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FOREWORD TO THE ENGLISH EDITION 

In the preparation of the present edition the text of the monograph was 
critically reviewed, revised and expanded, mainly for the purpose of bringing 
it up to date and reflecting the results of new studies in the field of T-S anal- 
ysis published since the Russian edition of the monograph, but also to  re- 
move errors and inaccuracies which had occurred in that edition. 

The second and third chapters were the subject of the greatest revision, so 
much so that one may say that they have been completely rewritten. In addi- 
tion, the following new sections have been added t o  these chapters: 7, 8, 10 
and 11 (Chapter 2) and 17 and 22 (Chapter 3). 

The revision of Chapters 2 and 3 reflects the interest in the equation of 
state and the thermodynamics of sea water displayed in the literature in 
recent years. 

Chapter 5 has been enlarged by the addition of section 38, “The density 
flux function in oceanographic T-S analysis”, which reflects the supplement- 
ary results obtained by Veronis in studying orthogonal functions on a T-S 
diagram (Section 33). 

Thus the total number of sections has increased from 56 in the Russian 
edition to  63 in the present version. 

Three tables (A8, A9 and A10) of numerical values of constants in the 
different modifications of the equation of state of sea water and one table 
(A1 1) of the polynomial expression for the density flux function have been 
added to the Appendix. Tables A4 and A5, which contained errors, have 
been corrected according to  the corresponding tables of Fofonoff and Froese 
(1 958) which are more precise. 

The monograph has also been provided with a list of main symbols,and a 
subject index. 

For a number of reasons, the review of new research in the field of T-S 
analysis in the monograph does not go much beyond 1972 (with some excep 
tions). Therefore, the author has added in proof a selected, annotated list of 
new publications devoted to the development of T-S analysis (pp. 367-368). 

0. Mamayev 
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CHAPTER 1 

INTRODUCTION 

The present monograph is devoted to the theory and practice of oceano- 
graphic T-S analysis, the purpose of which is the identification and study of 
the water masses of the World Ocean, of their interaction and transformation, 
as well as of the processes of heat and salinity exchange occurring in them, by 
means of one of the most important characteristic diagrams of state in phys- 
ical oceanography, the T-S diagram (T  - temperature, S - salinity of sea 
water ) . 

proposed an equation of state of sea water, and Helland-Hansen (1 9 12) con- 
structed a T-S diagram on which he plotted the real T-S relations of the 
waters of the ocean (1 91 8). Helland-Hansen realized at once the advantages 
of the method of T-S curves he had proposed and the far-reaching possibili- 
ties it offered as compared with other methods of analyzing the waters of the 
ocean. 

However, the exceptional theoretical and practical “capacity” of the T-S 
diagram was realized considerably later, since Defant and Wust succeeded in 
1929 in plotting the geometric images of primary water masses on a T-S dia- 
gram, when Defant demonstrated at the same time the applicability of equa- 
tions of heat conduction and diffusion to the analysis of T-S relations, since 
Jacobsen in 1927 proposed a method of determining coefficients of exchange 
with the help of the T-S diagram and, finally, since Shtokman laid the foun- 
dations of the analytical theory of T-S curves in 1943 (Shtokman, 1943a, b). 

In the course of approximately the last forty years, the development of 
thennohaline analysis has proceeded in two directions. The first direction 
has been concerned with the study of the water masses of the World Ocean, 
based on the surprising conservation of the images of the water masses on the 
T-S diagram; this trend, although ifwas to a certain extent empirical, has con- 
tributed very much to the understanding of the theraohaline structure of the 
ocean. 

Here we should mention the work of Jacobsen and Helland-Hansen and 
Nansen (1929-1930) devoted to the waters of the North Atlantic, Thornsen’s 
(1 935) studies of the water masses of the southern parts of the Indidn and 
Pacific Oceans, Wust’s (1935) work on the water masses of the stratosphere 
of the entire Atlantic Ocean, Iselin’s ( 1936) study of the waters of the western 

The history of T-S analysis goes back to the time when Forch et al. (1902) 
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North Atlantic, Montgomery’s (1938) work on the equatorial regions of the 
Atlantic, Dobrovol’skii’s research on the water masses of the northern part 
of the Pacific Ocean (Dobrovol’skii, 1947, unpublished manuscript; also 196 1 , 
1962), Timofeev’s (1960) investigations of the water masses of the Arctic 
Basin and, finally, the work of Sverdrup et al. ( 1942) on the types of water 
masses of the entire World Ocean. 

The authors of these fundamental works have revealed the thermohaline 
structure of the waters of the World Ocean and have contributed many theo- 
retical and methodological innovations to T-S analysis; among these are the 
establishment of analytical relationships between the temperature and the 
salinity of water masses (Helland-Hansen, Iselin), the use of nomograms and 
triangles of mixing (Thomsen), the development of the “core method” (Wust) 
and of the method of isopycnic analysis of water masses (Parr and Mont- 
gomery), the discovery of water-mass structures connected not only with 
thermohaline but also with circulation phenomena (Dobrovol’skii), as well as 
other achievements. 

The second direction in the development of T-S analysis has been charac- 
terized by the study of the analytical properties of T-S curves and of other 
T-S relations of the real waters of the ocean, as well as (to a lesser extent) of 
that background which the equation of state of sea water represents on a 
characteristic thermohaline diagram. In 1943 Shtokman laid the groundwork 
for the theory of analytical T-S curves; this theory was then developed by 
Ivanov in 1944- 1949. A further contribution to the theory of T-S relations 
was made by Stommel, who examined certain questions of thermohaline con- 
vection as represented on a T-S diagram, as well as the causes of the formation 
of the T-S curve as an image of water masses (196 1 , 1962). The equation of 
state is introduced in Stommel’s work, although in a simplified (linearized) 
form. Zubov (1947, 1957b) and Zubov and Sabinin (1958), as well as Fofo- 
noff (1961), developed the theory and practice of calculating contraction on 
mixing - a most important factor in the interaction of water masses caused 
by the non-linearity of the equation of state of sea water. Finally, the author 
of the present work proved the theorem of the existence of a line integral in 
the T-S plane (Mamayev, 1962b), thus making it possible to apply the prin- 
ciples of field theory to the study of the T-S relations of the ocean’s water 
masses. 

It should be pointed out that the theory of T-S analysis and its methods 
are practically inseparable and that therefore the division of T-S analysis into 
two directions, or trends, is largely artificial: both groups of studies listed 
were mutually complementary, and the development of one direction would 
have been impossible without the other. 

It is perfectly evident that T-S analysis is an integral part of physical 
oceanography as a whole; it represents a kind of “theory of water masses”, 



INTRODUCTION 3 

and this theory is just as significant for the development of oceanography as 
a whole as, say, the theory of ocean currents. Incidentally, the interpenetra- 
tion of the latter two theories has become quite apparent precisely in recent 
years, in connection with the development of the theory of abyssal circula- 
tion and the theory of the thermohaline circulation of the ocean as a whole. 

In the past, comparatively little place was given to questions of T-S analysis 
in monographs and textbooks on physical oceanography; a start was made by 
Sverdrup et al. in the monograph The Oceans, where, for the first time in the litera- 
ture, a comprehensive chapter on the water masses (and currents) of the whole 
World Ocean was included. Subsequently, considerably more attention began 
to be paid to questions of T-S analysis. In corroboration of this, the following 
examples may be quoted. In the two-volume monograph by Defant (1 961), 
Physical Oceanography, there is a chapter entitled “The T-S relation and its 
connection with mixing processes and the main water masses”. In the text- 
book by Lacombe (1969 ,  A Course in Physical Oceanography, the chapter 
“T-S diagrams and the analysis of water masses” as well as a section under the 
same title in Principles of Physical Oceanography by Neumann and Pierson Jr. 
(1 966) are devoted to the same question; finally, in the comparatively brief. 
but fully up-to-date course by McLellan ( 1 9 6 9 ,  Elements of Physical Oceano- 
graphy, there is also a chapter on “Temperature-salinity relations”. Thus, in 
all four of the books mentioned, there is an exposition of the fundamentals 
of T-S analysis, although very brief and given practically only in its qualitative 
form. 

At the present time, the need has made itself felt to provide a sufficiently 
complete exposition of the fundamentals of T-S analysis; the monograph now 
offered to the reader accordingly represents the first attempt of such a kind. 
In writing it, the author was guided by the idea that the problems of T-S 
analysis itself should be preceded by a statement of questions connected with 
the equation of state of sea water and its thermodynamics, for the ocean, 
filled with sea water, represents a completely unique gigantic natural thermo 
dynamic system: the picture of the vital activity of the ocean and such of its 
features as, say, the presence of a broad category of intermediate waters, 
characterized by extremes of temperature or salinity, are determined precisely 
by the properties of sea water as a thermodynamic system. Here attention 
should be drawn to the indissoluble link of T-S analysis as a branch of physical 
oceanography with thermodynamics as a whole; such problems of T-S analysis 
as mixing and contraction on mixing of water masses represent in fact prob- 
lems of the thermodynamics of irreversible (non-equilibrium) processes. In 
Chapter 3 of the monograph, the fundamentals of the thermodynamics of sea 
water as a two-component (binary) system are set forth. The content of this 
chapter could have formed the subject of a separate study covering a wider 
range of questions than those which are considered in this book; the author 
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realizes this, as well as the fact that some questions in the first two chapters, 
devoted to the equation of state and to thermodynamics, are set forth more 
fully than is required for what follows. This has been done in order to lay the 
foundation for the further development of thermohaline analysis within the 
framework of thermodynamics to a greater extent than exists at  the present 
day. 

are in point of fact only just beginning to be studied in any serious way. The 
groundwork was laid by Proudman, who had published the chapter “The 
Thermodynamics of the Ocean” in his classic course Dynamic Oceanography 
(1953); then the important works of Fofonoff should be noted, Energy 
Transformations in the Sea (1961) and his article “Physical properties of 
sea water” (1962), where the problems of the thermodynamics of sea water 
are set forth at some length, as well as the monograph of Horne (1969) The 
Chemistry of the Sea, which contains an extensive chapter on the thermo- 
dynamics of sea water. 

Attention is also drawn to the need for studying the thermodynamics of 
sea water in the monographs of Eckart (1960), Hydrodynamics of Oceans and 
Atmospheres, and Phillips (1 966), The Dynamics of the Upper Ocean. 

Thus, the method of exposition is deductive and conforms to the following 
sequence: (1) the equation of state and the thermodynamics of sea water; (2) 
the properties of the characteristic T-S diagram, which represents the “thermo- 
dynamic background” for the superposition of the images of real water masses; 
(3) the analytical T-S relations, which model the natural waters of the ocean; 
(4) the practical methods of analysis resulting from the theory; ( 5 )  the water 
masses of the World Ocean as subjects investigated by the methods of T-S 
analysis. This sequence is sufficiently well reflected by the table of contents, 
and therefore we shall not elaborate on it any further. 

The present monograph is closely related to another monograph of the 
author, Oceanographic Analysis in the a-S-T-p System (Mamayev, 1963), 
in which questions of the study of the stratified waters of the ocean are con- 
sidered, going beyond the direct scope of T-S analysis, as well as practical 
methods for the principal oceanographic calculations. 

The Appendix contains several tables which do not appear in the Oceano- 
ZogicaZ Tables of Zubov ( 1957a), but which may prove necessary in work on 
T-S diagrams. 

The numbering of the sections, figures and tables is continuous; formulae 
are numbered within each section. The tables in the text are numbered in 
Roman; tables in the Appendix are numbered A 1 -A 1 2. 

Here it may be observed that questions of the thermodynamics of sea water 
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cP 
C” 
c1 
d 
D 
E 
F 
f 
g 

h 
I 
J 
k 

C 

kS 
k T  
1 

coefficient of thermal (volumetric) expansion 
(1) speed of sound; (2) specific heat capacity 
specific heat at constant pressure 
specific heat at constant volume 
chlorinit y 
dynamic height 
dynamic depth 
(1) Young’s modulus (modulus of elongation); (2) vertical stability 
force 
specific free energy 
( 1) gravity acceleration; (2) specific thermodynamic potential (Gibbs’ poten- 
tial) 
(1) height; (2) specific enthalpy 
integral along T-S curve 
(1) mechanical equivalent of heat; (2) Jacobian 
(1) coefficient of isothermic compressibility; (2) coefficient of turbulent 
mixing 
coefficient of turbulent salinity diffusion 
coefficient of turbulent heat conduction 
length 

M, m mass 
mi 
ni 
p pressure 

mass of component i in mixture 
number of moles of substance i per unit volume 

* This list does not include generally accepted mathematical symbols, or symbols which appear in the 
text only once. 
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T 
t 
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atmospheric pressure 
( 1) universal gas constant; (2) electrical conductivity 
salinity 
specific gravity of sea water 
temperature 
absolute temperature 
time 
internal energy 
volume 
specific volume or conventional specific volume of sea water (depend- 
ing on the context) 
conventional specific volume of sea water at atmospheric pressure 
partial molar specific volume 

u,u,w velocity components 
x 
xi 
x,y,z Cartesian coordinates 
a 

p coefficient of saline “contraction” 
r adiabatic temperature gradient 
y 

number of particles in a one-component system 
mass fraction of substance i 

(1) specific volume of sea water; (2) coefficient of thermal (volumetric) 
expansion 

( 1)  thermal coefficient of pressure (elasticity); (2) Poisson’s coefficient, 
y = cp /q,; (3) “density flux” function (orthogonal function in relation 
to p )  
anomaly of specific volume of sea water 

(1) thermohaline coefficient; (2) specific volume anomaly; (3) specific 
volume correction (general expression) 
( 1 )  anomaly of density (general expression); (2) specific internal energy 

( 1 )  specific entropy; (2) coordinate (in section 37) 
(1) potential temperature; (2) temperature of maximum density of sea 
water 
(1) mean coefficient of compressibility of sea water; (2) chemical poten- 
tial; (3) angle of slope of tangent to T-S curve 

A 
AST anomaly of specific volume (thermosteric anomaly) 
F 

e 
{ coordinate (in section 37) 
7) 
6 

1.1 

p density 
pe potential density 
Z(o/oo) actual sum of ions in sea water 
X,, conventional specific gravity of pure water at 0°C 
Z T  conventional specific gravity of pure water at T‘C 
u conventional specific gravity of sea water 
u,, conventioani specific gravity of sea water at 0°C 
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@ probability integral 
cp velocity potential 
$ stream function 

conventional specific gravity, as well as conventional density, of sea 
water at T°C 
conventional potential density of sea water 
freezing point of sea water 
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CHAPTER 2 

THE EQUATION OF STATE OF SEA WATER 

1. THE PARAMETERS OF STATE OF SEA WATER 

Sea water, like any single-phase thermodynamic system, is characterized by 
certain physical properties which represent the quantitative features of the 
system. These quantities are called the parameters, or the characteristics of 
state of the system. For sea water the parameters of state are mass, volume, 
pressure, temperature and salinity. The first three of these parameters are 
mechanical; temperature is a thermodynamic parameter, while salinity and 
the electrical conductivity associated with it are physico-chemical param- 
eters. 

eters: specific gravity and density, as well as a quantity which is inverse to 
density - specific volume. 

considered separately. 

Instead of mass and volume, it is more convenient t o  use specific param- 

In the following subsections each of the parameters of state of sea water is 

Temperature 

In oceanography, temperature is measured in degrees centigrade, or 
Celsius ("C); standard accuracy in determining temperature is 0.0 1 " C. We 
shall distinguish between temperature in situ, designated by the letter T, and 
potential temperature 0 .  Temperature in situ is the temperature measured in 
a corresponding point in the sea by thermometer; potential temperature is 
the temperature of a particle adiabatically reduced to  normal (atmosphere) 
pressure, i.e., that temperature which would be observed in this point if there 
were no adiabatic processes (see Section 27). In some cases it is necessary to 
express temperature in degrees of the absolute Kelvin scale (OK). The degrees 
of the Kelvin scale are equal in magnitude to degrees centigrade ( 1 C = 1 O K ) ,  

but are calculated from absolute zero, equal to  273.16"K below 0" centigrade. 
Temperature on the Kelvin scale is designated by the letter T i n  boldface. 
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Salinity and electrical conductivity 

Forch et al. (1902, p. 116) give the following definition of salinity, which 
has been adopted in oceanography: “Salinity is defined as the weight in 
grams of the dissolved solid material contained in 1 kg of sea water when all 
the bromine and iodine have been replaced by an equivalent quantity of 
chlorine, all the carbonates converted into oxides and all organic matter 
oxidized”. 

