P";1B" C C 0

"D"

B 0
"P";1 CD0

"C" D0
"D"

�
> 0;

satisfies P";1 ! 0 as " ! 0.

For discrete-time systems, consider the H1 DARE:

P" D A0
"P"A" C C 0

"C" �
�
B 0

"P"A" CD0
"C"

E 0
"P"A"

�0
G.P"/

	

�
B 0

"P"A" CD0
"C"

E 0
"P"A"

�

with

G.P"/ D
 
D0

"D" 0

0 ���2I

!
C
 
B 0

"

E 0
"

!
P"

�
B" E"

�

E 0
"P"E" CE 0

"P"B".D
0
"D" C B 0

"PB"/
	B 0

"P"E" < �
2I:

The smallest positive semi-definite semi-stabilizing solution P" satisfies the
property that P" ! 0 as " ! 0.

(iii) .A"; B"; C";D"/ does not have invariant zeros on the imaginary axis (con-
tinuous time) or on the unit circle (discrete time). Under this condition, a
� -level H1 suboptimal state feedback F".E; �/ with � > ��."/ for the
perturbed system can be easily constructed using the techniques developed
in [161]. Moreover, such an F".E; �/ should satisfy the next three condi-
tions:

(iv) The F".E; �/ is bounded for continuous-time systems; although it is desir-
able, it need not be bounded for discrete-time systems.

(v) The F".E; �/ is such thatACBF".E; �/ is Hurwitz stable (continuous-time
case) or Schur stable (discrete-time case).
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(vi) Let w 2 L2 for continuous-time systems or w 2 `2 for discrete-time sys-
tems. Then, the closed-loop system comprising ˙1 and u D F".E; �/x

satisfies

lim
"!0



sup
w
.kzk2

2 � �2kwk2
2/

�
D 0:

If .A"; B"; C";D"; E"/ and one of the correspondingly constructed F".E; �/

satisfy all six conditions, then this F".E; �/ is a � -levelH1 low-gain sequence.
In our problem, for a given quintuple .A;B; C;D;E/ with C D 0 and the

given � > 0 satisfying � > ��, two perturbation methods can be used for � -level
H1 low-gain design.

Perturbation method I for continuous-time systems:

Similar to that in H2 low-gain design, the first perturbation is in the form of
.A;B; C";D"; E/ where C" andD" satisfy (4.322). We give two examples.

Example I. Consider a sequence of perturbations .A;B; C";D"; E/ where

C" D

�
0

0p
Q"

�
; D" D

�
D

"I

0

�
;

whereQ" satisfies (4.323). We first verify below that this perturbation is admissi-
ble for H1 low-gain design.

� Suppose we apply any boundedF to the system (4.304) characterized by .A;B;
0;D;E/ such that AC BF is Hurwitz stable. Also, let

�F D kDF.sI � A� BF /�1Ek1:

We then have

.C" CD"F /.sI �A � BF /�1E D

�
DF.sI � A� BF /�1E

"F.sI � A� BF /�1Ep
Q".sI �A � BF /�1E

�
:

Since AC BF is Hurwitz stable, F is bounded, there exists a M such that

�F 6 k.C" CD"F /.sI �A�BF /�1Ek1 6 �F C maxf�max.Q"/; "gM:

This together with (4.323) implies that for a given � , there exists an "� such
that for " 2 .0; "�	, conditions (i) are satisfied.

� Clearly, .A;B; C";D"/ does not have any zero structure (that is, neither invari-
ant zeros nor infinite zeros). One can then design a � -level H1 sub-optimal
feedback F".E; �/ using the techniques developed in [161].
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� It is easy to see that C" and D" satisfy (4.322). Then, condition (ii) follows
from Theorem 4.103 in Appendix 4.D.

� Since we only perturb C and D and F".E; �/ is obtained using H1 optimal
control techniques, condition (v) is obvious.

Therefore, for " 2 .0; "�	, conditions (i), (ii), (iii), (v), and (vi) are all satisfied.
Next, we construct a � -level H1 suboptimal controller using the techniques de-
veloped in [161].

In order to construct F".E; �/, letX";1 be the positive definite solution ofH1
CARE:

A0X";1 CX";1AC C 0
"C" �X";1B 0.D0

"D"/
�1BX";1

C ��2X";1EE 0X";1 D 0:

Then a � -level H1 suboptimal static state feedback can be constructed as

F".E; �/ D �.D0
"D"/

�1B 0X";1:

WhenD D Im, F".E; �/ constructed above is bounded for " 2 .0; "�	. Therefore,
the condition (iv) is satisfied, and F".E; �/ is a � -level H1 low-gain sequence.
Moreover, it recovers the H1 ARE-based low-gain design for semi-global sta-
bilization of linear systems subject to input saturation as discussed in Sect. 4.4.
When D D .Im0

0/ with some m0 < m, the boundedness of F" needs to be
proved. However, we present shortly an alternative perturbation .C";D"/ which
automatically yields a bounded F".E; �/.

Example 2. First, we can transform the system into the form (4.316) with trans-
formation .x0

a; x
0
c/

0 D T1x. Then consider a perturbed system based on (4.316)
as

˙"1;I W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

 
�xa

�xc

!
D
 
Aa 0

? Ac

! 
xa

xc

!
C
 
0

Bc

!
uc C

 
Ba

Bac

!
u0 C

 
Ea

Ec

!
!

z" D
 
z0

z";1

!
D
 

0 0p
Q" 0

! 
xa

xc

!
C
 
Im0

0

0 0

! 
u0

uc

!
;

where Q" satisfies (4.323). For the same reasons as argued in the previous exam-
ple, there exists an "� such that for any " 2 .0; "�	, conditions (i), (ii), (iii), (v),
and (vi) are satisfied. It remains to check condition (iv).

Next, we construct a � -level H1 suboptimal feedback F" for the perturbed
system following the design procedure in [161]. Let P";1 be the positive definite
solution of H1 CARE,

A0
aP";1 C P";1Aa CQ" � P";1BaB

0
aP";1 C ��2P";1EaE

0
aP";1 D 0;
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and choose a bounded Fc such that Ac C BcFc is Hurwitz. Then, F".E; �/ can
be constructed as

F".E; �/ D
 

�B 0
aP";1 0

0 Fc

!
T1:

Clearly, F".E; �/ is bounded for any " 2 .0; "�	. Therefore, F".E; �/ is a � -level
low-gain sequence.

When D D Im, the above method recovers the H1 ARE-based low-gain
design for semi-global stabilization of linear systems subject to input satura-
tion [181].

Perturbation method II for continuous-time systems: Consider the perturba-
tion .AC "

2
I; B; 0;D/ with " small enough such that .AC "

2
I; B/ is stabilizable.

� Given AC "
2
I CBF Hurwitz stable, we have

kDF.sI � A� BF /�1Ek1 6 kDF.sI � A� "
2
I � BF /�1Ek1:

This implies that conditions (i) and (vi) are satisfied.

� Since .A C "
2
I; B; 0;D/ always have the same normal rank as that of .A;B;

0;D/, condition (ii) follows from Theorem 4.102 in Appendix 4.C.

� Since .A C "
2
I; B; 0;D/ does not have any invariant zeros on the imaginary

axis, condition (iii) is satisfied.

� AC BF is Hurwitz if AC "
2
I C BF is Hurwitz.

Therefore, conditions (i), (ii), (iii), (v), and (vi) are satisfied for a sufficiently
small ". Moreover, one can always design a bounded � -level H1 state feedback
according to [161] as follows.

There exists a non-singular state transformation independent of "�
x�

a

x0
a

xc

�
D T2x

such that the transformed system is in the SCB form,

ẋ"1;II W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

�
Tx�
a

Tx0
a

Txc

�
D

�
A�

a C "
2
I 0 0

0 A0
a C "

2
I 0

? ? Ac C "
2
I

��
x�

a

x0
a

xc

�

C

�
0

0

Bc

�
uc C

�
B�

a

B0
a

Bac

�
u0 C

�
E�

a

E0
a

Ec

�
!

z D u0;
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where A�
a is Hurwitz, .Ac ; Bc/ is controllable, and .A0

a; Ba
0/ is controllable. For

a sufficiently small ", A�
a C "

2
I is Hurwitz as well. Let X";1 be the positive

definite solution of H1 CARE:

.A0
a C "

2
I /0X";1 CX";1.A0

a C "
2
I / �X";1B0

a .B
0
a /

0X";1
C ��2X";1E0

a.E
0
a/

0X";1 D 0:

Let Fc be bounded and such that Ac C BcFc is Hurwitz, and the � -level H1
suboptimal controller is given by

F".E; �/ D
 
0 �.B0

a /
0X";1 0

0 0 Fc

!
T2:

Since X";1 is bounded, F".E; �/ is bounded. Therefore, F".E; �/ is a � -level
H1 low-gain sequence.

Perturbation method I for discrete-time systems: Similar to the discrete-time
H2 low-gain design, the first class of perturbations for system ˙1 in (4.305) is
in the form of .A;B; C";D"; E/ where C" and D" satisfy (4.322). We give two
examples.

Example 1:

One classical perturbation for system ˙1 which is widely used in the literature
is .A;B; C";D"; E/, where

C" D

�
0

0p
Q"

�
; D" D

�
D

"I

0

�
;

andQ" satisfies (4.323). We first verify below that this perturbation is admissible
for H1 low-gain design:

� Condition (i) is proved in the proof of Theorem 4.105 in Appendix.

� It is easy to see that C" andD" satisfy (4.322). Then, the condition (ii) follows
from Theorem 4.105 in Appendix.

� Clearly, .A;B; C";D"/ does not have invariant zeros. One can then design a
discrete-time � -level H1 suboptimal feedback F".E; �/ using the techniques
developed in [161].

� Since we only perturb C and D and F".E; �/ is obtained using H1 optimal
control techniques, condition (vi ) is obvious.

Therefore, for " 2 .0; "�	, conditions (i), (ii), (iii), and (v) are all satisfied.
Next, we construct a discrete-time � -level H1 suboptimal controller using the
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techniques developed in [161]. Let P" be the unique positive semi-definite semi
stabilizing solution of H1 DARE,

P" D A0P"ACQ" �
 
B 0P"A

E 0P"A

!0
G.P"/

�1

 
B 0P"A

E 0P"A;

!
(4.330)

where

G.P"/ D
 
D0

"D" 0

0 ���2I

!
C
 
B 0

E 0

!
P"

�
B E

�
(4.331)

subject to

E 0
"P"E" C E 0

"P"B".D
0
"D" CB 0

"P"B"/
�1B 0

"P"E" < �
2I:

Then, a discrete-time � -level H1 suboptimal static state feedback can be con-
structed as

F".E; �/ D .B 0P"B CD0
"D" C B 0P"E.�

2I �E 0P"E/
�1E 0P"B/

�1

.B 0P"AC B 0P"E.�
2I �E 0P"E/

�1E 0P"A/:

If we apply this u D F".E; �/x to the original system ˙1 and the perturbed
system˙"1 with this class of perturbation, since our perturbation satisfies (4.322),
we have kzk2 6 kz"k2 for the same initial condition x0 and w. This implies that

sup
w2`2

.kzk2
2 � �2kwk2

2/ 6 sup
w2`2

.kz"k2
2 � �2kwk2

2/ D x0
0P"x0:

The last equality follows from [161]. Since P" ! 0 as " ! 0 according to
Theorem 4.105 of the Appendix, condition (vi) is satisfied. Therefore, F".E; �/

is a discrete-time � -level H1 low-gain sequence. Moreover, it recovers the H1
ARE-based low-gain design for semi-global stabilization of linear system subject
to input saturation introduced in [181].

Example 2:

Similar to that inH2 low-gain sequence design, we can first transform the system
into its SCB form with transformation .x0

a; x
0
c/

0 D T1x:

˙1;I W

8
<̂

:̂

 
�xa

�xc

!
D
 
Aa 0

? Ac

! 
xa

xc

!
C
 
0

Bc

!
uc C

 
Ba

Bac

!
u0C

 
Ea

Ec

!
w

z D u0:
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Then, we perturb the above transformed system. After doing so, we get

˙"1;I W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

 
�xa

�xc

!
D
 
Aa 0

? Ac

! 
xa

xc

!
C
 
0

Bc

!
uc C

 
Ba

Bac

!
u0 C

 
Ea

Ec

!
w

 
z

z";1

!
D
 

0 0p
Q" 0

! 
xa

xc

!
C
 
Im0

0

0 0

! 
u0

uc

!
;

where Q" satisfies (4.323). For the same reasons as argued in the previous exam-
ple, there exists an "� such that for any " 2 .0; "�	, conditions (i), (ii), (iii), and
(v) are all satisfied.

Next we construct a discrete-time � -level H1 suboptimal feedback F" for the
perturbed system following the design procedure in [161]. Let P" be the positive
semi-definite semi-stabilizing solution of H1 DARE

P" D A0
aP"Aa CQ" �

 
B 0

aP"Aa

E 0
aP"Aa

!0
G.P"/

�1

 
B 0

aP"Aa

E 0
aP"Aa;

!

where

G.P"/ D
 
I 0

0 ���2I

!
C
 
B 0

a

E 0
a

!
P"

�
Ba Ea

�

subject to

E 0
aP"Ea C E 0

aP"Ba.I C B 0
aP"Ba/

�1B 0
aP"Ea < �

2I;

and choose Fc such that Ac C BcFc is Schur stable. The F".E; �/ can be con-
structed as

F".E; �/ D
 

xF" 0

0 Fc

!
T1;

where

xF" D .B 0
aP"Ba C I CB 0

aP"Ea.�
2I � E 0

aP"Ea/
�1E 0

aP"Ba/
�1

.B 0
aP"AC B 0

aP"Ea.�
2I �E 0

aP"Ea/
�1E 0

aP"Aa/:

If we apply this constructed feedback u D F".E; �/x to the original system
˙1 and perturbed system˙"1 with this class of perturbation, since our perturba-
tion satisfies (4.322), we have kzk`2

6 kz"k`2
for the same initial condition x0

and w. This implies that

sup
w2`2

.kzk2
`2

� �2kwk2
`2
/ 6 sup

w2`2

.kz"k2
`2

� �2kwk2
`2
/ D xa.0/

0P"xa.0/;
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where xa.0/ is the initial condition of xa dynamics. The last equality follows
from [161]. Since P" ! 0 as " ! 0, according to Theorem 4.105 of the Ap-
pendix, we find that condition (vi ) is satisfied. Therefore, F".E; �/ is a � -level
low-gain sequence.

Perturbation method II for discrete-time systems: We can directly perturb the
system dynamics to move those invariant zeros on the unit circle away from it.
Consider the perturbation .A"; B"; 0;D;E"/ where

A" D .1C "/A; B" D .1C "/B; E" D .1C "/E;

and " small enough such that ..1 C "/A; .1C "/B/ is stabilizable and .1 C "/A

does not have eigenvalues on the unit circle. We focus on this particular choice of
perturbation:

� Given .1 C "/A C .1 C "/BF Schur stable, we note that kDF.zI � A �
BF /�1Ek1 6 k.1C"/DF.zI � .1C"/A� .1C"/BF /�1Ek1. This implies
that condition (i) is satisfied.

� Since ..1C "/A; .1C "/B; 0;D/ always have the same normal rank as that of
.A;B; 0;D/, the condition (ii) follows from Theorem 4.104 in Appendix.

� Since ..1C "/A; .1C "/B; 0;D/ does not have any invariant zeros on the unit
circle, the condition (iii) is satisfied.

� AC BF is Schur stable if .1C "/AC .1C "/BF is Schur stable.

Therefore, conditions (i), (ii), (iii), and (v) are satisfied for a sufficiently small
". Moreover, one can always design a bounded discrete-time � -level H1 state
feedback according to [161] as follows:

The perturbed system can be transformed into its compact SCB form using a

non-singular state transformation. Let
�
x�0

a x���0

a x0
c

�0
D T3x is such that

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

�
�xx�

a

�xx���
a

�xxc

�
D .1C "/

�
A�

a 0 0

0 A���
a 0

? ? Ac

��
xx�

a

xx���
a

xxc

�
C .1C "/

�
0

0

Bc

�
uc

C.1C "/

�
B�

a

B���
a

Bac

�
u0 C .1C "/

�
E�

a

E���
a

Ec

�
w

xz D u0;

where A�
a is Schur stable, .Ac ; Bc/ is controllable, .A���

a ; B
���
a / is controllable, and

A���
a has all its eigenvalues on the unit circle. The eigenvalues of .1 C "/A���

a and
.1C "/A�

a are the invariant zeros of the perturbed system. For a sufficiently small
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", .1C "/A�
a is also Schur stable. Moreover, T3 is independent of ". Let P";1 be

the positive semi-definite semi-stabilizing solution of H1 DARE,

1
.1C"/2P";1 D A���0

a P";1A���
a �

 
B���0

a P";1A���
a

E���0

a P";1A���
a

!0
G.P";1/�1

 
B���0

a P";1A���
a

E���0

a P";1A���
a

!
;

(4.332)

where

G.P";1/ D
 

1
.1C"/2 I 0

0 � ��2

.1C"/2 I

!
C
 
B���0

a

E���0

a

!
P";1

�
B���

a E���
a

�
:

Let Fc be bounded and such that Ac CBcFc is Schur stable, and the � -levelH1
suboptimal controller is given by

F".E; �/ D
 
0 xF" 0

0 0 Fc

!
T3;

where

xF" D H�1
"

h
B���0

a P";1A���
a C B���0

a P";1E���
a .�

2I �E���0

a P";1E���
a /

�1E���0

a P";1A���
a

i

and

H" D B���0

a P";1B���
a C I C B���0

a P";1E���
a .�

2I � E���0

a P";1E���
a /

�1E���0

a P";1B���
a :

Since P";1 is bounded, F".E; �/ is bounded. Therefore, F".E; �/ is a discrete-
time � -levelH1 low-gain sequence as discussed in detail below.

Note that if we apply u D F".E; �/ to the original system ˙1 and perturbed
system ˙"1 with this perturbation data, we have, for the same initial condition
and w, z".k/ D .1C "/kz.k/, and hence, kzk2 6 kz"k2. Therefore,

sup
w2`2

.kzk2
2 � �2kwk2

2/ 6 sup
w2`2

.kxzk2
2 � �2kwk2

2/ D x���0

a .0/P"x
���
a .0/:

The last inequality follows from [161]. Since P" ! 0 as " ! 0, according to
Theorem 4.102 of the Appendix, we find that condition (vi) is satisfied. Therefore,
F".E; �/ is a discrete-time � -level H1 low-gain sequence.

4.8.5 Low-gain and delay

Low-gain methodology can also be used to enhance the tolerance of delay in
feedback loop even in the presence of saturation. This is what is pursued here.
We note that, in recent years, time-delayed systems have been greeted with great
enthusiasm from researchers in recognition of their theoretical and applied impor-
tance [118]. Many control problems have been extensively studied, among which
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stability and stabilization are of particular interest (see, for instance, [24, 37, 43,
59, 106, 107] and reference therein). When both actuator saturation and input
time-delay are present, controller design can be challenging. What is worse, the
precise knowledge of delay is not available in most circumstances while only an
approximation, usually an upper bound, is known. In this case, [97] studied the
global asymptotic stabilization for chains of integrators using nested-saturation-
type controller originally developed by [180]. This result was later on extended to
a class of nonlinear feedforward systems by [96]. Chains of integrators were also
studied by [100]. A linear low-gain state feedback was constructed to achieve the
semi-global stabilization for integrator chains with input saturation and unknown
input delay that has a known upper bound which can be arbitrarily large. A dif-
ferent low-gain design based on the parametric Lyapunov equation was used by
[217] to prove a similar result for a broader class of critically unstable systems
with eigenvalues on the imaginary axis being zero. Both state and measurement
feedback were developed. However, in the measurement feedback case, delays
have to be known by the observer.

We investigate here the stabilization of general linear critically unstable sys-
tems with multiple unknown constant input delays as well as stabilization of such
systems subject to actuator saturation. We give nonconservative upper bounds
on the delays which are inversely proportional to the maximal magnitude of the
open-loop eigenvalues on the imaginary axis. This makes sense because when a
delay is unknown, a system with highly oscillatory behavior is obviously more
difficult to stabilize than a system with dynamics that do not change “direction”
so frequently. As the eigenvalues on imaginary axis move toward the origin, the
upper bounds on delay turn to infinity. For unknown input delays satisfying these
bounds, a linear low-gain state or finite dimensional measurement feedback con-
troller can be designed to achieve semi-global stabilization. The design here relies
only on the upper bounds.

The development in this subsection is based on our recent work [194].
Throughout this subsection, we denote a diagonal matrix as

diagfAigm
iD1 D

�
A1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Am

�
:

Also, Cn
� WD C.Œ�
; 0	;Rn/ denotes the Banach space of all continuous functions

from Œ�
; 0	 ! Rn with norm kxkC D sups2Œ��;0� kx.s/k.
Consider the following system:

8
<̂

:̂

Tx D Ax C
Pm

iD1Bi�Œui .t � 
i /	;

y D Cx;

x.�/ D �.�/; � 2 Œ�x
 ; 0	;
(4.333)
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where x 2 Rn, ui 2 R, y 2 Rp, � 2 Cnx� . Each input ui has a delay 
i 2 Œ0; x
i 	

and x
 D max x
i .
We formulate next formally two semi-global stabilization problems, one with

state feedback and another with observer-based measurement feedback:

Problem 4.87 The semi-global asymptotic stabilization via state feedback prob-
lem for system (4.333) is to find, if possible, a set of x
i > 0 and in addition
to find, for any a priori given bounded set of initial conditions W � Cn

x� with
x
 D maxfx
ig, a linear state feedback controller u D Fx independent of specific
delay such that the zero solution of the closed-loop system is locally asymptoti-
cally stable for any 
i 2 Œ0; x
i 	 with W contained in its domain of attraction, i.e.,
the following properties hold for all 
i 2 Œ0; x
i 	, i D 1; :::; m:

(i) For all " > 0, there exists a ı > 0 such that for all � 2 Cnx� which satisfy
k�kC 6 ı we have kx.t/k 6 " for all t > 0.

(ii) For all � 2 W , we have that x.t/ ! 0 as t ! 1.

Problem 4.88 The semi-global asymptotic stabilization via measurement feed-
back problem for system (4.337) is to find, if possible, a set of x
i > 0, a positive
integer q > 0, and in addition, for any a priori given bounded set W � C

nCq
x� with

x
 D maxfx
ig, to find a dynamic measurement feedback controller independent of
delay, 8

<̂

:̂

T� D Ak�C Bky

u D Ck�CDky

�.�/ D  .�/; 8� 2 Œ�x
 ; 0	;

where �.t/ 2 Rq and  2 C
q
x� such that the zero solution of the closed-loop

system is locally asymptotically stable for all 
i 2 Œ0; 
i 	 with W contained in its
domain of attraction, i.e., the following properties hold for all 
i 2 Œ0; x
i 	:

(i) For all " > 0, there exists a ı > 0 such that for all � 2 Cn
x� and 2 C

q
x� which

satisfy k�kC 6 ı and k kC 6 ı, we have kx.t/k 6 " for all t > 0.

(ii) For all .�;  / 2 W , we have that x.t/ ! 0 and �.t/ ! 0 as t ! 1.

The above two problems are cast in a semi-global setting where the bounded set
of initial conditions W is arbitrarily prescribed a priori. The same problems can
be set in the global setting by considering the set W as the entire Banach space
Cnx� for Problem 4.87 and C

nCq
x� for Problem 4.88.

If 
i D 0, i D 1; :::; m, it is well known that the semi-global stabilization
problem is solvable only if system (4.337) is asymptotically null controllable with
bounded control (ANCBC), i.e., the following assumption holds:
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Assumption 4.89 .A;B/ is stabilizable with B D ŒB1 � � �Bm	 and A has all its
eigenvalues in the closed left-half plane.

Moreover, for stabilization via measurement feedback, the next assumption is
also necessary.

Assumption 4.90 .A; C / is detectable.

We assume throughout that the above assumptions hold.

Low-gain design:
Here, we utilize H2 ARE-based design as discussed in Sect. 4.4.1. Assume that
.A;B/ is stabilizable and A has all its eigenvalues in the closed left-half plane.
For " 2 .0; 1	, let P" be the solution of algebraic Riccati equation

A0P" C P"A � P"BB
0P" C "I D 0: (4.334)

The low-gain state feedback can be constructed as

u D F" D �B 0P"x: (4.335)

An observer-based low-gain feedback controller which we refer to as a low-gain
compensator can be realized as follows:

(
T� D A�C BF"�CK.y � C�/
u D F"�;

(4.336)

whereK is chosen such that A�KC is Hurwitz stable. As before, the " is called
a low-gain parameter. With a properly chosen ", the low-gain feedback (4.335)
and low-gain compensator (4.336) solve Problems 4.87 and 4.88, respectively.
To prove this, we will proceed in two steps: First, we will show that our con-
trollers globally asymptotically stabilize (4.333) without saturation and provide
us with a nonconservative input-delay tolerance. Then, we will prove that our
controllers semi-globally asymptotically stabilize the system (4.333) where satu-
ration is present by selecting the low-gain parameter differently.

As said above, we first consider the case when input saturation is not present.
That is, we consider the system

8
<̂

:̂

Tx D Ax C
Pm

iD1Biui .t � 
i /

y D Cx

x.�/ D �.�/; 8� 2 Œ�x
 ; 0	:
(4.337)

Since the system is linear, it is possible to solve the global asymptotic stabilization
problems for (4.337) using the low-gain feedback (4.335) and the compensator
(4.336).
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In order to present our result, we need the following notation. For each input
ui i D 1; :::; m, define the maximal controllable frequency as

!i
max WD maxf! 2 R j 9v 2 Cn; s.t.A0v D j!v andB 0

iv ¤ 0g: (4.338)

It is clear that j!i
max is the eigenvalue ofA on the imaginary axis with the maximal

magnitude which is at least partially controllable via input channel ui .
Before we present our main result, we present two lemmas which are instru-

mental in proving our results. The first lemma is classical and can be found
in [31, 214].

Lemma 4.91 The system (4.341) is asymptotically stable if and only if

det ŒI �G".j!/�.j!/	 ¤ 0; 8!; 8
i 2 Œ0; x
i 	; (4.339)

where

�.s/ D diagfe��i s � 1gm
iD1:

Assume that A has r eigenvalues on the imaginary axis which are denoted by
j!k , k D 1; : : : ; r . Given

x
i <



3!i
max
; i D 1; : : : ; m; (4.340)

there exists a ı > 0 such that:

(i) The neighborhoods Ek WD .!k � ı; !k C ı/, k D 1; : : : ; r around these
eigenfrequencies are mutually disjoint.

(ii) For any i D 1; : : : ; m we have that !x
i <


3

for ! 2 Ek for any k for which
!k is at least partially controllable through input i .

We have the following lemma whose proof is presented in Appendix 4.E:

Lemma 4.92 The following properties hold:

(i) If j!k is not controllable via input ui for some i , then

lim
"#0

F".j!I � A � BF"/
�1Bei D 0;

uniformly in ! for ! 2 Ek , where ei is the standard basis of Rm and F" is
given by (4.335).

(ii) There exists an "� such that for " 2 .0; "�	,

kF".j!I �A � BF"/
�1Bk 6 1

3
; 8! 2 ˝ WD Rn [r

kD1 Ek:

Now, we are ready to present the following theorem:
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Theorem 4.93 Consider the system (4.337) and assume (4.340) is satisfied. For
any, there exists an "� such that for any " 2 .0; "�	, the closed-loop of (4.337)
and the low-gain feedback (4.335) is globally asymptotically stable for any 
i 2
Œ0; x
i 	, i D 1; : : : ; m.

Proof : Consider the closed-loop system

Tx D Ax C
mX

iD1

BiFix.t � 
i /: (4.341)

Define

G".s/ D F".sI � A � BF"/
�1B:

Note that in general (4.339) has to be satisfied for all ! 2 R. However, due to
the merit of low-gain feedback, we are only concerned with those !’s that are in
a finite number of small intervals.

Thanks to Lemma 4.92, we find that there exists an "1 such that (4.339) is
satisfied if for all k D 1; : : : ; r ,

det
h
I �G".j!/ z�k.j!/

i
¤ 0; 8! 2 Ek;8
i 2 Œ0; x
i 	; (4.342)

provided that " 6 "1 where z�k.s/ is �.s/ with 
i D 0 for all i ’s such that the
eigenvalue j!k is completely uncontrollable via the input channel i .

Let us consider (4.342):

I �G".j!/. zDk.j!/ � I /
DI � .I CG".j!//. zDk.j!/ � I /C . zDk.j!/ � I /
D zDk.j!/ � .I CG".j!//. zDk.j!/ � I /:

First of all, we know that for all " > 0 [2, see Sect. 5.4, p.122],

�minŒI � F".j!I �A/�1B	 > 1; 8!;

and this implies that

�maxŒI CG".j!/	 6 1; 8!: (4.343)

Since z�k.j!/C I is unitary, it is easy to see that given (4.343),

. z�k.j!/C I / � .I CG".j!// z�k.j!/

is non-singular if �max z�k.j!/ < 1. Therefore, we have the condition (4.342)
holding for " 6 "1 if for all k D 1; : : : ; r ,

�max z�k.j!/ < 1; 8! 2 Ek;8
i 2 Œ0; x
i 	: (4.344)

This is guaranteed by our choice of ı and Ek .
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In a special case where A has all its eigenvalues at the origin, the low-gain
feedback can tolerate any bounded delay that can be arbitrarily large.

Corollary 4.94 Suppose A has only zero eigenvalues. For any x
i > 0, i D
1; : : : ; m, there exists an "� such that for " 2 .0; "�	, the closed-loop system
of (4.337) and (4.335) is asymptotically stable for any 
i 2 Œ0; x
i 	, i D 1; : : : ; m.

Before we present our results for the measurement feedback case, we present
the following technical lemma whose proof is presented in Appendix 4.E:

Lemma 4.95 Let G".s/ D F".sI � A� BF"/
�1B . Then

lim
"#0

Gm
" .j!/ D G".j!/

uniformly in !.

The next theorem concerns with the stabilization of (4.337) via measurement
feedback.

Theorem 4.96 Consider the system (4.337). If

x
i <



3!i
max
; i D 1; : : : ; m;

then there exists an "� such that for " 2 .0; "�	, the closed-loop system of (4.337)
and low-gain compensator (4.336) is asymptotically stable for 
i 2 Œ0; x
i 	.

Proof : The closed-loop system is given by
8
ˆ̂̂
<

ˆ̂̂
:

Tx D Ax C
Pm

iD1BiFi�.t � 
i /

T� D .AC BF" CKC/�CKCx

x.�/ D �.�/; 8� 2 Œ�x
 ; 0	
�.�/ D  .�/; 8� 2 Œ�x
 ; 0	:

(4.345)

Define

Gm
" .s/ D F".sI � A� BF"/

�1KC.sI � ACKC/�1B:

Obviously,Gm
" .s/ is stable.

It follows from Lemma 4.91 that the closed-loop system of (4.337) and (4.336)
is global asymptotically stable if and only if

detŒI �Gm
" .j!/ .D.j!/ � I /	 ¤ 0;8! 2 R;8
i 2 Œ0; x
i 	: (4.346)
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If, by Theorem 4.93, there exists an "2 6 "1 such that for all " 2 .0; "2	 we
have (4.339) satisfied with G".j!/, then we can find, with the help of Lemma
4.95, an "3 6 "2 such that (4.346) holds for all " 2 .0; "3	.

We proceed next to extend the above results pertaining to linear systems with-
out actuator saturation to the case where actuator saturation is present, and solve
the semi-global stabilization problems as formulated in Problems 4.87 and 4.88.

We have the following result pertaining to Problem 4.87.

Theorem 4.97 Consider the system (4.333). The semi-global asymptotic stabi-
lization via state feedback problem can be solved by a low-gain feedback of the
form (4.335). Specifically, for a set of positive real numbers

x
i <



3!i
max
; i D 1; : : : ; m; (4.347)

and for any a priori given compact set of initial conditions W � Cn
x� , there ex-

ists an "� such that for any " 2 .0; "�	, the low-gain feedback (4.335) achieves
local asymptotic stability of the closed-loop system with the domain of attraction
containing W for any 
i 2 Œ0; x
i 	, i D 1; : : : ; m.

Proof : The closed-loop system can be written as
(

Tx D Ax C
Pm

iD1Bi�.Fix.t � 
i //

x.�/ D �.�/; 8� 2 Œ�x
 ; 0	:
(4.348)

Suppose x
i ’s satisfy the bound (4.347). Let "1 be such that the closed-loop system
in the absence of saturation, i.e., (4.341), is asymptotically stable. Then, the local
stability of (4.348) for " 6 "1 follows.

It remains to show the attractivity. It is sufficient to prove that for the sys-
tem (4.348), given W , there exists an "� 6 "1 such that for " 2 .0; "�	, we have

kF"x.t � x
/k 6 1;8t > 0:

Then, we can avoid saturation for all t > 0. The closed-loop system becomes
linear, and the attractivity of zero solution is therefore guaranteed with " 6 "1.

Let us define two linear time invariant operators g" and ı with the following
transfer matrices:

G".s/ D F".sI �A � BF"/
�1B

�.s/ D diagfe��i s � 1gm
1D1:

Note that the operators g" and ı have zero initial conditions. If all the delays
satisfy the bound in Theorem 4.93, there exists an "1 such that

�min.I �G".j!/�.j!// > �;8! 2 R;8
i 2 Œ0; x
i 	
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for all " 6 "1 and some � > 0 where � only depends on x
i , provided that " 6 "1.
This implies that

k.I �G".s/�.s//
�1k1 6 1

�
:

Moreover, we already have in (4.343)

�max.I CG".j!// 6 I; 8! 2 R;

which implies that kG".s/k1 6 2.
Note that for t > 0,

Tx D .AC BF"/x C Bı.F"x/C Bv";

where

v".t/ D

�
v1.t/
:::

vm.t/

˘
; vi .t/ D

(
Fi�.t � 
i /; t < 
i ;

0; t > 
i :

Since v".t/ vanishes for t > x
 , � 2 W and F" ! 0, we have for any � 2 W ,
kv"k1 ! 0 and kv"k2 ! 0 as " ! 0.

We have

F"x.t/ D F"e
.ACBF"/tx.0/C .g" ı ı/.F"x/.t/C g".v"/.t/;

and hence,

F"x.t/ D .1 � g" ı ı/�1
h
F"e

.ACBF"/tx.0/C g".v"/.t/
i
: (4.349)

Let w".t/ D g".v"/.t/. By the definition of g", we have

(
T
 D .AC BF"/
 C Bv"; 
.0/ D 0

w" D F"
:

Clearly,

kw"k2 6 kG.s/k1kv"k2 6 2kv"k2:

Hence, for any given initial condition �, kw"k2 ! 0 as " ! 0.
For t 2 Œ0; x
	,

Tw".t/ D F".ACBF"/
.t/C F"Bv".t/

D F".AC BF"/

tZ

0

e.ACBF"/.t�s/Bv".s/ds C F"Bv".t/:
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Since A C BF" is bounded for all " 2 Œ0; 1	 and s 2 Œ0; x
 	 and kv"k1 ! 0 as
" ! 0, we will have

sup
t2Œ0;x��

k Tw".t/k ! 0 as " ! 0: (4.350)

This also implies that

x�Z

0

k Tw.t/k2dt ! 0 as " ! 0: (4.351)

From x
 onward, v".t/ vanishes and

Tw.t/ D F"e
.ACBF"/t .AC BF"/
.x
/:

It is shown by [200] that

1Z

x�
k Tw.t/k2dt ! 0 as " ! 0; (4.352)

provided that 
.x
/ is bounded which is obvious by noticing that


.x
/ D
x�Z

0

e.ACBF /.x��t/Bv".t/dtv

and kv"k1 ! 0 as " ! 0. Combining (4.351) and (4.352), we have shown that
for any given � 2 W , k Twk2 ! 0 as " ! 0.

Now let us go back to (4.349). We get

kF"xk2 6k.1 �G".s/D.s//
�1k1kF"e

.ACBF"/tx.0/k2

C k.1 �G".s/D.s//
�1k1kw"k2

6 1
�

kF"e
.ACBF"/tx.0/k2 C 1

�
kw"k2:

Since for any �, kF"e
.ACBF"/tx.0/k2 ! 0 [200] and v" ! 0 as " ! 0 and � is

independent of " (provided that " is smaller than "1), there exists an "3 such that
for " 2 .0; "3	, we get

kF"xk2 6 1
2
; 8� 2 W : (4.353)

Note that (4.349) also yields

F Tx.t/ D .1 � g" ı ı/�1
h
F"e

.ACBF"/t .AC BF"/x.0/C Tw".t/
i
;
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and thus,

kF" Txk2 6k.1 �G".s/D.s//
�1k1kF"e

.ACBF"/t zxk2

C k.1 �G".s/D.s//
�1k1k Tw"k2

6 1
�

kF"e
.ACBF"/t zxk C 1

�
k Tw"k2

with zx D .AC BF"/x.0/. There exists an "4 such that for " 2 .0; "4	, we have

kF" Txk2 6 1
2
; 8� 2 W : (4.354)

Applying Cauchy-Schwartz inequality, we can prove that for any t > 0,
ˇ̌
kF"x.t/k2 � kF"x.0/k2

ˇ̌
6 2kF" Txk2kF"xk

2
;

and

kF"x.t/k2 6 kF"x.0/k2 C 2kF" Txk2kF"xk
2
: (4.355)

Finally, there exists an "5 such that for " 2 .0; "5	,

kF"x.0/k2 6 kF"�k2
C 6 1

2
; � 2 W : (4.356)

Let

"� D minf"1; : : : ; "5g:

We conclude from (4.353) to (4.356) that for " 2 .0; "�	,

kF"x.t � x
/k 6 1;8t > 0:

The next theorem solves Problem 4.88. However, we first present a required
lemma, the proof of which is presented in Appendix 4.E.

Lemma 4.98 For any 
 2 R2n,

lim
"#0

1Z

0

kF"e
.ACBF"/t
k2dt D 0;

where

A D
 
A BF"

KC AC BF" �KC

!
; B D

 
B

0

!
; F D

�
0 F"

�
:
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Theorem 4.99 Consider the system (4.333). The semi-global asymptotic
stabilization via measurement feedback problem can be solved by the low-gain
compensator (4.336). Specifically, for any a priori given compact set of initial
conditions W � C2nx� and a set of positive real numbers

x
i <



3!i
max
; i D 1; : : : ; m; (4.357)

there exists an "� such that for any " 2 .0; "�	, the low-gain feedback (4.336)
achieves local asymptotic stability of the closed-loop system for any 
i 2 Œ0; x
i 	,
i D 1; : : : ; m with the domain of attraction containing W .

Proof : The closed-loop system can be written as

8
ˆ̂̂
<

ˆ̂̂
:

Tx D Ax C
Pm

iD1Bi�.Fi�.t � 
i //

T� D .AC BF" �KC/�CKCx

x.�/ D �.�/; 8� 2 Œ�x
 ; 0	
�.�/ D  .�/; 8� 2 Œ�x
 ; 0	:

(4.358)

Assume that x
i ’s satisfy the bound (4.357). Let "1 be given by Theorem 4.96 such
that the closed-loop system without saturation is asymptotically stable. Then, the
local stability of (4.358) for " 6 "1 follows.

Define two linear time invariant operators gm
" and ı with Laplace transforms as

Gm
" .s/ D F".sI �A � BF"/

�1KC.sI �ACKC/�1B

�.s/ D diagfe��i s � 1gm
iD1:

From the proof of Theorem 4.96, we know that (4.346) holds for " 6 "1. There
exists a � > 0 such that

�min.I �Gm
" .j!/�.j!// > �;8! 2 R;8
i 2 Œ0; x
i 	; (4.359)

where � is independent of ", provided that " 6 "1. It follows from Lemma 4.95
thatGm

" .j!/ ! G".j!/ uniformly in !, whereG".s/ D F".sI �A�BF"/
�1B .

Hence, given �max.G".j!// 6 2 for any " > 0 and ! 2 R, there exists an "2 such
that

�max.G
m
" .j!// 6 3; 8! 2 R: (4.360)

Given (4.359), (4.360), and Lemma 4.98, we can use exactly the same argument
as in the proof of Theorem 4.97 to prove that there exists an "� 6 "1 such that for
" 2 .0; "�	,

kF"�.t � x
/k 6 1; 8t > 0; .�;  / 2 W :
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Example 4.100 Consider the following example:˙
Tx1

Tx2

Tx3

Tx4

�
D

˙
0 1 1 0

0 0 0 1

0 0 0 1

0 0 �1 0

�˙
x1

x2

x3

x4

�
C

˙
0 0

1 0

0 0

0 1

�
 
u1.t � 
1/

u2.t � 
2/

!

y1 D x1; y2 D x2:

First, we have

!1
max D 0; !2

max D 1:

The upper bounds on delay are given by

x
1 < 1; x
2 <


3
:

In this example, we choose x
1 D 1 and x
2 D 

4

. The initial condition is given by

x.�/ D �.�/ D

˙
2

�2
2

�2

�
; 8� 2 Œ�1; 0	:

We first consider state feedback. Choose " D 0:001. The low-gain state feedback
can be constructed according to (4.335), and this is given by

F" D
 

�0:0281 �0:2319 0:2262 �0:0587
�0:0145 �0:0587 0:0512 �0:1120

!
:

The simulation data is shown in Figs. 4.6 and 4.7.
Let us next consider measurement feedback. The low-gain compensator can be

constructed as in (4.336) with

K D

˙
7 2

�1 7

11 7

�7 9

�
;

and the initial condition of the compensator is given by

�.�/ D  .�/ D

˙
2

2

2

2

�
; 8� 2 Œ�1; 0	:

In this case, " is chosen to be 0:0001. Simulation data is shown in Figs. 4.8 and 4.9.
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Figure 4.8: Evolution of states
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4.A Proof of Lemma 4.70

We first note that (4.292), (4.295), and (4.303) imply that b as defined in (4.301)
satisfies b 2 .�1;� 2

3
/ in the real case and b 2 .�1;� 3

4
/ in the complex case.

For simplicity, we denote y1.ki�1/ and y2.ki�1/ by y1 and y2, respectively,
while y1.ki / and y2.ki / are denoted by zy1 and zy2, respectively. We will prove
the Lyapunov function will decay for two cases:

� y1 > 1 and zy1 2 Œ�1; 1	

� y1 2 Œ�1; 1	 and zy1 2 Œ�1; 1	

Without loss of generality, we only consider y1 > 1 (the other case where y1 6 �1
is completely symmetrical).

Proof of Lemma 4.70 with y1 > 1 : In this case where y1 > 1, we have

zy1 D y1 C ky2 C e1

zy2 D y2 � .k � 2/f1;

where we denote k D ki � ki�1 while

e1 D f2 C .k � 1/.f1 � f2/ � f1

2
.k � 1/.k � 2/: (4.361)

We will prove the Lyapunov function defined in (4.300) will decay if y1 > 1 and
zy1 2 Œ�1; 1	. In doing this, we ignore the other constraints which follow from
the definition of ki , namely, that y1.ki�1 C j / 6 �1 for j D 1; : : : ; k � 1.
However, if the Lyapunov function always decays without these constraints, then
it will definitely still decay when these additional constraints are imposed. We get

Vki
� Vki�1

D zy2
1 C 2b zy1 zy2 � 1

f1

zy2
2 � 2y1 C 1 � 2by2 C 1

f1

y2
2 :

This can be rewritten completely in terms of zy1 and y1. We obtain:

Vki
� Vki�1

D .1C 2 b
k
/zy2

1 C
h
�2 b

k
.zy1 � 1/� 4k�1

k

i
y1

C
h
�2 b

k
e1 C 2.2� k/bf1 C 2 � 2.2C b/ 1

k

i
zy1

� 2e1 C 2.2C b/ 1
k
e1 � .k � 2/2f1 C 1:

We need to show this is negative for all y1 > 1 and all zy1 2 Œ�1; 1	. However, this
is a linear function of y1 whose coefficient is negative, and hence, Vki

� Vki�1
is

maximal for y1 D 1. We find

Vki
� Vki�1

6 .1C 2 b
k
/zy2

1 C
h
�2 b

k
e1 C 2.2� k/bf1 C 2 � 4.1C b/ 1

k

i
zy1

� 2e1 C 2.2C b/ 1
k
e1 C 2 b

k
� 4k�1

k
� .k � 2/2f1 C 1: (4.362)
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The upper bound is a quadratic function which we need to maximize. Clearly,
the sign of the quadratic term is crucial here. For k D 1, the coefficient of the
quadratic term is negative, and the maximum is obtained by setting the derivative
equal to zero (if we ignore that zy1 2 Œ�1; 1	). We obtain for k D 1:

Vki
� Vki�1

6 .1C 2b/zy2
1 C Œ2b.f1 � f2/ � 2.1C 2b/	zy1

C2b C 1 � f1 C 2.1C b/f2:

(4.363)

For the real case (f 2
2 C 4f1 > 0), since b D 2f �1

2 and using (4.292), we obtain
from (4.363) that

Vki
� Vki�1

6 .f 2
2 C 4f1/.4C 2f2 � f1/f

�1
2 =.f2 C 4/ < 0:

For the complex case (f 2
2 C 4f1 < 0), since b D �f2f

�1
1 =2 and again using

(4.292), we obtain from (4.363) that

Vki
� Vki�1

6 .f2 � f1/.f
2

2 C 4f1/f
�1

1 =4 < 0:

Finally, if f 2
2 C4f1 D 0, then it is easily verified from (4.363) that Vki

�Vki�1
< 0

unless y1 D 1 and zy1 D 1 C f2=2. However, it can be seen that in that case,
Vki�1

D 0.
Next, we return to the case where k > 1. In that case, the upper bound (4.362)

has a quadratic term with a positive coefficient. Therefore, the maximum is at-
tained on the boundary, i.e., zy1 D 1 or zy1 D �1. For zy1 D 1 we obtain

Vki
� Vki�1

6 .k � 2/
�
�2bf1 � 4

k
.f2 � f1/ � 3f1 C 2f2

�

6 .k � 2/ Œ�2bf1 � 2.f2 � f1/� 3f1 C 2f2	

6 .2 � k/.2b C 1/f1

6 0;

where we used k > 2 and b < �0:5. Note that we have the upper bound negative
unless k D 2 in which case it is easily verified that the decay equals zero only if
zy1 D 1 and y1 D 1. The latter is inconsistent with k D 2 since we then get

y.ki�1 C 1/ D y1 C y2 C f2 D 1 � 1
2
f1 C f2 > �1;

where we used f2 >
1
2
f1 �2 for the inequality, while we should have y.ki�1 C1/

6 �1. Next, we need to investigate the other boundary where zy1 D �1. We get

Vki
� Vki�1

6 Œ2b � .k � 2/	
�
.3f1 � 2f2/� 4

k
.f1 � f2 � 1/

�
< 0: (4.364)

The first inequality is a simple rewriting of our upper bound for zy1 D �1.
The second inequality is more subtle. It is easy to see that 2b � .k � 2/ < 0.
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If f1 � f2 � 1 6 0, we immediately find that the expression is negative since we
know from (4.295) that 3f1 � 2f2 > 0. On the other hand, if f1 � f2 � 1 > 0,
then we find that

.3f1 � 2f2/� 4
k
.f1 � f2 C 1/ > .3f1 � 2f2/ � 2.f1 � f2 � 1/ D f1 C 2 > 0;

and the inequality (4.364) is satisfied. The fact that f1 > �2 follows from (4.292)
and (4.295).

Next, we need to study case 2 where

y1 2 Œ�1; 1	 and zy1 2 Œ�1; 1	: (4.365)

The proof is split into two cases: the real case where f 2
2 C 4f1 > 0 and the

complex case where f 2
2 C 4f1 6 0.

Proof of Lemma 4.70 with y1 2 Œ�1; 1� and f 2
2

C 4f1 > 0 : In this case, we
have

zy1 D y1.ki / D d4y1 C ky2 C e4 (4.366)

zy2 D y2.ki / D f1y1 C y2 � .k � 1/f1; (4.367)

where we denote k D ki � ki�1 and

d4 D 1C f2 C .k � 1/f1 (4.368)

e4 D �.k � 1/
�
f2 � f1 C 1

2
f1k



: (4.369)

Given (4.365), we find that

Vki
� Vki�1

D zy2
1 C 2b zy1 zy2 � 1

f1
zy2

2 � y2
1 � 2by1y2 C 1

f1
y2

2 :

We can eliminate zy2 and y2 from the above expression by using (4.366) and
(4.367):

Vki
� Vki�1

D zy2
1 C 2b zy1

�
f1y1 C 1

k
.zy1 � d4y1 � e4/ � .k � 1/f1

�

� 1
f1

�
f1y1 C 1

k
.zy1 � d4y1 � e4/ � .k � 1/f1

�2 � y2
1 � 2 b

k
y1 Œzy1 � d4y1 � e4	

C 1
k2f1

Œzy1 � d4y1 � e4	
2
: (4.370)

Our objective is now to prove that (4.370) is negative. We first note that for k D 1,
we only need to study the unsaturated linear system, and it is easily verified that
we have

Vki
� Vki�1

< 0 (4.371)
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provided that Vki�1
¤ 0. For k D 2, we will show that (4.370) is negative for all

� 1 6 y1 6 1; �1 6 zy1 6 �1 � .1C f2 � f1/.y1 C 1/� f1; (4.372)

where the upper bound for zy1 follows from the constraint that y1.ki � 1/ 6 �1.
For k > 2, we consider all

� 1 6 y1 6 1; �1 6 zy1 6 �1; (4.373)

and we ignore all other constraints which follow from the definition of ki , namely,
that y1.ki�1 C j / 6 �1 for j D 1; : : : ; k � 1.

The quadratic term in zy1 in (4.370) is equal to

1C 2b 1
k

which is positive for k > 2 since b > �1. Therefore, we know (4.370) is maximal
in a boundary point, i.e.,

zy1 D �1 or zy1 D �1 � .1C f2 � f1/.y1 C 1/� f1

for k D 2 and

zy1 D �1 or zy1 D 1

for k > 2. For the lower bound zy1 D �1, we do not need to distinguish between
k D 2 and k > 2 and we obtain that

Vki
� Vki�1

D 1 � 2bf1 Œy1 � .k � 1/	 � 2b
k
.1C y1/ Œ�1 � d4y1 � e4	

� 2
k
Œy1 � .k � 1/	 Œ�1 � d4y1 � e4	 � f1 Œy1 � .k � 1/	2 � y2

1 ; (4.374)

and we need to show this expression is negative. The expression has the form,

xay2
1 C xby1 C xc: (4.375)

Here, we have

xa D .2b C 1/f1 � 1C 2
k
.b C 1/.1C f2 � f1/ (4.376)

xb D �.1C b/f1k C Œ.1C b/.3f1 � 2f2/� 2.1C f2 � f1/	

C 4
k
.1C b/.1C f2 � f1/

xc D Œ.1C b/f1 � .3f1 � 2f2/	k C 1 � .2b C 1/f1 C .b C 1/.3f1 � 2f2/

� 2.1C f2 � f1/C 2
k
.1C b/.1C f2 � f1/:

We note that xa < 0. After all, if 1C f2 � f1 6 0, we have

xa 6 .2b C 1/f1 � 1 6 .2b C 1/.� 1
4
f 2

2 /� 1 D �.1
2
f2 C 1/2 < 0;
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where we used that 2b C 1 < 0, the fact that in the real case f 2
2 C 4f1 > 0, and

the definition of b. If 1Cf2 �f1 > 0, then we obtain that xa is maximal for k D 2

and we obtain,

xa 6 bf1 C .1C b/f2 C b 6 b.� 1
4
f 2

2 /C .1C b/f2 C b D 1
2f2
.f2 C 2/2 < 0:

We need to verify that (4.375) is negative for all y1 2 Œ�1; 1	. We first verify it is
negative in the boundary points. We get for y1 D �1 that (4.375) equals

xa � xb C xc D Œ2.1C b/f1 � .3f1 � 2f2/	 k < 0:

In the proof of Lemma 4.70 with y1 > 1, we already established that for y1 D 1,
we have

Vki
� Vki�1

< 0:

Finally, (4.375) may attain its maximum in the interior where

y1 D �
xb
2xa with

ˇ̌
ˇ̌
ˇ

xb
2xa

ˇ̌
ˇ̌
ˇ < 1;

but then, the maximum is less than xc � xa, and we get

xc � xa D Œ.1C b/f1 � .3f1 � 2f2/	 k C .3 � b/f1 � .2b C 4/f2:

Note that the above expression is a linear function of k whose coefficient is neg-
ative since b > �1, f1 < 0, and 3f1 � 2f2 > 0, and hence, it is maximal for all
k > 2 when k D 2, and we get

xc � xa 6 .b � 1/f1 � 4 D 1
f2
Œ2f1 � f2.f1 C 4/	

6 1
f2
Œ2f1 C 2.f1 C 4/	 D 4

f2
.f1 C 2/ < 0:

In other words, for zy1 D �1, we have (4.370) negative.
Remains to check whether (4.370) is negative for the upper bound for zy1.

Unfortunately, here, we have to distinguish between k D 2 and k > 2. For k D 2,
we have

zy1 D �1 � .1C f2 � f1/.y1 C 1/� f1

for the upper bound. We obtain that

Vki
� Vki�1

D yay2
1 C yby1 C yc: (4.377)

Here, we have

ya D .1C 2b/.f1 � f2 � 1/2 � .f1 C 1/C 2.1C b/.f2 C 1/

yb D �2.1C b/.f1 � f2 � 1/.f2 C 2/� 2b.f1 � f2 � 1/.1C f1/

C 2.1C b/C 2.f1 � f2 � 1/
yc D .f2 C 2/2 C 2b.f2 C 2/.f1 C 1/C 2.f1 � f2 � 1/C 2f2 � 3f1:
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Using �4f1 6 f 2
2 , we get

ya 6 .1C 2b/.f1 � f2 � 1/2 C 1
4f2
.f2 C 4/.f2 C 2/2 < 0

since 1C 2b < 0 and �3 < f2 < �2. Therefore, the maximum is attained on the

boundary or in the interior. We show that � yb
2ya > 1. Since ya < 0, it is equivalent

to show that yb C 2ya > 0 and, with some algebra, we get

yb C 2ya D 2.2f2 � f1 C 4/Œ�.f1 � f2 � 1/C 1	.1C 2
f2
/ > 0:

Thus, for case k D 2, Vki
� Vki�1

(4.375) is maximal for all y1 2 Œ�1; 1	 when

y1 D 1, and the maximum is yaCybCyc. Next, we show that this is indeed negative.
We get

yaC yb C yc D 4.f2 � 1
2
f1 C 2/.f2 C 4

f2
� 1

2
f1 C 3/

< 4.f2 � 1
2
f1 C 2/.�1

2
f1 � 1/ < 0:

The following step is to check the upper bound zy D 1 for k > 2. We obtain that

Vki
� Vki�1

D 1C 2bf1 Œy1 � .k � 1/	C 2b
k
.1 � y1/ Œ1 � d4y1 � e4	

� 2
k
Œy1 � .k � 1/	 Œ1� d4y1 � e4	 � f1 Œy1 � .k � 1/	2 � y2

1 ; (4.378)

and we need to show this expression is negative. The expression has the form

zay2
1 C zby1 C zc: (4.379)

Here, we have

za D .2b C 1/f1 � 1C 2
k
.b C 1/.1C f2 � f1/

zb D �.b C 1/kf1 C b.3f1 � 2f2/� 2 � 4f2 C 5f1 C 1
k
.�4b � 4f1 C 4f2/

zc D k.�bf1 C 2f2 � 2f1/C 3C 4f1 � 4f2 C b.2f2 � f1/

C 2
k
.b � 1/.1� f2 C f1/:

Since za D xa and we already showed that xa is negative, za is negative. In the proof
of Lemma 4.70 with y1 > 1, we already established that for y1 D 1, we have

Vki
� Vki�1

< 0:

On the other hand for y1 D �1 we have

za � zb C zc D k.2f2 � f1/C 2b.2f2 � f1/C 4C 8b

k
:

For k D 3, we get

6f2�3f1C12� 4
f2
f1C 16

3f2
D 6f2�.3C 4

f2
/f1C12C 16

3f2
< 6f2�2f1C12C 16

3f2
:
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This upper bound equals

2
3
.2f2 � 3f1/C 1

3f2
.f2 C 2/.14f2 C 8/ < 0:

For k > 3, we have

za � zb C zc < k.2f2 � f1/C 2b.2f2 � f1/C 4

6 4.2f2 � f1/C 2b.2f2 � f1/C 4 D 8f2 � 4.1C 1
f2
/f1 C 12

< 8f2 � 8
3
f1 C 12 < 0:

Remains to show that if the maximum of (4.379) is attained in the interior, i.e.,
y1 2 .�1; 1/, the maximum of (4.379) is also negative. As before, we note that
the maximum is less than zc � za, and we get

zc� za D kŒ�.bC2/f1 C2f2	C3.1�b/f1 C2.b�2/f2 C4C 4
k
Œb.f1 �f2/�1	:

(4.380)
For k D 3, we get

zc � za D �. 28
3f2

C 3/f1 C 2f2 C 4 < 1
9
f1 C 2f2 C 4 < 0;

while for k > 3, we get

zc � za < 4Œ�.b C 2/f1 C 2f2	C 3.1 � b/f1 C 2.b � 2/f2 C 4

D �.7b C 5/f1 C 4.f2 C 2/:

If 7bC 5 < 0, then this expression is negative since f1 < 0 and f2 < �2. On the
other hand, if 7b C 5 > 0, then

� .7b C 5/f1 C 4f2 C 8 < 28
f2

C 4f2 C 18

< 22
f2

C 4f2 C 16 D 2
f2

�
2.f2 C 2/2 C 3



< 0;

since f1 2 .�2; 0/ and f2 2 .�3;�2/. This completes the proof of Lemma 4.70
with y1 2 Œ�1; 1	 and f 2

2 C 4f1 > 0.

Next, we study the complex case:

Proof of Lemma 4.70 with y1 2 Œ�1; 1� and f 2
2

C 4f1 6 0 : We again want to
establish that Vki

�Vki�1
< 0. However, in this case, it is not sufficient to consider

the case zy1 2 Œ�1; 1	 and y1 2 Œ�1; 1	 since in that case the result is simply not
true for f1 and f2 sufficiently small. But recall that we ignored the constraints
that y1.ki�1 C j / 6 �1 for j D 1; : : : ; k� 1. In this case we, actually ignore the
constraint that zy1 < 1 and replace it by the constraint that y1.ki � 1/ < �1. Note
that

y1.ki � 1/ D d3y1 C .k � 1/y2 C e3 6 �1; (4.381)
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where

d3 D 1C f2 C .k � 2/f1

e3 D �.k � 2/Œf2 � f1 C 1
2
f1.k � 1/	:

We also recall (4.366) and (4.367), and we again obtain (4.370). However, this
time, we want to prove that (4.370) is negative for all y1 and zy1 for which y1 2
Œ�1; 1	 and

�1 6 zy1 6 �1 � .1C f2 � f1/
1

k�1
.y1 C 1/� 1

2
f1k;

where the upper bound for zy1 follows from (4.381). We note that (4.370) is a
quadratic function in zy1, and the quadratic term has coefficient 1 C 2b 1

k
which

is positive for k > 2 (note that, like in the real case, for k D 1, we have a linear
system without saturation, and hence, we can trivially verify Vki

� Vki�1
< 0).

Hence, for k > 2, (4.370) attains its maximum on the boundary where either
zy1 D �1 or

zy1 6 �1 � .1C f2 � f1/
1

k�1
.y1 C 1/� 1

2
f1k:

On the boundary zy1 D �1, we have (4.370) equal to

za1y
2
1 C zb1y1 C zc1; (4.382)

where

za1 D .2b C 1/f1 � 1C 2
k
.b C 1/.1C f2 � f1/ (4.383)

zb1 D �kf1.1C b/� 2.1� f1 C f2/C .b C 1/.3f1 � 2f2/

C 4
k
.b C 1/.1C f2 � f1/

zc1 D 2k.f2 � f1/C kbf1 � 1C 4f1 � 4f2 C b.f1 � 2f2/

C 2
k
.1C b/.1C f2 � f1/:

We have

za1 6 .1C b/f2 C bf1 C b D f2

2f1
.f1 � f2 � 1/ < 0;

where we used that za1 is maximal for k D 2 and that in the complex case, where
f 2

2 C 4f1 6 0, we have 2bf1 D �f2 and

1C f2 � f1 > 0: (4.384)

We note that

zb1 � 2za1 D �kf1.1C b/C .1C b/.3f1 � 2f2/ > 0;

since b > �1, f1 < 0, k > 0, and 3f1 � 2f2 > 0. This implies that

� zb1

2za1
> �1;
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which implies that (4.382) attains its maximum for y1 > �1 (recall that y1 2
Œ�1; 1	). Next, we assume that the maximum is attained for y1 2 .�1; 1/ which

implies that y1 D � zb1

2za1
. The maximum is then equals

zc1 �
zb2

1

4za1
< zc1 � za1;

where we used that za1 < 0 and j zb1

2za1
j < 1. In that case, we obtain,

zc1 � za1 D kŒ.1C b/f1 � .3f1 � 2f2/	C Œ�1C 3f1 � 4f2 � b.f1 C 2f2/	;

which is maximal for k D 2, and hence, we obtain

zc1 � za1 6 �1�f1 Cb.f1 �2f2/ D �1�f1 � 1
2
f2 C f2

f1
f2 < �1�f1 Cf2 < 0;

where we used that 2f2 < 3f1. It remains to show that (4.382) is negative if the
maximum is attained for y1 D 1. In that case, the maximum equals

za1 C zb1 C zc1 D k.2f2 � 3f1/ � 4C 10f1 � 8f2 C 2b.3f1 � 2f2/

C 8
k
.1C b/.1C f2 � f1/;

which is maximal for k D 2 and hence less than or equal to

b.4C 2f1/;

which is negative. The above establishes that Vki
� Vki�1

< 0 if it attains its
maximum on the boundary where zy1 D �1. Remains to show that Vki

�Vki�1
< 0

if it attains its maximum on the other boundary where

zy1 D �1 � .1C f2 � f1/
1

k�1
.y1 C 1/� 1

2
f1k:

In that case, we get that Vki
� Vki�1

as given in (4.370) is equals

za2.y1 C 1/2 C zb2.y1 C 1/C zc2; (4.385)

where

za2 D .1C 2b/
�

1
k�1

.1C f2 � f1/
�2 C 2

k�1
.b C 1/.1C f2 � f1/

� .1C f2 � f1/

zb2 D 1
k�1

.1C f2 � f1/ Œ.1C b/f1 C b.3f1 � 2f2/	C .b C 1/.3f1 � 2f2/

C .1C f2 � f1/f1.1C 2b/� .1C b/f1.k � 1/
zc2 D .f2 � f1/

�
�1

4
k2f1 C k.1C 1

2
f2/

�
:
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It is easily verified that in the region of interest, we have that zc2 < 0 since

� 1
4
k2f1 C k.1C 1

2
f2/ > � 1

4
k2f1 C k.1C f1/ D � 1

4
.k� 2/2f1 C kC f1 > 0:

Secondly, for zb2, it is easily verified that the coefficient of 1=.k � 1/ is negative
while the coefficient of .k � 1/ is positive which implies that zb2 is increasing in
k and attains its maximum for k D 2. Moreover, for k D 2, we find that zb2 is
equals

2.b C 1/.f1 � f2/.2C f2 � f1/ > 0:

We therefore note that zb2 > 0 for k > 2. Finally, za2 < 0 in the region of interest
since 1C 2b < 0 while b C 1 > 0 and 1C f2 � f1 > 0 imply

2
k�1

.bC1/.1Cf2�f1/�.1Cf2�f1/ < 2.bC1/.1Cf2�f1/�.1Cf2�f1/ < 0:

We need to show that (4.385) is negative for all y1 2 Œ�1; 1	. We use two bounds:

za2 < xa2 D � 1
2

�
1

k�1
.1C f2 � f1/

�2 � 1
2
.1C f2 � f1/

zb2 < xb2 D .1C f2 � f1/
1

k�1
.f1 � 1

2
f2/C .1C f2 � f1/.f1 � f2/

� 2f2 C 3f1 � .f1 � 1
2
f2/.k � 1/;

where we used that 2bf1 D �f2 and we note that 2f1 � f2 < 0 in our region of
interest.

We get that (4.385) is negative for y1 D �1 since zc2 < 0. For k D 2, it is also
negative for y1 D 1 since

4za2 C 2zb2 C zc2 D 1
f1
.f1 � f2/.f1 � f2 � 2/.f1 � 2f2 � 4/ < 0:

For y1 D 1 and k D 3, we get

4za2 C 2zb2 C zc2 D 1
4
.4 � 2f 2

2 C f2f1 C f 2
1 /� 1

f1
.3f2 C f 2

2 /

< 1
4
.�14 � 6f2 � 2f 2

2 C f2f1 C f 2
1 /

< 1
4
.�14 � 8f2 � 2f 2

2 C f 2
1 /

D 1
4
.f 2

1 � 4/� 1
2
.1C .f2 C 2/2/ < 0;

where in the first inequality we used that 3f1 > 2f2 and f2 > �3 while for k > 3
we have

4za2 C 2zb2 C zc2 6 4xa2 C 2xb2 C zc2;
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and

4xa2 C 2xb2 C zc2 D �2
�

1
k�1

.1C f2 � f1/
�2 � 1

4
k.f2 � f1/.kf1 � 2f2//

C .k � 2/.2f2 � 3f1 C 2.f1 � 1
2
f2/

C 2.1C f2 � f1/
�

1
k�1

.f1 � 1
2
f2/ � .1C f2 � f1/

�
< 0:

Remains to prove that the maximum of (4.385) is also negative if (4.385) attains
its maximum in the interior of the interval .�1; 1/. We get

za2.y1 C 1/2 C zb2.y1 C 1/C zc2 6 zc2 �
zb2

2

4za2

< zc2 C zb2 < zc2 C xb2;

where we used that the maximum is attained in the interior and hence

�
zb2

2za2

< 2:

We find that

zc2 C xb2 D � 1
4
.f2 � f1/.k

2f1 � 2kf2/ � 2k.f1 � 3
4
f2/

C .1C f2 � f1/
1

k�1
.f1 � 1

2
f2/� .f1 � f2/

2 C .5f1 � 7
2
f2/:

The first term is decreasing in k for k > 2 since 2f1 � f2 < 0 and f2 � f1 < 0.
It is then easy to verify that this complete upper bound is decreasing in k and
therefore is maximal for k D 2, and we get

zc2 C xb2 6 .f1 � 1
2
f2/.2 � f1 C f2/ < 0:

This completes the proof.

4.B Proof of Lemma 4.71

Due to the symmetry, we only need to consider the case that y1.ki / 6 �1. The
case where y1.ki / > 1 then follows trivially. Note that the case when y1.ki / 2
Œ�1; 1	 has already been treated by Lemma 4.70. As before, we define

k D ki � ki�1:

By definition, we have k > 1. On the other hand, k D 1 would imply

y1.ki � 1/ > �1; y1.ki / 6 �1; y1.ki C 1/ > 1;

and it is easily verified, given the system dynamics (4.298), that this can only
happen if f1 > 2f2 C 4, which contradicts Jury’s conditions (4.292). Therefore,
we only need to address the case where y1.ki�1 C j / D �1 for j D 1; : : : ; k

with k > 2.
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Proof of Lemma 4.71 for f1 > �1:6 with y1.ki�1/ 2 Œ�1; 1� and f 2
2

C
4f1 > 0 : From the system equations (4.298), we have

y1.ki C 1/ D y1.ki�1 C k C 1/ D d5y1 C .k C 1/y2 C e5;

where d5 D 1Cf2 Ckf1 and e5 D �k.f2 C 1
2
.k�1/f1/. Since y1.ki C1/ > 1,

we get

y2 > 1
kC1

.1 � e5 � d5y1/: (4.386)

As argued before, our Lyapunov candidate has a constant decay, which is given
in (4.302), if we are in �1 for two consecutive time instants; thus, we analyze
Vki

� Vki�1
as

Vki
� Vki�1

D Vki�1C1 � Vki�1
C .k � 1/Œ.2b � 1/f1 C 2f2	

D �2.1C bf1 C f2/y1 � 2.1C b/.1C y1/y2 � 1 � .f1 C 1/y2
1

C .k � 1/Œ.2b � 1/f1 C 2f2	:

Since b > �1 and �1 < y1 < 1, the term �2.1C b/.1C y1/y2 is maximal for
minimal y2, and using the bound (4.386), we get

Vki
� Vki�1

6 �2.1C bf1 C f2/y1 � 2.1C b/.1C y1/
1

kC1
.1 � e5 � d5y1/

� 1 � .f1 C 1/y2
1 C .k � 1/Œ.2b � 1/f1 C 2f2	

D xa3y
2
1 C xb3y1 C xc3; (4.387)

where

xa3 D Œ.2b C 1/f1 � 1	C 2
kC1

.1C b/.f2 � f1 C 1/

xb3 D �.1C b/f1k C .1C b/.4f1 � 2f2/ � 2.1C bf1 C f2/

C 4
kC1

.1C b/.f2 � f1/

xc3 D Œ.1C b/f1 C 2f2 � 3f1	k C 2.1C b/.f1 � f2/� .2b � 1/f1 � 2f2 � 1
C 2

kC1
.1C b/.f2 � f1 � 1/:

Note that xa3 < 0 since it is the same as xa given in (4.376) (with k replaced by
kC1), which has been shown to be negative. Next, let us show that Vki

� Vki�1
<0.

We show that � xb3

2xa3
> 1 for all k > 1, which implies that our bound for

Vki
� Vki�1

for all k > 1 is maximal at y1 D 1. Since xa3 < 0, this implies that
we need to show that xb3 C 2xa3 > 0. We get

xb3 C 2xa3 D �.1C b/f1k C .1C b/.4f1 � 2f2/� 2.1C bf1 C f2/

C 2Œ.1C 2b/f1 � 1	C 4

k C 1
.1C b/.2f2 � 2f1 C 1/:
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Since 2f2 � 2f1 C 1 < 0 and 1C b > 0 in the region of interest, we find

xb3 C 2xa3 > �.1C b/f1 C .1C b/.4f1 � 2f2/� 2.1C bf1 C f2/

C 2Œ.1C 2b/f1 � 1	C 2.1C b/.2f2 � 2f1 C 1/

D .1C b/.2C f1/ > 0;

where we used that bf2 D 2 and 1C b > 0 and f1 > �2. We find that our bound
for Vki

� Vki�1
for all k > 1 is maximal at y1 D 1, and hence,

Vki
� Vki�1

6 xa3 C xb3 C xc3;

and we find

xa3 C xb3 C xc3 D k.2f2 � 3f1/C 4.2f1 � 2f2 � 1/C 4b.f1 � f2/

� 8

k C 1
.1C b/.f1 � f2/: (4.388)

Unfortunately, this is not always negative (choose k D 3), and we conclude that
we cannot guarantee that Vki

� Vki�1
< 0. However, it can be verified that it is

negative, provided that f1 > �1:6.

Proof of Lemma 4.71 for f1 > �1:6 with y1.ki�1/ 2 Œ�1; 1� and f 2
2

C
4f1 6 0 : Similar to the proof for the real case, we obtain (4.387) with the same
expressions for xa3, xb3, and xc3. This time the fact that xa3 < 0 follows from the fact
that it is the same as za1 as defined in (4.383) (with k replaced by k C 1) which
has been shown to be negative.

We first show that the bound in (4.387) is negative for both y1 D �1 and
y1 D 1. We get for y1 D �1,

xa3 � xb3 C xc3 D .f2 � f1/k < 0:

On the other hand, for y1 D 1, we get the same expression (4.388) as in the real
case. Also, in the complex case, this expression is not guaranteed to be negative
(choose k D 4). However, it can be verified that it is negative, provided that
f1 > �1:6, since (4.387) is less than

3.2f2 � 3f1/C 4.2f1 � 2f2 � 1/C 4b.f1 � f2/ D 2f2 � f1 � 4C 4b.f1 � f2/;

which is negative for f1 > �1:6. Remains to check that, if f1 > �1:6, then
(4.387) is also negative if the maximum is attained in the interior. Using the same
arguments as before and the fact that xa3 < 0, we find that the maximum is less
than

xc3 � xa3 D k.3
2
f2 � 2f1/C 2f1 � 3f2 � 2bf2 � 4

k C 1
.1C b/;
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and we find that

xc3 � xa3 < .
3
2
f2 � 2f1/C 2f1 � 3f2 � 2bf2 D b.3f1 � 2f2/ < 0:

Proof of Lemma 4.71 for f1 > �1:6 with y1.ki�1/ > 1 and f 2
2

C 4f1 > 0 :
From the system equations (4.298), we have

y1.ki C 1/ D y1.ki�1 C k C 1/ D y1 C .k C 1/y2 C e2;

where e2 D f2 C k.f1 � f2/ � f1

2
k.k � 1/, and, for ease of presentation, we

denote y1.ki�1/ D y1 and y2.ki�1/ D y2. Since y1.ki C 1/ > 1, we get

y2 > 1
kC1

.1 � y1 � e2/: (4.389)

As noted before, if �.y1/ stays at 1 for two consecutive time instants, our Lya-
punov candidate actually has a constant decay, which is given in (4.302). There-
fore, we obtain

Vki
� Vki�1

D Vki�1C1 � Vki�1
C .k � 1/Œ.2b � 1/f1 C 2f2	

D �4y1 � 4.1C b/y2 � .1C 2b/f1 � 2f2

C .k � 1/Œ.2b � 1/f1 C 2f2	:

Since b > �1, the term �4.1 C b/y2 is maximal for minimal y2, i.e., (4.389);
thus, we get

Vki
� Vki�1

6 Œ�4C 4.1C b/ 1
kC1

	y1 � 4.1C b/ 1
kC1

.1 � c/

� .1C 2b/f1 � 2f2 C .k � 1/Œ.2b � 1/f1 C 2f2	:

Since b < 0, we have �4C 4.1C b/ 1
kC1

< 0 for all k > 2, and hence, the upper
bound is maximal for minimal y1, i.e., y1 D 1. With some algebra, we get

Vki
� Vki�1

6 xa4k C xb4 C xc4
1

kC1
; (4.390)

where

xa4 D 2f2 � 3f1;

xb4 D �4C 4.b C 2/.f1 � f2/

xc4 D 8.1C b/.f2 � f1/:

This is equal to the upper bound found in (4.388), and it can be verified that, in
the real case, this bound can become positive for k D 3 for certain f1 and f2 in
the region of interest. On the other hand, as already noted earlier, this expression
is negative, provided that f1 > �1:6.
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Proof of Lemma 4.71 for f1 > �1:6 with y1.ki�1/ > 1 and f 2
2

C 4f1 6 0 :
We get the same expressions as in the proof for the case f 2

2 C 4f1 > 0 resulting
in (4.390). This is equal to the upper bound found in (4.388), and it can be verified
that, in the complex case, this bound can become positive for k D 4 for certain
f1 and f2 in the region of interest while, as already noted earlier, this expression
is negative, provided that f1 > �1:6.

The problem we have is that the Lyapunov candidate given in (4.300) increases
for some initial conditions y1 and y2, i.e.,

Vki
� Vki�1

D �4y1 � 4.1C b/y2 � .1C 2b/f1 � 2f2

C .k � 1/Œ.2b � 1/f1 C 2f2	 > 0 (4.391)

when y1.ki�1/ > 1, or

Vki
� Vki�1

D �2.1C bf1 C f2/y1 � 2.1C b/.1C y1/y2 � 1� .f1 C 1/y2
1

C .k � 1/Œ.2b � 1/f1 C 2f2	 > 0 (4.392)

when y1.ki�1/ 2 Œ�1; 1	, where k D ki � ki�1. We have verified before that
this can only happen when f1 < �1:6. We will show that if (4.391) is positive,
then V.kiC1/ � V.ki�1/ < 0. We proceed to show this by considering several
scenarios depending on whether or not y1.ki�1/ or y1.kiC1/ is saturated, and we
will use the notation that ` D kiC1 � ki .

Proof of Lemma 4.71 for f1 < �1:6 with y1.ki�1/ and y1.kiC1/ both
saturated : Due to the symmetry, we only need to consider the case where
y1.ki�1/ > 1, and then, �.y1/ switches from C1 to �1, and stays at �1 for
k steps, after which it switches to C1 and stays at C1 for ` steps, and finally
y1.kiC1 C 1/ 6 �1. Clearly, for this case, we need k > 2 and ` > 2.

We obtain

VkiC1
� Vki

D 4y1.ki /C 4.1C b/y2.ki /� .1C 2b/f1 � 2f2

C .` � 1/Œ.2b � 1/f1 C 2f2	: (4.393)

Combining (4.391) and (4.393), we get

VkiC1
� Vki�1

D 4Œky2 C e1	 � 4.1C b/.k � 2/f1 � 2.1C 2b/f1

� 4f2 C .k C ` � 2/Œ.2b � 1/f1 C 2f2	; (4.394)

where e1 is defined in (4.361). We need to show that VkiC1
� Vki�1

< 0 given
(4.391) and the following constraints on y1 and y2:
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4y1.ki�1/ D y1 > 1 (4.395)

y1.ki�1 C 1/ D y1 C y2 C f2 6 �1 (4.396)

:::
:::

y1.ki / D y1 C ky2 C e1 6 �1 (4.397)

y1.ki C 1/ D y1 C .k C 1/y2 C e5 > 1 (4.398)

:::
:::

y1.kiC1/ D y1 C .k C `/y2 C e1 C e6 � .k � 2/ f̀1 > 1 (4.399)

y1.kiC1 C 1/ D y1 C .k C `C 1/y2 C e1 C e7 � .k � 1/.`C 1/f1 6 �1;
(4.400)

where k D ki � ki�1 and ` D kiC1 � ki and

e5 D f2 C k.f1 � f2/� f1

2
k.k � 1/;

e6 D �f2 � .` � 1/.f1 � f2/C f1

2
.` � 1/.` � 2/; (4.401)

e7 D �f2 � `.f1 � f2/C f1

2
`.` � 1/:

We first note that if k D 2, we get

y1.ki�1/ D y1 > 1; y1.ki C 2/ D y1 C 4y2 > 1;

and then
�1 > y1.ki / D y1 C 2y2 C f1 > 1C f1;

which yields a contradiction with f1 > �2. Therefore, we have k > 3. We claim
that ` > k � 4. Since ` > 2, we only need to prove this property for k > 6. We
have:

y1.ki C j / D y1 C .k C j /y2 C .k � j /.f1 � f2/ � f1

2
.k � 1/.k � 2/

C f1

2
.j � 1/.j � 2/� .k � 2/jf1

D kCj �1
k

.y1 C .k C 1/y2/� j �1
k
.y1 C y2/C .k � j /.f1 � f2/

� f1

2
.k � 1/.k � 2/C f1

2
.j � 1/.j � 2/� .k � 2/jf1:

Using the inequalities (4.396) and (4.398) in the above, we get

y1.ki C j / > kCj �1
k

.1 � e5/C j �1
k
.1C f2/C .k � j /.f1 � f2/

� f1

2
.k � 1/.k � 2/C f1

2
.j � 1/.j � 2/� .k � 2/jf1

D kC2j �2
k

� f2 � .2j � 1/.f1 � f2/C 1
2
f1k C 1

2
f1j

2

� 1
2
f1kj C 1

2
f1:
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Note that this lower bound is a concave function in j . Therefore, if this larger
bound is larger than or equal to 1 for j D 1 and j D k � 4, then it is larger than
for all j satisfying 1 6 j 6 k � 4, and this implies that ` > k � 4. For j D 1,
the lower bound is actually equal to 1, while for j D k � 4, we find

y1.ki C k � 4/ > 3k�10
k

C .k � 5/.2f2 � 7
2
f1/:

For f1 < �1:6, we have 2f2 � 7
2
f1 > 0, and hence, this expression is increasing

in k. The minimum is achieved for k D 6, and we get

y1.ki C k � 4/ > 4
3

C 2f2 � 7
2
f1

which is larger than 1 in the critical region. This completes the proof that ` >
k � 4.

Using (4.395) and (4.397) in (4.394), we get

VkiC1
� Vki�1

6 �8 � 4.1C b/.k � 2/f1 � 2.1C 2b/f1 � 4f2

C .k C ` � 2/Œ.2b � 1/f1 C 2f2	:

If we use ` > k, we get

VkiC1
� Vki�1

6 �8 � 4.1C b/.k � 2/f1 � 2.1C 2b/f1 � 4f2

C .2k � 2/Œ.2b � 1/f1 C 2f2	:

D �8C 8f1 � 8f2 C k.�6f1 C 4f2/

< �8 � 4f1

< 0

for k > 2. Therefore, it only remains h D k � ` 2 f1; 2; 3; 4g. Inequality (4.400)
combined with inequality (4.395) yields

.k C `C 1/y2 6 �2C .k � 1/.`C 1/f1 � .e1 C e7/;

and working this out using the definitions of e1 and e7, we get

.2k � hC 1/y2 6 �2C
�
k2 � k C 1 � 1

2
h.hC 1/

�
f1 C .h� 1/f2:

Using this bound in (4.394), we get

VkiC1
� Vki�1

6 �2k2f1 C 4kf1 C hf1 � 2hf2 � 2hbf1

C 4k
2k�hC1

�
�2C

�
k2 � k C 1 � 1

2
h.hC 1/

�
f1 C .h � 1/f2

�
:

Rewriting this equation, we obtain

VkiC1
� Vki�1

6 �4C 2kf1 C .2 � h2/f1 � 2f2 � 2hbf1

C 2h�2
2k�hC1

�
�2C

�
k2 � k C 1 � 1

2
h.hC 1/

�
f1 C .h � 1/f2

�
:
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It is easily verified that this upper bound is negative in the specified region for
h D 1. For h D f2; 3; 4g, we want to show this upper bound is decreasing in k,
and therefore, we differentiate the upper bound with respect to k. This results in

2.h�1/

.2k�hC1/2

h�
4

h�1
C 2



k2f1 � .2C 2h/kf1 C 4C

.2 � 2h/f2 C .h2 C 3h� 4/f1

i
:

This is clearly negative, provided that
�

4
h�1

C 2


k2f1 � .2C 2h/kf1 C 4C .2 � 2h/f2 C .h2 C 3h� 4/f1 (4.402)

is negative. This is a simple quadratic function in k which achieves its maximum
for k D .h � 1/=2 < 3. In our case, we know k D ` C h > 2 C h. Using that
in (4.402), we get

4 � 2.h� 1/f2 C
�
.hC 4/.hC 5/C 36

h� 1

�
f1;

which is easily checked to be negative in the specified region for h D 2; 3; 4. This
proves that our upper bound for VkiC1

� Vki�1
is decreasing in k, and hence, we

only need to verify the worst case when k D hC 2. In that case, we find

VkiC1
� Vki�1

6 1

hC 5

h
�8h� 16C .h2 C 17hC 24/f1

C .2h2 � 6h� 8/f2 � 2.h2 C 5h/f1b
i
:

It is then straightforward to verify that for the three remaining cases h D 2; 3; 4,
we have VkiC1

� Vki�1
negative. This completes the proof.

Proof of Lemma 4.71 for f1 < �1:6 with y1.ki�1/ saturated and y1.kiC1/

unsaturated : Again, due to the symmetry, we only need to consider the case
where y1.ki�1/ > 1, and then, �.y1/ switches from C1 to �1 and stays at �1
for k steps, then it switches to C1 and stays at C1 for ` � 1 steps, and finally
y1.kiC1/ 2 Œ�1; 1	. Clearly, for this case, we need k > 2, and ` > 1.

The arguments used in the case where y1.ki�1/ and y1.kiC1/ are both saturated
immediately imply that we have ` > k � 3 for k > 4. Note that ` D k � 4 in our
case is not possible since in the earlier argument it was shown that y1.ki Ck�4/ >
1 while we currently consider the case that y1.kiC1/ is unsaturated. We claim that
we also have ` 6 k. We first note that the bounds (4.395)–(4.398) are still valid
when y.kiC1/ is unsaturated. However, (4.399) and (4.400) no longer hold, and
instead, we have

y1.kiC1 � 1/ D y1 C .k C ` � 1/y2 C e1 C e8 � .k � 2/.` � 1/f1 > 1

y1.kiC1/ D y1 C .k C `/y2 C e1 C e6 � .k � 2/ f̀1 > �1 (4.403)

y1.kiC1/ D y1 C .k C `/y2 C e1 C e6 � .k � 2/ f̀1 6 1; (4.404)
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where

e8 D �f2 � .` � 2/.f1 � f2/C f1

2
.` � 2/.` � 3/:

Now, if we assume that ` > k, then we have

y1.ki / D y1 C ky2 C e1 6 �1 (4.405)

y1.ki C k/ D y1 C 2ky2 � .k � 2/kf1 > 1 (4.406)

together with (4.395). From (4.406), we obtain

ky2 > 1
2
.1 � y1 C .k � 2/kf1/:

Using this combined with (4.395) in (4.405), we get

1C 1
2
.k � 2/kf1 C e1 6 �1;

which yields

f1 C 1
2
.k � 2/.3f1 � 2f2/ 6 �2:

We obtain a contradiction since k > 2, f1 > �2 and 3f1 � 2f2 > 0, and hence,
we must have ` 6 k. We obtain

VkiC1
� Vki

D .y1.ki /C `y2.ki /C e6/
2

C 2b.y1.ki /C `y2.ki /C e6/Œy2.ki /C .` � 2/f1	

� 2.` � 2/y2.ki /� .` � 2/2f1 C 2y1.ki /C 1C 2by2.ki /;

which yields

VkiC1
� Vki�1

D fy1 C ky2 C e1 C `Œy2 � .k � 2/f1	C e6g2

C 2b fy1 C ky2 C e1 C `Œy2 � .k � 2/f1	C e6g Œy2 C .` � k/f1	

� 2.` � 2/Œy2 � .k � 2/f1	 � .` � 2/2f1

C 2Œy1 C ky2 C e1	C 1C 2bŒy2 � .k � 2/f1	

� 4y1 � 4.1C b/y2 � .1C 2b/f1 � 2f2

C .k � 1/Œ.2b � 1/f1 C 2f2	: (4.407)

We will show that VkiC1
� Vki�1

< 0 for all y1 and y2 satisfying (4.395),
(4.403), and (4.404). By ignoring some of the constraints, we actually prove that
VkiC1

� Vki�1
< 0 for a larger class of y1 and y2.

Note that the coefficient of y2
2 term in (4.407) is .k C `/2 C 2b.k C `/ which

is positive since b > �1 and k C ` > 3. Thus, VkiC1
� Vki�1

is maximal as a
function of y2 if y2 takes a boundary value. Recall that we ignore all constraints
on y1 and y2 except (4.395), (4.403), and (4.404). Hence, a boundary value for
y2 implies that either (4.403) or (4.404) is an equality.
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In case (4.403) is an equality, we get

.2k � h/y2 D �1C .� 1
2
h2 � 1

2
hC k2 � 2k/f1 C hf2 � y1;

where ` D k � h with h 2 f0; 1; 2; 3g. This yields

VkiC1
� Vki�1

D 2h�4b
2k�h

�
�1C .�1

2
h2 � 1

2
hC k2 � 2k/f1 C hf2 � y1

�

C 2 � 2y1 C 2hbf1 � h2f1:

We note that this expression is linear in y1 with a negative coefficient, and hence,
it is maximal for y1 D 1 given (4.395). We obtain

VkiC1
� Vki�1

6 2h�4b
2k�h

�
�2C .�1

2
h2 � 1

2
hC k2 � 2k/f1 C hf2

�

� .h� 2b/if1

6 h�2b
2k�h

�
�4C .2k2 � 2.2C h/k � h/f1 C 2hf2

�
:

The sign of the above upper bound is determined by the sign of

�4C .2k2 � 2.2C h/k � h/f1 C 2hf2:

This expression is decreasing in k given that k > 2 and k > h C 1, and hence,
the maximum is obtained for k D maxf2; h C 1g, and it is then easily verified
that this expression is negative in the region of interest for h 2 f0; 1; 2; 3g which
establishes that

VkiC1
� Vki�1

< 0 (4.408)

if (4.403) is an equality. The only other possible alternative is that (4.404) is an
equality. In that case, we obtain

.2k � h/y2 D 1C .� 1
2
h2 � 1

2
hC k2 � 2k/f1 C hf2 � y1;

where ` D k � h with h 2 f0; 1; 2; 3g. This yields

VkiC1
�Vki�1

D 2�2y1C 2h
2k�h

�
1C .�1

2
h2 � 1

2
hC k2 � 2k/f1 C hf2 � y1

�

� 2hbf1 � h2f1:

We note that this expression is linear in y1 with a negative coefficient, and hence,
it is maximal for y1 D 1 given (4.395). We obtain

VkiC1
� Vki�1

6 2h
2k�h

�
.� 1

2
h2 � 1

2
hC k2 � 2k/f1 C hf2

�
� 2hbf1 � h2f1

6 h
2k�h

�
.2k2 � 2.2b C hC 2/k C .2b � 1/h/f1 C 2hf2

�
:

(4.409)

For h D 0, this establishes that

VkiC1
� Vki�1

6 0: (4.410)
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An equality would imply y1 D 1 and 2y2 D .k � 2/f1 in which case we obtain

y1.ki / D 2.f2 � f1 C 1/� 1C k
2
.3f1 � 2f2/ > f1 C 1 > �1;

where in the first inequality, we used that 3f1 � 2f2 > 0 and k > 2. This yields a
contradiction with (4.397), and hence, we must have a strict inequality in (4.410)
for h D 0.

The sign of the upper bound in (4.409) for h 2 f1; 2; 3g is determined by the
sign of

.2k2 � 2.2b C hC 2/k C .2b � 1/h/f1 C 2hf2:

This expression is decreasing in k given that k > 2 and k > h C 1, and hence,
the maximum is obtained for k D h C 1, and it is then easily verified that for
h 2 f1; 2; 3g, the choice k D hC 1 yields 2f2 � .5C 6b/f1, 4f2 � .8C 8b/f1,
and 6f2 �.11C10b/f1, respectively, which are all negative in the area of interest.
This establishes that

VkiC1
� Vki�1

< 0;

and this completes the proof.

Proof of Lemma 4.71 for f1 < �1:6 with y1.ki�1/ unsaturated and y1.kiC1/

saturated : Clearly, in this case, we have k > 2 and ` > 2. The following
constraints are satisfied:

y1.ki�1/ D y1 2 .�1; 1/ (4.411)

y1.ki�1 C 1/ D .1C f2/y1 C y2 6 �1 (4.412)

:::
:::

y1.ki / D d4y1 C ky2 C e4 6 �1 (4.413)

y1.ki C 1/ D .d4 C f1/y1 C .k C 1/y2 C e4 � .k � 1/f1 � f2 > 1

(4.414)

:::
:::

y1.kiC1/ D y1.ki /C `y2.ki /C e6 > 1 (4.415)

y2.kiC1/ D y2.ki /C .` � 2/f1 (4.416)

y1.kiC1 C 1/ D y1.ki /C `y2.ki /C e6 C y2.ki /C .` � 2/f1 � f2 6 �1:
(4.417)

Notice that y1.ki / and y2.ki / are given in (4.366) and (4.367), respectively, d4

and e4 are defined in (4.368) and (4.369), while e6 is defined in (4.401).
We will show that ` satisfies k � 4 6 ` < k. We first establish that ` > k � 4.

Since ` > 2, we only need to show this property for k > 6.
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Using (4.414) to obtain a lower bound for y2, we get

y1.ki C j / D y1.ki /C jy2.ki /� f2 � .j � 1/.f1 � f2/C f1

2
.j � 1/.j � 2/

> .f1�f2�1/.j �1/
kC1

y1 C .k C j /
�

f1�f2C1
kC1

C f2 � f1 C f1

2
k
�

C e4

� j.k � 1/f1 � f2 � .j � 1/.f1 � f2/C f1

2
.j � 1/.j � 2/:

Note that this lower bound is a concave function in j . Therefore, if this lower
bound is larger than or equal to 1 for j D 1 and j D k � 4, then it is larger than
1 for all j satisfying 1 6 j 6 k � 4, and this implies that ` > k � 4. For j D 1,
the lower bound is actually equal to 1, while for j D k � 4, we find using that
y1 2 .�1; 1/ that

y1.ki Cj / > �
ˇ̌
ˇ .f1�f2�1/.k�5/

kC1

ˇ̌
ˇC 2k�4

kC1
.f1 �f2 C1/�f1.4k�19/Cf2.2k�9/:

If f1 � f2 � 1 > 0, we get

y1.ki C j / > 2.f2 � 2f1/k C 20f1 � 10f2 C 3 � 12
kC1

> 2.f2 � 2f1/C 9
7
> 1;

where we have used that f2 > 2f1 and that k > 6. On the other hand, if f1 �
f2 � 1 < 0, we get

y1.ki C j / > 2.f2 � 2f1/k C 22f1 � 12f2 C 1 � 12.f1�f2/
kC1

> 12
7
.f2 � 2f1/� 2

7
f1 C 1 > 1;

where we have used that 2f1 < f2 < f1 and that k > 6. Next, we establish that
` 6 k. We show this by contradiction. Assume that ` > k, then we have

y1.ki Ck/ D y1.ki /Cky2.ki /�f2 � .k�1/.f1 �f2/C f1

2
.k�1/.k�2/ > 1:

Using this, we obtain

2ky2 > 1�.d4Ckf1/y1�e4Ck.k�1/f1Cf2C.k�1/.f1�f2/� f1

2
.k�1/.k�2/:

Applying this lower bound in (4.413), we get

.1C f2 � f1/y1 C 3.f2 � f1/C 1 � k.2f2 � 3f1/ 6 �2: (4.418)

Now, let us show that we obtain a contradiction from the above equation. Let us
first consider the case 1C f2 � f1 < 0. Since y1 6 1, we obtain

.1C f2 � f1/y1 C 3.f2 � f1/C 1 � k.2f2 � 3f1/

> 2.f1 C 1/C .k � 2/.3f1 � 2f2/ > �2;
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where we used that k > 2, f1 > �2, and 3f1 � 2f2 > 0, and we obtain a
contradiction with (4.418). Next, let us consider the case 1C f2 � f1 > 0. Using
that y1 > �1, we obtain

.1Cf2 �f1/y1 C3.f2 �f1/C1�k.2f2 �3f1/ > f1 C.k�1/.3f1 �2f2/ > �2

because k > 2, f1 > �2, and 3f1 � 2f2 > 0, and we again obtain a contradiction
with (4.418). Therefore, we can conclude that ` < k.

Returning to our Lyapunov candidate, we note that, for this case, we have

VkiC1
� Vki

D 2Œy1.ki /C `y2.ki /C e6	C 2bŒy2.ki /C .` � 2/f1	

� 2.`� 2/y2.ki /� .` � 2/2f1 C 2y1.ki /C 2by2.ki /:

Therefore, together with (4.392), we have

VkiC1
� Vki�1

D 2Œy1.ki /C `y2.ki /C e6	C 2bŒy2.ki /C .` � 2/f1	

� 2.`� 2/y2.ki / � .` � 2/2f1 C 2y1.ki /C 2by2.ki /

� 2.1C bf1 C f2/y1 � 2.1C b/.1C y1/y2 � 1

� .f1 C 1/y2
1 C .k � 1/Œ.2b � 1/f1 C 2f2	:

Note that the coefficient of y2 term is

2.kC`/C2b�2.`�2/C2kC2b�2.1Cb/.1Cy1/ D 4kC2.1Cb/.1�y1/ > 0;

where we have used that b > �1 and y1 < 1. Therefore,VkiC1
�Vki�1

is maximal
for the maximum value of y2.

For the upper bound for y2, we use (4.417) while ignoring all other constraints
except for y1 2 Œ�1; 1	. We note that (4.417) implies

y2 6 �f1y1 C 1
2.2k�hC1/

h
�2.1C f2 � f1/y1 � 2C .2k2 � h � h2/f1

C .4C 2h/f2

i
;

where h D k � ` 2 f1; 2; 3; 4g.
Since we know VkiC1

� Vki�1
is maximal for the maximum value of y2, we

can replace y2 by its upper bound to obtain

VkiC1
� Vki�1

6 a5y
2
1 C b5y1 C c5; (4.419)
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where

a5 D .1C 2b/f1 � 1C 2
2k�hC1

.b C 1/.1C f2 � f1/

b5 D 2.h�1/
2k�hC1

.f1 � f2 � 1/
C 1Cb

2k�hC1

�
2.f1 � f2/� .2k2 � h� h2/f1 � .4C 2h/f2

�

c5 D f1Œ1 � 2b.hC 1/� h2	C 2f2 � 3

C bCh
2k�hC1

Œ�2C .2k2 � h� h2/f1 C .4C 2h/f2	:

We first note that a5 is equal to xa defined in (4.376) with k replaced by 2k �
h C 1 > 3. Therefore, the earlier argument also implies that a5 < 0. The upper
bound (4.419) is a quadratic function in y1. We will show that 2a5 Cb5 > 0. This
implies that the upper bound given y1 2 Œ�1; 1	 takes it maximum for y1 D 1.
On the other hand, we have already shown that VkiC1

� Vki�1
only subject to

y1.kiC1 C 1/ 6 �1 and y1 > 1 is negative in an earlier part of the proof of
Lemma (4.71) for the case f1 < �1:6 with y1.ki�1/ saturated and y1.kiC1/

unsaturated. Remains to establish that 2a5 C b5 > 0. We have

2a5 C b5 D 1
2k�hC1

�
�2.1C b/f1.k � 1/2 C 4.bf1 � 1/k

C f1

�
.1C b/.h2 � 3hC 4/C 4.h� 1/




� f2

�
2.1C b/.1C h/ � 2.1� h/



C 4.1C b/

�
:

Clearly, the factor 1=.2k � hC 1/ is irrelevant for the sign of 2a5 C b5. Remains
to establish that

�2.1Cb/f1.k�1/2 C4.bf1 �1/kCf1

�
.1C b/.h2 � 3hC 4/C 4.h� 1/




� f2

�
2.1C b/.1C h/ � 2.1 � h/



C 4.1C b/ > 0: (4.420)

We note that k D hC ` > hC 2. By taking the derivative of (4.420) with respect
to k, we obtain

�4.1C b/f1.k � 1/C 4.bf1 � 1/ > 0

since 1C b > 0, f1 < 0, k > 1, and

bf1 � 1 > � 3
4
f1 � 1 D �3

4
.f1 C 4

3
/ > 0;

where we have used that b > � 3
4

and f1 < �1:6 in the region of interest. This
implies that (4.420) is minimal for the smallest possible k, i.e., k D hC2. Setting
k D hC 2 in (4.420), we get

f1

�
.1C b/.�h2 � 3hC 10/� 12



� f2

�
2.1C b/.1C h/� 2.1� h/




� 4h� 8C 4.1C b/ > 0:
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Next, we note that the derivative with respect to h equals

�3f1.1C b/� 2.f2 C 2/� 2hf1.1C b/� 2.1C b/f2 > 0;

where we have used that f1 < 0, f2 < �2, 1C b > 0, and h > 0. Therefore, the
expression is minimal for h D 1, and we obtain

6.b � 1/f1 � 4.1C b/f2 C 4.b � 2/;

which is positive in the region of interest. Therefore, we conclude that b5 C2a5 >

0. As noted before, this yields that VkiC1
� Vki�1

is negative, and the proof is
complete.

Proof of Lemma 4.71 for f1 < �1:6 with both y1.ki�1/ and y1.kiC1/ un-
saturated : Clearly, in this case, we have k > 2 and ` > 1. The following
constraints are satisfied:

y1.ki�1/ D y1 2 Œ�1; 1	 (4.421)

y1.ki�1 C 1/ D .1C f2/y1 C y2 6 �1 (4.422)

:::
:::

y1.ki / D d4y1 C ky2 C e4 6 �1 (4.423)

y1.ki C 1/ D .d4 C f1/y1 C .k C 1/y2 C e4 � .k � 1/f1 � f2 > 1

(4.424)

:::
:::

y1.kiC1/ D y1.ki /C `y2.ki /C e6 > �1 (4.425)

y1.kiC1/ D y1.ki /C `y2.ki /C e6 6 1: (4.426)

Notice that y1.ki / and y2.ki / are given in (4.366) and (4.367), respectively, d4

and e4 are defined in (4.368) and (4.369), while e6 is defined in (4.401). Finally,

y2.kiC1/ D y2.ki /C .` � 2/f1:

The argument used in the case where y1.ki�1/ is unsaturated and y1.kiC1/ is
saturated immediately implies that we have ` > k � 3 for k > 4, and ` 6 k. We
will show that

VkiC1
� Vki�1

< 0:

Let us define

yy1 D y1.kiC1/ D .d4 C f̀1/y1 C .k C `/y2 C e4 C e6 � `.k � 1/f1

yy2 D y2.kiC1/ D f1y1 C y2 C .` � k � 1/f1: (4.427)
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Then, we have

VkiC1
� Vki

D yy2
1 C 2b yy1 yy2 � 1

f1
yy2

2 C 2y1.ki /C 1C 2by2.ki /C 1
f1
y2

2.ki /:

Combining this with (4.392) and eliminating y1.ki / and y2.ki / by using (4.366)
and (4.367) and eliminating yy2 using (4.427), we obtain

VkiC1
� Vki�1

D yy2
1 C 2b yy1 Œf1y1 C y2 C .` � k � 1/f1	 � .` � 2/2f1

�2.`�2/ Œf1y1 C y2 � .k � 1/f1	C2.d4y1Cky2Ce4/�2.bC1/y1y2

� 2.1C f2/y1 � 2y2 � .f1 C 1/y2
1 C .k � 1/ Œ2f2 � f1	 :

Let us write this expression in terms of y1 and yy1 by eliminating y2 using

.k C `/y2 D yy1 � .d4 C f̀1/y1 C `.k � 1/f1 � e4 � e6:

We get

VkiC1
� Vki�1

D yy2
1 C 2b yy1 Œf1y1 C .` � k � 1/f1	 � .` � 2/2f1

C 2.d4y1 C e4/� .f1 C 1/y2
1

� 2.` � 2/f1 Œy1 � .k � 1/	 � 2.1C f2/y1 C .k � 1/ Œ2f2 � f1	

C 1
kC`

Œ2b yy1 C 2.k � `C 1/� 2.1C b/y1	

� Œyy1 � .d4 C f̀1/y1 C `.k � 1/f1 � e4 � e6	 : (4.428)

Our objective is now to prove that this expression is always negative. We only
consider the constraints (4.421), (4.425), and (4.426), that is,

� 1 6 y1 6 1; �1 6 yy1 6 1; (4.429)

while we ignore all other constraints. Note that the coefficient of the term yy2
1 is

equal to

1C 2b
kC`

;

which is positive for k C ` > 2 and b > �1. Therefore, we know (4.428) is
maximal at the boundary of yy1, that is, either yy1 D �1 or yy1 D 1. Define h D
k � ` D f0; 1; 2; 3g.

Let us first consider the boundary yy1 D �1. We obtain that

VkiC1
� Vki�1

D 1C 2b.hC 1/f1 � .hC 1/2f1 C Œ.1C 2b/f1 � 1	 y2
1

� 1
2k�h

Œ.1C b/.y1 C 1/� .hC 2/	�
�
�
�2 � 2.1C f2 � f1/y1 C 2f2.hC 1/C f1.2k

2 � h2 � 3h� 2/
�
:

(4.430)

Note that the coefficient of the term y2
1 is

a6 D .1C 2b/f1 � 1C 2
2k�h

.b C 1/.1C f2 � f1/;
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which is negative as it is the same as xa given in (4.376), with k replaced by kC `.
Let us now derive the coefficient of the term y1:

b6 D � 2.1Cf2�f1/
2k�h

.hC 2/� 1Cb
2k�h

�
h.2f2 � 3f1/C f1.2k

2 � h2/ � 4
�
:

We will show that 2a6 C b6 > 0. This implies that the upper bound given the
constraints (4.429) takes it maximum for y1 D 1 and yy1 D �1. On the other hand,
we have already shown that VkiC1

�Vki�1
only subject to y1.kiC1/ 2 Œ�1; 1	 and

y1 > 1 is negative in an earlier part of the proof of Lemma (4.71) for the case
f1 < �1:6 with y1.ki�1/ saturated and y1.kiC1/ unsaturated.

Therefore, we have

b6 C 2a6 D 1
2k�h

h
�2.1C f2 � f1/.hC 2/� .1C b/Œh.2f2 � 3f1/

C f1.2k
2 � h2/ � 4

i
C 2.2b C 1/f1.2k � h/

� 2.2k � h/C 4.1C b/.1C f2 � f1/	:

Note that the term 1
2k�h

does not affect the sign of b6 C 2a6. Therefore, to show
b6 C 2a6 > 0 is equivalent to showing that

� 2.1C f2 � f1/.hC 2/� .1C b/Œh.2f2 � 3f1/C f1.2k
2 � h2/� 4	

C 2.2b C 1/f1.2k � h/ � 2.2k � h/C 4.1C b/.1C f2 � f1/ > 0: (4.431)

We first show that the left-hand side of the above inequality is increasing in k, and
therefore, we differentiate the left-hand side with respect to k.This results in

�4.1C b/f1.k � 1/C 4.bf1 � 1/;

which is positive since 1 C b > 0, f1 < 0, k > 1, and bf1 � 1 > 0. Thus, the
left-hand side of (4.431) achieves its minimum for

k D 1C bf1�1
.1Cb/f1

< 1;

where we have used that 1 C b > 0, f1 < 0, and bf1 � 1 > 0. In our case, we
know that k D `Ch > hC1 and k > 2. Therefore, we have k > max f2; hC 1g.
Thus, the left-hand side of (4.431) achieves its minimal for k D 2 when h D 0,
while for h D 1; 2; 3, it achieves it minimal when k D hC 1.

For the case where k D 2 and h D 0, the left-hand side of (4.431) is

4bf2 C 4bf1 C 4.2b � 1/ D 4b.f2 C 2/C 4.bf1 � 1/ > 0;

where we have used that b < 0, f2 < �2, and bf1 � 1 > 0.
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For the case where k D hC1 and h D 1; 2; 3, using k D hC1 in the left-hand
sider of (4.431) yields

�2.1C f2 � f1/.hC 2/� .1C b/Œh.2f2 � 3f1/C f1.h
2 C 4hC 2/� 4	

C 2.2b C 1/f1.hC 2/� 2.hC 2/C 4.1C b/.1C f2 � f1/: (4.432)

We first show that this is increasing in h, and therefore, we differentiate with
respect to h. This results in

�4C3.1Cb/f1�2.bC2/f2�2.1Cb/f1h > .1Cb/.3f1�2f2/�2.f2C2/ > 0;

where for the first inequality we have used that 1 C b > 0, f1 < 0, and h > 0,
while for the second inequality we have used that 1 C b > 0, 3f1 � 2f2 > 0,
and f2 < �2. Therefore, (4.432) is minimal for the minimum value of h, that is,
h D 1. When h D 1, we have

�4.1� 2b/C 4.1C b/f1 C 2.b � 2/f2

which is positive in the region of interest. Therefore, we conclude that b6C
2a6 > 0, which as argued before implies that VkiC1

� Vki�1
< 0.

The only other possible alternative is that yy1 D 1. In that case, we obtain

VkiC1
� Vki�1

D 1 � 2b.hC 1/f1 � .hC 1/2f1 C Œ.1C 2b/f1 � 1	 y2
1

C 1
2k�h

h
.1C b/.1� y1/C h

ih
2 � 2.1C f2 � f1/y1

C 2f2.hC 1/C f1.2k
2 � h2 � 3h� 2/

i
: (4.433)

Note that the coefficient of the term y2
1 is

a7 D .1C 2b/f1 � 1C 2
2k�h

.b C 1/.1C f2 � f1/;

which is equal to a6, and thus, it is negative. Let us now derive the coefficient of
the term y1:

b7 D 1
2k�h

h
�2.1C f2 � f1/.hC 2C 2b/� .1C b/h.2f2 � 3f1/

� .1C b/f1.2k
2 � h2/

i
:

We will show that 2a7 C b7 > 0. This implies that the upper bound given the
constraints (4.429) takes it maximum for y1 D 1 and yy1 D 1. As argued before,
we have already shown that VkiC1

�Vki�1
only subject to y1.kiC1/ 2 Œ�1; 1	 and

y1 > 1 is negative in an earlier part of the proof of Lemma (4.71) for the case
f1 < �1:6 with y1.ki�1/ saturated and y1.kiC1/ unsaturated.
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With just a little bit algebra, we obtain that

b7 C 2a7 D 1
2k�h

Œ.2f1.1C 2b/� 2/.2k � h/

� 2.1C f2 � f1/h� .1C b/h.2f2 � 3f1/ � .1C b/f1.2k
2 � h2/	:

Note that the term 1
2k�h

does not affect the sign of b7 C 2a7. Therefore, showing
that b7 C 2a7 > 0 is equivalent to showing that

Œ2f1.1C 2b/� 2	.2k � h/ � 2.1C f2 � f1/h� .1C b/h.2f2 � 3f1/

� .1C b/f1.2k
2 � h2/ > 0: (4.434)

We first show that the left-hand side of the above inequality is increasing in k, and
therefore, we differentiate the left-hand side with respect to k. This results in

�4.1C b/f1.k � 1/C 4.bf1 � 1/;

which is positive since 1 C b > 0, f1 < 0, k > 1, and bf1 � 1 > 0. Thus, the
left-hand side of (4.434) achieves its minimum for

k D 1C bf1�1
.1Cb/f1

< 1;

where we have used that 1 C b > 0, f1 < 0, and bf1 � 1 > 0. In our case, we
know that k D `Ch > hC1 and k > 2. Therefore, we have k > max f2; hC 1g.
Thus, the left-hand side of (4.431) achieves its minimal for k D 2 when h D 0,
while for h D 1; 2; 3, it achieves it minimal when k D hC 1.

For the case where k D 2 and h D 0, the left-hand side of (4.434) is

8.bf1 � 1/ > 0;

where we have used that bf1 � 1 > 0.
For the case where k D hC1 and h D 1; 2; 3, using k D hC1 in the left-hand

side of (4.434) yields

Œ2f1.1C 2b/� 2	.hC 2/� 2.1C f2 � f1/h� .1C b/h.2f2 � 3f1/

� .1C b/f1.h
2 C 4hC 2/: (4.435)

We first show that this is increasing in h, and therefore, we differentiate with
respect to h. This results in

�4C3.1Cb/f1�2.bC2/f2�2.1Cb/f1h > .1Cb/.3f1�2f2/�2.f2C2/ > 0;

where for the first inequality we have used that 1 C b > 0, f1 < 0, and h > 0,
while for the second inequality we have used that 1 C b > 0, 3f1 � 2f2 > 0,
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and f2 < �2. Therefore, (4.435) is minimal for the minimum value of h, that is,
h D 1. When h D 1, we have

�8C 4.1C 2b/f1 � 2.b C 2/f2;

which is positive in the region of interest. Therefore, we conclude that b7 C2a7 >

0, which as argued before implies that VkiC1
� Vki�1

< 0. This completes our
proof.

4.C Existence of H2 optimal controller

Consider the system,

˙a W
(
�x D Ax C BuC I!

z D Cx CDu:
(4.436)

We recall the following existence conditions of H2 optimal static state feedback
controller for the system ˙a:

Theorem 4.101 For the system ˙a in (4.436), H2 optimal state feedback con-
troller of a static type exists if and only if

(i) .A;B/ is stabilizable.

(ii) ˙a does not have any invariant zero on the imaginary axis (continuous time)
or on the unit circle (discrete time).

(iii) ˙a does not have any infinite zero of order greater or equal to 1 (continuous
time).

Proof : The results follow from [133] (see Lemmas 5.6.3 and 5.4.1 for continuous-
time case and Lemmas 6.6.5 and 6.6.1 for discrete-time case).

4.D Continuity of solution of CQMI and DARE

Theorem 4.102 given below recalls from [163] the continuity properties of the
solution of the CQMI associated with the quintuple .A;B; C;D;E/ and � > ��:

F� .P / D
 
A0P C PAC C 0C C ��2PEE 0P PB C C 0D

B 0P CD0C D0D

!
> 0; (4.437)
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where

�� WD inf
F

˚
k.C CDF/.sI � A� BF /�1Ek1 j �.ACBF / 2 C�	 : (4.438)

Theorem 4.102 Consider a quintuple .A;B; C;D;E/. Suppose .A;B/ is sta-
bilizable, .A;B; C;D/ does not have any invariant zeros in the open right-half
plane, and � > �� where �� is defined in (4.438). Let a sequence of perturbed
data .A"; B"; C"; D"; E"/ converges to .A;B; C;D;E/. Moreover, assume that
the normal rank of C".sI �A"/

�1B" CD" is equal to the normal rank of C.sI �
A/�1B C D for all ". Then, the smallest positive semi-definite semi-stabilizing
solution of CQMI (4.437) associated with .A"; B"; C";D"; E"/ converges to the
solution of CQMI associated with .A;B; C;D;E/.

In the perturbation method I of both H2 and H1 low-gain design, we use
perturbations which do not necessarily preserve the normal rank. In this case, we
need the following result.

Theorem 4.103 Consider a quintuple .A;B; C;D;E/ and � > ��. Suppose a
sequence of perturbations .C";D"/ converges to .C;D/, and satisfies the follow-
ing conditions:

(i) xQ" is continuous at " D 0, where xQ" is defined as in (4.319) .

(ii) There exists a ˇ such that for 0 6 "1 6 "2 6 ˇ, we have xQ"1
6 xQ"2

.

Then the solution to CQMI (4.437) associated with .A;B; C";D"; E/ converges
to the solution of CQMI (4.437) associated with .A;B; C;D;E/.

Proof : The case � D 1 was proved in [183]. We shall prove this result for a
finite � .

First, we need to show that given � > ��, for sufficiently small ", we have
� > ��

" where ��
" is defined in (4.438) with .A;B; C;D;E/ replaced by (A",

B", C", D", E"). This follows from the fact that there exists a stabilizing state
feedback u D Fx such that the H1 norm from w to z equals �0 < � . The
transfer matrix G";cl from w to z" satisfies,

G";cl.s/
0G";cl.s/ D Gcl.s/

0Gcl.s/CG0.s/
0. xQ" � xQ0/G0.s/;

where Gcl is the transfer matrix from w to z while G0 is defined by

G0.s/ D
 
I

F

!
.sI �A � BF /�1E:



4.D Continuity of solution of CQMI and DARE 329

Since G0 has a finite H1 norm and xQ" ! xQ0, we find that

lim
"#0

kG";clk1 ! kGclk1 D �0 < �:

Next, we investigate

x0
0P"x0 D sup

w2L2

inf
u2L2

˚
kz"k2

2 � �2kwk2
2 j x 2 L2

	
;

where x.0/ D x0. Since xQ" > xQ0 for small ", we find that

x0
0P"x0 > x0

0P0x0

for small ". If we choose u D Fx, we obtain

0 6 x0
0P"x0 6

(
sup

w2L2

kz"k2
2 � �2kwk2

2 j u D Fx

)
:

We always have for any �,

ka C bk2 6 .1C 1
�
/kak2 C .1C �/kbk2:

Let �1 be such that �0 < �1 < � such that for all sufficiently small ", we know the
H1 norm from w to z" is less than �1 for the feedback u D Fx. With u fixed by
u D Fx, we can write z" D zx0

C zw where zx0
is the output for initial condition

x0 andw D 0 and zw is the output for initial condition x0 D 0 and disturbancew.
Let L be such that

kxx0
k2

2 D x0
0Lx0;

where xx0
is the state for initial condition x0 and w D 0. Choose

� D �2 � �2
1

2�2
1

:

We find

kz"k2
2 6 �2C�2

1

�2��2
1

k xQ"kx0
0Lx0 C �2C�2

1

2
kwk2

2:

But then if w is such that

kwk2 > ˇx0
0Lx0; (4.439)

where ˇ > ˇ" for all sufficiently small " with

ˇ" D 2.�2 C �2
1 /

2.�2 � �2
1 /

2
k xQ"k;

we have

kz"k2
2 � �2kwk2

2 < 0
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for u D Fx. We find that for w for which (4.439) is satisfied, we obtain for a
suboptimal u already a negative cost. Since

sup
w2L2

inf
u2L2

˚
kz"k2

2 � �2kwk2
2 j x 2 L2

	
> 0;

we can without loss of generality assume that w satisfies

kwk2 < ˇx0
0Lx0; (4.440)

provided that " is small enough. By setting u D Fx C v, the above inf–sup
problem is equivalent to

sup
w2L2

inf
v2L2

˚
kz"k2

2 � �2kwk2
2 j u D Fx C v

	
> 0:

Since we showed that we can assume, without loss of generality, that w is boun-
ded, it is clear that in the above optimization for " D 0, we can also assume
without loss of generality that v is bounded as well, i.e.,

kvk2 6 N kx0k:

If the system is left invertible from v to z then as v gets sufficiently large in L2

norm, then the cost can be made arbitrarily large. If the system is not left invertible
we can split the input in to one part which has no effect on the output and another
part which has a left-invertible effect on the output. The latter has to be bounded
for a bounded cost. The first can be set to zero without loss of generality. But with
v and w bounded, we can find an M such that

kxk2 6 M kx0k2;

but then,

sup
w2L2

inf
v2L2

˚
kz"k2

2 � �2kwk2
2

	

6 sup
w2L2

inf
v2L2

˚
kz"k2

2 � �2kwk2
2 j kvk2 6 N kx0k

	

6 sup
w2L2

inf
v2L2

˚
kz0k2

2 � �2kwk2
2 j kvk2 6 N kx0k

	
C k xQ" � xQ0kM kx0k2

D sup
w2L2

inf
v2L2

˚
kz0k2

2 � �2kwk2
2

	
C k xQ" � xQ0kM kx0k2

D x0
0P0x0 C k xQ" � xQ0kM kx0k2;

where in each case u D Fx C v. In conclusion, we find

x0
0P0x0 6 x0

0P"x0 6 x0
0P0x0 C k xQ" � xQ0kM kx0k2;

which implies that P" ! P0 as " # 0.



4.D Continuity of solution of CQMI and DARE 331

Our concern next is with the continuity of semi-stabilizing solution of the
following DARE associated with the quintuple .A;B; C;D;E/ and � > ��:

P D A0PAC C 0C �
 
B 0PACD0C

E 0PA

!0
G.P /	

 
B 0PACD0C

E 0PA

!
; (4.441)

where

G.P / D
 
D0D 0

0 ���2I

!
C
 
B 0

E 0

!
P
�
B E

�

and

�� D inf
F

˚
k.C CDF/.zI �A � BF /�1Ek1 j �.AC BF / 2 Cˇ	 : (4.442)

We recall the following theorem from [163]:

Theorem 4.104 Consider a quintuple .A;B; C;D;E/. Suppose .A;B/ is stabi-
lizable, .A;B; C;D/ does not have any invariant zeros in C˝ and � > ��, where
�� is defined in (4.442). Let a sequence of perturbed data .A"; B"; C"; D"; E"/

converges to .A;B; C;D;E/. Moreover, assume that the normal rank of C".zI �
A"/

�1B" CD" is equal to the normal rank of C.zI �A/�1BCD for all ". Then,
the smallest positive semi-definite semi-stabilizing solution of DARE (4.441) as-
sociated with .A"; B"; C";D"; E"/ converges to the smallest positive semi-definite
semi-stabilizing solution of DARE associated with .A;B; C;D;E/.

In the perturbation method I of both H2 and H1 low-gain design, we use
perturbations which do not necessarily preserve the normal rank. In this case, we
need the following result.

Theorem 4.105 Consider a quintuple .A;B; C;D;E/ and � > �� where �� is
defined in (4.442). Suppose a sequence of perturbations .C";D"/ converges to
.C;D/ and satisfies the following conditions:

(i) xQ" is continuous at " D 0.

(ii) There exists a ˇ such that for 0 6 "1 6 "2 6 ˇ, we have xQ"1
6 xQ"2

,

where xQ" is defined in (4.319). Then the semi-stabilizing solution of the DARE
(4.441) associated with .A;B; C"; D"; E/ converges to the semi-stabilizing solu-
tion of DARE (4.441) associated with .A;B; C;D;E/.
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Proof : The case � D 1 was proved in [183]. We shall prove this result for a
finite � . Our proof here follows more or less along the same lines as the proof of
Theorem 4.103.

First, we need to show that given � > ��, for sufficiently small ", we have
� > ��

" where ��
" is defined in (4.438) with .A;B; C;D;E/ replaced by (A",

B", C", D", E"). This follows from the fact that there exists a stabilizing state
feedback u D Fx such that the H1 norm from w to z equals �0 < � . The
transfer matrix G";cl from w to z" satisfies,

G";cl.z/
0G";cl.z/ D Gcl.z/

0Gcl.z/CG0.z/
0. xQ" � xQ0/G0.z/;

where Gcl is the transfer matrix from w to z while G0 is defined by

G0.z/ D
 
I

F

!
.zI � A� BF /�1E:

Since G0 has a finite H1 norm and xQ" ! xQ0, we find that

lim
"#0

kG";clk1 ! kGclk1 D �0 < �:

Next, we investigate

x0
0P"x0 D sup

w2`2

inf
u2L2

˚
kz"k2

2 � �2kwk2
2 j x 2 `2

	
;

where x.0/ D x0. Since xQ" > xQ0 for small ", we find that

x0
0P"x0 > x0

0P0x0

for a small ". If we choose u D Fx, we obtain

0 6 x0
0P"x0 6

(
sup

w2`2

kz"k2
2 � �2kwk2

2 j u D Fx

)
:

We always have for any �,

ka C bk2 6 .1C 1
�
/kak2 C .1C �/kbk2:

Let �1 be such that �0 < �1 < � and that, for all sufficiently small ", H1 norm
from w to z" be less than �1 for the feedback u D Fx. With u fixed by u D Fx,
we can write z" D zx0

C zw where zx0
is the output for initial condition x0 and

w D 0 and zw is the output for initial condition x0 D 0 and disturbance w. Let L
be such that

kxx0
k2

2 D x0
0Lx0;
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where xx0
is the state for initial condition x0 and w D 0. Choose

� D �2 � �2
1

2�2
1

:

We find

kz"k2
2 6 �2C�2

1

�2��2
1

k xQ"kx0
0Lx0 C �2C�2

1

2
kwk2

2:

But then if w is such that

kwk2 > ˇx0
0Lx0; (4.443)

where ˇ > ˇ" for all sufficiently small " with

ˇ" D 2.�2 C �2
1 /

2.�2 � �2
1 /

2
k xQ"k;

we have

kz"k2
2 � �2kwk2

2 < 0

for u D Fx. We find that for w for which (4.443) is satisfied, we obtain for a
suboptimal u already a negative cost. Since

sup
w2`2

inf
u2`2

˚
kz"k2

2 � �2kwk2
2 j x 2 `2

	
> 0;

we can without loss of generality assume that w satisfies

kwk2 < ˇx0
0Lx0; (4.444)

provided that " is small enough. By setting u D FxCv the above inf–sup problem
is equivalent to

sup
w2`2

inf
v2`2

˚
kz"k2

2 � �2kwk2
2 j u D Fx C v

	
> 0:

Since we showed that we can assume, without loss of generality, that w is boun-
ded, it is clear that in the above optimization for " D 0, we can also assume
without loss of generality that v is bounded as well, i.e.,

kvk2 6 N kx0k:

If the system is left invertible from v to z, then as v gets sufficiently large in `2

norm, the cost can be made arbitrarily large. If the system is not left invertible,
we can split the input in to one part which has no effect on the output and another
part which has a left-invertible effect on the output. The latter has to be bounded
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for a bounded cost. The first can be set to zero without loss of generality. But with
v and w bounded, we can find an M such that

kxk2 6 M kx0k2;

but then,

sup
w2`2

inf
v2`2

˚
kz"k2

2 � �2kwk2
2

	

6 sup
w2`2

inf
v2`2

˚
kz"k2

2 � �2kwk2
2 j kvk2 6 N kx0k

	

6 sup
w2`2

inf
v2`2

˚
kz0k2

2 � �2kwk2
2 j kvk2 6 N kx0k

	
C k xQ" � xQ0kM kx0k2

D sup
w2`2

inf
v2`2

˚
kz0k2

2 � �2kwk2
2

	
C k xQ" � xQ0kM kx0k2

D x0
0P0x0 C k xQ" � xQ0kM kx0k2;

where in each case u D Fx C v. In conclusion, we find that

x0
0P0x0 6 x0

0P"x0 6 x0
0P0x0 C k xQ" � xQ0kM kx0k2;

which implies that P" ! P0 as " # 0.

4.E Proofs of Lemmas 4.92, 4.95, and 4.98

Proof of Lemma 4.92 : To prove item (i), we first note that

F".j!I � A� BF"/
�1Bei

DF".I � .j!I � A/�1BF"/
�1.j!I � A/�1Bei

D.I � F".j!I � A/�1B/�1F".j!I � A/�1Bei :

Next, we note that [2, see Sect. 5.4, p.122]

�max.I � F".j!I �A/�1B/�1 6 1; 8! 2 R:

Moreover, 8! 2 Ek , .j!I � A/�1Bei has no pole, and therefore,

k.j!I �A/�1Beik 6 M;8! 2 Ek

for M > 0 independent of !.
But then,

kF".j!I � A� BF"/
�1Bei k 6 M kF"k;8! 2 Ek ;
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and since F" converges to zero, we get

kF".j!I � A� BF"/
�1Beik ! 0

as " ! 0 uniformly in Ek .
It remains to show item (ii). By definition, det.j!I � A/ ¤ 0 for all ! 2 ˝ .

There exists a � such that

�min.j!I �A/ > �; 8! 2 ˝:

After all, assume this is not the case. Then there exists a sequence !i 2 ˝ such
that

�min.j!
iI �A/ ! 0

as i ! 1. We can ensure that this sequence !i is bounded since for ! satisfying
j!j > kAk C 1, we have

�min.j!I � A/ > j!j � kAk > 1:

But a bounded sequence !i has a convergent subsequence whose limit, denoted
by x!, is in ˝ (since ˝ is closed). The limit x! would have the property

�min.j x!I � A/ D 0:

This implies that x! is an eigenvalue of A which is in contradiction with the defi-
nition of ˝ .

Choose "� such that kF"k 6 �
4

kBk�1 for " 6 "�. In that case,

�min.!I �A � BF / > � � kBkkF"k > 3�
4
;8! 2 ˝;

and hence,
k.j!I � A� BF"/

�1k < 4
3�
;8! 2 ˝;

but then,

kF".j!I � A� BF"/
�1Bk 6 kF"kk.j!I �A � BF"/

�1kkBk 6 1
3

for all ! 2 ˝ .

Proof of Lemma 4.95 : The difference between Gm
" .s/ and G".s/ equals

G".s/ �Gm
" .s/ D

�
I C F".sI � A� BF"/

�1B
�
F".sI �ACKC/�1B

D ŒI CG".s/	 F".sI � ACKC/�1B:
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We obtain from (4.343)

�max.I CG".j!// 6 1; 8" > 0; ! 2 R:

Moreover,

kF".sI �ACKC/�1Bk1 6 kF"kk.sI �ACKC/�1Bk1:

Since F" ! 0 as " ! 0, we immediately have

lim
"#0

Gm
" .j!/ �G".j!/ D 0

uniformly in !.

Proof of Lemma 4.98 : Define a system as

8
<̂

:̂

Tx1 D Ax1 CBF"x2

Tx2 D .AC BF" �KC/x2 CKCx1

z D F"x2

;

 
x1.0/

x2.0/

!
D 
:

It is obvious that for any 
,

kzk2 D
1Z

0

kF"e
.ACBF /t
k2dt:

Let e D x1 � x2. In the new coordinates of .x1; e/, the above system can be
written as 8

<̂

:̂

Tx1 D .AC BF"/ � BF"e

Te D .A�KC/e

Tz D F".x1 � e/;

with e1.0/ D x1.0/� x2.0/. We get kzk2 6 kF"ek2 C kF"x1k2.
Since A � KC is Hurwitz, there exists a � such that kek2 6 �ke.0/k for any

e.0/ 2 Rn. Then

kF"ek2 6 �kF"kke.0/k ! 0 as " ! 0:

But for x1, we have

kF"x1k2 6 kG".s/k1kF"ek2 C
1Z

0

kF"e
.ACBF"/tx1.0/k2dt

6 2�kF"kke.0/k C
1Z

0

kF"e
.ACBF"/tx1.0/k2dt;
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where G".s/ D F".sI � A� BF"/
�1B . It was shown in [200] that

lim
"#0

1Z

0

kF"e
.ACBF"/tx1.0/k2dt D 0;

and thus, lim"#0 kF"x1k2 D 0. We conclude that lim"#0 kzk2 D 0.





5
Robust semi-global internal
stabilization

5.1 Introduction

In the previous chapter, we discussed semi-global internal stabilization of linear
systems subject to control magnitude saturation. However, all of this is obtained
for an ideal saturation element �.u/. In reality, we are often faced with a saturation
element which differs from the ideal saturation but still satisfies some of the basic
properties as outlined in Sect. 2.6. One of the objectives of this chapter is to show
in which respect the design methodologies such as low-gain and low-and-high-
gain, which were described in detail in the previous chapter, still apply in case the
saturation function has a different shape.

However, this is only one aspect of robustness for our design methodologies.
We also like to see how uncertainties due to more general modeling errors effect
our designs. In this case, we often can no longer rely just on low-gain design, and
the low-and-high-gain controllers need to be used. Model uncertainty can effect
the system through input-additive disturbances of the form

Tx D Ax C B�.uC g.x; t//

or through matched uncertainty

Tx D Ax C B�.u/C Bg.x; t/:

The unmatched case

Tx D Ax C B�.u/C Eg.x; t/;

where B ¤ E is in general very hard, and only limited results are available in the
literature.

5.2 Generalized saturation functions: continuous time

In Sect. 2.6, we defined, besides a standard saturation function, a so-called gener-
alized saturation function satisfying the following properties:

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__5,
© Springer Science+Business Media New York 2012
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(i) z�.u/ is decentralized, i.e.

z�.s/ D

ˇ z�1.s1/

z�2.s2/
:::

z�m.sm/

�
:

(ii) z�i is globally Lipschitz, i.e. for some ı > 0,

jz�i .s1/� z�i .s2/j 6 ıjs1 � s2j:

(iii) sz�i .s/ > 0 whenever s ¤ 0 and z�i .0/ D 0.

(iv) The two limits

lim
s!0C

z�i .s/

s
; lim

s!0�

z�i .s/

s

both exist and are strictly positive.

(v) lim inf
jsj!1

jz�i .s/j > 0.

(vi) There exists an M > 0 such that jz�i .s/j < M for all s 2 R.

We note that the above conditions imply that there exists positive constants � and
 such that

jz�.s/j > minf � jsj;  g (5.1)

componentwise.
In the previous chapter, we investigated the semi-global stabilization problem

for a system of the form:
Tx D Ax C B�.u/

y D Cx:
(5.2)

The two basic design methodologies presented in the previous chapter are the
low-gain method and the low-and-high-gain method where the feedback gain is
computed either via the direct-eigenstructure assignment or via Riccati equations.
One of the basic result obtained in the previous chapter for continuous-time sys-
tems is as follows:

Theorem 5.1 Consider the system (5.2) with .A;B/ stabilizable and with all the
eigenvalues of A in the closed left-half plane. Consider the low-gain state feed-
backs F" designed either through the direct-eigenstructure method satisfying:

�
���F"e

.ACBF"/t
��� 6 "ˇe�"t
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�
���e.ACBF"/t

��� 6 �

"r�1
e�"t

for suitably chosen ˇ > 0 and � > 0 with r an integer less than or equal to n, or
designed via the Riccati equation

A0P" C P"A � P"BB
0P" CQ" D 0

with F" D �B 0P" and Q" ! 0 as " ! 0. Both of these designs have the
property that for an arbitrary compact set X � Rn, there exists an "� such that
for all " with 0 < " < "�, the feedback u D F"x renders the closed-loop system
asymptotically stable with X contained in its domain of attraction.

In the case of a generalized saturation function, we have the system

Tx D Ax C Bz�.u/
y D Cx

(5.3)

where z� satisfies properties (i)–(vi) described above. The next theorem establishes
that the Riccati based design is robust in the sense that the low-gain design still
works for the generalized saturation function.

