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Preface

It is well known that robust H,, control and filtering are important issues for
systems. In recent years, the linear matrix inequality (LMI) technique has been
widely used to solve the robust H, control and filtering problems for uncertain
linear systems with polytopic uncertain parameters and/or norm bounded uncertain
parameters.

Although a large number of design methods have been developed to deal with
the robust H,, control and filtering problems for both continuous-time and dis-
crete-time uncertain linear systems, the design problem of output feedback H.,
controllers cannot be formulated in the framework of LMI. In general, the problem
can be represented as a bilinear matrix inequality (BMI) problem. However, the
BMI problem is nonconvex and difficult to obtain solution. To obtain LMI-based
conditions for designing output feedback H,, controllers, some studies have to
impose constraints on system matrices. In summary, those results are limited and
cannot be applied to general control systems.

This monograph aims to present some new results on robust output feedback
H, control and filtering for uncertain linear systems. It lists an LMI decoupling
approach, and the main results of this monograph are expressed in a unified LMI
framework, which will provide an effective foundation for the future research. It is
primarily intended for graduate students in control and filtering, but can also serve
as a valuable reference material for researchers wishing to explore the area of
control and filtering of linear systems.

The background required of the reader is knowledge of basic control system
theory, basic Lyapunov stability theory, and basic LMI theory.

Jinzhou, China, March 2014 Xiao-Heng Chang
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Chapter 1
Introduction and Preview

Abstract This chapter is the introduction and preview to this monograph. First, the
background to robust output feedback H, control and filtering is described, in which
some existing studies are mentioned. Second, the contribution of this monograph
is summarized. Finally, some linear matrix inequality (LMI) technique and matrix
property lemmas are given, which are helpful to derive our results.

Keywords Output feedback H, control « Hy filtering + Linear matrix inequality
(LMI) technique lemmas - Matrix property lemmas

1.1 Introduction

Itis well known that almost all existing physical and engineering systems unavoidably
include uncertainties and other disturbances due to inaccurate modeling, component
aging, measurement errors, exterior conditions, or parameter variations [40]. The
term uncertainty refers to the differences or errors between models and reality, and
whatever mechanism is used to express these errors will be called a representation
of uncertainty [41]. In general, the norm bounded uncertainty is one of the important
descriptions of parametric uncertainty; another important description of uncertainty
is the so-called polytopic uncertainty. In the past few years, robust control and filtering
has become a hot topic in the engineering literature and constitutes an integral part
of control systems and signal processing research [27].

Robust H, control is an important branch of control theory. A robust Hy, control
problem for systems with parameter uncertainty can be stated as follows: given a
dynamic system with exogenous input and measured output, where the goal is to
design a control law such that the L, gain of the mapping from the exogenous input
to the regulated output is minimized or no larger than some prescribed level for all
admissible uncertainties. During the past two decades, the robust H, control problem
has attracted great attention from both the academic and industrial communities. A

X.-H. Chang, Robust Output Feedback H-infinity Control and Filtering for Uncertain 1
Linear Systems, Studies in Systems, Decision and Control 7,
DOI: 10.1007/978-3-642-55107-9_1, © Springer-Verlag Berlin Heidelberg 2014



2 1 Introduction and Preview

great number of results on H, control have been reported in the open literature. The
problem of robust state feedback H, control design for a class of linear time-invariant
systems with parameter uncertainty in the state-space model was investigated in [34],
where uncertain systems with time-invariant norm-bounded parameter uncertainty
in the state matrix were considered. Robust H, control design for linear systems
with uncertainty in both the state and input matrices was treated in [35], where a state
feedback control design that stabilizes the plant and guarantees an Hs,-norm bound
constraint on disturbance attenuation for all admissible uncertainties was presented.
Montagner and Peres [28] addressed the synthesis of Hy, parameter-dependent state
feedback controllers for linear time-varying systems in polytopic domains by means
of linear matrix inequalities (LMIs). Xu et al. [37] dealt with problems of robust
stabilization and robust Hy, control for discrete stochastic systems with time-varying
delays and time-varying norm-bounded parameter uncertainties. Shaked [31] derived
stability criteria and a bounded-real-lemma (BRL) representation for linear systems
with real convex polytopic uncertainties and the method was extended to the problem
of Hy control. He et al. [20] presented a simple technique for BRL representation
and concerned the H, control problem of linear systems with real convex polytopic
uncertainties.

The aforementioned robust H, control studies are given in terms of state feed-
back, which follow the assumption that the system states are available for controller
implementations. However, the assumption is not true in many practical cases since
the states are often unavailable. For the output feedback Hy, control, it can be con-
sidered through three approaches. The first one is called static output feedback Hyo
control. This is interesting to reduce real-time computational cost when implement-
ing practical applications. The second approach to address the problem of output
feedback H, control is to use a dynamic output feedback compensator. This kind of
feedback control is a good way to improve the closed-loop transient response. Finally,
the third way is the so-called observer-based Hx, control. This is based on the intro-
duction of a state observer and is interesting when the state is not entirely available
from measurements. For the robust static output feedback H, control problem, a
great number of control synthesis results for the uncertain linear systems in both
the continuous-time and discrete-time contexts have been extensively discussed in
the literature. In [8], by inserting an equality constrained condition about Lyapunov
matrix, LMI conditions for solving static output feedback control problem of linear
continuous- and discrete-time systems were given, and the result can be extended to
design H, controllers for uncertain linear systems. In [10], by introducing a slack
variable with sub-triangle structure, LMI-based condition for designing robust static
output feedback Hy, controllers for linear systems with time-invariant uncertainties
were proposed. For dynamic output feedback Hy, control, a standard LMI design
method is the technique of change of variables [7, 16]. However, it is well known
that the standard technique cannot design robust dynamic output feedback H, con-
trollers via LMI. This is due to the fact that to linearize the matrix inequality the
introduced new variables will have to be vertex-dependent and involve the controller
parameters to be sought, which implies that the required controller parameters can-
not be computed from the introduced variables. To overcome this difficulty of the
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so-called standard approach for designing dynamic output feedback H, controller,
an LMI technique was developed in [26] which involves solving two LMIs in con-
junction with a line search. In [26], a technical lemma was used to deal with the
nonlinear term (F_’("))’l, which leads to significant conservativeness (see [26] for
details). It should be noted that [26] had applied the sequentially linear program-
ming method (SLPMM) to further reduce the design conservatism, which is an LMI
approximation method. However, in many cases, this kind of approximation method
leads to infeasibility of the optimization, even though there exists a solution [21].
In [13, 21], sufficient conditions were suggested, which are significantly less con-
servative, for dynamic output feedback Hy, control of linear discrete-time systems.
The structural restriction imposed on a Lyapunov variable is bypassed by employ-
ing auxiliary slack variables with structure. It should be pointed out that the design
approaches given in [13, 21] are applicable to design robust dynamic output feed-
back Hy, controllers. For the robust output feedback H, control problem, most of
the study focuses on the static and dynamic output feedback Hy, controls, and few
attempts have been made on observer-based H, control design. In [24], two useful
methodologies were adopted to design observer-based non-fragile H,, control for
continuous-time systems. The control and observer gain matrices are found directly
from LMI optimization formulation by imposing equality constrained conditions.
These equality constraints also appear in [23] for observer-based control. Although
a lot of research on output feedback H, control has been reported, the design prob-
lem of output feedback Hy, controllers cannot be formulated in the framework of
LMI. In general, the problem can be represented as a bilinear matrix inequality (BMI)
problem. However, the BMI problem is nonconvex and known to be NP-hard [2]. To
obtain LMI-based conditions for designing output feedback H, controllers, some
studies have to impose constraints on system matrices. In summary, these results are
limited and cannot be applied to general control systems.

On the other hand, the problem of H, filtering is of both theoretical and practical
importance in control and signal processing. In comparison with traditional Kalman
filtering [32], the advantage of using H, filtering is that no statistical assumptions
on the exogenous signals are needed. Moreover, the H, filtering technique provides
both a guaranteed noise attenuation level and robustness against unmodeled dynamics
[29]. When there exist parameter uncertainties in the system’s model, robust Hx
filtering can provide a powerful signal estimation. It designs an asymptotically stable
filter, based on an uncertain signal model, which ensures that the filtering error system
is asymptotically stable and that the L;-induced gain from the noise signals to the
filtering error remains bounded by a prescribed level for all allowed uncertainties
[39]. In recent years, there are considerable studies on the H, filtering problem
for dynamic systems. In [18], the problem of Hy, filtering for a class of linear
uncertain systems was studied, where the parameter uncertainties are assumed to
reside in a polytope. Xie et al. [36] was concerned with the robust H, filtering
problems for linear discrete-time systems with polytopic parameter uncertainty, and
soon after their results were extended by Chang and Yang [5] and Duan et al. [14].
The problem of robust Hy, filtering for uncertain Markovian jump linear systems
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mode was studied in [38]. In [15], robust H filtering of complex nonlinear systems
which can be represented by a fuzzy dynamic model was presented.

In this monograph, the author puts forward some new results on robust output

feedback Hy, control and filtering for the both continuous-time and discrete-time
uncertain linear systems. This monograph comprises three aspects.

(D

2)

3)

By applying an LMI decoupling approach, three types of robust output feedback
Hy controllers are designed. Especially, the proposed design conditions for the
three types of output feedback controllers are given by strict LMI representations,
under which the prescribed Ho, performances of the closed-loop systems are
guaranteed. The presented approach can solve effectively the BMI problem in the
existing literature for output feedback H, controller design, and the constraints
imposed on system matrices have been avoided. In addition, by theoretical proof,
it can be shown that the proposed design conditions include some LMI results
as special cases.

The problem of robust Hy, filtering is studied for discrete-time uncertain sys-
tems based on the parameter-dependent Lyapunov function approach. With the
introduction of some auxiliary matrix variables, sufficient conditions for Hy,
filter design are proposed in terms of LMIs, which guarantee the filtering error
systems to be asymptotically stable and have prescribed Hy, performances. The
theoretical proof shows that the proposed conditions can provide less conser-
vatism than some existing results in the literature. In addition, this monograph
also concerns the application of the LMI decoupling approach for designing
robust H filters.

This monograph also studies the problems of output feedback Hy, control and
filtering for linear systems with other types of uncertainties. Different from exist-
ing results for Hy, control and filtering, the proposed ones are toward systems
with feedback uncertainties and Frobenius norm-bounded uncertainties. Suffi-
cient conditions for the output feedback H, controllers and filters design are
presented in terms of solutions of a set of LMIs. The resulting design is such that
the closed-loop system (filtering error system) has a prescribed H, performance
with respect to the uncertainties.

Finally, numerical examples will be provided to illustrate the effectiveness of the

proposed design methods.

1.2 Problem Formulation and Preliminaries

1.2.1 Output Feedback H., Control

The objective of Hy, control is to find an asymptotically stable output feedback
controller such that two conditions are satisfied:
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For continuous-time case

(1) The closed-loop system is asymptotically stable when w(z) = 0.
(2) The closed-loop system has a prescribed level y of Hy, noise attenuation, i.e.,
under the zero initial condition

/ Z(Oz(n)dr < y? / w! (Hw(r)dr,
0 0

is satisfied for any nonzero w(¢) € L7[0, 00).
For discrete-time case

(1) The closed-loop system is asymptotically stable when w(k) = 0.
(2) The closed-loop system has a prescribed level y of Hy noise attenuation, i.e.,
under the zero initial condition

D Wz <y Y w w),

k=0 k=0
is satisfied for any nonzero w(k) € 5[0, o0).

where z(¢) [z(k)] and w(¢) [w(k)] denote the system controlled output variable and
noise signal, respectively.

1.2.2 H, Filtering

The objective of Hy filtering is to find an asymptotically stable filter such that two
conditions are satisfied:

For continuous-time case

(1) The filtering error system is asymptotically stable when w(¢) = 0.
(2) The filtering error system has a prescribed level y of Hy, noise attenuation, i.e.,
under the zero initial condition

oo oo

/eT(t)e(t)dt < y2/wT(t)w(t)dt,

0 0

is satisfied for any nonzero w(t) € L7[0, 00).
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For discrete-time case

(1) The filtering error system is asymptotically stable when w(k) = 0.
(2) The filtering error system has a prescribed level y of Hy, noise attenuation, i.e.,
under the zero initial condition

o o
D el Bet) <y > wh twk),
k=0 k=0

is satisfied for any nonzero w(k) € [>[ 0, 00).

where e(t) [e(k)] and w(¢) [w(k)] denote the system filtering error and noise signal,
respectively.

1.2.3 LMI and Matrix Properties

The following preliminary lemmas will be used in this sequel:

Lemma 1.1 Schur Complement [1]: Matrices P > 0, Y and A being appropriate
dimensions and with Y symmetrical. Then

Y «x
T p—1
Y+A'P A<O¢>|:A _P:|<O.

Lemma 1.2 Congruence [11]: Let X be a full row or full column rank matrix. If
Y <0, then
xTvx <o.

Lemma 1.3 [42]: For matrices X, Y, and J > 0 with appropriate dimensions, the
following inequality holds

xy+vTxT <xix" +vTyjly.

Lemma 1.4 [6]: For matrices T, P, L, and A with appropriate dimensions and
scalar B, let there be the following condition

T * 0
LA —BL—BLT +82P| ="
then, we have

T+ ATPA <.
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Lemma 1.5 [19, 22]: Let the matrices N;; and the condition be

r r r r r
> > 60jNij =X 0 Nii + > > 0;0;(N;j + Nj;) <O0. (1.1
i=1j=1 i=l1 i=li<j

Equation (1.1) is true if there exist matrices Y;; and Y j; such that the following
conditions are fulfilled
Ni,' < T,'l', i = ],2,...,}’,

Nij+Nji < Yji+ Y i j=12....r i<]

T“ * . *
Tz] Tzz . *
. . . . < 0.
Y9 Yo ... Y
Lemma 1.6 [4]: From (1.2), we can obtain (1.3)
T+ATMT + MA *
[ -MT +GA —G—GT—i-P} 0 (1-2)
T+ ATPA <. (1.3)

Remark 1.1 1f the matrix variables M and G are free, then the two matrix inequalities
are equivalent [11].

Lemma 1.7 From (1.4), we have (1.5)

-V -vT

k *k * k
ATV 4+ P 2P+ X % % =
BTvT 0 —R x x | <0O. (1.4)
0 C D -5 x
yT 0 0 0 -X
PA+ATP %
BTP —R x | <O. (1.5)
C D —§
Proof Note that
—wv=-pP~ P v—pPT <0, P>0, (1.6)

implies that
—vp vl <—yv—vT 4 p. 1.7)
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Then, from (1.4), we have

—v-vT * * *

k
ATVT 4P —PX7'P % %
BTvT 0 —R x x |<0O. (1.8)
C D -8 x
T 0 0 0 -X
By using Schur complement to (1.8), one gives
vV -vT pyx-tyT * %
ATvT 4 p —PX7'P % %
BTyT 0 R 4 < 0. (1.9)
0 C D -8
Obviously, if there exist matrices V and P satisfying (1.4), it implies that these
vl o 0o
. : o o Pl oo
matrices are nonsingular. Pre- and post-multiplying (1.9) by 0 0 70
0 0 01
and its transpose, respectively, it yields
—vl_y- T x-l * * *
P1AT 4 v T —-x ! « *
BT 0 R 4 < 0. (1.10)
0 cr! D -5

Applying LMI congruence property in Lemma 1.2 to (1.10) with the full row rank
I 1 00
matrix | 0 O 7 0 [, it follows that
000 [

AP~ p=1AT & «
BT —R x | <0O. (1.11)
cp! D —-S

S~ O

P 0
Pre- and post-multiplying (1.11) by | O 0 | and its transpose, respectively,
0 I

(1.5) can be obtained. O
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Lemma 1.8 From (1.12), we have (1.5)

—v-—vT * *

k k

AV4+ Q0 204X * *x
0 BT  —R % x | <0O. (1.12)

cv 0 D —S x

1% 0 0 0 —X

Proof Similar to the proof of Lemma 1.7, from (1.12), we have

—y-l_y-T4 x-1 * * *

A4yl X' % o«
0 0 BTo-! _R <0. (1.13)
C 0 D -S§
The matrix inequality (1.13) implies that
O 'TA+ATO ! % «x
BT o1 —R x | <O. (1.14)
C D —S
By defining Q~! = P, (1.5) is obtained. O
Lemma 1.9 [3]: From (1.15), we can obtain (1.16)
T+ ATMT + MA *
[PT—MT—i—GA —G—GT}<0 (1.15)
T+ATPT +PA<O. (1.16)

Remark 1.2 1f the matrix variables M and G are free, then the two matrix inequalities
are equivalent [11].

Lemma 1.10 For matrices T, P, S, and A with appropriate dimensions and scalar
B, from (1.17), we can obtain (1.18)

T *
|:,BPT+SA —ﬂS—,BST]<O' (1.17)

T+ATPT +PA<O. (1.18)

Proof Pre- and post-multiplying (1.17) by the full row rank matrix [ / %AT ] and

its transpose, respectively, the inequality (1.18) can be obtained. g
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Lemma 1.11 [30]: Let X, Y, and A be real matrices with appropriate dimensions
and AT A < I. Then, for any scalar € > 0

1
XAY + YTATXT < —xxT 4+ ¢vTy.
&

Lemma 1.12 [30]: Let X, Y, and A be real matrices with appropriate dimensions
and AT A < I. Then, for any scalar § > 0

1
XAY + YTATXT < sxx” + EYTY.

Lemma 1.13 Let X be a square nonsingular matrix and partition
X1 X2
X = ,
[le Xzz]
such that X11 and X2y are nonsingular. Then
_ -1 - - -1
(X1 — X12X221X21) —X11]X12 (Xzz — X21X111X12>

—1 -1

—X{21X21 (Xn - X12X2_21X21) (Xzz — X21X1_11X12)

X! =

Lemma 1.14 [9, 12]: Given matricesv € Z", © = @1 € #"" and N € ™",
if rank(N) < n, then

IO <0, V Nu=0, v#0, (1.19)
if and only if there exists matrix L € Z"*™ such that
O+IN+NTLT <. (1.20)

Lemma 1.15 [17]: Given a symmetric matrix ¥ and two matrices P and Q, the
problem

v+ PTxT0+ 0TxP <0, (1.21)
is solvable with respect to decision matrix X if and only if

prTwpt <0, otTwot <o, (1.22)
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where P+ and Q- denote arbitrary bases of the nullspaces of P and Q, respec-
tively, i.e.,

PPt =0, 00*=o. (1.23)

Lemma 1.16 Inversion Matrix Lemma: Let A, B, C, and D be matrices with appro-
priate dimensions. Then

_ _ _ _ _ o/ _ _ N1 _ _
(A+BCD)y "= A'—A'B (c—1 + DA—lB) DA~

Lemma 1.17 Let > 0, H, E, N, and A(k) be real matrices with appropriate
dimensions and AT(k)A(k) < I. Then, for any scalar ¢ > 0

1
—N (I —EHA() 77" (I —EHA()" NT < 7—N—N"+-NEHH" ET N +¢1.
&

Proof From (1.6) and (1.7), we have

—N (I — EHA(k)) 7Y (I — EHA(k)T NT
<7 —N—NT + NEHA(k) + AT(k)HTETNT.

By Lemma 1.11, it follows that

F—N—-NT+NEHA(K) I + I AT(k)HTETNT
—— —_ = —_—
X Y yT xT
<7 —N—NT + INEHHTETNT + eI
O

Lemma 1.18 Let 7 > 0, H, E, N, and A(k) be real matrices with appropriate
dimensions and AT (k)A(k) < I. Then, for any scalar ¢ > 0

1
~NT (I = AKWEDT 77" (I = ACWEH)N < Z—N—-NT+-NTHTETEHN+¢1.
&

Proof The proof can be directly obtained from the proof of Lemma 1.17 and Lemma
1.12.

Lemma 1.19 (Frobenius Norm-Bounded Property) [33]: Let A(k) be uncertain
matrix formulated as

Ak) =D MyAgo(k)N;,

g=1s=1
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M, and Ny are constant matrices with appropriate dimensions and

Ar(k)  Agpk) ... Ak)
A Mg (k) Axp(k) ... Agu(k)

>
=
I

A1 (k) Apma(k) ... Apn(k)
is an unknown real time-varying matrix satisfying

m

D Ags) I 1. k> 0. (1.24)

g=1 s=1

Then, for all vectors ¢

max ;TX(% i Mqus(k)Ns) Ye

ISTE =5

_ gTX( ) ;TYT ZNSTNS) Ye.
s=1

Lemma 1.20 Given M4, Nys, w = 1,2, ..., r, and Y of appropriate dimensions
with Y being symmetric. Then

T
myp nj mp nj
T+ X (ZZMMAIM)NU) Y+ Y/ (ZZMIquqs(k)Nu) X{+--

g=1s=1 g=1s=1

T
My Ny my Ny
+ X, (ZZquArqs(k)Nrs> Y, + YrT (ZZquArqs(k)Nrs> X,T <0,

g=1s=1 g=1s=1

(1.25)

holds for all Ayys ... Apgs satisfying (1.24) if there exist constants €1 ... & such
that the following LMI holds:
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T T —
M Xy el

M, XT 0 ... 0l
mLxT 0 e 0 &1

MT xI' o 0 71 <0,

rmy “ee e r

eiN11Y1 O ... 0 81_1

&N, Y1 0 oo 0 gl

&NaY, O ... 0 el

| &N Y, 0 .0 g
(1.26)

wheree;:—su, uw=12...,r

Proof By using Schur complement to (1.26), it leads to

mj ni
T +e ' X ZM‘quTq X{—}—ElYlT(ZNlTSle)Y] ..

s=1
+e;1x, M MT>XT+erYT Z )Y,<0.
s=1

For any ¢ # 0, we have

s=1

+e;1§TX, M oM

ni

¢ Tg‘—i—g lé‘TXl ZMlqul]> X1T§+815TY1T(ZN17;N15)Y1§+“'
nr

X' e cTy? (Z N,TSN”) Y, ¢ <O0.

s=1
(1.27)
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By applying Lemma 1.19 and considering the fact that a> + b> > 2ab for scalars

a and b, (1.27) implies that

mi ni
(T2 [ eTX (D MigM], X{ngYIT(ZNgN”)er...

q=1 s=1

my ny
+2 | eTX | D MM | XTe x Ty (ZNZ;N,S) Y, ¢
g=1

s=1

mp n
=§'TT§' +2 Amax<1§‘TX1 ZZMlquqs(k)le Y1§+

lAinlF= o

m, ny
+ 2 max gTXr ZZMrkArqs(k)Nm Yr; <0.

lANIIF<1 — =

g=1s=1

By [25], we obtain
mp n

(T +207 X0 [ DD Mg Al KNy | Vg + -
g=1s=1

my ny
+ 207X, [ DD Mg (k)N | Yt < 0.
g=1 s=1

Thus, (1.25) follows immediately.
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Chapter 2
Robust Static Output Feedback H,, Control

Abstract This chapter will focus on robust static output feedback H, control design
for linear systems with polytopic uncertainties and norm bounded uncertainties.
First, new Hy, performance analysis criterions are proposed for the systems by an
LMI decoupling approach. Then, sufficient conditions for designing static output
feedback Hy, controllers are given in terms of solutions to a set of linear matrix
inequalities (LMIs). In contrast to the existing methods for designing the static output
feedback Hy, controllers, the input matrices and output matrices of the considered
systems are allowed to have uncertainties. Moreover, theoretical proof is given to
show that the proposed design conditions include the existing results as special cases.
Simulation examples are provided to show the effectiveness of the proposed design
method.

Keywords Uncertain linear systems * Static output feedback + Hy, controllers *
Linear matrix inequalities (LMIs)

2.1 With Time-Invariant Polytopic Uncertainties

2.1.1 Discrete-Time Systems

Consider a linear discrete-time system with time-invariant polytopic uncertainties
described by state-space equations

x(k+1) = A@)x (k) + BO)u(k) + E@)w(k),
z(k) = Ci(@)x(k) + DO)u(k) + FO)w(k)), 2.1
yky = C0)x (k) + HO)w(k),

where x (k) € Z" is the state variable, u (k) € 2™ is the control input, w(k) € Z7 is
the noise signal that is assumed to be the arbitrary signal in [,[ 0, 00), z(k) € Z¢

X.-H. Chang, Robust Output Feedback H-infinity Control and Filtering for Uncertain 17
Linear Systems, Studies in Systems, Decision and Control 7,
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is the controlled output variable, y (k) € Z” is the measurement output. The matrices
A@0), B@®), E@©), Ci(®), D@O), F@), C2(0), and H(0) are constant matrices
of appropriate dimensions and belong to the following uncertainty polytope [4]:

—{[A(Q) B(0), E©), C1(0), D©), F(0), C2(9) H() ]

z AlﬂBlaEla C]I’Dh F'Ia CZI’H ] 201—1 9 >O} (22)

i=1 i=l

Our aim is to design a static output feedback controller
u(k) = Ky(k), (2.3)

such that the resulting following closed-loop system (2.4) is robustly stable or simul-
taneously meets Hy, performance bound requirement.

x(k+1) = (A®) + BO)KC2(0))x (k) + (E(6) + BO)K H(6))w(k),

dk) = (C1©®) + DOKCy)x(k) + (F©) + DOKHO)w(k). ¥

2.1.1.1 Case A: D) =0

First, based on the parameter-dependent Lyapunov function approach, the Hy, perfor-
mance analysis problem of the closed-loop system (2.4) with D(0) = 0 is concerned.
A new H, performance analysis criterion is given, which will play a key role in static
output feedback H, controller design. The following preliminary lemma is needed
to prove our results.

Lemma 2.1 Consider the closed-loop system (2.4) with D(0) = 0 and give a scalar
y > 0. Then the system is asymptotically stable with the H, performance y if there
exist matrices P(0), G(0), and K such that the following matrix inequality holds

—P(0) * * *
0 —y2I * *
GO)AWB)+GO)BO)KC2(0) GO)EW®O)+ GO)BO)KH(O) “(©0) =
C1(0) F(©) 0o -1
<0,
2.5)

where 9(0) = —G () — GT () + P(0).

Proof Construct a parameter-dependent Lyapunov function as
V(k) = xT (k)P(©)x(k), PH) > 0. (2.6)
The difference of V (k) can be given by

Vik+1) = V) =xT(k+ DPO)xk + 1) —xT (k) P©O)x (k). 2.7)
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From (2.7) and recalling (2.4) with D(6) = 0, it can be verified that
Vk+1) = V(k) + 2T (k)z(k) — y*wT (kyw(k)
=xT(k+ DPO)xk+ 1) — xT (k) P(O)x (k) + 2T (k)z(k) — y*wT (k)w(k)
T
= ((A® + BOKC20)x(k) + (E©) + BOKH©O)wk)) P(©)
x ((A(e) + BO)KC2(0))x(k) + (E©®) + B(@)KH(@))w(k))

—xT () PO)x (k) + (C1(O)x(k) + F@wk)) (C1O)x (k) + F(O)w(k))
—y2wl (kyw(k)

= ;T(k)([ A®) + BO)KCy(0) E@®) + B(@)KH(@)]T
x P(O)[ A®) + B(O)KC2(0) E()+ BO)KH(®)]

+[aie) FOI'[C1©O) FO]+ [_%(9) _32,} )¢,

where ¢ (k) = [fvillg ]

Thus, V(k 4+ 1) — V(k) + zT (k)z(k) — y*wT (k)w(k) < 0 for any ¢ (k) # 0if

2.8)

[A®) + BO)KC2(0) E@®)+ BO)KH(®)]"
x P(O)[ A®) + BO)KC2(0) E(9) + B(O)KH(0)]

- 2.9)
Hao rollao rol+| 00 5| <o

By using Schur complement to (2.9), we have

—P(6) * * *
0 —y2I * *
AO)+BOKC:0) EO)+BOKHO) —P @) x | = 10
Ci1(9) F(@©) 0 -1
I *x % *
Pre- and post-multiplying (2.10) by |0 1 ¥ * | and its t
re- and post-multiplying (2. M ©) = and its transpose,
00 O 1
respectively, we verify that (2.10) is equivalent to the following matrix inequality:
—P () * * %
0 -2 x|y
GO)A®) + GO)BO)KC2(0) GOYE®©O) +GO)BOKH®O) A * ’
C1(0) F(9) 0 —1I
(2.11)

where A = —G ()P~ 10)GT (9).
Note that —(G(6) — P(9))" P~1(6)(G(6) — P(6)) <0, P(6) > 0 implies that
—GOPLOGT () < —=G(@©O) — GT(0) + P(9), then, the inequality (2.11) can
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be verified by (2.5). If the condition (2.5) is satisfied, we have V(k + 1) — V (k) +
2L (k)z(k) — y*wT (k)w(k) < 0 for any ¢ (k) # 0, which implies that

V(00) = V(0) + >z k)z(k) — D wh (kyw(k) < 0.

k=0 k=0

With zero initial condition ¥ (0) = 0 and V(c0) > 0, we obtain Z,fio 72T (k)
2(k) < y? > o wT (k)w(k) for any nonzero w(k) € [5[0, oo). Thus, the proof is
completed. (]

In order to obtain LMI-based conditions for designing static output feedback Hy,
controllers, the existing results [3, 5] have to impose some constraints on the system
matrices, which require that the input (or output) matrix B(6) (or Cy (9)) is fixed
(is without uncertainties i.e., B(#) = B and C»(0) = Cz) and B (C») is of full
column (low) rank. Obviously, those results are limited and cannot be applied to
general control systems. In our study, the constraints on the input and output matrices
have been avoided. Thus, our results have more advantages than the ones in [3, 5].

Remark 2.1 1t is noted that the results given by [6] are only applicable to that the
system input matrix (or output matrix) is with time-varying polytopic uncertainties
for linear systems. See Remark 2.6 for details.

In this following, a new H,, performance analysis criterion is presented in the
following theorem.

Theorem 2.1 Consider the closed-loop system (2.4) with D(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the H, performance y
if exist matrices P(0), G(0), J(0), M, N, V,and U, scalar B such that the following
matrix inequality holds

—P () * * * ok *
0 —y21 * * ok *
GO)AO)+MVCy(0) GO)EO)+MVH®) “4O)+JO) * =* *
C1(0) F@©) 0 -1 = *
NVCy(0) NV H () 0 0 X *
0 0 0 0 %, — %
<0,
(2.12)
where

g0)=—-G0)—GT®)+ P®),
¥ =-BNU—-BUTNT,
S =G@)B®O)—MU.

Proof We are about to prove the conclusion using Lemma 2.1. Obviously, the matrix
inequality (2.5) can be rewritten as follows:
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—P©) * * * 0
0 —y2I * * 0
GO)A®) GOE®) 9©) = + G(9)B() K[ C20) H®) 0 0]
C1(0) F(0) 0 —I 0
0 T
T ,T 0
+[C0) HO 0 0] K G(©)BO) <0. (2.13)
0

By defining UK = V and considering matrices M and N, where U and N are
nonsingular without loss of generality, we have

—P@®) * * * 0
0 —y2I * * 0
GO)A®) GOE®) %6) « | T|G606)B®) K[ C26) H®) 0 0]
C1(0) F(9) 0 —I 0
0 T
+[C20) HE) 0 0] KT 0
G(0)B()
0
—P(6) * * *
0 —y2I * *
GO)A®B) GO)E®) 940) x*
C1(0) F(0) 0 —I
0
0 —1a7—1
+ G6)B®) UTINTINV[C26) H®) 0 0]
0
0 T
T T T =T =T 0
+[C200) H® 0 0] VIN'N"TU G©)B©)
0
—P(H) * * *
0 —y2I * *
GO)A®B) GO)E®) 940) x*
Ci1(9) F(6) 0 -1
0
0

+ U'NTINV[C20) H®) 0 0]

G(0)B(O) — MU
0
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0 T
T T 7T ar—T 77T 0
+[C0) H® 0 0] VIN'N"TU GO)BO) — MU
0
0 0]"
+ 1\04 V[C20) H®) 0 0]1+[C2(6) H®) 0 O]TVT A04
0 0
—P(©) * * *
0 —y2I * *
GO)AB) +MVC,(0) GO)E®)+MVH®O) 9©O) x*
C1(0) F(0) 0 —I
0
0 -1
1 coysoy—mu |V N NV[C2(0) H®B) 0 0]
0
0 T
T T T =T /=T 0
+[C0) HO) 0 0] VINTN"TU o 8@ —mu | <°
0

(2.14)

Based on Lemma 1.3, for a positive matrix J(6) one gives

0
0 —1a—1
GoB@e)—my |V N NV[C©) HE) 0 0]
0
0 T
T, T AT xi—Tp7—T 0
+[C0) HO) 0 0] VININTTUTT ) oo b
0

O~ O O

(G@)B®) — MU)U'NT'NV[ C2(0) H®©®) 0 0]

+[c26) HE) 0 0] VIN'NTUT(G®6)B®6) — MU)"

O ~NO O
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T

IA

J(0)

O ~NO O
O ~O O

+[C0) HO) 0 O]TVTNTN’TU’T(G(G)B(G)—MU)TJ’](G)

x (G@)B©)—MU)U'NT'NV[ C2(0) H®) 0 0]. (2.15)

Then, (2.14) holds if the following condition is satisfied:

—P@®) * * * 0 0 T
0 —)/21 * * 0 0
GO)AB) + MVC2(0) GOE®)+MVH®©O) %6) « |T|;[/O],
C1(6) F(©) o —1| |o 0
+[ca0) HO) 0 0] VINTN-TU-T(G6)BO) — MU)" 171 (©6)
x (GO)B®) — MU)U™'NTINV[ C26) H(®) 0 0] <0.
(2.16)

Without loss of generality, we assume that matrix G (6)B(6#) — MU is of full rank.
By Schur complement to (2.16), which leads to

—P(9) * * ko k
0 —y2I * S
GO)A@O) +MVCr(0) GO)EO)+MVH®O) 40O)+JO) * =
C1(9) F(0) 0 —1
NVC(0) NV H(@®) 0 0 E
—P(©) s * * %
0 —yzl * * %
=| GO)AB)+MVC(0) GO)E®B)+MVH®O) 906)+JO) * * <0,
C1(0) F () 0 —I =
NVCy(0) NVH(@®) 0 0 Ep
2.17)

where
T -1
g = —(N‘TU‘T(G(Q)B(Q) —MU) J7Y(G©®)B®) - MU)U—lN—l) :
2, = —NU((G(G)B(G) - MU) T (G©)B®) — MU))ilUTNT.

For a scalar f, note that —(V — Q)01 (V — BO)T <0, Q > 0 implies that
—vO~'vTI < —gv — BVT 4+ B2Q. Then, one has
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-1
g2 = ~NU((G®)B®) — MU)" J71(G®)B®) — MU))  UTNT
< —BNU — BUTNT + B*>(G()B(0) — Mu)TJ—l(e)(G(e)B(e) — MU)
= E3.
(2.18)
Then, (2.17) can be guaranteed by
—P@©®) * * % %

0 —y21 * * ok
GO)AOB)+MVCr(0) GO)E®O)+MVH®O) 40O)+J0O) * * < 0.
C1(0) F(9) 0 —I
NVCy(6) NVH®) 0 0 E3

(2.19)

Applying Schur complement to (2.19) yields (2.12). Thus, the proof is comp-
lete. U

Remark 2.2 In the proof of Theorem 2.1, it should be noted that the procedure
from (2.16) to (2.17) needs a constraint condition, which requires that the matrix
G(0)B(0) — MU is of full rank. When the matrix G(6)B(8) — MU is of full rank,
we can know that the matrix (G(@)B(@)—MU)TJ*1 (G(0)B(0)—MU) isinvertible.
In fact, the constraint condition is not necessary. For the matrix inequality (2.16), by
using Lemma 1.4 with

—P(6) * * *

T — 0 —y2I * *
T GOAB)+ MVCr(0) GOEW®O)+MVH®) 940)+J0O) = |’

C1(0) F©) 0 -1

A=U"'N"INV[C(0) H®) 0 0],
L=NU,

P =(G@O)B®) — MU)TJ—I(Q)(G(G)B(Q) - MU),
we can also obtain the following matrix condition (2.19).

By the LMI decoupling approach, the appearance of crossing terms between G (0)
and K has been avoided in (2.12), it enables us to obtain strict LMI conditions for
designing static output feedback H, controllers.

In this following, based on the analysis result in Theorem 2.1, we proposed
sufficient conditions for designing the static output feedback H,, controller in the
form of (2.3), that is, to compute the gains K in (2.3) such that the closed-loop system
(2.4) with D(#) = 0 is asymptotically stable with the prescribed H, performance
y. As can be seen from (2.12), the appearance of crossing terms has been avoided, it
makes the LMI formulation of design conditions easier. Of course, in order to obtain
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LMI-based design conditions, the analysis criterion in Theorem 2.1 dependent on
the premise that is the matrix parameters M, N and scalar parameter 8 should be
known, it may lead to conservative design. However, when the system input matrices
are with time-invariant polytopic uncertainties, the new condition given by Theorem
2.1 is undoubtedly effective for dealing with this case.

When the input matrix is with polytopic uncertainties and not full column rank, we
choose M = B(0) and N = [ in (2.12). Then, the corresponding design condition
is given in the following theorem.

Theorem 2.2 Consider the closed-loop system (2.4) with D(0) = 0 and give scalars
y > 0. Then the system is asymptotically stable with the Hoo, performance y if, for
known scalar B, exist matrices U, V, Pj, Jj, and G;, j =1, 2, ..., r such that
the following matrix inequalities hold

—P; * * * * *
0 —y21 * * * *
GiA; +B;VCy G;E;+B;VH;, ¥4 + J; =* * *
Cy; F; 0 -1 * * <0,
VG V H; 0 0 —BU-BUT «
0 0 0 0 GB-BU -3
i=1,2, ..., r
_ (2.20)
—P; * * * * *
0 —y2I * * * *
GijAi+B;VCy; G;E;+ B;VH; %j +J; x * *
Cyi F; 0 -1 * *
VCyj VH, 0 0 —BU-BUT «
J,
i 0 0 0 0 G;Bi —BU — ,3_12_
—P; * * * * *
0 —y2I * * * *
GiAj+BjVCy GiEj+ B;VH; Y+ J; * * *
Cij F; 0 —1 * * <0,
Vo V H; 0 0 —BU-BUT «
Ji
0 0 0 0 G;B; — B;U 2
i, j=1,12, , 10 < ],
(2.21)

where 9, = =G — G]T + P;.
Furthermore, the static output feedback Hso controller gain matrix in (2.3) can
be given by
K=U""v. (2.22)
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Proof First, in this case, the matrix inequality (2.12) becomes

—P@®) * * *

* %
0 —y21 * % ok *
GO)A®) + BO)VC2(6) GOE®) + BOVH®O) 90)+J©O) % % *
C1(0) F(0) 0 -1 % %
VCy(0) VH(®) 0 0 % *
0 0 0 0 % —%
<0,
(2.23)
where

¥ =G(O)B®) — BO)U.
From Theorem 2.1, we know that the prescribed Hy, performance y can be

ensured if there exist matrices P (0), J(6), and G (0) satisfying (2.23). Now, assume
that the aforementioned matrices have the following form:

,
P@O)= 2 0;P;, P;>0, j=12 ..., 1
j=1
-
G©O) = X 6;G;, @29
j=1
r
JO) = 2 0jJj, Jj >0, j=1,2, ..., r
=1

j=

Then, inequality (2.23) is equivalent to

—Pj * * * * *
0 —yzl * * * *
U GjAi +B;VCy; G;E;+B;VH; 9;+J; * * *
ZZGin Cii F; 0 -1 * *
i=1j=1 VG VH, 0 0 -—-pU-BUT =«
J;
0 0 0 0 GjBi—BU —5—’2
—P; * * * * *
0 —yzl * * * *
_ d 0.2 GiAi +BiVCy GiE;+BiVH; %+ J; * * *
_Z i Cii F; 0 -1 * *
i=! VCyi VH; 0 0 —pU-BUT =«
0 0 0 0 G;B—BU —f{fg

r r
DI

i=1i<j
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—P; * * * * *
0 —y21 * * * *
Gin+BiVC2j GjEi+BiVHj gj-f-.]j * * *
X Cy; F; 0 -1 * *
VG VH, 0 0 —pU-BUT =«
J
0 0 0 0 G;B—-BU - ﬁ—é
r —P; * * * * *
0 —y2I * * * *
G,‘A_,‘ + B_,‘VCz,* G,‘E_/ + B_,‘VH,' G+ J; x * *
+ Cyj F; 0 -1 * * <0.
VCy VH; 0 0 -—pU-pUT «x
L 0 0 0 0 GiB-BU —%
(2.25)
If LMIs (2.20) and (2.21) are satisfied, the inequality (2.25) holds. O

Remark 2.3 Theorem 2.2 presents a new condition for designing static output
feedback Hy, controllers for discrete-time linear systems with time-invariant poly-
topic uncertainties which is of LMIs and can be effectively solved via LMI Control
Toolbox [7].

In Theorem 2.2, a significant result is proposed to design static output feedback
H controllers for uncertain discrete-time linear systems. The new result overcomes
the deficiencies of the existing ones, it is able to handle this case that the system
input matrices are nonfixed. In addition to this, the proposed result can give less
conservative design than the existing LMI methods. In order to clarify this issue
thoroughly, in the following, we consider the same system input matrix with [3, 5]
as B(0) = B (B is of full column rank). In this case, three Hy, performance analysis
conclusions with different values of matrices M and N are given based on Theorem
2.1. The first conclusion chooses M = B and N = BT B in Theorem 2.1, the second

1

chooses M = |:(I)i| R1, where R is a known matrix parameter and Y B = 0 and

N = I in Theorem 2.1, while the third chooses M = Y7 |:(I):| , YB = [é} and
N = I in Theorem 2.1.

Remark 2.4 Here, there is a description of this matrix Y. Because of this matrix B is

0
be noted that for each matrix B, the corresponding Y generally is not unique. A
special Y can be obtained by the following formula:

—1
y — |:(BTB) BT]

BTJ_T

full column rank, there exist a nonsingular matrix Y such that Y B = [ I . It should

where BT+ denotes an orthogonal basis for the null space of BT .



28 2 Robust Static Output Feedback

Theorem 2.3 Consider the closed-loop system (2.4) with D(@) = 0 and B(6) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
stable with the Hyo performance vy if exist matrices P(0), G(0), J(0), V, and U,
scalar B such that the following matrix inequality holds

—P@©) * * R *
0 —y2I * * % *
G(O)A@O) + BVC2(0) GOVEW®O)+BVH®O) 4©O)+JO) % x* *
C1(0) F(6) 0 -1 = *
BTBVC,(0) BTBVH(®) 0 0 = =
0 0 0 0 % - %’)
<0,
(2.26)
where

G0) = —-GO) — GT () + P®),
¥ =-BBTBU - pUT(BTB)T,

h3))

G@®)B — BU.

Theorem 2.4 Consider the closed-loop system (2.4) with D(0) = 0 and B(0) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
stable with the Hoo performance y if exist matrices P(0), G(0), J(0), V, Ry, and
U, scalar B such that the following matrix inequality holds

—P(0)
0
G(O)A®®) + [é] R1VC2(0)
C1(0)
VCy(0)
i 0
§ _
—yzl * * * *
GO)E®) + [(I)]R1VH(6) GO)+J0O) * * *
F(0) 0 —I % * <0,
VH®) 0 0 —pU —-pUT *
I
0 0 0 G(@)B—[O]Rl —%_
2.27)

where 9(0) = —G(©) — GL(0) + P(6).

Theorem 2.5 Consider the closed-loop system (2.4) with D(0) = 0 and B(6) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
stable with the Ho, performance y if exist matrices P(0), G(0), J(0), M, N, V,
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and U, scalar B such that the following matrix inequality holds

_P(Q) * % %k *
0 —)/21 * % *
G(9)A(6)+YT[(I)]VC2(9) G(G)E(9)+YT[(I)]VH(9) Eox o« *
C1(9) F(6) 0 —1 =* *
VCy(9) VH() 0 0 % =«
i 0 0 0 0 % — %2 |
<0,
(2.28)
where

—GO) — G () + P©®) + J (),

@
Il

¥ =—-BU - UT,

p3))

I
GOB-YT [0} U.

Based on the three Hy, performance analysis conclusions, the corresponding static
output feedback H, controller design results are given in the following corollaries.

Corollary 2.1 Consider the closed-loop system (2.4) with D(0) = 0 and B(6) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
stable with the Hy, performance vy if, for known scalar B, exist matrices U, V, Pj,

Jj,and Gj, j =1, 2, ..., r such that the following matrix inequalities hold
—P; * * * * *
0 —y2I * * * *
GiAi+BVCy G;E;+BVH; ¥ +J = * *
Cii F; 0 —1I * * <0,
BT BV Cy; BTBV H; 0 0 by *
0 0 0 0 GB-BU -3
i=1,2, ..., r
(2.29)
—Pj * * * * *
0 —y21 * * * *
GjAi+BVCy G;E;+BVH; 9 +J; * * *
Cii F; 0 —1 * *
BTBVCy; BTBVH; 0 0 2 *
0 0 0 0 GB-BU -4
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—P; * * * * *
0 —y2I * * * *
GiAj+BVCy; GEj+BVH; % +J; * * *
Cyj i 0 —1 * * <0,
BT BV Cy; BTBVH; 0 0 o *
0 0 0 0 GB—BU - %

i, j=1,2,...,ri<j (2.30)

where
9 =-Gj— G + P,

¥ =—-BBTBU — pUT(BTB)T.

Furthermore, the static output feedback Hs, controller gain matrix in (2.3) is
given by (2.22).

Corollary 2.2 Consider the closed-loop system (2.4) with D(60) = O and B(f) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
stable with the Hx, performance y if, for known matrix Ry and scalar B, exist
matrices U, V, P;, Jj, and G;, j =1, 2, ..., r such that the following matrix
inequalities hold

M; <0,i=1,2, ..., r, (2.31)
M+ <0, i<j, i, j=12 ..., (2.32)
with
_ _p,
0
1
Hij _ G,/’Ai‘f‘ 0 RV Cy
Cii
Vi
L 0
% * % % %
_V2] * * * *
GjEi+|:0:|R1VHi Y +J; = * *
i -1 *
VH, 0 0 —pBU-BUT «
J.
0 0 0 22] — ﬂ_jz_
and
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;=GB — |:éj| R U.

Furthermore, the static output feedback H, controller gain matrix in (2.3) is
given by (2.22).

Corollary 2.3 Consider the closed-loop system (2.4) with D(60) = 0O and B(f) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
stable with the Hoo performance vy if, for known scalar B, exist matrices U, V, Pj,

Jj,and Gj, j =1, 2, ..., r such that the following matrix inequalities hold
— _Pi % % * T
0 —y2I * *
GiA; + YT [(I)]VCzi G,-Ei+YT[(I)]VH,~ G+ i x * *
Cii F; —1I * *
VCai V H; 0 0 —pU-BUT «
L 0 0 0 0 i — g
<0,i=1,2, ...,71 (2.33)
B —P; * * * x|
0 —)/21 * * * *
I I
G,A,-+YT[O}VCZ,» GjEi+YT[O]VH,- G+ T x * *
Cy; F; 0 -1 * *
VG, VH; 0 0 —BU-BUT «
I 0 0 0 0 o) -4 |
- —P; * * * 7]
0 —y21 * * *
. GiAj+YT|:é:|VC2j G,-Ej+yT[(I)]VHj G+ I * * %
Cyj F; 0 -1 * *
VCy V H; 0 0 —BU-BUT «

i 0 0 0 0 oY — g
<0,i, j=1,2, ..., r i<} (2.34)
where

_ . T .
Y= |1
2j=G;jB—-Y 0 U.

