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Preface

The Challenge of Constraints

Willst du ins Unendliche schreiten,

Geh nur im Endlichen nach allen seiten.
If to the Infinite you want to stride,

Just walk in the Finite to every side.

Gott, Gemiit und Welt

Johann Wolfgang von Goethe

Constraints are common and are everywhere. Hard time-domain constraints on
actuators, sensors, and state variables of dynamic systems are the most ubiqui-
tous nonlinearities in practical control systems. Their impacts on stability, control
performance, and safety have been well recognized by both control engineers and
control theorists for many decades. The challenge of such constraints in analysis
as well as in design of control systems is intense and dauntingly formidable and
familiar; it needs no elaboration and explanation.

The primary focus of this book is on the problem of achieving simultaneous
internal and external stabilization of linear systems subject to constraints in both
semi-global and global framework. Our intended audience includes practicing en-
gineers, graduate students, and researchers in the field of systems and control. A
vast majority of the contents of this book are drawn from the research of the au-
thors, their coworkers, and students. Thus, it bears the signature of the authors and
has a recognizable identity and a coherence of point of view which can be char-
acterized as a structural view in both the analysis and design of dynamic systems.

No work of this magnitude and nature can be undertaken without many sac-
rifices. The deeds of this book absorbed our time infinitely more than the deeds
of our households. We thank our families for their tolerance and understanding.
Naturally, the debt of gratitude to our families is paid in some way by dedicating
this book to them. The PhD thesis work of Mr. Xu Wang reflects in many places,
needless to say that we are indebted to him enormously. Also, we are certainly
indebted to our editor, Dr. Tamer Bagar, and the editorial staff at Birkhduser. Our
special thanks go to the copy editor for a meticulous editing that improved the
text. Ali spent countless number of hours brooding over the manuscript of this
book at Bucer’s; the great coffee house of Moscow, Idaho. Ali acknowledges the
contribution of all the good people of Bucer’s, special thanks go to Ms. Pat Green-
field.

Finally, we trust and hope that a proper study of this book leads to a bounty of
applications of what we strived to develop here. We await to realize that this is no
idle dream.

XV
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1

Introduction

Constraints on inputs and other variables of a dynamic system are ubiquitous. Of-
ten they occur in the form of magnitude as well as rate saturation of a variable.
Clearly, the capacity of every device is capped. Valves can only be operated be-
tween fully open and fully closed states, pumps and compressors have a finite
throughput capacity, and tanks can only hold a certain volume. Force, torque,
thrust, stroke, voltage, current, flow rate, and so on, are limited in their activation
range in all physical systems. Servers can serve only so many consumers. In cir-
cuits, transistors and amplifiers are saturating components. Saturation and other
physical limitations are dominant in maneuvering systems like aircrafts. Every
physically conceivable actuator, sensor, or transducer has bounds on the magni-
tude as well as on the rate of change of its output. Thus, the saturation of a device
presents a hard constraint.

The first period of intense research that was focused on constraints on in-
puts was in the middle of last century, mainly via optimal control theory and
anti-windup compensation. The success of this period of research was somewhat
limited and control under constraints remained for a long time as a challenge to
control engineers. A second and intense period of research on constraints on in-
puts, primarily on control input magnitude and rate saturation, got started in the
early 1990s. For the next decade or so, control of linear systems subject to actuator
saturation both in magnitude and rate of change was the center of focus. Achiev-
ing internal (Lyapunov) stability as well as simultaneous internal and external
(Lp or £,) stability of a closed-loop linear system subject to such constraints has
been the impetus for much of the research performed. Internal as well as external
stabilization was pursued in both global and semi-global setting. This phase of re-
search has provided a rich variety of techniques for analysis and design of control
systems subject to constraints. Tremendous strides have been and are being made
to advance our understanding of such constraints. Both research monographs and
special issues of control journals document the results available in this early phase
of work.