Theorem 5.2 Consider the system (5.3) with .A;B/ stabilizable and with all the
eigenvalues of A in the closed left half plane. Assume that z� satisfies proper-
ties (i)–(vi) on page 340 which implies that there exist � and  such that (5.1)
is satisfied. Consider the low-gain state feedbacks F" designed via the Riccati
equation

A0P" C P"A � P"BB
0P" CQ" D 0

with F" D �B 0P" and Q" ! 0 as " ! 0. The system (5.3) has the property that
for an arbitrary compact set X � Rn, there exists an "� such that for all " with
0 < " < "�, the feedback u D ��1F"x results in a closed-loop system which is
asymptotically stable with X contained in its domain of attraction.

Proof : The basic properties which yield the above result are the gain and phase
margin properties of the ARE-based state feedback. We define

V" D ˚
x 2 Rn j x0P"x < 1

�
:

It is then easy to verify that for " small enough, we have X � V", and for all
x 2 V",

jz�.��1F"x/j > jF"xj
componentwise, while z�.��1F"x/ and F"x have, again componentwise, the same
sign.
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Next, we consider the system (5.3). Let " be chosen satisfying the earlier prop-
erties. It is then straightforward to verify that x0P"x is a suitable Lyapunov func-
tion in the region V" for the system (5.3) and that the domain of attraction will
contain the set X.

The low-gain design studied in the above two theorems in general might yield
slow transient response. For this purpose, in the previous chapter, the low-and-
high-gain design was introduced to have a fast enough transient performance.
Later on in this chapter, it also becomes obvious that the high-gain parameter
plays an important role in reducing the effect of model uncertainties. In the next
chapters, it will become obvious that the low-and-high-gain design also plays a
crucial role in the rejection of disturbances.

Theorem 5.3 Consider the system (5.2) with .A;B/ stabilizable and with all the
eigenvalues of A in the closed left-half plane. Let P" > 0 be the solution of the
algebraic Riccati equation and

A0P" C P"A � P"BB
0P" CQ" D 0

with Q" ! 0 as " ! 0. In that case, for an arbitrary compact set X � Rn, there
exists an "� such that for all " with 0 < " < "� and ˛ > 0, the feedback

u D �B 0P"x � ˛B 0P"x

has the property that the closed-loop system is asymptotically stable with X con-
tained in its domain of attraction.

Remark 5.4 In the above, the role of the high-gain parameter is not clarified.
Basically, decreasing " will increase the domain of attraction. On the other hand,
the high-gain parameter ˛ does not affect the domain of attraction, but it plays a
crucial role in improving the transient performance and, as we will see later, in
rejecting model uncertainty and disturbances.

Theorem 5.5 Consider the system (5.3) with .A;B/ stabilizable and with all the
eigenvalues of A in the closed left-half plane. Assume that z� satisfies proper-
ties (i)–(vi) on page 340 which implies that there exist � and  such that (5.1) is
satisfied. Let P" > 0 be the solution of the algebraic Riccati equation and

A0P" C P"A � P"BB
0P" CQ" D 0

with Q" ! 0 as " ! 0. In that case, for an arbitrary compact set X � Rn, there
exists an "� such that for all " with 0 < " < "� and ˛ > 0, the feedback

u D ���1B 0P"x � ˛B 0P"x

has the property that the closed-loop system is asymptotically stable with X con-
tained in its domain of attraction.
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Proof : Property (5.1) guarantees that the generalized saturation function is boun-
ded away from zero. Let " be such that

jB 0P"xj <  
componentwise. Due to this property and (5.1), we know that

jz�.��1B 0P"x C ˛B 0P"x/j > jB 0P"xj
componentwise for an " sufficiently small. Moreover, z�.��1B 0P"x C ˛B 0P"x/

and �.B 0P"x/ also have, again componentwise, the same sign. It is then straight-
forward to verify that x0P"x is a suitable Lyapunov function for the system and
that the domain of attraction will contain the set X for a sufficiently small ".

5.3 Generalized saturation functions: discrete time

In the previous section, we compared a so-called generalized saturation function
with the standard saturation function for continuous-time systems. In this section,
we make this same comparison for discrete-time systems. We consider a system
of the form,

�x D Ax C B�.u/

y D Cx
(5.4)

with the standard saturation function. The two basic design methodologies pre-
sented in the previous chapter are the low-gain method and the low-and-high-gain
methods where the feedback gain is computed either via the direct-eigenstructure
assignment or via Riccati equations. The basic result obtained in the previous
chapter for discrete-time systems is as follows:

Theorem 5.6 Consider the system (5.4) with .A;B/ stabilizable and with all the
eigenvalues ofA in the closed unit disc. Consider the low-gain state feedbacks F"

designed either through the direct-eigenstructure method satisfying:

�
���F".AC BF"/

k
��� 6 "ˇ.1 � "/k

�
���.AC BF"/

k
��� 6 �

"r�1
.1 � "/k

for suitably chosen ˇ > 0 and � > 0 with r an integer less than or equal to n, or
designed via the Riccati equation

P" D A0P"A� A0P"B.I C B 0P"B/
�1B 0P"ACQ" (5.5)

with
F" D �.I C B 0P"B/

�1B 0P"A (5.6)
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and Q" ! 0 as " ! 0. Both of these designs have the property that for an
arbitrary compact set X � Rn, there exists an "� such that for all " with 0 < " <
"�, the feedback u D F"x renders the closed-loop system asymptotically stable
with X contained in its domain of attraction.

In the case of a generalized saturation function, we have the system

�x D Ax C Bz�.u/
y D Cx;

(5.7)

with z� satisfies properties (i)–(vi) described in the previous section. The next
theorem establishes that the Riccati-based design is robust in the sense that the
low-gain design still works for the generalized saturation function.

Theorem 5.7 Consider the system (5.7) with .A;B/ stabilizable and with all the
eigenvalues ofA in the closed unit disc. Assume that z� satisfies properties (i)–(vi)
on page 340 which implies that there exist � and  such that (5.1) is satisfied.
Consider the low-gain state feedbacks F" designed via the Riccati equation (5.5)
and (5.6) with Q" ! 0 as " ! 0. The system has the property that for an
arbitrary compact set X � Rn, there exists an "� such that for all " with 0 <
" < "�, the feedback u D ��1F"x has the property that the closed-loop system is
asymptotically stable with X contained in its domain of attraction.

Proof : We define
V" D ˚

x 2 Rn j x0P"x < 1
�
:

It is then easy to verify that for " small enough, X � V", and

jz�.��1F"x/j > jF"xj (5.8)

componentwise, while z�.��1F"x/ and F"x have, again componentwise, the same
sign for all x 2 V".

Next, we consider the system (5.3). Given the global Lipschitz bound ı of z� of
property (ii), we can also guarantee that

ı

�
< 1C 2

kB 0P"Bk (5.9)

for a sufficiently small ". Define

u D ��1F"x

v D F"x:
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Then (5.8) and (5.9) imply that

jvj 6 z�.u/ 6
�
1C 2

kB 0P"Bk
�

jvj (5.10)

componentwise, and v and z�.u/ have, again componentwise, the same sign. We
have:

.�x/0P".�x/ � x0P"x

D v0.I C B 0P"B/v � x0Q"x � 2v0.I C B 0P"B/z�.u/
C z�.u/0B 0P"Bz�.u/

D Œv � z�.u/�0.I C B 0P"B/Œv � z�.u/� � x0Q"x � z�.u/0z�.u/
6 .1C �/Œv � z�.u/�0Œv � z�.u/� � x0Q"x � z�.u/0z�.u/
D �z�.u/0z�.u/ � 2.1C �/z�.u/0v C .1C �/v0v � x0Q"x

6 �z�.u/0z�.u/ � 2.1C �/z�.u/0v C .2C �/v0v � x0Q"x

D �
h
z�.u/ � 1C�

�
v
i0 hz�.u/ � 1C�

�
v
i

� 1
�
v0v � x0Q"x

6 �x0Q"x:

where� D kB 0P"Bk. The last inequality follows from the fact that (5.10) implies
that

� 1
�
v 6 z�.u/ � 1C�

�
v 6 1

�
v;

and hence,

�
h
z�.u/ � 1C�

�
v
i0 hz�.u/� 1C�

�
v
i

� 1
�
v0v 6 0:

It is then straightforward to verify that x0P"x is a suitable Lyapunov function in
the region V" for the system (5.3) and that the domain of attraction will contain
the set X.

The low-gain design studied in the above two theorems in general might yield
slow transient response. For this purpose, in the previous chapter, the low-and-
high-gain design was introduced to render the transient performance faster. As in
the case of continuous-time systems, later on in this chapter, it also becomes obvi-
ous that the high-gain parameter plays an important role in mitigating the effect of
model uncertainties. Also, in subsequent chapters, it will become obvious that the
low-and-high-gain design also plays a crucial role in the rejection of disturbances.

Theorem 5.8 Consider the system (5.2) with .A;B/ stabilizable and with all the
eigenvalues ofA in the closed unit disc. LetP" > 0 be the solution of the algebraic
Riccati equation (5.5) and let F" be defined by (5.6), where Q" ! 0 as " ! 0.
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In that case, for an arbitrary compact set X � Rn, there exists an "� such that
for all " with 0 < " < "� and

0 < ˛ <
2

kB 0P"Bk ; (5.11)

the feedback
u D F"x C ˛F"x

has the property that the closed-loop system is asymptotically stable with X con-
tained in its domain of attraction.

Remark 5.9 In the above, the role of the high-gain parameter is not clarified. Ba-
sically, descreasing " will increase the domain of attraction. On the other hand,
the high-gain parameter ˛ does not affect the domain of attraction, but it is im-
portant to improve the transient performance and, as we shall see later on, to
reject model uncertainty and disturbances.

Theorem 5.10 Consider the system (5.3) with .A;B/ stabilizable and with all the
eigenvalues ofA in the closed unit disc. Assume that z� satisfies properties (i)–(vi)
on page 340 which implies that there exist � and  such that (5.1) is satisfied.
Let P" > 0 be the solution of the algebraic Riccati equation (5.5), and let F" be
defined by (5.6), where Q" ! 0 as " ! 0. In that case, for an arbitrary compact
set X � Rn, there exists an "� such that for all " with 0 < " < "� and

0 < ˛ <
1

ı

�
1C 2

kB 0P"Bk � ı

�

�
; (5.12)

the feedback
u D ��1F"x C ˛F"x

has the property that the closed-loop system is asymptotically stable with X con-
tained in its domain of attraction.

Remark 5.11 Note that P" ! 0 as " ! 0. Hence, for small ", we can choose
˛ very large and hence speed up the convergence considerably. Also note that if
z� D � , then ı D � D 1, and we re-obtain the result from Theorem 5.8.

Proof : We define
V" D ˚

x 2 Rn j x0P"x < 1
�
:

It is then easy to verify that for " small enough X � V" and

jF"xj <  
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componentwise. Due to this property and (5.1), we know that

jz�.��1F"x C ˛F"x/j > jF"xj (5.13)

componentwise for a sufficiently small ". Moreover, z�.��1B 0P"xC˛B 0P"x/ and
�.B 0P"x/ also have, again componentwise, the same sign. Using the Lipschitz
property of z� , we find that

jz�.��1F"x C ˛F"x/j <
�
1C 2

kB 0P"Bk
�

jF"xj (5.14)

componentwise provided ˛ satisfies (5.12). Moreover, z�.��1B 0P"x C ˛B 0P"x/

and B 0P"x have, again componentwise, the same sign.
Define

u D ��1F"x C ˛F"x

v D F"x:

Then (5.13) and (5.14) imply that

jvj 6 z�.u/ 6
�
1C 2

kB 0P"Bk
�

jvj (5.15)

componentwise, and v and z�.u/ have, again componentwise, the same sign. We
obtain, similar to that in the proof of Theorem 5.7,

.�x/0P".�x/ � x0P"x 6 �x0Q"x:

It is then straightforward to verify that x0P"x is a suitable Lyapunov function in
the region V" for the system (5.7) and that the domain of attraction will contain
the set X.

5.4 Systems with saturation and input-additive
uncertainty: continuous time

We consider a class of nonlinear systems which are obtained by cascading linear
systems with memory-free input nonlinearities of saturation type

˙ud W
(

Tx.t/ D Ax.t/C Bz�.u.t/C g.x; t//

y.t/ D Cx.t/;
(5.16)

where x 2 Rn is the state, u 2 Rm is the control input, and y 2 Rp is the measure-
ment output. As before, we assume that z� satisfies properties (i)–(vi) on page 340.
The uncertain element g W Rn � RC ! Rm represents both the uncertainties and
the disturbances. We impose only one requirement that we know an upper bound
on its norm. More specifically, we make the following assumption:
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Assumption 5.12 The uncertain element g.x; t/ is piecewise continuous in t ,
locally Lipschitz in x, and its norm is bounded by a known function

kg.x; t/k � g0.kxk/CD0; 8.t; x/ 2 RC � Rn: (5.17)

where D0 is a known positive constant, and the known function g0.x/ W RC !
RC is locally Lipschitz and satisfies

g0.0/ D 0 : (5.18)

We are interested in finding controllers that achieve semi-global stabilization,
independent of the specific saturation function z� and independent of the precise
g that satisfies Assumption 5.12.

The main state feedback problem we solve in this section is the following:

Problem 5.13 Consider the system (5.16), where z� satisfies properties (i)–(vi)
on page 340 and g satisfies the properties in Assumption 5.12 with D0 D 0. The
objective is to find, for any compact set X, a feedback gain matrix F such that, for
all functions g satisfying Assumption 5.12 with D0 D 0, the closed-loop system
˙ud is asymptotically stable and contains X in its domain of attraction.

If D0 ¤ 0, then it is not possible to achieve asymptotic stability without
more precise information about the function g. However, in that case, we can
still achieve practical stability:

Problem 5.14 Consider the system (5.16), where z� satisfies properties (i)–(vi)
on page 340 and g satisfies the properties in Assumption 5.12. The objective is
to find, for any compact sets X1 and X2 containing 0 in their interior and with
X1 � X2, a feedback gain matrix F such that, for all functions g satisfying
Assumption 5.12 and initial conditions inside X1, the closed-loop system ˙ud is
such that the state enters and remains in X2 after some finite amount of time.

Remark 5.15 For the case when g0 � 0 and D0 D 0, as discussed in the previ-
ous chapter, the above problem reduces to the semi-global stabilization problem
by state feedback control. When g0 6� 0, but D0 D 0, it can be called the robust
semi-global stabilization problem by state feedback control. When g0 6� 0 and
D0 > 0, it can be called the robust semi-global practical stabilization problem
by state feedback control.

The main measurement feedback problem we solve in this section is the fol-
lowing:
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Problem 5.16 Consider the system (5.16), where z� satisfies properties (i)–(vi)
on page 340 and g satisfies the properties in Assumption 5.12 with D0 D 0. The
objective is to find, for any compact set X � R2n, a dynamic feedback of the
form

Txc D Acxc C Bcy; xc 2 Rn

u D Ccxc ;
(5.19)

such that, for all functions g satisfying Assumption 5.12 withD0 D 0, the closed-
loop system ˙ud is asymptotically stable and contains X in its domain of attrac-
tion.

If D0 ¤ 0, then it is again not possible to achieve asymptotic stability without
more precise information about the function g. However, in that case, we can still
achieve practical stability.

Problem 5.17 Consider the system (5.16), where z� satisfies properties (i)–(vi)
on page 340 and g satisfies the properties in Assumption 5.12. The objective is
to find, for any pair of compact sets X1;X2 � R2n containing 0 in their inte-
rior and with X1 � X2, a dynamic feedback of the form (5.19) such that for
all functions g satisfying Assumption 5.12 and initial conditions inside X1, the
closed-loop system˙ud is such that the state enters and remains in X2 after some
finite amount of time.

We note that the requirement that all the eigenvalues have nonpositive parts
is necessary for semi-global stabilization as discussed in the previous chapter.
However, without such an assumption on the open-loop eigenvalues, interesting
local results are still possible and will be pointed out later.

5.4.1 State feedback results

Before we discuss the solvability of the above-defined state feedback control
problem, we recall below the family of parameterized low-and-high-gain state
feedback laws, denoted by

u D ��1F"x C ˛F"x; (5.20)

where F" D �B 0P", and P" is the positive definite solution of

A0P" C P"A � P"BB
0P" CQ" D 0

with Q" > 0 such that Q" ! 0 as " ! 0. As we discussed in Chap. 4, the
parameter " is the low-gain tuning parameter, whereas ˛ is the high-gain tuning
parameter.
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Theorem 5.18 Consider the system (5.16) and the robust semi-global stabiliza-
tion problem formulated in Problem 5.13. Assume that .A;B/ is stabilizable and
all the eigenvalues of A are in the closed left-half plane. Also, assume that z�
satisfies properties (i)–(vi) on page 340 which implies that there exist � and  
such that (5.1) is satisfied. In that case, there exist, for any compact set X, an "�
and a function ˛� W .0; "�/ ! RC such that for all " 2 .0; "�/ and ˛ > ˛�."/,
the feedback (5.20) has the property that for all functions g satisfying Assump-
tion 5.12 with D0 D 0, the resulting closed-loop system is asymptotically stable
and contains X in its domain of attraction.

Proof : We first choose "� such that

X � V" WD f x 2 Rn j x0P"x < 1 g
and

jF"xj <  
componentwise for all x 2 V" and for all " 2 .0; "�/. The last condition implies
that

jz�.�F"x/j > minf � j�F"xj;  g > jF"xj (5.21)

for � > ��1.
For all x 2 V", there exist M1 and M2 such that

kg.x; t/k2 6 g0.kxk/2 6 M1kxk2 6 M2x
0Q"x; (5.22)

where the first inequality follows from Assumption 5.12, while the existence of
anM1 such that the second inequality is satisfied is a consequence of the fact that
g0 is locally Lipschitz and x is in a bounded set. The existence of M2 such that
the final inequality is satisfied follows from the fact that Q" is positive definite.

Next, we look at the candidate Lyapunov function

V".t/ WD x.t/0P"x.t/:

We obtain

TV" D �x0Q"x � v0v � 2v0 �z�.��1v C ˛v C g/ � v	 ; (5.23)

where
v D �B 0P"x:

To analyze further the derivative of our candidate Lyapunov function, we consider
two cases. Let vi and gi denote the i th component of v and g, respectively. If

j˛vi j > jgi j
is satisfied, we then obtain

��1vi C ˛vi C gi D �vi
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with � > ��1. Using (5.21), we then find that

vi

�z�.��1vi C ˛vi C gi / � vi

	
> 0:

On the other hand, if

j˛vi j < jgi j (5.24)

is satisfied, then we get

jz�.��1vi C ˛vi C gi / � vi j 6 ıj��1vi C ˛vi C gi j C jvi j 6 M3jgi j

for some constant M3 > 0 (independent of ˛) using (5.24) and the fact that z�
is globally Lipschitz with Lipschitz constant ı. Here we used, without loss of
generality, that ˛ > 1. This implies that

vi

�z�.��1vi C ˛vi C gi /� vi

	
> �M3jgi jjvi j > �M3

˛
g2

i

where we again used (5.24). If we bring together the above two cases, we find that

2v0 �z�.��1v C ˛v C g/ � v
	

> �M3

˛
kgk2 > �M3M2

˛
x0Q"x;

where we used (5.22). Using this in (5.23), we get

TV" 6 �x0Q"x � v0v C M3M2

˛
x0Q"x < �1

2
x0Q"x;

provided ˛ > 2M3M2. Note that the lower bound for ˛ depends on " since the
bound M2 depends on ". We conclude that in V" the Lyapunov function V" is
strictly decaying which implies asymptotic stability and, moreover, that V" is pos-
itively invariant and contained in the domain of attraction.

We consider next the semi-global practical stabilization problem.

Theorem 5.19 Consider the system (5.16) and the robust semi-global practical
stabilization problem formulated in Problem 5.14. Assume that .A;B/ is stabiliz-
able, and all the eigenvalues of A are in the closed left-half plane. Also, assume
that z� satisfies properties (i)–(vi) on page 340 which implies that there exist �
and  such that (5.1) is satisfied. In that case, there exist, for any pair of compact
sets X1 and X2 containing 0 in their interior and with X1 � X2, an "� and a
function ˛� W .0; "�/ ! RC such that for all " 2 .0; "�/ and ˛ > ˛�."/, the feed-
back (5.20) has the property that for all functions g satisfying Assumption 5.12,
the resulting closed-loop system is such that for all initial conditions in X1 the
state enters and remains in the set X2 within a finite amount of time.



352 5 Robust semi-global internal stabilization

Proof : We first choose an "� such that

X1 � V" WD f x 2 Rn j x0P"x < 1 g
and

jF"xj <  
componentwise for all x 2 V" and for all " 2 .0; "�/. The last condition implies
that

jz�.�F"x/j > minf � j�F"xj;  g > jF"xj (5.25)

for � > ��1.
For all x 2 V", there exist M1 and M2 such that

kg.x; t/k2 6 Œg0.kxk/CD0�
2

6 M1kxk2 C 2D2
0

6 M2x
0Q"x C 2D2

0 ; (5.26)

where the first inequality follows from Assumption 5.12, while the existence of
anM1 such that the second inequality is satisfied is a consequence of the fact that
g0 is locally Lipschitz and x is in a bounded set. The existence of M2 such that
the final inequality is satisfied follows from the fact that Q" is positive definite.

Next we look at the candidate Lyapunov function,

V".t/ WD x.t/0P"x.t/:

We obtain

TV" D �x0Q"x � v0v � 2v0 �z�.��1v C ˛v C g/ � v	 ; (5.27)

where
v D �B 0P"x:

To analyze further the derivative of our candidate Lyapunov function, we consider
two cases. Let vi and gi denote the i th component of v and g, respectively. If

j˛vi j > jgi j
is satisfied, we then obtain,

��1vi C ˛vi C gi D �vi

with � > ��1. Using (5.21), we find that

vi

�z�.��1vi C ˛vi C gi / � vi

	
> 0:

On the other hand, if
j˛vi j < jgi j (5.28)
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is satisfied, we get

jz�.��1vi C ˛vi C gi / � vi j 6 ıj��1vi C ˛vi C gi j C jvi j 6 M3jgi j
for some constant M3 > 0 (independent of ˛) using (5.28) and the fact that z�
is globally Lipschitz with Lipschitz constant ı. Here we used, without loss of
generality, that ˛ > 1. This implies that

vi

�z�.��1vi C ˛vi C gi / � vi

	
> �M3jgi jjvi j > �M3

˛
g2

i ;

where we again used (5.28). If we bring together the above two cases, we find that

2v0 �z�.��1v C ˛v C g/� v
	

> �M3

˛
kgk2 > �M3M2

˛
x0Q"x � 2M3

˛
D2

0 ;

where we used (5.26). Using this in (5.27) we get,

TV" 6 �x0Q"x � v0v C M3M2

˛
x0Q"x C 2M3

˛
D2

0

< �1
2
x0Q"x C 2M3

˛
D2

0 ; (5.29)

provided ˛ > 2M3M2. Moreover, let �1; �2 be such that

f x 2 Rn j x0Q"x < �1 g � W� D f x 2 Rn j x0P"x < �2 g � X2:

Choose ˛ > 2M3M2 such that

4M3

˛
D2

0 < �1:

Then it is obvious from (5.29) that inside V", the Lyapunov functionV" is decreas-
ing outside W�. This implies that the solution will enter and stay in W� within
a finite amount of time. By construction, this implies that the solution enters and
stays in the set X2 after a finite amount of time for all initial conditions in the
set X1.

5.4.2 Measurement feedback results

In the measurement feedback case, we use the low-and-high-gain state feedback
(5.20) as studied in the previous subsection and introduced in Chap. 4. We combine
this with a high-gain observer, i.e.,

Tyx D .AC BF"/yx CK`.y � C yx/
u D ��1F" yx C ˛F" yx; (5.30)

where F" D �B 0P", and P" is the positive definite solution of

A0P" C P"A � P"BB
0P" CQ" D 0

with Q" > 0 such that Q" ! 0 as " ! 0.
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In order to construct a suitable observer, we note that if the system .A;B; C; 0/

is left invertible and minimum phase then there exists a basis transformation �s

such that

� �1
s A�s D

 
A0 L0C1

B1E1 A1

!
; � �1

s B D
 
0

B1

!
; C�s D



0 C1

�

with A0 asymptotically stable. This follows from Chap. 3 where

�sx D
 
x1

x2

!
; x1 D xa; x2 D

 
xb

xd

!

in the notation of SCB. Note that xc is missing because the system is left-invertible,
and A0 is asymptotically stable because the system is minimum-phase. Since the
subsystem .A1; B1; C1; 0/ is observable and its transfer matrix has a polynomial
inverse, it has been established in Sect. 4.5.1 of Chap. 4 that there exist K1;` and
S1;` such that

S�1
1;`.A1 �K1;`C1/S1;` D ` zA1; S�1

1;`B1 D B1;

where there exists an M , independent of `, such that kS1;`k < M for all ` > 1.
We define,

K` D �s

 
L0

K1;`

!
:

The claim is that the above dynamic observer-based controller can be used to
solve Problems 5.16 and 5.17 for " sufficiently small and ˛ and ` sufficiently
large. The following two theorems make this result more precise.

Theorem 5.20 Consider the system (5.16) and the robust semi-global stabiliza-
tion problem formulated in Problem 5.16. Assume that .A;B/ is stabilizable, all
the eigenvalues of A are in the closed left-half plane, and the system .A;B; C; 0/

is left invertible and minimum phase. Also, assume that z� satisfies properties (i)–
(vi) on page 340 which implies that there exist � and  such that (5.1) is satis-
fied. In that case, there exist, for any compact set Xcl � R2n, an "�, a function
˛� W .0; "�/ ! RC, and a function `� W .0; "�/ � RC ! RC such that for all
" 2 .0; "�/, ˛ > ˛�."/, and ` > `�."; ˛/, the feedback (5.30) has the property
that, for all functions g satisfying Assumption 5.12 with D0 D 0, the resulting
closed-loop system is asymptotically stable and contains Xcl in its domain of at-
traction.

Proof : We decompose yx compatible with the decomposition of x, and we define
e1 and e2 as

�s yx D
 

yx1

yx2

!
; e1 D x1 � yx1; e2 D S�1

1;`.x2 � yx2/: (5.31)
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The closed-loop system can then be written in terms of these new variables as

Tyx1 D A0 yx1 C L0C1x2

Tx2 D A1x2 C B1.z�.uC g/C E1.yx1 C e1//

Te1 D A0e1

Te2 D ` zA1e2 C B1.z�.uC g/CE1.yx1 C e1//

u D �
��1 C ˛



F"�s

 
yx1

x2 � S1;`e2

!
:

(5.32)

For ease of presentation, we will define F";1 and F";2 such that

u D �
��1 C ˛


 �
F";1 yx1 C F";2.x2 � S1;`e2/

	
: (5.33)

Moreover, we define

zP" D � 0
sP"�s; zQ" D � 0

sQ"�s; zx D
 

yx1

x2

!
; ze D

 
e1

e2

!
: (5.34)

Clearly, we can construct compact sets X1;X2;E1;E2 such that .x; yx/ 2 Xcl

implies that yx1 2 X1, x2 2 X2, e1 2 E1, and e2 2 E2.
First, we choose ˇ such that

ˇ > 2kE1k2 C 1: (5.35)

Next, let c be such that

ˇze0Rze < c

2

for all ze 2 E1 � E2 and

R D
 
R0 0

0 R1

!
(5.36)

where
A0

0R0 CR0A0 C I D 0; zA0
1R1 CR1

zA1 C I D 0:

Finally, choose "� such that for any " 2 .0; "�/, we have

zx0 zP" zx < c

2

for all zx 2 X1 � X2 and

jF";1 yx1 C F";2x2j <  (5.37)

componentwise for all .yx1; x2/ with zx0 zP" zx < c. Next, we look at the candidate
Lyapunov function

L".t/ D V".t/C ˇW.t/;
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where
V".t/ WD zx.t/0 zP" zx.t/; W.t/ WD ze.t/0Rze.t/:

Clearly, for all initial conditions in Xcl, we haveL".0/ 6 1, and (5.37) is satisfied
for all t > 0 as long as L".0/ 6 1.

Before we formally prove thatL" is a suitable Lyapunov function, we note that,
similar to the proof of Theorem 5.18, (5.37) implies that

jz�.�F";1 yx1 C �F";2x2/j > jF";1yx1 C F";2x2j (5.38)

componentwise for � > ��1. Given our assumptions on the function g, there exist
M1, M2, andM3 such that

kg.x; t/k2 6 Œg0.kxk/�2
6 M1kxk2

6 M2zx0 zQ" zx CM3ke1k2: (5.39)

We obtain

TV" D �zx0 zQ" zx � v0v � 2v0 �z�.��1v C ˛v C hC g/ � v C E1e1

	
(5.40)

where
v D F";1 yx1 C F";2x2; h D �.��1 C ˛/F";2S1;`e2:

Let vi , gi , and hi denote the i th component of v, g, and h, respectively. If

j˛vi j > jgi C hi j
is satisfied, we then obtain

��1vi C ˛vi C gi C hi D �vi

with � > ��1. Using (5.38), we get

vi

�z�.��1vi C ˛vi C hi C gi / � vi

	
> 0:

On the other hand, if
j˛vi j < jgi C hi j (5.41)

is satisfied, we then use

jz�.��1vi C ˛vi C hi C gi /� vi j 6 ıj��1vi C ˛vi C hi C gi j C jvi j
6 M4jgi C hi j

for some constant M4 > 0 (independent of ˛) using (5.24) and the fact that z�
is globally Lipschitz with Lipschitz constant ı. Here we used, without loss of
generality, that ˛ > 1. This implies that

vi

�z�.��1vi C ˛vi C hi C gi / � vi

	
> �M4jgi C hi jjvi j
> �2M4

˛
.g2

i C h2
i /;
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where we again used (5.41). If we bring together the above two cases, we find

2v0 �z�.��1v C ˛v C hC g/ � v
	

> �4M4

˛

�kgk2 C khk2



> �4M4M2

˛
zx0 zQ" zx � 4M4M3

˛
ke1k2 � 4M4

˛
khk2; (5.42)

where we used (5.39). Using (5.40) and (5.42), we get

TV" 6 �zx0 zQ" zx � v0v � 2v0E1e1 C 4M4M2

˛
zx0 zQ" zx

C 4M4M3

˛
ke1k2 C 4M4

˛
khk2

< �2
3

zx0 zQ" zx C 3ˇ

4
e0

1e1 CM5e
0
2e2; (5.43)

provided ˛ > 12M3M2 and ˛ > 16M4M3

ˇ
, and where M5 is a suitable constant

depending on our choice of ˛ but independent of `. For the latter, we need to
use that the norm of S1;` is bounded as a function of `. We also used that, based
on (5.35), we have

� v0v � 2v0E1e1 6 kE1e1k2 6 ˇ

2
ke1k2: (5.44)

Next, we consider W . We obtain

TW 6 �e0
1e1 � `e0

2e2 C 2e0
2R1B1ŒzuC E1.yx1 C e1/�; (5.45)

where
zu D z�.��1v C ˛v C hC g/:

We obtain

TW 6 �e0
1e1 � `

2
e0

2e2 C M6

`
kzuC E1.yx1 C e1/k2;

for a suitable constant M6 independent of ` and ˛. We note that

kzuC E1.yx1 C e1/k2 6 M7zx0 zQ" zx CM8ze0ze
for suitable constants M7 and M8 which depend on ˛ but which are independent
of ` and we obtain

TW 6 �e0
1e1 � `

2
e0

2e2 C M6M7

`
zx0 zQ" zx C M6M8

`
ze0ze:

Combining this with (5.43), we obtain

TL" 6 �2
3

zx0 zQ" zx CM5e
0
2e2 � ˇ

4
e0

1e1 � ˇ`

2
e0

2e2

C ˇM6M7

`
zx0 zQ"zx C ˇM6M8

`
ze0ze

6 �1
3

zx0 zQ" zx � ˇ

4
ze0ze
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for a sufficiently large `. This immediately implies the required asymptotic
stability and the required domain of attraction.

Theorem 5.21 Consider the system (5.16) and the robust semi-global stabiliza-
tion problem formulated in Problem 5.16. Assume that .A;B/ is stabilizable, all
the eigenvalues of A are in the closed left-half plane, and the system .A;B; C; 0/

is left invertible and minimum phase. Also, assume that z� satisfies properties (i)–
(vi) on page 340 which implies that there exist � and  such that (5.1) is sat-
isfied. In that case, there exist, for any pair of compact sets Xcl;1 and Xcl;2 in
R2n containing 0 in their interior and with Xcl;1 � Xcl;2, an "�, a function
˛� W .0; "�/ ! RC, and a function `� W .0; "�/ � RC ! RC such that for all
" 2 .0; "�/, ˛ > ˛�."/, and ` > `�."; ˛/, the feedback (5.30) has the property
that, for all functions g satisfying Assumption 5.12, the resulting closed-loop sys-
tem is such that for all initial conditions in Xcl;1 the state enters and remains in
the set Xcl;2 within a finite amount of time.

Proof : Following the proof of Theorem 5.20, we decompose yx compatible with
the decomposition of x and we define e1 and e2 as in (5.31), and in terms of
these new variables, we obtain the closed-loop system (5.32). We again define
F";1 and F";2 such that (5.33) is satisfied and use the definition in (5.34). Clearly,
we can construct compact sets X1;X2;E1;E2 such that .x; yx/ 2 Xcl;2 implies
that yx1 2 X1, x2 2 X2, e1 2 E1, and e2 2 E2.

First, we choose ˇ such that (5.35) is satisfied, and let c be such that

ˇze0Rze < c

2

for all ze 2 E1 � E2, where R as defined in (5.36). Finally, choose "� such that for
any " 2 .0; "�/, we have

zx0 zP" zx < c

2

for all zx 2 X1 � X2 and (5.37) is satisfied componentwise for all .yx1; x2/ with
zx0 zP" zx < c. Next, we look at the candidate Lyapunov function,

L".t/ D V".t/C ˇW.t/;

where

V".t/ WD zx.t/0 zP" zx.t/; W.t/ WD ze.t/0Rze.t/:
Clearly, for all initial conditions in Xcl;2, we have L".0/ 6 1, and (5.37) is satis-
fied for all t > 0 as long as L".0/ 6 1.

Let zXcl;1 be such that .x; yx/ 2 Xcl;1 if and only if .zx; ze/ 2 zXcl;1. Next, we
choose ı such that

zx0 zQ" zx C ˇ

4
ze0ze 6 ıD2

0

for all .zx; ze/ 2 zXcl;1.
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We first obtain as before (5.40). Given our assumptions on the function g, there
exist M1, M2, and M3 such that

kg.x; t/k2 6 Œg0.kxk/CD0�
2

6 M1kxk2 C 2D2
0

6 M2 zx0 zQ" zx CM3ke1k2 C 2D2
0 : (5.46)

We note that, similar to the proof of Theorem 5.20, we obtain

2v0 �z�.��1v C ˛v C hC g/� v
	

> �4M4

˛

�kgk2 C khk2



> �4M4M2

˛
zx0 zQ" zx � 4M4M3

˛
ke1k2 � 4M4

˛
khk2 � 8M4

˛
D2

0 ; (5.47)

where we used in the last inequality (5.46) instead of (5.39). Using (5.40) and
(5.47), we get

TV" 6 �zx0 zQ" zx � v0v � 2v0E1e1 C 4M4M2

˛
zx0 zQ"zx

C 4M4M3

˛
ke1k2 C 4M4

˛
khk2 C 8M4

˛
D2

0

< �2
3

zx0 zQ" zx C 3ˇ

4
e0

1e1 CM5e
0
2e2 C ı

2
D2

0 ; (5.48)

provided ˛ > 12M3M2, ˛ > 16M4M3

ˇ
, and ˛ > 16M4

ı
, where M5 is a suitable

constant depending on our choice of ˛ but independent of `. For the latter, we need
to use that the norm of S1;` is bounded as a function of `. We also used (5.44).
Next, we consider W . We obtain

TW 6 �e0
1e1 � `e0

2e2 C 2e0
2R1B1ŒzuC E1.yx1 C e1/�; (5.49)

where
zu D z�.��1v C ˛v C hC g/:

We obtain

TW 6 �e0
1e1 � `

2
e0

2e2 C M6

`
kzuC E1.yx1 C e1/k2;

for a suitable constant M6 independent of ` and ˛. We note that

kzuC E1.yx1 C e1/k2 6 M7 zx0 zQ"zx CM8ze0ze CM9D
2
0

for suitable constants M7, M8, and M9 which depend on ˛ but which are inde-
pendent of `, and we obtain

TW 6 �e0
1e1 � `

2
e0

2e2 C M6M7

`
zx0 zQ" zx C M6M8

`
ze0ze C M6M9

`
D2

0 :



360 5 Robust semi-global internal stabilization

Combining this with (5.48), we obtain

TL" 6 �2
3

zx0 zQ" zx CM5e
0
2e2 � ˇ

4
e0

1e1 � ˇ`

2
e0

2e2

C ˇM6M7

`
zx0 zQ"zx C ˇM6M8

`
ze0ze C

�
ı

2
C M6M9

`

�
D2

0

6 �1
3

zx0 zQ" zx � ˇ

4
ze0ze C ıD2

0

for a sufficiently large `. This immediately implies that L" will be decaying for
.x; yx/ 62 Xcl;2. This in turn implies that the solution of the closed-loop system will
enter the set Xcl;2 after a finite time which completes the proof of the theorem.

5.5 Systems with saturation and matched uncertainty:
continuous time

We consider a class of nonlinear systems which are obtained by cascading linear
systems with memory-free input nonlinearities of saturation type

˙ud W
(

Tx.t/ D Ax.t/C Bz�.u.t//C Bg.x; t/

y.t/ D Cx.t/;
(5.50)

where x 2 Rn is the state, u 2 Rm is the control input, and y 2 Rp is the measure-
ment output. As before, we assume that z� satisfies properties (i)–(vi) on page 340.
The uncertain element g W Rn � RC ! Rm represents both the uncertainties and
the disturbances. We impose only one requirement that we know an upper bound
on its norm. More specifically, we make the following assumptions:

Assumption 5.22 The uncertain element g.x; t/ is piecewise continuous in t , lo-
cally Lipschitz in x, and there exists a 	 > 0 such that its norm is bounded,

kg.x; t/k 6  � 	; 8.t; x/ 2 RC � Rn; (5.51)

where  is such that (5.1) is satisfied for appropriate � .

In order to obtain asymptotic stability, we need stronger assumptions on the
disturbance g as formulated in the following assumption:

Assumption 5.23 Assume z� and g satisfy Assumption 5.22. Additionally, assume
that g is such that

kg.x; t/k 6 g0.kxk/; 8.t; x/ 2 RC � Rn;
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where the known function g0.x/ W RC ! RC is locally Lipschitz and satisfies

g0.0/ D 0: (5.52)

Note that Assumption 5.22 guarantees that z� can be made larger than the un-
certain element g. If this is not the case, then there exist uncertain elements which
cancel the stabilizing effect of u and cause instability (if the nominal system is
not yet stable).

We are interested in finding controllers that achieve semi-global results inde-
pendent of the specific saturation function z� and independent of the precise g that
satisfies Assumption 5.22.

The main state feedback problems we solve in this section are the following:

Problem 5.24 Consider the system (5.50), where z� satisfies properties (i)–(vi) on
page 340 and z� and g satisfy the properties in Assumption 5.23. The objective is
to find, for any compact set X, a feedback gain matrix F such that, for all func-
tions g satisfying Assumption 5.23, the closed-loop system˙ud is asymptotically
stable and contains X in its domain of attraction.

If g and z� do not satisfy Assumption 5.23 but only Assumption 5.22, then it
is not possible to achieve asymptotic stability without more precise information
about the function g. However, in that case, we can still achieve practical stability:

Problem 5.25 Consider the system (5.50), where z� satisfies properties (i)–(vi)
on page 340 and g satisfies the properties in Assumption 5.22. The objective is
to find, for any compact set X1 and X2 containing 0 in their interior and with
X1 � X2, a feedback gain matrix F such that, for all functions g satisfying
Assumption 5.12 and initial conditions inside X1, the closed-loop system ˙ud is
such that the state enters and remains in X2 after some finite amount of time.

The main measurement feedback problem we solve in this section is the fol-
lowing:

Problem 5.26 Consider the system (5.50), where z� satisfies properties (i)–(vi)
on page 340 and g satisfies the properties in Assumption 5.23. The objective is to
find, for any compact set X � R2n, a dynamic feedback of the form

Txc D Acxc C Bcy; xc 2 Rn

u D Ccxc ;
(5.53)

such that for all functions g satisfying Assumption 5.23, the closed-loop system
˙ud is asymptotically stable and contains X in its domain of attraction.



362 5 Robust semi-global internal stabilization

If g and z� do not satisfy Assumption 5.23 but only Assumption 5.22, then it
is again not possible to achieve asymptotic stability without more precise infor-
mation about the function g. However, in that case we can still achieve practical
stability:

Problem 5.27 Consider the system (5.50) where z� satisfies properties (i)–(vi)
on page 340 and g satisfies the properties in Assumption 5.22. The objective is
to find, for any pair of compact sets X1;X2 � R2n containing 0 in their inte-
rior and with X1 � X2, a dynamic feedback of the form (5.53) such that, for
all functions g satisfying Assumption 5.22 and initial conditions inside X1, the
closed-loop system˙ud is such that the state enters and remains in X2 after some
finite amount of time.

We note that the requirement that all the eigenvalues have nonpositive parts
is necessary for semi-global stabilization as discussed in the previous chapter.
However, without such an assumption on the open-loop eigenvalues, interesting
local results are still possible and will be pointed out later.

5.5.1 State feedback results

Before we discuss the solvability of the above-defined state feedback control
problem, we recall below the family of parameterized low-and-high-gain state
feedback laws, denoted by

u D ��1F"x C ˛F"x; (5.54)

where F" D �B 0P", and P" is the positive definite solution of

A0P" C P"A � P"BB
0P" CQ" D 0

with Q" > 0 such that Q" ! 0 as " ! 0. As we discussed in Chap. 4, the
parameter " is the low-gain tuning parameter, whereas ˛ is the high-gain tuning
parameter.

Theorem 5.28 Consider the system (5.50) and the robust semi-global stabiliza-
tion problem formulated in Problem 5.24. Assume that .A;B/ is stabilizable, all
the eigenvalues of A are in the closed left-half plane, and Assumption 5.23 is
satisfied.

In that case, there exist, for any compact set X, an "� and a function ˛� W
.0; "�/ ! RC such that for all " 2 .0; "�/ and ˛ > ˛�."/, the feedback (5.54)
has the property that, for all functions g satisfying Assumption 5.23, the result-
ing closed-loop system is asymptotically stable and contains X in its domain of
attraction.
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Proof : We first choose an "� such that

X � V" WD f x 2 Rn j x0P"x < 1 g;
and

jF"xj < 	
componentwise for all x 2 V" and for all " 2 .0; "�/, where 	 is defined in
Assumption 5.23. For all x 2 V", there exist M1 and M2 such that

kg.x; t/k2 6 g0.kxk/2 6 M1kxk2 6 M2x
0Q"x; (5.55)

where the first inequality follows from Assumption 5.12, while the existence of
anM1 such that the second inequality is satisfied is a consequence of the fact that
g0 is locally Lipschitz and x is in a bounded set. The existence of M2 such that
the final inequality is satisfied follows from the fact that Q" is positive definite.

Next, we look at the candidate Lyapunov function

V".t/ WD x.t/0P"x.t/:

We obtain

TV" D �x0Q"x � v0v � 2v0 �z�.��1v C ˛v/C g � v
	

(5.56)

where
v D �B 0P"x:

To analyze further the derivative of our candidate Lyapunov function, we consider
two cases. Let vi and gi denote the i th component of v and g, respectively. If

j�˛vi j > jgi j
is satisfied, we then obtain

z�.��1vi C ˛vi / > minf.1C �˛/jvi j;  g > jgi j C jvi j
with � > ��1. We then find that

vi

�z�.��1vi C ˛vi /C gi � vi

	
> 0:

On the other hand, if
j�˛vi j < jgi j (5.57)

is satisfied, then we get

jz�.��1vi C ˛vi /C gi � vi j 6 ıj��1vi C ˛vi j C jgi j C jvi j 6 M3jgi j
for some constant M3 > 0 (independent of ˛) using (5.57) and the fact that z�
is globally Lipschitz with Lipschitz constant ı. Here we used, without loss of
generality, that ˛ > 1. This implies that

vi

�z�.��1vi C ˛vi /C gi � vi

	
> �M3jgi jjvi j > �M3

˛
g2

i ;
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where we again used (5.57). If we bring together the above two cases, we find that

2v0 �z�.��1v C ˛v/C g � v
	

> �M3

˛
kgk2 > �M3M2

˛
x0Q"x;

where we used (5.55). Using this in (5.56), we get

TV" 6 �x0Q"x � v0v C M3M2

˛
x0Q"x < �1

2
x0Q"x;

provided ˛ > 2M3M2. Note that the lower bound for ˛ depends on " since the
bound M2 depends on ". We conclude that in V", the Lyapunov function V" is
strictly decaying which implies asymptotic stability and, moreover, that V" is pos-
itively invariant and contained in the domain of attraction.

Theorem 5.29 Consider the system (5.50) and the robust semi-global practical
stabilization problem formulated in Problem 5.25. Assume that .A;B/ is stabi-
lizable, all the eigenvalues of A are in the closed left-half plane, and Assump-
tion 5.22 is satisfied.

In that case, there exist, for any pair of compact sets X1 and X2 containing 0
in their interior and with X1 � X2, an "� and a function ˛� W .0; "�/ ! RC such
that for all " 2 .0; "�/ and ˛ > ˛�."/, the feedback (5.54) has the property that,
for all functions g satisfying Assumption 5.22, the resulting closed-loop system is
such that, for all initial conditions in X1, the state enters and remains in the set
X2 within a finite amount of time.

Proof : We first choose an "� such that

X1 � V" WD f x 2 Rn j x0P"x < 1 g;
and

jF"xj <  
componentwise for all x 2 V" and for all " 2 .0; "�/. The last condition implies
that

jz�.�F"x/j > minf � j�F"xj;  g > jF"xj (5.58)

for � > ��1.
For all x 2 V", there exist M1 and M2 such that

kg.x; t/k2 6 Œg0.kxk/CD0�
2

6 M1kxk2 C 2D2
0

6 M2x
0Q"x C 2D2

0 ; (5.59)
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where the first inequality follows from Assumption 5.12, while the existence of
anM1 such that the second inequality is satisfied is a consequence of the fact that
g0 is locally Lipschitz and x is in a bounded set. The existence of M2 such that
the final inequality is satisfied follows from the fact that Q" is positive definite.

Next, we look at the candidate Lyapunov function,

V".t/ WD x.t/0P"x.t/:

We obtain

TV" D �x0Q"x � v0v � 2v0 �z�.��1v C ˛v/C g � v
	

(5.60)

where
v D �B 0P"x:

To analyze further the derivative of our candidate Lyapunov function, we consider
two cases. Let vi and gi denote the i th component of v and g, respectively. If

j�˛vi j > jgi j
is satisfied, we then obtain,

z�.��1vi C ˛vi / > jvi j C jgi j:
We then find that

vi

�z�.��1vi C ˛vi /C gi � vi

	
> 0:

On the other hand, if
j�˛vi j < jgi j (5.61)

is satisfied, then we get

jz�.��1vi C ˛vi /C gi � vi j 6 ıj��1vi C ˛vi j C jgi j C jvi j 6 M3jgi j
for some constant M3 > 0 (independent of ˛) using (5.61) and the fact that z�
is globally Lipschitz with Lipschitz constant ı. Here we used, without loss of
generality, that ˛ > 1. This implies that

vi

�z�.��1vi C ˛vi /C gi � vi

	
> �M3jgi jjvi j > �M3

˛
g2

i ;

where we again used (5.61). If we bring together the above two cases, we find that

2v0 �z�.��1v C ˛v/C g � v	 > �M3

˛
kgk2 > �2M3

˛
	2;

where we used (5.59). Using this in (5.60), we get

TV" 6 �x0Q"x � v0v C 2M3

˛
	2

< �x0Q"x C 2M3

˛
	2: (5.62)



366 5 Robust semi-global internal stabilization

Moreover, let �1; �2 be such that

f x 2 Rn j x0Q"x < �1 g � W� D f x 2 Rn j x0P"x < �2 g � X2:

Choose ˛ such that
2M3

˛
	2 < �1:

Then it is obvious from (5.62) that inside V", the Lyapunov functionV" is decreas-
ing outside W�. This implies that the solution will enter and stay in W� within
a finite amount of time. By construction, this implies that the solution enters and
stays in the set X2 after a finite amount of time for all initial conditions in the
set X1.

5.5.2 Measurement feedback results

In the measurement feedback case, we use the low-and-high-gain state feedback
(5.54) as studied in the previous subsection and introduced in Chap. 4. We com-
bine this with a high-gain observer, i.e.

Tyx D .AC BF"/yx CK`.y � C yx/
u D ��1F" yx C ˛F" yx; (5.63)

where F" D �B 0P", and P" is the positive definite solution of

A0P" C P"A � P"BB
0P" CQ" D 0

with Q" > 0 such that Q" ! 0 as " ! 0.
In order to construct a suitable observer, we note that if the system .A;B; C; 0/

is left invertible and minimum phase then there exists a basis transformation �s

such that

� �1
s A�s D

 
A0 L0C1

B1E1 A1

!
; � �1

s B D
 
0

B1

!
; C�s D



0 C1

�

with A0 asymptotically stable. This follows from Chap. 3 where

�sx D
 
x1

x2

!
; x1 D xa; x2 D

 
xb

xd

!

in the notation of SCB. Note that xc is missing because the system is left invertible
and A0 is asymptotically stable because the system is minimum phase. Since the
subsystem .A1; B1; C1; 0/ is observable and its transfer matrix has a polynomial
inverse, it has been established in Sect. 4.5.1 of Chap. 4 that there exist K1;` and
S1;` such that

S�1
1;`.A1 �K1;`C1/S1;` D ` zA1; S�1

1;`B1 D B1;
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where there exists an M , independent of `, such that kS1;`k < M for all ` > 1.
We define

K` D �s

 
L0

K1;`

!
:

The claim is that the above dynamic observer-based controller can be used to
solve Problems 5.26 and 5.27 for " sufficiently small and ˛ and ` sufficiently
large. The following two theorems make this result more precise:

Theorem 5.30 Consider the system (5.50) and the robust semi-global stabiliza-
tion problem formulated in Problem 5.26. Assume that .A;B/ is stabilizable, all
the eigenvalues of A are in the closed left-half plane, and the system .A;B; C; 0/

is left invertible and minimum phase. Also, assume that z� and g satisfy Assump-
tion 5.23, in addition to the standard properties (i)–(vi) on page 340.

In that case, there exist, for any compact set Xcl � R2n, an "�, a function
˛� W .0; "�/ ! RC, and a function `� W .0; "�/ � RC ! RC such that, for all " 2
.0; "�/, ˛ > ˛�."/, and ` > `�."; ˛/, the feedback (5.63) has the property that,
for all functions g satisfying Assumption 5.23, the resulting closed-loop system is
asymptotically stable and contains Xcl in its domain of attraction.

Proof : We decompose yx compatible with the decomposition of x, and we define
e1 and e2,

�s yx D
 

yx1

yx2

!
; e1 D x1 � yx1; e2 D S�1

1;`.x2 � yx2/: (5.64)

The closed-loop system can then be written in terms of these new variables:

Tyx1 D A0 yx1 C L0C1x2

Tx2 D A1x2 C B1.z�.u/C g C E1.yx1 C e1//

Te1 D A0e1

Te2 D ` zA1e2 C B1.z�.u/C g CE1.yx1 C e1//

u D �
��1 C ˛



F"�s

 
yx1

x2 � S1;`e2

!
:

(5.65)

For ease of presentation, we will define F";1 and F";2 such that

u D �
��1 C ˛


 �
F";1 yx1 C F";2.x2 � S1;`e2/

	
: (5.66)

Moreover, we define

zP" D � 0
sP"�s; zQ" D � 0

sQ"�s; zx D
 

yx1

x2

!
; ze D

 
e1

e2

!
: (5.67)
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Clearly, we can construct compact sets X1;X2;E1;E2 such that .x; yx/ 2 Xcl

implies that yx1 2 X1, x2 2 X2, e1 2 E1, and e2 2 E2.
First, we choose ˇ such that

ˇ > 2kE1k2 C 1: (5.68)

Next, let c be such that

ˇze0Rze < c

2

for all ze 2 E1 � E2 and

R D
 
R0 0

0 R1

!
(5.69)

where
A0

0R0 CR0A0 C I D 0; zA0
1R1 CR1

zA1 C I D 0:

Finally, choose "� such that for any " 2 .0; "�/, we have

zx0 zP" zx < c

2

for all zx 2 X1 � X2, and

jF";1 yx1 C F";2x2j < 	 (5.70)

componentwise for all .yx1; x2/ with zx0 zP" zx < c. Next, we look at the candidate
Lyapunov function,

L".t/ D V".t/C ˇW.t/;

where

V".t/ WD zx.t/0 zP" zx.t/; W.t/ WD ze.t/0Rze.t/:
Clearly, for all initial conditions in Xcl, we haveL".0/ 6 1, and (5.70) is satisfied
for all t > 0 as long as L".0/ 6 1.

Given our assumptions on the function g, there exist M1, M2, and M3 such
that

kg.x; t/k2 6 Œg0.kxk/�2
6 M1kxk2

6 M2zx0 zQ" zx CM3ke1k2: (5.71)

We obtain

TV" D �zx0 zQ" zx � v0v � 2v0 �z�.��1v C ˛v C h/C g � v C E1e1

	
; (5.72)

where
v D F";1 yx1 C F";2x2; h D �.��1 C ˛/F";2S1;`e2:
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Let vi , gi , and hi denote the i th component of v, g, and h, respectively. Assume
that

j�˛vi j > jgi j C jhi j
is satisfied, then there exists an ˛1 such that

j�˛1vi > jgi j and j�.˛ � ˛1/vi > jhi j:
Using this, we obtain

z�.��1vi C ˛vi C hi / > minf.1C �˛1/jvi j;  g > jgi j C jvi j:
We then find that

vi

�z�.��1vi C ˛vi C hi /C gi � vi

	
> 0:

On the other hand, if
j�˛vi j < jgi j C jhi j (5.73)

is satisfied, then we get

jz�.��1vi C ˛vi C hi /C gi � vi j 6 ıj��1vi C ˛vi C hi j C jgi j C jvi j
6 M4 .jgi j C jhi j/

for some constant M4 > 0 (independent of ˛) using (5.73) and the fact that z�
is globally Lipschitz with Lipschitz constant ı. Here we used, without loss of
generality, that ˛ > 1. This implies that

vi

�z�.��1vi C ˛vi C hi /C gi � vi

	
> �M4 .jgi j C jhi j/ jvi j
> �2M4

˛
.g2

i C h2
i /;

where we again used (5.73). If we bring together the above two cases, we find that

2v0 �z�.��1v C ˛v C h/C g � v
	

> �4M4

˛

�kgk2 C khk2



> �4M4M2

˛
zx0 zQ" zx � 4M4M3

˛
ke1k2 � 4M4

˛
khk2; (5.74)

where we used (5.71). Using (5.72) and (5.74), we get

TV" 6 �zx0 zQ" zx � v0v � 2v0E1e1 C 4M4M2

˛
zx0 zQ" zx

C 4M4M3

˛
ke1k2 C 4M4

˛
khk2

< �2
3

zx0 zQ" zx C 3ˇ

4
e0

1e1 CM5e
0
2e2; (5.75)
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provided ˛ > 12M3M2 and ˛ > 16M4M3

ˇ
, and where M5 is a suitable constant

depending on our choice of ˛ but independent of `. For the latter, we need to
use that the norm of S1;` is bounded as a function of `. We also used that, based
on (5.68), we have

� v0v � 2v0E1e1 6 kE1e1k2 6 ˇ

2
ke1k2: (5.76)

Next, we consider W . We obtain

TW 6 �e0
1e1 � `e0

2e2 C 2e0
2R1B1ŒzuC g C E1.yx1 C e1/�; (5.77)

where
zu D z�.��1v C ˛v C h/:

We obtain

TW 6 �e0
1e1 � `

2
e0

2e2 C M6

`
kzuC g C E1.yx1 C e1/k2

for a suitable constant M6 independent of ` and ˛. We note that

kzuC g CE1.yx1 C e1/k2 6 M7 zx0 zQ" zx CM8ze0ze
for suitable constants M7 and M8 which depend on ˛ but which are independent
of `, and we obtain

TW 6 �e0
1e1 � `

2
e0

2e2 C M6M7

`
zx0 zQ" zx C M6M8

`
ze0ze:

Combining this with (5.75), we obtain

TL" 6 �2
3

zx0 zQ" zx CM5e
0
2e2 � ˇ

4
e0

1e1 � ˇ`

2
e0

2e2

C ˇM6M7

`
zx0 zQ"zx C ˇM6M8

`
ze0ze

6 �1
3

zx0 zQ" zx � ˇ

4
ze0ze

for a sufficiently large `. This immediately implies the required asymptotic stabil-
ity and the required domain of attraction.

Theorem 5.31 Consider the system (5.50) and the robust semi-global stabiliza-
tion problem formulated in Problem 5.26. Assume that .A;B/ is stabilizable, all
the eigenvalues of A are in the closed left-half plane, and the system .A;B; C; 0/

is left invertible and minimum phase. Also, assume that z� and g satisfy Assump-
tion 5.22, in addition to the standard properties (i)–(vi) on page 340.
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In that case, there exist, for any pair of compact sets Xcl;1 and Xcl;2 in R2n

containing 0 in their interior and with Xcl;1 � Xcl;2, an "�, a function ˛� W
.0; "�/ ! RC, and a function `� W .0; "�/�RC ! RC such that for all " 2 .0; "�/,
˛ > ˛�."/, and ` > `�."; ˛/, the feedback (5.63) has the property that, for all
functions g satisfying Assumption 5.22, the resulting closed-loop system is such
that, for all initial conditions in Xcl;1, the state enters and remains in the set Xcl;2

within a finite amount of time.

Proof : Following the proof of Theorem 5.30, we decompose yx compatible with
the decomposition of x and we define e1 and e2 as in (5.64), and in terms of
these new variables, we obtain the closed-loop system (5.65). We again define
F";1 and F";2 such that (5.66) is satisfied and use the definition in (5.67). Clearly,
we can construct compact sets X1;X2;E1;E2 such that .x; yx/ 2 Xcl;2 implies
that yx1 2 X1, x2 2 X2, e1 2 E1, and e2 2 E2.

First, we choose ˇ such that (5.68) is satisfied, and let c be such that

ˇze0Rze < c

2

for all ze 2 E1 � E2, where R as defined in (5.69). Finally, choose "� such that for
any " 2 .0; "�/, we have

zx0 zP" zx < c

2

for all zx 2 X1 � X2, and (5.70) is satisfied componentwise for all .yx1; x2/ with
zx0 zP" zx < c. Next, we look at the candidate Lyapunov function,

L".t/ D V".t/C ˇW.t/;

where

V".t/ WD zx.t/0 zP" zx.t/; W.t/ WD ze.t/0Rze.t/:
Clearly, for all initial conditions in Xcl;2, we have L".0/ 6 1, and (5.70) is satis-
fied for all t > 0 as long as L".0/ 6 1.

Let zXcl;1 be such that .x; yx/ 2 Xcl;1 if and only if .zx; ze/ 2 zXcl;1. Next, we
choose ı such that

zx0 zQ" zx C ˇ

4
ze0ze 6 ı	2

for all .zx; ze/ 2 zXcl;1.
As before, we first obtain (5.72). Given our assumptions on the function g, we

note that

kg.x; t/k2 6 	2: (5.78)
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Similar to the proof of Theorem 5.20, we obtain

2v0 �z�.��1v C ˛v C h/C g � v
	

> �4M4

˛

�kgk2 C khk2



> �4M4

˛
khk2 � 4M4

˛
	2; (5.79)

where we used in the last inequality (5.78) instead of (5.71). Using (5.72) and
(5.79), we get

TV" 6 �zx0 zQ" zx � v0v � 2v0E1e1 C 4M4

˛
khk2 C 4M4

˛
	2

< �2
3

zx0 zQ" zx C 3ˇ

4
e0

1e1 CM5e
0
2e2 C ı

2
	2 (5.80)

provided ˛ > 8M4

ı
, where M5 is a suitable constant depending on our choice of

˛ but independent of `. For the latter, we need to use that the norm of S1;` is
bounded as a function of `. We also used (5.76). Next, we considerW . We obtain

TW 6 �e0
1e1 � `e0

2e2 C 2e0
2R1B1ŒzuC g C E1.yx1 C e1/�; (5.81)

where
zu D z�.��1v C ˛v C h/:

We obtain

TW 6 �e0
1e1 � `

2
e0

2e2 C M6

`
kzuC g C E1.yx1 C e1/k2

for a suitable constant M6 independent of ` and ˛. We note that

kzuC g C E1.yx1 C e1/k2 6 M7zx0 zQ" zx CM8ze0ze CM9	
2

for suitable constants M7, M8, and M9 which depend on ˛ but which are inde-
pendent of `, and we obtain

TW 6 �e0
1e1 � `

2
e0

2e2 C M6M7

`
zx0 zQ" zx C M6M8

`
ze0ze C M6M9

`
	2:

Combining this with (5.80), we obtain

TL" 6 �2
3

zx0 zQ" zx CM5e
0
2e2 � ˇ

4
e0

1e1 � ˇ`

2
e0

2e2

C ˇM6M7

`
zx0 zQ" zx C ˇM6M8

`
ze0ze C

�
ı

2
C M6M9

`

�
	2

6 �1
3

zx0 zQ" zx � ˇ

4
ze0ze C ı	2

for a sufficiently large `. This immediately shows that L" will be decaying for
.x; yx/ 62 Xcl;2. This implies that the solution of the closed-loop system will enter
the set Xcl;2 after a finite time which completes the proof of the theorem.
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5.6 Systems with saturation and uncertainty:
discrete time

In the previous two sections, we analyzed both input additive and matched uncer-
tainty for continuous-time systems. The main design tool is a high-gain feedback
generated by the low-and-high-gain design methodology. This design methodol-
ogy is also available for discrete-time systems. However, there is a crucial restric-
tion on the high-gain parameter. This immediately implies that the problems as
formulated in the previous sections are not solvable in the discrete-time case. We
would like to illustrate this by a simple example.

Let us first have a look at practical stabilization:

Example 5.32 Consider the system

x.k C 1/ D x.k/C �.u.k/C g.x; k//;

where g.x; k/ is locally Lipschitz in x and its norm is bounded by a known func-
tion

kg.x; k/k 6 g0.kxk/CD0; 8.k; x/ 2 ZC � R; (5.82)

whereD0 is a known positive constant and the known function g0.x/ W RC ! RC
is locally Lipschitz and satisfies g.0/ D 0.

Then there exists no feedback u D f .x/ which achieves practical stability in
the sense that we cannot guarantee that, for any compact set X1;X2 containing
0 in their interior, there exists a feedback u D f .x/ such that the closed-loop
system is such that for all initial conditions in X1 the state enters and remains in
X2 after some finite amount of time.

This is easily verified. The fact that we need to remain in an arbitrarily small re-
gion around 0 requires that f .0/ D 0 which is easily seen by choosing g.x; k/ D
0. But then, for initial condition 0, we have to remain in X2. However, by choos-
ing x.0/ D 0 and g.x; j / D 0 for j < k and g.x; k/ D D0 yields x.k C 1/ D
�.D0/, which will not be in X2 if X2 has been chosen sufficiently small.

Next, we show that even if D0 D 0 in (5.82), we will not be able to achieve
stabilization when g0 is too large.

Example 5.33 Consider the system

x.k C 1/ D x.k/C �.u.k/C g.x; k//;

where g.x; k/ is locally Lipschitz in x and its norm is bounded by a known func-
tion:

kg.x; k/k 6 g0.kxk/; 8.k; x/ 2 ZC � R;
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where the known function g0.x/ W RC ! RC is locally Lipschitz and satisfies
g.0/ D 0.

Then for g0 sufficiently large, there exists no feedback u D f .x/ which achie-
ves practical stability in the sense that we cannot guarantee that for any compact
set X, there exists a feedback u D f .x/ such the closed-loop system is asymp-
totically stable with X contained in its domain of attraction.

This is easily verified. Choose g0.x/ such that g0.kxk/ > 2kxk. We choose
g.x; k/ D 0 if f .x/ and x have the same sign and choose g.x; k/ D �2x oth-
erwise. Then it is easily verified that for any x.k/ with jx.k/j < 1=2, we have
jx.k C 1/j > jx.k/j, and the origin is therefore clearly not asymptotically stable.

5.7 Saturation with deadzone

The saturation function studied in this chapter satisfies the conditions (i)–(vi) on
page 340 which implies that the saturation function is bounded away from zero
outside the origin as formulated in condition (5.1). However, in practice, we do
encounter saturation functions which include a deadzone and hence do not sat-
isfy property (iv) on page 340 and also do not satisfy (5.1). We will study in
this section saturation functions with deadzone, denoted by z�d , which satisfy the
following properties:

(i) z�d .u/ is decentralized, i.e.,

z�d .s/ D

ˇ z�d;1.s1/

z�d;2.s2/
:::

z�d;m.sm/:

�
:

(ii) z�d;i is globally Lipschitz, i.e. for some ı > 0,

jz�d;i.s1/� z�d;i.s2/j 6 ıjs1 � s2j:

(iii) sz�d;i .s/ > 0 and z�i .0/ D 0.

(iv) lim inf
jsj!1

jz�d;i .s/j > 0.

(v) There exists an M > 0 such that jz�d;i .s/j < M for all s 2 R.

The above conditions imply that there exist positive constants � ,  , and a such
that

jz�d .s/j > minf �.jsj � a/;  g: (5.83)

Graphically, the above conditions imply that the graph of the saturation function
is in the hatched area of Fig. 5.1.
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Figure 5.1: Saturation with deadzone

5.7.1 Continuous time

One approach for controlling a system with a deadzone is using dithering. Con-
sider the system

Tx D Ax C Bz�d .u/

y D Cx:
(5.84)

We apply a high-frequency sinusoid as a preliminary feedback,

u.t/ D v.t/C r.t/ D v.t/C A sin.!t/:

Then the system can be approximated by

Tx D Ax C Bz�.v/
y D Cx

(5.85)

for some z� satisfying the classical properties (i)–(vi) on page 340. This approxi-
mation does require that A > a and the approximation gets arbitrary accurate as
! ! 1. We will not pursue this approach in the book. We do note that this ap-
proach was introduced in [212, 213], although the use of dither signals has a much
longer history going back to the work of Schuchman [146]. For recent extensions,
we refer to [51, 52].

Our approach will be closer to [68] using low-and-high-gain state feedbacks
as already exploited earlier in this chapter. We note that if z�d satisfies properties
(i)–(v) above, then

z�.s/ D z�d .s � gd .s//; where gd .s/ D �a sgn.s/ (5.86)

satisfies properties (i)–(vi) on page 340. Using this relationship, we can derive the
following theorems:
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Theorem 5.34 Consider the system (5.84) with .A;B/ stabilizable and all eigen-
values ofA in the closed left-half plane. Assume that z�d satisfies properties (i)–(v)
on page 374, and let positive constants a, � , and  be such that

jz�d .s/j > minf �.jsj � a/;  g (5.87)

componentwise. Let P" > 0 be the solution of the algebraic Riccati equation

A0P" C P"A � P"BB
0P" CQ" D 0

with Q" ! 0 as " ! 0. In that case, there exist, for any pair of compact sets X1

and X2 containing 0 in their interior and with X1 � X2 , an "� and a function
˛� W .0; "�/ ! RC such that for all " 2 .0; "�/ and ˛ > ˛�."/, the feedback

u D ���1B 0P"x � ˛B 0P"x (5.88)

has the property that the closed-loop system is such that for all initial conditions
in X1 the state enters and remains in the set X2 within a finite amount of time.

Remark 5.35 Note that the above theorem only yields practical stability. It is
easily verified that any continuous feedback can only achieve practical stability
of the equilibrium point in zero. After all, a continuous feedback u D f .x/ will
result either in a nonzero equilibrium or in a saturated input which is equal to
zero in a neighborhood of the origin. The latter implies that the feedback will
only yield asymptotic stability if the system is already asymptotically stable.

Proof : Let "� and the function ˛� W .0; "�/ ! RC be such that the con-
troller (5.88) solves the robust semi-global practical stabilization problem for the
system (5.16) for all " 2 .0; "�/, and ˛ > ˛�."/ with respect to the compact
sets X1 and X2, where z� is given by (5.86), while g satisfies the properties in As-
sumption 5.12 withD0 > a. Then the same controller applied to the system (5.84)
has the property that the closed-loop system is such that for all initial conditions
in X1 the state enters and remains in the set X2 within a finite amount of time.
This follows from the fact that

g D gd .u/ D gd

����1B 0P"x � ˛B 0P"x



satisfies the conditions of Theorem 5.12, and after setting g D gd , we note that
the system (5.16) with controller (5.88) yields the same closed-loop system as the
system (5.84) with the same controller (5.88). The rest is then a direct application
of Theorem 5.19.
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Theorem 5.36 Consider the system

˙ud W
(

Tx D Ax CBz�d .u/

y D Cx:
(5.89)

Assume that .A;B/ is stabilizable, all the eigenvalues of A are in the closed left-
half plane, and the system .A;B; C; 0/ is left invertible and minimum phase. Also,
assume that z�d satisfies the standard properties (i)–(v) on page 374, which guar-
antees the existence of positive constants a, � , and  such that (5.87) is satisfied
componentwise. In that case, there exist, for any pair of compact sets Xcl;1 and
Xcl;2 in R2n containing 0 in their interior and with Xcl;1 � Xcl;2, an "�, a func-
tion ˛� W .0; "�/ ! RC, and a function `� W .0; "�/ � RC ! RC such that for
all " 2 .0; "�/, ˛ > ˛�."/, and ` > `�."; ˛/, the feedback (5.30) has the property
that the resulting closed-loop system is such that for all initial conditions in Xcl;1

the state enters and remains in the set Xcl;2 within a finite amount of time.

Proof : Let "� and the functions ˛� W .0; "�/ ! RC and ` > `�."; ˛/ be such that
the controller (5.30) solves the robust semi-global practical stabilization problem
for the system (5.16) for all " 2 .0; "�/, ˛ > ˛�."/ and ` > `�."; ˛/ with respect
to the compact sets X1 and X2, where z� is given by (5.86), while g satisfies the
properties in Assumption 5.12 with D0 > a. Then the same controller applied to
the system (5.84) has the property that the closed-loop system is such that for all
initial conditions in X1 the state enters and remains in the set X2 within a finite
amount of time. This follows from the fact that

g D gd .u/ D gd

����1B 0P" yx � ˛B 0P" yx


satisfies the conditions of Assumption 5.12, and after setting g D gd , we note that
the system (5.89) with controller (5.30) yields the same closed-loop system as the
system (5.84) with the same controller (5.30). The rest is then a direct application
of Theorem 5.21.

The above two theorems only consider the case of stabilization in case of a
saturation with a deadzone. If we have model uncertainty as studied before in
Sect. 5.4, then the above two theorems can be trivially expanded. Consider the
system,

˙ud W
(

Tx.t/ D Ax.t/C Bz�d .u.t/C zg.x; t//
y.t/ D Cx.t/;

(5.90)

where zg satisfies the following assumption:

Assumption 5.37 The uncertain element zg.x; t/ is piecewise continuous in t , lo-
cally Lipschitz in x and its norm is bounded by a known function

kzg.x; t/k � g0.kxk/C zD0; 8.t; x/ 2 RC � Rn; (5.91)
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where zD0 is a known positive constant, and the known function g0.x/ W RC !
RC is locally Lipschitz and satisfies

g0.0/ D 0: (5.92)

We then obtain the following two theorems:

Theorem 5.38 Consider the system (5.90) with .A;B/ stabilizable and all eigen-
values ofA in the closed left-half plane. Assume that z�d satisfies properties (i)–(v)
on page 374, and let positive constants a, � , and  be such that

jz�d .s/j > minf �.jsj � a/;  g (5.93)

componentwise, while zg satisfies the conditions of Assumption 5.37.
Let P" > 0 be the solution of the algebraic Riccati equation and

A0P" C P"A � P"BB
0P" CQ" D 0

with Q" ! 0 as " ! 0. In that case, there exist, for any pair of compact sets X1

and X2 containing 0 in their interior and with X1 � X2 , an "� and a function
˛� W .0; "�/ ! RC such that for all " 2 .0; "�/ and ˛ > ˛�."/, the feedback

u D ���1B 0P"x � ˛B 0P"x

has the property that the closed-loop system is such that for all initial conditions
in X1 and all possible functions zg satisfying Assumption 5.37, the state enters
and remains in the set X2 within a finite amount of time.

Proof : Let "� and the function ˛� W .0; "�/ ! RC be such that the con-
troller (5.88) solves the robust semi-global practical stabilization problem for the
system (5.16) for all " 2 .0; "�/ and ˛ > ˛�."/ with respect to the compact
sets X1 and X2, where z� is given by (5.86), while g satisfies the properties in
Assumption 5.12 withD0 > zD0 Ca. Then the same controller applied to the sys-
tem (5.84) has the property that the closed-loop system is such that for all initial
conditions in X1 the state enters and remains in the set X2 within a finite amount
of time. This follows from the fact that

g D zg C gd .u/ D zg C gd

����1B 0P"x � ˛B 0P"x



satisfies the conditions of Assumption 5.12, and after setting g D zgCgd , we note
that the system (5.16) with controller (5.88) yields the same closed-loop system
as the system (5.84) with the same controller (5.88). The rest is then a direct
application of Theorem 5.19.
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Theorem 5.39 Consider the system (5.90) with .A;B/ stabilizable, with all the
eigenvalues of A in the closed left-half plane, and with the system .A;B; C; 0/

left invertible and minimum phase. Assume that z�d satisfies the standard proper-
ties (i)–(v) on page 374, which guarantees the existence of positive constants a, � ,
and such that (5.93) is satisfied componentwise, while zg satisfies the conditions
of Assumption 5.37.

In that case, there exist, for any pair of compact sets Xcl;1 and Xcl;2 in R2n

containing 0 in their interior and with Xcl;1 � Xcl;2, an "�, a function ˛� W
.0; "�/ ! RC, and a function `� W .0; "�/ � RC ! RC such that for all " 2
.0; "�/, ˛ > ˛�."/, and ` > `�."; ˛/, the feedback (5.30) has the property that
the resulting closed-loop system is such that for all initial conditions in Xcl;1 and
all possible functions zg satisfying Assumption 5.37, the state enters and remains
in the set Xcl;2 within a finite amount of time.

Proof : Let "� and the functions ˛� W .0; "�/ ! RC and ` > `�."; ˛/ be such that
the controller (5.30) solves the robust semi-global practical stabilization problem
for the system (5.16) for all " 2 .0; "�/, ˛ > ˛�."/ and ` > `�."; ˛/ with respect
to the compact sets X1 and X2 where z� is given by (5.86) while g satisfies the
properties in Assumption 5.12 with D0 > zD0 C a. Then the same controller
applied to the system (5.84) has the property that the closed-loop system is such
that for all initial conditions in X1 the state enters and remains in the set X2

within a finite amount of time. This follows from the fact that

g D zg C gd .u/ D zg C gd

����1B 0P" yx � ˛B 0P" yx


satisfies the conditions of Theorem 5.12, and after setting g D zg C gd , we note
that the system (5.89) with controller (5.30) yields the same closed-loop system
as the system (5.84) with the same controller (5.30). The rest is then a direct
application of Theorem 5.21.

5.7.2 Discrete time

Consider the system

x.k C 1/ D Ax.k/C Bz�d .u.k//

y.k/ D Cx.k/:
(5.94)

The approach based on dithering mentioned in the previous subsection clearly
does not work for discrete-time systems since we are intrinsically limited in our
use of high-frequency signals by the sampling rate of the system.

But also practical stabilization is simply not achievable in the presence of a
deadzone. This is illustrated in the following example which has the same struc-
ture as the examples in Sect. 5.6.
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Example 5.40 Consider the system,

x.k C 1/ D x.k/C �.u.k/C g.x; k//:

There exists saturation functions z�d with a deadzone satisfying properties (i)–
(v) on page 374 for which there exists no feedback u D f .x/ which achieves
practical stability in the sense that we cannot guarantee that, for any compact set
X1;X2 containing 0 in their interior, there exists a continuous feedback u D
f .x/ such that the closed-loop system is such that for all initial conditions in X1

the state enters and remains in X2 after some finite amount of time.
This can be seen by choosing X2 such that x 2 X2 implies jxj 6 ˛=2. More-

over, choose z�d such that z�d .x/ D 0 when x satisfies kxk < ˛. This is clearly
consistent with properties (i)–(v). In that case, we find that for all x.k/ 62 X2 with
kx.k/k < ˛, we have that x.k/ first has to increase in amplitude before it can
enter X2. This structure to achieve attractivity of X2 is however impossible to
achieve by a continuous feedback.
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Control magnitude and rate saturation

6.1 Introduction

Chapter 4 considered global and semi-global stabilization of linear systems with
actuators subject to magnitude saturation alone. In this chapter, we revisit the
same internal stabilization, however, with actuators subject to both magnitude
and rate saturation. Rate saturation refers to the case when actuator outputs cannot
change faster than a certain value.

In contrast with the amount of literature that exists when there are only magni-
tude bounds, not much literature exists when both magnitude and rate saturation
are present. If we have only rate saturation, we can approach the study of the
given system for stabilization by viewing the derivative of the input signal as a
new fictitious input signal which is then bounded only in magnitude, and hence,
we can readily apply the development given in the previous chapter. However, if
we have simultaneous bounds on the rate as well as on the magnitude, then such a
simple approach does not work out. We would like to point out right at the outset
that, unlike magnitude saturation which is a static nonlinearity, the rate saturation
is a dynamic nonlinearity.

Figure 6.1: Actuator

In modeling magnitude and rate saturation for actuators, one can basically
choose one of the following two approaches:

� A natural way is to write down first the linear dynamic equations of an
actuator (see block diagram of Fig. 6.1) and then impose on such equations
both the magnitude and rate saturation as shown in the following equation
for continuous-time systems:

Txa D ��2
.Aaxa C Bau/

ua D ��1
.Caxa/;

(6.1)

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__6,
© Springer Science+Business Media New York 2012
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where ��1
.�/ and ��2

.�/ are standard saturation functions as defined in Def-
inition (2.19). Also, u 2 Rm is the input signal, xa 2 Rna is the state of
the actuator, and ua 2 Rm is the output of the actuator which is applied to
the plant.

We would like to point out that it is rather difficult to incorporate the
“nice” external stability behavior of actuators into a state space model char-
acterized by the matrix triple .Aa; Ba; Ca/. Anyway, having modeled the
actuator as in (6.1), the next obvious step is to augment (6.1) with the plant
model in order to obtain the model for both the actuator and the plant. It is
well known that it is hard to analyze and design dynamical systems which
are modeled as such. However, if one imposes a certain strong mathematical
structure on the dynamics of the actuator given in (6.1), one can avoid the
complexity in analysis and design. The required mathematical structure is
typically to assume that Aa, Ba, and Ca are diagonal matrices. Essentially,
such a mathematical structure implies that the actuator dynamics for each
component of the input is a first-order or scalar dynamics. This approach
is taken in [6, 69, 72, 73]. We note that [6, 73] deal with rate saturation
while [69, 72] deal with magnitude as well as rate saturation. It is obvious
to see that in [73] with the imposed structure of diagonality of the matrices
Aa, Ba, and Ca, the control of linear systems with rate saturation reduces
to the control of the augmented plant with only input magnitude saturation.
However, we would like to point out two interesting but undesirable aspects
of this approach. First, it yields the necessity of using the state of the ac-
tuator for control feedback. Secondly if the system is in rate saturation for
a long time, xa might become very large. But that implies that ua is satu-
rated in amplitude as well, but we cannot get ua out of saturation for a long
time since we first have to make xa small which, due to the rate saturation,
cannot be achieved quickly.

� The second approach is to model the constraints in such a way that they
can be incorporated as a part of the controller and then to design the con-
troller so that its output is always in agreement with the constraints as dic-
tated by the actuator. Thus, this method avoids overloading of the actuator.
By incorporating the actuator constraints in the design of controllers, this
method essentially sidesteps the shortcomings of the first method. The work
of [1] takes this approach to model the rate saturation. The block diagram
in Fig. 6.2 depicts the philosophy of the method.

Figure 6.2: Constraint model, actuator, and plant
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We take the second approach here, and model the constraints by introducing a
nonlinear operator that captures both magnitude and rate constraints. We refer to
the new nonlinear operator as a standard magnitudeCrate operator (see Fig. 6.3).
Such an operator has a “deadbeat stability” property. With such a property being
valid, we study and examine the state space realizations of this operator. It turns
out that, although one could obtain a useful state space realization in discrete-
time systems, one cannot do so in continuous-time systems. This indicates that a
framework that includes functional differential equations for modeling the plant
and magnitude as well as rate saturation constraints of the actuator is indeed a
natural framework.

Figure 6.3: AmplitudeCrate saturation operator

Utilizing this functional differential framework and knowing that it satisfies a
“deadbeat stability” property, we redefine the notions of semi-global stabilization.
We then proceed to show that the same low-gain design methodology that was
successfully used in the previous chapter to design controllers for linear systems
having only input magnitude saturation can also successfully be used for linear
systems with both magnitude and rate saturation on the control input. In fact, we
present here explicit controller design methods via low-gain design methodology
in order to semi-globally stabilize linear systems with both input magnitude and
rate saturation. It will be clarified why we cannot expect in case of rate and am-
plitude constraints that scheduling the low-gain parameter will result in global
stability. As illustrated in the previous chapter, controllers designed via low-gain
design methodology exhibit unacceptably slow transient behavior. For that rea-
son, we also utilize low-and-high-gain controllers where the high-gain component
does not affect the stability and its associated domain of attraction. On the other
hand, the high-gain component greatly improves the transient behavior. However,
this low-and-high-gain controller cannot be obtained in the same way as in the
previous chapter owing to the specific dynamic structure of a rate limiter.

We consider both continuous- and discrete-time systems together in this chapter.
This chapter is based completely on the work of the authors in [164].

6.2 Modeling issues: standard magnitude C rate
saturation operator

In this section, we present modeling aspects of actuators with both magnitude and
rate saturation. This will first be done for discrete-time systems, and then we will
present the continuous-time result which contains some more subtleties.
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6.2.1 Discrete time

We will first consider a discrete-time system of the form,

x.k C 1/ D Ax.k/ C B��1;�2
.u/.k/: (6.2)

Here ��1;�2
is a diagonal operator with identical nonlinear elements on the diag-

onal given by x��1;�2
which is uniquely defined by the following properties:

� We have

jx��1;�2
.u/.k/j 6 �1; and jx��1;�2

.u/.k C 1/ � x��1;�2
.u/.k/j 6 �2

for all k.

� If u.k/ > x��1;�2
.u/.k/, then either

? u.k/ > �1 and x��1;�2
.u/.k/ D �1 or

? x��1;�2
.u/.k/ D x��1;�2

.u/.k � 1/ C �2.

� If u.k/ < x��1;�2
.u/.k/, then either

? u.k/ < ��1 and x��1;�2
.u/.k/ D ��1, or

? x��1;�2
.u/.k/ D x��1;�2

.u/.k � 1/ � �2.

Obviously, x��1;�2
is a dynamic nonlinearity. We can also describe this operator

by a state space model

x1.k C 1/ D �2 sgn.��1
.u.k C 1// � x1.k//; x1.0/ D ��1

.u.0//; (6.3)

where x��1;�2
.u/ D x1. This is a good model for our magnitudeCrate operator

which is consistent with our earlier description.
It is easy to see that x��1;�2

is dynamic and has initial conditions. Also, it is
not difficult to see that x��1;�2

.u/.k/ can be viewed as the state of this system
at time k. For our purpose, it will in general be sufficient to note that x��1;�2

is
deadbeat. We even have the stronger property that if u is such that

ku.k/k1 < �1 and ku.k/ � u.k � 1/k1 < �2 for k > K;

then

x��1;�2
.u/.k/ D u.k/ for k > K C �1=�2:

If we refer to arbitrary initial conditions of x��1;�2
at time 0, then we mean an

arbitrary input signal u in the interval Œ��1=�2; 0�. In our definitions, we will
refer to the initial conditions of x��1;�2

as xxs , and we will refer to the space of all
possible initial conditions for the operator x��1;�2

, namely, the space of all signals
defined on the interval Œ��1=�2; 0�, as xXs . Similarly, for the operator ��1;�2

, we
denote the initial conditions by xs and the space of all initial signals as Xs .
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6.2.2 Continuous time

We consider a continuous-time system of the form

Tx.t/ D Ax.t/ C B��1;�2
.u/.t/: (6.4)

Here again, ��1;�2
is a diagonal operator with identical nonlinear elements on

the diagonal given by x��1;�2
. We seek an operator x��1;�2

with the following
properties:

� For any continuously differentiable u, x��1;�2
.u/ is differentiable and

jx��1;�2
.u/.t/j 6 �1; and j d

dt
x��1;�2

.u/.t/j 6 �2

for all t .

� If u.t/ > x��1;�2
.u/.t/, then either

? u.t/ > �1 and x��1;�2
.u/.t/ D �1, or

? d
dt

x��1;�2
.u/.t/ D �2.

� If u.t/ < x��1;�2
.u/.t/, then either

? u.t/ < ��1 and x��1;�2
.u/.t/ D ��1, or

? d
dt

x��1;�2
.u/.t/ D ��2.

However, in the above case of continuous-time systems, it is not clear whether
this uniquely determines the operator x��1;�2

. Moreover, for instance due to mea-
surement noise, we might have an input signal which is not smooth but might only
be piecewise continuous, and for this general class of signals, the above definition
is clearly not sufficient.

We now consider a different way of looking at x��1;�2
. Consider the class of

models,

Tx� D ��2
.�.��1

.u/ � x�//; x�.0/ D ��1
.u.0//: (6.5)

It is well known that this differential equation has a unique solution for any mea-
surable input signal u. Next, we define x��1;�2

by

x��1;�2
.u/ D lim

�!1
x�: (6.6)

The following lemma shows that the operator as defined by (6.6) has all the re-
quired properties.

Lemma 6.1 For any piecewise continuous function u, the limit in (6.6) exists in
L1, and the limit x��1;�2

.u/ has an L1 norm less than �1 and is Lipschitz
continuous with Lipschitz constant �2.
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Proof : Let �� > 0. For any �1; �2 > ��, we have x�1
.0/ � x�2

.0/ D 0.
Moreover, if x�1

.t/ � x�2
.t/ > 2�2=��, we have Tx�1

.t/ � Tx�2
.t/ 6 0. After all,

we have only two possibilities:

� x�1
.t/ > ��1

.u/.t/ C �2=�� in which case Tx�1
.t/ D ��2 and Tx�2

.t/ >
��2. Therefore, Tx�1

.t/ � Tx�2
.t/ 6 0.

� x�2
.t/ < ��1

.u/.t/��2=�� in which case Tx�1
.t/ 6 �2 and Tx�2

.t/ D �2.
Therefore, Tx�1

.t/ � Tx�2
.t/ 6 0.

Similarly, if x�1
.t/ � x�2

.t/ < �2�2=��, we have Tx�1
.t/ � Tx�2

.t/ > 0. This
shows that for all �1; �2 > ��, we have

kx�1
� x�2

k1 6 2�2

�� :

Therefore, by definition, fx�g is a Cauchy sequence, and it has a limit which we
call x1 2 L1.

We know that x�.t/ > �1 implies that Tx�.t/ 6 0, and x�.t/ 6 ��1 implies
that Tx�.t/ > 0. Combined with kx�.0/k 6 �1, we find then that kx�k1 6 �1.
This obviously implies that

kx1k D lim
�!1

kx�k 6 �1:

Finally, we have kx�.t2/ � x�.t1/k 6 �2jt2 � t1j for any t1; t2 > 0. By letting
� ! 1, we find that

kx1.t2/ � x1.t1/k 6 �2jt2 � t1j for all t1; t2 > 0;

and hence, x1 is Lipschitz continuous with Lipschitz constant �2.

Note that a Lipschitz continuous function is absolutely continuous, and hence,
it is easy to see that x��1;�2

.u/ is differentiable almost everywhere, and there
exists an L1 function w with L1 norm less than �2 such that

x��1;�2
.u/.t/ D x��1;�2

.u/.0/ C
tZ

0

w.t/ dt:

However, x��1;�2
.u/ need not be differentiable everywhere. An example is given

by the function,

u.t/ D
(

0 t D 0

t sin
�

1
t

�
elsewhere;

for which x��1;�2
.u/ is not differentiable in 0. Obviously, with the more precise

definition given in (6.6), x��1;�2
is uniquely determined. Moreover, as soon as u is

sufficiently smooth, it is easy to verify that the mathematically precise definition
given in (6.6) is consistent with our intuitive definition given initially.
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Note that we might define the state model for x��1;�2
as,

Tx1 D �2 sgn.��1
.u/ � x1/; x1.0/ D ��1

.u.0//; (6.7)

with x��1;�2
.u/ D x1. This is consistent with our intuitive description, and it

looks like the appropriate model given the state space models for x�. However,
note that if u satisfies the rate and saturation bounds, then we expect that u D x1
(this can also be formally shown), but then the above differential equation shows
that Tx1 D 0 which obviously need not be the case. Therefore, the model given in
(6.7) is incorrect.

Like in discrete time, we see that x��1;�2
is dynamic and has initial conditions.

We note that again x��1;�2
.u/.t/ can be viewed as the state of this system at time

t . For our purpose, it will in general be sufficient to note that x��1;�2
is deadbeat.

We again have the stronger property that if u is such that

ku.t/k1 < �1 and k Tu.t/k1 < �2 for t > t1;

then

x��1;�2
.u/.t/ D u.t/ for t > t1 C �1=�2:

If we refer to arbitrary initial conditions of x��1;�2
at time 0, then we mean an

arbitrary input signal u in the interval Œ��1=�2; 0�. As in discrete-time systems,
we will refer to the initial conditions of x��1;�2

as xxs , and we will refer to the space
of all possible initial conditions for the operator x��1;�2

, namely, the space of all
signals defined on the interval Œ��1=�2; 0�, as xXs . Similarly, for the operator
��1;�2

, we denote the initial conditions by xs , and the space of all initial signals
as Xs .

In the literature, there have been many different models for a rate limit in com-
bination with a saturation. All other models use a form of modeling of the form

Txr D f .xr ; u/; xr 2 Rk:

We do not model the actuator with its rate and magnitude limits. We model these
limits and constraints and view them as part of the controller. Namely, we use
an operator as part of the controller, which guarantees that the control signal sat-
isfies the bounds in the actuator and avoids overloading the actuator. This is the
important difference, but also the fact that our operator only has a state space
model in discrete time and can only be approximated by state space models in
continuous time yields differences in the analysis, while leading to the fact that
its state space equals Œ��1; �1�. Our approach is really different but, as we will
see, very powerful since all results we have obtained in the previous chapter for
control magnitude saturation alone can be easily extended to the case with rate
limits including the low-and-high-gain design which is difficult to analyze for a
state space model with xr 2 Rk .
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In summary, in view of the above discussions, the functional differential
equations (6.2) and (6.4) along with the definition for the constraint operator
��1;�2

given in (6.3), (6.5) and (6.6) are the appropriate models for discrete- and
continuous-time systems, respectively, whenever the actuators are constrained by
both magnitude and rate saturation.

6.3 Preliminaries and problem statements

In view of the modeling aspects of actuators with both magnitude and rate satu-
ration as discussed in Sect. 6.2, the given system is modeled by functional differ-
ence equations (6.2) in discrete time and by functional differential equation (6.4)
in continuous time. Clearly, this includes the definition for the constraint opera-
tor ��1;�2

given in (6.3) (discrete time) and in (6.5) and (6.6) (continuous time).
Thus, we consider a dynamic system of the form

˙ W
(

� x D Ax C B��1;�2
.u/

y D Cyx C Dyu;
(6.8)

where x 2 Rn; u 2 Rm; andy 2 Rr are respectively state, input, and measure-
ment output. Also, � x denotes dx

dt
for continuous-time case and x.k C 1/ for

discrete time. Moreover, ��1;�2
is a diagonal operator with identical nonlinear

elements on the diagonal given by x��1;�2
which is uniquely defined as discussed

in Sect. 6.2. The space of all possible initial conditions for the operator ��1;�2
,

namely, the space of all functions from Œ��1=�2; 0� to Rm, is referred as Xs .
We give below a precise definition of the concept of semi-global stabilization

for the above system, at first via linear state feedback laws and then via measure-
ment feedback laws.

Problem 6.2 Consider a continuous- or discrete-time system of the form (6.8)
along with the definition for the constraint operator ��1;�2

given in (6.3) (dis-
crete) or (6.5) and (6.6) (continuous). The problem of semi-global stabilization
via linear state feedback is to find, if possible, a family of feedback gains F" pa-
rameterized by " > 0 such that for any a priori given (arbitrarily large) bounded
set X0 � Rn, there exists an "� such that for all " < "�, the linear static feedback
law u D F"x is such that the equilibrium x D 0; xs D 0 of the continuous-time
system

Tx.t/ D Ax.t/ C B��1;�2
.F x/.t/ (6.9)

or the discrete-time system

x.k C 1/ D Ax.k/ C B��1;�2
.F x/.k/ (6.10)

is locally exponentially stable with X0 � Xs contained in its basin of attraction.
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Problem 6.3 Consider a continuous- or discrete-time system of the form (6.8)
along with the definition for the constraint operator ��1;�2

given in (6.3) (discrete)
or (6.5) and (6.6) (continuous). The problem of semi-global stabilization via
observer-based measurement feedback is defined as follows. For any a priori
given (arbitrarily large) bounded sets X0 � Rn and Z0 � Rn, find, if possible, a
measurement feedback law of the form

�yx D Ayx C B��1;�2
.u/ C K

�
y � Cy yx � Dyu

�

u D F yx (6.11)

such that the equilibrium .x; xs ; yx/ D .0; 0; 0/ of

�x D Ax C B��1;�2
.F yx/

�yx D Ayx C B��1;�2
.F yx/ C KCy .x � yx/

is asymptotically stable with X0 � Xs � Z0 contained in its basin of attraction.

Remark 6.4 We would like to emphasize that our definitions of the above semi-
global stabilization problems do not view the set of initial conditions of the plant
and the initial conditions of the controller dynamics as given data. The given data
is simply the model of the plant. Therefore, the solvability conditions must be
independent of the set of initial conditions of the plant X0 � Xs , and the set of
initial conditions for the controller dynamics, Z0.

The standard approach to address the above problems is the use of a low-gain
feedback. The low-gain parameter " guarantees that

F"x.k C 1/ � F"x.k/

is sufficiently small when " is small enough and hence satisfies the rate limitations
(as well as the amplitude constraints) on the input. Let us rewrite the above when
the low-gain parameter is scheduled:

�
F".x.kC1// � F".x.k//

�
x.k C 1/ C F".x.k// Œx.k C 1/ � x.k/� :

The second term can be made sufficiently small to satisfy the rate limitations.
However, the first term might cause violation of the rate limitations, and hence, it
is quite hard to establish whether such design would result in global stability in the
presence of rate and amplitude constraints. Except for these scheduled low-gain
approaches, there are basically no techniques available to design a globally sta-
bilizing static state feedback in case of rate and amplitude constraints. Although
not presented here in detail, we should note that the dynamic state feedbacks of
the form (6.30) (even for ˛ D 0) studied in Sect. 6.5 do allow for a scheduling to
yield global stabilization for systems subject to rate and amplitude saturation.
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6.4 Semi-global stabilization via low-gain feedback

We have the following necessary and sufficient conditions for the solvability of
the semi-global stabilization problem via linear state feedback laws utilizing low
gain. We first present the continuous-time result.

Theorem 6.5 Consider the continuous-time system (6.8) along with the defini-
tion for the constraint operator ��1;�2

given in (6.5) and (6.6). The semi-global
stabilization Problem 6.2 via linear state feedback laws is solvable if and only if
.A; B/ is stabilizable and the eigenvalues of A are in the closed left half plane.

Moreover, in that case, the semi-global stabilization problem via linear state
feedback laws is solved by the family of feedback laws

u D F"x D �B 0P"x

where

0 D A0P" C P"A � P"BB 0P" C Q"; (6.12)

and where Q" is a continuously differentiable matrix-valued function such that
Q" > 0, dQ"

d"
> 0 for any " 2 .0; 1�, and lim"!0 Q" D 0.

Proof : As we have seen in Chap. 4, the conditions that, .A; B/ is stabilizable and
the eigenvalues of A are in the closed left half plane, are necessary for semi-global
stabilization even if we only have magnitude saturation but not rate saturation.
Therefore, obviously, they are still necessary when we have magnitude saturation
and rate limits.

To prove that these conditions are also sufficient, it is obviously sufficient to
verify that the given family of feedback laws has the desired properties. In other
words, while utilizing the given family of feedback laws, we need to show that for
each given set X0 � Xs , there exists an "� > 0 such that, for all " 2 .0; "��, we
have local asymptotic stability with X0 �Xs contained in its domain of attraction.
In view of Theorem 4.21, we have

kF"e.ACBF"/t k 6 �"e
��"t : (6.13)

Here F" D �B 0P" where � and � depend continuously on " and are positive for
" > 0. Moreover �0 D �0 D 0. Note that we also find

kF".A C BF"/e
.ACBF"/t k1 6 x�"e

��"t ; (6.14)

where x� also depends continuously on ", is positive for " > 0, and satisfies x�0 D 0.
The latter follows from the fact that

kF".A C BF"/e
.ACBF"/t k1 D kF"e.ACBF"/t .A C BF"/k1

6 k.A C BF"/k�"e
��"t :



6.4 Semi-global stabilization via low-gain feedback 391

Also, we can rewrite (6.9) as

Tx D Ax C B��1;�2
.F"x/: (6.15)

In the absence of saturation elements, the above system takes the form,

Tx D .A C BF"/x: (6.16)

It then follows from (6.13) and (6.14) that there exists an "�
1 > 0 such that for all

" 2 .0; "�
1�, we have

kF"xk1 6 �1; kF" Txk1 6 �2 for all x.0/ 2 X0 and xs 2 Xs :

This shows that for all " 2 .0; "�
1� and for all x.0/ 2 X0 and xs 2 Xs , system

(6.15) operates in the linear regions of saturation elements, and hence, we can
conclude that the equilibrium x D 0 and xs D 0 of the system (6.15) is asymp-
totically stable with X0 � Xs contained in its basin of attraction.

Next, we present the discrete-time version of the above result.

Theorem 6.6 Consider the discrete-time system (6.8) along with the definition
for the constraint operator ��1;�2

given in (6.3). The semi-global stabilization
Problem 6.2 via linear state feedback laws is solvable if and only if .A; B/ is
stabilizable and the eigenvalues of A are in the closed unit disc.

Moreover, in that case, the semi-global stabilization problem via linear state
feedback is solved by the family of feedback laws

u D F"x D �.B 0P"B C I /�1B 0P"Ax

where

P" D A0P"A � A0P"B.B 0P"B C I /�1B 0P"A C Q"; (6.17)

and where Q" is a continuously differentiable matrix-valued function such that
Q" > 0, dQ"

d"
> 0 for any " 2 .0; 1�, and lim"!0 Q" D 0.

Proof : It follows directly using the same arguments as in the proof of
Theorem 6.5 and is based on Theorem 4.25.

The solvability conditions for the semi-global stabilization problem via mea-
surement feedback are given in the following theorem.

Theorem 6.7 Consider a continuous- or discrete-time system (6.8) along with
the definition for the constraint operator ��1;�2

given in (6.3), (6.5), and (6.6).
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The semi-global stabilization Problem 6.3 via linear measurement feedback laws
is solvable if and only if .A; B/ is stabilizable, A has all its eigenvalues in the
closed left half plane (continuous time) or in the closed unit disc (discrete time),
and the pair .Cy; A/ is detectable.

Moreover, in that case, a suitable family of linear static measurement feedback
laws is given by

�yx D Ayx C B��1;�2
.u/ C KCy .x � yx/

u D F" yx;
(6.18)

where

F" D �B 0P"

with P" defined by (6.12) in continuous time, while in discrete time

F" D �.B 0P"B C I /�1B 0P"A

with P" defined by (6.17). The gain K is chosen such that the matrix A � KCy

is Hurwitz stable for continuous-time systems and Schur stable for discrete-time
systems.

Proof : We prove this theorem only for continuous time. The discrete-time version
can be derived similarly. Consider the family of feedback laws given in (6.18). We
know that (6.13) and (6.14) are satisfied for F" D �B 0P" where �"; x�" and �" are
continuous, positive-valued function which are equal to zero for " D 0.

The closed-loop system consisting of the given system (6.8) and the given fam-
ily of feedback laws can be written as

Tx D Ax C B��1;�2
.F" yx/

Tyx D Ayx C B��1;�2
.F" yx/ C KCy.x � yx/:

(6.19)

As usual, we then adopt the invertible change of variable e D x � yx and then
rewrite the closed-loop system (6.19) as

Tx D Ax C B��1;�2
.F"x � F"e/

Te D .A � KCy/e:
(6.20)

Recalling that the matrix A � KCy is Hurwitz stable, it readily follows that there
exists a T1 > 0 such that, for all possible initial conditions e.0/,

kF"ek1;T1
6 �1

4
; kF" Tek1;T1

6 �2

4
; (6.21)

for all " 2 .0; 1�. We next consider the first equation of (6.20). Note that x.T1/

belongs to a bounded set independent of " since x.0/ is bounded and since x
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is determined via a linear differential equation with bounded input ��1;�2
.u/.

Hence, there exists an M1 such that for all possible initial conditions,

kx.T1/k 6 M1; for all " 2 .0; 1�: (6.22)

Let us now assume that, from time T1 onward, the saturation elements are non-
existent. In this case, the first equation of (6.20) can be written as

Tx D .A C BF"/x � BF"e: (6.23)

Since e ! 0 exponentially with a decay rate independent of " as t ! 1, it
follows trivially from (6.13) and (6.14) that there exist an "�

1 > 0 and an M2 > 0

such that for any possible initial condition e.0/,

1Z

T1

ke�"� BF"e.	/kd	 6 M2: (6.24)

This in turn shows that for t > T1,

kF"x.t/k D

�������
F"e.ACBF"/tx.T1/ �

tZ

T1

F"e
.ACBF"/.t��/BF"e.	/d	

�������

6 �"M1 C �"

1Z

T1

ke�"�BF"e.	/kd	

6 �".M1 C M2/:

Choose "�
2 2 .0; "�

1� such that for all " 2 .0; "�
2�,

kF"xk1;T1
6 �1

4
: (6.25)

Similarly, we can show that there exists an "�
3 2 .0; "�

2� such that for all " 2 .0; "�
3�,

kF" Txk1;T1
6 �2

4
: (6.26)

These two bounds, together with (6.21), show that the system (6.20) will operate
linearly after time T1 and local exponential stability of this linear system follows
from the separation principle.

In summary, we have shown that there exists an "�
3 > 0 such that, for all " 2

.0; "�
3�, the equilibrium point .0; 0; 0/ of the system (6.20) is asymptotically stable,

with .X0; Xs ; Z0/ contained in its basin of attraction. This completes our proof.
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As in the previous chapter, the low-gain technique presented in this section
basically avoids saturation by squeezing the gain. This of course results in a very
slow transient response. We present next an additional high gain that greatly im-
proves the transient response.

6.5 Semi-global stabilization via low-and-high-gain
feedback

As already seen in the previous chapter, low-gain-based designs underutilize the
available control capacity, and the resulting convergence of the state to zero is
very slow. Clearly, in the case of continuous time, the state feedback law u D
�B 0P"x utilizes a low gain since P" as given by (6.12) converges to zero as
" becomes small. The same holds true for the measurement feedback designs
which are based on the same low-gain state feedback. Similar discussion holds
also for discrete time. Our next goal is to recall another design methodology which
incorporates a significant improvement to the low-gain design method and leads
to a better utilization of the available control capacity and hence better closed-loop
performance.

The improved design utilizes the concepts of low-and-high-gain feedback as
presented in the previous two chapters. Let us consider first continuous-time sys-
tems. Clearly, as mentioned before, the low-gain feedback u D �B 0P"x for the
continuous-time system (6.8) achieves stability, and the resulting domain of at-
traction is arbitrarily large for " small enough. When only magnitude saturation is
present, the modified feedback u D �.˛ C1/B 0P"x was shown to achieve stabil-
ity and the same domain of attraction for any ˛ > 0 and, moreover, has improved
transient performance. However, such a modified feedback cannot be applied here
because it is easy to construct examples to show that, in the case of rate limits,
for ˛ large, the domain of attraction can become arbitrarily small. The main prob-
lem is the fact that the rate limiter has memory. As such, if u was large for some
time, then it takes a while before the input can become negative again and this
delay causes the instability for large ˛. Therefore, at first, present here a different
low-gain design which is more suited for this low-and-high-gain methodology.

Consider the continuous-time system (6.8). We introduce the following modi-
fied system:

Tx.t/ D Ax.t/ C Bu.t/

Tu.t/ D ��2
.v.t//:

(6.27)

Then, for this system, we derive a low-gain state feedback that solves the semi-
global stabilization problem. Let P";� be the solution of the following continuous-
time algebraic Riccati equation (CARE):

0 D
 

A B

0 0

!0
P C P

 
A B

0 0

!
� P

 
0 0

0 I

!
P C

 
Q" 0

0 �2I

!
: (6.28)
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Then, the feedback law

v D �.˛ C 1/
�
0 I

�
P";�

 
x

u

!
(6.29)

for any fixed � solves the semi-global stabilization problem for the system (6.27)
in the sense that the closed-loop system is asymptotically stable, and for " small
enough, the domain of attraction can be chosen arbitrarily large. Hence, by choos-
ing ˛ large, we can improve the transient performance without affecting the do-
main of attraction. Then, we can apply the following dynamic state feedback to
the original system (6.8):

Tu D ��2

 
�.˛ C 1/

�
0 I

�
P";�

 
x

u

!!
: (6.30)

Obviously, this interconnection works beautifully if we only have rate constraints
and no magnitude constraints because the interconnection of (6.8) and (6.30) for
�1 D 1 is equal to the interconnection of (6.27) and (6.29). In general, this is
not the case because of the magnitude saturation. However, we will show that for
a suitable choice for " and �, the above feedback (6.30) has the desired properties
when applied to the given system (6.8).

We have the following result.

Theorem 6.8 Consider the continuous-time system (6.8) along with the definition
for the constraint operator ��1;�2

given in (6.5) and (6.6). Let the solvability
conditions for semi-global stabilization as in Theorem 6.5 prevail, i.e., let .A; B/

be stabilizable and the eigenvalues of A be in the closed left half plane. Consider
the family of controllers (6.30). Then, for any a priori given (arbitrarily large)
bounded set X0 � Rn and any � 2 .0; 1/, there exists an "� > 0 such that for
each " 2 .0; "�� and for each ˛ > 0, the controller (6.30) solves the semi-global
stabilization Problem 6.2, i.e., the interconnection of the controller (6.30) and
(6.8) is locally exponentially stable with X0 � Xs � Œ��1; �1�m contained in its
basin of attraction.

Remark 6.9 Note that for ˛ D 0, � ! 0, and for a fixed ", the controller con-
verges to the low-gain feedback as presented in Theorem 6.5.

Proof : There exists a compact set X1 such that x.t/ 2 X1 for all t 6 �1=�2,
any x.0/ 2 X0, any input u, and any initial condition for the rate limiter (because
the input to the system is bounded).
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Choose the Lyapunov function

V".x; u/ D
�
x0 u0

�
P";�

 
x

u

!

and let c > 0 be such that

sup f V".x; u/ j x 2 X1; u 2 Œ��1; �1�m; " 2 .0; 1� g 6 c:

Next, we note that there exists an "�
1 2 .0; 1� such that

�����

�
0 I

�
P";�

 
x

u

!�����1
< �1

for all x; u such that V.x; u/ < c and
"�

0 I
�
P";�

 
x

u

!#

i

> 0

for any i D 1; : : : ; m and all x; u such that V.x; u/ < c and such that ui > �1

where Œ��i denotes the i th element of a vector. Because of symmetry, we then also
have,

"�
0 I

�
P";�

 
x

u

!#

i

< 0

for any i D 1; : : : ; m and all x; u such that V.x; u/ < c and such that ui 6 ��1.
The existence of "�

1 is guaranteed by the fact that

P";� !
 

0 0

0 �I

!
(6.31)

as " ! 0.
The above properties imply that u.0/ 2 Œ��1; �1�m and V.x.t/; u.t// < c

for all t 2 Œ0; T � guarantee that u.T / 2 Œ��1; �1�m for any T > 0. After all, if
the i th coefficient of u becomes �1, then the derivative is negative, and if the i th
coefficient of u becomes ��1, then the derivative is positive.

Since ku.t/k1 < �1 and k Tu.t/k1 < �2 for all t 2 Œ0; �1=�2�, we find from
the characteristics of the rate limiter that .��1;�2

.u//.�1=�2/ D u.�1=�2/

independent of the initial conditions for u and the rate limiter. We also know that
x.�1=�2/ 2 X1.

Consider the interconnection of (6.27) and (6.29) with the same initial condi-
tions as the interconnection of (6.8) and (6.30) at time t D �1=�2. We can easily
prove that the interconnection of (6.27) and (6.29) is stable while V.x.t/; u.t// <

c for all t 2 Œ�1=�2; 1/. Therefore, the interconnection is such that ku.t/k1 is
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bounded by �1 for all t > �1=�2. The latter then implies that the solution of the
interconnection of (6.27) and (6.29) is equal to the solution of the stable intercon-
nection of (6.8) and (6.30) for all t > �1=�2. This clearly implies stability and
the required domain of attraction.

Next, we focus on discrete-time systems. Consider the discrete-time system
(6.8). We introduce the following modified system:

x.k C 1/ D Ax.k/ C Bu.k/

u.k C 1/ D u.k/ C ��2
.v.k//:

(6.32)

Then for this system, we derive a low-gain state feedback law that solves the
semi-global stabilization problem. Let P";� be the solution of the discrete-time
algebraic Riccati equation (DARE)

P D
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A B

0 I

!
: (6.33)

Then the feedback law,

v D �.1 C ˛/F";�

 
x

u

!
; (6.34)

for a fixed �, where

F";� D
"�

0 I
�
P";�

 
0

I

!
C I

#�1  
0

I

!0
P";�

 
A B

0 I

!
;

and where

˛ 2
2

4 0; 2

�����

�
0 I

�
P";�

 
0

I

!�����

�1
3

5 (6.35)

solves the semi-global stabilization problem for the system (6.32) in the sense
that the closed-loop system is asymptotically stable, while for " small enough,
the domain of attraction can be chosen arbitrarily large. Moreover, by choosing
˛, we can improve the transient performance without affecting the domain of at-
traction. Then, we can apply the following dynamic state feedback to the original
system (6.8):

�u D u C ��2

 
�.F";� C ˛K";� /

 
x

u

!!
: (6.36)
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Obviously, this interconnection works beautifully if we only have rate constraints
and no magnitude constraints because the interconnection of (6.8) and (6.36) for
�1 D 1 is equal to the interconnection of (6.32) and (6.34). In general, this is
not the case because of the magnitude saturation. However, we will show that for
a suitable choice for �, the above feedback (6.36) has the desired properties when
applied to the system (6.8).

We have the following result.

Theorem 6.10 Consider the discrete-time system (6.8) along with the definition
for the constraint operator ��1;�2

given in (6.3). Assume that B is injective. Let
the solvability conditions for semi-global stabilization as in Theorem 6.6 prevail,
i.e., let .A; B/ be stabilizable and the eigenvalues of A be in the closed unit disc.
Consider the family of controllers (6.36). Then, for any a priori given (arbitrarily
large) bounded set X0 � Rn and any � 2 .0; 1/, there exists an "� > 0 such that
for each " 2 .0; "�� and for each ˛ satisfying (6.35), the controller (6.36) solves
the semi-global stabilization Problem 6.2, i.e., the interconnection of the con-
troller (6.36) and (6.8) is locally exponentially stable with X0 �Xs �Œ��1; �1�m

contained in its basin of attraction.

Remark 6.11 Note that for ˛ D 0, � ! 0, and for a fixed ", the controller
converges to the low-gain feedback as presented in Theorem 6.6.

Proof : The proof of this theorem can be obtained using the same kind of argu-
ments as in the proof of Theorem 6.8.

We now proceed to discuss measurement feedback controllers while using low-
and-high-gain feedback. In connection with continuous-time systems, it turns out
that we can apply the same argument as before to improve the performance of
measurement feedback controllers by combining the observer used in (6.18) with
the low-and-high-gain state feedback controller presented in (6.30).

To start with, we define the following family of linear dynamic measurement
feedback laws:

Tyx D Ayx C B��1;�2
.u/ C K.y � Cy yx � Dyu/

Tu D ��2

 
�.˛ C 1/

�
0 I

�
P";�

 
yx
u

!!
:

(6.37)

However, we will see that we need stronger conditions on the observer. It is no
longer sufficient to choose a fixed observer such that A�KCy is stable. Therefore,
we choose the observer gain parameterized by `.

Let R` be the solution of the dual algebraic Riccati equation,

0 D .A C `I /R` C R`.A C `I /0 � R`C 0
yCyR` C I: (6.38)
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This Riccati equation has been used before in this book, and a desirable prop-
erty of this Riccati equation has been obtained in Lemma 4.42. We choose the
following observer gain:

K` D R`C 0
y:

We have the following result.

Theorem 6.12 Consider the continuous-time system (6.8) along with the defini-
tion for the constraint operator ��1;�2

given in (6.5) and (6.6). Under the solv-
ability conditions of Theorem 6.7, there exists, for any a priori given (arbitrarily
large) bounded sets X0 � Rn and Z0 � Rn and any � 2 .0; 1/, an "� > 0 such
that for all ˛ � 0 and for all " 2 .0; "��, there exists an `� such that for ` > `�,
the interconnection of (6.8) and (6.37) with K D K` is locally exponentially
stable with X0 � Z0 � Xs � Œ��1; �1�m contained in its basin of attraction.

Proof : The proof basically uses the same arguments as the proof of Theorem 6.8
in combination with the measurement feedback arguments of Theorem 4.43.

In connection with discrete-time systems, we use the combination of the ob-
server used in (6.18) with the low-and-high-gain state feedback controller pre-
sented in (6.36).

We define the following family of linear dynamic measurement feedback laws:

�yx D Ayx C B��1;�2
.u/ C K

�
y � Cy yx � Dyu

�

�u D u C ��2

 
�.1 C ˛/F";�

 
yx
u

!!
:

(6.39)

We choose the observer gain K such that A � KCy has all its eigenvalues in the
origin. We have the following result.

Theorem 6.13 Consider the discrete-time system (6.8) with B injective, along
with the definition for the constraint operator ��1;�2

given in (6.3). Under the
solvability conditions of Theorem 6.7 , there exists, for any a priori given (arbi-
trarily large) bounded sets X0 � Rn and Z0 � Rn and any � 2 .0; 1/, an "� > 0

such that for each " 2 .0; "�� and ˛ satisfying (6.35), the interconnection of (6.8)
and (6.39) is locally exponentially stable with X0 � Z0 � Xs � Œ��1; �1�m con-
tained in its basin of attraction.

Proof : The proof basically uses the same arguments as the proof of Theorem 6.10
in combination with the measurement feedback arguments of Theorem 4.46.





7
State and input constraints:
Semi-global and global stabilization
in admissible set

7.1 Introduction

Chapter 4 considers internal stabilization of linear systems subject to control
magnitude constraints, while Chap. 6 considers the same, however, with both con-
trol magnitude and rate constraints. Although such constraints on control variables
occur prominently, magnitude and rate constraints on state variables are also of
a major concern in many plants. Nearly every application imposes constraints on
state as well as control variables. We observe that dynamic models of physical
systems are often nonlinear. Linear approximations of such nonlinear systems are
obviously valid only in certain constraint regions of state and control spaces. In
process control, state and control constraints arise from economic necessity of
operating the plants near the boundaries of feasible regions. In connection with
safety issues, state and control constraints are a major concern in many plants.
In certain possibly hazardous systems, such as a nuclear power plant, safety lim-
its on some variables are often imposed. The violations of such predetermined
safety measures may cause system malfunction or even damage. This implies that
magnitude constraints or bounds on states must be taken as integral parts of any
control system design.

In the literature on internal stabilization, there have been some efforts to deal
with state and input constraints utilizing the concept of positive invariant sets.
Blanchini [10] gives a good overview of these efforts. The available tools pre-
sented in this line of work, however, are computationally very demanding and
yield highly complex controllers. Model predictive control, which is a popular
design technique for industrial processes [17, 93], also has been used to deal with
constraints on states as well as inputs [95]. However, this technique is also intrin-
sically computationally intensive and therefore not suitable for systems with fast
dynamics. Secondly, it is fundamentally a numerical tool and gives only limited
insight into the structural properties and effects of constraints on a system.

In recent years, we and our students focused on stabilization of linear systems
with both state and control magnitude and rate constraints [124, 125, 137, 167].
The emphasis in our work has been on identifying the structural properties of
linear plants under which the semi-global and global stabilization problems are
solvable. Whenever the required structural properties are satisfied, design

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__7,
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methodologies for semi-global and global stabilization follow from the
constructive methods of proving the obtained results. These aspects of our work
distinguish us from other works dealing with state and input constraints.

In this chapter, we impose constraints on both the input and state variables.
Such constraints are modeled in terms of what is called a constrained output with
its magnitude and rate of change (or increment in discrete-time case) required to
be in some prescribed constraint sets. It follows then that the initial state of the
system must also obviously be restricted since we cannot satisfy the constraints
if the initial state of the system is arbitrary. For this reason, we then define what
can be called as an admissible set of initial conditions which is the set of initial
conditions that do not violate the constraints at the initial time. This leads us to
formulate precisely both the semi-global and global stabilization problems in the
admissible set.

It is logical to expect that the solvability conditions as well as the design of
appropriate controllers to achieve semi-global and global stabilization in the ad-
missible set depend very much on certain innate structural properties of the given
linear system along with the constrained output. Indeed, certain structural prop-
erties of the mapping from the input vector to the constrained output vector play
dominant roles in dictating what kind of stabilization is feasible and what is not
feasible under what conditions. This leads us to develop here a taxonomy of con-
straints that categorizes and as such delineates the structural properties in differ-
ent directions. Such a categorization of constraints paves the architecture of our
development as given in subsequent chapters.

7.2 Problem formulations

In this section, we consider a general linear time-invariant system of the form,

˙ W

8
<̂

:̂

� x D Ax C Bu

y D Cyx CDyu

z D Czx CDzu;

(7.1)

where � x denotes dx
dt

for continuous-time case and x.kC1/ for discrete-time. We
discuss next the nature of constraints we impose on state and control variables and
then formulate precisely both the semi-global and global stabilization problems
in the admissible set.

As usual, the general linear time-invariant system we deal with has x 2 Rn as
its state, u 2 Rm as its control input, and y 2 Rr as its measured output. Be-
sides these variables, we introduce here another new variable z 2 Rp termed as
constrained output. This constrained output has as its components certain control
inputs and certain state variables. That is, all the control inputs and state variables
that need to be constrained are collected together to form the constrained output z.
We model all the prescribed constraints by imposing that the magnitude of the
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constrained output z lies in some prescribed constraint set S , and the rate of
change (or increment in discrete-time case) of z lies in some other prescribed
constraint set T . In this way, the constrained output z and the constraint sets S

and T , as their names imply, replicate or reflect all the constraints.
Thus, we consider a linear time-invariant system as depicted in the block dia-

gram of Fig. 7.1. Without loss of generality, we assume that the matrices,

�
Cz Dz

�
and

 
B

Dz

!
;

are surjective and injective, respectively.

Figure 7.1: Linear system with control, measurement, and constrained output
shown

For the system ˙ of (7.1), our interest here and in subsequent chapters is on
stabilization via state as well as measurement feedback. Namely, for two a priori
given sets S � Rp and T � Rp which we alluded to as constraint sets, we are
interested in the stabilization of the plant ˙ subject to the requirement that the
constrained output z remains in the set S , while the derivative of the constrained
output z (that is, Tz) remains in the set T for continuous time or the increment
z.k C 1/ � z.k/ remains in the set T for k > 0 for discrete time. In particular,
we will be first interested in obtaining necessary and sufficient conditions for
the existence of a feedback controller that achieves such a stabilization, and then
designing appropriate controllers that achieve such a stabilization.

We discuss next the nature of the constraint sets S � Rp and T � Rp . In
general, the constraint sets S and T when discussed in the literature are nearly
always bounded and convex. In fact, typically they are hypercubes. In this book
as well, we essentially make the same assumption. However, one can slightly
generalize the constraint sets to a broader class of convex sets which are not nec-
essarily bounded. This generalization is possible in the light of an observation that
any convex set can be uniquely projected to a bounded convex set. Thus, we as-
sume that S and T are only convex sets, and we make the following fundamental
assumptions on the nature of these constraint sets:

Assumption 7.1 The following conditions on S and T are satisfied:

(i) The sets S and T are closed, convex, and contain 0 as an interior point.

(ii) S \ T is bounded.
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(iii) We have C 0
zDz D 0 and

S D .S \ imCz/˚ .S \ imDz/

T D .T \ imCz/˚ .T \ imDz/ :

Remark 7.2 The decomposition of S and T as required in (iii) implies simply
that we have constraints on states and/or inputs, and we have no mixed con-
straints where allowable inputs depend on the current state and conversely. As
such, we observe that imCz reflects the state constraints while imDz reflects the
input constraints.

Remark 7.3 The special cases when we have only magnitude constraints or only
rate constraints can be simply obtained by setting, respectively T D Rp or
S D Rp .

Whenever T D Rp , Assumption 7.1 simplifies as given below.

Assumption 7.4 The following conditions on S are satisfied:

(i) The set S is compact, convex, and contains 0 as an interior point.

(ii) S is bounded.

(iii) We have C 0
zDz D 0 and S D .S \ imCz/˚ .S \ imDz/.

It is clear that the initial state of the system must obviously be restricted since
we cannot satisfy the constraints if the initial state of the system is arbitrary. For
this reason, we define an admissible set of initial conditions which is the set of
initial conditions that do not violate the constraints at the initial time. It is straight-
forward to show that if the initial state does not belong to this set, then we can
never satisfy our constraint requirements.

Definition 7.5 Consider the system (7.1) along with the constraint sets S � Rp

and T � Rp . We define

V.S ; T / WD fx0 2 Rn j 9u0 such that

Czx0 CDzu0 2 S ; and Cz.Ax0 C Bu0/ 2 T g
as the admissible set of initial conditions for continuous-time case. Similarly, we
define

V.S ; T / WD fx 2 Rn j 9u0 such that

Czx0 CDzu0 2 S ; and ŒCz.Ax0 C Bu0/� Czx0� 2 T g
as the admissible set of initial conditions for the discrete-time case.
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Remark 7.6 For continuous-time case, in the derivative at time 0, we might expect
a termDz Tu.0/ since the derivative of the input affects the derivative of the output
z. However, we can omit this term because part (iii) of Assumption 7.1 implies
that Cz.Ax0 C Bu0/ C Dz Tu.0/ 2 T if and only if Cz.Ax0 C Bu0/ 2 T and
Dz Tu.0/ 2 T . However, at time 0, we do not impose rate constraints. Due to con-
tinuity, we still need to have Cz.Ax0 C Bu0/ 2 T , but we do not need to impose
a condition on the derivative of u since that need not be continuous.

Similarly, for discrete-time case, in the increment at time 0, we might expect
a term Dz.u.1/ � u.0// since the increment of the input affects the increment of
the output z. However, we can omit this term because part (iii) of Assumption 7.1
implies that Cz.Ax0 C Bu0/ C Dz.u.1/ � u.0// 2 T if and only if Cz.Ax0 C
Bu0/ 2 T and Dz.u.1/ � u.0// 2 T . Since we can assign the input at time 0,
we can trivially guarantee Dz.u.1/ � u.0// 2 T and it can be omitted from the
above definition.

Remark 7.7 Consider the case when there are no rate constraints, that is, when
T D Rp. Then, in view of Assumption 7.1, the admissible set of initial conditions
V.S ;Rp/ can be rewritten as

V.S ;Rp/ WD f x0 2 Rn j Czx0 2 Sg :

We proceed now to formulate precisely the internal stabilization problems ei-
ther in semi-global or global setting. In a semi-global setting, we assume that the
initial conditions are in some arbitrary compact set contained in the interior of the
set of admissible initial conditions, and in the global setting, we consider arbitrary
initial conditions in the set of admissible initial conditions. We consider both state
and measurement feedback.

The following two problems pertain to state feedback controllers.

Problem 7.8 Consider the system (7.1) along with the constraint sets S � Rp

and T � Rp. The semi-global stabilization in the admissible set via state
feedback is to find, if possible, for any a priori given compact set W contained
in the interior of V.S ; T /, a state feedback (possibly nonlinear and time varying)
u.t/ D f .x.t/; t/ or u.k/ D f .x.k/; k/ such that the following conditions hold:

(i) The equilibrium point x D 0 of the closed-loop system is asymptotically
stable with W contained in its basin of attraction.

(ii) In the case of continuous-time systems, for any x0 2 W , we have z.t/ 2 S

for all t � 0 and Tz.t/ 2 T for all t > 0. In the case of discrete-time systems,
for any x0 2 W , we have z.k/ 2 S for all k > 0 and .z.kC1/�z.k// 2 T

for all k > 0.
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Problem 7.9 Consider the system (7.1) along with the constraint sets S � Rp

and T � Rp. The global stabilization in the admissible set via state feedback is
to find, if possible, a state feedback (possibly nonlinear and time varying) u.t/ D
f .x.t/; t/ or u.k/ D f .x.k/; k/ such that the following conditions hold:

(i) The equilibrium point x D 0 of the closed-loop system is asymptotically
stable with V.S ; T / contained in its basin of attraction.

(ii) In the case of continuous-time systems, for any x0 2 V.S ; T /, we have
z.t/ 2 S for all t � 0 and Tz.t/ 2 T for all t > 0. In the case of discrete-
time systems, for any x0 2 V.S ; T /, we have z.k/ 2 S for all k > 0 and
.z.k C 1/� z.k// 2 T for all k > 0.

The following two problems pertain to measurement feedback controllers.

Problem 7.10 Consider the system (7.1) along with the constraint sets S � Rp

and T � Rp. The semi-global stabilization in the admissible set via measure-
ment feedback is to find, if possible, an integer q and, for any (arbitrarily large)
a priori given compact sets W contained in the interior of the set V.S ; T / � Rq ,
a measurement feedback controller of the form,

Tp.t/ D `.p.t/; y.t/; t/; p.t/ 2 Rq

u.t/ D g.p.t/; y.t/; t/
(7.2)

for continuous-time case or of the form,

p.k C 1/ D `.p.k/; y.k/; k/; p.k/ 2 Rq

u.k/ D g.p.k/; y.k/; k/
(7.3)

for discrete-time case, such that the following conditions hold:

(i) The equilibrium point .x; p/ D .0; 0/ of the closed-loop system comprising
of the given system (7.1) and either the controller (7.2) (for continuous-time
case) or the controller (7.3) (for discrete-time case) is asymptotically stable
with W contained in its basin of attraction.

(ii) For any .x0; p0/ 2 W , we have z.t/ 2 S for all t > 0 and Tz.t/ 2 T for
all t > 0 (for continuous-time case), or for any .x0; p0/ 2 W , we have
z.k/ 2 S for all k > 0 and .z.k C 1/ � z.k// 2 T for all k > 0 (for
discrete-time case).

Problem 7.11 Consider the system (7.1) along with the constraint sets S � Rp

and T � Rp. The global stabilization in the admissible set via measurement
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feedback is to find, if possible, an integer q and a measurement feedback con-
troller of the form

Tp.t/ D `.p.t/; y.t/; t/; p.t/ 2 Rq

u.t/ D g.p.t/; y.t/; t/
(7.4)

for continuous-time case or of the form

p.k C 1/ D l.p.k/; y.k/; k/; p.k/ 2 Rq

u.k/ D g.p.k/; y.k/; k/
(7.5)

for discrete-time case, such that the following conditions hold:

(i) The equilibrium point .x; p/ D .0; 0/ of the closed-loop system comprising
of the given system (7.1) and either the controller (7.4) (for continuous-time
case) or the controller (7.5) (for discrete-time case) is asymptotically stable
with V.S ; T / � Rq contained in its basin of attraction.

(ii) For any .x0; p0/ 2 V.S ; T / � Rq , we have z.t/ 2 S for all t > 0 and
Tz.t/ 2 T for all t > 0 (for continuous-time case), or for any .x0; p0/ 2
V.S ; T /� Rq , we have z.k/ 2 S for all k > 0 and .z.kC 1/� z.k// 2 T

for all k > 0 (for discrete-time case).

Remark 7.12 In (7.1), if Cz D 0, the above problems are referred to as input-
constrained stabilization problems, while if Dz D 0, the above problems are re-
ferred to as state-constrained stabilization problems.

7.3 A taxonomy of constraints

The taxonomy of constraints described in this section emerged and evolved over
a number of years from various efforts and attempts we made to solve the semi-
global and global stabilization problems for linear systems with both input and
state constraints. We learned that the solvability and controller design for the
above posed stabilization problems in the admissible set depend very much on
the structural properties of the mapping from input u to the constrained output z
of the given system (7.1). The mapping from input u to the constrained output z
(denoted by ˙uz) is characterized by the quadruple (A, B , Cz, Dz). The taxon-
omy of constraints developed in this section categorizes and as such delineates the
structural properties of ˙uz in three different directions, and it forms a basis in
subsequent chapters for stating clearly the solvability conditions and accordingly
designing appropriate stabilizing controllers.

The first category in the taxonomy of constraints is based on whether the system
˙uz is right invertible or not.
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Definition 7.13 The constraints are said to be:

� Right invertible constraints if the system ˙uz is right invertible.

� Non-right-invertible constraints if the system ˙uz is non-right invertible.

The following remark points out one important special case of right-invertible
constraints, namely, the case of having constraints only on actuators.

Remark 7.14 Let us assume that we have both magnitude and rate constraints
only on actuators, i.e., constraints only on the control variable u. For this special
case, we have z D u, implying that Cz D 0 and Dz D Im. Since ˙ character-
ized by .A;B; 0; Im/ can easily be verified to be right invertible, we note that
the magnitude and rate constraints only on actuators are indeed right-invertible
constraints.

Remark 7.15 In view of the above remark, it is clear that non-right-invertible
constraints arise inherently due to magnitude and rate constraints on the state x.

As we shall see in subsequent chapters, in order to study the posed semi-global
and global stabilization problems, a further elaboration on the non-right-invertible
constraints is needed.

Definition 7.16 The constraints are said to be weakly non-right invertible if the
constraints are non-right invertible and are such that

C�1
z imDz � V�.˙uz/C S�.˙uz/; (7.6)

where V�.˙uz/ and S�.˙uz/ are respectively the weakly unobservable subspace
and the strongly controllable subspace as defined in Definition 3.22 with Cg be-
ing the entire complex plane C. If the condition (7.6) does not hold, then the
constraints are said to be strongly non-right invertible.

Remark 7.17 In the SCB of ˙uz (see Theorem 3.1), the condition (7.6) is equiv-
alent to the matrix Cb being injective. Knowing this fact will be very helpful in
understanding the design methodology to be developed later on. Also, note that
for the case of right-invertible constraints, we always have

V�.˙uz/C S�.˙uz/ D Rn;

and as such, (7.6) is always satisfied.
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The second category in the taxonomy of constraints is based on the location of
the invariant zeros of the system ˙uz . Because of its importance, we specifically
label the invariant zeros of the system˙uz as the constraint invariant zeros of the
plant.

Definition 7.18 The invariant zeros of the system ˙uz are called the constraint
invariant zeros of the plant associated with the constrained output z.

Definition 7.19 The constraints are said to be:

� Minimum-phase constraints if all the constraint invariant zeros are in the
open left-half complex plane C� for continuous-time systems or within the
unit circle C� for discrete-time systems.