It is clear from this definition that salinity S is measured in grams per 
kilogram, or parts per thousand, per mille ( O h ) .  

Thanks to the quasi-constancy of the saline composition of the World 
Ocean, established as early as 1859 by Forchhammer, salinity is determined 
from one of the saline components, chlorine, by the chlorine titration method 
(standard method). 

World Ocean has the form: 

S(O/oo) = 0.030 + 1.8050 CI 

The relationship between salinity and chlorinity for the waters of the 

[ 1 ..1 ] 

This formula (Knudsen, 1901) is valid for the range of salinities of the World 
Ocean from 2.69 to 4O.l8O/Oo. 

Making the concept of chlorinity more precise, Jacobsen and Knudsen 
( 1940) proposed another definition, understanding by chlorinity “the number 
of grams of atomic weight silver necessary to precipitate the halogens in 
0.3285234 kg of sea water”. 

formula for the relationship between the actual sum of ions Z(’/oo) and 
chlorinity : 

Lyman and Fleming ( 1940) (see also Bruevich, 196 l ) ,  derived the following 

Z(O/oo) = 0.073 + 1.81 10 CI f1.21 

Subsequently, Lyman ( 1959) elaborated on this formula, obtaining it in 
the following form: 

Z(O/oo) = 0.069 + 1.81 12 CI 

Comparing formula [ 1.1 ] with formulae [ 1.21 and [ 1.31, we see that 
salinity is not the actual sum of ions. As Defant (1961) points out, salinity, 
obtained according to Knudsen’s formula, is approximately 0.14°/m less than 
the actual salt content of sea water. However, in practice, Knudsen’s formula 
[ 1.1 ] is used as reflecting the conventional value for salinity according to the 
definition of Knudsen et al, quoted above. The conversion of the conventio- 
nal value “salinity” into the actual sum of ions and vice versa is carried out 
in the way demonstrated by Bruevich ( 196 1 ). 

In 1962, the Unesco Joint Panel on the Equation of State of Sea Water 

[1.31 
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(UNESCO, 1962; Ivanov-Frantskevich, 1963), instead of formula [ 1.1 ],pro- 
posed the formula: 

S ( O / o o )  = 1.80655 Cl(O/oo) [ I .41 

Formula [ 1.41 is obtained on the condition that it should not have a free 
term, and at the same time, should correspond to  formula [ 1.1 ] with a 
salinity of 3 5 O h ;  it is, indeed, from this condition that the chlorine coeffi- 
cient of 1.80655 is calculated. The difference in the determination of salinity 
S according to  formula [ 1.1 ] and salinity S' according to  formula [ 1.41 is 
equal to: 

AS = S - S' = 0.03 ( 1 - S/35) [1.51 

For various salinities this difference amounts to:  

S ( O / O O )  As(o/oo) 

0 + 0.03 
10 + 0.021 
20 +0.013 
30 + 0.004 
35 0.000 
40 -0.004 

In the range of salinities 32 < S < 38'0 the discrepancy amounts to  only 
f 0.0026°/~, which is less than the error which occurs in determining salinity 
by modern methods. In addition, formula [ I .4], which does not contain a 
free term, makes the concept of the chlorine coefficient S/Cl and of salinity 
itself more definite *. 

The relationship between the salinity and the chlorinity of the waters of 
landlocked seas (the Caspian and the Aral), as well as of Mediterranean seas 
such as the Baltic, the Black Sea, the Sea of Azov and others, is substantially 
different from [ 1.1 ] and [ 1.41. The relations between salinity and chlorinity 
for these seas are given in the Oceanological Tables (Zubov, 1957a, p.330) 
and the Oceanological Tubles for the Caspian, Aral and Azov Seas ( 1  964). 

In connection with the introduction of new instruments to determine 
salinity based on the electrical conductivity of sea water - salinometers 
(Schleicher and Bradshaw, 1956; Cox et al., 1968), it has become necessary 
to find a new exact relation between salinity and conductivity. This work was 

* Formula [1.1], on the other hand, leads to the relation S / C l =  1.8050 + 0.030 (Cl)-',  which does 
not satisfy this condition. This question is considered in detail in Carritt's report (Unesco, 1962). 
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also performed by the Unesco Joint Panel; as a result the following relation 
was obtained: 

S(O/oo) = -0.08996 + 28.23720 R + 12.80832 R2 - 

10.67869 R 3  + 5.98624 R 4  - 1.3231 1 R 5  [1.61 
In t h s  formula R = Rsample/R35~/oo;lS~C is relative conductivity. The error 

in the determination of conductivity according to  formula [ 1.61, as com- 
pared with titration, salinity being defined according to formula [ 1.41, 
amounts to  approximately 0.008°/~.  Tables for the conversion of conduc- 
tivity into salinity have been prepared according to  formula [ 1.61 (Inter- 
national Oceanographic Tables, 1966). In 1967 these Tables were confirmed 
by an international agreement (on this question see Wooster et al., 1969, and 
also Lyman, 1969). 

Formula [ 1.61 defines the relationship between conductivity and salinity 
at atmospheric pressure and does not take account of the effect of pressure 
on conductivity. We will not dwell on this question here, referring the reader 
t o  a sufficiently authoritative primary source (Bradshaw and Schleicher, 
1965). 

The accuracy of determination of salinity by titration amounts to 0.02° /~ ,  
with the introduction of salinometers the error in determining salinity vanes 
between 0.02 and O . O O S o / ~ o  (Alekin, 1966). The records of the oceanographical 
survey of the Atlantic Ocean, undertaken during the International Geophysi- 
cal Year (1957-1958), published in the Atlas of the Atlantic Ocean 
(Fuglister, 1960) represent the first data in which the values of salinities at 
oceanographic stations are given with an accuracy to  the third decimal place. 
It is clear that such an increase in accuracy already calls for a revision in the 
near future of the very concept of the constancy of the saline composition 
of the World Ocean. The relations between salinity and chlorinity may 
therefore prove different not only for different seas, but also for different 
zones of the ocean itself. 

Pressure 

The unit of pressure in the CGS system is the dyn cmP2. Since this unit is 
very small, a unit introduced by V. Bjerknes is used, which is lo6 larger and 
called the bar: 

1 bar = lo6 dyn/cm2 = lo6 g cm-' sec-2 

The unit of pressure in the MTS system is the centibar, 1 cbar = l o T 2  bar 
= lo4 dyn/cm2. In oceanography the most widely used unit of pressure is the 
decibar: 
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1 dbar = lo-’ bar = lo5 dyn/cm2 

The relation between pressure expressed in bars ( 1 O6 g cm-’ secP2), and pres- 
sure in kg/cm2 (in the technical system) is expressed by the formula: 

1 kg/cm2 = 980.665 . lo3 g cm-I sec-2 

Here gn = 980.665 cm/sec2 is the normal acceleration of gravity. 
Let us consider what the height A h  of a unit water column of density p 

should be in order to exert on its lower base pressure A p ,  equal to  1 dbar = 
10 cbar: 

A p  = g p A h  = 10 

whence: 

h = P =  l o  = 0.9907 m =  1 m 
g p  9.8X 1.03 

(here p = 1.03 is the mean density of sea water). Because of the fact that a 
change in pressure of 1 bar corresponds to a change in depth of approxi- 
mately 1 m, in oceanography depth is sometimes measured in decibars, 
particularly in the dynamic method (Zubov and Mamayev, 1956). However, 
in a number of cases, for instance in calculating the speed of sound in the sea 
(Section 19), such a substitution is incorrect, and the exact relationship 
between pressure and depth must be known. This relationship is determined 
by the compressibility of sea water and is extremely complex; however, non- 
linear effects are determined by the vertically integrated equation of hydro- 
statics [ 1.341 : 

Z 
n 

where pu is atmospheric pressure and p(z )  the real density in situ (see below, 
the Section “Density and specific volume”). 

For a standard ocean, i,e., an ocean which would exist if one and the same 
salinity (35’/00) and temperature (0°C) were observed at all its depths, rela- 
tionship (1.7) can be approximated with a sufficiently high degree of accu- 
racy by the formula: 

p =  1.033 + 0.10281262 + 2.38. 22 t 1.81 

where p is expressed in kg/cm2 and z in meters. Formula [ 1.81 was derived 
by Polosin (1 967) by the method of the least squares on the basis of the rela- 
tions between p ,  p and z ,  given in the table of parameters of the standard 
ocean (Appendix, Table A l ) ,  taken from Defant’s monograph ( 196 1, p. 305). 
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Below we will consider the state of sea water, in particular at atmospheric 
pressure. This pressure is conventionally. taken in oceanography as “zero” 
pressure (the pressure on the surface of the sea, i.e., at “zero depth”), and the 
state of the sea water, subjected t o  the pressure of overlying layers (at depth), 
is defined precisely with reference to  “zero” pressure. Designating “zero 
pressure” by the number “O” ,  we must remember, however, that in so doing 
we do not take account of the pressure of the atmospheric column, which is 
equal t o  approximately 10 decibars, or more exactly 1.01 325 bars, or 1.03323 
kg/cm2 (“normal”, or “physical atmosphere”) (Dorsey, 1948). In other 
words, the conventional “zero” pressure is equal to  full pressure minus 1 
standard atmosphere. In those cases were p represents full (absolute) pressure, 
as, for example, occurs in Eckart’s equation t6.1 I-[6.3] and if a comparison 
must be made with “zero” pressure, it is necessary t o  subtract from the 
former 10.3323 decibars (Sturges, 1970). 

Density, specific gravity and specific volume 

In the present section we consider ways of expressing these quantities; the 
physical relationships will be taken up in Section 2 and further on. 

The density of water p (dimension g/cm3 in the CGS system) represents 
the mass, contained in a unit of volume. The specific gravity s represents the 
relation of the density of the given sample of water to the density of a 
standard sample; thus, specific gravity is a dimensionless quantity (it is used 
mainly in instrument determinations). The specific volume a ,  or u,  (dimension 
cm3/g) is a quantity which is the inverse of density: 

a p = 1 *  [1.91 

Density and specific volume at constant (atmospheric) pressure are func- 
tions of temperature and salinity: 

* It should be pointed out that the liter (and, correspondingly, the milliliter) are also used as units of 
volume in oceanography. In accordance with the “old” definition of the liter (as the volume of 1 kg of 
pure water at a temperature of 4°C at atmospheric pressure), the specific volume of pure water at 4°C 
equals 1.000.000 ml/g = 1.000027 cm3/g, and its density is 0.999973 g/cm3 (Dorsey, 1968, p.203). All 
data on the density and specific volume of sea water, based on the classical determinations of Knudsen 
(1901; Bjerknes and Sandstrom, 1910; Sverdrup, 1933; Zubov, 1957a and other sources - see Sections 
2, 3 and others) are in fact expressed in milliliters; inasmuch as the difference noted above was not 
known at that time. For the conversion of specific volume expressed in ml/g into specific volume ex- 
pressed in cm3/g, it must be multiplied by 1.000027 (Pollak, 1961; Fofonoff, 1962). This correction 
does not apply to the anomalies of specific volume (see below). 

According to the new definition of the liter as the volume of 1 cubic decimeter, adopted in 1964 
by the General Conference on Weights and Measures, the concepts of the cubic centimeter and the 
millimeter become identical. 
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[1.10] 

[1.11] 

In the general case ("in situ"), they are functions of temperature, salinity 
and pressure : 

P = P(T,S,P) [1.12] 

ff = f f ( T , S , p )  [1.13] 

Density defined as a function of potential temperature and salinity is 

= ~ ( 0 , s )  [1.14] 

The standard precision of determination of specific gravity, density and 
specific volume in oceanography amounts t o  1 O-5; in some cases, for example 
in the preparation of tables, accuracy is brought up to  1 O-6. 

called potential density pe : 

Let us consider ways of expressing the quantities mentioned above: 

( A )  Specific gravity 
Oceanographers have adopted the following expressions of specific gravity 

as a function of salinity, so = so(S) and a function of temperature and salinity, 
sT = sT(T ,S ) ,  at atmospheric pressure (Knudsen, 1901) *: 

density of sea water at 0°C 
s -  o - density of pure water at 4°C 

density of sea water at T"C 
- density of pure water at 4°C s -  

[1.15] 

[1.16] 

The expressions of conventional specific gravity (or the anomalies of 
specific gravity) are used correspondingly; they were introduced by Knudsen 
to  shorten the notation (number of signs): 

u0 =(so - 1) lo3 [1.17] 

a T = ( S T - l ) .  10 3 [1.18] 

(B)  Density p = p(T, S) and specific volume (Y = a ( T , S )  under constant 

Instead of density p ,  in order to  reduce the number of signs the quantity 
pressure 

* The seldom used expression of specific gravity ~ 1 7 . 5 ,  determined at a temperature of samples of sea 
and pure water equal to 17.5"C, and its anomaly ~ 1 7 . 5 ,  are not considered in the present work. 
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of conventional density is used: 

UT = ( P - I ) .  103 [1.19] 

which, as we see, is designated in the same way as the quantity of conventio- 
nal specific gravity [ 1.18 I ; however, unlike the former, it is a dimensional 
quantity. Attention is drawn in the work of Cox et al. (1 968) to  a certain 
confusion prevalent in oceanography with respect to the use of these quanti- 
ties. 

The quantity: 

0 , = ( ~ , - 1 ) * 1 0 ~  [ 1.20 J 

is potential conventional density. 
Instead of specific volume a ,  also in order to  reduce the number of signs, 

conventional quantities are used. The most common are the following quan- 
tities: 

(1) Conventional specific volume v T .  

uT = (“T -0.9) * 103 

UT = (CUT - 0.97) . 1 o3 

[1.21] 

or: 

[ 1.221 

The expression of conventional specific volume was introduced by Sund 
( 1926), although it appears for the first time without a special letter desig- 
nated in the work of Hesselberg and Sverdrup ( 19 15a); on the proposal of 
Zubov (1929), it is widely used in Soviet oceanographic practice. 

(2) Anomaly of specific volume AST. 

‘ST = “STO - “35,0,0 [ 1.231 

where aSTO is the specific volume as a function of temperature and salinity 
(at zero pressure) *, a35,0,0 = 0.972643 - the specific volume with tempera- 
ture of 0°C and salinity of 35°/~. 

by Sverdrup ( 1933) and is used in western oceanographic literature. As pro- 
posed by Montgomery and Wooster ( 1  954), the quantity Asr is called at the 
present time the “thermosteric anomaly” - sometimes it is designated as 6,, 
to distinguish it from the “total” anomaly 6 ,  formula [ 1.321. In oceano- 

The expression of “surface” anomaly of specific volume AST was proposed 

* With the symbols a, U, u etc. it would be more correct to insert indices defining to which quantities 
they are related: instead of u~ to write USTO, to designate the quantity p = p(S ,  T , p )  as psm etc. We 
see if only from the example of u~ and ‘IT that the insertion of these indices is not strictly observed. 
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graphic practice the quantity lo5 AST is used; in this case its dimension is 
centiliters per ton. 

(3) Conventional specific volume (or anomaly) A. 
A =  104(l-a)  [ 1.241 

This expression is rarely used; in particular, we find it in Dorsey’s tables 
(1968) of the properties of sea water, in Eckart’s (1 958) work, etc. 