Furthermore, the static output feedback H, controller gain matrix in (2.3) is
given by (2.22).
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In order to show the contrasts between the existing static output feedback Hyo
control results and the proposed ones, we also recall the following existing results,
which can directly be obtained from [3] and [6].

Lemma 2.2 Consider the closed-loop system (2.4) with D(0) = 0 and B(f) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
stable with the H~o performance y if exist matrices P and N such that the following
matrix equations hold

A

—P * * %
)
.0 . v X o0 =12 .. (239
PA;+BNCy; PE;+BNH; —P x
Cii F; 0 -1
PB = BU. (2.36)
Remark 2.5 By regulating P(0) = P and using matrix inequality congruence
I * x x
. 0 I % =% L. . . .
property with 00 P , the matrix inequality (2.10) is equivalent to
00 0 I
—P * * %
)
.0 N L rlcoi=12 ... r
PA; + PBKCy PE;+ PBKH; —P =«
Cii Fi 0 -1
(2.37)

By considering the condition (2.36) and defining a new variable N = U K, it can
be known that LMIs (2.35) can guarantee the negative-definiteness of (2.37).

In addition to this, it should be noted that the single quadratic Lyapunov function
approach had been used to ensure the matrix condition (2.36) in Lemma 2.2.

Remark 2.6 Obviously, the condition in Lemma 2.2 can be relaxed further with
introducing a slack matrix variables G. In this case, (2.35) and (2.36) become, respec-
tively, as follows:

—P * * *
0 A * <0 i=1,2 ...
GA; + BNCy GE;+BNH, —G—-GT +P «
Cyi F; 0 —1
(2.38)
GB = BU. (2.39)

Lemma 2.3 Consider the closed-loop system (2.4) with D(0) = 0and B(0) = B (B
is of full column rank). For a given scalar y > 0, the system is asymptotically stable
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with the Hy, performance y if exist matrices L, 13]-, andR;, j=1, 2, ..., rsuch
that the following matrix equations hold

—P; s % "
L L T, p <0,
RiYA; + 0 Cy R;YE; + 0 H —RY—-RVI+P x 2.40)
Cii F; 0 _J
I = ], 2, , T
_13]. * .
0 _7/21 *
L L
RjYAi+|:O]C2i RjYEi+|:O]Hz —RjY—(RjY)T+P %
&F F; 0 —1
- .
0 _),21
+ L L . 0.
RiYAj-‘r|:0i|C2j R,-YE./'+|:0i|H/ RY — (R + P
Clj Fj 0 .y
iLhj=12, ..., i<},
241
— Ry sz _
Rj [0 Ry |'7 T L2, (2.42)

where Y B = [(1)]

Remark 2.7 Define P(0) = 13(9), L = R K and use matrix inequality congruence
I x * *
0 I * *

property with 0 0 zr: 0iR;Y x for the matrix inequality (2.10), the LMIs
j=1

0 0 0 1
(2.40) and (2.41) can derived easily.

Remark 2.8 This design condition given in Lemma 2.3 is a simple extension of
the results given in [6] for discrete-time linear system with time-invariant polytopic
uncertainties. In fact, [6] is concerned with the problem of designing robust static
output feedback controllers for discrete-time linear systems with time-varying poly-
topic uncertainties. The proposed technique in [6] is applicable for linear systems
with the time-varying polytopic uncertainties, which may simultaneously emerge
on system output and input matrices (nonfixed). However, it should be noted that
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this results in [6] are not enough to be used directly for system output or input
matrices with time-invariant polytopic uncertainties. This is because in the product
d 1
terms R;; Y; (X 0, Py) (R Y)T, ViB; = [0
v=1
allow v = i or v = j. Therefore, in Lemma 2.3, we assume that the system input
matrix B(0) is fixed, it leads to the matrix Y is also fixed.

, i, j=1,2, ..., r,itdoes not

In addition to these two conditions given in Lemmas 2.2 and 2.3, which can
directly be obtained from [3] and [6], the other significant result should be mentioned.
The mentioned result is given is based on the study in [5] and [8].

Lemma 2.4 Consider the closed-loop system (2.4) with D(@) = 0and B(0) = B (B
is of full column rank). For a given scalar y > 0, the system is asymptotically stable
with the Hy, performance y if exist matrices L, Q;, and Rj, j=12,....r
such that the following matrix equations hold

—0i s % "
0 _),21 ES %
RiYAiY_1+|:g]C2iY_1 RZYEZ+|:€:|H1 _Rl_RlT'f—Ql % <0,
Cy~! F; 0 -1
i=1,2, ...,
(2.43)
—0j *
0 _),2]
R'YA'Y71 L C -Y*l R:YE: L H: R: RT )
JRATH g |“2 JYEi+ | o [Hi —Rj—R; +0j
cy! Fi 0 1
—0; *
0 _7/21 *
* - L - L <0,
RiYA;Y 1+[O]C2]’Y 1 Rl-YEj+|:O:|Hj _Ri_R,’T‘*‘Qi %
Cle_l F; 0 -1
i, j=12,...,1ri<]},
(2.44)
N S B C_ | Rt Ry .
RJ_[O R2.i] or RJ—[O Ry L J=L2 . (2.45)

where Y B = |:(I):|

Proof In fact, the design result presented in Lemma 2.4 is an extension, which puts
the dynamic output feedback H, controllers design method given in [8] to robust
static output feedback Hs, controller design for linear discrete-time system with
time-invariant polytopic uncertainties.
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Consider the matrix inequality (2.10), pre- and post-multiplying it by M and its
transpose, respectively, we have:

-y Tpeyr-! * % «
0 —y21 * *
YA@)Y ! + YBKCy(0)Y~' YE®)+YBKH®©) —YP'@o)yT « |~ 0,
Cr@O)y! F(0) 0 —1I
(2.46)
YT s % x
0 I *x x
where M = 0 0 v x
0 0 0 I
I x % x
Again, pre- and post-multiplying it by 0 1 x and its transpose
’ 0 0 RO = ’
00 0 I
respectively, it follows that:
—YfTP(O)Y’1 * * *
0 —y2I * *
Az Ap —ROYPIOYT)RT () * <0 @47
CLOY ' F@O) 0 -1

where
A3 = ROYABO)Y '+ RO)YBKC,(0)Y ™!,

Az = R(O)YE(@®)+ RO)YBK H(0).
Basedonafact —R() (Y P~ (@) YT)RT (0) < —R©®)—RT(0)+ Y T P@O)Y™!

and defining Y =T P(9)Y —1 = 0(#), we can obtain the matrix inequality (2.48) to
verify (2.47)

-00) = . .
0 _)/21 * *

Ay An —RO) —RTO)+00) % | =" (2.48)
CrOY™" F®) 0 5

In order to solve the controller design problem, we partition matrices Q(6) and
R(0) as

,
00)=>6;0;, Q; >0, j=1,2, ..., r
j=1

& R O Ry Ry; .
R®) = OiR;, Ri = or R; = T, j=1,2, ..., r
© —1 S [0 szi| ’ |: i / '

J
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By substituting the corresponding partitioned parts into (2.48), the matrix inequal-
ity is equivalent to

-0; * * *
roor 0 —V21 * k
2 2 0 RjYAiY’1+|:I(;i|C2,~Y’1 RjYEi+|:16]Hi ~Rj =R +0; *
Cy™! F; 0 —I

(2.50)

Choosing a new variable L = R K, it is observed that the LMIs (2.43) and (2.44)
can guarantee the negative-definiteness of (2.50). ]

Remark 2.9 It should be pointed out that the result given in Lemma 2.4 can also
obtain by using a linear transformation approach. Consider the linear transformation
on the system state

x(k) = Yx(k), (2.51)

where Y B = [I

0 ], then we can obtain the following transformed closed-loop uncer-

tain system:

Yx(k+1) = Y(A(@) + BKC2(8))Y‘1Yx(k) + Y(E(@) + BKH(G))w(k),
z(k) =C10)Y 'Yx(k) + FO)w(k).
(2.52)
ie.,

¥k+1) = (YAO)Y '+ YBKCr(0)Y ) X(k) + (YE(O) + YBK H(9)) w(k),
z(k) =C1OY'x(k) + FO)w(k).
(2.53)
Choose the Lyapunov matrix as Y =7 P(0)Y~!, P(0) > 0, then we can obtain
easily the Hy, performance analysis conclusion (2.46).

In what follows, we will study the relationships among the proposed results and
the LMI conditions in Lemmas 2.2-2.4. The following theorem shows that the results
suggested herein include the ones given by [3, 5, 6, 8] as special cases, it is helpful to
obtain a conclusion that the new results are less conservative than the existing LMI
conditions for designing static output feedback H, controllers.

Theorem 2.6 If the condition given in Lemma 2.2 holds, the condition in Corollary
2.1 also holds.

Proof 1f (2.35) and (2.36) in Lemma 2.2 are satisfied, which imply that PB =
BU (ISB — BU = 0) and P > 0. Since the matrix B is of full column rank, we
have BT BU +UT (BT B)T = BT PB+ BT PB > 0. Then there exist large enough
B > 0 and small enough p > 0 such that the following matrix inequalities hold



2.1 With Time-Invariant Polytopic Uncertainties 37

A

—-P * * % 0 * % x
0 —y2I * % 0 0 % =
R . . +p
PA,+BNCy;, PE;+BNH; —P x 00 I x
Cii F; 0 —1I 0000
2.54
+L(BTBN[Cy H; 0 0])" @5
x(BTBU +UT(B"B)" — B(PB — BU)T%I(FA’B — BU))’1
x(BTBN[Cy H; 0 0])<0,i=12 ..., n
By defining G; = P; = P, Ji=pl, j=1 2, ..., r,V = N and apply-
ing Schur complement, the inequalities (2.29) and (2.30) in Corollary 2.1 can be
obtained. U

Theorem 2.7 If the condition given in Lemma 2.3 holds, the condition in Corollary
2.2 also holds.

Proof First, from Y B = |:éi|, we can know that

I Ry Ry [1
wro=nfo]= [ &)

_ R _ |1 .
—[0]—[0}&,]—1,2,...,}’,

1
R;YB — |:O

(2.55)

ie.,

}Rlzo,jzl, 2, .. (2.56)

On the other hand, the matrix inequalities (2.40) and (2.41) in Lemma 2.3 can be
rewritten as follows:

A

—P; * * *
0 —y2I * *
1 I N
RiYA; + O}Lcy R,~YE,~+[O]LH,~ —RY — (R +P «
Cy; F; 0 —1

_p
0
1 _
RiYA; + [O] RiR;'LCy
Cii
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* * *
—y2I * *
RJE+{6]&R§L&--—&Y—(mnT+é-* <0,
F; 0 —1
i=12, ...,
(2.57)
and
—I3j * * *
0 —y2I * *
1 1 N
RjYAi+|:0:|LC2i RjYEi+|:O:|LHi —RjY—(RjY)T+Pj *
Cii F; 0 -1
_ﬁi * * *
0 —y2I * *
+ I I -
RiYAj+ 0 LC2]‘ RiYEj+ 0 LHj —RY —(RY) + P =«
Cij F; 0 -1
_ﬁj
0
=l Riva+|! !
JYAi+ | | RIR, LCy;
Ci
*
—y2I * *
I B N
Rﬂfr+h}&RﬂLm —R;Y — (R +P;
F; —1
—r;
0
+ 1 _
&YAj+[0}Rﬂq1Lcy
% *
—y2I *
I —1 T A < 0,
R,’YEj—i- 0 RlRl LH]' —RY —(RY) + P x
Fj 0 —1

i, j=1,2,...,ri<j (259
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Note that if the above condition is satisfied, which implies that R;Y + (R;Y 7>

0, j=1, 2, ..., r.Because of the matrix B is of full column rank, we only can
know that

0 0

R R T I 117 (2.59)
o[ G ]+ [0] m=nr o] men[g] 5

=B'YBR +RIB'Y'B>0, j=1,2, ..., .

T
B"R;YB+ B"Y'"R]B =B"R; [1} + [1} R B

However, we are not sure that R + RIT > 0.
Combining (2.55)—(2.58), then there exist large enough 8 > 0 and small enough
p > 0 such that the following matrix inequality holds:

_ﬁi
! ~1
RiYAi+|:Oi|R1R1 LC»;
Cii
* % «
_)/21 ES *
RiYEi+|:(I)j|R1R1_1LH,‘ —RiY_(RiY)T+ﬁi %
F; 0 —7
0 % % x
0 0 % =x _ T
TPl 01 % +%(R11L[C2i Hi 0 0])
00 0O

I T 1 -t
><(21—/3(RiYB—[O:|R1) %I(RiYB—[O]Rl)) (R7'L1Cy H 0 0])
<0,i=1,2, ..., 1,

(2.60)
and
B,
0
1 _
RjYA; + [0} RIRT'LC;

Cll
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* *
ES *
—R;Y — (R +P;
0 —1
*k k

} RIRT'LH; —RY— RV + P *

0 -1

(R7'L[Co+Coy; Hi+H; 0 0])"

40
*
—y21
I _
RjYEi+|:O}R1R11LHi
F;
_p,
+ 1 4
RiYAj+|:Oi|R1R1 LCzj
%
—)/21
I
R YE; + 0
Fj
0 * % x*
0 0 * = 1
T2l001 +|Tp
0000
1 1 T
x (41=B(RiYB— || Ri+RYB—]| | R)

—1
I I _
xﬁ](RjYB—[O]Rl +R,~YB—[0]R,)) (Ry'L[Coi+Coj Hi+Hj 0 0])

<0,i, j=1,2, ..., i<].

(2.61)

By definingG; = R;Y, P; = f’j, Ji=pl,j=1 2, ..., V= Rl_lL, U=
I and applying Schur complement, the inequalities (2.31) and (2.32) in Corollary

2.2 can be obtained.

O

Theorem 2.8 If the condition given in Lemma 2.4 holds, the condition in Corollary

2.3 also holds.

Proof First, pre- and post-multiplying (2.43) and (2.44) and by

and its transpose, respectively, we have
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—-YTo;v * * ok
0 —yzl * ok
T |1 T |1 <0,
Y'RYA; +7Y 0 LCy Y ' R)YE; +7Y 0 LH;, Q; x
Cii F; 0 -7
i=1,2,...,r (2.62)
—yT 0,Y * * ok
0 —y2I
YTR;YA; + YT [(I)] LCy YT'R,YE;+YT [(I)} LH; Qj x*
Cii F; 0 —I
—0; * *
0 —y2I *
* YTRiYAj+YT|:(I)]LC2j Y'RYE; + YT [(I)}LHJ- Qi * <0,
Cyj F; 0 -1
i, j=1,2,...,ri<}],
(2.63)
where Q; = —YTRjY - YTR].TY + YTQjY. Obviously, these LMIs imply that
Ry +RT > 0.
On the other hand, from (2.45) and YB = [(I)], one can be given
YTRjYBzYT[If)]}zYT [(I)}Rl, ji=1,2 ..., r (2.64)
Similar to the proof of Theorem 2.6, by choosing G; = YT R;Y, P; = YT 0,7,
Ji=pl,j=1, 2, ..., r,V = L, U = Ry and applying Schur comple-
ment, the inequalities (2.62) and (2.63) generate (2.33) and (2.34) in Corollary 2.3,
respectively. 0

2.1.1.2 CaseB: H@#) =0

For this case, Lemma 2.1 is changed as the following lemma.

Lemma 2.5 Consider the closed-loop system (2.4) with H(0) = 0 and give a scalar
y > 0. Then the system is asymptotically stable with the H, performance y if there
exist matrices P(0), G(0), and K such that the following matrix inequality holds:
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—G(0)— G(6) + P(0) * %
0 o A (2.65)
AB)GO) + BO)KC2(0)G(O) E®B) — P(O) * ' :
CiG(O)+DO)KC2,(0)G®) F@®H) 0 —I
Proof Choose a parameter-dependent Lyapunov function to be
V) =xT (k)P @)x(k), P©®) > 0. (2.66)

Similar to the proof Lemma 2.1, the Hy, performance of closed-loop system (2.4)
with H(0) = 0 can be guaranteed by the following matrix inequality:

—-P~Y®) * * *
0 —yzl * *
AO)+ BOKC20) E@) —P©) *« | = (2.67)
Ci(0) + DO)KCr(0) F(0) 0 -1
GT@O) x % =
. 0 I % =* .
Pre- and post-multiplying (2.67) by 0 0 I = and its transpose,
0 00 I
respectively, we have:
-GTOP1O)G®) ¢ s s
0 -y * *
A@)GO)+ B(O)KCr(0)G(@OH) E@O) — PO * <0. (2.68)
C1GO)+ DO)KCr(0)GO) F(©) 0 —I
Obviously, the inequality (2.68) can be ensured by (2.65). (I

Based on Lemma 2.5, the following theorem proposes another form of Hyo
performance analysis criterion.

Theorem 2.9 Consider the closed-loop system (2.4) with H(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the H, performance y
if exist matrices M, N, U, L, P(0), G(0), and J(0), scalar B such that the following
matrix inequality holds

“4(0) * * * * *

0 —y2I * * * *
AB)G©O) + BO)LM E®) —P(®) * x %
C1(0)G(0) + DO)LM F(H) 0 I % % <0,

0 0 NTLTBT@®) NTLTDT(@©) =; =

0 0 0 0 ¥, — 10

(2.69)
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where

90)=—-G0O)—GT®)+ P®)+ J©),
¥ =-—-BUN-BNTUT,
¥ = (CO)GO) —UM)T .

Proof Rewrite matrix inequality (2.65) in the following form:

—-GO) -G O+ P®H) = * *
0 —y21 * *
AO)G(9) E®) —P@®) *
C1()G () FO 0 —I
0 o 1"
+] 0 K[ C20)G®6) 0 0 0]+[C2a®)G®) 0 0 0] kT 0 <0.
B(9) B(0)
D(®) D(0)
(2.70)

Let us define KU = L and consider two matrix M and N, where the matrices U
and N are nonsingular, from (2.70), we have

Q(6) * * * 0
0 —]/21 * * 0 —1y7—1
A©)G®O) E@) —PO) % + B(®) LNNT'UTH C0G®) 0 0 0]
C10)G(O) F(©) 0 -1 D(H)
0 T
+[C2®G®O) 0 0 0] UTN-TNTLT B?@) <0.
D(9)
2.71)
where Q(0) = —G () — GT(0) + P(0).
Furthermore, one gives
Q) * * * 0
0 —)/2[ * * 0 1,1 _
AO)GO) E@) —P@) « || By [EVNTU [C20)G©O) —UM 00 0]
C1)G@O) FO 0 —I D(H)

0 T

0
B(0)
D)

+[c6eG6e)-uMm 0 0 0] U TNTNTLT
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IA

_l.

—G©) —GT () + P®)

_l.

0 0 0
0 0 0
BOLM 0 0
DO)LM 0

0
0
0

)
)

0

A@)GO)+ BO)LM E@®) —P(®)

C1(0)G(O) +D@O)LM

0

0
B(0)
D(0)

0
0

| Bo)L

DO)LM

* *
—2I %

2 Robust Static Output Feedback

T

M

S o oo
SO OO

* % X

FO) 0 —I

LNN~'UT' C20)G@O) —UM 0 0 0]

0 T

0

+ GO -UuM 0 0 O]TU_TN_TNTLT <0. (2.72)

B(0)
D)

By Lemma 1.3 with a positive matrix J (), one can be given

0

0
B(0)
D(0)

+[I 0 0 01" (C2(0)GO) — UM)

SO O~

x (C20)G©®) —uM) UTNTNTLT

SO O~

LNN7'UTHC20)GO) —UM)[I 0 0 0]

J@OILI 0 0 0]+

JOII 0 0 0]+

T

0

0
B(0)
D(0)

0

0
B(O)LN
DO)LN

0 T

0
B(0)
D)

UTTNTNTLT

LNN'UTH(C0)G©O) —UM)T 1 (0)

0 T

0
B®)
D)

NT'UTNC0)GO) —UM)T(6)
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T

0
Ty —T x7—T 0
x (C20)G®) —UM) U™'N BO)LN (2.73)
D@)LN
Then, the inequality (2.72) holds if the following inequality is satisfied:
“4(0) * * * 0
0 -2 % L 0 N-lpy-1
AB)G@O)+ BO)LM E@©) —P(0) = B@O)LN
CiGO)+DO)LM F@EO 0 -—I D@O)LN
0 T
_ T T n— 0
x(C20)G(0) —UM)J~1(0)(C20)G®) —UM) UTN-T seoN| <O
D@)LN
(2.74)

where ¢(0) is defined in (2.69).
Without loss of generality, we assume that matrix C(0)G(0) — UM is of full
rank. Applying Schur complement to (2.74) yields

AC)) * * * *

0 -2 * * *
AO)G®)+ BO)LM E@®) —P®) * x | <0,
Ci1(0)G) + D@O)LM F(6) 0 —1I *

0 0 NTLTBT@®) NTLTDT®)

(2.75)
—1
where Q| = —NTUT((CZ(G)G(O) —UM)J~10)(C20)G () — UM)T) UN.
At the same time, one can be known that

—NTUT((CZ(G)G(G) —UM)J7'(0)(C20)G(®6) — UM)T)ilUN
< —BUN — BNTUT 4 B2(C2(6)G(6) — UM)J~1(6)(C2(0)G(0) — UM)"
= Q.

(2.76)
The above result (2.76) implies that the inequality (2.75) can be verified by

4(0) * * * *

0 —y2I * * *
AMB)G®)+ BO)LM E®) —P(®) s x | <0.
C1(6)G(0) + DO)LM F(6) 0 —1I *

0 0 NTLTBT@®) NTLTDT(@®)

(2.77)

By using Schur complement, the inequality (2.77) becomes (2.69). i
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In the following, we consider several combinations about the known matrices M
and N to design static output feedback H, controllers.

A: M = Cy(0) and N = I, the output matrix is with polytopic uncertainties
B: M = Cyand N = C,CT
or the output matrix is

C:M=S8;[I 0](S;is known)and N =1 } fixed and

or of full row rank

D:M=[1 0]TT and N =1
(2.78)
where CoT =[1 O0].

Remark 2.10 As Remark 2.4, there is a description of this matrix 7. Because of
this matrix C» is full row rank, there exist a nonsingular matrix 7 such that Co,T =
[ I 0] It should be noted that for each matrix C, the corresponding T generally
is not unique. A special T’ can be obtained by the following formula:

T=[clc,chH™' ¢,

where Cj- denotes an orthogonal basis for the null space of C».

For the cases A-D, the Hy, performance analysis condition (2.69) are rewritten
as follows, respectively

A:
“(0) * * * * *
0 —y21 * * * *
AO)GO) + B(O)LC2(0) E®) —P(®) * * *
C1(6)G(0) + DO)LC(0) F(H) 0 -1 * * <0,
0 0 LTBT@®) LTDT®) —pU —-pUT «
0 0 0 0 b )
2.79)
where 5, = (C2(0)G(6) — UC2(6))" .
B:
“4(0) * * * * *
0 —y21 * * * *
AO)G©) + BO)LC; E©) —P(6) * x %
C1(0)G®) + DO)LC, F(H) 0 —1 % <0,
0 0 (CCHTLTBT ) (C,HTL™DT(9) =1 =
0 0 0 0 o - %

(2.80)
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where

1 =—BUCCT — p(c,cHTuT,

% = (C2G(6) —UGCy)".

9(0)

0
A@)G®) + BOLS;[I 0]
Ci(0)G®) +D®O)LS;[I 0]

0
0
ES * * * *k
—y2I * * * *
E®) —P@®) * * *
F@) 0 1 % « | <0
0 LTBT@®) L'DT@®) —pU-pUT «
0 0 0 A —3
(2.81)
where A = (C2G(6) —USi[1 0])".
D:
i “4(0) * * * * x ]
0 —y21 * * * *
AB)G®)+ BOL[I 01TT E®) —P®) * s *
C1OGEO) +DOLIT 0177 F©O) 0 1 % <0,
0 o0 LTBT®) L™DT®) %, =«
0 0 0 0 m -
- T (2.82)

where
T, =—pU - pUT,

% = (CGO)—Uur1 0117’

Based on these analysis conditions (2.79-2.82), the corresponding design results
are given in the following corollaries.

Corollary 2.4 Consider the closed-loop system (2.4) with H(6) = 0 and C2(9) =
C> (Cy is of full row rank). For a given scalar y > 0, the system is asymptotically
stable with the Hx, performance y if, for known scalar B, exist matrices U, L, Pj,
Jj,and Gj, j =1, 2, ..., r such that the following matrix inequalities hold
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—G,-—GiT+Pi+Ji * * * * *
0 —y2 % * * *
A;iG; + B LCy; E; —P; * * *
CiGi +D;LCy F, 0  —I % « | <0
0 0 L"Bl L"D] —pU-BUT *
0 0 0 0 (CuGi—UCHT - f%
i=1,2, ..., r
(2.83)
_—Gj—GjT—i—Pj—l-]j * * * * x|
0 —y2I % * * *
AiGj +BjLC2i E; —Pj * * *
C1iGj+ D;jLCy F; 0 —1 * *
0 0 L"Bl LDl —pU-pUT *
i 0 0 0 0 (CuG;—UCH =% |
—Gi—Gl.T—f-Pi—l—Ji * * * * *
0 —y2[ * * * *
AjGi +BiLC2j E] —P; * * *
*| G +DiLCy;  F; 0 —1 % % <0,
0 o L'l L"pl —pu-puT s
0 0 0 0 (C2;G; —UCHT — #
i, j=1,2, ..., ri<].
(2.84)

Furthermore, the static output feedback Hxo controller gain matrix in (2.3) is given by
K=LU"". (2.85)
Corollary 2.5 Consider the closed-loop system (2.4) with H(0) = 0 and C2(0) =

C> (Cy is of full row rank). For a given scalar y > 0, the system is asymptotically
stable with the Hoo performance vy if, for known scalar B, exist matrices U, L, Pj,

Jj,and Gj, j =1, 2, ..., r such that the following matrix inequalities hold
—-Gi—Gl +P+J; = * * %
0 —y21 * * * *
A;G; + B;LCy E; —P; * * *
C1iG; +D;LCy F; 0 -1 * * <0,
0 0 (CcHTLTB (cc)HTL™Dl Ay
0 0 0 0 Ay — %
i=1,2, . T,
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_—Gj—GjT—l—Pj—l—Jj * * * * *
0 —y2I * * * *
AiGj+ BiLCy E; —P;j * * *
C1iGj+ D;LCy F; 0 -1 * *
0 0 (CcHTLTBI (ccHTLTDl Ay
J,
I 0 0 0 0 Agj =5 ]
—G,-—Gl.T—i—P,-—i—Ji * * * * * ]
0 —y21 * * * *
AjG; + B;LC, E; —P; * * *
+ C1jGi+D;LCy F; 0 —1 * * <0,
0 0 (CQCZT)TLTB].T (CZCZT)TLTDJT INEE
0 0 0 0 Noi = g |
L, j=12 ..., i<}
(2.87)
where

A =—BUCCT = B(CCHTUT,
Ay = (C2G; —UCH)T.

Furthermore, the static output feedback H~, controller gain matrix in (2.3) is
given by (2.85).

Corollary 2.6 Consider the closed-loop system (2.4) with H(0) = 0 and C,(0) =
Co (Cy is of full row rank). For a given scalar y > 0, the system is asymptotically
stable with the H, performance y if, for known matrix Sy and scalar B, exist matrices

U,V,Pj,Jj,and G, j =1, 2, ..., rsuchthat the following matrix inequalities
hold
—G,-—Gl.T—l—Pi—i—Ji * * * * *
0 21 % * * *
A;G;+ B;iLS1[1 0] E; —P; * * * )
C1;G; +D;LS{[I 0] F, 0 —1 % % |<0i=L2....r
0 o LTBI LTDI w; «
0 0 0 0 Wy —%
(2.88)
__Gj—G]T+Pj+Jj * * * * k|
0 Yl * * *
A,'Gj + B;LS;[I 0] E; —Pj * * *
CiiGj+D;L5[1 0] F 0 —1 * *
0 0 L"BI LD w; «
i 0 0 0 0 Wy -
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[ —Gi—-GI'+P+Ji o« *

* *
0 . * * *
AjGi+B;LS[I 0] E; -—P * * *
tlc,G+pjLsi(1 01 F, 0o -1 x x |<0
0 0 LTBJ.T LTDJ.T ok
i 0 0 0 0 Wy —ﬁ_
i, j=1,2, ..., r i<},
(2.89)
where

T
Uy = (C2G—USI[I 0]).
Furthermore, the static output feedback H, controller gain matrix in (2.3) is
given by (2.85).

Corollary 2.7 Consider the closed-loop system (2.4) with H(0) = 0 and C2(0) =
C> (Cy is of full row rank). For a given scalar y > 0, the system is asymptotically
stable with the Hoo performance vy if, for known scalar B, exist matrices U, V, Pj,

Jj,and Gj, j =1, 2, ..., r such that the following matrix inequalities hold
—Gi—GiT—i—Pi—i—],- * * * * *

0 -2 % * s *
A;Gi+BL[I 01TT E —pP s s *
CLiGi+D;L[I 01T F 0  —I % « | <0

0 o L'Bl L"D! —-pU - puT x

T .
0 0 0 0 (C2Gi—ull 01rT)" —2%
i=1,2, ...,
(2.90)
-G; —G]T—i—Pj + J; * * * * *

0 —yzl * * * %
AiGj+B,L[I 0ITT E -P; = * *
CuG;+D;L[I 01TT F 0  —I * *

0 o LTBI L"D] —pU — BUT *

T Jj

0 0 0 0 (&Gj-Uurl1 01T")" -2

~Gi =G +Pi+J  x o« * * *

0 2 % * * *
A;G;+B,L[I 01TT E; -P * * *

t|cG+p;L11 011" F; 0 —I * « | <0
0 0o L"BI L"D! —pU — pU" *
T .
0 0 0 0 (CGi—ULI 01TT)" —4
i j=1,2, ...,ri<].
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Furthermore, the static output feedback Hs, controller gain matrix in (2.3) is
given by (2.85).

For the case H (9)=0, we also make a comparison with the existing results to reflect
advantage of the proposed results. With H (9)=0, several existing design conditions
can be described by the following lemmas.

Lemma 2.6 Consider the closed-loop system (2.4) with H(0) = 0 and C2(0) = C;
(C2 is of full row rank). For a given scalar y > 0, the system is asymptotically stable
with the Hx, performance y if exist matrices P and N such that the following matrix
equations hold

_13 k * k
0 -2 % % .
AP+BNC, E —P x <0,i=1,2 ..., 1 (2.92)
CiiP+D;NC, Fi 0 —I
CP =UCs. (2.93)

Lemma 2.7 Consider the closed-loop system (2.4) with H(6) = 0 and C>(0) = C;
(C» is of full row rank). For a given scalar y > 0, the system is asymptotically stable
with the Hso performance y if exist matrices L1, 13/', and S;, j=1,2, ..., r
such that the following matrix equations hold

—TSi—(TSHT + P % x =
0 —y2I %

N <0,i=1,2,...,r, (2.94)
AiTS;+B;[Ly 0] E —P
CuTS;+D;[Li 0] F; 0 —I
~TS; —(TSHT +P; % % =«
0 — % %
AiTS;+Bi[Ly 0] E; —P; %
CiuTS;+Di[L1 0] F; 0 -1
TS —(TSHT+ P %  x =«
2
0 yeLox <0,i, j=1,2,...,r i<}
A;TS;+B;j[Ly 0] E; —P x*
C1jTSi+D;[L1 0] F; 0 -1
(2.95)
S0 .
S]—|:S2j S3j],]—l, 2, ..., T, (2.96)

where CoT =1 0].
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Lemma 2.8 Consider the closed-loop system (2.4) with H(0) = 0 and C>(0) =
(Ca is of full row rank). For a given scalar y > 0, the system is asymptotically stable
with the Hy, performance y if exist matrices Ly, Pj, and S;, j =1, 2, ..., r
such that the following matrix equations hold

—S; —SI.T-|-Q,- * * *
0 —y21 * *
TVATS +T- VB [L; 0] T-'E —0; « | 0 =b2Z o
CiiTS;+D; [ L1 0] F; 0 -1
(2.97)
—Sj—SjTJer * * *
0 —yzl * *
T'ATS; +T7'Bi[Ly 0] T7'E; —Q; =
CuTS;+D;i[L; 0] Fi 0 —I
—Si—SiT+Qi * * *
0 —y2 * * S ..
Tlrta s 7B (L 0] TE; - x | SO B L2 ni<
C]jTSi-i-Dj[L] 0] Fj 0 —1
(2.98)
s 0 [so0] .
Sf_[O S3j:| or Sj_|:S2j S3ji|,1—1, 2, ..., T, (2.99)

where CoT =[1 0].

Remark 2.11 The design conditions given in Lemmas 2.6 and 2.7 can directly be
obtained from [3] and [6], respectively. And the condition in Lemma 2.8 can be
derived by applying the homologous matrix inequality technique with Lemma 2.4
or consider a linear transformation on the system state as ¥(k) = T~ 'x(k), with
C,T=[1 0]

Similar to the Case A (D(G) = 0), the following theorems show also that the
proposed results include the ones given by Lemmas as special cases.

Theorem 2.10 Ifthe condition given in Lemma 2.6 hold, the condition in Corollary
2.5 also holds.

Proof If (2. 92) and (2.93) in Lemma 2.6 are satisfied, which implies that C»
P=U Cs, P > 0. Since the matrix C, is of full row rank, we have U C2C2 +
CZCTUT CzPCT + C2PCT > 0. Then there exist large enough 8 > 0 and small
enough p > 0 such that the LMIs (2.86) and (2.87) hold. O

Theorem 2.11 If the condition given in Lemma 2.7 hold, the condition in Corollary
2.6 also holds.
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Proof First, the LMIs (2.94) and (2.95) in Lemma 2.7 can be rewritten as follows:

—TSi —(TSHT + P x  x x
0 V2 % %
AiTS;+B;Li[I 0] E; —ﬁ,’ *
C,TS;+D;Li[I 0] F; 0 -1

—TS; —(TSHT + P; ok ok
0 Vi % % :
_ ) 0,i=12 ... r
AiTSi+BiL1S1_1S1 [1 0] E —P = = l i

CuTS;i+ DiLiS;'Si[1 01 Fr 0 —I

(2.100)
and

~TS; —(TSHT +P; = * %

0 —y21 * *

ATS;+BiLi[I 01 E —TS;—(TSH" +P; *

C]iTSj+DiL1[I 0] F; 0 —1
—TS; —(TSHT + P, =« * *

n 0 —7/21 * *
AjTS;+B;Li[I 0] E; —TS—(TSHT +P =«
C1TS;+D;Li[I 0] F; 0 —1

~TS; —(TSHT + P; * x
_ 0 —v2I %
AiTSj+BiL1SflSl[I 0] E; —ﬁj *
CuTS;+DiLiS;'i[1 01 F 0 —I
—TSi—(TSi)T+ﬁ[ * * %
0 -2 x
R 0, 2.101

Tl AT BiLSTIS (1 01 Ej B ox | (2101

CiTS;+DiLiS;'Si[1 01 F; 0 —I
i, j=1,2, ..., r i<].

If the above condition is satisfied, which implies that TS; + (T'S j)T > 0,
j=1,2, ..., r.Because C, is of full row rank, we have
Co(TS;+TTS])C] = CaTS;Cy + ST T CY
=[1 018;C; +CS7[1 0]
=[S 01C; +ClS 0]
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=811 01ct+Crr1 o7'st
=8Crcl +rfclsl >0, j=1,2, ..., (2.102)

However, we are not sure that S; + SlT > 0.
On the other hand, from C,7 =[ 1 0 ], we can know that

CTS;=[1 018,

s, 0 (2.103)
=[1 O =[5 O0]=%[1 O], j=1,2, ..., r.
[ ][SZj 531} [ S1 ] 1l 1 J r

Then there exist large enough f > 0 and small enough p > 0 such that the
following matrix inequality holds:

—TS; —(TSHT + P, ¥ % x
0 —v2I %
ATS; + BiLiS;'si [1 01 E —P
CuTSi+DiLiS;'Si[I 01 Fi 0 —I

OO O~
SO O *
SO * %
O % ¥ ¥

X (21 —B(C2TSi = Si [T ON)ZI(C2TSi =S [1 0 ])T)_1

x (Lis;HTro o B DI <o0,i=1,2, ..., 1
~TS; —(TSHT + P; % %
0 I
ATS; +BLiST'S [ 0] Ei —Pj
CiTS; +DiLiS7'S [1 01 Fi 0 —I
-TS; — (TSI')T + ﬁ,’ * * %k
+ 0 —yzl % %k
AjTS +B;LiST'S [ 0] E; —P
Cy;TSi+D;LiS;'$[I 0] F; 0 —I
I *x *x x
0 0 % =% 1 —1\T T T nT T T
+200 0 0 0 « +E((L1S1 )'[0 0 B/ +B; D; +Djl)
0000
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1
x (41 =B(C2TS; = SI L1 01+ CoTS; =8 [ ] 01) 51
0

~1
x (CTSi=Si 11 01+CTs; =51 0])")

x (@LisyhHT1o o B +B] DI +D1)<0.i<j i j=12 ... r
(2.105)

By defining L = L1S;', U =1, G, = TS;, P; = P;, J; = pl, j =
1, 2, ..., r, and applying Schur complement, the LMIs (2.88) and (2.89) in Corol-
lary 2.6 can be obtained. O

Theorem 2.12 [fthe condition given in Lemma 2.8 holds, the condition in Corollary
2.7 also holds.

T % x x
o 0 I % = .
Proof Pre- and post-multiplying (2.97) and (2.98) and by 00 T = and its
00 0 I
transpose, respectively, we have
78517 —1SI'TT + 7O, 7T & * *

0 —y21 * * .
ATSTT + B 1 01T B —1orT s | SO i 2en
cuTSTT +D; LI 01TT  F 0 -1

(2.106)
~T8;T" =TS]T" +TQ;T" % * *
0 -2 * *
ATS;TT +B;Ly[1 0]1TT E; —TQ;TT
CuTS;,TT +D; LilI 0]TT F 0 —I
=T8T —TS'T" +TQ,TT % * * (2.107)
0 — 2 * *
+ A;TSTT +B;Li[1 01TT  E;  —TQOTT « <0,
CyTS;TT+D; Lill 0O1TT F; 0 —1
i, j=1, 2, , 1< ]
Obviously, these LMIs imply that S + SlT > 0.
From (2.99) and C,T =[1 0], we have
CTS;TT =[1 017" =[S 0177 =S[1 0177, j=1,2, ...,
(2.108)

Similar to the proof of Theorem 2.11, by choosing G; = TS, TT, J; = pI, P; =
TQjTT, j=1,2, ..., r,L =Ly, U=S5 and applying Schur complement, the
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inequalities (2.107) and (2.108) can be changed into (2.90) and (2.91) in Corollary
2.7, respectively. g

2.1.1.3 Several Further Studies

A: Application of Lemma 1.5

The proposed design results in Sects.2.1.1.1 and 2.1.1.2 can further be relaxed
by using LMI technique in Lemma 1.5, which adds more slack matrix variables. To
mention a few:
For Theorem 2.2:

Theorem 2.13 Consider the closed-loop system (2.4) with D(0) = 0 and give
scalars y > 0. Then the system is asymptotically stable with the Hs performance

v if, for known scalar B, exist matrices U, V, P;, Jj, G;, j =1, 2, ..., r,
ﬁ,-, i=1, 2, ..., r, and f/i, i, j=1,2, ..., r, i < j such that the
following matrix inequalities hold
—P; * * * * *
0 —y21 * * * *
G;A; + BjVCy; GiE;+B;jVH; 9 +J; x* * * N
Cii F; 0 —I * s < Yii,
VCa; VH; 0 0 —BU-BUT «
0 0 0 0 G;B—BU ~— %
i=,2, ..., r
(2.109)
B —P; * * * * x ]
0 —y21 * * * *
G./‘A,'—G—B[VCQJ GjE,‘-I-B,'VHj %,‘—l-]j * * *
Cii F; 0 —1 * *
VCyj VH, 0 0 —BU-BUT «x
J.
i 0 0 0 0 G;jBi—BU - ﬂ—’z ]
_Pi % * ES k *
0 —y2I * * * *
GiAj—{—BjVCz,‘ GiEj-I—BjVHi 4+ J; * * *
Cij F; 0o -I * *
V Cyi V H; 0 0 —BU-BUT «
0 0 0 0 GiBj-BU —3%
<Y+ i j=12 ... ri<j

(2.110)
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'?‘11 % - %
Ty Yoo ... %

o <0, @2.111)
ﬁf‘rl ’?\rZ cee ’?rr

where 9, = =G — G]T + P;.

Furthermore, the static output feedback H, controller gain matrix in (2.3) is
given by (2.22).
For Corollary 2.2:

Theorem 2.14 Consider the closed-loop system (2.4) with D(0) = 0 and give
scalars y > 0. Then the system is asymptotically stable with the Hx, performance
v if, for known scalar B, exist matrices U, V, P;, Jj, G;, j =1, 2, ..., r,
ﬁ,-, i=1, 2, ..., r andf/i, i, j=1,2, ..., r, i < jsuch that the
following matrix inequalities hold

My <Y, i=1,2, ..., 7 (2.112)

Hij+nj,»<?,-i+?fi,i<j, i j= 2 ...,r (2.113)
?11 .

?21 Yzz A
_ <0, (2.114)

S
.

?}1 Yo ...
with
0
GJ'A,‘ +|:

Cii
VCy;
0

k k k k
GjE,'+|:(I):|R]VHi gj—i-]j * % *
F; 0 -1 x *
V H; 0 0 X *

0 0 0 = -3
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and

9 =-G;—G| +Pj,
¥ =—-BU — BUT,

1
% =GB - [O]RIU.

Furthermore, the static output feedback H, controller gain matrix in (2.3) is
given by (2.22).

Of course, the relaxed characteristic of Lemma 1.5 can also be applied to the
existing design results. To Lemma 2.3 as an example, we have

Lemma 2.9 Consider the closed-loop system (2.4) with D(0) = 0 and give a scalar
y > 0. Then the system is asymptotically stable with the Hoo performance y if

exist matrices L, P;, R;, j =1, 2, ..., r, Yy, i =1, 2, ..., r, and
Yji, i, j=1,2, ..., r, i < jsuchthatthe following matrix equations hold
_ﬁl. % * *
0 —y2I * *
L L T3 < Yii,
RiYAi+| o |Cu RYE +|H —RY—(RY) +P *
Cii F; 0 —1I
i=1,2, ..., r
(2.115)
_ﬁj * * *
0 —)/21 * *
R_,-YA,-+|:I(;]C2,- RjYE,-—I—[I(;]H,- —RjY —(RiNT + P; x
Cii F; 0 —1I
_ﬁl. * * *
0 —yzl * *
. T
* RiYAj+[16]Czj R,-YE,-+[(L)]HJ' “RY RV 4+ B o | ST
Cij Fj 0 —1
i, j=1,2,...,r i<},
(2.116)
T11 % %
Yo1 Yoo ...
. . . <0, 2.117)

T Yo oo Yo
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| R Ry -
Rj_|:0 R3j]’]_1’ 2, ..., 1. (2.118)

Next, we will study the relationship between the proposed results and the existing
ones under considering the relaxed characteristic of Lemma 1.5 (i.e., Theorem 2.14
and Lemma 2.9).

Theorem 2.15 [f the condition given in Lemma 2.9 holds, the condition in Theorem
2.14 also holds.

Proof The LMIs (2.115) and (2.116) in Lemma 2.9 can be rewritten as follows:

—13i * * *
0 —yzl * *
L L ~ - <0,
R,~YA,~+[O]02,- R,'YEI'+|:Oi|H,~ —RY-RNT + P « i
Cyi F; 0 —1
i=1,2, ..., r
(2.119)
—P * *
0 —y2I *
R_,YA,»+[6]C2,~ R_,-YEi+[6]H,~ —R;Y —(R;V)T + P
Cyi Fi 0
—ﬁ,‘ *k *k
0 —y2] * * x T
T R,»YA,+[6]02, R,~YE,»+[6]H, “RY —(RY) 4B s« | i L
C]j Fj 0 —1
<0,i, j=1,2, ..., i<].
(2.120)

Recall (2.56), if the LMIs (2.119) and (2.120) are satisfied, then there exist large
enough 8 > 0 and small enough p > 0 such that

_ T
Qii +p +%(R]1L[C2i H 0 0])

S oo O
SO O ¥
O N ¥ ¥
S ¥ % ¥

e
x (21 - ,B(R,-YB — [(I)} Rl)T %I(R,-YB - [é} Rl))

x(R7€'L[Cy Hi 0 01) =7y <0,i=1,2,...,r
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and

0
0 1 —1 T
Qij + Qi +2p 0 +E(Rl L[Cy+Cyj Hi+H; O 0])
0
R

I T I
|+R,~YB—[0]R1) EI(R,»YB—[O]R,

-1
1 —1 T
+RiYB_[0i|R1)) (R1 L[Cy+Cyj Hi+Hj O O])—Tji—Tji<O,

i, j=1,2,....,r i<},
(2.122)
with
B,
0
Q= i -
Y RJ»YAZ-+[O} 1Ry LGy
Cii
* * *
—)/21 " N
RjYEi+|:(I):|R1R11LHi —R;Y — (R + P; x
F; 0 _J

Using Schur complement to (2.121) and (2.122) yields, respectively, it follows as:

0 % x =
00
Literly o }k : — i * *
0000 <0,i=1,2,...,r,
R]_IL[Czl‘ H; 0 0] —p1 —B1 *
1
i 0 RiYB—[O]Rl —Zﬁ_
(2.123)
and
0 % * x
0 0 % =%
Qi+ Qi +2p 00 I x _Tji_TjTi
0000
RI'L[Cy+Cyy Hi+H; 0 0]

0
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* %

—BI — BI — BI — BI * 0.
RyB— | |Ri+rRYB—|1|R 200
JEB =1 g | it Rl B = Ri =2

i j=1,2, ..., <]

(2.124)

If the above LMIs (2.123) and (2.124) are satisfied, then there exists a small
enough o > 0 such that

0 % *x x
0 0 % x
QGitriog o1 « * *
0000 Tii  x *
< 0 —ol *
Ri'LICy H 0 01 —pI—§I * 0 0 —ol
1 I
I 0 RiYB—[O}Rl —2—2_
i=1, 2, , 1
(2.125)
B 0 * * x 7]
0 0 % =
Q,-J-+Qj;+2p 0 0 * *
0000
R'L[Cy+Cyj Hi+H;j 0 0] —BI — Bl —BI —BI *
0 RyB—|1 R +rRYB-|!|R 20!
A 0 R Y A 2
Y o* % TjTl. *
< 0 0 x|+ 0 0 x|, 4 j=1,2,....,ri<]j.
0 00 0 00
(2.126)

Let us consider the following matrix:
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(Y1 o« % ok % ok % ok % % ok %
0 —ol x % % k0 ok ok * * * *
0 0 —ol % % ko ok ok * * * *
Ty O 0 Yo x* * * * * * * *
0O O 0 0 —0ol * % x * * * *
0 O 0 0 0 —ol *x =« * * * *
Mm=| Tn 0 0 T3 O 0 Y33 = * * * *
0 O 0O 0 O 0 0 —ol =x * * *
0 O 0O 0 O 0 0 0 —-oI * * *
Y1 0 Yo O 0 Y3 O 0O - Yy x* *
0 O 0O 0 O 0O 0 O 0O -+ 0 —ol =%

| 0 O 0O 0 O 0O 0 O o -~ 0 0 —olI

(2.127)
By applying the technique of elementary transformation of matrix, the matrix IT
can be transformed as follows:

CY1p % ok - ok ok sk ok k... sk * ok
Yo1r Yoo % -+ % % * * k.. % * *
Y31 Y32 Y33 --- % % % % % * x %
Y1 Yo Yr3 Yrr ok * * * * * *
0O 0 O 0 —ol =x * * * * *

I = 0O 0 O 0 0 —ol =« * * * *
0O 0 O 0 0 0 —ol = * * *
0O 0 O 0O 0 0 0 —ol * * *
0 -0 0 0 0 0 -+ —ol « *
o o0 o0 ---0 O 0 0 O -+ 0 —ol =x
L 00 0 ---0 0 0 0 o --- 0 0 —ol

(2.128)
If the inequality (2.117) is satisfied, which leads to I' < 0, i.e, [T < 0. Let us
define

Tii * *
Yi=| 0 —oI x |,i=12,...,r
0 0 —ol
(2.129)
Y * %
Ti=| 0 0 x|,i,j=1,2....,ri<]
0 00

and unite (2.125) and (2.126), the LMIs (2.112)-(2.114) in Theorem 2.14 can be
obtainedby definingG; = R;Y, P; =P;,Jj=pl,j=1,2, ..., 1,V = RflL,
and U = 1. O
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B: Application of Lemma 1.6
When D(0) = 0, let us recollect the following H, performance analysis criterion
[A®) + BOKC20) E®)+BOKH®) ]

xP@)[ A®) + BO)KC28) E©)+ BOKH®) | (2.130)

+[c6) FO][Ci6) F(G)]+[_P(9) 0 }<o.