� Weakly minimum-phase constraints if all the constraint invariant zeros
are in the closed left-half complex plane C�0 for continuous-time systems
or within as well as on the unit circle C˝ for discrete-time systems with
one restriction that at least one such constraint invariant zero is on the
imaginary axis (continuous time) or on the unit circle (discrete time) and
any such constraint invariant zero is simple.

� Weakly non-minimum-phase constraints if all the constraint invariant ze-
ros are in the closed left half complex plane C�0 for continuous-time sys-
tems or within as well as on the unit circle C˝ for discrete-time systems,
and at least one constraint invariant zero which is on the imaginary axis
(continuous time) or on the unit circle (discrete time) is not simple.

� Strongly non-minimum-phase constraints if one or more of the constraint
invariant zeros are in the right hand complex plane CC for continuous-time
systems or outside the unit circle C˚ for discrete-time systems.

Remark 7.20 Whenever we say that the constraints are at most weakly non-
minimum phase, we mean that either the constraints are minimum phase, or
weakly minimum phase, or weakly non-minimum phase, but not strongly non-
minimum phase.

The third categorization is based on the order of the infinite zeros of the system
˙uz . Because of its importance, we specifically label the infinite zeros of the
system ˙uz as the constraint infinite zeros of the plant.
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Definition 7.21 The infinite zeros of the subsystem˙uz are called the constraint
infinite zeros of the plant associated with the constrained output z.

Definition 7.22 The constraints are said to be type one constraints if the order
of all constraint infinite zeros is less than or equal to one.

The impact of the taxonomy of constraints as developed above in solving the
posed semi-global and global stabilization problems in the admissible set is ex-
plored in subsequent chapters which clearly display what is feasible under (1)
right- or non-right-invertible constraints, (2) minimum- and non-minimum-phase
constraints, and (3) the type of infinite zero order.



8
Solvability conditions and design
for semi-global and global
stabilization in the admissible set

8.1 Introduction

In Chap. 7, we formulated two important problems, (1) the semi-global stabiliza-
tion problem in the admissible set and (2) the global stabilization problem in the
admissible set. Moreover, based on the structural properties of the mapping from
the control input to the constrained output, a taxonomy of constraints was devel-
oped there. In view of such a taxonomy, this chapter concentrates on semi-global
as well as global stabilization problems in the admissible set. The nature and solv-
ability of these stabilization problems as well as appropriate design of controllers
differ profoundly for the two different cases of right and non-right-invertible con-
straints. Because of this, we consider here these two cases separately. In partic-
ular, we consider the case of right-invertible and non-right-invertible constraints,
respectively, in Sects. 8.2 and 8.3 for continuous-time systems. Similarly, we con-
sider the same in Sects. 8.4 and 8.5 for discrete-time systems. This chapter is pri-
marily based on our work in [124, 125, 137].

8.2 Semi-global and global stabilization in admissible
set for right-invertible constraints: continuous time

In this section, for continuous-time linear system ˙ as described in (7.1), we
study in detail both the semi-global and global stabilization in the admissible set
as formulated in Problems 7.8 and 7.9 for state feedback and in Problems 7.10
and 7.11 for measurement feedback. We provide here the necessary and sufficient
conditions for the solvability of Problems 7.8 and 7.9 and sufficient conditions for
the solvability of Problem 7.10 whenever the constraints are right invertible, as de-
fined in Definition 7.13. The global measurement feedback problem 7.11 will not
be discussed in this book because the solvability conditions are extremely restric-
tive. Once the solvability conditions are formulated, we also develop here con-
structive methods of designing appropriate controllers that achieve semi-global or
global stabilization as required.

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__8,
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We have the following theorem which is concerned with the semi-global
stabilization Problem 7.8 via state feedback.

Theorem 8.1 Consider the continuous-time system ˙ as given by (7.1) and con-
straint sets S and T that satisfy Assumption 7.1. Assume that the constraints are
right invertible. Then, the semi-global stabilization problem in the admissible set
via state feedback as defined in Problem 7.8 is solvable if and only if the following
conditions hold:

(i) .A;B/ is stabilizable.

(ii) The constraint invariant zeros of the given system ˙ are all in the closed
left-half complex plane, i.e., the system˙ has at most weakly non-minimum-
phase constraints.

We have the following theorem which is concerned with the global stabilization
Problem 7.9 via state feedback.

Theorem 8.2 Consider the continuous-time system ˙ as given by (7.1) and con-
straint sets S and T that satisfy Assumption 7.1. Assume that we only have ampli-
tude constraints, i.e., T D Rp and that the constraints are right invertible. Then
the global stabilization problem in the admissible set via state feedback as defined
in Problem 7.9 is solvable if and only if the following conditions hold:

(i) .A;B/ is stabilizable.

(ii) The constraint invariant zeros of the given system ˙ are all in the closed
left-half complex plane, i.e., the system˙ has at most weakly non-minimum-
phase constraints.

(iii) The constraints are of type one, i.e., the given system ˙ has no constraint
infinite zeros of order greater than one.

Remark 8.3 In case of rate constraints, the above problem is an open problem.
This should not be surprising since even the global stabilization problem by static
state feedback with amplitude and rate constraints on the input is basically open.

We now move on to the case of measurement feedback that concerns with the
semi-global stabilization. We have the following theorem.

Theorem 8.4 Consider the continuous-time system ˙ as given by (7.1) and con-
straint sets S and T that satisfy Assumption 7.1. Assume that the constraints are
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right invertible. Then, the semi-global stabilization problem in the admissible set
via measurement feedback as defined in Problem 7.10 is solvable if the following
conditions hold:

(i) .A;B/ is stabilizable.

(ii) The constraint invariant zeros of the given system ˙ are all in the closed
left-half plane, i.e., the system ˙ has at most weakly non-minimum-phase
constraints.

(iii) The pair .Cy ; A/ is observable.

Moreover, conditions (i) and (ii) are necessary for the solvability of the semi-
global stabilization problem in the admissible set via measurement feedback.

The following remark addresses the need for condition (iii).

Remark 8.5 Some discussion regarding the condition (iii) in Theorem 8.4 is in
order. Clearly, condition (iii) is sufficient but not necessary. Also, obviously, the
detectability of the pair .Cy ; A/ is necessary to solve the posed problem. On the
other hand, if the pair .Cy ; A/ is not observable, we can have a problem with un-
observable dynamics which we cannot observe but which might result in violation
of our constraints. Relaxing the condition (iii) and developing a set of necessary
and sufficient conditions are not very difficult but highly technical and not that
interesting.

The following remark points out that the specific features of the given constraint
sets S and T do not have any role in the solvability of semi-global and global
stabilization in the admissible set for right-invertible constraints.

Remark 8.6 We emphasize here a fundamental aspect of solvability conditions
as given by Theorems 8.1, 8.2, and 8.4, namely, that they are independent of any
specific features of the given constraint sets S and T . That is, for the case of right-
invertible constraints, if the semi-global and global stabilization problems in the
admissible set are solvable for some given constraint sets S and T satisfying
Assumption 7.1, then such semi-global and global stabilization problems are also
solvable for all constraint sets satisfying Assumption 7.1.

Remark 7.14 dictates that the constraints are right invertible whenever we have
constraints only on actuators. The following remark exemplifies several aspects
of having constraints only on actuators.
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Remark 8.7 Consider the case when we have constraints only on actuator
magnitude and rate, i.e., the case when Cz D 0. In other words, there are no
state constraints, and only a subset of the input channels is subject to magni-
tude and rate constraints. Then, as Remark 7.14 points out, the constraints are
right invertible. Also, in this case, it is straightforward to show that the constraint
invariant zeros of ˙ (i.e., the invariant zeros of the system ˙ characterized by
.A;B; 0;Dz/) coincide with a subset of the eigenvalues of A. This observation
implies that the requirement of at most weakly non-minimum-phase constraints
in Theorems 8.1, 8.2, and 8.4 is equivalent to requiring that a particular subset
of eigenvalues of A lies in the closed left-half plane. Obviously, such a condi-
tion is always satisfied if we are dealing with critically unstable systems. Let us
next assume that the given system ˙ is controllable via the unconstrained in-
put channels, it is then straightforward to see that the system characterized by
.A;B; 0;Dz/ does not have any invariant zeros, i.e., ˙ does not have any con-
straint invariant zeros. Thus, for this special case, obviously, there will not be any
constraints on the eigenvalues of A as can be expected.

It is worthwhile to consider another special case of the above when all the input
channels are subject to magnitude and rate constraints which is the case consid-
ered in Chap. 6. In this case, Cz D 0 and Dz D Im. For this special case, we
observe that the admissible set of initial conditions V.S ; T / is indeed Rn. More-
over, then the constraint invariant zeros of ˙ coincide with all the eigenvalues of
A. As such, the requirement of at most weakly non-minimum-phase constraints in
Theorems 8.1, 8.2, and 8.4 is equivalent to requiring that the given system be crit-
ically unstable. Furthermore, for this special case, it is easy to see that there are
no constraint infinite zeros of order greater than 1, and hence, the condition (iii)
of Theorem 8.2 is automatically satisfied.

In view of the above observations, for this special case when Cz D 0 and
Dz D Im, the conditions of Theorems 8.1, 8.2, and 8.4 can be restated as follows:
Under the assumptions of Theorem 8.1, the necessary and sufficient conditions for
semi-global stabilization via state feedback are indeed (1) .A;B/ is stabilizable
and (2) all the eigenvalues ofA lie in the closed left-half plane (i.e., the given sys-
tem is critically unstable). Under the assumptions of Theorem 8.4, for semi-global
stabilization via measurement feedback, the sufficient conditions are (1) .A;B/ is
stabilizable, (2) all the eigenvalues of A lie in the closed left-half plane (i.e., the
given system is critically unstable), and (3) the pair .Cy; A/ is observable. All the
above results coincide with what has been reported earlier in Chaps. 4 and 6.

Let us next recall one of the fundamental and important facts that emerged
in Chap. 4. Namely, for systems with only input saturation, in general global
stabilization requires nonlinear feedback laws, while semi-global stabilization can
be achieved whenever it can be done by utilizing simply linear time-invariant
feedback laws. Then, a question that arises naturally is whether an analogous
result is valid under a broad framework of state as well as input constraints that
are being considered in this chapter. The following theorem answers this question:
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Theorem 8.8 Consider the continuous-time system ˙ as given by (7.1) and
constraint sets S and T that satisfy Assumption 7.1. Assume that the constraints
are right invertible. Then the following hold:

(i) Under the condition that imCz � T (i.e., no rate constraints on states), if
a semi-global stabilization problem in the admissible set via state feedback
as defined in Problem 7.8 is solvable, then it is also solvable via a linear
time-invariant state feedback law.

(ii) If imCz 6� T (i.e., rate constraints on states are present), whenever a semi-
global stabilization problem in the admissible set via state feedback as de-
fined in Problem 7.8 is solvable, in general it might not be solvable via a
linear time-invariant state feedback law. That is, there exist a system ˙ as
given by (7.1) and constraint sets S and T 6� imCz that satisfy Assump-
tion 7.1 for which the semi-global stabilization problem is solvable via a
nonlinear feedback law but for which there exists no linear feedback law
that solves the problem.

8.2.1 Proofs and construction of controllers

The proofs of all theorems as well as construction of appropriate controllers rely
on one specific decomposition of the system. This decomposition is nothing else
than the decomposition related to the special coordinate basis (SCB) as presented
in Chap. 3 (see Theorem 3.1). However, for the presentation of the results here, a
compact form of SCB suffices and is given below.

For the right-invertible constraints considered in this section, by considering the
SCB for the system ˙uz characterized by the quadruple .A;B; Cz ; Dz/, one can
find suitable transformation matrices �s and �u such that (7.1) can be rewritten
in a compact form as

 
Tx1

Tx2

!
D
 
A11 0

A21 A22

! 
x1

x2

!
C
 
0

B2

!
zuC

 
K1

K2

!
z

z D
�
0 Cz;2

� x1

x2

!
C zDz zu;

(8.1)

where  
x1

x2

!
D zx D � �1

s x and zu D � �1
u u:

Here x1 2 Rn1 and x2 2 Rn2 with n1 C n2 D n. Note that no transformation
is done on the constrained output z in order to preserve the constraint sets S and
T . We observe also that xa in the SCB is renamed here as x1, xb is nonexistent
for systems with right-invertible constraints, while the rest of the states xc and xd

form x2.
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We emphasize that many submatrices given in (8.1) have definite structure
which we judiciously point out as the need arises. At this time, we point out
that the subsystem characterized by the quadruple .A22; B2; Cz;2; zDz/ is strongly
controllable1 and has no constraint invariant zeros. Also, there exists a matrix H
such that A21 D B2H and zDzH D 0. Moreover, the eigenvalues of A11 are
equal to the constraint invariant zeros of the system ˙ .

We can extract from (8.1) two subsystems. The first subsystem is given by

Tx1 D A11x1 CK1z; x1 2 Rn1 : (8.2)

The second subsystem extracted from (8.1) is given by

Tx2 D A22x2 CB2.zuCHx1/CK2z; x2 2 Rn2 I
z D Cz;2x2 C zDz zu: (8.3)

The above two subsystems (8.2) and (8.3) form the system ˙uz . However, in
view of (8.1), it is important to point out that the state and input constraints exist
only on the second subsystem (8.3) and there are no constraints whatsoever on
subsystem (8.2). As such, the admissible set of initial conditions V.S ; T / for the
given system ˙ can simply be redefined as V2.S ; T / for the subsystem (8.3):

V2.S ; T / D fx2;0 2 Rn2 j 9u0 such that z0 2 S

and Cz;2.A22x2;0 C B2u0 CK2z0/ 2 T g ; (8.4)

where z0 D Cz;2x2;0C zDzu0. Note that x1 has no effect on the class of admissible
initial conditions for the second subsystem since, in view of zDzH being zero,
Hx1 can be exactly canceled by a suitable choice of u0.

We emphasize that the subsystem (8.2) represents the zero dynamics of the sys-
tem˙uz characterized by the quadruple (A, B , Cz,Dz). Moreover, as mentioned
above, the eigenvalues of A11 are equal to the constraint invariant zeros of the
given system ˙ .

Both for construction of controllers and the proofs of the stated results, we
use the decomposition in the two subsystems (8.2) and (8.3) as defined above.
We observe clearly that we can control the first subsystem (8.2) only through z.
Also, from the SCB decomposition (see Theorem 3.1), as we alluded to earlier,
it follows that the second subsystem characterized by the quadruple (A22, B2,
Cz;2, zDz) has no finite invariant zeros and is right invertible. This implies that we
can guarantee by a suitable choice of zu that z is arbitrarily close to any desired
signal as will be evident soon. Therefore, we basically design a controller in two
phases:

1Definition 3.28 discusses strong controllability.
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� First, design a desired feedback for the first subsystem (8.2) using z as the
(constrained) input signal such that the first subsystem exhibits a desired
closed-loop behavior.

� Second, design a feedback for the second subsystem (8.3) with state x2,
input zu, and output z such that

(i) The output z is close to the desired feedback for the first subsystem.

(ii) The output satisfies the constraints.

(iii) The state x2 of the second subsystem exhibits a desirable behavior.

All feedback designs here are constructed in accordance with this two-phase de-
sign.

We need to discuss next what kind of initial conditions can be considered for the
first subsystem (8.2). In fact, since we have no state constraints on this subsystem,
we can have arbitrary initial conditions for it. Hence, we consider arbitrary initial
conditions in W1 D Rn1 in the global case, while in the semi-global case we
consider initial conditions in some arbitrary compact set W1.

Similarly, the initial conditions for the second subsystem must be in some set
W2. In the global case, we have W2 D V2.S ; T / using the definition in (8.4),
while in the semi-global case we have W2 as an arbitrary compact set contained
in the interior of V2.S ; T /.

Proof of Theorem 8.1

In view of the decomposition given in (8.2) and (8.3), the following lemma is
obvious:

Lemma 8.9 Let the system (7.1) and constraint sets S and T be given. There
exists a state feedback that solves the semi-global stabilization problem for the
system (7.1) only if the system (8.2) is semi-globally stabilizable by a state feed-
back, i.e., for any compact set W1, there exists a state feedback z D f .x1/ such
that

(i) The equilibrium point x1 D 0 of the closed-loop system is asymptotically
stable with W1 contained in its basin of attraction.

(ii) For any x1.0/ 2 W1, we have z.t/ 2 S and Tz.t/ 2 T for all t > 0.

Note that (8.2) is semi-globally stabilizable by a state feedback only if A11

has all its eigenvalues in the closed left-half plane. Secondly, if the given system
˙ has right-invertible constraints (the case we are considering in this section),
then the eigenvalues of A11 are the constraint invariant zeros of the system, and
hence the above proves necessity of Theorem 8.1. We can hence assume from
now on that A11 has all its eigenvalues in the closed left-half plane. It remains
to prove sufficiency of the conditions in Theorem 8.1. We prove sufficiency by



418 8 Semi-global and global stabilization in admissible set

an explicit design of a suitable controller. We begin with the design of a state
feedback controller as needed for Theorem 8.1.

The basic philosophy of our controller design as said earlier is as follows. We
first design a suitable stabilizing controller z D f1.x1/ for the subsystem (8.2).
Next, we consider the subsystem (8.3). We need to design an input u such that
the output z tracks the desired feedback for the first subsystem while avoiding
constraint violation and while guaranteeing stability of the second subsystem.

State feedback controller design for semi-global stabilization

For the semi-global design, we need to guarantee stability for all initial conditions
for the first subsystem in some compact subset W1 � Rn1 and for all initial
conditions of the second subsystem in a compact subset W2 where W2 is such
that there exists a � 2 .0; 0:5/ such that W2 � .1 � 2�/V2.S ; T /. Our design
has a larger domain of attraction for smaller � but at the expense of the need for a
higher feedback gain in the second subsystem. Obviously, there exists a compact
set zS � S such that W2 � .1� �/V2.zS ; T /. We assume that zS and T still satisfy
Assumption 7.1 (this is always possible). We actually design a feedback such that
z.t/ 2 zS for all t > 0. Because we are proving sufficiency, this restriction is
without loss of generality and enables a simplification in the proof.

Assumption 7.1 enables us to decompose zS and T as

zS \ imCz D zS1; zS \ imDz D zS2;

T \ imCz D T1; T \ imDz D T2:

Step 1 (Controller design for the zero dynamics)

We now focus our design for the first subsystem (8.2) while viewing z as an
input variable. At first, we let z D z0 C v and rewrite subsystem (8.2) as

Tx1 D A11x1 CK1z0 CK1v: (8.5)

We note that the conditions of the theorem imply that all the eigenvalues of A11

are in the closed left-half plane. As will become transparent in the design for our
second subsystem, we need to choose a ı2 such that

ı2
xS1 � �

3
T1; (8.6)

where
xS1 D f z1 � z2 j z1 2 zS1; z2 2 zS1 g: (8.7)

Clearly, such a ı2 exists since xS1 is bounded.
Our objective is to design a stabilizing feedback z0 D f .x1/ such that the

equilibrium point of the closed-loop system of (8.5) and z0 D f .x1/ with v D 0

is asymptotically stable. Moreover, for all v satisfying the bound

kv.t/k 6 Me�ı2t (8.8)
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for all t > 0, and for all initial conditions in some arbitrarily large but compact
subset W1 � Rn1 , we satisfy x1.t/ ! 0 as t ! 1. Finally, we need to guarantee
also that

z0.t/ 2 .1 � �/zS1; Tz0.t/ 2 �ı2

2e�1
zS1 \ �

3
T1 (8.9)

for all t > 0. Again, it will become clear in our design for our second subsys-
tem why it is desirable to guarantee that z0 satisfies these bounds. Following the
method of design given in Chap. 6, we can design such a suitable feedback law
f .x1/ as a linear state feedback law as described below.

Let P� be the solution of the continuous-time algebraic Riccati equation,

A0
11P� C P�A11 � P�K1K

0
1P� C �2I D 0:

As discussed in Chap. 4,
lim

�!0
P� D 0:

Also, for any compact subset W1, there exists a �� such that for all � 2 .0; ���,
we have

(i) z0 D �K 0
1P�x1 is a stabilizing controller for the system (8.5) with W1

contained in the domain of attraction.

(ii) (8.9) is satisfied for all t and for all v satisfying (8.8).

Hence we can choose

f .x1/ D F�x1 D �K 0
1P�x1

for some � 2 .0; ��� to obtain a suitable feedback for this first subsystem. In
particular, (8.8) implies that

w�.t/ WD
tZ

0

e.A11CK1F�/.t��/K1v.�/ d�

is uniformly bounded for � small enough. But this implies that

z0.t/ D f .x1.t// D F�x1.t/ D F�e
.A11CK1F�/.t��/ C F�w�.t/

will respect our constraints (8.9) for � sufficiently small. In the rest of the proof,
we assume in fact that f is a linear function of the state as presented above.

Step 2 (Controller design for the second subsystem)

Our next design objective is to find a suitable input zu to the second subsys-
tem (8.3) such that (8.8) is satisfied where

v.t/ D z.t/ � f .x1.t//
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for all t > 0 and where z0.t/ D f .x1.t// has been designed to satisfy (8.9)
provided v satisfies (8.8). Obviously, we must guarantee also that z.t/ 2 zS for
all t � 0 and Tz.t/ 2 T for all t > 0 while assuring the stability of the resulting
closed-loop system with the desired domain of attraction.

At this stage, in order to proceed further with our design, we need to reveal
from SCB certain finer structure of the matrices A22, B2, and Cz;2. Indeed, we
have:

A22 D zA22 C zB2G; B2H D zB2H1 C zB3H2; Cz;2 D
 
C1

0

!
and zDz D

 
0

D1

!

for some compatible matrices G, H1, and H2 while

zA22 D

�
A1 0 � � � 0

0
: : :

: : :
:::

:::
: : : As 0

0 � � � 0 Ac

�
; zB2 D

�
B2;1 0 � � � 0

0
: : :

: : :
:::

:::
: : : B2;s 0

0 � � � 0 0

�
;

zB3 D

ˇ
0
:::

0

Bc

�
; C1 D

�
C11 0 � � � 0 0

0
: : :

: : :
:::

:::
:::

: : :
: : : 0 0

0 � � � 0 C1s 0

�
;

and for i D 1; 2; � � � ; s,

Ai D

�
0 1 0 � � � 0

0
: : :

: : :
: : :

:::

0
: : :

: : :
: : : 0

:::
: : :

: : :
: : : 1

0 � � � 0 0 0

�
2 Rki �ki ; B2;i D

�
0
:::

0

0

1

�
;

C1i D
�
1 0 � � � 0

�
:

HereAc andBc are matrices of appropriate dimension such that the pair .Ac ; Bc/

is controllable.
In view of the above and in view of (8.21), the system of equations given in (8.3)

can be rewritten as

Tx2 D zA22x2 C zB2.zu2 CH1x1 CGx2/C zB3.H2x1 C zu3/CK2z;

z D
 
z1

z2

!
D
 
C1x2

D1 zu1

!
(8.10)
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with D1 invertible. Next, we partition K2, x2, z1, zu2, and f .x1/ in conformity
with the partitioning of the other matrices. We have

K2 D

ˇ
K2;1

:::

K2;s

K2;c

�
; x2 D

�
x2;1

x2;2

:::

x2;s

xc

�
; z1 D

ˇ
z1;1

z1;2

:::

z1;s

�
;

zu2 D

ˇ
u2;1

u2;2

:::

u2;s

�
; f .x1/ D

 
f1.x1/

f2.x1/

!
;

f1.x1/ D

ˇ
f1;1.x1/

f1;2.x1/
:::

f1;s.x1/

�
; H1 D

�
H1;1

:::

H1;s

˘
; G D

�
G1

:::

Gs

˘
:

We are now ready to design zu. We will first focus on zu1 and zu3. We choose
zu1 D D�1

1 f2.x1/. To get zu3, we choose first a matrixFc such that the eigenvalues
of Acc C BcFc are all at desired locations in the open left-half plane. Such a
selection of Fc is possible since .Acc; Bc/ is controllable. We then choose zu3 D
Fcxc �H2x1.

We need to choose zu2. To do so, let us study the system (8.10). By substituting
for zu1 and zu3 as chosen, we can rewrite (8.10) as

Tx2;i D Aix2;i CB2;i .u2;i CH1;ix1 CGix2/CK2;iz

z1;i D C1ix2;i ;
(8.11)

for i D 1; 2; � � � ; s, and

Txc D .Acc C BcFc/xc CK2;cz:

Now our objective in designing zu2 is to guarantee that z1;i � f1;i .x1/ converges
to zero exponentially while making sure that the state constraints are satisfied. To
proceed further, we define functionsmi;j .x/, i D 1; � � � ; s; j D 1; � � � ; ki C 1 as
follows:

mi;1.x/ WD f1;i .x1/;

and for i D 1; : : : ; s; j D 2; : : : ; ki C 1,

mi;j .x/ WD �K2;i;j �1z � ıj
�
x2;i;j �1 �mi;j �1.x/

�C d

dt
mi;j �1.x/;
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where the parameter ıj is such that ı2 is as chosen before while

ı3 > 0; : : : ; ıki C1 > 0

are to be chosen subsequently. We would like to point out that mi;j .x/ as de-
fined above are linear functions of x. We define next certain variables, "i;j , i D
1; � � � ; s; j D 2; � � � ; ki such that

"i;j .t/ WD x2;i;j �mi;j .x/:

We are now ready to choose the components of zu2, namely, u2;i , i D 1; � � � ; s.
If ki > 1, we choose

u2;i D �H1;ix1 �Gix2 Cmi;kiC1.x/: (8.12)

If ki D 1 for some i , say i D ˛, then u2;˛ is chosen as

u2;˛ D �H1;˛x1 �G˛x2 Cm˛;2.x/C "˛;2.t/; (8.13)

where "˛;2.t/ is to be chosen soon. We note that if ki ¤ 1 for any i D 1; � � � ; s,
obviously, the system (8.11) with the choice of u2;i as chosen in (8.12) results in
x2;i;j .t/ �mi;j .t/ ! 0 as t ! 1 for j D 1; : : : ; ki . We define next

"2.t/ WD

�
"1;2.t/
:::

"s;2.t/

˘
:

Let us next focus on the behavior of the constraints under the feedback laws cho-
sen above. We observe that z2 satisfies the constraints due to the choice of zu1.
Hence we focus on z1. We have

z1 D C1x2.t/ D e�ı2tC1x2.0/C f1.x1.t//

� e�ı2tf1.x1.0//C
tZ

0

e�ı2.t��/"2.�/d�

D e�ı2tC1x2.0/C
�
1 � e�ı2t

�
f1.x1.t//

C e�ı2t

tZ

0

d
dt
f1.x1.�//d� C

tZ

0

e�ı2.t��/"2.�/d�:

Since z0 D f1.x1/ satisfies (8.9), we get

e�ı2t

tZ

0

d
dt
f1.x1.�//d� 2 �

2
zS1:
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Moreover, C1x2.0/ 2 .1 � �/zS1 and f1.x1.t// 2 .1 � �/zS1. Therefore, if we
guarantee that

tZ

0

e�ı2.t��/"2.�/d� 2 �
2

zS1; (8.14)

then we obtain C1x2.t/ 2 zS1 as required.
Next, we need to consider the rate constraint on z1. We have

Tz1 D d

dt
C1x2 D �ı2.C1x2 � f1.x1//C d

dt
f1.x1/C "2.t/: (8.15)

We know from (8.9) that d
dt
f1.x1/ 2 �

3
T1. Since ı2 satisfies (8.6), combined with

the fact that .C1x2 �f1.x1// 2 xS1, we find that ı2.C1x2 �f1.x1// 2 �
3
T1. Hence,

we obtain that d
dt
C1x2 2 T1 if we guarantee that

"2.t/ 2
�
1 � 2�

3

�
T1: (8.16)

Therefore, if we can guarantee (8.14) and (8.16), then we satisfy our constraints.
We still need to show that the difference between z and f .x1/, which is equal to
the disturbance v in the first subsystem, satisfies (8.8). We have

v D
 
v1

v2

!
;

where v2 D 0, and rewriting (8.15), we get

Tv1.t/ D �ı2v1.t/C "2.t/

with v1.0/ 2 xS1. Therefore, v satisfies (8.8) if "2 satisfies

tZ

0

eı2�"2.�/d� 2 zS1: (8.17)

We will next consider how we can guarantee that "2.t/ satisfies (8.14), (8.16),
and (8.17). It is easy to see that these three conditions are satisfied if for all t > 0
we have

"2.t/ 2 e�ı3t
�
1 � 2�

3

�
T1 (8.18)

for ı3 large enough.
For ease of notation, we define

A D f i j i D 1; : : : ; s; ki D 1 g;
Ac D f i j i D 1; : : : ; s; ki > 1 g:
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With i 2 Ac , we have

"i;2.t/ D e�ı3t"i;2.0/C
tZ

0

e�ı3.t��/"i;3.�/d�

with "i;3.t/ D 0 if ki D 2. For i 2 A, we can obtain arbitrary "i;2 by choosing
u2;i as in (8.13). Assume that for i 2 A, we choose

"i;2.t/ D e�ı3t"i;2.0/ (8.19)

with "i;2.0/ still to be chosen. If we guarantee:

(i) "2.0/ 2 .1 � �/T1,

(ii)

tZ

0

eı3t"i;3.�/d� small enough for i with ki > 3,

then (8.18) is satisfied. We will see later how, by choosing ı4; ı5; � � � , we can
guarantee item (ii). Let us next consider item (i). We have

"2.0/ D Tz1.0/C ı2 .z1.0/� f1.x1.0/// � d
dt
f1.x1.0//:

We have

ı2 .z1.0/� f1.x1.0/// 2 ı2
xS1 � �

3
T1

d
dt
f1.x1.0// 2 �

3
T1;

and hence, as soon as we guarantee that Tz1.0/ 2 .1�2�/T1, we know that item (i)
is satisfied.

However, because x2.0/ 2 .1 � 2�/V2.S ; T /, there exists a u.0/ such that
Tz1.0/ 2 .1 � 2�/T1. It is easily verified that the only components of u.0/ which
affect Tz1.0/ are exactly the u2;i .0/ with i 2 A which, according to (8.13), is
equivalent to choosing "i;2.0/ with i 2 A appropriately.

This yields a system with the desired properties, but the feedback is partially
determined in open loop due to our choice in (8.19) and therefore not acceptable.
Choose instead for each t , "i;2.t/ with i 2 A to minimize the criterion:

minf � j "2.t/ 2 �T1 g: (8.20)

Note that the existence of "i;2.t/ with i 2 A that minimize this criterion is a
consequence of the fact that the set T1 is bounded. Clearly, the optimal "i;2.t/ with
i 2 A becomes a function of "i;2.t/ with i 2 Ac . But for i 2 Ac , the "i;2.t/ are
a function of the state, and hence the "i;2.t/ with i 2 A are determined according
to a state feedback. Note that (8.19) is a suboptimal choice for the optimization
in (8.20) yielding (8.18), and therefore we have

� 6 e�ı3t
�
1 � 2�

3

�
;
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and hence, the choice for "i;2.t/ according to the optimization is a state feedback
which also satisfies (8.18). Note that in general, the dependence of "i;2 with i 2 A

on the "i;2 with i 2 Ac is nonlinear. There are a few instances where we can
guarantee a linear feedback. Clearly, if either the set A or the set Ac is empty,
then this mapping is automatically linear since either its domain or its range is
zero dimensional. Moreover, if imCz � T , then T1 is equal to the whole space,
and we get an optimal value � D 0 by choosing "i;2.t/ D 0 for i 2 A which
clearly also yields a linear feedback.

Finally, we still need to choose ı4; ı5; : : :. We note that we have the following
structure when ki > 2:

(
T"i;j D �ıj "i;j C "i;j C1 for j D 1; : : : ; ki � 1;
T"i;j D �ıj "i;j for j D ki :

From the above structure, it should be obvious that we can make the "i;j small by
a suitable design of the ıj . We have to make sure that

tZ

0

eı3t"i;3.�/d�

is small enough for those i with ki > 3. By making ı4 large enough, we can make
this arbitrarily small provided that

tZ

0

eı4t"i;4.�/d�

is small enough. If ki D 4, this is actually equal to zero, and otherwise, we can
use a similar argument to make this small enough by choosing ı5 large enough.
In this way, we can recursively determine ı4; ı5; : : : ; ıki C1.

Finally, note that all the "i;j .t/ converge to zero exponentially, and therefore,
for i D 2, this implies that "i;2.t/ converges to zero exponentially, and hence,
the difference between xi;1 and f1;i .x1/ converges to zero exponentially. Since
f1.x1/ also converges to zero exponentially, we find that xi;1 converges to zero
exponentially. This also implies that z converges to zero exponentially. Moreover,
it implies that mi;2.x/ converges to zero exponentially. Similarly, since "i;3.t/

converges to zero exponentially, we have the difference between xi;1 andmi;2.x/

converging to zero exponentially. Hence, if ki > 1, mi;2.x/ converges to zero
exponentially, and we find that xi;2 converges to zero exponentially. As before,
this also implies that mi;3.x1/ converges to zero exponentially. Continuing with
this recursive argument, we find that all states converge to zero exponentially,
and therefore, the constructed feedback has the desired attractivity as well as
stability.
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Proof of Theorem 8.2

We first show that the conditions of Theorem 8.2 are necessary. The necessity of
condition (i) of Theorem 8.2 is trivial. As in the semi-global case, the necessity of
condition (ii) of Theorem 8.2 is a consequence of the results obtained in Chap. 4
and the following lemma which is a direct consequence of the decomposition
given in (8.2) and (8.3).

Lemma 8.10 Let the system (7.1) and constraint sets S and T D Rp be given.
There exists a state feedback that solves the global stabilization problem for the
system (7.1) only if the system (8.2) is globally stabilizable by a state feedback
z D f .x1/, i.e.,

(i) The equilibrium point x1 D 0 of the closed-loop system is globally asymp-
totically stable.

(ii) For any initial condition, we have z.t/ 2 S for all t > 0.

In order to complete the proof that the conditions of Theorem 8.2 are necessary,
we need to prove the following lemma which states that condition (iii) is also a
necessary condition for the solvability of Problem 7.9.

Lemma 8.11 Consider the system ˙ as given by (7.1). Let the assumptions of
Theorem 8.2 be satisfied. Then, the global stabilization problem as defined in
Problem 7.9 is solvable only if the given system has no constraint infinite zeros of
order greater than one.

Proof : First, note that, since the system is right invertible, having no infinite zeros
of order greater than one is equivalent to .CzB Dz/ being surjective. Therefore,
if the system has infinite zeros of order greater than one, then there exists a vector
c ¤ 0 such that c0Dz D 0 and c0CzB D 0. Let z0 2 S be such that hz; ci 6
hz0; ci for all z 2 S . Since S is convex as well as compact, such a z0 always
exists. Next, because the given system has right-invertible constraints, there exist
initial condition x0 and input function xu such that the output z satisfies z.0/ D z0

and Tz.0/ D c, i.e.,
z0 D Czx0 CDz xu.0/ 2 S :

Clearly, x0 2 V.S ;Rp/.
But if we start at time 0 in x0, then we have for any input signal u

hc; z.0/i D hc; Czx0i D hc; z0i;
d
dt

hc; z.t/i jtD0 D hc; CzAx0i D hc; ci > 0:
Therefore, hc; z.t/i > hc; z0i for small t > 0 and for any input u. By definition of
z0, this implies that z.t/ 62 S for small t > 0 and for any input u. Therefore, there
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exist initial conditions in V.S ;Rp/ which cannot be stabilized without violating
our constraints which yields the required contradiction.

This establishes the necessity of our conditions. The next step is to prove suf-
ficiency by explicitly designing a suitable feedback. Before we do so, in view of
SCB, we need to recall a finer structure of (8.1), namely,

Cz;2 D
 
C1

0

!
; zDz D

 
0 0 0

D1 0 0

!
; B2 D

�
0 zB2

zB3

�
; (8.21)

withD1 invertible. Since we have no constraint infinite zeros of order greater than
1, we have the additional structure that C1

zB2 is invertible. Also, we decompose zu
and z to be compatible with the above:

z D
 
z1

z2

!
; and zu D

�
zu1

zu2

zu3

�
: (8.22)

We observe that the assumptions on the set S guarantees that we can decompose
the set S compatible with the decomposition of z:

S D S1 � S2; (8.23)

such that z 2 S if and only if z1 2 S1 and z2 2 S2.

State feedback controller design for global stabilization

For the design for the first subsystem, we choose an input z which satisfies the
constraints such that z.t/ 2 .1� z�/S where the parameter z� 2 .0; 1/. By choosing
z� close to 1, we have limited control effort for the first subsystem, but in our
design for zu to track the desired output z, we have more flexibility. Conversely,
choosing z� small gives us more control effort for the first subsystem, but in our
design for zu, we need to track the desired output z quite accurately. Based on these
arguments, we fix the parameter z� 2 .0; 1/. We now focus our design for the first
subsystem (8.2) while viewing z as an input variable. At first, we let z D z0 C v

and rewrite subsystem (8.2) as

Tx1 D A11x1 CK1z0 CK1v: (8.24)

We note that the conditions of the theorem imply that all the eigenvalues of A11

are in the closed left-half plane. Next, we would like to construct a state feedback
law z0 D f .x1/ such that it satisfies the constraints z0.t/ 2 .1� z�/S for all t > 0
while rendering the zero equilibrium point of the closed-loop system of (8.24)
and z0 D f .x1/ globally attractive (i.e., x1.t/ ! 0 as t ! 1) in the presence of
signals v satisfying the bound

kv.t/k 6 Me�ıt (8.25)

for someM > 0. Moreover, the feedback law z0 D f .x1/ should render the zero
equilibrium point of the closed-loop system when v D 0 locally exponentially
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stable. Such a nonlinear feedback law z0 D f .x1/ can be obtained from the
adaptive-low-gain design based on the H1 ARE as discussed in Chap. 4. Note
that the effect of the exponentially decaying signal v can then be handled in the
same way as the effect of the exponentially decaying observer error e in the proof
of Theorem 4.53.

Next, we consider the second subsystem, namely, (8.3). The main design ob-
jective is to find a suitable input zu to the second subsystem (8.3) such that for any
initial condition in W2 of the first subsystem (8.3) and for any initial condition of
the second subsystem (8.2), we have

kz.t/ � f .x1.t//k 6 Me�ıt (8.26)

for all t > 0 and for any function f satisfying

f .x1.t// 2 .1 � z�/S
for all t > 0. Obviously, we must also guarantee that z.t/ 2 S for all t > 0.

To proceed further, let us next partition f .x1/ to be compatible with the parti-
tioning of z:

f .x1/ D
 
f1.x1/

f2.x1/

!
:

We are now ready to construct the required feedback laws for zu. Our objective in
designing it is to guarantee that v WD zu�f .x1/ satisfies (8.25) while z satisfies the
constraints. Knowing the properties of SCB, it can be shown that one can choose
zu3 D Fx2 such that the system (8.1) with inputs zu1 and zu2 and output z is
invertible and moreover, the additional invariant zeros introduced by the feedback
zu3 D Fx2 are placed in a desired location in the open left-half plane. With this
choice of zu3, we obtain

z1 D C1x2;

z2 D D1 zu1;

Tz1 D C1.B2Hx1 C zB2Gx2 C zB3Fx2 CK2z/C C1
zB2 zu2:

Then choose the feedback laws,

zu1 D D�1
1 f2.x1/;

zu2 D .C1
zB2/

�1
�
�C1.B2Hx1 C zB2Gx2 C zB3Fx2 CK2z/

� ı .z1 � f1.x1//C .1 � e�ıt /
d

dt
f1.x1.t//

�
;

where ı > 0 is a positive constant. We emphasize that the above feedback laws
are time-varying nonlinear state feedback laws. These feedback laws guarantee
that z2 D f2.x1/ and that z1.t/ ! f1.x1.t// as t ! 1 for all initial conditions
in the set of admissible set of initial conditions V.S ; T /. We show next that z1
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and z2 with the above feedback laws satisfy all the constraints. We observe first
that f .x1/ 2 S and d

dt
f .x1/ 2 zT which guarantees that z2 D f2.x1/ 2 S2 and

Tz2 D d
dt
f2.x1/ 2 zT2. This implies that z2 satisfies all the constraints. We focus

next on showing that z1 satisfies all the constraints, i.e., z1.t/ 2 S1 and Tz1.t/ 2 zT1

for all t > 0. We have

Tz1.t/ D �ı .z1.t/ � f1.x1.t///C .1 � e�ıt /
d

dt
f1.x1.t//: (8.27)

Integrating this equation, we obtain,

z1.t/ D e�ıtz1.0/C .1 � e�ıt /f1.x1.t//: (8.28)

Since f1.x1/ 2 S1 and z1.0/ 2 S1, we find, using the convexity of S1, that
z1.t/ 2 S1. Note that v1.t/ D z1.t/ � f1.x1.t// satisfies according to (8.28):

v1.t/ D e�ıtz1.0/� e�ıtf1.x1.t// 2 e�ıt xS1

for any t > 0, and hence, the error signal v D z � f .x1/ satisfies

kv.t/k 6 Me�ıt

for all t > 0whereM is some positive constant. This immediately shows that, for
all initial conditions in V.S ;Rp/, x1.t/ ! 0 as t ! 1 which in turn guarantees
that z.t/ ! 0 as t ! 1. Moreover, it is straightforward to show that x2.t/ ! 0

as t ! 1 for all initial conditions in V.S ;Rp/. Thus, we conclude that the zero
equilibrium point of the closed-loop system is attractive for all initial conditions in
V.S ;Rp/. Finally, it is obvious that the zero equilibrium point of the closed-loop
system is locally asymptotically stable. This concludes our proof.

Proof of Theorem 8.8 : The first statement of Theorem 8.8 follows from Theo-
rem 8.1. The second statement follows from the following counterexample. Con-
sider the system

Tx D

�
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 3 0 0

0 1 0 �3=2 3=2 �3 0

0 0 1 �3 0 0 0

0 0 0 0 0 �3 0

˘
x C

�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

˘
u;

z D

˙
0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

�
x
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with no magnitude constraints; however, the rate constraint T is given by

T D f z 2 R4 j kzk1 < 3 g:

Consider the following four possible initial conditions:

x1 D

�
0

0

0

1

1

1

0

˘
; x2 D

�
0

0

0

1

1

�1
0

˘
; x3 D

�
0

0

0

�1
1

1

0

˘
; x4 D

�
0

0

0

1

�1
1

0

˘
:

These initial conditions are all feasible. But in order to satisfy the rate constraint
at time 0, we see that u4.0/ must be equal to 0; 0; 0, and 3 for x.0/ D x1; x.0/ D
x2; x.0/ D x3, and x.0/ D x4, respectively. One can show easily that this can,
however, never be done via a linear feedback. Note that this also excludes solv-
ability of the semi-global problem by linear feedback because that still requires
that for initial conditions close to x1, we must have u.0/ close to 0, and simi-
larly for the other three initial conditions. This is not possible with arbitrary accu-
racy with a linear feedback. It remains to show that we can solve the semi-global
stabilization problem for this system. This is, however, a direct consequence of
Theorem 8.1. Note that the constructed system has no finite constraint invariant
zeros.

Finally, that we can find a linear feedback in case rate constraints are not present
is clear from the construction of a controller in the proof of Theorem 8.1.

Proof of Theorem 8.4 : It remains to prove Theorem 8.4. This is straightfor-
ward given the solution of the state feedback problem. We have a solution for the
measurement feedback case for input rate and amplitude saturation in Chap. 6.
Basically by exploiting the fact that we have a bounded input, we can find t0 > 0
small such that x.t0/ is bounded away from the boundary of V.S ; T / since we
start at time 0 in the interior of V.S ; T /. This t0 is independent of the input sig-
nal and only exploits some upper bound on the size of the input. Next, since the
system is observable, we can find for any arbitrarily small 	 and arbitrarily large

 an observer such that

kyx.t/ � x.t/k < 	e��t

for all t > t0. If we then start our design at time t0 with the same state feedback
as before but with x replaced by yx, then it is easy to check that this will yield
stability provided 	 is small enough and 
 is large enough.



8.3 Non-right invertible constraints – continuous time 431

8.3 Semi-global and global stabilization
in admissible set for non-right-invertible
constraints: continuous time

For continuous-time systems subject to right-invertible constraints, Sect. 8.2 con-
siders both semi-global and global stabilization in the admissible set. In this sec-
tion, we consider the same, however, for non-right-invertible constraints. It is
worth to recall here that non-right-invertible constraints arise inherently due to
state constraints as Remark 7.15 points out.

It is clearly evident from Sect. 8.2 that, for right-invertible constraints, if a sta-
bilization problem is solvable for a pair of constraint sets S and T satisfying As-
sumption 7.1, the same stabilization problem is solvable for any pair of constraint
sets S and T satisfying Assumption 7.1 irrespective of their shape. In general this
is not so for non-right-invertible constraints. This adds a layer of complexity and
renders the case of non-right-invertible constraints profoundly different from the
case of right-invertible constraints. Because of such complexity, we need to ex-
amine carefully the posed semi-global and global stabilization problems based on
the type of constraint sets S and T that are prescribed, that is, whether we need
stabilization results for fixed sets S and T or for all sets S and T , etc.

In this section, at first, for a given pair of constraint sets S and T that sat-
isfy Assumption 7.1, we present the necessary and sufficient conditions under
which semi-global stabilization is solvable for non-right-invertible constraints.
Such conditions depend on the shape of the given pair of constraint sets S and T .
Such a dependence gives rise to two important questions that need to be answered.

Suppose we consider strengthened versions of Problems 7.8–7.11 in which all
possible pairs of constraint sets S and T that satisfy Assumption 7.1 are consid-
ered. Then, the first question that needs to be answered is this. Given a system ˙

with non-right-invertible constraints, for such a ˙ , what are the solvability con-
ditions for such enhanced stabilization Problems 7.8–7.11 in which all possible
pairs of constraint sets S and T that satisfy Assumption 7.1 are considered instead
of just one given pair of constraint sets S and T ?

The second important question that needs to be answered is this. Given a system
˙ with non-right-invertible constraints, for such a ˙ , does there exist a pair of
constraint sets S and T that satisfy Assumption 7.1 for which semi-global and
global stabilization problems as formally formulated in Problems 7.8–7.11 are
solvable?

Answers to both of the above questions will definitely shed light on the com-
plexities involved with non-right-invertibleconstraints. Section 8.3.1 answers these
questions. In this section, we often focus only on amplitude constraints on the
constrained output as expressed by z.t/ 2 S for all t > 0.

To proceed with our development, we need to recall the SCB of the system
˙uz characterized by the quadruple .A;B; Cz;Dz/. Consider the state, input, and
constrained output transformation matrices, �s, �u, and �z, and let
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x D �s xx; u D �uxu; and z D �zxz
so that ˙uz is in its SCB as given by Theorem 3.1. That is,

ẋ W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

Txa D Aaaxa CKaxz
Txb D Abbxb CKbxz
Txc D Accxc CBc.uc CHaxa/CKcxz
Txd D Addxd C Bd .ud CGxx/CKd xz
y D Cy xx CDy xu

xz D

�
zb

z0

zd

�
D

�
Cbxb

u0

Cdxd

�
;

(8.29)

where

xx D

˙
xa

xb

xc

xd

�
; xu D

�
u0

uc

ud

�
; xz D

�
z0

zb

zd

�
;

andGxx D GaxaCGbxbCGcxcCGdxd . We define the constraint set xS D T �1
z S

so that under the SCB for ˙uz , we have xz.t/ 2 xS ; 8 t > 0. Because of its
importance, we extract a subsystem from ẋ consisting of the state variables xa

and xb:

˙1 W

8
ˆ̂̂
<

ˆ̂̂
:

Txa D Aaaxa CKabCbxb CKa2�

Txb D .Abb CKbbCb/ xb CKb2�

xz D
 
Cb

0

!
xb C

 
0

I

!
�;

(8.30)

where in the first two equations we rewrote xz in terms of Cbxb and �. One can
view � as the input and xz as the output of this subsystem. Apparently, both the
input and output are constrained. We let xab D .x0

a; x
0
b
/0 2 Rn1 and xcd D

.x0
c ; x

0
d
/0 2 Rn�n1 , where n1 D na Cnb . The admissible set for˙1 is defined by

Vab.xS/ D Rna ˚ Vb.xS/;
where

Vb.xS/ WD
(
xb 2 Rnb j 9 � such that

 
Cbxb

�

!
2 xS

)
: (8.31)

Here Vb.xS/ basically represents the admissible set of the subsystem of ˙1 ob-
tained by leaving out the zero dynamics.

For semi-global stabilization with non-right-invertible constraints, a character-
ization of the boundary of the admissible set Vb.xS/ is crucial. For this purpose,
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we define for any � 2 @Vb.xS/ (the boundary of Vb.xS/), the set of normals to this
convex set (for further properties of this set, see [119]). Let

N.�/ WD ˚

 2 Rnb j k
k D 1 and h� 0 � �; 
i 6 0; 8 � 0 2 Vb.xS/

�
; (8.32)

and

T .�/ WD
n
� 2 Rnb j� D zAb� CKb2� with

 
Cb�

�

!
2 xS

and h�; 
i 6 0; 8 
 2 N.�/
o
; (8.33)

where zAb D Abb C KbbCb . Note that N.�/ is the normalized normal vectors at
the boundary point � of Vb.xS/. By corollary 11.6.1 in [119], this set is guaranteed
to be nonempty. On the other hand, T .�/ is the collection of directions at the
boundary point � along which the admissible set Vb.xS/ remains invariant under
the dynamics of ˙1.

We have the following theorem which is concerned with the semi-global stabi-
lization Problem 7.8 via state feedback.

Theorem 8.12 Consider the continuous-time system˙ as given by (7.1) and con-
straint set S that satisfies Assumption 7.1. Suppose the system ˙uz is represented
in its SCB. Then, the semi-global stabilization problem in the admissible set via
state feedback as defined in Problem 7.8 is solvable if and only if the following
conditions hold:

(i) .A;B/ is stabilizable.

(ii) The constraint invariant zeros of the given system ˙ are all in the closed
left-half complex plane, i.e., the system˙ has at most weakly non-minimum-
phase constraints.

(iii) The constraints are either right invertible or weakly non-right invertible.2

(iv) If the constraints are weakly non-right invertible, then the set T .�/ is non-
empty for all � 2 @Vb.xS/.

We note that the constraint sets for most systems are polyhedral. In this case,
the necessary and sufficient conditions stated in Theorem 8.12 can be simplified,
that is, we only need to check a finite number of corner points for the condition (iv)
of Theorem 8.12.

2Weakly non-right-invertible constraints are defined in Definition 7.16.
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Theorem 8.13 Let the assumptions stated in Theorem 8.12 hold and moreover
assume that the constraint set S is polyhedral. Then we have:

(i) The set Vb.xS/ is also polyhedral; moreover, it has no more corner points
than the set xS .

(ii) T .�/ is nonempty for all � 2 @Vb.xS/ provided that T .�/ is nonempty for
all corner points of Vb.xS/.

We now move on to the case of measurement feedback that concerns with the
semi-global stabilization. We have the following theorem.

Theorem 8.14 Let the assumptions stated in Theorem 8.12 hold. Then, the semi-
global stabilization via measurement feedback problem is solvable if the following
conditions hold:

(i) .A;B/ is stabilizable.

(ii) The constraint invariant zeros of the given system ˙ are all in the closed
left-half complex plane, i.e., the system˙ has at most weakly non-minimum-
phase constraints.

(iii) The constraints are either right invertible or weakly non-right invertible.

(iv) If the constraints are not right invertible, then the set T .�/ is nonempty for
all � 2 @Vb.xS/.

(v) The pair .Cy ; A/ is observable.

Moreover, the first four conditions are necessary.

Remark 8.15 We observe that for semi-global stabilization, the conditions for
the case of right-invertible constraints remain necessary even for the case of
non-right-invertible constraints. However, these conditions by themselves are no
longer sufficient. In fact, as seen above, an intricate set of additional conditions
are required.

Proofs and construction of controllers

We proceed now to prove Theorems 8.12–8.14 and to construct appropriate con-
trollers. We first need some definitions. We will be dealing extensively with re-
coverable regions or sets and their computation in Chap. 9; however, at this time,
the following definition will enhance our presentation.
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Definition 8.16 Let a system ˙ as in (7.1) and a constraint set S that satisfies
Assumption 7.1 be given. Then, the recoverable region R.˙;S/ is defined to be
the set of all initial states x.0/ in the set of admissible initial conditions V.S/

(where V.S/ D V.S ;Rp/) for which there exists a control input u such that
x.t/ ! 0 as t ! 1 while z.t/ 2 S for all t > 0.

For brevity, it is beneficial to define the domain of attraction Rf .˙;S/ of a
given system ˙ with a feedback control law u D f .x; t/.

Definition 8.17 Let a system ˙ as in (7.1) and a constraint set S that satisfies
Assumption 7.1 be given. Assume u D f .x; t/ is a control law for the system ˙ .
The domain of attraction Rf .˙;S/ is defined to be the set of all x.0/ 2 Rn such
that the state trajectory of the closed-loop system satisfies x.t/ ! 0 as t ! 1
while z.t/ 2 S for all t > 0. In this case, we say that the controller f achieves
the domain of attraction Rf .˙;S/.

We present next a reduction procedure that reduces the posed stabilization of
the given system ˙ to that of a lower order system having a special structure.
Then, we establish semi-global stabilization for the reduced system.

Reduction of the stabilization problem

We first establish a relationship between the semi-global stabilization of the orig-
inal system ˙ and that of the subsystem ˙1 in (8.30). Let ˘ab be the projection
operator from Rn to Rn1 containing states xa and xb .

We have the following result.

Theorem 8.18 Let the given system˙ as in (7.1) satisfy Assumption 7.1. Suppose
the system ˙uz is represented in its SCB. Then we have:

(i) If xu D f .xx/ is a stabilizing control law for the system ẋ given in (8.29)
with the domain of attraction Rf . ẋ ; xS/, then, for any z� 2 Œ0; 1/, there is
a control law � D f1.xab/ for the system ˙1 such that

˘ab

n
z�Rf . ẋ ; xS/

o
� Rf1.˙1; xS/: (8.34)

(ii) If � D f1.xab/ is a stabilizing law for the system ˙1 with the domain of
attraction Rf1.˙1; xS/, then for any z� 2 Œ0; 1/, there is a stabilizing law
xu D f .xx/ for the system ẋ such that

z�Rf1.˙1; xS/ � ˘ab

n
Rf . ẋ ; xS/

o
: (8.35)
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For the proof of this theorem, we need to recall the following important result
from [167] which is a consequence of Theorem 9.18 which will be presented in
the next chapter.

Lemma 8.19 Let the given system ˙ in (7.1) satisfy Assumption 7.1. Assume
that there exists a state feedback f (discontinuous or dynamic) with a domain of
attraction Rf .˙;S/. Then, for any z� 2 Œ0; 1/, there exists a globally Lipschitz
static controller g such that

z�Rf .˙;S/ � Rg.˙;S/

while guaranteeing uniform exponential convergence to the origin for all initial
conditions in the set z�Rf .˙;S/.

Proof of Theorem 8.18 : The proof is carried out assuming that ˙uz is in its
SCB. Let xu D f .xx/ be a stabilizing controller for ẋ with a domain of attraction
Rf . ẋ ; xS/. If we view the following dynamics

˙F W

8
ˆ̂̂
<

ˆ̂̂
:

Txc D Accxc C Bc.uc CHaxa/CKcxz
Txd D Addxd C Bd .ud CGxx/CKd xz
� WD

 
z0

zd

!
D
 
0

Cd

!
xd C

 
I

0

!
u0

(8.36)

with input xa and xb and output � as a controller for the subsystem ˙1, it is
obvious that this controller is stabilizing and achieves a domain of attraction
Rf . ẋ ; xS/. By Lemma 8.19, there is a static controller f1 which achieves a do-
main of attraction satisfying (8.34). This proves part (i).

Conversely, let a controller for ˙1 with a domain of attraction Rf1.˙1; xS/ be
given. Then, according to Lemma 8.19, we can get a globally Lipschitz controller
for ˙1 that achieves exponential stability and achieves a domain of attraction
containing z�1Rf1.˙1; xS/ for any z�1 2 .z�; 1/. If we add a disturbance to the
system,

˙d
1 W

8
ˆ̂̂
<

ˆ̂̂
:

Txa D Aaaxa CKabCbxb CKa2.� C d/

Txb D .Abb CKbbCb/ xb CKb2.� C d/

xz D
 
Cb

0

!
xb C

 
0

I

!
�;

(8.37)

with d satisfying kd.t/k 6 Me��t for all t > 0, then the fact that the controller
achieves exponential stability guarantees that for � large enough we have, for
all initial conditions in z�2Rf1.˙1; xS/ with z�2 2 .z�; z�1/, that the constraints are
satisfied for all time and the state converges to zero as time tends to infinity.

Given a controller for ˙1 which can handle exponentially decaying distur-
bances and achieves a domain of attraction z�2Rf1.˙1; xS/, the technique used
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in Step 2 on page 419 gives an explicit design for the full system with a domain
of attraction satisfying (8.35).

Theorem 8.18 leads to the following corollary immediately.

Corollary 8.20 Let the given system ˙ in (7.1) satisfy Assumption 7.1. Suppose
the system ˙uz is represented in its SCB. Then the system ˙ is semi-globally
stabilizable if and only if the system ˙1 is semi-globally stabilizable.

In view of the above corollary, the semi-global stabilization problem of system
˙ can be studied by that of subsystem ˙1. We pursue below a further reduction
of subsystem˙1 under the condition that the constraints are at most weakly non-
minimum phase. For this purpose, we extract the following subsystem from˙1,

˙b W

8
<̂

:̂

Txb D .Abb CKbbCb/ xb CKb2�;

xz D
 
Cb

0

!
xb C

 
0

I

!
�

(8.38)

which contains only the dynamics of xb . Analogously, we can establish a connec-
tion between the semi-global stabilization of the subsystems ˙1 and ˙b . Let ˘b

be the projection operator from Rn1 to Rnb containing only state xb . We have the
following result.

Theorem 8.21 Let the given system ˙ in (7.1) satisfy Assumption 7.1 and the
system ˙uz be represented in its SCB. Assume that the constraints are non-right
invertible and at most weakly non-minimum phase. Then

(i) If � D f .xab/ is a stabilizing controller for the system ˙1 with a domain
of attraction Rf .˙1; xS/, then for any z� 2 Œ0; 1/, there is a stabilizing
controller � D fb.xb/ for the system ˙b such that

˘b

n
z�Rf .˙1; xS/

o
� Rfb .˙b; xS/: (8.39)

(ii) If � D fb.xb/ is a stabilizing controller for the system ˙b with a domain
of attraction Rfb .˙b ; xS/, then for any z� 2 Œ0; 1/ and any compact set
Ka � Rna , there is a stabilizing controller � D f .xab/ for the system ˙1

such that
Ka � z�Rfb .˙b ; xS/ � Rf .˙1; xS/: (8.40)

Proof : The proof of part (i) is similar to that of part (i) of Theorem 8.18. Given
a stabilizing controller � D f .xab/ for ˙1 which achieves a domain of attraction
Rf .˙1; xS/, the following dynamics

˙a W
n

Txa D Aaaxa CKabCbxb CKa2�; (8.41)
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where � D f .xab/, can be viewed as a dynamic controller for ˙b . This
controller is stabilizing and achieves a domain of attraction Rf .˙1; xS/. We can
find a static controller to achieve a domain of attraction satisfying (8.39) accord-
ing to Lemma 8.19.

Conversely, given a controller � D fb.xb/ for ˙b which achieves a domain of
attraction Rfb .˙b; xS/, according to Lemma 8.19, we can get a globally Lipschitz
controller � D xfb.xb/ for˙b that achieves exponential stability with a domain of
attraction containing z�Rfb .˙b; xS/. Therefore, we have

kxb.t/k 6 Me�"t kxb.0/k : (8.42)

Next, let P0 be the semi-stabilizing solution of the algebraic Riccati equation,

A0
0P0 C P0A0 � P0B0B

0
0P0 C C 0

0C0 D 0;

where

A0 D
 
Aaa KabCb

0 zAb

!
; B0 D

 
Ka2

Kb2

!
; C0 D

�
0 Cb

�
:

It is clear to see that

P0

 
xa

0

!
D 0 (8.43)

for all xa 2 Rna . Let c>0 be such that for all � 2 V0.c/ WD f� 2 Rn1 j � 0P0�6 cg,
 

C0

�B 0
0P0

!
� 2 xS=3:

Equations (8.42) and (8.43) together imply that with the feedback � D xfb.xb/

there exists a T > 0 such that for all initial conditions in the set z�Rf1.˙1; xS/ we
have  

xa.T /

xb.T /

!
2 V0.c/: (8.44)

Furthermore, for all initial conditions
 
xa.0/

xb.0/

!
2 Ka � z�Rfb .˙b; xS/;

there exists a compact set M � Ka such that xa.T / 2 M.
Define P" as the stabilizing solution of the algebraic Riccati equation,

A0
0P" C P"A0 � P"B0B

0
0P" C C 0

0C0 C "I D 0:

We have P" ! P0 as " ! 0. Let V".c/ WD f� 2 Rn1 j � 0P"� 6 cg. Then (8.44)
and xa.T / 2 M with M compact implies that there exists an " > 0 such that the
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state is in the set 2V".c/ at time T for any initial condition in Ka � z�Rfb .˙b ; xS/.
Moreover, for " small enough, it holds that

 
C0

�B 0
0P"

!
� 2 xS

for any initial condition � 2 2V".c/. Let � D �B 0
0P"� be the feedback for � 2

2V".c/, which is an asymptotically stabilizing law for the system ˙1. Moreover,
this feedback makes the set 2V".c/ invariant thus, the set 2V".c/ is in the domain
of attraction.

Consequently, we have constructed a composite controller,

� D f .xab/ WD
( xf .xb/; xab 62 2V".c/;

�B 0
0P"xab ; xab 2 2V".c/;

with its domain of attraction satisfying (8.40).

The following corollaries are direct consequences of Theorems 8.18 and 8.21.

Corollary 8.22 Let the given system ˙ in (7.1) satisfy Assumption 7.1. Suppose
the system ˙uz is represented in its SCB. Denote by x̆

b the projection from xx
to xb . Assume that the constraints are at most weakly non-minimum phase and
non-right invertible. Then

(i) If � D f .xx/ is a stabilizing controller for the system ẋ with a domain of at-
traction Rf . ẋ ; xS/, then for any z� 2 Œ0; 1/, there is a stabilizing controller
� D fb.xb/ for the system ˙b such that

x̆
b

n
z�Rf . ẋ; xS/

o
� Rfb .˙b; xS/: (8.45)

(ii) If � D fb.xb/ is a stabilizing controller for the system ˙b with a domain
of attraction Rfb .˙b ; xS/, then for any z� 2 Œ0; 1/, there is a stabilizing
controller � D f .xx/ for the system ẋ such that

z�Rfb .˙b; xS/ � x̆
b

n
Rf . ẋ ; xS/

o
: (8.46)

Corollary 8.23 Let the given system ˙ in (7.1) satisfy Assumption 7.1. Suppose
the system ˙uz is represented in its SCB. Then the system ˙ is semi-globally
stabilizable if and only if the system ˙b is semi-globally stabilizable.

In summary, if the constraints are at most weakly non-minimum phase and
non-right invertible, whether or not the semi-global stabilization of ˙ is possible
is determined by the subsystem˙b .
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Semi-global stabilization of ˙b

We proceed now to semi-globally stabilize ˙b . We first establish an auxiliary
lemma.

Lemma 8.24 Consider a strictly proper linear time-invariant system
(

Tx D Ax C Bu

z D Cx

which is left invertible with no invariant zeros in C� [ C0 and subject to the
constraint  

z

u

!
2 B

for all t > 0 with B compact, convex, and containing a neighborhood of 0. Then
the recoverable set for this system is bounded.

Proof : If all the eigenvalues of A are in the open right-half plane, then due to
the fact that the input is bounded, the recoverable set is bounded. Otherwise, in a
suitable basis, the system can be written as

Txx D
 
Au 0

0 As

! 
xu

xs

!
C
 
Bu

Bs

!
u

z D
�
Cu Cs

� xu

xs

!
;

where the eigenvalues of Au are antistable and the eigenvalues of As are in the
closed left-half plane. Since the system is assumed left invertible, all unobservable
eigenvalues are invariant zeros. Since there are no stable invariant zeros, we find
that .Cs; As/ is observable. Obviously, xu must be bounded by the same reason
stated at the beginning. On the other hand, xs has to be bounded as well. This
follows from

z.t/ D Cuxu.t/C Cse
As txs0 C

tZ

0

Cse
As.t��/Bsu.�/d�:

If xs0 is unbounded, then there exists a xs0 such that the above equation fails to
hold because all other terms z.t/, xu.t/ and the integral are bounded and .Cs; As/

is observable.

It follows from Lemma 8.24 that the recoverable set of ˙b is bounded be-
cause ˙b is left invertible and has no invariant zeros in the closed left-half plane.
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A necessary and sufficient condition for semi-global stabilization is that the clo-
sure of the recoverable set is equal to the closure of the admissible set. Hence, a
necessary condition for semi-global stabilization of ˙b is that the admissible set
is bounded. This requires that Cb be injective since all the components of xb have
to be constrained. We obtain the following lemma.

Lemma 8.25 Let the given system˙ in (7.1) satisfy Assumption 7.1. Suppose the
system ˙uz is represented in its SCB. If the system ˙b is semi-globally stabiliz-
able, then Cb is injective, i.e., (7.6) holds.

The next lemma gives a necessary and sufficient condition for the semi-global
stabilization of the system ˙b .

Lemma 8.26 Semi-global stabilization for the system ˙b given by (8.38) is pos-
sible only if Cb is injective and for all � 2 @Vb.xS/, the set T .�/ defined in (8.33)
is nonempty.

On the other hand, semi-global stabilization for the system ˙b given by (8.38)
is possible if additionally xS is polytopic and defined by

xS D f xb j Lxb 6 c componentwise g;
where L has rows Li and c has elements such that if for any row Li we have
LiKb2 D 0, then we have

Li
zAbxb < 0 for all xb 2 Vb.xS/ with Lixb D ci

Remark 8.27 The fact that T .�/ is nonempty on the boundary of Vb.xS/ implies
that, if for any row Li we have LiKb2 D 0, then we have

Li
zAbxb 6 0 for all xb 2 Vb.xS/ with Lixb D ci :

In other words, the sufficient conditions are only slightly stronger since they only
replace an inequality by a strict inequality for those rows satisfying the specific
property that LiKb2 D 0.

Proof : The proof of this lemma uses the set-valued mapping techniques which
will be presented in Chap. 9.

(Necessity) If semi-global stabilization is possible, the closure of the admissible
set is equal to the closure of the recoverable set. By Lemma 9.21, for any initial
condition in @Vb.xS/, there exists an input � such that the trajectory stays in the
closure of the admissible set. Hence T1.�/ is nonempty.
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(Sufficiency) Let˙b;� denote the system˙b defined in (8.38) with zAb replaced
by zAb C�I where � > 0. LetN�;�.�/ and T�;�.�/ be the sets defined asN.�/ and
T .�/ in (8.32) and (8.33) but with zAb replaced by zAb C �I and Vb.xS/ replaced
by the recoverable set �Vb.xS/.

Due to the extra condition, it should be noted that not only T0;�.�/ is nonempty
for all � 2 �@Vb.xS/ when � < 1 but also that we can actually choose � such
that the derivative actually points inside Vb.�xS/ (i.e., we have h�; 
i < 0 for
all 
 2 N.�/ where � as defined in the definition of T .�/). This implies that
T0;�.�/ is lower semicontinuous and also that the set-valued mapping T�;�.�/ is
also nonempty for all � 2 �@Vb.xS/ provided � is sufficiently small. Then, by
Theorem 9.33, there exists a continuous mapping � D f .xb/ defined on �@Vb.xS/
such that for all xb 2 z�@Vb.xS/, we have Txb 2 Nz�.xb/ (using zAb C �I instead of
zAb). Moreover, since Txb can be actually chosen to point inside and not just along

the boundary of �Vb.xS/, we can modify this feedback slightly without affecting
the property that Txb 2 Nz�.xb/ to ensure that the feedback becomes Lipschitz con-
tinuous. This feedback can be extended to the whole state space by imposing that
the feedback be homogeneous (which uniquely determines the feedback). Then,
by Theorem 9.31, we conclude that this feedback makes the set �Vb.xS/ invariant
using zAb C�I instead of zAb . Then it is easily verified that for the original system
we have �Vb.xS/ invariant but additionally the state converging to zero exponen-
tially for all initial conditions inside �Vb.xS/. Since we can choose � arbitrarily
close to 1, we note that we can in this way achieve semi-global stabilization in the
admissible set.

Proof of Theorem 8.12 : This theorem is a completion of Theorem 8.1 where the
right-invertible constraints are considered. If the constraints are weakly non-right
invertible, the condition (iv) follows from Lemma 8.26.

Proof of Theorem 8.13 : Part (i) can be easily checked from the definition of the
set Vb.xS/ after noting that a linear transformation does not increase the number
of corner points. Regarding part (ii), we note that the crucial aspect is that if T .�1/
and T .�2/ are both nonempty, then T .
�1 C .1 � 
/�2/ is also nonempty for any

 2 Œ0; 1�. Since a polyhedral set is the convex hull of its corner points, the result
thus follows.

In order to prove Theorem 8.14, we need two lemmas. Lemma 4.62 has
already been presented earlier in the book. This lemma is the first preparatory
step toward an observer design. However, if we adopt a fast observer to make an
extremely accurate estimation of the state, there is an unavoidable annoying phe-
nomenon called peaking associated with high-gain observer design. The peaking
phenomenon must be taken care of seriously, for we are facing a control system
with constraints. Fortunately, we have another lemma which provides us a mech-
anism to avoid the negative effect of peaking. As the second step, we recall the
lemma here because it is instrumental to the high-gain observer design.
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Lemma 8.28 Consider the system

T
 D .A� LC/
 (8.47)

where A 2 Rn�n and .C;A/ is observable. Then, for any N > 0, " > 0, r > 0,
and � > 0, there exists a matrix L such that A� LC C rI is Hurwitz stable and

k
.t/k 6 "e�rt (8.48)

for all t > � and for all initial conditions 
.0/ 2 Rn satisfying k
.0/k 6 N .

Remark 8.29 Note that the high-gain observers designed in Chap. 4 based on
either the direct method or on Riccati equations will satisfy the above property
for ` sufficiently large.

Proof : This lemma follows from the results in Izmaı̆lov [53, 54] and Theorem
8.2 in Sussmann and Kokotovic [172]. Since .C;A/ is observable, for any � > r ,
there exists a matrix L such that A � LC C 2�I is Hurwitz stable. Let 	 be the
largest observability index of the pair .C;A/. Then according to Theorem 8.2 in
[172], the state 
 has a peaking exponent 	 � 1. In other words, there exists a
constant ˛ > 0 independent of � such that

k
.t/k 6 ˛k
.0/k.2�/	�1e�2�t

for all t > 0. For any given " > 0, � > 0, and r > 0, we choose � > r large
enough so that ˛k
.0/k.2�/	�1e��t 6 " for t > � . Then this choice of L which
guarantees Hurwitz stability of A�LC C 2�I leads to 
 satisfying (8.48) for all
t > � and for any initial condition 
.0/ 2 Rn satisfying k
.0/k 6 N .

So far, we have prepared enough tools for the observer design. As the last step
in the observer design, we construct the observer-based controller in the proof of
Theorem 8.14.

Proof of Theorem 8.14 : The necessity of the first four conditions is a conse-
quence of the state feedback design. The sufficiency of the conditions are proven
by an explicit design as presented below.

We need a high-gain observer to estimate the state. The observer takes the stan-
dard form

Tyx D Ayx C BuC L.y � Cy yx/:
By the assumption that .Cy; A/ is observable, we can choose a gain matrixL such
that the eigenvalues of the matrix Aobs WD A�LCy can be assigned anywhere in
the left-half complex plane. The estimation error e WD yx � x satisfies

Te D Aobse: (8.49)



444 8 Semi-global and global stabilization in admissible set

Our goal is to devise a measurement feedback such that the set X � V is
contained in the domain of attraction; meanwhile, for all initial states in this set,
the constraints are satisfied. Due to the possible peaking of the state estimate
caused by the high-gain observer, the state estimate during the short period at the
beginning of time is not useful. To insure that the constraints are not violated,
we need to borrow an idea from Esfandiari and Khalil [35], and saturate the con-
trol so that the peaking signal does not enter the plant. The appropriate level of
saturation is to be specified below. In this way the control law always generates
bounded control signal, regardless of the peaking. Then, the design objective is to
guarantee that the control law is functioning as closely as the state feedback law
after the peaking is over. But during the short period of peaking, the state starting
from X may drift to a larger set, say bX, because we are not controlling the plant,
although the input is kept bounded. For this reason, we need two components in
our design. One is to design from the beginning a state feedback u D Fx for a
larger set of initial condition, say set bX which satisfies X � int bX, and make sure
that bX is contained in the domain of attraction and for all initial conditions in the
set bX the output z.t/ 2 �S for some � 2 .0; 1/. One can use the design technique
provided in [124] for this task. The other component is a saturation element, the
level of which is specified below.

Consider the following system:

Tx D .AC BF /x CBFe;

where e is the estimation error. It follows from Lemma 4.62 that if e.t/ satisfies

ke.t/k 6 "e�rt (8.50)

for certain " 2 .0; 1/, r > 0 and for all t > 0, then for all initial conditions in the
set bX, the constraints on z are satisfied; meanwhile, the state trajectory remains
in a compact set ˝.bX/ � int A.S/ and the state converges to zero. Hence, there
exists an M1 > 0 such that kFxk1 6 M1 for all x.0/ 2 bX and for all e
satisfying (8.50), where

M1 D sup
x2˝.bX/

kFxk:

Define M2 D "kF k. Let � > 0 be such that

Tx D Ax CBu

satisfies x.t/ 2 bX for all t 2 Œ0; �� for all u satisfying ku.t/k 6 M1 CM2 and for
all x.0/ 2 X � int bX. Then, we can choose the observer gain matrix L so that
the error-bound (8.50) holds for t > � , where � , ", and r are as specified above.
Consequently, the combination of the observer and the state feedback

u D satM1CM2
.F yx/ ;
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where satM .�/ is a standard saturation function with saturation level M , has the
following properties: For any given initial state x.0/ 2 X, we have x.t/ 2 bX for
all t 2 Œ0; ��, and for t > � , we have

u.t/ D satM1CM2
.F yx.t// D F yx.t/ D Fx.t/C Fe.t/:

Then stabilization follows from Lemma 8.28.

8.3.1 Exploration of complexity of non-right-invertible
constraints

In this subsection, we proceed to answer the questions we posed earlier in order
to shed some light on the complexities inherent in dealing with systems having
non-right-invertible constraints. The two questions are as follows:

(i) Given a system ˙ with non-right-invertible constraints, for such a˙ , what
are the solvability conditions for the Problems 7.8–7.11 when they are en-
hanced in the sense that they consider all possible pairs of constraint sets
S and T that satisfy Assumption 7.1 instead of just one given pair of con-
straint sets S and T ?

(ii) Given a system ˙ with non-right-invertible constraints, for such a ˙ , does
there exist a pair of constraint sets S and T that satisfy Assumption 7.1
for which semi-global and global stabilization problems as formally for-
mulated in Problems 7.8–7.11 are solvable?

At first, we proceed to answer the first question. As in the previous section, we
need to rewrite ˙ in a particular form. In fact, the SCB given in (8.29) can be
rewritten by using a preliminary state feedback in the form

 
Txab

Txcd

!
D
 
A11 0

A21 A22

! 
xab

xcd

!
C
 
0

B2

!
zuC

 
K1

K2

!
z;

z D
�
Cz;1 Cz;2

� xab

xcd

!
C zDz zu;

(8.51)

where xab consists of xa and xb while xcd consists of xc and xd , respectively.
Also note that in the above,

zu D
 
uc CHaxa

ud CGxx

!
:

Also, we can decompose the constrained output xz as

xz D

�
zb

zd

z0

�
D

�
Cz;12

0

0

�
xab C

�
0

xC1

0

�
xcd C

�
0

0

D1

�
u0: (8.52)
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Note that choosing a basis in the constrained output space affects the constraint
set S since we moved from output z to output xz D �zz, and therefore, we obtain
new constraint set zS .

Consider (8.51) together with the xz as in (8.52). By decomposing xab into xa

and xb and only considering zb as output, we obtain the following subsystem:
 

Txa

Txb

!
D
 zA1

1
zA2

1

0 zA3
1

! 
zx1

1

zx2
1

!
C
 zB1

1

zB2
1

!
xz;

zb D
�
0 zC 2

1

� zx1
1

zx2
1

!
;

(8.53)

where xa represent the zero dynamics. Using this decomposition explicitly, we get
 Tzx1

1Tzx2
1

!
D
 zA1

1
zA2

1

0 zA3
1

! 
xa

xb

!

C
 zB11

1
zB12

1
zB13

1

zB21
1

zB22
1

zB23
1

!�zb

zd

z0

�

zb D
�
0 zC 2

1

� xa

xb

!
:

We can eliminate the zb from the state equation by substituting the output equa-
tion, and we obtain the following system:

 
Txa

Txb

!
D
 zA1

1
zA2

1 C zB11
1

zC 2
1

0 zA3
1 C zB21

1
zC 2

1

! 
xa

xb

!

C
 zB12

1
zB13

1

zB22
1

zB23
1

! 
zd

z0

!
;

zb D
�
0 zC 2

1

� xa

xb

!
;

which we can write down compactly as

ẋ
1 W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

 
Txa

Txb

!
D
 zA1

1
xA2

1

0 xA3
1

! 
xa

xb

!
C
 xB1

1

xB2
1

!
xv1

zb D
�
0 zC 2

1

� zx1
1

zx2
1

! (8.54)

using the obvious definitions. Note that if we impose amplitude constraints on
xv1 and zb , then we can always translate these back to constraints on the original
output z provided the constraint set xS for xv1 decomposes as xS D xS1 � xS2 com-
patible with the decomposition of xv1 into zd and z0. A similar statement can be
made with the rate constraint set xT .

We have the following result.
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Theorem 8.30 Consider the system ˙ given by (7.1) with .A;B/ stabilizable.
Then the following two statements are equivalent:

(i) Semi-global stabilization is possible for all constraint sets S and T that
satisfy Assumption 7.1.

(ii) The system ˙ has at most weakly non-minimum-phase constraint invariant
zeros. Moreover, if we construct ẋ

1 of the form (8.54), then we have xA3
1 D

˛I with ˛ 6 0 and zC 2
1 injective.

Proof : In order to show that item (i) implies item (ii), we first use the necessary
conditions of the previous subsection, to obtain that the system ˙ has at most
weakly non-minimum-phase constraint invariant zeros. Secondly, if we construct
the system ẋ

1 of the form (8.54) according to arguments given before, then it is
obvious from our earlier results that this system must be semi-globally stabiliz-
able for all possible amplitude and rate constraint sets for the input xv1 and the
output zb .

The necessary conditions of Theorem 8.32 (which we will present later) yield
that we must have

ker
�
0 zC 2

1

�
� ker

�
0 zC 2

1

� xA1
1

xA2
1

0 xA3
1

!
;

which is equivalent to ker zC 2
1 � ker zC 2

1
zA3

1. Therefore, ker zC 2
1 is part of the zero

dynamics and the partitioning of our system guarantees that zx2
1 does not contain

zero dynamics. Hence, we obtain that zC 2
1 must be injective.

Now, we can consider any initial condition for xb.0/. If xA3
1xb.0/ D 0, obvi-

ously xb.0/ is an eigenvector of xA3
1.

Otherwise, for some time interval .0; T / and any t 2 .0; T /, we have

xb.t/ D xb.0/C t
� xA3

1 zx2
1.�/C xB2

1 xv1.�/
�

for some � 2 .0; t/. Choosing our amplitude constraint set such that xb.t/ is
constrained to be confined to a very small neighborhood of the line between 0
and xb.0/, we can force that xb.t/ � .1 � �/xb.0/ is arbitrarily small for some
� 2 Œ0; 1�. By also choosing the constraint set for xv1.t/ to be very small, we can
force that

xA3
1 zx2

1.�/� 
xb.0/

is arbitrarily small for 
 D ��=t 6 0. By continuity of xb.�/, we find that we
must be able to make

xA3
1xb.0/� 
xb.0/ (8.55)

arbitrarily small for some choice of 
 6 0. But since the expression in (8.55)
is fixed (and independent of the input), we must have that it is equal to zero for
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some 
. In other words, we have xA3
1xb.0/ D 
xb.0/, i.e., xb.0/ is an eigenvector

of xA3
1. Since any vector we choose as initial condition is an eigenvector of xA3

1

with a real eigenvalue less than or equal to zero, we must have xA3
1 D ˛I for some

˛ 6 0.
Conversely, we need to show that item (ii) implies item (i). We again construct

ẋ
1 of the form (8.54) according to arguments given before. From the controller

design presented in the previous subsection, it should be obvious that we only
need to show that we can achieve semi-global stabilization of ẋ

1 for any ampli-
tude and rate constraint sets for the input xv1 and the output zz1. If ˛ < 0, then it is
not difficult to see that

kzbk1 6 kzz1.0/k C 1

˛
k zC 2

1 kk xB2
1 xv1k1;

and hence, we satisfy the constraints on zz1 if we make sure that the amplitude of
xv1 is small enough. Therefore, we basically only have input constraints and then
we can obviously always design a suitable controller. The situation for ˛ D 0 is a
bit more subtle. We first apply a preliminary feedback

xv1 D �". xB2
1 /

Rxb C yv1;

where . xB2
1 /

R denotes a right inverse of xB2
1 which must exist because of stabiliz-

ability of . xA3
1;

xB2
1 / with xA3

1 D 0. It is then easy to see that if we constrain yv1

to a small enough, neighborhood and choose " small enough then we will auto-
matically satisfy the constraints. But this preliminary feedback basically changes
the system from xA3

1 D 0 to a new system with xA3
1 D �"I . Hence, we can use

our earlier arguments for the case ˛ < 0 to derive the existence of a stabilizing
feedback satisfying our constraints on yv1. It is easy to see that the above technique
can also be used to satisfy possible rate constraints.

For global constrained stabilization, we can use similar arguments to obtain the
following result.

Theorem 8.31 Consider the system ˙ given by (7.1) with .A;B/ stabilizable.
Then the following two statements are equivalent:

(i) Global stabilization is possible for all constraint sets S and T D Rn that
satisfy Assumption 7.1.

(ii) The system ˙ has at most weakly non-minimum-phase constraint invariant
zeros and has no infinite zeros of order greater than 1. Moreover, if we
construct ẋ

1 of the form (8.54), then we have xA3
1 D ˛I with ˛ 6 0 and zC 2

1

injective.

We proceed next to answer the second question posed in the beginning of this
subsection. To start with, we recall the subsystem ż

1 as formulated in (8.54), and
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the way it was formulated starting with the SCB representation of˙ . We obtained
the following system for i D 1 and zz1 D zb :

ż
i W
( Tzxi D zAi zxi C zBi zvi

zzi D zCi zxi :
(8.56)

Note that in constructing ż
1 we deleted the dynamics associated to the infinite

zeros and the non-left invertibility and concentrate on the non-right-invertible
output. Consider ż

1 with associated amplitude and rate constraints on zz1. We
can now bring ż

1 into SCB and again delete (as before) the dynamics associated
with the infinite zeros and the non-left invertibility and concentrate on the non-
right-invertible output. In this way, we obtain a system ż

2 of the form (8.56) with
i D 2. By bringing this system in to SCB and again deleting the dynamics associ-
ated with the infinite zeros and the non-left invertibility and concentrating on the
non-right-invertible output, we obtain ż

3. In this way, we can recursively define
a sequence of systems of the form (8.56). Note that this sequence of systems is
closely related to the chain of systems as studied in [129].

At each step of developing ż
i , we make sure that the matrix zBi has full column

rank and the matrix zCi has full row rank to proceed with the next step of devel-
oping ż

iC1. This can of course be done without loss of generality. This chain
of construction ends if we obtain a subsystem ż

i which is right invertible in the
sense that ż

iC1 satisfies zCiC1 D 0. Another possibility for termination is that af-
ter some steps we get zBi D 0 which obviously implies that we can end the chain.
We know that (it can be shown easily) if the pair .A;B/ of the given system ˙ is
stabilizable, then all the systems ż

i as defined in (8.56) are stabilizable.
We have the following result for the case of amplitude constraints:

Theorem 8.32 Consider the plant˙ as given by (7.1) with constraint sets S and
T D Rp satisfying Assumption 7.1. Let the chain of systems ż

i (i D 1; : : : s) be
as described above. Then the semi-global stabilization problem as formulated in
Problem 7.8 is solvable only if the following conditions are satisfied:

(i) .A;B/ is stabilizable.

(ii) The constraints are at most weakly non-minimum phase.

(iii) All the systems ż
i (i D 1; : : : s) have at most weakly non-minimum-phase

constraints.

(iv) The systems ż
i (i D 1; : : : s) with realization (8.56) satisfy,

ker zCi � ker zCi
zAi : (8.57)

Moreover, the global stabilization problem as formulated in Problem 7.9 is solv-
able only if the above conditions (i)–(iv) and the following condition are satisfied:
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(v) The given system ˙ with input u and output z, characterized by (A, B , Cz,
Dz), has no constraint infinite zeros of order greater than one.

Proof : The necessity of conditions (i) and (ii) is obvious. The condition (v) is
also a direct consequence of earlier arguments.

In order to show item (iii), consider one of the systems ż
i . This system has

input constraints and output constraints in the sense that zvi and zzi must both be
bounded, i.e., zvi 2 Vi and zzi 2 Si for some bounded sets Vi and Si . Based on
earlier theorems, the necessity of condition (iii) is then obvious.

To show the necessity of condition (iv), we proceed as follows. Consider the
system ż

i whose input zvi and output zzi are bounded. Assume zzi is constrained
to be in the set Si . We will prove this implication by contradiction. Assume that
there exists a vector Mx such that zCi Mx D 0 but zCi

zAi Mx ¤ 0. For any " > 0, there
exists a vector yx such that zCi yx is in the interior of Si but zCi yx C " zCi

zAi Mx 62 Si .
Consider for any scalar 
 the initial condition xi .0/ D yxC
 Mx. It is easily verified
that this initial condition is admissible. We have

Tz1.0/ D zCi
zAi yx C zCi

zBi yui .0/C 
 zCi
zAi Mx: (8.58)

For large enough 
, the last term in this derivative will dominate the first two.
Recall in that respect that yx.0/ is fixed and we can choose yui but it is constrained
to be in a fixed bounded set. However, if we move in the direction zCi

zAi Mx, then
we will be outside the set Si very quickly when we choose " sufficiently small
combined with the fact that

z1.0/C " zCi
zAi Mx D zCi yx C " zCi

zAi Mx 62 Si :

Note that, since the complement of Si is open, the small perturbation caused by
the first two terms in the derivative of Tz1.0/ in (8.58) cannot avoid that we will
leave Si since they only cause a minor perturbation compared to the dominant
third term. The initial condition xi .0/ is in the interior of the admissible set of
initial conditions for the system ż

i , but we cannot avoid constraint violation with
this initial condition. This yields a contradiction to the claim that this system was
semi-globally stabilizable. Therefore, such a Mx for which zCi Mx D 0 but zCi

zAi Mx ¤ 0

does not exist, and this yields the fourth condition.

Remark 8.33 The condition (8.57) immediately implies that the order of infinite
zeros of each system ż

i , i D 1; : : : s, is less than or equal to one.

The following example indicates that the conditions given in Theorem 8.32
are just necessary conditions and are not sufficient to solve the constrained sta-
bilization problems. Also, this example shows that the solvability conditions for
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global and semi-global stabilization in the case of non-right-invertible constraints
(unlike the case of right-invertible constraints) in general depend on the particular
choice of constraint sets S and T .

Example 8.34 Consider the following system taken from [61]:

Tx1 D x2;

Tx2 D �a1x1 � a2x2 � b1u;

z D
 
u

x;

!

where z is required to be constrained in hypercubes and

a1 D 3575; a2 D 333; b1 D 305555:

Note that the transfer matrix from u to z in this example is non-right invertible.
We obtain ż

1:

ż
1 W

8
<̂

:̂

Tzx1 D
 
0 1

�a1 �a2

!
zx1 C

 
0 0

0 �b1

!
zv1

zz1 D zx1

and

ż
2 W

( Tzx2 D
�
0 1

�
zv2

zz2 D zx2:

Note that to construct ż
2 from ż

1, we have removed the redundancy (a col-
umn equal to 0) in zB1. This example satisfies the necessary conditions in Theo-
rem 8.32. On the other hand, suppose we require that

u 2 Œc1; d1�; x1 2 Œc2; d2�; x2 2 Œc3; d3�; (8.59)

where 0 2 .ci ; di /. We have 0 as an interior point of the constraints set, and hence,
we have c2 < 0 and c3 < 0. Therefore, if

x1.0/ D c2; x2.0/ D c3;

we see that x1 will leave Œc2; d2�, which shows that global constrained stabiliza-
tion is not possible. Moreover, since Tx2 is bounded, an initial condition very close
to the boundary will still violate the constraint conditions, and hence, semi-global
stabilization is not possible either. Hence, for the given constraint sets (8.59),
we cannot achieve semi-global or global constrained stabilization. However, it is
trivial to show that there exist other constraint sets for x (for instance, ellipsoidal
sets) such that we can achieve semi-global or global constrained stabilization.
This implies that the solvability conditions depend on the particular choice of the
constraint sets unlike in the case of right-invertible constraints.
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8.4 Semi-global stabilization in admissible set
for right-invertible constraints: discrete time

In Sect. 8.2, we considered continuous-time systems with right-invertible con-
straints and developed several results regarding semi-global stabilization in ad-
missible set as formulated in Problem 7.8 for state feedback in Problem 7.10 for
measurement feedback, and global stabilization in admissible set as formulated in
Problem 7.9 for state feedback in Problem 7.11 for measurement feedback. In this
section, we proceed to develop similar results, however, for discrete-time systems.
Although our development here parallels the one in Sect. 8.2, as will be evident
throughout this section, there exist several fundamental differences in every re-
spect, that is, in the solvability conditions, in designing the controllers, as well as
in constructing the proofs.

At this time, it is worth pointing out that, in contrast to the continuous-time
case, for the discrete-time systems being considered in this section, the solvability
conditions for the semi-global and global stabilization in the admissible set are the
same. This is true for both state and measurement feedback.

We have the following theorem which is concerned with both semi-global and
global stabilization Problems 7.8 and 7.9 via state feedback.

Theorem 8.35 Consider the discrete-time system ˙ as given by (7.1) and the
constraint sets S and T that satisfy Assumption 7.1. Assume that the set S is
bounded. Also, assume that the constraints are right invertible. Then, the semi-
global stabilization problem in the admissible set as defined in Problem 7.8 or the
global stabilization problem in the admissible set as defined in Problem 7.9 is
solvable if and only if the following conditions hold:

(i) .A;B/ is stabilizable.

(ii) The constraint invariant zeros of the given system ˙ are all in the closed
unit disc, i.e., the system ˙ has at most weakly non-minimum-phase con-
straints.

(iii) The constraints are of type one, i.e., the given system ˙ has no constraint
infinite zeros of order greater than one.

We point out that the controllers that solve both semi-global and global stabi-
lization problems, in general, need to be nonlinear. However, in the semi-global
case, the controller can be chosen either as a time-invariant nonlinear controller
or as a time-varying linear controller as will be evident shortly when we present
proofs.

The following remark points out that the specific features of the given constraint
sets S and T do not have any role in the solvability of semi-global and global
stabilization in the admissible set for right-invertible constraints.
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Remark 8.36 This remark is analogous to Remark 8.6 that concerns with the
continuous-time case. We emphasize here a fundamental aspect of solvability con-
ditions as given by Theorem 8.35, namely, that they are independent of any spe-
cific features of the given constraint sets. That is, for the case of a right-invertible
system ˙ , if the semi-global and global stabilization problems in the admissible
set via state feedback are solvable for some given constraint sets S and T satisfy-
ing Assumption 7.1, then these problems are also solvable for all constraint sets
satisfying Assumption 7.1.

We now move on to the case of measurement feedback. We have the following
theorem.

Theorem 8.37 Consider the discrete-time system ˙ as given by (7.1) and the
constraint sets S and T that satisfy Assumption 7.1. Assume that the set S is
bounded. Also, assume that the constraints are right invertible. Then, the semi-
global stabilization problem in the admissible set via measurement feedback as
defined in Problem 7.10 or global stabilization problem in the admissible set via
measurement feedback as defined in Problem 7.11 is solvable if the following
conditions hold:

(i) .A;B/ is stabilizable.

(ii) The constraint invariant zeros of the given system ˙ are all in the closed
unit disc, i.e., the system ˙ has at most weakly non-minimum-phase con-
straints.

(iii) The constraints are of type one, i.e., the given system ˙ has no constraint
infinite zeros of order greater than one.

(iv) The pair .Cy ; A/ is observable.

(v) kerCz � kerCzA.

(vi) ker
�
Cy Dy

�
� ker

�
Cz Dz

�
.

Moreover, conditions (i)–(iii) are necessary for the solvability of the semi-global
stabilization problem in the admissible set via measurement feedback.

The following remark addresses the need for condition (iv).

Remark 8.38 This remark is analogous to Remark 8.5 that concerns with the
continuous-time case. Some discussion regarding the condition (iv) in Theorem
8.37 is in order. Clearly, condition (iv) is sufficient but not necessary. Also, obvi-
ously, the detectability of the pair .Cy ; A/ is necessary to solve the posed problem.
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On the other hand, if the pair .Cy ; A/ is not observable, we can have a problem
with unobservable dynamics which we cannot observe but which might result in
violation of our constraints. Relaxing the condition (iv), and developing a set of
necessary and sufficient conditions are not very difficult but highly technical and
not that interesting.

The following remark addresses the conditions (v) and (vi) of Theorem 8.37.

Remark 8.39 Note that condition (vi) states that the output is part of the mea-
surements. The following example shows that conditions (v) and (vi) in Theo-
rem 8.37 are natural, and hence are needed for discrete-time systems. Consider
the system

x1.k C 1/ D x1.k/C x2.k/;

x2.k C 1/ D u.k/C x1.k/;

y.k/ D x1.k/C 2x2.k/;

z.k/ D x2.k/:

It is easy to see that all the conditions except (v) and (vi) in the theorem are
satisfied. Suppose we have a constraint z.k/ 2 Œ�1; 1� for all k > 0. There exists
a deadbeat observer which gives an exact state estimate for x1.k/ and x2.k/ for
k > 1.

The set of admissible initial conditions is characterized by the set of all initial
conditions satisfying jx2.0/j 6 1. Using this information together with the first
measurement y.0/, we can only conclude that

x1.0/ 2 Œy1.0/� 2; y1.0/C 2�: (8.60)

But then, there is no choice for u.0/ to ensure that

x2.1/ D Œx1.0/C u.0/� 2 Œ�1; 1�
for all possible values of x1.0/ satisfying (8.60), i.e., there is no guarantee that at
time k D 1, the constraint is not violated. Hence, the semi-global stabilization via
measurement feedback is in general not possible without conditions (v) and (vi).

The following remark addresses the effect of the constraint sets S and T on the
solvability of semi-global or stabilization problem via measurement feedback.

Remark 8.40 The sufficient conditions for the solvability of semi-global as well
as global stabilization via measurement feedback as given by Theorem 8.37 are
independent of any specific features of the given constraint sets. But, in general,
in the measurement feedback case, the solvability of the semi-global stabiliza-
tion problem or global stabilization problem is dependent on the shape of the
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constraint sets even for the case of right-invertible constraints being considered in
this section. But, this is not in contradiction with Theorem 8.37 since we only ob-
tained sufficient conditions for solvability there. For example, consider the system,

x1.k C 1/ D u1.k/;

x2.k C 1/ D u2.k/C x1.k/;

y.k/ D x2.k/;

z1.k/ D x1.k/;

z2.k/ D x2.k/:

Let the constrained output Œz1 z2�
0 be in some set S that satisfies Assumption 7.1.

Then, the posed semi-global and global stabilization problems can trivially be
solved by state feedback u1 D 0 and u2 D �x1. But in the measurement case,
we can only implement this feedback for k > 1. At time k D 0, we have no
information available about x1.0/ except for the fact that the state must be in the
admissible set of initial conditions:

� For the constraint set jz1j 6 1 and jz2j 6 2, the controller u1 D 0 and
u2 D 0 trivially solves the global stabilization problem.

� For the constraint set jz1j 6 1 and jz2j 6 1=2, no measurement-based
feedback can guarantee that the constraint is not violated at time k D 1,
because the controller lacks information about x1.0/.

Note that the above is in contrast with continuous time where the solvability is
always independent of the constraint set for right-invertible systems.

Remark 7.14 dictates that the constraints are right invertible whenever we have
constraints only on actuators. The following remark exemplifies several aspects
of having constraints only on actuators.

Remark 8.41 This remark is analogous to Remark 8.7 that concerns with the
continuous-time case. Consider the case when we have constraints only on actu-
ator magnitude and rate, i.e., the case when Cz D 0. In other words, there are
no state constraints, and only a subset of the input channels is subject to magni-
tude and rate constraints. Then, as Remark 7.14 points out, the constraints are
right invertible. Also, in this case, it is straightforward to show that the constraint
invariant zeros of ˙ (i.e., the invariant zeros of the system ˙ characterized by
.A;B; 0;Dz/) coincide with a subset of the eigenvalues of A. This observation
implies that the requirement of at most weakly non-minimum-phase constraints
in Theorems 8.35 and 8.37 is equivalent to requiring that a particular subset of
eigenvalues ofA lies in the closed unit disc. Obviously, such a condition is always
satisfied if we are dealing with critically unstable systems. Let us next assume that
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the given system˙ is controllable via the unconstrained input channels; it is then
straightforward to see that the subsystem characterized by .A;B; 0;Dz/ does not
have any invariant zeros, i.e., ˙ does not have any constraint invariant zeros.
Thus, for this special case, there will not be any constraints on the eigenvalues of
A as obviously can be expected.

It is worthwhile to consider another special case of the above when all the
input channels are subject to magnitude and rate constraints which is the case
considered in Chap. 6. In this case, Cz D 0 and Dz D Im. For this special case,
we observe that the admissible set of initial conditions V.S ; T / is indeed Rn.
Moreover, the constraint invariant zeros of ˙ coincide with all the eigenvalues
of A. As such, the requirement of at most weakly non-minimum-phase constraints
in Theorems 8.35 and 8.37 is equivalent to requiring that the given system be
critically unstable. Furthermore, for this special case, it is easy to see that there
are no constraint infinite zeros of order greater than 1 and hence the condition (iii)
of these Theorems 8.35 and 8.37 is automatically satisfied.

As in the continuous-time case, for discrete-time systems as well, whenever
there is only input saturation, one of the important facts that emerged in Chap. 4 is
that in general global stabilization requires nonlinear feedback, while semi-global
stabilization can be achieved whenever it can be done by utilizing simply linear
time-invariant feedback laws. Thus, as in the continuous-time case, a question that
arises naturally is whether an analogous result is valid under a broad framework
of state as well as input constraints as we are considering in this chapter. The
following theorem answers this question:

Theorem 8.42 Consider the discrete-time system ˙ as given by (7.1) and con-
straint sets S and T that satisfy Assumption 7.1. Assume that the constraints are
right invertible. Then the following hold:

(i) Under the condition that imCz � T (i.e., no rate constraints on states), if
a semi-global stabilization problem in the admissible set via state feedback
as defined in Problem 7.8 is solvable, then it is also solvable via a linear
time-invariant state feedback law.

(ii) If imCz 6� T (i.e., rate constraints on states are present), whenever a semi-
global stabilization problem in the admissible set via state feedback as de-
fined in Problem 7.8 is solvable, in general it might not be solvable via a
linear time-invariant state feedback law. That is, there exist a system ˙ as
given by (7.1) and constraint sets S and T 6� imCz that satisfy Assump-
tion 7.1 for which the semi-global stabilization problem is solvable via a
nonlinear feedback law but for which there exists no linear feedback law
that solves the problem.
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Proof : The first statement of Theorem 8.42 follows from Theorem 8.35. The
second statement follows from the following counter example. Consider the
system,

�x D

�
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 1 3 0 0

0 1 0 �3=2 5=2 �3 0

0 0 1 �3 0 1 0

0 0 0 0 0 �3 1

˘
x C

�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

˘
u

z D

˙
0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

�
x

with no amplitude constraints and the rate constraint T given by three times the
unit cube in R4:

T D f z 2 R4 j kzk1 < 3 g:
Consider the following four initial conditions:

x1 D

�
0

0

0

1

1

1

0

˘
; x2 D

�
0

0

0

1

1

�1
0

˘
; x3 D

�
0

0

0

�1
1

1

0

˘
; x4 D

�
0

0

0

1

�1
1

0

˘
:

These initial conditions are all feasible. But in order to satisfy the rate constraint
at time 0 we see that u4.0/ must be equal to 0; 0; 0, and 3 for x.0/ D x1; x.0/ D
x2; x.0/ D x3 and x.0/ D x4, respectively. This can, however, never be done
via a linear feedback. Note that this also excludes solvability of the semi-global
problem by linear feedback because that still requires that for initial conditions
close to x1, we must have u4.0/ close to 0, and similarly for the other three initial
conditions. This is not possible with arbitrary accuracy with a linear feedback.

It remains to show that we can solve the semi-global stabilization problem for
this system. This is, however, a direct consequence of Theorem 8.35. Note that
the constructed system has no finite constraint invariant zeros.

Finally, that we can find a linear feedback in case rate constraints are not present
is clear from the construction of a controller in the proof of Theorem 8.35.
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8.4.1 Proofs and construction of controllers

As in the continuous-time case, before we proceed to the proofs and to construct
appropriate controllers, we need to decompose the given system in a suitable way.
For the right-invertible constraints considered in this section, the SCB of the sys-
tem ˙uz characterized by the quadruple .A;B; Cz ;Dz/ can be written in the fol-
lowing form:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

�xa.k C 1/ D Aaaxa CKazz
�xc.k C 1/ D Accxc CBc Œuc C Jaxa�CKczz
�xd .k C 1/ D Addxd C Bd Œud C Eaxa C Ecxc C Edxd �CKd zz

y D Cyaxa C Cycxc C Cydxd C zDy zu
z0 D u0

zd D Cdxd ;

(8.61)

where�
xa

xc

xd

�
D zx D � �1

s x;

�
u0

uc

ud

�
D zu D � �1

u u;

 
z0

zd

!
D zz D � �1

z z;

and xa; xc ; xd ; u0; uc ; ud are of appropriate dimensions, while �s , �u,
and �z are transformation matrices. This decomposition renders the subsystem
characterized by the state variables xc and xd strongly controllable3 without finite
zeros. Moreover, the pair .Aaa; Ka/ is stabilizable.

We can extract from (8.61) two subsystems. The first subsystem is given by
(
�xa D Aaaxa CKazz

D Aaaxa CKa0z0 CKadzd ;
(8.62)

where Ka D
�
Ka0; Kad

�
. The second subsystem extracted from (8.61) is given

by 8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

�xc D Accxc C Bc Œuc C Jaxa�CKczz
�xd D Addxd CBd Œud C Eaxa C Ecxc

CEdxd �CKd zz
z0 D u0

zd D Cdxd :

(8.63)

The solvability conditions in Theorems 8.35 and 8.37 both require that the con-
straints be at most weakly nonminimum phase and of type one. Once the con-
straints are of type one, the SCB representation of system ˙ in (8.61) can be

3Definition 3.28 discusses strong controllability.
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simplfied. More specifically, the equations for xd and zd have a simpler structure
because of the first-order relative degree. To facilitate the proofs of Theorems 8.35
and 8.37, we rewrite (8.61) after simplification as

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

�xa D Aaaxa CKazz
�xc D Accxc C Bc Œuc C Jaxa�CKczz
�xd D ud CGaxa CGcxc CGdxd

y D Cyaxa C Cycxc C Cydxd C zDy zu
z0 D u0

zd D xd ;

(8.64)

whereGa,Gc , andGd are matrices with appropriate dimensions. Also, the second
subsystem (8.63) can be rewritten as

8
ˆ̂̂
<

ˆ̂̂
:

�xc.k C 1/ D Accxc C Bc Œuc C Jaxa�CKczz
�xd .k C 1/ D ud CGaxa CGcxc CGdxd

z0 D u0

zd D Cdxd :

(8.65)

The two subsystems (8.62) and (8.63) form the system ˙uz . We emphasize that
the subsystem (8.62) represents the zero dynamics of the system ˙uz . Moreover,
the eigenvalues of Aaa are equal to the constraint invariant zeros of the given
system ˙ . By viewing zz as the input to this subsystem, we have a system with
input constraints in the sense that z.k/ 2 S and .z.k C 1/ � z.k// 2 T for all
k > 0. Since S and T satisfy Assumption 7.1, there exist appropriate sets S0, Sd ,
T0, and Td such that

z 2 S if and only if z0 2 S0 and zd 2 Sd ; (8.66a)

�z 2 T if and only if �z0 2 T0 and �zd 2 Td : (8.66b)

Now, we are at a position to define the admissible set for the subsystem ˙2 as

V2.S ; T / D
(
x2 D

 
xc

xd

!
2 Rn2

ˇ̌
ˇ̌
ˇCdxd 2 Sd

)
; (8.67)

where n2 D nc C nd is the dimension of x2. Note that T does not affect the
admissible set in discrete time for right-invertible systems because we know that
the constraints must be of type one. xa has no effect on V2.S ; T /.

As in the continuous-time case, both for construction of controllers and the
proofs of the stated results, we use the decomposition in the two subsystems (8.62)
and (8.63) as defined above. We observe clearly that we can control the first sub-
system (8.62) only through zz. Also, from the SCB decomposition, it follows that
the second subsystem has no finite invariant zeros and is right invertible. This im-
plies that we can guarantee by suitable choice of zu that zz is arbitrary close to any
desired signal as will be evident soon. Therefore, we basically design a controller
in two phases:
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� First, design a desired feedback for the first subsystem (8.62) using zz as the
(constrained) input signal such that the first subsystem exhibits a desired
closed-loop behavior.

� Second, design a feedback for the second subsystem (8.63) with state x2,
input zu and output zz such that

(i) The output zz is close to the desired feedback for the first subsystem.

(ii) The output satisfies the constraints.

(iii) The state x2 of the second subsystem exhibits a desirable behavior.

All feedback designs here are constructed in accordance with this two-phase de-
sign.

We need to discuss next what kind of initial conditions can be considered for the
first subsystem (8.62). In fact, since we have no state constraints on this subsys-
tem, we can have arbitrary initial conditions for it. Hence, we consider arbitrary
initial conditions in W1 D Rna in the global case, while in the semi-global case,
we consider initial conditions in some arbitrary compact set W1.

Similarly, the initial conditions for the second subsystem must be in some set
W2. In the global case, we have W2 D V2.S ; T / using the definition in (8.67),
while in the semi-global case, we have W2 as an arbitrary compact set contained
in the interior of V2.S ; T /.

Proof of Theorem 8.35 : Necessity: The necessity of conditions (i) and (ii) is ob-
vious. By the decomposition obtained above, the constrained variable zz becomes
the input to the zero dynamics (8.62); hence, the system has to be at most weakly
non-minimum phase, i.e., the poles of the zero dynamics must be in the closed
unit disc. Next, we show the necessity of condition (iii).

We consider the global case first. Since we have right-invertible constraints,
having no infinite zeros of order greater than one is equivalent to .CzB Dz/

being surjective. Therefore, if the system has infinite zeros of order greater than
one, then there exists a vector c ¤ 0 such that

c0Dz D 0 and c0CzB D 0: (8.68)

Moreover, since T contains zero in its interior, we can guarantee that c 2 T . Let
�0 2 S be such that

hz; ci 6 h�0; ci
for all z 2 S . Since S is a compact and convex set, such a �0 always exists
at the boundary of S . We have right-invertible constraints, or equivalently ˙uz

characterized by the quadruple .A;B; Cz;Dz/ is right invertible. This implies
that there exist an initial condition x.0/ D �0 and an input u.0/ D �0 such that
the output z satisfies z.0/ D �0 and z.1/� z.0/ D c. Clearly, �0 2 V.S ; T /. But
if the system starts at time 0 from �0 then we have

hc; z.0/i D hc; Cz�0i D hc; �0i and hc; z.1/ � z.0/i D hc; ci > 0
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for any input signal u because of property (8.68). Hence, hc; z.1/i > hc; �0i for
any input u. By definition of �0, this implies that z.1/ 62 S for any input u.
Therefore, there exist initial conditions in V.S ; T / which cannot be stabilized
without violating the constraints. This yields a contradiction.

The necessity of condition (iii) for the semi-global case follows by a mild mod-
ification of the above argument. Choose a 
 close to 1 from below such that
hc; ci > .1 � 
/hc; �0i, where �0 is chosen as before. Let z.0/ D 
�0. By the
right invertibility of ˙uz as above, there exist an initial condition �0 and an input
u.0/ D �0 such that the output z satisfies z.0/ D 
�0 and z.1/�z.0/ D c. Then,
we can choose a compact set A0 in the interior of V.S ; T / so that �0 2 A0. Since
hc; z.1/� z.0/i D hc; ci > 0, we get hc; z.1/i D hc; z.0/i C hc; ci > hc; �0i. By
the same argument as in the global case, this implies that z.1/ 62 S for any input
u, which is a contradiction.

The proof of sufficiency is by explicitly constructing a state feedback controller
with the specified properties.

State feedback controller design for semi-global and global stabilization

Step 1 (Controller design for the zero dynamics)

We first design for the first subsystem given in (8.62) while viewing zz as an input
variable. Let v D zz � �, where the functions v and � will become clear shortly.
Then, (8.62) becomes

xa.k C 1/ D Aaaxa.k/CKa�.k/CKav.k/: (8.69)

Note that the conditions of the theorem require that all eigenvalues of Aaa be in
the closed unit disc. Viewing � as an input to this subsystem, we can construct a
state feedback law �.k/ D f .xa.k// for the system (8.69), which has the follow-
ing properties:

(a) It satisfies the constraints,

f .xa.k// 2 S ; .f .xa.k C 1//� f .xa.k/// 2 T ; k > 0:

(b) It renders the zero equilibrium point of the closed-loop system of (8.69)
semi-globally or globally attractive in the presence of any signal satisfying

kv.k/k 6 M
k; 
 2 .0; 1/ (8.70)

for some M > 0, i.e., xa.k/ ! 0 as k ! 1.

(c) It renders the zero equilibrium point of the closed-loop system with v D 0

locally exponentially stable.

Note that the two parameters M and 
 in (8.70) only depend on the size of the
constraint sets S and T . Whenever S and T are known, M and 
 can be chosen
a priori following the way specified in the design of Step 2. Knowing these facts,
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we are assured that the `2 norm of v signal is uniformly upper bounded. For
completeness, the details of designing such a state feedback for the first subsystem
in the semi-global or global sense are presented in Appendix 8.A.

Step 2 (Controller design for the second subsystem)

In this step, we design a control law for the second subsystem given in (8.63) so
that the closed-loop system of the interconnection of the two subsystems with the
control law is asymptotically stable and without constraint violation.

Choose 
 2 .0; 1/ such that

.1 � 
/xSd � Td ; (8.71)

where xSd WD f� � 
 W � 2 Sd ; 
 2 Sd g. The control law is designed as follows.
Partition f and v compatibly with the decomposition of z as

f .xa/ D
 
f0.xa/

fd .xa/

!
and v D

 
v0

vd

!
:

Then choose
uc.k/ D Fcxc.k/� Jaxa.k/; (8.72)

where Fc is such that Acc C BcFc is Schur stable. Choose

u0.k/ D f0.xa.k// (8.73)

ud .k/ D 
Œxd .k/ � fd .xa.k//�C fd .xa.k C 1//

� 
kC1Œfd .xa.k C 1//� fd .xa.k//�

�Gaxa.k/ �Gcxc.k/ �Gdxd .k/; (8.74)

where xa.k C 1/ D Aaaxa.k/ C Kaz.k/. Note that the control law for ud is
time varying, and is nonlinear in the global case and linear in the semi-global
case. It remains to show that for the control law given above, we have z.k/ 2 S

and .z.k C 1/ � z.k// 2 T for all k > 0; moreover, v.k/ D z.k/ � f .xa.k//

satisfies (8.70) for a suitably chosenM > 0.
Given the feedback for ud , we obtain

xd .k C 1/� fd .xa.k C 1// D 
Œxd .k/ � fd .xa.k//�

� 
kC1Œfd .xa.k C 1//� fd .xa.k//�: (8.75)

Solving this difference equation yields that

xd .k/ D 
kxd .0/C .1� 
k/fd .xa.k//: (8.76)

Since both xd .0/ and fd .xa.k// are in the convex set Sd , we have zd .k/ D
xd .k/ 2 Sd . On the other hand,

xd .k C 1/� xd .k/ D 
k f.1 � 
/Œfd .xa.k C 1//� xd .0/�g
C .1 � 
k/Œfd .xa.k C 1//� fd .xa.k//�:
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Hence, by (8.71), we get

zd .k C 1/� zd .k/ D xd .k C 1/� xd .k/ 2 Td :

From (8.76), we see that

vd .k/ D xd .k/� fd .xa.k// D 
kŒxd .0/� fd .xa.k//�: (8.77)

Clearly, xd .0/ must be in the admissible set. We can then conclude that both
xd .0/ and fd .xa.k// are in the bounded set Sd and that z0 D u0 D f0.xa/; we
find that there exists a M > 0 such that (8.70) holds.

So far, we have shown that the equilibrium point x D 0 of the overall closed-
loop system is globally attractive. Since we have used a time-varying control law
and the control law is nonlinear in the global case, the asymptotical stability of the
equilibrium point x D 0 needs a careful verification. First, note that, according to
the design of f .xa/ presented in Appendix 8.A, the feedback f .xa/ is globally
Lipschitz and locally linear in terms of xa. Then, it can be shown that for suffi-
ciently small initial conditions xa0 D xa.0/, xc0 D xc.0/, and xd0 D xd .0/,
we have kxa.k/k 6 �1.kxa0k C kxd0k/ for some constant �1 > 0 and all
k > 0. This part of proof is presented in Appendix 8.B. From (8.77), we see
that kv.k/k 6 �2.kxa0k C kxd0k/ for some constant �2 > 0 and all k > 0.
From (8.76), it is straightforward that kxd .k/k 6 �3.kxa0k C kxd0k/ for some
constant �3 > 0 and all k > 0. Finally, viewing the dynamics of xc as a Schur-
stable system with disturbance Kcz.k/ D KcŒf .xa.k// C v.k/�, we obtain that
kxc.k/k 6 �4.kxa0k C kxc0k C kxd0k/ for some constant �4 > 0 and all k > 0.
In conclusion, we have shown the local stability of the equilibrium point x D 0.
This completes the proof.

Proof of Theorem 8.37 : Note that condition (v) kerCz � kerCzA implies that
Ga D Gc D 0 in (8.64) and (8.65). Moreover, condition (vi) ker .Cy Dy/ �
ker .Cz Dz/ ensures that we can decompose y in a suitable basis such that

y D
 

zy
xd

!
D
 zCya

zCyc 0

0 0 I

!�xa

xc

xd

�
C
 zDyu

0

!
zu;

which clearly indicates that the state xd is directly determined by y. We get the
following system:

xa.k C 1/ D Aaaxa.k/CKaz.k/;

xc.k C 1/ D Accxc.k/CKcz.k/;CBc Œuc.k/C Jaxa.k/�;

xd .k C 1/ D ud .k/CGdxd .k/;

zy D zCyaxa C zCycxc C zDyu zu;
z0.k/ D u0.k/;

zd .k/ D xd .k/:

(8.78)
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Since .Cy ; A/ is an observable pair, the SCB decomposition guarantees that the
pair   

Aaa 0

BcJa Acc

!
;
�

zCya
zCyc

�!

is also observable. That is, there exist matrices La and Lc such that

zA D
 
Aaa � La

zCya �La
zCyc

BcJa � Lc
zCya Acc � Lc

zCyc

!

is Schur stable. For the above system, we use a reduced-order observer for the
state variables .xa; xc/:

yxa.k C 1/ D Aaa yxa.k/CKaz.k/C
LaŒzy.k/ � zCya yxa.k/ � zCyc yxc.k/ � zDyu zu.k/�

yxc.k C 1/ D Acc yxc.k/CKcz.k/CBc Œuc.k/C Ja yxa.k/�C
Lc Œzy.k/ � zCya yxa.k/ � zCyc yxc.k/ � xDyu zu.k/�:

Note that the measurement error is exponentially decaying.
The remaining design procedure follows the state feedback controller design

presented in the proof of Theorem 8.35 with .xa; xc/ replaced by .yxa; yxc/ in the
controller, except that we have an additional exponentially decaying error pertur-
bation as a result of the replacement. Note that this additional error disturbance
can be accommodated in the error signal v in the state feedback design, which
is taken care of by a properly designed feedback z0 D f .yxa/ for the first sub-
system. From the construction of state feedback, it can be verified that with the
states .xa; xc/ replaced by their measurements .yxa; yxc/, the constraints remain
not violated. This completes the proof.

8.5 Semi-global and global stabilization
in admissible set for non-right-invertible
constraints: discrete time

For continuous-time systems, Sect. 8.3 considers both semi-global and global sta-
bilization in the admissible set subject to non-right-invertible constraints. At first,
for a given system ˙ with non-right-invertible constraints and for a given pair of
constraint sets S and T that satisfy Assumption 7.1, it develops necessary and
sufficient conditions under which semi-global stabilization is solvable for non-
right-invertible constraints. Such conditions depend on the shape of the given
constraint set S . Because of this, it resolves two fundamental questions which
are as follows:
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1. Given a system ˙ with non-right-invertible constraints, for such a˙ , what
are the solvability conditions for the Problems 7.8–7.11 when they are en-
hanced in the sense that they consider all possible pairs of constraint sets
S and T that satisfy Assumption 7.1 instead of just one given pair of con-
straint sets S and T ?

2. Given a system ˙ with non-right-invertible constraints, for such a ˙ , does
there exist a pair of constraint sets S and T that satisfy Assumption 7.1
for which semi-global and global stabilization problems as formally for-
mulated in Problems 7.8–7.11 are solvable?

In this section, we proceed to develop similar results, however, for discrete-
time systems. As said earlier, although our development here parallels the one in
Sect. 8.3, as will be evident throughout this section, there exist several fundamen-
tal differences in every respect, that is, in the solvability conditions, in designing
the controllers, as well as in constructing the proofs.

Our main focus in this section is often on amplitude constraints on the con-
strained output as expressed by z.k/ 2 S for all k > 0. The issues involved when
both the amplitude and rate constraints exist on the constrained output z.k/ will
only be briefly dealt with in Sect. 8.5.3.

We have the following theorem which is concerned with the semi-global stabi-
lization Problem 7.8 via state feedback.

Theorem 8.43 Consider the discrete-time system ˙ as given by (7.1) and con-
straint sets S and T D Rn that satisfy Assumption 7.1. Then, the semi-global
stabilization problem in the admissible set via state feedback as defined in Prob-
lem 7.8 is solvable if and only if the following conditions hold:

(i) .A;B/ is stabilizable.

(ii) The constraints are at most weakly non-minimum phase.

(iii) For any x 2 V.S ;Rn/, there exists a u such that Ax C Bu 2 V.S ;Rn/

while Czx CDzu 2 S .

We consider next the case of measurement feedback that concerns with the
semi-global stabilization. We have the following theorem.

Theorem 8.44 Consider the discrete-time system ˙ as given by (7.1) and con-
straint set S and T D Rn that satisfies Assumption 7.1. Then, the semi-global
stabilization problem in the admissible set via measurement feedback as defined
in Problem 7.10 is solvable if the following conditions hold:
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(i) .A;B/ is stabilizable.

(ii) The constraints are at most weakly non-minimum phase.

(iii) For any x 2 V.S ;Rn/, there exists a u such that Ax C Bu 2 V.S ;Rn/

while Czx CDzu 2 S .

(iv) The pair .Cy ; A/ is observable.

(v) We have
kerCy 	 kerCzA:

(vi) We have

ker
�
Cy Dy

�
	 ker

�
Cz Dz

�
:

Note that in the above theorem, conditions (i)–(iii) are necessary. Condition (iv)
can be weakened by assuming only detectability. However, clearly some addi-
tional assumptions would then be needed if unobservable states can affect the
constrained output z. However, this is excluded by condition (vi). Regarding con-
dition (v), we know that a necessary condition for solvability equals

ker

 
Cy

Cz

!
	 kerCzA;

which is equal to condition (v) given condition (vi). Condition (vi) is not necessary
but it is a natural condition to impose that the constrained variables z are part of
the observations variables y, which is another way to express condition (vi).

We now proceed to prove Theorems 8.43 and 8.44. Expectedly, as in the con-
tinuous time, the proofs depend heavily on SCB of the system ˙uz characterized
by the quadruple .A;B; Cz ;Dz/. Consider the state, input, and constrained output
transformation matrices, �s, �u, and �z , and let

x D �s xx; u D �uxu; and z D �zxz
so that ˙uz is in its SCB as given by Theorem 3.1. The given system (7.1) can
then be written in SCB form as

ẋ W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

�xa D Aaaxa CKaxz
�xb D Abbxb CKbxz
�xc D Accxc CKcxz C Bc Œuc C Jaxa�

�xd D ud CGaxa CGbxb CGcxc CGdxd

y D Cyaxa C Cybxb C Cycxc C Cydxd C xDy xu
z0 D u0

zb D Cbxb

zd D Cdxd ;

(8.79)
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where

xx D

˙
xa

xb

xc

xd

�
; xu D

�
u0

uc

ud

�
; xz D

�
z0

zb

zd

�
;

and Gxx D Gaxa CGbxb CGcxc CGdxd .
We have xz subject to the constraint xz.k/ 2 xS for all k > 0, where xS D

� �1
z S . Since C 0

zDz D 0, it is guaranteed that the new constraint set still satisfies
Assumption 7.1. The admissible set in the new basis is defined as

V.xS/ WD f xx 2 Rn j 9u0 such that

�
Cbxb

u0

Cdxd

�
2 xS g:

Proof of Theorem 8.43

We first establish the necessity of the conditions in Theorem 8.43. Using the SCB
as introduced above, we can decompose the original system into two subsystems:

˙1 W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�xa D Aaaxa CKabCbxb CKa2�

�xb D Abbxb CKbbCbxb CKb2�

�xd D Addxd C Bd Œud CGxx�CKd xz
� D

 
0

Cd

!
xd C

 
I

0

!
u0

xz D
 
Cb

0

!
xb C

 
0

I

!
�;

(8.80)

and

˙2 W
n
�xc D Accxc C Bc Œuc C Jaxa�CKcxz: (8.81)

We have the following lemma regarding the necessary conditions for semi-
global stabilization.

Lemma 8.45 Consider the constrained system (7.1). The problem of semi-global
stabilization in the admissible set via state feedback is solvable only if:

(i) The constraints are weakly non-minimum phase.

(ii) For any x 2 V.S ;Rn/, there exists a u such that Ax C Bu 2 V.S ;Rn/

while Czx CDzu 2 S .

Moreover, condition (ii) implies the following:

(iii) The constraints are weakly non-right invertible, i.e., the matrix Cb is injec-
tive.
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(iv) The constraints are of type one, i.e., the matrix Cd is injective.

Proof : We first note that the first equation of ˙1 reads as

xa.k C 1/ D Aaaxa.k/CKabCbxb.k/CKa2�.k/:

Clearly, x.0/ 2 V.S ;Rn/ still allows for an arbitrary initial condition xa.0/ for
this system (provided we choose the other initial conditions for xb , xc and xd ap-
propriately). On the other hand, the inputsCbxb and � to this system are bounded.
It is well known from the theory for linear systems subject to input constraints
that if the system is exponentially unstable, there exist initial conditions xa.0/ for
which there exist no Cbxb and � such that xa converges to zero. This is clearly
in contradiction with the requirements for the semi-global stabilization in the ad-
missible set. Therefore, Aaa must have its eigenvalues in the closed unit disc, or
equivalently, the constraints are at most weakly non-minimum phase.

Condition (ii) is clearly necessary since the existence of x0 2 V.S ;Rn/ for
which there does not exist any u such that Ax0 C Bu 2 V.S ;Rn/ implies the
existence of a zx0 2 int V.S ;Rn/ for which there does not exist any u such
that Azx0 C Bu 2 V.S ;Rn/ because the set V.S ;Rn/ is closed. But clearly,
semi-global stabilization in the admissible set requires that for all initial condi-
tions in the interior of V.S ;Rn/, we must be able to avoid constraint violation.
The fact that we cannot guarantee for some initial condition x.0/ D zx0 that
x.1/ 2 V.S ;Rn/ implies that we will get a constraint violation which yields a
contradiction.

Assume that the constraints are not weakly non-right invertible or, in other
words, the matrix Cb is not injective. In that case, we can find a xb such that
Cbxb D 0. However, since the pair .Cb; Abb/ is observable, there always exists
some k < n such that CbA

k
bb
xb ¤ 0. Without loss of generality, choose k such

that CbA
k�1
bb

xb D 0. But then the initial condition,

xx.0/ D

˙
0


Ak�1
bb

xb

0

0

�
;

is in V.xS/ for all 
. However,

xz.1/ D
 

CbA

k
bb
xb C CbKbbCbxb C CbKb2�.0/

�.1/

!

will not be in xS for sufficiently large 
 since xS is bounded. After all, 
CbA
k
bb
xb

can be made arbitrarily large by choosing
 large while all other terms are bounded
since we know that xz.0/ 2 xS . Therefore, xz.1/ is not in xS for any input even though
xx.0/ 2 V.xS/. This violates condition (ii).
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In order to establish (iv), we first assume that there exists an xd such that
Cdxd D 0 while CdAddxd C CdBdud ¤ 0 for any ud . For any 
, there ex-
ists a xx.0/ in V.xS/ which yields initial condition xd .0/ D 
xd for this system
(provided we choose the other initial conditions for xa, xb and xc appropriately).
But then,

Cdxd .1/ D 
CdAddxd C CdBd Œud .0/CGxx.0/�C CdKd xz.0/
can be made arbitrary large independent of our choice for ud .0/ since the second
term on the right cannot cancel the first term while the third term on the right
is bounded. This violates condition (ii). On other hand, if for all xd satisfying
Cdxd D 0 there exists a ud such that CdAddxd C CdBdud D 0, then there
exists a matrix F such that for all xd such that Cdxd D 0 we have Cd .Add C
BdF /xd D 0. But this in turn implies that CdBdv D 0 for some v ¤ 0 yields
that Cd .Add C BF /kBv D 0 for all k which is in contradiction with the left
invertibility of .Add ; Bd ; Cd ; 0/ as required by the properties of SCB. Hence,
CdBd is injective (which implies the infinite zeros are at most of order 1). The
structure of the SCB then also guarantees that Cd is injective.

In order to establish sufficiency of the conditions of Theorem 8.43, we will
construct an appropriate controller for the system˙ . Note that finding a controller
for˙2 does not affect˙1 nor its constraints. Our design methodology will amount
to designing a controller for the system˙1. However, since the eigenvalues ofAaa

must be in the closed unit disc, it can be established that the critical part of the
system is actually the xb and xd dynamics presented in the following subsystem:

˙bd W

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

xb.k C 1/ D Abbxb.k/CKbbCbxb.k/CKb2�.k/

xd .k C 1/ D Addxd .k/CBd zud .k/CKd xz.k/
�.k/ D

 
0

Cd

!
xd .k/C

 
I

0

!
u0.k/

xz.k/ D
 
Cb

0

!
xb.k/C

 
0

I

!
�.k/;

(8.82)

where zud D ud CGxx. Also, we denote xbd D .x0
b
; x0

d
/0.

We define the admissible set for subsystem ˙bd as

Vbd .xS/ WD

8
<̂

:̂
xb 2 Rnb ; xd 2 Rnd j 9u0 such that

�
Cbxb

u0

Cdxd

�
2 xS

9
>=

>;
: (8.83)

The proof of sufficiency can be sketched as follows. We will start the construc-
tion in Lemma 8.46 by determining an appropriate controller for the system ˙bd .
Then based on the result of Lemma 8.46, we construct a controller for˙1. Finally,
after choosing a proper controller for ˙2, we complete the proof.

The following lemma is concerned with semi-global stabilization for ˙bd .
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Lemma 8.46 The problem of semi-global stabilization in the admissible set for
˙bd is solvable by a static state feedback,

u0 D xf1.xb ; xd / and zud D xf2.xb; xd /;

if the conditions of Theorem 8.43 are satisfied.

Proof : Using condition (iii), it is not difficult to construct a controller such that
the state cannot leave the set Vbd .xS/. However, to establish the convergence to
the origin, we need to do some extra work.

We first transform ˙bd into its controllable canonical form. That is, there is a
nonsingular state transformation T such that with

zx D
 
x1.k/

x2.k/

!
D T xbd ;

the system ˙bd given by (8.82) is transformed to the form

ż
bd W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

 
x1.k C 1/

x2.k C 1/

!
D
 
A11 A12

0 A22

! 
x1.k/

x2.k/

!
C
 
B1

0

!
zu.k/;

xz.k/ D
 
C1 C2

0 0

! 
x1.k/

x2.k/

!
C
 
0 0

I 0

!
zu.k/;

where the dynamics of x1 is controllable, the dynamics of x2 is uncontrollable,
and

zu.k/ D
 
u0.k/

zud .k/

!
:

The admissible set of ż
bd is given by

zVbd .xS/ D TVbd .xS/:
In order to construct a controller for ż

bd , define a modified system

ż`
bd W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�

 
x`

1

x`
2

!
D .1C `/

 
A11 A12

0 A22

! 
x`

1

x`
2

!
C .1C `/

 
B1

0

!
zu`;

xz` D
 
C1 C2

0 0

! 
x`

1

x`
2

!
C
 
0 0

I 0

!
zu`;

where ` > 0 is small enough so that ż`
bd

is still stabilizable. Let zR`
bd
.xS/ be the

largest set of initial conditions for the system ż`
bd

for which there exists an input
such that the constraints are satisfied while we stay inside the set for all k (note
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that we do NOT impose convergence to zero). We do claim that for any z�, there
exists an ` > 0 sufficiently small such that

z� zVbd .xS/ � zR`
bd .

xS/ � zVbd .xS/: (8.84)

It is trivial to see that
zR`

bd .
xS/ � zVbd .xS/:

It remains to establish that

z�zVbd .xS/ � zR`
bd .

xS/:

For any time r > n for the system ż`
bd

, since the dynamics of x1 is control-
lable, there exists a ı� > 0 such that for any ı 2 .0; ı�/ and for any x1 for which
there exists a x2 such that  

x1

x2

!
2 ı zVbd .xS/;

there exists an input zu` WD .u`
0; zu`

d
/ such that x`

1.r/ D �x1 and x`
2.r/ D 0 with

initial condition zx`.0/ D 0, while

xz`.k/ 2 1�z�
2

S ; k D 0; 1; : : : ; r � 1:

Moreover, ı� is independent of ` and r provided ` is small enough.
Let r > n be such that for any zx`.0/ 2 zVbd .xS/, we have

 
0

x`
2.r/

!
2 ız� zVbd .xS/

for all ` sufficiently small. This is clearly possible due to the fact that the system is
stabilizable and hence the uncontrollable dynamics of x`

2 must be asymptotically
stable.

Consider any initial condition zx.0/ 2 zVbd .xS/. We have an input zu for the
system ż

bd such that xz.k/ 2 xS . Hence, for any z� < 1, we can find, for any initial
condition z�zx.0/ 2 z�zVbd .xS/, an input z�zu for the system ż

bd such that xz.k/ 2 z�xS
for all k. But then, for ` small enough, we find that there exists an input, say zu`

1 for
which we have zx`.k/ 2 .1Cı/z�zVbd .xS/ and xz`.k/ 2 .1Cı/z�xS for k D 0; : : : ; r .
Also, we observe that if we choose ı < 1�z�

2
, we have

ızx`.r/ D
 
ıx`

1.r/

ıx`
2.r/

!
2 ı zVbd .xS/:

Choose
x1 D ıx`

1.r/:
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Choose input, say zu`
2 such that, for zx`.0/ D 0, we have x`

1.r/ D �x1 and x`
2.r/ D

0 while xz`.k/ 2 ıS . But then for initial condition zx`.0/ 2 z� zVbd .xS/, the input
zu`

1 C zu`
2 and ı < min fı�; 1�z�

2
g we obtain that

xz`.k/ 2 xS for k D 0; : : : ; r � 1;

and

x`
bd .r/ D .1 � ı/

 
x`

1.r/

x`
2.r/

!
C ı

 
0

x`
2.r/

!
2 �.1 � ı/.1C ı/z�C ı2 z�� zVbd .xS/

2 z�zVbd .xS/:
If we repeat this construction between k D r and k D 2r , and so forth, it becomes
clear that we can find for any initial condition

zx`.0/ 2 z�zVbd .xS/;
an input such that

xz`.k/ 2 S

for all k. Hence zx`.0/ 2 zR`
bd
.xS/. This clearly implies that (8.84) is satisfied.

