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Preface

When beginning the project of this book, we were wondering why the community
would be interested in reading it knowing that constrained control or limited input is
a field of abundant and various result papers and books. But, as the project was
evolving and the chapters contents making precise, we guessed and hoped that the
book would be read for the facts we try to clarify as follows: First, the book has as a
leading line the problem of constraints on the inputs which is widely studied these
last years but presents also different related problems in control of such systems.
Further, the book attempts to gather all the recent results about constrained inputs
that are becoming essential for practical reasons more than theoretical ones.
Moreover, we are interested in another kind of constraints, namely rate or increment
limitations that are becoming very challenging in control applications. Furthermore,
we tried in this book to present all eventual cases that may face an engineer or a
researcher in an application of control for constrained input systems. It can be
quoted that in the presence of limitations, one may be asked to deal with uncer-
tainties, non-measurable states, singularities, delay, two dimension systems, etc.
Hence, we will present the robustness of the obtained feedback controllers, the use
of observers or output feedback. We will also handle the problem of singular
systems and delay systems when the inputs are limited within given sets.
Two-dimensional systems, commonly known as 2D systems, will also be studied.

The aim of this book is to give an overview of all the works developed in our
team related to constrained control over last two decades. Major differences about
this book and works treating the problem of constrained inputs are as follows: First,
the constraints on increment or rate of control are introduced. The increment or rate
constraints are not nested as it is studied in similar works but both constraints, on
the input and its increment or rate, are in parallel. Second, positive invariance-based
results are given leading to algebraic conditions that are easy to check but with a
trials and error procedure. As presented, linear programming may be used to
overcome this withdrawing. Another way for avoiding this problem is the intro-
duction of LMI conditions. In fact, in this case with the given conditions, the

vii



stabilization problems become feasibility problems easily checked with the avail-
able software’s like MATLAB. For both cases of handling constrained control and
as it is the vein of all constrained control methods, the enlargement of initial
condition set is obtained. Third and not lastly as a second part, convex writing
of the closed-loop system having constraints on the input, introduced in the recent
literature, will be also used leading to LMI conditions to design stabilizing con-
trollers for such systems.

Marrakech, Morocco Abdellah Benzaouia
May 2017 Fouad Mesquine

Mohamed Benhayoun
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Notations

• For x 2 R
n a vector:

– jxj the vector of absolute value of x.
– xT its transpose.
– xþ ¼ ðxþ Þj and x� ¼ ðx�Þj for j ¼ 1; . . .; n, where ðxþ Þj ¼ supðxj; 0Þ and

ðx�Þj ¼ supð�xj; 0Þ.
– dxð:Þ denotes its derivative with respect to time in the continuous-time case

or xðtþ 1Þ in the discrete-time case.

• For two vectors x; y 2 R
n; x � y if xi � yi; i ¼ 1; . . .; n.

• For a matrix H ¼ ðhÞij i; j ¼ 1; . . .;m, the tilde transforms are defined by:

eHd ¼ H þ H�

H� H þ

� �
;

where H þ ¼ ðhþ Þij , H� ¼ ðh�Þij; i; j ¼ 1; . . .;m and

fHc ¼ H1 H2

H2 H1

� �

with:

ðH1Þii ¼ hii
ðH1Þij ¼ hþ

ij for i 6¼ j

�
and

ðH2Þii ¼ 0
ðH2Þij ¼ h�ij for i 6¼ j

�

• Hj; j ¼ 1; . . .;m, denotes the jth row of matrix H.
• rðHÞ denotes the spectrum of matrix H.
• kminðHÞ; kmaxðHÞ are the minimum and the maximum eigenvalue of H;

respectively.
• I is the identity matrix of appropriate size.
• D denotes the stability domain for eigenvalues, that is, the left half plane in the

continuous-time case (CTC) or the unit disk in the discrete-time case (DTC).
• intRn

þ is the interior of Rn
þ

• R
n� ¼ R

n � f0g
• The set MH denotes the set of non-negative matrices for the DTC and the set of

matrices with non-negative off-diagonal elements for the CTC (i.e., matrices H
such that hij � 0 8i 6¼ j).

• For a matrix H 2 MH we use H to note: H � I in the DTC, and H in the CTC.
• For two matrices A and B of R

n�m, A�B if Aði; jÞ�Bði; jÞ, i ¼ 1; . . .; n,
j ¼ 1; . . .;m

• For a matrix P of R
n�n P � 0, ðP 	 0Þ means P positive definite (positive

semidefinite, respectively).
• Acl denotes the closed-loop system matrix, while Acl

i represents the closed-loop
system matrix with a subscript.

xx Abbreviations and Notations



• 
 denotes the null matrix of appropriate dimension.
• Scalar g, vector e and I denote: g ¼ 2m; e ¼ ½1; . . .; 1�T 2 R

m; I ¼
f1; . . .; gg

• For X 2 R
n�n: Xsym ¼ XþXT

• � stands for the transpose of the non-diagonal element Y in the LMI,

X Y
� Z

� �
� 0

• For two matrices A 2 R
n�m and B 2 R

p�q, A� B denotes the Kronecker
product:

a11B . . . . . . a1mB
a21B a22B . . . a2mB
..
. ..

. ..
. ..

.

an1B . . . . . . anmB

2
6664

3
7775

• The notation , is used for defined equality.
• cofg stands for convex hull of fg.
• For a function:

U : ½�s; 0� ! R
n

t ! UðtÞ

we note:

kUðtÞkc ¼ sup
�s� t� 0

kUðtÞk

where the norm k k stands for the Euclidean norm or the induced matrix norm.
• Cn;s is the Banach space of continuous vector functions mapping ½�s ; 0� into

R
n with the topology of uniform convergence.

• xt 2 Cn;s denotes the restriction of xðtÞ to the interval t � s; t½ � translated to
�s; 0½ �.
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Introduction and Book Preview

In the field of dynamical control, and in the general case, stabilizing controllers
synthesis procedure may be depicted as follows:

• First of all, a model of the system is chosen.
• Goals and requirements of the control system are defined as stability first then

secondly performances like steady-state errors, time rising, time response,
attenuation levels for a class of signals, and so on…

• Adequate methods are followed for synthesis.
• Simulations are performed to test the obtained control system.
• The controller, as designed, is used for the real system.

For the previous steps of synthesis and during functioning, some problems may
occur like:

• The model used for the synthesis is different from the real plant. Two reasons
can cause such case like the model is only an approximation of the real system
and represent it in a limited zone for the used variables or some parameters may
vary when the system is on function.

• The output of the controller is too large for the input of the actuator.
• The variation of the controller output exceeds the ability of the actuator to

follow such changes.
• The state used for the model is not measurable and/or no device available or at

suitable costs.
• The states exceed the values used for obtaining the linear model, and hence, the

linear behavior is no longer valid.
• Some of the states may be related to the others as linear combination leading to

singularities in the functioning of the system.
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Hence, usually, real or physical plants, as quoted, are subjected to constrained
variables. The most frequent constraints are of saturation type: limitations on the
magnitude of certain variables. Most practical control problems are dominated by
control constraints. Actuator nonlinearities of saturation type are inherent to prac-
tically all systems. In fact, and as examples of actuators, one can cite the valves that
can operate only between fully open and fully closed positions, voltage and current
of servomotors that are limited in given ranges. Further, in several applications, the
system to be controlled works in the neighborhood of some operating condition
where a linearized model can provide a good approximation, but severe constraints
on actuator activity are present. As an afterthought in the design of the controller, it
can compromise the control goals. Furthermore, if the control contains an inte-
grator, control saturation leads to the popular phenomenon called integrator windup
and its consequences. Ignoring such constraints can be detrimental to the stability
and performances of the control system. Effectively, such systems may exhibit
some unexpected performance and can even become unstable if the saturation is not
taken into account in the system design steps. To avoid such problems, it becomes
necessary to take into account actuator saturation at the controller design phase.
Consequently, the class of systems with saturation has obtained great interest during
the last decades. Many different methods can be used, ranging from general non-
linear control design to saturating linear control. Other approaches deal with robust
global stabilization of a class of linear systems with input saturation via gain
scheduling or nonlinear feedback [119], and input delay [120–122]. It is worth
noticing here that the problem of constrained control of linear systems can be seen
as the control problem of nonlinear systems where the saturation is treated as a
locally sector-bounded nonlinearity [57, 64]. In these works and references therein,
absolute stability analysis tools such as circle and Popov criteria are used. Many
approaches that deal with linear feedback stabilization of linear systems subject to
input saturation may be quoted as:

a. The optimal control theory where the limitations on the control are taken into
account as constraints included in the optimization process [50].

b. The low and high gain-based approach presented by Lin and Saberi [72], where
a semiglobal stabilization is sought and is limited to null controllable systems
with bounded controls [107], that is, stabilizable systems with all the open-loop
poles in the closed left half plane.

c. The ‘1 optimization concept [34]. This technique calculates, with simple
methods, controllers for different kinds of constraints (limitations in magnitude,
slope, overshoot, undershoot, etc) [35, 91, 92, 109, 110].

d. The positive invariance approach where no criterion needs to be minimized.
Further, stability assumption on the open-loop system is not necessary. The
local nature of this approach can be regarded as semiglobal one for domains of
polyhedral type in comparison with the second approach.
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e. A convex writing of the constrained system as a linear combination of some
linear systems allowing saturation to take effect while guaranteeing asymptotic
stability [62].

The main feature of the approach (d) is to confine the state of the system to a set
where saturating control does not occur. Since the first paper of Gutman and
Hagander [55], conditions of positive invariance of polyhedral sets have been
investigated, for instance, by Benzaouia and Burgat [9], Bitsoris [22, 116], and
Chegancas [30] for the discrete-time case and by Benzaouia and Hmamed [10],
Blanchini [23, 25], and Vassilaki and Bitsoris [116] for the continuous-time case.
The application of such conditions to the state feedback control has also been
considered, and different kinds of controllers design were proposed by Benzaouia
and Burgat [9], Blanchini [23], Burgat and al. [28], Mesquine [79, 82], and Tan and
Gilbert [53]. Further, the use of this approach was also extended to the output
feedback by Castelan and Tarbouriech [30] and Mesquine and Benzaouia [80].
Besides, a complete characterization of the maximal contractively invariant ellip-
soids of linear systems under saturated linear feedback has been presented [70],
while the problem with nested saturation has been studied in [112]. Having as final
goal, the application of this simple method in an industrial environment, some
authors have also studied the robustness of regulators based on positive invariance
concept. Works presented in this book will focus on these different aspects, as
raised above, during different type of controllers synthesis while taking into account
asymmetric constraints on the control magnitude. It may be detailed as follows:

• Asymmetric constraints on the increment or rate of the control;
• Robustness design for controllers with both constraints on the control and

parameter uncertainties;
• Output feedback with constraints using or not observers;
• Singular systems;
• Delay systems;
• Two-dimensional systems with delays

.
The book will be interested, especially in two main approaches which have been

developed in the literature:

• The first is the so-called positive invariance approach, which is based on the
design of controllers which work inside a region of linear behavior where
saturation does not occur (see [8, 10, 24] and the references therein). The
stabilizing regulator gain F obtained with this approach is usually a solution to
the nonlinear algebraic equation FAþFBF ¼ HF, where matrix H satisfies
some main condition of positive invariance.

• The second approach allows saturation to take effect while guaranteeing
asymptotic stability (see [60, 61] and the references therein). This approach,
allowing the control to be saturated, leads to a bounded region of stability
which, although can be easily obtained by the resolution of a set of LMIs, yet is
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ellipsoidal and symmetric. Besides, necessary and sufficient conditions for
invariance of convex sets have been studied in [46], while [75] presents a N step
set invariance approach to analyze the stability of discrete-time saturated
systems.

The main challenge in these two approaches is to obtain a large enough domain
of initial states which ensures asymptotic stability of the system despite the pres-
ence of saturation [1, 3, 12, 53, 60]. Piecewise quadratic Lyapunov functions
approach to estimate the attraction domain for systems with dead-zones or satu-
ration has been presented in [38, 76]. Researchers are still interested in this topic by
developing new ideas to deal with [71].

As quoted above, the first problem that this book will focus on is the rate or
increment constraints. In fact, apart from saturation constraints, the book deals also
with different type of constraints, which were introduced while considering prac-
tical applications: incremental or rate constraints on the control variable. As it has
been pointed out [2], incremental input saturation is a serious challenge in many
automatic control applications, for example, in flight control [42]. In particular, it is
known [21] that they can induce a considerable destabilizing effect due to
phase-lag. The importance of incremental or rate constraints comes from the fact
that, for some processes, the rate of variables change is limited within given
bounds. These limits can arise from physical constraints that, if exceeded, could
damage the process. Lin [73] showed that all dynamical linear asymptotically null
controllable bounded input systems are semiglobally stabilizable through linear
feedback in the presence of both constraints. A method to stabilize a particular plant
in the presence of constraints on both input magnitude and increments was con-
sidered by Trygve et al. [114]. Other approaches have been presented, for example,
[45, 63, 74, and 115]. Most of the cited works consider only constraints of sym-
metric nature. However, the asymmetric character of the actuator rate or increment
constraints is very important in practical situations since these constraints are
inherently asymmetric: The speed of the actuator is usually different when
increasing or decreasing, because the source of the movement is different (in a
valve, a spring/air pressure).

The positive invariance approach was selected, for the first time, in [85] and [86]
to deal with this problem, where it gives simple methods to calculate constant state
feedback controllers with asymmetric constraints and disturbances. However, a
different method using the technique developed in [60] has been proposed to take
into account nested saturations on the magnitude of the control and its successive
derivatives [5]. This problem is different from that solved in the present work where
the two saturations are considered in parallel.

As precised before, the book will also focus on the same problem of saturation
on the control and asymmetric constraints on its increment or rate and in the context
of LMIs presented firstly in [16]. It is based on the previous results of [15, 60, 61,
85, and 86] where the constraints are symmetric.

On the other hand, it is well known that, during the last years, much progress has
been accomplished in the regulation methods to take into account model
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uncertainties. These uncertainties are generally induced by the difference between
the real behavior of the system in functioning and the behavior of the plant model
used to design the controller. Several techniques have been proposed in the liter-
ature, grouped in the theory of the robust control, for example, [43, 48, 65, 118] and
the references therein. In addition, during the last decades, combining constraints
and uncertainties is of increasing interest to researchers. In fact, the adopted models
containing constraints of these systems are often subject to uncertainties which find
their origin in the modeling and measurement errors or on the computation
approximations. Hence, it is necessary for the control theory to hold into account at
the same time constraints and uncertainties. In other words, it is necessary to find
robust stabilizing control laws that respect constraints. There are several approaches
proposed in the literature to solve this problem but here the positive invariance
approach is of interest. Indeed, this approach was extended to take into account
uncertainties, and hence, the robustness of such controllers is studied in [11, 23, 83,
84]. Considering the importance of linear programming in matrix algebra and
efficient algorithms to solve such problems in the literature ([34] for example), the
idea was to translate the results found within the framework of positive invariance
under algorithms of linear programming [7, 88, 116].

For the same goal, necessary and sufficient conditions of positive invariance are
re-formulated such that linear programming algorithms can be used to find robust
constrained regulators for both continuous-time and discrete-time linear systems.

The stability of singular or descriptor linear systems with input saturation and
asymmetric constraints is studied in this book. Singular systems have been of great
interest in the control literature since they can model many systems in electrical
circuits networks, robotic, and economics [37]. However, to the best of our
knowledge, few works were dedicated to the study of singular system with con-
straints on the control (see [51, 104] and the references therein). In these works,
necessary and sufficient conditions of positive invariance were given for singular
system with state constraint by using the Weierstrass transformation of the original
system on an equivalent reduced-order system. Currently, although much effort has
been made in the exploration of special properties for singular systems, almost the
studies are confined to the generalization of classical system theory. Some problems
of observers and synthesis of stabilizing controllers for singular linear systems can
be cited in this category [13–90], [51, 101, 104] and the references therein. This is
of interest in situations where the derivative can be measured and one wishes to
avoid high gain state feedback. In fact, the use of PD controllers has a long history
in industrial practice, as it is well known, where derivative controls are employed to
provide anticipatory action for overshoot reduction in the responses. Many works
have discussed the design of state and derivative feedback controllers for linear
systems (see [33, 44, 89] and the references therein). In [36], PD feedback is used to
accomplish the objective of shifting all controllable open-loop finite and dynamic
infinite modes of descriptor systems to desired finite points. Thus, necessary and
sufficient conditions of positive invariance for singular system with constraints on
the control and its rate by using a PD controller are presented. As a particular case,
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results for PD controllers for linear systems with constraints on the control and its
rate are obtained.

When the state is not available for the control, the output feedback or the use of
observers becomes necessary. Hence, reduced-order observer is introduced in the
case of singular linear systems with input saturation and asymmetric constraints.
Some problems of observers and synthesis of stabilizing controllers for singular
linear systems can be cited in this category [31–90, 101, 104] and the references
therein. The problem of constructing an observer for the singular system is an active
area for research since two decades: Works like [36, 37, 39, 40, 78, 103] and the
references therein may be cited. An observer that further respects the constraints on
the control, obtained only with the estimation of the state, will be constructed. The
earlier work on regular systems [81] is extended to singular systems.

On the other hand, the second possibility when the state is not available is the
use of an output feedback. Despite its apparent simplicity, the problem is still open.
A number of numerical procedures have been proposed for solving it since the work
of Kimura [66]. A survey was given by [108], and recent progress has been made
for the related problem of pole placement; see [49, 52] and the references therein.
However, less works were proposed for linear systems with actuator saturations. In
[56], a dynamic output feedback is considered, while in [13] and [30], the positive
invariance approach is used.

Static output feedback problem for linear systems subject to actuator saturation
will be also in interest thereafter. This work extends the results of [29, 61] where a
state feedback is used to the case of output feedback. A different proof of the main
result of [61] is obtained by using this technique. The synthesis of the controller by
static output feedback is also proposed by means of LMIs for linear systems subject
to actuator saturations. The proposed technique is completely different from all the
previous works cited before on the same subject. The obtained region of invariance
and contractivity is generally less conservative.

An attempt to solve the stabilization problem for asymmetrically constrained
systems but in the framework of LMIs is also presented. It is worth recalling that the
positive invariance approach may handle non-symmetrical constraints but the
obtained algebraic conditions cannot be written under LMI form. It is well known
that only works using constraints of symmetric nature as in [17, 55, 60, 61] can be
expressed under LMI form. However, the asymmetric character of the actuator
constraints, which is in concern in this book, is very important in practical situations
since these constraints are inherently asymmetric. Many attempts were developed to
emphasize LMIs and problems with asymmetric saturations but without great
success as in [14, 15]. Hence, the regulator problem for continuous-time linear
system with asymmetric constraints on the control in terms of an LMI problem is
addressed. Results of [55], easily written under LMIs but restricted to symmetric
constraints, are extended to systems with asymmetric constraints and formulated
under LMI form for the first time [20].

Nowadays, time delay in dynamical systems is well known as a source of
performance degradation and even instability. This issue, i.e., control of time delay
systems, has attracted the effort of automatic control community and continue
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attracting a lot of researcher work developing stability and stabilizability conditions
for time delay systems [26, 69, 95]. Combining the delay problem with the problem
of constrained control for one system is an attempt to approach a real system where
both saturating actuators and time delay may be present. Hence, some results about
control of linear systems with both time delay and saturating actuators can be found
in the literature. Not exhaustively [32, 58, 96, 113] may be cited. These works are
mainly based on measure matrix, complex Lyapunov equations, or still
Razmukhin’s approach and the set of initial condition where the stability of the
closed-loop system can be guaranteed is not given. In [99, 100, 111], the problem is
studied using a Lyapunov–Krasovskii technique firstly introduced in [67]. Writing
the saturating system as a convex combination of some linear systems is the
cornerstone of this approach.

For delay systems, this technique is also used in [99]. Hence, uniform bound-
edness in the presence of an additive external perturbation is studied. In this book,
the same problem is under study, using the approach of these last works. Hence,
two delay stability and stabilizability conditions are obtained.

In the last two decades, the 2D system theory has been paid considerable
attention by many researchers. The 2D linear models were introduced in the sev-
enties [47, 54] and have found many applications in digital data filtering, image
processing [105], modeling of partial differential equations [77], etc. Saturated
continuous 2D systems with multi-delays described by Roesser model will be
addressed in this book. The stabilization of this kind of systems has been exten-
sively studied in the literature for 1D (see [58, 59, 97] and the references therein).
This problem has already been studied for 2D systems by considering delay
independent and dependent stability and stabilization conditions [68] and [102].
However, all the studies on 2D delay systems are only available for discrete sys-
tems, except authors in [18], where the 2D continuous systems with delay are taken
without saturation. To the best of our knowledge, no works on saturated 2D con-
tinuous systems with delay exist before [18]. The objective will be to design
stabilizing state feedback controllers for this class of systems. To this end, quadratic
Lyapunov functions are used. In this context, sufficient conditions of stabilizability
under LMI form are presented.

Some case studies will also be in interest in the sequel. Practical plants in the
context of the previously presented results are studied.

The first application is devoted to a pH-process control in a tank. Robust con-
troller is deduced and tested in a real laboratory process.

The second application concerns the modeling and control of activated sludge
process. This plant is recognized as the most common and major unit process for
reduction of organic waste and has become a subject of great interest. Researchers
[4, 41, 93, 94, 117] have investigated different control strategies for the monitoring
of such processes. The development of effective control strategies on this kind of
wastewater treatment plants (WWTP) is hampered by the inherent nonlinearities,
the time-varying dynamics, and the lack of suitable instrumentation.

In fact and during the last decades, many investigations have been focused on
the control of the nitrogen and dissolved oxygen in an activated sludge reactor
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within a WWTP with different strategies. One may quote predictive control, optimal
control, and adaptive control [6, 98]. Note here that constraints on the control are
note handled, and further, all required measurements are assumed available. Apart
from this, one may also cite works about the same topic but limited to estimation
[27] and not the control. Furthermore, works combining estimation to control for
monitoring such processes can also be found [106]. However, constraints are not
taken into account during the design steps. Therefore, this application may be
thought as a generalization where constraints, estimation, and control are consid-
ered using the positive invariance concept together at the design stage. Then, the
objective is to apply positive invariance concept techniques to a WWTP [19, 87].
The obtained linearized model combines the problems of non-availability of the
state to measure with the limitations of some variables. The control is achieved by
an observer-based controller that can take into account constraints on the control
and on the error. The obtained linear model is worked out to meet all design
required conditions. The efficiency of the process monitoring is shown via simu-
lations with the real plant.

This book is composed of 11 chapters. Chapter 1 presents some preliminary
results used in the developments of the others. The robust constrained state and
control regulator problem is considered in Chap. 2. Necessary and sufficient con-
ditions of positive invariance are established. A linear programming approach is
presented in order to construct, for an uncertain constrained linear systems, a sta-
bilizing linear state feedback control. The control law transfers asymptotically to the
origin any initial state belonging to a given set, while constraints in the control
vectors are respected.

The regulator problem for linear uncertain systems having state and control
constraints is also considered. Necessary and sufficient conditions of positive
invariance of polyhedral domains are extended to the case of continuous-time
uncertain systems. Robust constrained regulators are then derived.

Chapter 3 is divided into two parts. The first one concerns the problem of
constraints on the control together with constraints on the control rate or increment.
Linear systems in state space form, in both the continuous-time and discrete-time
domains, are considered. Necessary and sufficient conditions are derived for
autonomous linear systems with constrained state increment or rate (for the
continuous-time case), such that the system evolves respecting rate constraints.
A pole assignment technique is then used to solve the inverse problem, giving
stabilizing state feedback controllers that respect non-symmetrical constraints on
both control and its increment or rate. An illustrative example shows the application
of the method on the double integrator problem.

The second part completes the first one by adding a bounded disturbance to the
system dynamics. This last part is devoted to the control of linear systems with
constrained control and rate or increment with additive bounded disturbances.
Hence, the obtained control law is within the admissible intervals for both the
control magnitude and its rate or increment and is robust against additive bounded
disturbances.
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Chapter 4 deals with the problem of singular continuous-time systems with
constraints on the control by using a state feedback controller. The problem of
controlling singular continuous-time systems with constraints on the control and its
rate, by using state and derivative feedback (proportional-derivative controllers), is
solved. The synthesis of the controller is presented using two methods: an exact
method based on non-symmetric Riccati equations and an approximate method
based on the solution of an algebraic equation. An example illustrates the feasibility
of the proposed approach. As a particular case, the extension to non-singular sys-
tems is also presented.

Chapter 5 deals with the problem of observer-based control design for both
regular and singular continuous-time systems with constraints on the control.
Necessary and sufficient conditions for the existence of such controllers are
obtained. The synthesis is presented using the solution of equation XAþXBX ¼
HX in the regular case and XAþXBXE ¼ HXE in the singular one.

Chapter 6 solves the problem of designing stabilizing regulators for linear sys-
tems subject to control saturation and asymmetric constraints on its increment or
rate, using reduced dimension LMIs developed on a reduced-order state space.
Compared with previous approaches, the proposed technique is valid for asym-
metric constraints on the increment or rate of the control, while the computing time
is improved by solving reduced dimension LMIs.

Chapter 7 presents sufficient conditions of asymptotic stability of discrete-time
linear systems subject to actuator saturation with an output feedback law. The
obtained results are given under LMI formulation. A new proof is presented to
obtain previous conditions of asymptotic stability. A numerical example is used to
illustrate this technique by using a linear optimization problem subject to LMI
constraints. The continuous-time case, with output feedback, is also presented as a
straightforward extension. Example is given to illustrate the obtained conditions.

Chapter 8 deals with the regulator problem for both discrete-time and
continuous-time linear system with asymmetric saturation on the control. The main
contribution of this chapter is to extend the available results, in the LMI form, for
symmetrical saturation to the case of unsymmetrical saturation. A new transfor-
mation for constrained input linear problem control is presented to deal with the
asymmetry of the constraints. Hence, LMI formalism is obtained for the first time
for asymmetrical saturation. An example is presented, in each case, to illustrate the
obtained results.

In Chap. 9, two results about saturating delay systems are presented. Both are
based on the convex writing of the system as convex combination of linear delay
systems. The first condition is delay independent and introduces the partitioning
of the delay interval to obtain a less conservative condition. The second is delay
dependent and it extends an improved existing condition to the case of saturating
systems.

Chapter 10 deals with the problem of stabilizability with saturated control of 2D
continuous systems with multi-delays. State feedback control is used. Sufficient
conditions for asymptotic stability are presented. The synthesis of the required
controllers is given under LMI form. An illustrative example is treated.
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The aim of Chap. 11 is to present case study where some of the presented results
are applied on real processes. First, a pH control in a tank is treated and robust
controller is derived using positive invariance techniques.

The second application is devoted to the control of a nonlinear biological
nitrogen removal process. Design steps of an observer-based control scheme
applied to the linearized model of a phenomenological model of the process are
illustrated. The estimation algorithm is combined with the control technique to
monitor the process. The goal of the control is the removal or at least the reduction
of organic waste. The control law is based on positive invariance concept that had
shown efficiency in handling control constraints. The efficiency of both the control
and the estimation is demonstrated via computer simulations.

The book is ended by some concluding remarks.
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Chapter 1
Preliminary Results

1.1 Introduction

In this chapter, all the needed material for the development in the sequel of this
book is presented. Hence, positive invariance concept is recalled in cases of both
continuous-time and discrete-time systems. The positive invariance concept remains
the more used during the last two decades ([3, 5, 6, 9, 11], and the references there
in). Further conditions guaranteeing it are studied. The pole assignment techniques
often used with positive invariance is also presented. Furthermore, state constraints
and D-positive invariance are reminded. Singular systems and saturating systems are
also in interest in this chapter.

1.2 Constrained Control

1.2.1 Discrete-Time Systems

In this section, we deal with linear discrete-time systems described by:

xk+1 = Axk + Buk, (1.1)

with k ∈ N, x is the state vector in Rn and u is the constrained control satisfying

uk ∈ Ω ⊂ R
m, m ≤ n. (1.2)

As it generally occurs in practical situations, the set of admissible controls Ω is an
asymmetric polyhedral set defined by:

Ω = {
u ∈ R

m/ − umin ≤ u ≤ umax , umax , umin ∈ R
m
+
}
. (1.3)
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Matrices A and B are constant and satisfy the assumption:

(A, B) is stabilizable. (1.4)

In order to study the problem control design under inequality constraints, we follow
the approach adopted by [15]. Let us first consider the unconstrained case where the
regulator problem for system (1.1) consists in the design of a feedback law:

uk = Fxk, with F ∈ R
m×n . (1.5)

Applying the control law as defined above, system (1.1) becomes:

xk+1 = (A + BF)xk = Acl xk (1.6)

Let x(k, xo) be the motion of system (1.6), at time k, starting at xo.
Generally speaking, the matrix F is chosen in order to speed up the closed-loop

system dynamics with (1.6) asymptotically stable, that is:

ρ(A + BF) < ρ(A) and ρ(A + BF) < 1 ,

rank(F) = m

In the constrained case, the feedback law is defined by:

uk = sat (Fxk) =
⎧
⎨

⎩

umax for Fxk > umax

Fxk for Fxk ∈ Ω

−umin for Fxk < −umin

(1.7)

This feedback law implies two possible models for the system in the closed loop:

(i) the linear model:

xk+1 = (A + BF)xk = Acl xk, for Fxk ∈ Ω, (1.8)

(i i) the nonlinear model:

xk+1 = Axk + Bsat (Fxk), for Fxk /∈ Ω. (1.9)

Both representations are obtained in two different regions of the state space.
The approach we deal with in this section consists in proceeding in such a way

that the model (1.8) remains valid every time. This is only possible if the state is
constrained to evolve in a specified region defined by: F−1 Ω = D(F, umax , umin).
Where F−1 Ω stands for the inverse image of the Ω without the requirement of the
invertibility of F . From (1.3), (1.7) and (1.8), the set of admissible states is defined as:

D(F, umax , umin) = {x ∈ R
n/umin ≤ Fx ≤ umax ; umax , umin ∈ R

m
+}. (1.10)
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Note that this domain is unbounded in the general case when m < n.
Clearly, if xk ∈ D(F, umax , umin) we may get xk+1 /∈ D(F, umax , umin).
The fact that the state remains in given sets can be meant in the sense of the

following definitions.

Definition 1.1 A subset D of Rn is said to be positively invariant with respect to
(w.r.t.) the system (1.1) and (1.2) if for every initial state xo ∈ D , every admissible
sequence:

Uk = {uo, u1, . . . , uk−1; ui ∈ Ω} ,

the motion x(xo, Uk, k) ∈ D , for every k ∈ N.

Definition 1.2 A subset D of Rn is said to be:

• contractive w.r.t. the system (1.1) and (1.2), if for every xk ∈ ∂(τkD), there
exists τk+1 > 0, satisfying τk+1 < τk such that xk+1 ∈ ∂(τk+1D), for every
admissible control uk and k ∈ N. If τk < 1 (resp. τk > 1), we say that the set
D is in-contractive (resp. out-contractive) w.r.t. the system.

• attractive for a subset T of Rn w.r.t. the system (1.1) and (1.2) if, for every
xo ∈ T \D , there exists ko ∈ N such that x(xo, Uk, k) ∈ D , for every
k ≥ ko, and every admissible sequence Uk .

• globally attractive w.r.t. the system (1.1) and (1.2) if T = R
n .

Note that the contractivness property defined here is a one step contractivity.
Further, if a Lyapunov function V (x) is known for the system (1.8), then there

always exists a scalar c ∈ intR+ such that the set:

DL = {x ∈ R
n / V (x) ≤ c}, (1.11)

is a subset of D(F, umax , umin).
In the approach proposed by Gutman and Hagander [15], the necessity of the

positive invariance property of domain DL w.r.t. the system (1.8) ( i.e., Acl DL ⊂
DL ), when we are interested in achieving (1.12), requires one to find conditions
under which the setD(F, umax , umin) is positively invariant w.r.t. the system (1.8).
This will be the main purpose of this section.

Hence, for every xk ∈ DL ⊂ D(F, umax , umin), we have uk ∈ Ω; consequently,
the model (1.8) remains valid. Further, since V (x) is a Lyapunov function for the
system (1.8), then for every x ∈ Do ⊂ DL , where Do denotes the set of admissible
initial states, we obtain x(k, xo) ∈ DL , ∀ k ∈ N and x(k, xo) → 0 as k goes to ∞.

It may be noted, from (1.3), that the set D(F, umax , umin) is generally of a
polyhedral asymmetric nature. Thus, the largest domain of admissible initial values
of system (1.1) is obtained if:

Do = DL = D(F, umax , umin). (1.12)

The use of a quadratic Lyapunov function only allows one to obtain an ellipsoidal
stability domain [15]. The idea of constructing the largest polyhedral stability
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domainDL ⊂ D(F, umax , umin)was put forward by [13] by using simplicial cones.
Its formulation in the symmetrical case was given by [29] who gives necessary and
sufficient conditions for the set D(F, umax , umin) with umax = umin > 0 to be
positively invariant w.r.t. the system.

In the subsequent paragraphs of this section, the necessary and sufficient condi-
tions allowing the design of a regulator for linear discrete-time systems with sym-
metric and asymmetric constrained control will be presented.

Define first, the null space K er(F) of F as follows:

K er(F) = {
x ∈ R

n / Fx = 0, F ∈ R
m×n

}
. (1.13)

Consider the following state transformation,

zk = F xk, F ∈ R
m×n, (1.14)

then, from (1.8), one can obtain,

zk+1 = F(A + BF)xk . (1.15)

If a matrix H ∈ R
m×m exists such that:

FAcl = HF, (1.16)

or equivalently,
FA + FBF = HF,

the n-order dynamical system (1.8) can be transformed to an m-order dynamical
system given by:

zk+1 = Hzk, zk ∈ R
m, (1.17)

and domain (1.10) becomes:

D(I, umax , umin) = {
z ∈ R

m/ − umin ≤ z ≤ umax , umax , umin ∈ R
m
+
}
. (1.18)

The positive invariance of domain (1.18) implies necessarily the stability of H .
Further, comparing (1.10) with (1.18) leads to

xk ∈ D(F, umax , umin) iff zk ∈ D(I, umax , umin) ∀ k ∈ N. (1.19)

It is obvious, that in this case, the domain (1.10) is positively invariant (resp. posi-
tively invariant and contractive) w.r.t. the system (1.8) if and only if domain (1.18)
is positively invariant (resp. positively invariant and contractive) w.r.t. the system
(1.17).

In this approach, matrices A, B, and F are given while matrix H is obtained
as a solution to Eq. (1.16). This approach is known as the direct approach and is
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based on the state transformation (1.14) leading to Eq. (1.16) and the transformed
dynamical system (1.17) with domain (1.18) and property (1.19). Hence, a necessary
and sufficient condition for domainD(I, umax , umin) to be positively invariant w.r.t.
the system (1.17) is now presented.

Theorem 1.1 ([7]) The subsetD(I, umax , umin) ofRm defined by (1.18) is positively
invariant (resp. positively invariant and contractive) w.r.t. the system (1.17) if and
only if:

H̃dU ≤ U (resp. H̃dU < U ), (1.20)

with

H̃d =
[
H+ H−
H− H+

]
(1.21)

U =
[
umax

umin

]
(1.22)

and

H+
i j = sup(0, Hi j ), H−

i j = sup(0, −Hi j ), for i, j = 1 . . . m. (1.23)

Comingback to the initial system, thepositive invarianceof domainD(F, umax , umin)

given by (1.10) w.r.t system (1.17) can be obtained as:

Theorem 1.2 ([5, 7]) The domain D(F, umax , umin) given by (1.10) is positively
invariant w.r.t. system (1.8), if and only if there exist a matrix H ∈ Rm×m, such that

F A + F B F = H F (1.24)

∼
Hd U ≤ U (1.25)

with
∼
Hd and U are defined by (1.21) and (1.22).

As pointed out above, the use of quadratic Lyapunov function may be restrictive in
the sense of the obtained stability domain. Consequently, a non-quadratic Lyapunov
function for system (1.17) is presented here. Consider the positive definite non-
quadratic function:

V (z) = Max
i

max

{
z+
i

wi
1

,
z−
i

wi
2

}
(1.26)

V (z) must satisfy the following necessary and sufficient conditions in order to be a
Lyapunov function for the system (1.17):

Theorem 1.3 ([5]) The function V(z) given by (1.26) is a Lyapunov function of
system (1.17) if and only if:
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H̃dϑ ≤ ϑ

where: ϑ t = [wt
1 wt

2] with w1,w2 ∈ intRm+.

It is worth noting that vector ϑ can be chosen as ϑ = U , when constraints are
considered.

1.2.2 Continuous-Time Systems

This section recalls the extension of the previously presented results in the discrete-
time case to the continuous-time one. Consider the linear continuous-time system
represented by the following state-space model:

·
x(t) = Ax(t) + Bu(t) (1.27)

where x(t) ∈ R
n denotes the state vector, u(t) ∈ Ω ⊂ R

m is the control input
restricted (by saturation) to evolve in the polyhedral set given by (1.3).

Definition 1.3 A set S of Rn is positively invariant w.r.t. motions of the system
(1.27), if for every xo(to) ∈ S, x(t, xo, to) ∈ S , ∀t > to.

Similarly to the discrete-time case, when using a state feedback control law:

u(t) = Fx(t), F ∈ R
m × n with rank(F) = m (1.28)

that stabilizes the system
·
x(t) = (A + BF)x(t) (1.29)

induces the following set of linear behavior in the state space: Positive invariance
conditions are recalled as follows:

Theorem 1.4 ([5])DomainD(F, umax , umin) given by (1.10) is positively invariant
w.r.t. system (1.29), if and only if there exist a matrix H ∈ Rm×m, such that

F A + F B F = H F (1.30)

∼
Hc U ≤ 0 (1.31)

with

∼
Hc =

[
H1 H2

H2 H1

]
and U =

[
umax

umin

]
(1.32)

where
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H1 =
{
hll for l = k
h+
lk for l 
= k, where h+

lk = sup(hlk, 0)

H2 =
{
0 for l = k
h−
lk for l 
= k, where h−

lk = sup(−hlk, 0)

(1.33)

Secondly, to present a non-quadratic Lyapunov function, consider the autonomous
linear continuous-time system:

·
z(t) = Hz(t), (1.34)

and the positive definite non-quadratic function (1.26). V (z)must satisfy the follow-
ing necessary and sufficient conditions in order to be a Lyapunov function for the
system (1.34):

Theorem 1.5 ([5]) Function V(z) given by (1.26) is a Lyapunov function of system
(1.34) if and only if:

H̃cϑ ≤ 0

where ϑ t = [wt
1 wt

2] with w1,w2 ∈ intRm+.

It is worth noting that vector ϑ can be chosen as ϑ = U , when constraints are
involved.

1.3 Resolution of Equation X A+ XBX = HX

From the development above, the equation:

X A + X B X = H X (1.35)

appears as a key tool to the solution of the constrained control problem and is central
in the proposed positive invariance approach. It is the pole assignment procedure that
fits well with this kind of problems. It is called inverse procedure by opposition to
the direct one since the matrix H is now given and the feedback X or say F is to be
determined. Consider the following constrained system:

δx(·) = Ax(·) + Bsat (u(·)) (1.36)

where

δx =
{

ẋ(t) for CTC
x(k + 1) for DTC

and assume that:
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• (AS1): The pair (A, B) is controllable.
• (AS2): The matrix A has n − m stable eigenvalues.

We present, hereafter its detailed solution. In fact, the development below gives the
necessary and sufficient condition of the existence of a non-trivial solution of (1.35)
with the assumption (AS2), that is Λ2 ⊂ σ(A) where:

Λ2 = {
λ j ∈ C / λ j 
= 0, λ j = λl, j, l = m + 1, ..., n

}

the associated eigenvectors ξ j are such that
Aξ j = λ jξ j , j = m + 1, ..., n.

ξm+1, ..., ξn are linearly independent.

Give a diagonalizable matrix H ∈ R
m×m satisfying the following assumptions:

Λ1 = σ(H) = {
λi ∈ C/λi 
= 0, λi = λl i, l = 1, ...,m

}
(1.37)

Hθi = λiθi
Bθi 
= 0

}
i = 1, ...,m (1.38)

θ1, ..., θm are linearly independent (1.39)

Λ1 ∩ σ(A) = ∅ (1.40)

The eigenvectors of the unknown matrix A + BX are given by:

{
ζi = (λi In − A)−1Bθi , i = 1, ...,m
ζ j = ξ j , j = m + 1, ..., n.

(1.41)

Theorem 1.6 ([6, 7]) For a given matrix H satisfying (1.37)–(1.40), the following
statements are equivalent:

• There exists a unique full rank solution F to equation (1.35) given by:

F = [
θ1 θ2 ... θm 0m+1 ... 0n

]
[ζ1 ζ2 ... ζn]

−1 (1.42)

• Vectors ζi , i = 1, ..., n given by (1.41) are linearly independent.

The solution of Eq. (1.35) is needed to design admissible controllers for constrained
both continuous-time and discrete-time systems (1.36). This solution is improved in
[1, 21].

Remark 1.1 Without loss of generality, it was assumed that the system possesses
(n − m) stable eigenvalues. In fact, if this is not true, it is always possible to aug-
ment the representation as follows:

Let v ∈ Rbe a vector of fictitious inputs.Hence, systems (1.36) can be transformed
as follows:
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δx(·) = Ax(·) + [
B 0

]
[
u(·)
v(·)

]
(1.43)

It should be noted that this augmentation limits the domain of linear behavior of
the closed-loop system, but it is always possible to soften the fictitious limitations
to enlarge the domain. Henceforth, for the obtained square system the problem of
(n − m) stable eigenvalues is eliminated and controllability is not affected.

1.4 Constrained State and Control

In this section, in addition to constraints on the control variables, constraints on the
state are considered. In fact, in general cases, the system dynamics are nonlinear and
to obtain a linear model state variables are limited within given sets. Here we present
results related to such problems that is taking into account state together with control
constraints in the phase of controllers synthesis. For presentation brevity, discrete-
time and continuous-time systems are assembled in the same notations using the
operator δ. Consider the linear system represented by:

δx(t) = Ax(t) + Bu(t) (1.44)

where x(t) ∈ R
n and δ stands for x(t + 1) for discrete-time systems and

·
x(t) for

continuous-time systems. The state vector belongs to the polyhedral set of Rn , con-
taining the origin in its interior, defined by:

D(G, ω) = {x ∈ R
n/ Gx ≤ ω, G ∈ R

g×nω ∈ R
g∗
+ g ≥ n, rank(G) = n} (1.45)

and u(t) ∈ Ω1 ⊂ R
m is the input vector constrained to evolve within the polyhedral

set Ω1 of Rm where:

Ω1 = {u ∈ R
m / u ≤ ρ, ρ ∈ R

m∗
+ } (1.46)

Using a linear state feedback control law

u(t) = Fx(t), F ∈ R
m × n (1.47)

such that all initial states within domain D(G, ω) are transferred asymptotically to
the origin while the control respects constraints (1.46).

The feedback control law (1.47) induces a domain of admissible states given by:

D(F, ρ) = { x ∈ R
n, Fx ≤ ρ} (1.48)

The property of control admissibility for all x ∈ D(G, ω) can be expressed as the
following polyhedral inclusion
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D(G, ω) ⊆ D(F, ρ) (1.49)

If control constraints are respected, closed-loop behavior is linear and is given by:

δx(t) = (A + BF)x(t)

= Acl x(t) (1.50)

The linear constrained regulator problem as stated above has a solution if and only
if the assertions below hold true [26, 28]:

1 Matrix (A + BF) is asymptotically stable.
2 D(G, ω) is positively invariant w.r.t. system (1.50).
3 D(G, ω) ⊆ D(F, ρ).

In order to formulate this problem as a linear programming problem, the Haar’s
lemma [16] is used:

Lemma 1.1 Let P ∈ R
n×m, Q ∈ R

l×m be real matrices, p ∈ R
n and q ∈ R

g be
column vectors. For D(P, p) 
= ∅, the following assertions are equivalent:

D(P, p) = {x ∈ R
m : Px ≤ p} ⊂ D(Q, q) = {x ∈ R

m : Qx ≤ q}
∃ H ∈ R

l×n with nonnegative entries such that Q = HP and Hp ≤ q.

This lemma translates the inclusion between polyhedral sets as well as the positive
invariance conditions, to linear inequalities. These inequalities are useful to construct
a linear programming algorithm that enables to compute the stabilizing state gain
feedback F .

By virtue of the Lemma 1.1, it is easy to proof in a different way [17, 27] (for
the discrete-time case) the necessary and sufficient condition of positive invariance
given as follows [25]:

Proposition 1.1 D(G, ω) is positively invariant set w.r.t. motion of system (1.50) if
and only if there exists a matrix H ∈ MH such that:

HG = G(A + BF) (1.51)

H ω ≤ 0. (1.52)

where MH , H denote, respectively, the set of nonnegative matrices and H − I in
the continuous-time case; whereas MH in the DTC, H stand, respectively, for the
set of matrices with nonnegative off diagonal elements and matrix H.

