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Preface

Differential game refers to a kind of problem related to the modeling and analysis of
conflict in the context of a dynamical system. More specifically, a state variable or
variables evolved over time according to differential equations. It is a mathematical
tool for solving the bilateral or multilateral problems in dynamic continuous con-
flicts, competition, or cooperation, which has been widely applied in the fields of
military, industrial control, aeronautics and astronautics, environmental protection,
marine fishing, economic management and the market competition, finance,
insurance, etc.

This book is focused on the generalized Markov jump linear systems which is
widely used in engineering and social science, using dynamic programming method
and the Riccati equation method to study the dynamic non-cooperative differential
game problems and its related applications. This book includes the following
studies: the stochastic differential game of continuous-time and discrete-time
Markov jump linear systems; the stochastic differential game of linear stochastic
differential game of generalized Markov jump systems; the stochastic H2/H∞ robust
control of generalized Markov jump systems; and the risk control of portfolio
selection, European option pricing strategy, and the optimal investment problem of
insurance companies. In addition, this book created a variety of mathematical game
models to derive the explicit expression of equilibrium strategies, to enrich the
theory of equilibrium analysis of dynamic non-cooperative differential game of
generalized Markov jump systems. It is to analyze and solve the robust control
problems of generalized Markov jump systems based on the game theory. The
applications of these new theories and methods in finance and insurance fields were
presented.

The main content is divided into the following six sections:

1. The introduction and basic knowledge

This section introduces the basic models and the latest research of generalized
Markov jump systems, the research content of differential game theory of gener-
alized Markov jump systems, and the related concepts of differential game theory.
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2. The stochastic differential game of continuous-time Markov jump linear systems

From the perspective of stochastic LQ problem, this section studied the stochastic
optimal control problem of continuous-time Markov jump linear systems, and then
to extend study on the two-person Nash stochastic differential game problem,
finally to explore the two person Stackelberg stochastic differential game problem,
and to achieve the equilibrium solutions of various problems.

3. The stochastic differential game of discrete-time Markov jump linear systems

From the perspective of stochastic LQ problem, this section studied the stochastic
optimal control problem of discrete-time Markov jump linear systems, and then to
extend study on the two person Nash stochastic differential game problem, finally
to explore the two person Stackelberg stochastic differential game problem, and to
achieve the equilibrium solutions of various problems.

4. The stochastic differential game of generalized Markov jump linear systems

This part is to establish the following models: two person zero-sum stochastic
differential game, two person nonzero-sum game, Nash game, Stackelberg game, to
achieve the equilibrium solutions, and to obtain the explicit expressions of the
equilibrium strategies.

5. The stochastic H2/H∞ control of generalized Markov jump linear systems

Based on Nash game and Stackelberg game, this part is to establish the Markov
jump linear systems models, the stochastic H2/H∞ control of generalized Markov
jump linear systems models, to achieve the mathematical expression of the optimal
robust control.

6. The stochastic differential game of generalized Markov jump linear systems in
the applications in the fields of finance and insurance

This part is to establish differential game models of the minimal risk control of
portfolio selection, option pricing strategy, and the optimal investment of insurance
companies. And regarding the probability measurements of the economic envi-
ronment as a player, regarding the investors as another player, the differential game
models are to achieve the optimal control equilibrium strategies by solving two
person differential game problems.

The research achievements of this book are sponsored by two foundations: the
National Natural Science Foundation of China, which is named “Non-cooperative
stochastic differential game theory of generalized Markov jump linear systems and
its application in the field of finance and insurance” (71171061); and the Natural
Science Foundation of Guangdong Province, which is named “Non-cooperative
stochastic differential game theory of generalized Markov jump linear systems and
its application in the field of economics” (S2011010000473). All achievements of
this research are counting on the assistances and supports of National Nature
Science Foundation of China and the Natural Science Foundation of Guangdong
Province. Thanks a lot!
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A group of members contribute to the accomplishment of this book, which
includes the following: Dr. leader Zhang Cheng-ke, who is the professor; the
doctoral student supervisor; the dean of School of Economics and Commerce,
Guangdong University of Technology; the executive director of Chinese Game
Theory and Experimental Economics Association; the executive director of
National College Management of Economics Department Cooperative Association;
vice chairman of Systems Engineering Society of Guangdong Province; Dr. Zhu
Huai-nian, who is the lecturer of School of Economics and Commerce, Guangdong
University of Technology; Dr. Bin Ning, who is the lecturer of School of
Management, Guangdong University of Technology; and Dr. Zhou Hai-ying, who
works in Students’ Affairs Division, Guangdong University of Technology. Team
members play a team spirit; have close cooperation; work in unity and cooperation;
publish a number of papers, which has laid a good foundation for the completion of
this book. The achievements of this book presented in front of readers are the
collaborative efforts and hard work of all members of the research group!

Thanks to Zhang Chengke’s graduate students Cao Ming, Zhu Ying! They have
made a lot of work in terms of manuscript input, format correction, and check the
formula, etc.

Special thanks for the help and supports of Guo Kaizhong, who is the professor
of Guangdong University of Technology; and Cao Bingyuan, who is the professor
of Guangzhou University! Owing to their constant encouragements make this book
completed and presented to the readers as soon as possible.

Counting on the References to the scholars quoted in the book, which make the
fruitful base of our work!

Although we have made a lot of efforts for the completion of this book, due to
the limited level, there must be a lot of shortcomings and deficiencies. Please to
criticize and correct.

Guangzhou, China Cheng-ke Zhang
Huai-nian Zhu
Hai-ying Zhou

Ning Bin
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Content Introduction

This book systematically studied the stochastic non-cooperative differential game
theory of generalized linear Markov jump systems and its application in the field of
finance and insurance. First, this book was an in-depth research of the
continuous-time and discrete-time linear quadratic stochastic differential game, in
order to establish a relatively complete framework of dynamic non-cooperative
differential game theory. And using the method of dynamic programming principle
and Riccati equation, this book derive into all kinds of existence conditions and
calculating method of the equilibrium strategies of dynamic non-cooperative dif-
ferential game. Then, based on the game theory method, this book studied the
corresponding robust control problem, especially the existence condition and design
method of the optimal robust control strategy. Finally, this book discussed the
theoretical results and its applications in the risk control, option pricing, and
the optimal investment problem in the field of finance and insurance, enriching the
achievements of differential game research.

This book can be used as a reference book for graduate students majored in
economic management, science and engineering of universities in learning
non-cooperative differential games, and also for engineering technical personnel
and economic management cadres.
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Chapter 1
Introduction

1.1 Research and Development Status of Generalized
Markov Jump Linear System Theory

1.1.1 Basic Model of Generalized Markov Jump Linear
Systems

The research of switched systems is mainly carried out with the research of hybrid
systems [1–5]. A hybrid system is a dynamic system that exhibits both continuous
and discrete dynamic behavior–a system, such as manufacturing systems, weather
forecast systems, power systems, biological systems, as well as option pricing
models in financial engineering, insurance surplus distribution models, multi-sector
fixed asset dynamic input-output models, etc., that can both flow (described by a
differential equation) and jump (described by a state machine or automaton). In the
process of its operation, a hybrid system often suffers from a sudden change in the
environment, internal connection changes between each subsystem in a large sys-
tem, changes of nonlinear objects, damages of the system components and random
mutations, such as human intervention. These phenomena can be seen as a response
of the system driven by a class of random events. In general, the state of such a
system is defined by the values of the continuous variables and a discrete mode.
The state changes either continuously, according to a flow condition, or discretely
according to a control graph. Continuous flow is permitted as long as so-called
invariants hold, while discrete transitions can occur as soon as given jump condi-
tions are satisfied. Discrete transitions may be associated with events. Such systems
are often called hybrid systems in control theory.

When the discrete event of hybrid systems is characterized by discrete switching
signals, such important systems are called jump systems. This kind of systems can
be described by finite subsystems or dynamic models, and at the same time there is
a switch law, which makes the switching between various subsystems.

© Springer International Publishing Switzerland 2017
C.-k. Zhang et al., Non-cooperative Stochastic Differential Game Theory
of Generalized Markov Jump Linear Systems, Studies in Systems,
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A stochastic jump system can usually be described by the following state
equations:

_xðtÞ ¼ f ðt; xðtÞ; uðtÞ; rðtÞÞ;
rðtÞ ¼ uðt; xðtÞ; rðt�Þ; uðtÞÞ:

�
ð1:1:1Þ

where xðtÞ 2 R
n is a continuous variable, uðtÞ 2 R

m is an external signal of con-
tinuous control input or continuous dynamic systems, rðtÞ is a piece-wise constant
function valued in a finite set N ¼ f1; � � � ; lg, usually referred as “switch signals”,
or “switching strategy” of the system. rðt�Þ indicates that rðtÞ is a piece-wise
constant right hand continuous function. When rðtÞ takes different values, the
system (1.1.1) corresponds to different subsystems. f ð�; �; �; �Þ reflects continuous
state variables changes of the system, uð�; �; �; �Þ is the transition function of discrete
states, which reflects dynamic changes of logic strategies or discrete events of
systems. Obviously, when the switching strategy rðtÞ 2 N ¼ f1g, the random jump
system is degraded as a simple stochastic system. So, a simple random system is a
special case of the stochastic jump systems (1.1.1).

A generalized stochastic jump system is usually described by the following state
equations:

E _xðtÞ ¼ f ðt; xðtÞ; rðtÞ; uðtÞÞ;
rðtÞ ¼ uðt; xðtÞ; rðt�Þ; uðtÞÞ;

�
ð1:1:2Þ

where E 2 R
n�n is a known singular matrix with 0 < rank(E) = k ≤ n, xðtÞ 2 R

n,
uðtÞ 2 R

m, rðtÞ, rðt�Þ, f ð�; �; �; �Þ, uð�; �; �; �Þ are the same as system (1.1.1).
This book is focused on a kind of special jump systems with Markov switching

parameters, which is known as Markov jump systems. In such systems, the
switching rules determine which corresponding subsystem the system would be
switched to at each moment, and the state of the system would be switched to the
corresponding state at the corresponding moment. But during the process of the
system switching from one mode to another mode, there is no switching rule to
obeying, and the switching process between different modes is random. This kind
of random switching accords with some certain statistical properties—the trans-
formation among various regime of the discrete event finite set of the system is a
Markov jump process, therefore, it can be also regarded as a special case of
stochastic systems, called stochastic Markov switching systems (also known as
stochastic Markov jump systems, or stochastic Markov modulation systems).

A Markov jump system is constructed by two parts. One part of the system is the
state of the system, and the other part is the system mode, which depends on the
Markov process, deciding the execution of the subsystem at a certain moment, in
order to control and coordinate the normal operation of the whole system.
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(1) Mathematical Model of Continuous Generalized Markov Jump Systems

The continuous generalized stochastic Markov jump linear system is described
as:

E _xðtÞ ¼ AðrðtÞÞxðtÞþBðrðtÞÞuðtÞ; ð1:1:3Þ

where E 2 R
n�n, x 2 R

n, uðtÞ 2 R
m are the same as system (1.1.1), and the “switch

signals” or “switching strategy” of the system rðtÞ 2 N ¼ 1; � � � ; lf g is a Markov
chain with finite state. N is the state space. Define P ¼ ½pij�l�l as the transition
matrix of Markov process rðtÞ, and the transition probability could be written as:

Pr rðtþDÞ ¼ j rðtÞ ¼ ijf g ¼ pijDþ oðDÞ; if i 6¼ j;
1þ piiDþ oðDÞ; else;

�
ð1:1:4Þ

where pij represents the transition probability from mode i to mode j, with pij � 0,Pl
j¼1 pij ¼ 1, and oðDÞ is the higher order infinitesimal. The matrice AðrðtÞÞ and

BðrðtÞÞ are the functions of the stochastic process rðtÞ, and for each rðtÞ ¼ i 2 N,
AðrðtÞÞ and BðrðtÞÞ are real matrices with appropriate dimension.

(2) Mathematical Model of Discrete Generalized Markov Jump Systems

The discrete generalized stochastic Markov jump linear system is described as:

Exðkþ 1Þ ¼ AðrðkÞÞxðkÞþBðrðkÞÞuðkÞ; ð1:1:5Þ

where E 2 R
n�n, xðtÞ 2 R

n, uðtÞ 2 R
m are the same as system (1.1.3), and the

elements of the transition probability matrix K ¼ ½kij�l�l of the system switching
track rðkÞ 2 N ¼ 1; � � � ; lf g are given by:

kij ¼ Pr rðkþ 1Þ ¼ j rðkÞ ¼ ijf g; ð1:1:6Þ

where kij represents the transition probability from mode i to mode j, which satisfies

that kij � 0,
Pl
j¼1

kij ¼ 1.

(3) Applications of Generalized Stochastic Markov Jump Linear Systems

As a special kind of stochastic jump systems, the Markov jump system has
practical applications with engineering background. Such as the influence of sudden
changes of environment on the behavior of the system, changes of interconnected
subsystems, changes of nonlinear system operations, etc., can all be considered as
random switching between multimodal systems. Economic system, aircraft control
system, robot manipulator system, large space flexible structure system and
stochastic decision-making and continuous control systems all have such kinds of
system models. Especially in the field of finance and insurance, for example,

1.1 Research and Development Status of Generalized … 3



in 1973, Black and Scholes used geometric Brownian motion to simulate the price
of risk assets of options at time t, that is

dXðtÞ ¼ lXðtÞdtþ rXðtÞdwðtÞ; ð1:1:7Þ

where l is the rate of return, r is the disturbance rate, wðtÞ is the Brownian motion,
reflecting the changes of financial market. Although Black used (1.1.7) to give an
almost perfect formula of option pricing, the model still had many defects, such as:
(a) it failed to depict the discontinuous change of stock price; (b) the empirical
analysis showed that the stock volatility was not constant. So many scholars tried to
improve the model. On one hand, Merton (1976) put forward a jump diffusion
model, which adding a jump process on the model (1.1.7) to characterize the
discontinuous changes in stock price [6]. On the other hand, some researchers
proposed to let the coefficient of the geometric Brownian motion depends on some
hidden Markov chain, that is to say, assuming risk assets are satisfied that:

dXðtÞ ¼ lðrðtÞÞXðtÞdtþ rðrðtÞÞXðtÞdwðtÞ; ð1:1:8Þ

which rðtÞ is a Markov chain with finite state, and assuming its state space is
N ¼ 1; � � � ; lf g, the infinitesimal operators is P ¼ ½pij�l�l. In economics, the state of
rðtÞ is usually called regime-switching or Markov regime-switching, and XðtÞ is
called a process of geometric Brownian motion with Markov regime-switching. The
state of rðtÞ can be interpreted as economic condition structure changes, the
regime’s replacement, alternating macro news, and economic cycles, etc. There are
many literature discussing model (1.1.8), for instance, when l ¼ 2, Guo (2000) [7]
studied Russia’s options pricing problems with Markov modulated geometric
Brownian motion model. Guo (2001) [8] further studied an explicit solution to an
optimal stopping problem with regime switching, and Jobert (2006) [9] extended
the result of Guo into option pricing with finite state Markov-modulated dynamics.
Recently, Elliott (2007) [10] studied a class of pricing options under a generalized
Markov-modulated jump-diffusion model, assuming that asset price followed:

dXðtÞ ¼ lðrðtÞÞXðtÞdtþ rðrðtÞÞXðtÞdwðtÞþXðt�Þ
Z
R

þ
zNðdt; dzÞ; ð1:1:9Þ

where Nðdt; dzÞ is the possion measure.
So, in the field of engineering systems as well as the social and economic

systems, such as the option pricing problem in financial engineering, investment
insurance dividend distribution problems, multi-sectoral dynamic input-output
model of fixed assets, and actual economic system models. All these systems can all
be described by the mathematical model of generalized stochastic Markov jump
linear systems.
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1.1.2 Research Status of Generalized Markov Jump Systems

(1) Research on the theory of generalized Markov jump systems

Concrete model of stochastic Markov jump linear systems was first put forward
by Krasovskii and Lidskii [11] and Florentin [12] as a numerical example of
mathematical analysis. Many researches mainly focused on the stability and sta-
bilization controller design of stochastic jump systems in recent 10 years [13–20].
Professor Mao, one of the famous international scholars in the field of stochastic
analysis, issued the asymptotic stability results and numerical methods of stochastic
jump systems in his monograph published in 2006 [21]. Professor Mao and his
coauthor Dr. Huang studied the stability of singular stochastic Markov jump sys-
tems. There are too many researches about the application in engineering and social
economy of Markov jump systems, and we can’t list them all in a limited space.
Our analysis focused on optimal control problem of stochastic Markov jump system
(i.e., problem of single stochastic Nash differential game) and the robust control
problem which are closely related to this book.

Sworder (1969) first discussed optimal control problem of hybrid linear systems
with Markov jump parameters from the perspective of stochastic maximum principle
and applied it to the actual control problems [22]. Then, Wonham (1971) proposed
the dynamic programming problem of stochastic control system, and successfully
applied it to the optimal control of linear jump systems [23]. Fragoso and Costa
(2010) gave the separation principle for LQ problems of stochastic Markov jump
system in continuous time setting [4]. Görges et al. (2011) proposed the optimal
control problems and solution methods of generalized jump systems [5].

Boukas et al. (2001) studied LQR problem of controlled jump rate [24].One of
the Chinese scholars named Sun (2006) conducted the control and optimization
problem of jump systems, systematically [25]. Mahmoud et al. (2007) gave the
analysis results and synthesis of uncertain switched systems in discrete-time setting
[26]. Zhang (2009) studied the stability and stabilization of Markov jump linear
systems with partly transition probabilities [27–30]. Guo and Gao studied the jump
structure control of singular Markov jump systems with time delay [31]. Dong and
Gao gave the analysis and control of generalized bilinear Markov jump systems
[32]. Zhang and Zhang studied the control theory and application about nonlinear
differential algebraic system (including generalized bilinear systems), systemati-
cally [33]. Obviously, the research on the singular (or non-singular) stochastic
Markov jump linear quadratic optimal control problem (i.e. LQ problem) has rel-
atively obtained a number of achievements, which lay a solid foundation for
studying the non-cooperative game theory of generalized stochastic Markov jump
systems. But at present, the research results on the LQ non cooperative differential
game theory of the generalized stochastic Markov jump system are less, so we put
forward the research of LQ non-cooperative differential game theory of generalized
stochastic Markov jump systems.
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(2) Research on Non-cooperative differential game theory driven by ordinary
differential equations and stochastic differential equations

The study of game theory has also made abundant achievements, among which,
there are many researches on dynamic non-cooperative differential game theory,
where the system dynamics are described by differential equations, which includes
saddle point equilibrium theory of zero-sum game, Nash equilibrium nonzero-sum
game, Stackelberg leader-follower game theory and incentive theory.

For normal systems (such as deterministic and stochastic systems), Basar (1995)
[34] summarized the dynamic non-cooperative differential game theory and its
application results described by ordinary differential equations and stochastic dif-
ferential equations in his monograph, systematically (see [34] and cited literatures).
Xu and Mizukami have studied the saddle point equilibrium, Nash equilibrium,
Stackelberg game theory and incentive theory of linear singular systems, system-
atically, (see [35–40] and cited literatures). Dockner et al. (2000) described the
non-cooperative differential games with its applications, including the capital
accumulation, public goods investment, marketing, global pollution control,
financial and monetary policy, international trade and other issues of differential
games, and this monograph is known as Bible study of differential games [41].
Erickson (2003) introduced the differentia game model of advertising competition,
systematically [42]. Zhukovskiy (2003) introduced Lyapunov method in the field of
stochastic differential games, in this book, his mainly use the technique of dynamic
programming and optimization vector [43]. Jorgensen and Zaccour (2004) mainly
studied the differential game in marketing, and introduced the application of dif-
ferential games in the pricing-making, advertising, marketing channels and other
fields [44]. And they had published many research papers with high citations of
differential game theory and applications in recent years. Engwerda [45] (2005)
introduced the LQ differential game problems and its application examples in
economics and management science, and studied the mathematical skills of how to
solving the Riccati equations associated with differential games, systematically
(Engwerda 2000, 2003; Engwerda and Salmah 2009) [46–48]. Hamadene (1999)
studied the nonzero-sum LQ stochastic differential game of BSDEs [49]. The main
analytical tools used in these studies are still variation principle, the maximum
principle and dynamic planning. In domestic, Academician Zhang Siying’s book
(1987) [50] “Differential Game” and Professor Li Dengfeng’s book(2000) [51]
“Differential Game and Its Applications” are the early related literature, but these
two books mainly focus on differential games’ applications in military and control
problems, and pay little attention on applications in economics and management.
Because of published influential papers about two zero-sum differential game with
impulse control, professor Yong has been highly praised by Berkovitz who is the
editor of American Mathematical [52]. Professor Liu also gave the application of
leader-follower game to linear multi-sector dynamic input-output of generalized
linear system [53]. Wang et al. (2007) studied on the linear quadratic nonzero-sum
stochastic differential game under partially observable information [54]; Wu and Yu
(2005, 2008) studied the linear quadratic nonzero-sum stochastic differential game
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problem with stochastic jump, also studied BSDEs differential game with jump and
its application in financial engineering [55, 56]; Luo studied the indefinite linear
quadratic differential games and indefinite stochastic linear quadratic optimal
control problem with Markov jump parameters [57]. In the application of differ-
ential games, there is also a growing number of scholars who applying differential
game to option pricing [58] (Zheng 2000), the optimal investment in consumption
[59, 60] (Liu et al. 1999; Wu and Wu 2001), fisheries resource allocation [61, 62]
(Zhang et al. 2000; Zhao et al. 2004), advertising competition and supply chain
[63–67] (Zhang and Zhang 2005, 2006; Fu and Zeng 2007, 2008; Xiong etc.,
2009), dynamic pricing with network externalities [68] (Liu et al. 2007) and other
areas.

(3) Research on robust control of generalized Markov jump systems

The results of jump robust control systems are relatively poor. Hespanha (1998)
[69] studied the H∞ control of jump systems. After that, much attention have been
paid on H∞ control. Xu and Chen proposed the H∞ control of uncertain stochastic
bilinear systems with Markov jumps in discrete-time setting [70]. Ting et al.
(2010) [71] studied the mixed H2/H∞ Robust control problems of stochastic sys-
tems with Markov jumps and multiplicative noise in discrete- time setting. All the
scholars above used the Lyapunov method (including linear matrix inequality
(LMI) method), in this book, we are going to study robust control of stochastic
Markov jump linear systems based on game theory. Pioneering work using game
theory to study in robust performance controller was first given in the 1960s by
Doroto et al. [72], but it did not arouse enough attention due to the need of solving
the differential mini-max problem. Since 1990, this design was thought to be used
as a powerful weapon to robust design, and the basic idea was transforming the
corresponding robust control problem into a two person differential game of saddle
point equilibrium or Nash equilibrium. Basar and Limebeer et al. [73, 74] con-
tributed the representative work. And Limebeer et al. converted the mixed H2/H∞

control of linear systems into a Nash equilibrium game, and obtained the optimal
control strategies. But for the stochastic Markov jump linear systems, there are few
results of robust control with various performance based on game theory.

(4) Research on applications of generalized Markov jump systems

There are many applications of Markov jump systems in the field of engineering,
such as the automatic control of driving shifting systems, traffic management
systems and electrical systems, and so on [75]. While application in the field of
social science and economic science (in social science and economic science,
Markov jump systems are usually referred to Markov switching systems or Markov
regime-switching systems) including, ①: risk asset pricing model and the surplus
model of an insurer in finance and insurance (detailed description were covered in
ref. [76] and reference therein). In terms of VaR measure of risk management in
financial market, there exists a fact that the state of financial time series or
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macroeconomic variables may suddenly change to another state, especially in
China’s economic entities, based on this fact, doctor Su proposed the ARCH model
and the CAPM model with Markov regime-switching, and made the empirical
research by using the Chinese data [77, 78]. ②: Dynamic input-output model of
multi-sectoral fixed assets (described in detail in the analysis of the socio-economic
needs of ①) [79, 80]. ③ Loan pricing of commercial bank with credit rating
switching, Dr. Yao represented the credit rating switching process as a continuous
time, homogeneous, finite state Markov process, and studied the pricing model of
Jarrow et al. (1997) and Lando (1998) [81]. Zhao divided the fluctuation of stock
returns in Shanghai Stock Market into three states, “bear”, “Bull of mild,” “Bull of
mad”, using the method of MSVAR to exploring the existence of bubbles in stock
market, and identified the exact time of speculative bubbles [82].

(5) Development trend

Feature 1: At present, more and more special hybrid systems, stochastic Markov
jump systems are used to modeling the practical problems in social and economic
system, instead of the general stochastic system.

Feature 2: The research on LQ optimal control problem of stochastic Markov
jump linear systems has made great process, while the corresponding results of LQ
differential game theory are rare.

Trend 1: Analysis and control theory of linear systems can be extended to the
analysis and control theory of generalized linear systems; Robust control theory of
linear systems can be extended to the generalized linear systems; Dynamic
non-cooperative game theory of linear systems can also be extended to the gen-
eralized linear systems.

Trend 2: Research on robust control of generalized stochastic Markov jump
linear systems has been one of the important research directions, and game theory
has become one efficient method to dealing with the robust control problem. Thus,
the research on robust control problems of stochastic Markov jump systems based
on game theory is a new research direction.

Trend 3: Analysis and control theory of stochastic linear systems can be
extended to analysis and control theory of generalized stochastic Markov jump
linear systems.

1.2 Differential Games for the Generalized Markov Jump
Linear Systems

Differential games study a class of decision problems, under which the evolution of
the state is described by a differential equation _xðtÞ ¼ f ðt; xðtÞ; uðtÞ; vðtÞÞ, where
u(t) and v(t) are control strategies of two players. This differential equation is called
the state system of the differential game. When the differential equation is a state
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equation of generalized systems (also known as singular systems, descriptor
systems, or generalized state-space systems: E _xðtÞ ¼ f ðt; xðtÞ; uðtÞ; vðtÞÞ, in which
E is a known singular matrix with rank(E) = k ≤ n, and the system is regular. The
corresponding differential game is called differential games of the singular systems,
and when the differential equation contains random disturbance, that is

EdxðtÞ ¼ f ðt; xðtÞ; uðtÞ; vðtÞÞdtþ rðt; xðtÞ; uðtÞ; vðtÞÞdwðtÞ; ð1:2:1Þ

where w(t) is the random disturbance, the differential game is called the stochastic
differential game of generalized dynamic systems. If the behavior of players follows
a binding agreement that both players will obey, the game is known as a cooper-
ative game, otherwise known as a non-cooperative game. The book mainly
discusses the non-cooperative game, in which each player has an cost function
J1(t, x(t), u(t), v(t)) and J2(t, x(t), u(t), v(t)).

When rank(E) = n, that E is nonsingular, (1.2.1) becomes a normal stochastic
system, that is

dxðtÞ ¼ ~f ðt; xðtÞ; uðtÞ; vðtÞÞþ ~rðt; xðtÞ; uðtÞ; vðtÞÞdwðtÞ; ð1:2:2Þ

where ~f ð�; �; �; �Þ ¼ E � f ð�; �; �; �Þ, ~rð�; �; �; �Þ ¼ E � rð�; �; �; �Þ, So it can be said that
dynamic non-cooperative differential game theory of a normal (nonsingular)
stochastic systems is a special case of that of a generalized (singular) stochastic
systems, and the dynamic non-cooperative differential game theory of generalized
stochastic systems is the natural generalization of normal stochastic systems.

Non-cooperative differential game theory of the generalized Markov jump linear
systems usually contains: the existence conditions and solution methods of
equilibrium strategies, such as the saddle-point equilibrium problem, the Nash
equilibrium problem and the Stackelberg equilibrium problem. Here, we take the
Nash equilibrium problem as an example, the problem is that: how both players
choose their strategy control variables u(t) and v(t) to optimizing their cost function
J1(t, x(t), u(t), v(t)) and J2(t, x(t), u(t), v(t)), that is to find the control strategy set
ðu�ðtÞ; v�ðtÞÞ and the state x�ðtÞ satisfies

J1ðt; x�ðtÞ; u�ðtÞ; v�ðtÞÞ� J1ðt; x�ðtÞ; uðtÞ; v�ðtÞÞ; 8uðtÞ 2 U;
J2ðt; x�ðtÞ; u�ðtÞ; v�ðtÞÞ� J2ðt; x�ðtÞ; u�ðtÞ; vðtÞÞ; 8vðtÞ 2 V;
s:t:
E _x�ðtÞ ¼ AðrðtÞÞx�ðtÞþBðrðtÞÞu�ðtÞþCðrðtÞÞv�ðtÞ; u�ðtÞ 2 U; v�ðtÞ 2 V:

8>><
>>:

ð1:2:3Þ

Obviously, if there’s only one player in the game, the problem of Nash differ-
ential games for generalized Markov jump linear systems (1.1.12) becomes an
optimal control problem for such systems: to find an optimal control strategy u�ðtÞ
satisfies
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min Jðt; xðtÞ; uðtÞÞ
s:t:
E _xðtÞ ¼ AðrðtÞÞxðtÞþBðrðtÞÞuðtÞ; uðtÞ 2 U:

8<
: ð1:2:4Þ

So, the optimal control problem (1.2.4) is a special case of the Nash differential
games (1.2.3) for generalized Markov jump linear systems.

1.3 Contents of This Book

Chapter 1. Introduction. This chapter introduces the development and research of
the theory for the generalized Markov jump linear system, and the main content of
this book.

Chapter 2. The definite and stochastic differential game. This chapter introduces
some preliminary knowledge and dynamic optimization technique for the research,
and explains basic concepts of the non cooperative differential game and the
stochastic differential game.

Chapter 3. The stochastic differential game for the continuous-time Markov
jump linear system. This chapter introduces the existence condition, the design and
solution of the saddle-point equilibrium strategies, the Nash equilibrium strategies
and the Stackelberg strategies for the continuous-time linear Markov jump system.

Chapter 4. The stochastic differential game for the discrete-time Markov jump
linear system. This chapter introduces the existence condition, the design and
solution of the saddle-point equilibrium strategies, the Nash equilibrium strategies
and the Stackelberg strategies for the discrete-time Markov jump linear system.

Chapter 5. The stochastic differential game for the continuous-time generalized
Markov linear jump system. This chapter introduces the existence condition, the
design method and the approximation algorithm of the saddle-point equilibrium
strategies, the Nash equilibrium strategies and the Stackelberg strategies for the
continuous-time generalized Markov jump linear system.

Chapter 6. The robust control problems of the generalized Markov jump linear
system based on the game theory approach. This chapter studies the H2/H∞ robust
control problems of the Markov jump linear system. By means of the results of
indefinite stochastic differential game for Markov jump linear systems discussed
above, we viewed the control strategy designer as one player of the game, i.e. P1,
the stochastic disturbance as another player of the game, i.e. “nature” P2, respec-
tively, the robust control problems are transformed into a two person differential
game model, player P1 faced the problem that how to design his own strategy in the
case of various interference strategy implemented by “nature” P2, both balanced
with the “nature” and optimized his own objective. Corresponding results of
stochastic H∞, H2/H∞ control problems for Markov jump linear systems with state,
control and disturbance-dependent noise are obtained, and proved the existence of
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the controller, explicit expressions of the feedback gain are given by means of
coupled differential (algebraic) Riccati equations. Finally, numerical examples were
presented to verify the validity of the conclusions.

Chapter 7. Applications of stochastic differential game theory for Markov jump
linear systems to finance and insurance. A risk minimization problem is considered
in a continuous-time Markovian regime switching financial model modulated by a
continuous-time, finite-state, Markov chain. We interpret the states of the chain as
different states of an economy. A particular form of convex risk measure, which
includes the entropic risk measure as a particular case, as a measure of risk and an
optimal portfolio is determined by minimizing the convex risk measure of the
terminal wealth. We explore the state of the art of the stochastic differential game to
formulate the problem as a Markovian regime-switching version of a two-player,
zero-sum, stochastic differential game. A novel feature of our model is that we
provide the flexibility of controlling both the diffusion risk and the
regime-switching risk. A verification theorem for the Hamilton-Jacobi-Bellman
(HJB) solution of the game is provided. Furthermore, we studied a game theoretic
approach for optimal investment-reinsurance problem of an insurance company
under Markovian regime-switching models. In this case, the price dynamics of the
underlying risky asset is governed by a Markovian regime switching geometric
Brownian motion (GBM). Then, we considered the problem in the context of a
two-player, zero-sum stochastic differential game. One of the players in this game is
an insurance company and the other is a fictitious player–the market. The insurance
company has a utility function and is to select an investment-reinsurance policy,
which maximizes the expected utility of the terminal wealth.
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Chapter 2
Deterministic and Stochastic Differential
Games

This chapter introduces the theory of deterministic and stochastic differential
games, including the dynamic optimization techniques, (stochastic) differential
games and their solution concepts, which will lay a foundation for later study.

2.1 Dynamic Optimization Techniques

Consider the dynamic optimization problem in which the single decision-maker:

max
u

Z T

t0

g s; xðsÞ; uðsÞ½ �dsþ qðxðTÞÞ
� �

; ð2:1Þ

Subject to the vector-valued differential equation:

_xðsÞ ¼ f ½s; xðsÞ; uðsÞ�ds; xðt0Þ ¼ x0; ð2:2Þ

where xðsÞ2X�R
n denotes the state variables of game, and u2U is the control. The

functions f s; x; u½ �, g s; x; u½ � and qðxÞ are differentiable functions.
Dynamic programming and optimal control are used to identify optimal solu-

tions for the problem (2.1)–(2.2).

2.1.1 Dynamic Programming

A frequently adopted approach to dynamic optimization problems is the technique
of dynamic programming. The technique was developed by Bellman (1957). The
technique is given in Theorem 2.1.1 below.

© Springer International Publishing Switzerland 2017
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Theorem 2.1.1 (Bellman’s Dynamic Programming) A set of controls u� tð Þ ¼
/� t; xð Þ constitutes an optimal solution to the control problem (2.1)–(2.2) if there
exist continuously differentiable functions V t; sð Þ defined on t0; T½ � � R

n ! R and
satisfying the following Bellman equation:

�Vt t; xð Þ ¼ max
u

g t; x; u½ � þVx t; xð Þf t; x; u½ �f g
¼ g t; x;/� t; xð Þ½ � þVx t; xð Þf t; x;/� t; xð Þ½ �f g;

VðT; xÞ ¼ qðxÞ:
Proof Define the maximized payoff at time t with current state x as a value function
in the form:

V t; xð Þ ¼ max
u

Z T

t
g s; xðsÞ; uðsÞð Þdsþ q xðTÞð Þ

� �

¼
Z T

t
g s; x�ðsÞ;/� s; x�ðsÞð Þ½ �dsþ q x�ðTÞð Þ:

Satisfying the boundary condition

VðT; x�ðTÞÞ ¼ qðx�ðTÞÞ;

and

_x�ðsÞ ¼ f s; x�ðsÞ;/� s; x�ðsÞð Þ½ �; x� t0ð Þ ¼ x0:

If in addition to u�ðsÞ � /� s; xð Þ, we are given another set of strategies,
uðsÞ 2 U, with the corresponding terminating trajectory xðsÞ, then Theorem 2.1.1
implies

gðt; x; uÞþVx t; xð Þf t; x; uð ÞþVt t; xð Þ� 0;

gðt; x�; u�ÞþVx� t; x�ð Þf t; x�; u�ð ÞþVt t; x
�ð Þ ¼ 0:

Integrating the above expressions from t0 to T , we obtain

Z T

t0

g s; x sð Þ; u sð Þð ÞdsþV T ; xðTÞð Þ � V t0; x0ð Þ� 0;

Z T

t0

g s; x� sð Þ; u� sð Þð ÞdsþV T ; x�ðTÞð Þ � V t0; x0ð Þ� 0:

18 2 Deterministic and Stochastic Differential Games



Elimination of V t0; x0ð Þ yields
Z T

t0

g s; xðsÞ; uðsÞð Þdsþ q xðTÞð Þ�
Z T

t0

g s; x�ðsÞ; u�ðsÞð Þdsþ q x�ðTÞð Þ:

From which it readily follows that u* is the optimal strategy.

Upon substituting the optimal strategy /� t; xð Þ into (2.2) yields the dynamics of
optimal state trajectory as:

_xðsÞ ¼ f s; xðsÞ;/� s; xðsÞð Þ½ �ds; x t0ð Þ ¼ x0: ð2:3Þ

Let x�ðtÞ denote the solution to (2.3). The optimal trajectory x�ðtÞf gTt¼t0 can be
expressed as:

x�ðtÞ ¼ x0 þ
Z t

t0

f s; x�ðsÞ;/� s; x�ðsÞð Þ½ �ds: ð2:4Þ

For notational convenience, we use the terms x�ðtÞ and x�t interchangeably. The
value function V t; xð Þ where x ¼ x�t can be expressed as

V t; xð Þ ¼
Z T

t
g s; x�ðsÞ;/�ðsÞ½ �dsþ q x�ðTÞð Þ:

2.1.2 Optimal Control

The maximum principle of optimal control was developed by Pontryagin (details in
Pontryagin et al (1962)). Consider again the dynamic optimization problem (2.1)–
(2.2).

Theorem 2.1.2 (Pontryagin’s Maximum Principle) A set of controls u�ðsÞ ¼
f� s; x0ð Þ provides an optimal solution to control problem (2.1)–(2.2), and
x�ðsÞ; t0 � s� Tf g is the corresponding state trajectory, if there exist costate

functions KðsÞ : t0; T½ � ! R
m such that the following relations are satisfied:

f� s; x0ð Þ � u�ðsÞ ¼ arg max g s; x�ðsÞ; uðsÞ½ � þ KðsÞf s; x�ðsÞ; uðsÞ½ �f g;
_x�ðsÞ ¼ f s; x�ðsÞ; u�ðsÞ½ �; x� t0ð Þ ¼ x0;

_KðsÞ ¼ � @

@x
g s; x�ðsÞ; u�ðsÞ½ � þKðsÞf s; x�ðsÞ; u�ðsÞ½ �f g;

K Tð Þ ¼ @

@x�
q x�ðTÞð Þ:
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Proof First define the function (Hamiltonian)

H t; x; uð Þ ¼ g t; s; uð ÞþVx t; xð Þf t; x; uð Þ:

From Theorem 2.1.2, we obtain

�Vt t; xð Þ ¼ max
u

H t; x; uð Þ:

This yields the first condition of Theorem 2.1.2. Using u* to denote the payoff
maximizing control, we obtain

H t; x; u�ð ÞþVt t; xð Þ¼0:

Which is an identity in x. Differentiating this identity partially with respect to
x yields

Vtx t; xð Þþ gx t; x; u�ð ÞþVx t; xð Þfx t; x; u�ð ÞþVxx t; xð Þf t; x; u�ð Þ
þ gu t; s; uð ÞþVx t; xð Þfu t; x; u�ð Þ½ � @u

�

@x
¼ 0:

If u� is an interior point, then gu t; x; u�ð ÞþVx t; xð Þfu t; x; u�ð Þ½ � ¼ 0 according to
the condition �Vt t; xð Þ ¼ max

u
H t; x; uð Þ. If u∗ is not an interior point, then it can be

shown that

gu t; x; u�ð Þ þVx t; xð Þfu t; x; u�ð Þ½ � @u
�

@x
¼ 0:

(because of optimality, gu t; x; u�ð ÞþVx t; xð Þfu t; x; u�ð Þ½ � and @u�
@x are orthogonal; and

for specific problems we may have @u�
@x ¼ 0). Moreover, the expression

Vtx t; xð ÞþVxx t; xð Þf t; x; u�ð Þ � Vtx t; xð ÞþVxx t; xð Þ _x can be written as
dVx t; xð Þ½ � dtð Þ�1. Hence, we obtain:

dVx t; xð Þ
dt

þ gx t; x; u�ð ÞþVx t; xð Þfu t; x; u�ð Þ ¼ 0:

By introducing the costate vector, KðtÞ ¼ Vx� t; x�ð Þ, where x∗ denotes the state
trajectory corresponding to u�, we arrive at

dVx t; x�ð Þ
dt

¼ _Kðs) ¼ � @

@x
g s; x�(s); u�(s)½ � þKðs)f s; x�(s); u�(s)½ �f g:

Finally, the boundary condition for KðtÞ is determined from the terminal con-
dition of optimal control in Theorem 2.1.2 as
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KðTÞ ¼ @VðT ; x�Þ
@x

¼ @qðx�Þ
@x

:

Then,we obtain Theorem 2.1.2.

2.1.3 Stochastic Control

Consider the dynamic optimization problem in which the single decision maker

max
u

Et0

Z T

t0

g s; xðsÞ; uðsÞ½ �dsþ qðxðTÞÞ
� �

; ð2:5Þ

Subject to the vector-valued stochastic differential equation:

dxðsÞ ¼ f ½s; xðsÞ; uðsÞ�dsþ r s; xðsÞ½ �dwðsÞ; xðt0Þ ¼ x0; ð2:6Þ

where Et0 denotes the expectation operator performed at time t0, and r s; xðsÞ½ � is a
n�H matrix and wðsÞ is a H dimensional Brownian motion and the initial state x0
is given. Let X s; xðsÞ½ � ¼ r s; xðsÞ½ �r s; xðsÞ½ �0 denote the covariance matrix with its
element in row h and column ζ denoted by Xhf s; xðsÞ½ �.

The technique of stochastic control developed by Fleming (1969) can be applied
to solve the problem.

Theorem 2.1.5 A set of controls u�ðtÞ ¼ /� t; xð Þ constitutes an optimal solution to
the problem (2.5)−(2.6), if there exist continuously differentiable functions V t; sð Þ
t0; T½ � � R

n ! R, satisfying the following partial differential equation:

� Vt t; xð Þ � 1
2

Xn
h;f¼1

Xhf t; xð ÞVxhxf t; sð Þ ¼ max
u

g/ t; x;½f u� þVxf t; x; u�½ g;

V T ; xð Þ ¼ q xð Þ:
Proof Substitute the optimal control /� t; xð Þ into the (2.6) to obtain the optimal
state dynamics as

dxðsÞ ¼ f ½s; xðsÞ;/� s; xðsÞð Þ�dsþ r s; xðsÞ½ �dwðsÞ;
xðt0Þ ¼ x0:

ð2:7Þ

The solution to (2.7), denoted by x�ðtÞ, can be expressed as
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x�ðtÞ ¼ x0 þ
Z t

t0

f s; x�ðtÞ;/� s; x�ðtÞð Þ½ �ds

þ
Z T

t0

r s; x�ðtÞ½ �dwðsÞ:
ð2:8Þ

We use X�
t to denote the set of realizable values of x

�
t at time t generated by (2.8).

The term x�t is used to denote an element in the set x�t .

Define the maximized payoff at time t with current state x�t as a value function in
the form

V t; x�t
� � ¼ max

u
Et0

Z T

t
g s; xðsÞ; uðsÞð Þdsþ q xðTÞð Þ

�
xðtÞj ¼ x�t

�

¼ Et0

Z T

t
g s; x�ðsÞ;/� s; x�ðsÞð Þ½ �dsþ q x�ðTÞð Þ:

Satisfying the boundary condition

VðT; x�ðTÞÞ ¼ qðx�ðTÞÞ:

One can express V t; x�t
� �

as

V t; x�t
� � ¼ max

u
Et0

Z T

t
g s; xðsÞ; uðsÞð Þdsþ q xðTÞð Þ

�
xðtÞj ¼ x�t

�

¼ max
u

Et0

Z tþDt

t
g s; xðsÞ; uðsÞð ÞdsþV tþDt; x�t þDx�t

� ��
xðtÞj ¼ x�t

�
:

ð2:9Þ

where

Dx�t ¼ f t; x�t ;/
� t; x�t
� �	 


Dtþ r t; x�t
	 


Dzt þ o Dtð Þ;
Dwt ¼ w tþDtð Þ � w tð Þ:

With Δt → 0, applying Ito’s lemma Eq. (2.9) can be expressed as:

V t; x�t
� � ¼ max

u
Et0 g t; x�t ; u

	 

DtþV t; x�t

� �þV t; x�t
� �

Dt
�

þVxt t; x�t
� �

f t; x�t ;/
� t; x�t
� �	 


DtþVxt t; x�t
� �

r t; x�t
	 


Dw

þ 1
2

Xm
h;f¼1

Xhf t; xð ÞVxhxf t; xð ÞDtþ o Dtð Þg:
ð2:10Þ
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Dividing (2.10) throughout by Δt, with Δt → 0, and taking expectation yields

� V t; x�t
� �� 1

2

Xm
h;f¼1

Xhf t; xð ÞVxhxf t; xð Þ ¼

¼ max
u

g t; x�t ; u
	 
þ�

Vxt t; x�t
� �

f t; x�t ;/
� t; x�t
� �	 


DtþVxt t; x�t
� ��

:

With boundary condition

VðT; x�ðTÞÞ ¼ qðx�ðTÞÞ:

2.2 Differential Games and Their Solution Concepts

Firstly we introduce the definition of differential game briefly:

Definition 2.2.1 If the time difference between each phase of the game narrowed to
the minimum limit, differential games can be considered as continuous-time
dynamic games. A continuous-time infinite dynamic games of the initial state x0
and continuous time T � t0, and can be expressed as Cðx0; T � t0Þ.

In particular, in the general n-person differential game, Player i seek to:

max
ui

Z T

t0

gi½s; xðsÞ; u1ðsÞ; 	 	 	 ; unðsÞ�dsþ qiðxðTÞÞ: ð2:11Þ

For i 2 N ¼ f1; 2; 	 	 	 ; ng, where gið	Þ
 0 and qið	Þ 
 0.
Subject to the deterministic dynamics

_xðsÞ ¼ f s; xðsÞ; u1ðsÞ; . . . ; unðsÞ½ �; xðt0Þ ¼ x0: ð2:12Þ

The functions f s; xðsÞ; u1ðsÞ; . . . ; unðsÞ½ �, gi½s; xðsÞ; u1ðsÞ; u2ðsÞ; 	 	 	 ; unðsÞ� and
qið	Þ, for i 2 N, s2½t0; T � are differentiable functions.

2.2.1 Open-Loop Nash Equilibria

If the players choose to commit their strategies from the outset, the players’
information structure can be seen as an open-loop pattern in which
giðsÞ ¼ fx0g; s2½t0; T�. Their strategies become functions of the initial state x0 and
time s, and can be expressed as liðsÞ ¼ 0i s; x0ð Þf g, for i 2 N. An open-loop Nash
equilibrium for the game is characterized as follows.
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Theorem 2.2.1 For the differential game (2.11) and (2.12), a set of strategies
fu�i ðsÞ ¼ f�i ðs; x0Þ; i 2 Ng provides an open-loop Nash equilibrium, an
fx�ðsÞ; t0 � s� Tg is the corresponding state trajectory, if there exist n costate
functions KiðsÞ : ½t0; T� ! R

n, for i 2 N, such that the following relations are
satisfied:

f�i ðs; x0Þ � u�i ðsÞ ¼ argmax
ui2U i

fgi½s; x�ðsÞ; u�1ðsÞ; 	 	 	 ; u�i�1ðsÞ; uiðsÞ; u�iþ 1ðsÞ 	 	 	 ; u�nðsÞ�

þKiðsÞf ½s; x�ðsÞ; u�1ðsÞ; 	 	 	 ; u�i�1ðsÞ; uiðsÞ; u�iþ 1ðsÞ 	 	 	 ; u�nðsÞ�g;
_x�ðsÞ ¼ f ½s; x�ðsÞ; u�1ðsÞ; 	 	 	 ; u�nðsÞ�; x�ðt0Þ ¼ x0;

_K
iðsÞ ¼ � @

@x�
fgi½s; x�ðsÞ; u�1ðsÞ; 	 	 	 ; u�nðsÞ� þKiðsÞf ½s; x�ðsÞ; u�1ðsÞ; 	 	 	 ; u�nðsÞ�g:

According to the analysis above, we know that:
First, given the optimal strategies of players, they should maximize the sum of

the instantaneous payment and integration of state variation and covariate function
in current time at every time point. That is, not only the instantaneous payment but
also the whole payment influenced by state variation should be considered when
one player chooses the optimal strategy. Second, the variation of optimal state
depends on the optimal strategies of all the players, current time and state, and the
optimal state of the beginning consistent with the initial state of the game. Third,
given the optimal strategies of players i2N which only depend on current time and
initial state, the variation of covariate functions depend on current instantaneous
payment, variation of current state and current covariate functions. The value of
covariate function equal to the marginal impact of optimal state at the end of game.
Therefore, covariate functions of players reflect the impacts on future payment by
the variation of optimal state.

2.2.2 Closed-Loop Nash Equilibria

After discussing the necessary conditions of open-loop Nash Equilibria, then we
study the necessary conditions of closed-loop Nash Equilibria.

The players’ information structures follow the pattern
giðsÞ ¼ fx0; xðsÞg; s2 ½t0; T �, for i 2 N. The players’ strategies become functions of
the initial state x0, current state xðsÞ and current time s, and can be expressed as
fuiðsÞ ¼ #iðs; xðsÞ; x0Þ; i 2 Ng. The following theorem provides a set of necessary
conditions for any closed-loop no-memory Nash equilibrium solution to satisfy.

Theorem 2.2.2 A set of strategies fuiðsÞ ¼ #iðs; x; x0Þ; i 2 Ng provides a
closed-loop no memory Nash equilibrium solution to the game (2.11)−(2.12), and
fx�ðsÞ; t0 � s� Tg is the corresponding state trajectory, if there exist n costate
functions KiðsÞ : ½t0; T� ! R

n, for i 2 N, such that the following relations are
satisfied:
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#�
i ðs; x�; x0Þ � u�i ðsÞ ¼ argmax

ui2U i
fgi½s; x�ðsÞ; u�1ðsÞ; 	 	 	 ; u�i�1ðsÞ; uiðsÞ; u�iþ 1ðsÞ 	 	 	 ; u�nðsÞ�

þKiðsÞf ½s; x�ðsÞ; u�1ðsÞ; 	 	 	 ; u�i�1ðsÞ; uiðsÞ; u�iþ 1ðsÞ 	 	 	 ; u�nðsÞ�g;
_x�ðsÞ ¼ f ½s; x�ðsÞ; u�1ðsÞ; 	 	 	 ; u�nðsÞ�; x�ðt0Þ ¼ x0;

_K
iðsÞ ¼
� @

@x�
fgi½s; x�ðsÞ; #�

1ðs; x�; x0Þ; 	 	 	 ; #�
i�1ðs; x�; x0Þ;

u�i ðsÞ; #�
iþ 1ðs; x�; x0Þ; 	 	 	#�

nðs; x�; x0Þ� þKiðsÞf ½s; x�ðsÞ; #�
1ðs; x�; x0Þ; 	 	 	 ;

#�
i�1ðs; x�; x0Þ; u�i ðsÞ; #�

iþ 1ðs; x�; x0Þ; 	 	 	#�
nðs; x�; x0Þ�g;

KiðTÞ ¼ @

@x�
qiðx�ðTÞÞ; i 2 N:

Then a set of strategies fuiðsÞ ¼ #iðs; x; x0Þ; i 2 Ng provides a closed-loop no
memory Nash equilibrium.

According to Theorem 2.2.2, similar to the open-loop situation, in closed-loop
Nash equilibrium solution, we know that:

First, given the optimal strategies of players, they should maximize the sum of
the instantaneous payment and integration of state variation and covariate function
in current time at every time point. That is, not only the instantaneous payment but
also the whole payment influenced by state variation should be considered when
one player chooses the optimal strategy. Second, the variation of optimal state
depends on the optimal strategies of all the players, current time and state, and the
optimal state of the beginning consistent with the initial state of the game. Third,
given the optimal strategies of players i2N which only depend on current time and
initial state, the variation of covariate functions depend on current instantaneous
payment, variation of current state and current covariate functions. The value of
covariate function equal to the marginal impact of optimal state at the end of game.
Therefore, covariate functions of players reflect the impacts on future payment by
the variation of optimal state. Note that the partial derivatives of covariate function
on optimal state depend on strategies of other players.

2.2.3 Feedback Nash Equilibria

The set of equations of closed-loop Nash Equilibria in general admits of an
uncountable number of solutions, which correspond to “informationally non-
unique” Nash equilibrium solutions of differential games under memoryless perfect
state information pattern. Derivation of nonunique closed-loop Nash equilibria can
be found in Mehlmann and Willing (1984). To eliminate information nonunique-
ness in the derivation of Nash equilibria, one can constrain the Nash solution further
by requiring it to satisfy the feedback Nash equilibrium property. In particular, the
players’ information structures follow either a closed-loop perfect state (CLPS)
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pattern in which giðsÞ ¼ fxðtÞ; t0 � t� sg or amemoryless perfect state
(MPS) pattern in which giðsÞ ¼ fx0; xðsÞg. Moreover, we require the following
feedback Nash equilibrium condition to be satisfied.

Definition 2.3 For the n-person differential game (2.11)−(2.12), with MPS or
CLPS information, an n-tuple of strategies fu�i ðsÞ ¼ /�

i ðs; xÞ 2 U i; i 2 Ng consti-
tutes a feedback Nash equilibrium solution if there exist functionals Viðt; xÞ; i 2 N
defined on ½t0; T � � R

n and satisfying the following relations:

Viðt; xÞ ¼
Z T

t
gi½s; x�ðsÞ;/�

1ðs; gsÞ; 	 	 	 ;/�
nðs; gsÞ�dsþ qiðx�ðTÞÞ


Z T

t
gi½s; x½i�ðsÞ;/�

1ðs; gsÞ; 	 	 	 ;/�
i�1ðs; gsÞ;/iðs; gsÞ;/�

iþ 1ðs; gsÞ; 	 	 	 ;/�
nðs; gsÞ�ds

þ qiðx½i�ðTÞÞ; 8/ið	; 	Þ2 U i; x2 R
n;

ViðT; xÞ ¼ qiðxÞ

where on the interval ½t0; T �;

x½i�ðtÞ ¼ x;

_x�ðsÞ ¼ f ½s; x�ðsÞ;/�
1ðs; gsÞ; 	 	 	 ;/�

nðs; gsÞ�; xðsÞ ¼ x;

gðsÞ stands for either the data set fxðsÞ; x0g or fxðsÞ; s� sg, depending on whether
the information pattern is MPS or CLPS. Therefore the players’ strategies can be
expressed as fu�i ðsÞ ¼ /�

i ðs; xÞ 2 Ui; i 2 Ng:
The following theorem provides a set of necessary conditions characterizing a

feedback Nash equilibrium solution for the game (2.11)−(2.12) is characterized as
follows:

Theorem 2.2.3 An n-tuple of strategies fu�i ðtÞ ¼ /�
i ðt; xÞ 2 U i; i 2 Ng provides a

feedback Nash equilibrium solution to the game (2.11)−(2.12) if there exist con-
tinuously differentiable functions Viðt; xÞ : ½t0; T � � R

n ! R, i2N, satisfying the
following set of partial differential equations:

�Vi
t ðt; xÞ ¼ max

ui
fgi½t; x;/�

1ðt; xÞ; . . .;/�
i�1ðt; xÞ; uiðt; xÞ;/�

iþ 1ðt; xÞ. . .;u�
nðt; xÞ�

þVi
xðt; xÞf ½t; x;/�

1ðt; xÞ; . . .;/�
i�1ðt; xÞ; ui t; xð Þ;/�

iþ 1ðt; xÞ; . . .;/�
nðt; xÞ�g

¼ fgi½t; x;/�
1ðt; xÞ; . . .;u�

nðt; xÞ� þVi
xðt; xÞf ½t; x;/�

1ðt; xÞ; . . .;/�
nðt; xÞ�g;

ViðT ; xÞ ¼ qiðxÞ; i2N:

Theorem 2.2.4 A pair of strategies f/�
i ðt; xÞ; i ¼ 1; 2g provides a feedback

saddle-point solution to the zero-sum version of the game (2.11)−(2.12) if there
exists a function V : ½t0; T� � R

n ! R satisfying the partial differential equation:
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�Vtðt; xÞ ¼ min
u12U1

max
u22U2

fg½t; x; u1ðtÞ; u2ðtÞ� þVxf ½t; x; u1ðtÞ; u2ðtÞ�g

¼ max
u22U2

min
u12U1

fg½t; x; u1ðtÞ; u2ðtÞ� þVxf ½t; x; u1ðtÞ; u2ðtÞ�g

¼ fg½t; x;/�
1ðt; xÞ;/�

2ðt; xÞ� þVxf ½t; x;/�
1ðt; xÞ;/�

2ðt; xÞ�g;
VðT; xÞ ¼ qðxÞ:

According to the necessary condition of feedback Nash equilibrium solution,
there are two points should to note,

First, the value of the value functions of each player will change as time when
they choose the optimal strategies under current time and state. Second, the pay-
ments of each player at the last time point are equal to that in the end of game.