( 4 )  The relation between the quantities uT ,  uT and AST. On the basis of ex- 
pressions [ 1.93, [ 1.191 and [ 1.21 ] it is easy to  obtain formulae interrelating 
the quantities uT and u T :  

[ 1.251 

[ 1.261 

The relationship between As, and uT is obtained in the following way 
(Sverdrup, 1933). Since: 

PsTo = 1 + 10-3uT 

1 - 1 -  1 0 - ~  uT 
“STO = -- 

PSTO 1 + 1 0 - ~ ~ ,  

and : 

then: 
1 o - ~  uT 

1 - 1 0 - ~ ~ ,  
AST = 0.02736 - 

The relationship between AST and uT is obtained as follows. Since: 

aSTO = 0.97264 + AST 

3 UT = (“ST0 - 0.9) * 10 

then: 

UT = 72.64 + 1 o3 AsT 
and 
AsT = 10-3(uT - 72.64) 

[ 1.271 

[ 1.281 

[ 1.291 
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As may be seen from the formulae given above, the quantities uT,  uT and 
AST which are important in oceanographic analysis, are equally inter-related. 
Therefore, the various sources of actual data give - as a function of tempera- 
ture and salinity - any one of these three quantities, which makes it possible, 
where necessary, to  carry out the corresponding conversions. The conversion 
of uT into uT and the conversion of uT into uT is carried out according t o  
tables 12 and 13 of Zubov’s Oceanological Tables (1  957a). The conversion of 
uT into AST is performed according to Table A3, taken from Sverdrup et al. 
( 1  942). The tables for the conversion of AST into uT and vice versa are not 
given, since it is easily carried out according to formulae [ 1.281 and [ 1.291. 

fC) Density p = p(S,  T, p )  and specific volume a = a(S, T, p )  in situ 
The specific volume in situ is equal to: 

T p  = T p  - 

or, otherwise: 

0.9) . 1 o3 [ 1.301 

The quantity usrp is used in Soviet oceanographic practice. The corre- 
sponding quantity uSTp equals: 

usTp = ( P s T p  - 1) * 103 

Sandstrom, 191 2, p. 27) equals: 

[1.31] 

The quantity of the anomaly of specific volume in situ (Bjerknes and 

[ 1.321 

This anomaly is determined with respect to  specific volumes on the level 
of p dbars in the standard ocean; the table of specific volumes in the standard 
ocean is given in the Appendix (Table A 1 ). Anomalies of specific volume, for 
purposes of convenience in using them, are normally expressed in units of 
1056. 

The relationship between usTp and lo5 6 is considered below in Section 23. 
We have considered above the determinations of density and specific 

volume, the various ways of designating these quantities and the relationship 
between them. The quantitative connection between S ,  T ,  p ,  p and a ,  ex- 
pressed by the equation of state of sea water, will be considered below 
(Sections 3 and 4). 

Geopotential field and dynamic depth 

Before proceeding to the study of the equation of state of sea water, 
attention should be drawn to the fact that we are considering sea water not 
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in the laboratory, but in natural conditions, i.e., in the ocean. In other words, 
we are applying the equation of state to volumes of water considered in situ, 
i.e., in their natural conditions. Accordingly, the influence of one of the pa- 
rameters of state, namely pressure, on the volume of water considered in situ 
manifests itself in the form of pressure of a water column situated above the 
volume considered, and all the other parameters of state are functions of the 
depth (or of the pressure): S = S(z), T = T(z), p = p(z), a = a(z). 

This fact enabled us above to compare pressure with depth and t o  deter- 
mine that a change in pressure of approximately 1 dbar corresponds t o  a 
change in depth of 1 m. However, the pressure of two water columns, equal 
in geometrical height, may be different if the densities (specific volumes) of 
these water columns are different. Therefore, it appears necessary t o  compare 
pressure not only with depth, as we have done above, but also with specific 
volume (density). For this purpose, as we shall now see, we must consider 
these relationships in the field of gravity. 

Elementary work dD,  performed on a unit of mass along a perpendicular 
along the distance dz equals: 

d D = g d z  [ 1.331 

where g is the acceleration of gravity and z the depth (height). The elemen- 
tary increment of pressure corresponding to  the same vertical distance dz,  as 
follows from formula [ 1.71, equals: 

[ 1.341 

(this expression is the equation of hydrostatics) 
Comparing the last two formulae, we come to the following important 

relationship (Sverdrup et al., 1942, p.405): 

d p = p d D ,  or dD=cwdp [ 1.351 

This relationship associates pressure, density (specific volume) and work 
along a perpendicular in the field of gravity. 

The unit of this work performed over a distance of 1P.8  m (with dz = 
1/9.8 m the right part of formula [ 1.331 equals unity), in the MTS system is 
the kilojoule (kJ). Inasmuch as this work is performed along a perpendicular, 
its quantity may serve as a measure of the vertical distance; therefore, the 
dynamic decimeter is used in oceanography instead of the kilojoule, since 
the work of one kilojoule is performed on a vertical distance equal to approxi- 
mately one geometric decimeter. Correspondingly, a dynamic meter is equal 
to  10 kJ. The distance along the perpendicular measured in the sea in units 
of work of gravity is called the dynamic, or geopotentiul depth (height); it 
may be obtained by integrating expression [ 1.331 : 
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[ 1.361 

or, inasmuch as with a high degree of accuracy g = constant: 

D = g(zb - Z a )  [ 1.371 

On the other hand, expression [ 1.351 shows that the dynamic depth can 
be associated with units of pressure; the expression for the dynamic depth 
between depth pa dbar and P b  dbar can be obtained by integrating the right- 
hand expression (1.35): 

Pb 

D = J  4 p ) d p  

Correspondingly, dynamic height is determined by the expression: 

d =J a ( p )  d p  = -D 

Pa 

P a  

Pb 

[ 1.381 

[ 1.391 

Up to now our discussion has referred to the perpendicular alone; extend- 
ing it to some volume of the sea, we must introduce the concept of isobaric 
surfaces, i.e., surfaces of equal pressure ( p  = const.), and of isopotential 
(geopotential) surfaces, i.e., surfaces of equal potential of gravity ( D  = const.). 
Since we assume g = const., the family of isopotential surfaces is fixed; all 
these surfaces are equidistant from each other on different verticals in the sea 
(for example, by one dynamic meter). On the other hand, it follows from 
expression [ 1.381 that because of the difference in specific volumes in differ- 
ent parts of the sea (we are not concerned with the causes of this difference 
here), the distances between these same isobaric surfaces will generally be 
different on different verticals. The fixed family of isopotential surfaces 
serves as a system for reading vertical distances between isobaric surfaces on 
different verticals in the sea; these distances, or dynamic depths (heights), 
are calculated according to formula [ 1.38 1. 

meters is of decisive importance in the dynamic method of calculating sea 
currents (Zubov and Mamayev, 1956). 

The study of the relief of isobaric surfaces, and its expression in dynamic 

Internal energy 

The parameters of state of sea water which have been considered - pressure 
p, temperature T (absolute temperature T ) ,  specific volume (Y, salinity S - 
are associated with a fundamental thermodynamic function - specific internal 
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energy E (erg/g) * by the following relations (Eckart, 1962) 

[ 1.401 

Here q is specific entropy (erg 8-l OK-' ), p is the specific chemical potential 
of sea water. 

We shall return to  the elucidation of formulae [ 1.401 in Chapter 3. 

2. THE EQUATION OF STATE OF SEA WATER 

The relationship which links the parameters of state: density (or specific 
volume), temperature, salinity and pressure, is called the equation of state of 
sea water. In its general form the equation of state can be written as follows: 

f (P,S,  T,p) = 0 L2.11 

The expressions noted represent the thermal equation of state **. Writing 
[2.2] in the following form, more widely used in oceanography: 

= a(S, T, P) 7 ~2.31 

one can construct the following expression of the total differential of speci- 
fic volume a as a function of the three variables S, T and p :  

Let us assume that da = 0; then, having divided [ 2.41 by dT, we will ob- 
tain the following relationship, true if volume remains unchanged (for the 
isostere): 

or : 

* E = U/M,  where U is the internal energy and M the mass. 
** The caloric equation of state f(a, E ,  p ,  S)  = 0 is not considered in the present work. 
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+ 

Let us introduce the well-known determinations of coefficients (Bazarov, 

( 1 ) the coefficient of thermal (volumetric) expansion at constant pressure 
1961; Reid, 1959) - 

(and constant salinity) : 

(2) the coefficient of saline “contraction”: 

p = - r  (%) 
“0 T P  

(3) the coefficient of isothermal (and isohaline) compressibility: 

k = - -  1 (G) a“  
S, T “0 

(4) the thermal coefficient of pressure (elasticity): 

,=L (%) 
PO s. 01 

(5) a new determination of (5) the coefficient of thermohalinity : 

t2.81 

[2.10] 

[2.11] 

where ao,  p o  and So are some constant values of the corresponding param- 
eters. 

Then, substituting the values of these coefficients in [ 2.61, we will obtain: 

[2.12] a = p6So + 7 k p o  

This relation represents an extension to the case of a more complex 
system - sea water - of the well-known thermodynamic relation: 
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a = PoYk [2.13] 

valid for a simple system, the thermal equation of state of which is: 

f(a, T , p )  = 0 [2.14] 

(Bazarov, 1961, pp.29-30); this is easily seen by means of similar substitu- 
tions. With p = const. we obtain from [ 2.1 21 a relation: 

a = p6So [2.15] 

f(a,S, T )  = 0 [2.16] 
valid for sea water at constant (atmospheric) pressure (Mamayev, 1968): 

Relation [ 2.121 is interesting from the point of view of the further study 
of the equation of state of sea water (in particular, by the method of thermo- 
dynamic potentials). We see that it breaks down into three parts: the first 
term [2.12] describes the thermal expansion of sea water at constant pressure, 
the second term - the thermal expansion of fresh water, and their sum - the 
thermal expansion of sea water in situ. The coefficient of thermohalinity 
which has been introduced will be considered in greater detail in Sections 14 
and 25. 

The expression of the total differential [ 2.41 can also be written in the 
following form (Reid, 1959): 

da 
- = a d T  - P d S  - k d p  
“0 

[2.17] 

Equation [ 2.171 (as well as [ 2.41) represents the equation of state of sea 

Thus, the density of water in the ocean depends upon three quantities: 
(a )  temperature T ,  because of thermal expansion of water, expressed by 

the coefficient a ;  
(b) salinity S ,  because of the fact that the salts dissolved in water change 

its specific gravity or because of the “saline contraction” of water, expressed 
by the coefficient p ;  

(c) pressure p ,  because of the property of compressibility of sea water un- 
der the pressure of the overlying layers of water, determined by the coeffi- 
cient of compressibility k .  

According to  one of the hypotheses, water is a complex mixture of 8-, 4-, 
2-molecular associations and of free molecules (Eucken, 1948). Due to  its 
complex composition, water possesses strongly anomalous properties as com- 
pared with other liquids (high heat capacity, non-coincidence of the tempera- 
ture of maximum density and the temperature of freezing, etc.). The presence 
of dissolved salts reinforces the anomalous properties of water, while the 

water in differential form. 
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existence of pressure still further complicates the possibility of a quantitative 
description of its state. 

Due to the complexity of the composition of water and its anomalous 
properties, the equation of state of water is very complex, and the equation 
of state of sea water even more so. Let us imagine a series of any equations of 
state whatsoever of various substances arranged according to their degree of 
complexity. This series naturally begins with the simplest - the equation of 
state of an ideal gas - Clapeyron’s equation: 

p u = n R T  12.181 

where p is pressure, u specific volume, T (absolute) temperature, R = 
2.87 - lo6 cm2 secP2 ( O K ) - ’  - the universal gas constant and n the number 
of moles of gas. 

The equation of state of sea water, as we shall see below, stands very far in 
this imaginary series from Clapeyron’s equation, although the latter does have 
a place in the study of the thermodynamic properties of sea water (Section 15). 

Approaching the question of the analytical and numerical form of the 
equation of state of sea water, let us note that it may be obtained in various 
forms and, accordingly, by various ways, based at the present time on an 
empirical (or at best, a semi-empirical) approach. The main forms of expres- 
sion of the equation of state, considered later in greater detail, are as follows: 

(1)  The equation of state can be expressed in the form of a power-series 
polynomial for the parameters of state (Section 8), or by other empirical 
formulae, close to the polynomial (Sections 3,4). 

(2) With a greater or less degree of approximation it can be expressed by 
equations having a thermodynamic basis, for example: (a) by Tumlirz’ equa- 
tion (Section 6); (b) by Tait-Gibson’s equation (Section 7); (c) by Van der 
Waals’ equation : 

( p  +$) (v- nb)  = n R  T [2.19] 

(The symbols are the same as in formula [2.181; a and b are functions of 
temperature and salinity * .) 

( 3 )  The equation of state can be approximated by the equations of physical 
chemistry which determine the density of solutions (Section 17). 

Several versions of the equation of state will be considered below (refer- 
ences to corresponding paragraphs have been given above). We shall start by 
considering the empirical formulae of Knudsen (Section 3 )  and Ekman 
(Section 4), relating to the.first of the categories enumerated above. The 

* The approximation of the equation of state of sea water by Van der Waals’ equation has not been 
carried out, to our knowledge. Such a possibility is noted in the work of Holser and Kennedy (1958). 
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equation of state in the Knudsen-Ekman form is a classical one generally 
accepted in oceanography as the relation Q = a(S, T ,  p )  and its derivatives. All 
the tables and calculations in the present monograph, connected with the 
numerical representations of the equation of state, are based on the Knudsen- 
Ekman formulae. We shall first consider the equation of state of sea water at 
constant (atmospheric) pressure, Q = a(S,  T )  and then the equation of  state 
in situ, a! = a(S,  T , p ) .  

made above, and which will also be considered, may in some cases prove 
more convenient in solving problems of the thermodynamic and thermo- 
haline analysis of ocean waters. 

The other representations of the equation of state to  which reference was 

3. THE EQUATION OF STATE OF SEA WATER AT ATMOSPHERIC PRESSURE 

The equation of state of sea water at atmospheric pressure is determined 
by a series of empirical formulae (Knudsen, 1901 ; Forch et al. 1902). The 
first group of formulae determines the relationship between the conventional 
specific gravity uo and salinity S and chlorinity Cl of sea water: 

uo = uo(S) , s = S(C1) [3.11 

These empirical formulae are as follows: 

S = 0.030 + 1.8050 C1 

uo = -0.069 + 1.4708 Cl - 0.001570 C12 + 0.00000398 C13 * 
The second group of empirical formulae serves to determine the relation- 

ship between density uT and conventional specific gravity uo and temperature 
T :  

UT = o,(q), T )  t3.31 

[3.21 

This relationship is determined in the following way: 

UT = Z, + (00+ O.1324)[ 1 -AT+B,(~o-O.1324)] [3.41 

where: 

( T  - 3.98)2 T + 283" 
503.570 T+ 67.26' z,=- 

* This formula is correct within the limits of chlorinity 0 from 1.47362 to 22.2306O/oo (Defant, 
1961, p.41). 
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AT = T(4.7867 -0.098185 T+0.0010843 T 2 ) .  

BT = T(18.030-0.8164T+0.01667T2)~ 

here Z, = -0.1324 - the conventional specific gravity of pure water at O"C, 
ET is the conventional density of pure water at temperature T"C with respect 
to density at 4"C, AT and BT are temperature coefficients. The formula for 
the determination of X T  was obtained by Thiesen ( 1  897). 

