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Preface

Differential game refers to a kind of problem related to the modeling and analysis of
conflict in the context of a dynamical system. More specifically, a state variable or
variables evolved over time according to differential equations. It is a mathematical
tool for solving the bilateral or multilateral problems in dynamic continuous con-
flicts, competition, or cooperation, which has been widely applied in the fields of
military, industrial control, aeronautics and astronautics, environmental protection,
marine fishing, economic management and the market competition, finance,
insurance, etc.

This book is focused on the generalized Markov jump linear systems which is
widely used in engineering and social science, using dynamic programming method
and the Riccati equation method to study the dynamic non-cooperative differential
game problems and its related applications. This book includes the following
studies: the stochastic differential game of continuous-time and discrete-time
Markov jump linear systems; the stochastic differential game of linear stochastic
differential game of generalized Markov jump systems; the stochastic H»/He robust
control of generalized Markov jump systems; and the risk control of portfolio
selection, European option pricing strategy, and the optimal investment problem of
insurance companies. In addition, this book created a variety of mathematical game
models to derive the explicit expression of equilibrium strategies, to enrich the
theory of equilibrium analysis of dynamic non-cooperative differential game of
generalized Markov jump systems. It is to analyze and solve the robust control
problems of generalized Markov jump systems based on the game theory. The
applications of these new theories and methods in finance and insurance fields were
presented.

The main content is divided into the following six sections:

1. The introduction and basic knowledge

This section introduces the basic models and the latest research of generalized
Markov jump systems, the research content of differential game theory of gener-
alized Markov jump systems, and the related concepts of differential game theory.
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2. The stochastic differential game of continuous-time Markov jump linear systems

From the perspective of stochastic LQ problem, this section studied the stochastic
optimal control problem of continuous-time Markov jump linear systems, and then
to extend study on the two-person Nash stochastic differential game problem,
finally to explore the two person Stackelberg stochastic differential game problem,
and to achieve the equilibrium solutions of various problems.

3. The stochastic differential game of discrete-time Markov jump linear systems

From the perspective of stochastic LQ problem, this section studied the stochastic
optimal control problem of discrete-time Markov jump linear systems, and then to
extend study on the two person Nash stochastic differential game problem, finally
to explore the two person Stackelberg stochastic differential game problem, and to
achieve the equilibrium solutions of various problems.

4. The stochastic differential game of generalized Markov jump linear systems

This part is to establish the following models: two person zero-sum stochastic
differential game, two person nonzero-sum game, Nash game, Stackelberg game, to
achieve the equilibrium solutions, and to obtain the explicit expressions of the
equilibrium strategies.

5. The stochastic Hy/He control of generalized Markov jump linear systems

Based on Nash game and Stackelberg game, this part is to establish the Markov
jump linear systems models, the stochastic Hy/Heo control of generalized Markov
jump linear systems models, to achieve the mathematical expression of the optimal
robust control.

6. The stochastic differential game of generalized Markov jump linear systems in
the applications in the fields of finance and insurance

This part is to establish differential game models of the minimal risk control of
portfolio selection, option pricing strategy, and the optimal investment of insurance
companies. And regarding the probability measurements of the economic envi-
ronment as a player, regarding the investors as another player, the differential game
models are to achieve the optimal control equilibrium strategies by solving two
person differential game problems.

The research achievements of this book are sponsored by two foundations: the
National Natural Science Foundation of China, which is named ‘“Non-cooperative
stochastic differential game theory of generalized Markov jump linear systems and
its application in the field of finance and insurance” (71171061); and the Natural
Science Foundation of Guangdong Province, which is named “Non-cooperative
stochastic differential game theory of generalized Markov jump linear systems and
its application in the field of economics” (S2011010000473). All achievements of
this research are counting on the assistances and supports of National Nature
Science Foundation of China and the Natural Science Foundation of Guangdong
Province. Thanks a lot!
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A group of members contribute to the accomplishment of this book, which
includes the following: Dr. leader Zhang Cheng-ke, who is the professor; the
doctoral student supervisor; the dean of School of Economics and Commerce,
Guangdong University of Technology; the executive director of Chinese Game
Theory and Experimental Economics Association; the executive director of
National College Management of Economics Department Cooperative Association;
vice chairman of Systems Engineering Society of Guangdong Province; Dr. Zhu
Huai-nian, who is the lecturer of School of Economics and Commerce, Guangdong
University of Technology; Dr. Bin Ning, who is the lecturer of School of
Management, Guangdong University of Technology; and Dr. Zhou Hai-ying, who
works in Students’ Affairs Division, Guangdong University of Technology. Team
members play a team spirit; have close cooperation; work in unity and cooperation;
publish a number of papers, which has laid a good foundation for the completion of
this book. The achievements of this book presented in front of readers are the
collaborative efforts and hard work of all members of the research group!

Thanks to Zhang Chengke’s graduate students Cao Ming, Zhu Ying! They have
made a lot of work in terms of manuscript input, format correction, and check the
formula, etc.

Special thanks for the help and supports of Guo Kaizhong, who is the professor
of Guangdong University of Technology; and Cao Bingyuan, who is the professor
of Guangzhou University! Owing to their constant encouragements make this book
completed and presented to the readers as soon as possible.

Counting on the References to the scholars quoted in the book, which make the
fruitful base of our work!

Although we have made a lot of efforts for the completion of this book, due to
the limited level, there must be a lot of shortcomings and deficiencies. Please to
criticize and correct.

Guangzhou, China Cheng-ke Zhang
Huai-nian Zhu

Hai-ying Zhou

Ning Bin
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Content Introduction

This book systematically studied the stochastic non-cooperative differential game
theory of generalized linear Markov jump systems and its application in the field of
finance and insurance. First, this book was an in-depth research of the
continuous-time and discrete-time linear quadratic stochastic differential game, in
order to establish a relatively complete framework of dynamic non-cooperative
differential game theory. And using the method of dynamic programming principle
and Riccati equation, this book derive into all kinds of existence conditions and
calculating method of the equilibrium strategies of dynamic non-cooperative dif-
ferential game. Then, based on the game theory method, this book studied the
corresponding robust control problem, especially the existence condition and design
method of the optimal robust control strategy. Finally, this book discussed the
theoretical results and its applications in the risk control, option pricing, and
the optimal investment problem in the field of finance and insurance, enriching the
achievements of differential game research.

This book can be used as a reference book for graduate students majored in
economic management, science and engineering of universities in learning
non-cooperative differential games, and also for engineering technical personnel
and economic management cadres.
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Chapter 1
Introduction

1.1 Research and Development Status of Generalized
Markov Jump Linear System Theory

1.1.1 Basic Model of Generalized Markov Jump Linear
Systems

The research of switched systems is mainly carried out with the research of hybrid
systems [1-5]. A hybrid system is a dynamic system that exhibits both continuous
and discrete dynamic behavior—a system, such as manufacturing systems, weather
forecast systems, power systems, biological systems, as well as option pricing
models in financial engineering, insurance surplus distribution models, multi-sector
fixed asset dynamic input-output models, etc., that can both flow (described by a
differential equation) and jump (described by a state machine or automaton). In the
process of its operation, a hybrid system often suffers from a sudden change in the
environment, internal connection changes between each subsystem in a large sys-
tem, changes of nonlinear objects, damages of the system components and random
mutations, such as human intervention. These phenomena can be seen as a response
of the system driven by a class of random events. In general, the state of such a
system is defined by the values of the continuous variables and a discrete mode.
The state changes either continuously, according to a flow condition, or discretely
according to a control graph. Continuous flow is permitted as long as so-called
invariants hold, while discrete transitions can occur as soon as given jump condi-
tions are satisfied. Discrete transitions may be associated with events. Such systems
are often called hybrid systems in control theory.

When the discrete event of hybrid systems is characterized by discrete switching
signals, such important systems are called jump systems. This kind of systems can
be described by finite subsystems or dynamic models, and at the same time there is
a switch law, which makes the switching between various subsystems.

© Springer International Publishing Switzerland 2017 1
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2 1 Introduction

A stochastic jump system can usually be described by the following state
equations:

(1.1.1)

where x(r) € R" is a continuous variable, u(r) € R™ is an external signal of con-
tinuous control input or continuous dynamic systems, r(#) is a piece-wise constant
function valued in a finite set = = {1, - -, [}, usually referred as “switch signals”,
or “switching strategy” of the system. r(z~) indicates that r(¢) is a piece-wise
constant right hand continuous function. When r(¢) takes different values, the
system (1.1.1) corresponds to different subsystems. f(-,-,-,-) reflects continuous
state variables changes of the system, ¢(-, -, -, -) is the transition function of discrete
states, which reflects dynamic changes of logic strategies or discrete events of
systems. Obviously, when the switching strategy r(¢) € 2 = {1}, the random jump
system is degraded as a simple stochastic system. So, a simple random system is a
special case of the stochastic jump systems (1.1.1).

A generalized stochastic jump system is usually described by the following state
equations:

{E)'c(t = f(t,x(2), (1), u(t)), (1.1.2)
t

where E € R™" is a known singular matrix with 0 < rank(E) = k < n, x(¢) € R”,
u(t) e R™, r(t), r(t), f(-,+ ), @(-,,,-) are the same as system (1.1.1).

This book is focused on a kind of special jump systems with Markov switching
parameters, which is known as Markov jump systems. In such systems, the
switching rules determine which corresponding subsystem the system would be
switched to at each moment, and the state of the system would be switched to the
corresponding state at the corresponding moment. But during the process of the
system switching from one mode to another mode, there is no switching rule to
obeying, and the switching process between different modes is random. This kind
of random switching accords with some certain statistical properties—the trans-
formation among various regime of the discrete event finite set of the system is a
Markov jump process, therefore, it can be also regarded as a special case of
stochastic systems, called stochastic Markov switching systems (also known as
stochastic Markov jump systems, or stochastic Markov modulation systems).

A Markov jump system is constructed by two parts. One part of the system is the
state of the system, and the other part is the system mode, which depends on the
Markov process, deciding the execution of the subsystem at a certain moment, in
order to control and coordinate the normal operation of the whole system.
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(1) Mathematical Model of Continuous Generalized Markov Jump Systems

The continuous generalized stochastic Markov jump linear system is described
as:

Ex(t) = A(r(1))x(r) + B(r(t))u(t), (1.1.3)

where E € R™", x € R", u(r) € R™ are the same as system (1.1.1), and the “switch
signals” or “switching strategy” of the system r(¢) € E = {1,---,I} is a Markov

chain with finite state. Z is the state space. Define IT = [r;],,, as the transition
matrix of Markov process r(¢), and the transition probability could be written as:

Pr{r(t+A) =jlr(t) =i} = { 14 1A+ o(A),  else, (1.1.4)
where m;; represents the transition probability from mode i to mode j, with ; >0,
S, m; =1, and o(A) is the higher order infinitesimal. The matrice A(r(r)) and

i
B(r()) are the functions of the stochastic process r(¢), and for each () =i € B,

A(r(z)) and B(r(z)) are real matrices with appropriate dimension.
(2) Mathematical Model of Discrete Generalized Markov Jump Systems

The discrete generalized stochastic Markov jump linear system is described as:
Ex(k+1) = A(r(k))x(k) + B(r(k))u(k), (1.1.5)

where E € R™", x(f) € R", u(t) € R" are the same as system (1.1.3), and the
elements of the transition probability matrix A = [4;],,, of the system switching
track r(k) € E = {1,---,1} are given by:

Ix

Aij = Pr{r(k+1) = jlr(k) = i}, (1.1.6)
where 4;; represents the transition probability from mode i to mode j, which satisfies

l
that }qj Z 0, Z Al] = 1.
Jj=1

(3) Applications of Generalized Stochastic Markov Jump Linear Systems

As a special kind of stochastic jump systems, the Markov jump system has
practical applications with engineering background. Such as the influence of sudden
changes of environment on the behavior of the system, changes of interconnected
subsystems, changes of nonlinear system operations, etc., can all be considered as
random switching between multimodal systems. Economic system, aircraft control
system, robot manipulator system, large space flexible structure system and
stochastic decision-making and continuous control systems all have such kinds of
system models. Especially in the field of finance and insurance, for example,
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in 1973, Black and Scholes used geometric Brownian motion to simulate the price
of risk assets of options at time ¢, that is

dX(t) = uX(t)dt + o X (t)dw(t), (1.1.7)

where p is the rate of return, ¢ is the disturbance rate, w(z) is the Brownian motion,
reflecting the changes of financial market. Although Black used (1.1.7) to give an
almost perfect formula of option pricing, the model still had many defects, such as:
(a) it failed to depict the discontinuous change of stock price; (b) the empirical
analysis showed that the stock volatility was not constant. So many scholars tried to
improve the model. On one hand, Merton (1976) put forward a jump diffusion
model, which adding a jump process on the model (1.1.7) to characterize the
discontinuous changes in stock price [6]. On the other hand, some researchers
proposed to let the coefficient of the geometric Brownian motion depends on some
hidden Markov chain, that is to say, assuming risk assets are satisfied that:

dX (1) = pu(r(1))X(0)dt + o (r()X (H)aw(?), (1.1.8)

which r(f) is a Markov chain with finite state, and assuming its state space is
E = {1,---,1}, the infinitesimal operators is IT = [r;],,,. In economics, the state of
r(t) is usually called regime-switching or Markov regime-switching, and X () is
called a process of geometric Brownian motion with Markov regime-switching. The
state of r(¢) can be interpreted as economic condition structure changes, the
regime’s replacement, alternating macro news, and economic cycles, etc. There are
many literature discussing model (1.1.8), for instance, when [ = 2, Guo (2000) [7]
studied Russia’s options pricing problems with Markov modulated geometric
Brownian motion model. Guo (2001) [8] further studied an explicit solution to an
optimal stopping problem with regime switching, and Jobert (2006) [9] extended
the result of Guo into option pricing with finite state Markov-modulated dynamics.
Recently, Elliott (2007) [10] studied a class of pricing options under a generalized
Markov-modulated jump-diffusion model, assuming that asset price followed:

dX(t) = u(r()X(0)dt + o (r(2))X (£)dw(t) + X(¢7) - ZN(dt, dz), (1.1.9)

where N(dt,dz) is the possion measure.

So, in the field of engineering systems as well as the social and economic
systems, such as the option pricing problem in financial engineering, investment
insurance dividend distribution problems, multi-sectoral dynamic input-output
model of fixed assets, and actual economic system models. All these systems can all
be described by the mathematical model of generalized stochastic Markov jump
linear systems.
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1.1.2 Research Status of Generalized Markov Jump Systems

(1) Research on the theory of generalized Markov jump systems

Concrete model of stochastic Markov jump linear systems was first put forward
by Krasovskii and Lidskii [11] and Florentin [12] as a numerical example of
mathematical analysis. Many researches mainly focused on the stability and sta-
bilization controller design of stochastic jump systems in recent 10 years [13-20].
Professor Mao, one of the famous international scholars in the field of stochastic
analysis, issued the asymptotic stability results and numerical methods of stochastic
jump systems in his monograph published in 2006 [21]. Professor Mao and his
coauthor Dr. Huang studied the stability of singular stochastic Markov jump sys-
tems. There are too many researches about the application in engineering and social
economy of Markov jump systems, and we can’t list them all in a limited space.
Our analysis focused on optimal control problem of stochastic Markov jump system
(i.e., problem of single stochastic Nash differential game) and the robust control
problem which are closely related to this book.

Sworder (1969) first discussed optimal control problem of hybrid linear systems
with Markov jump parameters from the perspective of stochastic maximum principle
and applied it to the actual control problems [22]. Then, Wonham (1971) proposed
the dynamic programming problem of stochastic control system, and successfully
applied it to the optimal control of linear jump systems [23]. Fragoso and Costa
(2010) gave the separation principle for LQ problems of stochastic Markov jump
system in continuous time setting [4]. Gorges et al. (2011) proposed the optimal
control problems and solution methods of generalized jump systems [5].

Boukas et al. (2001) studied LQR problem of controlled jump rate [24].One of
the Chinese scholars named Sun (2006) conducted the control and optimization
problem of jump systems, systematically [25]. Mahmoud et al. (2007) gave the
analysis results and synthesis of uncertain switched systems in discrete-time setting
[26]. Zhang (2009) studied the stability and stabilization of Markov jump linear
systems with partly transition probabilities [27-30]. Guo and Gao studied the jump
structure control of singular Markov jump systems with time delay [31]. Dong and
Gao gave the analysis and control of generalized bilinear Markov jump systems
[32]. Zhang and Zhang studied the control theory and application about nonlinear
differential algebraic system (including generalized bilinear systems), systemati-
cally [33]. Obviously, the research on the singular (or non-singular) stochastic
Markov jump linear quadratic optimal control problem (i.e. LQ problem) has rel-
atively obtained a number of achievements, which lay a solid foundation for
studying the non-cooperative game theory of generalized stochastic Markov jump
systems. But at present, the research results on the LQ non cooperative differential
game theory of the generalized stochastic Markov jump system are less, so we put
forward the research of LQ non-cooperative differential game theory of generalized
stochastic Markov jump systems.
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(2) Research on Non-cooperative differential game theory driven by ordinary
differential equations and stochastic differential equations

The study of game theory has also made abundant achievements, among which,
there are many researches on dynamic non-cooperative differential game theory,
where the system dynamics are described by differential equations, which includes
saddle point equilibrium theory of zero-sum game, Nash equilibrium nonzero-sum
game, Stackelberg leader-follower game theory and incentive theory.

For normal systems (such as deterministic and stochastic systems), Basar (1995)
[34] summarized the dynamic non-cooperative differential game theory and its
application results described by ordinary differential equations and stochastic dif-
ferential equations in his monograph, systematically (see [34] and cited literatures).
Xu and Mizukami have studied the saddle point equilibrium, Nash equilibrium,
Stackelberg game theory and incentive theory of linear singular systems, system-
atically, (see [35—40] and cited literatures). Dockner et al. (2000) described the
non-cooperative differential games with its applications, including the capital
accumulation, public goods investment, marketing, global pollution control,
financial and monetary policy, international trade and other issues of differential
games, and this monograph is known as Bible study of differential games [41].
Erickson (2003) introduced the differentia game model of advertising competition,
systematically [42]. Zhukovskiy (2003) introduced Lyapunov method in the field of
stochastic differential games, in this book, his mainly use the technique of dynamic
programming and optimization vector [43]. Jorgensen and Zaccour (2004) mainly
studied the differential game in marketing, and introduced the application of dif-
ferential games in the pricing-making, advertising, marketing channels and other
fields [44]. And they had published many research papers with high citations of
differential game theory and applications in recent years. Engwerda [45] (2005)
introduced the LQ differential game problems and its application examples in
economics and management science, and studied the mathematical skills of how to
solving the Riccati equations associated with differential games, systematically
(Engwerda 2000, 2003; Engwerda and Salmah 2009) [46—48]. Hamadene (1999)
studied the nonzero-sum LQ stochastic differential game of BSDEs [49]. The main
analytical tools used in these studies are still variation principle, the maximum
principle and dynamic planning. In domestic, Academician Zhang Siying’s book
(1987) [50] “Differential Game” and Professor Li Dengfeng’s book(2000) [51]
“Differential Game and Its Applications” are the early related literature, but these
two books mainly focus on differential games’ applications in military and control
problems, and pay little attention on applications in economics and management.
Because of published influential papers about two zero-sum differential game with
impulse control, professor Yong has been highly praised by Berkovitz who is the
editor of American Mathematical [52]. Professor Liu also gave the application of
leader-follower game to linear multi-sector dynamic input-output of generalized
linear system [53]. Wang et al. (2007) studied on the linear quadratic nonzero-sum
stochastic differential game under partially observable information [54]; Wu and Yu
(2005, 2008) studied the linear quadratic nonzero-sum stochastic differential game
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problem with stochastic jump, also studied BSDEs differential game with jump and
its application in financial engineering [55, 56]; Luo studied the indefinite linear
quadratic differential games and indefinite stochastic linear quadratic optimal
control problem with Markov jump parameters [57]. In the application of differ-
ential games, there is also a growing number of scholars who applying differential
game to option pricing [58] (Zheng 2000), the optimal investment in consumption
[59, 60] (Liu et al. 1999; Wu and Wu 2001), fisheries resource allocation [61, 62]
(Zhang et al. 2000; Zhao et al. 2004), advertising competition and supply chain
[63-67] (Zhang and Zhang 2005, 2006; Fu and Zeng 2007, 2008; Xiong etc.,
2009), dynamic pricing with network externalities [68] (Liu et al. 2007) and other
areas.

(3) Research on robust control of generalized Markov jump systems

The results of jump robust control systems are relatively poor. Hespanha (1998)
[69] studied the Heo control of jump systems. After that, much attention have been
paid on Heo control. Xu and Chen proposed the Hoo control of uncertain stochastic
bilinear systems with Markov jumps in discrete-time setting [70]. Ting et al.
(2010) [71] studied the mixed H,/He Robust control problems of stochastic sys-
tems with Markov jumps and multiplicative noise in discrete- time setting. All the
scholars above used the Lyapunov method (including linear matrix inequality
(LMI) method), in this book, we are going to study robust control of stochastic
Markov jump linear systems based on game theory. Pioneering work using game
theory to study in robust performance controller was first given in the 1960s by
Doroto et al. [72], but it did not arouse enough attention due to the need of solving
the differential mini-max problem. Since 1990, this design was thought to be used
as a powerful weapon to robust design, and the basic idea was transforming the
corresponding robust control problem into a two person differential game of saddle
point equilibrium or Nash equilibrium. Basar and Limebeer et al. [73, 74] con-
tributed the representative work. And Limebeer et al. converted the mixed Hy/Heo
control of linear systems into a Nash equilibrium game, and obtained the optimal
control strategies. But for the stochastic Markov jump linear systems, there are few
results of robust control with various performance based on game theory.

(4) Research on applications of generalized Markov jump systems

There are many applications of Markov jump systems in the field of engineering,
such as the automatic control of driving shifting systems, traffic management
systems and electrical systems, and so on [75]. While application in the field of
social science and economic science (in social science and economic science,
Markov jump systems are usually referred to Markov switching systems or Markov
regime-switching systems) including, (D: risk asset pricing model and the surplus
model of an insurer in finance and insurance (detailed description were covered in
ref. [76] and reference therein). In terms of VaR measure of risk management in
financial market, there exists a fact that the state of financial time series or
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macroeconomic variables may suddenly change to another state, especially in
China’s economic entities, based on this fact, doctor Su proposed the ARCH model
and the CAPM model with Markov regime-switching, and made the empirical
research by using the Chinese data [77, 78]. ®: Dynamic input-output model of
multi-sectoral fixed assets (described in detail in the analysis of the socio-economic
needs of D) [79, 80]. @ Loan pricing of commercial bank with credit rating
switching, Dr. Yao represented the credit rating switching process as a continuous
time, homogeneous, finite state Markov process, and studied the pricing model of
Jarrow et al. (1997) and Lando (1998) [81]. Zhao divided the fluctuation of stock
returns in Shanghai Stock Market into three states, “bear”, “Bull of mild,” “Bull of
mad”, using the method of MSVAR to exploring the existence of bubbles in stock
market, and identified the exact time of speculative bubbles [82].

(5) Development trend

Feature 1: At present, more and more special hybrid systems, stochastic Markov
jump systems are used to modeling the practical problems in social and economic
system, instead of the general stochastic system.

Feature 2: The research on LQ optimal control problem of stochastic Markov
jump linear systems has made great process, while the corresponding results of LQ
differential game theory are rare.

Trend 1: Analysis and control theory of linear systems can be extended to the
analysis and control theory of generalized linear systems; Robust control theory of
linear systems can be extended to the generalized linear systems; Dynamic
non-cooperative game theory of linear systems can also be extended to the gen-
eralized linear systems.

Trend 2: Research on robust control of generalized stochastic Markov jump
linear systems has been one of the important research directions, and game theory
has become one efficient method to dealing with the robust control problem. Thus,
the research on robust control problems of stochastic Markov jump systems based
on game theory is a new research direction.

Trend 3: Analysis and control theory of stochastic linear systems can be
extended to analysis and control theory of generalized stochastic Markov jump
linear systems.

1.2 Differential Games for the Generalized Markov Jump
Linear Systems

Differential games study a class of decision problems, under which the evolution of
the state is described by a differential equation x(¢) = f(z,x(¢),u(z), v(¢)), where
u(t) and v(¢) are control strategies of two players. This differential equation is called
the state system of the differential game. When the differential equation is a state
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equation of generalized systems (also known as singular systems, descriptor
systems, or generalized state-space systems: Ex(7) = f(¢,x(¢),u(z), v(¢)), in which
E is a known singular matrix with rank(E) = k < n, and the system is regular. The
corresponding differential game is called differential games of the singular systems,
and when the differential equation contains random disturbance, that is

Edx(t) = f(t,x(2),u(t),v(t))dt + o(t,x(2), u(z), v(t))dw(t), (1.2.1)

where w(?) is the random disturbance, the differential game is called the stochastic
differential game of generalized dynamic systems. If the behavior of players follows
a binding agreement that both players will obey, the game is known as a cooper-
ative game, otherwise known as a non-cooperative game. The book mainly
discusses the non-cooperative game, in which each player has an cost function
Ji(@t, x(6), u(t), v(t)) and Jo(t, x(1), u(?), v(1)).

When rank(E) = n, that E is nonsingular, (1.2.1) becomes a normal stochastic
system, that is

dx(t) = f(t,x(2),u(t),v(t)) + & (2, x(2), u(z), v(¢))dw(z), (1.2.2)

where f(-, ) = E X f(-,-,+,), &(-,-,-,-) = E X (-, -, -,-), So it can be said that
dynamic non-cooperative differential game theory of a normal (nonsingular)
stochastic systems is a special case of that of a generalized (singular) stochastic
systems, and the dynamic non-cooperative differential game theory of generalized
stochastic systems is the natural generalization of normal stochastic systems.

Non-cooperative differential game theory of the generalized Markov jump linear
systems usually contains: the existence conditions and solution methods of
equilibrium strategies, such as the saddle-point equilibrium problem, the Nash
equilibrium problem and the Stackelberg equilibrium problem. Here, we take the
Nash equilibrium problem as an example, the problem is that: how both players
choose their strategy control variables u(¢) and v(¢) to optimizing their cost function
Ji(t, x(6), u(®), v()) and Jr(t, x(r), u(r), v(¢)), that is to find the control strategy set
(u*(#),v*(¢)) and the state x*(r) satisfies

Ji(t, x*(2), u* (2),v*(¢)) <Ji(t,x* (1), u(z),v*(z)), Vu(t) €U,

Jo(t,x*(2), u (2),v*(2)) < Ja(t,x*(1),u* (1), (1)), Wv(r) €V,

s.t.

Ex*(t) = A(r())x* (1) + B(r())u* (2) + C(r(0))v*(z), u*(t) € U,v*(¢) € V.

(12.3)

Obviously, if there’s only one player in the game, the problem of Nash differ-
ential games for generalized Markov jump linear systems (1.1.12) becomes an
optimal control problem for such systems: to find an optimal control strategy u*(z)
satisfies
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minJ (¢, x(¢),u(t))
s.z. (1.2.4)
Ex(t) = A(r(0))x(t) + B(r(t))u(r), u(t) € U.

So, the optimal control problem (1.2.4) is a special case of the Nash differential
games (1.2.3) for generalized Markov jump linear systems.

1.3 Contents of This Book

Chapter 1. Introduction. This chapter introduces the development and research of
the theory for the generalized Markov jump linear system, and the main content of
this book.

Chapter 2. The definite and stochastic differential game. This chapter introduces
some preliminary knowledge and dynamic optimization technique for the research,
and explains basic concepts of the non cooperative differential game and the
stochastic differential game.

Chapter 3. The stochastic differential game for the continuous-time Markov
jump linear system. This chapter introduces the existence condition, the design and
solution of the saddle-point equilibrium strategies, the Nash equilibrium strategies
and the Stackelberg strategies for the continuous-time linear Markov jump system.

Chapter 4. The stochastic differential game for the discrete-time Markov jump
linear system. This chapter introduces the existence condition, the design and
solution of the saddle-point equilibrium strategies, the Nash equilibrium strategies
and the Stackelberg strategies for the discrete-time Markov jump linear system.

Chapter 5. The stochastic differential game for the continuous-time generalized
Markov linear jump system. This chapter introduces the existence condition, the
design method and the approximation algorithm of the saddle-point equilibrium
strategies, the Nash equilibrium strategies and the Stackelberg strategies for the
continuous-time generalized Markov jump linear system.

Chapter 6. The robust control problems of the generalized Markov jump linear
system based on the game theory approach. This chapter studies the H,/Heo robust
control problems of the Markov jump linear system. By means of the results of
indefinite stochastic differential game for Markov jump linear systems discussed
above, we viewed the control strategy designer as one player of the game, i.e. Py,
the stochastic disturbance as another player of the game, i.e. “nature” P,, respec-
tively, the robust control problems are transformed into a two person differential
game model, player P, faced the problem that how to design his own strategy in the
case of various interference strategy implemented by “nature” P,, both balanced
with the “nature” and optimized his own objective. Corresponding results of
stochastic Hoo, Hy/Heo control problems for Markov jump linear systems with state,
control and disturbance-dependent noise are obtained, and proved the existence of
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the controller, explicit expressions of the feedback gain are given by means of
coupled differential (algebraic) Riccati equations. Finally, numerical examples were
presented to verify the validity of the conclusions.

Chapter 7. Applications of stochastic differential game theory for Markov jump
linear systems to finance and insurance. A risk minimization problem is considered
in a continuous-time Markovian regime switching financial model modulated by a
continuous-time, finite-state, Markov chain. We interpret the states of the chain as
different states of an economy. A particular form of convex risk measure, which
includes the entropic risk measure as a particular case, as a measure of risk and an
optimal portfolio is determined by minimizing the convex risk measure of the
terminal wealth. We explore the state of the art of the stochastic differential game to
formulate the problem as a Markovian regime-switching version of a two-player,
zero-sum, stochastic differential game. A novel feature of our model is that we
provide the flexibility of controlling both the diffusion risk and the
regime-switching risk. A verification theorem for the Hamilton-Jacobi-Bellman
(HJB) solution of the game is provided. Furthermore, we studied a game theoretic
approach for optimal investment-reinsurance problem of an insurance company
under Markovian regime-switching models. In this case, the price dynamics of the
underlying risky asset is governed by a Markovian regime switching geometric
Brownian motion (GBM). Then, we considered the problem in the context of a
two-player, zero-sum stochastic differential game. One of the players in this game is
an insurance company and the other is a fictitious player—the market. The insurance
company has a utility function and is to select an investment-reinsurance policy,
which maximizes the expected utility of the terminal wealth.
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Chapter 2
Deterministic and Stochastic Differential
Games

This chapter introduces the theory of deterministic and stochastic differential
games, including the dynamic optimization techniques, (stochastic) differential
games and their solution concepts, which will lay a foundation for later study.

2.1 Dynamic Optimization Techniques

Consider the dynamic optimization problem in which the single decision-maker:

max{ | Tg[s,xcs),u(s)]ds+q<x<T>>}, )

4]

Subject to the vector-valued differential equation:
x(s) = f[s,x(s),u(s)ds, x(to) = xo, (2.2)

where x(s)€XCR" denotes the state variables of game, and u€l{ is the control. The
functions f[s, x, u], g[s,x, u] and g(x) are differentiable functions.

Dynamic programming and optimal control are used to identify optimal solu-
tions for the problem (2.1)—(2.2).

2.1.1 Dynamic Programming

A frequently adopted approach to dynamic optimization problems is the technique
of dynamic programming. The technique was developed by Bellman (1957). The
technique is given in Theorem 2.1.1 below.
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18 2 Deterministic and Stochastic Differential Games

Theorem 2.1.1 (Bellman’s Dynamic Programming) A set of controls u*(t) =
" (t,x) constitutes an optimal solution to the control problem (2.1)~(2.2) if there
exist continuously differentiable functions V(t,s) defined on [ty, T| x R" — R and
satisfying the following Bellman equation:

—Vi(t,x) = mftx{g[t,x, u] + Vi(t, x)f[t, x, u] }

= {8lt;x, ¢"(1,x)] + Va1, )f [t x, ¢" (1, x)]},
V(T,x) = q(x).

Proof Define the maximized payoff at time ¢ with current state x as a value function
in the form:

T
V,2) = max | [ (5,305 s)ds + q(o(7)
- / 815, " (5), ¢ (5, " (5))]ds + (" (T)).

Satisfying the boundary condition
V(T,x*(T)) = q(x"(T)),
and
X'(s) =[5, x°(s), 9" (s5,x°(5))],  x"(t0) = x0.

If in addition to u*(s) = ¢"(s,x), we are given another set of strategies,
u(s) € U, with the corresponding terminating trajectory x(s), then Theorem 2.1.1
implies

g(t7x7 u) + Vx(t,x)f(tvxa M) + Vt(tvx) S 07
g(t, X" u*) + Vo (6, X)f (8, x*,u™) + V,(2,x°) = 0.

Integrating the above expressions from 7y to 7, we obtain
T
/ g(s,x(s),u(s))ds + V(T,x(T)) — V(to, x0) <0,
to

/ g(s,x*(s),u*(s))ds + V(T,x*(T)) — V(tp,x0) <O0.

)
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Elimination of V(#y,x) yields
/ 8(5,x(s), u(s))ds + g(x(T)) < / 8(5,2° (5), u*(5))ds + g(x*(T)).

fo fo

From which it readily follows that u" is the optimal strategy.

Upon substituting the optimal strategy ¢*(#,x) into (2.2) yields the dynamics of
optimal state trajectory as:

x(s) = fls, x(s), d* (s, x(s))]ds, x(t0) = xo. (2.3)

Let x*(7) denote the solution to (2.3). The optimal trajectory {x* (t)}tT:to can be
expressed as:

x(t) =x0+ /ltf[s,x*(s), ¢* (s,x%(s))]ds. (2.4)

For notational convenience, we use the terms x*(¢) and x; interchangeably. The
value function V(z,x) where x = x7 can be expressed as

V(t,x) = / gls. " (5), ¢ ()]ds + (" (T)).

2.1.2 Optimal Control

The maximum principle of optimal control was developed by Pontryagin (details in
Pontryagin et al (1962)). Consider again the dynamic optimization problem (2.1)—
(2.2).

Theorem 2.1.2 (Pontryagin’s Maximum Principle) A set of controls u*(s) =
" (s,x0) provides an optimal solution to control problem (2.1)~(2.2), and
{x*(s), 00 <s<T} is the corresponding state trajectory, if there exist costate
functions A(s) : [to, T] — R™ such that the following relations are satisfied:

(s, x0) = u*(s) = arg max{g[s, x*(s), u(s)] + A(s)f[s,x"(s), u(s)]},
X (s) :f[s>X*(s)7u*(s)]v X*(ZO) = X0,

As) = = 5Ll x'(5) ()] + A2 5)w ()],
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Proof First define the function (Hamiltonian)
H(t,x,u) = g(t,s,u) + Vi (t,x)f (¢, x,u).
From Theorem 2.1.2, we obtain

—Vi(t,x) = max H(t,x,u).
u

This yields the first condition of Theorem 2.1.2. Using u” to denote the payoff
maximizing control, we obtain

H(t,x,u”) 4+ V,(z,x)=0.

Which is an identity in x. Differentiating this identity partially with respect to
x yields

Vtx(t7x) +gx(t7xa u*) + Vx(lax) x(tax7 u*) + Vxx(t,x)f(t,x, u*)
ou*

Ox =0

+ [gu(t, s, u) + Vi(8,x)f,, (1, x, u")]

If u* is an interior point, then [g, (7, x, u*) + Vi(t,x)f,, (¢, x,u*)] = 0 according to
the condition —V;(z,x) = max H(t,x, u). If u* is not an interior point, then it can be
u

shown that

[g”(t’x’ M*) + Vx(t7x) u<t7x7 M*)] 881'; =0

(because of optimality, [g, (2, x, u*) + Vi(t,x)f,(1,x,u*)] and %< are orthogonal; and
for specific problems we may have % =0). Moreover, the expression
Vi(t, %) + Vi (8, x)f (8, x,u*) = Viu(£,x) + Vi (7,x)x  can  be  written  as

[dVy(t,x)](dr)"". Hence, we obtain:

dv.,(t,x)
dt

+gx(t7xa u*) + Vx(tvx)ﬁt(tv X, u*) =0.

By introducing the costate vector, A(r) = V.- (¢,x"), where x* denotes the state
trajectory corresponding to u*, we arrive at

dv,(t,x*)

g = A® = =5 {els @), G+ Al [s, 27 () ' 9]}

Finally, the boundary condition for A(¢) is determined from the terminal con-
dition of optimal control in Theorem 2.1.2 as
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_OV(T,x*)  Oq(x)
- ox Ox

A(T)

Then,we obtain Theorem 2.1.2.

2.1.3 Stochastic Control

Consider the dynamic optimization problem in which the single decision maker

ma B, { [ sloa(s) s +ala(1) . 25)

fo

Subject to the vector-valued stochastic differential equation:
dx(s) = fls,x(s), u(s)]ds + o[s, x(s)]dw(s), x(t0) = xo, (2.6)

where E,, denotes the expectation operator performed at time fy, and o[s, x(s)] is a
n X © matrix and w(s) is a ® dimensional Brownian motion and the initial state xo
is given. Let Q[s, x(s)] = a[s, x(s)]a[s, x(s)]" denote the covariance matrix with its
element in row /& and column { denoted by Q" [s, x(s)].

The technique of stochastic control developed by Fleming (1969) can be applied
to solve the problem.

Theorem 2.1.5 A set of controls u*(t) = ¢*(¢,x) constitutes an optimal solution to
the problem (2.5)—(2.6), if there exist continuously differentiable functions V(t,s)
[to, T] x R" — R, satisfying the following partial differential equation:

n

V10) ~ 3 S 1) Vi (1,5) = max{ gl vad + Vi Trx, ).
h(=1

V(T,x) = q(x).

Proof Substitute the optimal control ¢*(z,x) into the (2.6) to obtain the optimal
state dynamics as

dx(s) = fls,x(s), d* (s, x(s5))]ds + als, x(s)]dw(s),

x(fo) = xo. (27)

The solution to (2.7), denoted by x*(¢), can be expressed as
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1) =xo+ /totf[sgc*(t)7 O* (s,x*(1))]ds s

T
+ / ols,x*(1)]dw(s).

fo

We use X to denote the set of realizable values of x; at time 7 generated by (2.8).
The term x; is used to denote an element in the set x;.

Define the maximized payoff at time t with current state x; as a value function in
the form

V() = mon B { [ st0.x6) )5 a7 D0~ 3
=k, [l (60,6750 0D+ (7).
Satisfying the boundary condition
VT, (1) = (" (T))
One can express V (1,x;) as
V() = max 8, { [ tosx(sats)is +ator )= 3

1+ At
:muaxE,o{/ g(s,x(s), u(s))ds + V (t 4+ At, x; + Ax}) |x(r)= x; }.

(2.9)
where
Ax; =flt,x), " (t,x7)| At + o [t, x| Az, + o(At),
Aw, = w(t+ Ar) — w(t).
With Ar — 0, applying Ito’s lemma Eq. (2.9) can be expressed as:
V(t,x)) = mL?xEto{g[t,xl A+ V(e,x) + V (2, X)) At
+ Vx,(z‘ xOf[6, x5, ¢ (1,x7) | At + Vi (£,x7 ) o [1, x| Aw (2.10)

+ = Z QM (1, x) Vo (1, X) At + 0(A) }.
hg
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Dividing (2.10) throughout by At, with At — 0, and taking expectation yields

—V(t,x) - % Z Q" (1, x) Ve (1, x) =

ni=1
= mslx{g[t,xf, u + Vi (6,5)f [t x5, " (6, x7) | At + V. (1,x7) }.

With boundary condition

2.2 Differential Games and Their Solution Concepts

Firstly we introduce the definition of differential game briefly:

Definition 2.2.1 If the time difference between each phase of the game narrowed to
the minimum limit, differential games can be considered as continuous-time
dynamic games. A continuous-time infinite dynamic games of the initial state xg
and continuous time T — £y, and can be expressed as I"(xo, T — o).

In particular, in the general n-person differential game, Player i seek to:

T
max/ g'[s, x(s),u(s), - -, un(s)|ds + ¢' (x(T)). (2.11)
u; f

Forie€ N ={1,2,---,n}, where g'(-) >0 and ¢'(-) > 0.

Subject to the deterministic dynamics

x(s) =f[s, x(s),u1(s), ..., u(s)],x(t9) = xo. (2.12)

The functions fls,x(s),u1(s), ..., u.(s)], g'[s,x(s),ui(s),us(s), -, u,(s)] and
q'(+), for i € N, s€[ty, T] are differentiable functions.