0 —y2
By using Lemma 1.6 with

—P
r=[C®) FO]'[C10) F(@)]+|: ©® 0 }

0 —y2I
A=[A®)+B@O)KC:00) E®)+BOKH®) |,
P = P(9),

and introducing two auxiliary parameter-dependent matrix variables G (0) and M (6),
the matrix inequality (2.130) can be guaranteed by

Q) "
|:Q2 ~-G©O) - GT®) + P(O)] <0. (2.131)

where

Q=[O FOI'[C®) FO]+ [_%(9) _;)21}

+[ A©) + BOIKC20) E®)+ BOKH®)] MT(©0)
+M©)[ A©) + BOKC2O) E©) + BOKH®)],

Q=-M"O)+GO)| A®) + BO)KC2(0) E®)+ BO)KH(®)].
. S) . o
By defining M (6) = 0 and applying Schur complement to (2.131), it yields

(O35 * * *
(OS] —]/21 * *
O3 D3 Y(O) *
ci® F@OB 0 -1

<0, (2.132)
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where
D1y =—P@O)+SO)AO) + SO)BO)KC2(0)

+AT©)ST©®) + T ©)KT BT (0)ST (9),
@y =ETO)STO)+HT'O)KTBT(9)ST(9),
D31 = —ST(O) + GO)A®B) + GO)BO)K C2(0),
P = GO)E®) + G@O)BO)KH(®),
G0) =—-G@O) — G (0) + P@®).
Remark 2.12 Compared with the condition (2.5), the Ho, performance analysis

criterion (2.132) is more relaxed. In fact, when M (6) = 0, the condition (2.132)

reduces to (2.5) of Lemma 2.1 that implies that the condition (2.5) is a special case
of (2.132).

Next, we derive new static output feedback H, controller design results based
on the Hy, performance analysis criterion (2.132).
Obviously, the matrix inequality (2.132) is equivalent to

Q * * * SO)B(0)
ET©)ST () —y2I S 0 K
—STO)+GO)A®B) GO)E®O) 90) * G(0)B(H)
C1(9) F(6) 0 -I 0
NOYIORE
0
x[C20) HO) 0 0]+[C200) HO) 0 0] K" oo | <0
0
(2.133)

where @ = —P(0) + S(O)A®) + AT (0)ST (6).
By defining UK = V and considering matrices M, R, and N, where U and N
are nonsingular without loss of generality, we have

Q * k * S(Q)B(Q)
ET(6)ST(©) A 0 -yt
—ST0) + GOA®) GOEO) 90) « || cose U TN
C10) F(9) U 0
s@B®) "
x[C20) H®) 0 0]+[C206) H©) 0 0] VININTUT G(@)OB(G)

0
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Q * * *
ET©)ST () —y2I k%
—ST @)+ G@O)A®B) GO)E®) 9©) *
C1(0) F(9) 0 —I
S()B(®) — RU
0 —1 -1
GoB@y—mu UV NV[C2(0) H®) 0 0]
0

+

S©)B®) — RU 17

+[Ca0) HEO) 0 0] VINTNTUT G(G)B(g)—MU
0

R
+ ]\04 V[Ca0) H®) 0 0]1+[C2(6) H(®H) O O]TVT
0

o ox

I * * *

B ET©)ST©®)+ HT(0)VTRT —y2I x %
T =STO)+GO)VAO) + MVC2(0) GOVE@®O)+ MVH®) 9©) *
C1(0) F(0) 0 -1

0
0 —1p—1

G@oB®) —my |V N NV[C20) HE) 0 0]
0

+

0 T
+Ca0) HE) 0 0] VINTNTUT G(O)B(g)—MU

0
S(O)B®) — RU

+ 8 U'NTINV[Cy0) H®) 0 0]

0

S@B@O)— RU "

+[C26) HE) 0 0]'VINTN-TU-T 8 <0,

0

(2.134)
where IT = —P(0) + SO A©®) + AT (0)ST () + RVC2(0) + C] (O)VTRT.
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By Lemma 1.3, for two positive matrices J(0) and X (9), we have

0
G(9)B(g)—MU UTINTINV[C2(0) H®) 0 0]
0
0 T
TyrNTN-Ty-T 0
wlce) HO) 0 O VININTUT| L
0

~

IA

J(©)

O~ O O
O~ O O

+[C20) H®) 0 O]TVTNTN*TU*T(G(G)B(Q)—MU)TJ*‘(G)

x (G®)B®) — MU)U™'N"INV[ C20) H®) 0 0],
(2.135)
and

S@)B@®O) — RU
0
0
0

UT'NTINV[C20) H®) 0 0]

S@B®) — RrRU]T

+[C26) H®) 0 0] VINTN-TU-T 8
0
I Il
0 0
=l |X® |,
0 0

+[C20) H®) 0 o]TVTNTN—TU—T(S(e)B(e)—RU)Tx—l(e)

x (S@)B®) — RU)YUT'N"INV[ C2(0) H(®) 0 0].
(2.136)
Based on (2.135) and (2.136), we can use the following matrix inequality to ensure
(2.134):
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Im+ X@®) * * *
ET@0)sT®)+ HT 0)vTRT —y2I * *
ST )+ GO)A©O) + MVC2(0) GOYE®O)+MVH®) 40)+J©O) *
C1(6) F(6) 0 -1

+[co HO 0 0]"VINTNTUT(G©O)BO) - MU) T~ (6)

[
x (GO)BO) — MUY UT'NTINV[ C20) H®©) 0 0]
+[ca6) H®) 0 0] VINTNTUT(50)B6) — RU) X~ (6)
(

x (S(0)B®) — RUYUT'NTINV[ C2(6) H®) 0 0] <0. (2.137)

Follow the same procedure of Theorem 2.1, strictly, the final Hy, performance
analysis criterion is summarized by

[T+ X(6) * * S * *
(S5 —yzl * * ok %k * *
®31 O3 GO)+JO) * * * * *
C1(0) F(9) 0 —I * % * *
NVCy(0) NVH () 0 0 T = * * <0,
NVCy(0) NVH(®) 0 0 0 =3 =« *
0 0 0 0 % 0 -9
0 0 0 0 0 X, 0 -— %})
- (2.138)

where

Oy = ET©)sT )+ HT (0)VTRT,
®31 = —5"(0) + GO)A®O) + MV C,(6),
O3 = GO)E@®) + MV H(®),

¥ =—BNU — BUTNT,

T2 = G(0)BH) — MU,

Y3 =-—npNU —qUTNT,

¥4 = S(6)B() — RU.

Remark 2.13 1In fact, the Hy, performance analysis criterion (2.138) can be relaxed

further by adding another matrix variable N. Let us rewrite the matrix inequality
(2.133) as follows:

Q * * *

ET )87 (9) —2I %
—STO)+GO)A®B) GOE®) “4O6) *
) F () 0 —I
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) 0 T
+ 0 K[ C2(0) H®) 0 0]+[Ca6) HO) 0 0] K" 0
G(0)B() 2 2 G(9)B(0)
L0 0
T S(0)B(©) s@B©O) 7"
+ 8 K[ C2(0) H®) 0 0]+[Ca6) HO) 0 0]" K" 8
.o 0
Q * * *
_ ET©)ST (9) —y21 k%
T | =ST©) +GO)A®) GO)E®) 90) *
C1(6) F(0) 0 -—I
0
0 —1p—1
+ G()B®) UT'NT'NV[Ca(0) H®) 0 0]
0
0 T
+[cao) HO) 0 0] VINTNTUT G(Q)OB(G)
0
S(0)B(®)
+ 8 UTINTINV[ Ca0) H®©) 0 0]
0
s@B@ "
+[c0) H®) 0 0] VINTNTU-T 8
0

Then, the Hy, performance analysis criterion (2.138) becomes

11+ X(9) * * * ok %k * *

®7 —y2I * R T * *

O3 (CED) G@O)+J@O) * * * * *

C1(0) F(0) 0 —I x % * *
NVCy(0) NVH(6) 0 0 = = * * <0,
NVCy(0) NVH(®) 0 0 0 %3 =« *

0 0 0 5 0 19
|0 0 0 0 0 =4 0 —%_

with 3 = —yNU — nUT NT.
Based on (2.138), the static output feedback H, controller design result is given
in the following theorem.
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Theorem 2.16 Consider the closed-loop system (2.4) with D(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the Hy, performance y
if, for known matrices M, N, R and scalar B, n, exist matrices U, V, P;, J;, and

Gj, j=1, 2, ..., rsuch that the following matrix inequalities hold
Ajj<0,i=1,2,...,r (2.139)
Ajj+Aji <0, i<y, i, j=1,2,...,r, (2.140)
with
IVAST * * * * * * * ]
Ao —yzl * * * * * *
A3 Az Azz % * x % %
Cii F; 0 -1 * * * *
Aij=| NVCy NVH;, 0 0 —BNU-BU'NT % % =« ;
J.
0 0 0 0 G;Bi — MU — ﬂ—Jz * *
NVCy NVH; O 0 0 0 gy oox
o0 0O 0 0 0 0 8 -

and

Al =—Pj+SjAi+AlS] + RVCy + C;;VIR" + X,
Ay =E[S] + H'VIRT,

A3 = —SjT +GjAi + MVCy,

As = GE; + MVH,,

A3 =—G;— G} + P+,

3=—-nNU —nqUTNT,

4=S;B; — RU.

o] m

Furthermore, the static output feedback Hs, controller gain matrix in (2.3) is
given by (2.22).

C: An Extended Study for the Case D(0) # 0 and H(0) # 0

Approach 1:
In this case, the condition (2.5) is replaced to
—P(©) * * ok
0 —yzl * %

GO)A®) + GO)BO)KC2(0) GOVE®) +G@O)BO)KH®) A; *
SO)C1(0) + SO)DO)KC2(0) SO)F©)+ SODO)KH®) 0 A
(2.141)
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where
Al =—-G@O)+GT®)+ P©®),

Ay =—=S0)+ ST@®) + 1.

By considering a similar process with the condition (2.138), we can obtain the
following H, performance analysis criterion:

r —P@©) * * * * * * * 7]
0 —y21 * * * * % *
03 O3 ®33 * * * * *
®O41 [CID) 0 Oy * * * *
NVCy®) NVH®) 0 0 —BNU-—BUTNT « * * <0,
NVCy®) NVH®) 0 0 0 3 % *
0 0 0 0 G®BO)-MU 0 - % *
0 0 0 0 0 £, 00— %

(2.142)

where
O31 = G(O)AWO) + MV C2(0),

O3

G@O)E@®)+ MVH(@),

®33 = —G(©O) — G (0) + P(©O) + J (0),

B4 = SO)C1(0) + RV C2(0),

O = SO)F@O)+ RVH®),

O = —S0) — ST©O) + 1+ X(©),

Y3 = —nNU —nUTNT,

S, = S@®)D®) — RU.
Theorem 2.17 Consider the closed-loop system (2.4) and give a scalar y > O.
Then the system is asymptotically stable with the H~o performance y if, for known
matrices M, N, R and scalars B, n, exist matrices U, V, P;, Jj, Sj, X;, and

Gj, j=1, 2, ..., r such that the following matrix inequalities hold

A <0,i=1,2,...,r (2.143)

Aij+Aji <0, i<j, i, j=1,2,...,1 (2.144)
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with
r —P; * * * * * * * ]
0 —yzl * * * * * *
A3y Az Az % * * * *
Agq Agp 0 Ay * * * *
Aijj=| NVCy NVH; 0 0 —BNU-BUTNT % % %
NVCy; NVH, 0 0 0 s * *
J
0 0 0 0 GjBi — MU 0 — FJZ *
Lo 0 0 0 0 SiDi—RU 0 —
and

A3 = GjA; + MV Cy,
A3 =GE; + MV H;,

T
A3 =—-G;—=G; +Pj+J;,
Ag1 = §;C1; + RV,

T
A44=—Sj—Sj +I+Xj,
Ay = SjF; + RVH;,
¥ =-yNU —qUTNT.

Furthermore, the static output feedback Hx, controller gain matrix in (2.3) is
given by (2.22).

Approach 2:
Let us consider (2.65) with H(0) # 0, it follows that

—G@©®)—GT(®)+ P(®) * * *

0 —S®) — ST®) + ;—21 * ”

A@)GO)+ BO)KCr(0)G(O) EB)SO)+ BO)KH(O)SO) — P) *
C1(0)GO)+ DO)KCr(0)G(O) F(O)SO)+ DO)KH(O)SO) 0 —1I

< 0.
(2.145)

By defining K = LU ™! and adding a nonsingular matrix N, the matrix inequality
(2.145) can be rewritten as the following form:

-G(0)—G" () + P(®) * * %
0 —85@©®) — ST ©) + #1 * *
ABO)G(©O) E©)S®H) —P®) *

C1(6)G(0) F©)S®) 0 -1
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0
0 B
+ B(®) LNNT'UT'[ C20)G®) H(@®)S®) 0 0] (2.146)
D(6)
0 T
T 0
+[ GO HEOSO) 0 0] UTTNTINTLT s | <°
D(6)

Considering two matrices M and R, from (2.146), we have

—-G(©) - GT () + P©) * £ x
0 —S(9)—ST(6)+ﬁI * *
AO)G©O)+ BO)LM E@®)S®)+ B@O)LR —P®H) x*
Ci1G®)+DO)LM  F(©)S®)+ D@O)LR 0 -1
0
0 —1y-1
+| gy |LNNTU [C©)GO)—UM H©)S®) —UR 0 0]
D(6)
0 T
+[ C2©0GO) —UM H®)S®)—UR 0 O]TU—TN—TNTLT B?@) <0.
D)
(2.147)
Then, we can give the following H,, performance analysis criterion:
_1:‘]1 * * * * ok * x
0 f'zz * * ko ok * *
f‘31 fgz — P@) * * % * *
f41 1:‘42 0 —1 * % * *
0 0 NTLTBT®) NTLTDT®) =, % =« % <0,
0 0 NTLTBT@) NTLTDT®) 0 =, =« *
0 0 0 0 3 0 —% s
0 0 0 0 0 54 0 —Xn—f)
- (2.148)
where

[i=-G@®) —GT©®)+ P®O)+ J©O),

N 1
T =-50) - ST+ ﬁz + X(9),
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['31 = A)G(O) + B(O)LM,
T3 = E(0)S(6) + BO)LR,
T4 =C1(0)G(®) + DO)LM,
Ty = F(©)S©) + D@)LR,
¥, =—-BUN — BNTUT,

¥ =—ngUN —yNTUT,

5= (C26)GO) —UM)",

S, = (H®)S®) —UR)".

Theorem 2.18 Consider the closed-loop system (2.4) and give a scalary > 0. Then
the system is asymptotically stable with the Ho, performance y if, for known matrices
M, N, R and scalar B, n, exist matrices U, L, P;, Jj,and G, j=1,2, ..., r
such that the following matrix inequalities hold

Ni<0,i=1,2, ...,r (2.149)
Aij+Aji <0, i<j, i, j=1,2,...,1 (2.150)
with
[Ty * * * %k * * % ]
0 TI'» * * * ok % * *
'3 I's, — P(O) * % % * * %
'y g 0 —1 * % * * *
A — 0 0 NTLTBiT NTLTDI-T DT * * *
Y 0 0 NTLTBI NTL™DT 0 = + % x|
0 0 0 0 ¥ 0 —% %
0 0 0 0 0 ¥ 0 - 4
n
L0 [ 0 0 0 0 0 0 —yi]
and

T =-G;—Gj +Pj+1Jj,
F22=—Sj—SjT+Xj,

I's1 =A;Gj+ B;LM,

'3 =E;S;+ B/LR,

I'y1 =C1;Gj + DiLM,

Iy = F;S; + D;LR,
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¥ =—BUN — BNTUT,
¥ =—-ngUN —yNTUT,
%3 = (C2Gj —UM)T,
¥y = (HiS; —UR)".

Furthermore, the static output feedback H, controller gain matrix in (2.3) is given
by (2.85).

2.1.2 Continuous-Time Systems

Consider the following continuous-time linear systems system with polytopic

uncertainties
x(t) = A@)x(t) + B(@)u(t) + E@)w(t),

2(t) = C1(0)x(t) + DO)u(t) + FO)w(t), (2.151)

y(t) = C2(0)x(1) + H(O)w(),

where x(f) € Z" is the state variable, u(r) € %" is the control input, w(t) € %7 is

the noise signal that is assumed to be the arbitrary signal in L[ 0, 00), z(t) € %

is the controlled output variable, y(t) € ZP” is the measurement output. The system

matrices A(0), B(6), E), C1(8), D), F(8), C2(0), and H(0) belong to (2.2).
Here, we consider the following static output feedback H, controller

u(t) = Ky(). (2.152)
By substituting (2.152) to (2.151), the closed-loop system is given by

x(1) = (A@®) + B(O)KC2(0))x(t) + (E©®) + BO)KH(®))w(t),
(2.153)
2(1) = (C1(0) + DO)K C2(0))x(t) + (F(6) + DO)K H(6))w(t).

2.1.2.1 Case A: D) =0

First, we will study new H, performance analysis criterions for the continuous-time
closed-loop system (2.153) with D(9) = 0. In this following, a basic lemma is given.

Theorem 2.19 Consider the closed-loop system (2.153) with D(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the H~, performance y
if exist matrices P (0), G(0), X(0), and K such that the following matrix inequality
holds
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—-G@©®) - GT(®) * x % ox
(A@©®) + B(@)Kcz(e))TGT(e) +P@O) —2P@O)+XO) = * *
(E©) + BOKH®) GT(6) 0 2 % x
0 C1(0) F@O) —1 x
GT ) 0 0 0 —-X@©
< 0.
(2.154)
Proof Construct a parameter-dependent Lyapunov function as
V() =xT )P©O)x(), P@®) > 0. (2.155)
The derivative of V (¢) can be given by
V() =T @) P@O)x(t) +xT (1) P(0)x (). (2.156)

Then, we have
V() + 2T (0)z) — y*wT (Ow()

=T PO)x@) +xT()P©O)x(1) + 2T (1)z(r) — y>wT ()w(r)
T
= ((4@) + BOKC20)x(t) + (E©) + BOKHO)w(1)) P©)x(1)
+xT(z)P(9)((A(9) + B(O)KC2(0))x(1) + (E©®) + B(Q)KH(G))W(I))

+(C1Ox(0) + FOWD)" (C1Ox(1) + FOWD) — W (0)w(r)

., . Q * x(1)
= [x ) w' () ] |:(E(9) + B(Q)KH(Q))TP(Q) — y2[:| |:W(t)1|

+[xT@) wlh@) ][ 1) F(9)]T[C1(6) F(@)][x(t)]

w(r)
(2.157)
where @ = P(6)(A©) + BO)KC2(9)) + (A®) + B(G)Kcz(e))TP(e).
If the following inequality
. * @ F@& ]7[Ci®) F@O)]<0
(E®) + BOKHE) PO 21 +[C©® FOT[C© FO <0,
(2.158)

holds, we have V (1) + 2" (1)z(r) — y?w’ (1)w(z) < 0 for any [fv((tzﬂ # 0.
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By using Schur complement, (2.158) leads to

Q * *
(E(9)+B(9)KH(9))TP(9) —y2I % | <0. (2.159)
C1(6) F®) —I

Then, based on Lemma 1.7 with considering a parameter-dependent matrix X (9)
and V = G(0), the matrix inequality (2.159)‘ can be guarantee by (2.154). If the
matrix inequality (2.154) is satisfied, we have V (¢) + e (t)e(t) — y2wl (Hw(r) <0

for any [fvig :| # 0, which implies that

V(o0) — V(0) + /oo el (e(t)dr — yz/oo wl (Hw(t)dt < 0.
0 0

With zero initial condition x (0) = O and V (00) > 0, we obtain [;° e’ (t)e(r)dr <
y? Joo wl (t)w(t)dt for any nonzero w(t) € Ls[0, o0). Thus, the proof is com-
pleted. O

Based on the discussion in Theorem 2.19, we introduce our main results on
H, performance analysis for the continuous-time closed-loop system (2.153) with
D(0) = 0. Obviously, the matrix inequality (2.154) is equivalent to

-G(0) - GT (o) * £ *
- T G©)B(H)
AT©)GT®)+ P©O) —2PO)+X©O) = = 0
ET6)GT ) 0 2 o« x|+ 0
0 C1(0) FO) —1 =« 0
GT®) 0 0 0 —-X@© 0
coBO "
0
xK[0 C2(0) H®) 0 0]+[0 C2(6) H®) 0 O]TKT 0 <0.
0
0
(2.160)

Then, by following the same derivation with Theorem 2.1, we give the following
H, performance analysis criterion:

Theorem 2.20 Consider the closed-loop system (2.153) with D(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the Hx, performance y
if exist matrices P(0), G(0), X(0), J(0), M, N, V, and U, scalar B such that the
following matrix inequality holds
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E11 * * * * *
1 —2PO)+ X () * * * *
31 0 —y2I * * *

0 C1(0) F(0) -1 * *
GT®) 0 0 0 —X®©O) =x*
0 NVCy(0) NVH@®) 0 0 Aq

. 0 0 0 0 0 Ao

where

]

1 =-G@®) -G+ J®),

[x]

g3 =ET OGO +H OV M,
A1 =—BNU — BUTNT,
Ay =G(O)BO) — MU.

2 =ATOGT ) + PO)+CTO)WVI M,

R I S
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< 0,

(2.161)

By the analysis condition (2.161), the corresponding static output feedback Hyo

controller design result is given in the following theorem.

Theorem 2.21 Consider the closed-loop system (2.153) with D(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the Hoo performance
y if, for known matrices M, N and scalar B, exist matrices U, L, P;, Jj, and

Gj, j=1, 2, ..., r such that the following matrix inequalities hold
Tii<0,i=1, 2,...,r,
Tij+Tji<0,i<j, i,j:l, 2, ..., T,
with B _
Y11 * * * * * *
Tor —2Pji+X; = * * * *
31 0 —v2I % % %
i = 0 Cii F; -1 = * *
GJ 0 0 0 —X; x =%
0 NV Cy NVH; 0 0 LOPIEEY
JA
i 0 0 0 0 0o &, — ﬁ—fz i
and

Yi=-G;—Gj+Jj,

Yo = Al G+ P+ CLviM”,
Y3 =E/ G} + H'VIM",

®, = —BNU — BUTNT,

(2.162)
(2.163)
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@, =GB —MU.

Furthermore, the static output feedback H, controller gain matrix in (2.3) is given
by (2.22).

2.1.2.2 CaseB: H@#) =0

In this case, by choosing a parameter-dependent Lyapunov function as V() =
xT(t)Q’1 @)x(t), Q@) > 0 and using Lemma 1.8, the basic lemma is given as
follows.

Lemma 2.10 Consider the closed-loop system (2.153) with H(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the H~, performance y
if exist matrices Q(0), G(0), X (0), and K such that the following matrix inequality
holds

B —-G©)-GT®) * * * * ]
(AO) + BOIKC2(0)GO) + Q(0) —200)+X©O) *  * *
0 ET () -2« *
(C1(0) + DO)K C2(0))G(6) 0 FO) —1 =
L G () 0 0 0 —-X©)
r—G®) - GT®) * - ]
0
AOGO)+ Q©B) —200)+X©O) * * 50
= 0 ET () -2 o« x| 4| 0
D(9)
C1©)G®) 0 FO) —1 x 0
L G6) 0 0 0 —X()_
0 T
B(0)
xK[C20)G®) 0 0 0 01+[C20)G® 0 0 0 017KT| o0 <0.
D(0)
0
(2.164)

By applying the same process with Theorem 2.9, we obtain anew Hy, performance
analysis criterion for the continuous-time closed-loop system with H (6) = 0, which
is given in the following theorem.

Theorem 2.22 Consider the closed-loop system (2.153) with H(0) = 0 and give a

scalar y > 0. Then the system is asymptotically stable with the H, performance y
if exist matrices M, N, U, L, Q(0), G(0), X(0), and J(0), scalar B such that the
following matrix inequality holds
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Q1 * * * * * * 7]
Q1 —200)+X0O) * * * *
0 ET ) —y2I * * * *
Qa1 0 F©) -1 * * * <0,
G(0) 0 0 0 —-X(@) =* *
0 NTLT BT (9) 0 NTLTDT@®) 0 = x
|0 0 0 0 0 B -29
(2.165)
where

Qi =-GO)~-G"O) + ),

Q1 = AWB)G®H) + BOILM + Q(9),
Q41 =C1(0)GO) + DO)LM,

¥ =—-BUN —-BNTUT,

p3))

(C20)G©O) —UM)".
Further, we have the following design result:

Theorem 2.23 Consider the closed-loop system (2.153) with H(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the Hy, performance y
if, for known matrices M, N and scalar B, exist matrices U, L, Qj, X;, J;, and

Gj, j=1,2,,..., rsuch that the following matrix inequalities hold
Aij<0,i=1,2,...,r, (2.166)
Ajj + Aj <0,i<j,i,j=1,2,...,r (2.167)
with
2N * * * * * *
Why —2Q§+ Xj * * * * *
0 Ei —yzl * * * *
Ai/' — | W41 0 F; -1 * * * ,
| Gj 0 0 0 —Xj * *
0 NTLTB! 0 NTLTDI 0o —pUN-BNTUT «
0 0 0 0 0 (cuGj-um)" - |

where

W =-Gj -G+,
Uy =A;Gj + B, LM+ Qj,
Wy = C]iGj + D;LM.
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Furthermore, the static output feedback Hy, controller gain matrix in (2.3) is
given by (2.85).

Remark 2.14 Here, we discuss briefly the application of Lemma 1.9 to design static
output feedback Hx, controllers for the continuous-time closed-loop system (2.153).
Let us rewrite the Hy, performance analysis condition (2.158) as

I:P(()@)i| [ AO) + B(O)KC2(0) E©) + B(G)KH(G)]

P©)]"
+ [A@)+ BO)KC20) E@©)+ BWO)KH©) ]T [ 0 }
+[cie) FO)]'[Ci0) Fo)]+ [8 _”;21} <0. (2.168)

By using Lemma 1.9 with

T 0 *
T=[Ci® FO)][Ci®) F(9)]+[0 _y2[:|,
A=[A®)+B@O)KC:0) E®)+ BOKH®) ],
P

_| PO
=0 |

and Schur complement, we see that the matrix inequality (2.167) can be verified by

[8 _;’;21} + M)A+ ATMT () * *
[PO) 0]—MT®)+ G@O)A —GO)—GT®H) = <0, (2.169)
[Ci16) F@©)] 0 -1
where A = [ A(0) + BO)KC2(0) E©)+ BOKH®) |.
Now, select M (0) = [SE)O) :| Thus, (2.168) is equivalent to
Q1 * * *
Q1 —)/21 * * 0
Q1 GO)EW®)+GOBOKHO) —GO)—GT@©O) % | =
Ci1(0) F(6) 0 -1
(2.170)

where

Q11 = SO)A®) + SO)BO)KC20) + AT (©)ST (0) + C] )K" BT (0)S (0),
1= ET©)ST©) + H' ©)K" B (0)S” 6),
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Q31 = P(0) — ST () + GO)A®) + GO)BO)KC2(6).

Then, the remaining discussion can reference Theorem 2.16, and it is omitted.

Remark 2.15 For the case D(6) # 0and H () # 0, we can apply the following two
H, performance analysis criterions to design static output feedback H, controllers,
which are obtained easily from (2.161) and (2.165).

E11 * * * * * % * *

Byl —2PO)+ X(©O) * * * * ok * *

831 0 2 % * * ok * *

0 B4 E43 E44 * * ok * *

GT®) 0 0 0 —XO * *  * ¥ 0

0 NVCy(®) NVH®) 0 0 IS s * ’

0 NVCy(0) NVH(@®) 0 0 0 Az % *

0 0 0 0 0 A O —% *

0 0 0 0 0 0 Ay o0 VO

L n _
(2.171)
where E11, 21, 831, A1, and Ay are defined in (2.161), and
B4 = S(0)C1(0) + RV C2(0),
B4z = S(O)F(0) + RVH(O),
B4 = —S©O) — ST @)+ 1+ W (),
A3 =—nNU —nqUTNT,
Ay =SO)D@) — RU.
and
Qi * * * * * ok * * x|
Q1 —200)+ X)) =* * * * % * * *

0 Q37 Q33 * * * % * * *
Q1 0 Q43 -1 * * ok * * *
G(9) 0 0 0 X)) * = * * *

0 NTLTBT@) o NTLTDT®) 0 = % =« * *

0 NTLTBT@®) o NTLTDT@®) 0 0 =3 = * *

0 0 0 0 S

0 0 0 0 0 0 %4 0 —"g? *

L 0 0 I 0 0 0 0 o0 0 —y2I |
<0,
(2.172)

where Q11, 221, 241, X1, and X, are defined in (2.165), and

Q3 =STO)ET®)+RTLTBT (),
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Q33 = —S(0) — ST () + W),
Qu3 = F(0)S(0) + D(O)LR,
¥3=-nUN —yNTUT,

%y = (H6)S6) — UR)".

Remark 2.16 In the above study, either discrete-time or continuous-time, the
proposed Hy, performance analysis conditions are given are based on Lemma 1.3
with a matrix J(6) > 0 (or another X (6) > 0). In fact, we can use Lemma 1.10 to
displace the application of Lemma 1.3. The displacement avoids the appearance of
the auxiliary matrix variable J(6) > 0 (or another X (0) > 0), which reduces the
dimension of LMIs in those design conditions. To the case of the closed-loop system
(2.153) with D(0) = 0 as an example, we rewrite the matrix inequality (2.160) as
follows:

-G -GT s £ *
ATOGT0) + cTOVIMT +00) —200)+X(©®) = =* *
ET©®)GT©) +HT OV MT 0 -2 x *
0 C1(0) FO) —1 =

GT ) 0 0 0 —-X©

G@O)BO) — MU

0
+ 0 UTINTINV[O Ca6) H®) 0 0]
0
0
GO)BO) — MU T
0
+[0 200 H® 0 o) VINTN-TU-T 0 <0.
0
0
(2.173)
Now, for (2.173), we use Lemma 1.10 with
—G(©) — GT(9) * % *
AT@O)GTO)+0®) —200)+X(©O) * = *
T = ET)GT ) 0 —v2I * ,
0 C1(8) FO) -1 *
GT ) 0 0 0 —X(©

A=U"'NT'NV[O C20) H®) 0 0],

" G(©)BO) — MU
0

(=i
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S=NU.
Then, a new Hy, performance analysis condition can obtained.

—-G©®) - GT®) " * %

* *
Iy —200) + X(©) * * * *
ET@©)GT©)+ HT 0)vTMT 0 2 x ok
0 C10) Fo) -1 % =« |<0
GT®) 0 0 0 —X(©®) x*
B(G©)B(®) — MU)" NVCy0) NVH® 0 0 T,
(2.174)

where
M, = AT@)GT©®) + cTO)WVIMT + 0(9),

I, = —-BNU — BUTNT.

From the H, performance analysis result (2.174), it can easily be known that the
corresponding static output feedback H, controllers design conditions are of LMIs.

2.2 With Norm Bounded Uncertainties

To keep things simple, we just study discrete-time systems in this section. Consider
the following linear discrete-time dynamic model with time-varying norm bounded
uncertainties:

x(k+1)=(A+ AA)x (k) + (B + AB)u(k) + (E + AE)w(k),
z(k) = (C1 + ACDx (k) + (D + AD)u(k) + (F + AF)w(k),  (2.175)
y(k) = (Cr + AC2)x(k) + (H + AH)w(k),

where x (k) € " is the state variable, u(k) € %™ is the control input, w(k) € Z/
is the noise signal that is assumed to be the arbitrary signal in />[ 0, 00), z(k) € #1
is the controlled output variable, y(k) € Z” is the measurement output. A € Z"*",
Be#"V™ E e 7", C, € #1", D € Z1", F € #1%F, Cy € #P*", and
H e #P*T are system matrices. AA, AB, AE, ACi, AD, AF, AC>, and AH are
uncertainties formulated as [10]

Ay = XaAk)Yy, Ap = XpA(k)Yp,
Ag =XgA(k)YE, Act = Xc1AK)Ycr,
Ap = XpA(K)Yp, Ar = XpA()YF, (2.176)

Acy = X2 A(k) Y 2, Agp =XpAk)Yy,
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AT()AK) < 1.
The model (2.175) is inferred as follows:
x(k+1) = Aax(k) + Bau(k) + Eaw(k),

z(k) = Ciax(k) + Dau(k) + Faw(k),

.177)
y(k) = Coax (k) + Haw(k),
where
Apr=A+ AA, BAr =B+ AB,
Ex=E+ AE, Cia = C1 + ACy,
DAx =D+ AD, Fn =F + AF,
Cop = Cr + AC, Hn = H + AH.

In this section, the following static output feedback controller will be designed
u(ky = Ky(k) = K(C2Ax(k) + HAw(k)). (2.178)

where K is the controller gain.
Substituting (2.178) into (2.177) yields the following closed-loop system:

x(k+1) = (Apr + BAKCop)x(k) + (EA + BAK Hy)w(k),
(2.179)
z(k) = (Cia + DAKCop)x(k) + (Fao + DaAK Ha)w(k).

Remark 2.17 Similar to the research on robust static output feedback H, control
design for linear systems with polytopic uncertainties, most of the literature claim
that the system input or output matrix should be without uncertainties. In this study,
the requirement is not necessary.

In this following, we will develop new LMI conditions to design the static output
feedback Hy, controller in the form of (2.178) such that the resulting closed-loop
system (2.179) meets an Hy, performance bound requirement. For frugality, we just
consider the case D = 0. First, anew Hy, performance analysis criterion is presented
in the following theorem.

Theorem 2.24 Consider the closed-loop system (2.179) with D = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the Hx, performance y
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if exist matrices P, G, J, M, N, V, and U, scalar B such that the following matrix
inequality holds

—P * * * ok *
0 —y21 * * ok *
GAA+MVCypn GEA+MVHy, —G-GI4+P+J x * =«
Cia Fa 0 o o« | =0
NVCoa NV Hp 0 0 % =
0 0 0 0 % -4
- T(2.180)

where
¥ =—-BNU - BUTNT,

¥, = GBx — MU.

Proof Follow (2.12) with the Lyapunov matrix P, the inequality (2.180) can be
obtained easily. O

In this following, based on the analysis result in Theorem 2.24, we proposed
sufficient conditions for designing the static output feedback Hy, controller in the
form of (2.178). First, separate the certain terms and uncertain terms in (2.180), we
have

QL+ Ag <0, (2.181)
with
Q
r —P * * * * * 7]
0 —yzl * * * *
GA+MVC, GE+MVH —-G-Gl4+P+1J « * *
- C F 0 —1 * %
NVC, NVH 0 0 —BNU—-BUTNT «
i 0 0 0 0 GB— MU el
and
B 0 * * % % * ]
0 0 * % k%
A GApA+MVAcy GAgRp+MVAg 0 % % *
= Ac AF 0 0 = *
NV Acs NVAy 0 0 0 =%
| 0 0 0 0 GAp 0]

=A+AT + B+ BT +E+ET+C\+ClT+F+FT+ &+ CI + A+ HT,
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where
0 - o0 7"
0 0
A+ AT = Gé(*‘ AKI[YA 0 0 0 0 01+[Y4 0 0 0 0 01"AT®) Ggf‘ ,
0 0
L 0 L o |
T o0 o 7"
0 0
B+ BT = 8 AKIO 0 0 0 Yg 014[0 0 0 0 Y 017AT (k) 8
0 0
GXp | LGXp |
0 - o 7"
0 0
E+ET = Gé(E A0 Y 0 0 0 0]+[0 Yz 0 0 0 017AT (k) Gé(E
0 0
L 0 | 0
r 0 0 T
0 0
2 ar 0 0
Ci+Cl= AK)[Yer 00 0 0 0]+[Yer 0 0 0 0 017AT (k) ,
Xci Xci
0 0
L 0 0
) 0 T
0 0
S 0 0
F+Fl=| . |AGIO Yr 0.0 0 0]+[0 Yr 0 0 0 017 AT (k) X, |
F
0 0
L O 0
éz-i—ézT
0 o 1"
0 0
_ MVOXCZ AK[Yes 00 0 0 014[Yer 0 0 0 0 017AT (k) MVOXCZ ,
NVXco NVXc2

0 0
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H+HT
0 o 7"
0 0
_ M‘gXH AGOLO Yy 00 0 01470 Yy 0 0 0 017AT (k) M‘Z)XH
NVXy NVXpu
0 0

From Lemma 1.11 for positive scalars €4, €5, €, c1, €F, €C2, and €y, we can
know that

0 0
0 0
A+AT§i GXa || GXa +ealYs 00 00 017[Ys 0 000 0],
eal O 0
0 0
- 0 - - O -
(2.182)
o 17 o 7"
0 0
- =r 1 0 0 T
B+BT < — +e[0 0 0 0 Yz 01770 0 0 0 Yz O],
EB 0 0
0 0
| GXp | | GX3 |
(2.183)
T o 7 o 71"
0 0
FET <L | CXe |1 GXe | 00 vp 000 017[0 Y2 000 0,
EE 0 0
0 0
_ 0 - - O -
(2.184)
0 o 1"
0 0
A AT 0 0 T
Ci+cl=—1y ¥ +eci[Yer 0 0 0 0 017[Yer 0 0 0 0 O,
C1 Cl Cl1
0 0
0 0

(2.185)



88 2 Robust Static Output Feedback

+er[0 Yr 0 0 0 017[0 Yr 0 0 0 O],

(2.186)
0 o 71"
0 0
o
G+l < | MVXe VIR 4 ve, 00 0 0 01 [¥e 00 0 0 0],
£c2
NVXC2 NVXCZ
o 0
(2.187)
0 o 71"
0 0
- - 1
H+HT§8— M‘E)X” M‘;)X” +eul0 Yy 00 0 017[0 Yy 0 0 0 O].
H
NVXy NVXpy
o L o
(2.188)

So far, the design result can be summarized in the following theorem.

Theorem 2.25 Consider the closed-loop system (2.179) with D = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the Hy performance
y if, for known matrix M, N and scalar B, there exist matrices U, P, G, and L,
scalars €4, €B, €E, €C1, €F, €C2, and ey such that the following LMI holds

My *
<0, 2.189
[le Mzz] ( )
where
Aq * * * * *
0 Ay * * * *
GA+MVCy GE+MVH —G-G'+P+17J x * *
My = Cq F 0 —1 * * ’
NVC, NVH 0 0 As *
0 0 0 0 GB—MU — -
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_ T T T
AN =—P+eaY Ya+ec1Yo Yo +eca¥YorYeo,
A = —)/21 +£EY£YE +8FYFTYF +8HYZ;YH»

As=—BNU — BUTNT + Y} vp,

bexed
0

xXragT

0 X

0 X

xGLvim®t o xL,vINT

xpvim™ o XL VINT

TA~T
X6

My =

AN o <@

0
0
0
' 0
0

[eNeNoNoNoRoR e}
[eNeoNoNoNoRoN -}
N

el el eNeNe]

My =

oI

M X K K K K ¥

[eNeoNeoBoNeNel
ol
~
™
OQ * X X X *

Furthermore, the static output feedback H, controller gain matrix in (2.178) can
be given by (2.22).

Remark 2.18 When the system input or output matrices are without uncertainties,
we can also get several different forms of LMI-based design conditions for the closed-
loop system (2.179). Similar to the polytopic uncertainties, in contrast to the existing
LMI conditions for designing the robust static output feedback H., controllers, the
improvement of the our results over the existing ones can shown by strict theoretical
proof. A related study has been made in our preliminary work for uncertain discrete-
time T-S fuzzy systems [2].

Remark 2.19 The used LMI decoupling approach brings new results for robust static
output feedback H, controllers design of uncertain linear systems. It is necessary to
mention that when g is known parameter, the proposed design conditions are of LMIs
that can be easily and effectively solved via LMI control toolbox [7]. Due to  is free
parameter, the problem is then how to find the optimal value of g in order to minimize
the Hy, performance bound. One way to address the search issue is to first solve the
feasibility problem of the corresponding LMI conditions using LMI control toolbox
and obtain a set of initial scalar parameters. Then, applying a numerical optimization
algorithm, such as the program “fminsearch” in the optimization toolbox of Matlab,
a locally convergent solution to the problem is obtained. In [9], the algorithm has
been used and proved to be effective.
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2.3 Numerical Examples

2.3.1 Example 1

To show the less conservativeness of the presented design result on robust static
output feedback H, controller design, a simulation example is given with different
design methods. For simplicity, here we only consider Corollary 2.1 and Lemma 2.2.
Let us consider the uncertain system (2.1) with

1.1 08 —047 08 0.1 0
Aj=|-05 04 05 |, Ay=|—-03 0.1 06|,
12 1.1 08 | 12 -1 1.1
0 1
Bil=B,=B=|2 —1]|,
0 1.3 |
Chi=[-1 0 2], Cr=[-06 02 1],
Dy =D, =0,
Fp =0.3, F,=-04,
(2.190)
-1 12 1 —08 1 1
Cﬂ:[o -3 1}’ sz:[ 0 -2 1.2]’

0.1 0.3
Hl:[o4]’ H2:[01]

For the system (2.190), since the system input matrix is fixed, the conditions in
Corollary 2.1 and Lemma 2.2 are applicable for designing robust static output feed-
back H, controllers. Now applying two conditions to design static output feedback
H, controllers such that y is minimized.

By (2.35) and (2.36), the minimum Hy, performances ymin = 11.4687. However,
apply (2.29) and (2.30) with 8 = 6.16, we can find the minimum H, performance
Ymin = 7.0441. From this comparison, it can be seen that the design condition in
Corollary 2.1 is much less conservative than the existing result in Lemma 2.2.

2.3.2 Example 2

In this example, to show the effectiveness of the proposed design approach, a
static output feedback H,, control problem of the following discrete-time system
is considered
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x(k+1) =(A+ AA)x(k) + (B + AB)u(k) + Ew(k),

z(k) = Cix(k) + Du(k) + Fw(k), (2.191)
y(k) = (Cy + AC2)x(k),
with
2.3 0.5 1
=T el
D=0, F=2,
C=[1 0],
0.3
XAZI:_O-Ii|, Ya=10.1 02],
0.1
XB:|:0'2], Yp = —-0.3,
X =—0.1, Yoo =103 0.2].

We need to note that the system input matrix and output matrices in the system
(2.191) have uncertainties. As a result, the existing approaches in [3, 5, 6, 8] fail
to design the static output feedback Hy, controller for this example. However, the
proposed design condition in Theorem 2.25 is feasible to find a static output feed-
back controller to stabilize the system (2.191) with the H, performance index. For
example, by using the MATLAB toolbox to solve LMI (2.189) in Theorem 2.25 with
B =534, M = B, N = 1, minimum Hy, performances ymin = 4.3174 is obtained.

On the other hand, by LMI (2.189) in Theorem 2.25 with y = 4.3174, the
following computational results are obtained

U = 6.8776, V = —15.7883. (2.192)

Substituting U and V in to (2.22), the static output feedback H, controller gain
matrix can be given as follows:

K = —2.2956. (2.193)
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Fig. 2.1 State trajectories of 3
the closed-loop systems x.(K)
1
2 L
- - %K)
1tk
0
1t
2+t
_3 L L
0 10 20

Fig. 2.2 System control
signal u (k) 4+

2t

We assume the disturbance w(k) as the following:

sin(k), 30 <k <50,
w(k) =
0, elsewhere.

50 60

(2.194)

Under the initial conditions x(0) = [ 0 0 ]7, using the static output feedback
controller gain (2.193) with A(k) = sin?(k), k = 1, 2, ... , the state response
of the system (2.191) is shown in Fig. 2.1. The control signal u(k) is depicted in
Fig. 2.2, it is able tostabilize the system with the Hy, performance 4.3174. The ratio
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Fig. 2.3 The ratio of 3.5

o0 &)

> 2T ()zky/ 3 wT (kyw(k)

k=0 k=0
3l ,

251 1

5 ‘ ‘ ‘
20 40 60 80 100

o o0
of | > zT(k)z(k)/ > wl (k)w(k) can show the influence of the disturbance w(k)
k=0 k=0
on the controlled output z(k), and the plot of the ratio is shown in Fig.2.3. It can be
seen that the ratio tends to a constant value 2.9716, which is less than the prescribed
value, i.e., 4.3174. From Figs. 2.1, 2.2, 2.3, it can been seen the Hy, performance is
guaranteed for the system with the designed static output feedback H,, controller.

2.4 Conclusion

In this chapter, the robust static output feedback H, control problem for the both
discrete-time and continuous-time uncertain systems has been studied. Sufficient
conditions for designing static output feedback H, controllers have been given
based on an LMI decoupling approach. The design conditions are presented in the
form of LMIs. In contrast to existing LMI methods for robust static output feedback
Hoo controllers design of the uncertain linear systems, the proposed results not only
allow the system input and output matrices to have uncertainties, but it can provide
less conservative design. Numerical examples show the advantage of the proposed
design method.
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Chapter 3
Robust Dynamic Output Feedback
H., Control

Abstract This chapter deals with the robust dynamic output feedback H, control
problem for uncertain linear systems. As a representative, just the discrete-time sys-
tems with polytopic uncertainties are considered. First, some basic results on robust
dynamic output feedback H, control of the systems are introduced. Then, the LMI
decoupling approach is proposed to achieve the design of Hy, control. Unlike the
strategy of change of variables, the proposed results are effective for solving the
robust dynamic output feedback Hy, control problem using the LMI technique.
The effectiveness of the proposed design methods is finally demonstrated through a
numerical example.