Formula [ 3.41 follows from the representation of relation [ 3.31 in the 
form of the following quadratic formula: 

U T = A + B U O + C U ; ,  [3.61 
amounting in the case of pure water to the form: 

C ,  = A  + B E ,  + C Z , ~  13.71 
(Fofonoff, 1962). In these formulae A ,  B and C are functions of temperature. 
Indeed, subtracting [3.7] from [ 3 . 6 ] ,  we obtain formula [3.4] provided that: 

Fofonoff points out that in some cases formula [ 3.61 proves to  be prefer- 
able to formula [3.4] for calculations. Coefficient A in this formula is deter- 
mined in the following way: 

[3.91 
4.53168 T - 0.545939 T 2  - 1.98248*10-3T3 - 1.438. 10-'T4 

T + 67.26 A =  

Finally, relation [3.3] can be represented by the following formula, which 
is convenient for calculations (Knudsen, 190 1 ): 

where: 

D =oO - o T = - E T -  0.1324+(~,+0.1324)[AT-BT(ao-0.1324)] [3.11] 

Formulae [3.2], [3.4] and [3.5], linking temperature, salinity and density 
of sea water, were obtained on the basis of laboratory investigations carried 
out by Knudsen, Forch, Jacobsen and Sorensen. For their experiments these 
investigators used 24 samples of sea water from the surface of the sea which 
had been collected in those parts of the ocean most studied at that time, 
namely, in the seas of Northwestern Europe (the Norwegian Sea, the Kattegat, 
the Baltic Sea and others). In particular, to obtain relation [ 1.11 only nine 
water samples collected in the regions mentioned (one of the samples was from 
the Red Sea) were used. 
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Basing himself on the hypothesis of the constancy of the saline composi- 
tion of the world ocean, Knudsen extended his results to the entire world 
ocean and prepared, according t o  the formulae quoted, his Hydrographic 
Tables (Knudsen, 1901), which are the basis for all calculations of the density 
of the waters of the World Ocean at constant pressure. 

These tables include: 
(1) a table of correspondence of the quantities Cl, S, uo and also p17,5 with 

an accuracy of 0.0 1 for each of the values. The table is calculated according 
to formulae [ 3.2 I ; 

tures of the World Ocean (from -2 to  33°C) at intervals of 0.1”, with an 
accuracy as follows: C, - t o  

mula [3.4] (with an accuracy of 

[3.10] (with an accuracy of 

to Knudsen’s tables and all sources based on Knudsen’s tables is considered 
in detail in a work by the author (Mamayev, 1963). 

As has already been pointed out, the standard accuracy of calculation of 
u, and u, amounts to  Knudsen’s formulae also make it possible to  ob- 
tain uT and u, to  the third decimal place, but this is already influenced by 
the actual inconstancy of the saline composition, which should never be lost 
sight of. For seas separated from the World Ocean, Knudsen’s formulae are, 
strictly speaking, inapplicable. 

The difference from the equation of state for the World Ocean, as deter- 
mined by Knudsen’s formulae [3.1], [3.2] and [3.3], was studied more or 
less in detail for the Caspian Sea. As a result, other expressions were obtained 
for the determination of the quantities uo, p17,5, A ,  and B,, differing from 
the corresponding Knudsen formulae and given in the Oceanological Tables 
for the Caspian Sea (1949). 

(2) a table of the quantities C,, A ,  and B ,  for the entire range of tempera- 

A ,  - to  loF6, B ,  - to lop7;  
(3) a table of the values of D for the calculation of u, according to for- 

(4) a table of the values of D for the calculation of uo according to  formula 

The calculation of the density and specific volume of sea water according 

4. THE EQUATION OF STATE OF SEA WATER IN SITU 

In order to  obtain the equation of state of sea water in situ, the informa- 
tion on the relationship between specific volume and temperature and salinity 
must be completed by data on its relationship to  pressure. 

The relation between specific volume in situ aSTp and the specific volume 
on the surface of the sea aSTO can be expressed by the following obvious 
formula: 
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where p is the mean coefficient of the compressibility of sea water in a layer 
of p bar (decibar) thickness; the dimension of the coefficient, as follows from 
formula [4.1], is inverse bars (decibars). 

The mean coefficient of compressibility p for 1 bar between 0 and p bar 
depths is determined by the empirical formula of Ekman (1 908): 

108p = 4886 - (227 + 28.33 T - 0.55 1 T 2  + 0.004T3) + 
1 + 0.000 183 p 

+ p *  10-3(105.5+9.50T-0.158T2) - 1.5p2T-  - 

(TO - 28 
10 -___ [ 147.3 - 2.72 T +  0.04T2 -p  * lo3 X 

X (32.4 - 0.87 T +  0.02 T2)1 + 

+ r$r [4.5-0.1T-p~10-3(1.8-0.06T)] 

Expressing depth not in bars, but in decibars, i.e. assuming in formula [4.1] 
quantity p to be ten times greater (referring to  one and the same depth) we 
must take quantity p ,  naturally, as ten times smaller. If pressure p in decibars 
is introduced in formula [4.2], its form will change affecting the multipliers 
of p;  modified formula [4.2] is given in Zubov’s Oceanological Tables ( 1957a, 
p. 332). Thus, quantities 1 08p, 109p, 1O”p will be identical if we are refer- 
ring to  the mean compressibility for 1 bar, 1 dbar and 1 cbar respectively *. 

Ekman’s formula [4.2] is based on the results of the precise experiments 
of Amagat (1 893) in determining the compressibility of pure water and the 
results of Ekman’s experiments on sea water. For his experiments Ekman 
used only one sample of water, one half of which was diluted to  a salinity of 
31.13’/00 while the other was evaporated to  obtain a salinity of 38.53900. 
Ekman carried out 36 measurements at pressures from 200 to 600 atm. and 
at temperatures from 0 to 20°C. Ekman’s experiments were exact, but in- 
complete, and, in spite of some recent studies of the compressibility of sea 
water (Newton and Kennedy, 1965; Wilson and Bradley, 1968; and others), 
to  which reference will be made below, Ekman’s result, expressed by formula 
[4.2], is the sole source for the calculation of specific volume in situ. At the 
same time, it is supposed that it is also the source of fundamental errors both 

* There is a misprint in the heading of the table: one should read 109p instead of 108p since, according 
to the explanation of the table (p. 332), the mean compressibility for one decibar is intended. 
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in the calculation of specific volumes and in the calculation of the speed of 
sound (Section 19) etc. 

[4.2], we can define from formula [ 4.1 ] any specific volume in situ, a S T P .  A 
table of mean coefficients of compressibility 109p is given in the Oceanologi- 
cal Tables (Zubov, 1957a, table 14) *. More convenient tables for this deter- 
mination within the ranges of temperatures from -2 t o  30°, of salinities 
from 30 to  40°0  and of pressures up t o  10,000 dbar have been compiled by 
Schumacher (1924). Schumacher breaks Ekman’s formula down into four 
addends and gives tables for each of them **. 

Knowing the mean coefficient of compressibility p,  determined by formula 

- (227 + 28.33 T - 0.55 1 T2 + 0.004T3) + (a) 

(b) 

4886 logp = 
1 + 1.83 10-5P 

+ 10-4p(105.5+9.50T-0.158T2) - 1 . 5 ~ 1 0 - ~ T p ~  - 

- 10-4p(32.4-0.87T+0.02T2)] + ( c) 

+ 1 O-2(uo - 28)2 [4.5 - 0.1 T - 1OP4p( 1.8 - 0.06T)l = 

- 10-1 (uo - 28) [( 147.3 - 2.72 T +  0.04 T2) - 

(4 
= a + b + c + d  

The value of the last term (d) may be neglected for ocean waters; its value 
becomes important only for strongly desalinated waters. 

This, however, is not the procedure for calculations of specific volume in 
situ manually, without the use of a computer. The method indicated of 
determining aSTp  according t o  formula [4.1] represents a preliminary stage, . 
and these calculations are made for some base values of specific volume. For 
the calculations themselves special tables have been compiled by Hesselberg 
and Sverdrup (1  9 15a) and Bjerknes and Sandstrom ( 19 10, 19 12); the latter 
are the most convenient and are based on the expansion of the function 
a! = a!(S, T,  p )  into Taylor’s series (Section 23). 

5. CHARACTERISTIC DIAGRAMS. THE 7‘4 DIAGRAM 

Let us turn once again to  the equation of state of sea water at atmospheric 

[5.1 I 
pressure : 

a! = a!@, T )  

* See p.28 (footnote). 
** Schumacher’s tables are also given in Landolt-Bomstein (1952, p.432). 
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and consider the question of its graphic representation. Equation [5.13 shows 
that setting two parameters of state arbitrarily, we can determine the third: 

a = a ( S , T ) ;  T = T ( a , S ) ;  S = S ( a , T )  

Let us consider the graphs of these three equations, constructed according 
t o  Knudsen’s formulae, using instead of specific volume cy conventional spec- 
ific volume uT . 

The graph uT = uT(S,  T ) ,  represented in Fig. 1, is called a T-S diagram 
(thermohalogram); Fig. 2 represents the graph S = S ( u T ,  T ) ,  or, a uT-T 
diagram (volumethermogram); finally, Fig. 3 shows graph T = T ( u T , S ) ,  or  a 
uT-S diagram (volumehalogram). 

All three diagrams (Figs. 1-3) with the parameter uT are isosteric (we en- 
counter the term “isosteric T-S diagram” for the first time in the work of 
Zubov and Sabinin (1958). Using the parameter uT instead of uT we will ob- 
tain the corresponding isopycnal diagrams. The diagrams considered are 
characteristic diagrams of state of sea water at atmospheric pressure; the 
term “characteristic diagram” was apparently proposed by Montgomery 
( 1950). 

important property consisting in the presence of extremes of isosteres 
(isopycnals); the line of these extremes (the broken line in Fig. 1)  bears the 
not very appropriate name of the line of the temperatures 8 of maximum 
density (or least specific volume). This line coincides with isoline aS/a T = 0, 

Considering the T-S diagram (Fig. l ) ,  we can immediately observe its very 

Fig. 1 .  Isosteric T-S diagram of sea water. The broken line is the line of temperature of maximum 
density 0 ,  the dash-dotted line is the line of freezing point 7. 
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Fig. 2. uy-Tdiagram of sea water. 

where aS/aT is the cotangent of slope of the angle of the isosteres (isopycnals) 
to the abscissa axis of the T-S diagram, or the thermohaline derivative (see 
Section 25). The temperature of maximum density 8,  which decreases with 
an increase in salinity, is determined according to the formula (Zubov, 1938): 

8 = 3.950 - 0 . 2 s  ~ 0.01 1 s2 + 0.00002s3 [5.21 

Helland-Hansen (1912) and Defant (1961), instead of [5.2], give the 
following approximate formula: 

8 = 3.95" - 0.266 uo 

of the thermohaline derivative (Section 25). 
The most exact formula for 8 can be obtained 

15.31 

starting with the concept 

Fig. 3. U T - S  diagram of sea water. 
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The line of temperatures 7 of freezing of sea water (dash-dotted line in 
Fig. 1) is also plotted on the T-S diagram, as determined by the empirical 
formula of Hansen ( 1904): 

T = -0.0086 - 0.064633 uo - 0.0001055 u i  

The last relation can also be expiessed through salinity (Zubov, 1938): 

7 = -0.003 - 0.0527s - 0.00004S2 - 0.0000004S3 

L5.41 

L5.51 

Subsequently Thompson ( 1932) proposed the formula: 

7 = -0.0966 CI - 0.0000052 C13 

which is correct for values of CI up to 40Oi00. 
It is apparent from Fig. 1 that for low salinities the temperature of maxi- 

mum density is higher than the temperature of freezing; these temperatures 
become equal at So=, = 24.695'/00; at the same time 8 =7 = - 1.332'; 
uo=7 = 19.825. 

The property mentioned of the T-S diagram - the presence of the ex- 
tremes of isosteres (isopycnals), as well as the non-linearity of the relation- 
ship between density and temperature and salinity, is the consequence of 
the anomalous nature of the properties of sea water; this question will be 
considered in more detail in Section 21. In particular, the relationship con- 
sidered between the temperature of maximum density 8 and the temperature 
of freezing T leads to  the differing nature of the processes of mixing and to  
other differences between sea waters ( S  > 24.695Oh) and brackish waters 
(S< 24.695Oh). 

Characteristic diagrams have a twofold application in oceanography: 
(1) The calculation ofdensity (specific volume). For this purpose both the 

T-S diagram and the uT-S diagram are convenient. Graphs for the computation 
of density (specific volume) are constructed on a large scale using auxiliary 
tables of the functions S = S ( p ,  T )  or  S = S ( a ,  T )  specially calculated for this 
purpose (Mamayev, 1954; Zubov and Mamayev, 1956; Burkov et al., 1957; 
Mamayev, 1963). In particular, the author (Mamayev, 1954) calculated an 
auxiliary table for the construction of isosteric T-S and uT-S diagrams in the 
range - 2 < T < 30°C and 5 < S < 4O0/0o, i.e., for the entire range of tempera- 
tures and salinities of the WorId Ocean. The methods for calculating the table 
are considered in the article quoted; the table itself is given in the Appendix 
(Table A2) together with a brief description of the methods. The theoretical 
basis for the method of calculating auxiliary tables is considered in Section 29. 

(2) The analysis of  the T-S relations of sea waters. The T-S diagram is 
the basis for plotting the T-S relations of the water masses of the World 
Ocean. At the same time, the field of the T-S diagram can be used to plot, in 
addition, not only the isolines of density or of specific volume, but also other 

l5.61 
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functions of the equation of state of sea water - the isolines of the first deri- 
vatives of density by temperature and salinity (Section 24), the isolines of the 
speed of propagation of sound (Section 19) and others. The study of the real 
T-S correlations of the waters of the ocean and of their changes in time and 
space in the field of particular functions of the equation of state constitutes, 
as has already been said in the introduction, the subject of T-S analysis and 
hence of the entire present work; the present paragraph represents the first 
graphic introduction to this problem. 

“characteristic diagram” to  the T-S diagram, emphazising its role as a tool 
(or means) for the analysis of the natural waters of the World Gcean. It is 
well-known that in dynamic meterology a whole series of characteristic 
diagrams is used for the analysis of the state of air masses; of them the 
closest to  the T-S diagram is probably Taylor’s diagram, on which the rela- 
tionship between temperature and vapor pressure is established (Montgomery, 
1950); so far as dynamic oceanography is concerned, the only characteristic 
diagram in its arsenal (if we are not to  go beyond the limits of the present 
context), is the T-S diagram, or the diagrams derived from it, considered 
above. 

structing a volumetric diagram of state; for this it is necessary to  plot the 
temperature on axis y ,  the salinity on axis x and the pressure on z .  Then the 
planes parallel to plane xOy in which the T-S diagram for the atmospheric 
pressure is shown (Fig. l ) ,  will represent T-S diagrams at corresponding 
values of pressure. For example, Fig. 4 represents a T-S diagram for plane 
p = 2,000 dbar, the values of specific volume us,T,2000, the field of the isolines 
of which has been plotted on the figure, calculated with the help of the 
Oceanological Tables (Zubov, 1957a) *. Comparing Figs. 1 and 4, it is easy to 
see the differences between the fields of the isosteres, determined by pressure. 
The T-S diagram shown in Fig. 4 can be used for the analysis of water masses 
in the plane p = 2,000 dbar. 

In addition to those considered above, there exist T-S diagrams with func- 
tional scales. As an example one may cite the diagram proposed by Weyl 
(1  970). On this diagram the isopycnals represent equidistant straight lines 
inclined at an angle of 45” to  the abscissa axis, the isotherms are parallel to 
the abscissa axis and the isohalines come together slightly at the top (thus, 
the system of coordinates is not rectangular). Weyl’s T-S diagram is useful 
for a comparative graphic evaluation of the influence of temperature and 
salinity on density. 

What has been said above accordingly justifies the application of the term 

The diagram of the state of sea water in situ gives us the possibility of con- 

* F’ingree (1972) points out that T-S diagrams for deep isobaric surfaces can be constructed approxi- 
mately by displacing the isolines of u~ or u,j by - 2.2”/1,000 dbar. 
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Fig. 4. Isosteric T-S  diagram of sea water at p = 2000 dbar. 

6. THE EQUATION OF STATE IN TUMLIRZ’ FORM 

The equation of state of sea water, expressed by Knudsen’s empirical for- 
mulae, is not, generally speaking, an equation of state in the strict sense of 
the word; it is practically impossible to use it t o  describe an arbitrary thermo- 
dynamic process in which all the parameters of state are changing simultane- 
ously. Therefore, it is necessary to  seek new forms of the equation of state 
which may be equally acceptable both from oceanographic and thermodynam- 
ic points of view. 