Remark 1.2 For the non-symmetrical case where the state domain of constraints is
given by the following form:

D(G , ω1, ω2) = {x ∈ Rn, / − ω2 ≤ G x ≤ ω1 ; ω1, ω2 ∈ R
l
+} (1.53)

can be written as the form (1.45), with:
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G =
[
G
− G

]
and ω =

[
ω1

ω2

]
(1.54)

1.5 Positive Invariance for Non Autonomous Systems

In this section, we will derive a result for the continuous-time case similar to that
obtained by [3] for the discrete-time case. For this, let us consider the discrete-time
system:

x(k + 1) = Ax(k) + Bu(k), (1.55)

where x represents the state vector in Rn , u is the control constrained to lie in subset
Ω given by (1.3), with (m ≤ n). A and B are matrices of appropriate sizes. Let us
define also the state domain given by:

D(I, xmin, xmax ) = {x ∈ R
n,−xmin ≤ x ≤ xmax , xmin, xmax ∈ R

n
+} (1.56)

Furthermore, we assume that:

(A, B) is stabilizable (1.57)

Then consider the set given by (1.56); the motion of the system (1.55) does not leave
the domain D(I, xmin, xmax ) for every initial condition xo ∈ D(I, xmin, xmax ) if and
only if the conditions given in the following theorem hold true.

Theorem 1.7 ([2]) Domain (1.56) (respectively intD(I, xmin, xmax )) is positively
invariant w.r.t. the motion of system (1.55) if and only if

Ãdχ + B̃dU � χ, (respectively < χ) (1.58)

where χ =
[
xmax

xmin

]
and U =

[
umax

umin

]
, Ãd B̃d are defined by (1.21)–(1.23).

Now, we introduce a lemma that connects the continuous-time case to the discrete
one, such that one can easily extend condition (1.58) to the continuous-time case.

Let us consider the continuous-time system given by:

ẋ(t) = Ax(t) + Bu(t) (1.59)

Lemma 1.2 The domain intD(I, xmin, xmax ) is positively invariant w.r.t. the motion
of continuous-time system (1.59) if and only if it is positively invariantw.r.t. themotion
of the approximating discrete-time system given by:

x(k + 1) = (I + τ A)x(k) + τ Bu(k), (1.60)
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for some τ that satisfies:

0 < τ < in f (1/|aii |),∀i ∈ [1 n], such as aii < 0 (1.61)

Remark 1.3 Lemma 1.2 is a restatement of Theorem 2.2 of [10]. Here, we give a
different proof for completeness.

Proof:
Sufficiency: We assume that the domain intD(I, xmin, xmax ) is positively invariant
w.r.t to the motion of system (1.60) for some τ satisfying condition (1.61). Consider
a current state x(t) ∈ intD(I, xmin, xmax ), a Taylor development of the solution of
the continuous-time system (1.59) is given by:

x(t + τ) = x(t) + τ(Ax(t) + Bu(t)) + ν(τ) (1.62)

where ν/τ → 0 when τ → 0. Let us denote ξ(k) = x(t) and v(k) = u(t) and the
discrete-time system:

ξ(k + 1) = (1 + τ A)ξ(k) + τ Bv(k),

which admits intD(I, xmin, xmax ) as a positively invariant set, hence the state
ξ(k + 1) ∈ intD(I, xmin, xmax ). This allows us to write:

−xmin < ξ(k + 1) < xmax ,

which is equivalent to:

−xmin < x(t) + τ(Ax(t) + Bu(t)) < xmax ,

or similarly
−xmin + ν(τ) < x(t + τ) < xmax + ν(τ),

Dividing by τ , one can write:

−xmin + ν(τ)

τ
<

x(t + τ)

τ
<

xmax + ν(τ)

τ
(1.63)

and considering the right-hand side of (1.63), there always exists α < 0 such that:

x(t + τ) − xmax

τ
− ν(τ)

τ
� α < 0,

Or equivalently,
x(t + τ) − xmax

τ
≤ α + ν(τ)

τ
,
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and because ν(τ )

τ
vanishes to 0 when ν → 0, we can always find ν0 ∈]0, τ [ such that:

x(t + τ̄ ) − xmax

τ̄
≤ α < 0, ∀τ̄ ∈]0, τ0[,

that is, x(t + τ̄ ) < xmax . The same reasoning for the left-hand side of (1.63) allows
us to write:

x(t + τ̄ ) ∈ intD(I, xmin, xmax ) for τ̄ > 0.

As a consequence, (intD(I, xmin, xmax )) is positively invariant with respect to the
motion of the continuous-time system (1.59).

Necessity: Let us assume that the domain intD(I, xmin, xmax ) is positively invariant
w.r.t the motion of continuous-time system (1.59). Consider the non-quadratic and
non-symmetric Lyapunov function [5] given by:

V (x) = max{ x+
i

(xmax )i
,

x−
i

(xmin)i
} (1.64)

For all x ∈ intD(I, xmin, xmax ) we know that V̇ (x) � 0 which implies that [5]:

V (x + εẋ) � V (x), ∀ε > 0 (1.65)

In particular, for ε = τ

V (x + τ ẋ) � V (x),

V (x + τ(Ax + Bu)) � V (x),

V ((I + τ A)x + τ Bu) � V (x)

Which is equivalent to writing that:

V (x(k + 1)) � V (x(k)),

respectively to the discrete-time system (1.60). This permits us to state that V (x)
is a Lyapunov function for system (1.60), and that the domain intD(I, xmin, xmax )

is positively invariant w.r.t system (1.60), because it can be obtained as the set of
x ∈ R

n such that V (x) < 1 [4]. �
In order to introduce an important result from the literature, we consider the

continuous-time system (1.59) with a saturated state feedback:

u(t) = sat (Kx(t)), K ∈ R
m×n, rank{K } = m. (1.66)

The saturation operator divides the state space into two regions:
(a) the polyhedral domain D(K , umax , umin) given by:
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D(K , umax , umin) = {x ∈ R
n/ − umin � Kx � umax ; umax , umin ∈ R

m
+ − {0}},

(1.67)
where the system behavior in a closed loop is linear:

ẋ(t) = (A + BK )x(t). (1.68)

(b) the domainRn/D(K , umax , umin)where the closed-loop behavior is nonlinear.
If one constrains the state to evolve into the domain D(K , umax , umin) (i.e., the
domain D(K , umax , umin) is positively invariant), control saturation does not occur
and linear behavior in the closed loop is guaranteed. Consequently, if the matrix K
is chosen such that:

Re(λi ) � 0, i = 1, ..., n , (1.69)

where λi are the closed-loop eigenvalues, the asymptotic stability of system (1.59)
with state feedback (1.66) is achieved. A necessary and sufficient condition of posi-
tive invariance of domain D(K , umax , umin) is given below.

Now, we introduce a necessary and sufficient condition of positive invariance of
domains of type intD(I, xmin, xmax ) w.r.t system (1.59) in the open-loop.

Theorem 1.8 Domain intD(I, xmax , xmin) is positively invariant w.r.t the motion of
system (1.59) if and only if:

Ãcχ + B̃dU < 0. (1.70)

where Ãc and B̃d are defined by (1.32) and (1.21), respectively.

Sufficiency: The domain intD(I, xmax , xmin) is positively invariant with the motion
of the system (1.59) and (1.57) iff it is positively invariant w.r.t the motion of the
approximating discrete-time system (1.60). According to the Theorem 1.7, this is
equivalent to:

Γ̃d(τ )χ + τ B̃dU < χ, (1.71)

where
Γ (τ) = (I + τ A) (1.72)

As τ satisfies the condition (1.61), one can write both quantities (I + τ A)+ and
(I + τ A)− as follows:

(I + τ A)+ = I + τ A1, (1.73)

(I + τ A)− = I + τ A2, (1.74)

Equation (1.71) becomes
τ( Ãcχ + B̃dU ) < 0, (1.75)

and sine τ is positive, this leads to:
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Ãcχ + B̃dU < 0, (1.76)

Necessity. Assume that the condition (1.70) holds, then let us choose a scalar ε as
follows:

0 < ε < in f (1/|aii |), for aii < 0. (1.77)

Multiplying the condition (1.70) by ε > 0 does not change the inequality, and we
obtain

ε( Ãcχ + B̃dU ) < 0, (1.78)

Adding the vector χ to both sides of the inequality allows us to write

χ + ε( Ãcχ + B̃dU ) < χ. (1.79)

From above, it becomes obvious that:

Γ̃d(ε) � χ + ε Ãcχ < χ − ε B̃dU. (1.80)

or equivalently
Γ̃d(ε)χ + ε B̃dU < χ, (1.81)

and according to Theorem 1.7, this implies that the domain intD(I, xmax , xmin) is
positively invariant w.r.t the discrete-time system given by:

x(k + 1) = (I + εA)x(k) + εBu(k), (1.82)

andbyusingLemma1.2, onemayconclude that intD(I, x1, x2) is positively invariant
w.r.t the motion of the continuous-time system (1.59).

1.6 D-Positive Invariance

This section presents the extension of results of positive invariance without distur-
bances [24] to the case where the system is subject to additive bounded disturbances
as it is a frequent situation in practice. These results can be seen as a direct application
of results of the previous section.

Consider the linear time invariant autonomous system with additive bounded
disturbances given by:

δz(t) = H z(t) + E p(t), z(to) = zo (1.83)

where z ∈ R
m is the state, constrained to evolve in the domain:

Dz = {z ∈ R
m/ − zmin ≤ z(t) ≤ zmax, zmin, zmax ∈ intRm

+} (1.84)
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and p(t) is the disturbance, bounded in the domain:

DP = {p(t) ∈ R
p/ − pmin ≤ p(t) ≤ pmax, pmin, pmax ∈ R

p
+} (1.85)

Further, we denote:

ϑ =
[
zmax

zmin

]
;� =

[
pmax

pmin

]

Now, we recall the definition ofDP -positive invariance of domainDz , which is very
useful for the sequel.

Definition 1.4 Domain Dz given by (1.84) is DP -positively invariant w.r.t. motion
of system (1.83) if for all initial conditions zo ∈ Dz, the trajectory of the system
z(t, to, zo) ∈ Dz for all p(t) ∈ DP , t > to.

DP -positive invariance conditions have already been reported in [3, 9] for the
discrete-time case and in [23] for the continuous-time case. Let us recall these con-
ditions hereafter:

Theorem 1.9 ([9, 23]) Domain Dz is DP-positively invariant w.r.t. motion of the
system with additive disturbances (1.83) if and only if matrix H satisfies:

H̃c ϑ + Ẽd � ≤ 0 for the continuous-time case (1.86)

H̃d ϑ + Ẽd � ≤ ϑ for the discrete-time case (1.87)

where H̃c and ˜(·)d are defined by (1.32) and (1.21), respectively.

Evolution of the autonomous system (1.83) will respect constraints on the state z(t)
if domain Dz given by (1.84) is DP -positively invariant.

1.7 Saturated Control

In all the results presented above, saturation is avoided. In opposition, inwhat follows
saturating control is permitted. Hence, modeling the obtained nonlinear system as a
convex combination of a set of linear systems is the key to solve such cases [12, 19].
Further, stability conditions are revisited with this writing of the system. Consider
the system:

δx(t) = Ax(t) + Bsat (u(t)) (1.88)

with the state feedback:
u(t) = Fx(t), F ∈ R

m × n (1.89)

Define the subsets of Rn ,

ε(P, ρ) = {x ∈ R
n | xT Px ≤ ρ, ρ > 0} (1.90)
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L (F) = {x ∈ R
n | |Fj x | ≤ 1, 1 ≤ j ≤ m} (1.91)

with P a positive definite matrix and Fj the j th row of the matrix F ∈ R
m×n . ε(P, ρ)

is an ellipsoid set while L (F) is a polyhedral set for which the saturation does not
occur. Define matrices Ds as m by m diagonal matrices with elements either 1 or 0
and D−

s = Im − Ds . There are 2m possible combination with 1 and 0 leading to have
2m different matrices Ds . Note that matrices Ds and D−

s are introduced by [19] to
model the nonlinear saturation function as a linear convex combination by using the
following:

Lemma 1.3 ([19]) For all u ∈ R
m and v ∈ R

m such that |v j | < 1, j ∈ [1,m]

sat (u) ∈ co{Dsu + D−
s v, s ∈ I } (1.92)

with I = [1, η]; η = 2m and co{.} denotes the convex hull of {.}.
In this case, there exist γ1 ≥ 0, . . . , γη ≥ 0 satisfying

∑η

s=1 γs = 1 such that,

sat (u) =
η∑

s=1

γs[Dsu + D−
s v] (1.93)

If one uses a matrix G such that v = Gx , the system in closed loop becomes:

δx(t) =
η∑

s=1

γs(t)
(
A + B[DsF + D−

s G]) x(t) (1.94)

The stability condition of the saturated system can be enunciated:

Theorem 1.10 ([18, 19]) Given an ellipsoid ε(P, ρ), if there exists a matrix G ∈
R

m×n such that:

• for the discrete-time case:

[A + B(Di F + D−
i G)]T P[A + B(Di F + D−

i G)] − P ≺ 0, ∀i ∈ [1, η], (1.95)

• for the continuous-time case:

[A + B(Di F + D−
i G)]T P + P[A + B(Di F + D−

i G)] ≺ 0, ∀i ∈ [1, η], (1.96)

and ε(P, ρ) ⊂ L (G), then ε(P, ρ) is a contractively invariant set for the closed-
loop system with saturation (1.94).
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1.8 Singular Systems

In this section, we recall some definitions and results concerning the singular systems
case. This class of systems with constrained control will be studied in a subsequent
chapter of this book. Let us consider the singular system described by:

Eẋ(t) = Ax(t) + Bsat (u(t)) (1.97)

x(0) = xo

where x ∈ R
n is the state, u ∈ R

m is the control with, Rank(E) = r ≤ n. Assume
that,

(AS1) (E, A, B) is stabilizable and m ≤ r .
The control is assumed to be constrained in the set Ω given by (1.3).
In order to present some useful lemmas, matrices E and B are decomposed as

follows:

E = [R 0] [S0 S∞]T , S = [S0 S∞] (1.98)

B = [Φ0 Φ1] [ZT
B 0]T , Φ = [Φ0 Φ1] (1.99)

where matrices Φ and S are orthogonal.

Definition 1.5 [14]

• The pair (E, A) is said to be regular if det (sE − A) is not identically zero.
• The pair (E, A) is said to be impulse free if the degree of det (sE − A) = rank(E)

• The pair (E, A) is said to be admissible if it is regular, impulse free, and stable
i.e., the real part of all the finite generalized eigenvalues is negative.

Lemma 1.4 ([20]): If the pencil [E, A] is regular, then it has r finite eigenvalues if
and only if:

rank[E + AS∞ST∞] = n. (1.100)

Note that the pencil [E, A] has r finite eigenvalues if it is impulse free, that is
deg(det (sE − A)) = rank(E) = r . Further, if condition (1.100) holds, the pencil
[E, A] is regular.
The control is assumed here to be constrained in Ω given by (1.3). Generally, when
the state is available, the control is given by:

u(t) = Fx(t), F ∈ R
m×n, rank(F) = m. (1.101)

The unsaturated system in closed loop is then obtained by:

Eẋ(t) = (A + BF)x(t) (1.102)

= Acl x(t).
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With this system in closed loop, the induced constraint set on the state
D(F, umax , umin) is given by (1.10).

The gainmatrix F is obtained by solving the following equationwhichwas studied
in [8]:

X A + XBXE = HXE . (1.103)

The following development gives the necessary and sufficient condition of the exis-
tence of the non-trivial solution of (1.103) with the assumption that the pencil [A, E]
satisfies:

AS2)Thepencil [E, A] is regular and impulse free, i.e., rank[E + AS∞ST∞] = n.

Give a diagonalizable matrix H ∈ R
m×m satisfying the following assumptions:

{θ1, . . . , θm} are linearly independent (1.104)

σ(H)
⋂

σ([A, E]) = ∅ (1.105)

Bθi 
= 0, i = 1, . . . ,m (1.106)

[Ξr S∞] is non singular (1.107)

where σ(H) denotes the spectrum of H and σ([A, E]) denotes the generalized
spectrum of the pencil [A, E]. Matrix Ξr = [ξ1, . . . , ξr ] with ξi = (λE − A)−1Bθi
while Θr = [θ1, . . . , θr ].
Theorem 1.11 ([8]) For given matrices A, B, E, H according to assumptions
(AS1)-(AS2) and (1.104)–(1.106), there exists a solution of Eq. (1.103) if and only
if:

rank

[
[EΞr AS∞]
[Θr O]

]
= rank [Θr O] (1.108)

In this case, all the solutions are given by:

X = [Θr O]Σ+ + Y (I − ΣΣ+) (1.109)

whereΣ = [EΞr AS∞],Σ+ denotes any generalized inversematrix ofΣ satisfying
ΣΣ+Σ = Σ and Y any arbitrary matrix of appropriate dimensions.

Corollary 1.1 [8] For given matrices A, B, E, H according to assumptions
(AS1)-(AS2) and (1.104)–(1.107), matrix F is given by:

F = [Θr O][Ξr S∞]−1 (1.110)

Remark 1.4 According to Eq. (1.110) where matrix Θr is composed of r linearly
independent eigenvectors of H , we have rank(F) = rank(Θr ). It follows thatmatrix
F is of full rank row if and only if m ≤ r .
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The definition of positive invariance is still the same as for non-singular systems.
Now, necessary and sufficient condition of positive invariance of the set

D(F, umax , umin)

given by (1.10) w.r.t system (1.102) can be presented by using a constrained feedback
controller.

We assume in this subsection that the state is available. The following result of
positive invariance of the setD(F, umax , umin) w.r.t the system in closed loop (1.94)
is stated.

Theorem 1.12 The setD(F, umax , umin) given by (1.10) is positively invariant w.r.t
the system (1.102) if and only if there exists a matrix H ∈ R

m×m such that,

Γ A + Γ BΓ E = HΓ E, (1.111)

H̃cU ≤ 0. (1.112)

where F = Γ E

Proof:
See [7].

1.9 Other Lemmas

A useful lemma based on the pseudo inverse of a matrix is also recalled.

Lemma 1.5 ([22]): The matrix system M S = N has a solution in the variable S if
and only if

(I − M M+)N = 0.

Moreover, all the solutions are given by,

S = M+N + (I − M+M)L ,

where L is an arbitrary matrix and M+ denotes the pseudo inverse of matrix M.

1.10 Conclusion

In this chapter, some preliminary results have been reminded for their usefulness in
the next chapters. In order to avoid the repetition of certain number of lemmas and
intermediate results in several chapters of this book, these lasts are gathered in this
first chapter. Hence, it is preferable to start reading this book by studying this chapter.
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Chapter 2
Robust Constrained Linear Regulator
Problem

2.1 Introduction

Generally, for physical, technological, and/or security reasons, any physical system
is subject to functional limitations, and moreover, the adopted models are often
subject to uncertainties. These uncertainties may find their origin in the modeling
and measurement errors or on the computation approximations (see [1–5] and the
references therein).As a consequence, the simultaneous presence of uncertainties and
constraints in general physical systems has interested many authors to combine the
techniques of robust control and constrained control [6, 7]. With the same objective
and as an extension to the uncertain case of [8], the first part of this chapter is
devoted to design and study robust-constrained regulators. Necessary and sufficient
conditions of positive invariance of polyhedral domains with respect to motion of
uncertain continuous-time systems are derived.

Further, one has to concede that there are several approaches proposed in the
literature to solve this problem [6, 8–15] and others. From these approaches, the
positive invariance approach is selected in the second part to calculate robust con-
stant state feedback controllers [6, 10, 16, 17]. But from a different point of view
for computation techniques in the design of such controllers, the idea is to translate
the results found within the framework of positive invariance to algorithms of linear
programming [18–20]. To this end, necessary and sufficient conditions of positive
invariance are re-formulated in this part. This enables one to use linear program-
ming algorithms to find robust-constrained regulators for both continuous-time and
discrete-time linear systems.

© Springer International Publishing AG 2018
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2.2 Robust-Constrained Linear Control

2.2.1 Problem Statement

Consider the linear uncertain continuous-time system represented by the following
state space model:

·
x(t) = A(qA(t))x(t) + B(qB(t))u(t) (2.1)

where x(t) ∈ R
n denotes the state vector, u(t) ∈ Ω ⊂ R

m is the control input. The
control input is restricted (by saturation) to evolve in the following polyhedral set:

Ω = {u(t) ∈ R
m/ − umin ≤ u ≤ umax; umin, umax ∈ intRm+} (2.2)

qA(t) ∈ ΓA ⊂ R
pA (resp. qB(t) ∈ ΓB ⊂ R

pB ) is the uncertain vector. ΓA and ΓB are
compact convex sets including the origin in their interiors. These vectors qA(t) and
qB(t) measure the uncertainty in the model, affecting the parameters of the matrices
A and B as follows:

A(q(t)) = Ao +
pA∑

h=1

AhqAh(t)

(2.3)

B(q(t)) = Bo +
pB∑

h=1

BhqBh(t)

where qAh(t) and qBh(t)) represent the hth component of vectors qA(t) and qB(t),
respectively:

qA(t) = [qA1(t) qA2(t) ... qApA(t)]T
(2.4)

qB(t) = [qB1(t) qB2(t) ... qBpB (t)]T

Convexity and compactness of the set ΓA imply that there exist μA vertices νi , i =
1, ..., μA of ΓA, such that every qA ∈ ΓA can be written as a convex combination of
νi as:

qA =
μA∑

i=1

αiνi with
μA∑

i=1

αi = 1, 0 ≤ αi ≤ 1 , for i = 1, . . . , μA (2.5)

The set ΓB is also convex and compact, so there also exist μB vertices ν j , j =
1, ..., μB of ΓB such that every qB ∈ ΓB can be written as a convex combination of
ν j as:
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qB =
μB∑

j=1

β jν j with
μB∑

j=1

β j = 1, 0 ≤ β j ≤ 1 , for j = 1, . . . , μB, (2.6)

and the matrix A(qA(t)) (resp. B(qB(t))) as:

A(qA(t)) =
μA∑

i=1

αi (t) Ai

⎛

⎝resp. B(qB(t)) =
μB∑

j=1

β j (t) Bj

⎞

⎠ , (2.7)

with Ai = A(νi ) (resp. Bj = B(ν j )).

Assume that the pair (A(qA(t)), B(qB(t)) is controllable for every qA ∈ ΓA and
qB ∈ ΓB .

The nominal system is given by:

·
x(t) = Aox(t) + Bou(t). (2.8)

The robust-constrained regulator problem, which will be studied in this chapter, is
to find a state feedback control law:

u(t) = Fx(t), F ∈ R
m × n with rank(F) = m, (2.9)

which stabilizes the nominal system

·
x(t) = (Ao + BoF)x(t), (2.10)

respecting the control constraints (2.2), such that the feedback system is robustly sta-
ble against parametric uncertainty: That is, the feedback stabilizes also the uncertain
system (2.1). Application of this control law, while respecting control constraints,
leads to the closed-loop system:

·
x(t) = (A(qA(t)) + B(qB(t))F) x(t) (2.11)

=
μB∑

j=1

μA∑

i=1

β jαi
(
Ai + Bj F

)
(2.12)

=
μB∑

j=1

μA∑

i=1

β jαi Acl(νi j ) (2.13)

= Acl(q(t)) (2.14)

where q(t) ∈ Γ = (ΓA × ΓB), and νi j denotes the vertices of Γ (i = 1, ..., μA; j =
1, ..., μB).



26 2 Robust Constrained Linear Regulator Problem

Also, the proposed control law induces the following set of linear behavior in
state space:

D = {x ∈ R
n/ − umin ≤ Fx ≤ umax, umin, umax ∈ intRm+} (2.15)

Note here that as long as the system states remain in the domainD , the linear behavior
is guaranteed. Otherwise, the closed-loop system is given by:

·
x(t) = A(qA(t)) x(t) + B(qB(t))sat (F x(t)) (2.16)

It is worth noticing that positive invariance of domainD given by (2.15), with respect
to (w.r.t.) motion of the closed-loop system (2.11), is the cornerstone to derive robust-
constrained regulators.

2.2.2 Design of Robust Controller

This section is devoted to the extension of the preliminary results presented in
Chap. 1 to the case of uncertain plants. This extension gives conditions for designing
robust controllers in the presence of uncertainty and input limitations. The following
lemma is fundamental to extend necessary and sufficient conditions for the positive
invariance of the polyhedral domain:

Dp = {z ∈ R
m/ − p2 ≤ z ≤ p1, p1, p2 ∈ intRm+} (2.17)

with respect to motion of the autonomous uncertain system:

·
z(t) = H(q(t))z(t) (2.18)

Lemma 2.1 The setDp given by (2.17) is positively invariant with respect to motion
of system (2.18) if and only if it is positively invariant with respect to motion of system
(2.18) at vertices νi j , i = 1, ..., μA, j = 1, ..., μB of the set Γ.

Proof
Necessity: It is obvious that if the domain is positively invariant for every q, it is
especially positively invariant at the vertices νi j , i = 1, ..., μA, j = 1, ..., μB .

Sufficiency: Suppose thatDP is positively invariant with respect to motion of system
(2.18) for q = νi j , i = 1, ..., μA, j = 1, ..., μB then:

∼
Hc(νi j )� ≤ 0 with � = [pT1 pT2 ]T ,

decomposing this inequality, it is possible to write:

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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H1(νi j ) p1 + H2(νi j ) p2 ≤ 0, (2.19)

H2(νi j ) p1 + H1(νi j ) p2 ≤ 0, (2.20)

however, according to the definition ofmatrices H1 and H2 given by (1.33), inequality
(2.19) can be written as, for l = 1, ...,m,

hll(νi j )p
l
1 +

m∑

k=1
k �=l

h+
lk(νi j )p

k
1 +

m∑

k=1
k �=l

h−
lk(νi j )p

k
2 ≤ 0,

multiplying every inequality by αi , β j i = 1, ..., μA, j = 1, ..., μB , and summing
on i and j , leads to

μB∑

j=1

μA∑

i=1

β jαi hll (νi j )p
l
1 +

μB∑

j=1

μA∑

i=1

m∑

k=1
k �=l

β jαi h
+
lk(νi j )p

k
1 +

μB∑

j=1

μA∑

i=1

m∑

k=1
k �=l

β jαi h
−
lk(νi j )p

k
2 ≤ 0,

which is equivalent to write

μB∑

j=1

μA∑

i=1

β jαi hll(νi j ) pl1 +
m∑

k=1
k �=l

μB∑

j=1

μA∑

i=1

β jαi h
+
lk(νi j ) pk1 +

m∑

k=1
k �=l

μB∑

j=1

μA∑

i=1

β jαi h
−
lk(νi j ) pk2 ≤ 0,

using the definitions of h+
i j and h−

i j given in (1.33), it is possible to see that:

⎛

⎝
μB∑

j=1

μA∑

i=1

β j αi hlk(νi j )

⎞

⎠
+

≤
μB∑

j=1

μA∑

i=1

β j αi h
+
lk(νi j ),

and ⎛

⎝
μB∑

j=1

μA∑

i=1

β j αi hlk(νi j )

⎞

⎠
−

≤
μB∑

j=1

μA∑

i=1

β j αi h
−
lk(νi j ),

then:

μB∑

j=1

μA∑

i=1

β j αi hll(νi j )p
l
1 +

m∑

k=1
k �=l

⎛

⎝
μB∑

j=1

μA∑

i=1

β j αi hlk(νi j )

⎞

⎠
+

pk1 +
m∑

k=1
k �=l

⎛

⎝
μB∑

j=1

μA∑

i=1

β j αi hlk(νi j )

⎞

⎠
−

pk2 ≤ 0.

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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According to (2.5) and (2.6) the following result is obtained:

H(q(t)) =
μB∑

j=1

μA∑

i=1

β j αi H(νi j ),

therefore,

hll(q(t)) pl1 +
m∑

k=1
k �=l

h+
lk(q(t)) pk1 +

m∑

k=1
k �=l

h−
lk(q(t)) pk2 ≤ 0,

hence,
H1(q(t)) p1 + H2(q(t)) p2 ≤ 0.

Using a similar reasoning, it is possible to prove that (2.20) leads to:

H2(q(t)) p1 + H1(q(t)) p2 ≤ 0,

which gives the sufficient condition:

∼
Hc(q(t)) � ≤ 0.

Consequently, the set DP is positively invariant with respect to motion of system
(2.18) ∀ q(t) ∈ Γ . �

Now, it is possible to make the desired extension. Hence, let us consider the non-
autonomous uncertain system (2.1) with constrained control (2.2). The application
of the feedback control law (2.9) leads to the closed-loop system (2.11).

Theorem 2.1 The subset D given by (2.15) is positively invariant with respect to
motion of the uncertain system (2.11) with constrained control (2.2) if and only if
there exist matrices H(νi j ) for i = 1, ..., μA, j = 1, ..., μB such that:

FAcl(νi j ) = H(νi j ) F (2.21)
∼
Hc(νi j ) U ≤ 0 (2.22)

Proof
Sufficiency: Assume that conditions (2.21) and (2.22) hold. By virtue of Theorem
1.4, the set D is positively invariant with respect to motion of system (2.11) at the
vertices νi j for i = 1, ..., μA, j = 1, ..., μB . Further, consider the following change
of coordinates

z(t) = Fx(t) (2.23)

the system (2.11) becomes system (2.18), and D is transformed as follows:

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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Dz = {z ∈ R
m/ − umin ≤ z ≤ umax, umin, umax ∈ R

m
+}.

Hence, Dz is positively invariant with respect to motion of system (2.18) at the ver-
tices νi j , for i = 1, ...μA, i = 1, ..., μB . Bearing inmind Lemma 2.1,Dz is positively
invariant with respect to system (2.18) ∀q ∈ Γ . Consequently,D is positively invari-
ant with respect to system (2.11) ∀q ∈ Γ .

Necessity: Let D be positively invariant with respect to system (2.11), so it is posi-
tively invariant at the vertices by using Lemma 2.1. Therefore, by virtue of Theorem
1.4, there exist matrices H(νi j ) satisfying conditions (2.21) and (2.22) for every
i = 1, ..., μA, j = 1, ..., μB . �

Remark 2.1 For the sequel, and without loss of generality, assume that the system
is square, i.e., n = m. In fact, if the system has n state and m input m ≤ n, then the
system is augmented with constrained fictitious inputs v as presented above [6]. The
resulting system is then given by:

.
x(t) = A(q(t))x(t) + Ba(q(t))

[
u(t)
v(t)

]
(2.24)

Ba(q(t)) is the matrix B(q(t)) augmented by (n − m) null columns.

Corollary 2.1 Thepositive invariance of domainD with respect tomotions of system
(2.24) with state feedback matrix F satisfying condition (2.9) implies the asymptotic
stability of system (2.24) for every x(0) ∈ D .

Proof
Assume that domainD is positively invariant with respect tomotion of system (2.24),
then by virtue of the Theorem 2.1 and using the Lemma 2.1, we have:

FAcl(q(t)) = H(q(t)) F (2.25)
∼
Hc(q(t)) U ≤ 0 (2.26)

then using Theorem 2.1, the non-symmetric non-quadratic function

V (x) = Max
l

max

{
(Fx)+l
ulmax

,
(Fx)−l
ulmin

}

is a common Lyapunov function of all stationary configuration of the
uncertain system (2.11) for every q ∈ Γ . Hence, the system (2.11) is asymptoti-
cally stable. �

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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2.3 Robust Control with Constrained State and Input

In this second part, the robustness problem for constrained states and control is
addressed. Different writing of the constraints is used. Further, conditions are
expressed as linear programming problem.

2.3.1 Problem Statement

Let us consider the linear system represented by:

δx(t) = Ax(t) + Bu(t) (2.27)

where x(t) ∈ R
n is the state vector belonging to the polyhedral set ofRn , containing

the origin in its interior, defined by :

D(G, ω) = {x ∈ R
n/ Gx ≤ ω, G ∈ R

g×n, ω ∈ R
g∗
+ , g ≥ n, rank(G) = n} (2.28)

and u(t) ∈ Ω1 ⊂ R
m is the input vector constrained to evolve within the polyhedral

set Ω1 of Rm where,

Ω1 = {u ∈ R
m / u ≤ ρ, ρ ∈ R

m∗
+ } (2.29)

The linear-constrained regulator problem (LCRP) can be stated as: Find a linear state
feedback control law given by

u(t) = Fx(t), F ∈ R
m × n, (2.30)

such that all initial states within domain D(G, ω) are transferred asymptotically to
the origin while the control respects constraints (2.29).

The feedback control law (2.30) induces a domain of admissible states given by

D(F, ρ) = { x ∈ R
n, Fx ≤ ρ} (2.31)

The property of control admissibility for all x ∈ D(G, ω) can be expressed as the
following polyhedral inclusion

D(G, ω) ⊆ D(F, ρ) (2.32)

If control constraints are respected, closed-loop behavior is linear and is given by

δx(t) = (A + BF)x(t)

= Acl x(t) (2.33)
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Let us now consider that the system parameters are not perfectly known. The linear
uncertain system has the following form:

δx(t) = A(qA(t)) x(t) + B(qB(t)) u(t), (2.34)

where qA(t) ∈ ΓA ⊂ R
pA , and qB(t) ∈ ΓB ⊂ R

pB where ΓA and ΓB are compact
convex sets including the origin in their interiors. Uncertainties affect the system
parameters as detailed in (2.3) and (2.4).

The Robust Linear-Constrained Regulator Problem (RLCRP), as studied here-
after, consists to find a robust regulator that transfers asymptotically all initial states
in D(G, ω) to the origin while the state and control respect constraints (2.28) and
(2.29). The closed-loop system becomes :

δx(t) = [A(qA(t)) + B(qB(t))F] x(t)

= Acl(q(t))x(t) (2.35)

where q(t) ∈ Γ = ΓA × ΓB . The vertices of Γ are noted νi j for i = 1, ..., μA and
j = 1, ..., μB .

Remark 2.2 Without loss generality, it was assumed that rank(G) = n. In fact, if
this condition is not satisfied, not penalizing fictitious constraints on the state vector
can be imposed. For example, consider that n = 2 and that the constraints on the
state vector are given by:

[
g11 g12
g21 g22

] [
x1
x2

]
≤

[
ω1

ω2

]

and we have rank(G) = 1.We impose fictitious suitable constraints, in order to have
rank(G) = 2, as follows

⎡

⎣
g11 g12
g21 g22
ga1 ga2

⎤

⎦
[
x1
x2

]
≤

⎡

⎣
ω1

ω2

ωa

⎤

⎦

where the row ga of matrix G and the constraint ωa are chosen to be not penalizing
for the initial problem. It is worth to note here that in [19, 21] for the discrete-time
case, the matrix G is required to be square and invertible, which is very restrictive
in our sense.

Now, the extension of positive invariance conditions for a polyhedral domain
with respect to uncertain systems is studied. Necessary and sufficient conditions are
established:

Lemma 2.2 The setD(G, ω), given by (2.28), is positively invariant with respect to
motion of system (2.35) if and only if it is positively invariant with respect to motion
of system (2.35) at vertices νi j for i = 1, ..., μA, j = 1, ..., μB.
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Proof
Similar to proof of Lemma 2.1. �

Now, with this background, the main result of this section can be worked out.

2.3.2 Robust-Constrained Regulator Problem

As a first step, in this section, conditions to find a solution to the LCRP are formulated
as linear inequalities. In a second step, these conditions are extended to the case of
uncertain systems. This extension allows to find a solution to the RLCRP. The prob-
lem is cast into a linear programming feasibility formulation. Further, the introduction
of an objective optimization variable ε enables to solve a linear programming-based
algorithm giving stabilizing robust regulators respecting the state and control con-
straints (2.28) and (2.29).

Proposition 2.1 A matrix F is solution to the LCRP if there exist matrices H ∈
MH ⊂ R

g×g, and T ∈ R
m×g with nonnegative components ( T ≥ 0 ) such that:

HG = G(A + BF) (2.36)

H ω < 0 (2.37)

F = TG (2.38)

Tω ≤ ρ (2.39)

where for a matrix H ∈ MH , we use H to note : H − I in the DTC, and H in the
CTC. Further, the set MH denotes the set of nonnegative matrices for the DTC and
the set of matrices with nonnegative off-diagonal elements for the CTC (i.e., matrix
H is Metzler, such that hi j ≥ 0 ∀i �= j ).

Proof
Assume that conditions (2.36) and (2.37) hold true. By virtue of Proposition 1.1, the
domainD(G, ω) is positively invariant with respect to motion of system (2.33). The
existence of a matrix T , such that conditions (2.38) and (2.39) hold and using the
Haar’s lemma, leads to the implicationGx(t) ≤ ω ⇒ Fx(t) ≤ ρ which is equivalent
to:

D(G, ω) ⊆ D(F, ρ) (2.40)

Hence, the closed-loop behavior is linear and from the existence of a matrix H that
satisfies (2.36) and (2.37), one can prove that the non-quadratic function:

V (x(t)) = Max
i

{ |(Gx(t))i |
ωi

}
, (2.41)

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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is a Lyapunov function for the system. Then, the asymptotic stability is guaranteed
(for details about the Lyapunov function, see demonstration of Proposition 2.2).
Finally, F is solution to the LCRP. �

Consider now that the system parameters are uncertain. As previously stated, the
closed-loop uncertain system is given by (2.35).

Proposition 2.2 Amatrix F ∈ R
m×n is solution to the RLCRP if there exist matrices

Hi j ∈ MH ⊂ R
g×g, i = 1, ..., μA, j = 1, ..., μB, and T ∈ R

m×g with nonnegative
components (T ≥ 0 ) satisfying conditions

Hi jG = G(Ai + Bj F) (2.42)

Hi jω < 0 (2.43)

F = TG (2.44)

Tω ≤ ρ (2.45)

Proof
First, using the Haar’s lemma, conditions (2.44) and (2.45) imply the inclusion (2.40)
guaranteeing the admissibility, and hence, the state and control constraints are not
violated, and the closed-loop model is always linear.

Further, consider that the conditions (2.42) and (2.43) hold. By virtue of Proposi-
tion 1.1, the domainD(G, ω) is positively invariant with respect to motion of system
(2.35) at the vertices νi j for i = 1, ..., μA, j = 1, ... μB . Using the Lemma 2.2, the
domain is also positively invariant for every q ∈ Γ , which enables to write that there
exist matrices H(q(t)) ∈ MH such that:

H(q(t))G = GAcl(q(t)), (2.46)

bearing in mind that:

H(q(t)) :=
μA∑

i=1

μB∑

j=1

αi (t)β j (t)Hi j , (2.47)

one can conclude that:

H (q(t))ω ≤ 0. (2.48)

For the discrete-time case, consider the non-quadratic function given by:

V (x(t)) = Max
i

{ |(Gx(t))i |
ωi

}
. (2.49)

This function is positive definite. Let us compute its rate of increase along the tra-
jectories of our system

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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ΔV (x(t)) = V (x(t + 1)) − V (x(t))

= Max
i

{ |(GAcl(q(t))x(t))i |
ωi

}
− Max

i

{ |(Gx(t))i |
ωi

}

= Max
i

{ |(GAcl(q(t))x(t))i |
ωi

− Max
i

{ |(Gx)i |
ωi

}}
.

According to (2.46),

ΔV (x(t)) = Max
i

{ |(H(q(t))Gx(t))i |
ωi

− Max
i

{ |(Gx(t))i |
ωi

}}
,

|(H(q(t))Gx(t))i | can be raised as follows:

|(H(q(t))Gx(t))i | =
∣∣∣∣∣∣

g∑

j=1

hi j (q(t)) (Gx(t)) j

∣∣∣∣∣∣
, (2.50)

however,

|(H(q(t))Gx(t))i | ≤
g∑

j=1

|hi j (q(t))||(Gx(t)) j |, (2.51)

noticing that H(q(t)) and ω have non-negative components, then,

|(H(q(t))Gx(t))i | ≤
g∑

j=1

hi j (q(t))|(Gx(t)) j |

≤
g∑

j=1

{
hi j (q(t)) ω j

|(Gx) j |
ω j

}

≤
g∑

j=1

{
hi j (q(t))ω j

}
Max

j

{ |(Gx) j |
ω j

}

≤ (H(q(t))ω)i Max
i

{ |(Gx)i |
ωi

}
.

Substituting into (2.50)

ΔV (x(t)) ≤ Max
i

{(
(H(q(t))ω)i

ωi
− 1

)
Max

i

{ |(Gx(t))i |
ωi

}}
,

which is equivalent to
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ΔV (x(t)) ≤
(

(H(q(t))ω)i

ωi
− 1

)
Max

i

{ |(Gx(t))i |
ωi

}
.

Therefore, according to (2.48), the rate of increaseΔV (x(t)) is strictly negative, then
the function V (x(t)) is a commonLyapunov function for all stationary configurations
of the uncertain system (2.35) for every q ∈ Γ , and consequently, the system is
asymptotically stable.

For the continuous-time case, the non-quadratic function given by (2.49) is posi-
tive definite. Let us compute its derivative along the trajectories of the system (2.35)

V̇ (x(t)) = lim
ε→0+

V (x(t) + ε ẋ(t)) − V (x(t))

ε

= lim
ε→0+

1

ε

{
Max

i

{ |(Gx(t) + εG(A + BF)x(t))i |
ωi

}
− V (x(t))

}
.

According to (2.46):

V̇ (x(t)) = lim
ε→0+

1

ε

{
Max

i

{ |(1 + εH)Gx(t))i |
ωi

}
− V (x(t))

}
,

this expression is equivalent to (2.50) for the discrete-time case where matrix H is
replaced by 1 + εH , and consequently, the same reasoning leads to,

V̇ (x(t)) ≤ lim
ε→0+

1

ε
(Max

i

{(
(|1 + εH(q(t))|ω)i

ωi
− 1

)
V (x(t))

}
).

However, since matrix H ∈ MH and as ε → 0 :

|1 + εH(q(t))| =
{

ε|hi j | = εhi j for i �= j,
1 + εhi j for i = j,

= 1 + εH(q(t)).

Replacing in 2.52, one obtains:

V̇ (x(t)) ≤ Max
i

{(
(H(q(t))ω)i

ωi

)
V (x(t))

}
. (2.52)

Therefore, according to (2.48), V̇ (x(t)) is strictly negative definite, and then, the
function V (x(t)) is a common Lyapunov function for all stationary configuration
of the uncertain system (2.35) for every q ∈ Γ , and consequently, the system is
asymptotically stable. �

The re-formulation of all conditions enabling to solve the RLCRP, in both cases
of continuous-time and discrete-time systems, as linear inequalities is now achieved.
It is clear now that solving the RLCRP is a feasibility problem. Further, an objective
function ε can be introduced as follows:
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for the discrete-time case, Hi j ω < εω, 0 < ε ≤ 1,

for the continuous-time case, Hi j ω < −εω, ε ≥ 0,

for i = 1, ..., μA, j = 1, ..., μB .The choice of such objective function plays a double
role. In fact, it is directly connected to the assigned spectrum in closed-loop [6, 22],
and to the rate of increase in the Lyapunov function (see demonstration of Proposition
2.2 above). Hence, optimizing ε implies that the rate of convergence of the state to
the origin is augmented. Solution of the linear programs proposed hereafter allows
to find matrices Hi j for i = 1, ..., μA, j = 1, ..., μB together with matrix T . Finally,
it is obvious that the gain feedback F solution to the RLCRP is easily deduced from
this solution.

Comments 2.1 :
(1) It is worth noting here that solving the RLCRP without linear programming
is a complicated problem and needs a number of trial and error with an important
computation burden to obtain the adequate regulator [6]. Using linear programming
gives nice solution and does not need the trial and error procedure as proposed in
previous works. But, it is not, in the other hand, easy to satisfy all required conditions.
The fact is looking for a robust static regulator respecting constraints is not a simple
problem.
(2) We note also, here, that matrices Hi j are used instead of working with the H

+
i j =

sup(Hi j , 0) and H−
i j = sup(−Hi j , 0) as several other works [7, 19, 23], which are

interested in the same kind of linear programming formulation. The problem in our
sense is that there is a fundamental dependence between matrices H+

i j and H−
i j which

is omitted. It comes out that taking into account this fundamental dependence, that
is the product H+

i j H
−
i j must be zero since they are representing the + and − part of

the same matrix Hi j , makes the optimization problem nonlinear. Hence, the linear
programming approach can no more be sufficient to solve the problem.

2.4 Examples

Discrete-time case: Consider the linear uncertain discrete-time system given by
(2.34) with:

A(qA(t)) =
[
0.785 + q1 0.5

−0.4 1.2

]
, B(qB(t)) =

[
0.6

−0.1 + q2

]

The vertices of the domain of uncertainties are: ν11 = (0.015, 0), ν12 = (0.015,
−0.02), ν21 = (−0.015, 0), ν22 = (−0.015,−0.02). Matrix G and vector ρ are
given by:

G =
[ −2.24 1.2

−2.912 1.56

]
, ω =

[
30
20

]
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and ρ = 22, rank(G) = 1.
We impose fictitious suitable constraints, in order to have rank(G) = 2, as fol-

lows:

Ga =
⎡

⎣
−2.24 1.2
−2.912 1.56
1.14 −1.96

⎤

⎦ , ωa =
⎡

⎣
30
20
20

⎤

⎦

The solution obtained by solving the proposed linear program are ε = 0.977, and

H11 =
⎡

⎣
0.6411 0.0000 0.2135

0 0.6411 0.2775
0 0.0000 0.9187

⎤

⎦ , H12 =
⎡

⎣
0.6295 0 0.2061
0.0653 0.5792 0.2679

0 0.0147 0.9308

⎤

⎦

H21 =
⎡

⎣
0.5976 0.0000 0.1868
0.0832 0.5335 0.2428

0 0.0171 0.9322

⎤

⎦ , H22 =
⎡

⎣
0.5859 0.0000 0.1794
0.1484 0.4717 0.2332
0.0000 0.0317 0.9443

⎤

⎦

and
T = [

0.3257 0.1234 0.3083
]

leading to the following robust controller:

F = [−0.7372 − 0.0211
]
.