Keywords Uncertain linear systems + Dynamic output feedback + H, control -
Polytopic uncertainties * Linear matrix inequalities (LMIs).

3.1 Problem Formulation

Consider a discrete-time linear system with time-invariant polytopic uncertainties
described by state-space equations

x(k+1) = A@)x(k) + B(@)u(k) + E@)w(k),
z(k) = C1(O)x (k) + D(O)u(k) + F(O)w(k)),
y(k) = C2(0)x(k) + H(O)w(k), (3.1

where x (k) € %" is the state variable, u(k) € %™ is the control input, w(k) € %/ is
the noise signal that is assumed to be the arbitrary signal in [ 0, 00), z(k) € #4 is
the controlled output variable, y(k) € %7 is the measurement output. The matrices
A(0), BO), E@®), Ci(0), D@®), F(), C2(0), and H(O) are constant matrices
of appropriate dimensions and belong to the uncertainty in (2.2).
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In this section, the following dynamic output feedback controller for discrete-time
model is exploited:

xp(k+1) = Apxp(k) + Bry(k),
u(k) = Cpxp(k) + Dry(k), (3.2)

where xg (k) € Z"F is the controller state, Ar, Br, Cr, and D are the controller
gains.

From (3.1) and (3.2), by defining the augmented state vector x (k) = [xx (2) ],
F

the closed-loop system is described as

xtk+1)
A@O)+ BO)DFC10) BOCr] . [BODrH®) + EO)
[ BrCs(6) Ap ]x("”[ BrH(®) ]W(")’

z(k) = [C1(9) + D(O)DrC2(9) D(O)Crlx(k) + (DO)DrH(®) + F(©))w(k).
(3.3)

3.2 Basic Results

In this section, we present several basic results for dynamic output feedback Hy,
control for the closed-loop system (3.3) based on the LMI technique. First, we give
the following lemmas, in which the Hy, performance analysis problem for the closed-
loop system (3.3) is discussed.

Lemma 3.1 Consider the closed-loop system (3.3) with D(0) = 0 and B(f) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
stable with the Hx, performance y if there exist matrices Py (0), P»(0), Y, Ar, Br,
Cr, and DF such that the following matrix inequality holds:

YT pP0)Y * * * * *

0 —P(0) * * * *

0 0 —y2I * * *
A(0) + BDpC»(0) BCr BDpH®)+E@®) Q « | <0 G4

BrC>(9) Ap BrH () 0 —P; 'O *

Ci(0) 0 F(0) 0 0 -1

where Q = —Yfle] Oy-T.

Proof Choose the parameter-dependent Lyapunov function as

YTpi®Yy 0

=T
V) =¥ (k)|: 0 Py(6)

i|)€(k), Pi(6) >0, P»(B) >0, (3.5)
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where the matrix Y is nonsingular, then the matrix inequality (3.4) is obtained
easily. O

Lemma 3.2 Consider the closed-loop system (3.3) with H(0) = 0 and C>(0) = C;
(C2 of full row rank). For a given scalar y > 0, the system is asymptotically stable
with the Hoo performance y if there exist matrices P1(0), P,(0), T, Ar, Br, CF,
and D such that the following matrix inequality holds:

-r-Tp Y O)T! * * * * *
0 S ) * x %
0 0 —y2I * * * | _ o
A@0) + BO)DFC» B@O)Cp E@©) —TPiOTT x ’
Br(C» Afr 0 0 —Py(0) %
C1(0)+ DO)DrCy DO)Cr F(0) 0 0 —1
(3.6)

Proof Choose the parameter-dependent Lyapunov function as

el )Y

_ =T
Vk) =i (k)[ 0 Pl 6)

i|)?(k), Pi(6) >0, P,B) >0, (3.7)

where the matrix 7" is nonsingular. O

In this following, we will study the design problem of the dynamic output feedback
controller (3.2) based on the H, performance analysis criteria in Lemmas 3.1 and
3.2, respectively.

For Lemma 3.1:

First, let us use the following matrix inequality to ensure (3.4)

—P1(9) * * * * *
0 — P () * * * *
0 0 —y21 * * *
A YBCr YBDpH(@®)+ YE®) — P1_1(49) * w« | = 0,
BFC2(9)Y*1 Afp BrH () 0 — 271(9) *
ci@)y! 0 F(0) 0 0 I
(3.8)

where A = YA(O)Y ! + YBD;C,(0)Y .

from (3.8), one has

. 1
Now, we assume a fact that is YB = ol
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—P1(0) * * * * * ]
0 —P(0) * *
0 0 —y2! * *
1 1 —1 <0,
I1 [0:|Cp [O]DFH(G)—I—YE(Q) - P ©0) * *
BrCr(0)Y™!  Ap BrH (@) 0 — 2_1(9) *
| Ci®Y! 0 F9) 0 0 —1I |
3.9
where IT = YA(O)Y ! + [(I)] DrCy(0)Y L.
I % x % * ok
0 I % = * ok
C . 00171 =x x =x .
Pre- and post-multiplying (3.9) by 00 0G O * x and its transpose,
000 0 Gy =
Ooo00 0 0 I

respectively, we can apply the following matrix inequality to guarantee (3.9):

—P1(0) * s %k
0 —P(0) * * k%
0 0 —y2I * ok
Ma Gl(e)[é]cF ng 1 o« « | <% G0
G2BrCr(0)Y ! G1AF G2BFH®) 0 T, *
CiOy! 0 FO® 0 0 —I |

where

M = GIOAGY ™ +G1®) [(’)] DrCOY

g =Gi0) [(I)} DrH(©) + G1()YE(©0),

M =—G1(0) — GI©) + P1(6),

I, = —G> — G} + P,(0).

To facilitate the LMI presentation, we can assume that the matrices Py (6), P>(9),

and G (@) have the form
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Pl(e)zzejplj, P1j>0, j=1,2,...,r,
j=1

.
Py(0) = ZQjsz, Py >0, j=1,2,...,r

j=1

(3.11)

r r G 0
61(9)22061»220-[ j|,

ZUCUT %0 Gy
or

r r Gl G2'
Gl(e)zzecl:ze-[ f]
P Ay = 10 Gs,

So far, substituting the above matrices P;1(0), P>(0), and G1(#) into (3.10) and
defining another four variables

Ar = GyAp, Br =GBy,
Cr =G \Cr, Dp=G|Dp. (3.12)

It is not difficult to rewrite (3.9) as

> > aiv4i <0, (3.13)

where
i —Py; * * * .
0 —P2j * *
0 B 9 B —yzl *
A= _ D _ C D - ,
1 GleAiY l+|: OF:|C2,'Y 1 |: OF] |: OF:|Hi+G1jYEl' CSIREE
BFCZZ'Y71 Ap BrH; 0 Er x*
L CyY ! 0 F; 0 0 —1I
and

a1

1 =—G1; —G{; + P1j,

(1]

2 =-Gy— Gy + Py
Then, we immediately obtain the following condition for designing the dynamic
output feedback controller in (3.2):

Theorem 3.1 Consider the closed-loop system (3.3) with D(0) = 0 and B(6) = B
(B is of full column rank). For a given scalar y > 0, the system is asymptotically
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stable with the Hy, performance y if exist matrices Afr, Bp,Cp, Dr, Ga, Pij, P2y,

and G1j, j = 1,2,...,r such that the following matrix equations hold:
Ai,‘<0, i:l, 2,...,7‘, (314)
Ajj+Aj;i<0,i<j, i,j=12,...,r, (3.15)
|Gy 0 | G1 Gy .
GIJ_I:O szi| orGJ_I:O Gs; |° j=12,...,r, (3.16)

where Ajj, i, j =1,2,...,r are defined in (3.13).
Furthermore, the dynamic output feedback Hso controller gain matrix in (3.2)

can be given by ) .
Ap = GZ_IAF, Br = GZ_IBF,

_ _ 3.17
Cr=G,'Cr, Dr=G{'Dp. ©17
For Lemma 3.2:
Obviously, the matrix inequality (3.6) is equivalent to
—PI_I(Q) * * * * *
0 —P,1(0) * * x %
0 0 —2 * * *
T~'A@O)T + T~ 'B(O)DrCoT T 'BO)Cr T 'E®) —Pi(H) x  x
BrC,yT Ap 0 0 —Py(0) =
Ci(O)T +D@O)DrC, T D@O)CF F©) 0 0 —1I
< 0.
(3.18)
By choosing the matrix T to meet CoT = [I 0], (3.18) becomes
—Pfl(Q) * * * * *
0 - 2_1 ) * * * *
0 0 —y21 * * *
T'A@O)T + T~'B(O)Dp[10] T7'BO)Cr TT'E®) — Pi() *
Br[I0] Ap 0 0 —P®O) *
C1(0)T + DO)Dp[I 0] D©O)Cr F(0) 0 0o -1
< 0.
3.19)

Introduce two auxiliary matrix variables S;(6) and S> to (3.19), then the matrix
inequality holds if
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I * * * * *
0 Il * * * *
0 0 —y21 * * *
s T-BO)CrS, T-VE®) —P©) + * | =0
Brp[I 0]S1(0) ApS) 0 0 —P(0) =*
¢ D(O)CFS; F(0) 0 0o -1
(3.20)

where
My = —$1() — S ©) + Pi(6),
M =—5 — 51 + P2(0),
My =T""A@O)TS1(0) + T~ 'B@O)Dr[I 01S1(0),
e = C1(0)TS1(0) + D(O)Dr[I 0]151(0).

Letus use the same formin (3.11) to define the matrices Py (6), P>(6), and consider
that the matrix S1(6) in (3.20) has the following special form:

r r S 0
S10)=>.6;8,;=20; 0 S|

j=1 j=1 J
or (3.21)

r r Sy 0
51(0)=29'Sl-=20-|: :|

j=I1 I j=1 / 82 S3j

Then, the following theorem gives a condition for designing the dynamic output
feedback controller in (3.2):

Theorem 3.2 Consider the closed-loop system (3.3) with H(0) = 0 and C>(0) =
C2 (Cy is of full row rank). For a given scalar y > 0, the system is asymptotically
stable with the Hy, performance y if exist matrices A, Br, Cr, D, $2, P1j, P2j,

and S1j, j = 1,2, ..., r such that the following matrix equations hold:
i <0, i=1,2,...,r, (3.22)
Tij+Eji<0i<j i j=L2....r (3.23)
S 0 S 0 .
Sij = [ o S%,] or Sj = [S;_ 53}, j=1,2,...,r. (3.24)
3j J J

with



102 3 Robust Dynamic Output Feedback H,, Control

=81 — SlTj + Py * * * * %
0 —S =87 + Py x * x %
s 0 0 —y?I * * %
H Iy T-'BiCr T'E; —P; x x |
[Br 0] Ap 0 0 —P x
Ilc D;Cr F; 0 0 -1
and

My =T""ATSj+T7"'B;[Dr 0],
Mc = CiuTS1j+ Di [Dr 0].

Furthermore, the dynamic output feedback Hso controller gain matrix in (3.2)
can be given by ) .
Ap=ArS;', Br=BrS',

_ _ 3.25
Cr=CrSy', Dp=DrS;". (5.25)

Remark 3.1 The design results in Theorems 3.1 and 3.2 are also the extension of
the previous one of Lemmas 2.4 and 2.8, in which sufficient conditions for static
output feedback H, controller design of discrete-time uncertain linear systems are
proposed via LMIs.

3.3 LMI Decoupling Approach

In the above section, some basic LMI design results for dynamic output feedback Hy,
control for the closed-loop system (3.3) have been derived. Though these conditions
are convex, the requirements for the system input or output matrices to be fixed
are strict, which might result in conservative designs. In this section, the problem
of output feedback H, controller design for the discrete-time closed-loop systems
(3.3) is studied using the LMI decoupling approach presented in Chap. 2. In contrast
to the design conditions given by Theorems 3.1 and 3.2, in the proposed results the
requirement for the system input or output matrices can be avoided.

Theorem 3.3 Consider the closed-loop system (3.3) with D(0) = 0 and give a
scalar y > 0. Then the system is asymptotically stable with the Hx, performance y
if, for known matrices M, N and scalar B, exist matrices AF, BF, Ve, Vp, Go, U,
Pij, P2j, Gij,and Jj, j=1,2,...,r such that the following matrix inequalities
hold:

Qi <0, i=1,2,....1 (3.26)

Qij+Qji<0,i<j, i,j=12,...,r, (3.27)


http://dx.doi.org/10.1007/978-3-642-55107-9_2
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with
B —Pyj * * x % k% x|
0 — Py * %k ok % *
0 0 —y2I * ok ok k *
Gle,'_—i-MVDCz,‘ ]\4_VC Gle[_—i—MVDHi 1 % k% *
) = BrCy; Afr Br H; 0 Zp % =x% * ’
Cy; 0 F; 0 0 —1 % =
NVDCQi NVC NVDHi 0O 0 O E] *
],
0 0 0 0 0 0 X — ,3_'5_
and

1]

1==Gij=G{; + Pij + Jj,

]

2 =—Gy— G} + Py,
¥ =—BNU—- BUTNT,
Yy = G]jB,' — MU.

Furthermore, the dynamic output feedback Hso controller gain matrix in (3.2)
can be given as B B
Ap=G;'Ap, Br=G;'Br,
(3.28)
Cr=U""YWe, Dp=U""Vp.
Proof For the closed-loop system (3.3) with D(8) = 0, by choosing the parameter-
a0 ]xao, PL(O) > 0,

0 PO)
P>(0) > 0, the Hy, performance y can be guaranteed by

dependent Lyapunov function as V (k) = xT (k) |:

—P1(0) * * % %
0 —P(6) * * ok ok
0 0 —y2I * ok ok 0
I G1(0)B(O)Cr G1(0)BO)DFH®O) + G1(O)E®) T * * |
GQBFCZ(G) GzAF GQBFH(G) 0 H2 *
C1(0) 0 F@©) 0 0 —1I
(3.29)
where

I = —G1(0) — GT®) + Py (6),
I, = -G, — Gg + P2(0),

I'=G1(0)A@)+ Gi1(B)BO)DrC2(0).
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By decomposing the matrix inequality (3.29), we have

—P1(0) * * * % ok
0 —P(0) * k% ok
0 0 —y2I * ok %
G1(0)A(0) 0 Gi(OE®) T} * =
GoBrCr(0) GoArp GoBFpH@) 0 Il =%
C1(0) 0 F(0) 0 0 —I
0
0
0
DrpCy(0) Cr DFH(®)000
+ G10)B(O) [DpC2(8) Cr DpH(9) ]
0
0
0 T
0
0
T
+ [DrC2(0) Cr DEFH(0) 00 0] G1(0)B(®) < 0. (3.30)
0
0

Define Vp = UDF and V¢ = UCF, (3.30) is equivalent to

—P1(0) * * * ok ok
0 —P(0) * * %k
0 0 —y2I ® ok %
G1(6)A0) 0 Gi(O)E®) TI1 * =%
GyBrCy(0) GrAr GoBrFH@®) 0 Il =
C1(9) 0 F(9) 0 0 —I
0
0
0 —1a—1
U "N 'N[VpCy(©0) Vc VpH(®) 000
+ G1(0)B®) [VbC2(0) Ve VpH(9) ] (3.31)
0
0
0 T
0
0
T T =T 77—T
+[VpCa(0) Ve VpH(@®) 0 0 01" N'N~'U G1(0)B®) < 0.
0

0
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Once again rewrite (3.31) as follows:

—P1(0) * * % k%
0 —P(0) * * ok ok
0 0 —y2I * ok %
Gi1(0)AO) +MVpCa(0) MVe Gi(O)EW®)+MVpH©) T} *
GoBrCy(0) GrAFr Go,BrH (@) 0 I, x*
C1(0) 0 F©) 0 0 —1
0
0
0 —1—1
+ G1(0)B(©O) — MU U "N 'N[VpCa(0) Ve VpH(O) 0 0 0]
0
0
0 T
0
0
T NT A —Tp7—T
+[VpCa(0) Ve VpH@®) 0 0 O N'N~'U G1(0)B©O) — MU < 0.
0
0

(3.32)
Following the same line as in the proof of Theorem 2.1, we can establish the
following matrix inequality to ensure (3.32):

r —P1(0) * * * * ok % *
0 —P2(0) * * * kX *
0 0 —y2I * * ok % *
YA MVe GI(O)EO)+MVpH®O) TI1 +J@0) * * x* *
GoBrCr(8) GrAF GrBrH(9) 0 My * = *
C1(0) 0 F(6) 0 0 -1 = *
NVpCa(#) NVe NVpH(@®) 0 0 0 X %
0 0 0 0 0 0 % — I3 ]
<0,
(3.33)
where

Y4 =G1(0)AO) +MVpCr(H),
¥ =—BNU—- BUTNT,
¥y = G1(0)B(®) — MU.

Now, assume the matrices Py (6), P»(0), and G(8) to be of the following form
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P1(9)= ZGJ-PU, P1j>0, j=1,2,...,r,
j=1

.
Py0)= > 0jPy, P,y >0, j=1,2,...,r (3.34)
j=1

,
G1(0) = 0;Gij.
j=1

By defining two variables as (3.12) and combining (3.34), the LMIs (3.26) and
(3.27) can be obtained. |

Theorem 3.4 Consider the closed-loop system (3.3) with H(0) = 0 and give a
scalary > 0. Then the system is asymptotically stable with the Ho performance y if,
for known matrices M, N and scalar B, exist matrices Ar, Lp, Cr, Lp, $2, U, Pyj,

Pyj, S1j,and Jj, j = 1,2,...,r such that the following matrix inequalities hold:
Yii<0, i=1,2,...,r, (3.35)
Yij+ Y <0, i<j i j=12..r (3.36)
with
B g * * * * * * * ]
0 Ho * * * * * *
0 0 —)/21 * * * * *
AiS\j+ BiLpM BiC_'F E; — Py * * % %
Tij = LBM AF 0 0 —sz *k * k
CiiS1j +DiLpM DiCr F; 0 0 -1 * *
0 0 0 NTLTBI NTLL NTLTD! %, .
L 0 0 0 0 0 0 ¥, — ﬁ—fz_
and ,
81 = =51 =8 + P+ Jj,

-85 — SZT + Py,

[x]
(38}
Il

¥ =—BNU—-BUTNT,

= (C2i 81 — UM)T.

Furthermore, the dynamic output feedback Hs, controller gain matrices in (3.2)
are given as
Ap=AfrSy', Bp=LpU~!,
(3.37)
Cr=CrS;', Dp=LpU™".
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Proof For the closed-loop system (3.3) with H(0) = 0, the parameter-dependent

. 7 Pl
Lyapunov function is chosen as V (k) = x* (k) 0

0, P2(0) > 0, the Hy, performance y is satisfied if
—Pl_1 ) * * *

0 -P o) x <
0 0 —y2I *

A@©)+ B(O)DrC2(0) BO)Cr E©) — P1(0)

BrCy(0) Ap 0 0
C1(0) + DO)DrCr(0) DO)Cr F(0) 0

I C)

0

|
o F x % % %
~
o
N

]i(k), P(0) >

< 0,

(3.38)

Adding two auxiliary matrix variables S1(6) and Sy, it can be seen that the matrix

inequality (3.38) can be guaranteed by

I * *
0 I, *

0 0 —y2I

A(0)S1(6) + B(O)DFC2(6)81(6) B(0)CrS2 E(0)
BrC2(0)51(0) AFS2 0

C1(0)S1(0) + D(O)DrC2(0)S1(0) D@O)CrS2 F(0)

<0,
where
I = —S16) — ST (0) + P1(6),
=-S5+ P0),
ie.,
I * * %
0 I, * *
0 0 —y2I *
A(0)S1(0) B@O)CrS, E©) — P1(0)
0 ArSy 0 0

Ci1(0)S1(0) DO)CrS2 FO) 0

|
oF % % % %

~~

>

p—

*
— P1(6)
0
0
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0
0
0
B(O)Dr
Bp
D®)Dy

[C2(6)S1(6) 0 0 0 0 0]

(3.40)
0
0
+[C2(0)S1(®) 0 0 0 0 01" B(H())DF <0.
Br
D(0)Dp

By defining Ly = BrU and Lp = DfrU, (3.40) becomes

I, * * *
0 I, * *

0 0 —y2I *
A@©)S1(0) B(O)CrS, E@©) — Pi(0)
0 ArS> 0 0

Ci1(0)51(6) DO)CFS> F(0) 0

|
oF % % % %

~

()

p——a

NNT'UTNC20)8,6) 0 0 0 0 0]

0
0
T —T y—T AT 0
+1C20)$10) 0 0 0 0 0FUTTNTINT| L ] <0 (34D
Lp
D@)Lp

Then, for the matrix M, we have

I * * *

0 I, * *

0 0 —y21 *
A0)S10)+ B(O®)LpM B(O)CpS2 EB) — P1(6)

LgM ArS 0 0

C1(0)810)+ D@O)LpM D@O)CrSy F(0) 0

|
Ol\?%***
~
)
~



3.3 LMI Decoupling Approach 109

0
0
0 — 11
| BO)L) NN U [C2(0)S1(8) —UM 0 0 0 0 0]
Lp
D®)Lp
0 T
0
S ICO)S1@) —UM 0000 o U TNTNT| 0 0. (342)
B(O)Lp
Lp
D@©)Lp

Then, following the same line as the proof of Theorem 2.9, we can establish the
following result to verify (3.42):

1 + J(0) * * * * * * * 7]

0 I, * * * * * *

0 0 —2I * * * * *

I3 BO)CrS; E©) — P1(09) * * * *
LgM AFS) 0 0 —P(6) * * *
Iy D©O)CFrSy F(0) 0 0 -1 * *

0 0 0 NTLTBT@®) NTLL NTLIDT () = =
0 0 0 0 0 0 5, -9 ]
<0,

(3.43)
where

I3 = A@©)S1(0) + B(O)LpM,
My = C1(0)S1(6) + DO)LpM,
¥ =—-BUN—-BNTUT,

% = (C2(6)81(6) — UM)" .

Define Ap = ArSy and Cr = Cf Sy, if the LMIs (3.35) and (3.36) are satisfied,
the matrix inequality holds. O

Remark 3.2 In this section, the LMI decoupling approach has been applied to design
the dynamic output feedback H, controller in the form of (3.2). Similar to the
discussion in Chap. 2, when the matrices M and N are chosen as special form and
B(0) (C2(0)) is fixed (and of full rank), we also can prove that the design results
given by the LMI decoupling approach are less conservative than the basic LMI
conditions.


http://dx.doi.org/10.1007/978-3-642-55107-9_2
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3.4 A Whole Design Strategy

In the above section, we have presented meaningful LMIresults to design the dynamic
output feedback H,, controller in the form of (3.2). It is worth noting that, the design
laws (i.e., solutions) of the four controller gain matrices are not unified (see (3.17),
(3.25), (3.28), and (3.37)). In [1, 2], a whole trategy has been proposed to design
output feedback H, controllers for discrete-time linear systems. In this strategy, the
designed all controller gain matrices are seen as a whole, it leads to the solutions of
these gain matrices can be integrated in a unified equation expression. In this section,
we will develop the design strategy to robust dynamic output feedback H, control
for the uncertain systems (3.1).

In the closed-loop system (3.3), by integrating the controller gain matrices, it can
be rewritten in the form

_ _ A©) O 0 B() Ar Bp 0 1 _
o= ([0 0]+ 17 5[ o] [caor o)) 7@
E@] [0 B@ 1T Ar Br1[ 0

o (3 Il | o | P R
z@)::(mnw>0]+[ozxen[ég gi}[cﬁe)é})i“)

+(roreopon| & D] 0 )rw. e

In this following, two theorems are provided, in which two basic LMI design results
for the closed-loop system (3.3) are given by applying the whole design strategy and
considering the properties of input or output matrices. The design results presented in
theorems can be seen as the extension of [2], which puts the dynamic output feedback
Hxo controllers design method to dynamic controller design for discrete-time linear
system with time-invariant polytopic uncertainties.

Theorem 3.5 Consider the closed-loop system (3.44) with D(0) = Oand B(6) = B
(B is full column rank). For a given scalar y > 0, then the system is asymptotically
stable with the Hy, performance y if there exist matrices L1, Pj, and G;, j =

1,2, ..., r such that the following matrix equations hold:
Vi <0, i=12,...,r1 (3.45)
Ui+ Wi <0, i<j,i,j=12,...,r (3.46)

o G O o G Gyj .
G‘/_|:0 sz] orG.,—|:0 Gs; |’ j=12,...,r, (3.47)
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with
\Ifij =
—Pj * * ok
0 —y2I * ok
. A; O -1 Ly 0 I 1 ) E; L 0
G,Tu|:0 0:|Tu +[0][C2i 0j|Tu G;T, 0 + 0 H; O x
[Cii 01T, F; 0 —1I
(3.48)

where T, is a nonsingular matrix satisfying T, |:(I) €i| = |:(I):| and © = -G —

GT + P;.
i J
Furthermore, the dynamic output feedback H, controller gain matrices in (3.2)
are given as

[AF Bp

_ -1
Cr DF]_Gl L. (3.49)

Proof Choose a Lyapunov function as

,
Vi) =x" (T PO)T,Z(K), P(O) =D 0;Pj. P; >0, j=12..r

j=1
(3.50)
The H, performance y of the closed-loop system (3.44) can be guaranteed by
~TI'POT, = * *
0 —y2I * *
51
Aa Ar —T P o T % | =0 (3-51)
[C1(6) 0] F(6) 0 -1

where

AL _[A@ 0] [0B][Ar BL][ O 1
A= o olT|10]||cr Drl||cae) 0]

_[E®7 [0 B)[Ar Br][ ©
se= [ ][l ot L]

Introduce an auxiliary matrix variable as
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G@O) = Z 0;G; = Z 0; 0
0 Gy |
or (3.52)
r _ r . Gl sz
o= Z —lee,[ 0 Gsj ]’

then (3.51) is satisfied if

—P(6) * * *

0 —y2I * *
GO, AT GOT, A —G©O) —GT () + P®H) * <0 B33

[Ci(0) 01T, F(©®) 0 -1

On the other hand, with the support of L} = G [ it can be verified

Bp
Cr Dr |
that

o A©) 0 0 B1[Ar Br 0 I !
G(O)Tu AT, _G(Q)Tu([ 0 0]+[1 0][@ DF][Cz(e) 0])T

ZG(G)T":A(()G) 8]T + GO [? g][éi gi][cﬁe) O]T_
=G(9)TM:A(()9) g]T '+G(9)[ ][é; gi][c;)(e) é]T 1
=G(9)TM:A(()9) 8]T 1+[G01][2£ gi][cﬁe) é]T_
o[8[ o

and

- E®) 0 B|[Ar Br|[ 0
G(@)TMAE—G(G)TM(I: 0 i|+|:] Oi||:CF DFi||:H(9)i|)

B E®) L[ o
_G(G)Tu[ 0 }+[0][H(9)] (3.55)

By combining (3.52)—(3.55), the LMIs (3.45) and (3.46) can be obtained. |

Theorem 3.6 Consider the closed-loop system (3.44) with H(0) = 0 and C»(0) =
C> (Cy is full row rank). For a given scalar y > 0, the system is asymptotically stable
with the Hy, performance vy if there exist matrices Y1, Pj, and Sj, j=1,2,...,r
such that the following matrix equations hold:

Ti,’ <0,1,2,...,r, (356)
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Yij+ Y <0,i<j, i,j=12,....r (3.57)
St 0 S0 .
S/—|:O S3j:| or S'/_|:52j S3j:|’ j=12,...,r, (3.58)
with
—Sj—SjT-i-Pj * * *
0 —y2I *
Y. = _ A O _ 0 B; 3 E: ,
L] Tyl|:ol O]Tij+Ty1|:I Ol}[Yl O] Tyl|:olj| _ j %
[Cii O]Tij + [0 D;][Y1 0] F; 0 .
(3.59)

1
where Ty is a nonsingular matrix satisfying |: C(? 0 Ty, =[I 0].
’ 2
Furthermore, the dynamic output feedback Hx, controller gain matrices in (3.2)
are given as

[AF Br

_ —1
cr DF]_YlSl : (3.60)

Proof Choose the Lyapunov function as

;
Vi) =x" T, T PTHOT Rk, PO) =D 0P, Pj>0,j=12..r
j=I

(3.61)
Consider an auxiliary matrix variable as
S) = Z 0;S; Z 0; 0
7 0 S35
or (3.62)

r 0
S(6) = zes _ze [52, 531},

then the Hy, performance y of the closed-loop system (3.44) can be guaranteed by

—50) = ST(®) + P(©) * * %
0 —y2I * *

- L [E@® <0, 3.63

T, AAT,S6) T, (() " —pe) (3.63)

AcT,S(6) F(6) 0 -1
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o _[A® 07 o B®)][Ar Br][ 0 1
A=l 0 ol™lr o ||lcr Drllc ol

Ac =[Ci1(0) 0]1+1[0 D(@)][ég gl;i| |:C(')2 (I)i|

where

Ar BF

Define a variable Y| = [C D
F Dr

} S1, we have

= (40 8]0 2014 B[ Do
[0 tJnser (8 502 88 tJese
=1, :Aff) 8:’68(9)”;' ‘1) Bg”:[fc‘i gi][l 01S()
e :AE)Q) (0): 1,50) + ;! (I) Bé@): [2? gi][sl 0l
— 7! :Aée) 8: T,80) + T, (1) BE)@): [¥; 0], (3.64)

and

AcTysw):([cl(@) 01+ [0 D(e)][‘éi gj;}[g é}) 7,50),

= [C1(9) 01T}, S(9) + [0 D(©)][Y1 0]. (3.65)

From (3.63)—(3.65), it can be known that (3.63) holds if LMIs (3.56) and (3.57) are
satisfied. |

For the whole design strategy of the dynamic output feedback controller (3.2),
the LMI decoupling approach presented in Chap. 2 is also effective. The following
two theorems give another design results, which are the combination of the whole
strategy and the LMI decoupling approach. Especially, the new design results do not
claim that the system input and output matrices must be fixed and of full rank.

Theorem 3.7 Consider the closed-loop system (3.44) with D(0) = 0 and give a
scalary > 0. Then the system is asymptotically stable with the Hx, performance y if,
for known matrices M, N and scalar B, exist matrices Va, Vg, Ve, Vp, U, Pj, Gj,

and Jj, j = 1,2,...,r such that the following matrix inequalities hold:
Q; <0, i=12,...,r, (3.66)
Qij+Qji <0, i<j, i,j=12,...,r (3.67)

with
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A; O V
Ql:Gj[Ol O]+M|: A

_ _p;
0
D,
Q,‘j = [Cli 0]
N Va Vg 0
Ve Vb || Ca
i 0
and
E.
Q =G [ Ol

* * ok ok
—y?I * ok ok
(o3} D3 % %
F; 0 —I x

Vp 0
AnEEs

0 0 0 Qs

1 Va
o) [V

Vi 0 I
Vp Cy 0]
Vg

i)

Ve

Va
:|+M|:VC

Qg:—Gj—GJT»—I-Pj—l—Jj,

Qy=—BNU - BUTNT,

0
Q5=Gj[1

B;

0 ] - MU.

* % X %

*
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Furthermore, the dynamic output feedback H, controller gain matrices in (3.2)

are given as

Ap
Cr

Br

_-1|Va VB
AL

)

(3.68)

-
Proof Choose a Lyapunov function as V (k) = x! (k) P(8)x(k), P(9) = > 0;P;,
j=1

P;i>0,j=12,...,r.

By adding an auxiliary matrix variable G (6) = Z;Z] 0;G j and defining another

. Va Ve | _ Afp F . . . .
variable |:VC vp | = |: Cr DF] where U is a nonsingular matrix, we give
immediately the following condition to ensure the H,, performance y:

—P(@®) * * *
0 —y2I * *
GO)Ax GO)AE —G@O) —GTH)+ P®H) *
[Ci(®) 0] F(©) 0 =1
—P) * *
0 —y2I * *
16O [A(()Q) 8} G(9) |:E(()9)} ~G®) - GT @)+ P©O) *
[C1(®) O] F () =1
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0
0 Ar B 0 I 0
F F
* G((%[? BE,G)} |:CF DF]HCz(e) 0} [HWJ ° 0]
L 0
0 T
- T T 0
0 I 0 Ar Br
00 0 B(@® 0,
+_[C2(9) 0} [H(e)} } [CF DF] G(e)[, gj <
0
(3.69)
i.e.,
—P@®) * * *
0 —yzl * *
®y Dy —GO) -G O +P©O) *
[Ci1(6) O] F(9) 0 —1
r 0
0 Va Vs 0 1 0
R
N O Pl BT “[v vl Leo o] Lnw] o 0]
i 0
0 T
M o 1 0 TTva vg]” 0
Ta—Ty—T
+_|:C2(9) 0] [H(Q)] 0 0} [VC VD] NTNTU G(@)[(I) BE)G)]—MU
0
<0,
(3.70)
where

_ A@) 0 Va Vg 0 I
q’l_G(@)[ 0 0}+M[VC VD]|:C2(9) 0]’

_ E(0) Va Vg 0
oean [Pl E]L)

Following the proof of Theorem 2.1, we obtain the following matrix inequality
to verify (3.70):
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r —P(0) * * ok i

* *
0 —y2I ¥ ok ok *
@y ®; (RS *
[Ci1(®) 0] F(6) 0 —I %  x <0,
Vi Vg 0 1 Vi Vg 0
N[Vc VD”Cz(O) 0] N[Vc VD”H(Q)] 00T«
i 0 0 0 0T — %P |
(3.71)
where
®3=—-GO)—GT () + P©O)+ J(©),
Y1 =—BNU - BUTNT,
B 0 BO)]
Tz—G(9)|:I 0 :| MU.
i

Theorem 3.8 Consider the closed-loop system (3.44) with H(6) = 0 and give a
scalary > Q. Then the system is asymptotically stable with the Hx, performance y if,
Sfor known matrices M, N and scalar B, exist matrices La, Lp, Lc, Lp, U, P;, S;,

and Jj, j=1,2,...,r such that the following matrix inequalities hold:
Y, <0, i=12,...,r, (3.72)
Yij+ Y <0i<j, i,j=12,....1, (3.73)
with
[ —Sj—SJ-T+Pj+Jj * ]
0 v *
A; O ' 0 B; Ly Lp E; 5
o) ]l ] [G] -m s
Tij = L4 Lp ’
[Ci;i 0]S; + [0 D] Le Lp M F; (U
0 0 S Py B *
i 0 0 0 0 & —%_

and
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T T
o = NT Ly Lp 0 B
= Lc Lp I 0|

T
Ly L
<I>2=NT[L2 Lg] [0 1",

Ey=—BUN—-BNTUT,

T
0 I
(2 2o

Furthermore, the dynamic output feedback Hy, controller gain matrices in (3.2)

are given as
Ap BF | | La Lp -1
|:CF DF:| = |:LC LDi| u—. (3.74)

Proof Choose a Lyapunov function as V (k) = TP 1 Oxk), P@O) =
Z'}:]ijj,Pj > O,] = 1,2,...,7’.

Introduce an auxiliary matrix variable S(0) = Z;:l 0;S;, then the Hy, perfor-
mance y of the closed-loop system (3.44) with H (#) = 0 can be guaranteed by

(1]

—S©) —ST©O)+ PO = x %
0 —yzl * *
A©) 0 E(0)
0 0}5(9) 0 i|—P(9) *
[C1(0) 0]1S5(0) FO) 0 —I
0
0
0 B@®) Afr Bfp 0 I
7] L6 or ) o o ] s@ro00]
[0 D@®)]
0 T
0
0 1 "Tar B | O BO)
+HC2(9)O}S(9)000} [CF DF:| [1 0 } <0. (375
[0 D(6)]
Lo Lp| | Af Br

Assume :| U where U is a nonsingular matrix, it is

LcLpl| = | Cr Dr
observed that the inequality (3.75) is equivalent to
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—S@) - ST©O)+ PO =« * *
0 —y2I * *
A@®) 0] E(9)
0 O_S(G) 0 —P®) x
[C1(0) 0]5(0) F() 0 I
-0
0
0 B®) Ly Lg 1,1 0 7
; [, O} [LcLD]WU HCZ(G)O]S@OOO}
| [0 D(@©®)] |
0
T 0 T
T o 1 raerr | [0B® LaLp
+_[C2(9)O}S(9)000] U TN"TN [1 o] [LCLD] <0,
[0 D(@®)]
(3.76)
ie.,
—S6) — ST () + P(©®) * x %
0 —y2I * *
A@©) 0 0BO)]|[La Lg E®)
[ 0 O}S(QH_[I 0 } Le Lp M[ 0 }_P(‘g) *

[C1(8) 0]S(O)+[0 D(H)] ég [fz M F@®) 0 -1

0
0
0 B(0) LiLg o 0 I
o T [0 20 e [ 8y 4] s - o 000]
[0 D(¥)]
0 T
0

La LB}T[O B(@)}

LeLp| |1 0

+ 0 1 SO®)—UMO000 TU_TN_TNT
C12(0) 0

[0 D]
(3.77)



120 3 Robust Dynamic Output Feedback H,, Control

Following the proof of Theorem 2.9, we obtain the following matrix inequality
to verify (3.77):

—S@) — ST )+ PO+ J©) * % % *
0 —y2I * * ok *
A@O) 0 0BO)][LaLg E(9)
|: 0 01|S(9)+|:I 0 :| Le Lp M|: 0 :|—P(9) * % *
L
[C1(®) 0]1S©O)+[0 D@®)] Lé ég M F@® 0 —I % x
0 0 o D By
0 0 0 0 &5 -9
<0,
(3.78)
where , ,
= NT Ly Lg 0 B()
= Lc Lp I 0 ’
r[La Lg]" T
oy =N Le Lp [0 D®]",
By =—BUN—-BNTUT,

ol

0 I T
)= ([Cg(@) 0} S(0) — UM) .

3.5 For the Case D(0) # 0 and H(0) # 0

It is known that the Hy, performance y of the closed-loop system (3.44) can be
guaranteed by

—P) *
0 —y2I *
P@®)0

<0, (3.79)
G(@)[%@] —G(Q)—GT(0)+[ 0 1}

where



3.5 For the Case D(0) # 0 and H(0) # 0 121

[A@®0] [0 B®)][Ar Br][ O I
%_[ 0 o}*[z 0 HCF DF]|:C2(9) 0]’
_ | E®) 0 B® |[Ar Br 0
2= [+ [7 ][ br)Lat)

¢ =1C1®) 01+[0 Wﬂ[éﬁ gﬂ[cﬁ@) é}

2 =F@©®) +[0 D(9>][é§ ﬁﬂ[ﬁm]'

Let us rewrite the (2,1) term in (3.79) as follows:

g B
G(@)[Cg 9]
A@®) 0 E©®) 0 B(@6)
Afp Bp 0 I 0
=G®| 0 0 0 [+G6O)|1 0 [ M }
C1(0) 0 F(9) 0 D) | LEF PrJLC2O) 0 H(©)
(3.80)
Similar to (3.71), the matrix inequality (3.79) can verified as
—P@ * e
[ ()( )_y21:| * % .
g1 & * %
0 I 0 P
NV[Cz(G) 0 H(e)] 0 BNU — BU" N % <o,
[0 B(®)
0 0 GO 0 |-mMUu -iD
L | 0 D@®)
(3.81)

where _
AB) 0 E@©)

0 I 0
21 =G(@) 0 0O O +MV|: i| ’
Ci(6) 0 F©) | C2(0) 0 H(®)

B = —G6) - GT () + [P((f) ‘I)] + 7).

The matrix condition (3.81) is an H, performance analysis criterion, which can
be employed for dynamic output feedback Hy, controller design. The following
theorem gives the corresponding design result:

Theorem 3.9 Consider the closed-loop system (3.44) and give scalars y > 0. Then
the system is asymptotically stable with the Ho, performance y if, for known matrices
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M, N and scalar B, exist matrices U, V, P;, J;, and G, j = 1,2, ..., r such that
the following matrix inequalities hold:

T,‘,‘<O, i=1,2,...,r, (3.82)
Yij+ i <0, i,j=12,...,ri<], (3.83)
with
B —Pj * N . . T
0 —y2I
Ay N> * %
Yij = NV[C(;(I”(_)I} 0 —BNU-BUTNT % |,
1 1
0 B; ,
0 0 G;|I 0 —MU—ﬁ—fz
L 0 D; ]
where
A; 0 E;
A=G;| 000 +MV|:CO_é;)I]
Ci1; 0 F; % !

P; 0
Az:_Gj_G§+[OJIi|+Jj'

Furthermore, the dynamic output feedback Hx, controller gain matrices in (3.2)
are given as

Ap Br | _ . 1
[CF DFi| —u-ly. (3.84)

3.6 Example

The less conservativeness of the presented design results obtained by the LMI decou-
pling approach has been shown in Sect. 2.3. In this example, a comparative between
the proposed design condition in Theorem 3.9 and the one in [3] is considered. Con-
sider a discrete-time uncertain linear system discussed in [3], which belongs to the
2-polytopic convex polyhedron in the form of (3.1) with
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= 4
Bl=_21|, Bz=[4],

1 I
Er= _0.4] Ezz[os]

Cii=[10], Ci2=[105],

Dy =1, D, =2,

Fi =01, F,=0.2,
Cop=1[12], Cxn=1[12],
H =02, H,=02.

For this example, Theorem 4.1 in [3] and Theorem 3.9 in this chapter are applicable
for designing the dynamic output feedback Hy, controller in the form of (3.2) with
nr = 2. The LMIs of Theorem 4.1 in [3] yield a minimum value of 3.1366 for the
H, performance y. In contrast, solving LMIs (3.82) and (3.83) in this chapter with

0 B;
B=336,M=|1 0 |and N = [ yields a minimum of 1.2861, which is clearly
0 D;
much better. It shows that the condition proposed in Theorem 3.9 is less conservative
than that proposed in [3].

3.7 Conclusion

In this chapter, the robust dynamic output feedback H, control problem for discrete-
time linear systems has been studied. This study is geared to systems with polytopic
uncertainties based on the parameter-dependent Lyapunov approach. By applying the
properties of input or output matrices, basic conditions for designing H, controllers
have been given. A further improvement based on the LMI decoupling approach
has been also proposed. These design conditions are presented in the form of linear
matrix inequalities (LMIs). A simulation example shows the less conservativeness
of the proposed design methods.
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Chapter 4
Robust Observer-Based Output Feedback
H., Control

Abstract This chapter studies observer-based output feedback Hy, control problem
for discrete-time linear systems with polytopic uncertainties and norm bounded
uncertainties. For systems with polytopic uncertainties, the descriptor systems
approach is used to design observers and controllers. For systems with norm bounded
uncertainties, in the so-called two-step procedure, a selective approach is introduced
first, in which results of the first step are allowed to be selected in order to reduce
the conservatism of previous approaches. Then, a simple LMI result for observer-
based output feedback Hy, control design for uncertain linear systems with a special
case is given. Finally, the LMI decoupling approach is also considered for designing
observers and controllers.

Keywords Linear discrete-time systems * Polytopic uncertainties + Norm bounded
uncertainties + Observer + Hy, control

4.1 With Time-Invariant Polytopic Uncertainties

In this section, we consider a discrete-time linear system with time-invariant poly-
topic uncertainties

x(k+1) = A@)x (k) + B(O)u(k) + E@)w(k),
z2(k) = C1(@)x (k) + D(O@)u(k) + F(6)w(k), 4.1
y(k) = C2(0)x (k) + H(O)w(k),

where x (k) € %" is the state variable, u(k) € %™ is the control input, w(k) € %/ is
the noise signal that is assumed to be the arbitrary signal in /o[ 0, 00), z(k) € %1 is
the controlled output variable, y(k) € Z? is the measurement output. The matrices
A(0), B@), EB), Ci1(0), D@®), F(@), Cy(0), and H(F) are constant matrices
of appropriate dimensions and belong to the uncertainty in (2.2).

X.-H. Chang, Robust Output Feedback H-infinity Control and Filtering for Uncertain 125
Linear Systems, Studies in Systems, Decision and Control 7,
DOI: 10.1007/978-3-642-55107-9_4, © Springer-Verlag Berlin Heidelberg 2014
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Choose the following observer to estimate the state of system (4.1):

Rk + 1) = ApR(k) + Bru(k) + L(y(k) — $(K)), 4.2)
Y(k) = Copx(k),

where %(k) € %" and $(k) € %/ are the estimated state and estimated output,
respectively. Ap, By, Car, and L are the observer gain matrices with appropriate
dimensions.
Assume the following controller is employed to deal with the design of system
(4.1):
u(k) = Kx(k), (4.3)

where K is the controller gain.

From (4.2) and (4.3), we can see that the number of designed gain matrices is
numerous, it brings great difficulties to the system design. In order to obtain LMI-
based design conditions for the systems (4.1), we use the descriptor systems approach
to design the observer (4.2) and controller (4.3). From the related literature [1, 4, 8],
it is known that rewriting the closed-loop system by use of descriptor redundancy
allows to avoid appearance of crossing terms between the system matrices and the
designed ones, which makes easier the LMI formulation of synthesis conditions. To
take advantage of a descriptor redundancy formulation in the case of observer-based
H control, (4.1), (4.2), and (4.3) can be easily rewritten as

x(k+1) = A@)x (k) + BO)u(k) + E@)w(k),

fk+1) = ALR (k) + BLu(k) + Ley (k), (4.4)
0-utk+1)=Kx(k) —uk),
0-ey(k + 1) = C2(O)x(k) + HOWK) — Cop i (k) — ey (k).

where ey (k) is the output estimation error as ey (k) = y(k) — y(k).

x (k)
Let us define a new variable as x (k) = igg , (4.4) and z(k) in (4.1) can be
ey(k)
expressed as
I 000 A(0) 0 B®) O E(9)
0171 00]. 0 A By, L |. 0
000 olfE+rD=| ¢ K o [T+ o [,
0000 Cr®) —Cpp 0 -1 H ()
z(ky=[C1(0) 0 D@®) 0]xk)+ FO)w(k).
4.5)

In the following, we present sufficient design conditions guaranteeing the Hy,
performance of the system (4.1).
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4.1.1 Condition A

Theorem 4.1 Consider the system (4.1) and give a scalar y > 0. Then the system
via the observer (4.2) and the controller (4.3) is asymptotically stable with the Hxo
performance y if exist matrices Nap, Npr, Ncar, NL, Nk, O, 033, Qua4, P11,
Pr1j, Prj, P31j, P3j, P33j, Parj, Panj, Pazj, Paaj, Q11j, Qu2j, X315, X325,
X337, X43j, Xa1j, Xazj, Xa3j, and Xaaj, j =1, 2, ..., r such that the following
matrix inequalities hold

Py * .
- >0, j=1,2, ..., (4.6)
Pr1j Py
Aii < O, i = 1, 2, ceay 1y (47)
Aij+Aji <0, i<j, i, j=1,2, ..., (4.8)
with
M en * * * * % ok ok ok k|
€21 €22 * * * S N
oLBl exn €33 %k ok k% % %
C2i 011 e 0 Saq % % %k k%
T T 2
Ajj = Ej 0 0 H' —yo I % % % % x ’
esti  AiQr2j BiQ3 0 Ei &g * % *x x
Q1T2j €72 Npr Np 0 e5e77 % *
X31j £82 £33 X34j 0 &eg6 687 €88 * %
€91 €92 Xa3j  eos  H; e96 €97 €98 €99 *
LCi1iOnj CiiQur2j DiQ 0 F 0 0 0 0 —7 ]
where

en=—Puj+AiQn;+ QlleAl-T,
&1 = —Po1j + Q1T2.,~A,~T,
€2 = —Pnj+ Nar + Ni,,
_ T
€32 = Nx + Ng;.,
£33 =—03 — 01,

g4 = C2;Q12j — Near + N,



128

£44

€61

€66

&72

€76 =

&77

€82

€83

€86

£87

€88

€91

€92

€94

€96

£97

€98

€99
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= —Qu — 0,
= ¥y i1,

=—-011; — Qlle + Piij,
= Q)+ Nar.