2.3 Stochastic Differential Games and Their Solutions

We introduce the deterministic differential games and their solutions with stochastic
factors.

2.3.1 The Model of Stochastic Differential Game

One way to incorporate stochastic elements in differential games is to introduce
stochastic dynamics. A stochastic formulation for quantitative differential games of
prescribed duration involves a vector-valued stochastic differential equation

dxðsÞ ¼ f s; xðsÞ; u1ðsÞ; u2ðsÞ; . . .; unðsÞ½ �dsþ r s; xðsÞ½ �dwðsÞ;
xðt0Þ ¼ x0:

ð2:13Þ

which describes the evolution of the state and N objective functionals

Et0

Z T

t0

gi s; x sð Þ; u1 sð Þ; u2 sð Þ; . . .; un sð Þ½ �dsþ qi xðTÞð Þ
� �

; i 2 N ð2:14Þ

with Et0f	g denoting the expectation operation taken at time t0, r s; x sð Þ½ � is a n�H
matrix and wðsÞ is a H dimensional Brownian motion and the initial state x0 is
given. Let X s; xðsÞ½ � ¼ r s; xðsÞ½ �r s; xðsÞ½ �0 denote the covariance matrix with its
element in row h and column f denoted by Xhf s; xðsÞ½ �. Moreover, E dw-½ � ¼ 0,

E dw-dt½ � ¼ 0, and E ðdw-Þ2
h i

¼ dt, for - 2 1; 2; . . .;H½ �; E dw-dwx½ � ¼ 0, for

- 2 1; 2; . . .;H½ �, x 2 1; 2; . . .;H½ � and - 6¼ x. Given the stochastic nature, the
information structures must follow the MPS pattern or CLPS pattern or the feed-
back perfect state (FB) pattern in which giðsÞ ¼ fxðsÞg, s 2 t0; T½ �.
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2.3.2 The Solutions of Stochastic Differential Game

The character of stochastic differential game is the state changes with the stochastic
dynamic system in every moment. Therefore, stochastic differential game is closer
to reality compared with the deterministic differential game. Based on this, the
following section only discuss the feedback solutions which are more realistic then
the open-loop solution. A Nash equilibrium of the stochastic game (2.13)−(2.14)
can be characterized as:

Theorem 2.3.1 An n-tuple of feedback strategies /�
i t; xð Þ 2 U i; i 2 N

� �
provides a

Nash equilibrium solution to the game (2.13)−(2.14) if there exist suitably smooth
functions Vi : t0; T½ � � R

n ! R, satisfying the semilinear parabolic partial differ-
ential equations

�Vi
t �

1
2

Xn
h;f

Xhfðt; xÞVi
xhxf

¼ max
ui

gi t; x;/�
1ðt; xÞ

	�
; . . .;/�

i�1ðt; xÞ; uiðtÞ;/�
iþ 1ðt; xÞ; . . .;/�

nðt; xÞ



þVi
xðt; xÞf t; x;/�

1ðt; xÞ
	

; . . .;/�
i�1ðt; xÞ; uiðtÞ;/�

iþ 1ðt; xÞ; . . .;/�
nðt; xÞ


�
¼ gi t; x;/�

1ðt; xÞ
	�

;/�
2ðt; xÞ; . . .;/�

nðt; xÞþVi
xðt; xÞf t; x;/�

1ðt; xÞ
	

; . . .;/�
nðt; xÞ


�
;

ViðT ; xÞ ¼ qiðxÞ; i 2 N:

Proof This result follows readily from the definition of Nash equilibrium and from
Theorem 2.1.2, since by fixing all players’ strategies, except the ith one’s, at their
equilibrium choices (which are known to be feedback by hypothesis), we arrive at a
stochastic optimal control problem of the type covered by Theorem 2.3.1 and
whose optimal solution (if it exists) is a feedback strategy.

Consider the two-person zero-sum version of the game (2.13)–(2.14) in which
the payoff of Player 1 is the negative of that of Player 2. Under either MPS or CLPS
information pattern, a Nash equilibrium solution can be characterized as follows.

Theorem 2.3.2 A pair of strategies /�
i t; xð Þ 2 U i; i ¼ 1; 2

� �
provides a feedback

saddle-point solution to the two-person zero-sum version of the game (2.13)–(2.14)
if there exists a function Kðs) : t0; T½ � ! R

n satisfying the partial differential
equation:

�Vt � 1
2

Xn
h;f

Xhf t; xð ÞVxhxf ¼ min
u12U1

max
u22U2

g t; x; u1½f ; u2� þVxf t; x; u1; u2�½ g

¼ max
u22U2

min
u12U1

g t; x; u1½f ; u2� þVxf t; x; u1; u2�½ g

¼ g t; x;/�
1 t; xð Þ	�

;/�
2 t; xð Þ
þVxf t; x;/�

1 t; xð Þ;/�
2 t; xð Þ
	 �

;

V T ; xð Þ ¼ q xð Þ:

Proof This result follows as a special case of Theorem 2.3.1 by taking n = 2,
g1ð	Þ ¼ �g2ð	Þ � gð	Þ, and q1ð	Þ ¼ �q2ð	Þ � qð	Þ, in which case V1 ¼ �V2 � V
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and existence of a saddle point is equivalent to interchangeability of the min max
operations.

According to the necessary condition of feedback Nash Equilibria, there are two
points we should to know,

First, the value functions in stochastic differential game (2.13)–(2.14) change
with time when all the players (include i) determine the optimal strategies depend
on current time and state. Second, the value function of player i 2 N in last point
equals to his final payment in the game.
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Chapter 3
Stochastic Differential Games
of Continuous-Time Markov
Jump Linear Systems

This chapter mainly discussed the stochastic differential game theory of
continuous-time Markov jump linear systems. Firstly, the stochastic LQ problem of
Markov jump linear systems was reviewed. Then, two person nonzero Nash games
in finite-time horizon and infinite-time horizon were discussed, and the existence
conditions and strategy design method of equilibrium strategies were given. Finally,
the Stackelberg game problem with two players was studied, and the existence
conditions for the Stackelberg equilibrium strategy were obtained.

3.1 Stochastic LQ Problem—Differential Game
with One Player

The LQ control with Markovian jumps has been very widely studied for the last two
decade:

minimize J ¼ E
Z T

0
xðtÞ0Qðt; rtÞxðtÞþ uðtÞ0Rðt; rtÞuðtÞ
� �

dt

�

þ xðTÞ0HxðTÞ r0 ¼ ij �
;

s:t:

dxðtÞ ¼ Aðt; rtÞ½ xðtÞþBðt; rtÞuðtÞ�dtþ rðt; rtÞdwðtÞ;
xð0Þ ¼ x0 2 R

n;

�
ð3:1:1Þ

where rt is a Markov chain taking values in f1; . . .; lg, wðtÞ is a standard Brownian
motion independent of rt, and Aðt; rtÞ ¼ AiðtÞ, Bðt; rtÞ ¼ BiðtÞ, rðt; rtÞ ¼ riðtÞ,
Qðt; rtÞ ¼ QiðtÞ and Rðt; rtÞ ¼ RiðtÞ when rt¼i (i ¼ 1; . . .; l). Here the matrix
functions Aið�Þ, etc. are given with appropriate dimensions. The Markov chain rt
has the transition probabilities given by:

© Springer International Publishing Switzerland 2017
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Pr rtþD ¼ j rt ¼ ijf g ¼ pijDþ oðDÞ; if i 6¼ j;
1þ pijDþ oðDÞ; else;

�
ð3:1:2Þ

where pij � 0 for i 6¼ j and pii ¼ �P
i6¼j pij.

In (3.1.1), when the diffusion term rðt; rtÞ does not include uðtÞ, it is usually
required that the state weighting matrices, QiðtÞ and the control weighting matri-
ces, RiðtÞ be positive semidefinite and positive definite, respectively. But when uðtÞ
is included in the diffusion term rðt; rtÞ, the control weighting matrices, RiðtÞ in the
cost function J can be indefinite, and academics call it the indefinite stochastic LQ
problem that has been widely used in reality, especially in the field of mathematical
finance.

For completeness content, and laying the foundation for the later study, this
section discusses the stochastic LQ control of continuous time Markov jump linear
system with state and control included in the diffusion term.

3.1.1 Finite-Time Horizon Case

3.1.1.1 Problem Formulation

Given a filtered probability space ðX;F ; fF tgt� 0;PÞ and a Hilbert space H with
the norm �k kH, define the Hilbert space

L2F ð0; T ;HÞ :¼ /ð�; �Þ : ½0; T� � X ! H /ð�; �Þjf is an F t� adapted, H� valued

measurable process on ½0;T � and E
R T
0 /ðt;xÞk k2dt\1g,

With the norm

/ð�Þk kF ;2¼ E
Z T

0
/ðt;xÞk k2Hdt

� �1
2

:

Consider the following linear stochastic differential equation (SDE) subject to
Markovian jumps defined by

dxðtÞ ¼ Aðt; rtÞxðtÞþBðt; rtÞuðtÞ½ �dtþ
Cðt; rtÞxðtÞþDðt; rtÞuðtÞ½ �dwðtÞ; t 2 ½0; T�;

xðsÞ ¼ y;

8<
: ð3:1:3Þ

where ðs; yÞ 2 ½0; T � � R
n are the initial time and initial state, respectively, and an

admissible control uð�Þ is an F t-adapted, Rnu -valued measurable process on ½0; T�.
The set of all admissible controls is denoted by Uad � L2F ð0; T ;RnuÞ. The solution
xð�Þ of the Eq. (3.1.3) is called the response of the control uð�Þ 2 Uad , and
xð�Þ; uð�Þð Þ is called an admissible pair. Here, wðtÞ is a one-dimensional standard
F t� Brownian motion on ½0; T� (with wð0Þ ¼ 0). rt is a Markov chain adapted to
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F t, taking values in N ¼ f1; � � � ; lg, with the transition probabilities specified by
(3.1.2). In addition, we assume that the processes rt and wðtÞ are independent.

For each ðs; yÞ and uð�Þ 2 Uad , the associated cost is

Jðs; y; i; uð�ÞÞ ¼ E
Z T

s

xðtÞ
uðtÞ

� 	0
Qðt; rtÞ Lðt; rtÞ
L0ðt; rtÞ Rðt; rtÞ

� 	
xðtÞ
uðtÞ

� 	
dtþ x0ðTÞHðrTÞxðTÞ rs ¼ ij

� 

:

ð3:1:4Þ

In (3.1.3) and (3.1.4), Aðt; rtÞ ¼ AiðtÞ, etc. whenever rt ¼ i, and HðrTÞ ¼ Hi

whenever rT ¼ i, whereas Aið�Þ etc. are given matrix-valued functions and Hi are
given matrices, i ¼ 1; . . .; l. The objective of the optimal control problem is to
minimize the cost function Jðs; y; i; uð�ÞÞ, for a given ðs; yÞ 2 ½0; TÞ � R

n, over all
uð�Þ 2 Uad . The value function is defined as

Vðs; y; iÞ ¼ inf
uð�Þ2Uad

Jðs; y; i; uð�ÞÞ: ð3:1:5Þ

Definition 3.1.1 The optimization problem (3.1.3)–(3.1.5) is called well-posed if

Vðs; y; iÞ� �1; 8ðs; yÞ 2 ½0; TÞ � R
n; 8i ¼ 1; . . .l:

An admissible pair ðx�ð�Þ; u�ð�ÞÞ is called optimal (with respect to the initial
condition ðs; y; iÞ) if u�ð�Þ achieves the infimum of Jðs; y; i; uð�ÞÞ.

The following basic assumption will be in force throughout this section.

Assumption 3.1.1 The data appearing in the LQ problem (3.1.3)–(3.1.5) satisfy,
for every i,

Aið�Þ;Cið�Þ 2 L1ð0; T;Rn�nÞ;
Bið�Þ;Dið�Þ 2 L1ð0; T;Rn�nuÞ;

Qið�Þ 2 L1ð0; T ;SnÞ;
Lið�Þ 2 L1ð0; T ;Rn�nuÞ;
Rið�Þ 2 L1ð0; T ;SnuÞ;

Hi 2 Sn:

8>>>>>><
>>>>>>:

We emphasize again that we are dealing with an indefinite LQ problem, namely,
QiðtÞ, RiðtÞ and Hi are all possibly indefinite.

Lemma 3.1.1 [1] Let a matrix M 2 R
m�n be given. Then there exists a unique

matrix My 2 R
n�m such that

MyMMy ¼ My; MMyM ¼ M;

ðMyMÞ0 ¼ MyM; ðMMyÞ0 ¼ MMy;

(
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where the matrix My is called the Moore–Penrose pseudo inverse of M.

Now we introduce a new type of coupled differential Riccati equations associ-
ated with the LQ problem (3.1.3)–(3.1.5).

Definition 3.1.2 The following system of constrained differential equations (with
the time argument t suppressed)

_Pi þPiAi þA0
iPi þC0

iPiCi þQi þ
Pl

j¼1 pijPj

�ðPiBi þC0
iPiDi þ LiÞðRi þD0

iPiDiÞyðB0
iPi þD0

iPiCi þ L0iÞ ¼ 0;
PiðTÞ ¼ Hi;

ðRi þD0
iPiDiÞðRi þD0

iPiDiÞyðB0
iPi þD0

iPiCi þ L0iÞ
�ðB0

iPi þD0
iPiCi þ L0iÞ ¼ 0;

Ri þD0
iPiDi � 0; a:e: t 2 ½0; T�; i ¼ 1; . . .; l

8>>>>>>><
>>>>>>>:

ð3:1:6Þ

is called a system of coupled generalized (differential) Riccati equations (CGREs).

Lemma 3.1.2 (generalized Itô’s formula) [2] Let xðtÞ satisfy

dxðtÞ ¼ bðt; xðtÞ; rtÞdtþ rðt; xðtÞ; rtÞdwðtÞ:

And uð�; �; iÞ ¼ C2ð½0; T� � R
nÞ,i ¼ 1; . . .; l, be given. Then,

duðt; xðtÞ; rtÞ ¼ Cuðt; xðtÞ; rtÞdtþu0
xðt; xðtÞ; rtÞrðt; xðtÞ; rtÞdwðtÞ;

where

Cu t; x; ið Þ ¼ utðt; x; iÞþ b0ðt; x; iÞuxðt; x; iÞ

þ 1
2
tr r0ðt; x; iÞuxxðt; x; iÞrðt; x; iÞ½ � þ

Xl

j¼1

pijuðt; x; jÞ:

Lemma 3.1.3 [3, 4] For a symmetric matrix M, we have

(i) ðMyÞ0 ¼ My;
(ii) MyM ¼ MMy;
(iii) M� 0 if and only if My � 0.

Lemma 3.1.4 (Extended Schur’s lemma) [5] Let matrix M ¼ M0, N and R ¼ R0 be
given with appropriate dimensions. Then the following conditions are equivalent:
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(i) M � NRyN 0 � 0, and NðI � RRyÞ ¼ 0, R� 0;

(ii)
M N
N 0 R

� 	
� 0;

(iii)
R N 0

N M

� 	
� 0.

Lemma 3.1.5 [6] Let matrices L, M, and N be given with appropriate sizes. Then
the following matrix equation

LXM ¼ N ð3:1:7Þ

has a solution X if and only if

LLyXMyM ¼ N: ð3:1:8Þ

Moreover, any solution to (3.1.7) is represented by

X ¼ LyNMy þ S� LyLNMyM; ð3:1:9Þ

where S is a matrix with an appropriate size.

3.1.1.2 Main Results

In this section, we will show that the solvability of the CGREs is sufficient for the
well-posedness of the LQ problem and the existence of an optimal feedback control.
In addition, all optimal controls can be obtained via the solution to the CGREs (3.1.6).

Theorem 3.1.1 If the CGREs (3.1.6) admit a solution ðP1ð�Þ; � � � ;Plð�ÞÞ 2
C1ð0; T ;Sn

l Þ, then the stochastic LQ problem (3.1.3)–(3.1.5) is well-posed.
Moreover, the set of all optimal controls with respect to the initial ðs; yÞ 2
½0; TÞ � R

n is determined by the following (parameterized by ðYi; ziÞ):

uðtÞ ¼ �
Xl

i¼1
ðRiðtÞþDiðtÞ0PiðtÞDiðtÞÞyðBiðtÞ0PiðtÞþDiðtÞ0PiðtÞCiðtÞþ LiðtÞ0Þ
hn

þ YiðtÞ � ðRiðtÞþDiðtÞ0PiðtÞDiðtÞÞyðRiðtÞþDiðtÞ0PiðtÞDiðtÞÞYiðtÞ
�
xþ ziðtÞ

� ðRiðtÞþDiðtÞ0PiðtÞDiðtÞÞyðRiðtÞþDiðtÞ0PiðtÞDiðtÞÞziðtÞgvrt¼iðtÞ;
ð3:1:10Þ

where Yið�Þ 2 L2F ð0; T ;Rnu�nÞ and zið�Þ 2 L2F ð0; T ;RnuÞ. Furthermore, the value
function is uniquely determined by ðP1ð�Þ; . . .;Plð�ÞÞ 2 C1ð0; T ;Sn

l Þ:
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Vðs; y; iÞ � inf
uð�Þ2Uad

Jðs; y; i; uð�ÞÞ ¼ y0PiðsÞy; i ¼ 1; . . .; l: ð3:1:11Þ

Proof Let ðP1ð�Þ; . . .;Plð�ÞÞ 2 C1ð0; T ;Sn
l Þ be a solution of the CGREs (3.1.6).

Setting uðt; x; iÞ ¼ x0PiðtÞx and applying the generalized Itô’s formula (Lemma
3.1.2) to the linear system (3.1.3), we have

E xðTÞ0HrT xðTÞ
� �� y0PiðsÞy
¼ E xðTÞ0HrT xðTÞ � xðsÞ0PðrsÞxðsÞ rs ¼ ij� �
¼ E uðT ; xðTÞ; rTÞ � uðs; xðsÞ; rsÞ rs ¼ ij½ �

¼ E
Z T

s
Cuðt; xðtÞ; rtÞ rs ¼ ij

� 

;

where

Cu t; x; ið Þ ¼ utðt; x; iÞþ b0ðt; x; iÞuxðt; x; iÞ

þ 1
2
tr r0ðt; x; iÞuxxðt; x; iÞrðt; x; iÞ½ � þ

Xl

j¼1

pijuðt; x; jÞ

¼ x0 _PiðtÞþPiðtÞAiðtÞþAiðtÞ0PiðtÞþCiðtÞ0PiðtÞCiðtÞþ
Xl

j¼1
pijPjðtÞ�

h
x

þ 2u0 BiðtÞ0PiðtÞþDiðtÞ0PiðtÞCiðtÞ
� �

xþ u0DiðtÞ0PiðtÞDiðtÞu:

Hence, we can express the cost function as follows

Jðs; y; i; uð�ÞÞ

¼ y0PiðsÞyþE
Z T

s
Cuðt; xðtÞ; rtÞ½

�
þ xðtÞ0Qðt; rtÞxðtÞ

þ 2uðtÞ0Lðt; rtÞ0xðtÞþ uðtÞ0Rðt; rtÞuðtÞ�dt rs ¼ ij g:

ð3:1:12Þ

From the definition of the CGREs, we have

Cuðt; x; iÞþ x0QiðtÞxþ 2uLiðtÞ0xþ u0RiðtÞu
¼ x0 _PiðtÞþPiðtÞAiðtÞþAiðtÞ0PiðtÞþCiðtÞ0PiðtÞCiðtÞþQiðtÞþ

Xl

j¼1
pijPjðtÞ�

h
x

þ 2u0 BiðtÞ0PiðtÞþDiðtÞ0PiðtÞCiðtÞþ LiðtÞ0
� �

xþ u0 RiðtÞþDiðtÞ0PiðtÞDiðtÞ
� �

u:

Now, let Yið�Þ 2 L2F ð0; T;Rnu�nÞ and zið�Þ 2 L2F ð0; T ;RnuÞ be given for every
i. Set
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G1
i ðtÞ ¼ YiðtÞ � RiðtÞþDiðtÞ0PiðtÞDiðtÞ

� �y
RiðtÞþDiðtÞ0PiðtÞDiðtÞ
� �

YiðtÞ;
G2

i ðtÞ ¼ ziðtÞ � RiðtÞþDiðtÞ0PiðtÞDiðtÞ
� �y

RiðtÞþDiðtÞ0PiðtÞDiðtÞ
� �

ziðtÞ:

Applying Proposition 3.1.3 and Lemma 3.1.4-(ii), we have for k ¼ 1; 2,

RiðtÞþDiðtÞ0PiðtÞDiðtÞ
� �

Gk
i ðtÞ ¼ RiðtÞþDiðtÞ0PiðtÞDiðtÞ

� �y
Gk

i ðtÞ ¼ 0; ð3:1:13Þ

And

PiðtÞBiðtÞþCiðtÞPiðtÞDiðtÞþ LiðtÞ½ �Gk
i ðtÞ ¼ 0:

Hence

Cuðt; x; iÞþ x0QiðtÞxþ 2uLiðtÞ0xþ u0RiðtÞu
¼ uþðG1

i ðtÞ � KiðtÞÞxþG2
i ðtÞ

� �0
RiðtÞþDiðtÞ0PiðtÞDiðtÞ
� �

� uþðG1
i ðtÞ � KiðtÞÞxþG2

i ðtÞ
� �

;

where

KiðtÞ ¼ � RiðtÞþDiðtÞ0PiðtÞDiðtÞ
� �y

BiðtÞ0PiðtÞþDiðtÞ0PiðtÞCiðtÞþ LiðtÞ0
� �

:

Then the Eq. (3.1.4) can be expressed as

Jðs; y; i; uð�ÞÞ

¼ y0PiðsÞyþE
Z T

s
uðtÞþ ðG1

i ðt; rtÞ � Kiðt; rtÞÞxþ
�

G2
i ðt; rtÞ

�� 0

� Riðt; rtÞþDiðt; rtÞ0Piðt; rtÞDiðt; rtÞ
��

� uðtÞþ ðG1
i ðt; rtÞ � Kiðt; rtÞÞxþ

�
G2

i ðt; rtÞ
�
dt rs ¼ ij g;

ð3:1:14Þ

where Pðt; rtÞ¼PiðtÞ, Kðt; rtÞ¼KiðtÞ and Gkðt; rtÞ¼Gk
i ðtÞ whenever rt ¼ i,

k ¼ 1; 2. Thus, Jðs; y; i; uð�ÞÞ is minimized by the control given by (3.1.10) with the
optimal value being y0PiðsÞy.

Theorem 3.1.1 presents a sufficient condition for the existence of optimal con-
trol, now let’s explore its necessary condition.

Theorem 3.1.2 Assume that QiðtÞ and RiðtÞ are continuous in t for every i. In
addition, assume that the LQ problem (3.1.3)–(3.1.5) is well-posed and a given
feedback control �uðtÞ ¼ Pl

i¼1
�KiðtÞxðtÞvrt¼iðtÞ is optimal for (3.1.3)–(3.1.5) with

respect to any initial ðs; yÞ 2 ½0; TÞ � R
n. Then the CGREs (3.1.6) must have a

solution ðP1ð�Þ; . . .;Plð�ÞÞ 2 C1ð0; T;Sn
l Þ. Moreover, the optimal feedback control

�uðtÞ ¼ Pl
i¼1

�KiðtÞxðtÞvrt¼iðtÞ can be represented via (3.1.10) with zðtÞ � 0.
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Proof By the dynamic programming approach, the value functions Vðs; y; iÞ satisfy
the following HJB equations for i ¼ 1; . . .; l

Vsðs; y; iÞþ min
u

y0f Qiyþ 2y0Liuþ u0Riuþ AiyþBiu½ �0Vyðs; y; iÞ

þ 1
2
CiyþDiu½ �0Vyyðs; y; iÞ CiyþDiu½ � þ

Xl

j¼1
pijVðs; y; iÞ

o
¼ 0;

ð3:1:15Þ

with the boundary condition

VðT ; y; iÞ ¼ y0Hiy: ð3:1:16Þ

In view of the assumption of the theorem, a candidate value function can be
represented as

Vðs; y; iÞ ¼ y0PiðsÞy; i ¼ 1; . . .; l; ð3:1:17Þ

For a matrix Pið�Þ 2 Sm, suppose that PiðtÞ is differentiable at any t 2 ½0; T �.
Substituting (3.1.17) into (3.1.15), we have the equations (s is suppressed)

y0ð _Pi þPiAi þA0
iPi þC0

iPiCi þQi þ
Pl

j¼1 pijPjÞy
þ min

u
u0ðRi þD0

iPiDiÞuþ 2y0ðPiBi þC0
iPiDi þ LiÞu

� � ¼ 0;

PiðTÞ ¼ Hi i ¼ 1; . . .; l:

8><
>: ð3:1:18Þ

By assumption, a minimizer u in (3.1.18) is given by uðs; y; iÞ ¼ KiðsÞy for i, and
hence (3.1.18) are reduced to the following equations,

y0ð _Pi þPiAi þA0
iPi þC0

iPiCi þQi þ
Pl

j¼1 pijPjÞy
þ min

Ki

y0 K 0
i

� ðRi þD0
iPiDiÞKi þ 2ðPiBi þC0

iPiDi þ LiÞKi�y
� � ¼ 0;

PiðTÞ ¼ Hi i ¼ 1; . . .; l:

8><
>: ð3:1:19Þ

The second term of the left-hand side of the first equation above reaches the
minimum if and only if

@

@Ki
K 0
i

� ðRi þD0
iPiDiÞKi þ 2ðPiBi þC0

iPiDi þ LiÞKi� Ki¼�Ki

�� ¼ 0; i ¼ 1; . . .; l:
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i.e.

ðRi þD0
iPiDiÞ�Ki þðB0

iPi þD0
iPiCi þ L0iÞ ¼ 0; i ¼ 1; . . .; l: ð3:1:20Þ

Setting Li ¼ Ri þD0
iPiDi,Mi ¼ I, and Ni ¼ �B0

iPi þD0
iPiCi þ L0i, i ¼ 1; . . .; l, by

applying Lemma 3.1.5 to the Eq. (3.1.20), we have

ðRi þD0
iPiDiÞðRi þD0

iPiDiÞ0ðB0
iPi þD0

iPiCi þ L0iÞ ¼ B0
iPi þD0

iPiCi þ L0i:

First of all, by virtue of the assumption we know a priori that the Eq. (3.1.20) do
have a solution �Ki, and �Ki has the following form

�Ki¼� ðRi þD0
iPiDiÞy

h
ðB0

iPi þD0
iPiCi þ L0iÞ

þ Yi � ðRi þD0
iPiDiÞyðRi þD0

iPiDiÞYi
�
; i ¼ 1; . . .; l:

ð3:1:21Þ

Replacing ð�K1ð�Þ; . . .; �Klð�ÞÞ into the first l equations of (3.1.19), we can see by a
simple calculation that ðP1ð�Þ; . . .;Plð�ÞÞ 2 C1ð0; T ;Sn

l Þ satisfies the following
equations

_Pi þPiAi þA0
iPi þC0

iPiCi þQi þ
Xl

j¼1
pijPj

� ðPiBi þC0
iPiDi þ LiÞðRi þD0

iPiDiÞyðB0
iPi þD0

iPiCi þ L0iÞ ¼ 0; i ¼ 1; . . .; l:

ð3:1:22Þ

So we easily conclude that ðP1ð�Þ; . . .;Plð�ÞÞ 2 C1ð0; T ;Sn
l Þ solves (3.1.6). The

representation of �K1ð�Þ; . . .; �Klð�Þð Þ is given by (3.2.21). This completes the proof.

3.1.2 Infinite-Time Horizon Case

3.1.2.1 Problem Formulation

To facilitate the narrative, first define the following space
Lloc2 ðRnuÞ :¼ /ð�; �Þ : ½0; T � � X ! H /ð�; �Þjf is F t-adapted, Lebesgue measur-

able, and E
R T
0 /ðt;xÞk k2dt\þ1; 8T � 0g.

Consider the linear stochastic differential equation subject to Markovian jumps
defined by

dxðtÞ ¼ AðrtÞ½ xðtÞþBðrtÞuðtÞ�dtþ CðrtÞ½ xðtÞþDðrtÞuðtÞ�dwðtÞ;
xð0Þ ¼ x0 2 R

n;

�
ð3:1:23Þ
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Where AðrtÞ ¼ Ai,BðrtÞ ¼ Bi, CðrtÞ ¼ Ci and DðrtÞ ¼ Di when rt ¼ i, while
Aið�Þ, etc., i ¼ 1; � � � ; l, are given matrices of suitable sizes. A process uð�Þ is called
a control if uð�Þ 2 Lloc2 ðRnuÞ.
Definition 3.1.3 A control uð�Þ is called (mean-square) stabilizing with respect to
(w.r.t.) a given initial state ðx0; iÞ if the corresponding state xð�Þ of (3.1.23) with
xð0Þ ¼ x0 and r0 ¼ i satisfies limt!1 E xðtÞk k2¼ 0.

Definition 3.1.4 The system (3.1.23) is called (mean-square) stabilizable if there
exists a feedback control u�ðtÞ ¼ Pl

i¼1 Kivrt¼iðtÞxðtÞ, where K1; . . .;Kl are given
matrices, which is stabilizing w.r.t. any initial state ðx0; iÞ.

Next, for a given ðx0; iÞ 2 R
n � 1; 2; . . .; lf g, we define the corresponding set of

admissible controls:

Uðx0; iÞ ¼ uð�Þ 2 L2F ðRnuÞ uð�Þ is mean-square stabilizingw:r:t:ðx0; iÞj� �
:

Where the integer nu is the dimension of the control variable. It is easily seen
that Uðx0; iÞ is a convex subset of Lloc2 ðRnuÞ.

For each ðx0; i; uð�ÞÞ 2 R
n � 1; 2; . . .; lf g � Uðx0; iÞ, the optimal control problem

is to find a control which minimizes the following quadratic cost associated with
(3.1.23)

Jðx0; i; uð�ÞÞ ¼ E
Z þ1

0

xðtÞ
uðtÞ

� 	� 0
QðrtÞ LðrtÞ
LðrtÞ0 RðrtÞ

� 	
xðtÞ
uðtÞ

� 	
dt r0 ¼ igj ; ð3:1:24Þ

where QðrtÞ ¼ Qi, RðrtÞ ¼ Ri and LðrtÞ ¼ Li when rt ¼ i, whileQi, etc., i ¼ 1; . . .; l,
are given matrices with suitable sizes. The value function V is defined as

Vðx0; iÞ ¼ inf
uð�Þ2Uðx0;iÞ

Jðx0; i; uð�ÞÞ: ð3:1:25Þ

Definition 3.1.5 The LQ problem (3.1.23)–(3.1.25) is called well-posed if

�1\Vðx0; iÞ\þ1; 8ðx0; iÞ 2 R
n � N:

A well-posed problem is called attainable (w.r.t. ðx0; iÞ) if there is a control
u�ð�Þ 2 Uðx0; iÞ that achieves Vðx0; iÞ. In this case the control u�ð�Þ is called optimal
(w.r.t. ðx0; iÞ).
Assumption 3.1.2 The system (3.1.23) is mean-square stabilizable.

Mean-square stabilizability is a standard assumption in an infinite-horizon LQ
control problem. In words, it basically ensures that there is at least one meaningful
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control, in the sense that the corresponding state trajectory is square integrable
(hence does not “blow up”), with respect to any initial conditions. The problem
would be trivial without this assumption.

Assumption 3.3.3 The data appearing in the LQ problem (3.1.23)–(3.1.25) satisfy,
for every i,

Ai;Ci 2 R
n�n;Bi;Di 2 R

n�nu ;Qi 2 Sn; Li 2 R
n�nu ;Ri 2 Snu :

3.1.2.2 Main Results

Theorem 3.1.3 For the LQ problem (3.1.23)–(3.1.25), if the following ARE
(3.1.26) has a maximal solution XðiÞ� 0, i ¼ 1; . . .; l,

XðiÞAðiÞþA0ðiÞXðiÞþC0ðiÞXðiÞCðiÞ � XðiÞBðiÞR�1ðiÞB0ðiÞXðiÞ

þQðiÞþ
Xl

j¼1

pijXðjÞ ¼ 0:
ð3:1:26Þ

Then the optimal feedback law is

uðtÞ ¼
Xl

i¼1

KðiÞvrt¼iðtÞxðtÞ ¼ �
Xl

i¼1

R�1ðiÞB0ðiÞXðiÞvrt¼iðtÞxðtÞ: ð3:1:27Þ

And Jðx0; i; uÞ�E x0ð0ÞX�ðiÞxð0Þ½ �. Furthermore, if ARE (3.1.26) has a solution,
then the solution is the maximal solution XðiÞ ¼ P�ðiÞ, and PðiÞ ¼ P�ðiÞ is the
solution to the following semi-definite dynamic programming

maxmize TrðPðiÞÞ; ð3:1:28aÞ

s:t:

XðiÞAðiÞþA0ðiÞXðiÞþC0ðiÞXðiÞCðiÞ

þQðiÞþ Pl
j¼1

pijXðjÞ PðiÞBðiÞ

B0ðiÞPðiÞ RðiÞ

2
6664

3
7775� 0:

ð3:1:28bÞ

Proof The proof is similar with LQ problem in a finite time horizon, here we
omitted it.
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3.2 Stochastic Nash Differential Games with Two Player

3.2.1 Finite-Time Horizon Case

3.2.1.1 Problem Formulation

First, we consider a stochastic Nash differential game with two player on a finite
horizon ½0; T �, N-player case is similar.

Consider the following Markov jump linear systems described by stochastic
differential equation

dxðtÞ ¼ Aðt; rtÞxðtÞþB1ðt; rtÞuðtÞþB2ðt; rtÞvðtÞ½ �dt
þ Cðt; rtÞxðtÞ ;þD1ðt; rtÞuðtÞþD2ðt; rtÞvðtÞ½ �dwðtÞ;

xðsÞ ¼ y 2 R
n;

8<
: ð3:2:1Þ

Where ðs; yÞ 2 ½0; TÞ � R
n are the initial time and initial state, respectively, and

two admissible controls uð�Þ and vð�Þ are F t-adapted, Rnu - and R
nv -valued mea-

surable process on ½0; T �. The sets of all admissible controls are denoted by U �
L2F ð0; T ;RnuÞ and V � L2F ð0; T;RnvÞ.

For each ðs; yÞ and ðuð�Þ; vð�ÞÞ 2 U � V, the cost functional Jkðs; y; i; uð�Þ; vð�ÞÞ
for player k is

Jkðs; y; i; uð�Þ; vð�ÞÞ ¼ E
Z T

s
z0ðtÞMkðt; rtÞzðtÞdtþ x0ðTÞHkðrTÞxðTÞ rs ¼ ij

� 

;

zðtÞ ¼
xðtÞ
uðtÞ
vðtÞ

2
64

3
75; Mkðt; rtÞ ¼

Qkðt; rtÞ Lk1ðt; rtÞ Lk2ðt; rtÞ
L0k1ðt; rtÞ Rk1ðt; rtÞ 0

L0k2ðt; rtÞ 0 Rk2ðt; rtÞ

2
64

3
75; k ¼ 1; 2:

ð3:2:2Þ

In (3.2.1) and (3.2.2), Aðt; rtÞ ¼ AiðtÞ, etc. whenever rt ¼ i, and HkðrTÞ ¼ Hki,
k ¼ 1; 2, whenever rT ¼ i, whereas Aið�Þ etc. are given matrix-valued functions
and Hki are given matrices, i ¼ 1; . . .; l.

Assumption 3.2.1 The data appearing in the finite horizon stochastic Nash dif-
ferential game problem (3.2.1)–(3.2.2) satisfy, for every i,

Aið�Þ;Cið�Þ 2 L1ð0; T ;RnÞ; B1ið�Þ;D1ið�Þ 2 L1ð0; T;Rn�nuÞ;
B2ið�Þ;D2ið�Þ 2 L1ð0; T ;Rn�nvÞ; Q1ið�Þ 2 L1ð0; T ;SnÞ;
Q2ið�Þ 2 L1ð0; T;SnÞ; R11ið�Þ 2 L1ð0; T;SnuÞ;
L11ið�Þ 2 L1ð0; T ;Rn�nuÞ; L12ið�Þ 2 L1ð0; T ;Rn�nvÞ;
L21ið�Þ 2 L1ð0; T ;Rn�nuÞ; L22ið�Þ 2 L1ð0; T ;Rn�nvÞ;
R22ið�Þ 2 L1ð0; T ;SnvÞ; H1i 2 Sn; H2i 2 Sn:

8>>>>>><
>>>>>>:
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Now, let’s give the form definition of finite time stochastic Nash differential
games:

Definition 3.2.1 For each ðs; yÞ 2 ½0; TÞ � R
n, finding an admissible control pair

ðu�ð�Þ; v�ð�ÞÞ 2 U � V, such that

J1ðs; y; i; u�ð�Þ; v�ð�ÞÞ 	 J1ðs; y; i; uð�Þ; v�ð�ÞÞ; 8uð�Þ 2 U;
J2ðs; y; i; u�ð�Þ; v�ð�ÞÞ 	 J2ðs; y; i; u�ð�Þ; vð�ÞÞ; 8vð�Þ 2 V:

�
ð3:2:3Þ

The strategy pair ðu�ð�Þ; v�ð�ÞÞ which satisfying (3.2.3) is called the Nash
equilibrium of the game.

3.2.1.2 Main Results

With the help of the relevant conclusions of differential game with one-person
discussed in 3.1, it is easy to obtain the following conclusions.

Theorem 3.2.1 For the finite time stochastic Nash differential game (3.2.1)–
(3.2.2), there exists the Nash equilibrium ðu�ð�Þ; v�ð�ÞÞ, if and only if the following
coupled generalized differential Riccati equations (with time t supressed)

_P1i þP1i�Ai þ �A0
iP1i þ �C0

iP1i �Ci þ �Q1i þ
Pl
j¼1

pijP1j � P1iB1i þ �C0
iP1iD1i þ L11i

 �

� R11i þD0
1iP1iD1i

 ��1
B0
1iP1i þD0

1iP1i�Ci þ L011i
 � ¼ 0;

P1iðTÞ ¼ H1i;
R11i þD0

1iP1iD1i [ 0; i ¼ 1; . . .; l:

8>>>>><
>>>>>:

ð3:2:4aÞ

K1i ¼ � R11i þD0
1iP1iD1i

 ��1
B0
1iP1i þD0

1iP1i�Ci þ L011i
 �

; ð3:2:4bÞ

_P2j þP2j~Aj þ ~A0
jP2j þ ~C0

jP2j ~Cj þ ~Q2j þ
Pl
k¼1

pjkP2k � P2jB2j þ ~C0
jP2jD2j þ L22j

� �

� R22j þD0
2jP2jD2j

� ��1
B0
2jP2j þD0

2jP2j~Cj þ L022j
� �

¼ 0;

P2jðTÞ ¼ H2j;
R22jðjÞþD0

2jðjÞP2jðjÞD2jðjÞ[ 0 ; j ¼ 1; . . .; l:

8>>>>>><
>>>>>>:

ð3:2:4cÞ

K2j ¼ � R22j þD0
2jP2jD2j

� ��1
B0
2jP2j þD0

2jP2j~Cj þ L022j
� �

: ð3:2:4dÞ
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where

�Ai ¼ Ai þB2iK2i; �Ci ¼ Ci þD2iK2i; �Q1i ¼ Q1i þ L12iK2i þK 0
2iL

0
12i þK 0

2iR12iK2i;

~Aj ¼ Aj þB1jK1j; ~Cj ¼ Cj þD1jK1j; ~Q2j ¼ Q2j þ L21jK1j þK 0
1jL

0
21j þK 0

1jR21jK1j:

admit a solution Pð�Þ ¼ ðP1ð�Þ;P2ð�ÞÞ 2 C1ð0; T;Sn
l Þ� 0, where P1ð�Þ ¼

ðP11ð�Þ; . . .;P1lð�ÞÞ, P2ð�Þ ¼ ðP21ð�Þ; . . .;P2lð�ÞÞ.
Denote F�

1iðtÞ ¼ K1iðtÞ, F�
2iðtÞ ¼ K2iðtÞ, then the Nash equilibrium strategy

ðu�ð�Þ; v�ð�ÞÞ can be represented by

u�ðtÞ ¼
Xl

i¼1

F�
1iðtÞvrt¼iðtÞxðtÞ; v�ðtÞ ¼

Xl

i¼1

F�
2iðtÞvrt¼iðtÞxðtÞ:

Moreover, the optimal value is

Jkðs; y; i; u�ð�Þ; v�ð�ÞÞ ¼ y0PkiðsÞy; k ¼ 1; 2:

Proof These results can be proved by using the concept of Nash equilibrium
described in Definition 3.2.1 as follows. Given v�ðtÞ ¼ Pl

i¼1 F
�
2iðtÞvrt¼iðtÞxðtÞ is the

optimal control strategy implemented by player P2, player P1 facing the following
optimization problems:

min
uð�Þ2U

E
Z T

s

xðtÞ
uðtÞ

" #0
�Q1ðt; rtÞ L11ðt; rtÞ
L011ðt; rtÞ R11ðt; rtÞ

� 	 xðtÞ
uðtÞ

" #
dtþ x0ðTÞH1ðrTÞxðTÞ rs ¼ ij

( )
;

s:t:

dxðtÞ ¼ �Aðt; rtÞxðtÞþB1ðt; rtÞuðtÞ½ �dtþ �Cðt; rtÞxðtÞþD1ðt; rtÞuðtÞ½ �dWðtÞ;
xðsÞ ¼ y:

�

ð3:2:5Þ

where

�Q1 ¼ Q1 þðF�
2Þ0L012 þ L12F

�
2 þðF�

2Þ0R12F
�
2 :

Note that the above optimization problem defined in (3.2.5) is a standard
stochastic LQ problem. Applying Theorem 3.1.1 to this optimization problem as

�Q1ðrtÞ L11ðrtÞ
L011ðrtÞ R11ðrtÞ

� 	
) Q1 L1

L01 R11

� 	
; �A ) A; �C ) C:
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We can easily get the optimal control and the optimal value function

u�ðtÞ ¼
Xl

i¼1

F�
1iðtÞvrt¼iðtÞxðtÞ; J1ðs; y; i; u�ð�Þ; v�ð�ÞÞ ¼ y0P1iðsÞy; i ¼ 1; . . .; l:

ð3:2:6Þ

Similarly, we can prove that v�ðtÞ ¼ Pl
i¼1 F

�
2iðtÞvrt¼iðtÞxðtÞ is the optimal con-

trol strategy of player P2.
This completes the proof of Theorem 3.2.1.

3.2.2 Infinite-Time Horizon Case

3.2.2.1 Problem Formulation

In this subsection, we discuss the stochastic Nash differential games on time
interval ½0;1Þ. Before giving the problem to be discussed, first define the following
space

Lloc2 ðRmÞ :¼ /ð�; �Þ : ½0;1Þ � X ! R
m /ð�; �Þjf is F t-adapted, Lebesgue mea-

surable, and E
R T
0 /ðt;xÞk k2dt\1; 8T [ 0g.

Consider the following Markov jump linear systems defined by

dxðtÞ ¼ AðrtÞxðtÞþB1ðrtÞuðtÞþB2ðrtÞvðtÞ½ �dt
þ CðrtÞxðtÞþD1ðrtÞuðtÞþD2ðrtÞvðtÞ½ �dwðtÞ;

xð0Þ ¼ x0:

8<
: ð3:2:7Þ

where AðrtÞ ¼ AðiÞ, B1ðrtÞ ¼ B1ðiÞ, B2ðrtÞ ¼ B2ðiÞ, CðrtÞ ¼ CðiÞ, D1ðrtÞ ¼ D1ðiÞ
and D2ðrtÞ ¼ D2ðiÞ, when rt ¼ i, i ¼ 1; . . .; l, while AðiÞ, etc., are given matrices of
suitable sizes. uð�Þ 2 U � Lloc2 ðRnuÞ and vð�Þ 2 V � Lloc2 ðRnvÞ are two admissible
control processes, which represents the control strategies of these two players.

Definition 3.2.2 [7] The stochastically controlled system described by Itô’s
equation dxðtÞ ¼ AðrtÞxðtÞþBðrtÞuðtÞ½ �dtþ CðrtÞxðtÞþDðrtÞuðtÞ½ �dwðtÞ, xð0Þ ¼ x0
is mean-square stabilizable, if there exists a feedback control

uðtÞ ¼ Pl
i¼1

KðiÞvrt¼iðtÞxðtÞ, where Kð1Þ; . . .;KðlÞ are given matrices, which is sta-

bilizing w.r.t. any initial value xð0Þ ¼ x0, r0 ¼ i, the closed-loop system

dxðtÞ ¼ ½AðrtÞþBðrtÞKðrtÞ�xðtÞdtþ ½CðrtÞþDðrtÞKðrtÞ�dwðtÞ

is asymptotically mean-square stable, i.e., lim
t!1E xðtÞk k2 r0 ¼ ij

h i
¼ 0.
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Next, for a given ðx0; iÞ 2 R
n � N, we define the corresponding sets of admis-

sible controls:
�Uðx0; iÞ ¼ ðuð�Þ; vð�ÞÞ 2 U � Vf ðuð�Þ; vð�ÞÞj is mean-square stabilizing w.r.t.

ðx0; iÞg.
For each ðx0; iÞ and ðuð�Þ; vð�ÞÞ 2 �Uðx0; iÞ, the cost function Jkðx0; i; uð�Þ; vð�ÞÞ is

Jkðx0; i; uð�Þ; vð�ÞÞ ¼ E
Z 1

0
z0ðtÞMkðrtÞzðtÞdt r0 ¼ ij

� 

;

zðtÞ ¼
xðtÞ
uðtÞ
vðtÞ

2
64

3
75; MkðrtÞ ¼

QkðrtÞ Lk1ðrtÞ Lk2ðrtÞ
L0k1ðrtÞ Rk1ðrtÞ 0

L0k2ðrtÞ 0 Rk2ðrtÞ

2
64

3
75; k ¼ 1; 2:

ð3:2:8Þ

In (3.2.7) and (3.2.8), AðrtÞ ¼ AðiÞ,…, when rt ¼ i, while AðiÞ, etc., are given
matrices with suitable sizes.

The form definition of infinite-time horizon stochastic Nash differential game is
given below:

Definition 3.2.3 For each ðx0; iÞ 2 R
n � N, finding an admissible control pair

ðu�ð�Þ; v�ð�ÞÞ 2 �Uðx0; iÞ, such that

J1ðs; y; i; u�ð�Þ; v�ð�ÞÞ 	 J1ðs; y; i; uð�Þ; v�ð�ÞÞ; 8uð�Þ 2 U;
J2ðs; y; i; u�ð�Þ; v�ð�ÞÞ	 J2ðs; y; i; u�ð�Þ; vð�ÞÞ; 8vð�Þ 2 V:

(
ð3:2:9Þ

the strategy pair ðu�ð�Þ; v�ð�ÞÞ which satisfying (3.2.9) is called the Nash equilib-
rium of the game.

3.2.2.2 Main Results

Assumption 3.2.2 The system (3.2.7) is mean-square stabilizable.

Similar to the finite-time horizon stochastic Nash games discussed in last subsec-
tion, we can get the corresponding results of the infinite-time horizon stochastic
Nash games stated as Theorem 3.2.2, which can be verified by following the line of
Theorem 3.2.1.

Theorem 3.2.2 Suppose Assumption 3.2.1 holds, the infinite-time horizon
stochastic Nash differential game (3.2.7)–(3.2.8) has a Nash equilibrium
ðu�ð�Þ; v�ð�ÞÞ, if and only if the following algebraic Riccati equations admit a
solution P ¼ ðP1;P2Þ 2 Sn

l � Sn
l � 0 with P1 ¼ ðP1ð1Þ; . . .;P1ðlÞÞ,

P2 ¼ ðP2ð1Þ; . . .;P2ðlÞÞ:

46 3 Stochastic Differential Games of Continuous-Time …



P1ðiÞ�AðiÞþ �A0ðiÞP1ðiÞþ �C0
1ðiÞP1ðiÞ�C1ðiÞþ �Q1ðiÞþ

Pl
j¼1

pijP1ðjÞ

� P1ðiÞB1ðiÞþ �C0
1ðiÞP1ðiÞD1ðiÞþ L11ðiÞ

 �
R11ðiÞþD0

1ðiÞP1ðiÞD1ðiÞ
 ��1

� B0
1ðiÞP1ðiÞþD0

1ðiÞP1ðiÞ�C1ðiÞþ L011ðiÞ
 � ¼ 0;

R11ðiÞþD0
1ðiÞP1ðiÞD1ðiÞ[ 0; i 2 N:

8>>>>><
>>>>>:

ð3:2:10aÞ

K1 ¼ � R11ðiÞþD0
1ðiÞP1ðiÞD1ðiÞ

 ��1
B0
1ðiÞP1ðiÞþD0

1ðiÞP1ðiÞ�C1ðiÞþ L011ðiÞ
 �

;

ð3:2:10bÞ

P2ðjÞ~AðjÞþ ~A0ðjÞP2ðjÞþ ~C0
2ðjÞP2ðjÞ~C2ðjÞþ ~Q2ðjÞþ

Pl
k¼1

pjkP2ðkÞ
� P2ðjÞB2ðjÞþ ~C0

2ðjÞP2ðjÞD2ðjÞþ L22ðjÞ
 �

R22ðjÞþD0
2ðjÞP2ðjÞD2ðjÞ

 ��1

� B0
2ðjÞP2ðjÞþD0

2ðjÞP2ðjÞ~C2ðjÞþ L022ðjÞ
 � ¼ 0;

R22ðjÞþD0
2ðjÞP2ðjÞD2ðjÞ[ 0; j 2 N:

8>>>>><
>>>>>:

ð3:2:10cÞ

K2 ¼ � R22ðjÞþD0
2ðjÞP2ðjÞD2ðjÞ

 ��1
B0
2ðjÞP2ðjÞþD0

2ðjÞP2ðjÞ~C2ðjÞþ L022ðjÞ
 �

:

ð3:2:10dÞ

where

�A ¼ AþB2K2; �C1 ¼ CþD2K2; �Q1 ¼ Q1 þ L12K2 þK 0
2L

0
12 þK 0

2R12K2;

~A ¼ AþB1K1; ~C2 ¼ CþD1K1; ~Q2 ¼ Q2 þ L21K1 þK 0
1L

0
21 þK 0

1R21K1

The equilibrium strategies and optimal cost function are

u�ðtÞ ¼
Xl

i¼1

K1ðiÞvrt¼iðtÞxðtÞ; v�ðtÞ ¼
Xl

i¼1

K2ðiÞvrt¼iðtÞxðtÞ:

Jkðx0; i; u�ð�Þ; v�ð�ÞÞ ¼ x00PkðiÞx0; k ¼ 1; 2; i ¼ 1; . . .; l:

3.2.3 Two Person Zero-Sum Stochastic Differential Game

In two person stochastic Nash differential games, when the sum of the two players’
cost function is zero, i.e., J1 ¼ �J2, the game is degenerated to two person
zero-sum stochastic differential game problem. Two person zero-sum stochastic
differential game has been widely used in economics and management field, and
this subsection is devoted to the theoretical study of this game.
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3.2.3.1 Finite-Time Horizon Case

Consider the games described by the following linear stochastic differential equa-
tion with Markovian parameter jumps

dxðtÞ ¼ Aðt; rtÞxðtÞþB1ðt; rtÞuðtÞþB2ðt; rtÞvðtÞ½ �dtþ
D0ðt; rtÞxðtÞþD1ðt; rtÞuðtÞþD2ðt; rtÞvðtÞ½ �dwðtÞ; t 2 ½0; T�;

xðsÞ ¼ y:

8<
: ð3:2:11Þ

where ðs; yÞ 2 ½0; TÞ � R
n is the initial time and state, uð�Þ and vð�Þ are two

admissible control processes, i.e., F t-adapted, R
nu -and R

nv -valued measurable
process on ½0;T �. The sets of all admissible controls are denoted by U �
L2F ð0; T ;RnuÞ and V � L2F ð0; T ;RnvÞ; rtf g and wðtÞf g are a Markov process and a
standard one-dimensional Brownian motion which are independent.

For each ðs; yÞ and ðuð�Þ; vð�ÞÞ 2 U � V, the cost function of the game is defined
by:

Jcðs; y; i; uð�Þ; vð�ÞÞ ¼ E
Z T

s
x0ðtÞQðt; rtÞxðtÞþ u0ðtÞRðt; rtÞuðtÞ � c2v0ðtÞvðtÞ� �

dt

�

þ x0ðTÞHðrTÞxðTÞ rs ¼ ij g;
ð3:2:12Þ

where c[ 0 is a given constant.
In (3.2.11) and (3.2.12), Aðt; rtÞ ¼ AiðtÞ,…, whenever rt ¼ i, moreover, when

rT ¼ i, HðrTÞ ¼ Hi. Referring to stochastic LQ problem, the corresponding value
function is defined by:

Vðs; y; iÞ ¼ inf
u2U

sup
v2V

Jcðs; y; i; uð�Þ; vð�ÞÞ ¼ sup
v2V

inf
u2U

Jcðs; y; i; uð�Þ; vð�ÞÞ
¼ Jcðs; y; i; u�ð�Þ; v�ð�ÞÞ:

The problem is to look for ðu�ð�Þ; v�ð�ÞÞ 2 U � V which is called the saddle point
equilibrium for the game, such that for each ðs; yÞ 2 ½0; TÞ � R

n. and i 2 N

Jcðs; y; i; u�ð�Þ; vð�ÞÞ	 Jcðs; y; i; u�ð�Þ; v�ð�ÞÞ	 Jcðs; y; i; uð�Þ; v�ð�ÞÞ; ð3:2:13Þ

for each ðs; yÞ 2 ½0; TÞ � R
n, and i 2 N.