2.2.1 Open-Loop Nash Equilibria

If the players choose to commit their strategies from the outset, the players’
information structure can be seen as an open-loop pattern in which
n'(s) = {xo}, s€[to, T]. Their strategies become functions of the initial state xo and
time s, and can be expressed as {p;(s) = 9i(s,x¢)}, for i € N. An open-loop Nash
equilibrium for the game is characterized as follows.
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Theorem 2.2.1 For the differential game (2.11) and (2.12), a set of strategies
{u:(s) = (s,x0),i € N} provides an open-loop Nash equilibrium, an
{x*(s), to <s<T} is the corresponding state trajectory, if there exist n costate
functions A'(s) : [t0,T] — R", for i € N, such that the following relations are
satisfied:

(G (s,x0) = ui(s) = argfgflx{gi[s7X*(s)7uT(s)v ey (8),ui(s), ui (s) -, (s)]
N ()f s, X7 (9), (), - -y (), wi(s), w7,y (5) -+ u ()],
X*(S) :f-[s7X*(s)vuT(s)7 e 7”2(3)}7)(*(1‘0) = X0,
Al(s) =~ 0 (&5, X" (), 41 (), - - 1 ()] + AU ()f[s, %7 (), 47 (5), - - -, (5)] -

Oox*

According to the analysis above, we know that:

First, given the optimal strategies of players, they should maximize the sum of
the instantaneous payment and integration of state variation and covariate function
in current time at every time point. That is, not only the instantaneous payment but
also the whole payment influenced by state variation should be considered when
one player chooses the optimal strategy. Second, the variation of optimal state
depends on the optimal strategies of all the players, current time and state, and the
optimal state of the beginning consistent with the initial state of the game. Third,
given the optimal strategies of players i€N which only depend on current time and
initial state, the variation of covariate functions depend on current instantaneous
payment, variation of current state and current covariate functions. The value of
covariate function equal to the marginal impact of optimal state at the end of game.
Therefore, covariate functions of players reflect the impacts on future payment by
the variation of optimal state.

2.2.2 Closed-Loop Nash Equilibria

After discussing the necessary conditions of open-loop Nash Equilibria, then we
study the necessary conditions of closed-loop Nash Equilibria.

The players’ information structures follow the pattern
n'(s) = {xo0,x(s)},s € [to, T], for i € N. The players’ strategies become functions of
the initial state xo, current state x(s) and current time s, and can be expressed as
{ui(s) = ¥i(s,x(s),x0),i € N}. The following theorem provides a set of necessary
conditions for any closed-loop no-memory Nash equilibrium solution to satisfy.

Theorem 2.2.2 A set of strategies {ui(s) =9:(s,x,x0),i € N} provides a
closed-loop no memory Nash equilibrium solution to the game (2.11)—(2.12), and
{x*(s), 00 <s < T} is the corresponding state trajectory, if there exist n costate
functions A'(s) : [to, T] — R", for i € N, such that the following relations are
satisfied:
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Ui (5,x%,x0) = u; (s) = argrgﬁx{gi[s,x*(s), HORENONTORTCRENMO)
AN () [s, " (), 7 (9), -y (), i (5) 47y () -+ ()],

ic*.(s) =fls;x"(s), uy(s), -+ (5)], X" (10) = X0,

A(s) =

Ix* {gi[37X*(s)77-9>1k(saX*7x0>a o ',19?_1(5,X*,XO),

u; (s), 97, (8,%",x0), - - - 0 (5, %", x0)] +Ai(s)f[s,x*(s),ﬁf(s,x*,xo), e
O (5, %", x0), uf (), 97, (5,X",%0), - - - 9 (s, %", x0)] },

0

- Bx*q

A(T) {(x*(T)),i €N.

Then a set of strategies {u;(s) = Vi(s,x,x0),i € N} provides a closed-loop no
memory Nash equilibrium.

According to Theorem 2.2.2, similar to the open-loop situation, in closed-loop
Nash equilibrium solution, we know that:

First, given the optimal strategies of players, they should maximize the sum of
the instantaneous payment and integration of state variation and covariate function
in current time at every time point. That is, not only the instantaneous payment but
also the whole payment influenced by state variation should be considered when
one player chooses the optimal strategy. Second, the variation of optimal state
depends on the optimal strategies of all the players, current time and state, and the
optimal state of the beginning consistent with the initial state of the game. Third,
given the optimal strategies of players i€N which only depend on current time and
initial state, the variation of covariate functions depend on current instantaneous
payment, variation of current state and current covariate functions. The value of
covariate function equal to the marginal impact of optimal state at the end of game.
Therefore, covariate functions of players reflect the impacts on future payment by
the variation of optimal state. Note that the partial derivatives of covariate function
on optimal state depend on strategies of other players.

2.2.3 Feedback Nash Equilibria

The set of equations of closed-loop Nash Equilibria in general admits of an
uncountable number of solutions, which correspond to “informationally non-
unique” Nash equilibrium solutions of differential games under memoryless perfect
state information pattern. Derivation of nonunique closed-loop Nash equilibria can
be found in Mehlmann and Willing (1984). To eliminate information nonunique-
ness in the derivation of Nash equilibria, one can constrain the Nash solution further
by requiring it to satisfy the feedback Nash equilibrium property. In particular, the
players’ information structures follow either a closed-loop perfect state (CLPS)
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pattern in which #i(s) = {x(¢),t0<t<s} or amemoryless perfect state
(MPS) pattern in which #'(s) = {xo,x(s)}. Moreover, we require the following
feedback Nash equilibrium condition to be satisfied.

Definition 2.3 For the n-person differential game (2.11)—(2.12), with MPS or
CLPS information, an n-tuple of strategies {u}(s) = ¢; (s,x) € U',i € N} consti-
tutes a feedback Nash equilibrium solution if there exist functionals Vi(z,x),i € N
defined on [fy, T] x R" and satisfying the following relations:

Vi(tv x) = /t gi[svx* (S)’ ¢>1k(sv 173)’ T d):;(sv Ws)]ds +qi(x*(T)) 2

T
j gi[saxm(s)v (,ZST(S, ’73)7 Ty ¢;k71(sv ’73)) (rbi(sa ’75)7 ¢;F+1(sa ’7s)7 Tty (,ZSZ(S, ﬂs)}ds
+q (NT)), ¥, (-, )€ U, xe R,
VI(T,x) = ¢'(x)

where on the interval [t, T],
xi(r) = x,
X*(S) :f[s,x*(s), d)T(S, ”s)’ ) (]5:(‘97 '/Ix)]?x(s) =X

1(s) stands for either the data set {x(s),xo} or {x(7), 7 <s}, depending on whether
the information pattern is MPS or CLPS. Therefore the players’ strategies can be
expressed as {u}(s) = ¢ (s,x) € U',i € N}.

The following theorem provides a set of necessary conditions characterizing a
feedback Nash equilibrium solution for the game (2.11)—(2.12) is characterized as
follows:

Theorem 2.2.3 An n-tuple of strategies {u}(t) = ¢} (t,x) € U',i € N} provides a
feedback Nash equilibrium solution to the game (2.11)—(2.12) if there exist con-
tinuously differentiable functions Vi(t,x) : [to, T] x R" — R, i€N, satisfying the
following set of partial differential equations:

—V,i(t,x) = rr}lz?x{gi[t,x, D1(t,%), .., b (%), ui(1,x), d; 1 (2,X).. ., 0, (2,%)]

+ Vit f 1,2, 1 (8,2), o Ly (1,%),i(,5), 74 (1,0), - (1, 0)]}
= {g'lt.x, ¢1(1, %), - @ (6,2)] + Vit x)f [1,x, 6 (1,%), .., (1, %)},
Vi(T,x) = ¢'(x),iEN.

Theorem 2.2.4 A pair of strategies {¢;(t,x);i=1,2} provides a feedback
saddle-point solution to the zero-sum version of the game (2.11)—(2.12) if there
exists a function V : [ty, T] x R" — R satisfying the partial differential equation:
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—V,(t,x) = min max {g[t, x,u;(¢),us(t)] + Vif [t, x, u1 (t), un (£)] }

wi el uell?
- lfn;/{xz urneig{ll{g[tax>ul(t)7u2(t” + VXf[taxaul(t),MZ(t)]}
= {&lt,x, 1 (t,x), §3 (1, x)] + Vif [t x, 1 (1, %), 5 (1, x)]},
V(T,x) = q(x).

According to the necessary condition of feedback Nash equilibrium solution,
there are two points should to note,

First, the value of the value functions of each player will change as time when
they choose the optimal strategies under current time and state. Second, the pay-
ments of each player at the last time point are equal to that in the end of game.

2.3 Stochastic Differential Games and Their Solutions

We introduce the deterministic differential games and their solutions with stochastic
factors.

2.3.1 The Model of Stochastic Differential Game

One way to incorporate stochastic elements in differential games is to introduce
stochastic dynamics. A stochastic formulation for quantitative differential games of
prescribed duration involves a vector-valued stochastic differential equation

dx(s) = fls,x(s), u1 (s), u2(s), . . ., uy(8)]ds + a[s, x(s)]dw(s),

() 50 (2.13)

which describes the evolution of the state and N objective functionals

E,O{/ g'[s, x(s), w1 (s), un(s), . . .,un(s)}ds+qi(x(T))}7i EN (2.14)

to

with E,, {-} denoting the expectation operation taken at time 7y, o[s, x(s)] isan x ®
matrix and w(s) is a © dimensional Brownian motion and the initial state xq is
given. Let Q[s, x(s)] = a[s, x(s)]o[s, x(s)]" denote the covariance matrix with its

element in row & and column { denoted by Q"[s, x(s)]. Moreover, E[dw,] = 0,
Eldwodi] = 0, and E[(dww)z} —dr, for we [1,2,...,0]; Eldwydw,) =0, for
we[l,2,...,0], w€[l,2,...,0] and w # w. Given the stochastic nature, the

information structures must follow the MPS pattern or CLPS pattern or the feed-
back perfect state (FB) pattern in which 5'(s) = {x(s)}, s € [to, T}
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2.3.2 The Solutions of Stochastic Differential Game

The character of stochastic differential game is the state changes with the stochastic
dynamic system in every moment. Therefore, stochastic differential game is closer
to reality compared with the deterministic differential game. Based on this, the
following section only discuss the feedback solutions which are more realistic then
the open-loop solution. A Nash equilibrium of the stochastic game (2.13)—(2.14)
can be characterized as:

Theorem 2.3.1 An n-tuple of feedback strategies {d):’ (t,x) €U i €N } provides a
Nash equilibrium solution to the game (2.13)—(2.14) if there exist suitably smooth
functions V' : [ty, T| x R" — R, satisfying the semilinear parabolic partial differ-
ential equations

_Vti - %ZQM([,X)V;’X( = nﬁix{g" [tha (/)T(tvx)v ERRT) (/)‘i](l,x), ui([)v (/):Jr 1 (tvx)v EERT) (/):(tvx)}

hl
+ VLX) [t,x, 1 (1%), . b1 (6,%),15(8), bF 1 (8,%), . i (1,5)] }
= {&'[t,% 81 (1,%), ¢3(8,%), -, (6, %) + Vi1 X)f [1£,%, &1 (8,%), . 1 (1,%)] |,
Vi(T,x) = ¢'(x),i €N.

Proof This result follows readily from the definition of Nash equilibrium and from
Theorem 2.1.2, since by fixing all players’ strategies, except the ith one’s, at their
equilibrium choices (which are known to be feedback by hypothesis), we arrive at a
stochastic optimal control problem of the type covered by Theorem 2.3.1 and
whose optimal solution (if it exists) is a feedback strategy.

Consider the two-person zero-sum version of the game (2.13)—(2.14) in which
the payoff of Player 1 is the negative of that of Player 2. Under either MPS or CLPS
information pattern, a Nash equilibrium solution can be characterized as follows.

Theorem 2.3.2 A pair of strategies {(bl* (t,x) eUsi=1, 2} provides a feedback
saddle-point solution to the two-person zero-sum version of the game (2.13)—(2.14)

if there exists a function A(s): [to,T] — R" satisfying the partial differential
equation:

weld" ueld?

1< v
-V _EZQM(I»X)VXM; = min max{g[lvxvuth] +fo[tvxaulvu2]}
ht

= max min {g[t, x, u, ux] + Vif [t,x, 11, 2] }
uy U M]GI/{]

= {g[t.x, ¢1(1,%), §3(6, )] + Vif [1,x, 61 (1, %), ¢5(1, )]}
V(T,x) = q(x).

Proof This result follows as a special case of Theorem 2.3.1 by taking n = 2,
g'()=—-g*()=g("), and ¢'(:) = —¢*(:) = q(*), in which case V! = V> =V
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and existence of a saddle point is equivalent to interchangeability of the min max
operations.

According to the necessary condition of feedback Nash Equilibria, there are two
points we should to know,

First, the value functions in stochastic differential game (2.13)—(2.14) change
with time when all the players (include i) determine the optimal strategies depend
on current time and state. Second, the value function of player i € N in last point
equals to his final payment in the game.



Chapter 3

Stochastic Differential Games
of Continuous-Time Markov
Jump Linear Systems

This chapter mainly discussed the stochastic differential game theory of
continuous-time Markov jump linear systems. Firstly, the stochastic LQ problem of
Markov jump linear systems was reviewed. Then, two person nonzero Nash games
in finite-time horizon and infinite-time horizon were discussed, and the existence
conditions and strategy design method of equilibrium strategies were given. Finally,
the Stackelberg game problem with two players was studied, and the existence
conditions for the Stackelberg equilibrium strategy were obtained.

3.1 Stochastic LQ Problem—Differential Game
with One Player

The LQ control with Markovian jumps has been very widely studied for the last two
decade:

minimize J = E{/O [x(t)/Q(t, r)x(t) + u(t) R(t, r)u(r)] dt

+x(T)'H. T
(1) Hx(T)lro = i}, (3.1.1)
s.t.
{ dx(t) = [A(t,r)x(2) + B(t, r)u(t)|dt + o (2, r,)dw(t),
x(0) =xp € R,
where r; is a Markov chain taking values in {1, ...,}, w(?) is a standard Brownian

motion independent of r,, and A(t,r,) = Ai(¢), B(t,r;) = Bi(¢t), a(t,r;) = a,(¢),
O(t,r,) = Q;(t) and R(t,r,) = R;(t) when r,=i (i=1,...,]). Here the matrix
functions A;(+), etc. are given with appropriate dimensions. The Markov chain r;
has the transition probabilities given by:

© Springer International Publishing Switzerland 2017 31
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Pr{r.a—jlr =i} = {Tf;g’(ﬁz)’w’ Zs’jf’ (3.1.2)
where 7; >0 for i # j and 7; = — Zi# .

In (3.1.1), when the diffusion term o(z,7;) does not include u(z), it is usually
required that the state weighting matrices, Q;(¢) and the control weighting matri-
ces, R;(t) be positive semidefinite and positive definite, respectively. But when u(r)
is included in the diffusion term a(z, r;), the control weighting matrices, R;(¢) in the
cost function J can be indefinite, and academics call it the indefinite stochastic LQ
problem that has been widely used in reality, especially in the field of mathematical
finance.

For completeness content, and laying the foundation for the later study, this
section discusses the stochastic LQ control of continuous time Markov jump linear
system with state and control included in the diffusion term.

3.1.1 Finite-Time Horizon Case

3.1.1.1 Problem Formulation

Given a filtered probability space (Q, F, {F,},-,P) and a Hilbert space H with
the norm || - ||, define the Hilbert space

L%(0,T;H) == {$(-,-) : [0,T] x Q — H|¢(,-) is an F,— adapted, H— valued
measurable process on [0, 7] and E fOT lp(2, )| Pdt < o0},

With the norm

16() 0= (E / ar w>||i¢dr)%.

Consider the following linear stochastic differential equation (SDE) subject to
Markovian jumps defined by

dx(t) = [A(t,r1)x(¢) + B(¢t, r)u(t)|dr +
[C(2,11)x(t) + D(¢t, r)u(t)]dw(t),t € [0, T], (3.1.3)
X(S) = y7

where (s,y) € [0, T] x R" are the initial time and initial state, respectively, and an
admissible control u(-) is an F,-adapted, R™-valued measurable process on [0, T].
The set of all admissible controls is denoted by U,; = sz(O7 T;R™). The solution
x(-) of the Eq. (3.1.3) is called the response of the control u(-) € U,y, and
(x(+),u(-)) is called an admissible pair. Here, w(¢) is a one-dimensional standard
F;— Brownian motion on [0, 7] (with w(0) = 0). r, is a Markov chain adapted to
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F, taking values in Z = {1,---,[}, with the transition probabilities specified by
(3.1.2). In addition, we assume that the processes r; and w(z) are independent.
For each (s,y) and u(-) € Uyq, the associated cost is

J(s,y,isu()) = E{/T Dgg”g%’t% 282” Dg))]dz+x/(T)H(rT)x(T)|rx - i}.
(3.1.4)

In (3.1.3) and (3.1.4), A(t,r;) = A;(¢), etc. whenever r, =i, and H(rr) = H;
whenever rr = i, whereas A;(-) etc. are given matrix-valued functions and H; are
given matrices, i = 1,...,/. The objective of the optimal control problem is to
minimize the cost function J(s,y,#;u(-)), for a given (s,y) € [0,T) x R", over all
u(-) € Ugq. The value function is defined as

V(s,y,i) = inf J(s,y,5;u(-)). (3.1.5)

u(-)EUza

Definition 3.1.1 The optimization problem (3.1.3)—(3.1.5) is called well-posed if

V(s,y,i)> —o00,V(s,y) €[0,T) xR", Vi=1,...L

An admissible pair (x*(-),u*(-)) is called optimal (with respect to the initial
condition (s,y,i)) if u*(-) achieves the infimum of J(s,y, i;u(-)).
The following basic assumption will be in force throughout this section.

Assumption 3.1.1 The data appearing in the LQ problem (3.1.3)—(3.1.5) satisfy,
for every i,

Ai(), Ci(+) € L=(0, T R™"),
Bi(-),Di(-) € L>(0, T; R™™),
0i(-) € L~(0,T; S"),
Li(-) € L*(0, T; R™"™),
Ri(-) € L>(0,T; S™),

H; 8"

We emphasize again that we are dealing with an indefinite LQ problem, namely,
0:(t), R;(r) and H; are all possibly indefinite.

Lemma 3.1.1 [1] Let a matrix M € R™" be given. Then there exists a unique
matrix MT € R™™ such that

mimmt =mt,  mmtm = m,
MMy =mtm, (umtY = mmt,
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where the matrix MY is called the Moore—Penrose pseudo inverse of M.
Now we introduce a new type of coupled differential Riccati equations associ-
ated with the LQ problem (3.1.3)—(3.1.5).

Definition 3.1.2 The following system of constrained differential equations (with
the time argument ¢ suppressed)

PZ+PZAZ+A§P,+C;PZC,+Q1+ Zjl':l TE,‘ij

—(PiBi + C\PiD; + L)(R: + D'P.Dy) (BIP, + DIP,C; + L)) = 0,

Pi(T) = H, (3.1.6)
(R + DIPiD;)(R: + D.PiD;)  (BIP; + DIP,Cy + L)

—(BP;+D/P,C; + L) =0,

R,—FDZP,D,ZO, a.e.tE[O,T], 1217,1

is called a system of coupled generalized (differential) Riccati equations (CGRE:s).

Lemma 3.1.2 (generalized 1t6’s formula) [2] Let x(¢) satisfy
dx(t) = b(t,x(t), r;)dt + o (t,x(¢), re)dw().
And @(-,-,i) = C*([0,T] x R"),i = 1,...,1, be given. Then,
do(t,x(t),r1) = To(t,x(t), ri)dt + @ (t,x(t), re) o (2, x(2), r;)dw(t),
where

F¢(tvxv i) = th(t,x, i) + b’(t»xv i)qu(l,x, i)
1 . . L% .
itr[o-,(h X, l)(pxx(tvx7 l)O'(t,x7 l)] + ; nlfi(/)(tvxvf)'

+

Lemma 3.1.3 [3, 4] For a symmetric matrix M, we have
i) (MT) =mt,
Giy MtM = mmt;

(iii)y M >0 if and only if MT >0.

Lemma 3.1.4 (Extended Schur’s lemma) [5] Let matrix M = M’, N and R = R’ be
given with appropriate dimensions. Then the following conditions are equivalent:
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(i) M —NRTN'>0, and N(I — RRT) =0, R>0;
. [M N

(11) |:N/ R:|20’

.. [R N

(iii) {N M]EO.

Lemma 3.1.5 [6] Let matrices L, M, and N be given with appropriate sizes. Then
the following matrix equation

LXM = N (3.1.7)

has a solution X if and only if
ixmtm = . (3.1.8)

Moreover, any solution to (3.1.7) is represented by

x =Linmt +s - Linmty, (3.1.9)

where S is a matrix with an appropriate size.

3.1.1.2 Main Results

In this section, we will show that the solvability of the CGRE:s is sufficient for the
well-posedness of the LQ problem and the existence of an optimal feedback control.
In addition, all optimal controls can be obtained via the solution to the CGREs (3.1.6).

Theorem 3.1.1 If the CGREs (3.1.6) admit a solution (Py(-),---,P(-)) €
c(o,T; S}), then the stochastic LQ problem (3.1.3)=(3.1.5) is well-posed.
Moreover, the set of all optimal controls with respect to the initial (s,y) €
[0,T) x R" is determined by the following (parameterized by (Y;,z;)):

u(r) = = 30 { [®0)+ Dito) P12 (Bi0) Pile) + Dy(0) P Cir) + L))
+Yi(1) = (Ri(t) + D) Pie)Di() | (Ri(r) + Di(2)' Pi(0)Dy(1)) Y (1) | x + zi(t)
— (Ri(?) +Di(’)lpi(f)Di(f))T(Ri(l) + D;(t) Pi(t)Di(1))zi (1) } o, (1),
(3.1.10)

where Y;(-) € L%(0, T;R™*") and z;(-) € L%(0, T;R™). Furthermore, the value
function is uniquely determined by (Py(-),...,Pi(-)) € C'(0,T;S}):
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Visyi) = inf J(yiu() = YRSy, i=1ol
ul- ad

(3.1.11)

Proof Let (Py(-),...,Pi(-)) € C'(0,T;S}') be a solution of the CGREs (3.1.6).
Setting (¢, x,i) = xX'P;()x and applying the generalized 1t6’s formula (Lemma

3.1.2) to the linear system (3.1.3), we have

E[x(T)'H,,x(T)] — y'Pi(s)y
[x(T) Hy,x(T) — x(s) P(ro)x(s)lrs = i]

)
=E
Elo(T,x(T),rr) — ¢(s,x(s), rs)|rs =
E

{ / Fo(ta(i )l = .

1 !
+ = tr[d'(t,x,0) @y (t,x,0)a (2, x,1)] + Z T (t,x,7)
2 2.

= ¢ [Pilr) + Pi)A0) + A0 PiCe) + GV PG + Y

+2u [Bi(l),Pi(Z) +Di(l)/Pi(l)Ci(l)]X+I/LD,‘(I) Pl( )Dl(l)bt

Hence, we can express the cost function as follows
‘,(Svya I u())
T
/
= y/P,-(s)y+E{/ [Co(t,x(2),r,) +x(2) O(t, r,)x(¢)
+2u(t) L(t, ry) x(1) + u(t)' R(t, ri)u(7))dt|rs = i}.
From the definition of the CGREs, we have

To(t,x,i) + X Qi(t)x + 2uLi(t)'x + u'R;(t)u
= ¢ [Pilt) + P)A0) + Aile) Pie) + Gl PU)CH(0) + Qi) + |

TEU x

(3.1.12)

TP

+ 20/ [Bi(1)'P ()+D()PI(Z)C()+L()]X+M[ (1) +Di(1)’ i()Di(t)]u-

Now, let Y;(-) € L2(0, T; R™*") and z(-) € L%(0,T;R™) be given for every

i. Set
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GH (1) = Yi(1) — [Ri(t) + Di(e) PAt)Du(9)] | [Rie) + Du(o) PAoYDA(0)] Vi),
Gi(t) = z(1) — [Ri(r) +Di(t)/Pi(t)Di(t)]T[Ri(t) + Di(1)' Pi(1)Di(1)]z:(1).

Applying Proposition 3.1.3 and Lemma 3.1.4-(ii), we have for k = 1,2,

[Ri(¢) + Di(t) Pi(t)D;(1)| G (1) = [Ri(?) +Di(t)’P,-(t)Di(r)]TG{?(t) =0, (3.1.13)

And
[Pi(1)B;(t) + C;(1)Pi(t)Di(t) + Li(1)]G* () = 0.
Hence
Co(t,x,i) + X Qi(t)x + 2uLi(t)'x + u'R;(t)u
= [u+ (G} (1) = Ki(t))x+ G} (1)] ' [Ri(t) + Di() Pi(1)Di(1)]
x [u+ (G} (1) — Ki(1))x + G (1)],
where

K;(t) = —[Ri(t) + Di(1)' Pi(1)Dy(1)] f [Bi(1)'Pi(t) + Dy () Pi(1)Ci(t) + Li(r)'].
Then the Eq. (3.1.4) can be expressed as
J(s,y,i;u(-))

Pyt E{ / [(t) + (G0, ) — Kilt, r))x + G2ty )]

X [Ri(t7rl)+Di(ta rt)/Pi(tv rf)Di(t7 rt)}
x [u(t) + (G} (t,r;) — Ki(t,r,))x+ Gi (t, 1) dt|ry = i},

/

(3.1.14)

where P(t,r,)=P;i(t), K(t,r;)=K;(t) and G*(t,r,)=G*(t) whenever r, =i,
k =1,2. Thus, J(s,y,i;u(-)) is minimized by the control given by (3.1.10) with the
optimal value being y'P;(s)y.

Theorem 3.1.1 presents a sufficient condition for the existence of optimal con-
trol, now let’s explore its necessary condition.

Theorem 3.1.2 Assume that Q;(t) and R;(t) are continuous in t for every i. In
addition, assume that the LQ problem (3.1.3)—(3.1.5) is well-posed and a given
feedback control a(t) = "\, Ki(0)x(t),,—i(1) is optimal for (3.1.3)~(3.1.5) with
respect to any initial (s,y) € [0,T) x R". Then the CGREs (3.1.6) must have a
solution (Py(-),...,P(-)) € C'(0,T;S}). Moreover, the optimal feedback control
u(t) = Zi:l Ki(1)x(2)y,,—i(t) can be represented via (3.1.10) with z(r) = 0.
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Proof By the dynamic programming approach, the value functions V (s, y, i) satisfy
the following HJB equations fori =1,.. .,/

Vi(s,v,1) + mm{y Oy +2yLiu+u'Ru+[A y—&-Biu]'Vy(s,y, i)

1 . (3.1.15)
! . 5
+ E [Czy+Dlu] V)’,V(say7 l)[CzY‘FDzM} + Zizl 7T,:,‘V(S,y, l)} = 07
with the boundary condition
V(T,y,i) = YHy. (3.1.16)

In view of the assumption of the theorem, a candidate value function can be
represented as

V(s,y,i) =y Pi(s)y, i=1,...1, (3.1.17)

For a matrix P;(-) € 8", suppose that P;(¢) is differentiable at any ¢z € [0, 7.
Substituting (3.1.17) into (3.1.15), we have the equations (s is suppressed)

Y(Pi+PiAi+ APi+ CiPiCi+ Qi+ Y miPy)y
+ min{u'(R; + D}P:D;)u+ 2y (P:B; +c;PD +L)u} =0, (3.1.18)
P(T)=H;, i=1,...1

By assumption, a minimizer  in (3.1.18) is given by u(s, y, i) = K;(s)y for i, and
hence (3.1.18) are reduced to the following equations,

Y (P 4 PiA; +AP+C’PC+Q,+Z _ WPy
+ n}{l_n{y [K[(R; + D/P;D;)K; +2(P;B; + C/P;,D; + L;)K{]ly} = 0, (3.1.19)
P(T)=H; i=1,...,L

The second term of the left-hand side of the first equation above reaches the
minimum if and only if

0
OK;

[K/(R; + D{P,D)K; +2(PiB; + C\P:D; + L)Ki] | -k, = 0, i = 1,...,L.
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ie.
(Ri+D.P.D)K;+ (BP; + DiP,C;i+ L) =0, i=1,...1 (3.1.20)

Setting L,‘ = R,‘ +D§PlDl, M,‘ = I, and Ni = —BZP, —‘y—DiPlCl-i-L;, i= 1, .. .,l, by
applying Lemma 3.1.5 to the Eq. (3.1.20), we have

(Ri + D.P;D;)(R; + D,P;D;) (B\P; + D\P;C; + L)) = B,P;+ D\P;,C; + L.

First of all, by virtue of the assumption we know a priori that the Eq. (3.1.20) do
have a solution K;, and K; has the following form

K= — [(Ri o) (B +DIPC A L)
(3.1.21)
+Y— (Ri+DPD) R+ DPD)Y], i=1,..,1

Replacing (K;(+), ..., K;(+)) into the first [ equations of (3.1.19), we can see by a
simple calculation that (P(),...,Pi(-)) € C'(0,T;S}) satisfies the following
equations

. !
PZ+PZA,+AZP,—|—C;P,C,+Q1+ Zj:l TC,‘ij

—(PB;+C'P.D;+ L)(Ri+DIPD) (BP. - DP.C+ L) =0, i=1,...,1
(3.1.22)

So we easily conclude that (Py(-),...,P,(-)) € C'(0,T;S}) solves (3.1.6). The
representation of (Ki(+),...,K;(-)) is given by (3.2.21). This completes the proof.

3.1.2 Infinite-Time Horizon Case

3.1.2.1 Problem Formulation

To facilitate the narrative, first define the following space

Loe(R™) := {¢(-,") : [0,T] x Q — H|¢p(-,-) is F,-adapted, Lebesgue measur-
able, and E [ ||¢(1, 0)|]*dr < + 00, VT >0}.

Consider the linear stochastic differential equation subject to Markovian jumps
defined by

{ dx(t) = [A(r,)x(¢) + B(r,)u(t)]dt + [C(r,)x(t) + D(r;)u(t)]dw(z), (3.1.23)

x(0) = xp € R,
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Where A(r;) = A;,B(r;) = Bi, C(r;) = C; and D(r,) = D; when r; =i, while
A;(+), etc., i = 1,--- 1, are given matrices of suitable sizes. A process u(-) is called
a control if u(-) € Le(R™).

Definition 3.1.3 A control u(-) is called (mean-square) stabilizing with respect to
(w.r.t.) a given initial state (xo,{) if the corresponding state x(-) of (3.1.23) with
x(0) = xo and ry = i satisfies lim,_o, E||x(r)||*= 0.

Definition 3.1.4 The system (3.1.23) is called (mean-square) stabilizable if there
exists a feedback control u*(t) = 25:1 Kiy,—i(t)x(t), where Ki,...,K; are given
matrices, which is stabilizing w.r.t. any initial state (xo,i).

Next, for a given (xo,7) € R" x {1,2,...,1}, we define the corresponding set of
admissible controls:

U(xo,i) = {u(-) € L (R™)|u(-) is mean-square stabilizing w.r.t.(xo, ) }.

Where the integer n, is the dimension of the control variable. It is easily seen
that U(xo, 1) is a convex subset of LY¢(R™).

For each (xo, i, u(-)) € R" x {1,2,...,1} x U(xy, i), the optimal control problem
is to find a control which minimizes the following quadratic cost associated with
(3.1.23)

+00 !
. x(0) || O(r, L(r,)} {x(t)} .
J(xo,5;u(-)) =E dtlryg =i}, 3.1.24
( 0 ( )) {/0 {u(l‘):| {L(r,)/ R(r,) u(l) | 0 } ( )
where Q(r;) = Q;, R(r;) = R; and L(r,) = L; when r; = i, while Q;, etc.,i = 1,.. .,
are given matrices with suitable sizes. The value function V is defined as

V(xo,i) = u(.)é%mmo, iu(-)). (3.1.25)

Definition 3.1.5 The LQ problem (3.1.23)—(3.1.25) is called well-posed if

=

—o00<V(xg,i) < +00, V¥(x0,i) €R" x

A well-posed problem is called attainable (w.r.t. (xo,i)) if there is a control
u*(+) € U(xo, i) that achieves V(xo, i). In this case the control u*(-) is called optimal

(w.rt. (xo,1)).

Assumption 3.1.2 The system (3.1.23) is mean-square stabilizable.
Mean-square stabilizability is a standard assumption in an infinite-horizon LQ
control problem. In words, it basically ensures that there is at least one meaningful
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control, in the sense that the corresponding state trajectory is square integrable
(hence does not “blow up”), with respect to any initial conditions. The problem
would be trivial without this assumption.

Assumption 3.3.3 The data appearing in the LQ problem (3.1.23)—(3.1.25) satisty,

for every i,

Ai, Ci 6 Rnxn,Bi,Di 6 IR}'LXH,47 Qi e 5117141' 6 Rnxnu,Ri e Sn“.

3.1.2.2 Main Results

Theorem 3.1.3 For the LQ problem (3.1.23)-(3.1.25), if the following ARE
(3.1.26) has a maximal solution X(i) >0,i=1,...,]1,

X()A>i) +A' ()X (i) + C' ()X (i) C(i) — X(D)BE)R ' ()B ()X (i)

+0(i) + Xl: X (j) = 0. (3.1.26)

J=1

Then the optimal feedback law is

l l

= 3 K@) mi()x(0) = = SR OB (X () (0x().  (3.127)

i=1 i=1

And J(xo,7;u) > E[X'(0)X*(i)x(0)]. Furthermore, if ARE (3.1.26) has a solution,
then the solution is the maximal solution X(i) = P*(i), and P(i) = P*(i) is the
solution to the following semi-definite dynamic programming

maxmize Tr(P(i)), (3.1.284)
S.t.
XMHAG)+A ()XE)+ C(HXH)C(>)

00+ 37X () PiBG) [0, O
FOP() (i)

Proof The proof is similar with LQ problem in a finite time horizon, here we
omitted it.
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3.2 Stochastic Nash Differential Games with Two Player

3.2.1 Finite-Time Horizon Case

3.2.1.1 Problem Formulation

First, we consider a stochastic Nash differential game with two player on a finite
horizon [0, T], N-player case is similar.

Consider the following Markov jump linear systems described by stochastic
differential equation

dx(t) = [A(t,r)x(2) + By (2, r)u(r) + Ba(t, r,)v(2)]dt
+[C(t,11)x(t) , + D1 (2, rr)u(t) + Do (2, 1 )v(2)]dw(2), (3.2.1)
x(s) =y e R",

Where (s,y) € [0,T) x R" are the initial time and initial state, respectively, and
two admissible controls u(-) and v(-) are F,-adapted, R™- and R"™-valued mea-
surable process on [0, 7]. The sets of all admissible controls are denoted by U =
L%(0,T;R™) and V = L%(0, T; R™).

For each (s,y) and (u(-),v(-)) € U x V, the cost functional Ji(s,y, i;u(-),v(-))
for player k is

/Tz'(l‘)Mk(t7 r)z(t)dt + X (T)Hi (rr)x(T)|ry = i},

JSs

Ji(s,y (), v()) = E{

x(1) Oi(t,r)  Li(t,r) Lo(t, )
Z(Z) = M(Z) ) Mk([arl) = Lllcl(t7rf) Rkl(turt) 0 7k: 1,2
v(?) L, (t, 1) 0 Rix(t,11)

(32.2)

In (3.2.1) and (3.2.2), A(t,r;) = Ai(¢), etc. whenever r, = i, and Hy(rr) = Hy,
k=1, 2, whenever rr =i, whereas A;(-) etc. are given matrix-valued functions
and Hj; are given matrices, i = 1,...,1L.

Assumption 3.2.1 The data appearing in the finite horizon stochastic Nash dif-
ferential game problem (3.2.1)—(3.2.2) satisfy, for every i,

Ai(+), Ci(-) € L*(0,T; R"), Bii(-), Dui(-) € L0, T; R"™ M),
BZi(')’DZi(') € Loo(()’ T; Rnxny), Qli(') € LDO(O; T; Sn)’

QZ[(') S LOO(O, T; Sn), Rlli(') c LOO(O7 T; 8'1“)7

Lyyi(-) € L0, T; R™"), Lii(-) € L®(0, T; R™™),
Loii(+) € L>(0, T; R™™), Lyi(-) € L>(0,T; R™™),

Ryi(-) € L*(0,T; S™), H;€S", Hy;ecdS'.
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Now, let’s give the form definition of finite time stochastic Nash differential
games:

Definition 3.2.1 For each (s,y) € [0,T) x R", finding an admissible control pair
(u*(-),v*(+)) € U x V, such that

{Jl(svyai; u*()’V*()g SJI(Svyv i;u(')7V*('))a Vu )) e, (323)

(
Jo(syy, i;u (1), v (+)) <Ja(s,p, 50 (-),v()), Wv(:) € V.

The strategy pair (#*(-),v*(-)) which satisfying (3.2.3) is called the Nash
equilibrium of the game.

3.2.1.2 Main Results

With the help of the relevant conclusions of differential game with one-person
discussed in 3.1, it is easy to obtain the following conclusions.

Theorem 3.2.1 For the finite time stochastic Nash differential game (3.2.1)-
(3.2.2), there exists the Nash equilibrium (u*(-),v*(-)), if and only if the following
coupled generalized differential Riccati equations (with time t supressed)

. - - — — — l —
Pii+ PyAi + APy + CiP;Ci+ Qi+ Y. Py — (P1iBii + CiPiiDyi + Luyj)
=1

71 —
><(R“i+D/liP1iD1i) (BlliP15+D,liP1iCi+L/lli) =0,
Pu(T) = Hy;,
Ry +D\PyiDy; > 0,i=1,...,1
(3.2.4a)

—1 —
Ky = —(Rui+DyP1iDy)  (B)Pui+DyPiiCi+LYy,), (3.2.4b)

. ~ ~ ~ ~ ~ l ~
sz + ngAj -‘rAj{sz + CJ/»szCj + sz + /;1 TCjszk — (szng + C}szDzj + L22j>

1 -
« (R22j +D/2jP2jD2j> (BIZJ»PZJ‘ +D/2jP2jCj +L/22j) =0,
Py(T) = Hy,
Raoj(j) + Dy (NP2 ()D2;(j) > 0, j = 1,.., L.
(3.2.4¢c)

—1 ~
Koy = —(Rasy+ DlyPyDy ) (ByPoy+ DlyPyC+ Ly ). (3.2.4d)
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Aj = Aj+ByKyj, C; = G+ DyjKyj, Qo = Qo+ LayjKij+ KLy + K| RoyK .

admit a solution P(-) = (P(- ) ( )) €CY(0,T;S}) >
(Pia()s - Pu()), Pa() = (P () - o, Pau(t))-

Denote Fj;(t) = Ki;(t), F5,(t) = Kai t), then the Nash equilibrium strategy
(u*(+),v*(+)) can be represented by

0, where Pi(-)=

l
ZF )t (DX(0), v (1) = F(1) 2, —i(1)x(2).
i—1
Moreover, the optimal value is
Jk(svyai;u*(')v‘}*(')) :y,Pki(S)ya k= 1a2~
Proof These results can be proved by using the concept of Nash equilibrium

described in Definition 3.2.1 as follows. Given v*(¢) = Zi:l F5,(t)7,—i()x(2) is the

optimal control strategy implemented by player P,, player P, facing the following
optimization problems:

. T x(l) l Ql(t,rz) Lll(f,rt) x<t)
u?}IerE{/s [u(;)] [L/H(t,r,) Rn(t,r,)Hu(t)

{dx(t) = [A(t,r)x(t) + By (¢, r;)u(t)]dt + [C(t, r,)x(2) + Dy (¢, r)u(2)]dW (1),

dl+X/(T)H1 (}"T)X(T)|rx = l}v

(3.2.5)
where
01 = Q1 + (F3) Ly, + LioF; + (F3) RioF;.

Note that the above optimization problem defined in (3.2.5) is a standard
stochastic LQ problem. Applying Theorem 3.1.1 to this optimization problem as

Ql(rt) Lll(rt):| [Ql Ll} _ _
|:L,11(rt) Rll(rz) = L/l Ry A=A C= C.
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We can easily get the optimal control and the optimal value function

ZF )2 =i (O)X(0), Ji(s,y, 5567 (-),v" () = YPu(s)y, i=1,...,1.
(3.2.6)

Similarly, we can prove that v*(¢) = 25:1 F5.()1,—(t)x(t) is the optimal con-
trol strategy of player P;.
This completes the proof of Theorem 3.2.1.

3.2.2 Infinite-Time Horizon Case

3.2.2.1 Problem Formulation

In this subsection, we discuss the stochastic Nash differential games on time
interval [0, 00). Before giving the problem to be discussed, first define the following
space

Le(R™) : = {p(-,-) : [0,00) x @ — R™|¢(-,-) is F,-adapted, Lebesgue mea-
surable, and E [] || (r, w)||*dt < oo, YT > 0}.

Consider the following Markov jump linear systems defined by

dx(t) = [A(r)x(2) + By (r:)u(t) + By (r,)v(2)]dt
@ + [C(r)x(2) + Dy (r:)u(z) + Do (r,)v(t)]dw(z), (3.2.7)
X = X0-

where A(r;) = A(i), Bi(r,) = B1(i), B2(r;) = Ba(i), C(r;) = C(i), Dy(r,) = Dy (i)
and Dy(r;) = D,(i), when r, = i, i = 1, .., I, while A(i), etc., are given matrices of
suitable sizes. u(-) € U = LY°(R™) and v(-) € V = LY*(R™) are two admissible
control processes, which represents the control strategies of these two players.