For semi-global stabilization in the admissible set, we take any compact set
zHbd contained in the interior of zVbd .xS/, and we construct a static controller
which will stabilize the system and the domain of attraction contains zHbd . But
then clearly, using (8.84), we can find ` such that zHbd � zR`

bd
.xS/. Next, we

choose a feedback f on the boundary of zR`
bd
.xS/ such that, for any zx`.k/ 2

@ zR`
bd
.xS/, we have zx`.k C 1/ 2 zR`

bd
.xS/. We expand this feedback f to the

whole state space. Define g W Rn ! RC such that for any x,

g.x/x 2 @ zR`
bd .

xS/:

Since zR`
bd
.xS/ is a convex set containing 0 in its interior, this mapping is well

defined. Then we expand f to the whole state space by

zf .x/ D f .g.x/x/

g.x/
:

This expansion has the property that for any 
 > 0, we have zx`.kC1/ 2 
 zR`
bd
.xS/

for all zx`.k/ 2 
 zR`
bd
.xS/. Note that zf is positively homogeneous, that is,

zf .z̨x/ D z̨ zf .x/;
for any z̨ > 0.

Clearly, for the system ż`
bd

with the feedback

u`
0.k/ D zf1.x

`
bd .k// and zu`

d .k/ D zf2.x
`
bd .k//;
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and for all initial conditions in the set zR`
bd
.xS/, we have zx`.k/ 2 zR`

bd
.xS/ for

all k.
But then the feedback,

u0.k/ D zf1.zx.k// and zud .k/ D zf2.zx.k//;
for the original system with zx.0/ D zx`.0/, results in a state

zx.k/ D 1

.1C `/k
zx`.k/:

Hence, we obviously have xbd .k/ 2 R`
bd
.xS/ for all k but also xbd .k/ ! 0 as

k ! 1.
Finally, the controller for the original system ˙bd is of the form,

u0.k/ D zf1.T
�1 zx.k// D xf1.xb; xd /zud .k/ D zf2.T

�1 zx.k// D xf2.xb; xd /:

We construct next a controller for ˙1 based on the results of Lemma 8.46.

Lemma 8.47 The problem of semi-global stabilization in the admissible set for
˙1 is solvable by a static state feedback if the conditions of Theorem 8.43 are
satisfied.

Proof : It is easy to verify that the admissible set of initial conditions V1.xS/ and
Vbd .xS/ for ˙1 and ˙bd , respectively, have the relationship

V1.xS/ D Rna ˚ Vbd .xS/:
For any compact set H in V1.xS/, we choose a compact set Ha and z� < 1 such
that

H � Ha ˚ z�Vbd .xS/:
The controller constructed in Lemma 8.46, u0 D xf1.xbd / and ud D zud �Gxx D
xf2.xbd /�Gxx, is such that for all initial conditions in z�Vbd .xS/, the origin of the

closed-loop system is exponentially stable. Hence, there exist M > 0 and 
 with
j
j < 1 such that

kxbd .k/k 6 M
k (8.85)

for all k and for all xbd .0/ 2 z�Vbd .xS/.
Next, let P0 be the semi-stabilizing solution of the discrete-time algebraic Ric-

cati equation

P0 D A0
0P0A0 C C 0

0C0 �A0
0P0B0.B

0
0P0B0 CD0

0D0/

B 0

0P0A0;
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where

A0 D

�
Aaa KabCb KadCd

0 Abb CKbbCb KbdCd

0 KdbCb Add

�
, B0 D

�
Ba0 0

Bb0 0

Bd0 Bd

�
;

C0 D

�
0 Cb 0

0 0 Cd

0 0 0

�
; and D0 D

�
0 0

0 0

I 0

�
:

We have

P0

�
xa

0

0

�
D 0 (8.86)

for all xa 2 Rna since the eigenvalue of Aaa are in the closed unit disc. Choose a
level set,

V0.c/ WD f � 2 Rn1 j �.k/0P0�.k/ 6 c g;
such that we have

�
C0 �D0.B

0
0P0B0 CD0

0D0/

B 0

0P0A0

�
� 2 xS=3 (8.87)

for all � 2 V0.c/. Then with the controller,

u0 D xf1.xbd / and ud D xf2.xbd / �Gxx;

which we can abbreviate as  
u0

ud

!
D xf .xx/;

there exists a T such that, for any initial state in

Ha ˚ z�Vbd .xS/;

we have  
xa.T /

xbd .T /

!
2 V0.c/: (8.88)

Let P" be the stabilizing solution of the algebraic equation,

P" D A0
0P"A0 C C 0

0C0 C "I � A0
0P"B0.B

0
0P"B0 C I /�1B 0

0P"A0:

We have P" ! P0 as " approach zero. Define the level set,

V".c/ WD f � 2 Rn1 j � 0P"� 6 c g;
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such that for " small enough, we have

 
xa.T /

xbd .T /

!
2 2V".c/;

and

.C0 �D0.B
0
0P�B0 CD0

0D0/

B 0

0P�A0/� 2 xS
for any initial condition � 2 2V".c/. Hence, the feedback

 
u0

ud

!
D �.B 0

0P"B0 CD0
0D0/


B 0
0P"A0

 
xa

xbd

!

is an asymptotically stabilizing controller for˙1 and achieves a domain of attrac-
tion containing 2V".c/. Next, consider the controller

 
u0

ud

!
D
( xf .xx/; xabd … 2V".c/; :

�.B 0
0P"B0 CD0

0D0/

B 0

0P"A0xabd ; xabd 2 2V".c/:

It is easily verified that this controller asymptotically stabilizes the system.

The above lemma yields an appropriate controller for the subsystem ˙1.
Finally, we need to construct a controller for the original system ˙ which will
complete our proof of sufficiency for Theorem 8.43.

We are now ready to discuss the proof of Theorem 8.43. The necessity was
already established in Lemma 8.45. For sufficiency, it is easily seen that the con-
trollers designed in Lemma 8.47 combined with a controller,

uc.k/ D �Jaxa.k/C Fcxc.k/;

where Fc is such that Acc C BcFc is asymptotically stable, solves the problem
of semi-global stabilization in the admissible set via state feedback for the given
system ˙ .

Proof of Theorem 8.44 : At first, we note that the conditions of Theorem 8.44
imply that xb and xd can be directly deduced from the measurements. In other
words, we have (in a suitable basis)

y D

�
y1

y2

y3

�
D

�
Cya 0 Cyc 0

0 Cb 0 0

0 0 0 Cd

�˙xa

xb

xc

xd

�
C

�
Dy

0

0

�
u0;
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where Cb and Cd are injective. However, we need an observer to estimate xa

and xc :

�

 
yxa

yxc

!
D
 
Aaa 0

BcJa Acc

! 
yxa

yxc

!
C
 
Kab Ka2 0

Kc1 Kc2 Bc

!�Cbxb

�

uc

�

C
 
La

Lc

!
�
y1 � Cya yxa � Cyc yxb �Dyu0

�
:

Clearly,

�

 
yxa � xa

yxc � xc

!
D
 
Aaa �LaCya �LaCyc

BcJa �LcCya Acc �LcCyc

! 
yxa � xa

yxc � xc

!

D zAac

 
yxa � xa

yxc � xc

!
;

where La and Lc are chosen such that zAac is asymptotically stable.
The feedback xf can be directly implemented even in the measurement feed-

back case since the condition (v) of Theorem 8.44 guarantees that

G D
�
0 Gb 0 Gd

�
C LG

�
Cya 0 Cyc 0

�
:

Hence, ud D xf2.xbd /�Gxx is equivalent to

ud D xf2.xbd /�Gbxb �Gbxd � LGy1 C LGDyu0:

Next, we follow the same arguments as in Lemma 8.47 with small modifications
such as the inclusion of xc since the observer does not allow a separate controller
design for xc and xa.

It is easy to verify that the admissible set of initial conditions V.xS/ and Vbd .xS/
for ẋ and ˙bd , respectively, have the relationship

V.xS/ D Rna ˚ Rnc ˚ Vbd .xS/:
For any compact set H in V.xS/, we choose a compact set Hac and z� < 1 such
that

H � Hac ˚ z�Vbd .xS/:
The controller u0 D xf1.xbd / and ud D xf2.xbd / � Gxx is such that for all ini-
tial conditions in z�Vbd .xS/, the origin of the closed-loop system is exponentially
stable. Hence, there exist M > 0 and 
 with j
j < 1 such that

kxbd .k/k 6 M
k (8.89)

for all k and for all xbd .0/ 2 z�Vbd .xS/.
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Next, let P0 be the semi-stabilizing solution of the discrete-time algebraic
Riccati equation

P0 D A0
0P0A0 C C 0

0C0 �A0
0P0B0.B

0
0P0B0 CD0

0D0/

B 0

0P0A0;

where

A0 D

˙
Aaa KabCb 0 KadCd

0 Abb CKbbCb 0 KbdCd

BcJa KcbCb Acc KcdCd

0 KdbCb 0 Add

�
, B0 D

˙
Ba0 0 0

Bb0 0 0

Bc0 Bc 0

Bd0 0 Bd

�
;

C0 D

�
0 Cb 0 0

0 0 Cd 0

0 0 0 0

�
; and D0 D

�
0 0 0

0 0 0

I 0 0

�
:

We have

P0

˙
xa

0

xc

0

�
D 0 (8.90)

for all xa 2 Rna and xc 2 Rnc since the eigenvalue of Aaa are in the closed unit
disc while uc can stabilize the xc dynamics without incurring cost. Choose a level
set

V0.c/ WD f xx 2 Rn j xx.k/0P0 xx.k/ 6 c g;
such that we have

.C0 �D0.B
0
0P0B0 CD0

0D0/

B 0

0P0A0/xx 2 xS=3 (8.91)

for all xx 2 V0.c/. Then with the controller,

u0 D xf1.xbd /; uc D 0; ud D xf2.xbd /�Gxx;
which we can abbreviate as �

u0

uc

ud

�
D xf .xx/;

there exists a T such that, for any initial state in

Hac ˚ z�Vbd .xS/;
we have

xx.T / 2 V0.c/: (8.92)
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Let P" be the stabilizing solution of the algebraic equation

P" D A0
0P"A0 C C 0

0C0 C "I �A0
0P"B0.B

0
0P"B0 CD0

0D0/

B 0

0P"A0:

We have P" ! P0 as " approach zero. Defining the level set,

V".c/ WD f xx 2 Rn j xx0P" xx 6 c g;
there exists an " such that

xx.T / 2 4
3
V".c/:

Moreover, we can guarantee that for " small enough,˙
xa � yxa

0

xc � yxc

0

�
.k/ 2 1

3
V".c/

for all k > 0 given initial conditions for the system and the observer in the com-
pact sets H and Hobs, respectively. For " small enough, we have

�
C0 �D0.B

0
0P�B0 CD0

0D0/

B 0

0P�A0

�xx 2 xS
for any initial condition xx 2 2V".c/. Note that

yxx D

˙yxa

xb

yxc

xd

�
2 4

3
V".c/

implies that

xx D

˙yxa

xb

yxc

xd

�
C

˙
xa � yxa

0

xc � yxc

0

�
2 2V".c/;

and hence the feedback,�
u0

uc

ud

�
D �.B 0

0P"B0 CD0
0D0/


B 0
0P"A0

yxx �

�
0

0

G

�
xx

D F"
yxx CNy;

with the associated observer is an asymptotically stabilizing controller for ẋ and
achieves a domain of attraction containing Hobs ˚ 2V".c/. Next, consider the
following controller,
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u0

uc

ud

�
D
( xf .yxx/; yxx … 4

3
V".c/;

F"
yxx CNy; yxx 2 4

3
V".c/;

together with our observer. It is easily verified that this controller asymptotically
stabilizes the given system.

8.5.1 Exploration of complexity of non-right-invertible
constraints

In this subsection, we proceed to answer the questions we posed earlier in order to
shed some light on the complexities inherent in dealing with systems having non-
right-invertible constraints. We first answer the first question: “Given a system ˙

with non-right invertible constraints, for such a ˙ , what are the solvability con-
ditions for the Problems 7.8–7.11 when they are enhanced in the sense that they
consider all possible pairs of constraint sets S and T that satisfy Assumption 7.1
instead of just one given pair of constraint sets S and T ?”

To proceed further, we need to extract a subsystem from the SCB decomposi-
tion as given in (8.79) of the system ˙uz . Let

�

 
xa

xb

!
D
 
Aaa Aab

0 xAbb

! 
xa

xb

!
C
 xKa

xKb

!
xz0d ;

zb D
�
0 Cb

� xa

xb;

! (8.93)

where xz0
0d

D .z0
0; z

0
d
/0 and

Aab D KabCb;

xAbb D Abb CKbbCb;

xKa D
�
Ka0 Kad

�
;

xKb D
�
Kb0 Kbd

�
;

when Ka andKb are decomposed as

Ka D
�
Ka0 Kab Kad

�
; Kb D

�
Kb0 Kbb Kbd

�
:

We have the following result.

Theorem 8.48 Consider the system (7.1). The following two statements are equi-
valent:

(i) The semi-global or global stabilization in the admissible set is possible for
all constraint sets S and T satisfying Assumption 7.1.
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(ii) The constraints of system ˙ are at most weakly non-minimum phase and
of type one. Moreover, the subsystem defined in (8.93) takes the following
form:

�

 
xa

xb

!
D
 
Aaa Aab

0 ˛I

! 
xa

xb

!
C
 xKa

0

!
xz0d ;

zb D
�
0 Cb

� xa

xb ;

! (8.94)

where the matirx Cb is injective and ˛ 2 Œ0; 1/.

Proof : The proof of (ii) ) (i) is obvious. It remains to prove (i) ) (ii).
Consider the subsystem defined in (8.93). Note that the state xa represents the

finite zero dynamics of˙uz . Viewing xz0d as input to the zero dynamics and noting
that zb is constrained, the necessary condition for semi-global or global stabiliza-
tion as stated in condition (v) of Theorem 8.49 (which will be presented shortly)
requires that

kerCb � kerCb
xAbb :

This means that kerCb is part of the zero dynamics. But all of the zero dynamics
of the original system has been included in the dynamics of xa. Hence, kerCb D
f0g, i.e., Cb is injective.

Knowing that Cb is injective, we can choose a constraint set on zb so that xb

is constrained to be arbitrarily small. However, xz0d .0/ can be anywhere in the
constraint set for xz0d which can be arbitrarily large. If Kb ¤ 0 in (8.79), then we
cannot guarantee that xb is small enough to be in its constraint set and we get a
constraint violation. Hence, we must haveKb D 0.

With Kb D 0, the subsystem of xb becomes completely uncontrollable.
The fact that the dynamics of xb is described by a state matrix ˛I follows using

the same arguments as in Theorem 8.30 for the continuous time. For asymptotic
stabilization of the whole system, we need j˛j < 1. However, if the constraint set
on xb is not symmetric, to avoid constraint violation, we must have ˛ 2 Œ0; 1/.

We proceed next to answer the second question: “Given a system ˙ with non-
right-invertible constraints, for such a˙ , does there exist a pair of constraint sets
S and T that satisfy Assumption 7.1 for which semi-global and global stabiliza-
tion problems as formally formulated in Problems 7.8–7.11 are solvable?”

Once again, we extract some subsystems from the SCB decomposition as given
in (8.79) of the system ˙uz . Let

zA1 D
 
Aaa 0

0 Abb

!
; zB1 D

 
Ka

Kb

!
; zC1 D

�
0 Cb

�
; zx1 D

 
xa

xb

!
;
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zv1 D xz, and zz1 D zb . We obtain for i D 1 the subsystem,

ż
i W
(

zxi .k C 1/ D zAi zxi .k/C zBi zvi .k/;

zzi .k/ D zCi zxi .k/;
(8.95)

where both zv1 and zz1 are constrained. If we ignore the constraint on zv1, we can
repeat the same procedure, used to obtain ż

1 from ˙uz , to obtain ż
2 from ż

1

and so on. At each step of the construction, we should make sure that the matrix
zBi has full column rank and the matrix zCi has full row rank. This can be done

without loss of generality. This chain ends if we obtain a subsystem ż
i which is

right invertible in the sense that ż
iC1 satisfies zCiC1 D 0. Another possibility of

termination is that at some step we get zBi D 0, which obviously implies that we
can end the chain. It can be shown easily that if the pair .A;B/ of the given system
˙ is stabilizable, then all the systems ż

i as defined in (8.95) are stabilizable.
The following theorem contains certain inherent necessary conditions for semi-

global or global stabilization in the admissible set whenever we have non-right-
invertible constraints.

Theorem 8.49 Consider the system ˙ as given by (7.1). Let the sets S and T

satisfy Assumption 7.1. Moreover, let the chain of systems ż
i (i D 1; : : : s) be

as described above. Then the semi-global and global stabilization problems for-
mulated in Problems 7.8 and 7.9 are solvable only if the following conditions are
satisfied:

(i) .A;B/ is stabilizable.

(ii) The constraints of system ˙ are at most weakly non-minimum phase.

(iii) The constraints of system ˙ are of type one.

(iv) All the subsystems ż
i (i D 1; : : : s) have at most weakly non-minimum-

phase constraints.

(v) The subsystems ż
i (i D 1; : : : s) with realization (8.95) satisfy:

ker zCi � ker zCi
zAi : (8.96)

Proof : The necessity of these conditions except (v) is self-evident by consider-
ing each subsystem as an independent system with input and output constraints
and recalling the necessary conditions in Theorem 8.35 for systems with output
constraints. To see that the condition (v) is also necessary, we go back to the SCB
decomposition used earlier in the proof of Theorem 8.35. As an illustration, let us
look at the xd equation in (8.63) at time 0. We must have

xd .1/ D ud .0/CGaxa.0/CGcxc.0/CGdxd .0/ 2 Sd (8.97)
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for all possible initial conditions, but keep in mind that now ud is constrained
following the way we obtain the decomposition of ż

i . Since xa and xc are com-
pletely unconstrained whereas ud .0/ and xd .0/ are constrained, condition (8.97)
can be guaranteed only if Ga and Gc both equal 0. This is a condition equivalent
to condition (v).

The following example indicates that the conditions given in Theorem 8.49 are
just necessary but not sufficient conditions for solving the constrained stabiliza-
tion problems. Also, this example shows that the solvability conditions for global
and semi-global stabilization in the case of non-right-invertible constraints in gen-
eral depend on the particular choice of constraint sets S and T , unlike the case
of right-invertible constraints.

Example 8.50 Consider the system:

x1.k C 1/ D x2.k/;

x2.k C 1/ D u.k/;

z1.k/ D x1.k/;

z2.k/ D x2.k/:

(8.98)

Note that the transfer matrix from u to z is non-right invertible and all the condi-
tions in Theorem 8.49 are satisfied. If the constraint set is defined as

S D fz W jz1j 6 1; jz2j 6 2g and T D R2;

then for any initial condition with x1.0/ D 0 and x2.0/ > 1, we find that x1.1/

will violate the constraints. Therefore constrained stabilization is not possible.
However, for the constraint set defined by

S D fz W jz1j 6 1; jz2j 6 1g and T D R2;

it is easily seen that the feedback u D 0 achieves constrained stabilization.

8.5.2 Illustrative example

Consider the following system:

˙ W

8
<̂

:̂

x.k C 1/ D Ax.k/C Bu.k/;

y.k/ D Cyx.k/CDyu.k/;

z.k/ D Czx.k/CDzu.k/;

(8.99)
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where x.k/ 2 R4, u.k/ 2 R3, y.k/ 2 R3, z.k/ 2 R3 and

A D

˙ �1 �1 1 3

�2 �1 1 2

�5:5 �3 2:5 5:5

�4:5 �2 1:5 6:5

�
; B D

˙
3 5 3

2 3 3

7 8 8

8 11 9

�
;

Cy D

�
1 0 0 0

�0:5 �1 0:5 0:5

�0:5 1 �0:5 0:5

�
; Dy D

�
1 1 1

0 0 0

0 0 0

�
;

Cz D

�
�0:5 0 0 0:5

0 1 �0:5 0

0 �1 0:5 0

�
; DzD

�
�0:5 �0:5 �0:5
0:5 0:5 0:5

0:5 0:5 0:5

�
:

The system is subject to the constraints z.k/ 2 S where S is given by

S D f� 2 R3 j

�
0:5 0:5 �0:5

�0:5 0:5 0:5

0:5 �0:5 0:5

�
� 2 Œ�1; 1� � Œ�1; 1� � Œ�1; 1�g:

The problem is to stabilize the system with a priori given set W contained in
its domain of attraction, where

W D f� 2 R4 j

˙
0:5 0 0:5 �0:5

�0:5 �1:0 0:5 0:5

0:5 0 �0:5 0:5

�0:5 1:0 �0:5 0:5

�
� 2

Œ�10; 10�� Œ�1; 1� � Œ�10; 10�� Œ�1; 1�g:

We first solve the semi-global stabilization in the admissible set via state feed-
back problem as follows:

Step 1: It is easy to verify that .A;B/ is stabilizable.
Step 2: There exist a state transformation xx D � �1

s x, an input basis transfor-
mation xu D � �1

u u, and an output basis transformation xz D � �1
z z that

converts the original system into its SCB form. These transformations are
given by:
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xx D

˙
xa

xb

xc

xd

�
D

˙
0:5 0 0:5 �0:5

�0:5 �1:0 0:5 0:5

0:5 0 �0:5 0:5

�0:5 1:0 �0:5 0:5

�˙
x1

x2

x3

x4

�
;

xu D

�
u0

uc

ud

�
D

�
1 1 1

0 1 0

0 1 1

��
u1

u2

u3

�
;

xz D

�
zb

zd

z0

�
D

�
1 0 1

1 1 0

0 1 1

��
z1

z2

z2

�
:

The transformed system is as follows:

ż W

8
<̂

:̂

xx.k C 1/ D xAxx.k/C xBxu.k/;
xy.k/ D xCy xx.k/C xDy xu.k/;
xz.k/ D xCzx.k/C xDz xu.k/;

(8.100)

where

xA D

˙
1 2 0 1

0 3 0 2

2 2 2 2

0 1 0 1

�
; xB D

˙
1 0 0

4 0 0

2 2 0

1 0 1

�
;

xCy D

�
1 0 1 0

0 1 0 0

0 0 0 1

�
; xDy D

�
1 0 0

0 0 0

0 0 0

�
;

xCz D

�
0 1 0 0

0 0 0 1

0 0 0 0

�
; xDz D

�
0 0 0

0 0 0

1 0 0

�
;

and the system is subject to the constraints xz.k/ 2 xS , where xS is given
by

xS D Œ�1; 1� � Œ�1; 1� � Œ�1; 1� ;
and xW is given by

xW D Œ�10; 10�� Œ�1; 1� � Œ�10; 10� � Œ�1; 1� :

Extract subsystem˙1 composed of xa, xb , and xd dynamics:

˙1 W
(
xabd .k C 1/ D A0xabd .k/C B0xu.k/;

xz.k/ D C0xabd .k/CD0xu.k/; (8.101)
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where

A0 D

�
1 2 1

0 3 2

0 1 1

�
; B0 D

�
1 0

4 0

1 1

�
;

C0 D

�
0 1 0

0 0 1

0 0 0

�
; D0 D

�
0 0 0

0 0 0

1 0 0

�
:

Then extract xd and xd dynamics from˙1 and form˙bd ,

˙bd W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

xb.k C 1/ D 3xb.k/C 2xd .k/C 4u0.k/;

xd .k C 1/ D xb.k/C xd .k/C u0.k/C ud .k/;

xz.k/ D

�
xb.k/

xd .k/

u0.k/

�
:

(8.102)

Step 3: Design a state feedback for subsystem˙bd . A suitable controller is given
by

 
u0.k/

ud .k/

!
D xf .xbd .k// D

 
�0:625xb.x/ � 0:375xd .k/

�0:375xb.k/

!
:

Step 4: Design a state feedback controller for subsystem ˙abd . Let P0 be the
semi-stabilizing solution of the discrete-time algebraic Riccati equation

P0 D A0
0P0A0 C C 0

0C0 �A0
0P0B0.B

0
0P0B0 CD0

0D0/

B 0

0P0A0I
we have

P0 D

�
0:0000 0:0000 0:0000

0:0000 1:5390 0:3593

0:0000 0:3593 1:2396

�
:

Then choose c D 0:2 and � D 0:000004. P� is the stabilizing solution of
the algebraic Riccati equation

P� D A0
0P�A0 C C 0

0C0 C �I � A0
0P�B0.B

0
0P�B0 CD0

0D0/

B 0

0P�A0:

We have

P� D

�
0:0015 0:0021 0:0009

0:0021 1:5421 0:3607

0:0009 0:3607 1:2401

�
:

Choose the level set

V�.c/ D ˚
� 2 R3 j � 0P�� < c

�
:



486 8 Semi-global and global stabilization in admissible set

0 100 200 300 400 500 600
−5

0

5

10
Dynamic of the system in SCB form

0 100 200 300 400 500 600
−1

−0.5

0

0.5

1
Constrained output in SCB form

Figure 8.1: State feedback case

Design the low-gain feedback F� D �.B 0
0P�B0 C D0

0D0/

B 0

0P�A0,
that is

F� D
 
0:0004 0:7192 0:4794

�0:0001 0:3175 0:5450

!
:

Hence, the state feedback for ˙1 is given by
 
u0

ud

!
D
( xf .xbd /; xabd … 2V�.c/;

F�xabd ; xabd 2 2V�.c/:

Step 5: Design a state feedback controller for the entire system. Let

uc.k/ D �u0.k/� xa.k/ � xb.k/� 3
2
xc.k/ � xd .k/:

Then the controller designed in step 4 combined with this controller solves the
problem of semi-global stabilization in the admissible set for the entire system,
and we denote this controller as�

u0

uc

ud

�
D yf .xx/:

The simulation data for state feedback case is shown in Fig. 8.1.
Next, we solve the problem of semi-global stabilization in the admissible set

via measurement feedback as follows:
Steps 1 and 2 are identical to state feedback case.
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Step 3: We have
xy.k/ D xCy xx C xDy xu:

Replace the xb and xd in the controller designed for state feedback with
the observation yxb and yxd which can be directly determined from the
measurement.

Step 4: Design an observer for xa and xc . The observer is given by

�

 
yxa

yxc

!
D
 
1 0

2 2

! 
yxa

yxc

!
C
 
2 1 1 0

2 2 2 1

!
˙
xb

xd

u0

uc

�

C
 
0:75

2:25

!
Œxy1 � yxc � u0� :

Step 5: Design a measurement feedback for the entire system. Denote

yxx D

˙yxa

xb

yxc

xd

�
:

Let P0 be the semi-stabilizing solution of algebraic Riccati equation,

P0 D xA0P0
xAC xC 0

z
xCz � xA0P0

xB. xB 0P0
xB C xD0

z
xDz/


 xB 0P0
xA:

We have

P0 D

˙
0:0000 0:0000 0:0000 0:0000

0:0000 1:5390 0:0000 0:3593

0:0000 0:0000 0:0000 0:0000

0:0000 0:3593 0:0000 1:2396

�
:

Choose c D 0:2 and � D 0:000004. P� is stabilizing solution of the
algebraic Riccati equation,

P� D xA0P�
xAC xC 0

z
xCz C �I � xA0P�

xB. xB 0P�
xB C xD0

z
xDz/


 xB 0P�
xA:

We have

P� D

˙
0:0015 0:0021 0:0000 0:0009

0:0021 1:5421 0:0000 0:3608

0:0000 0:0000 0:0000 0:0000

0:0009 0:3608 0:0000 1:2401

�
:

Choose the level set

V�.c/ D ˚
� 2 R4 j � 0P�� < c

�
:
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Figure 8.2: Measurement feedback case

Design the low-gain feedback F� D �. xB 0P�
xBC xD0

z
xDz/


 xB 0P�
xA, that is,

F� D

�
0:0004 0:7192 0:0000 0:4794

0:9996 0:2808 1:0000 0:5206

�0:0001 0:3175 0:0000 0:5450

�
:

Then the following measurement feedback controller solves the problem of
semi-global stabilization in the admissible set�

u0

uc

ud

�
D
( yf .yxx/; yxx … 4

3
V�.c/

F�
yxx; yxx 2 4

3
V�.c/;

where yf is the controller designed in state feedback case. The simulation data for
measurement feedback case is shown in Fig. 8.2.

8.5.3 Discussion on semi-global stabilization in the presence
of both amplitude and rate constraints

In Sects. 8.2 (continuous-time) and 8.4 (discrete-time), we considered systems
where, in addition to amplitude constraints, we have rate constraints as well on the
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constrained output. These sections considered right-invertible systems and dealt
with semi-global stabilization in the admissible set. In the context of this section
as well, we can consider systems which are subject to both rate and amplitude
constraints on the constrained output. The issues related to this are discussed in
this subsection.

In our main results of Theorems 8.43 and 8.44, we established that guaranteeing
the fact that, for all initial conditions in the admissible set, we will still be in the
admissible set one time step later, implies that we can stay in the admissible set
forever without any constraint violations. The following example shows that this
property does not hold when we consider rate constraints.

Example 8.51 Consider the system

x.k C 1/ D

�
0 1 0

0 z̨ � ž
0 ž z̨

�
x.k/C

�
1 0

0 0

0 1

�
u;

where ž D p
1 � z̨2 with the constraints:

x1.k/ 2 Œ�1; 1�;
u2.k/ 2 Œ�"; "�;

.u1.k C 1/� u1.k// 2 Œ�ı; ı�;
and

x2
2.k/C x2

3.k/ 6 49:

We claim that for any r > 0, there exist "; z̨, and ı such that for all initial condi-
tions in the admissible set, there exists an input which does not violate constraints
in the first r steps even though there does exist an initial condition in the admis-
sible set for which we will get a constraint violation at some time k > r for any
input.

Choose z̨ so close to 1 that .x2.k/ � x2.0// 2 Œ�1; 1� for all initial conditions
with k < r . On the other hand, choose z̨ such that for x2.0/ D 7 and x3.0/ D 0,
we have x2.5r/ D 3 for u2.k/ D 0. This is clearly possible.

If u1.k/ D �x2.0/ for k D 0; : : : ; r and u2.0/ D 0, then we will not have any
constraint violation in the first r steps.

On the other hand, for initial condition x2.0/ D 7 and x3.0/ D 0, we need to
choose u1.0/ 2 Œ�8;�6�. By choosing ı small enough, we must have

u1.5r/ 2 Œ� 17
2
;�11

2
�:

On the other hand, for " small enough, we will have

x2.5r/ 2 Œ5
2
; 7

2
�
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for any choice of u2 satisfying the constraints. But then

x1.5r C 1/ 2 Œ�6;�2�;

and hence, we have a constraint violation.

The above example actually illustrates that acceptable initial conditions for the
state are directly connected to acceptable initial conditions for the input. This
connection cannot be ignored in the analysis, and hence, the approach of Theo-
rems 8.43 and 8.44 cannot be directly applied.

One specific method to overcome this problem is to define an expanded system.
Consider the system

˙ W

8
<̂

:̂

x.k C 1/ D Ax.k/C Bu.k/;

y.k/ D Cyx.k/CDyu.k/;

z.k/ D Czx.k/CDzu.k/;

(8.103)

subject to the constraint z.k/ 2 S and z.kC 1/� z.k/ 2 T for all k > 0. This is
clearly equivalent to

˙ W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

x.k C 1/ D Ax.k/C Bx1.k/;

x1.k C 1/ D x1.k/C v.k/;

y.k/ D Cyx.k/CDyx1.k/;

z.k/ D Czx.k/CDzx1.k/;

z1.k/ D Cz.A � I /x.k/C CzBx1.k/CDzv.k/;

(8.104)

provided x1.0/ D u.0/ and v.k/ D u.kC1/�u.k/. Moreover, the constraints of
the original system now convert to amplitude constraints: z.k/ 2 S and z1.k/ 2
T for all k > 0.

There are, however, two main drawbacks to this approach. First of all, if we
have right-invertible constraints, then this expansion will result in a system with
non-right-invertibleconstraints. Hence, for systems with right-invertible constraints,
the direct approach of Sects. 8.2 and 8.4 is preferable.

The second drawback of this expansion is the choice of the initial condition.
If we can avoid constraint violations for a certain initial condition x.0/ for the
system (8.103), then there exists an initial condition x1.0/ D u.0/ for the system
(8.104) such that constraint violations can be avoided. It yields conservative re-
sults if we impose semi-global stabilization in the admissible set for the expanded
system since we then suddenly need to guarantee that we can avoid constraint
violations for all initial conditions for x1.0/ in the admissible set. The above ex-
ample illustrates that this connection between the initial conditions for state and
input is intrinsic and cannot be ignored.
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8.A Global and semi-global stabilization
with constraints and `2 disturbances

In this section, we first develop a nonlinear control law satisfying the amplitude
and rate constraints that achieves globally asymptotic stabilization for an asymp-
totically null controllable system without disturbance; meanwhile, it achieves glo-
bal attractivity of the origin when an `2 disturbance is in presence. Then we de-
velop a linear control for the semi-global case which achieves a similar result.

Theorem 8.52 Consider the system

x.k C 1/ D Ax.k/C Bu.k/C Bw.k/ (8.105)

with input subject to the amplitude and rate constraints,

ku.k/k1 6 z̨; ku.k C 1/� u.k/k1 6 ž; 8 k > 0 (8.106)

for some z̨ > 0 and ž > 0. The sequence w.k/ is any disturbance in `2. Assume
that .A;B/ is stabilizable with all eigenvalues of A in the closed unit disc. Then,
there exists a static nonlinear state feedback which has the following properties:

� The constraints in (8.106) are not violated.

� In the absence of disturbance, the equilibrium point x D 0 of the closed-
loop system is globally asymptotically stable and locally exponentially sta-
ble.

� In the presence of any `2, disturbance the state x D 0 remains globally
attractive.

Proof : We first recall Lemma 4.24. For simplicity, we choose Q" D "I and we
define P" according to Lemma 4.24. We will use an adaptive-low-gain feedback
with ".x/ defined by (4.244). To simplify notation, we denote "k D ".x.k//,
Qk D Q".x.k// D "kI , andPk D P".x.k//. Following this, we define an adaptive-
low-gain control law as

u.k/ D �.B 0PkB C I /�1B 0PkAx.k/ (8.107)

and show that there exists a sufficiently small ı� > 0 such that the control law
satisfies the amplitude and rate constraints (8.106) and achieves global asymptotic
stabilization of system (8.105) when w D 0.

Let z� D minfz̨; ž=2g and choose ı� > 0 small enough so that

2
max.BB
0/ı�2 6 z�2
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Then,

ku.k/k2 D x0.k/A0PkB.B
0PkB C I /�2B 0PkAx.k/

6
			P�1=2

k
AP

1=2

k

			
max.BB
0/fx0.k/Pkx.k/ tracePkg

6 2
max.BB
0/ı�2

6 z�2 6 z̨2:

This implies that ku.k/k1 6 ku.k/k 6 z̨ for all k, i.e., the control law (8.107)
does not violate the amplitude constraint. On the other hand, the above also yields
that ku.k/k1 6 ž=2 for all k. Hence,

ku.k C 1/� u.k/k1 6 ku.k C 1/k1 C ku.k/k1 6 ž;
for all k which shows that the control law also does not violate the rate constraint
either.

Next we show that the closed-loop system is globally asymptotically stable
when w 
 0. Choose a Lyapunov function

Vk WD V.x.k// D x0.k/Pkx.k/:

The variation of Vk along the state trajectory of the closed-loop system is

VkC1 � Vk

D x0.k C 1/ŒPkC1 � Pk �x.k C 1/� "kx
0.k/x.k/ � u0.k/u.k/

C w0.k/B 0PkBw.k/ � 2u0.k/w.k/
D x0.k C 1/ŒPkC1 � Pk �x.k C 1/� "kkx.k/k2 � ku.k/Cw.k/k2

C w0.k/.B 0PkB C I /w.k/: (8.108)

When w 
 0, we get

V.x.kC1//�V.x.k// 6 �"kkx.k/k2Cx0.kC1/ŒPkC1�Pk �x.kC1/: (8.109)

Consider the following two cases:

Case 1: If ".k C 1/ 6 "k, we find by the monotonicity of P" that PkC1 6 Pk

and using (8.109) that V.x.k C 1//� V.x.k// < 0 for x.k/ ¤ 0.

Case 2: If 1 > ".k C 1/ > "k, then PkC1 > Pk and

V.x.k// tracePk D ı�2 > V.x.k C 1// tracePkC1;

which yields V.x.k C 1//� V.x.k// < 0 for x.k/ ¤ 0.

In conclusion, the control law (8.107) guarantees that V.x.kC1//�V.x.k// < 0
for x.k/ ¤ 0, which implies the global asymptotic stability. The local exponential
stability follows easily by noting that ".x.k// 
 1 if the system starts sufficiently
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close to the origin and the control law is linear and the input saturation is never
overloaded.

The global attractivity of the origin in the presence of `2 disturbance follows
from the following argument. From (8.108), we claim that if VkC1 > Vk , then

VkC1 � Vk 6 �"kkx.k/k2 C 
kw.k/k2; (8.110)

where 
 D 
maxŒB
0P1B C I � is associated with " D 1. In deriving (8.110), we

use that the scheduling defined in (4.244) guarantees that PkC1 6 Pk whenever
VkC1 > Vk . This yields

VkC1 � Vk 6 
kw.k/k2; (8.111)

for all k > 0. This inequality guarantees that, given an `2 disturbancew, the state
starting from anywhere in Rn is bounded. This implies that "k has a lower bound
"min > 0. It remains to show that the state x starting from any point in Rn is also
in `2; hence, it approaches to the origin.

First, note that if the initial state is sufficiently close to the origin, say kx.0/k 6
r0 for some r0 > 0 small enough, and the disturbance is bounded by kw.k/k 6
d0, then for sufficiently small d0 the amplitude and rate constraints (8.106) will
not be violated, and the closed-loop system is linear and exponentially stable.
Hence, x.k/ 2 `2.

Now, let d 2
0 < "minr0=
. We show that for any initial state x.0/ 2 Rn and

any disturbance w 2 `2, there exists a K > 0 such that kx.K/k 6 r0 and
kw.k/k 6 d0 for all k > K . Since w is vanishing, there exists aK1 > 0 such that
kw.k/k 6 d0 for all k > K1. On the other hand, if kx.k/k > r0 and VkC1 > Vk

for some k > K1, then from (8.110), we have

VkC1 � Vk 6 �"kkx.k/k2 C 
kw.k/k2 < �"minr0 C 
d0 < 0

for k > K1. This contradiction yields that either kx.k/k 6 r0 or VkC1 < Vk . For
the former case, we are done. For the latter case, there exists a K > K1 such that
kx.K/k 6 r0. In conclusion, there exists a K > 0 such that kx.K/k 6 r0. This
shows the global attractivity.

Theorem 8.53 Consider the system (8.105) with input subject to the amplitude
and rate constraints (8.106). Assume the same condition as stated in Theorem 8.52.
Then, given any compact set K in the state space and any D > 0 there exists a
linear state feedback which has the following properties:

� The constraints in (8.106) are not violated.

� In the absence of disturbance, the equilibrium point x D 0 of the closed-
loop system is asymptotically stable with K contained in the region of
attraction.
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� In the presence of any `2 disturbance satisfying kwk`2
6 D, the state

x D 0 remains attractive.

Proof : The proof of this theorem is easily adapted from the proof of Theo-
rem 8.52. Since we are dealing with semi-global stabilization, we can fix " to be
a constant, instead of being state dependent. Let V.x/ D x0P"x be the Lyapunov
function and LV .c/ WD fx W x0P"x 6 cg be the level set. Choose a sufficiently
small " 2 .0; 1� so that

2
D2 traceP" 6 ı�2 and K � LV .
D
2/

where the constants 
 and ı� are defined in the proof of Theorem 8.52. Following
this choice of ", we claim that the level setLV .2
D

2/ is an invariant set for trajec-
tories starting from any point in K and any disturbancew satisfying kwk`2

6 D.
This claim follows easily from the inequality (8.110) which holds for all k > 0

when " is fixed. The rest of the proof follows similar to the global case.

8.B Completion to the proof of Theorem 8.35

Lemma 8.54 Consider the following system

x.k C 1/ D Ax.k/C 
kGx.k/

where A is Schur stable and j
j < 1. Then, for all x.0/ 2 Rn there exists a � > 0
such that

kx.k/k 6 �kx.0/k
for all k > 0.

Proof : Since A is Schur stable, there exists a positive definite matrix P > 0 such
that A0PA � P D �I . Let V.x/ D x0Px and denote Vk D V.x.k//. Then

VkC1 � Vk D �x0.k/x.k/C 2
kx0.k/G0PAx.k/C 
2kx0.k/G0PGx.k/

6 2j
jk �x0.k/A0PAx.k/
�1=2 �

x0.k/G0PGx.k/
�1=2

C j
j2kx0.k/G0PGx.k/

6 .2 ž1=2j
jk C žj
j2k/Vk

6 c0j
jkVk ;

where we have used

x0.k/A0PAx.k/ 6 x0.k/Px.k/; ž D 
max.G
0PG/=
min.P /;
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and c0 D 2 ž1=2 C ž. It follows that

VkC1 6 .1C c0j
jk/Vk 6 exp
n
c0j
jk

o
Vk:

Thus,
k�1Y

iD0

ViC1

Vi

6 exp

( 1X

kD0

c0j
jk
)
;

i.e.,

Vk 6 exp

( 1X

kD0

c0j
jk
)
V0

for all k > 0. Hence the lemma follows.

Completion to the Proof of Theorem 8.35 : Note that the feedback f .xa/ as
constructed in Appendix 8.A is globally Lipschitz and locally linear. Let r > 0

be sufficiently small and let f .xa/ D �Faxa for kxak 6 r . As we shall see
later, we can choose the initial conditions sufficiently small to guarantee that the
trajectory of xa remains in this ball. The construction of f .xa/ guarantees that
zAaa WD Aaa � KaFa is Schur stable. We decompose Fa D �

F 0
a0; F

0
ad

�0
and

continue by writing out the first subsystem:

xa.k C 1/ D Aaaxa.k/CKaf .xa.k//CKav.k/

D .Aaa �KaFa/xa.k/CKa

 
v0

vd

!

D zAaaxa.k/CKa

 
0


kxd .0/� 
kfd .xa.k//

!

D zAaaxa.k/C 
kKa

 
0

xd .0/

!
C 
kKa

 
0

Fad

!
xa.k/:

This system is equivalent to the following dynamics:
 
xa.k C 1/

�.k C 1/

!
D
 zAaa I

0 
I

! 
xa.k/

�.k/

!
C 
kG

 
xa.k/

�.k/

!
;

where

�.0/ D Ka

 
0

xd .0/

!
and G D

�
Ka

 
0

Fad

!
0

0 0

�
:

Applying Lemma 8.54, there exist � > 0 and �1 > 0 such that

kxa.k/k 6 k
�
xa.k/

0 �.k/0
�0k 6 �k

�
xa.0/

0 �.0/0
�0k

6 �1.kxa.0/k C kxd .0/k:





9
Semi-global stabilization
in the recoverable region: properties
and computation of recoverable
regions

9.1 Introduction

As in Chap. 8, we consider in this chapter constraints on state as well as input
variables. As discussed in detail in Chap. 8, if the given system has at least one
of the constraint invariant zeros in the open right-half plane (continuous time) or
outside the unit disc (discrete time), that is, if it has non-minimum-phase con-
straints, then neither semi-global nor global stabilization in the admissible set
is possible. Thus, whenever we have non-minimum-phase constraints, the semi-
global stabilization is possible only in a certain proper subset of the admissible
set. This gives rise to the notion of a recoverable region (set), sometimes also
called the domain of null controllability or null controllable region. Generally
speaking, for a system with constraints, an initial state is said to be recoverable
if it can be driven to zero by some control without violating the constraints on
the state and input. We can appropriately term the set of all recoverable initial
conditions as the recoverable region. The recoverable region is thus indeed the
maximum achievable domain of attraction in stabilizing linear systems subject
to non-minimum-phase constraints. The goal of stabilization is to design a feed-
back, say u D f .x/, such that the constraints are not violated and moreover the
region of attraction of the equilibrium point of the closed-loop system is equal to
the recoverable region or an arbitrarily large subset contained within the recover-
able region. Such a stabilization is termed as the semi-global stabilization in the
recoverable region, and this is what we pursue in this chapter.

Our goals in this chapter are twofold. At first, we explore the properties and
computational issues in constructing the recoverable region for a given constraint
set by exploiting the structure of the given system. In this regard, we develop
a method that lessens the computational complexity involved in obtaining the
recoverable region. Our next goal, in accordance with the theme of this book, is
to solve the problem of semi-global stabilization in the recoverable region via state
feedback. Finally, we will briefly comment on the issues related to measurement
feedback.

This chapter is based on our work in [167, 197].

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__9,
© Springer Science+Business Media New York 2012
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9.2 Preliminaries

We start with a description of our system model˙ as given in (7.1) and an ampli-
tude constraint set S that satisfies Assumption 7.4. Throughout this chapter, we
assume that the rate constraint set T D Rp , i.e., there are no rate constraints. We
define the admissible set of initial conditions as in Definition 7.5, however, with
a slightly different notation to indicate its dependence on the given system ˙ and
the constraint set S . We repeat this definition as follows:

Definition 9.1 Consider the system ˙ in (7.1) along with a constraint set S that
satisfies Assumption 7.4. Then, the set

V.˙;S/ WD fx 2 Rn j 9u 2 Rm such that Czx CDzu 2 Sg
is said to be the admissible set of initial conditions.

Remark 9.2 In view of Remark 7.7, we observe that the admissible set V.˙;S/

can be equivalently written as

V.˙;S/ WD f x 2 Rn j Czx 2 Sg :

In Chap. 8, we looked at the semi-global case for conditions when for all com-
pact sets W in the interior of admissible set V.˙;S/, there exists a controller
which avoids constraint violation for all time and for all initial conditions in W

while, additionally, guaranteeing that the state converges to zero. This is clearly
not always possible when we have non-minimum-phase constraints. Hence, we
define next what is known as a recoverable region or set R.˙;S/ as the largest
set of initial conditions for which we can avoid constraint violation while steering
the state to the origin.

Definition 9.3 Consider the system ˙ in (7.1) along with a constraint set S that
satisfies Assumption 7.4. Then, the recoverable region R.˙;S/ of this system is
the set of all initial states x.0/ 2 V.˙;S/ for which there exists a control input
u such that x.t/ ! 0 as t ! 1 while z.t/ 2 S for all t > 0 (continuous time)
or such that x.k/ ! 0 as k ! 1 while z.k/ 2 S for all k > 0 (discrete time).

As we said in introduction, our goals in this chapter are twofold. At first, we
explore the properties and computational issues in constructing the recoverable
region R.˙;S/ for a given system ˙ and for a given constraint set S by exploit-
ing the structure of˙ . Then, we solve the problem of semi-global stabilization in
the recoverable region via state feedback.

We have the following problem statement which expresses formally our goal
of examining the properties and computational issues associated with R.˙;S/.
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Problem 9.4 For a given system ˙ as in (7.1) along with the constraint set S

satisfying Assumption 7.4, examine the properties of R.˙;S/ and then explore
the computational issues in constructing the recoverable region R.˙;S/.

We have the following problem statement which expresses formally our goal of
solving via state feedback the semi-global stabilization problem in the recoverable
region R.˙;S/.

Problem 9.5 Consider the system (7.1) with the constraint set S satisfying As-
sumption 7.4. The semi-global stabilization problem in the recoverable region
R.˙;S/ is to find a family of static, possibly time varying, state feedbacks such
that for any a priori given compact set W contained in the recoverable region
R.˙;S/, there exists a feedback in this family such that the closed-loop system
is asymptotically stable with a domain of attraction containing W in its interior
and such that all the constraints are satisfied, i.e., z.�/ 2 S for all � > 0 provided
x.0/ 2 W .

9.3 Properties and computational issues of the
recoverable region

Before we proceed to discuss the properties and computational issues of the re-
coverable region, it is appropriate to review briefly the existing literature. The
earliest literature on recoverable regions can be traced back to the 1960s. For the
case of input constraints, J. L. LeMay in 1964 first studied the conditions for
characterizing the maximal region of recoverability and the maximal region of
reachability [66]. LeMay also derived a method for calculation of a recoverable
region R.˙;S/ based on optimal control techniques. It is known that for any state
in the recoverable region, there exists a time-optimal control law that drives the
state to zero. This fact builds a direct connection between the characterization of
the recoverable region and time-optimal control. There exists a vast literature in
the 1960s and 1970s that were devoted to time-optimal control, among them we
mention [36, 39, 65, 114]. Ryan [121] presented a set of very detailed results of
time-optimal control of systems with input constraints whose number of unstable
eigenvalues is between one and four. He also provided some results for explicit
characterization of the recoverable region R.˙;S/, including:

� Systems with one or two unstable real eigenvalues.

� Systems with two unstable complex eigenvalues.

� Systems with three unstable eigenvalues which are proportional,
.�; 2�; 3�/, where � > 0.
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� Some systems with four unstable poles can be reduced to systems with
lower order unstable dynamics.

Note that the above results depend crucially on the fact that, in the case of only in-
put constraints, the recoverable region R.˙;S/ is completely determined by the
unstable dynamics. Stephan et al. extended some of LeMay’s results to systems
with input and state constraints [158, 159]. They examined computational issues
of the recoverable regions for planar systems with state and input constraints.
However, their work does not exploit the structure of a given system in order to
reduce the computational burden. Recently, we studied the properties of the re-
coverable regions and then eased the computational burden in constructing them
whenever there are constraints both on state and control variables for systems sub-
ject to non-minimum-phase constraints. We did so first for continuous-time sys-
tems in [167] and then for discrete-time systems in [197]. Unlike previous work,
we explicitly exploit the structure of the given system to develop our results both
for constructing the recoverable regions and for semi-global stabilization in the
recoverable region. The results presented in this section are based on our work in
[167] and [197].

Having reviewed the literature briefly, let us next observe an important point
regarding our goal of exploring the properties and computational issues in con-
structing the recoverable region R.˙;S/. Since the computation of the admis-
sible set of initial conditions V.˙;S/ is relatively trivial, we can enquire under
what conditions the recoverable region R.˙;S/ coincides with the admissible
set of initial conditions V.˙;S/. It is transparent from Chap. 8 that R.˙;S/ co-
incides with V.˙;S/ whenever the constraints are at most weakly non-minimum
phase and right invertible. This property also holds for non-right-invertible con-
straints under certain conditions. However, whenever the constraints are strongly
non-minimum phase, irrespective of whether they are right or non-right-invertible
constraints, the recoverable region R.˙;S/ is always a proper subset of the ad-
missible set of initial conditions V.˙;S/. In this section, our main interest is
indeed to reduce the complexity in computing the recoverable region R.˙;S/

whenever the constraints are strongly non-minimum phase. We emphasize that
such a construction is very involved, whereas the construction of the admissible
set of initial conditions V.˙;S/ is quite straightforward. In order to reduce the
complexities involved in the computation of R.˙;S/, as we said earlier, we ex-
ploit here the structural properties of the given system. In fact, by exploiting the
structural properties, the recoverable region R.˙;S/ for a given system is con-
structed by constructing the same, however, for a reduced order subsystem of the
given system. Such a reduction in the order or dimension of the system generally
leads to a considerable simplification in the computational effort. One appreciates
the reduction in the order of a system, when we note that in the literature so far, the
recoverable region R.˙;S/ is constructed at the most for fourth-order systems.

Following the papers [167] and [197], we present below our results in two sub-
sections, one for continuous-time systems and the other for discrete-time systems.
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9.3.1 Continuous-time systems

For continuous-time systems, our goal in this subsection is to show how to re-
duce the complexities involved in computing the recoverable region R.˙;S/ by
utilizing the structural properties of the given system.

The first set of properties of the recoverable region R.˙;S/ is more or less
well known. They are compiled in the following lemma for easy reference.

Lemma 9.6 Consider the system˙ in (7.1) and a compact, convex constraint set
S containing 0 in the interior. The recoverable region R.˙;S/ for this system
has the following properties:

(i) If .A;B/ is controllable, then for any initial x.0/ 2 R.˙;S/, there exist a
T > 0 and an input signal u such that x.T / D 0 while z.t/ 2 S for all
t 2 Œ0; T �.

(ii) The set R.˙;S/ is convex and contains the origin as an interior point.

(iii) If .A;B/ is stabilizable, then the set R.˙;S/ is open in case we have only
input constraints, i.e., Cz D 0, but in general, this need not be true.

(iv) The set R.˙;S/ is bounded if all the invariant zeros of the system (7.1) are
in the open right half plane, the system is left invertible, and the constraints
are of type one.

Proof : See Appendix 9.A.

Remark 9.7 Note that item (i) of the above lemma states that infinite-time recov-
erability is equivalent to finite-time recoverability, i.e., if we can bring the state to
zero asymptotically without violating our constraints, then we can also bring the
state to zero in finite time again without violating our constraints.

Remark 9.8 As is clear from the example to be presented later on, the recover-
able region is in general not a polytope. Of course, like any set, it can be arbitrar-
ily well approximated by a polytope.

Remark 9.9 Assume that Cz D 0 and Dz D I in (7.1), i.e., the system is only
subject to input constraints and does not have any state constraints. Then, under
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a suitable coordinate system in the state space, the system can be split into two
subsystems:

˙s W Txs D Asxs C Bsu;

˙u W Txu D Auxu CBuu;

where the eigenvalues of As are in the closed left half plane (at most critically
unstable) and those of Au are in the open right half plane (antistable). Then it
was already established in [66] that:

(i) R.˙u;S/ is bounded.

(ii) x 2 R.˙;S/ if and only if xu 2 R.˙u;S/.

The fact stated above tells us that, without state constraints, the recoverable re-
gion is completely determined by the exponentially unstable part of the system. On
the other hand, for the case of state constraints, this decomposition is no longer
possible. Later in this subsection, we show that, in general, a different type of
order reduction is possible of which the above is actually a special case.

Next, we present our first reduction result for the set R.˙;S/. For this purpose,
we first express the system in terms of the SCB which explicitly depicts both the
finite and infinite zero structure of a given system. The SCB given in Chap. 3
is rewritten here, indicating the exact notation that is used in this subsection. As
usual, choose appropriate coordinates in the state, input, and output spaces

x D Tx xx; u D Tu xuC xFx; z D Tz xz;
where Tx , Tu, and Tz are transformation matrices and xF is a preliminary feedback
which will make the structure of the system more visible. With this objective, we
also use the following decomposition for the state, output, and input of the system:

xx D

˙
xa

xb

xc

xd

�
; xz D

 
zb

�

!
; � D

 
z0

zd

!
and xu D

�
u0

uc

ud

�
;

after which the system (7.1) takes the form

ẋ W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

Txa D Aaaxa CKabzb CKa2�;

Txb D Abbxb CKbbzb CKb2�;

Txc D Accxc CBcuc CKcbzb CKc2�;

Txd D Addxd C Bdud CKdbzb CKd2�;

xz D
 
zb

�

!
D

�
Cbxb

u0

Cdxd

�
:

(9.1)
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Furthermore, the xa equation can be decomposed as

Tx�0
a D A�0

aa x
�0
a CK�0

ab Cbxb CK�0
a2 �;

TxC
a D AC

aax
C
a CKC

ab
Cbxb CKC

a2�;

where

xa D
 
x�0

a

xC
a

!
; Aaa D

 
A�0

aa 0

0 AC
aa

!
;

Kab D
 
K�0

ab

KC
ab

!
; Ka2 D

 
K�0

a2

KC
a2

!
;

with all the eigenvalues ofA�0
aa in the closed left-half plane and all the eigenvalues

of AC
aa in the open right-half plane.

From the full system in the SCB form, we can extract a subsystem consisting
of the state variables xa and xb , input variable � consisting of z0 and zd , and
output xz:

˙1 W

8
ˆ̂̂
<

ˆ̂̂
:

Txa D Aaaxa CKabCbxb CKa2�;

Txb D .Abb CKbbCb/ xb CKb2�;

xz D
 
Cb

0

!
xb C

 
0

I

!
�:

(9.2)

The state dimension of this system equals na C nb . Obviously, � is not an input
of the original system. However, for the moment we view � as the input to this
subsystem while xz is a constrained output for this subsystem. A transformation of
the system into the SCB form clearly affects the constraint set, and we obtain a
new constraint set xS D T �1

z S . Thus, the constraint on xz becomes

xz.t/ 2 xS for all t > 0:

Let R.˙1; xS/ be the recoverable region of subsystem ˙1 with the constraint set
xS . The following theorem shows the relationship between the recoverable region
of the full system ˙ and the recoverable region of the subsystem ˙1.

Theorem 9.10 Consider the system ˙ in (7.1) along with a constraint set S that
satisfies Assumption 7.4. Assume that we have extracted the subsystem˙1 in (9.2)
from ˙ as described above. Then the closure of the set R.˙;S/ is equal to

Tx

(  
x1

x2

! ˇ̌
ˇ̌
ˇ x1 2 R.˙1; xS/

)
\ V.˙;S/; (9.3)

where x2 is of compatible dimension, i.e., x2 2 RncCnd , and the bar denotes the
closure of the set.
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In (9.3), x1 is the state of ˙1 consisting of xa and xb , while x2 is the rest of
the state variables of the system ˙ which, in the SCB form, is composed of xc

and xd .

Remark 9.11 If R.˙1; xS/ is approximated by a polytope consisting of all x 2
RnaCnb for which R1x 6 q1 while S is described by all z 2 Rp for which
Rz 6 q, then R.˙;S/ is approximated by the set of all x 2 Rn for which

 
RCz�

R1 0
�
T �1

x

!
x 6

 
q

q1

!
:

By improving the approximation of R.˙1; xS/, we can approximate R.˙;S/ ar-
bitrarily well in this way.

The decomposition of the recoverable region as presented in Theorem 9.10 is
therefore very important from a computational point of view. Although it does
not capture which boundary points of the recoverable region are actually part
of the recoverable region itself, by approximating or exactly computing the set
R.˙1; xS/, we immediately obtain with arbitrary accuracy the set R.˙;S/.

As pointed out in [159], numerical computation of recoverable regions suffers
from dimension growth. Papers such as [211] try to improve the gridding meth-
ods, but the exponential growth with dimension is not avoided. In this sense, any
reduction of dimension in the computation of the recoverable region is crucial for
improvement of computation efficiency. The above method allows us to obtain the
recoverable set for the system ˙ from the recoverable set of a lower-dimensional
system in a transparent way. Note that the transformation into the SCB and the
computations of the transformation matrices (in particular Tx) have been imple-
mented in Matlab and Maple and work very well on numerous examples.

Proof : It is obvious that R.˙;S/ is contained in V.˙;S/. Moreover, assum-
ing that in the first subsystem we have � as a free input, we clearly enlarge the
recoverable set. The reverse inclusion follows from the proof of Theorem 9.18
(developed later on) since there we prove that for any compact set contained in
the interior of (9.3), we can find a controller which contains this compact set in
its constrained domain of attraction.

Let us next have a different look at the structure of the system ˙ which will
provide some interesting results for special cases. To do so, we need to define
another subsystem. Consider the remaining dynamics in the system˙ besides the
subsystem˙1. We consider the system in its SCB form, and we get the following
description for the dynamics which together with ˙1 describes the full system:

˙2 W

8
ˆ̂̂
<

ˆ̂̂
:

Txc D Accxc CKc2� C Bcuc CKcbzb ;

Txd D Addxd CKd2� C Bdud CKdbzb ;

� D
 
0

Cd

!
xd C

 
I

0

!
u0:

(9.4)
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Note that ˙2 is only affected by ˙1 via the signal zb . When we set zb D 0,
then we decouple˙2 from˙1, and when we also ignore the constraints on zb by
setting

S2 WD
(
� 2 Rn2 j 9 zb such that

 
zb

�

!
2 xS

)

and view S2 as the constraint set for˙2, we obtain an independent system˙2. In
this way, we define the recoverable region R.˙2;S2/ for the second subsystem.

The following theorem establishes the recoverable set of the second subsystem
˙2 and shows conditions under which we can completely characterize the recov-
erable set of the original system from the recoverable set of the subsystem ˙1.
Theorem 9.10 did not capture which boundary points belong to the recoverable
set and the following theorem does this explicitly for a special case.

Theorem 9.12 Consider the system ˙ in (7.1) along with a constraint set S that
satisfies Assumption 7.4. Assume that the system˙ has been decomposed into two
subsystems in SCB as described by (9.2) and (9.4). Then we have the following
properties:

(i) It holds that R.˙2;S2/ D V.˙2;S2/.

(ii) If the constraints are right invertible, then S2 D xS .

(iii) If the constraints are right invertible and of type one, then R.˙2;S2/ D
V.˙2;S2/, and

R.˙;S/ D Tx

�
R.˙1; xS/ � V.˙2;S2/

�
: (9.5)

Proof : The first property is evident from the fact that the system˙2 has a special
structure as constructed within the SCB. It is strongly controllable which yields
that we can make � follow any trajectory with arbitrary accuracy and therefore any
initial state that is admissible at time 0 can be steered to zero without violating
any constraints. For details, we refer to the semi-global stabilization results in
Chap. 8. The last two properties also follow easily from Chap. 8.

We have achieved a reduction from computing the recoverable region for the
system ˙ to the computation of the recoverable region for the subsystem ˙1. As
noted before, a reduction in system order is crucial in making the computation
of the recoverable region feasible. The question remains whether we can achieve
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further reductions. In SCB, the matrixAaa is in fact a block diagonal matrix. With
this one more step of refining, subsystem ˙1 becomes:

˙1 W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Tx�0
a D A�0

aax
�0
a CK�0

ab
Cbxb CK�0

a2 �;

TxC
a D AC

aax
C
a CKC

ab
Cbxb CKC

a2�;

Txb D .Abb CKbbCb/ xb CKb2�;

xz D
 
Cb

0

!
xb C

 
0

I

!
�:

(9.6)

Note that the eigenvalues of A�0
aa and AC

aa are in the closed left-half plane and
open right-half plane, respectively. We extract a subsystem from ˙1:

ẋ
1 W

8
ˆ̂̂
<

ˆ̂̂
:

TxC
a D AC

aax
C
a CKC

ab
Cbxb CKC

a2�;

Txb D .Abb CKbbCb/ xb CKb2�;

xz D
 
Cb

0

!
xb C

 
0

I

!
�;

(9.7)

with state dimension nC
a C nb . We can relate the recoverable region of ˙1 to

the recoverable region of ẋ
1, and then, using Theorem 9.10, we can relate the

recoverable region of ˙ to the recoverable region of ẋ
1.

Theorem 9.13 Consider the system ˙ in (7.1) along with a constraint set S that
satisfies Assumption 7.4. Define ˙1 by (9.2) and ẋ

1 by (9.7). We have:

R.˙1; xS/ D Rn�0
a � R. ẋ

1; xS/; (9.8)

and the closure of R.˙;S/ is given by

Tx

8
<̂

:̂

�
x1

x2

x3

� ˇ̌
ˇ̌
ˇ̌
ˇ
x2 2 R. ẋ

1; xS/

9
>=

>;
\ V.˙;S/; (9.9)

where x1 and x3 are of compatible dimension, i.e., x1 2 Rn�0
a and x3 2 RncCnd .

Using the decompositions from the SCB we have in the above that x1 is equal
to x�0

a , x2 denotes the variables of ẋ
1 consisting of xC

a and xb , while x3 is
composed of xc and xd .

Proof : See Appendix 9.B.

Remark 9.14 Again, as with Theorem 9.10, the above theorem does not capture
the boundary points of the recoverable set. However, if R. ẋ

1; xS/ is approximated
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by a polytope R2x 6 q2 while S is described by Rz 6 q, then R.˙;S/ is
approximated by

 
RCz�

0 R2 0
�
T �1

x

!
x 6

 
q

q2

!
:

By improving the approximation of R. ẋ
1; xS/, we can approximate R.˙;S/ ar-

bitrarily well in this way.
Since the transformation into SCB and the associated computation of Tx is

already implemented in Matlab and Maple, the remaining problem is the compu-
tation or approximation of R. ẋ

1; xS/.
If the constraint is right invertible and at most weakly non-minimum phase,

then ẋ
1 is actually an empty (zero-dimensional) system, and we have

R.˙1; xS/ D Rna ;

and the closure of R.˙;S/ is equal to the admissible set. If this subsystem ẋ
1

has dimension two or less, the tools from the book by Ryan [121] can be used.
Otherwise, gridding tools are needed as mentioned in Remark 9.11.

Note that the reduction of the computation of the recoverable region from˙ to
the computation of the recoverable region for the lower order system ẋ

1 actually
yields the result in Remark 9.9 as a special case.

9.3.2 Discrete-time systems

As in the previous subsection that pertains to continuous-time systems, our goal
in this subsection, while considering discrete-time systems, is to show how to
reduce the complexities involved in computing the recoverable region R.˙;S/

by utilizing the structural properties of the given system. For this purpose, as in
the case of continuous-time systems, we first express the given system in terms of
its SCB as given in (9.1).

As before, such a SCB allows us to decompose the system ẋ into certain sub-
systems. In order to characterize the recoverable region efficiently, we can extract
the first subsystem ˙aCb from ẋ as

˙aCb W

8
ˆ̂̂
<

ˆ̂̂
:

�xC
a D AC

aax
C
a CKC

ab
Cbxb CKC

a2�

�xb D .Abb CKbbCb/xb CKb2�

xz D
 
Cb

0

!
xb C

 
0

I

!
�;

(9.10)

where AC
aa has all its eigenvalues outside the closed unit disc and � is as defined

in (9.2).
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We also make extensive use of the following subsystem ˙aCbd of the original
system:

˙aCbd W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�xC
a D AC

aax
C
a CKC

ab
Cbxb CKC

a2�

�xb D .Abb CKbbCb/xb CKb2�

�xd D Addxd C Bd Œud CGxx�CKd xz
� D

 
0

Cd

!
xd C

 
I

0

!
u0

xz D
 
Cb

0

!
xb C

 
0

I

!
�:

(9.11)

We note that G and Kd can be appropriately defined from (9.1). In ˙aCbd , we
define

zud D ud CGxx and zu D
 
u0

zud

!
:

Let R.˙aCbd ;
xS/ denote the recoverable region of subsystem ˙aCbd with input

zu where, as in the continuous-time case, xS D T �1
z S is the new constraint set

when the given system is in the SCB form.
We claim that we can compute the recoverable region for the full system from

the recoverable region for the subsystem ˙aCb . We define

Vq. ẋ ; xS/ D ˚ xx 2 Rn j xaCb 2 R.˙aCb;
xS/ � ;

where q is an integer chosen larger than the maximum order of infinite zeros of
the system. Next, we define the following recursion:

Vk. ẋ ; xS/ D ˚ xx 2 Rn j 9xu such that xAxx C xBxu 2 VkC1. ẋ ; xS/ and

xCz xx C xDz xu 2 xS � (9.12)

for k D q � 1; : : : ; 0. In the above equation, the matrices ( xA, xB , xCz , xDz) are the
system matrices of the SCB of the given system. Our first main result claims that
V0 leads to the recoverable region for the original system.

Theorem 9.15 Consider the system ˙ as given in (7.1) along with a constraint
set S that satisfies Assumption 7.4. We have

R.˙;S/ D T �1
x R. ẋ ; xS/ D T �1

x V0. ẋ ; xS/:

Remark 9.16 A special case of the above theorem is obtained when the system
˙ is right invertible and at most weakly non-minimum phase since in that case
the system ˙aCb is empty and we obtain

Vq. ẋ ; xS/ D Rn;
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in which case we can obtain the recoverable region through a finite recursion.
In general, however, the above theorem results only in a reduction of complexity
since we need to obtain the recoverable region only for a system of lower dimen-
sion. However, note this is crucial since the classical results for computation of
the recoverable region, such as the results in Ryan’s book [121], consider only
the cases n D 2 and n D 3. This is primarily because with growing dimension
the required computational effort grows dramatically.

Proof : In order to prove Theorem 9.15, we need some preparatory work. Con-
sider the recursive definition of Vk.˙; xS/ for 0 6 k 6 q. We define

zVq.˙aCbd ;
xS/ WD ˚

xaCbd j xaCb 2 R.˙aCb;
xS/ � ;

and

zVk.˙aCbd ;
xS/ D

n
xaCbd j 9zu such that zC0xaCbd C zD0 zu 2 xS

and zA0xaCbd C zB0 zu 2 VkC1.˙aCbd ;
xS/
o
;

where

zA0 D

�
AC

aa KC
ab
Cb KC

ad
Cd

0 Abb CKbbCb KbdCd

0 KdbCb Add

�
, zB0 D

�
BC

a0 0

Bb0 0

Bd0 Bd

�
;

zC0 D

�
0 Cb 0

0 0 Cd

0 0 0

�
; zD0 D

�
0 0

0 0

I 0

�
; zu D

 
u0

zud

!
:

We have the relationship

Vk. ẋ; xS/ D Rn0�
a � zVk.˙aCbd ;

xS/ � Rnc (9.13)

for k D 0; : : : ; q. This relationship between Vk. ẋ ; xS/ and zVk.˙aCbd ;
xS/ for

0 6 k 6 q results from the fact that the relationship is obviously true for k D q,
while for k < q, we note that the dynamics of x0�

a and xc do not impact the
constraints directly as shown by the structure of the SCB.

It can be easily verified that Vk. ẋ ; xS/ defined in (9.12) can be characterized as

Vk. ẋ ; xS/ D ˚ xx.k/ j 9xu such that xz.i/ 2 xS for i D k; : : : ; q

and x.q/ 2 Vq. ẋ ; xS/� : (9.14)
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Similarly, zVk.˙aCbd ;
xS/ is given by

zVk.˙aCbd ;
xS/ WD ˚

xaCbd .k/ j 9zu such that xz.i/ 2 xS
for i D k; : : : ; q and xaCbd .q/ 2 zVq.˙aCbd ;

xS/
o
: (9.15)

As a first step in the proof of Theorem 9.15, the next lemma shows that the set
zV0. ẋ

aCbd ;
xS/ is the recoverable region of the system ˙aCbd .

Lemma 9.17 Consider the system given by (9.11) with a constraint set xS satisfy-
ing Assumption 7.4. We have

R.˙aCbd ;
xS/ D zV0.˙aCbd ;

xS/:

Proof : We will show at first that

R.˙aCbd ;
xS/ � zV0.˙aCbd ;

xS/: (9.16)

Suppose xaCbd .0/ 2 R.˙aCbd ;
xS/. By definition, we know that there exists a

zu such that xaCbd .k/ ! 0 as k ! 1 and xz.k/ 2 xS for all k > 0, which implies
that, for subsystem˙aCb , there exists a sequence � such that xaCb.k/ approaches
zero as k goes to infinity. This means that xaCb.q/ 2 R.˙aCb;

xS/. Hence, we
have xaCbd .q/ 2 zVq.˙aCbd ;

xS/. The fact that xaCbd .k/ 2 zVk.˙aCbd ;
xS/ for

0 6 k 6 q � 1 follows then directly from (9.15) since we have no constraint
violation in the interval Œ0; q�. This concludes xaCbd .0/ 2 zV0.˙aCbd ;

xS/.
The next step is to show that

zV0.˙aCbd ;
xS/ � R.˙aCbd ;

xS/: (9.17)

Suppose xaCbd .0/ 2 zV0.˙aCbd ;
xS/ and define xd0 D xd .0/. From the definition

of zV0.˙aCbd ;
xS/, there exists a control input zu.k/, say, zu1.k/, for 0 6 k 6 q,

such that xaCbd .q/ 2 zVq.˙aCbd ;
xS/ and no constraint violation occurs within

the first q � 1 steps. This implies that there exists a �.k/ from 0 to q such that
xaCb.q/ 2 R.˙aCb;

xS/ and the constraints are not violated. From time q onward,
since xaCb.q/ 2 R.˙aCb;

xS/, there exists an input �.k/ for k > q that steers
xaCb.k/ to zero and causes no constraint violation.

In this way, we find a signal �.k/ for all k. Clearly, we can generate this �.k/
via a suitable input zu.k/, say, zu2.k/, for k > 0 together with an appropriate
initial condition zxd0 because the xd dynamics with inputs u0 and zud and output
� is right invertible by construction.

Next, we note that xd0 and inputs zu1.k/ also generate the same �.k/ for k D
0; : : : ; q. The special structure of xd dynamics guarantees that the initial condi-
tions xd0 and zxd0 must be the same since they result in the same output �.k/ for an
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interval at least as long as the order of the infinite zeros. The structure guarantees
this even though the associated inputs might be different. We conclude that for
our initial conditions, there exist inputs which generate the signal �.k/ for all k.

We have noted before that this signal � is such that no constraint violations
will occur. It remains to show that xaCbd .k/ ! 0 from time q onward. As noted
earlier, this signal �.k/ is such that xaCb.k/ ! 0 as k ! 1, which also implies
that �.k/ ! 0 as k ! 1. Again, the structure of xd dynamics guarantees that
xd also approaches zero as k ! 1.

Hence, we can find an input zu.k/ for all k > 0 such that

lim
k!1

xaCbd .k/ D 0;

and no constraint violation occurs.

Now we proceed to prove Theorem 9.15. It is obvious from Lemma 9.17 and
(9.13) that

V0. ẋ ; xS/ D Rn0�
a � R.˙aCbd ;

xS/ � Rnc :

Then, clearly, this implies that

R. ẋ; xS/ � V0. ẋ ; xS/:
It remains to prove the converse inclusion. This will be shown through an explicit
controller design as presented later in the proof of Theorem 9.24.

9.4 Semi-global stabilization in the recoverable region

The first objective of this chapter is the reduction in the computation of the re-
coverable region as outlined in the previous section. The second objective of this
chapter is to solve the semi-global stabilization problem (as stated in Problem 9.5)
in the recoverable region by state feedback controllers. That is, our intention here
is to show that semi-global stabilization can be achieved by a state feedback con-
troller without violating the constraints for any compact subset W contained in
the interior of R.˙;S/.

Before we proceed further, it is appropriate to mention that there are two lines
of research in the literature on stabilization problems in the presence of non-
minimum-phase constraints:

� A traditional line employs the construction of invariant sets. A common
denominator in the stream of literature taking this approach is the idea of
seeking a control law that does not violate the constraints posed on actuators
and at the same time makes a subset of the admissible set invariant. Subsets
of the admissible set which can be made invariant in this way are called
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positive invariant sets. Two candidate positively invariant sets widely used
in the literature are ellipsoidal sets and polyhedral sets. Ellipsoidal sets
are classical in control theory; however, they suffer from conservativeness
in the approximation of the recoverable region. More recently, polyhedral
sets have received great attention (see, e.g., [9, 11, 12, 30, 187], among
others). In principle, polyhedral sets are not intrinsically conservative but
this might require an exponential growth in the number of edges with the
related exponential growth in the required numerical effort. For a detailed
perspective in this line of research, the reader should consult the excellent
review in [10]. Further information in this regard can be found in two survey
papers [33, 41].

� The second line of research takes a fundamental view of global and semi-
global stabilization relative to the recoverable region and follows the line
of thought that has been described in previous chapters. Thus, in global
stabilization problem, one would seek a stabilizing feedback law that does
not violate the constraints posed and achieves a domain of attraction for
the equilibrium point of the closed-loop system that is equal to the recover-
able region. The semi-global stabilization problem deals with the issue of
designing a family of stabilizing feedback laws such that, for any a priori
given set, a member among the family of stabilizing feedback laws achieves
a domain of attraction for the equilibrium point of the closed-loop system
that is inside the priori given set and, moreover, does not violate the con-
straints posed. For semi-global stabilization problem, Choi [26] showed that
for exponentially unstable discrete time linear systems subject to input con-
straints, any compact subset of the maximal recoverable region can be expo-
nentially stabilized via periodic linear variable structure controllers. More-
over, Choi [27] showed that, in general, linear feedback cannot achieve
global stabilization for discrete-time unstable systems. Also, Hu et al. [49]
studied the possibility of semi-global stabilization of continuous-time sys-
tems with two unstable open-loop poles. It should be emphasized that all
these works deal only with the case when the constraints are posed on the
inputs. On the other hand, we provided in Chap. 8 the solvability conditions
for semi-global stabilization in the admissible set whenever there are con-
straints both on state and control variables. Also, we studied recently semi-
global stabilization in the recoverable region whenever there are constraints
both on state and control variables for systems subject to non-minimum-
phase constraints. We did so first for continuous-time systems in [167] and
then for discrete-time systems in [197]. To distinguish our work with that
of Choi [26] and Cwikel and Gutman [30], let us emphasize that [26] only
considers input constraints and [30] uses a simple algorithm without ex-
ploiting structure. We exploit the structure of a given system to develop our
results both on constructing the recoverable sets as we did in the previous
section but also for semi-global stabilization in the recoverable region as
we pursue in this section.
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Following [167] and [197], we present below our results on semi-global
stabilization in the recoverable region in two subsections, one for continuous-time
systems and the other for discrete-time systems.

9.4.1 Continuous-time systems

For continuous-time systems, our goal in this subsection is to develop state feed-
back controllers that semi-globally stabilize in the recoverable region a given sys-
tem with non-minimum-phase constraints. That is, we pursue here the possibility
of stabilizing without violating the constraints for any compact subset W con-
tained in the interior of R.˙;S/ by a continuous feedback. Regarding the exis-
tence of Lipschitz-continuous controllers, our main result is summarized in the
following theorem.

Theorem 9.18 Consider the system ˙ in (7.1) along with a constraint set S

that satisfies Assumption 7.4. Assume that .A;B/ is stabilizable. Then, for any
compact subset W contained in the interior of R.˙;S/, there exists a Lipschitz-
continuous (in general nonlinear) feedback u D f .x/ such that the zero equi-
librium point of the closed-loop system is asymptotically stable with a domain of
attraction containing W and moreover z.t/ 2 S for all t > 0 when x.0/ 2 W .

Moreover, for all initial conditions inside W , the state converges to the origin
exponentially fast.

Remark 9.19 Note that although this theorem is a pure existence result, we will
also establish that we only need to design a controller for a subsystem which can
have considerably lower dimension, and in this way, it does reduce the complexity
of computational tools that are available for actually designing the controllers;
note that, in all the available tools, complexity of computations grows exponen-
tially with the dimension.

In the previous section, we connected the recoverable set of the original system
˙ to that of the reduced system ẋ

1 through the intermediate system ˙1. We will
use these three layers to look also into the design of controllers. We first look
in the next subsection at the design of controllers for systems of the form ẋ

1.
This will turn out to be the most involved design step. In the second subsection,
we will extend a controller for this subsystem to come up with a controller for
the original system ˙ . Note that we assume in the proof that the system has no
invariant zeros on the imaginary axis. This is without loss of generality since
changing A to A� D AC �I with � arbitrarily small would remove the zeros on
the imaginary axis. Clearly, a controller for this system with a certain constrained
domain of attraction would, when applied to the original system, always yield a
larger domain of attraction, and according to the following lemma, the recoverable
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set of this new system would be only marginally smaller than the recoverable set
of the original system.

Lemma 9.20 Consider the system ˙ in (7.1) and a convex, compact constraint
set S containing 0 in the interior. Let ˙� be the system obtained from ˙ by
replacing A by AC �I with � > 0. Assume that .A;B/ is stabilizable. Then for
any compact subset W � int R.˙;S/, there exists a �� > 0 such that

W � R.˙� ;S/ � R.˙;S/;

for any � 2 Œ0; ���.

Proof : See Appendix 9.C.

We now proceed to prove Theorem 9.18 for the subsystem ẋ
1.

Proof of Theorem 9.18 for the subsystem ẋ
1

As we mentioned before, the subsystem ẋ
1 in (9.7) is the core of the original sys-

tem ˙ , which causes most of the design difficulties under constraints. Therefore,
we first prove Theorem 9.18 for systems which are left invertible, have relative
degree zero, and have only antistable invariant zeros. Obviously, subsystem ẋ

1 is
one of such systems. To simplify notation, we assume the system is in the follow-
ing form

˙0 W

8
<̂

:̂

T� D A0 � C B0�;

xz D
 
C0

0

!
� C

 
0

I

!
�;

(9.18)

with constraint xz.t/ 2 xS for all t > 0, where the unobservable eigenvalues of the
pair .C0; A0/, i.e., the invariant zeros, are in the open right-half plane (antistable)
and .A0; B0/ is stabilizable.

Consider the set R.˙0; xS/. Our first objective is to choose the input in such a
way that we stay inside this set. If this is possible, then we call the set positive
invariant. In order to do this, we can try to choose at each boundary point of the
set, an input such that the derivative of the state points inside or tangent to the
set and then expand this feedback to the full set. We will show that this basic
idea works, although we need to spend quite some effort on avoiding technical
difficulties:

� We need the set R.˙0; xS/ to be bounded and closed, since the suggested
design is based on designing the feedback on the boundary.

� If the derivative does not point inside but tangent to the set, then we are not
guaranteed that the state stays in the set.

� Our aim is to achieve asymptotic stability and the above idea only looks at
achieving positive invariance and this is clearly not the same.
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� The feedback that we choose in this way might not even be continuous,
and therefore, we are not sure that the closed-loop system has a (unique)
solution.

The first technical issue mentioned above can actually be resolved due to the
extra structure of the system (9.18).

Lemma 9.21 Consider the stabilizable linear system ˙0 in (9.18) whose invari-
ant zeros are antistable and a convex, compact constraint set xS containing 0 in
the interior. The recoverable region R.˙0; xS/ for this system has the following
properties:

(i) The set R.˙0; xS/ is bounded.

(ii) For any initial condition �0 2 @R.˙0; xS/, there exists an input u such that

the state of the system remains in R.˙0; xS/, while the constraint xz.t/ 2 xS
is satisfied for all t > 0.

Proof : See Appendix 9.D.

By property (ii) of the above lemma, it seems feasible to find a feedback such
that the compact set R.˙0; xS/ becomes invariant. However, in order to avoid
the technical difficulties mentioned before, it turns out that it is desirable to start
working with an auxiliary system:

˙�
0 W

8
<̂

:̂

T� D A�� C B0
z�;

zz D
 
C0

0

!
� C

 
0

I

!
z�; (9.19)

with constraint zz.t/ 2 xS for all t > 0, where A� D AC �I for � > 0. It is more
difficult to keep the state inside a convex set V (containing 0) for this system due
to the fact that the extra term �� always points outside the set V .

All the technical difficulties mentioned before are resolved in this way. If we
choose a direction for the derivative to point tangent or inside the set for this aux-
iliary system, then by reducing �, we can guarantee that, for a slightly smaller �,
we can make the set positive invariant. Moreover, by reducing �, we obtain some
flexibility which enables us to make the feedback continuous and even Lipschitz
continuous. Finally, if the state stays in the set for some positive �, then for the
original system, the state converges to zero exponentially.

Note that the recoverable set of this auxiliary system is close to the recoverable
set of the original system by Lemma 9.20. The technical details of the above are in
Appendix 9.E and yield the proof of Theorem 9.18 for the special case of system
˙0 given in (9.18). However, in order to expand a controller of the subsystem
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ẋ
1 to form a controller for the system ˙ , we need a strengthened version of

Theorem 9.18 which can handle small exponentially decaying disturbances. The
details of this expansion from ẋ

1 to ˙ are provided shortly.

Theorem 9.22 (Special case with disturbance) Consider the system

˙d
0 W

8
<̂

:̂

T� D A0� C B0� C d;

	 D
 
C0

0

!
� C

 
0

I

!
�;

(9.20)

with the unobservable modes of .C0; A0/ antistable and .A0; B0/ stabilizable.
Given M > 0 and a compact subset W � int R.˙d

0 ;
xS/, there exist a ı > 0 and

a Lipschitz-continuous feedback � D f .�/ such that the equilibrium point 0 is
asymptotically stable for all initial conditions in W , and for any disturbance d
satisfying

kd.t/k 6 Me�ıt ; (9.21)

the closed-loop system satisfies �.t/ ! 0 as t ! 1 and 	.t/ 2 xS for all t > 0.

Proof : See Appendix 9.E.

We now proceed to prove Theorem 9.18.

Proof of Theorem 9.18 : Earlier, we have decomposed the original system ˙

into two subsystems ˙1 and ˙2, and then, we established that the computational
effort for determining the recoverable set is concentrated in system ˙1. If we
look more closely at the system ˙1, we can extract another subsystem ẋ

1, and
the recoverable set of this last subsystem is the core of the computational effort
needed in determining the recoverable set.

This time, we want to establish a suitable controller with a domain of attraction
containing an arbitrarily chosen compact set W which is itself contained in the
interior of R.˙;S/. First, note that the recoverable set of the full system satisfies
the structure established in Theorem 9.10. Therefore, we can find a compact set
W1 such that W1 is contained in the interior of R.˙1; xS/ and

W � Tx

(  
xab

xcd

! ˇ̌
ˇ̌
ˇ x1 2 W1

)
\ V.˙;S/;

where xab and xcd denote the initial conditions of ˙1 and ˙2 respectively. We
assume without loss of generality that we have no zeros on the imaginary axis
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which implies in the SCB structure that the dynamics of x�0
a is asymptotically

stable and hence can be exempted from stabilization. Consider the system,

ẋ
1� W

8
ˆ̂̂
<

ˆ̂̂
:

TxC
a D AC

a�x
C
a CKC

ab
C Cbxb CKC

a2�;

Txb D .Ab� CKbbCb/ xb CKb2�;

xz D
 
Cb

0

!
xb C

 
0

I

!
�;

(9.22)

with AC
a� D AC

aa C �I and Ab� D Abb C �I . The associated recoverable set
R. ẋ

1� ;S/ has the following property:
(  

x1

x2

! ˇ̌
ˇ̌
ˇ x1 2 R. ẋ

1� ; xS/
)

� R.˙1; xS/;

where x1 denotes the initial condition for xC
a and xb , while x2 denotes the initial

condition for x�0
a . Moreover, similar to Lemma 9.20, it is easy to verify that for �

small enough,

W1 � Tx

(  
x1

x2

! ˇ̌
ˇ̌
ˇ x1 2 R. ẋ

1� ; xS/
)
:

Choose � small enough such that this latter inclusion is satisfied. Then we can
design a controller f for ẋ

1� according to Theorem 9.22, and it is easily verified
that this controller when applied to˙1 creates an exponentially stable system with
W1 contained in its domain of attraction which can handle exponentially decaying
disturbances satisfying (9.21).

Next, we consider the second subsystem ˙2 given by (9.4). This system has
the nice structure that the mapping from .zud ; u0/ to � is strongly controllable.
Assume that the initial state of ˙ is in the interior of the set

Tx

(  
xab

xcd

! ˇ̌
ˇ̌
ˇ x1 2 W1

)
\ V.˙;S/: (9.23)

Following the design methodology of Chap. 8, we can then design a feedback
for inputs .zud ; u0/ which stabilizes ˙2 and such that � D f .x1/ C d with d
satisfying (9.21) while satisfying the constraints. This controller is then easily
seen to satisfy the conditions of Theorem 9.18.

Let us next briefly comment on measurement feedback controllers. If we design
a family of static state feedback controllers that achieve semi-global stabilization
in the recoverable region, then we can combine this with a high-gain observer to
obtain semi-global stabilization in the recoverable region by measurement feed-
back. These high-gain observers have been designed in Chap. 4 either through the
direct method or via a Riccati-based design. We can then rely on Lemma 4.62
to establish that this combination of state feedback controller with an appropriate
observer has the required observer. Note that the use of Lemma 4.62 requires that



518 9 Semi-global stabilization in the recoverable region

the measurement error exhibits no peaking. But we can always choose an
arbitrarily small 
 > 0 such that for t > 
 , the measurement error is bounded.
Since we can easily ensure that our static state feedback is bounded, we can
choose 
 sufficiently small such that the state at time 
 is ensured to lie in a
compact set inside the recoverable region.

We illustrate below the results developed above by an example.

Example 9.23 We consider the system,

Tx D

˙
0 1 0 0

�1 0 0 1

1 �2 0 0

1 0 �1 0

�
x C

˙
0

0

0

1

�
u;

z D
 
0 1 0 0

0 0 0 1

!
x;

with S given by

S D ˚
z 2 R2 j �1 6 z1 6 4; �1 6 z2 6 1

�
:

In this case, we note that in the SCB context, x0
a corresponds to x3 while xd

corresponds to x4. Moreover, xc is not present since the system is left invertible.
Note that the system is not right invertible, and hence, we cannot rely on the
relatively easy structure we obtained for right-invertible systems in Chap. 8.

In order to obtain the recoverable set, we first compute the system ˙1 which is
given by

˙1 W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Tzx D

�
0 1 0

�1 0 0

1 �2 0

�
zx C

�
0

1

0

�
�;

z D
 
0 1 0

0 0 0

!
zx C

 
0

1

!
�;

and then the system ẋ
1 is given by

ẋ
1 W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Txx D
 
0 1

�1 0

!
xx C

�
0

1

0

�
�;

z D
 
0 1

0 0

!
xx C

 
0

1

!
�:

The recoverable region for this system can be computed using the techniques
available from the work of Ryan [121]. We obtain the recoverable set R. ẋ

1;S/
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5 4 3 2 1 0 1 2 3 4
2

1

0

1

2

3

4

5

x1

x2

Figure 9.1: Recoverable region R. ẋ
1;S/

given in Fig. 9.1. Next, consider the boundary. The dashed line does not belong to
the recoverable set, while the solid line is part of the recoverable set. The theory
developed in this subsection then tells us that

R.˙;S/ D
(
x 2 R4 j

 
x1

x2

!
2 R. ẋ

1;S/;�1 6 x4 6 1

)
:

Assume that we have a compact set W contained in the interior of R.˙;S/ and
we want to obtain a controller which stabilizes the system and contains W in
its domain of attraction while avoiding constraint violation when starting in the
set W .

The theory developed in this subsection tells us that we need to look at a mod-
ification of the system ˙1:

˙1;" W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Tzx D

�
" 1 0

�1 " 0

1 �2 "

�
zx C

�
0

1

0

�
�;

z D
 
0 1 0

0 0 0

!
zx C

 
0

1

!
�;

for some " > 0 small enough. We first need to design a controller which stabilizes
this system and contains W1 in its domain of attraction while avoiding constraint
violation when the initial condition is in the set W1 where

W1 D

�
1 0 0 0

0 1 0 0

0 0 1 0

�
W :
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Efficient design methods for this are not known. However, gridding can be one
option, and working with a lower dimensional subsystem˙1 will definitely make
the gridding method more attractive.

9.4.2 Discrete-time systems

In the previous subsection, for continuous-time systems, we developed state feed-
back controllers that semi-globally stabilize in the recoverable region a given sys-
tem with non-minimum-phase constraints. We consider here discrete-time sys-
tems and develop results analogous to those in the previous subsection.

The following theorem presents the solvability conditions for the semi-global
stabilization problem as stated in Problem 9.5.

Theorem 9.24 : Consider the system ˙ as given in (7.1) along with a constraint
set S that satisfies Assumption 7.4. The semi-global stabilization problem as de-
fined in Problem 9.5 is solvable. More specifically, for any a priory given compact
set W contained in the recoverable region R.˙;S/, there exists a time-invariant
static state feedback u.k/ D f .x.k// such that the closed-loop system is asymp-
totically stable with a domain of attraction containing W in its interior and that
all the constraints are satisfied, i.e., z.k/ 2 S for all k > 0.

Before we start proving this theorem, it is necessary to define the following
subsystem:

˙abd W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

xa.k C 1/ D Aaaxa.k/CKabCbxb.k/CKa2�.k/

xb.k C 1/ D .Abb CKbbCb/xb.k/CKb2�.k/

xd .k C 1/ D Addxd .k/C Bd Œud .k/CGxx.k/�CKd xz.k/
�.k/ D

 
0

Cd

!
xd .k/C

 
I

0

!
u0.k/

xz.k/ D
 
Cb

0

!
xb.k/C

 
0

I

!
�.k/:

(9.24)

Similarly,

zud .k/ D ud .k/CGxx.k/ and zu.k/ D
 
u0.k/

zud .k/

!
:

Let R.˙abd ; xS/ denote the recoverable region of system ˙abd .
Let us next give a brief road map of how we prove Theorem 9.24, that is,

how we construct a semi-globally stabilizing controller for the given system ˙ .
Lemma 9.25 that follows considers the semi-global stabilization of the subsystem
˙aCbd as given by (9.11). Based on the result of Lemma 9.25, we proceed to
construct in Lemma 9.26 a semi-globally stabilizing controller for the newly de-
fined subsystem ˙abd . Finally, the controller constructed in Lemma 9.26 for the
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subsystem ˙abd is augmented to form a semi-globally stabilizing controller for
the given system ˙ .

We proceed now to construct a semi-globally stabilizing controller for the sub-
system ˙aCbd .

Lemma 9.25 The semi-global stabilization problem in recoverable region for
˙aCbd is solvable by a nonlinear static state feedback of the form,

u0 D f1.xaCbd / and zud D f2.xaCbd /:

Proof : To start with, we transform the subsystem ˙aCbd into its controllable
canonical form. That is, we utilize a nonsingular state transformation T ,

zx D
 
x1.k/

x2.k/

!
D T xaCbd ;

such that the system ˙aCbd given by (9.11) is transformed to the form,

ż
aCbd W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

 
x1.k C 1/

x2.k C 1/

!
D
 
A11 A12

0 A22

! 
x1.k/

x2.k/

!
C
 
B1

0

!
zu.k/

xz.k/ D
 
C1 C2

0 0

! 
x1.k/

x2.k/

!
C
 
0 0

I 0

!
zu.k/;

where the dynamics of x1 is controllable, the dynamics of x2 is uncontrollable,
and

zu.k/ D
 
u0.k/

zud .k/

!
:

We observe that the recoverable region of system ż
aCbd is given by

R. ż
aCbd ;

xS/ D TR.˙aCbd ;
xS/:

In order to construct a controller for ż
aCbd , we define a slightly modified form

of ż
aCbd . That is, we define the modified system

ż`
aCbd

W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�

 
x`

1

x`
2

!
D .1C `/

 
A11 A12

0 A22

! 
x`

1

x`
2

!
C .1C `/

 
B1

0

!
zu`

xz D
 
C1 C2

0 0

! 
x`

1

x`
2

!
C
 
0 0

I 0

!
zu`;

where ` > 0 is small enough that ż`
aCbd

is still stabilizable.
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Let zR. ż`
aCbd

; xS/ be the largest set of initial conditions for the system ż`
aCbd

for which there exists an input such that the constraints are satisfied while we stay
inside the set for all k (and where we do not impose convergence to zero). We do
claim that for any z� 2 .0; 1/, there exists an ` > 0 sufficiently small such that

z�R. ż
aCbd ;

xS/ � zR. ż`
aCbd

; xS/ � R. ż
aCbd ;

xS/: (9.25)

It is trivial to see that

zR. ż`
aCbd

; xS/ � R. ż
aCbd ;

xS/:
It remains to establish that

z�R. ż
aCbd ;

xS/ � zR. ż`
aCbd

; xS/:

Consider any r > n for the system ż`
aCbd

. Since the x`
1 dynamics is controllable,

there exists a ı� > 0 such that for any ı 2 .0; ı�/ and for any
 
x1

x2

!
2 ıR. ż

aCbd ;
xS/;

there exist an input zu` WD
 
u`

0

u`
d

!
and initial condition zx`.0/ D 0 such that

x`
1.r/ D �x1 and x`

2.r/ D 0 while

xz`.k/ 2 1�z�
2

S ; k D 0; 1; : : : ; r � 1:

Moreover, ı� is independent of ` and r provided ` is small enough.
Let r > n be such that for any zx`.0/ 2 R. ż

aCbd ;
xS/, we have

 
0

x`
2.r/

!
2 ız�R. ż

aCbd ;
xS/

for all ` sufficiently small. This is clearly possible due to the fact that the system is
stabilizable, and hence, the uncontrollable dynamics of x`

2 must be asymptotically
stable.

Consider any initial condition zx.0/ 2 R. ż
aCbd ;

xS/. We have an input zu for
the system ż

aCbd such that xz.k/ 2 xS . Hence, for any z� < 1, we can find, for any
initial condition zx.0/ 2 z�R. ż

aCbd ;
xS/, an input z�zu for the system ż

aCbd such
that xz.k/ 2 z�xS for all k. But then for zx`.0/ 2 z�R. ż

aCbd ;
xS/ and ` small enough,

we find that there exists a control input, say, zu`
1, for which we have zx`.k/ 2 .1C

ı/z�R. ż
aCbd ;

xS/ for k D 0; : : : ; r and xz`.k/ 2 .1C ı/z�xS for k D 0; : : : ; r � 1.
Also, we observe that if we choose ı < 1�z�

2
, we have

ızx`.r/ D
 
ıx`

1.r/

ıx`
2.r/

!
2 ıR. ż

aCbd ;
xS/:
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Then let
x1 D ıx`

1.r/:

Hence, we can choose an input, say, zu`
2 such that for zx`.0/ D 0, we have x`

1.r/ D
�x1 and x`

2.r/ D 0 while xz`.k/ 2 1�z�
2

xS . But then for initial condition zx`.0/ 2
z�R. ż

aCbd ;
xS/, the input zu`

1 C zu`
2 and ı < min fı�; 1�z�

2
g, we obtain that

xz`.k/ 2 .1C ı/z�xS C 1�z�
2

xS � xS for k D 0; : : : ; r � 1;

and

zx`.k/ D .1 � ı/
 
x`

1.k/

x`
2.k/

!
C ı

 
0

x`
2.k/

!

2 �.1 � ı/.1C ı/z�C ı2 z��R. ż
aCbd ;

xS/
2 z�R. ż

aCbd ;
xS/ for k D 0; : : : ; r:

This is true due to the fact that xS and R. ż
aCbd ;

xS/ are convex and contain 0 as
interior point.

If we repeat this construction between k D r and k D 2r and so forth, it
becomes clear that we can find for any initial condition,

zx`.0/ 2 z�R. ż
aCbd ;

xS/;

an input such that
xz`.k/ 2 xS

for all k. Hence, zx`.0/ 2 zR. ż`
aCbd

; xS/. This clearly implies that (9.25) is satis-
fied.

For semi-global stabilization, we take any compact set zHaCbd contained in the
interior of R. ż

aCbd ;
xS/, and we construct a static controller which will stabilize

the system and the constrained domain of attraction contains zHaCbd . But then
clearly, using (9.25), we can find ` such that zHaCbd � zR. ż`

aCbd
; xS/. Next,

we choose a feedback zf on the boundary of zR. ż`
aCbd

; xS/ such that for any

zx`.k/ 2 @ zR. ż`
aCbd

; xS/, we have zx`.k C 1/ 2 zR. ż`
aCbd

; xS/. We expand this

feedback zf to the whole state space. To do so, define g W Rn ! RC such that for
any x,

g.x/x 2 @ zR. ż`
aCbd

; xS/:
Since zR. ż`

aCbd
; xS/ is a convex set containing 0 in its interior, this mapping is

well defined. Then we expand zf to the whole state space by

xf .x/ D
zf .g.x/x/
g.x/

:
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This expansion has the property that for any 	 > 0, we have x`
aCbd

.k C 1/ 2
	 zR. ż`

aCbd
; xS/ for all zx`.k/ 2 	 zR. ż`

aCbd
; xS/. Note that xf is positively homo-

geneous, that is,
xf .˛x/ D ˛ xf .x/

for any ˛ > 0.
Clearly, for the system ż`

aCbd
with the feedback

 
u`

0

zu`
d

!
D xf .zx`/;

for all initial conditions in the set zR. ż`
aCbd

; xS/, we have zx`.k/ 2 zR. ż`
aCbd

; xS/
for all k.

But then the feedback  
u0

zud

!
D xf .zx/

for the system ż
aCbd with zx.0/ D zx`.0/ results in a state

zx.k/ D 1

.1C `/k
zx`.k/:

Hence, we obviously have zx 2 zR. ż`
aCbd

; xS/ for all k but also zx.k/ ! 0 as
k ! 1.

Finally, the controller for the original system ˙aCbd is given by
 
u0

zud

!
D xf .T �1 zx/ D f .xaC ; xb; xd /:

Next, we design a controller for the subsystem ˙abd based on the state feed-
back established for ˙aCbd . We have the following lemma.

Lemma 9.26 We have

R.˙abd ; xS/ D Rn0�
a � R.˙aCbd ;

xS/; (9.26)

where R.˙abd ; xS/ and R.˙aCbd ;
xS/ are the recoverable regions of ˙abd and

˙aCbd , respectively. Moreover, the semi-global stabilization problem for˙abd is
solvable.

Proof : It is easy to verify that R.˙abd ; xS/ and R.˙aCbd ;
xS/ have the relation-

ship,
Rabd .˙; xS/ � Rn0�

a � R.˙aCbd ;
xS/:
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We will prove the reverse implication and establish the solvability of the
stabilization problem for system˙abd by constructing a state feedback controller
for it.

For any compact set H in Rn0�
a � R.˙aCbd ;

xS/, we choose a compact set H1

and z� < 1 such that

H � H1 � z�R.˙aCbd ;
xS/:

The controllers u0 D f1.xaCbd / and zud D f2.xaCbd / are such that, for all
initial conditions in z�R.˙aCbd ;

xS/, the origin of the closed-loop system is expo-
nentially stable. Hence, there exist a M > 0 and a � with j�j < 1 such that

kxaCbd .k/k 6 M�k (9.27)

for all k and for all xaCbd .0/ 2 z�R.˙aCbd ;
xS/.

Next, let P0 be the semi-stabilizing solution of the discrete-time algebraic Ric-
cati equation,

P0 D A0
0P0A0 C C 0

0C0 �A0
0P0B0.B

0
0P0B0 CD0

0D0/
�B 0

0P0A0;

where

A0 D

�
Aaa KabCb KadCd

0 Abb CKbbCb KbdCd

0 KdbCb Add

�
, B0 D

�
Ba0 0

Bb0 0

Bd0 Bd

�
;

C0 D

�
0 Cb 0

0 0 Cd

0 0 0

�
; and D0 D

�
0 0

0 0

I 0

�
:

We have

P0

�
x0�

a

0

0

�
D 0 (9.28)

for all x0�
a 2 Rn0�

a since the eigenvalues of A0�
aa are in the closed unit disc.

Choose a level set,

V0.c/ WD f � 2 Rnabd j � 0P0� 6 c g
such that we have

�
C0 CD0.B

0
0P0B0 CD0

0D0/
�B 0

0P0A0

�
� 2 xS=3 (9.29)

for all � 2 V0.c/. Then, with the controllers

u0 D f1.xaCbd / and zud D f2.xaCbd /;
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there exists a T such that, for any initial state in

H1 � z�R.˙aCbd ;
xS/;

we have  
xa0� .T /

xaCbd .T /

!
2 V0.c/: (9.30)

Let P" be the stabilizing solution of the algebraic equation

P" D A0
0P"A0 C C 0

0C0 C "I �A0
0P"B0.B

0
0P"B0 CD0

0D0/
�B 0

0P"A0:

We have P" ! P0 as " approaches zero. Define the level set

V".c/ WD f � 2 Rnabd j � 0P"� 6 c g:
Then, there exists an " such that

 
xa0�.T /

xaCbd .T /

!
2 2V".c/:

For " small enough, we have

h
C0 �D0.B

0
0P"B0 CD0

0D0/
�B 0

0P"A0

i
� 2 xS

for any � 2 2V".c/. Hence, the feedback

 
u0

zud

!
D �.B 0

0P"B0 CD0
0D0/

�B 0
0P"A0

 
x0�

a

xaCbd

!

is an asymptotically stabilizing controller for ˙abd and achieves a domain of
attraction containing 2V".c/. Next, consider the controller

 
u0

zud

!
D
(
f .xaCbd /; xabd … 2V".c/

�.B 0
0P"B0 CD0

0D0/
�B 0

0P"A0xabd ; xabd 2 2V".c/:

It is easily verified that this controller asymptotically stabilizes the system. Hence
we have

Rn0�
a � R.˙aCbd ;

xS/ � R.˙abd ; xS/:

The above lemma yields an appropriate controller for the subsystem ˙abd .
Finally, we need to construct a controller for the original system ˙ which will
complete our proof of Theorem 9.24 and will also complete our proof of Theo-
rem 9.15.
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Proof of Theorem 9.24 : After transforming the system into the form (9.1),
it is easily seen that the controllers designed in Lemma 9.26 combined with a
controller

uc.k/ D Fcxc.k/

solve the semi-global constraint stabilization problem in recoverable region via
state feedback, where Fc is such that Acc C BcFc is asymptotically stable.

Let us next comment on measurement feedback controllers. For discrete-time
system with measurement feedback, it is not sensible to consider the recoverable
region. After all, the recoverable region is intrinsically an open-loop concept re-
lying on our knowledge of the state which, in the measurement feedback case,
is clearly not available. Moreover, in the discrete time, in contrast with the con-
tinuous time, semi-global stabilization with measurement feedback is in general
not possible. In continuous time a fast observer could guarantee a highly accurate
estimate of the state in a short period of time in which we do not leave the recov-
erable region. However, in discrete time, it might take up to n time steps before
we get a good estimate of the state, and in this period of time, we might leave the
recoverable region.

An alternative is to use a concept such as maximum domain of attraction. Basi-
cally, we look for a measurement feedback controller with the largest constrained
domain of attraction, i.e., the largest set of initial conditions for which we can
guarantee convergence to the origin without constraint violation. However, this
concept is also problematic in discrete-time systems. If two controllers achieve
constrained domain of attractions R1 and R2 respectively, then there might not
exist a controller for which R1 [ R2 is contained in its constrained domain of
attraction. This is established in the following example. The fact that this is not
possible makes it impossible to decide which measurement feedback controller
we should use.

Example 9.27 We consider the system

˙l W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

x.k C 1/ D
 
0 1

0 2

!
x.k/C

 
0

1

!
u.k/

y.k/ D
�
1 0

�
x.k/

z.k/ D x.k/;

with a constraint set S D f x 2 R2 j x 2 Œ�1; 1� � Œ�1; 1� g. Note that there is
one step delay from the input to the output. Consider the time k D 0. Suppose
x.0/ 2 Œ�1; 1�� �� 3

4
; 1

4

�
, we can choose u.0/ D 1

2
so that no constraint violation

occurs at k D 1. Similarly, if x.0/ 2 Œ�1; 1����1
4
; 3

4

�
, we can choose u.0/ D �1

2

to avoid constraint violation. However, if x.0/ 2 Œ�1; 1� � ��3
4
; 3

4

�
which is

the union of these two regions, it is impossible to find a u.0/ that guarantees
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no constraint violation. After all, the measurement at time 0 does not yield any
information about x2.0/, and hence, we can never guarantee that the state x2.1/

will be in Œ�1; 1�. Hence, we cannot avoid constraint violation.

9.A Proof of Lemma 9.6

We start with showing property (i). Since 0 2 int S and the system is linear and
controllable, there exists a ball B.0; "/ around the origin with radius " and time
T > 0 such that for any x.0/ 2 B.0; "/, there exists a control u which steers the
state to the origin in time T without violating the constraint. By definition, for
any x.0/ 2 R.˙;S/, there exists an input u such that x.t/ ! 0 as t ! 1 while
satisfying the constraints. Hence, there exists a time T1 > 0 so that x.t/ 2 B.0; "/

for t > T1. Therefore, it is possible to drive any initial state in R.˙;S/ to the
origin in time T C T1.

Property (ii) follows from the assumption that S is convex and 0 2 S .
To show property (iii), we note that already in [66] it was established that in the

case of only input constraints, the recoverable set is open. In the case of general
state and input constraints, the set R.˙;S/ need not be open. This is seen from
the simple example Tx D u with z D x and constraint set S D fz j z 2 Œ�1; 1� g
which yields R.˙;S/ D S which is obviously closed.

Finally, we consider property (iv). Under the conditions that the system˙ has a
relative degree at most, one is left invertible, and with all invariant zeros antistable,
the system ˙ in the SCB takes the following form:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

Txa D Aaaxa CKabzb CKa2�;

Txb D Abbxb CKbbzb CKb2�;

Txd D Addxd C Bdud CKddzb CKd2�;

xz D
 
zb

�

!
D

�
Cbxb

u0

xd

�
:

(9.31)

Firstly, since S is bounded, we find that xd .t/ must be bounded. Secondly, the
xC

a dynamics is antistable and controlled by the virtual input zb and � which
are bounded. It is a classical result that the recoverable region for this subsystem
must be bounded. It remains to show that the recoverable region for xb.t/ is also
bounded. Consider the following subsystem:

Txb D .Abb CKbbCb/xb CKb2�;

zb D Cbxb :

It is known that .Cb; Abb/ is observable. Clearly, .Cb; Abb C KbbCb/ is also
observable. This system has input � and output zb . Since both input � and output
zb are bounded, we can conclude that xb is bounded.
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9.B Proof of Theorem 9.13

We note that Theorem 9.10 helps us to relate the recoverable regions of ẋ
1 and

˙ and we obtain (9.9). In order to obtain (9.8), we need to do a bit more work.
Our proof is strongly motivated by the results of [66]. One inclusion is basically
obvious:

R.˙1; xS/ � Rn�0
a � R. ẋ

1; xS/: (9.32)

For notational ease, we will denote an initial condition of ˙1 by .x1; x2/ with x1

equal to the initial condition for x�0
a and x2 a vector consisting of initial condi-

tions for xC
a and xb .

We first note that for any x2 2 R. ẋ
1; xS/, we can find x1 such that .x1; x2/ 2

R.˙1; xS/. After all, if we choose an input u for ẋ
1 which steers x2 to 0 at time

T without violating constraints, then for this same input u, we can always choose
x1 such that for the initial condition .x1; x2/, the system ˙1 reaches the origin
at time T . Moreover, since x1 does not affect the constraints, the initial condition
.x1; x2/ is steered to zero without constraint violations.

Next, we note that for any x1 2 Rn�0
a we have .x1; 0/ 2 R.˙1; xS/. It is well

known that we can locally stabilize a system using a linear feedback u D �B 0Px
with P a solution of an algebraic Riccati equation and such that an ellipsoid of the
form x0Px 6 c is invariant for the closed-loop system while constraint violations
are avoided. If we apply this to the system˙1, we find that P restricted to the part
of the system composed of x1 can be made arbitrarily small and this yields that
we can guarantee that for any x1, there exists a solution of the Riccati equation P
such that .x1; 0/ is contained in this invariant ellipsoidal set and for which we can
hence avoid constraint violation. This clearly implies that .x1; 0/ 2 R.˙1; xS/.
For further details regarding this type of arguments, we refer to [49].

We claim that for all .x1; x2/with x2 2 R. ẋ
1; xS/, we have .x1; x2/ 2 R.˙1; xS/.

In other words,
R.˙1; xS/ � Rn�0

a � R. ẋ
1; xS/;

and combined with (9.32) the proof of (9.8) would be complete.
Let " > 0 be given. Choose any .x1; x2/ with x2 2 R. ẋ

1; xS/. We know that
there exists a zx1 such that .zx1; x2/ is in R.˙1; xS/.

Choose � 2 .0; 1/. We have
�

x1��zx1

1��
; 0
�

2 R.˙1; xS/:

This implies that

.x1; x2/ D �.zx1; x2/C .1 � �/
�

x1��zx1

1��
; 0
�
;

is an element of the set R.˙1; xS/ due to convexity.
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9.C Proof of Lemma 9.20

The proof of Lemma 9.20 requires the following lemma which can be proven
easily.

Lemma 9.28 Consider the system ˙ in (7.1) and a convex, compact constraint
set S containing 0 in the interior. Assume that .A;B/ is stabilizable. For any com-
pact subset W � int R.˙;S/ and any ball B.0; "/ � W with " > 0 sufficiently
small, there exists a time T > 0 such that for any initial condition in W , there
exists an input u for which x.T / 2 B.0; "/ and z.t/ 2 S ; 8 t 2 Œ0; T �.

Proof of Lemma 9.20 : We first note that for any � > 0, we have

R.˙� ;S/ � R.˙;S/: (9.33)

This follows from a simple observation that if x.t/ and u.t/ satisfy system ˙�

with initial condition x.0/ and the constraint, then e��tx.t/ and e��tu.t/ satisfy
system ˙ with the same initial condition and the constraint. Also, it is clear from
the same observation that

R.˙`;S/ � R.˙� ;S/; (9.34)

for ` > � > 0.
Next, we show that for any compact set W satisfying

W � z̨R.˙;S/; z̨ 2 .0; 1/;
there exists a � > 0 such that

W � R.˙� ;S/: (9.35)

Note that if .A;B/ is stabilizable, then there exists a sufficiently small �0 > 0

such that for all 0 6 � 6 �0 the pair .A� ; B/ is also stabilizable. Also note that
by stabilizability, there exists an " > 0 sufficiently small such that one can find
for any point in B.0; "/, a control u such that the resulting trajectory goes to zero
asymptotically without violating the constraints. We choose such a small " > 0

for which this property holds for the system ˙�0 .
Next, we consider the system˙ . By Lemma 9.28, there exists a uniform T > 0

such that any initial state in W can be driven to the ball B.0; z̨"/ in time T by
a suitable u while respecting the constraints. Let zx0 2 W � z̨R.˙;S/. Then,
there exist Mx.t/ and Mu.t/ satisfying

( TMx.t/ D A Mx.t/C B Mu.t/; Mx.0/ D zx0;

Mz.t/ D Cz Mx.t/CDz Mu.t/ 2 z̨S ;
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for t 2 Œ0; T � and Mx.T / 2 B.0; z̨"/, where T does not depend on zx0. By choosing
� > 0 small enough so that z̨e�T < 1, it is straightforward that zx.t/ D e�t Mx.t/
and zu.t/ D e�t Mu.t/ satisfy for t 2 Œ0; T �,

( Tzx.t/ D .AC �I /zx.t/C Bzu.t/; zx.0/ D zx0;

zz.t/ D Cz zx.t/CDz zu.t/ 2 S ;

while zx.T / D x.T / 2 B.0; "/. Hence, zx0 2 R.˙� ;S/.

9.D Proof of Lemma 9.21

In general, the recoverable region is not closed, and its closure is not easily char-
acterized. However, because of the special structure of the system (9.18), the clo-
sure of the recoverable region, R.˙0;S/, can easily be characterized by the set
of initial conditions of the system (9.18) for which there exists an input that keeps
the state bounded while avoiding constraint violation. This result is stated in the
following lemma, which leads to the proof of Lemma 9.21. Similar results have,
for instance, been obtained in [66].

Lemma 9.29 Consider the system ˙0 in (9.18) with compact, convex constraint
set S containing 0 in the interior. Assume that the unobservable modes of the pair
.C0; A0/ are antistable and the pair .A0; B0/ is stabilizable. Then we have

R.˙0;S/ D ˝.˙0;S/;

where

˝.˙0;S/ WD f �0 2 Rn j 9 � such that the solution of ˙0 with

�.0/ D �0 satisfies

� 2 L1 and xz.t/ 2 S ; 8 t > 0g :

Proof : We first show that ˝.˙0;S/ is closed. We know that the unobservable
modes of .C0; A0/ are antistable. This implies that there exists a matrix K0 such
that all the eigenvalues of A0 � K0C0 are in the open right half plane. Then for
any �0 2 ˝.˙0;S/, we can write

e�.A0�K0C0/t�.t/ D �0 C
tZ

0

e�.A0�K0C0/� ŒB0�.
/CK0xz.
/�d
:
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Since � is bounded, we can take the limit and we obtain

�0 D �
1Z

0

e�.A0�K0C0/� ŒB0�.
/CK0xz.
/�d
:

This can be interpreted as the state at time 0, which starts from �.�1/ D 0 under
the control �.�t/ while xz.�t/ 2 S for all t 2 .�1; 0�.

Let f�ng 2 ˝.˙0;S/ be a sequence such that limn!1 �n D x�. Then, for each
�n, there exists an associated �n such that �n 2 L1 and xzn.t/ 2 S for all t > 0,
where xzn is the associated constrained output of system ˙�

0 corresponding to the
state �n at time 0. Clearly,

�n D �
1Z

0

e.A0�K0C0/� ŒB0�n.
/CK0xzn.
/�d
:

Since both f�ng and fxzng are bounded subsets in L1 D L�
1 , the conjugate space

of L1, according to Alaoglu’s theorem [3], there exist two subsequences �nm
and

xznm
which converge in the weak� sense to x� and xxz, respectively. Thus,

x� D �
1Z

0

e.A0�K0C0/� ŒB0
x�.
/CK0

xxz.
/�d
: (9.36)

Next, we show that the state �.0/ D x� and the input x� in fact determine the output
xxz in the weak� sense. Since for any t > 0

xznm
.t/ D C0e

A0t�nm
C

tZ

0

C0e
A0.t��/B0�nm

.
/d
;

where �nm
converges to x� and �nm

converges to x� in the weak� sense, the se-
quence xznm

is pointwise convergent with a limit, say, zxz. Since xznm
is a bounded

function for all nm, according to Lebesgue’s dominated convergence theorem,
xznm

converges to zxz in the weak� sense. But we already knew that xznm
converges

in the weak� sense to xxz. By the uniqueness of the weak� limit, we obtain zxz D xxz
and

xxz.t/ D C0e
A0t x� C

tZ

0

C0e
A0.t��/B0

x�.
/d
 (9.37)

for t > 0. Combining (9.36) and (9.37) shows that x� 2 ˝.˙0;S/ and hence
˝.˙0;S/ is closed.

Clearly, for any �0 2 R.˙0;S/, there exist � and T > 0 such that given the
system (9.18) with �.0/ D �0, we have �.T / D 0. Then, by defining �.t/ D 0
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for t > T , it is trivial to see that �0 2 ˝.˙0;S/. This implies that R.˙0;S/ �
˝.˙0;S/. Therefore, we obtain that R.˙0;S/ � ˝.˙0;S/. It remains to show
that R.˙0;S/ D ˝.˙0;S/.

Similar to part (iv) of Lemma 9.6, it is easy to verify that˝.˙0;S/ is bounded.
Next, we show that given any �0 2 z�˝.˙0;S/ for z� 2 .0; 1/, there exists an input
� such that it drives the state of the system ˙0 with initial condition �0 to zero
without violating the constraint; that means �0 2 R.˙0;S/.

Note that the set ˝.˙0;S/ is bounded since the invariant zeros are antistable
and the system is left invertible. We decompose the system in a controllable and
an uncontrollable part, i.e., �.t/ D .�1.t/; �2.t// with �1 controllable. Assume
that we have an input � such that xz.t/ 2 S for all t > 0 with a bounded state �.
Obviously, the uncontrollable part must be stable and hence �2.t/ ! 0 as t ! 1.
For any ı 2 .0; 1/, choose T > 0 such that .0; �2.t// 2 ı˝.˙0;S/ for all t > T
and any initial condition in ˝.˙0;S/. Choose " > 0 such that given any state of
the form .�1;0; �2;0/ in the set "˝.˙0;S/, we can, starting at the origin at time 0,
reach .��1;0; 0/ at time T1 while guaranteeing xz.t/ 2 .1� z�/S for all t 2 Œ0; T1�.

Choose any initial condition in z�˝.˙0;S/. We have an input x� such that the
state remains in z�˝.˙0;S/ while xz.t/ 2 z�S for all t > 0. Assume that we reach
the state .x�1.T1/; x�2.T1// at time T1 with this input. Clearly, .x�1.T1/; x�2.T1// 2
z�˝.˙0;S/.

Next, choose an input z� such that we reach, starting at the origin, the state
.�"x�1.T1/; 0/ while guaranteeing xz.t/ 2 .1 � z�/S for all t 2 Œ0; T1�. Then, the
input x� C z� yields a state

..1�"/x�1.T1/; x�2.T1// 2 .1�"/z�˝.˙0;S/Cı"˝.˙0;S/ � .1�"=2/z�˝.˙0;S/

when we choose ı small enough.
Putting together, we find that for initial condition �0 2 z�˝.˙0;S/, the system

˙0 with the input � D x� C z� yields that �.T1/ 2 .1 � "=2/z�˝.˙0;S/ and the
constraints are satisfied for t 2 Œ0; T1�. Repeatedly applying this argument, yields
that �.kT1/ 2 .1 � "=2/k z�˝.˙0;S/ for �0 2 z�˝.˙0;S/ while the constraint is
satisfied for all t 2 Œ0; kT1� for any k 2 N. Since the state clearly converges to
zero, we have shown that �0 2 R.˙0;S/. Consequently, R.˙0;S/ D ˝.˙0;S/.

We now proceed to prove Lemma 9.21.

Proof of Lemma 9.21 : Property (i) is a direct consequence of property (iv) of
Lemma 9.6 applied to the system (9.18). Property (ii) is a direct consequence of
Lemma 9.29.
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9.E Proof of Theorem 9.22

Some preliminary work is needed before we proceed to the proof of this theorem.
Define

C0.�/ WD R.˙�
0 ;S/:

From Lemmas 9.6 and 9.21, we know that C0.�/ is convex and bounded. Also,
by Lemma 9.20, for any compact subset W � int R.˙0;S/, there exists an ` >
� > 0 such that

W � C0.`/ � C0.�/ � R.˙0;S/: (9.38)

Next, we show the following:

(i) There exists a continuous feedback for the system (9.19) so that the closure
of C0.`/ is an invariant set.

(ii) This feedback can be slightly modified to be Lipschitz, and when applied to
the original system (9.18), C0.`/ is again an invariant set while the state of
the system with any initial condition in C0.`/ will converge to the origin.

From these, we conclude that C0.`/, and hence W , is contained in the domain of
attraction.

As stated before, we will try to achieve this by trying to guarantee that the
trajectory points inward or tangent to this set in every boundary point by an ap-
propriate choice of the input. In order to formalize this, we need the following
set:

NV.�/ WD f 	 2 Rn j k	k D 1 and h� 0 � �; 	i 6 0; 8 � 0 2 V g:
Note that NV.�/ is the set of normals in the point � to the set V (as studied in,
for instance, [119]). It is also shown in [119] that for a convex set V , the set of
normals is nonempty whenever � is a boundary point of V . Its importance is due
to the fact that if we start in � in the direction v, then this direction is tangent to
or pointing inside V if and only if hv; 	i 6 0 for all 	 2 NV.�/.

Let the relation (9.38) hold for ` > � > 0. Define T� W @C0.`/ ! P .Rn/,
where P .Rn/ denotes the collection of all subsets of Rn, by

T�.�/ WD
(
A�� C B0�

ˇ̌
ˇ̌
ˇ

 
C0�

�

!
2 S and

hA�� C B0�; 	i 6 0; 8 	 2 NC0.`/.�/

)
:

The next lemma states some properties of T�.�/.
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Lemma 9.30 Assume that � < `. Then we have:

(i) T�.�/ is convex and closed for every � 2 @C0.`/.

(ii) For any point � 2 @C0.`/, the sets T�.�/ and T`.�/ are nonempty.

Proof : (i): The convexity of T�.�0/ is obvious by definition. The closedness is
proven as follows. Let fA��0 C B0�ngn2N be a convergent sequence in T�.�0/

with limit p. For every 	 2 N`.�0/, we have hA��0 C B0�n; 	i 6 0 for all n. So
hp; 	i 6 0 for every 	 2 N`.�0/. Since f�ng is in a compact set, it has a convergent
subsequence f�nk

g with a limit, say, �0. Because

p D lim
k!1

A��0 C B0�nk
D A��0 C B0�0 6 0

and hp; 	i 6 0 for every 	 2 N`.�0/, we conclude that p 2 T�.�0/.
(ii): Since 0 2 C0.`/, we have h�; 	i > 0 for any � 2 @C0.`/ and any 	 2

N`.�/. Hence, if hA`� C B0�; 	i 6 0, we get

hA�� C B0�; 	i D hA`� C B0�; 	i C .� � `/h�; 	i 6 0

for � < ` and any � 2 @C0.`/; 	 2 N`.�/. Therefore, if T`.�0/ is nonempty, so
is the set T�.�0/.

Assume that on the contrary, there exists a �0 2 @C0.`/ such that T`.�0/ is
empty. Define

r.�0/ D min
�

(
max

�2N`.	0/
hA`�0 C B0�; 	i

ˇ̌
ˇ̌
ˇ

 
C0�0

�

!
2 S

)
:

Since N`.�0/ is compact, the maximum exists. To justify the existence of a min-
imum, we show that the maximum exists and depends continuously on �. Let
m > 0 be such that kBT

0	k 6 m for all 	 2 N`.�0/. Then,

ˇ̌
ˇ̌ max
�2N`.	0/

hA`�0 C B0
z�; 	i � max

�2N`.	0/
hA`�0 CB0�; 	i

ˇ̌
ˇ̌ 6 max

�2N`.	0/
hB.z� � �/; 	i

6 mkz� � �k:
Therefore, we are looking for the minimum of a continuous function over a com-
pact set, which clearly always exists. Thus, r.�0/ is well defined. If r.�0/ 6 0,
then the minimizing �� would make T`.�0/ nonempty; hence, we have nothing to
prove. Therefore, we focus on the case r.�0/ > 0. By property (ii) of Lemma 9.21,
for �.0/ D �0 there exists an input � such that �.t/ 2 C0.`/ for t 2 Œ0; ı�. This
implies that

max
�2N`.	0/

h�.t/ � �.0/; 	i 6 0: (9.39)
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Since N`.�0/ is bounded, it follows that

lim
t!0C max

�2N`.	0/

D
	.t/�	0

t
; 	
E

D max
�2N`.	0/

lim
t!0C

D
	.t/�	0

t
; 	
E

D max
�2N`.	0/

hA`�.0/C B0�.0/; 	i > r.�0/ > 0

which yields a contradiction. This shows that T`.�/ is nonempty for all � 2
@C0.`/.

Next, we ask the following: Will the state trajectory stay in C.�/ for all t > 0

if we choose a feedback such that T�.0/ 2 T�.x0/ for all initial conditions �.0/ 2
@C.�/? This can be addressed using Nagumo’s theorem (see [3, 105]).

Theorem 9.31 (Nagumo) Consider the system (9.19). Assume that (9.38) is sat-
isfied for ` > � > 0. Moreover, assume that there is a Lipschitz-continuous feed-
back � D f .�/ such thatA��CB0f .�/ 2 T�.�/ for all � 2 @C0.`/. Then, for any
initial condition inside C0.`/, the solution of the differential equation remains in
C0.`/.

Since T�.�.t// is nonempty for �.t/ 2 @C0.`/, there exists a �.t/ such that
T�.t/ 2 T�.x.t//. In order to apply Nagumo’s theorem, we need a continuous �.t/
for feedback. The existence of a continuous feedback is assured by Michael’s
theorem. We first recall the formal definition of upper and lower semicontinuity
of set valued functions (see, for instance, Aubin [3, Sects. 2.1.2 and 6.5.3]).

Definition 9.32 Let X and Y be normed spaces, D � X and F.�/ a set-valued
function from D to subsets of Y such that F.x/ is nonempty for all x 2 D.
F is called upper semicontinuous at x0 2 D if, for any neighborhood U of

F.x0/, there exists an " > 0 such that for all x0 2 D with kx0 � xk < ", we have
F.x0/ � U . F is called upper semicontinuous if F is upper semicontinuous at
every point of D.
F is called lower semicontinuous at x0 2 D if, for any y 2 F.x0/ and for

any sequence fxng 2 D that converges to x0, there exists a sequence fyng with
yn 2 F.xn/ that converges to y. F is lower semicontinuous if F is lower semi-
continuous at every point of D.

Using the above, we can formulate Michael’s theorem.

Theorem 9.33 (Michael [4, 99]) Let D be a compact metric space and Y a Ba-
nach space. Every lower semicontinuous function F.�/ from D to the nonempty,
closed, and convex subsets of Y admits a continuous selection.
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In our case, D D @C0.`/ which is clearly a compact metric space and Y D Rn

is clearly a Banach space. Lemma 9.30 assures that T�.�/ is not empty for all � 2
@C0.`/; that is, F D T� maps into nonempty subsets of Y . A continuous selection
means that we can find a continuous function h W @C0.`/ ! Rn such that h.�/ 2
T�.�/ for all � 2 @C0.`/, which is the result we need. But, to apply Michael’s
theorem we need to establish that T� is lower semicontinuous and T�.�/ is closed
and convex for all � 2 @C0.`/. The set is closed and convex by Lemma 9.30 and
lower semicontinuity is the content of next lemma.

Lemma 9.34 Let the relation (9.38) hold for ` > � > 0. Then, T� is lower
semicontinuous on @C0.`/.

Michael’s theorem leads to the existence of a continuous function h such that
h.�/ 2 T�.�/ for all � 2 @C0.`/. Let

� D f .�/ D B
�
0 Œh.�/ �A���; (9.40)

where B�
0 is the Moore-Penrose generalized inverse of B0. Clearly, this �.�/ is a

continuous feedback on @C0.`/.
The control law in this proposition does not guarantee asymptotic stability.

After a slight modification, we obtain a stabilizing continuous control law that
achieves our goal.

Proof of Theorem 9.22 : Given that the system has a bounded input, there exists
a t1 such that at time t1 for all initial conditions in W1 and any input satisfying
the constraint, we are guaranteed to be inside the set R.˙0; S/. We consider the
system from time t1 onward.

Let f be the continuous controller given by (9.40) whose existence followed
from Michael’s theorem. Let z� > 0 be such that B.0; z�/ � C0.`/. Then it is
readily verified that

h�; 	i > z�; 8 � 2 @C0.`/; 8 	 2 NC0.`/.�/:

For any M > 0, choose ı such that d.t/ satisfies kd.t/k 6 z��=4 for all t > t1. It
also follows that for all � 2 @C0.`/ and 	 2 NC0.`/.�/, we have

hA�=2� C B0f .�/; 	i < � z��
2
: (9.41)

Since f is a continuous function defined on the compact set @C0.`/, there exists
a differentiable function f0 on @C0.`/ such that kBŒf .x/ � f0.x/�k < z��

2
. Thus,

by (9.41), f0 satisfies for all � 2 @C0.`/ and for all 	 2 NC0.`/.�/,

hA�=2� CB0f0.�/; 	i 6 0: (9.42)
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Next, we extend the differentiable feedback f0 defined on @C0.�/ to a globally
Lipschitz feedback f1 defined on C0.`/. Define ˇ W Rd ! RC

0 , where d D dim �,
as

ˇ.�/ WD inffˇ > 0 j � 2 ˇC0.`/ g:
Clearly, � 2 ˇ.�/@C0.`/ for all � ¤ 0. It is easily seen that the function ˇ is
Lipschitz and there exists a M > 0 such that

jˇ.�/ � ˇ.� 0/j 6 ˇ.� � � 0/ 6 M k� � � 0k:
Define f1 W Rd ! Rm by

f1.�/ WD
(
ˇ.�/f0

�
	

ˇ.	/

�
; � ¤ 0;

0; � D 0:

Since ˇ is globally Lipschitz and f0 differentiable, it is easily verified that f1

is globally Lipschitz. Moreover, f1 is positively homogeneous, i.e., f1.��/ D
�f1.�/ for all � 2 Rn and � > 0, because ˇ.��/ D �.ˇ�/.