Definition 3.2.4 The stochastic differential games (3.2.11)–(3.2.12) are well posed
if

Vðs; y; iÞ� �1; 8ðs; yÞ 2 ½0; T � � R
n; i 2 N:
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Assumption 3.2.3 The data appearing in the game problem (3.2.11)–(3.2.12)
satisfy, for every i,

Aið�Þ;D0ið�Þ 2 L1ð0; T;RnÞ; B1ið�Þ;D1ið�Þ 2 L1ð0; T;Rn�nuÞ;
B2ið�Þ;D2ið�Þ 2 L1ð0; T ;Rn�nvÞ; Qið�Þ 2 L1ð0; T ;SnÞ;
Rið�Þ 2 L1ð0; T ;SnuÞ; Hi 2 Sn:

8<
:

Next, we will give the explicit form of the saddle point equilibrium strategy and
the optimal cost function of the game combined with “completion square method”.
Since the control weighting matrix Rið�Þ in the cost function may be indefinite, we
replace inverse matrix with Moore-Penrose pseudo inverse matrix, and accompa-
nied with constrained generalized differential Riccati equation. The main results are
presented by Theorems 3.2.3 and 3.2.4.

Theorem 3.2.3 For the Markov jump linear system (3.2.11), if the following
generalized differential Riccati equation (with time t suprresed)

_Pi þNðPiÞ � S0ðPiÞRyðPiÞSðPiÞ ¼ 0;
PiðTÞ ¼ Hi;
Ri þ p11ðPiÞ[ 0;�c2Iþ p22ðPiÞ[ 0; a:e: t 2 ½0; T �; i ¼ 1; . . .; l:

8<
: ð3:2:14Þ

admits a solution ðP1ð�Þ; . . .;Plð�ÞÞ 2 C1ð0; T;Sn
l Þ, where

NðPiÞ ¼ PiAi þA0
iPi þ p00ðPiÞþQi þ

Pl
j¼1

pijPj;

SðPiÞ ¼ B0
1iPi þ p10ðPiÞ

B0
2iPi þ p20ðPiÞ

� 	
;

RðPiÞ ¼ Ri þ p11ðPiÞ p12ðPiÞ
p21ðPiÞ �c2Iþ p22ðPiÞ

� 	
;

ps1ðPiÞ ¼ D0
siPiD1i; s; 1 ¼ 0; 1; 2;

8>>>>>>>>><
>>>>>>>>>:

ð3:2:15Þ

then the game (3.2.11)–(3.2.12) has a saddle point equilibrium �u�ð�Þ, and for any
initial value ðs; yÞ 2 ½0; TÞ � R

n, its explicit expression is

�u�ðtÞ ¼ �
Xl

i¼1

RyðPiðtÞÞSðPiðtÞÞvfrt¼igðtÞxðtÞ:

Meanwhile, the optimal value is Vðs; y; iÞ ¼ Jc s; y; i; �u�ð�Þð Þ ¼ y0PiðsÞy,
i ¼ 1; . . .; l.

Proof Since the two person zero-sum differential game is a special case of two
person nonzero-sum differential game, so the proof of Theorem 3.2.3 can similarly
referring to Theorem 3.2.1, and we omitted here.
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3.2.3.2 Infinite-Time Horizon Case

In this subsection, we consider the two person zero-sum stochastic differential
games on time interval ½0;1Þ. Firstly, we define the following space

Lloc2 ðRmÞ :¼ /ð�; �Þ : ½0;1Þ � X ! R
m /ð�; �Þjf

is F t-adapted, Lebesgue measurable, and E
R T
0 /ðt;xÞk k2dt\1; 8T [ 0g.

For notation’s simplicity, considering the following controlled Markov jump
linear systems:

dxðtÞ ¼ AðrtÞxðtÞþB1ðrtÞuðtÞþB2ðrtÞvðtÞ½ �dtþ D0ðrtÞxðtÞþD1ðrtÞuðtÞ½ �dwðtÞ;
xð0Þ ¼ x0;

�

ð3:2:16Þ

where AðrtÞ ¼ AðiÞ, B1ðrtÞ ¼ B1ðiÞ, B2ðrtÞ ¼ B2ðiÞ, D0ðrtÞ ¼ D0ðiÞ and
D1ðrtÞ ¼ D1ðiÞ, when rt ¼ i, i ¼ 1; . . .; l, while AðiÞ, etc., are given matrices of
suitable sizes. uð�Þ 2 U � Lloc2 ðRnuÞ and vð�Þ 2 V � Lloc2 ðRnvÞ are two admissible
control processes, which represents the control strategies of these two players.

For system (3.2.16) and ðx0; iÞ 2 R
n � N, the corresponding sets of admissible

controls are denoted by:
�Uðx0; iÞ ¼ ðuð�Þ; vð�ÞÞ 2 U � Vf ðuð�Þ; vð�ÞÞj is mean-square stabilizing w.r.t.

ðx0; iÞg.
For each ðx0; iÞ and ðuð�Þ; vð�ÞÞ 2 �Uðx0; iÞ, the cost function is

Jcðx0; i; uð�Þ; vð�ÞÞ ¼ E
Z 1

0
x0ðtÞQðrtÞxðtÞþ u0ðtÞRðrtÞuðtÞ � c2v0ðtÞvðtÞ �

dt r0 ¼ ij
� 


:

ð3:2:17Þ

where c[ 0 is a given constant, and QðrtÞ ¼ QðiÞ, RðrtÞ ¼ RðiÞ, whenever rt ¼ i,
i ¼ 1; . . .; l, while QðiÞ, etc., are given matrices with suitable sizes. The value
function is defined as

Vðx0; iÞ ¼ inf
u2U

sup
v2V

Jcðx0; i; uð�Þ; vð�ÞÞ ¼ sup
v2V

inf
u2U

Jcðx0; i; uð�Þ; vð�ÞÞ
¼ Jcðx0; i; u�ð�Þ; v�ð�ÞÞ:

The problem is to look for ðu�ð�Þ; v�ð�ÞÞ 2 �Uðx0; iÞ which is called the saddle
point equilibrium for the game, such that

Jcðs; y; i; u�ð�Þ; vð�ÞÞ	 Jcðs; y; i; u�ð�Þ; v�ð�ÞÞ	 Jcðs; y; i; uð�Þ; v�ð�ÞÞ; i ¼ 1; . . .; l:
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Definition 3.2.5 The stochastic differential games (3.2.16)–(3.2.17) are well posed
if

�1\Vðx0; iÞ\þ1; 8x0 2 R
n; 8i ¼ 1; . . .; l:

Assumption 3.2.4 The system (3.2.16) is mean-square stabilizable.

Similar to the finite-time horizon stochastic Nash games discussed in last sub-
section, we can get the corresponding results of the infinite-time horizon stochastic
Nash games stated as Theorem 3.2.3, which can be verified by following the line of
Theorems 3.2.1 and 3.2.2.

Theorem 3.2.4 Suppose Assumption 3.2.4 holds, for the Markov jump linear

system (3.2.16) and ðx0; iÞ 2 R
n � N, the feedback control u�ð�Þ ¼

Pl
i¼1

K1ðiÞvrt¼iðtÞxðtÞ and v�ð�Þ ¼ Pl
i¼1

K2ðiÞvrt¼iðtÞxðtÞ is the equilibrium strategy of

stochastic differential game (3.2.16)–(3.2.17), where K1ðiÞ and K2ðiÞ are given
matrices with suitable size, if and only if the following algebraic Riccati equation

PðiÞAðiÞþA0ðiÞPðiÞþD0
0ðiÞPðiÞD0ðiÞþQðiÞþ Pl

j¼1
pijPðjÞþ

c�2PðiÞB2ðiÞB0
2ðiÞPðiÞ � ½PðiÞB1ðiÞþD0

0ðiÞPðiÞD1ðiÞ��
½RðiÞþD0

0ðiÞPðiÞD0ðiÞ�y½B0
1ðiÞPðiÞþD0

1ðiÞPðiÞD0ðiÞ� ¼ 0;
RðiÞþD0

0ðiÞPðiÞD0ðiÞ[ 0; i ¼ 1; . . .; l:

8>>>>><
>>>>>:

ð3:2:18Þ

admits a solution ðP1; . . .;PlÞ 2 Sn
l . In this case,

K1ðiÞ ¼ �½RðiÞþD0
0ðiÞPðiÞD0ðiÞ�y½B0

1ðiÞPðiÞþD0
1ðiÞPðiÞD0ðiÞ�;K2ðiÞ

¼ c�2B0
2ðiÞPðiÞ:

Meanwhile, the optimal value is Vðx0; iÞ ¼ Jcðx0; i; u�ð�Þ; v�ð�ÞÞ ¼ x00PðiÞx0.

3.2.4 Numerical Example

In order to verify the correctness of the conclusions, consider all the coefficient
matrices of the system (3.2.7) taking the following values:
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N ¼ f1; 2g;P ¼ �0:2 0:2

0:8 �0:8

� 	
;Að1Þ ¼ 0 1

�2 �3

� 	
;Að2Þ ¼ 0 1

1 0

� 	
;Cð1Þ ¼ 0:1 0

0 0:3

� 	
;

Cð2Þ ¼ 0:5 0

0 0:2

� 	
;B1ð1Þ ¼

1

0

� 	
;B1ð2Þ ¼

3

0

� 	
;B2ð1Þ ¼

1

1

� 	
;B2ð2Þ ¼

0

1

� 	
;

D1ð1Þ ¼
0

0:1

� 	
;D1ð2Þ ¼

0

0

� 	
;D2ð1Þ ¼

0

0:05

� 	
;D2ð2Þ ¼

0

0:01

� 	
;Q1ð1Þ ¼ Q1ð2Þ ¼

1 0

0 2

� 	
;

Q2ð1Þ ¼ Q2ð2Þ ¼
2 0

0 0:5

� 	
; L11ðiÞ ¼ L12ðiÞ ¼ L21ðiÞ ¼ L22ðiÞ ¼ 0; i ¼ 1; 2;

R11ð1Þ ¼ R11ð2Þ ¼ R22ð1Þ ¼ R22ð2Þ ¼ 0:1;R12ð1Þ ¼ R12ð2Þ ¼ R21ð1Þ ¼ R21ð2Þ ¼ 0:

Using the Newton’s method proposed by Mukaidani [8–13] to solving (3.2.10a,
3.2.10b, 3.2.10c, 3.2.10d), we get the gain matrices K1ðiÞ and K2ðiÞ are

K1ð1Þ ¼ �2:979 0:986½ �;K1ð2Þ ¼ �3:467 �0:404½ �;
K2ð1Þ ¼ �1:193 �1:186½ �;K2ð2Þ ¼ �0:241 �4:311½ �:

So the optimal control strategy of the system is

u� ¼ �2:979x1 þ 0:986x2; v� ¼ �1:193x1 � 1:186x2; when rt ¼ 1;

u� ¼ �3:467x1 � 0:404x2; v� ¼ �0:241x1 � 4:311x2; when rt ¼ 2:

Under the control of u�ðtÞ and v�ðtÞ, the system’s Eq. (3.2.8) can be denoted as

dxðtÞ ¼ ACðrtÞxðtÞdtþGðrtÞxðtÞdwðtÞ;

where

ACð1Þ ¼
�4:1720 0:8000

�3:1930 �4:1860

� 	
;Gð1Þ ¼ 0:1000 0

�0:3576 0:3393

� 	
;

ACð2Þ ¼
�10:4010 �0:2120

0:7590 �4:3110

� 	
;Gð2Þ ¼ 0:5000 0

�0:0024 0:1569

� 	
:

Using Matlab with simulation step Δ = 0.001, initial value r0 ¼ 1, x1ð0Þ ¼ 2
and x2ð0Þ ¼ 1, we obtain the state trajectories as shown in Figs. 3.1, 3.2 and 3.3.

As can be seen from Figs. 3.1, 3.2 and 3.3, under the control of u�ðtÞ and v�ðtÞ,
the closed-loop system is stable.
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3.3 Stochastic Stackelberg Differential Game
with Two Person

In this subsection, we will refer to Ref. [14], trying to extending the relevant
conclusions from Itô stochastic system to Markov jump systems.

3.3.1 Problem Formulation

Consider the following game system with 2-players involving state-dependent
noise.

dxðtÞ ¼ AðrtÞxðtÞþB1ðrtÞu1ðtÞþB2ðrtÞu2ðtÞ½ �dtþCðrtÞxðtÞdwðtÞ;
xð0Þ ¼ x0:

�
ð3:3:1Þ

where xðtÞ 2 R
n represents the system state, ukðtÞ 2 R

mk , k ¼ 1; 2 represent the k-th
control inputs. It is assumed that the player denoted by u2 is the leader and the
player denoted by u1 is the follower. In (3.3.1), AðrtÞ ¼ AðiÞ, BkðrtÞ ¼ BkðiÞ,
k ¼ 1; 2, CðrtÞ ¼ CðiÞ, when rt ¼ i, i ¼ 1; . . .; l, while AðiÞ, etc., are given matrices
of suitable sizes.

0 1 2 3 4 5 6 7 8 9 10
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Fig. 3.3 Curve of x2(t)

54 3 Stochastic Differential Games of Continuous-Time …



Without loss of generality, the stochastic dynamic games are investigated under
the following basic assumption:

Assumption 3.3.1 ðA;Bk;CÞ, k ¼ 1; 2 is stabilizable.

For each initial value ðx0; iÞ, the cost function for each strategy subset is defined
by

Jkðx0; i; u1; u2Þ ¼ E
Z 1

0

x0ðtÞQkðrtÞxðtÞþ u0kðtÞRkkðrtÞukðtÞ
þ u0jðtÞRkjðrtÞujðtÞ

" #
dt r0 ¼ ij

( )
;

ð3:3:2Þ

where k ¼ 1; 2, QkðrtÞ ¼ Q0
kðrtÞ� 0, RkkðrtÞ ¼ R0

kkðrtÞ[ 0,
RkjðrtÞ ¼ R0

kjðrtÞ� 0; k 6¼ j.

3.3.2 Main Results

Without loss of generality, we restrict the control strategy of each player as linear
state feedback case, i.e., the closed-loop Stackelberg strategies ukðtÞ ¼ ukðx; tÞ have
the following form

ukðtÞ ¼
Xl

i¼1

FkðiÞvrt¼iðtÞxðtÞ:

The Stackelberg strategy of the game system (3.2.1)–(3.3.2) is defined as:

Definition 3.4.1 [14] a strategy set ðu�1; u�2Þ is called a Stackelberg strategy if the
following conditions hold

J2ðx0; i; u�1; u�2Þ	 J2ðx0; i; uo1ðu2Þ; u2Þ; 8u2 2 R
m2 ; ð3:3:3Þ

where

J1ðx0; i; uo1ðu2Þ; u2Þ ¼ min
v

J1ðx0; i; u1; u2Þ; ð3:3:4Þ

and

u�1 ¼ u01ðu�2Þ: ð3:3:5Þ
Theorem 3.3.1 Suppose that the following cross-coupled algebraic matrix
Eqs. (3.3.6a–3.3.6e) has solutions �MkðiÞ� 0, �NkðiÞ, k ¼ 1; 2 and F2ðiÞ
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A0
F1
ðiÞ �M1ðiÞþ �M1ðiÞAF1ðiÞþC0ðiÞ �M1ðiÞCðiÞ

� F0
1ðiÞR11ðiÞF1ðiÞþQF1ðiÞþ

Xl

j¼1

pij �M1ðjÞ ¼ 0;
ð3:3:6aÞ

A0
FðiÞ �M2ðiÞþ �M2ðiÞAFðiÞþC0ðiÞ �M2ðiÞCðiÞþQF2ðiÞ

þF0
1ðiÞR21ðiÞF1ðiÞþ

Xl

j¼1

pij �M2ðjÞ ¼ 0;
ð3:3:6bÞ

AF1ðiÞ�N1ðiÞþ �N1ðiÞA0
F1
ðiÞþCðiÞ�N1ðiÞC0ðiÞ � B1ðiÞR�1

11 ðiÞB0
1ðiÞ �M1ðiÞ�N1ðiÞ

� �N1ðiÞ �M1ðiÞB1ðiÞR�1
11 ðiÞB0

1ðiÞþ pii �N1ðiÞ � B1ðiÞR�1
11 ðiÞB0

1ðiÞ �M2ðiÞ�N2ðiÞ
� �N2ðiÞ �M2ðiÞB1ðiÞR�1

11 ðiÞB0
1ðiÞþB1ðiÞR�1

11 ðiÞR21ðiÞR�1
11 ðiÞB0

1ðiÞ �M1ðiÞ�N2ðiÞ
þ �N2ðiÞ �M1ðiÞB1ðiÞR�1

11 ðiÞR21ðiÞR�1
11 ðiÞB0

1ðiÞ ¼ 0;

ð3:3:6cÞ

AFðiÞ�N2ðiÞþ �N2ðiÞA0
FðiÞþCðiÞ�N2ðiÞCðiÞþ pii �N2ðiÞþ In ¼ 0; ð3:3:6dÞ

R12ðiÞF2ðiÞ�N1ðiÞþR22ðiÞF2ðiÞ�N2ðiÞþB0
2ðiÞ �M1ðiÞ�N1ðiÞþ �M2ðiÞ�N2ðiÞð Þ ¼ 0;

ð3:3:6eÞ

where

F1ðiÞ ¼ �
Xl

i¼1

R�1
11 ðiÞB0

1ðiÞ �M1ðiÞ;AF1ðiÞ ¼ AðiÞþB2ðiÞF2ðiÞ;AFðiÞ ¼ AF1ðiÞþB1ðiÞF1ðiÞ;

QF1ðiÞ ¼ Q1ðiÞþF0
2ðiÞR12ðiÞF2ðiÞ;QF2ðiÞ ¼ Q2ðiÞþF0

2ðiÞR22ðiÞF2ðiÞ:

Denote u�1ðtÞ ¼
Pl
i¼1

F1ðiÞvrt¼iðtÞxðtÞ and u�2ðtÞ ¼
Pl
i¼1

F2ðiÞvrt¼iðtÞxðtÞ,
i ¼ 1; � � � ; l, then the strategy set ðu�1; u�2Þ constitutes the Stackelberg strategy.

Proof Given arbitrary u2ðtÞ ¼ F2ðrtÞxðtÞ, the corresponding u1 is obtained by
minimizing J1ðx0; i; u1Þ with respect to u1. Let us consider the minimizing problem
for the closed-loop stochastic system with arbitrary strategies u2ðtÞ ¼ F2ðrtÞxðtÞ

min
u1

�J1ðx0; i; u1Þ ¼ E
Z 1

0
x0ðtÞQF1ðrtÞxðtÞþ u01ðtÞR11ðrtÞu1ðtÞ
� �

dt r0 ¼ ij
� 


;

s:t:

dxðtÞ ¼ AF2ðrtÞxðtÞþB1ðrtÞu1ðtÞ½ �dtþCðrtÞxðtÞdwðtÞ:
ð3:3:7Þ
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By using Theorem 3.1.2, the optimal state feedback controller uo1ðtÞ is given by

uo1ðtÞ ¼
Xl

i¼1

F1ðiÞvrt¼iðtÞxðtÞ ¼ �
Xl

i¼1

R�1
11 ðiÞB0

1ðiÞ �M1ðiÞvrt¼iðtÞxðtÞ; ð3:3:8Þ

where �M1ðiÞ is the solution to

F1ð �M1ðiÞ;F2ðiÞÞ ¼ A0
F1
ðiÞ �M1ðiÞþ �M1ðiÞAF1ðiÞþC0ðiÞ �M1ðiÞCðiÞ

� F0
1ðiÞR11ðiÞF1ðiÞþQF1ðiÞþ

Xl

j¼1

pij �M1ðjÞ ¼ 0:
ð3:3:9Þ

From (3.3.9) we can see that Eq. (3.3.6a) holds. On the other hand, if AFðiÞ ¼
AF1ðiÞþB1ðiÞF1ðiÞ is asymptotically mean square stable, then the cost J2 of the
leader can be represented as

J2ðx0; i; uo1ðu2Þ; u2Þ
¼ J2ðx0; i;F1ðrtÞx;F2ðrtÞxðtÞ;¼ Trð �M2ðiÞÞ;

ð3:3:10Þ

where �M2ðiÞ is the solution to

F2ð �M1ðiÞ; �M2ðiÞ;F2ðiÞÞ
¼ A0

FðiÞ �M2ðiÞþ �M2ðiÞAFðiÞþC0ðiÞ �M2ðiÞCðiÞþQF2ðiÞ

þF0
1ðiÞR21ðiÞF1ðiÞþ

Xl

j¼1

pij �M2ðjÞ ¼ 0:

ð3:3:11Þ

From (3.3.11) we know (3.3.6b) holds. Let us consider the following
Lagrangian H

Hð �M1ðiÞ; �M2ðiÞ;F2ðiÞÞ ¼ Tr �M2ðiÞð ÞþTr �N1ðiÞF1ð �M1ðiÞ;F2ðiÞÞð Þ
þTr �N2ðiÞF2ð �M1ðiÞ; �M2ðiÞ;F2ðiÞÞð Þ; ð3:3:12Þ

where �N1ðiÞ and �N2ðiÞ are symmetric matrix of Lagrange multipliers.
As a necessary condition to minimization Tr �M2ðiÞð Þ, we get
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@H
@ �M1ðiÞ ¼ AF1ðiÞ�N1ðiÞþ �N1ðiÞA0

F1
ðiÞþCðiÞ�N1ðiÞC0ðiÞ

� B1ðiÞR�1
11 ðiÞB0

1ðiÞ �M1ðiÞ�N1ðiÞ � �N1ðiÞ �M1ðiÞB1ðiÞR�1
11 ðiÞB0

1ðiÞ
þ pii �N1ðiÞ � B1ðiÞR�1

11 ðiÞB0
1ðiÞ �M2ðiÞ�N2ðiÞ

� �N2ðiÞ �M2ðiÞB1ðiÞR�1
11 ðiÞB0

1ðiÞ
þB1ðiÞR�1

11 ðiÞR21ðiÞR�1
11 ðiÞB0

1ðiÞ �M1ðiÞ�N2ðiÞ
þ �N2ðiÞ �M1ðiÞB1ðiÞR�1

11 ðiÞR21ðiÞR�1
11 ðiÞB0

1ðiÞ ¼ 0;

ð3:3:13aÞ
@H

@ �M2ðiÞ ¼ AFðiÞ�N2ðiÞþ �N2ðiÞA0
FðiÞþCðiÞ�N2ðiÞCðiÞ

þ pii �N2ðiÞþ In ¼ 0;
ð3:3:13bÞ

1
2

@H
@F2ðiÞ ¼ R12ðiÞF2ðiÞ�N1ðiÞþR22ðiÞF2ðiÞ�N2ðiÞ

þB0
2ðiÞð �M1ðiÞ�N1ðiÞþ �M2ðiÞ�N2ðiÞÞ ¼ 0:

ð3:3:13cÞ

Therefore, (3.3.6c)–(3.3.6e) hold. This completes the proof of Theorem 3.3.1.

3.4 Summary

For continuous-time Markov jump linear system, we firstly discussed the two
person nonzero-sum stochastic differential game problem in finite-time horizon and
infinite-time horizon. By using the related conclusion of stochastic LQ problem of
Markov jump linear systems, we obtain the necessary and sufficient conditions for
the existence of the system combined with Riccati equation method, which corre-
sponds to the existence of the differential (algebraic) Riccati equation, and with the
solution of Riccati equation, the optimal control strategy and explicit expression of
the optimal value function of the system are given. Finally, numerical examples
demonstrate the effectiveness of the obtained results. At the end, two person
Stackelberg game problem of Markov jump linear systems in infinite-time horizon
is discussed, and the existence condition of equilibrium strategy and explicit
expression are given.
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Chapter 4
Stochastic Differential Game
of Discrete-Time Markov Jump Linear
Systems

This chapter investigated the stochastic differential game theory of discrete-time
markov jump linear systems, in which the state equation is described by Itô’s
stochastic algebraic equation. The Nash equilibrium strategies of the two person
nonzero-sum differential game, the saddle point strategies of the two person
zero-sum differential game, Stackelberg differential game were discussed in this
chapter, and it was proved that sufficient conditions for the existence of the equi-
librium strategy are equivalent to the solvability of the corresponding algebraic
Riccati equations; moreover, the explicit solution of the optimal control strategy
and the expression of the optimal value function were obtained. Finally, the
numerical simulation examples were given.

4.1 Stochastic LQ Problem—Differential Game with One
Person

4.1.1 Finite-Time Horizon

4.1.1.1 Problem Formulation

On a probabilistic space ðX;F ; fF tgt� 0;PÞ, we consider a discrete-time markov
jump linear systems of the following type:

xðkþ 1Þ ¼ AðrkÞxðkÞþBðrkÞuðkÞþA1ðrkÞxðkÞwðkÞ;
xð0Þ ¼ x0 2 R

n;

�
ð4:1:1Þ

where xðkÞ 2 R
n is the state, uðkÞ 2 R

m represent the system control inputs, x0 is a
deterministic vector. rk Denotes a time-varying markov chain taking values in N ¼
f1; . . .; lg with transition probability matrix qðkÞ ¼ pijðkÞ

� �
; pijðkÞ ¼ P hðrþ 1Þ ¼ð

j rðkÞ ¼ ij Þ. The coefficients A(rk), A1ðrkÞ, BðrkÞ are assumed to be constant matrices

© Springer International Publishing Switzerland 2017
C.-k. Zhang et al., Non-cooperative Stochastic Differential Game Theory
of Generalized Markov Jump Linear Systems, Studies in Systems,
Decision and Control 67, DOI 10.1007/978-3-319-40587-2_4
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with appropriate dimensions. w(k) is a one-dimensional standard Brownian motion.
Assuming that w(k) is uncorrelated with u(k), and is independent of the Markov
chain rk for k 2 NT . The initial value r(0) = r0 is independent of the noise w(k).

Let the optimal strategies for system (4.1.1) be given as

uðkÞ ¼ KðrkÞxðkÞ: ð4:1:2Þ

The purpose of the one person LQ differential games is to find the feedback
controls with constant matrix gain KðrkÞ satisfying the following criterion:

Jðu; x0; iÞ ¼ E x0ðTÞMxðTÞþ
XT�1

k¼0

x0ðkÞQðrkÞxðkÞþ u0ðkÞRðrkÞuðkÞð Þ
" #

r0 ¼ ij
( )

;

ð4:1:3Þ

which also minimizing

Jðu�; x0; iÞ� Jðu; x0; iÞ; ð4:1:4Þ

where all the weighting matrices RðrkÞ 2 Sm
l ;QðrkÞ� 0 2 Sn

l in (4.1.1) and (4.1.2),
when rk ¼ i; i ¼ 1; . . .; l;AðrkÞ ¼ AðiÞ; etc:

4.1.1.2 Main Results

The following theorem presents a sufficient condition for the existence of the
optimal solutions to the finite-time stochastic LQ control problems.

Theorem 4.1.1 For the system (4.1.1) with the criteria (4.1.3), if the following
generalized algebraic Riccati equations admit a group of solutions (Pi (k); K(i)) for
any (i, k)

A0ðiÞ�PðiÞðkþ 1ÞAðiÞþA0
1ðiÞ�PðiÞðkþ 1ÞA1ðiÞþQðiÞ

�PðiÞðkÞþK 0ðiÞB0ðiÞ�PðiÞðkþ 1ÞAðiÞ ¼ 0;
PðTÞ ¼ M;B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ[ 0;

KðiÞ ¼ � B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ� ��1
B0ðiÞ�PðiÞðkþ 1ÞAðiÞ;

8>><
>>: ð4:1:5Þ

where {Pi (k) 2 Sn} represents symmetric matrix indexed by the time k and the
mode of operation i, and

�PðiÞðkþ 1Þ ¼ EðPrkþ 1ðkþ 1ÞÞ ¼
Xl
j¼1

pijP
ðjÞðkþ 1Þ:

Then the finite time LQ stochastic games are solvable with u∗(k) = K(i) x(k), and
the optimal cost functions incurred by playing strategies u∗(k) are
Jðu�ðkÞÞ ¼ x00P

ðiÞð0Þx0; i 2 N.
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Proof If Pð�Þ ¼ ðPð1Þð�Þ;Pð2Þð�Þ; . . .;PðlÞð�ÞÞ 2 Sn
l is the solution of the Eq. (4.1.5),

xð�Þ is the solution of the Eq. (4.1.3) corresponding to the admissible control
uð�Þ 2 U½0; T �. Considering the scalar function Yðk; xÞ ¼ x0ðkÞPðrkÞðkÞxðkÞ, we can
obtain

E
XT�1

k¼0

xðkþ 1Þ0Pðrkþ 1Þðkþ 1Þxðkþ 1Þ � xðkÞ0PðrkÞðkÞxðkÞ
� �

r0 ¼ ij
h i

¼ E
XT�1

k¼0

x0ðkÞ A0ðiÞ�PðiÞðkþ 1ÞAðiÞþA0
1ðiÞ�PðiÞðkþ 1ÞA1ðiÞ � PðiÞðkÞ

� �
xðkÞ

h(

þ 2u0ðkÞB0ðiÞ�PðiÞðkþ 1ÞAðiÞxðkÞþ u0ðkÞB0ðiÞ�PðiÞðkþ 1ÞBðiÞuðkÞ
io

¼ E x0ðTÞPðTÞxðTÞ½ � � x00P
ðiÞð0Þx0:

ð4:1:6Þ

Substituting (4.1.6) into (4.1.4), we have

Jðu; x0; iÞ ¼ �E x0ðTÞPðTÞxðTÞ½ � þ x00P
ðiÞð0Þx0 þE x0ðTÞMxðTÞ½ �

þE
XT�1

k¼0

x0ðkÞ QðiÞþA0
1ðiÞ�PðiÞðkþ 1ÞA1ðiÞþA0ðiÞ�PðiÞðkþ 1ÞAðiÞ

� �h(
xðkÞ

þ 2u0ðkÞB0ðiÞ�PðiÞðkþ 1ÞAðiÞxðkÞþ u0ðkÞ RðiÞþB0ðiÞ�PðiÞðkþ 1ÞBðiÞ
� �

uðkÞ
io

:

ð4:1:7Þ

Using the completion square method to (4.1.7), we can obtain

Jðu; x0; iÞ ¼ �E x0ðTÞPðTÞxðTÞ½ � þ x00P
ðiÞð0Þx0 þE x0ðTÞMxðTÞ½ �

þ x0ðkÞ A0ðiÞ�PðiÞðkþ 1ÞAðiÞþA0
1ðiÞ�PðiÞðkþ 1ÞA1ðiÞ

h
þQðiÞ � PðiÞðkÞþK 0ðiÞB0ðiÞ�PðiÞðkþ 1ÞAðiÞ

i
xðkÞ

þ uðkÞ � KðiÞxðkÞð Þ0 B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ
� �

uðkÞ � KðiÞxðkÞð Þ;

where KðiÞ ¼ � B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ� ��1
B0ðiÞ�PðiÞðkþ 1ÞAðiÞ.

Hence, considering the Eq. (4.1.5), it is easy to deduce that

Jðu; x0; iÞ� x00P
ðiÞð0Þx0 ¼ Jðu�; x0; iÞ; i 2 N: ð4:1:8Þ

this ends the proof. □
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The sufficient conditions for the existence of the optimal control strategy are
given in Theorem 4.1.1. The necessary conditions are given in the following
Theorem 4.1.2.

Theorem 4.1.2 For system (4.1.1), if u�ðkÞ ¼ KðiÞxðkÞ is the optimal control

strategy, where KðiÞ ¼ � B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ� ��1
B0ðiÞ�PðiÞðkþ 1ÞAðiÞ; i 2 N

is a numerical matrix, then the algebraic Riccati Eq. (4.1.3) admits a solution
Pð�Þ ¼ ðPð1Þð�Þ;Pð2Þð�Þ; . . .;PðlÞð�ÞÞ 2 Sn

l and

KðiÞ ¼ � B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ
� ��1

B0ðiÞ�PðiÞðkþ 1ÞAðiÞ:

Proof We can prove Theorem 4.1.2 by the method of dynamic programming.
Reference [1] assuming that for any interval kT\t\NT ; k ¼ 0; 1; . . .;N � 1,
select a quadratic value function as follows

Fkðu; xðkÞ; rkÞ

¼ E x0ðTÞMxðTÞþ
XT�1

j¼k

x0ðjÞQðrjÞxðjÞþ u0ðjÞRðrjÞuðjÞ
� �		xðdÞ; rd; 0� d�N

( )
:

Marking the minimization Fk over uðkÞ; uðkþ 1Þ; . . .; uðT � 1Þ as SðxðkÞ; rk; kÞ:
Given k, xðkÞ ¼ x�ðkÞ; rk ¼ i; then

Sðx�ðkÞ; i; kÞ ¼ min
uðkÞ

Fkf g

¼ min
uðkÞ

x0ðkÞQðrkÞxðkÞþ u0ðkÞRðrkÞuðkÞ½ � þ min
uðkÞ

E x0ðTÞMxðTÞf

þ
XT�1

j¼kþ 1

x0ðjÞQðrjÞxðjÞþ u0ðjÞRðrjÞuðjÞ
� �		xðdÞ; rd; 0� d�N
� �
 �)

¼ min
uðkÞ

x0ðkÞQðrkÞxðkÞþ u0ðkÞRðrkÞuðkÞ½ � þE Sðxðkþ 1Þ; rkþ 1; kþ 1Þ x�ðkÞ; ij½ �:

ð4:1:9Þ

Let SðxðkÞ; rk; kÞ ¼ xðkÞ0PðrkÞðkÞxðkÞ, where PðrkÞðkÞ is a matrix to be determined,
taking conditional expection on SðxðkÞ; rk; kÞ, we have

E Sðxðkþ 1Þ; rkþ 1; kþ 1Þ x�ðkÞ; ij½ �
¼ x�ðkÞ0 A0ðiÞ�PðiÞðkþ 1ÞAðiÞþA0

1ðiÞ�PðiÞðkþ 1ÞA1ðiÞ
� �

x�ðkÞ
þ 2u0ðkÞB0ðiÞ�PðiÞðkþ 1ÞAðiÞx�ðkÞþ u0ðkÞB0ðiÞ�PðiÞðkþ 1ÞBðiÞuðkÞ:

ð4:1:10Þ

64 4 Stochastic Differential Game of Discrete-Time …



Substituting (4.1.10) into (4.1.9), removing the irrelevant items from uðkÞ, and
calculating the first order condition, we have

uðkÞ ¼ � B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ
� ��1

B0ðiÞ�PðiÞðkþ 1ÞAðiÞx�ðkÞ ¼ KðiÞx�ðkÞ:
ð4:1:11Þ

According to the hypothesis of Theorem 4.1.2, we can know that the optimal
control strategy of system (4.1.1) exists, so the PðiÞðkÞ in (4.1.11) also exists.

Substituting (4.1.11) into (4.1.9), we have

Sðx�ðkÞ; i; kÞ ¼ x�ðkÞ0 A0ðiÞ�PðiÞðkþ 1ÞAðiÞþA0
1ðiÞ�PðiÞðkþ 1ÞA1ðiÞþQðiÞ

h
þK 0ðiÞB0ðiÞ�PðiÞðkþ 1ÞAðiÞ

i
x�ðkÞ:

According to the hypothesis, we can get Sðx�ðkÞ; i; kÞ ¼ x�ðkÞ0PðiÞðkÞx�ðkÞ, then

A0ðiÞ�PðiÞðkþ 1ÞAðiÞþA0
1ðiÞ�PðiÞðkþ 1ÞA1ðiÞþQðiÞ

þK 0ðiÞB0ðiÞ�PðiÞðkþ 1ÞAðiÞ � PðiÞðkÞ ¼ 0:

So we can know that the Pð�Þ ¼ ðPð1Þð�Þ;Pð2Þð�Þ; � � � ;PðlÞð�ÞÞ 2 Sn
l is the solution

of the Eq. (4.1.8).
This completes the proof. □

4.1.2 Infinite-Time Horizon

We still consider the discrete-time markov jump linear systems (4.1.1). For con-
venience of description we copy (4.1.1) as follows:

xðkþ 1Þ ¼ AðrkÞxðkÞþBðrkÞuðkÞþA1ðrkÞxðkÞwðkÞ;
xð0Þ ¼ x0 2 R

n;

�
ð4:1:12Þ

Definition 4.1.1 ([3]) The discrete time markov jump linear systems (4.1.12) is
called mean-square stable if for any ðx0; iÞ 2 hollow body Rn � N, the corre-
sponding state satisfies

lim
k!1

E xðkÞk k2¼ 0:

4.1 Stochastic LQ Problem—Differential Game with One Person 65



Definition 4.1.2 ([3]) System (4.1.12) is called stabilizable in the mean square
sense if there exists a feedback control u�ðkÞ ¼Pl

i¼1 KðiÞvrk¼iðkÞxðkÞ with
Kð1Þ; � � � ;KðlÞ are constant matrix, such that for any ðx0; iÞ 2 hollow body Rn � N,
the following closed-loop system

xðkþ 1Þ ¼ AðrkÞxðkÞþBðrkÞKðrkÞxðkÞþA1ðrkÞxðkÞwðkÞ;
xð0Þ ¼ x0 2 R

n;

�

is asymptotically mean square stable.

The purpose of the stochastic LQ problems is to find the feedback controls with
constant matrix gain KðrkÞ satisfying the following criterion:

Jðu; x0; iÞ ¼ E
X1
k¼0

x0ðkÞQðrkÞxðkÞþ u0ðkÞRðrkÞuðkÞð Þ
" #

r0 ¼ ij
( )

; ð4:1:13Þ

which also minimizing

Jðu�; x0; iÞ� Jðu; x0; iÞ; ð4:1:14Þ

where all the weighting matrices RðrkÞ 2 Sm
l ;QðrkÞ� 0 2 Sn

l
In (4.1.12) and (4.1.13), when rk ¼ i; i ¼ 1; . . .; l;AðrkÞ ¼ AðiÞ; etc.

Assumption 4.1.1 Systems (4.1.12) is mean-square stable.
According to the relevant theory of stochastic optimal control, we can get

Theorem 4.1.3, because the proof method is similar as the LQ problem in finite-time
horizon, it is not repeated herein.

Theorem 4.1.3 For the system (4.1.12) with the criteria (4.1.13), suppose the
assumption 4.1.1 holds, if the following generalized algebraic Riccati equations
admit a group of solutions P ¼ ðPð1Þ;Pð2Þ; . . .;PðlÞÞ 2 Sn

l for any (i, k)

A0ðiÞ�PðiÞðkþ 1ÞAðiÞþA0
1ðiÞ�PðiÞðkþ 1ÞA1ðiÞþQðiÞ

�PðiÞðkÞþK 0ðiÞB0ðiÞ�PðiÞðkþ 1ÞAðiÞ ¼ 0;
B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ[ 0;

KðiÞ ¼ � B0ðiÞ�PðiÞðkþ 1ÞBðiÞþRðiÞ� ��1
B0ðiÞ�PðiÞðkþ 1ÞAðiÞ:

8>><
>>: ð4:1:15Þ

Then the infinite-time stochastic LQ problems are solvable with u∗(k) = K(i) x(k),
and the optimal cost functions incurred by playing strategies u∗(k) are
x00P

ðiÞð0Þx0; i 2 N.
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4.2 Stochastic Nash Differential Games with Two Person

4.2.1 Finite-Time Horizon

4.2.1.1 Problem Formulation

On a probabilistic space ðX;F ; fF tgt� 0;PÞ;, we consider a discrete-time markov
jump linear systems of the following type:

xðkþ 1Þ ¼ AðrkÞxðkÞþB1ðrkÞuðkÞþB2ðrkÞvðkÞ½ � þA1ðrkÞxðkÞwðkÞ;
xð0Þ ¼ x0 2 R

n;

�
ð4:2:1Þ

where xðkÞ 2 R
n is the state, uðkÞ and vðkÞ represent the system control inputs, x0 is

a deterministic vector. rk Denotes a time-varying markov chain taking values in
N ¼ f1; . . .; lg with transition probability matrix qðkÞ ¼ pijðkÞ

� �
; pijðkÞ ¼

P rkþ 1 ¼ j rk ¼ ijð Þ. The coefficients AðrkÞ;B1ðrkÞ;A1ðrkÞ are assumed to be constant
matrices with appropriate dimensions. w(k) is a one-dimensional standard Brownian
motion. Assumpting that w(k) is uncorrelated with u(k) and v(k), and is independent
of the Markov chain rk for k 2 NT. The initial value r(0) = r0 is independent of the
noise w(k).

Let the optimal strategies for system (4.2.1) be given as

uðkÞ ¼ K1ðrkÞxðkÞ; vðkÞ ¼ K2ðrkÞxðkÞ ð4:2:2Þ

The purpose of the two person Nash differential games is to find the feedback
controls with constant matrix gain KsðrkÞ; s ¼ 1; 2 satisfying the following criteria

Jsðu; v; x0; iÞ

¼ x0ðTÞMsxðTÞþ
XT�1

k¼0

x0ðkÞQsðrkÞxðkÞþ u0ðkÞRs1ðrkÞuðkÞþ v0ðkÞRs2ðrkÞvðkÞ½ �; s ¼ 1; 2

ð4:2:3Þ

which also minimizing

J1ðu�; v�; x0; iÞ� J1ðu; v�; x0; iÞ; J2ðu�; v�; x0; iÞ� J2ðu�; v; x0; iÞ; ð4:2:4Þ

where all the weighting matrices Rs1ðrkÞ 2 Sm
l ;Rs2ðrkÞ 2 Sm

l ;QsðrkÞ� 0 2 Sn
l ;

s ¼ 1; 2: In (4.2.1)– (4.2.3), when rk ¼ i; i ¼ 1; . . .; l;AðrkÞ ¼ AðiÞ; etc:
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4.2.1.2 Main Result

With the help of stochastic LQ problems, it is not difficult to get the following
Theorem 4.2.1:

Theorem 4.2.1 The two person stochastic LQ differential games (4.2.1)–(4.2.3) in
finite-time horizon are solvable with ðu�ð�Þ; v�ð�ÞÞ, if and only if the following
coupled Riccati equations

AðiÞþB2ðiÞK2ðiÞ½ �0�PðiÞ
1 ðkþ 1Þ AðiÞþB2ðiÞK2ðiÞ½ � þQ1ðiÞþA0

1ðiÞ�PðiÞ
1 ðkþ 1ÞA1ðiÞ

�PðiÞ
1 ðkÞþK 0

2ðiÞR12ðiÞK2ðiÞþK 0
1ðiÞB0

1ðiÞ�PðiÞ
1 ðkþ 1ÞðAðiÞþB2ðiÞK2ðiÞÞ ¼ 0;

P1ðTÞ ¼ M1;

B0
1ðiÞ�PðiÞ

1 ðkþ 1ÞB1ðiÞþR11ðiÞ[ 0;

K1ðiÞ ¼ � B0
1ðiÞ�PðiÞ

1 ðkþ 1ÞB1ðiÞþR11ðiÞ
h i�1

B0
1ðiÞ�PðiÞ

1 ðkþ 1ÞðAðiÞþB2ðiÞK2ðiÞÞ;

8>>>>>><
>>>>>>:

ð4:2:4Þ

AðiÞþB1ðiÞK1ðiÞ½ �0PðiÞ
2 ðkþ 1Þ AðiÞþB1ðiÞK1ðiÞ½ � þQ2ðiÞþA0

1ðiÞPðiÞ
2 ðkþ 1ÞA1ðiÞ

�PðiÞ
2 ðkÞþK 0

1ðiÞR21ðiÞK1ðiÞþK 0
2ðiÞB0

2ðiÞPðiÞ
2 ðkþ 1ÞðAðiÞþB1ðiÞK1ðiÞÞ ¼ 0;

P2ðTÞ ¼ M2;

B0
2ðiÞPðiÞ

2 ðkþ 1ÞB2ðiÞþR22ðiÞ[ 0;

K2ðiÞ ¼ � B0
2ðiÞPðiÞ

2 ðkþ 1ÞB2ðiÞþR22ðiÞ
h i�1

B0
2ðiÞPðiÞ

2 ðkþ 1ÞðAðiÞþB1ðiÞK1ðiÞÞ;

8>>>>>>><
>>>>>>>:

ð4:2:5Þ

admit a group of solutions Pð�Þ ¼ ðP1ð�Þ;P2ð�ÞÞ 2 Sn
l � Sn

l ,where

P1ð�Þ ¼ ðPð1Þ
1 ð�Þ; . . .;PðlÞ

1 ð�ÞÞ, P2ð�Þ ¼ ðPð1Þ
2 ð�Þ; . . .;PðlÞ

2 ð�ÞÞ, ði; j 2 NÞ,fPðiÞ
s ðkÞ2Sng

represents symmetric matrix indexed by the time k and the mode of operation i, and

P
ðiÞ
s ðkþ 1Þ ¼ EðPrkþ 1

s ðkþ 1ÞÞ ¼
Xl
j¼1

pijP
ðiÞ
s ðkþ 1Þ

Meanwhile, the explicit forms of the optimal strategies are

u�ðkÞ ¼
Xl
i¼1

K1ðiÞvrk¼iðkÞxðkÞ; v�ðkÞ ¼
Xl
i¼1

K2ðiÞvrk¼iðkÞxðkÞ;

and the optimal cost functions incurred by playing strategies are

Jsðu�; v�; x0; iÞ ¼ x00P
ðiÞ
s ð0Þx0 ; s ¼ 1; 2.
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Proof If (4.2.4) and (4.2.5) admit a group of solutions Pð�Þ ¼ ðP1ð�Þ;P2ð�ÞÞ
2 Sn

l � Sn
l , let v

�ðkÞ ¼Pl
i¼1

K2ðiÞvrk¼iðkÞxðkÞ, and by substituting v∗(k) into (4.2.1),

we can obtain the following optimal control problem

J1ðu; v�; x0; iÞ

¼ E x0ðTÞM1xðTÞþ
XT�1

k¼0

x0ðkÞ Q1ðrkÞþK 0
2ðrkÞR12ðrkÞK2ðrkÞ

� �
xðkÞ

þ u0ðkÞR11ðrkÞuðkÞ

� 
r0 ¼ ij

( )
;

s:t

xðkþ 1Þ ¼ AðrkÞþB2ðrkÞK2ðrkÞð ÞxðkÞþB1ðrkÞuðkÞ½ � þA1ðrkÞxðkÞwðkÞ;
xð0Þ ¼ x0:

�
ð4:2:6Þ

The above optimal control problem is a standard stochastic LQ problem, so
taking

AðrkÞþB2ðrkÞK2ðrkÞ ) AðrkÞ;B1ðrkÞ ) BðrkÞ;A1ðrkÞ ) A1ðrkÞ;
QðrkÞþK 0

2ðrkÞR12ðrkÞK2ðrkÞ ) Q1ðrkÞ;R11ðrkÞ ) RðrkÞ:

According to Theorem 4.1.1, we have

u�ðkÞ ¼
Xl
i¼1

K1ðiÞvrk¼iðkÞxðkÞ; i ¼ 1; � � � ; l: ð4:2:7Þ

Similarly, by substituting u∗(k) into (4.2.1) we can obtain v�ðkÞ ¼
Pl
i¼1

K2ðiÞvrk¼iðkÞxðkÞ is the optimal control strategy.

This completes the proof. □

4.2.2 Infinite-Time Horizon

4.2.2.1 Problem Formulation

We still consider the discrete-time markov jump linear systems (4.2.1). For con-
venience of description, we copy it as follows:
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xðkþ 1Þ ¼ AðrkÞxðkÞþB1ðrkÞuðkÞþB2ðrkÞvðkÞ½ � þA1ðrkÞxðkÞwðkÞ;
xð0Þ ¼ x0 2 R

n:

�
ð4:2:8Þ

Let the optimal strategies for system (4.2.8) be given as

uðkÞ ¼ K1ðrkÞxðkÞ; vðkÞ ¼ K2ðrkÞxðkÞ: ð4:2:9Þ

The purpose of the two person Nash differential games is to find the feedback
controls uðkÞ ¼ K1ðrkÞxðkÞ and vðkÞ ¼ K2ðrkÞxðkÞ with constant matrix gain
KsðrkÞ; s ¼ 1; 2 satisfying the following criteria:

Jsðu; v; x0; iÞ

¼
X1
k¼0

x0ðkÞQsðrkÞxðkÞþ u0ðkÞRs1ðrkÞuðkÞþ v0ðkÞRs2ðrkÞvðkÞ½ �; s ¼ 1; 2;

ð4:2:10Þ

which also minimizing

J1ðu�; v�; x0; iÞ� J1ðu; v�; x0; iÞ; J2ðu�; v�; x0; iÞ� J2ðu�; v; x0; iÞ; ð4:2:11Þ

where all the weighting matrices Rs1ðrkÞ 2 Sm
l ;Rs2ðrkÞ 2 Sm

l , QsðrkÞ� 0 2 Sn
l ; s ¼

1; 2: In (4.2.8) and (4.2.10), when rk ¼ i; i ¼ 1; . . .; l;AðrkÞ ¼ AðiÞ; etc.

4.2.2.2 Main Result

Assumption 4.2.1 System (4.2.8) is mean-square stable.
By the method used in the Nash stochastic differential games in finite-time

horizon above, we can easily obtain the necessary and sufficient conditions as
Theorem 4.2.3 for the equilibrium solution of the Nash stochastic differential games
in infinite-time horizon, the proof is similar as Theorems 4.2.1 and 4.2.2, so it is not
repeated herein.

Theorem 4.2.3 Under the assumption 4.2.1, the two-person Nash stochastic
differential games (4.2.8)–(4.2.11) in infinite-time horizon are solvable with
ðu�ð�Þ; v�ð�ÞÞ, if and only if the following coupled Riccati equations admit a group

of solutions Pð�Þ ¼ ðP1ð�Þ;P2ð�ÞÞ 2 Sn
l � Sn

l , where P1ð�Þ ¼ ðPð1Þ
1 ð�Þ; . . .;PðlÞ

1 ð�ÞÞ,
P2ð�Þ ¼ ðPð1Þ

2 ð�Þ; . . .;PðlÞ
2 ð�ÞÞ, ði; j 2 NÞ
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AðiÞþB2ðiÞK2ðiÞ½ �0PðiÞ
1 ðkþ 1Þ AðiÞþB2ðiÞK2ðiÞ½ � þQ0

1ðiÞQ1ðiÞ
þA0

1ðiÞPðiÞ
1 ðkþ 1ÞA1ðiÞþK 0

2ðiÞR12ðiÞK2ðiÞ � PðiÞ
1 ðkÞ

þK 0
1ðiÞB0

1ðiÞ�PðiÞ
1 ðkþ 1ÞðAðiÞþB2ðiÞK2ðiÞÞ ¼ 0;

B0
1ðiÞ�PðiÞ

1 ðkþ 1ÞB1ðiÞþR11ðiÞ[ 0;

K1ðiÞ ¼ � B0
1ðiÞ�PðiÞ

1 ðkþ 1ÞB1ðiÞþR11ðiÞ
h i�1

B0
1ðiÞ�PðiÞ

1 ðkþ 1ÞðAðiÞþB2ðiÞK2ðiÞÞ;

8>>>>>>><
>>>>>>>:

ð4:2:12Þ

AðiÞþB1ðiÞK1ðiÞ½ �0PðiÞ
2 ðkþ 1Þ AðiÞþB1ðiÞK1ðiÞ½ � þQ0

2ðiÞQ2ðiÞ
þA0

1ðiÞPðiÞ
2 ðkþ 1ÞA1ðiÞþK 0

1ðiÞR21ðiÞK1ðiÞ � PðiÞ
2 ðkÞ

þK 0
2ðiÞB0

2ðiÞPðiÞ
2 ðkþ 1ÞðAðiÞþB1ðiÞK1ðiÞÞ ¼ 0;

B0
2ðiÞPðiÞ

2 ðkþ 1ÞB2ðiÞþR22ðiÞ[ 0;

K2ðiÞ ¼ � B0
2ðiÞPðiÞ

2 ðkþ 1ÞB2ðiÞþR22ðiÞ
h i�1

B0
2ðiÞPðiÞ

2 ðkþ 1ÞðAðiÞþB1ðiÞK1ðiÞÞ:

8>>>>>>><
>>>>>>>:

ð4:2:13Þ

Meanwhile, the explicit forms of the optimal strategies are

u�ðkÞ ¼
Xl
i¼1

K1ðiÞvrk¼iðkÞxðkÞ; v�ðkÞ ¼
Xl
i¼1

K2ðiÞvrk¼iðkÞxðkÞ:

and the optimal cost functions incurred by playing strategies are

Jsðu�; v�; x0; iÞ ¼ x00P
ðiÞ
s ð0Þx0 ; s ¼ 1; 2.

4.2.3 Two Person Zero-Sum Stochastic Differential Games

4.2.3.1 Finite Time Horizon

On a probabilistic space ðX;F ; fF tgt� 0;PÞ, we consider a discrete-time markov
jump linear systems of the following type:

xðkþ 1Þ ¼ AðrkÞxðkÞþB1ðrkÞu1ðkÞþB2ðrkÞu2ðkÞ
þ A1ðrkÞxðkÞþC1ðrkÞu1ðkÞþC2ðrkÞu2ðkÞ½ �wðkÞ;

xð0Þ ¼ x0 2 R
n;

8<
: ð4:2:14Þ

where xðkÞ 2 R
n is the state, u1ðkÞ and u2ðkÞ represent the system control inputs, x0

is a deterministic vector. rk Denotes a time-varying markov chain taking values in
N ¼ f1; � � � ; lg with transition probability matrix qðkÞ ¼ pijðkÞ

� �
; pijðkÞ ¼

P rkþ 1 ¼ j rk ¼ ijð Þ. The coefficients AðrkÞ;B1ðrkÞ;B2ðrkÞ;C1ðrkÞ;C2ðrkÞ; A1ðrkÞ are
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assumed to be constant matrices with appropriate dimensions. w(k) is a
one-dimensional standard Brownian motion. w(k) is uncorrelated to u1(k) and u2(k),
and is independent of the Markov chain rk for k 2 NT. The initial value r(0) = r0 is
independent of the noise w(k).