Definition 3.2.2 [7] The stochastically controlled system described by It6’s
equation dx(t) = [A(r;)x(¢) + B(r:)u(t))dt + [C(r)x(¢) + D(r:)u(t)]dw(t), x(0) = xo
is mean-square stabilizable, if there exists a feedback control

!
u(t) = > K(i)y,—;(t)x(t), where K(1),...,K(l) are given matrices, which is sta-
i=1

bilizing w.r.t. any initial value x(0) = xo, ro = i, the closed-loop system
dx(t) = [A(r,) + B(r;)K (r)]x(¢)dt + [C(r,) + D(r;)K (1;)]dw(t)

is asymptotically mean-square stable, i.e., lim E||x(¢)|*|ro = i} =0.
t—00
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Next, for a given (xop,i) € R" x E, we define the corresponding sets of admis-
sible controls:
U(xo,1) = {(u(-),v(-)) €U x V|(u(-),v(-)) is mean-square stabilizing w.r.t.
(xo0, ) }-

For each (xo, i) and (u(-),v(-)) € U(xo, i), the cost function Ji(xo, i; u(-), v(+)) is

T (), v()) = E{ / " S OMe(r)e(e)dil o = }

() O(r) Li(ri) Lio(r)
(1) = [ u(t) |, Mi(r;) = | Liy(r1)  Ria(ry) 0 , k=1,2.
(1) Ly (1) 0 Ria(ry)

X

(3.2.8)

In (3.2.7) and (3.2.8), A(r,) = A(i),..., when r, = i, while A(i), etc., are given
matrices with suitable sizes.

The form definition of infinite-time horizon stochastic Nash differential game is
given below:

Definition 3.2.3 For each (xp,i) € R" x &, finding an admissible control pair
(u*(-),v*(+)) € U(xo, ), such that
Ji(s,p, 50" (), v () <A (s, y, 5 u(-),v"(+), Vu(-) eU, (32.9)
Do(s,y, 5507 (),v* (1) < Ja(s,y, 6507 (), v(4), W) €V

the strategy pair (u*(-),v*(-)) which satisfying (3.2.9) is called the Nash equilib-
rium of the game.

3.2.2.2 Main Results

Assumption 3.2.2 The system (3.2.7) is mean-square stabilizable.

Similar to the finite-time horizon stochastic Nash games discussed in last subsec-
tion, we can get the corresponding results of the infinite-time horizon stochastic
Nash games stated as Theorem 3.2.2, which can be verified by following the line of
Theorem 3.2.1.

Theorem 3.2.2 Suppose Assumption 3.2.1 holds, the infinite-time horizon
stochastic Nash differential game (3.2.7)—-(3.2.8) has a Nash equilibrium
(u*(-),v*(+)), if and only if the following algebraic Riccati equations admit a
solution P=(P,P,)eS x8'>0 with Py = (P (1),...,P (D),
Py = (Py(1),..., P2(1)):
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-1

—(P1()B1(i) + C}(i)P1 (i) D1 (i)
X (By(i)P1 (i) + Dy (i) Pr () €1 (i) + L, (i) = 0,
Rll(i) +D/1(Z)P1(I)Dl(l) > O7 i€

(3.2.10a)

Ky = = (R (i) + Dy ()P (D1 (D))~ (BY())P1()) + Dy ())P1 () Cr (i) + Ly (1),
(3.2.10b)

P2(A() +A'()P2(j) + Cy()P2(j) C2(j) + () + i P2 (k)
—(P2()B2(j) + G5 (j)P2(j)Da(j) + Loz (j)) (Rzz(l) +D (I)P2(I)D2(l))
x (By(/)P2(j) + Dy ()P2() C2 () + Ly (j)) =

Rzz(j) -‘rDIZ(])Pz(])Dz(]) >0,j€ =.
(3.2.10¢)

Ky = — (R (j) + Dy()P2()D2(1)) " (By(G)P2(j) + D () P2 () Ca(f) + L (1)) -
(3.2.10d)

where

A=A+B:K,,C; = C+D:K,,01 = Q1 +LpKr + K5 L, + K5 R 12K,
A=A+BK;,C; = C+DK1,0s = 0> + Lo1 Ky + K| L, + K| Roi K,

The equilibrium strategies and optimal cost function are

1 [
=Y K (i), =i(0)x(0), v (1) = > Ko (i) 1, (0)x(0).
i=1 i=1

Teo izt (), () = oPeli)xo, k=1,2, i=1,...L

3.2.3 Two Person Zero-Sum Stochastic Differential Game

In two person stochastic Nash differential games, when the sum of the two players’
cost function is zero, i.e., J; = —J», the game is degenerated to two person
zero-sum stochastic differential game problem. Two person zero-sum stochastic
differential game has been widely used in economics and management field, and
this subsection is devoted to the theoretical study of this game.
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3.2.3.1 Finite-Time Horizon Case

Consider the games described by the following linear stochastic differential equa-
tion with Markovian parameter jumps

dx(t) = [A(t, r,)x(t) + By (¢, re)u(t) + Ba (2, 1) v(¢)]dr +
o [Do(t, 7:)x(t) + Dy (t, re)u(t) + Da(t, 1) v(t)|dw(t), t € [0, T], (3.2.11)
x(s) = y.

where (s,y) € [0,T) x R" is the initial time and state, u(-) and v(-) are two
admissible control processes, i.e., F,-adapted, R™-and R™-valued measurable
process on [0,7]. The sets of all admissible controls are denoted by U =
L%(0,T;R™) and V = L%(0, T; R™); {r,} and {w()} are a Markov process and a
standard one-dimensional Brownian motion which are independent.

For each (s,y) and (u(-),v(-)) € U x V, the cost function of the game is defined
by:

Jy(s,y i u(-),v(+) = E{/ [x’(t)Q(t, r)x(t) +u' (£)R(2, r)u(t) — yzv/(t)v(t)]dt
+X(T)H (rr)x(T)|ry = i},
(3.2.12)

where y > 0 is a given constant.

In (3.2.11) and (3.2.12), A(t,r;) = Ai(¢),..., whenever r, = i, moreover, when
rr =i, H(rr) = H;. Referring to stochastic LQ problem, the corresponding value
function is defined by:

V(s,y,i) = inf sup Jy(s, y, i;u(-),v(-)) = sup inf Jy(s, y, i;u(-), v(-))
uel yey ve) uel

=y (5,3, 507 (-), v ()

The problem is to look for (u*(-),v*(-)) € U x V which is called the saddle point
equilibrium for the game, such that for each (s,y) € [0,7) x R". and i € &

J}'(Sayv i; u*(‘),V(')) §J«,(s,y, l, u*(')7V*(’)) gj‘/(say> l7 M(~),V*(')), (3213)

for each (s,y) € [0,T) x R", and i € E.

Definition 3.2.4 The stochastic differential games (3.2.11)—(3.2.12) are well posed
if

V(J,)Z—OO V( ) [O,T}XRH,Z.GE.
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Assumption 3.2.3 The data appearing in the game problem (3.2.11)—(3.2.12)
satisfy, for every i,

Ai(-), Doi(-) € L*(0,T; R™), Byi(+), Dyi(-) € L>(0, T; R™ "),
Boi(+),Dyi(+) € L®(0, T;R™™), Qi(-) € L*(0,T;S"),
Ri(:) € L>*(0,T;8™), H; e S".

Next, we will give the explicit form of the saddle point equilibrium strategy and
the optimal cost function of the game combined with “completion square method”.
Since the control weighting matrix R;(-) in the cost function may be indefinite, we
replace inverse matrix with Moore-Penrose pseudo inverse matrix, and accompa-
nied with constrained generalized differential Riccati equation. The main results are
presented by Theorems 3.2.3 and 3.2.4.

Theorem 3.2.3 For the Markov jump linear system (3.2.11), if the following
generalized differential Riccati equation (with time t suprresed)

P;+N(P;) — S'(P)RT(P)S(P;) = 0,
P(T) = H; (3.2.14)
Ri+m(P) >0, I +mn(P) >0, aetc[0,T], i=1,...,L

admits a solution (Py(-),...,P(-)) € C'(0,T;S}), where

!
N(P;) = PiA; + AiP; + moo (Pi) + Qi + D miPj,
=

B »P'—|-TC]0(P‘)
S(P) = | oH l
( ) |:B/2iPi+n20(Pi) ’
Ri+mi1(P;) m12(P;)
R(P,) = ,
(P) [ 71 (P;) =1 +mn(P))
nTC(Pi) = D;iPiDgl'?Tag = Oa 1727

(3.2.15)

then the game (3.2.11)—~(3.2.12) has a saddle point equilibrium u*(-), and for any
initial value (s,y) € [0,T) x R", its explicit expression is

l
i (1) = = 3 R PU)S(P() 45y (0(0),

Meanwhile, the optimal value is V(s,y,i) =J,(s,y,5;a*(-)) = Y'Pi(s)y,
i=1,...,1L
Proof Since the two person zero-sum differential game is a special case of two

person nonzero-sum differential game, so the proof of Theorem 3.2.3 can similarly
referring to Theorem 3.2.1, and we omitted here.



50 3 Stochastic Differential Games of Continuous-Time ...
3.2.3.2 Infinite-Time Horizon Case

In this subsection, we consider the two person zero-sum stochastic differential
games on time interval [0, co). Firstly, we define the following space

LY(R™) 2= {$(:,-) : [0,00) x @ — R"[(-,)

is F-adapted, Lebesgue measurable, and E fOT (2, )| *dt <00, YT > 0}.
For notation’s simplicity, considering the following controlled Markov jump
linear systems:

{ dzc(();) = [A(r,)x(2) + By (r,)u(t) + Ba(r,)v(2)]dt + [Do(r;)x(2) + Dy (ry)u(2) |dw(2),
X = X0,

(3.2.16)

where A(r,) = A(l), B1 (r,) = B1 (l), Bz(}’,) = Bz(i), D()(Vt) = D()(l) and
Dy(r;) = D(i), when r, =i, i =1,...,1, while A(i), etc., are given matrices of
suitable sizes. u(-) € U = LY°(R™) and v(-) € V = LY*(R™) are two admissible
control processes, which represents the control strategies of these two players.

For system (3.2.16) and (xo,7) € R" x &, the corresponding sets of admissible
controls are denoted by:

U(xg, i) = {(u(-),v(:)) e U x V|(u(-),v(-)) is mean-square stabilizing w.r.t.
(x0, 1)}

For each (x,i) and (u(-),v(-)) € U(xo, 1), the cost function is
I, (x0, 5 u(-),v(+)) = E{/O00 (' (1) Q(r)x(t) + 1 (R (re)u(t) — y*V ()v(1))dt|ro = i}.
(3.2.17)

where y > 0 is a given constant, and Q(r;) = Q(i), R(r;) = R(i), whenever r, = i,
i=1,...,1, while Q(i), etc., are given matrices with suitable sizes. The value
function is defined as

V(xo,i) = inf sup J,(xo, ; u(-), v(-)) = sup inf J,(xo, &; u(-), v(+))

uel ey yey ueU

= J,(xo, i;u”(+),v*(+)).

The problem is to look for (u*(-),v*(-)) € U(xo,i) which is called the saddle
point equilibrium for the game, such that

J»,-(S,y, I; u*(),v()) SJ}'(Svy’i; u*()v‘}*()) SJ}'(Svya i;u(')JV*('))v i=1,...,L
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Definition 3.2.5 The stochastic differential games (3.2.16)—(3.2.17) are well posed
if
—oo<V(xg,i)< +o00, Vxg€eR" Vi=1,..,L

Assumption 3.2.4 The system (3.2.16) is mean-square stabilizable.

Similar to the finite-time horizon stochastic Nash games discussed in last sub-
section, we can get the corresponding results of the infinite-time horizon stochastic
Nash games stated as Theorem 3.2.3, which can be verified by following the line of
Theorems 3.2.1 and 3.2.2.

Theorem 3.2.4 Suppose Assumption 3.2.4 holds, for the Markov jump linear
system  (3.2.16) and (xo,i) € R" X B, the feedback control u*(-)=

! !
> K1 (), —i()x(t) and v*(-) = > Ka(i)y,,—i(t)x(t) is the equilibrium strategy of
i=1 i=1

stochastic differential game (3.2.16)—(3.2.17), where K;(i) and Ky(i) are given
matrices with suitable size, if and only if the following algebraic Riccati equation

P()A(i) +A"(D)P(i) + Do () P(i) Do (i) + Q(i) + i;ngpg) +

J2P)BABYHP() — (PGB + D)D) ()] (32.18)

[R(i) + Dy (i) P()) Do ()] B (1) P ()+D'( )P(i)Do(i)] = 0,
R(i)+Dy(i)P(i)Do(i) >0, i=1,...,1L

admits a solution (Py,...,P;) € S]. In this case,

Ki(i) = ~[R() + D)) P()Do(0)]T (B (1)P(0) + D}, (1) P(i)Do )], Ka()
=By ())P(i).

Meanwhile, the optimal value is V(xo, ) = J,(xo, i u*(-),v*(-)) = x,P(i)xo.

3.2.4 Numerical Example

In order to verify the correctness of the conclusions, consider all the coefficient
matrices of the system (3.2.7) taking the following values:
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{1,2}, 1 = {*O(.); 70(-;8}7,4(1): {—02 j3],A(2) _ [0 1}7C(1): [0.1 0 }
612)::{05 ;;}73(1)::{3},BK2)
|

o 2@ = [0 = [ o] 2@ = |, | e a2 = | 7]

(1) =(2) = LZ) O(.)S} yLii(i) = Lio(i) = Lot (i) = Lo (i) = 0, i=1,2,

Ri1(1) = Ri1(2) = Ra(1) = Rpp(2) = 0.1, Ry5(1) = R12(2) = Roy (1) =

Il
—
[I——

S
)
—~
—_
~
Il
—
—_ =
[—
o]
)
—~
S
—
Il
—
- O
[E—

Using the Newton’s method proposed by Mukaidani [8—13] to solving (3.2.10a,
3.2.10b, 3.2.10c, 3.2.10d), we get the gain matrices K| (i) and K, (i) are

Ki(1) =[=2.979 0.986],K(2) = [—3.467 —0.404];
Ky (1) =[—1.193 —1.186],K»(2) = [—0.241 —4311].

So the optimal control strategy of the system is

u* = —2.979x; +0.986x,,v* = —1.193x; — 1.186x,, whenr, = 1;

u* = —3.467x; — 0.404x,,v* = —0.241x; — 4.311x,, whenr, = 2.
Under the control of u*(r) and v*(¢), the system’s Eq. (3.2.8) can be denoted as

dx(t) = Ac(r)x(t)dt + G(r,)x(t)dw(t),

where

—4.1720  0.8000 0.1000 0
Ac(l) = ,G(1) = ;
—3.1930 —4.1860 —0.3576 0.3393
Ac(2) = [—10.4010 —0‘2120] [ 0.5000 0 }
7 07590 —43110)° —0.0024 0.1569 |

Using Matlab with simulation step A = 0.001, initial value ry = 1, x;(0) = 2
and x,(0) = 1, we obtain the state trajectories as shown in Figs. 3.1, 3.2 and 3.3.

As can be seen from Figs. 3.1, 3.2 and 3.3, under the control of u*(z) and v*(),
the closed-loop system is stable.



3.2 Stochastic Nash Differential Games with Two Player

53

3
2.5
2
15
1
0.5 i
O | | | | | | | |
0 1 2 3 4 5 6 7 9 10
t
Fig. 3.1 Curve of r,
2 T T T T T T T T
1.5 7
1 = .
—_~
=
S
0.5 —
0 -
_05 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
t

Fig. 3.2 Curve of x((¢)



54 3 Stochastic Differential Games of Continuous-Time ...

1.2

0.8 b

0.4 b

0.2 N

0.2 I I I I
0

Fig. 3.3 Curve of x,(¥)

3.3 Stochastic Stackelberg Differential Game
with Two Person

In this subsection, we will refer to Ref. [14], trying to extending the relevant
conclusions from Itd stochastic system to Markov jump systems.

3.3.1 Problem Formulation

Consider the following game system with 2-players involving state-dependent
noise.

{ dx(t) = [A(r1)x(t) + By (r1)uy (t) + Ba(r)uz (1)]dt + C(r,)x()dw(), (33.1)
x(0) = xo. "

where x(f) € R" represents the system state, uy(t) € R™, k = 1,2 represent the k-th
control inputs. It is assumed that the player denoted by u, is the leader and the
player denoted by u; is the follower. In (3.3.1), A(r,) = A(i), Bi(r;) = Bi(i),
k=1,2,C(r;) = C(i), whenr; = i,i=1,...,1, while A(i), etc., are given matrices
of suitable sizes.
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Without loss of generality, the stochastic dynamic games are investigated under
the following basic assumption:

Assumption 3.3.1 (A, By, C), k = 1,2 is stabilizable.

For each initial value (x, i), the cost function for each strategy subset is defined
by

. _ > | X () Qe (ro)x(1) + 13 (1) R (o i () .
o ) = E{/ l +u;<r>Rk,-<r,>u,-<r>1d"r° - }

(3.3.2)

727 Qk(rt) = Q;((rt) 207 Rkk(rt) = R;ck(rf) > O,

3.3.2 Main Results

Without loss of generality, we restrict the control strategy of each player as linear
state feedback case, i.e., the closed-loop Stackelberg strategies uy (¢) = uy(x, 7) have
the following form

l

(1) = Y Feli) 2, (0)x(2).

i=1
The Stackelberg strategy of the game system (3.2.1)—(3.3.2) is defined as:

Definition 3.4.1 [14] a strategy set (uj,u}) is called a Stackelberg strategy if the
following conditions hold

Ja(xo, i ut, u5) <Ja(xo, 5 uf(u2), u2), Vup € R™, (3.3.3)
where
Ji(xo, i ul(uz), u2) = m}nJl (x0, 8511, Uz), (3.3.4)
and
) = ul(u3). (3.3.3)

Theorem 3.3.1 Suppose that the following cross-coupled algebraic matrix
Egs. (3.3.6a-3.3.6¢) has solutions My(i) >0, N (i), k = 1,2 and F»(i)
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A, (DML (i) + My (i)Ar, (i) + C’(') V1 (i) C (i)

. Fi (i)Rll( ) JFQFI i)+ ZnuMl (3.3.63)
A (()M(i) + Ma(i)Ar (i) + C'()) M2 (1) C (i) + O, (i)
l
+F1 (l)Rzl(l)Fl (l) + Z TCUMQ(]) = O (336b>
A, (N1 (i) + N1 (i)A, (i) + C(O)N1 () C' (i) — Bi ()R (1)B) ()M ()N (i)
= Ni(i))M1(D)B1 ()R ()B) (1) + maVi (i) — Bi(DRy () By ()Mo (i) N2 (i)
= Ny (i)Ms( )Bl(i)RI‘(i)B’l(l) +Bl( )R 1t (Rt ()R (0)B ()M (i) N2 (i)

AN (1) + Mo (DAL (1) + CON()CGE) +mia(i) +1, =0, (33.6d)

Ri2(i)F(i)N1 (i) + Rap (i) F2 (i) N2 (i) + By (i) (M1 (i) Ny (i) + My (i) N (i) = O,

where

1
Fi(i) = = YRl (0B (0M (i), Ar, () = A() + B2 ()Fa (1), Ar(i) = Ar, (i) + B1 (D1 (i),
1
Or, (i) = 01(0) + Fy())R12 () Fa (i), Or, (i) = Q2(i) + F5 (i) R (i) Fa (i)

l l
Denote  uj(t) = > Fi(i)y,=i()x(t)  and  w3(2) = > Fa(i)z,=i(1)x(2),
i=1 i=1
i=1,---,1, then the strategy set (u},u}) constitutes the Stackelberg strategy.

Proof Given arbitrary u,(¢) = F»(r,)x(t), the corresponding u; is obtained by
minimizing Jj (xo, {; 1) with respect to u;. Let us consider the minimizing problem
for the closed-loop stochastic system with arbitrary strategies u, (t) = F(r;)x(¢)

n;ilnjl (xo,5;u1) = E{/Ooo [X (1), (r)x() + u, (t)Ry1 (ro)us (1)) dt|ro = i},
s.t.

dx(t) = [AF, (r)x(2) + By (r)uy (2)]dt + C(r;)x(2)dw(t).
(3.3.7)
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By using Theorem 3.1.2, the optimal state feedback controller «{(¢) is given by

! l
(1) = D P06 = = DRI OB (OB (07, (0x(0), (3.3.8)
where M, (i) is the solution to
Fi(My(i), F2(i)) = Af, (M, (i) + My (i)Ar, (i) + C’(i) i1,()C(i)
— F1(i)Ri1 ()F1 (i) + OF, (i) + Z%Ml _o 39

From (3.3.9) we can see that Eq. (3.3.6a) holds. On the other hand, if Ar(i) =
Ar, (i) + B1(i)F, (i) is asymptotically mean square stable, then the cost J, of the
leader can be represented as

]2(.X(), Lnu (MZ) I/t2)

= Ja(x0, i Fy (r)x, Fa (r,)x(t), = Tr(My(i)), (3:3.10)
where M, (i) is the solution to
Fa(M, (i), My (i), F(i))
= Ap ()M (i) + My (i)A (")+C'(’)7 ()C() + Or, (i)
(3.3.11)

+F( R21 + an]Mz

From (3.3.11) we know (3.3.6b) holds. Let us consider the following
Lagrangian H

H(M, (i), My (i), F2(i)) = Tr(M2(i)) + Tr(N (i) F1 (M1 (i), F2 (7))

+ Tr(N, (0)F2 (M, (i), Ma (i), F2(i))), (3.3.12)

where Ny (i) and N, (i) are symmetric matrix of Lagrange multipliers.
As a necessary condition to minimization Tr(M,(i)), we get
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ag—‘f(i):fxm(iwl(i)+N1<i>A;l<z'>+c<z'>N1(i>C'<i>

— By(i)Ry (B, ()M (D1 (1) — My ()M, (0)By ()R, (1B, ()

7 (i) — By (1)R;, () B, (DB () Na(i)

~ M) (0B (OR; (DB ()

BOR O (R1 (B,

+ Na(i) 1, (0)B1 )Ry (i
(3.3.13a)

8,§,ii) — Ar(DNa(i) + Na(DAR () + CONa () C (D) 1)

+ N2 (i) + 1, = 0,

1 OH .
Emlez(l)Fz() 1(8) + Ry (i) F ()NZ() (3.3.13¢)

+ By (i) (M1 ()N (i) + M2 ()N2(i)) = 0.

Therefore, (3.3.6¢c)—(3.3.6¢) hold. This completes the proof of Theorem 3.3.1.

3.4 Summary

For continuous-time Markov jump linear system, we firstly discussed the two
person nonzero-sum stochastic differential game problem in finite-time horizon and
infinite-time horizon. By using the related conclusion of stochastic LQ problem of
Markov jump linear systems, we obtain the necessary and sufficient conditions for
the existence of the system combined with Riccati equation method, which corre-
sponds to the existence of the differential (algebraic) Riccati equation, and with the
solution of Riccati equation, the optimal control strategy and explicit expression of
the optimal value function of the system are given. Finally, numerical examples
demonstrate the effectiveness of the obtained results. At the end, two person
Stackelberg game problem of Markov jump linear systems in infinite-time horizon
is discussed, and the existence condition of equilibrium strategy and explicit
expression are given.
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Chapter 4

Stochastic Differential Game

of Discrete-Time Markov Jump Linear
Systems

This chapter investigated the stochastic differential game theory of discrete-time
markov jump linear systems, in which the state equation is described by It0’s
stochastic algebraic equation. The Nash equilibrium strategies of the two person
nonzero-sum differential game, the saddle point strategies of the two person
zero-sum differential game, Stackelberg differential game were discussed in this
chapter, and it was proved that sufficient conditions for the existence of the equi-
librium strategy are equivalent to the solvability of the corresponding algebraic
Riccati equations; moreover, the explicit solution of the optimal control strategy
and the expression of the optimal value function were obtained. Finally, the
numerical simulation examples were given.

4.1 Stochastic LQ Problem—Differential Game with One
Person

4.1.1 Finite-Time Horizon

4.1.1.1 Problem Formulation

On a probabilistic space (Q,F,{F},-,P), we consider a discrete-time markov
jump linear systems of the following type:

x(k+1) = A(re)x(k) + B(ri)u(k) + Ay (re)x(k)w(k), (.1.1)
x(0) =xp € R", o

where x(k) € R" is the state, u(k) € R™ represent the system control inputs, x is a
deterministic vector. r;, Denotes a time-varying markov chain taking values in & =
{1,...,1} with transition probability matrix p(k) = [p;(k)],p;(k) =P(O(r+1) =
Jjlr(k) = i). The coefficients A(ry), A; (rx), B(ry) are assumed to be constant matrices
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with appropriate dimensions. w(k) is a one-dimensional standard Brownian motion.

Assuming that w(k) is uncorrelated with u(k), and is independent of the Markov

chain r; for k € Ny . The initial value #(0) = ry is independent of the noise w(k).
Let the optimal strategies for system (4.1.1) be given as

u(k) = K(re)x(k). (4.1.2)

The purpose of the one person LQ differential games is to find the feedback
controls with constant matrix gain K(r;) satisfying the following criterion:

J(u;x0,1) = E{ T)+ S 1 x(k) +u' (k)R (rk)u(k))] |ro = i},
kzo (4.1.3)

which also minimizing
J(u*; x0, 1) < J(; X0, ), (4.1.4)

where all the weighting matrices R(r¢) € S, Q(r) >0 € S} in (4.1.1) and (4.1.2),
when ry =i,i=1,...,[,A(ry) = A(i), etc.

4.1.1.2 Main Results

The following theorem presents a sufficient condition for the existence of the
optimal solutions to the finite-time stochastic LQ control problems.

Theorem 4.1.1 For the system (4.1.1) with the criteria (4.1.3), if the following
generalized algebraic Riccati equations admit a group of solutions (P' (k); K(i)) for
any (i, k)

IE’I( f_z;;( K'(i)B )(
1 + ! i
P(T) = M, B (i) )>0 (4.15)
K(i) = —(B'(i))PD(k+ 1)B(i) + R(i))  B'(i)P" (k+ 1)A(i),

where {P' (k) € S,} represents symmetric matrix indexed by the time k and the
mode of operation i, and

]
PO(k+1) =E(P,, (k+1)) = m;PP(k+1).
j=1

Then the finite time LQ stochastic games are solvable with u*(k) = K(i) x(k), and
the optimal cost functions incurred by playing strategies u*(k) are

J(u*(k)) = x,PD(0)x,i € E.
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Proof If P(-) = (P (), PA)(),...,PU(.)) € S} is the solution of the Eq. (4.1.5),
x(+) is the solution of the Eq. (4.1.3) corresponding to the admissible control
u(-) € U[0, T]. Considering the scalar function ¥ (k,x) = ¥’ (k)P (k)x(k), we can
obtain

~
—_

B [ (x(k+ 1Pk D+ 1) = (0P R)x(K) ) Iro = ]

~
i
o

= E{Ti [ (R) (AP (ke + DAG) + AL OPY (K + DA (3) = PO (k) ) x(K)

k=0
+2u (K)B' (i)P (k + 1)A(i)x(k) + o (k)B' (i) P (k + l)B(i)u(k)} }
= E[X(T)P(T)x(T)] — x,P?(0)xo.
(4.1.6)

Substituting (4.1.6) into (4.1.4), we have

J(;x0, i) = —E[ (T)P(T)x(T)] + x5 P (0)x0 + E[x' (T)Mx(T)]
T-1

+E{ [x’(k) (Q(i) + AL ()P (k4 1)A (i) +A' ()P (k + 1)A(i)>x(k)

k=0
20 (KB ()P (k+ 1A(0)(6) + ' (k) (R() + B ()P (k+ 1)B() )u(k)] .
(4.1.7)

Using the completion square method to (4.1.7), we can obtain
J(u;x0,1) = ~E[ (T)P(T)x(T)] +xpP? (0)xo + E' (T)Mx(T)]
+X'(k)[ "(i)PY (k+ DAG) + Ay () PY (k + 1AL (i)
(i) — PV (k) +K'(i)B ()Pl(k+1)A(i)]X(k)
(u(k) = K(@x(K) (B PO (k+ DB) + R() ) (u(k) — K(0)x(K)),

+ o+

where K (i) = — (B'(i)PV (k + 1)B(i) + R(i)) ' B'(i) P (k+ 1)A(i).
Hence, considering the Eq. (4.1.5), it is easy to deduce that

J(u;x0,8) > x P (0)xg = J (u; x0,1),i € =. (4.1.8)

this ends the proof. O
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The sufficient conditions for the existence of the optimal control strategy are
given in Theorem 4.1.1. The necessary conditions are given in the following
Theorem 4.1.2.

Theorem 4.1.2 For system (4.1.1), if u*(k) =K (z)x(k) is the optimal control

strategy, where K(i) = —(B'(i)P") (k+ 1)B(i) + R(i)) B’( HPO(k+ 1A(),i € E
is a numerical matrix, then the algebraic Riccati Eq. (4.1.3) admits a solution

P(-) = (PU(),PO(),...,PD()) € S" and

K(i) =~ (B POk + 1B +R©) B HP(k+DAG).

Proof We can prove Theorem 4.1.2 by the method of dynamic programming.
Reference [1] assuming that for any interval kT <t<NT, k=0,1,...,N —1,
select a quadratic value function as follows

Fi(u; x(k), re)

= E{ )+ Q(ry)x(j) + ' ()R (ry)u )] \X(d),rd,OSdSN}.

J=k

Marking the minimization Fy over u(k),u(k+1),...,u(T — 1) as S(x(k), rx, k).
Given k, x(k) = x*(k), ry =i, then
S(X* (k)7 2 k) = II}}CI)I{F](}

= %ﬁl[x’(k)Q(Vk)x(k) +u’(k)R(rk)u(k)] + rﬂ}(r)l E{X’(T)MX(T)

+ Z {{&(Qr)x() +u ()R (rj)u(i))IX(d)7ra,0<d<N}}}

Jj=k+1

= {{%}cl)l[x/(k)Q(rk)X(k) +1/ (K)R(re)u(k)] + E[S(x(k+ 1), g1,k + 1)|x" (k). d].

(4.1.9)

Let S(x(k), r, k) = x(k)'PU) (k)x(k), where PU%) (k) is a matrix to be determined,
taking conditional expection on S(x(k), ry, k), we have

E[S(x(k41), 741,k + 1)|x"(k), 1]
= (k) (A’(i)iv@ (k+ 1A +A,()PD (k + 1)A, (i))x* (k) (4.1.10)
+ 2/ (k)B' (i) P (k 4+ 1)A(i)x* (k) + ' (k)B' (i) P (k + 1)B(i)u(k).
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Substituting (4.1.10) into (4.1.9), removing the irrelevant items from u(k), and
calculating the first order condition, we have
. -1 .
u(k) = = (B PO (k+ DBE) +R()) B OPO K+ DA (K) = K()+' (&),
(4.1.11)

According to the hypothesis of Theorem 4.1.2, we can know that the optimal

control strategy of system (4.1.1) exists, so the P(i)(k) in (4.1.11) also exists.
Substituting (4.1.11) into (4.1.9), we have

S(x* (k) i,k) = x" (k) [A’(i)Pm (k+ DA(0) + AL (i)PO (k+ 1AL (i) + Qi)

+K'(i)B (i)PD (k + 1)A() | x* (k).
According to the hypothesis, we can get S(x*(k), i, k) = x* (k) P/ (k)x* (k), then

A'()PD (k4 1DA®) + A" ()PY (k+ 1A, (i) + Qi)
+K'())B'(i))PY (k+ 1)A(i) — P9 (k) = 0.

So we can know that the P(-) = (P(V(-), P@)(.),.-. PU(.)) € S} is the solution
of the Eq. (4.1.8).
This completes the proof. O

4.1.2 Infinite-Time Horizon

We still consider the discrete-time markov jump linear systems (4.1.1). For con-
venience of description we copy (4.1.1) as follows:

{ x(k+1) = A(re)x(k) + B(ri)u(k) + A (r)x(k)w(k),

0) =10 € B (4.1.12)

Definition 4.1.1 ([3]) The discrete time markov jump linear systems (4.1.12) is
called mean-square stable if for any (xp,7) € hollow body R" X E, the corre-
sponding state satisfies

lim E|x(k)||*= 0.

k—00
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Definition 4.1.2 ([3]) System (4.1.12) is called stabilizable in the mean square
sense if there exists a feedback control u*(k) = Zi;l K(i)y,,—i(k)x(k) with
K(1),---,K(l) are constant matrix, such that for any (xo,i) € hollow body R" x E
the following closed-loop system

{ x(k+ 1) = A(ri)x(k) + B(ri) K (ri)x(k) + A (ri)x(k)w(k),
x(0) = xp € R",

is asymptotically mean square stable.

The purpose of the stochastic LQ problems is to find the feedback controls with
constant matrix gain K(r;) satisfying the following criterion:

J(u;x0, 1) = {

which also minimizing

o0

> >+uwmuummﬂm:n} (4.1.13)

k=0

J(u™; x0, 1) < J(u;x0, 1), (4.1.14)

where all the weighting matrices R(rx) € S", Q(rx) >0 € S}
In (4.1.12) and (4.1.13), when ry, = i,i = 1,...,1,A(rx) = A(i), etc.

Assumption 4.1.1 Systems (4.1.12) is mean-square stable.

According to the relevant theory of stochastic optimal control, we can get
Theorem 4.1.3, because the proof method is similar as the LQ problem in finite-time
horizon, it is not repeated herein.

Theorem 4.1.3 For the system (4.1.12) with the criteria (4.1.13), suppose the
assumption 4.1.1 holds, if the following generalized algebraic Riccati equations

admit a group of solutions P = (P, P? .. PV € S} for any (i, k)

AP (k+ 1)A() + AL (i) P ’<k+1>A1<>+Q<i>

—PO (k) + K (1)B' (1) PO (k + 1)A(7) =

B ()P (k +1) () R(i) > 0, (4.1.15)
K(i) = — (B () P9 (k+ 1)B(i) + R(1)) " B/(1)PD (k+ 1A().

Then the infinite-time stochastic LQ problems are solvable with u*(k) = K(i) x(k),
and the optimal cost functions incurred by playing strategies u”(k) are

xHPD(0)xo,i € E.
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4.2 Stochastic Nash Differential Games with Two Person

4.2.1 Finite-Time Horizon

4.2.1.1 Problem Formulation

On a probabilistic space (2, F,{F;},>,P),, we consider a discrete-time markov
jump linear systems of the following type:

(k1) = [A(r)x(6) + B (k) + Ba(r v (k)] + A (r)x(kwli). 4o )
X(O) =xy € R", o
where x(k) € R” is the state, u(k) and v(k) represent the system control inputs, xo is
a deterministic vector. r; Denotes a time-varying markov chain taking values in
E={1,...,l} with transition probability matrix p(k)= [p;(k)],p;(k) =
P(ri+1 = jlre = i). The coefficients A(ry),B;(ri),A1(ry) are assumed to be constant
matrices with appropriate dimensions. w(k) is a one-dimensional standard Brownian
motion. Assumpting that w(k) is uncorrelated with u(k) and v(k), and is independent
of the Markov chain r; for k € Ny . The initial value r(0) = ry is independent of the
noise w(k).
Let the optimal strategies for system (4.2.1) be given as

u(k) = Ky (ri)x(k),v(k) = Ky (ri)x(k) (4.2.2)

The purpose of the two person Nash differential games is to find the feedback
controls with constant matrix gain K, (r¢), T = 1,2 satisfying the following criteria

J‘L‘(uy Vi Xo, l)
-1
=X (T)Mx(T) + ¥ (k) Qc (r)x(k) + 1 (k) Rey (ri)u(k) + V' (k)R (ri)v(k)], 7 = 1,2
=0
(4.2.3)
which also minimizing
Ji(u v x0, 1) <Jy(u, v xo,0), Jo (v x0,0) < Jo (u*, vy x0,0), (4.2.4)

where all the weighting matrices Rqi(r) € S)',Rua(rk) € S, Q:(rk) >0 € S,
T=1,2. In (4.2.1)- (4.2.3), when re = i,i = 1,...,l, A(re) = A(i), etc.
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4.2.1.2 Main Result
With the help of stochastic LQ problems, it is not difficult to get the following

Theorem 4.2.1:

Theorem 4.2.1 The two person stochastic LQ differential games (4.2.1)—-(4.2.3) in
finite-time horizon are solvable with (u*(-),v*(:)), if and only if the following
coupled Riccati equations

[A() + Ba (i) Ka (i) P (k + D)[AG) + Ba(0)Ka ()] + Q1 (i) + A7 ()P} (k + 1)A4 (3)
— PV (k) + K5 () Ri2 () K2 (i) + K, () B, (i) P\ (k + 1) (A(i) + B2 (i)K» (i) = 0,

Pl(lT)_Ml,
By ()P (k+ 1)B1(i) + Rur (i) > 0,
Ki(i) =~ [B 0PV (k+ DB (1) + R ()] B (P (k-+ 1A + Ba()Kal))

(4.2.4)

[AG) + By (1)K (1)) By (k + DIAG) + By (DK ()] + Qa(i) + A7 (1)P5 (k+ DA, (7)
—P) (k) + K} ()Rt () K1 (1) + K3 (1)B4 (i)Y (k + 1)(A(D) + Bi (1)K () = 0,
T :M27

(1)
())Py (k+1)B B +Rald) >0,

(i) = = [ By )P (k+ DB2(0) + Roa(i) | Bo(PS (k+ 1)(AG) + B1 (DKa (1),
(4.2.5)

.

)
B,
K>

admit  a  group  of  solutions  P(-) = (Pi(:),P2(-)) € S] x §/,where

Pi() =P PVC)L Pa() = (B (), P (). (i € B)APY (K)€S,)

represents symmetric matrix indexed by the time k and the mode of operation i, and
PO (k+1) = E(PP (k+1)) Zn, (k+1)

Meanwhile, the explicit forms of the optimal strategies are

l l

w' (k) =Y Ki ()t (k)x(k), V' (k) = D Ko )1, (k)x(k),

i=1 i=1

and the optimal cost functions incurred by playing strategies are
Jo(u*,v*; x0, 1) :xéPgi)(O)xo , =12
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Proof If (4.2.4) and (425) admit a group of solutions P(-) = (Pi(-),P2())
€ S x S}, let vi(k) = ZKQ( i)7,,—i(k)x(k), and by substituting v*(k) into (4.2.1),

we can obtain the followmg optimal control problem

Ji (M:V*;x()ai)

B AT = Q1 ) + K} (rk)Rlz(rk)Kz(rk)) (k) o
E{ Mt *Z[ ol (R (rJu(k) ]' ' }

{x(k +1) = [(A(r) + B2 (i) K2 () x (k) + By (re)u(k)] + A1 (re)x(k)w(k),

(4.2.6)

The above optimal control problem is a standard stochastic LQ problem, so
taking

A(rk) +B2(rk)K2(rk) = A(rk),Bl(rk) = B(Vk)aAl(rk) = A1 (}"k),
O(ri) + Ky (re)Riz(re) Ko (ri) = Q1(r), Rur(rx) = R(re).

According to Theorem 4.1.1, we have

l

W (k) = 3 K (i) i (R)x(Kk), i = 1, L. (4.2.7)

i=1
Similarly, by substituting u*(k) into (4.2.1) we can obtain Vv*(k) =

Z K>(i)1,,—i(k)x(k) is the optimal control strategy.

Th1s completes the proof. O

4.2.2 Infinite-Time Horizon

4.2.2.1 Problem Formulation

We still consider the discrete-time markov jump linear systems (4.2.1). For con-
venience of description, we copy it as follows:
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Xk +1) = [Alr)x(k) + By (nu(k) + Ba(rv(k)] + As(rx(l)w(k), - 4 5 gy
x(0) = xp € R". -
Let the optimal strategies for system (4.2.8) be given as
u(k) = Ki(r)x(k),v(k) = Ka(r)x(k). (4.2.9)

The purpose of the two person Nash differential games is to find the feedback
controls u(k) = K;(ry)x(k) and v(k) = Ky(ry)x(k) with constant matrix gain
K.(ry), T = 1,2 satisfying the following criteria:

JT(M7 Vi Xo, l)

=0
(4.2.10)
which also minimizing
Ji(u* v x0, 1) <Jp(u, v xo, 1), Jo(u*, v x0, 1) <Jo(u*, v;xo, 1), (4.2.11)

where all the weighting matrices R (rc) € S, Rua(rv) € S}, Q:(r) >0 € S}, 1=
1,2. In (4.2.8) and (4.2.10), when r, = i,i = 1,...,1,A(ry) = A(i), etc.

4.2.2.2 Main Result

Assumption 4.2.1 System (4.2.8) is mean-square stable.

By the method used in the Nash stochastic differential games in finite-time
horizon above, we can easily obtain the necessary and sufficient conditions as
Theorem 4.2.3 for the equilibrium solution of the Nash stochastic differential games
in infinite-time horizon, the proof is similar as Theorems 4.2.1 and 4.2.2, so it is not
repeated herein.