Noting that f1.�/ D f0.�/ for � 2 @C0.`/, utilizing (9.42), we find for all
� 2 @C0.`/ and 	 2 NC0.`/.�/ that,

hA�=4� C B0f .�/C d; 	i 6 0;

for all t > t1. Then from Nagumo’s theorem, we conclude that for all � 2 C0.`/,
the state �.t/ remains in C0.`/ for all t > t1. But if we apply the feedback u D
f1.�/ to system (9.18) with the same initial condition �.0/ 2 C0.`/ and let z�.t/
be the solution of system (9.18), it is easy to see that

z�.t/ D e��t=4�.t/;

where we used the property that f1 is positive homogeneous. Since �.t/ remains
in C0.`/, a bounded set, we conclude that z�.t/ converges to zero exponentially,
which shows that W is a subset of the domain of attraction of system ˙0.
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Sandwich systems: state feedback

10.1 Introduction

We studied internal stabilization of linear systems subject to actuator magnitude
saturation in Chap. 4, and the same in Chap. 6, however, when the actuator is
subject to both magnitude and rate saturation. The block diagram of Fig. 10.1
depicts the setup. Although such actuator saturation occurs ubiquitously, in this
chapter we consider a broader class of nonlinear systems than that depicted in
Fig. 10.1. As pointed out in Chap. 1, an important and common paradigm of non-
linear systems is that they are indeed linear systems in which nonlinear elements
are sandwiched or embedded as shown in Fig. 10.2. A model of a common non-
linear element is a static nonlinearity followed by a linear system or vice-versa.
In either case, the block diagram of Fig. 10.2 depicts a commonly prevailing situ-
ation besides linear systems subject to merely actuator saturation.

Figure 10.1: Linear system subject to actuator saturation

In view of the above comments, in this chapter we focus on the study of semi-
global and global stabilization of the type of systems depicted by the block di-
agram of Fig. 10.2 and its generalizations, where the static nonlinear element is
a saturation function as portrayed in Fig. 10.3. We refer to such systems as in
Fig. 10.3 as sandwich systems because the saturation nonlinearity is sandwiched
between two linear systems. We call the configuration of Fig. 10.3 as a single-
layer sandwich system, where the single layer refers to a single saturation element
that is sandwiched between two linear systems. A natural extension of this class
of systems is depicted in Fig. 10.4, which shows a single-layer sandwich system

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__10,
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Linear
System 1

Static
Nonlinearity

Linear
System 2

Input

Plant

Figure 10.2: Static nonlinearity sandwiched between two linear systems

Linear
System 1

Linear
System 2

Input

Saturation

Plant

Figure 10.3: Single-layer sandwich system

which is also subject to actuator saturation. These types of systems can be further
extended to multilayer sandwich systems and multilayer sandwich systems sub-
ject to actuator saturation, shown respectively in Figs. 10.5 and 10.6. Thus, the
structures of cascaded systems illustrated by Figs. 10.3–10.6 are progressive gen-
eralizations of the traditional class of systems consisting of a single linear system
with an actuator saturation as shown in Fig. 10.1 and studied in Chaps. 4 and 6.

Linear
System 1

Linear
System 2

Input

Saturation

Plant

Saturation

Figure 10.4: Single-layer sandwich system subject to actuator saturation

In this chapter, we first establish conditions for semi-global and global stabi-
lizability of single-layer sandwich systems, portrayed in Fig. 10.3, and we con-
struct appropriate control laws by state feedback. We then extend these stabiliza-
tion results to single-layer sandwich systems subject to actuator saturation, por-
trayed in Fig. 10.4. The design methodologies that emerge from this extension are
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Figure 10.5: Multilayer sandwich system

Figure 10.6: Multilayer sandwich system subject to actuator saturation

generalizations of the classical low-gain and adaptive-low-gain design method-
ologies, developed for semi-global and global stabilization of linear systems sub-
ject to only actuator saturation (Chap. 4). Indeed, when the first linear system is
equal to the identity, the new design methodologies are reduced to their classical
counterparts, and we therefore refer to the new design methodologies as gener-
alized low-gain design (for semi-global stabilization) and generalized adaptive-
low-gain design (for global stabilization). We furthermore discuss the natural ex-
tension of the results to the multilayer sandwich systems portrayed in Figs. 10.5
and 10.6.

The philosophy of generalized low-gain and generalized adaptive-low-gain de-
sign methodologies for constructing appropriate stabilizing controllers can be
briefly sketched as follows: basically, these generalized low-gain methods seek
to design controllers such that the saturation does not get activated after some fi-
nite time; thereafter, the design reduces to a simple low-gain or adaptive-low-gain
design. However, as discussed in Chap. 4, such design methods based on simple
low-gain or adaptive-low-gain design methods are conservative as they are con-
structed in such a way that the control forces do not exceed a certain level in an
arbitrary a priori given region of the state space in the semi-global case or in the
whole state space in the global case. The key in generalized low-gain design meth-
ods is to render the saturation inactive. Therefore, such generalized low-gain de-
sign methods do not allow full utilization of the available control capacity. Again,
as discussed in Chap. 4, design methods based on low-and-high-gain feedback de-
sign are conceived to rectify the drawbacks of low-gain design methods and can
utilize the available control capacity fully. As such, they have been successfully
used for control problems beyond stabilization to enhance transient performance
and to achieve robust stability and disturbance rejection in Chaps. 4–6. In view of
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this discussion, another aspect of this chapter is to develop generalized low-and-
high-gain and generalized adaptive-low-gain and generalized low-and-high-gain
design methodologies for constructing semi-globally and globally stabilizing state
feedback controllers, respectively. At the end of the chapter, we illustrate the de-
veloped results by examples. This chapter concentrates only on state feedback
controller design. Measurement feedback design is still largely an open problem
for this class of systems.

For ease of presentation, we have chosen to base the design methodologies in
this chapter on algebraic Riccati equations (AREs). It is also possible to generalize
the classical direct eigenstructure assignment method of Chap. 4 (see also [75,
76]) to achieve the same results. This chapter is based on the work of [170, 199].

It is prudent now to review the previous research on sandwiched systems such
as those depicted in Figs. 10.2 and 10.3, which are special cases of the so-called
cascade systems consisting of linear systems whose output affects a nonlinear
system. The research on such cascaded systems was initiated in [127] but has also
been studied, for instance, in [147, 148]. Note that in our case the nonlinear system
has a very special structure of an interconnection of a static nonlinearity with a
linear system. Moreover, in these references the nonlinear system is assumed to
be stable and the goal was to see whether the output of a stable linear system can
affect the stability of the cascade system. The goal of this chapter, being focused
on developing the conditions for stabilization as well as the methods of designing
stabilizing controllers, is inherently different.

Also, some other researchers have previously studied linear systems with sand-
wiched nonlinearities. The most recent activity in this area is the work of Tao and
his coworkers [175–178]. The main technique used in these papers is based on
approximate inversion of nonlinearities. An example studied in these references
is a dead zone, which is a right-invertible nonlinearity. By contrast, a saturation
has a very limited range and cannot be inverted even approximately, except in a
local region. The work of Tao et al. is therefore not applicable to the case of a sat-
uration nonlinearity. To achieve our goal of semi-global and global stabilization,
we need to face the saturation directly by exploiting the structural properties of
the given linear systems.

It is also prudent to compare our study in this chapter to that in Chaps. 7–9. In
particular, in Chap. 8, we considered linear systems subject to control input and
state constraints as modeled by a constrained output. In this context, the controller
is required to guarantee that the constrained output of a linear system remain in a
given set. Clearly, a controller designed in this specific way can be used to guar-
antee that the saturation in the interconnection of Fig. 10.3 never gets activated,
albeit with some drawbacks. As pointed out in Chap. 8, we cannot solve semi-
global or global stabilization problems for arbitrarily large initial conditions since
we cannot guarantee then that the saturation element is never activated. Because
of this very reason, we defined there a set of admissible initial conditions and
then studied semi-global and global stabilization in the admissible set. Even for
the admissible set of initial conditions, utilizing the design philosophy presented
in Chap. 8 is in fact conservative as it avoids saturation. Furthermore, the methods



10.2 Preliminaries and problem formulations 543

of design developed there require the structural condition that the linear system
1 as portrayed in Fig. 10.3 be weakly minimum phase. In contrast, the design
methodologies developed in this chapter do not require this weakly minimum
phase condition. Moreover, unlike in Chap. 8, activating the saturation element
is not an issue. To illustrate the necessity not to avoid activating the saturation
consider a car where an engine is modeled by linear dynamics followed by a satu-
ration nonlinearity. In turn, the car dynamics is influenced by the saturated output
of the engine dynamics. In this case, there is no reason to avoid saturation and
hence a design which attempts to avoid saturation is inherently conservative.

10.2 Preliminaries and problem formulations

In this section, we describe the dynamic equations of three classes of sandwich
systems, the class of single-layer sandwich systems (portrayed in Fig. 10.3), the
class of single-layer sandwich systems subject to also actuator saturation (por-
trayed in Fig. 10.4), and its generalization, namely, the class of multilayer sand-
wich systems (portrayed in Fig. 10.6). We then formulate the semi-global and
global stabilization problems for each class of these systems. Regarding different
saturation elements present in sandwich systems, as will become clear in the de-
sign procedures, different saturation levels do not cause any intrinsic differences
in controller design methodology except for some changes on ranges of certain
design parameters. Therefore, without loss of generality, we assume that all the
saturation elements studied in this chapter are indeed the same and equal to the
standard saturation function as defined in (2.19) with the saturation level � D 1.

Single-layer sandwich systems consisting of two interconnected systems, L1

and L2, are given by

L1 W
(
�x D Ax C Bu;

z D Cx;
(10.1)

and
L2 W �! D M! CN�.z/; (10.2)

where x 2 Rn1 , ! 2 Rn2 , u 2 Rm1 , and z 2 Rm2 . The function �.�/ is the
standard saturation function.

The semi-global and global stabilization problems for single-layer sandwich
systems are formulated as follows:

Problem 10.1 Consider the systems given by (10.1) and (10.2). The semi-global
stabilization problem for single-layer sandwich systems is said to be solvable if
for any compact set W � Rn1Cn2 , there exists a state feedback control law u D
f .x; !/ such that the origin of the closed-loop system is asymptotically stable
with W contained in its domain of attraction.
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Problem 10.2 Consider the systems given by (10.1) and (10.2). The global sta-
bilization problem for single-layer sandwich systems is said to be solvable if there
exists a state feedback control law u D f .x; !/ such that the origin of the closed-
loop system is globally asymptotically stable.

The dynamics of system L1 can be modified to include an actuator saturation,
and we refer to the resulting system as xL1. Single-layer sandwich systems subject
to actuator saturation, as portrayed in Fig. 10.4, therefore consist of two systems,
xL1 and L2, given by

xL1 W
(
�x D Ax CB�.u/;

z D Cx;
(10.3)

and
L2 W �! D M! CN�.z/; (10.4)

where as before x 2 Rn1 , ! 2 Rn2 , u 2 Rm1 , and z 2 Rm2 .
The semi-global and global stabilization problems for single-layer sandwich

systems subject to actuator saturation are now formulated as follows:

Problem 10.3 Consider the systems given by (10.3) and (10.4). The semi-global
stabilization problem for single-layer sandwich systems subject to actuator satu-
ration is said to be solvable if for any compact set W � Rn1Cn2 , there exists a
state feedback control law u D f .x; !/ such that the origin of the closed-loop
system is asymptotically stable with W contained in its domain of attraction.

Problem 10.4 Consider the systems given by (10.3) and (10.4). The global stabi-
lization problem for single-layer sandwich systems subject to actuator saturation
is said to be solvable if there exists a state feedback control law u D f .x; !/ such
that the origin of the closed-loop system is globally asymptotically stable.

The above type of system configuration as in (10.3) and (10.4) can be gener-
alized further to an interconnection of � linear systems, namely, the multilayer
nonlinear sandwich systems. Without loss of generality, we assume that the actu-
ator is subject to saturation. Consider the following interconnection of � systems:

Li W

8
<̂

:̂

�xi D Aixi CBi�.ui /; i D 1; : : : ; �

zi D Cixi ; i D 1; : : : ; � � 1
ui D zi�1; i D 2; : : : ; �

(10.5)

where xi 2 Rni , ui 2 Rmi for i D 1; : : : ; �, and zi 2 RmiC1 for i D 1; : : : ; ��1.
The semi-global and global stabilization problems for the multilayer system

can be defined as follows:
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Problem 10.5 Consider the interconnected system as given by (10.5). The semi-
global stabilization problem for multilayer sandwich systems is said to be solvable
if for any compact set W � Rn1C���Cn� , there exists a state feedback control law
u1 D f .x1; : : : ; x�/ such that the origin of the closed-loop system is asymptoti-
cally stable with W contained in its domain of attraction.

Problem 10.6 Consider the interconnected system as given by (10.5). The global
stabilization problem for multilayer sandwich systems subject to actuator satu-
ration is said to be solvable if there exists a state feedback control law u1 D
f .x1; : : : ; x�/ such that the origin of the closed-loop system is globally asymp-
totically stable.

In what follows, at first we consider single-layer sandwich systems, then single-
layer sandwich systems subject to actuator saturation, and finally general multi-
layer sandwich systems. In this way, we progressively add different levels of com-
plexity to our development.

10.3 Necessary and sufficient conditions
for stabilization

In this section, we present the necessary and sufficient conditions for all the semi-
global and global stabilization problems in the order they were formulated in
Sect. 10.2.

10.3.1 Single-layer sandwich systems

In this subsection, we present two theorems that give the necessary and sufficient
conditions for solving Problems 10.1 and 10.2.

Theorem 10.7 Consider the systems given by (10.1) and (10.2). The semi-global
stabilization problem for single-layer sandwich systems, as formulated in Prob-
lem 10.1, is solvable if and only if:

(i) The linearized cascade system is stabilizable, that is, .A;B/ is stabilizable,
where

A D
 
A 0

NC M

!
and B D

 
B

0

!
: (10.6)

(ii) All the eigenvalues of M are in the closed left-half plane for continuous-
time systems and in the closed unit disc for discrete-time systems.
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Moreover, semi-global stabilization can be achieved by a linear control law of the
form u D Fx CG!.

Proof : The system L2 must be stabilized through a saturated signal, and it is
clear from Chap. 4 that this is only possible if the eigenvalues of M are in the
closed left-half plane for continuous-time systems, and in the closed unit disc for
discrete-time systems. The cascade system is linear in a neighborhood around
the origin, and stabilizability of the nonlinear cascade system therefore requires
stabilizability of the local linear system, which is equivalent to stabilizability of
.A;B/. We have thus established the necessity of the two conditions in Theo-
rem 10.7. Sufficiency is established in Sect. 10.4 by explicit construction of a
stabilizing controller.

Theorem 10.8 Consider the systems given by (10.1) and (10.2). The global sta-
bilization problem for single-layer sandwich systems, as formulated in Prob-
lem 10.2, is solvable if and only if:

(i) The linearized cascade system is stabilizable, that is, .A;B/ is stabilizable,
where A and B are given by (10.6).

(ii) The eigenvalues of M are in the closed left-half plane for continuous-time
systems and in the closed unit disc for discrete-time systems.

Proof : The proof of necessity follows along the lines of the proof of Theo-
rem 10.7. Sufficiency is established in Sect. 10.4 by explicit construction of a
stabilizing controller.

10.3.2 Single-layer sandwich systems subject to actuator
saturation

In this subsection, we present two theorems that give the necessary and sufficient
conditions for solving Problems 10.3 and 10.4 that pertain to single-layer sand-
wich systems subject to actuator saturation.

Theorem 10.9 Consider the two systems given by (10.3) and (10.4). The semi-
global stabilization problem for single-layer sandwich systems subject to actuator
saturation, as formulated in Problem 10.3, is solvable if and only if

(i) The linearized cascade system is stabilizable, that is, .A;B/ is stabilizable,
where A and B are as defined in (10.6).
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(ii) The eigenvalues of M are in the closed left-half plane for continuous-time
systems and in the closed unit disc for discrete-time systems.

(iii) The eigenvalues of A are in the closed left-half plane for continuous-time
systems and in the closed unit disc for discrete-time systems.

Moreover, semi-global stabilization can be achieved by a linear control law of the
form u D Fx CG!.

Proof : The systems xL1 and L2 must be stabilized through a saturated signal, and
it is clear from Chap. 4 that this is only possible if the eigenvalues of A andM are
all in the closed left-half plane for continuous-time systems and in the closed unit
disc for discrete-time systems. The cascade system is linear in a neighborhood
around the origin, and stabilizability of the nonlinear cascade system therefore
requires stabilizability of the local linear system, which is equivalent to stabiliz-
ability of .A;B/. We have thus established the necessity of the three conditions
in Theorem 10.9. Sufficiency is established in Sect. 10.5 by explicit construction
of a stabilizing controller.

Theorem 10.10 Consider the two systems given by (10.3) and (10.4). The global
stabilization problem for single-layer sandwich systems subject to actuator satu-
ration, as formulated in Problem 10.4, is solvable if and only if:

(i) The linearized cascade system is stabilizable, that is, .A;B/ is stabilizable,
where A and B are given by (10.6).

(ii) The eigenvalues of M are in the closed left-half plane for continuous-time
systems and in the closed unit disc for discrete-time systems.

(iii) The eigenvalues of A are in the closed left-half plane for continuous-time
systems and in the closed unit disc for discrete-time systems.

Proof : The proof of necessity follows along the lines of the proof of Theorem
10.9. Sufficiency is established in Sect. 10.5 by explicit construction of a stabiliz-
ing controller.
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10.3.3 Multilayer sandwich systems

In this subsection, we establish the necessary and sufficient conditions for solving
Problems 10.5 and 10.6 that pertain to multilayer sandwich system as given
by (10.5).

Theorem 10.11 Consider the interconnection of systems Li , i D 1; : : : ; � as
given by (10.5). Then, the semi-global stabilization problem, as formulated in
Problem 10.5, is solvable if and only if

(i) .A0;B0/ is stabilizable, where

A0 D

�
A1 0 � � � � � � 0

B2C1 A2

: : :
:::

0
: : :

: : :
: : :

:::
:::

: : :
: : : A��1 0

0 � � � 0 B�C��1 A�

�
; B0 D

ˇ
B1

0
:::

0

�
: (10.7)

(ii) All Ai , i D 1; : : : ; � have their eigenvalues in the closed left-half plane
for continuous-time systems and in the closed unit disc for discrete-time
systems.

Moreover, the solution to the semi-global stabilization problem can be achieved
by a linear state feedback law of the form u D P�

iD1 Fixi .

Proof : The necessity of condition (i) and (ii) can be proved following the same
lines as in previous theorems. Sufficiency is proved in Sect. 10.6 by explicit con-
struction of a semi-globally stabilizing controller.

Theorem 10.12 Consider the interconnection of systems Li , i D 1; : : : ; � as
given by (10.5). Then, the global stabilization problem, as formulated in Prob-
lem 10.6, is solvable if and only if

(i) .A0;B0/ is stabilizable, where A0 and B0 are given in (10.7).

(ii) All Ai , i D 1; : : : ; � have their eigenvalues in the closed left-half plane
for continuous-time systems and in the closed unit disc for discrete-time
systems.
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Proof : Necessity of conditions (i) and (ii) can be shown following the same lines
as in previous theorems. Sufficiency will be shown by explicitly constructing a
globally stabilizing controller in Sect. 10.6.

Remark 10.13 We remark that the solvability conditions for any of the three
types of sandwich systems considered above are the same for either semi-global or
global stabilization. However, there is still an intrinsic difference between the two
cases, in that semi-global stabilization can be accomplished with a linear control
law, whereas global stabilization generally requires a nonlinear control law.

10.4 Generalized and adaptive-low-gain design
for single-layer systems

In this section, we explicitly construct controllers to solve the semi-global and
global stabilization problems described in Sect. 10.2 for single-layer systems
where the actuator is not subject to saturation. In doing so, we prove sufficiency
of the conditions in Theorems 10.7 and 10.8. We divide our development into
two subsections, one for continuous-time systems and the other for discrete-time
systems.

10.4.1 Continuous-time systems

We first present a generalized low-gain design for solving Problem 10.1 which
concerns with semi-global stabilization of the origin of the single-layer sandwich
system described by (10.1) and (10.2).

Generalized low-gain design for semi-global stabilization: We start by choos-
ing an arbitrary F such that ACBF is Hurwitz, and then let u D FxC v, where
v is a time-varying control input yet to be determined. Consider the resulting L1

system,
Tx D .AC BF /x C Bv;

z D Cx:
(10.8)

We have

z.t/ D Ce.ACBF /tx.0/C
tZ

0

Ce.ACBF /.t��/Bv.�/ d�

D Ce.ACBF /tx.0/C z0.t/: (10.9)
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Since AC BF is Hurwitz, we know that there exists a ı > 0 such that whenever

kv.�/k < ı 8� > 0; (10.10)

we have kz0.t/k < 1
2

for all t > 0.
Next we consider the linear system,

Txx D zAxx C Bv; (10.11)

where

zA D
 
AC BF 0

NC M

!
; B D

 
B

0

!
; xx D

 
x

!

!
: (10.12)

Note that conditions (i) and (ii) of Theorem 10.7 and asymptotic stability of
A C BF together imply that . zA;B/ is stabilizable and zA has all its eigenvalues
in the closed left-half plane.

Our initial objective is, for any a priori given compact set xW , to find a stabi-
lizing controller for the system (10.11) such that xW is contained in its domain of
attraction and kv.t/k < ı for all t > 0. This is accomplished in the following
lemma whose proof follows easily from Theorem 4.21.

Lemma 10.14 Consider the linear system (10.11) with constraint kv.t/k < ı,
and assume that .A;B/ as given by (10.6) is stabilizable and that the eigenvalues
of M are in the closed left-half plane. Let Q" > 0 be a parameterized family of
matrices which is increasing in " > 0 with lim"!0Q" D 0. Then, for any a priori
given compact set xW 2 Rn1Cn2 , there exists an "� such that for any 0 < " < "�,
the control law

v D �
�
B 0 0

�
P"

 
x1

x2

!
D �B0P" xx; (10.13)

where P" D P 0
" > 0 satisfies the continuous-time algebraic Riccati equation

(CARE),
zA0P" C P"

zA � P"BB0P" CQ" D 0; (10.14)

achieves asymptotic stability of the equilibrium point xx D 0. Moreover, for any
initial condition in xW , kv.t/k < ı for all t > 0.

We can now use Lemma 10.14 to prove that a particular family of control laws
achieves semi-global stability of the single-layer nonlinear sandwich system.

Theorem 10.15 Consider the systems given by (10.1) and (10.2) that satisfy Con-
ditions (i) and (ii) of Theorem 10.7. Let F be chosen such thatACBF is Hurwitz,
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and let P" D P 0
" > 0 be defined by the CARE (10.14). Define what can be termed

as generalized low-gain state feedback control law by

u D Fx �
�
B 0 0

�
P"

 
x

!

!
D F1;"x C F2;"!: (10.15)

Then, for any compact set of initial conditions W 2 Rn1Cn2 , there exists an "�>0
such that for all "with 0 < " < "�, the controller (10.15) asymptotically stabilizes
the origin with a domain of attraction containing W .

Proof : For simplicity and without loss of generality, let us choose Q" D "I .
Condition (i) of Theorem 10.7 implies the existence of P" D P 0

" > 0 satisfy-
ing (10.14). Moreover, Condition (ii) implies that P" ! 0 as " ! 0, which in
turn implies that F1;" ! F and F2;" ! 0. The initial conditions belong to some
compact set W , and hence there exist compact sets X � Rn1 and ˝ � Rn2 such
that x.0/ 2 X and !.0/ 2 ˝ .

For u D Fx, there exists a T > 0 such that for any x.0/ 2 X, we have
kCe.ACBF /tx.0/k < 1

2
for all t > T , and there exists a compact set xX � Rn1

such that x.t/ 2 xX for all t 2 Œ0; T �. This follows from the Hurwitz property of
AC BF .

Since !.0/ 2 ˝ , where ˝ is a compact set, and �.z.t// is bounded, we find
that, independent of ", there exists a compact set x̋ such that !.t/ 2 x̋ for all
t 2 Œ0; T �.

Next, there exists an "� > 0 such that for u D F1;"x C F2;"! and 0 < " < "�,
we have x.t/ 2 2 xX for all t 2 Œ0; T �. This follows from the fact that F1;" ! F

and F2;" ! 0, while !.t/ is bounded.
We also note that, from Lemma 10.14, there exists an "�

2 with 0 < "�
2 < "�

such that, for all 0 < " < "�
2 , the controller

v D �
�
B 0 0

�
P"

 
x

!

!
D �B0P"xx

stabilizes system (10.11) and satisfies kv.t/k < ı for all t > T , given x.T / 2 2 xX
and !.T / 2 x̋ . This implies that z.t/ generated by (10.8) satisfies kz.t/k < 1 for
all t > T . Then the interconnection of (10.1) and (10.2) with controller (10.15)
is equivalent to the interconnection of (10.11) with controller (10.13) for t > T .
The asymptotic stability of (10.11) with controller (10.13) implies that x.t/ ! 0

and !.t/ ! 0. Since this holds for any .x.0/; !.0// 2 W , it follows that W is
contained in the domain of attraction.

Remark 10.16 For semi-global stabilization, we can enlarge the domain of at-
traction by choosing a sufficiently small low-gain parameter. However, this incurs
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a deterioration of closed-loop performance near the origin since a small low-
gain parameter results in conservativeness in feedback gain and hence does not
allow full utilization of control capacity when the state is close to the origin. In
order to rectify this problem, a generalized low-and-high-gain feedback design
methodology is recently introduced in [170] and will be discussed subsequently
in Sect. 10.7. It is shown there that a refined performance can be achieved with
the so-called low-and-high-gain feedback controller.

Remark 10.17 To implement the semi-globally stabilizing controller, it is neces-
sary to find appropriate low-gain parameters ". It is difficult to derive tight upper
bounds on " analytically, and thus the parameters are typically found experimen-
tally by gradually decreasing them until the desired stability is achieved.

Generalized adaptive-low-gain design for global stabilization:
We present now a generalized scheduled or adaptive low-gain design for solv-

ing Problem 10.2 which concerns with global stabilization of the origin of the
single-layer sandwich system described by (10.1) and (10.2). In the following,
we show that the family of controllers defined by (10.15), with " replaced by an
adaptive-low-gain parameter "a.xx/, solves Problem 10.2. Therefore, letF be such
that A C BF is Hurwitz, and let P"a.xx/ be defined by the CARE (10.14), with "
replaced by an adaptive parameter "a.xx/. Choose ı such that the fact kv.t/k < ı

for all t > 0 guarantees the fact that kz0.t/k < 1
2

for all t > 0, where z0 is defined
by (10.9).

Consider the adaptive parameter "a.xx/ satisfying the following properties:

(i) "a.xx/ W Rn1Cn2 ! .0; 1� is continuous and piecewise continuously differ-
entiable.

(ii) There exists an open neighborhood O of the origin such that "a.xx/ D 1 for
all xx 2 O.

(iii) For any xx 2 Rn1Cn2 , we have kF"a.xx/ xxk 6 ı.

(iv) "a.xx/ ! 0 as kxxk ! 1.

(v) f xx 2 Rn1Cn2 j xx0P"a.xx/xx 6 c g is a bounded set for all c > 0.

(vi) For any xx1; xx2 2 Rn1Cn2 ,

xx0
1P"a.xx1/xx1 6 xx0

2P"a.xx2/xx2

implies "a.x1/ > "a.x2/.

Note that the above properties yield that

lim
t!1 xx0.t/P"a.xx.t//xx.t/ D 0 H) lim

t!1 xx.t/ D 0:
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Furthermore, we have

d

dt
P"a.xx.t// D

�
d

d"a

P"a.xx.t//

��
d

dt
"a.xx.t//

�
:

Since P" is increasing as a function of ", this implies that, if "a.xx.t// is increasing
as a function of time, then P"a.xx.t// is also increasing as a function of time.

A particular choice satisfying the above criteria is

"a.xx/ D max
˚
r 2 .0; 1� j .xx0Pr xx/ trace B0PrB 6 ı2

�
; (10.16)

where Pr is the unique positive definite solution of CARE (10.14) with r replac-
ing ".

Before we proceed further, we need the following lemma which is a slightly
modified version of Lemma 4.51 (see also [98]) and which defines a control law
that stabilizes the linear system (10.11).

Lemma 10.18 Consider the linear system (10.11) and assume that .A;B/ as
given by (10.6) is stabilizable and that the eigenvalues of M are in the closed
left-half plane. Define the control law,

v D �B0P"a.xx/ xx (10.17)

where xx is as defined in (10.12). Then, this control law achieves global stability of
the equilibrium xx D 0. Moreover, the constraint kv.t/k � ı does not get violated
for any t � 0.

We can now use Lemma 10.18 to prove that a particular family of control laws
achieves global stability of the single-layer nonlinear sandwich system.

Theorem 10.19 Consider the systems given by (10.1) and (10.2) that satisfies
Conditions (i) and (ii) of Theorem 10.8. Choose F such that ACBF is Hurwitz.
Let P"a.xx/ be defined by the CARE (10.14), with " replaced by the adaptive-low-
gain parameter "a.xx/ defined by (10.16). Define the generalized adaptive-low-
gain state feedback control law as

u D Fx � B0P"a.xx/xx; (10.18)

where xx is as defined in (10.12). Then, the control law (10.18) achieves global
asymptotic stability of the origin.

Proof : Considering the interconnection of (10.1) and (10.2), we note that the
saturation is not activated near the origin. Moreover, near the origin the control
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law (10.18) is given by u D Fx � B0P1 xx, which implies that the origin of the
interconnection of (10.1), (10.2), and (10.18) is locally asymptotically stable. It
remains to show that it is globally asymptotically stable.

Consider arbitrary initial conditions x.0/ and !.0/. There exists a T > 0 such
that

kCe.ACBF /tx.0/k < 1
2

for all t > T . Moreover, by construction v D �B0P"a.xx/xx yields kv.t/k 6 ı for
all t > 0. This implies that z.t/ generated by (10.8) satisfies kz.t/k < 1 for all
t > T . The interconnection of (10.1) and (10.2) with controller (10.18) therefore
behaves like the interconnection of (10.11) with controller (10.17), for all t > T .
Global asymptotic stability of (10.11) with controller (10.17) therefore implies
that xx.t/ ! 0 as t ! 1. Since this property holds for any initial condition, the
origin is globally asymptotically stable.

10.4.2 Discrete-time systems

This subsection pertaining to discrete-time systems is conceptually similar to the
previous subsection that deals with continuous-time systems. For discrete-time
systems, we explicitly present here a generalized low-gain design for solving
Problem 10.1, concerning semi-global stabilization of the origin of the single-
layer sandwich system described by (10.1) and (10.2).

Generalized low-gain design for semi-global stabilization: As we did before
in the continuous-time, we start by choosing an arbitrary F such that AC BF is
asymptotically stable, and then let u D FxCv, where v is a time-varying control
input yet to be determined. Consider the resulting L1 system,

x.k C 1/ D .AC BF /x.k/C Bv.k/

z.k/ D Cx.k/:
(10.19)

We have

z.k/ D C.AC BF /kx.0/C
k�1X

iD0

C.ACBF /k�i�1Bv.i/ (10.20)

D C.AC BF /kx.0/C z0.k/: (10.21)

Define

ı1 D 1

2
P1

kD0

��C.AC BF /kB
�� : (10.22)

Since ACBF is asymptotically stable, the above summation is well defined. We
know that if

kv.k/k < ı1 8k > 0; (10.23)
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then kz0.k/k < 1
2

. Next we consider the system,

xx.k C 1/ D zAxx.k/C Bv.k/; (10.24)

where zA, B, and xx are as defined in (10.12). Note that condition i and ii of
Theorem 10.7 and asymptotic stability of A C BF implies that . zA;B/ is sta-
bilizable and zA has all its eigenvalues in the closed unit disc.

Our next objective is, for any a priori given compact set xW , to find a stabiliz-
ing controller for the system (10.24) such that xW is contained in its domain of
attraction and kv.k/k < ı1 for all k > 0.

We note that there exists a unique P" > 0 satisfying the DARE,

P" D zA0P"
zA C "I � zA0P"B.B0P"B C I /�1B0P"

zA: (10.25)

The following lemma summarizes a result obtained in Chap. 4.

Lemma 10.20 Consider the system (10.24) with constraint kv.k/k < ı1, and
assume that . zA;B/ is stabilizable and zA has its eigenvalues in the closed unit
disc. For any a priori given compact set xW 2 Rn1Cn2 , there exists an "� such that
for any 0 < " < "�, the feedback control,

v D �.B0P"B C I /�1B0P"
zAxx; (10.26)

achieves asymptotic stability of the equilibrium xx D 0 with xW contained in its
domain of attraction. Moreover, for any initial condition in xW , the constraint
kv.k/k < ı1 does not get violated for any k > 0.

We can now use Lemma 10.20 to prove that a particular family of control laws
achieves semi-global stability of the single-layer nonlinear sandwich system.

Theorem 10.21 Consider the interconnection of the two systems given by (10.1)
and (10.2) satisfying conditions (i) and (ii) of Theorem 10.7. Let F be an arbitrary
matrix such that AC BF is asymptotically stable. Let P" > 0 be the solution of
DARE (10.25). Define what can be termed as generalized low-gain state feedback
law by

u D Fx � .B0P"B C I /�1B0P"
zAxx D F1;"x C F2;"!: (10.27)

For any compact set of initial conditions W 2 Rn1Cn2 , there exists an "� > 0

such that for all " with 0 < " < "� the controller (10.27) asymptotically stabilizes
the equilibrium .0; 0/ with a domain of attraction containing W .
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Proof : Condition (i) of Theorem 10.7 immediately implies the existence and
uniqueness of P" > 0 satisfying the DARE (10.25). Moreover, condition (ii)
immediately implies that

P" ! 0 (10.28)

as " ! 0. This immediately implies that

F1;" ! F; F2;" ! 0: (10.29)

Note that the initial conditions are in some compact set W and hence there exist
compact sets X and˝ such that x.0/ 2 X and !.0/ 2 ˝ .

Note that if we apply u D Fx, there exists aK > 0 such that for any x.0/ 2 X

we have
kC.AC BF /kx.0/k < 1

2

for all k > K and there exists a compact set xX such that x.k/ 2 xX for all
0 6 k 6 K . This immediately follows from the asymptotic stability of AC BF .

Since !.0/ 2 ˝ which is a compact set and �.z.k// is bounded, we find
that, independent of ", there exists a compact set x̋ such that !.k/ 2 x̋ for all
0 6 k 6 K .

Next, there exists an "# > 0 such that for

u.k/ D F1;"x.k/C F2;"!.k/

and for " < "# we have
x.k/ 2 2 xX

for all 0 6 k 6 K . This follows from (10.29) while !.k/ is bounded in x̋ .
From Lemma 10.20, we note that there exists an "� < "# such that for " < "�,

the controller,
v D �.B0P"B C I /�1B0P"

zAxx;
stabilizes system (10.24) and satisfies kvk < ı1 for all k > 0 given xx.K/ 2
2 xX � x̋ . This implies that z.k/ generated by (10.19) satisfies kz.k/k < 1 for
k > K . Then the interconnection of (10.1) and (10.2) with controller (10.27)
for k > K is equivalent to the interconnection of (10.24) with controller (10.26)
for k > K . The asymptotic stability of the latter system follows from Lemma
10.20. Hence, we have

x.k/ ! 0; !.k/ ! 0:

Since this follows for any .x.0/; !.0// 2 W , we find that W is contained in the
domain of attraction as required.

Remark 10.22 Remarks 10.16 and 10.17 apply to discrete-time systems as well.
However, because of some inherent differences between continuous- and discrete-
time systems, development of a low-and-high-gain design for discrete-time sys-
tems is not fully feasible as discussed at the end of Sect. 10.7 in Remark 10.41.
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We show here that the family of controllers defined by (10.27), with " replaced
by an adaptive-low-gain parameter "a.xx/, solves Problem 10.2.

Generalized adaptive-low-gain design for global stabilization: We consider the
adaptive parameter "a.xx/ introduced earlier for continuous-time case and having
the same properties as given there, but now selected as

"a.xx/ D maxf r 2 .0; 1� j .xx0Pr xx/ trace B0PrB 6 ı2
1

Mp
g (10.30)

where Pr is the unique positive definite solution of DARE (10.25) with " D r , ı1

is defined by (10.22) and

Mp D �max.P
1
2

1 BB0P
1
2

1 /C 1:

Here P1 is the solution of DARE (10.25) with " D 1. It can be shown easily that
this adaptation guarantees that

k.B0P"a.xx/B C I /�1B0P"a.xx/
zAxxk 6 ı1;

where P"a.xx/ is the same as P", which is the solution of DARE (10.25) with "
replaced by "a.xx/.

To prove Theorem 10.8, we need the following lemma which is analogous to
Lemma 10.18 and which defines a control law that stabilizes the linear system
(10.24).

Lemma 10.23 Consider the system (10.24) and assume that . zA;B/ as given
by (10.12) is stabilizable and that the eigenvalues of zA are within the closed
unit disc. The control law

v D �.B0P"a.xx/B C I /�1B0P"a.xx/
zAxx (10.31)

achieves global stability of the equilibrium xx D 0. Moreover, the constraint
kv.k/k � ı1 does not get violated for any k � 0.

We can now use Lemma 10.23 to prove that a particular family of control laws
achieves global stability of the single-layer nonlinear sandwich system.

Theorem 10.24 Consider the systems given by (10.1) and (10.2), satisfying Con-
ditions i and ii of Theorem 10.8. Choose an arbitrary matrix F such thatACBF

is asymptotically stable. Let P"a.xx/ be the unique positive definite solution of
DARE (10.25), with " replaced by the adaptive-low-gain parameter "a.xx/ defined
by (10.30). Then, the generalized adaptive-low-gain state feedback control law

u D Fx � .B0P"a.xx/B C I /�1B0P"a.xx/
zAxx (10.32)

achieves global asymptotic stability of the origin where zA and B are given
by (10.12).
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Proof : Considering the interconnection of (10.1) and (10.2), we note that close
to the origin the saturation does not get activated. Moreover, close to the origin
the feedback (10.32) is given by

u D Fx � .B0P1B C I /�1B0P1
zAxx;

where P1 is the solution of (10.25) with " D 1. This immediately yields that the
interconnection of (10.1), (10.2), and (10.32) is locally asymptotically stable. It
remains to show that we have global asymptotic stability.

Consider an arbitrary initial condition x.0/ and!.0/. Then there exists aK > 0

such that

kC.AC BF /kx.0/k < 1
2

for k > K . Moreover, by construction

v D �.B0P"a.xx/B C I /�1B0P"a.xx/
zAxx

yields kv.k/k 6 ı1 for all k > 0. However, this implies that z.k/ generated
by (10.19) satisfies kz.k/k < 1 for all k > K . But this yields that the inter-
connection of (10.1) and (10.2) with controller (10.32) behaves for k > K like
the interconnection of (10.24) with controller (10.31). From Lemma 10.23, global
asymptotic stability of the latter system then implies that xx.k/ ! 0 as k ! 1.
Since this property holds for any initial condition and since we have local asymp-
totic stability, we can conclude that the controller yields global asymptotic stabil-
ity. This completes the proof.

10.5 Low-gain design for single-layer systems
with actuator saturation

In this section, we explicitly construct controllers to solve the semi-global and
global stabilization problems described in Sect. 10.2 for single-layer systems
where the actuator is subject to saturation. In doing so, we prove sufficiency of
the conditions in Theorems 10.9 and 10.10. We divide our development into two
subsections, one for continuous-time systems and the other for discrete-time sys-
tems.

10.5.1 Continuous-time systems

We first present a generalized low-gain design for solving Problem 10.3 which
concerns with semi-global stabilization of the origin of the single-layer sandwich
system subject to actuator saturation described by (10.3) and (10.4).
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Generalized low-gain design for semi-global stabilization: We define the
following family of generalized low-gain state feedback control laws:

u D �B0P"1;"2

 
x

!

!
D F1;"1;"2

x C F2;"1;"2
!; (10.33)

where P"1;"2
D P 0

"1;"2
> 0 satisfies the CARE,

A0P"1;"2
C P"1;"2

A � P"1;"2
BB0P"1;"2

C
 
"1I 0

0 "2I

!
D 0: (10.34)

The family of control laws is parameterized by the parameters "1; "2 > 0, and
in the following, we show that semi-global stabilization is achieved for suitably
chosen values of these parameters.

By Conditions (ii) and (iii) of Theorem 10.9, we know that the eigenvalues of
M and A are in the closed left-half plane, and this implies that

lim
"2!0

P"1;"2
D
 
P"1

0

0 0

!
; lim

"1!0
"2!0

P"1;"2
D 0;

where P"1
D P 0

"1
> 0 is the unique positive definite solution of the CARE,

A0P"1
C P"1

A � P"1
BB 0P"1

C "1I D 0: (10.35)

This in turn implies that

F1;"1;"2
! F"1

WD �B 0P"1
; F2;"1;"2

! 0 (10.36)

as "2 ! 0. Note that the initial conditions belong to some compact set W , and
hence there exist compact sets X � Rn1 and ˝ � Rn2 such that x.0/ 2 X and
!.0/ 2 ˝ .

For u D F"1
x, there exists an "�

1 > 0 such that for all 0 < "1 < "�
1 and for all

x.0/ 2 X,
kF"1

x.t/k D kF"1
e.ACBF"1

/tx.0/k 6 1
4
: (10.37)

Moreover, there exists a T > 0, dependent on "1, such that

x.T / 2 V"1
WD ˚

x 2 Rn1 j x0P"1
x < ı

�

for all x.0/ 2 X. Here ı > 0 is such that x 2 V"1
implies that kCxk 6 1

4
and

kF"1
xk 6 1

4
. Since !.0/ 2 ˝ , where˝ is a compact set, and �.z.t// is bounded,

it follows that there exists a compact set x̋ , independent of "2, such that!.t/ 2 x̋
for all t 2 Œ0; T �.

Next, we note that for u D F"1
x, we have x.T / 2 V"1

and hence there exists
an "�

2 , dependent on "1, such that for all 0 < "2 < "�
2 , we have x.T / 2 2V"1

for
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u D F1;"1;"2
x C F2;"1;"2

!. Here we use (10.36) and our earlier conclusion that
!.t/ is bounded on Œ0; T �.

Define
V"1;"2

D ˚ xx 2 Rn1Cn2 j xx0P"1;"2
xx < 9ı � :

There exists an "#
2 with 0 < "#

2 < "�
2 such that, for 0 < "2 < "#

2, the following
holds:

� If x 2 2V"1
and ! 2 x̋ , then .x; !/ 2 V"1;"2

.

� For any .x; !/ such that .x; !/ 2 V"1;"2
, we have x 2 3V"1

and

kF1;"1;"2
x C F2;"1;"2

!k < 1:

To see this, note that x 2 3V"1
implies that kCxk 6 3

4
.

Consider the controller,

v D �
�
B 0 0

�
P"1;"2

 
x

!

!
D �B0P"1;"2

xx; (10.38)

for 0 < "2 < "#
2 where xx is as defined in (10.12). This controller stabilizes the

linear system
Txx D Axx C Bv; (10.39)

where A and B are as in (10.6). Given x.T / 2 2V"1
and!.T / 2 x̋ , we know that

.x.T /; !.T // 2 V"1;"2
. Then the controller (10.38) applied to the system (10.39)

guarantees that .x.t/; !.t// 2 V"1;"2
for all t > T , which, given the properties of

the set, implies that kv.t/k < 1 and kCx.t/k < 1 for all t > T . Then the inter-
connection of (10.1) and (10.2) with controller (10.33) for t > T is equivalent to
the interconnection of (10.39) with controller (10.38) for t > T . The asymptotic
stability of (10.39) with controller (10.38) implies that x.t/ ! 0 and !.t/ ! 0.
Since this holds for any .x.0/; !.0// 2 W , it follows that W is contained in the
domain of attraction. We have therefore established Theorem 10.25 given below,
which proves that the family of control laws defined by (10.33) achieves semi-
global stability.

Theorem 10.25 Consider the systems given by (10.3) and (10.4) that satisfy Con-
ditions (i), (ii), and (iii) of Theorem 10.9. For any compact set of initial conditions
W 2 Rn1Cn2 , there exists an "�

1 > 0 such that for all "1 with 0 < "1 < "�
1,

there exists an "�
2."1/ such that for all 0 < "2 < "�

2."1/, the controller defined
by (10.33) asymptotically stabilizes the origin with a domain of attraction con-
taining W .

We now present a generalized adaptive-low-gain design for solving Prob-
lem 10.4 which concerns with global stabilization of the single-layer sandwich
system subject to actuator saturation described by (10.3) and (10.4).
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Generalized adaptive-low-gain design for global stabilization: As in the pre-
vious section, we design a controller based on appropriate adaptation of low-gain
parameter.

Let P1;"1
D P 0

1;"1
> 0 be the unique positive definite solution of the CARE,

A0P1;"1
C P1;"1

A � P1;"1
BB 0P1;"1

C "1I D 0: (10.40)

We consider the adaptive parameter "a;1.x/ having the same properties as given in
Sect. 10.4.1 on page 552. A particular choice satisfying such properties is given by

"a;1.x/ D max

�
r 2 .0; 1� j .x0P1;rx/ traceB 0P1;rB 6 1

4

	
: (10.41)

Let ` > 0 be such that "a;1.x/ < 1 implies that kxk > `.
Next, consider P2;"2

D P 0
2;"2

> 0 satisfying

 
AC BF 0

NC M

!0
P2;"2

C P2;"2

 
AC BF 0

NC M

!
� P2;"2

 
BB 0 0

0 0

!
P2;"2

C "2I D 0; (10.42)

where F D �B 0P1;1. Choose

ı 6 max

�
1

2
;

`

4kB 0P1;1k
	
;

such that the fact kv.t/k < ı for all t > 0 guarantees the fact that kz0.t/k < 1
2

for all t > 0, where z0 is defined by (10.9). Consider an associated adaptive
parameter "a;2.xx/ that satisfies the same properties as given in Sect. 10.4.1 on
page 552. A particular choice satisfying such properties is given by

"a;2.xx/ D max

(
r 2 .0; 1� j .xx0P2;r xx/

�����

 
B

0

!0
P2;r

 
B

0

!����� 6 ı2

)
: (10.43)

The following theorem shows that a specified control law achieves global stability
of the single-layer nonlinear sandwich system subject to actuator saturation.

Theorem 10.26 Consider the two systems given by (10.3) and (10.4) that sat-
isfy Conditions (i)–(iii) of Theorem 10.10. Let P1;"a;1.x/ be defined by (10.40)
with "1 replaced by the adaptive-low-gain parameter "a;1.x/ defined by (10.41).
Let P2;"a;2.xx/ be defined by (10.42) with "2 replaced by the adaptive-low-gain
parameter "a;2.xx/ defined by (10.43). Define the generalized adaptive-low-gain
state feedback control law as

u D �B 0P1;"a;1.x/x � "a;1.x/
�
B 0 0

�
P2;"a;2.xx/ xx; (10.44)

where xx is as defined in (10.12). Then, the control law (10.44) achieves global
asymptotic stability of the origin.
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Proof : Considering the interconnection of (10.3) and (10.4), we note that the
saturation is not activated near the origin. Moreover, near the origin the control
law (10.44) is given by u D Fx�BP2;1 xx where F D �B 0P1;1. This means that
state matrix of the interconnection of (10.3), (10.4), and (10.44) equals

zA � BB0P2;1;

which is Hurwitz by the properties of the ARE. We have therefore established
local asymptotic stability. It remains to show that we have global asymptotic sta-
bility.

Define V D f x 2 Rn1 j "a;1.x/ D 1 g. We want to establish that "a;1.x/ is
strictly increasing in time when x.t/ 62 V .

Assume that this is not the case and we can find some x.t/ 62 V such that
"a;1.x.t// is nonincreasing, that is, the derivative with respect to time is less than
or equal to zero. We obtain

d

dt
x0.t/P1;"a;1.x.t//x.t/ D �"a;1.x.t//x

0.t/x.t/C x0.t/



d

dt
P1;"a;1.x.t//

�
x.t/

� x0.t/P1;"a;1.x.t//BB
0P1;"a;1.x.t//x.t/

� 2"a;1.x.t//x
0.t/P1;"a;1.x.t//B

 
B

0

!0
P2;"a;2.xx.t//xx.t/:

Since the derivative of "a;1.x.t// with respect to time is less than or equal to zero,
the properties of our adaptation imply that

d

dt
P1;"a;1.x.t// 6 0:

Next, our adaptation guarantees that
���x0.t/P1;"a;1.x.t//B

�
B 0 0

�
P2;"a;2.xx.t//xx.t/

��� 6 ıkB 0P1;"a;1.x.t//kkx.t/k

6 ı

`
kB 0P1;1kkx.t/k2

6 1
4
x0.t/x.t/:

Combining the above expressions, we obtain

d

dt
x0.t/P1;"a;1.x.t//x.t/ 6 �1

2
"a;1.x.t//x

0.t/x.t/:

However, if x0.t/P1;"a;1.x.t//x.t/ is decreasing, then the properties of our adapta-
tion guarantee that "a;1.x.t// is strictly increasing, which yields a contradiction.

Hence, if x.t/ 62 V , we find that "a;1.x.t// is strictly increasing, and it follows
that x.t/ converges to V and that it cannot escape from V . On V we have "a;1 D
1. Moreover,

u D Fx �
�
B 0 0

�
P"a;2.xx/xx
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satisfies �.u/ D u. We can then apply Lemma 10.18 as in the previous subsection,
and we conclude that the system therefore behaves like a stable system after a
finite amount of time, and it follows that x.t/ ! 0 and !.t/ ! 0 as t ! 1.

Remark 10.27 Theorems 10.19 and 10.26 are stated with respect to the adap-
tive parameters described by (10.16), (10.41), (10.43). We remark, however, that
these theorems are valid for all choices of adaptive parameters that satisfy the
conditions enumerated earlier.

10.5.2 Discrete-time systems

This subsection pertaining to discrete-time systems is conceptually similar to the
previous subsection that deals with continuous-time systems.

We now present a generalized low-gain design for solving Problem 10.3, con-
cerning semi-global stabilization of the origin of the single-layer sandwich system
subject to input saturation described by (10.3) and (10.4).

Generalized low-gain design for semi-global stabilization: Let the matrixP1;"1

be the unique positive definite solution of the DARE,

P1;"1
D A0P1;"1

AC "1I �A0P1;"1
B.B 0P1;"1

B C I /�1B 0P1;"1
A; (10.45)

and define

F1;"1
D �.B 0P1;"1

B C I /�1B 0P1;"1
A: (10.46)

Next, let P2;"2
D P 0

2;"2
> 0 be the unique positive definite solution of the

DARE,

P2;"2
D zA0P2;"2

zA C "2I � zA0P2;"2
B.B0P2;"2

B C I /�1B0P2;"2
zA; (10.47)

where zA and B are given by

zA D
 
AC BF1;"1

0

NC M

!
; B D

 
B

0

!
:

Also define

F2;"2
D �.B0P2;"2

B C I /�1B0P2;"2
zA: (10.48)

We define next the family of control laws,

u D F1;"1
x C F2;"2

xx: (10.49)

This family of control laws is parameterized by the parameters "1; "2 > 0, and we
show next that the semi-global stabilization is achieved for suitably chosen values
of these parameters.
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Theorem 10.28 Consider the systems given by (10.3) and (10.4), satisfying
conditions (i)–(iii) of Theorem 10.9. For any compact set of initial conditions
W 2 Rn1Cn2 , there exists an "�

1 > 0 such that for any "1 with 0 < "1 < "�
1,

there exists an "�
2."1/ such that for all 0 < "2 < "�

2."1/, the controller de-
fined by (10.49) asymptotically stabilizes the origin with a domain of attraction
containing W .

Proof : By conditions (ii) and (iii) of Theorem 10.9, we know that the eigenvalues
of A and M are in the closed unit disc. This implies that

lim
"1!0

P1;"1
D 0; lim

"2!0
P2;"2

D 0;

and hence implies that

lim
"1!0

F1;"1
D 0; lim

"2!0
F2;"2

! 0: (10.50)

Note that the initial conditions belong to some compact set W , and hence there
exist compact sets X � Rn1 and˝ � Rn2 such that x.0/ 2 X and !.0/ 2 ˝ .

Define a family of sets

V1.c/ D ˚
x 2 Rn1 j x0P1;"1

x 6 c
�
:

If we apply u D F1;"1
x, there exists an "�

1 > 0 such that for all 0 < "1 < "
�
1 and

for all x.0/ 2 X,
kF1;"1

.AC BF1;"1
/kx.0/k 6 1

4
: (10.51)

Moreover, there exists a K > 0, dependent on "1, such that x.K/ 2 V1.c1/

for all x.0/ 2 X. Here c1 is such that x 2 V1.c1/ implies that kCxk 6 1
4

and kF1;"1
xk 6 1

4
. Since !.0/ 2 ˝ , where ˝ is a compact set, and �.z.k// is

bounded, it follows that there exists a compact set x̋ , independent of "2, such that
!.k/ 2 x̋ for all 0 6 k 6 K .

Define a family of level sets

V2.c/ D ˚ xx 2 Rn1Cn2 j x0P1;"1
x C xx0P2;"2

xx 6 c
�
:

Next, we note that for u D F1;"1
x, we have x.K/ 2 V1.c1/. If we apply u D

F1;"1
x C F2;"2

xx, from (10.50) and our earlier conclusion that !.k/ is bounded
for 0 6 k 6 K , we see that there exists an "�

2 , dependent on "1, such that for all
0 < "2 < "

�
2 , the following properties hold:

� x.K/ 2 2V1.c1/.

� If x 2 2V1.c1/ and ! 2 x̋ , then xx 2 3V2.c1/.

� For any xx such that xx 2 3V2.c1/, we have kF2;"2
xxk < 1

4
.
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At time k D K , we have xx 2 3V2.c1/. This immediately implies that kF2;"2
xxk

6 1
4

.
Note that for any xx 2 3V2.c1/, we have

x0P1;"x 6 x0P1;"x C xx0P2;"2
xx 6 9c1;

and hence x 2 3V1.c1/. But this implies that kF1;"1
xk 6 3

4
. Therefore, we have

kF1;"1
x C F2;"2

xxk 6 1:

Similarly, for any xx 2 3V2.c1/, we have x 2 3V1.c1/, and this implies that
kCxk 6 3

4
. Therefore, for any xx 2 3V2.c1/, both saturations are inactive.

We know at time K , the closed-loop system is linear and can be written as

xx.k C 1/ D . zA C BF2;"2
/xx.k/: (10.52)

It is straightforward to see that (10.52) is asymptotically stable and 3V.c1/ is
invariant. We know that both the saturations will remain inactive for all k > K .
The asymptotic stability of (10.52) implies that xx.k/ ! 0 as k ! 1.

Since this holds for any xx.0/ 2 W , it follows that W is contained in the domain
of attraction. This completes the proof.

We now present a generalized adaptive-low-gain design methodology for solv-
ing Problem 10.4, concerning global stabilization of the single-layer sandwich
system subject to input saturation described by (10.3), (10.4).

Generalized adaptive-low-gain design for global stabilization: As in previous
section, this controller is formed from the semi-global controller (10.49) while
using appropriate adaptation of low-gain parameters.

Let P1;"1
D P 0

1;"1
> 0 be the unique positive definite solution of the

DARE (10.45) and F1;"1
be defined as (10.46) with adaptive parameter "1 D

"1.x/.
As in Sect. 10.4.2, a particular choice of adaptation is given by

"1.x/ D max f r 2 .0; 1� j .x0P1;rx/ traceB 0P1;rB 6 1
4M2

g (10.53)

where P1;r is the solution of DARE (10.45) with "1 D r and

M2 D �max.P
1
2

1;1BB
0P

1
2

1;1/C 1:

Here P1;1 is the solution of DARE (10.45) with "1 D 1.
It can be shown that the above adaptation guarantees that

��.B 0P1;"1.x/B C I /�1B 0P1;"1.x/x
�� 6 1

2
:

Let ` > 0 be such that

.�max.P1;1/C 1
2
/`2 6 1

4M2kB0P1;1Bk :
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Next, let P2;"2
D P 0

2;"2
> 0 be the unique positive definite solution of the

DARE (10.47) and F2;"2
be defined by (10.48) where "2 D "2.xx/ is an adap-

tive parameter and where, in both (10.47) and (10.48), we use

zA D
 
AC BF1;1 0

NC M

!
; B D

 
B

0

!
: (10.54)

Choose

ı2 D min

�
1

2
;

`2

2.3 kB 0P1;1Bk C 1/
;
1

2z�
	
; (10.55)

where z� D P1
kD0 kC.ACBF1;1/

kBk. Consider an associated adaptive parameter
given by

"2.xx/ D max f r 2 .0; 1� j .xx0P2;r xx/ trace B0P2;rB 6 ı2
2

M3
g (10.56)

where P2;r is the solution of DARE (10.47) with "2 D r and

M3 D �max.P
1
2

2;1BB0P
1
2

2;1/C 1:

Here P2;1 is the solution of DARE (10.47) with "2 D 1. We have kF2;"k 6 ı2.
The following theorem shows that a particular family of control laws achieves

global stability of the single-layer nonlinear sandwich system subject to input
saturation.

Theorem 10.29 Consider the two systems given by (10.3) and (10.4), satisfying
conditions (i)–(iii) of Theorem 10.10. LetP1;"1.x/ be the solution of DARE (10.45)
with "1 replaced by the adaptive-low-gain parameter "1.x/ defined by (10.53). Let
P2;"2.xx/ be the solution of DARE (10.47) with "2 replaced by the adaptive-low-
gain parameter "2.xx/ defined by (10.56). Then, the generalized adaptive-low-gain
state feedback control law,

u D F1;"1.x/x C "1.x/F2;"2.xx/ xx; (10.57)

achieves global asymptotic stability of the origin where F1;"1.x/ and F2;"2.xx/ are
respectively defined by (10.46) and (10.48) with "1 and "2 replaced by "1.x/ and
"2.xx/.

Proof : Note that our adaptive parameter guarantees that ku.k/k 6 1 for all
k > 0. The input saturation is always inactive.

Considering the interconnection of (10.3) and (10.4), we note that the sand-
wiched saturation is not activated near the origin. Moreover, near the origin, the
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control law (10.57) is given by u D F1;1x C F2;1 xx where F1;1 is F1;"1.x/ with
"1.x/ D 1 and F2;1 is F2;"2.xx/ with "2.xx/ D 1. This means that state matrix
of the interconnection of (10.3), (10.4), and (10.57) equals zA C BF2;1 which is
aymptotically stable by the properties of the DARE (here zA is as in (10.54)). We
have therefore established local asymptotic stability. It remains to show that we
have global asymptotic stability.

Define V D x0P"1.x/x and V1 D f x 2 Rn1 j kxk 6 ` g and V2 D f x 2
Rn1 j V.x/ 6 .�max.P1;1/ C 1=2/`2g. Since kx.k/k 6 ` implies that V.x/ 6
�max.P"1.x.k///kx.k/k2 6 �max.P1;1/`

2, we have V2 	 V1. Moreover, from the
definition of `, we have "1.x/ D 1 for x 2 V2. We first want to establish that
V.k/ is strictly decreasing in time when x 62 V1.

Assume that this is not the case and we can find a x.k/ 62 V1 such that V.k C
1/�V.k/ > 0. Denote "1.x.k// and P1;"1.x.k// by "1.k/ and P1.k/, respectively.
We obtain

V.k C 1/� V.k/ 6
� "1.k/x.k/

0x.k/ � x.k C 1/0P1.k/x.k C 1/C x.k C 1/0P1.k C 1/x.k C 1/

�2x.k/0A0P1.k/Bv2.k/�2v1.k/
0B 0P1.k/Bv2.k/Cv2.k/

0B 0P1.k/Bv2.k/;

where v1.k/ D F1;"1.k/x.k/ and v2.k/ D �"1.k/F2;"2.k/xx.k/.
Our adaptation guarantees that kv1.k/k 6 1

2
and kv2.k/k 6 "1.k/ı2 and hence

kx.k/0A0P1.k/Bv2.k/k D kv1.k/
0.B 0P1.k/B C I /v2.k/k

6 1
2
"1.k/.

��B 0P1;1B
��C 1/ı2

kv1.k/
0B 0P1.k/B

0v2.k/k 6 1
2
"1.k/

��B 0P1;1B
�� ı2

kv2.k/
0B 0P1.k/Bv2.k/k 6 "1.k/

2
��B 0P1;1B

�� ı2
2 6 "1.k/

��B 0P1;1B
�� ı2:

Therefore,

V.k C 1/� V.k/
6 � "1.k/x

0.k/x.k/C x.k C 1/0.P1.k C 1/� P1.k//x.k C 1/

C "1.k/.3
��B 0P1;1B

��C 1/ı2

6 � "1.k/x
0.k/x.k/C x.k C 1/0.P1.k C 1/� P1.k//x.k C 1/C 1

2
"1.k/`

2

(10.58)

6 � 1
2
"1.k/kx.k/k2 C x.k C 1/0.P1.k C 1/� P1.k//x.k C 1/;

where we use, in the last inequality, the fact that x.k/… V1 and hence kx.k/k > `.
Since V.k C 1/� V.k/ > 0, the properties of our scheduling imply that

x.k C 1/0.P1.k C 1/� P1.k//x.k C 1/ 6 0: (10.59)

We get
V.k C 1/� V.k/ 6 �1

2
"1.k/kx.k/k2 < 0:
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This yields a contradiction. Hence, when x.k/ 62 V1, we have V.k/ strictly
decreasing, and it follows that x.k/ enters V1 within finite time, say K1. When
x.k/ 2 V1, we have either V.kC 1/�V.k/ 6 0 or (10.59) and (10.58) yield that

V.k C 1/� V.k/ 6 1
2
"1.k/`

2 6 1
2
`2:

This implies that V.kC 1/ 6 �max.P1;1/`
2 C 1

2
`2 and hence x.k C 1/ 2 V2. We

find that if x.k/ 2 V1, then x.k C 1/ 2 V2. On the other hand, if x.k/ 2 V2nV1,
then V.k/ is strictly decreasing and hence x.k C 1/ 2 V2. Therefore, x.k/ will
enter V2 and it cannot escape from V2. On V2, we have "1.k/ D 1. TheL1 system
then becomes

x.k C 1/ D .AC BF1;1/x.k/C Bv2.k/

z.k/ D Cx.k/;
(10.60)

where kv2.k/k 6 ı2. We have for any k > K1

z.k/ D C.AC BF1;1/
k�K1x.K1/C z0.k/

where

z0.k/ D
k�1X

iDK1

C.AC BF1;1/
k�i�1Bv2.i/: (10.61)

Given that ı2 6 1
2�

as given by (10.55), we have kv.k/k < 1
2�

for all k > K1.

But this guarantees that kz0.k/k < 1
2

for all k > K1, where z0.k/ is defined
by (10.61). Therefore, there exists a K2 such that for k > K2,

kC.AC BF1;1/
k�K1x.K1/k 6 1

2

and hence kz.k/k 6 1 for k > K2. We can then apply Lemma 10.23 as in the
previous subsection, and we conclude that the system therefore behaves like a
stable system after a finite amount of time, and it follows that x.k/ ! 0 and
!.k/ ! 0 as k ! 1.

10.6 Low-gain design for multilayer systems
with actuator saturation

As mentioned in the introduction, the results presented in this chapter are gener-
alizations of classical low-gain design methodologies for linear systems subject
to only actuator saturation. The principle behind classical low-gain design is to
create a control law with a sufficiently low gain to avoid saturating the actuator.
In the semi-global case, the gain is fixed, based on an a priori given set of possi-
ble initial conditions; in the global case, the gain is adapted to be sufficiently low
regardless of the initial conditions.
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For the single-layer sandwich system shown in Fig. 10.3, the principle is
similar. However, the problem is more complex because the sandwiched sat-
uration cannot be made inactive from the start by using low gain. Instead, the
sandwiched saturation must be deactivated by controlling the states of theL1 sub-
system toward the origin. Conceptually, the control task can therefore be viewed
as consisting of two subtasks. The first subtask is to control the states of the L1

subsystem toward the origin in order to deactivate the sandwiched saturation after
a finite time. Once the sandwiched saturation has been deactivated, the second
subtask consists of controlling the state of the whole system to the origin without
reactivating the sandwiched saturation.

To accomplish the two subtasks, the control law is divided into two terms:
a term Fx that depends only on the state x of the L1 system, referred to as the
L1 term, and a low-gain term that depends on ! as well, referred to as the L1=L2

term. The L1 term ensures that x becomes small after an initial transient, so that
after a finite time T , the sandwiched saturation is inactive. A sufficiently low
gain for the L1=L2 term ensures that the sandwiched saturation remains inactive
while the states are brought to the origin. This philosophy is what is pursued in
Sect. 10.4.

When the single-layer sandwich system is extended with an actuator saturation,
as in Fig. 10.4, we cannot freely select theL1 term to make x small; we must also
take care to avoid activation of the actuator saturation. The L1 term is therefore
also designed using a low-gain methodology, to ensure that the sandwiched satu-
ration is inactive after a time T , without activating the actuator saturation in the
mean time. The gain for the L1=L2 term is chosen sufficiently low, depending on
the gain for the L1 term, to ensure that both the sandwiched saturation and the
actuator saturation remain inactive while the states are brought to the origin. This
philosophy is what is pursued in Sect. 10.5.

As the above discussion makes clear, the design methodology for single-layer
sandwich systems subject to actuator saturation is nested: first, the gain for the
L1 term is chosen sufficiently low, and then the gain for the L1=L2 term is cho-
sen sufficiently low, depending on the gain of the L1 term. This methodology
can be naturally extended to multilayer sandwich systems of the types depicted
in Figs. 10.5 and 10.6. Consider, for example, a double-layer sandwich system
subject to input saturation. The control law is split into three terms, referred to as
the L1 term, the L1=L2 term, and the L1=L2=L3 term. The gain of the L1 term
is chosen sufficiently low to make the first sandwiched saturation inactive after
a finite time T1, without activating the actuator saturation in the mean time. The
gain of the L1=L2 term is then chosen sufficiently low, depending on the gain
of the L1 term, to ensure that the second sandwiched saturation is inactive after
another finite time T2 > T1, without activating the first sandwiched saturation or
the actuator saturation in the mean time. Finally, the gain of the L1=L2=L3 term
is chosen sufficiently low, depending on the gains of the L1 term and the L1=L2

term, to ensure that the two sandwiched saturations and the actuator saturation
remain inactive while the states are brought to the origin.
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As in the case of single-layer sandwich systems, semi-global stabilization of
multilayer sandwich systems can be achieved using fixed gains, and global sta-
bilization can be achieved by appropriately adapting the gains. In either case,
necessary and sufficient conditions for semi-global and global stabilization cor-
respond to the conditions for single-layer sandwich systems. When there is no
actuator saturation, the conditions are that (1) the linearized cascade system is
stabilizable and (2) the eigenvalues of systems L2; L3; : : : are in the closed left-
half plane(continuous-time systems) or within the closed unit disc (discrete-time
systems). When the actuator is subject to saturation, the eigenvalues of the L1

system must also be in the closed left-half plane.
In what follows, we develop the above design philosophy for multilayer sand-

wich systems by considering discrete-time systems. Although we focus here only
on discrete-time systems, the methodology applies equally well for continuous-
time systems.

10.6.1 Generalized low-gain design for semi-global stabilization

We now proceed to construct a linear semi-globally stabilizing controller for mul-
tilayer sandwich system (10.62) which solves the Problem 10.5 for discrete-time
systems.

For discrete-time systems, we rewrite the multilayer nonlinear sandwich sys-
tems defined in Sect. 10.2 as

Li W

8
<̂

:̂

xi .k C 1/ D Aixi .k/C Bi�.ui .k//; i D 1; : : : ; �

zi .k/ D Cixi .k/; i D 1; : : : ; � � 1

ui .k/ D zi�1.k/; i D 2; : : : ; �:

(10.62)

Let P"i
be the positive definite solution of DARE,

P"i
D A0

iP"i
Ai C "iI � A0

iP"i
Bi .B

0
iP"i

Bi C I /�1B0
iP"i

Ai ; (10.63)

and define
F"i

D �.B0
iP"i

Bi C I /�1B0
iP"i

Ai ; (10.64)

where

A1 D A1; Ai D
 

Ai�1 C Bi�1F"i�1
0

Bi Ci�1 Ai

!
; i D 2; : : : ; �; (10.65)

and

Bi D
�
B 0

1 0 � � � 0
�0
; Ci D

�
0 : : : 0 Ci

�
(10.66)

are of appropriate dimensions. The parameters "i , i D 1; : : : ; � are to be deter-
mined subsequently.

We have the following theorem.
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Theorem 10.30 Consider the interconnection of � systems as given by (10.62),
satisfying conditions (i), (ii) of Theorem 10.11. Let P"i

be the solution of DARE
in (10.63) with "i 2 .0; 1�, i D 1; : : : ; �. For any compact set W � Rn1C���Cn� ,
we can determine "i , i D 1; : : : ; � such that the controller

u D
�X

iD1

F"i
	i (10.67)

renders the origin asymptotically stable with a domain of attraction containing
W where

	i D
�
x0

1 � � � x0
i

�0
:

Proof : For simplicity of presentation, denote P"i
and F"i

by Pi and Fi .
Conditions (i) and (ii) of Theorem 10.11 and the fact that all Ai C BiFi are

asymptotically stable imply that

lim
"i !0

Pi D 0; lim
"i !0

Fi D 0: (10.68)

Define the function

Vi .	i / D
iX

j D1

	0
jPj	j ;

and the sets
Vi .c/ D

n
	i 2 R

Pi
j D1 nj j Vi .	i / 6 c

o
:

Since W is compact, there exist for i D 1; : : : ; �, compact sets Wi such that
	�.0/ 2 W implies that xi .0/ 2 Wi . We proceed next to determine "i recursively.

Determine "1

Let us consider applying a controller v1 D F1	1 D F1x1.
Note that (10.68) implies that there exists an "�

1 such that for any " 2 .0; "�
1�

and x1.0/ 2 W1,
kF1.A1 C B1F1/

kx1.0/k 6 1
4��1

for all k > 0.
Let c1 be such that x1 2 V1.c1/ implies that kF1x1k 6 1

4��1 and kC1x1k 6
1

3��1 . Since A1 C B1F1 is asymptotically stable, there exists a K1 such that for
all x1 2 W1, we have x1.K1/ 2 V1.c1/.

Determine "2

Since x2.0/ 2 W2 and the input to L2 is bounded, there exists a xW2 such that

x2.k/ 2 xW2; for k 6 K1:

Let "1 be fixed. Consider applying the controller v2 D F1x1 C F2	2. Due
to (10.68), given x2 2 W2, there exists an "�

2."1/ such that the following proper-
ties hold:
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(i) For any "2 2 .0; "�
2."1/�, x1.K1/ 2 2V1.c1/.

(ii) For any "2 2 .0; "�
2."1/�, x1 2 2V1.c1/ and x2 2 xW2 impliy that 	2 2

3V2.c1/.

(iii) For any "2 2 .0; "�
2."1/�, 	2 2 3V2.c1/ implies that kF2	2k 6 1

4��1 .

At time k D K1, we know that 	2 2 3V2.c1/. For any 	2 2 3V2.c1/, we have
kF2	2k 6 1

4��1 . Also note that 	2 2 3V2.c1/ implies that V1.x1/ 6 9c1. But

this implies that F1x1 6 3
4��1 and kC1x1k 6 1

3��2 . We have

kuk D kF1x1 C F2	2k 6 1
4��2 :

Therefore, both the first two saturation elements are inactive in 3V2.c1/, then it
is straightforward to see that with controller v2, we have 	2.k/ 2 3V2.c1/ for all
k > K1 and moreover 	2.k/ ! 0 as k ! 1.

Let c2 be such that 	0
2P2	2 6 c2 implies that kC1x1k 6 1

3��2 , and kC2	2k 6
1

3��2 . There exists then a K2 such that for all 	2.K1/ 2 3V2.c1/, we have
	2.K2/ 2 V2.c2/.

At time K2, we get

(i) 	2.K2/ 2 V2.c2/.

(ii) kC1x1.K2/k 6 1
3��2 and kC2	2.K2/k 6 1

3��2 .

(iii) kF1x1 C F2	2k 6 1
4��2 for all 	2 2 V2.c2/ and k 6 K2.

Determine "3; : : : ; "n

Consider the systems Li , i > 3. At this moment, "j , cj , and Kj for j 6 i � 1

have been determined in previous i � 1 steps. The resulting controller vi�1 DPi�1
j D1 Fj	j yields

(i) 	i�1.Ki�1/ 2 Vi�1.ci�1/.

(ii) kCj	j .Ki�1/k 6 1

3��iC1 for all j 6 i � 1.

(iii) kPi�1
j D1 Fj	j k 6 1

4��iC1 for all 	i�1 2 Vi�1.ci�1/.

Since the input to Li is bounded and xi .0/ 2 Wi , we know that there exists a
xWi such that xi .k/ 2 xWi for all k 6 Ki�1.

Consider the controller vi D Pi
j D1 Fj	j . Equation (10.68) implies then that

there exists an "�
i ."1; : : : ; "i�1/ such that the following properties hold:

(i) 	i�1.Ki�1/ 2 2Vi�1.ci�1/.

(ii) 	i�1 2 2Vi�1.ci�2/ and xi 2 xWi imply that 	i 2 3Vi .ci�1/.

(iii) 	i 2 3Vi .ci�1/ implies that Fi	i 6 1

4��iC1 .
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Therefore, we get at k D Ki�1, 	i .Ki�1/ 2 3Vi .ci�1/, that is, Vi .	/ 6 9ci�1.
But this implies that Vi�1.	/ 6 9ci�1. Hence, we get kCj	j k 6 1

3��i for all

j D 1; : : : ; i � 1, and kFi	i k 6 3

4��iC1 . Moreover,

kvi k D kFj	i k C k
i�1X

j D1

Fj	j k 6 1

4��iC1 C 3

4��iC1 D 1

4��i :

Therefore, the first i saturation elements are inactive for any 	i 2 3Vi .ci�1/. It
is easy to see then that, with the controller vi , 	.k/ 2 3Vi .ci�1/ for all k > Ki�1

and moreover 	i .k/ ! 0 as k ! 1.
Let ci be such that Vi .	i / 6 ci implies that kCj	j k 6 1

3��i for all j 6 i .
There exists a Ki such that 	i .Ki / 2 V.ci / for all 	i .Ki�1/ 2 3Vi .ci�1/.

At time Ki , we get

(i) 	i .Ki / 2 Vi .ci /.

(ii) kCj	j .Ki�1/k 6 1

3��i for all j 6 i .

(iii) kPi
j D1 Fj	j k 6 1

4��i for all 	i 2 Vi .ci /.

Repeating this procedure, we can determine "1; : : : ; "� , c� ,K� and a controller
u.	�/ D v�.	�/ D P�

iD1 Fi	i such that for k > K� we have

(i) 	�.K�/ 2 V�.c�/.

(ii) kCj	j .K�/k 6 1 for all j 6 �.

(iii) kP�
j D1 Fj	j k 6 1 for all 	i�1 2 3Vi�1.c0/.

Then the interconnection of � systems (10.62) is equivalent to

�	 D .A� C B�F�/	� :

The stability of this system implies that 	�.k/ ! 0 as k ! 1. This completes
the proof.

10.6.2 Generalized adaptive-low-gain design for global
stabilization

In this section we construct a global stabilizing controller for a multilayer system
to prove sufficiency of conditions (i) and (ii) in Theorem 10.12. This controller
is formed by assembling semi-global stabilizing controller (10.67) with adaptive
parameters.

Let P"i .�i / be the positive definite solution of DARE (10.63) and F"i .�i / be
defined by (10.64) where "i D "i .	i / is an adaptive parameter, B, is given
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by (10.66) and A is given by (10.65) with F"i�1
replaced by Fi�1;1. Here we

denote Fi;1 D F"i .�i / with "i .	i / D 1.
We need � adaptive parameters which satisfy similar properties as given in

Sect. 10.4.1 on page 552. Choose

ı1 D 1
�
;

ıi D min

(
1

�
; ıi�1;

`2
i�1

2.� � i C 1/2. �C2
�

��B0
i�1Pi�1;1Bi�1

��C 2
�
/
;

1

2.� � i C 1/z�i�1

	
; (10.69)

for i D 2; : : : ; �, where `i is such that

.�max.Pi;1/C 1
2
/`2

i 6 ı2
i

Mi kB0Pi;1Bk
and

z�i D
1X

kD0

kCi .Ai C BiFi;1/
kBi k:

Consider the following adaptive parameters:

"i .	i / D max f r 2 .0; 1� j .	0
iPr	i / trace B0

iPrBi 6 ı2
i

Mi
g ; (10.70)

where Pr is the solution of the DARE (10.63) with

"i D r; Mi D �max.P
1
2

i;1Bi B
0
iP

1
2

i;1/C 1

where Pi;1 D P"i .�i / with "i .	i / D 1.
Consider the controller,

u1 D
�X

iD1

.

i�1Y

j D0

"j .	j //F"i .�i /	i (10.71)

with "0 D 1. It can be shown that our adaptation guarantees that

kF"i .�i /	i k 6 1
�
;

and hence ku1k 6 1. This implies that the input saturation to the first system
never gets activated.

The following theorem shows that the controller (10.71) with adaptive parame-
ters defined by (10.70) achieves global asymptotic stability of the origin for multi-
layer nonlinear sandwich system described by (10.62).

Theorem 10.31 Consider the interconnection of systems Li as given in (10.5),
satisfying conditions (i) and (ii) of Theorem 10.12. Then, the generalized adapti-
ve-low-gain state feedback control law (10.71) achieves global asymptotic stabil-
ity of the origin.
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Proof : For simplicity of presentation, we will denote "i .	i .k//, P"i .�i .k//, and
F"i .�i .k// by "i .k/, Pi .k/, and Fi .k/, respectively. But we emphasize that they
always depend on 	i .

When the state is sufficiently close to the origin, all saturation elements are
inactive and hence "i .	i / D 1 for all i D 1; : : : ; �. The state matrix of closed-
loop system is given by A� CB�F�;1. From the property of DARE, we know that
the above matrix is asymptotically stable. Then local stability follows.

We shall prove global attractivity using induction. We have argued that for all
k > 0, the input saturation on L1 remains inactive and, by construction, "0 D 1.
Suppose that there exists aKi where 1 6 i 6 ��1 such that "j D 1 for j 6 i�1
and the first i saturation elements are inactive for all k > Ki . We show that there
exists a KiC1 such that "i D 1 and saturation on LiC1 will be inactive for all
k > KiC1.

Since the first i saturation elements are inactive and all "j D 1 for j 6 i � 1,
the interconnection of the first i systems is equivalent to the following system,

T	i D Ai	i C Biv1 (10.72)

where Ai is given by (10.65) and v1 is given by

v1 D v1;1 C v1;2 D Fi	i C
�X

j DiC1

.

j �1Y

tDi

"t /Fj	j :

Define Vi .k/ D 	0
iPi	i and the family of sets Vi;1 D f	i 2 R

Pi
j D1 nj j

k	i k 6 `i g and Vi;2 D f	i 2 R
Pi

j D1 nj j Vi 6 .�max.Pi;1/ C 1=2/`2
i g. Since

x.k/ 2 Vi;1 implies that

Vi .k/ 6 �max.Pi .k//k	i .k/k2 6 �max.Pi;1/`
2
i ;

we find that Vi;1 � Vi;2. Moreover, the definition of `i implies that "i .k/ D 1 for
	i .k/ 2 Vi;2.

Evaluating Vi .k C 1/� Vi .k/ along the trajectories yields

Vi .k C 1/� Vi .k/ 6 �"i .k/	i .k/
0	i .k/ � 	i .k C 1/0Pi .k/	i .k C 1/

C 	i .k C 1/0Pi .k C 1/	i .k C 1/� 2	i .k/
0A0

iPi .k/Biv1;2.k/

� 2v1;1.k/
0B0

iPi .k/Biv1;2.k/C v1;2.k/
0B0

iPi .k/Biv1;2.k/;

where

v1;1.k/ D Fi .k/	i .k/;

v1;2.k/ D
�X

j DiC1

.

j �1Y

tDi

"t .k//Fj .k/	j .k/:

Our adaptation guarantees that

kv1;1.k/k 6 1
�
;
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and
kv1;2.k/k 6 "i .k/.� � i/ıiC1:

Hence,

k	i .k/
0A0

iPi .k/Biv1;2.k/k D kv1;1.k/
0.B0

iPi .k/Bi C I /v1;2.k/k
6 "i .k/

.��i/2

�
.
��B0

iPi .k/Bi

��C 1/ıiC1;

kv1;1.k/
0B0

iPi .k/Biv1;2.k/k 6 "i .k/
.��i/2

�

��B0
iPi .k/Bi

�� ıiC1;

kv1;2.k/
0B0

iPi .k/Biv1;2.k/k 6 "i .k/.� � i/2
��B0

iPi .k/Bi

�� ıiC1:

With the above inequalities, we have

Vi .kC1/�Vi .k/ 6 �"i .k/	
0
i .k/	i .k/C	i .kC1/0.Pi .kC1/�Pi .k//	i .kC1/

C "i .k/.� � i/2. �C4
�

��B0
iPi .k/Bi

��C 2
�
/ıiC1

6 �"i .k/k	i .k/k2 C 	i .k C 1/0.Pi .k C 1/� Pi .k//	i .k C 1/C 1
2
"i .k/`

2
i :

Using the same argument as in the proof of Theorem 10.29, we can show that if
	i .k/ … Vi;1, then Vi .k/ is strictly decreasing and hence 	i will enter Vi;1 within
finite time. On the other hand, if 	i .k/ 2 Vi;1, then 	i .k C 1/ 2 Vi;2. Since
Vi;1 � Vi;2, we conclude that 	i will enter Vi;2 within finite time, say Ki;1, and
cannot escape from it. On Vi;2 we have "i .k/ D 1.

Consider zi .k/ D Cixi .k/ D Ci	i .k/ for k > Ki;1. Since "i .k/ D 1, we have

zi .k/ D Ci .Ai C BiFi;1/
k�Ki;1	i .Ki;1/C zi;0.k/;

where

zi;0.k/ D
k�1X

j DKi;1

Ci .Ai C BiFi;1/
k�j �1Biv1;2.j /: (10.73)

Our adaptation guarantees that

v1;2 6 .n � i/ıiC1 6 1
2z�i

D 1

2
P1

kD0 kCi .Ai C BiFi;1/kBik :

This implies that kzi;0.k/k 6 1
2

for all k > Ki;1. Since Ai C BiFi;1 is asymptot-
ically stable, there exists a KiC1 > Ki;1 such that for all k > Ki , we have

kzi .k/k 6 1:

Therefore, the saturation on � systems LiC1 will be inactive and "i D 1 for all
k > KiC1. By induction, there exists aK� such that all the saturations are inactive
for k > K� and "i D 1 for all i D 0; : : : ; � � 1.

Then the interconnection of � systems (10.62) and controller (10.71) is equiv-
alent to the interconnection of linear system,

	�.k C 1/ D A�	�.k/C B�v1;
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with controller

v1 D F"� .��/	� D �.B0
�P"�.�� /B� C I /�1B0

�P"�.�� /A�	� :

It follows from Lemma 10.23 that the closed-loop system is globally asymptoti-
cally stable. This implies that 	�.k/ ! 0 as k ! 1. This completes the proof.

10.7 Low-and-high-gain design for single-layer
systems

In previous sections, we have developed generalized low-gain feedback design
methodology and its adaptive version, respectively, for semi-global and global
stabilization of sandwich systems. As we remarked in introduction, such gener-
alized low-gain design methods do not allow full utilization of the available con-
trol capacity. In this section, we introduce a different strategy for stabilization of
sandwich nonlinear systems, namely, a generalized low-and-high-gain feedback
design methodology (for semi-global stabilization) and its adaptive version (for
global stabilization) which allow full utilization of the available control capac-
ity, and hence are capable of enhancing the system performance such as robust
stability and disturbance rejection.

We consider continuous-time systems in one subsection and discrete-time sys-
tems in another.

10.7.1 Continuous-time systems

We first pursue semi-global stabilization. Let us consider the single-layer sand-
wich system as defined in (10.1) and (10.2).

Generalized low-and-high-gain design methodology for semi-global stabiliza-
tion: As in Sect. 10.4, we first chooseF such thatACBF is asymptotically stable
and consider the system,

Tx D .AC BF /x C Bv

z D Cx;
(10.74)

where u D Fx C v. We have

z.t/ D Ce.ACBF /tx.0/C
tZ

0

Ce.ACBF /.t��/Bv.�/ d�

D Ce.ACBF /tx.0/C z0.t/:
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Since A C BF is asymptotically stable, we know that there exists a ı > 0 such
that whenever

kv.�/k < ı 8� > 0; (10.75)

we have kz0.t/k < 1
2

for all t > 0.
Next, we consider the system,

 
Tx
T!

!
D
 
ACBF 0

NC M

! 
x

!

!
C
 
B

0

!
v; (10.76)

which can be rewritten as
Txx D zAxx C Bv; (10.77)

where zA, B, and xx are as defined in (10.12). Our initial objective is, for any a
priori given compact set W , to find a stabilizing controller for the system (10.76)
such that W is contained in its domain of attraction and kv.�/k < ı for all � > 0.

Let Q" > 0 be a parameterized family of matrices which is increasing in " > 0
with lim"!0Q" D 0. In that case, for any " > 0, there exists a P" > 0 satisfying
the CARE,

zA0P" C P"
zA � P"BB0P" CQ" D 0: (10.78)

The above development is exactly the same as that in Sect. 10.4 leading to
Lemma 10.14 but repeated here for continuity of presentation. The following
lemma is a modified version of Lemma 10.14.

Lemma 10.32 Consider the linear system given in (10.76) and assume that the
pair .A;B/, defined by (10.6), is stabilizable and all the eigenvalues ofM are in
the closed left-half plane. Then, for any a priori given compact set W 2 Rn1Cn2 ,
there exists an "� such that for any 0 < " < "� and for any ˛ > 0, the generalized
low-and-high-gain state feedback law,

v D �ı�.1C˛
ı

B0P"xx/ D �ı�
 

1C˛
ı

 
B

0

!0
P"

 
x

!

!!
; (10.79)

achieves asymptotic stability of the equilibrium point xx D 0. Moreover, for any
initial condition in W , the constraint kv.t/k < ı does not get violated for any
t > 0.

Proof : Note that the condition that the system (10.76) is stabilizable immedi-
ately implies the existence of a P" > 0 satisfying the CARE (10.78), while the
condition that the eigenvalues of M are in the closed left-half plane immediately
implies that

P" ! 0 (10.80)
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as " ! 0. Obviously, controller (10.79) satisfies kvk < ı. It remains to show that
such a controller achieves semi-global stabilization. Define V.xx/ D xx0P" xx. Let c
be defined as

c D sup
"2.0;1�xx2W

fxx0P" xxg:

There exists an "� such that for any " 2 .0; "��, we have xx 2 Lv.c/ D fxx j
xx0P" xx 6 cg. This implies that

kzvk 6 ı

where we denote

zv D �
 
B

0

!0
P"

 
x

!

!
:

Consider TV along any trajectory,

TV 6 �xx0Q"xx � 2ızv0Œ�.1C˛
ı

zv/� 1
ı

zv� D �xx0Q"xx � 2ızv0Œ�.1C˛
ı

zv/ � �.1
ı

zv/�:

We have TV < 0 for any ˛ > 0. This completes the proof.

This leads to the following result.

Theorem 10.33 Consider the interconnection of the two systems given by (10.1)
and (10.2) satisfying conditions (i) and (ii) of Theorem 10.7. Let F be such that
A C BF is asymptotically stable while P" > 0 is defined by the CARE (10.78).
Define a low-and-high-gain state feedback law as,

u D Fx � ı�.1C˛
ı

 
B

0

!0
P"

 
x

!

!
/: (10.81)

Then, for any compact set of initial conditions W 2 Rn1Cn2 , there exists an "�>0
such that, for all " with 0 < " < "� and for any ˛ > 0, the controller (10.81)
asymptotically stabilizes the equilibrium point .0; 0/ with a domain of attraction
containing W .

Proof : Consider any .x.0/; !.0// 2 W . Then there exists a T > 0 such that

kCe.ACBF /tx.0/k < 1
2

for t > T . Denote

v.t/ D �ı�.1C˛
ı

 
B

0

!0
P"

 
x

!

!
/:

By construction, we have kv.t/k 6 ı for t > 0. This implies that kz.t/k 6 1 for
t > T .
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Since ACBF is Hurwitz stable and the input to the second system is bounded,
there exists a xW such that for any .x.0/; !.0// 2 W , we have .x.T /; !.T // 2 xW .

Then the interconnection of (10.1) and (10.2) with controller (10.81) for t > T
is equivalent to the interconnection of (10.11) with controller (10.79) for t > T .
From Lemma 10.32, there exists an "� such that for any " 2 .0; "�� and for any
˛ > 0, the closed-loop system of (10.11) and controller (10.79) is asymptotically
stable with .x.T /; !.T // 2 xW . Therefore, we have

x.t/ ! 0; !.t/ ! 0:

Since this follows for any .x.0/; !.0// 2 W , we find that W is contained in the
domain of attraction as required.

Remark 10.34 If we simply set ˛ D 0 in the generalized low-and-high-gain state
feedback controller as developed in (10.81), what we get is a low-gain controller
with a part of it, the part associated with the solution of the CARE (10.78), in
the argument of saturation nonlinearity �.:/. However, we note that in this case we
choose the low-gain parameter " in such a way that the part associated with the
solution of CARE (10.78) is less than ı in some large enough compact set. Then
the saturation in the controller never gets activated; moreover, the saturation
in the saturation element of sandwich system never gets activated either, and
hence the controller reduces exactly to the generalized low-gain controller which
we have constructed in (10.15).

We claim that the same controller given in (10.81) with " being replaced by the
adaptive-low-gain parameter "a.xx/ as defined below solves the global stabiliza-
tion problem.

Generalized adaptive-low-gain and generalized high-gain design methodol-
ogy for global stabilization: As usual, we first look for an adaptive parameter
having the same properties as given in Sect. 10.4.1 on page 552. A particular
choice satisfying those properties is given by

"a.xx/ D max f r 2 .0; 1� j .xx0Pr xx/ trace B0PrB 6 ı2 g; (10.82)

where Pr is the unique positive definite solution of CARE (10.78) with " D r .
Then, following the same procedure as before in connection with generalized
adaptive-low-gain design, we first show the following result:

Lemma 10.35 Consider the linear system given in (10.76) and assume that the
pair .A;B/, as defined by (10.6), is stabilizable and the eigenvalues of M are in
the closed left-half plane. Then, for any ˛ > 0, the feedback,

v D �ı� �1C˛
ı

B0P"a.xx/xx

 D �ı�

 
1C˛

ı

 
B

0

!0
P"a.xx/

 
x

!

!!
; (10.83)
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achieves global stability of the equilibrium point xx D 0.

Proof : Obviously, controller (10.83) satisfies kvk < ı. It remains to show that
such a controller achieves global stabilization. Define V.xx/ D xx0P"a.xx/xx, and
denote

zv D �
 
B

0

!0
P"a.xx/xx:

Consider TV along any trajectory,

TV 6 �xx0Q"a.xx/xx � 2ızv0Œ�.1C˛
ı

zv/ � 1
ı

zv�C xx0 dP"a.xx/

dt
xx:

By construction, k1
ı

zvk < 1. We get

TV 6 �xx0Q"a.xx/xx � 2ızv0Œ�.1C˛
ı

zv/� �.1
ı

zv/�C xx0 dP"a.xx/

dt
xx:

If ˛ > 0, we have
TV < �xx0Q"a.xx/xx C xx0 dP"a.xx/

dt
xx:

The adaptive law (10.82) implies that

V.x/
��B0P"a.xx/B

�� D ı2;

whenever "a.xx/ ¤ 1 or equivalently P"a.xx/ is not a constant locally. This implies

that TV and xx0 dP"a.xx/

dt
xx are either both zero or of opposite signs. Hence, for x ¤ 0,

we have
TV < 0:

If not, we know that xx0 dP"a.xx/

dt
xx 6 0. But this implies that TV < �xx0Q"a.xx/xx

which yields a contradiction. Therefore, the global asymptotic stability follows.

This leads to the following result.

Theorem 10.36 Consider the interconnection of the two systems given by (10.1)
and (10.2) satisfying conditions (i) and (ii) of Theorem 10.7. Choose F such
that A C BF is asymptotically stable. Let P" and "a.xx/ be as defined by the
CARE (10.78) and (10.82), respectively. In that case, for any ˛ > 0, the general-
ized adaptive-low-gain and generalized high-gain state feedback law,

u D Fx � ı�
�

1C˛
ı

B0P"a.xx/xx

 D Fx � ı�

 
1C˛

ı

 
B

0

!0
P"a.xx/

 
x

!

!!
(10.84)

achieves global asymptotic stability.
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Proof : If we consider the interconnection of (10.1) and (10.2), then we note that
close to the origin the saturation does not get activated. Moreover, close to the
origin the feedback (10.84) is given by

u D Fx � .1C ˛/

 
B

0

!0
P1 xx;

which immediately yields that the interconnection of (10.1), (10.2), and (10.84) is
locally asymptotically stable. It remains to show that we have global asymptotic
stability.

Consider an arbitrary initial condition x.0/ and !.0/. Then there exists a T > 0
such that

kCe.ACBF /tx.0/k < 1
2

for t > T . Moreover, by construction, the control

v D �ı� �1C˛
ı

B0P"a.xx/xx

 D �ı�

 
1C˛

ı

 
B

0

!0
P"a.xx/

 
x

!

!!

yields kv.t/k 6 ı for all t > 0. However, this implies that z.t/ generated
by (10.74) satisfies kz.t/k < 1 for all t > T . But this yields that the inter-
connection of (10.1) and (10.2) with controller (10.84) behaves for t > T like
the interconnection of (10.76) with controller (10.83). Global asymptotic stability
of the latter system then implies that xx.t/ ! 0 as t ! 1. Since this property
holds for any initial condition and since we have local asymptotic stability, we
can conclude that the controller yields global asymptotic stability. This completes
the proof.

Similar to earlier chapters that utilize generalized low-and-high gain, the con-
struction of our controller guarantees the saturation does not get activated after
some finite time T and the stabilization of sandwich nonlinear systems becomes
stabilization of a linear system subject to input saturation. It is clear from the proof
that T is determined by the initial condition of L1. Since ACBF is Hurwitz sta-
ble with the preliminary feedback, this T can be fairly small. However, after time
T , the design methodology presented above yields a regular low-and-high-gain
feedback controller, while in the case of earlier chapters that utilize generalized
low-gain, it reduces to the classical low-gain feedback controller. Therefore, we
expect an enhanced system performance from our design technique. A numerical
example given shortly in Sect. 10.8 illustrates this result. We like to emphasize
that an appropriate selection of the matrixQ" plays an important role in the design
process. A judicious choice of Q" can tremendously improve the performance.

10.7.2 Discrete-time systems

As in continuous-time case, we first pursue semi-global stabilization. We proceed
to design here a controller which solves a semi-global stabilization problem for
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discrete-time sandwich systems. For ease of presentation, as before we denote
xx D .x; !/.

Generalized low-and-high-gain design methodology for semi-global stabiliza-
tion: Our design philosophy follows that in continuous-time systems and pro-
gresses in three steps:

Step 1

Choose a preliminary feedback F such that AC BF is Schur stable.

Step 2

Define a ı as

ı D ˇP1
kD0 kC.AC BF /kBk (10.85)

for an arbitrary ˇ 2 .0; 1/. Such a ı is well defined since ACBF is Schur stable.
Note that in continuous-time case we used ˇ D 0:5.

Step 3

Let Q" > 0 be a matrix function: .0; 1� ! R.n1Cn2/�.n1Cn2/ which satisfies
dQ"

d"
> 0 for " > 0 and lim"!0C Q" D 0. Solve the following DARE (same as

(10.25) except that "I is replaced with Q"),

P" D zA0P"
zA � zA0P"B.I C B0P"B/�1B0P"

zA CQ" D 0; (10.86)

where zA and B are as defined in (10.12), and " as usual is a low-gain parameter
to be chosen appropriately. Note that the condition (i) of Theorem 10.7 guarantees
the existence of the positive definite solution P". The generalized low-and-high-
gain feedback can then be constructed as

u D Fx � ı�
�

1C˛
ı
.I C B0P"B/�1B0P"

zAxx
�
: (10.87)

We show in the next theorem that the above low-and-high-gain controller solves
the semi-global stabilization problem:

Theorem 10.37 Consider the interconnection of the two systems given by (10.1)
and (10.2) satisfying conditions i and ii of Theorem 10.7. Define a state feedback
control law as in (10.87). Then, for any compact set of initial conditions W 2
Rn1Cn2 , there exists an "� > 0 such that for all " with " 2 .0; "�� and for any

˛ 2
h
0; 2

kB0P"Bk
i
;

the controller (10.87) asymptotically stabilizes the equilibrium point .0; 0/ with a
domain of attraction containing W .
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Proof : Define

v D �ı�
�

1C˛
ı
.I C B0P"B/�1B0P"

zAxx
�
: (10.88)

Then the system L1 given by (10.1) along with the preliminary feedback u D
Fx C v can be written as

x.k C 1/ D .AC BF /x.k/C Bv.k/

z.k/ D Cx.k/:
(10.89)

We have

z.k/ D C.AC BF /kx.0/C
k�1X

iD0

C.ACBF /k�i�1Bv.i/

D C.AC BF /kx.0/C z0.k/;

where

z0.k/ D
k�1X

iD0

C.AC BF /k�i�1Bv.i/: (10.90)

For any a priori given set of initial conditions W , there exists a K > 0 such that

kC.AC BF /kx.0/k < 1 � ˇ

for k > K and any x.0/ 2 W .
By construction, kvk 6 ı for all k > 0. From the definition of ı, we get

kz0.k/k D
k�1X

iD0

kC.AC BF /k�i�1Bkkv.i/k 6 ˇ:

This implies that for all k > K we have kz.k/k 6 1, that is, the sandwiched
saturation remains inactive after time K . Therefore, for all k > K , the closed-
loop system is equivalent to the interconnection of the linear cascaded system

xx.k C 1/ D zAxx.k/C Bv.k/; (10.91)

with the control v given by (10.88).
There exists a compact set xW such that for any xx.0/ 2 W , we have xx.K/ 2 xW .

This is due to the fact that W is compact, AC BF is Schur stable, and the input
to L2 is bounded.

In the next lemma which is akin to Lemma 10.20, we show that the intercon-
nection of (10.91) and (10.88) is asymptotically stable with xW contained in its
domain of attraction.
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Lemma 10.38 Consider the system (10.91) and assume that the pair .A;B/ as
given by (10.6) is stabilizable and all the eigenvalues of M are in the closed unit
disc. Then, for any a priori given compact set xW 2 Rn1Cn2 , there exists an "�
such that for any 0 < " < "� and for any

˛ 2
h
0; 2

kB0P"Bk
i
; (10.92)

the state feedback,

v D �ı�.1C˛
ı
.I C B0P"B/

�1B0P"
zAxx/; (10.93)

achieves asymptotic stability of the equilibrium point xx D 0 with a domain of
attraction containing xW .

Proof of Lemma 10.38 : First we introduce the following notation:

zv D .I C B0P"B/
�1B0P"Axx and 
 D kB0P"Bk:

Define V.xx/ D xx0P" xx. Note that condition (ii) of Theorem 10.7 immediately
implies that

P" ! 0 (10.94)

as " ! 0. Hence, there exists an "� such that for any " 2 .0; "�� and xx 2 W , we
have

jzv.k/j 6 ı;

componentwise, and hence, given that ˛ satisfies (10.92), we have

jzv.k/j 6 jv.k/j 6
�

2
ı

C 1

 jzv.k/j (10.95)

componentwise, and since v.k/ and zv.k/, also componentwise, have the same
sign, it follows that

kv.k/ � 1C�
�

zv.k/k 6 1
�

kzv.k/k: (10.96)

Next, consider V.k C 1/� V.k/ along any trajectory,

V.k C 1/� V.k/

Dzv.k/0.I C B0P"B/zv.k/� xx.k/0Q"xx.k/
� 2zv.k/0.I C B0P"B/v.k/C v.k/0B0P"Bv.k/

D � xx.k/0Q"xx.k/� v.k/0v.k/
C Œv.k/ � zv.k/�0.I C B0P"B/Œv.k/ � zv.k/�

6.1C 
/Œv.k/ � zv.k/�0Œv.k/ � zv.k/� � xx.k/0Q"xx.k/� v.k/0v.k/
6 � xx.k/0Q"xx.k/� 1

�
zv.k/0zv.k/

C 
Œv.k/ � 1C�
�

zv.k/�0Œv.k/ � 1C�
�

zv.k/�:
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Using (10.96) we find,


Œv.k/ � 1C�
�

zv.k/�0Œv.k/ � 1C�
�

zv.k/� � 1
�

zv.k/0zv.k/ 6 0:

We conclude that V.k C 1/ � V.k/ < 0 for any " 2 .0; "��, ˛ satisfying (10.92)
and x ¤ 0. This completes the proof.

The above lemma indicates that

x.k/ ! 0; !.k/ ! 0:

Since this follows for any .x.0/; !.0// 2 W , we find that W is contained in the
domain of attraction as required.

Generalized adaptive-low-gain and generalized high-gain design methodol-
ogy for global stabilization:

We claim that the same controller given in (10.87) with " replaced by the sched-
uled low-gain parameter "a.xx/ as defined below solves the global stabilization
problem. Specifically, the design methodology follows in four steps:

Steps 1, 2, and 3

The above steps are exactly the same as for semi-global stabilization.

Step 4

As usual, we first look for an adaptive parameter " D "a.xx/ having the same
properties as given in Sect. 10.4.1 on page 552. A particular choice satisfying
such properties is given by

"a.xx/ D max
˚
r 2 .0; 1� j .xx0Pr xx/ trace B0PrB 6 ı2=Mp

�
; (10.97)

whereMp D �max.P
1
2

1 BB0P
1
2

1 /C1 and Pr is the solution of (10.86) with " D r .
We have the following result.

Theorem 10.39 Consider the interconnection of the two systems given by (10.1)
and (10.2) satisfying the conditions (i) and (ii) of Theorem 10.7. Choose F such
that ACBF is Schur stable. Let P" and "a be as defined by (10.86) and (10.97),
respectively. In that case, for any

˛ 2
h
0; 2

kB0P1Bk
i
;

the state feedback,

u D Fx � ı�
�

1C˛
ı
.I C B0P"a.xx/B/

�1B0P"a.xx/
zAxx
�
; (10.98)

achieves global asymptotic stability of the origin, where F , ı, P"a.xx/, and "a.xx/
are obtained in Steps 1,2, 3, and 4, respectively.
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Proof : Define

v D ı�.1C˛
ı
.I C B0P"a.xx/B/

�1B0P"a.xx/
zAxx/: (10.99)

If we consider the interconnection of (10.1) and (10.2), then we note that close to
the origin the saturation does not get activated. Moreover, close to the origin, the
feedback (10.98) is given by

u D Fx � .1C ˛/.I C B0P1B/�1B0P1
zAxx;

which immediately shows that the interconnection of (10.1), (10.2), and (10.98) is
locally asymptotically stable. It remains to show that we have global asymptotic
stability.

Consider an arbitrary initial condition x.0/ and!.0/. Then there exists aK > 0

such that
kC.AC BF /kx.0/k < 1 � ˇ

for k > K . The definition of ı implies that kz0.k/k 6 ˇ for all k > 0 where z0

is given by (10.90). However, this implies that z.k/ generated by (10.89) satisfies
kz.k/k < 1 for all k > K . Then the closed-loop system becomes the intercon-
nection of the linear cascade system (10.91) with controller (10.99).

We next show the following lemma.

Lemma 10.40 Consider the system (10.91) and assume that the pair .A;B/ as
given by (10.6) is stabilizable and all the eigenvalues of zA are in the closed unit
disc. Then, for any

˛ 2
h
0; 2

kB0P1Bk
i
; (10.100)

the feedback (10.99) achieves global stability of the equilibrium point xx D 0.

Proof of Lemma 10.40 : Define V.xx/ D xx0P"a.xx/ xx. Denote

zv.k/ D .I C B0P"a.xx.k//B/
�1B0P"a.xx.k//

zAxx;
and


 D kB0P1Bk:
Consider V.k C 1/� V.k/ along any trajectory,

V.k C 1/� V.k/ D �xx.k C 1/0
�
P"a.xx.k// � P"a.xx.kC1//

� xx.k C 1/

� xx.k/0Q"a.xx.k//xx.k/ � 2.v.k/� zv.k//0zv.k/
C .v.k/ � zv.k//0B0P"a.xx.k//B.v.k/ � zv.k//

6 �xx.k C 1/0
�
P"a.xx.k// � P"a.xx.kC1//

� xx.k C 1/

� xx.k/0Q"a.xx.k//xx.k/ � 2.v.k/� zv.k//0zv.k/
C 
.v.k/ � zv.k//0.v.k/ � zv.k//:
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Given that ˛ satisfies (10.100), we have

jzv.k/j 6 jv.k/j 6
�

2
ı

C 1

 jzv.k/j

componentwise, and since v.k/ and zv.k/, also componentwise, have the same
sign, it follows that

V.k C 1/� V.k/ 6 �xx.k/0Q"a. xx.k//xx.k/
� xx.k C 1/0

�
P"a.xx.k// � P"a.xx.kC1//

� xx.k C 1/:

The scheduling law (10.97) guarantees that

V.k C 1/� V.k/ and xx.k C 1/0
�
P"a.xx.kC1// � P"a.xx.k//

� xx.k C 1/

cannot have the same signs. This implies that for x ¤ 0 and ˛ satisfying (10.100),
we have

V.k C 1/� V.k/ < 0:
The global asymptotic stability follows.

The above lemma implies that xx.k/ ! 0 as k ! 1. Since this property
holds for any initial condition and since we have local asymptotic stability, we can
conclude that the controller achieves global asymptotic stability. This completes
the proof.

Remark 10.41 Comparing the low-and-high-gain controllers for discrete- and
continuous-time sandwich systems, we can see that in the discrete-time case, the
parameter ˛ performs the role of high gain, which in the continuous-time case
is just an arbitrary positive real number ˛. This shows an intrinsic difference be-
tween discrete-time and continuous-time high-gain techniques, namely, that in the
continuous-time case, the high-gain parameter is completely free (˛ 2 Œ0;1/),
while in the discrete-time case, the high-gain parameter has only a limited free-
dom as characterized by (10.100). It can actually be shown that by also schedul-
ing ˛ such that

˛ 2
h
0; 2

kB0P"a.xx.k//Bk
i
;

we can actually choose ˛ larger without compromising global stability.
Note that in both the continuous- and discrete-time cases, the high-gain part

does not affect the domain of attraction, but as demonstrated in an example
shortly in the next section, the high-gain greatly improves the transient perfor-
mance.

For stabilization of sandwich systems, despite the inherent difference between
discrete- and continuous-time high-gain techniques, we still find a strict paral-
lelism in choosing other design parameters, namely, the pre-feedback gain F and
ˇ. Once again as shown in the next section, these parameters also have a great
impact on closed-loop performance.
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10.8 Numerical examples

We illustrate here the results developed in previous sections by means of numeri-
cal examples.

10.8.1 Continuous-time systems

Example 1: (Semi-global stabilization of a single-layer system) Consider the
two systems L1 and L2 given in (10.1) and (10.2),

L1 W

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Tx.t/ D

�
1 1 1

0 0 1

0 0 0

�
x.t/C

�
0

0

1

�
u.t/

z.t/ D
 
0 1 0

0 0 1

!
x.t/;

and

L2 W T!.t/ D

�
0 1 0

0 0 1

0 0 0

�
!.t/C

�
0 0

0 1

1 1

�
�.z.t//:

For semi-global stabilization, we design below a low-gain as well as a low-and-
high-gain state feedback controller that stabilizes the cascaded system of L1 and
L2 with an a priori given compact set W to be contained in the domain of attrac-
tion of the closed-loop system, where

W D f� 2 R6 j � 2 Œ�10; 10�6 g:
Step 1. We start by choosing

F D
�
�12 �6 �7

�
;

which makes AC BF Hurwitz.
Step 2. We choose ı D 2:28, which ensures that, if kv.t/k < ı for all t > 0, then
kz0.t/k < 1

2
for all t > 0. We set the low-gain parameter " D 10�10 and choose

Q" D "I . After solving the associated CARE (10.14), we obtain the following
generalized low-gain state feedback control law,

u D Fx �
 
B

0

!0
P"

 
x

!

!
;

which is given explicitly as

u D
�
�12:2879 �6:0254 �7:0237

�
xC

�
0:00001 0:0017 0:1454

�
!:
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The simulation data of the closed-loop system under this generalized low-gain
state feedback controller is shown in Fig. 10.7.
Step 3. As in Step 2, we set the low-gain parameter " D 10�10 and choose
Q" D "I . Also, we choose the high-gain parameter ˛ D 1; 000. After solving
the associated CARE (10.14), we obtain the following generalized low-and-high-
gain state feedback controller,

u D
�
�12 �6 �7

�
x

� 2:28�f
�
126:4175 11:1549 10:4106

�
xC

�
�0:0044 �0:7486 �63:8259

�
!g:

The simulation data closed-loop system under this controller is shown in Fig. 10.8.
By comparing Figs. 10.7 and 10.8, we note that the generalized low-and-high-

gain design enhances the performance by incurring much lower overshoot and
undershoot.
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Figure 10.7: Semi-global stabilization by generalized low-gain state feedback—
continuous-time system
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Figure 10.8: Semi-global stabilization by generalized low-and-high-gain state
feedback—continuous-time system

Example 2: (Global stabilization of a single-layer system)

The two systems L1 and L2 in (10.1) and (10.2) are the same as in the preceding
example. For global stabilization, we develop below an adaptive-low-gain as well
as an adaptive-low-gain and generalized high-gain state feedback controller:
Step 1. Choose

F D
�
�12 �6 �7

�

such that AC BF is Hurwitz stable.
Step 2. Choose the same ı D 2:28 as in the preceding example, and design a
generalized adaptive-low-gain state feedback controller as

u D Fx �
 
B

0

!0
P"a.xx/ xx;

where P"a.xx/ is given by the CARE (10.14) and (10.16). The simulation data of
closed-loop system under this controller is shown in Fig. 10.9.
Step 3. We choose the same ı D 2:28, and set ˛ D 1; 000, and design a general-
ized low-and-high-gain state feedback controller as

u D Fx � ı�.1C˛
ı

 
B

0

!0
P"a.xx/xx/;
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where P"a.xx/ is given by the CARE (10.14) and (10.82). The resulting simulation
data of the closed-loop system under this controller is shown in Fig. 10.10.

Clearly, the closed-loop dynamics achieved by the generalized low-and-high-
gain state feedback controller has a lower overshoot.
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Figure 10.9: Global stabilization by generalized adaptive-low-gain state
feedback—continuous-time system

Example 3: (The impact ofQ" on performance)

Consider the same system as in Examples 1 and 2. Choose the same F and hence
we have the same ı.

We observe that in the above examples, the first state element of system L2 has
the worst performance. Therefore, instead of Q" D "I , choose

Q" D
 
"I 0

0 zQ"

!
;

where

zQ" D

�
200" 0 0

0 " 0

0 0 "

�
:
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Figure 10.10: Global stabilization by generalized adaptive-low-gain and general-
ized high-gain state feedback—continuous-time system

However, with thisQ", we need to choose a relatively smaller ". Set " D 2�10�12

and keep ˛ D 1; 000. After solving the CARE (10.14), we obtain the following
generalized low-and-high-gain state feedback controller:

u D
�
�12 �6 �7

�
x

� 2:28�f
�
159:7642 14:2992 13:1163

�
xC

�
�0:0088 �1:1917 �80:8617

�
!g:

Using the same " and Q" but ˛ D 0, the generalized low-gain state feedback
controller can be obtained as

u D
�
�12:36390 �6:03257 �7:02988

�
xC

�
0:00002 0:00271 0:18418

�
!:

We reexamine then the semi-global stabilization of the interconnection of L1

and L2 by generalized low-and-high-gain state feedback and generalized low-
gain state feedback, respectively. The simulation data of respective closed-loop
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systems are shown in Figs. 10.11 and 10.12. This illustrates that, with a proper
choice of Q", we can refine the dynamics.
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Figure 10.11: Semi-global stabilization by generalized low-gain state feedback
with modifiedQ"—continuous-time system

10.8.2 Discrete-time systems

Example 4: (Semi-global and global stabilization of a single-layer system)

We consider the following two systems that constitute a single-layer sandwich
system:

L1 W

8
ˆ̂<

ˆ̂:

x.k C 1/ D
 
0 �1
1 0

!
x.k/C

 
0

1

!
u.k/;

z.k/ D
�
1 0

�
x.k/;

(10.101)

and

L2 W !.k C 1/ D
 
0:8 0:6

�0:6 0:8

!
!.k/C

 
0

1

!
�.z.k//: (10.102)

Given that W D Œ�1; 1�4, we design controllers for both semi-global and global
stabilization of the origin of (10.101), (10.102).
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Figure 10.12: Semi-global stabilization by generalized low-and-high-gain state
feedback with modifiedQ"—continuous-time system

We proceed now with generalized low-gain design for semi-global stabiliza-
tion:

� Choose

F D
�
0:6500 1:2000

�
:

� From (10.22), ı1 D 0:0750.

� Determine " according to W and ı1. We choose " D 10�3.

� The feedback controller is given by

u D
�
0:7216 1:0945 0:0060 0:0415

�
xx:

The simulation data is shown in Fig. 10.13.
We proceed now with the generalized adaptive-low-gain design for global sta-

bilization:

� Choose

F D
�
0:6500 1:2000

�
:
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Figure 10.13: Semi-global Stabilization of a single layer system—Discrete-time
system

� From (10.22), ı1 D 0:0750.

� The global stabilizing controller is formed by semi-global controller to-
gether with adaptive parameter.

The simulation data is shown in Fig. 10.14.
Example 5 (Semi-global and global stabilization of a single-layer system

with input saturation): We consider the same systems as given by (10.101)
and 10.102 and W D Œ�1; 1�4, however, with the actuator subject to saturation.

We proceed now with generalized low-gain design for semi-global stabiliza-
tion:

� In accordance of the given W , we choose "1 D 0:0120.

� In accordance of the given W and "1, we choose "2 D 5 � 10�4.

� The controller is given by

u D
�
0:1419 �0:0170 0:0304 �0:0069

�
xx:

The simulation data is shown in Fig. 10.15.
We proceed now with generalized adaptive-low-gain design for global stabi-

lization:

� In view of (10.55), we use ı D 0:0036.
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Figure 10.14: Global Stabilization of a single-layer system—discrete-time system

� M2 D 3:7321 and M3 D 14:7373.

� The controller is formed by semi-global stabilizing controller together with
adaptation as given in (10.53) and (10.56).

The simulation data is shown in Fig. 10.16.
Example 6 (Semi-global and global stabilization of a multilayer system

with input saturation): We now consider a multilayer sandwich system with
the following three systems:

L1 W

8
ˆ̂<

ˆ̂:

x1.k C 1/ D
 
0 �1
1 0

!
x1.k/C

 
0

1

!
�.u1.k//;

z1.k/ D
�
1 0

�
x1.k/;

(10.103)

and

L2 W

8
ˆ̂<

ˆ̂:

x2.k C 1/ D
 
0:8 0:6

�0:6 0:8

!
x2.k/C

 
0

1

!
�.z1.k//;

z2.k/ D
�
1 0

�
x2.k/;

(10.104)

and

L3 W !.k C 1/ D
 
0:8 0:6

�0:6 0:8

!
!.k/C

 
0

1

!
�.z.k//: (10.105)
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Figure 10.15: Semi-global stabilization of a single-layer system with Input
saturation—Discrete-time

Given that W D Œ�1; 1�6, we design controllers for both semi-global and global
stabilization of the origin of (10.103), (10.104) and (10.105).

We proceed next with generalized low-gain design for semi-global stabiliza-
tion.

� In accordance of the given W , we choose "1 D 1:2�10�4, "2 D 10�6, and
"3 D 10�9.

� The controller is given by

u D
�
0:0133 �0:0060 0:0116 �0:0033 �0:000015 0:000042

�
	3

where 	3 D .x1; x2; x3/
0.

The simulation data is shown in Fig. 10.17.
We proceed next with generalized adaptive-low-gain design for global stabi-

lization.

� In view of (10.69), we use ı1 D 1
3

, ı2 D 0:0011, and ı3 D 1:5983 � 10�6.

� We computeM1 D 3:7321,M2 D 14:7373, and M3 D 53:2378.

� The global stabilizing controller consists of semi-global stabilizing con-
troller and adaptation defined by (10.70).

The simulation data is shown in Fig. 10.18.



10.8 Numerical examples 599

0 100 200 300 400 500 600 700
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time

st
at

e

x1
x2

ω1

ω2

Figure 10.16: Global stabilization of a single-layer system with input saturation—
discrete-time

Example 7: (Semi-global stabilization of a single-layer system—low-and-
high-gain controllers) We consider, in this example, the low-and-high-gain de-
sign methodology and address the performance issues with regard to the choice
of the design parameters: high-gain parameter ˛, magnitude of z0 as represented
by ˇ, and pre-feedback gain F .

We consider semi-global stabilization of the following sandwich systems:

L1 W

8
ˆ̂<

ˆ̂:

x.k C 1/ D
 
2 1

0 1

!
x.k/C

 
0

1

!
u.k/

z.k/ D
�
1 0

�
x.k/;

(10.106)

and

L2 W !.k C 1/ D
 
0:8 0:6

�0:6 0:8

!
!.k/C

 
0

1

!
�.z.k//; (10.107)

with initial conditions in W D f� 2 R4 j; � 2 Œ�3; 3�4g. We choose in particular
xx.0/ D .�3;�3; 3; 3/0 for all the simulations.

Impact of ˛: As we discussed in previous sections, the high-gain parameter
does not affect the domain of attraction. However, it plays a crucial role in im-
proving the transient performance. Note that, in the continuous-time case, the
high-gain parameter can be any positive real number. Although for discrete-time
systems, the high-gain parameter cannot be arbitrarily large, it can still enhance
the transient performance greatly.
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Figure 10.17: Semi-global stabilization of a multilayer system—discrete-time

In what follows, we shall compare the results for four different values of ˛,
namely, ˛ 2 f0; 0:1; 1; 2g. We proceed in three steps as described on page 583:

Step 1

Choose F D .�2:1 �1:9/ such that the eigenvalues ofACBF are at �1 D 0:5

and �2 D 0:6.

Step 2

Choose ˇ D 0:5 and compute ı D 0:1. The saturation time K is approxi-
mately 11.

Step 3

Choose Q" D "I4. Based on K , ı, and W , we choose " D 10�4. For each ˛,
solve DARE (10.86) with Q" D "I4 and " D 10�4.

The simulation data is shown in Figs. 10.19–10.22. Generally, the low-and-
high-gain feedback greatly improves the transient performance, but this does not
necessarily mean ˛ should be chosen as the maximum value of 2. We find a small
variation of performance among different choices of ˛. From ˛ D 0:1 to ˛ D 1,
a small improvement can be observed. However, from ˛ D 1 to ˛ D 2, we get a
bit of deterioration when state is close to the origin. The proper value of ˛ may
depend on particular circumstances.

Impact of ˇ: In the generalized low-and-high-gain design methodology pro-
posed in Sect. 10.7.2, we choose ı so that the zero state response of L1 system,
namely, z0, remains less than ˇ, where ˇ 2 .0; 1/. By choosing different ˇ or
equivalently z0, we can tune the total control capacity allowed for the linear cas-



10.8 Numerical examples 601

0 500 1000 1500 2000
−4

−3

−2

−1

0

1

2

3

time

st
at

e

x11

x12

x21

x22

x31

x32

Figure 10.18: Global stabilization of a multilayer system—discrete-time

cade systems when saturation is inactive. We next explore the impact of this pa-
rameter ˇ. (Note that, in the continuous-time case, ˇ is fixed at 0:5; however, the
following discussion is also applicable to continuous-time systems.)

The definition of ı indicates that a larger ˇ will result in a larger ı and thus
allows for better utilization of control forces when saturation remains inactive.
We expect that this will refine the closed-loop performance. On the other hand,
saturation is active until the zero input response of L1 falls below 1

ˇ
. Thus, a

larger ˇ may keep the saturation active for a longer period of time. The overall
performance depends on the trade-off between these two effects.

We consider the same systems as in (10.106) and (10.107) and use the same
value for F as chosen earlier.

If we choose ˇ D 0:1, then ı D 0:02 as given by (10.85) and the approximate
saturation time K D 9. For K , ı, and W as given, a proper choice for " is 10�5.
The simulation data is shown in Fig. 10.23.

If we choose ˇ D 0:9, then we have ı D 0:18 andK D 14. Based onK , ı, and
W , a proper choice for " is " is 10�3. The simulation data is shown in Fig. 10.24.

In this case, the performance is improved by choosing a larger level of ˇ or
equivalently z0.

Impact of F : We discuss here the choice of the pre-feedback gain matrix F .
We note that F will affect the effective control capacity ı, saturation time K , and
the solution P" of DARE (10.86). This impact is generally difficult to analyze
quantitatively. We illustrate this by choosing a different value of F than what we
did earlier.
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Figure 10.19: Semi-global stabilization via low-gain feedback
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Figure 10.20: Semi-global stabilization via low-and-high-gain feedback with
˛ D 0:1
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Figure 10.21: Semi-global stabilization via low-and-high-gain feedback
with ˛ D 1
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Figure 10.22: Semi-global stabilization via low-and-high-gain feedback
with ˛ D 2
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Figure 10.23: Semi-global stabilization kz0k D 0:1
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Figure 10.24: Semi-global stabilization kz0k D 0:9
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Figure 10.25: Semi-global stabilization via low-and-high-gain with different F

Let ˇ D 0:5 and ˛ D 1 be fixed. We choose F such that the eigenvalues of
AC BF are at �1 D 0:1 and �2 D 0:2. As a result, we get

F D
�
�3:4200 �2:7000

�
; ı D 0:36; " D 10�3:

The simulation data is shown in Fig. 10.25. Comparing with Fig. 10.20, where we
chose F such that the eigenvalues of AC BF are at �1 D 0:5 and �2 D 0:6, we
find a better convergence rate but a larger overshoot.





11
Simultaneous external and internal
stabilization

11.1 Introduction

So far, we developed various design methodologies that attain internal stabilization
in different contexts for linear systems with constraints, and in particular for lin-
ear systems subject to actuator saturation. We recall internal stability protects
against a single impulse-like disturbance, whereas input–output stability or oth-
erwise called external stability or Lp (`p) stability protects against external in-
puts or noise disturbances. In general, internal stability alone does not necessarily
imply any aspects of external stability, although external stability in some cases
implies some aspects of internal stability. As such, our focus now is on develop-
ing feedback control strategies for simultaneous internal and external stabiliza-
tion. There exist various definitions of external stability as discussed in Sect. 2.8.
Then, in view of such definitions, for simultaneous stabilization, we seek here
besides internal stabilization different types of external or Lp (`p) stabilization,
namely, (1) Lp (`p) stabilization with fixed initial conditions and without finite
gain, (2) Lp (`p) stabilization with fixed initial conditions and with finite gain,
(3) Lp (`p) stabilization with arbitrary initial conditions and without finite gain,
and (4) Lp (`p) stabilization with arbitrary initial conditions and with finite gain
and bias.

All the aforementioned simultaneous stabilization problems can be formulated
in either global framework or semi-global framework. The global framework
(respectively semi-global framework) implies that we seek both internal and
external stabilization in a global sense (respectively in a semi-global sense). An-
other issue in the global framework is the input to state stability (ISS) problem
discussed in Sect. 2.8. As said there, the notion of ISS makes an attempt to marry
both the notions of internal stability and the L1-stability or `1-stability. In fact,
as pointed out in Remark 2.68, when the input d is identically zero, ISS implies
the global asymptotic stability of the zero equilibrium point. In this sense, ISS is
indeed a simultaneous stabilization concept.

Thus, we formulate here five problems in a global framework. We observe that
the first two problems among the above mentioned problems are traditional si-
multaneous stabilization problems as they deal with fixed initial conditions, typ-
ically zero. On the other hand, the later three problems deal with arbitrary initial

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__11,
© Springer Science+Business Media New York 2012
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Figure 11.1: Closed-loop system with input-additive disturbance

conditions, and in these problems, the notions of external and internal stability are
somewhat intermingled, i.e., guaranteeing external stability in the intended sense
guarantees the internal stability in some sense or other.

Unlike the global framework, our focus in the semi-global framework is only
on the first two problems, one that does not seek finite gain while the other seeks
finite gain. Both of the problems are traditional simultaneous stabilization prob-
lems that deal with fixed initial conditions, typically zero.

Controlled
Output

Measured
Output

Plant

Controller

Disturbance

Control
Input

Figure 11.2: Closed-loop system with non-input-additive disturbance

Two fundamental questions that arise at this stage are these: What conditions
do we need to impose on a given system in order to achieve simultaneous internal
and external stabilization? Under such conditions, do we need linear or nonlin-
ear feedback controllers? In view of earlier chapters dealing with internal stabi-
lization alone, in general for simultaneous stabilization, the given system must
necessarily be asymptotically null controllable with bounded control (ANCBC),
or equivalently, it must be stabilizable and at most open-loop critically unsta-
ble.1 Is ANCBC condition itself sufficient to achieve simultaneous stabilization
as required in the problems discussed above? It turns out that the answer to this
question depends intrinsically on how the disturbance signals act on the given sys-
tem. Two distinct cases arise, the first case as illustrated in Fig. 11.1 corresponds
to the situation when the control inputs and the disturbance signals are additive,
and the second case as illustrated in Fig. 11.2 corresponds to the situation when

1We recall that a linear system is said to be open-loop critically unstable if all its open-loop
poles are in the closed left-half plane for continuous-time systems or within or on the unit circle for
discrete-time systems.
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such signals are nonadditive. The achievable simultaneous stabilization results are
profoundly different for these two cases. In fact, the level of complexity involved
in the non-input-additive case compared to the input-additive case demands that
we treat the two cases separately. As such, we treat each of these problems in
different chapters that follow this introductory chapter which is basically devoted
to introducing universal definitions, all pertaining to simultaneous stabilization.

11.2 Simultaneous stabilization in global framework:
problem statements

The beforementioned simultaneous external and internal stabilization problems
in a global framework are formulated formally in this section. Depending upon
the type of external stabilization that is sought (see Sect. 2.8), there exist differ-
ent types of such problems. These problems can be distinctly divided into two
groups. The first group consists of those problems in which external stabilization
is sought in the classical sense with fixed initial conditions normally set at the
origin. On the other hand, the second group consists of those problems which
utilize the recently introduced notions of external stability with arbitrary initial
conditions and input to state stability (ISS). As we said in the introduction, in the
problems of the second group, the notions of external and internal stability are
somewhat intermingled, i.e., the notion of external stability imbeds in some sense
or other the notion of internal stability. Also, in order to achieve stabilization in
the sense defined in all the problems of this section, one would need the given lin-
ear system subject to saturation be ANCBC. Moreover, as can be expected, global
simultaneous stabilization in general requires nonlinear feedback laws.

Our emphasis throughout this book is only on linear systems subject to actuator
saturation. Also, as mentioned earlier, external disturbance can be additive (as
depicted in Fig. 11.1) or nonadditive (as depicted in Fig. 11.2) to the control input.
Consider a continuous-time linear system subject to actuator saturation where the
disturbance is input-additive,

˙c
1 W

8
<̂

:̂

Tx.t/ D Ax.t/C B�.u.t/C d.t//;

z.t/ D x.t/; t � 0;

y.t/ D Cx.t/; t � 0;

(11.1a)

or similarly consider a discrete-time system,

˙d
1 W

8
<̂

:̂

x.k C 1/ D Ax.k/CB�.u.k/C d.k//;

z.k/ D x.k/; k � 0;

y.k/ D Cx.k/; k D 1; 2; : : : ;

(11.1b)
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where as usual x 2 Rn is the state, u 2 Rm is the input, z 2 Rq is the controlled
variable, and y 2 Rp is the measured output. Here � denotes the standard satura-
tion function defined as

�.u/ D Œsat�.u1/; : : : ; sat�.um/�;

where sat�.s/ D sgn.s/min fjsj; �g for some � > 0.
Along the same lines, when the disturbance signals are non-input-additive, con-

sider a continuous-time system of the form

˙c
2 W

8
<̂

:̂

Tx.t/ D Ax.t/C B�.u.t//C Ed.t/;

z.t/ D x.t/; t � 0;

y.t/ D Cx.t/; t � 0

(11.2a)

or similarly consider a discrete-time system of the form

˙d
2 W

8
<̂

:̂

x.k C 1/ D Ax.k/C B�.u.k//C Ed.k/;

z.k/ D x.k/; k � 0;

y.k/ D Cx.k/; k D 1; 2; : : :

(11.2b)

with x 2 Rn, u 2 Rm, z 2 Rq , and y 2 Rp. We have the following problem for-
mulations valid for either or both the cases when the disturbance signal is additive
or nonadditive to control input.

Problem 11.1 For any p 2 Œ1;1�, the system as in (11.1) or as in (11.2) is
said to be simultaneously globally Lp (or `p) stabilizable with fixed initial
conditions and without finite gain and globally asymptotically stabilizable
via static state (or dynamic measurement) feedback if there exists a static state (or
dynamic measurement) feedback law such that the following conditions hold:

(i) The closed-loop system isLp (or `p) stable with fixed initial conditions and
without finite gain.

(ii) In the absence of any disturbance signal d , the equilibrium point of the
closed-loop system is globally asymptotically stable.

The above problem is coined as the .Gp=G/ problem with fixed initial
conditions.

Problem 11.2 For anyp 2 Œ1;1�, the system as in (11.1) or as in (11.2) is said to
be simultaneously globally Lp (or `p) stabilizable with fixed initial conditions
with finite gain and with zero bias and globally asymptotically stabilizable
via static state (or dynamic measurement) feedback if there exists a static state (or
dynamic measurement) feedback law such that the following conditions hold:
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(i) The closed-loop system is Lp (or `p) stable with fixed initial conditions
with finite gain and with zero bias.

(ii) In the absence of any disturbance signal d , the equilibrium point of the
closed-loop system is globally asymptotically stable.

The above problem is coined as the .Gp=G/fg problem with fixed initial con-
ditions and with zero bias.

Problem 11.3 For any p 2 Œ1;1�, the system as in (11.1) or as in (11.2) is said
to be simultaneously globally Lp (or `p) stabilizable with fixed initial condi-
tions with finite gain and with bias and globally asymptotically stabilizable
via static state feedback (or dynamic measurement feedback) if there exists a static
state (or dynamic measurement) feedback law such that the following conditions
hold:

(i) The closed-loop system is Lp (or `p) stable with fixed initial conditions
with finite gain and with bias.

(ii) In the absence of any disturbance signal d , the equilibrium point x D 0 of
the closed-loop system is globally asymptotically stable.

The simultaneous global external and global internal stabilization problems for-
mulated above utilize the classical concept ofLp (or `p) stability with fixed initial
conditions while explicitly requiring internal stabilization. We formulate below
external stabilization problems based on recently introduced notions of Lp (or
`p) stability with arbitrary initial conditions and ISS stability.

Problem 11.4 For any p 2 Œ1;1�, the system as in (11.1) or as in (11.2) is said
to be simultaneously globally Lp (or `p) stabilizable with arbitrary initial
conditions and without finite gain and globally asymptotically stabilizable
via static state (or dynamic measurement) feedback if there exists a static state (or
dynamic measurement) feedback law such that the following conditions hold:

(i) The closed-loop system is Lp (or `p) stable with arbitrary initial conditions
and without finite gain.

(ii) In the absence of any disturbance signal d , the equilibrium point of the
closed-loop system is globally asymptotically stable.

Problem 11.5 For anyp 2 Œ1;1�, the system as in (11.1) or as in (11.2) is said to
be simultaneously globally Lp (or `p) stabilizable with arbitrary initial con-
ditions and with finite gain and bias and globally asymptotically stabilizable
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via static state (or dynamic measurement) if there exists a static state (or dynamic
measurement) feedback law such that the following conditions hold:

(i) The closed-loop system is Lp (or `p) stable with arbitrary initial conditions
and with finite gain and bias.

(ii) In the absence of any disturbance signal d , the equilibrium point of the
closed-loop system is globally asymptotically stable.

As discussed in Sect. 2.8, there exists a connection between the notions of Lp

stability with arbitrary initial conditions and internal stability. This connection
plays a vivid and transparent role in the case of Problem 11.5. In fact, as the
following lemma formalizes, the second condition of Problem 11.5 is imbedded
in its first condition.