Evolution of q1 (resp. q2) is given in Fig. 2.1 (resp. Fig. 2.2). Figure2.3 shows the
positive invariance and the admissibility of the domainD(G, ω) aswell as the asymp-
totic stability of the system motion, from the different initial state xo = [80 150]T ,
xo = [100 100]T , and xo = [60 50]T . However, Fig. 2.4 shows the control admis-
sibility for t > 0.
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Fig. 2.5 q1 evolution

Continuous-time case: Consider the linear uncertain continuous-time system given
by (2.34) where,

A(qA(t)) =
[−1.35 + q1 0.5

−3.5 + q2 2.25

]
, B =

[
0.15
0.7

]

G =
[
2.5 −1
1 −2

]
, ω =

[
20
30

]

and ρ = 80.
The vertices of the domain of uncertainties are:

ν1 = (−0.15,−0.1), ν2 = (−0.15, 0.1),

ν3 = (0.15,−0.1) and ν4 = (0.15, 0.1).

The solution obtained by the proposed linear program are: ε = 0.301 and

H1 =
[−1.7685 0.0063
28.9849 −0.1115

]
, H2 =

[−1.9325 0.0001
27.5739 −0.1475

]
,

H3 =
[−1.7486 0.0035
28.9837 −0.1214

]
, H4 =

[−1.9325 0.0001
27.5739 −0.1475

]
,

and T = [
1.1000 1.4500

]
. These results lead to the robust controller

F = [
4.2000 − 4.0000

]
.

Evolution of q1 (resp. q2) is given by Fig. 2.5 (resp. Fig. 2.6). Fig. 2.7 shows the
positive invariance and the admissibility of the domain D(G, ω) as well as the
asymptotic stability of the systemmotion, fromdifferent initial states xo = [10 20]T ,
xo = [−20 20]T , and xo = [−25 − 20]T . However, the Fig. 2.8 shows the control
admissibility for all t > 0.
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2.5 Conclusion

In this chapter, we have generalized the solution to the LCRP for both continuous-
time and discrete-time systems. The extension, when the system parameters are not
perfectly known, is obtained in order to study robustness of such regulators. The
solution is established using the positive invariance and the admissibility criteria.
Hence, the asymptotic stability without constraints state and control violation is
guaranteed. The obtained conditions are re-formulated using the Haar’s lemma under
matrix inequalities. These inequalities enable us to present the solution as linear
programming algorithms. Illustrative examples are given in both of continuous-time
case and discrete-time cases to show the ease of such approach to hold a complicated
problem.

Further, to solve the problem, the weakest assumption for the rank of matrix G
is considered, and the problem of dependence between matrices H+ and H− is
overcome.

It has been shown that the obtained controllers can also be designed by select-
ing the desired closed-loop performance, followed by computing the solution of an
algebraic equation for the nominal system, and finally checking the conditions of
robustness at the vertices of the convex set of perturbations.
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Chapter 3
Constrained Control and Rate or Increment
for Linear Systems

3.1 Introduction

In real or physical plants, as seen before, the most frequent constraints are of satura-
tion type: limitations on the magnitude of certain quantities or variables. One could
cite a main approach to study such problem: the positive invariance concept ([2–4, 7,
33]). Apart from magnitude saturation constraints, this chapter deals with a different
type of constraints, namely rate or incremental constraints. These constraints were
introduced while considering predictive control and practical applications [1, 9] and
other approaches [16, 30].

Recall that for this class of linear dynamical systems, having both constraints on
control magnitude and rate or increment, Lin in [20] showed that all asymptotically
null controllable bounded input systems are semi-globally stabilizable through linear
feedback in the presence of both constraints.Amethod to stabilize a particular plant in
the presence of constraints on both input magnitude and increments was considered
by [31]. Other approaches have been presented, for example, by [10–12, 14, 17,
19–21, 32].

Henceforth, this chapter investigates the problem of locally stabilizing linear
continuous-time and discrete-time systems with limitations on both control mag-
nitude and control increment or rate.

The positive invariance approach, used here, gives a simple solution to stability
and performance of stabilizable dynamical linear systems with bounded input and
increment or rate. Necessary and sufficient conditions of positive invariance for
incremental domains with respect to autonomous systems are given. Further, a link
is done between pole assignment procedure and these conditions to design stabilizing
controllers by state feedback, respecting control constraints and control increment
or rate constraints also.

Furthermore, those results are extended to the case of non-symmetrical con-
strained systems with additive bounded disturbances. Necessary and sufficient
conditions of positive invariance for incremental domains with respect to (w.r.t.)
autonomous systems with additive bounded disturbances are then derived.

© Springer International Publishing AG 2018
A. Benzaouia et al., Saturated Control of Linear Systems, Studies in Systems,
Decision and Control 124, https://doi.org/10.1007/978-3-319-65990-9_3
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It is worth noticing here that the perturbation rejection as studied thereafter was
also studied in [7, 8] using the set invariance concept and in [18] using convexwriting
of the saturation function. But, there were no constraints on the rate of the control.

Hence, this chapter is the extension to those works using the positive invariance
concept to deal with rate and magnitude control constraints as a first part and in the
presence of additive bounded disturbances in a second part.

3.2 Regulator Problem for Linear Systems
with Constraints on Control and Its Increment or Rate

3.2.1 Problem Statement

Consider a linear time invariant system represented in the state space by:

δx(·) = Ax(·) + Bu(·) (3.1)

where x(·) ∈ R
n is the state of the system, u(·) ∈ R

m is the input vector, which is
constrained to evolve in the following domain:

Ω = {u ∈ R
m/ − umin ≤ u ≤ umax, umin, umax ∈ R

m∗
+ }. (3.2)

(i) For discrete-time systems, the control increment is constrained as follows:

− Δmin ≤ u(k + 1) − u(k) ≤ Δmax (3.3)

(ii) For continuous-time systems, the control rate is constrained as follows:

− Δmin ≤ u̇(t) ≤ Δmax (3.4)

We denote:

U =
[
umax

umin

]
, Δ =

[
Δmax

Δmin

]
.

The problem studied in this first part is the following.
Find a stabilizing linear state feedback as:

u(·) = Fx(·), F ∈ R
mxn (3.5)

such that the closed-loop system is asymptotically stable respecting constraints on
both the control signal magnitude and the control increment (or, in the continuous-
time case, derivative).

Consider the linear time-invariant autonomous system:
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δz(·) = Hz(·), z(to) = zo, (3.6)

where z ∈ R
m is the state, constrained to evolve in the domain:

Dz = {z ∈ R
m/ − zmin ≤ z ≤ zmax zmin, zmax ∈ R

m∗
+ }, (3.7)

• For discrete-time systems by

− Δmin ≤ z(k + 1) − z(k) ≤ Δmax (3.8)

• For continuous-time systems by

− Δmin ≤ ż(t) ≤ Δmax (3.9)

To design a state feedback control that might ensure constraints fulfillment for
both control and rate or increment, we begin first by establishing conditions such that
state rate or increment constraints for the autonomous system (3.6) are respected.
Further, for the proposed state feedback control presented later, control rate dynamics
are separated from control dynamics and hence can be studied sequentially. It will be
easy then, to mix the conditions obtained separately for both control and increment
or rate constraints to obtain the controller that respects both of them. The following
lemma studies the fulfillment of incremental or stare rate constraints for motion of
system (3.6).

Lemma 3.1 The evolution of the autonomous system (3.6) respects incremental or
rate constraints if and only if matrix H satisfies:

˜(H − I)d ϑ ≤ Δ for the discrete-time case (3.10)

H̃d ϑ ≤ Δ for the continuous-time case. (3.11)

where

ϑ =
[
zmax

zmin

]
, Δ =

[
Δmax

Δmin

]
.

Proof If part: Consider the discrete-time case and assume that condition (3.10) is
satisfied.

Hence, it is possible to write:

z(k + 1) − z(k) = Hz(k) − z(k)
= (H − I)z(k)
= G z(k),

where we noted G := H − I, but it is known that:
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− zmin ≤ z(k) ≤ zmax. (3.12)

Next, decompose matrix G = G+ − G−, pre-multiplying (3.12) by G+ and −G−,
gives:

− G+zmin ≤ G+z(k) ≤ G+zmax, (3.13)

− G−zmax ≤ −G−z(k) ≤ G−zmin, (3.14)

the addition of inequalities (3.13) and (3.14) enables us to write:

−G+zmin − G−zmax ≤ Gz(k) ≤ G+zmax + G−zmin,

according to condition (3.10):

−Δmin ≤ −G+zmin − G−zmax ≤ Gz(k) ≤ G+zmax + G−zmin ≤ Δmax,

which is equivalent to:

−Δmin ≤ z(k + 1) − z(k) ≤ Δmax.

In the continuous-time case:

·
z(t) = H z(t)

following the same reasoning, replacing matrix G by matrix H and condition (3.10)
by condition (3.11), it is easy to obtain:

−Δmin ≤ ·
z(t) ≤ Δmax

Only if part: Now, consider the continuous-time case: Assume that the derivative
of z(t) respects the constraints, and that condition (3.11) is not satisfied for an index
1 ≤ i ≤ n such that

[H̃d ϑ]i > Δi (3.15)

that is

[H+zmax + H−zmin]i > Δi
max

Then, the following state vector for the system can be selected:

φ(t) =
⎧⎨
⎩
z jmax if hi j > 0
0 if hi j = 0
−z jmin if hi j < 0

, j = 1, ..., n
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It is easy to check that φ(t) is an admissible state for the system. Calculation of the
i th component of the derivative of this state gives:

[ d
dt φ(t)]i = [Hφ(t)]i =

n∑
j=1

hi jφ j (t)

= [H+zmax + H−zmin]i
taking into account inequality (3.15), it is possible to write:

[ d
dt

φ(t)]i > Δi
max

which contradicts the assumption.Thediscrete-time case part couldbe easily deduced
replacing matrix H by matrix G in the necessary part. �

By virtue of Lemma 3.1, if conditions (3.10) or (3.11) are satisfied, the evolution
of the autonomous system (3.6) respects the incremental or state rate constraints. But
it was assumed that the state z(t) does not leave domain Dz given by (3.7) which is
not guaranteed in general case. To do so, one has to ensure, in addition, the positive
invariance of the former domain. Hence, the evolution of the autonomous system
(3.6) will respect both constraints on the state z(t) and constraints on its increment
or rate.

Positive invariance conditions of polyhedral domains of type Dz have already
been reported by [2] and by [3]. Combining these conditions to those proposed in
Lemma 3.1 enables us to claim the following:

Lemma 3.2 Domain (3.7) is positively invariant with respect to motion of system
(3.6), and incremental or rate constraints (3.3 ) or (3.4 ) are respected if and only
if:

{
(i) ˜(H − I)d ϑ ≤ Δ

(ii) H̃d ϑ ≤ ϑ
for the discrete-time case. (3.16)

{
(i) H̃d ϑ ≤ Δ

(ii) H̃c ϑ ≤ 0
for the continuous-time case. (3.17)

Proof First, notice that the dynamics of the system state and those of the state incre-
ment or rate are independent. Second, conditions (3.16-ii) and (3.17-ii) imply that
the magnitude bounds hold, and sequentially, conditions (3.16-i) and (3.17-i) imply
that the rate or increment bounds hold also. �

Relating the previous lemma to the pole assignment procedure presented in the first
chapter is the cornerstone to solve the problem as stated above.
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3.2.2 Regulator with Constraints on Control and Its Rate
or Increment

Consider a stabilizable linear time invariant system (3.1) with constraints on both
control magnitude (3.2) and control increments or rate (3.3) or (3.4). Using the state
feedback:

u(·) = Fx(·), F ∈ R
mxn (3.18)

such that
σ(A + BF) ∈ ID (3.19)

The following domain of linear behavior is induced in the state space:

DF = {x ∈ R
n/ − umin ≤ Fx ≤ umax, umin, umax ∈ R

m∗
+ } (3.20)

If the state does not leave the domain (3.20), the control magnitude signal does not
violate the constraints. That is, the set DF is positively invariant with respect to
motion of system (3.1). This gives the following result:

Proposition 3.1 System (3.1) with state feedback (3.18)–(3.19) is asymptotically
stable at the origin with constraints on both the control magnitude and its increment
or rate if there exists a matrix H ∈ R

mxm satisfying conditions (1.37)–(1.40), such
that:

(i)
F A + F B F = H F (3.21)

(iia) for the discrete-time case:

˜(H − I)d U ≤ Δ (3.22)

H̃d U ≤ U (3.23)

(iib) for the continuous-time case:

H̃d U ≤ Δ (3.24)

H̃c U ≤ 0 (3.25)

where U = [uT
max uT

min]T for all initial state xo ∈ DF .

Proof Introduce the following change of coordinates: z = F x , it is possible to
write

δz(·) = F δx(·) = F ( A + B F ) x(·)
= H F x(·) = H z(·). (3.26)

With this transformation, domainDF is transformed to domainDz given by (3.7). Fur-
ther, with conditions (3.23) and (3.25), it is easy to note that domainDz is positively

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1


3.2 Regulator Problem for Linear Systems … 49

invariant with respect to the system (3.26), while the constraints on the increment
of the control are respected. Bearing in mind that σ(A + B F) ∈ ID and that the
linear behavior is guaranteed, one can conclude to the asymptotic stability of the
closed-loop system. �

Remarks 3.1 • It is worth noting that conditions (3.23) and (3.25) do not affect the
set of positive invariance DF . However, they present an additional constraint on the
pole assignment problem.
• Observe that the eigenvalues of matrix H can be used to impose closed-loop
eigenvalues, so it gives a useful tuning parameter to select the desired feedback
performance.

Algorithm 3.1 1. Check if matrix A has (n − m) stable eigenvalues, if not, aug-
ment the matrix B with (n − m) null columns.

2. Choose matrix H ∈ R
m×m or H ∈ R

n×n , if the system is augmented, accord-
ing to (1.37)–(1.40), (3.22) and (3.23) or (1.37)–(1.40), (3.24) and (3.25). (see
comments below on how to choose matrix H ).

3. Compute the gain matrix F or Fa by using (1.42).
4. Use F or extracted F from Fa for the control.

Comments:
(1)At step 1 ofAlgorithm3.1,when augmenting the system is necessary, the fictitious
input limitations are first chosen and then the procedure for selecting matrix H , as
proposed below, is achieved. This choice is made by trial and error and may appear
restrictive. But, in our sense, it is a further degree of freedom that can be exploited. In
fact, these constraints can be chosen as soft as to enlarge the domain DF as needed.
(2) It isworth noting that larger is the domainDF , slower are the dynamics assigned in
closed loop frommatrix H [5]. For the so-called inverse procedure and the algorithm
above, there is an important step of choosing the matrix H satisfying all required
conditions and assigning the closed-loop spectrum. Important cases are presented
below.
(2.i) When the goal is to enlarge the initial conditions set, linear programming can
be used to select the suitable matrix H .
• For the discrete-time case, the following linear program can be used:

minimize ε

subject to
[
H+ H−
H− H+

] [
umax

umin

]
≤ ε

[
φ1

φ2

]
(3.27)

0 < ε ≤ 1, H+ ≥ 0, H− ≥ 0 (3.28)

where φ1 < umax and φ2 < umin are tuning vectors. In fact, if the feasible solution
H+, H− is such that thematrix H = H+ − H− satisfies required conditions (1.37)–
(1.40) and (3.22), use matrix H in the Algorithm 3.1. Else, change vectors φ1 and
φ2 according to rules hereafter.

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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Rules of changing vectors φ1 and φ2 can be divided into two main cases: First,
the linear programming in discrete systems case has a feasible solution that does
not satisfy (1.37)–(1.40), in this case, a small perturbation of components of vectors
φ1 and/or φ2 leads to sensible changes of eigenvalues and eigenvectors of matrix H
such that the required condition can be fulfilled. Second, given feasible solution of
linear programming in discrete systems case that satisfy (1.37)–(1.40), we note that
condition (3.22) is not fulfilled. For unfeasible lines in this last condition, respective
component of vectors φ1 and/or φ2 should be changed by trial and error to remove
unfeasibility.

Similar linear program with the goal of finding both matrices H and F can be
found in [15]. But, in our sense, the necessity of matrix B of the system to be square
and non-singular, in order to make the optimization problem linear, can be very
restrictive.
• For the continuous-time case, the following linear program can be used:

maximize ε

subject to
[
H+ H−
H− H+

] [
umax

umin

]
≤

[
Δmax

Δmin

]
(3.29)

[
H1 H2

H2 H1

] [
umax

umin

]
≤ −ε

[
φ1

φ2

]
(3.30)

ε ≥ 0, H+ ≥ 0, H− ≥ 0 (3.31)

where vectorsφ1 ≥ 0 andφ2 ≥ 0 are tuning vectors. If the feasible solution H+, H−
is such that matrix H = H+ − H− satisfies condition (1.37)–(1.40) use matrix H
for the algorithm. Else, change φ1 and φ2 according to rules hereafter.
In this case, rules of changing vectors φ1 and φ2 consist of a small perturbation of
components of vectors φ1 and/or φ2. Sensible changes of eigenvalues and eigenvec-
tors of matrix H are then obtained such that the required condition can be fulfilled.
(2.ii) If the initial condition set is imposed or given, linear programming can also be
used to select matrix H . Two possibilities then exist: First, to use linear programming
in discrete-time systems case or linear programming in continuous-time systems case
where inequalities defining the initial condition set are added as constraints. Second,
to use a linear program that determines both matrices H and the state feedback F
[24, 28].

(2.iii) If the goal is to robustly assign the closed-loop spectrum in a specified
complex plane region, algorithm given in [6] is appropriate to be used to select the
suitable matrix H .

Example 3.1 Continuous-time case
Consider the double integrator in the continuous-time state space representation given
by [13]:

A =
[
0 1
0 0

]
, B =

[
0
1

]

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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Control constraints are as follows:

−1 ≤ u(t) ≤ 5

Assume that control rate is constrained as follows:

−10 ≤ u̇(t) ≤ 3

As discussed in the remark above, the system can be augmented with fictitious
constrained inputs v in domain [−vmin vmax ]. First, the fictitious constraints are
selected as follows:

−2 ≤ v(t) ≤ 5; −5 ≤ v̇(t) ≤ 2

Processing the linear program presented above for the continuous-time case enables
to select the suitable matrix H as:

H =
[−1.483 0.043

0 −1

]

which satisfies all the required conditions (1.37)–(1.40), with ε = 1, that is

H̃cU = [−7.19 − 5 − 1.39 − 2]T ≤ 0,

H̃dU = [1.69 2 7.5 5]T
≤ [3 2 10 5]T .

Solution of Eq. (3.21) leads to the following augmented gain matrix Fa:

Fa =
[−1.48 −2.48
34.23 23.08

]
.

Note that the effective gain matrix F is extracted from the first row of the previous
matrix (the second row corresponds to the fictitious input). The effective gain matrix
is then:

F = [−1.48 −2.48
]

The closed-loop dynamics are given by:

A + BF =
[
0 1
−1.48 −2.48

]
.

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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Fig. 3.2 Control evolution in time

As it has been pointed out before, the eigenvalues of matrix H can be used as tuning
parameters to impose closed-loopdynamics: It is easy to note here thatσ(A + BF) =
σ(H).

The obtained set of positive invariance with the augmented matrix Fa is given by:

DFa = {
x ∈ R

n | −wmin ≤ Fax ≤ wmax
}

where wT
min = [uT

min vT
min] and wT

max = [uT
max vT

max].

Figure3.1 represents the set of linear behavior DFa , and in red, a trajectory
emanating from the initial state xo = [+2.3514 − 3.364]T and in green from
xo = [−0.3445 0.5249]T lying in the set DFa . Figure3.2 represents the admissi-
ble control evolution for the two initial conditions with the same colors. Finally,
Fig. 3.3 shows the evolution of the control rate. It is possible to see that the states
evolution respects the constraints.
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Fig. 3.3 Control’s rate evolution in time

Example 3.2 Discrete-time case
Let us consider the system given by:

A =
[
1.785 0.5
1.4 1.2

]
, B =

[
0.6

−0.1

]
.

The constraints are given as follows:

−2 ≤ u(k) ≤ 5, −3 ≤ u(k + 1) − u(k) ≤ 7

U =
[
5
2

]
and Δ =

[
7
3

]
.

Note that σ(A) = {2.3788; 0.6062}, hence the system admits 1 stable eigenvalue
that will be kept in closed loop. The unstable one will be replaced. Let us choose
matrix H , in this case, it is a scalar H = 0.8 and it is the eigenvalue to be assigned
in closed loop. The requested conditions may be checked as follows:

˜(H − I)dU − Δ =
[ −8

−3.4

]
≤ 0,

H̃dU −U =
[ −3

−5.4

]
≤ 0.

The eigenvector of the stable eigenvalue is given by:

ξ1 =
[−0.2206

1.3201

]
,

one can check that Bξ1 �= 0. The state feedback will be then given by:
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F = [
1 0

] × [
ξ1 ξ2

]−1 = [−2.8315 −1.2010
]
,

where ξ2 = (λI − A)−1 × B (in this case λ = H and the associated eigenvector is
1. The closed-loop dynamics are given by:

σ(A + B F) = { 0.6 , 0.8 } .

It is worth noting here that the domain of admissible states is not bounded in this
case. See Figs. 3.4, 3.5, and 3.6.
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3.3 Constrained Control and Rate or Increment for Linear
Systems with Additive Disturbances

After solving above, the problem of stabilization of linear systems with constraints
on control and increment or rate, the extension to the same case of systems subject
to bounded disturbances, as in [26, 27], is studied.

3.3.1 Problem Statement

Consider the linear time invariant system:

δx(t) = A x(t) + B u(t) + E p(t) (3.32)

where x(t) ∈ R
n is the state of the system, u(t) ∈ R

m is the input, constrained to
evolve in the domain given by (3.2). The control rate or increment is constrained as:

− Δmin ≤ u̇(t) ≤ Δmax for continuous-time case

(3.33)

−Δmin ≤ u(t + 1) − u(t) ≤ Δmax for discrete-time case

p(t) is an additive disturbance bounded as:

− pmin ≤ p(t) ≤ pmax (3.34)

Further, we denote:
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U =
[
umax

umin

]
, Δ =

[
Δmax

Δmin

]
, � =

[
pmax

pmin

]

The problem, to be solved, is to find stabilizing linear state feedback as (3.5), ensuring
closed-loop asymptotic stability of the system despite perturbations with no violation
of non-symmetrical constraints on the rate (or increment) and magnitude of the
control.

3.3.2 Controller Design with Constraints on Control
and Rate with Disturbances

Let us now extend the previous results presented in the first part of this chapter
to the case of systems with additive bounded disturbances. To do so, a technical
lemma that was established in [23] is revisited in the case of bounded disturbances.
Relating that lemma to the pole assignment procedure presented earlier enables to
find stabilizing controllers for systemswith non-symmetrical constrained control and
rate or increment. Consider the linear time invariant autonomous system:

δz(·) = Hz(·) + Ep(·), z(to) = zo, (3.35)

where z ∈ R
m is the state.

Lemma 3.3 The evolution of the autonomous system (3.35), with additive distur-
bances p(·), respects rate or increment constraints if and only if matrix H satisfies

H̃d ϑ + Ẽd � ≤ Δ for the continuous-time case (3.36)

˜(H − I)d ϑ + Ẽd � ≤ Δ for the discrete-time case (3.37)

where

ϑ =
[
zmax

zmin

]
, Δ =

[
Δmax

Δmin

]
, � =

[
pmax

pmin

]
.

Proof Let us first begin by the proof for the continuous-time case.
If part: Assume that condition (3.36) is satisfied, then

− zmin ≤ z(t) ≤ zmax, (3.38)

next, decompose matrix H = H+ − H−; pre-multiplying (3.38) by H+ and −H−,
gives:

− H+zmin ≤ H+z(t) ≤ H+zmax (3.39)

− H−zmax ≤ −H−z(t) ≤ H−zmin (3.40)
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Further, consider the bounds on the disturbance p(t):

− pmin ≤ p(t) ≤ pmax (3.41)

Applying to (3.41) the same technique used to achieve (3.39) and (3.40) where
matrix E = E+ − E− leads to the following inequalities:

− E+ pmin ≤ E+ p(t) ≤ E+ pmax (3.42)

− E− pmax ≤ −E− p(t) ≤ E− pmin (3.43)

Addition of the inequalities (3.39)–(3.40) and (3.42)–(3.43) enables to write the
following:

−E+ pmin − E− pmax − H+zmin − H−zmax ≤ Hz(t) + Ep(t)

≤ H+zmax + H−zmin + E+ pmax + E− pmin

according to condition (3.36),

-Δmin ≤ −G+zmin − G−zmax ≤ Gz(t) ≤ G+zmax + G−zmin ≤ Δmax

this is equivalent to:
−Δmin ≤ ż(t) ≤ Δmax.

Only if part: Now, we assume that the derivative of z(t) respects the constraints,
and we suppose that condition (3.36) was not satisfied for an index 1 ≤ i ≤ n such
that:

[H̃d ϑ]i + [Ẽd � ]i > Δi (3.44)

expanding (3.44):

[H+zmax + H−zmin]i + [E+ pmax + E− pmin]i > Δi
max

Then, the following state vector for the system can be selected:

φ(t) =
⎧⎨
⎩
z jmax if hi j > 0
0 if hi j = 0
−z jmin if hi j < 0

, j = 1, ..., n

It is easy to check thatφ(t) is an admissible state for the system. Further, the following
admissible perturbation may occur:
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κ(t) =
⎧⎨
⎩

p j
max if ei j > 0

0 if ei j = 0
−p j

min if ei j < 0
, j = 1, ..., p

Calculation of the i th component of the derivative of this state gives

[ d
dt φ(t)]i = [H φ(t) + E p(t)]i

=
n∑
j=1

hi jφ j (t) +
p∑

j=1
ei jκ j (t)

= [H+zmax + H−zmin + E+ pmax + E− pmin]i
taking into account inequality (3.44), it is possible to write:

[ d
dt

φ(t)]i > Δi
max

which contradicts the assumption that the derivative respects the constraints.

For the discrete-time case, assume that condition (3.37) holds true and writes the
increment as:

z(k + 1) − z(k) = Hz(k) + Ep(k) − z(k)

= (H − I)z(k) + Ep(k)

= Gz(k) + Ep(k)

making the same reasoning as the continuous-time case with matrix H replaced by
G, the proof of the if part may be easily deduced.

The necessary part is also deduced replacing matrix H by matrix G and the
derivative of the state φ(t) by the increment φ(t + 1) − φ(t). �

With this background, we are now able to solve the problem stated in Sect. 3.2:
consider the linear time invariant stabilizable system with additive disturbances and
constraints on both control and rate of the controls (3.32)–(3.34). Using the state
feedback:

u(t) = F x(t), F ∈ R
m×n, σ (A + B F) ∈ ID (3.45)

induces the domain (3.20) of linear behavior in the state space.
If the state does not leave the domain (3.20), the control signal does not violate

the constraints. That is, the set DF is DP -positively invariant with respect to motion
of system (3.32). This gives the following result:

Proposition 3.2 The disturbed system (3.32) with state feedback (3.45) is asymp-
totically stable at the origin from all initial states xo ∈ DF , respecting constraints
on both the control and its rate (or increment), if there exists a matrix H ∈ R

m×m

satisfying conditions (1.37)–(1.40), such that:

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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(i) F A + F B F = H F (3.46)

(iia)

{
H̃d U + (̃F E)d � ≤ Δ

H̃c U + (̃F E)d � ≤ 0
for the continuous-time case. (3.47)

(iib)

{
˜(H − I)d U + (̃F E)d � ≤ Δ

H̃d U + (̃F E)d � ≤ U
for the discrete-time case. (3.48)

Proof Introducing the following change of coordinates z = F x , it is possible to
write (3.32) as follows:

δz(t) = Fδx(t) = F(A + B F) x(t) + F E p(t)

= H F x(t) + F Ep(t) = H z(t) + F E p(t) (3.49)

With this transformation, domain DF is transformed into domain Dz given by (3.7).
Further, with conditions (3.47), it is easy to note that domain Dz is DP -positively
invariant with respect to the system (3.49), while the constraints on the increment
of the control are respected. Bearing in mind that σ(A + BF) ∈ ID and that the lin-
ear behavior is guaranteed, it is possible to conclude the asymptotic stability of the
closed-loop system. �

The steps to follow for design of such controllers are the same as those proposed
in the Algorithm 3.1 presented above and reported in [25] for systems with non-
additive disturbances. Methods to choose the matrix H for different cases were
widely discussed in [25].

Comments 3.1 It is true that the set of positive invariance in this case is not the
absolute maximal but it is maximal with respect to the chosen feedback F . In fact, for
a given matrix feedback F , the maximal set where no violation of control constraints
may occur is the set DF as proposed above. Nevertheless, piecewise techniques [5]
or maximization procedure for the set of positive invariance [25] can be used to
overcome this difficulty.

Some closed-loop specifications lead to pole assignment in a specified complex
plane region. In this case, the spectrum of matrix H lies within a specified complex
plane if conditions given in [6] are fulfilled. These conditions can easily be added as
conditions on the matrix H .

3.3.3 The Maximal Disturbance Set

As vector ϑ and matrix H̃c for the open-loop continuous-time case or ˜(H − I)d have
positive components, inequalities (3.36) or (3.37) can never be satisfied if the differ-
ence (Δ − Ẽd� ) was negative. Hence, the interesting conclusion is that inequality
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(3.36) or (3.37) permits to compute the maximum perturbation set that can be admis-
sible with these rate constraints; that is, the set given by :

Dmax
P = {p(t) ∈ R

p,−pmin ≤ p(t) ≤ pmax /Ẽd � = Δ}. (3.50)

Since matrix E and vector Δ are known from the statement of the problem, it can
be concluded if such rate constraints requirement could be fulfilled or not, and if it
is admissible or not.

As stated above, the maximal disturbance set such that asymptotic stability of the
closed-loop system with no violation of constraints on both rate or increment and
control can be estimated. Consider the system with additive disturbances

ẋ(t) = A x(t) + B u(t) + E p(t), (3.51)

stabilized by state feedback (3.45). The maximal disturbance allowed set can be
estimated as follows.

Corollary 3.1 The maximal disturbance set such that closed-loop asymptotic sta-
bility can be ensured and rate (or increment) and magnitude control constraints are
not violated is given by:

Dmax
P = {

p(t) ∈ R
p/ − pmax

min ≤ p(t) ≤ pmax
max

}
, (3.52)

where vector �max satisfies

(̃F E)d �max = min(Δ − H̃dU,−H̃c U ) for the continuous-time case,

(̃F E)d �max = min(Δ − ˜(H − I)dU,U − H̃d U ) for the discrete-time case,

the minimum here is taken component-wise.

Proof Let us begin by the continuous-time case and assume that the objective is to
stabilize the system by state feedback with p(t) a perturbation vector with unknown
limits. From condition (3.47), one can write as follows:

{
(̃F E)d � ≤ Δ − H̃d U

(̃F E)d � ≤ − H̃c U

hence, the maximal disturbance set that can be seen as the limit of fulfillment of the
previous two conditions. Further, for any vector T ∈ R

p such that T ≤ �max , it is
easy to check that condition (3.47) is satisfied.
For the discrete-time case, the proof is similar. �

Example 3.3 Application of the previous results to control of DC motor for posi-
tioning of circuits boards in a mount robot presented in [22, 27] is considered. The
Y-axis of the machine uses a ball screw transmission driven by a current controlled
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DC motor. The rotation of the DC motor is converted into a translation motion by
ball screw. A positioning table attached to the ball nut carries different loads. The
process can be simplified as a two mass system:

Jm θ̈m + bm θ̇m = Kmim − T f − Tl
Tl = kt (θm − xl/p)

ml ẍl + bl ẋl = Tl/p

where θm and xl are the motor angle and table displacement, respectively, im is the
motor current, Tl is the load torque due to the torsion of ball screw, T f is the friction
torque, p is the screw pitch, Jm is the motor inertia plus ball screw inertia, bm , bl ,
and Km are, respectively, the damping coefficients and the constant torque, kt is the
stiffness,ml is the equivalent mass of load, table, and nut [22]. Converting the motor
angle position to linear position and rewriting the model in the state space gives:

ẋ(t) = Ax(t) + Bu(t) − Bp(t)

where

A =
[
0 1
0 −9.67

]
, B =

[
0

7.35

]

and x = [ pθ pθ̇ ]T , u(t) = im(t) and p(t) is the lumped disturbance of load
torque, friction, and other external disturbances. The current input of the DC motor,
its rate, and the perturbation are, respectively, constrained as follows:

−4 ≤ u(t) ≤ 4, −80 ≤ u̇(t) ≤ 80, −1 ≤ p(t) ≤ 1.

Comments 3.2 The origin of the rate constraints is that the limit of the variation
of the motor current im(t) is taken as a peak to peak value at a sampling time.
As the system possesses one stable eigenvalue, in this case, it is not necessary to
augment the system. Further, for this system, the constraints are symmetric from the
original example, this fact simplifies a number of conditions but we insist to present
the theoretical non-symmetrical case for the seek of generality. Furthermore, the
resulting closed loop cannot be unstable as it is our goal to stabilize the system.Hence,
assuming the perturbation is limited within the given set is always true although it is
a function of the state of the system as presented.

Matrix H reduces to a scalar in this case, let us select h = −α, where α �= 0, is any
positive number which satisfies all the required conditions (1.37)–(1.40):

H̃cU + ˜(−FB)d� ≤ 0

It is clear that α here may be any positive number. To show the importance of
conditions including the disturbances, we begin by the casewhere such conditions for

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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the disturbed system are not satisfied. Hence, let h = −α = −20, then the stabilizing
gain feedback is given by:

F = [−26.3129 − 2.7211]

It is easy to check that one of the two conditions is not satisfied, that is,

H̃d U + ˜(−F B)d� ≤ Δ[
4α
4α

]
+

[
20pmin

20pmax

]
>

[
Δmax

Δmin

]

Figure3.7 shows that in fact the system motion, from the initial condition xo = [2 −
20]T , does not converge to the origin, especially state x1(t) is divergent (Fig. 3.7),
even state x2(t) is convergent (Fig. 3.8).We show also the control evolution in Fig. 3.9
which does not respect the constraints. It must be pointed out that despite the initial
state is chosen inside the set of linear behavior, the system motion does not converge
to the origin. Figure3.10 represents disturbance p(t) variation.

Now choose α = 12. Solution of Eq. (3.46) leads to the following gain matrix F :

F = [−15.7878 − 1.6327]

At this step, one has to check that all required conditions (3.47) are fulfilled. In fact:

H̃d U + ˜(−F B)d� ≤ Δ,

[
4α
4α

]
+

[
12pmin

12pmax

]
≤

[
Δmax

Δmin

]
,
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that is, 4α + 12pmax = 60 ≤ 80 which is satisfied. Then

H̃c U + ˜(−F B)d� ≤ 0,
[−4α

−4α

]
+

[
12pmax

12pmin

]
=

[−36
−36

]
≤ 0.

Finally, all required conditions are fulfilled, asymptotic stability is achieved with
the obtained state feedback. Simulation results are summarized in Fig. 3.11 from the
initial condition xo(t) = [5 − 50]T . Figures3.12 and 3.13 plot input and rate’s input
evolution in time.

The maximal allowed disturbance set, which does not change stability and does
not violate imposed constraints, in this case, can be easily deduced as follows:
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˜(−F B)d �max = min(Δ, −H̃cU ),

simple calculation leads to:

�max =
[
4
4

]

An example of the perturbation evolution in this case is given in Fig. 3.14.
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3.4 Conclusion

In this chapter, the regulator problem for linear systems which contain independent
input saturation and rate saturation nonlinearities has been studied. A method has
been developed to avoid these constraints, maintaining the closed-loop system in a
linear region. The method proposed in this chapter is based on determining a feed-
back control law that ensures positive invariance of a set included in a region of
closed-loop linear behavior and including all admissible initial states. This positive
invariant set is then considered as a linear local region of stability. The link to the
so-called inverse procedure, the pole assignment method for constrained control, to
the previous conditions is the cornerstone of this work. This link makes possible to
develop a simple algorithm to compute a regulator respecting constraints on both
control and its increment or rate. It must be pointed out that performance specifica-
tions in terms of the position of closed-loop eigenvalues can be easily incorporated
in the design steps, which makes it a powerful technique. An example has been pre-
sented to show the application of the technique presented in this chapter to a double
integrator plant: It has been seen how simple it is to apply this technique. Further,
linear programming was used to select the suitable matrix H for design. Further-
more, work can be done to consider uncertainty in the plant and using linear matrix
inequalities to solve the problem.

In an other hand, this chapter deals also with the same regulator problem for lin-
ear systems with non-symmetrical constrained control and rate or increment but in
addition subject to additive bounded disturbances. Necessary and sufficient condi-
tions, established for linear autonomous systems such that their motion respects rate
constraints together with DP -positive invariance, are used in this case to solve this
problem. The maximal disturbance set, such that robust asymptotic stability, rate and
control constraints are not destroyed, has also been easily deduced.

The same problem can be solved for sampled-data control systemswithmagnitude
and rate saturating control [29].
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Chapter 4
Regulator Problem for Singular Linear
Systems with Constrained Control

4.1 Introduction

This chapter studies the stabilization of singular linear systems with input saturation
and constraints on the control rate. Since singular linear systems can model many
systems in electrical circuit networks, robotic, and economics. Singular systems
have been of great interest in the control literature, [10, 17, 19, 24]. Hence, main
classical concepts and results obtained for linear systems have already been extended
to singular systems [6, 7, 11–13, 16, 20, 26]. The constraints considered in this
chapter are asymmetric (the maximum and the minimum value of the constraints
do not have the same absolute value) [3, 5, 21, 25], because constraints in real
systems are usually asymmetric. As a regulator for this kind of systems, this chapter
proposes state-feedback PD controllers, where state and derivative feedback are used
to obtain more flexibility of design and performance than those obtained using only
proportional state-feedback.

Manyworks have discussed the design of state and derivative feedback controllers
for linear systems (see [8, 9, 14, 23] and the references therein). The main task of
derivative feedback gain F2 is to transform the singular system into a non-singular
one [18]. However, this derivative feedback can produce a matrix E + BF2 which is
ill-conditioned. Generally, the use of equivalent representation of singular systems,
obtained with a state augmentation can lead to a synthesis of the PD controller with
no need of inversion of matrix E + BF2.

Thus, this chapter presents necessary and sufficient conditions of positive invari-
ance for singular systems with constraints on the control and its rate by using a PD
controller. As a particular case, results for PD controllers for linear systems with
constraints on the control and its rate are obtained.

© Springer International Publishing AG 2018
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4.2 Regulation of Singular Linear System Under
Constrained Control Magnitude and Rate

4.2.1 Problem Formulation

Theproblemwhich is the regulationof singular linear systemwith constrained control
magnitude and rate is formulated below.Consider the following systemdescribed by:

Eẋ(t) = Ax(t) + Bsat (u(t)) (4.1)

x(0) = xo

where x ∈ R
n is the state, u ∈ R

m is the control, and Rank(E) = r ≤ n. The control
and its rate are assumed here to be constrained as follows:

u ∈ Ω = {
u ∈ R

m | − umin ≤ u ≤ umax ; umax , umin ≥ 0
}

(4.2)

u̇ ∈ ΩΔ = {
u ∈ R

m | − Δmin ≤ u̇ ≤ Δmax ; Δmax ,Δmin ≥ 0
}

(4.3)

Then, vectors U and Δ are defined as follows:

U =
[
umax

umin

]
∈ R

2m, Δ =
[

Δmax

Δmin

]
∈ R

2m .

Throughout the chapter, it is assumed that:
(AS1) (E,A,B) is PD stabilizable: that is, Rank[sE − AB] = n, ∀s ∈ C such that

Re(s) > 0.
(AS2) The state x and its derivative ẋ are available for measure.
For this chapter, some useful definitions and preliminary results can be reviewed

from Chap. 1 on singular systems. The objective of this work is to design for the
singular linear system (4.1) a stabilizing controller of the form:

u(t) = F1x(t) − F2 ẋ(t), (4.4)

(state and state derivative feedback) that respects constraints on the control and its
rate. To reach a solution, it is only necessary to select F2 such that G1 = (E +
BF2)

−1 ∈ R
n×n exists. Then, the unsaturated system (4.1) can be written as:

ẋ(t) = G1Ax(t) + G1BF1u(t) (4.5)

x(0) = xo

Then, the unsaturated system in closed loop is described by:

ẋ(t) = G1(A + BF1)x(t) (4.6)

= Ar x(t),

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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and the control can be expressed as follows:

u(t) = (F1 − F2Ar )x(t)

= (F1 − F2G1A − F2G1BF1)x(t) = Kx(t), (4.7)

with K ∈ R
m×n . With this system in closed loop, the induced set of constraints on

the state is given by:

D = {
x ∈ R

n| − umin ≤ Kx ≤ umax
}
. (4.8)

Note that from Eq. (4.7) one can write:

K = MF1 − F2G1A (4.9)

M = Im − F2G1B. (4.10)

The main idea of the approach of positive invariance is to impose that the system
trajectories evolve only inside the region of linear behavior defined by (4.8), so that
Eq. (4.6) remains valid.

The proposed representation of the singular system is used to design the PD
controller in the presence of constraints on both the control and its rate. The obtained
regular system enables to deal easilywith the problem inside the set of linear behavior
D for the synthesis of the proposed stabilizing controller. That is the synthesis of the
gain matrices F1 and F2 [5].

4.2.2 Positive Invariance for Singular Linear Systems

Necessary and sufficient condition for the positive invariance of the set D given by
(4.8) with respect to system (4.6) is presented by using a constrained PD controller.
Consider the dynamic of the control obtained with Eqs. (4.7), (4.9)–(4.10), hence,
u̇(t) = K Ar x(t). If there exists a matrix H ∈ R

m×m such that K Ar = HK , then the
control dynamic is:

u̇(t) = Hu(t) (4.11)

Theorem 4.1 The set D given by (4.8) is positively invariant with respect to the
motion of the system (4.6) if and only if there exist matrices H ∈ R

m×m, F1 ∈ R
m×n,

and F2 ∈ R
m×n such that:

K Ar = HK (4.12)

H̃c U ≤ 0 (4.13)
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H̃d U ≤ Δ (4.14)

Ar is Hurwitz. (4.15)

Proof The result can be proved using a parallel approach to the one presented in
[4, 21], but this time applied to the set (4.8) with respect to the system (4.11) while
respecting the constraint on the rate by means of condition (4.14). It is also obvious
that the set D given by (4.8) is positively invariant with respect to system (4.6) and
the constraints on the control rate are respected if and only if the setΩ given by (4.2)
is positively invariant with respect to the system (4.11) while the constraints on the
control rate are respected. �

Remark 4.1 It is worth noting that the stability of the singular systems is realized
by the stability condition (4.15). That is, the singular systems with the PD con-
troller becomes admissible, while the constraints on both the control and its rate are
respected for all initial conditions xo ∈ D .

Corollary 4.1 For a given stabilizing gain matrix F1 ∈ R
m×n with full rank, there

exists a solution H ∈ R
m×m, of equation K Ar = HK, if and only if:

K Ar (I − K+K ) = 0; (4.16)

In this case, all the solutions are given by:

H = K Ar K
+ + Z(I − KK+), (4.17)

where K+ denotes any generalized inverse of K satisfying K K+K = K, and Z ∈
R

m×m is arbitrary.

Proof Necessity: Assume that Eqs. (4.16) and (4.17) hold true. Thence,

HK = (K Ar K
+ + Z(I − KK+))K

= K Ar K
+K + ZK − ZK K+K

= K Ar K
+K

= K Ar

then the obtained matrix H given by (4.17) is solution.

Sufficiency: Assume that there exist a matrix H solution of K Ar = HK , then:

K Ar − HK = 0

K Ar − HKK+K = 0

K Ar − K Ar K
+K = 0

K Ar (I − K+K ) = 0

�
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4.2.3 Synthesis of the Constrained PD Controller

In what follows, two methods to compute the PD controller are presented. The first
one is based on an non-symmetrical nonlinearRiccati equation,which is very difficult
to use. To overcome this difficulty, a second (heuristic) method is proposed, based
on the solution of equation X A + XBX = HX , leading to an approximate solution.

4.2.3.1 Direct Procedure

This method consists in applying directly the results of the Corollary 4.1. The dif-
ferent steps of this technique are summarized by the following algorithm.

Algorithm 4.1

• Step 1: Compute matrix F2 such that matrix E + BF2 is invertible. Let G1 =
(E + BF2)

−1.
• Step 2: Apply any pole assignment technique to compute a full rank matrix F1
such that matrix Ar is Hurwitz while condition (4.16) is respected.

• Step 3: Compute matrix H in (4.17) using an arbitrary matrix Z .
• Step 4: If conditions (4.13)–(4.14) are satisfied, then a valid solution is already
obtained; otherwise return to Step 3 (changing matrix Z ) or to Step 1 (changing
matrix F2).