Theorem 4.2.3 Under the assumption 4.2.1, the two-person Nash stochastic
differential games (4.2.8)~(4.2.11) in infinite-time horizon are solvable with
(u*(+),v*(+)), if and only if the following coupled Riccati equations admit a group

of solutions P(-) = (P(),Ps(-)) € 8} x 8}, where Pi(-) = (P{"(),....P\"(-)),
Py() = (P, ... PV (), (i, € D)
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(i)+Bz(l)Kz()]’ (l( )[A()+Bz(l) 2D+ 01 (D)D)

(4.2.12)

+ By (DK (]S (k+ 1)AG) + By (K1 (i)] + 05(1) 02 (i)
+ AL OPY (k+ 1A () + K ()R (DK (1) — P (k)

(DB ()PS (k+ 1)(A(i) + B (1)K (1)) = 0,
By(i)PY (k+1)Ba(i) + Raai) > 0,
Ka(i) = — [BLOPY (k-4 DBa(0) + Rao(i)] By OPY (k+ 1)(AG) +Ba(i)Ki ()
(4.2.13)

Meanwhile, the explicit forms of the optimal strategies are

1 l
w (k) = Ki ()i (R)x (), v* (k) = > Ko (i) 1, —i () x(k).
i=1 i=1
and the optimal cost functions incurred by playing strategies are
Jo(u*, v x0,0) = xé)Pgi) (0)xp, T=1,2.

4.2.3 Two Person Zero-Sum Stochastic Differential Games

4.2.3.1 Finite Time Horizon

On a probabilistic space (2, F,{F},, P), we consider a discrete-time markov
jump linear systems of the following type:

x(k+1) = A(ri)x(k) + By (ri)ur (k) + Ba(ry)ua (k)
+ [A1 (re)x(k) + Cy (rx)ur (k) + Co(rx Jua (k) w(k), (4.2.14)
x(0) =xp € R",

where x(k) € R" is the state, u; (k) and u, (k) represent the system control inputs, x
is a deterministic vector. r; Denotes a time-varying markov chain taking values in
E={l,---,I} with transition probability matrix p(k)= [p;(k)],p;(k) =
P(rk+1 :j|rk = l) The coefficients A(rk),Bl (rk),Bz(rk), C] (rk), Cz(rk), A] (rk) are
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assumed to be constant matrices with appropriate dimensions. w(k) is a
one-dimensional standard Brownian motion. w(k) is uncorrelated to u;(k) and u,(k),
and is independent of the Markov chain r; for k € N7 . The initial value #(0) = rg is
independent of the noise w(k).

Let the optimal strategies for system (4.2.14) be given as

ur (k) = Ky (re)x(k), uz (k) = K (re)x(k).
The purpose of the two person zero-sum differential games is to find the feed-

back controls u; (k) = K (rx)x(k) and uz (k) = K, (rx)x(k) with constant matrix gain
K.(ry), T = 1,2 satisfying the following criterion:

L )x(k) + ) (k)Ry (i )uy (k) _
N+ < (R, (m)uz(k))] "o }

(4.2.15)

J(uy, up; xo, 7) —E{

which also minimizing
J(”]a”Z;an ) <J(ulau2ax()7 ) SJ(Ml,ME;XOai)a

where all the weighting matrices Ry (rx) € S/, R2(rx) € S', Q(re) >0 € S].
In (4.2.14) and (4.2.15), when ry, =i, i = 1,...,,A(ry) = A(i), etc.

Theorem 4.2.4 The two-person zero-sum stochastic differential games (4.2.14)—

(4.2.15) in finite-time horizon are solvable with (u*(+),u2*(+)), if and only if the

following  coupled Riccati equations admit a group of solutions

P()=PY(),..,PY() €S, (i€ E)

{ N(i, P) — P9 (k) — L'(i, P)R™' (i, P)L(i, P) = 0, (42.16)
P(TY=M

)

N(i, P) = A'())P” (k+ DAG) + 0() + A} ()P (k+ 1)A, (i),
A“(l,P)—f—Rl() Alz(l P) :|

| Au(i,P) Ass(i, P) + Ro(i) |

All(i,P)+R1(i) >Q,A22(i,P)+R2(')<O ‘

Aun(i,P) =B, <'>‘<’><k+1> B0+ G,()P <’><k+1>c (i)(m,n =1,2),

m

L(i,P): B (i)P' (k+1)()+C’() (k+1)A()
By(i)P” (k+ 1)A(0) + G4 ()P (k+ 1)A (7)

(4.2.17)
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Meanwhile, the explicit forms of the optimal strategies are
(k) = (uj'(k) u3'(k))'= K(i)x(k) = —R™'(i, P)L(i, P)x(k),

and the optimal cost functions incurred by playing strategies are x’OP(i> (0)xo.

Proof The two-person zero-sum stochastic differential game is the special case of
Nash stochastic differential game, so the proof of Theorem 4.2.4 can be referred to
the Theorem 4.2.3, and it is not repeated herein.

4.2.3.2 Infinite-Time Horizon

We still consider the discrete-time markov jump linear systems (4.2.14), in order to
discuss, we copy (4.2.14) as follows:

x(k+ 1) = A(ri)x(k) + Bi (re)us (k) + Ba (ric)ua (k)
+ [A1 (re)x(k) 4+ Cy (re)uy (k) 4 Ca(ri)uz (k)]w(k), (4.2.18)
x(0) = xo € R",

The purpose of the two person zero-sum differential games is to find the feed-
back controls u; (k) = K (ry)x(k) and up (k) = K5 (r)x(k) with constant matrix gain
K(ry) satisfying the following criterion:

c- )x(k) + 1ty (k)R (rie)ur (k) _
Z( + uy (k)R z(rk)uz(k)>] Iro = }

J(MI,MQ,XO, - {

which also minimizing

J( Uy, Uz; Xo, 1 ) <J(ul,l/t2,)€07 ) <J(u1,u2,x0, )a
where all the weighting matrices R;(ry) € S)',Ra(ri) € S', O(re) >0 € S]. In
(4.2.18) and (4.2.19), when r, = i,i = 1,..., L A(ry) = A(i), etc.

Assumption 4.2.2 Systems (4.2.18) is mean-square stable.
By the method used in the zero-sum stochastic differential games in finite-time
horizon above, we can easily obtain Theorem 4.2.5.

Theorem 4.2.4 Under the assumption 4.2.2, the two-person zero-sum stochastic
differential games (4.2.18)—(4.2.19) are solvable with (u;*(-), uz*(*)), if and only if
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the following coupled Riccati equations admit a group of solutions
P()=PWN(),.--,PO()) e S (ieB)

N( P) — P’)() L'(i, P)R7'(i, P)L(i, P) = 0,
P) = A'()P" (k+ DA() + Q) +A ()P (k+ DA, (i),
1 (i, P) +R1 i) A (i, P)
|: AZI( Azz(i, P) +R2(i):|
A(i, P) = B! (iP" (k+1) ()+C’(')_(i)(k+1)C(')(m,nzl,z),
B} (i)P <’§<k+1> (i) + C ()P (k+ 1A (i)

L(i,P) = (B , (i)
By(i)P (k+ 1)A(i) + Cy ()P (k + 1)A, (i)

(4.2.21)

Meanwhile, the explicit forms of the optimal strategies are
(k) = (uy'(k) u3'(k))'= K(i)x(k) = —R™'(i, P)L(i, P)x(k),

and the optimal cost functions incurred by playing strategies are x()P(i) (0)xo.

4.3 Stackelberg Differential Games with Two Person

4.3.1 Finite-Time Horizon

4.3.1.1 Problem Formulation

We consider a discrete-time markov jump linear systems of the following type:

x(k+1) = [A(r)x(k) + B(ri)u(k) + C(re)v(k)] + Ay (rx)x(k)w(k) @3.1)
x(0) =xp e R" o

where x(k) € R" is the state, u(k) and v(k) represent the system control inputs, xo is
a deterministic vector. r; Denotes a time-varying markov chain taking values
in E={1,---,{} with transition probability matrix p(k) = [p;(k)],p;(k) =
P(rx+1 =jlre = i). The coefficients A(ry), B(rx), C(rt),A1(ry) are assumed to be
constant matrices with appropriate dimensions. w(k) is a one-dimensional standard
Brownian motion. w(k) is uncorrelated to u(k) and v(k), and is independent of the
Markov chain r; for k€Ny .The initial value (0) = ry is independent of the noise
w(k).
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Let the optimal strategies for system (4.3.1) be given as
u(k) = Ky (re)x(k), v(k) = Ka(ri)x(k)
The performance functions are as follows:
e (u, v x0, 1)

T-1

= E{x/(T)FTx(T) + Z (X (k) Oc (ri)x(k) + 1 (k)Rey (ri)u(k) 4+ V' (k)Roa (1 )v(k)] 1o = i}7
=0

t=1,2,

(4.3.2)
where all the weighting matrices Ry (ry) € S)',Ra(r) € 81", Q:(r) >0€ 87,
T=1,2.
In (4.3.1) and (4.3.2), when rp, = i,i=1,--- 1, A(rx) = A(i), etc.
The definition of stackelberg equilibrium solution in finite-time horizon is as
follows:

Definition 4.3.1 ([2]) For control strategy u € U, the optimal reaction set of the
follower P, is:

§R2(”) = {VO eV: J2(u7 VO;X()7i) SJz(M, Vi X0, l)}avv € V?

u* is called the Stackelberg strategy of the leader Py, if the following conditions
hold:

min Jy(u",v;x0,0) < min Jy(u,v;x0,1),Vu €Y
VER (u) VvER (u)
4.3.1.2 Main Result

Stackelberg strategies of the discrete-time markov jump linear system are as the
following theorem:

Theorem 4.3.1 For system (4.3.1), if the following Riccati equations:

P (k) = H,(P,i),P\(T) = F\,

Pgi)(k) = Hy(P,i),P>(T) = F>,

Ki(i) = —M~Y(P,i)L(P, i), (4.3.3)
K> (i) J
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with

Hi(P,1) = AP (k+ 1DAG) + A} ()P (k+ DAL () + 01 (i) + K] ()L(P, )
+ A (P,1) (€' OP (k+ 1)C() + Rua i) )W (P, DAG)
+ 24 ()Y (P,)C' ()P (k+1)A(i),
Hy(P,i) = A'()Py (k+ DA() + AL ()P (k+ DA (i) + Qs (i)
K;@B/@ﬁ; (k+ DA() + K5 () C' ()P (k + 1) (A(0)x(K) + B()K1 (i)
K;(0) (B ()P (k+ 1)B() +R21<>) 1(i
i)

l ;
! ),
Y(P,i) = [ P (k+ 1)C() + Rn(i)] COPY (k4 1),
M(P,i) = <z>P'><k+ JB() + Rit (i) + 2B ()P} (k+ 1) C(i) (P, i)Bi)
(P k+1)C <>+Rn<>)w(P iB(0),
L(P,i>:B'<i>FY><k+ JA() +B (0 (P,))C ()P (k+ 1)A)

P (k+ 1)C() + Ria ()W (P, )A()

S =
>
S
Q

exist  the  solutions  of  P(-)=(Pi(-),P2(:)) € S] xS},  where
Pi(-) = (Pgl)(~), .. .,P<ll>(~)), Py(-) = (Pgl)(-)7 .. .,Pgl)()), then the solutions of the
Stackelberg game are:

l l

w* (k) =Y Ki ()i (k)x(k), V' (k) = D Ko ()i (k)x(K).

i=1 i=1

Proof Given the strategy u implemented by the leader P,, considering the opti-
mization problem of the follower P,. Let the value function

Va(k,x) = X (k)P(zrk)(k)x(k), using the It6 lemma, we have:
E[AYz(k x)|r0 = i]
= E[((k+ DPY ) (nlk + 1) = X (R)PY (R)x(K) ) Iro = i

= E[¥ (k) (AP (k+ DAG) + AT ()P (k+ DA (i) — P () ) x(K)

+ 21 (K)B ()P (k + 1D)A(i)x(k) + 2V (k) C' (i) P (k + 1)A(i)x(k)
+2u (K)B (i) Py (k + 1)C(i)v(k) + 1 (k)B' (i) P§ (k + 1)B(i)u(k)

(4.3.4)
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-1
Based on the equations of Y [AY>(k,x)] = (x(T)'P(T)x(T) — x(0)’
k=0
PY(0)x(0)), we can get:

E[AY, (k,x)|ro = i]

—

ZE{Z_: X’(k)(A’(i)P(;)(kH)A()+A’() J(k+ 1A (i) — Pg">(k))x(k)
k=0
+ 20/ (k)B'(i) Py (k + 1)A(i)x(k) + 2/ (k) C'(i) P
+ 20 (k)B'(i)PY (k + 1) C(i)v(k) + u (k) B (i) P\
IO K+ i)}
E[X/(T)P(T)x(T)] = %P5 (0)xo.

P (k+ DA(0)x(k)
) (k + 1)B(i)u(k)

(4.3.5)
Substituting (4.3.5) into J,(u, v; xo, i), we have
J2(u,vix0,1) = —E[Y(T)P2(T)x(T)) +XE)P§i) (0)xo + &[x'(T) 02 (T)x(T))]
T—1 . .
+ 3 ¥k ( D (k+ 1DAG) + A, ()P (k+ DA (i) — PY (k) +Q|(i)>x(k)]
k=0
+E [2u (k)B'(i)PY (k + DA(i)x(k) + 1/ (k) <B/(i)P¥) (k+1)B(i) +Rz1)u(k)
k=0
+ 20 (K)B' ()P (k + 1) C(i)v(k) + 2V (k)C' (i) P (k + 1)A(i)x(k)
V(K CHPY (k + 1) C(i)v(K) + v (k)R (1)K ]
(4.3.6)

In (4.3.6), taking the derivative with respect to v, we have

-1

v(k) = [c’( VPO (k+1)C(i) +R22(i)}
= Y(i)(A(i)x(k) + B(i)u(k)),

C'()Py (k -+ 1)(A()x(k) + B(i)u(k))
(4.3.7)
where y/(i) = —[C'()PY) (k + 1)C ()+R22()] C'())PY (k +1).

Now, consider the strategy of P;, take the value function as Y(k,
x) = X (k)P (k)x(k), then
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1

E[AY; (k, x)|ro = i]
= E{TZ [ 0) (4P (ot DAG) + AL DPY (k4 DA (i) — PP (8))x(k)
k=0

P (k + 1)A(i)x (k)
i)

+ 20 (k)B' (i) P\ (k + 1)A(i)x(k) +2v/ (k) C' (i
)B'(i) (k+ 1)B(i)u(k)

( 5 + )P

+2u (k)B'()P\” (k + 1) C(i)v(k) + u (k) B (i) P\’
HV (K)C ()P (k+ 1) C(i)v( k)]}

= E[Y(T)Py(T)x(T)] — x,P\" (0)xo.

(4.3.8)

Substituting (4.3.8) into J(u, v; xq, i), we have

Ji(u, v;x0, i) = —E[X (T)Py(T)x(T)] + 2P\ (0)xo + E[¥ (T) Q1 (T)x(T))]

+ 3 [ (AP (k+ DAG) + A (0P (k+ DA )~ PP (6) + 1)) x(0)]
k=0
T-1
+E [zu’(k)B'(i)Ps”(H DA()x(k) + ' (k) (B’(i)ﬁg” (k+ 1)B() + Ru(i))u(k)
k=0

+ 21 (K)B'(i)P\" (k + 1)C(i)v(k) + 2V (k) C' () P\" (k + 1)A(i)x(k)
+V (K)C' ()P (k+ 1)C(i)v(k) +v’(k)Rlz(i)v(k)]~
(4.3.9)
Substituting (4.3.7) into (4.3.9), we have

Ty (u, v x0,8) = —E[X(T)Py(T)x(T)] + %P\ (0)x0 + EY'(T) Q1 (T)x(T))]
+Z{ ) [PV e+ DA + AL PV (k+ DA (0) = P (0 + 01 (1)

+ A/ (P.1) (€ WOP (k+ 1)C(0) +Ria(i) ) (P, DAG)
20 W/ (P.C ()P (k+ DA | x(0) |

T—1 )
+EY {Zu’(k)[B’(i)F(ll>(k+ DA() + 2B () (1)C ()P (k + DA(i)
k=0

+28/ (i) (1) (€ WP (k+ 1)C(0) + Ruai) )W (DAG)
+2B/(i)P} (k+ 1)) (DA()]
xx(k) + 1 (k) [B ()P (k+ 1)B(E) + Rur (i) + 2B ()P (k+ 1)C(0) (i) Bi)
+ B0/ (0)(COPY (k+ 1)C0) + Ru () )y (DBOu(k) .
(4.3.10)
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Using completion square method to (4.3.10), we get

E[X(T)Py(T)x(T)] + x,P\" (0)xo + E['(T)Fyx(T)]
) (4.3.11)

Ji(u, v xp,1) = —
T-1 )
+ 3 W00 (H ) — PP )x(k
k=0
o+ (u(k) = K2 (3)x(0)M (P i) (k) — Ky (0)x(K))]:

According to (4.3.3), M(P,i) > 0, we have

Ty (v x0,1) > Ty (u*, v*; x0, ) = x5 PV (0)x0 (4.3.12)

then, u* (k) = K; (i)x(k).
Substituting (4.3.12) into (4.3.6), we have

Jo(u*,v;xo,1) = —E[X (T)P2(T)x(T)] +ng<2") (0)xo + E[X' (T)Fox(T)]

- Z ¥ (k) (Ha(i) = PV () ) (k)
+ (v(k) = Ka(0)x(0)) (C' P (k+1)C(0) + R (1))
x (v(k) — Ks(i)x(k))].
According to (4.3.3), in view of C'(i)P\ (k + 1)C(i) + Ra(i) > 0, we have
T, v; x0,8) > Ja (u*, v x0, 1) = X P (0)xo.

Then, v (k) = Y(i) (A(i) + B()K: (1))x(k) = Ka(i)x(k).
This completes the proof. O

4.3.2 Infinite-Time Horizon

We still consider the discrete-time markov jump linear systems (4.3.1), in order to
discuss, we copy the formula (4.3.1) as follows:

{ ig’é )Jrzl)x:e[/ﬁéﬁ)x(k) + BrJu(k) + Clrnv(k)] + A r)x(k)w(l), 5 15
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Let the optimal strategies for system (4.3.13) be given as
u(k) = Ky (ri)x(k),v(k) = Ky (ry)x(k).
The performance functions are as follows:
Jo(u, vy X0, 1)
= E{ki; [ (1) Q= (ri)x(k) + u' (1) Rer (ri)u(k) +V (k) Rea (ri)v (k)] [ ro = i}, =12,
7 (4.3.14)

where all the weighting matrices Rqi(ri) € S)',Rua(re) € S/, Q:(r) >0
€S, t=1,2.
In (4.3.13) and (4.3.14), when r, = i,i=1,---,1,A(ry) = A(i), etc.

Definition 4.3.2 ([2]) For control strategy u € U, the optimal reaction set of the
follower P, is:

Ro(u) = {VO eV :hu;x,i) <Jp(u,v;xp, i)}, ¥ €V,
u* is called the Stackelberg of the leader Py, if the following conditions hold:

min Jy(u*,v;x0,i) < min Jy(u,v;xo,i),Vu € U.
veR, (u*) veR, (u)
Assumption 4.3.1 Systems (4.3.13) is mean-square stable.

By the method used in the stackelberg stochastic differential games in finite-time
horizon above, we can easily obtain the sufficient conditions as Theorem 4.3.2 for
the equilibrium solution of the stackelberg stochastic differential games in
infinite-time horizon.

Theorem 4.3.2 Under the assumption 4.3.1, for system (4.3.13) and (4.3.14), if the
following Riccati equations

PV (k) = Hy(P,i), P (k) = Hy (P, i),
K Ezg = —M"'(P,i))L(P,i), (4.3.15)
K l(i '

with
Hi(P,i) = A ()P (k+ DAG) + A, ()P (k + 1)A1 (i) + 01 () + K, (i)L(P, i)
+ AW (P,1) (€ (P (k4 1)C(E) + Ria () )y (P, DAG)

24 (W (P, i) C' ()P (k + DA,
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Hy(P,i) = A'(i)PY (k+ DA() + A} (i)PY (k+ 1A () + 0a (i)

+ 2K (1)B (i) é”( + DA() + K5 () C'(i)Py (k + 1) (A(i)x(k) + B()K1 (i)
+ K} (0) (B (0P (k+ DB() + R (1) ) K 1),

W(P,i) = [c’() PY(k+ 1)CG) + R P (k4 1),

M(P,i) = B (i)P| (k+1)B(z)+R11()+ZB()(li)(k—i—l)C(i)xp(P,i)B(i)
+ B (i)' (P,i)(C'()P) (k+ 1)C (>+Ru<l~>)¢<p,i)3(i>,

L(P,i) = B ()P} <k+1>A<z>+B'<z> (P, i)C' ()P} (k+ DAG)
+ B/ (i)' (P,) (€ ()P (k+ 1)C(E) + Ruai) ) (P, DAG)
+B/(i)P, (k+ 1)CiW(P,)A()

exist P=(P,P;) € S/ xS}/, where P,= (P§1)7P52) . ,Pgl)), Py = (P(zl),
sz> e ,Pgl)), then the solutions of the Stackelberg game (4.3.13) and (4.3.14) are:

l l

w (k) =D Ky (i) =i ()x(k), v (k) = Y Ka(i) 1y, (K)x(k).

i=1 i=1

4.4 Summary

The Nash equilibrium, saddle point equilibrium, and stackelberg equilibrium
strategy for the discrete time stochastic Markov jump linear systems in the
finite-time horizon and infinite-time horizon are discussed respectively in this
chapter. The optimal strategies and the optimal control values are obtained.
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Chapter 5
Stochastic Differential Game of Stochastic
Markov Jump Singular Systems

Singular systems are a class of more generalized dynamic systems with a wide
application background, which appeared in large number of practical system
models, such as the power systems, economic systems, constrained robots, elec-
tronic networks and aerospace systems, so its research has important theoretical and
practical value. This chapter attempts to extend the differential game theory study of
Markov jump linear systems discussed in Chap. 3 to stochastic Markov jump
singular systems, which covers the saddle point equilibrium theory of two person
zero-sum games, the Nash equilibrium theory and Stackelberg game theory of two
person nonzero-sum game, and the existence conditions, strategy design methods
and algorithms of the equilibrium strategies are analyzed.

5.1 Stochastic LQ Problems—Differential Games
of One Player

Stochastic linear quadratic control problems were abbreviated as stochastic LQ
problem, which originate from the work of Wonham (1968) [1], and then had
attracted great attention of many researchers (see [2-4] and references therein).
Recently, stochastic LQ problem has been studied widespread; its theoretical basis
has continuous improvement, and has been widely used in engineering, economics,
management and other areas.

This section discusses the stochastic LQ problems for stochastic Markov jump
singular system in finite-time horizon and infinite-time horizon, which laid the
foundation for further study.
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5.1.1 Preliminaries

5.1.1.1 Stability of the Stochastic Markov Jump Singular Systems

First of all, let (Q, F, {F,},.,P) be a probability space with a natural filtration
{F:};>0 and E[-] be the expectation operator with respect to the probability mea-

sure. Let w(7) be a one-dimensional standard Brownian motion defined on the
probability space and r, be a right-continuous Markov chain independent of w(z)

and taking values in a finite set E = {1,...,/} with transition probability matrix
II = (ny),,, given by
Pr{rt+AJ|rtl}{1_’_7.[[[A+0(A)’ U(‘l:]’ (511)

where A > 0, limp_90(A)/A =0, and 7; > 0 (i,j € E, i # j) denotes the transi-
tion rate from mode i at time ¢ to mode j at time ¢+ &, and 7w; = — 25:1 i i
For a given Hilbert space H with the norm ||-||,;, define the Banach space

() is an F,—adapted, H—valued measurable }

2 ) — :
LF(0,T;H) = {(]5( ) process on [0, T] and EfOT olea G))||§1dl< + 0,

with the norm

=

T
2
16002~ (& [ lo6.0)ar)
Consider the following n-dimensional stochastic Markov jump singular systems

{ Edx(t) = A(ry)x(t)dt + F(r)x(t)dw(t),

(0) = xo, (5.1.2)

—

where x(f) € R" is the system state, (xo,rp) € R" x E is the initial state,
A(r;) = A(i), F(r;) = F(i), when r, = i, i € B, are n X n matrices, E € R"™" is a
known singular matrix with 0 <rank(E) = k <n. For simplicity, we also write
A; = A(i), F; = F(i), etc. for all i € E where there is no ambiguity.

In order to guarantee the existence and uniqueness of the solution to system
(5.1.2), we give the following lemma [5].

Lemma 5.1.1 For every i € &, if there are a pair of nonsingular matrices M; €
R™" and N; € R™" for the triplet (E,A;, F;) such that one of the following con-
ditions is satisfied, then (5.1.2) has a unique solution.

I, O
0 0

A O
0 Infk

(i) MEN; = { ] MAN; = [ ;

} M;F;N; = {Fi Bi]

0 G
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A; B;

. |k O U
(i) M,EN,—{ ],M,A,Nl— [0 c

Foo0]
0 0 :|»MiFiNi—|: ],

0 I
where B; € R0 gng ¢, € RH*(1=h)

Now, we are in a position to give the main result of the stability of stochastic
Markov jump singular systems. Firstly, we recall the following definitions for
system (5.1.2) [5].

Definition 5.1.1 Stochastic Markov jump singular system (5.1.2) is said to be
(i) regular if det(sE — A;) is not identically zero for all i € Z;
(i) impulse free if °(det(sE — A;)) = rank(E) for all i € E;
(ili) mean square stable if for any initial condition (xo,ry) € R" x E, we have
lim,_ E[|x(r)||*= 0;
(iv) mean square admissible if it is regular, impulse free and stable in mean
square sense.
The following lemma presents the generalized It6 formula for
Markov-modulated processes [6].

Lemma 5.1.2 Given an n-dimensional process x(-) satisfying
dx(t) = b(t,x(1), r;)dt + o (2, x(¢), r1)dw().

And a number of functions ¢(-,-,i) € C2([0,T] x R"), i = 1,...,1, we have

E{o(T,x(T),rr) — @(s,x(s),ry)|rs =i} = E{/ To(t,x(t), r,)dt|ry = i},

N

where

Co(t,x,i) = @,(t,x,1) + b'(1,x,1) ¢, (1, x, 1)
1

1
+ —lV[O'l(t,x7 i)@xx(t7xa i)O'(l7x, l)] + Z TC,'J'QD(Z‘,X,‘].).
2 =

The following lemma generalized the results of stochastic singular systems
presented in [7] to stochastic Markov jump singular systems.

Lemma 5.1.3 Stochastic Markov jump singular system (5.1.2) is mean square
admissible if there exist matrices P; € R™" > 0, such that the following coupled
linear matrix inequalities (LMlIs) hold for each i € 2

i
AP.E + E'PA; + F/P;F;+ Y m;E'PjE<O. (5.1.3)
j=1
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Proof Under the conditions of the lemma, we see that the system (5.1.2) is of
regularity and absence of impulses. Now we will show the mean square stability of
the system (5.1.2). Consider a Lyapunov function candidate defined as follows:

V(t,x(t),r,) = X' (t)E'P(r,)Ex(1),

where P(i) a symmetric matrix. O

Let £ be be the infinitesimal generator. By Lemma 5.1.2, we have the stochastic
differential as

dv(t,x(t),r;) = LV(x(2), r;)dt + X (t)[F (r))P(r,)E + E'P(r;)F (r,)]x(t)dw(t),
(5.1.4)

where

l
EV(t,x(t), l) = x/(t) [A:P,E-FEIP,A, —‘rFl/P,F, + Z nijE/PjE}x(t). (515)

=1

From (5.1.3) we have LV (z,x(z),i) <0. With the similar techniques in the work

in [8], it can be seen that lim,_., E||x(r)||*= 0. Therefore, system (5.1.2) is mean
square admissible. This completes the proof.

5.1.2 LQ Problem of Stochastic Markov Jump Singular
Systems

We consider finite-time horizon and infinite-time horizon LQ problems of the
stochastic Markov jump singular systems in the following section, respectively.

5.1.2.1 Finite-Time Horizon LQ Problem

Consider the following continuous-time time-varying stochastic Markov jump
singular systems with state- and control-dependent noise

{ E(d(;c)(t) = [A(t,r1)x(t) + B(¢t, r)u(t)|dt + [C(2, r;)x(t) + D(¢, 1 )u(t)]dw(t),
X = X0,
(5.1.6)



5.1 Stochastic LQ Problems—Differential Games of One Player 87

where (xo,79) € R" X E is the initial state, and an admissible control u(-) is an F,-
adapted, R™-valued measurable process on [0, T]. The set of all admissible controls
is denoted by U,y = L%(0, T;R™). The solution x(-) of the Eq. (5.1.6) is called the
response of the control u(-) € U,g, and (x(-),u(-)) is called an admissible pair.
Here,w(¢) is a one-dimensional standard Brownian motion on [0,7] (with
w(0) = 0). Note that we assumed the Brownian motion to be one-dimensional just
for simplicity. There is no essential difficulty in the analysis below for the multi-
dimensional case.
For each (xo,) and u(-) € Uyg, the associated cost is

J(xo0, i u(-)) =E{/OT Dgﬂ/[ggzg %2” [zgg}dter’(T)H(rT)x(T)\ro - i},
(5.1.7)

In (5.1.6) and (5.1.7), A(t,r;) = A;(¢), etc. whenever r, =i, and H(rr) = H;
whenever rr = i, whereas A;(-) etc. are given matrix-valued functions and H; are
given matrices, i = 1,...,l. The objective of the optimal control problem is to
minimize the cost function J(xo,;u(-)), for a given (xp,i) € R" x E, over all
u(+) € Uyq. The value function is defined as

V(xo,i) = inf J(xo,%;u(:)). (5.1.8)

M(')Euad

Definition 5.1.2 The LQ problem (5.1.6)—(5.1.8) is called well-posed if
V(xp,i) > —oo, Vx€eR", Vi=1,...,L

An admissible pair (x*(-),u*()) is called optimal (with respect to the initial
condition (xo, 7)) if u*(-) achieves the infimum of J(xo, ; u(-)).

The following basic assumption will be imposed in this section.

Assumption 5.1 The data appearing in the LQ problem (5.1.6)—(5.1.8) satisfy, for
every i,

Ai(1); Gi(-) €L7(0, T; R™™),
Bi(-), Di(-) €L(0, T; R™™),
Qi() €L™(0, T; 8"),
() eL(
() eL*(

T

€L>®(0, T; R™™),
€L>(0, T; ™),
H; €§".

R;
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Now we introduce a type of coupled differential Riccati equations associated
with the LQ problem (5.1.6)—(5.1.8).

Definition 5.2 The following system of constrained differential equations

E/Pi(t)E + E/Pi(l)A,'(l) +A;(Z)Pl(l‘)E+ C;(Z)Pl(t)C,(t) + Q,‘(l‘) + ZI: ﬂ[jE/Pj(t)E

—[E'Pi(t)B;(1) + Ci(t)Pi(1)Di(t) + Li(1)| [Ri(¢) + D}(t)Pi(t) D;(1)] !
x [Bj(1)Pi(1)E + Dj(1)Pi(1)Ci(t) + Li(1)] = 0,

E'P(T)E = H;,

Ri(t)+ Di(t)P;(t)D;(t) > 0, a.e.t€[0,T], i=1,...1L

(5.1.9)

is called a system of coupled generalized differential Riccati equations (CGDRE:s).

Theorem 5.1.1 If the CGDREs (5.1.9) admit a solution (P(-),...,P;(:)) €
C'(0,T;S8}), then the finite-time horizon LQ problem (5.1.6)~(5.1.8) is well-posed.
Moreover, the corresponding optimal feedback control law with respect to the
initial (xo,1) € R" x E is determined by the following:

1

W (1) = 3 Ki(t) 1, (0x(0), (5.1.10)

i=1

where K;(t) = — [R;(t) + D}(t)P;(1)Di(t)] - [B(t)P;(1)E + D' (1),P;(t)Ci(t) 4+ Li(1)].
Furthermore, the value function is uniquely determined by (Pi(-),...,Pi(*)) €
CcY(0,T;S8)):

V(xo,i) = J(x0, ;4" (")) = X)E'P{(0)Exo, i=1,...,L (5.1.11)

Proof Given P;(-) € C'(0,T;S") and let ¢(t,x,i) = XEP;(t)Ex. Applying the
generalized Itd’s formula to the linear system (5.1.6), we obtain

E[X(T)H,,x(T)] — x,E'P:(0)Exo

=E[X(T)E'P,,(T)Ex(T) — X' (0)E'P(ro)Ex(0)|ro = ]

= E{(P(T7X(T)7 rT) - (p(O,X(O), r0)|r0 = l}

_ E{/OT Top(t,x(t), ry)dt|ro = i},
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where
Lo(t,x,i) = o,(t,x,0) + 6/ (t,x, 1, i), (1, x, 1)

1 ]
(o (0w, 1) (1,0, D)o (1,2, 0, )] + Z iV (t,%.)

=x [E’Pi(z)E +E'Pi(0)Ai(t) + Al(t)P;(1)E + C(¢) 1+ Z m;E'Pi(
+ 2 [B}(t)Pi(t)E + D/(1)P;(1)Ci(r) | x + ' D}(1) Pi(1) Di(1)u.

Adding this to (5.1.7) and, provided R;(¢)+ D}(t)P;(t)D;(t) > 0, using the
square completion technique, we have

J(x0, i u(+)) = x,E'P;(0)Exo + E{ /0 [x(t) (E'P;(t)E + E'Pi(1)Ai() + AL(1)P;(t)E

1
+ 0i(1) + Ci(1) 1+ Zn,E’P, )

+ 2u ( (6)P:(1)E; + Di(t) ,(t)C,(t) + Li(1))x(7)
'

(1) (Ri(t) + Di(t)Pi(t)Dy(1) ) u(t) ] dt|ro = i}
+E{x (T)(H; — E'P(T)E)x(T)}

=%EﬂwﬁM+E{/ [x(t) (E'Pi(1)E + E'Pi(1)Ai(t) + Al(t) Pi(1)E + Qi(1)
0
+ Ci(0) +§hE’ — (EP{(1)By(1) + Cl())Pi(1)Di(t) + Li(t))

x (Ri(1) + UEma@)% )E+DOPOCU+UOD(ﬂ

+ (u(t) + (I)X(t))'(R(tHD’() i(1)D;(1)) (u(r) + Ki(1)x(1)) ] dt|ro = i}
+ E{X(T)(H; — E'P{(T)E)x(T)}.
(5.1.12)

Now, if (Pi(-),...,P(+)) € C'(0,T;S}) satisfy the CGDREs (5.1.9), then

T
T (x0, 35 u(+)) = xoE'Pi(0) Exo + E{ /0 [u(t) + Ki(0)x(1)]' [Ri(2) + D}(1) Pi() Di(1)]
X [u(t) + K;(6)x(2)]dt|ro = i} > xyE'Pi(0)Exo > — oo.
(5.1.13)
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Therefore, the LQ problem (5.1.6)—(5.1.8) is well-posed, and J(xo,#;u(-)) is
minimized by the control given by (5.1.10) with the optimal value being
xoE'P;(0)Exo. This completes the proof. O

5.1.2.2 Infinite-Time Horizon LQ Problem

Consider the following continuous-time stochastic Markov jump singular systems
with state- and control-dependent noise

Edx(t) = [A(r:)x(t) + B(rs)u(t)]|dt 4+ [C(r:)x(¢) + D(r:)u(t)]dw(t),
{x(O) e (5.1.14)

where A(r;) = A;, B(r;) = B;, C(r;) = C; and D(r;) = D; when r, = i, while A; etc.,
i=1,...,1, are given matrices of suitable sizes. w(¢) is a given one-dimensional
standard Brownian motion on [0, c0), and a process u(-) is called the control input
if u(-) € L2-(R™).

Due to the problem is considerated in infinite-time horizon, we introduce the
concept of mean-square stable.

Definition 5.1.4 A control u(-) is called mean square stabilizing with respect to a
given initial state (xo,i) if the corresponding state x(-) of (5.1.14) with x(0) = xo
and ry = i satisfies lim,_o, E|x(r)||*= 0.

Definition 5.1.5 The system (5.1.14) is called mean square stabilizable if there
exists a feedback control u*(z) = 25:1 Kiy,—i(t)x(t), where Ki,...,K; are given
matrices, which is stabilizing with respect to any initial state (xo, ).

Next, for a given (xo, i) € R" x E, we define the corresponding set of admissible
controls:

U(xo,i) = {u(-) € L% (R™)|u(-) is mean square stabilizing with respect to (xo, i) b

For each (xo,i,u(-)) € R" x E X U(xy, i), the LQ problem is to find a control
u(-) € U(xp,i) which minimizes the following quadratic cost associated with
(5.1.14)

T (%o, i u()) = E{/OOO Bg;“g&; ILQEZ;] [zgg]dtro - i}, (5.1.15)

where Q(r,) = 0;, R(r,)=R; and L(r,)=L; when r, =i, while Q;, etc.,
i=1,...,1, are given matrices with suitable sizes. The value function V is defined
as
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Vixg,i) = inf  J(xo,7;u(-)). 5.1.16
(0.i) = inf I () (5.1.16)

Definition 5.1.6 The LQ problem (5.1.14)—(5.1.16) is called well-posed if

—00<V(xg,0) < +00, V(x,i) € R" x E.

A well-posed problem is called attainable (with respect to (x, 7)) if there is a
control u*(-) € U(xo, i) that achieves V(xo, i). In this case the control u*(-) is called
optimal (with respect to (xo,f)).

The following two basic assumptions are imposed in this section.
Assumption 5.2 The system (5.1.14) is mean square stabilizable.

Assumption 5.3 The data appearing in the LQ problem (5.1.14)—(5.1.16) satisfy,
for every i,

A;, C; € Rnxn,Bi7Di S Rnxm’ 0, € Sn7Li S Rnxm,R,’ S

Before we give the main results of the infinite-time horizon LQ problem, we first
present a technical lemma which is useful in our subsequent analysis.

Lemma 5.1.4 Let matrices (Py, . ..,P)) € S} be given, and P(r,) = P; while r, = i.
Then for any admissible pair (x(-),u(-)) of the system (5.1.14), we have

E{/OT [zig}/M(P(n)) Big}dﬂ”o = i} (5.1.17)

= E[X(T)E'P(rr)Ex(T) — xyE'P(ro)Exo|ro = i,
where

E'PA; +APE + C;P,C;
M(P;) = + > mEPE
B/P;E +D/P;C; DP:D;

E'P;B;+ C\P;D;

Proof Setting ¢(t,x,i) = X'E'P;Ex and applying the generalized It6’s formula to
the linear system (5.1.14), we have

E[x/(T)E'P(rT)Ex(T) — XyE' (ro) P(ro)E(ro)xo|ro = i]
E[@(Tvx(T)7rT) - (p(O,x(O),r0)|r0 = i]

= E{/OT To(t,x(1), r,)dtlrg = i},
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where

r(p(t7x7 i) = (pt(t7 x’ i) + bl(t7 'x7 u7 i)qDX(t"x7 i)
1 ]
+ —tr[a/(t,x, u, i)(va(l’ X, i)O'([, X, U, l)] + Z TI[jQD(I, X,j)
2 - =

1
=X |E'PA;+APE+CP,Ci+ Y myE'PE |x +2u [BPiE; + DiPiCi]x + 1/ D/P;Du
=
X ! X
= M(P(r,)) .
u u
This completes the proof. O

Theorem 5.1.2 The infinite-time horizon LQ problem (5.1.14)—(5.1.16) is
well-posed, if the following coupled generalized algebraic Riccati equations
(CGAREs) (5.1.18) admit a solution (Py,...,P)) € S}

E/PiAi +A;P1E + C:P,Cl + Q,‘ + Zjl':l TEijE/PjE

—(E'PiB;+ C)PiD; + L;) (R, + D\P;D;) ' (BP,E+DP,Ci+ L)) =0, (5.1.18)

Ri+D;PiDi>O, lzl,,l

And the corresponding optimal feedback control law is
I

w(n) = Kit,—i(t)x(1), (5.1.19)

where K; = —(R; —|—D;P,AD,~)_1 (B\P,E + D\P;C; +L}). Furthermore, the cost cor-
responding to the control u*(t) = Y!_, Kiy, —i(t)x(t) with the initial state (xo,1i) is
J(xo,i;u*(+)) = XyE'PiExy, i=1,...,L (5.1.20)

Proof By Lemma 5.1.4 and (5.1.18), using the square completion technique, we
immediately have

J(xo, i u(")) —x()E’Pl-ExO+E{/OOO {xEtﬂ/Ml(P(r,)) {z(t)}dﬂro - i}

u(t

= x,E'P;Exy + E{/OOO [u(t) + Kix(£)) H(P(r,)) [u(t) + Kix(2)]dt|ro = i}

> J(x0,iu"(-)) = XpE'PiExo, i=1,...,1
(5.1.21)
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where

Ho(P;) Hi(P;)
Ml(Pi) == |: ,

H{(P;) H(P)
H\(P,) = E'P.B, + C.P.D; + L;, H(P;) = Ri + D.PD,.