Control of linear systems subject to constraints took another and important
turn a decade or so ago when constraints not only on actuator and sensor satu-
ration but also on state variables were imposed. This general type of constraints
is modeled by introducing what are termed as constrained outputs which are

A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints, 1
Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4787-2__1,
© Springer Science+Business Media New York 2012



2 1 Introduction

linear combinations of inputs and state variables of the controlled system. Internal
stabilization of linear systems was sought with the constraint that the constrained
outputs be confined to subsets of their respective spaces. To be specific, consider
a linear system X commonly described by

Y : px = Ax + Bu (1.1

where x € R” is the state and u € R™ is the control input and p x denotes ‘ji—)t‘ for

continuous time and x (k + 1) for discrete time. Let us define next the constrained
output

z=Cyx+ D,u, zeR? (1.2)
with

d
ze€d& and d_j €T or (z(k+1)—z(k) eT (1.3)

forall = 0or k = 0, where § and 7 are a priori given subsets of R?. Thus, the
constrained output z captures constraints on both magnitude and rate of change
on a part of input u as well as on a part of state x. We observe next that, based on
the constrained output z, a taxonomy of constraints was also developed catego-
rizing and delineating the constraints into different groups. Such a categorization
of constraints paved distinct omnidirectional paths showing what can be achieved
and what cannot be achieved.

More recently, the saga of research on constraints got elevated to another orbit
when it embraced so-called sandwiched nonlinearities. Let us emphasize that
most if not all systems encountered in practice indeed consist of an interconnection
of components, or otherwise called subsystems, and some of these subsystems are
well characterized as linear, whereas others are more distinctly nonlinear. Clearly,
this results in a system configuration which is an interconnection of separable lin-
ear and nonlinear parts. In other words, a common paradigm of nonlinear systems
is that they are indeed linear systems in which nonlinear elements are sandwiched
or embedded. This provokes or motivates a thorough study of different types of
nonlinear elements or constraints. As pointed out earlier, one of the ubiquitous
static nonlinearities is saturation of a device. This implies that most often one
encounters as a system model a collection of linear systems in which saturation
nonlinearities are embedded or sandwiched. Thus, control of such systems for
internal stabilization or for other performance requirements emerged as another
immense focus of research.

In very recent years, based on a clear but very agonizing understanding of the
complexity of achieving external stabilization in the presence of sustained distur-
bances, the focus of research activity has been directed toward identifying a class
of sustained disturbances for which external stabilization of linear systems sub-
ject to constraints on control can be assured, while simultaneously assuring global
internal stabilization of such systems in the absence of such disturbances.

The goal of this book is to lay brick by brick a foundation for a systematic
analysis and design of linear systems subject to a variety of constraints while



1 Introduction 3

focussing mainly on internal stabilization as well as simultaneous internal and
external stabilization. To elaborate, this book is an ardent story of mainly four
topics:

e Internal stabilization of linear systems subject to constraints on control
input magnitude and rate saturation set in both global and semi-global
framework.

e Internal stabilization of linear systems subject to constraints on what we
termed earlier as constrained output consisting of input and state variables
of the system.

e Internal stabilization of linear systems sandwiched with static saturation
nonlinearities set in both global and semi-global framework.

e Simultaneous internal and external stabilization of linear systems subject
to constraints on control input saturation once again set in both global and
semi-global framework.

Most of the results presented are of recent origin and are due to the authors or their
coworkers and students. In this spirit, the book incorporates several published as
well as yet unpublished results of the authors and their colleagues. As such, as
can be expected, the exposition given is somewhat biased in the direction of the
research work of the authors carried over a period of two decades or more.

It is appropriate now to preview briefly the contents of the book. Chapter 2 on
preliminaries recalls several notations and notions of internal (Lyapunov) stability
and external (L, or £,) stability, while Chap. 3 presents a special coordinate basis
(SCB) of linear systems and explores its properties. We emphasize that the SCB
of the given system exhibits clearly its finite and infinite zero structure and thus
plays a crucial role throughout the book in both analysis and design. Chapters 4-6
are devoted to internal stabilization of linear systems subject to control saturation,
both magnitude as well as rate of change of it. Internal stabilization is sought here
in both global and semi-global framework. Several control design methodologies
such as low gain, low-and-high gain, scheduled low gain, scheduled low-and-
high gain are developed by both direct as well as Riccati equation-based methods.
Chapters 7-9 deal also with internal stabilization; however instead of actuator
saturation, they consider input and state constraints. The constraints here are for-
mulated in terms of the constrained output z € R? by imposing its magnitude
and rate of change be confined respectively to certain a priori prescribed sub-
sets § and 7 of R? (see (1.2) and (1.3)). Chapter 10 continues further the theme
of internal stabilization. Here we face a multiple of saturation nonlinearities each
sandwiched between two linear systems, and hence, the scope of controller design
is an intricate extension of design methodologies developed in Chaps. 4-6.