Lemma 11.6 Let p 2 Œ1;1/. For the system as in (11.1) with disturbance addi-
tive to the control input, and for Problem 11.5, we have

Condition (i) ) Condition (ii):

Proof : The proof basically follows the same line as in Theorems 2.83 and 2.84.
Let us first consider the continuous-time system. Suppose, with a feedback con-
troller u D f .x/, condition (i) is attained, i.e., the closed-loop system

Tx D Ax C B�.f .x/C d/

satisfies

kxkp 6 �pkdkp C bp.kx0k/

for any x0 2 Rn where bp.�/ is a class K function. This immediately implies
that for d D 0, x 2 Lp for any x.0/. Suppose, for the sake of establishing a
contradiction, that x.t/ ! 0 does not hold. Then there exists a ı > 0 such that,
for any arbitrarily large T > 0, there is a � > T such that kx.�/k > 2ı. Let m
be an upper bound on kAx C B�.f .x//k for x in the closed ball B.2ı/. Due to
saturation, this bound is finite for finite ı.

For some � such that kx.�/k > 2ı, let t2 > � be the smallest value such that
kx.t2/k D ı and let t1 be the largest value such that � 6 t1 < t2 and kx.t2/k D
2ı. Such t1 and t2 exist because x 2 Lp and x is absolutely continuous. Since
kx.t/k 6 2ı for all t 2 Œt1; t2�, we have, due to the absolute continuity of the
solution,
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kx.t1/k � kx.t2/k 6 kx.t2/ � x.t1/k D
������

t2Z

t1

ŒAx.�/C B�.f .x.�///� d�

������

6
t2Z

t1

kAx.�/C B�.f .x.�///kd� 6 .t2 � t1/m:

Hence, t2 � t1 > .kx.t1/k � kx.t2/k/=m D ı=m. Clearly, kx.t/k > ı for all
t 2 Œ�; t2�, and furthermore t2 � � > t2 � t1 > ı=m. It follows that for each � such
that kx.�/k > 2ı, we have kx.t/k > ı for all t 2 Œ�; � C ı=m�.

Let T be chosen large enough that

1Z

T

kx.t/kp d� <
ıpC1

m
: (11.3)

Such a T must exist, since x.t/ 2 Lp . Let � > T be chosen such that kx.�/k >
2ı. We have

1Z

T

kx.t/kp d� >
�Cı=mZ

�

kx.t/kp d� > ıpC1

m
:

This contradicts (11.3), which proves that x.t/ ! 0.
We proceed now to show local stability. For p 2 Œ1;1/, and for any " > 0, let

M be such that kAx C B�.f .x//k 6 M for kxk 6 ", and ı 6 "
2

be such that

bp.ı/
p 6 "pC1

2pC1M
:

Therefore, for d D 0 and kx0k 6 ı, we have

kxkp
p 6 "pC1

2pC1M
: (11.4)

It remains to show that kx.t/k < " for all t > 0. We establish this by contradic-
tion. Choose t1 as the smallest t for which we have kx.t/k D ". Let t2 < t1 be the
largest value such that kx.t2/k D "=2. We have, owing to the absolute continuity
of x.�/,

kx.t1/k � kx.t2/k 6 kx.t1/� x.t2/k

6 k
t1Z

t2

Ax.t/C B�.f .x.t///dtk

6
t1Z

t2

Mdt 6 M.t2 � t1/:
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This yields that t1 � t2 > "
2M

and hence we have for p 2 Œ1;1/,

1Z

0

kx.t/kpdt >
t1Z

t2

kx.t/kpdt > "pC1

2pC1M
;

which contradicts (11.4). Therefore, such a t1 does not exist. This, together with
the fact that kx0k 6 ı 6 "

2
, implies that kx.t/k < " for all t > 0. The local

stability follows.
We consider next the proof for discrete-time systems. In this case, it is rather

simple owing to the nature of `p space. Suppose for p 2 Œ1;1/, under a feedback
controller f .x/, condition (i) is attained, i.e., the closed-loop system

�x D Ax CB�.f .x/C d/

satisfies

kxkp 6 �pkdkp C bp.kx0k/
for any x0 2 Rn where bp is a class K function. By setting d D 0, we immedi-
ately have x 2 `p for any x0. This implies that x.k/ ! 0 as k ! 1 and hence
global attractivity follows.

For any " > 0, let ı 6 " be such that bp.ı/ 6 ". Then for any kx0k 6 ı and
d D 0, we have for p 2 Œ1;1/,

kxkp 6 bp.kx0k/ 6 bp.ı/ 6 ":

But then,

kxk1 6 kxkp 6 ":

Therefore, we conclude local stability.

Remark 11.7 The above lemma also holds when the disturbance is non-input-
additive. However, in that case, as will be shown in a later chapter, the Lpn`p
stabilization with finite gain is in general not possible unless the open-loop system
is already stable.

Lemma 11.6 can be weakened if we do not require finite gain as discussed in
the following lemma.

Lemma 11.8 Let p 2 Œ1;1/. For the system as in (11.1) with disturbance addi-
tive to the control input, and for Problem 11.4, we have

Condition (i) ) Global attractivity.
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Proof : The proof follows exactly by the same argument as used in the proof of
Lemma 11.6.

Although the next problem does not explicitly seek internal stability, it imbeds
the notion of internal stability within itself as we shall prove in the next chapter,
Sect. 12.4.

Problem 11.9 The system as in (11.1) or as in (11.2) is said to be globally ISS
stabilizable via static state feedback (or dynamical measurement feedback) if
there exists a static state (or a dynamical measurement) feedback law such that
the closed-loop system is ISS stable.

11.3 Simultaneous stabilization in semi-global
framework: problem statements

As discussed in the introduction, our focus in the semi-global framework is only
on two problems, one that does not seek finite gain while the other seeks finite
gain. Both of the problems are traditional simultaneous stabilization problems
that deal with fixed initial conditions, typically zero.

Before we proceed to define formally the problems we solve in the semi-global
framework, we need to recall some notation.

Definition 11.10 For a signal z with z.t/ 2 Rs , and for any p; q 2 Œ1;1� and
any D > 0, Lp;q.D/ denotes the set of all z 2 Lp such that kzkLq

6 D.
Similarly, for discrete-time signals z with z.t/ 2 Rs, and for any p; q 2 Œ1;1�

and anyD > 0, `p;q.D/ denotes the set of all z 2 `p such that kzk`q
6 D.

Problem 11.11 For any p; q 2 Œ1;1�, the system as in (11.1) or as in (11.2)
is said to be simultaneously Lq (or `q) semi-globally Lp-stabilizable (or `p-
stabilizable) and semi-globally asymptotically stabilizable via static state feed-
back (or dynamic measurement feedback with dynamic order nc ) if, for any a pri-
ori given (arbitrarily large) bounded set X � Rn (or respectively, X � RnCnc )
and anyD > 0, there exists a static state feedback (or respectively, dynamic mea-
surement feedback of order nc ), possibly depending on X and D, such that the
following conditions hold:

(i) For continuous-time case, the closed-loop system is Lp-stable over the set
Lp;q.D/. That is, z 2 Lp for all d 2 Lp with kdkLq

6 D and x.0/ D 0.
Similarly, for discrete-time case, the closed-loop system is `p-stable over
the set `p;q.D/. That is, z 2 `p for all d 2 `p with kdk`q

6 D and
x.0/ D 0.
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(ii) In the absence of any disturbance signal d, the equilibrium point x D 0 of
the closed-loop system is asymptotically stable with X � Rn (or respec-
tively, X � RnCnc ) contained in its domain of attraction.

The above problem is coined as the .SGp;q=SG/ problem.

Problem 11.12 For any p; q 2 Œ1;1�, the system as in (11.1) or as in (11.2) is
said to be simultaneously Lq (or `q) semi-globally finite gain Lp-stabilizable
(or `p-stabilizable) and semi-globally asymptotically stabilizable via static
state feedback (or dynamic measurement feedback with dynamic order nc ) if,
for any a priori given (arbitrarily large) bounded set X � Rn (or respectively,
X � RnCnc ) and any D > 0, there exists a static state feedback (or respectively,
dynamic measurement feedback of order nc), possibly depending on X and D,
such that the following conditions hold:

(i) For continuous-time case, the closed-loop system is finite gain Lp-stable
over the set Lp;q.D/. That is, there exists a positive constant �p such that
with x.0/ D 0, the following holds:

kzkLp
� �pkdkLp

; for all d 2 Lp

ˇ̌ kdkLq
6 D:

Similarly, for the discrete-time case, the closed-loop system is finite gain
`p-stable over the set `p;q.D/. That is, there exists a positive constant �p

such that with x.0/ D 0, the following holds:

kzk`p
� �pkdk`p

; for all d 2 `p
ˇ̌ kdk`q

6 D:

(ii) In the absence of any disturbance signal d, the equilibrium point x D 0 of
the closed-loop system is asymptotically stable with X � Rn (or respec-
tively, X � RnCnc ) contained in its domain of attraction.

The above problem is coined as .SGp;q=SG/fg problem.

Remark 11.13 In the above two problem statements that deal with semi-global
internal stabilization, we prespecified explicitly the dynamical order of the mea-
surement feedback controller. This is necessitated because of the need to specify
a priori bounded set X that has to be included in the region of attraction. How-
ever, such a pre-specification of the dynamical order of the measurement feedback
controller is not necessary when we deal with global internal stabilization. This
is so because global internal stabilization concerns the whole state space, i.e., the
region of attraction is the whole state space.

All the problems formulated in this chapter are studied in subsequent chapters.
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Simultaneous external and internal
stabilization: input-additive case

12.1 Introduction

For linear systems subject to saturation, Chap. 11 formulates five simultaneous
global external and global internal stabilization problems and two simultane-
ous semi-global external and semi-global internal stabilization problems. As dis-
cussed there, two distinct cases arise, the first case corresponds to the situation
when the control inputs and the disturbance signals are additive, while in the sec-
ond case, such signals are nonadditive. In this chapter, under the condition that the
given system is asymptotically null controllable with bounded control (ANCBC),
we present control strategies that solve all the five global problems and the two
semi-global problems for both continuous- and discrete-time systems. For state
feedback, we will solve these problems completely. However, for the measure-
ment feedback case, only partial results are available..

In general, all the simultaneous stabilization problems utilize nonlinear feed-
back controllers in a global framework and linear feedback controllers in a
semi-global framework. However, for open-loop critically stable or neutrally
stable1 systems, even in a global framework, simultaneous stabilization can be
achieved with linear feedback controllers.

As introduced in (11.1), a continuous-time linear system subject to actuator
saturation where the disturbance is input-additive can be described by

˙c W

8
<̂

:̂

Tx.t/ D Ax.t/ C B�.u.t/ C d.t//;

z.t/ D x.t/; t � 0;

y.t/ D Cx.t/; t � 0;

(12.1a)

where, as usual, x 2 Rn is the state, u 2 Rm is the input, z 2 Rq is the controlled
variable, and y 2 Rp is the measured output. Similarly a discrete-time system is
described by

1We recall that a linear system is said to be open-loop critically stable or neutrally stable if, for
a continuous-time system, all its open-loop poles are in the closed left-half plane with those on the
imaginary axis being simple or, for a discrete-time system, all its open-loop poles are within or on the
unit circle with those on the unit circle being simple.

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__12,
© Springer Science+Business Media New York 2012
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˙d W

8
<̂

:̂

x.k C 1/ D Ax.k/ C B�.u.k/ C d.k//;

z.k/ D x.k/; k � 0;

y.k/ D Cx.k/; k D 1; 2; : : : :

(12.1b)

Here, � denotes the standard saturation function defined as

�.u/ D Œsat�.u1/; : : : ; sat�.um/�;

where sat�.s/ D sgn.s/ min fjsj; �g for some � > 0.
For the above two systems where the disturbance d is additive to the control in-

put, the goal of this chapter is to construct appropriate controllers that solve the si-
multaneous stabilization problems formulated in Chap. 11. Since all the problems
require internal stabilization, it is obvious that the following two assumptions are
necessary to solve these problems:

Assumption 12.1 The pair .A; B/ is stabilizable.

Assumption 12.2 The eigenvalues of A are in the closed left-half complex plane
for continuous-time systems and are inside and/or on the unit circle for discrete-
time systems.

Also, we make the following additional assumption whenever a measurement
feedback controller has to be used:

Assumption 12.3 The pair .C; A/ is observable.

12.2 Simultaneous stabilization in a global
framework: continuous time

In this section, we consider continuous-time systems. The objective will be to
design appropriate controllers which solve the problem of simultaneous global
external and global internal stabilization. To be specific, we consider in this sec-
tion the first four problems, namely,

(i) Simultaneous global Lp stabilization with fixed initial conditions and with-
out finite gain and global asymptotic stabilization, as defined by Prob-
lem 11.1 (the .Gp=G/ problem)

(ii) Simultaneous global Lp stabilization with fixed initial conditions with finite
gain and with zero bias and global asymptotic stabilization, as defined by
Problem 11.2 (the .Gp=G/fg problem)
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(iii) Simultaneous global Lp stabilization with arbitrary initial conditions and
without finite gain and bias and global asymptotic stabilization, as defined
by Problem 11.4

(iv) Simultaneous global Lp stabilization with arbitrary initial conditions and
with finite gain and bias and global asymptotic stabilization, as defined by
Problem 11.5

We note that the solvability of .Gp=G/fg problem (Problem 11.2) implies the
solvability of a simultaneous global Lp stabilization problem with fixed initial
conditions with finite gain and with bias and global asymptotical stabilization
(Problem 11.3).

In the following two sections, we consider state feedback and measurement
feedback controllers, respectively.

12.2.1 State feedback

We consider state feedback controllers in this subsection. A natural question that
arises first is, what are our design methodologies, and what kind of feedback con-
trol laws do we utilize? In tune with our development in earlier chapters related to
internal stability, we utilize low-and-high-gain feedback control methodologies,
that is, we utilize state feedback controllers of the form

˙con W u D �.1 C ˛/B 0P"x:

As usual, P" is the positive definite solution of the continuous-time algebraic Ric-
cati equation (CARE) given in (4.42). Moreover, " is a low-gain parameter and
˛ is a high-gain parameter. Since we are aiming at global results for both exter-
nal stabilization and internal asymptotic stabilization, based on our experience in
dealing with internal stabilization problems, we must necessarily adapt (sched-
ule) the low-gain and high-gain parameters " and ˛ to depend on the state x. Note
that adaptation of the low-gain is discussed in Chap. 4 and is essential to achieve
global internal stability. Low-gain adaptation is recalled below. It turns out that
adaptation of the high-gain is crucial for achieving external stability. For adapt-
ing both low-gain and high-gain parameters, different adaptation functions can be
used; however, they must satisfy certain properties, as described below.

Adaptation of the low-gain parameter: We need to adapt the low-gain param-
eter " based on the state x. That is, one needs to use a function "a.x/ from
Rn ! .0; 1� in place of ". Different properties which are sought in adapting the
low-gain parameter "a.x/ are discussed earlier in Chap. 4. We recall them below
with slight modifications to suit our present development:

(i) "a.x/ 2 C 1:

(ii) "a.x/ D 1 for all x in an open neighborhood of the origin.
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(iii) For any x 2 Rn, we have

kB 0P"a.x/xk1 6 �:

(iv) "a.x/ ! 0 as kxk1 ! 1.

(v) f x 2 Rn j x0P"a.x/x 6 c g is a bounded set for all c > 0.

(vi) For any x1; x2 2 Rn,

x0
1P"a.x1/x1 6 x0

2P"a.x2/x2

implies that "a.x1/ > "a.x2/.

In item (iii), P"a.x2/ is the positive definite solution of the CARE (4.42) when
" is replaced by "a.x2/. Moreover, � is a design parameter to be chosen (often,
it is the saturation level). A particular choice for the adaptive-low-gain parameter
"a.x/ having all the above properties has been introduced by Megretski [98] in
connection with the continuous-time systems. This is what we use throughout this
section and it is given by

"a.x/ D max f; r 2 .0; 1� W .x0Prx/ trace Pr 6 �2

kBB 0k g: (12.2)

Note that this is a nontrivial choice since Property (iii) requires that "a.x/ con-
verges to 0 fast enough, yet Properties (v) and (vi) restrict the speed with which
"a.x/ can converge to 0. We note that in this chapter, Lemma 12.54 given in “Ap-
pendix” plays a crucial role, and its proof relies on the explicit choice for the
scheduling chosen in (12.2).
Adaptation of the high-gain parameter: We need to adapt the high-gain pa-
rameter ˛ based on the state x. That is, one needs to use a function ˛a.x/ from
Rn ! RC in place of ˛. The function ˛a.x/ has to be selected appropriately so
that it does not affect the internal stability of the closed-loop system, that is, it
does not affect the region of attraction, as is the case in adapting the low-gain
parameter ". On the other hand, the dependency of ˛ on x can be advantageous
to establish global Lp stability of the closed-loop system. For a globally defined
adaptive controller, it turns out that the high-gain parameter ˛a.x/ has to go to 1
as the norm of x goes to 1, but the growth of ˛a.x/ that is required turns out to
be problem dependent. That is, the adaptation of the ˛a.x/ depends on the choice
of p in Lp stability whether the Lp stability of the closed-loop system is required
to be with finite gain or without finite gain. Because of this, a strategic method of
adapting the high-gain parameter was introduced in [126]. The adaptation of the
˛a.x/ in [126] directly links to the adaptation of the low-gain parameter " and is
given by

˛a.x/ D ˛o

�max.P"a
/

�min.Q"a
/�min.P"a

/
; (12.3)
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where ˛o is a constant if we do not impose a finite gain or if we have p D 1.
Otherwise we choose

˛o D ˛oo

�
�max.P"a

/

�min.Q"a
/�min.P"a

/

� 1

k.sI � A C BB 0P"a
/�1k2

H2

�max. dQ"

d"
/

�min. dQ"

d"
/

#
; (12.4)

where ˛oo is a design parameter.

Remark 12.4 A typical choice of Q" is "I . In this case, obviously, the expression
for ˛o reduces to

˛o D ˛oo

"
�max.P"a

/

"a�min.P"a
/

1

k.sI � A C BB 0P"a
/�1k2

H2

#
:

We proceed now with the construction of controllers and the analysis of the
.Gp=G/ and .Gp=G/fg problems when state feedback is considered. It turns out
that the analysis of these problems for p D 1 is radically different from the case
where p 2 Œ1; 1/. As such, we separate out our development of the results related
to these problems into two different cases, p D 1 and p 2 Œ1; 1/.

For the system ˙c given in (12.1a), the theorem given below deals with the
.Gp=G/fg problem for p D 1 while using state feedback.

Theorem 12.5 Consider the system ˙c of (12.1a) while using state feedback. For
this system, under Assumptions 12.1 and 12.2, the problem of simultaneous global
L1 stabilization with fixed initial conditions with finite gain and with zero bias
and global asymptotic stabilization, that is, the .G1=G/fg problem, is solvable,
and the L1 gain can be made arbitrarily small. Moreover, the adaptive-low-and-
high-gain design methodology can yield a control law that solves the problem.
More specifically, for any specified gain � > 0, there exists an ˛�

o > 0 such that
the adaptive-low-and-high-gain design feedback law,

˙con W u D �.1 C ˛a.x//B 0P"a.x/x; (12.5)

with "a defined by (12.2) and ˛a defined by (12.3), where ˛o > ˛�
o is a positive

constant, has the following properties:

(i) In the presence of a disturbance signal d , the closed-loop system is L1
stable with fixed initial conditions with finite gain and with zero bias. More-
over, the L1 gain is less than the specified � .

(ii) In the absence of any disturbance signal d, the equilibrium point of the
closed-loop system is globally asymptotically stable.
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Remark 12.6 Note that ˛o can be chosen as a function of x or can be chosen as
a constant as long as one makes sure that ˛o > ˛�

o .

Proof : Property (ii) has been proven in [67] where we note that this proof is not
affected if we use an adaptation of the high gain. Hence, we focus on the proof of
Property (i).

Before we proceed, we recall the important Property (iii) on page 620 of the
adaptive low-gain parameter "a. Choose a Lyapunov function V.x/ D x0P"a

x

and let LV .c/ be a level set defined as LV .c/ D fx 2 Rn W V.x/ 6 cg.
For the derivative of V.x/ along the trajectory of the system (12.1a) with the

feedback (12.5), we obtain the following inequality:

dV

dt
6 �x0Qx C 2x0PBŒ�.�B 0P x � ˛B 0P x C d/ C B 0P x�

� x0PBB 0P x C x0 dP

dt
x

6 �x0Qx � 2

mX

iD1

vi Œsat�.vi C ˛vi C di / � sat�.vi /� C x0 dP

dt
x; (12.6)

where v D �B 0P x, di is the ith component of d , vi is the ith component of v,
and we use vi D sat�.vi /. Here, for simplicity, we have omitted the subscript "a,
that is, P D P"a

, and Q D Q"a
, and ˛ D ˛a.x/.

If j˛vi j < jdi j, then we obtain the following inequality from (12.6):

dV

dt
6 �x0Qx C 2

mX

iD1

jdi j
˛

� jdi j C x0 dP

dt
x: (12.7)

On the other hand, if j˛vi j > jdi j, then

� vi Œsat�.vi C ˛vi C di / � sat�.vi /� 6 0; (12.8)

and hence, also in this case, (12.7) is satisfied. We then obtain,

dV

dt
6 �x0Qx C 2

mX

iD1

jdi j2
˛

C x0 dP

dt
x

6 ��min.Q/

�max.P /
V C 2

kdk2

˛
C x0 dP

dt
x: (12.9)

We claim that for ˛ equal to ˛a, as defined in (12.3), we have

V.x/ 6 2

˛o

�min.P /kdk21; (12.10)
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and

kxk2 6 2

˛o

kdk21: (12.11)

It is obvious that (12.11) is a consequence of (12.10), and therefore, it only re-
mains to prove (12.10).

We know that inequality (12.10) is satisfied for t D 0. Assume that for some
t0, the inequality is satisfied for t 6 t0, but the inequality is not satisfied for
t 2 .t0; t0 C �� for some small � > 0. We consider three cases:

Case 1: If "a.x.t0// D 1, then dP
dt

.t0/ D 0, and hence, (12.7) for t D t0
reduces to

dV

dt
6 ��min.Q/

�max.P /
V C 2

˛o

�min.Q/�min.P /

�max.P /
kdk21: (12.12)

Since (12.10) is satisfied for t D t0, we obtain that dV
dt

.t0/ 6 0. On the other hand,
the right-hand side of (12.10) is 0. This contradicts that for t > t0, at least one of
the inequalities will be falsified.

Case 2: If dP
dt

.t0/ < 0 and "a.x.t0// ¤ 1, then there exists a small neighbor-
hood of t0 such that dP

dt
.t/ < 0 for all t in this neighborhood. We know that for

t 2 .t0; t0 C ��, the inequality (12.10) is not satisfied. But that implies by us-
ing (12.9) that dP

dt
< 0 and dV

dt
< 0. Since "a.x.t0// ¤ 1, we have "a.x.t// ¤ 1

in a neighborhood of t , but this implies that

V � trace P D �2

kBB 0k (12.13)

in this neighborhood of t0 which contradicts with V and P decreasing simultane-
ously.

Case 3: If dP
dt

.t0/ > 0 and "a ¤ 1, then we have that "a.x.t// ¤ 1 in a
neighborhood of t , but this implies that (12.13) in this neighborhood of t0, and
we conclude that dV

dt
6 0. But this implies that the right-hand side of (12.10) is

increasing and the left-hand side is decreasing which contradicts the assumption
made earlier.

Clearly, (12.11) then shows that the closed-loop system is L1 stable with fixed
initial conditions with finite gain and with zero bias. Note that to achieve a finite
gain less than � , we should choose ˛o > 2

�
.

We proceed now to the case of p 2 Œ1; 1/. We first consider the .Gp=G/

problem, that is, the problem which does not seek finite gain.

Theorem 12.7 Consider the system ˙c of (12.1a) while using state feedback.
For this system, under Assumptions 12.1 and 12.2, the problem of simultaneous
global Lp stabilization with fixed initial conditions and without finite gain and
global asymptotic stabilization, namely, the .Gp=G/ problem, is solvable for any
p 2 Œ1; 1/. Moreover, the adaptive-low-and-high-gain design methodology can
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yield a control law that solves the problem. In particular, for any p 2 Œ1; 1/, the
adaptive-low-and-high-gain state feedback law,

˙con W u D �.1 C ˛a.x//B 0P"a.x/x; (12.14)

with "a defined by (12.2) and ˛a defined by (12.3) with ˛o any fixed positive
constant, has the following properties:

(i) In the presence of a disturbance signal d, for any p 2 Œ1; 1/, the closed-
loop system is Lp stable with fixed initial conditions and without finite gain.

(ii) In the absence of any disturbance signal d, the equilibrium point of the
closed-loop system is globally asymptotically stable.

Remark 12.8 Note that our method of adapting the high-gain parameter for
solving the .Gp=G/ problem requires only ˛0 to be a positive constant for any
p 2 Œ1; 1/. This, as we can see in the subsequent Theorem 12.9, is not the case
if we additionally require a finite gain.

Proof : We begin from (12.6). Here, for simplicity, we have again omitted the
subscript "a, that is, P D P"a

and Q D Q"a
, and ˛ D ˛a.x/.

If j˛vi j > jdi j, then we have (12.8). On the other hand, if j˛vi j > jdi j, then

�vi Œsat�.vi C ˛vi C di / � sat�.vi /� 6
mX

iD1

2
jdi j
˛

�:

If we define the function V by V.x/ D x0P"a.x/x, then combining the above
with (12.6) yields

dV

dt
6 ��min.Q/

�max.P /
V C 4m�

˛
kdk C x0 dP

dt
x: (12.15)

We would like to show the following inequality:

V p�1 dV

dt
<

�
�max.P /

�min.Q/

�p�1 �
4m�

˛

�p

kdkp : (12.16)

In order to do so, we consider two cases:
Case 1: If "a D 1, then dP

dt
D 0. Hence, using (12.15), we find that dV

dt
> 0 only

if

V.x/ 6 �max.P /

�min.Q/

4m�

˛
kdk: (12.17)

Since dP"a

dt
D 0, (12.15) also yields

dV

dt
6 4m�

˛
kdk: (12.18)
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Multiplying this inequality with V p�1 on the left-hand side and utilizing (12.17)
on the right-hand side then yields (12.16) if dV

dt
> 0.

On the other hand, if dV
dt

6 0, then (12.16) is trivially satisfied.
Case 2: If "a ¤ 1, then (12.13) is satisfied. We first assume that (12.17) is not
satisfied. In that case, if dP

dt
< 0, then (12.15) implies that dV

dt
6 0 which contra-

dicts that (12.13) is satisfied for a neighborhood around the current time. There-
fore, if (12.17) is not satisfied, then dP

dt
> 0 and dV

dt
6 0. Obviously, in this

case, (12.16) is satisfied.
On the other hand, if (12.17) is satisfied, then from (12.15), we obtain

dV

dt
6 4m�

˛
kdk C x0 dP

dt
x:

Therefore, dV
dt

6 0 in which case (12.16) is obviously satisfied or dP
dt

6 0 in
which case combining (12.17) and (12.18) yields (12.16).

Therefore, the state trajectory of the closed-loop system satisfies (12.16). Inte-
grating that inequality and using the definition of ˛ together with the comparison
theorem then implies that V.x/ is bounded from the above, that is, there exists a
c such that the trajectory of the closed-loop system starting from x.0/ D 0 will
remain inside LV .c/.

In summary, for any p 2 Œ1; 1/, we have already shown that in the presence of
d 2 Lp, the feedback (12.14) guarantees (12.16). This implies that the trajectory
of the closed-loop system starting from x.0/ D 0 remains inside LV .c/, though
c is dependent on the individual d .

Based on the definition of the adaptive low-gain parameter "a, it is then obvious
that there exists an "�

a such that "�
a 6 "a.x.t// for all t . We will use this to show

that the closed-loop system is Lp stable.

From (12.6), there exist �1."a/ D �minQ
�maxP

and ˇ1."a/ D 4mkB 0P 1
2 k such that

dV

dt
6 ��1."a/V C ˇ1."a/V

1
2 kdk C x0 dP

dt
x: (12.19)

As demonstrated earlier, if "a D 1, then dP
dt

D 0. We next concentrate on the case
when "a D 1 does not hold. If so, we have (12.13); therefore, dV

dt
and dP

dt
have

different signs, or both are zero. Hence, if dV
dt

> 0, we have

dV

dt
6 ��1."a/V C ˇ1."a/V

1
2 kdk: (12.20)

Next, we will discuss the case dV
dt

< 0. Before that, we would like to point out
some properties. Since we know that "a is bounded away from 0, we know that
there exists a constant K (independent of x) such that (see Remark 12.55 in the
“Appendix”)

jx0 dP

dt
xj 6 KjdV

dt
j: (12.21)
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If dV
dt

< 0, the preceding inequality shows that

dV

dt
6 ��1."a/V C ˇ1."a/V

1
2 kdk � K

dV

dt
:

Thus, we have

.1 C K/
dV

dt
6 ��1."a/V C ˇ1."a/V

1
2 kdk: (12.22)

Therefore, if "a D 1 or dV
dt

> 0, we have (12.20), while if dV
dt

< 0, we
have (12.22). Therefore, there exist constants � > 0 and ˇ > 0 with � < �1."a/

and ˇ > ˇ1."a/ for all "a 2 Œ"�
a; 1� such that

dV

dt
6 ��V C ˇV

1
2 kdk: (12.23)

Then, by using the standard comparison theorem, we can see easily that the
closed-loop system is Lp stable with fixed initial conditions and without finite
gain. This concludes our proof.

The next theorem deals with .Gp=G/fg problem, that is, with the simultaneous
global external stabilization problem with fixed initial conditions with finite gain
and with zero bias and global asymptotic stabilization for p 2 Œ1; 1/.

Theorem 12.9 Consider the system ˙c of (12.1a) while using state feedback. For
this system, under Assumptions 12.1 and 12.2, the problem of simultaneous global
Lp stabilization with fixed initial conditions with finite gain and with zero bias
and global asymptotic stabilization, namely, the .Gp=G/fg problem, is solvable
for any p 2 Œ1; 1/. Also, the Lp gain can be made arbitrarily small. Moreover,
the adaptive-low-and-high-gain design methodology can yield a control law that
solves the problem. In particular, for any p 2 Œ1; 1/ and for any gain � > 0,
there exists an ˛�

oo > 0 such that the adaptive-low-and-high-gain feedback law,

˙con W u D �.1 C ˛a.x//B 0P"a.x/x; (12.24)

with "a defined by (12.2) and ˛a defined by (12.3), where ˛o defined by (12.4)
with ˛oo > ˛�

oo, has the following properties:

(i) For any p 2 Œ1; 1/, in the presence of a disturbance signal d, the closed-
loop system is Lp stable with fixed initial conditions with finite gain and
with zero bias. Moreover, the Lp gain is less than or equal to � .

(ii) In the absence of any disturbance signal d, the equilibrium point of the
closed-loop system is globally asymptotically stable.
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Proof : It is immediate from Theorem 12.7 and its proof that the system is globally
asymptotically stable and is globally Lp stable with fixed initial conditions and
without finite gain (the fact that we make ˛o a function of x is easily seen not to
change these properties). It remains to show that we have a finite gain.

Let � be a positive constant which can be chosen arbitrarily small. We will
derive a bound on

t2Z

t1

.kxkp � �kdkp/dt

when the system is moving from c1 D V.x.t1// to c2 D V.x.t2//, where V is
defined by V.x/ D x0P"a.x/x and the bound will depend only on c1 and c2. We
consider two cases: dV

dt
> 0 on the interval Œt1; t2� and dV

dt
< 0 on the interval

Œt1; t2�.
Case 1: ( dV

dt
> 0).

Using similar arguments as in the proofs of the previous theorems, we find that
if V is increasing, we either have "a D 1 in which case dP

dt
D 0 or " < 1 in

which case dP
dt

6 0. By using that the saturation function is globally Lipschitz
and bounded, we obtain

dV

dt
6 �x0Qx C 2

X

i Wviei <0

jvi j sat�.jei j/ (12.25)

6 2kB 0P 1=2kV 1=2
X

i Wvi ei <0

sat�.jei j/

6 N1V 1=2
X

i Wvi ei <0

sat�.jei j/; (12.26)

for some constant N1 > 0 where ei D di C ˛vi . Note that if ei vi > 0 for all i

then we have (12.8) for all i, and hence, dV
dt

< 0 which yields a contradiction.
First, consider the case where

X

i Wvi ei <0

sat�.jei j/ 6 V 1=2:

In that case,
dV

dt
6 N1V;

and we find that

X

i Wvi ei <0

jvi jp > 1

pmp�1
.
X

i Wvi ei <0

jvi j/p > 1

pmp�1

.x0Qx/p

.2V 1=2/p

> N2

�
p
min.Q/

�
p
max.P /

V p=2;
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for some constant N2 > 0 where the second inequality is based on dV
dt

> 0

combined with (12.25) and
P

i Wvi ei <0 sat�.jei j/ 6 V 1=2. Using the definition

of ˛ with ˛oo large enough such that N2�˛
p
o > 2 maxf�p=2

min .P /; 1g, which is
obviously possible since �min.P / is bounded and ˛o=˛oo has a lower bound larger
than 0, we have

kxkp � �kdkp

TV 6
kxkp � �˛p

P
i Wvi ei <0 jvi jp

TV
6 1

N1

 
V p=2�1

�
p=2
min .P /

� N2�˛p �
p
min.Q/

�
p
max.P /

V p=2�1

!

6 1 � N2�˛
p
o

N1

V p=2�1

�
p=2
min .P /

: (12.27)

On the other hand, if
X

i Wvi ei <0

sat�.jei j/ > V 1=2; (12.28)

then obviously V is bounded. Note that (12.25) implies that

2
X

i Wviei <0

jviei j > 2
X

i Wviei <0

jvi j sat�.jei j/ > x0Qx;

and hence, we have the following reductions:

X

i Wvi ei <0

jdi jp > 1

pmp�1

0

@
X

i Wvi ei <0

jdi j
1

A
p

> F

0

@
X

i Wvi ei <0

j 1p
˛

ei j C jp˛vi j
1

A
p�1

> F

0

@
X

i Wvi ei <0

�
j 1p

˛
ei j2 C jp˛vi j2

�1=2
1

A
p�1

> F

0

@
X

i Wvi ei <0

j 1p
˛

ei j2 C jp˛vi j2
1

A
p=2�1=2

> F

0

@
X

i Wvi ei <0

jeivi j
1

A
p=2�1=2
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> ˛p=2�1=2.x0Qx/p=2�1=2

.2/p=2�1=2pmp�1

0

@
X

i Wvi ei <0

jei j
1

A

> N3˛p=2�1=2
o

V p=2�1=2

�
p=2
min .P /

0

@
X

i Wvi ei <0

jei j
1

A ; (12.29)

where

F D ˛p=2�1=2

pmp�1

0

@
X

i Wvi ei <0

jei j
1

A ;

for some N3 > 0 using that P is lower bounded and V is upper bounded us-
ing (12.28). Using (12.26) and (12.29) and choosing ˛oo large enough such that
N3�˛

p=2�1=2
o > 2, we have

kxkp � �kdkp

TV 6

0

@ V p=2

�
p=2
min .P /

� �
X

i Wvi ei <0

jdi jp
1

A

� 1

N1V 1=2
P

i Wvi ei <0 sat�.jei j/

6 1

N1

 
V p=2�1

�
p=2
min .P /

� N3�˛p=2�1=2
o

V p=2�1

�
p=2
min .P /

!

6 1 � N3�˛
p=2�1=2
o

N1

V p=2�1

�
p=2
min .P /

: (12.30)

Combining (12.30) and (12.27), we obtain

t2Z

t1

.kxkp � �kdkp/dt

6 1

N1

c2Z

c1

.1 � �˛p=2�1=2
o minfN2; N3g/ V p=2�1

�
p=2
min .P /

dV

6 �N4

c2Z

c1

�˛p=2�1=2
o

V p=2�1

�
p=2
min .P /

dV; (12.31)

for some positive constant N4 where we used that �˛
p
o minfN2; N3g > 2.
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Case 2: ( dV
dt

< 0).
Obviously a worst-case disturbance signal d wants to maximize

t2Z

t1

.kxkp � �kdkp/dt;

while V is decreasing from c2 to c1. For d D 0, the term is positive, and it is
obvious that it is unfavorable for d to make kxkp � �kdkp 6 0 for any given
time.

We define

� D �min.Q/

.1 C K/�max.P /
;

where K is a function of V that should be such that (12.21) is satisfied. One K

satisfying (12.21) is given by Lemma 12.54 in “Appendix”,

K D N5

�min.P /k.sI � A C BB 0P /�1k2
H2

�max.
dQ"

d"
/

�min.
dQ"

d"
/
;

for some positive constant N5 which can be chosen such that additionally K > 2

for all V . Since d will not make kxkp � �kdkp negative, we find that

kdk 6 �1=pkxk 6 �1=pV 1=2

�
1=2
min .P /

:

We consider two cases. If

jvi j <
��

1=2
min .P /V 1=2

2m�1=p
; (12.32)

then

�vi Œsat�.vi C ˛vi C di / � sat�.vi /� 6 �V 1=2�
1=2
min .P /

2m�1=p
kdk

6 �

2m
V:

On the other hand, if (12.32) is not satisfied, then, for vi .di C ˛vi / < 0, we find
that

�vi Œsat�.vi C ˛vi C di / � sat�.vi /�

6 �vi .di C ˛vi /

6 jvi j�
1=pV 1=2

�
1=2
min .P /

� ˛v2
i
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6
"

�1=pV 1=2

�
1=2
min .P /

� ˛�

2m�1=p
V 1=2�

1=2
min .P /

#
jvi j;

which is negative for ˛oo large enough, while for vi .di C ˛vi / > 0, we get

�vi Œsat�.vi C ˛vi C di / � sat�.vi /� 6 0:

Therefore, we can strengthen the argument used in the proof of the previous the-
orem to obtain, instead of (12.23),

dV

dt
6 ��

2
V: (12.33)

We have
t2Z

t1

.kxkp � �kdkp/dt 6
c1Z

c2

V p=2

�
p=2
min .P /

dV

TV :

Note that since c2 > c1, we have, dV is negative, and hence, when combined
with (12.33), it is obvious (where we use 1CK < 2K) that there exists a negative
constant N6 such that

t2Z

t1

.kxkp � �kdkp/dt 6 N6

c2Z

c1

V p=2

�
p=2C1
min .P /

�max.P /

�min.Q/

� V �1

k.sI � A C BB 0P /�1k2
H2

�max.
dQ"

d"
/

�min.
dQ"

d"
/
dV: (12.34)

Conclusion of Case 1 and Case 2.
Therefore, if we consider a trajectory on the interval Œt1; t3� where we first have

dV
dt

> 0 while moving from V D c1 to V D c2 and then dV
dt

< 0 while moving
from V D c2 back to V D c1, then we have

t3Z

t1

.kxkp � �kdkp/dt 6 �N4

c2Z

c1

�˛p=2�1=2
o

V p=2�1

�
p=2
min .P /

dV

C
c1Z

c2

N6

V p=2�1

�
p=2C1
min .P /

�max.P /

�min.Q/

� 1

k.sI � A C BB 0P /�1k2
H2

�max.
dQ"

d"
/

�min.
dQ"

d"
/
dV
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using (12.31) and (12.34). The righthand side is negative if for all "

�˛p=2�1=2
o > N7

�max.P /

�min.Q/�min.P /

1

k.sI � A C BB 0P /�1k2
H2

�max.
dQ"

d"
/

�min.
dQ"

d"
/

for a suitable constant N7 which given our choice for ˛o will always be satisfied
if �˛oo is large enough.

Given the fact that
t3Z

t1

.kxkp � �kdkp/dt (12.35)

is always negative for any trajectory first moving up from c1 to c2 and then down
from c2 to c1 can be used together with the fact that we rely on pointwise bounds
that only rely on the value of V.x/ and not on x can be used to show that any
trajectory which starts in c1 and ends in c1 will also yield that (12.35) is negative.
This is related to the classical theory of dissipative systems (see, e.g., the overview
article [185]). In particular, we obtain

1Z

0

.kxkp � �kdkp/dt 6 0

since we know that any d 2 Lp yields a x 2 Lp where we use that the previous
theorem guarantees that the system is Lp stable. Moreover, we can achieve this
for any � > 0, and hence, we can make the Lp gain arbitrarily small.

Remark 12.10 Theorems 12.5 and 12.9 pronounce that the achievable Lp gain
can be rendered arbitrarily small, that is, as small as required. That is, we can
achieve almost disturbance decoupling (ADDP) under the standard Assump-
tions 12.1 and 12.2.

In the previous chapter, Sect. 11.2 defines the notion of simultaneous Lp stabi-
lization with arbitrary initial conditions with finite gain and with bias and global
asymptotic stabilization. Proofs of Theorems 12.5 and 12.9 lead to the achievabil-
ity of such a stabilization as the following theorem states:

Theorem 12.11 Consider the system ˙c of (12.1a) while using state feedback.
Also, consider the control law

˙con W u D �.1 C ˛a.x//B 0P"a.x/x;
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with "a defined by (12.2) and ˛a defined by (12.3) with ˛o as in (12.4). Then,
under Assumptions 12.1 and 12.2, the controller ˙con defined above achieves
simultaneous Lp stabilization with arbitrary initial conditions with finite gain
and with bias and global asymptotic stabilization (see Problem 11.5). Moreover,
one can tune the adaptive-high-gain parameter to render the Lp-gain arbitrarily
small.

Proof : From the standard comparison principle, (12.23) in the proof of Theo-
rem 12.7 immediately yields that there exist a � > 0 and a function zbp W Rn ! RC
such that

kxkLp
6 �p kdkLp

C zbp.x0/:

Define a class K function bp as

bp.r/ D sup
kx0kDr

zbp.x0/:

We have

kxkLp
6 �p kdkLp

C bp.kx0k/:

12.2.2 Measurement feedback

Our primary focus so far has been in constructing state feedback controllers.
That is, we assumed so far that the complete state of the given system is avail-
able for feedback, and it is not corrupted with any disturbance signal. Once a
state feedback controller is constructed, one often tries to construct a measure-
ment feedback controller having an observer-based architecture. Accordingly, we
construct here such measurement feedback controllers. By doing so, we solve
here two problems both without finite gain, namely, (1) simultaneous global
Lp stabilization with fixed initial conditions and without finite gain and global
asymptotic stabilization, as formulated in Problem 11.1, and (2) global Lp sta-
bilization with arbitrary initial conditions and without finite gain and bias and
global asymptotic stabilization, as formulated in Problem 11.4. The development
of a controller for both these problems is essentially the same. As such, we do not
explicitly refer to initial conditions in our development. The corresponding finite
gain problems are still open as they require complex high-gain observer.

Consider a traditional observer for the continuous-time system ˙c given
in (12.1a),

Tyx D Ayx C B�.u/ C K.y � C yx/;

where the gain K is such that A�KC is Hurwitz stable. Also, consider a dynamic
system,

T! D .A C BF /! C K.y � C yx/;
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where the gain F is such that A C BF is Hurwitz stable. Also, let P" be the
solution of the CARE,

A0P" C P"A � P"BB 0P" C Q" D 0; (12.36)

where for " 2 Œ0; 1�,

Q" > 0; lim
"!0

Q" D 0; dQ"

d"
> 0:

Let z D yx � !. Choose u D �B 0P"a.z/z C F! where "a.z/ is determined by

"a.z/ D maxfr 2 .0; 1� j z0Prz trace Pr 6 �2

4kBB0k g; (12.37)

and P"a.z/ is the solution of the CARE (12.36) with " replaced by "a.z/.
The above discussion leads to the dynamic observer-based controller as

8
<̂

:̂

Tyx D Ayx C B�.u/ C K.y � C yx/

T! D .A C BF /! C K.y � C yx/

u D �B 0P"a.z/z C F!;

(12.38)

where K and F are such that A � KC and A C BF are Hurwitz stable, and
z D yx � !.

We have the following theorem:

Theorem 12.12 Consider the system ˙c given in (12.1a). Let Assumptions 12.1,
12.2, and 12.3 be valid; also let � be the standard saturation function as
in Definition 2.19. Then, the nonlinear dynamic measurement feedback con-
troller (12.38) solves the following two problems:

(i) Simultaneous global Lp stabilization with fixed initial conditions and with-
out finite gain and global asymptotic stabilization, as defined by Prob-
lem 11.1 (the .Gp=G/ problem)

(ii) Simultaneous global Lp stabilization with arbitrary initial conditions and
without finite gain and bias and global asymptotic stabilization, as defined
by Problem 11.4

Proof : Define e D x � yx. The closed-loop system in terms of e, z, and ! is
given by

8
ˆ̂̂
<

ˆ̂̂
:

Te D .A � KC /e C B
�
�.�B 0P"a.z/z C F! C d/

� �.�B 0P"a.z/z C F!/
�

Tz D Az C B�.�B 0P"a.z/z C F!/ � BF!

T! D .A C BF /! C KCe:
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In the absence of d , the above becomes

8
<̂

:̂

Te D .A � KC /e

Tz D Az C B�.�B 0P"a.z/z C F!/ � BF!

T! D .A C BF /! C KCe:

Clearly, the origin is locally exponentially stable. To see global attractivity, we
note that e ! 0 and ! ! 0 as time tends to infinity due to the fact that both A C
BF and A � KC are Hurwitz stable. Then, there exists a T such that kF!.t/k 6
�
2

for all t > T . This and the adaptation law (12.37) together imply that the
saturation will be inactive for all t > T . Since � is a standard saturation function,
then the z dynamics becomes

Tz D Az � BB 0P"a.z/z

which is globally attractive. This concludes global asymptotic stability. In the
presence of d , for a standard saturation function, we have

k�.u C d/ � �.u/k 6 kdk:

Therefore, d 2 Lp implies that .�.u C d/ � �.u// 2 Lp. Since A � KC and
A C BF are both Hurwitz stable, it follows that e 2 Lp, ! 2 Lp, and ! ! 0.
Then, as before, there exists a T such that kF!.t/k 6 �

2
for all t > T . Therefore,

as before, we can conclude that the saturation is inactive for all t > T , and hence,
z dynamics becomes

Tz D Az � BB 0P"a.z/z:

This system is known to be globally asymptotically stable and locally exponen-
tially stable. Hence, z 2 Lp and x D e C yx D .e C z C !/ 2 Lp. This completes
the proof.

Remark 12.13 As Theorem 12.12 clearly indicates, a 2n-dimensional dynamic
adaptive-low-gain feedback controller can solve simultaneous global Lp stabi-
lization without finite gain and global asymptotic stabilization irrespective of the
nature of initial conditions. This is remarkable especially when we note that to
solve the same problems by a static state feedback controller, one needs an adap-
tive low-and-high-gain feedback controller.

A similar result as in Theorem 12.12, however, with finite gain is challenging
and is an open research problem.
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12.3 Simultaneous stabilization in a global
framework: discrete time

In this section, we consider discrete-time linear systems subject to actuator satu-
ration when the disturbance is additive to the control input and design appropriate
controllers for such systems in order to solve simultaneous global external and
global internal stabilization. As such, this section is a counterpart of Sect. 12.2
that considers continuous-time systems. To be specific, we consider here the first
four problems, namely,

(i) Simultaneous global `p stabilization with fixed initial conditions and with-
out finite gain and global asymptotic stabilization, as defined by Prob-
lem 11.1 (the .Gp=G/ problem)

(ii) Simultaneous global `p stabilization with fixed initial conditions with finite
gain and with zero bias and global asymptotic stabilization, as defined by
Problem 11.2 (the .Gp=G/ problem)

(iii) Simultaneous global `p stabilization with arbitrary initial conditions and
without finite gain and bias and global asymptotic stabilization, as defined
by Problem 11.4

(iv) Simultaneous global `p stabilization with arbitrary initial conditions and
with finite gain and bias and global asymptotic stabilization, as defined by
Problem 11.5

We consider both state feedback and measurement feedback controllers one in
each separate subsection.

12.3.1 State feedback

We first consider state feedback controllers based on the work of [198].
Under Assumptions 12.1 and 12.2, the system (12.1b) can be transformed into

the form,
 

xs.k C 1/

xu.k C 1/

!
D
 

As 0

0 Au

! 
xs.k/

xu.k/

!
C
 

Bs

Bu

!
�.u.k/ C d.k//; (12.39)

where As is Schur stable, Au has all its eigenvalues on the unit circle, and
.Au; Bu/ is controllable.

Suppose .Gp=G/ and/or .Gp=G/fg of the xu dynamics can be achieved by a
feedback controller u D f .xu/. If Bu has full column rank, it is straightforward
to show that u D f .xu/ also achieves .Gp=G/ and/or .Gp=G/fg of the overall
system (see below). However, it takes some effort to reach the same conclusion in
the general case. We show this in Appendix 12.B under a generic assumption on
controller structure. Therefore, without loss of generality, the following assump-
tion is made throughout this section:
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Assumption 12.14 (i) .A; B/ is controllable.

(ii) A has all its eigenvalues on the unit circle.

Controller design

As in the previous section, the controller design in this section is based on the clas-
sical low-gain and low-and-high-gain feedback design methodologies and their
adapted or scheduled versions. As discussed earlier, the low-gain feedback can be
constructed using different approaches such as direct eigenstructure assignment
and H2 and H1 ARE based methods. However, in this section, we choose a re-
cently developed parametric Lyapunov equation method [215, 216] to build the
low-gain feedback because of its special properties. As will become clear later
on, it greatly simplifies the expressions for our controllers and the subsequent
analysis.

As we said often, the low-gain feedback does not allow complete utilization of
our control capacities. On the other hand, the low-and-high-gain feedback does
so. The low-and-high-gain feedback is composed of a low-gain and a high-gain
feedback. As in the continuous-time case, the solvability of simultaneous global
external and internal stabilization problems critically rely on a proper choice of
high gain. At first, we recall the low-gain feedback design and then propose a new
high-gain design methodology well suited to discrete-time systems.

Low-gain state feedback

In this subsection, we review the low-gain feedback design methodology recently
introduced in [215, 216] which is based on the solution of a parametric Lyapunov
equation. Five key properties of the parametric Lyapunov equation are summa-
rized in the next lemma, where the first three properties are adopted from [216].

Lemma 12.15 Assume that .A; B/ is controllable and A has all its eigenvalues
on the unit circle. For any " 2 .0; 1/, the parametric ARE,

.1 � "/P" D A0P"A � A0P"B.I C B 0P"B/�1B 0P"A; (12.40)

has a unique positive definite solution P" D W �1
" where W" is the solution

for W of

W � 1

1 � "
AWA0 D �BB 0:

Moreover, the following properties hold:

(i) Ac."/ D A � B.I C B 0P"B/�1B 0P"A is Schur stable for any " 2 .0; 1/.

(ii) dP"

d"
> 0 for any " 2 .0; 1/.

(iii) lim
"#0

P" D 0.
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(iv) There exists an "� such that for any " 2 .0; "��,

kŒP
1
2

" AP
� 1

2
" k 6

p
2:

(v) Let "� be given by Property (iv). There exists a M"� such that

kB0P"B
"

k 6 M"�

for all " 2 .0; "��.

Proof : The existence of the positive definite solution P" D W �1
" and Proper-

ties (i), (ii) and (iii) were shown in [216]. Regarding Property (iv), multiplying by
P

�1=2
" on both sides of (12.40) gives

V 0
" ŒI � P

1
2

" B.I C B 0P"B/�1B 0P
1
2

" �V" D .1 � "/I;

where V" D P
1=2
" AP

�1=2
" . Since P" ! 0 as " ! 0, there exists an "� such that

for any " 2 .0; "��,

I � P
1
2

" B.I C B 0P"B/�1B 0P
1
2

" > 1
2
I:

Hence,

V 0
" V" < 2I;

or equivalently

kV"k 6
p

2:

It remains to show Property (v). Note that W" is a rational matrix in ", and thus, P"

is a rational matrix in ". Property (iii) implies that P D " xP" where xP" is rational
in " and xP" is bounded for " 2 .0; "��. This clearly implies that there exists a M"�

such that Property (v) holds. This concludes the proof of Lemma 12.15.

We define the low-gain state feedback which is a family of parameterized state
feedback laws given by

uL.x/ D FLx D �.I C B 0P"B/�1B 0P"Ax; (12.41)

where P" is the solution of (12.40). Here, as usual, " is called the low-gain param-
eter. From the properties given by Lemma 12.15, it can be seen that the magnitude
of the control input can be made arbitrarily small by choosing " sufficiently small
so that the input never saturates for any, a priori given, set of initial conditions.
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Low-and-high-gain feedback: We proceed now to design a low-and-high-gain
state feedback which is composed of a low-gain state feedback and a high-gain
state feedback as

uLH .x/ D FLH x D FLx C FH x; (12.42)

where FLx is given by (12.41). The high-gain feedback is of the form

FH x D ˛FLx;

where ˛, as before, is called the high-gain parameter.
For continuous-time systems and for semi-global stabilization, the high-gain

parameter ˛ can be any positive real number in principle. However, this is not
the case for discrete-time systems. In order to preserve local asymptotic stability,
this high gain has to be bounded at least near the origin. The existing results
in literature on the choice of high-gain parameter for discrete-time system are
really sparse. To the best of our knowledge, the only available result is in [84,
85] where the high-gain parameter is a nonlinear function of x. This nonlinear
high gain always yields a control smaller than � in magnitude, which lacks the
capability of dealing with disturbances. Furthermore, to solve the global external
and internal stabilization problem, we need to schedule the high-gain parameter
with respect to x. Moreover, this nonlinear high-gain parameter is also not suitable
for adaptation since it will make the analysis extremely complicated. Instead, we
need a constant high-gain parameter so that the controller (12.42) remains linear.
A suitable choice of such a high-gain parameter satisfies

˛ 2
h
0; 2

kB0P"Bk
i

; (12.43)

where P" is the solution of parametric Lyapunov equation (12.40).
The following lemma justifies the above selection of the high-gain parameter by

considering the local stabilization of system (12.1b) over a given compact set X:

Lemma 12.16 Consider the system (12.1b) satisfying Assumption 12.14. Let P"

be the solution of (12.40). For any a priori given compact set X, there exists
an "� such that for any " 2 Œ0; "�� and ˛ satisfying (12.43), the origin of the
interconnection of (12.1b) with the low-and-high-gain feedback

uLH D �.1 C ˛/.I C B 0P"B/�1B 0P"Ax

is locally asymptotically stable with domain of attraction containing X.

Proof : Let c be such that

c D sup
"2.0;"��

x2X

x0P"x;
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where "� is given by property (iv) in Lemma 12.15. Define a Lyapunov function
V.x/ D x0P"x and a level set V.c/ D fx j V.x/ 6 cg. We have X � Vc . From
Lemma 12.15, there exists an "1 6 "� such that for any " 2 .0; "1� and x 2 Vc ,

k.I C B 0P"B/�1B 0P"Axk 6 �:

Define � D kB 0P"Bk. We evaluate V.k C 1/ � V.k/ along the trajectories as

V.k C 1/ � V.k/

D � "V.k/ � �.uLH /0�.uLH /

C Œ�.uLH / � uL�0.I C B 0PB/Œ�.uLH / � uL�

6 � "V.k/ � �.uLH /0�.uLH /

C .1 C �/Œ�.uLH / � uL�0Œ�.uLH / � uL/�

D � "V.k/ � 1C�
�

kuLk2 C �k�.uLH / � 1C�
�

uLk2;

where we abbreviated uLH .k/ and uL.k/ by uLH and uL, respectively. Since
kuLk 6 � and ˛ satisfies (12.43), we have

kuLk 6 k�.uLH /k 6 .1 C 2
�

/kuLk:

This implies that

k�.uLH / � 1C�
�

uLk 6 1
�

kuLk;

and thus,

�k�.uLH / � 1C�
�

uLk2 � 1
�

kuLk2 6 0:

Combining the above, we get for any x.k/ 2 V.c/,

V.k C 1/ � V.k/ 6 �"V.k/:

We conclude local asymptotic stability of the origin with a domain of attraction
containing X.

Remark 12.17 We would like to explain the role played by the high-gain param-
eter ˛ in the controller design. For semi-global asymptotic stabilization, the do-
main of attraction is basically determined by the low-gain parameter " provided
that ˛ lies in a proper range. When ˛ is too large, stabilization is not possible.
This is different from continuous-time systems for which the high-gain param-
eter ˛ does not have any impact on internal stability. But like continuous-time
systems, ˛ plays a dominant role in issues other than internal stability such as
external stabilization, robust stabilization, and disturbance rejection.
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Scheduling of the low-gain parameter

In the semi-global framework, with controller (12.41), the domain of attraction
of the closed-loop system is determined by the low-gain parameter ". In order
to solve the global stabilization problem, this " can be adapted with respect to
the state. For discrete-time systems, this has been done in the literature; see, for
instance, [48].

An adaptive low-gain feedback controller for global stabilization is given by

uL.x/ D F".x/x D �.B 0P".x/B C I /�1B 0P".x/Ax; (12.44)

where P".x/ is the solution of (12.40) with " replaced by ".x/. The adapted param-
eter ".x/ should satisfy the following properties which are slight modifications of
those we used in continuous-time case:

(i) "a.x/ 2 C 1:

(ii) "a.x/ D 1 for all x in an open neighborhood of the origin.

(iii) For any x 2 Rn, we have

k.I C B 0P"a.x/B/�1B 0P"a.x/Axk1 6 �:

(iv) "a.x/ ! 0 as kxk1 ! 1.

(v) f x 2 Rn j x0P"a.x/x 6 c g is a bounded set for all c > 0.

(vi) For any x1; x2 2 Rn,

x0
1P"a.x1/x1 6 x0

2P"a.x2/x2

implies that "a.x1/ > "a.x2/.

A particular choice of scheduling satisfying the above conditions is given
in [48],

"a.x/ D max
n

r 2 .0; "�� j .x0Prx/ trace Pr 6 �2

2kBB0k
o

; (12.45)

where "� 2 .0; 1/ is any a priori given constant, while Pr is the unique positive
definite solution of parametric Lyapunov equation (12.40) with " D r . We should
note that in this section, we rely on a key technical bound (12.61) whose proof
explicitly relies on (12.45).

Note that the adaptive-low-gain controller (12.44) with (12.45) satisfies

k.B 0P"a.x/B C I /�1B 0P"a.x/Axk 6 �:
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To see this, observe that

k.B 0P"a.x/B C I /�1B 0P"a.x/Axk2

6kB 0P"a.x/Axk2

6kB 0P 1=2

"a.x/
k2kP

1=2

"a.x/
AP

�1=2

"a.x/
k2kP

1=2

"a.x/
xk2

62kBB 0kkP"a.x/kx0P"a.x/x

.where we use Property (iv) of Lemma 12.15/

6�2:

Scheduling of high-gain parameter

As emphasized earlier, the high-gain parameter plays a crucial role in dealing
with external inputs/disturbances. In order to solve the simultaneous external and
internal stabilization problems for continuous-time systems, different methods for
scheduling the high-gain parameter have been developed earlier in this chapter
and in the literature [48, 67, 126]. Unfortunately, none of them carry over to the
discrete-time case because the high gain has to be restricted near the origin. In
this subsection, we introduce a new scheduling of the high-gain parameter with
which we shall solve the .Gp=G/ and .Gp=G/fg problems, as formulated in the
previous chapter (Sect. 11.2).

Our scheduling depends on the specific control objective. If one is not interested
in finite gain, the following adaptive high gain suffices to solve .Gp=G/ problem:

˛0.x/ D 1
kB0P"a.x/Bk : (12.46)

Clearly, this high gain satisfies the constraint (12.43) mentioned earlier. We ob-
serve that this high-gain parameter is radially unbounded. However, if we further
pursue finite gain `p stabilization, the rate of growth of ˛.x/ with respect to kxk
as given in (12.46) is not sufficient for us. The scheduled high-gain parameter
must rise quickly enough to overwhelm any disturbances in `p before the state
is steered so large that it actually prevents finite gain. Therefore, we shall intro-
duce a different scheduling of high-gain parameter. In order to do so, we need the
following lemma:

Lemma 12.18 Assume that 2p > 1. For any 	 > 1, there exists a ˇ > 0 such
that

.u C v/p 6 up C 	up C ˇvp (12.47)

for all u; v > 0.

Proof : The lemma is a known result for p > 1; see, for instance, [151]. For
p 2 Œ1

2
; 1/, we have 2p > 1 and then
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.
p

u C v/2p 6 .
p

u C p
v/2p 6 u2p C 	u2p C ˇv2p ;

where we use the lemma with p replaced by 2p which is the known case.

We proceed now to present a scheduled high-gain parameter. Let "� and M"�

be given by Lemma 12.15 and let P � be the solution of (12.40) with " D "�. The
adapted high-gain parameter is then given by

˛a.x/ D
(

˛0.x/ D 1
kB0P"a.x/Bk ; x0P"a

.x/x 6 c
8˛1.x/

"a.x/�minP"a.x/
; otherwise

(12.48)

with

˛1.x/ D �maxP"a.x/

�minP"1.x/

˛2.x/; (12.49)

where

˛2.x/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1 p D 1
2

4 ˛pˇ."a.x//

1�
�

1� "1.x/
4.1CL"1.x//

�p=2 C 1

3

5
2=p

; p 2 Œ1; 1/;

and where p̨ is a positive constant to be determined later and c, "1.x/, and Ls

are given by

c D �2 maxf4M"�; 4.1 C kB 0P �Bk/g; (12.50)

"1.x/ D max
n

r 2 .0; "�� j x0Prx trace Pr 6 �2

2kBB0k
o

;

Ls D trace P �

�minPs
:

Finally, in order to define ˇ."/ > 1, we first define 	."/ satisfying

h
1 � "

4.1CL"/

ip=2

6 .1 C 	."//
h
1 � "

2.1CL"/

ip=2

< 1:

Next, we choose ˇ."/ > 1 such that Lemma 12.18 holds for 	 D 	."/. In other
words, ˇ."/ is such that for a given p > 1=2, " and 	."/,

.u C v/p 6 .1 C 	."//up C ˇ."/vp

for all u > 0; v > 0.
We are now ready to solve the simultaneous external and internal stabiliza-

tion problems, as formulated in the previous chapter (Sect. 11.2). We first study
the simultaneous stabilization without finite gain, as formulated in Problems 11.1
and 11.4. Then we will solve Problems 11.2 and 11.5 which seek finite gain.

The theorem given below solves the global `p stabilization with arbitrary initial
conditions and without finite gain, as formulated in Problem 11.4.



644 12 Simultaneous external and internal stabilization: input-additive case

Theorem 12.19 Consider the system ˙d of (12.1b) satisfying Assumption 12.14.
For any p 2 Œ1; 1�, the `p stabilization with arbitrary initial conditions and
without finite gain, as formulated in Problem 11.4, can be solved by the adaptive-
low-gain and high-gain controller,

u D �.1 C ˛0.x//.I C B 0P"a.x/B/�1B 0P"a.x/Ax; (12.51)

where P"a.x/ is the solution of (12.40), "a.x/ is determined by the schedul-
ing (12.45), and ˛0.x/ is determined by (12.46).

Theorem 12.19 immediately yields the following result:

Corollary 12.20 Consider a system ˙d of the form (12.1b) satisfying Assump-
tion 12.14. For any p 2 Œ1; 1�, the .GP =G/, as formulated in Problem 11.1,
can be solved by the same adaptive-low-gain and high-gain controller as given
in (12.51).

Proof of Theorem 12.19 : In this proof, we denote "a.x.k//, ˛0.x.k//, and
P"a.x.k// by "a.k/, ˛0.k/, and P.k/, respectively. This abbreviation should not
cause any notational confusions.

Define

v.k/ D �.I C B 0P.k/B/�1B 0P.k/Ax.k/;

u.k/ D v.k/ C ˛0.k/v.k/;

�.k/ D kB 0P.k/Bk:

We have shown that (12.45) implies that kv.k/k1 < �.
We proceed now to show global asymptotic stability. In the absence of d , we

can evaluate the increment of V.k/ along the trajectory as

V.k C 1/ � V.k/

D x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/ � "a.k/V .k/ � k�.u.k//k2

C Œ�.u.k// � v.k/�0.I C B 0P.k/B/Œ�.u.k// � v.k/�

6 x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/ � "a.k/V .k/ � k�.u.k//k2

C .1 C �.k//Œ�.u.k// � v.k/�0Œ�.u.k// � v.k/�

D x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/ � "a.k/V .k/

� 1C�.k/
�.k/

kv.k/k2 C �.k/k�.u.k// � 1C�.k/
�.k/

v.k/k2:

As noted before, kv.k/k 6 � for all k > 0, and therefore,

kv.k/k 6 k�.u.k//k 6 .1 C 1
�.k/

/kv.k/k:
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This implies that

k�.u.k// � 1C�.k/
�.k/

v.k/k 6 1
�.k/

kv.k/k;

and thus,

�.k/k�.u.k// � 1C�.k/
�.k/

v.k/k2 � 1C�.k/
�.k/

kv.k/k2 6 �kv.k/k2:

Finally, we get

V.kC1/�V.k/ 6 �"a.k/V .k/Cx.kC1/0ŒP.kC1/�P.k/�x.kC1/: (12.52)

Our scheduling (12.45) implies that

V.k C 1/ � V.k/ and x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/

cannot have the same sign. To see this, assume that

V.k C 1/ > V.k/ and P.k C 1/ > P.k/: (12.53)

This implies that "a.k/ < "�. If

V.k/ trace P.k/ < �2

2kBB0k ;

then (12.45) implies that "a.k/ D "�, which yields a contradiction. If

V.k/ trace.P.k// D �2

2kBB0k ;

then

V.k C 1/ trace P.k C 1/ > �2

2kBB0k

since by assumption (12.53). But this is impossible by our scheduling (12.45).
A similar argument can be used to establish that

V.k C 1/ � V.k/ < 0 and P.k C 1/ � P.k/ < 0

cannot happen simultaneously either. Using this property, (12.52) then implies
that for all x ¤ 0,

V.k C 1/ � V.k/ < 0:

This concludes the global asymptotic stability.
What remains is to show `p stability. Similar to our earlier development, we

have

V.k C 1/ � V.k/ 6 � x.k C 1/0ŒP.k/ � P.k C 1/�x.k C 1/

� "a.k/V .k/ � 1
�.k/

kv.k/k2

C �.k/k�.u.k/ C d.k// � 1C�.k/
�.k/

v.k/k2:
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Let di .k/, vi .k/, and ui .k/ denote the i th element of d.k/, v.k/, and u.k/,
respectively.

If jdi .k/j 6 1
�.k/

jvi .k/j, recalling that jvi .k/j 6 �, we have

jvi .k/j 6 j sat�.ui .k/ C di .k//j 6 .1 C 2
�.k/

/jvi .k/j:
Hence,

�.k/j sat�.ui .k/ C di .k// � 1C�.k/
�.k/

vi .k/j2 � 1
�.k/

jvi .k/j2 6 0:

If jdi .k/j > 1
�.k/

jvi .k/j, we have

� 1
�.k/

jvi .k/j2 C �.k/j sat�.ui .k/ C di .k// � 1C�.k/
�.k/

vi .k/j2
6 �.k/ Œ.1 C �.k//di .k/ C di .k/ C .1 C �.k//di .k/�2 C �.k/jdi .k/j2
6 a�.k/jdi .k/j2;

where a D .2�� C 3/2 C 1, �� D kB 0P �Bk, and P � is the solution of (12.40)
with " D "�. Therefore, we conclude that

V.k C 1/ � V.k/ 6 x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/

� "a.k/V .k/ C a�.k/kd.k/k2: (12.54)

Note that this implies that

V.k C 1/ � V.k/ 6 maxf�"a.k/V .k/ C a�.k/kd.k/k2; 0g (12.55)

since V.k C 1/ � V.k/ and x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/ cannot have the
same sign. Let us first address the case of p D 1. We will show that there exists
a c1 such that V.k/ 6 c1 for all k > 0 with V.0/ D 0.

If
V.k/ > a �.k/

"a.k/
kd.k/k2; (12.56)

we have

V.k C 1/ � V.k/ 6 0: (12.57)

Property (v) of Lemma 12.15 then yields that there exists a M"� independent of k

and d such that V.k/ > aM"�kdk21 implies that (12.56) is satisfied and therefore
V.k C 1/ � V.k/ 6 0.

On the other hand, if (12.56) is not satisfied, we have

V.k C 1/ � V.k/ 6 a�.k/kd.k/k2 6 a��kdk21:

We conclude that

V.k/ 6 V.0/ C aM"�kdk21 C a��kdk21: (12.58)
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Property (v) of our scheduling therefore implies that x.k/ is bounded for all
k > 0. This shows `1 stability of the closed-loop system with arbitrary initial
conditions.

We proceed now with the case of p 2 Œ1; 1/. First of all, due to the fact that
kdk1 6 kdkp, (12.58) implies that V.k/ is bounded for all k > 0. Hence, by our
scheduling, there exists an "0 such that "a.k/ > "0 for all k > 0.

Next, we consider two possible cases:
Case 1: For V.k C 1/ � V.k/ > 0, (12.55) implies that

V.k C 1/ � V.k/ 6 �"a.k/V .k/ C a�.k/kd.k/k2: (12.59)

Case 2: For V.k C 1/ � V.k/ 6 0, our scheduling implies that

x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/ > 0:

But this implies that "a.k/ 6 "a.k C 1/ 6 "�, and thus,

V.k C 1/ trace P.k C 1/ 6 V.k/ trace P.k/:

Hence,

ŒV .k C 1/ � V.k/� trace P.k C 1/ 6 �V.k/ traceŒP.k C 1/ � P.k/�:

Then we have

jx.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/j (12.60)

6 j trace.P.k C 1/ � P.k//j � kx.k C 1/k2

6 trace.P.k C 1//

V .k/
� jV.k C 1/ � V.k/j � kx.k C 1/k2

6 V.k C 1/ trace.P.k C 1//

V .k/�minP.k C 1/
� jV.k C 1/ � V.k/j

6 trace.P �/

�minP.k/
� jV.k C 1/ � V.k/j

6 L.k/ � jV.k C 1/ � V.k/j; (12.61)

where L.k/ D trace.P �/
�min.P.k//

. We have

V.k C 1/ � V.k/ 6 �"a.k/
1CL.k/

V.k/ C a�.k/kd.k/k2: (12.62)

Given "a.k/ 2 Œ"0; "�� for all k > 0, (12.59) in case 1 and (12.62) in case 2
ensure that

V.k C 1/ � V.k/ 6 � "0

1CL
V.k/ C a��kd.k/k2; (12.63)

where L D trace.P �/
�minP0

and P0 is the solution of (12.40) with " D "0. Also, "0 < 1

implies that "0=.1 C L/ < 1.
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Applying Lemma 12.18 with 	 such that

.1 C 	/.1 � "0

1CL
/p=2 < 1;

we find that there exists a ˇ such that

V.k C 1/p=2 6 .1 C 	/.1 � "0

1CL
/p=2V.k/p=2 C ˇ.a��/p=2kd.k/kp :

This yields
h
1 � .1 C 	/.1 � "0

1CL
/p=2

i
kV p=2k1 6 ˇ.a��/p=2kdkp

p C V.0/p=2:

Since "a.k/ > "0 for all k,

kxkp
p 6 kV p=2k1

.�minP0/p=2

6 ˇ.a��/p=2

.�minP0/p=2
h
1�.1C�/.1� "0

1CL
/p=2

ikdkp
p

C V.0/p=2

.�minP0/p=2
h
1�.1C�/.1� "0

1CL
/p=2

i ; (12.64)

we conclude that d 2 `p implies that x 2 `p for any x.0/ 2 Rn. This concludes
the proof of Theorem 12.19.

We observe from (12.58) and (12.64) that as kdkp and x.0/ become larger,
the "0 becomes smaller, and the `p gain becomes larger. In order to pursue finite
gain `p stabilization, it is necessary to modify the high-gain parameter. We first
consider the case p D 1.

Theorem 12.21 Consider the system ˙d of (12.1b) satisfying Assumption 12.14.
For p D 1, `p stabilization with arbitrary initial conditions with finite gain and
with bias, as formulated in Problem 11.5, can be achieved by the adaptive-low-
gain and high-gain controller,

u D �.1 C ˛a.x//.I C B 0P"a.x/B/�1B 0P"a.x/Ax; (12.65)

where P"a.x/ is the solution of (12.40) with " D "a.x/, "a.x/ is determined
adaptively by (12.45), and ˛a.x/ is determined by (12.48) and (12.49).

Theorem 12.21 readily yields the following corollary:

Corollary 12.22 Consider a system ˙d of the form (12.1b) which satisfies As-
sumption 12.14. For p D 1, the .Gp=G/fg , as formulated in Problem 11.2,
can be solved by the same adaptive-low-gain and high-gain controller as given
in (12.65).
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Proof of Theorem 12.21 : For simplicity, we denote P"a.x.k// and P"1.x.k//,
respectively, by P.k/ and P1.k/ whenever this does not cause any notational
confusions.

Define

v.k/ D �.I C B 0P.k/B/�1B 0P.k/Ax.k/;

u.k/ D v.k/ C ˛a.k/v.k/:

We have already shown that the controller (12.65) along with (12.45) satisfies
kvk1 < �.

Define a Lyapunov function V.k/ D x.k/0P.k/x.k/ and a set

V.c/ D f x j V.x/ 6 c g
with c defined by (12.50). Owing to Property (v) of Lemma 12.15, it is easy to
verify that for x.k/ 2 V.c/c , the following inequality holds:

"a.k/V .k/ > 4"a.k/M"��2 > 8kB 0P.k/Bk�2: (12.66)

In the absence of d , we can evaluate the increment of V along the trajectory as

V.k C 1/ � V.k/ D x.k C 1/0 ŒP.k C 1/ � P.k/� x.k C 1/ � "a.k/V .k/

� 2v.k/0Œ�.u.k// � v.k/�

C Œ�.u.k// � v.k/�0 B 0P.k/B Œ�.u.k// � v.k/� :

Also, kv.k/k 6 � implies that �2v.k/0Œ�.u.k// � v.k/� 6 0 for any ˛a.k/ > 0.
Using this property, we find that for x.k/ 2 V.c/c ,

V.k C 1/ � V.k/ 6 x.k C 1/0 ŒP.k C 1/ � P.k/� x.k C 1/ � "a.k/V .k/

� 2v.k/0Œ�.u.k// � v.k/� C 4kB 0P.k/Bk�2

6 x.k C 1/0 ŒP.k C 1/ � P.k/� x.k C 1/ � "a.k/
2

V.k/:

The last inequality is owing to (12.66). If

x.k C 1/0 ŒP.k C 1/ � P.k/� x.k C 1/ < 0; (12.67)

the last inequality implies that V.k C 1/ � V.k/ < 0. But we have argued earlier
that (12.67) and V.k C 1/ � V.k/ < 0 cannot happen simultaneously by our
scheduling (12.45). Therefore, x.k C 1/0 ŒP.k C 1/ � P.k/� x.k C 1/ > 0. From
the proof of Theorem 12.19,

x.k C 1/0 ŒP.k C 1/ � P.k/� x.k C 1/ 6 L.k/ŒV .k/ � V.k C 1/�:

Hence, for x.k/ 2 V.c/c ,

V.k C 1/ � V.k/ < � "a.k/
2.1CL.k//

V.k/:
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The trajectory will enter V.c/ within finite time. However, for x.k/ 2 V.c/, we
have already proved in the proof of Theorem 12.19 that

V.k C 1/ � V.k/ < 0

since in V.c/, ˛a.k/ D ˛0.k/. This proves global asymptotic stability of the
origin.

We proceed now to show `1 stability with arbitrary initial conditions with
finite gain with bias. In order to do so, we first find an upper bound of V.k/

�minP.k/
in

terms of kdk1 and then conclude `1 stability by observing that

kxk21 6 k V
�minP

k1:

To this end, we note that the case V.k C 1/ � V.k/ 6 0 is not interesting since it
is equivalent with

V.kC1/
�minP.kC1/

� V.k/
�minP.k/

6 0

due to the fact that V.k C 1/ 6 V.k/ implies �minP.k C 1/ > �minP.k/. There-
fore, it will not affect the upper bound of V.k/

�minP.k/
. In view of this, we only con-

sider the case V.k C 1/ � V.k/ > 0 throughout the rest of the proof.
Suppose V.k C 1/ � V.k/ > 0, scheduling (12.45) implies that

x.k C 1/0 ŒP.k C 1/ � P.k/� x.k C 1/ 6 0:

By construction, kv.k/k 6 �. We get

V.k C 1/�V.k/

6 �"a.k/V .k/ � 2v.k/0Œ�.u.k/ C d.k// � v.k/� C 4kB 0P �Bk�2

6 4.1 C kB 0P �Bk/�2:

Since c > 4.1 C kB 0P �Bk/�2, we have

V.k C 1/ � V.k/ 6 c: (12.68)

The above inequality holds for any x.k/ 2 Rn. Since different high gains are
applied in different regions, we have two possible cases:
Case 1: x.k/ 2 V.c/c . Then (12.68) implies that V.k C 1/ 6 2V.k/. But this
implies that "1.k/ 6 "a.k C 1/ and P1.k/ 6 P.k C 1/. Let vi .k/ and di .k/

denote the i th element of v.k/ and d.k/.
If jdi .k/j < ˛a.k/jvi .k/j, then

�vi .k/ Œsat�.vi .k/ C ˛a.k/vi .k/ C di .k// � vi .k/� 6 0:
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If jdi .k/j 6 j˛a.k/vi .k/j, we have

� vi .k/ Œsat�.vi .k/ C ˛a.k/vi .k/ C di .k// � vi .k/�

D �vi .k/ Œsat�.vi .k/ C ˛a.k/vi .k/ C di .k// � �.vi .k//�

6 jdi .k/j
˛a.k/

� j2di.k/j
D 2di .k/2

˛a.k/
:

In summary, we find that

�2v.k/0Œ�.u.k/ C d.k// � v.k/� 6 4kd.k/k2

˛a.k/
:

This yields

V.k C 1/ � V.k/ 6 � "a.k/
2

V.k/ � 2v.k/0Œ�.u.k/ C d.k// � v.k/�

6 � "a.k/
2

V.k/ C 4 kd.k/k2

˛a.k/

6 � "a.k/�minP.k/
2

.kx.k/k2 � kd.k/k2

˛1.k/
/:

Clearly, V.k C 1/ � V.k/ > 0 requires that

kx.k/k2 6 kd.k/k2

˛1.k/
:

Then

V.kC1/
�minP.kC1/

6 2V.k/
�minP1.k/

6 2�maxP.k/
�minP1.k/

kx.k/k2

D 2˛1kx.k/k2 6 2kd.k/k2: (12.69)

Case 2: x.k/ 2 V.c/. We have ˛a.k/ D ˛0.k/ and hence the same controller as
in Theorem 12.19. In the proof of Theorem 12.19, the following two properties
have already been shown:

(i) If V.k/ > aM"�kd.k/k2, we have V.k C 1/ � V.k/ 6 0.

(ii) V.k C 1/ � V.k/ 6 a��kd.k/k2.

We can immediately draw the conclusion that for V.k C 1/ � V.k/ > 0 and
x.k/ 2 V.c/,

V.k C 1/ 6 .aM"� C a��/kd.k/k2:

On the other hand, (12.68) and the fact V.k/ 6 c imply that V.k C 1/ 6 2c. But
this implies that there exists a �1 independent of d such that

V.kC1/
�minP.kC1/

6 aM"� Ca��

�1
kdk21: (12.70)



652 12 Simultaneous external and internal stabilization: input-additive case

In summary, whenever V.k/ or, equivalently, V.k/
�minP.k/

is increasing, we have ei-
ther (12.70) or (12.69) holds depending on x.k/ 2 V.c/ or not. Therefore,

k V
�minP

k1 6 V.0/
�minP.0/

C maxf2;
aM"� Ca��

�1
gkdk1:

Using the fact that kxk21 6 k V
�minP

k1, we have

kxk1 6
q

k V
�minP

k1 6
q

V.0/
�minP.0/

C maxfp2;

q
aM"� Ca��

�1
gkdk1: (12.71)

Note that
q

V.0/
�minP.0/

is clearly a class K function of kx.0/k. The finite gain `1
stability of closed-loop system with arbitrary initial conditions and bias follows.

In Theorem 12.21, we only need to consider the case that V.x.k// is increasing.
However, this does not work when the external input d is in `p with p 2 Œ1; 1/.
The decay rate of V.x.k// when V.x.k// is decreasing definitely has an impact
on the `p norm of x. Therefore, we have to consider both cases and obtain bounds
on kxkp in terms of kdkp. As will be seen in the next theorem, it requires even
more complicated high-gain design and involved analysis.

Theorem 12.23 Consider the system ˙d of (12.1b) satisfying Assumption 12.14.
For any p 2 Œ1; 1/, the `p stabilization with arbitrary initial conditions with
finite gain with bias problem, as formulated in Problem 11.5, can be solved by the
adaptive-low-gain and high-gain controller,

u D �.1 C ˛a.x//.I C B 0P"a.x/B/�1B 0P"a.x/Ax; (12.72)

where P"a.x/ is the solution of (12.40) with " D "a.x/, "a.x/ is determined adap-
tively by (12.45), and ˛a.x/ is determined by (12.48), (12.49) with p̨ sufficiently
large.

Theorem 12.23 also produces as a special case the solution to .Gp=G/fg . This
is stated in the following corollary:

Corollary 12.24 Consider a system ˙d of the form (12.1b) satisfying As-
sumption 12.14. For any p 2 Œ1; 1/, the .Gp=G/fg , as formulated in Prob-
lem 11.2, can be solved by the adaptive-low-gain and high-gain controller as
given in (12.72).
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Proof of Theorem 12.23 : For simplicity, we denote

"a.x.k//; "1.x.k//; ˛1.x.k//; ˛a.x.k//; and ˇ."a.x.k///

by "a.k/, "1.k/, ˛1.k/, ˛a.k/, and ˇ.k/, respectively, and we denote P"a.x.k//,
P"1.x.k//, and L"1.x.k//, respectively, by P.k/, P1.k/, and L1.k/. This does not
cause any notational confusions.

Define

v.k/ D �.I C B 0P.k/B/�1B 0P.k/Ax.k/

u.k/ D v.k/ C f̨ .k/v.k/:

We have already shown that v.k/ along with (12.45) satisfies kvk1 < �.
Define a Lyapunov function V.k/ D x.k/0P.k/x.k/ and a set

V.c/ D fx j V.x/ 6 cg;

where c is as defined in (12.50). As in the proof of Theorem 12.21, for x 2 V.c/c ,
the following inequality holds:

"a.k/V .k/ > 4"a.k/M"��2 > 8kB 0P.k/Bk�2: (12.73)

Using exactly the same argument as used in Theorem 12.21, we conclude the
global asymptotic stability of the origin of the closed-loop system.

It remains to prove global `p stability with finite gain. The proof proceeds in
several steps:
Step 1. Define a function

�.s/ D sp=2

.�minPs/p=2
h
1 �

�
1 � "s

4.1CLs/

	ip=2
;

where "s is a function of s as given by

"s D maxfr 2 Œ0; "�� j skPrk 6 �2

2kBB0k g;

and Ps is the solution of (12.40) with " D "s, Ls D trace.P �/
�minPs

. Note that, if s is
strictly increasing then, by the property of our scheduling, "s is decreasing, and
hence, �minPs is decreasing, and Ls is increasing. This implies that �.s/ is strictly
increasing and is a class K function.

Define


 D
.�minP �/p=2

"
1�
�

1� "�

4.1CL�/

�p=2
#

.�minP2c/p=2

�
1�
�
1� "2c

4.1CL2c/

	p=2
� ;
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where P � is the solution of (12.40) with " D "� and

L� D trace.P �/
�minP � :

Since c is given, "2c , P2c , L2c , and 
 are fixed constants. Choose

p̨ > max
n

1 C 
;


�minP ��p=2

o
:

We have ˛a.k/ > 1 for any x.k/.
In what follows, for k1; k2 2 ZC such that k1 6 k2, we denote by k1; k2 the

set of integers fk1; k1 C 1; : : : ; k2g. We can always divide the whole time horizon
into a sequence of successive intervals fIigi>1 with Ii D ki ; kiC1 � 1 such that
for each Ii , one of the following cases holds:

(i) For any k 2 Ii , x.k/ 2 V.2c/c and V.k C 1/ � V.k/ > 0.

(ii) For any k 2 Ii , x.k/ 2 V.2c/c and V.k C 1/ � V.k/ 6 0.

(iii) For any k 2 Ii , x.k/ 2 V.2c/ with kiC1 < 1.

(iv) For any k 2 Ii , x.k/ 2 V.2c/ with kiC1 D 1.

Step 2. For case (i), since V.kC1/�V.k/ > 0, the adaptation (12.45) implies that
x.k C 1/0 ŒP.k C 1/ � P.k/� x.k C 1/ 6 0. As in the proof of Theorem 12.21,
we find

V.k C 1/ � V.k/ 6 � "a.k/�minP.k/
2

h
kx.k/k2 � kd.k/k2

˛1.k/

i
:

Then, V.k C 1/ � V.k/ > 0 implies that

kd.k/k2 > ˛1.k/kx.k/k2 > kx.k/k2 (12.74)

since ˛1.k/ > 1 by construction.
Furthermore, we have already shown that for all x.k/, V.k C 1/ � V.k/ 6 c.

Hence,

V.k C 1/ 6 2V.k/:

From the definition of "1.k/ and L1.k/, this implies that

"1.k/ 6 "a.k C 1/; L1.k/ > L.k C 1/; and

�minP."1.k// 6 �minP."a.k C 1//: (12.75)

Consider specifically k D kiC1 � 1. We have

kd.kiC1 � 1/kp � kx.kiC1 � 1/kp

>
�
˛1.kiC1 � 1/p=2 � 1

	
kx.kiC1 � 1/kp
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> ˛p�maxP.kiC1�1/p=2kx.kiC1�1/kp

�minP1.kiC1�1/p=2

"
1�
�

1� "1.kiC1�1/

4.1CL1.kiC1�1//

�p=2
#

> ˛pV.kiC1�1/p=2

�minP.kiC1�1/p=2

"

1�
�

1� ".kiC1�1/

4.1CL.kiC1�1//

�p=2
#

> .1C�/V.kiC1/p=2

�minP.kiC1/p=2

"
1�
�

1� ".kiC1/

4.1CL.kiC1//

�p=2
# ;

where we use (12.75), p̨ > 1 C 
, and V.kiC1 � 1/ > V.kiC1/ in the derivation
of the last inequality. We get

kd.kiC1 � 1/kp > kx.kiC1 � 1/kp C .1 C 
/�.V .kiC1//: (12.76)

Then (12.74) and (12.76) yield

kiC1�1X

kDki

kx.k/kp 6
kiC1�1X

kDki

kd.k/kp � .1 C 
/�.V .kiC1//:

Step 3. For case (ii), the following relationship has been established in the proof
of Theorem 12.19:

0 6 x.k C 1/0 ŒP.k C 1/ � P.k//x.k C 1/�

6 L.k/.V .k/ � V.k C 1//;

where L.k/ D trace.P �/
�minP.k/

. Therefore,

V.k C 1/ � V.k/ 6 � "a.k/
2.1CL.k//

V.k/ C "a.k/�minP.k/
˛1.k/.1CL.k//

kd.k/k2

6 � "a.k/
2.1CL.k//

V.k/ C �minP.k/
˛1.k/

kd.k/k2;

and hence,

V.k C 1/ 6
h
1 � "a.k/

2.1CL.k//

i
V.k/ C �minP.k/

˛1.k/
kd.k/k2:

Since V.k/ is decreasing, we have �minP.k C 1/ > �minP.k/, and

V.kC1/
�minP.kC1/

6
h
1 � "a.k/

2.1CL.k//

i
V.k/

�minP.k/
C 1

˛1.k/
kd.k/k2:

By definition of ˇ.k/,

�
V.kC1/

�minP.kC1/

	p=2

6
h
1 � "a.k/

4.1CL.k//

ip=2 �
V.k/

�minP.k/

	p=2 C ˇ.k/ kd.k/kp

˛1.k/p=2 :
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Using standard comparison principle, we get for k > ki ,

�
V.k/

�minP.k/

	p=2

6
kY

j Dki

h
1 � ".j /

4.1CL.j //

ip=2 �
V.ki /

�minP.ki /

	p=2

C
k�1X

j Dki

0

@
k�1Y

sDj

h
1 � ".s/

4.1CL.s//

ip=2

1

A ˇ.j /

˛1.j /p=2 kd.j /kp :

Since V.k/ is decreasing,
h
1 � "a.k/

4.1CL.k//

ip=2

is decreasing. Hence,

�
V.k/

�minP.k/

	p=2

6
�h

1 � "a.ki /
4.1CL.ki //

ip=2

k�ki �

V.ki /
�minP.ki /

	p=2

C
k�1X

j Dki

�h
1 � ".j /

4.1CL.j //

ip=2

 k�1�j

ˇ.j /

˛1.j /p=2 kd.j /kp :

We have

kiC1�1X

kDki

�
V.k/

�minP.k/

	p=2

6 1

1�
�
1� "a.ki /

4.1CL.ki //

�p=2

�
V.ki /

�minP.ki /

	p=2

C
kiC1�2X

j Dki

ˇ.j /

1�
�
1� ".j /

4.1CL.j //

�p=2

kd.j /kp

˛1.j /p=2 :

By definition, for any x.k/,

"1.k/ 6 "a.k/ and L1.k/ > L.k/;

and from (12.49),

˛1.j /p=2 > ˇ.j /

1�
�
1� "1.j /

4.1CL1.j //

�p=2 > ˇ.j /

1�
�
1� ".j /

4.1CL.j //

�p=2 :

We conclude that

kiC1�1X

kDki

kx.k/kp 6
kiC1�1X

kDki

kd.j /kp C �.V .ki //:

Note that �.V .ki // is increasing. Therefore, �.V .ki // > �.V .kiC1//. We can
rewrite the above inequality as

kiC1�1X

kDki

kx.k/kp 6
kiC1�1X

kDki

kd.j /kp C .1 C 
/�.V .ki // � 
�.V .kiC1//:
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Step 4. For case (iii) and (iv), if x.k/ 2 V.c/, from (12.59) and (12.62), we have

V.k C 1/ � V.k/ 6 � "a.k/
1CL.k/

V.k/ C a��kd.k/k2:

If x.k/ 2 V.c/c \ V.2c/ and V.k C 1/ � V.k/ > 0, then

x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/ 6 0:

We obtain

V.k C 1/ � V.k/ 6 � "a.k/
2

V.k/ � 2v.k/0Œ�.u.k/ C d.k// � v.k/�

6 � "a.k/
2

V.k/ C 4 kd.k/k2

˛a.k/

6 � "a.k/
2

V.k/ C 4kd.k/k2:

If x.k/ 2 V.c/c \ V.2c/ and V.k C 1/ � V.k/ 6 0, then

x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/ 6 L.k/.V .k/ � V.k C 1//:

This yields

V.k C 1/ � V.k/ 6 � "a.k/
2.1CL.k//

V.k/ C 4 kd.k/k2

˛a.k/.1CL.k//

6 � "a.k/
2.1CL.k//

V.k/ C 4kd.k/k2:

Hence, there exists a � D maxf4; a��g such that for all x.k/ 2 V.2c/, we have

V.k C 1/ � V.k/ 6 � "a.k/
2.1CL.k//

V.k/ C �kd.k/k2:

Note that our adaptation (12.45) and the fact that V.x/ � 2c imply that "a.k/ >
"2c for k D ki ; : : : ; kiC1 � 1, and hence,

� "a.k/
2.1CL.k//

6 � "2c

2.1CL2c/
; �minP.k/ > �minP2c :

Choose 	2c such that

h
1 � "2c

4.1CL2c/

ip=2

6 .1 C 	2c/
h
1 � "2c

2.1CL2c/

ip=2

< 1:

Applying Lemma 12.18, there exists a ˇ2c independent of d and k such that

V.k C 1/p=2 6
h
1 � "2c

4.1CL2c/

ip=2

V.k/p=2 C ˇ2c�p=2kd.k/kp :

Using the same comparison principle as used in case (ii), we can find a constant
�1 solely dependent on ˇ2c and � such that

kiC1�1X

kDki

kx.k/kp 6
kiC1�1X

kDki

V.k/p=2

.�minP2c/p=2
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6 �1

kiC1�2X

kDki

kd.k/kp C V.ki /p=2

.�minP2c/p=2

�
1�
�
1� "2c

4.1CL2c/

	p=2
�

6 �1

kiC1�2X

kDki

kd.k/kp C �V.ki /p=2

.�minP.ki //p=2

"
1�
�

1� "a.ki /
4.1CL.ki //

�p=2
#

6 �1

kiC1�2X

kDki

kd.k/kp C 
�.V .ki //:

For case (iii) where kiC1 < 1, consider specifically k D kiC1 � 1. Since the
states are leaving V.2c/, we have V.kiC1/ � V.kiC1 � 1/ > 0. Moreover, we
have argued that the increment of V.k/ for any x.k/ is at most c. This implies
that x.kiC1 � 1/ 2 V.c/c \ V.2c/. Following the same argument as used in
case (i), we have

kd.kiC1 � 1/kp > kx.kiC1 � 1/kp C .1 C 
/�.V .kiC1//:

Finally, we conclude for k 2 ki ; kiC1 � 1,

kiC1�1X

kDki

kx.k/kp 6 �1

kiC1�1X

kDki

kd.k/kp C 
�.V .ki // � .1 C 
/�.V .kiC1//:

For case (iv) where kiC1 D 1, we only have

kiC1X

kDki

kx.k/kp 6 �1

kiC1X

kDki

kd.k/kp C 
�.V .ki //:

Step 5. In summary of previous steps, we find the following results:

� If Ii belongs to case (i) ,

kiC1�1X

ki

kx.k/kp 6
kiC1�1X

kDki

kd.k/kp � .1 C 
/�.V .kiC1//:

� If Ii belongs to case (ii),

kiC1�1X

kDki

kx.k/kp 6
kiC1�1X

kDki

kd.j /kp C .1 C 
/�.V .ki // � 
�.V .kiC1//:

� If Ii belongs to case (iii),

kiC1�1X

kDki

kx.k/kp 6 �1

kiC1�1X

kDki

kd.k/kp C 
�.V .ki // � .1 C 
/�.V .kiC1//:
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� If Ii belongs to case (iv),

kiC1X

kDki

kx.k/kp 6 �1

kiC1X

kDki

kd.k/kp C 
�.V .ki //:

Note that if Ii belongs to cases (i), (iii), and (iv), we have either i D 1 or Ii�1

belongs to cases (i), (ii) or (iii). Then the positive term 
�.V .ki // of Ii can always
be canceled by the corresponding negative term of Ii�1 for i > 1.

Similarly, if Ii belongs to case (ii), we have either i D 1 or Ii�1 belongs to
case (i) or (iii). The positive term .1 C 
/�.V .ki // can also be canceled by the
negative term of Ii�1 for i > 1.

In conclusion, we find that for any x.0/ and k,

kX

kD0

kx.k/kp 6 maxf1; �1g
kX

kD0

kd.k/kp C .1 C 
/�.V .0//:

This completes the proof.

12.3.2 Measurement feedback

Our primary focus so far has been in constructing state feedback controllers. As
usual, once a state feedback controller is constructed, we can construct a mea-
surement feedback controller having an observer-based architecture. By doing so,
we solve here two problems both without finite gain, namely, (1) simultaneous
global `p stabilization with fixed initial conditions and without finite gain and
global asymptotic stabilization, as formulated in Problem 11.1, and (2) global `p

stabilization with arbitrary initial conditions and without finite gain and bias and
global asymptotic stabilization, as formulated in Problem 11.4. As in the contin-
uous time, studied in Sect. 12.2.2, our development here for both of the above
problems is essentially the same. As such, we do not explicitly refer to initial con-
ditions in our development. The corresponding finite gain problems are still open
as they require complex high-gain observer.

Consider a standard observer for the discrete-time system ˙d given in (12.1b),

�yx D Ayx C B�.u/ C K.y � C yx/;

where the gain K is such that A � KC is Schur stable. Also, consider a dynamic
system,

�! D .A C BF /! C K.y � C yx/;

where the gain F is such that ACBF is Schur stable. Next, let P" be the solution
of the DARE,

P" D A0P"A � AP"B.I C B 0P"B/�1B 0P"A C Q"; (12.77)
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where for " 2 Œ0; 1�,

Q" > 0; lim
"!0

Q" D 0; dQ"

d"
> 0:

Let z D yx �!. Choose u D �.I CB 0P"a.z/B/�1B 0P"a.z/Az CF! where "a.z/

is determined by

"a.z/ D maxfr 2 .0; 1� j z0Prz trace B 0PrBk 6 �2

8
g (12.78)

and P"a.z/ is the solution of the DARE (12.77) with " replaced by "a.z/.
The above discussion leads to the dynamic observer-based controller as

8
<̂

:̂

�yx D Ayx C B�.u/ C K.y � C yx/

�! D .A C BF /! C K.y � C yx/

u D �.I C B 0P"a.z/B/�1B 0P"a.z/Az C F!;

(12.79)

where K and F are such that A�KC and ACBF are Schur stable, and z D yx�!.
We have the following theorem:

Theorem 12.25 Consider the discrete-time system ˙d given in (12.1b). Let As-
sumptions 12.1, 12.2, and 12.3 be valid, also let � be the standard saturation
function as in Definition 2.19. Then, the nonlinear dynamic measurement feed-
back controller (12.79) solves the following two problems:

(i) Simultaneous global `p stabilization with fixed initial conditions and with-
out finite gain and global asymptotic stabilization, as defined by Prob-
lem 11.1 (the .Gp=G/ problem)

(ii) Simultaneous global `p stabilization with arbitrary initial conditions and
without finite gain and bias and global asymptotic stabilization, as defined
by Problem 11.4.

Proof : Define e D x � yx. The closed-loop system in terms of e, z, and ! is
given by
8
ˆ̂̂
<

ˆ̂̂
:

�e D .A � KC /e C B
�
�.�.I C B 0P"a.z/B/�1B 0P"a.z/Az C F! C d/

��.�.I C B 0P"a.z/B/�1B 0P"a.z/Az C F!/
�

�z D Az C B�.�.I C B 0P"a.z/B/�1B 0P"a.z/Az C F!/ � BF!

�! D .A C BF /! C KCe:

In the absence of d , the above becomes
8
<̂

:̂

�e D .A � KC /e

�z D Az C B�.�.I C B 0P".z/B/�1B 0P".z/Az C F!/ � BF!

�! D .A C BF /! C KCe:
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Clearly, the origin is locally exponentially stable. To see global attractivity, we
note that e ! 0 and ! ! 0 as time tends to infinity due to the fact that both
ACBF and A�KC are Schur stable. Then, there exists a N such that kF!.k/k 6
�
2

for all k > N . This and the adaptation law (12.78) together imply that the
saturation will be inactive for all k > N (see also (4.244) and the inequalities
below it). Since � is a standard saturation function, the z dynamics then becomes

�z D Az � B.I C B 0P"a.z/B/�1B 0P"a.z/Az

which is globally attractive. This concludes global asymptotic stability.
In the presence of d , for a standard saturation function, we have

k�.u C d/ � �.u/k 6 kdk:

Therefore, d 2 `p implies that .�.u C d/ � �.u// 2 `p. Since A � KC and
A C BF are both Schur stable, it follows that e 2 `p, ! 2 `p and ! ! 0. Then,
as before, there exists a N such that kF!.k/k 6 �

2
for all k > N . Therefore, as

before, we can conclude that the saturation is inactive for all k > N , and hence,
z dynamics becomes

�z D Az � B.I C B 0P"a.z/B/�1B 0P"a.z/Az:

This system is known to be globally asymptotically stable and locally exponen-
tially stable. Hence, z 2 `p and x D e C yx D .e C z C !/ 2 `p. This completes
the proof.

Remark 12.26 As Theorem 12.25 clearly indicates, a 2n-dimensional dynamic
adaptive-low-gain feedback controller can solve simultaneous global `p stabi-
lization without finite gain and global asymptotic stabilization irrespective of the
nature of initial conditions. As in the continuous-time case, this is remarkable es-
pecially when we note that to solve the same problems by a static state feedback
controller, one needs an adaptive-low-and-high-gain feedback controller.

A similar result as in Theorem 12.25, however, with finite gain is challenging
and is an open research problem as in the case of continuous-time systems.

12.4 ISS stabilization with state feedback:
continuous time

In a global framework, a recent notion, for a combined notion of external and
internal stability, is global input-to-state stability (ISS) defined earlier in Sects. 2.8
and (11.2).

The following theorem states that the same controller defined in Theorem 12.11
achieves ISS stability:
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Theorem 12.27 Consider the system ˙c of (12.1a) while using state feedback.
Also, consider the controller ˙con defined in Theorem 12.11. Then, under As-
sumptions 12.1 and 12.2, this controller ˙con also solves the global ISS stabi-
lization problem.

Proof : Regarding ISS, Theorem 12.5 has shown that if x0 satisfies

V.x0/ 6 2
˛o

�min.P"a
/kdk1;

we have

V.x.t// 6 2
˛o

�min.P"a
/kdk1 (12.80)

for all t > 0.
We next consider the case when the initial condition is such that

V.x0/ > 2
˛o

�min.P"a
/gkdk1: (12.81)

We note that

V.x/ > 2
˛o

�min.P"a
/gkdk1 (12.82)

implies TV < 0; we find that if x0 is such that (12.81) is satisfied, then V.x.t// 6
V.x0/ for all t > 0.

Since TV .x/ < 0 for any x such that (12.82) is satisfied, there exists an "�.x0/

such that "a > "�.x0/ for all t > 0. Next, we define � by

�.c/ D inf
k	k6c

inf
"a2Œ"�.	/;1�

�minQ"a

�maxP"a
:

We know � is nonincreasing. Then

TV 6 �minQ"a

�maxP"a
.�V C 2

˛o
�min.P"a

/kdk21/ C x0 P"a

dt
x

6 �.kx0k/.�V C 2
˛o

�min.P"a
/kdk21/ C x0 P"a

dt
x:

Since V.x/ 6 V.x0/ for all t > 0, "a is bounded away from zero. We have
proved that there exists a constant k."�.x0// > 0 such that

jx0 dP"a

dt
xj 6 k."�.x0//j TV j:

Moreover, x0 dP"a

dt
x and TV cannot have the same signs. Define a class K function

K as
K.c/ D sup

k	k6c

k."�.
//:

Therefore, we have

TV 6 � �.kx0k/
1CK.kx0k/

.V � 2
˛o

�min.P"a
/kdk2/:
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It follows from the standard comparison principle that

V.x.t// 6 V.x0/e
� �.kx0k/

1CK.kx0k/
t C 2

˛o
�min.P"a

/ sup

2Œ0;t �

kd.�/k2: (12.83)

From (12.80) and (12.80), we conclude that for any x0 2 Rn,

V.x.t// 6 V.x0/e
� �.kx0k/

1CK.kx0k/
t C 2

˛o
�min.P"a

/kdk21; (12.84)

that is,

kx.t/k2 6 V.x0/
�minP"a

e
� �.kx0k/

1CK.kx0k/
t C 2

˛o
kdk21:

Note that � is nonincreasing and K is a class K function. We can define a class
KL function as

ˇ.kx0k; t/ D
r

supkxk6kx0k V.x/

infkxk6kx0k �min.P"�.x//
e

� �.kx0k/
2.1CK.kx0k//

t
:

We have that when trajectories are such that

f x j V.x/ > 2
˛o

�min.P"a
/kdk21 g;

then

kx.t/k 6 ˇ.kx0k; t/ C
q

2
˛o

kdk21:

However, when trajectories enter and remain in

f x j V.x/ 6 2
˛o

�min.P"a
/kdk1 g;

we obviously have

kx.t/k 6
q

2
˛o

kdk21:

We conclude that for any initial condition x0 2 Rn, we have

kx.t/k 6 ˇ.kx0k; t/ C
q

2
˛o

kdk1: (12.85)

This completes the proof.

Remark 12.28 As we discussed in an earlier chapter in Sect. 2.8, the notion of
ISS makes an attempt to marry both the notions of internal stability and the L1
stability or `1 stability. In fact, as pointed out in Remark 2.68, when the input d

is identically zero, the ISS implies the global asymptotic stability of the zero equi-
librium point. In this sense, ISS is indeed a simultaneous stabilization concept.
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12.5 ISS stabilization with state feedback:
discrete time

The following theorem states that the same controller defined in Theorem 12.23
achieves ISS stability:

Theorem 12.29 Consider the system ˙d of (12.1b) while using state feedback.
Let Assumption 12.14 hold. Also, consider the same controller used in Theo-
rem 12.21, namely,

u D �.1 C ˛a.x//.I C B 0P"a.x/B/�1B 0P"a.x/Ax;

where P"a.x/ is the solution of (12.40) and where

˛a.x/ D
(

˛0.x/ D 1
kB0P"a.x/Bk ; x0P"a

.x/x 6 c
8˛1.x/

"a.x/�minP"a.x/
; otherwise

(12.86)

with

˛1.x/ D �maxP"a.x/

�minP"1.x/

:

Here, c, "1.x/ are given by

c D �2 maxf4M"� ; 4.1 C kB 0P �Bk/g;
"1.x/ D maxfr 2 .0; "�� j x0Prx � trace Pr 6 �2

2kBB0k g;

where P � is the solution of (12.40) when " takes the value "�. Then, this controller
solves the global ISS stabilization problem.

We have already proven in Theorem 12.21 that whenever V.k C1/�V.k/ > 0

or equivalently,
V.kC1/

�minP.kC1/
� V.k/

�minP.k/
> 0;

we have
V.kC1/

�minP.kC1/
6 maxf2; aM �Ca��

�1
gkdk21:

The definitions of a and M � are the same as in Theorems 12.19 and 12.23. Also,
�1 is such that �minP > �1 for x 2 V.c/ where the set V.c/ is also the same as
in these theorems.
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This implies that

kx.k/k2 6 V.k/
�minP.k/

6 max
n

V.0/
�minP.0/

; maxf2;
aM"� Ca��

�1
gkdk21

o
; 8k > 0:

(12.87)

If we can show that when

V.k/
�minP.k/

> 2 maxf2;
aM"� Ca��

�1
gkdk21;

V.k/
�minP.k/

can be bounded by a class KL function ˇ.kx.0/k; k/, then we shall have

kx.k/k2 6 V.k/
�minP.k/

6 ˇ.kx.0/k; k/ C 2 maxf2;
aM"� Ca��

�1
gkdk21:

Note that if V.0/
�minP.0/

6 2 maxf2;
aM"� Ca��

�1
gkdk21, (12.87) implies that

kx.k/k2 6 V.k/
�minP.k/

6 2 maxf2;
aM"� Ca��

�1
gkdk21; 8k > 0: (12.88)

In what follows, we only consider the case

V.0/
�minP.0/

> 2 maxf2;
aM"� Ca��

�1
gkdk21:

In this case, we have

kx.k/k2 6 V.k/
�minP.k/

6 V.0/
�minP.0/

for any k > 0. This implies that "a.k/ > ".0/ for all k > 0. We also have

V.k C 1/ � V.k/ 6 0

until
V.k/

�minP.k/
6 maxf2;

aM"� Ca��

�1
gkdk21:

Then we have two cases:

1. Let x.k/ 2 V.c/c . From the proof of Theorem 12.21, we have

V.k C 1/ � V.k/

6 � "a.k/
2

V.k/ C 4 kd.k/k2

˛a.k/
C x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/

6 � "a.k/
4

V.k/ � "a.k/�minP.k/
4

. V.k/
�minP.k/

� 2 kd.k/k2

˛1.k/
/

C x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/:

Note that ˛1.k/ > 1 for all k. When

V.k/
�minP.k/

> 2 maxf2;
aM"� Ca��

�1
gkdk1;



666 12 Simultaneous external and internal stabilization: input-additive case

we have
V.k/

�minP.k/
� 2 kd.k/k2

˛1.k/
> 0;

and

V.k C 1/ � V.k/ 6 � "a.k/
4

V.k/ C x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/:

We have also shown in the proof of Theorem 12.19 that x.k C1/0ŒP.k C1/

�P.k/�x.k C 1/ and V.k C 1/ � V.k/ cannot have the same signs and that
when V.k C 1/ � V.k/ 6 0,

jx.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/j 6 L.k/ � jV.k C 1/ � V.k/j;

where L.k/ D trace.P �/
�min.P.k//

. Hence,

V.k C 1/ � V.k/ 6 �"a.k/
4.1CL.k//

V.k/:

Given "a.k/ 2 Œ".0/; "�� for all k > 0, we get

V.k C 1/ � V.k/ 6 � ".0/
4.1CL.0//

V.k/; (12.89)

where L.0/ D trace.P �/
�minP.0/

. Also, ".0/ < 1 implies that ".0/=.1 C L.0// < 1.

2. Let x.k/ 2 V.c/. In that case, ˛a D ˛0, and we have proven in Theorem
12.19 that

V.k C 1/ � V.k/

6 � "a.k/V .k/Ca�.k/kd.k/k2Cx.kC1/0ŒP.kC1/�P.k/�x.kC1/

6 � "a.k/
2

V.k/ � "a.k/
2

.V .k/ � a 2�.k/
"a.k/

kdk21/

C x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/:

Note that for x.k/ 2 V.c/, �minP.k/ > �1, and hence, V.k/
�minP.k/

>
aM �

�1
kdk21 implies that

V.k/ > aM �kdk21 > a �.k/
"a.k/

kdk21:

The last inequality is due to Lemma 12.15. Therefore, we get

V.k C 1/ � V.k/ 6 � "a.k/
2

V.k/ C x.k C 1/0ŒP.k C 1/ � P.k/�x.k C 1/;

and since "a.k/ > ".0/ for all k > 0, similar to the previous case, we get

V.k C 1/ � V.k/ 6 � ".0/
2.1CL.0//

V.k/: (12.90)
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Combining (12.89) and (12.90), if V.0/
�minP.0/

> 2 maxf2;
aM"� Ca��

�1
gkdk21,

we have

V.k/ 6 .1 � ".0/
4.1CL.0//

/kV.0/

until
V.k/

�minP.0/
6 2 maxf2;

aM"� Ca��

�1
gkdk21:

Note that "a.k/ > x" for all k > 0 in this case. Hence,

kx.k/k 6 .1 � ".0/
4.1CL.0//

/k V.0/
�minP.0/

: (12.91)

Let us summarize the results up to this point.

(i) When V.0/
�minP.0/

6 2 maxf2;
aM"� Ca��

�1
gkdk21, we have (12.88).

(ii) When V.0/
�minP.0/

> 2 maxf2;
aM"� Ca��

�1
gkdk21, we have (12.91).

Therefore, we have

kx.k/k2 6 .1 � ".0/
4.1CL/

/k V.0/
�minP.0/

C 2 maxf2;
aM"� Ca��

�1
gkdk21:

This concludes ISS of the closed-loop system.

12.6 Achieving .Gp=G/ and .Gp=G/fg with a
linear control law

So far, we considered general linear systems subject to actuator saturation which
are asymptotically null controllable with bounded control (ANCBC), that is, we
considered linear systems which, in the absence of saturation, have all their open-
loop poles in the closed left-half plane besides being stabilizable. Global internal
stabilization of such systems in general requires nonlinear feedback control laws.
Consequently, simultaneous external and internal stabilization of such systems
requires necessarily nonlinear feedback control laws as well. This brings forth an
important question:

For what class of linear systems can a saturated linear feedback control law
achieve simultaneous global internal stability as well as external stability?

12.6.1 .Gp=G/fg problem with state feedback for neutrally
stable systems: continuous time

We answer next the above question for continuous-time neutrally stable systems.
In particular, we show here that, for neutrally stable linear systems, a saturated
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linear feedback control law can achieve simultaneous global internal stability as
well as external stability. Moreover, this can be done for any fixed initial condi-
tions including the origin.

If the given system ˙c in (12.1a) is open-loop neutrally stable and .A; B/ is
stabilizable, then in a suitable basis, we have

A D
 

Ac 0

0 As

!
; B D

 
Bc

Bs

!
(12.92)

where Ac satisfies Ac C A0
c D 0, As is asymptotically stable, and .Ac ; Bc/ is

controllable. For the moment. without much loss of generality, we ignore the
asymptotically stable subsystem and assume that the system satisfies the condition
A C A0 D 0 and that .A; B/ is controllable.

We first need to recall a result of [154]. Consider a nonlinear system,

Tx D f .x; u/; (12.93)

where x 2 Rn and u 2 Rm. The following definitions and results are extracted
from [154]:

Definition 12.30 A continuous function V W Rn ! R>0 is called an ISS Lya-
punov function for system (12.93) if the following hold:

(i) There exist a class K1 function, ˛1, and ˛2 such that

˛1.k
k/ 6 V.
/ 6 ˛2.k
k/; 8
 2 Rn:

(ii) There exist a class K1 function, ˛3, and z� such that

TV .
; u/ 6 �˛3.k
k/ C z�.k�k/

for all 
 2 Rn and � 2 Rm.

Remark 12.31 Note that (i) is equivalent to the condition that V.0/ D 0 and that
V is a radially unbounded, positive definite function.

Lemma 12.32 System (12.93) is ISS if it admits a smooth ISS Lyapunov function.

We have the following theorem whose proof is adapted from [151] and [89]:
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Theorem 12.33 Consider the system,

Tx D Ax C B�.u C d/; x.0/ D x0; (12.94)

where .A; B/ is controllable and A C A0 D 0. Also, consider the control law
u D �
B 0x. Then, the following hold:

(i) For a given p 2 Œ1; 1� and for 
 > 0, the closed-loop system comprising
of (12.94) and the control law u D �
B 0x is Lp stable with arbitrary
initial conditions with finite gain and with bias, as defined in Definition
2.63.

(ii) For 
 > 0, the closed-loop system comprising of (12.94) and the control
law u D �
B 0x is input-to-state stable (ISS) as defined in Definition 2.65.

Proof : Proof of global internal stability follows from Sect. 4.6.1. Choose V1 D
kxkpC1

pC1
. Differentiating along the trajectories yields

TV1 D �kxkp�1x0B�.
B 0x � d/

6 �kxkp�1.B 0x � d
�

/0�.
B 0x � d/ C kxkp�1 kdk
�

:

Let P be the solution of Lyapunov equation

P.A � 
BB 0/ C .A � 
BB 0/0P D �I:

Define V2 D 1
p

.x0P x/p=2. There exist ˛ and ˇ such that

TV2 6 .x0P x/.p�2/=2x0P Œ.A � 
BB 0/x C B.
B 0x � �.
B 0x C d//�

6 �˛kxkp C ˇkxkp�1k
B 0x � d � �.
B 0x � d/k C ˇkxkp�1kdk
6 �˛kxkp C ˇkxkp�1.
B 0x � d/0�.
B 0x � d/ C ˇkxkp�1kdk:

Define V D ˇ
V1 C V2. We get

TV 6 �˛kxkp C 2ˇkxkp�1kdk:

From Young’s inequality, there exists a �p such that

2ˇkxkp�1kdk 6 ˛
2
kxkp C �pkdkp:

Therefore, we have

TV 6 �˛
2

kxkp C �pkdkp : (12.95)

This implies that

kxkp
Lp

6 2
˛

.V .0/ � V.1// C 2�p

˛
kdkp

Lp

6 2
˛

V.0/ C 2�p

˛
kdkp

Lp
;
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that is,

kxkLp
6 . 2

˛
V.0//1=p C .

2�p

˛
/1=pkdkLp

:

Define a class K function bp as

bp.c/ D sup
kx0k6c

. 2
˛

V.x0//1=p ;

and a �p as

�p D .
2�p

˛
/1=p:

Finally, we conclude that

kxkLp
6 bp.kx0k/ C �pkdkLp

:

Note that this Lp gain �p is independent of controller gain 
.
Note that (10.58) for p D 1 immediately yields

TV .t/ 6 �˛

2
V 1=2.t/ C �1kd.t/k:

Hence, if

V 1=2.0/ 6 4�1

˛
kdk1;

then

V 1=2.t/ 6 4�1

˛
kdk1

for all t > 0. On the other hand, if

V 1=2.t/ > 4�1

˛
kdk1;

then we have

TV 6 �˛

4
V 1=2;

and therefore, there exists a class KL function ž such that

V.t/ 6 ž.V .0/; t/:

This implies that there exists a class KL function ˇ such that

kx.t/k 6 ˇ.kx0k; t/ C �pkdk1; (12.96)

which, by definition, guarantees ISS.
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12.6.2 .Gp=G/fg problem with state feedback for neutrally
stable systems: discrete time

We consider now discrete-time neutrally stable systems and show that a saturated
linear feedback control law can achieve simultaneous global internal stability as
well as external stability. Moreover, this can be done for any fixed initial condi-
tions including the origin.

Without much loss of generality, we ignore the asymptotically stable poles of
the given discrete-time neutral system. That is, we assume that the given discrete-
time neutral system is of the form,

x.k C 1/ D Ax.k/ C B�.u.k/ C d.k//; x.0/ D x0; (12.97)

where .A; B/ is controllable and A0A D I .
We first recall certain results from [55]. Consider a discrete-time non-linear

system,
x.k C 1/ D f .x.k/; u.k//; (12.98)

where x 2 Rn and u 2 Rm. The following definitions and results are extracted
from [55]:

Definition 12.34 A continuous function V W Rn ! R>0 is called an ISS Lya-
punov function for system (12.98) if the following holds:

(i) There exist a class K1 function, z̨1, and z̨2 such that

z̨1.k
k/ 6 V.
/ 6 z̨2.k
k/; 8
 2 Rn:

(ii) There exist a K1 function, z̨3, and K function z� such that

V.f .
; �// � V.
/ 6 �z̨3.k
k/ C z�.k�k/

for all 
 2 Rn and � 2 Rm.

Lemma 12.35 System (12.98) is ISS if it admits a continuous ISS Lyapunov func-
tion.

We have the following result:

Theorem 12.36 Consider the discrete-time neutral system of the form, (12.97)
system, where .A; B/ is controllable, A0A D I , and �.�/ is a standard saturation
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function. Also, consider the control law u D �
B 0Ax where 
 > 0 is a design
parameter. Then, the following hold:

(i) For a given p 2 Œ1; 1�, there exists a 
� > 0 such that for 
 2 .0; 
��, the
closed-loop system comprising of (12.97) and control law u D �
B 0Ax is
`p stable with arbitrary initial conditions with finite gain and with bias, as
defined in Definition 2.63.

(ii) There exists a 
� > 0 such that for 
 2 .0; 
��, the closed-loop system
comprising of (12.97) and the control law u D �
B 0Ax is input-to-state
stable (ISS), as defined in Definition 2.65.

Proof : Proof of global internal stability follows from Sect. 4.6.1. Item (i) is
proven in [5] and [23], respectively, for p 2 .1; 1� and p D 1.

Item (ii) follows from [5] and [55]. The proof can be sketched as follows. Let
P.
/ be the positive definite solution of Lyapunov equation

xA.
/0P.
/ xA.
/ � P.
/ D �I;

where xA.
/ D A�
BB 0A. It is proven in [5] that there exist 
� > 0 and functions
�; ˛; ˇ W RC ! RC such that V.x/ D x0P.
/x C �.
/kxk3 satisfies

V.x.k C 1// � V.x.k// 6 �˛.
/kxk2 C ˇ.
/kuk2; 8
 2 .0; 
��:

According to Definition 12.34, V.x/ is an ISS Lyapunov function. The conclusion
of ISS stability of closed-loop system then follows from Lemma 12.35 straight-
forwardly.

12.7 Simultaneous stabilization in a semi-global
framework: continuous time

In this section, we consider simultaneous stabilization in semi-global framework
for continuous-time systems. Our interest is to solve .SGp;q=SG/ problem and
.SGp;q=SG/fg problem, as defined respectively in Problems 11.11 and 11.12.
We consider both state and measurement feedback, each in one subsection.

12.7.1 State feedback

We consider first state feedback controllers and show that, under Assump-
tions 12.1 and 12.2, the .SGp;q=SG/fg problem is solvable via linear state
feedback laws. Clearly, the .SGp;q=SG/ problem is solvable whenever the
.SGp;q=SG/fg problem is solvable.
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Theorem 12.37 Consider the system ˙c of (12.1a). For this system, under As-
sumptions 12.1 and 12.2, the .SGp;q=SG/fg problem is solvable for any p; q 2
Œ1; 1�. Moreover, low-and-high-gain design technique (4.193) can yield a control
law that solves the problem. More specifically, for any p; q 2 Œ1; 1�, any a priori
given (arbitrarily large) bounded set X � Rn, and any D > 0, there exists an
"�, and, for any " 2 .0; "��, there exists a ˛�

q such that the low-and-high-gain
feedback,

u D �.1 C ˛/B 0P"x; " 2 .0; "��; ˛ > ˛�
q ; (12.99)

has the following properties:

(i) In the presence of a disturbance signal d, the closed-loop system is finite
gain Lp stable over the set Lp;q.D/.

(ii) In the absence of any disturbance signal d, the equilibrium point x D 0

of the closed-loop system is asymptotically stable with X contained in its
domain of attraction.

Proof : In [86], the result for p 2 Œ1; 1� and q D 1 was given. Hence, we only
need to discuss the case p 2 Œ1; 1� and q D Œ1; 1/. In our proof, we first show
Property (ii) and then Property (i).

Let D > 0 and X be given. Consider a Lyapunov function V.x/ D x0P"x. Let
c be a positive number such that

c > sup
x2X;"2.0;1�

x0P"x:

Such a c exists since lim"!0 P" D 0 and X is bounded. Also, for any Lyapunov
function V.x/ and any c > 0, let us define a level set LV .c/ as

LV .c/ D fx 2 Rn j V.x/ < cg:
We note that there exists an "�

1 > 0 such that for any " 2 .0; "�
1�, x 2 LV .c/

implies that kB 0P"xk1 < �. It is noted that "�
1 depends only on X and �. In

Theorem 4.41, it was shown that, in the absence of d , for any fixed " 2 .0; "�
1�

and ˛ > 0, the equilibrium point x D 0 of the closed-loop system is locally
asymptotically stable with X � LV .c/ contained in its domain of attraction. This
proves Property (ii).

In order to show Property (i), a major step is to show that there exist an "� 2
.0; "�

1� and a ˛�
q > 0 such that for any " 2 .0; "�� and any ˛ > ˛�

q , the trajectory of
the closed-loop system comprising of (12.1a) and (12.99) with x.0/ D 0 remains
in LV .c/ for t > 0 even in the presence of d 2 Lp;q.D/. This is what we do next.

Let d 2 Lp;q.D/. Then, for all x 2 LV .c/,

dV

dt
6 �x0Qx C 2x0PBŒ�.�.1 C ˛/B 0P x C d/ C B 0P x� � x0PBB 0P x

6 �x0Qx � 2

mX

iD1

vi Œsat�..1 C ˛/vi C di / � sat�.vi /�; (12.100)
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where v D �B 0P x, di is the ith component of d , while vi is the ith component
of v.

Observe that

j˛vi j > jdi j H) �vi Œsat�..1 C ˛/vi C di / � sat�.vi /� 6 0;

and

j˛vi j < jdi j H) � vi Œsat�..1 C ˛/vi C di / � sat�.vi /�

6 jdi j�
˛�

jvi j1�� j sat�..1 C ˛/vi C di / � sat�.vi /j

6 2

˛�
kB 0P

1
2

" k1�� V
1��

2 jdi j1C� ;

where � 2 Œ0; 1� is such that 1 C � 6 q and will be specified later. Hence, com-
bining these two observations, for any x 2 LV .c/, (12.100) can be rewritten as

dV

dt
6 ��1."/V C 1

˛�
ˇ1."/V

1��
2 kdk1C� ; (12.101)

where ˇ1."/ D 4mkB 0P
1
2

" k1�� and �1."/ D �min.Q"/=�max.P"/ > 0. In the
following, we divide our development into different cases depending on the value
of q.
CASE 1: Here we assume that p 2 Œ1; 1� and q D 1. Thus, � D 0, and (12.101)
can be simplified as

dV

dt
6 ��1."/V C ˇ1."/V

1
2 kdk:

Dividing both sides with V
1
2 when x ¤ 0 gives

dV
1
2

dt
6 �1

2
�1."/V

1
2 C 1

2
ˇ1."/kdk:

Taking the integral on both sides, and in view of kdkL1
6 D and x.0/ D 0, we

get that V
1
2 .x/ 6 1

2
ˇ1."/D. Recalling the Properties 2 and 3 of the CARE (4.42),

and using the definition of ˇ1."/, we know that there exists an "� 2 .0; "�
1� such

that for any " 2 .0; "��, we have 1
2
ˇ1."/D < c

1
2 . This shows that, for any " 2

.0; "��, the trajectory of the closed-loop system comprising of (12.1a) and (12.99)
starting from x.0/ D 0 will stay inside LV .c/ for all t even in the presence of a
disturbance signal d 2 Lp;q.D/.
CASE 2: Here we assume that p 2 Œ1; 1� and q 2 .1; 2�. Denoting � D q � 1,
when x ¤ 0, (12.101) yields

V � 1��
2

dV

dt
6 1

˛�
ˇ1."/kdk1C� :



12.7 Simultaneous stabilization in a semi-global framework: continuous time 675

Also, d 2 Lq implies that kdk1C� 2 L1. Moreover, kkdk1C� k1 6 Dq . Integrat-
ing the above inequality with x.0/ D 0, we get

V
1C�

2 .x/ 6 ˇ1."/

˛�
kkdk1C� k1 6 ˇ1."/

˛�
Dq :

Choose any ˛�
q .D; "/ such that ˛�

q .D; "/ > Œ ˇ1."/

.
p

c/1C� Dq�
1
� . Then for any ˛ >

˛�
q .D; "/, we have V.x/ < c. In other words, we have shown that for any given

D, and q 2 .1; 2�, there exists an "� D "�
1 , and for any " 2 .0; "��, there exists

a ˛�
q , and for any ˛ > ˛�

q , the trajectory of the closed-loop system comprising
of (12.1a) and (12.99) starting from x.0/ D 0 will stay within LV .c/ for all t

even in the presence of d 2 Lp;q.D/.
CASE 3: Here we assume that p 2 Œ1; 1� and q D .2; 1/. For this case, 1C� <

q for any � 2 Œ0; 1�. Choose any � 2 .0; 1�. Let W D V
1C�

2 . For any " 2 .0; "��

where "� D "�
1 , (12.101) can be rewritten as

dW

dt
6 ��."/W C 1

˛�
ˇ."/kdk1C� ;

where �."/ > 0 and ˇ."/ > 0. We need to show that there exists a ˛�
q > 0 such

that for any ˛ > ˛�
q , we have W.t/ < c

1C�
2 for any t 2 R. To achieve this, we

introduce the scalar equation

d yW
dt

D ��."/ yW C 1

˛�
ˇ."/kdk1C� (12.102)

with yW .0/ D 0. The solution of the above equation is

yW .t/ D
tZ

0

e��."/.t�
/ 1

˛�
ˇ."/kd.�/k1C� d�:

We can give a bound for yW .t/ as

yW .t/ 6 ˇ."/

˛�
.

tZ

0

Œe��."/
 � xpd�/1= xp � .

tZ

0

Œkd.�/k1C� �xqd�/1=xq

6 ˇ."/

˛�
.

tZ

0

Œe��."/
 � xpd�/1= xp � D1=xq; (12.103)

where .1 C �/xq D q and 1
xp C 1

xq D 1, and the Hölder inequality is used. Hence,

yW .t/ 6 ˇ."/

˛�
D

1C�
q .

1

�."/ xp /
1
xp :
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For simplicity, fix � as � D 1, choose any ˛�
q such that

˛�
q >

ˇ."/

c
D

2
q .�."/ xp/� 1

xp :

Thus, for ˛ > ˛�
q , yW .t/ < c for any t 2 Rn.

Using the standard comparison theorem, we note that W.t/ 6 yW .t/ for any t 2
R. This shows that any trajectory of the closed-loop system comprising of (12.1a)
and (12.99) starting from x D 0 will remain within the level set LV .c/ for any
˛ > ˛�

q .D; "/ for all t even in the presence of a disturbance signal d 2 Lp;q.D/.
In conclusion, so far, we have shown that for any " 2 .0; "�� and ˛ > ˛�

q ,
the feedback law (12.99) satisfies (a) Property 2 in the absence of d and (b) the
trajectory of the closed-loop system comprising of (12.1a) and (12.99) starting
from x.0/ D 0 remains in LV .c/ for all t even in the presence of any d 2
Lp;q.D/.

From the above conclusion and in view of (12.100), it follows that for any fixed
" 2 .0; "�� and any ˛ > ˛�

q , the trajectory of the closed-loop system starting from
x.0/ D 0 satisfies the inequality (12.101) for � D 0. Let V D W 2, then there
exist an �2."/ > 0 and a ˇ2."/ > 0 such that

dW

dt
6 ��2."/W C ˇ2."/kdk: (12.104)

Using the standard comparison theorem, with x.0/ D 0, d 2 Lp implies that
W 2 Lp, and hence, x 2 Lp. Moreover,

kW kp 6 ˇ2."/

�2."/
kdkp;

and this implies that

kxkp 6 �p."/kdkp (12.105)

for some �p."/ > 0 independent of d . This completes the proof.

An interesting question arises at this stage. That is, whether we can solve the
.SGp;q=SG/ problem via only low-gain state feedback. More generally, the ques-
tion can be posed as follows: for what value of q can one have ˛�

q D 0. Already,
the proof of Theorem 12.37 alludes that for q D 1 and p 2 Œ1; 1�, we have
˛ D 0. In the following lemma, we will show that, for q 2 Œ1; 2� and p 2 Œ1; 1�,
one can always choose ˛�

q D 0:

Lemma 12.38 In Theorem 12.37, for any p 2 Œ1; 1�, and any q 2 Œ1; 2�, one can
take ˛�

q as zero. More specifically, for any p 2 Œ1; 1�, any q 2 Œ1; 2�, any a priori
given (arbitrarily large) bounded set X � Rn, and any D > 0, there exists an "�
such that for any " 2 .0; "�� the low-and-high-gain feedback,

u D �B 0P"x � ˛B 0P"x; (12.106)
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has the following properties for any ˛ > 0:

(i) In the presence of a disturbance signal d, the closed-loop system is finite
gain Lp stable over the set Lp;q.D/.

(ii) In the absence of any disturbance signal d, the equilibrium point x D 0

of the closed-loop system is asymptotically stable with X contained in its
domain of attraction.

Proof : Since Property (ii) has been shown in the proof of Theorem 12.99, we
concentrate on the proof of Property (i).

Let p 2 Œ1; 1�, q 2 Œ1; 2�, D > 0, and X be given. Consider a Lyapunov
function V.x/ D x0P"x. Let c > 0 be a constant to be chosen shortly. Choose
an "� > 0 such that for any " 2 .0; "�� and for any x 2 LV .c/, we have
kB 0P"xk1 < �.

To prove Property (i), we first need to show that a disturbance d 2 Lp;q.D/ re-
sults in a trajectory of the closed-loop system comprising of (12.1a) and (12.106)
which, starting from x.0/ D 0, will stay inside LV .c/ for all t > 0.

To this end, by evaluating the derivative of V along the trajectory of the closed-
loop system (12.1a) and (12.106) starting from x.0/ D 0, we obtain for all x 2
LV .c/,

dV

dt
6 �x0Qx C 2x0PBŒ�.�B 0P x � ˛B 0P x C d/ C 1

2
B 0P x�

6 �x0Qx � 2

mX

iD1

vi Œsat�.vi C ˛vi C di / � sat�.
vi

2
/�; (12.107)

where v D �B 0P x, di is the ith component of d , while vi is the ith component
of v.