Note that the convergence of this algorithm is not guaranteed. Matrices Z and F2 are
“tuning” parameters and can be changed randomly. This explains why other synthe-
sis methods are studied in the sequel of this chapter. Further, this direct procedure
does not need that matrix H , computed with (4.17), be a diagonalizable matrix.
Besides, if the augmentation technique is used, matrices Ba, Fa1, Fa2, Ka denote the
corresponding augmented matrices to B, F1, F2, K (see the example).

Example: Direct procedure
Consider the singular system described by:

A =
⎡

⎣
1 −1 0
0 1 −1
1 −2 0

⎤

⎦ , B =
⎡

⎣
0 0
1 0
0 1

⎤

⎦ , E =
⎡

⎣
1 0 0
0 1 1
0 0 0

⎤

⎦ ,

which is subject to asymmetric constraints, corresponding to vectors:

U = [20 8 15 8]T , Δ = [130 40 130 50]T .

The finite generalized eigenvalues of (A, E) are −1 and 0.5: This implies that the
open-loop system is not admissible. With matrix:

F2 =
[−1 −3 −2

2 −5 −7

]
,
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we chose to place the spectrum {−2,−3,−4} and we obtain:

F1 =
[−24 10 −1

1 −2 2

]
, Ar =

⎡

⎣
1 −1 0

17.88 −8 1.77
−12.77 6 −1.55

⎤

⎦ , K =
[
5.11 −3 1.22
−1 2 0

]
,

K Ar (I − K+K ) =
[−2.97 −1.48 8.78

1.68 0.84 −4.96

]
�= �,

At this step, condition (4.16) is difficult to satisfy and can not be directly obtained.
Henceforth, an alternative approach is proposed.

4.2.3.2 Non-symmetric Riccati Equation

Initially, it is possible to rewrite Eq. (4.12) by using relations (4.9)–(4.10), leading
to the following equation to be solved:

MXLX + MXN1 + N2X + N3 = 0 (4.18)

where the variables in the equation are:

X = F1

L = G1B

N1 = G1A (4.19)

N2 = −F2G1AG1B − HM

N3 = HF2G1A − F2G1AG1A

Solution of this non-symmetric Riccati equation gives a direct method to solve the
problem [1]. Unfortunately, as it is well known, this equation is rather difficult to
solve exactly, especially when M is a singular matrix (as it will be shown latter, this
is the case in the problem studied in this chapter). The work of [15] discussed this
type of Riccati equations, giving some standard solutions.

4.2.3.3 Approximate Solution

Given the numerical difficulties of solving the Eq. (4.18) obtained with the direct
approach, an approximate method is now proposed: The synthesis of the proposed
controller based on the results of Theorem 4.1 is developed by using the so-called
inverse procedure studied by [2]. Recall the following matrices:
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G1 = (E + BF2)
−1

M = Im − F2G1B,

Ar = G1(A + BF1)

K = MF1 − F2G1A (4.20)

First, we are going to show that matrix M is singular, so that the pseudo inverse must
be used: Assume that M−1 exists; by using the inverse lemma,

(L + NCD)−1 = L−1 − L−1N (C−1 + DL−1N )−1DL−1, (4.21)

one canwrite:M−1 = Im + F2(G
−1
1 − BF2)

−1B = Im − F2E−1B, soM is singular.
According to Lemma 1.5, Eq. (4.9) has a solution in the variable F1 if and only if

(I − M M+) (K + F2G1A) = 0. (4.22)

Further, one solution is given by:

F1 = M+ (K + F2G1A) , (4.23)

where M+ denotes the Moore-Penrose inverse (pseudo inverse) of matrix M . Now,
matrix Ar can be arranged as follows:

Ar = G1(I + BM+F2G1)A + G1BM
+K , (4.24)

consequently, matrix Ar can be developed as

Ar = Â + B̂K

Â = G1(I + BM+F2G1)A

B̂ = G1BM
+, (4.25)

where Â ∈ R
n×n , B̂ ∈ R

n×m , and M ∈ R
m×m .

Applying Theorem 4.1 to the equation (K Â + B̂K = HK ) leads to a solution
K as given above. Once the solution is obtained, F1 can be computed according to
Eq. (4.23).

It is worth noting that the use of the results of [2] requires that matrix Â possesses
at least n − m stable eigenvalues. However, this condition is not restrictive since one
can use the augmentation technique detailed in [4], as presented earlier. In order
to summarize the necessary steps to apply for the synthesis of the controller, the
following algorithm is given.

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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Algorithm 4.2

• Step 1: Compute matrix F2 such that matrix E + BF2 is invertible. Let G1 =
(E + BF2)

−1

• Step 2: Compute matrices Â and B̂ given by (4.25), using the pseudo inverse of
matrix M .

• Step 3: Choose a matrix H ∈ R
m×m according to conditions (4.13)–(4.14) and

conditions (1.37)–(1.40). Note that to determine matrix H , one can use the linear
programming approach given in [21].

• Step 4: If matrix Â does not admit n − m stable eigenvalues, either return to Step
1, selecting a new matrix F2, or augment B to make it square [4].

• Step 5: Compute the solution K of the algebraic equation (4.12).
• Step 6: Compute matrix F1 from Eq. (4.23).
• Step 7: Compute the test condition ε = (I − M M+)(K + F2G1A): if ε is “small,”
then stop; otherwise repeat from Step 1, changing matrix F2.

Remark 4.2 The proposed approach, which is frequently used in the literature [10],
is based on selecting first F2 and has the advantage of giving a “tuning” parameter
for the designer. Of course, there are many matrices F2 that fulfill the requirement
that E + BF2 is invertible, since rank(E) = r . In practical problems, the designer
just selects one adequate matrix F2 for the problem at hand.

4.2.4 System Augmentation Technique

In order to present an alternative way to design the required controllers of Theorem
4.1, one can use the following approach, based on relaxing the equalities of the
algorithm:

First, it is possible to rewrite the system (4.1) under the equivalent form:

Eẋ(t) = Ax(t) + Basat (w(t)), (4.26)

with matrix Ba corresponding to an augmentation of B to get a square matrix,
given by:

Ba = [
B � ]

,

where � ∈ Rn×n−m is a null matrix.
This augmentation is carried out through the introduction of a vector v(t) made

of n − m fictitious entries, with their fictitious constraints given by: −e2 ≤ v ≤ e1
and −ϕ2 ≤ v̇ ≤ ϕ1. With this augmentation, the new control law becomes:

w(t) =
[
u(t)
v(t)

]
, (4.27)

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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with the feedback laws,w(t) = Kax(t) and v(t) = Kcox(t). Define the real feedback
law Ka , the newvector of constraints on the controlmagnitudeUa , and the newvector
of constraints on the control magnitude Δa as follows:

Ka =
[

K
Kco

]
; Ua =

[
Ua

max
Ua

min

]
; Δa =

[
Δa

max
Δa

min

]
,

where

Ua
max =

[
umax

e1

]
; Ua

min =
[
umin

e2

]
; Δa

max =
[

Δmax

ϕ1

]
, Δmin =

[
Δmin

ϕ2

]
.

(4.28)

Note that the system in closed loop given by the augmented control w(t) remains the
same as (4.6). On the other hand, the set of admissible constraints becomes with this
augmentation:

Ωa = {w ∈ R
n/ −Ua

min ≤ w ≤ Ua
max }. (4.29)

It is worth noting that this technique introduces new degrees of freedom with the
variables ei and ϕi , without modifying the system, which is simply augmented. Thus,
the main advantage of the proposed technique is that it is possible to increase the
size of the set of positive invariance by just selecting ei and ϕi to be large.

The same development can be followed to obtain the closed-loop system (4.6),
with augmented matrices F1, F2, M, H .

Suppose temporarily that the algebraic equations (4.12) was not exactly satisfied,
and the error is restricted in an uncertain term D, as follows:

D = Ka Ar − HKa . (4.30)

By virtue of the new algebraic equation (4.30), the control dynamic is now given by

u̇(t) = (HKa + D)x(t)

= (H + L)u(t), (4.31)

where L = DK−1
a and the matrix Ka is assumed here to be non-singular. With this

uncertain term L on the algebraic equation, an uncertain dynamic control is obtained.
Assume now that the uncertain terms L are bounded by a known positive matrix
Ψ ∈ R

2n×2n:
L̃d ≤ Ψ. (4.32)

In this case, according to [22], conditions (4.13)–(4.14) can be replaced with the
following ones:

{
H̃cUa + ΨUa ≤ 0,
H̃dUa + ΨUa ≤ Δa .

(4.33)
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Thus, the algorithm corresponding to this technique is the following:

Algorithm 4.3

• Step 1: Augment the system inputs with fictitious input vector v(t) and the corre-
sponding fictitious constraints e1, e2, ϕ1, and ϕ2.

• Step 2: Select matrix F2 ∈ R
n×n such that matrix E + BF2 is invertible, let

G1(E + BF2)
−1.

• Step 3: Compute matrices Â and B̂ given by (4.25) by using the pseudo inverse of
matrix M .

• Step 4: Select matrices H ∈ R
n×n and Ψ ∈ R

2n×2n according to the conditions
(4.33) and (1.37)–(1.40).

• Step 5: Compute the solution Ka of the algebraic equation (4.12).
• Step 6: Compute matrix F1, using Eq. (4.23).
• Step 7: In order to test convergence to a solution:

(i) Compute the induced matrices Ar , Ka by using (4.20) and the obtained matrix
F1.

(ii) Calculate the test conditions ε1 = norm((I − M M+)(Ka + F2G1A)) and
ε2 = L̃d − Ψ .

(iii) If ε1 is “small” and ε2 < 0, then stop; otherwise:
– repeat from Step 2, selecting a new matrix F2,
– or repeat from Step 3 selecting new matrices H and/or Ψ .

Remark 4.3 • Note that to select matrix H in Step 3, it is possible to use the linear
programming method given by [21].

• With the proposed method, the solution Ka of (4.12) obtained in Step 4 is always
invertible, because Ka = [KT K T

co]T . In this case, H = K−1(A + BK )K and
A + BF = A + BaKa .

Example 4.1 Approximate solution with augmentation.

Consider the following singular continuous-time system (studied by [7] and ref-
erences therein):

A =
⎡

⎣
0 1 0

−1 3 3
−1 2 3

⎤

⎦ ; B =
⎡

⎣
0 0.2
1 0
0.9 0.8

⎤

⎦ ; E =
⎡

⎣
1 0 0
0 1 1

−1 1 1

⎤

⎦ ;

which is subject to asymmetric constraints, corresponding to vectors:

U = [5 1 1 5]T

Δ = [5.5 25.5 21.5 5.5]T

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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It is easy to see that the finite generalized eigenvalues of (A, E) are 0.383 and
2.618: This implies that the open-loop system is not admissible. In order to relax the
Algorithm 4.2, the technique of augmentation can be used in Step 4. For this, matrix
B should become square of the form Ba = [B �]. Thismeans that a fictitious input is
added, togetherwith the correspondingfictitious constraints on the controlmagnitude
(−e1 ≤ u3 ≤ e2) and the control rate (−ϕ1 ≤ u̇3 ≤ ϕ2). Thus, the constraint vectors
become:

Ua = [5 1 e1 1 5 e2]
T

and
Δa = [5.5 25.5 ϕ1 25 5.5 ϕ2]

T .

The Algorithm 4.2 was run selecting matrix F2 randomly, until an acceptable error
is obtained in Step 7. The following values of matrices M, Â and B̂ were obtained:

F2 =
⎡

⎣
0.0048 0.0036 −0.0018

−0.0095 0.0009 0.0067
0.0055 0.0031 0.0006

⎤

⎦ ; M =
⎡

⎣
0.9112 0.8484 0
0.0911 0.0848 0

−0.0425 0.3915 1.0000

⎤

⎦

Â =
⎡

⎣
0.0002 0.9996 −0.0005

−1.0000 3.0000 3.0000
−0.5000 2.0000 2.0000

⎤

⎦ ; B̂ = 1015

⎡

⎣
−0.0000 0.0000 −0.0000
0.2680 −2.6802 0.0000

−0.2680 2.6802 −0.0000

⎤

⎦ .

Note that σ( Â) = {4.8140; 0.0931 + 0.3086i; 0.0931 − 0.3086i}: That is, none of
the eigenvalues ofmatrix Â is stable. To use the technique based on the solution of the
algebraic equation of [2], the following matrix H , that satisfies all the required con-
ditions of positive invariance and fulfilling the constraints on the control magnitude
and rate, was selected: (4.13)–(4.14):

H =
⎡

⎣
−4 0.01 0.1
0 −5 0.01
0 0 −3

⎤

⎦

The fictitious constraints were also chosen to be large (e1 = 10, e2 = 10, ϕ1 = 30
and ϕ2 = 30). Matrix K follows together with matrix F1 by using (1.42) and (4.23),
respectively. Algorithm 4.2 was implemented using usual software, obtaining the
following result:

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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K = 10−4

⎡

⎣
0.0628 0.0628 −0.2199
0.0063 0.0063 −0.0220
0.5660 −0.4340 0.2689

⎤

⎦ ;

F1 =
⎡

⎣
−0.4949 1.7329 1.8100
0.5268 −1.8513 −1.9298

−0.2305 0.8098 0.8423

⎤

⎦ ;

Finally, to check the applicability of this synthesis method, matrices Are and Ke

were computed from matrix F1 by using (4.20).
The obtained effective matrix in the closed-loop Are is as follows:

Are =
⎡

⎣
0.0002 0.9996 −0.0005

−92.5932 322.0706 337.1382
91.0932 −317.0706 −332.1382

⎤

⎦

Computing the spectrum of the effective matrix Are gives

σ(Are) = {−8.6439;−0.7118 + 2.1068i;−0.7118 − 2.1068i}.

It is possible to notice the difference between the pre-assigned spectrum and the
obtained spectrum, due to the error of the algebraic equation. The condition of the use
of the pseudo inverse (4.22) can also be checked: ‖(I − M M+)(K + F2G1A)‖ =
3.0512 × 10−6, giving an acceptable error.

Finally, the norm of the error of the algebraic equation can also be computed, with
the gain matrix Ke: ‖Ke Are − H Ke‖ = 3.58 × 10−2. The effective gain matrices
F1 and Ke obtained with this approach are acceptable, even if the auxiliary matrices
B̂ and K are not satisfactory: A numerical dilemma appears between the value of
the norm tests and the norm of matrix K .

The evolution of the state of system (4.6), the trajectory of the control, and
the evolution of the control rate are presented, from the initial condition xo =
[200 200 − 80]T in Figs. 4.1, 4.2, and 4.3, respectively. Even if this approach is
based on an approximate technique, the obtained set of positive invarianceD is very
large, which allows one to take a large initial value to plot these figures.

4.3 Extension to Non-singular Systems

This section shows that the obtained results can be easily extended to the control
by proportional and derivative state feedback of non-singular linear systems with
constraints on the control and its rate. Thus, the following linear system is considered
in this subsection:
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ẋ(t) = Ax(t) + Bu(t) (4.34)

x(0) = xo

where the control and its rate are constrained as in (4.2)–(4.3), and it is assumed that
matrix A has n − m stable eigenvalues and the pair (A, B) is stabilizable.

The objective in this case is to design a stabilizing state and state derivative
feedback controller (PD):

u(t) = F1x(t) − F2 ẋ(t), (4.35)

where F1 ∈ R
m×n; F2 ∈ R

m×n , that respects the constraints on the control (4.2) and
its rate (4.3).

To get the solution for non-singular systems, it is just necessary to replace E by
the identity in the results for singular systems, obtaining:

G1 = (I + BF2)
−1

M = Im − F2G1B (4.36)

In this case, it is not necessary to use the pseudo inverse of matrix M , as M−1

is well defined. Using the inversion Lemma, it is obtained that M−1 = Im + F2B.
Using the expression (I + BF2)

−1B(Im + F2B) = B, the following developments
are obtained:

Â = ((I + BF2)
−1 + (I + BF2)

−1B(Im + F2B)F2G1)A = A,

B̂ = (I + BF2)
−1B(Im + F2B) = B, (4.37)

Once F2 is selected, F1 is given by:

F1 = (
Im + F2B)(K + F2A), (4.38)

where matrix K is the solution of the algebraic equation

K A + K BK = HK , (4.39)

that can be solved using the result of [2].
Thus, theAlgorithms4.2 and4.3 canbe followed to design the proposed controller,

with the necessary modifications discussed above. Of course, in this case, the design
method is exact since it is based directly on matrices A and B.
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4.4 Conclusion

This chapter has presented necessary and sufficient conditions for positive invariance
of a setD with respect to continuous-time singular linear system with constraints on
the control and its rate, under state PD control. Practical algorithms for the synthesis
of this controller have also been proposed by solving the algebraic equation X A +
XBX = HX . An alternative augmentation-based algorithm was deduced, with the
advantages of having additional degrees of freedom that can enlarge the set of positive
invariance. An illustrative example has been presented, to show the applicability of
the approach. The extension to non-singular systems has also been proposed.
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Chapter 5
Observer-Based Constrained Control

5.1 Introduction

In this chapter, state feedback based on the observerwith input saturation is presented.
The estimate of the state will be used for the state feedback to stabilize the closed
loop system under constrained control. Both full order and reduced-order observers
will be of interest.

In another hand, the problem of constructing an observer for the singular system
is also under interest bellow. In fact, it is an active area for research since two decades
[5, 6, 8–10, 16], and the references therein.

The objective in this chapter is to construct such an observerwhich further respects
the constraints on the control obtained onlywith the estimation of the state. The earlier
work on regular systems [11] is extended in this work to singular systems.

This chapter is organized in two sections. First, full order and reduced-order
observer are designed for constrained control systems. Hence, conditions are given
such that the reconstructed state used for the control does not destroy the posi-
tive invariance property of the admissible set for control. Second, these results are
extended to the case of singular systems.

5.2 Observer-Based Constrained Control

5.2.1 Problem Statement

Let us consider the continuous-time system given by

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), (5.1)

© Springer International Publishing AG 2018
A. Benzaouia et al., Saturated Control of Linear Systems, Studies in Systems,
Decision and Control 124, https://doi.org/10.1007/978-3-319-65990-9_5
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where x represents the state vector in Rn , u is the control constrained to lie in the set
Ω given by:

Ω = {u ∈ R
m/ − umin ≤ u ≤ umax , umin, umax ∈ R

m
+} (5.2)

with (m ≤ n). y(t) is the output of the system in R
po . A, B, and C are matrices of

appropriate sizes. We note the vector U as:

UT = [
uT
max ; uT

min

]
. (5.3)

Further, we assume that:

(A, B) is stabilizable and (A,C) is observable. (5.4)

Furthermore, the feedback is made on the reconstructed state x̂(t) with:

u(t) = K x̂(t), (5.5)

where the estimate of the state x̂(t) is given by:

˙̂x(t) = Ax̂(t) + Bu(t) − Ko(y(t) − ŷ(t)), (5.6)

where Ko is the observer matrix. Moreover, we define the set D(I, ω1, ω2) by:

D(I, ω1, ω2) = {e ∈ R
n/ − ω2 ≤ e ≤ ω1;ω1, ω2 ∈ R

n
+ − {0}} (5.7)

which represents the evolution set for the state estimation error given by:

e = x − x̂ . (5.8)

The constrained continuous-time regulator problem via observed state feedback
(CCRPOF) is stated as follows: How to compute matrices K and Ko in order to
guarantee the asymptotic stability of system (5.1) under the assumption (5.4) with
the constraint u ∈ Ω.

5.2.2 Observer-Based Controller Design

Consider that the feedback is made on the observed state as follows:

u(t) = sat (K .x̂(t)), K ∈ R
m×n, rank{K } = m, (5.9)

in such a way that:
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Re(λi (A + B K )) < 0, i = 1, . . . , n (5.10)

The estimation error is subject to the dynamics given by

ė(t) = ẋ(t) − ˙̂x(t) = Ax(t) + Bu(t) − (A ˆx(t) + Bu(t) − KoCe(t))

= (A + KoC)e(t).

We obtain an autonomous system of the form:

ė(t) = Me(t), (5.11)

where M = A + KoC .
If follows from Theorem 1.8 that the set D(I, ω1, ω2) is positively invariant with

respect to the system (5.11) if only if:

M̃cω ≤ 0, wi th ω =
[
ω1

ω2

]
. (5.12)

The conclusion from this development is that if Ko is computed such that the condition
(5.12) is fulfilled and

Re(λi (A + KoC)) < 0, i = 1, . . . , n. (5.13)

The observed state converges to the real ones and the error does not leave the domain
D(I, ω1, ω2) because it is positively invariant.
Let us now study the control dynamics:

u̇(t) = K ˙̂x(t)
= K (Ax̂(t) + Bu − KoCe(t))

= (K A + K BK )x̂(t) − KKoCe(t) (5.14)

If there exits a matrix H ∈ R
m×m solution to the algebraic equation:

K A + K BK = HK , (5.15)

(5.14) becomes

u̇(t) = HK x̂(t) − KKoCe(t),

= Hu(t) + De(t), (5.16)

where D = −KKoC.

Applying Theorem 1.8 to this system leads to the following corollary.

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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Corollary 5.1 The domain intΩ , given by (5.2), is positively invariant with respect
to the motion of system (5.16) if and only if there exists a matrix H ∈ R

m×m such
that:

K A + K BK = HK

H̃cU + D̃dω < 0,

where H̃c, D̃d , U and ω, are as defined above.

Proof The proof is obvious from the development above. �

Corollary 5.2 The system (5.6) with K and Ko satisfying, respectively, the con-
ditions (5.10) and (5.13), is asymptotically stable for all initial conditions in the
domain (5.2)–(5.7) if the two following conditions hold:

• There exists a matrix H solution to the algebraic equation K A + K B K =
H K , such that:

H̃cU + D̃dω < 0, (5.17)

•

M̃cω � 0, (5.18)

where M = A + BKoC and D = −KKoC.

Proof Thefirst condition implies that the controlu is always admissible in the domain
intD(I, umax , umin). Furthermore, the second condition implies that the error does
not leave the domainD(I, ω1, ω2). Hence, the linear behavior is always guaranteed,
and by bearing in mind that matrices K and Ko are computed such that conditions
(5.10) and (5.13) hold, we can see that the asymptotic stability of the system is
achieved. �

Algorithm 5.1 Without loss of generality, we assume that the matrix A has n −
m non-null stable eigenvalues. If this is not the case, one can easily augment the
systemwith fictitious input as presented above. Further, let {ζi }m+1�i�n be the n − m
eigenvectors of A associated with the n − m invariant (stable) eigenvalues of A.

• Step 1. Choose Λo = {ζi , i = 1, ..., n/Re(ζi ) < 0}, the observer dynamics.
• Step 2. Use any pole placement techniques to compute Ko such that:

σ(A + KoC) = Λo,

• Step 3. Check that
M̃cω � 0,

is satisfied. If so continue, or else go to step 1.
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• Step 4. Choose a matrix H ∈ R
m×m such that

H̃cU � 0.

Compute the eigenvectors of H , i.e., θi , i = 1, ...m, such as Hθi = λiθi , with λi /∈
σ(A) and Re(λi ) < 0, and Bθi �= 0 and ζi the associated closed loop eigenvectors
given by:

ζi = (λi I − A)−1Bθi , i = 1, ...m. (5.19)

• Step 5. Compute

K = [θ1 · · · θm 0 . . . 0] [ζ1 ζ2 · · · ζn]−1 (5.20)

• Step 6. If H̃cU + D̃dω < 0 go to step 7, or else go to step 4.
• Step 7. Use K and Ko for the CCRPOF.

Example 5.1 Let us consider the continuous-time system as in (5.1), where:

A =
[−3 2

2 −1

]
, B =

[
1.51 0
0 1.51

]
, C = [

1 0
]
.

The constraints on the control law are as follows:

umax =
[
0.65
1

]
, umin =

[
1
0.5

]
,

the error that can be tolerated on the observed state is taken as follows:

ω1 =
[
0.1
0.09

]
, ω2 =

[
0.08
0.1

]
.

The observer gain Ko is computed using a pole placement technique such that the
condition (5.13) is fulfilled. In addition, we check that the condition (5.12) holds,
which leads to:

Ko =
[−0, 5
−2, 5

]
,

with the spectrum: σ(M) = {−3;−1.5} with M = A + KoC and

M̃cω = [−0.17,−0.05,−0.08,−0.05]T � 0.

The matrix H solution to (5.15) is given by:

H =
[−0.9411 0.151
0.0695 −1.0339

]
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Fig. 5.1 The output of the closed loop system

with the feedback gain matrix:

K =
[
1.6522 −1.6723
−1.739 0.1089

]
,

obtained from the solution of (5.16) leading to the spectrum {−1.1,−0.875} of the
closed loop system. In order to check the validity of the condition (5.17), we compute
the matrix:

D = −K Ko C =
[−3.354 0
−0.597 0

]
,

and we obtain that:

H̃cU + D̃dω = [−0.192 − 0.94 − 0.53 − 0.387]T � 0.

All the required conditions are satisfied, so one can conclude that the observed states
converge to the real ones with no saturation on the control law and the closed loop
is asymptotically stable (see the Figs. 5.1 and 5.2).

5.2.3 Reduced-Order Observer-Based Constrained Control

In the case where a part of the state is available, one has to reconstruct just the
unobservable part of x . The presence of no linear combinations of the state at the
output suggests that the remaining n − no linear combinations may be reconstructed
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by an observer of order no greater that n − no [15]. We generate z(t) = T x(t) as the
n − no linear state combination to be reconstructed. The state estimate in this case
is given by:

x̂(·) =
[
C
T

]−1 [
y(·)
z(·)

]
= [

V P
] [

y(·)
z(·)

]
(5.21)

where the matrix T is chosen such that the required inverse matrix exists. Since T z(·)
can not be measured exactly, it will be reconstructed from an auxiliary dynamical
system of order n − no.

ż(t) = Dz(t) + Ny(t) + Gu(t) (5.22)

In this section, we will present a controller-based reduced-order observer that takes
into account the constraints on the control using positive invariance results [12]. Let
us consider the linear constrained system:

{
ẋ(t) = A x(t) + B u(t)
y(t) = C x(t)

(5.23)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control vector, y(t) ∈ R
po is the

output vector, A and B are constant matrices of appropriate dimension and (A, B)

is controllable. It is assumed that A possesses at least (n − m) stable eigenvalues.
The control u is constrained in the set Ω defined by (5.2). Generally using a state
feedback control:

u(t) = sat (K x(t)), K ∈ R
m×n, (5.24)
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leads to a domain of linear behavior for the closed loop system that is given by:

D(K , umin, umax ) = {x ∈ R
n\ − umin ≤ K x ≤ umax }, (5.25)

and the closed loop system in this case:

ẋ(t) = (A + BK )x(t). (5.26)

Hence, if the domain (5.25) is positively invariant, one guarantees the respect of the
control constraints for all t ≥ 0.

At this stage, our problemmay be stated as finding matrices K , D, N , and G such
that the closed loop system with the control u(t) = sat (K x̂(t)) is asymptotically
stable and the input constraints are respected. The observed state is given by:

x̂(t) =
[
C
T

]−1 [
y(t)
z(t)

]
= [

V P
]
[
y(t)
z(t)

]
, (5.27)

where the matrices V, C, T , and P satisfy

V C + P T = I. (5.28)

Recall that the minimal order observer matrices, as proposed, are given by [15]

D = T A P, N = T A V, and G = T B, (5.29)

which is equivalent to:
T A − N C = D T . (5.30)

Matrix P is chosen to ensure asymptotic stability of the matrix D. In fact, matrix D
defines the dynamics of the errors and this guarantees vanishing errors [11]. Indeed,

ε̇(t) = ż(t) − T ẋ(t)
= Dz(t) + Ny(t) + Gu(t) − T (Ax(t) + Bu(t))
= Dz(t) + NCx(t) − T Ax(t)
= Dz(t) − DT x(t)
= Dε(t).

For the observation error, we define the fieldD(I, εmax , εmin) in which we allow the
error ε(t) to evolve:

D(I, εmax , εmin) = {
ε(t) ∈ R

n−no/εmin ≤ ε ≤ εmax
}
. (5.31)

Further, define the reconstruction error as e(t) = x̂(t) − x(t). Note that, it is related
to the observation error as follows:
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e(t) = V y(t) + P z(t) − x(t)
= V Cx(t) + Pz(t) − (V C + P T )x(t)
= P(z(t) − T x(t))
= P ε(t)

Furthermore, one may prove that the control dynamics are as follows [12]:

u̇(t) = K ˙̂x(t)
= K Pż(t) + KVCẋ(t)
= K P(Dz(t) + Ny(t) + Gu(t)) + KVC(Ax(t) + Bu(t))
= K P(T APz(t) + T AV y(t)) + (K PT B + KVCB)u(t) + KVCAx(t)
= K PT A(Pz(t) + V y(t)) + K (PT + VC)Bu(t) + KVCAx(t)
= K PT Ax̂(t) + K Bu(t) + KVCA(x̂(t) − e(t))
= K (PT + VC)Ax̂(t) + K BK x̂(t) − KVCAe(t)
= (K A + K BK )x̂(t) − KVCAe(t)
= HK x̂(t) − KVCAPε(t)
= Hu(t) + Lrε(t)

Therefore the system formed by the control u(t) and the error ε(t) is obtained as:

[
u̇(t)
ε̇(t)

]
=

[
H Lr

0 D

] [
u(t)
ε(t)

]
(5.32)

This background enables one to recall the theorem giving conditions for computing
the controller that respects all the needed requirements:

Theorem 5.1 [12]ThefieldD(I, umax , umin) × D(I, εmax , εmin) is positively invari-
ant with respect to the trajectory of system (5.32) if and only if, there exists a matrix
H ∈ Rm×m such that:

{
H K = K A + K B K
W̃c qε ≤ 0

(5.33)

where

W =
[
H Lr

0 D

]
; qε =

⎡

⎢⎢
⎣

umax

εmax

umin

εmin

⎤

⎥⎥
⎦ ; Lr = −K V C A P (5.34)

for every pair (u(0), ε(0)) ∈ D(I, umax , umin) × D(I, εmax , εmin).

To compute the feedback gain, the inverse procedure is used [2, 3]. Hence, matrix
H satisfying all required conditions such that a solution exists is chosen and the
feedback K is obtained as a solution to the equation:

K A + K B K = H K . (5.35)
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The controllers proposedhere are shown tobe robustwith respect to parametric uncer-
tainties within given sets for the system matrices. For more details about robustness
and sensitivity of such controllers, the reader is refereed to [14].

Remark 5.1 Note here that all computation effort is handled off line. Choice of
an adequate matrix H with all required conditions is studied in [13]. Solution of
Eq. (5.35) is the detailed subject of the work [2].

5.2.4 Reduced-Order Observer Framework

Without loss of generality, we consider the class of systems for which matrix C is
written such that

C = [ I 0 ] (5.36)

In fact, all systems with matrix C of full row rank can be partitioned as:

C = Cr C̄ Cl, where Cr ∈ R
po×po , Cl ∈ R

n×n (5.37)

where Cr and Cl are non-singular matrices and C̄ is of the form (5.36). Hence, one
can note that with an appropriate change of coordinates we return to the case where
C is of the form (5.36). Partition now the system and the matrices P and V like [15]:

ẋ(t) =
[
A11 A12

A21 A22

]
x(t) +

[
B1

B2

]
u(t), A11 ∈ R

po×po , A12 ∈ R
po×(n−po).

For matrix observer, we obtain the following decomposition:

V =
[
V1

V2

]
, V1 = Ipo

P =
[
P1
P2

]
, P1 = 0po×(n−po)

In this case, we have:

[
V P

] =
[
Ipo 0
V2 P2

]

The parametrization of the observer is completely achieved by choosing any non-
singular matrix P2 and by computing V2 such that (A22 − V2A12) is stable. Hence,
one can take P2 = In−no . Further, we decompose the feedback K as:

K = [K1 K2] (5.38)
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Matrices Lr and D reduce to the following:

D = A22 − V2A12 and Lr = (K1 + K2V2)A12 (5.39)

and the augmented system to

[
u̇(t)
ε̇(t)

]
=

[
H (K1 + K2V2)A12

0 A22 − V2A12

] [
u(t)
ε(t)

]
(5.40)

= W

[
u(t)
ε(t)

]
. (5.41)

It is worth noting here that matrix V2 suffices to define the reduced-order observer.

Remark 5.2 1. The admissible initial conditions set for xo and zo, respectively, for
the state space and the reduced-order observer are defined as:

− w2r ≤ zo − T xo ≤ w1r (5.42)

− umin ≤ K Pzo + KVCxo ≤ umax (5.43)

this set is non-void since it contains always an admissible state given by

zo = T xo, such that K PT xo + KVCxo = Kxo

for an xo satisfying
xo ∈ D(K , umax , umin)

2. For systemswith unconstrained control, the separation principle is used to design
both the controller and the observer separately. But for constrained control
systems, this is no longer valid. In this sense, conditions (5.17)–(5.18) in the
full order case and (5.33) in the reduced-order case can be seen as a way to
choose the observer such that the property of positive invariance of domain
D(K , umax , umin) is not destroyed.

Example 5.2 Consider the continuous-time system modeling the plane AFTI/F16
flying at the altitude of 3000 ft [17]:

A =
⎡

⎣
0 1 0
0 −0.87 43.22
0 0.99 −1.34

⎤

⎦ , B =
⎡

⎣
0 0

−17.25 −1.58
−0.17 −0.25

⎤

⎦ , C =
[
1 0 0
0 1 0

]
,

we assume that the constraints are given by:

umax =
[
90
90

]
, umin =

[
45
45

]
,

the set of accepted errors is given by (5.31) where:
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εmax = 2εmin = 2.

One may choose to assign the spectrum {−0.5 − 6} by matrix H as follows:

H =
[−0.5 −0.1

0 −6

]
.

The solution of the algebraic equation (5.15) gives:

K =
[

5.42 0.84 0.87
−36.38 −1.85 18.46

]
.

The reduced-order observer is fully determined by matrix V2 as: V2 = [ 0 0.2004 ],
which satisfy the required conditions. Matrix D, in this case, reduces to a scalar
−10, which is a stable eigenvalue defining the dynamic of the observer. The required
condition to be checked is given by the vectors:

T = [−V2 In−po

] = [0 − 0.2004 1]

N = T A V = [0 − 0.8394]

G = T B = [3.2864 0.066] .

Figures5.3, 5.4, and 5.5 present respectively observer state, output, and control for
z0 = 4.

One can conclude that the close-loop system is asymptotically stable while all
constraints are satisfied and the observed states converge to the real ones.

5.3 Constrained Observer-Based Control for Singular
Linear Systems

5.3.1 Problem Formulation

In this section, we give the problem formulation related to singular linear system
with constrained control studied in this chapter.

Consider the following system described by:

Eẋ(t) = Ax(t) + Bu(t) (5.44)

y(t) = Cx(t) (5.45)

x(0) = xo

where x ∈ R
n is the state, u ∈ R

m is the control and y ∈ R
po the output with,

Rank(E) = r ≤ n and Rank(C) = no ≤ n. Assume that,
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(AS1) (E, A, B) is stabilizable,
(AS2) (E, A,C) is detectable and m ≤ r .

The control is assumed here to be constrained in Ω given by (5.2). Generally,
when the state is available, the control is given by:

u(t) = Fx(t), F ∈ R
m×n, rank(F) = m. (5.46)
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The unsaturated system in closed loop is then obtained by:

Eẋ(t) = (A + BF)x(t) (5.47)

= Acl x(t).

Assume that rank(F) = m and F is stabilizing the system in closed loop (5.47),
which means that the system in closed loop is admissible (regular and impulse free).
With this system in closed loop, the induced constraint set on the state is given by,

D = {
x ∈ R

n| − umin ≤ Fx ≤ umax
}
. (5.48)

The main idea of the approach of positive invariance is to impose to the system
trajectories to evolve only inside the region of linear behavior defined by (5.48) to
have Eq. (5.47) valid. This representation of the singular system is used directly to
design the stabilizing controller in the presence of constraints by using observers.

5.3.2 Observer-Based Constrained Control for Singular
Systems

We assume in this subsection that the state is not available.
Assume that:
(AS3)



5.3 Constrained Observer-Based Control for Singular Linear Systems 99

rank

[
E
C

]
= n.

Consider the following reduced-order observer for the singular linear system:

ż(t) = Dz(t) + Ny(t) + Gu(t)

x̂(t) = Pz(t) + V y(t) (5.49)

where z ∈ R
n−no is the observer state, matrices D, N ,G, P, V are constant matrices

of appropriate size to be determined. Note the errors of observation and reconstitution
as follows, respectively:

ε(t) = z(t) − T Ex(t), (5.50)

e(t) = x̂(t) − x(t), (5.51)

where matrix T ∈ R
(n−no)×n is also to be computed. Recall that the dynamic error is

given by: [7]

ε̇(t) = Dε(t). (5.52)

Since the objective of the observer is to converge to the state of the system, that is
the errors tend to zero as the time goes to infinity, one can then assume that the error
has to evolve inside pre-given limitations defined by:

− εmin ≤ ε ≤ εmax , ε̄ =
[

εmax

εmin

]
. (5.53)

Consider the following control,

u(t) = Fx̂(t). (5.54)

The set of induced constraints on the estimation of the state is given by:

De = {
x̂ ∈ R

n| − umin ≤ Fx̂ ≤ umax
}
. (5.55)

The unsaturated system in closed loop obtained with the observer is:

Eẋ(t) = Ax(t) + BFx̂(t). (5.56)

The following results presents the necessary and sufficient condition of existence of
a reduced-order observer for the singular linear system (5.44), which respects the
constraints on the control given by (5.55).

Theorem 5.2 Assume that assumptions AS1 − AS3 are satisfied, then there exists
a constrained observer-based controller for the singular system (5.44) realizing the
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positive invariance of the set De given by (5.55) with respect to the system (5.56) if
and only if there exist matrices H, T , N , P, V ,Γ , and aHurwitz matrix D satisfying:

Γ A + Γ BΓ E = HΓ E, (5.57)

T A − DT E = NC, (5.58)

PT E + VC = I, (5.59)

G = T B,

such that:

H̃cU + Ψ̃d ε̄ ≤ 0, (5.60)

D̃cε̄ ≤ 0, (5.61)

with Ψ = Γ (EPD − AP) and F = Γ E.

Proof Compute the control dynamic by usingEqs. (5.58)–(5.59), the observer (5.49),
the errors expressions (5.50)–(5.51) and F = Γ E :

u̇(t) = F ˙̂x(t) = FPż(t) + FVCẋ(t)

u̇(t) = FPDz(t) + FP(T A − DT E)x(t) + FPGu(t) + FVCẋ(t)

= FPDz(t) + FPT (Ax(t) + Bu(t)) − FPDT Ex(t) + FVCẋ(t)

= FPDz(t) + F(PT E + VC)ẋ(t) − FPDT Ex(t).

Recall that PT E + VC = I, it follows:

u̇(t) = FPDz(t) + Fẋ(t) − FPDT Ex(t).

By using F = Γ E and Eq. (5.56), one obtains:

u̇(t) = Γ EPDz(t) + Γ (A − EPDT E)x(t) + Γ BΓ Ex̂(t).

By substituting by (5.50), it follows:

u̇(t) = Γ EPDε(t) + Γ (EPDT E + A − EPDT E)x(t) + Γ BΓ Ex̂(t).

Finally, the use of (5.51) leads to:

u̇(t) = Γ (A + BΓ E)x̂(t) − Γ Ae(t) + Γ EPDε(t). (5.62)

It is well known [7] that under Eqs. (5.50)–(5.51), there exists a link between the
observation error and the reconstruction error, e(t) = Pε(t). Taking account of the
algebraic equation (5.57), it follows:
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u̇(t) = Hu(t) + Ψ ε(t). (5.63)

Using an augmented state with Eqs. (5.52) and (5.63), the following system is
obtained:

ζ̇ (t) =
[
H Ψ

O D

]
ζ(t); ζ =

[
u
ε

]
. (5.64)

Once the dynamic control is obtained, one can use again the result of [1] to system
(5.64) to obtain the necessary and sufficient conditions guaranteeing that the control
obtained with the observer always respects the constraints. These conditions are
given by (5.60)–(5.61). It is worth noting that a necessary condition to realize this is

H̃c U ≤ 0 since Ψ̃d ε̄ ≥ 0.

Further, since matrix D is stable, the error ε(t) will tend to zero as the time goes to
infinity while respecting its proper constraints since condition (5.61) is also satisfied.
The choice of F such that the singular system in closed loop is regular and impulse
free will ensure the asymptotic stability of the singular system with the observer.
Note that asymptotically, system (5.56) will become exactly the same as (5.47). For
this, generally, it is recommended that the dynamic of the error is faster than the
dynamic of the singular systems in closed loop. �
Remark 5.3 In [7], a detailed solution of Eqs. (5.58)–(5.59) is presented. It is shown
that matrices D and N can be selected as D = T AP and N = T AV to fulfill
Eqs. (5.58)–(5.59). Using these expressions, matrix Ψ becomes, Ψ = Γ (PT −
I)AP . For the particular case of linear systems, E = I,Γ = F andΨ = −FVCAP ,
which was found by [11] for standard linear systems.

Example 5.3 In order to apply the results of Theorem 5.2, consider the following
continuous-time singular linear system:

A =
⎡

⎣
1 −1 0
0 1 −1
1 −2 0

⎤

⎦ , B =
⎡

⎣
0 0
1 0
0 1

⎤

⎦ , C = [0 0 1],

E =
⎡

⎣
1 0 0
0 1 1
0 0 0

⎤

⎦ ,with S∞ =
⎡

⎣
0

−0.7071
0.7071

⎤

⎦ ,

Φ0 =
⎡

⎣
0 0
1 0
0 1

⎤

⎦ Φ1 =
⎡

⎣
1
0
0

⎤

⎦ .

The pencil [A, E] has two finite generalized eigenvalues: σ([A, E]) = {0.5;−1}
and matrix E is singular with rank(E) = 2.
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The control is assumed here to be constrained as (5.2), with:

U =
[
umax

umin

]
= [30 25 40 30]T .

Choose matrix H according to assumptions (1.104)–(1.107) as follows:

H =
[−4 1

0 −5

]
.

The use of the solution method given in [9] leads to the following observer matrices:

D =
[−0.6 0.2

−2 −5

]
, P =

⎡

⎣
0.04 −0.28
0 −0.2
0 0

⎤

⎦ ,

V =
⎡

⎣
0

−1
1

⎤

⎦ , N =
[

15
−90

]
.

The a priori imposed constraints on the error are given by, ε̄ = [3 5 4 3]T . Matrix Ψ

is computed as:

Ψ =
[−13.8537 −41.5611

15.9960 47.9880

]
.

Conditions (5.60)–(5.61) are then checked to be satisfied:

H̃cg + Ψ̃d ε̄ =

⎡

⎢⎢
⎣

−2.141
−22.832
−1.426
−76.212

⎤

⎥⎥
⎦ ,

Ψ̃cε̄ =

⎡

⎢⎢
⎣

−0.8
−17
−1.8
−9

⎤

⎥⎥
⎦ .

The pencil [A + BF, E] has two finite generalized eigenvalues: σ([A + BF, E]) =
{−4;−5} while σ(D) = {−0.6929;−4.9071}.

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
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5.4 Conclusion

Our interest, in this chapter, has been focused on the problem of observer-based
controller design with constrained control. Condition of positive invariance applied
to non-autonomous linear systems is then used in the design of an observer-based
controller. An algorithm for such a design is given and applied in an illustrative
example.

In addition, new necessary and sufficient conditions for the existence of a con-
strained observer-based controller for continuous-time singular linear system are
presented. These conditions deal directly with the system matrices without any use
of a transformation. Its design is also presented by using the solution of the alge-
braic equation X A + XBXE = HXE given in [4]. The obtained controller with
this approach guarantees that the system in closed loop is regular, impulse free and
always has a linear comportment inside a region of positive invariance. The conse-
quence is that the asymmetric constraints on the control, even by using an observer,
are respected. An illustrative example is studied to show the applicability of this
approach.
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Chapter 6
Constrained Control and Rate or Increment:
An LMI Approach

6.1 Introduction

This chapter studies the stability of linear systems with input saturation and incre-
ment constraints. As seen before, apart from saturation constraints, different type of
constraints, namely incremental or rate constraints, were introduced while consid-
ering practical applications. Symmetrical constraints on the input and its increment
were considered for example in [7, 11, 14]. Hence, and as an extension to the non-
symmetrical case, the regulator problem for linear continuous-time and discrete-time
systems with input saturation and asymmetric constraints on its increment or rate
in terms of an LMI problem is addressed. It is based on the previous results of [2,
8, 9], where the constraints are symmetric. Necessary and sufficient conditions of
positive invariance for incremental domains with respect to autonomous systems are
given. In this framework, a pole assignment procedure is linked to these conditions to
design stabilizing controllers by state feedback. The resulting control respects con-
trol constraints and control increment or rate constraints also. As pointed out above,
this chapter will also focus on the same problem of saturation on the control and
asymmetric constraints on its increment or rate but in the context of LMI presented
firstly in [3]. The first contribution of this chapter is to show that the dimension of
the LMI proposed in [8, 9] can be reduced considerably by a resolution in a reduced-
order state space. Further, the second contribution is to formulate under LMI form
the results of [12, 13] that can handle asymmetric constraints on the increments.