Let the optimal strategies for system (4.2.14) be given as

u1ðkÞ ¼ K1ðrkÞxðkÞ; u2ðkÞ ¼ K2ðrkÞxðkÞ:

The purpose of the two person zero-sum differential games is to find the feed-
back controls u1ðkÞ ¼ K1ðrkÞxðkÞ and u2ðkÞ ¼ K2ðrkÞxðkÞ with constant matrix gain
KsðrkÞ; s ¼ 1; 2 satisfying the following criterion:

Jðu1; u2; x0; iÞ ¼ E x0ðTÞMxðTÞþ
XT�1

k¼0

x0ðkÞQðrkÞxðkÞþ u01ðkÞR1ðrkÞu1ðkÞ
þ u02ðkÞR2ðrkÞu2ðkÞ

 !" #
r0 ¼ ij

( )
;

ð4:2:15Þ

which also minimizing

J u�1; u2; x0; i
� �� J u�1; u

�
2; x0; i

� �� J u1; u
�
2; x0; i

� �
;

where all the weighting matrices R1ðrkÞ 2 Sm
l ;R2ðrkÞ 2 Sm

l , QðrkÞ� 0 2 Sn
l :

In (4.2.14) and (4.2.15), when rk ¼ i; i ¼ 1; . . .; l;AðrkÞ ¼ AðiÞ; etc.
Theorem 4.2.4 The two-person zero-sum stochastic differential games (4.2.14)–
(4.2.15) in finite-time horizon are solvable with ðu1�ð�Þ; u2�ð�ÞÞ, if and only if the
following coupled Riccati equations admit a group of solutions
Pð�Þ ¼ ðPð1Þð�Þ; . . .;PðlÞð�ÞÞ 2 Sn

l , ði 2 NÞ

Nði;PÞ � PðiÞðkÞ � L0ði;PÞR�1ði;PÞLði;PÞ ¼ 0;
PðTÞ ¼ M;

�
ð4:2:16Þ

where,

Nði;PÞ ¼ A0ðiÞPðiÞðkþ 1ÞAðiÞþQðiÞþA0
1ðiÞPðiÞðkþ 1ÞA1ðiÞ;

Rði;PÞ ¼ D11ði;PÞþR1ðiÞ D12ði;PÞ
D21ði;PÞ D22ði;PÞþR2ðiÞ

� 
;

D11ði;PÞþR1ðiÞ[ 0;D22ði;PÞþR2ðiÞ\0

Dmnði;PÞ ¼ B0
mðiÞPðiÞðkþ 1ÞBnðiÞþC0

mðiÞPðiÞðkþ 1ÞCnðiÞðm; n ¼ 1; 2Þ;
Lði;PÞ ¼ B0

1ðiÞPðiÞðkþ 1ÞAðiÞþC0
1ðiÞPðiÞðkþ 1ÞA1ðiÞ

B0
2ðiÞPðiÞðkþ 1ÞAðiÞþC0

2ðiÞPðiÞðkþ 1ÞA1ðiÞ

" #
;

8>>>>>>>>>><
>>>>>>>>>>:

ð4:2:17Þ
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Meanwhile, the explicit forms of the optimal strategies are

�u�ðkÞ ¼ u�01 ðkÞ u�02 ðkÞð Þ0¼ KðiÞxðkÞ ¼ �R�1ði;PÞLði;PÞxðkÞ;

and the optimal cost functions incurred by playing strategies are x00P
ðiÞð0Þx0.

Proof The two-person zero-sum stochastic differential game is the special case of
Nash stochastic differential game, so the proof of Theorem 4.2.4 can be referred to
the Theorem 4.2.3, and it is not repeated herein.

4.2.3.2 Infinite-Time Horizon

We still consider the discrete-time markov jump linear systems (4.2.14), in order to
discuss, we copy (4.2.14) as follows:

xðkþ 1Þ ¼ AðrkÞxðkÞþB1ðrkÞu1ðkÞþB2ðrkÞu2ðkÞ
þ A1ðrkÞxðkÞþC1ðrkÞu1ðkÞþC2ðrkÞu2ðkÞ½ �wðkÞ;

xð0Þ ¼ x0 2 R
n;

8<
: ð4:2:18Þ

The purpose of the two person zero-sum differential games is to find the feed-
back controls u1ðkÞ ¼ K1ðrkÞxðkÞ and u2ðkÞ ¼ K2ðrkÞxðkÞ with constant matrix gain
KðrkÞ satisfying the following criterion:

Jðu1; u2; x0; iÞ ¼ E
X1
k¼0

x0ðkÞQðrkÞxðkÞþ u01ðkÞR1ðrkÞu1ðkÞ
þ u02ðkÞR2ðrkÞu2ðkÞ

 !" #
r0 ¼ ij

( )
;

ð4:2:19Þ

which also minimizing

J u�1; u2; x0; i
� �� J u�1; u

�
2; x0; i

� �� J u1; u
�
2; x0; i

� �
;

where all the weighting matrices R1ðrkÞ 2 Sm
l ;R2ðrkÞ 2 Sm

l , QðrkÞ� 0 2 Sn
l : In

(4.2.18) and (4.2.19), when rk ¼ i; i ¼ 1; . . .; l;AðrkÞ ¼ AðiÞ; etc.
Assumption 4.2.2 Systems (4.2.18) is mean-square stable.

By the method used in the zero-sum stochastic differential games in finite-time
horizon above, we can easily obtain Theorem 4.2.5.

Theorem 4.2.4 Under the assumption 4.2.2, the two-person zero-sum stochastic
differential games (4.2.18)–(4.2.19) are solvable with ðu1�ð�Þ; u2�ð�ÞÞ, if and only if
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the following coupled Riccati equations admit a group of solutions
Pð�Þ ¼ ðPð1Þð�Þ; � � � ;PðlÞð�ÞÞ 2 Sn

l ; ði 2 NÞ

Nði;PÞ � PðiÞðkÞ � L0ði;PÞR�1ði;PÞLði;PÞ ¼ 0;

Nði;PÞ ¼ A0ðiÞPðiÞðkþ 1ÞAðiÞþQðiÞþA0
1ðiÞPðiÞðkþ 1ÞA1ðiÞ;

Rði;PÞ ¼ D11ði;PÞþR1ðiÞ D12ði;PÞ
D21ði;PÞ D22ði;PÞþR2ðiÞ

� 
;

Dmnði;PÞ ¼ B0
mðiÞPðiÞðkþ 1ÞBnðiÞþC0

mðiÞPðiÞðkþ 1ÞCnðiÞðm; n ¼ 1; 2Þ;
Lði;PÞ ¼ B0

1ðiÞPðiÞðkþ 1ÞAðiÞþC0
1ðiÞPðiÞðkþ 1ÞA1ðiÞ

B0
2ðiÞPðiÞðkþ 1ÞAðiÞþC0

2ðiÞPðiÞðkþ 1ÞA1ðiÞ

" #
:

8>>>>>>>>>><
>>>>>>>>>>:

ð4:2:21Þ

Meanwhile, the explicit forms of the optimal strategies are

�u�ðkÞ ¼ u�01 ðkÞ u�02 ðkÞð Þ0¼ KðiÞxðkÞ ¼ �R�1ði;PÞLði;PÞxðkÞ;

and the optimal cost functions incurred by playing strategies are x00P
ðiÞð0Þx0.

4.3 Stackelberg Differential Games with Two Person

4.3.1 Finite-Time Horizon

4.3.1.1 Problem Formulation

We consider a discrete-time markov jump linear systems of the following type:

xðkþ 1Þ ¼ AðrkÞxðkÞþBðrkÞuðkÞþCðrkÞvðkÞ½ � þA1ðrkÞxðkÞwðkÞ
xð0Þ ¼ x0 2 R

n

�
ð4:3:1Þ

where xðkÞ 2 R
n is the state, uðkÞ and vðkÞ represent the system control inputs, x0 is

a deterministic vector. rk Denotes a time-varying markov chain taking values
in N ¼ f1; � � � ; lg with transition probability matrix qðkÞ ¼ pijðkÞ

� �
; pijðkÞ ¼

P rkþ 1 ¼ j rk ¼ ijð Þ. The coefficients AðrkÞ;BðrkÞ;CðrkÞ;A1ðrkÞ are assumed to be
constant matrices with appropriate dimensions. w(k) is a one-dimensional standard
Brownian motion. w(k) is uncorrelated to u(k) and v(k), and is independent of the
Markov chain rk for k2NT .The initial value r(0) = r0 is independent of the noise
w(k).
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Let the optimal strategies for system (4.3.1) be given as

uðkÞ ¼ K1ðrkÞxðkÞ; vðkÞ ¼ K2ðrkÞxðkÞ

The performance functions are as follows:

Jsðu; v; x0; iÞ

¼ E x0ðTÞFsxðTÞþ
XT�1

k¼0

x0ðkÞQsðrkÞxðkÞþ u0ðkÞRs1ðrkÞuðkÞþ v0ðkÞRs2ðrkÞvðkÞ½ � r0 ¼ ij
( )

;

s ¼ 1; 2;

ð4:3:2Þ

where all the weighting matrices Rs1ðrkÞ 2 Sm
l ;Rs2ðrkÞ 2 Sm

l , QsðrkÞ� 0 2 Sn
l ;

s ¼ 1; 2:
In (4.3.1) and (4.3.2), when rk ¼ i; i ¼ 1; � � � ; l;AðrkÞ ¼ AðiÞ; etc.
The definition of stackelberg equilibrium solution in finite-time horizon is as

follows:

Definition 4.3.1 ([2]) For control strategy u 2 U, the optimal reaction set of the
follower P2 is:

<2ðuÞ ¼ v0 2 V : J2ðu; v0; x0; iÞ� J2ðu; v; x0; iÞg



; 8v 2 V;

u� is called the Stackelberg strategy of the leader P1, if the following conditions
hold:

min
v2<2ðu�Þ

J1ðu�; v; x0; iÞ� min
v2<2ðuÞ

J1ðu; v; x0; iÞ; 8u 2 U

4.3.1.2 Main Result

Stackelberg strategies of the discrete-time markov jump linear system are as the
following theorem:

Theorem 4.3.1 For system (4.3.1), if the following Riccati equations:

PðiÞ
1 ðkÞ ¼ H1ðP; iÞ;P1ðTÞ ¼ F1;

PðiÞ
2 ðkÞ ¼ H2ðP; iÞ;P2ðTÞ ¼ F2;

K1ðiÞ ¼ �M�1ðP; iÞLðP; iÞ;
K2ðiÞ ¼ wðP; iÞ AðiÞþBðiÞK1ðiÞð Þ;
MðP; iÞ[ 0;C0ðiÞPðiÞ

2 ðkþ 1ÞCðiÞþR22ðiÞ[ 0;

8>>>>><
>>>>>:

ð4:3:3Þ
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with

H1ðP; iÞ ¼ A0ðiÞ�PðiÞ
1 ðkþ 1ÞAðiÞþA0

1ðiÞ�PðiÞ
1 ðkþ 1ÞA1ðiÞþQ1ðiÞþK 0

1ðiÞLðP; iÞ
þA0ðiÞw0ðP; iÞ C0ðiÞPðiÞ

1 ðkþ 1ÞCðiÞþR12ðiÞ
� �

wðP; iÞAðiÞ
þ 2A0ðiÞw0ðP; iÞC0ðiÞPðiÞ

1 ðkþ 1ÞAðiÞ;
H2ðP; iÞ ¼ A0ðiÞPðiÞ

2 ðkþ 1ÞAðiÞþA0
1ðiÞPðiÞ

2 ðkþ 1ÞA1ðiÞþQ2ðiÞ
þ 2K 0

1ðiÞB0ðiÞPðiÞ
2 ðkþ 1ÞAðiÞþK 0

2ðiÞC0ðiÞPðiÞ
2 ðkþ 1Þ AðiÞxðkÞþBðiÞK1ðiÞð Þ

þK 0
1ðiÞ B0ðiÞPðiÞ

2 ðkþ 1ÞBðiÞþR21ðiÞ
� �

K1ðiÞ;

wðP; iÞ ¼ � C0ðiÞPðiÞ
2 ðkþ 1ÞCðiÞþR22ðiÞ

h i�1
C0ðiÞPðiÞ

2 ðkþ 1Þ;
MðP; iÞ ¼ B0ðiÞPðiÞ

1 ðkþ 1ÞBðiÞþR11ðiÞþ 2B0ðiÞPðiÞ
1 ðkþ 1ÞCðiÞwðP; iÞBðiÞ

þB0ðiÞw0ðP; iÞ C0ðiÞPðiÞ
1 ðkþ 1ÞCðiÞþR11ðiÞ

� �
wðP; iÞBðiÞ;

LðP; iÞ ¼ B0ðiÞPðiÞ
1 ðkþ 1ÞAðiÞþB0ðiÞw0ðP; iÞC0ðiÞPðiÞ

1 ðkþ 1ÞAðiÞ
þB0ðiÞw0ðP; iÞ C0ðiÞPðiÞ

1 ðkþ 1ÞCðiÞþR12ðiÞ
� �

wðP; iÞAðiÞ
þB0ðiÞPðiÞ

1 ðkþ 1ÞCðiÞwðP; iÞAðiÞ

exist the solutions of Pð�Þ ¼ ðP1ð�Þ;P2ð�ÞÞ 2 Sn
l � Sn

l , where

P1ð�Þ ¼ ðPð1Þ
1 ð�Þ; . . .;PðlÞ

1 ð�ÞÞ, P2ð�Þ ¼ ðPð1Þ
2 ð�Þ; . . .;PðlÞ

2 ð�ÞÞ, then the solutions of the
Stackelberg game are:

u�ðkÞ ¼
Xl
i¼1

K1ðiÞvrk¼iðkÞxðkÞ; v�ðkÞ ¼
Xl
i¼1

K2ðiÞvrk¼iðkÞxðkÞ:

Proof Given the strategy u implemented by the leader P2, considering the opti-
mization problem of the follower P2. Let the value function

V2ðk; xÞ ¼ x0ðkÞPðrkÞ
2 ðkÞxðkÞ, using the Itô lemma, we have:

E DY2ðk; xÞ r0 ¼ ij½ �
¼ E x0ðkþ 1ÞPðrkþ 1Þ

2 ðkÞxðkþ 1Þ � x0ðkÞPðrkÞ
2 ðkÞxðkÞ

� �
r0 ¼ ij

h i
¼ E x0ðkÞ A0ðiÞ�PðiÞ

2 ðkþ 1ÞAðiÞþA0
1ðiÞ�PðiÞ

2 ðkþ 1ÞA1ðiÞ � PðiÞ
2 ðkÞ

� �
xðkÞ

h
þ 2u0ðkÞB0ðiÞ�PðiÞ

2 ðkþ 1ÞAðiÞxðkÞþ 2v0ðkÞC0ðiÞ�PðiÞ
2 ðkþ 1ÞAðiÞxðkÞ

þ 2u0ðkÞB0ðiÞ�PðiÞ
2 ðkþ 1ÞCðiÞvðkÞþ u0ðkÞB0ðiÞ�PðiÞ

2 ðkþ 1ÞBðiÞuðkÞ
þ v0ðkÞCðiÞ�PðiÞ

2 ðkþ 1ÞCðiÞvðkÞ
i
:

ð4:3:4Þ
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Based on the equations of
PT�1

k¼0
DY2ðk; xÞ½ � ¼ xðTÞ0PðTÞxðTÞ � xð0Þ0�

PðiÞð0Þxð0ÞÞ, we can get:

E DY2ðk; xÞ r0 ¼ ij½ �

¼ E
XT�1

k¼0

x0ðkÞ A0ðiÞ�PðiÞ
2 ðkþ 1ÞAðiÞþA0

1ðiÞ�PðiÞ
2 ðkþ 1ÞA1ðiÞ � PðiÞ

2 ðkÞ
� �

xðkÞ
h(

þ 2u0ðkÞB0ðiÞ�PðiÞ
2 ðkþ 1ÞAðiÞxðkÞþ 2v0ðkÞC0ðiÞ�PðiÞ

2 ðkþ 1ÞAðiÞxðkÞ
þ 2u0ðkÞB0ðiÞ�PðiÞ

2 ðkþ 1ÞCðiÞvðkÞþ u0ðkÞB0ðiÞ�PðiÞ
2 ðkþ 1ÞBðiÞuðkÞ

þ v0ðkÞC0ðiÞ�PðiÞ
2 ðkþ 1ÞCðiÞvðkÞ

io
¼ E x0ðTÞPðTÞxðTÞ½ � � x00P

ðiÞ
2 ð0Þx0:

ð4:3:5Þ

Substituting (4.3.5) into J2(u, v; x0, i), we have

J2ðu; v; x0; iÞ ¼ �E x0ðTÞP2ðTÞxðTÞ½ � þ x00P
ðiÞ
2 ð0Þx0 þ e x0ðTÞQ2ðTÞxðTÞ½ �

þ
XT�1

k¼0

x0ðkÞ A0ðiÞ�PðiÞ
2 ðkþ 1ÞAðiÞþA0

1ðiÞ�PðiÞ
2 ðkþ 1ÞA1ðiÞ � PðiÞ

2 ðkÞþQ1ðiÞ
� �

xðkÞ
h i

þE
XT�1

k¼0

2u0ðkÞB0ðiÞ�PðiÞ
2 ðkþ 1ÞAðiÞxðkÞþ u0ðkÞ B0ðiÞ�PðiÞ

2 ðkþ 1ÞBðiÞþR21

� �
uðkÞ

h

þ 2u0ðkÞB0ðiÞ�PðiÞ
2 ðkþ 1ÞCðiÞvðkÞþ 2v0ðkÞC0ðiÞ�PðiÞ

2 ðkþ 1ÞAðiÞxðkÞ
þ v0ðkÞCðiÞ�PðiÞ

2 ðkþ 1ÞCðiÞvðkÞþ v0ðkÞR22ðiÞvðkÞ
i
:

ð4:3:6Þ

In (4.3.6), taking the derivative with respect to v, we have

vðkÞ ¼ � C0ðiÞ�PðiÞ
2 ðkþ 1ÞCðiÞþR22ðiÞ

h i�1
C0ðiÞ�PðiÞ

2 ðkþ 1Þ AðiÞxðkÞþBðiÞuðkÞð Þ
¼ wðiÞ AðiÞxðkÞþBðiÞuðkÞð Þ;

ð4:3:7Þ

where wðiÞ ¼ � C0ðiÞ�PðiÞ
2 ðkþ 1ÞCðiÞþR22ðiÞ

h i�1
C0ðiÞ�PðiÞ

2 ðkþ 1Þ.
Now, consider the strategy of P1, take the value function as Y1(k,

x) = x0ðkÞPðrkÞ
1 ðkÞxðkÞ, then
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E DY1ðk; xÞ r0 ¼ ij½ �

¼ E
XT�1

k¼0

x0ðkÞ A0ðiÞ�PðiÞ
1 ðkþ 1ÞAðiÞþA0

1ðiÞ�PðiÞ
1 ðkþ 1ÞA1ðiÞ � PðiÞ

1 ðkÞ
� �

xðkÞ
h(

þ 2u0ðkÞB0ðiÞ�PðiÞ
1 ðkþ 1ÞAðiÞxðkÞþ 2v0ðkÞC0ðiÞ�PðiÞ

1 ðkþ 1ÞAðiÞxðkÞ
þ 2u0ðkÞB0ðiÞ�PðiÞ

1 ðkþ 1ÞCðiÞvðkÞþ u0ðkÞB0ðiÞ�PðiÞ
1 ðkþ 1ÞBðiÞuðkÞ

þ v0ðkÞC0ðiÞ�PðiÞ
1 ðkþ 1ÞCðiÞvðkÞ

io
¼ E x0ðTÞP1ðTÞxðTÞ½ � � x00P

ðiÞ
1 ð0Þx0:

ð4:3:8Þ

Substituting (4.3.8) into J1(u, v; x0, i), we have

J1ðu; v; x0; iÞ ¼ �E x0ðTÞP1ðTÞxðTÞ½ � þ x00P
ðiÞ
1 ð0Þx0 þE x0ðTÞQ1ðTÞxðTÞ½ �

þ
XT�1

k¼0

x0ðkÞ A0ðiÞ�PðiÞ
1 ðkþ 1ÞAðiÞþA0

1ðiÞ�PðiÞ
1 ðkþ 1ÞA1ðiÞ � PðiÞ

1 ðkÞþQ1ðiÞ
� �

xðkÞ
h i

þE
XT�1

k¼0

2u0ðkÞB0ðiÞ�PðiÞ
1 ðkþ 1ÞAðiÞxðkÞþ u0ðkÞ B0ðiÞ�PðiÞ

1 ðkþ 1ÞBðiÞþR11ðiÞ
� �

uðkÞ
h

þ 2u0ðkÞB0ðiÞ�PðiÞ
1 ðkþ 1ÞCðiÞvðkÞþ 2v0ðkÞC0ðiÞ�PðiÞ

1 ðkþ 1ÞAðiÞxðkÞ
þ v0ðkÞC0ðiÞ�PðiÞ

1 ðkþ 1ÞCðiÞvðkÞþ v0ðkÞR12ðiÞvðkÞ
i
:

ð4:3:9Þ

Substituting (4.3.7) into (4.3.9), we have

J1ðu; v�; x0; iÞ ¼ �E x0ðTÞP1ðTÞxðTÞ½ � þ x00P
ðiÞ
1 ð0Þx0þE x0ðTÞQ1ðTÞxðTÞ½ �

þ
XT�1

k¼0

x0ðkÞ A0ðiÞPðiÞ
1 ðkþ 1ÞAðiÞþA0

1ðiÞPðiÞ
1 ðkþ 1ÞA1ðiÞ � PðiÞ

1 ðkÞþQ1ðiÞ
hn

þA0ðiÞw0ðP; iÞ C0ðiÞPðiÞ
1 ðkþ 1ÞCðiÞþR12ðiÞ

� �
wðP; iÞAðiÞ

þ 2A0ðiÞw0ðP; iÞC0ðiÞPðiÞ
1 ðkþ 1ÞAðiÞ

i
xðkÞ

o

þE
XT�1

k¼0

2u0ðkÞ B0ðiÞ½ P
ðiÞ
1 ðkþ 1ÞAðiÞþ 2B0ðiÞw0ðiÞC0ðiÞPðiÞ

1 ðkþ 1ÞAðiÞ
n

þ 2B0ðiÞw0ðiÞ C0ðiÞPðiÞ
1 ðkþ 1ÞCðiÞþR12ðiÞ

� �
wðiÞAðiÞ

þ 2B0ðiÞPðiÞ
1 ðkþ 1ÞCðiÞwðiÞAðiÞ�

� xðkÞþ u0ðkÞ B0ðiÞ½ P
ðiÞ
1 ðkþ 1ÞBðiÞþR11ðiÞþ 2B0ðiÞPðiÞ

1 ðkþ 1ÞCðiÞwðiÞBðiÞ
þB0ðiÞw0ðiÞ C0ðiÞPðiÞ

1 ðkþ 1ÞCðiÞþR11ðiÞ
� �

wðiÞBðiÞ�uðkÞg:
ð4:3:10Þ
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Using completion square method to (4.3.10), we get

J1ðu; v�; x0; iÞ ¼ �E x0ðTÞP1ðTÞxðTÞ½ � þ x00P
ðiÞ
1 ð0Þx0 þE x0ðTÞF1xðTÞ½ �

þ
XT�1

k¼0

x0ðkÞ½ H1ðiÞ � PðiÞ
1 ðkÞ

� �
xðkÞ

þ uðkÞ � K1ðiÞxðkÞð ÞMðP; iÞ uðkÞ � K1ðiÞxðkÞð Þ�:

ð4:3:11Þ

According to (4.3.3), MðP; iÞ[ 0; we have

J1ðu; v�; x0; iÞ� J1ðu�; v�; x0; iÞ ¼ x00P
ðiÞ
1 ð0Þx0 ð4:3:12Þ

then, u�ðkÞ ¼ K1ðiÞxðkÞ.
Substituting (4.3.12) into (4.3.6), we have

J2ðu�; v; x0; iÞ ¼ �E x0ðTÞP2ðTÞxðTÞ½ � þ x00P
ðiÞ
2 ð0Þx0 þE x0ðTÞF2xðTÞ½ �

þ
XT�1

k¼0

x0ðkÞ½ H2ðiÞ � PðiÞ
2 ðkÞ

� �
xðkÞ

þ vðkÞ � K2ðiÞxðkÞð Þ C0ðiÞPðiÞ
2 ðkþ 1ÞCðiÞþR22ðiÞ

� �
� vðkÞ � K2ðiÞxðkÞð Þ�:

According to (4.3.3), in view of C0ðiÞPðiÞ
2 ðkþ 1ÞCðiÞþR22ðiÞ[ 0; we have

J2ðu�; v; x0; iÞ� J2ðu�; v�; x0; iÞ ¼ x00P
ðiÞ
2 ð0Þx0:

Then, v�ðkÞ ¼ wðiÞ AðiÞþBðiÞK1ðiÞð ÞxðkÞ ¼ K2ðiÞxðkÞ.
This completes the proof. □

4.3.2 Infinite-Time Horizon

We still consider the discrete-time markov jump linear systems (4.3.1), in order to
discuss, we copy the formula (4.3.1) as follows:

xðkþ 1Þ ¼ AðrkÞxðkÞþBðrkÞuðkÞþCðrkÞvðkÞ½ � þA1ðrkÞxðkÞwðkÞ;
xð0Þ ¼ x0 2 R

n:

�
ð4:3:13Þ
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Let the optimal strategies for system (4.3.13) be given as

uðkÞ ¼ K1ðrkÞxðkÞ; vðkÞ ¼ K2ðrkÞxðkÞ:

The performance functions are as follows:

Jsðu; v; x0; iÞ

¼ E
XT
k¼0

x0ðtÞQsðrkÞxðkÞþ u0ðtÞRs1ðrkÞuðkÞþ v0ðkÞRs2ðrkÞvðkÞ½ � r0 ¼ ij
( )

; s ¼ 1; 2;

ð4:3:14Þ

where all the weighting matrices Rs1ðrkÞ 2 Sm
l ;Rs2ðrkÞ 2 Sm

l , QsðrkÞ� 0
2 Sn

l ; s ¼ 1; 2:
In (4.3.13) and (4.3.14), when rk ¼ i; i ¼ 1; � � � ; l;AðrkÞ ¼ AðiÞ; etc.

Definition 4.3.2 ([2]) For control strategy u 2 U, the optimal reaction set of the
follower P2 is:

<2ðuÞ ¼ v0 2 V : J2ðu; v0; x0; iÞ� J2ðu; v; x0; iÞg



; 8v 2 V;

u� is called the Stackelberg of the leader P1, if the following conditions hold:

min
v2<2ðu�Þ

J1ðu�; v; x0; iÞ� min
v2<2ðuÞ

J1ðu; v; x0; iÞ; 8u 2 U:

Assumption 4.3.1 Systems (4.3.13) is mean-square stable.
By the method used in the stackelberg stochastic differential games in finite-time

horizon above, we can easily obtain the sufficient conditions as Theorem 4.3.2 for
the equilibrium solution of the stackelberg stochastic differential games in
infinite-time horizon.

Theorem 4.3.2 Under the assumption 4.3.1, for system (4.3.13) and (4.3.14), if the
following Riccati equations

PðiÞ
1 ðkÞ ¼ H1ðP; iÞ;PðiÞ

2 ðkÞ ¼ H2ðP; iÞ;
K1ðiÞ ¼ �M�1ðP; iÞLðP; iÞ;
K2ðiÞ ¼ wðP; iÞ AðiÞþBðiÞK1ðiÞð Þ;
MðP; iÞ[ 0;C0ðiÞPðiÞ

2 ðkþ 1ÞCðiÞþR22ðiÞ[ 0;

8>>><
>>>:

ð4:3:15Þ

with

H1ðP; iÞ ¼ A0ðiÞPðiÞ
1 ðkþ 1ÞAðiÞþA0

1ðiÞPðiÞ
1 ðkþ 1ÞA1ðiÞþQ1ðiÞþK 0

1ðiÞLðP; iÞ
þA0ðiÞw0ðP; iÞ C0ðiÞPðiÞ

1 ðkþ 1ÞCðiÞþR12ðiÞ
� �

wðP; iÞAðiÞ
þ 2A0ðiÞw0ðP; iÞC0ðiÞPðiÞ

1 ðkþ 1ÞAðiÞ;
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H2ðP; iÞ ¼ A0ðiÞPðiÞ
2 ðkþ 1ÞAðiÞþA0

1ðiÞPðiÞ
2 ðkþ 1ÞA1ðiÞþQ2ðiÞ

þ 2K 0
1ðiÞB0ðiÞPðiÞ

2 ðkþ 1ÞAðiÞþK 0
2ðiÞC0ðiÞPðiÞ

2 ðkþ 1Þ AðiÞxðkÞþBðiÞK1ðiÞð Þ
þK 0

1ðiÞ B0ðiÞPðiÞ
2 ðkþ 1ÞBðiÞþR21ðiÞ

� �
K1ðiÞ;

wðP; iÞ ¼ � C0ðiÞPðiÞ
2 ðkþ 1ÞCðiÞþR22ðiÞ

h i�1
C0ðiÞPðiÞ

2 ðkþ 1Þ;
MðP; iÞ ¼ B0ðiÞPðiÞ

1 ðkþ 1ÞBðiÞþR11ðiÞþ 2B0ðiÞPðiÞ
1 ðkþ 1ÞCðiÞwðP; iÞBðiÞ

þB0ðiÞw0ðP; iÞ C0ðiÞPðiÞ
1 ðkþ 1ÞCðiÞþR11ðiÞ

� �
wðP; iÞBðiÞ;

LðP; iÞ ¼ B0ðiÞPðiÞ
1 ðkþ 1ÞAðiÞþB0ðiÞw0ðP; iÞC0ðiÞPðiÞ

1 ðkþ 1ÞAðiÞ
þB0ðiÞw0ðP; iÞ C0ðiÞPðiÞ

1 ðkþ 1ÞCðiÞþR12ðiÞ
� �

wðP; iÞAðiÞ
þB0ðiÞPðiÞ

1 ðkþ 1ÞCðiÞwðP; iÞAðiÞ

exist P ¼ ðP1;P2Þ 2 Sn
l � Sn

l , where P1 ¼ ðPð1Þ
1 ;Pð2Þ

1 � � � ;PðlÞ
1 Þ, P2 ¼ ðPð1Þ

2 ;

Pð2Þ
2 � � � ;PðlÞ

2 Þ, then the solutions of the Stackelberg game (4.3.13) and (4.3.14) are:

u�ðkÞ ¼
Xl
i¼1

K1ðiÞvrk¼iðkÞxðkÞ; v�ðkÞ ¼
Xl
i¼1

K2ðiÞvrk¼iðkÞxðkÞ:

4.4 Summary

The Nash equilibrium, saddle point equilibrium, and stackelberg equilibrium
strategy for the discrete time stochastic Markov jump linear systems in the
finite-time horizon and infinite-time horizon are discussed respectively in this
chapter. The optimal strategies and the optimal control values are obtained.
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Chapter 5
Stochastic Differential Game of Stochastic
Markov Jump Singular Systems

Singular systems are a class of more generalized dynamic systems with a wide
application background, which appeared in large number of practical system
models, such as the power systems, economic systems, constrained robots, elec-
tronic networks and aerospace systems, so its research has important theoretical and
practical value. This chapter attempts to extend the differential game theory study of
Markov jump linear systems discussed in Chap. 3 to stochastic Markov jump
singular systems, which covers the saddle point equilibrium theory of two person
zero-sum games, the Nash equilibrium theory and Stackelberg game theory of two
person nonzero-sum game, and the existence conditions, strategy design methods
and algorithms of the equilibrium strategies are analyzed.

5.1 Stochastic LQ Problems—Differential Games
of One Player

Stochastic linear quadratic control problems were abbreviated as stochastic LQ
problem, which originate from the work of Wonham (1968) [1], and then had
attracted great attention of many researchers (see [2–4] and references therein).
Recently, stochastic LQ problem has been studied widespread; its theoretical basis
has continuous improvement, and has been widely used in engineering, economics,
management and other areas.

This section discusses the stochastic LQ problems for stochastic Markov jump
singular system in finite-time horizon and infinite-time horizon, which laid the
foundation for further study.
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5.1.1 Preliminaries

5.1.1.1 Stability of the Stochastic Markov Jump Singular Systems

First of all, let ðX;F ; fF tgt� 0;PÞ be a probability space with a natural filtration
fF tgt� 0 and E½�� be the expectation operator with respect to the probability mea-
sure. Let wðtÞ be a one-dimensional standard Brownian motion defined on the
probability space and rt be a right-continuous Markov chain independent of wðtÞ
and taking values in a finite set N ¼ f1; . . .; lg with transition probability matrix
P ¼ ðpijÞl�l given by

Pr rtþD ¼ j rt ¼ ijf g ¼ pijDþ oðDÞ; if i 6¼ j;
1þ piiDþ oðDÞ; if i ¼ j;

�
ð5:1:1Þ

where D[ 0, limD!0 oðDÞ=D ¼ 0, and pij [ 0 (i; j 2 N; i 6¼ j) denotes the transi-

tion rate from mode i at time t to mode j at time tþ h, and pii ¼ �Pl
j¼1;j6¼i pij.

For a given Hilbert space H with the norm �k kH, define the Banach space

L2F ð0; T ;HÞ ¼ /ð�Þ /ð�Þ is an F t�adapted; H�valued measurable
process on ½0; T � and E

R T
0 /ðt;xÞk k2Hdt\þ1;

����
� �

;

with the norm

/ð�Þk kF ;2¼ E
Z T

0
/ðt;xÞk k2Hdt

� �1
2

:

Consider the following n-dimensional stochastic Markov jump singular systems

EdxðtÞ ¼ AðrtÞxðtÞdtþFðrtÞxðtÞdwðtÞ;
xð0Þ ¼ x0;

�
ð5:1:2Þ

where xðtÞ 2 R
n is the system state, ðx0; r0Þ 2 R

n � N is the initial state,
AðrtÞ ¼ AðiÞ, FðrtÞ ¼ FðiÞ, when rt ¼ i, i 2 N, are n × n matrices, E 2 R

n�n is a
known singular matrix with 0\rankðEÞ ¼ k� n. For simplicity, we also write
Ai ¼ AðiÞ, Fi ¼ FðiÞ, etc. for all i 2 N where there is no ambiguity.

In order to guarantee the existence and uniqueness of the solution to system
(5.1.2), we give the following lemma [5].

Lemma 5.1.1 For every i 2 N, if there are a pair of nonsingular matrices Mi 2
R

n�n and Ni 2 R
n�n for the triplet ðE;Ai;FiÞ such that one of the following con-

ditions is satisfied, then (5.1.2) has a unique solution.

(i) MiENi ¼ Ik 0
0 0

� �
, MiAiNi ¼ Ai 0

0 In�k

� �
, MiFiNi ¼ Fi Bi

0 Ci

� �
;
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(ii) MiENi ¼ Ik 0
0 0

� �
, MiAiNi ¼ Ai Bi

0 Ci

� �
, MiFiNi ¼ Fi 0

0 In�k

� �
;

where Bi 2 R
k�ðn�kÞ and Ci 2 R

ðn�kÞ�ðn�kÞ.

Now, we are in a position to give the main result of the stability of stochastic
Markov jump singular systems. Firstly, we recall the following definitions for
system (5.1.2) [5].

Definition 5.1.1 Stochastic Markov jump singular system (5.1.2) is said to be

(i) regular if detðsE � AiÞ is not identically zero for all i 2 N;
(ii) impulse free if �ðdetðsE � AiÞÞ ¼ rankðEÞ for all i 2 N;
(iii) mean square stable if for any initial condition ðx0; r0Þ 2 R

n � N, we have
limt!1 E xðtÞk k2¼ 0;

(iv) mean square admissible if it is regular, impulse free and stable in mean
square sense.

The following lemma presents the generalized Itô formula for
Markov-modulated processes [6].

Lemma 5.1.2 Given an n-dimensional process xð�Þ satisfying

dxðtÞ ¼ bðt; xðtÞ; rtÞdtþ rðt; xðtÞ; rtÞdwðtÞ:

And a number of functions uð�; �; iÞ 2 C2 ½0; T � � R
nð Þ, i ¼ 1; . . .; l, we have

E uðT; xðTÞ; rTÞ � uðs; xðsÞ; rsÞ rs ¼ ijf g ¼ E
Z T

s
Cuðt; xðtÞ; rtÞdt rs ¼ ij

� �
;

where

Cuðt; x; iÞ ¼ utðt; x; iÞþ b0ðt; x; iÞuxðt; x; iÞ

þ 1
2
tr r0ðt; x; iÞuxxðt; x; iÞrðt; x; iÞ½ � þ

Xl

j¼1

pijuðt; x; jÞ:

The following lemma generalized the results of stochastic singular systems
presented in [7] to stochastic Markov jump singular systems.

Lemma 5.1.3 Stochastic Markov jump singular system (5.1.2) is mean square
admissible if there exist matrices Pi 2 R

n�n [ 0, such that the following coupled
linear matrix inequalities (LMIs) hold for each i 2 N

A0
iPiEþE0PiAi þF0

iPiFi þ
Xl

j¼1

pijE
0PjE\0: ð5:1:3Þ
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Proof Under the conditions of the lemma, we see that the system (5.1.2) is of
regularity and absence of impulses. Now we will show the mean square stability of
the system (5.1.2). Consider a Lyapunov function candidate defined as follows:

Vðt; xðtÞ; rtÞ ¼ x0ðtÞE0PðrtÞExðtÞ;

where PðiÞ a symmetric matrix. □
Let L be be the infinitesimal generator. By Lemma 5.1.2, we have the stochastic

differential as

dVðt; xðtÞ; rtÞ ¼ LVðxðtÞ; rtÞdtþ x0ðtÞ½FðrtÞPðrtÞEþE0PðrtÞFðrtÞ�xðtÞdwðtÞ;
ð5:1:4Þ

where

LVðt; xðtÞ; iÞ ¼ x0ðtÞ½A0
iPiEþE0PiAi þF0

iPiFi þ
Xl

j¼1

pijE
0PjE�xðtÞ: ð5:1:5Þ

From (5.1.3) we have LVðt; xðtÞ; iÞ\0. With the similar techniques in the work
in [8], it can be seen that limt!1 E xðtÞk k2¼ 0. Therefore, system (5.1.2) is mean
square admissible. This completes the proof.

5.1.2 LQ Problem of Stochastic Markov Jump Singular
Systems

We consider finite-time horizon and infinite-time horizon LQ problems of the
stochastic Markov jump singular systems in the following section, respectively.

5.1.2.1 Finite-Time Horizon LQ Problem

Consider the following continuous-time time-varying stochastic Markov jump
singular systems with state- and control-dependent noise

EdxðtÞ ¼ Aðt; rtÞxðtÞþBðt; rtÞuðtÞ½ �dtþ Cðt; rtÞxðtÞþDðt; rtÞuðtÞ½ �dwðtÞ;
xð0Þ ¼ x0;

�

ð5:1:6Þ
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where ðx0; r0Þ 2 R
n � N is the initial state, and an admissible control uð�Þ is an F t-

adapted, Rm-valued measurable process on ½0; T�. The set of all admissible controls
is denoted by Uad ¼ L2F ð0; T;RmÞ. The solution xð�Þ of the Eq. (5.1.6) is called the
response of the control uð�Þ 2 Uad , and xð�Þ; uð�Þð Þ is called an admissible pair.
Here,wðtÞ is a one-dimensional standard Brownian motion on ½0; T� (with
wð0Þ ¼ 0). Note that we assumed the Brownian motion to be one-dimensional just
for simplicity. There is no essential difficulty in the analysis below for the multi-
dimensional case.

For each ðx0; iÞ and uð�Þ 2 Uad , the associated cost is

Jðx0; i; uð�ÞÞ ¼ E
Z T

0

xðtÞ
uðtÞ

� �0
Qðt; rtÞ Lðt; rtÞ
L0ðt; rtÞ Rðt; rtÞ

� �
xðtÞ
uðtÞ

� �
dtþ x0ðTÞHðrTÞxðTÞ r0 ¼ ij

� �
;

ð5:1:7Þ

In (5.1.6) and (5.1.7), Aðt; rtÞ ¼ AiðtÞ, etc. whenever rt ¼ i, and HðrTÞ ¼ Hi

whenever rT ¼ i, whereas Aið�Þ etc. are given matrix-valued functions and Hi are
given matrices, i ¼ 1; . . .; l. The objective of the optimal control problem is to
minimize the cost function Jðx0; i; uð�ÞÞ, for a given ðx0; iÞ 2 R

n � N, over all
uð�Þ 2 Uad . The value function is defined as

Vðx0; iÞ ¼ inf
uð�Þ2Uad

Jðx0; i; uð�ÞÞ: ð5:1:8Þ

Definition 5.1.2 The LQ problem (5.1.6)–(5.1.8) is called well-posed if

Vðx0; iÞ[ �1; 8x0 2 R
n; 8i ¼ 1; . . .; l:

An admissible pair ðx	ð�Þ; u	ð�ÞÞ is called optimal (with respect to the initial
condition ðx0; iÞ) if u	ð�Þ achieves the infimum of Jðx0; i; uð�ÞÞ.

The following basic assumption will be imposed in this section.

Assumption 5.1 The data appearing in the LQ problem (5.1.6)–(5.1.8) satisfy, for
every i,

Aið�Þ; Cið�Þ 2 L1ð0; T ; Rn�nÞ;
Bið�Þ; Dið�Þ 2 L1ð0; T ; Rn�mÞ;

Qið�Þ 2 L1ð0; T ; SnÞ;
Lið�Þ 2 L1ð0; T ; Rn�mÞ;
Rið�Þ 2 L1ð0; T ; SmÞ;
Hi 2Sn:

8>>>>>>>>><
>>>>>>>>>:
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Now we introduce a type of coupled differential Riccati equations associated
with the LQ problem (5.1.6)–(5.1.8).

Definition 5.2 The following system of constrained differential equations

E0 _PiðtÞEþE0PiðtÞAiðtÞþA0
iðtÞPiðtÞEþC0

iðtÞPiðtÞCiðtÞþQiðtÞþ
Pl
j¼1

pijE0PjðtÞE

� E0PiðtÞBiðtÞþC0
iðtÞPiðtÞDiðtÞþ LiðtÞ

	 

RiðtÞþD0

iðtÞPiðtÞDiðtÞ
	 
�1

� B0
iðtÞPiðtÞEþD0

iðtÞPiðtÞCiðtÞþ L0iðtÞ
	 
 ¼ 0;

E0PiðTÞE ¼ Hi;
RiðtÞþD0

iðtÞPiðtÞDiðtÞ[ 0; a:e: t 2 ½0; T�; i ¼ 1; . . .; l:

8>>>>>>><
>>>>>>>:

ð5:1:9Þ

is called a system of coupled generalized differential Riccati equations (CGDREs).

Theorem 5.1.1 If the CGDREs (5.1.9) admit a solution P1ð�Þ; . . .;Plð�Þð Þ 2
C1ð0; T ;Sn

l Þ, then the finite-time horizon LQ problem (5.1.6)–(5.1.8) is well-posed.
Moreover, the corresponding optimal feedback control law with respect to the
initial ðx0; iÞ 2 R

n � N is determined by the following:

u	ðtÞ ¼
Xl

i¼1

KiðtÞvrt¼iðtÞxðtÞ; ð5:1:10Þ

where KiðtÞ ¼ � RiðtÞþD0
iðtÞPiðtÞDiðtÞ

	 
�1
B0
iðtÞPiðtÞEþD0ðtÞiPiðtÞCiðtÞþ L0iðtÞ

	 

.

Furthermore, the value function is uniquely determined by P1ð�Þ; . . .;Plð�Þð Þ 2
C1ð0; T ;Sn

l Þ:

Vðx0; iÞ ¼ Jðx0; i; u	ð�ÞÞ ¼ x00E
0Pið0ÞEx0; i ¼ 1; . . .; l: ð5:1:11Þ

Proof Given Pið�Þ 2 C1ð0; T;SnÞ and let uðt; x; iÞ ¼ x0E0
iPiðtÞEix. Applying the

generalized Itô’s formula to the linear system (5.1.6), we obtain

E x0ðTÞHrT xðTÞ½ � � x00E
0Pið0ÞEx0

¼ E x0ðTÞE0PrT ðTÞExðTÞ � x0ð0ÞE0Pðr0ÞExð0Þ r0 ¼ ij½ �
¼ E uðT; xðTÞ; rTÞ � uð0; xð0Þ; r0Þ r0 ¼ ijf g

¼ E
Z T

0
Cuðt; xðtÞ; rtÞdt r0 ¼ ij

� �
;
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where

Cuðt; x; iÞ ¼ utðt; x; iÞþ b0ðt; x; u; iÞuxðt; x; iÞ

þ 1
2
tr r0ðt; x; u; iÞuxxðt; x; iÞrðt; x; u; iÞ½ � þ

Xl

j¼1

pijVðt; x; jÞ

¼ x0 E0 _PiðtÞEþE0PiðtÞAiðtÞþA0
iðtÞPiðtÞEþC0

iðtÞPiðtÞCiðtÞþ
Xl

j¼1

pijE
0PjðtÞE

" #
x

þ 2u0 B0
iðtÞPiðtÞEþD0

iðtÞPiðtÞCiðtÞ
	 


xþ u0D0
iðtÞPiðtÞDiðtÞu:

Adding this to (5.1.7) and, provided RiðtÞþD0
iðtÞPiðtÞDiðtÞ[ 0, using the

square completion technique, we have

Jðx0; i; uð�ÞÞ ¼ x00E
0Pið0ÞEx0 þ E

Z T

0
xðtÞ E0 _PiðtÞEþE0PiðtÞAiðtÞþA0

iðtÞPiðtÞE
�	�

þ QiðtÞþC0
iðtÞPiðtÞCiðtÞþ

Xl

j¼1

pijE
0PjðtÞE

!
xðtÞ

þ 2u0 B0
iðtÞPiðtÞEi þD0

iðtÞPiðtÞCiðtÞþ L0iðtÞ
� �

xðtÞ
þ u0ðtÞ RiðtÞþD0

iðtÞPiðtÞDiðtÞ
� �

uðtÞ
dt r0 ¼ ij 
þ E x0ðTÞ Hi � E0PiðTÞEð ÞxðTÞf g

¼ x00E
0Pið0ÞEx0 þE

Z T

0
xðtÞ E0 _PiðtÞEþE0PiðtÞAiðtÞþA0

iðtÞPiðtÞEþQiðtÞ
�	�

þ C0
iðtÞPiðtÞCiðtÞþ

Xl

j¼1

pijE
0PjðtÞE � EPiðtÞBiðtÞþC0

iðtÞPiðtÞDiðtÞþ LiðtÞ
� �

� RiðtÞþD0
iðtÞPiðtÞDiðtÞ

� ��1
B0
iðtÞPiðtÞEi þD0

iðtÞPiðtÞCiðtÞþ L0iðtÞ
� ��

xðtÞ
þ uðtÞþKiðtÞxðtÞð Þ0 RiðtÞþD0

iðtÞPiðtÞDiðtÞ
� �

uðtÞþKiðtÞxðtÞð Þ
dt r0 ¼ ij 
þ E x0ðTÞ Hi � E0PiðTÞEð ÞxðTÞf g:

ð5:1:12Þ

Now, if P1ð�Þ; . . .;Plð�Þð Þ 2 C1ð0; T ;Sn
l Þ satisfy the CGDREs (5.1.9), then

Jðx0; i; uð�ÞÞ ¼ x00E
0Pið0ÞEx0 þ E

Z T

0
uðtÞþKiðtÞxðtÞ½ �0 RiðtÞþD0

iðtÞPiðtÞDiðtÞ
	 
�

� uðtÞþKiðtÞxðtÞ½ �dt r0 ¼ ij g� x00E
0Pið0ÞEx0 [ �1:

ð5:1:13Þ
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Therefore, the LQ problem (5.1.6)–(5.1.8) is well-posed, and Jðx0; i; uð�ÞÞ is
minimized by the control given by (5.1.10) with the optimal value being
x00E

0Pið0ÞEx0. This completes the proof. □

5.1.2.2 Infinite-Time Horizon LQ Problem

Consider the following continuous-time stochastic Markov jump singular systems
with state- and control-dependent noise

EdxðtÞ ¼ AðrtÞxðtÞþBðrtÞuðtÞ½ �dtþ CðrtÞxðtÞþDðrtÞuðtÞ½ �dwðtÞ;
xð0Þ ¼ x0 2 R

n;

�
ð5:1:14Þ

where AðrtÞ ¼ Ai, BðrtÞ ¼ Bi, CðrtÞ ¼ Ci and DðrtÞ ¼ Di when rt ¼ i, while Ai etc.,
i ¼ 1; . . .; l, are given matrices of suitable sizes. wðtÞ is a given one-dimensional
standard Brownian motion on ½0;1Þ, and a process uð�Þ is called the control input
if uð�Þ 2 L2F ðRmÞ.

Due to the problem is considerated in infinite-time horizon, we introduce the
concept of mean-square stable.

Definition 5.1.4 A control uð�Þ is called mean square stabilizing with respect to a
given initial state ðx0; iÞ if the corresponding state xð�Þ of (5.1.14) with xð0Þ ¼ x0
and r0 ¼ i satisfies limt!1 E xðtÞk k2¼ 0.

Definition 5.1.5 The system (5.1.14) is called mean square stabilizable if there
exists a feedback control u	ðtÞ ¼ Pl

i¼1 Kivrt¼iðtÞxðtÞ, where K1; . . .;Kl are given
matrices, which is stabilizing with respect to any initial state ðx0; iÞ.

Next, for a given ðx0; iÞ 2 R
n � N, we define the corresponding set of admissible

controls:

Uðx0; iÞ ¼ uð�Þ 2 L2F ðRmÞ uð�Þ is mean square stabilizing with respect to ðx0; iÞj� 
:

For each ðx0; i; uð�ÞÞ 2 R
n � N� Uðx0; iÞ, the LQ problem is to find a control

uð�Þ 2 Uðx0; iÞ which minimizes the following quadratic cost associated with
(5.1.14)

Jðx0; i; uð�ÞÞ ¼ E
Z 1

0

xðtÞ
uðtÞ

� �0
QðrtÞ LðrtÞ
L0ðrtÞ RðrtÞ

� �
xðtÞ
uðtÞ

� �
dt r0 ¼ ij

� �
; ð5:1:15Þ

where QðrtÞ ¼ Qi, RðrtÞ ¼ Ri and LðrtÞ ¼ Li when rt ¼ i, while Qi, etc.,
i ¼ 1; . . .; l, are given matrices with suitable sizes. The value function V is defined
as
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Vðx0; iÞ ¼ inf
uð�Þ2Uðx0;iÞ

Jðx0; i; uð�ÞÞ: ð5:1:16Þ

Definition 5.1.6 The LQ problem (5.1.14)–(5.1.16) is called well-posed if

�1\Vðx0; iÞ\þ1; 8ðx0; iÞ 2 R
n � N:

A well-posed problem is called attainable (with respect to ðx0; iÞ) if there is a
control u	ð�Þ 2 Uðx0; iÞ that achieves Vðx0; iÞ. In this case the control u	ð�Þ is called
optimal (with respect to ðx0; iÞ).

The following two basic assumptions are imposed in this section.

Assumption 5.2 The system (5.1.14) is mean square stabilizable.

Assumption 5.3 The data appearing in the LQ problem (5.1.14)–(5.1.16) satisfy,
for every i,

Ai;Ci 2 R
n�n;Bi;Di 2 R

n�m;Qi 2 Sn; Li 2 R
n�m;Ri 2 Sm:

Before we give the main results of the infinite-time horizon LQ problem, we first
present a technical lemma which is useful in our subsequent analysis.

Lemma 5.1.4 Let matrices P1; . . .;Plð Þ 2 Sn
l be given, and PðrtÞ ¼ Pi while rt ¼ i.

Then for any admissible pair xð�Þ; uð�Þð Þ of the system (5.1.14), we have

E
Z T

0

xðtÞ
uðtÞ

� �0
M PðrtÞð Þ xðtÞ

uðtÞ

� �
dt r0 ¼ ij

( )

¼ E x0ðTÞE0PðrTÞExðTÞ � x00E
0Pðr0ÞEx0 r0 ¼ ij	 


;

ð5:1:17Þ

where

M Pið Þ ¼
E0PiAi þA0

iPiEþC0
iPiCi

þ
Xl

j¼1
pijE

0PjE
E0PiBi þC0

iPiDi

B0
iPiEþD0

iPiCi D0
iPiDi

2
64

3
75:

Proof Setting uðt; x; iÞ ¼ x0E0PiEx and applying the generalized Itô’s formula to
the linear system (5.1.14), we have

E x0ðTÞE0PðrTÞExðTÞ � x00E
0ðr0ÞPðr0ÞEðr0Þx0 r0 ¼ ij	 


¼ E uðT; xðTÞ; rTÞ � uð0; xð0Þ; r0Þ r0 ¼ ij½ �

¼ E
Z T

0
Cuðt; xðtÞ; rtÞdt r0 ¼ ij

� �
;
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where

Cuðt; x; iÞ ¼ utðt; x; iÞþ b0ðt; x; u; iÞuxðt; x; iÞ

þ 1
2
tr r0ðt; x; u; iÞuxxðt; x; iÞrðt; x; u; iÞ½ � þ

Xl

j¼1

pijuðt; x; jÞ

¼ x0 E0PiAi þA0
iPiEþC0

iPiCi þ
Xl

j¼1

pijE0PjE

" #
x þ 2u0 B0

iPiEi þD0
iPiCi

	 

xþ u0D0

iPiDiu

¼ x

u

� �0
M PðrtÞð Þ x

u

� �
:

This completes the proof. □

Theorem 5.1.2 The infinite-time horizon LQ problem (5.1.14)–(5.1.16) is
well-posed, if the following coupled generalized algebraic Riccati equations
(CGAREs) (5.1.18) admit a solution P1; . . .;Plð Þ 2 Sn

l

E0PiAi þA0
iPiEþC0

iPiCi þQi þ
Pl

j¼1 pijE
0PjE

� E0PiBi þC0
iPiDi þ Li

� �
Ri þD0

iPiDi
� ��1

B0
iPiEþD0

iPiCi þ L0i
� � ¼ 0;

Ri þD0
iPiDi [ 0; i ¼ 1; . . .; l:

8><
>: ð5:1:18Þ

And the corresponding optimal feedback control law is

u	ðtÞ ¼
Xl

i¼1
Kivrt¼iðtÞxðtÞ; ð5:1:19Þ

where Ki ¼ � Ri þD0
iPiDi

� ��1
B0
iPiEþD0

iPiCi þ L0i
� �

. Furthermore, the cost cor-

responding to the control u	ðtÞ ¼ Pl
i¼1 Kivrt¼iðtÞxðtÞ with the initial state ðx0; iÞ is

Jðx0; i; u	ð�ÞÞ ¼ x00E
0PiEx0; i ¼ 1; . . .; l: ð5:1:20Þ

Proof By Lemma 5.1.4 and (5.1.18), using the square completion technique, we
immediately have

Jðx0; i; uð�ÞÞ ¼ x00E
0PiEx0 þE

Z 1

0

xðtÞ
uðtÞ

� �0
M1 PðrtÞð Þ xðtÞ

uðtÞ

� �
dt r0 ¼ ij

( )

¼ x00E
0PiEx0 þE

Z 1

0
uðtÞþKixðtÞ½ �0H PðrtÞð Þ uðtÞþKixðtÞ½ �dt r0 ¼ ij

� �

� Jðx0; i; u	ð�ÞÞ ¼ x00E
0PiEx0; i ¼ 1; . . .; l:

ð5:1:21Þ
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where

M1ðPiÞ ¼
H0ðPiÞ H1ðPiÞ
H0

1ðPiÞ HðPiÞ
� �

; H0ðPiÞ ¼ E0PiAi þA0
iPiEþC0

iPiCi þQi þ
Xl

j¼1
pijE

0PjE;

H1ðPiÞ ¼ E0PiBi þC0
iPiDi þ Li; HðPiÞ ¼ Ri þD0

iPiDi:

From (5.1.21), we see that LQ problem (5.1.14)–(5.1.16) is well-posed, and
u	ðtÞ ¼ Pl

i¼1 Kivrt¼iðtÞxðtÞ is the optimal control. □

5.2 Two Person Zero-Sum Differential Games

5.2.1 Finite-Time Horizon Case

5.2.1.1 Problem Formulation

In this section, we will solve a two person zero-sum differential game on time
interval ½0; T �.