Eckart (1  958) was the first t o  obtain a simplified form of the equation of 
state both for pure and for sea water, distinguished by quite a good degree of 
accuracy and satisfying the conditions noted above. For this purpose, Eckart 
analyzed the initial experimental data of Amagat, of Ekman and the later 
data of Kennedy (1957), as well as making use of Bjerknes’ and Sandstrom’s 
( 19 10) tables, which include Knudsen’s data. Eckart showed that the equa- 
tion of state could be expressed by Tumlirz’ equation (1909): 

( p  +PO) (a -ql) = h t6.11 

where p is pressure, a! specific volume, p o ,  a. and h the functions of tempera- 
ture (for pure water), temperature and salinity (for sea water). 

Testing out Tumlirz’ equation in relation to  the experimental data (we do 
not consider the details of his methods, referring those interested to  the 
primary source), Eckart came t o  the following results. Quantity a0 proved 
constant both for pure and for sea water and equal to  a0 = 0.6980. For pure 
water (S = 0) and sea water p o  and h are expressed by the following relations: 

Po = 5890 + 38 T - 0.375 T 2  + 3s [6.21 

X = 1779.5 + 11.25 T - 0.0745 T 2  - (3.80+ 0.01 T ) S  

i.e., the relationship between p o  and h and salinity turns out to  be linear. 

L6.31 
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In Eckart’s formulae [6 .1]  -[6.3] specific volume is expressed in ml/g 
(see footnote on p. 14), while p represents total pressure (i.e., taking 
account of the air column) in atmospheres ( 1  atm. = 1.01 325 bar). 

temperatures 0 < T < 40”C, of salinities from 0 to  4Oo/oo and of pressures 
from 0 to 1,000 atm. (1  0,000 dbar). With respect to the precision of the 
equation, Eckart points out that errors in the determination of specific 
volume amount to: random errors - not less than * 2 lop4 ml/g, systematic 
errors - not less than 5 2 - lop7 ml/g; the latter lead to an uncertainty of the 
order of 0.5 - 1 .O% in the determination of isothermal compressibility. 
Eckart also points to  the need for a more precise definition of the relation- 
ship between p o  and A, and salinity. We may note that equation of state in 
Knudsen’s form and in Eckart’s form should be considered as equally valid, 
since both are based on an independent study of the initial data; one can 
speak only of a possibly greater accuracy of Knudsen’s equation. Fig. 5, 
taken from Fofonoff‘s (1962) work, gives an idea of the differences in the 
determination of specific volume according to Knudsen and Eckart . These 
variations do not exceed 5 lo-’ ml/g at a temperature of 18°C and they rise 
sharply in the neighborhood of the high salinities and temperatures, reaching 
30 - lo-’ ml/g at T = 30” and S = 35900. 

These differences, as Fofonoff ( 1962) points out, are caused mainly by 
inexact knowledge of the coefficients of thermal expansion of sea and fresh 
water. As regards the coefficients of saline “contraction”, like the coefficient 

Eckart’s simplified equation of state was derived by him for the range of 

T°C 

Fig. 5. Differences of specific volumes 104(q - CYE) (where CYK is given according to Knudsen, IYE 

according to Eckart) as functions of temperature, salinity and pressure (in dbars), (Fofonoff, 1962.) 
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of isothermal compressibility it differs by not more than 1% in Knudsen's 
and Eckart's determinations. 

mation of the results of their very extensive investigations of the equation of 
state of sea water. They performed 795 measurements of specific volume 
(cm3/g) with values of temperature close to  0, 5, 10, ... 40"C, of salinity 
close to 0, 10, 20, 30, 35 and 40'0 and in the range of pressures between 
1,013 and 965.258 bar ( 1  5 values). Samples for this purpose were taken from 
the Atlantic Ocean (in the Key West-Bermuda area), while the salinity of the 
samples was varied by dilution with distilled water or by evaporation in order 
to  reach values close to those indicated above. The specific volume of pure 
water was also measured under similar conditions. 

The experimental results of all 795 measurements are presented by these 
authors with an accuracy of up to  in the form of tables which served as 
a basis for the calculation of the parameters of Tumlirz' equation [ 6.1 1. The 
coefficients in formulae [6.1 I - [6.3 I ,  according to Wilson and Bradley ( 1968), 
differ somewhat from Eckart's coefficients; their values are given in Table A8. 
Wilson and Bradley's equation is valid within.the ranges: 0 < S < 4Oob, 
0 < T < 40°C and 1 < p < 965 bar. 

The difference in specific volumes according to  Wilson and Bradley and 
according to  Knudsen-Ekman is small, and right up to  20°C does not exceed 
2 - cm3/g. For sea water of 35Oh salinity the greatest differences (Wilson 
and Bradley's data minus the classical data) are observed at a temperature of 
4 0 " C ; 4 . 1 0 - 4 a t p =  1 b a r a n d 7 . 1 O P 4 a t p =  1,000bar. 

Wilson and Bradley ( 1968) consider the main shortcoming of their equa- 
tion of state to  be the fact that, according t o  it, the thermal expansion of 
pure water approaches zero at 3" C rather than at 4" C, and that the specific 
volume of pure water at 0°C proves equal to  1 .OOOO cm3/g. They attribute 
this t o  the small quantity of measurements carried out in the low tempera- 
tures. 

Fisher et al. (1970), analyzing anew the approximation by Wilson and 
Bradley of their experimental data with the help of Tumlirz' equation, found 
that the quantities p o ,  a0 and h, according t o  Wilson and Bradley, are not 
precise enough. As a result of their second approximation of Wilson and 
Bradley's data t o  Tumlirz' equation, with the introduction of other data, in 
particular of the results of direct measurement of the thermal expansion of 
sea water under pressure (Bradshaw and Schleicher, 1970), Fisher e t  al. ob- 
tained other, more unwieldy expressions for the quantities po, a. and A, 
which are also given in Table A8. 

The difference in the values of specific volume (Fisher's data minus the 
classical) for water of 3 5 O h  salinity do not exceed 1 0-4 in the range 
0 < T < 30°C and 1 < p < 800 bar; the maximum density of pure water is 

Tumlirz' equation was chosen by Wilson and Bradley ( 1968) for an approxi- 



EQUATION OF STATE IN TAIT-GIBSON'S FORM 37 

observed at 4.OO0C, and, what is most interesting, the intersection of the 
lines of maximum density temperatures and freezing temperatures on the 
T-S diagram is observed at lower salinity - approximately 22'0 instead of 
24.7'0. 

7. THE EQUATION OF STATE IN TAIT-GIBSON'S FORM 

Interesting work in investigating the influence of pressure on the specific 
volume of pure water and sea water has been done by Li (1967), who 
studied the question of approximating the experimental data of Amagat 
(1893) and Ekman (1908) on the compressibility of pure water and sea 
water respectively, by expressions simpler than those proposed in the past by 
these authors, namely, by the old, simple equation of Tait ( 1888) for pure 
water and by Tait-Gibson's equation for sea water (Gibson was the first to 
study the applicability of Tait's equation to solutions). To verify his results, 
Li also made use of more modern data (Kennedy et al., 1958; Wilson, 1959; 
Newton and Kennedy, 1965, and others). 

The equation of state of pure water in Tait's form is as follows: 

- - uT,1 - Clog- B + P  
uT,P B + l  

with 1 < T <  45°C 

1 < p < 1,000 bar 
Tait-Gibson's equation for sea water has the form: 

B* + p  
B*+ 1 

us,T,p = us,T,1 - ( 1  - s .  10-~)c10g- 

[7.11 

"7.21 

with O <  T <  20°C 

1 < p < 1,000 bar 

30 < S < 40'100 

In formulae [ 7.1 ] and [ 7.21, according to Li's results: 

C = 0.31 5 S U ~ ,  1 [7.31 

B ~ 2 6 6 8 . 0  + 19.867T - 0.31 1 T 2  + 1 . 7 7 8 ~ 1 0 - ~ T ~  L7.41 

B* = (2670.8 + 6.89656s) + (1 9.39 - 0.0703 178S)T - 0.223 T 2  [7.51 

at atmospheric pressure ( 1 bar) and at pressure p bar, respectively; us, T, and 
The symbols: uT, and u r P  are the specific volumes (ml/g) of pure water 

are the same for sea water, respectively. us, T , P  
It should be borne in mind that formula [ 7.21, in addition to us, T, 1, also 
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includes the specific volume of pure water at atmospheric pressure, u ~ , ~ .  
Formulae [ 7.1 ] and [ 7.21 do not include any new relationships for the 
determination of these quantities and therefore, in calculating with these 
formulae, it is necessary to  use known values of specific volume of pure 
and sea water at atmospheric pressure. Thus, Li’s investigation concerns only 
the compressibility per se of water. 

Formulae [7.1] and [7.2] yield a very good result. Thus, for standard sea 
water (S = 35%, T = OOC), the difference between the results of calculation 
according to  formula [ 7.21 and according to the Knudsen-Ekman formulae 
does not exceed f lo-’ in the range of pressure from 1 to  99 bar. At the 
same time, formula f7.21 is considerably simpler than Ekman’s formulae 
[4.1] and [4.2]. 

8. THE EQUATION OF STATE IN POLYNOMIAL FORM 

As has already been noted, the equation of state can be represented in 
particular, in the form of a regular polynomial by increasing powers of the 
parameters of state. Below are given the existing formulae for the equation 
of state of sea water at atmospheric pressure and in situ; these formulae may 
prove highly useful (and more convenient) for various types of electronic 
computations than others. 

tained by these authors in the following form (u is specific gravity): 
The equation of state at atmospheric pressure (Cox et al., 1970) was ob- 

o( T ,  S )  = xuisi T‘Sj 
i,i 

(0 < i,j < 3) 

= ao,o + al,o T + ao, S + a2,0 T + a 1, ST + ao, S 2  + 
+ a3,0 T 3  + a2,,ST2 + al ,2S2  T +  ao,3S3 

with 9 <  S <  410100 
O <  T <  25°C 

The numerical values of coefficients ai,i of polynomial [ 8.1 ] are given in 
Table A9. 

The data which served to  obtain equation [8.1] were derived by Cox et al. 
directly (by the flotation method). As a reference standard of pure water a 
specially prepared specimen was taken (Cox et al., 1968), obtained by triple 
evaporation of a deep-water sample of the Mediterranean (it was established 
that this distillation did not lead to isotopic fractionation - Mhacht5, 1971). 

In the range of salinities of 15-40%0, the data of Cox et al. agree with 
Knudsen’s data on the average within limits of Au = 0.006 (Knudsen’s data 
are systematically lower as compared with Cox’s data); the maximum diver- 
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gence amounts to  about 0.02 1. At lower salinities and temperatures, Cox’ 
data exceed those of Knudsen to  a considerably greater degree (reaching a 
maximum difference of A a  = 0.078 at T = 0°C and S = 5%0. 

The equation of state of sea water in situ has been obtained by Crease 
( 1  962) in the following form (a  is specific volume): 

a ( p ,  T , S )  = c a i , j , kp iTJ (S  - 35)k , 

Formula [ 8.21 is valid within the following ranges: 

0 < i, j,k < 4 L8.21 
i J , k  

(1 )  p < 100 kg/cm2, 5 < S < 37O/~,  freezing point < T < 30°C 
( 2 )  p < 500 kg/cm2, 33 < S < 37O/00, freezing point < T < 30°C 
( 3 )  p < 1,000 kg/cm2, 33 < S < 37’0, freezing point < T < 6°C 
The numerical values of coefficients aj , j ,k  of the polynomial [8.2] are 

also given in Table A9. 
Equation [ 8.21 was obtained indirectly - from data on the speed of sound 

in the sea (Wilson, 1960b) by integration of relationship [ 19.1 1 ] and ex- 
pressing it for actlap. Crease’s work was designed to show that the indirect 
determination of the density of sea water through the speed of sound can 
prove more exact than the direct. 

We may mention that the equation of state of pure water in polynomial 
form can be found in the work of Kell and Whalley (1  965). This equation 
(it is not given here) is valid in the ranges 0 < T < 150°C and p < 1,000 bar. 

9. SIMPLIFIED EQUATION OF STATE OF SEA WATER 

The unwieldiness of the equation of state of sea water, expressed by 
Knudsen’s and Ekman’s formulae (or by other formulae), sometimes consti- 
tutes an obstacle to  its immediate application in various theoretical investiga- 
tions directed towards elucidating the fundamental characteristics of oceanic 
thermohaline circulation or of the analysis of the dynamics of water masses. 

For this reason the need often arises for an approximation of the equation 
of state by relationships as simple as possible. Two cases occur in this connec- 
tion: the case of a linear approximation, when the equation of state is simpli- 
fied to  such an extent that it expresses nothing more than the linear relation- 
ship between density and temperature and salinity (or even only temperature), 
and the case of a non-linear approximation, when the equation of state is 
simplified as much as possible but retains its fundamental non-linear features 
(curvature of the isopycnals on the T-S diagram). 

The first version is often applied in analytical models when the lineariza- 
tion of equations is necessary, and when, at first, it is enough to  confine one- 
self solely to the very fact of the simplest relationship between density, 
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temperature and salinity. A non-linear approximation, of course, has a con- 
siderably larger field of application. Let LIS consider these two versions. 

Linear approxirna t io n 

The so-called Boussinesq approximation: 

P = P o ( ]  - a n  L9.11 
in which the relationship between density and salinity is neglected, is used in 
many studies of thermohaline circulation; as an example we may refer t o  one 
of the basic works - Robinson and Stommel ( 1959), as well as t o  others. 

A linear equation of state of the form: 

p = p o ( l  - a T + P S )  ~ 9 . 2 1  

is introduced in the works of Lineikin (1 962), Stommel ( 196 I ,  1962b) and 
others (see, e.g., Section 46 of the present monograph). 

are constant coefficients of heat expansion and saline “contraction” of  sea 
water, respectively. In the majority of cases it is taken that a = - 2 
0 = 8 - lop4. 

we must note that it still does not reflect the most important property of 
sea water, which manifests itself in the existence of a curvature of  the iso- 
pycnals on the T-S diagram, whereas it is precisely this property which is 
responsible for many of the particularities of the thermodynamics of  sea 
water. 

water, which, on the one hand, would be very simple by comparison with 
Knudsen’s formulae and, accordingly, might be freely used in various theor- 
etical constructions, while reflecting, on the other hand, the fundamental 
non-linear features of the composition of sea water. It is clear that the 
existence of Eckart’s equation of state does not d o  away with the need t o  
obtain even simpler relationships. 

In formulae [ 9.1 ] and [ 9.21 p o  is some constant value of density, CY and /3 

and 

Considering linear formula [ 9.21, closer to reality as compared with [ 9.1 1, 

Therefore, it is essential t o  obtain an approximate equation of state of sea 

Non-linear approximation 

The first simple relationship in such form is, apparently, Dorsey’s ( 1968) 
formula for the calculation of the specific volume of sea water: 

A ,  T d = A35 O,d - (6.48 + 0.00375 d)T  - 

- 0.46 T 2  + (6  - 0.283 T - 0.005 T 2 )  (S  - 35)  
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where A = l o 5 ( ]  - a ) ,  a is the specific volume, d is the depth in fathoms 
( 1  fathom = 182.88 cm), S = the salinity, T = the temperature, 6 = the tabu- 
lated function o f d  (otherwise, a different expression of d,  see Table I ) .  

This equation is suitable for salinities from 3 1 to  3 7 ° / ~ ~ ,  temperatures from 
0 to  22" and tl from 0 to  4,000 fathoms. Within these limits it yields specific 
volume Q with an accuracy of up t o  2 * Equation [9 .3]  was derived by 
Dorsey from the table of specific volumes given in Heck and Service's tables 
(1924). Like formula [9.3] itself, Heck and Service's tables are based on the 
tables of Bjerknes and Sandstrom ( 19 10). 

Dorsey also gives a table of  the relationship between p (the pressure in 
bars) and d (the depth in fathoms). 

Dorsey's formula is inconvenient for calculations and, in addition, can be 
simplified; therefore, it is desirable t o  calculate anew a relationship between 
temperature, salinity and density which is distinguished, on the one hand, 
by the greatest simplicity, and on the other, allows for the fact of curvature 
of the isopycnals in the field of the T-S diagram, which is not reflected in 
linear formula [ 9.21. At  first, we will confine ourselves t o  obtaining a formula 
for the determination of the density of sea water at constant (atmospheric) 
pressure, bearing in mind its possible application to that range of questions 
where sea water can be considered as an incompressible liquid. 