The goal of the rest of the chapters (except Chap. 17) is achieving simultaneous
internal and external stabilization of linear systems subject to control saturation.
This is done both in global and semi-global framework. Let us be explicit about
this. Chapter 11 formulates precisely several internal and external stabilization
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problems. It is fitting to observe at this time that the external disturbance can
enter a given system either additive to the control input or nonadditive to it. For
the case of input additive external disturbance, Chap. 12 more or less resolves
and develops appropriate control design methods to solve all the internal and ex-
ternal stabilization problems formulated in Chap. 11. However, for the case of
non-input additive external disturbance, not all problems formulated in Chap. 11
are solvable for general linear systems subject to actuator saturation. Chapter 13
tackles and resolves some such problems by developing the needed controllers.
Chapter 14 explores the intricacies involved in the case of non-input additive
external disturbances by considering a canonical system, namely, a double inte-
grator. Among many results developed here, one key result is that while external
stabilization without finite gain is achievable for all L, non-input additive distur-
bance signals with p € [1, 0o) (i.e., for all disturbances whose “energy” vanishes
asymptotically), it is not achievable for sustained disturbances (L, disturbances).
It becomes imperative then to identify a class of sustained disturbances for which
the states of controlled system are bounded. Chapter 14 for the canonical double
integrator does identify a class of integral bounded non-input additive sustained
disturbances for which L, stabilization can be attained. This theme of identify-
ing a class of sustained disturbances for which L, stabilization can be attained is
pursued for general linear systems subject to actuator saturation in Chap. 15 for
continuous-time systems and in Chap. 16 for discrete-time systems.

Finally, as a prelude to future research, in Chap. 17, a stochastic framework is
initiated laying out a road map for simultaneous internal and external stabilization
of linear systems subject to constraints.



2

Preliminaries

In this chapter, we bring together the notations and acronyms used in this book as
well as various definitions and facts related to matrices, linear spaces, linear op-
erators, norms of deterministic as well as stochastic signals, norms of linear time-
or shift-invariant systems, saturation functions, internal (Lyapunov) stability, and
external stability.

2.1 A list of symbols

Throughout this book, we shall adopt the following conventions and notations:

R Set of real numbers
RT Set of nonnegative real numbers
/A Set of nonnegative integers
(3 Entire complex plane
(O Open left-half complex plane
C? Imaginary axis
c* Open right-half complex plane
c° Closed left-half complex plane
cto Closed right-half complex plane
c® Set of complex numbers inside the unit circle
(o Unit circle
c® Set of complex numbers outside the unit circle
c® Set of complex numbers inside and on the unit circle
c® Set of complex numbers outside and on the unit circle
B(r) Theset{x € R" | ||x]| <r}
B(xo,r) Theset{x € R" | |[x —xo| <7}
A. Saberi et al., Internal and External Stabilization of Linear Systems with Constraints, 5
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1 An identity matrix

Iy Identity matrix of dimension k xk
A Transpose of A

A* Complex conjugate transpose of A
A(A) Set of eigenvalues of A

Omax (A) Maximum singular value of A
Omin(A4) Minimum singular value of 4
p(A4) Spectral radius of A

trace A Trace of 4

ker A The null space of 4

im A The range space of A

(A] im B) The controllability subspace of the pair (4, B)
(kerC | A) The unobservable subspace of the pair (4, C)

vt Orthogonal complement of a subspace V in R"
E[] The expectation of a stochastic vector

R[s] Ring of polynomials with real coefficients
R™™[s] Set of all n x m matrices with coefficients in R][s]
R(s) Field of rational functions with real coefficients
R™™ (s) Set of all n x m matrices with coefficients in R(s)

For any set € C R”, int € denotes the interior of set €, € the boundary of set
€, and € the closure of set €. For a dynamical system
px = f(x,u),
the p denotes the time-derivative
d
pxX = d—tx
for continuous-time systems while it denotes the shift operator

(px)(k) = x(k + 1)

for discrete-time systems.

2.2 Matrices, linear spaces, and linear operators

In this section, we recall certain fundamental facts and properties of matrices,
linear spaces, and linear operators that are relevant to this book. We have done so
for the ease of readers and to establish the related notations used throughout the
book.
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We say a matrix A is injective or surjective if A is of full column rank or full
row rank, respectively. By rank ., we denote the rank of a matrix over the field X.
We shall write rank only for the case when K = R or X = C. Moreover, we use
the term normal rank or normrank for rank x whenever X = R(s). We note that
if A € C™*", we have that im A = ker(4*)~.