Consider the following controlled linear stochastic singular system

EdxðtÞ ¼ Aðt; rtÞxðtÞþB1ðt; rtÞu1ðtÞþB2ðt; rtÞu2ðtÞ½ �dt
þ Cðt; rtÞxðtÞþD1ðt; rtÞu1ðtÞþD2ðt; rtÞu2ðtÞ½ �dwðtÞ; t 2 ½0; T�;

xð0Þ ¼ x0:

8><
>:

ð5:2:1Þ

In the above xð�Þ 2 R
n is the state vector, ðx0; r0Þ 2 R

n � N is the initial value,
u1ð�Þ and u2ð�Þ are two F t-adapted processes taking values in R

m1 and R
m2 , which

represent the controls of the two players, respectively. The admissible strategies of
these two controls are denoted by U1 
 L2F ð0; T;Rm1Þ and U2 
 L2F ð0; T;Rm2Þ. We
assume that Aðt; rtÞ, B1ðt; rtÞ, B2ðt; rtÞ, Cðt; rtÞ, D1ðt; rtÞ, and D2ðt; rtÞ are deter-
ministic bounded matrix-valued functions of suitable sizes.

For every ðx0; iÞ and ðu1ð�Þ; u2ð�ÞÞ 2 U1 � U2, defining a quadratic cost function
as following:

Jðx0; i; u1ð�Þ; u2ð�ÞÞ ¼ E
Z T

0
qðt; xðtÞ; u1ðtÞ; u2ðtÞ; rtÞdtþ x0ðTÞHðrTÞxðtÞ r0 ¼ ij

� �
;

ð5:2:2Þ
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where

qðt; x; u1; u2; rtÞ ¼
x
u1
u2

2
4

3
5
0 Qðt; rtÞ L01ðt; rtÞ L01ðt; rtÞ

L1ðt; rtÞ R1ðt; rtÞ 0
L2ðt; rtÞ 0 R2ðt; rtÞ

2
4

3
5 x

u1
u2

2
4

3
5;

with Qðt; rtÞ, L1ðt; rtÞ, L2ðt; rtÞ, R1ðt; rtÞ, R2ðt; rtÞ being deterministic bounded
matrix-valued functions of suitable sizes and HðrTÞ being a given matrix.

In (5.2.1) and (5.2.2), Aðt; rtÞ ¼ AiðtÞ, etc. whenever rt ¼ i, and HðrTÞ ¼ Hi

whenever rT ¼ i.

Assumption 5.4 The data appearing in (5.2.1) and (5.2.2) satisfy, for every i

Aið�Þ; Cið�Þ 2 L1ð0; T ; Rn�nÞ;
B1ið�Þ; D1ið�Þ 2 L1ð0; T ; Rn�m1Þ;
B2ið�Þ; D2ið�Þ 2 L1ð0; T ; Rn�m2Þ;

Qið�Þ 2 L1ð0; T ; SnÞ;
L1ið�Þ 2 L1ð0; T ; Rn�m1Þ;
L1ið�Þ 2 L1ð0; T ; Rn�m1Þ;
R1ið�Þ 2 L1ð0; T ; Sm1Þ;
R2ið�Þ 2 L1ð0; T ; Sm2Þ;

Hi 2 Sn:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

In what follows, we denote

Bð�Þ ¼ ðB1ð�Þ; B2ð�ÞÞ; Dð�Þ ¼ ðD1ð�Þ; D2ð�ÞÞ; Lð�Þ ¼ L1ð�Þ
L2ð�Þ

� �
; Rð�Þ

¼ R1ð�Þ 0
0 R2ð�Þ

� �
:

Our aim is to find a pair ðu	1ð�Þ; u	2ð�ÞÞ 2 U1 � U2 which is called an open-loop
saddle point of the game over ½0; T� if the following inequality holds:

Jðx0; i; u	1ð�Þ; u2ð�ÞÞ � Jðx0; i; u	1ð�Þ; u	2ð�ÞÞ� Jðx0; i; u1ð�Þ; u	2ð�ÞÞ; 8ðu1ð�Þ; u2ð�ÞÞ
2 U1 � U2:

ð5:2:3Þ
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5.2.1.2 Main Result

For the above game problem, if we take Vðt; x; iÞ ¼ x0E0PiðtÞEx with Pið�Þ a
symmetric matrix as the Lyapunov function candidate, and adopting the same
procedure done in Sect. 5.1, we will have the following result.

Theorem 5.2.1 For the game problem (5.2.1)–(5.2.3), if the following coupled
generalized differential Riccati equations admit a solution P1ð�Þ; . . .;Plð�Þð Þ 2
C1ð0; T ;Sn

l Þ (with the time argument t suppressed),

E0 _PiEþE0PiAi þA0
iPiEþC0

iPiCi þQi þ
Pl

j¼1 pijE
0PjE

� EPBi þC0
iPiDi þ Li

� �
Ri þD0

iPiDi
� ��1

B0
iPiEþD0

iPiCi þ L0i
� � ¼ 0;

E0PiðTÞE ¼ Hi;
Ri þD0

iPiDi [ 0;

8>>><
>>>:

ð5:2:4Þ

where

Bi ¼ ðB1i; B2iÞ; Di ¼ ðD1i; D2iÞ; Li ¼ L1i
L2i

� �
; Ri ¼ R1i 0

0 R2i

� �
:

Then an open-loop saddle point u	ð�Þ ¼ u	1ð�Þ
u	2ð�Þ

� �
is

u	ðtÞ ¼
Xl

i¼1

KiðtÞvrt¼iðtÞxðtÞ; ð5:2:5Þ

where KiðtÞ ¼ � RiðtÞþD0
iðtÞPiðtÞDiðtÞ

	 
�1
B0
iðtÞPiðtÞEþD0ðtÞiPiðtÞCiðtÞþ L0iðtÞ

	 

.

Moreover, the optimal value being x00E
0Pið0ÞEx0; i ¼ 1; . . .; l:

5.2.2 Infinite-Time Horizon Case

5.2.2.1 Problem Formulation

In this subsection, we consider the two person zero-sum stochastic differential
games on time interval ½0;1Þ. Firstly, we define the following space

Lloc2 ðRmÞ :¼ /ð�; �Þ : ½0;1Þ � X ! R
m /ð�; �Þjf is F t-adapted, Lebesgue mea-

surable, and E
R T
0 /ðt;xÞk k2dt\1; 8T [ 0g.
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Consider the following controlled Markov jump linear systems

EdxðtÞ ¼ AðrtÞxðtÞþB1ðrtÞu1ðtÞþB2ðrtÞu2ðtÞ½ �dtþ
CðrtÞxðtÞþD1ðrtÞu1ðtÞþD2ðrtÞu2ðtÞ½ �dwðtÞ;

xð0Þ ¼ x0;

8><
>: ð5:2:6Þ

where xð�Þ 2 R
n is the system state, ðx0; r0Þ 2 R

n � N is the initial state, E 2 R
n�n

is a known singular matrix with 0\rankðEÞ ¼ k� n, AðrtÞ ¼ Ai, B1ðrtÞ ¼ B1i,
B2ðrtÞ ¼ B2i, CðrtÞ ¼ Ci, D1ðrtÞ ¼ D1i and D2ðrtÞ ¼ D2i, when rt ¼ i,i ¼ 1; . . .; l,
while AðiÞ, etc., are given matrices of suitable sizes. u1ð�Þ 2 U1 
 Lloc2 ðRm1Þ and
u2ð�Þ 2 U2 
 Lloc2 ðRm2Þ are two admissible control processes, which represents the
control strategies of these two players.

For system (5.2.6) and ðx0; iÞ 2 R
n � N, the corresponding sets of admissible

controls are denoted by:
�Uðx0; iÞ ¼ ðu1ð�Þ; u2ð�ÞÞ 2 U1 � U2f ðu1ð�Þ; u2ð�ÞÞj is mean-square stabilizing

w.r.t. ðx0; iÞg.
For each ðx0; iÞ and ðu1ð�Þ; u2ð�ÞÞ 2 �Uðx0; iÞ, the cost function is

Jðx0; i; u1ð�Þ; u2ð�ÞÞ ¼ E
Z 1

0
qðt; xðtÞ; u1ðtÞ; u2ðtÞ; rtÞdt r0 ¼ ij

� �
; ð5:2:7Þ

where

qðt; x; u1; u2; rtÞ ¼
x
u1
u2

2
4

3
5
0 QðrtÞ L01ðrtÞ L02ðrtÞ

L1ðrtÞ R1ðrtÞ 0
L2ðrtÞ 0 R2ðrtÞ

2
4

3
5 x

u1
u2

2
4

3
5;

with QðrtÞ, L1ðrtÞ, L2ðrtÞ, R1ðrtÞ and R2ðrtÞ been given matrices with suitable sizes.
The problem is to look for ðu	1ð�Þ; u	2ð�ÞÞ 2 �Uðx0; iÞ which is called the saddle

point equilibrium for the game, such that

Jðx0; i; u	1ð�Þ; u2ð�ÞÞ � Jðx0; i; u	1ð�Þ; u	2ð�ÞÞ � Jðx0; i; u1ð�Þ; u	2ð�ÞÞ; i ¼ 1; . . .; l:

ð5:2:8Þ

5.2.2.2 Main Result

Mean-square stabilizability is a standard assumption in an infinite-horizon LQ
control problem. So we use this assumption here.

Assumption 5.2.1 The system (5.2.6) is mean-square stabilizable.
Similar to the finite-time horizon two person zero-sum stochastic games dis-

cussed in last subsection, we can get the corresponding results of the infinite-time
horizon two person zero-sum stochastic games stated as Theorem 5.2.2.
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Theorem 5.2.2 Suppose Assumption 5.2.1 holds, for the two person zero-sum
stochastic games (5.2.6)–(5.2.8) and ðx0; iÞ 2 R

n � N, the strategy set ðu	1ð�Þ; u	2ð�ÞÞ
is the equilibrium strategy if and only if the following algebraic Riccati equations

E0PiAi þA0
iPiEþC0

iPiCi þQi þ
Pl
j¼1

pijE0PjE � EPBi þC0
iPiDi þ Li

� �

� Ri þD0
iPiDi

� ��1
B0
iPiEþD0

iPiCi þ L0i
� � ¼ 0;

Ri þD0
iPiDi [ 0;

8>>>><
>>>>:

ð5:2:9Þ

where

Bi ¼ ðB1i; B2iÞ; Di ¼ ðD1i; D2iÞ ; Li ¼ L1i
L2i

� �
; Ri ¼ R1i 0

0 R2i

� �
:

admit a solution ðP1; . . .;PlÞ 2 Sn
l . In this case, u	ð�Þ ¼ u	1ð�Þ

u	2ð�Þ
� �

can be repre-

sented as

u	ðtÞ ¼
Xl

i¼1

Kivrt¼iðtÞxðtÞ; ð5:2:10Þ

where Ki ¼ � Ri þD0
iPiDi

	 
�1
B0
iPiEþD0

iPiCi þ L0i
	 


. Moreover, the optimal value
is x00E

0PiEx0; i ¼ 1; . . .; l:

5.3 Stochastic Nash Differential Games with Two Player

5.3.1 Finite-Time Horizon Case

5.3.1.1 Problem Formulation

First, we consider a stochastic Nash differential game with two player on a finite
horizon ½0; T �, N-player case is similar.

Consider the following Markov jump singular systems described by stochastic
differential equation

EdxðtÞ ¼ Aðt; rtÞxðtÞþB1ðt; rtÞuðtÞþB2ðt; rtÞvðtÞ½ �dt
þ Cðt; rtÞxðtÞþD1ðt; rtÞuðtÞþD2ðt; rtÞvðtÞ½ �dwðtÞ;

xð0Þ ¼ x0 2 R
n:

8><
>: ð5:3:1Þ
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where E 2 R
n�n is a known singular matrix with 0\rankðEÞ ¼ k� n, xð�Þ 2 R

n is
the system state, ðx0; r0Þ 2 R

n � N is the initial state, two admissible controls uð�Þ
and vð�Þ are F t-adapted, Rnu - and R

nv -valued measurable process on ½0; T �. The sets
of all admissible controls are denoted by U 
 L2F ð0; T ;RnuÞ and V 
 L2F ð0; T ;RnvÞ.

For each ðx0; r0Þ 2 R
n � N and ðuð�Þ; vð�ÞÞ 2 U � V, the cost function

Jkðx0; i; uð�Þ; vð�ÞÞ is

Jkðx0; i; uð�Þ; vð�ÞÞ ¼ E
Z T

0
z0ðtÞMkðt; rtÞzðtÞdtþ x0ðTÞHkðrTÞxðTÞ r0 ¼ ij

� �
;

zðtÞ ¼
xðtÞ
uðtÞ
vðtÞ

2
64

3
75;Mkðt; rtÞ ¼

Qkðt; rtÞ Lk1ðt; rtÞ Lk2ðt; rtÞ
L0k1ðt; rtÞ Rk1ðt; rtÞ 0

L0k1ðt; rtÞ 0 Rk2ðt; rtÞ

2
64

3
75; k ¼ 1; 2:

ð5:3:2Þ

In (5.3.1) and (5.3.2), Aðt; rtÞ ¼ AiðtÞ, etc. whenever rt ¼ i, and HkðrTÞ ¼ Hki,
k ¼ 1; 2, whenever rT ¼ i.

Assumption 5.3.1 The data appearing in the finite horizon stochastic Nash dif-
ferential game problem (5.3.1)–(5.3.2) satisfy, for every i,

Aið�Þ;Cið�Þ 2 L1ð0; T ;RnÞ; B1ið�Þ;D1ið�Þ 2 L1ð0; T;Rn�nuÞ;
B2ið�Þ;D2ið�Þ 2 L1ð0; T ;Rn�nvÞ; Q1ið�Þ 2 L1ð0; T ;SnÞ;
Q2ið�Þ 2 L1ð0; T;SnÞ; R11ið�Þ 2 L1ð0; T;SnuÞ;
L11ið�Þ 2 L1ð0; T ;Rn�nuÞ; L12ið�Þ 2 L1ð0; T ;Rn�nvÞ;
L21ið�Þ 2 L1ð0; T ;Rn�nuÞ; L22ið�Þ 2 L1ð0; T ;Rn�nvÞ;
R22ið�Þ 2 L1ð0; T ;SnvÞ; H1i 2 Sn;H2i 2 Sn:

8>>>>>><
>>>>>>:

Now, let’s give the form definition of finite time stochastic Nash differential
games:

Definition 5.3.1 For each ðx0; r0Þ 2 R
n � N, finding an admissible control pair

ðu	ð�Þ; v	ð�ÞÞ 2 U � V which is called the Nash equilibrium for the game, such that

J1ðx0; i; u	ð�Þ; v	ð�ÞÞ � J1ðx0; i; uð�Þ; v	ð�ÞÞ; 8uð�Þ 2 U;
J2ðx0; i; u	ð�Þ; v	ð�ÞÞ � J2ðx0; i; u	ð�Þ; vð�ÞÞ; 8vð�Þ 2 V:

�
ð5:3:3Þ

5.3.1.2 Main Result

With the help of the relevant conclusions of differential game with one person, it is
easy to obtain the following conclusions:

Theorem 5.3.1 For the finite time stochastic Nash differential game (5.3.1)–
(5.3.2), there exists the Nash equilibrium ðu	ð�Þ; v	ð�ÞÞ, if and only if the following
coupled generalized differential Riccati equations (with time t supressed)
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E0 _P1iEþE0P1i�Ai þ �A0
iP1iE0 þ �C0

iP1i�Ci þ �Q1i þ
Pl
j¼1

pijE0P1jE

� E0P1iB1i þ �C0
iP1iD1i þ L11i

� �
R11i þD0

1iP1iD1i
� ��1

B0
1iP1iEþD0

1iP1i�Ci þ L011i
� � ¼ 0;

E0P1iðTÞE ¼ H1i;
R11i þD0

1iP1iD1i [ 0; i ¼ 1; . . .; l:

8>>>>><
>>>>>:

ð5:3:4Þ

K1i ¼ � R11i þD0
1iP1iD1i

� ��1
B0
1iP1iEþD0

1iP1i�Ci þ L011i
� �

; ð5:3:5Þ

E0 _P2jEþE0P2j~Aj þ ~A0
jP2jEþ ~C0

jP2j ~Cj þ ~Q2j þ
Pl
k¼1

pjkE0P2kE

� E0P2jB2jþ ~C0
jP2jD2j þ L22j

� �
R22j þD0

2jP2jD2j

� ��1
B0
2jP2jEþD0

2jP2j~Cj þ L02j
� �

¼ 0;

E0P2jðTÞE ¼ H2j;
R22jðjÞþD0

2jðjÞP2jðjÞD2jðjÞ[ 0; j ¼ 1; . . .; l:

8>>>>>><
>>>>>>:

ð5:3:6Þ

K2j ¼ � R22j þD0
2jP2jD2j

� ��1
B0
2jP2jEþD0

2jP2j ~Cj þ L022j
� �

: ð5:3:7Þ

where

�Ai ¼ Ai þB2iK2i; �Ci ¼ Ci þD2iK2i; �Q1i ¼ Q1i þ L12iK2i þK 0
2iL

0
12i þK 0

2iR12iK2i;

~Aj ¼ Aj þB1jK1j; ~Cj ¼ Cj þD1jK1j; ~Q2j ¼ Q2j þ L21jK1j þK 0
1jL

0
21j þK 0

1jR21jK1j:

admit a solution Pð�Þ ¼ ðP1ð�Þ;P2ð�ÞÞ with P1ð�Þ ¼ ðP11ð�Þ; . . .;P1lð�ÞÞ 2
C1ð0; T ;Sn

l Þ� 0, P2ð�Þ ¼ ðP21ð�Þ; . . .;P2lð�ÞÞ 2 C1ð0; T ;Sn
l Þ� 0.

Denote F	
1iðtÞ ¼ K1iðtÞ, F	

2iðtÞ ¼ K2iðtÞ, then the Nash equilibrium strategy
ðu	ð�Þ; v	ð�ÞÞ can be represented by

u	ðtÞ ¼ Pl
i¼1

F	
1iðtÞvrt¼iðtÞxðtÞ;

v	ðtÞ ¼ Pl
i¼1

F	
2iðtÞvrt¼iðtÞxðtÞ:

8>><
>>:

Moreover, the optimal value is

Jkðx0; i; u	ð�Þ; v	ð�ÞÞ ¼ x00E
0Pkið0ÞEx0; k ¼ 1; 2; i ¼ 1; . . .; l:
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Proof These results can be proved by using the concept of Nash equilibrium
described in Definition 5.3.1 as follows. Given v	ðtÞ ¼ Pl

i¼1 F
	
2iðtÞvrt¼iðtÞxðtÞ is the

optimal control strategy implemented by player P2, player P1 facing the following
optimization problem:

min
uð�Þ2U

E
Z T

0

xðtÞ
uðtÞ

" #0
�Q1ðt; rtÞ L11ðt; rtÞ
L011ðt; rtÞ R11ðt; rtÞ

� � xðtÞ
uðtÞ

" #
dtþ x0ðTÞH1ðrTÞxðTÞ r0 ¼ ij

( )
;

s:t:

EdxðtÞ ¼ �Aðt; rtÞxðtÞþB1ðt; rtÞuðtÞ½ �dtþ �Cðt; rtÞxðtÞþD1ðt; rtÞuðtÞ½ �dwðtÞ;
xð0Þ ¼ x0:

�

ð5:3:8Þ

where �Q1 ¼ Q1 þðF	
2Þ0L012 þ L12F	

2 þðF	
2Þ0R12F	

2 .
Note that the above optimization problem defined in (5.3.8) is a standard

stochastic LQ problem. Applying Theorem 5.1.1 to this optimization problem as

�Q1ðrtÞ L11ðrtÞ
L011ðrtÞ R11ðrtÞ

� �
) Q1 L1

L01 R11

� �
; �A ) A; �C ) C:

We can easily get the optimal control and the optimal value function

u	ðtÞ ¼
Xl

i¼1

F	
1iðtÞxðtÞvfrt¼igðtÞ; J1ðx0; i; u	ð�Þ; v	ð�ÞÞ ¼ x00E

0P1ið0Þx0; i ¼ 1; . . .; l:

ð5:3:9Þ

Similarly, we can prove that v	ðtÞ ¼ Pl
i¼1

F	
2iðtÞvrt¼iðtÞxðtÞ is the optimal control

strategy of player P2.
This completes the proof of Theorem 5.3.1. □

5.3.2 Infinite-Time Horizon Case

5.3.2.1 Problem Formulation

In this subsection, we discuss the stochastic Nash differential games on time
interval ½0;1Þ. Before giving the problem to be discussed, first define the following
space
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Lloc2 ðRmÞ :¼ /ð�; �Þ : ½0;1Þ � X ! R
m /ð�; �Þjf is F t-adapted, Lebesgue mea-

surable, and E
R T
0 /ðt;xÞk k2dt\1; 8T [ 0g.

Consider the following Markov jump singular systems defined by

EdxðtÞ ¼ AðrtÞxðtÞþB1ðrtÞuðtÞþB2ðrtÞvðtÞ½ �dt
þ CðrtÞxðtÞþD1ðrtÞuðtÞþD2ðrtÞvðtÞ½ �dwðtÞ;

xð0Þ ¼ x0:

8><
>: ð5:3:10Þ

where AðrtÞ ¼ AðiÞ, B1ðrtÞ ¼ B1ðiÞ, B2ðrtÞ ¼ B2ðiÞ, CðrtÞ ¼ CðiÞ, D1ðrtÞ ¼ D1ðiÞ
and D2ðrtÞ ¼ D2ðiÞ, when rt ¼ i, i ¼ 1; . . .; l, while AðiÞ, etc., are given matrices of
suitable sizes. uð�Þ 2 U 
 Lloc2 ðRnuÞ and vð�Þ 2 V 
 Lloc2 ðRnvÞ are two admissible
control processes, which represents the control strategies of these two players.

Next, for a given ðx0; iÞ 2 R
n � N, we define the corresponding sets of admis-

sible controls:
�Uðx0; iÞ ¼ ðuð�Þ; vð�ÞÞ 2 U � Vf ðuð�Þ; vð�ÞÞj is mean-square stabilizing w.r.t.

ðx0; iÞg.
For each ðx0; iÞ and ðuð�Þ; vð�ÞÞ 2 �Uðx0; iÞ, the cost function Jkðx0; i; uð�Þ; vð�ÞÞ is

Jkðx0; i; uð�Þ; vð�ÞÞ ¼ E
Z 1

0
z0ðtÞMkðrtÞzðtÞdt r0 ¼ ij

� �
;

zðtÞ ¼
xðtÞ
uðtÞ
vðtÞ

2
64

3
75;MkðrtÞ ¼

QkðrtÞ Lk1ðrtÞ Lk2ðrtÞ
L0k1ðrtÞ Rk1ðrtÞ 0

L0k2ðrtÞ 0 Rk2ðrtÞ

2
64

3
75; k ¼ 1; 2:

ð5:3:11Þ

In (5.3.10) and (5.3.11), AðrtÞ ¼ AðiÞ, ……, when rt ¼ i, while AðiÞ, etc., are
given matrices with suitable sizes.

The form definition of infinite-time horizon stochastic Nash differential game is
given below:

Definition 5.3.2 For each ðx0; iÞ 2 R
n � N, finding an admissible control pair

ðu	ð�Þ; v	ð�ÞÞ 2 �Uðx0; iÞ which is called the Nash equilibrium for the game, such that,

J1ðx0; i; u	ð�Þ; v	ð�ÞÞ � J1ðx0; i; uð�Þ; v	ð�ÞÞ; 8uð�Þ 2 U;
J2ðx0; i; u	ð�Þ; v	ð�ÞÞ � J2ðx0; i; u	ð�Þ; vð�ÞÞ; 8vð�Þ 2 V:

�
ð5:3:12Þ

5.3.2.2 Main Result

Firstly, we give a standard assumption used in stochastic LQ problems.

Assumption 5.3.1 The system (5.3.10) is mean-square stabilizable.
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Similar to the finite-time horizon stochastic Nash games discussed in last sub-
section, we can get the corresponding results of the infinite-time horizon stochastic
Nash games stated as Theorem 5.3.2.

Theorem 5.3.2 Suppose Assumption 5.3.1 holds, the infinite-time horizon
stochastic Nash differential game (5.3.10)–(5.3.11) has a Nash equilibrium
ðu	ð�Þ; v	ð�ÞÞ, if and only if the following algebraic Riccati equations admit a solution
P ¼ ðP1;P2Þ 2 Sl

n � Sl
n � 0 with P1 ¼ ðP1ð1Þ; . . .;P1ðlÞÞ, P2 ¼ ðP2ð1Þ; . . .;P2ðlÞÞ:

E0P1ðiÞ�AðiÞþ �A0ðiÞP1ðiÞEþ �Ci
1ðiÞP1ðiÞ�C1ðiÞþ �Q1ðiÞþ

Pl
j¼1

pijE0P1ðjÞE

� E0P1ðiÞB1ðiÞþ �C0
1ðiÞP1ðiÞD1ðiÞþ L11ðiÞ

� �
R11ðiÞþD0

1ðiÞP1ðiÞD1ðiÞ
� ��1

� B0
1ðiÞP1ðiÞEþD0

1ðiÞP1ðiÞ�C1ðiÞþ L011ðiÞ
� � ¼ 0;

R11ðiÞþD0
1ðiÞP1ðiÞD1ðiÞ[ 0; i 2 N;

8>>>>><
>>>>>:

ð5:3:13Þ

K1 ¼ � R11ðiÞþD0
1ðiÞP1ðiÞD1ðiÞ

� ��1
B0
1ðiÞP1ðiÞEþD0

1ðiÞP1ðiÞ�C1ðiÞþ L011ðiÞ
� �

;

ð5:3:14Þ

E0P2ðjÞ~AðjÞþ ~A0ðjÞP2ðjÞEþ ~C0
2ðjÞP2ðjÞ~C2ðjÞþ ~Q2ðjÞþ

Pl
k¼1

pjkE0P2ðkÞE
� E0P2ðjÞB2ðjÞþ ~C0

2ðjÞP2ðjÞD2ðjÞþ L22ðjÞ
� �

R22ðjÞþD0
2ðjÞP2ðjÞD2ðjÞ

� ��1

� B0
2ðjÞP2ðjÞEþD0

2ðjÞP2ðjÞ~C2ðjÞþ L022ðjÞ
� � ¼ 0;

R22ðjÞþD0
2ðjÞP2ðjÞD2ðjÞ[ 0; j 2 N;

8>>>>><
>>>>>:

ð5:3:15Þ

K2 ¼ � R22ðjÞþD0
2ðjÞP2ðjÞD2ðjÞ

� ��1
B0
2ðjÞP2ðjÞEþD0

2ðjÞP2ðjÞ~C2ðjÞþ L022ðjÞ
� �

;

ð5:3:16Þ

where

�A ¼ AþB2K2; �C1 ¼ CþD2K2; �Q1 ¼ Q1 þ L12K2 þK 0
2L

0
12 þK 0

2R12K2;
~A ¼ AþB1K1; ~C2 ¼ CþD1K1; ~Q2 ¼ Q2 þ L21K1 þK 0

1L
0
21 þK 0

1R21K1:

In this case, the equilibrium strategies and optimal cost function are

u	ðtÞ ¼
Xl

i¼1

K1ðiÞvrt¼iðtÞxðtÞ; v	ðtÞ ¼
Xl

i¼1

K2ðiÞvrt¼iðtÞxðtÞ;

Jkðx0; i; u	ð�Þ; v	ð�ÞÞ ¼ x00E
0PkðiÞEx0; k ¼ 1; 2; i ¼ 1; . . .; l:
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5.4 Stochastic Stackelberg Differential Game
with Two Person

5.4.1 Problem Formulation

Consider the following Markov jump singular systems described by stochastic
differential equation

EdxðtÞ ¼ AðrtÞxðtÞþB1ðrtÞu1ðtÞþB2ðrtÞu2ðtÞ½ �dtþCðrtÞxðtÞdwðtÞ;
xð0Þ ¼ x0:

�
ð5:4:1Þ

where xðtÞ 2 R
n represents the system state, ukðtÞ 2 R

mk , k ¼ 1; 2 represent the k-th
control inputs, E 2 R

n�n is a known singular matrix with 0\rankðEÞ ¼ k� n,
ðx0; r0Þ 2 R

n � N is the initial state. It is assumed that the player denoted by u2 is
the leader and the player denoted by u1 is the follower. In (5.4.1), AðrtÞ ¼ AðiÞ,
BkðrtÞ ¼ BkðiÞ, k ¼ 1; 2, CðrtÞ ¼ CðiÞ, when rt ¼ i, i ¼ 1; . . .; l, while AðiÞ, etc., are
given matrices of suitable sizes.

Without loss of generality, the stochastic dynamic games are investigated under
the following basic assumption:

Assumption 5.4.1 ðA;Bk;CÞ, k ¼ 1; 2 is stabilizable.
For each initial value ðx0; iÞ, the cost function for each strategy subset is defined

by

Jkðx0; i; u1; u2Þ ¼ E
Z 1

0

x0ðtÞQkðrtÞxðtÞþ u0kðtÞRkkðrtÞukðtÞ
þ u0jðtÞRkjðrtÞujðtÞ

� �
dt r0 ¼ ij

� �
;

ð5:4:2Þ

where k ¼ 1; 2, QkðrtÞ ¼ Q0
kðrtÞ� 0, RkkðrtÞ ¼ R0

kkðrtÞ[ 0,
RkjðrtÞ ¼ R0

kjðrtÞ� 0; k 6¼ j.

5.4.2 Main Result

Without loss of generality, we restrict the control strategy of each player as linear
state feedback case, i.e., the closed-loop Stackelberg strategies ukðtÞ ¼ ukðx; tÞ have
the following form

ukðtÞ ¼
Xl

i¼1

FkðiÞvrt¼iðtÞxðtÞ:
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The Stackelberg strategy of the game system (5.4.1)–(5.4.2) is defined as:

Definition 5.4.1 [9] a strategy set ðu	1; u	2Þ is called a Stackelberg strategy if the
following conditions hold

J2ðx0; i; u	1; u	2Þ� J2ðx0; i; uo1ðu2Þ; u2Þ; 8u2 2 R
m2 ; ð5:4:3Þ

where

J1ðx0; i; uo1ðu2Þ; u2Þ ¼ min
v

J1ðx0; i; u1; u2Þ; ð5:4:4Þ

and

u	1 ¼ u01ðu	2Þ: ð5:4:5Þ
Theorem 5.4.1 Suppose that the following cross-coupled algebraic matrix Eqs.
(5.4.6a–5.4.6e) has solutions �MkðiÞ� 0, �NkðiÞ, k ¼ 1; 2 and F2ðiÞ

A0
F1
ðiÞ �M1ðiÞEþE0 �M1ðiÞAF1ðiÞþC0ðiÞ �M1ðiÞCðiÞþQF1ðiÞ

� F0
1ðiÞR11ðiÞF1ðiÞþ

Xl

j¼1

pijE
0 �M1ðjÞE ¼ 0;

ð5:4:6aÞ

A0
FðiÞ �M2ðiÞEþE0 �M2ðiÞAFðiÞþC0ðiÞ �M2ðiÞCðiÞþQF2ðiÞ

þF0
1ðiÞR21ðiÞF1ðiÞþ

Xl

j¼1

pijE
0 �M2ðjÞE ¼ 0;

ð5:4:6bÞ

AF1ðiÞ�N1ðiÞEþE0 �N1ðiÞA0
F1
ðiÞþCðiÞ�N1ðiÞC0ðiÞ � E0B1ðiÞR�1

11 ðiÞB0
1ðiÞ �M1ðiÞ�N1ðiÞE

� E0 �N1ðiÞ �M1ðiÞB1ðiÞR�1
11 ðiÞB0

1ðiÞEþ piiE
0 �N1ðiÞE � B1ðiÞR�1

11 ðiÞB0
1ðiÞ �M2ðiÞE�N2ðiÞ

� �N2ðiÞE0 �M2ðiÞB1ðiÞR�1
11 ðiÞB0

1ðiÞþE0B1ðiÞR�1
11 ðiÞR21ðiÞR�1

11 ðiÞB0
1ðiÞ �M1ðiÞE�N2ðiÞ

þ �N2ðiÞE0 �M1ðiÞB1ðiÞR�1
11 ðiÞR21ðiÞR�1

11 ðiÞB0
1ðiÞE ¼ 0;

ð5:4:6cÞ

AFðiÞE�N2ðiÞþ �N2ðiÞE0A0
FðiÞþCðiÞ�N2ðiÞCðiÞþ piiE

0 �N2ðiÞEþ In ¼ 0; ð5:4:6dÞ

R12ðiÞF2ðiÞ�N1ðiÞþR22ðiÞF2ðiÞ�N2ðiÞþB0
2ðiÞ �M1ðiÞE�N1ðiÞþ �M2ðiÞE0 �N2ðiÞð Þ ¼ 0;

ð5:4:6eÞ

where

F1ðiÞ ¼ �
Xl

i¼1

R�1
11 ðiÞB0

1ðiÞ �M1ðiÞE; AF1ðiÞ ¼ AðiÞþB2ðiÞF2ðiÞ; AFðiÞ ¼ AF1ðiÞþB1ðiÞF1ðiÞ;

QF1ðiÞ ¼ Q1ðiÞþF0
2ðiÞR12ðiÞF2ðiÞ; QF2ðiÞ ¼ Q2ðiÞþF0

2ðiÞR22ðiÞF2ðiÞ:
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Denote u	1ðtÞ ¼
Pl
i¼1

F1ðiÞvrt¼iðtÞxðtÞ, u	2ðtÞ ¼
Pl
i¼1

F2ðiÞvrt¼iðtÞxðtÞ, i ¼ 1; . . .; l,

then the strategy set ðu	1; u	2Þ constitutes the Stackelberg strategy.

Proof Given arbitrary u2ðtÞ ¼ F2ðrtÞxðtÞ, the corresponding u1 is obtained by
minimizing J1ðx0; i; u1Þ with respect to u1. Let us consider the minimizing problem
for the closed-loop stochastic system with arbitrary strategies u2ðtÞ ¼ F2ðrtÞxðtÞ

min
u1

�J1ðx0; i; u1Þ ¼ E
R1
0 x0ðtÞQF1ðrtÞxðtÞþ u01ðtÞR11ðrtÞu1ðtÞ

	 

dt r0 ¼ ij� 

;

s:t:
EdxðtÞ ¼ AF2ðrtÞxðtÞþB1ðrtÞu1ðtÞ½ �dtþCðrtÞxðtÞdwðtÞ:

ð5:4:7Þ

By using Theorem 5.1.2, the optimal state feedback controller uo1ðtÞ is given by

uo1ðtÞ ¼
Xl

i¼1

F1ðiÞvrt¼iðtÞxðtÞ ¼ �
Xl

i¼1

R�1
11 ðiÞB0

1ðiÞ �M1ðiÞvrt¼iðtÞExðtÞ; ð5:4:8Þ

where �M1ðiÞ is the solution to

F1ð �M1ðiÞ;F2ðiÞÞ ¼ A0
F1
ðiÞ �M1ðiÞEþE0 �M1ðiÞAF1ðiÞþC0ðiÞ �M1ðiÞCðiÞ

� F0
1ðiÞR11ðiÞF1ðiÞþQF1ðiÞþ

Xl

j¼1

pijE
0 �M1ðjÞE ¼ 0:

ð5:4:9Þ

Therefore, Eq. (5.4.6a) holds. On the other hand, if AFðiÞ ¼ AF1ðiÞþB1ðiÞF1ðiÞ
is asymptotically mean square stable, then the cost J2 of the leader can be repre-
sented as

J2ðx0; i; uo1ðu2Þ; u2Þ ¼ J2ðx0; i;F1ðrtÞx;F2ðrtÞxðtÞ;¼ Trð �M2ðiÞÞ; ð5:4:10Þ

where �M2ðiÞ is the solution to

F2ð �M1ðiÞ; �M2ðiÞ;F2ðiÞÞ ¼ A0
FðiÞ �M2ðiÞEþE0 �M2ðiÞAFðiÞþC0ðiÞ �M2ðiÞCðiÞþQF2ðiÞ

þF0
1ðiÞR21ðiÞF1ðiÞþ

Xl

j¼1

pijE
0 �M2ðjÞE ¼ 0:

ð5:4:11Þ
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From (5.4.11) we know (5.4.6b) holds. Let us consider the following
Lagrangian H

Hð �M1ðiÞ; �M2ðiÞ;F2ðiÞÞ ¼ Tr �M2ðiÞð ÞþTr �N1ðiÞF1ð �M1ðiÞ;F2ðiÞÞð Þ
þTr �N2ðiÞF2ð �M1ðiÞ; �M2ðiÞ;F2ðiÞÞð Þ; ð5:4:12Þ

where �N1ðiÞ and �N2ðiÞ are symmetric matrix of Lagrange multipliers.
As a necessary condition to minimization Tr �M2ðiÞð Þ, we get

@H
@ �M1ðiÞ ¼ AF1ðiÞ�N1ðiÞEþE0 �N1ðiÞA0

F1
ðiÞþCðiÞ�N1ðiÞC0ðiÞ

� E0B1ðiÞR�1
11 ðiÞB0

1ðiÞ �M1ðiÞE�N1ðiÞ � �N1ðiÞE0 �M1ðiÞB1ðiÞR�1
11 ðiÞB0

1ðiÞ
þ piiE

0 �N1ðiÞE � B1ðiÞR�1
11 ðiÞB0

1ðiÞ �M2ðiÞE�N2ðiÞ
� �N2ðiÞE0 �M2ðiÞB1ðiÞR�1

11 ðiÞB0
1ðiÞ

þE0B1ðiÞR�1
11 ðiÞR21ðiÞR�1

11 ðiÞB0
1ðiÞ �M1ðiÞE�N2ðiÞ

þ �N2ðiÞE0 �M1ðiÞB1ðiÞR�1
11 ðiÞR21ðiÞR�1

11 ðiÞB0
1ðiÞE ¼ 0;

ð5:4:13aÞ
@H

@ �M2ðiÞ ¼ AFðiÞE�N2ðiÞþ �N2ðiÞE0A0
FðiÞþCðiÞ�N2ðiÞCðiÞ

þ piiE
0 �N2ðiÞEþ In ¼ 0;

ð5:4:13bÞ

1
2

@H
@F2ðiÞ ¼ R12ðiÞF2ðiÞ�N1ðiÞþR22ðiÞF2ðiÞ�N2ðiÞ

þB0
2ðiÞð �M1ðiÞE�N1ðiÞþ �M2ðiÞE0 �N2ðiÞÞ ¼ 0:

ð5:4:13cÞ

Therefore, (5.4.6c)–(5.4.6e) hold. This completes the proof of Theorem 5.4.1. □

5.5 Summary

For continuous-time stochastic Markov jump singular systems, we firstly discussed
the two person nonzero-sum stochastic differential game problem in finite-time
horizon and infinite-time horizon. By using the related conclusion of stochastic LQ
problem of Markov jump linear systems, we obtain the necessary and sufficient
conditions for the existence of the system combined with Riccati equation method,
which corresponds to the existence of the differential (algebraic) Riccati equation,
and with the solution of Riccati equation, the optimal control strategy and explicit
expression of the optimal value function of the system are given. At the end, two
person Stackelberg game problem of stochastic Markov jump singular systems in
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infinite-time horizon is discussed, and the existence condition of equilibrium
strategy and explicit expression are given.
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Chapter 6
Game Theory Approach to Stochastic
H2/H∞ Control of Markov Jump Singular
Systems

In this chapter, we will use the results of stochastic differential games for Markov
jump linear systems and Markov jump singular systems to investigate the stochastic
H2/H∞ robust control problem. First, based on Nash game and Stackelberg game,
we studied the stochastic H2/H∞ control problem of Markov jump linear systems,
the existence conditions for the control strategy and the explicit expression were
obtained; then expand to the corresponding results to Markov jump singular sys-
tems, and based on Nash game and Stackelberg game, the existence conditions for
the optimal control strategy of Markov jump singular systems and the explicit
expression were given.

6.1 Introduction

As the old saying, “Anything unexpected may happen, people have always hap-
pens”, the real world is full of uncertainty. To cope with the possible impact of
uncertainty, people invented various coping methods, and robust control is an
effective method for processing uncertainty.

In modern robust control theory, H2/H∞ control problem caused widespread
concern of scholars, and has been widely used in various fields. Game theory
approach is an important method among all the methods in dealing with H2/H∞

control problem. The basic idea of the robust control based on game theory is that:
the designer of the control strategy that is regarded as one of the player P1, the other
uncertain or disturbance that is regarded as another one of the player “natural” P2,
so that the H2/H∞ robust control problem can be converted into a two person game
problem, P1 faced the problem that how to design his own strategies in various
anticipated disturbances to balance with “natural” P2 and make his own goals best.
Then, using the Nash equilibrium strategy or Stackelberg strategy to obtain the
optimal control strategy.

© Springer International Publishing Switzerland 2017
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Inspired by the above method, this chapter discuss the stochastic H2/H∞ control
problem of Markov jump linear systems and Markov jump singular systems based
on Nash game and Stackelberg game approach, the existence conditions of the
equilibrium strategy and design methods are given, and the explicit expression of
the equilibrium strategy is also obtained.

6.2 Stochastic H2/H∞ Control to Markov Jump Linear
System Based on Nash Games

6.2.1 Finite-Time Horizon Case

Given a filtered probability space ðX;F ; fF tgt� 0;PÞ, on which there exists a
one-dimensional standard F t–Brownian motion wðtÞ on ½0; T � (with wð0Þ ¼ 0), and
a Markov chain rt which is adapted to F t, taking values in N ¼ f1; . . .; lg, with the
transition probabilities given by:

Pr rtþD ¼ jjrt ¼ if g ¼ pijDþ oðDÞ; if i 6¼ j;
1þ pijDþ oðDÞ; else;

�
ð6:2:1Þ

where pij � 0 for i 6¼ j and pii ¼ �P
i6¼j pij. In addition, we assume that the pro-

cesses rt and wðtÞ are independent.
Let L2F ð0; T;RnÞ :¼ /ð�; �Þ : ½0; T� � X ! R

nj/ð�; �Þf is an F t—adapted pro-

cess on ½0; T�, and E
R T
0 /ðt;xÞk k2dt\1g.

Consider the following continuous-time stochastic Markov jump systems with
state-, control- and disturbance-dependent noise

dxðtÞ ¼ A1ðt; rtÞxðtÞþB1ðt; rtÞuðtÞþC1ðt; rtÞvðtÞ½ �dt
þ A2ðt; rtÞxðtÞþB2ðt; rtÞuðtÞþC2ðt; rtÞvðtÞ½ �dwðtÞ;

zðtÞ ¼ Dðt; rtÞxðtÞ
Fðt; rtÞuðtÞ

� �
;

F0ðt; rtÞFðt; rtÞ ¼ I; xð0Þ ¼ x0 2 R
n; t 2 ½0; T �:

8>>>><
>>>>:

ð6:2:2Þ

where xðtÞ 2 R
n, uðtÞ 2 R

nu , vðtÞ 2 R
nv , and zðtÞ 2 R

nz are the system state, control
input, exogenous input, and regulated output, respectively. All coefficients of
(6.2.2) are assumed to be continuous matrix-valued functions of suitable
dimensions.

To give our main results in the next subsection, we need the following defini-
tions and lemmas. Given disturbance attenuation γ > 0, define two associated
performances as follows, i 2 N:
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J1ðu; v; x0; r0Þ ¼ c2 vðtÞk k2½0;T �� zðtÞk k2½0;T �
¼ E

Z T

0
c2 vðtÞk k2� zðtÞk k2

� �
dt r0 ¼ ij

� �
;

ð6:2:3aÞ

J2ðu; v; x0; r0Þ ¼ zðtÞk k2½0;T �¼ E
Z T

0
zðtÞk k2dt r0 ¼ ij

� �
: ð6:2:3bÞ

The definition of finite-time horizon stochastic H2/H∞ control problem is:

Definition 6.2.1 For system (6.2.1) and given γ > 0, 0 < T < ∞, find, if possible, a
state feedback control u�ðtÞ 2 L2F ð0; T ;RnuÞ such that:

ðiÞ LTk k ¼ sup
v 6¼ 0
u ¼ u�

x0 ¼ 0

E
R T
0 Dðt; rtÞxðtÞk k2 þ u�ðtÞk k2
� �

dt r0 ¼ ij
n o1

2

E
R T
0 vðtÞk k2dt r0 ¼ ij

n o1
2

\c;

ð6:2:4Þ
where i 2 N, and LT is an operator associated with system (6.2.1) which is
defined as

LT : L2F ð0; T;RnvÞ 7! L2F ð0; T ;RnzÞ;
LTðvðtÞÞ ¼ zðtÞjx0¼0; t 2 ½0; T�:

(ii) When the worst case disturbance v�ðtÞ 2 L2F ð0; T ;RnvÞ, if it exists, is applied
to (6.2.1), u*(t) minimizes the output energy

J2ðu; v�; x0; r0Þ ¼ E
Z T

0
Dðt; rtÞxðtÞk k2 þ uðtÞk k2

� �
dtjr0 ¼ i

� �
; ð6:2:5Þ

where v�ðtÞ is defined as

v�ðtÞ ¼ argmin J1ðu�; v; x0; r0Þ ¼ E
Z T

0
c2 vðtÞk k2� zðtÞk k2

� �
dtjr0 ¼ i

� �� �
:

If the above ðu�; v�Þ exist, then we say that the finite-time horizon H2/H∞ control
of system (6.2.1) is solvable and has a pair of solutions ðu�; v�Þ.

In other words, for given two cost functions defined in (6.2.3a) and (6.2.3b), the
finite-time horizon H2/H∞ control of system (6.2.1) is equivalent to finding the
Nash equilibrium ðu�; v�Þ, such that
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J1ðu�; v�; x0; r0Þ� J1ðu�; v; x0; r0Þ; J2ðu�; v�; x0; r0Þ� J2ðu; v�; x0; r0Þ;
ðuðtÞ; vðtÞÞ 2 L2F ð0; T ;RnuÞ � L2F ð0; T;RnvÞ; r0 2 N:

ð6:2:6Þ

The first inequality of (6.2.6) is associated with the H∞ performance, while the
second one is related with the H2 performance. Clearly, if the Nash equilibrium
ðu�; v�Þ exist, u� is our desired H2/H∞ controller, and v� is the worst case distur-
bance. In this case, we also say that the stochastic H2/H∞ control admits a pair of
solutions ðu�; v�Þ.

Before giving the main results, some preliminary work needs to be introduced.
Consider the following stochastic perturbed system with Markov jump parameters

dxðtÞ ¼ A1ðt; rtÞxðtÞþC1ðt; rtÞvðtÞ½ �dtþ A2ðt; rtÞxðtÞþC2ðt; rtÞvðtÞ½ �dwðtÞ;
zðtÞ ¼ Dðt; rtÞxðtÞ; xð0Þ ¼ x0 2 R

n; t 2 ½0; T�:
�

ð6:2:7Þ

For any given 0\T\1, associated with system (6.2.7), the perturbation
operator ~LT : L2F ð0; T;RnvÞ 7! L2F ð0; T ;RnzÞ is defined as ~LTðvðtÞÞ ¼ zðtÞjx0¼0 ¼
Dðt; rtÞxðtÞjx0¼0; t 2 ½0; T�, then

~LT

�� �� ¼ sup
v 6¼0;x0¼0

E
R T
0 Dðt; rtÞxðtÞk k2dtjr0 ¼ i

n o1=2

E
R T
0 vðtÞk k2dtjr0 ¼ i

n o1=2
:

In our subsequent analysis, we define Mi ¼ Mðt; iÞ, M1i ¼ M1ðt; iÞ,
M2i ¼ M2ðt; iÞ, i 2 N for convenience.

Lemma 6.2.1 For system (6.2.7) and given disturbance attenuation γ > 0,
~LT

�� ��\c iff the following coupled generalized differential Riccati equations

_Pi þPiA1i þA0
1iPi þA0

2iPiA2i � D0
iDi þ

Pl
j¼1

pijPj

� PiC1i þA0
2iPiC2i

	 

c2IþC0

2iPiC2i
	 
�1

C0
1iPi þC0

2iPiA2i
	 
 ¼ 0;

PðT ; iÞ ¼ 0;
c2IþC0

2iPiC2i [ 0; 8t 2 ½0; T�; i 2 N

8>>>>><
>>>>>:

ð6:2:8Þ

have a bounded solution PðtÞ ¼ ðPðt; 1Þ; . . .;Pðt; lÞÞ� 0 2 Cð½0; T �;Sn
l Þ.

Proof The details are similar with Ref. [1], so we omitted it here.
The following theorem presents the main results of finite-time horizon stochastic

H2/H∞ control. □

Theorem 6.2.1 For system (6.2.1), given a disturbance attenuation level c[ 0 and
0\T\1, the stochastic H2/H∞ control admits a pair of solutions ðu�; v�Þ with
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u�ðtÞ ¼
Xl

i¼1

K2ðt; iÞvrt¼iðtÞxðtÞ; v�ðtÞ ¼
Xl

i¼1

K1ðt; iÞvrt¼iðtÞxðtÞ; ð6:2:9Þ

if and only if for 8t2½0; T �, i 2 N, the following four coupled differential Riccati
equations

_P1
i þP1

i
~A1i þ ~A0

1iP
1
i þ ~A0

2iP
1
i
~A2i þ ~QðiÞþ Pl

j¼1
pijP1

j

� P1
i C1i þ ~A0

2iP
1
i C2i

	 

c2IþC0

2iP
1
i C2i

	 
�1
C0
1iP

1
i þC0

2iP
1
i
~A2i

	 
 ¼ 0;
P1ðT; iÞ ¼ 0;
c2IþC0

2iP
1
i C2i [ 0; i 2 N:

8>>>>><
>>>>>:

ð6:2:10Þ

K1i ¼ � c2IþC0
2iP

1
i C2i

	 
�1
C0
1iP

1
i þC0

2iP
1
i
~A2i

	 

: ð6:2:11Þ

_P2
i þP2

i
�A1i þ �A0

1iP
2
i þ �A0

2iP
2
i
�A2i þD0

iDi þ
Pl
j¼1

pijP2
j

� P2
i B1i þ �A0

2iP
2
i B2i

	 

IþB0

2iP
2
i B2i

	 
�1
B0
1iP

2
i þB0

2iP
2
i
�A2i

	 
 ¼ 0;
P2ðT ; iÞ ¼ 0;
IþB0

2iP
2
i B2i [ 0; i 2 N:

8>>>>><
>>>>>:

ð6:2:12Þ

K2i ¼ � IþB0
2iP

2
i B2i

	 
�1
B0
1iP

2
i þB0

2iP
2
i
�A2i

	 

; ð6:2:13Þ

where

~A1i ¼ A1i þB1iK2i; ~A2i ¼ A2i þB2iK2i; ~Qi ¼ �ðD0
iDi þK 0

2iK2iÞ;
�A1i ¼ A1i þC1iK1i; �A2i ¼ A2i þC2iK1i

admit a solution set P1ðtÞ;P2ðtÞ;K1ðtÞ;K2ðtÞð Þ, with

P1ðtÞ ¼ P1ðt; 1Þ; . . .;P1ðt; lÞ	 
� 0 2 C ½0; T�;Sn
l

	 

;

P2ðtÞ ¼ P2ðt; 1Þ; . . .;P2ðt; lÞ	 
� 0 2 C ½0; T�;Sn
l

	 


Proof Sufficiency: u�ðtÞ ¼ Pl
i¼1

K2ðt; iÞvrt¼iðtÞxðtÞ into (6.2.2), it follows that

dxðtÞ ¼ ½~A1ðt; rtÞxðtÞþC1ðt; rtÞvðtÞ�dtþ ½~A2ðt; rtÞxðtÞþC2ðt; rtÞvðtÞ�dwðtÞ;
zðtÞ ¼ Dðt; rtÞxðtÞ

K2ðt; rtÞxðtÞ
� �

; xð0Þ ¼ x0 2 R
n:

8<
:

ð6:2:14Þ

Considering Eq. (6.2.10), using Lemma 6.2.1 to system (6.2.14) immediately
yields LK2

T

�� ��\c. And from
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J1ðu�; v; x0; r0Þ ¼E
Z T

0
c2 vðtÞk k2� zðtÞk k2

� �
dt r0 ¼ ij

� �

¼ x00P
1ð0; r0Þx0þE

Z T

0
c2 vðtÞk k2� zðtÞk k2 þ d x0ðtÞP1ðt; rtÞxðtÞ

	 

dt r0 ¼ ij

h i� �

¼ x00P
1ð0; r0Þx0þE

Z T

0

	
vðtÞ � v�ðtÞ
0 c2I þC0

2ðt; rtÞP1ðt; rtÞC2ðt; rtÞ
	 
	

vðtÞ � v�ðtÞ
dt r0 ¼ ij
� �

� J1ðu�; v�; x0; r0Þ ¼ x00P
1ð0; r0Þx0;

we can see that v�ðtÞ ¼ Pl
i¼1

K1ðiÞvrt¼iðtÞxðtÞ is the worst case disturbance.

Now, substituting v ¼ v�ðtÞ ¼ Pl
i¼1

K1ðiÞvrt¼iðtÞxðtÞ into (6.2.2), it follows that

dxðtÞ ¼ ½�A1ðt; rtÞxþB1ðt; rtÞuðtÞ�dtþ ½�A2ðt; rtÞxþB2ðt; rtÞuðtÞ�dwðtÞ;
zðtÞ ¼ Dðt; rtÞxðtÞ

uðtÞ
� �

; xð0Þ ¼ x0 2 R
n:

8<
: ð6:2:15Þ

With the constraint of (6.2.15), minimizing J2ðu; v�; x0; r0Þ is a standard
stochastic linear quadratic optimization problem. Applying a standard completion
of square technique together with considering (6.2.12), we have

min
u2L2F ð0;T ;Rnu Þ

J2ðu; v�; x0; r0Þ ¼ J2ðu�; v�; x0; r0Þ ¼ x00P
2ð0; r0Þx0

with the corresponding optimal control u�ðtÞ ¼ Pl
i¼1

K2ðt; iÞvrt¼iðtÞxðtÞ. The suffi-

ciency is proved.

Necessity: If u�ðtÞ ¼ Pl
i¼1

K2ðt; iÞvrt¼iðtÞxðtÞ and v�ðtÞ ¼
Pl
i¼1

K1ðiÞvrt¼iðtÞxðtÞ solves
the finite-time horizon stochastic H2/H∞ control, where K1 and K2 are to be

determined, then substituting u�ðtÞ ¼ Pl
i¼1

K2ðt; iÞvrt¼iðtÞxðtÞ into (6.2.2) results in

(6.2.14). Lemma 6.2.1 concludes that (6.2.10) admits a solution P1ðtÞ ¼
P1ðt; 1Þ; . . .;P1ðt; lÞð Þ� 0 2 Cð½0; T�;Sn

l Þ, with v�ðtÞ ¼ Pl
i¼1

K1ðiÞvrt¼iðtÞxðtÞ, where
K1 is defined by (6.2.11). Likewise, if we implement v�T in (6.2.2), it deduces (6.2.15).
While Eq. (6.2.12) always exists a solution P2ðtÞ ¼ P2ðt; 1Þ; . . .;P2ðt; lÞð Þ� 0 2
Cð½0; T�;Sn

l Þ forfixedK1, seeRef. [2].As discussion in the sufficiencypart, in this case,

u�ðtÞ ¼ Pl
i¼1

K2ðt; iÞvrt¼iðtÞxðtÞ is optimal,withK2 definedby (6.2.13). TheNecessity is

proved.
So this ends the proof of Theorem 6.2.1. □
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6.2.2 Infinite-Time Horizon Case

6.2.2.1 Preliminaries

Consider the following controlled linear stochastic system with Markovian jumps

dxðtÞ ¼ AðrtÞxðtÞþBðrtÞuðtÞ½ �dtþA1ðrtÞxðtÞdwðtÞ ð6:2:16Þ

where xðtÞ 2 R
n is the system state, uðtÞ 2 R

nu is control input, all coefficient
matrices are assumed to be constant with compatible dimensions for given
rt ¼ i 2 N.