—Qszj + Paj,
=—0n— 05, + Pnj,
= X325 + Nk,

= X33 — 033,

= —X31; + P315,

= —Xz3j + P35,

= —X33j — X33; + P31,
= X41j + C2 Q11

= X4 + C2i Q12j — Ncar,
= X44; — Qua,

= —X41j + Parj,

= —Xapj + Ppj,
=—Xg3j — X3T4j + Pu3j,

= —Xyq4j — X4{4j + Pyyj.

Furthermore, the controller and observer gains are given by

K =NgQ

—1
2

AL =NarQy', BrL=Npr033, Cow=Nca Q). L=NL0p.

respectively.
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I 000 A(0) 0 B@®) 0
o ~loroo| ; | o A, By L
Proof For simplicity, define E = 0000 A= 0 X 7 o
0000 Cr0) —Cy, 0 —I
E(©)
B= 8 ,andC =[C1(®) 0 D®) O]l
H(0)

Considering a parameter-dependent Lyapunov function as
Vk)y =T RETX L0 PO)X T @O)EZ(k), ETX L 0)PO)X T (O)E >0,
and “

ETX Y0) =0 TW®)E. (4.10)
From (4.5) and (4.9), we have
Vk+1) = V) + 2" ()zk) — y?wT (kyw(k)
=xT(k+DETX'O)PO)XT(O)Ex(k + 1)
—THETXLO)PO)XT(O)EX (k)
+2" 0z = y*wl wk)
= (A% (k) + Bw(k))TX‘I(G)P(O)X_T(G)(A)Z(k) + Bw(k))

—iTRETX 1 O)POX T O)EX (k) + 2T (k)z(k) — y2wT (k)w(k)

RGN _ G
_[W(k)} [A BITX '@®)P@o)X T A B][W(k)}

i)V T=ETX ' 0)PO)XTOE 0 (k)
Tl ww 0 27 || wi)

i - e A (k)
+[w(k)] [C FO)]I[C F(e)][w(k)]

Thus, V(k+ 1) — V (k) + zT (k)z(k) — y*wT (k)w(k) < O for any [i‘v%] # 0if
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Ty—1 -T
[A BITX7HOPOXTONA B]+[_E ’ (9)5(9))( ot —;(/)21}

+[C F®1'[C F@®)]<0.
4.11)
By using Lemma 1.6 with

_gTy-1 =T = ~
T:[ EXOPOXTOE 0 }Hc FOTIE FO)I,
A=[A B],
P=X"1O)PO)XT®),

the matrix condition (4.11) can be guaranteed by

I1 *
[—MT(G) +GO[A Bl —G@O)—GT@O)+ X_I(G)P(Q)X‘T(G)} <0,
4.12)
where

_ T y-1 =T = ~
n:[ ETX (e)g(G)X (O)E _Szl}ﬂc FO)I'[C F@®)]

+M@[A B1+[A B MT@®).
-7
By defining M (9) = |:Q 0(6)
ment, (4.12) leads to

], G(0) = X~1(0) and applying Schur comple-

Q) * x %
BT01(6) 2« o«

0 O+ XA X OB @ « | =% (4.13)
C FO) 0 —I

where
Q1 =—-ETX 1O POXTOE+ 0 TO)A+ AT 0 1(0),
Q=-X"1O-XxTO) +Xx 'O POXT®).

With the support of the equation (4.10), the matrix inequality equivalent to
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& . . .
BT0~1(0) 2 s«

0O+ X @A X0 @ x | =0 (4.14)
C FO) 0 -1

where Q1 = —0 TOEPOET O 1 0)+ 0 TH)A+ AT 071 (0).
oT@eyo o0 0

Pre- and post-multiplying (4.14) by 8 (I) X(()Q) 8 and its transpose,
0 0o o I
respectively, it follows that
—EP@OET + AQ®) + 0T (@)AT * ¢
BT —)/21 * * 0
X©)+ AQ®) B —XO-XT@®+P0O) x | =
CO®) F() 0 -1
(4.15)

To cast the condition (4.15) into LMIs and the equation (4.10) to be satisfied, we
partition matrices P(6), Q(0), and X () as

Pr(0) *; * Pij * | * =
Pr1(0) Pn(@)| * * 4 Poj Poj| * %
P®) = =30
©) P31(0) P3(0) | P33(0) = .,-; | P31j Pyj| P33j o
Py1(0) Par(0) | Py3(0) Pasa(0) Py1j Pypj | Pazj Pasj
(4.16)
and
Q)
011 Q2@ | 0 0 Onj Qrj| 0 0
=[Q1|0]: 0 O»n | 0 0 =i9_ 0 On |0 O
0 |Q4 0 0 033 0 = / 0 0 |03 O
0 0 0 Qu 0 0 0 Qu
417)
_[eof|o
X)) = [X3 o
of® o 0 0 T, 0o o
_|ebh® oh | o o |_g,leh eh]| o o
X31(0) X32(0) | X33(0) X34(0) j=1 / X315 X325 | X337 X34
X41(0) X42(0) | X43(0) X44(0) Xa1j Xaoj | Xa3j Xaaj

(4.18)
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Py
Py
ETX~1©0) P@)X~T(#)E > 01in (4.9) holds.

From the partitions in (4.17) and (4.18), by Lemma 1.13, we have

Obviously, [ P* :| >0, j =1, 2, ..., r such that the equation
22 ]

T QIT 0 B
0 )= =
0 |oF

) (4.19)

and ’
0" |o
x ') = ) (4.20)
-x;'x;07" | x;!

By (4.19) and (4.20), we can see that ET X' (0) = 0~T(0)E = Q" itimplies
that the partition in (4.17) and (4.18) satisfies the equation condition (4.10).

Define Nap = ApQ2, Npr = BL 033, Ncor = C2p 022, N = LQu4, and
Nk = K Q72, then with the support of (4.16-4.18), (4.15) it can be verified that

r r
> > 60,4 <0, 4.21)

i=1 j=1

where A;j, i, j =1, 2, ..., r are defined in Theorem 4.1. O

4.1.2 Condition B

Theorem 4.2 Consider the system (4.1) and give a scalar y > 0. Then the system
via the observer (4.2) and the controller (4.3) is asymptotically stable with the Hso
performance y if there exist matrices Yar, Ypr, YcoL, YL, Yk, G22, G33, Gua,
Pi1j, Poj, Prj, P31j, P3aj, P33j, Parj, Panj, Pa3j, Pasj, My1j, Ma1j, M3y,
Myij, Guij, Gaij, Gaij, and Gayj, j =1, 2, ..., r such that the following
matrix inequalities hold:

P % .
0,j=1,2,...,r, 4.22
[P2lj P22j] - " (4.22)
2ii<0,i=1,2,...,r (4.23)
Eij+Eji<0a i<j,i, j=1,2,...,r 4.24)

with
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o]

where

V11
V21
V31
V41
E'M], . i
V61
Gy jA
G31jA;
Vo1
Cui

k k k k *k k
V22 k *k % k %
V32 V33 k * *k *
V42 My, B; Va4 * ko ok

ETMglj ETM3Tl/ Vst — 21 x  x

_M21j V63i 41] GijEi vee *
V72 V73 YL G Ei vie vi7
Yk V83 0 Ga1jE; vg P32

—Ycor, Ga1jBi vy Vo5 Vo6 Panj
0 D; 0 F; 0 0

Vi1 = —Prij + My A; +A Mllj’

V1 = —Po1j + Mz A,

vy = —Pyj+Yar + Y1,

v31 = M31A; +B M“j,

vy =Yg +BI'M] . +Y

32 K 21] BL’

T AsT T
v33 = Bj M3, ; + M31;Bi — G33 — G35,
V41 = My jA; + G44Co,

T
vgp = —YeoL +Y;,
T
Vg = —Gag — Gyy,
_ T T
vs4 = E; M411+H G44,
T
ver = =My ; + Gu1jAi,
v63=—M3T1j+G11jBi,
T
ves = —G11j — Gy + Py,
vp = =G, + Yar,
v73 = G21jB; + Ypy,
v76 = —Go1j + Payj,

With Time-Invariant Polytopic Uncertainties

k k
k k
* %
* %
k *
k *k
k %
Vg8 *
P43 vog
0 0

133

EE SR SO I SHRE GRS G

(4.25)
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v77 = —Gxn — GI, + Pnj,
vg3 = —G13 + G31;B; — G,
vge = —G31j + P31,
vgg = —G33 — G1y + P33,
vo1 = G41jA; + GuaCo;,
Vo4 = —GL — Gua,
vos = G41; Ei + Gas H;,
voe = —G41j + Pa1j,
v99 = —Gas — GI, + Pus;.
Furthermore, the controller and observer gains are given by

K = G3; Yk,

AL =Gy Yar, BL=GyVpr, Cop=GlYoor, L=GyVy,
respectively.
Proof Choose a Lyapunov function candidate as
V(k)y=x"()ET P(®)EZ(k), ETP®)E > 0.
Then, the Hy, performance y of the system (4.1) can be guaranteed by
—ETPOE 0O

_ Te =
0 _y21:|+[C FOYI'[C FO)]<0.
(4.26)

[A BI"POIA B]+[

As the condition A, by using Lemma 1.6, the above inequality is verified if

2 *
[—MT(9)+G(9)[A B —G(Q)—GT(GH—P(Q)} <0, 4.27)

where

_ET . ] B o
Q:[ EOPE_SZJHC FOLC FO 1+MO[A Bl1+[A B MT ).
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By using the Schur complement and defining M (0) = |:M10(0) ], (4.27) gets

—ETPO)E+ M (0)A+ ATMTI () s *
BTMT () —y21 * | _y

-MI©)+G©O)A GO)B —G@O)—G©O)+P©O) *

c F(0) 0 —1

(4.28)

In the case to obtain LMI-based control synthesis conditions, we define matrices
P(0) as (4.16) and

My (6) O 0 0 My; O 0 0

| Ma®) G O 0 | _ &, |My; G O O
MO=\yue) 0 6u 0 [TEY| My 0 Gn 0
My @) 0 0 Gy My; 0 0 Gy

(4.29)

G11(0) 0 0 0 Gu; O 0 0
_{Ga® G 0 0 | &, |G G 0 O
CO=16ue 0 6u o |[TEY| 6 0 Gn o

Gq(0) O 0 Gu Ga; O 0 Gu
(4.30)

By combining (4.16) and (4.28)-(4.30) with Y41 = G2 AL, Ypr = G»Br,
r r

Yeor = GasCor, Y = GpnL, and Yy = G33K, we have > > 6,6,E;; < 0,
i=1j=1
where 8;;, i, j =1, 2, ..., r are defined in Theorem 4.2. O

4.2 With Time-Varying Norm Bounded Uncertainties

4.2.1 The Two-Step Process with a Selection

In this section, using the two-step process approach, we study the Hy, controller
design problem for linear systems with time-varying norm bounded uncertainties.

Consider the following linear discrete-time dynamic model with time-varying
norm bounded uncertainties:

x(k+1) = (A+ AA)x (k) + (B + AB)u(k) + (E + AE)w(k),
z2(k) = (C1 + AC)x(k) + (D + AD)u(k) + (F + AF)w(k), (4.31)
y(k) = (C2 + ACy)x (k) + (H + AH)w(k),
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where x (k) € Z" is the state variable, u(k) € %" is the control input, w(k) € %/
is the noise signal that is assumed to be the arbitrary signal in /5[ 0, 00), z(k) € #
is the controlled output variable, y(k) € #” is the measurement output. A € Z"*",
B e #"™m E e ", C, e #1", D € B F € #1*), C, € #P*", and
H e %P>/ are system matrices. AA, AB, AE, AC1, AD, AF, ACy, and AH are
uncertainties formulated as [9]

AA AB AE X, Yo Yp Y
ACi AD AF | =X Ak | Yer Yo Yr |, AT(R)A®K) < 1.
ACy; AH X, Yoo YH

(4.32)

The following observer is proposed to deal with the state estimation of system
(4.31):

£(k+ 1) = A% (k) + Bu(k) + L(y(k) — 3(k)),
Y(k) = Crx(k), (4.33)

where X (k) € #" and y(k) € %P are the estimated state and estimated output,
respectively, L is the observer gain.
Let us denote the estimation error as

e(k) = x(k) — X (k). (4.34)
By differentiating (4.34), we get

e(k+1)
=xk+1) —x(k+1)
= (A — LCy)e(k) + (AA — LAC»)x(k) + ABu(k)
+ (E+ AE — L(H + AH))w(k). (4.35)

Employ the following controller to deal with the design of system (4.31):
u(k) = Kx(k). (4.36)

x(k)

By defining x (k) = |:e(k)

system becomes

] and substituting (4.36) into (4.31), the closed-loop



4.2 With Time-Varying Norm Bounded Uncertainties 137

ik+1) =
A+ MM+ (B+ABK  —(BHABK (.00 E+ AE )
AA+ABK —LAC, A—ABK —LC, E+ AE — L(H + AH) ’

2k)y=[C1+AC1+(D+AD)K —(D+ AD)K ]x(k) + (F + AF)w(k).
(4.37)

In [7], a complete solution to an observer-controller structure concerning robust
stabilization of uncertain T-S fuzzy systems satisfying the H, performance require-
ment is investigated based on the two-step design approaches. Of course, the design
method given in [7] is also applicable to linear systems with time-varying norm
bounded uncertainties. First, based on the result in [7], we give the following Hx
performance analysis lemma for the uncertain linear system (4.37):

Lemma 4.1 Consider the closed-loop system (4.37) and give a scalar y > 0. Then
the system is asymptotically stable with the Hy, performance y if there exist matrices
P1, P>, K, and T such that the following matrix inequality holds:

— Py * * * * *
A+ AA+ (B+ ABK —p! * * x %
0 (E+ AE)T —y21 * ¥ %
0 —KT(B+aABT 0 -P, %
P,AA+ PyABK — TAC, 0 Q) Qo - P x
C1+AC;+(D+ AD)K 0 F+AF —(D+AD)K 0 -—I
<0,
(4.38)
where

Qi = PE+ P,AE — T(H + AH),
Q= P,A— P,ABK —TC»,
T =PL.

Remark 4.1 In fact, constructing a Lyapunov function as V (k) = x7 (k) 1;1 ; :|
)

X (k), the Hy, performance y > 0 of the closed-loop system (4.37) can be ensured by
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Py %
—|: 0 P2:| * * *
0 —y21 * *
[A+AA+(B+AB)K —(B+ AB)K } [E—I—AE] [Pl *]‘1 .

AA+ ABK —LAC; A— ABK — LC, Q 0 P
[Ci+AC; +(D+AD)K —(D+AD)K] F+AF 0 —1
<0,
(4.39)

where @ = E + AE — L(H + AH).
Then, by using the elementary transformation of matrix and the congruence of
matrix inequality, (4.38) can be obtained.

Remark 4.2 For the Hy, performance analysis condition (4.38), following the idea
proposed by [7], the two-step process can be employed to design the controller and
observer. In the first step, find the matrices Q; and Y to meet the following matrix

inequality:
-0 *
|:AQ1 T BY — Q1] < 0. (4.40)

In the second step, if the two matrices in the first step are found, denoting P; =
Ql_1 and K = YQI_I. Then, substituting P; and K into (4.38), the controller and
observer can be obtained by solving the LMI (4.38) (See [7] for detailed).

This section mainly follows the problem definition of [7] and aims to improve the
result in Lemma 4.1 by introducing more freedom into the design procedure. In this
following, we will develop another analysis result.

Theorem 4.3 Consider the closed-loop system (4.37) and give a scalar y > 0. Then
the system is asymptotically stable with the Hy, performance y if there exist matrices
P1, P2, G, Ga, K, and Y such that the following matrix inequality holds:

-G — G]T + 01 * * * * %
AG1 + AAG, + (B + AB)KG —0, % % %
0 (E+ AE)T —y21 * * %k 0
0 —KTB+ABT 0 —P, % % |
G2AAG1 4+ G, ABKG1 — YAC2Gq 0 I, I, IIz =
C1G1+ACG1+(D+ AD)KG 0 F+AF Ty 0 -1
4.41)

where

| = G2E + GoAE — Y(H + AH),

I, = GobA— G,ABK — Y(»,
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I3 = -G —G2T + P,

My = —(D+ AD)K.

GI. 000 0 0
0O I 00 0 O
Proof By pre- and post-multiplying (4.39) with 8 8 (I) (I) g 8 and its
0 000 Gy O
0O 000 O I
transpose, respectively, and defining ¥ = G, L, the inequality (4.41) can obtained
easily. (I

Remark 4.3 In Theorem 4.3, by introducing slack matrix variables, a sufficient con-
dition, which can guarantee observer-based H, performance for uncertain linear
systems, is proposed in terms of a matrix inequality. In comparison with Lemma
4.1, the proposed result in Theorem 4.3 provides more relaxation. When the matrix
inequality (4.41) s chosen as a special case, that is, G| = Pl_1 and G, = P», then
it reduces to (4.38) in Lemma 4.1. Thus, we can easily know that (4.41) is less
conservative than (4.38).

The Hy performance analysis condition has been given in Theorem 4.3. Next, we
study the problem of the controller and observer design for the closed-loop system
(4.37). Define

-G -Gl + 0y * * * * %
AGy + BN =0 * * * *
5 = 0 ET -y * * *
= 0 —KTBT 0 _P2 % % ,

0 0 GE-YH GA-YC, —Gr—Gh+P
C1G1 + DN 0 F — DK 0 —1

0 0 0

Xy 0 0

0 0 0

E =
X o o o |
G:X, 0 —YX,
0 X, 0
and

YaGi+YgN O Y —YgK 0 O
Yy=|Yc1Gi+YpN O Yr —YpK 0 O],
Y2 Gy 0 Yy 0 00

with N = KG;.
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Then, the matrix inequality (4.41) can be rewritten as follows:

Ay 0 0 Ay 0 o 17
T+Zx| 0 AGK) O [Zy+ZI| 0 AK O >t <o.
0 0 A 0 0 AKk)

(4.42)
Note that AT (k)A(k) < 1 implies that

T

AK) 0 0 AK) 0 0
0 Ak) O 0 AKk) 0 |<I,
0 0 AwK) 0 0 AK)

then, by Lemma 1.11 for a positive scalar ¢, the matrix inequality (4.42) is satisfied
if

) * *
2T —el o« <0. (4.43)
edy 0 —¢l

Theorem 4.4 Consider the closed-loop system (4.37) and give a scalar y > 0. Then
the system is asymptotically stable with the Hy, performance y if exist matrices
01, P,,G1,Gy, K, N, and Y, scalar ¢ such that the matrix inequality (4.43) holds.
Furthermore, the observer and controller gain matrices can be givenas L = G, ly
and K = NG

It is noted that when N(K), Y (L) are unknown, the matrix inequality (4.43) in
Theorem 4.4 is of BMIs (bilinear matrix inequalities). Thence, we will use the two-
step process approach to solve the observer and controller design problem. However,
different from the two-step procedure proposed in [7], we present a selection approach
which considers an additional constraint to obtain Q1(P;), G, and N by using
LMIs first. And then by regulating a parameter u, the greater region is obtained for
feasibility of the second step.

In summation, the algorithm is summarized as follows:

The first step: Set u to a big value, using the constraint as

Q1 <ul, w>0, (4.44)

and we consider that (4.43) implies sub-matrix satisfying

-G —GT+ Q1 =
[ NG BN —or | <O (4.45)

Find the matrices Q1, G1, and Y to satisfy (4.44) and (4.45). If these matrices are
found, go to Step 2. Otherwise, increase L.
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The second step: Substituting G1, P; = Ql_l, and K = NGI_1 into (4.43), if the
matrices G2, P», N, and scalar ¢ are found, stop the algorithm. Otherwise, decrease
w and go to the first step till (4.44) is infeasible.

Remark 4.4 1In [2], using numerical examples, it is shown that the proposed selection
approach is much less conservative than the similar one in [7] for T-S fuzzy systems.

Remark 4.5 In the proposed selection approach, two-step design procedure has been
improved to a certain extent. However, the two-step design method appears as a draw-
back. Obviously, design of the controller and optimization of the Hy, performance
are not synchronized.

4.2.2 A Simple LMI Result

In this section, we present a simple LMI result for observer-based output feedback
H, control design for uncertain linear systems. Let us consider the discrete-time
linear dynamic model (4.31) with a special case, that is,

x(k+1) = (A + AA)x(k) + Bu(k) + Ew(k),
2(k) = (Cy + AC)x (k) + Du(k) + Fw(k), (4.46)
y(k) = Cax(k).

We also use the observer (4.33) to estimate the system state of (4.46), then we can
give the estimation error equation as

e(k+1) = (A — LCy)e(k) + AAx(k) + Ew(k). (4.47)

Combining (4.47) and the controller (4.36), the closed-loop system is given as

Fh+1) = [AJFAAAA*BK A__BLKCJ)E(k)+[§]W(k),
2(k) = [Ci + AC| + DK — DK 15(k) + Fw(k). (4.48)

By choosing the Lyapunov function as V (k) = x7 (k) |:f(;1 ;2 i| x(k), the fol-

lowing matrix inequality describes the basic Hy, performance analysis criterion for
the closed-loop system (4.48).
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—P; * * * * *

0 —P * * * *

0 0 v % * *
A+AA+BK —BK E —P' o« o« | =0 (449)

AA A-LC, E 0 —-P' &

Ci+ACi+DK -DK F 0 0 -I

Next, we seek methods to obtain strict LMI conditions for designing the observer
and controller based on the inequality criterion (4.49). First, we extend the matrix
decoupling ideas of [6] into the discrete-time case.

Lemma 4.2 Consider the closed-loop system (4.48) and give a scalar y > 0. Then
the system is asymptotically stable with the Hy, performance y if there exist matrices
Pk, Pr, Gk, GL, Nk, and Ny such that the following matrix inequalities hold:

-Gk — GIT( + Px * % %
AGg + AAGg + BNy —Px x %
CiGx +ACi1Gx +DNg 0 —I x <0, (4.50)
0 ET FT _y21
—Pr s
[GLA—NLC2 —GL—G€+pLj| <0. 4.51)
GE 000 0 0
0O 00T O O
0O 000 O 1
Proof Define Y = 0O 070 0 0 , Nx = KGg, and N, = G[L.
0O I 00 0 O
0 000 G O
Multiplying the matrix of (4.49) from the left and right by Y and its transpose,

respectively, it leads to

—GIT<P1(~;K * * * * *

AGK-i-AAGK—i—BKGK —Pl_l * * * *
C1Gg +AC1Gg + DKGg 0 —1 * * * -0
0 ET FT 2 * * ’

0 (-BK)T (-DK)T 0 -P *

G AAGk 0 0 GLE GLA—GLCy A
(4.52)

where A| = —GLPZ_IG{.
Then, (4.52) can be guaranteed by
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—GﬁPléK * * * * *

AGg + AAGk +BKGg  —P;! * % . %

C1Gx +AC1Gx +DKGg 0 -1 * * *
T T 2 <0,

0 E F —y=l * *

0 (-BK)T (-=DK)T 0 —Py *

G AAGK 0 0 GLE GrLA—-GLLCy A

(4.53)

where Ay = —GL — G{ + Ps.
On the other hand, since the conditions (4.50) and (4.51) are satisfied, then there
exists a large enough A such that

- LGh PGk %k
ALlGk + AALGk + BK1Gx —Px *
C11Gxk +AC11Gxk +DKLGx 0 —I =«

0 ET FT —2
1 0 —BK)T (—pK)" o 1"
MAGLAALGK 0 0 GLE
5 —PL * B 0 (-BK)" (-DK)" 0
GLA—GLLC; —GL—G|+PL AGLAALGK 0 0 GLE
< 0.
(4.54)

The satisfaction of (4.54) needs that the position of G, E is zero. The requirement
can be achieved by regulating structure of the observer (4.33) as [6]. By using Schur
complement to (4.54), we can obtain matrix inequality (4.53) with with Gx = %G K>

P =P, Py=1P;,and G = AG. O

Based on the Hy, performance criterion given in Lemma 4.2, we will derive LMI-
based conditions for designing the observer and controller for the closed-loop system
(4.48). Divide the matrix (4.50) as follows:

—Gx —Gh+Px x % % 0 0
AGg + BKGg —Pg = * n X, O A YaGg 0 0 O
Ci1Gk + DKGg 0 —I «x 0 X YciGg 0 0 O
0 ET FT —y21 L 0 0
. o o1"
YaGx 0 0 0] .7, | X: O
[YCIGK 00 0} A0y x| <0
0 0 |

(4.55)
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Choosing Ny = KGk and N, = G L, from (4.55) and Lemma 1.12 for a scalar
8 > 0, we can obtain the following control design result for the closed-loop system
(4.48).

Theorem 4.5 Consider the closed-loop system (4.48) and give a scalar y > 0.
Then the system is asymptotically stable with the Hso performance vy if there exist
matrices Px, Px, Gk, G, Nk, and Ny, scalar § such that the following matrix
inequalities hold:

~Gg —GE + Pk * * * * ok
AGk +BNg —Pkx +8X. XTI * ok %
C1Gk + DNk 0 —I+5XZXZ * * * 0
0 ET FT ) =
Y4aGk 0 0 0 =8I =
Yc1Gk 0 0 0 0 =41
(4.56)
—PL *
|:GLA—NLC2 —GL—GZ+PLi| <0 .57)

Furthermore, the observer in (4.33) and the controller in (4.36) gain matrices
can be given as L = GleL and K = NKG?.

Remark 4.6 Ttis worth noting that the descriptor systems approach used in Sect. 4.1 is
also suitable for the case with time-varying norm bounded uncertainties. Especially,
for the special model (4.46), we can even get LMI-based design results with less
matrix dimensions.

Case A: By submitting (4.36) into (4.46) and combining e, (k) in (4.4), we have

x(k+1) = (A+ AA)x(k) + BKZE (k) + Ew(k),
R(k +1) = AR(k) + BKZ(k) + Ley (k), (4.58)

0-ey(k+ 1) = Cax(k) — C2x (k) — ey (k).

Then, the corresponding descriptor system is expressed as

I 00 xk+1) A+AA  BK 0 x(k) E
071 0| 2k+D |= 0 A+BK L 2 |+ 0 [wk.
00 0[ek+1) Cy —Cy =1 ]| ek 0

4.5

Reminder: The design approach of Theorem 4.1 is applicable to the descriptor
system (4.59).

Case B: By submitting y(k) —y (k) = Cox (k) —Cyx (k) into (4.33) and combining
u(k) in (4.4), we have
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x(k+1) = (A+ AA)x (k) + Bu(k) + Ew(k),
£k +1) = AR (k) + Bu(k) + LCax (k) — LC2% (%), (4.60)

0-utk+1) = Kx(k) — u(k).

Then, the corresponding descriptor system is expressed as

I 0 0] [xtk+1 A+ AA 0 B x(k) E
07 0||2k+D)|=| LCy A-LC, B F&) |+ 0 | wk).
00 0||uk+1 0 K — 1 || utk 0

(4.61)

Reminder: The design approach of Theorem 4.2 is applicable to the descriptor
system (4.61).

Remark 4.7 Different from the system (4.31), the system (4.46) meets that in system
equation the measured output is free of disturbances. However, in most practical
applications the measurements made in physical systems are not free of errors caused
by the presence of disturbance. Thus, the design method given in Theorem 4.5 is
parochial for the more general case.

4.2.3 LMI Decoupling Approach

For these discussions in Remarks 4.5 and 4.7, the results given in Sects.4.2.1 and
4.2.2 are still parochial for observer-based output feedback H, control design. In this
section, we apply the LMI decoupling approach presented in Chapter?2 to observer-
based output feedback Ho, control design for linear systems with time-varying norm
bounded uncertainties. The LMI decoupling approach reflects good superiority. For
simplicity, it supposes that there is uncertainty only in the system matrix A. Then,
the uncertain system (4.31) becomes as follows:

x(k+ 1) = (A + AA)x (k) + Bu(k) + Ew(k),
2(k) = Cyx (k) + Du(k) + Fw(k), (4.62)

y(k) = Cax (k) + Hw(k),

Case A: D =0
In this case, the estimation error equation (4.47) becomes

e(k+1) = (A — LCye(k) + AAx(k) + (E — LH)w(k). (4.63)
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Considering the controller (4.36), we have the following closed-loop system:

A+ AA+ BK —BK _ E
+AA+ ]x(k)+[

i(k+1)=[ a4 A-LC, E_LH:|w(k), (4.64)

2y =[C1 0]x(k) + Fw(k).

P x

By choosing the Lyapunov function as V (k) = x7 (k) |: 0 P
)

} x(k), the basic

H, performance analysis criterion can be given directly as

_Pl * ES %k * *
0 ) * * * *
0 0 Y2 % x %
A+ AA+ BK —-BK E  —P' o« o« < 0. (4.65)
AA A-LC, E-LH 0 -P;' %
Cq 0 F 0 0o =1

Obviously, we can utilize the following matrix inequality to verify (4.65):

—P; * * *x ok ok
0 —P * * % %

0 0 — 2 E I S 0
G1A+ G AA+G BK —GBK G\E O« * |7
GrAA Gy)A — GoLCy GrE—-GoLH 0 ®, %

Cq 0 F 0o 0 -1
(4.66)

where
O =-G1 -G+ P,

©® = -G, — G + P

In the matrix inequality (4.66), there is a nonlinear term G|B K, which makes
it difficult to obtain LMI-based design conditions. To overcome this difficulty, we
integrate the LMI decoupling approach presented in Chapter 2 to design the observer
and controller. The matrix inequality (4.66) can be rewritten as
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— P * * * ok %
0 —P * * ok %
0 0 —y21 * k%
G1A+ G1AA 0 G E O *  x
GrAA GyA—GoLCy GoE— GoLH 0 ©®p =x
Cq 0 F 0 0 -1
0 o 1"
0 0
+ O Akt —1 00001417 —1 000 07k"|° <0.
G1B G 1B
0 0
0 0

(4.67)

By using the same derivation with Theorem 2.1, we can know that (4.67) is
satisfied if

r —P; * * * * * ok * ]
0 —P * * * % % *
0 0 —y21 * * % % *
GIA+GIAA+ MV —-MV G E Or+J x  x % *
GrAA GrA — GoLCy GLE — GhLH 0 B * % *
C 0 F 0 0 I x* *
NV —NV 0 0 0 0 & =
i 0 0 0 0 0 0 & é_
<0,
(4.68)
where
Ei =—-BNU —BUTNT,
E»=G1B—-—MU.

Finally, by using Lemma 1.11 from the matrix inequality (4.68) with G1 = G»L,
we can give the following design result for the observer (4.33) and the controller

(4.36):

Theorem 4.6 Consider the closed-loop system (4.64) and give a scalar y > 0.
Then the system is asymptotically stable with the Hy, performance y if, for known
matrices M, N and scalar B, exist matrices U, V, G, P1, P2, G1, G2, and J,
scalar ¢ such that the following matrix inequality holds:
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TP +eYTy, * * * * * ok % *
0 —P * * * * % * *
0 0 —y21 * * * ok * *
GIlA+MV —MV G E O+ J * *x % * *
0 GA—GCy, GrE—-GLH 0 O, * % * *
Cq 0 F 0 0 — 1 x * *
NV —NV 0 0 0 0 B =* *
0 0 0 0 0 0 B —é s
L 0 0 0 xI'cl xIGY 0o 0o 0 —eIl
<0,
(4.69)

where B1 and E, are defined in (4.68).
Furthermore, the observer (4.33) and the controller (4.36) gain matrices can be
givenas L = GZ_IGL and K = UV,

At the end of this section, in order to clarify the advantages of the proposed result,
we recall the analysis condition given by [5] for observer-based output feedback Hy,
control for the closed-loop system (4.48).

Lemma 4.3 Consider the closed-loop system (4.64) and give a scalar y > 0. Then
the system is asymptotically stable with the Hy, performance y if, for known matrices
M, N and scalar B8, exist matrices U, Ng, Ny, P, and Py such that the following
matrix formulas hold:

— P * * * * %k
0 —P * * * ok
0 0 — 2 * ok K g
PiA+ PiAA + BNk —BNg P E —P; x % ’
P,AA PbA—-—N;Cy, PbLE—NH 0 —Py %
Cy 0 F 0O 0 -—I
4.70)
P1B = BU. “4.71)

For the matrix condition in (4.68) and the condition in Lemma 4.3, our comparison
conclusion is that:

Theorem 4.7 If the condition in Lemma 4.3 holds, the condition in (4.68) with
M = B and N = BT B also holds.

Proof This proof follows strictly the proof of Theorem 2.6. ]

CaseB: H =0
For this case H = 0, we can obtain the following closed-loop system:
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Fk+1) = [A+AAAA+ BK A:chz]i(k)+ [g]w(k), (4.72)

2(k) =[Cy + DK — DK 13(k) + Fw(k).

p!
0o »!
performance y of the closed-loop system (4.72) can be guaranteed by

Choosing the Lyapunov function as V (k) = T (k) |: i| x(k), the Hy

—Pl_1 * * * * ok
0 —P{l * * %
0 0 — 2 % % %

0. 4.73

A+AA+BK —-BK E —P % % | (4.73)
AA A—LCy E 0 —P %
Ci1+ DK —DK F 0 —1

From (4.73), we can know that the matrix structure in (4.72) only allows to add
an auxiliary matrix variable G in the next step analysis condition, i.e.,

-G — GIT + Py * * * ok %
0 -G — GIT + P % * k%
0 0 — V2 % % x -0
AGy + AAG; + BNk —BNg E —-P * x ‘
AAG, AG| — LCGy E 0 —P =
C1G1 + DNk —DNg F 0 0 -1
4.74)
Note that there is a nonlinear term LC> G, that lets us rewrite (4.74) as
0 o7
0 0
Q+ 8 L[0O C;G; 0 0 0]4+[0 C2Gy 0 0 017LT 8 <0,
—7 -1
0 0
(4.75)
-G — GIT + P * * * x k]
0 -G — GIT + P * * * ok
0 0 — v % % x
where =\ G\ 4 AAG, + BNk —BNx E —P x *
AAG AGq E 0 —Py %
C1G1 + DN —DNg F 0 0 I ]
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Using the same derivation as Theorem 2.9, the following matrix condition can be
introduced to ensure (4.75)

-G —GT + P * * * * % ok %
0 -G —Gr'+P+J * * * %k
0 0 —)/21 % * * % %
AG| 4+ AAG| + BNk —BNg E — Py * * ok *
AAG, AG, — LM E 0 —P % % % |0
C1G1 + DNk —DNg F 0 0 —I x *
0 0 0 0 —NTLT 0 = =«
0 0 0 0 0 0% —%
4.76)
where
¥ = —-BUN — BNTUT,
Yy = (CrGy — UM)T.

Based on Lemma 1.12 with ascalaré > 0, form (4.76), we can derive the following
design condition:

Theorem 4.8 Consider the closed-loop system (4.72) and give a scalar y > 0.
Then the system is asymptotically stable with the H~o performance y if, for known
matrices M, N and scalar B, there exist matrices U, L, Nk, Py, P>, G1, G2, and
J, scalar § such that the following matrix inequality holds:

_—Gl—GIT-i-Pl * * * * * ok * *
0 -G -Gl +P,+J =« * * * ok % *
0 0 —yzl * * * % * *
AG1 + BNk —BNg E I * * % * *
0 AG| — LM E 68X X' M, * % =% *
C1G1 + DNk —DNg F 0 0 —1 * * *
0 0 0 0 —NTLT 0 =, = s
0 0 0 0 0 0 —é *
YaGy 0 0 0 0 0 0 0 — 681
<0,
“4.77)

where X1 and X are defined in (4.76), and
M =—P +8X, XTI,
M) =P, +8X, XI.

Furthermore, the observer (4.33) and the controller (4.36) gain matrices can be
givenas L = LU ' and K = NKGII.

As previously mentioned, different from the case D(0) = 0, the situation of the
system structure in (4.72) only allows to add an auxiliary matrix variable G| for
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the case H(#) = 0. It implies that the design condition given in Theorem 4.8 is
conservative. To overcome this problem, we construct a new closed-loop system of
the following form:

e+ 1) = [AZfKAJFALAC’z_ ch]i(k)+[g}w(k), (4.78)
z2(k)=[C1+ DK Ci Ix(k) + Fw(k),
x(k)

e(k) |
For the closed-loop system (4.78), we choose the Lyapunov function as V (k) =

with X (k) = [

—1
T (k) |:P1 * ] X (k), then the Ho, performance analysis criterion is given as

0o P!
—Pfl * * * * %
0 —PZ_1 * * * %k
0 0 — 2 % % %
0. 4.79
A+ BK LC 0 —P % % | (4.79)
AA A+ AA—-LCy E 0 —Py %
C1+ DK Ci F 0o 0 -1

By introducing two auxiliary matrix variables G| and G, we can apply the
following matrix inequality to verify (4.79)

-G -Gl + P * *

* * *
0 -Gy — G2T + P * * ko %k
0 0 e T T -0
AG| 4+ BNk LC,G» 0 —P *x % ’
AAG AGyr + AAG) — LCrGy, E 0 —Py %
C1G1 + DNk C1G F 0 0 -1
(4.80)

where Ny = KG.
In order to deal with the nonlinear term LCyG5, we rewrite (4.80) as follows:

0 o7
0 0
g+ (1) L[0O C2Gy 0 0 0 0]+[0 C2G, 0 0 0 017LT (1) <0,
-1 -1
0 0

(4.81)
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-G — GIT + P * * * * %

0 -G, -Gl +P % ok %

with T — 0 0 — yzl * * %
AG| + BNk 0 0 —P *x =

AAG, AGr + AAG, E 0 —P %

C1G1 + DNk C1G» F 0 0 -1

Then, following the derivation of Theorem 2.9, an Hy, performance analysis cri-
terion for the closed-loop system (4.78) is given.

Theorem 4.9 Consider the closed-loop system (4.78) and give a scalary > 0. Then
the system is asymptotically stable with the Hy, performance y if there exist matrices
M, N, U, L, Nk, P1, P, G, Gy, and J, scalar B such that the following matrix
inequality holds:

_—Gl—GlT—i-Pl * * * * x %k %
0 sz—GzT-i—Pz—i—J * * * * % *
0 0 -2 % * * ok *
AG1| + BNk LM 0 —-P * % ok *
AAG,  AGy+AAGr—IiM E 0 -P % % s | =0
C1G1 + DNk C1G» F 0 0 —I x *
0 0 0 NTLT —_NTLT 0 =, =
i 0 0 0 0 0 0 % —ﬂiz_
(4.82)
where

¥ =—-BUN — BNTUT,

) =(CrGy — UM)T.

Remark 4.8 The above-mentioned LMI decoupling approach to observer-based out-
put feedback H, control design is also applicable to the general case, that s, in (4.62)
all system matrices have uncertainties.

Remark 4.9 The LMI decoupling approach is also feasible for observer-based output
feedback H, control design of the system (4.62) with D # 0 and H # 0. A related
discussion can be known by Sect. 6.2, in which a whole design strategy of the observer
and controller is considered.

4.3 Conclusion

In this chapter, the problem of observer-based output feedback Hy, control design
for discrete-time uncertain linear systems is investigated. Several different design
conditions that can guarantee the Hy, performance of the closed-loop systems with
polytopic uncertainties and norm bounded uncertainties are proposed. A descrip-
tor representation approach is exploited to derive sufficient conditions to design the
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observer and controller for the polytopic uncertainties case. For the norm bounded
uncertainties case, the LMI decoupling approach is also mentioned mainly for
observer-based output feedback H, control design. The corresponding design con-
ditions are given in the form of LMIs.
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Chapter 5
Robust H, Filtering

Abstract This chapter deals with Hy, filtering of both discrete-time systems and
continuous-time systems with polytopic uncertainties. The uncertain parameters are
supposed to reside in a polytope. By using the parameter-dependent Lyapunov func-
tion approach and introducing some auxiliary matrix variables, sufficient conditions
for the H filter design are presented in terms of solutions to a set of linear matrix
inequalities (LMIs). In contrast to the existing results of Hy filter design, the main
advantage of the proposed design methods is the reduced conservativeness. In addi-
tion, the LMI decoupling approach is also considered for designing Hy, filters. An
example is provided to demonstrate the effectiveness of the proposed methods.

Keywords Discrete-time systems * Hy filtering - Parameter-dependent Lyapunov
function - Linear matrix inequalities (LMIs)

5.1 Discrete-Time System

Consider a discrete-time linear system with polytopic uncertainties described by
state-space equations

x(k+1) = A@®)x(k) + BO)w(k),
y(k) = CO)x(k) + D(O)w(k), G.1)
z2(k) = L(O)x(k) + H(O)w(k),

where x (k) € Z" is the state variable, w(k) € Z™ is the noise signal that is assumed
to be the arbitrary signal in /5[0, 00), z(k) € %7 is the signal to be estimated,
y(k) € 7 is the measurement output. The matrices A(0), B(9), C(0), D(0),
L(0), and H (0) are constant matrices of appropriate dimensions and belong to the
following uncertainty polytope [6]:
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2 ={[A@®). B), C©®), D®), L©), H®)]

,
= > 6l Ai. Bi, Ci. Dy, Li, Hil. |

i=1 !

0; =1, 6; > 0}. (5.2)

-
=1
The robust Hy, filtering problem is to estimate the signal z(k) by using the following
filter:

xp(k+1) = Apxp(k) + Bry(k),
zr(k) = Crpxp (k) + Dpy(k), (5.3)

where xp (k) € Z" and zp(k) € %9 are the state and output of the filter, respec-
tively. Ap, Br, Cr, and Dp are filter matrices with appropriate dimensions to be
determined.

Defining the augmented state vector ¥ (k) = |: x(k)

xr (k)
the following filtering error system can be obtained:

i| and e(k) = z(k) — zp (k),

Yk +1) = A@)y (k) + BO)w(k),
e(k) = CO)Y (k) + DO)w(k), (5.4)

where

[ A®) 0 . T BO
A= [BFC(G) AF] ’ By = [BFD(G)] ’
CO)=[LO) —DrC(©) —=Crl, D(h)=H(®)— DrD(®).

5.1.1 H, Performance Analysis

In this section, we first establish a useful H filtering analysis criterion. For conve-
nience of comparison between the proposed results and the existing ones, an existing
criterion for H filtering performance analysis is given as follows.

Lemma 5.1 [3]: Consider the filtering error system (5.4) and give a scalar y > O.
Then the system is asymptotically stable with the Hoo performance y if there exist
matrices P(0) > 0, G, and S such that the following matrix inequality holds:

GA®) +ATO)GT — P(®) = « .
BT (0)G” —y2 % N

—GT + SA(0) SB@) —s—sT+p@) + | =0 O
C®) D®) 0 _J

The following theorem gives out result for H, filtering analysis.
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Theorem 5.1 Consider the filtering error system (5.4) and give a scalar y > 0.
Then the system is asymptotically stable with the Hy, performance y if there exist
matrices P(0) > 0, G(0), N(0), and S(0) such that the following matrix inequality
holds:

GO)A®)+ AT0)GT(9) — P(0) * S
BT (0)GT () + N(©)A(©) B2 * % 0
—GT(0) + S©)A®) ~NT(0)+ S©O)B®) Ez3 * =
C(0) D(6) 0 —1
(5.6)
where

By = —y?I + N@®)B®) + BT O)NT (9),
B33 = —S0) — ST(0) + P(0).

Proof The proof can completed by considering three different approaches.

Approach 1:
Construct a parameter-dependent Lyapunov function as

Vk) = v (k)PO)Y k), P@®O) > 0. (5.7)
From (5.7) and recalling (5.1), it can be verified that

Vk4+1) = V() + el (ek) — y*wT (kyw(k)
=yThk+DPOYKk+1 -y R POWK)
+(COY k) + DOWK)" (COWY (k) + DOWK) — 2w (ow(k)
-P@®) 0 0 o o
=¢T 0 —21 0 [+[C® D® 017(C®) D®) 01|k,

0 0 PO
(5.8)

Y (k)
where ¢ (k) = w(k) .

vk+1)
By (5.4), one has

L L v (k)
[A®) B(O) —11¢(k) =[A@®) B(O) =11 wk) | =0. (5.9
Yk+1)

Applying Lemma 1.14 with
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—P® 0 0
0= 0 —y21 0 |+[C®) D®) 01"[C®) D®) 0],

0 0 P®)
N =[A®) B®) ~I1.
v =< (k).
G(9)
and choose L = | N(0) | in (1.20), if the following inequality
S)

—P® 0 O
0 0 P

0 —y* 0 }+[C’(9) D©®) 01"1C©®) D(®) 0]
cor] o " (5.10)
+| N®) |[A®) B(O) —I1+[A®) B(O) —I11" | N@©®) | <0,
S(0) S(@)
holds, we have V (k+1)—V (k)+e” (k)e(k)—y*wT (k)w(k) < 0. Applying the Schur

complement to (5.10) leads to (5.6). The equation V (k 4 1) — V (k) + €T (k)e(k) —
y2wT (kyw(k) < 0 implies that

V(00) = V(0) + > el (kyetk) — y* D wl (lkow(k) < 0.

k=0 k=0

o0
With zero initial condition v (0) = 0 and V (c0) > 0, we obtain »_ el (k)e(k) <

k=0
y? Ozo: w! (k)w(k) for any nonzero w(k) € I[ 0, 00).
k=0
Approach 2:
From (5.4), one gives
AO)Y (k) + BO)w(k) — Yk + 1) = 0. (5.11)

According to (5.11), for any appropriately dimensioned parameter-dependent matri-
ces G(A), N(0), and S(0), we have

2T )G ©O) +wl (N ©O) + ¥ T (k +1)S(©0))

x (AO)W (k) + BOWK) — vk + 1)) = 0. (5.12)

Then, combining (5.7) and (5.12), it follows that
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Vk+1)— Vk) + el (kek) —y>w! (yw(k)
=y (k+DPOWE+1) — v K) POV K)
+ (T RGO +w N®©) + v (k+1)S©))
x (A@)Y (k) + B@O)w(k) — ¥ (k + 1))
+ (T AT ©) +w ()BT O) — ¢ (k+ 1)
x (GT @)y (k) + NT @)w(k) + ST @)y (k + 1))
+ (COYK) + DOWK) (COW®K) + DOWK) — y*w! kyw(k)

0 0 PO

GO) co "
+ | N®) |[A®) BO) —11+[A®) B®) —117 | N®) v(k),

-P® 0 O ,
= v’ (k) 0 —y* 0 |+[C®) D®) O] [C®) D®)0]

S(©) S(©)
(5.13)

¥ (k)
where v (k) = w(k) .
vk+1)

Obviously, it is observed that the matrix inequality (5.6) can guarantee the
negative-definiteness of (5.13).