We recall next the classical concept of the Jordan form of a general matrix 4
and the concept of the multiplicity structure of an eigenvalue of a matrix A. Given
any matrix A of dimension nxn, we can always find a non-singular transformation
matrix X (see [40]) such that

Ji 0 0
0 J .o
X AX = J = 2 , Q2.1
0 0 Ji
where J;,i = 1,...,k are some n; x n; Jordan blocks,
A1 o --- 0
0
Ji=11+ - . 0| (2.2)
o
0 0 A

‘We note that

k
Zl’l,’ =n.

i=1

Then, the geometric multiplicity v, of an eigenvalue A € A(A) is the number of
Jordan blocks associated with A in (2.1) as well as the number of linearly indepen-
dent eigenvectors associated with A. On the other hand, the algebraic multiplicity
P, is the total number of repetitions of A in A(A); equivalently, the algebraic mul-
tiplicity is equal to the sum of the number of rows of all Jordan blocks associated
with A.

We introduce next what is known as the multiplicity structure of an eigenvalue.
For any given A € A(A), let there be v, Jordan blocks of A associated with A. Let

njp1 =Ny = -, )y,

be the dimensions of the corresponding Jordan blocks ordered in size. Then, A is
an eigenvalue of A with multiplicity structure S,

Sy =Anana0, . a0, ) (2.3)
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Ifny1 =nyp = -+ =n,,, =1,then A is called a semi-simple eigenvalue
of A. Moreover, we call an eigenvalue a simple eigenvalueif vy = landn, ; = 1
or equivalently if it has an algebraic multiplicity equal to 1.

The invariant factor ¥;(s) of a matrix A is the monic polynomial of lowest
degree such that for each eigenvalue A with vy > i, ¥;(s) has n; ; zeros in A.
We note that algebraic multiplicity p, satisfies

pr=np1t+nyo+-+ny,,.

We recall next the following classic concepts of generalized eigenvectors and
the eigenvector chain associated with an eigenvalue of a matrix. A vector x is said
to be a generalized eigenvector of grade k associated with an eigenvalue A of a
matrix A if and only if

(A—ADFx =0 and (A—ADF'x £0.

A generalized eigenvector of grade one (i.e., k = 1) is a standard eigenvector as-
sociated with an eigenvalue of a matrix. Let vector x be a generalized eigenvector
of grade k associated with an eigenvalue A of a matrix A. Let

X = X
Xk1 = A=AV = (A—AD)xg
Xz = (A—AD?V = (A—A)xk_q

x1 =(A—-ADF'W = (4 =AD)x,.

Such a set of vectors {x1, X2, ---, Xx} is called a chain of generalized eigen-
vectors of length k associated with an eigenvalue A.

For an eigenvalue A with the multiplicity structure S as given in (2.3), there
are vy chains of generalized eigenvectors with lengths ny 1, 132, -+, nx,v,.
The total number of generalized eigenvectors in these chains equals the alge-
braic multiplicity p,. Moreover, these p) generalized eigenvectors are linearly
independent.

If M is a subspace of C”, then we define the orthogonal projection Py of
C" onto M by Pyu = uifu € M and Pyu = 0ifu € M-+, We note that
I — Py = Py

A matrix U € C™" is said to be a unitary matrix if U* = U~!. For a matrix
A € C™ ™" the generalized inverse of A (or Moore—Penrose inverse of A) is
defined to be a unique matrix AT in C such that:

(a) AA" is an orthogonal projection onto im A.
(b) AT A is an orthogonal projection onto (ker A)* = im A*.

Another equivalent definition for a generalized inverse of A € C™*" is a unique
matrix AT in C"™ such that:
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(a) AATA = A.
(b) ATAAT = AT,
(c) AAT is a symmetric matrix.
(d) ATAisa symmetric matrix.
Some basic properties of the generalized inverse of A € C™*" are listed as
follows:
o (ANHT = 4.

(AN* = (49T,

If A € C, (AA)" = ATAT, where AT = }if 1 # 0 and AT = 0if A = 0.
A* = A*AAT = ATAA*.

(A*A)T = AT(A*)T.

AV = (A*A)TA* = A*(4A4%)T.