6.2 Problem Presentation

The study thereafter is devoted to linear systems, as presented by Fig. 6.1, described
by (6.1):

δx(t) = Ax(t) + Bsat (u(t)), (6.1)

© Springer International Publishing AG 2018
A. Benzaouia et al., Saturated Control of Linear Systems, Studies in Systems,
Decision and Control 124, https://doi.org/10.1007/978-3-319-65990-9_6
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Fig. 6.1 Schema block of the studied system

where the operator δ is defined here as follows:

δx(t) =
{

x(t + 1) for discrete-time case,
ẋ(t) for continuous-time case,

vector x ∈ R
n is the state and u ∈ R

m is the constrained control. The saturation
function is assumed here to be symmetric and normalized:

sat (u j ) =
⎧⎨
⎩
1 if u j ≥ 1
u j if − 1 < u j < 1
−1 if u j ≤ −1

, j = 1, . . . , m.

A and B are constant matrices of appropriate size and satisfy the following assump-
tions:

• (AS1): The pair (A, B) is controllable,
• (AS2): The open-loop system has m unstable or undesirable eigenvalues.

Let the increment or the rate of the control be asymmetrically constrained as follows:

Δu ∈ ΩΔ ⊂ R
m, (6.2)

where the operator Δ is defined as follows:

Δu(t) =
{

u(t + 1) − u(t) for discrete-time case,
u̇(t) for continuous-time case,

and ΩΔ is the set of admissible control increments or rate defined as:

ΩΔ = {u ∈ R
m/ − q2 ≤ Δu ≤ q1; q1, q2 ∈ R

m
+}. (6.3)

The set ΩΔ is a non-symmetrical polyhedral set as is generally the case in practical
situations. Further, the notation q will stand for:

q =
[
q1
q2

]
. (6.4)
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In what follows, we are interested on the synthesis of stabilizing controllers for this
class of linear systems using a state feedback control law:

u(t) = Fx(t), (6.5)

which writes the closed-loop system as,

δx(t) = Ax(t) + Bsat (Fx(t)), (6.6)

subject to input saturation and constraints on its increment or rate. Themain objective
of this chapter is to design stabilizing controllers by saturating state feedback control
while the constraints on its increment or rate are always respected in the framework
of LMI. The results presented in the sequel are based on the projection technique
presented thereafter.

6.3 Projection Technique

The projection technique concerns the resolution of the algebraic equation:

FA + FBF = HF, (6.7)

by using the LMI technique.
Consider the following transformation of the system:

x = Qz = [Qo |Qm]
[
zo
zm

]
; zo ∈ R

n−m, zm ∈ R
m, (6.8)

where the matrix Q ∈ R
n×n is orthonormal and is partitioned as follows:

Q = [Qo | Qm], Qo ∈ R
n×(n−m), Qm ∈ R

n×m,

with
QT Q = QQT = In, Q

T
mQm = Im, QT

mQo = �, (6.9)

where the columns of Qo span So
Δ= Ker(F) and the columns of Qm span its com-

plement Sm in R
n .

Matrix Q can be obtained from a Schur decomposition of matrix A by reordering,
if necessary, its Schur blocks [6]. In the orthonormal basis formed by the columns
of matrix Q, the open-loop system (6.1) is represented by:

[
δzo(t)
δzm(t)

]
= AQ

[
zo(t)
zm(t)

]
+ BQsat (u(t)), (6.10)
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where

AQ = QT AQ =
[
Ao A2

� Am

]
, Ao ∈ R

(n−m)×(n−m), Am ∈ R
m×m,

(6.11)

BQ =
[
QT

o
QT

m

]
B =

[
Bo

Bm

]
, Bo ∈ R

(n−m)×m, Bm ∈ R
m×m .

According to assumption (AS2) and the reordering possibility of the Schur blocks
of matrix A, the obtained matrix Ao is Hurwitz, that is, there always exists a positive
definite matrix: Po such that

{
AT
o Po Ao − Po ≺ 0 for discrete-time case,

AT
o Po + PoAo ≺ 0 for continuous-time case.

(6.12)

By virtue of this transformation, the control becomes:

u(t) = Fx(t) = FQz(t) = [FQo FQm]z(t). (6.13)

If one takes F = FmQT
m, Fm ∈ R

m×m , then, according to (6.9), it is possible to
deduce that:

u(t) = [FmQ
T
mQo FmQ

T
mQm]z(t) = [� Fm]z(t) = Fmzm(t). (6.14)

This projection method leads in fact to obtain two reduced-order systems given by:

δzm(t) = Am zm(t) + Bmsat (Fmzm(t)), (6.15)

δzo(t) = Ao zo(t) + c(t), (6.16)

c(t) = A2zm(t) + Bosat (Fmzm(t)),

where the undesirable m eigenvalues of the spectrum of matrix A are isolated in
the spectrum of matrix Am . The spectrum of matrix Ao contains the n − m stable
eigenvalues of the open-loop system according to assumption (AS2). The algebraic
equation (6.7) is also transformed to the following:

Fm Am + Fm Bm Fm = H Fm . (6.17)

Theorem 6.1 [2] A matrix F of full rank is the unique solution of the Eq. (6.7),
where matrices A, B satisfy assumptions (AS1) − (AS2) and H ∈ R

m×m a given
matrix, if and only if there exist non-singular matrices X ∈ R

m×m and Y ∈ R
m×m

solutions of the following algebraic equations:
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{
Am X + BmY − X J = 0,

HY − Y J = 0,
(6.18)

where the matrix J denotes the Jordan form of matrix H. Moreover, the unique
solution of (6.7) is F = FmQT

m = Y X−1QT
m and matrices Am, Bm, Qm are given by

(6.9) and (6.11).

Note that Fm = Y X−1 is in fact the unique solution of the reduced order Eq. (6.17).

Proof

Necessity: Letmatrix F with full rank be the unique solution of the algebraic equation
(6.7). Using the transformation (6.11), Eq. (6.7) becomes:

FQAQQ
T + F[Qo Qm]BQF = HF (6.19)

The following developments can be obtained:

F[Qo Qm]AQ

[
QT

o
QT

m

]
+ [0 FQm]

[
Bo

Bm

]
F = HF,

[0 FQm]

[
Ao A2

0 Am

] [
QT

o
QT

m

]
+ FQmBmF = HF,

[0 Fm]

[
Ao A2

0 Am

] [
QT

o
QT

m

]
+ FmBmFmQ

T
m = HFmQ

T
m,

Fm AmQ
T
m + FmBmFmQ

T
m = HFmQ

T
m . (6.20)

Multiplying this equality by Qm at the right, the reduced algebraic equation (6.17)
is obtained. Using the same transformations (6.11), matrix Fm is the non-singular
unique solution of the reduced algebraic equation (6.17). According to [1], this
solution is given by Fm = Y X−1 where X and Y satisfy:

FmX = Y, (6.21)

HY = Y J. (6.22)

Multiply in the right Eq. (6.17) by matrix X , it follows,

Fm(AmX + BmFmX) = HFmX. (6.23)

Using (6.21) and the fact that matrix Fm is non-singular, then,

AmX + BmX = XY−1HY X. (6.24)

Using (6.22), one obtains the Sylvester equation (6.18). In conclusion, the unique
solution of full rank of the algebraic equation (6.17) is given by F = Y X−1QT

m with
matrices X and Y are solutions of the system (6.18).
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Sufficiency: Let X and Y be the non-singular solutions of the system (6.18). Accord-
ing to the resolution of the Sylvester equation (6.17), one can write:

(Am + BmFm)X = X J, (6.25)

which means that the columns of matrix X, which is non-singular, presents the
eigenvectors of the reduced matrix in closed-loop associated to the eigenvalues of
matrix H . It follows that:

(Am + BmFm) = X J X−1, (6.26)

Fm = Y X−1.

Following the same development as in the necessity proof from (6.20) to (6.19), one
can obtain Eq. (6.7). Finally, one can note that matrix Fm is also non-singular, that
is, matrix F is of full rank. �

6.4 Constrained Control Synthesis

This section presents the asymptotic stability condition for linear systems (6.6) with
constraints on the control increment or rate bymeans of LMI technique. The synthesis
design of adequate controllers in a state space of reduced order is also presented
under LMI form. In addition, the relaxation of such LMI is achieved by introducing
an uncertainty term in the algebraic equation (6.7). First, the stability of the saturated
system in closed loop (6.6) without constraints on the increment or rate of the control
is in concern. For this, define the following subsets of R

n:

ε(P, ρ) = {x ∈ R
n/xT Px ≤ ρ, ρ > 0}, (6.27)

L (G) = {x ∈ R
n/|G j x | ≤ 1, j = 1, . . . ,m}, (6.28)

with P = PT a positive definite matrix andG ∈ R
m×n . Thus, ε(P, ρ) is an ellipsoid,

whileL (G) is a polyhedral. One can also define the setL (F) consisting of states for
which the saturation does not occur. Recall that η as 2m and e = [1 · · · 1]T ∈ R

m .

Theorem 6.2 Given a positive scalar ρ, if there exist a positive definite matrix P =
PT ∈ R

n×n, a matrix G ∈ R
m×n, and η matrices Hi ∈ R

m×m such that ∀i ∈ [1, η],
{
AcTi P Aci − P ≺ 0 for discrete-time case,
AcTi P + PAci ≺ 0 for continuous-time case,

(6.29)

FA + FB(Di F + D−
i G) = Hi F, (6.30)
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{
(̃Hi )d ρ ≤ q for discrete-time case,

(̃Hi )c ρ ≤ q for continuous-time case,
(6.31)

ε(P, ρ) ⊂ L (G), (6.32)

where Aci = A + B(Di F + D−
i G), ρT = [eT eT ] and vector q is given by (6.4),

then, the system in closed loop (6.6) is asymptotically stable at the origin while the
constraints on the control increment or rate are respected for all xo ∈ ε(P, ρ).

Proof If there exist matrices P = PT and G satisfying condition (6.32), then, by
virtue of Lemma 1.3 [5], there exists scalars γi , i = 1, . . . , η such that:

sat (Fx(t)) =
η∑

i=1

γi (t)(Di F + D−
i G)x(t),

γi (t) ≥ 0;
η∑

i=1

γi (t) = 1, ∀t. (6.33)

This allows to rewrite system (6.6) as follows:

δx(t) =
η∑

i=1

γi (t)[A + B(Di F + D−
i G)]x(t). (6.34)

According to Theorem 1.10, condition (6.29) guarantees the asymptotic stability of
the saturated system in closed loop. Now, one has to prove that the constraints on the
control increment or rate are respected. For this and from the feedback control law
(6.5), the control dynamic is given by:

δu(t) = Fδx(t) =
η∑

i=1

γi (t)F[A + B(Di F + D−
i G)]x(t). (6.35)

Taking account of Eq. (6.30), the last can be rewritten as:

δu(t) =
η∑

i=1

γi (t)Hiu(t). (6.36)

Recall that this system has the following constraints:

− e ≤ u ≤ e, (6.37)

−q2 ≤ Δu ≤ q1. (6.38)

Keeping in mind that the scalars γi satisfy (6.33), one can easily apply the results of
[12] which are satisfied with conditions (6.31) and by noting that

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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˜

(

η∑
i=1

γi (t)Hi )c ≤
η∑

i=1

γi (t)(̃Hi )c, (6.39)

conclude that the constraints on the control increment or rate are also respected. �

Remark 6.1 • Conditions (6.29) and (6.30) are not completely independent. Equa-
tion (6.30) is in fact a pole assignment equation which realizes
σ(Aci ) = Λo

⋃
σ(Hi ), whereΛo contains the n − m stable eigenvalues of matrix

A according to assumption (AS2). In this sense, if matrices Hi are not Hurwitz,
condition (6.29) will never be satisfied. Furthermore, based on the proof of [12]
concerning inequalities (6.31), it is always possible to consider a null component
of the constraints on the control increment or rate q.

• The results of [12] constitute a particular case of conditions given by (6.30)–
(6.31) of Theorem 6.2 with F = G. Hence, the region of asymptotic stability
L (F), obtained with [12] and where the saturation are not allowed, is limited to
the region of linear behavior. Further, the region of asymptotic stability, obtained
here, tolerates the saturation to take effect and is contained in L (G).

The results of Theorem 6.2 can be developed to obtain LMI’s conditions which lead
to the adequate controller design. In this case, Theorem 6.2 is applied to the reduced-
order system with matrices Am and Bm . In this sense, conditions (6.29) and (6.32)
are transformed to LMI according to [8, 9], while the algebraic equations (6.30)
are transformed to LMI by virtue of Theorem 6.1. Lemma below applies conditions
(6.29) and (6.32) to the reduced-order system but without constraints on the control
increment. The last will be considered later on.

Lemma 6.1 For a given positive scalar ρ, if there exist matrices Y ∈ R
m×m and

Z ∈ R
m×m and a positive definitematrix X = XT ∈ R

m×m, solutions of the following
LMI:

⎧⎪⎪⎨
⎪⎪⎩

[
X [AmX + Bm(DiY + D−

i Z)]T
∗ X

]

 0, for discrete-time case

[
AmX + Bm(DiY + D−

i Z)
]sym ≺ 0, for continuous-time case,

(6.40)

[
1/ρ Z j

∗ X

]

 0, i = 1, . . . , η; j = 1, . . . ,m, (6.41)

then the saturated system without constraints on the increment or rate in closed loop
(6.6) is asymptotically stable at the origin ∀xo ∈ ε(P, ρ) with
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F = Y X−1QT
m, (6.42)

G = Z X−1QT
m, (6.43)

Pm = X−1, (6.44)

P = Q

[
Po �
� Pm

]
QT , (6.45)

where matrices Qm, Q, Po are given by (6.9) and (6.12), respectively.

Proof Let the assumption (AS2) be held, the Schur decomposition of the system
matrices (A, B) is used by reordering, if necessary, its Schur blocks. According to
the transformation Q, system (6.34) is rewritten with the following equation,

δz(t) =
η∑

i=1

γi (t)[AQ + BQ(Di FQ + D−
i GQ)]z(t), (6.46)

where matrices AQ and BQ are given by (6.11) and FQ = FQ,GQ = GQ. One can
rewrite matrices FQ and GQ as follows:

FQ = FQ = [FQo FQm],
GQ = GQ = [GQo GQm]. (6.47)

Taking into account (6.42) and (6.43), F = FmQT
m, G = GmQT

m with Fm = Y X−1

and by virtue of (6.9), the transformation Q leads to

FQ = [FmQ
T
mQo FmQ

T
mQm] = [� Fm], (6.48)

GQ = [GmQ
T
mQo GmQ

T
mQm] = [� Gm]. (6.49)

Thus, system (6.46) can be partitioned into the two following subsystems of dimen-
sions n − m and m, respectively,

δzo(t) = Ao zo(t) + c(t),

c(t) =
η∑

i=1

γi (t)[A2 + Bo(Di Fm + D−
i Gm)]zm(t), (6.50)

and

δzm(t) =
η∑

i=1

γi (t)[Am + Bm(Di Fm + D−
i Gm)]zm(t). (6.51)

The result of Theorem 1.10 is then applied to the reduced-order system (6.51) leading
to the following conditions of stability:

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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{
ΦT

i PmΦi − Pm ≺ 0 for discrete-time case
ΦT

i Pm + PmΦi ≺ 0 for continuous-time case
i = 1, . . . , η, (6.52)

where Φi = Am + Bm(Di Fm + D−
i Gm). In this case, using the change of variables

Fm = Y X−1, Gm = Z X−1, and Pm = X−1, conditions (6.40) guarantee the asymp-
totic stability of the reduced-order system (6.51). LMIs (6.40) are easily obtained
from (6.52) by using the Schur complement for the discrete-time case and directly
for the continuous-time case [8, 9]. Consequently, function Vm(zm) = zTm Pmzm is
a Lyapunov function of the reduced-order system (6.51). Recall that the spectrum
of matrix Ao of the subsystem (6.50) contains the n − m stable eigenvalues of the
open-loop system according to assumption (AS2). That is, there always exists a
positive definite matrix Po = PT

o such that inequality (6.12) is satisfied. Note that
c(t) is considered as a bounded disturbance such that limt→∞c(t) = 0 by virtue of
the asymptotic stability of the reduced-order system. Then, the asymptotic stability
of system (6.50) is realized. Consequently, the obtained system (6.46) after using
the transformation Q is also asymptotically stable, and the corresponding Lyapunov
function is given by Vz(z) = zT Rz, with:

R =
[
Po �
� Pm

]
. (6.53)

Recall that z = QT x ; this leads to Vz(z) = zT Rz = xT (QRQT )x = V (x). Then,
function V (x) = xT Px is also a Lyapunov function of the saturated system in closed
loop (6.6) written equivalently as (6.34) with matrix P = QRQT which is posi-
tive definite. Furthermore, the results in [4] can be used to satisfy the set inclusion
ε(Pm, ρ) ⊂ L (Gm) under the LMI (6.41).

In order to complete the proof, the following implication has to be shown,

ε(Pm, ρ) ⊂ L (Gm) implies ε(P, ρ) ⊂ L (G).

For this, expression (6.49) is used to show the inclusion ε(R, ρ) ⊂ L (GQ). Accord-
ing to [4], this inclusion is equivalent to ρ(GQ) j R−1(GQ)Tj ≤ 1, j = 1, . . . ,m.
Using expressions (6.53) and (6.49), one can easily obtain:

ρ(GQ) j R
−1(GQ)Tj = ρ[� (Gm) j ]

[
P−1
o �
� P−1

m

] [ �
(Gm)Tj

]

= ρ(Gm) j P
−1
m (Gm)Tj , j = 1, . . . ,m. (6.54)

This is equivalent to have

ε(Pm, ρ) ⊂ L (Gm) iff ε(R, ρ) ⊂ L (GQ).

Now, rewrite ρ(GQ) j R−1(GQ)Tj by using GQ = GQ:
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ρ(GQ) j R
−1(GQ)Tj = ρ(GQ) j R

−1(GQ)Tj

= ρG j (QR−1QT )GT
j

= ρG j P
−1GT

j , j = 1, . . . ,m.

That is,
ε(R, ρ) ⊂ L (GQ) iff ε(P, ρ) ⊂ L (G).

Now, we have to show that ε(Pm, ρ) ⊂ L (Gm). LMI (6.41) is equivalent to the
following developments:

ρZ j X
−1ZT

j < 1

ρ(Z j X
−1)X (Z j X

−1)T < 1

ρ(Z X−1) j X (Z X−1)Tj < 1

using Z X−1 = Gm, X = P−1
m , one obtains:

ρGmj P
−1
m GT

mj < 1, (6.55)

hence, ε(Pm, ρ) ⊂ L (Gm).
Finally, the inclusion ε(P, ρ) ⊂ L (G) is ensured by the reduced-order LMI (6.41),
which ends the proof. �

The constraints on the increment or rate can be handled using lemma above. The
controller design for the linear system with saturation and constraints on the control
increment or rate according to Theorem 6.2 is now given.

Let W = WT 
 0 and η matrices Hi be chosen, for all i = 1, . . . , η such that

σ(A)
⋂

σ(Hi ) = ∅, (6.56){
J T
i W Ji − W ≺ 0, for discrete-time case,

J T
i W + W Ji ≺ 0, for continuous-time case,

(6.57)

where matrix Ji represents the Jordan form of matrix Hi .

Lemma 6.2 For a given positive scalarρ andη diagonalizablematrices Hi ∈ R
m×m

satisfying (6.56), (6.57), and (6.31), if there exist a positive definite matrix X = XT ∈
R

m×m, non-singular matrices Y ∈ R
m×m, and Z ∈ R

m×m solutions of the following
LMI:

⎧⎨
⎩

[
X JT

i X
∗ X

]

 0, for discrete-time case,

X Ji + J T
i X ≺ 0, for continuous-time Case,

(6.58)

AmX + Bm(DiY + D−
i Z) − X Ji = 0, (6.59)

HiY − Y Ji = 0, (6.60)
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[
1/ρ Z j

∗ X

]

 0, i = 1, . . . , η; j = 1, . . . ,m,

then the saturated system with asymmetric constraints on the increment or rate in
closed loop (6.6) is asymptotically stable at the origin ∀xo ∈ ε(P, ρ), with

F = Y X−1QT
m, (6.61)

G = Z X−1QT
m, (6.62)

P = Q

[
Po �
� X−1

]
QT , (6.63)

where matrices Qm, Q, Po are given by (6.9) and (6.12), respectively.

Proof The projection technique presented previously can be applied to the system
(6.6) leading to the reduced-order system (6.51). The use of the change of variables
(6.61)–(6.62) allows the extension of the results of Theorem 6.1 to rewrite equiva-
lently Eq. (6.30) under the LMI form of (6.59)–(6.60). For this, multiply Eq. (6.59)
on the left by Fm and on the right by X−1, successively. It follows that:

Fm Am + FmBm(DiY X−1 + D−
i Z X−1) − FmX Ji X

−1 = 0, i = 1, . . . , η.(6.64)

Noting that Fm = Y X−1,Gm = Z X−1 and taking account of Eq. (6.60), the nonlinear
algebraic equation associated to the the reduced-order system (6.51) is then obtained:

Fm Am + FmBm(Di Fm + D−
i Gm) = Hi Fm, i = 1, . . . , η. (6.65)

Note that the reciprocal is also true if matrices Y and Z are non-singular. The problem
now is to show that if Eq. (6.65) is satisfied for the reduced-order system (6.51), then
the Eq. (6.30) is also satisfied for system (6.34). Using expressions of matrices FQ

and GQ given by (6.48)–(6.49) and Eq. (6.65), matrices AQ and BQ being given by
(6.11), one can write

FQ AQ + FQBQ(Di FQ + D−
i GQ) = [� Fm Am] + [� FmBm(Di Fm + D−1

i Gm)]
= [� Hi Fm]
= Hi FQ . (6.66)

Equation (6.66) can also be written as follows:

FQQT AQ + FQQT B(Di FQ + D−
i GQ) = Hi FQ. (6.67)

By multiplying on the right Eq. (6.67) by matrix QT , and using the property of
the Schur matrix QQT = I, Eq. (6.30) follows. However, it is useful to note that
Eq. (6.30), even satisfied, is not really used with this projection technique. One can
only compute directly the control dynamics by using the reduced-order system (6.51)
and the associated Eq. (6.65), leading to the following developments:
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δu(t) = Fmδzm(t)

=
η∑

i=1

γi (t)Fm[Am + Bm(Di Fm + D−
i Gm)]zm(t)

=
η∑

i=1

γi (t)Hiu(t). (6.68)

Note that matrices Hi are chosen diagonalizable and satisfying (6.56)–(6.57) in order
to ensure that the solution Y is non-singular, there exists a solution of (6.58) and
the pole assignment of Eq. (6.59) is feasible. In addition to this, matrices Hi are also
chosen according to conditions (6.31), hence the constraints on the control increment
or rate are respected.

Further, for the stability purpose of the system (6.6), Lemma 6.1 is used to trans-
form inequalities (6.29) of Theorem 6.2 to obtain the following LMI:

⎧⎪⎪⎨
⎪⎪⎩

[
X [AmX + Bm(DiY + D−

i Z)]T
∗ X

]

 0, for discrete-time case

[
AmX + Bm(DiY + D−

i Z)
]sym ≺ 0, for continuous-time case.

(6.69)

However, with this projection technique, these inequalities can also be transformed.
In fact, if equalities (6.59)–(6.60) are satisfied, one can substitute (6.59) into (6.69)
to obtain (6.58). �
Comments 6.1

• The results of Lemmas 6.1 and 6.2 propose two main ideas: the first is to allow the
integration of the resolution of the algebraic equation (6.30) among the LMIs of
Lemma 6.2 by means of LMIs (6.59)–(6.60); the second, which is of great interest
and presented for the first time in [3], is to reduce the dimension of the LMIs (6.29)
of [8, 10], allowing an important computing time economy.

• To obtain matrices Hi satisfying conditions (6.31), one can use the linear pro-
gramming technique proposed in [12].

• Compared to the results of [12], one can note that the results given above present
a different way to deal with the studied problem. Further, the obtained results are
given under LMI formulation. Furthermore, the projection technique as proposed
above is also a new tool to reduce the computation load.

In order to present a different way to design the required controllers of Lemma 6.2
by relaxing equalities (6.59)–(6.60), one can use the following approach. Let the
reduced-order algebraic equations (6.65) be satisfied only with an uncertainty term
as follows,

Fm Am + FmBm(Di Fm + D−
i Gm) − Hi Fm = Mi , i = 1, . . . , η, (6.70)

hence, the control dynamic becomes:



118 6 Constrained Control and Rate or Increment: An LMI Approach

δu(t) =
η∑

i=1

γi (t)(Hi Fm + Mi )zm(t). (6.71)

If one compute matrix Gm as a non-singular one, an uncertain system is obtained
and it is given by,

δu(t) =
η∑

i=1

γi (t)Hiu(t) +
η∑

i=1

γi (t)Li p(t), (6.72)

Li = MiG
−1
m ; p(t) = Gmzm(t),

where p(t) is considered as a disturbance entry. Further, if zm(t) ∈ L (Gm),∀t , one
should have,

− e ≤ p(t) ≤ e, ∀t. (6.73)

Assume now that the tilde transform of the uncertainty terms (̃Li )d is bounded by a
known positive matrix Γ ∈ R

2m×2m ,

(̃Li )d ≤ Γ, i = 1, . . . , η. (6.74)

According to [13] for the continuous-time case (while the discrete-time case is
obtained in a similar way), and using the same arguments on the scalars γi , con-
ditions (6.31) are to be changed to the following:

{
(̃Hi )d ρ + Γρ ≤ q for discrete-time case,

(̃Hi )c ρ + Γρ ≤ q for continuous-time case.
(6.75)

Theorem 6.3 For given positive scalar ρ, positive matrix Γ ∈ R
2m×2m and η Hur-

witz matrices Hi ∈ R
m×m satisfying (6.75), if there exist a positive definite matrix

X = XT ∈ R
m×m, matrices Y ∈ R

m×m, and Z ∈ R
m×m solutions of the following

LMIs:
⎧⎪⎪⎨
⎪⎪⎩

[
X [AmX + Bm(DiY + D−

i Z)]T
∗ X

]

 0, for discrete-time case.

[
AmX + Bm(DiY + D−

i Z)
]sym ≺ 0, for continuous-time case.

(6.76)

[
1/ρ Z j

∗ X

]

 0, (6.77)

Z + ZT 
 0, (6.78)

i = 1, . . . , η; j = 1, . . . ,m,
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such that inequalities (6.74) are satisfied with Fm = Y X−1,Gm = Z X−1 and Mi

given by (6.70), then the saturated system with asymmetric constraints on the incre-
ment or rate in closed loop (6.6) is asymptotically stable at the origin ∀xo ∈ ε(P, ρ),
with

F = FmQ
T
m, (6.79)

G = GmQ
T
m, (6.80)

Pm = X−1, (6.81)

P = Q

[
Po �
� Pm

]
QT , (6.82)

where matrices Qm, Q, Po are given by (6.9) and (6.12), respectively.

Proof The proof follows readily from the above development. Note that it is easy to
require that matrix Gm be non-singular by adding the constraint (6.78). The proof is
also based on the fact that zm(t) ∈ L (Gm),∀t . Thus, the following has to be shown,

x(t) ∈ L (G) implies zm(t) ∈ L (Gm),∀t. (6.83)

For this, as it is known that x(t) ∈ ε(P, ρ) ⊂ L (G),∀t , because the set ε(P, ρ) is a
contractively invariant set, then, ρ−1xT (t)Px(t) ≤ 1,∀t . Using the transformation
x(t) = Qz(t), it follows that

ρ−1zT (t)(QT PQ)z(t) = ρ−1zT (t)Rz(t) ≤ 1

= ρ−1zTo (t)Pozo(t) + ρ−1zTm(t)Pmzm(t) ≤ 1,∀t.

This last inequality implies that ρ−1zTm(t)Pmzm(t) < 1,∀t ; that is, zm(t) ∈ ε(Pm, ρ),
which according to (6.77) ensures that zm(t) ∈ L (Gm), ∀t . �

Remark 6.2 In order to satisfy condition (6.75), due to the block symmetry of matrix
(̃Hi )c, one can choose the positive matrix Γ as follows,

Γ =
[

Γ1 Γ2

Γ2 Γ1

]
.

In this case, with vector ρ = [eT eT ]T one has to only check that for i = 1, . . . , η,

{ |Hi − Im |e + (Γ1 + Γ2)e ≤ min(q1, q2) for discrete-time case,
|Hi |e + (Γ1 + Γ2)e ≤ min(q1, q2) for continuous-time case.

(6.84)

One can also note that conditions (6.75) imply conditions (6.31).

Now, the steps of calculations followed during the development of this new approach
by introducing the LMIs are summarized in the following algorithm. It is worth to
recall that the use of a Schur decomposition guarantees numerical robustness in the
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computation of the open-loop eigenvalues, while it determines a new basis for the
associated subspaces [6].

Algorithm 6.1

• Step 1: Check if matrix A satisfies assumption (AS2), else, use the technique of
augmentation and go to Step 4 with Am = A, Bm = Ba and m = n.

• Step 2: Apply a Schur decomposition to matrix A by reordering, if necessary,
its Schur blocks to have matrix Qm ∈ Rn×m and the reduced-order system (6.51)
associated with the undesirable eigenvalues of matrix A.

• Step 3: Compute a positive definite matrix Po = PT
o satisfying (6.12).

• Step 4: Give η diagonalizable matrices Hi ∈ Rm×m satisfying (6.56), (6.57), and
(6.31).

• Step 5: If theLMIs (6.58)–(6.61) are feasible, continuewith the solutions X, Y, Z ,
else, solve the LMIs (6.76)–(6.78) with an adequate choice of positive matrices
Γ1 ∈ Rm×m and Γ2 ∈ Rm×m satisfying (6.74) and (6.75).

• Step6:Compute thematrices F = FmQT
m = Y X−1QT

m ,G = GmQT
m = Z X−1QT

m ,

P = Q

[
Po �
� X−1

]
QT

Example 6.1 In order to illustrate the use of the proposed methodology, consider the
same continuous-time system treated by [2] and the references therein:

A =
⎡
⎣−5 1 0

0 1 1
1 1 1

⎤
⎦ ; B =

⎡
⎣0 0
0 1
1 0

⎤
⎦ , ρ = 3.

Let the asymmetric constraints on the control rate be as follows:

q1 =
[
15
16

]
; q2 =

[
12.5
15

]
.

The open-loop eigenvalues of the system are given by:

σ(A) = {−4.9711, −0.0973, 2.0684}.

Let the undesirable eigenvalues be {−0.0973, 2.0684}. For that, the Schur decom-
position of matrix A is given by:

Q =
⎡
⎣ 0.9851 0.1427 0.0962

0.0284 −0.6864 0.7267
−0.1697 0.7131 0.6802

⎤
⎦ , Qm =

⎡
⎣ 0.1427 0.0962

−0.6864 0.7267
0.7131 0.6802

⎤
⎦ .
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The corresponding matrices Am and Bm are given by

Am =
[−0.09726 0.1413

0 2.0684

]
, Bm =

[
0.713 −0.6864
0.6802 0.7267

]
.

TheLMIs of Lemma6.2 are not feasible. For this, chooseΓ and 4 (η) diagonalizable
and Hurwitz matrices Hi satisfying (6.56), (6.57), and (6.75) as follows:

H1 =
[−4 1

0 −5

]
, H2 =

[−4.1 0.1
0 −4.8

]
,

H3 =
[−3.9 1

0 −5.2

]
, H4 =

[−4.2 0.1
0 −5.1

]
,

Γ1 =
[
4.1 1
2 6.3

]
, Γ2 =

[
0.5 1.5
1 0.5

]
.

The LMIs of Theorem 6.3 are feasible and yield the following Pm , Fm , and Gm :

Pm =
[
2.3587 0.1400
0.1400 15.5694

]
, Fm =

[−0.2604 −3.9212
0.1698 −3.9833

]
,

Gm =
[−0.2608 −2.0107

0.2148 −2.0859

]
.

From the Algorithm 6.1, the following matrices F , G, and P are obtained:

F = FmQ
T
m =

[−0.4144 −2.6708 −2.8529
−0.3590 −3.0112 −2.5883

]
,

G = GmQ
T
m =

[−0.2307 −1.2821 −1.5537
−0.1700 −1.6632 −1.2656

]
,

P = QRQT =
⎡
⎣ 1.1664 0.8906 1.1148
0.8906 9.1946 6.5438
1.1148 6.5438 8.5676

⎤
⎦ ,

where matrix Po can be taken as any positive scalar, namely Po = 1.
Figure6.2 presents ellipsoid set of invariance and contractivity for the reduced-

order saturated linear system computed with constraints on the rate, computed using
Theorem 6.3, together with the setL (Gm) (in solid line) andL (Fm) (in dotted line)
with 10 trajectories. The region of asymptotic stability where the saturation does not
occur as a solution of the results of [12] is given by L (Fm) (in dotted line).

Figure6.3 plots the evolution of the two components of the control rate for zm(0) =
[−0.4470 0.3860]T .
Example 6.2 In order to illustrate the use of the augmentation technique, consider
the double integrator system in discrete-time:
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Fig. 6.3 Control rate evolution

A =
[
1 1
0 1

]
, B =

[
0.5
1

]
, ρ = 10.

Let the asymmetric constraints on the control increment be as follows:

q1 = 15; q2 = 5.
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Fig. 6.4 Trajectories inside ellipsoid set of invariance together with the set L (Ga) (solid line in
red) and L (K ) (dotted line in green)

The open-loop eigenvalues of the system are given by:

σ(A) = {1, 1}.

The open-loop system does not contain n − m stable eigenvalues. To overcome this
condition, the augmentation technique is used:

Ba =
[
0.5 0
1 0

]
.

TheLMIs of Lemma6.2 are feasible but lead to a restrictive region of stability. Hence,
choose Γ and 4 (η) matrices Hi satisfying (6.75) with given fictitious constraints
on the increment ϕ1 = 10 and ϕ2 = 6.5 as follows:

H1 =
[
0.45 0.05
0 0.5

]
, H2 =

[
0.5 0.1
0 0.4

]
;

H3 =
[
0.4 0.1
0 0.5

]
, H4 =

[
0.6 0.1
0 0.4

]
,

Γ1 =
[

1 1.2
2.5 1.75

]
, Γ2 =

[
1.5 0.6
1.1 0.4

]
.

Solving the LMIs of Theorem 6.3 yields the following solutions:
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Fig. 6.5 Evolution of the increment of the control

K =
[−0.2993 −1.2646

1.1513 1.8940

]
,

Ga =
[−0.1113 −0.5092

0.2378 0.3810

]
,

P =
[
1.5072 1.1894
1.1894 3.3030

]
,

where Ga is the augmented matrix corresponding to matrix G. The effective gain
matrices F and G are to be extracted from matrices K and Ga , respectively, as
follows:

F = [−0.2993 −1.2646
]
,G = [−0.1113 −0.5092

]
.

One can note from Fig. 6.4 that the fictitious constraints ϕ1 and ϕ2, which were
used as additional degrees of freedom to satisfy condition (6.31), limit in return
the sets L (G) and L (F). Finally, the LMIs of Lemma 6.2 were also used leading
to acceptable solutions with a reduced region of stability than the one obtained
with the LMIs of Theorem 6.3. Figure6.4 presents the evolution of the state of the
system inside the ellipsoid set ε(P, ρ). The region of asymptotic stability where the
saturation does not occur as a solution of the results of [12] is given by L (F) (in
dotted line). While Fig. 6.5 plots the evolution of the increment for initial condition
xo = [−0.7650 1.8421]T .
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6.5 Conclusion

In this chapter, a new design formulation of the stabilizing controller for linear
system subject to actuator saturation and asymmetric constraints on its increment or
rate is presented. This technique is based on the use of the reduced-order system and
reduced dimension LMI to simplify the computations. The problem of asymmetric
constraints on the control increment or rate is also taken into account by using the
solution of the nonlinear algebraic equation (6.30) under LMI form. The obtained
LMIs of Lemma 6.2, even with reduced dimensions, are relaxed considerably by the
use of the idea of introducing admissible uncertainties in the control dynamic due to
equalities (6.70). The results are given both for continuous-time and discrete-time
systems. Finally, two illustrative examples that prove the improvements with the
proposed approach are presented.
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Chapter 7
Output Feedback Stabilization
for Constrained Control Systems

7.1 Introduction

The problem of stabilizing linear systems by output feedback, despite its apparent
simplicity, is still open. A number of numerical procedures have been proposed for
solving the problem since the work of Kimura [1]. A survey was given by [2], and
recent progress has been made for the related problem of pole placement; see [3–5]
and the references therein.However, lessworkswere proposed for linear systemswith
actuator saturation. In [6] a dynamic output feedback is considered while in [7, 8]
and [9], the positive invariance approach is used. Static output feedback problem for
both discrete-time and continuous-time linear systems subject to actuator saturation is
studied by extending the results of [3–6, 8, 10–14]where a state feedback is used. The
synthesisof thecontrollerbystaticoutput feedbackisalsoproposedbymeansofLMI’s
fordiscrete-timeandcontinuous-timelinearsystemssubjecttoactuatorsaturation.The
obtained region of invariance and contractivity are generally less conservative.

It is true that the use of output feedbackwas neglected at the benefit of the observers
when the state is not available for measure. However, in general case, the output is
measured and hence easily available for feedback. State feedback and observer are
the essential parts of this book but we aim to present also the case of output feedback
that can be very useful in some cases, especially when the output matrix C is of full
rank. Other results have been obtained by output feedback synthesis for sampled-data
system with input saturation [12].

7.2 Problem Formulation

Consider the class of linear systems described by:

δx(·) = Ax(·) + Bsat (u(·)) (7.1)

y(·) = Cx(·) (7.2)

© Springer International Publishing AG 2018
A. Benzaouia et al., Saturated Control of Linear Systems, Studies in Systems,
Decision and Control 124, https://doi.org/10.1007/978-3-319-65990-9_7
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where x(·) ∈ R
n is the state, u(·) ∈ R

m is the control with m ≤ n, y(·) ∈ R
po is the

output vector. The δ operator is defined as:

δx(·) =
{
ẋ(t) for the continuous-time case
x(k + 1) for the discrete-time case

(7.3)

Further, sat (·) is the standard saturation function assumed here to be normalized, i.
e., |sat (u)| = min{1, |u|}.
Let the following habitual assumptions for the problem hold:

• AS1: matrix C has full rank;
• AS2: (A, B) is stabilizable; (C, A) is detectable;

Consider the following static output feedback control law:

u(·) = Ky(·) = Fx(·), F = KC (7.4)

The closed-loop system is then given by,

δx(·) = Ax(·) + Bsat (KCx(·)) (7.5)

In this work, we are interested to the synthesis of a stabilizing controller for this class
of linear systems subject to actuator saturation in both discrete-time and continuous-
time cases. To this end let us recall the sets ε(P, ρ) and L (H) as follows:

ε(P, ρ) = {
x ∈ R

n /xT Px ≤ ρ
}

(7.6)

L (H) = {
x ∈ R

n /|Hi x | ≤ 1
}
, (7.7)

Hi the i th row of matrix H .

7.3 Output Feedback for Saturated Discrete-Time Linear
Systems

The design of the stabilizing controller for the class of linear systems with actuator
saturation is presented by using both the results of Theorem 1.10 and Lemma 1.3. A
different proof of Theorem 1.10 is also proposed.

Theorem 7.1 For a given positive scalar ρ, if there exist a symmetric matrix P and
a matrix H such that,

[
P [A + B(Di KC + D−

i H)]T P
∗ P

]
� 0, (7.8)

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1


7.3 Output Feedback for Saturated Discrete-Time Linear Systems 129

and,
ε(P, ρ) ⊂ L (H),∀i ∈ I (7.9)

then, the closed-loop system (7.5) is asymptotically stable ∀xo ∈ ε(P, ρ), with
ε(P, ρ) and L (H) are defined by (7.6) and (7.7) respectively.

Proof Assume that there exists a matrix H and a symmetric matrix P such that
conditions (7.8) and (7.9) hold. Using Lemma 1.3, one can rewrite the saturated
system (7.5) as follows: there exist γ1, . . . , γη such that,

sat (KCxk) =
η∑

i=1

γi (k)[Di KC + D−
i H ]xk;

γi (k) ≥ 0,
η∑

i=1

γi (k) = 1, (7.10)

The closed-loop system can be rewritten as,

xk+1 =
η∑

i=1

γi (k)A
cl
i xk; (7.11)

Acl
i = A + B(Di KC + D−

i H), i ∈ I

Consider now the Lyapunov function candidate given by:

V (xk) = xTk Pxk (7.12)

Its rate of increase on the trajectories of the system (7.11) is given by,

ΔV (xk) = xTk+1Pxk+1 − xTk Pxk

= xTk

⎧⎨
⎩

[
η∑

i=1

γi (k)A
cl
i

]T

P

[
η∑

i=1

γi (k)A
cl
i

]
− P

⎫⎬
⎭ xk (7.13)

Let condition (7.8) be satisfied. Pre-multiply each inequality (7.8) for i = 1, . . . , η
by γi (k) and sum up the obtained inequalities. Bearing in mind that,

∑η

i=1 γi (k) = 1,
one gets:

[
P

[∑η

i=1 γi (k)Acl
i

]T
P

∗ P

]
� 0, (7.14)

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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The use of Schur complement allows one to write condition (7.14) under the equiv-
alent form, [

η∑
i=1

γi (k)A
cl
i

]T

P

[
η∑

i=1

γi (k)A
cl
i

]
− P ≺ 0, (7.15)

which ensures that,

ΔV (xk) < −γ (‖ xk ‖);where

γ (‖ xk ‖) = min
i

λmin(P −
[

η∑
i=1

γi (k)A
cl
i

]T

P

[
η∑

i=1

γi (k)A
cl
i

]
) ‖ xk ‖2 (7.16)

Taking into account condition (7.9) and noticing that ε(P, ρ) is a contractively invari-
ant set, one can guarantee that for all xo ∈ ε(P, ρ) ⊂ L (H), the saturated system
(7.5) is asymptotically stable. �

Note that Theorem 7.1 proposes a different proof of Theorem 1.10 of [14] for
linear systems with state feedback by letting C = I. This result of stability can be
exploited in the synthesis of the controller by the following result.

Theorem 7.2 For a given positive scalar ρ, if there exist symmetric positive definite
matrix X ∈ R

n×n, matrices V ∈ R
po×po , Y ∈ R

m×po and Z ∈ R
m×n solutions of the

following LMI’s:

[
X (AX + BDiYC + BD−

i Z)T

∗ X

]
� 0, (7.17)

[ 1
ρ
Z j

∗ X

]
� 0, (7.18)

VC − CX = 0, (7.19)

∀i ∈ I ,∀ j ∈ [1,m]

where Z j is the j th row of matrix Z; then the closed-loop system subject to saturation
(7.5) is asymptotically stable at the origin ∀xo ∈ ε(P, ρ) with,

K = YV−1 (7.20)

H = Z X−1 (7.21)

P = X−1 (7.22)

Proof For all i ∈ I , the LMI (7.8) can be transformed by Schur complement to the
following:

P
[
A + B(Di KC + D−

i H)
]
P−1

[
A + B(Di KC + D−

i H)
]T

P − P ≺ 0 (7.23)

Post-multiplying and pre-multiplying the last inequalities by P−1, leads to:
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[
A + B(Di KC + D−

i H)
]
P−1

[
A + B(Di KC + D−

i H)
]T − P−1 ≺ 0 (7.24)

letting X = P−1, inequality (7.24) becomes,

[
A + B(Di KC + D−

i H)
]
X

[
A + B(Di KC + D−

i H)
]T − X ≺ 0

The use of the Schur complement a second time leads to:

[
X (AX + BDi KCX + BD−

i H X)T

∗ X

]
� 0 (7.25)

According to Eq. (7.19), one can write KCX = KVC . By virtue of assumptions
(AS1 − AS2), and as matrix X is positive definite, matrix V solution of (7.19) is
non-singular. Further, by letting KV = Y and HX = Z , the LMI (7.17) follows
together with relations (7.20) and (7.21). Using [13], the inclusion condition (7.9)
can also be transformed to the equivalent LMI (7.18) with X = P−1. �

It is worth noting that the state feedback problem follows readily from Theorem
7.2 by letting C = Im . In this case, V = X . The resolution of these LMI’s can be
extended to the case where the scalar ρ is also taken as a design variable.

The conditions of Theorem 7.2 are in fact more conservative due to Eq. (7.19).
In order to relax this conservatism, we associate this equation to a second matrix S,
as a slack variable, different from X as suggested by [15] and [10] for unsaturated
systems. This technique is presented by the following result.