Let z̨ D ˛ C 1=2. Then, we observe that

jz̨vi j > jdi j H) �vi Œsat�.
vi

2
C z̨vi C di / � sat�.

vi

2
/� 6 0:

Similarly, we note that

jz̨vi j < jdi j H) � vi Œsat�.
vi

2
C z̨vi C di / � sat�.

vi

2
/�

6 .
di

z̨ /� jvi j1�� j sat�.vi C di / � sat�.
vi

2
/j

6 2

z̨�
kB 0P

1
2

" k1�� V
1��

2 jdi j1C� ;

where � 2 Œ0; 1�. Hence, for any x 2 LV .c/, (12.107) can be written as

dV

dt
6 ��1."/V C ˇ1."/

z̨�
V

1��
2 kdk1C� ; (12.108)



678 12 Simultaneous external and internal stabilization: input-additive case

where �1."/ D �min.Q"/=�max.P"/ and ˇ1."/ D 2mkB 0P
1
2

" k1�� . Let � D q � 1.
We note that � 2 Œ0; 1� for q 2 Œ1; 2�. Dividing both sides of (12.108) with V

1��
2

when x ¤ 0 gives

dV
1C�

2

dt
6 �1

2
�1."/V

1C�
2 C 1

.z̨/�
ˇ1."/kdkq:

With the assumption that d 2 Lp;q.D/, taking the integral on both sides with
x.0/ D 0 yields

V
1C�

2 .x/ 6 1

.z̨/�
ˇ1."/Dq:

Note that

z̨� >



1
2

��
:

Recalling the Properties (ii) and (iii) of the CARE (4.42), in Lemma 4.20 and
using the definition of ˇ1."/, we know that

�
ˇ1."/Dq

2��

�� 1C�
2

6
�

ˇ1.1/Dq

2��

�� 1C�
2

for " 2 .0; 1�:

Following the proof of the internal stabilization result of Theorem 12.38, we can
choose c such that

c > max

(�
ˇ1.1/Dq

2��

�� 1C�
2

; sup
x2X;"2.0;1�

x0P"x

)
:

Such a choice of c leads to the fact that X 2 LV .c/. From the above proof and
the proof of Theorem 12.37, we have, in the absence of d , that the closed-loop
system comprising of (12.1a) and (12.106) is locally asymptotically stable with
X contained in its domain of attraction, and in the presence of d 2 Lp;q.D/, the
trajectory of the closed-loop systems (12.1a) and (12.106) starting from x.0/ D 0

will remain within LV .c/ for any ˛ > 0 and for all t .
Consequently, (12.108) yields for � D 0:

dV

dt
6 ��1."/V C 4mkB 0P 1=2

" kV 1=2kdk: (12.109)

Next, we use the above inequality to prove the Lp stability with finite gain over
the set Lp;q.D/, and in fact, this follows from the application of the standard
comparison theorem to (12.109). The rest of the proof is similar to that at the end
of the proof of Theorem 12.37. This completes the proof.

Remark 12.39 From Lemma 12.38, since we can choose any ˛ > 0, we conclude
that the low-gain feedback (which means ˛ D 0) can solve the .SGp;q=SG/

problem for q 2 Œ1; 2� and p 2 Œ1; 1�.
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Remark 12.40 It is straightforward to show that the result of Theorem 12.37 still
holds if we relax in our controller design methodology the positive definiteness
requirement on the matrix Q" to semi-positive definiteness. An interesting choice
for Q" would be Q" D "2BB 0. This yields a solution P" of CARE (4.42) as
"I . With this choice of Q", our low-and-high-gain state feedback law reduces to
u D ��B 0x where � D .1 C ˛/". This feedback law is exactly the one that
was used in [89]. Thus, in view of the results of [89], one can conclude that if
the open-loop system is critically stable (and hence without loss of generality
assuming that A0 C A D 0), our low-and-high-gain state feedback law solves the
.Gp=G/ problem.

12.7.2 Measurement feedback

Our primary focus in the previous subsection has been in constructing state feed-
back controllers. That is, we assumed so far that the complete state of the given
system is available for feedback and it is not corrupted with any disturbance sig-
nal. Once a state feedback controller is constructed, one often tries to construct
a measurement feedback controller having a linear observer-based architecture.
Accordingly, we construct here such measurement feedback controllers for cer-
tain .SGp;q=SG/ problems which we utilize either a low-gain or an adaptive-
low-gain design to construct the corresponding state feedback controllers. In this
regard, let us recall from Lemma 12.38 (see also Remark 12.39) that a low-gain
state feedback controller can solve the .SGp;q=SG/ problem for p 2 Œ1; 1� and
q 2 Œ1; 2�. This easily leads us to the construction of a low-gain measurement
feedback controller having a linear observer-based architecture.

Consider the observer

Tyx D Ayx C B�.u/ C K.y � C yx/; (12.110)

where K is chosen such that A � KC is Hurwitz stable, and the control law

u D �B 0P" yx; (12.111)

where as usual P" is the positive definite solution of the CARE (4.42) parameter-
ized in a low-gain parameter ".

We have the following theorem:

Theorem 12.41 Consider the system ˙c of (12.1a). For this system, under As-
sumptions 12.1, 12.2, and 12.3, the .SGp;q=SG/fg problem via measurement
feedback is solvable for any p 2 Œ1; 1� and any q 2 Œ1; 2�. In fact, there exists
an "� such that for any " 2 .0; "��, the low-gain measurement feedback con-
troller comprising of the observer (12.110) and the control law (12.111) solves
the .SGp;q=SG/fg problem for any p 2 Œ1; 1� and any q 2 Œ1; 2�.
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Proof : Let p 2 Œ1; 1�, q 2 Œ1; 2�, D > 0, and X � R2n be given. It is shown
in Chap. 4 that there exists an "�

1 such that for " 2 .0; "�
1�, in the absence of

any disturbance signal, the closed-loop system comprising of (12.1a), (12.110),
and (12.111) is asymptotically stable, and the set X is included in the domain of
attraction of the equilibrium x D 0 of the closed-loop system. To prove the Lp

stability of the closed-loop system in the presence of d 2 Lp;q.D/, we observe
that the closed-loop system can be written as

(
Te D .A � KC /e C B.�.u/ � �.u C d//;

Tx D Ax C B�.F"x C F"e C d/;
(12.112)

where e WD yx � x and F" D �B 0P". We note that d 2 Lp;q.D/ implies that
e 2 Lp;q.De/ where De is a fixed positive number independent of ". Defining
xd WD F"eCd , we can see that xd 2 Lp;q. xD/ where xD is independent of " because
e is independent of " and F" is uniformly bounded for " 2 .0; 1�. Applying the
result we derived earlier for the state feedback case, we note that there exists an
"� 6 "�

1 such that for " 2 .0; "��, the system (12.112) is Lp stable with finite gain
over the set Lp;q. xD/. This completes our proof.

Remark 12.42 We would like to emphasize an aspect of the measurement feed-
back controller given in Theorem 12.41. It has a linear observer-based architec-
ture. However, it does not constitute to a mere implementation of a state feedback
law via an observer. This is because, as we note, both the state feedback controller
and the measurement feedback controller depend on a parameter "; but the upper
bound "� on " that is required for the state feedback controller can however be
different to that of the measurement feedback controller. This remark, or a similar
one, is applicable to certain other measurement feedback controllers developed
in this chapter.

12.8 Simultaneous stabilization in a semi-global
framework: discrete time

In this section, we consider simultaneous stabilization in semi-global framework
for discrete-time systems. As in the continuous-time case, our interest is to solve
the .SGp;q=SG/ problem and the .SGp;q=SG/fg problem, as defined respec-
tively in Problems 11.11 and 11.12. We consider both state and measurement
feedback, each in one subsection.

12.8.1 State feedback

The following theorem solves the .SGp;q=SG/fg problem via state feedback.
Clearly, the .SGp;q=SG/ problem is solvable whenever the .SGp;q=SG/fg prob-
lem is solvable.
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Theorem 12.43 Consider the system ˙d of (12.1b). For this system, under As-
sumptions 12.1 and 12.2, the .SGp;q=SG/fg problem is solvable for any p 2
Œ1; 1� and any q 2 Œ1; 2�. Moreover, the low-gain design technique (4.70) can
yield a control law that solves the problem. More specifically, for any p 2 Œ1; 1�,
and any q 2 Œ1; 2�, any a priori given (arbitrarily large) bounded set X � Rn,
and any D > 0, there exists an "�, such that the low-gain feedback,

u.k/ WD �.B 0P"B C I /�1B 0P"Ax.k/; " 2 .0; "��; (12.113)

where P" is the solution of parameterized discrete-time algebraic Riccati equation
(DARE) as given in (4.66) has the following properties:

(i) In the presence of a disturbance signal d, the closed-loop system is finite
gain `p stable over the set d 2 `p;q.D/.

(ii) In the absence of any disturbance signal d, the equilibrium point x D 0

of the closed-loop system is asymptotically stable with X contained in its
domain of attraction.

Proof : Let p 2 Œ1; 1�, q 2 Œ1; 2�, D > 0, and X be given. It is shown in
Chap. 4 that, for any a priori given (arbitrarily large) bounded set X � Rn, in the
absence of any disturbance signal d , there exists an "�

1 > 0 such that, for each " 2
.0; "�

1�, the equilibrium point x D 0 of the closed-loop system comprising (12.1b)
and (12.113) is locally exponentially stable and X is contained in its domain
of attraction. Thus, we need to focus only on the proof of Property 1. That is,
we need to show that there exists an "� 2 .0; "�

1� such that for any " 2 .0; "��,
in the presence of d 2 `p;q.D/, the closed-loop system comprising of (12.1b)
and (12.113) satisfies Property (i).

To show Property (i), we first need to find a level set such that in the presence
of d 2 `p;q.D/, the trajectory of the closed-loop system comprising of (12.1b)
and (12.113) starting from x.0/ D 0 will remain inside it for all k.

Consider a Lyapunov function V.x/ D x0P"x. Let c > 0 be a constant to
be chosen shortly. Choose "� where "� 6 "�

1 such that for x.k/ 2 LV .c/ and
kuL.k/k1 < �. By evaluating V.x.k C 1// � V.x.k// along the trajectory of
the closed-loop system comprising of (12.1b) and (12.113), we obtain that for any
x.k/ 2 LV .c/,

V.x.k C 1// � V.x.k//

D �x.k/0Qx.k/ � u.k/0u.k/

C 2x.k/0A0P"B.B 0P"B C I /�1.x�.k/ � u.k//

C .x�.k/ � u.k//0B 0P"B.x�.k/ � u.k//

6 �x.k/0Qx.k/

C .x�.k/ � �.u.k///0.I C B 0P"B/.x�.k/ � �.u.k///

6 �x.k/0Qx.k/ C a2
1kd.k/k2; (12.114)
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where for brevity, we denote x�.k/ D �.u.k/ C d.k//. Also,

a2
1 WD �max.I C B 0P1B/

is a constant independent of ".
We note that d being an element of `p;q.D/ implies that kd.k/k1 6 D and

1X

kD1

kd.k/k2 6
1X

kD1

kd.k/kqD2�q 6 D2:

Let c WD a2
1D2. Taking sum from both sides of (12.114) yields

V.x.k// 6 c

for any k > 0. Hence, in the presence of d 2 `p;q.D/, the trajectory of the closed-
loop systems (12.1b) and (12.113) starting from x.0/ D 0 will stay inside LV .c/

for any k > 0, and moreover, the trajectory satisfies (12.114).
Next, we can rewrite (12.114) as

V.x.k C 1// � V.x.k// 6 ��V.x.k// C a2
1kd.k/k2 (12.115)

where 0 < � < 1, and this follows from the property of the DARE.
Define W.k/ WD V.x.k//

1
2 ; it is straightforward to show that (12.115) implies

that
W.k C 1/ 6 .1 � �/

1
2 W.k/ C a1kd.k/k (12.116)

with W.0/ D 0. Applying comparison theorem, the preceding inequality with
initial condition W.0/ D 0 yields that d 2 `p implies that W 2 `p for any
p 2 Œ1; 1� and hence implies x 2 `p. Moreover, there exists a constant �p > 0

such that
kxk`p

6 �pkdk`p
:

This completes the proof.

12.8.2 Measurement feedback

Here we construct measurement feedback controllers for discrete-time systems.
As in Sect. 12.2.2, our controllers have a linear observer-based architecture. Con-
sider the observer-based controller,

yx.k C 1/ D Ayx.k/ C B�.u.k// C K.y.k/ � C yx.k//;

u.k/ D �.B 0P"B C I /�1B 0P"Ayx.k/;
(12.117)

where K is chosen such that A � KC is Schur stable.
We have the following theorem:
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Theorem 12.44 Consider the system ˙d of (12.1b). For this system, under As-
sumptions 12.1, 12.2, and 12.3, the .SGp;q=SG/fg problem is solvable for any
p 2 Œ1; 1� and any q 2 Œ1; 2�. In fact, there exists an "� such that for an
" 2 .0; "��, the low-gain measurement feedback controller given by (12.117)
solves the .SGp;q=SG/fg problem for any p 2 Œ1; 1� and any q 2 Œ1; 2�.

Proof : The proof of internal stability was shown in Chap. 4. Since .B 0P"B C
I /�1B 0P"A is uniformly bounded, the proof of external stabilization is similar
to the continuous-time counterpart given in the proof of Theorem 12.41. This
completes the proof.

12.9 Role of the location of the open-loop poles
of the system

For linear systems subject to actuator saturation, earlier sections explored in depth
two broad and important simultaneous stabilization problems, (1) simultaneous
global external stabilization and global internal stabilization problem and (2) si-
multaneous semi-global external stabilization and semi-global internal stabiliza-
tion problem. As we have seen, global framework requires nonlinear feedback
control laws while linear feedback control laws suffice in semi-global framework.
Appropriate feedback control laws are constructed for these problems under the
assumption that the given linear system is ANCBC. This begs the question how
important is this assumption. In this regard, Chap. 4 dictates that global internal
stabilization, as well as semi-global internal stabilization, is possible only if the
given system satisfies the ANCBC assumption. However, local internal stabiliza-
tion can be achieved without the ANCBC assumption. That is, the location of the
poles does not play any role at all in achieving local internal stabilization. This is
true whether we deal with a continuous- or a discrete-time system. Prompted by
this, it is worthwhile to examine (1) the simultaneous global external stabilization
and local internal stabilization problem and (2) the simultaneous semi-global ex-
ternal stabilization and local internal stabilization problem, both with or without
finite gain. We have the following formal problem statements:

Problem 12.45 Consider the system ˙c given in (12.1a) or the system ˙d given
in (12.1b). For any p 2 Œ1; 1�, this system is said to be simultaneously globally
Lp stabilizable (or `p stabilizable) and locally asymptotically stabilizable via
static state feedback (or dynamic measurement feedback) if there exists a static
state (or respectively, dynamic measurement) feedback law, such that the follow-
ing conditions hold:
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(i) For continuous-time case, the closed-loop system with x.0/ D 0 is Lp-
stable, that is, kzk 2 Lp for all d 2 Lp. Similarly, for discrete-time case,
the closed-loop system with x.0/ D 0 is `p stable, that is, kzk 2 `p for all
d 2 `p.

(ii) In the absence of any disturbance signal d, the equilibrium point x D 0 of
the closed-loop system is locally asymptotically stable.

The above problem is coined as .Gp=L/ problem.

Problem 12.46 Consider the system ˙c given in (12.1a) or the system ˙d given
in (12.1b). For any p 2 Œ1; 1�, this system is said to be simultaneously glob-
ally finite gain Lp-stabilizable (or `p stabilizable) and locally asymptotically
stabilizable via static state feedback (or dynamic measurement feedback) if there
exists a static state (or respectively, dynamic measurement) feedback law such
that the following conditions hold:

(i) For continuous-time case, the closed-loop system is finite gain Lp stable,
that is, there exists a positive constant �p such that with x.0/ D 0, the
following holds:

kzkp � �pkdkp; for all d 2 Lp:

Similarly, for the discrete-time case, the closed-loop system is finite gain `p

stable, that is, there exists a positive constant �p such that with x.0/ D 0,
the following holds:

kzkp � �pkdkp ; for all d 2 `p:

(ii) In the absence of any disturbance signal d, the equilibrium point x D 0 of
the closed-loop system is locally asymptotically stable.

The above problem is coined as .Gp=L/fg problem.

Problem 12.47 Consider the system ˙c given in (12.1a) or the system ˙d given
in (12.1b). For any p; q 2 Œ1; 1�, this system is said to be simultaneously Lq (or
`q) semi-globally Lp stabilizable (or `p-stabilizable) and locally asymptoti-
cally stabilizable via static state feedback (or dynamic measurement feedback
with dynamical order nc ) if, for any a priori given (arbitrarily large) finite number
D > 0, there exists a static state (or respectively, dynamic measurement) feed-
back law, possibly depending on D (or respectively, nc and D), such that the
following conditions hold:

(i) For continuous-time case, the closed-loop system is Lp stable over the
set Lp;q.D/. That is, z 2 Lp for all d 2 Lp with kdkLq

6 D and
x.0/ D 0. Similarly, for discrete-time case, the closed-loop system is `p

stable over the set `p;q.D/. That is, z 2 `p for all d 2 `p with kdkq 6 D

and x.0/ D 0.
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(ii) In the absence of any disturbance signal d, the equilibrium point x D 0 of
the closed-loop system is locally asymptotically stable.

The above problem is coined as .SGp;q=L/ problem.

Problem 12.48 Consider the system ˙c given in (12.1a) or the system ˙d given
in (12.1b). For any p; q 2 Œ1; 1�, this sytem is said to be simultaneously Lq (or
`q) semi-globally finite gain Lp-stabilizable (or `p-stabilizable) and locally
asymptotically stabilizable via static state feedback (or dynamic measurement
feedback with dynamical order nc) if, for any a priori given (arbitrarily large)
finite number D > 0, there exists a static state (or respectively, dynamic measure-
ment) feedback law, possibly depending on D (or respectively, nc , and D), such
that the following conditions hold:

(i) For continuous-time case, the closed-loop system is finite gain Lp stable
over the set Lp;q.D/. That is, there exists a positive constant �p such that
with x.0/ D 0, the following holds:

kzkp � �pkdkp; for all d 2 Lp with kdkLq
6 D:

Similarly, for the discrete-time case, the closed-loop system is finite gain
`p stable over the set `p;q.D/. That is, there exists a positive constant �p

such that with x.0/ D 0, the following holds:

kzkp � �pkdkp ; for all d 2 `p with kdkq 6 D:

(ii) In the absence of any disturbance signal d, the equilibrium point x D 0 of
the closed-loop system is locally asymptotically stable.

The above problem is coined as .SGp;q=L/fg problem.

Some of the above four problems have been examined in the literature. It is
shown in [86] that, for continuous-time linear systems with saturating actuators,
bounded external (q D 1) finite gain Lp stabilization and local asymptotic sta-
bilization can always be achieved simultaneously irrespective of the location of
the open-loop poles of the given system. The location of open-loop poles, as we
know already, affects only the solvability of global and semi-global internal sta-
bilization.

On the other hand, for discrete-time linear systems with saturating actuators, it
is shown in [47] that neither global external stabilization nor semi-global external
stabilization is possible whenever there exists one or more controllable poles lo-
cated strictly outside the unit circle. This negative result is possibly owing to the
lack of high-gain feedback in discrete-time systems.

Based on the results of [86] and [47], our interest in this section is to examine
some of the above problems when the entire state is available for feedback. This is
done just to show the role of the open-loop poles on achieving external stability of
linear systems with saturating actuators. We assume throughout this section that
the pair .A; B/ is stabilizable.
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12.9.1 Continuous-time systems

In this subsection, for continuous-time linear systems subject to actuator satura-
tion, we consider only .SGp;q=L/fg problem just as a contrast to the discrete-time
case to be considered in the next subsection. One can pursue other problems in
a similar manner. For clarity, we assume that the saturation function � is the one
given in Definition 2.19.

We have the following result based on [86]:

Theorem 12.49 Consider the continuous-time system ˙c given in (12.1a). For
any p 2 Œ1; 1�, q 2 Œ1; 1� and for any D > 0, the sytem ˙c is simultaneously
Lq semi-globally finite-gain Lp stabilizable and locally asymptotically stabiliz-
able via static linear state feedback, that is, the problem .SGp;q=L/fg is solvable
via static linear state feedback.

Proof : Let us consider a family of high-gain state feedback control laws,

u D �.1 C ˛/B 0P x;

where P is the solution of CARE,

A0P C PA � 2PBB 0P C Q D 0;

and where Q is any positive definite matrix. Then, the closed-loop system takes
the form

Tx D Ax C B�.�.1 C ˛/B 0P x C d/: (12.118)

As we did often, let us pick a Lyapunov function V.x/ D x0P x and let c be such
that x 2 LV .c/ implies that kB 0P xk 6 �, where the level set LV .c/ is defined
as LV .c/ D fx 2 Rn W V.x/ 6 cg. The evaluation of TV along the trajectories of
the closed-loop system in the absence of d shows that for all x 2 LV .c/,

TV D �x0Qx C 2x0PBŒ�.�.1 C ˛/B 0P x/ C B 0P x�

D �x0Qx � 2

mX

iD1

vi Œsat�..1 C ˛/vi / � sat�.vi /�

6 �x0Qx; (12.119)

where we have defined v 2 Rm by v D �B 0P x.
Equation (12.119) shows that the equilibrium point x D 0 of the closed-loop

system (12.118) is locally asymptotically stable in the absence of d . It remains to
show that the closed-loop system (12.118) is also Lq semi-globally finite gain Lp

stable. In this regard, it can be shown easily that in the presence of d and for all
x 2 LV .c/,

TV D �x0Qx C 4mıD2

˛
:
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Let
˛� D 4mıD2�max.P /

�min.Q/c
:

Then, LV .c/ is an invariant set for all ˛ > ˛�. We next rewrite the closed-loop
system (12.118) as

Tx D Ax C B�.�.1 C ˛/B 0P x/

C BŒ�.�.1 C ˛/B 0P x C d/ � �.�.1 C ˛/B 0P x/�: (12.120)

Using (12.120), we obtain that, for all x 2 LV .c/,

TV 6 �x0Qx C 2V 1=2kB 0P 1=2kkdk; for ˛ > ˛�:

The rest of the proof follows by utilizing the standard comparison theorems as we
often did (see for details [86]).

12.9.2 Discrete-time systems

This subsection is devoted to discrete-time linear systems. Unlike in continuous-
time case, our results here are negative and are based on [47].

Theorem 12.50 Consider the discrete-time system ˙d given in (12.1b). Suppose
that A has at least one controllable eigenvalue strictly outside the unit circle.
Then, for ˙d and for any p 2 Œ1; 1�, the global `p stabilization cannot be
achieved via any state feedback law. That is, there does not exist any static state
feedback law that renders z 2 `p when d 2 `p.

Proof : We prove this theorem by contradiction. Suppose that there exists a feed-
back law u D F.x/ that achieves global `p stabilization, we construct an external
input d 2 `p such that the state of the system diverges to infinity. Without loss of
generality, we assume that the pair .A; B/ is in the form (see, e.g., [21]),

� �1
x A�x D

�
A1 A1;2 � � � A1;r A1xc
0 A2 � � � A2;r A2xc
:::

:::
: : :

:::
:::

0 0 � � � Ar Arxc
0 0 � � � 0 Axc

�
; B D

�
B1

B2

:::

Br

0

�
; (12.121)

where Axc contains all the uncontrollable poles of the open-loop system, and all
the remaining diagonal blocks are either 1 � 1 matrices or 2 � 2 matrices of the
form

x�
 

x̨ x̌
� x̌ x̨

!
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with x� > 0, x̌ ¤ 0, and x̨2 C x̌2 D 1, having complex conjugate eigenvalues
x�.x̨ ˙ j x̌/. Also, assume that the diagonal blocks are arranged in such a way that
Ar is either a real number � with j�j > 1 or the said 2 � 2 matrix with x� > 1. In
constructing the “destabilizing input” d.k/, we consider two separate cases, Ar is
a real number or it is a 2 � 2 matrix.

Case 1: Let Ar be � with j�j > 1. Without loss of generality, let this eigenvalue
be positive and hence � > 1. The dynamics of xr (the state associated with Ar ) is
then given by (assuming xxc.0/ D 0)

xr .k C 1/ D �xr .k/ C
mX

iD1

Bri sat�.Fi .x.k// C di .k//;

where Bri is the ith element of Br 2 R1�m and Fi .x.k// is the ith element of the
feedback function F.x.k// 2 Rm�1. The stabilizability of the pair .A; B/ implies
that the matrix Br 2 R1�m has a nonzero element, say Brio > 0.

We now proceed recursively to construct a d.k/ 2 `p such that the state xr

diverges to infinity and thus contradicts the assumption that x 2 `p. We first
choose dio.0/ D �Fio.x.0// C 1 and dj .0/ D �Fj .x.0// for j ¤ io. With
such a choice of d.0/, we have xr .1/ D Brio sat�.1/. We next choose d.1/ D
�F.x.1// and obtain xr .2/ D �xr .1/ D �Brio . Continuing the same way, we
have d.k/ D �F.x.k// and xr .k C 1/ D �xr.k/ D �kBrio sat�.1/. Recalling
that � > 1, there exists a finite ko such that

xr .ko C 1/ D �koBrio sat�.1/ >
 

mX

iD1

jBri sat�.1/j
!

=.� � 1/ C 1:

We then choose d.k/ 	 0 for all k > koC1. Clearly, d.k/ 2 `p for all p 2 Œ1; 1�.
It is then straightforward to verify that for k > ko C 2,

xr .k/ >
 

mX

iD1

jBri sat�.1/j
!

=.� � 1/ C �k�ko�1:

Hence, xr .k/ ! 1 as k ! 1, and thus, x.k/ 62 `p for any p 2 Œ1; 1�.
Case 2: Let

Ar D x�
 

x̨ x̌
� x̌ x̨

!
with x� > 1:

The dynamics of xr (the state associated with Ar ) is then given by

xr .k C 1/ D Arxr .k/ C
mX

iD1

Bri sat�.Fi .x.k// C di .k//;

where Bri 2 R2�1 is the ith column of Br 2 R2�m and Fi .x.k// is the ith element
of the feedback function F.x.k//. The stabilizability of the pair .A; B/ implies
that at least one column of the matrix Br , say Brio , is nonzero.
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We now proceed recursively to construct a d.k/ 2 `p such that the state xr

diverges to infinity and thus contradicts the assumption that x 2 `p. We first
choose dio.0/ D �Fio.x.0// C 1 and dj .0/ D �Fj .x.0// for j ¤ io. With
such a choice of d.0/, we have xr .1/ D Brio�io.1/ D Brio . We next choose
d.1/ D �F.x.1// and obtain xr .2/ D ArBrio . Continuing the same way, we
have d.k/ D �F.x.k// and xr .k C 1/ D Ak

r Brio . Observing that the matrix
operator Ar consists of a rotation and scaling up by a factor x� > 1, we have
kxr .k C 1/k D x� kkBriok. Recalling that x� > 1, there exists a finite ko such that

kxr .ko C 1/k D x� ko kBriok >
 

mX

iD1

jBri j
!

=.x� � 1/ C 1:

We then choose d.k/ 	 0 for all k > koC1. Clearly, d.k/ 2 `p for all p 2 Œ1; 1�.
It is then straightforward to verify that for k > ko C 2, we have

kxr .k/k >
 

mX

iD1

kBri k
!

=.x� � 1/ C x� k�ko�1:

Hence, kxr .k/k ! 1 as k ! 1, and thus, x.k/ 62 `p for any p 2 Œ1; 1�.

Remark 12.51 An obvious consequence of Theorem 12.50 is that neither the
problem .G=L/ nor .G=L/fg is solvable whenever A has at least one control-
lable pole strictly outside the unit circle.

Theorem 12.52 Consider the discrete-time system ˙d given in (12.1b). We have
the following:

(i) For the single input case, that is, for m=1, suppose that A has at least one
controllable eigenvalue strictly outside the unit circle. Then, for ˙d and for
any p; q 2 Œ1; 1�, the `q semi-global `p stabilization cannot be achieved
by any static linear state feedback law. That is, there exists a D� such that
for any D > D�, there does not exist any static linear state feedback law
such that the following holds:

z 2 p for all d 2 `p with kdkq 6 D;

for any a priori given (arbitrarily large) finite number D.

(ii) For general multi-input case (i.e., for m > 1), suppose that A has a control-
lable eigenvalue whose magnitude is greater than 2. Then, for ˙d and for
any p; q 2 Œ1; 1�, the `q semi-global `p stabilization cannot be achieved
by any nonlinear static state feedback law u D F.x/ with F.0/ D 0. That
is, there exists a D� such that for any D > D�, there does not exist any
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static linear or nonlinear state feedback law u D F.x/ with F.0/ D 0 such
that the following holds:

z 2 p for all d 2 `p with kdkq 6 D;

for any a priori given (arbitrarily large) finite number D.

Proof : We first consider the proof of part (i). We prove this part of the theorem
by showing that there exists a D.q/ > 0 such that, for any given linear feedback
law u D F x, there exists an external input d.k/ 2 `p;q.D.q// such that the state
kx.k/k diverges to infinity and hence x.k/ 62 `p for any p 2 Œ1; 1�.

Following the arguments in [13], it can be shown that if a feedback law u D F x

achieves `q semi-global `p stabilization, then all the eigenvalues of A CBF must
lie inside or on the unit circle. Hence, without loss of generality, we assume that
F is such that A C BF has all its eigenvalues within or on the unit circle. It then
follows from [56] (pages 198–199), that in the single-input case for all F such
that the eigenvalues of A C BF are within or on the unit circle, kF k 6 �, for
some positive constant � independent of F . Let d be chosen in the same way as
in the proof of Theorem 12.50.

Since the closed-loop system is a linear system driven by a bounded input
signal � , there exists a M > 0, independent of the control input, such that kxk 6
M for all k 2 f0; 1; 2; : : : ; kog.

If we define

D.q/ D
(

k1=q.�M C 1/ if q 2 Œ1; 1/

�M C 1 if q D 1;

then d.k/ 2 `p;q.D.q// for all p; q 2 Œ1; 1�. However, as shown in the proof of
Theorem 12.50, after a time ko, the state reaches to “the point of no return”, after
which the state will approach infinity no matter what value the actuator output
�.F x/ is.

Along the same lines as above and those in the proof of Theorem 12.50, we
prove part (ii) of the theorem by showing that there exists a d 2 `p with kdkq 6p

m such that the state diverges to infinity for any nonlinear state feedback law
u D F.x/ with F.0/ D 0. Without loss of generality, we assume that the pair
.A; B/ is in the form given in (12.121) where Axc contains all the uncontrollable
poles of the open-loop system, and all the remaining diagonal blocks are either
1 � 1 matrices or 2 � 2 matrices of the form

x�
 

x̨ x̌
� x̌ x̨

!

with x� > 0, x̌ ¤ 0, and x̨2 C x̌2 D 1, having complex conjugate eigenvalues
x�.x̨ ˙ j x̌/. Also, assume that the diagonal blocks are arranged in such a way that
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Ar is either a real number � with j�j > 2 or the said 2 � 2 matrix with x� > 2. In
constructing the “destabilizing input” d.k/, we consider two separate cases, Ar is
a real number or it is a 2 � 2 matrix.

Case 1: Let Ar be � with j�j > 2. Without loss of generality, let this eigenvalue
be positive and hence � > 2. The dynamics of xr (the state associated with Ar ) is
then given by

xr .k C 1/ D �xr .k/ C
mX

iD1

Bri sat�.Fi .x.k// C di .k//

where Bri is the ith element of Br 2 R1�m and Fi .x.k// is the ith element of the
feedback function F.x.k// 2 Rm�1. The stabilizability of the pair .A; B/ implies
that the matrix Br 2 R1�m has a nonzero element. Let us choose

d.0/ D
�

sgn.Br1/ sgn.Br2/ � � � sgn.Brm/
	0

;

and d.k/ 	 0 for all k > 1. Obviously, d.k/ 2 `p;q.D.q// for any p; q 2 Œ1; 1�.
Then, it is easily verified that, for k > 1, we have

xr.k/ > �k�1

mX

iD1

jBri j �
k�2X

j D0

�j

mX

iD1

jBri j D
mX

iD1

jBri j
0

@�k�1 �
k�2X

j D0

�j

1

A

D
mX

iD1

jBri j
2

4.� � 2/

k�2X

j D0

�j C 1

3

5 :

Recalling that � > 2, it is clear that xr .k/ diverges to infinity as k tends to infinity.
Hence, x.k/ 62 `p for any p 2 Œ1; 1�.

Case 2: Let

Ar D x�
 

x̨ x̌
� x̌ x̨

!
with x� > 2:

The dynamics of xr (the state associated with Ar ) is then given by

xr .k C 1/ D Arxr .k/ C
mX

iD1

Bri sat�.Fi .x.k// C di .k//

where Bri 2 R2�1 is the ith column of Br 2 R2�m and Fi .x.k// is the ith element
of the feedback function F.x.k//. The stabilizability of the pair .A; B/ implies
that at least one column of the matrix Br is nonzero. Let 	� 2 Rm maximize
kBr	k subject to the constraint 	i 6 1 for all i D 1 to m. Let b�

r D kBr	�k.
Clearly, b�

r ¤ 0. We now choose d.0/ D 	�, d.k/ 	 0 for all k > 1. Obviously,
d.k/ 2 `p;q.D.q// for any p; q 2 Œ1; 1�. It is then straightforward to verify that
for k > 1,
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kxr .k/k > x� k�1b�
r �

k�2X

j D0

x� j b�
r

D b�
r

0

@x� k�1 �
k�2X

j D0

x� j

1

A D b�
r

2

4.x� � 2/

k�2X

j D0

x�j C 1

3

5 :

Recalling that x� > 2, it is clear that kxr .k/k ! 1 as k ! 1, and thus, x.k/ 62
`p for any p 2 Œ1; 1�.

Remark 12.53 An obvious consequence of Theorem 12.52 is that neither the
problem .SG=L/ nor .SG=L/fg is solvable whenever A has at least one con-
trollable pole whose magnitude is greater than 2.

12.A Appendix: a preliminary lemma

Lemma 12.54 Consider "a as defined by (12.2) and let P"a
be the positive def-

inite solution of the algebraic Riccati equation (4.42) when " is replaced by "a.
Moreover, define V by V.x/ D x0P"a.x/x. Then, there exists a function K of "a

such that for any function x from RC to Rn, we have

jx0 dP"a

dt
xj 6 KjdV.x/

dt
j: (12.122)

Moreover, one particular choice for K is given by

K D N5

�min.P"a
/k.sI � A C BB 0P"a

/�1k2
H2

�max.
dQ"a

d"a
/

�min.
dQ"a

d"a
/

(12.123)

for some positive constant N5.

Remark 12.55 It is obvious that the K given in the previous lemma is upper
bounded as soon as we know that "a is bounded away from 0. Therefore, for any
"�

a, there exists a constant K such that (12.122) is satisfied for any function x that
guarantees that "a.x/ > "�

a for all t > 0.

Proof : First note that if "a D 1, then dP
dt

D 0, and the inequality is always
satisfied for any K > 0. Therefore, we can concentrate on the case "a ¤ 1.
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From the definition of "a, using that "a ¤ 1, we have

V.x/ trace.B 0 dP"a

dt
B/ C dV.x/

dt
trace.B 0PB/ D 0;

which yields

j trace.B 0 dP"a

dt
B/j D trace.B 0P"a

B/

V.x/

dV.x/

dt
6 K1

V.x/

dV.x/

dt
(12.124)

for some constant K1 since P"a
is upper bounded. On the other hand,

j trace.x
dP"a

dt
x/j 6

�max.
dP"a

d"a
/kxk2

�min.
dP"a

d"a
/kBk2

j trace.B 0 dP"a

dt
B/j

6 K2

V

�min.P"a
/

�max.
dP"a

d"a
/

�min.
dP"a

d"a
/

(12.125)

for some constant K2 > 0. It remains to derive a relation between the derivatives
of Q and the derivatives of P"a

. We will find that the Riccati equation immediately
yields

.A � BB 0P"a
/0 dP"a

d"a

C dP"a

d"a

.A � BB 0P"a
/ C dQ"a

d"a

D 0:

We recall that A � BB 0P"a
is stable, and therefore, we find that the solution of

the preceding Lyapunov equation is given by

dP"a

d"a

D
1Z

0

e.A�BB0P"a /0t dQ"a

d"a
e.A�BB0P"a /t dt;

and this leads to

�max.
dP"a

d"a

/ 6

0

@
1Z

0

e.A�BB0P"a /0te.A�BB0P"a /t dt

1

A �max.
dQ"a

d"a

/;

or, in other words,

�max.
dP"a

d"a

/ 6 1

k.sI � A C BB 0P"a
/�1k2

H2

�max

�
dQ"a

d"a

�
:

On the other hand, from [62], we obtain

�min.
dP"a

d"a

/ > 1

kA � BB 0P /k�max

�
dQ"a

d"a

�

> K3�max

�
dQ"a

d"a

�
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for some constant K3 since A � BB 0P is bounded. Combining the last two in-
equalities with (12.122) and (12.125) yields that there exists a constant N5 > 0

such that K as defined by (12.123) satisfies (12.122).

12.B Appendix: controller of the form u D B 0f .xu/
for discrete-time systems

We show in this section that for system (12.39) if a feedback controller of the form
u D B 0f .xu/ achieves .G=Gp/ and/or .G=Gp/fg for the unstable dynamics xu,
it also achieves .G=Gp/ and/or .G=Gp/fg for the overall system.

Let us consider the unstable part of the input-additive case,

�xu D Axu C Bu�.u C d/:

Assume that we have a feedback u D B 0
uf .xu/ such that xu 2 `p and, if possible,

with finite gain,
kxukp 6 c1kdkp: (12.126)

Note that we impose a bit of special structure on the feedback. Namely, u D
B 0

uf .xu/ instead of u D f .xu/, but all our standard controllers satisfy this prop-
erty which is easily seen if we recall that

�.I C B 0P"B/�1B 0P"A D B 0P".I C BB 0P"/
�1A:

If we achieve .G=Gp/ for the unstable dynamics, then it is easily verified that
we must have

Bu�.B 0
uf .xu/ C d/ 2 `p

while achieving .G=Gp/fg for the unstable dynamics. This implies that

kBu�.B 0
uf .xu/ C d/kp 6 c2kdkp : (12.127)

Now, in order to incorporate the stable dynamics, we want to establish that

�.B 0
uf .xu/ C d/ 2 `p

and ideally with a finite gain

k�.B 0
uf .xu/ C d/kp 6 c3kdkp: (12.128)

This implies that for the stable dynamics, we will have

kxskp 6 �k�.B 0
uf .xu/ C d/kp 6 �c3kdkp;

where � is the `p gain of the stable dynamics characterized by the pair .As ; Bs/.
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From (12.128) and the fact that As is Schur stable, we conclude that there exists
a c4 such that

kxskp 6 c4k�.f .xu/ C d/kp 6 c3c4kdkp:

This, together with (12.126), concludes the finite gain `p stability.
To establish (12.128), we first note that

Bu�.B 0
uf .xu/ C d/ D Bu�.B 0

uf .xu// C Bud1

with kd1kp 6 kdkp. But this implies that

kBu�.B 0
uf .xu//kp 6 kBu�.B 0

uf .xu/ C d/kp C kBukkdkp:

In other words, it is sufficient to prove that

k�.B 0
uf .xu//kp 6 c4kBu�.B 0

uf .xu//kp (12.129)

in order to obtain

k�.B 0
uf .xu/ C d/kp 6 k�.B 0

uf .xu//kp C kdkp

6 c4kBu�.B 0
uf .xu//kp C kdkp

6 c4kBu�.B 0
uf .xu/ C d/kp

C .1 C c4kBuk/ kdkp

6 .c4c2 C 1 C c4kBuk/ kdkp;

where we used (12.127).
It remains to verify (12.129) which is implied by the following static inequality:

k�.B 0
uv/k 6 c4kBu�.B 0

uv/k: (12.130)

Since this is a static problem, we are using vector norms.
Note that we can find a matrix S such that

Bu D S

 
Bu1

0

!

with Bu1 surjective. Next, we note that it is sufficient to prove that

k�.B 0
u1w/k 6 c5kBu1�.B 0

u1w/k (12.131)

for some suitably chosen c5 since for w D Sv, we get

k�.B 0
uv/k 6 c5kBu1�.B 0

uv/k
6 c5

�min.S/
kSBu1�.B 0

uv/k

6 c5

�min.S/
kBu�.B 0

uv/k;
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which yields (12.130) for a suitably chosen c4. It remains to show (12.131). We
consider two cases. If B 0

u1w saturates at least one channel, then

kBu1�.B 0
u1w/k > hB 0

u1wn; �.B 0
u1w/ i

> kB 0
u1wnk1

> 1p
m

�min.B 0
u1/;

where

wn D w

kwk :

In that case,

k�.B 0
u1w/k 6

p
m k�.B 0

u1w/k1
D p

m

6 m

�min.B 0
u1/

kBu1�.B 0
u1w/k:

On the other hand without saturation,

kB 0
u1wk 6 kB 0

u1.B 0
u1B 0

u1/�1Bu1B 0
u1wk2

6 kB 0
u1.B 0

u1B 0
u1/�1k kBu1B 0

u1wk:

Combining the two cases with and without saturation yields (12.131) for a suit-
ably chosen c5, that is,

c5 > max

�
m

�min.B 0
u1/

; kB 0
u1.B 0

u1B 0
u1/�1k



:



13
Simultaneous external and internal
stabilization: non-input-additive case

13.1 Introduction

For the case when the external signals appear additive to the control input,
Chap. 12 develops control strategies for several simultaneous stabilization prob-
lems in both global and semi-global setting for both continuous- and discrete-time
systems. In this chapter, we tackle the same problems, however, for the case of
non-input-additive external signals. Unlike in the input-additive case where our
results are more or less complete, we present here only some limited results.

As introduced in (11.1), a continuous-time linear system subject to actuator
saturation where the disturbance is non-input additive can be described by

˙c W

8
<̂

:̂

Tx.t/ D Ax.t/ C B�.u.t// C Ed.t/;

z.t/ D x.t/; t � 0;

y.t/ D Cx.t/; t � 0

(13.1a)

and similarly consider a discrete-time system of the form

˙d W

8
<̂

:̂

x.k C 1/ D Ax.k/ C B�.u.k// C Ed.k/;

z.k/ D x.k/; k � 0;

y.k/ D Cx.k/; k D 1; 2; : : : ;

(13.1b)

where, as usual, x 2 Rn is the state, u 2 Rm is the input, z 2 Rq is the controlled
variable, and y 2 Rp is the measured output. For simplicity, throughout this
chapter, we consider a standard saturation function � .

13.2 Simultaneous stabilization in global framework

We are concerned here with simultaneous external and internal stabilization prob-
lems in a global setting for the case of non-input-additive disturbance, that is, we
consider systems of the form (13.1a). We consider here only two classical prob-
lems, namely, .Gp=G/ and .Gp=G/fg problems. This is because our results, es-
pecially for .Gp=G/fg problem, are more or less negative and are vastly different

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__13,
© Springer Science+Business Media New York 2012
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from the input-additive case discussed in the previous chapter. In fact, unlike the
input-additive case, we start seeing a complex picture emerging here, and such a
complex picture more or less persists in subsequent chapters as well, although the
exact nature of the complexity varies from chapter to chapter. The fact that the
results for the .Gp=G/fg problem are negative simply precludes considering the
other global problems defined in Chap. 11.

Without much fanfare, let us first consider the problem .Gp=G/fg , i.e., the
problem of simultaneous global asymptotic stabilization and global Lp stabiliza-
tion with finite-gain.

As said above, it turns out that an extremely restrictive necessary condition
must be satisfied to achieve .Gp=G/fg . In fact, the result given below indicates
that if the disturbance excites those marginally unstable modes of the open-loop
system, then .Gp=G/fg is not solvable. We state and prove this result only for
continuous-time systems. The same result holds analogously for discrete-time
systems as well.

Theorem 13.1 Consider the system ˙ in (13.1a). The problem of simultaneous
global asymptotic stabilization and global Lp stabilization with finite gain (the
.Gp=G/fg problem) as defined in Problem 11.2 is solvable by any feedback con-
trol law only if the auxiliary system ˙aux defined as,

˙aux W
(

Tx D Ax C Ed

z D Czx
(13.2)

is globally Lp stable with finite gain, i.e., there exists a � 0
p > 0 such that

kzkp 6 � 0
pkdkp

for zero initial conditions.

Remark 13.2 If .Cz; A/ is detectable and .A; B/ is ANCBC, then the necessary
condition in the above theorem is also sufficient for state feedback. This is seen as
follows: Since ˙aux is Lp stable and detectable, the unstable internal dynamics of
˙aux must be uncontrollable from d . Thus, for system ˙ , we only need to design
a globally stabilizing controller for the unstable part and choose zero control for
the stable part. Then, we obtain global asymptotic stabilization and global Lp

stabilization with finite gain for system ˙ . However, this argument is not valid
for measurement feedback because in that case the disturbance can affect the
unstable dynamics via the estimated state of the unstable dynamics.

Remark 13.3 Note that even when the open-loop system is critically stable, the
.Gp=G/fg problem is not solvable in general. Another interesting point of
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Theorem 13.1 is that the lowest gain � 0
p set by the auxiliary system ˙aux provides

a lower bound for the possible Lp gains achievable by any saturated control law
for the original system. This indicates that, whenever the disturbance is not-input-
additive and the control is saturated, the global framework for Lp stabilization
with finite gain is an over-requirement. Hence, it becomes more meaningful to
work with the notion of Lp stabilization for some restricted set of disturbances.
One way to restrict the disturbance is by imposing a uniform bound on the Lp

norm, which is the so-called semi-global Lp stabilization. But this might not be
the best choice. In this sense, it becomes an important issue to identify those non-
conservative subsets of Lp disturbances for which the finite-gain Lp stabilization
is possible.

Proof : We assume zero initial conditions from the beginning, and let d 2 Lp.
Then we have z D zu;0 C z0;d , where zu;0 is the output of the system for input
u and zero disturbance, while z0;d is the output of the system for zero input and
disturbance d . Since the saturation function is bounded, for any given T > 0,
there exists a constant M > 0 such that kzu;0kLp Œ0;T � < M for any input u and
zero disturbance. Obviously,

kzu;d kLp Œ0;T � > kz0;d kLp Œ0;T � � kzu;0kLp Œ0;T �:

Hence, for any � > 0,

kzu;�d kLp Œ0;T � > �kz0;d kLp Œ0;T � � M;

because the controlled output z is linear in terms of d . This yields

kzu;�d kLp Œ0;T �

k�dkLp Œ0;T �

>
kz0;d kLp Œ0;T �

kdkLp Œ0;T �

� M

�kdkLp Œ0;T �

;

which holds for any nonzero disturbance d 2 Lp . Letting � ! 1, we find that

sup
d

kzu;d kLp Œ0;T �

kdkLp Œ0;T �

> sup
d

kz0;d kLp Œ0;T �

kdkLp Œ0;T �

; (13.3)

and hence

inf
u

sup
d

kzu;d kLp Œ0;T �

kdkLp Œ0;T �

> sup
d

kz0;d kLp Œ0;T �

kdkLp Œ0;T �

; (13.4)

where inf
u

indicates the infimum over all possible controls.

Suppose that ˙aux is not finite-gain Lp stable. Then, for any � > 0, there exist
d � 2 Lp , .d � ¤ 0/, and T > 0 such that

kz0;d �kLp Œ0;T � > �kd �kLp Œ0;T �:
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Thus, it follows from (13.4) that

inf
u

sup
d

kzu;d kp

kdkp

> inf
u

sup
d

kzu;d kLp Œ0;T �

kdkLp Œ0;T �

>
kz0;d �kLp Œ0;T �

kd �kLp Œ0;T �

> �:

Hence, it is impossible to achieve a finite gain for system ˙ by any control law.

Theorem 13.1 implies that in general the simultaneous global Lp (or `p) sta-
bilization and global asymptotic stabilization with finite gain is not achievable.
This leads us to study the same problem however without the requirement of fi-
nite gain. In this case, unlike the results of Theorem 13.1, next theorem provides
a positive result. That is, whenever we do not require finite gain, the simultaneous
global Lp (or `p) stabilization and global asymptotic stabilization with arbitrary
initial conditions is achievable for all p 2 Œ1; 1/.1 We emphasize that the ini-
tial conditions of the given system need not be fixed at x.0/ D 0, they can be
arbitrary.

Theorem 13.4 Consider the continuous- or discrete-time system ˙ in (13.1).
Assume that the pair .A; B/ is asymptotically null controllable with bounded con-
trol (ANCBC), and .C; A/ is detectable. Then, the problem of simultaneous global
Lp (or `p) stabilization and global asymptotic stabilization with arbitrary initial
conditions and without finite gain, as defined in Problem 11.4, is solvable for any
p 2 Œ1; 1/ via measurement feedback controllers.

Remark 13.5 We observe that in the discrete-time case, Theorem 13.4 implies
that for any d 2 `p with p 2 Œ1; 1/, one can design a measurement feedback law
such that the controlled output z goes to zero asymptotically because z 2 `p. In
other words, the closed-loop system remains globally attractive in the presence of
any d 2 `p. A similar conclusion can be made for continuous-time systems, due
to Lemma 2.4.

Proof : We first consider continuous-time systems. Let P" be the solution of the
CARE,

A0P" C P"A � P"BB 0P" C Q" D 0; (13.5)

where for " 2 Œ0; 1�,

Q" > 0; lim
"!0

Q" D 0; dQ"

d"
> 0:

1Note that it is impossible to achieve external stability for disturbance signals belonging to
L1 .`1/; however, a class of such signals are identified in Chap. 15 for which saturated linear
feedback control laws exist that preserve the boundedness of states.
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Consider a dynamic 2n-dimensional observer-based measurement feedback
controller,

8
<̂

:̂

Tyx D Ayx C B�.u/ C K.y � C yx/

T! D .A C BF /! C K.y � C yx/

u D �B 0P"a.z/z C F!;

(13.6)

where K and F are such that A�KC and ACBF are Hurwitz stable, z D yx �!,
and "a.z/ is determined by

"a.z/ D maxfr 2 .0; 1� j z0Prz trace.B 0PrB/ 6 �2

4
g; (13.7)

and where P"a.z/ is the solution of CARE (13.5) with " replaced by "a.z/.
Define e D x � yx. The closed-loop system in terms of e, z, and ! is given by

8
<̂

:̂

Te D .A � KC /e C Ed

Tz D Az C B�.�B 0P"a.z/z C F!/ � BF!

T! D .A C BF /! C KCe:

In the absence of d , the above becomes:

8
<̂

:̂

Te D .A � KC /e

Tz D Az C B�.�B 0P"a.z/z C F!/ � BF!

T! D .A C BF /! C KCe:

Clearly, the origin is locally exponentially stable. To see global attractivity, we
note that e ! 0 and ! ! 0 as time tends to infinity due to the fact that both
A C BF and A � KC are Hurwitz stable. Then, there exists a T such that
kF!.t/k 6 �

2
for all t > T . This and the adapting law (13.7) together imply

that the saturation will be inactive for all t > T . Since � is a standard saturation
function, then the z dynamics becomes,

Tz D Az � BB 0P"a.z/z

which is globally attractive. This concludes global asymptotic stability.
In the presence of d , since A � KC and A C BF are both Hurwitz stable,

it follows that e 2 Lp , ! 2 Lp and ! ! 0 (see Sect. 2.9). Then, as before,
there exists a T such that kF!.t/k 6 �

2
for all t > T . Therefore, as before, we

can conclude that the saturation is inactive for all t > T , and hence, z dynamics
becomes

Tz D Az � BB 0P"a.z/z:

This system is known to be globally asymptotically stable and locally exponen-
tially stable. Hence, z 2 Lp and x D e C yx D .e C z C !/ 2 Lp.
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We consider next discrete-time systems. Consider a discrete-time linear system
˙d given in (13.1b), and let P" be the solution of the DARE,

P" D A0P"A � AP"B.I C B 0P"B/�1B 0P"A C Q"; (13.8)

where for " 2 Œ0; 1�,

Q" > 0; lim
"!0

Q" D 0; dQ"

d"
> 0:

Consider a dynamic 2n-dimensional observer-based measurement feedback con-
troller 8

<̂

:̂

�yx D Ayx C B�.u/ C K.y � C yx/

�! D .A C BF /! C K.y � C yx/

u D �.I C B 0P"a.z/B/�1B 0P"a.z/Az C F!;

(13.9)

where K and F are such that A � KC , and A C BF are Schur stable, z D yx � !,
and "a.z/ is determined by

"a.z/ D maxfr 2 .0; 1� j z0Prz trace.B 0PrB/ 6 �2

8
g; (13.10)

and where P"a.z/ is the solution of the DARE (13.8) with " replaced by "a.z/.
Define e D x � yx. The closed-loop system in terms of e, z, and ! is given by
8
<̂

:̂

�e D .A � KC /e C Ed

�z D Az C B�.�.I C B 0P"a.z/B/�1B 0P"a.z/Az C F!/ � BF!

�! D .A C BF /! C KCe:

(13.11)
In the absence of d , the above becomes:

8
<̂

:̂

�e D .A � KC /e

�z D Az C B�.�.I C B 0P".z/B/�1B 0P".z/Az C F!/ � BF!

�! D .A C BF /! C KCe:

Clearly, the origin is locally exponentially stable. To see global attractivity, we
note that e ! 0 and ! ! 0 as time tends to infinity due to the fact that both
ACBF and A�KC are Schur stable. Then, there exists a N such that kF!.k/k 6
�
2

for all k > N . This and the adapting law (13.10) together imply that the
saturation will be inactive for all k > N (see also (4.244) and the inequalities
below it). Since � is a standard saturation function, the z dynamics then becomes,

�z D Az � B.I C B 0P"a.z/B/�1B 0P"a.z/Az

which is globally attractive. This concludes global asymptotic stability.
In the presence of d , for a standard saturation function, since A � KC and

A C BF are both Schur stable, it follows that e 2 `p, ! 2 `p, and ! ! 0
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Then, as before, there exists a N such that kF!.k/k 6 �
2

for all k > N . There-
fore, as before, we can conclude that the saturation is inactive for all k > N , and
hence, z dynamics becomes,

�z D Az � B.I C B 0P"a.z/B/�1B 0P"a.z/Az:

This system is known to be globally asymptotically stable and locally exponen-
tially stable (see Chap. 4). Hence, z 2 `p and x D e C yx D .e C z C !/ 2 `p.

Remark 13.6 Admittedly, the results of Theorem 13.4 which utilizes a
2n-dimensional dynamic measurement feedback pertain only to Lp .`p/ stabi-
lization without finite gain. Even then, the results are remarkable especially when
we note that similar results by static state feedback are sparse. Furthermore, these
results are true irrespective of the nature of initial conditions.

13.3 Semi-global external stabilization and global
asymptotic stabilization

As said earlier, Theorem 13.1 in general precludes achieving simultaneous global
Lp (or `p) stabilization and global asymptotic stabilization with finite gain. This
begs the question whether any positive results are feasible if the requirement of
global Lp (or `p) stabilization is relaxed to semi-global Lp (or `p) stabilization.
To pursue this, let us first formally define what can be termed as .SGp=G/fg

problem.

Problem 13.7 Consider the continuous- or discrete-time system ˙ in (13.1). For
any p 2 Œ1; 1�, this system is said to be simultaneously semi-globally finite
gain Lp stabilizable (or `p stabilizable) and globally asymptotically stabiliz-
able via static state feedback (or dynamic measurement feedback with dynamical
order nc) if, for any a priori given (arbitrarily large) D > 0, there exists a static
state (or respectively, dynamic measurement) feedback law, possibly depending
on D (or respectively, nc , and D), such that the following conditions hold:

(i) For continuous-time case, the closed-loop system is finite gain Lp stable
over the set Lp;p.D/. That is, there exists a positive constant �p such that
with x.0/ D 0, the following holds:

kzkp � �pkdkp ; for all d 2 Lp with kdkp 6 D:

Similarly, for the discrete-time case, the closed-loop system is finite gain
`p stable over the set `p;p.D/. That is, there exists a positive constant �p

such that with x.0/ D 0, the following holds:

kzkp � �pkdkp; for all d 2 `p with kdkp 6 D:
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(ii) In the absence of any disturbance signal d, the equilibrium point x D 0 of
the closed-loop system is globally asymptotically stable .

The above problem is coined as .SGp;q=G/fg problem.

We have the following result:

Theorem 13.8 Consider the continuous or discrete-time system ˙ in (13.1). As-
sume that the pair .A; B/ is asymptotically null controllable with bounded con-
trol (ANCBC), and .C; A/ is detectable. Then the problem of simultaneous global
asymptotic stabilization and semi-global Lp .`p/ stabilization with finite gain, as
defined in Problem 13.7, is solvable for p 2 Œ1; 2� via either state or measurement
feedback controllers.

Remark 13.9 A result for the continuous-time systems with p D 2 was reported
in [98].

Proof : We only provide a proof for the continuous-time case. The proof for
discrete-time case follows along the same lines. Consider the H1 algebraic Ric-
cati equation,

A0P C PA � PBB 0P C ��2PEE 0P C "I D 0: (13.12)

It can be shown that there exists a � > 0 such that for all " 2 .0; 1�, there exists
a unique positive definite solution P" > 0 to (13.12) such that A � BB 0P" C
��2EE 0P" is asymptotically stable. Moreover, P" ! 0 as " ! 0 and dP"

d"
> 0

for " 2 .0; 1�. We define the adapting scheme as

".x/ WD max

�
" 2 .0; 1� W x0P"x trace P" 6 �2

kBB 0k
�

: (13.13)

Let the control law be u.x/ D �B 0P".x/x. For simplicity, we use the shorthand
P D P".x/. Then, clearly,

kuk2 D x0PBB 0P x 6 kBB 0k�max.P /x0P x 6 kBB 0kx0P x trace.P / 6 �2:

Hence, the adaptive control law never activates the saturation.
Define V.x/ D x0P".x/x. The derivative of V along the system trajectory is

TV D �"kxk2 � kuk2 C �
2d 0E 0P x � ��2x0PEE 0P x

� C x0 TP x: (13.14)

Let h D E 0P x. We claim that for p > 1, there exists a c1 > 0 such that

2kdkkhk � ��2khk2 6 c1khk2�pkdkp : (13.15)
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This is seen as follows. First, (13.15) holds if khk D 0. For khk ¤ 0,

2kdkkhk � ��2khk2 D ��2khk2

�
2�2kdk

khk � 1

�

6 ��2khk2

�
2�2kdk

khk
�p

D ��2.2�2/pkhk2�pkdkp :

Further noting that P D P".x/ 6 P1, we get

khk2 D x0PEE 0P x 6 kEE 0k�maxŒP1�V .x/:

Then it follows from (13.15) that there exists a constant c2 > 0 such that for
p 2 Œ1; 2�,

2kdkkhk � ��2khk2 6 c2V 1�p=2kdkp : (13.16)

Continuing from (13.14), we get

TV C "kxk2 C kuk2 6 c2V 1�p=2kdkp C x0 TP x: (13.17)

Let d D 0. We claim that TV < 0 for x ¤ 0. In fact, when x is sufficiently large,
the adaptation scheme (13.13) implies that 0 < " < 1 and

V.x/ trace.P / D �2=kBB 0k:

Hence, if TV > 0 for x ¤ 0, then TP 6 0, which contradicts (13.17) with d D 0.
Thus, ultimately, the state trajectory enters a neighborhood of the origin where
".x/ � 1 and TP D 0. It is easy to see that in this region, we have local exponential
stability. This shows global asymptotic stabilization.

It remains to derive the finite-gain stability by assuming zero initial condition
and d 2 Lp.D/ for some D > 0 and p 2 Œ1; 2�. Noting that TV and TP always
have opposite signs for TP ¤ 0, we obtain from (13.17) that

TV 6 c2V 1�p=2kdkp :

This implies that for any given d 2 Lp.D/, we have

V p=2.x/ 6 p

2
c2Dp ; 8t > 0;

which means that the state x starting from the origin remains bounded. Then the
adaptation scheme guarantees that there is a lower bound for ".x/, i.e., 9 "� > 0

such that ".x/ > "�, given a specific disturbance d 2 Lp.D/.
For TP ¤ 0, we have

V.x/ trace.P / D �2=kBB 0k;
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which implies
TV trace.P / C V trace. TP / D 0

and

V.x/ > �2

kBB 0k trace P1

:

Hence, for TV < 0 and TP > 0,

x0 TP x 6 kxk2 trace. TP / D kxk2 trace.P /

V
.� TV / 6 �M TV ;

for some constant M > 0, where we have used the facts that x is bounded,
trace.P / 6 trace.P1/, and

kxk2

V

has a positive lower bound. Then, it follows from (13.17) that for TV < 0,

TV C "

1 C M
kxk2 6 c2

1 C M
V 1�p=2kdkp

which implies that for p 2 Œ1; 2�,

TV C "

1 C M

�
V

�max.P1/

�1�p=2

kxkp 6 c2

1 C M
V 1�p=2kdkp :

That is, there exist ˇ1 > 0 and ˇ2 > 0 such that

dV p=2

dt
C ˇ1kxkp 6 ˇ2kdkp : (13.18)

On the other hand, for TV > 0 (thus TP 6 0), it follows similarly from (13.17) that
there exist ˇ3 > 0 and ˇ4 > 0 such that

dV p=2

dt
C ˇ3kxkp 6 ˇ4kdkp : (13.19)

Combining (13.18) and (13.19), we obtain

dV p=2

dt
C �1kxkp 6 �2kdkp; (13.20)

where �1 D minfˇ1; ˇ3g and �2 D maxfˇ2; ˇ4g. This dissipation inequality
shows that

kxkp 6 �kdkp;

where � D .�2=�1/1=p.
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So far, we have shown the finite-gain Lp stability with state feedback. For the
measurement feedback case, we use the controller,

( Tyx D Ayx C B�.u/ C K.y � C yx/

u D f .yx/;
(13.21)

where K is chosen such that A�KC is Hurwitz and f is the nonlinear state feed-
back we constructed in the state feedback but with E replaced by KC . Defining
e D x � yx, we obtain

Te D .A � KC /e C Ed: (13.22)

Since the error dynamics is exponentially stable, for all d 2 Lp.D/, we have
e 2 Lp and

kekp 6 �1kdkp ;

for some �1 > 0. Therefore, there exists a D0 > 0 such that .e0; d 0/0 2 Lp.D0/.
Then, from the result for state feedback and (13.21), we conclude that

kyxkp 6 �2.kekp C kdkp/

for some �2 > 0. Consequently, we obtain that

kxkp 6 kyxkp C kekp ;

6 �2kdkp C .�2 C 1/kekp;

6 f�2 C �1.�2 C 1/g kdkp :

The finite gain from d to z follows immediately.

13.4 Lp . p̀/ stabilization for p 2 Œ1; 1/ of open-loop
neutrally stable linear systems with saturated
linear control laws

We considered so far general linear systems with saturated feedback control laws
when the given system is open-loop asymptotically null controllable with bounded
control (ANCBC). When the external disturbances are non-input-additive, it is
clear that in general there is no control law that can achieve Lp or `p stabil-
ity with finite gain, unless the disturbance affects only the asymptotically stable
modes of the system. However, nonlinear feedback control laws are constructed
that can achieve simultaneous global asymptotic stability as well as Lp stability
or `p stability without finite gain. Then a question arises: Can a linear feedback
control law achieve Lp stability without finite gain if it achieves global asymptotic
stability? The answer to this question in general is of course negative. However, as
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shown in [169] and as will be discussed in Chap. 14, for a double integrator which
belongs to the class of marginally unstable systems, a saturated linear internally
stabilizing feedback control law can achieve Lp stability without finite gain for
p 2 Œ1; 2�, but not for p > 2.

The above discussion brings forth another important question: For what class
of linear systems subject to non-input-additive disturbances can a saturated lin-
ear feedback control law achieve global asymptotic stability as well as Lp or `p

stability with possibly arbitrary initial conditions?
For the case of input-additive disturbance, Chap. 12 shows that for open-loop

neutrally stable systems with input saturation, global asymptotic stability and the
traditional Lp stability or `p stability with zero initial conditions can be achieved
by a saturated linear feedback control law for all p 2 Œ1; 1�. In this section,
we generalize these results in two ways by considering arbitrary initial condi-
tions as well as non-input-additive disturbances. More specifically, we show that
for open-loop neutrally stable systems with input saturation and for non-input-
additive disturbance, there exist linear feedback control laws that achieve global
asymptotic stability and external Lp .`p/ stability for all p 2 Œ1; 1/ and for arbi-
trary initial conditions. In the course of our development here, for the same class
of systems, we also show that the same saturated linear feedback control laws also
achieve another type of external stability in the sense that any vanishing distur-
bance produces a vanishing state for arbitrary initial conditions. Such a property
is usually possessed by a linear exponentially stable system.

Before we present a general result, we first work out two special cases, one for
continuous-time and another for discrete-time systems. That is, in Sects. 13.4.1
and 13.4.2, we derive, respectively, the Lp and `p stability results by state feed-
back for open-loop neutrally stable systems with all their open-loop poles on the
imaginary axis (continuous time) or on the unit circle (discrete time). These re-
sults are then extended in Sect. 13.4.3 to general open-loop neutrally stable sys-
tems by using measurement feedback controllers. For simplicity, we consider
throughout standard saturation functions.

13.4.1 Continuous-time systems

If a continuous-time system (13.1a) is open-loop neutrally stable and .A; B/ is
stabilizable, then in a suitable basis, we have

A D
 

Ac 0

0 As

!
; B D

 
Bc

Bs

!
; (13.23)

where Ac satisfies Ac C A0
c D 0, As is asymptotically stable, and .Ac ; Bc/ is

controllable. For the moment, we ignore the asymptotically stable subsystem and
assume that the system satisfies the condition A C A0 D 0 and that .A; B/ is
controllable. Also, we assume that y D z D x, that is, we only consider state
feedback and Lp stability with arbitrary initial conditions with the output equal
to the state. A general result is presented in Sect. 13.4.3.
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Theorem 13.10 Consider the system

Tx D Ax C B�.u/ C d; x.0/ D x0; (13.24)

where .A; B/ is controllable and A0 C A D 0. Then for any 	 > 0, the linear
feedback control law u D �	B 0x achieves simultaneous global Lp stability with
arbitrary initial conditions for all p 2 Œ1; 1/ and global asymptotic stability.

Remark 13.11 The system in the form of (13.24) is in general not finite-gain
Lp stabilizable as was shown in [166]. Also, note that the bounded disturbance
d D �B�.u/ C x0 with x0 an unstable eigenvector of A yields an unbounded
state x for zero initial condition. Hence, the system is not L1 stable for any
controller. This idea can be easily extended to establish that the system is not L1
stable for any fixed initial condition and any controller.

Proof : The result of global asymptotic stability follows from Chap. 4. We proceed
to show global external stability. According to Lemma 13.21 in the appendix, we
only need to show that the state of the following system:

Tx D Ax � B�.	B 0x/ C Bd (13.25)

is in Lp for all d 2 Lp \ L1 \ C0.
Since d is vanishing, there exists a T0 > 0 such that kd.t/k1 < 1=2 for all

t > T0. Let

V1.x/ D kxkpC1

p C 1
: (13.26)

Then, for t > T0, we have d D �.d/ and

TV1 D kxkp�1x0ŒAx � B�.	B 0x/ C Bd�

D 1

	
kxkp�1Œ�u0�.u/ � u0d�

D 1

	
kxkp�1f�u0Œ�.d/ � �.d � u/� C u0Œ�.u � d/ � �.u/�g

6 � 1

2	
kxkp�1u0�.u/ C 2

p
m

	
kxkp�1kdk;

where in the last inequality, we have used the inequalities (13.51) and (13.52) in
the appendix.

Next, since A � 	BB 0 is Hurwitz, there exists a matrix P > 0 such that

.A � 	BB 0/P C P.A � 	BB 0/ D �I:
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We define

V2.x/ D 1

p
.x0P x/p=2:

Clearly, there exist ˛ > 0 and ˇ > 0 such that

TV2 D .x0P x/.p�2/=2fx0P
�
.A � 	BB 0/x C B.�.u/ � u/ C Bd

�g
6 �˛kxkp C ˇkxkp�1ku � �.u/k C ˇkxkp�1kdk
6 �˛kxkp C ˇkxkp�1u0�.u/ C ˇkxkp�1kdk; (13.27)

where we have used the inequality (13.53).
Now, letting V.x/ D 2ˇ	V1.x/ C V2.x/, we obtain

TV 6 �˛kxkp C �1kxkp�1kdk D �˛kxkp�1
�
kxk � �1

˛
kdk

	
(13.28)

for t > T0, where �1 D ˇ.1 C 4
p

m/. Now since d is vanishing, for any "1 > 0

and "2 > 0, there exists a T1 > T0 such that

kd.t/k < min

�
"2;

"1

2

�
˛

�1

��

for all t > T1. Hence, if kx.t/k > "1 for some t > T1, then

TV .t/ < � "1˛
2

kx.t/kp�1 < �˛
2

"
p
1 :

Therefore, there exists a T > T1 such that kx.T /k < "1. Since the closed-loop
system without saturation is exponentially stable, we can choose "1 and "2 suf-
ficiently small so that if kx.T /k < "1 and kd.t/k < "2 for all t > T , then the
saturation of u D �	B 0x will never be activated again. That is, the closed-loop
system is ultimately linear for t > T and exponentially stable. Hence, the Lp

stability follows immediately.

As a by-product of the above proof, we obtain that the same linear feedback
control law achieves CICS stability as defined in Definitions 2.70.

Theorem 13.12 Consider the system (13.24) with the same conditions as in The-
orem 13.10. Then for any 	 > 0, the linear feedback control law u D �	B 0x
achieves CICS stability.

Proof : According to Lemma 13.21, we only need to prove this theorem for a
matched disturbance. From the proof of Theorem 13.10, we see that, given any
vanishing disturbance and any initial condition, the saturation element will not
be activated again after some finite time. Hence, by the fact that the closed-loop
system is exponentially stable, the CICS stability follows easily.
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13.4.2 Discrete-time systems

This subsection is parallel to Sect. 13.4.1 but deals with discrete-time systems.
We assume in this subsection that .A; B/ is controllable, A satisfies A0A D I ,
and y D z D x. A more general result is stated in Sect. 13.4.3.

Theorem 13.13 Consider the system

�x D Ax C B�.u/ C d; x.0/ D x0; (13.29)

where .A; B/ is controllable and A0A D I . Then there exists a 	� > 0 such that
for any 	 2 .0; 	��, the linear feedback control law u D �	B 0Ax achieves si-
multaneous global `p stability with arbitrary initial conditions for all p 2 Œ1; 1/

and global asymptotic stability.

Remark 13.14 The control law u D �	B 0Ax is also used in [5, 26].

We first establish local exponential stability when using the feedback law given
in Theorem 13.13.

Lemma 13.15 Assume that A0A D I and 	B 0B < 2I for some 	 > 0. Then
A� WD .I � 	BB 0/A is asymptotically stable if and only if .A; B/ is controllable.

Proof : Since A0A D I , all eigenvalues of the matrix have norm 1 and are hence
unstable. Hence, stabilizability is equivalent to controllability, from which we
have the necessity.

Note that for any x 2 Cn, we have

x�A0
�A�x D kxk2 � 	x�A0B.2I � 	B 0B/B 0Ax 6 kxk2; (13.30)

where x� denotes the conjugate transpose of x. Assume we have an eigenvector
x of A� , i.e.,

A�x D .A � 	BB 0A/x D �x:

Then from (13.30), we immediately obtain that j�j 6 1. If j�j D 1, then from
(13.30), we must have that B 0Ax D 0. It follows that Ax D �x, and using
A0A D I , we obtain x�A D ��x�. This yields that x ¤ 0 satisfies x�A D ��x�
and x�B D 0, which is contradictory to the controllability of .A; B/.
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We need also two inequalities as presented in the following lemma:

Lemma 13.16 Let 	B 0B < I; A0A D I , and u D �	B 0Ax, where 	 > 0. Then
the following two inequalities hold:

u0�.u/ 6 	kxk2; (13.31)

u0�.u/ 6
p

	mkxk: (13.32)

Proof : Since 	B 0B < I is obviously equivalent to 	BB 0 < I , inequality (13.31)
follows from

u0�.u/ 6 u0u D 	2x0A0BB 0Ax 6 	kxk2:

Inequality (13.32) follows from

u0�.u/ 6
mX

iD1

j	.B 0Ax/i j

6 	
p

mkB 0Axk
D p

m.	2x0A0BB 0Ax/1=2

6
p

	mkxk;

where .�/i indicates the i th component.

Proof of Theorem 13.13 : The result of global asymptotic stability follows from
Chap. 4. We proceed to show global external stability. According to Lemma 13.22,
we only need to prove the theorem for matched disturbances, that is, it suffices to
establish the `p stability of the following closed-loop system

�x D Ax � B�.	B 0Ax/ C Bd; x.0/ D x0 (13.33)

for all x0 2 Rn and d 2 `p. We choose in advance a small 	� > 0 so that

2	B 0B < I (13.34)

for all 	 2 .0; 	��.
Since d is vanishing, there exists a K0 > 0 such that kd.k/k < 1=4 for all

k > K0. Using the inequality

2� 0.u/B 0Bd 6 � 0.u/B 0B�.u/ C d 0B 0Bd
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and inequalities (13.34) and (13.54), we get for k > K0,

k�xk2 � kxk2

D kAx C B�.u/ C Bdk2 � kxk2

D � 0.u/B 0B�.u/ C d 0B 0Bd C 2� 0.u/B 0Bd C 2� 0.u/B 0Ax C 2d 0B 0Ax

6 � 2

	
� 0.u/u � 2

	
u0d C 2� 0.u/B 0B�.u/ C 2d 0B 0Bd

6 � 1

	
u0�.u/ � 1

	
u0.2d/ C 1

	
kdk2

6 � 1

2	
u0�.u/ � 1

2	
u0Œ�.u/ C 4d � C 1

	
kdk2

6 ��1u0�.u/ C �2kdk2; (13.35)

with �1 D 1
2�

; �2 D 3
�

.
Note that by inequality (13.31), we have:

�1u0�.u/ 6 1

2
kxk2 6 kxk2 C �2kdk2: (13.36)

Now, let V1.x/ D kxk3. Denoting �V1 by V1.�x/, by inequality (13.35), we have

�V1 6
�kxk2 C �2kdk2 � �1u0�.u/

� 3
2

6
�kxk2 C �2kdk2

� 3
2 � �1

�kxk2 C �2kdk2
� 1

2 u0�.u/

6
�kxk2 C �2kdk2

� 3
2 � �1kxku0�.u/

6 kxk3 C "1kxk2 C �2ˇ1kdk2 � �3

�
u0�.u/

�2
;

where �3 D �1p
�m

, and we used (13.55) and (13.36) in the second inequal-
ity, (13.59) and (13.32) in the last inequality. Recall from Lemma 13.28 that we
can make "1 arbitrary small at the expense of a larger ˇ1. Consequently, we obtain

�V1 � V1 6 ��3Œu0�.u/�2 C "1kxk2 C �2ˇ1kdk2; (13.37)

for all k > K0.
Let A� D A � 	BB 0A, which is Schur stable by Lemma 13.15. Then there

exists a P > 0 such that

A0
�PA� � P D �I:

We have

x0A0
�PA�x � x0P x D �kxk2: (13.38)



714 13. Simultaneous external and internal stabilization: non-input-additive case

Let V2.x/ D x0P x and v D BŒ�.u/ � u� C Bd . Then, applying inequal-
ity (13.58), (13.38), and (13.53), we have

�V2 � V2 D .�x/0P.�x/ � x0P x

D .x0A0
� C v0/P.A�x C v/ � x0P x

D kP 1=2A�x C P 1=2vk2 � x0P x

6 .kP 1=2A�xk C kP 1=2vk/2 � x0P x

6 x0A0
�PA�x � x0P x C "2kP 1=2A�xk2 C ˇ2kP 1=2vk2

6 �kxk2 C "3kxk2 C ˇ3kvk2

6 �.1 � "3/kxk2 C ˇ4k�.u/ � uk2 C ˇ5kdk2

6 �.1 � "3/kxk2 C ˇ4

�
u0�.u/

�2 C ˇ5kdk2; (13.39)

where "3 D "2kP 1=2A�k2, ˇ3 D ˇ2kP k, and ˇ4; ˇ5 > 0 are appropriately
defined constants. According to Lemma 13.28, "2 (and hence "3) can be made
arbitrarily small by choosing a larger ˇ2 > 0 and hence larger ˇ4 and ˇ5. Here,
we take "3 < 1=2. Now, define

V D ˇ4

�3

V1 C V2:

It follows from (13.37) and (13.39) that for k > K0,

�V � V 6 �.1 � "3 � "4/kxk2 C ˇkdk2; (13.40)

where "4 D "1ˇ4

�3
and ˇ D ˇ4

�3
�2ˇ1 C ˇ5. As we pointed out before, "4 can be

chosen arbitrarily small by choosing a small "1. Hence, we assume that "1 has
been chosen so that "4 < 1=2. Thus, � WD .1 � "3 � "4/ > 0. Analogously
to the proof of Theorem 13.10 in continuous time, the inequality (13.40) can be
used to show that the saturation at input will not be activated again after some
finite time because the disturbance d is vanishing. Since the closed-loop system
without saturation is exponentially stable and the disturbance is in `p, it easily
follows that the state x 2 `p. This completes the proof.

Note that the proof of Theorem 13.13 is similar to the proof of Theorem 13.10.
Hence, along the same lines as in the proof of Theorem 13.12, we can achieve
CICS stabilization.

Theorem 13.17 Consider the system (13.29) with the same condition as in The-
orem 13.13. Then there exists a 	� > 0 such that for any 	 2 .0; 	��, the linear
feedback control law u D �	B 0Ax achieves CICS stabilization.

Proof : Similar to the proof of Theorem 13.12.
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Corollary 13.18 Consider the system

�x D Ax C B�.u C d/; x.0/ D x0; (13.41)

where .A; B/ is controllable and A0A D I . Then, for sufficiently small 	>0,
the linear control law u D �	B 0Ax achieves converging input converging state
(CICS) stability with arbitrary initial condition as well as `p stability with arbi-
trary initial condition for any p 2 Œ1; 1/.

Proof : We have

�x D Ax C B�.u C d/ D Ax C B�.u/ C Bv

with v D �.u C d/ � �.u/. Since

kv.k/k D k�.u.k/ C d.k// � �.u.k//k 6 kd.k/k;

we have v 2 c0 if d 2 c0 and v 2 `p if d 2 `p. Then, the CICS stability and `p

stability are direct consequences of Theorems 13.13 and 13.17.

Remark 13.19 Finite-gain `p stability for the controller u D �	B 0Ax and the
system (13.41) has been established recently for p 2 .1; 1� in [5]. In [5] the
case p D 1 was excluded. The above corollary shows that for the case p D 1,
we can at least achieve `p stability, although the result for finite gain is still not
available.

13.4.3 Generalization of Lp .`p/ stability results

We consider in this section continuous- and discrete-time systems of the following
form: 8

<̂

:̂

�x D Ax C B�.u/ C d1; x.0/ D x0

y D Cx C d2

z D Czx C Dz�.u/ C d3;

(13.42)

where �x, as usual, represents either time derivative in continuous time or time
shift in discrete time, x with x.t/ 2 Rn is the state, �.u/ represents the stan-
dard vector saturation element on the input u with u.t/ 2 Rm, y.t/ 2 Rr is
the measurement output, where z is the controlled output with z.t/ 2 Rq . The
signals d1, d2, and d3 represent external disturbances to the system. We assume
that di 2 Lp .i D 1; 2; 3/ in continuous time and di 2 `p .i D 1; 2; 3/ in dis-
crete time. As in the previous subsection, we assume that A is open-loop neutrally
stable, .A; B/ is stabilizable, and .C; A/ is detectable.
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We extend here the results developed in the previous two subsections to the
general system (13.42). Also, instead of using state feedback, we implement the
state feedback laws via measurement. These extensions are direct consequences of
the previous results. For completeness, we state the general results in this section,
sketch the ideas, but omit the proofs.

Under our general assumptions, we know that in a suitable basis we have

A D
 

Ac 0

0 As

!
; B D

 
Bc

Bs

!
; (13.43)

where Ac satisfies Ac C A0
c D 0 for continuous-time systems and A0

cAc D I for
discrete-time systems, As is asymptotically stable, and .Ac ; Bc/ is controllable.
We have the following theorem:

Theorem 13.20 Consider the system (13.42) which satisfies the conditions stated
above. Then there exists an observer-based linear feedback control law which
achieves simultaneous global Lp stability with arbitrary initial conditions (con-
tinuous time) or global `p stability with arbitrary initial conditions (discrete time)
for all p 2 Œ1; 1/ and global asymptotic stability. That is, given any di 2
Lp .`p/.i D 1; 2; 3/ and an arbitrary initial conditions, we have z 2 Lp.`p/,
and in the absence of any disturbances, we have global asymptotic stability. A
suitable controller is given by

(
�yx D Ayx C B�.F yx/ C L.C yx � y/; yx.0/ D yx0;

u D F yx;
(13.44)

where L is chosen so that .A C LC / is asymptotically stable,

F D
�
�	B 0

c 0
	

for any 	 > 0 in continuous time, and

F D
�
�	B 0

cAc 0
	

with 	 > 0 small enough in discrete time.

Proof : Global asymptotic stability result follows from Chap. 4. Regarding global
external stability, we sketch here only the main idea behind the proof for the
continuous-time case and omit the details. Given the suitable basis for which we
obtained (13.43), the system can be put in the following diagonal form:

(
Txc D Acxc C Bc�.u/ C dc

Txs D Asxs C Bs�.u/ C ds ;
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where the state has been decomposed into x0 D Œx0
c ; x0

s �. We define e D x � yx
and we get

Te D .A C LC /e C .d1 C Ld2/:

Since .d1 C Ld2/ 2 Lp , obviously, e 2 Lp. Given the controller as presented in
the theorem, we obtain

(
Txc D Acxc C Bc�.�B 0

cxc C B 0
ce/ C dc

Txs D Asxs C Bs�.�B 0
cxc C B 0

ce/ C ds :

Applying Theorem 13.10 to the first subsystem, we have xc 2 Lp, since e 2 Lp

and dc 2 Lp. The second subsystem is exponentially stable with inputs xc , e, and
ds in Lp. It follows that xs 2 Lp. Thus, we have z 2 Lp.

13.A Appendix: Some Preliminary Lemmas

This appendix contains several lemmas that are used in the proof of the main
results.

In functional analysis, a general Lp signal for any p 2 Œ1; 1/ may be highly
complicated; it may not be bounded or vanishing, which is not convenient in anal-
ysis. Fortunately, the following lemma is helpful in that if the control law is glob-
ally Lipschitz in state, we only need to consider those Lp signals that are bounded,
vanishing, and matched with the control for the purpose of proving general Lp

stability. This is adapted from [89].

Lemma 13.21 Let p 2 Œ1; 1/ and .A; B/ be stabilizable. Let F be Lipschitz
continuous, i.e., there exists a constant L > 0 such that

kF.
/ � F.�/k 6 Lk
 � �k (13.45)

for all 
; � 2 Rn. Then, we have the following equivalences:

(i) The system

Tx D Ax � B�.F.x// C d; x.0/ D x0 (13.46)

is Lp stable for all d 2 Lp and for all x0 2 Rn if and only if the state of
system

T
 D A
 � B�.F.
// C B zd; 
.0/ D 
0 (13.47)

is in Lp for all zd 2 Lp \ L1 \ C0 and for all 
0 2 Rn.
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(ii) The system (13.46) is finite-gain Lp stable if and only if system (13.47) is

finite-gain Lp stable for all disturbances zd 2 Lp \ L1 \ C0.

(iii) The system (13.46) is C0 stable for arbitrary initial conditions if and only
if the system (13.47) has the same property.

Proof : The necessity for each equivalence is self-evident. For sufficiency of (i),
we introduce an auxiliary linear system

Ty D .A � BK/y C d; (13.48)

where K is such that A � BK is Hurwitz. Define z D x � y. Then

Tz D Az � B�.F.z// C B zd;

where
zd D �Œ�.F.z C y// � �.F.z//� C Ky:

Since the system (13.48) is Lp stable, by Lemma 2.4, the signal y is vanishing
and bounded. Since the functions � and F are both Lipschitz continuous, we have

k�.F.z C y// � �.F.z//k 6 kF.z C y/ � F.z/k 6 Lkyk:

Thus, zd is also vanishing and bounded. If z 2 Lp for all such zd 2 Lp \L1 \C0,
then x D z C y 2 Lp.

From the above argument, it is easy to see that the equivalence also holds for
Lp stability with finite gain by observing that system (13.48) is also finite-gain
Lp stable. Also, it is easy to obtain the equivalence of C0 stability between the
systems (13.46) and (13.47) because the system (13.48) is converging input con-
verging state (CICS) stable.

A similar result holds for discrete-time systems. Since any `p signal .1 6 p <

1/ is automatically vanishing and bounded, the discrete version of Lemma 13.21
can be simplified.

Lemma 13.22 Let p 2 Œ1; 1/ and .A; B/ be stabilizable. Let F be Lipschitz
continuous, i.e., there exists a constant L > 0 such that (13.45) is satisfied for all

; � 2 Rn. Then, the system

�x D Ax � B�.F.x// C d; x.0/ D x0 (13.49)

is `p stable for arbitrary initial conditions if and only if the system

�z D Az � B�.F.z// C B zd; z.0/ D z0 (13.50)

is `p stable for arbitrary initial conditions. Moreover, the equivalence also holds
for the other cases: finite-gain `p stability and converging input converging state
(CICS) stability both with fixed or arbitrary initial conditions.
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13.B Some inequalities

This appendix contains some inequalities we used in the text.

Lemma 13.23 For arbitrary vectors u; d 2 Rm, we have

ju0Œ�.u C d/ � �.u/�j 6 .2
p

m/kdk: (13.51)

Proof : We first establish (13.51) for scalars u and d . Because of symmetry, we
only need to prove this inequality for all d > 0. Since d > 0, it simply follows
that the inequality holds for all u > 1. It also holds for all u C d 6 �1 because
u 6 �1 � d < �1. Since the case for juj 6 1 is easy, it remains to verify the
following two cases:

Case 1 u < �1; u C d > 1 in which case, �1 > u > 1 � d > �d . Hence,

juŒ�.u C d/ � �.u/�j D ju.1 C 1/j D 2juj < 2jd j:

Case 2 u < �1; ju C d j 6 1. If u < �1; �1 6 u C d 6 0, then

juŒ�.u C d/ � �.u/�j D ju.u C d C 1/j D .�u/.u C d C 1/

D �u.1 C u/ � ud � d C d

D �.1 C u/.u C d/ C d < d D jd j
while, if u < �1; 0 6 u C d 6 1, then

juŒ�.u C d/ � �.u/�j
D ju.u C d C 1/j D .�u/.u C d C 1/

D �.1 C u/.u C d/ � d C 2d

6 �1 � u � d C 2d D �1 � .u C d/ C 2d < 2d D 2jd j:

The general vector case then follows from

ju0Œ�.u� d/ � �.u/�j 6
mX

iD1

jui Œ�.ui � di / � �.ui /�j 6 2

mX

iD1

jdi j 6 .2
p

m/kdk:

Lemma 13.24 Consider two arbitrary vectors u; d 2 Rm. Then, for any d 2 Rm

satisfying kdk < 1
2

, we have

2u0Œ�.d/ � �.d � u/� > u0�.u/: (13.52)
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Proof : We first establish (13.52) for scalars u and d with jd j < 1
2

. We consider
the following three cases:

� If d � u > 1, then �1=2 > d � 1 > u and

uŒ�.d/ � �.d � u/� D jujjd � 1j >
1

2
juj > 1

2
u�.u/:

� If d � u < �1, then 1=2 < d C 1 < u and

uŒ�.d/ � �.d � u/� D u.d C 1/ >
1

2
u > 1

2
u�.u/:

� If jd � uj 6 1, then

uŒ�.d/ � �.d � u/� D u2 > u�.u/ > 1

2
u�.u/:

The general case with u and d vectors then immediately follows from

u0Œ�.d/ � �.d � u/� D
mX

iD1

ui Œ�.di / � �.di � ui /� > 1

2

mX

iD1

ui �.ui / D 1

2
u0�.u/;

Lemma 13.25 We have the following inequality:

ku � �.u/k 6 u0�.u/: (13.53)

Moreover, for any d 2 Rm satisfying kdk < 1, we have

� u0Œ�.u/ C d� 6 kdk2

4
: (13.54)

Proof : Inequality (13.53) follows from

ku � �.u/k 6
mX

iD1

jui � �.ui /j 6
mX

iD1

ui �.ui / D u0�.u/:

To show inequality (13.54), we consider two cases. If jui j > jdi j, then

�ui Œ�.ui / C di � 6 0:

If jui j 6 jdi j < 1, then

�ui Œ�.ui / C di � D �ui .ui C di / 6
d 2

i

4
:

Hence, inequality (13.54) follows.



13.B Some inequalities 721

Lemma 13.26 Assume b > a > 0 and q > 1. Then,

.b � a/q � bq 6 �bq�1a: (13.55)

Proof : This follows from direct verification.

Lemma 13.27 Assume q > r > 0. For any " > 0, there exists a ˇ > 0 such that

uq�r vr 6 "uq C ˇvq (13.56)

for all u; v > 0.

Proof : If u D 0, the inequality holds trivially. If u ¤ 0, let x D v
u

> 0. Then, it
suffices to prove that

xr � ˇxq 6 ": (13.57)

It is easy to verify that g.x/ D xr � ˇxq attains its maximum at

�
r

ˇq

� 1
q�r

;

while the maximum is equal to

gmax D
�

r
ˇq

	 r
q�r

�
1 � r

q

	
:

Clearly, gmax converges to zero as ˇ ! 1 and hence for a suitable choice of ˇ,
we know that (13.57) is satisfied.

Lemma 13.28 Assume q > 1. For any " > 0, there exists a ˇ > 0 such that

.u C v/q 6 uq C "uq C ˇvq (13.58)

for all u; v > 0. On the other hand, if v is bounded by M > 0, then for any
" > 0, there exists a ˇ (depending on M ) such that

.u C v/q 6 uq C "uq�1=2 C ˇvq�1=2 (13.59)

for all u > 0 and all v satisfying 0 6 v 6 M .
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Proof : The first part follows from Lemma 12.18.
For the second inequality, we first note for any q > 1, there exists a N > 0

such that
.1 C z/q � 1 6 Nz (13.60)

for z 2 Œ0; 1�. Then we obtain for 0 6 v 6 u that

.u C v/q � uq D uq
h


1 C v
u

�q � 1
i

6 Nuq�1v

6 NM 1=2uq�1v1=2

6 "uq�1=2 C ˇ0vq�1=2 (13.61)

where the first inequality is a consequence of (13.60) and the final inequality is a
consequence of Lemma 13.27 which guarantees that for any " > 0, there exists a
suitable ˇ0 satisfying the last inequality.

On the other hand, for v > u, we have

.u C v/q � uq 6 2qvq 6 M 1=22qvq�1=2: (13.62)

Combining (13.62) and (13.61) yields the required result.



14
The double integrator with linear
control laws subject to saturation

14.1 Introduction

As discussed in previous chapters, for linear systems subject to actuator saturation,
simultaneous external and internal stabilization is possible only for systems which
are asymptotically null controllable with bounded control (ANCBC). Even then,
in general, nonlinear feedback control laws are required. Of particular interest is
the use of linear feedback control laws. Clearly, as shown in Chaps. 12 and 13,
for open-loop neutrally stable systems, the global asymptotic stability and ex-
ternal Lp .`p/ stability for p 2 Œ1;1/ with arbitrary initial conditions can be
achieved by linear feedback control laws. We continue in this chapter the theme
of pursuing systems other than open-loop neutrally stable ones for which such
a simultaneous stabilization is feasible. We focus here on a canonical class of
ANCBC systems, namely, a double integrator which is ubiquitously used. In fact,
the double-integrator system is commonly seen in control applications including
low-friction, free rigid-body motion, such as single-axis spacecraft rotation and
rotary crane motion (see [117], and the references therein). All these issues are
the motivating factors why we choose in this chapter to reexamine the notions of
external and internal stabilization via linear feedback control laws for a double
integrator with linear feedback control laws subject to saturation.

As is obvious from Chap. 4, double integrator can be asymptotically stabilized
globally with linear saturated feedback control laws. In fact, any internally stabi-
lizing controller for the system without input saturation also stabilizes the system
when the saturation element is present. Unlike the case of internal stability, the
picture that emerges regarding the external stability as portrayed in this chapter is
complex and challenging.

A double-integrator system subject to actuator saturation is described by

(
Tx1 D x2

Tx2 D �.u/:
(14.1)

Let us utilize a linear state feedback control law,

u D �k1x1 � k2x2; (14.2)

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__14,
© Springer Science+Business Media New York 2012
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where k1 > 0 and k2 > 0. Then, a closed-loop system in the presence of a
non-input-additive external disturbance d can be written as

(
Tx1 D x2

Tx2 D �.�k1x1 � k2x2/C d:
(14.3)

Whenever the external disturbance d is input additive, the above closed-loop
system can be rewritten as

(
Tx1 D x2

Tx2 D �.�k1x1 � k2x2 C d/;
(14.4)

where, clearly, the disturbance d directly affects the system through the input
channel.

Our goals in this section are multifold; examination of (1) simultaneous global
Lp stability and global internal stability of closed-loop double-integrator system
in the presence of non-input-additive external disturbance d (system (14.3)) with
arbitrary initial conditions, (2) simultaneous globalLp stability and global internal
stability of closed-loop double-integrator system in the presence of input-additive
external disturbance d (system (14.4)) with arbitrary initial conditions, (3) ISS
stability of closed-loop double-integrator system in the presence of non-input-
additive external disturbance d (system (14.3)). As we shall see, this examination
portrays a complex and intricate picture regarding the external stability of double-
integrator system. This motivates us to consider an additional goal, (4) construc-
tion of a class of sustained external disturbance signals under which some external
stability properties of the system (14.3) are preserved.

In the absence of external disturbance d , both the closed-loop systems (14.3)
and (14.4) coalesce are globally asymptotically stable for k1 > 0 and k2 > 0.
Hence, we concentrate throughout the chapter in examining various Lp stability
properties. This chapter is based on the results of [169], [150], [203], and [196].

14.2 Lp stability: non-input-additive case

In this section, we consider the double-integrator system (14.3) subject to actuator
saturation and having a linear static state feedback law and non-input-additive
disturbances in order to examine its Lp stability. The main result of this section is
stated in the following theorem.

Theorem 14.1 For any k1 > 0 and k2 > 0, the system
(

Tx1 D x2

Tx2 D �.�k1x1 � k2x2/C d
(14.5)
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is Lp stable for p 2 Œ1; 2�. In fact, for this double integrator system with
non-input-additive disturbances, the simultaneous global Lp stabilization with
arbitrary initial conditions and without finite-gain and globally asymptotic stabi-
lization (as defined in Problem 11.4) is achievable for all p 2 Œ1; 2� by any linear
static state feedback. Furthermore, the above system (14.5) is not Lp stable for
all p 2 .2;1�.

Remark 14.2 It is worth noting that the Lp stability stated in the above theorem
is independent of the specific linear feedback controller. If p 2 Œ1; 2�, then any
linear feedback controller that achieves global asymptotic stability also yieldsLp

stability, whereas for p > 2, there is no linear feedback controller that achieves
Lp stability.

Before proceeding to the proof of this theorem, we make some observations.
By a simple scaling of the state and time, system (14.3) is equivalent to the new
system: (

Tx1 D x2

Tx2 D ��.�x1 � x2/C �d;
(14.6)

where � > 0. We then introduce new coordinates:

y1 D x1 C x2; y2 D x2; v D �d (14.7)

to obtain the system,
(

Ty1 D y2 � ��.y1/C v

Ty2 D � ��.y1/C v:
(14.8)

Introducing a Lyapunov function V.y1; y2/ for this system,

V.y1; y2/ D �

y1Z

0

�.�/d�C 1

2
y2

2 ; (14.9)

we get
dV
dt

D ��2�2.y1/C ��.y1/v C y2v: (14.10)

If there is no disturbance at all, i.e., v.t/ � 0, then global asymptotic stability
follows from LaSalle’s invariance principle.

Note that because of saturation, L1 stability is impossible since

v D ��.y1/C 1

is bounded and yields an unbounded state (we will elaborate more on this in the
next section). Hence, in the proof of Theorem 14.1, we will focus on the Lp
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stability for p < 1. By Lemma 13.21 of Chap. 13, it suffices to consider only
those Lp disturbance signals v which are vanishing, i.e., with the property that
limt!1 v.t/ D 0. Theorem 14.1 follows after we establish three lemmas.

Before we state the following lemma, let us generalize slightly the notion of
Lp stability as stated in Definition 2.55.

Definition 14.3 The system (14.3) or the system (14.4) is said to beLp=Lq stable
if the state x 2 Lp given d 2 Lq and zero initial conditions. If p D q, we simply
refer to this property as Lp stability as was done in earlier chapters.

Lemma 14.4 Lp stability of system (14.8) is equivalent to L1=Lp stability of
system (14.5) for p 2 Œ1;1/.

Proof : If system (14.5) is Lp stable, then the state x and the derivative Tx are in
Lp which implies that the state is bounded.

Conversely, we claim that if the state is bounded given anyLp disturbance, then
the state is in Lp. Using Lemma 13.21 in Appendix of Chap. 13, it is sufficient
to consider disturbances v with the property that limt!1 v.t/ D 0. Consider an
arbitrary disturbance v; then because the state x is bounded, there exists a con-
vergent subsequence with some limit xx, i.e., there exists an unbounded sequence
ti .i 2 N/ with ti > ti�1 such that limi!1 x.ti / D xx.

y1

y2

0 1

ti si

riti+1

Ni

Ni+1

Figure 14.1: Proof of Lemma 14.5
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Let " and � be such that for any initial condition x0 satisfying kx0k < " and
kvk1 < �, the saturation will never get activated. This is clearly possible. Since
the system is globally asymptotically stable, the system converges to zero for
initial condition xx with disturbance v D 0, and hence, there exists a T > 0 such
that starting in xx, we are in a ball of size "=2 around the origin after T seconds.
But then, it is easy to see that given " > 0, there exists a ı < � such that for any
initial condition x.0/ D x0 satisfying kxx � x0k < ı and kvk1 < ı, we have
kx.T /k < ".

But then, choose ti such that kv.t/k < ı for all t > ti and kx.ti / � xxk < ı.
Then we know that for s > ti C T , we have kx.s/k < " and kv.t/k1 < � for
t > s. But then for t > T C ti , the saturation will never get activated, and we have
a stable linear system with disturbance v 2 Lp. But this implies that x 2 Lp.

In the next lemma and elsewhere, for anyD > 0 and 1 6 p 6 1, we shall use
the notation

Lp.D/ WD fx 2 Lp W kxkp 6 Dg:

Lemma 14.5 There exists a ı > 0 such that, if v 2 L2.ı/\L1.ı/, then the state
y of system (14.8) is bounded for all initial conditions.

Proof : We want to establish that the state remains bounded. We will investigate
a period of time that the state is sufficiently large starting at time t D t0 and show
that the state can only grow a limited amount for t > t0 and hence will remain
bounded. For initial conditions sufficiently large, it is easily verified that the state
will circle around the origin, and hence ti (i D 1; : : :) as given by

t1 D minf t > t0 j y1.t/ D 0 g
tiC1 D minf t > ti j y1.t/ D 0 g

are well-defined. We define Ni WD y2.ti /. We also define,

si WD minft > ti W jy1.t/j D 1g
ri WD minft > si W jy1.t/j D 1g:

From the above, it is obvious that when the state is large enough or, equivalently,
for Ni large enough, si and ti are well-defined and ti < si < ri < tiC1.

We will study the trajectory on the interval Œti ; tiC1� in detail. For ease of ex-
position, we consider the case Ni > 0. The case Ni < 0 can be shown using
similar arguments. In the above, we have shown that the trajectory on the interval
Œti ; tiC1� can be depicted as in Fig. 14.1. It is also clear that NiC1 < 0.
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We will analyze the three time intervals Œti ; si �, Œsi ; ri �, and Œri ; tiC1� separately.

The interval Œti ; si �. The derivative of y2 is bounded from above by �C ı and
hence

y2.t/ > Ni � .�C ı/.t � ti /

for t 2 Œti ; si �. But then, given that Ty1 > y2 � � � ı, we find that

si � ti <
2

Ni

; (14.11)

assuming Ni is sufficiently large. It is also clear that y2.si / D zNi satisfies
Ni=2 < zNi < 2Ni . We obtain that ��.y1/Cy2 < 2Ni holds for t 2 Œti ; si �
if Ni is large. This implies that

siZ

ti

Œ��.y1/C y2�
2dt 6

siZ

ti

.2Ni/
2dt 6 8Ni ;

and using (14.10),

V.si / 6 V.ti /C
siZ

ti

Œ��.y1/C y2�vdt

6 V.ti /C
0

@
siZ

ti

Œ��.y1/C y2�
2dt

1

A
1=20

@
siZ

ti

v2.t/dt

1

A
1=2

6 V.ti /C
p
8Ni

0

@
siZ

ti

v2.t/dt

1

A
1=2

: (14.12)

The interval Œri ; tiC1�. Applying similar arguments, we obtain that tiC1 � ri <
�2=NiC1, and if we define y2.ri / D zNiC1, then �2NiC1 < zNiC1 <

�NiC1=2. Finally,

V.tiC1/ 6 V.ri /C
p
8jNiC1j

0

@
tiC1Z

ri

v2.t/dt

1

A

1=2

: (14.13)

The interval Œsi ; ri �. Note that for the trajectory from si to ri , we have ���ı 6
Ty2 6 ��C ı. It follows that

�.�C ı/.ri � si / 6 y2.ri /� y2.si / 6 �.� � ı/.ri � si /;
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and if we use that y2.si / > Ni=2 and y2.ri / < NiC1=2, we get

.ri � si / > 1

�C ı
Œy2.si /� y2.ri /� > 1

2.�C ı/
.Ni �NiC1/: (14.14)

From the expression of TV in (14.10), the inequality (14.14), and

1

�C ı
6 �1

Ty2

6 1

� � ı ; (14.15)

we get

V.ri / 6 V.si /� �2.ri � si /C
riZ

si

Œ��.y1/C y2�vdt

6 V.si /� �2.Ni �NiC1/

2.�C ı/
C
0

@
riZ

si

Œ��.y1/C y2�
2dt

1

A
1=20

@
riZ

si

v2.t/dt

1

A
1=2

6 V.si /� �

4
Ni C

0

@
riZ

si

Œ��.y1/C y2�
2dt

1

A
1=20

@
riZ

si

v2.t/dt

1

A
1=2

:

Then,

riZ

si

Œ��.y1/C y2�
2dt D

zNiZ

zNiC1

.�C y2/
2 1

.� Ty2/
dy2

6 1

� � ı

zNiZ

zNiC1

.�C y2/
2dy2

6 1

3.�� ı/

h
. zNi C �/3 � . zNiC1 C �/3

i
:

This gives rise to

V.ri / 6 V.si / � �

4
Ni C ˛N

3=2
i Ai ; (14.16)

for some constant ˛ > 0 where

Ai D
0

@
tiC1Z

ti

v2dt

1

A
1=2

;

and we have used � zNiC1 6 6 zNi 6 12Ni , which is to be proved later.
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Combining (14.12), (14.13), and (14.16), we finally obtain that

V.tiC1/ 6 V.ti /� �

4
Ni C ˛N

3=2
i Ai : (14.17)

From (14.17), we claim that

N 2
iC1 6 N 2

i

�
1C 4

�
˛2A2

i

�
: (14.18)

First, note that V.ti / D 1
2
N 2

i and then is easily seen from the fact that if 4˛Ai 6
�N

�1=2
i , then

N 2
iC1 6 N 2

i 6 N 2
i

�
1C 8

�
˛2A2

i

�
;

while if 4˛Ai > �N
�1=2
i , we have

N 2
iC1 6 N 2

i C 2˛N
3=2
i Ai 6 N 2

i

�
1C 8

�
˛2A2

i

�
:

We have only shown inequality (14.18) for Ni > 0. But a similar argument can
be used forNi < 0 to yield the same inequality, and hence, (14.18) holds for all i .
Recall that

Q1
iD1.1 C bi / with bi > 0 is convergent if and only if

P1
iD1 bi is

convergent. We find that

N 2
i 6 N 2

1

1Y

iD1

�
1C 8

�
˛2A2

i

�
< 1

because v 2 L2 implies that
P1

iD1A
2
i < 1.

It remains to show that � zNiC1 6 6 zNi . Let y2.pi / D 0 where si < pi < ri .
Then, noticing Ty1 D y2 � � C v 6 y2 C ı with y2 > 0 from si to pi and
using (14.15), we get

y1.pi /� 1 D
piZ

si

Ty1.t/dt 6
0Z

zNi

.y2 C ı/
1

Ty2

dy2

6 1

� � ı

zNiZ

0

.y2 C ı/dy2

6 1

� � ı

�
1

2
zN 2

i C ı zNi

�
:
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Also noticing that Ty1 D y2 � �C v 6 y2 � .� � ı/ with y2 6 0 from pi to ri ,
we get

1 � y1.pi / D
riZ

pi

Ty1dt 6
riZ

pi

Œy2 � .� � ı/�dt

D
zNiC1Z

0

Œy2 � .� � ı/� 1Ty2

dy2

6 1

�C ı

0Z

zNiC1

Œy2 � .� � ı/�dy2

D 1

�C ı

�
�1
2

zN 2
iC1 C .� � ı/ zNiC1

�
:

It follows that

1

�C ı

�
1

2
zN 2

iC1 � .� � ı/ zNiC1

�
6 1

� � ı
�
1

2
zN 2

i C ı zNi

�
:

This yields

1

2.�C ı/
zN 2

iC1 6 1

� � ı
zN 2

i ;

which in turn yields j zNiC1j 6 6j zNi j. This completes the proof.

Let us next recall C0, as defined in Definition 2.69, denotes the set of all van-
ishing functions. We have the following lemma:

Lemma 14.6 For p > 2 and any ı > 0, there exists for any large enough ini-
tial condition, a disturbance d 2 Lp.ı/ \ L1.ı/ \ C0 such that the state y of
system (14.8) is unbounded.

Proof : We will use the same notation as in the proof of Lemma 14.5. Again, pro-
vided the initial conditions are large enough, we know that the state will basically
circle around the origin, and the time instants ti are well-defined for i D 1; 2; : : : ;

provided we make sure that the state does not become too small. It will be an obvi-
ous consequence from our construction that the state does not get small. We again
define ri and si which are well-defined since if Ni is large enough, we always
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reach the area with jy1j > 1. We set our disturbance equal to zero for t 2 Œ0; t1�.
As before, we do our analysis for the case y.ti / D Ni > 0 but the case when
y.ti / < 0 is identical with some obvious modifications.

The interval Œti ; si � Choose v.t/ D 0 for t 2 Œti ; si �. Then from (14.10) and
(14.11), we get

V.si / > V.ti /� .si � ti / > V.ti /� 2

Ni

: (14.19)

The interval Œri ; tiC1� Similarly, choosing v.t/ D 0 for t 2 Œri ; tiC1�, we have

V.tiC1/ > V.ri /� .si � ti / > V.ri /C 2

NiC1

: (14.20)

The interval Œsi ; ri � For the trajectory from si to ri , we choose

v D ˛i sgn.�C y2/j�C y2j1=.p�1/;

where ˛i > 0 is a constant to be chosen later. Then, using

� .ri � si / > 1

� � ı
Œy2.ri /� y2.si /� > 2

.� � ı/ .NiC1 �Ni /; (14.21)

we obtain

V.ri / D V.si / � �2.ri � si /C
riZ

si

.�C y2/vdt

> V.si /C 2�2

� � ı
.NiC1 �Ni /C ˛i

riZ

si

j�C y2j p
p�1 dt:

Note that

riZ

si

j�C y2j p
p�1 dt >

piZ

si

j�C y2j p
p�1 dt >

zNiZ

0

.�C y2/
p

p�1
1

.� Ty2/
dy2

> 1

�C ı

zNiZ

0

.y2/
p

p�1 dy2

D 1

�C ı

�
p � 1

2p � 1

�
zN

2p�1
p�1

i

> b
p

p�1N
2p�1
p�1

i
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for some constant b > 0 and where we have used that zNi > Ni=2. Letting

Ai D
0

@
riZ

si

jvjpdt

1

A
1=p

D ˛i

0

@
riZ

si

j�C y2j p
p�1 dt

1

A
1=p

;

we finally obtain that

V.ri / > V.si / � aNi C bAiN
2� 1

p

i (14.22)

for some constant a > 0, where we have used the linear bound �NiC1 6
12Ni obtained before.

Putting together (14.19), (14.20), and (14.22) yields

V.tiC1/ > V.ti / � aNi C bAiN
2� 1

p

i : (14.23)

Now, choose ˛i so that

Ai D b�1N
1
p

�2

i

�
aNi CNi C 1

2

�
:

Then

N 2
iC1 > N 2

i C 2Ni C 1 D .Ni C 1/2:

Hence, jNi j > jN1j C i . But then, it is easy to verify that

1X

iD1

A
p
i 6

�
2.aC 2/b�1

	p 1X

iD1

1

.jN1j C i/p�1
< 1

for p > 2 and hence v 2 Lp. Note that a and b do not depend on N1 and hence
for N1 large enough, we find that d 2 Lp.ı/. Next, we note that

˛i 6 cN
�1� 1

p�1
i

for some constant c independent of Ni . But then, in terms of the disturbance d.t/
(note that v.t/ D �d.t/), we obtain that

kd.t/k 6 d1N
�1
i ; t 2 Œti ; tiC1�

for a constant d1 independent of Ni . Since Ni is increasing and converges to
infinity, this clearly implies that for N1 large enough, we have d 2 L1.ı/ and
moreover d 2 C0. This completes the proof.

Proof of Theorem 14.1 : According to Lemma 13.21 of Appendix of Chap. 13, it
is sufficient to consider those Lp disturbances that converge to zero as time tends
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to infinity. This implies that for any ı > 0, there exists a time zt such that v D �d

restricted to Œzt ;1/ is in L2.ı/ \ L1.ı/. But then, according to Lemma 14.5 for
the case p D 2, we have the state remaining bounded. This implies that the system
is L1=L2 stable, and hence, L2 stability follows directly from Lemmas 14.4.

Since Lp \L1 � L2 for all p 2 Œ1; 2/, we can use theL2 stability to conclude
that the state is converging to zero as time tends to infinity. Thus, ultimately, the
saturation has no effect, i.e., the system is linear. But this immediately implies Lp

stability for all p 2 Œ1; 2/.
We still need to establish that the system is not Lp stable for p > 2. We know

from Lemma 14.6 that if the initial condition is large enough, then we can find
a disturbance such that the state becomes unbounded and therefore the state will
definitely not be in Lp . If we start at time t D 0 and we choose some time zt > 0,
then we can clearly choose a disturbance xd which is constant and large on the
interval Œ0; zt � such that the initial state at time t D zt is sufficiently large to apply
Lemma 14.6 and hence the existence of a disturbance zd 2 Lp on the interval
Œzt ;1/ such that the state is not in Lp. Note that the disturbance signal d which is
equal to xd on Œ0; zt � and equal to zd 2 Lp on the interval Œzt ;1/ is clearly in Lp.

14.3 Further examination of L1 stability
for non-input-additive disturbances

It is clear from Theorem 14.1 that Lp stability for p > 2 is not feasible whenever
the external signals or disturbances are non-input additive. As such, L1 stability
is not feasible. In fact, if the amplitude of disturbance is greater than one, it over-
whelms the control input, and thus L1 stability is impossible. Nevertheless, it is
fruitful to reexamine L1 stability in order to learn clearly different aspects of it.
This is our goal in this section. Toward this goal, we consider the system given
in (14.8) which is a rewritten version of double integrator with external distur-
bances not additive to control input. The arguments we use in this section do not
depend on the value of �, and hence, without any loss of generality, we set � D 1

and rewrite (14.8) as
(

Ty1 D y2 � �.y1/C d

Ty2 D � �.y1/C d:
(14.24)

As said earlier, it is obvious that any constant disturbance d.t/ � c with magni-
tude jcj > 1 drives the state of system (14.24) to infinity. If a constant disturbance
d.t/ � c has magnitude jcj D 1, the state can still diverge. To see this, let
c D 1 in (14.24). Then, starting from .0; 0/, direct integration of (14.24) shows
that .y1.t/; y2.t// D .1; 0:546/ at t D 1:21. For all t > 1:21, y2.t/ � 0:546 and
y1.t/ D 0:546.t � 1:21/C 1 ! 1 as t ! 1.

In this section, we show that if the constant disturbance is of magnitude jcj < 1,
then the state remains bounded. However, we will construct also an example to
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show that there is a vanishing disturbance with magnitude less than one which
drives the state from the origin to infinity. We first have the following result.

Theorem 14.7 Consider the system (14.24) with constant disturbance d.t/ � c

where jcj < 1. Then the trajectory starting from the origin is bounded and finally
approaches the equilibrium .c; 0/.

Proof : It is easy to see that the point .c; 0/ is an isolated equilibrium for jcj < 1.
It follows from (14.24) that

y2 Ty2 D �Œ�.y1/ � d� Ty1 � Œ�.y1/ � d�2:
Taking the integral and noting that d.t/ � c is a constant, we obtain

tZ

0

Œ�.y1/� c�2d� C 1

2
y2

2.t/C
y1.t/Z

0

�.�/d� D cy1.t/: (14.25)

Thus, cy1.t/ > 0 for t > 0. Assume for the moment that 0 < c < 1. Then, we
have y1.t/ > 0 for all t > 0.

c

1-c

-c

-1

10 η

σ(η) − c

Figure 14.2: Plot of �.�/ � c

Rewrite (14.25) as

tZ

0

Œ�.y1/� c�2d� C 1

2
y2

2 .t/C
y1.t/Z

0

Œ�.�/ � c�d� D 0: (14.26)

The plot of Œ�.�/ � c� is shown in Fig. 14.2, from which we see that

y1Z

0

Œ�.�/ � c�d�
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goes to infinity if y1 ! C1 and reaches the minimum � c2

2
at y1 D c. Thus,

it follows from the identity (14.26) that both y1.t/ and y2.t/ are bounded for all
t > 0. Furthermore, we have jy2.t/j 6 c for all t > 0 since

y1.t/Z

0

Œ�.�/ � c�d� > �c
2

2

(see Fig. 14.2).
Next, we show that .y1; y2/ ! .c; 0/ as t ! 1. Note that the identity (14.26)

also implies that
tZ

0

Œ�.y1/� c�2d� 6 c2

2
:

That is, Œ�.y1/� c� 2 L2. The Lipschitz property of � implies that

j�.y1.t1// � �.y1.t2//j 6 jy1.t1/� y1.t2/j D j Ty1.t
�/j � jt1 � t2j;

where t� is between t1 and t2. It is seen from the first equation in (14.24) that Ty1.t/

is bounded for all t > 0. Thus, we have the uniform continuity of Œ�.y1/�c�. Then
Barbalat’s Lemma implies that �.y1.t// ! c as t ! 1. Since jcj < 1, in fact we
have shown y1.t/ ! c. Therefore, the system (14.24) is ultimately unsaturated.
Without saturation, the system is exponentially stable. Hence, y2.t/ ! 0 as
t ! 1. By symmetry, we have the same result if �1 < c < 0.

Following the previous result, one might anticipate that there is a bounded-
input-bounded-state (BIBS) result for a double integrator if the disturbance is
restricted to kdkL1

6 ı < 1. Unfortunately, the following example shows that
even this is not true in general. More surprisingly, we can create a vanishing dis-
turbance with magnitude kdkL1

6 ı which drives the state from zero to infinity.
We first have the following example.

Example 14.8 The state of the following system
(

Ty1 D y2 � �.y1/C d

Ty2 D � �.y1/C d; y1.0/ D y2.0/ D 0;
(14.27)

with

d.t/ D
(
0:9; if y2.t/ > 0

�0:9; if y2.t/ < 0

is unbounded.
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Figure 14.3: Plot of trajectory

Proof : For visualization purpose, some part of the trajectory starting from the
origin is shown in Fig. 14.3.

We label the y2 coordinates where the trajectory crosses the line y1 D 1 as
y2.t1/; y2.t2/, y2.t3/; : : : in the order of increasing time 0 < t1 < t2 < t3 < � � �
and show that y2.t2k�1/ ! C1 as k ! 1. First, directly solving the differential
equation yields y2.t1/ D 0:48 at t1 D 1:44 (pointA in Fig. 14.3). Then, y2.t2/ D
�0:5827 at some t2 > t1 (point C in Fig. 14.3). Next, we show that jy2.t2k/j >
jy2.t2k�1/j for all k.

To present a general analysis, we let

d.t/ D
(
m0; if y2.t/ > 0

�m0; if y2.t/ < 0;
(14.28)

where m0 2 .0; 1/, and we denote three generic points: A.1; �1/, B.�; 0/, and
C.1; �2/, as shown in Fig. 14.3. We will show that point C is always below the
mirror image of point A when �1 is large.

First, the trajectory from point A.1; �1/ to point B.�; 0/ satisfies
(

Ty1 D y2 �1Cm0

Ty2 D �1Cm0;

i.e.,

Œy2 � .1 �m0/�dy2 D �.1 �m0/dy1:



738 14. The double integrator with linear control laws subject to saturation

Taking the integral from A to B yields

� 1

2
�2

1 C .1 �m0/�1 D .1 �m0/.1 � �/: (14.29)

Next, the trajectory from point B.�; 0/ to point C.1; �2/ satisfies
(

Ty1 D y2 �1 �m0

Ty2 D �1 �m0;

i.e.,

Œy2 � .1Cm0/�dy2 D �.1Cm0/dy1:

Taking the integral from B to C yields

1

2
�2

2 � .1Cm0/�2 D �.1Cm0/.1 � �/: (14.30)

Putting together (14.29) and (14.30) gives

�2
2 � 2.1Cm0/�2 D 1Cm0

1 �m0

�2
1 � 2.1Cm0/�1:

It follows that

Œ�2 � .1Cm0/�
2 D Œ�1 C .1Cm0/�

2 C
�
2m0

1 �m0

�2
1 � 4.1Cm0/�1

�
:

Since �2 < 0, we finally obtain

Œj�2j C .1Cm0/�
2 � Œ�1 C .1Cm0/�

2 D 2m0

1 �m0

�2
1 � 4.1Cm0/�1: (14.31)

This implies that, if �1 > 2.1 � m2
0/=m0, we always have j�2j > �1, and the

distance between j�2j and �1 becomes arbitrarily large for any fixed m0 2 .0; 1/

as �1 ! 1.
Taking m0 D 0:9, we see that if �1 > 0:42, we have j�2j > �1. That is,

the negative crossing points on the line y1 D 1 is lower than the mirror image
of the previous positive crossing point. Observe that when �1 ! 1, we have
j�2j � p

19 �1, which indicates the order of jy2.t/j diverging to 1 along the
y1 D 1 line.

The next thing is to ensure that the y2 coordinate at point D (crossing the
line y1 D �1) is always lower than the point C . Note that from point C to D,
Ty2 D �y1 � 0:9 and y1 decreases from 1 to �1. This means that y2 decreases
before y1 hits �0:9. Because �0:9 is close to �1, we are almost sure that y2 atD
is lower than y2 at C . To justify this, let V D 1

2
Œy2

1.t/ C y2
2.t/�. The trajectory

from C to D satisfies

Ty1 D y2 � y1 �m0

Ty2 D �y1 �m0:
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Hence,

TV D �y2
1 � y1m0 C jy2jm0: (14.32)

Note that the first two terms on the right-hand side are bounded. Hence, as jy2j
gets large, it is guaranteed that TV > 0 for jy1j < 1. Form0 D 0:9, we have TV > 0

if y2 < �2:1. In other words, for y2 at C lower than �2:1, we always have y2 at
D lower than y2 at C . For 0:2 < jy2j < 2:1, by estimating jdy2=dy1j, it can be
verified that j	y2j > 0:3 for y1 2 Œ�0:9; 1�, but j	y2j < 0:1 for y1 2 Œ�1;�0:9�.
This means that point D is lower than point C for �2:1 < y2 < �0:2, as can be
seen from the plot in Fig. 14.3.

The remaining argument relies on the symmetry; that is, the crossing points on
the line y1 D �1 have the similar behavior to those on the line y1 D 1. Therefore,
we can conclude the divergence of the crossing points along the two lines. This
shows that the trajectory is unbounded for the fixedm0 D 0:9. The trajectory over
a longer period of time form0 D 0:9 is shown in Fig. 14.4.

−40 −20 0 20 40 60 80 100
−20
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−5

0

5
Phase portrait.

y1

y 2

Figure 14.4: Plot of trajectory

From (14.31) in the proof, we see that, as �1 ! 1, �2 is always lower than
��1 and the distance between them can be arbitrarily large even for small m0.
This together with (14.32) shows that we can gradually reduce m0 when �1 gets
large so that d.t/ ! 0 while the trajectory diverges. Such a disturbance signal is
constructed below.

We denote by f�ng the y-coordinates of the sequence of points where the tra-
jectory crosses the line f.1; y2/ W y2 > 0g (such as point A in Fig. 14.3) for
odd n then the line f.�1; y2/ W y2 < 0g (such as point D in Fig. 14.3) for even
n, alternatively. Choose m0 D 0:9 before the trajectory hits .1; �1/, and then
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mn D 2=j�nj for the trajectory from �n to �nC1. Here, we use the sequence f�ng
to represent the crossing points. We emphasize that the disturbance d.t/ is still
defined by (14.28) with m0 replaced by mn selected above. For such a piecewise
constant disturbance signal d.t/, it is easy to verify, using the argument before,
that

.j�nC1j C an/
2 � .j�nj C an/

2 > 16

j�nj ;

where an D 1Cmn D 1C2=j�nj. Since j�nj is increasing, if it is upper bounded,
it has a limit, say �� > 0. But such an �� would satisfy 0 > 16=��, which is a
contradiction. Hence, j�nj ! 1. This argument leads to the following result.

Theorem 14.9 There exists a vanishing disturbance with magnitude less than one
which drives the state of the system (14.24) from zero to infinity.

Remark 14.10 As was shown in Sect. 12.6.1 of Chap. 12, for neutrally stable
systems, there exists a linear control law that achieves Lp stability for all p 2
Œ1;1/ and ISS stability, i.e., any vanishing disturbance produces a vanishing
state. Clearly, a single integrator is a neutrally stable system. However, the double
integrator (14.24) does not have ISS stability.

14.4 Lp stability: input-additive case

Section 14.2 reveals that the double-integrator system subject to actuator satura-
tion and with non-input-additive external disturbances and with arbitrary initial
conditions is Lp stable under linear feedback control laws only for p 2 Œ1; 2�,
and it is not Lp stable for all p 2 .2;1�. This motivates us to consider in this
section theLp stability of double-integrator system (14.4) with input-additive dis-
turbances and having a linear static saturated state feedback law with k1 > 0 and
k2 > 0.

We note that a direct consequence of Theorem 14.1 in Sect. 14.2 is that such a
system is Lp stable for all p 2 Œ1; 2� by simply rewriting the second equation in
the system (14.4) as Tx2 D �.�k1x1 � k2x2/C v with a new disturbance v as

v D �.k1x1 C k2x2/� �.k1x1 C k2x2 � d/:

It is easily verified that kvkp 6 kdkp. However, for p 2 .2;1�, the result regard-
ing Lp stability of the system (14.4) having input-additive disturbance is quite
different from the non-input-additive case studied in the previous section. In fact,
we have a positive result this time as given below.
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Theorem 14.11 The system given in (14.4) with k1 > 0 and k2 > 0 is Lp stable
for all p 2 Œ1;1�. In fact, for this double integrator system with input-additive
disturbances, the simultaneous global Lp stabilization with arbitrary initial con-
ditions and without finite-gain and globally asymptotic stabilization (as defined in
Problem 11.4) is achieved for all p 2 Œ1;1� by any linear static state feedback.

Proof : We prove that for arbitrary initial conditions and disturbance d satisfying
kdkp < ı, the state remains bounded. This is clearly sufficient. Firstly, there
obviously exists a T such that the tail of d.t/ with t > T has Lp norm less than
ı, and we can take x.T / as initial condition. Secondly, if the system is L1=Lp

stable, then we can derive an equivalent of Lemma 14.4 for the input-additive case
to show that the system is Lp stable.

We again use the y-coordinates and study the following system:

(
Ty1 D y2 � ��.y1 C d/

Ty2 D � ��.y1 C d/:
(14.33)

Assume that jy1.t/j < 3 and y2 large. With a bounded derivative of y2, we obtain
that y1 is increasing and will become larger than 3, provided y2 started large
enough. While y1 is larger than 3, we have

y2.r/ D y2.s/ � �.r � s/C �

rZ

s

v.�/d�

6 y2.s/ � �.r � s/C �

rZ

s

jd.�/jpd�

6 y2.s/ � �.r � s/C �ıp

with

v D �.y/ � �.y C d/: (14.34)

Since v.t/ is such that if jd.t/j < 2, then v.t/ D 0 and otherwise

jv.t/j < jd.t/j < jd.t/jp: (14.35)

If we know that the trajectory is not getting close to zero and hence y1 and y2 are
not simultaneously small, then eventually y2 is negative and very small, and we
have jy1j < 3. Then it is easy to see that eventually we end up with y1.t/ < �3.
Therefore, we see that we make the same loop as depicted in Fig. 14.1. We will
investigate a period of time that we stay away from the ball with radius 10 around
the origin. Hence, we move between three different regions:
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� D1 WD fy 2 R2 j kyk > 10; y1 > 3g
� D2 WD fy 2 R2 j kyk > 10; jy1j < 3g
� D3 WD fy 2 R2 j kyk > 10; y1 < �3g.

We define t1, si , ri , and tiC1 as

t1 D minft > 0 j y1.t/ D 0g
si D minft > ti j jy1.t/j D 3g
ri D minft > si j jy1.t/j D 3g

tiC1 D minft > ri j y1.t/ D 0g
which, as argued before, are well defined.

The interval Œti ; si �. It is easy to check that

si � ti 6 2

Ni

;

where y2.ti / D Ni . But then, we have

V.si / 6 V.ti /C 2Ni.si � ti /
p�1

p

0

@
siZ

ti

jv.t/jpdt

1

A

1
p

6 V.ti /C 4N
1
p

i

0

@
siZ

ti

jv.t/jpdt

1

A

1
p

6 V.ti /C 4N
1
p

i

2

41C
siZ

ti

jv.t/jpdt

3

5

6 V.ti /C 4N
1
p

i

2

41C
siZ

ti

jd.t/jpdt

3

5

using Hölder’s inequality, where v is defined by (14.34).

The interval Œri ; tiC1�. Applying similar arguments, we obtain

V.tiC1/ 6 V.ri /C 4jNiC1j 1
p

2

41C
tiC1Z

ri

jd.t/jpdt

3

5 :

The interval Œsi ; ri �. First, we note that similar as before, we have

Ni

2
� NiC1

2
6 ri � si 6 2Ni � 2NiC1:
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Hence,

V.ri / 6 V.si /� .ri � si /C
riZ

si

.�C y2/vdt

6 V.si /� Ni �NiC1

2
C 2Ni

riZ

si

jv.t/jdt

6 V.si /� Ni �NiC1

2
C 2Ni

riZ

si

jw.t/jpdt;

where the last step is due to (14.35).

Putting everything together, we obtain

V.tiC1/ 6 V.ti / � Ni �NiC1

2
C 4N

1
p

i C 4jNi j 1
p C 2NiAi

6 V.ti / � 1

4
Ni C 2NiAi

with

Ai D
tiC1Z

ti

jw.t/jpdt < ı

or in other words

N 2
iC1 6 N 2

i � 1

4
Ni

which clearly implies that Ni is bounded and hence the state is bounded. From
Lemma 14.4, we then conclude that the state is in Lp.

14.5 Input-to-state stability

Results in the previous two sections have shown that Lp stability of a double
integrator with a saturating linear controller has a drastically different nature com-
pared to its linear counterpart. In this section, our interest is to examine the input-
to-state stability (ISS) as stated in Definition 2.65 for a double integrator with a
saturating linear controller and with non-input-additive disturbances. By the def-
inition, an immediate consequence of an ISS system is that for any fixed initial
state x0 2 Rn, any bounded disturbance d must produce a bounded state. How-
ever, in this section, we show that the double-integrator system (14.3) which is
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controlled by a linear stabilizing control (14.2) is not ISS from d to x even for
disturbances restricted to d 2 L1.ı/ with ı > 0. In fact, we show that for any
arbitrarily small ı > 0, we can find an external signal d 2 L1.ı/ and an initial
state so that the state trajectory of the closed-loop system is unbounded.

The main result of this section is summarized in the following theorem:

Theorem 14.12 Consider the system

(
Tx1 D x2

Tx2 D �.�k1x1 � k2x2/C d;
(14.36)

where k1; k2 are constants and d is an external disturbance. For any k1; k2 > 0,
this system is globally asymptotically stable in the absence of disturbance. How-
ever, in the presence of disturbance d , this system is not ISS even for external
disturbances that are restricted to the set L1.ı/ with ı > 0 arbitrarily small.

Moreover, for any ı > 0 and for any initial condition large enough, there exists
a vanishing disturbance d with magnitude less than ı, i.e., d 2 C0\L1.ı/ which
drives the state to infinity.

Proof : Note that this result follows directly from Lemma 14.6. However, we
can construct a disturbance with a simpler structure to establish that the system
is not ISS.

We again transform the system into the following form:
(

Ty1 D y2 � � Œ�.y1/� d� ;

Ty2 D � � Œ�.y1/� d� :
(14.37)

Using the same Lyapunov function as before

V.y1; y2/ D �

y1Z

0

�.�/d�C 1

2
y2

2 ; (14.38)

we obtain

TV D ��2�2.y1/C �2�.y1/d C �y2d; (14.39)

which simply leads to global asymptotic stability if d D 0 by LaSalle’s invariance
principle.

Next, given any ı > 0, we will construct a specific disturbance signal d with
amplitude jd.t/j 6 ı for all t > 0 and show that there is an initial state such that
the trajectory of system (14.37) starting from the initial state with the constructed
disturbance diverges to infinity.
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Assume that system (14.37) starts from some point on the ray f.1; y2/ W y2

> 0g, say pointA in Fig. 14.5. Define a piecewise constant disturbance as follows:

d.t/ WD
(
d0; if y2.t/ > 0;

�d0; if y2.t/ < 0;
(14.40)

where d0 is any constant satisfying 0 < d0 6 ı. Some analysis is needed to see
the behavior of pointsA, B , C , andD in Fig. 14.5, where in terms of coordinates,
A D .1; y2.0//, B D .y1.t1/; 0/, C D .1; y2.t2//, and D D .�1; y2.t2// with
0 < t1 < t2 < t3. To simplify notation, we let �1 D y2.0/, � D y1.t1/, and
�2 D y2.t2/. Thus, we have A D .1; �1/, B D .�; 0/, and C D .1; �2/.

−6 −5 −4 −3 −2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

y1

y 2

A

B

C

D

Figure 14.5: Plot of trajectory

In the sequel, we show that no matter how small the amplitude of the distur-
bance is, we can find an initial state (point A) with sufficiently large �1 D y2.0/

such that point C is always lower than the mirror image of point A and point D
is further lower than point C .

First, the trajectory from point A D .1; �1/ to point B D .�; 0/ satisfies

(
Ty1 D y2 � �.1 � d0/;

Ty2 D ��.1 � d0/;

i.e.,

Œy2 � �.1 � d0/�dy2 D ��.1 � d0/dy1:
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Taking the integral from point A to B yields

� 1

2
�2

1 C �.1 � d0/�1 D �.1 � d0/.1 � �/: (14.41)

Next, the trajectory from point B D .�; 0/ to point C D .1; �2/ satisfies
(

Ty1 D y2 � �.1C d0/;

Ty2 D ��.1C d0/;

i.e.,

Œy2 � �.1C d0/�dy2 D ��.1C d0/dy1:

Taking the integral from point B to C yields

1

2
�2

2 � �.1C d0/�2 D ��.1C d0/.1 � �/: (14.42)

Putting together (14.41) and (14.42) gives

�2
2 � 2�.1C d0/�2 D 1C d0

1� d0

�2
1 � 2�.1C d0/�1:

A simple rearrangement yields that

Œ�2 � �.1C d0/�
2 D Œ�1 C �.1C d0/�

2 C
�
2d0

1 � d0

�2
1 � 4�.1C d0/�1

�
:

Since �2 < 0, we finally obtain

Œj�2j C �.1C d0/�
2 � Œ�1 C �.1C d0/�

2 D 2d0

1 � d0

�2
1 � 4�.1C d0/�1: (14.43)

This key identity implies that, if �1 > 2�.1� d 2
0 /=d0, we always have j�2j > �1.

Hence, given any d0 > 0 and � > 0, by choosing a sufficiently large �1 pointC is
lower than the mirror image of pointA (see Fig. 14.5). Also, it is seen from (14.43)
that the distance between point C 0 D .1; j�2j/ and point A D .1; �1/ becomes
arbitrarily large for any fixed d0 2 .0; 1/ as �1 ! 1.