(UAV)' = V*ATU*, where U and V are unitary matrices.
imA =im AAT = im 4A4*.

imAT =imA* =imAt4 = im A*A.

im(/ — AAT) = ker AAT = ker A* = ker AT = (im A)*.
im(/ — ATA) = ker ATA = ker A = (im 4*)*.

If B € C"*?, then (AB)T = (Pina+B)T (AP ).

If A*ABB* = BB*A* A, then (AB)" = BT AT.

If A = BC, where B € C™*" and C € C"™*", while r = rank 4, then
At =c*(cCc*)~'(B*B)"! B*.

The following necessary and sufficient conditions for a partitioned matrix to
be positive semi-definite and positive definite are useful. Consider an arbitrarily
partitioned Hermitian matrix Q:

(911 Q2
Q_<sz sz)'

Then Q is positive semi-definite if and only if

0220
Oz = Q12Q§2Q22
On = lengQTZ,
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or, equivalently, Q is positive semi-definite if and only if

01120
O = Q11Q11Q12
02 = QT2Q11Q12-

Similarly, Q is positive definite if and only if

02 >0
O11 > 01205, 0%,

or, equivalently,

011 >0
02 > QT2Q1_11Q12‘

Let us next discuss the addition of subspaces and the associated notations.
Suppose X, ¥, and Z are some subspaces of R” or C". Then,

X+Y={x+y|lxeX,ye¥}

IfZ =X+ Yand X N¥Y = {0}, then Z is called the direct sum of X and ¥,
and, in this case, Z is written as X @ ¥. Consider a subspace X in R”. Then, the
orthogonal complement X+ of the subspace X is defined as

Xt ={ueR"|(u,v) =0foreveryv € X}.

Let X and ¥ be two nontrivial subspaces of R”. If the inner product of x and y
is zero for all x € X and y € ¥, then the two subspaces X and ¥ are said to be
orthogonal, and this is denoted by X L ¥.
Next, for a matrix M € R™*" the linear transformation M X is defined as
MX = {Mx|xeX}.
Also, for a matrix N € R"*™,
N1X:={zeR"|Nze X}

The following relations will be useful in algebraic manipulations regarding
subspaces:
XNH+2Z)D2(XNY)+(XN2)
X+HNZ)c(X+Y)N(X+2)

(XH)+ =X
X+t =xtnyt
(XNt =x+t4+yt (2.4)

M(XNY) <CMXNMY
MX+Y) =MX+MY

N XNY) =N1XNNY
N Y X +Y)2NIX+NY.
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Also, let 'V be a subspace of dimension 7. Then we have

MXCV e MVtcxt (2.5)
M)t = m'vi, (2.6)

Let A = R™". Then T, a subspace of R”, is an A-invariant subspace if
AT CT.
The following properties of an A-invariant subspace are useful:

(a) A subspace 7 with T a matrix such that 7 = im T is A-invariant if and
only if a matrix X exists such that

AT =TX.

(b) Let T be an A-invariant subspace. Then a similarity transformation L exists
such that

- A, A 1
A=L'AL = 7" ) and T =imL™!
0 Ao 0

with A1 € R where h := dim 7.

The proofs of the above relations are simple and can be found in standard books
on vector spaces.

Consider a matrix A € R”*" and an A-invariant subspace 7 C R"*". Then the
restriction of A to 7 is the linear map A7 : 7 — T defined by

Ayx = Ax forallx € T.

The restriction of A to T is also often denoted by A | 7.

Next, we would like to recall some elementary concepts regarding modal sub-
spaces. We first develop some notations used in continuous-time systems.
Consider a matrix A € R™ . Let a(s) denote the characteristic polynomial of
A and factor it as «(s) = a—(s) - @+ (s), where «—(s) has all its roots in the open
left-half complex plane C~ and a4 (s) has all its roots in the closed right-half
complex plane C 0. Then the stable and unstable modal subspaces of R” related
to A are

X—(A) = ker a_(A),
X+(A) = ker Ol+(A).
It is easy to show that X_(A) is spanned by the real and the imaginary part of the

generalized eigenvectors of A corresponding to the eigenvalues in C~. Similarly,
X +(A) is spanned by the real and imaginary parts of the generalized eigenvectors
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of A corresponding to the eigenvalues in C*°. These two modal subspaces are
complementary; that is, they are independent and their sum is R”; thus,

R" = X_(A) ® X4 (A).