The consideration of the T-S diagram or  of the uT-T diagram (Figs. 1 and 
3) shows that the isopycnals have a parabolic form; on the other hand, the 
distances between neighboring isopycnals decrease with an increase in salinity, 
and this increase is at first sight linear in nature; this makes it possible to  
neglect the quadratic term in the second parenthesis of Dorsey's formula 
[9.3] and to approximate the desired relationship at  constant pressure by 
the following formula : 

p - p o  = a  + b ( T -  To)  + c ( T -  TOP + [ f+g(T-To) l (S-So)  

TABLE I 
The relationship between d and d in Dorsey's (1968) formula 

d 100 300 500 700 900 
(fathoms) 

0 76.3 15.3 75.0 74.3 73.8 
1,000 73.3 72.8 72.3 71.8 71.3 
2,000 70.8 70.3 69.8 69.5 69.0 
3,000 68.5 68.2 67.8 67.2 66.8 
4,000 66.2 66.0 65.8 65.2 - 

Maurer-Schumacher's formula for the determination of the speed of propagation of sound in the 
sea has the same form (see, for example, Mamayev, 1963). 
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where a, b, c, f and g are empirical coefficients subject to  determination, po ,  
To and So - some constant values of density, temperature and salinity. We 
will assume below, as is usual, that To = O"C, So = 35O/00, p(0.35) = 1.02813. 

The values of the constant coefficients a, b and c were calculated by the 
method of the least squares with a fixed value of salinity S = 35'/00 (in this 
case the last term in formula [9.4] equals zero). For calculations, from the 
exact table 10 of the Oceanological Tables of Zubov ( 1957a), calculated 
according to  Knudsen's formulae, values of density were taken with S = 3 5 ° / ~  
for temperatures of 0, 5, 10, ..., 30°C,  seven values in all. 

f+ gT = a p / a s  i9.51 

were calculated by the method of least squares from the table of gradients 
ap/aS (Zubov, 1957a, table 24). The values of the gradients ap/aS were aver- 
aged every 5O/00 between 0 and 40%0 for the same values of temperature 
T = 0, 5 ,  10, ..., 30"C, seven values of gradients in all. 

As a result of calculations, the following formula was obtained (Mamayev, 
1964a), which we accordingly propose as a simplified equation of state of sea 
water at atmospheric pressure * : 
uT = 28.152 - 0.0735T- 0.00469T2 +(0.802-0.002T)(S-35) [9.6] 

where uT = (p - 1) - 1 0 3 ,  conventional density. 
Calculations according to formula [9.6] show that the error in the deter- 

mination of density p throughout the entire range of temperatures 
(0 G T < 30") and salinities (0 < S < 40°/~) of the World Ocean as compared 
with Knudsen's formulae on the average amounts to 0.5 - g/cm3; 
it increases with a decrease in temperature and salinity and reaches the value 
2 - 1 OP4 when T = 0" and S = 0"/00. In the range of oceanic salinities 
(32 < S < 37'/00) and the range of temperatures(0S TG 30") the error does . 
not exceed so small a quantity as 0.3 - 
S = 35'/00 the error is equal t o  2.6 - 1 O-5. 

where ( uT)K is conventional density according to Knudsen's formulae (Zubov, 
1957a, table 1 I), ( u ~ ) ~  - conventional density according t o  formula [9.61, 
while Fig. 6 represents the same result graphically. From a comparison of 
Fig. 5 and Fig. 6 it follows that formula [9.6] is no less exact than Eckart's 
equation [ 6.1 I. 

Coefficients f and g ,  with: 

+ 

In particular with T = 0" and 

Table I1 gives the values of the differences of densities AuT = - 

* In the author's work (Mamayev, 1964a), in formula [9.6] the first term is written erroneously; 
instead of 28.14 it should read 28.152. In addition, it is also stated erroneously in the same place that 
coefficientsf and g were calculated from the values of gradients a p / a S ,  taken with S = 35Oloo. In this 
latter case, instead of the coefficients appearing in formula [9.6], the very close values f =  0.801 and 
g = - 0.0019 are obtained. 
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Let us note that the precision of equation [ 9.61 can be enhanced if instead 
of the quadratic relationship of density to  temperature at constant salinity 
(S = 35O/00) we take a cubic relationship. Calculations by the method of the 
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Fig. 6. The difference of densities l O 2 A [ ( u ~ ) ~ -  (uT)M], where ( q ) ~  is the density according to 
Knudsen, ( q ) ~  according to formula [9.6]. 
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least squares with S = 35"/00 and T = 0, 5 ,  10, ..., 30" lead to the following 
formula: 

a T ( T ,  35) = 28.123 ~ 0 .0576T-  0.00613T' + 0.000032T3 

which is accurate in density to  lop5 .  
Let us note  that without any particular loss of accuracy the last term i n  

formula [9.6] can be simplified at  low temperatures and written in the form 

In conclusion, let us consider the question of an approximate calculation 
of the influence of pressure on density. Defant ( 196 1, p. 305) gives the 
following simplified formulae for the determination of specific volume and 
density in situ in a standard ocean: 

l9.71 

0.8 ( S  - 35). 

105a35,0,p = 97,264 - 0 . 4 4 ~  

105p35,0,p = 102,813 + 0 . 4 6 ~  

where p is pressure in decibars. From the last formula follows: 

0,(35,0,p) = 28.13 + 0 . 0 0 4 6 ~  

pressure in equation [ 7.61 ; for this it is necessary to  introduce into it the 
term + 0.0046 p .  I t  should be noted, however, that Defant's relations given 
above are inexact; thus, when p = 5,000 dbar the error in the determination 
of density in a standard ocean reaches 0.5 units of  uT and can increase if 
temperature and salinity deviate from their values in a standard ocean. 

A comparative analysis of the exactness of the simplified equations of 
state enumerated above was carried out  by Vasiliev ( 1  968), who came to the 
conclusion that the most exact were equations i6.11 and L9.61, and that the 
second, thanks t o  its greater simplicity, was to  be preferred. Equation [9.6] ,  
in particular, has been used for the construction of theoretical models of  
ocean circulation (see, for example, Sarkisian, 1966). 

L9.81 

This formula makes it possible approximately to  calculate the influence of  

10. APPROXIMATION OF THE KNUDSEN-EKMAN EQUATION OF STATE 

Bryan and Cox ( 1  972), and Friedrich and Levitus ( 1972), published at the 
same time their independent results of the approximation of the classical 
Knudsen-Ekman equation of state by polynomials of varying degree, more 
convenient for numerical calculations than the Knudsen-Ekman formulae 
themselves. The immediate goal of these authors was to  obtain equations for 
the determination of density in situ a t  levels varying in depth for use in the 
numerical calculations of models of ocean circulation. 
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However, their results are of great value for T-S analysis, in particular for 
the construction of T-S diagrams for deep levels (of the type shown in Fig. 4), 
and therefore it is highly desirable to give some account of them. 

The content of this section could have become part of Section 8 ( the re- 
presentation of the equation of state in polynomial form) o r  of Section 9 
since, for example, Bryan and Cox give a set of equations of state even 
simpler in form than equation [ 9.61. However, it appears separately, since. 
in the first place, the authors mentioned above are not seeking an alternative, 
thermodynamically-grounded equation of state of  the type formulated by 
Tumlirz, Gibson-Tait or  others; in the second place, they are not treating the 
results of independent experiments o r  indirect calculations; in the third place, 
the simplified equations form an integral part of their sets of formulae. 

third degree polynomial: 
Bryan and Cox approximate the Knudsen-Ekman equation both by a 

uT(T,S,  Z )  - ~ o ( T o , S o ,  2 )  = x16T + ~ 2 6 S  + ~ 3 ( 6 7 ' ) ~  + ~ 4 ( 6 S ) ~  + ~5 6T6S + 

+ x6 ( S T ) ,  + x7 6T + x8(6T)*  6 s  + x 9 (  6 S ) ,  [ 10.11 

and by the simplest non-linear formula: 

CJT(T, S ,  Z )  - uO(  To,So, Z )  = x16T + ~ 2 6 S  + ~ 3 ( 6 T ) ~  [ 10.31 

In these formulae Z = 0, 250, 500, ... 6,000 m - the depth of the level for 
which the equation of state in situ is calculated (25  levels at intervals of 
250 m), 6T = ( T -  T O ) ,  6 s  = (S  - SO) ,  where To and SO are the mean values 
of temperature and salinity a t  corresponding levels for the entire World Ocean 
Thus, to each of the formulae [ 10.1 3 and [ 10.21 correspond 25 approxima- 
tions of the Knudsen-Ekman equation of  state (according t o  the number of 
levels Z ) ,  which determine the conventional density in situ; the fact that 
deviations are determined with respect to values of TO and So different in 
each case reduces the range of temperatures and salinities for which an ap- 
proximation is necessary and, accordingly, reduces the error of the latter. 

Table A10 gives the values of C J ~ , ~ ,  To and So,  as well as coefficients x l ,  
x 2  and x3 of the polynomial [ 10.21. For  the coefficients of the polynomial 
[ 10.1 I the reader is referred to the primary source (Bryan and Cox, 1972). 
Fig. 7 shows the density deviations of  Bryan and Cox from the Knudsen- 
Ekman equation of state. It may be seen from the figure that exactness in- 
creases substantially with depth. 

Friedrich and Levitus ( 1972) took as a basis equation [ 9.61 : 

oT( T , S )  = C, + C, T + C, S + C4 T 2  + C, T S  [ 10.31 

and, in particular, recalculated the coefficients of equation [ 9.61, obtained 
by the author of the present work, for a narrower range, namely: 
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Fig. 7. The mean deviation (%) in the determination of density U T  by Bryan and Cox' (1972) polynomials 
from the Knudsen-Ekman formulae in the oceanic range of temperatures and salinities (this range varies 
from -2 < T <  29" and 28.5 < S < 36.7O/oo for the surface of the sea to 0 < T < 2" and 34.7 < S < 
34.8'/00 for a depth of 6000 m - for details see the original). Also shown are the mean deviations of 
Eckart's (1958) equation and of the determinations of density by Bein et al., (1935). (From Bryan and 
Cox, 1972.) 

-2" < T < 30°C 

30 < S < 38OO 
[ 10.41 

(the result for the low temperature range proves better as compared with 
equation [ 9.61). 

the Knudsen-Ekman equation of state by an incomplete third degree poly- 
nomial: 

Striving for greater exactness, they also considered an approximation of 

u T ( T , S ) = C ,  + C 2 T + C , S + C 4 T 2 + C g S T + C g T 3 + C 7 S T 2  [ 10.51 

Their subsequent methods are close to  those of Bryan and Cox (calculation 
of the pressure for discrete levels at intervals of 1 km) with the difference that 
the coefficients of polynomials [ 10.31 and [ 10.51 occur at continuous qua- 
dratic functions of depth, C(2) = (Y + PZ + yZ2, which makes it possible to  
carry out interpolation for the intermediate depths (the curves of C ( Z )  are 
given in the work of these authors). 

In order to obtain greater exactness, Friedrich and Levitus (1  972) use 
equation [ 10.51 for the upper layer of the ocean, 0 < 2 < 2 km, and the 
range of temperatures and salinities [ 10.41 and equation [ 10.3 1 for the deep 
part of the ocean, 2 < Z < 5 km, and a reduced range: 

-2" < T < 8.38"C 

34.68 < S < 36.1O0lo0 
c10.61 
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Friedrich and Levitus' formulae yield very good coincidence with the 
Knudsen-Ekman data. 

The coefficients of polynomials [ 10.51 and [ 10.31 are given in Table A10. 

11. ON THE COMPARATIVE EXACTNESS OF THE VARIOUS EQUATIONS OF STATE OF SEA 
WATER 

In conclusion to this chapter, let us note anew that the numerical values 
of the relationships which determine the equation of state of sea water have 
long since been verified and defined more precisely, and that more than 
once. In addition to  the results of the experiments considered above, inde- 
pendent of the Knudsen-Ekman data (Wilson and Bradley, 1968; Cox et al., 
1970), we may point out that Thompson and Wirth (193 1 )  had already 
carried out an independent determination of uo on the basis of the analysis 
of 36 samples collected in the Pacific Ocean and Indian Ocean to  depths of 
1,500 m; the data obtained by them exceed the values of uo, as defined by 
the second formula of [ 3.21, by approximately 0.02 unit (Fofonoff, 1962). 
Tilton and Taylor (1937) proposed a formula more exact than [3.5] for the 
determination of the conventional density of pure water, based on the deter- 
minations of density performed by Chappius ( 1907). 

Further, the relationship of the density of sea water to temperature and 
salinity was investigated again by Bein et al. (Bein et al., 1 9 3 9 ,  who estab- 
lished that the determination of density following Knudsen's tables yields a 
systematic error at temperatures above 20" which reaches at 30" the value 
Au, = 0.02. Table 111 gives an idea of the differences in the data on density 
according to  Knudsen and Bein. 

Newton and Kennedy (1965) carried out experiments to  study the com- 
pressibility of sea water based on more perfected methods unlike those used 
earlier; series of experiments were carried out for waters with a salinity of 
0.00; 30.52; 34.99 and 41.03?00, as a result of which the values of specific 
volume were calculated with an accuracy of up to  -t 7 1 O-5. The results of 
the experiments are presented in the form of four tables (for the salinities 
mentioned) of the specific volumes with accuracy to  1 OW4 for temperatures 
of 0, 5, 10, 15, 20 and 25°C and pressures 1 ,  100, 200, ..., 1,300 bar (at 
intervals of 100 bar), i.e., for 84 values in each of the tables (a total of 336 
values of specific volume). A comparison of Newton and Kennedy's data 
with the Knudsen-Ekman data shows that for oceanic salinities the differ- 
ence between the two sets of data rises with an increase in pressure to  
900-1,000 bar, reaching 3 + 4 lop7, while Newton and Kennedy's data 
appear low as compared with the classical data. The authors quoted do not 
propose an equation of state. 



48 EQUATION or: STATE OF SEA WATER 

TABLE I11 

Conventional density OT of sea water for different values of temperature and salinity according to  
Knudsen (upper figures) and according to Bein (lower figures) 

I 0 20 30 40 

0 -0.132 
-0.1 32 

10 -0.273 
-0.273 

20 -1.770 
-1.770 

30 -4.327 
-4.327 

8.014 
8.021 

7.562 
7.56 1 

5.857 
5.860 

3.147 
3.171 

16.065 
16.066 

15.321 
15.320 

13.416 
13.422 

10.568 
10.596 

24.101 
24.098 

23.079 
23.083 

20.983 
20.988 

18.007 
18.026 

32.163 
32.177 

30.878 
30.888 

28.595 
28.597 

25.504 
25.498 

1 .  Ihe  figures in this table are taken from the Oceanological Tables (Zubov, 1957a, table 10) and from 
table of UT of Bein given in Landolt-Bornstein’s handbook (1952. p. 428). 

The direct instrument meas~irements of the coefficients of thermal expansion 
of sea water, carried out  by Bradshaw and Sclileicher ( 1970), and independently 
by Caldwell and Tucker ( 1970), give the best agreement with the corresponding 
quantity calculated according to the Knudsen-Ekman equation of state and 
also according t o  Crease’s equation (Section 8>, indirectly linked with the 
Knudsen-Ekman equations, and somewhat poorer agreement with Wilson 
and Bradley’s equation (Section 6). 

Finally, the results of the most recent measurements of  the specific volume 
of sea water, performed by Kremling (1 972) with the help of an electron 
oscillator, are in good agreement with formula [ 8.1 1 of Cox et  al. (Cox et  al., 
1970). In the ranges 0 < T < 25” and 9 < S < 39’/00 the mean error amounts 
to AuT = 0.008. 