Approach 3:
From (5.7) and recalling (5.4), we have
Vik+1) — V) + el (kek) —y>w! (yw(k)
=y k+DPOY K+ 1) =y ) POWK) + e K)ek) — y*w' (yw(k)
= (A@)Y k) + BOWKR) PO (AG)YK*) + BOWK) — T (k) POy (k)
+ (COW k) + DOWEN (CO)Y (k) + DO)wK)) — y*w ()w(k)
= cT(k>([A(e> B@)1" PO A®) B®)]

+[C®) D(@)]T[é(e) DO) ]+ [—1())(9) _32]]) c(k), (5.14)

where ¢ (k) = [z((llg ]

Thus, V(k + 1) — V(k) + eT (k)e(k) — y*wT (k)w(k) < O for any ¢ (k) # 0 if
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[A©) B®)] PO[A®) BO)] 515)
Tr ~ o~ —P@®) 0 .
+[C©®) D®)] [C®) D(9)]+[ 0 —)/21] < 0.

For (5.15), by using Lemma 1.6 with

Ao = —P(®
:[C(@)D(@)]T[C(G)D(G)]+[ };() 0 ]

_y2[
_ |1 GO
=[N
G =S(),
A=[A®) B®].
P = P(6),
and Schur complement, if the inequality (5.6) is satisfied, (5.15) holds. O

Remark 5.1 Compared with (5.5) in Lemma 5.1, (5.6) in Theorem 5.1 adds a slack
matrix variable N(0) and replaces single matrix variables to be determined by
parameter-dependent matrix variables. In other words, when N(6) = 0, G(6) and
S(0) are parameter-independent matrices, the Hs, performance analysis criterion
(5.6) in Theorem 5.1 reduces (5.5) in Lemma 5.1. Thus it can be easily seen that
(5.5) is a special case of (5.6) and the condition in Theorem 5.1 is less conservative
than that in Lemma 5.1.

5.1.2 Robust H, Filters Design

For the filtering error system (5.4), [3] has presented an LMI-based condition for
designing the filter in (5.3).

Lemma 5.2 [3]: Consider the filtering error system (5.4) with H(0) = 0 and give
a scalar y > 0. Then the system is asymptotically stable with the Hx, performance
y if, for known scalars by_and by, exist matrices Py;, Py;, and P3;, i =1, 2,...,r,
Fi,F., Ki,K2, K, A, Br, Cr, and D such that the following matrix mequalmes
hold
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—Pli—|—F]A,‘-‘1-AiTF]T-i-b]BFC,'—I—b]Cl-TBI];w * *
— P + FA; + by BpC; + b1 AL —P3 +byAp + by AL *
BI'Fl' +b D] B BI'El +b,D]' B —y21
—FIT-I—KlAl'—FBF(ji —F2T+AF KlBi-FéFD,‘
—blKT-i-KzA,'—I—BFC[ —b2KT+AF KzB,‘-i-BFD,'

* * *

* * *

* * * .
_KI—K]T‘FPU x N <0, i=12,...,r,
—Kr—KT'+ P —K—KT 4Py =

0 0 1

(5.16)
Py x .
|:P2i P3i:| >0,i=1,2,..., r. 5.17)

Moreover, the gain matrices of the H filter (5.3) are given by
Ap = K_lAF, Br = K_IBF, Cr = éF, Dp = DF.

With Theorem 5.1 in hand, we are now in a position to present our filter design
results. We now look at the application of Lemma 1.15. First, the inequality (5.6)
can be rewritten as

~r —PO) =x * * % 1 0O 00
é%ri?iggg GT®) 0 « = = || Aw®) B@O) 10
0 N@O -y % =« 0 I 00]}<0.
8 _01 8é0 0 SO 0 P®O = 0 0 10
1l éoy o Doy o —1|| o o o1
(5.18)

Obviously, the matrix inequality (5.18) corresponds to the first equation in (1.22)
with

—P@) =x * *

GT®) o0 * *

* ¥ X ¥

U= 0 N@O) —y*I = , (5.19)
0 S® 0 P®
C®O 0 DO 0 —I
and
I 0 00
A@©) B(O) =10
Pr=| 0 1 00 (5.20)
0O 0 10
0O 0 01

From (5.20), we can choose
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P=[A®) —I B®) —10]. (5.21)

On the other hand, for another matrix Q, we divide into three cases, under which
three LMI-based conditions for designing the robust H, filter in (5.3) are given,
respectively.

Case A:
Due to — < 0, we have the following inequality:

—PO) =x * * ok 0
GT®e) o * S 0
[00001] 0 N@O) —y2I % = 0] <0, (5.22)
0 S@® 0 PO = 0
c®o)y 0 DB 0 -—I 1
0
0
the matrix inequality corresponds to the second equation in (1.22) with 9+ = | 0
0
1
Then, we can choose the matrix Q as
10000
07000
Q= 00700 (5.23)
000170

Combining (5.18) and (5.22), based on Lemma 1.15, (5.6) holds if the following
inequality holds

—P@©H) =x * *

GT®e) o * *
0 N@O) —y*I =
0 SO 0 P®O

CO 0 DO 0 —I

+PTXT0)0+ 0TX@O)P <0. (5.24)

* ¥ ¥ *

Assume

F(6)
M(©9)
E(0)
W)

X(0) = (5.25)

Then, the inequality (5.24) is equivalent to
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FO)A®) + ATO)FT ) — P©®) * * % %
GT )+ M©®)A®) — FT(0) —M@®) - MT@®) x ok %
BT@O)FT )+ E®)A©®) N@©O —E® +BTO)MT 133 % = | <0,
—FT @)+ W©)A®) SO)—WO) —MT(0) Y43 Yag *
C®) 0 D®) 0 —I
(5.26)
where

Y33 = —y2I + E(0)B(©®) + BT (0)ET (9),
Ti3=—ET(0) + WB(),
Yaa = —W(O) — WL (©6)+ P©).

We partition these designed matrix variables as

PO = ggz; P;Ee)} = ggei(’f [2; P;J =0
ror=[ ok | = 2 [ k]
vor= [ k]2 [ 1]

E@©) =[Ei(0) b3K | = Ze,»[Elj b3K ],
j=1

_[Gi16) G20)] _~, [G1j Gaj
¢®) = [63(9) G4(9)] = ;9’ [st GJ’
C[8160) 207 _~, [S1; S
5O = [&(9) 54(9)} = ;Qf [Saj 541}’

N(0) =[N1(0) N2(0) ] = Zej[Nlj Naj 1,
j=1

[ M1©) baK]  ~—, [ My baK
M(©) = I:MQ(Q) bSK] _Zle |:M2j b5K]
/:

Let Ap = KAp, By = KBp,Cp = Cp, and Dy = Dy, by substituting the above
matrices P(0), F(0), W(0), E(9), G®), S(#), N(@®), and M () into (5.26) and by
considering the uncertainty set (5.2), we can obtain the following design condition
for the robust Hy filter in (5.3).




164 5 Robust Hy Filtering

Theorem 5.2 Consider the filtering error system (5.4) and give a scalary > 0. Then
the system is asymptotically stable with the Hy, performance vy if, for known scalars
b1, by, b3, bs, and bs, there exist matrices P;j, Paij, Psij, G1j, G2j, G3j, Gaj, S1j,
827, 835, Saj, Nij, Naj, Fuj, Faj, M1j, Maj, Wi, Woj,andEvji,j=1,2,...,1,
K, Afr, Br, Cr, and DF such that the following matrix inequalities hold

Pyij  * .
>0, i,j=1,2,...,r, 5.27
[Pzij Psjj / (5.27)
I;; <0, i=1,2,...,r, (5.28)
M+ <0, i<j,i,j=12,...,r (5.29)
with
i My s
szAi + by BrC; +b1A£ — P2ij b AF +b2A£~ - P3ij
I3 32 —My; —erj
M — T4 §0Y) —M>; —bsKT
Y s sy Is3
—FlTj-l-leAi-f-B{:Ci —Fsz—f—AF Slj_le_MlTj
—b1 KT + Wy A; + BpC; —bo KT+ Ap S35 — Wy —byKT
L Li — DpC; —Cr 0
* * * PR
* * * * *
k k * *k k
—b5K—b5KT * * * *
Is54 M55 ¢ I
SQj—K—Msz Igs _le_WlT'+P1ij * *
S4j—K—b5KT H7_5 —sz—K +P2,'j MMy77 =
0 H; — DpD; 0 0 —I|
where
My = FijA; + AT +b1BFC +b1CT 7 — Piij,

3 = Gl +M1/A +b4BFCl -
My =Gl + byAp — 2],

M1 = G3; + MajA; +bsBrCi — b1 KT,
My = G4j +b5A_F —bKT,

sy = EyjA; + b3BrCi + B Fl. + by DI BE
[s, = b3Afr + BTFT + by DT %

J
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Ms3 = Nyj — Eyj + Bf M. + b4D] B,

Mss = Noj — b3K + B My, + bsD[ B,

Il55 = —)/2[ + EjB; + Bl.TElTj + b3Bp D +b3DiTBZ:,
Mes = Wi;B; + BpD; — EIT]

75 = W, B; + BpD; — b3K T,

M7 =—K — K" + Py

Moreover, the gain matrices of the H filter (5.3) are given by

Ap =K 'Ap, Be =K 'Bp, Cr =Cp, Dr = Dp.

Case B:
Due to —P(0) < 0, we have the following equation:

—P@) =x * *

GT®) 0 * *

[10000] 0 N@O) —y2I =«
0 S@©O 0 P©O
CO 0 DO 0 —I

<0,

* % ¥ ¥
SO OO~

the matrix inequality corresponds to the second equation in (1.22) with 0+ =

Then, we can choose the matrix Q as

07000
00700
000170
00001

Q:

By considering the definition in (5.25), for Case B, (5.24) becomes

—P(®) * % %
GT @)+ F(0)A®) —F©®) — FT(0) * * *
M(6)A0) T32 133 * *
E©)A®©) Tu2 E@)B©O) —MT®) T  *
CO) +W(@B)A®) -W(®) D@®)+W(@)BO) —W@®) —I

where

165

(5.30)

(5.31)

SO OO~

(5.32)

<0,

(5.33)
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T3 = N(©) — M(©®) + BT (O)FT(0),

33 = —y* + M(©)B®) + BT (0)MT (9),
Ti = S©O) — E@®) — FT(0),

T =—E®) — ET(0) + P(0).

We partition these designed matrix variables as

(PO * T ~~,, [P o*
P() = [P2(9) 1%(0)} = ;;9,9, [Pm P}ﬁ} >0,
RO 0K ~, [FijbiK
F(Q)_[Fg(e)bgK}_Z;QJ[FQ;bgK]
]:

W(©) =[Wi(0) 01=D"0,[W1, 0],

j=1
[Ei@® b4k~ , [Ei1j baK
E®) = E>(6) b5Ki| B ‘Z;gj |:E2j b5Ki| ’
I o
_[G10) G0 _ <, [G1j Gy
R RNC) G4(9)] 2.0 [st- Gﬁ}’
_[510) %07 _ <, [S17 5
SO =150 &(9)} = ;91 [S3j' 341} ’

N(©) = [Ni1(6) N2(®)1=D_0;[ Nij Naj ],

j=1

M) = [M(0) bsK 1= 0,[Mj bsK 1.

j=1

Let Ap = KAp, BF = KBp,Cp = Cp,and Dp = Dp, by substituting the above
matrices P(0), F(0), W(0), E(0), G(0), S(@), N(0), and M () into (5.33) and by
considering the uncertainty set (5.2), we can obtain the following design conditions
for the robust H filter in (5.3).

Theorem 5.3 Consider the filtering error system (5.4) and give a scalary > 0. Then
the system is asymptotically stable with the Hyo performance vy if, for known scalars
b1, ba, b3, by, and bs, there exist matrices Py;j, Pij, P3ij, G1j, G2j, G3j, Gaj, Si;,
5:2]‘, 5:3]‘, §4j, Nlj,_sz, Flj, sz, Mlj, le, Elj, and Ezj, i,j = 1, 2, Y 8 K,
AFr, Br, Cr, and DF such that the following matrix inequalities hold

(5.34)



5.1 Discrete-Time System 167

Ei<0, i=1,2,...,r1 (5.35)
Eij+Eji<07 i<j,i,j=12,...,r, (5.36)
with
i —Pl,'j k %
—Pjj —Psjj *
G?--I—Fle,'—}-blBFCi Gg-—i—b]AF —Flj—FlTj
- G2j+F2in+b2BFCi G4j+b2AF —sz—b]KT
T MyjA; + b3BrC; b3Ar Es3
E1jA; +Db4BrC; biAFR S1j— Eyj — Fl];
EsjA; + bsBrC; bSéF S3j — Eyj — b1 KT
| Li — DpCi + WijA; —Cr —Wy;
* * * * ok
* * * * %
* * * * %
—b)K —byKT * * * %
Hsq 55 * * %
$2j —bsK — F); Bes —E1j—E[,+Pijj *
S4j —bsK —byKT B75 —Ezj —baKT + Pyj E77 %
0 g5 —Wi; 0 —I |
where _
Es3=Nyj — Mi; + BI'F[. + by D! BL,
854 = Npj — b3K + BiTsz + sziTB;,
Bss = —y2I + My;B; + B/ M[; +b3BrDi + b3D] B],
E¢s = E1jB; + byBrD; — M
€75 = E2jBi + bsBpD; — b3K T,
E77 = —bsK — bsK” + Py,
8gs = Hi — DpD; + W1 B;.
Moreover, the gain matrices of the Hy, filter (5.3) are given by
A=K 'Ap,Br = K 'Bp,Cr = Cp, Dp = Dp. (5.37)
Case C:
Due to —y 21 < 0, we have the following equation:
—P@©) = * * %
GT®) 0 % % =x
[00700] 0 N@O) —y2 % <0, (5.38)

0 SO 0 PO x
C® 0 DO 0 —I

SO ~NO O
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0
0
the matrix inequality corresponds to the second equation in (1.22) with Q-+ = | I
0
0
Then, we can choose the matrix Q as
10000
07000
Q= 00010 (5.39)
00001
By considering the definition in (5.25), for Case C, (5.24) becomes
T * * * *
Y71 —M@©®) —MT®) * * *
BT@®)FT®) N@® +BTOMT©O) —y2I * x | <0,
E@)A@®) — FT(0) SO)—E@®) —MT©) EO)BO) Yy *
C@O)+ W(O)A®) —W(@®) Y53 A
(5.40)

where . .
Tii = FO)A®) + AT O)FT(0) — P(0),
To1 = GT(0) + M©)A®) — FT(6),
Yas = —E@®) — ET(0) + P(0),
Ys3 = D) + W(0)B(®).

Now, assume that these designed matrix variables are of the following form

(PO * T _ ~~,, [P *
P®) = [Pz(e) 1%(9)} _Z]:;e)le, |:P2ij Pw] > 0,

RO 0K ~, [F;biK
F©) = |:F2(9) b2K1| - Zlej I:sz sz:| ’
j:

W(©) = [Wi(6) 01= > 6;[Wi; 0],
j=1

[Ei0) 3K~ , [Eij b3K
E®) = |:E2(9) b4Ki| - _Z;GJ |:Ezj b4Ki| ’
j=

_[61®) G0 _ 5, [G1j G
o= [G3(9) G4(9)] - ;91 [st- Gﬁ}’
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51(0) $2(8) — [S1;
SO) = = 6; ,
@ [sgw) &(9)} ; f[ssj i)

N(©) = [N1(6) Na2(0) 1= D_6,[Nij Naj]l,
j=1

_[Mi©) bsK] _~, [ M) bsK
M©) = |:M2(9) bﬁK] o Zlej |:sz b(,K:| ’
j:

Let Ap = KAp, BF = KBp, Cr = Cp, and Dy = Dp, by substituting the above
matrices P(0), F(0), W(0), E(0), G®), S(0), N(@©), and M () into (5.40) and by
considering the uncertainty set (5.2), we can obtain the following design conditions
for the robust Hy filter in (5.3).

Theorem 5.4 Consider the filtering error system (5.4) and give a scalary > 0. Then
the system is asymptotically stable with the Hx, performance vy if, for known scalars
b1, by, b3, by, bs, and be, there exist matrices Py;j, Pa;j, P3ij, G1j, G2j, G3j, Gaj,
S1j582j 83j Sajs N1js Noj, Fij, Fajs Myj, Maj, Whj, vy, and Esj, i, j = 1,2,
....r, K, Ap, Br, Cr, and D such that the following matrix inequalities hold

P],‘j * ..
>0, i,j=1,2,...,r, 5.41)
[PZij Psjj
I'ip<0, i=12,...,r, (5.42)
Fij+Fji<0’ i < J, i,j:l,z,...,l’, (5.43)
with
r F]] %
21 —Psij +byAp + b AL
T A T T
I3 G3j+b5_A1:—F2j —My; _Mlj
r 4 sz +bsAp — b KT —My; — bskT
ij = T T T pT T T TpT T T TpT
Y B, F1j+b‘Di Bf B, F2j+b2Di Bp  Nij + B, M1j+b5Di B
—FlTj+E1in+b3BfC,' —F2Tj+b3Ap_ S1j—E1j—M1Tj
—blKT +_E2_,‘Al‘ + b4 BrCi — szT_+b4AF 83 — E2j — bsKT
Li — DrCi + Wi A; —Cr —Wi
* * * * ok |
* % * * %
% * * * ok
*b()K—bGKT * * * *
[sq —2I * * %
Szj—bj;K—Msz Ces —Elj—E{j'i‘Plij ko ok
S4j — by K —b6KT 75 —Ey; —b3KT + Pyj 77 %
0 I'gs —Wi; 0 —I]
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where B B
P11 = —Piij + FijAi + b1BrCi + Al Fl; + b1C] B,
I = _PZZ] + FyjA; + byBrC; -I-blAF,
T31 =Gl + M;A; + bsBrC; —Flj,
T41 = G}, + M2jA; + bsBrC; — b1 KT,
[sq4 = Nyj + BiTMsz +b6DiTB;,
Ies = E1jB; + b3B:FDi,
I'75 = E2jB; + by Br D,
I'77 = —b4K_— b4KT + P3ij»
I'ss = Hi — DpD; + Wy B,

Moreover, the gain matrices of the H filter (5.3) are given by
AF=K_1AF,BF=K_1BF,CF=CF,DF=DF. (5.44)

Remark 5.2 Tt should be noted that in order to obtain LMI-based design conditions
for Case B and Case C, one is necessary to assume that W (@) = [W1(0) 0] =

2'9 Wi 0

W(©) =[W1(0) b7K ] = Zej[le bK 1, (5.45)
j=1

where b7 is a scalar. However, the use of (5.45) might lead to incompatible matrices
dimensions. For example, we rewrite the term (6, 2) in X;; as —Cp + b7Ap. Since
Cr € R”" and Ap € R™", they cannot be added due to incompatible dimensions.
Thus, we choose b7 = 0 in this study.

Theorems 5.2-5.4 present LMI-based conditions for H, filter design, which
introduces more auxiliary matrix variables than Lemma 5.2. Compared with Lemma
5.2, the design condition in Theorem 5.2 is less conservative. The following theorem
is introduced to describe the relationship between Lemma 5.2 and Theorem 5.2.

Theorem 5.5 If the condition in Lemma 5.2 is satisfied, the condition in Theorem
5.2 is also feasible.

Proof Suppose Py;, Pyi,and P3;,i =1,2,...,r, F1, F», K1, K2, K, AF, BF, ép,
and Dp, scalars b; and by are solutions of Lemma 5.2. Since the LMI conditions
(5.16) and (5.17) of Lemma 5.2 are satisfied, which imply that the matrix K is
nonsingular and K + K7 > 0. Then there always exists a small enough bs (bs > 0)
such that
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—Pli—|—F]A,‘-‘1-AiTF]T-i-b]BFC,'—I—b]Cl-TBI];w * *
— P + FA; + by BpC; + b1 AL —P3 +byAp + by AL *
BI'Fl' +b D] B BI'El +b,D]' B —y21
—FIT-I—KlAl'—FBF(ji —F2T+AF K| B; + BrD;
—blKT-i-KzA,'—I—BFC[ —b2KT+AF Ko B; + BpD;
L; —DFC,' —éF —DFD,'
* * * A[T Cl.TBZ:
* * * 0 A;
>|<T * * +b5 BiT DITBIY;
—K —Klr—{-P]i * * -7
—Ky— KT + Py —K — KT + P3; = 0 —I
0 0 -1 0 0
AT crpr "
0 AT
KTk +kT)y"'k 0 BT DT BT
X|: T T —1 ] i i °F <0, i=1,2, 7,
0 K'(K+K')"'K -1 0
(U
0 0
(5.46)
hold.
By the Schur complement, (5.46) is equivalent to
_—13’11'—|—F]Ai-I-AiTFlT-I-b]BFCi—{—b]Cl-Tl_?l];w * *
— P + FA; + by BpC; + b1 AL —P3 +byAp + by AL *
B Ff + ] B B/ +0uDl B
_Fl -l—KlA,'—f—B{:C,' —F2 +A€ KlBl'—f—l_?FD,'
—b]KT+K2Ai+BFC,' —szT-I—AF KyB; + BpD;
L; — DpGC; —Cr —DpD;
A 0 B;
L BrC; Afp BF D
* * * ok k|
* * * ok ok
* * * ok ok
_Kl—Ki—f—Pli *T k ok ok <0, i=1.2.....n
—Kr—K' +P; —K—K" +P3; * x x%
0 0 —I *x %
-1 0 0 O %
0 -1 0 00|

(5.47)
where © = — - K~ '(K + KT)K 7.
Pre and postmultiplying (5.47) by T and its transpose, respectively, one has
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[—Pi+ F1A; + ATFT + b1 BpC; + b1C] BE * *
—Pyi + F2A; + by BpCi + b1 AL —P3i + b Ap + b AL *
bsK A; 0 —bs(K + KT)
bsK BrC; bsKAfp 0
BI'FI + b, DI BE BI'FI +b,DTBL bsBI'KT
—FI'+ K\A; + BpG; —FI' + Ap —bskT
—b KT + K2A; + BrC; —bo KT + Ap 0
L L,' — [)FC,' —CF 0
* * * * |
* * * *
* % * *k *
—bs(K +KT) * * * 0
bsDT BEKT —21 % * « | =
0 K1B; + BrD; —Kl—KlT—FPl,‘ * *
—bsKT  KyBi+BpD; —Ky— KT + Py —K — KT 4+ P3; x
0 —DpD; 0 0 —1I |
i=1,2, ...,

where _
100000 O O

0/0000 0 O
000000bsK O
000000 0 bsK

007000 O O
000700 0 O
000070 0 O
1000007 0O O

Consider that Piij = Pii, Paij = Py, P3ij = Psj, G]j = F],G3j = F, sz =
b1 K, G4j = K, Slj =Wy = Kl,S3j = Wy; = K, S2j = S4j = K,Ny; =
sz = Ey; =0, My = bs5K, anszj =0,i,j=1,2,...,r,and b3 = by = 0,
the LMIs (5.28) and (5.29) with H; = 0,i = 1,2,...,r in Theorem 5.2 can be
obtained. O

Remark 5.3 Itis widely accepted that there is a tradeoff between the conservatism of
a given robust system design approach and the computational complexity of design-
ing a robust system via such approach [1, 7]. In Theorems 5.2-5.4, the variables to
be determined are more than the ones in Lemma 5.2, it seems that the proposed con-
ditions are more complex than the one in Lemma 5.2. However, when those scalars
are set to be fixed parameters, the design conditions in Theorems 5.2-5.4 are strictly
LMIs that can be easily and effectively solved via LMI control toolbox [4]. The
problem is then how to find the optimal values of those scalars in order to minimize
the filtering error variance bound. In addition to this method discussed in Remark
2.9, another scalar to address the tuning issue has been used in our earliest work
[2], which first sets y to a big value and searches those scalars such that LMIs in
Theorems 5.2-5.4 hold by using the function random in MATLAB. Then, decrease
y till the search is infeasible.
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Remark 5.4 In the above derivation for obtaining LMI-based design conditions, if
we define several matrix variables are of independent on the parameter 6, another
design conditions with trifling conservativeness and less number of LMIs can be
given. Take (5.26) for example, we define

. [ F) b1 K
FO) = | F2 szi| ’
(W, K
W) = W;K},
E@©) =[E| b3K],
. -M1 by K
MO = |y, bsK],
_ | i) = o<, | P . )
and P(0) = [Pz(Q) P3(9)} = g;l 0; Py Py > (), the corresponding design

condition is given in the following corollary. The design result has been mentioned
in our earliest work [2].

Corollary 5.1 Consider the filtering error system (5.4) and give a scalar y > 0.
Then the system is asymptotically stable with the Hs, performance y if, for known
scalars by, by, b3, ba, and bs, there exist matrices Py;, P, P3;, Gii, Goi, G3;i, G4,
S1is 82, 83i, S4i, N1j, and Ny, i = 1,2,...,r, Fy, Fo, M, My, Wi, W, E|,
K, Ar, Bp, Cr, and DF such that the following matrix inequalities hold

[P“ *]>o, P=1,2,...r (5.49)
Py P3;
B I * *
FA; +b2é1:ci + blfi; — Py bzAF + bzA; — P3; *
I3 I3, —-M; — MT
Iy Mg —Ms — byKT
sy Is7 I1s3
—F1T+W1A,‘+BFC,‘ —FZT-FAF Sll‘—Wl—MlT
—bi KT + WaA; + BrC; ~boyKT +Ar S35 — Wa —byKT
L L, — DFC,‘ —é]: 0
* * * * k|
* * * * %
% * * * *
—bsK —bsKT * * * %
<0,
Isq Is5 * * *
Sy — K —MmT Igs Wy =W+ P % %
Ssi — K —bsKT 75 W — KT + Py g7 %
0 H; — DpD; 0 0 —I]
i=1,2,...,r,
(5.50)

where
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Il = F1A; + AlTFlT +b_1BFCi +b1Cl-TI§17; — Py,
M3 = G|, + M\ A; + b4BrC; — F],

M3 =Gl + bsAp — FI,

My = Gi + MyA; + bsBrC; — b1 KT,

My = G + bsAp — byKT,

Ms = E1A; + b3BrC; + Bl Fl + b, D! B,

I15, = b3AF + BZ-TFZT + sziTBg,

Ms3 = Ny; — Ey + Bf M + b,DI BL

[ls4 = Nyj — b3K + Bl-TMzT + b5DiTé£,

Mss = —y?I + E\B; + B'ET + b3BrD; + b3D] BE,
Mes = W1 B; + BpD; — ET,

75 = WaB; + BrD; — b3K T,

My =—-K— KT +Py.

Moreover, the gain matrices of the H, filter (5.3) are given by

Ar =K 'Ap,Bp = K 'Bp,Crp =Cp, Dp = Dp. (5.51)

5.1.3 LMI Decoupling Approach

In this section, based on the LMI decoupling approach presented by Chap.2, we
propose other results for designing the filter in (5.3) for the filtering error system
(5.4).

Let us rewrite (5.4) as follows:

Y+ 1) = ([Age’ 8} + m [Ar Br] [C?Q) (I)D Y )

B(0) 0 0
(2] [T ]rar 81 pgy [) w0 2

e(k) =[L(©0) — DFC(©) —CF |y (k) + (H(0) — DpD(©))w(k).

For the filtering error system (5.52), we choose a Lyapunov function as V (k) =

YT (k) POy (k), P(O) = 3 0;P;, P > 0.
j=1

J
’

By adding an auxiliary matrix variable G(0) = > 0;Gj, we give immediately
=1

the following condition to ensure the H, performance y of the filtering error system
(5.52)
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—P@®) * * *
0 —y2I * *
GO)A, GOAE  —G@O)—GT®O)+ P®B) *
[L(©6) — DFC(©) —CF | H(®) — DFD(®) 0 -1
—P(0) * * *
0 —y2I * *
- G(G)[Aée)g] G(G)[B(()Q)} —-GO) - GT®) + P©O) x*
[L®) — DrC®) —Cr | H®) — DrD(6) 0 —1I
0
0
0 I 0
* G(@[?] [AFB“([C(G)O] [Dw)}()o)
0
0 T
0
0 I 0 T -
+([C(9>0} [D(e>]00> LAr Br] G(e)m <0 633
0

where
on= [0 e s [ 0 1]
=[] (o m ]

Define U~![V4 Vg ] =[AF Br], from (5.53), we have

—P(©H) * * *
0 —yzl * *
o ®, ~G®) - GT )+ PO) *
[L®) —DpC®) —Cp | H(®) — DpD(6) 0 -1
. F
0 0 17 0
—1 -1
+ G(@)[(I) —mu |V NA VB]([C(@)O] [D(Q)]O())
0

T

0
8 T 0
0 I 0 TnT a—Typ =T
+([C<9)0] [Dw)_oo) Wa Ve ENVENT2O G(@[‘I)]—MU
0
<0,
(5.54)
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where
®, = G(0) [A((f') 8} + MV Vg ] [C‘()g) é]
o, =GO) [Bf)e)jl + M[ V4 Vg ] |:D(()9):| .

Following the proof of Theorem 2.1, we obtain the following matrix inequality to
verify (5.54):

B —P(©) * ko ok ok k]
0 —y2] ¥ ok %k *
(ol (0] D3 o« % *
[L®)—DpC®O) —CF | H(©) — DpD(®) 0 —I x * <0.
0 I 0
N[ Vy4 VB][C(Q) 0} N[Vy VB][D(H):| 0 0 Y =
0 0 0 0T, -9
) "~ (5.55)

where
O3 =—-GO) —GT )+ P©O) + J©O),
Y =—-BNU — BUTNT,

Ty =G(0) [(I)} - MU.

Based on the Hy, performance analysis criterion in (5.55), we give a new design
condition of the filter (5.3), which is demonstrated in the following theorem.

Theorem 5.6 Consider the filtering error system (5.52) and give a scalar y > 0.
Then the system is asymptotically stable with the Hx, performance y if, for known
matrices M, N and scalar B, exist matrices U, Va, Vg, Vc, Vp, Pj, Jj, and G},

Jj=1,2,...,r such that the following matrix inequalities hold
Aii <0, i=1,2,...,r, (556)
A,’j—}-Aj,'<0, i<j,i,j=1,2,...,r, (5.57)
with
B —P; * * ok % * 7]
0 —y21 x ok ok X
I I, M3 * = *
Ajj = [Li—VpCi —Ve H; — VpD; 0 —I % = 7
0 1 0
N[Va VB]|:Ci 0 N [ Vg VB]I:Dii| 0 0 Iy =
i 0 0 0 0I5 — %_
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and
A; 0 017
H1=Gj|:olo]+M[VA VB][C,O],
L
B; 0
Hz=Gj[0’}+M[VA VB][D},
1

M3 =-G; -G} + P+,
Iy = —BNU — BUTNT,
IIs =G; [?] - MU.
Moreover, the gain matrices of the H filter (5.3) are given by

Ap=U"'"V4, B =U Vg, Cp = Ve, Dp = Vp. (5.58)

5.2 Continuous-Time Systems

Consider the following continuous-time filtering error system:

V() = A@)Y (1) + BOW(Q),
e(t) = CO)Y (1) + DO)W(r), (5.59)

where A(9), B(#), C(6), and D(9) are the same as that in (5.4).

5.2.1 H., Performance Analysis

In [3], an H, performance analysis criterion has been presented for the filtering
error system (5.59), and it is recalled by the following lemma.

Lemma 5.3 Consider the filtering error system (5.59) and give a scalar y > O.
Then the system is asymptotically stable with the Hso performance y if there exist
matrices P(0) > 0, G, and S such that the following matrix inequality holds:

GA®) + AT©)GT  « .
BTO)GT 1 x x

P() — GT + SA®) SB(©®) —S — ST <0. (5.60)
C®) bey 0 -1

In this section, we first establish a new criterion for Hy filtering analysis.

Theorem 5.7 Consider the filtering error system (5.59) and give a scalar y > 0.
Then the system is asymptotically stable with the Hx, performance vy if, there exist
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matrices P(0) > 0, G(0), N(0), and S(0) such that the following matrix inequality
holds:

G©)AW®) + AT ©)GT () * * ok
BT6)GT(6) + N©)A©®) —y2I +N@©@)B®)+ BT OINT(6) * = o
—GT(0) + SO)A®) + P(6) —NT(©) + 5©)B®) 833 * ’
c©) D) 0 —I
(5.61)
where B3z = —S(0) — ST (9).
Proof Consider the following Lyapunov function:
V() =y @©)PO)Y (1), P(O) > 0. (5.62)
Then, the time-derivative of V (¢) is
Vi) =y OPOYO + ¥ OPOYQ@). (5.63)

Similar to the discrete-time case, the proof also considers three different approaches.
Approach 1:
From (5.59) and (5.63), it can be verified that
V() + e 0e) =y (w()
=9 T OPOY @)+ OPOW (@)
+(COY @) + DOWD) (COW 1) + DOWD) — y*w! (Hw(t)

0 0 P(©®)
=¢" (k) 0 —y2I 0 [+[C® D®) 01"[C®) D®) 01| ¢k,

PO O 0
(5.64)
Y (7)
where ¢(t) = v_v(t) .
Y (7)
From (5.59), one has
o o V(1)
[A@©) BO) —11¢(t) =[A®) B@®) —11| wt) | =0. (5.65)
V(1)

By Lemma 1.14 with
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0 0 P®
O=| 0 —y2I 0 |+[C®) D®) 01"[C®) D®) 0],
PO 0 0

N=[A®) B®) 11,
v =),
G®)]

and choose L = |:N (0) | in (1.20), if the following inequality
S©) |

0 —y2I 0 |+[C® D®)01T[C®) D®)0]
PO 0 0

|: 0 0 PO

T (5.66)
G(9) G(9)

+| N®) |[A®) BO) —11+[A®) BO) —I1T| NO®) | <O,

S(6) NG

ie.,
BT 0)GT )+ N@®)A®) —y2*I+N®)B®O)+ BT O)NT (9) *

—GT )+ SO)A®) + P®) —NT©)+ S©®)B®©) —50) — ST
+[C®) D®) 0171 C() D©) 01 <0,

{ GOA®) + AT ©)GT ) * * }

(5.67)
holds, we have V (¢) + e (t)e(r) — y2wT (Hw(t) < 0. Applying the Schur comple-
ment to (5.67) leads to (5.61). The equation V (1) + e’ (t)e(r) — y*wT ()w(r) < 0
which implies that

o0 o0
V (00) — V(0) +/ el (He(t)dr — yz/ wl w(r)dt < 0.
0 0
With zero initial condition v/ (0) = 0 and V (c0) > 0, we obtain fooo el (He()dt <

y? Jo° wT (t)w(t)dt, for any nonzero w(t) € L»[0, 00).

Approach 2:
From (5.59), we have

AO)Y () + B@O)w(t) — (1) = 0. (5.68)

Then, for any appropriately dimensioned parameter-dependent matrices G (6), N(0),
and S(6), it can be given

2T ()G ©O) + W N ®) + 47 (1)S©))

x (AO)W (@) + BOW() — (1)) = 0. (5.69)
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By combining (5.59), (5.62), and (5.69), one has

V() + el (De) — y*wl (Ow(r)
=T O POV @) +yT O PO (1)
+W TGO +wT (ON®) + ¥ T (1)S©9))
x (A@)y () + BOW) — ¥ (1))
+HAG V@) + BOw) — )"
x (¥ )G©) +wl ()N ©) + 97 (1)S6))"
H(CE@ Y @)+ DOWD)" (COW (1) + DOW®D)) — v2w! ()w(t)

0 0 P®
= vl (k) 0 —y2I 0 |+[C®) D®) 01T[C®) D®)0]

PO 0O 0

GO o <ON

+ | N©®) [[A®) B(O) —11+[A®) BO) —117 | N©®) v(k),
S(©) S(6)
(5.70)
v (1)
where v(t) = vy(t) .

v (1)

Obviously, it is observed that the matrix inequality (5.61) can guarantee the
negative-definiteness of (5.70).

Approach 3:
From (5.59) and (5.62), we have

V() + el (e) — y?wT (Hw(t)
=yTOPOW @) + YT OPOW @) + el (et) — y?wl (Hw(t)
= (A@)y () + BOw®) POV @) + v @) PO)(ABO) (1) + BOW®))
+HCOW®) + D(@)wq))T(é(ggwm +DOw®) = y*w (Ow()
PO)AO)+ A" (O)P (O * t
=lv'o WT(Z)][ “ I(§T)(9)P(9()) v —y211| K((t))i|
V() ]

Hy T w0 ][¢®) D©)] [C®) D®)] [w(r) ‘

(5.71)

Thus, V(1) + e (1)e(t) — y2wT (1)w(t) < 0 for any [lfv((t’)) ] £ 0if

P©)
0

. L 0 0
+[Cw®) DO [¢®) D©O)]+ [0 —y21:| <0.

T
} [A®) BO)1+[A®) B@O)]" [P(()Q)}
(5.72)

Then, by using Lemma 1.9 with
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= ~ Tr ~ ~ 0 0
T=[C® D®)]| [C®) DO)]+ [o —y21] ,

u-[25)

N(0)
G =50),
A=[A®) BO)],
_| P®)
P [ ¢ } .
and Schur complement, if the inequality (5.61) is satisfied, (5.72) holds. |

Remark 5.5 Compared with (5.60) in Lemma 5.3, (5.61) in Theorem 5.7 adds a
slack matrix variable N (0) and replaces single matrix variables to be determined by
parameter-dependent matrix variables. In other words, when N(6) = 0, G(0) and
S(0) are parameter-independent matrices, (5.61) in Theorem 5.7 reduces (5.60) in
Lemma 5.3. Thus it can be easily seen that (5.60) is a special case of (5.61) and the
condition in Theorem 5.7 is less conservative than that in Lemma 5.3.

5.2.2 Robust H, Filters Design

The following lemma gives an LMI-based design condition for H filter design of
the filtering error system (5.59), which has been presented in [3].

Lemma 5.4 [3]: Consider the filtering error system (5.59) with H(6) = 0 and give
a scalar y > 0. Then the system is asymptotically stable with the Hx, performance
y if, for known scalars by and by, exist matrices Py;, P2, and P3;j,i = 1,2,...,r,
F, F K, K, K, AF, BF, éF, and l_)F such that the following matrix inequalities
hold

FiA; + ATFl +b1BpCi + biCI BE * *
FA; —}-szFC,' —i—blA; bzAF —i—bzA_I]; *
BI'F!' + by DI BL BI'F] +b,D! BE —y2I
P — Fl + K1A; + BpC; Pl —Fl' + Ar KiB; + BpD;
Py — b KT + K2 A; + BrC; Py —byKT + Ap KB + BrD;
L; — DFC,' —CF —DFDi
* * % |
* * *
—Kl*—KlT S D<o =12y
—K)— K" —K — KT «
0 0 |

(5.73)
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Py * .
>0, i=12,...,r 5.74
|:P2i P3l} (.74)

Moreover, the gain matrices of the H filter (5.3) are given by
Ap =K 'Ap,Br = K™'Br,Cr = Cr, D = Dr.

With Theorem 5.7 in hand, we will develop another result for Hy, filtering which
improves that in Lemma 5.3. First, the inequality (5.61) can be rewritten as

. 0 0
1 AT©)000 -
0BT®) 100 )BEQ)_I
0 —1 010 0
0

0 0 001

I
A0
Al 0 <0, (5.75)
0
0

~ o oo O

0
1
0

0 * ¥k
GT®e) o k%
where A = 0 N@®) —y2I
P@®) S©B 0 0
C®O 0 D®) 0-I
Obviously, the matrix inequality (5.75) corresponds to the first equation in (1.22)
of Lemma 1.15 with

* K% K KX

0 * * % %
GT®) o %k %
U = 0 N@O) —y2I* % |, (5.76)
P@®) SO 0 0 =
C® 0 D®) 0-1
and
I 0 00
A0) B(O) =10
Pr=| 0 I 00 (5.77)
0O 0 10
0O 0 01
From (5.77), we can choose
P =[A®) —I B®) —10]. (5.78)

On the other hand, for another matrix Q, we divide into two cases, under which three
LMI-based conditions for designing the robust H, filter in (5.3) are given.

Case A:
Due to —1 < 0, we have the following inequality:
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0 * % ok %k 0
GT@®) o % % % 0
[00001] 0 N@®) —y2I % x 0] <o, (5.79)
P@®) SO 0 0 =% 0
CO 0 DO O0—I]||1
0
0
the matrix inequality corresponds to the second equation in (1.22) with 9+ = | 0
0
1
We can choose the matrix Q as
10000
07000
2=1001700 (5-80)
000170

Then, based on Lemma 1.15, (5.75) and (5.79) hold if the following inequality holds

0 * % %
GT®) o x %

* ¥ ¥ *

0 N@®) —y2I % +PT'xT®)0+ 0TX ()P < 0. (5.81)
P®) S® 0 0
C® 0 D® 0-1
Assume
F(©)
| M@®)
X () = E®) (5.82)
W)

Then, the inequality (5.81) is equivalent to

F()A®) + AT (O)FT (9) * ¥ x %
GT®O)+MA®) — FT@®) —M®) —MT®O) * x =x
BT@O)FT(0) + E(0)A®H) T3 Tz % x | <0, (5.83)
P(©) — FT(~9) +W(@O)A®) Y42 T3 Yaq *

C ) 0 D®) 0 —I

where
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E®) + BT )M 9),

Y33 = —y2I + E@©)B©) + BT (0)ET (),

Ty = S(O) —

W) — M" ),

a3 = —ET(6) + W(©O)B(©),

Ty = —-W(O) —

wT o).

We partition these matrices as

P@©O) =

FO) =

W) =

[ P(®)

Pllj %
| e prer ) = lZZ” o

-FI(Q) blKi| ZZrle I:Flj b]Ki|
| F2(0) b K jfl Fj oK

[ W16) K Wi
REH X

E@©) =[E(6) b3K | = Ze,»[El,- b3K ],

G®) = [

SO) = [

j=1
G10) G2 ]~ , [Gij Gy
G3(6) G4<9>] = ;9-’ [st G4j]

510) 0)] _ ~, [S1; 2
53(0) &(9)} = ;e, [Ssj 54]} ’

N(©) = [N1(0) Na(©)1=D_0;[ Nij Naj 1.

M@) = [

M>(0) bsK

j=1

M>; bsK

M, (0) b4K] :ie‘ [Mlj b4K]'
j=1 '

Let Ap = KAp, BF = KBr,Cp = Cp, and Dy = Dp, by substituting the above
matrices P(0), F (), W(0), E(0), G®), S(0), N(@©), and M () into (5.83) and by
considering the uncertainty set (5.2), we can obtain the following design conditions
for the robust Hy filter in (5.3).

Theorem 5.8 Consider the filtering error system (5.59) and give a scalar y > 0.
Then the system is asymptotically stable with the Hx, performance y if, for known
scalars by, by, b3, by, and bs, there exist matrices Py;j, Paij, P3ij, G1j, G2j, G3j,
Gajs S1js S2j5 83j5 Sajs Nijs Noj, Frj, F2j, Myj, Maj, Wi, Waj, and Eyj, 0, j =

L2,...,

r, K, Ar, BF, CFr, and DF such that the following matrix inequalities hold
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Plij * ..
>0, i,j=1,2,...,r, (5.84)
[PZij Psij /
In;; <0, i=1,2,...,r, (5.85)
M+ <0, i<j,i,j=12,...,r (5.86)
with
r I * *
FrjA; + by BrC; +b1A£ AR +b2A£ *
I3 EY) —My; —MlTj
O = M4 42 —Maj —baK”
Y Is) Ms; Ms3
PllJ—F +W1]A + BpC; lej FT+AF slj—wlj—MlTj
Pojj —b]K + YVQJA, + BrC; Psij —b2{<T +AfF S35 — Wy —b4KT
L L; — DpC; —Cr
ES * * * k
* *k * k k
* * * * %k
—bsK —bsKT * * * ok
l_[54 l_[55 * * * ’
Spj—K —Mj;  Tgs —WIJ—WITZ £ x
S4j — K —bskT g5 —Wpj — KT 77 *
0 H; — DpD; 0 0 —I |
where

My = FijA + AT FlL +b11§’FC +b1Cl.Tl§;,
IT3) —Gl +M1JA +b4BFCl —F1
H32—G3‘+b4AF_ 2j5

M4 = G3; + MajA; + bsBrCi — b1 KT,

My =Gy, +b5AF—b2KT

Il5; = E1JA +b3BFC, +BT +b1DT
H52—b3AF+BTFT +b2DT %

IMs3 = Nyj — E1]+BlM + by Dfég

Ms4 = Naj — b3K + BT MJ. + bsD] B,
H55=—)/21+E113 + B; E +b3BFD +b3DT
Igs = Wy B; + BpD; — El/’

[T75 = Wy B; +BFD —b3K

My = —-K — KT.

]a
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Moreover, the gain matrices of the H, filter (5.3) are given by
Ar = K7]AF, Br = Kﬁlé[:, Cr = CF, Dp = DF.

Case B:
Due to —y2I < 0, we have the following equation:

0 * * ok

GT®) o % %

[00700] 0 N@®) —y?I
P@®) S©O 0 0

C® 0 D®) 0-1

<0,

* K% ¥ ¥
SO ~NO O

the matrix inequality corresponds to the second equation in (1.22) with Q-+ =

Then, we can choose the matrix Q as

10000

07000

Q= 0001710

00001

In this case, (5.81) is equivalent to

11 * * * *
T2 —M(©) — MT(6) * * *
BT@O)FT@®) N@O)+BTOYMT@©O) —y2I * *
T4 S©)—E®) —M"©) E@)BO) Yu  *
C@O)+ W(O)A®) —W(@®) Ys3 —-WwW@®) —1I

where
T = FO)A®) + AT(O)FT (),
To1 = GT () + M©)A®©®) — FT(6),
Y41 = P(0) + E(0)A©®) — FT(9),
Y44 = —E©) — ET(0),
Y53 = D(0) + W(O)B(0).

We partition these matrices as

(5.87)

(5.88)

SO ~NO O

(5.89)

<0,

(5.90)
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(PO * ] ~~,, [Puo*
P®) = [Pz(g) P3(9)} = ;;9,9, [PZU P&J > 0,

RO 0K ~, [FijbiK
F@©) = |:F2(9) b2K1| - Zlgj I:sz' sz:| ’
j:

W(©) =[Wi(6) 01= D" 0,[W1, 0],
j=1

. [ E1(0) b3K . . | E1j bsK
EO =1 g0 b4K} = Z;e, |:E2j bm]
I =
_[616) G2 _ <, [ G Gaj
“O =160 G4(9)] = ;9’ [st qu]

510 0] _~, [Si; S
SO =1 50) S4(9)} =29 [S3j' Sﬂ :
J

=1

N () =[Ni1(6) N2(®)1=D_0;[ Nij Naj ],
j=1

_[Mi0)bsK| _ ~, [ Mij bsK
M©) = I:Mz(@) b6K] o Zlej |:M2j b6K1| ’
j:

Let Ap = KAp, BF = KBp,Cr = Cp, and D = Dp, by substituting the above
matrices P(0), F(0), W(0), E©0), G(#), S@), N(0), and M () into (5.90) and by
considering the uncertainty set (5.2), we can obtain the following design conditions
for the robust Hy filter in (5.3).