Theorem 7.3 For a given scalar ρ, if there exist symmetric matrix X ∈ R
n×n, matri-

ces V ∈ R
po×po , S ∈ R

n×n, Y ∈ R
m×po and Z ∈ R

m×n solutions of the following
LMI’s:

[
S + ST − X

[
AS + BDiYC + BD−

i Z
]T

∗ X

]
� 0, (7.26)

[ 1
ρ

Z j

∗ S + ST − X

]
� 0, (7.27)

VC − CS = 0, (7.28)

∀i ∈ I ,∀ j ∈ [1,m]

where Z j is the j th row of matrix Z; then the closed-loop system subject to saturation
(7.5) is asymptotically stable at the origin ∀xo ∈ ε(P, ρ), with,

K = YV−1 (7.29)

H = ZS−1 (7.30)

P = X−1 (7.31)
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Proof The main idea of this proof is given by [10]. Using Eqs. (7.28), (7.29), and
(7.30), the LMI (7.26) can be rewritten equivalently as,

[
S + ST − X ST (A + BDi KC + BD−

i H)T

∗ X

]
� 0,

It is obvious that if (7.26) holds, then, S + ST − X � 0, thus,matrix S is non-singular
and V is also non-singular. Since matrix X is positive definite, we have,

(X − S)T X−1(X − S) � 0, (7.32)

this implies that,
ST X−1S � S + ST − X, (7.33)

Inequality (7.33) with (7.26) enable us to write,

[
ST X−1S ST (A + BDi KC + BD−

i H)T

∗ X

]
� 0

This LMI is equivalent to:

[
ST 0
0 X

] [
X−1 (A + BDi KC + BD−

i H)T X−1

∗ X−1

] [
S 0
0 X

]
� 0

To complete the proof, we show thereafter that the inclusion (7.9) is equivalent to

Hj P
−1HT

j ≤ 1

ρ

using (7.30) and (7.31), one can write

(ZS−1) j X (ZS−1)Tj <
1

ρ

by Schur complement, condition above becomes:

[ 1
ρ

(ZS−1) j

∗ X−1

]
� 0

bearing in mind that (ZS) j = Z j S, one obtains:

[ 1
ρ

Z j S−1

∗ X−1

]
� 0,
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pre-multiplying by diag{I, ST } and post-multiplying diag{I, S} the obtained
inequality, leads to [ 1

ρ
Z j

∗ ST X−1S

]
� 0

following the same reasoning for developing ST X−1S, LMI (7.27) is obtained.
By letting P = X−1, the LMI (7.26) is the sufficient condition of stability of Theorem
7.1 which, together with condition (7.27), ensure that the closed-loop system is
asymptotically stable at the origin ∀xo ∈ ε(P, ρ). �

As in the previous works on the problem of saturated systems, it is of great interest
to obtain the largest ellipsoid ε(P, ρ) of initial conditions. It is worth noting that in
the case of output feedback we have more constraining equalities (7.19). We present
hereafter two optimization procedures to obtain such ellipsoid by writing μ = 1/ρ:

(Pb.1) :
{

min(X,Y,V,Z)(μ)

s.t. (7.17), (7.27)(7.19).

This optimization problem,when is feasible, canhelp to enlarge the ellipsoids ε(P, ρ)

by maximizing the scalar ρ. Since the volume of the ellipsoid is proportional to the
trace of matrix X , a second way to obtain larger sets of invariance and contractivity
is to solve the following optimization problem:

(Pb.2) :
{

sup(X,Y,V,Z) Trace(X)

s.t. (7.17), (7.18), (7.19)

When this optimization problem is feasible, the volume of the obtained ellipsoids is
maximum with respect to the data of the system.

Example 7.1 Consider the double integrator system modeled by the saturated
discrete-time linear system given by the following matrices:

A =
[
1 1
0 1

]
; B =

[
0.5
1

]
;C = [

1 1
]

For this example with n = 2, and m = po = 1, we have to solve 7 LMI’s with 4
variables. Let the scalar ρ be given equal to 1. The use of the LMI’s Matlab Toolbox
leads to the following results.

P =
[
0.3661 0.1494
0.1494 0.3661

]
; H = [−0.3402 −0.5756

] ; K = −0.7826;

Acl
1 = A + BH =

[
0.8299 0.7122

−0.3402 0.4244

]
;

Acl
2 = A + BKC =

[
0.6087 0.6087

−0.7826 0.2174

]
;
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Fig. 7.1 4 Trajectories inside the invariance and contractivity ellipsoid for the system by output
feedback

σ(Acl
1 ) = {0.6271 + 0.4485i; 0.6271 − 0.4485i};

σ(Acl
2 ) = {0.4131 + 0.6619i; 0.4131 − 0.6619i}.

Figure7.1 presents the ellipsoid set of invariance and contractivity for the saturated
discrete-time linear system with output feedback.

Example 7.2 Consider now the following example studied by [15] where C = I3

but here we consider different matrix C :

A =
⎡
⎣ 1 1 0.5
0 1 1
1 0 1

⎤
⎦ ; B =

⎡
⎣1.67
0.5
1

⎤
⎦ ;C =

[
1 1 0
0 0 1

]

For this example with n = 3,m = 1 and po = 2, Let the scalar ρ be given equal to 1.
First, we try to solve the LMI’s of Theorem 7.2. Unfortunately they are not feasible.
However, and as it is expected while using the LMI’s of Theorem 7.3 the problem
becomes feasible. In fact it leads to the following results given by:

P =
⎡
⎣ 0.1973 0.1697 0.2110
0.1697 0.1693 0.1970
0.2110 0.1970 0.2491

⎤
⎦ ;

H = [−0.3691 −0.3310 −0.4598
] ;

K = [−0.5299 − 0.6709] ;
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Fig. 7.2 Trajectories of the saturated system with output feedback obtained with Theorem 7.3

Acl
1 = A + BH =

⎡
⎣ 0.3836 0.4472 −0.2678

−0.1845 0.8345 0.7701
0.6309 −0.3310 0.5402

⎤
⎦ ;

Acl
2 = A + BKC =

⎡
⎣ 0.1150 0.1150 −0.6205

−0.2650 0.7350 0.6645
0.4701 −0.5299 0.3291

⎤
⎦ ;

σ(Acl
1 ) = {0.4186 + 0.7336i; 0.4186 − 0.7336i; 0.9212};

σ(Acl
2 ) = {0.3152; 0.4319 + 0.7614i; 0.4319 − 0.7614i}

VC − CS = 10−13 ∗
[

0 −0.1421 0.4263
0.0711 −0.2132 0

]

Figures7.2 and 7.3 present, respectively, the evolution of state and control compo-
nents. It is clear that the case of Theorem 7.3 is more favorable since it gives a larger
ellipsoid.

7.4 Output Feedback for Saturated Continuous-Time
Linear Systems

In what follows, results obtained for discrete-time systems are extended to the case of
continuous-time systems. It is a straightforward extension, but it is presented here for
completeness. Hence, stabilizing controller design for the class of continuous-time
linear systems with actuator saturation by static output feedback law is presented.
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Fig. 7.3 Control components using Theorem 7.3

Consider the class of linear continuous-time systems described above and given
by (7.2) satisfying assumptions AS1 and AS2 as:

ẋ(t) = Ax(t) + Bsat (u(t)) (7.34)

y(t) = Cx(t) (7.35)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control with m ≤ n, y(t) ∈ R
po is the

output vector.
With a static output feedback control law, one obtains:

u(t) = Ky(t) = Fx(t), F = KC (7.36)

The closed-loop system is then given by,

ẋ(t) = Ax(t) + Bsat (KCx(t)) (7.37)

Theorem 7.4 Foragiven positive scalarρ, if there exist a symmetric positive definite
matrix P and a matrix H such that,

[A + B(DsKC + D−
s H)]T P + P[A + B(DsKC + D−

s H)] ≺ 0, (7.38)

and,
ε(P, ρ) ⊂ L (H),∀s ∈ I (7.39)
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then, the closed-loop system (7.37) is asymptotically stable ∀xo ∈ ε(P, ρ), with
ε(P, ρ) and L (H) are defined by (7.6) and (7.7) respectively.

Proof Assume that there exists a matrix H and a symmetric matrix P such that
conditions (7.38) and (7.39) hold. Using Lemma 1.3, one can rewrite the saturated
system (7.37) as follows: there exist γ1, . . . , γη such that,

sat (KCx(t)) =
η∑

s=1

γs(t)[DsKC + D−
s H ]x(t); (7.40)

γs(t) ≥ 0,
η∑

s=1

γs(t) = 1, η = 2m .

The closed-loop system can be rewritten as,

ẋ(t) =
η∑

s=1

γs(t)A
cl
s x(t); (7.41)

Acl
s = A + B(DsKC + D−

s H), s ∈ I

Consider now the Lyapunov function candidate given by:

V (x(t)) = x(t)T Px(t) (7.42)

The derivative of Lyapunov function on the trajectories of the system (7.41) is given
by:

V̇ (x(t)) = ẋ(t)T Px(t) + x(t)T P ẋ(t)

= x(t)T
[

η∑
s=1

γs(t)A
cl
s

]T

Px(t) + x(t)T P

[
η∑

s=1

γi (t)A
cl
s

]
x(t)

Let condition (7.38) be satisfied. Pre-multiply each inequality (7.38) for s = 1, . . . , η
by γs(t) and sum up the obtained inequalities. Bearing in mind that,

∑η

s=1 γs(t) = 1,
one gets:

[
η∑

s=1

γs(t)A
cl
s

]T

P + P

[
η∑

s=1

γs(t)A
cl
s

]
≺ 0, (7.43)

where:

Acl
s = A + B(DsKC + D−

s H) (7.44)

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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η∑
s=1

γs(t)[(Acl
s )T P + PAcl

s ] ≺ 0,∀s ∈ I

which ensures that,

V̇ (x(t)) < −γ (‖ x(t) ‖);

where

γ (‖ x(t) ‖) = min
i

λmin(

[
η∑

s=1

γs(t)A
cl
s

]T

P + P

[
η∑

s=1

γs(t)A
cl
s

]
) ‖ x(t) ‖2 (7.45)

Taking into account condition (7.9) and noticing that ε(P, ρ) is a contractively invari-
ant set, one can guarantee that for all xo ∈ ε(P, ρ) ⊂ L (H), the saturated system
(7.5) is asymptotically stable. �

Theorem 7.4 can not be used as it is for synthesis, to do so we propose the
following:

Corollary 7.1 For a given positive scalar ρ, if there exist a symmetric positive
definite matrix X and matrices V , Y and Z such that ∀s ∈ I ,

[
AX + BDsYC + BD−

s Z
]sym ≺ 0 (7.46)

VC = CX (7.47)[
1/ρ Z j

∗ X

]
� 0, (7.48)

then, the closed-loop system (7.37) is asymptotically stable ∀xo ∈ ε(P, ρ), with
ε(P, ρ) and L (H) defined by (7.6) and (7.7) respectively. Further, the stabilizing
output feedback is given by

K = YV−1, H = Z X−1 (7.49)

Proof Assume conditions 7.4, (7.47) and (7.48) hold true. Noting that P = X−1.
Replace Y and Z by KV and HX respectively. Use VC = CX and multiply by P
at the right and the left. One obtains the condition (7.38) of Theorem 7.1. (7.48)
induces the inclusion (7.39) needed to complete the proof. �
Example 7.3 Consider now the following example:

A =
⎡
⎣−0.5 0.5 0.2

0 0.2 1
0 0 −0.3

⎤
⎦ ; B =

⎡
⎣1.67

0.5
1

⎤
⎦ ;C =

[
1 1 0
0 0 1

]

For this example with n = 3, m = 1 and po = 2, we have to solve the LMI’s of
Theorem 7.4. Let the scalar ρ be given equal to 10. The use of the LMI’s Matlab
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Fig. 7.4 Domains ε(P, ρ) in green and L (H) in blue

Toolbox leads to the following results:

P =
⎡
⎣ 0.0920 −0.0071 0.1651

−0.0071 0.0920 0.1651
0.1651 0.1651 0.6702

⎤
⎦ ;

K = [−2.5065 −9.7307
] ;

H = [−0.0187 −0.0872 −0.1979
]

Figures7.4, 7.5 and 7.6 present respectively the domains for initial conditions, time
evolution for states components and control evolution.

Example 7.4 Consider the following second example studied in [16] and given by:

ẋ(t) = Ax(t) + Bsat (u(t)), (7.50)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.6161 0.5194 0.1941 −0.0348 −0.0517 −0.0208 0
2.0000 0 0 0 0 0 0

0 2.0000 0 0 0 0 0
0 0 1.0000 0 0 0 0
0 0 0 1.0000 0 0 0
0 0 0 0 0.5000 0 0
0 0 0 0 0 0.1250 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

C = [−0.0966 −0.7981 −0.4005 0.0320 0.1098 0.1247 0.1642
]
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Since the proposed method works only with symmetric constraints on the control,
let the control be constrained between −1 and 1. Note that another approach which
is more suitable with non-symmetrical constraints, the so-called invariance positive
approach was also tried, but unfortunately, it was not successful due to the particular
form of matrix B. The solution of the proposed LMI’s of Theorem 7.4 computed
with Scilab leads to the following results.

P = 10−3 × I7; K = 8.4 × 10−5; ρ = 100.
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The initial valuemust be chosen such that, xTo Pxo ≤ ρ. Consider the following initial
value which respects the condition choice, that means that the initial value belongs to
the ellipsoid set of asymptotic stability andwhere the saturation is taken into account.

xo = [300, 300, 0, 300, 0, 0,−300]T

The evolution of the output of the process is plotted in Fig. 7.7 while the evolution of
the control is plotted in Fig. 7.8. Note that this control satisfies the severe constraints
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even this small constraint was not taken into account in the design method of the
controller. It was possible only by the choice of the initial state inside the ellipsoid
set which was built according to a symmetric constraint equal to 1.

7.5 Conclusion

This chapter deals with sufficient conditions of asymptotic stability of static output
feedback for both cases of discrete-time and continuous-time linear systems subject
to actuator saturation. The results of [14] obtained with state feedback control are
extended to the case of output feedback control. A simple proof, in the discrete-
time case, based on manipulations of LMI’s with Schur complement, together with
the idea of Lemma 1.3, is also used. Two examples are studied to illustrate this
approach. Further, extension to continuous-time case is easily obtained and proposed
to complete the chapter. An example is also presented in this case.

Other techniques using dead-zone loops were developed for saturated linear sys-
tems by output feedback [11].
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Chapter 8
Stabilization of Unsymmetrical Saturated
Control Systems

8.1 Introduction

Stabilization problem for linear systems with asymmetric constraints on the control
is considered in this chapter. The objective here is an attempt to solve the stabilization
problem for asymmetrically constrained systems but in the framework of LMIs. It
is worth recalling that the positive invariance approach may handle nonsymmetri-
cal constraints but conditions cannot be written easily under LMIs. In fact, results
obtained in [6] and presented in chapter IV are expressed as LMIs but involve an
equality LMI, for the pole assignment algebraic equation, that augment the diffi-
culty to obtain feasible solutions. On the other side, results of the approach based
on the convex writing of the constrained system allowing saturation to take effect
developed by [10, 12, 13] are expressed under LMIs formalism but cannot handle
unsymmetrical constraints.

It is well known that some works using constraints of symmetric nature as in [4,
9, 11–13] are expressed under LMI form. The characterization of invariance with
symmetric convex sets for saturated systems is also used in the literature [8].However,
the asymmetric character of the actuator constraints is very important in practical
situations since these constraints are inherently asymmetric. Many attempts were
developed to emphasis LMIs and problems with asymmetric saturation but lead to
conservative results as in [2, 3]. In this chapter, we address the regulator problem for
discrete-time and continuous-time linear system with asymmetric saturation on the
control in terms of an LMI problem. The main contribution of this work is to extend
the results of [9], easily written under LMIs but restricted to symmetric constraints, to
systemswith asymmetric constraints and to be formulated under LMIs form obtained
for the first time in [5].

© Springer International Publishing AG 2018
A. Benzaouia et al., Saturated Control of Linear Systems, Studies in Systems,
Decision and Control 124, https://doi.org/10.1007/978-3-319-65990-9_8

145



146 8 Stabilization of Unsymmetrical Saturated Control Systems

8.2 Stabilization by Unsymmetrical Constrained State
Feedback Control: Discrete-Time Case

8.2.1 Problem Formulation

Considering a discrete-time system with a control that has an unsymmetrical satura-
tion, the state equation is written as follows:

x(k + 1) = Ax(k) + BSat (u(k)), (8.1)

x(0) = xo

where x(k) ∈ R
n is the state vector and u(k) ∈ R

m is the control. In this section, the
following assumption is necessary:

A is non singular (8.2)

The saturation of the control is nonsymmetrical, and the expression of each com-
ponent of the vector Sat (u) can be described by:

(Sat (u))i = Sat (ui ) =
⎧
⎨

⎩

αi if ui ≥ αi

ui if −βi ≤ ui ≤ αi

−βi if ui ≤ −βi

(8.3)

for i = 1, . . . ,m with αi �= βi , αi > 0, βi > 0

We use a state feedback control of type:

u(k) = LFx(k) + Fo (8.4)

The nonsymmetrical saturation (8.3) togetherwith the state feedback (8.4) induces
the following set in the state space:

Lns(F) = {
x ∈ R

n| − Γ e ≤ LFx + Fo ≤ Λe
}

(8.5)

where matrices Λ, Γ , and the vector e ∈ R
m are given by:

Λ =

⎡

⎢
⎢
⎣

α1 0 . . . 0
∗ α2 . . . 0
∗ ∗ . . . 0
∗ ∗ ∗ αm

⎤

⎥
⎥
⎦ ,

Γ =

⎡

⎢
⎢
⎣

β1 0 . . . 0
∗ β2 . . . 0
∗ ∗ . . . 0
∗ ∗ ∗ βm

⎤

⎥
⎥
⎦ . (8.6)
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e = [
1 1 . . . 1

]T
. (8.7)

The gain F has to stabilize the system, while the gains Fo, L have to symmetrize
the asymmetrical set of induced statesLns(F) as it will be shown in the sequel. The
problem studied thereafter is to stabilize by state feedback control the saturated sys-
tem (8.1)–(8.3). It is a classical problemwhere the novelty is to handle unsymmetrical
saturation on the control in the frame work of LMIs.

8.2.2 Symmetrization Technique

In this section, the cornerstone of developments allowing to transform the asym-
metrical problem to a symmetrical one is presented. Further, the main lemma of the
works [10, 11, 13] and recalled in Chap. 1 will be used to write the saturating system
as a convex combination of η = 2m linear systems.

For each component of the control ui , one can make the following change of
variables:

wi = ui − αi − βi

2
, (8.8)

with this, one can then rewrite the saturation of the control as

Sat (ui ) = sats(wi ) + αi − βi

2
, (8.9)

where sats(wi ) defined by:

sats(wi ) =
⎧
⎨

⎩

αi+βi

2 if wi ≥ αi+βi

2
wi if −αi+βi

2 ≤ wi ≤ αi+βi

2−αi+βi

2 if wi ≤ −αi+βi

2

(8.10)

for i = 1, . . . ,m.

A second change of variable is used:

zi = wi
2

αi + βi
, (8.11)

with sat (zi ) standing for the normalized symmetric saturation given by:

sat (zi ) =
⎧
⎨

⎩

1 if zi ≥ 1
zi if −1 ≤ zi ≤ 1
−1 if zi ≤ −1

(8.12)

for i = 1, . . . ,m

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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Using the change of variables (8.8) and (8.11), one can rewrite ui as follows:

ui = αi + βi

2
zi + αi − βi

2
(8.13)

In matrix notation, the expression (8.13) can be written as:

u = Λ + Γ

2
z + Λ − Γ

2
e, (8.14)

With relation (8.13), the expression of Sat (ui ) given by (8.3) is related to sat (zi )
given by (8.12) as proven in Lemma below:

Lemma 8.1 The nonsymmetrical saturation Sat (u) is linked to the normalized sym-
metric saturation by the following relation:

Sat (u) = (
Λ + Γ

2
)sat (z) + (

Λ − Γ

2
)e (8.15)

Proof Three cases can be examined for i = 1, . . . ,m:

• zi ≥ 1, according to (8.13) and bearing in mind that Λ + Γ > 0, one obtains
ui ≥ αi . Hence, Sat (ui ) = αi while sat (zi ) = 1, which satisfies (8.15).

• zi ≤ −1, following the same lines, one can conclude that ui ≤ −βi . Hence,
Sat (ui ) = −βi while sat (zi ) = −1, which confirms (8.15).

• −1 ≤ zi ≤ 1: obtained obviously by similar reasoning. �

By introducing these notations in the state Eq. (8.1), the term BSat (u) can be
developed as follows:

BSat (u) = B(
Λ + Γ

2
)sat (z) + B(

Λ − Γ

2
)e

= B̃sat (z) + ξ̃ , (8.16)

where matrix B̃ and vector ξ̃ are given by:

B̃ = B(
Λ + Γ

2
) and ξ̃ = B(

Λ − Γ

2
)e. (8.17)

By introducing (8.15) in the state Eq. (8.1), the term BSat (u) can be developed
as (8.16) and (8.17). With these notations, we can rewrite the state equation of the
nonsymmetrical system as follows:

x(k + 1) = Ax(k) + B̃sat (z(k)) + ξ̃ . (8.18)

This system can be seen as a symmetrical saturated system with a bounded dis-
turbance. The link between (8.4) and (8.14) is given by the following lemma.
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Lemma 8.2 The control (8.4) with L = Λ+Γ
2 and Fo = Λ−Γ

2 e symmetrizes the
asymmetrical setLns(F) given by (8.5).

Proof Let x ∈ Lns(F), that is, −Γ e ≤ LFx + Fo ≤ Λe. Substituting matrices
L , Fo, one has −Γ e − (Λ−Γ

2 )e ≤ (Λ+Γ
2 )Fx ≤ Λe − (Λ−Γ

2 )e. This inequality is
equivalent to: −(Λ+Γ

2 )e ≤ (Λ+Γ
2 )Fx ≤ (Λ+Γ

2 )e. Noting that matrix Λ+Γ
2 is posi-

tive diagonal, we finally obtain: −1 ≤ Fx ≤ 1. �

The objective of this work is to design the gain F for the unsymmetrical saturated
controller. Define the following sets:

L (F) = {
x ∈ R

n| |Fx |i ≤ 1, i = 1, . . . ,m
}

(8.19)

ε(P, ρ) = {
x ∈ R

n| xT Px ≤ 1
}

(8.20)

εnc(P, ρ) =
{
x ∈ R

n| (x + ξ̃ )T P(x + ξ̃ ) ≤ 1
}

(8.21)

Henceforth, the gain feedback we are looking for will be designed to stabilize the
system (8.18). Note that stabilizing these systems (symmetrical ones ), one has to
design a controlwith: sat (zk) = ∑η

s=1 γs(k)(Dszk + D−
s νk), with z = Fx and ν =

Hx the auxiliary control where matrices F and H are to be computed. Thus, for
the stabilization problem by state feedback control, we have to determine two gain
matrices F and H .

The system equation with saturation in closed loop, using Lemma1.3, is then
written as follows:

x(k + 1) = Ax(k) + B̃
η∑

s=1

γs(k)(DsF + D−
s H)x(k) + ξ̃ ,

or in the equivalent form:

x(k + 1) =
η∑

s=1

γs(k)A
cl
s x(k) + ξ̃ = Acl x(k) + ξ̃ , (8.22)

where the matrix in closed loop Acl is given by:

Acl =
η∑

s=1

γs(k)A
cl
s

Acl
s = A + B̃(DsF + D−

s H). (8.23)

Notice that the set L (H) is defined by the same expression (8.19) of L (F) as
well as Lns(H) is defined by the same expression (8.5) of Lns(F) .

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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8.2.3 Constrained Control for Discrete-Time Systems

With the equivalent writing of the unsymmetrically saturated system in closed loop
under symmetrical form developed above, we are able to derive sufficient conditions
of stabilizability by using LMIs. Let us introduce the following notation:

x̃(k) = x(k) + ξ. (8.24)

where ξ = A−1ξ̃ , bearing in mind that the system verifies the assumption (8.2).
Using the changes of variable presented above, the state equation can be rewritten
as follows:

x̃(k + 1) = Ax̃(k) + B̃sat (z(k)) (8.25)

x̃0 = xo + ξ,

if one uses a state feedback control:

z(k) = Fx̃(k), (8.26)

the system equation with saturation in closed loop, using Lemma1.3, is then written
as:

x̃(k + 1) = Ax̃(k) + B̃
η∑

s=1

γs(k)(DsF + D−
s H)x̃(k),

or in the equivalent form:

x̃(k + 1) =
η∑

s=1

γs(k)A
cl
s x̃(k) = Acl x̃(k), (8.27)

where the matrix in closed-loop Acl is given by (8.23).
The following theorem gives sufficient conditions for the system (8.1) with state

feedback to be asymptotically stable.

Theorem 8.1 If there exist matrices H ∈ R
m×n, F ∈ R

m×n and a symmetric positive
definite matrix P ∈ R

n×n, such that:

AT
cl P Acl − P ≺ 0, (8.28)

ε(P, ρ) ⊂ L (H), (8.29)

then the systemdefined by (8.27)with z = Fx̃ is asymptotically stable∀x̃0 ∈ ε(P, ρ).

Proof Assuming that condition (8.29) holds true, the saturated system (8.1) can be
written as given by (8.27). Consider the Lyapunov function candidate V (x̃(k))which

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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is defined by:

V (x̃(k)) = x̃ T (k)Px̃(k) (8.30)

Its rate of increase 
V (x̃(k)), in closed loop, is given by:


V (x̃(k)) = x̃ T (k + 1)Px̃(k + 1) − x̃ T (k)Px̃(k)

= x̃ T (k)
[
AT
cl P Acl − P

]
x̃(k) (8.31)

It is clear that if condition (8.28) is satisfied, then the rate of increase (8.31) is neg-
ative. Therefore, the symmetrically saturated closed-loop system is asymptotically
stable. Hence, the unsymmetrically saturated closed-loop system converges toward
−ξ . �

The previous result gives sufficient conditions of stabilizability for the closed-
loop system. Below, we reformulate these conditions under LMIs allowing to deduce
easily the controller gains.

Corollary 8.1 If there exist matrices Y , Z, and X = XT � 0 such that the following
LMIs are satisfied:

[
X (AX + B̃DsY + B̃D−

s Z)T

∗ X

]

� 0, s = 1, . . . , η, (8.32)

[
μ Zi

∗ X

]

� 0, i = 1, . . . ,m,

then the system (8.27) is asymptotically stable ∀x̃o ∈ ε(P, ρ), with μ = 1/ρ, Zi is
the i th row of matrix Z. The controller gains that stabilize the system are as follows:

F = Y X−1, H = Z X−1, P = X−1, (8.33)

Proof The sufficient condition of asymptotic stability of the saturated system
is given by (8.28). Multiplying the left and right by P−1 = X leads to: X −
(X AT

cl)X
−1(Acl X) � 0. Using the Schur complement, we obtain:

[
X (Acl X)T

∗ X

]

� 0

By replacing the matrix of the closed-loop system Acl by its expression (8.23) and
using the change of variables Y = FX−1 and Z = HX−1, it is easy to obtain the
LMIs (8.32). Consequently, the sufficient conditions of asymptotic stability (8.28),
for the closed-loop systemand for any initial statewithin the set ε(P, ρ), are obtained.

Furthermore, the inclusion (8.29) is equivalent to ρHi P−1HT
i ≤ 1, i = 1, . . . ,m.

Develop equivalently as follows: ρ(HX)i X−1(HX)Ti ≤ 1, i = 1, . . . ,m, which
is equivalent to ρZi X−1ZT

i ≤ 1, i = 1, . . . ,m. Using the Schur complement, we
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obtain the LMIs (8.33). Finally, using the change of variables (8.33), the LMIs
(8.32)–(8.33) are deduced. To complete the proof, note that as the system (8.27) is
asymptotically stable, the system (8.1) converges toward the point −ξ . �
Remark 8.1 The change of variables that symmetrizes the nonsymmetrical satura-
tion introduces a closed-loop system that is affine. That is why the nonsymmetrical
closed-loop system converges toward a value, namely −ξ which is, in general, dif-
ferent of 0.

In the following example, we illustrate the obtained results.

Example 8.1 For this example, we have n = 2 and m = 1 and the bounds of the
control are α = 5 and β = 10. Consider the system governed by (8.25) with the
following matrices:

A =
[
1 2
3 4

]

; B =
[
2
1

]

.

The LMIs (8.32) and (8.33) are feasible. The solution obtained for ρ = 1 is:

X =
[
115.6386 −91.5921
−91.5921 89.4067

]

;
Y = [

3.8150 −7.6789
] ;

Z = [
3.8121 −7.6756

] ;

and thus gains F and H for the closed-loop system, with a nonsymmetrical saturated
control, are: F = [−0.1858 − 0.2762]; H = [0.4644 0.6904].

Matrices L and Fo which are involved in the expression of control, given by
Eq. (8.4), are as follows:

L = ((Λ + Γ )/2)e = 7.5,

Fo = ((Λ − Γ )/2)e = −2.5.

In Fig. 8.1, we present the stability ellipsoid, the setLns(H), and some trajectories
of the state vector x . Figure8.2 represents the control evolution with respect to time
for one of the simulated trajectories.

8.3 Stabilization by Unsymmetrical Constrained State
Feedback Control: Continuous-Time Case

8.3.1 Problem Formulation

The constrained studied system is given by:
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Fig. 8.2 Control evolution for one of the trajectories above

ẋ(t) = Ax(t) + BSat (u(t)),

xo = x(0), (8.34)

where the control u is nonsymmetrically saturated. In this section, the assumption
(8.2) is necessary. The expression of each component of the vector Sat (u) can be
described by (8.3).
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The control considered is the state feedback given by:

u(t) = Kx(t) + ω (8.35)

and defining as above diagonal matrices Λ and Γ . The set of induced constraints on
the state space is given by:

Lns(K ) = {
x ∈ R

n| − Γ e ≤ Kx + ω ≤ Λe
}

(8.36)

Matrix K and vector ω will be designed such that the unsymmetrical saturation
problem is transformed to a symmetrical one.

Hence, we are addressing the problem of giving under LMI formulation a design
procedure enabling to deduce the state feedback K that stabilizes the closed-loop
system with asymmetric constraints.

8.3.2 LMI Constrained Control

Similar change of variables used in the discrete-time case leads to the following
development. With these notations, we can rewrite the state equation of the system
as follows:

ẋ(t) = Ax(t) + B̃sat (z(t)) + ξ̃ (8.37)

To eliminate the constant vector ξ̃ , a new state vector given by (8.24) is introduced,
provided assumption, (8.2). The state equation becomes:

˙̃x(t) = Ax̃(t) + B̃sat (z(t)) (8.38)

x̃0 = xo + ξ̃ . (8.39)

By using a state feedback control as:

z(t) = K̃ x̃(t), (8.40)

the system in closed loop, while the saturation does not occur, is given by:

˙̃x(t) = Acl x̃(t),

Acl = (A + B̃ K̃ ) (8.41)

The link between the effective gain control K and the gain controller of the
transformed system (8.38) K̃ is given by:
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K = Λ + Γ

2
K̃ (8.42)

ω = Λ + Γ

2
K̃ ξ̃ + Λ − Γ

2
e (8.43)

It is worth noting that matrix Acl can also be expressed as Acl = A + BK .
Let us define the ellipsoid in the state space for the original system (8.34) as follows:

εnc(P, ρ) =
{
x ∈ R

n| (x + ξ̃ )T P(x + ξ̃ ) ≤ ρ
}

(8.44)

and for the system (8.41) as:

ε(P, ρ) = {
x̃ ∈ R

n| x̃ T P x̃ ≤ ρ
}

(8.45)

Further, the induced set, by state feedback, in the state space for system (8.41) is
given by:

L (K̃ ) =
{
x̃ ∈ R

n| |K̃ x̃ |i ≤ 1, i = 1, . . . ,m
}

(8.46)

Sufficient conditions of stabilizability for systems with unsymmetrical con-
strained control are presented in this section. The control taken here is a state feedback
given by (8.35).

The link between the symmetrical set L (K̃ ) and the unsymmetrical set Lns(K )

defined by (8.36) is shown by the following Lemma:

Lemma 8.3 For all x ∈ R
n, the two following statements are equivalent:

(i) x ∈ Lns(K ),
(i i) x̃ ∈ L (K̃ ).

Proof ((i) ⇒ (i i)): Assume that x ∈ Lns(K ). The unsymmetrical set Lns(K )

defined by (8.36) is shown by the following relation:

− Γ e ≤ Kx + ω ≤ Λe (8.47)

Using relations (8.42)–(8.43) and the fact that matrix Λ+Γ
2 is diagonal positive,

one can write:

[
Λ + Γ

2

]−1 [

−Γ e − ω + (
Λ + Γ

2
)K̃ ξ̃

]

≤ K̃ x̃ ≤
[
Λ + Γ

2

]−1 [

Λe − ω + Λ + Γ

2
K̃ ξ̃

]

(8.48)

Replacing ω by its expression given by (8.43), one obtains:
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− e ≤ K̃ x̃ ≤ e, (8.49)

which is exactly the set L (K̃ ).
((i i) ⇒ (i)): Now assume that x̃ ∈ L (K̃ ). Consider the double inequality (8.49)

and replace matrix K̃ and vector x̃ by their expressions given by (8.42) and (8.24).
It follows:

− e ≤ K̃ x̃ ≤ e, (8.50)

−Λ + Γ

2
e − K ξ̃ ≤ Kx ≤ Λ + Γ

2
e − K ξ̃ (8.51)

By adding and subtracting Λ+Γ
2 e in both sides of inequality (8.50), and using the

expression of ω given by (8.43), one obtains successively:

− Λ + Γ

2
e + Λ − Γ

2
e − ω ≤ Kx ≤ Λ + Γ

2
e + Λ − Γ

2
e − ω (8.52)

−Γ e ≤ Kx + ω ≤ Λe, (8.53)

which is the unsymmetrical set Lns(K ). �

Lemma 8.4 For all x ∈ R
n, the two following statements are equivalent:

(i) εnc(P, ρ) ⊂ Lns(K ),

(i i) ε(P, ρ) ⊂ L (K̃ ).

Proof (i) ⇒ (i i): Let x̃ ∈ ε(P, ρ), that is x̃ T P x̃ ≤ ρ. By using (8.24), one obtains
(x + ξ̃ )T P(x + ξ̃ ) ≤ ρ, and this implies that x ∈ εnc(P, ρ). According to (i), x ∈
Lns(K ). By virtue of Lemma8.3, x̃ ∈ L (K̃ ).

The reciprocal is obvious. �

The following theorem gives sufficient conditions for the system (8.38) to be
asymptotically stable and equivalently the constrained system (8.34) to be convergent
toward a new point.

Theorem 8.2 If there exist matrix K ∈ R
m×n, and a symmetric positive definite

matrix P ∈ R
n×n, such that:

P(A + BK ) + (A + BK )T P ≺ 0, (8.54)

and

εnc(P, ρ) ⊂ Lns(K ), (8.55)

then the system defined by (8.34) with u = Kx + ω converges toward the equilibrium
point −ξ̃ , ∀xo ∈ εnc(P, ρ).
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Proof Assume that condition (8.55) holds true. For any initial condition x(0) ∈
εnc(P, ρ), according to Lemma(8.4), the inclusion ε(P, ρ) ⊂ L (K̃ ) holds true.
Hence, the saturated system (8.38)–(8.40) can be written as given by (8.41).

Consider the following Lyapunov function candidate V (x̃(t)):

V (x̃(t)) = x̃ T (t)Px̃(t) (8.56)

Compute its derivative:

V̇ (x̃(t)) = ˙̃xT Px̃ + x̃ T P ˙̃x = x̃ T (AT
cl P + PAcl)x̃ (8.57)

Remember that Acl = A + BK = A + B̃ K̃ . It is clear that if (8.54) is satisfied, then
it is a sufficient condition for the derivative (8.57) to be negative definite. Therefore,
the symmetrically constrained closed-loop system is asymptotically stable [9]. Con-
sequently, the state of the original system (8.34) with the control law (8.35) converges
toward −ξ̃ . �

The previous result gives sufficient conditions for stabilizability for the closed-
loop system. Below, we reformulate these conditions in the form of LMIs that allow
to deduce the controller gain.

Corollary 8.2 If there exist matrices Y and X = XT � 0 such that the following
LMIs are satisfied:

[AX + BY ]sym ≺ 0, (8.58)

and
[

μi Yi
X

]

� 0 , i = 1, . . . ,m, (8.59)

then the system (8.34) with the control law (8.35) converges toward −ξ̃ , ∀xo ∈
εnc(P, ρ), with μi = (αi+βi )

2

4ρ , Yi is the i th row of matrix Y . Further, the controller
gain that stabilizes the system is given by:

K = Y X−1 with P = X−1, (8.60)

Proof The sufficient condition of asymptotic stability of the symmetrical constrained
system is given by (8.54). Multiplying the left and right sides by P−1 = X leads to:

X (A + BK )T + (A + BK )X ≺ 0.
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Using the change of variables Y = K X , it is easy to obtain the LMI (8.58) which
is equivalent to the sufficient condition of the asymptotic stability (8.54), for the
closed-loop system (8.38), for any initial state within the set ε(P, ρ). Consequently,
the state of the original system (8.34) with the control law (8.35) converges toward
−ξ̃ .

Furthermore, by virtue of Lemma8.4, the inclusion (8.55) is equivalent to the
inclusion for symmetrical sets ε(P, ρ) ⊂ L (K̃ ). Hence, using [7] one can write
ρ K̃i P−1 K̃ T

i ≤ 1, i = 1, . . . ,m. According to (8.42), one has K = Λ+Γ
2 K̃ . That is,

K̃ = (Λ+Γ
2 )−1K and therefore, K̃i = (

αi+βi

2 )−1Ki , i = 1, . . . ,m, matrix Λ+Γ
2 being

diagonal. This leads to (K )i X (K )Ti ≤ μi , i = 1, . . . ,m, with (1/μi ) = ρ(
αi+βi

2 )−2.
Develop now equivalently as follows:

(K X)i X−1(K X)Ti ≤ μi , i = 1, . . . ,m, which is equivalent to Yi X−1Y T
i ≤ μi ,

i = 1, . . . ,m. Using the Schur complement, we obtain the LMIs (8.59). �

Comments 8.1 The derived LMIs (8.58)–(8.59) deal effectively with unsymmetrical
saturation. This result is obtained for the first time in [5] reducing considerably
the conservatism of the results of [9]. However, the advantage of this approach
enabling one to use LMIs for unsymmetrical constraints introduces an equilibrium
point different of the origin.

In the following example, we illustrate the obtained results.

Example 8.2 Consider the system governed by (8.34) with the following matrices:

A =
[
1 −0.5
1 3

]

; B =
[
1
2

]

;

we have n = 2, m = 1, and the constraints on the control are: α = 5, β = 10. The
change of variables given by (8.17) and the constant vector ξ̃ in (8.24) become:

B̃ =
[
7.5
15

]

; ξ̃ =
[−2.8571

−0.7143

]

The LMIs (8.58) and (8.59) are feasible. The solution obtained for ρ = 10 is:

X =
[
0.3535 0.2025
0.2025 0.2315

]

;
Y = [−0.3075 −0.504

] ;

and thus

K̃ = [
0.1008 −0.3785

]
, K = [

0.7562 −2.8386
]

In Fig. 8.3, we present the stability ellipsoid and some trajectories of the state
vector x . One can notice that all the trajectories converge to the equilibrium point
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Fig. 8.4 Ellipsoid of stability and some trajectories of the state vector x̃

given by −ξ̃ = [2.8571 0.7143]T . Further, it is worth noting that all the trajectories
remain inside the ellipsoid εnc(P, ρ). Figure8.4 shows the asymptotic stability of the
system (8.38) and some motions evolution inside the ellipsoid of stability ε(P, ρ)

from different initial conditions.
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8.4 Constrained Control for Continuous-Time Case
System: An Improved Technique

8.4.1 Problem Formulation

To overcome the assumption (8.2) and to use a new, less conservative, convex writing
of the saturated system, the following approach may be of interest. The saturated
studied system is given by (8.34). The expression of each component of the vector
Sat (u) can be described by (8.3). To stabilize the unsymmetrically saturated system,
a state feedback control of type:

u(t) = LK x(t) + Ko, (8.61)

is used.
The gain K has to stabilize the system, while the gains Ko, L play the role of sym-

metrizing the asymmetrical setLns(K ) induced in the state space by the constraints
and given as follows:

Lns(K ) = {
x ∈ R

n| − Γ e ≤ LK x + Ko ≤ Λe
}

(8.62)

where the diagonal matrices Λ and Γ are given by (8.6). The problem studied there-
after is to stabilize by state feedback control (8.61) the saturated system (8.34), (8.3).
It is a classical problem where the novelty is to handle unsymmetrical saturation on
the control in the frame work of LMIs.

The objective of thiswork is to design the gains K , L , Ko for the unsymmetrical
saturated controller.

8.4.2 Improved Saturation Technique

In this section, the cornerstone of developments allowing to transform the asym-
metrical problem to a symmetrical one is presented. Further, the main lemma of the
work [17] is recalled. This last enables to write a saturated system in closed loop, as
a convex combination of 2m linear systems:

Lemma 8.5 ([17]) For all z ∈ R
m and ν ∈ R

m̃, m̃ = m2m−1 such that |νi | ≤ 1, i =
1, . . . , m̃.:

sat (z) ∈ co{Dsz + D̂−
s ν}, s ∈ [1, η] (8.63)

where Ds are diagonal matrices with each element of the diagonal either 1 or 0,
Ds + D−

s = Im, η = 2m, and D̂−
s ∈ R

m×m̃ is defined by:
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D̂−
s = e fm (s) ⊗ D−

s , s ∈ [1, η] (8.64)

and e fm (s) ∈ R
1×2m−1

is the row vector with zeros except 1 in the position fm(s)which
is defined by:

fm(s) =
{
fm(s − 1) + 1, Ds + Dj �= Im, ∀ j ∈ [1, s]

fm( j), Ds + Dj = Im, ∃ j ∈ [1, s] (8.65)

The Lemma8.5 allows to rewrite the saturated control using an auxiliary con-
trol ν which satisfies |νi | ≤ 1. Hence, there exist scalars γs ≥ 0 (s = 1, ..., η) with∑η

s=1 γs = 1, such that:

sat (z(t)) =
η∑

s=1

γs(t)(Dsz(t) + D̂−
s ν(t)) (8.66)

The obtained closed-loop system becomes linear. On the other hand, for each compo-
nent of the control ui , one can make the change of variables as in (8.8), and with this
change, one can then rewrite the saturation of the control as in (8.9), where sats(wi)
is considered as the symmetrical non normalized saturation defined by (8.10).

A second change of variable is used as in (8.11), and let sat (zi ) stands for the
normalized symmetric saturation as in (8.12).

With the change of variables (8.8) and (8.11), one can rewrite ui as (8.13). Or in
matrix notation, the expression (8.13) can be written as:

u = Λ + Γ

2
z + Λ − Γ

2
e. (8.67)

With relation (8.13), we prove in lemma below that the expression of Sat (ui )
given by (8.3) is equivalent to sat (zi ) given by (8.12) in expression (8.15).

By introducing (8.15) in the state Eq. (8.34), the term BSat (u) can be developed
as follows:

BSat (u) = B(
Λ + Γ

2
)sat (z) + B(

Λ − Γ

2
)e

= B̃sat (z) + Ew, (8.68)

where matrices E and B̃ are given by:

B̃ = B(
Λ + Γ

2
), E = √

nB(
Λ − Γ

2
),w = e√

n
. (8.69)

With these notations, we can rewrite the state equation of the system as follows:

ẋ(t) = Ax(t) + B̃sat (z(t)) + Ew. (8.70)
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Note that wTw = 1. In order to use available results on saturated systems, the
obtained system (8.70), which is affine since w is known and constant, can be seen
as a saturated one with a bounded disturbance.

Let us use a state feedback control of the form:

z(t) = Kx(t). (8.71)

The link between control expression (8.4) and the one given by (8.67) is given by
Lemma8.2.

Define the following sets:

L (K ) = {
x ∈ R

n| |Kx |i ≤ 1, i = 1, . . . ,m
}

(8.72)

ε(P, ρ) = {
x ∈ R

n| xT Px ≤ ρ
}

(8.73)

Henceforth, for the stabilization problem, the system (8.70) is considered. Further,
the gain feedback we are looking for will be designed to stabilize this system.

Note that stabilizing this system (symmetrical saturated system), one has to design
a control using (8.66) with z = Kx and ν = Hx, H ∈ R

m̃×n the auxiliary control
with |Hi x | ≤ 1, Hi the i th rowofmatrix H . Thematrices K and H are to be designed.

The system equation with saturation in closed loop, using Lemma8.5, is then
written as follows:

ẋ(t) = Ax(t) + B̃
η∑

s=1

γs(t)(DsK + D̂−
s H)x(t) + Ew, (8.74)

or in the equivalent form:

ẋ(t) =
η∑

s=1

γs(t)A
cl
s x(t) + Ew = Acl x(t) + Ew, (8.75)

where the matrix in closed-loop Ac is given by:

Acl =
η∑

s=1

γs(t)A
cl
s

Acl
s = A + B̃(DsK + D̂−

s H). (8.76)

Notice that the set Lns(H) is defined by the same expression (8.36) of Lns(K ),
whileL (H) is defined by:

L (H) = {
x ∈ R

n| |Hx |i ≤ 1, i = 1, . . . , m̃
}

(8.77)
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8.4.3 LMI Constrained Control

The following theorem gives sufficient conditions for the system (8.74) to be strictly
invariant in the sense of the following definition.

Definition 8.1 ([14]) A set in Rn is said to be invariant if all the trajectories starting
from it will remain in it regardless of w.

An ellipsoid ε(P, ρ) is said to be strictly invariant if V̇ = 2xT P(Bsat (Fx) +
Ew) < 0 for allw such thatwTw ≤ 1 and all x ∈ ∂ε(P, ρ), the boundary of ε(P, ρ),
where V (x) = xT Px .