A comparison of Kremling’s results with the Knudsen-Ekman data, in par- 
ticular, shows that Knudsen’s (1901) data for uT are somewhat low; the 
mean value of the error amounts to approximately AuT = - 0.0 13, which 
agrees with Thompson and Wirth’s (193 1) data and a similar opinion expressed 
by Carritt and Carpenter (1959), who considered that the error amounts to 
approximately AuT = - 0.02. 

This comparison of the exactness of the various equations of state may be 
concluded at the present stage with the following quotation: the experience 
of recent years “exemplifies once again the great quality of standards meas- 
urements in the early years of the century” (Crease, 197 1 ). 



CHAPTER 3 

FUNDAMENTALS OF THE THERMODYNAMICS OF SEA WATER 

12. SEA WATER AS A SUBJECT 01: THERMODYNAMICS 

In Chapter 2 the equation of state of sea water was considered mainly from 
the oceanographic point of view; we virtually did not touch upon questions of 
thermodynamics, including the study of the equation of state as one of its 
particular problems, if we d o  not count the fact that in Section 1 the funda- 
mental thermodynamic function - specific internal energy E - was briefly 
considered. However, a knowledge of thermodynamics is of vital importance 
for the study of the ocean and for the development of methods of thermo- 
haline analysis of its waters. The methods of thermodynamics are directly 
related t o  the study of the following problems, at least: the determination of 
the heat capacity of sea water at constant pressure and constant volume; the 
study of the adiabatic processes in the ocean, principally in its deep parts; the 
determination of the speed of propagation of sound in the sea; finally - and 
this is the most important - the study of such irreversible tliermodyizainic 
processes as heat conduction, diffusion and thermodiffusion. The study of 
heat conduction and diffusion, as we shall see below, represents the basis of 
the analytical theories of T-S curves; so far as thermodiffusion is concerned, 
this phenomenon practically has not been studied in the ocean. A more particular 
thermodynamic problem, comprised in T-S analysis, is the study of the con- 
traction on mixing of sea waters (Sections 21, 22). 

The complexity in the study of the thermodynamics of sea water consists 
of the fact that sea water represents a multicompoizent system, the param- 
eters of which are determined by its saline composition. For such a system 
an equation of state in general form can be written for the isotropic medium 
as: 

where: 

x j = m i @  mi [ 12.21 
1 

is the mass of the i-th component; mi its mass, M = C j  mi the mass of the 
entire system. 

On the other hand, it is known that the state of a system is determined by 
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k + 1 thermodynamic parameters, where k is the number of different com- 
ponents. Thus, a detailed study of the thermodynamics of such a complex 
system as sea water constitutes an extremely difficult problem. 

However, the problem is substantially simplified if we accept the hypo- 
thesis of the constancy of the saline composition of sea water, and consider 
sea water in such an approximation as a two-component, or binary system; a 
solvent (water) - a single solute, or component (“sea salt”) *. Such an approx- 
imation was introduced in the works of Eckart (1962) and Fofonoff (1 962). 
Other limitations, usual for thermodynamics in the study of general questions, 
consist of the fact that the medium is considered as isotropic, without polari- 
zation and magnetization, without displacement in the geopotential field 
(Haase, 1963). In addition, we will not consider in the present brief exposi- 
tion phase transitions, which have no vital importance in T-S analysis, 
referring the reader in this connection to the work of Fofonoff mentioned. 

Many questions of the thermodynamics of the ocean can be solved even if 
it is considered as a single-component system, and therefore we shall begin the 
exposition of the questions which interest us with the consideration of pricisely 
such a system. 

The fundamental equation of thermodynamics for reversible quasi-static 
processes in a single-component system with constant composition has the 
form : 

d € =  Tdq  - p  dv 

where E is specific internal energy, T - absolute temperature, q - specific 
entropy, p - pressure and u - specific volume **. We will assume this equa- 
tion to be known from general textbooks, referring the reader, for example, 
to Guggenheim’s course in thermodynamics (1950) and to Chambadal’s 
(1 963) monograph, which contains a very detailed discussion and study of 
such a fundamental concept as entropy. No other information, except a 
knowledge of equation [ 12.31 , is required to understand what follows. This 
equation is sometimes simply called the thermodynamic identity for energy, 
which considerably simplifies the matter. It may be added that equation 

[ 12.31 

* “A multicomponent system can be treated approximately as a binary system, one of the components 
of which is represented by a pure substance, while the second comprises all the other components, 
combined in a group, the relative composition of vlrhich is maintained unchanged” (Sage, 1966, chap- 
ter 13). 
**  Following Eckart (1962) and Fofonoff (1962) and in accordance with formulae [ 12.11 and [ 12.21, 
in this chapter we will use the specific values of the fundamental thermodynamic quantities: E = U/M, 
q = S/M, q = Q/M, u = V/M,  where U, S, Q and V are the generally accepted symbols for internal energy, 
entropy, amount of heat and volume,M - the mass of the system, as well as specific values of the quan- 
tities derived from them. (The generally accepted designation of entropy S should not be confused with 
the designation of salinity by the same letter!) 
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[ 12.31 has a strong analogy with the equation of the balance of turbulent 
energy: the energy of turbulence (“internal energy”) is equal to the total 
energy of the mean flow minus the work of external forces. 

component system - sea water - has the form: 

de = T dq - p dv -t /J dS 

where p is “the chemical potential of sea water”, and S its salinity. We may 
note that the introduction here of the term pdS, as well as its introduction 
below in equations [ 14.11 -[ 14.41 precisely for a two-component system - 
sea water - is not immediately obvious, although it follows formally from a 
comparison of formulae [ 1.401 and equation [ 12.41 . This has been done for 
reasons of convenience in the exposition, while the corresponding derivation 
will be given below. What has been said applies also to formula [ 14.81, which 
relates to sea water. 

exposition; in the following two sections the formal apparatus of the method 
of thermodynamic potentials will be developed. 

The basic equation of thermodynamics for the particular case of a two- 

[ 12.41 

The equations [ 12.31 and [ 12.41 quoted represent the basis for the further 

13. FUNDAMENTAL THERMODYNAMIC RELATIONSHIPS FOR A SINGLECOMPONENT SYSTEM 

From the form of the fundamental equation of thermodynamics for a single- 
component system [ 12.31 it follows that E represents the potential function of 
the variables 
total differential. This assertion becomes obvious from the comparison of 
equation [ 12.31 with the general expression for the total differential of the 
function U(x,y) of the two variables: 

d U =  P d x  -t Q dy 

where: 

and u - the so-called thermodynamic potential, while de is the 

[13.1] 

[ 13.21 

Thus, on the basis of [ 13.21 from equation [ 12.31 immediately follow the 
determinations of temperature and pressure through the fundamental thermo- 
dynamic function - specific internal energy E (formula [ 1.401 ; Eckart, 
1962): 
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T = (z) ; P = - ( E ) q  [ 13.31 

In addition to  specific internal energy E ,  three other fundamental functions 
(sometimes called characteristic) are introduced in thermodynamics, which 
are determined by the following expressions (written by means of their speci- 
fic values) - 

ell thalpy , or heat co I 1 tent : 

h = € + p v  [ 13.41 

i 
free energy: 

f = E -  Tq [ 13.51 

(here Tq represents the so-called “bound energy”) and 
the th erinody nam ic potential (Gib bs’ potential) : 

g = €  - T ~ + P v  [ 13.61 

Functions h ,  f and g also represent thermodynamic potentials - the func- 
tions of the two corresponding variables from the total number of four (T, 
q ,  p and I J ) .  The total differentials of these functions are written in the 
form of the following equations, which are the expression of the first and 
second principles of thermodynamics (let us write again for convenience also 
the expression for differential de): 

d € =  T d q  - p  dv [ 13.71 

dh = T dq -t v dp [ 13.81 

d f = - V d T - p d v  [ 13.91 

d g = - q d T + v d p  [ 13.101 
Equations [ 13.81 -[ 13. l o ] ,  as well as the expressions themselves of  func- 

tions [ 13.41 -[ 13.61 can be obtained completely formally on the basis of the 
application of Legendre’s transformation t o  the fundamental equation of 
thermodynamics [ 13.71 (Bazarov, 1961); let us show this with the example 
of functionf. Writing the differential of the product Tq: 

d(Tq) = T dq + r) d T  

and substituting in it the value of the quantity T d q ,  determined by equation 
[ 13.71, we obtain: 

d(Tq) - q d T =  de + p  dv 

or : 

d(E - Tq) = -q d T  - p du 
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Introducing expression [ 13.51, we obtain equation [ 13.91. Equation [ 13.81 
is obtained on the basis of consideration of the differential d(pv) and the 
application of the transformation also to equation [ 13.71 ; equation [ 13.101 
by the consideration of the differential d(pv) and by the transformation of 
equation [ 13.91. 

The most convenient characteristic function is the thermodynamic poten- 
tial g ,  since it is defined by the parameters of state - temperature and pressure. 

Fromequations [13.71-[13.10] onthebasisof  [13.11 and 113.21 there 
follow the expressions: 

T =  (E)” = ($)P 

P = -(g)q = -($)T 

71 = -(g)u= -($)P 

[ 13.1 1 1  

[ 13.121 

[ 13.131 

[13.14] 

Furthermore, the condition for the existence of the total differential [ 13.1 ] 
is the identity: 

[13.15] 

applying [ 13. I51 to equations L13.71-[13.10], we obtain the so-called reci- 
procal relations, or Maxwell’s relations, which play a fundamental role in the 
method of thermodynamic potentials: 

(E) =(”) 
ap P 

[13.16] 

[13.17] 

[ 13.181 

[ 13.191 

Moreover, on the basis of the relations adduced, the derivatives of the fun- 
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damental characteristic functions of the second and third (and also higher) 
orders can be obtained, as well as the relations among them; the principal 
second derivatives will be considered in the following section. 

The functions E ,  h ,  fand  g are not the only thermodynamic potentials 
(Bazarov, 196 1 , paragraph 22); from equations [ 13.71 - [ 13.101 it will be 
seen that entropy 7) represents the thermodynamic potential for the indepen- 
dent variables E and u or for the independent variables h and p ;  specific 
volume - for the variables E and r ) ,  orfand T;  pressure - for the variables h 
and q ,  or g and T,  and, lastly, temperature - for the independent variablesf 
and u,  or the variables g and p. Let us take as an example the last of these 
alternatives. From equation [ 13.101 it follows that: 

1 U 

7) 7) 
d T =  --dg+-dp 

here, according to [ 13.11 and [ 13.21 : 

i13.201 

which is in conformity with i13.131 and [ 13.141. 
What has been set forth almost fully represents the fundamentals of the 

formal apparatus of the method of thermodynamic potentials, used for the 
study of simple (single-component) systems; examples of its application will 
be considered below. As is seen from the relations adduced, the parameters 
of state of the system are fully defined by any one of the potentials; accord- 
ingly, each of them identically determines its equation of state. 

14. FUNDAMENTAL THERMODYNAMIC RELATIONS FOR A TWOCOMPONENT SYSTEM - 
SEA WATER 

As has already been said above, we may consider sea water in a general 
approximation as a two-component system: a solvent (water) and a single 
solute (“sea salt”). In that case, the fundamental equation of thermodynamics 
for specific internal energy E ,  as well as the corresponding equations for the 
other three fundamental functions - enthalpy h ,  free energy f and thermo- 
dynamic potential g (specific values), will be written in the following form: 
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d€ = Tdq  - p  dv + /J dS 

dh = T dq + v dp + /J dS 

d f = -q dT - p dv + /J dS 

[ 14.11 

[ 14.21 

[ 14.31 

dg = -q d T  + u dp + /J dS 

(equation [ 12.41 has been repeated for the convenience of the exposition). 
Here p is the chemical potential and S is salinity. We see that relations [ 13.71 - 
[ 13.101 represent a particular case of equations [ 14.1 I - [ 14.41 when S = con- 
stant. 

Let us now write the general expression of the total differential of the func- 
tion U(x,  y ,  z) of the three variables: 

d U =  P d x  + Q dy + R dz 

where: 

[ 14.41 

[ 14.51 

[ 14.61 

The condition for the existence of the total differential [ 14.51 are the 
identities: 

[ 14.71 

On the basis of [ 14.61 , expressions [ 13.1 1 ] - [ 13.13 I , valid not only for a 
single-component, but now also for a two-component system (in case the 
latter relate to a two-component system, the index S should always be added 
to them following the parentheses), may be supplemented by the following 
relations, which determine the chemical potential through the fundamental 
functions: 
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[ 14.81 

Further, the four reciprocal relations [ 13.161 -[ 13.191, considered in all 
courses of thermodynamics as applied to a single-component system, may be 
supplemented on the basis of formulae [ 14.71 and equations [ 14.1 I -[  14.41 
by the following eight relations, including salinity and chemical potential 
(Mamayev, 1968): 

(”) =(”) 
ap T,S‘ as T , ~  

[ 14.91 

[14.10] 

[ 14.1 1 3 

[ 14.121 

[ 14.131 

[ 14.141 

[ 14.151 

[ 14.161 

The reciprocal relations [ 13.161 - [ 13.191 continue to remain valid also 
for a two-component (and generally for a multi-component) system; in this 
case the index S has to be added to them following the parentheses. 

Relation [ 14.151 was demonstrated already by Gibbs (instead of salinity 
S h e  used rn - the number of components - see Gibbs, 1950); as applied to  
sea water Fofonoff (1962) indicated relations [ 14.1 11 -[ 14.121 and [ 14.151 - 
[ 14.161 . Relations [ 14.91 and [ 14.101 , which include a thermohaline deri- 
vative, are of specific interest from the point of view of T-S analysis; they 
will be considered in somewhat. greater detail below (Section 25). 

The relations given above in this and in the preceding paragraph make it 
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possible also to obtain a number of derivatives of the second and of higher 
orders, expressing additional relationships among the thermodynamic param- 
eters which may be of practical interest. Let us consider as an example the 
second derivatives of the fundamental thermodynamic function-specific 
internal energy E (Eckart, 1962). Since E is a function of entropy, specific 
volume and salinity (equation [ 14.1 I ), and pressure, temperature and chemi- 
cal potential in turn depend upon internal energy and the parameters men- 
tioned,(equations [ 1.401 ), we can write the expressions of the following 
differentials: 

[ 14.171 

[ 14.181 

[ 14.191 

On the basis of equations [ 1.401 these formulae in turn may be written in 
the following form, including the second derivatives: 

a 2 E  a 2 E  a 2 e  
av as a7 as a s2 

dq +- ds dv +- dp = - 

[ 14.201 

[ 14.211 

[ 14.221 

We may point out that the link between the identical mixed second deri- 
vatives in these equations is determined by the corresponding reciprocal rela- 
tions; homogeneous secondary derivatives also have considerable thermo- 
dynamic importance. 

Substantial interest also attaches to the derivatives of the second and 
higher orders of another fundamental function - Gibbs' thermodynamic 
potential g, inasmuch as, according to equation [ 14.41 , it is a function of 
temperature, salinity and pressure, i.e., of directly measurable quantities 
(Fofonoff, 1962). 

The fundamentals of the formal apparatus of the method of thermodynamic 
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potentials, as applied in the study of a two-component system, are to all in- 
tents and purposes also confined to this. 

Before proceeding to the application of the apparatus described to the 
study of some thermodynamic properties of sea water, let us note that many 
thermodynamic relations between derivatives of the type (aylax), , where x ,  
y ,  z are any three quantities from the total number of thermodynamic param- 
eters and fundamental functions, may be obtained fairly rapidly and simply 
by the use of Jacobians. Without dwelling further on this question, let us 
note that the method of Jacobians in thermodynamics is set forth briefly by 
Guggenheim (1950, par. 3.08), who calls this method “elegant”, as well as 
by Batuner and Pozin (1963, chapter XI, par. 10); the latter work contains 
a key table for the use of Jacobians. 

15. CHEMICAL POTENTIAL 

The fundamental equation [ 12-31 is valid for an isotropic medium consist- 
ing of only one substance, provided mass and composition are constant. How- 
ever, the number of particles in the system may be variable; both because of 
mass exchange and chemical reactions within the area considered and mass 
exchange with the surrounding medium (open system). 

mental equation [ 12.31 can be written in the following generalized form: 
In the case of an open system or a system of variable composition, funda- 

de = T dq - p dv + c p i  dxi [15.11 
I 

where x i  is the mass fraction of component i, and the quantity pi is deter- 
mined by the expression: 

[ 15.21 

where xi designates all mass fractions except xi.  The quantity pi is called the po- 
tential, or chemical potential of the i-th component. 