Theorem 5.9 Consider the filtering error system (5.59) and give a scalar y > 0.
Then the system is asymptotically stable with the H~o performance y if, for known
scalars by, ba, b3, bs, bs, and be there existmatrices Py;j, Pajj, P3ij, Gij, G2j, G3j,
Gajs S1j:82j5 S3j5 Sajs N1ju Naj, Frjy Faj, Myj, Maj, Wi, and By, iy j = 1,2,
....r, K, Ar, Br, Cr, and D such that the following matrix inequalities hold

Pyij  * ..
>0, i,j=1,2, ..., 591
[PZij Ps;j b : >91)
iy <0, i=12,...,r, (5.92)
ij+Tji <0, i<j, i,j=12,...,r (5.93)

with
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' * *
Iy b2AF+b2A; *
I'31 G§j+b5AF—ng _Mlj_MlTj
- T4 G{j +beAp —byKT  —My; —bsKT
ij = T T T npT T T T npT
B] TFlj +b1D] Bf BiTsz +Tb2Di Bf Tss )
Pli./—F1j+E1in+b3B{7Ci P2ij_F2j+b3A1‘: Slj_Elj_Mlj
Pyij — b1 KT + EpjA; +byBrCi Pyjj —baKT +byAp S3j — Eaj —bsKT
L Li = DpCi + W1 jA; —Cr Wi
* * * x ok
* * * ok
* * * x ok
—bgK —bgKT * * * %
I'sq —y2] * * ok
Sj — b3K —Msz Tes —Eij —ElTj k%
S4j—b4K—b6KT I'75 —E2j—b3KT I'77 *
0 I'gs —Wy; 0 —I |
where

Ty = F1jA; + b1 BFCi + AlTFlTJ + b I BL,
To1 = F2;A; + boBpCi + b1 AL,

'3 = GlTj + M jA; + bsBpC; — FlT]
41 = Gsz + My A; +beBpCi — b1 KT,
Ts3 = Nyj+ B MT. + bsDI B,

I'sq = Noj + BiTMZj + bﬁDiTB;:,

Ues = E1;B; +b3l:}FDi,

I'75 = E2jB; + by Br D;,

77 = —byK — byKT,

I'ss = H; — DpD; + Wy B;.

Moreover, the gain matrices of the H filter (5.3) are given by
Ap =K 'Ap,Br = K 'Bp,Cr = Cr, Dr = Dp. (5.94)

Theorems 5.8 and 5.9 present new conditions for designing the H, filter (5.3), which
introduces more auxiliary matrix variables than Lemma 5.4. Compared with Lemma
5.4, the proposed design conditions in Theorems 5.8 and 5.9 are less conservative.
The following theorem is introduced to describe the relationship between Lemma
5.4 and Theorems 5.8 and 5.9.

Theorem 5.10 [fthe condition in Lemma 5.4 is satisfied, the conditions in Theorems
5.8 and 5.9 are also feasible.

Proof The proof from Lemma 5.4 to Theorem 5.8 directly follows the proof of

Theorem 5.5. In the following, we give the proof for Lemma 5.4 to Theorem 5.9.
For simplicity, we first consider the H, performance analysis criterions (5.60) and

(5.90). Note that when G(9) = F(0) = G, S(0) = E(0) =S, W) = N(@©) =0,
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the inequality (5.90) recedes to (5.60). Defining M(0) = M = |:b6OK b?[(] and

follows the proof of Theorem 5.5, it completes the proof. O

5.3 Numerical Example

To illustrate the effectiveness of the proposed filter design methods, we consider
a numerical example. The example has been discussed in our earliest work [2].
Consider the discrete-time system (5.1) with the following parameters [3, 6]

a0 =115 Bo=]"):
C®)=[—-10010], D@ =][01],
L@®)=[10], H(®) =0,

where § is the uncertain parameter satisfying |6] < 0.45. This uncertain system can
be modeled with a two-vertex polytope. Now, we consider the design problem of the
Hy filter (5.3) for this system.

By using Lemma 5.2, [5, 6], the minimum Hy, performances ymin = 1.7030,
Ymin = 2.1558, and ymin = 3.2065 are obtained, respectively. However, apply-
ing Corollary 5.1 with by = —1.37,b, = —0.20,b3 = —4.40,b4 = 1.25, and
bs = 0.28, we can find the minimum Hy, performance ymin = 1.6355. From this
comparison, it can be seen that the filter design condition in Corollary 5.1 is much
less conservative than the existing results. Of course, the effect of Theorem 5.2 is
better from theoretical point of view.

5.4 Conclusion

In this chapter, the problem of robust H filtering has been studied for both discrete-
time systems and continuous-time uncertain systems based on the parameter-
dependent Lyapunov function approach. Sufficient design conditions for the Hy,
filter have been proposed in an LMI framework, which guarantees the filtering error
system to be asymptotically stable and has a prescribed Hy, performance. Compared
with the existing results concerning H filter design, the proposed conditions are
less conservative. Besides, these are proposed design conditions which are obtained
by introducing more auxiliary matrix variables, the LMI decoupling approach has
also been applied to design robust Hy filters. One should note that in the new design
conditions which are given by the LMI decoupling approach, the structures of added
auxiliary matrix variables are free. It seems that the LMI decoupling approach might
produce less conservative design results.
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Chapter 6
With Other Types of Uncertainties

Abstract This chapter studies the problems of output feedback Hy, control and
filtering for discrete-time linear systems with other types of uncertainties. Unlike
usual polytopic uncertainties and norm-bounded uncertainties, this chapter is toward
systems with feedback uncertainties and Frobenius norm-bounded uncertainties.
Attention is focused on the design of an output feedback controller (filter) such
that the closed-loop system (filtering error system) preserves a prescribed Hy, per-
formance, where the system matrices or the controller (observer, filter) to be designed
are assumed to have gained variations. Sufficient conditions for the Hy, controller
(filter) design are proposed in terms of LMIs. When these LMIs are feasible, an
explicit expression of the desired controller (filter) is given. Numerical examples
will be given to show the efficiency of the proposed design methods.

Keywords Discrete-time systems - Feedback uncertainties - Frobenius
norm-bounded uncertainties - Linear matrix inequalities (LMIs)

6.1 With Feedback Uncertainties

6.1.1 Robust Output Feedback H, Control

6.1.1.1 For Typel

Consider the following linear discrete-time system:

x(k+1) = A(I = XaAa(k)Ya) "' x(k) + B(I — XgAp(k)Yp)  u(k)
+ E(I — XpAp(h)Yp) 'wik),
2() =C1(I = Xc1Ac1 (Y1) x(k) + D(I — XpAp()Yp) ™ uk)

X.-H. Chang, Robust Output Feedback H-infinity Control and Filtering for Uncertain 191
Linear Systems, Studies in Systems, Decision and Control 7,
DOI: 10.1007/978-3-642-55107-9_6, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 6.1 Feedback E A H
uncertainty (Type I) H H T
C

+ F(I - XFAF(k)YF)qW(k),

y(k) =Co(I = Xeahea(k)Yer) ™ xk) + H(I = Xu Ap(R) Vi)~ wik).
6.1

where x (k) € " is the state variable, u(k) € %" is the control input, w(k) € %/
is the noise signal that is assumed to be the arbitrary signal in />[ 0, 00), z(k) € Z#4
is the controlled output variable, and y(k) € %" is the measurement output. For
system matrices 8 = A, B, E, C;, D, F, C2, H, Xg, and Yg are constant
matrices with appropriate dimensions, Ag(k) are uncertain matrices bounded such
as Ag(k)A,g(k) <.

Remark 6.1 In the uncertain system (6.1), the uncertainties is referred to as a type
of feedback uncertainties. This type of uncertainties can represent low frequency
errors produced by parameter variations with operating conditions and aging [16].
The block diagram for representation of the type of feedback uncertainties is given
in Fig 6.1, in which the symbols E, H, and F are nothing to do with the system
matrices.

For simplicity, we can rewrite (6.1) as follows:

x(k + 1) = ASpx(k) + BSgu(k) + ESpw(k),
z(k) = Ci6c1x(k) + Dépu(k) + Fopw(k),
y(k) = Cadcax (k) + HSgw(k), (6.2)

with 85 = (I — XpApk)Ys) ™', B=A, B, E, C, D, F, Cy, H.

For the output feedback Hy, control of the system (6.1), we only study the static
output feedback control in this chapter. Let us consider a static output feedback
controller

u(k) = Ky(k) = K (C28cax (k) + Hépw(k)), (6.3)

then, the closed-loop system is given as

x(tk4+1) = ASax(k) + B5BK(C26czx(k) + H(SHW(k)) + ESgw(k),
z(k) = C18c1x(k) + D5DK(C2(Sczx(k) + HSHW(/()) + Fépw(k). (6.4)

In this chapter, for the closed-loop system (6.4), we only consider the case D = 0 to
design the output feedback controller (6.3)
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First, by following the known conclusion given in Theorem 2.1 for designing the
static output feedback controllers, we can see that the closed-loop system (6.4) with
D = 0 is asymptotically stable with the H,, performance y if there exist matrices
P,G,J,M,N,V,and U, scalar  such that

—P * * * * *
0 —2I * * * *
GASA +MVCrécy GESg+MVHSy 9Y+J * * *
SCi8¢ SFSp 0 —S—sT+1 % « |=0
NV Ciécr NVHéSy 0 0 DI
0 0 0 0 Pl —ﬁiz
(6.5)
holds, where
4 =-G-G" +P,
¥ =—BNU — BUTNT,
¥, =GBép— MU.
On the other hand, by Lemma 1.16 with
A=1, B=-XgAgtk), C=1 D =Yy,
we have
—1
Sp = (I — XﬂAﬂ(k)Yﬂ)
-1
=1+ XgAp(k)(I — YpXgAp(k))™ Yg
=I+vg, B=A, B, E, C, F, (3, H. (6.6)
By considering the description in (6.6), (6.5) can be rewritten as
—P k * k * k
0 —yzl * * * *
GA+MVCy GE+MVH 94+J * * *
SC, SF 0 —-S—ST+1 s *
NVC, NVH 0 0 pof *
0 0 0 0 GB-MU — é
0 * * ok k%
0 0 * %k ok %
GAvy +MVCyvey GEvg+ MVHvyg 0 % % %
SCyvci SFvg 00 % =
NVCoveo NV Hvy 00 O =
0 0 0 0 GBvg O

=0+ XAKAKY +YTAT(R)AK)XT <0,
(6.7)
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where
B —P * * * *
0 —y21 * * *
GA+MVCy, GE+MVH 9+J * *
©= sC SF 0 —s—ST+1 =«
NVC, NVH 0 0 ol
0 0 0 0 GB - MU
0 0 0 0 0 0 0
0 0 0 0 0 0 0
y_|GAXa 0 GExg 0 0 MVCyXco MVHXy
0 0 0 SCiXc1 SFXF 0 0
0 0 0 0 0 NVCyXcp NVHXpg
| 0 GBXz 0 0 0 0 0
CALk) 0 0 0 0 0 0 ]
0 Apgtk) O 0 0 0 0
0 0 Ag(k) 0 0 0 0
Ak =] 0 0 0 Aci(k) 0 0 o |,
0 0 0 0 AFr (k) 0 0
0 0 0 0 0 Ack) 0
L0 0 0 0 0 0 Ayk)
TA ) O 0 0 0 0 0
0 Agk) 0 0 0 0 0
0 0 Ag(k) 0 0 0 0
Ak)=| 0 0 0 Acik) O 0 o |,
0 0 0 0 A (k) 0 0
0 0 0 0 0 Aca2k) O
L 0o 0 0 0 0 0 Ap® |
Ag(k) = (I —YpXgAg(k)) ™', B=A, B, E,C1, F,Cy, H,
Y4 0000 0]
0 000Yg0
0 Y£00 0 0
Y=|Ycy 00000
0 Yr00 0O
Yco 0 0000
| 0 Y500 0 0]

Applying Lemma 1.11 for a scalar ¢ > 0, it follows that:
XAKWAKY +YTATR) AR XT < 1XXT + YT AT (W) AK)Y.

By Schur complement, the matrix inequality (6.7) can be guaranteed by

* % X X ¥

(6.8)
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® * *
|:XT —el * } <0.
Y 0 —(eAT(R)AK)

It is worth noting that

—(eAT k) AK) !
=AYk 1A (k)
—A k)= AT (k) + el

IA

(A 0 0 0 0 0 0
0 AR'tk) 0 0 0 0 0
0 0 Az 0 0 0 0
= — 0 0 0 Agb 0 0 0
0 0 0 0 Az 0 0
0 0 0 0 0 Agk) 0
.0 0 0 0 0 0 Ay
AN 0 0 0 0 0 0
0 Azl 0 0 0 0 0
0 0 A 0 0 0 0
— 0 0 0 Ag b 0 0 0
0 0 0 0 A 0 0
0 0 0 0 0 Agk) 0
.o 0 0 0 0 0 Ay
Dyuk) 0 0 0 0 0 0 ]
0 ®gk) O 0 0 0 0
0 0 ®gk) O 0 0 0
= 0 0 0 &citk) O 0 0
0 0 0 0 ®pk) O 0
0 0 0 0 0 ®cak) 0
0 0 0 0 0 0 duk |
[ ds(k) O 0 0 0 0 0 ]
0 &k O 0 0 0 0
0 0 ®gk) O 0 0 0
+| 0 0 0 ®cik) O 0 0
0 0 0 0 o&pk) O 0
0 0 0 0 0 ®cak) 0
0 0 0 0 0 0 Duk |

where (Dﬂ(k) = YﬁXﬁAﬂ(k), B=A,B,E,C,F,Cy, H.
Moreover, one can be known that

195

(6.9)
(k) |
-T
+ el
(k) |
T
—2I +¢l,
(6.10)
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FAs(k) 0 0 0 0 0 0
0 Apk) 0 0 0 0 0
0 0 Agk) O 0 0 0
Ak) = 0 0 0 Acitk) 0 0 0 , AAT (k) < I
0 0 0 0 Ap(k) O 0
0 0 0 0 0 Acxk) 0
| 0 0 0 0 0 0 Apk) |
(6.11)
Then, based on Lemma 1.11 with a scalar € > 0, from the end of (6.10), we have
[YaX4 O 0 0 0 0 0
0 YgXg O 0 0 0 0
0 0 YeXg O 0 0 0
0 0 0 YciXer O 0 0 Ak)I
0 0 0 0 YrXrp O 0
0 0 0 0 0 YoXcr O
o 0 0 0 0 0 YyXu |
(Y4X4 O 0 0 0 0 o 17
0 YpXp O 0 0 0 0
0 0 YgXg O 0 0 0
+ IAT (k) 0 0 0 YoiXer O 0 0 —2I +¢l
0 0 0 0 YrXFp 0 0
0 0 0 0 0 YoXc2 O
.o 0 0 0 0 0 YuXuy |
<2l +el+&8'xXxT &1, (6.12)
where
(YaXa O 0 0 0 0 0
0 YgXp O 0 0 0 0
0 0 YgXg O 0 0 0
X = 0 0 0 YcoiXer O 0 0
0 0 0 0 YrXF 0 0
0 0 0 0 0 YoXes O
|0 0 0 0 0 0 YuXy |

Obviously, (6.9) is satisfied if the following matrix inequality holds

® *
XT —¢r o
Y 0 2I+el+&'XXT +51

I % %

< 0. (6.13)

Using Schur complement to (6.13), it yields
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Fig. 6.2 Feedback E A H
uncertainty (Type II) H H T
+ —‘J F
® % * *
xT —el * *
Y0 20teltEl < 0. (6.14)
0 0 xT &l

So far, the design condition for the static output feedback H, controller (6.3) is
generalized in the following theorem.

Theorem 6.1 Consider the closed-loop system (6.4) with D = 0 and give a scalar
y > 0. Then the system is asymptotically stable with the Hx, performance y if, for
known matrices M, N and scalar 8, exist matrices U, V, P, J, and G, scalars & and
& such that LMI (6.14) holds. Furthermore, the static output feedback Hso controller
gain matrix in (6.3) can be given by

K=U"v. (6.15)

6.1.1.2 For Type II

Consider the following discrete-time linear system

x(k+1)=(I = XaAa()Ya) ' Axk) + (I — XpAg(k)Y5) ™ Bu(k)
+(I = XeAp(®)YE) " Ew(k),
20y = (I = Xc1Ac1(Yer) ™ Crxk) + (I — XpAp(K)Yp) ™ Dulk)
+ (I = XpAr(®)YE) ™ Fuw(k),

y(k)y = (I — XczAcz(k)Ycz)_lCz)C(k) + (1 - XHAH(k)YH)_lHW(k)-
(6.16)

Remark 6.2 In the uncertain system (6.16), the uncertainties are referred to as a type
of feedback uncertainties. This type of uncertainties can represent low frequency
errors produced by parameter variations with operating conditions and aging [16].
The block diagram for representation of the type of feedback uncertainties is given
in Fig 6.2, in which the symbols E, H, and F are nothing to do with the system
matrices.

Remark 6.3 In the uncertain system (6.16), the type of feedback uncertainties can
be apply to handle a class of nonlinear systems by using an uncertain linear model.
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The following modeling procedure is given to clarify this point.
x1(1) = x2(1)

= =98N0 +6x20)
X2 (1) = 4 — 3cosz(x1(t))

+w(t)

4

x1(t) = x2(t)
(4 = 3c082(x1(1)) )i2(0) = =9.8x1(1) + 6x2(0) + (4 = 3cos?(x1 (1)) )w()

4

x1() = x2(1)
(1 — %cosz(xl(t)))xz(t) = —%xl(t) + gxz(t) + (l — %cosz(xl(t)))w(t)

4

1 0 o | [ 0
01— 3cos?(x;(0) | [ 22 |~ [ 28

0
+ 1—3 cosz(xl(t)) w(n

Al

anl 1 0 o 17ao
X2(0) | 7 01— 2cos?(x1(1) ~28 8 1| 220
1 0 - 0 .
+ 01— %cos2(X1(t)) 1- %cosz(xl(t)) w(t)
4
a0nl 0 T o 1o 0
|:x2(t)i|—(l—|:%i|A(t)[0 1]) [_% %][XZ(I)}_F[l]W(t).

Similar to the system (6.1) with a static output feedback controller, we give the
following closed-loop system for the system (6.16)

x(k 4 1) = 84 Ax(k) + 85 BK (8c2C2x (k) + 85 Hw(k)) + 8 Ew(k),
2(k) = 8¢1Cix(k) + 8p DK (Cadcax (k) + 8 Hw(k)) + 85 Fw(k). (6.17)
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where 85, B = A, B, E, Cy, F, C2, H are defined in (6.2).

For the the closed-loop system (6.17), it is asymptotically stable with the Hy
performance y if there exist matrices P, G, J, M, N, S, V, and U, scalar  such
that

—P * * * * *
0 —)/21 * * * *
GSpA+MVScrCy GSEE+MVSyH 9+ 7 * * *
$8¢1C SSpF 0 —s—sT+71 %+ « |=0
NVscrCr NVéyH 0 0 2 *
0 0 0 0 o)) —ﬂiz
(6.18)
holds, where
4 =-G-GT +P,
¥ = —BNU — BUTNT,
¥y =GégB — MU.
Combining (6.6), the matrix equality (6.18) becomes
—P * * * * *
0 —yzl * * * *
GA+MVCy, GE+MVH 9+1J * * *
SCy SF 0 —-S—-ST+1 * s
NVC, NVH 0 0 > *
0 0 0 0 GB—- MU - é
0 * * k% k%
0 0 * ok ok Xk
GVAA+ MVvcerCy GvgE+ MVvgH 0 % % %
SVC1C1 SVFF 00 * *
NVveaCy NVvgH 00 0 =
0 0 0 0 GvgB 0
=0+ XAKAKY +YTAT)AKXT <0,
(6.19)
where A(k), A (k) are the same as (6.7), and
—P * * * * *
0 —y2I * * * *
GA+MVC, GE+MVH 9G+J * * *
= SCy SF 0 —-S—-ST+1 * x|
NVC, NVH 0 0 poN *
0 0 0 0 GB—-MU -4
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
X — GX4 0 GXg O 0 MVXcr MVXy
- 0 0 0 SXc1 SXp 0 0 ’
0 0 0 0 0 NVXce NVXy
L 0 GXp O 0 0 0 0
[ YaA 0 00 0 O]
0 0 0 0 YgB O
0 YEE O 0O O O
Y= Yc1Cy 0 00 0 O
0 YrF 0 0 0 O
Yo Cr 0 00 0 O
| 0 YyH 0 0 0 0]

Following the same derivation of Theorem 6.1, we can establish the following robust
output feedback Hy, control design result for the the closed-loop system (6.17).

Theorem 6.2 Consider the closed-loop system (6.17) with D = 0 and give a scalar
y > 0. Then the system is asymptotically stable with the Hy, performance y if, for
known matrices M, N and scalar B, exist matrices U, V, P, J, and G, scalars € and
€ such that LMI (6.14) holds. Furthermore, the static output feedback H~o controller
gain matrix in (6.3) can be given by (6.15).

6.1.2 Robust H., Filtering

Consider the following discrete-time linear system
For Type I

x(k+1)=A(I — HyAs(K)Ea) ' x(k) + B(I — HsAg(K)Ep) ™~ w(k),
y(k) = C(I = HeAc(K)Ec) ™ x(k) + D(I — HpAp(k) Ep) ™ wik).
(k) = L(I — HLALMK)EL) ™ x(k), (6.20)

For Type II

x(k+1) = (I = HyAa()Ex) " Ax(k) + (I — HpAg() Ep) ™ Bw(k),
y(k) = (1 - HCAC(k)Ec)_ICX(k) + (1 — HDAD(k)ED)_IDW(k),
2(k) = (I — HLAL(K)EL) ™ L (k), (6.21)
where x (k) € %" is the state variable, w(k) € Z™ is the noise signal that is assumed

to be the arbitrary signal in /5[0, ©0), z(k) € %1 is the signal to be estimated,
and y(k) € %/ is the measurement output. A € Z"*", B € %"V, C € #/*",
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D € #7*Y and L € #9*" are system matrices. For § = A, B, C, D, L,
Hg, and Eg are constant matrices with appropriate dimensions, Ag (k) are uncertain
matrices bounded such as Ag (k)Ap(k) < I.

In this section, we consider the following filter to estimate z(k):

xp(k+1) = Apxp(k) + Bry(k), (6.22)
2p (k) = Crxp (k) + Dy (k),

where xp (k) € Z" and zp (k) € 27 are the state and output of the filter, respectively.
Ap € BN, By € B, Cp € #7", and Dp € #9*/ are to be determined
filter gain matrices.

x (k)
xr (k)
zr (k), we can obtain the following filtering error system:

By defining the augmented state vector ¥ (k) = |: i| and e(k) = z(k) —

Yk +1) = Ay (k) + Bw(k),

e(k) = Cyr (k) + Dw(k), (6.23)
where
For Type I
i A(SA O Do B(SB
A_I:BFCSC AF]’ B_[BFD(SD]’
C=[Léy — DrCé¢c —Crl, D=—-DpDép,
For Type I
i SAA 0 = égB
A_|:BF5Cc AF:|’ B_[BF(SDD]’

C=[68.L—DpscC —Crl, D=— DpépD,

with §g = (I — HﬁAﬁ(k)Eﬁ)_l, B=A,B,C,D,L.
For the filtering error system (6.23) and a given scalar y > 0, if there exists a
matrix P > 0 satisfying

—P % * %
0 —y*I * *
GA GB —-G-GT+pP " <0, (6.24)

then the prescribed Hy, performance y > 0 is guaranteed. The auxiliary matrix
variables G and M provide extra free dimensions in the solution space for the Hxo
filtering problem. To facilitate the design of Hy filters, we partition P and G in the
following blocked matrices:
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Py
=0 n)

|G G2
G = [G3 Gz}, (6.25)

and G is nonsingular without loss of generality.

In sequel, with (6.24) in hands, we will derive conditions for designing the filter
(6.22) such that the filtering error system (6.23) is asymptotically stable with Hyo
performance y . In the following, we will treat Type I and Type II separately.

6.1.2.1 Typel

Combining (6.23), (6.24) for Type I and defining Ar = GyAp, BF = G2BpF,
Cr=MCp,and D = M DFp, we obtain

—P * * * *
—P —P3 * * *

0 0 —)/21 * * *
G|ASA + BpCs¢ Ap G|BSg+BrpDSp —G -Gl +P % =« <0,
G3A5A+_BFC5C AF_ G3Bép + BrDép —G3—G§+P2 Bs5 *
MLS;, — DpCéc —Cpg —DpDdp 0 0 Eep

(6.26)
where

Bss = —Go — GI + Ps,
Hee = —M — MT+I

As (6.6), we can know that

8 = (I — HpAp(k)Eg) ™"

= I+ HpAg(b)(I — EgHgAp(k)) ' Eg =1+, B=A,B,C,D, L.
(6.27)

Then, it knows that the inequality (6.26) is equivalent to

—P; * * * * *
—P> —P3 * * * *

0 0 —y2I * * %
GiA+BrC Ap GB+BrD —Gi -Gl +P x x
G3A—|—1§FC AF G3B+BFD —G3—G§+P2 Hss  *
ML —-DpC —Crp —DgD 0 0 Eeo
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0 * * * k%
0 0 * % k%
i 0 ) 0 0 . * ok %
G]AUA—I—@FCVC 0 GIBVB+BiFDVD 0 * =*
G3Avy + _BFCUC 0 G3Bv§ + BrDvp 0 0 =«
MLv; — DpCve O —DrDvp 000
—P; * * * * *
) —P3 * * * *

0 0 —yz{ * * 0k
GiA+BrC Ar GIB+BrD -G —G|+P x x
G3A+BrC Ap G3B+BrD —G3—Gi+ P, Es5 x
ML—DFC —CF —DFD 0 0 366

+ XaAp (k) (I - EAHAAA(k))_lYA +Yi(I- EAHAAA(k))‘TAQ(k)XAT
71 —

+ XpApk)(I — EgHpAp(k))” Yp+ Y4 (I — EgHpAp(k)) AT xT
-1 -T

+ XcAc()(I — EcHeAc ()™ Yo + Y5 (I = EcHeAc(k)) ™ AL()XE-

+ XpAp()(I — EpHpAp(k) ™ Yo + Y5 (I — EpHpAp(®) ™ AL ()X

-+XLAL@)U-ELH@ALm»“n,+Y[ax—ELHLAL@»*TA{GQXQ

(6.28)
where

Xp= , Ya=[EA00000],

Xp = , Yp=[00E000],

Ye=[Ec00000],
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l:?FDHD , Yp=[00EpO00O],

Y. =[EL00000].

0
0
0
0 )
0
L

It should be noted that different from the robust output feedback H,, control design
presented in Sect. 6.1.1, for the of partition of matrix inequality (6.26), we use an
independent partition law for each uncertain term. Obviously, such partition law may
bring less-conservative design results.

By Lemma 1.11 for positive scalars €4, €p, &c, €p, and €1, we have

—1 -T
XpAp(k)(I — EgHgAp(k))™ Yg+ Y4 (I — EgHpAp(k)) ™ Af(K)Xj
1 -T -1
< 5Xﬁxg +epYy (I — EgHgAg(k))™ (I — EgHpAg(k))™ Yp,
ﬁZA,B,C,D,L. (629)

Then, (6.28) holds if the following condition is satisfied:

_Pl * * * * *
—P —P3 * * *oOX

0 0 —y2I * * %
GlA-i-BFC AF G]B+BFD —Gl—G1T+P1 * *
G3A+BFC AF G3B+BFD —G3—G2T+P2 Hs5 %
ML —DyC —Crp —DgD 0 0 Egs
—1

+ L XAXT +ea¥] (1 — ExHAOMA(K) ™ (I — EAHAAA(K)) ' Ya,

+ - XpX] +epY] (I — EgHpAp(k) ™ (I — EgHgAp(k)™ Y,

+ XX +ecYE (1= EcHeAc(k) ™" (I — EcHeAc(h) ™' Ye,

+ L XpXD +epY] (I — EpHpAp(K) ™" (I — EpHpAp(K) ™ Y,
+ X XT e y] (1 ELHLAL()) (I — ELHLAL(K) 'YL < 0.

(6.30)
By Schur complement to (6.30), which leads to
O *  x
O O x* < 0, (6.31)

O3 0 B33
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where
B —-P * * * * %
—P —Ps * * * *
0 0 —7/2{ * * %k
O=|GA+BrC Ar GB+BrD —G -Gl +P * = |’
G3A+1_§FC AF_ G3B:|—BFD —G3—G£+P2 Hss5 *
_ML—DFC —CF —DFD 0 0 66
[0 0 0 HYATGT HIATGT 0
0 00 HIB'GT H}BTG] 0
©1=|0 0 0 HICTBL HICTBI —HICTDL |,
000 HID'BI HIDTBL — HIDTDI
[0 00 0 0 HI'LTMT
[ —eal 0 0 0 0
0 —epl O 0 0
O = 0 0 —ecl 0 0 s
0 0 0 —epl O
0 0 0 0 —el
[E4 0 0 0 0 O
0 0 Ep 00O
@g]: EC 0 0 O 0 0 5
0 0 Ep 00O
| EL 0 0 00 0]
4 0 0 0 0]
0 %5 0 0 O
@33: 0 0 g\(j O 0 3
0 0 0 %p O
00 0 0 7|
and

1
5= _8—(1 — EgHgAg (b)) (I — EgHpAp(k))", B=A,B,C,D, L. (6.32)
B

N

By Lemma 1.17, it is worth noting that

Ty =—(I — ExHalp(0))eg ' I(I — EgHgAp(k))"

1
<epl =21 + %EﬁHﬁHﬁTEg +eppl,B=A,B,C,D,L.  (633)
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Then, (6.31) can be guaranteed by

@11 % %
®21 Opn  * <0, (6.34)
O3 0 E+ Ea
where
[(ea —2+ean)l 0 0 0 0
0 (ep —2+e¢epp)I 0 0 0
0 0 (ec —2+€co)l 0 0 .
0 0 0 (ep—2+¢€pp)l 0
L 0 0 0 0 (er, —2+e¢erp)I
Ba =
[ s-EsHAHE} 0 0 0 0
0 - EpHpHJE} 0 0 0
0 0 e EcHCHEEL 0 0
0 0 0 - EpHpH}E], 0
L 0 0 0 0 -E H H[E]

Teaal 0 0 0 0 77

0 8331 0 0 0
0 0 eccl O 0
0 0 0 5DD1 0
0 0 0 0 SLLI
EsHy O 0 0 0

0 EgHp O 0 0

0 0 EcHc 0 0

0 0 0 EpHp O

0 0 0 0 ErHL |

Applying Schur complement to (6.34) yields

(CITREE
B O *x  *
Oy 0 B * <0, (6.35)
0 0 II
where
—eanl 0 0
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EsHy O 0 0 0
0 EgHp O 0 0
I = 0 0 EcHc O 0
0 0 0 EpHp O
0 0 0 0 E_Hp

At this point, the H filter design result is summarized in the following theorem.

Theorem 6.3 Consider the filtering error system (6.23) for Type I and give a scalar
y > 0. Then the system is asymptotically stable with the Hyo performance y if exist
matrices Py, P>, P3, G, Gy, G3, M, AF, BF, éF, and DF, scalars g4, €B, €c,
ED, €L, EAA, EBB, £CC» EDD, and e 1 such that LMI (6.35) holds. Furthermore, the
H filter gain matrices in (6.22) can be given by

AFZGZ_IAF, BFZGZ_IBF, CFZM_ICF, DFZM_IDF. (6.36)

Remark 6.4 1t should be noted that the condition (6.35) implies &g = egl — 21 +
eggl <0, B=A, B, C, D, the term 2/ will lead to high conservatism. In the
following, we will develop another design method which improves that in Theorem
6.3.

By introducing five invertible slack matrix variables N4, Np, Nc, Np, and Ny,
we rewrite the inequality (6.30) as follows:

_Pl % k * *k *
) —P3 * * * *
0 0 —y2I * * %
GiA+BrC Ap GIB+BrD -G -G +P % x
G3A+1_5’FC Ar Gi3B+ BpD —G3j —G; + P, Es5
ML —-DrC —Cr —DpD 0 0 Ees
T o0 7 o 717
0 0
1
LN 0 +eal NAE4 0 0 0 0 0]

x (Na — NAEAHAAA(K)) ™ (Na = NaAEAHAAA(K)) '[NsE4s 0 0 0 0 0]
o I o 77
0 0
1 0 0

T
ep | GIBH; G\BHg +eg[0 0O NgEp 0 0 0]

G3BHp G3BHp
0 0

x (Np — NpEgHpAp(k)) ™" (Ng — NgEgHpAg(k)) '[0 0 NgEg 0 0 0]
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- T

0 0
0 0
0 0 .
BrCHc BrCHe +ec[NcEc 0 0 0 0 0]
BrCHc BrCHc
__DFCHC —DrCH¢

-T —1
x (Nc = NcEcHcAc (k)™ (Nec — NcEcHcAc(k))  [NcEc 0 0 0 0 0]

- T

0 0
0 0
1 0 0 T
+5 I?FDHD EFDHD +ep[0 O NpEp 0 0 O]
B_FDHD BFDHD
| —DrDHp —DrDHp

_ -1
x (Np — NpEpHpAp(®k)) ™" (Np — NpEpHpAp(®)) 'T0 0 NpEp 0 0 0]

EL

T

+e[NLEL 0 0 00 0]

[N el

0
0
0
0
0 0
MLH;, MLH,

x (Np — NLELHLAL(K) ™ (N — NLELHLAL(K) '[NLEL 0 0 0 0 0]<0.

(6.37)
Similar to (6.31), (6.37) is satisfied if
@11 * k
®21 O * | <0, (6.38)
Y31 0 33

holds, where ®11, ®;1, and ®,, are the same as (6.31), and

T33

Wy =-

[(NAE4 O 0 000
0 0 NgEgp 0 0 O
NcEc O 0 00 0],
0 0 NpEp 0 0 O
| NLEL O 0 000

#4 0 0 0 O
#g 0 0 O
0O # 0 0 |,
0 0 #p 0
0o 0 0 7

‘é:l’_‘OOOO

(Ng — NgEgHgAg(k))(Ng — NgEgHpAp(k))', = A, B,C, D, L.
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By Lemma 1.17, it is worth noting that
_ T
W =—(Np — NgEgHpAp(k))ey ' 1(Ng — NgEg Hg Ap (k)

1
T T T AT
<€/31—Nﬁ _Nﬂ +—€ﬁﬁNﬂEﬂHﬂHﬂ EﬂNﬁ +€/3/31,ﬂ _A,B,C, D, L.

(6.39)
Then, (6.38) can be verified by the following condition
O *  *x %
@21 @22 * *
Ty 0 O x <0, (6.40)
0 0 IIy @
where
_,OA 00 0 O
0 pp 0 0 O
33 = 0 0 pc O 0 |, ,0'3=—Nﬁ—N5T+€/31+€/3/3[,A,B,C,D,L,
0 0 0 pp O
| 00 0 0 pg
_NAEAHA 0 0 0 0
0 NpEpHp 0 0 0
[y = 0 0 NcEcHc 0 0 s
0 0 0  NpEpHp 0
i 0 0 0 0 NiEp Hp,
_—EAAI 0 0 0 0
0 —eppl 0 0 0
Q= 0 0 —eccl 0 0
0 0 0 —eppl O
| 0 0 0 0 —ELLI

The improved design condition is given by the following corollary.

Corollary 6.1 Consider the filtering error system (6.23) for Type I and give a scalar
y > 0. Then the system is asymptotically stable with the Hoo performance y if exist
matrices Pl, Pz, P3, Gl, G2, G3, M, NA, NB, Nc, ND, NL, A_F, BF, CF, and
DF, scalars ea, €g, €C, €D, €L, EAA, EBB, ECC, EDD, and 1.1, such that LMI (6.40)
holds. Furthermore, the Hy, filter gain matrices in (6.22) can be given by (6.36).

Remark 6.5 Compared with LMI condition (6.35), (6.40) replaces the identity matrix
I by matrix variables N4, Np, Nc, Np, and N . In other words, when Ny = Np =
Nc = Np = 1, (6.40) reduces (6.35). Thus it can be easily seen that (6.35) is a
special case of (6.40) and the condition (6.40) is more relaxed than that (6.35).
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6.1.2.2 Type Il

For Type II, the matrix inequality (6.26) becomes

—P; * * * * ok
—P —P3 * * * ok
0 0 -2 * * %
GiSuA + BpscC  Ap GidB +BpopD —Gi—GT+P % x | =0
G38AA + BpScC  Ap G38gB+ BpdpD —G3— Gl + P, Bss
M8, L — DpScC —Cp —Dp8pD 0 0 Ees
(6.41)

where Es5 and Egg are the same as (6.26).
Following the derivation Theorem 6.3, we do not provide the proof to give the
following design result for robust Hy, filtering with the Type II.

Theorem 6.4 Consider the filtering error system (6.23) for Type Il and give a scalar
y > 0. Then the system is asymptotically stable with the Hoo performance y if exist
matrices Py, P, P3, G1, G2, G3, M, Ap, Bp, Cr, and D, scalars s4, €g, &c,
ED, €L, EAA, EBB, €CC, €DD, and e such that the following matrix inequality
holds

O * % %
gii %22; : <0, (6.42)
0 0 I Q

where ©11, Oap, B, and Q are the same as (6.35), and

0 00 H'GI' HIGY 0
0 0 0 HIGT HIGY 0
©®;=|0 0 0 HIBL HIBL —-HIDL |,
0 00 HIBL HIBL —HIDL
(000 0 0 HI'MT
[EAA 0 0 000
0 0 EgB 000
@3=|EC 0 0 000
0 0 EpD 000
| E.L O 0 000

Furthermore the filter gain matrices are given by

Ar=G,'Ar, Br=G;'Br, Cr=M""Cr,and Dr =M 'Dp. (643)
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6.1.3 Output Feedback Non-fragile H., Control with Type II1

In practical applications and realizations, controllers (filters) do have a certain degree
of errors due to finite word length in any digital systems; the imprecision inherent in
analog systems and the need for additional tuning of parameters in the final controller
(filter) implementation [14], brings a new issue: how to design a controller (filter)
such that which is insensitive to some amount of error with respect to its gains,
i.e., the controller (filter) is resilient or non-fragile [10]. Recently, non-fragile Hyo
control for systems has been investigated by many researchers. Ren and Zhang [7]
was concerned with the problem of non-fragile proportional-plus-derivative (PD)
state Hso control for a class of uncertain descriptor systems, where the parameter
uncertainties are assumed to be time-varying norm-bounded appearing not only in
the state matrix but also in the derivative matrix. In [15], the robust Hy, control
and non-fragile control problems for Takagi-Sugeno (T-S) fuzzy systems with linear
fractional parametric uncertainties were investigated. Lien [11] investigated the Ho,
non-fragile observer-based controls for continuous dynamical systems, in which
types of uncertainties which perturb the gains of control and observer were studied.
Li and Jia [6] was devoted to the problems of non-fragile Hy, and Ly — Lo control
for a class of linear systems with time-varying state delay, in which the purpose is to
design a dynamic output feedback controller with additive gain variations such that
the closed-loop system is asymptotically stable while satisfying a prescribed Hy,
(or Ly — L) performance level. It should be noted that the above researches on
non-fragile control were taken into account the additive uncertainties, multiplicative
uncertainties. However, up to now, the non-fragile control problem with feedback
uncertainties has not been fully investigated and the relevant results have been very
few.

This section studies observer-based non-fragile H, control for discrete-time lin-
ear systems. Different from existing results for non-fragile control problems, the
proposed ones are toward systems with a class of feedback uncertainties (Type III).
Some auxiliary matrix variables are introduced to design the non-fragile controller
and observer. Strict LMI conditions guaranteeing the system H,, performance are
proposed.

Consider the following linear discrete-time dynamical system:

x(k+1) = Ax(k) + Bu(k) + Ew(k),
z(k) = C1x(k) + Du(k) + Fw(k),
y(k) = Crx(k), (6.44)

where x (k) € %" is the state variable, u(k) € %™ is the control input, w(k) € %/
is the noise signal that is assumed to be the arbitrary signal in /2[ 0, 00), z(k) € #4
is the controlled output variable, y(k) € %" is the measurement output. A € Z"*",
BeZ"" EeZ"*",C e #1", D € #1", F € #1°, and Cy € ZP*" are
system matrices.
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Fig. 6.3 Feedback E A H
uncertainty (Type I1I) H H T
+ WJ L

The following observer is proposed to deal with the state estimation of
system (6.44):

2(k+1) = A%(k) + Bu(k) + L(I — HLAL(k)ELL)_l(y(k) — $(k)),
y(k) = Cax(k), (6.45)

where (k) € %" and y(k) € ZP are the estimated state and estimated output,
respectively. L € Z"*¢ is the observer gain. H; and E; are constant matri-
ces with appropriate dimensions, Ay (k) is uncertain matrix bounded such as
AL ALK < 1.

Remark 6.6 In the non-fragile observer (6.45), the uncertainties are referred to
as feedback uncertainties. Different from additive uncertainties and multiplicative
uncertainties, this class of uncertainties can represent low frequency errors produced
by parameter variations with operating conditions and aging [16]. The block diagram
for the representation of feedback uncertainty is given in Fig. 6.3.

Let us denote the estimation error as
e(k) = x(k) — x(k). (6.46)
From (6.44)—(6.46), we get

ek+1)=xtk+1)—x(k+1) = (A —L(I— HLAL(k)ELL)_lCz)e(k) + Ew(k).

(6.47)

Assume the following non-fragile controller is employed to deal with the design of
system (6.44):

u(k) = K(I — Hx Ax () Ex K) ™' R (k), (6.48)

where K is the controller gain. Hx and Eg are known constant matrices of appro-
priate dimensions, Ak (k) is uncertain matrix and satisfies Aﬁ(k)A x(k) <1I.
By substituting (6.48) into (6.44), the closed-loop system becomes

%k + 1) = A% (k) + Bw(k),
2(k) = Cx (k) + Dw(k), (6.49)

where x (k) = [)283} and
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A_|[A+BK¢x —BK¢k g_[E
- 0 A—L¢ Co|” T |E|
C=[Ci+DK¢x —DK¢x], D=F,

¢k = (I — He Ak EK) ™. ¢r = (I — HLAL(KELL).

Without considering the controller and observer gain uncertainties, Lemma 4.2
presents a simple performance analysis result for observer-based output feedback
Hy control for linear systems. In this study, we extend the analysis result in Lemma
4.2 into the non-fragile H, control. Obviously, the non-fragile control studied in this
section will lead to more complicated manipulations for using the LMI technique.
Next, we seek methods to obtain strict LMI conditions for designing the non-fragile
controller and observer based on the inequality condition Lemma 4.2.

From Lemma 4.2, we can see that the closed-loop system (6.49) is asymptotically
stable with the Hy, performance y if exist matrices P1, P>, G1, G», K, and Ny,
such that

—Gg — G% + Pk * * *
AGg + BK¢px Gy — Px * *

CiGkx + DK¢xGg 0 —1 x <0, (6.50)
0 ET FT )21
and .
[GLA—_NLUPLCz -GyL —*G{+PJ <0, (6.51)
hold.

Based on the matrix inequalities (6.50) and (6.51), in the following, we will present
sufficient conditions for designing the non-fragile Hy, observer (6.45) and controller
(6.48), that is, we will determine the gain matrices L and K such that the closed-loop
system (6.49) is asymptotically stable with H, performance y based on the analysis
results obtained in Lemma 4.2.

Theorem 6.5 Consider the closed-loop system (6.49) and give a scalar y > 0. Then
the system is asymptotically stable with the Ho, performance vy if there exist matrices
Pk, P, Gk, GL, Nk, and Ni, scalars ok, o1, vk, and vy, such that the following
matrix inequality holds

Tk * * * *
XIT( Sk * * *
Yx 0 Ug * * <0, (6.52)
0 0 NL U o«
0 0 oxEx 0 —vgl
TL * * *
XTI —op1  x *
L
Yy 0 v . <0, (6.53)
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where

_—GK—Gi‘FPK % ok *
Fe = AGg + BiNy —Pg * %
K=1 cGxk+DNg 0 -1 =« |
i 0 ET FT —y21
0
| BNk
Xk = DNk |
i 0

Yk =[Ng 0 0 0],

Sk = —Gk — Gy +ox Hg Hy,,

Uk = —20xI + ok EfE,

JKZ—GK—GII;—FUKHKHI?,

«7L=|: —-pP; * . ]’
GLA— NG, —Gp—Gl+pp

0
XL = |:—NLHL]’

Yo =[NLCy O],
Vi = -G — G{ + (TLEzEL + VLEzEL-

Furthermore, the observer (6.45) and the controller (6.48) gain matrices are
given by

L=G;'Ny, K =NgGg (6.54)

Proof First, by Lemma 1.16, we have

BK¢x Gk
— BK(I — HxAx(K)ExK) ' Gk
—1
=BK( I —HxAgx(k)Ex I K Gk
(Y%YY) (6.55)
i B ¢ D
=BK(I—i—HKAK(k)EK(I—KHKAK(k)EK)_lK)GK

= BNk + BNk Gy Hx Ag (K Eg (I — NKG,;‘HKAK(k)EK)*‘NK,

and
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DKok Gk
= DK (I — HyAg (W ExK) ™' Gg
-1
=DK( I —HxkAx(k)Ex I K Gk
(‘f—;—‘f‘f’) (6.56)
A B C D
= DK(I + Hi A (O Ex (I — KHKAK(k)EK)_lK)GK
= DNk + DNxG ' Hx Ax () Ek (I — NxG ' Hg Ax () Ex) ™ Nk,
with Ny = KGg.
Then, (6.50) can be rewritten as follows:
Tk + XkG ' Hg Ax W Ek (I — NgG¢'Hg Ax () Ek) ™ Yk
+ YL (1 — Nk Gy HKAK(k)EK)*TE,iAQ(k)H,{G;TX,C <0, (6.57)
where 9%, Xk, and Yk are defined in (6.52).
Applying Lemma 1.12, it gives
Tk +Xx G HgAx WEk (I — NkGx' Hk Ak (WEg) ™ Yk
+YE(I - NkG Hg Ak 0Ek) T EE AR (oHEGRT Xk
<Tk +oxkXkGyg HkHE G X%

1 - -T - —1
+ gY}g(l ~ NG Hk Ax (0 Eg) ™ EFEx (I — NG ' Hx Ag (W Eg)™ Y.

Then, (6.57) can be verified by
Tk + ok XxkG He HEG T X%

+LYT(17N G Hx Ax (k) Ex) TELEx(I — NxGo ' He Ak (K Ex) ™ Y <0
ox K kGx HxkAg(K)Eg)™ " ExEk( kGx HxAg(K)Eg)™ Yk <O.