!
} , Ho(P;) = E'P,A; + AlP.E + CIP,Ci + Qi + ijl n;E'PjE,

From (5.1.21), we see that LQ problem (5.1.14)—(5.1.16) is well-posed, and
u(t) = Zi’:l Kiy, —i(t)x(t) is the optimal control. O

5.2 Two Person Zero-Sum Differential Games

5.2.1 Finite-Time Horizon Case

5.2.1.1 Problem Formulation

In this section, we will solve a two person zero-sum differential game on time
interval [0, T).
Consider the following controlled linear stochastic singular system

Edx(t) = [A(t, r)x(t) + By (2, r)us (£) + Ba (2, r,)u ()] dt
+[C(#,r)x(2) + Dy (¢, r)ur (t) + Da(t, ry)ua (1) |aw(2), t € [0, T},
x(0) = xo.
(5.2.1)

In the above x(-) € R" is the state vector, (xo, 7o) € R" x Z is the initial value,
uy(+) and u,(-) are two F,-adapted processes taking values in R™ and R"?, which
represent the controls of the two players, respectively. The admissible strategies of
these two controls are denoted by U, = L%(0, T;R™) and U, = L%(0, T; R™). We
assume that A(z,r;), By(¢,r;), Ba(t,r;), C(t,r,), Di(t,r;), and D;(¢,r,) are deter-
ministic bounded matrix-valued functions of suitable sizes.

For every (xo, i) and (u;(-),u2(+)) € U; X U,, defining a quadratic cost function
as following:

T
I (o, (), u2()) = E{ / (0. x(1), w1 (£), s (0), 7))t + () H(rr (1) ro = }
(5.2.2)
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where

x1'To@r) Lir) Lir)][x
q(tax7ulau27rt) == 231 Ll(ty rt) Rl(t7 rl) 0 up |,

Uy Ly(t, ) 0 Ry(t,11) Uy

with Q(¢,r), Li(t,r;), La(t, 1), Ri(t,r;), Ra(t,r,) being deterministic bounded
matrix-valued functions of suitable sizes and H(rr) being a given matrix.

In (5.2.1) and (5.2.2), A(t,r;) = Ai(¢t), etc. whenever r, =i, and H(rr) = H;
whenever rr = i.

Assumption 5.4 The data appearing in (5.2.1) and (5.2.2) satisfy, for every i

Ai(1), Ci(-) € L>(0, T; R™"),
Byi(), Dui(1) € L*(0, T; R™™),
Byi(+), Dai(-) € L*(0, T; R"™™),

0:(-) e L>*(0, T; &),

Lli(') ELOO(O T; Rnxm‘),

Ly(+) € L>=(0, T; R™™),

Ry;i(-) € L*(0, T; ™),

Ry(-) € L*(0, T; 8™),
H; € §".

In what follows, we denote

BO) = (810, 5:(). D) = (0109, 220 16) = (1) ) RO
_(Rl() 0 >
0 R()

Our aim is to find a pair (u](-),u’(-)) € U; x U, which is called an open-loop
saddle point of the game over [0, T] if the following inequality holds:

J(x0, &5 uy (), ua (+)) < J (o, iy (), 13 (+)) < J (xo, w1 (), u5(+)), V(ua (+), u2(-))
cU; xU,.

(5.2.3)
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5.2.1.2 Main Result

For the above game problem, if we take V(t,x,i) = XE'P;(r)Ex with P;(-) a
symmetric matrix as the Lyapunov function candidate, and adopting the same
procedure done in Sect. 5.1, we will have the following result.

Theorem 5.2.1 For the game problem (5.2.1)~(5.2.3), if the following coupled
generalized differential Riccati equations admit a solution (Py(-),...,Pi(-)) €
C'(0,T;S}) (with the time argument t suppressed),

E'PEE+EPA;+APE+CPCi+ Qi+ Y, m;EPE
— (EPB; + C}PiD; + L;) (Ri + D\PiD;) ' (BiPiE+ DIP,C; + L) = 0, (5.2.4)

E'P,(T)E = H,,
R; —|—D:P1D, > 0,
where

Ly; R; O
B; = (Byi, By), Di = (D1, D), Li = (L;)’ R; = < 01; R2->'
1 1

Then an open-loop saddle point u*(-)

I
7N\
s =
D % — %
=
NN
N———

o

l

w(1) = 3 Ki(t) 1, (0x(0), (5.2.5)

i=1

where Ki(t) = —[Ri() + Dl(t)Py(1)Di(1)] " [BL(1)Pi(£)E + D/ (1), Pi(1) Ci(1) + (1))
Moreover, the optimal value being x,E'P;(0)Exg, i =1,...,1.

5.2.2 Infinite-Time Horizon Case

5.2.2.1 Problem Formulation

In this subsection, we consider the two person zero-sum stochastic differential
games on time interval [0, co). Firstly, we define the following space

LoC(R™) : = {p(,") : [0,00) x Q — R"|¢(-,-) is F,-adapted, Lebesgue mea-
surable, and EfOT lp(t, )| *dt < o0, VT > 0}.
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Consider the following controlled Markov jump linear systems

Edx(t) = [A(r)x(t) + By (r)u1 (¢) + Ba(ry)ua () ]dt +
[C(r)x(t) + Dy (r1)ui (1) + Da(r)ua (1)) dw(t), (5.2.6)

where x(-) € R" is the system state, (xo,9) € R" x E is the initial state, E € R""
is a known singular matrix with 0<rank(E) =k <n, A(r;) = A;, Bi(r;) = By,
Bz(}’,) = B2i’ C(I‘t) = Ci, Dl(}’,) = Dli and Dz(}’t) = Dz,', when ry = i,i = 1, .. .,l,
while A(i), etc., are given matrices of suitable sizes. u;(-) € U; = LY°(R™) and
uy(-) € Uy = LY°(R™) are two admissible control processes, which represents the
control strategies of these two players.

For system (5.2.6) and (xo,i) € R" x E, the corresponding sets of admissible
controls are denoted by'

U(xo,i) = {(ur(+) ) €Uy X Us|(uy(+),uz(-)) is mean-square stabilizing

w.r.t. (xo,7)}.

For each (xo,7) and (u;(-),u2(-)) € U(xo, 1), the cost function is

J(xo, Gui(+),u2(-)) = E{/OOC q(t,x(2),u1 (t), uz(t), r;)dt|ro = i}, (5.2.7)
where

x o(r) Ly
q(t>x7ul7u27rt) = up Ll(rl) 1
U L2 (r,) O Rz(r,) up

with Q(r;), L1 (r;), La(r;), R1(r;) and Ry(r;) been given matrices with suitable sizes.
The problem is to look for (u}(-),u5(+)) € U(xo,i) which is called the saddle
point equilibrium for the game, such that

J(xo, 13147 (+), u2(+)) < J (%o, 13047 (-), u3(+)) < J (%o, G301 (-), u3(+),  i=1,..,L
(5.2.8)

5.2.2.2 Main Result

Mean-square stabilizability is a standard assumption in an infinite-horizon LQ
control problem. So we use this assumption here.

Assumption 5.2.1 The system (5.2.6) is mean-square stabilizable.

Similar to the finite-time horizon two person zero-sum stochastic games dis-
cussed in last subsection, we can get the corresponding results of the infinite-time
horizon two person zero-sum stochastic games stated as Theorem 5.2.2.
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Theorem 5.2.2 Suppose Assumption 5.2.1 holds, for the two person zero-sum
stochastic games (5.2.6)~(5.2.8) and (xo,i) € R" x E, the strategy set (u}(-),u5(-))
is the equilibrium strategy if and only if the following algebraic Riccati equations

1
E'PA;+AP.E+ CiP,Ci+ Q; + Y n;E'PJE — (EPB; + C/P:D; + L;)
=1

x (Ri+DiP:D;) "~ (BiP.E + DiPiC; + L) = 0, (5.29)

R; —|—D:P,D, > 0,

where
Ly; R, O
B; = (Bii, Bai), Di = (Dyi, Dy;) ,Li = (LZ)’ R; = < 011 R2i>.

ui ()

admit a solution (Py,...,P;)) € 8. In this case, u*(-) = M;()) can be repre-

7N

sented as

1
W (1) = 57 Kz (0)x(0), (5.2.10)
i=1

where K; = — [R,- +D;P,~Di] ! [B;P,E+D;P,-Ci +L;]. Moreover, the optimal value
is x)E'PiExo, i=1,...,1.

5.3 Stochastic Nash Differential Games with Two Player

5.3.1 Finite-Time Horizon Case

5.3.1.1 Problem Formulation

First, we consider a stochastic Nash differential game with two player on a finite
horizon [0, T], N-player case is similar.

Consider the following Markov jump singular systems described by stochastic
differential equation

Edx(t) = [A(t,11)x(2) + By (2, r)u(t) + By (8, r,)v(2)]dt
+[C(2,7)x(t) + Dy (2, r)u(t) + Da(t, r,)v(£)]dw(r), (5.3.1)
x(0) =xp € R".
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where E € R™" is a known singular matrix with 0 <rank(E) = k <n, x(-) € R" is
the system state, (xp,79) € R" x Z is the initial state, two admissible controls u(-)
and v(-) are F,-adapted, R™- and R™-valued measurable process on [0, 7]. The sets
of all admissible controls are denoted by & = L% (0, T;R™) and V = L2-(0, T; R™).

For each (xo,r9) € R"xE and (u(-),v(-)) €U xV, the cost function
Ji(xo, G u(-),v(+)) is

Jk(xovi;uc)vv(-)):E{ [ 2 omten)ztia 2 st >|ro=i},
x(t) Qk(l,l‘,) Lkl(l,r,) Lkz(l,r,)
o(t) = | u(t) |\ Mi(t,re) = | Ly (6,71)  Rua(t,70) 0 k=1,2.
(1) L;d(t ) 0 Rua(t,re)

(53.2)

In (5.3.1) and (5.3.2), A(t, ;) = Ai(¢), etc. whenever r, = i, and Hy(rr) = Hy,
k=1, 2, whenever ry = i.

Assumption 5.3.1 The data appearing in the finite horizon stochastic Nash dif-
ferential game problem (5.3.1)—(5.3.2) satisfy, for every i,

Ai(+), Ci(-) € L*(0,T; R"), Bii(-), Dui(-) € L°(0, T; R"™M),
BZi(')7D2i(') € Loo(()’ T; Rnxnv), Qli(') € LOO(O; T; Sn)a

02i() € L*(0, T3 5"), Rui() € L>(0,T;8™),

Lyi(:) € L*(0, T;R™™), Lisi(-) € L*(0, T;R™™),
Loii(-) € L*(0, T;R"™™), Loi(+) € L®(0, T;R™™),
Royi(+) € L>(0,T; 8™), Hy, € §" HyeS".

Now, let’s give the form definition of finite time stochastic Nash differential
games:

Definition 5.3.1 For each (xp,79) € R" x E, finding an admissible control pair
(u*(-),v*(-)) € U x V which is called the Nash equilibrium for the game, such that

Ty (o, i3 (), v (4)) < Ty (xo, (), v (), Vu(-) €U,
{Jz(xo,i; u* (), v () < Ja(xo, i u* (), v(+), W(-) € V. (5.3.3)

5.3.1.2 Main Result

With the help of the relevant conclusions of differential game with one person, it is
easy to obtain the following conclusions:

Theorem 5.3.1 For the finite time stochastic Nash differential game (5.3.1)—
(5.3.2), there exists the Nash equilibrium (u*(-),v*(-)), if and only if the following
coupled generalized differential Riccati equations (with time t supressed)
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. L - !
E'PE+E'PiiA; +APE + CiP\,Ci+ Qi+ Y. m;E'P\;E
=1
/ 1 / =1 /py / ~ /
—(E'Py;Byi + C}PyiDy; + Liyi) (Rui + D ,P1iDyi)~ (ByPuE + D);PyiCi+ Liy;) = 0,
E'P(T)E = Hy;,
Rlli+D,1iPliDli >0,i=1,...,1L

(5.3.4)

—1 —
Ky = —(Rui+ D\;PyiDy;)~ (B},PriE+D\;PuCi+LY,), (5.3.5)

. L L !
E'PyE + E'PyjA; + AiPyE + CiPyiCi + Qo + kgl T E' Py E

- -1 -
- (E’ngsz +ClPyDy + Lﬂ,) (Rzzj n D;jpszzj) <B’2jP2jE + Dy PyC; + L’2j> —0,
E'Py(T)E = Hy,
Roj(7) + Doy (7)Poi(/)D2s(j) > 0, = 1,.. ., L.

(5.3.6)
Koy = — (Roy + DyyPyDy) o (ByPyE + DlyPyCi+ Ly,). (53.7)
where
A; + ByiKyi, Ci = Ci+ DyiKyi, Qi = Qui + L1oiKoi + Ky, L'y, + KR 12K,

:Ai
Aj = Aj+ByKyj, G = Ci+ DyKyj, Oy = Qo+ LoyKij + KLy + K jRoy K.
admit a solution P(-) = (P1(-),P2(-)) with Pi(-) = (Puu("),...,Pu(")) €
c! (0, T; S;') >0, Pz() = (1)21(')7 . le(')) S Cl (0, T; S;Z) >0.

Denote Fi,(t) = Kyi(t), F3;(t) = Kai(t), then the Nash equilibrium strategy
(u*(-),v*(-)) can be represented by

(1) = z’lFr,(r)xr,,-(r)x(t),
v(e) = éFi‘,-(t)xr,i(t)X(ﬁ-

Moreover, the optimal value is

Je(xo, 551" (1), v* () = xE'Pu(0)Exg, k=1,2, i=1,...,L
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Proof These results can be proved by using the concept of Nash equilibrium
described in Definition 5.3.1 as follows. Given v*(¢) = Zi:l F5,(t)7,—i()x(2) is the
optimal control strategy implemented by player P,, player P, facing the following
optimization problem:

. T .X([) l Ql(tart) Lll(t;rt)
M%E%E{/o L@} Lf“(t,r,) Rn(l,rz)}
s.t.

{ Edx(t) = [A(t, r,)x(2) + By (¢, r,)u(t)]dt + [C(t,7:)x(t) + Dy (¢, r,)u(t)|dw(z),
x(0) = xo.

x(1)

dt + X (T)H, (rr)x(T)|rg = 1}7

u(t

(5.3.8)
where Oy = Q) + (F3)'L}, + LioF; + (F3)'R1aF3.

Note that the above optimization problem defined in (5.3.8) is a standard
stochastic LQ problem. Applying Theorem 5.1.1 to this optimization problem as

Ql(rt) Lll(r;) 0, L B B
|:L/ll(rl) Rll(n)] = {L’l RH}A:N“» C=_C.

We can easily get the optimal control and the optimal value function

l
w(t) =D Fr(0x(0) g (1), 11 (0,556 (), 9" (-)) = XoE'P1i(0)xo, i = 1,..., L.
i=1

(5.3.9)

!
Similarly, we can prove that v*(t) = 3 F5,(t),—;(t)x(¢) is the optimal control
i=1

strategy of player P,.
This completes the proof of Theorem 5.3.1. O

5.3.2 Infinite-Time Horizon Case

5.3.2.1 Problem Formulation

In this subsection, we discuss the stochastic Nash differential games on time
interval [0, 00). Before giving the problem to be discussed, first define the following
space
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LYe(R™) : = {p(-,-) : [0,00) x Q — R™|¢(-,-) is F,-adapted, Lebesgue mea-
surable, and E [] || (r, w)||*dt < oo, VYT > 0}.
Consider the following Markov jump singular systems defined by

Edx(t) = [A(r:)x(t) + By (r:)u(t) + Bz (r:)v(t)]dt

+ [C(r)x(2) + D1 (rr)u(t) + Do (r;)v(2)]dw(2), (5.3.10)
x(0) = x,

(=)

where A(r;) = A(i), Bi(r:) = B1(i), B2(r;) = B2(i), C(r;) = C(i), Di(r;) = Dy (i)
and D,(r;) = D,(i), when r, = i, i = 1,...,1, while A(i), etc., are given matrices of
suitable sizes. u(-) € U = LY°(R™) and v(-) € V = LY°(R™) are two admissible
control processes, which represents the control strategies of these two players.
Next, for a given (xg,i) € R" x E, we define the corresponding sets of admis-
sible controls:
U(xo,i) = {(u(-),v(-)) €U x V|(u(-),v(-)) is mean-square stabilizing w.r.t.

(x0,1)}.
For each (xo, i) and (u(-),v(-)) € U(xo, i), the cost function Ji(xo, i; u(-), v(+)) is

x(t) Oi(rt)  Lia(re)  Lia(re) (5.3.11)
2(t) = |u(t) |\ Mi(r)) = | Ly (1) Rua(rr) 0 Jk=1,2.
v(t) Lip(r) 0 Rio(rr)

In (5.3.10) and (5.3.11), A(r;) = A(D), ...... , when r; = i, while A(i), etc., are
given matrices with suitable sizes.

The form definition of infinite-time horizon stochastic Nash differential game is
given below:

Definition 5.3.2 For each (xj,i) € R" x E, finding an admissible control pair
(u*(-),v*(-)) € U(xo, 1) which is called the Nash equilibrium for the game, such that,

Doy 510 () () S (oo () (), V) € U,
{Jluﬁ,i; 0 ()t ()) < a0 (Do), ¥o(.) € V) (5:3.12)
5.3.2.2 Main Result

Firstly, we give a standard assumption used in stochastic LQ problems.

Assumption 5.3.1 The system (5.3.10) is mean-square stabilizable.
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Similar to the finite-time horizon stochastic Nash games discussed in last sub-
section, we can get the corresponding results of the infinite-time horizon stochastic
Nash games stated as Theorem 5.3.2.

Theorem 5.3.2 Suppose Assumption 5.3.1 holds, the infinite-time horizon
stochastic Nash differential game (5.3.10)-(5.3.11) has a Nash equilibrium
(u*(+),v*(")), if and only if the following algebraic Riccati equations admit a solution
P=(Pi,P;) €S xS >0with Py = (Pi(1),...,Pi(1)), Py = (Pa(1), ..., Pa(l)):
E'Pi(D)A(i) + A'(D)P1()E + Ci ()P () C1 (i) + Q1 (i) + X myE'P1(jE

j=1

C
—(E'P1())B1(i) + C ()P (i) Dy l)+L11(1))(R11()+D'1(i)P1(i)Dl(i))
X (By(i))P1(i)E + D\ (i)P1 (i) C: (i) + L}, (i) =
R (i) + Dy ()P1()Dy1 (i) > 0, i € E

-1

(5.3.13)

Ki = —(Ru(i) + D\ ()P ()D1 (i) " (B} ()P1()E + D} () P1 () C1 (i) + Li, (1)),
(5.3.14)

E'P2(j)AG) + A ()P2()E + Co(j)P2(j) C2(j) + Q2(j) + Z T E' P (k)E

—(E'P2()B2()) + Co()P2() D2 (j) + Loz () (Rzz(l) + D5 (I)Pz(l)DzO))
X (BY(7)P2())E + D5 (j)P2 () C2 (j) + Ly () =
R (j) + Dy (j)P2(j)D2(j) > 0, j € E,
(5.3.15)

K> = — (R (j) + D5()P2()D2 ()~ (BL()P2()E + D5 ()P2 () C () + L (7))
(5.3.16)

where

A=A+BK,, Ci=C+DyKy, Q1= Qi+LiKy+ KL, + KR K>,
A=A+B K|, C,=C+DKi, 0)=0>+L,K+K{|L) +K{R:K;.

In this case, the equilibrium strategies and optimal cost function are

1 l
=Y K1 (i), =(0)x(8), v (1) = > Ka(i) 1, (1)x(2),
i=1

1

i—1 =
Jie(xo, 56 (1), v (1)) = XoE'Pe(i)Exo, k=1,2, i=1,...1L
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5.4 Stochastic Stackelberg Differential Game
with Two Person

5.4.1 Problem Formulation

Consider the following Markov jump singular systems described by stochastic
differential equation

{ Edx(t) = [A(r)x(¢) + By (r1)u1 (£) + Ba(r)uz (1) ]dt + C(r,)x(2)dw(t), (5.4.1)
x(0) = xo. o

where x(f) € R" represents the system state, uy(f) € R™, k = 1,2 represent the k-th
control inputs, E € R™" is a known singular matrix with 0<rank(E) =k <n,
(x0,70) € R" x E is the initial state. It is assumed that the player denoted by u; is
the leader and the player denoted by u; is the follower. In (5.4.1), A(r,) = A(i),
Bi(r;) = Bi(i), k = 1,2, C(r;) = C(i), when r, = i,i = 1,...,1, while A(Y), etc., are
given matrices of suitable sizes.

Without loss of generality, the stochastic dynamic games are investigated under
the following basic assumption:

Assumption 5.4.1 (A, By, C), k = 1,2 is stabilizable.
For each initial value (xo, i), the cost function for each strategy subset is defined
by

Ji(x0, B u1,up) = E{/ODO [XI(I)Qk(ﬁ)i;(tz);k?(zrst));é;)(r')uk(Z)}dt|r0 = i},

(5.4.2)

,2, . Qk(”t) = Q;(("z) >0, Rkk(rt) = R;(k(rt) > 0,

5.4.2 Main Result

Without loss of generality, we restrict the control strategy of each player as linear
state feedback case, i.e., the closed-loop Stackelberg strategies u(f) = ug(x, ) have
the following form

w(0) = 37 Fuli) i (0)x(2).

i=1
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The Stackelberg strategy of the game system (5.4.1)—(5.4.2) is defined as:

Definition 5.4.1 [9] a strategy set (u],u}) is called a Stackelberg strategy if the
following conditions hold

Do (xo, iy uy, u5) <Ja(xo, i ul (u2),u2), Vup € R™, (5.4.3)
where
Jl(xo,z,u (uz) ug) = min.ll(xo,i;ul,uz), (544)
and
u = ul(u3). (5.4.5)

Theorem 5.4.1 Suppose that the following cross-coupled algebraic matrix Egs.
(5.4.6a-5.4.6¢) has solutions My(i) >0, Ny(i), k = 1,2 and F»(i)

Ay, (DM ()E + E'My (D)AF, (i) + C'()M1 () C(0) + Qr, (i)

l a

~ Fi(Ru()F1 () + Y mE'MLG)E =0, (5.4.6a)
AR (DM ()E + E'Ma()AR(i) + C ()M () C(0) + Qr, (i)

(5.4.6b)

!
+ F1 ()R (1) F1 (i) + Z niE'My(jJ)E = 0,

J=1

A, ())NV(DE + E'N1 (i) AT, (i) + C()N1 () C' (1) — E'B1(i)Ry} (i) B (i) My ()N (i) E

— E'Ni(i)M,(i)B ()Rﬁl(l)Bﬁ()EvLﬂuE'Nl()E Bi(i)Ry, (i)B (i) M (1) EN, (i)
— Ny()E'My(i)B1 (i)Ry! (i) B) (i) + E'B1 ()R (i) Ra1 ()R, (1) B (1)M1 (i) EN (i)
+ No()E'My (i) B1(0)Ry! () Rar (D)R, (i) By (D) E = 0,

(5.4.6¢)

Ar()EN, (i) + Na () E'AL (i) + C)N> () C(i) + miE' Ny (DE +1, = 0, (5.4.6d)

Ry ()F2(i)N:1 (i) + R (i) F2 (i) Na (i) + By (i) (M (1) EN (i) + Mo (1) E'Na (i) = 0,
(5.4.6¢)

where

=-Y R 1(DE, A, (i) = A() + Ba(i)Fa (i), Ar(i) = Ar, (i) + B () F1 (i),

i

1
Or, (i) = 01()) + Fy ()R (D) Fa(1), Or, (i) = Qa(i) + Fy(i)Raa (i) Fa (i)

]
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!
Denote uj(t) = > Fi(i)y,—(0)x(1), u3(1) = EFz( D= (Dx(0), i =151,
i=1
then the strategy set (uj,u}) constitutes the Stackelberg strategy.

Proof Given arbitrary u,(t) = Fa(r;)x(¢), the corresponding u; is obtained by
minimizing Ji (xo, i; u; ) with respect to u;. Let us consider the minimizing problem
for the closed-loop stochastic system with arbitrary strategies u(¢) = F»(r;)x(¢)

n;ilnjl (x0, 5;u1) = E{ [y [¥ (1) Qp, (r)x(2) + u} (1) Ry1 (ry)uy (1) ] dt|ro = i},
s.t.
Edx(t) = [AF,(r;)x(t) + By (re)uy (1)]dt + C(r;)x(¢)dw(r).
(5.4.7)

By using Theorem 5.1.2, the optimal state feedback controller u{(¢) is given by

l
uy (1) = ZFl(i)Xr,:i(t)x(t) == ZRHI (i) By ()M (), i (1 Ex(1),  (5:4.8)

where M, (i) is the solution to

Fi(M (i), F2(i)) = A;,-l ()M (i)E + E'M, (i)AF, (i) + C' ()M, (i) C (i)

5.4.9
— Fy()Ru()F1(i) + Or, (i —|—Z7IUEM1 _o ©49

Therefore, Eq. (5.4.6a) holds. On the other hand, if Ar(i) = A, (i) + B1 (i) F1 (i)
is asymptotically mean square stable, then the cost J, of the leader can be repre-
sented as

Do (x0, i3 12 (1), 1) = Ja(x0, i Fy (ro)x, Fa(r)x(t), = Te(Ma (i), (5.4.10)
where M, (i) is the solution to
Fao(M, (i), Ma(i), F2(i)) = A;;(i)Mg(')E-FEIMQ(')AF( i)+ C'(i)Ma(i)C(i) + OF, (i)
+ F} (i)Ry (i) Z i E'Ms (j)E

(5.4.11)
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From (5.4.11) we know (5.4.6b) holds. Let us consider the following
Lagrangian H

H(M, (i), Ma (i), F2(i)) = Tr(M; (i) +Tr(Ny (i) F (M, (i), F2(i)))

+ Tr(N, (I)Fa (M, (i), My (i), F5 (i), (5.4.12)

where N (i) and N, (i) are symmetric matrix of Lagrange multipliers.
As a necessary condition to minimization Tr(M,(i)), we get

it = Ar O DE + ER(DA, () + COM(C D
— E'By(i)R, ())B) ()M (i) EN\ (i) — N1(i)E'M, (1) B1 (i) Ry () B} (i)
+miE'Ny () E — By (i)Ry (i) By (i) M2 (i) EN» (i)
— M) E R (0)B ()R;, (B ()
BBy Ry ()Rar (R (0B (1) (DEN (1)
- Na()E' L (1B ()R 7 (1) Ra1 (DR (1B, (1 = 0,
(5.4.13a)
O AR(DENS (i) + Ma(DE'AL (1) + CDN(1)C ()
OM (i) (5.4.13b)
+miE'N,())E+1, = 0,
1 0H

205500 = Rz (i) F2 (i)N1 (i) + Rz (i) F2 (i) N4 (i) (5.4.13¢)

T By(i) (M1 (EN, (i) + M () E'Na (i) = 0.

Therefore, (5.4.6¢c)—(5.4.6¢e) hold. This completes the proof of Theorem 5.4.1. O

5.5 Summary

For continuous-time stochastic Markov jump singular systems, we firstly discussed
the two person nonzero-sum stochastic differential game problem in finite-time
horizon and infinite-time horizon. By using the related conclusion of stochastic LQ
problem of Markov jump linear systems, we obtain the necessary and sufficient
conditions for the existence of the system combined with Riccati equation method,
which corresponds to the existence of the differential (algebraic) Riccati equation,
and with the solution of Riccati equation, the optimal control strategy and explicit
expression of the optimal value function of the system are given. At the end, two
person Stackelberg game problem of stochastic Markov jump singular systems in
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infinite-time horizon is discussed, and the existence condition of equilibrium
strategy and explicit expression are given.
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Chapter 6

Game Theory Approach to Stochastic
H,/Ho, Control of Markov Jump Singular
Systems

In this chapter, we will use the results of stochastic differential games for Markov
jump linear systems and Markov jump singular systems to investigate the stochastic
H,/Hoo robust control problem. First, based on Nash game and Stackelberg game,
we studied the stochastic Hy/Heo control problem of Markov jump linear systems,
the existence conditions for the control strategy and the explicit expression were
obtained; then expand to the corresponding results to Markov jump singular sys-
tems, and based on Nash game and Stackelberg game, the existence conditions for
the optimal control strategy of Markov jump singular systems and the explicit
expression were given.

6.1 Introduction

As the old saying, “Anything unexpected may happen, people have always hap-
pens”, the real world is full of uncertainty. To cope with the possible impact of
uncertainty, people invented various coping methods, and robust control is an
effective method for processing uncertainty.

In modern robust control theory, H,/He control problem caused widespread
concern of scholars, and has been widely used in various fields. Game theory
approach is an important method among all the methods in dealing with Hy/Heo
control problem. The basic idea of the robust control based on game theory is that:
the designer of the control strategy that is regarded as one of the player Py, the other
uncertain or disturbance that is regarded as another one of the player “natural” P,,
so that the H,/Hoo robust control problem can be converted into a two person game
problem, P, faced the problem that how to design his own strategies in various
anticipated disturbances to balance with “natural” P, and make his own goals best.
Then, using the Nash equilibrium strategy or Stackelberg strategy to obtain the
optimal control strategy.

© Springer International Publishing Switzerland 2017 109
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Inspired by the above method, this chapter discuss the stochastic Hy/He control
problem of Markov jump linear systems and Markov jump singular systems based
on Nash game and Stackelberg game approach, the existence conditions of the
equilibrium strategy and design methods are given, and the explicit expression of
the equilibrium strategy is also obtained.

6.2 Stochastic H,/H. Control to Markov Jump Linear
System Based on Nash Games

6.2.1 Finite-Time Horizon Case

Given a filtered probability space (Q,F,{F;},~,,P), on which there exists a
one-dimensional standard F,—Brownian motion w(z) on [0, T] (with w(0) = 0), and
a Markov chain r; which is adapted to F, taking values in E = {1, .. .,1}, with the
transition probabilities given by:

il — L TL',:,'A—FO(A), lfl#.]v
Pr{r.a =jlrn=i} = { 1+ 1A +0(A),  else, (6.2.1)

where 7;; >0 for i # j and m; = — ), ;. In addition, we assume that the pro-
cesses 7; and w(r) are independent.

Let L2(0,T;R") := {$(-,-) : [0,T] x @ — R"|$(-,-) is an F,—adapted pro-
cess on [0, 7], and EfOT (2, )| Pdr < 0}

Consider the following continuous-time stochastic Markov jump systems with
state-, control- and disturbance-dependent noise

dx(t) = [Ay (2, r)x(t) + By (t, r)u(t) + Cy (2, r,)v(t)]dt
[Az(t r)x(t) 4+ Ba(t, r)u(t) + Co(t, o) v(8)]dw(t),

[ D(t,r)x(r) (6.2.2)
) = [ F(t,r)u 1)}
F'(t,r)F(t,r;) = 1,x(0) = xp € R",t € [0, T].

where x(t) € R", u(r) € R™, v(t) € R™, and z(¢) € R™ are the system state, control
input, exogenous input, and regulated output, respectively. All coefficients of
(6.2.2) are assumed to be continuous matrix-valued functions of suitable
dimensions.

To give our main results in the next subsection, we need the following defini-
tions and lemmas. Given disturbance attenuation y > 0, define two associated
performances as follows, i € &:
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2 2
Ji(u, v; x0,10) = V2Hv(t)H[O.T]_”Z(I)H[O,T]

_ E{/ (PP =Nz ) el = }

T
Ja(u,vix0,70) = l2(O)o.11= E{/ ()% atlro = i}~ (6.2.3b)
0

(6.2.3a)

The definition of finite-time horizon stochastic H,/He control problem is:

Definition 6.2.1 For system (6.2.1) and giveny > 0,0 < T < 09, find, if possible, a
state feedback control u*(r) € L% (0, T; R™) such that:

1

LSy (100 m)x )P + e (01 )delro = i}

(i) [1£7|| = sup . ) T <7,
v#0 .
v20 E{fo [v(2)|2dt|ro = z}
x0=0
(6.2.4)
where i € E, and L7 is an operator associated with system (6.2.1) which is
defined as

Lr: sz(O, T;R™) +—>L2f(0, T;R™),
‘CT(V(I)) = Z(I)‘x(,:mt € [07 T]'

(i) When the worst case disturbance v*(¢) € L%-(0, T; R™), if it exists, is applied
to (6.2.1), u" (f) minimizes the output energy

Jo(u, v x0,10) = E{AT (HD(I, r,)x(t)H2 + ||u(t)\|2)dt|r0 = i}, (6.2.3)

where v*(7) is defined as
’ 2 2
V(1) = arg min{Jl(u*,v;xo,ro) = E{/ (IO =Nz )delro = l}}
0

If the above (u*, v*) exist, then we say that the finite-time horizon Hy/Heo control
of system (6.2.1) is solvable and has a pair of solutions (u*, v*).

In other words, for given two cost functions defined in (6.2.3a) and (6.2.3b), the
finite-time horizon H,/He control of system (6.2.1) is equivalent to finding the
Nash equilibrium (u*,v*), such that
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Ji(u*, v x0,70) <J1 (U, vix0,70), Ja (", v x0,10) < Ja(u, v X0, 70), (6.2.6)
(u(1),v(t)) € L%(0,T; R™) x L%(0, T; R™), ry € E. -

The first inequality of (6.2.6) is associated with the Heo performance, while the
second one is related with the H, performance. Clearly, if the Nash equilibrium
(u*,v*) exist, u* is our desired Hy/Hoo controller, and v* is the worst case distur-
bance. In this case, we also say that the stochastic Hy/Heo control admits a pair of
solutions (u*,v*).

Before giving the main results, some preliminary work needs to be introduced.
Consider the following stochastic perturbed system with Markov jump parameters

dx(t) = [A1(t,1)x(2) + C1 (8, 1) v(2)]dt + [Ax (2, 1 )x(2) + Co(2, ) (2)]dw(2),
z2(t) = D(t,r)x(r), x(0)=x9 € R", re€]0,T].

(6.2.7)

For any given 0<T <oo, associated with system (6.2.7), the perturbation

operator Lr : L3 (0, T;R™) +— L3(0, T; R™) is defined as Lr(v(r)) = z(7)]
D(t,r)x(t)|,,—0> t € [0,T], then

X():O =

1/2
) E{Jy 1D n)x(0) P = i}
1£2]| = sup

- . 1/2
000 E{ [ Iv(o) el = i

In our subsequent analysis, we define M; =M(z,i), M;; = M,(t,i),
M,; = M,(t,i), i € E for convenience.

Lemma 6.2.1 For system (6.2.7) and given disturbance attenuation y > 0,
H.CTH <y iff the following coupled generalized differential Riccati equations

]
Pi +PiA1i +A/11Pl +A/2iPiA2i — D;Dl -+ Z T[iij
J=1
—(PiCii + AL P,Ca) (P + CoiPiCai) ~ (CLiPi + ChiPidyi) =0, (6.2.8)
P(T,i) =0,
y21+ CéiPiCQ,' >0, Vt € [0, T], ickE

have a bounded solution P(t) = (P(t,1),...,P(t,1)) <0 € C([0,T]; S}).

Proof The details are similar with Ref. [1], so we omitted it here.
The following theorem presents the main results of finite-time horizon stochastic
H,/Hoo control. O

Theorem 6.2.1 For system (6.2.1), given a disturbance attenuation level y > 0 and
0<T < o0, the stochastic Hy/Hoo control admits a pair of solutions (u*,v*) with
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l l
() = 3 Kalt, 1)1, (K0, (0 = D Kz, (0x(0), (629)
i=1 i=1
if and onmly if for Vt€[0,T], i € E, the following four coupled differential Riccati
equations
. . - - - . l
P!+ P!A; + AP} + Ay P A + O(i) + Zl P!
i=
= (P} Cii+AyP] Coi) (71 + CyyP} C2i>71 (CLiP! + CyPlAy) = 0, (6:2.10)

PY(T,i) =0,
y21+ Cl2iPi1C2i >0,i € E.

Ky = — (21 + CyP! Cyi) ™ (C},P! + CyPlAy). (6.2.11)

1t i

. _ _ _ _ ]
P} + P}Ay + AP} 4 Ay PP Ay + DIDi + Y- P}
j=1
_(P%Bli +Al2iPizBZi) (1"‘Blzz'P?BZI'y1 (B/ P +B’2iPi2A2i) =0, (62.12)

it i
PX(T,i) =0,
[+B,P!By; >0, i € E.

71 —
Ky = —(I+ByP?By)  (B);P? + By,P?Ay), (6.2.13)

where

Ay = Ay + BiiKai, Ay = Agi + ByiKai, Qi = —(DiDi + KjK),
Ay = Ay + CiKyi, Agi = Agi + CoiKy

admit a solution set (P'(t), P*(t),K,(t), Ky (t)), with

Proof Sufficiency: u*(t) = > K(t,1)y,—;(t)x(¢) into (6.2.2), it follows that

i=1

(6.2.14)

Considering Eq. (6.2.10), using Lemma 6.2.1 to system (6.2.14) immediately
yields HEITQ || <7y. And from
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s i) <& [ (P01t )i = i}
=x\P'(0, ro)xo +E{/(;T [yzuv(tnf—uz(t)nz +d (X (r)P (1, r)x(r))dt|ro = z} }

_upl T A (2 ' 1 o .
=xoP (O,ro)x0+E{/0 (v(t) v (l)) (y I+ C(t,r)P (1, 1) Ca(t, r,)) (v(t) v (t))dt\ro =i

> Ji (1", v x0, o) = x,P' (0, ro)xo,

!
we can see that v*(f) = Y K (i)y, —;(t)x() is the worst case disturbance.
i=1
!
Now, substituting v = v*(r) = > Ki(i)1,,—;(¢)x(t) into (6.2.2), it follows that
i=1
1(t,7)x + By (t, 1 )u(t)]dt + [Aa(t, r)x + Ba(t, r)u(t)|dw(z),
(1) = [D(t, )X 1)} 2(0) = xo € R". (6.2.15)

With the constraint of (6.2.15), minimizing J,(u,v*;xo,79) is a standard
stochastic linear quadratic optimization problem. Applying a standard completion
of square technique together with considering (6.2.12), we have

min  Jo(u,v*;x0,r0) = Jo (", v¥; X0, r0) = xP(0, r9)xo
uel%(0,T;R™)

!

with the corresponding optimal control u*(t) = > K (t,1)y,—;(t)x(t). The suffi-
i=1

ciency is proved.

Necessity: If u*(¢) = zl:Kz(t, 0))y,—i()x(t) and v* (t) = iKl(i)X,':i(t)x(t) solves
the finite-time horizon lztlochastic H,/Hoo control, Whe;lKl and K, are to be
determined, then substituting u*(z) = iKz(t, i)y,,—i()x(t) into (6.2.2) results in
(6.2.14). Lemma 6.2.1 concludes tIIEt (6.2.10) admits a solution P!(z) =
(P(1,1),...,P'(1,1)) <0 € C([0,T}; S}), with v*(¢) = i[(l(i)x,l_i(t)x(t), where

K is defined by (6.2.11). Likewise, if we implement v;. in (6.2.2), it deduces (6.2.15).
While Eq. (6.2.12) always exists a solution P*(t) = (P?(t,1),...,P*(t,1)) >0 €
C([0,T]; S} ) for fixed K, see Ref. [2]. As discussion in the sufficiency part, in this case,
!
u*(t) = > Ka(t,i)x,,—;(¢)x(¢) is optimal, with K, defined by (6.2.13). The Necessity is
i=1

proved.
So this ends the proof of Theorem 6.2.1. O
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6.2.2 Infinite-Time Horizon Case

6.2.2.1 Preliminaries

Consider the following controlled linear stochastic system with Markovian jumps
dx(t) = [A(r)x(2) + B(r)u(t)]dt + Ay (r:)x(£)dw(2) (6.2.16)

where x(¢) € R" is the system state, u(z) € R™ is control input, all coefficient
matrices are assumed to be constant with compatible dimensions for given
rn=1i€E&E.

For system (6.2.16), applying generalized It6’s formula to x'P(i)x, we have

Lemma 6.2.2 Suppose P = (P(1),P(2),...,P(l)) € §] is given, then for system
(6.2.16) with initial state (xo,i) € R" X B, we have for any T > 0,

T 1

E{ /0 ¥ () (P(ro)A(ry) + A (1) P(r2) + Ay (r)P(r)As () + Y i P(j))x(2)
j=1

+2u' (t)B'(r,)P(ry)x(1)|dt|ro = i} = EX(T)P(rr)x(T)|ro = i] — xuP(i)xo.