Standard numerical linear algebra can be used to compute the bases for modal
subspaces. For example, one can transform A via orthogonal transformation 7 to

a real Schur form
A_
T'AT = * . 2.7)
0 A

where the eigenvalues of A_ and A are, respectively, located in C~ and C° and
* denotes some matrix that is not necessarily zero. If we partition 7" in conformity
with the partitioning on the right-hand side of (2.7),

T=(n 7).
then it is obvious that the columns of 7 form a basis for X_(A). That is,
X-(A) =imTj.

Analogously, we develop some notations used in discrete-time systems. Con-
sider a matrix A € R"*". Let «(z) denote the characteristic polynomial of A and
factor it as «(z) = ag(2) - p(z), where ag(z) has all its roots within the unit
circle C® in the complex plane and a (z) has all its roots on or outside the unit
circle C®. Then the stable and unstable modal subspaces of R” related to A are

XG(A) = ker Ole(A),
XQ(A) = ker (X@(A).

It is easy to show that Xg(A) is spanned by the generalized real eigenvectors of
A corresponding to the eigenvalues in C®. Similarly, X (A) is spanned by the
generalized real eigenvectors of A corresponding to the eigenvalues in C®. These
two modal subspaces are complementary; that is, they are independent and their
sum is R”; thus,

R" = Xo(4) & Xo(A).

Again, as in the continuous-time case, standard numerical linear algebra can be
used to compute the bases for modal subspaces.

2.3 Norms of deterministic signals

Many measures are used to describe the size of a signal. The measures of size
are called norms. In this section, we recall some of the common norms for per-
sistent or transient continuous-time (discrete-time) vector signals. We consider
continuous-time vector signals y : Rt — R” and discrete-time vector signals
y:Zt — R™.
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Definition 2.1 The L, space, with p € [l,00), consists of all vector-valued
continuous-time signals from R™ to R" for which

| DICOIRT
0 i=1

is well defined" and finite. The space Lo consists of all vector-valued continuous-
time signals for which
esssup max |y; ()]
teRtT 1<i<n
is finite.
The £, space, with p € [1,00), consists of all vector-valued discrete-time
signals from Z to R" for which

DN lyitl?

k=0 i=1
is finite, and the space £~ consists of all vector-valued discrete-time signals for
which

sup max |y; (k)|
keZt 1<i<n

is finite.

Remark 2.2 We will sometimes use Lp|ty, 00) to refer to vector-valued signals
from [ty, 00) to R™ for which

o0

| DICOIRT
fo i=1

is well defined when p € [1, 00) or

esssup max |y;(¢)]
t€ftg,00) 1<i<n

is finite in case p = oo.

This integral needs to be well defined in the sense of Lebesgue. A reader who has no prior
acquaintance with the Lebesgue theory of measure and integration can simply think of all functions
encountered here as piecewise-continuous functions and of all integrals as Riemann integrals. This
would lead to no conceptual difficulties and no loss of insight except that occasionally some results
from Lebesgue theory would have to be accepted on faith.
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Similarly, we will sometimes use {,[ko,00) to refer to vector-valued signals

from{k € Z% | k > ko } to R" for which

D03 v

k=ko i=1
is finite when p € [1,00) or

sup max |y; (k)|
keZt k=ko 1<i<n

is finite when p = oo.
However, we would like to note that L, and £, will always refer to functions
from RT or Z to R", respectively.

The spaces defined above are actually normed linear vector spaces if we define
the appropriate norms.

Definition 2.3 For a vector-valued continuous-time signal y € L, with p €
[1,00), the Lp norm is defined as

1

oo

Il i={ [ S morar |

o i=1
For a vector-valued continuous-time signal y € Loo, the L oo norm is defined as

|V]loo := esssup max |y;(¢)|.
teRt 1<i<n

Analogously, for a vector-valued discrete-time signal y € £, with p € [1, 00), we
define the £, norm as

Iyllp = (ZZny(k)l”) :

k=0i=1

Finally, for a vector-valued discrete-time signal y € £, the Lo norm is defined
as

[¥lloo := sup max |y;(k)|.
keZ+* 1<i<n

The following lemmas are useful in concluding attractivity in dealing with L,
stability to be defined shortly in a later section. These lemmas imply that if both
a continuous-time signal and its derivative are in L, for some p € [1, 00), then it
vanishes as time tends to infinity, and moreover, it is in L.
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Lemma24 If ¢ :