(6.58)
By Schur complement to (6.58), we obtain
Tk * *
Xt —GhokHxH))™'Gx x| <0, (6.59)
Yk 0 Ex
where Ex = —ox (I — NxG'Hx Ak () Ex)(EFEx) ™' (I — NkG ' Hx A
T
(k)Eg)" .
Consider a fact
—GhoxkHkH) 'Gx < =Gk — GL + ok HkH] = Sk. (6.60)

Using Lemma 1.12 with a scalar vy > 0, it follows that:



216 6 With Other Types of Uncertainties

Bk = —ok (I — Nk G ' Hy Ax (W) Ex )(ELEx) ™ (1 — NKG;‘HKAK(k)EK)T

= —(ok I — ok Nk G Hx Ak () Ex) (ox EL Ex) ' (ok I — ok Nk G ' Hx Ak (W) Ex )"

— — T

< —(oxI —oxk Ny G ' Hy Ak (K)Eg) — (ok I — ok Nk G Hx Ax (K)Eg) + ok Ex Ex

= 20kl +O’KE1T(EK +0KNKG}] Hg Ak (k)Ek +0KE]7(‘A£(]€)HI€G}TNI€

< —20x1 + ok ELEx + vk Nk G ' Hk HE G NE +vglox EL ok Ex

= Uk +vgkNkG' Hk HE G N} + vi'ok Efok Ex. (6.61)
Then, (6.59) holds, if

y]{ k *

Xt Sk * <0. (6.62)

Yk O Uk +vkNkGg HkHEGR N +vi'loxk ELox Ex

Once again, applying Schur complement to (6.62), it leads to

Tk * * * *
X,T( N * *
Yk O Uk * * < 0. (6.63)
0 0 NI —-GhwkHxkHD'Gx =
0 0 ogEg 0 —vgl
Similar to (6.60), one has
—GE(wkHkH}) "Gk < —Gg — GY + vk HgH = Jx. (6.64)
Then, if the LMI condition (6.52) is satisfied, (6.63) holds.
On the other hand, based on Lemma 1.16, we have
NpgrLCa 1
=Np(I — HLAL()ELL) C 1
=Ni( I —HAL(WELG;' I N ) G
— L= (6.65)

A B ¢ D
= N (1 + HLALOELGL (I = N HLAL(OELGL') T NL) G2
=NLCy+ N HLAL(K)EL(GL — NLHLAL(k)EL)_lNLC2~

Then, (6.51) becomes

T+ XLAL(WEL(GL — NLHLAL(k)EL)ilyL
+ Y/ (GL — N H AL (EL) T EF AT (X7 <0, (6.66)

where 77, X, and Yy are defined in (6.53).
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Applying Lemma 1.11, it follows that:

TL+ X AL(WEL(GL — NLHLAL(k)EL)_IYL
+ Y/ (GL — NLHLAL(OEL) T EF AT (o xT

< T 40, X1 X! + o1 Y] (G — NLHLAL(OEL) ™ EF
x EL(Gr — NLHLAL(K)VEL) ™'Yy

Then, (6.66) is satisfied if matrix inequality (6.67) holds.

_ =T
T +o ' Xe X! + 0] (GL — NLHLAL(OEL) " ET
x EL(GL — NLHLAL(K)EL) ™'Y, <0, (6.67)

Applying Schur complement to (6.67), then, yields

T * *
X' —or1 x| <O, (6.68)
Y, 0 YL

-1 T
where Y, = — (G, — N H AL (K)EL)(oLEFEL)” (G — NLHLAL(KEL) .
By using Lemma 1.11, we have

T =—-(GL— NLHLAL(k)EL)(ULELTEL)_l(GL - NLHLAL(k)EL)T
< —(GL—NLH AL(KEL) — (GL — NLHLAL(k)EL)T +oLElEL
= —GL -Gl 4+ 0ETEL + NLHLAL(KEL + ETAT()HINT
< —GL—Gl +0LE]EL + v ETE +v, "N H L H] N]
=Vi +v, !N H L H] N}
=o;. (6.69)

Obviously, (6.68) can be guaranteed by

T, * *
X' —or1 % | <O. (6.70)
Yr 0 o)}

Finally, by Schur complement, the LMI conditions (6.53) are obtained.
So far, the proof is completed. O
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6.1.4 Non-fragile H, Filtering with Type I and Type I1

Atpresent, there are a lot of research results on non-fragile Hy filtering. The problem
of a non-fragile Hy, filter design for a class of linear systems described by delta
operator with circular pole constraints was investigated in [9]. Chang and Yang
[3] investigated the problem of non-fragile filter designs for continuous-time fuzzy
systems with additive uncertainties. An approach of designing the optimal filter
transfer function and its realization was developed in [5]. In [4], the non-fragile Hy
filtering problem for linear continuous-time systems was addressed, where the filter
to be designed is assumed to have additive gain variations of interval type. Chang [2]
was concerned with the Hy filtering problem for continuous-time T-S fuzzy systems,
in which uncertain fuzzy systems with linear fractional parametric uncertainties are
considered. Mahmoud [13] investigated the problem of resilient linear filtering for a
class of linear continuous-time systems with norm-bounded uncertainties, in which
additive gain variations were considered. It should be noted that the above researches
on non-fragile filtering take into account the additive uncertainties, multiplicative
uncertainties, and linear fractional parametric uncertainties. However, a few results
deal with feedback uncertainties.

Motivated by the aforementioned observations, this section is concerned with the
non-fragile H filter design problem for discrete-time linear systems with feedback
uncertainties. The focus is on designing a filter with two types of feedback uncer-
tainties such that the filtering error system guarantees a prescribed Ho, performance
level. The H filter design conditions are derived based on LMI techniques. An
example is provided to illustrate the feasibility of the proposed design methods.

Consider the following discrete-time linear system:

x(k +1) = Ax(k) + Bw(k),
y(k) = Cx(k) + Dw(k),
z(k) = Lx(k), (6.71)

where x (k) € #" is the state variable, w(k) € Z" is the noise signal that is assumed
to be the arbitrary signal in /[ 0, 00), z(k) € Z1 is the signal to be estimated, y(k) €
R/ is the measurement output. A € Z"", B € Z"*",C € R D e 277 and
L € 9" are system matrices.

In this section, we consider the following non-fragile filter to estimate z(k)

For Type I

xpk+1) = Ap(I — HiAA(E4) 'xp(k) + Br(I — HsAg(K)Ep) ™' y(k),

zp(k) = Cp(I — HCAC(k)EC)ile(k) + Dp(I — HDAD(k)ED)71Y(k)1
(6.72)

For Type II
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xp(k+1) = (I — HAAA(OEA) " Apxp(k) + (I — HeAg(K)Eg) ™ Bry(k),

2r(k) = (I — HeAc()Ec) ™ Crxp(k) + (I — HpAp(K)Ep) ™~ Dry(k),
(6.73)

where xp (k) € Z" and 7 (k) € 29 are the state and output of the filter, respectively.
Ap € Z"™" Brp € "™, Cp € %#1%", and D € #9*/ are to be determined filter
matrices. For 8 = A, B, C, D, Hg and Eg are constant matrices with appropriate
dimensions, Ag(k) are uncertain matrices bounded such as Ag (k)Ap(k) < 1.
XX;Q) } and e(k) = z(k) —
zF (k), we can obtain the following filtering error system

By defining the augmented state vector ¥ (k) = |:

Yk +1) = Ay (k) + Bw(k),

e(k) = Cyr (k) + Dw(k), (6.74)
where
For Type 1
- A 0 - B
A= [BFch AFSA]’ B = [BF(SBD]’
C=[L-DpspC —Crdc], D=—-DpépD,
For Type II
. A 0 - B
A_[(SBBFC SAAFiI’ B_I:(SBBFD}’

C=[L-8pDrC —68cCrl, D=—8pDgD,

with 85 = (I — HgAp(k)Eg) ™', B = A, B,C, D.

As robust Hy filtering in Sect. 6.2, we use also the matrix inequality (6.24) to
guarantee the prescribed Hy, performance y of the filtering error system (6.74). To
facilitate the design of Hy, filters, we choose also the matrices P and G in the from
of (6.25).

In the following, we will derive conditions for designing the filter gain matrices
in (6.72) or (6.73) such that the filtering error system (6.74) is asymptotically stable
with Hy, performance y. In the following, we will treat the Type I and Type 11
separately.

6.1.4.1 Typel

Combining (6.24), (6.25), and (6.74) for Type I, we obtain
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P * * * *
-P —P3 * * *
0 0 -2 * *
G\A + BrdpC  pdy G\B+ BrdgD —Gi—Gl + P %
G3A + BpégC  Arés G3B + BrpdpD —G3—GzT+P2 Q
ML — 9pSpC  — Créc —9répD 0 0
where

dr = GrAy,

Br = G1BF,

Cr = MCpF,

@F:MDF’

Q1 =-G2-Gj + P3,
Q=-M-M"+1

<0,

* K X X X

)
¥

(6.75)

Considering the property about §g in (6.27), it knows that the inequality (6.75) is

equivalent to

—P * * k%
—P —P3 * * EIE
0 0 —2I * %
GiA+PBrC oy GB+%BrD —G -Gl +P x =«
G3A+ PBrC oy G3B+PBrD —G3—G; + Py Q1 x
ML — 9rC —%6F —9rD 0 0
0 * * * k%
0 0 * * ok ok
0 0 0 k ok ok
BrvgC  Arv, BrvgD 0 * %
%FVBC JZ%F\)A %FUBD 0 0 x
—9pvpC —Crve — YDrvpD 0 0 0

=0+ XAAA()(I — EaHaAs(k))~

-T
Ya+YI(I — ExHaAA(k) " AL XT

—1 -T
+ XpAp(k)(I — EgHpAp(k)) 1YB +YF (I — EgHpAp(k)) TAgxg
+ XcAc(k)(I — EcHeAc (k)™ ]Yc + Y (I — EcHeAc (k)™ TAgxg
+ XpAp(k)(I — EpHpAp (k)™ Yp+Y) (I — EpHpAp(k))™ ALXT <o,

where
—P
—P
0
© GA+ BrC
G3A + #BrC
ML — 9rC

* * *
—P3 * *
0 —y2I *

oy G\B+%BrD -G -Gl +P
r G3B+ BrD — G3 —GQT + P
—€r —9pD 0

o R % % % %

(6.76)

L R
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XA = , YA=[0E40000],

Xp = , Yp=[EgCOEgDO00O0],

Xc

, Ye=[0Ec0000],

Xp = Yp=[EpCOEpDO0O0O].

0 )

| —%rHp

By Lemma 1.11 for positive scalars €4, €p, &c, and €p, it follows that

© + XAAAK) (I — ExHAAAK)) Yo+ Y] (I — EAHa0a(k) ™" AL X7
+ XpApk)(I — EgHpAp(k)) ' Yp + YL (I — EgHpAp(k)) " ALXE
+ XcAck)(I — EchAc(k))_ch +Y&(I - ECHCAC(k))‘TAgxg
+ XpAp(k) (I — EDHDAD(k))_lYD +Yh(I - EDHDAD(k))_TAIT)XIT)

1 _ _
<O+ S—XAxg eV (I — ExHAAA(0)) " (I — ExHaAA(K)) ' Y4
A
1 -7 -1
+£XBX§+83Y§(1—EBHBAB(1<)) (I — EgHpAp(k))™ Yg
1 T -1
+ ;xcxg +ecY (I — EcHeAc (k)™ (I — EcHcAc(K)™ Ye

1 _ _
+ S—XDX{) +epYh (I — EpHpAp(h)) (I — EpHpAp(k)) ™ Yp.
D
(6.77)
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Then, (6.76) holds if the following condition is satisfied:
O + éXAxﬁ 4 eV (I — ExHAMA(O)) T (I — EAHaAAA(K)) ' V4
+ éxgxg +epYh (I — EgHpAp(k) ™" (I — EgHpAp(k)) ™' Yg
+ éxcxé +ecYl (I — EcHcAc(k) ™" (I — EcHeAc(h) ™' Ye

1 _ _
+ S—XDXLT) +epY) (I — EpHpAp()) (I — EpHpAp(k)) ™' Yp <O0.
D

(6.78)
By Schur complement to (6.78), which leads to
e o+ x  x  ox %k ok k]
Xi —eal * * * * * * *
Ya 0 Fa = * % * * *
Xg 0 0 —epl x * 0k * *
Yg 0 0 0 ZFp =* * * * <0, (6.79)
X0 0 0 0 —ecl x % %
Ye O 0 0 0 0 Fc =* *
XEo 0 0 0 0 0 —epl x
| Y» 0 0 O O 0 0 0 %p|

where F = —e,; ' (I — EgHpAp(k)) (I — EgHgAp(k))', B=A, B, C, D.
By Lemma 1.17, it is worth noting that

Fp=—(I — EHpDp(k))eg " 1(1 — EgHgAp(k))"
<epl — 21+ %EﬁHﬁH}f{Eg + eppl
=0, B=A, B, C, D.
Then, (6.79) can be guaranteed by

f e
X4
Ys
X
Yp
X¢
Yc
XD
Yp

|
™
Oy
~
* %
~

ooooo;’***

<0, (6.80)

cococococoD
4
b*******
~

SCoocoDx * x x
|

ooog’*****
~

ooﬁ%******

eNeoNeNeNeNe)

)

b%********
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Applying Schur complement to (6.80) yields

re x * * * * * * * * ok ok k]
Xg —eal * * * * * * * * ok k%
Yqo O Ep * * * * * * * % k%
XIT; 0 0 —epl * * * * * *  kx  k %
Yp O 0 0 &p * * * * * 0k k%
Xg 0 0 0 0 —ecl = * * * ok kK
Ye O 0 0 0 0 &c * * * k% x| <0,
XIT) 0 0 0 0 0 0 —epl = * ok ok X
Yp O 0 0 0 0 0 0 Ep  * % x %
0 0 HIEL 0o 0 0 0 0 0 x4x x x
o 0o o o HYEL o o0 0 0 0 xp * x*
o o o o o o HEL o 0 0 0 xc
Lo o 0 0 0 0 0 0 HYEL 0 0 0 xp|
(6.81)

where (g)ﬁ = 6}31 —21 + Eﬁﬁ[, Xp = —6/3,31, B=A,B,C,D.
Atthis point, the non-fragile H filter design resultis summarized in the following
theorem.

Theorem 6.6 Consider the filtering error system (6.74) for Type I and give a scalar
y > 0. Then the system is asymptotically stable with the Hyo performance y if exist
matrices Py, P>, P3, G1, Gy, Gy, M, olp, Br, 6, and D, scalars €4, £, &C,
ED, €L, EAA, EBB, £CC» EDD, and gy, such that LMI (6.81) holds. Furthermore the
filter gain matrices in (6.72) are given by

Ap=G,'op, Bp=Gy'Br, Cr=M"'6r, Dp=M"'9p. (682

As robust Hy filter design result given in Theorem 6.3, the condition (6.81) implies
&g = ¢epl —21 +eppl < 0,8 = A, B,C, D, the term 2] will lead to high con-
servatism. In the following, we will develop another design method which improves
that in Theorem 6.6.

By introducing four invertible slack matrix variables Ng, 8 = A, B, C, D, we
rewrite the inequality (6.76) as follows:

O+ XAAs()(Na — NAEAHAAA(K)) ™ Pp + BT (Na — NaEAHAA (k) AT X
+ XpAp(k)(Np — NBEBHBAB(k))’I% + %y (Ng — NBEBHBAB(k))*TAgxg
+ XcAc (k) (Ne — NeEcHe Ac (k)™ % + #T (Ne — NeEcHeAc (k)T ALXE
+ XpApk)(Np — NDEDHDAD(k))‘l% + %7 (Np — NDEDHDAD(k))‘TA{)X,T)
<0, (6.83)

where Xg, = A, B, C, D are the same as that in (6.76) and
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Wy =[0 NaEg 0 0 0 0],
%p =[NgEgC 0 NgEgD 0 0 0],
% =[0 NcEc 0 0 0 0],
%y =[NpEpC 0 NpEpD 0 0 0]

Similar to (6.79), (6.83) is satisfied if

e x *
XfT‘ —eal  x*
Dy 0 My
xt o
g 0
xL oo
e 0

0

0

~

<0, (6.84)

&******
9}
I I I

XD
Yp

OOOO§*%*%

ocoooé’;***
|

ooo&"*****
~

holds, where
Mp = —e;l(Nﬂ—NﬂEﬁHﬂAﬁ(k))(Nﬁ—NﬁEﬁHﬁAﬁ(k))T, B=A, B, C, D.
By Lemma 1.17, it is worth noting that
_ T
My = —(Ng — NgEgHp Ap(k)) ey ' I (N — NgEg Hp Ap (k)

1
T T T AT
<epl — Ng — N} +—8ﬁﬁNﬂEﬂHﬁHﬂ EJNJ +epsl. p=A, B, C, D.

Then, (6.84) can be verified by the following condition:

r e * * * * * * * * * * * * ]
Xg —eal  * * * * * * * * * * *
Wy 0 Ha % * * * * * * * * *
Xg 0 0 —epl =x * * * * * * * *
g 0 0 0 xp = * * * * * * *
Xg 0 0 0 0 —ecl = * * * * * *
e 0 0 0 0 0 - = * * * * * <0,
X0 0 0 0 0 0 —epl x % * * *
% 0 0 0 0 0 0 0 Fp x* * * *
0 0 Qa O 0 0 0 0 0 —eaal * *
0 0 0 0 Q9 O 0 0 0 0 —eppl = *
0 0 0 0 0 0 Qc O 0 0 0 —eccl *
L O 0 0 0 0 0 0 0 Op O 0 0 —eppl |
(6.85)

Hp =egl —Ng— Nj +eppl, p=A,B,C.D,
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Qp =H; EfN;.B=A,B,C,D.

Remark 6.7 Compared with the LMI condition (6.81), (6.85) replaces the identity
matrix / by matrix variables Ng, 8 = A, B, C, D. In other words, when Ny =
Np = N¢c = Np = I, (6.85) reduces (6.81). Thus it can be easily seen that (6.81)
is a special case of (6.85) and the condition (6.85) is more relaxed than that (6.81).
The improved design condition is given by the following corollary.

Corollary 6.2 Consider the filtering error system (6.74) for Type I and give a scalar
y > 0. Then the system is asymptotically stable with the Hoo performance y if exist
matrices Py, P>, P3, Gi, G, G3, M, No, Ng, Nc, Np, Ni, &r, BFr, Cr, and
D, scalars €A, €g, €C, €D, €L, EAA, EBB, €CC, EDD, and e 1, such that LMI (6.85)
holds. Furthermore, the Hy, filter gain matrices in (6.72) can be given by (6.82).

6.1.4.2 Type II

By substituting (6.25) and (6.74) for Type II into (6.24), one gives

—P * * * * ok
—P —P3 * * * ok
0 0 —)/21 * % % 0
G1A+G8pBrC GadaAr G1B+GapBrD —Gi =Gl +P x = |~
G3A+ G25pBrC  G254AF G3B 4+ G26pBrD —G3—G§+P2 [
ML — MSpDrC — MécCr —M&pDrD 0 0 @
(6.86)
where Q2 and €2, are the same as that in (6.75).
By Lemma 1.16, we have
8g = (I — HgAp(k)Eg)™!
_ _ -1
=(1 Hg I Ag(k)Eg)
A B C b
=1+ Hg(I — Ag(k)EgHp) ' Ag(k)Epg
=Il+upg, B=A4A,B,C,D. (6.87)

Obviously, by considering (6.87) and defining &7F = G2AFr, Br = G2BFr, €F =
MCF, P = M Dp, the inequality (6.86) can be rewritten as

0 * * *

0 0 * *

o4 0 0 0 *
GoupBrC  GouaAfr GoupBrD 0
GoupBrC  GouaAr  GougBrD 0
—MupDrC —MpucCr —MupDrD 0

S O ¥ ¥ ¥k *
S ¥ ¥ ¥ ¥ *
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—O+ Xa(I — AA(OEAHA)  As(k)EAG'Ya
+YIGyTELAL (I — Aa(k)EaHA) " X,
+ Xp(I — Ap(k)EgHp) ' Ag()EpG; 'Y
+YEGTELAL(0(T - AB(k)EBHB)_TXIT;
+Xc(I = Ac(EcHe) ™ Ac(k)EcM™'Ye
+YEMTELAL(K) (I — Ac()EcHe) " XL
+Xp(I — Ap(EpHp) ' Ap()EpM™~"Yp
+YAIMTELAT () (I — Ap(EpHp) ™ X5 <0, (6.88)

where © is the same as that in (6.76) and

X4 = , Ya=[0 <o 0 0 0 0],

Xp = , Yp=[HABrC 0 %BrD 0 0 0],

, Ye=[0 % 0 0 0 0],

Xp

, Yp=I[9rC 0 9¥rD 0 0 O]

Based on Lemma 1.11, we have

—1 _
O+ Xa(I —Aa(K)EAHA)  AA(WEsG; ' Y4
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_ -T
+YIGTETAT(0)(I — AW EAHA) " X]

—1 _
+Xg(I — Ap(EpHp) Ap(EsG,'Yp

+YFGyTELAL()(I — Apk)EgHp) ™ X}

+ Xc(I — Ac()EcHe) ™ Ac(k)EcM ™ Ye

+YIM TELAL(K) (I — Ac()EcHe) " XE

+Xp(I = Ap()EpHp) ™ Ap() EpM ™'Yy

+ Y M TELAL ()(1 - AD(k)EDHD)_TXLT)
<O+ eaYI G, TEVEAGS 'Y

1 _ _
+ Xa(l = At EaH,) NI — AA(EAH) X7

+epY Gy TELERG, 'Y

1 _ _
+ 5XB(I — Ap(KEpHg) ™ (I — Ap(h)EpHg) ™" X}

+ecYEMTELEcM ™Y

1 _ _
+ ;Xc([ — Ac(k)Ech) 1(1 — Ac(k)Ech) TXE

+epYI M TELEpM~ Yy

1 _ -
+ 5XD(I — Ap(EpHp) ™ (I — Ap()EpHp) " X5,

Similar to the derivation of (6.79), (6.88) can be verified by

where

C]
T
X4

Xp

\ #

OOOOOO%**

A

eNeoBoNeoNeoBoBal

S

OOOOOQ%***

OOOO%****

=

OOO§*****

OO§******

>}
§********

o§*******

<0,
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(6.89)

(6.90)

My = —e5(I — Ag(k)EgHg)' (I — Ag(k)EgHg), B=A,B,C,D,

P =—Gy(e,E] E;))”'Gy, A=A, B,

Wy =—M@EELE)"'M" x =C,D.
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From Lemma 1.18, we can know that

T
%ﬁ = —8}3(1 — A/g(k)EﬁHﬁ) (I — A/g(k)E,gHﬂ)
T _
= —epl (I — Ap(k)EgHp) 5 I(I — Ap(k)EgHp)epl
1
< —epl + —epl Hy Ef EgHgegl + epgl
epp

:gﬁ’ ﬁZA’ B’ C’ D’

and

Py, = -G ETE;))7'\GY <6, ETEy — Gy — GI = 4,0 = A, B,
Wy =—M@EyE E) 'M" <e,ElE,—M-M" =%, x=C,D.

Then, (6.90) holds if the following condition is satisfied:

® *x x % x % *k % %k
Xg La ox % ox % k% %
Ya 0 A4 * % % x * %
XL 0o 0% x x x x x
Yg 0 0 O A3 % % % % < 0. (6.91)
XLo 0 0 0 %L x x x
Ye 0 0 0 O 0O Y * =
xo 0 0 0 0 0 % =
 Yp 0 0 0 0 0 0 0 |
By Schur complement to (6.91), which leads to
r e * * * * * * * kok ok ok k|
Xg Fa * * * * * * % ok ok k%
Ya 0 Na * * * * * *  x  k k %
Xng 0 0 B * * * * * ok % % %
Y 0 0 0 Np * * * % ok ok k%
Xg 0 0 0 0 Jc * * *  x x % %
Yc 0 0 0 0 0 S * * % x x % [<0,
xb 0 0 0 0 0 0 Ip * ok % %k %
Yp 0 0 0 0 0 0 0 Sp * x % x
0 SAEAHA 0 0 0 0 0 0 0 AA * k *
0 0 0 EBEBHB 0 0 0 0 0 0 AB * )
0 0 0 0 0 ecEcHe O 0 0 0 0 Ac =
L O 0 0 0 0 0 0 epEpHp 0 0 0 O Ap|

(6.92)
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where

Aﬁ = —8,3,31, ﬁ == A, B, Cs Dv
Jp=—epl +eppl, p=A,B,C,D.

Next, we give the following Hy filter design result for Type II.

Theorem 6.7 Consider the filtering error system (6.74) with Type Il and give a
scalar y > 0. Then the system is asymptotically stable with the Ho, performance y
if exist matrices Py, Py, P3, G, G2, G3, M, o/, Br, €r, and D, scalars ey, ep,
EC,ED, EL, EAA, EBB, ECC» EDD, and e 1, such that LMI (6.92) holds. Furthermore,
the filter gain matrices in (6.73) are given by (6.82).

6.1.4.3 Example

It is worth pointing out that the design conditions in Theorem 6.6, Corollary 6.2,
and Theorem 6.7 are LMIs over the Lyapunov matrix, auxiliary matrix variables,
and the scalar y. This implies that the scalar y can be included as an optimization
variable to obtain a reduction of the attenuation level bound. Then the minimum H,
performance y,,;, can be readily found by using the MATLAB toolbox to solve the
corresponding LMIs. In this following, we use an example to illustrate the effective-
ness of the theoretical results developed before for non-fragile H filters design.
Consider the system (6.71) with

—-0.30 0.17 —0.34 0.18 0.45
A= 0.28 —0.08 —0.53 —1.21 B —0.41
~ | —0.98 —0.67 0.14 0.31 |’ T | 040 |°
—0.86 —0.17 —0.89 0.20 —0.64
C=1[0.17 —-0.16 0.14 0.09], D =0.22,

L =1024 022 0.16 —0.01].

We assume the known parameters in (6.72) and (6.73) as

For Type I
—-0.22
—0.11
Hy = 013 |’ Es=10.14 —-0.08 0.16 0.23],
-0.21
0.21
—0.11
Hp =[-0.17 —-0.13 0.10 0.33], Ep= —0.10 | -

0.16
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-0.23
He=| O Ec =[031 027 0.14 —0.07]
€= 1 o008 |°> "7 ' : S (6.93)
0.03
Hp = 0.10, Ep =-0.21,
For Type 1T
[ —0.197]
-0.38
Hi=| oo4 |+ Ea=[014 —012 —0.18 —092],
| 0.07 |
_()06%8 (6.94)
Hy=| 40|+ Ep=[-037 —0.12 064 —0.10],
| —0.42 |
He = 0.13, Ec = —0.48,
Hp = —0.27, Ep = 0.01.

For type I, by using the MATLAB toolbox to solve the LMI (6.81) in Theorem 6.6,
the minimum H, performance y,,;, = 0.8258 is obtained, and

C0.0279 0.1260 —0.2109 —0.0983
/o — | 00630 0.0615 —0.0006 ~0.1100
F=1 _-0.1902 —0.0888 0.0531 0.0886 |’
| 0.0258 —0.0548 —0.0364 0.1367
C 0.1695
0.0529
Pr=| _s041 |
| 0.3603

¢r =[-0.1239 —0.0046 —0.3173 —0.0778],
Pr = —1.1606,

0.4539 0.1082 0.0044 —0.0766
0.1099 0.1173 —0.0686 —0.0951

G2=| 01511 —0.0847 0.3387 —0.0337 |
—0.0339 —0.0910 —0.0619 0.2111
M = 1.0000. (6.95)

Substituting (6.95) into (6.82), the filter matrices can be obtained as follows:
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[ —0.0071 0.2455 —0.6010 —0.0524
A, | 04318 —0.0800 05552 —0.2861
F=1 -0.4389 —0.2041 0.0254 0.2244 |°
| 0.1785 —0.3145 —0.0225 0.5818
[ 0.4407
1.2010
Br =1 _og468 |’
| 2.0466
Cr =[-0.1239 —0.0046 —0.3173 —0.0778],
Dp = —1.1606. (6.96)

By the LMI (6.85) in Corollary 6.2, we have the minimum Hy, performance yy,i, =
0.7397, which is smaller than Theorem 6.6 verifies the above discussion.

For type 11, solving LMI (6.85), the minimum Hy, performance is 0.7768, and
the corresponding filter matrices are

[ —0.7822 —0.0014 —0.2749 0.0379
Ao — | 12223 02624 0.3985 —0.5194
F=1 0.1988 —0.4010 0.1182 0.6844 |’
| 0.3337 0.1621 0.0959 —0.2066
[ 0.0154
—2.4992
Br=1 _1s461 |’
| 0.2856
Cr =[-02467 —0.0976 —0.1037 0.0973],
Dp = —0.9454, (6.97)
with
[ —0.0970 —0.0261 —0.0308 0.0400
o/ — | —0:0256 —0.0081 —0.0079 0.0118
=1 -0.0265 —0.0114 —0.0079 0.0179 |’
| 0.0274 0.0098 0.0084 —0.0142
[ —0.3266
—0.1126
Br=1 _0.1193 |
| 0.1084

6r =[-0.2392 —0.0946 —0.1006 0.0943],
2r = —0.9167,
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Fig. 6.4 Error response of 0.4
e(k) for the type 1
031
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Fig. 6.5 Error response of 0.2
e(k) for the type 11

-0.05

0.2183 0.0752 0.0737 —0.0983
0.0657 0.0270 0.0234 —0.0355

G2=1 00672 0.0249 0.0316 —0.0320 |’
—0.0619 —0.0245 —0.0236 0.0408
M = 0.9696.

The filters consisting of (6.96) and (6.97) are non-fragile, that is, when the filters have
gain variations, the Hy, performance y = 0.8258 (for the typeI) and y = 0.7768 (for
the type II) are always guaranteed for any uncertainties satisfying Ag(k)A k) <
I, B =A, B, C, D forthis example. Based on the filters, the simulation results of
the filtering error are given in Fig. 6.4 for the type I and in Fig. 6.5 for the type II, under
the initial conditions x(0) = £ (0)=[0 0 0 0]7, with A, =sin(0.1k), p =
A, B, C, D,andthenoisesignalischosenasw(k) = (2+k1'3)_1, k=1, 2, ... s
which belongs to 5[0, 00). Figures 6.6 and 6.7 show the simulated values of y,
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Fig. 6.6 The value of

€T Ret)) T wT (k)
for the type I

Fig. 6.7 The value of
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for the type II
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ie., \/21in el (kye(k)/ > p2owT (k)yw(k) for the type I and the type II, respectively.
It is observed that the ratio tends to a constant value 0.2094 for the type I (0.1893
for the type II), which is less than the prescribed y = 0.8258 (y = 0.7768). From
this simulation, we can see that the proposed non-fragile filter design methods are

effective.

6.2 Frobenius Norm Uncertainties

In this section, we study the Frobenius norm uncertainties. The Frobenius norm is
better than 2-norm as a measure of uncertainties and the 2-norm structure is a special
case of the Frobenius norm [12]. In the study, we consider only the observer-based

non-fragile Hy, controller design problem.
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6.2.1 Observer-Based Output Feedback Non-fragile H., Control

Consider the following discrete-time linear dynamical system:

x(k+ 1) = Ax(k) + Bu(k) + Ew(k),
z(k) = C1x(k) + Du(k) + Fw(k), (6.98)
y(k) = Cax(k) + Hw(k),

where x(k) € Z" is the state variable, u(k) € #™ is the control input, w(k) € %"
is the noise signal that is assumed to be the arbitrary signal in /5[ 0, 00), z(k) € Z
is the controlled output variable, y(k) € Z7 is the measurement output. A € Z"*",
BeZ"" EecR"V,CLe#1",Dec 1", F € #1°V, Cy €¢ #P*", and
H € %P> are system matrices.

Remark 6.8 In the existing researches on designing observer-based output feedback
H controllers and observers, some result have been given based the LMI technique.
However, the result should also meet the other constraint on the system structure
that is H = 0. It implies that in system equation the measured output is free of
disturbances. However, in most practical applications, the measurements made in
physical systems are not free of errors caused by the presence of disturbance. Thus,
our design method is applicable to the more general case.

The following observer with gain variations is proposed to deal with the state
estimation of system (6.98)

X(k+1) = A% (k) + Bu(k) + (L + AL(K)) (y(k) — $(k)),
y(k) = Crx(k), (6.99)

where (k) € #" and (k) € Z#/ are the estimated state and estimated output,
respectively. L € %"/ is to be determined observer gain matrix, A L (k) is uncertain
matrix formulated as

myp njp

AL(k) = Z Z MpyArys(K)Nis, (6.100)
g=1s=1

M, and Ny are constant matrices with appropriate dimensions and

Apiitk)  Apipk) ... Apiy, (k)

Apai(k)  Apxnk) ... Apy, (k)
Ap(k) = : : . : ,

ALle(k) ALmLZ(k) e ALerLL (k)

is an unknown real time-varying matrix satisfying
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mp np,

D ALgsk) =1, k> 0. (6.101)

g=1s=1

Remark 6.9 The definition of (6.100) indicates that, the uncertain parameter AL (k)
is decomposed into a set of norm-bounded uncertainty matrix accompanied by some
known real matrices (M1,, Nps) characterizing the structure of the uncertainty [12].

By virtue of the Frobenius norm, (6.101) can be denoted by || Arn (k) ||[F< 1
where the matrix is given as

AL I AL I oo I Apta, (k) |

A () I I Ap) I —.o I A2, (k) |
| Arn k) lF= : : . :

Il Apmp 1N N Apm 2 I oo | Apmpn, Kl

Remark 6.10 To draw connections with the 2-norm uncertainty structures, we spe-
cialize mj = ny = 1 torecover the 2-norm uncertainty model. Thus it can be easily
seen that 2-norm uncertainty is a special case of the more general Frobenius norm.

Let us denote the estimation error as e(k) = x (k) — x(k), then, it gets

e(k+1) =x(k+1)—%(k+1) = (A—(L+AL)Cy)e(k)+ (E — (L+AL)H)w(k).
(6.102)
The following controller with gain variations is considered:

u(k) = (K + AK (k)% (k), (6.103)

where K € #™*" is to be determined controller gain matrix

mg ng

AK(K) =D > MrgAxgs k)N,

g=1s=1

Mg, and Nk, are known constant matrices of appropriate dimensions, A g (k) is
uncertain matrix and satisfies (6.101).

Next, we will develop an efficient result to achieve observer-based non-fragile
Hy, controller design with uncertainties Ay 45(k) and Ak (k) satisfying (6.101).
From (6.98), (6.99), and (6.103), we can obtain the closed-loop system as follows,

Fk+ 1) = A7) + Bwk),
2(k) = G2 (k) + Dw(k), (6.104)

where X (k) = [);El]z;} and
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M=[A+B(K+AK(I<)) —B(K + AK (k)) }
0 A — (L + AL(k))C2
E
7= [E—(L—}—AL(k))H]’

¢ =[C1+ D(K + AK(k)) —D(K -+ AK(K))],
9 =F.

In that following, the H, performance analysis problem is concerned. From [1], we
know easily that the Hy, performance y > 0 of the closed-loop system (6.104) can
be guaranteed by

—P % N
0 —y2I
<0, 6.105
C 9 0 I

where P is Lyapunov matrix and G is auxiliary matrix variable.

It is noted that if the controller gain matrices are given, the matrix inequality
condition (6.105) is an LMI over the decision variables P and G for fixed y. However,
since our purpose is to determine the controller gain matrices, the condition (6.105) is

anonlinear matrix inequality due to the coupling between G and |: i; g} . Our main
objective hereafter is to transform (6.105) into an LMI condition. In order to solve
this problem, the decoupling approach presented in Chapter 2 will be considered.
Our result depends on the following process.

Let us rewrite E51 in (6.105) as follows:

o B
o[7 7]
A 0 E BAK (k) — BAK(k) 0
=G|l o A E|+ 0 —AL(K)C; — AL(KH
C, 0 F DAK() — DAK(k) 0

BK — BK 0
+ G| 0 —-LC, —-LH
DK - DK 0

B 0
A K 0 I -1 0
=GA+G| 0 ~1 [O Li||:0 s Hi|
—_———

(6.106)

K C
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Remark 6.11 In Chap. 4, based on the LMI decoupling approach, the observer-based
output feedback Hy, control design conditions have been given. Different from the
results, this section considers the whole design strategy of the observer and controller.

In the LMI decoupling approach, for intuitive, we choose M = B,N =1,
and B = 1. By combining (6.105), (6.106) and defining V = UK, where U is
nonsingular without loss of generality, we have

I .

0 —y2I

~ P x
_ _ T

I GA G-G +[0 1]

0T . n s~ AT BT 2 0ol”
+[1]GBKC[I 0]+ [/ O]TCTKTBTGT[I]
I .

0 —y?I

GA+BVE —G—GT-l—[g ﬂ

T
+[(]) (GB — BUYU'VC[I 0]+]I O]TéTVTU—T(GB—éU)T[(I)] <0.

(6.107)

Based on Lemma 1.3 for a positive matrix J, (6.107) holds if the following condition
is satisfied,

—P % .

0 —y2I 01 Tol"
n A A P x + 1 7 1
GA+BVC —G—GT+[O 1}

+1 0]TCTvTUu-T(GB — BU)TJ-Y(GB — BU)U'VC[I 0] <O.

(6.108)
Using Lemma 1.4 with
|:—P * :| . .
)
S v B NP g
GA+BVC —G—GT+[O 1}

A=U"'vClr oy,
P=(GB—-BU)'J7'(GB — BU),
L=U,

then, (6.108) can be guaranteed by
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—P %
O —)/21 B3 B3
GA+BVC —G—GT+[57}+J "
ve 0 I

<0, (6.109)

where = —U — UT + (GB — BU)TJ=(GB — BU).
Applying Schur complement to (6.109) yields

—P  x
0 —y21 * * *

GA+ BVC —G—GT+[gj}+J * ¥ | <0. (6.110)
ve 0 —U-UT %
0 0 GB-BU -—1J

With the Hy, performance analysis condition (6.110) in hands, in that following, we
will present a sufficient condition for designing the non-fragile Hy, observer and
controller in the form of (6.99) and (6.103), respectively. That is, we will determine
the gain matrices L in (6.99) and K in (6.103) such that the closed-loop system
(6.104) is asymptotically stable with Hy, performance y.

Let
P ox Gi Gy G3 Ji ox %
P:[P] Pi|, G=|Gy Gs Gg |, J=|J J3 = |,
2 G7 Gg Gy Js J5 Jg (6.111)
Uk O vk O
U_|: 0 UL1|’ V= 0 VL1|'

From (6.104), (6.110), and (6.111), one has

T 4+ YTa(k) <O, (6.112)
where
T =
r—Pp = * * ok % * * * * k]
—P, —P3 * *x k% * * * * *

0 0 —y21 E I * * * * *
w41 04 Q43 044 k k * * * * *
oas51 o5 53 054 055 * * * * * *
a6l 062 Q3 Qled Q5 66 * * * * *
Vk =Vg O 0 0 O —Ug — UIE * * * *

0 ViC, ViH 0 0 0 0 ~U, -Ul « o« *

0 0 0 0 0 O GiB+G3D—-BUg -Gy —J1 % *

0 0 0 0O 0 O G4B + GeD -Gs+Up —Jp —J3 =

L O 0 0 0 0 0 G7B+G9gD— DUg —Gg —Jy —Js —Je
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a41 = G1A+ G3Cy + BVk,
ag = GoA — BV,

a3 = G E+ G E 4 G3F,
ags = —Gy —G]T+P1 + Ji,
as) = G4A + GeCy,

as; = GsA =V, Cy,

os3 = G4E + GsE + GgF — VL H,
54 = —Gy — G; + P+ Jo,
ass=—Gs — Gl + Py + Js,
a1 = G7A 4+ GoCy + DV,
aey = GgA — DV,

ae3 = G7E + GgE 4+ GoF,
ags = —G7 — G3T + Jy4,

ags = —Gg — Gl + s,

age = —Go — G& + 1+ s,

0 * * % ok ok % k k% %
0 0 * % sk ok % k k% %
0 0 0 ¥ % % k % x sk k
Sa1(k) Sa2(k) Saz(k) O % % % % % %
851(k) 850(k) 8s3(k) O O * % % % %
Yak) = | S61(k) S6a(k) S63(k) O O O * *x *x *x % |,
0 0 0 000 0 % % % x
0 0 0 00000 % % =
0 0 0 00 0O0O0O0 % x
0 0 0 00 0O0O0O0O0 %
| O 0 0 0000O0O0O0 O]

d41(k) = G1BAK (k) + G3DAK (k),

842(k) = —=G1BAK (k) — Gp,AL(k)C, — GsDAK (k)
S3(k) = —G2AL(k)H,

351(k) = G4BAK (k) + GeDAK (k),

852(k) = —G4BAK (k) — GsAL(k)C2 — GeDAK (k),
ds3(k) = =GsAL(KH,

S61(k) = G7BAK (k) + GoDAK (k),
862(k) = —G7BAK (k) — GgAL(k)Cr, — GgDAK (k),
S63(k) = —GgAL(k)H.

Obviously, YA (k) can be rewritten as
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Yaltk) =Xgk AK(K)Yk + YE(AK ()T XE + X ALY, + Y] (ALK)T XT
mg ng mg ng
=Xk (DD MicqBras Nk ) Vi + YE( DD Mg Aqu(k)NKs) X%
g=1 s=1 g=1s=1

mr np

mp L
+XL(ZZ LqAqu(k)NLs)YL+YLT(ZZMLqALqS(k)NLS) XL’

q=1 g=1s=1
(6.113)

where

0

0

0
G1B+ G3D
G4B + G¢D
Xk =|GiB+GoD |, Yg,=[I —1 0 0 0 OO0 O O O O],
0

[= e}

X, =|—-Gg|, Y=[0 Cob, H 0 0 0 00 0 0 O]

Then, by Lemma 1.20, the matrix inequality condition (6.112) holds if the following
LMI condition is satisfied
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ML XY epl
Mg, Xk 0 ... 0 &gl
MIxt 0 ... 0 &1
M, X[ 0 .. oo 0 & <0,
exkNk1Yxek O ... 0 exl
EKNKnKYK 0 ... 0 81_(1
erNp1Yr 0O ... 0 e 1
. .o%
| eLNpn, Y 0 ... 0 e 1|
(6.114)
where €, = —Eus uw=K, L.

Finally, the following theorem is used to observer-based non-fragile Hy, control
design for the closed-loop system (6.104).

Theorem 6.8 Consider the closed-loop system (6.104) and give a scalar y > 0.
Then the system is asymptotically stable with the Hx, performance y if exist matrices
Py, P, P3, Gy, G, G3, G4, Gs, Gg, G7, Gg, Gy, Uk, UL, Vg, Vi, J1, J2,
J3, Ja, Js5, and Jg, scalars g and €p such that the LMI condition (6.115) holds.
Furthermore, the observer (6.99) and the controller (6.103) gain matrices are given
by

L=U;'"V, K=Ug V. (6.115)

Without considering the controller and observer gain uncertainties, the following
corollary gives a sufficient condition for designing the standard H, controller and
observer.

Corollary 6.3 Consider the closed-loop system (6.104) and give a scalar y > 0.
Then the system is asymptotically stable with the H, performance y if exist matrices
Pi, P, P3, Gy, G2, G3, G4, Gs, G, G7, Gg, Go, Uk, U, Vg, Vi, J1, J2, J3, Jg,
Js, and Jg such that Y < 0 holds, where Y is defined in (6.112). The gain matrices
for the standard controller and observer are given by (6.115).

6.2.2 Example

In this example, we employ Theorem 6.8 to design the observer-based non-fragile
H, controller for the system (6.98), in which system matrices are given
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03 0.8 —0.4 —11

A=|-0504 05|, B=| 2 -1,
1.2 1.1 0.8 013
0.1

E=|04], Ci=[-1 0 2],
0.1

D=[12 —1], F =03,

o

For uncertainty matrices with mg = mp =

—-1121
0 =31}’

i=04]

ng = np = 2, we give the known

parameters in (6.99) and (6.103) as

0.22 —0.04

M =1 —-0.12 |, M, = 0.2 ,
0.02 0.12

N =[-031_0.13], N> =[0.06 —0.25], (6.116)
0.28 —0.17

MK1=|:0.12] M’Q:[ 0.03 ]

Ngi =[023 0.02 —0.13], Ng>=[0.02 —022 —0.03].

By using the MATLAB toolbox to solve the LMI (6.114) in Theorem 6.8, the mini-
mum Hy, performance yy,;, = 3.9537 is obtained, and

e — [2:3269 17494
K= 1.6528 2.8928 |
Ve — [ 12712 —27178 23672
K= -2.0651 —32440 —2.4444 |
[ 114.6195 14.0316  —2.4352
Up=| 258412 61.0820 —8.6722 |,
| —21.7913 —6.3109 25.0209
[—2.0790 —29.1334
Vp=| 20.8726  —1.1004 (6.117)
| 17.0743  5.5069

Substituting (6.117) into (6.115), the controller and observer gain matrices can be
given as follows:

K — —0.0168 —0.5696 — 0.6698
~ | —0.7043 —0.7960 —0.4623 |’
—0.0602 —0.2657
L= 04736 0.0962 (6.118)
0.7494 0.0130
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The controller and observer given by (6.118) are non-fragile, that is, when the
controller and observer have gain variations, the Hy, performance y = 3.9537
is always guaranteed for any uncertainties Agqs and Apy, satisfying (6.101) for
this example. In order to verify this view, we assume that Agi; = Ago =
sin(k)/v2, A2 = Mgz = cos(k)/v2, Api = Ara = sin(k)//2, and
Arp1p = Ay = cos(k)/ /2. Based on the controller and observer, the simulation
result of the estimation error is given in Fig. 6.8, under the initial conditions x (0) =
£r(0) =[0 0 0]7,andthenoise signal is chosen as w(k) = (24+k'3)~!. Figure 6.9
shows the simulated values of y, i.e., \/21310 2l (k)z(k)/ D p2owT (yw(k). Tt is
observed that the ratio tends to a constant value 3.0862, which is less than the pre-

scribed y = 3.9537. From this simulation, we can see that the proposed non-fragile
control design method is effective.
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6.3 Conclusion

It is well known that these results on control and filtering for systems with feedback
uncertainties and Frobenius norm-bounded uncertainties have not been fully investi-
gated and the relevant results have been very few. Motivated by the observations, this
chapter has investigated the problems of output feedback H, control and filtering
for discrete-time linear systems with feedback uncertainties and Frobenius norm-
bounded uncertainties. Three types of feedback uncertainties have been considered
to design output feedback H, control and filtering. And the observer-based output
feedback non-fragile Hy, control design with Frobenius norm-bounded uncertain-
ties has also been studied. The corresponding design conditions have been derived
based on linear matrix inequality (LMI) techniques. Numerical examples have been
provided to illustrate the feasibility of the proposed design methods.
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Glossary

* Corresponding transposed block matrix due to symmetry

AT Transpose of matrix A

Al Inverse of matrix A if it exists

A > 0(A >0) Matrix A is square symmetric and A is positive definite (semi-
definite)

A <0(A <0) Matrix A is square symmetric and A is negative definite (semi-
negative)

1 Identity matrix with appropriate dimension

L>[0, 00) Space of square integrable vector functions on [0, 00)

1[0, c0) Space of square summable infinite vector sequences over [0, co0)

A" n-dimensional Euclidean space

i Space of m x n real matrices
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