Theorem 8.3 If there exist matrices H ∈ R
m̃×n, K ∈ R

m×n, a symmetric positive
definite matrix P ∈ R

n×n, and positive scalars ρ, ς , such that:

(Acl
s )T P + PAcl

s + 1

ς
PEET P + ς

ρ
P ≺ 0, s = 1, . . . , η, (8.78)

and

ε(P, ρ) ⊂ L (H), (8.79)

where the matrix Acl
s is given by (8.76), then the set ε(P, ρ) is a strictly invariant set

for system (8.75).

Proof The proof follows the same reasoning as the one of [14] where the classical
convex writing of the saturation is replaced by the one given by Lemma 8.5. �

Similar result can be found in [16] where state constraints are also considered.
With the equivalentwriting of the unsymmetrically saturated system in closed loop

under symmetrical form developed above, we are able to derive sufficient conditions
of stabilizability by using LMIs. The previous result gives sufficient conditions for
stabilizability for the closed-loop system. Below, we reformulate these conditions in
the form of LMIs that allow to deduce the controller gain.

Corollary 8.3 : For positive scalars ρ, ς if there exist matrices Z ∈ R
m̃×n, Y ∈

R
m×n, and X = XT ∈ R

n×n, X � 0 such that the following LMIs are satisfied:

[AX + B(DsY + D̂−
s Z)]sym + ς

ρ
X + 1

ς
EET ≺ 0, s = 1, . . . , η, (8.80)

[
μ Zi

∗ X

]

� 0, i = 1, . . . , m̃, (8.81)

with matrix Ds stands for a diagonal matrix with component either Λs+βs

2 or 0,

Ds + D−
s = Λ+Γ

2 and D̂−
s is defined by:
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D̂−
s = e fm (s) ⊗ D−

s , s ∈ [1, η], (8.82)

then the set ε(P, ρ) is a strictly invariant set for system (8.75), with μ = 1/ρ, Zi is
the i th line of matrix Z. The controller gains are given by:

K = Y X−1 and H = Z X−1, with P = X−1. (8.83)

Proof The sufficient condition of invariance of the set ε(P, ρ) with respect to the
saturated system is given by (8.78). Using the Schur complement, one obtains

(Acl
s )T P + PAcl

s + ς

ρ
P + 1

ς
PEET P ≺ 0, s = 1, . . . , η. (8.84)

Multiplying the left and right sides of inequality (8.84) by X = P−1 leads to
LMIs (8.80) while replacing B̃D by BD and using the change of variables Y =
K X−1, Z = HX−1. These conditions are equivalent to the sufficient conditions of
asymptotic stability (8.78), for the closed-loop system, for any initial state within the
set ε(P, ρ).

Furthermore, the inclusion (8.79) is equivalent to ρHi P−1HT
i ≤ 1, i = 1, . . . , m̃.

Develop equivalently as follows:
ρ(HX)i X−1(HX)Ti ≤ 1, i = 1, . . . , m̃, which is equivalent to ρZi X−1ZT

i ≤ 1,
i = 1, . . . , m̃. Using the Schur complement, we obtain the LMIs (8.81). �

Instead of using Lemma8.5, one can use the convex writing of saturation given
in [10, 11, 13],

sat (z) ∈ co{Dsz + D−
s ν}, s ∈ [1, η] (8.85)

The closed-loop system becomes:

ẋ(t) =
η∑

s=1

γs(t)A
cl
s x(t) + Ew(t) = Acl x(t) + Ew(t), (8.86)

where the matrix in closed-loop Acl
s is given by (8.76). In this case, Corollary8.3 can

be re-enunciated as:

Corollary 8.4 : For positive scalars ρ, ς if there exist matrices Z ∈ R
m×n, Y ∈

R
m×n, and X = XT ∈ R

n×n, X � 0 such that the following LMIs are satisfied:

[AX + B(DsY + D−
s Z)]sym + ς

ρ
X + 1

ς
EET ≺ 0, s = 1, . . . , η, (8.87)

[
μ Zi

∗ X

]

� 0, i = 1, . . . ,m, (8.88)
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then the set ε(P, ρ) is a strictly invariant set for system (8.75), with μ = 1/ρ, Zi is
the i th line of matrix Z. The controller gains that stabilize the system are as (8.83).

Comments 8.2

• It is worth noting that the convex expression (8.85) is more conservative than
expression (8.63) for m > 1, according to [17]. In order to compare results
obtained upon both expressions, Corollaries8.3 and 8.4 are presented and tested
in the example below.

• These LMIs are established by using the symmetric control z. However, by replac-
ing matrix B̃ and E by their expressions with Λi and Γi , one take account of
the asymmetry of the saturation on the control. Consequently, the derived LMIs
(8.80)–(8.81) deal in reality with unsymmetrical saturation. This result is obtained
for the first time in [5] reducing considerably the conservatismof the results of [17].

• The improved approach is presented for continuous-time systems only. The exten-
sion to the discrete-time systems can be easily obtained replacing the stability
conditions by the discrete-time ones. The development concerning the saturation
is being the same for both cases.

In the following example, we illustrate the obtained results.

Example 8.3 : Consider the system governed by (8.34) with the following matrices:

A =
[−1 0.7

1 1

]

; B =
[

1 0.2
−0.3 0.5

]

(8.89)

For this example, we have n = 2, m = 2 and the control bounds are: α1 = 5,
β1 = 10, α2 = 10, and β2 = 5.
It follows:

B̃ =
[

7.5 1.5
−2.25 3.75

]

,

E =
[−3.5355 −0.7071

−1.0607 1.7678

]

We solve LMIs (8.80) and (8.81). The obtained solutions in this case for ρ = 1
and ς = 1 are:

X =
[

401.3375 −161.6653
−161.6653 67.4476

]

;

Y =
[

22.9276 −20.2454
−11.8235 −35.2446

]

;

Z =

⎡

⎢
⎢
⎣

5.2535 −3.0268
−5.6885 0.9464
0.0496 −0.0218

−0.3650 0.1467

⎤

⎥
⎥
⎦ ;
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Fig. 8.5 Trajectories of the state vector x converging to the equilibrium point xe

and thus gains K and H for the closed-loop system, with a nonsymmetrical saturated
control, are:

K =
[−1.8494 −4.7330

−6.9574 −17.1987

]

;

H =

⎡

⎢
⎢
⎣

−0.1446 −0.3915
−0.2471 −0.5782
−0.0002 −0.0008
−0.0010 −0.0001

⎤

⎥
⎥
⎦ .

Figure8.5 shows some trajectories of the state vector x with different initial states
xo. If xo ∈ εnc(P, ρ), then the trajectory converges surely to the equilibrium point
given by xe = −(A + B̃K )−1Ew which is closed to the origin due to the presence
of the pseudo-permanent perturbation w. Figure8.6 represents the inclusion of the
ellipsoid set ε(P, ρ) inside the polyhedral set of saturationL (H).

Example 8.4 In order to compare between Corollaries8.3 and 8.4, system (8.89) is
slightly modified as follows:

A =
[
a 0.7
1 1

]

; B =
[

b 0.2
−0.3 0.5

]

The feasibility of LMIs (8.87)–(8.88) and (8.80)–(8.81) is tested for a, b varying
from−1 to 2 by a stepof 0.1.The result of comparison is plotted inFig. 8.7. Feasibility
cases of (8.87)–(8.88) are indicated with ′+′, while feasibility cases of (8.80)–(8.81)
are indicated with ′◦′, showing the less conservatism of Corollary8.3 based on the
approach of [17].
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Fig. 8.6 Inclusion ε(P, ρ) ⊂ L (H) with the equilibrium point xe
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Fig. 8.7 Feasibility comparison

8.5 Conclusion

In this chapter, the regulator problem for linear ( discrete-time or continuous-time)
systems with asymmetric saturations on the control is developed in terms of an
LMI problem. This work allows the results of [12], easily written under LMIs, to
be extended to systems with asymmetric saturations formulated also under LMIs
form. This was the main contribution of this chapter. The proposed approach first
needs an assumption that the matrix system must be non-singular. This may be seen
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as a conservative assumption. However, a second enhanced approach is proposed to
remove the restrictive assumption and leading tomore general result for asymmetrical
constraints in framework of LMIs.

Besides, these results extend those of the same authors developing unsaturating
controllers working inside a region of linear behavior [1]. Numerical examples are
studied to illustrate the proposed methodology and to show that the less conservative
results are the ones based on the approach of [17].
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Chapter 9
Delay Systems with Saturating Control

9.1 Introduction

It is clear that both input saturation and time delay can be encountered simultaneously
in practical systems. In this case, the situation becomes very complicated. Many
approaches were proposed to deal with this problem [3, 7, 14, 15, 18]. In the first
part of this chapter, the same approach, of writing the saturated system [8, 10] as
convex combination of linear delay systems, is applied. Partitioning of the delay
interval is introduced in the Lyapunov–Krasovskii functional. The obtained LMIs
are less conservative as the delay interval is partitioned onto r sub intervals [10]
introducing more variables for the solution. As shown in [1], using the partition
of the delay interval, some unfeasible problems become feasible. Further, a set of
initial conditions that ensures the asymptotic stability of the closed-loop system is
easily obtained from the solution to the proposed LMIs. Furthermore, the problem of
guaranteed stability rate decay for the closed-loop system is also solved. Examples
are presented to show the application and the less conservatism of the obtained
conditions.

In the second part, the bound on the values that the delay can have is taken into
account for stability and stabilizability conditions. The results obtained in the former
part are delay independent and may be conservative when the bounds of the delay
are known. Here, an improved delay dependent criteria [16] is extended to the delay
saturating systems. Improved delay dependent criteria is first presented and then
extended to the case of stabilizability condition to derive the controller [11]. Second,
this condition is extended to saturating delay systems. Results are derived under
LMI formalism to enable the synthesis of stabilizing memory-less state feedback.
The obtained LMIs seem less conservative as the delay bound information is used.
An illustrative example is presented and compared to previous results to show the
effectiveness of the approach.

© Springer International Publishing AG 2018
A. Benzaouia et al., Saturated Control of Linear Systems, Studies in Systems,
Decision and Control 124, https://doi.org/10.1007/978-3-319-65990-9_9
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9.2 Problem Statement

Let us consider the time-delay linear system with saturating control given by:

{
ẋ(t) = Ax(t) + Aτ x(t − τ) + Bsat (u(t))
x(t) = Φ(t) for t ∈ [−τ, 0)

(9.1)

where x(t) is the state of the system, u(t) the control, τ the delay. The function
Φ(t) ∈ Cn,τ . The saturation is the standard non-linearity as:

sat (ui (t)) = sign(ui (t)) min(1, |ui (t)|) (9.2)

Assume that one uses the memoryless state feedback given by:

u(t) = F x(t) (9.3)

the closed-loop system becomes:

{
ẋ(t) = Ax(t) + Aτ x(t − τ) + Bsat (Fx(t))
x(t) = Φ(t) for t ∈ [−τ, 0),Φ(t) ∈ Cn,τ

(9.4)

For a given positive definite matrix P , we define the ellipsoid set:

ε(P, ρ) = {x ∈ R
n/xT Px ≤ ρ} (9.5)

The set of admissible controls where the linear behavior of the closed-loop system
is guaranteed is given by L (F):

L (F) = {x ∈ R
n/|Fi x | < 1} (9.6)

where Fi stands for the i th row of matrix F .
The domain of attraction to the origin in this case is given by all initial condition

functions ψ such that:

S = {ψ ∈ Cn,τ / the motion x(t, ψ) → 0 for t → ∞} (9.7)

Pb 1: For a given time-delay system (9.1), find memoryless state feedback F
and a domain D of safe initial condition included in the domain of attraction of the
system of the closed-loop system (9.4) such that asymptotic stability is guaranteed.
Further, the problem of guaranteed rate decay α for the closed-loop system in the
sense of definition given in (and recalled thereafter) [12] is also studied.

Pb 2: When the information about the value of the delay τ is available, the same
problem is addressed with delay dependent conditions.
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9.3 Partitioning for Stabilizability of Time-Delay Systems

For a vector v ∈ R
m such that |v| < 1, the saturation of vector u ∈ R

m can be
written as a convex combination of two terms as given in Lemma 1.3 and hence, the
closed-loop system can be re-written as (η = 2m):

{
ẋ(t) = Ax(t) + Aτ x(t − τ) + B

η∑
i=1 γi (t)(Di F + D−

i H)x(t)
x(t) = Φ(t) for t ∈ [−τ, 0), Φ(t) ∈ Cn,τ

(9.8)

this enables one to recall the following sufficient conditions of stabilizability.

Theorem 9.1 ([2]) Let the gain feedback F be given, for given P � 0, Q � 0, and
ρ > 0 consider the set

Lv(ρ) = {φ ∈ Cn,τ /φ(0)T Pφ(0) +
∫ 0

−τ

φ(σ )T Qφ(σ)dσ ≤ ρ} (9.9)

if there exists a matrix H ∈ R
m×n such that ε(P, ρ) ⊂ L (H) and:

[
(Acl

i )T P + P(Acl
i ) + Q PAτ

∗ −Q

]
≺ 0, (9.10)

where: Acl
i = A + B(Di F + D−

i H), for i = 1, ..., η, then the solution x(t) ≡ 0 is
asymptotically stable and the set Lv(ρ) is an invariant set inside the domain of
attraction.

It is worth to note here that the Lyapunov–Krasovskii approach is used and the
proposed functional is given by:

V (x) = xT (t) P x(t) +
∫ t

t−τ

x(σ )T Q x(σ ) dσ (9.11)

In what follows, less conservative delay independent stability condition based on
partitioning the delay interval onto r equal sub intervals is proposed. In fact, for each
interval a matrix Qr can be found for the LMI (9.10) instead of using one constant
matrix Q for all the delay interval which may be restrictive [1].

Proposition 9.1 Let the gain feedback F be given, For given P � 0, Qk � 0, k =
1, . . . r and ρ > 0, if there exists a matrix H ∈ R

m×n such that:

⎡
⎣ (Acl

i )T P + P(Acl
i ) + Qr 0 PAτ

0 Q̄ 0
∗ 0 −Q1

⎤
⎦ ≺ 0 (9.12)

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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ε(P, ρ) ⊂ L (H) (9.13)

where:

Q̄ =

⎡
⎢⎢⎢⎣
Q1 − Q2 0 . . . 0

0 Q2 − Q3 0 . . . 0
. . .

0 . . . 0 Qr−1 − Qr

⎤
⎥⎥⎥⎦ ,

and r is the number of equal partitions of the interval [t − τ, t) then the solution
x(t) ≡ 0 is asymptotically stable and the set:

L p
v (ρ) = {φ ∈ Cn,τ /φ(0)T Pφ(0) +

r∑
k=1

∫ −τ+k τ
r

−τ+(k−1) τ
r

φ(σ)T Qkφ(σ)dσ ≤ ρ} (9.14)

is an invariant set inside the domain of attraction.

Proof For a state vector x ∈ ε(P, ρ) assuming that ε(P, ρ) ⊂ L (H), it is possible
to write

sat (Fx(t)) =
η∑

i=1

γi (t)(Di F + D−
i H)x(t). (9.15)

Let

V (x) = xT (t) P x(t) +
∫ t

t−τ

x(σ )T Q x(σ ) dσ (9.16)

be a candidate Lyapunov–Krasovskii function, using the partitioning of the interval
[t − τ, t) such that matrix Q can be considered constant at each partition, Q =
Qk, k = 1, ..., r for the interval k, noting τk = t − τ + k τ

r , one can write:

V (x) = xT (t) P x(t) +
r∑

k=1

∫ τk

τk−1

x(σ )T Qk x(σ ) dσ (9.17)

First, we note that there exists non decreasing functions ε1 and ε2 such that

ε1 ‖xt (0)‖ ≤ V (x(t)) ≤ ε2 ‖xt‖ (9.18)

where ε1 = λmin(P) and ε2 = λmax (P) + τ max
k=1,...,r

λmax (Qk). On the other hand, the

derivative of this functional along the trajectories of the system is as follows:
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V̇ (x(t)) = ẋ(t)T Px(t) + x(t)T Pẋ(t) +
r∑

k=1

[x(τk)T Qkx(τk) − x(τk−1)
T Qkx(τk−1)]

= x(t)T (AT +
⎡
⎣B

η∑
i=1

γi (t)(Di F + D−
i H)

⎤
⎦
T

)Px(t) + x(t − τ)T ATτ Px(t)

+ x(t)T P(A +
⎡
⎣B

η∑
i=1

γi (t)(Di F + D−
i H)

⎤
⎦)x(t) + x(t)T P Aτ x(t − τ)

+ x(t)T Qr x(t) − x(t − τ)T Q1x(t − τ) + x(τ1)
T Q1x(τ1) − x(τr−1)

T Qr x(τr−1)

+
r−1∑
k=2

x(τk)
T Qkx(τk) − x(τk−1)

T Qkx(τk−1)

Noting Ψ (t)T = [
x(t)T x(τ1)T · · · x(τr−1)

T
]
and Γi = (Acl

i )T P + P(Acl
i ), the

derivative of the Lyapunov–Krasovskii functional candidate becomes:

V̇ (x(t)) = Ψ (t)T

⎡
⎣

∑η

i=1 γi (t)Γi + Qr 0 PAτ

0 Q̄ 0
∗ 0 −Q1

⎤
⎦Ψ (t)

= Ψ (t)T
η∑

i=1

γi (t)

⎡
⎣Γi + Qr 0 PAτ

0 Q̄ 0
∗ 0 −Q1

⎤
⎦Ψ (t)

then from (9.12) it is easy to conclude that V̇ (x(t)) < 0. Note also that one canwrite:

V̇ < −min
i

λmin(

⎡
⎣Γi + Qr 0 PAτ

0 Q̄ 0
∗ 0 −Q1

⎤
⎦) ‖ Ψ ‖2 (9.19)

hence, by Krasovskii stability theorem [6], the set L p
v (ρ) is given by (9.14) is an

invariant set inside the set of attraction of the system. �

Example 9.1 The following example is borrowed from [1] to highlight the impor-
tance of partitioning to solve some unfeasible problems. In fact, the obtained con-
ditions with partitioning introduces further degree of freedom that remove some
conservativeness of the previous conditions. Consider the delay autonomous system,
with a delay τ = 1 given by:

ẋ(t) = Ax(t) + Aτ x(t − τ)

where

A =
[−2.1 0

0 −0.91

]
, Aτ =

[−1 0
−1 −1.1

]
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The LMI of Theorem9.1 is not feasible. Hence, one can not conclude the stability
of the delay system. However, if one uses the partitioning with r = 2 by solving the
LMI (9.12) of Proposition9.1, the following solution can be found:

X =
[

9.2027 −1.9022
−1.9022 9.5772

]
,

Q1 =
[
14.4942 −2.1471
−2.1471 6.5365

]
and Q2 =

[
28.9205 −0.7157
−0.7157 26.2679

]
.

Finally, one can conclude that the autonomous system with delay is stable.

The previous propositions are useful for stability analysis, one may be also inter-
ested in synthesis of such controllers. The synthesis extensions of these results are
given as follows:

Proposition 9.2 ([11]) If there exist matrices X = XT � 0, S = ST � 0, Y , Z, μ

solutions of the following LMIs for i = 1, ..., η, and j = 1, ...,m,

⎡
⎣ (AX + B(DiY + D−

i Z))sym + S Aτ X

∗ −S

⎤
⎦ ≺ 0 (9.20)

[
μ Z j

∗ X

]
� 0, (9.21)

then the state feedback F = Y X−1, with matrix H = Z X−1 and μ = 1/ρ, is a
stabilizing state feedback for the delayed saturating system (9.4) and the set Lv(ρ)

is an invariant set inside the domain of attraction.

Proof The proof will be given in the case of the partitioning below which is more
general. �

Byusing the partitioning the delay interval, the solutions are givenby the following
result:

Proposition 9.3 ([11]) If there exist matrices X = XT � 0, Sk = STk � 0, k =
1, . . . , r , Y , Z, andμ solutions of the following LMIs for i = 1, ..., η, j = 1, ...,m,

⎡
⎣ (AX + B(DiY + D−

i Z))sym + Sr 0 Aτ X
0 S̄ 0
∗ 0 −S1

⎤
⎦ ≺ 0 (9.22)
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[
μ Z j

∗ X

]
� 0, (9.23)

where:

S̄ =

⎡
⎢⎢⎢⎣
S1 − S2 0 . . . 0

0 S2 − S3 0
. . .

0 0 Sr−1 − Sr

⎤
⎥⎥⎥⎦ ,

then the state feedback F = Y X−1, with matrix H = Z X−1 and μ = 1/ρ, is a
stabilizing state feedback for the delayed saturating system (9.4) and the setL p

v (ρ)

is an invariant set inside the domain of attraction.

Proof TheLMI (9.23) guarantees the inclusion ε(P, ρ) ⊂ L (H), hence thewriting
of the saturating system as a convex combination of η delay systems (9.8) is valid.
Assume that matrices X, Y, Z , Sk, k = 1, ..., r are the feasible solutions to the
LMIs (9.22) and (9.23). Post and pre-multiply the LMI (9.22) by diag(X−1) and
noting F = Y X−1, H = Z X−1, P = ρX−1, Qk = (1/ρ)PSk P, k = 1, ..., r , leads
to theLMI (9.10), for i = 1, ..., η. Hence, usingProposition9.1, the solution x(t) ≡ 0
is asymptotically stable for all initial condition in the setL p

v (ρ). �

9.3.1 α-Stabilizability

As claimed above, the problem of α-stability is also studied. This problem can be
viewed in the sense of that the closed-loop time-delay system without saturation is
α-stable and the saturating closed-loop system is asymptotically stable for all initial
condition in Lv(ρ).

Let us first define the α-stability:

Definition 9.1 [12] The closed-loop time-delay system (9.4) is α-stable or stable
with a rate decay of α if the system

ż(t) = (A + BF + 2αIn)z(t) + eατ Aτ z(t − τ) (9.24)

is stable.

Using this definition for the saturating delay systems, the Proposition 9.3 becomes
as follows:

Corollary 9.1 If there exist matrices X = XT � 0, Sk = STk � 0, k = 1, ..., r , Y ,
Z and μ = 1/ρ solutions of the following LMIs for i = 1, ..., η, j = 1, ...,m,
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⎡
⎣ (AX + B(DiY + D−

i Z))sym + 2αIn + Sr 0 eατ Aτ X
∗ S̄ 0
∗ 0 −S1

⎤
⎦ ≺ 0 (9.25)

[
μ Z j

∗ X

]
� 0, (9.26)

where

S̄ =

⎡
⎢⎢⎢⎣
S1 − S2 0 . . . 0

0 S2 − S3 0
. . .

0 0 Sr−1 − Sr

⎤
⎥⎥⎥⎦ ,

then the state feedback F = Y X−1, with matrix H = Z X−1 is a stabilizing state
feedback with a rate decay α for the delay saturating system (9.4) for all initial
condition in L p

v (ρ).

Proof The proof follows the same lines as the proof of Proposition9.3 applied to the
system (9.24). �

Example 9.2 Consider now the closed-loop system given by (9.1), with ρ = 1, α =
0.3 and a delay of τ = 10, where:

A =
[

1 1.5
0.3 −2

]
, Aτ =

[
0 −1
0 0

]
, B =

[
10
1

]

umax = 15 = T , so matrix B may be changed accordingly with B∗ = BT =
[150 15]T and u∗(t) = T−1u(t). LMIs of Proposition9.2 (μ = 1/ρ) are not fea-
sible. However, if one uses a partitioning with r = 9 and uses LMIs of Proposition
9.3, solution can be found as follows:

F = [−0.0107 −2.5617
]T

Figures9.1 and 9.2, present the state component evolution in time. Whereas Fig. 9.3
shows the control evolution in time.

It can be seen from the examples above, in this first part of the chapter, that
partitioning the delay interval in the writing of the Lyapunov–Krasovskii functional
leads to a less conservative conditions in both cases of stability or stabilizability of
saturating delay systems. Further, to ensure a rate decay for the closed-loop delay
system, partitioning may also be easily used to design stabilizing state feedback that
guarantees the desired performance of a given rate decay.
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9.4 Delay Dependent Stabilizability Condition

In this second part, the information about the bound on the values that the delay
may take can be used. In fact, in some cases, a bound or a maximum value on the
delay may be known in advance. In such cases, using an independent delay condition
is conservative in the sense that the available information is missed and not used.
Using this information leads to delay dependent conditions. In what follows, a delay
dependent criterion is worked out to obtain a stabilizing delay dependent condition
for the synthesis.

9.4.1 Improved Delay Dependent Condition

An improved delay dependent stability criteria for delay systems presented in [16]
is recalled. As pointed out by the authors, this criteria is less conservative than some
previousworks.Hence, it isworth extending such conditions to obtain a stabilizability
condition and also to the case of the saturating system.

Let us consider the autonomous delay system without saturation given by:

{
ẋ(t) = Ax(t) + Aτ x(t − τ)

x(t) = Φ(t) for t ∈ [−τ, 0)
(9.27)

Theorem 9.2 ([16]) The time-delay system (9.27) is asymptotically stable for any
delay τ satisfying 0 < τ ≤ τ̄ , if there exist matrices P � 0, Q � 0, S � 0, R and W
such that the following LMI holds true:

⎡
⎢⎢⎣

(PA + R)sym + Q PAτ − R + WT −τ̄ R τ̄ AT S
∗ −Q − W − WT −τ̄W τ̄ AT

τ S
∗ ∗ −τ̄ S 0
∗ ∗ ∗ −τ̄ S

⎤
⎥⎥⎦ ≺ 0 (9.28)

As claimed, the delay dependent stability criteria presented above is only useful for
analysis. In what follows, it is extended to controlled systems to enable the syn-
thesis of such stabilizing controllers. Consider the controlled delay system without
saturation

{
ẋ(t) = Ax(t) + Aτ x(t − τ) + Bu(t)
x(t) = Φ(t) for t ∈ [−τ, 0)

(9.29)

Proposition 9.4 If there exist matrices X � 0, Q̄ � 0, Σ � 0, R̄ and W̄ such that
the LMI below holds true, then the time-delay system (9.29) is asymptotically stable
for any delay τ satisfying 0 < τ ≤ τ̄ ,
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⎡
⎢⎢⎣

(AX + BY + R̄)sym + Q̄ Aτ X − R̄ + W̄ T −τ̄ R̄ ∗
∗ −Q̄ − W̄ − W̄ T −τ̄ W̄ τ̄ X AT

τ

∗ ∗ −2τ̄ X + τ̄Σ 0
τ̄ AX + τ̄ BY ∗ ∗ −τ̄Σ

⎤
⎥⎥⎦ ≺ 0 (9.30)

Furthermore, the controller is given by F = Y X−1.

Proof Using amemoryless state feedback u(t) = Fx(t) and replacing A by A + BF
in (9.27), the closed-loop system becomes an autonomous system. Furthermore,
the asymptotic stability condition is true if one replaces A by A + BF in (9.28).
Noting X = P−1, R̄ = XRX , W̄ = XW X , Q̄ = XQX ,Σ = S−1 and post and pre-
multiplying by diag{X, X, X, S−1} leads to the following LMI:

⎡
⎢⎢⎣

(AX + BY + R̄)sym + Q̄ Aτ X − R̄ + W̄ T −τ̄ R̄ ∗
∗ −Q̄ − W̄ − W̄ T −τ̄ W̄ τ̄ X AT

τ

∗ ∗ −τ̄ XSX 0
τ̄ AX + τ̄ BY ∗ ∗ −τ̄Σ

⎤
⎥⎥⎦ ≺ 0

bearing in mind that the following inequality is true

−XSX  −2X + S−1

leads to the LMI (9.30). �

Using the convexity property one may write (9.8) as follows:

⎧⎨
⎩
ẋ(t) = ∑η

i=1 γi (t)(A + B(Di F + D−
i H))x(t) + Aτ x(t − τ)

x(t) = Φ(t) for t ∈ [−τ, 0)
(9.31)

9.4.2 Delay Dependent Condition for Saturating Systems

The stability analysis by the criteria given is firstly extended to controlled systems and
a stabilizability condition is derived. Hence, the writing of the saturated delay system
as a convex combination of some delay systems enables the improved stabilizability
condition established below to be extended to the case of saturating delay systems.
These conditions are obtained in LMI form and can be easily solved using the existing
toolboxes software of the LMI environment.

Taking into account the saturating term at the input of the delay system, the
following proposition may be given:

Proposition 9.5 If there exist matrices X � 0, Q̄ � 0, Σ � 0, R̄ and W̄ such that
for i = 1, . . . , η, and j = 1, . . . ,m
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⎡
⎢⎢⎣

Πi Aτ X − R̄ + W̄ T −τ̄ R̄ τ̄ X AT + τ̄Y T Di B
T + τ̄ ZT D−

i BT

∗ −Q̄ − W̄ − W̄ T −τ̄ W̄ τ̄ X ATτ
∗ ∗ −2τ̄ X + τ̄Σ 0
∗ ∗ ∗ −τ̄Σ

⎤
⎥⎥⎦ ≺ 0 (9.32)

[
1 Z j

∗ X

]
� 0, (9.33)

where

Πi = (AX + R̄ + BDiY + BD−
i Z)sym + Q̄,

then the time-delay system (9.29) is delay dependent asymptotically stable for any
delay τ satisfying 0 < τ ≤ τ̄ . Further the controller is given by F = Y X−1. Fur-
thermore, the set Lv(ρ) is invariant inside the set of attraction of the system.

Proof First, let us note Z = HX−1 and consider as in [16], the Lyapunov–Krasovskii
functional given by:

V (xt ) = V1(x(t)) + V2(x(t)) + V3(x(t)) (9.34)

V1(xt ) = x(t)T Px(t),

V2(xt ) =
∫ 0

−τ

∫ t

t+β

ẋ(σ )T Sẋ(σ )dσdβ

V3(xt ) =
∫ t

t−τ

x(σ )T Qx(σ )dσ.

Define Lv(ρ) as:

Lv(ρ) = { φ ∈ Cn,τ / V (φ(t)) ≤ ρ}. (9.35)

Along same lines as in [16], it follows that:

V̇ (xt ) = 1

τ

η∑
i=1

γi (t)
∫ t

t−τ

ξ(t, σ )TΛiξ(t, σ )dσ (9.36)

where ξ(t, σ ) = [x(t)T x(t − τ)T ẋ(σ )T ]T and

Λi =

⎡
⎢⎢⎣

Γi Aτ X − R̄ + W̄ T −τ̄ R̄ τ̄ X AT + τ̄Y T Di B
T + τ̄ ZT D−

i BT

∗ −Q̄ − W̄ − W̄ T −τ̄ W̄ τ̄ X ATτ
∗ ∗ −2τ̄ X + τ̄ S 0
∗ ∗ ∗ −τ̄ S

⎤
⎥⎥⎦ (9.37)
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where:

Γi = (AX + BDiY + BD−
i Z + R̄)sym + τ̄ AT SA + Q̄.

Using the Lyapunov–Krasovskii Theorem [9], for all xt ∈ Lv(ρ), one has to prove
that there exist continuous positive non decreasing scalar functions ε1, ε2, and ε3
such that:

ε1(‖xt (0)‖ ≤ V (xt ) ≤ ε2(‖xt‖c)
V̇ (xt ) ≤ −ε3(‖xt (0)‖);

for the proposed function V (xt ) given by (9.34), one can write

ε1 ‖xt (0)‖2 ≤ V (xt ) ≤ ε2 ‖xt‖2c
where:

ε1 = λmin(P)

ε2 = λmax (P) + τλmax (Q) + (τ2/2)( max
i=1,...η

∥∥∥A + BDiY + BD−
i Z

∥∥∥ + ‖Aτ ‖)λmax (S).

On the other hand, from (9.36), it is possible to write that:

V̇ (xt ) ≤ (− min
i=1,...,η

(λmin(−Λi ))) ‖xt‖2 . (9.38)

�

Example 9.3 • nonsaturating input case:
Consider the nonsaturating input delay system given by

A =
[
0 0
0 1

]
; Aτ =

[−1 −1
0 −0.9

]
; B =

[
0
1

]
,

when considering the nonsaturating case, applying Proposition9.4 leads to a less
conservative bound delay τ̄ = 1.7 compared to some previous works. Delay bounds
together with the stabilizing state feedback are summarized in Table9.1. The solution
of LMI (9.30) for nonsaturating input delay system gives the following results:

Table 9.1 Comparative table

Method τ̄ F

[5] 1.4 not given

[4] 1.5 [−58.3 − 294.9]

Proposition9.4 1.7 [−0.2991 − 2.1502]
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X =
[

518.2308 −126.6460
−126.6460 40.2598

]
, Σ =

[
346.6682 −84.6458
−84.6458 39.1424

]
,

Q̄ =
[
390.0560 −95.2633
−95.2633 34.1351

]
, R̄ =

[−402.5896 98.4295
98.4029 −24.1430

]
,

W̄ =
[
403.0770 −98.5495
−98.5460 24.1784

]
,

Y = [
117.3107 −48.6869

]
and F = [−0.2991 −2.1502

]
.

Figures9.4 and9.5present, respectively, state and control evolution for non-saturating
input system with initial conditions xo = [−5 5]T and delay τ = 1.65s.
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• Saturating input case:

Let us now consider the saturating input delay system given by (9.31) taken from
[13] where we consider no perturbation and a control bound umax = 15, where

A =
[−0.2 0

0 1

]
; Aτ =

[−1 0
0 −1

]
; B =

[
0
1

]
.

The non unity of the control limitation is easily accommodated by taking:

Bn =
[
0
15

]

For delays satisfying 0 < τ < 1.57s, that is τ̄ = 1.57s, LMIs (9.32) and (9.33) are
found feasible, and this leads to the following data:

X =
[
4.9800 0

0 5.9013

]
, Q̄ =

[
4.9247 0

0 5.6226

]
,

S̄ =
[
4.7486 0

0 8.8124

]
, R̄ =

[−3.3277 0
0 −1.5515

]
;

W̄ =
[
3.2783 0

0 1.5985

]
;

the two matrices Y and Z are, respectively, given by:

Y = [
0 −0.6689

]
, Z = [

0 −0.6682
]

hence the stabilizing memoryless state feedback is given by:

F = [
0 −0.1133

]
.

The figures below show the evolution of the saturating input and the states versus
time, respectively, on Figs. 9.6, 9.7 and 9.8. Figure9.8 is reserved to the trajectory of
the system inside the setL (H) and the ellipsoidal set ε(X, 1).

9.5 Conclusion

The elaboration of stabilizability conditions for time-delay saturating actuators sys-
tems are studied. Hence, LMIs are derived enabling to design stabilizing state feed-
back for such systems. First, partition of the delay interval is introduced. This gives
more degree of freedom to overcome some conservativeness of previous conditions
in former works in delay independent cases. In fact, partitioning the time-delay inter-
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val for the Lyapunov functional renders some unfeasible problems feasible as stated
in [1] and as presented here for two examples. Further, the issue of introducing a
rate decay for stability, in closed-loop, is easily deduced and also written into LMI
form. On the other hand, and as a second part, a delay dependent stability criteria is
worked out to derive delay dependent stabilizability conditions for autonomous sys-
tems without and with saturating input. Further, the case of the non-saturating delay
systems is compared to some previous results. The conditions enabling synthesis of
stabilizing state feedback for such systems are given under LMI formalism. Each
part is concluded with illustrative examples that show the effectiveness of the pro-
posed methods. A parametric Lyapunov equation approach can also be used to study
stabilization of linear systems with input delay and saturation [17]. Other extensions
exist to solve the problem of stabilization of linear systems with distributed input
delay and input saturation [19].
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Chapter 10
Stabilization of 2D Continuous Systems
with Multi-delays and Saturated Control

10.1 Introduction

This chapter studies the stability of linear two-dimensional (2D) continuous systems
with multi-delays and input saturation. In the last two decades, the 2D system theory
has been paid considerable attention bymany researchers [13]. The 2D linear models
were introduced in the seventies [7, 8] and have found many applications in digital
data filtering, image processing [20], modeling of partial differential equations [15],
etc. In connectionwith theRoessermodels [20] and the Fornasini-Marchesinimodels
[6], some important problems, such as realization, control, minimum energy control,
have been extensively investigated (see, e.g., [14]). The stabilization problem is not
fully investigated and still not completely solved [3].

This chapter is interested to saturated continuous 2D systems with multi-delays
described by Roesser model. This extension to systemswith delay is prompted by the
existence of transport delays in many problems in process control. The stabilization
problem is of interest, because the existence of a delay might cause instabilities [16].
The stabilization of this kind of systems has been extensively studied in the litera-
ture for 1D (see [10, 11, 16] and the references therein). This problem has already
been studied for 2D systems by considering independent and dependent stability
and stabilization conditions [17, 18]. However, all the studies on 2D delay systems
are only available for discrete systems, except authors in [5], where the 2D contin-
uous systems with delay is taken without saturation. To the best of our knowledge,
no works on saturated 2D continuous systems with delay exist before the work of
[2, 4].

The objective of this work is the design of stabilizing state feedback controllers
for this class of systems. To the best of the authors knowledge, no works have directly
considered saturated 2D continuous systems with delay. To this end, quadratic Lya-
punov functions are used. In this context, sufficient conditions of stabilizability under
LMI form are presented. This formulation enables one to derive saturated state feed-
back controllers.

© Springer International Publishing AG 2018
A. Benzaouia et al., Saturated Control of Linear Systems, Studies in Systems,
Decision and Control 124, https://doi.org/10.1007/978-3-319-65990-9_10
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10.2 Problem Formulation

Consider the 2Dcontinuous systemdescribedby theRoessermodelwithmulti-delays
and saturated control:[

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]
= Ax(t1, t2) +

r∑
i=1

Gix(t1 − τ h
i , t2 − τ v

i ) + Bsat(u(t1, t2))

(10.1)

xh(0, t2) = f (t2), t2 ∈ [−τ v
max, 0

]
, τ v

max = max(τ v
i )

xv(t1, 0) = g(t1), t1 ∈ [−τ h
max, 0

]
, τ h

max = max(τ h
i )

xo =
[
f (t2)
g(t1)

]
,

with

x(t1, t2) �
[
xh(t1, t2)
xv(t1, t2)

]
, (10.2)

x(t1 − τ h
i , t2 − τ v

i ) �
[
xh(t1 − τ h

i , t2)
xv(t1, t2 − di)

]
,

A =
[
A11 A12

A21 A22

]
,Gi =

[
Gi11 Gi12

Gi21 Gi22

]
,B =

[
B1

B2

]

where xh(t1, t2) is the horizontal state in R
nh , xv(t1, t2) is the vertical state in R

nv ,
u(t1, t2) is the control vector in Rm and g(t1), f (t2) present the boundary conditions,
and τ h

i and τ v
i are the delays in horizontal and vertical directions, respectively. Note

n = nh + nv. r in Eq. (10.1) represents the number of delays in any direction.
It is assumed that the 2D system is stabilizable. Consider the standard saturation

defined as follows: for i = 1, . . . ,m;

sat(u) = (sat(ui)) =
⎧⎨
⎩
1 if ui > 1
ui if −1 ≤ ui ≤ 1
−1 if ui < −1

(10.3)

Further, consider the state feedback control:

u(t1, t2) = Kx(t1, t2) (10.4)

where matrix K = [K1 K2] is the state feedback gain we are looking for. The prob-
lem is to compute a static feedback control given by (10.4) such that the saturated
closed-loop 2D system with multiple delays in (10.1) is asymptotically stable.
Furthermore, define the sets ε(P, ρ) and L (H) as follows:
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ε(P, ρ) = {x ∈ R
n/xTPx ≤ ρ; P = PT � 0} (10.5)

L (H) = {x ∈ R
n/|Hlx| ≤ 1 , l = 1, . . . ,m} (10.6)

where Hl denotes the lth row of matrix H, and ρ is a positive scalar. The problem
we address thereafter is to find stabilizing state feedback controllers for the 2D
continuous systems (10.1) with saturation on the control and multi-delays. First,
conditions of stabilizability are established. Second, these conditions are worked out
to give a procedure enabling the stabilizing controller (10.4) to be computed.

10.3 Some 2D Extensions

This section is devoted to some preliminaries useful to the development below:
The first lemma enables the saturated 2D system with multi-delays to be written
as a convex combination of η = 2m linear systems. Conditions of stability for 2D
linear systems are then presented. Finally, a technical lemma providing a sufficient
condition of stability is given.

The result of Lemma 1.3 can be extended to 2D systems since the reasoning
depends on the saturation function and not on the number of dimensions (independent
variables onwhich the control depends). Thus, for 2D systems, the saturation function
can be written as follows:

sat(u(t1, t2)) =
η∑

s=1

γs(Dsu(t1, t2) + D−
s v(t1, t2)) (10.7)

Hence, in state feedback control, for two given feedback matrices K and H with
u = Kx and v = Hx, such that |Hlx| < 1. Then, one can write:

sat(Kx(t1, t2)) =
η∑

s=1

γs(DsKx(t1, t2) + D−
s Hx(t1, t2)) (10.8)

Consider now the following 2D continuous autonomous system:

[
∂xh(t1,t2)

∂t1
∂xv(t1,t2)

∂t2

]
= Āx(t1, t2). (10.9)

Theorem 10.1 [9, 19] The 2D linear continuous system (10.9) is asymptotically
stable if there exists a positive definite matrix P of the form:

P =
[
P1 0
0 P2

]
, (10.10)

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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with P1 ∈ R
nh×nh and P2 ∈ R

nv×nv , such that:

ĀTP + PĀ ≺ 0 (10.11)

In this case, the following function

V (x(t1, t2)) = xT (t1, t2)Px(t1, t2)

= xhT (t1, t2)P1x
h(t1, t2) + xvT (t1, t2)P2x

v(t1, t2)

= V1(t1, t2) + V2(t1, t2) (10.12)

is a Lyapunov function of the system.

This result can also be proved by using function (10.12) together with the following
definition presented for the first time in [12].

Definition 10.1 The derivative of function V (t1, t2) given by:

V̇u(t1, t2) = ∂V1(t1, t2)

∂t1
+ ∂V2(t1, t2)

∂t2
(10.13)

is called the unidirectional derivative.

Note that this unidirectional derivative canbe seen as a particular case of the derivative
of the function V (t1, t2) in one direction (respectively, t1 or t2), independently of the
other (respectively, t2 or t1).

Lemma 10.1 [12] The 2D continuous linear system (10.9) is asymptotically stable
if its unidirectional derivative (10.13) is negative.

Proof The idea of the proof is based on the negativity of (10.13) which implies
condition (10.11). �

10.4 2D-Constrained Control with Delays

Reference [1] with the background of the previous sections, sufficient conditions are
now given for the stabilization of saturated 2D continuous systemswithmulti-delays.
The problem is to compute a static feedback control given by (10.4) such that the
closed-loop 2D system with multi-delays is asymptotically stable.

Using the state feedback control (10.8) and the fact that v = Hx with x ∈ L (H),
the 2D saturated continuous system with multi-delays, described by the Roesser
model, is presented in the next equation:
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[
∂xh(t1,t2)

∂t1
∂xv(t1,t2)

∂t2

]
= Ax(t1, t2) +

r∑
i=1

Gix(t1 − τ h
i , t2 − τ v

i )

+B
η∑

s=1

γs(t1, t2)(DsK + D−
s H)x(t1, t2).

That is, [
∂xh(t1,t2)

∂t1
∂xv(t1,t2)

∂t2

]
=

η∑
s=1

γs(t1, t2)Ãsx(t1, t2) +
r∑

i=1

Gix(t1 − τ h
i , t2 − τ v

i ) (10.14)

= Ã(γ )x(t1, t2) +
r∑

i=1

Gix(t1 − τ h
i , t2 − τ v

i )

where matrix Ãs and Ã(γ ) are given by:

Ãs =
[
Ãs11 Ãs12

Ãs21 Ãs22

]
,

Ã(γ ) =
η∑

s=1

γs(t1, t2)Ãs. (10.15)

with: Ãsij = Aij + Bi(DsKj + D−
s Hj), i, j = 1 or 2 and s = 1, . . . , η.

The sufficient conditions for system (10.14) to be stabilizable are stated by the
following result:

Theorem 10.2 If there exist symmetric matrices P1 � 0, P2 � 0, Q1 � 0, …, Qη �
0, R1 � 0, …, Rη � 0, and matrices K1,K2,H1,H2 and scalar ρ > 0 such that the
following conditions:

ε(P, ρ) ⊂ L (H), (10.16)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Ξ)11 (Ξ)12 P1(G1)11 P1(G1)12 P1(Gr)11 P1(Gr)12
∗ (Ξ)22 P2(G1)21 P2(G1)22 P2(Gr)21 P2(Gr)22
∗ ∗ −Q1 0 0 0
∗ ∗ 0 −R1 0 0
.. .. .. .. .. ..