(6.2.17)

6.2.2.2 Main Results

For simplicity and without loss of generality, consider the following Markov jump
systems described by stochastic differential equation

dx(1) = 1) + Ba(re)u(t) + By (re)v(t)]dt + [A1 (r)x(1) + Ca(rou(t)]aw(t),
(1) = [C‘)’f t},D )D(i) = 1,x(0) = xo € R",i € E.
(6.2.18)

where x(1) € R", u(r) € R™, v(t) € R™, and z(¢) € R™ are the system state, control
input, exogenous input, and regulated output, respectively. All coefficients of
(6.2.18) are assumed to be constants. Define two associated cost functions as
follows:

T3 (u, v; x0, 1) = E{/ [“/2
0

o0
I3 (u, vy x0,1) = E{/ \lz(0)||*dt|ro = i}, €= (6.2.19b)
0

OP-EOFan =i} (6219
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The infinite-time horizon stochastic H,/Heo control problem of system (6.2.18) is
described as follows.

Definition 6.2.4 [3] For given disturbance attenuation level y > 0, if we can find
u*(t) x v*(t) € L%(0,00; R™) x L%(0,00; R™), such that

(i) wu*(r) stabilizes system (6.2.18) internally, i.e. when v(¢) =0, u = u*, the
state trajectory of (6.2.18) with any initial value (xg,i) € R" X E satisfies

lim E[||x(t)||2|ro - i} —0.

o <7 with

1/2
T e = i e

v € L%(0, 00; R™) dt 12
V£ Oom = s xp = 0 {fo [v(0) || dt|ro = }

(iii) When the worst case disturbance v*(z) € L%(0,00; R™), if existing, is
applied to (6.2.18), u*(r) minimizes the output energy

I3 (V5 0, 1) = E{/OOO [ICo()x ()| -+ ()P el = i}, i€g,

where v*(¢) is defined as

V(1) = arg min{Jf°<u*,v;xo,i> = E{ | (Fher-tewlR)din - }}

If the above (u*,v*) exist, then we say that the infinite-time horizon Hy/Heo
control of system (6.2.18) is solvable and has a pair of solutions. Obviously,
(u*,v") is the Nash equilibrium strategies such that

I v x0, 1) < I (", v x0,0), (6.2.20)

[

50U v x0, 1) <J5°(u, v x0,0), i€ (6.2.21)

The main result of the infinite-time horizon stochastic Hy/He control is pre-
sented by the following theorem, which can be shown following the line of
Theorem 2.1 and Theorem 1 presented in Ref. [4].

Theorem 6.2.2 For a given disturbance attenuationy > 0, suppose systems (6.2.18)
is stochastically stablizable, infinite-time horizon stochastic H»/H control has a pair

of solutions (u*,v*) with u*(t) = K»(r:)x(t) and v*(t) = K, (r:)x(z), where K;(i) €
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th, . and K, (i) € ./\/liln are constant matrices, if and only if the following four

coupled algebraic Riccati equations (6.2.22) admit solutions (Py,P»,K,,K>) as
Py = (Pi(1),P1(2),..,Pi()) S0 € S5/, P, = (P2(1),P2(2),...,Px(I)) >0 € S}.

1
PL()A() +A'(i)Py (i) + AL () P1 (A1 (i) + O() + Y mP1(j)
=1

Jj=

(6.2.22a)
— 2P ()B,()B, ()P, (i) =0, i=1,...,L

Ki(i) = —y 2B, (i)P,(i). (6.2.22b)

P2(AG) +A'()P2(j) + AL ()P2(1)A1 () + Co () Co () + ]é P2 (k)
—(P2())Ba ) + AL (NP2 () C2()) (I + Co ()P () C2 (7)) (6.2.22¢)

X (By())P2(/) + Gy ()P2()A1 (7)) = O,
I+ G (j)P2(j)Ca(j) > 0,j € E.

K> () = —(I+ C()P,() C2()) ™ (By()P2() + Ch(DP2(DAL()),  (6.2.22d)
where

A=A-B)K» A = A — C:K>,Q = —(CiCo+ K4K>),A = A — BiK|.

6.2.3 Numerical Examples

In order to verify the correctness of the conclusions, consider all the coefficient
matrices of the system (6.2.18) taking the following values:

E:{172}’11:{70.2 0.2}7A(1):{0 1}A(2):{0 1}31(1):{1}

0.8 0.8 -2 -3 1 0 1

== me = |an= %" Dlae={% D
|

0(,)1]’C2(2) - {8}'
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2.5 b

= 151 |
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o

Fig. 6.1 Curve of r,

setting 7 = 0.7, applying the algorithm proposed in Ref. [5] to (6.2.22a)—(6.2.22d),
we have

P(1) = 0.0348 0.0246 (2) = 0.0427 0.0682
©10.0246 0.0512 |’ ©10.0682 03112

So, the stochastic Hy/Hs control strategy is:

u(t) = —0.0350x; (¢) — 0.0261x,(¢), when r, = 1;
u(t) = —0.1281x; () — 0.2046x, (1), when r;, = 2.

Using Matlab with simulation step A = 0.001, initial value ry = 1, x;(0) = 2
and x,(0) = 1, we obtain the state trajectories as shown in Figs. 6.1, 6.2 and 6.3:

As can be seen from Figs. 6.1, 6.2 and 6.3, under the control of u(¢), the
closed-loop system is stable.
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25
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Fig. 6.2 Curve of x(¢)
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Fig. 6.3 Curve of x,(7)
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6.3 Stochastic H,/H. Control to Markov Jump Linear
Systems Based on Stackelberg Game

6.3.1 Preliminary Results

Consider the following Markov jump linear systems

ax(t) = ({0 + DO (O)dr + A (rx(Oabw(t), o3

z(t) = C(r)x(t), x(0) =xo € R", o
where v(r) € R™ and z(7) € L%(0, oo; R™) are, respectively, disturbance signal and
controlled output. For system (6.3.1), the perturbed operator £ : L% (0, 00; R™)
— L2(0, 00; R™) of L(v(t)) = z(1)] C(r1)x(t)],,—o s defined by

X0 =0 =

0 . 1/2
L[5 12|y = i}

[£]lc=sup 7
000 B 5 o) Pl = i

The following real bounded lemma was proposed by Huang and Zhang [3]:

Lemma 6.3.1 Given a disturbance attenuation level y > 0, the stochastic system
(6.3.1) is internal stable and ||L|| ., <y for some y, if and only if (iff) the following
equation

A'(i)P(i) + P()A(i) + A, (i) P(i)Ap (i) 4+ C' (i) C (i)

1
+ 9y 2P(i)D(i)D' (i) P(i) + Z 1;P() = 0 (6.3.2)

has a solution P = (P(1),...,P(l)) >0 € S].

In this case, v*(1) = Zl:F*(i)x,t:,»(t)x(t) =y2 ZD’(i)P(i);(,r:i(t)x(t) is the

worst disturbance of the system.

6.3.2 Problem Formulation

Consider the following controlled Markov jump linear systems

{ dx(t) = [A(r:)x(t) + B(re)u(t) + D(r,)v(t)]dt + A, (r;)x(t)dw(z), (6.3.3)

z(t) = C(r;)x(1),x(0) = x.
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where x(7) € R”, u(r) € R™, v(¢) € R™ and z(¢) € R’ are, respectively, the system
state, control input, disturbance signal and controlled output. In (6.3.3),
A(ry) = A(i), B(r,) = B(i), C(r;) = C(i), D(r;) = D(i) and A,(r;) = A, (i), when
r; = i, while A(i), etc., i = 1,-- -, 1, are constant matrices with suitable size.

The definition of stochastic H,/Heo control based on Stackelberg game is given
below:

Definition 6.3.1 [5] If there exists a strategy set (v*, ™), such that

Jo(x0, v, u") <Ja(xo, ;v (1), u), YueR™, (6.3.4)
where
Ji(x, 55V (u),u) = mVinJl (xo0,1;v,u), (6.3.3)
and
Vi=v (") (6.3.6a)
Ty v, 0) = E{ | [P P= 1ol - ,-} (6:3.6b)

Jo(x0, 85 v,u) = E{/OOC X ()0 (r)x(t) + ' (£)R(r,)u(t)dt|ro = i},

Q(r;) = Q'(r) 20, R(ri) =R(r,) >0,

(6.3.6¢)

then, this strategy set is the desired stochastic Hy/Heo control set.

Without loss of generality, we restrict our strategies to linear state feedback case,
i.e., the closed-loop stochastic Hy/Heo sets have the following form

l !

V() = D Fy() 1= (O(0), ) = D K (i) 7,4(0)x(0).

i=1 i=1

6.3.3 Main Results

The following theorem presents the main results of stochastic Hy/Heo control based
on Stackelberg strategy:

Theorem 6.3.1 Suppose that the following cross-coupled matrix-valued equations
(6.3.72)~(6.3.7¢) has solutions M, (i) <0, M,(i) >0, N;(i), j = 0,1, F,(i) and K(i),
i=1,---1
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Ak (DM (i) + M1 () Ak (i) + A, ()M (D)A, (0)

1
=7 M@OD DDWM () = CHCE) + Y mih () =0

Ap(D)Ma (i) + My ()Ar (i) + A, () M2(i)A, (1) + Q(0)

+K'(i) i)+ Z M (f)

Ak ())N1 (i) + N1 (D) A (i) + Ay ())N1 (DA (D)
— 2 ()DG)D (DN () — 72Ny ()M (DD(E)D' (i) + bV (i)
— (y72DE)D ()M ())N2 (i) + 7> Na ()Mo (i) D(D) D' (i) =
Ar())N2 (i) + Na (AR (i) + Ap (N2 (0)A, (i) + 12 (i) + 1, = O,
R()K (i)N2 (i) + B (i) (M1 (i))N1 (i) + M2 (i)N2 (i) = O,
where

Fy(i) = —y~*D/' ()M (i), Ax (i) = A(i) + B()K (i), AF (i)
= Ag(i) — y 2 D()D' (i) M, (i).

(6.3.7a)

(6.3.7b)

(6.3.7¢)

(6.3.7d)

(6.3.7¢)

Suppose the system (6.3.3) is internal stable, then, the strategy set (v¥,u*) with

the form v(r) = v*(r) = é:lF}'(i)Xr,:i(t)x(t)’ u(t) = u (1) = ZK( D)2 =i(0)x(2) is

the stochastic Hy/He control set based on Stackelberg qtrategy.

Proof Given arbitrary u(t) = K(r,)x(z) of the leader, the follower facing the fol-

lowing optimization problem

minJ (xo, i; v, K(r;)x)
v

= E{/\Oc [Vzv/(t)v(t) _x/(t)C/(rz)C(r[)x(l‘)]dt|r0 = l},

0
s.t.

dx(t) = [Ag (r1)x(r) + D(r,)v(2)]dt + A, (r:)x(1)dw(z).

From the conclusions of stochastic LQ problems, we can get the optimal feed-

back controller v’ (¢) is given by

[

[
V(D) =) ()1 (0)x(0) = =y Y DMy (i) g, —i(1)x(1),

i=1 i=1

(6.3.8)
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where M (i) is the solution to

Gi (M1 (i), K (i) = A ()M (i) + My () Ag (i) + A, ()M (1) A, (i)
=92 My (D' (DM (i) — C'()C(i) + El: M, (7) = 0
: (6.3.9)
Therefore, equation (6.3.7a) holds.

On the other hand, if Ap(i) = Ag(i) —y72D(i)D'(i)M, (i) is asymptotically
mean square stable, then the cost J, of the leader can be represented as

J>(x0, i =y D' (r, )My (r,)x, K (i)x) = Tr(M(i)), (6.3.10)
where M, (i) is the solution to
G (M (i), M2 (i), K (i) = A ()Mo (i) + Ma (i) Ar (i)
+ A (()Ma(D)A, (1) + O(i) + K'()R()K (i) + Z M (j) = 0.
(6.3.11)

From (6.3.11) we know (6.3.7b) holds. Let us consider the following Lagrangian H

H(M, (i), My (i), K (i)) = Tr(Ms (i) + Tr(N1 ()G (")“l) K@) 6312

+ Tr(N2(i)Ga (M, (i), My (i), K (1)),

where Ny (i) and N, (i) are symmetric matrix of Lagrange multipliers.
As a necessary condition to minimization Tr(M,(i)), we get

OH e
a1, ) = A OMO + MDA +4,ON (DA,)

— y M, (i))D()D' (i)N, (i) — y >Ny ()M, (i)D() D' (i) + mi:N, (i)
— (y*D(i)D' (i)Ma(i)N1 (i) +y >N (i)Ma (i)D(i)D' (i)) = 0,

(6.3.13a)
L W el —o
8M1(l) - F(l) 2(1) + 2( ) ( )+ p( ) ( ) p(l) + 7 2(,) +1,=0,
(6.3.13b)
1 OH B B
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Therefore, (6.3.7¢)—(6.3.7¢) hold.
This completes the proof of Theorem 6.3.1. O

6.4 Stochastic H,/H. Control to Markov Jump
Singular System Based on Nash Games

6.4.1 Finite-Time Horizon Case

Consider the following continuous-time stochastic Markov jump singular systems
with state-, control- and disturbance-dependent noise

Edx(t) = [Al(z r1)x (t) +B1(t rou(t) + Cy (¢, r,)v(r)]dt

+ [Aa(2, r, x(7) + Ba(t, ro)u(r) + Ca (2, 1) v(2)]dw(z),
) = [ tt :; th ] (6.4.1)
F'(1, rt)F(t r) =1,x(0) =x) € R", 7 € [0,T].

where E € R™" is a known singular matrix with 0 <rank(E) = k <n, x(t) € R",
u(r) € R™, v(r) € R™, and z(¢) € R™ are the system state, control input, exogenous
input, and regulated output, respectively. All coefficients of (6.4.1) are assumed to
be continuous matrix-valued functions of suitable dimensions.

For given disturbance attenuation y > 0, define two associated performances as
follows, i € B

Ji(u, v; x0,10) = “/ZHV(t)H[ZO.T]_HZ(I)H[ZO,T]

= E{/OT (y2||V(t)HZ_”Z([)Hz)d['rO _ i}, (6:4.22)

T
J2(u,vix0,70) = l2(0)o.11= E{/ ()2 dtlro = i}~ (6.4.2b)
0

The definition of finite-time horizon stochastic H,/He control problem is:

Definition 6.4.1 For system (6.4.1) and giveny > 0,0 < T < 0, find, if possible, a
state feedback control u*(r) € L%(0, T; R™) such that:

1/2
I (D (@) |2+ o (1) 2 o = i
) lLrl= sup B )12‘) ) <7

v£0 {fo [v(2)|2dtro _z} !

u=u
)C()IO

(6.4.3)
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where i € 5, and Lr is an operator associated with system (6.4.1) which is
defined as

Lr: L2(0,T; R™) s L% (0, T; R™),
Lr(v(t)) = 2(t) =0, € [0, T].

(i) When the worst case disturbance v*(¢) € L%(0, T;R™), if it exists, is applied
to (6.4.1), u* () minimizes the output energy

Jo(u,v*; x0,10) = E{/OT (HD(I, r,)x(t)H2 + ||u(t)\|2)dt|r0 = i}, (6.4.4)

where v*(7) is defined as

T

V(1) = arg min{Jl (", vix0,r0) = E{/
0

(PP 1201 )a = 1}

If the above (u*, v*) exist, then we say that the finite-time horizon H,/Hoo control
of system (6.4.1) is solvable and has a pair of solutions (u*, v*).

In other words, for given two cost functions defined in (6.4.2a) and (6.4.2b), the
finite-time horizon H,/He control of system (6.4.1) is equivalent to finding the
Nash equilibrium (u*,v*), such that

Ji(u*, v x0,10) < Ty (w0, vy x0, 70), o (U, v X, 10) < Jo(, v X0, 10), (6.4.5)
(u(t),v(t)) € L%(0, T; R™) x L2-(0, T; R™), ry € E. o

Clearly, if the Nash equilibrium (u*,v*) exist, u* is our desired Hy/Ho con-
troller, and v* is the worst case disturbance. In this case, we also say that the
stochastic Ho/Heo control admits a pair of solutions (u*,v*).

Before giving the main results, some preliminary work needs to be introduced.
Consider the following stochastic singular perturbed system with Markov jump
parameters

{ Edx(t) = [A1(t, r1)x(t) + C1(t, r)v(t)]dt + [Aa (2, 11)x(2) + Ca (2, 1) v(2)]dw(2),
z2(t) = D(t,r)x(2), x(0) =xo € R", 1€][0,T].

(6.4.6)

For any given 0<T <oo, associated with system (6.4.6), the perturbation
operator Lr : L%(0,T;R™) — L%(0,T;R™) is defined as Lr(v(r)) = 2(t) =0 =
D(t,r)x(1)] t € [0,7], then

x0=0"
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1/2
) Ly 1D () P = i}
1£2]| = sup

. 1/2
00 B (o)l Prro = i

In our subsequent analysis, we define M; = M(t,i), My = M;(t,i),
My; = M,(t,i), i € E for convenience.
Lemma 6.4.1 For system (6.4.6) and given disturbance attenuation y > 0,
HZTH <y iff the following constrained equations

. l
E'PiE + E'PiAy; + A} ,PE + AyPiAy; — D\D; + 5" 1;E'P/E
j=1

—(EP,Cy; + AbPiCa) (71 + CyPiCsi) ' (CliPiE + CPiAs) =0,  (6:4.7)
E'P(T,i)E =0,
'yzl—i- CéiPlCzi >0,V € [O, T], iex,

have a bounded solution P(t) = (P(t,1),...,P(1,1)) <0 € C([0,T]; S}).

Proof The details are similar with Ref. [1], so we omitted it here.
The following theorem presents the main results of finite-time horizon stochastic
H,/Hoo control.

Theorem 6.4.1 For system (6.4.1), given a disturbance attenuation level y > 0 and
0<T < o0, the stochastic Hy/Hoo control admits a pair of solutions (u*,v*) with

l !

W (0) = S Kalt, )7, (X0, V() = S Kalt, )z, (0n(0), (648)

i=1 i=1

if and only if for Vt € [0,T), i € E, the following four coupled differential Riccati
equations

. ~ ~ - - - [
E'PIE+E'P[Ay; + AP E+ AyP{Ay + Q(i) + . m;E'P/E
j=1

—(E'P[Cy; +A/2iPz‘1C25) (1 + CéiPilcﬁ)il (CLPIE+ CéiPz‘lAZi) =0, (6:4.92)
E'P\(T,i)E =0,
P2+ CLPICy >0, i € B.

Ky = — (71 + CyP Cy;) ™ (C),PE + Ch;P Ay). (6.4.9b)
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. _ _ _ _ l
E'P}E+E'P}A; + A PIE + Ay PP Ay + DiD; + Y n;E'PIE
j=1
_(E/P%Bli ‘*‘A/ziP%BZi) (I +B/2iP?B2i)71 (B/liPtzE + BlziPizAﬁ) =0, (6.4.9¢)

E'+B,PBy; >0, i € E.
I+ ByP!By; >0, i € E.

Ko = —(I+B,,P?By;) " (B},P’E + By,P?Ay), (6.4.9d)

it i
where

Ay = Ay + ByiKai, Ay = Agi + BoiKoi, Qi = —(DiDi + K5, K:),
Ay = Ay + C1iKyi, Agi = Ay + CoiKy

admit solutions (P'(t), P*(t),K\ (1), Kx(1)),
P'(t) = (P'(t,1),---,P(t,1)) <0 € C([0, T}); S}),
P*(t) = (P*(t,1),---,P*(1,1)) >0 € C([0, T}; S}).

Proof Please refer to the proof of Theorem 6.2.1, we don’t give it in detail
here. O

6.4.2 Infinite-Time Horizon Case

6.4.2.1 Preliminaries

Consider the following controlled stochastic singular systems with Markovian
jumps

Edx(t) = [A(r)x(¢t) + B(r)u(t)|dt + A (r,)x(t)dw(2) (6.4.10)

where E € R"™" is a known singular matrix with 0 <rank(E) =k <n, x(t) € R" is
the system state, u(f) € R™ is control input, all coefficient matrices are assumed to
be constant with compatible dimensions for given r; =i € E.

For system (6.4.10), applying generalized It6’s formula to x'E'P(i)Ex, we have

Lemma 6.4.2 Suppose P = (P(1),P(2),---,P(l)) € S} is given, then for system
(6.4.10) with initial state (xo,i) € R" x B, we have for any T > 0,
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T ]
E{ /0 [¥ (1) (E'P(r)A(r,) + A’ (1) P(r)E + Al (r,)P(r) A () + Z 7,iE'P()E)x(t)

+2u/ ()B' (r,)P(r,) Ex(2))dt|ro = i} =EX(T)E'P(rr)Ex(T)|ro = i] — x,E'P(i) Exo.

(6.4.11)

6.4.2.2 Main Results

For simplicity and without loss of generality, consider the following Markov jump
singular systems described by stochastic differential equation

1) + By (r1)u(t) + By (r;)v(1)|dt + [Ay (r)x(1) + Co(ry)u(r)]dw(t),
)} D()D(i) = ,x(0) = xo €R",i € E.

(6.4.12)
where x(1) € R", u(r) € R™, v(r) € R™, and z(r) € R™ are the system state, control

input, exogenous input, and regulated output, respectively. All coefficients are
assumed to be constants. Define two associated cost functions as follows:

T2 (u,v; x0, 1) = E{/OOO {y2||v(z)||2—||z(z>||2} dt|ro = i}. (6.4.13a)

I3 (1, v5x0, 1) = E{/ 12(0)|Patlro = i}, icE. (6.4.13b)
0
The infinite-time horizon stochastic Hy/Heo control problem of system (6.4.12) is

described as follows.

Definition 6.2.4 [6] For given disturbance attenuation level y > 0, if we can find
u*(t) x v*(t) € L%(0,00; R™) x L%(0,00; R™), such that

(i) u*(r) stabilizes system (6.4.12) internally, i.e. when v(¢) =0, u = u*, the
state trajectory of (6.4.11) with any initial value (xo,i) € R" x E satisfies

lim E[||x(t)||2|r0 - l} —0.

(i) |Ly|,, <y with
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2 * 2 — 1/2
ICullo=  sup E{ S5 (1ot + 1w 1) | 1ro = i} |

v € L%(0,00; R™) d 1/2
V£ 0,1 = 1% = 0 {fo lv(@)*drlro = }

(iii) When the worst case disturbance v*(¢) € L%(0,00; R™), if existing, is
applied to (6.4.12), u* () minimizes the output energy

J50 (u, v x0,0) = E{/OOC {||Co(rt)x(t)|\2 + ||u(t)\|2}dt|r0 = i}, i€ &,

where v*(¢) is defined as

() =argmin{ 5 v ) = B{ [ (PP 1201t = i} .

If the above (u*,v*) exist, then we say that the infinite-time horizon Hy/Heo
control of system (6.4.12) is solvable and has a pair of solutions. Obviously,
(u*,v*) is the Nash equilibrium strategies such that

(Ut v x0, 1) < I (", vy xo, 0), (6.4.14)
I3 (u*,v* x0, 1) <J5°(u, v x0,0), i€ E. (6.4.15)

The main result of the infinite-time horizon stochastic H»/He control is pre-
sented by the following theorem, which can be shown following the line of
Theorem 2.1 and Theorem 1 presented in Ref. [4].

Theorem 6.4.2 For a given disturbance attenuation y > 0, suppose systems
(6.4.12) is stochastically stablizable, infinite-time horizon stochastic Hy/Hoo control
has a pair of solutions (u*,v*) with u*(t) = Ky(r)x(¢) and v*(t) = K, (r:)x(2),
where K;(i) € Mfl . and Ki(i) € ./\/li,n are constant matrices, if and only if the
following four coupled algebraic Riccati equations (6.4.16a)—(6.4.16d) admit
solutions (P],Pz,Kl,Kg) as P :(P](l),Pl(z),--~,P1(l))SOES?,Pg:
(P2(1), P2(2),---, P2(1)) 20 € )

E'P1(DA(0) +A'(0)P1()E + A ()P1(i)A1 () + Qi)

! 6.4.16a
+ > myE'P()E — 3 2E'P1(i)B1 (i)B, (i)P\ () E =0, i € E ( )

Ky (i) = =y B, (i))P,(i)E. (6.4.16b)
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E&mwwAwwww+Mmmmmm+%m@m+émw%ww
—(E'P2()B2(j) + A, ()P () C2 (7)) (I + Co (P2 () Caj))

< (B, ()P2)E+ Ch()P2 (DA (7)) = O,
1+ C()P)Ca) > 0, j € .

(6.4.16c¢)
K> (j) = —(I+ G ()P2() ()~ (BY()P2()E + CL()P2 (DAL (), (6.4.16d)
where
A=A—B)Ky, Ay = A — C2K»,0 = —(C,Co +K)K,),A = A — B1K;.

Proof Please refer to the proof of Theorem 6.2.1, we don’t give it in detail
here. O

6.5 Stochastic Hy/H, Control to Markov Jump
Singular Systems Based on Stackelberg Game

6.5.1 Preliminary Results

Consider the following Markov jump singular systems

( ) [A( t)X(l) +D(VZ)V(Z)]dt+Ap(}"t)x([)dw([),
{Z( 1) = C(r)x(t), x(0)=x,€R" (6.5.1)

where v(f) € R™ and z(7) € L%(0, oo; R™) are, respectively, disturbance signal and
controlled output. For system (6.5.1), the perturbed operator L :
L5(0,00; R™) — L% (0, 00; R™) of L(v(t)) = 2(1)],,—o = C(r1)x(1)],,—o is defined
by

1/2
E{J5* lle(r)|Pdelro = i}
[1£]l =" sup

1/2
0B 5 o) Pellro = 1}

The following lemma extends the real bounded lemma of Markov jump linear
systems proposed by Huang and Zhang [3] to Markov jump singular systems:
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Lemma 6.5.2 Given a disturbance attenuation level y > 0, the stochastic system
(6.5.1) is internal stable and ||L||., <y for some y, if and only if the following
equation

A'(i)P()E + E'P(i)A(i) + A, (i)P())A, (i) + C' (i) C (i)

S EPODOD OPOE+ S mEPG)E - (652)

has a solution P = (P(l), .LP)>0€eS].

In this case, v' (1) = zm s O3(1) = 772 3 D )P0}, (OEx() s the

i=1
worst disturbance of the system.

6.5.2 Problem Formulation

Consider the following controlled stochastic Markov jump singular systems

{de( ) = [A(r)x(t) + B(r)u(t) + D(r)v(t)]dt + A, (r:)x()dw(1), (6.5.3)
z(t) = C(r)x(1),x(0) = xo. -

where x(¢) € R", u(¢) € R™, v(t) € R™, and z(¢r) € R™ are, respectively, the sys-
tem state, control input, disturbance signal and controlled output. E € R™" is a
known singular matrix with O<rank(E) =k<n. In (6.5.3), A(r,) =A(),
B(r;) = B(i), C(r;) = C(i), D(r;) = D(i) and A,(r;) = A,(i), when r, =i, while
A(i), etc., i = 1,...,1, are constant matrices with suitable size.

The definition of stochastic H,/He control based on Stackelberg game is given
below:

Definition 6.5.1 [6] If there exists a strategy set (v*, u*), such that

Jo(xo, 55 v, u") <Ja(xo, ;v (1), u), YueR™, (6.5.4)
where
Ji(x0, ;% (u), u) = minJ, (xo, i; v, u), (6.5.3)
and
v = (u), (6.5.6a)

e 2
0

MO0t =i}, (6560
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Ja(xo, 15 v,u) = E{/OOC X ()0 (r)x(t) + u' ()R(r,)u(t)|dt|rg = i},
O(r;) = Q'(r)>0, R(r))=R(r)>0.

(6.5.6¢)

then, this strategy set is the desired stochastic Hy/Heo control set.

Without loss of generality, we restrict our strategies to linear state feedback case,
i.e., the closed-loop stochastic Hy/Heo sets have the following form

! l

= 3 F @) 03(0), () = S Kz, x(0) (65.7)

i=1 i=1

6.5.3 Main Results

The following theorem presents the main results of stochastic Hy/Heo control based
on Stackelberg strategy:

Theorem 6.5.1 Suppose that the following cross-coupled matrix-valued equa-
tions (6.5.8a)—(6.5.8¢) has solutions M, (i) <0, M»(i) >0, N;(i),j = 0,1, F, (i) and
K@),i=1,...1
A (DVEM, (i) + My (D) E'Ak (i) + A, ()M, (1) A, (1)
_ _ ! _ 6.5.8a
RO DO GE - COCH + Y mEm(E=0,
=1
A ()EMa (i) + Mo (i) E'Ap (i) + A (1)) Mo (1) A, (i) + Q(0)
! _ 6.5.8b
FROROKG) + 3 mE S ()E =0, (6.5.80)

=1

Ag()EN (i) + N1 (i) E'Al (i) + A, (1)) N1 (i)A,, (i)
— y2E'My (i))D(i)D' () EN, (i) — y~*N, (i)E'M, (i)D(i)D' (i) E + n;E'N, (i) E
— (y2E'D(i)D/(i)M>(i)EN- (i) + 7 >N, (i) E'M>(i)D(i)D' (i)E) = 0,

(6.5.8¢c)
Ap()ENA (i) + N2 (1) E'AL (i) + Ap () N2 (1)A, (i) + i E'N2 () E +1, = 0, (6.5.8d)

R()K ()N (i) + B' (i) (M, (i) E'Ny (i) + M (i) E'N,(i)) = 0, (6.5.8¢)
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where

Fy(i) = =y 2D ()M () E, Ak (i) = A() + BOK (D),
Arli) = Ax(i) =77 2D(D ()M ()E.

Suppose the system (6.5.3) is internal stable, then, the strategy set (v*,u*) with

! !
the form v(t) = v*(t) = 3 Fy (i), (0x(2),  u(t) = w(r) = 3 K(i)x,—(0)x(1), is
i=1 i=1
the stochastic Hy/Hoo control set based on Stackelberg strategy.

Proof The proof of this theorem can be referring to the proof step of Theorem 6.3.1
to draw, and we don’t give it in detail here. O

6.6 Summary

This chapter deals with the stochastic H/Heo control problems of continuous-time
Markov jump linear systems and Markov jump singular systems. The main
methodology used in this chapter is the game theory approach, by introducing two
players, wherein the control designer of the system is considered as Pj, the
exogenous disturbance is considered as “nature” P,, the stochastic Hy/Heo control
problems can be converted into a two person nonzero-sum stochastic differential
games, and then, using the relevant results of stochastic differential games for
Markov jump linear systems and Markov jump singular systems obtained in
Chaps. 3 and 5, the necessary and sufficient condition for the existence of stochastic
H,/He control is equivalent to the corresponding matrixed-value differential (al-
gebraic) equations have solutions, and meanwhile, the explicit mathematical
expressions of the stochastic Hy/Hoo control is given. The conclusion of this chapter
not only enriched the existing results of robust control of stochastic systems, but
also widened the differential game method in handling various control problems,
and has laid a theoretical foundation for later study in this book.
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Chapter 7

Applications of Stochastic Differential
Game Theory for Markov Jump Linear
Systems to Finance and Insurance

This chapter mainly introduces applications of stochastic differential game theory
for Markov jump linear systems to finance and insurance. Firstly, a risk mini-
mization problem is considered in a continuous-time Markovian regime switching
financial model modulated by a continuous-time, finite-state, Markov chain. And
then, European option valuation under Markovian regime-switching models is
studied. Lastly, a game theoretic approach for optimal investment-reinsurance
problem of an insurance company under Markovian regime-switching models is
introduced in this chapter.

7.1 Introduction

In recent years, Markovian regime-switching models have attracted much attention
by researchers and practitioners in economics and finance. Econometric applica-
tions of Markovian regime-switching were pioneered by the original work of
Reinhard (1984) in which different states of the Markovian chain represent different
stages of the economic state, known as the risk model with Markov-modulation by
Asmussen (1989) [1]. The Markov-modulation can explain changes in macroeco-
nomic conditions, changes in political systems, influence of major financial news,
different stages of business cycles and so on. Presently, portfolio selection and
option pricing models with Markov-modulation have been discussed by many
researcher, and this has been an important problem from both theoretical and
practical perspectives.

Moreover, game theory reflects rational thinking modes of players, which, espe-
cially stochastic differential game, has been an important method for economic ana-
lyzation [2, 3]. So, by means of stochastic differential game, this chapter discusses
problems of portfolio risk minimization, option pricing and optimal investment of an
insurance company under Markovian regime-switching models. Considering the
market as a “virtual” game player, a two-player, zero-sum, stochastic differential game
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model between investors and markets is built. A verification theorem for the
Hamilton_Jacobi_Bellman (HJB) solution of the game is provided.

7.2 Portfolio Risk Minimization and Differential Games

Risk management is an important issue in the modern banking and finance
industries. Some recent financial crises, including the Asian financial crisis, the
collapse of Long-Term Capital Management, the turmoil at Barings and Orange
Country, raise the concern of regulators about the risk taking activities of banks and
financial institutions and their practice of risk management. Recently, Value at Risk
(VaR) has emerged as a standard and popular tool for risk measurement and
management. VaR tells us the extreme loss of a portfolio over a fixed time period at
a certain probability (confidence) level. Artzner et al. [4] develop a theoretical
approach for developing measures of risk. They present a set of four desirable
properties for measures of risk and introduce the class of coherent risk measures.
They point out that VaR does not, in general, satisfy one of the four properties,
namely, the subadditivity property. This motivates the quest for some theoretically
consistent risk measures. Follmer and Schied [5] argue that the risk of a portfolio
might increase nonlinearly with the portfolio’s size due to the liquidity risk. They
relax the subadditive and positive homogeneous properties and replace them with
the convex property. They introduce the class of convex risk measures, which
include the class of coherent risk measures. Elliott and Kopp [6] provide a com-
prehensive account of coherent risk measures and convex risk measures.

In the past two decades or so, applications of regime-switching models in finance
have received much attention. However, relatively little attention has been paid to
the use of regime-switching models for quantitative risk management until recently.
It is important to take the regime-switching effect into account in long-term
financial risk management, such as managing the risk of pension funds, since there
might be structural changes in the economic fundamentals over a long time period.
Some recent works concerning the regime-switching effect on quantitative risk
measurement include [7, 8], and others. However, these works mainly concern
certain aspects of quantitative risk measurement and do not focus on risk man-
agement and control issues.

In this note, we explore the state of the art of a stochastic differential game for
minimizing portfolio risk under a continuous-time Markovian regime-switching
financial model. Stochastic differential games are an important topic in both
mathematics and economics. Some early works on the mathematical theory of
stochastic differential games include [9, 10], and others. Some recent works on
stochastic differential games and their applications include [11-14], and others.
Here, we suppose that an investor can only invest in a money market account and a
stock whose price process follows a Markovian regime-switching geometric
Brownian motion (GBM). The interest rate of the money market account, the drift
and the volatility of the stock are modulated by a continuous-time, finite-state,
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Markov chain. The states of the chain are interpreted as different states of an
economy. For example, they may be interpreted as the credit ratings of a region, or
a sovereign. They may also be interpreted as proxies of the levels of some
observable (macro)-economic indicators, such as gross domestic product and retail
price index. The Markovian regime-switching model provides a natural way to
describe the impact of structural changes in (macro)-economic condition on asset
price dynamics and the stochastic evolution of investment opportunity sets. We
adopt a particular form of convex risk measure introduced by Follmer and Schied,
which includes the entropic risk measure as a special case. The entropic risk
measure is a typical example of convex risk measure and corresponds to an
exponential utility function, (see Barrieu and El-Karoui [15, 16]). Our goal is to
minimize the convex risk measure of the terminal wealth of the investor. Following
the plan of Mataramvura and ©Qksendal [17], we formulate the problem into a
Markovian regime-switching stochastic differential game with two players, namely,
the investor and the market.

In our model, the investor faces two sources of risk, namely, the diffusion risk
due to fluctuations of financial prices and the regime-switching risk due to the
change in the (macro)-economic condition. Here, we take into account these two
sources of risk in evaluating and controlling the risk the investor faces. To achieve
this, we introduce a product of two density processes, one for the Brownian motion
and one for the Markov chain process, to generate a family of real-world probability
measures in the representation of the convex risk measure. So, the market has two
control variables, namely, the market price of risk for the change of measures
related to the Brownian motion and the rate matrix of the Markov chain. We
provide a verification theorem for the Markovian regime-switching HIB equation to
the solution of the game corresponding to the risk minimization problem.

This note is based on part of [18]. We state results which will be published later
in [18] without proofs.

7.2.1 Asset Price Dynamics

We consider a continuous-time financial model consisting of two primitive assets,
namely, a money market account and a stock. These assets are assumed to be
tradable continuously on a fixed time horizon 7 := [0, T], where T € (0, 00). We
fix a complete probability space (Q,F,P), where P represents a reference prob-
ability measure from which a family of absolutely continuous real-world probability
measures will be generated.

Now, we introduce a continuous-time, finite-state, Markov chain to describe the
evolution of the states of an economy over time. Throughout the note, we use
boldface letters to denote vectors, or matrices. Let X := {X(r)},.; denote a
continuous-time, finite-state, Markov chain on (Q, F,P) with a finite state space
S:={s1,8,...,8y}. The states of the chain represent different state of the
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economy. Without loss of generality, we identify the state space of the chain to be a
finite set of unit vectors £ := {e, ey, ...,ey}, where e; € R" and the Jjth component
of e; is the Kronecker delta §;;, for each i,j = 1,2,...,N. ¢; is called the canonical
state space of X.

Let A(t) = [a;(1)]
matrices, of the chain X under P. Here, a;;() represents the instantaneous intensity
of the transition of the chain X from state i to state j at time ¢. Note that for each
reT and a;(t) >0 (i # ), Son, ay(t) = 0, s0 a;(t) <0. We assume that for each
i,j=1,2,...,N and each t € 7, a;(r) > 0. With the canonical representation of
the state space of the chain, Elliott et al. [19] provide the following semimartingale
decomposition for X:

im12. n L€ 7T, denote a family of generators, or rate

X(1) = X(0) + /0 A G0)X () + M0

where {M(#)},.7 is an R -valued martingale with respect to the filtration generated
by X under P.

Let y' denote the transpose of a vector, or a matrix y. (., .) is the scalar product in
RY. The instantaneous market interest rate () of the money market account B is
determined by the Markov chain as:

r(1) = (r,X(1))

where r := (rlﬁrz, .. .,rN)/E RY with r; > 0 for each i =1,2,...,N. Then, the
evolution of the balance of the money market account follows:

B(t) = exp ( /0 tr(u)du), B(0) =1

The chain X determines the appreciation rate x(#) and the volatility o(¢) of the
stock, respectively, as:

p(r) = (n, X(1)

and
a(t) = (0, X(1))

where = (i, - - -, ty) € R", 6 := (01,02, ...,0y)'€ R and with ; > r; and
g; >0, foreachi=1,2,...,N.

Let w := {w(r)|t € T} denote a standard Brownian motion on (Q, F,P) with
respect to the P-augmentation of its own natural filtration. We suppose that w and
X are stochastically independent. The evolution of the price process of the stock
follows a Markovian regime-switching GBM:
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ds(t) = u()S()dt + a(1)S(t)dw(z), S(0) = s >0

Now, we specify the information structure of our model. Let X and F5 denote
the right-continuous, complete filtrations generated by the values of the Markov
chain and the stock price process, respectively. Write, for each t¢€ 7,
G(1) :== FX(t) v F5(1), the enlarged o-field generated by FX(¢) and F5(r).

In the sequel, we describe the evolution of the wealth process of an investor who
allocates his/her wealth between the money market account and the stock. Let 7(z)
denote the proportion of the total wealth invested in the stock at time ¢ € 7. Then,
1 — =(¢) represents the proportion of the total wealth invested in the money market
account at time . We suppose that 7 := {n(r)},., is G-progressively measurable
and cadlag (i.e. right continuous with left limit, RCLL). This means that the
investor selects the proportion of wealth allocated to the stock based on information
generated by the stock price process and the state of the economy.

We further assume that n is self-financing, (i.e. there is no income or con-
sumption), and that

T
/ 7 (t)dt <00, P—a.s.
0

Write A for the set of all such processes m We call A the set of admissible
portfolio processes.

Let V(¢) := V™(¢) denote the total wealth of the portfolio 7 at time 7. Then, the
evolution of the wealth process over time is governed by:

AV () = VIO{[r(t) + () (u(t) — r(0))dt + n(d)o(t)aw(r)},  V(0) =v > 0.

Our goal is to find a portfolio process = which minimizes the risk of the terminal
wealth. Here, we use a particular form of convex risk measure introduced in [5] as a
measure of risk.

7.2.2 Risk Minimization

In this section, we first describe the notion of convex risk measures. Then, we
present the risk minimization problem of an investor with wealth process described
in the last section and formulate the problem as a Markovian regime-switching
version of a two-player, zero-sum, stochastic differential game.

The concept of a convex risk measure provides a generalization of a coherent
risk measure. Suppose S denote the space of all lower-bounded, g(7T')-measurable,
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random variables. A convex risk measure p is a functional p : S — R such that it
satisfies the following three properties:

(1) If X € S and f € R, then
p(X+pB)=pX)—B

(2) Forany X,Y € S, if X(w) <Y(w), for all ® € Q, then p(X) > p(Y).
(3) Forany X,Y € Sand 1 € (0,1),

p(AX + (1 = 2)Y) <ip(X) + (1 = A)p(Y).