For system (6.2.16), applying generalized Itô’s formula to x0PðiÞx, we have

Lemma 6.2.2 Suppose P ¼ ðPð1Þ;Pð2Þ; . . .;PðlÞÞ 2 Sn
l is given, then for system

(6.2.16) with initial state ðx0; iÞ 2 R
n � N, we have for any T > 0,

E
Z T

0
x0ðtÞ PðrtÞAðrtÞþA0ðrtÞPðrtÞþA0

1ðrtÞPðrtÞA1ðrtÞþ
	� Xl

j¼1

prtjPðjÞÞxðtÞ
(

þ 2u0ðtÞB0ðrtÞPðrtÞxðtÞ�dtjr0 ¼ ig ¼ E x0ðTÞPðrTÞxðTÞjr0 ¼ i½ � � x00PðiÞx0:
ð6:2:17Þ

6.2.2.2 Main Results

For simplicity and without loss of generality, consider the following Markov jump
systems described by stochastic differential equation

dxðtÞ ¼ AðrtÞxðtÞþB2ðrtÞuðtÞþB1ðrtÞvðtÞ½ �dtþ A1ðrtÞxðtÞþC2ðrtÞuðtÞ½ �dwðtÞ;
zðtÞ ¼ C0ðrtÞxðtÞ

DðrtÞuðtÞ
� �

;D0ðiÞDðiÞ 	 I; xð0Þ ¼ x0 2 R
n; i 2 N:

8<
:

ð6:2:18Þ

where xðtÞ 2 R
n, uðtÞ 2 R

nu , vðtÞ 2 R
nv , and zðtÞ 2 R

nz are the system state, control
input, exogenous input, and regulated output, respectively. All coefficients of
(6.2.18) are assumed to be constants. Define two associated cost functions as
follows:

J11 ðu; v; x0; iÞ ¼ E
Z 1

0
c2 vðtÞk k2� zðtÞk k2
h i

dtjr0 ¼ i

� �
ð6:2:19aÞ

J12 ðu; v; x0; iÞ ¼ E
Z 1

0
zðtÞk k2dtjr0 ¼ i

� �
; i 2 N ð6:2:19bÞ
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The infinite-time horizon stochastic H2/H∞ control problem of system (6.2.18) is
described as follows.

Definition 6.2.4 [3] For given disturbance attenuation level c[ 0, if we can find
u�ðtÞ � v�ðtÞ 2 L2F ð0;1;RnuÞ � L2F ð0;1;RnvÞ, such that

(i) u�ðtÞ stabilizes system (6.2.18) internally, i.e. when vðtÞ ¼ 0, u ¼ u�, the
state trajectory of (6.2.18) with any initial value ðx0; iÞ 2 R

n � N satisfies

lim
t!1E xðtÞk k2jr0 ¼ i

h i
¼ 0:

(ii) Lu�j j1\c with

Lu�k k1¼ sup
v 2 L2F ð0;1;RnvÞ

v 6¼ 0; u ¼ u�; x0 ¼ 0

E
R1
0 C0ðrtÞxðtÞk k2 þ u�ðtÞk k2

h i
jr0 ¼ i

n o1=2

E
R1
0 vðtÞk k2dtjr0 ¼ i

n o1=2
:

(iii) When the worst case disturbance v�ðtÞ 2 L2F ð0;1;RnvÞ, if existing, is
applied to (6.2.18), u�ðtÞ minimizes the output energy

J12 ðu; v�; x0; iÞ ¼ E
Z 1

0
C0ðrtÞxðtÞk k2 þ uðtÞk k2

h i
dtjr0 ¼ i

� �
; i 2 N;

where v�ðtÞ is defined as

v�ðtÞ ¼ arg min J11 ðu�; v; x0; iÞ ¼ E
Z 1

0
c2 vðtÞk k2� zðtÞk k2

� �
dtjr0 ¼ i

� �� �
:

If the above ðu�; v�Þ exist, then we say that the infinite-time horizon H2/H∞

control of system (6.2.18) is solvable and has a pair of solutions. Obviously,
ðu�; v�Þ is the Nash equilibrium strategies such that

J11 ðu�; v�; x0; iÞ� J11 ðu�; v; x0; iÞ; ð6:2:20Þ

J12 ðu�; v�; x0; iÞ� J12 ðu; v�; x0; iÞ; i 2 N: ð6:2:21Þ

The main result of the infinite-time horizon stochastic H2/H∞ control is pre-
sented by the following theorem, which can be shown following the line of
Theorem 2.1 and Theorem 1 presented in Ref. [4].

Theorem 6.2.2 For a given disturbance attenuation c[ 0, suppose systems (6.2.18)
is stochastically stablizable, infinite-time horizon stochastic H2/H∞ control has a pair
of solutions ðu�; v�Þ with u�ðtÞ ¼ K2ðrtÞxðtÞ and v�ðtÞ ¼ K1ðrtÞxðtÞ, where K2ðiÞ 2
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Ml
nu;n and K1ðiÞ 2 Ml

nv;n are constant matrices, if and only if the following four
coupled algebraic Riccati equations (6.2.22) admit solutions ðP1;P2;K1;K2Þ as
P1 ¼ ðP1ð1Þ;P1ð2Þ; . . .;P1ðlÞÞ� 0 2 Sn

l ;P2 ¼ ðP2ð1Þ;P2ð2Þ; . . .;P2ðlÞÞ� 0 2 Sn
l .

P1ðiÞ~AðiÞþ ~A0ðiÞP1ðiÞþ ~A0
1ðiÞP1ðiÞ~A1ðiÞþ ~QðiÞþ

Xl

j¼1

pijP1ðjÞ

� c�2P1ðiÞB1ðiÞB0
1ðiÞP1ðiÞ ¼ 0; i ¼ 1; . . .; l:

ð6:2:22aÞ

K1ðiÞ ¼ �c�2B0
1ðiÞP1ðiÞ: ð6:2:22bÞ

P2ðjÞ�AðjÞþ �A0ðjÞP2ðjÞþA0
1ðjÞP2ðjÞA1ðjÞþC0

0ðjÞC0ðjÞþ
Pl
k¼1

pjkP2ðkÞ
� P2ðjÞB2ðjÞþA0

1ðjÞP2ðjÞC2ðjÞ
	 


IþC0
2ðjÞP2ðjÞC2ðjÞ

	 
�1

� B0
2ðjÞP2ðjÞþC0

2ðjÞP2ðjÞA1ðjÞ
	 
 ¼ 0;

IþC0
2ðjÞP2ðjÞC2ðjÞ[ 0; j 2 N:

8>>>>><
>>>>>:

ð6:2:22cÞ

K2ðjÞ ¼ � IþC0
2ðjÞP2ðjÞC2ðjÞ

	 
�1
B0
2ðjÞP2ðjÞþC0

2ðjÞP2ðjÞA1ðjÞ
	 


; ð6:2:22dÞ

where

~A ¼ A� B2K2; ~A1 ¼ A1 � C2K2; ~Q ¼ � C0
0C0 þK 0

2K2
	 


; �A ¼ A� B1K1:

6.2.3 Numerical Examples

In order to verify the correctness of the conclusions, consider all the coefficient
matrices of the system (6.2.18) taking the following values:

N ¼ f1; 2g;P ¼ �0:2 0:2

0:8 �0:8

� �
;Að1Þ ¼ 0 1

�2 �3

� �
;Að2Þ ¼ 0 1

1 0

� �
;B1ð1Þ ¼

1

1

� �
;

B1ð2Þ ¼
0

1

� �
;B2ð1Þ ¼

1

0

� �
;B2ð2Þ ¼

3

0

� �
;A1ð1Þ ¼

0:1 0

0 0:3

� �
;A1ð2Þ ¼

0:5 0

0 0:2

� �
;

C2ð1Þ ¼
0

0:1

� �
;C2ð2Þ ¼

0

0

� �
:
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setting c ¼ 0:7, applying the algorithm proposed in Ref. [5] to (6.2.22a)–(6.2.22d),
we have

Pð1Þ ¼ 0:0348 0:0246
0:0246 0:0512

� �
;Pð2Þ ¼ 0:0427 0:0682

0:0682 0:3112

� �
:

So, the stochastic H2/H∞ control strategy is:

uðtÞ ¼ �0:0350x1ðtÞ � 0:0261x2ðtÞ;when rt ¼ 1;

uðtÞ ¼ �0:1281x1ðtÞ � 0:2046x2ðtÞ;when rt ¼ 2:

Using Matlab with simulation step Δ = 0.001, initial value r0 ¼ 1, x1ð0Þ ¼ 2
and x2ð0Þ ¼ 1, we obtain the state trajectories as shown in Figs. 6.1, 6.2 and 6.3:

As can be seen from Figs. 6.1, 6.2 and 6.3, under the control of u(t), the
closed-loop system is stable.

0 1 2 3 4 5 6 7 8 9 10
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r t

Fig. 6.1 Curve of rt
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6.3 Stochastic H2/H∞ Control to Markov Jump Linear
Systems Based on Stackelberg Game

6.3.1 Preliminary Results

Consider the following Markov jump linear systems

dxðtÞ ¼ AðrtÞxðtÞþDðrtÞvðtÞ½ �dtþApðrtÞxðtÞdwðtÞ;
zðtÞ ¼ CðrtÞxðtÞ; xð0Þ ¼ x0 2 R

n;

�
ð6:3:1Þ

where vðtÞ 2 R
nv and zðtÞ 2 L2F ð0;1;RnzÞ are, respectively, disturbance signal and

controlled output. For system (6.3.1), the perturbed operator L : L2F ð0;1;RnvÞ
7! L2F ð0;1;RnzÞ of LðvðtÞÞ ¼ zðtÞjx0¼0 ¼ CðrtÞxðtÞjx0¼0 is defined by

Lk k1¼ sup
v 6¼0;x0¼0

E
R1
0 zðtÞk k2dt r0 ¼ ij

n o1=2

E
R1
0 vðtÞk k2dt r0 ¼ ij

n o1=2
:

The following real bounded lemma was proposed by Huang and Zhang [3]:

Lemma 6.3.1 Given a disturbance attenuation level c[ 0, the stochastic system
(6.3.1) is internal stable and Lk k1\c for some γ, if and only if (iff) the following
equation

A0ðiÞPðiÞþPðiÞAðiÞþA0
pðiÞPðiÞApðiÞþC0ðiÞCðiÞ

þ c�2PðiÞDðiÞD0ðiÞPðiÞþ
Xl

j¼1

pijPðjÞ ¼ 0
ð6:3:2Þ

has a solution P ¼ ðPð1Þ; . . .;PðlÞÞ[ 0 2 Sn
l .

In this case, v�ðtÞ ¼ Pl
i¼1

F�ðiÞvrt¼iðtÞxðtÞ ¼ c�2 Pl
i¼1

D0ðiÞPðiÞvrt¼iðtÞxðtÞ is the

worst disturbance of the system.

6.3.2 Problem Formulation

Consider the following controlled Markov jump linear systems

dxðtÞ ¼ AðrtÞxðtÞþBðrtÞuðtÞþDðrtÞvðtÞ½ �dtþApðrtÞxðtÞdwðtÞ;
zðtÞ ¼ CðrtÞxðtÞ; xð0Þ ¼ x0:

�
ð6:3:3Þ
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where xðtÞ 2 R
n, uðtÞ 2 R

nu , vðtÞ 2 R
nv and zðtÞ 2 R

nz are, respectively, the system
state, control input, disturbance signal and controlled output. In (6.3.3),
AðrtÞ ¼ AðiÞ, BðrtÞ ¼ BðiÞ, CðrtÞ ¼ CðiÞ, DðrtÞ ¼ DðiÞ and ApðrtÞ ¼ ApðiÞ, when
rt ¼ i, while AðiÞ, etc., i ¼ 1; � � � ; l, are constant matrices with suitable size.

The definition of stochastic H2/H∞ control based on Stackelberg game is given
below:

Definition 6.3.1 [5] If there exists a strategy set ðv�; u�Þ, such that

J2ðx0; i; v�; u�Þ� J2ðx0; i; voðuÞ; uÞ; 8u 2 R
nu ; ð6:3:4Þ

where

J1ðx0; i; voðuÞ; uÞ ¼ min
v

J1ðx0; i; v; uÞ; ð6:3:5Þ

and

v� ¼ v

 ðu�Þ ð6:3:6aÞ

J1ðx0; i; v; uÞ ¼ E
Z 1

0
c2 vðtÞk k2� zðtÞk k2
h i

dtjr0 ¼ i

� �
ð6:3:6bÞ

J2ðx0; i; v; uÞ ¼ E
Z 1

0
x0ðtÞQðrtÞxðtÞþ u0ðtÞRðrtÞuðtÞ½ �dtjr0 ¼ i

� �
;

QðrtÞ ¼ Q0ðrtÞ� 0; RðrtÞ ¼ R0ðrtÞ[ 0;
ð6:3:6cÞ

then, this strategy set is the desired stochastic H2/H∞ control set.

Without loss of generality, we restrict our strategies to linear state feedback case,
i.e., the closed-loop stochastic H2/H∞ sets have the following form

vðtÞ ¼
Xl

i¼1

FcðiÞvrt¼iðtÞxðtÞ; uðtÞ ¼
Xl

i¼1

KðiÞvrt¼iðtÞxðtÞ:

6.3.3 Main Results

The following theorem presents the main results of stochastic H2/H∞ control based
on Stackelberg strategy:

Theorem 6.3.1 Suppose that the following cross-coupled matrix-valued equations
(6.3.7a)–(6.3.7e) has solutions �M1ðiÞ� 0, �M2ðiÞ� 0, �NjðiÞ, j ¼ 0; 1, FcðiÞ and KðiÞ,
i ¼ 1; � � � l
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A0
KðiÞ �M1ðiÞþ �M1ðiÞAKðiÞþA0

pðiÞ �M1ðiÞApðiÞ

� c�2 �M1ðiÞD0ðiÞDðiÞ �M1ðiÞ � C0ðiÞCðiÞþ
Xl

j¼1

pij �M1ðjÞ ¼ 0;
ð6:3:7aÞ

A0
FðiÞ �M2ðiÞþ �M2ðiÞAFðiÞþA0

pðiÞ �M2ðiÞApðiÞþQðiÞ

þK 0ðiÞRðiÞKðiÞþ
Xl

j¼1

pij �M2ðjÞ ¼ 0;
ð6:3:7bÞ

AKðiÞ�N1ðiÞþ �N1ðiÞA0
KðiÞþApðiÞ�N1ðiÞA0

pðiÞ
� c�2 �M1ðiÞDðiÞD0ðiÞ�N1ðiÞ � c�2 �N1ðiÞ �M1ðiÞDðiÞD0ðiÞþ pii �N1ðiÞ
� c�2DðiÞD0ðiÞ �M2ðiÞ�N2ðiÞþ c�2 �N2ðiÞ �M2ðiÞDðiÞD0ðiÞ	 
 ¼ 0

ð6:3:7cÞ

AFðiÞ�N2ðiÞþ �N2ðiÞA0
FðiÞþApðiÞ�N2ðiÞA0

pðiÞþ pii �N2ðiÞþ In ¼ 0; ð6:3:7dÞ

RðiÞKðiÞ�N2ðiÞþB0ðiÞð �M1ðiÞ�N1ðiÞþ �M2ðiÞ�N2ðiÞÞ ¼ 0; ð6:3:7eÞ

where

FcðiÞ ¼ �c�2D0ðiÞ �M1ðiÞ;AKðiÞ ¼ AðiÞþBðiÞKðiÞ;AFðiÞ
¼ AKðiÞ � c�2DðiÞD0ðiÞ �M1ðiÞ:

Suppose the system (6.3.3) is internal stable, then, the strategy set ðv�; u�Þ with
the form vðtÞ ¼ v�ðtÞ ¼ Pl

i¼1
FcðiÞvrt¼iðtÞxðtÞ, uðtÞ ¼ u�ðtÞ ¼ Pl

i¼1
KðiÞvrt¼iðtÞxðtÞ is

the stochastic H2/H∞ control set based on Stackelberg strategy.

Proof Given arbitrary uðtÞ ¼ KðrtÞxðtÞ of the leader, the follower facing the fol-
lowing optimization problem

min
v

J1ðx0; i; v;KðrtÞxÞ

¼ E
Z 1

0
c2v0ðtÞvðtÞ � x0ðtÞC0ðrtÞCðrtÞxðtÞ
� �

dtjr0 ¼ i

� �
;

s:t:

dxðtÞ ¼ AKðrtÞxðtÞþDðrtÞvðtÞ½ �dtþApðrtÞxðtÞdwðtÞ:

From the conclusions of stochastic LQ problems, we can get the optimal feed-
back controller v


 ðtÞ is given by

v

 ðtÞ ¼

Xl

i¼1

FcðiÞvrt¼iðtÞxðtÞ ¼ �c�2
Xl

i¼1

D0ðiÞ �M1ðiÞvrt¼iðtÞxðtÞ; ð6:3:8Þ
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where �M1ðiÞ is the solution to

G1ð �M1ðiÞ;KðiÞÞ ¼ A0
KðiÞ �M1ðiÞþ �M1ðiÞAKðiÞþA0

pðiÞ �M1ðiÞApðiÞ

� c�2 �M1ðiÞD0ðiÞDðiÞ �M1ðiÞ � C0ðiÞCðiÞþ
Xl

j¼1

pij �M1ðjÞ ¼ 0:

ð6:3:9Þ

Therefore, equation (6.3.7a) holds.
On the other hand, if AFðiÞ ¼ AKðiÞ � c�2DðiÞD0ðiÞ �M1ðiÞ is asymptotically

mean square stable, then the cost J2 of the leader can be represented as

J2 x0; i;�c�2D0ðrtÞ �M1ðrtÞx;KðiÞx
	 
 ¼ Trð �M2ðiÞÞ; ð6:3:10Þ

where �M2ðiÞ is the solution to

G2ð �M1ðiÞ; �M2ðiÞ;KðiÞÞ ¼ A0
FðiÞ �M2ðiÞþ �M2ðiÞAFðiÞ

þ A0
pðiÞ �M2ðiÞApðiÞþQðiÞþK 0ðiÞRðiÞKðiÞþ

Xl

j¼1

pij �M2ðjÞ ¼ 0:

ð6:3:11Þ

From (6.3.11)we know (6.3.7b) holds. Let us consider the following LagrangianH

Hð �M1ðiÞ; �M2ðiÞ;KðiÞÞ ¼Tr �M2ðiÞð ÞþTr �N1ðiÞG1ð �M1ðiÞ;KðiÞÞð Þ
þTr �N2ðiÞG2ð �M1ðiÞ; �M2ðiÞ;KðiÞÞð Þ; ð6:3:12Þ

where �N1ðiÞ and �N2ðiÞ are symmetric matrix of Lagrange multipliers.
As a necessary condition to minimization Tr �M2ðiÞð Þ, we get

@H
@ �M1ðiÞ ¼ AKðiÞ�N1ðiÞþ �N1ðiÞA0

KðiÞþApðiÞ�N1ðiÞA0
pðiÞ

� c�2 �M1ðiÞDðiÞD0ðiÞ�N1ðiÞ � c�2 �N1ðiÞ �M1ðiÞDðiÞD0ðiÞþ pii �N1ðiÞ
� c�2DðiÞD0ðiÞ �M2ðiÞ�N2ðiÞþ c�2 �N2ðiÞ �M2ðiÞDðiÞD0ðiÞ	 
 ¼ 0;

ð6:3:13aÞ
@H

@ �M1ðiÞ ¼ AFðiÞ�N2ðiÞþ �N2ðiÞA0
FðiÞþApðiÞ�N2ðiÞA0

pðiÞþ pii �N2ðiÞþ In ¼ 0;

ð6:3:13bÞ
1
2

@H
@KðiÞ ¼ RðiÞKðiÞ�N2ðiÞþB0ðiÞð �M1ðiÞ�N1ðiÞþ �M2ðiÞ�N2ðiÞÞ ¼ 0; ð6:3:13cÞ
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Therefore, (6.3.7c)–(6.3.7e) hold.
This completes the proof of Theorem 6.3.1. □

6.4 Stochastic H2/H∞ Control to Markov Jump
Singular System Based on Nash Games

6.4.1 Finite-Time Horizon Case

Consider the following continuous-time stochastic Markov jump singular systems
with state-, control- and disturbance-dependent noise

EdxðtÞ ¼ A1ðt; rtÞxðtÞþB1ðt; rtÞuðtÞþC1ðt; rtÞvðtÞ½ �dt
þ A2ðt; rtÞxðtÞþB2ðt; rtÞuðtÞþC2ðt; rtÞvðtÞ½ �dwðtÞ;

zðtÞ ¼ Dðt; rtÞxðtÞ
Fðt; rtÞuðtÞ

� �
;

F0ðt; rtÞFðt; rtÞ ¼ I; xð0Þ ¼ x0 2 R
n; t 2 ½0; T �:

8>>>><
>>>>:

ð6:4:1Þ

where E 2 R
n�n is a known singular matrix with 0\rankðEÞ ¼ k� n, xðtÞ 2 R

n,
uðtÞ 2 R

nu , vðtÞ 2 R
nv , and zðtÞ 2 R

nz are the system state, control input, exogenous
input, and regulated output, respectively. All coefficients of (6.4.1) are assumed to
be continuous matrix-valued functions of suitable dimensions.

For given disturbance attenuation γ > 0, define two associated performances as
follows, i 2 N:

J1ðu; v; x0; r0Þ ¼ c2 vðtÞk k2½0;T �� zðtÞk k2½0;T �
¼ E

Z T

0
c2 vðtÞk k2� zðtÞk k2

� �
dtjr0 ¼ i

� �
;

ð6:4:2aÞ

J2ðu; v; x0; r0Þ ¼ zðtÞk k2½0;T �¼ E
Z T

0
zðtÞk k2dtjr0 ¼ i

� �
: ð6:4:2bÞ

The definition of finite-time horizon stochastic H2/H∞ control problem is:

Definition 6.4.1 For system (6.4.1) and given γ > 0, 0 < T < ∞, find, if possible, a
state feedback control u�ðtÞ 2 L2F ð0; T ;RnuÞ such that:

ðiÞ LTk k ¼ sup
v 6¼ 0
u ¼ u�

x0 ¼ 0

E
R T
0 Dðt; rtÞxðtÞk k2 þ u�ðtÞk k2
� �

dtjr0 ¼ i
n o1=2

E
R T
0 vðtÞk k2dtjr0 ¼ i

n o1=2
\c;

ð6:4:3Þ
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where i 2 N, and LT is an operator associated with system (6.4.1) which is
defined as

LT : L2F ð0; T;RnvÞ 7! L2F ð0; T ;RnzÞ;
LTðvðtÞÞ ¼ zðtÞjx0¼0; t 2 ½0; T�:

(ii) When the worst case disturbance v�ðtÞ 2 L2F ð0; T ;RnvÞ, if it exists, is applied
to (6.4.1), u�ðtÞ minimizes the output energy

J2ðu; v�; x0; r0Þ ¼ E
Z T

0
Dðt; rtÞxðtÞk k2 þ uðtÞk k2

� �
dtjr0 ¼ i

� �
; ð6:4:4Þ

where v�ðtÞ is defined as

v�ðtÞ ¼ arg min J1ðu�; v; x0; r0Þ ¼ E
Z T

0
c2 vðtÞk k2� zðtÞk k2

� �
dtjr0 ¼ i

� �� �
:

If the above ðu�; v�Þ exist, then we say that the finite-time horizon H2/H∞ control
of system (6.4.1) is solvable and has a pair of solutions ðu�; v�Þ.

In other words, for given two cost functions defined in (6.4.2a) and (6.4.2b), the
finite-time horizon H2/H∞ control of system (6.4.1) is equivalent to finding the
Nash equilibrium ðu�; v�Þ, such that

J1ðu�; v�; x0; r0Þ� J1ðu�; v; x0; r0Þ; J2ðu�; v�; x0; r0Þ� J2ðu; v�; x0; r0Þ;
ðuðtÞ; vðtÞÞ 2 L2F ð0; T;RnuÞ � L2F ð0; T ;RnvÞ; r0 2 N:

ð6:4:5Þ

Clearly, if the Nash equilibrium ðu�; v�Þ exist, u� is our desired H2/H∞ con-
troller, and v� is the worst case disturbance. In this case, we also say that the
stochastic H2/H∞ control admits a pair of solutions ðu�; v�Þ.

Before giving the main results, some preliminary work needs to be introduced.
Consider the following stochastic singular perturbed system with Markov jump
parameters

EdxðtÞ ¼ A1ðt; rtÞxðtÞþC1ðt; rtÞvðtÞ½ �dtþ A2ðt; rtÞxðtÞþC2ðt; rtÞvðtÞ½ �dwðtÞ;
zðtÞ ¼ Dðt; rtÞxðtÞ; xð0Þ ¼ x0 2 R

n; t 2 ½0; T�:
�

ð6:4:6Þ

For any given 0\T\1, associated with system (6.4.6), the perturbation
operator ~LT : L2F ð0; T;RnvÞ 7! L2F ð0; T ;RnzÞ is defined as ~LTðvðtÞÞ ¼ zðtÞjx0¼0 ¼
Dðt; rtÞxðtÞjx0¼0; t 2 ½0; T�, then
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~LT

�� �� ¼ sup
v 6¼0;x0¼0

E
R T
0 Dðt; rtÞxðtÞk k2dtjr0 ¼ i

n o1=2

E
R T
0 vðtÞk k2dtjr0 ¼ i

n o1=2
:

In our subsequent analysis, we define Mi ¼ Mðt; iÞ, M1i ¼ M1ðt; iÞ,
M2i ¼ M2ðt; iÞ, i 2 N for convenience.

Lemma 6.4.1 For system (6.4.6) and given disturbance attenuation γ > 0,
~LT

�� ��\c iff the following constrained equations

E0 _PiEþE0PiA1i þA0
1iPiEþA0

2iPiA2i � D0
iDi þ

Pl
j¼1

pijE0PjE

� EPiC1i þA0
2iPiC2i

	 

c2IþC0

2iPiC2i
	 
�1

C0
1iPiEþC0

2iPiA2i
	 
 ¼ 0;

E0PðT; iÞE ¼ 0;
c2IþC0

2iPiC2i [ 0; 8t 2 ½0; T �; i 2 N;

8>>>>><
>>>>>:

ð6:4:7Þ

have a bounded solution PðtÞ ¼ ðPðt; 1Þ; . . .;Pðt; lÞÞ� 0 2 Cð½0; T �;Sn
l Þ.

Proof The details are similar with Ref. [1], so we omitted it here.
The following theorem presents the main results of finite-time horizon stochastic

H2/H∞ control.

Theorem 6.4.1 For system (6.4.1), given a disturbance attenuation level c[ 0 and
0\T\1, the stochastic H2/H∞ control admits a pair of solutions ðu�; v�Þ with

u�ðtÞ ¼
Xl

i¼1

K2ðt; iÞvrt¼iðtÞxðtÞ; v�ðtÞ ¼
Xl

i¼1

K1ðt; iÞvrt¼iðtÞxðtÞ; ð6:4:8Þ

if and only if for 8t 2 ½0; T �, i 2 N, the following four coupled differential Riccati
equations

E0 _P1
i EþE0P1

i
~A1i þ ~A0

1iP
1
i Eþ ~A0

2iP
1
i
~A2i þ ~QðiÞþ Pl

j¼1
pijE0P1

j E

� E0P1
i C1i þ ~A0

2iP
1
i C2i

	 

c2IþC0

2iP
1
i C2i

	 
�1
C0
1iP

1
i EþC0

2iP
1
i
~A2i

	 
 ¼ 0;
E0P1ðT ; iÞE ¼ 0;
c2IþC0

2iP
1
i C2i [ 0; i 2 N:

8>>>>><
>>>>>:

ð6:4:9aÞ

K1i ¼ � c2IþC0
2iP

1
i C2i

	 
�1
C0
1iP

1
i EþC0

2iP
1
i
~A2i

	 

: ð6:4:9bÞ
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E0 _P2
i EþE0P2

i
�A1i þ �A0

1iP
2
i Eþ �A0

2iP
2
i
�A2i þD0

iDi þ
Pl
j¼1

pijE0P2
j E

� E0P2
i B1i þ �A0

2iP
2
i B2i

	 

IþB0

2iP
2
i B2i

	 
�1
B0
1iP

2
i EþB0

2iP
2
i
�A2i

	 
 ¼ 0;
E0 þB0

2iP
2
i B2i [ 0; i 2 N:

IþB0
2iP

2
i B2i [ 0; i 2 N:

8>>>>><
>>>>>:

ð6:4:9cÞ

K2i ¼ � IþB0
2iP

2
i B2i

	 
�1
B0
1iP

2
i EþB0

2iP
2
i
�A2i

	 

; ð6:4:9dÞ

where

~A1i ¼ A1i þB1iK2i; ~A2i ¼ A2i þB2iK2i; ~Qi ¼ �ðD0
iDi þK 0

2iK2iÞ;
�A1i ¼ A1i þC1iK1i; �A2i ¼ A2i þC2iK1i

admit solutions ðP1ðtÞ;P2ðtÞ;K1ðtÞ;K2ðtÞÞ,

P1ðtÞ ¼ ðP1ðt; 1Þ; � � � ;P1ðt; lÞÞ� 0 2 C ½0; T �;Sn
l

	 

;

P2ðtÞ ¼ ðP2ðt; 1Þ; � � � ;P2ðt; lÞÞ� 0 2 C ½0; T �;Sn
l

	 

:

Proof Please refer to the proof of Theorem 6.2.1, we don’t give it in detail
here. □

6.4.2 Infinite-Time Horizon Case

6.4.2.1 Preliminaries

Consider the following controlled stochastic singular systems with Markovian
jumps

EdxðtÞ ¼ AðrtÞxðtÞþBðrtÞuðtÞ½ �dtþA1ðrtÞxðtÞdwðtÞ ð6:4:10Þ

where E 2 R
n�n is a known singular matrix with 0\rankðEÞ ¼ k� n, xðtÞ 2 R

n is
the system state, uðtÞ 2 R

nu is control input, all coefficient matrices are assumed to
be constant with compatible dimensions for given rt ¼ i 2 N.

For system (6.4.10), applying generalized Itô’s formula to x0E0PðiÞEx, we have

Lemma 6.4.2 Suppose P ¼ ðPð1Þ;Pð2Þ; � � � ;PðlÞÞ 2 Sn
l is given, then for system

(6.4.10) with initial state ðx0; iÞ 2 R
n � N, we have for any T > 0,
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E
Z T

0
x0ðtÞ E0PðrtÞAðrtÞþA0ðrtÞPðrtÞEþA0

1ðrtÞPðrtÞA1ðrtÞþ
	� Xl

j¼1

prt jE
0PðjÞEÞxðtÞ

(

þ 2u0ðtÞB0ðrtÞPðrtÞExðtÞ�dt r0 ¼ ij
)

¼ E x0ðTÞE0PðrTÞExðTÞ r0 ¼ ij½ � � x00E
0PðiÞEx0:

ð6:4:11Þ

6.4.2.2 Main Results

For simplicity and without loss of generality, consider the following Markov jump
singular systems described by stochastic differential equation

EdxðtÞ ¼ AðrtÞxðtÞþB2ðrtÞuðtÞþB1ðrtÞvðtÞ½ �dtþ A1ðrtÞxðtÞþC2ðrtÞuðtÞ½ �dwðtÞ;
zðtÞ ¼ C0ðrtÞxðtÞ

DðrtÞuðtÞ
� �

;D0ðiÞDðiÞ 	 I; xð0Þ ¼ x0 2 R
n; i 2 N:

8<
:

ð6:4:12Þ

where xðtÞ 2 R
n, uðtÞ 2 R

nu , vðtÞ 2 R
nv , and zðtÞ 2 R

nz are the system state, control
input, exogenous input, and regulated output, respectively. All coefficients are
assumed to be constants. Define two associated cost functions as follows:

J11 ðu; v; x0; iÞ ¼ E
Z 1

0
c2 vðtÞk k2� zðtÞk k2
h i

dtjr0 ¼ i

� �
: ð6:4:13aÞ

J12 ðu; v; x0; iÞ ¼ E
Z 1

0
zðtÞk k2dt r0 ¼ ij

� �
; i 2 N: ð6:4:13bÞ

The infinite-time horizon stochastic H2/H∞ control problem of system (6.4.12) is
described as follows.

Definition 6.2.4 [6] For given disturbance attenuation level c[ 0, if we can find
u�ðtÞ � v�ðtÞ 2 L2F ð0;1;RnuÞ � L2F ð0;1;RnvÞ, such that

(i) u�ðtÞ stabilizes system (6.4.12) internally, i.e. when vðtÞ ¼ 0, u ¼ u�, the
state trajectory of (6.4.11) with any initial value ðx0; iÞ 2 R

n � N satisfies

lim
t!1E xðtÞk k2 r0 ¼ ij

h i
¼ 0:

(ii) Lu�j j1\c with
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Lu�k k1¼ sup
v 2 L2F ð0;1;RnvÞ

v 6¼ 0; u ¼ u�; x0 ¼ 0

E
R1
0 C0ðrtÞxðtÞk k2 þ u�ðtÞk k2

h i
jr0 ¼ i

n o1=2

E
R1
0 vðtÞk k2dtjr0 ¼ i

n o1=2
:

(iii) When the worst case disturbance v�ðtÞ 2 L2F ð0;1;RnvÞ, if existing, is
applied to (6.4.12), u�ðtÞ minimizes the output energy

J12 ðu; v�; x0; iÞ ¼ E
Z 1

0
C0ðrtÞxðtÞk k2 þ uðtÞk k2

h i
dtjr0 ¼ i

� �
; i 2 N;

where v�ðtÞ is defined as

v�ðtÞ ¼ argmin J11 ðu�; v; x0; iÞ ¼ E
Z 1

0
c2 vðtÞk k2� zðtÞk k2

� �
dtjr0 ¼ i

� �� �
:

If the above ðu�; v�Þ exist, then we say that the infinite-time horizon H2/H∞

control of system (6.4.12) is solvable and has a pair of solutions. Obviously,
ðu�; v�Þ is the Nash equilibrium strategies such that

J11 ðu�; v�; x0; iÞ� J11 ðu�; v; x0; iÞ; ð6:4:14Þ

J12 ðu�; v�; x0; iÞ� J12 ðu; v�; x0; iÞ; i 2 N: ð6:4:15Þ

The main result of the infinite-time horizon stochastic H2/H∞ control is pre-
sented by the following theorem, which can be shown following the line of
Theorem 2.1 and Theorem 1 presented in Ref. [4].

Theorem 6.4.2 For a given disturbance attenuation c[ 0, suppose systems
(6.4.12) is stochastically stablizable, infinite-time horizon stochastic H2/H∞ control
has a pair of solutions ðu�; v�Þ with u�ðtÞ ¼ K2ðrtÞxðtÞ and v�ðtÞ ¼ K1ðrtÞxðtÞ,
where K2ðiÞ 2 Ml

nu;n and K1ðiÞ 2 Ml
nv;n are constant matrices, if and only if the

following four coupled algebraic Riccati equations (6.4.16a)–(6.4.16d) admit
solutions ðP1;P2;K1;K2Þ as P1 ¼ ðP1ð1Þ;P1ð2Þ; � � � ;P1ðlÞÞ� 0 2 Sn

l ;P2 ¼
ðP2ð1Þ;P2ð2Þ; � � � ;P2ðlÞÞ� 0 2 Sn

l

E0P1ðiÞ~AðiÞþ ~A0ðiÞP1ðiÞEþ ~A0
1ðiÞP1ðiÞ~A1ðiÞþ ~QðiÞ

þ
Xl

j¼1

pijE
0P1ðjÞE � c�2E0P1ðiÞB1ðiÞB0

1ðiÞP1ðiÞE ¼ 0; i 2 N:
ð6:4:16aÞ

K1ðiÞ ¼ �c�2B0
1ðiÞP1ðiÞE: ð6:4:16bÞ
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E0P2ðjÞ�AðjÞþ �A0ðjÞP2ðjÞEþA0
1ðjÞP2ðjÞA1ðjÞþC0

0ðjÞC0ðjÞþ
Pl
k¼1

pjkE0P2ðkÞE
� E0P2ðjÞB2ðjÞþA0

1ðjÞP2ðjÞC2ðjÞ
	 


IþC0
2ðjÞP2ðjÞC2ðjÞ

	 
�1

� B0
2ðjÞP2ðjÞEþC0

2ðjÞP2ðjÞA1ðjÞ
	 
 ¼ 0;

IþC0
2ðjÞP2ðjÞC2ðjÞ[ 0; j 2 N:

8>>>>><
>>>>>:

ð6:4:16cÞ

K2ðjÞ ¼ � IþC0
2ðjÞP2ðjÞC2ðjÞ

	 
�1
B0
2ðjÞP2ðjÞEþC0

2ðjÞP2ðjÞA1ðjÞ
	 


; ð6:4:16dÞ

where

~A ¼ A� B2K2; ~A1 ¼ A1 � C2K2; ~Q ¼ �ðC0
0C0 þK 0

2K2Þ; �A ¼ A� B1K1:

Proof Please refer to the proof of Theorem 6.2.1, we don’t give it in detail
here. □

6.5 Stochastic H2/H∞ Control to Markov Jump
Singular Systems Based on Stackelberg Game

6.5.1 Preliminary Results

Consider the following Markov jump singular systems

EdxðtÞ ¼ AðrtÞxðtÞþDðrtÞvðtÞ½ �dtþApðrtÞxðtÞdwðtÞ;
zðtÞ ¼ CðrtÞxðtÞ; xð0Þ ¼ x0 2 R

n:

�
ð6:5:1Þ

where vðtÞ 2 R
nv and zðtÞ 2 L2F ð0;1;RnzÞ are, respectively, disturbance signal and

controlled output. For system (6.5.1), the perturbed operator L :

L2F ð0;1;RnvÞ 7! L2F ð0;1;RnzÞ of LðvðtÞÞ ¼ zðtÞjx0¼0 ¼ CðrtÞxðtÞjx0¼0 is defined
by

Lk k1¼ sup
v 6¼0;x0¼0

E
R1
0 zðtÞk k2dt r0 ¼ ij

n o1=2

E
R1
0 vðtÞk k2dt r0 ¼ ij

n o1=2
:

The following lemma extends the real bounded lemma of Markov jump linear
systems proposed by Huang and Zhang [3] to Markov jump singular systems:
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Lemma 6.5.2 Given a disturbance attenuation level c[ 0, the stochastic system
(6.5.1) is internal stable and Lk k1\c for some γ, if and only if the following
equation

A0ðiÞPðiÞEþE0PðiÞAðiÞþA
0
pðiÞPðiÞApðiÞþC0ðiÞCðiÞ

þ c�2E0PðiÞDðiÞD0ðiÞPðiÞEþ
Xl

j¼1

pijE
0PðjÞE ¼ 0

ð6:5:2Þ

has a solution P ¼ ðPð1Þ; . . .;PðlÞÞ[ 0 2 Sn
l .

In this case, v�ðtÞ ¼ Pl
i¼1

F�ðiÞvrt¼iðtÞxðtÞ ¼ c�2 Pl
i¼1

D0ðiÞPðiÞvrt¼iðtÞExðtÞ is the

worst disturbance of the system.

6.5.2 Problem Formulation

Consider the following controlled stochastic Markov jump singular systems

EdxðtÞ ¼ AðrtÞxðtÞþBðrtÞuðtÞþDðrtÞvðtÞ½ �dtþApðrtÞxðtÞdwðtÞ;
zðtÞ ¼ CðrtÞxðtÞ; xð0Þ ¼ x0:

�
ð6:5:3Þ

where xðtÞ 2 R
n, uðtÞ 2 R

nu , vðtÞ 2 R
nv , and zðtÞ 2 R

nz are, respectively, the sys-
tem state, control input, disturbance signal and controlled output. E 2 R

n�n is a
known singular matrix with 0\rankðEÞ ¼ k� n. In (6.5.3), AðrtÞ ¼ AðiÞ,
BðrtÞ ¼ BðiÞ, CðrtÞ ¼ CðiÞ, DðrtÞ ¼ DðiÞ and ApðrtÞ ¼ ApðiÞ, when rt ¼ i, while
AðiÞ, etc., i ¼ 1; . . .; l, are constant matrices with suitable size.

The definition of stochastic H2/H∞ control based on Stackelberg game is given
below:

Definition 6.5.1 [6] If there exists a strategy set ðv�; u�Þ, such that

J2ðx0; i; v�; u�Þ� J2ðx0; i; voðuÞ; uÞ; 8u 2 R
nu ; ð6:5:4Þ

where

J1ðx0; i; voðuÞ; uÞ ¼ min
v

J1ðx0; i; v; uÞ; ð6:5:5Þ

and

v� ¼ voðu�Þ; ð6:5:6aÞ

J1ðx0; i; v; uÞ ¼ E
Z 1

0
c2 vðtÞk k2� zðtÞk k2
h i

dt r0 ¼ ij
� �

; ð6:5:6bÞ
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J2ðx0; i; v; uÞ ¼ E
Z 1

0
x0ðtÞQðrtÞxðtÞþ u0ðtÞRðrtÞuðtÞ½ �dt r0 ¼ ij

� �
;

QðrtÞ ¼ Q0ðrtÞ� 0; RðrtÞ ¼ R0ðrtÞ[ 0:
ð6:5:6cÞ

then, this strategy set is the desired stochastic H2/H∞ control set.

Without loss of generality, we restrict our strategies to linear state feedback case,
i.e., the closed-loop stochastic H2/H∞ sets have the following form

vðtÞ ¼
Xl

i¼1

FcðiÞvrt¼iðtÞxðtÞ; uðtÞ ¼
Xl

i¼1

KðiÞvrt¼iðtÞxðtÞ: ð6:5:7Þ

6.5.3 Main Results

The following theorem presents the main results of stochastic H2/H∞ control based
on Stackelberg strategy:

Theorem 6.5.1 Suppose that the following cross-coupled matrix-valued equa-
tions (6.5.8a)–(6.5.8e) has solutions �M1ðiÞ� 0, �M2ðiÞ� 0, �NjðiÞ, j ¼ 0; 1, FcðiÞ and
KðiÞ, i ¼ 1; . . .l

A0
KðiÞE �M1ðiÞþ �M1ðiÞE0AKðiÞþA0

pðiÞ �M1ðiÞApðiÞ

� c�2E0 �M1ðiÞD0ðiÞDðiÞ �M1ðiÞE � C0ðiÞCðiÞþ
Xl

j¼1

pijE
0 �M1ðjÞE ¼ 0;

ð6:5:8aÞ

A0
FðiÞE �M2ðiÞþ �M2ðiÞE0AFðiÞþA0

pðiÞ �M2ðiÞApðiÞþQðiÞ

þK 0ðiÞRðiÞKðiÞþ
Xl

j¼1

pijE
0 �M2ðjÞE ¼ 0;

ð6:5:8bÞ

AKðiÞE�N1ðiÞþ �N1ðiÞE0A0
KðiÞþApðiÞ�N1ðiÞA0

pðiÞ
� c�2E0 �M1ðiÞDðiÞD0ðiÞE�N1ðiÞ � c�2 �N1ðiÞE0 �M1ðiÞDðiÞD0ðiÞEþ piiE

0 �N1ðiÞE
� c�2E0DðiÞD0ðiÞ �M2ðiÞE�N2ðiÞþ c�2 �N2ðiÞE0 �M2ðiÞDðiÞD0ðiÞE	 
 ¼ 0;

ð6:5:8cÞ

AFðiÞE�N2ðiÞþ �N2ðiÞE0A0
FðiÞþApðiÞ�N2ðiÞA0

pðiÞþ piiE
0 �N2ðiÞEþ In ¼ 0; ð6:5:8dÞ

RðiÞKðiÞ�N2ðiÞþB0ðiÞð �M1ðiÞE0 �N1ðiÞþ �M2ðiÞE0 �N2ðiÞÞ ¼ 0; ð6:5:8eÞ
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where

FcðiÞ ¼ �c�2D0ðiÞ �M1ðiÞE;AKðiÞ ¼ AðiÞþBðiÞKðiÞ;
AFðiÞ ¼ AKðiÞ � c�2DðiÞD0ðiÞ �M1ðiÞE:

Suppose the system (6.5.3) is internal stable, then, the strategy set ðv�; u�Þ with
the form vðtÞ ¼ v�ðtÞ ¼ Pl

i¼1
FcðiÞvrt¼iðtÞxðtÞ; uðtÞ ¼ u�ðtÞ ¼ Pl

i¼1
KðiÞvrt¼iðtÞxðtÞ, is

the stochastic H2/H∞ control set based on Stackelberg strategy.

Proof The proof of this theorem can be referring to the proof step of Theorem 6.3.1
to draw, and we don’t give it in detail here. □

6.6 Summary

This chapter deals with the stochastic H2/H∞ control problems of continuous-time
Markov jump linear systems and Markov jump singular systems. The main
methodology used in this chapter is the game theory approach, by introducing two
players, wherein the control designer of the system is considered as P1, the
exogenous disturbance is considered as “nature” P2, the stochastic H2/H∞ control
problems can be converted into a two person nonzero-sum stochastic differential
games, and then, using the relevant results of stochastic differential games for
Markov jump linear systems and Markov jump singular systems obtained in
Chaps. 3 and 5, the necessary and sufficient condition for the existence of stochastic
H2/H∞ control is equivalent to the corresponding matrixed-value differential (al-
gebraic) equations have solutions, and meanwhile, the explicit mathematical
expressions of the stochastic H2/H∞ control is given. The conclusion of this chapter
not only enriched the existing results of robust control of stochastic systems, but
also widened the differential game method in handling various control problems,
and has laid a theoretical foundation for later study in this book.
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Chapter 7
Applications of Stochastic Differential
Game Theory for Markov Jump Linear
Systems to Finance and Insurance

This chapter mainly introduces applications of stochastic differential game theory
for Markov jump linear systems to finance and insurance. Firstly, a risk mini-
mization problem is considered in a continuous-time Markovian regime switching
financial model modulated by a continuous-time, finite-state, Markov chain. And
then, European option valuation under Markovian regime-switching models is
studied. Lastly, a game theoretic approach for optimal investment-reinsurance
problem of an insurance company under Markovian regime-switching models is
introduced in this chapter.

7.1 Introduction

In recent years, Markovian regime-switching models have attracted much attention
by researchers and practitioners in economics and finance. Econometric applica-
tions of Markovian regime-switching were pioneered by the original work of
Reinhard (1984) in which different states of the Markovian chain represent different
stages of the economic state, known as the risk model with Markov-modulation by
Asmussen (1989) [1]. The Markov-modulation can explain changes in macroeco-
nomic conditions, changes in political systems, influence of major financial news,
different stages of business cycles and so on. Presently, portfolio selection and
option pricing models with Markov-modulation have been discussed by many
researcher, and this has been an important problem from both theoretical and
practical perspectives.

Moreover, game theory reflects rational thinking modes of players, which, espe-
cially stochastic differential game, has been an important method for economic ana-
lyzation [2, 3]. So, by means of stochastic differential game, this chapter discusses
problems of portfolio risk minimization, option pricing and optimal investment of an
insurance company under Markovian regime-switching models. Considering the
market as a “virtual” game player, a two-player, zero-sum, stochastic differential game
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model between investors and markets is built. A verification theorem for the
Hamilton_Jacobi_Bellman (HJB) solution of the game is provided.

7.2 Portfolio Risk Minimization and Differential Games

Risk management is an important issue in the modern banking and finance
industries. Some recent financial crises, including the Asian financial crisis, the
collapse of Long-Term Capital Management, the turmoil at Barings and Orange
Country, raise the concern of regulators about the risk taking activities of banks and
financial institutions and their practice of risk management. Recently, Value at Risk
(VaR) has emerged as a standard and popular tool for risk measurement and
management. VaR tells us the extreme loss of a portfolio over a fixed time period at
a certain probability (confidence) level. Artzner et al. [4] develop a theoretical
approach for developing measures of risk. They present a set of four desirable
properties for measures of risk and introduce the class of coherent risk measures.
They point out that VaR does not, in general, satisfy one of the four properties,
namely, the subadditivity property. This motivates the quest for some theoretically
consistent risk measures. Föllmer and Schied [5] argue that the risk of a portfolio
might increase nonlinearly with the portfolio’s size due to the liquidity risk. They
relax the subadditive and positive homogeneous properties and replace them with
the convex property. They introduce the class of convex risk measures, which
include the class of coherent risk measures. Elliott and Kopp [6] provide a com-
prehensive account of coherent risk measures and convex risk measures.

In the past two decades or so, applications of regime-switching models in finance
have received much attention. However, relatively little attention has been paid to
the use of regime-switching models for quantitative risk management until recently.
It is important to take the regime-switching effect into account in long-term
financial risk management, such as managing the risk of pension funds, since there
might be structural changes in the economic fundamentals over a long time period.
Some recent works concerning the regime-switching effect on quantitative risk
measurement include [7, 8], and others. However, these works mainly concern
certain aspects of quantitative risk measurement and do not focus on risk man-
agement and control issues.

In this note, we explore the state of the art of a stochastic differential game for
minimizing portfolio risk under a continuous-time Markovian regime-switching
financial model. Stochastic differential games are an important topic in both
mathematics and economics. Some early works on the mathematical theory of
stochastic differential games include [9, 10], and others. Some recent works on
stochastic differential games and their applications include [11–14], and others.
Here, we suppose that an investor can only invest in a money market account and a
stock whose price process follows a Markovian regime-switching geometric
Brownian motion (GBM). The interest rate of the money market account, the drift
and the volatility of the stock are modulated by a continuous-time, finite-state,

136 7 Applications of Stochastic Differential Game Theory …



Markov chain. The states of the chain are interpreted as different states of an
economy. For example, they may be interpreted as the credit ratings of a region, or
a sovereign. They may also be interpreted as proxies of the levels of some
observable (macro)-economic indicators, such as gross domestic product and retail
price index. The Markovian regime-switching model provides a natural way to
describe the impact of structural changes in (macro)-economic condition on asset
price dynamics and the stochastic evolution of investment opportunity sets. We
adopt a particular form of convex risk measure introduced by Föllmer and Schied,
which includes the entropic risk measure as a special case. The entropic risk
measure is a typical example of convex risk measure and corresponds to an
exponential utility function, (see Barrieu and El-Karoui [15, 16]). Our goal is to
minimize the convex risk measure of the terminal wealth of the investor. Following
the plan of Mataramvura and Øksendal [17], we formulate the problem into a
Markovian regime-switching stochastic differential game with two players, namely,
the investor and the market.

In our model, the investor faces two sources of risk, namely, the diffusion risk
due to fluctuations of financial prices and the regime-switching risk due to the
change in the (macro)-economic condition. Here, we take into account these two
sources of risk in evaluating and controlling the risk the investor faces. To achieve
this, we introduce a product of two density processes, one for the Brownian motion
and one for the Markov chain process, to generate a family of real-world probability
measures in the representation of the convex risk measure. So, the market has two
control variables, namely, the market price of risk for the change of measures
related to the Brownian motion and the rate matrix of the Markov chain. We
provide a verification theorem for the Markovian regime-switching HJB equation to
the solution of the game corresponding to the risk minimization problem.

This note is based on part of [18]. We state results which will be published later
in [18] without proofs.

7.2.1 Asset Price Dynamics

We consider a continuous-time financial model consisting of two primitive assets,
namely, a money market account and a stock. These assets are assumed to be
tradable continuously on a fixed time horizon T :¼ ½0; T �, where T 2 0;1ð Þ. We
fix a complete probability space X;F ;Pð Þ, where P represents a reference prob-
ability measure from which a family of absolutely continuous real-world probability
measures will be generated.

Now, we introduce a continuous-time, finite-state, Markov chain to describe the
evolution of the states of an economy over time. Throughout the note, we use
boldface letters to denote vectors, or matrices. Let X :¼ fXðtÞgt2T denote a
continuous-time, finite-state, Markov chain on X;F ;Pð Þ with a finite state space
S :¼ fs1; s2; . . .; sNg. The states of the chain represent different state of the
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economy. Without loss of generality, we identify the state space of the chain to be a
finite set of unit vectors E :¼ fe1; e2; . . .; eNg, where ei 2 R

N and the jth component
of ei is the Kronecker delta dij, for each i; j ¼ 1; 2; . . .;N. ei is called the canonical
state space of X.

Let AðtÞ ¼ aijðtÞ
� �

i;j¼1;2;...;N ; t 2 T , denote a family of generators, or rate

matrices, of the chain X under P. Here, aijðtÞ represents the instantaneous intensity
of the transition of the chain X from state i to state j at time t. Note that for each
t 2 T and aijðtÞ� 0 ði 6¼ jÞ,PN

i¼1 aijðtÞ ¼ 0, so aiiðtÞ� 0. We assume that for each
i; j ¼ 1; 2; . . .;N and each t 2 T , aijðtÞ[ 0. With the canonical representation of
the state space of the chain, Elliott et al. [19] provide the following semimartingale
decomposition for X:

XðtÞ ¼ Xð0Þþ
Z t

0
AðuÞXðuÞduþMðtÞ

where MðtÞf gt2T is an R
N -valued martingale with respect to the filtration generated

by X under P.
Let y0 denote the transpose of a vector, or a matrix y. :; :h i is the scalar product in

R
N . The instantaneous market interest rate rðtÞ of the money market account B is

determined by the Markov chain as:

rðtÞ ¼ r;XðtÞh i

where r :¼ r1;r2; . . .; rN
� �02 R

N with ri [ 0 for each i ¼ 1; 2; . . .;N. Then, the
evolution of the balance of the money market account follows:

BðtÞ ¼ exp
Z t

0
rðuÞdu

� �
; Bð0Þ ¼ 1

The chain X determines the appreciation rate lðtÞ and the volatility rðtÞ of the
stock, respectively, as:

lðtÞ ¼ l;XðtÞh i

and

rðtÞ ¼ r;XðtÞh i

where l :¼ l1; l2; . . .; lNð Þ02 R
n, r :¼ r1; r2; . . .; rNð Þ02 R

n and with li [ ri and
ri [ 0, for each i ¼ 1; 2; . . .;N.

Let w :¼ wðtÞ t 2 Tjf g denote a standard Brownian motion on X;F ;Pð Þ with
respect to the P-augmentation of its own natural filtration. We suppose that w and
X are stochastically independent. The evolution of the price process of the stock
follows a Markovian regime-switching GBM:
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dSðtÞ ¼ lðtÞSðtÞdtþ rðtÞSðtÞdwðtÞ; Sð0Þ ¼ s[ 0

Now, we specify the information structure of our model. Let FX and F S denote
the right-continuous, complete filtrations generated by the values of the Markov
chain and the stock price process, respectively. Write, for each t 2 T ,
GðtÞ :¼ FXðtÞ _ F SðtÞ, the enlarged r-field generated by FXðtÞ and F SðtÞ.