∗ ∗ ∗ ∗ −Qr 0
∗ ∗ ∗ ∗ ∗ −Rr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0 (10.17)

∀s ∈ [1, η]
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hold true, then 2D saturated continuous system with multi-delays (10.14) is asymp-
totically stable,
with:

(Ξ)11 = [P1A11 + P1B1(DsK1 + D−
s H1)]sym +

η∑
i=1

Qi

(Ξ)12 = P1A12 + AT
21P2 + P1B1(DsK2 + D−

s H2) + (DsK1 + D−
s H1)

TBT
2P2

(Ξ)22 = [P2A22 + P2B2(DsK2 + D−
s H2)]sym +

η∑
i=1

Ri

Proof Assume that condition (10.16) holds. In this case, |Hlx(t1, t2)| ≤ 1, l =
1, . . . ,m. This allows the saturation to be written according to (10.7) using (10.8).
Thus, the closed-loop system is given by (10.14). Consider now the following
Lyapunov–Krasovskii functional:

V1(t1, t2) = xhT (t1, t2)P1x
h(t1, t2) +

r∑
i=1

∫ t1

t1−τ h
i

xhT (σ, t2)Qix
h(σ, t2)dσ

(10.18)

V2(t1, t2) = xvT (t1, t2)P2x
v(t1, t2) +

r∑
i=1

∫ t2

t2−τ v
i

xvT (t1, σ )Rix
v(t1, σ )dσ

For the system with multiple delays in closed-loop, the Lyapunov–Krasovskii can-
didate functional is:

V (t1, t2) = V1(t1, t2) + V2(t1, t2)

Computing directional derivatives of V1 and V2 gives:

∂V1(t1, t2)

∂t1
= ∂xhT

∂t1
P1x

h + xhTP1
∂xh

∂t1
+ xhT (

r∑
i=1

Qi)x
h

−
r∑

i=1

xhT (t1 − τ h
i , t2)Qix

h(t1 − τ h
i , t2) (10.19)

∂V2(t1, t2)

∂t2
= ∂xvT

∂t2
P2x

v + xvTP2
∂xv

∂t2
+ xvT (

r∑
i=1

Ri)x
v

−
r∑

i=1

xvT (t1, t2 − τ v
i )Rix

v(t1, t2 − τ v
i ) (10.20)

Summing up (10.19)–(10.20) enables the unidirectional derivative of the Lyapunov–
Krasovskii functional to be wtitten as:
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V̇u(t1, t2) = xT (ÃT (γ )P + PÃ(γ ))x + xT (

η∑
i=1

Γi)x + (

r∑
i=1

xT (t1 − τ hi , t2 − τ vi )GT
i )Px

(10.21)

+ xTP(

r∑
i=1

Gix(t1 − τ hi , t2 − τ vi )) −
r∑

i=1

xT (t1 − τ hi , t2 − τ vi )Γix(t1 − τ hi , t2 − τ vi )

with:

Γi =
[
Qi 0
0 Ri

]
,

Substituting (10.15) in (10.21) and bearing in mind that
∑η

s=1 γs = 1, γs � 0, s =
1, . . . , η lead to:

V̇u(t1, t2) = xT (

η∑
s=1

γs(Ãs
T
P + PÃs))x + xT (

η∑
i=1

Γi)x + (

r∑
i=1

xT (t1 − τ hi , t2 − τ vi )GT
i )Px

(10.22)

+ xTP(

r∑
i=1

Gix(t1 − τ hi , t2 − τ vi )) −
r∑

i=1

xT (t1 − τ hi , t2 − τ vi )Γix(t1 − τ hi , t2 − τ vi )

Introduce the augmented state ξ as:

ξ(t1, t2) =

⎡
⎢⎢⎣

x(t1, t2)
x(t1 − τ h

1 , t2 − τ v
1 )

. . .

x(t1 − τ h
r , t2 − τ v

r )

⎤
⎥⎥⎦

In this case, the unidirectional derivative of Lyapunov–Krasovskii functional can be
written as:

V̇u(t1, t2) =
η∑

s=1

γsξ
T (t1, t2)Msξ(t1, t2), (10.23)

withMs defined by:

Ms =

⎡
⎢⎢⎢⎢⎢⎢⎣

M0(s) PG1 . . PGr

∗ −Γ1 0 0 0
∗ ∗ −Γ2 0 0
∗ ∗ ∗ . 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ −Γr

⎤
⎥⎥⎥⎥⎥⎥⎦

(10.24)
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where

M0(s) = ÃT
s P + PÃs +

r∑
i=1

Γi

The unidirectional derivative is negative if Ms ≺ 0 holds ∀s ∈ [1, .., η]. By using
(10.10), (10.15), and (10.24), inequality Ms ≺ 0 is equivalent to (10.17). �

As given conditions of Theorem 10.2 are not useful for synthesis, the corollary
below gives synthesis conditions for the stabilizing controllers. In fact, Theorem
10.2 is worked out for this purpose. The result of Theorem 10.2 can be used for the
synthesis of the required controllers, as given by the following result.

Corollary 10.1 If there exist symmetric matrices X1 � 0, X2 � 0, Q̄1 � 0, …, Q̄η �
0, R̄1 � 0, …, R̄η � 0, and matrices Y1,Y2, Z1 and Z2 and scalar ρ > 0 such that:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[(Ξ)11 (Ξ)12 (G1)11X1 (G1)12X2 .. (Gr)11X1 (Gr)12X2

∗ (Ξ)22 (G1)21X1 (G1)22X2 .. (Gr)21X1 (Gr)22X2

∗ ∗ −Q̄1 0 0 0 0
∗ ∗ ∗ −R̄1 0 0 0
.. .. .. .. .. .. ..

∗ ∗ ∗ ∗ ∗ −Q̄r 0
∗ ∗ ∗ ∗ ∗ ∗ −R̄r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0 (10.25)

∀s ∈ [1, .., η]

⎡
⎣μ (Z1)l (Z2)l

∗ X1 0
∗ 0 X2

⎤
⎦ � 0, ∀l ∈ [1, ..,m] (10.26)

hold true, then, the 2D saturated continuous system with multi-delays (10.14) is
asymptotically stable.
where

(Ξ)11 = [A11X1 + B1(DsY1 + D−
s Z1)]sym +

η∑
i=1

Q̄i

(Ξ)12 = A12X2 + X1A
T
21 + B1(DsY2 + D−

s Z2) + (DsY1 + D−
s Z1)

TBT
2

(Ξ)22 = [A22X2 + B2(DsY2 + D−
s Z2)]sym +

η∑
i=1

R̄i

and μ = 1/ρ, Y1 = K1X1, Y2 = K2X2, Z1 = H1X1, Z2 = H2X2, X1 = P−1
1 , X2 =

P−1
2 , Qi = P1Q̄iP1 and Ri = P2R̄iP2, for i = 1, . . . , η.
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Proof To obtain LMI (10.25), pre- and post-multiply inequality (10.17) by diag{P−1,

. . . ,P−1}, while noting that X = P−1, Y = KX, Z = HX and Γ̄i = XΓiX.
Then, we obtain the following LMI:

Φs =

⎡
⎢⎢⎢⎢⎣

Φ0(s) G1X . . GrX
∗ −Γ 1 0 0 0
∗ ∗ −Γ 2 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ −Γ r

⎤
⎥⎥⎥⎥⎦ ≺ 0 (10.27)

∀s ∈ [1, ..., η]

with:

Φ0(s) = Π(s) + Π(s)T +
r∑

i=1

Γ i (10.28)

Let’s note:

Π(s) = ÃsP
−1 = AP−1 + B[DsKP

−1 + D−
s HP

−1]
= AX + B[DsY + D−

s Z] (10.29)

with:

Y = [Y1 Y2], Z = [Z1 Z2], K = [Y1X−1
1 Y2X

−1
2 ],

and

H = [Z1X−1
1 Z2X

−1
2 ] (10.30)

By using conditions (10.15), (10.10), and (10.29), inequality (10.25) holds.
On the other hand, the inclusion condition (10.16) is equivalent to ρHlP−1HT

l < 1,
which is equivalent to ρ(HX)lX−1(XH)Tl < 1. Using (10.30), one then obtains:

μ − ZlX
−1ZT

l > 0

By using the Schur complement, with μ = 1/ρ, we have:

[
μ Zl
∗ X

]
� 0, l = 1, ...,m

Remember that Z = [Z1 Z2] and:

X =
[
X1 0
0 X2

]
,
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then: ⎡
⎣μ (Z1)l (Z2)l

∗ X1 0
∗ 0 X2

⎤
⎦ � 0, l = 1, ...,m

This ends the proof. �

Example 10.1 In order to show the applicability of our results, consider the 2D
continuous system given by (10.1), where:

A11 =
[
1 −0.5
0 −2

]
,A12 =

[
0.1 −1
0 0.1

]

A21 =
[−1 0

0 0.1

]
,A22 =

[
0 −3
1 −0.6

]

B1 =
[
1 −1
1 0

]
,B2 =

[
0 0
1 1

]
.

The delay matrices are given by:

(G1)11 =
[
0.30 −0.15
0 −0.60

]
, (G1)12 =

[
0.03 −0.30
0 0.03

]

(G1)21 =
[−0.30 0

0 0.03

]
, (G1)22 =

[
0 −0.90

0.30 −0.18

]

(G2)11 =
[
0.10 −0.15
0 −0.20

]
, (G2)12 =

[
0.01 −0.10
0 0.01

]

(G2)21 =
[−0.1 0

0 0.01

]
, (G2)22 =

[
0 −0.30

0.10 −0.06

]

LMI’s (10.25) and (10.26) are feasible with ρ = 20. The solution are given by:

K1 =
[−4.3340 0.8914

5.7537 −1.0677

]
, K2 =

[
1.6379 −4.8830
1.2071 −5.1331

]

Q1 =
[
0.0388 0.1022
0.1022 0.5801

]
, Q2 =

[
0.0317 0.0885
0.0885 0.4902

]

R1 =
[
0.0940 0.0302
0.0302 0.0463

]
, R2 =

[
0.0538 0.0098
0.0098 0.0274

]

P1 =
[
30.3924 −4.9734
−4.9734 3.0245

]
, P2 =

[
9.2521 −7.9980

−7.9980 28.4021

]

H1 =
[−0.9616 0.1525

1.1472 −0.2154

]
, H2 =

[
0.3638 −0.8667
0.0659 −1.0368

]



10.4 2D-Constrained Control with Delays 197

For simulations purpose, we have used the sampling periods Th = 0.1 and Tv =
0.08. The delays are τ h

1 = 1, τ h
2 = 2, τ v

1 = 1, and τ v
2 = 2.

Hence, the stabilizing state feedback is easily obtained. Figs. 10.1 and 10.2 present
the evolution of the components of the states xh(t1, t2) and xv(t1, t2). Figure10.3
presents the evolution of control components u1(t1, t2) and u2(t1, t2). The stability
domains are represented in Fig. 10.4.

It is clear that the 2D saturated system with multiple delays is asymptotically
stable and converges toward the origin while allowing saturation on the control.
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Fig. 10.1 States evolution of the components of xh(t1, t2)
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Fig. 10.2 States evolution of the components of xv(t1, t2)
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Fig. 10.3 Evolution of the components of control u1(t1, t2) and u2(t1, t2)
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Fig. 10.4 Stability domains

10.5 Conclusion

In this chapter, the problem of stabilizability of the 2D saturated continuous systems
with multi-delays is studied. State feedback control is used. Sufficient conditions of
asymptotic stability are derived. The synthesis of the required controllers is given
under LMI form. Numerical example is provided to illustrate the result.
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Chapter 11
Case Studies

11.1 Introduction

Case studies or applicationof theoretical results to real life processes is of great impor-
tance for researchers. Effectively, the aim of all theoretic works and new results is to
show applicability and effectiveness in real world processes. Further, the validation
of the obtained results for general modeling and general theory is upon application.
The developed work in this book that was devoted in general to constrained control
and/or state systems and different problems that arise in such systems cases, may be
also validated through application on some real processes. Henceforth, this chapter
is devoted to the present application of our previous results to a number of real sys-
tems. The focus will be on rising of constraints in such systems, and the treatment
that will be used accordingly. First, the control of the pH degree in a stirred tank is
obtained. The process is modeled as an uncertain system with constrained control.
The application of the previously presented results about robust-constrained con-
trol is successively obtained. Second, the wastewater treatment plant more precisely
the activated sludge process is considered. It will be controlled using the positive
invariance techniques. This process emphasizes the use of observers as the states,
say concentrations, is not measurable, and the sensors for such processes are very
expensive and may not work on line when directing the process.

11.2 Application to a pH-process

Consider the pH-control plant shown in Fig. 11.1 (already presented in [27]), [18]
which consists of a stirred tankwhere a solution of high concentration of the acid ClH
is mixedwith water to obtain a liquid of controlled pH. Themixture’s pH is measured
using a pH-meter (Kent EIL9143), which presents appreciable inertia. Water is fed
from a tank using a peristaltic pump, which produces a variable flow depending
on the level of the liquid in the tank (Fig. 11.1). Variations in the dynamics due to

© Springer International Publishing AG 2018
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Decision and Control 124, https://doi.org/10.1007/978-3-319-65990-9_11
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Fig. 11.1 Laboratory Plant

changing flows, concentrations, and operating points make this system uncertain. It
can be seen in Fig. 11.1 that the control scheme in this plant is based on acid flow
control. However, the techniques presented now could be directly applied to other
control structures such as base flow control [26], base flow control in the presence
of buffer flow [6] or base and acid flow control [9].

Although the modeling of pH-control processes is well studied [10], in our case,
it is only necessary to have a simplified model, based on first principles. Assuming
that the input liquid is pure water that the acid solution has constant concentration
on ClH, and there is perfect solution, mixing, and no buffering; the following model
can be obtained [23]:

M
dNd

dt
= −qoNd − qaNd + qaNa

ς
dN ∗

d

dt
= Nd − N ∗

d

pH = −log10(N
∗
d )

where ς is the measurement time constant, M is the mass of the liquid in the tank, qa
is the acid mass flow, qo is the liquid mass flow, Nd is the acid concentration in the
tank, N ∗

d is the measured concentration, and Na is the input acid concentration. The
objective of the control system is to maintain the pH of the liquid in the mixing tank
on desired values, using the acid mass flow (u) as the control variable. The model
parameters were estimated using measured data.
The system can be represented by the following transfer function

G(s) = k

(s − a)(s − b)
,

where s presents here the Laplace variable and the gain k, the pole a is uncertain
and the pole b is supposed to be constant. Uncertainty in the plant was experimen-
tally estimated: different experiments under the most extreme conditions were done
(maximum andminimumflows, extreme values of pH, etc.) then the parameters were
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measured, using additional sensors where it was necessary (e.g., to evaluate the inlet
flow range). The model was then linearized at these extreme points and the extreme
variations of gain and time constant selected as uncertainty in the model.
The system can be represented in state space by:

A =
[

0 1
−ba b + a

]
and B =

[
0
k

]

with constrained control u in Ω given by:

Ω = {
u ∈ R

m/ − umin ≤ u ≤ umax , umax , umin ∈ R
m
+
}
.

where umax = 60, and umin = 35.
It is experimentally known that the parameter b can be assumed to be constant

(b = −0.012725), as it suffers small variations which do not affect significantly the
plant behavior. On the other hand, parameters a and k change greatly between work-
ing points, so they represent the parametric uncertainty. The parameter variations
experimentally obtained were:

k ∈ [−0.4649 10−4,−0.7449 10−4]
a ∈ [−0.25,−2]

Let

ao = amax + amin

2
, ko = kmax + kmin

2
,

then any a ∈ [amin, amax], k ∈ [kmin, kmax] can be written as:

a = ao + qA, k = ko + qB

where:
−Δa ≤ qA ≤ Δa, −Δk ≤ qB ≤ Δk

with:

Δa = amax − amin

2
, Δk = kmax − kmin

2
.

So, the form of the system becomes as (1.27), with:

A(qA(t)) =
[

0 1
−b(ao + qA) b + ao + qA

]
and B(qB(t)) =

[
0

ko + qB

]

The vertices of uncertainties domain are given by

ν11 = (0.875, 1.41 10−5); ν12 = (0.875,−1.41 10−5)

ν21 = (−0.875, 1.41 10−5); ν22 = (−0.875,−1.41 10−5).

http://dx.doi.org/10.1007/978-3-319-65990-9_1
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The nominal system can be given by (1.29) where

Ao =
[

0 1
−bao b + ao

]
and Bo =

[
0
ko

]

Therefore, to assign two new eigenvalues to the closed-loop system, and without
loss of generality, the system is augmented with fictitious constrained input v. This
augmented system is given by

.
x(t) = Aox(t) + Boa

[
u
v

]

Boa is the matrix Bo augmented by (n − m) null columns i.e.:

Boa =
[
0 0
k0 0

]

Constraints on the fictitious control v are given by vmax = 40 and vmin = 50.
In order to design a stabilizing controller for the nominal system, we use the

so-called inverse procedure [4] given by Theorem1.6. For this, the matrix

Ho =
[−0.0130 −0.0070

0 −1.1245

]

is selected satisfying conditions (1.24) and (1.31), then the algebraic equation X Ao +
XBoa X = HoX is solved. Solution of this equation leads to the following augmented
regulator

Fa = 103
[

0.0050 −0.0037
−0.0170 −1.3107

]

Matrices H(νi j ) for i = 1, 2. j = 1, 2 can be calculated as solutions of the equa-
tions Fa A(νi ) + FaBa(ν j )Fa = X (νi j )Fa . It is easy to check that condition (2.22),
i.e.,

∼
Hc(νi j )Ua ≤ 0 where Ua = [uT

max vT
max uT

min vT
min]T

is satisfied for all νi j , i = 1, 2; j = 1, 2. Hence, the computed regulator gain Fa is
robust. Notice here that for the effective control, the feedback signal can be extracted
from Fa as

F = [5 − 3.7]

Figures11.2, 11.3, 11.4, and 11.5 show the state vector evolution form initial
condition xo = [0.02 0.03]T , the control evolution and the evolution of the uncertain
parameters a and k in time. It can be seen that robust regulation is achieved with

http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_1
http://dx.doi.org/10.1007/978-3-319-65990-9_2
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Fig. 11.2 Evolution of the state vector

Fig. 11.3 Control evolution

Fig. 11.4 Evolution of the pole a

respected control constraints. It can be seen that the theoretical results established in
Chap.2 are successfully applied to the real process consisting of the control of the pH
degree in a mixed stirred tank. This application is of great interest in some industries,
like sugar production, where the pH is very important for the products. Modeling
uncertainties and constrained control were handled in this application showing the
effectiveness of the proposed approach.

http://dx.doi.org/10.1007/978-3-319-65990-9_2
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Fig. 11.5 Variation of coefficient k

11.3 Wastewater Treatment Plant (WWTP)

Our second application is a wastewater treatment plant. Wastewater treatment is
just one component in the urban water cycle. However, it is an important one since it
ensures that the environmental impact of water human usage is significantly reduced.
The modeling and control of activated sludge process, which are recognized as the
most common and major unit process for reduction of organic waste, have become
a subject of great interest. Researchers [2, 8, 19, 20, 28] have investigated different
control strategies for the monitoring of such processes. The development of effective
control strategies on this kind of Wastewater treatment plants is hampered by the
inherent nonlinearities, the time-varying dynamics and the lack of suitable instru-
mentation.

The state space representation is frequently used to form multivariable approach
to linear control. The most common control schemes are based on availability of
the state for feedback. In same real process, it is either impossible or inappropriate
to measure all elements of the system state. To overcome this problem, an auxiliary
dynamical system, known as observer, driven by the inputs and outputs of the original
system is designed [13].

As pointed out along the chapters of this book, another problem that arises when
considering real process is the limitation of state or control of the process. In fact,
processes are naturally nonlinear and to obtain linear useful model, approximation of
small variations around the steady state are used. Hence, validity of such linearmodel
is limited to a neighborhood of the steady point leading to constraints on some vari-
ables. Further, inherent physical limitations may be the source of limited variables.
The respect of these constraints can be accomplished by designing suitable feedback
control laws. In many cases, this can be done by constructing positively invariant
domains inside the set of the constraints ([1, 4, 5, 17]). Other important applica-
tions were derived from this concept. In particular, the observers in the framework
of positive invariant sets is given in [15, 16].

During the last decades, many investigations have been focused on the control of
the nitrogen and dissolved oxygen in an activated sludge reactor within a WWTP
with different strategies. One may quote predictive control, optimal control, and
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adaptive control ... [3, 22]. Note here that constraints on the control are not handled,
and further, all required measurements are assumed available. Apart from this, one
may also cite works about the same topic but limited to estimation [7] and not the
control. Furthermore, works combining estimation to control for monitoring such
processes can also be found [25]. However, constraints are not taken into account
during the design steps. Therefore, this works may be thought as a generalization
where constraints, estimation, and control are consideredusing thepositive invariance
concept together at the design stage.

The objective here is to apply positive invariance concept techniques to a WWTP.
The obtained linearized model combines the problems of non-availability of the
state to measure with the limitations of some variables. The control is achieved by
an observer-based controller that can take into account constraints on the control and
on the error. The obtained linear model is worked out to meet all design required
conditions. The efficiency of the process monitoring is showed via simulations with
the real plant.

11.3.1 Process Modeling

A typical, conventional activated sludge plant for the removal of carbonaceous and
nitrogen materials consists of an anoxic basin followed by an aerated one and a
settler (see the Fig. 11.6). In the presence of dissolved oxygen, wastewater, that
is mixed with the returned activated sludge, is biodegraded in the aerated reactor.
Treated effluent is separated from the sludge and wasted while a large fraction is
returned to the anoxic reactor to maintain an appropriate substrate to biomass ratio.
In this work, six basic components are present in the wastewater: autotrophic bacteria
XA, heterotrophic bacteria XH , readily biodegradable carbonaceous substrates SS ,
nitrogen substrates SNH , SNO and dissolved oxygen SO where XA, XH , SS , SNH ,
SNO , and SO represent the concentrations of these elements. In the modeling of
the process, the following assumptions are considered: first, the physical properties
of the fluid are constant and there is no concentration gradient across the vessel.

Fig. 11.6 W.W.T. Plant
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Second, substrates and dissolved oxygen are considered as rate limiting with a bi-
substrate Monod-type Kinetic. Finally, no bioreaction takes place in the settler that
is considered perfect.

Based on the above description and assumptions, the full set of ordinary differen-
tial equations (mass balance equations) making up the IAWQ (ASM1) Model NO.1
is obtained [11, 21].

11.3.1.1 Modeling of the Aerated Basin

In the aerated basin, writing the mass balance equations lead to the following:

Ẋ A,nit (t) = (1 + r1 + r2) Dnit
(
XA,denit − XA,nit

) + (
μA,nit − bA

)
XA,nit (11.1)

Ẋ H,nit (t) = (1 + r1 + r2) Dnit
(
XH,denit − XH,nit

) + (
μH,nit − bH

)
XH,nit (11.2)

ṠS,nit (t) = (1 + r1 + r2) Dnit
(
SS,denit − SS,nit

) + (
μH,nit + μHa,nit

)
XH,nit/YH

(11.3)
ṠN H,nit (t) = (1 + r1 + r2) Dnit

(
SNH,denit − SNH,nit

) + (ixb + 1/YA) μA,nit X A,nit

− (
μH,nit + μHa,nit

)
ixb XH,nit

(11.4)
ṠNO,nit (t) = (1 + r1 + r2) Dnit

(
SNO,denit − SNO,nit

) + μA,nit
X A,nit

YA− 1−YH
2.86YA

μHa,nit XH,nit
(11.5)

ṠO,nit (t) = (1 + r1 + r2) Dnit
(
SO,denit − SO,nit

) + aoQair (CS − SO,nit )

− 4.57−YA
YA

μA,nit X A,nit − 1−YH
YH

μHa,nit XH,nit
(11.6)

where:

μA,nit = μmax,A
SNH,nit(

KNH,A + SNH,nit
) SO,nit

(KO,A + SO,nit )

μH,nit = μmax,H
SS,nit

(KS + SS,nit )

SNH,nit(
KNH,H + SNH,nit

) SO,nit

(KO,H + SO,nit )

μHa,nit = μmax,H
SS,nit

(KS + SS,nit )

SNH,nit(
KNH,H + SNH,nit

) KO,H

(KO,H + SO,nit )

SNO,nit

(KNO + SNO,nit )
θNO

μA,nit and μH,nit are the growth rates of autotrophs and heterotrophs in aerobic
conditions and μHa,nit is the growth rate of heterotrophs in anoxic conditions.

11.3.1.2 Modeling of the Anoxic Basin

In the anoxic basin, mass balance equations lead to the following:
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Ẋ A,denit (t) = Ddenit (XA,in + r1XA,nit ) − (1 + r1 + r2)Ddenit X A,denit+
+ α.r2Ddenit Xrec + (μA,denit − bA)XA,denit

(11.7)

Ẋ H,denit (t) = Ddenit (XH,in + r1XH,nit ) − (1 + r1 + r2) Ddenit XH,denit+
+ (1 − α)r2Ddenit Xrec + (μH,denit − bH )XH,denit

(11.8)

ṠS,denit (t) = −(μH,denit + μHa,denit )
XH,denit

YH
− (1 + r1 + r2) Ddenit SS,denit

+Ddenit (SS,in − r1SS,nit )
(11.9)

ṠN H,denit (t) = Ddenit (SNH,in − r1SNH,nit ) − (1 + r1 + r2) .Ddenit SNH,denit

− (ixb + 1/YA) μA,denit X A,denit − (
μH,denit + μHa,denit

)
ixb XH,denit

(11.10)
ṠNO,denit (t) = Ddenit (SNO,in − r1SNO,nit ) − (1 + r1 + r2) Ddenit SNO,denit+

+ μA,denit X A,denit

YA
− 1−YH

2.86YH
μHa,denit XH,denit

(11.11)
where:

μA,denit = μmax,A.
SNH,denit(

KNH,A + SNH,denit
)

μH,denit = μmax,H .
SS,denit

(KS + SS,denit )
.

SNH,denit(
KNH,H + SNH,denit

)

μHa,denit = μmax,H .
SS,denit

(KS + SS,denit )
.

SNH,denit(
KNH,H + SNH,denit

) .

SNO,denit

(KNO + SNO,denit )
.θNO

11.3.1.3 Modeling of the Settler

In the settler, the mass balance equations enable us to write:

Ẋrec = (1 + r2)Ddec(XA,nit + XH,nit ) − (r2 + w)DdecXrec (11.12)

Above, r1, r2, and w represent, respectively, the ratios of the internal recycled flow
Qr1, the recycled flow Qr2, and the waste flow Qw to influent flow Qin . That is
Qr1 = r1Qin , Qr2 = r2Qin , and Qw = wQin . Further,CS is themaximumdissolved
oxygen concentration, and Xrec is the concentration of the recycled biomass. Finally,
Dnit = Qin

Vnit
, Ddenit = Qin

Vdenit
, and Ddec = Qin

Vdec
where Dnit , Ddenit , and Ddec are the

dilution rates in, respectively, nitrification, denitrification, basins, and settler tank.
All remaining involved variables and parameters of the system (11.1)–(11.12) have
been directly taken from the literature [24] and are defined in Tables11.1 and 11.2.
To obtain a model in the state space, the state vector is considered as follows:
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Table 11.1 Process characteristics

Variable Value Description

Vnit 1333 m3 Volume of nitrification basin

Vdenit 1000 m3 Volume of denitrification basin

Vdec 6000 m3 Volume of of settler

Qin 18446 m3/j Influent flow rate

Qw 385 m3/j Waste flow rate

XA,in 0 mg/l Autotrophs in the influent

XH,in 30 mg/l Hetertrophs in the influent

SS,in 200 mg/l Substrate in the influent

SNH,in 30 mg/l Ammonium in the influent

SNO,in 2 mg/l Nitrate in the influent

SO,in 0 mg/l Oxygen in the influent

Table 11.2 Kinetic parameters and stoichiometric coefficient characteristic

Variable Value Description

YA 0.24 Yield of autotroph mass

YH 0.67 Yield of heterotroph mass

ixb 0.086

KS 20 mg/l Affinity constant

KNH,A 1 mg/l Affinity constant

KNH,H 0.05 mg/l Affinity constant

KNO 0.5 mg/l Affinity constant

KO,A 0.4 mg/l Affinity constant

KO,H 0.2 mg/l Affinity constant

μAmax 0.8 l/j Maximum specific growth rate

μHmax 0.6 l/j Maximum specific growth rate

bA 0.2 l/j Decay coefficient of autotrophs

bH 0.68 l/j Decay coefficient of heterotrophs

θNO 0.8 l/j Correction factor for anoxic growth

α 0.5

X (t) = [XA,nit (t) XH,nit (t) SS,nit (t) SNH,nit (t) SNO,nit (t) SO,nit (t) XA,denit (t)
XH,denit (t) SS,denit (t) SNH,denit (t) SNO,denit (t) Xrec(t)]T .

(11.13)
Further, to complete the model, the following input and output vectors are used

U = [Qr1 Qr2 Qair ]T , (11.14)

Y (t) = [SNH,nit (t) SNO,nit (t) SO,nit (t)]T (11.15)
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The constraints on the control are given by the following limitations:

⎧⎨
⎩

−Q̄r1 ≤ Qr1 ≤ 4Q̄r1

−Q̄r2 ≤ Qr2 ≤ Q̄r2

−Q̄air ≤ Qair ≤ 2Q̄air

(11.16)

Linearizing the system around the equilibrium point computed from the nonlinear
equations leads to the new variables (x, u, y) that are now deviation variables. That
is they are deviations from the point the model is linearized about, not their original
absolute values. The equilibrium point is given by:

x̄ = [69.6 623 13.5 3.2 10.4 2.4 68.9 624.6 20.9 8.9 5.3 1356.8]T
(11.17)

and Q̄r1 = 2300 m3/j , Q̄r2 = 18446 m3/j and Q̄air = 100 m3/j which leads to the
following matrices for the system:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−29.07 0 0 2.65 0 2.17
0 −29.48 6.04 0.64 0 4.40
0 −0.34 −38.99 −1.02 −0.05 5.00

−2.22 −0.02 −0.55 −40.74 0 12.23
2.18 0 −0.06 11.05 −29.40 9.64

−9.45 0 −0.18 −47.90 −0.01 −167.00
2.30 0 0 0 0 0
0 2.30 0 0 0 0
0 0 2.30 0 0 0
0 0 0 2.30 0 0
0 0 0 0 2.30 0

6.14 6.14 0 0 0 0

29.40 0 0 0 0 0
0 29.40 0 0 0 0
0 0 29.40 0 0 0
0 0 0 29.40 0 0
0 0 0 0 29.40 0
0 0 00 0 0

−38.67 0 0 0.55 0 1.84
0 −39.18 4.44 0.11 0 16.60
0 −0.78 −50.67 −0.30 −3.42 0

−3.06 −0.04 −0.66 −39.32 −0.19 0
2.99 −0.03 −0.55 1.13 −39.58 0
0 0 0 0 0 −3.13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B = 104

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0011 −0.0011 0
0.0023 0.0023 0
0.0102 0.0102 0
0.0079 0.0079 0

−0.0071 −0.0071 0
−0.0033 −0.0033 0.0008
0.0014 0.1233 0

−0.0031 1.1003 0
−0.0386 −0.0386 0
−0.0105 −0.0165 0
0.0094 −0.0097 0

0 −0.2042 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; C =
⎡
⎣ 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

⎤
⎦

Remark 11.1 It isworth noting here that the obtained state space representation is not
controllable nor observable. In fact, matrices of controllability and observability are,
respectively, of rank 10 and 9. Further, the matrix A of the system has a spectrum that
contains stable eigenvalues, let say n − m = 9 stable eigenvalues with x ∈ R

n, u ∈
R

m y ∈ R
po .

11.3.1.4 Working Out the Model

Any representation in the state space can be transformed into the equivalent form by
using the transformation z = M x [12]:

{
ż = Ā z + B̄ u
y(t) = C̄ z

(11.18)

with:
Ā = M A M−1 B̄ = M B and C̄ = C M−1

Ā =
[
Acō A12

0 Aco

]
, B̄ =

[
Bcō

Bco

]
, C̄ = [

0 Cco
]

and z =
[
zcō
zco

]

Hence, the system may be re-written as follows:

⎧⎨
⎩
żcō = Acōzcō + A12zco + Bcōu
żco = Acozco + Bcou
y = Ccozco

(11.19)

where (Aco, Bco,Cco) is controllable and observable. Further, computing the spec-
trum σ(Acō) = {−0.3373,−35.9885 + 1.2899i,−35.9885 − 1.2899i} shows that
it is stable, and hence stabilizing the system matrix Aco suffices to stabilizes the
hole system [12]. For the WWTP, the states (SNH,nit (t) SNO,nit (t) SO,nit (t)) are
measurable, so the matrix M is chosen like:
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0001 0.9975 −0.0395 0 0 0
−0.0014 0.0589 0.0680 0 0 0
−0.0000 −0.0184 0.0007 0 0 0
−0.0200 0.0355 0.9965 0 0 0
−0.0001 0.0000 0.0041 0 0 0
0.0001 −0.0002 −0.0064 0 0 0

−0.9929 −0.0007 −0.0188 0 0 0
−0.0017 0.0005 0.0146 0 0 0
0.1173 0.0004 0.0122 0 0 0

0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0

0 −0.0561 0.0034 −0.0001 0 0.0185
0.0009 0.9943 −0.0573 0.0012 0.0003 −0.0003

0 0.0013 −0.0001 0 0 0.9998
0.0064 −0.0703 0.0001 0.0172 0.0037 0

−0.0214 0.0572 0.9981 0.0001 0.0000 0
0.9997 0.0008 0.0214 −0.0001 0 0

0 0 0 −0.0842 0.0821 0
0 0 0 −0.6895 −0.7242 0
0 0 0 −0.7192 0.6847 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which leads to the following decomposition for the system:

zTco = [
z4 z5 z6 z7 z8 z9 − x6 − x5 − x4

] ; zcō =
⎡
⎣ z1
z2
z3

⎤
⎦ (11.20)

with zi = ∑n
j=1 Mi j xi , i = 1, ..., n. Finally, the vector zco may be decomposed

into the available and unavailable parts as follows:

zTco = [
ξe ξm

] ; with ξ T
e = [

z4 z5 z6 z7 z8 z9
] ; ξ T

m = [
z10 z11 z12

]

ξe is the vector of unmeasured variables, and ξm is the vector of available states.
Matrices of the decomposed system are given by:
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Aco =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−38.85 28.99 −0.00 0.17 0.01 −0.01
2.33 −50.29 −0.26 −0.24 2.72 −2.0948
0.01 −0.44 −38.67 −2.33 −0.32 −0.17
0.01 0.07 −28.69 −29.23 −0.04 −1.26

−0.01 1.29 −0.08 0.11 −38.99 0.81
0.04 0.28 7.71 −1.26 −0.51 −39.77
0 0 0 −9.38 −0.01 1.11
0 −0.00 −0.00 −0.24 21.29 −20.38

0.00 0 −0.00 0.25 20.27 21.41

−5.10 0.04 1.00
−0.0205 0.0002 0.004
0.0327 −0.0003 −0.0064
2.25 −0.1898 2.81

−0.07 1.6664 1.60
−0.31 −1.5741 1.35

−167.007 −0.0190 −47.90
9.6467 −29.4080 11.05
12.23 −0.0033 −40.74

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bco = 103

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1040 −0.6657 0
−0.3872 0.2181 0
0.0052 1.2322 0
0.0252 0.0145 0
0.0057 0.1856 0
0.1403 0.0522 0
0.0332 0.0332 −0.0076
0.0708 0.0708 0

−0.0789 −0.0789 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cco =
⎡
⎣0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0

⎤
⎦

with the following control constraints:

umax =
⎡
⎣ 9200
18446
200

⎤
⎦ , umin =

⎡
⎣ 2300
18446
100

⎤
⎦ (11.21)

The observer may be designed, at this stage, for the decomposed system. To this
end, matrix T is chosen such that only the part z(t) = T zco(t) is estimated. Further,
matrix P is chosen to ensure the asymptotic stability of matrix D = T Aco P . In fact,
in this case, matrix T is given by:
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T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
and P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

According to Eqs. (5.29), the matrices D, G, and E are computed.

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

−38.858 28.9925 −0.007 0.1784 0.0119 −0.0185
2.3306 −50.2968 −0.2666 −0.2478 2.7231 −2.0948
0.0147 −0.4418 −38.678 −2.3376 −0.3296 −0.1756
0.0119 0.0735 −28.6943 −29.2308 −0.0443 −1.2648

−0.0105 1.2947 −0.0824 0.1128 −38.9935 0.813
0.0442 0.2873 7.7115 −1.263 −0.5140 −39.7722

⎤
⎥⎥⎥⎥⎥⎥⎦

G = 103

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1040 −0.6657 0
−0.3872 0.2181 0
0.0052 1.2322 0
0.0252 0.0145 0
0.0057 0.1856 0
0.1403 0.0522 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, E =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1.0078 −0.0489 5.1034
−0.0042 −0.0002 0.0205
0.0064 0.0003 −0.0327

−2.8104 0.1898 −2.2577
−1.6047 −1.6664 0.0718
−1.3549 1.5741 0.3185

⎤
⎥⎥⎥⎥⎥⎥⎦

For the reconstruction error, one may choose the limits as follows:

εTmax = [
1 1 0.5 1 1 1

] ; εTmin = [
0.5 0.5 0.25 0.8250 0.5 0.5

]

For the matrix H , we choose to assign the following closed-loop eigenvalues
{−170;−55;−51}, which leads to the following choice of matrix H :

H =
⎡
⎣−170 0 0

0 −55 0
0 0 −51

⎤
⎦

It is worth noting here that the remaining closed-loop eigenvalues are the n − m
stable ones coming from the open-loop system [14]. Hence, solving equation F A +
F B F = H F leads to:

F =
⎡
⎣ 0.0010 −0.0044 0.0319 0.0725 −0.0791 −0.0944 1.0349 −0.0000 0.4162
0.0001 −0.0005 0.0000 0.0001 0.0000 −0.0002 0.0017 −0.0000 0.0007
0.0148 −0.0774 0.1421 0.0036 −0.1591 −0.2023 −0.0352 −0.0024 0.0864

⎤
⎦

http://dx.doi.org/10.1007/978-3-319-65990-9_5
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Fig. 11.7 Evolution of the
internal recycled flow Qr1
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Fig. 11.8 Evolution of the
internal recycled flow Qr2
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Fig. 11.9 Evolution of the
dissolved oxygen Qair
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Conditions of Theorem5.1 are easily checked and are given by the vector

M̃c qε = 104 [−3.3981 − 1.1 − 0.1018 − 0.0010 − 0.0044 − 0.0017 − 0.0014

−0.0037 − 0.0034 − 1.6974 − 0.55 − 0.0506 − 0.0005 − 0.0020

−0.0016 − 0.0008 − 0.0018 − 0.0014]T < 0,

http://dx.doi.org/10.1007/978-3-319-65990-9_5
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Fig. 11.10 Evolution of the
ammonium SNH
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Fig. 11.11 Evolution of the
nitrate SNO
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Fig. 11.12 Evolution of the
oxygen O2
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which is a strictly negative vector. One may conclude that all required conditions
are satisfied and hence, the observer-based controller as proposed is able to monitor
the WWTP guaranteeing asymptotic stability and respect of all constraints for the
control and the observation error.
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Fig. 11.13 The
concentration of SNH,denit
and its estimate
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Fig. 11.14 The
concentration of SNO,denit
and its estimate
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Fig. 11.15 The
concentration of SS,denit and
its estimate
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11.3.2 Simulation Results

Figures below are devoted to present the evolution of all variables of the system.
In fact, the observer-based controller, as defined in the section above, is applied to
the WWTP. Estimated values are compared to the simulated ones from the nonlin-
ear model. As general remarks, asymptotic stability is obtained, all constraints are
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Fig. 11.16 The
concentration of SS,nit and
its estimate
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Fig. 11.17 The
concentration of XA,denit
and its estimate
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Fig. 11.18 The
concentration of XA,nit and
its estimate
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respected and the amount of all non-desired organic matter is reduced in the out-
put to the desired values. Further, the limits imposed to the estimation errors are
also respected. First, the control evolution is presented in Figs. 11.7, 11.8, and 11.9.
Respect of all given control constraints is clearly noticed. Second, Figs. 11.10, 11.11,
and 11.12 show the output evolution from the initial values
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Fig. 11.19 Estimation error
(SS,nit )
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Fig. 11.20 Estimation error
(SS,denit )
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Finally, from Figs. 11.13, 11.14, 11.15, 11.16, 11.17, and 11.18 one may note that
the convergence, for all estimated states, is obtained. Hence, and in practice, the
concentrations of the organic matter are reduced and converge to the desired values.
Furthermore, the Figs. 11.19 and 11.20 are devoted to show that the reconstruction
error limits are really respected and this is clear from the figures.

11.4 Conclusion

In this chapter, the minimal order observer in the control loop of a nonlinear sys-
tem with input constraints is introduced. In fact, observer, as software sensor, in
the framework of positive invariance techniques is used to control the linearized
model of a WWTP. For this process, linearization leads to some constraints on the
control. Further, state variables are unavailable to measure and more than that no
adequate sensor exists. Hence, the introduction of the observer is of great interest.
The positive invariance techniques that had emerged as very efficient to handle sim-
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ilar problems of constrained control are successfully used to control the nitrogen
removal process. The observer-based constrained control, as presented above may
compete with approaches in easiness, applicability, and computing effort. In fact, all
the needed computation is achieved offline and once the design finished, the control
law is easy to implement on the process. Further, It is true that in the computational
steps some trial and error tests are necessary; however, with the background available
for the choice of the observer and the matrix H assigning the closed-loop poles [17],
the computation effort is sensitively reduced. On the other hand, the evolution of the
closed-loop system, as presented in the figures above, with the designed control law
shows its efficiency and the success of the controller to the reduction of the organic
waste. Other case study as spacecraft Rendezvous has been developed in the literature
using gain scheduled control of linear systems subject to actuator saturation [29].
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General Conclusion

We were interested, in this book, to the general control problem with constrained
inputs in both cases of continuous-time anddiscrete-time systems.That is the problem
of limited inputs within symmetrical and nonsymmetrical constraints. It is the main
link of all the presented results here. Further, constraints on the increment or rate
of the control are also studied in this book. The rate or increment constraints are
also non symmetric and are not nested in the control constraints as it is usually
considered in the literature. Furthermore, the case of inputs and states constraints
was also presented. The extension, when the system parameters are not perfectly
known, has been obtained. Hence, robustness of such regulators is also under study
in this book.

To handle these problems, two main approaches were used throughout this book.
The first one is the exploitation of the so-called positive invariance concept. The
method has been developed to avoid these constraints, maintaining the closed-loop
system in a linear behavior region. Guaranteeing positive invariance of these regions
leads to the validity when functioning of the linear behavior of the system once
initialized inside the region. Hence, necessary and sufficient conditions of positive
invariance of domains induced in the space by input constraints are established. We
have then treated, respectively, the uncertain systems case, the rate or increment
constraints case with and without disturbances, singular systems with PD control
case, observer-based control for both regular and singular systems case. In all these
works, the invariance conditions are linked to a pole assignment procedure popular
for constrained systems obtained by the resolution of the algebraic equation X A +
XBX = HX for regular systems and X A + XBXE = HXE for singular ones.
Thence, closed-loop stability of constrained systems is deduced and design steps are
precised for all cases.

At the end of this part, the LMI’s tool to solve similar problems based on positive
invariance techniques is introduced. Obtained conditions are reformulated using the
Haar’s lemma under matrix inequalities. It must be pointed out that performance
specifications in terms of position of closed-loop eigenvalues can be easily incorpo-
rated in the design steps, which makes it a powerful technique.
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The second approach, in dealing with constraints, is based on letting the system
to saturate using a technique of writing the saturating system as a convex combina-
tion of some linear systems. This idea was introduced recently in the literature. The
application of this approach beginswith the problemof static output feedback.Hence,
sufficient conditions of asymptotic stability are dealt with. The results obtained with
state feedback control are extended to the case of output feedback control. The sec-
ond application was dedicated to solve the problem of handling nonsymmetrical
constraints. In fact, contrary to positive invariance methods, this technique could not
handle nonsymmetrical constraints. Hence, two methods were introduced to deal
with asymmetrical constraints in the framework of LMIs. The first one needs an
assumption that the system matrix must be non-singular. This may be seen as a con-
servative assumption. However, a second enhanced approach has been proposed to
remove the restrictive assumption. More general result for asymmetrical constraints
in framework of LMIs is obtained. Besides, these results extend those of the same
authors developing unsaturating controllers working inside a region of linear behav-
ior. Third application of the second approach to saturating systems was devoted to
the introduction of the delay. Partition of the delay interval was introduced leading
to less conservative results as pointed out in the literature. Effectively, some unfea-
sible problems become feasible. On the other hand, a delay-dependent criteria were
worked out leading to stabilizability conditions for delay saturating systems. A com-
parison with previous works, but not in the saturating case, is achieved to show that
the obtained conditions are less conservative.

As last application of the approach of convex writing of the saturating system,
two-dimensional systemswith constrained inputs and delays are presented. Sufficient
conditions of asymptotic stability have been derived. The synthesis of the required
controllers has been given under LMIs form.

It is worth here to recall that illustrative and academic examples were given,
along all the previous chapters, to show the applicability and the effectiveness of the
presented methods.

The last chapter was devoted to present the application of some of the previous
results on some real processes. The first one is the control of a pH-process where
in a tank the pH has to be controlled. Positive invariance techniques were applied
in the context of considering the pH-process as an uncertain one. Simulation results
emphasize the success of the obtained results.

For the second application, observer, as software sensor, in the framework of
positive invariance techniques has been used to control the linearized model of a
Waste Water Treatment Plant (WWTP). As usual, the linearization leads to some
constraints on the control. Further, state variables are unavailable to measure and
more than that no adequate sensor exists. Thence, the use of our technique was very
adequate and successful.
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