The first, second and third properties are the translation invariance, monotonicity
and convexity, respectively.

Follmer and Scheid [20] provide an elegant representation for convex risk
measures. One can generate any convex risk measure from this representation by a
suitable choice of a family of probability measures. Let M, denote a family of
probability measures Q which are absolutely continuous with respect to P. Define a
function 5 : M, — R such that (Q) < oo, for all Q € M,. Then, [21] provides
the following representation of a convex risk measure p(X) of X € S:

p(X) = sup {Eo[-X] —n(Q)},
QeM,

for some family M, and some function 7.

Here, Eg[-] represents expectation under Q. The function #5(-) is called a
“penalty” function.

Following Mataramvura and @ksendal [17], we consider a particular form of
convex risk measure. Let #, : R — R denote a real-valued function. Then, assume
that the penalty function #(Q) has the following form:

-t} (%)]

Let I(Q, P) denote the relative entropy of a probability measure Q with respect
to a prior probability P. Then, when 7, (x) = oxIn(x),

n(Q) = «l(Q,P).

In this case, the convex risk measure with the penalty function 1(Q) becomes the
entropic risk measure with the risk tolerance level a. That is,

e, (X) = QS;,IAEI) {Eo[-X] —al(Q,P)}, XE€S.
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The entropic risk measure is a classical example of convex risk measure and is
related to an exponential utility function as follows:

w00 aifon - 1x)]

In the sequel, we generate a family M, of real-world probability measures,
which are absolutely continuous with respect to P, by a product of two density
processes, one for the Brownian motion w and one for the Markov chain X.

Define a Markovian regime-switching process 0(t) as:

0(1) = (8,X(1)),

where 0 := (0,,0,,...,0y) € RY with Oy = max; <<y 0; <oo. Write O for the
space of all such processes.

Consider a G-adapted process A" := {A°(1)}, _,:

t 1 t
A = exp(—/ 0(s)dw(s) ——/ 0% (s)ds).
0 2 Jo
Then, by Itd’s differentiation rule,
dA® = —A°(1)0(r)dw(r), A°(0) = 1.

So, A4’ is a (G, P)-local-martingale.

Since the Novikov condition is satisfied here, A4’ is a (G, P) martingale, and
E[A%(T)] = 1.

For each i,j,k =1,2,...,N, define a real-valued, F"-adapted, stochastic pro-
cess cg»(t) >0 such that for each re T,

(1) k(1) =0, for i #j,
@) Y, i(t) =0, s0 k(1) <0, for each k =1,2,...,N.

Suppose C(7) := {Cif(t)}i.j:lle’t € 7, is a second family of generators, or
rate matrices, of the chain X such that for each i,j =1,2,....N

cij(r) = (e;(1), X(1)),

where ¢; (1) := (c}i(1),c}(1), ..., ¢ (1)) €RY.
So, all the components of ¢;(¢) are adapted to the F"-filtration. The state of the
chain X() selects which component c;(z) is in force at time 7. The dependence of

¢;(1) on X(7) is obtained by taking the scalar product (e;(r), X(7)).
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For each k=1,2,...,N, write C"(z) := {c{j(t)} L,y Here, Ck(r) is a
i=1.2,...,

F"(t)-measurable, matrix-valued, random element. Then,

Cr) =) ) (X(), e)-

k=1

We wish to introduce a new (real-world) probability measure under which C(7),
t € 7T, is a family of generators of the chain X. We follow the method in [22]. First,
we define some notations. Let C denote the space of any such family C(¢),¢ € 7. For
any two matrices A(r), with a;(r) # 0, forany s € 7 and i,j = 1,2, ..., N, and C(z),
write D(r) := C(r)/A(t) for the matrix defined by D(r) := [c;(t)/ay(1)],1 € T.
Write 1:= (1,1,...,1)’€ RY and I for the (N x N)-identity matrix.

Define, for each t € T

NG = [ (1~ diag (X)X (),

Here, N := {N(7)},., is a vector of counting processes, where its component
N;(¢) counts the number of times the chain X jumps to the state e; in the time
interval [0,7],i = 1,2,...,N. Then, we cite the following result from [20] without
proof.

Lemma 7.2.1 For a given rate matrix A(t), write

a(t) = (all(t), .. .,aii(t), R aNN(t))',

and
Aolt) == A(r) — diag(a(r)),

where diag(y) is a diagonal matrix with the diagonal elements given by the vector
y. Define

N(r) :=N() — /OtAo(u)X(u)du,t €T,

Then, N := {N(r)} - is an (F*,P)-martingale.
te

Consider a process A€ := {Ac(t)}leT, C € C, defined by:

AC() =1+ /O A€ () Do ()X (1) — 11 (AN () — Ao ()X (u—)d).
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Note that from Lemma 7.2.1, A€ is an (FX, P)-martingale.
Define, for each (0,C) € @ x C, a G-adapted process A”€ := {A%C(1)} _, as
H the product of the two density processes A” and A°:

A%C =A%) - A€(1).

Lemma 7.2.2 A%C is a (G, P)-martingale.
The detail of the proof will be published in [18].

Define, for each (6, C)€ @ x C, a real-world probability measure QH"C ~ Pon
as:

dQ(),C

Then, we generate a family of M, of real-world probability measures as follows:
M, = M,(0,0) = {Q"€|(0,C)e @ x C}.

The following result is from [20]. We cite it in the following lemma without
giving the proof.

Lemma 7.2.3 Suppose Q"€ is defined by (1), for each (6,C)e O x C. Let
12
N€(t) :=N(t) - / Co(u)X(u)du,te T,Ce C,
0

Then, N€ := {Nc(t)} ; is an (FX, Q"€)-martingale.
te

Theorem 7.2.4 For each (0,C) € © x C, X is a Markov chain with a family of
generators C(t),1€ T under Q"C.

According to [17], we define a vector process Z := {Z(1)},.; by

dZ(1)

(dZo(1),dZ,(1),dZ, (1), dZs(t), dZ4 (1))
(dZo 1), dZ7 (1 dz;’(t),dzf(z),dz4(t))/
= (dZo(1), dV* (1), d A" (1), d A (1), dX (1)) ,

(Y Z17Z23Z37Z4)

Z(0)
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where under R,

dZy(t) = dt,
Zo(0) =s€ T,
dzy(1) = Zi(OF[r(1) + (u(e) — r(0))m(2)))dt + o (1) m(t)dw (1)},
Z1(0) =z >0,
dZy(1) = =0(t)Zx(1)dw(1),
Z,(0) =z > 0,
dzy(1) = 23 < )(Do( JX(1—) — 1)/ (dN(1) — Ao(0)X(1—)dr),
Z;(0) =
dZ4(1) = A( ) ( —)dt +dM(z),
74(0) =

Conditional on Z(0) = z, the penalty function is given by:

Q) = Bl

=

where E*[-] represents expectation under P given that the initial value Z(0) = z.
So, for each F"-adapted process (0, C)€ @ x C, we define the induced penalty
function 7jZ(0, C) as

1 (0,€) = y*(Q") = E*[ny(In(23(T)) + In(Z5 (T)))].

Now, conditional on Z(0) = z, the risk-minimizing problem is then to find a
portfolio process @ € A in order to minimize the following conditional version of
the convex risk measure associated with @ x C:

sup  {Efy o [=Z1(1)] - 7%(0,0) |

(0,C)e@xC

where Ef, ¢['] denotes expectation under Q"€ given that Z(0) = z.

This is equivalent to the following zero-sum stochastic differential game between
the investor and the market:

neA\ (0,0)eOxC

®(z) = inf ( sup  { B ) [~ZE(T)] - (0, C)}>
= Ef ¢ [-Z7 (D)) = 7*(0".C").

To solve the game, we need to find the value function @(z) and the optimal
strategies 7€ A, (0", C*)€ @ x C of the investor and the market, respectively.
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7.2.3 Solution to the Risk-Minimizing Problem

Following the plan in [17], we restrict ourselves to consider only Markovian
controls for the risk-minimizing problem. Suppose ¥ := (0,T) x (0,00) x
(0,00) x (0, 00) representing our solvency region. Let K; denote the set such that
n(t) € K. To restrict ourselves to Markovian controls, we assume that

n(t) := 7(Z(t)).

Here, we do not distinguish between 7 and 7. So, we can simply identify the control
process with deterministic function 7(z),z € ¥ x £. This is called a feedback
control.

We also suppose that the components of 6() and ¢;(7) are Markovian in w and
that the dependence of 0(r) and ¢;() on X(#) are modeled by scalar products. In this
case, (0(¢),C(r)) is also Markovian with respect to G. So, the control processes
(0(r),C(t), n(r)) are Markovian. They are also feedback control processes since
they depend on the current value of the state process Z(z).

Consider a process Y := {Y(t)},., defined by:

ay(t) = (Do(t)X(t—) — 1)'dN(t).
From dN(¢) = (I — diag(X(r—)))dX(z), so
dY (1) = (Do(r)X(1—) — 1) (I - diag(X(1-)))dX (7).

Let AY(¢) denote the jump of the process Y at time ¢. Then

t—) — 1) (1 — diag(X(r—)))AX(?)
1—) — 1) (1 — diag(X(1—))) (X (1) — X(1—-)).

By some algebra,
N
AY(1) = (di — 1)(X(2), €)(X(t), &)
ij=1
Define, for each i = 1,2, ..., N, the set
yi ‘= {dli — l,dzi — 1, .. .,le' — 1}

Consider a random set y(X(¢)) defined by
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N

YX() =Y yi(X(1),e), € T.

i=1
Lety:= Uﬁ"zlyi, then
y={di—1)i,j=1,2,...,N}.

Clearly, y(X(¢)) C y,t € T.

Given X(r—) = ¢;(i = 1,2,...,N), y; represents the set of all possible values of
the jump AY(¢) at time 7. The random set y(X(¢)) represents the set of possible
values of the jump AY(¢) conditional on the value of X(7).

Suppose y denotes the random measure which selects the jump times and sizes of
the process Y. Let J,(-) denote the Dirac measure, or the point mass, at @ € R.
Then, for each K € y, the random measure is:

)t K;0) = Z T Ay (u)ek, Ay ()20}

O<u<t

= Z I{AY(u)#()}é(u,AY(u))((07 t] X K)

O<u<t

To simplify the notation, we suppress the subscript o and write
(6, K) = y(t,K; o).

y(dt, dy) denote the differential form of y(z, K). Define, for eachi = 1,2,...,N,
a probability mass function n;(-,7) on y; as:

I’l,’(dj,' —1, l) = Clj[(l).
Then, the predictable compensator of y(dt, dy) is:
N
(dt,dy) = ni(dy, t=) (X (t—), e;)dt.

i=1

Write 7(dt,dy) for the compensated version of the random measure y(dt, dy).
That is,

J(dt, dy) = y(dt, dy) — vx(—(dt,dy).

that for each x € &, h(-, e X) is CM 1(’T x (R*)? ) Write

H(S7Z17Z27Z3) = (h(s7Z17Z25Z37el)a .. ~,h(S7Zl,Zz,Z3,eN))/E RN'
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Define the Markovian regime-switching generator L chen acting on a function

he M for a Markov process {Z*C7 (1)}, _, as:

‘C’G’Cﬂ [h(s7 21,%2,43, Z4)]

_on a2 s P
=5 +z1[r(s) + (u(s) — r(s))n(z)] o2, + 20 (8)z5 02 + 2Z1” (z)0" (1) o7

0*h

— 0(s)n(z)z1220(s) 9205 + /( : (h(s,z1,22,23(1 + ), 24)

Oh
- h(S, Z17Z27Z3uz4) - a—Z%ZW)Vx(d&d)’) + <H(S7ZI7Z27Z3)>A(S)X>'

Then, we need the following lemma for the development of a verification the-
orem of the HJB solution to the stochastic differential game. This lemma can be
proof by using the generalized 1t6’s formula and conditioning on Z(0) = z under P.

Lemma 7.2.5 Let t<oco be a stopping time. Assume further that h(Z(t)) and
L™ [h(Z(1))] are bounded on t € [0, 7).

Then,
E[h(Z(7))|Z(0) = z] = h(z) + E [/O LOCTh(Z(1))]dt|Z(0) = z|.

With the components of the controls 0(r) and ¢;() being Markovian in w and
the dependence of them on the chain X(z) specified by the scalar products, the
dynamic programming argument works well. We now describe the solution of the
stochastic differential game between the investor and the market by the following
verification theorem.

Theorem 7.2.1 Let ¥ denote the closure of ). Suppose there exists a function ¢
such that for each x € &, ¢(-,-,-,-,x) € C2(9)NC(V) and a Markovian control

(@(t), C(1),n(t)) € O x C x A, such that:
(1) LPC7[¢(s,21,22,23,X)] <0, for all (6,C)e @ x C and,
2) Eﬁ’e’”[q’)(s, 21,22,23,X)] >0, for all n € A and (s,21,22,23,X) € ¥ X &,

3) £07C‘2[¢(S,Z1,Z2,Z3,X)} =0, for all (s,z1,22,23,X) € ¥ X &,
4) forall (0,C,m)e @ xC x A,

Tim (1, 25 (1), Z0(1), 25 (1), X(0)) = ~ZU(T)Z8 (1) Z}(T)
— no(In(Z)(T)) + In(ZE (1)),
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(5) let K denote the set of stopping times © < T. The family {p(Z"C™ (1))}, € K is
uniformly integrable.

Write, for each z € ¥ x £ 0 (0,C, 1) € @ x C x A,

I (2) = Efy o A ~Z3(T = 5)Z5 (T = $)Z{ (T —5)
—no(In(Z3(T = 5)) + In(Z§ (T — 5)) },

Then

¢(z) = P(2)
=inf( sup JYC"(2))
€A (9,C)e@xC
= sup (inf J%C"(2))
(0,C)e@xc TEA

~~

=inf JOC"(z) = sup JOOT(g)
neA (6,C)cO%C

and (0, é, ﬁ) is an optimal Markovian control.

The proof is adapted from the proof of Theorem 3.2 in [17] and uses Lemma
7.2.5 here.

7.3 Option Pricing Based on Game Theory

In finance, an option is a contract which gives the buyer (the owner or holder) the
right, but not the obligation, to buy or sell an underlying asset or instrument at a
specified strike price on or before a specified date, depending on the form of the
option. Option pricing is the core issue of option trading because it is the only
variable changes with the market supply and demand in option contract, and
directly affect the profit and loss situation of buyers and sellers. It occured the first
paper about option price in 1900. Since then, a variety of empirical formulas or
metered pricing models have been available, but it is difficult to get generally
recognized because of various limitations. Since the 1970s, the research of option
pricing theory had made a breakthrough along with the development of options
market.

A very important issue about options which plagued investors is how to deter-
mine their values in the formation process of the international derivatives markets.
The application of computer and advanced communication technology made
complex option pricing formula possible. In the past 20 years, the investors
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transformed this abstract numerical formula into a great deal of wealth through
Black-Scholes option pricing model.

7.3.1 Black-Scholes-Meton Market Model

We consider a continuous-time financial model with two primitive assets, that are
tradable continuously on a finite time horizon 7 := [0, T], where T € (0, c0). Then,
we fix a complete probability space (€, F,P), where P is a real-world probability
measure. we use boldface letters to denote vectors or matrices. Let X := {X(¢)},o
denote an observable, continuous-time and finite-state Markov chain on (@, F,P)
with a finite state space S := {s;,s,,...,sy} C R". We identify the state space of
the chain X to be a finite set of unit vectors S := {s;,ss,...,sy} C R, where
e; € RY and the jth component of e; is the Kronecker delta §;, for each
i,j=1,2,...,N, Y represents the transpose of a vector or a matrix y. The set & is
called the canonical state space of X. Let IT = [a;] ij=12,.n denote the rate matrix
for the chain X. Then, Elliott et al. (1994) [19] provided the following
semi-martingale decomposition for X:

X(r) = X(0) + /OZHX(M)dM—FM(l‘), (7.3.1)

where {M(#)},.; is an RV -valued martingale with respect to the 7 augmentation of
the natural filtration generated by X. The semimartingale decomposition describes
the evolution of the chain.

Let r(#) denote the instantaneous market interest rate of the money market
account B at time . We suppose that

r(t) = <I',X(t)>7
where r = (r1,72, ...,/ €RY with, r; > 0, foreachi = 1,2,...,N, (-,-) denotes an

inner product.
The price dynamics of the money market account:

B(f) = exp( /0 (), 1€ T, BO) = 1. (7.3.2)

Let u(r) and o(¢) denote the appreciation rate and the volatility of the stock S at
time ¢ € T, respectively, which are assumed to be governed by:

pu(t) = (n, X(2)), a(t) = (0,X(2)) (7.3.3)
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where = (puy, ly, - - -, ty) €ERY and 6 = (64,02, ...,0y) €RY with g, > r; and
o; >0, foreachi=1,2,....N

Let w := {w(r)|t € T} denote a standard Brownian motion on (Q, F,P) with
respect to the P augmentation. We suppose that w and X are independent. The price
dynamics of the stock {S(z)|t € 7} are assumed to be governed by the following
Markovian regime-switching geometric Brownian motion (GBM):

ds(t) = u(1)S(1)dt + a(1)S(r)dw(z), S(0) = s > 0. (7.3.4)

Let Y(z) = In[S(7)/S(0)], which is the log return from the risky asset Sover the
time interval [0, 7], for each ¢ € 7. Then,

dy () = (u(r) — %az(t))dt—i—o(t)dw(t). (7.3.5)

We then specify the information structure of our model. Let FX {.7-' XeeT }
and FY¥ { Frne e T} denote right continuous, complete filtrations generated by

the processes X and Y, respectively. For each t € T, let G(r) = F> (1) vV F¥ (1), an
enlarged filtration generated by both X and Y. Write G = {G(¢)|r € T }.
Define, for each t € T,

0(r) = (0,X(1)), (7.3.6)
where 0 = (0,0, ...,0y)ER" with Oy = max; <;<y 0; <oo.

Let © denote the space of all such processes 0 = {0(¢)|t € T}. We define a
real-valued G-adapted process associated with 0 € © on (Q, F,P) as below:

A7(s) :exp(— / 0w dw(u) — - / t(ﬂ(u)du)

(7.3.7)
:exp< Zf)z/ ), e )dw(u ——292/ ,€;) u),

where fo t),e;)dW (u) represents the level integral of X with respect to w, and

fo ), €) du is the occupation time of Xin State i over the time duration [0, ].
Then by It6’s rule,

dA’(1) = —A°(1)0(2)dw(r), t € T, A°(0) = 1. (7.3.8)

Here, A’ is a local-martingale with respect to (G, P).

1 /[’ 1
NotethatE{exp(E/ Hz(t)dt)} < exp(E 03, T) < oo, (7.3.9)
0
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where E[-] denotes expectation under P. From (7.3.9), Novikov’s condition is
satisfied. Hence, A" is a (G, P)-martingale. This implies that E[A°(r) = 1], 1€ 7.

Then, for each 0 € @, we define a probability measure P’ equivalent to P on
G(T) as follows:

dpP’

TPl ANT). (7.3.10)

or)

By Girsanov’s theorem,
t
wl = w(t)+/ O(u)du, t € T, (7.3.11)
0

is a standard Brownian motion with respect to the enlarged filtration G under P.
Then, under P, the price dynamics of the risky asset S are governed by:

ds(t) = [u(r) — 0(0)a(2))S(2)dt + a(1)S(t)dw’ (1). (7.3.12)

Using the above Girsanov-type transformation, we generate a family of proba-
bility measures Pg := {P"},.o equivalent to the reference probability 7 associated
with the index set @. In other words, the family of probability measures Py is
parameterized by the space @ of processes 1.

In the sequel, we present the stochastic differential game in the Markovian
regime-switching Black—Scholes—Merton economy.

Here, the market selects a probability measure, or a generalized “scenario” in the
context of coherent risk measures from the family Pg. This is equivalent to
selecting a process 0 € ©. So, O is the set of admissible controls of the market. On
the other hand, the representative agent selects a portfolio that maximizes his/her
expected utility of the terminal wealth.

We describe in some detail the portfolio process in the sequel. For each ¢t € 7,
let 7(¢) denote the proportion of wealth invested in the stock S at time t. We
suppose that the portfolio process 7 = {n(¢)|t € T} is G-progressively measurable
and is self-financing. Define V* = {V"(r)|r € T} as the wealth process corre-
sponding to the portfolio process . Then, under P, the evolution of the wealth
process is governed by the following stochastic differential equation (SDE):

dV(1) = V() [r() + (u(r) — r(e))m()]de + V(8o () m(t)dw(s),  (7.3.13)

where V*(0) =v > 0.
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Under 730, the wealth process becomes:

AV (1) = VH(@)[r(t) + (u(1) — r(2) = 0(t)a (1)) m(2)]dr

0 (7.3.14)
+ V(@)oo (t)m(t)dw" (1).
Let A denote the set of portfolio processes 7 such that
T
/ [r(1) + |u(t) = r(0)||m(z)| + Jz(t)nz(t)]dt<oo, P—as. (7.3.15)
0

We call A the set of admissible portfolios for the representative agent.
We suppose that the representative agent has the following power utility:

1-{

U(v)zl_C,Ce(O,l),ve [0, 0), (7.3.16)

Here, { is the risk aversion parameter of the power utility and the relative risk
aversion of the representative agent is 1 — {. So, the degree of risk aversion
increases as { decreases.

Given a generalized “scenario” P’ € Pg chosen by the market, the represen-
tative agent chooses a portfolio process 7 so as to maximize the expected utility of
terminal wealth with respect to the measure P. Then, the response of the market to
this choice is to select the generalized scenario PU that minimizes the maximal
expected utility. This situation can be formulated as a zero-sum stochastic differ-
ential game between the representative agent and the market. To ensure that a
representative agent with an increasing and strictly concave utility function can be
constructed, one may assume that the equilibrium allocation is Pareto optimal or
Pareto efficient.

Now, we define a vector process Z := {Z(t)|r € T }:

dZ(1) = (dZy(1),dZ,(1),dZ(1)) = (dt,d A (z),dV" (1)),
Z0)=z= (u,21,2)€ T x R

In fact, Z(r) := Z""(¢); that is Z(r) depends on 0 and 7. However, for notational
simplicity, we suppress the subscripts 6 and 7.

Then, conditional on Z(0) =z and X(0) =x € £ the stochastic differential
game can be solved by finding the value function @(z,x), the optimal strategies

0 € @ and # € A such that
®(z,x) = E'[U(VF(T))|(Z(0),X(0)) = (z.x)]

7.3.17
= inf (supE”[U(V“(T))(Z(O),X(O)) = (LX)])- 7

0€0 \ ;e A
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Here E[] represents expectation under P and U(-) is the power utility function
of the representative agent defined in (7.3.16).

7.3.2 A Pricing Measure for Black-Scholes-Merton Market

Traditionally, the asset pricing theory has a closed connection to the theory of
optimal portfolio and consumption decisions via the relationship between state
prices and the marginal rates of substitution at optimality. This connection might be
tracked back to the foundation of the price theory in economics where there is a
closed link between the theory of optimal economic resources and the determina-
tion of prices [23, 24], Typically, in an equilibrium approach of asset pricing, the
pricing problem is formulated as the optimal portfolio and consumption problem of
a representative agent in a continuous-time version of the Lucas (1978) [25]
exchange economy. In equilibrium, an Euler condition for the representative agent’s
optimal choices is derived and it forms a restriction on the security prices. The Euler
condition involves the marginal rates of substitution, which are related to the state
prices or equivalent martingale measures.

In this section, we first derive the solution to the zero-sum, two person stochastic
differential game described in the last section. Consequently, the state prices or
equivalent martingale measures are determined by the equilibrium state of the
game, which involves not only the optimal portfolio choice of a representative
agent, but also the optimal choice of a generalized “scenario” by the market.

First, we note that under P the evolutions of the components of the vector
process Z = {Z(t)},.; are governed by:

dZy(t) = dt,
dZ,(t) = —0()Z;()dw(t), (7.3.18)
dzy(1) = Zo(1)[r(r) + (u(r) — (1)) n(0)]dW (1) + Zo(1) o (1) (1) dw(0),
where Z(0) =z = (u,z1,22).
By the Bayes’ rule,
@(z,x) = E[A"(T)U(V¥(T))|(Z(0),X(0)) = (z,%)]
. . (7.3.19)
— ot (s BLA(T)U(V(7)[(2(0).X(0) = (2] ).
€ neA

Recall that 0(r) = (0,X(¢)). We further assume that n(¢) = 7(Z(¢),X(z)), the
control processes (0, ) are Markovian and feedback control processes.

Let H denote the space of functions A(-,-) : 7 x R* x £ — R such that for each
X € &, h(-,x) is C"*(T x H?). Write H(z) = (h(z,e)),h(z,e,), ..., h(z,ey)) €RY.
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Then, for each (0, ) € ©® x A, we define a Markovian regime-switching generator
L% acting on a function h(z,x) € H for the Markovian process Z as below.

Oh

gmmgﬂn=—;+@ww+umo—WMM@xN§;

+ 0*(x)z 92 + lzzn (z,X)0% (u) —- (7.3.20)

Lemma 7.3.1 Suppose, for each x € &, h(z,x) € C'*(T x R?). Let 1<00 be a
stopping time. Assume further that h(Z(u),X(u)) and L% = [h(Z(u),X(u))] are
bounded on u € [0,7]. Then

E[h(Z(1),X(1))[(Z(0), X(0)) = (z,%)]

= h(z,x) +E{/TEO’"[h(Z(u),X(u))duH(Z(O),X(O)) = (z,x)|.

0

(7.3.21)

Proof The result follows by applying It6’s differentiation rule to h(Z(u), X(u)),
using (7.3.20), integrating over the interval [0,7], and conditioning on
(Z(0),X(0)) = (z,x) under P.

The following proposition presents the solution to the stochastic differential
game between the representative agent and the market.

Proposition 7.3.2 Ler O = (0,T) x (0,00) x (0,00). Write O, C*(O) and C(O)
for the closure of O, the space of twice continuously differentiable functions on O
and the space of continuously differentiable functions on O, respectively. Suppose
there is a function h such that for each x € £, h(-,x) € C2(0)NC(O), and a
Markovian control (@), ) € O x A, such that

L07@X) [h(z,x)] >0, for all 0 € O and (z,x) € O x &;
L) %[ (z,%)] <0, for all € A and (2,x) € O x &;
L0072 [z, x)] = 0, for all (z,x) € O x &;

lim h(Z(1),X(1)) = Z1(T) U(Z(T));

Let KC denote the set of stopping times © < T. The family {h(Z(z),X(z))|t €K}
is uniformly integrable. Write, for each (z,x)€ O x £ and (0, )€ O X A,

M.

I (2,%) = E[A"(T)U(V*(T))|(Z(0), X(0)) = (z,%)] (7.3.22)

then
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h(z,x) = &(z,x)

&%@gEM%ﬂUWWDN@mme)@@D

= sup = (o BLA(T) UV (7)](2(0),X(0) = (2:x)] ) (7328
= ilengg’ﬁ(z, X) = 52{2 JO%(z,x)

= J@’f‘(z, X).
and (0, 7) is an optimal Markovian control.

Proof The results can be proved by adapting to the proof of Theorem 3.2 in [17]
and using the Dynkin formula presented in Lemma 7.3.1. So, we do not repeat it
here.

Now, we solve the stochastic differential game. We suppose that the function
h has the following form:

1-¢ 1-¢
hzx) = 22 X)L S eoxe, (7.3.24)

1-¢
where g(T,x) = 1 does not vanish and g(u,x), foreach u € 7, x € £.

So, to determine the value function A(z,x), we need to determine g(u, X).
Recall that Conditions 1-3 of Proposition 7.3.2 are given by:

gggﬁo’ﬁ[h(z, x)] = L%*[h(z,x)] = 0,

sup chn [A(z,x)] = 1.3'9”}[}1(z7 x)] = 0.
neA

(7.3.25)

By differentiating £9=”[h(z,x)] in (7.3.20) with respect to © and setting the
derivative equal to zero, we get the following first-order condition for 7 that

maximizes £ 7 [h(z,x)] over all m:

azy o)) () = r(w) = (2. x)0* () = 0x)o @) =0, 0
Y(z,x) e O x €.
Similarly, the first-order condition for 0 that minimizes £%# [h(z,x)] over all 0 is
given by:
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—#t(z,X)a(u)z123 “[g(u,x)] ¢ =0, V(z,x) € OxE. (7.3.27)
This implies that
7i(z,x) =0, V(z,x) € O xE. (7.3.28)
This means that in equilibrium, the optimal strategy of the representative agent is
to invest all of his/her wealth in the money market account B, for every state of the

economy.

Substituting (7.3.28) into (7.3.26),
212h (g, %)) () — r(u) — O(x)o(w) = 0, V(z,x) €O X E. (13.29)

By noticing that z;z) ™ > 0, g(u, X) # 0, forall (z,x) € O x £.Equation (7.3.29)
implies that

o) =M S (M) Kwe). (1330

i=1 o

This implies that in equilibrium, the optimal strategy of the market is to choose

the probability measure P where 0 is given by (7.3.30).

O(u) = W -y (“i - ’l‘) (X(u), e). (7.3.30)

Oj
Now, Condition 3 in Proposition 7.3.2 states that
L% h(z,x)] = 0. (7.3.31)

Let gi(u) =g(u,e;), for each i=1,2,.. ,N,G(u) = (g}fg(u),g;g(u), -
gy “(u)) € RN, Then, from (7.3.20), (7.3.28), (7.3.30) and (7.3.31),

1—
ZlZz C

1-¢

iz o) U )

(G(u), ITx) = 0.
(7.3.32)

This implies that g(u,x) satisfies the following Markovian regimes witching
first-order backward ordinary differential equation (O.D.E.):
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dg(u, x)
du

g, X))’
1

+r(u)g(u,x) + (G(u), [Ix) = 0, (7.3.33)

with the terminal condition g(7,x) = 1, for each i = 1,2,...,N.
Equivalently, g;(u), (i =1,2,...,N), satisfy the following system of coupled
backward O.D.E.s:

du

+r(u)gi(u) + [gll(j)gg (G(u), ITx) = 0, (7.3.34)

with the terminal condition g(7,x) = 1, foreach i = 1,2,...,N.
For each i=1,2,...,N, suppose m; = —4;<0, where A; > 0. Note that
Z]N: , mij = 0. Then, the above system of O.D.E.s can be written as:

dg:iiu) + (r _ : /E é)gz(u) + [gl(u)} Z ‘nij[gj(u)]l_g —0, i=1,2,...N.

(7.3.35)

If ,=r forall i=1,2,...,N, we can obtain closed-form solutions to the
system of O.D.E.s (7.3.35). When r; = r, foralli = 1,2, ..., N, the system of O.D.
E.s becomes:

(u 2 () & .
dgi( )+(V_Tl)gi(u)+ [gl( )] Z nij[gj(u)]lfs =0, i=1,2,...,N.

du 1—¢ -0 4
(7.3.36)
We assume that the functions g;(«),i = 1,2, ..., N, have the following form:
gi(u) = "7, (7.3.37)

So, g:(u) does not vanish, for each u € 7, and g;(T) = 1. It is not difficult to
check that g;(u),i = 1,2,...,N, in (7.3.37) satisfy the system of O.D.E.s (7.3.36).
Therefore, we obtain a closed-form expression for the value function k(z,x) as
follows:

leé—ger(l—C)(T—u)
1-¢

h(z,x) = (7.3.38)

This form of the value function is consistent with the ones in Mataramvura and
Oksendal (2007) [17] and in Qksendal and Sulem (2007) [26].
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From (7.3.7) and (7.3.30), the density process corresponding to 739 is:

A0(2) = exp (Z (222) [ xw.edanta

i=1

_ % : (%)2 /0 t (X(u),ei>du>.

Harrison and Kreps (1979) [27] and Harrison and Pliska (1981, 1983) [28, 29]
developed an elegant mathematical theory for option valuation using the concept of
a martingale. They established the relationship between the concept of a martingale
and the absence of arbitrage. This is known as the fundamental theorem of asset
pricing. It states that the absence of arbitrage is equivalent to the existence of an
equivalent martingale measure under which discounted asset price processes are
martingales. We call the existence of an equivalent martingale measure a martingale
condition. The fundamental theorem of asset pricing was then extended by several
authors, including Dybvig and Ross (1987) [30], Back and Pliska (1991) [31],
Schachermayer (1992) [32] and Delbaen and Schachermayer (1994) [33], and
others. Delbaen and Schachermayer (1994) [33] noted that the equivalence between
the absence of arbitrage and the existence of an equivalent martingale measure is
not always true in a continuous-time setting. They stressed that the term “essentially
equivalent” instead of “equivalent” should be used to describe a martingale mea-
sure. Here, due to the presence of the additional source of uncertainty generated by
the Markov chain X, the martingale condition is given by considering an enlarged
filtration.

Let G(r) = FX(t ) \/}"Y( 1), for each te 7. Write G= {@ ()|t €T} Let

§ = exp(— fo ), which represents the discounted stock price at time
te ’T. Then, the martlngale condition here is defined with respect to the enlarged

(7.3.39)

filtration G and states that there is a probability measure Q equivalent to P such
that,

S(u) = E9[S(1)|G(u)], P-as., Vu,t€T,u<t,
where E€[] represents expectation under Q.

In particular, by letting u = 0, we require that for each 7 € 7, the random
variable

E°[exp(— /Ot r(u)du)S(t)|FX(1)] = $(0), P-as. (7.3.40)

This means that, for each t € T, R(¢) := E[exp(— fo du)S(1)|FX(1)] is an
“almost surely” constant random variable under P such that 73( (1) =S8(0)) =1,
for each t € 7. The condition is presented in Elliott et al. (2005) [34].
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From (7.3.11), (7.3.12) and (7.3.30), the evolution of the stock price process
under P! is given by:

ds(t) = r(1)S(t)dt + o(1)S(t)dw’ (1) (7.3.41)

Hence

K {exp(— /0 tr(u)du)S(t)|.7:X(t)} ~5(0), P-as. (7.3.42)

In other words, the condition (7.3.29) is satisfied under the probability measure

PY deduced from an equilibrium state of the stochastic differential game between
the representative agent and the market.

The Esscher transform has a long and remarkable history in actuarial science. It
was first introduced to the actuarial science literature by Esscher (1932) [35]. It has
different applications in actuarial science, such as premium calculation and
approximation to the aggregate claims distribution. In the two landmark papers by
Biihlmann (1980, 1984) [36, 37], he established an economic equilibrium premium
principle in the sense of the Pareto optimal risk exchange under a pure exchange
economy and a link between the economic premium principle and the premium rule
determined by the Esscher transform. Gerber and Shiu (1994) [38] pioneered the
use of the Esscher transform for option pricing. Their work opened up many
research opportunities to further explore the interplay between actuarial and
financial pricing. Elliott et al. (2005) [39] considered a regime-switching version of
the Esscher transform to determine an equivalent martingale measure in the context
of a Markovian regime-switching Black—Scholes—Merton market. In the sequel, we
demonstrate that an equivalent martingale measure chosen by the regime-switching

Esscher transform considered in Elliott et al. (2005) is identical to P@.
Define, for each r € 7, the regime-switching Esscher parameter f5(z) at time t as
below:

p(e) = (B, X(2)), (7.3.42)

where, B := (B, B2, ..., fy) € RY, By = max; <;<y f; <oo.
Write (8- w)(t) = [, B(u)dw(u), for each t € T. Define a process AP =
{AP|t € T} on (Q,F,P) as below:

o~ (BW)(0)
E[e=(Bw)®) ]]:X(;)] '

AP(r) = (7.3.43)

By It6’s differentiation rule,
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t 1 t
e P =1 — / ﬂf'w)<’>ﬁ(u)azw(u)+5 / e Py du.  (7.3.44)
0 0

Conditioning on F*(¢) under P,

E[e_(ﬁw)(z)|fX(t)] _ 1+ %/OJE[C—(/“V)(’)|fx([)}ﬁ2(u)du (7345)

Solving (7.3.45),

E[e—(ﬁ'w)(f) |}‘X(t)] = exp <% /Ot ﬂz(u)du) . (7.3.46)

Then

AP(r) = exp <— /0 t B(u)dw(u) — % 0, ﬁz(u)du). (7.3.47)
So
dAP (1) = —B(0) AP (1)dw(u). (7.3.48)

Here, A% is a (G, P)-local-martingale.
Note that the Novikov condition E{exp(—% OT ﬂz(u)du)} <oo is satisfied.
Then, A” is a (G, P)-martingale, and, hence

EAP(1) =1, teT. (7.3.49)

Similar to Elliott et al. (2005), the regime-switching Esscher transform PF ~ P
on G(T) is defined as:

apl
o =AD). (7.3.50)

We then seek f§ = B, the risk-neutral Esscher process, such that

Ef [exp(— /0 t r(u)du)S(t)]fX(t)] = 5(0), P-as. (7.3.51)

By the Bayes’ rule,
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. t
Ef {exp (—/ r(u)du) S(r)|}"x(1)}
0

—E [Af’ (1) exp (— /0 t r(u)du> S(1) |]-"X(t)} (7.3.52)
= sto)exp( [ o)~ rtu) = Blwrauya ).

Then,
/Ot (u(u) — r(u) — B(u)o(u))du =0, VieT (7.3.53)
This implies that
—r(u N ;T P
Bu) = % -y (“’0' ><x(u),e,-> — (), (7.3.54)
i—1 i

Here, the process 0 characterizing the probability measure PY from the equi-
librium state of the stochastic differential game and the risk-neutral Esscher process

B are identical.
Then, from (7.3.47) and (7.3.54),

e <rl~ — u-)2/’ (7.3.55)
- = ! X(u), e;)du
(1) [ e
= A'(1)
Hence, PB is identical to 77@.
By Girsanov’s theorem,
R r _
wh () = w(r) — /O (%)du (7.3.56)

is a standard Brownian motion with respect to G under 2

Under PP the evolution of the stock price process is governed by:
ds(t) = r(1)S(t)dt + o(1)S(H)aw” (1). (7.3.57)

This coincides with the stock price dynamics under Pl
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7.4 The Optimal Investment Game of the Insurance
Company

7.4.1 The Market Model

We consider a continuous-time, Markov, regime-switching, economic model with a
bond and a capital market index, or a share index. The following assumptions are
then imposed:

(1) the bond and the index can be traded continuously over time;
(2) there is no transaction cost or tax involved in trading;

(3) the bond and the index are liquid,;

(4) any fractional units of the bond and the index can be traded.

Suppose (2, F,P) is a complete probability space, where P represents a ref-
erence probability measure from which a family of real-world probability measures
are generated. The measure P is the probability measure characterizing a reference
model. We assume that (Q,F,P) is rich enough to describe uncertainties. All
economic activities take place in a time horizon denoted by 7, where 7 := [0, T],
for T <oo. We model the evolution of the state of an economy over time by a
continuous-time, finite-state, observable Markov chain X := {X(¢)[r€ 7} on
(Q,F,P) taking values in the state space S := {si,s2,...,Sy}, where N >2.
Without loss of generality, we adopt the formalism introduced by Elliott et al.
(1994) and identify the state space of the chain by a set of unit basis vectors
E:={ey,e...,en} € RM. Here the Jjth component of e; is the Kronecker delta,

denoted as 6;, for each i,j = 1,2,...,N. We call the set £ the canonical state space
of the chain X.
Let A = [a,-j] =12 N denote the generator of the chain X under the real-world

probability measure P. For each i,j = 1,2,...,N, a;; is the constant, instantaneous,
intensity of the transition of the chain Xfrom state i P to state j. Note that a;; > 0, for
i #j, and that Eszl aj; = 0, 50 a; <0. Here for each i,j = 1,2,...,N, with i # j,
we suppose that a;40, so a;50. We assume that the chain X is irreducible. Then
there is a unique stationarydistribution for the chain. Let y’ denote the transpose of a
matrix, or a vector, y. With the canonical state space of the chain, Elliott et al. [19]
(1994) derived the following semi-martingaledynamics for X:

X(1) = X(0) + A CAX(u)du 1 M(1),

Here {M(f)|[t€ T} is an RM-valued martingale with respect to the
right-continuous, P-completed, filtration generated by X under the measure P.

Now we specify the price processes of the bond and the share index. Let r(¢) be
the interest rate of the bond at time ¢. Then the chain determines r(¢) as
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r(1) = (r, X()),

Here r:= (r|,7,...,7y) €RY with r; > 0, for each i = 1,2,...,N. Then the
price process B := {B(t)|t € T} of the bond evolves over time as

t
B(t) = exp (/ r(u)a’u)7 teT, B(0)=1.
0
Then the chain determines the appreciation rate x(f) and the volatility o(¢) as

u(t) = (n, X(1)),
o(t) = (a,X(1)).

Here p:= (i, piy) ERY, 6:=(01,02,...,08) € RY with ;> r,
0; >0 foreachi=1,2,...,N.

Suppose w := {w(r)|t € T} denotes a standard Brownian motion on (Q, F,P)
with respect to its rightcontinuous, P-completed, filtration F* := {F"(¢)|t € T }.