In the sequel, we describe the evolution of the wealth process of an investor who
allocates his/her wealth between the money market account and the stock. Let pðtÞ
denote the proportion of the total wealth invested in the stock at time t 2 T . Then,
1� pðtÞ represents the proportion of the total wealth invested in the money market
account at time t. We suppose that p :¼ pðtÞf gt2T is G-progressively measurable
and càdlàg (i.e. right continuous with left limit, RCLL). This means that the
investor selects the proportion of wealth allocated to the stock based on information
generated by the stock price process and the state of the economy.

We further assume that p is self-financing, (i.e. there is no income or con-
sumption), and that

Z T

0
p2ðtÞdt\1;P�a:s:

Write A for the set of all such processes p We call A the set of admissible
portfolio processes.

Let VðtÞ :¼ VpðtÞ denote the total wealth of the portfolio p at time t. Then, the
evolution of the wealth process over time is governed by:

dVðtÞ ¼ VðtÞ rðtÞþ pðtÞðlðtÞ � rðtÞÞ½ �dtþ pðtÞrðtÞdwðtÞf g; Vð0Þ ¼ v[ 0:

Our goal is to find a portfolio process p which minimizes the risk of the terminal
wealth. Here, we use a particular form of convex risk measure introduced in [5] as a
measure of risk.

7.2.2 Risk Minimization

In this section, we first describe the notion of convex risk measures. Then, we
present the risk minimization problem of an investor with wealth process described
in the last section and formulate the problem as a Markovian regime-switching
version of a two-player, zero-sum, stochastic differential game.

The concept of a convex risk measure provides a generalization of a coherent
risk measure. Suppose S denote the space of all lower-bounded, gðTÞ-measurable,
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random variables. A convex risk measure q is a functional q : S ! R such that it
satisfies the following three properties:

(1) If X 2 S and b 2 R, then

qðXþ bÞ ¼ qðXÞ � b

(2) For any X; Y 2 S, if XðxÞ� YðxÞ, for all x 2 X, then qðXÞ� qðYÞ.
(3) For any X; Y 2 S and k 2 ð0; 1Þ;

qðkXþ 1� kð ÞYÞ� kqðXÞþ 1� kð ÞqðYÞ:

The first, second and third properties are the translation invariance, monotonicity
and convexity, respectively.

Föllmer and Scheid [20] provide an elegant representation for convex risk
measures. One can generate any convex risk measure from this representation by a
suitable choice of a family of probability measures. Let Ma denote a family of
probability measures Q which are absolutely continuous with respect to P. Define a
function g : Ma ! R such that gðQÞ\1, for all Q 2 Ma. Then, [21] provides
the following representation of a convex risk measure qðXÞ of X 2 S:

qðXÞ ¼ sup
Q2Ma

EQ½�X� � gðQÞf g;

for some family Ma and some function g.
Here, EQ½�� represents expectation under Q. The function gð�Þ is called a

“penalty” function.
Following Mataramvura and Øksendal [17], we consider a particular form of

convex risk measure. Let g0 : R ! R denote a real-valued function. Then, assume
that the penalty function gðQÞ has the following form:

gðQÞ ¼ E g0
dQ
dP
� �� 	

:

Let IðQ;PÞ denote the relative entropy of a probability measure Q with respect
to a prior probability P. Then, when g0ðxÞ ¼ ax lnðxÞ,

gðQÞ ¼ aIðQ;PÞ:

In this case, the convex risk measure with the penalty function gðQÞ becomes the
entropic risk measure with the risk tolerance level α. That is,

eaðXÞ ¼ sup
Q2Ma

EQ �X½ � � aI Q;Pð Þ
 �
; X 2 S:

140 7 Applications of Stochastic Differential Game Theory …



The entropic risk measure is a classical example of convex risk measure and is
related to an exponential utility function as follows:

eaðXÞ ¼ a lnE exp � 1
a
X

� �� 	

In the sequel, we generate a family Ma of real-world probability measures,
which are absolutely continuous with respect to P, by a product of two density
processes, one for the Brownian motion w and one for the Markov chain X.

Define a Markovian regime-switching process hðtÞ as:

hðtÞ ¼ h;XðtÞh i;

where h :¼ ðh1; h2; . . .; hNÞ0 2 R
N with hðNÞ :¼ max1� i�N hi\1. Write H for the

space of all such processes.
Consider a G-adapted process Kh :¼ KhðtÞ
 �

t2T :

Kh :¼ expð�
Z t

0
hðsÞdwðsÞ � 1

2

Z t

0
h2ðsÞdsÞ:

Then, by Itô’s differentiation rule,

dKh ¼ �KhðtÞhðtÞdwðtÞ;Khð0Þ ¼ 1:

So, Kh is a ðG;PÞ-local-martingale.
Since the Novikov condition is satisfied here, Kh is a ðG;PÞ martingale, and

E½KhðTÞ� ¼ 1.
For each i; j; k ¼ 1; 2; . . .;N, define a real-valued, Fw-adapted, stochastic pro-

cess ckijðtÞ� 0 such that for each t2 T ,

(1) ckijðtÞ� 0, for i 6¼ j,

(2)
PN

i¼1 c
k
ijðtÞ ¼ 0, so ckiiðtÞ� 0, for each k ¼ 1; 2; . . .;N.

Suppose CðtÞ :¼ cijðtÞ

 �

i;j¼1;2;...;N ; t 2 T , is a second family of generators, or

rate matrices, of the chain X such that for each i; j ¼ 1; 2; . . .;N

cijðtÞ ¼ cijðtÞ;XðtÞ
� 

;

where cijðtÞ :¼ ðc1ijðtÞ; c2ijðtÞ; . . .; cNij ðtÞÞ02RN .
So, all the components of cijðtÞ are adapted to the Fw-filtration. The state of the

chain XðtÞ selects which component cij(t) is in force at time t. The dependence of
cijðtÞ on XðtÞ is obtained by taking the scalar product cijðtÞ;XðtÞ

� 
.
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For each k ¼ 1; 2; . . .;N, write ChðtÞ :¼ ckijðtÞ
h i

i;j¼1;2;...;N
. Here, CkðtÞ is a

FwðtÞ-measurable, matrix-valued, random element. Then,

CðtÞ ¼
XN
k¼1

ckðtÞ XðtÞ; ekh i:

We wish to introduce a new (real-world) probability measure under which CðtÞ;
t 2 T , is a family of generators of the chain X. We follow the method in [22]. First,
we define some notations. Let C denote the space of any such family CðtÞ; t 2 T . For
any two matrices AðtÞ; with aijðtÞ 6¼ 0, for any t 2 T and i; j ¼ 1; 2; . . .;N, and CðtÞ,
write DðtÞ :¼ CðtÞ=AðtÞ for the matrix defined by DðtÞ :¼ cijðtÞ=aijðtÞ

� �
; t 2 T .

Write 1 :¼ ð1; 1; . . .; 1Þ02 R
N and I for the ðN � NÞ-identity matrix.

Define, for each t 2 T

NðtÞ :¼
Z t

0
I� diagðXðu�ÞÞð ÞdXðuÞ;

Here, N :¼ NðtÞf gt2T is a vector of counting processes, where its component
NiðtÞ counts the number of times the chain X jumps to the state ei in the time
interval ½0; t�; i ¼ 1; 2; . . .;N. Then, we cite the following result from [20] without
proof.

Lemma 7.2.1 For a given rate matrix AðtÞ, write

aðtÞ :¼ ða11ðtÞ; . . .; aiiðtÞ; . . .; aNNðtÞÞ0;

and

A0ðtÞ :¼ AðtÞ � diagðaðtÞÞ;

where diagðyÞ is a diagonal matrix with the diagonal elements given by the vector
y. Define

eNðtÞ :¼ NðtÞ �
Z t

0
A0ðuÞXðuÞdu; t 2 T ;

Then, eN :¼ eNðtÞ
n o

t2T
is an ðFX;PÞ-martingale.

Consider a process KC :¼ KCðtÞ
 �
t2T ;C 2 C; defined by:

KCðtÞ ¼ 1þ
Z t

0
KCðu�Þ D0ðuÞXðu�Þ � 1½ �0ðdNðuÞ � A0ðuÞXðu�ÞduÞ:
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Note that from Lemma 7.2.1, KC is an ðFX;PÞ-martingale.
Define, for each ðh;CÞ 2 H� C; a G-adapted process Kh;C :¼ Kh;CðtÞ
 �

t2T as

其 the product of the two density processes Kh and KC:

Kh;C :¼ KhðtÞ � KCðtÞ:

Lemma 7.2.2 Kh;C is a ðG;PÞ-martingale.
The detail of the proof will be published in [18].
Define, for each ðh;CÞ2 H� C, a real-world probability measure Qh;C * P on

as:

dQh;C

dP jGðTÞ :¼ Kh;CðTÞ: ð7:2:1Þ

Then, we generate a family ofMa of real-world probability measures as follows:

Ma :¼ MaðH; CÞ ¼ Qh;Cjðh;CÞ2 H� C
 �
:

The following result is from [20]. We cite it in the following lemma without
giving the proof.

Lemma 7.2.3 Suppose Qh;C is defined by (1), for each ðh;CÞ2 H� C. Let

eNCðtÞ :¼ NðtÞ �
Z t

0
C0ðuÞXðuÞdu; t2 T ;C2 C;

Then, eNC :¼ eNCðtÞ
n o

t2T
is an ðFX;Qh;CÞ-martingale.

Theorem 7.2.4 For each ðh;CÞ 2 H� C, X is a Markov chain with a family of
generators CðtÞ; t2 T under Qh;C.

According to [17], we define a vector process Z :¼ ZðtÞf gt2T by

dZðtÞ ¼ dZ0ðtÞ; dZ1ðtÞ; dZ2ðtÞ; dZ3ðtÞ; dZ4ðtÞð Þ0

¼ dZ0ðtÞ; dZp
1
ðtÞ; dZh

2 ðtÞ; dZC
3 ðtÞ; dZ4ðtÞ

� �0
¼ dZ0ðtÞ; dVpðtÞ; dKhðtÞ; dKCðtÞ; dXðtÞ� �0

;

Zð0Þ ¼ z ¼ s; z1; z2; z3; z4ð Þ0:
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where under R,

dZ0ðtÞ ¼ dt;

Z0ð0Þ ¼ s2 T ;

dZ1ðtÞ ¼ Z1ðtÞ rðtÞþ lðtÞ � rðtÞÞpðtÞð Þ½ �dtþ rðtÞpðtÞdwðtÞf g;
Z1ð0Þ ¼ z1 [ 0;

dZ2ðtÞ ¼ �hðtÞZ2ðtÞdwðtÞ;
Z2ð0Þ ¼ z2 [ 0;

dZ3ðtÞ ¼ Z3ðt�ÞðD0ðtÞXðt�Þ � 1Þ0ðdNðtÞ � A0ðtÞXðt�ÞdtÞ;
Z3ð0Þ ¼ z3 [ 0;

dZ4ðtÞ ¼ AðtÞZ4ðt�Þdtþ dMðtÞ;
Z4ð0Þ ¼ z4:

Conditional on Zð0Þ ¼ z, the penalty function is given by:

gZðQÞ :¼ Ez½g0ð
dQ
dPÞ�;

where Ez½�� represents expectation under P given that the initial value Zð0Þ ¼ z.
So, for each FW -adapted process ðh;CÞ2 H� C, we define the induced penalty

function �gZðh;CÞ as:

�gZðh;CÞ ¼ gZðQh;CÞ ¼ EZ½g0ðlnðZh
2 ðTÞÞþ lnðZC

3 ðTÞÞÞ�:

Now, conditional on Zð0Þ ¼ z; the risk-minimizing problem is then to find a
portfolio process p 2 A in order to minimize the following conditional version of
the convex risk measure associated with H� C:

sup
ðh;CÞ2H�C

EZ
ðh;CÞ½�Zp

1 ðTÞ� � �gZðh;CÞ
n o

;

where Ez
ðh;CÞ½�� denotes expectation under Qh;C given that Zð0Þ ¼ z.

This is equivalent to the following zero-sum stochastic differential game between
the investor and the market:

UðzÞ ¼ inf
p2A

sup
ðh;CÞ2H�C

EZ
ðh;CÞ½�Zp

1 ðTÞ� � �gZðh;CÞ
n o !

¼ EZ
ðh�;C�Þ½�Zp�

1 ðTÞ� � �gZðh�;C�Þ:

To solve the game, we need to find the value function UðzÞ and the optimal
strategies p�2 A; ðh�;C�Þ2 H� C of the investor and the market, respectively.
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7.2.3 Solution to the Risk-Minimizing Problem

Following the plan in [17], we restrict ourselves to consider only Markovian
controls for the risk-minimizing problem. Suppose # :¼ ð0; TÞ � ð0;1Þ �
ð0;1Þ � ð0;1Þ representing our solvency region. Let K1 denote the set such that
pðtÞ 2 K1. To restrict ourselves to Markovian controls, we assume that

pðtÞ :¼ �pðZðtÞÞ:

Here, we do not distinguish between p and �p. So, we can simply identify the control
process with deterministic function pðzÞ; z 2 #� E. This is called a feedback
control.

We also suppose that the components of hðtÞ and cijðtÞ are Markovian in w and
that the dependence of hðtÞ and cijðtÞ on XðtÞ are modeled by scalar products. In this
case, ðhðtÞ;CðtÞÞ is also Markovian with respect to G. So, the control processes
ðhðtÞ;CðtÞ; pðtÞÞ are Markovian. They are also feedback control processes since
they depend on the current value of the state process ZðtÞ.

Consider a process Y :¼ YðtÞf gt2T defined by:

dYðtÞ ¼ ðD0ðtÞXðt�Þ � 1Þ0dNðtÞ:

From dNðtÞ ¼ ðI� diagðXðt�ÞÞÞdXðtÞ; so

dYðtÞ ¼ ðD0ðtÞXðt�Þ � 1Þ0ðI� diagðXðt�ÞÞÞdXðtÞ:

Let DYðtÞ denote the jump of the process Y at time t. Then

DYðtÞ :¼ YðtÞ � Yðt�Þ
¼ ðD0ðtÞXðt�Þ � 1Þ0ðI� diagðXðt�ÞÞÞDXðtÞ
¼ ðD0ðtÞXðt�Þ � 1Þ0ðI� diagðXðt�ÞÞÞðXðtÞ � Xðt�ÞÞ:

By some algebra,

DYðtÞ ¼
XN
i;j¼1

ðdji � 1Þ XðtÞ; ej
� 

Xðt�Þ; eih i:

Define, for each i ¼ 1; 2; . . .;N, the set

yi :¼ d1i � 1; d2i � 1; . . .; dNi � 1f g:

Consider a random set yðXðtÞÞ defined by
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yðXðtÞÞ ¼
XN
i¼1

yi XðtÞ; eih i; t 2 T :

Let y :¼ [ N
i¼1yi, then

y ¼ dji � 1ji; j ¼ 1; 2; . . .;N

 �

:

Clearly, yðXðtÞÞ 	 y; t 2 T .
Given Xðt�Þ ¼ eiði ¼ 1; 2; . . .;NÞ, yi represents the set of all possible values of

the jump DYðtÞ at time t. The random set yðXðtÞÞ represents the set of possible
values of the jump DYðtÞ conditional on the value of XðtÞ.

Suppose c denotes the random measure which selects the jump times and sizes of
the process Y. Let dað�Þ denote the Dirac measure, or the point mass, at a 2 R.
Then, for each K 2 y, the random measure is:

cðt;K;xÞ ¼
X

0\u� t

I DYðuÞ2K;DYðuÞ6¼0f g

¼
X

0\u� t

I DYðuÞ6¼0f gdðu;DYðuÞÞðð0; t� � KÞ:

To simplify the notation, we suppress the subscript x and write
cðt;KÞ :¼ cðt;K;xÞ.

cðdt; dyÞ denote the differential form of cðt;KÞ. Define, for each i ¼ 1; 2; . . .;N,
a probability mass function nið�; tÞ on yi as:

niðdji � 1; tÞ ¼ ajiðtÞ:

Then, the predictable compensator of cðdt; dyÞ is:

vXðt�Þðdt; dyÞ ¼
XN
i¼1

niðdy; t�Þ Xðt�Þ; eih idt:

Write ~cðdt; dyÞ for the compensated version of the random measure cðdt; dyÞ.
That is,

~cðdt; dyÞ :¼ cðdt; dyÞ � vXðt�Þðdt; dyÞ:

Let H denote the space of functions hð�; �; �; �; �Þ : T � ð<þ Þ3 � E ! R such
that for each x 2 E, hð�; �; �; �; xÞ is C1;2;1ðT � ðRþ Þ3Þ. Write

Hðs; z1; z2; z3Þ :¼ ðhðs; z1; z2; z3; e1Þ; . . .; hðs; z1; z2; z3; eNÞÞ02 R
N :
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Define the Markovian regime-switching generator L Lh;C;p acting on a function
h2 H for a Markov process Zh;C;pðtÞ
 �

t2T as:

Lh;C;p hðs; z1; z2; z3; z4Þ½ �

¼ @h
@s

þ z1 rðsÞþ ðlðsÞ � rðsÞÞpðzÞ½ � @h
@z1

þ 1
2
h2ðsÞz22

@2h
@z22

þ 1
2
z21p

2ðzÞ@2ðtÞ @
2h

@z21

� hðsÞpðzÞz1z2rðsÞ @2h
@z1@z2

þ
Z
yðxÞ

ðhðs; z1; z2; z3ð1þ yÞ; z4Þ

� hðs; z1; z2; z3; z4Þ � @h
@z3

z3yÞvxðds; dyÞþ Hðs; z1; z2; z3Þ;AðsÞxh i:

Then, we need the following lemma for the development of a verification the-
orem of the HJB solution to the stochastic differential game. This lemma can be
proof by using the generalized Itô’s formula and conditioning on Zð0Þ ¼ z under P.
Lemma 7.2.5 Let s\1 be a stopping time. Assume further that hðZðtÞÞ and
Lh;C;p½hðZðtÞÞ� are bounded on t 2 ½0; s�.

Then,

E½hðZðsÞÞjZð0Þ ¼ z� ¼ hðzÞþE
Z s

0
Lh;C;p½hðZðtÞÞ�dtjZð0Þ ¼ z

� 	
:

With the components of the controls hðtÞ and cijðtÞ being Markovian in w and
the dependence of them on the chain XðtÞ specified by the scalar products, the
dynamic programming argument works well. We now describe the solution of the
stochastic differential game between the investor and the market by the following
verification theorem.

Theorem 7.2.1 Let �# denote the closure of #. Suppose there exists a function /
such that for each x 2 E, /ð�; �; �; �; xÞ 2 C2ð#Þ \ Cð �#Þ and a Markovian control

ðh_ðtÞ;C_ðtÞ; p_ðtÞÞ 2 H� C � A, such that:

(1) Lh;C;p_½/ðs; z1; z2; z3; xÞ� � 0; for all ðh;CÞ2 H� C and,

(2) Lh
_
;C
_
;p½/ðs; z1; z2; z3; xÞ� � 0, for all p 2 A and ðs; z1; z2; z3; xÞ 2 #� E,

(3) Lh
_
;C
_
;p
_½/ðs; z1; z2; z3; xÞ� ¼ 0; for all ðs; z1; z2; z3; xÞ 2 #� E,

(4) for all ðh;C; pÞ2 H� C � A,

lim
t!T�

/ðt; Zp
1 ðtÞ; Zh

2 ðtÞ; ZC
3 ðtÞ;XðtÞÞ ¼ �Zh

2ðTÞZC
3 ðTÞZp

1 ðTÞ
� g0ðlnðZh

2ðTÞÞþ lnðZC
3 ðTÞÞÞ;
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(5) let K denote the set of stopping times s� T . The family f/ðZh;C;pðsÞÞgs 2 K is
uniformly integrable.

Write, for each z 2 #� E 和 ðh;C; pÞ 2 H� C � A,

Jh;C;pðzÞ :¼Ez
ðh;CÞ �Zh

2ðT � sÞZC
3 ðT � sÞZp

1 ðT � sÞ

� g0ðlnðZh

2ðT � sÞÞþ lnðZC
3 ðT � sÞÞ�;

Then

/ðzÞ ¼ UðzÞ
¼ inf

p2A
ð sup
ðh;CÞ2H�C

Jh;C;pðzÞÞ

¼ sup
ðh;CÞ2H�C

ð inf
p2A

Jh;C;pðzÞÞ

¼ inf
p2A

J
bh;bC;pðzÞ ¼ sup

ðh;CÞ2H�C
Jh;C;bpðzÞ

¼ J
bh;bC;bpðzÞ:

and bh; bC; bp� �
is an optimal Markovian control.

The proof is adapted from the proof of Theorem 3.2 in [17] and uses Lemma
7.2.5 here.

7.3 Option Pricing Based on Game Theory

In finance, an option is a contract which gives the buyer (the owner or holder) the
right, but not the obligation, to buy or sell an underlying asset or instrument at a
specified strike price on or before a specified date, depending on the form of the
option. Option pricing is the core issue of option trading because it is the only
variable changes with the market supply and demand in option contract, and
directly affect the profit and loss situation of buyers and sellers. It occured the first
paper about option price in 1900. Since then, a variety of empirical formulas or
metered pricing models have been available, but it is difficult to get generally
recognized because of various limitations. Since the 1970s, the research of option
pricing theory had made a breakthrough along with the development of options
market.

A very important issue about options which plagued investors is how to deter-
mine their values in the formation process of the international derivatives markets.
The application of computer and advanced communication technology made
complex option pricing formula possible. In the past 20 years, the investors
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transformed this abstract numerical formula into a great deal of wealth through
Black-Scholes option pricing model.

7.3.1 Black-Scholes-Meton Market Model

We consider a continuous-time financial model with two primitive assets, that are
tradable continuously on a finite time horizon T :¼ ½0; T�, where T 2 0;1ð Þ. Then,
we fix a complete probability space X;F ;Pð Þ, where P is a real-world probability
measure. we use boldface letters to denote vectors or matrices. Let X :¼ fXðtÞgt2T
denote an observable, continuous-time and finite-state Markov chain on X;F ;Pð Þ
with a finite state space S :¼ fs1; s2; . . .; sNg 	 R

N . We identify the state space of
the chain X to be a finite set of unit vectors S :¼ fs1; s2; . . .; sNg 	 R

N , where
ei 2 R

N and the jth component of ei is the Kronecker delta dij, for each
i; j ¼ 1; 2; . . .;N, y0 represents the transpose of a vector or a matrix y. The set E is
called the canonical state space of X. Let P ¼ aij

� �
i;j¼1;2;...;N denote the rate matrix

for the chain X. Then, Elliott et al. (1994) [19] provided the following
semi-martingale decomposition for X:

XðtÞ ¼ Xð0Þþ
Z t

0
PXðuÞduþMðtÞ; ð7:3:1Þ

where MðtÞf gt2T is an R
N -valued martingale with respect to the P augmentation of

the natural filtration generated by X. The semimartingale decomposition describes
the evolution of the chain.

Let rðtÞ denote the instantaneous market interest rate of the money market
account B at time t. We suppose that

rðtÞ ¼ r;XðtÞh i;

where r ¼ ðr1; r2; . . .; r0N2RN with, ri [ 0, for each i ¼ 1; 2; . . .;N, �; �h i denotes an
inner product.

The price dynamics of the money market account:

BðtÞ ¼ expð
Z t

0
rðuÞduÞ; t 2 T ; Bð0Þ ¼ 1: ð7:3:2Þ

Let lðtÞ and rðtÞ denote the appreciation rate and the volatility of the stock S at
time t 2 T , respectively, which are assumed to be governed by:

lðtÞ ¼ l;XðtÞh i; rðtÞ ¼ r;XðtÞh i ð7:3:3Þ
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where l ¼ ðl1; l2; . . .; lNÞ02RN and r ¼ ðr1; r2; . . .; rNÞ02RN with li [ ri and
ri [ 0; for each i ¼ 1; 2; . . .;N.

Let w :¼ wðtÞ t 2 Tjf g denote a standard Brownian motion on X;F ;Pð Þ with
respect to the P augmentation. We suppose that w and X are independent. The price
dynamics of the stock SðtÞ t 2 Tjf g are assumed to be governed by the following
Markovian regime-switching geometric Brownian motion (GBM):

dSðtÞ ¼ lðtÞSðtÞdtþ rðtÞSðtÞdwðtÞ; Sð0Þ ¼ s[ 0: ð7:3:4Þ

Let YðtÞ ¼ ln SðtÞ=Sð0Þ½ �, which is the log return from the risky asset Sover the
time interval ½0; t�, for each t 2 T : Then,

dYðtÞ ¼ ðlðtÞ � 1
2
r2ðtÞÞdtþ rðtÞdwðtÞ: ð7:3:5Þ

We then specify the information structure of ourmodel. LetFX ¼ FXðtÞ t 2 Tj
 �
andF Y ¼ F Y ðtÞ t 2 Tj
 �

denote right continuous, complete filtrations generated by

the processes X and Y , respectively. For each t 2 T ; let GðtÞ ¼ FXðtÞ _ F YðtÞ, an
enlarged filtration generated by both X and Y. Write G ¼ GðtÞjt 2 Tf g.

Define, for each t 2 T ,

hðtÞ ¼ h;XðtÞh i; ð7:3:6Þ

where h ¼ ðh1; h2; . . .; hNÞ2RN with hðNÞ ¼ max1� i�N hi\1.
Let H denote the space of all such processes h ¼ hðtÞ t 2 Tjf g. We define a

real-valued G-adapted process associated with h 2 H on X;F ;Pð Þ as below:

KhðtÞ ¼ exp �
Z t

0
hðuÞdwðuÞ � 1

2

Z t

0
h2ðuÞdu

� �

¼ exp �
XN
i¼1

h2i

Z t

0
XðtÞ; eih idwðuÞ� 1

2

XN
i¼1

h2i

Z t

0
XðtÞ; eih idu

 !
;

ð7:3:7Þ

where
R t
0 XðtÞ; eih idWðuÞ represents the level integral of X with respect to w, andR t

0 XðtÞ; eih idu is the occupation time of Xin State i over the time duration ½0; t�.
Then, by Itô’s rule,

dKhðtÞ ¼ �KhðtÞhðtÞdwðtÞ; t 2 T ; Khð0Þ ¼ 1: ð7:3:8Þ

Here, Kh is a local-martingale with respect to ðG;PÞ.

Note that E expð1
2

Z t

0
h2ðtÞdtÞ

� 	
\ expð1

2
h2NTÞ\1; ð7:3:9Þ
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where E½�� denotes expectation under P. From (7.3.9), Novikov’s condition is
satisfied. Hence, Kh is a ðG;PÞ-martingale. This implies that E KhðtÞ ¼ 1

� �
, t 2 T .

Then, for each h 2 H, we define a probability measure Ph equivalent to P on
GðTÞ as follows:

dPh

dP
����
GðTÞ

:¼ KhðTÞ: ð7:3:10Þ

By Girsanov’s theorem,

wh :¼ wðtÞþ
Z t

0
hðuÞdu; t 2 T ; ð7:3:11Þ

is a standard Brownian motion with respect to the enlarged filtration G under P.
Then, under Ph, the price dynamics of the risky asset S are governed by:

dSðtÞ ¼ lðtÞ � hðtÞrðtÞ½ �SðtÞdtþ rðtÞSðtÞdwhðtÞ: ð7:3:12Þ

Using the above Girsanov-type transformation, we generate a family of proba-
bility measures PH :¼ fPhgh2H equivalent to the reference probability P associated
with the index set H. In other words, the family of probability measures PH is
parameterized by the space H of processes #.

In the sequel, we present the stochastic differential game in the Markovian
regime-switching Black–Scholes–Merton economy.

Here, the market selects a probability measure, or a generalized “scenario” in the
context of coherent risk measures from the family PH. This is equivalent to
selecting a process h 2 H. So, H is the set of admissible controls of the market. On
the other hand, the representative agent selects a portfolio that maximizes his/her
expected utility of the terminal wealth.

We describe in some detail the portfolio process in the sequel. For each t 2 T ,
let pðtÞ denote the proportion of wealth invested in the stock S at time t. We
suppose that the portfolio process p ¼ pðtÞ t 2 Tjf g is G-progressively measurable
and is self-financing. Define Vp ¼ VpðtÞ t 2 Tjf g as the wealth process corre-
sponding to the portfolio process p. Then, under P, the evolution of the wealth
process is governed by the following stochastic differential equation (SDE):

dVpðtÞ ¼ VpðtÞ rðtÞþ ðlðtÞ � rðtÞÞpðtÞ½ �dtþVpðtÞrðtÞpðtÞdwðtÞ; ð7:3:13Þ

where Vpð0Þ ¼ v[ 0.
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Under Ph, the wealth process becomes:

dVpðtÞ ¼ VpðtÞ rðtÞþ ðlðtÞ � rðtÞ � hðtÞrðtÞÞpðtÞ½ �dt
þ VpðtÞrðtÞpðtÞdwhðtÞ: ð7:3:14Þ

Let A denote the set of portfolio processes p such that

Z T

0
rðtÞþ lðtÞ � rðtÞj j pðtÞj j þ r2ðtÞp2ðtÞ� �

dt\1; P�a:s: ð7:3:15Þ

We call A the set of admissible portfolios for the representative agent.
We suppose that the representative agent has the following power utility:

UðvÞ ¼ v1�f

1� f
; f 2 ð0; 1Þ; v 2 ½0;1Þ; ð7:3:16Þ

Here, f is the risk aversion parameter of the power utility and the relative risk
aversion of the representative agent is 1� f. So, the degree of risk aversion
increases as f decreases.

Given a generalized “scenario” Ph 2 PH chosen by the market, the represen-
tative agent chooses a portfolio process π so as to maximize the expected utility of
terminal wealth with respect to the measure Ph. Then, the response of the market to
this choice is to select the generalized scenario Ph that minimizes the maximal
expected utility. This situation can be formulated as a zero-sum stochastic differ-
ential game between the representative agent and the market. To ensure that a
representative agent with an increasing and strictly concave utility function can be
constructed, one may assume that the equilibrium allocation is Pareto optimal or
Pareto efficient.

Now, we define a vector process Z :¼ ZðtÞ t 2 Tjf g:

dZðtÞ ¼ ðdZ0ðtÞ; dZ1ðtÞ; dZ2ðtÞÞ0 ¼ ðdt; dKhðtÞ; dVpðtÞÞ0;
Zð0Þ ¼ z ¼ ðu; z1; z2Þ02 T � R

2:

In fact, ZðtÞ :¼ Zh;pðtÞ; that is ZðtÞ depends on h and p. However, for notational
simplicity, we suppress the subscripts h and p.

Then, conditional on Zð0Þ ¼ z and Xð0Þ ¼ x 2 E the stochastic differential
game can be solved by finding the value function Uðz; xÞ, the optimal strategies
ĥ 2 H and p̂ 2 A such that

Uðz; xÞ ¼ Eĥ UðV p̂ðTÞÞ ðZð0Þ;Xð0ÞÞ ¼ ðz; xÞj� �
¼ inf

h2H
sup
p2A

Eh UðVpðTÞÞ ðZð0Þ;Xð0ÞÞ ¼ ðz; xÞj½ �
� �

:
ð7:3:17Þ
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Here Eh½�� represents expectation under Ph and Uð�Þ is the power utility function
of the representative agent defined in (7.3.16).

7.3.2 A Pricing Measure for Black-Scholes-Merton Market

Traditionally, the asset pricing theory has a closed connection to the theory of
optimal portfolio and consumption decisions via the relationship between state
prices and the marginal rates of substitution at optimality. This connection might be
tracked back to the foundation of the price theory in economics where there is a
closed link between the theory of optimal economic resources and the determina-
tion of prices [23, 24], Typically, in an equilibrium approach of asset pricing, the
pricing problem is formulated as the optimal portfolio and consumption problem of
a representative agent in a continuous-time version of the Lucas (1978) [25]
exchange economy. In equilibrium, an Euler condition for the representative agent’s
optimal choices is derived and it forms a restriction on the security prices. The Euler
condition involves the marginal rates of substitution, which are related to the state
prices or equivalent martingale measures.

In this section, we first derive the solution to the zero-sum, two person stochastic
differential game described in the last section. Consequently, the state prices or
equivalent martingale measures are determined by the equilibrium state of the
game, which involves not only the optimal portfolio choice of a representative
agent, but also the optimal choice of a generalized “scenario” by the market.

First, we note that under P the evolutions of the components of the vector
process Z ¼ ZðtÞf gt2C are governed by:

dZ0ðtÞ ¼ dt;

dZ1ðtÞ ¼ �hðtÞZ1ðtÞdwðtÞ;
dZ2ðtÞ ¼ Z2ðtÞ½rðtÞþ ðlðtÞ � rðtÞÞpðtÞ�dWðtÞþ Z2ðtÞrðtÞpðtÞdwðtÞ;

ð7:3:18Þ

where Zð0Þ ¼ z ¼ ðu; z1; z2Þ.
By the Bayes’ rule,

Uðz; xÞ ¼ E½KĥðTÞUðV p̂ðTÞÞ ðZð0Þ;Xð0ÞÞ ¼ ðz; xÞj �

¼ inf
h2H

sup
p2A

E½KhðTÞUðVpðTÞÞ ðZð0Þ;Xð0ÞÞ ¼ ðz; xÞj �
� �

:
ð7:3:19Þ

Recall that hðtÞ ¼ h;XðtÞh i. We further assume that pðtÞ ¼ �pðZðtÞ;XðtÞÞ, the
control processes ðh; pÞ are Markovian and feedback control processes.

LetH denote the space of functions hð�; �Þ : T � R2 � E ! R such that for each
x 2 E, hð�; xÞ is C1;2ðT � H2Þ. Write HðzÞ ¼ ðhðz; e1Þ; hðz; e2Þ; . . .; hðz; eNÞÞ02RN .
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Then, for each ðh; pÞ 2 H�A, we define a Markovian regime-switching generator
Lh;p acting on a function hðz; xÞ 2 H for the Markovian process Z as below.

Lh;p hðz; xÞ½ � ¼ @h
@u

þ z2½rðuÞþ ðlðuÞ � rðuÞÞpðz; xÞ� @h
@z2

þ h2ðxÞz21
@2h
@z21

þ 1
2
z22p

2ðz; xÞr2ðuÞ @
2h
z22

� hðxÞpðz; xÞz1z2rðuÞ @2h
@z1@z2

þhHðzÞ;Pxi:

ð7:3:20Þ

Lemma 7.3.1 Suppose, for each x 2 E, hðz; xÞ 2 C1;2ðT � R
2Þ. Let s\1 be a

stopping time. Assume further that hðZðuÞ;XðuÞÞ and Lh;p ¼ ½hðZðuÞ;XðuÞÞ� are
bounded on u 2 ½0; s�. Then

E½hðZðsÞ;XðsÞÞ ðZð0Þ;Xð0ÞÞj ¼ ðz; xÞ�

¼ hðz; xÞþE
Z s

0
Lh;p½hðZðuÞ;XðuÞÞdu� ðZð0Þ;Xð0ÞÞj ¼ ðz; xÞ

� 	
:

ð7:3:21Þ

Proof The result follows by applying Itô’s differentiation rule to hðZðuÞ;XðuÞÞ,
using (7.3.20), integrating over the interval ½0; s�, and conditioning on
ðZð0Þ;Xð0ÞÞ ¼ ðz; xÞ under P.

The following proposition presents the solution to the stochastic differential
game between the representative agent and the market.

Proposition 7.3.2 Let O ¼ ð0; TÞ � ð0;1Þ � ð0;1Þ. Write �O, C2ðOÞ and Cð�OÞ
for the closure of O, the space of twice continuously differentiable functions on O
and the space of continuously differentiable functions on �O, respectively. Suppose
there is a function h such that for each x 2 E, hð�; xÞ 2 C2ðOÞ\ Cð�OÞ, and a

Markovian control ðĥ; p̂Þ 2 H�A, such that

1. Lh;p̂ðz;xÞ½hðz; xÞ� � 0, for all h 2 H and ðz; xÞ 2 O � E;
2. L ĥðxÞ;p̂½hðz; xÞ� � 0, for all p 2 A and ðz; xÞ 2 O � E;
3. L ĥðxÞ;p̂ðz;xÞ½hðz; xÞ� ¼ 0, for all ðz; xÞ 2 O � E;
4. lim

t!T� hðZðtÞ;XðtÞÞ ¼ Z1ðTÞ [ ðZ2ðTÞÞ;
5. Let K denote the set of stopping times s� T . The family fhðZðsÞ;XðsÞÞ s 2j Kg

is uniformly integrable. Write, for each ðz; xÞ2 O � E and ðh; pÞ2 H�A,

Jh;pðz; xÞ ¼ E½KhðTÞUðVpðTÞÞ ðZð0Þ;Xð0ÞÞj ¼ ðz; xÞ�: ð7:3:22Þ

then
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hðz; xÞ ¼ Uðz; xÞ

¼ inf
h2H

sup
p2A

E½KhðTÞUðVpðTÞÞ ðZð0Þ;Xð0ÞÞj ¼ ðz; xÞ�
� �

¼ sup
p2A

¼ inf
h2H

E½KhðTÞUðVpðTÞÞ ðZð0Þ;Xð0ÞÞj ¼ ðz; xÞ�
� �

¼ sup
p2A

J ĥ;p̂ðz; xÞ ¼ inf
h2H

J ĥ;p̂ðz; xÞ

¼ J ĥ;p̂ðz; xÞ:

ð7:3:23Þ

and ðĥ; p̂Þ is an optimal Markovian control.

Proof The results can be proved by adapting to the proof of Theorem 3.2 in [17]
and using the Dynkin formula presented in Lemma 7.3.1. So, we do not repeat it
here.

Now, we solve the stochastic differential game. We suppose that the function
h has the following form:

hðz; xÞ ¼ z1z
1�f
2 ðgðu; xÞÞ1�f

1� f
; 8ðz; xÞ 2 O � E; ð7:3:24Þ

where gðT ; xÞ ¼ 1 does not vanish and gðu; xÞ, for each u 2 T , x 2 E.
So, to determine the value function hðz; xÞ, we need to determine gðu; xÞ.
Recall that Conditions 1–3 of Proposition 7.3.2 are given by:

inf
h2H

Lh;p̂ hðz; xÞ½ � ¼ L ĥ;p̂ hðz; xÞ½ � ¼ 0;

sup
p2A

L ĥ;p hðz; xÞ½ � ¼ L ĥ;p̂ hðz; xÞ½ � ¼ 0:
ð7:3:25Þ

By differentiating L ĥ;p hðz; xÞ½ � in (7.3.20) with respect to p and setting the
derivative equal to zero, we get the following first-order condition for p̂ that

maximizes L ĥ;p hðz; xÞ½ � over all p:

z1z
1�f
2 ½gðu; xÞ�1�fðlðuÞ � rðuÞ � fp̂ðz; xÞr2ðuÞ � ĥðxÞrðuÞÞ ¼ 0;

8ðz; xÞ 2 O � E : ð7:3:26Þ

Similarly, the first-order condition for h
_

that minimizes Lh;p̂ hðz; xÞ½ � over all h is
given by:
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�p̂ðz; xÞrðuÞz1z1�f
2 ½gðu; xÞ�1�f ¼ 0; 8ðz; xÞ 2 O � E : ð7:3:27Þ

This implies that

p̂ðz; xÞ ¼ 0; 8ðz; xÞ 2 O � E : ð7:3:28Þ

This means that in equilibrium, the optimal strategy of the representative agent is
to invest all of his/her wealth in the money market account B, for every state of the
economy.

Substituting (7.3.28) into (7.3.26),

z1z
1�f
2 ½gðu; xÞ�1�fðlðuÞ � rðuÞ � ĥðxÞrðuÞÞ ¼ 0; 8ðz; xÞ 2 O � E : ð7:3:29Þ

By noticing that z1z
1�f
2 [ 0, gðu; xÞ 6¼ 0, for all ðz; xÞ 2 O � E . Equation (7.3.29)

implies that

ĥðuÞ ¼ lðuÞ � rðuÞ
rðuÞ ¼

XN
i¼1

li � ri
ri

� �
hXðuÞ; eii: ð7:3:30Þ

This implies that in equilibrium, the optimal strategy of the market is to choose

the probability measure P ĥ where ĥ is given by (7.3.30).

ĥðuÞ ¼ lðuÞ � rðuÞ
rðuÞ ¼

XN
i¼1

li � ri
ri

� �
hXðuÞ; eii: ð7:3:30Þ

Now, Condition 3 in Proposition 7.3.2 states that

L ĥ;p̂ hðz; xÞ½ � ¼ 0 : ð7:3:31Þ

Let giðuÞ ¼ gðu; eiÞ; for each i ¼ 1; 2; . . .;N;GðuÞ ¼ ðg1�f
1 ðuÞ; g1�f

2 ðuÞ; . . .;
g1�f
N ðuÞÞ0 2 R

N . Then, from (7.3.20), (7.3.28), (7.3.30) and (7.3.31),

z1z
1�f
2 ½gðu; xÞ��f dgðu; xÞ

du
þ z1z

1�f
2 rðuÞ½gðu; xÞ�1�f þ z1z

1�f
2

1� f
hGðuÞ;Pxi ¼ 0:

ð7:3:32Þ

This implies that gðu; xÞ satisfies the following Markovian regimes witching
first-order backward ordinary differential equation (O.D.E.):
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dgðu; xÞ
du

þ rðuÞgðu; xÞþ ½gðu; xÞ�f
1� f

hGðuÞ;Pxi ¼ 0; ð7:3:33Þ

with the terminal condition gðT; xÞ ¼ 1, for each i ¼ 1; 2; . . .;N.
Equivalently, giðuÞ, ði ¼ 1; 2; . . .;NÞ, satisfy the following system of coupled

backward O.D.E.s:

dgiðuÞ
du

þ rðuÞgiðuÞþ ½giðuÞ�f
1� f

hGðuÞ;Pxi ¼ 0; ð7:3:34Þ

with the terminal condition gðT; xÞ ¼ 1, for each i ¼ 1; 2; . . .;N.
For each i ¼ 1; 2; . . .;N, suppose pii ¼ �ki\0, where ki [ 0. Note thatPN
j¼1 pij ¼ 0. Then, the above system of O.D.E.s can be written as:

dgiðuÞ
du

þðr � ki
1� f

ÞgiðuÞþ ½giðuÞ�f
1� f

XN
j¼1;j6¼i

pij½gjðuÞ�1�f ¼ 0; i ¼ 1; 2; . . .;N:

ð7:3:35Þ

If ri ¼ r, for all i ¼ 1; 2; . . .;N, we can obtain closed-form solutions to the
system of O.D.E.s (7.3.35). When ri ¼ r, for all i ¼ 1; 2; . . .;N, the system of O.D.
E.s becomes:

dgiðuÞ
du

þðr � ki
1� f

ÞgiðuÞþ ½giðuÞ�f
1� f

XN
j¼1;j6¼i

pij½gjðuÞ�1�f ¼ 0; i ¼ 1; 2; . . .;N:

ð7:3:36Þ

We assume that the functions giðuÞ; i ¼ 1; 2; . . .;N, have the following form:

giðuÞ ¼ erðT�uÞ: ð7:3:37Þ

So, giðuÞ does not vanish, for each u 2 T , and giðTÞ ¼ 1. It is not difficult to
check that giðuÞ; i ¼ 1; 2; . . .;N, in (7.3.37) satisfy the system of O.D.E.s (7.3.36).
Therefore, we obtain a closed-form expression for the value function hðz; xÞ as
follows:

hðz; xÞ ¼ z1z
1�f
2 erð1�fÞðT�uÞ

1� f
: ð7:3:38Þ

This form of the value function is consistent with the ones in Mataramvura and
Øksendal (2007) [17] and in Øksendal and Sulem (2007) [26].
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From (7.3.7) and (7.3.30), the density process corresponding to P ĥ is:

KĥðtÞ ¼ exp
XN
i¼1

ri � li
ri

� �Z t

0
hXðuÞ; eiidwðuÞ

 

� 1
2

XN
i¼1

ri � li
ri

� �2Z t

0
hXðuÞ; eiidu

!
:

ð7:3:39Þ

Harrison and Kreps (1979) [27] and Harrison and Pliska (1981, 1983) [28, 29]
developed an elegant mathematical theory for option valuation using the concept of
a martingale. They established the relationship between the concept of a martingale
and the absence of arbitrage. This is known as the fundamental theorem of asset
pricing. It states that the absence of arbitrage is equivalent to the existence of an
equivalent martingale measure under which discounted asset price processes are
martingales. We call the existence of an equivalent martingale measure a martingale
condition. The fundamental theorem of asset pricing was then extended by several
authors, including Dybvig and Ross (1987) [30], Back and Pliska (1991) [31],
Schachermayer (1992) [32] and Delbaen and Schachermayer (1994) [33], and
others. Delbaen and Schachermayer (1994) [33] noted that the equivalence between
the absence of arbitrage and the existence of an equivalent martingale measure is
not always true in a continuous-time setting. They stressed that the term “essentially
equivalent” instead of “equivalent” should be used to describe a martingale mea-
sure. Here, due to the presence of the additional source of uncertainty generated by
the Markov chain X, the martingale condition is given by considering an enlarged
filtration.

Let ~GðtÞ ¼ FXðtÞ _ F YðtÞ, for each t 2 T . Write ~G ¼ ~GðtÞjt 2 T
 �
. LeteSðtÞ ¼ expð� R t0 rðuÞduÞSðtÞ, which represents the discounted stock price at time

t 2 T . Then, the martingale condition here is defined with respect to the enlarged
filtration ~G and states that there is a probability measure Q equivalent to P such
that,

~SðuÞ ¼ EQ½~SðtÞ ~GðuÞ�� �; P�a:s:; 8u; t 2 T ; u� t;

where EQ½�� represents expectation under Q.
In particular, by letting u = 0, we require that for each t 2 T , the random

variable

EQ½expð�
Z t

0
rðuÞduÞSðtÞ FXðtÞ�� � ¼ Sð0Þ; P�a:s: ð7:3:40Þ

This means that, for each t 2 T , RðtÞ :¼ EQ½expð� R t0 rðuÞduÞSðtÞ FXðtÞ�� � is an
“almost surely” constant random variable under P such that P RðtÞ ¼ Sð0Þð Þ ¼ 1,
for each t 2 T . The condition is presented in Elliott et al. (2005) [34].
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From (7.3.11), (7.3.12) and (7.3.30), the evolution of the stock price process

under Pĥ is given by:

dSðtÞ ¼ rðtÞSðtÞdtþ rðtÞSðtÞdwĥðtÞ: ð7:3:41Þ

Hence

Eĥ exp �
Z t

0
rðuÞdu

� �
SðtÞ FXðtÞ��� 	

¼ Sð0Þ; P�a:s: ð7:3:42Þ

In other words, the condition (7.3.29) is satisfied under the probability measure

Pĥ deduced from an equilibrium state of the stochastic differential game between
the representative agent and the market.

The Esscher transform has a long and remarkable history in actuarial science. It
was first introduced to the actuarial science literature by Esscher (1932) [35]. It has
different applications in actuarial science, such as premium calculation and
approximation to the aggregate claims distribution. In the two landmark papers by
Bühlmann (1980, 1984) [36, 37], he established an economic equilibrium premium
principle in the sense of the Pareto optimal risk exchange under a pure exchange
economy and a link between the economic premium principle and the premium rule
determined by the Esscher transform. Gerber and Shiu (1994) [38] pioneered the
use of the Esscher transform for option pricing. Their work opened up many
research opportunities to further explore the interplay between actuarial and
financial pricing. Elliott et al. (2005) [39] considered a regime-switching version of
the Esscher transform to determine an equivalent martingale measure in the context
of a Markovian regime-switching Black–Scholes–Merton market. In the sequel, we
demonstrate that an equivalent martingale measure chosen by the regime-switching

Esscher transform considered in Elliott et al. (2005) is identical to P ĥ.
Define, for each t 2 T , the regime-switching Esscher parameter bðtÞ at time t as

below:

bðtÞ ¼ hb;XðtÞi; ð7:3:42Þ

where, b :¼ ðb1; b2; . . .; bNÞ 2 R
N , bðNÞ ¼ max1� i�N bi\1.

Write ðb � wÞðtÞ ¼ R t0 bðuÞdwðuÞ, for each t 2 T . Define a process Kb ¼
Kb t 2 Tj
 �

on X;F ;Pð Þ as below:

KbðtÞ ¼ e�ðb�wÞðtÞ

E½e�ðb�wÞðtÞ FXðtÞ�� � : ð7:3:43Þ

By Itô’s differentiation rule,

7.3 Option Pricing Based on Game Theory 159



e�ðb�wÞðtÞ ¼ 1�
Z t

0
e�ðb�wÞðtÞbðuÞdwðuÞþ 1

2

Z t

0
e�ðb�wÞðuÞb2ðuÞdu: ð7:3:44Þ

Conditioning on FXðtÞ under P,

E½e�ðb�wÞðtÞ FXðtÞ�� � ¼ 1þ 1
2

Z t

0
E½e�ðb�wÞðtÞ FXðtÞ�� �b2ðuÞdu: ð7:3:45Þ

Solving (7.3.45),

E½e�ðb�wÞðtÞ FXðtÞ�� � ¼ exp
1
2

Z t

0
b2ðuÞdu

� �
: ð7:3:46Þ

Then

KbðtÞ ¼ exp �
Z t

0
bðuÞdwðuÞ � 1

2

Z t

0
b2ðuÞdu

� �
: ð7:3:47Þ

So

dKbðtÞ ¼ �bðtÞKbðtÞdwðuÞ: ð7:3:48Þ

Here, Kb is a ðG;PÞ-local-martingale.

Note that the Novikov condition E exp � 1
2

R T
0 b2ðuÞdu

� �h i
\1 is satisfied.

Then, Kb is a ðG;PÞ-martingale, and, hence

E½KbðtÞ� ¼ 1; t 2 T : ð7:3:49Þ

Similar to Elliott et al. (2005), the regime-switching Esscher transform Pb 
P
on GðTÞ is defined as:

dPb

dP ¼ KbðTÞ: ð7:3:50Þ

We then seek b ¼ b̂, the risk-neutral Esscher process, such that

Eb̂ exp �
Z t

0
rðuÞdu

� �
SðtÞ FXðtÞ��� 	

¼ Sð0Þ; P�a:s: ð7:3:51Þ

By the Bayes’ rule,

160 7 Applications of Stochastic Differential Game Theory …



Eb̂ exp �
Z t

0
rðuÞdu

� �
SðtÞ FXðtÞ��� 	

¼ E Kb̂ðtÞ exp �
Z t

0
rðuÞdu

� �
SðtÞ FXðtÞ��� 	

¼ Sð0Þ exp
Z t

0
ðlðuÞ � rðuÞ � b̂ðuÞrðuÞÞdu

� �
:

ð7:3:52Þ

Then,

Z t

0
ðlðuÞ � rðuÞ � b̂ðuÞrðuÞÞdu ¼ 0; 8t 2 T ð7:3:53Þ

This implies that

b̂ðuÞ ¼ lðuÞ � rðuÞ
rðuÞ ¼

XN
i¼1

li � ri
ri

� �
hXðuÞ; eii ¼ ĥðuÞ: ð7:3:54Þ

Here, the process ĥ characterizing the probability measure Pĥ from the equi-
librium state of the stochastic differential game and the risk-neutral Esscher process
b̂ are identical.

Then, from (7.3.47) and (7.3.54),

Kb̂ðtÞ ¼ expð
XN
i¼1

ri � li
ri

� �Z t

0
hXðuÞ; eiidwðuÞ

� 1
2

XN
i¼1

ri � li
ri

� �2 Z t

0
hXðuÞ; eiiduÞ

¼ KĥðtÞ:

ð7:3:55Þ

Hence, Pb̂ is identical to P ĥ.
By Girsanov’s theorem,

wb̂ðtÞ ¼ wðtÞ �
Z t

0

rðuÞ � lðuÞ
rðuÞ

� �
du ð7:3:56Þ

is a standard Brownian motion with respect to G under Pb̂.

Under Pb̂ the evolution of the stock price process is governed by:

dSðtÞ ¼ rðtÞSðtÞdtþ rðtÞSðtÞdwb̂ðtÞ: ð7:3:57Þ

This coincides with the stock price dynamics under P ĥ.
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7.4 The Optimal Investment Game of the Insurance
Company

7.4.1 The Market Model

We consider a continuous-time, Markov, regime-switching, economic model with a
bond and a capital market index, or a share index. The following assumptions are
then imposed:

(1) the bond and the index can be traded continuously over time;
(2) there is no transaction cost or tax involved in trading;
(3) the bond and the index are liquid;
(4) any fractional units of the bond and the index can be traded.

Suppose X;F ;Pð Þ is a complete probability space, where P represents a ref-
erence probability measure from which a family of real-world probability measures
are generated. The measure P is the probability measure characterizing a reference
model. We assume that X;F ;Pð Þ is rich enough to describe uncertainties. All
economic activities take place in a time horizon denoted by T , where T :¼ ½0; T�,
for T\1. We model the evolution of the state of an economy over time by a
continuous-time, finite-state, observable Markov chain X :¼ fXðtÞ t 2 Tj g on
ðX;F ;PÞ taking values in the state space S :¼ fs1; s2; . . .; sNg, where N� 2.
Without loss of generality, we adopt the formalism introduced by Elliott et al.
(1994) and identify the state space of the chain by a set of unit basis vectors
E :¼ fe1; e2; . . .; eNg 2 R

N . Here the jth component of ei is the Kronecker delta,
denoted as dij, for each i; j ¼ 1; 2; . . .;N. We call the set E the canonical state space
of the chain X.

Let A ¼ aij
� �

i;j¼1;2;...;N denote the generator of the chain X under the real-world

probability measure P. For each i; j ¼ 1; 2; . . .;N, aji is the constant, instantaneous,
intensity of the transition of the chain Xfrom state i P to state j. Note that aji � 0, for
i 6¼ j, and that

PN
j¼1 aji ¼ 0, so aii � 0. Here for each i; j ¼ 1; 2; . . .;N, with i 6¼ j,

we suppose that aji40, so aji50. We assume that the chain X is irreducible. Then
there is a unique stationarydistribution for the chain. Let y0 denote the transpose of a
matrix, or a vector, y. With the canonical state space of the chain, Elliott et al. [19]
(1994) derived the following semi-martingaledynamics for X:

XðtÞ ¼ Xð0Þþ
Z t

0
A0XðuÞduþMðtÞ;

Here MðtÞ t 2 Tjf g is an R
N-valued martingale with respect to the

right-continuous, P-completed, filtration generated by X under the measure P.
Now we specify the price processes of the bond and the share index. Let rðtÞ be

the interest rate of the bond at time t. Then the chain determines rðtÞ as
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rðtÞ ¼ r;XðtÞh i;

Here r :¼ r1; r2; . . .; rNð Þ02RN with ri [ 0, for each i ¼ 1; 2; . . .;N. Then the
price process B :¼ fBðtÞ t 2 Tj g of the bond evolves over time as

BðtÞ ¼ exp
Z t

0
rðuÞdu

� �
; t 2 T ; Bð0Þ ¼ 1:

Then the chain determines the appreciation rate μ(t) and the volatility σ(t) as

lðtÞ ¼ l;XðtÞh i;
rðtÞ ¼ r;XðtÞh i:

Here l :¼ l1;l2; . . .; lNð Þ02 R
N , r :¼ r1; r2; . . .; rNð Þ02 R

N with li [ ri,
ri [ 0 for each i ¼ 1; 2; . . .;N.