We show next that point D, where the trajectory crosses the line y1 D �1, is
lower than point C . Note that along the trajectory from point C to D, we have
jy1.t/j 6 1. For this part of trajectory, V� defined in (14.38) becomes

V.y1; y2/ D 1

2

�
�y2

1 C y2
2

	
:

Now, given the disturbance of fixed magnitude d D �d0 (since during this period
y2.t/ < 0), it follows from (14.39) that

TV D ��2y2
1 � �2y1d0 C �jy2jd0: (14.44)
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So, if jy2j is large enough, say jy2j > 2�=d0 (assume 0 < d0 < 1), then TV > 0

for the trajectory from point C to D. This implies that point D is lower than C
when j�2j D jy2.t2/j is large, which is possible by choosing �1 large.

By considering the points A and C as two points of the trajectory when it
crosses the line y1 D 1 and noting the symmetry, it is easy to see from (14.43)
and (14.44) that the trajectory of system (14.37) starting from point A diverges
to infinity, given the disturbance defined in (14.40). Furthermore, as the trajectory
diverges, the difference between �1 and j�2j increases. The proof is now complete.

The above results point out that there exist bounded disturbances with arbitrar-
ily small L1 norm that cause the states to grow unbounded from certain initial
conditions. Even more dramatically, they point out that unbounded growth can be
achieved by vanishing disturbances with arbitrarily small L1 norm.

The work of [203] extends the above negative results to classes of small L1
signals with further restrictions. In what follows, we show that certain typical
disturbances belonging to even more restricted classes than the ones considered
above can drive the state unbounded. We omit the proofs of these results because
they are rather straightforward variations of the proof of Theorem 14.12.

We first consider disturbances that are not only bounded but have one or more
derivatives that are bounded. Such derivative bounds are often appropriate in mod-
eling real disturbances, and hence, there has been some discussion on whether dis-
turbances with limited derivatives (i.e., sluggish disturbances) have different re-
jection properties. In fact, as formalized below, we find that even such derivative-
bounded signals can drive the state unbounded.

Theorem 14.13 Consider the system as given in (14.36) which is repeated below:

(
Tx1 D x2

Tx2 D �.�k1x1 � k2x2/C d;
(14.45)

where k1; k2 are constants and d is an external disturbance that is not only in

L1.ı/ but also satisfies j d i w

dt i j < ıi for i D 1; : : : ; k, for some finite k. Then, for
any ı > 0, ı1 > 0; : : : ; ık > 0, there is such a disturbance d that drives the state
of the system in (14.45) unbounded for some initial condition x0.

Theorem 14.13 indicates that even when the disturbance is constrained to be
small and have small derivatives, a feedback-controlled double-integrator with
actuator saturation is not ISS. We note briefly that this theorem can be proved by
smoothing out the disturbance d of Sect. 14.5 that drives the state unbounded. In
a recent paper by Sontag [153], some new definitions besides ISS are given, one is
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differentiable k-ISS (DkISS) stability. A system is DkISS if there exist ˇ 2 KL
and 
i 2 K1, i D 0; 1; 2 : : : ; k, such that the inequality

jx.t; x0; u/j � ˇ.jx0j; t/C
kX

iD0


i .ku.i/k1/

holds for all initial values and inputs. From Theorem 14.13, we know that the
given system in (14.45) is not DkISS, which indicates that perhaps some re-
finement of this definition is needed to appropriately capture external-stability
notions.

Let us next consider the response of the system in (14.45) to positive-valued
disturbances, which are appropriate models for disturbances in, e.g., industrial or
chemical processes and communication networks. In some contexts, it is known
that the responses of systems to strictly positive disturbances are qualitatively dif-
ferent from the response to general disturbances (e.g., [108]). However, as formal-
ized next, even small positive disturbances may drive the state of the saturating
double-integrator unbounded.

Theorem 14.14 Consider the system as given in (14.45) and disturbances d that
are in L1.ı/ and are also positive valued. For any ı > 0, there is such a distur-
bance that drives the state unbounded for some initial condition x0.

We also note that the notions in Theorems 14.13 and 14.14 can be combined,
i.e., even small positive-valued disturbances with bounded derivatives can drive
the state unbounded. It is worth noting that, when disturbances are constrained as
in Theorems 14.13 and 14.14, the initial condition must be further from the origin
than in the unconstrained case, for a disturbance to drive the system unbounded.

14.6 Stable response under integral-bounded
non-input-additive disturbances

Theorems 14.12 and 14.13 state negative results, namely, for a given linear static
feedback law, there always exist external disturbance signals that cause the tra-
jectories of the double-integrator system subject to actuator saturation to grow
unbounded from some initial conditions. These results reveal that external sta-
bility of nonlinear systems is essentially different from that of linear systems.
An important revelation is that the external stability of nonlinear systems can-
not be separated from the internal state behavior. Also, the above results clearly
point out that, for sustained disturbances, one cannot always have suitable Lp

stability problem formulations even for innocently simple systems such as a dou-
ble integrator, and thus lead to fundamental questions about the classical exter-
nal stability notions currently in use for nonlinear control systems. The trouble is
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that sustained disturbances contain mathematical functions that are not reasonable
models for common disturbances, and thus it is impossible to get a good “stable”
response if we use these functions as models for disturbances. In other words, one
would need to examine carefully the signal space of external disturbances to come
up from an engineering point of view a class of sensible sustained disturbances.
In this regard, [203] and [196] identify classes of small L1 signals with certain
restrictions under which the boundedness of the state of the system (14.3) is pre-
served whatever might be the initial conditions of the system are. Our intention in
this section is to report these results here. Since the results of [196] include those
of [203], we base this section on [196].

At first, we recall the set of integral-bounded disturbance signals ˝M :

˝M D
8
<

:d 2 L1 j 8 t1; t2 > 0;

ˇ̌
ˇ̌
ˇ̌

t2Z

t1

d.t/ dt

ˇ̌
ˇ̌
ˇ̌ 6 M

9
=

; : (14.46)

We have the following results.

Theorem 14.15 Consider the system given in (14.45). Let M be given. If k1 and
k2 satisfy k2

k1
> 16M, then for any d 2 ˝M and any initial condition, we have

x1; x2 2 L1.

The proof of Theorem 14.15 is a consequence of Lemmas 14.16 and 14.17
which are stated and proved below.

Lemma 14.16 Consider the system

Tx1 D x2 C y;

Tx2 D �.�k1x1 � k2x2/; (14.47)

where kyk1 < 2M and k2

k1
> 16M . In that case, we have x1; x2 2 L1 for any

initial condition.

Proof : Define a positive definite function V as

V D
k1x1Z

0

�.s/ ds C
k1x1Ck2x2Z

0

�.s/ ds C k1x
2
2 :



750 14. The double integrator with linear control laws subject to saturation

This function was first introduced in [22]. Differentiating V along the trajectories
yields

TV D .k1x2 C k1y/�.k1x1/� 2k1x2�.k1x1 C k2x2/

C Œk1x2 C k1y � k2�.k1x1 C k2x2/� �.k1x1 C k2x2/

D k1x2 Œ�.k1x1/ � �.k1x1 C k2x2/� � k2�
2.k1x1 C k2x2/

C k1yŒ�.k1x1 C k2x2/C �.k1x1/�

6 k1x2 Œ�.k1x1/ � �.k1x1 C k2x2/� � k2�
2.k1x1 C k2x2/C 2k1jyj:

If jk1x1 C k2x2j > 1
2

, then

�k2�
2.k1x1 C k2x2/C 2k1jyj 6 �16Mk1 	 1

4
C 4k1M 6 0:

Hence,

TV 6 k1x2 Œ�.k1x1/� �.k1x1 C k2x2/� 6 0:

If jk1x1 C k2x2j 6 1
2

, then using Lemma 13.24, we get

k1x2 Œ�.k1x1/ � �.k1x1 C k2x2/� 6 � k1

2
x2�.k2x2/:

If we also have that jx2j > maxf8M; 1
k2

g, then

k1x2 Œ�.k1x1/ � �.k1x1 C k2x2/� 6 � k1

2
x2�.k2x2/ 6 �4k1M;

which yields TV 6 0. We therefore conclude that TV 6 0 outside the region defined
by jk1x1 C k2x2j 6 1

2
and jx2j 6 maxf8M; 1

k2
g. Hence, V remains bounded,

which implies that x1; x2 2 L1.

Now consider the double-integrator system (14.45). We construct a fictitious
state

Ty D �.�k1x1 � k2x2/� �.�k1x1 � k2x2 C k2y/C d;

y.0/ D 0:

By defining z D x2 � y, we obtain the augmented system

Tx1 Dz C y;

Tz D�.�k1x1 � k2z/;

Ty D�.�k1x1 � k2x2/� �.�k1x1 � k2x2 C k2y/C d;

with y.0/ D 0, z.0/ D x2.0/. From Lemma 14.16, we know that given k2

k1
>

16M , x1 and z remain bounded provided jyj 6 2M . The latter statement is
proven by the following lemma.
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Lemma 14.17 Consider the system

Ty D �.v/ � �.v C k2y/C d; y.0/ D 0; (14.48)

where k2 > 0, d 2 ˝M , and v is continuous. We have jy.t/j 6 2M for all t > 0.

Proof : Define

Txy D d; xy.0/ D 0:

Since d 2 ˝M , the solution satisfies jxyj 6 M . Define zy D y � xy. We have

Tzy D �.v/ � �.v C k2.zy C xy//; zy D 0:

Define a positive definite function zV D zy2. Taking the derivative of zV with re-
spect to t , we get

TzV D zy Œ�.v/ � �.v C k2.zy C xy//� :

If zV > M 2, then j zyj > M > jxyj, which implies that k2.zyC xy/ has the same sign

as zy. It then follows that TzV 6 0. Since zV .0/ D 0, we can conclude that zV 6 M 2

and j zyj 6 M for all t > 0, and it follows that jyj 6 jxyj C jzyj 6 2M .

Proof of Theorem 14.15 : Lemma 14.17 implies that y is bounded. From Lemma
14.16, we then know that x1 and z are bounded. Clearly then also x2 D z C y is
bounded, and the proof is complete.

An immediate consequence of Theorem 14.15 is that if k1 and k2 are arbitrary
positive real numbers, then boundedness is guaranteed if the integral bound M is
sufficiently small. This is formally stated in the following corollary.

Corollary 14.18 For any given k1 > 0 and k2 > 0, we have x1; x2 2 L1 if
d 2 ˝M with M 6 k2

16k1
.

14.6.1 Integral-bounded disturbances with DC bias

We consider here integral-bounded disturbances that are biased by a DC signal.
The next theorem shows that, if the magnitude of the bias is less than 1 by a known
margin, and an integral bound M is known a priori, then k1; k2 can be chosen to
ensure boundedness of x1; x2.
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Theorem 14.19 Let M > 0 and ı 2 .0; 1� be given, and suppose that d D
d1 C d2 where d1 is a constant with jd1j 6 1 � ı and d2 2 ˝M . If k1; k2 satisfy
k2 > maxf 1�ı

M
; 48k1M

ı2 g, then x1; x2 2 L1.

Proof : The closed-loop system is given by

Tx1 D x2;

Tx2 D �.�k1x1 � k2x2/C d1 C d2:

We construct a fictitious state

Ty D �.�k1x1 � k2x2/ � �.�k1x1 � k2x2 C k2y/C d2;

y.0/ D 0:

Lemma 14.16 shows that jyj 6 2M . Similar to the proof of Theorem 14.15, we
define z D x2 � y and convert the closed-loop system to the form

Tx1 D z C y;

Tz D �.�k1x1 � k2z/C d1;

with z.0/ D x2.0/ and jyj 6 2M .
We also introduce another fictitious state

Tw D �.�k1x1 � k2z/ � �.�k1x1 � k2z C k2w � d1/

with w.0/ D 0. Following the same argument as in the proof of Lemma 14.17,
we can show that jwj 6 1�ı

k2
6 M . Define �1 D x1, �2 D z � w D x2 � y � w.

Then (14.45) can be transformed into

T�1 D �2 C w C y;

T�2 D �.�k1�1 � k2�2 � d1/C d1;

where �1.0/ D x1.0/, �2.0/ D x2.0/, and jw C yj 6 M C 2M D 3M . Since w
and y are bounded, we know that x1 and x2 are bounded if �1 and �2 are bounded.

Define z�d1
.s/ D �.s � d1/C d1 with jd1j 6 1 � ı. Then

z�d1
.s/ D

8
<̂

:̂

1C d1; s > 1C d1;

s; �1C d1 6 s < 1C d1;

�1C d1; s 6 �1C d1:

(14.49)

This function can be viewed as a generalized saturation function, which is visual-
ized in Fig. 14.6. It is easy to verify that z�d1

satisfies the following properties:
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Figure 14.6: Generalized saturation function z�d1
.s/

(i) jz�d1
.s/j 6 2

(ii) sz�d1
.s/ > 0 and sz�d1

.s/ D 0 iff s D 0

(iii) s
�z�d1

.v C s/ � z�d1
.v/
	

> 0

Moreover, it is shown in Lemma 14.22 in Appendix that if jvj 6 ı
2

, then

s
�z�d1

.v C s/ � z�d1
.v/
	

> s�ı=2.s/;

where �ı=2.s/ is the standard saturation function with saturation level ı=2, which
is defined by �ı=2.s/ D sgn.s/minfı=2; jsjg.

With this generalized saturation function, the closed-loop system can be rewrit-
ten as

T�1 D �2 C w C y;

T�2 D z�d1
.�k1�1 � k2�2/:

Define a positive definite function

V D
k1�1Z

0

z�d1
.s/ ds C

k1�1Ck2�2Z

0

z�d1
.s/ ds C k1�

2
2 :

Differentiating V along the trajectory yields

TV D .k1�2 C k1w C k1y/z�d1
.k1�1/� 2k1�2z�d1

.k1�1 C k2�2/

C �
k1�2 C k1w C k1y � k2z�d1

.k1�1 C k2�2/
	 z�d1

.k1�1 C k2�2/

D k1�2

�z�d1
.k1�1/ � z�d1

.k1�1 C k2�2/
	 � k2z�2

d1
.k1�1 C k2�2/

C k1.w C y/
�z�d1

.k1�1/C z�d1
.k1�1 C k2�2/

	

6 k1�2

�z�d1
.k1�1/� z�d1

.k1�1 C k2�2/
	 � k2z�2

d1
.k1�1 C k2�2/

C 12k1M:
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If jk1�1 C k2�2j > ı
2

, then

�k2z�2
d1
.k1�1 C k2�2/C 12k1M 6 � 48k1M

ı2

ı2

4
C 12k1M D 0;

and hence, TV 6 0. If jk1�1 C k2�2j 6 ı
2

and j�2j > maxf ı
2k2
; 24M

ı
g, then

k1�2

�z�d1
.k1�1/� z�d1

.k1�1 C k2�2/
	

6 �k1�2�ı=2.k2�2/ 6 �k1
24M

ı
ı
2

6 �12k1M;

and hence, TV 6 0. We therefore find that TV 6 0 outside the region defined by
jk1�1Ck2�2j 6 1

2
and j�2j 6 maxf ı

2k2
; 24M

ı
g. It follows that V remains bounded,

which implies that �1 and �2 remain bounded.

14.6.2 Sinusoidal disturbances with DC bias

Our final result concerns a special case where the disturbance consists of a finite
number of sinusoids together with a DC bias of magnitude less than 1. In this
case, as shown in the next theorem, any internally stabilizing linear static feedback
controller guarantees that the states of the system (14.45) remain bounded.

Theorem 14.20 Consider the system (14.45) with k1 > 0 and k2 > 0. Suppose
that d D d1 C d2, where d1 is a constant satisfying jd1j < 1 and d2 is generated
by an exogenous system

Tw D Aw; w.0/ D w0;

d D Cw;

where A is non-singular and satisfies AC A0 D 0. We have x1; x2 2 L1 for any
initial condition.

Proof : We can rewrite the closed-loop system in a compact form:�
Tw
Tx1

Tx2

�
D

�
A 0 0

0 0 1

C 0 0

��
w

x1

x2

�
C

�
0

0

1

�
Œ�.�k1x1 � k2x2/C d1� :

Consider the state transformation�
w

xx1

xx2

�
D

�
I 0 0

�CA�2 1 0

�CA�1 0 1

��
w

x1

x2

�
:
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This transformation results in the system�
Tw
Txx1

Txx2

�
D

�
A 0 0

0 0 1

0 0 0

��
w

xx1

xx2

�
C

�
0

0

1

�

	 �� ��.k1CA
�2 C k2CA

�1/w � k1 xx1 � k2 xx2

�C d1

	
:

Define v D �.k1CA
�2 C k2CA

�1/w C d1. Then

�.�.k1CA
�2 C k2CA

�1/w � k1 xx1 � k2 xx2/C d1

D �.v � k1 xx1 � k2 xx2 � d1/C d1

D z�d1
.�k1xx1 � k2xx2 C v/;

where z�d1
is the generalized saturation function defined in the proof of Theorem

14.19. The dynamics of xx1 and xx2 can now be written as

Txx1 D xx2;

Txx2 D z�d1
.�k1xx1 � k2xx2 C v/:

Clearly v 2 L1. It was shown by [22] that the .xx1; xx2/ dynamics is L1 stable
from v to xx1 and xx2 for any k1 > 0 and k2 > 0.

Remark 14.21 For the ease of presentation, we used a standard saturation func-
tion with saturation level 1, but all the results obtained above can be easily ex-
tended to the case where a saturation function with arbitrary saturation level 	
is used.

14.A Appendix

Lemma 14.22 The generalized saturation function z�d1
defined in (14.49) with

jd1j 6 1 � ı satisfies

s
�z�d1

.s C v/� z�d1
.v/
	

> s�ı=2.s/

for jvj 6 ı
2

, where �ı=2.s/ denotes the standard saturation function with satura-
tion level ı=2 defined as �ı=2.s/ D sgn.s/minfı=2; jsjg.

Proof : If jsj < ı
2

, we have jvC sj 6 ı 6 1�jd1j. By definition (14.49), we have
z�d1
.s C v/ D s C v. Hence,

z�d1
.s C v/ � z�d1

.v/ D s C v � v D s:
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If jsj > ı
2

, it can be seen from Fig. 14.6 that

jz�d1
.s C v/ � z�d1

.v/j > j sgn.s/ ı
2

C v � vj D ı
2
:

Hence, s
�z�d1

.s C v/ � z�d1
.v/
	

> s�ı=2.s/.



15
Simultaneous internal and external
stabilization in the presence of a class
of non-input-additive sustained
disturbances: continuous time

15.1 Introduction

We continue here with the theme of simultaneous internal and external
stabilization in the presence of non-input-additive disturbances. As discussed in
Chap. 13, for such non-input-additive disturbances, Lp stabilization with finite
gain is impossible, but Lp stabilization without finite gain is always attainable
via a nonlinear dynamic low-gain feedback law for all p 2 Œ1;1/ (i.e., for all
disturbances whose “energy” vanishes asymptotically). In the case of open-loop
neutrally stable system, this can be done via a linear state feedback law. Neverthe-
less, all these results apply only to Lp disturbances for p 2 Œ1;1/, and not to sus-
tained signals belonging to L1. One can argue easily that L1 stability in general
is impossible in the presence of non-input-additive sustained disturbance signals
as they can dominate the saturated control signal. To exemplify this further, we
considered in Chap. 14 the canonical case of a double-integrator system. Among
other results, we showed there that whatever might be a linear feedback law, there
exist bounded disturbances with arbitrarily small L1 norm that cause the states
of it to grow unbounded from certain initial conditions. Even more dramatically,
it turns out that unbounded growth can be achieved by vanishing disturbances
with arbitrarily small L1 norm. On the positive side, we also identified there
a class of integral-bounded non-input-additive sustained disturbances for which
L1 stabilization can be attained. Thus, a fundamental question arises whether for
general systems which are asymptotically null controllable with bounded control
(ANCBC) one can identify a set of non-input-additive sustained disturbances for
which a feedback control law can be determined such that

1. In the absence of disturbances, the origin of the closed-loop system is globally
asymptotically stable.

2. If the disturbances belong to the given set, the states of the closed-loop system
are bounded for any arbitrarily specified initial conditions.

In this chapter, our focus is to answer this fundamental question positively by
identifying such a set of sustained disturbances. We consider here only continuous
time. Discussions on discrete-time systems follow in the next chapter.

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__15,
© Springer Science+Business Media New York 2012
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Regarding the architecture of this chapter, after certain preliminary discussions
in Sect. 15.2, we consider in Sect. 15.3 neutrally stable systems which allow a
linear feedback law. We move on then to Sect. 15.4 to consider general critically
unstable systems (or equivalently general ANCBC systems).

This chapter is based on our work [126, 192, 195, 196].

15.2 Preliminaries

Consider the system

Tx D Ax CB�.u/C Ed; x.0/ D x0; (15.1)

where x 2 Rn, u 2 Rm, and d 2 Rp. The pair .A;B/ is stabilizable, and A
has all its eigenvalues in the closed left-half plane. That is, the given system is
asymptotically null controllable with bounded control (ANCBC).

As pointed out in the introduction, for systems of the form (15.1), our goal
in this chapter is to identify a class of L1 disturbance signals d such that for
appropriately designed feedback control, laws the closed-loop system exhibits
global asymptotic stability in the absence of disturbances d , and in the presence
of such disturbances d , the state variables are bounded. Toward this goal, we first
define the following set of integral-bounded disturbance signals,

S1 D
8
<

:d 2 L1 j 9M s:t:8t2 > t1 > 0;
������

t2Z

t1

d.t/ dt

������
< M

9
=

; :

The set S1 represents signals that have a uniformly bounded integral over every
time interval, that is, signals that have no sustained DC bias. We next introduce
another set of disturbance signals,

˝1 D fd 2 L1 j 8i 2 1; : : : ; q; d.t/ sin!i t 2 S1 and d.t/ cos!i t 2 S1g;
(15.2)

where ˙j!i , i 2 1; : : : ; q represent the imaginary-axis eigenvalues of A. The
set ˝1 consists of those signals that remain integral-bounded when multiplied
by sin!i t and cos!i t . This definition is a natural generalization of S1, since
˝1 D S1 for !i D 0.

In practical terms, a signal that belongs to ˝1 is a signal that has no sustained
frequency component at any of the frequencies !i , i 2 1; : : : ; q. To see this, note
that we can equivalently write

˝1 D
(
d 2 L1 j 9M s. t. 8i 2 1; : : : ; q;8t2 > t1 > 0;

������

t2Z

t1

d.t/ej!i t dt

������
< M

)
: (15.3)
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The integral
t2Z

t1

d.t/ej!i t dt

is easily recognized as the value at !i of the Fourier transform of the signal d.t/
truncated to the interval Œt1; t2�. The definition of˝1 implies that this value must
be uniformly bounded regardless of the choice of t1 and t2.

15.3 Neutrally stable systems

We first consider neutrally stable systems where A has only semi-simple eigen-
values on the imaginary axis. Then, the system (15.1) that is neutrally stable can
be decomposed into the following form:

 
Txs

Txu

!
D
 
As 0

0 Au

! 
xs

xu

!
C
 
Bs

Bu

!
�.u/C

 
Es

Eu

!
d;

where As is Hurwitz stable, Au has all its eigenvalues on the imaginary axis, and
.Au; Bu/ is controllable. Since As is Hurwitz stable and � and d are bounded,
it follows that the xs dynamics will remain bounded no matter what controller is
used. Therefore, without loss of generality, we can ignore the asymptotically sta-
ble dynamics and assume in (15.1) that .A;B/ is controllable and all the eigen-
values of A are on the imaginary axis. Without loss of generality, we can then
assume that AC A0 D 0.

Guided by Sect. 4.6.1 that considered global asymptotic stabilization of neu-
trally stable systems via linear state feedback laws, we employ here once again a
linear static state feedback law u D �B 0x, which results in a closed-loop system,

Tx D Ax � B�.B 0x/C Ed; x.0/ D x0: (15.4)

It is clear from the results of Sect. 4.6.1 that, in the absence of d , the origin
of (15.4) is globally asymptotically stable. Therefore, in the presence of the dis-
turbance d , we focus next on the boundedness of the closed-loop states.

In what follows, we show that the trajectories of the controlled system (15.4)
remain bounded for all disturbances that belong to ˝1. We also show that this
result holds if we add a sufficiently small signal that does not belong to ˝1.

Second-order single frequency system:
We start by considering an example system with a pair of complex eigenvalues
at ˙j :
 

Tx1

Tx2

!
D
 
0 1

�1 0

! 
x1

x2

!
�
 
0

1

!
�.x2/C

 
e1

e2

!
d;

 
x1.0/

x2.0/

!
D x0: (15.5)

We have the following result:



760 15 External stability with sustained disturbances – continuous time

Theorem 15.1 Let d 2 ˝1. Then, the trajectories of (15.5) remain bounded for
any initial condition.

Proof : To analyze the system, we start by introducing a rotation matrix

R D
 

cos t � sin t

sin t cos t

!
;

which represents a counterclockwise rotation by an angle t . The dynamics of the
rotation matrix is given by

TR D �R
 
0 1

�1 0

!
:

We shall study the dynamics of x from a rotated coordinate frame, and toward
this end, we define the rotated state y D Rx. The dynamics of y is given by

Ty D TRx CR Tx

D R

  
e1

e2

!
d �

 
0

1

!
�.x2/

!

D R

  
e1

e2

!
d �

 
0

1

!
�.
�
0 1

�
R0y/

!
; y.0/ D x.0/ D x0:

We define next a fictitious system,

Tzy D R

 
e1

e2

!
d; zy.0/ D x0: (15.6)

We know from the definition of˝1 that the signal d.t/ is integral-bounded when
multiplied by sin t and cos t . It therefore follows that the right-hand side of (15.6)
is integral-bounded, and hence zy 2 L1.

Consider the difference between y and the fictitious state zy, given by z D y� zy,
with dynamics

Tz D �R
 
0

1

!
�.
�
0 1

�
R0y/

D �R
 
0

1

!
�.
�
0 1

�
R0z C ı/; z.0/ D 0;
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where

ı D
�
0 1

�
R0 zy 2 L1:

We rotate z back to the original coordinate frame by introducing w D R0z,
thereby obtaining the dynamics,

Tw D TR0z CR0 Tz

D
 
0 1

�1 0

!
w �

 
0

1

!
�.
�
0 1

�
w C ı/; w.0/ D 0:

It is shown in Theorem (12.33) that the above system is L1 stable with respect
to the input ı, and hence w 2 L1. Finally, we have x D w C R0 zy, and hence,
x 2 L1.

To demonstrate the importance of the disturbance belonging to ˝1, we shall
now show that if d contains a large frequency component at ˙j , the states of
(15.5) will diverge toward infinity for any initial condition. Suppose therefore
that d.t/ D a sin.t C �/, where a is an amplitude yet to be chosen. For ease
of presentation, we assume that e1 D 0; e2 D 0. Consider the dynamics of the
rotated state y from the proof of Theorem 15.1. We have

Ty D R

 
0

1

!�
d � �.

�
0 1

�
R0y/

�

D a

 
� sin t sin.t C �/

cos t sin.t C �/

!
� R

 
0

1

!
�.
�
0 1

�
R0y/:

Using appropriate trigonometric identities, the dynamics can be rewritten as

Ty D a

2

 
cos.2t C �/ � cos.��/
sin.2t C �/ � sin.��/

!
� R

 
0

1

!
�.
�
0 1

�
R0y/:

We have either j sin.��/j >
p
2=2 or j cos.��/j >

p
2=2. Without loss of

generality, we assume that j sin.��/j >
p
2=2. Let a be chosen such that a >

4.1C "/=
p
2, where " is a positive number. For the trajectory y2.t/, we have

jy2.t/j D
ˇ̌
ˇy2.0/C

tZ

0

a

2
.sin.2� C �/ � sin.��//

�
�
0 1

�
R.�/

 
0

1

!
�.
�
0 1

�
R0.�/y.�// d�

ˇ̌
ˇ:
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Noting that the last term of the integrand is bounded by ˙1, and using the bound
ja=2 sin.��/j >

p
2a=4 > 1C ", we therefore have

jy2.t/j > �jy2.0/j � a

2

ˇ̌
ˇ̌
ˇ̌

tZ

0

sin.2� C �/ d�

ˇ̌
ˇ̌
ˇ̌C

tZ

0

" d�

> �jy2.0/j � a

2
C "t:

This shows that y2.t/ diverges toward infinity.

Connection to a single integrator system:
Before moving on to the case of general multifrequency systems, it is instructive
to compare some aspects of the above example with similar results for a single
integrator system. A single integrator system with a saturated control input and
an external disturbance has the form

Tx D �.u/C ed:

In the absence of disturbances, the open-loop response of this system is stationary.
It is intuitively easy to see that a large DC bias in d would constitute a problem
because it would tend to dominate the bounded control term �.�/, thus leading
to unboundedness. The absence of such a DC bias is guaranteed by d belonging
to S1.

The system with eigenvalues at ˙j has the form

Tx D
 
0 1

�1 0

!
x C

 
0

1

!
�.u/C

 
e1

e2

!
d:

In the absence of disturbances, the open-loop response of this system is oscillatory
rather than stationary, and it is less obvious why a disturbance that does not belong
to ˝1 could be problematic. By introducing a rotated state y D Rx, however,
we obtain the dynamics

Ty D R

 
0

1

!
�.u/CR

 
0

1

!
d:

In the absence of disturbances, the open-loop response of y is stationary, and the
dynamics of y are strikingly similar to the single-integrator case. In particular, it
is easy to see that a large DC bias in the term

R

 
0

1

!
d (15.7)

would constitute a problem, because it would tend to dominate the bounded con-
trol term. Analogous to the single-integrator case, the absence of such a bias is
guaranteed if (15.7) belongs to S1, which is equivalent to d belonging to ˝1.
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In the single-integrator case, a DC bias in d can be tolerated if it is sufficiently
small. Similarly, a small signal that does not belong to ˝1 can be tolerated for
systems with complex eigenvalues. This is demonstrated shortly by considering
general multifrequency systems.

Multifrequency systems:
We now extend Theorem 15.1 to multifrequency neutrally stable systems.
Consider

Tx D Ax � B�.B 0x/C Ed; x.0/ D x0; (15.8)

where A C A0 D 0 and .A;B/ is controllable. Without loss of generality, we
assume that

A D

�
A1 0 � � � 0

0
: : :

: : :
:::

:::
: : : Aq 0

0 � � � 0 0

�
; x D

ˇ
x1

:::

xq

x0

�
; (15.9)

where xi 2 R2, i D 1; : : : ; q, x0 2 Rn�2q and

Ai D
 
0 !i

�!i 0

!
; i D 1; : : : ; q (15.10)

with 2q 6 n. We have the following theorem:

Theorem 15.2 Let d 2 ˝1. Then, the states of (15.8) remain bounded for any
initial condition.

Proof : Consider the rotation matrix

R D

ˇ
R1

: : :

Rq

I

�
; (15.11)

where

Ri D
 

cos!i t � sin!i t

sin!i t cos!i t

!
: (15.12)

Note that R is unitary, i.e., RR0 D I , and moreover,

TR D �RA:
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Define a transformed state y D Rx. As a result,

Ty D �RB 0�.B 0R0y/CREd; y.0/ D x0:

Introduce a fictitious system

Tzy D REd; zy.0/ D x0:

It follows from the definition of ˝1 that zy 2 L1. Next, define the difference
between y and zy by z D y � zy. We get

Tz D �RB�.B 0R0z C B 0R0 zy/; z.0/ D 0:

Finally, transform z back to the original coordinates by defining w D R0z. Note
that

TR0 D AR0:

Hence,

Tw D Aw � B�.B 0w C B 0R0 zy/; w.0/ D 0:

This system is L1 stable. Thus, we have w 2 L1. Since x D w C R0 zy and
zy 2 L1 is bounded for all t , we conclude that x 2 L1.

We shall prove next that the states of (15.8) also remain bounded if a small
signal that does not belong to ˝1 is added on top of the original signal in ˝1.
Consider the system,

Tx D Ax � B�.B 0x/C E1d1 CE2d2; x.0/ D x0; (15.13)

where AC A0 D 0 and .A;B/ is controllable, and without loss of generality, we
assume that A is in the form of (15.9). We have the following result:

Theorem 15.3 Let d1 2 ˝1 and d2 2 L1.ı/. Then, for ı sufficiently small, the
states of system (15.13) remain bounded for all initial conditions.

Proof : Using the same sequence of transformations as introduced in the proof of
Theorem 15.2, we get the following transformed system:

Tw D Aw � B�.B 0w C B 0R0 zy/C E2d2; w.0/ D 0;

where w D x �R0 zy and

Tzy D RE1d1; zy D x0:

The fact that d1 2 ˝1 implies that zy 2 L1. Introduce another fictitious system,

Txw D .A� BB 0/ xw C E2d2; xw.0/ D 0:
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Since A � BB 0 is Hurwitz stable and d2 2 L1.ı/, we have xw 2 L1, and
moreover, kB 0 xwk1 6 1

2
for a sufficiently small ı.

Define � D w � xw. Then � has the dynamics

T� D A� � B�.B 0� C B 0 xw C B 0R0 zy/CBB 0 xw:
Let B 0�, B 0 xw C B 0R0 zy, and B 0 xw be denoted, respectively, by u; v; �. Define
V1 D 1

3
k�k3. Differentiating V1 along the trajectories yields,

TV1 D k�ku0 Œ�.�uC v/C ��

6 k�k.u � v/0 Œ��.u � v/C ��C 2k�kkvk1
D k�k ˚.u � v/0Œ��.u � v/C �.u � v C �/�

C.u � v/0Œ��.u � v C �/C �.�/�
�C 2k�kkvk1

6 � 1
2
k�k.u � v/�.u � v/C p

mk�k C 2k�kkvk1:

The last inequality in the above is obtained by using Lemmas 13.23 and 13.24.
Next, since A � BB 0 is Hurwitz stable, there exists a P > 0 satisfying

.A� BB 0/0P C P.A � BB 0/ D �I:
Define V2 D � 0P�. There exists an z̨ such that

TV2 D �k�k2 C 2� 0P ŒB�.�u C v/C BuCB��

D �k�k2 C 2� 0P ŒB.�.�u C v/C u� v/C B�C Bv�

6 �k�k2 C 2 z̨k�k.u � v/�.u � v/C z̨k�k C 2 z̨k�kkvk1:

The last inequality in the above is obtained by using Lemma 13.25.
Finally, define a Lyapunov candidate V D 4 z̨V1 C V2. We find that

TV 6 �k�k2 C .4 z̨p
mC z̨/k�k C 10 z̨k�kkvk1

D �k�k �k�k � 4 z̨p
m � z̨ � 10 z̨kvk1

�
:

Lemma 13.23 is used in arriving at the above inequality. Thus, TV 6 0 for k�k >
4 z̨p

mC z̨ C 10 z̨kvk1. This implies that � 2 L1. Since x D xw C zw� C R0 zy,
we conclude that x 2 L1.

15.4 Critically unstable systems

We now consider a general critically unstable linear system with input saturation
and disturbances,

Tx D Ax CB�.u/C Ed; x.0/ D x0; (15.14)
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where .A;B/ is controllable and A has all its eigenvalues in the closed-left-half
plane. Without loss of generality, we assume that x D .x0

1; x
0
2; : : : ; x

0
q/

0, and A,
B are in the following Jordan canonical form:

A D

ˇ xA1 0 0 0

0 xA2 : : : 0
:::

:::
: : :

:::

0 0 : : : xAq

�
; B D

ˇ
B1

B2

:::

Bq

�
; E D

ˇ
E1

E2

:::

Eq

�
; (15.15)

where

xi D

�
xi;1

xi;2

:::

xi;ni �1

xi;ni

�
; xAi D

�
Ai I 0 : : : 0

0 Ai I : : : 0
:::

:::
: : :

: : :
:::

0 0 : : : Ai I

0 0 0 0 Ai

�
„ ƒ‚ …

ni �ni blocks

;

Bi D

�
Bi;1

Bi;2

:::

Bi;ni�1

Bi;ni

�
; Ei D

�
Ei;1

Ei;2

:::

Ei;ni�1

Ei;ni

�
;

(15.16)

xi;j 2 Rpi andAi CA0
i D 0. We can further assume thatAi is in the form of (15.9)

and (15.10). Note that the above form can be obtained by assembling together
those blocks corresponding to the eigenvalues with the same Jordan block size in
the real Jordan canonical form.

Based on the above Jordan structure of matrix A, we say the disturbance d is
aligned if Ei;ni

¤ 0 for any i D 1; : : : ; q and misaligned if Ei;ni
D 0 for all

i D 1; : : : ; q. We use here the words “aligned” and “misaligned” because of a
lack of better terminology. To explore further while using this terminology, we
rewrite the given system (15.14) as

Tx D Ax CB�.u/C xE1d1 C xE2d2; x.0/ D x0; (15.17)
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with

xE1 D

ˇ xE1;1

xE1;2

:::

xE1;q

�
; xE1;i D

�
Ei;1

Ei;2

:::

Ei;ni�1

0

�
(15.18)

and

xE2 D

ˇ xE2;1

xE2;2

:::

xE2;q

�
; xE2;i D

�
0

0
:::

0

Ei;ni

�
: (15.19)

Note that the above representation delineates aligned and misaligned disturbances.
We first present the result for the above system when d1 2 L1 and d2 2 ˝1.

As will become clear later, the result derived based on this can be straightfor-
wardly extended to the general case. We shall show that if the disturbances are
aligned with input and belong to˝1 or misaligned and belong toL1, a controller
can be designed such that the states of the closed-loop system remain bounded for
any initial condition while yielding a globally asymptotically stable equilibrium.
For neutrally stable system, we have shown that this can be achieved by a lin-
ear state feedback. However, a nonlinear feedback controller is generally needed
for critically unstable systems. In what follows, we present a nonlinear dynamic
low-gain state feedback design methodology which solves the said problem.

Let P" be the solution to a parametric Lyapunov equation (PLE),

A0P" C P"A� P"BB
0P" C "P" D 0: (15.20)

Lemma 15.9 in the appendix tells us that for any given matrix xE1 in the form
of (15.18), there exists a M such that for " 2 .0; 1�, we have

xE 0
1P"

xE1 6 M"2I:

Consider the dynamical state feedback controller,
( Tyxi D Ai yxi C Bi;ni

�.�B 0P"a.xx/xx/; i D 1; : : : ; q

u D � yB 0.xb � yx/� B 0P"a.xx/xx;
(15.21)
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where

yB D

ˇ
B1;n1

B2;n2

:::

Bq;nq

�
; xb D

ˇ
x1;n1

x2;n2

:::

xq;nq

�
; yx D

ˇyx1

yx2

:::

yxq

�
I

P"a.xx/ is the solution to PLE (15.20) with " D "a.xx/, and "a.xx/ is determined by

" D "a.xx/ WD maxfr 2 Œ0; 1� j .xx0Pr xx/ � trace.B 0PrB/ 6 ı2g; (15.22)

where xx is x with xi;ni
replaced by yxi , and ı 2 .0; 1

2
� is a design parameter to

be determined later. The scheduling (15.22) guarantees that kB 0P"a.xx/xxk 6 ı for
all xx.

We have the following result in view of properties of scheduling as enumerated
in (12.2.1).

Theorem 15.4 Consider the system (15.17) with controller (15.21). The follow-
ing hold:

(i) In the absence of d1 and d2, the origin of the closed-loop system is globally
asymptotically stable.

(ii) x 2 L1 for any x.0/, d1 2 L1, and d2 2 ˝1.

Proof : For simplicity of our presentation, we omit the parameter "a in the ex-
pression of P"a.xx/. Define

zx D xb � yx D

ˇ
x1;n1

� yx1

x2;n2
� yx2

:::

xq;nq
� yxq

�
:

We have

Tzx D yAzx C yB�.� yB 0 zx � B 0P"a.xx/xx/ � yB�.�B 0P"a.xx/ xx/C yE2d2;

where

yA D

ˇ
A1 0 0 0

0 A2 : : : 0
:::

:::
: : :

:::

0 0 : : : Aq

�
; yE2 D

ˇ
E1;n1

E2;n2

:::

Eq;nq

�
: (15.23)
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Note that .A;B/ is controllable, implies that . yA; yB/ is controllable. Moreover,
yAC yA0 D 0. The closed-loop system can be written in terms of zx and xx as

8
ˆ̂̂
<̂

ˆ̂̂
:̂

Txx D Axx C B�.�B 0P xx/C xE1d1 C Izx
C xB

h
�.� yB 0 zx � B 0P xx/ � �.�B 0P xx/

i

Tzx D yAzx C yB�.� yB 0 zx � B 0P"a.xx/ xx/
� yB�.�B 0P"a.xx/xx/C yE2d2;

(15.24)

where xB is B with Bi;ni
blocks set to zero and

I D

ˇ
I1

I2

:::

Iq

�
; Ii D

�
0
:::

0

I

0

�
; xIi D .0 � � � I

"
i th block

� � � 0/:

It should be noted that xB, xE1, and I are all in the form of (15.18).
We first prove global asymptotic stability in the autonomous case. Let v D

�B 0P xx. Our scheduling (15.22) guarantees that kvk 6 ı 6 1
2

for any xx. Consider
the dynamics of zx,

Tzx D yAzx C yB�.� yB 0 zx C v/ � yB�.v/:
Define a Lyapunov function as V1 D zx2. Differentiating V1 along the trajectories
yields

TV1 D 2zx0 yBŒ�.� yB 0 zx C v/ � �.v/�:

Since kvk 6 1
2

, Lemma 13.24 yields that

TV1 6 �zx0B�.B 0 zx/:
Since zx has a bounded derivative, this implies that we must have that

lim
t!1

yB 0zx.t/ D 0;

which implies that there exists a T0 such that

k yB 0zx.t/k 6 1
2

for t > T0;

and hence,
Tzx D . yA � yB yB 0/zx;

and since this system matrix is Hurwitz stable, we have zx.t/ ! 0 as t ! 1.
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For t > T0, we have for xx dynamics that

Txx D Axx CB�.�B 0P xx/C xIzx;
where xI D IfbarB yB0. Define V2 D xx0P xx and a set

K D fxx j V2.xx/ 6 ı2

trace.B0P1B/
g;

where P1 is the solution of PLE (15.20) with " D 1. It can be easily seen
from (15.22) that "a.xx/ D 1 for xx 2 K . Next, consider the derivative of V2,

TV2 6 �"V2 C 2xx0PIzx C 2xx0P xIzx C xx0 dP
dt

xx
6 �"V2 C 2

p
V2kP 1=2Izxk C xx0 dP

dt
xx:

Note that I and xB and hence xI are in the form of (15.18). Lemma 15.9 shows that
there exists a M such that

kP 1=2xIzxk D
p

zx0xI0P xIzx 6 "
p
Mkzxk:

Hence,

TV2 6 �"V2 C 2"
p
Mkzxk

p
V2 C xx0 dP

dt
xx

6 �"
p
V2

hp
V2 � 2pMkzxk

i
C xx0 dP

dt
xx:

Since zx ! 0, there exists a T1 > T0 such that for t > T1,

kzxk 6 ı2

4
p

M
p

trace.B0P1B/
:

Therefore, for t > T1 and xx … K ,
p
V2 � 2

p
Mkzxk >

p
V2

2
, and thus,

TV2 6 � "
2
V2 C xx0 dP

dt
xx:

Since TV2 cannot have the same sign as xx0 dP
dt

xx (see [48]), we conclude that TV2 < 0

for xx … K and t > T1. This implies that xx will enter K within finite time, say
T2 > T1, and remain in K thereafter. For t > T2 and xx 2 K , we have "a.xx/ D 1

and k yB 0 zxk 6 1 � ı. All saturations are inactive, and the system becomes
( Txx D Axx � BB 0P1xx C xIzx;

Tzx D yAzx � yB yB 0 zx:

The global asymptotic stability follows from the properties that yA � yB yB 0 and
A � BB 0P1 are Hurwitz stable.

We proceed next to show the boundedness of trajectories in the presence of d1

and d2. Define

R D e
yA0t
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and y D Rzx. Note that the above R is a compact form of the rotation defined
in (15.11) and (15.12). We have TR D �R yA. Then

Ty D R yB�.� yB 0R0y C v/ �R yB�.v/CR yE2d2

with y.0/ D zx0, where v D �B 0P xx. Let xy satisfy

Txy D R yE2d2; xy.0/ D zx0:

The solution is given by

xy.t/ D xy.0/C
tZ

0

R yE2d2dt:

Note that R comprises elements of the form sin.!i t/ and cos.!i t/, where j!i is
the eigenvalue of A. By the definition of ˝1 in (15.2), we find that xy 2 L1.
Define zy D y � xy. Then

Tzy D R yB�.� yB 0R0 zy � yB 0R0 xy C v/ �R yB�.v/; zy.0/ D 0:

Again, define z D R0 zy. We get

Tz D yAz C yB�.� yB 0z � u/ � yB�.v/; z.0/ D 0;

where

u D yB 0R0 xy � v:
Since u 2 L1 and kvk 6 ı < 1

2
, it follows from Lemma 15.7 that z 2 L1. This

implies that zx 2 L1.
Consider the dynamics of xx,

Txx D Axx C B�.�B 0P xx/C xE1d1 C Izx C xB�;
where � D �.� yB 0 zx�B 0P xx/��.�B 0P xx/. Since �.�/ is globally Lipschitz with
Lipschitz constant 1, we have that k�k 6 k yB 0 zxk, and thus, � 2 L1.

By differentiating V2 D xxP xx, we obtain

TV2 6 �"V2 C 2xx0P xE1d1 C 2xx0PIzx C 2xx0P xB� C 2xx0 dP
dt

xx
6 �"V2 C 2

p
V2kP 1=2 xE1d1k C 2

p
V2kP 1=2 xB�k

C 2
p
V2kP 1=2Izxk C xx0 dP

dt
xx:

We have shown that according to Lemma 15.9, there exist M , M1, and M2 such
that

kP 1=2Izxk 6 "M kzxk; kP 1=2 xE1d1k 6 "M1kd1k; and kP 1=2x�k 6 "M k�k:
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Therefore,

TV2 6 �"
p
V2

hp
V 2 � 2M1kd1k � 2M kzxk � 2M2k�k

i
C xx0 dP

dt
xx:

If
p
V2 > 2M1kd1k1 C 2M kzxk1, we have

TV2 6 xx0 dP
dt

xx:
Since TV2 and xx0 dP

dt
xx cannot have the same sign, we find that

TV2 6 0

for xx 2 ˚p
V2 > 2M1kd1k1 C 2M kzxk1

�
, which implies that xx 2 L1, and

hence, x 2 L1 in view of the properties of scheduling as enumerated in (12.2.1).

The combination of aligned and misaligned disturbances could appear in a
more general fashion than those in Theorem 15.4. In general, for any critically un-
stable system with input saturation and nonadditive disturbances, we can always
assume the following system configuration with the aligned as well as misaligned
disturbances,

Tx D Ax C B�.u/C xE1

 
d1

d2

!
C xE2d2; x.0/ D x0; (15.25)

where A and B are given by (15.15) and (15.16), xE1 and xE2 are in the form
of (15.18) and (15.19) but with appropriate dimensions.

Based on Theorem 15.4, we can straightforwardly draw the following conclu-
sion:

Theorem 15.5 Consider the system (15.25) with controller (15.21). The follow-
ing hold:

(i) In the absence of d1 and d2, the origin of the closed-loop system is globally
asymptotically stable.

(ii) x 2 L1 for any x.0/, d1 2 L1, and d2 2 ˝1.

Proof : Note that by definition, d2 2 L1 if d2 2 ˝1. We already know that
d1 2 L1. Then the result is a direct consequence of Theorem 15.4.

We can extend the results of Theorem 15.5 by adding another sustained dis-
turbance with a sufficiently small magnitude. To do so, consider the following
system configuration:

Tx D Ax C B�.u/C xE1

 
d1

d2

!
C xE2d2 C xE3d3; x.0/ D x0; (15.26)
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where A and B are given by (15.15) and (15.16), xE1 and xE2 are in the form
of (15.18) and (15.19) but with appropriate, dimensions and xE3 is arbitrary.

Theorem 15.6 Consider the system (15.26) with controller (15.21). The follow-
ing hold:

(i) In the absence of d1, d2, and d3, the origin of the closed-loop system is
globally asymptotically stable.

(ii) x 2 L1 for any x.0/, d1 2 L1, d2 2 ˝1, and d3 2 L.ı1/ with ı1

sufficiently small.

Proof : The global asymptotic stability of the origin in the absence of disturbances
has already been shown in the proof of Theorem 15.4.

For any matrix xE3, we can always write that xE3 D xE3;m C xE3;a, where xE3;m

is in the misaligned form of (15.18) and xE3;a is in the aligned form of (15.19). To
be precise, we can write

xE3;m D

ˇ xEm;1

xEm;2

:::

xEm;q

�
; xEm;i D

�
E3;i;1

E3;i;2

:::

E3;i;ni�1

0

�

and

xE3;a D

ˇ xEa;1

xEa;2

:::

xEa;q

�
; xEa;i D

�
0

0
:::

0

E3;i;ni

�
:

The system (15.26) can be rewritten in the following form:

Tx D Ax C B�.u/C zE1

2

64
d1

d2

d3

3

75C zE2

"
d2

d3

#
; x.0/ D x0;

where
zE1 D

h
xE1

xE3;m

i
; zE3 D

h
xE2

xE3;a

i
:
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Define zx D x � xx and let zd1 D .d 0
1; d

0
2; d

0
3/

0. Consider the closed-loop system in
terms of zx and xx as in the proof of Theorem 15.4,

8
ˆ̂<

ˆ̂:

Txx D Axx C B�.�B 0P xx/C zE1
zd1 C Izx

C xB
h
�.� yB 0 zx � B 0P xx/ � �.�B 0P xx/

i

Tzx D yAzx C yB�.� yB 0 zx � B 0P xx/� yB�.�B 0P xx/C yE2d2 C yE3d3;

where yE2 is given by (15.23) and

yE3 D

ˇ
E3;1;n1

E3;2;n2

:::

E3;q;nq

�
:

Define R D e
yA0t and y D Rzx. Then

Ty D R yB�.� yB 0R0y C v/� R yB�.v/CR yE2d2 C yE3d3

with y.0/ D zx0, where v D �B 0P xx. Let xy satisfy

Txy D R yE2d2; xy.0/ D zx0:

Since d2 2 ˝1, we find that xy 2 L1. Define zy D y � xy. Then

Tzy D R yB�.� yB 0R0 zy � yB 0R0 xy C v/ �R yB�.v/CR yE3d3

with zy.0/ D 0. Again define z D R0 zy. We get

Tz D yAz C yB�.� yB 0z � u/ � yB�.v/C yE3d3; z.0/ D 0;

where u D yB 0R0 xy � v. Consider an auxiliary system

Tw D . yAC yB yB 0/w C yE3d3; w.0/ D 0:

Let ı1 6 1

4�k yBk , where � is the L1 gain of pair . yA � yB yB 0; E3/. Then we have

that kFwk1 6 1=4. Let 	 D z �w. We have that

T	 D yA	 C yB�.� yB 0	 C u/ � yB�.v/ � yB yFw; 	.0/ D 0;

where u D � yB 0w � yB 0R0 xy C v. Since u 2 L1 and k�.v/ C yFwk1 6 1=4C
1=4 D 1=2, it follows from Lemma 15.7 in the appendix that 	 2 L1. This
implies that zx 2 L1.

Consider the dynamics of xx,

Txx D Axx C B�.�B 0P xx/C zE1
zd1 C Izx C xB�;
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where � D �.� yB 0 zx � B 0P xx/ � �.�B 0P xx/, and zx 2 L1 implies that � 2 L1.
Note that zd1 2 L1 and zE1 are also in the form of (15.18). Following the same
argument as in the proof of Theorem 15.4, we can show that xx 2 L1.

Appendix 15.A

The following lemma for a neutrally stable system is adapted from [89].

Lemma 15.7 Assume that .A;B/ is controllable and AC A0 D 0. The system,

Tx D Ax � B�.B 0x C v1/� v2; x.0/ D 0;

satisfies x 2 L1 whenever v1 2 L1 and v2 2 L1.1=2/.

Proof : Denote u D B 0x and define V1 D 1
3
kxk3. Differentiating V1 along the

trajectories yields

TV1 D kxku0 Œ�.�uC v1/C v2�

6 kxk.u � v1/
0 Œ��.u � v1/C v2�C 2kxkkv1k1

D kxk ˚.u � v1/
0Œ��.u � v1/C �.u � v1 C v2/�

C.u � v1/
0Œ��.u � v1 C v2/C �.v2/�

�C 2kxkkv1k1
6 � 1

2
kxk.u � v1/�.u � v1/C 2

p
mkxkkv2k1 C 2kxkkv1k1:

The last inequality results from Lemmas 13.23 and 13.24 and the condition that
kv2k 6 1

2
.

Next, since A � BB 0 is Hurwitz stable, there exists a P > 0 satisfying

.A� BB 0/0P C P.A � BB 0/ D �I:
Define V2 D x0Px. There exists an ˛ such that

TV2 D �kxk2 C 2x0P ŒB�.�u C v1/C BuC Bv2�

D �kxk2 C 2x0P ŒB.�.�u C v1/C u � v1/C Bv2 C Bv�

6 �kxk2 C 2˛kxk.u � v1/�.u � v1/C 2˛kxkkv2k1 C 2˛kxkkv1k1;

where the inequality in Lemma 13.25 is used to derive the last inequality.
Finally, define a Lyapunov candidate V D 4˛V1 C V2. We find that

TV 6 �kxk2 C .8˛
p
mC 2˛/kxkkv2k1 C 10˛kxkkv1k1

D �kxk �kxk � .8˛p
mC 2˛/kv2k1 � 10˛kv1k1

�
:
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Hence, TV 6 0 for kxk > .8˛
p
mC 2˛/kv2k1 C 10˛kv1k1. Let c be such that

fx j V.x/ 6 cg � fx j kxk 6 .8˛
p
mC 2˛/kv2k1 C 10˛kv1k1g:

We have TV 6 0 for x … fx j V.x/ 6 cg. This implies that x.t/ 2 fx j V.x/ 6
cg for all t > 0.

Lemma 15.8 Consider the system

Ty.t/ D �.v.t// � �.v.t/C k.t/y/C d; (15.27)

where d 2 ˝1 and k.t/ > 0 and v.t/ are continuous. In that case, we have
y 2 L1 for all y.0/.

Proof : Define
Txy D d; xy.0/ D y.0/:

Since d 2 ˝1, there exists a M > 0 such that jxy.t/j 6 jy.0/j CM for all t > 0.
Define zy D y � xy. We have

Tzy D �.v/ � �.v C k.zy C xy//; zy D 0:

Let zV D zy2. Taking the derivative of zV with respect to t , we get

TzV D zy Œ�.v/ � �.v C k.zy C xy//� :

If zV > .jy.0/j C M/2, then j zyj > M C jy.0/j > jxyj. But this implies that
k.zy C xy/ has the same sign as zy. Thus,

TzV D zy Œ�.v/ � �.v C k.zy C xy//� 6 0:

Since zV .0/ D 0, we have zV 6 .jy.0/jCM/2 and j zyj 6 jy.0/jCM for all t > 0.
Therefore, jyj 6 jxyj C jzyj 6 2M C 2y.0/.

Lemma 15.9 Let P" be the solution to PLE (15.20). For any given matrix xE1 in
the form of (15.18), there exists a M such that for " 2 .0; 1�, we have

xE 0
1P"

xE1 6 M"2I:
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Proof : It is shown in [215] that P" ! 0 as " ! 0. Let

P" D "P1 C "2P2 C : : :C "iPi C : : : :

Substituting P" in (15.20), we find that P1 satisfies

P1AC A0P1 D 0; (15.28)

where A is given by (15.15). Consider the diagonal block of P1, say P1;i corre-
sponding to xAi block. P1;i must satisfy

xA0
iP1;i C P1;i

xAi D 0; (15.29)

where xAi is given by (15.16). Suppose

P1;i D
 xP11

xP 0
12

xP12
xP22

!
;

where xP11 2 Rpi �pi , xP12 and xP22 are of appropriate dimension.
Define

	i;j D

ˇ
xi;j

0
:::

0

�
;

where xi;j , j D 1; : : : ; pi are the eigenvectors of Ai associated with the eigen-
values 
j , j D 1; : : : ; pi . Clearly, we have xAi	i;j D 
j 	i;j , and thus, 	i;j is an
eigenvector of xAi . Note that xAi has pi linearly independent eigenvectors.

We shall have

. xA0
iP1;i C xP1;i

xAi /	i;j D 0:

This implies that
xA0

iP1;i	i;j D �
jP1;i	i;j :

In words, P1;i	i;j , j D 1; : : : ; pi are the eigenvectors of xA0
i associated with the

eigenvalue �
j , j D 1; : : : ; pi .
On the other hand, we have a set of eigenvectors of yA0 in the form of

�i;j D

ˇ
0
:::

0

vi;j

�
; i D 1; : : : ; pi ;

where vi;j are the eigenvectors of A0
i associated with the eigenvalue 
j .
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Note that xA0 has only pi linearly independent eigenvectors. Therefore,

P1	i;j D
 xP11xi

xP12xi

!
2 span f�i;1; : : : ; �i;pi

g:

This implies that xP11xi;j D 0, j D 1; : : : ; pi . Since xi;j forms a basis of Rpi ,
we must have xP11 D 0, and hence, xP12 D 0 due to the fact that P1;i is positive
semi-definite.

Applying the above argument to xP22 and recursively, we shall eventually find
that

P1;i D

�
0 0 0 : : : 0

0 0 0 : : : 0
:::

:::
: : :

: : :
:::

0 0 : : : 0 0

0 0 0 0 xPni ni

�
:

Due to positive semi-definiteness of P1, for any given matrix xE1 in the form
of (15.18), we must have P1

xE1 D 0. This implies that xE 0
1P"

xE1 must be of order
"2. This completes the proof.



16
Simultaneous internal and external
stabilization in the presence of a class
of non-input-additive sustained
disturbances: discrete time

16.1 Introduction

For discrete-time general critically unstable linear systems subject to actuator
saturation, this chapter is a counterpart of Chap. 15 which pertains to continuous-
time systems. That is, our goal here for discrete-time systems is to identify a set
of non-input-additive sustained disturbances for which a feedback control law can
be determined such that

1. In the absence of disturbances, the origin of the closed-loop system is glob-
ally asymptotically stable.

2. If the disturbances belong to the given set, the states of the closed-loop
system are bounded for any arbitrarily specified initial conditions.

Regarding the architecture of this chapter, after certain preliminary discussions
in Sect. 16.2, we consider in Sect. 16.3 neutrally stable systems which allow a
linear feedback law. We then move on to Sect. 16.4 to consider general critically
unstable systems (or equivalently general ANCBC systems).

This chapter is based on our work [48, 193].

16.2 Preliminaries

Consider the system,

x.k C 1/ D Ax.k/C B�.u.k//C Ed.k/; x.0/ D x0; (16.1)

where x 2 Rn, u 2 Rm and d 2 Rp . The pair .A;B/ is stabilizable, and A has all
its eigenvalues in the closed unit disc. That is, the given system is asymptotically
null controllable with bounded control (ANCBC). As pointed out in the introduc-
tion, for systems of the form (16.1), our goal in this chapter is to identify a class
of `1 disturbance signals d such that for appropriately designed feedback control
laws, the closed-loop system exhibits global asymptotic stability in the absence

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__16,
© Springer Science+Business Media New York 2012
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of disturbances d , and in the presence of such disturbances d , the state variables
of it are bounded. Consistent with previous chapters, we use `1.ı/ to denote the
set of `1 signals whose `1 norm is less than ı.

We define a set of discrete disturbances

˝1 D
(
d 2 `1 j 9M > 0; such that 8i 2 1; : : : ; q; 8k2 > k1 > 0;

������

k2X

kDk1

d.k/ cos.�ik/

������
6 M;

������

k2X

kDk1

d.k/ sin.�ik/

������
6 M

)
; (16.2)

where ej�i , i 2 1; : : : ; q, represent the eigenvalues of A on the unit circle.
Note that ˝1 contains signals which do not have sustained component at the

discrete frequency �i . Like in the continuous-time case, we can also rewrite the
above definition as

˝1 D
(
d 2 `1 j 9M > 0; such that 8i 2 1; : : : ; q;

8k2 > k1 > 0;

������

k2X

kDk1

d.k/zk
i

������
6 M

)
; (16.3)

where zi D ej�i , i D 1; : : : ; q. Since d 2 `1, the power series
P1

0 d.z/zk ,
i.e., the z-transform of d , always has a radius of convergence 1. For jzj D 1,
Definition (16.3) implies that all the partial sums of the power series are bounded
at z D zi .

We shall need the following inequality, the proof of which is given in the
appendix:

Lemma 16.1 For two vectors s; t 2 Rm, and for ktk 6 1, we have

k�.s C t/ � �.t/k 6 2k�.1
2
s/k:

16.3 Neutrally stable systems

In this section, we deal with neutrally stable systems. Consider the following
system:

x.k C 1/ D Ax.k/C B�.u.k//C Ed.k/; x.0/ D x0:

We assume that .A;B/ is controllable, A0A D I , and d 2 `1.
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We use a linear state feedback controller u D ��B 0Ax which gives a closed-
loop system as

x.k C 1/ D Ax.k/C B�.��B 0Ax.k//C Ed.k/; x.0/ D x0:

In view of the development in Sect. 4.6.1, it is easy to see that for � such that
4�B 0B 6 1, the origin of the closed-loop system in the absence of disturbances is
globally asymptotically stable. As such, we focus here only on the boundedness
of closed-loop states with disturbances. The development given below basically
parallels the same as in the continuous-time case discussed in the previous chapter.
We apply a sequence of successive rotations to state coordinates and eventually
convert the non-input-additive disturbances to input-additive disturbances using
the property of ˝1.

16.3.1 Single-frequency systems

We start by considering an example system with a pair of complex eigenvalues
at ˙j :

�

 
x1

x2

!
D
 
0 1

�1 0

! 
x1

x2

!
C
 
0

1

!
�.�x1/C

 
e1

e2

!
d; (16.4)

where d 2 ˝1.

Theorem 16.2 For � such that 4�B 0B 6 1, the trajectories of (16.4) remain
bounded for any initial condition.

Proof : To analyze the system, we introduce a rotation matrix

R.k/ D
 
0 �1
1 0

!k

;

which represents a counterclockwise rotation by an angle k
2
� . The dynamics of

the rotation matrix are given by

R.k C 1/ D R.k/

 
0 �1
1 0

!
:

We shall study the dynamics of x from a rotated coordinate frame, and toward
this end, we define the rotated state y D Rx. The dynamics of y is given by

y.k C 1/ D y.k/CR.k C 1/

" 
0

1

!
�.�x1.k//C

 
e1

e2

!
d.k/

#

D y.k/CR.k C 1/

" 
0

1

!
�
��
� 0

�
R0.k/y.k/

�
C
 
e1

e2

!
d.k/

#
;
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with y.0/ D x.0/ D x0. Next, define a fictitious system

zy.k C 1/ D zy.k/CR.k C 1/

 
e1

e2

!
d.k/; zy.0/ D x0: (16.5)

The solution to this dynamic system is

zy.k/ D zy.0/C
k�1X

iD0

 
0 �1
1 0

!iC1 
e1

e2

!
d.i/:

It follows from the definition of˝1 that the sum in the right-hand side is bounded
for all k and hence zy 2 `1.

Consider the difference between y and the fictitious state zy, given by z D y� zy,
with dynamics

z.k C 1/ D z.k/CR.k C 1/

 
0

1

!
�
��
� 0

�
R0.k/y.k/

�

D z.k/CR.k C 1/

 
0

1

!
�
��
� 0

�
R0.k/z.k/C ı.k/

�
;

with z.0/ D 0, where

ı D
�
� 0

�
R0 zy 2 `1:

We rotate z back to the original coordinate frame by introducing w D R0z,
thereby obtaining the dynamics

w.k C 1/ D
 
0 1

�1 0

!
w.k/C

 
0

1

!
�
��
� 0

�
w.k/C ı.k/

�
; w.0/ D 0:

It is shown in Lemma 16.8 given in Appendix that the above system is `1 stable
with respect to the input ı for � such that 4�B 0B 6 1 and hencew 2 `1. Finally,
we have that x D w CR0 zy and hence x 2 `1.

To demonstrate the importance of the disturbance belonging to ˝1, we shall
now show that if d contains a large component at discrete frequency ˙�

2
, the

states of (16.4) could diverge toward infinity for any initial condition. Suppose
that

d.k/ D a sin.k�
2

C �/;

where a is an amplitude yet to be chosen. For ease of presentation, we assume
that e1 D 0 and e2 D 1. Consider the dynamics of the rotated state y from the
proof of Theorem 16.2. We have
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y.k C 1/ D y.k/CR.k C 1/

" 
0

1

!
� .u.k//C

 
0

1

!
a sin.k�

2
C �/

#
;

D y.k/ � a

 
cos.k�

2
/ sin.k�

2
C �/

sin.k�
2
/ sin.k�

2
C �/

!
�
 

cos.k�
2
/

sin.k�
2
/

!
�.u.k//;

where for ease of notation, we have used

u D �x1 D
�
� 0

�
R0y:

Using appropriate trigonometric identities, the dynamics can be rewritten as

y.k C 1/ D y.k/ � a
2

 
sin.�/C sin.k� C �/

cos.�/ � cos.k� C �/

!
�
 

cos.k�
2
/

sin.k�
2
/

!
�.u.k//:

We have either j sin.�/j >
p
2=2 or j cos.�/j >

p
2=2. Without loss of generality,

we assume that j cos.�/j >
p
2=2. Let a be chosen such that a > 4.1C "/=

p
2,

where " is a positive number. For the trajectory y2.k/, we have

jy2.k/j D
ˇ̌
ˇy2.0/�

k�1X

iD0

a
2

�
cos.�/ � cos.i� C �/

�
�

k�1X

iD0

sin. i�
2
/�.u.i//

ˇ̌
ˇ:

Noting that sin. i�
2
/�.u.i// is bounded by ˙1 and using the bound

j a
2

cos.�/j > a
4

p
2 > 1C ";

we therefore have

jy2.k/j > �jy2.0/j � a
2

ˇ̌
ˇ̌
ˇ

k�1X

iD0

cos.i� C �/

ˇ̌
ˇ̌
ˇC

k�1X

iD0

"

> �jy2.0/j � a
2

C "k:

This shows that y2.k/ diverges toward infinity.

16.3.2 Multifrequency systems

Theorem 16.3 Consider the system

x.k C 1/ D Ax.k/ � B�.�B 0Ax.k//C Ed.k/; x.0/ D x0 (16.6)

where .A;B/ is controllable, A0A D I , and d 2 ˝1. Then for � such that
4�B 0B 6 I , we have for any initial condition the state x.k/ bounded for all
k > 0.
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Proof : Define R.k/ D .A0/k . Since A0A D I , R represents a time-varying
rotation matrix with difference equation R.k C 1/ D R.k/A0. Also, define y D
Rx. The transformed system becomes

y.k C 1/ D y.k/ � R.k/A0B�.�B 0AR0.k/y.k//CR.k/A0Ed.k/;

with y.0/ D x0. Introduce a fictitious system

zy.k C 1/ D zy.k/CR.k/A0Ed.k/; zy.0/ D x0:

Note that d 2 ˝1 implies that there exists a M > 0 such that

8k2 > k1 > 0;

������

k2X

kDk1

.A0/kC1Ed.k/

������
6 M:

Therefore, we observe that zy 2 `1. Let z D y � zy. We get

z.k C 1/ D z.k/ � R.k/A0B�
�
�B 0AR0.k/z.k/C �B 0AR0.k/zy.k/� ;

with z.0/ D 0. Finally, define w D R0z. The dynamics of w is given by

w.k C 1/ D Aw.k/ � B�.�B 0Aw.k/C v.k//; w.0/ D 0;

where v.k/ D �B 0AkC1 zy.k/. For 4�B 0B 6 I , the above system is `1 stable
with respect to v. Thus, zy 2 `1 implies that w 2 `1. Note that x.k/ D w.k/C
R0.k/zy.k/. Therefore, we conclude x 2 `1.

Next theorem shows that a small disturbance that does not belong to ˝1 can
also be tolerated.

Theorem 16.4 Consider the discrete-time system

x.k C 1/ D Ax.k/ � B�.�B 0Ax.k//CE1d1.k/C E2d2.k/ (16.7)

with x.0/ D x0, where d1 2˝1 and d2 2 `1.ı/. Then, for � such that 4�B 0B 6 I
and with ı sufficiently small, we have for any initial condition the state x.k/
bounded for k > 0.

Proof : Following the same lines as in the proof of Theorem 16.3, we shall get a
transformed system

w.k C 1/ D Aw.k/ � B�.�B 0Aw.k/C �B 0AR0.k/zy.k//C E2d2.k/;

with w.0/ D 0, where w D x � R0 zy and zy satisfies

zy.k C 1/ D zy.k/CR.k C 1/A0E1d1.k/; zy.0/ D x0;
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and hence zy 2 `1. Introduce an auxiliary system

xw.k C 1/ D .AC BF / xw.k/C E2d2.k/; xw.0/ D 0;

where F is such that A C BF is asymptotically stable. Since d2 2 `1, we find
that F xw 2 `1. Moreover, we have kF xwk1 6 1

2
provided that ı is small enough.

Define zw D w � xw. Then we get

zw.k C 1/ D A zw.k/ � B�.�B 0A zw.k/C v1.k//C Bv2.k/; zw.0/ D 0;

where v1 D �B 0A xw C �B 0AR0 zy and v2 D F xw. Note that kv2k1 6 1
2

. Then,
Lemma 16.8 given in Appendix shows that zw 2 `1. Since x D zw C xw C R0 zy,
we conclude that x 2 `1 for any initial condition.

16.4 Critically unstable systems

16.4.1 Formulation

We consider next general critically unstable systems. The system given in (16.1)
with possibly different type of disturbances can be rewritten as

x.k C 1/ D Ax.k/C B�.u.k//C Ed.k/; x.0/ D x0 (16.8)

where, without loss of generality, we assume that .A;B/ is controllable andA has
all its eigenvalues on the unit circle. Again, without loss of generality, we assume
that x D .x0

1; x
0
2; : : : ; x

0
q/

0 and A, B , and E have the following structure:

A D

�
xA1 0 � � � 0

0 xA2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 xAq

�
; B D

ˇ
B1

B2

:::

Bq

�
; E D

ˇ
E1

E2

:::

Eq

�
; (16.9)

where

xi D

�
xi;1

xi;2

:::

xi;ni �1

xi;ni

�
; xAi D

�
Ai I 0 � � � 0

0 Ai I
: : :

:::
:::

: : :
: : :

: : : 0
:::

: : : Ai I

0 � � � � � � 0 Ai

�
„ ƒ‚ …

ni �ni blocks

: (16.10)
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Here, xi;j 2 Rpi and A0
iAi D I . Finally,

Bi D

�
Bi;1

Bi;2

:::

Bi;ni �1

Bi;ni

�
; Ei D

�
Ei;1

Ei;2

:::

Ei;ni�1

Ei;ni

�
: (16.11)

Note that the above form can be obtained by assembling together in the real Jor-
dan canonical form those blocks corresponding to the eigenvalues with the same
Jordan block size.

As in the continuous time which was discussed in the previous chapter, based
on the above Jordan structure of matrix A, we say the disturbance d is aligned if
Ei;ni

¤ 0 for some i D 1; : : : ; q and misaligned ifEi;ni
D 0 for all i D 1; : : : ; q.

Again, we use here the words “aligned” and “misaligned” because of a lack of
better terminology. To explore further while using this terminology, we rewrite
the given system (16.9) as

x.k C 1/ D Ax.k/C B�.u.k//C xE1d1.k/C xE2d2.k/; (16.12)

with x.0/ D x0, where

xE1 D

ˇ xE1;1

xE1;2

:::

xE1;q

�
; xE1;i D

�
Ei;1

Ei;2

:::

Ei;ni�1

0

�
(16.13)

and

xE2 D

ˇ xE2;1

xE2;2

:::

xE2;q

�
; xE2;i D

�
0

0
:::

0

Ei;ni

�
: (16.14)

We first present the result for the above type of disturbances. As will become
clear later, the result derived based on the above form can be straightforwardly
extended to other type of disturbances.
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We shall design a nonlinear dynamic state feedback controller that will enable
us to solve our problem. For " 2 .0; 0:9�, let P" be the solution of the discrete
parametric Lyapunov equation (DPLE):

.1 � "/P" D A0P"A� A0P"B.B
0P"B C I /�1B 0P"A: (16.15)

The existence of P" for " 2 .0; 1/ has been established in Lemma 12.15. When
A is given by (16.9) and (16.10), an important property of P" is shown in Lemma
16.12 given in Appendix.

Consider the following dynamic state feedback controller

(
yxi .k C 1/ D Ai yxi .k/C Bi;ni

�
��F"a.xx.k// xx.k/� ; i D 1; : : : ; q

u.k/ D �� yB 0 yA.xb.k/ � yx.k// � F"a.xx.k//xx.k/;
(16.16)

where xx is x with xi;ni
replaced by yxi ,

xb D

ˇ
x1;n1

x2;n2

:::

xq;nq

�
; yx D

ˇyx1

yx2

:::

yxq

�
; yA D

�
A1 0 � � � 0

0 A2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Aq

�
; yB D

ˇ
B1;n1

B2;n2

:::

Bq;nq

�
;

F"a.xx/ D .B 0P"a.xx/B C I /�1B 0P"a.xx/A;

and where P"a.xx/ is the solution to the discrete parametric Lyapunov equation
(16.15) with " D "a.xx/ and "a.xx/ is determined by

" D "a.xx/ WD maxfr 2 .0; 0:9� j .xx0Pr xx/ � trace.Pr / 6 ı2

2 trace.BB0/
g; (16.17)

where ı D 1
4

and Pr is the unique positive definite solution of the discrete para-
metric Lyapunov equation (16.15) with " D r (see the properties of scheduling as
enumerated in (12.2.1)).

Note that we have

kF"a.xx/ xxk 6 1
4
;

for any xx. We have the following result:

Theorem 16.5 Consider the system (16.12) with controller (16.16) for � such
that 8�B 0B 6 I . Then the following hold:

(i) In the absence of d1 and d2, the origin is global asymptotically stable.

(ii) In the presence of d1 and d2, x 2 `1 for any x.0/, d1 2 `1, and d2 2 ˝1.
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Proof : In the proof, we omit the parameter "a in the expressions for P"a
and F"a

for ease of notation and use ".k/, P.k/ and F.k/ to express their dependence on
time. Define

zx D xb � yx D

ˇ
x1;n1

� yx1

x2;n2
� yx2

:::

xq;nq
� yxq

�
:

We have

�zx D yAzx C yB�.�� yB 0 yAzx � F xx/� yB�.�F xx/C yE2d2;

where

yE2 D

ˇ
E1;n1

E2;n2

:::

Eq;nq

�
: (16.18)

Note that the controllability of .A;B/ implies the controllability of . yA; yB/.
Moreover, yA yA0 D I . The closed-loop system can then be written in terms of
zx; xx as

(
�xx D Axx C B�.�F xx/C xB

h
�.�� yB 0 yAzx � Fx/ � �.�Fx/

i
C xE1d1 C Izx

�zx D yAzx C yB�.�� yB 0 yAzx � F xx/� yB�.�F xx/C yE2d2;

(16.19)
where xB is B with Bi;ni

blocks set to zero and

I D

ˇ
I1

I2

:::

Iq

�
; Ii D

�
0
:::

0

xIi

0

�
; xIi D Œ0 � � � I

"
i th block

� � � 0�:

We first prove global asymptotic stability in the autonomous case. Let v D �F xx.
Our scheduling (16.17) guarantees that kvk 6 ı D 1

4
for any xx. Consider the

dynamics of zx:

�zx D yAzx C yB�.�� yB 0 yAzx C v/� yB�.v/:
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Note that 8�B 0B 6 I implies that 8� yB 0 yB 6 I . Define a Lyapunov function as
V1 D zx2. Let zu D � yB 0 yAzx. The increment of V1 along the trajectories is given by

�V1 � V1 D Œ�.�zuC v/ � �.v/�
0 yB 0 yB Œ�.�zuC v/ � �.v/�

C 2
�

zu0 Œ�.�zuC v/ � �.v/�

6 � 1
�

zu�.zu/C 1
2�

k�.1
2

zu/k2

6 � 1
�

zu�.zu/C 1
2�

k�.zu/k2

6 � 1
2�

zu�.zu/
D �1

2
zx0 yA0 yB�.� yB 0 yAzx/;

where we use 8� yB 0 yB 6 I , Lemma 13.23, and Lemma 16.1.
This clearly implies that yB 0 yAzx.k/ ! 0 as k ! 1, and hence there exists a

K0 such that we have

k� yB 0 yAzx.k/k 6 1
2

for k > K0, and hence we obtain

zx.k C 1/ D . yA � � yB yB 0 yA/zx;

and therefore, zx.k/ ! 0 as k ! 1 because the matrix yA � � yB yB 0 yA is Schur
stable.

For k > K0, we have for xx dynamics,

xx.k C 1/ D Axx C B�.�F xx/C xIzx;

where xI D I � � xB yB 0 yA. Define V2 D xx0P xx and a set

K D
n

xx j V2.xx/ 6 ˛2 , ı2

2 trace.BB0/ trace.P �/

o
;

whereP � is the solution of (16.15) with " D 0:9. It can be easily seen from (16.17)
that for xx 2 K , "a.xx/ D 0:9. Next, consider the increment of V2 along the trajec-
tory. There exists a ˇ independent of d such that

V2.k C 1/� V2.k/

6 �"V2.k/ � 2�.F xx.k//0B 0P.k/xIzx.k/C 2xx0.k/AP.k/xIzx.k/
C zx0.k/xI0P.k/xIzx.k/C xx0.k C 1/0ŒP.k C 1/� P.k/�xx.k C 1/

6 �"V2.k/C 2kAk
p
V2.k/kP 1=2.k/xIzx.k/k C ˇkP 1=2.k/xIzx.k/k

C kP 1=2.k/xIzx.k/k2 C xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/:
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Note that I, xB , and hence xI are all in the form of (16.13). Lemma 16.12 given in
Appendix shows that there exists a M such that

kP 1=2xIzxk D
p

zx0xI0P xIzx 6 "
p
Mkzxk:

Moreover, for xx … K , V2 > ˛2. Hence, we have for xx … K ,

V2.k C 1/� V2.k/

6 �"V2.k/C 2"
p
MV2.k/kAkkzx.k/k C ˇ

˛
"
p
MV2.k/kzx.k/k

C " 1
˛
M
p
V2.k/kzx.k/k2 C xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/

6 �"pV2.k/
hp
V2.k/ � 2pMkAkkzx.k/k � ˇ

˛

p
Mkzx.k/k

� 1
˛
M kzx.k/k2

i
C xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/:

Since zx ! 0, there exists a K1 > K0 such that for k > K1,

kzxk 6 min

�
1;

˛2

4
p
MkAk˛ C 2ˇ

p
M C 2M

�
:

Therefore, for k > K1 and xx … K ,

p
V2 � .2pMkAk � ˇ

˛

p
M/kzxk � 1

˛
M kzxk2 >

p
V2 � ˛

2
>

p
V2

2
;

and thus

V2.k C 1/� V2.k/ 6 � "
2
V2.k/C xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/:

Since V2.k C 1/� V2.k/ cannot have the same sign as

xx0.k C 1/0ŒP.k C 1/� P.k/�xx.k C 1/

(which can be established similar to the argument in the proof of Theorem 12.19),
we conclude that for xx … K and k > K1,

V2.k C 1/� V2.k/ < 0:

This implies that xx will enter K within finite time, say K2 > K1. For k > K2

and xx 2 K , we have " D 0:9 and k yB 0 yAzx C F xxk 6 1
2

C 1
4

D 3
4

. All saturations
are inactive, and the system becomes

(
xx.k C 1/ D ŒA � BF ��xx.k/C Izx.k/;
zx.k C 1/ D Œ yA � � yB yB 0 yA�zx.k/;

where

F � D .B 0P �B C I /�1B 0P �A
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and P � is the solution of (16.15) with " D 0:9. It is clear that we shall also have
V2.k C 1/ � V2.k/ < 0 for xx 2 K . Therefore, xx will remain in K for k > K2.
The global asymptotic stability follows from the properties that A � BF � and
yA � � yB yB 0 yA are Schur stable with 8� yB yB 0 6 I .

We proceed next to show the boundedness of trajectories in the presence of d1

and d2. Define

R.k/ D . yA0/k

and y D Rzx. Note that since yA0 yA D I , R defines a discrete-time rotation matrix.
We have that R.k C 1/ D R.k/ yA0. Then

y.k C 1/ D y.k/CR yA0 yB�.�� yB 0 yAR0y C v/ �R yA0 yB�.v/CR yA0 yE2d2

with y.0/ D zx0, where v D �F xx. Let xy satisfy

xy.k C 1/ D xy.k/CR.k/ yA0 yE2d2; xy.0/ D zx0:

Since d2 2 ˝1, we find that xy 2 `1. Define zy D y � xy. Then

zy.kC 1/ D zy.k/CR.k/ yA0 yB�.�� yB 0 yAR0.k/zy.k/� � yB 0 yAR0.k/xy.k/Cv.k//

�R.k/ yA0 yB�.v.k//;

with zy.0/ D 0. Again, define z D R0 zy. We get

z.k C 1/ D yAz.k/C yB�.�� yB 0 yAz.k/ � zu.k//� yB�.v.k//; z.0/ D 0;

where

zu D � yB 0 yAR0 xy � v:
Since zu 2 `1 and kvk 6 ı D 1

4
, it follows from Lemma 16.8 that z 2 `1. This

implies that zx 2 `1.
Consider the dynamics of xx

xx.k C 1/ D Axx.k/C B�.�F xx.k//C xB�.k/C xE1d1.k/C Izx.k/;

where

�.k/ D �.�� yB 0 yAzx.k/ � F xx.k// � �.�F xx.k//:
Because � is globally Lipschitz with Lipschitz constant 1, we have

k�.k/k 6 k� yB 0 yAzx.k/k:
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Hence, � 2 `1. There exists a ˇ such that

V2.k C 1/� V2.k/

6 �"V2.k/ � 2�.F xx.k//0B 0P.k/Izx.k/ � 2�.F xx.k//0B 0P.k/ xE1d1.k/

� 2�.F xx.k//0BP xB�.k/C 2xx.k/0A0P xB�.k/
C 2xx0.k/AP.k/Izx.k/C 2xx0.k/AP.k/ xE1d1.k/

C .d 0
1.k/

xE 0
1 C zx0.k/I0 C �.k/0 xB 0/P.k/. xE1d1.k/C Izx.k/C xB�.k//

C xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/

6 �"V2.k/C
�
kP 1=2.k/Izx.k/k C kP 1=2.k/ xE1d1.k/k C kP 1=2 xB�.k/k

�2

C
�
2kAk

p
V2.k/C ˇ

�

�
�
kP 1=2.k/Izx.k/k C kP 1=2.k/ xE1d1.k/k C kP 1=2 xB�.k/k

�

C xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/:

We have already shown that according to Lemma 16.12, there exist M , M1, and
M2 such that

kP 1=2Izxk 6 "
p
M kzxk;

kP 1=2 xE1d1k 6 "
p
M1kd1k;

kP 1=2 xB�k 6 "
p
M2k�k:

Define a set V as

V D fxx j V2.xx/ 6 cg ;
where c is such that V2 > c implies that

1
2
V2 > .2kAk

p
V2 C ˇ/.

p
Mkzxk`1

C
p
M1kd1k`1

C
p
M2k�k`1

/

C 2M kzxk2
`1

C 2M1kd1k2
`1

C 2M2k�k2
`1
:

Therefore, for xx … V , we have

V2.k C 1/� V2.k/ 6 � 1
2
"V2.k/C xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/:

Since V2.k C 1/� V2.k/ and xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/ cannot have
the same sign, we find that

V2.k C 1/� V2.k/ < 0; xx … V : (16.20)

On the other hand, for xx 2 V , assume that V2.kC1/�V2.k/ > 0. In that case,
we have

xx0.k C 1/ŒP.k C 1/� P.k/�xx.k C 1/ 6 0:
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Then

V2.k C 1/� V2.k/ 6 	 , 2M kzxk2
`1

C 2M1kd1k2
`1

C 2M2k�k2
`1

C .2kAkp
c C ˇ/.

p
Mkzxk`1

C
p
M1kd1k`1

C
p
M2k�k`1

/:

Hence, the maximum increment of V2 inside V is 	. In view of this, (16.20) and
definition of V , we conclude that V2 6 maxfc C 	;V2.0/g, which implies that
xx 2 `1 and hence x 2 `1.

The combination of aligned and misaligned disturbances could appear in a
more general fashion than those in Theorem 16.5. Without loss of generality, for
any critically unstable system with input saturation and nonadditive disturbances,
we can always assume the following system configuration:

�x D Ax C B�.u/C xE1

 
d1

d2

!
C xE2d2; x.0/ D x0; (16.21)

whereA andB are given by (16.9)–(16.11), xE1; and xE2 are in the form of (16.13)
and (16.14) but with appropriate dimensions.

Based on Theorem 16.5, we can immediately draw the following conclusion.

Theorem 16.6 Consider the system (16.21) with controller (16.16) for � such
that 8�B 0B 6 I . Then we have:

(i) In the absence of d1 and d2, the origin is global asymptotically stable.

(ii) In the presence of d1 and d2, x 2 `1 for any x.0/, d1 2 `1, and d2 2 ˝1.

Proof : Note that by definition, d2 2 `1 if d2 2 ˝1. Therefore, d1; d2 2 `1.
Then the result is a direct consequence of Theorem 16.5.

We shall prove next that a small aligned disturbance which does not belong to
˝1 is permitted. Moreover, it turns out that a combination of aligned˝1 distur-
bance, misaligned `1 disturbance, and an arbitrary disturbance which belongs to
`1.ı1/ can be handled by the same controller (16.16) given ı1 sufficiently small.
Such a case is formulated as follows:

�x D Ax C B�.u/ C xE1

 
d1

d2

!
C xE2d2 C xE3d3; x.0/ D x0; (16.22)

where A and B are given by (16.9) and (16.10), xE1 and xE2 are in the form of
(16.13) and (16.14) but with appropriate dimensions, and xE3 is arbitrary.
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Theorem 16.7 Consider the system (16.22) with controller (16.16) for � such
that 8�B 0B 6 I . Then we have:

(i) In the absence of d1, d2, and d3, the origin is global asymptotically stable.

(ii) In the presence of d1, d2, and d3, x 2 `1 for any x.0/, d1 2 `1, d2 2 ˝1,
and d3 2 `.ı1/ with ı1 sufficiently small.

Proof : As in the proof of Theorem 16.5, we omit the parameter "a.xx/ in the
expressions P"a.xx/ and F"a.xx/. The global asymptotic stability of the origin in the
absence of disturbances has already been shown in the proof of Theorem 16.5.

For any matrix xE3, we can always write that xE3 D xE3;m C xE3;a, where xE3;m

is in the misaligned form of (16.13) and xE3;a is in the aligned form of (16.14). To
be precise, we can write

xE3;m D

ˇ xEm;1

xEm;2

:::

xEm;q

�
; xEm;i D

�
E3;i;1

E3;i;2

:::

E3;i;ni�1

0

�

and

xE3;a D

ˇ xEa;1

xEa;2

:::

xEa;q

�
; xEa;i D

�
0

0
:::

0

E3;i;ni

�
:

The system (16.22) can then be written in the form

�x D Ax C B�.u/C zE1

�
d1

d2

d3

�
C zE2

 
d2

d3

!
; x.0/ D x0;

where
zE1 D

�
xE1

xE3;m

�
; zE3 D

�
xE2

xE3;a

�
:

Define zx D x � xx and let zd1 D .d 0
1; d

0
2; d

0
3/. Consider the closed-loop system in

terms of zx and xx as in the proof of Theorem 16.5:
(
�xx D Axx CB�.�F xx/C xB

h
�.�� yB 0 yAzx � F xx/ � �.�F xx/

i
C zE1

zd1 C Izx
�zx D yAzx C yB�.�� yB 0 yAzx � F xx/� yB�.�F xx/C yE2d2 C yE3d3;
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where yE2 is given by (16.18) and

yE3 D

ˇ
E3;1;n1

E3;2;n2

:::

E3;q;nq

�
:

Similarly, define R D . yA0/k and y D Rzx. Then

y.kC1/ D y.k/CR.kC1/ yB�.�� yB 0 yAR0.k/y.k/Cv.k//�R.kC1/ yB�.v.k//
CR.k C 1/ yE2d2.k/C yE3d3.k/;

with y.0/ D zx.0/, where v D �F xx. Let xy satisfy

xy.k C 1/ D xy.k/CR.k C 1/ yE2d2.k/; xy.0/ D zx0:

Since d2 2 ˝1, we find that xy 2 `1. Define zy D y � xy. Then

zy.k C 1/ D zy.k/CR.k C 1/ yB�.�� yB 0 yAR0.k/zy.k/ � � yB 0 yAR0 xy.k/C v.k//

� R.k C 1/ yB�.v.k//CR.k C 1/ yE3d3.k/;

with zy.0/ D 0. Again, define z D R0 zy. We get

z.kC1/ D yAz.k/C yB�.�� yB 0 yAz.k/� zu.k//� yB�.v/C yE3d3.k/; z.0/ D 0;

where

zu D � yB 0 yAR0 xy � v:
Consider an auxiliary system

w.k C 1/ D . yA� � yB yB 0 yA/w.k/C yE3d3.k/; w.0/ D 0:

Let ı1 be small enough such that ı1 6 1

4�k yB0 yAk�
, where 
 is the `1 gain of pair

. yA � � yB yB 0 yA;E3/. Hence, d3 2 `1.ı1/ implies that k� yB 0 yAwk 6 1
4

. Consider
� D z � w. We get

�� D yA� C yB�.�� yB 0 yA� � yu/ � yB�.v/C � yB yB 0 yAw;

where yu D � yB 0 yAw C � yB 0 yAR0 xy � v. Since yu 2 `1 and kvk C �k yB 0 yAwk 6
1
4

C 1
4

D 1
2

, it follows from Lemma 16.8 that � 2 `1. This finally implies that
zx 2 `1.
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Consider the dynamics of xx

xx.k C 1/ D Axx CB�.�F xx/C zxE1
zd1 C Izx C xB�;

where � D �.�� yB 0 yAzx � F xx/ � �.�F xx/. Note that � 2 `1, zd1 2 `1, and zE1

is also in the form of (16.13). Following the same argument as in the proof of
Theorem 16.5, we can show that xx 2 `1.

16.A Proofs of some lemmas

We first prove the following lemma that was used in the proof of one of our main
theorems.

Lemma 16.8 Suppose A0A D I and .A;B/ is controllable. Consider

�x.k/ D Ax � B�.��B 0Ax C v1/C Bv2; x.0/ D x0:

Then for � satisfying 4�B 0B 6 I , we have:

(i) In the absence of v1 and v2, the origin is globally asymptotically stable.

(ii) In the presence of v1 and v2, x 2 `1 for all v1 2 `1 and v2 2 `1.1=2/
and any initial condition.

In order to prove the above result, we first need the following lemmas. The first
lemma has already been established in Sect. (4.6.1).

Lemma 16.9 Assume that A0A D I and �B 0B 6 2I for some � > 0. Then,
zA D A� �BB 0A is Schur stable if and only if .A;B/ is controllable.

The next two lemmas can be easily verified:

Lemma 16.10 For any t 2 Rm satisfying ktk 6 1, we have

� s0Œ�.s/C t � 6 ktk2

4
: (16.23)

Lemma 16.11 For any s 2 Rm,

ks � �.s/k 6 s0�.s/: (16.24)
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Proof of Lemma 16.8 : Denote �B 0Ax by y. Define V1 D kxk2. We have

�V1 � V1 D kAx C B�.�y � v1/CBv2k2 � kxk2

D 2
�
y0Œ�.�y � v1/C v2�

C 	
�.�y � v1/

0 C v0
2



B 0B Œ�.�y � v1/C v2�

6 2
�
Œy0 C v0

1�Œ�.�y � v1/C v2� � 2
�
v0

1Œ�.�y � v1/C v2�

C 1
4�

k�.�y � v1/C v2k2;

where we use condition 4�B 0B 6 I . We can assume that kv2k 6 1
2

, and since �
is bounded by ˙1, we find that �v0

1Œ�.�y � v1/C v2� 6 2kv1k. This yields

�V1 � V1 6 2
�
Œy0 � v0

1�Œ�.�y � v1/C v2�C 1
2�

k�.y C v1/k2

C 1
2�

kv2k2 C 4
�
kv1k

6 2
�
Œy C v1�

0Œ�.�y � v1/C v2�C 1
2�

k�.y C v1/k2

C 1
2�

kv2k C 4
�
kv1k:

Note that

2
�
Œy0 C v0

1�Œ�.�y � v1/C v2�

D 1
�
Œy0 C v0

1��.�y � v1/C 1
�
Œy C v1�

0Œ�.�y � v1/C 2v2�

6 1
�
Œy0 C v0

1��.�y � v1/C 1
�
kv2k2

6 1
�
Œy0 C v1�

0�.�y � v1/C 1
�
kv2k;

where we use (16.23) and kvk 6 1
2

. Therefore,

�V1 � V1 6 1
�
Œy0 C v0

1��.�y � v1/C 1
2�

k�.y C v1/k2

C 3
2�

kv2k C 4
�
kv1k

6 1
2�
Œy0 C v0

1��.�y � v1/C 3
2�

kv2k C 4
�
kv1k: (16.25)

Since 4�B 0B 6 I , zA D A � �BB 0A is Schur stable. Let P be the solution to the
Lyapunov equation:

zA0P zA � P C I D 0:

Define V2 D kP 1=2xk. We have

�V2 � V2 D kP 1=2 zAx C P 1=2BŒy C v1 � �.y C v1/C .v2 � v1/�k
� kP 1=2xk

6 kP 1=2 zAxk C kP 1=2BŒy C v1 � �.y C v1/C .v2 � v1/�k
� kP 1=2xk:
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For x ¤ 0, there exists a ˇ > 0 such that

kP 1=2 zAxk � kP 1=2xk D kP 1=2 zAxk2 � kP 1=2xk2

kP 1=2 zAxk C kP 1=2xk D �kxk2

kP 1=2 zAxk C kP 1=2xk
6 �ˇkxk:

Obviously, the above also holds for x D 0. Hence,

�V2 � V2 6 �ˇkxk C kP 1=2Bkk.y C v1/� �.y C v1/k
C kP 1=2Bk.kvk C kuk/

6 �ˇkxk C kP 1=2Bk.y C v1/
0�.y C v1/

C kP 1=2Bk.kv2k C kv1k/; (16.26)

where we use (16.24).
Define V D 2�kP 1=2BkV1 C V2. We obtain from (16.25) and (16.26) that

�V � V 6 �ˇkxk C 9kP 1=2Bkkv1k C 4kP 1=2Bkkv2k: (16.27)

This immediately implies that x 2 `1 for any initial condition.

Proof of Lemma 16.1 : Let si and ti denote each element of s and t .
Case 1: si C ti > 1; we have that

j�.si C ti / � �.ti /j D 1 � ti 6 2:

Also,

j�.si C ti /� �.ti /j D 1 � ti 6 jui j:
Hence,

j�.si C ti /� �.ti /j 6 2j�.1
2
si /j:

Case 2: jsi C ti j < 1; this implies that jsi j 6 2,

j�.si C ti / � �.ti /j D jsi j D 2j�.1
2
si /j:

Case 3: si C ti 6 �1
j�.si C ti /� �.ti /j D j � 1 � ti j D 1C ti 6 jsi j:

Also,

j�.si C ti /� �.ti /j D j � 1 � ti j D 1C ti 6 2:

Hence,

j�.si C ti /� �.ti /j 6 2j�.1
2
si /j:
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Lemma 16.12 Let P" be the solution of the discrete parametric Lyapunov
equation (16.15). For any given matrix xE1 of the form (16.13), there exists a
M such that for " 2 .0; 0:9�,

xE 0
1P"

xE1 6 M"2I:

Proof : It is shown in [216] that P" ! 0 as " ! 0. Let

P" D "P1 C "2P2 C : : :C "iPi C : : : :

Substituting P" in (16.15), we find that P1 satisfies

A0P1A � P1 D 0; (16.28)

where A is given by (16.9). In a block decomposition of P1 compatible with the
block decomposition of A, we denote the diagonal block matrices by P1;i with
i D 1; : : : ; q. We note that P1;i must satisfy

xA0
iP1;i

xAi � P1;i D 0; (16.29)

where xAi is given by (16.10). Suppose

P1;i D
 xP11

xP 0
12

xP12
xP22

!
;

where xP11 2 Rpi �pi and xP12 and xP22 are of appropriate dimension.
Define

�i;j D

ˇ
xi;j

0
:::

0

�
;

where xi;j , j D 1; : : : ; pi are the eigenvectors of Ai associated with the eigen-
values �i , j D 1; : : : ; pi . Clearly, we have xAi�i;j D �j �i;j .

We shall have that

. xA0
iP1;i

xAi � xP1;i /�i;j D 0:

This implies that
xA0

iP1;i�i;j D ��
j P1;i�i;j :

In words, P1;i�i;j , j D 1; : : : ; pi are the eigenvectors of xA0 associated with the
eigenvalue ��j , j D 1; : : : ; pi . On the other hand, we have a set of eigenvectors
of xA0

i in the form of
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i;j D

ˇ
0
:::

0

vi;j

�
; i D 1; : : : ; pi ;

where vi;j are the eigenvectors of A0
i associated with the eigenvalue �j , j D

1; : : : ; pi .
Note that xA0

i also has only pi linearly independent eigenvectors. Therefore,

P1�i;j D
 xP11xi;j

xP12xi;j

!
2 spanf
i;1; : : : ; 
i;pi

g:

This implies that xP11xi;j D 0, j D 1; : : : ; pi . Since xi;j forms a basis of Rpi ,
we must have xP11 D 0 and hence xP12 D 0 due to the fact that P1;i is positive
semi-definite.

Applying the above argument to xP22 and recursively, we shall eventually find
that

P1;i D

�
0 0 � � � 0

0
: : :

: : :
:::

:::
: : : 0 0

0 � � � 0 xPni ni

�
:

Due to positive semi-definiteness of P1, for any given matrix xE1 in the form
of (16.13), we must have P1

xE1 D 0. This implies that E 0
1P"

xE1 must be of order
"2. This completes the proof.



17
External and internal stabilization
under the presence of stochastic
disturbances

17.1 Introduction

So far, all the results discussed in this book are in deterministic setting. A new
frontier for the next phase of research is in stochastic setting. That is, to consider
disturbances which are modeled as colored noise which in turn can be modeled
as white noise followed by a linear system. Then, the goal is to investigate simul-
taneous external and internal stabilization of linear systems subject to constraints
when the disturbances are modeled stochastically. To be precise, the goal is to
develop feedback controllers for such systems such that:

1. In the absence of disturbances, the origin of the closed-loop system is glob-
ally asymptotically stable.

2. In the presence of disturbances, the states of the closed-loop system have
finite variance for random Gaussian distributed initial conditions, possibly
independent of the external disturbances.

Because of the requirement of global internal stability, the above simultaneous
external and internal stabilization problem necessitates that the given linear sys-
tem is asymptotically null controllable with bounded control (ANCBC). In this
chapter, the above problem is solved for two special classes of ANCBC systems,
(1) both continuous- and discrete-time open-loop neutrally stable systems and
(2) continuous-time double-integrator system. We utilize linear static state feed-
back control laws for both classes of systems.

The simultaneous global internal stabilization and semi-global external stochas-
tic stabilization problem as mentioned above requires the state of the closed-loop
system to have finite variance in the presence of disturbances. A broader goal
could be to minimize the variance of the state of a closed-loop system. This is not
pursued in this chapter.

This chapter is organized as follows. For both discrete- and continuous-time
systems, a formal problem formulation is given in Sect. 17.2. The main results
for open-loop neutrally stable systems are given in Sect. 17.3. The proofs of such

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints,
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__17,
© Springer Science+Business Media New York 2012
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results are given in Sect. 17.3.1 for discrete-time case and in Sect. 17.3.2 for
continuous-time case. The main results and their proofs for a double integrator
with linear feedback are presented in Sect. 17.4.

This chapter is mainly based on our work [165, 168, 171].

17.2 Problem formulation

In this chapter, as before, � denotes the standard saturation function introduced in
Definition 2.19. In the case of discrete time, we consider systems of the form,

x.k C 1/ D Ax.k/ C B�.u.k// C Ew.k/; (17.1)

where the state x, the control u, and the disturbance w are vector-valued signals of
dimension n, m, and `, respectively. Here, k 2 ZC, w is a white-noise stochastic
process with covariance matrix Q and mean 0; the initial condition x0 of (17.1)
is a Gaussian random vector independent of w.k/ for all k > 0.

In the case of continuous time, we consider the stochastic differential equation
of the form

dx.t/ D Ax.t/dt C B�.u.t//dt C Edw.t/; (17.2)

where once again the state x, the control u, and the disturbance w are vector-
valued signals of dimension n, m, and `, respectively. Here, w is a Wiener process
(a process of ` independent Brownian motions) with mean 0 and rate Q, that is,
VarŒw.t/� D Qt and the initial condition x0 of (17.2) is a Gaussian random vector
which is independent of w. Its solution x is rigorously defined through Wiener
integrals and is a Gauss-Markov process. See, for instance, [109].

An admissible feedback is a nonlinear feedback of the form

u.�/ D f .x.�//: (17.3)

For discrete-time systems, we assume that f W Rn ! Rm is a continuous map
with f .0/ D 0. On the other hand, for continuous-time systems, we assume that
f is a Lipschitz-continuous mapping with f .0/ D 0.

We can consider three versions of external stochastic stability. We define this
for discrete-time systems. If a controller exists which achieves a bounded variance
of the state for all possible covariance matrices Q of the white-noise stochastic
process w, then we refer to this as global external stochastic stability. On the
other hand, if for all M > 0 there exists a controller which achieves a bounded
variance of the state for all possible covariance matrices Q with kQk < M of
the white-noise stochastic process w, then we refer to this as semi-global external
stochastic stability. Finally, if there exists a M and if there exists a controller
which achieves a bounded variance of the state for all possible covariance matrices
Q with kQk < M of the white-noise stochastic process w, then we refer to this
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as local external stochastic stability. In the continuous-time systems, we have the
same definitions, but Q refers to the rate of the Wiener process instead of the
covariance matrix.

We are interested in the following problems:

Problem 17.1 Consider the system (17.1) for discrete time, and the system (17.2)
for continuous time. Then, the simultaneous global internal stabilization and
global external stochastic stabilization problem is to find an admissible feed-
back (17.3) such that the following properties hold:

(i) In the absence of the external input w, the equilibrium point x D 0 of the
controlled system (17.1)–(17.3) or (17.2) and (17.3) is globally asymptoti-
cally stable.

(ii) The variance Var.x.k// or Var.x.t// of the state of the controlled system
(17.1)–(17.3) or (17.2) and (17.3) is bounded over k > 0 or t > 0 for any
Q > 0.

Problem 17.2 Consider the system (17.1) for discrete time, and the system (17.2)
for continuous time. Then, the simultaneous global internal stabilization and
semi-global external stochastic stabilization problem is, for any given M > 0,
to find an admissible feedback (17.3) such that the following properties hold:

(i) In the absence of the external input w, the equilibrium point x D 0 of the
controlled system (17.1)–(17.3) or (17.2)–(17.3) is globally asymptotically
stable.

(ii) The variance Var.x.k// or Var.x.t// of the state of the controlled system
(17.1)–(17.3) or (17.2) and (17.3) is bounded over k > 0 or t > 0 provided
kQk < M .

Problem 17.3 Consider the system (17.1) for discrete time, and the system (17.2)
for continuous time. Then, the simultaneous global internal stabilization and
local external stochastic stabilization problem is to find an M > 0 and an ad-
missible feedback (17.3) such that the following properties hold:

(i) In the absence of the external input w, the equilibrium point x D 0 of the
controlled system (17.1)–(17.3) or (17.2) and (17.3) is globally asymptoti-
cally stable.

(ii) The variance Var.x.k// or Var.x.t// of the state of the controlled system
(17.1)–(17.3) or (17.2) and (17.3) is bounded over k > 0 or t > 0 provided
kQk < M .
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Remark 17.4 Note that even for small Q, for all N > 0, the probability that
kX.t/k > N will be small but nonzero (except for the trivial case when E D 0).
Since the state is not bounded, it therefore makes sense to require global internal
stability even in the case of local external stochastic stability.

The fact that controllers exist that achieve global asymptotic stability in the ab-
sence of disturbances as described in condition (i) is well known and is discussed
in Chap. 4. The main objective then is to look at the additional requirement on the
variance of the state.

17.3 Open-loop neutrally stable systems

The following result pertains to discrete-time open-loop neutrally stable systems:

Theorem 17.5 Consider the system (17.1) and suppose that .A; B/ is stabilizable
while A is neutrally stable, i.e., the eigenvalues of A are in the closed unit disc and
the eigenvalues on the unit circle have equal geometric and algebraic multiplicity.
Then, there exists a linear feedback which solves the simultaneous global internal
stabilization and global external stochastic stabilization problem as defined in
Problem 17.1.

The following theorem pertains to continuous-time systems:

Theorem 17.6 Consider the system (17.2) and suppose that .A; B/ is stabiliz-
able while A is neutrally stable, i.e., the eigenvalues of A are in the closed left
half plane and the eigenvalues on the imaginary axis have equal geometric and
algebraic multiplicity. Then, there exists a linear feedback which solves the simul-
taneous global internal stabilization and global external stochastic stabilization
problem as defined in Problem 17.1.

17.3.1 Proofs for the discrete-time case

We first present a few little lemmas that we need later:

Lemma 17.7 For any a 2 Rm and b 2 Rm and � > 1, we have

.a C b/0�.a C b/ >
�
1 � 1

�

�
a0�.a/ � .� C 1/kbk2;

where � is the standard saturation function.
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Proof : It is easily verified that for any ˛ 2 R and ˇ 2 R and n > 1, we have

.˛ C ˇ/�.˛ C ˇ/ >
�
1 � 1

�

�
˛�.˛/ � .� C 1/ˇ2;

The vector case then follows immediately.

Lemma 17.8 For any convex function f W R ! R, we have

f .x/ C f .�x/ 6 f .y/ C f .�y/

if jxj 6 jyj.

Proof : Assume without loss of generality that x and y are positive. The lemma
follows from the fact that

f .x/ 6 y C x

2y
f .y/ C y � x

2y
f .�y/

f .�x/ 6 y � x

2y
f .y/ C y C x

2y
f .�y/;

and adding these two inequalities.

For ease of notation, we introduce the function F W Rm ! R defined by

F.v/ D 2v0�.�v/: (17.4)

The following property of F will be useful later and can be easily verified.

Lemma 17.9 For all u 2 Rm, we have

F.v/ > 2kvk � m

2�
:

Using a simple basis transformation, we can assume without loss of generality
that

A D
 

A11 0

0 A22

!
; B D

 
B1

B2

!
; E D

 
E1

E2

!

with A11 asymptotically stable while A0
22A22 D I . This is guaranteed by the fact

that A is neutrally stable. Next, we consider the subsystem:

x2.t C 1/ D A22x2.t/ C B2u.t/ C E2w.t/: (17.5)
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If we find an admissible feedback of the form u.t/ D f .x2.t// which solves
the simultaneous global internal stabilization and global external stochastic sta-
bilization problem as defined in Problem 17.1 for the system (17.5), then it is
easily verified that this controller also solves the same problem for the original
system (17.1).

Proof of Theorem 17.5 : Without loss of generality, using the above argument,
we assume that the original system satisfies A0A D I . Then, as in Sect. 4.6.1,
Sect. 12.6, as well as Sect. 13.4, we consider a feedback of the form

u.k/ D ��B 0Ax.k/: (17.6)

The general case of the theorem can then easily be established using the reduction
to the system (17.5) as described earlier.

If the system is not affected by noise, it is well known that the feedback (17.6)
achieves asymptotic stability which is also easily verified by noting that V.x/ D
x0x is a suitable Lyapunov function.

In the derivation, we will make the role of the design parameter � explicit.
However, we will show that the interconnection of (17.1) and (17.6) results in a
bounded variance of the state independent of the choice of Q for any positive
value of �, i.e., we solve the global external stochastic stabilization problem.

According to a crucial result of [113] presented in Lemma 17.16 and first used
in the context of this problem in [116], it is sufficient to establish that there exist
a; b; J > 0 such that for all k > 0:

E Œ kx.k C 1/k � kx.k/k j x.k/ � 6 �a

provided kx.k/k > J and

E
h

jkx.k C 1/k � kx.k/kj4 j x.k/
i

6 b:

However, we will actually establish that there exist a; b; J > 0 such that for all
k > 0,

E Œ kx.k C n/k � kx.k/k j x.k/ � 6 �a (17.7)

provided kx.k/k > J and

E
h

jkx.k C n/k � kx.k/kj4 j x.k/
i

6 b; (17.8)

where n is the dimension of the state space. Since it is trivial to verify that
x.0/; : : : ; x.n�1/ have a bounded variance, it is easily seen that (17.7) and (17.8)
also guarantee that the variance of the state is bounded.

In order to verify (17.8), we consider z.k/ D .A0/kx.k/. It is easily verified
(using that A0A D I ) that we have

z.k C 1/ D z.k/ C .A0/kC1B�.u.k// C .A0/kC1Ew.k/:
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This yields

kz.k C 1/k 6 kz.k/k C kBk C kEkkw.k/k:

We note that kz.k/k D kx.k/k, and hence, it is easily seen that we have

kx.k C n/k 6 kx.k/k C nkBk C kEk
n�1X

iD0

kw.k C i/k:

This yields

E
h

jkx.k C n/k � kx.k/kj4 j x.k/
i

6 E

ˇ̌
ˇ̌
ˇnkBk C kEk

n�1X

iD0

kw.k C i/k
ˇ̌
ˇ̌
ˇ

4

6 b

for a suitable b since all moments of w.k/ are bounded since it has a Gaussian
distribution.

Using the feedback (17.6), the dynamics (17.1), and the fact that A0A D I , we
note that there exists a N > 0 such that

E
�

x.k C 1/0x.k C 1/ j x.k/
�

6 x.k/0x.k/ � F
�
B 0Ax.k/

�C N (17.9)

for all k using the notation (17.4) introduced before. Note that N depends on the
covariance matrix Q. We find that

E
�

x.k C n/0x.k C n/ j x.k/
�

6 x.k/0x.k/ �
n�1X

iD0

E
�

F
�
B 0Ax.k C i/

� j x.k/
�C nN: (17.10)

The following lemma presents a crucial inequality.

Lemma 17.10 We have for i D 1; : : : ; n that

E
�
F
�
B 0Ax.k C i/

� j x.k/
�

> 1

2i
F
�
B 0Ai x.k/

� � �M; (17.11)

where M is a constant which depends on the covariance matrix Q but is indepen-
dent of �.

Proof : We first consider

F
�
B 0At x.k C 1/

�

for some integer t > 1. We note that

B 0Atx.k C 1/ D B 0AtC1x.k/„ ƒ‚ …
a

C B 0AtEw.k/ � B 0At B�.�B 0Ax.k//„ ƒ‚ …
b

:
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Using Lemma 17.7 with � D 2, we get

F
�
B 0At x.k C 1/

�

> 1
2
F
�
B 0AtC1x.k/

� � 3�
��B 0At Ew.k/ � B 0At B�.�B 0Ax.k//

��2
:

Next, we note that for suitable M1 and M2 independent of t and �, we have

3
��B 0At Ew.k/ � B 0AtB�.�B 0Ax.k//

��2 6 M1 C M2kw.k/k2

since the saturation function is bounded. Therefore,

F
�
B 0At x.k C 1/

�
> 1

2
F
�
B 0AtC1x.k/

� � �M1 � �M2kw.k/k2: (17.12)

Since (17.12) is true for all k, we find that

F
�
B 0Aj x.k C i � j C 1/

�
> 1

2
F
�
B 0Aj C1x.k C i � j /

�

� �M1 � �M2kw.k C i � j /k2:

By repeatedly applying the above inequality starting with j D 1, we get

F
�
B 0Ax.k C i/

�
> 1

2i
F
�
B 0Ai x.k/

��2�M1 ��M2

i�1X

j D0

kw.k C i �j /k2;

and taking the conditional expectation and defining

M D 2M1 C M2 trace Q;

we find (17.11).

Using the last lemma and (17.10), we find that

E
�

x.k C n/0x.k C n/ j x.k/
�

6 x.k/0x.k/ �
n�1X

iD0

1

2i
F
�
B 0AiC1x.k/

�C zM (17.13)

for a suitable zM which is independent of x and w and can be chosen independent
of � provided we have a known upper bound for �.

Next, we note that since .A; B/ is controllable while A is invertible, the matrixˇ
B 0A
B 0A2

:::

B 0An

�
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is injective which implies that there exists an ˛ (the smallest singular value of this
matrix divided by n) such that for any x there exists a positive integer t 6 n such
that

kB 0At xk > ˛kxk
and then it is easily seen, using Lemma 17.9, that there exists a ˇ such that for
any x 2 Rn we have

n�1X

iD0

1

2i
F.B 0AiC1x/ >

n�1X

iD0

1

2i�1
kB 0AiC1xk � m

2iC1�

> 2ˇkxk � m

�
;

where ˇ D ˛
2n . This yields

E
� kx.k C n/k2 j x.k/

�
6 kx.k/k2 � 2ˇkx.k/k C m

�
C zM:

Using Jensen’s inequality, we obtain

E Œ kx.k C n/k j x.k/ � 6
p

E Œ kx.k C n/k2 j x.k/ �

6
r

kx.k/k2 � 2ˇkx.k/k C m

�
C zM

6 kx.k/k � 1
2
ˇ;

provided

kx.k/k > J WD min

(
m C � zM

�ˇ
;

ˇ

2

)
:

Therefore, we note (17.8) is satisfied which completes the proof.

17.3.2 Proofs for the continuous-time case

Proof of Theorem 17.6 : Without loss of generality, we assume that the origi-
nal system satisfies A C A0 D 0. Then, as in Sect. 4.6.1, Sect. 12.6, as well as
Sect. 13.4, we consider a feedback of the form

u.t/ D ��B 0x.t/: (17.14)

The general case of the theorem can then easily be established using a reduc-
tion that ignores the asymptotically stable dynamics in a similar fashion as in the
discrete-time case and as in Sect. 12.6.1.
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If the system is not affected by noise, it is well known that the feedback (17.14)
achieves asymptotic stability which is also easily verified by noting that V.x/ D
x0x is a suitable Lyapunov function.

In order to prove external stochastic stability, we will show that the intercon-
nection of (17.1) and (17.6) results in a bounded variance of the state independent
of the rate Q of the Wiener process. We will make the role of the design parameter
� explicit in the bounds obtained below but the global external stochastic stability
is a property that is obtained independent of our choice for �.

We again rely on a crucial result of [113] as presented in Lemma 17.16. It is
therefore sufficient to establish that there exist a; b; J > 0 such that for all t > 0,

E Œ kx.t C 1/k � kx.t/k j x.t/ � 6 �a (17.15)

provided kx.t/k > J and

E
h

jkx.t C 1/k � kx.t/kj4 j x.k/
i

6 b: (17.16)

Since it is trivial to verify that x.t/; t 2 Œ0; 1/ has a bounded variance, it is easily
seen from the results in [113] that (17.15) and (17.16) also guarantee that the
variance of the state is bounded.

In order to verify (17.16), we consider z.t/ D e�At x.t/. It is easily verified
that we have

dz.t/ D e�AtB�.u.k//dt C e�At Edw.t/

which yields

z.t C 1/ D z.t/ C
tC1Z

t

e�A� B�.u.�//d� C
tC1Z

t

e�A� Edw.�/:

We note that kz.t/k D kx.t/k (using that ACA0 D 0), and hence it is easily seen
that we have

kx.t C 1/k 6 kx.t/k C kBk C kvt k;

where

vt WD
tC1Z

t

e�A� Edw.�/

is a Gaussian stochastic variable. This yields

E
h

jkx.t C 1/k � kx.t/kj4 j x.t/
i

6 E
h

jkBk C kvt kj4 j x.t/
i

6 b

for a suitable constant b using the fact that vt and x.t/ are independent. This
establishes (17.15).
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In order to establish (17.16), we will use the following lemma:

Lemma 17.11 Assume that .A; B/ is controllable. Then there exist a constant ˇ

such that for all �,

1
2

tC1Z

t

F.B 0eA.��t/x.t//d� > 2ˇkx.t/k � m
4�

:

Proof : First, using Lemma 17.9, we obtain

1
2

tC1Z

t

F.B 0eA.��t/x.t//d� >
tC1Z

t

kB 0eA.��t/x.t/kd� � m
4�

:

If there is no ˇ > 0 such that

tC1Z

t

kB 0eA.��t/x.t/kd� > 2ˇkx.t/k

for all x.t/ 2 Rn, then there exists a sequence fxng � Rn with kxnk D 1 such
that

tC1Z

t

kB 0eA.��t/xnkd� ! 0;

but then, let xx ¤ 0 be the limit of a convergent subsequence of fxng. Then we
have

tC1Z

t

kB 0eA.��t/xxkd� D 0

which implies that

B 0eA0s xx D 0

for all s 2 Œ�1; 0�. But controllability of .A; B/ implies that .B 0; A0/ is observable
which yields a contradiction.

To study the effect of the noise, we first note that

x.�/ D eA.��t/x.t/ C
�Z

t

eA.��s/B�.u.s//ds C
�Z

t

eA.��s/Edw.s/

DW eA.��t/x.t/ C v1
t .�/ (17.17)
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Moreover, we have

dx0x D .2x0B�.u/ C trace EQE 0/dt C 2x0Edw

using A C A0 D 0 and Itô’s lemma (see, for instance, [109]). This yields that

E
�

x.t C 1/0x.t C 1/ j x.t/
� D x.t/0x.t/

� 2
�

E

2

4
tC1Z

t

u.�/0�.u.�//d� j x.t/

3

5C trace EQE 0;

where we used (17.14). We have

2
�

tC1Z

t

u.�/0�.u.�//d� D
tC1Z

t

F.B 0x.�//d�

>
tC1Z

t

1
2
F.B 0eA.��t/x.t// � 3�kv1

t .�/k2d�;

where we used Lemma 17.7 with � D 2. This yields

2
�

E

2

4
tC1Z

t

u.�/0�.u.�//d� j x.t/

3

5 >
tC1Z

t

1
2
F.B 0eA.��t/x.t// � N

for some N > 0 since v1
t is, according to (17.17), the sum of a bounded term and

a term independent of x.t/ with bounded moments. Combining the above with
Lemma 17.11, we get

E
� kx.t C 1/k2 j x.t/

� D kx.t/k2 � 2ˇkx.t/k C m

4�
C zN

for some appropriate zN > 0.
Using Jensen’s inequality, we obtain

E Œ kx.t C 1/k j x.t/ � 6
p

E Œ kx.t C 1/k2 j x.t/ �

6
r

kx.t/k2 � 2ˇkx.t/k C m

4�
C zN

6 kx.t/k � 1
2
ˇ

provided

kx.k/k > J WD min

(
m C 4� zN

4�ˇ
;

ˇ

2

)
:

Therefore, we note that (17.16) is satisfied which completes the proof.
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17.4 Double-integrator system

As a follow-up on our previous work in Chap. 14 as well as in [168], we consider
here the canonical example of double integrator which has played an important
role in obtaining a much needed insight as to what is possible and what is not in
the presence of an input saturation:

dx1 D x2dt C e1dwt

dx2 D �.u.t//dt C e2dwt ;
(17.18)

where wt is a Wiener processes with mean 0 and rate Q. The initial condition
.x1.0/; x2.0//0 is a Gaussian random vector which is independent of wt .

As discussed in Chap. 14, it is well known that any linear controller which
asymptotically stabilizes the above linear system without the saturation element
will still internally stabilize the system with the saturation function present, i.e.,
any controller of the form

u D �k1x1 � k2x2 (17.19)

will achieve global internal stability (when w � 0) provided k1 > 0 and k2 > 0.
This can be easily verified using the Lyapunov function:

V.x1; x2/ D
�k1x1�k2x2Z

0

�.�/d� C k1

2
x0

2x2: (17.20)

As such, we rewrite (17.18) with u D �k1x1 � k2x2 for positive k1 and k2 as
(

dx1 D x2dt C e1dwt

dx2 D �.�k1x1 � k2x2/dt C e2dwt :
(17.21)

At first, we consider the simultaneous global internal stabilization and global
external stochastic stabilization as defined in Problem 17.1 for the double-integrator
system as given in (17.18) while utilizing the linear state feedback law (17.19)
that is for the system (17.21). In this regard, we obtain a negative result that says
that global external stochastic stability cannot be achieved with any k1 > 0 and
k2 > 0 whenever e2 ¤ 0.

Theorem 17.12 Consider the double-integrator system (17.21) which utilizes lin-
ear state feedback. Then, any k1 > 0 and k2 > 0 will result in an unbounded
variance of the state for Q large enough whenever e2 ¤ 0.

Explained in simple words, the above theorem states that global internal stabil-
ity does not imply the global external stability. Moreover, it shows that simulta-
neous global internal stabilization and global external stochastic stabilization as
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defined in Problem 17.1 is impossible to achieve for the double integrator. The
above theorem does not, however, exclude the possibility of achieving local or
semi-global external stochastic stabilization as we discuss shortly.

We proceed next to prove Theorem 17.12.

Proof : We first use a change of variables,

y1.�/ D k1x1. k2

k1
�/ C k2x2. k2

k1
�/;

y2.�/ D k2x2. k2

k1
�/;

while

zw.�/ D
q

k1

k2
w
�

k2

k1
�
�

:

We note that zw (like w) is Wiener process with mean 0 and rate Q. This allows
us to rewrite the system (17.21) as

dy1.�/ D y2.�/d� � ��.y1.�//d� C ze1d zw.�/

dy2.�/ D ���.y1.�//d� C ze2d zw.�/;
(17.22)

where

� D k2
2

k1
;

and

ze1 D
q

k2

k1
.k1e1 C k2e2/; ze2 D

q
k2

k1
k2e2:

Next, we look at the Lyapunov function V defined in (17.20) which in our new
coordinates reduces to the form

V.y1; y2/ D
y1Z

0

�.�/d� C 1
2�

y0
2y2: (17.23)

We define y D .y1; y2/.
We consider two cases. If jy1j 6 1, we find that

dV D ���.y1/2d� C �
�.y1/ze1 C 1

�
y2ze2

�
d zw

C �ze1Qze0
1 C 1

�
ze2Qze0

2

�
d�; (17.24)

while for jy1j > 1, we get

dV D ���.y1/2d� C �
�.y1/ze1 C 1

�
y2ze2

�
d zw C 1

�
ze2Qze0

2d�: (17.25)

Note that in the above two equations, the last term is the special correction term
that comes from Itô’s lemma. For details, we refer to [109].
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Combining the above, we find the lower bound,

EŒV .y.t//� > EŒV .y.t0//� �
tZ

t0

�d� C
tZ

t0

1
�

ze2Qze0
2d�:

It is clear that V 6 kyk2. Using the above lower bound, we find VarŒy� is un-
bounded whenever

ze2Qze0
2 > �2:

Here, we used that VarŒy� D E kyk2 given that y has mean zero. The above
clearly means that for any given controller, there exist stochastic disturbances with
sufficiently large variance that will result in an unbounded variance for the state.
The only possible exception is when e2 D 0. Finally, note that if the variance of
y is unbounded, then we clearly also have the variance of x unbounded.

The above theorem clearly states that the simultaneous global internal stabi-
lization and global external stochastic stabilization as defined in Problem 17.1 is
impossible to achieve for the double-integrator system with linear feedback.

This prompts us to examine for the double-integrator system the simultane-
ous global internal stabilization and semi-global external stochastic stabilization
problem as defined in Problem 17.2. In this connection, we have a positive result,
namely if Q has a known upper bound, we can always find k1 and k2 for which
the states will have a bounded variance.

This result has only been obtained for a particular case of double-integrator
systems where e2 D 0, i.e., we consider the system,

(
dx1 D x2dt C dwt

dx2 D �.�k1x1 � k2x2/dt;
(17.26)

where k1 and k2 are positive real numbers, wt is a Wiener process with mean 0

and rate q, and the initial condition .x1.0/; x2.0//0 is a Gaussian random vector
which is independent of wt .

We have the following results:

Theorem 17.13 Consider the system (17.26). For any a priori given xq > 0, there
exist k1 > 0 and k2 > 0 such that the state has a bounded variance for any wt

with q 6 xq.

Theorem 17.14 Consider the system (17.26). For any k1 > 0 and k2 > 0, there
exists a xq > 0 such that for any wt with q < xq, the closed-loop state has a
bounded variance.
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We conjecture that the above two theorems are also correct for the more general
case of system 17.21 with e2 ¤ 0. In other words, we claim that for any k1 > 0

and k2 > 0, we achieve local external stochastic stability while we can achieve
semi-global external stochastic stability by suitable chosen linear feedbacks.

Theorems 17.13 and 17.14 are an immediate consequence of the following
proposition:

Proposition 17.15 Consider the system (17.26). For any given q > 0, VarŒx� is
bounded if k2

k2
1

> 16q.

Proof : Define

V.x1; x2/ D
k1x1Z

0

�.s/ds C
k1x1Ck2x2Z

0

�.s/ds C k1x2
2 : (17.27)

We have

kxk2 6 2.V C 1/2 C 2V

k1

:

Therefore, VarŒx� is bounded if EŒV r � is bounded for r 2 .0; 3/. Thanks to
Lemma 17.16 in Appendix, it suffices to show that there exist a > 0, b > 0,
and J > 0 such that

(i) EŒV .t C 1/ � V.t/ j V.t/� 6 �a on the event that V.t/ > J ;

(ii) EŒjV.t C 1/ � V.t/j4 j V.t/� 6 b.

From Itô’s formula, we have

dV D Œk1x2dt C k1dwt ��.k1x1/

C Œk1x2dt C k1dwt � k2�.k1x1 C k2x2/dt ��.k1x1 C k2x2/

� 2k1x2�.k1x1 C k2x2/dt C
X

i;j

@2V
@xi @xj

dxi dxj :

Then

dV D �k2�2.k1x1 C k2x2/2dt C k1x2Œ�.k1x1/ � �.k1x1 C k2x2/�dt

C Œk1�.k1x1/ C k1�.k1x1 C k2x2/�dwt C
X

i;j

@2V
@xi @xj

dxi dxj :
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Consider the Itô correction term,
X

i;j

@2V
@xi @xj

dxi dxj D @
@x1

Œk1�.k1x1/ C k1�.k1x1 C k2x2/�dx2
1

C 2 @
@x2

Œk1�.k1x1 C k2x2/�dx1dx2 C 2k1dx2
2

D

8
ˆ̂̂
<

ˆ̂̂
:

0; jk1x1j > 1 & jk1x1 C k2x2j > 1

k2
1 ; jk1x1j 6 1 & jk1x1 C k2x2j > 1

k2
1 ; jk1x1j > 1 & jk1x1 C k2x2j 6 1

2k2
1 ; jk1x1j 6 1 & jk1x1 C k2x2j 6 1:

Therefore, we have

dV 6 �t dt C vt dwt C 2k2
1qdt;

where

vt WD k1�.k1x1/ C k1�.k1x1 C k2x2/

andv

�t WD �k2�2.k1x1 C k2x2/2 C k1x2Œ�.k1x1/ � �.k1x1 C k2x2/�:v

Note that �t 6 0. Then

jV.t C 1/ � V.t/j 6

ˇ̌
ˇ̌
ˇ̌

tC1Z

t

vt dwt

ˇ̌
ˇ̌
ˇ̌C 2k2

1q:

We first prove item (ii). It suffices to prove that there exists a J such that

E

2

64

ˇ̌
ˇ̌
ˇ̌

tC1Z

t

vt dwt

ˇ̌
ˇ̌
ˇ̌

4
3

75 6 J:

Define Ws D R s

t
v� dw� . We have dWs D vsdws. Define Ys D W 4

s . Then

dYs D 4W 3
s vsdws C 12W 2

s v2
s ds:

Hence, we have

E ŒYtC1� D 12 E

2

4
tC1Z

t

W 2
s v2

s ds

3

5 6 24k2
1

tC1Z

t

E
�
W 2

s

�
ds:
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From Itô isometry, we have, for s 2 Œt; t C 1�,

E
�
W 2

s

� D E

2
64

0

@
sZ

t

vt dwt

1

A
2
3
75 D E

2

4
sZ

t

v2
t dt

3

5 6 4k2
1 :

Therefore,

E

2

64

ˇ̌
ˇ̌
ˇ̌

tC1Z

t

vt dwt

ˇ̌
ˇ̌
ˇ̌

4
3

75 D E ŒYtC1� 6 96k4
1 :v

It remains to show item (i). Define c D maxf8k1q; 1
k2

g. We have two cases:

Case 1:

x2.t/ > c C 1. This implies that x2 > c for Œt; t C 1�.

(i) If jk1x1 C k2x2j > 1
2

, we have

� k2�2.k1x1 C k2x2/ C k1x2Œ�.k1x1/ � �.k1x1 C k2x2/�

6 �k2�2.k1x1 C k2x2/ 6 �k2

4
6 �4k2

1qI

(ii) if jk1x1 C k2x2j 6 1
2

, we have

� k2�2.k1x1 C k2x2/ C k1x2Œ�.k1x1/ � �.k1x1 C k2x2/�

6 k1x2Œ�.k1x1/ � �.k1x1 C k2x2/� 6 �1

2
k1x2�.k2x2/ 6 �4k2

1q:

In either possibility, we shall have

EŒ�t � 6 �4k2
1q:

Case 2:

jx2.t/j 6 c C 1. This implies that jx2j 6 c C 2 in Œt; t C 1�. Let J0 > 0 be such
that for any t > J0

1Z

t

1p
2�q

e
� s2

2q ds 6 1

2
;
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and let J be such that

V.t/ > J

jx2.t/j 6 c C 1

)
) jx1.t/j > k2.cC2/CJ0C1

k1
C c C 2:

Without loss of generality, we assume that x1.t/ > k2.cC2/CJ0C1
k1

C c C 2. Then
for s 2 Œt; t C 1�,

k1x1.s/ C k2x2.s/ D M1.s/ C M2.s/;

where

M1.s/ D k1x1.t/ C k2x2.s/ C k1

sZ

t

x2.�/d�; M2.s/ D
sZ

t

dw� :

Note that given x1.t/ > k2.cC2/CJ0C1
k1

C c C 2 and jx2.s/j 6 c C 2, we have for
s 2 Œt; t C 1�,

M1.s/ > J0 C 1:

Hence, k1x1.s/Ck2x2.s/ 2 Œ�1; 1� implies that M2.s/ 6 �J0, which yields that

P Œk1x1.s/ C k2x2.s/ 2 Œ�1; 1� j V.t/ > J � 6 P ŒM.s/ 6 �J0�:

This implies that

EŒ�2.k1x1.s/ C k2x2.s// j V.t/ > J � > 1 �
1Z

J0

1p
2�q

e
� s2

2q ds > 1

2
:

Therefore,

EŒ�t � 6 �k2 EŒ�2.k1x1.s/ C k2x2.s//� 6 � k2

2
6 �8k2

1q:

In summary, for k2

k2
1

> 16q, we find in both cases that

EŒ�t � 6 �4k2
1q:

Therefore,

EŒV .t C 1/ � V.t/ j V.t/ > J � D �t C 2k2
1q 6 �2k

q
1 :

This completes the proof.
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17.A Appendix

We recall here a crucial lemma proved in [113].

Lemma 17.16 Let Xn be random variables and fFng be the filtration to which
fXng is adapted and suppose that there exist constants a > 0, J and V < 1,
and p > 2 such that X0 < J and for all n

E.XnC1 � Xn j Fn/ < �a; on the event that fXn > J g (17.28)

and
E.jXnC1 � Xnjp j Fn/ 6 V: (17.29)

Then, for any r 2 .0; p�1/, there is a c D c.a; J; V; p; r/ such that E.XC
n /r < c

for all n.
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