Then the evolution of the price process of the index is governed by the following
Markov, regime-switching, Geometric Brownian Motion (GBM):

ds(t) = u(2)S(r)dt+ o(1)S(t)dw(z), S(0) = so.

In the sequel, we present two specifications for the insurance risk process. The
first specification is a Markov, regime-switching, compound Poisson process, while
the second specification is a Markov, regime-switching, diffusion process. In each
case, we derive the surplus process of an insurance company.

7.4.1.1 A Markov Regime-Switching Random Measure for Insurance
Claims

Here we present a Markov, regime-switching, random measure for the aggregate
insurance claims process.

Let Z :={Z(t)|t € T} denote a real-valued, Markov, regime-switching, pure
jump process on (Q, F,P). Here Z() is the aggregate amount of claims up to and
including time 7. Suppose, for each u € T, AZ(u) := Z(u) — Z(u—), the jump size
of the process Z at time u. Then

Z(t)= Y AZ(@u), 2(0)=0, P-as,teT. (7.4.1)

O<u<t

Suppose the state space of claim size, denoted as Z C (0, c0). Let M denote the
product space 7 x Z of claim arrival time and claim size. Define a random measure
p(-,-) on the product space M, which selects claim arrivals and sizes
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z:= Z(u) — Z(u—), Indeed, the random measure can be written as a sum of random
delta functions, that is

Y(dz,du) =Y Siaz(r.m (dz AWz (207, <oc) (74.2)
k>1

Here Ty is the arrival time of the kth claim, AZ(7}) is the amount of the kth claim
at the time epoch Ty, 5(AZ(Tk)7Tk>(" -) is the random delta functions at the point
(AZ(Ty), Ty) € Z x T, and Ig is the indicator function of an event E

For suitable integrands f : (@ x Zx7T) — R

/0, /Oocf(w,z,u)v(dz,du)zz f(o,AZ(T),Ty), teT. (7.4.3)
T <t

The aggregate insurance claims process Z can then be written as.

Z(t) = /OZ/OOO zy(dz,du), teT. (7.4.4)

Define, for each t € T,

N = /0 I /O " (dz, du). (7.4.5)

So N(t) counts the number of claim arrivals up to time .
We assume that under P, N := {N(¢)|t € T} is conditional Poisson process on
(@, F,P) with intensity modulated by the chain X as

M) = (LX), teT. (7.4.6)

Here A:= (i1,/2,...,4y)' € RY with J; >0, and /; is the jump intensity of
N when the economy is in the ith state, for each i = 1,2,...,N.

Now we specify the distribution of claim sizes. Foreachi = 1,2,...,N, let F;(z)
denote a probability distribution function of the claim size z := Z(u) — Z(u—)
when X(u—) = e;. Then, the compensator of the Markov, regime-switching, ran-
dom measure y(-,-) under P is

Mz

VX (u—)(dz, du) ), &) AiFi(dz)du (7.4.7)

i=1

so a compensated version of the Markov, regime-switching, random measure,
denoted by (-, ), is
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Y(dz,du) := y(dz,du) — vx(,—1)(dz, du). (7.4.8)

Let p(f) denote the premium rate at time ¢, for each ¢ € 7. Then we suppose that
the chain X determines p(#) as

p(0) :=(p,X(r)), teT7T. (7.4.9)

Here pP:= (p17P2> .. 'apN) € RN’ pi > 0.
Suppose R := {R(#)|t € T} denotes the surplus process of the insurance com-
pany without investment. Then

R<r>:=u+/r (wdu — Z(1)
_u+ZpJ, // 2y(dz, du), 1€,

where the initial surplus R(0) = u; foreachi=1,2,...,N and eachr € 7, J;(¢) is
the occupation time of the chain X in state e; up to time ¢, that is

(7.4.10)

Ti(t) := /Of (X(u), e;)du.

We now derive the surplus process of an insurance company which invests its
surplus in the bond and the hare index. Firstly, we specify the information structure
o the model Let FZ := {FZ(t)|t € T} denote the right continuous, P-completed,
filtration generated by the history of the insurance claims process Z, that is F%(¢) is
the P-augmentation of the g-field generated by the insurance claims process Z up to
and including time ¢ Define, for each re€ 7, the enlarged o-algebra
G(t) = F*¥(t) vV F%(t) vV FX(t), the minimal o-field generated by F" (1), F%(t),
FX(1). Write G:= {G(r)|t € T}. We assume that the insurance company can
observe G(¢) at each time 7 € 7. Consequently, the company observes the values of
the share index, insurance claims and economic conditions.

Suppose the insurance company invests the amount of 7(¢) in the share index at
time #, for each ¢t € 7, we write V(z) = V™(¢) unless otherwise stated. Since the
money used for investment in the share index comes solely from the surplus pro-
cess, we must have n(r) <V(z), for each t € T. Consequently, for each ¢ € 7, the
amount invested in the bond at time ¢ is V(¢) — n(¢). Then, the surplus process of
the insurance company with investment evolves over time as

dv(t) = [p(t) + r()V (1) + n(1) (u() — r(2))]dt
+ o(t)n(t)dw(t /0 zy(dz, dt), (7.4.11)
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Here we say that a portfolio process 7 is admissible if it satisfies the following
conditions:

(1) = is G-progressively measurable;
(2) the stochastic differential equation for the surplus dynamics has a unique
strong solution;:

N T [eS)
o X [ {eraviesou-niraron [ m ba<o.
i=1 Y0 0
P—-a.s.;

4) V(t)>0forallt €T, P-as.

The first condition states that the insurance company decides the amount
invested in the share index based on the current and past price information,
observations about insurance risk process, and economic information. The second
and third conditions are technical conditions. The last condition is the solvency
condition of the insurance company. We denote here the set of all admissible
portfolio processes of the insurance company by A.

7.4.1.2 A Markov Regime-Switching Diffusion Process for Insurance
Risk

Now we introduce a Markov, regime-switching, diffusion risk process. Let o,(¢)
denote the instantaneous volatility of the aggregate insurance claims process Z at
time ¢, for each r € 7.

The chain X determines o,() as

O-z(t) - <Gza X(I»

Here 6. = (0.1,02,...,0.y) € RY with ¢; > 0; for each i =1,2,...,N. o
represents the uncertainty of the surplus process of the insurance company without
investment when the economy is in the ith state. The model proposed here can
accommodate the situation when the insurance company faces different levels of
uncertainty in different economic conditions. For example, when the economy is in
a ‘Bad’ state, the insurance company faces a higher level of uncertainty in its
surplus process than when the economy is in a ‘Good’ state.

In practice, insurance risk processes and financial price processes may be cor-
related. Their correlation may depend on the economic condition. The correlation
between insurance risk processes and financial price processes in a ‘Bad’ economy
may be higher than that in a ‘Good’ economy. Let p(7) denote the instantaneous
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correlation coefficient between the random shock of the price process of the index
and that of the insurance risk process at time ¢, for each # € 7. Then we assume that
the chain X determines p(¢) as

plt) == (p.X(1), 1€T.

Here p = (p,pa,-..,py) € RY with p, € (—1,1) for each i=1,2,...,N,
when the economy is in state i, p; is the correlation coefficient between the random
shock of the insurance risk process and that of the price process of the index.

Let w® = {w*(¢)|t € T} denote a standard Brownian motion on (Q,F,P),
which represents the ‘noise’ in the insurance risk process. We allow the flexibility
that {w*(¢)|t € T} and {w(t)|r € T} are correlated with instantaneous correlation
coefficient p(¢) at time z. Then the aggregate insurance claims process Z =
{Z(1)|t € T} follows

Z(t) = /Otaz(u)dwz(u)7 reT. (7.4.12)

Let R := {R(¢)|t € T} denote the surplus process of the insurance company
without investment. Then

R() = u+ /0 ' (u)du — Z(1), (7.4.13)

where, as before, it is given by (7.4.10).

Let F* = {j-" ‘(N e ’T} denote the right-continuous, P-completed, filtration
generated by the insurance claims process Z = {Z(t)|t € T'}. For each 1 > 0, define
an enlarged o-field G(r) = F*(1) v F*(1) v FX(t), Write G = {G)|te T}.
Again, we assume that the insurance company can access to G(f) at each time
teT.

For each ¢t € T, let 7(¢) denote the amount the insurance company invests in the
index at time ¢. Let {V7(¢)|t € 7} denote the surplus process of the company
associated with a portfolio process 7. Again to simplify the notation, we write
V(t) = V™(t), for each t € 7. We must also have that 7(r) <V(), for each t € 7.

The amount invested in the bond at time ¢ is V(¢) — n(¢), for each r € 7. Then the
surplus process of the insurance company with investment evolves over time as

dV (1) = [p(t) + r()V (@) + 7(t) (u(t) — r(2))]dt + o()7()dw(t) — o.()dw(2).
(7.4.14)

Similarly to the last subsection, we say that a portfolio process 7(#) is admissible
if it satisfies the following conditions:

(1) 7 is G-progressively measurable;
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(2) the surplus process has a unique strong solution;
(3) [f) B()di<oo , P—as.
4) V(t)>0,forallt €7, P-as.

We denote the space of admissible portfolio processes by A.

7.4.2 Optimal Investment Problems

In this section, we discuss two optimal investment problems. The first problem is to
maximize the minimal expected exponential utility of terminal wealth over a family
of real-world probability measures when the insurance risk process is governed by
the Markov, regime-switching, random measure.

The second problem is to maximize the minimal survival probability over
another family of real-world probability measures when the Markov,
regime-switching, diffusion-based risk process is considered. We adopt here a
robust approach to model risk, or uncertainty. We formulate the two investment
problems as two zero-sum, two-player, stochastic differential games between the
insurance company and the market. One of the games is a finite-horizon game and
the other is an infinite-horizon one.

7.4.2.1 Maximizing the Minimal Expected Exponential Utility

Firstly, we introduce processes {0 = 0(¢)|t € 7 } which parameterize the family of
real-world probability measures. Suppose the process € satisfies the following
conditions:

(1) 6 is G-progressively measurable;
(2) 0(r) :==0(t,w) <1, for a. a.(t,w) € T x Q;
B3) [ P (di<oo, P-as.

We denote the space of all such processes by ©.
Define, for each 0 € O, a real-valued, G-adapted, process A = {Aﬁ(t)|t €T}
on (Q,F,P) by

9'—ex—tuwu—112uu toon—uﬂ_ u
20 = exp(~ [ oav) -3 [ ewans [ [ - oitaza

+ /Ol/ooo {In(1 — B(u)) + 0(u) }v(dz, du)),
(7.4.15)

Applying Ito’s differentiation rule to A gives
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an' (i) = A=) (~00w(e) - [ 0007z, a)

A =1, P-as.

(7.4.16)

So A’isa (G, P)-(local)-martingale. We suppose that @ € @ is such that A%isa
(G, P)-martingale. Consequently, E[4°(T)] = 1.

We now introduce a density process for the measure change of the
regime-switching Markov chain. For each ¢ € T, let F(t) := F"(t) V F*(t), the
minimal o-field generated by F"(¢) and FZ(¢). Write F = {F(¢)|t € T'}. For each
i,j=1,2,...,N, let {c;(1)]t€ T} be a real-valued, F-predictable, bounded
stochastic process {c;(¢)|t € T} on (2, F,P) such that, for each r € 7,

9] Cij(f) >0, for i # j; and
@ Y, c(r) =0, s0 ci() <O0.

Then a second family of rate matrices, C = {C(¢)|t € 7}, can be defined by
C(r) = [Cij(t)]izl,Z,...,N'

We wish to introduce a new probability measure under which C is a family of
rate matrices of the chain X with indexed set 7. We adopt a version of Girsanov’s
transform for the Markov chain considered by Dufour and Elliott (1999) to define
the new probability measure.

Firstly, for each r € 7, we define the following matrix:

D) 1= [ey(0)/as(0)], -y y= [d50)].

Note that a;(t) > 0, for each r € T, so D(z) is well-defined.
For each ¢ € T, let d°(¢) := (dS(1),d$% (1), . . .,dSy (1)) € RY.
Write, for each ¢t € 7,

DS (1) = DC(¢) — diag(d®(r)).

Here diag(y) is a diagonal matrix with diagonal elements given by the vector
y. Consequently, DS (¢) is the matrix D€(¢) with its diagonal elements being taken
out.

Consider the vector-valued counting process, NX : {NX(¢)|t € T} on (Q, F, P),
where for each 7 € T, NX(1) = (N¥ (1), NX(1), ..., N3 (1))’ € RY and NX() counts
the number of jumps of the chain X to state e; up to time 7, foreachj = 1,2,.. ., N.
Then it is not difficult to check that N has the following semi-martingale dynamics:
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NY() = (1~ diag(X(u)) X

=N*(0) + /Ot (I — diag(X(u—)))'A(r)X(t)dr + '/Ot (I — diag(X(u—)))'dM(r), t € T.

Here N¥(0) = 0, the zero vector in R,

The following lemma is due to Dufour and Elliott (1999) [14] and gives a
compensated version of NX under P, which is a martingale associated with NX. We
state the result here without giving the proof.

Lemma 7.4.1 Let A(r) = A(z) — diag(a(?)), where a(r) = (a11(¢),axn(?),
- an(1)) € RN, for each t € T. Then the process NX = {Nx(t)h € T} defined
by putting
. t
NX(1) = N¥(1) — / Ao(X(u)du, re7T (7.4.17)
0
is an RY-valued (FX,P)-martingale.

Consider the G-adapted process on (Q,F,P) associated with C defined by
setting

A =1+ / t A€(u=) [D§ ()X (u—) — 1] aN¥(u).
0

Here 1= (1,1,...,1) € R".
Then we have the following result.

Lemma 7.4.2 A€ is a (G, P)-martingale and hence E[AC(T)} =1

Proof This is due to Lemma 7.4.1 and the boundedness of c;(f), for each j =
1,2,...,Nand eachr € 7T.
Suppose K is the space of all families of rate matrices C with bounded com-

ponents. Then for each C € K, we use A€ as a density process for a measure
change for the chain X.

Consider a G-adapted process A€ := {A%€(1)|r € T} on (Q, F,P) defined by
A€ty = A1) - AC(1), teT.

Our assumptions together with Lemma 7.4.2 ensure that A%C is a (G, P)-mar-
tingale. Consequently, E[AO’C(T)] = 1. Then A%€ can be a density process for a

general measure change for the Brownian motion w, the jump process Z and the
Markov chain X.
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For each pair (0,C) € @ x K, we define a probability measure P*€ absolutely
continuous with respect to P on G(7T) as

ap’c
dp

oy == A"C(T). (7.4.18)

Consequently, we can define a family P(O x K) of real-world probability
measures P%€ parameterized by (0,C) € © x K.

Here the market can choose a real-world probability measure, or generalized
‘scenario’, from P(O) by selecting a process 6 € ©. So O represents the set of
admissible strategies, or controls, of the market. By choosing different 6 € @ dif-
ferent probability laws for the price process of the share index and the insurance
risk process are obtained. The following theorem gives the probability laws of the
Brownian motion w, the random measure y and the chain X under the new measure

PIe.
Theorem 7.4.1 The process defined by

0 =w - t u)au
w (1) := w(t) /09( Ydu, te€T

is a (G, PG‘C)-standard Brownian motion. Furthermore, under PH’C, the random
measure y has the following compensator:

N
_)(dz,du) = Z —))4iF;(dz)du

i=1

and the chain X has a family of rate matrices C and can be represented as
t
X(r) = X(0) + / C(u)X(u—)du+ME(z),
0

where M€ := {MC (N)|teThis (G, P"C)-martingale.

Proof The proof follows from a general Girsanov theorem for jump-diffusion
processes and a Girsanov transform for a Markov chain.

The following corollary gives the surplus process under PoC,
Corollary 7.4.1 Let y"C(dz,dt) be a random measure having the compensator

vg’((tf)(dz, dt) under PYC. Then, under P"C the surplus process of the insurance
company evolves over time as
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av(t) = [p(2) + r()V(2) + m(1)(u(t) — (1)) — o(t)n(2)0(2)))dr

o (e) - /) T oMz, teT,

V(O) =.
Proof The result follows from Theorem 7.4.1.

Now for each (7, 0,C) € A x @ x K, we consider a vector-valued, controlled,
state process {Y™*C ()|t € T} defined by

dY™"C(1) = (dYo(t), dYT"C (1), dY$ (1)) = (dt,dV™"C(1),dX (1)),
=y=

Y™€(0) (s, 71,¥2),

where under the new probability measure Poe,

dYy(t) = dt,
dYP (1) = [p(e) + () YT (1) + m(t) (ut) — (1)) — o () m(2)0(1)))dr
+ a(t)m()w’ (1) — / 2% (dz, dt),

dY$ (1) = C(t)YS (t—)dt + dMC(z).

(7.4.19)

To simplify the notation, we suppress the superscripts 7 and 0 and write, for each
teT,

YFC () = v, (o), (7.4.20)

Note that the vector-valued, controlled, state process Y is Markov with respect to
the enlarged filtration G under P.

We can now formulate the optimal investment problem. Let U(+) : (0,00) — R
denote a strictly increasing and strictly convex utility. Then, conditional on
Y(0) =y, the object of the insurance company is to find a portfolio process = € A
so as to maximize the following minimal expected utility on terminal surplus over
the family P(@ x K):

: 0,C £
ogg}égg Ey’ [U(Yl (T))] '

Here Eg*c is the conditional expectation given Y(0) = y under P%€. The min-

imal expected utility can be interpreted as the expected utility on terminal surplus in
the ‘worst-case’ scenario.
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The optimal investment problem of the insurance company can now be
described as the following two player, zero-sum, stochastic differential game
between the insurance company and the market.

Problem I Consider

¢(Y)_7511€13((6C§1612 X}CEgc[U( fQ’C(T))}> =EJ ¢ [u(yf*="*=c*(T)) . (7.421)

To solve the related problem I, we need to find the value function @(y) and the
optimal strategies 7* € A and (0%, C*) € © x K of the insurance company and the
market, respectively.

7.4.2.2 Maximizing the Minimal Survival Probability

In this case, 7 : =[0,00). So the optimal investment problem is one in an
infinite-time horizon setting. Firstly, we need to generate a family of real-world
probability measures which are absolutely continuous with respect to the reference
measure P in this infinite time horizon setting. We adopt some results for measure
changes of Elliott (1982) [19] to define the Radon—-Nikodym derivative for the
measure changes in the infinite-time horizon setting. Again, we also use the
Girsanov theorem for a Markov chain to define a measure change.

Consider a process, denoted as 0 = {@(t)|t eT } which parameterizes the
family of real-world probability measures. Suppose the process 0 satisfies the
following conditions:

(1) 0 is G-progressively measurable; and
(2) for each 7 <00
[y 0P(r)dt<oo, P-as.

We denote the space of all such processes 0 by ©.
Define, for each 0 € @, a real-valued, Q—adapted, process {ZO(Z)|I S T} on
(Q, F,P) by setting

Z —exp< /6 Yaw(u /0 Yaw?( /92 du) (7.4.22)

Applying 1t6’s differentiation rule to A4 gives

dA° (1) = A'(1) (=0()dw(t) — B(r)aw? (1)),
A0)=1, P-as.,

(7.4.23)
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and so A is a (G, P)-martingale. Suppose 4’ is a uniformly integrable positive
(G, P)-martingale. Then A’ (00) = lim Ze(z‘), P-a.s. and
1—00

B[4 (c0)|G(r)] = A'(1), P-as., teT. (7.4.24)

Hence,
E[A4 (c0)] = E[47(0)] = 1. (7.4.25)

Again, we consider the density process A€ for the measure change of the
Markov chain X defined in the last subsection. We suppose that A€ is a uniformly
integrable positive (G, P)-martingale. Then A€(c0) = lim A%(f), P—a.s. and

t—0o0

E[A4 (00)|G(1)] = A (1), P-as., teT. (7.4.26)
Consequently,
E[4€(c0)] = E[4%(0)] = 1. (7.4.27)

For each (0,C) € @ x K a new (real-world) probability measure poc equiva-
lent to P can be defined one (2,G(c0)) by putting

dp’c 0
P |00 = A (00) - A¢(c0). (7.4.28)

A family P(O x K) of real-world probability measures parameterized by
(0,C) € @ x K is then generated. Here, @ x K represents the set of admissible
strategies, or controls, of the market.

The following theorem then gives the surplus process V and the semi-martingale

dynamics of the Markov chain X under the new probability measure pre.

Theorem 7.4.2 Define the processes w'<={w"()|te T} and w’=
{W(t)te T} by

G,Z._Wz _ ' uw)du
W = wi(1) /00()d,

0 =Ww — t .
W) = w(t) /0 0(u)du

Then under PH’C, w?2 w? are standard Brownian motions. Furthermore, under

P, the surplus process of the insurance company evolves over time as



7.4 The Optimal Investment Game of the Insurance Company 175

dv(t) = [p(t) + r(OV () + 7(0) (u(r) — (1)) — 0(1)(o(D)7(t) — 02 (1))]at
+ a(n)a(t)dw’ (1) — o:(1)dw (1),

and the Markov chain X has the following semi-martingale dynamics:
t
X(1) = X(0) + / C(u)X(u)du +M°E(r).
0
Similarly to the previous subsection, for each (%,0,C ) EAXO XK, we
consider here a vector-valued, controlled, state process {Y ( )|t e } defined
by

der()C( f=(d ;*zl (1), dY 1)) = (dVﬁ*a’c(t),dX(l))IZ

<=7,0,C _ _
YU 0) =y = 1,y

where under P,
A7 (1) = [p() + r(O Y (1) + (1) (o) — r(0)) — 0(0)(a(0)(r) — 0. (1))]dr

+ a(O)a(tw’ (1) — o (r)aw™,
dY3 (1) = C(1) Y3 (r—)dr +dM ().

(7.4.29)
To simplify the notation, we write
Y = Y0,
YL = 1y (0), (7.4.30)
_C J—
Y, (1) := Ya(1)

It is obvious that the vector-valued, controlled, state process Y is Markov with
respect to the enlarged filtration G under P.

We suppose that ruin occurs when the surplus of the insurance company goes
zero. For each portfolio process 7 € A, let t7 : =t%(-) :  — [0, 00] be the first
time that the surplus process VI of the insurance company reaches zero, that is

=inf{r € T|V}(r) =0}. (7.4.31)

Here 1™ represents the ruin time of the company. Indeed, it is a predictable
stopping time.
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Conditional on Y(0) =y, the object of the insurance company is to select an
investment strategy 7 € A which maximizes the following minimal survival
probability over the family P(6@ x K) of real-world probability measures:

inf P = oofY(0)=y) = inf EVC[I{<"=oc)].  (7.4.32)
(0,c)eOxK (0,c)eOxK

Here E(y)’C is the conditional expectation given Y(0) = y. The minimal survival
probability can be interpreted as the survival probability in the ‘worst-case’ scenario.

The optimal investment problem of the company can then be formulated as the
following stochastic differential game.

Problem II Consider

3(y) = sup( inf  ESC[I{r" = oo}]> —EVC [ =oc}].  (7.4.33)
7eA \ (0,0)e@xK

To solve the problem, we must find 7* € A, (0*,C*) € @ x K and D(¥).

7.4.3 Solution to Optimal Investment Problem I

In this section, we adopt the HIB dynamic programming approach to solve the
optimal investment problem I. We first give a verification theorem for the HIB
solution to problem I. Then closed-form expressions for the optimal strategies of the
game are derived under some assumptions.

Firstly, we specify the relationship between the control processes of the game
and the information structure. Note that the controlled state process Y is adapted to
the enlarged filtration G and that it is also Markov with respect to G.

Let O =(0,T) x (0,00) so that O x £ is our solvency region. Suppose K|
denotes the subset of R such that 7(z) € Kj, for each ¢ € 7. Similarly, let K, be a
subset in R such that 0(¢) € K,, for each # € 7. Suppose K3 is a subset of RY @ RY
such that C(f) € Kj,P-a.s. for each ¢ € 7, where RY @ R" is the space of N x N
matrices. Here we assume that K3 is a rectangular region so that for each
i,j=1,2,...,N,teT.

Cij(t> € [Cl(iaj)’ C”(iaj)] .

for some given constants ¢'(i,j) and ¢"(i,j) satisfying the following conditions:

(1) for each k = L,u and i # j,c*(i,j) € [0, 0);
@ 3oL (i) = 0. (i) <0;
(3) (i,j) <c"(i,)), (i.e. the interval [c(i,j), " (i,j)] is not degenerate).
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We suppose that 7(r) = 7(Y(2)), 0(r) = 0(Y(z)), C(t) = C(Y(z)), for some
functions 7: O x € = K1, 0: O x £ — K, C: O x € — K.

In what follows, with a slight abuse of notation, we do not distinguish between 7
and 7, and between C and (~: and between 0 and 0. Then we can identify the
control 7(¢), C(r) and 6(r) with deterministic functions n(y), C(Y), 6(y), respec-
tively, for each y € O x £. These are called feedback controls.

Since both the state process and the control are Markov, the dynamic pro-
gramming principle can be applied. We first present a verification theorem for the
HIB solution to the stochastic differential game corresponding to problem L

Let H be the space of functions h(-,-,-) : 7 x R* x & — R such that for each
e c& h(--e)eC?(T xR"). Write

h(s,y1) := (h(s,y1,€1),h(s,y1,€2),.. .,h(s,yl,eN))/ e RN,

Then for each (0,C,n) € @ x K x A, the generator of the process Y under the

new measure P%C is a partial differential operator L£0en acting on H:
i Oh Oh
L ()] = 2=+ [p(s) +r(s)h+n(p(t) — (1) — o(1)n0)] 5~
Os o
1 Oh h 7.4.34
+30EmBES 4 [l -z~ ks yy) T4
2 Oy
1 0
x (1= 0)A(s)Fy, (dz) + (h(s, 1), C'y,-),
where y,_ := Y,(s—). Then we have the following lemma, which will be used to

prove the verification theorem.

Lemma 7.4.3 Suppose for each e € &, h(-,-,&;) € C'*(T xR™"). Let t be an
(optional) stopping time such t<oo s. Assume, further, that for each e; € £ and

(0,C,m) € ©@ x K x A, h(s,y1,e;) and LC™[h(s,y1,e)] are bounded on
(s,y1) €T x R". Then

ECh(Y(1)] = h(y) +Ey€ < / Cpoen [h(s, Y1 (s), Ya (s))]ds) . (7.4.35)

0

Proof Applying It6’s differentiation rule for semimartingales to /(Y(z)), then,
combine (7.4.34) and integral on [0, 7|, we can get Lemma 7.4.3.

We present a verification theorem for the HIB solution to problem I in the
following proposition.

Theorem 7.4.3 Let O be the closure of O. Suppose there exists a function ¢ and a
Markov control (0",C",7*) € @ x K x A, such that, for each e €E,
(-, &) € C(O)NC(O),

¢)) ﬁﬁ’c’n*@[d)(s,yl,yz)] >0, for all (0,C) € © x K and (s,y1,y,) € O x &,
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) EH*(y)‘C*(Y)’”[qﬁ(s,yl,yz)} <0, for all m € A and (s,y1,y,) € O X &;
(3) LTOEWTO (s, y1,y,)] = 0, for all (s,y1,¥,) € O X &
@) for all (6,C,m)€ © x K x A, lim ¢(Y"*" (1)) = Uy (1))
t—T-
(5) Let M denote the set of stopping times t:= t(w) <T, for all » € Q, the
Sfamily {qS(YO’C"”(T))}TeK is uniformly integrable.

Define, for each (s,y1,y,) € O x € and (0,7) € ©@ x A
' (y) = EyC[U(y" e (1))]. (7.4.36)

Then

= it (spEe[vore )]

(0,C)e@xK \ zeA

N inf EyC U CN(T 7.4.37
i‘éﬁ<<o.c§2@m ye ooy (7.437)

=supJ"C(y) = inf JOOT
ne./lé)l (y) (0,C)eoxK (y)

=17 (y),

and (0", C*,n*) is an optimal Markov control.

In the sequel, we derive an explicit solution to problem I when the insurer has an
exponential utility. We also need to assume that the interest rate r(z) = 0, for each
t € 7T, in the derivation of the explicit solution.

Let U(+) : (0,00) — R denote an exponential utility function defined by

Ux) = —e*, (7.4.38)

where is o positive constant, which represents the coefficient of absolute risk
aversion; that is

with U, and U,, representing the first and second derivatives of U with respect to x.
We try the following parametric form for the value function:

D(s,y1,¥2) =€ ™'g(s,¥2), (7.4.39)

where g : 7 x £ — R is a function such that, for each y, € &, g(T,y,) = 1.
We can re-state conditions 1-3 of Theorem 7.4.3 as
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inf  L0C [@(y)] = £7C " [@(y)] =0 7.4.40
ot [®(y)] [@(y)] ( )
and
sup L£OCmp(y) = £ [o(y)] = 0. (7.4.40)
ne

When r(r) = 0, the partial differential operator £*<"[®(y)] becomes

2
[:O’C’n[é(y)] —_ + [p( +TC,M ) ([)7[0]2—;1? + %JZ(S)TEZZT?

+ Ax (@(Svyl -3 Y2) - ¢(svy17y2))(1 - O)A(X)Fy:, (dz) + <(l)(s,y1),C’y2,>7

where (D(S»)’l) = (‘D(sayhel)? (D(s7y17e1>7 ey ¢(s7ylveN))/ S RN'
Let g(s) == (g(s,e1),g(s,e1),...,8(s,ey)) € RY, for each s € 7. Then it is not
difficult to see that

£9,C,n[¢(y)] — e |:dg(dsy2) (O(p(S) + om,u(s) — O(O'(S)Tfeféogzgz(s)nﬂ

-0 | (e = Dy, (@9)g(s,ve) + (g(5), Oy

So the first-order condition for a value 7* to maximize £*C™[®(y)] over all
ne Ais
ae ' g(s, ¥, )(—u(s) + a*(s)m* o+ 0 (s)) = 0. (7.4.41)

Similarly, the first-order condition for a value 0" to maximize £ [®(y)] over
all me Ais

e P g(s,y,) (a(s)n*oH— Als) /ODO (1 —e™)Fy, (dz)) =0. (7.4.42)

Therefore, we obtain the following closed-form solutions of the optimal strate-
gies 0" and ©*:

> Mxxw,e»,
: (7.4.43)

i=1

N
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We now need to determine a value C* to minimize £C™[®(y)] over all C <K.
To simplify the notation, we write &; = &(s,y;,¢;), for i=1,2,....N and ® =
@ (s, y). Firstly, we note that the partial differential L7 acting on D(s,y1,y,) is
equivalent to the following system of partial differential operators L'_;)*’C’”* acting on
;.

‘ot 0P; 0?1 PP
0*,C,m 1 — J o x ] O 242 *\2
£ o] =5l )+ — o UV 55+ 3w G
00 N
+/0 (@(s,31 = 2,¥2) = @(s,31,¥2)) (1 = 0)4(5)Fe (d2) + Y @(i)ey (1),
i=1
j=1,2,...N.

O N
Since the only part of EJQ G [®;] that depends on C is the sum ) @(i)c;(z), the
=1

minimization of LJQX’C"”* [®;] with respect to C is equivalent to the following system
of N linear programming problems:
N
min > ®(i)e;(t), j=1,2,...,N.

cij(1),cij(1),...enj (1) P

subject to the linear constraints

N
> i) =0,
i=1

and the ‘interval’ constraints

ci(t) € [d(i,)),c"(.j)], i.j=1,2,...,N.

Note that the linear constraints come from the property of rate matrices and the
‘interval’ constraints are due to the rectangularity of Kj.

When the Markov chain X has two states, we can determine the optimal strategy
C* explicitly by solving the following pair of linear programming problems:

max  [®ycy1(t) + Paco ()],

Cll(t),c‘z]([)

s.t.

ci()+eau(t) =0, cp(t) € [d(1,1),¢(1,1)], teT.

and
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min  [Pyc15(F) + Pacnn(1)],

Cll(t),c‘z]([)

s.t.
ci(t) +en(t) =0, cn() € [(1,2),¢"(1,2)], teT.

The solutions of the pair of linear programming problems are

() = (1L, Vg, —a, > 0 + (L DIg, 0, <0+
e (1) = —cy, (1), teT,

and

cia(t) = ' (1,2) 19,0, > 0y + (1, 2) (0,0, <0}
p(t) = —cip(1), teT.

The explicit form of the optimal strategy C* is, therefore
C'(r) = [ Lt } .

() C’J( ) ij=12,..N

Note that £7C™ [¢(y)] = 0. Then, it is not difficult to see that g(s, &;), satisfy
the following system of coupled, first-order, linear ordinary differential equations
(ODEs):

d 1 1 k *
% - (ap, + oy — 505202( )’ — abiom
00 N
+ (07 — 1)/1,-/ (€™ — 1)Fe,(dz) + )g(s e+ Z g(s,e)c; =0,
0 j=ljti '

(7.4.44)

with terminal condition g(7', e;). Consequently, this is a system of backward ODE:s.
Foreachi=1,2,...,N, define

1
(7'[170:(7 ll) = apl—’_alulnl _E(xzaz( ) —OCH?O';TC;
0 — 1) / (6% — 1)Fe (d2) +c

0

Then a version of the variation-of-constant formula gives

T N
g(s,e) = Ki(m 07 ci)(T=s) . / eKi(m) 07 .c;) (u—s) (Z C;g(uyej)> du. (7.4.45)

=1
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7.4.4 Solution to Problem II

In this section, we first present a general stochastic differential game which includes
problem II as a particular case. Then we give a verification theorem for the HIB
solution to the general game, and semi-analytical solutions to the optimal strategies
to problem II are derived under some assumptions.

Let S := (I, u), for each I,u € R with I <u, so that S x £ is the solvency region.
Write S for the closure of S and 1% = inf{r > 0|Y"(¢) € S} for the bankruptcy time
associated with the portfolio process 7 € .A. To simplify the notation, we suppress
the subscript 7 and write ts = 7%. Let f(x) be a non-negative continuous function,
F(x) a real-valued bounded continuous function, and H(x) a real-valued function.
we define (0,C, 7)€@ x K x A by

J0CR(y) = EHCU FOY (0)e I P O gy (Y™ (zg))e™ o P
0
(7.4.46)
Then the general stochastic differential game can be formulated as
o(y) = sw( _inf J"’C-"(y)) (7.4.47)
7e A\ (0,C)€OxK

Again, we consider Markov controls and assume that 0(¢) := 0(Y(z)), C(t) =
C(Y (7)) and 7(r) = 7(Y(t)). We further suppose that the optimal strategies 0 (y
C*(y) and 7*(y) exist and that [®(y)| < oc.

Let H denote the space of function (-, -) : & x & — (—0o0, 00) such that for each
e €& h(-e)cC*S). Write h(y,) := (h(y1,e1),h(y1,€2), ..., h(y1,ey)) € RY.
Then, for each ((9 C,7) € @ x K x A, we consider the following partial differential

operator £er acting on H:
~0.C o o Oh
LRGN = [p(0) +r(Oh + 7 (u(1) = r(0)) —H(G(t)ﬂ—ﬂz(t))]a—yl
-
+ @O +20(0)0(0)o(0)7 +02(0) 9t — B3+ (), €y,
Y1

(7.4.48)

Then we give the following lemma.
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Lemma 7.4.4 Suppose h(y) € H. Let t be an (optional) stopping time such that

T = 1(w) <00, P—as. Assume further that h(Y(s)) and Eecn[_(_(s))] are
bounded on s € [0,1], then

QC[e*J:ﬂ(vﬁ(s»dsljl(Yﬁ(f))] +E0C I:/ f‘ —” ch[}_z(Yﬁ(s))}ds

(7.4.49)

The proof of Lemma 7.4.4 resembles that of Lemma 7.4.1, so we do not repeat it
here.

The following theorem gives a verification theorem for the HIB solution for the
general game.

Theorem 7.4.3 Suppose there exists a function ¢(-,-) : S x €& — (—o0, 00) such

that for each e €&, ¢ < (.,e)C(S)NC(S), and a Markov control
(0*(y), C*(y), 7*(¥))€O x K x A such that
1) L") + (*)>o for all (,C)€@ x K,y €8 x &;
@ £'" 7ﬁ[ ¥)] +F(F) <0, forall e A,y SxE&
(3) ZO <>[¢( )]—I—F()—OforallnEA yeSx¢&,
4) on {rs<oo}, Y Cn ( s) € OS x &, where OS is the boundary of S, and
Jim §(¥Y" (1) = H(Y" (25))1 {5 <o0}:
(5) let M denote the space of G-stopping times 1(w) < 15(w), forall w€ Q. The
family {QS(VG’CJ&(I))} K is uniformly integrable, for all y € S x £ and
TE
(0,C,1)€d x K x A.
Then, forally € S x €

) =BO) =sp T CHG) = inf JPCF () =T (g).
neA 0,0)e O xK

(7.4.50)

and (0°,C*, &) is an optimal Markov control.

The proof of Theorem 7.4.3 resembles that of Theorem 7.4.2.

In what follows, we derive the solution to Problem II. In this case, [ = 0, u = oo,
F(x) =0 and f(x) = 0. We also assume that r(r) = 0, for each ¢ € 7. In this case,
the partial differential operator becomes
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Z@ﬁcjﬁ[ﬁ(yﬂ _ [p(l) +7u(t) — 0(a(t)m — Gz(f))] g_;

B(¥)h+ (h(y1), C'y,).
(7.4.51)

1 0*h
+ 5 ()7 +2p(1)o (D)o ()7 + 02(1) =5 —
2 , oy?
Firstly, the value function satisfies the following boundary conditions:
b(y1,¥,) =0, 1 =0, (7.4.52)
5(5’155’2) = 17 Y1 — Q. (7453)

We try a solution of the following form:

V) = y _y(yZ) e 1327
o(y) <K(yz) e ) (7.4.54)

where () : € =R, y(-): E > R" and k(-) : £ - R™ are some functions.
The boundary conditions imply that

B(y) = (1 — e D0y, (7.4.55)

Note that F(x) = 0. Conditions (1)—(3) of Theorem 7.4.3 read

. -0.C o L
(@,Cl)relféxlcl: oW =L [2(y)] =0. (7.4.56)
sup 2 [@(y)] = 277 [@(y)] =0 (7.457)

neA

Note that

L' CT@B(5)] = n(F2)e " [p(s) + Tls) — Do (s)7 — 02(s))

- % (0% (5)7* +2p(s)a(s)a.(s)7 + a2 (5))n(F2)] + (D), C'y2),
(7.4.58)

where 6(511) = (5()_11,61),5()_71,62), .. .,5()_/1 , eN))' S RV,

The first-order condition for a minimum point 6* of £"er [5()’1)] gives

7 (¥, : EN: (GZ‘) 35, e (7.4.59)

i=1
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Similarly, the first-order condition for a maximum point 7* of £ [@(y)] gives

(5 = M 000 = Dolodnts) 7460

As in the previous section, we have to determine a value C* € K to minimize
27" over all C € K. For each i= 1,2,...,N, let ®&; = ®(y;,e;). Write
@ := ®(y,). Then the partial differential operator e acting on ®(y) is equiv-

. L . A0 Cr . —
alent to the following system of partial differential operators Ej on acting on @;

=1
*

C' = —n(e;)y =k n* =%
(@] = n(e))e " [pj+ 7", — 0" (a7 — )

<

N
=5 (0 () — 2p,0j047" + az)n(ej)] + Z D(i)cy(t), j=1,2,...,N.
i1

(7.4.61)

Again, the minimization problem is equivalent to the following N linear pro-
gramming problems:

N
min ®D(i)ci(t), j=1,2,...,N
clj(z),cz,(r)w,L-Nj(z); (£)ei (1), e
subject to the linear constraints
Cij(t) =0,
i=1
and the ‘interval’ constraints

ci(t) € [d(i,)), c"(i.))], ij=12,...,N.

When the Markov chain X has two states the solutions of the system of linear
programming problems are

CTI(I) = Cl(l7 1)1{(1514152 >0} +cu(lv 1)1{<1>17(I>2<0}7
(1) = —cy (1), 1T,

and

(1) = (1,2)1g,-0, > 0y + " (1,2) 14, ~a, <0+
() = —cpp(1), teT.
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Consequently, the optimal strategy C* is, therefore, C*(¢) = [c;(t)]

. =12, N
Note that Z;)"C’n [@(y)] = 0. Then n(e;), j=1,2,...,N, satisfy the following

system of N nonlinear equations:

— )y —% n* —% 1 —% =%
n(ej)e n(e)n {pj +7u—0 (ajn - sz) ~3 (0']2(11 )2 —2poj0,T )n(ej)]
N

+ Z;e*’l(ef)ﬁlc;;(;) =0, j=12,...,N.

7.5 Summary

We using a game theoretic model under linear Markov jump systems which
obtained from the previous chapters. Firstly, a risk minimization problem of port-
folio is considered in Markovian regime switching. And then, we obtained the
equilibrium solution of European option pricing problem under Markovian regime
switching. We adopted a robust approach to describe model uncertainty and for-
mulated the optimal investment problems as two-player, zero-sum, stochastic dif-
ferential games between the market and the insurance company, and deduced the
optimal strategy of closed game.
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