Suppose w :¼ wðtÞ t 2 Tjf g denotes a standard Brownian motion on X;F ;Pð Þ
with respect to its rightcontinuous, P-completed, filtration Fw :¼ fFwðtÞ t 2 Tj g.

Then the evolution of the price process of the index is governed by the following
Markov, regime-switching, Geometric Brownian Motion (GBM):

dSðtÞ ¼ lðtÞSðtÞdtþ rðtÞSðtÞdwðtÞ; Sð0Þ ¼ s0:

In the sequel, we present two specifications for the insurance risk process. The
first specification is a Markov, regime-switching, compound Poisson process, while
the second specification is a Markov, regime-switching, diffusion process. In each
case, we derive the surplus process of an insurance company.

7.4.1.1 A Markov Regime-Switching Random Measure for Insurance
Claims

Here we present a Markov, regime-switching, random measure for the aggregate
insurance claims process.

Let Z :¼ ZðtÞ t 2 Tjf g denote a real-valued, Markov, regime-switching, pure
jump process on X;F ;Pð Þ. Here ZðtÞ is the aggregate amount of claims up to and
including time t. Suppose, for each u 2 T , DZðuÞ :¼ ZðuÞ � Zðu�Þ, the jump size
of the process Z at time u. Then

ZðtÞ ¼
X

0\u\t

DZðuÞ; Zð0Þ ¼ 0; P�a:s:; t 2 T : ð7:4:1Þ

Suppose the state space of claim size, denoted as Z 	 ð0;1Þ. Let M denote the
product space T � Z of claim arrival time and claim size. Define a random measure
cð�; �Þ on the product space M, which selects claim arrivals and sizes

7.4 The Optimal Investment Game of the Insurance Company 163



z :¼ ZðuÞ � Zðu�Þ, Indeed, the random measure can be written as a sum of random
delta functions, that is

cðdz; duÞ ¼
X
k� 1

dðDZðTkÞ;TkÞðdz; duÞIfDZðTkÞ6¼0;Tk\1g: ð7:4:2Þ

Here Tk is the arrival time of the kth claim, DZðTkÞ is the amount of the kth claim
at the time epoch Tk, dðDZðTkÞ;TkÞð�; �Þ is the random delta functions at the point
ðDZðTkÞ; TkÞ 2 Z � T , and IE is the indicator function of an event E

For suitable integrands f : ðX� Z � T Þ ! <
Z t

0

Z 1

0
f ðx; z; uÞcðdz; duÞ ¼

X
Tk � t

f ðx;DZðTkÞ; TkÞ; t 2 T : ð7:4:3Þ

The aggregate insurance claims process Z can then be written as.

ZðtÞ ¼
Z t

0

Z 1

0
zcðdz; duÞ; t 2 T : ð7:4:4Þ

Define, for each t 2 T ;

NðtÞ ¼
Z t

0

Z 1

0
cðdz; duÞ: ð7:4:5Þ

So N(t) counts the number of claim arrivals up to time t.
We assume that under P, N :¼ NðtÞ t 2 Tjf g is conditional Poisson process on

X;F ;Pð Þ with intensity modulated by the chain X as

kðtÞ :¼ k;XðtÞh i; t 2 T : ð7:4:6Þ

Here k :¼ k1; k2; . . .; kNð Þ02 R
N with ki [ 0, and ki is the jump intensity of

N when the economy is in the ith state, for each i ¼ 1; 2; . . .;N.
Now we specify the distribution of claim sizes. For each i ¼ 1; 2; . . .;N, let FiðzÞ

denote a probability distribution function of the claim size z :¼ ZðuÞ � Zðu�Þ
when Xðu�Þ ¼ ei. Then, the compensator of the Markov, regime-switching, ran-
dom measure cð�; �Þ under P is

vXðu�Þðdz; duÞ :¼
XN
i¼1

X ðu�Þ; eih ikiFiðdzÞdu ð7:4:7Þ

so a compensated version of the Markov, regime-switching, random measure,
denoted by �cð�; �Þ, is
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cðdz; duÞ :¼ cðdz; duÞ � mXðu�1Þðdz; duÞ: ð7:4:8Þ

Let pðtÞ denote the premium rate at time t, for each t 2 T . Then we suppose that
the chain X determines pðtÞ as

pðtÞ :¼ p;XðtÞh i; t 2 T : ð7:4:9Þ

Here p :¼ ðp1; p2; . . .; pNÞ 2 R
N , pi [ 0.

Suppose R :¼ RðtÞ t 2 Tjf g denotes the surplus process of the insurance com-
pany without investment. Then

RðtÞ :¼ uþ
Z t

0
pðuÞdu� ZðtÞ

¼ uþ
XN
i¼1

piJ iðtÞ �
Z t

0

Z 1

0
zcðdz; duÞ; t 2 T ;

ð7:4:10Þ

where the initial surplus Rð0Þ ¼ u; for each i ¼ 1; 2; . . .;N and each t 2 T , J iðtÞ is
the occupation time of the chain X in state ei up to time t, that is

J iðtÞ :¼
Z t

0
XðuÞ; eih idu:

We now derive the surplus process of an insurance company which invests its
surplus in the bond and the hare index. Firstly, we specify the information structure
o the model Let F Z :¼ fF ZðtÞ t 2 Tj g denote the right continuous, P-completed,
filtration generated by the history of the insurance claims process Z, that is F ZðtÞ is
the P-augmentation of the r-field generated by the insurance claims process Z up to
and including time t. Define, for each t 2 T , the enlarged r-algebra
GðtÞ ¼ FwðtÞ _ F ZðtÞ _ FXðtÞ, the minimal r-field generated by FwðtÞ, F ZðtÞ,
FXðtÞ. Write G :¼ fGðtÞ t 2 Tj g. We assume that the insurance company can
observe GðtÞ at each time t 2 T . Consequently, the company observes the values of
the share index, insurance claims and economic conditions.

Suppose the insurance company invests the amount of pðtÞ in the share index at
time t, for each t 2 T , we write VðtÞ ¼ VpðtÞ unless otherwise stated. Since the
money used for investment in the share index comes solely from the surplus pro-
cess, we must have pðtÞ\VðtÞ, for each t 2 T . Consequently, for each t 2 T , the
amount invested in the bond at time t is VðtÞ � pðtÞ. Then, the surplus process of
the insurance company with investment evolves over time as

dVðtÞ ¼ ½pðtÞþ rðtÞVðtÞþ pðtÞðlðtÞ � rðtÞÞ�dt
þ rðtÞpðtÞdwðtÞ �

Z 1

0
zcðdz; dtÞ;

Vð0Þ ¼ v:

ð7:4:11Þ
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Here we say that a portfolio process p is admissible if it satisfies the following
conditions:

(1) p is G-progressively measurable;
(2) the stochastic differential equation for the surplus dynamics has a unique

strong solution;:

(3)
XN
i¼1

Z T

0
pi þ riVi þ pðtÞðli � riÞj j þ r2i p

2ðtÞþ ki

Z 1

0
zFiðdzÞ

� �
dt\1;

P�a:s:;

(4) VðtÞ� 0 for all t 2 T , P–a.s.
The first condition states that the insurance company decides the amount

invested in the share index based on the current and past price information,
observations about insurance risk process, and economic information. The second
and third conditions are technical conditions. The last condition is the solvency
condition of the insurance company. We denote here the set of all admissible
portfolio processes of the insurance company by A:

7.4.1.2 A Markov Regime-Switching Diffusion Process for Insurance
Risk

Now we introduce a Markov, regime-switching, diffusion risk process. Let rzðtÞ
denote the instantaneous volatility of the aggregate insurance claims process Z at
time t, for each t 2 T .

The chain X determines rzðtÞ as

rzðtÞ ¼ rz;XðtÞh i:

Here rz ¼ ðrz1; rz2; . . .; rzNÞ0 2 R
N with rzi [ 0; for each i ¼ 1; 2; . . .;N. rzi

represents the uncertainty of the surplus process of the insurance company without
investment when the economy is in the ith state. The model proposed here can
accommodate the situation when the insurance company faces different levels of
uncertainty in different economic conditions. For example, when the economy is in
a ‘Bad’ state, the insurance company faces a higher level of uncertainty in its
surplus process than when the economy is in a ‘Good’ state.

In practice, insurance risk processes and financial price processes may be cor-
related. Their correlation may depend on the economic condition. The correlation
between insurance risk processes and financial price processes in a ‘Bad’ economy
may be higher than that in a ‘Good’ economy. Let qðtÞ denote the instantaneous
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correlation coefficient between the random shock of the price process of the index
and that of the insurance risk process at time t, for each t 2 T . Then we assume that
the chain X determines qðtÞ as

qðtÞ :¼ q;XðtÞh i; t 2 T :

Here q ¼ ðq1; q2; . . .; qNÞ0 2 R
N with qi 2 ð�1; 1Þ for each i ¼ 1; 2; . . .;N,

when the economy is in state i, qi is the correlation coefficient between the random
shock of the insurance risk process and that of the price process of the index.

Let wz ¼ wzðtÞ t 2 Tjf g denote a standard Brownian motion on X;F ;Pð Þ,
which represents the ‘noise’ in the insurance risk process. We allow the flexibility
that wzðtÞ t 2 Tjf g and wðtÞ t 2 Tjf g are correlated with instantaneous correlation
coefficient qðtÞ at time t. Then the aggregate insurance claims process �Z ¼
�ZðtÞ t 2 Tjf g follows

�ZðtÞ ¼
Z t

0
rzðuÞdwzðuÞ; t 2 T : ð7:4:12Þ

Let �R :¼ �RðtÞ t 2 Tjf g denote the surplus process of the insurance company
without investment. Then

�RðtÞ ¼ uþ
Z t

0
pðuÞdu� �ZðtÞ; ð7:4:13Þ

where, as before, it is given by (7.4.10).

Let �F�z
:¼ �F�zðtÞ t 2 Tj
n o

denote the right-continuous, P-completed, filtration

generated by the insurance claims process �Z ¼ �ZðtÞ t 2 Tjf g. For each t� 0, define

an enlarged r-field �GðtÞ ¼ �F �ZðtÞ _ FwðtÞ _ FXðtÞ, Write �G ¼ �GðtÞ t 2 Tj
 �
.

Again, we assume that the insurance company can access to �GðtÞ at each time
t 2 T .

For each t 2 T , let �pðtÞ denote the amount the insurance company invests in the
index at time t. Let �V �pðtÞ t 2 Tjf g denote the surplus process of the company
associated with a portfolio process π. Again to simplify the notation, we write
�VðtÞ ¼ �V �pðtÞ, for each t 2 T . We must also have that pðtÞ\VðtÞ, for each t 2 T .
The amount invested in the bond at time t is VðtÞ � pðtÞ, for each t 2 T . Then the
surplus process of the insurance company with investment evolves over time as

d�VðtÞ ¼ ½pðtÞþ rðtÞ�VðtÞþ �pðtÞðlðtÞ � rðtÞÞ�dtþ rðtÞ�pðtÞdwðtÞ � rzðtÞdwzðtÞ:
ð7:4:14Þ

Similarly to the last subsection, we say that a portfolio process �pðtÞ is admissible
if it satisfies the following conditions:

(1) p is �G-progressively measurable;
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(2) the surplus process has a unique strong solution;

(3)
R T
0 �p2ðtÞdt\1 , P�a:s:

(4) VðtÞ� 0, for all t 2 T , P�a:s:

We denote the space of admissible portfolio processes by �A:

7.4.2 Optimal Investment Problems

In this section, we discuss two optimal investment problems. The first problem is to
maximize the minimal expected exponential utility of terminal wealth over a family
of real-world probability measures when the insurance risk process is governed by
the Markov, regime-switching, random measure.

The second problem is to maximize the minimal survival probability over
another family of real-world probability measures when the Markov,
regime-switching, diffusion-based risk process is considered. We adopt here a
robust approach to model risk, or uncertainty. We formulate the two investment
problems as two zero-sum, two-player, stochastic differential games between the
insurance company and the market. One of the games is a finite-horizon game and
the other is an infinite-horizon one.

7.4.2.1 Maximizing the Minimal Expected Exponential Utility

Firstly, we introduce processes h ¼ hðtÞ t 2 Tjf g which parameterize the family of
real-world probability measures. Suppose the process θ satisfies the following
conditions:

(1) h is G-progressively measurable;
(2) hðtÞ :¼ hðt;xÞ� 1, for a. a.ðt;xÞ 2 T � X;

(3)
R T
0 h2ðtÞdt\1; P�a:s:

We denote the space of all such processes by H.
Define, for each h 2 H, a real-valued, G-adapted, process Kh :¼ fKhðtÞ t 2 Tj g

on X;F ;Pð Þ by

KhðtÞ :¼ exp �
Z t

0
hðuÞdwðuÞ � 1

2

Z t

0
h2ðuÞduþ

Z t

0

Z 1

0
lnð1� hðuÞÞ�cðdz; duÞ

�

þ
Z t

0

Z 1

0
lnð1� hðuÞÞþ hðuÞf gmðdz; duÞ

�
:

ð7:4:15Þ

Applying Itô’s differentiation rule to Kh gives
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dKhðtÞ ¼ Khðt�Þð�hðtÞdwðtÞ �
Z 1

0
hðtÞ�cðdz; dtÞÞ;

KhðtÞ ¼ 1; P�a:s:
ð7:4:16Þ

So Kh is a G;Pð Þ-(local)-martingale. We suppose that θ 2 Θ is such that Kh is a
G;Pð Þ-martingale. Consequently, E KhðTÞ� � ¼ 1.
We now introduce a density process for the measure change of the

regime-switching Markov chain. For each t 2 T , let FðtÞ :¼ FwðtÞ _ F ZðtÞ, the
minimal r-field generated by FwðtÞ and F ZðtÞ. Write F ¼ FðtÞ t 2 Tjf g. For each
i; j ¼ 1; 2; . . .;N, let cijðtÞ t 2 Tj
 �

be a real-valued, F -predictable, bounded
stochastic process cijðtÞ t 2 Tj
 �

on X;F ;Pð Þ such that, for each t 2 T ,

(1) cijðtÞ� 0, for i 6¼ j; and
(2)

PN
i¼1 cijðtÞ ¼ 0, so ciiðtÞ� 0.

Then a second family of rate matrices, C ¼ CðtÞ t 2 Tjf g, can be defined by
CðtÞ ¼ ½cijðtÞ�i¼1;2;...;N .

We wish to introduce a new probability measure under which C is a family of
rate matrices of the chain X with indexed set T . We adopt a version of Girsanov’s
transform for the Markov chain considered by Dufour and Elliott (1999) to define
the new probability measure.

Firstly, for each t 2 T , we define the following matrix:

DCðtÞ :¼ cijðtÞ=aijðtÞ
� �

i;j¼1;2;...;N¼ dCij ðtÞ
h i

:

Note that aijðtÞ[ 0, for each t 2 T , so DðtÞ is well-defined.
For each t 2 T , let dCðtÞ :¼ ðdC11ðtÞ; dC22ðtÞ; . . .; dCNNðtÞÞ0 2 R

N .
Write, for each t 2 T ,

DC
0 ðtÞ ¼ DCðtÞ � diagðdCðtÞÞ:

Here diagðyÞ is a diagonal matrix with diagonal elements given by the vector
y. Consequently, DC

0 ðtÞ is the matrix DCðtÞ with its diagonal elements being taken
out.

Consider the vector-valued counting process, NX : fNXðtÞ t 2 Tj g on X;F ;Pð Þ,
where for each t 2 T , NXðtÞ ¼ ðNX

1 ðtÞ;NX
1 ðtÞ; . . .;NX

N ðtÞÞ0 2 R
N and NX

j ðtÞ counts
the number of jumps of the chain X to state ej up to time t, for each j ¼ 1; 2; . . .;N.
Then it is not difficult to check that N has the following semi-martingale dynamics:
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NXðtÞ ¼
Z t

0
ðI� diagðXðu�ÞÞÞ0dXðuÞ

¼ NXð0Þþ
Z t

0
ðI� diagðXðu�ÞÞÞ0AðtÞXðtÞdtþ

Z t

0
ðI� diagðXðu�ÞÞÞ0dMðtÞ; t 2 T :

Here NXð0Þ ¼ 0, the zero vector in R
N .

The following lemma is due to Dufour and Elliott (1999) [14] and gives a
compensated version of NX under P, which is a martingale associated with NX. We
state the result here without giving the proof.

Lemma 7.4.1 Let A0ðtÞ ¼ AðtÞ � diagðaðtÞÞ, where aðtÞ ¼ ða11ðtÞ; a22ðtÞ;
. . .; aNNðtÞÞ0 2 R

N, for each t 2 T . Then the process eNX ¼ eNXðtÞ t 2 Tj
n o

defined

by putting

eNXðtÞ ¼ NXðtÞ �
Z t

0
A0ðuÞXðu�Þdu; t 2 T ð7:4:17Þ

is an R
N-valued ðFX;PÞ-martingale.

Consider the G-adapted process on X;F ;Pð Þ associated with C defined by
setting

KCðtÞ ¼ 1þ
Z t

0
KCðu�Þ DC

0 ðuÞXðu�Þ � 1
� �0

d eNXðuÞ:

Here 1 ¼ ð1; 1; . . .; 1Þ0 2 R
N .

Then we have the following result.

Lemma 7.4.2 KC is a ðG;PÞ-martingale and hence E KCðTÞ� � ¼ 1.

Proof This is due to Lemma 7.4.1 and the boundedness of cijðtÞ, for each j ¼
1; 2; . . .;N and each t 2 T .

Suppose K is the space of all families of rate matrices C with bounded com-
ponents. Then for each C 2 K, we use KC as a density process for a measure
change for the chain X.

Consider a G-adapted process Kh;C :¼ fKh;CðtÞ t 2 Tj g on X;F ;Pð Þ defined by

Kh;CðtÞ :¼ KhðtÞ � KCðtÞ; t 2 T :

Our assumptions together with Lemma 7.4.2 ensure that Kh;C is a ðG;PÞ-mar-
tingale. Consequently, E Kh;CðTÞ� � ¼ 1. Then Kh;C can be a density process for a
general measure change for the Brownian motion w, the jump process Z and the
Markov chain X.
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For each pair ðh;CÞ 2 H�K, we define a probability measure Ph;C absolutely
continuous with respect to P on GðTÞ as

dPh;C

dP GðTÞ
�� :¼ Kh;CðTÞ: ð7:4:18Þ

Consequently, we can define a family PðH�KÞ of real-world probability
measures Ph;C parameterized by ðh;CÞ 2 H�K.

Here the market can choose a real-world probability measure, or generalized
‘scenario’, from PðHÞ by selecting a process h 2 H. So H represents the set of
admissible strategies, or controls, of the market. By choosing different h 2 H dif-
ferent probability laws for the price process of the share index and the insurance
risk process are obtained. The following theorem gives the probability laws of the
Brownian motion w, the random measure c and the chain X under the new measure
Ph;C.

Theorem 7.4.1 The process defined by

whðtÞ :¼ wðtÞ �
Z t

0
hðuÞdu; t 2 T

is a ðG;Ph;CÞ-standard Brownian motion. Furthermore, under Ph;C, the random
measure c has the following compensator:

mhXðu�Þðdz; duÞ ¼
XN
i¼1

ð1� hðu�ÞÞkiFiðdzÞdu;

and the chain X has a family of rate matrices C and can be represented as

XðtÞ ¼ Xð0Þþ
Z t

0
CðuÞXðu�ÞduþMCðtÞ;

where MC :¼ MCðtÞ t 2 Tj
 �
is ðG;Ph;CÞ-martingale.

Proof The proof follows from a general Girsanov theorem for jump-diffusion
processes and a Girsanov transform for a Markov chain.

The following corollary gives the surplus process under Ph;C.

Corollary 7.4.1 Let ch;Cðdz; dtÞ be a random measure having the compensator
mhXðt�Þðdz; dtÞ under Ph;C. Then, under Ph;C the surplus process of the insurance

company evolves over time as
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dVðtÞ ¼ ½pðtÞþ rðtÞVðtÞþ pðtÞðlðtÞ � rðtÞÞ � rðtÞpðtÞhðtÞÞ�dt
þ rðtÞpðtÞwhðtÞ �

Z 1

0
zch;Cðdz; dtÞ; t 2 T ;

Vð0Þ ¼ v0:

Proof The result follows from Theorem 7.4.1.

Now for each ðp; h;CÞ 2 A �H�K, we consider a vector-valued, controlled,
state process Yp;h;CðtÞ t 2 Tj
 �

defined by

dYp;h;CðtÞ ¼ ðdY0ðtÞ; dYp;h;C
1 ðtÞ; dYC

2 ðtÞÞ0 ¼ ðdt; dVp;h;CðtÞ; dXðtÞÞ0;
Yp;h;Cð0Þ ¼ y ¼ ðs; y1; y2Þ0;

where under the new probability measure Ph;C,

dY0ðtÞ ¼ dt;

dYp;h;C
1 ðtÞ ¼ ½pðtÞþ rðtÞYp;h;C

1 ðtÞþ pðtÞðlðtÞ � rðtÞÞ � rðtÞpðtÞhðtÞÞ�dt
þ rðtÞpðtÞwhðtÞ �

Z 1

0
zch;Cðdz; dtÞ;

dYC
2 ðtÞ ¼ CðtÞYC

2 ðt�Þdtþ dMCðtÞ:

ð7:4:19Þ

To simplify the notation, we suppress the superscripts p and h and write, for each
t 2 T ,

Yp;h;CðtÞ :¼ YðtÞ;
Yp;h;C
1 ðtÞ :¼ Y1ðtÞ;
YC

2 ðtÞ :¼ Y2ðtÞ:
ð7:4:20Þ

Note that the vector-valued, controlled, state process Y is Markov with respect to
the enlarged filtration G under P.

We can now formulate the optimal investment problem. Let Uð�Þ : ð0;1Þ ! R
denote a strictly increasing and strictly convex utility. Then, conditional on
Yð0Þ ¼ y, the object of the insurance company is to find a portfolio process p 2 A
so as to maximize the following minimal expected utility on terminal surplus over
the family PðH�KÞ:

inf
h2H;C2K

Eh;C
y UðYp

1 ðTÞÞ
� �

:

Here Eh;C
y is the conditional expectation given Yð0Þ ¼ y under Ph;C. The min-

imal expected utility can be interpreted as the expected utility on terminal surplus in
the ‘worst-case’ scenario.
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The optimal investment problem of the insurance company can now be
described as the following two player, zero-sum, stochastic differential game
between the insurance company and the market.

Problem I Consider

UðyÞ ¼ sup
p2A

inf
ðh;CÞ2H�K

Eh;C
y ½UðYp;h;C

1 ðTÞÞ�
� �

¼ Eh�;C�
y UðYp�;h�;C�

1 ðTÞÞ
h i

: ð7:4:21Þ

To solve the related problem I, we need to find the value function UðyÞ and the
optimal strategies p� 2 A and ðh�;C�Þ 2 H�K of the insurance company and the
market, respectively.

7.4.2.2 Maximizing the Minimal Survival Probability

In this case, T : ¼ ½0;1Þ: So the optimal investment problem is one in an
infinite-time horizon setting. Firstly, we need to generate a family of real-world
probability measures which are absolutely continuous with respect to the reference
measure P in this infinite time horizon setting. We adopt some results for measure
changes of Elliott (1982) [19] to define the Radon–Nikodym derivative for the
measure changes in the infinite-time horizon setting. Again, we also use the
Girsanov theorem for a Markov chain to define a measure change.

Consider a process, denoted as �h ¼ �hðtÞ t 2 Tj
 �
, which parameterizes the

family of real-world probability measures. Suppose the process �h satisfies the
following conditions:

(1) �h is �G-progressively measurable; and
(2) for each T \1R T

0
�h2ðtÞdt\1; P�a:s:

We denote the space of all such processes �h by H.

Define, for each �h 2 H, a real-valued, �G-adapted, process K
hðtÞ t 2 Tj

n o
on

X;F ;Pð Þ by setting

K
�hðtÞ :¼ exp �

Z t

0

�hðuÞdwðuÞ �
Z t

0

�hðuÞdw2ðuÞ �
Z t

0

�h2ðuÞdu
� �

: ð7:4:22Þ

Applying Itô’s differentiation rule to K
�h
gives

dK
�hðtÞ ¼ K

�hðtÞð��hðtÞdwðtÞ � �hðtÞdw2ðtÞÞ;
K

�hð0Þ ¼ 1; P�a:s:;
ð7:4:23Þ
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and so K
�h
is a ð�G;PÞ-martingale. Suppose K

�h
is a uniformly integrable positive

ð�G;PÞ-martingale. Then K
hð1Þ ¼ lim

t!1K
�hðtÞ; P–a.s. and

E½K�hð1Þ �GðtÞ�� � ¼ K
�hðtÞ; P�a:s:; t 2 T : ð7:4:24Þ

Hence,

E½K�hð1Þ� ¼ E½K�hð0Þ� ¼ 1: ð7:4:25Þ

Again, we consider the density process KC for the measure change of the
Markov chain X defined in the last subsection. We suppose that KC is a uniformly
integrable positive ð�G;PÞ-martingale. Then KCð1Þ ¼ lim

t!1KCðtÞ; P�a:s: and

E½KCð1Þ �GðtÞ�� � ¼ K
�hðtÞ; P�a:s:; t 2 T : ð7:4:26Þ

Consequently,

E½KCð1Þ� ¼ E½KCð0Þ� ¼ 1: ð7:4:27Þ

For each ð�h;CÞ 2 H�K a new (real-world) probability measure P�h;C equiva-
lent to P can be defined one ðX; �Gð1ÞÞ by putting

dP�h;C

dP �Gð1Þ
��� ¼ K

�hð1Þ � KCð1Þ: ð7:4:28Þ

A family PðH�KÞ of real-world probability measures parameterized by
ð�h;CÞ 2 H�K is then generated. Here, H�K represents the set of admissible
strategies, or controls, of the market.

The following theorem then gives the surplus process �V and the semi-martingale

dynamics of the Markov chain X under the new probability measure P�h;C.

Theorem 7.4.2 Define the processes wh;z ¼ wh;zðtÞ t 2 Tj
 �
and wh ¼

whðtÞ t 2 Tj
 �
by

wh;z :¼ wzðtÞ �
Z t

0
hðuÞdu;

whðtÞ :¼ wðtÞ �
Z t

0
hðuÞdu:

Then under P�h;C, wh;z, wh are standard Brownian motions. Furthermore, under

P�h;C, the surplus process of the insurance company evolves over time as
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d�VðtÞ ¼ pðtÞþ rðtÞ�VðtÞþ �pðtÞðuðtÞ � rðtÞÞ � hðtÞðrðtÞ�pðtÞ � rzðtÞÞ½ �dt
þ rðtÞ�pðtÞdwhðtÞ � rzðtÞdwh;zðtÞ;

and the Markov chain X has the following semi-martingale dynamics:

XðtÞ ¼ Xð0Þþ
Z t

0
CðuÞXðuÞduþMCðtÞ:

Similarly to the previous subsection, for each ð�p; �h;CÞ 2 �A�H�K, we

consider here a vector-valued, controlled, state process Y
�p;�h;CðtÞ t 2 Tj

n o
defined

by

dY
�p;�h;CðtÞ ¼ ðd�Y �p;�h;C

1 ðtÞ; dYC
2 ðtÞÞ0 ¼ ðd�V �p;�h;CðtÞ; dXðtÞÞ0 K;

Y
�p;�h;Cð0Þ ¼ �y ¼ ð�y1; y2Þ0

where under P,

d�Y �p;�h;C
1 ðtÞ ¼ ½pðtÞþ rðtÞ�Y �p;�h;C

1 ðtÞþ �pðtÞðlðtÞ � rðtÞÞ � hðtÞðrðtÞ�pðtÞ � rzðtÞÞ�dt
þ rðtÞ�pðtÞwhðtÞ � rzðtÞdwh;z;

dYC
2 ðtÞ ¼ CðtÞYC

2 ðt�Þdtþ dMCðtÞ:
ð7:4:29Þ

To simplify the notation, we write

Y
�p;�h;CðtÞ :¼ �YðtÞ;

�Y �p;�h;C
1 ðtÞ :¼ �Y1ðtÞ;
Y

C
2 ðtÞ :¼ Y2ðtÞ:

ð7:4:30Þ

It is obvious that the vector-valued, controlled, state process Y is Markov with
respect to the enlarged filtration �G under P.

We suppose that ruin occurs when the surplus of the insurance company goes
zero. For each portfolio process �p 2 �A, let s�p : ¼s�pð�Þ : X ! ½0;1� be the first
time that the surplus process �V �p

1 of the insurance company reaches zero, that is

s�p ¼ inf t 2 T �V �p
1 ðtÞ ¼ 0

��
 �
: ð7:4:31Þ

Here s�p represents the ruin time of the company. Indeed, it is a predictable
stopping time.
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Conditional on Yð0Þ ¼ �y, the object of the insurance company is to select an
investment strategy �p 2 �A which maximizes the following minimal survival
probability over the family PðH�KÞ of real-world probability measures:

inf
ð�h;CÞ2H�K

P�h;Cðs�p ¼ 1 Yð0Þ ¼ �y
�� Þ ¼ inf

ð�h;CÞ2H�K
E
�h;C
�y Ifs�p ¼ 1g½ �: ð7:4:32Þ

Here E
�h;C
�y is the conditional expectation given Yð0Þ ¼ �y. The minimal survival

probability can be interpreted as the survival probability in the ‘worst-case’ scenario.
The optimal investment problem of the company can then be formulated as the

following stochastic differential game.

Problem II Consider

Uð�yÞ ¼ sup
�p2�A

inf
ð�h;CÞ2H�K

E
�h;C
�y ½Ifs�p ¼ 1g�

 !
¼ E

�h�;C�
�y Ifs�p� ¼ 1g� �

: ð7:4:33Þ

To solve the problem, we must find �p� 2 �A, ð�h�;C�Þ 2 H�K and Uð�yÞ.

7.4.3 Solution to Optimal Investment Problem I

In this section, we adopt the HJB dynamic programming approach to solve the
optimal investment problem I. We first give a verification theorem for the HJB
solution to problem I. Then closed-form expressions for the optimal strategies of the
game are derived under some assumptions.

Firstly, we specify the relationship between the control processes of the game
and the information structure. Note that the controlled state process Y is adapted to
the enlarged filtration G and that it is also Markov with respect to G.

Let O ¼ ð0; TÞ � ð0;1Þ so that O� E is our solvency region. Suppose K1

denotes the subset of R such that pðtÞ 2 K1, for each t 2 T . Similarly, let K2 be a
subset in R such that hðtÞ 2 K2, for each t 2 T . Suppose K3 is a subset of RN � R

N

such that CðtÞ 2 K3;P–a.s. for each t 2 T , where RN � R
N is the space of N � N

matrices. Here we assume that K3 is a rectangular region so that for each
i; j ¼ 1; 2; . . .;N, t 2 T .

cijðtÞ 2 clði; jÞ; cuði; jÞ� �
:

for some given constants clði; jÞ and cuði; jÞ satisfying the following conditions:

(1) for each k ¼ l; u and i 6¼ j,ckði; jÞ 2 ½0;1Þ;
(2)

PN
i¼1 c

kði; jÞ ¼ 0, ckði; jÞ� 0;
(3) clði; jÞ\cuði; jÞ, (i.e. the interval clði; jÞ; cuði; jÞ� �

is not degenerate).
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We suppose that pðtÞ ¼ ~pðYðtÞÞ, hðtÞ ¼ ~hðYðtÞÞ, CðtÞ ¼ eCðYðtÞÞ, for some
functions ~p : O� E ! K1, ~h : O� E ! K2, eC : O� E ! K3.

In what follows, with a slight abuse of notation, we do not distinguish between p

and ~p, and between C and eC, and between h and ~h. Then we can identify the
control pðtÞ, CðtÞ and hðtÞ with deterministic functions pðyÞ, CðYÞ, hðyÞ, respec-
tively, for each y 2 O� E. These are called feedback controls.

Since both the state process and the control are Markov, the dynamic pro-
gramming principle can be applied. We first present a verification theorem for the
HJB solution to the stochastic differential game corresponding to problem I.

Let H be the space of functions hð�; �; �Þ : T � R
þ � E ! R such that for each

ei 2 E, hð�; �; eiÞ 2 C1;2ðT � R
þ Þ. Write

hðs; y1Þ :¼ ðhðs; y1; e1Þ; hðs; y1; e2Þ; . . .; hðs; y1; eNÞÞ0 2 R
N :

Then for each ðh;C; pÞ 2 H�K�A, the generator of the process Y under the
new measure Ph;C is a partial differential operator Lh;C;p acting on H:

Lh;C;p½hðyÞ� ¼ @h
@s

þ pðsÞþ rðsÞhþ p lðtÞ � rðtÞ � rðtÞphð Þ½ � @h
@y1

þ 1
2
r2ðsÞp22

@2h
@y21

þ
Z 1

0
ðhðs; y1 � z; y2Þ � hðs; y1; y2ÞÞ

� ð1� hÞkðsÞFy2�ðdzÞþ hðs; y1Þ;C0y2�h i;

ð7:4:34Þ

where y2� :¼ Y2ðs�Þ. Then we have the following lemma, which will be used to
prove the verification theorem.

Lemma 7.4.3 Suppose for each ei 2 E, hð�; �; eiÞ 2 C1;2ðT � R
þ Þ. Let s be an

(optional) stopping time such s\1 s. Assume, further, that for each ei 2 E and
ðh;C; pÞ 2 H�K�A, hðs; y1; eiÞ and Lh;C;p hðs; y1; eiÞ½ � are bounded on
ðs; y1Þ 2 T � R

þ . Then

Eh;C
y hðYðsÞÞ½ � ¼ hðyÞþEh;C

y

Z s

0
Lh;C;p½hðs; Y1ðsÞ;Y2ðsÞÞ�ds

� �
: ð7:4:35Þ

Proof Applying Itô’s differentiation rule for semimartingales to hðYðtÞÞ, then,
combine (7.4.34) and integral on ½0; s�, we can get Lemma 7.4.3.

We present a verification theorem for the HJB solution to problem I in the
following proposition.

Theorem 7.4.3 Let �O be the closure of O. Suppose there exists a function / and a
Markov control ðh�;C�; p�Þ 2 H�K�A, such that, for each ei 2 E,
/ð�; �; eiÞ 2 C2ðOÞ\ Cð�OÞ,
(1) Lh;C;p�ðyÞ /ðs; y1; y2Þ½ � � 0, for all ðh;CÞ 2 H�K and ðs; y1; y2Þ 2 O � E;
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(2) Lh�ðyÞ;C�ðyÞ;p /ðs; y1; y2Þ½ � � 0, for all p 2 A and ðs; y1; y2Þ 2 O � E;
(3) Lh�ðyÞ;C�ðyÞ;p�ðyÞ /ðs; y1; y2Þ½ � ¼ 0, for all ðs; y1; y2Þ 2 O � E;
(4) for all ðh;C; pÞ2 H�K�A, lim

t!T� /ðYh;C;pðtÞÞ ¼ UðYh;C;p
1 ðTÞÞ;

(5) Let �M denote the set of stopping times s :¼ sðxÞ� T , for all x 2 X, the
family /ðYh;C;pðsÞÞ
 �

s2K is uniformly integrable.

Define, for each ðs; y1; y2Þ 2 O � E and ðh; pÞ 2 H�A

Jh;pðyÞ ¼ Eh:C
y UðYh;C;pðTÞÞ� �

: ð7:4:36Þ

Then

/ðyÞ ¼ UðyÞ

¼ inf
ðh;CÞ2H�K

sup
p2A

Eh;C
y UðYh;C;p

1 ðTÞÞ
h i� �

¼ sup
p2A

inf
ðh;CÞ2H�K

Eh;C
y UðYh;C;p

1 ðTÞÞ
h i� �

¼ sup
p2A

Jh
�;C�;pðyÞ ¼ inf

ðh;CÞ2H�K
Jh;C;p

� ðyÞ

¼ Jh
�;C�;p� ðyÞ:

ð7:4:37Þ

and ðh�;C�; p�Þ is an optimal Markov control.
In the sequel, we derive an explicit solution to problem I when the insurer has an

exponential utility. We also need to assume that the interest rate rðtÞ ¼ 0, for each
t 2 T , in the derivation of the explicit solution.

Let Uð�Þ : ð0;1Þ ! R denote an exponential utility function defined by

UðxÞ ¼ �eax; ð7:4:38Þ

where is a positive constant, which represents the coefficient of absolute risk
aversion; that is

a ¼ �UxxðxÞ
UxðxÞ :

with Ux and Uxx representing the first and second derivatives of U with respect to x.
We try the following parametric form for the value function:

Uðs; y1; y2Þ ¼ e�ay1gðs; y2Þ; ð7:4:39Þ

where g : T � E ! R is a function such that, for each y2 2 E, gðT; y2Þ ¼ 1.
We can re-state conditions 1–3 of Theorem 7.4.3 as
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inf
ðh;CÞ2H�K

Lh;C;p� UðyÞ½ � ¼ Lh�;C�;p� UðyÞ½ � ¼ 0 ð7:4:40Þ

and

sup
p2A

Lh�;C�;p UðyÞ½ � ¼ Lh�;C�;p� UðyÞ½ � ¼ 0: ð7:4:40Þ

When rðtÞ ¼ 0, the partial differential operator Lh;C;p UðyÞ½ � becomes

Lh;C;p UðyÞ½ � ¼ @U
@s

þ ½pðsÞþ plðtÞ � rðtÞph� @U
@y1

þ 1
2
r2ðsÞp2 @

2U

@y21

þ
Z 1

0
ðUðs; y1 � z; y2Þ � Uðs; y1; y2ÞÞð1� hÞkðsÞFy2�ðdzÞþ Uðs; y1Þ;C0y2�h i;

where Uðs; y1Þ ¼ ðUðs; y1; e1Þ;Uðs; y1; e1Þ; . . .;Uðs; y1; eNÞÞ0 2 R
N :

Let gðsÞ :¼ ðgðs; e1Þ; gðs; e1Þ; . . .; gðs; eNÞÞ0 2 R
N , for each s 2 T . Then it is not

difficult to see that

Lh;C;p UðyÞ½ � ¼ e�ay1 dgðs; y2Þ
ds

�
� apðsÞþ aplðsÞ � arðsÞph�ð 1

2
a2r2ðsÞp2

þ ðh� 1ÞkðsÞ
Z 1

0
ðeaz � 1ÞFy2�ðdzÞ

�
gðs; y2�Þþ gðsÞ;C0y2�h i

	
:

So the first-order condition for a value p� to maximize Lh;C;p UðyÞ½ � over all
p 2 A is

ae�ay1gðs; y2�Þð�lðsÞþ r2ðsÞp�aþ h�rðsÞÞ ¼ 0: ð7:4:41Þ

Similarly, the first-order condition for a value h� to maximize Lh;C;p UðyÞ½ � over
all p 2 A is

e�ay1gðs; y2�Þ rðsÞp�aþ kðsÞ
Z 1

0
ð1� eazÞFy2�ðdzÞ

� �
¼ 0: ð7:4:42Þ

Therefore, we obtain the following closed-form solutions of the optimal strate-
gies h� and p�:

h�ðs;XðsÞÞ ¼
XN
i¼1

ðli � r2i p
�ðs; eiÞa

ri
Þ XðsÞ; eih i;

p�ðs;XðsÞÞ ¼
XN
i¼1

ki
R1
0 ðeaz � 1ÞFeiðdzÞ

ria

� �
XðsÞ; eih i:

ð7:4:43Þ
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We now need to determine a value C� to minimize Lh;C;p UðyÞ½ � over all C\K.
To simplify the notation, we write Ui ¼ Uðs; y1; eiÞ, for i ¼ 1; 2; . . .;N and U ¼
Uðs; y1Þ: Firstly, we note that the partial differential Lh�;C;p� acting on Uðs; y1; y2Þ is
equivalent to the following system of partial differential operators Lh�;C;p�

j acting on
Uj.

Lh�;C;p�
j ½Uj� ¼ @Uj

@s
þ ½pðsÞþ plj � rðtÞp�h�� @U

@y1
þ 1

2
r2j ðp�Þ2

@2U
@y21

þ
Z 1

0
ðUðs; y1 � z; y2Þ � Uðs; y1; y2ÞÞð1� h�ÞkjðsÞFejðdzÞþ

XN
i¼1

UðiÞcijðtÞ;

j ¼ 1; 2; . . .;N:

;

Since the only part of Lh�;C;p�
j ½Uj� that depends on C is the sum

PN
i¼1

UðiÞcijðtÞ, the

minimization of Lh�;C;p�
j ½Uj� with respect to C is equivalent to the following system

of N linear programming problems:

min
cijðtÞ;cijðtÞ;...;cNjðtÞ

XN
i¼1

UðiÞcijðtÞ; j ¼ 1; 2; . . .;N:

subject to the linear constraints

XN
i¼1

cijðtÞ ¼ 0;

and the ‘interval’ constraints

cijðtÞ 2 clði; jÞ; cuði; jÞ� �
; i; j ¼ 1; 2; . . .;N:

Note that the linear constraints come from the property of rate matrices and the
‘interval’ constraints are due to the rectangularity of K3.

When the Markov chain X has two states, we can determine the optimal strategy
C� explicitly by solving the following pair of linear programming problems:

max
c11ðtÞ;c21ðtÞ

U1c11ðtÞþU2c21ðtÞ½ �;

s:t:

c11ðtÞþ c21ðtÞ ¼ 0; c11ðtÞ 2 clð1; 1Þ; cuð1; 1Þ� �
; t 2 T :

and
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min
c11ðtÞ;c21ðtÞ

U1c12ðtÞþU2c22ðtÞ½ �;

s:t:

c12ðtÞþ c22ðtÞ ¼ 0; c12ðtÞ 2 clð1; 2Þ; cuð1; 2Þ� �
; t 2 T :

The solutions of the pair of linear programming problems are

c�11ðtÞ ¼ clð1; 1ÞI U1�U2 [ 0f g þ cuð1; 1ÞI U1�U2\0f g;
c�21ðtÞ ¼ �c�11ðtÞ; t 2 T ;

and

c�12ðtÞ ¼ clð1; 2ÞI U1�U2 [ 0f g þ cuð1; 2ÞI U1�U2\0f g;
c�22ðtÞ ¼ �c�12ðtÞ; t 2 T :

The explicit form of the optimal strategy C� is, therefore

C�ðtÞ ¼ c�ijðtÞ
h i

i;j¼1;2;...;N
.

Note that Lh�;C�;p� /ðyÞ½ � ¼ 0. Then, it is not difficult to see that gðs; eiÞ, satisfy
the following system of coupled, first-order, linear ordinary differential equations
(ODEs):

dgðs; eiÞ
ds

� api þ alip
�
i �

1
2
a2r2i ðp�i Þ2 � ah�i rip

�
i

�

þ ðh�i � 1Þki
Z 1

0
ðeaz � 1ÞFeiðdzÞþ c�ii

�
gðs; eiÞþ

XN
j¼1;j 6¼i

gðs; eiÞc�ji ¼ 0;

ð7:4:44Þ

with terminal condition gðT ; eiÞ. Consequently, this is a system of backward ODEs.
For each i ¼ 1; 2; . . .;N, define

Kiðp�i ; h�i ; c�iiÞ :¼ api þ alip
�
i �

1
2
a2r2i ðp�i Þ2 � ah�i rip

�
i

þ ðh�i � 1Þki
Z 1

0
ðeaz � 1ÞFeiðdzÞþ c�ii:

Then a version of the variation-of-constant formula gives

gðs; eiÞ ¼ eKiðp�i ;h�i ;c�iiÞðT�sÞ þ
Z T

s
eKiðp�i ;h�i ;c�iiÞðu�sÞ XN

j¼1;j 6¼i

c�jigðu; ejÞ
 !

du: ð7:4:45Þ
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7.4.4 Solution to Problem II

In this section, we first present a general stochastic differential game which includes
problem II as a particular case. Then we give a verification theorem for the HJB
solution to the general game, and semi-analytical solutions to the optimal strategies
to problem II are derived under some assumptions.

Let S :¼ ðl; uÞ, for each l; u 2 R with l\u, so that S � E is the solvency region.
Write �S for the closure of S and s�pS ¼ inf t� 0 �Y �pj ðtÞ 62 Sf g for the bankruptcy time
associated with the portfolio process �p 2 �A. To simplify the notation, we suppress
the subscript �p and write sS ¼ s�pS . Let bðxÞ be a non-negative continuous function,
FðxÞ a real-valued bounded continuous function, and HðxÞ a real-valued function.
we define ð�h;C; �pÞ2H�K� �A by

�J
�h;C;�pð�yÞ :¼ E

�h;C
�y

Z sS

0
FðY�pðtÞÞe�

R t

0
bðY�pðsÞÞdsdtþHðY�pðsSÞÞe�

R sS
0

bðY�pðtÞÞdt
� 	

:

ð7:4:46Þ

Then the general stochastic differential game can be formulated as

UðyÞ ¼ sup
�p2�A

inf
ð�h;CÞ2H�K

�J
�h;C;�pð�yÞ

 !
: ð7:4:47Þ

Again, we consider Markov controls and assume that �hðtÞ :¼ �hðYðtÞÞ, CðtÞ ¼
CðYðtÞÞ and �pðtÞ ¼ �pðYðtÞÞ. We further suppose that the optimal strategies �h�ð�yÞ,
C�ð�yÞ and �p�ð�yÞ exist and that Uð�yÞ�� ��\1.

Let �H denote the space of function �hð�; �Þ : S � E ! ð�1;1Þ such that for each
ei 2 E, �hð�; eiÞ 2 C2ðSÞ. Write �hð�y1Þ :¼ ð�hðy1; e1Þ; �hðy1; e2Þ; . . .; �hðy1; eNÞÞ0 2 R

N .
Then, for each ð�h;C; �pÞ 2 H�K� �A, we consider the following partial differential

operator �L�h;C;�p
acting on �H:

�L�h;C;�p½�hð�yÞ� ¼ pðtÞþ rðtÞ�hþ �p lðtÞ � rðtÞð Þ � �h rðtÞ�p� rzðtÞð Þ� � @�h
@�y1

þ 1
2
ðr2ðtÞ�p2 þ 2qðtÞrðtÞrzðtÞ�pþ r2z ðtÞÞ

@2�h
@�y21

� bð�yÞ�hþ �hðy1Þ;C0y2h i;

ð7:4:48Þ

Then we give the following lemma.

182 7 Applications of Stochastic Differential Game Theory …



Lemma 7.4.4 Suppose �hð�yÞ 2 �H. Let τ be an (optional) stopping time such that

s ¼ sðxÞ\1;P�a.s. Assume further that �hðYðsÞÞ and �L�h;C;�p½�hðYðsÞÞ� are
bounded on s 2 ½0; s�, then

E
�h;C
�y ½e�

R t

0
bðY�pðsÞÞds�hðY�pðsÞÞ� ¼ �hð�yÞþE

�h;C
�y

Z s

0
e�
R s

0
bðY�pðuÞÞdu�L�h;C;�p½�hðY�pðsÞÞ�ds

� 	
ð7:4:49Þ

The proof of Lemma 7.4.4 resembles that of Lemma 7.4.1, so we do not repeat it
here.

The following theorem gives a verification theorem for the HJB solution for the
general game.

Theorem 7.4.3 Suppose there exists a function �/ð�; �Þ : S � E ! ð�1;1Þ such
that for each ei 2 E, / 2 ð:; eiÞC2ðSÞ \ CðSÞ, and a Markov control
ð�h�ð�yÞ;C�ð�yÞ; �p�ð�yÞÞ2H�K� �A such that

(1) �L�h;C;�p�ð�yÞ �/ð�yÞ� �þFð�yÞ� 0, for all ð�h;CÞ2H�K, �y 2 S � E;
(2) �L�h�ð�yÞ;C�ð�yÞ;�p �/ð�yÞ� �þFð�yÞ� 0, for all �p 2 �A, �y 2 S � E;
(3) �L�h�ð�yÞ;C�ð�yÞ;�p�ð�yÞ

/ðyÞ½ � þFð�yÞ ¼ 0, for all �p 2 �A, �y 2 S � E;
(4) on fsS\1g, Y�h;C;�pðsSÞ 2 @S � E, where @S is the boundary of S, and

lim
t!s�S

�/ðY�h;C;�pðtÞÞ ¼ HðY�h;C;�pðsSÞÞIfsS\1g;

(5) let �M denote the space of �G-stopping times sðxÞ� sSðxÞ, for all x2 X: The

family �/ðY�h;C;�pðsÞÞ
n o

s2�K
is uniformly integrable, for all �y 2 S � E and

ð�h;C; �pÞ2H�K� �A.
Then, for all �y 2 S � E

�/ðyÞ ¼ UðyÞ ¼ sup
�p2�A

�J
�h�;C�;�pð�yÞ ¼ inf

ð�h;CÞ2H
!

�K
�J
�h;C;�p� ð�yÞ ¼ �J

�h�;C�;�p� ð�yÞ:

ð7:4:50Þ

and ð�h�;C�; �p�Þ is an optimal Markov control.

The proof of Theorem 7.4.3 resembles that of Theorem 7.4.2.
In what follows, we derive the solution to Problem II. In this case, l ¼ 0, u ¼ 1,

FðxÞ ¼ 0 and bðxÞ ¼ 0. We also assume that r tð Þ ¼ 0, for each t 2 T . In this case,
the partial differential operator becomes
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�L�h;C;�p½�hð�yÞ� ¼ pðtÞþ �plðtÞ � �hðrðtÞ�p� rzðtÞÞ
� � @�h

@�y1

þ 1
2
ðr2ðtÞ�p2 þ 2qðtÞrðtÞrzðtÞ�pþ r2z ðtÞÞ

@2�h
@�y21

� bð�yÞ�hþ �hðy1Þ;C0y2h i:

ð7:4:51Þ

Firstly, the value function satisfies the following boundary conditions:

Uð�y1; �y2Þ ¼ 0; �y1 ¼ 0; ð7:4:52Þ

Uð�y1; �y2Þ ¼ 1; �y1 ! 1: ð7:4:53Þ

We try a solution of the following form:

Uð�yÞ ¼ jð�y2Þ �
cð�y2Þ
gð�y2Þ

e�gð�y2Þ�y1
� �

; ð7:4:54Þ

where gð�Þ : E ! R
þ , cð�Þ : E ! R

þ and jð�Þ : E ! R
þ are some functions.

The boundary conditions imply that

Uð�yÞ ¼ ð1� e�gð�y2Þ�y1Þ: ð7:4:55Þ

Note that FðxÞ ¼ 0. Conditions (1)–(3) of Theorem 7.4.3 read

inf
ð�h;CÞ2H�K

�L�h;C;�p�
Uð�yÞ� � ¼ �L�h�;C�;�p�

Uð�yÞ� � ¼ 0: ð7:4:56Þ

sup
�p2�A

�L�h�;C�;�p
Uð�yÞ� � ¼ �L�h�;C�;�p�

Uð�yÞ� � ¼ 0: ð7:4:57Þ

Note that

�L�h;C;�p½Uð�yÞ� ¼ gð�y2Þe�gð�y2Þ�y1 pðsÞþ �plðsÞ � �hðrðsÞ�p� rzðsÞÞ
�

� 1
2
ðr2ðsÞ�p2 þ 2qðsÞrðsÞrzðsÞ�pþ r2z ðsÞÞgð�y2Þ� þ Uðy1Þ;C0y2

� 
;

ð7:4:58Þ

where Uð�y1Þ :¼ ðUð�y1; e1Þ;Uð�y1; e2Þ; . . .;Uð�y1; eNÞÞ0 2 R
N .

The first-order condition for a minimum point �h� of �L�h;C;�p
Uð�yÞ� �

gives

�p�ð�y2Þ ¼
rzðsÞ
rðsÞ ¼

XN
i¼1

rzi
ri

� �
�y2; eih i: ð7:4:59Þ
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Similarly, the first-order condition for a maximum point �p� of �L�h;C;�p
Uð�yÞ� �

gives

�h�ð�y2Þ ¼
lðsÞ � ðqðsÞ � 1ÞrðsÞrzðsÞgð�y2Þ

rðsÞ : ð7:4:60Þ

As in the previous section, we have to determine a value C� 2 K to minimize
�L�h�;C;�p�

over all C 2 K. For each i ¼ 1; 2; . . .;N, let Ui ¼ Uð�y1; eiÞ. Write

U :¼ Uð�y1Þ. Then the partial differential operator �L�h�;C;�p�
acting on Uð�y1Þ is equiv-

alent to the following system of partial differential operators �L�h�;C;�p�

j acting on Uj

�L�h�;C;�p�

j ½Uj� ¼ gðejÞe�gðejÞ�y1 pj þ �p�lj � �h�ðrj�p� � rzjÞ
�

� 1
2
ðr2j ð�p�Þ2 � 2qjrjrzj�p

� þ r2zjÞgðejÞ
�þ XN

i¼1

UðiÞcijðtÞ; j ¼ 1; 2; . . .;N:

ð7:4:61Þ

Again, the minimization problem is equivalent to the following N linear pro-
gramming problems:

min
c1jðtÞ;c2jðtÞ;...;cNjðtÞ

XN
i¼1

UðiÞcijðtÞ; j ¼ 1; 2; . . .;N;

subject to the linear constraints

XN
i¼1

cijðtÞ ¼ 0;

and the ‘interval’ constraints

cijðtÞ 2 clði; jÞ; cuði; jÞ� �
; i; j ¼ 1; 2; . . .;N:

When the Markov chain X has two states the solutions of the system of linear
programming problems are

c�11ðtÞ ¼ clð1; 1ÞI U1�U2 [ 0f g þ cuð1; 1ÞI U1�U2\0f g;
c�21ðtÞ ¼ �c�11ðtÞ; t 2 T ;

and

c�12ðtÞ ¼ clð1; 2ÞI U1�U2 [ 0f g þ cuð1; 2ÞI U1�U2\0f g;
c�22ðtÞ ¼ �c�12ðtÞ; t 2 T :

7.4 The Optimal Investment Game of the Insurance Company 185



Consequently, the optimal strategy C� is, therefore, C�ðtÞ ¼ c�ijðtÞ
h i

i;j¼1;2;...;N
.

Note that �L�h�;C;�p�

j ½Uð�yÞ� ¼ 0. Then gðejÞ, j ¼ 1; 2; . . .;N, satisfy the following
system of N nonlinear equations:

gðejÞe�gðejÞ�y1 pj þ �p�lj � �h� rj�p
� � rzj

� �� 1
2

r2j ð�p�Þ2 � 2qjrjrzj�p
�

� �
gðejÞ

� 	

þ
XN
i¼1

e�gðeiÞ�y1c�ijðtÞ ¼ 0; j ¼ 1; 2; . . .;N:

7.5 Summary

We using a game theoretic model under linear Markov jump systems which
obtained from the previous chapters. Firstly, a risk minimization problem of port-
folio is considered in Markovian regime switching. And then, we obtained the
equilibrium solution of European option pricing problem under Markovian regime
switching. We adopted a robust approach to describe model uncertainty and for-
mulated the optimal investment problems as two-player, zero-sum, stochastic dif-
ferential games between the market and the insurance company, and deduced the
optimal strategy of closed game.
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