Let us now derive from [ 15.11 the corresponding equation for a two- 
component system - sea water, which was written above (formulae [ 12.41 
and [ 14.1 ] ) without proof. Designating the mass fractions of pure water and 
salts by xw and x,, respectively, we have on the basis of [ 12.21 : 

m .., m. 
[ 15.31 

It is also convenient, expressing salinity ing/g, or in mass fractions, to introduce 
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the following designations: 

x , = s ;  x , = w = l - s  [ 15.41 

where the value w may be called the “freshness” of sea water. 

following form: 

de = T dq - p  dv + pw dx, +EL, dx, 

where p, and p, are the chemical potentials of pure water and of salts respec- 
tively; x, and x, are their mass fractions. Let us introduce the following de- 
signation for the difference of chemical potentials: 

P =  P, - P, [15.6] 

Then, substituting in the last term on the right side of [ 15.51 the value 
p +p, instead of ps, we obtain: 

de = T dq - p  dv + pw(dxw+dx,) + pdx,  

Then, for a two-component system, equation [ 15.1 ] will be written in the 

[ 15.51 

[ 15.71 

Since, according to the condition of the conservation of mass [ 15.31 : 

dx,+dx,=o [ 15.81 

we finally obtain: 

d e = T d q - p d v + p d S  

where p = ae/aS. 

[ 15.91 

The same result can be obtained more briefly, namely: 
N = 2  

C pi dxi = P, dS +pw dw = ps dS + pw d(1-S) = p, dS-p, dS [15.101 
I 

introducing designation [ 15.61, we obtain for two-component sea water: 

[15.11] 

Let us derive an important expression for the chemical potential of pure 
water p, in a solution (sea water). For this let us consider the two-phase 
system water - vapor, which is in conditions of thermodynamic equilibrium ; 
in this case, the chemical potentials of both phases must be identical (this 
proposition, in agreement with the very definition of potential, is not proved 
here). 

Let us further consider (with a certain approximation) saturated vapor as 
a perfect gas, obeying Clapeyron’s equation of state [ 2.181 . The reciprocal 
relation [ 14.161 for a perfect gas will be written, accordingly, in the form: 
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(9) =(%) 
ap T,n an T,P 

[15.12] 

Substituting in the right side of this expression equation [ 2.1 81 , we obtain: 

a P - R T  
aP P 
and, integrating this expression, we have: 

p = R T  In p + const. 

[15.13] 

[15.14] 

To determine the constant of integration let us choose some standard state 

[15.15] 

(designated by an asterisk), p = p * ,  under which p = p * :  

p* = R T  In p *  + const. 

following expression for the chemical potential of a perfect gas: 

p = p* + R T  In p 

In the case of a mixture of perfect gases the same expression is valid for 
each component A : 

PA = p 2  +RTlnPA [15.17] 

Subtracting [ 15.151 from [ 15.141 and assuming p * = 1, we obtain the 

[15.16] 

where: 

PA = xAP 
is partial pressure (xA is the mass fraction of substance A ) .  

Substituting [ 15.183 in [ 15.171, we obtain: 

[15.18] 

pA = [p; + R T l n p ]  +RTlnXA 

the expression in square brackets represents the chemical potential of pure 
substance A at pressure p .  Designating this expression po (the index “0” 
designates “pure substance”), we obtain: 

[15.19] 

This substitution brings equation [ 15.171 into a different standard state; 

[ 15.201 

As a consequence of the equality of the chemical potentials of pure satur- 
ated vapor and pure water in a solution (sea water), instead of [ 15.201 we 
can finally write: 

pw = p i  + R T l n x w  [ 15.211 

Here pw is the chemical potential of pure water in a solution (sea water), p: 
is the chemical potential of pure water taken separately. A similar formula 
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may be written also for the chemical potential of the salts ps .  This elegant 
derivation is borrowed from Everett's monograph ( 1963); in this book, inci- 
dentally, an analogy is drawn between the chemical potential and mechanical 
potential (the problem of the loss of water in a vessel with a generatrix in the 
form of a logarithmic curve). 

An important formula (Haase, 1963) follows from expression [ 15.2 1 ] : 

= R T  (xs Q 1) (3) =- R T  
ax, T.P X, 

[ 15.221 

Solutions for which equation [ 15.201 is valid for all values of xA 
(0 < xA < l ) ,  are called perfect; solutions for which this equation is valid 
only if they are strongly diluted are called ideal diluted solutions. Since the 
quantity of salts in sea water is not large, x, Q x, , it may be considered, 
with a certain approximation, as an ideal diluted solution and the methods 
of the theory of solutions may be applied to its study. In particular, such a 
property of sea water as contraction on mixing may be considered as a 
corollary of the deviation of its properties from those of an ideal diluted 
solution. 

16. THE GIBBS-DUHEM EQUATION 

The Gibbs-Duhem equation is of great importance for the study of sys- 
tems with a variable number of particles. Let us derive this equation in general 
form and then consider it as applied to a two-component system - sea water. 

We shall proceed from the fundamental equation of thermodynamics for a 
multi-component system (equation [ 15.1 ] ) and the corresponding expression 
for thermodynamic potential [ 14.41, which for a multi-component system 
may be written as: 

dg=- - r )dT+vdp+  c pidxi  [ 16.11 

Integrating this expression at constant temperature and constant pressure 
(dT= 0, dp = 0), we obtain (Guggenheim, 1950, par. 1.35): 

g =  C pixi  [ 16.21 

i 

i 

Accordingly, instead of [ 13.61 we can write: 

E =  c p i x i + T q - p v  
i 

The differential of this expression is equal to: 

[ 16.31 
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d e =  c pi dxi + c xi dpi + T d q  + q d T  - p d v  - vdp [ 16.41 
1 I 

Comparing this equation with equation [ 15.1 ] , we obtain: 

q d T  - vdp + c xi dpi = 0 [ 16.51 
I 

This is the generalized Gibbs-Duhem relation. 
For two-component sea water the Gibbs-Duhem equation will be written 

as follows: 

q d T - v d p + x ,  dp, +x,d/.i,=O [ 16.61 

Substituting here instead of p, the quantity p + p, , we obtain: 

77 d T  - u dp + (x, + x,) dpu, + X, dp = 0 

Since x, +x, = 1 (formula [ 15.31 ), designating x, = S, we obtain the 
Gibbs-Duhem relation in the form in which it is given by Fofonoff (1962): 

d p , = - q d T + v d p - S d p  [ 16.81 

We may obtain also another form of the Gibbs-Duhem relation, namely: 
substituting in [ 16.61 instead of pw the quantity p, - p ,  we obtain: 

7 d T  - u dp + (xW +x,) dp, - X, dp = 0 

[ 16.71 

[ 16.91 

or : 

dps = -7 d T  + Vdp + (1  - S) dp [ 16.101 

With d T  = 0 and dp = 0 from equation [ 16.61 we obtain the following 
particular version of the Gibbs-Duhem equation for a two-component sys- 
tem (sea water): 

x, dp, + x, dp, = 0 
as well as: 

[ 16.1 I ]  

[16.12] 

Consequently, if at constant temperature and constant pressure the chemi- 
cal potential of one of the components increases, the potential of the other 
com p onen t must decrease. 

The application of the Gibbs-Duhem equation in form [ 16.121 will be 
considered below. 
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17. PARTIAL QUANTITIES 

If we mix n1 moles of component 1, having a molar mass M ,  , and n2 moles 
of component 2 with a molar mass M,,  then, according to  the principle of the 
conservation of mass, the mass M of the mixture will be determined as: 

M = n l M ,  + n 2 M 2  [17.1] 

But a similar expression written, let us say, for volume V instead of mass M ,  
will prove invalid because of the non-additivity of volume, i.e., its non-conserva- 
tiveness in the process of mixing (this question will be considered in more detail 
below; see Sections 2 1, 22). Therefore, in order to obtain an extremely 
desirable additive expression of the type [ 17.13 for volume, the addends of 
its right side should be defined somehow differently - so that the whole 
expression may prove valid. Let us carry out, following Guggenheim (1950), 
the following reasoning: 

V=nlU1  + n 2 U 2  [ 17.21 

and let us prove that it is valid if the quantities V, and U2 are defined in the 
following way: 

Let us write an expression of the type [ 17.1 ] in the following form: 

[ 17.31 

[ 17.41 

Let us note immediately that for these quantities we use the small letters u in 
order to emphasize that they have the dimension of specific volume (cm3 /g); 
the dash will be explained below. The total change of volume during mixing 
may then be expressed in the following way: 

av av 
aT  aP 

d V = - d T  - - dp + V1 dn , + D2 dn2 [ 17.51 

while its change at constant temperature and constant pressure due t o  a 
change in composition is expressed as: 

d V =  Vl dn, + U2 dn2 [ 17.61 

If the change in volume occurs in the same proportion as change in n1  and 
n 2 ,  and at constant relative composition ( n ,  In2 = const.), then we may state: 

[ 17.71 

Substituting [ 17.71 in [ 17.61 and reducing by df ,  we obtain expression [ 17.21 
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The quantities U1 and U2 are called partial (mole) volumes of components 
1 and 2, respectively, and are symbolized by dashes. 

The physical significance of the constancy of composition (concentration) 
noted above during a change in volume consists of the fact that partial volume 
is considered when, say, one mole of salts is added to (or removed from) such 
a large volume of sea water that the concentration is practically unchanged. 

d V = 121 dU1 + n2 dD2 + U1 dn1 + Uz dn2 

and comparing the expression obtained with [ 17.51, we obtain: 

Differentiating [ 17.21 : 

[ 17.81 

[ 17.91 

At constant temperature and constant pressure in particular, we have: 
111 do1 + 112 dU2 = 0 [ 17.101 

For a single-mass system from [ 17.101 we obtain: 

XI dD1 + ~2 d82 = 0 

as well as: 

a 8, a u2 
x - +x2-=o  

ax ax 

[ 17.11 I 

[ 17.121 

For the specific volume of sea water, instead of formulae [ 17.21 , [ 17.1 1 ] 
and [ 17.121, we have: 
u =  (1 -S)Uw +SDs [17.13] 

(1 -S) dUw + S  dDs = 0 [17.14] 

auw a q  
as a s  (1-S) -+S--=O [17.15] 

where Dw and Us are the partial (specific) volumes of water and salts in sea 
water, respectively. 

la [ 17.151, we obtain: 
Differentiating formula [ 17.131 by salinity and taking into account formu- 

[17.16] 

Finally, from formulae [ 17.131 and [ 17.161 we obtain: 
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au u w = u - s  - as [ 17.171 

[ 17.181 a v  u s = u + ( l - S )  - as 
Formulae [ 17.13 1 - [ 17.181 are general in nature and are applicable to 

other, not necessarily thermodynamic, but necessarily extensive properties 
(internal energy, entropy, specific volume, heat capacity, enthalpy, etc.). 

In particular, the application of a formula of type [ 17.1 51 to the thermo- 
dynamic potential g leads, taking account of formula [ 16.1 ] , to the already 
well-known version of the Gibbs-Duhem equation [ 16.1 1 1 .  

Let us consider an example of the application of the Gibbs-Duhem equa- 
tion [ 17.151 to the determination of an analytical type of equation of state 
of sea water, borrowing this example from the work of Duedall and Weyl 
(1 967) *. As these authors point out, in the range of salinities 30 < S < 400/00 
the quantity Us, according to their experiments, can be expressed by the 
linear formula: 

Us = b, + b2S 

where bl and b2 are empirical constants. Differentiating this expression 
by salinity, we obtain: 

[ 17.191 

Substituting this expression in relation [ 17.15 ] and integrating, we obtain: 

UW = b o - b 2 ( S 2 / 2 + S 3 / 3 )  [ 17.201 

where b, is the empirical constant defined in the same range of salinities. 
Finally, substituting expressions [ 17.201 and [ 17.191 in expression [ 17.131 
and simplifying it (simplification consists of neglecting terms of a higher 
order of S) ,  we obtain the following formula which determines the depen- 
dence of the specific volume of sea water on salinity at constant temperature: 

u = b, + (bl - b,)S + b2S2/2 [17.21] 

The values of the constants b, , bl and b2 were calculated from Knudsen's 
tables for temperatures of 0, 5 ,  10, 15,20 and 25" and are given in the work 
of Duedall and Weyl mentioned. The values of the quantity of partial volume 
of salts, Us, calculated according to Knudsen's tables, prove to be in good 

* The description of experiments contained in the work mentioned is interesting by itself as an illustra- 
tion of the concept of partial volume. 
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agreement with the values calculated by these authors on the basis of an addi- 
tion of the partial volumes of the basic salts (components) contained in sea 
water. 

Let us point out in conclusion experiments in studying some other partial 
quantities as applied to  sea water. Thus, in Connors' work (1970) the quanti- 
ties of partial specific enthalpies of sea water, hw and hs, are applied t o  ob- 
tain the dependance of enthalpy on temperature and salinity (Section 18) 
and for the further analytical calculation of the heat of mixing of waters of 
different temperature and salinity. The work of Miller0 (1969) is devoted to 
the study of partial molal volumes of ions in sea water, and the work of 
Connors and Weyl (1968) to  the partial quantities of electrical conductivity 
of sea salts in connection with the study of the relationship between conduc- 
tivity and density. Finally, in Bromley's works (1968, 1970) partial quanti- 
ties of heat conductivity are studied; in the second of these works there are 
tables of partial heat conductivities of salts and pure water in sea water. 

18. HEAT CAPACITY OF SEA WATER 

The heat capacity* of a system is defined as the quantity of heat necessary 
to heat the system by one degree (heating in this case has a definite physical 
similarity with the linear expansion of a bar; Haase, 1963). 

For a single-component system we distinguish: 
(1)  Specific heat capacity at constant volume (du = 0), or the isohoric spe- 

cific heat capacity, c,, which according to equation [ 12.31 is defined as the 
quantity: 

c, = (g)u = T ( g )  [18.1] 

(2) Specific heat capacity at constant pressure (dp = O), or the isobaric spe- 
cific heat capacity, c p ,  which, clearly, is determined from equation [ 13.81 in 
the followipg way: 

[ 18.21 

For a two-component system - sea water -- we distinguish respectively specific 
heat capacity at constant volume and constant salinity: 

c , , ~  = (") = 
T (g) a T  u , s  u,  s 

[ 18.31 

* Below we will speak of specific heat capacity, or specific heat (cf. second footnote on p.50). 
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and specific heat capacity at constant pressure and constant salinity: 

[ 18.41 

The last two formulae follow from equations [ 14.1 ] (with dv = 0, dS = 0) 

It is clear from what has been set forth that the heat capacity of sea water 

[ 18.51 

The relationships between specific heat capacities and pressure and specific 

and [ 14.21 (with dp = 0, d S  = 0) respectively. 

is a function of all the parameters of its state: 

c = c(v, S,  T ,  p )  

volume are determined by the following expressions: 

[ 18.61 

[ 18.71 

These formulae are obtained by the differentiation of the right-hand for- 
mulae [ 18.41 and [ 18.31 , and then by a change in the order of the differen- 
tiation and the use of reciprocal relations [ 10.191 and [ 10.181 respectively. 
Formulae [ 18.61 and [ 18.71 link heat capacities with the thermal equation 
of state of the system, determining their right-hand parts; however, the direct 
calculation of heat capacities according t o  formulae [ 18.61 and [ 18.71 may 
lead to  erroneous results because of the sensitivity of the caloric quantities 
(heat capacity) to small changes in the parameters of state (Stupochenko, 
1956). The empirical formula for the determination of ac, lap,  according to 
formula [ 18.61, is given by Fofonoff (1 962) in the form of a polynomial by 
increasing powers of the parameters of state. 

The following derivative is also of interest: 

[ 18.81 

which is obtained on the basis of formulae [ 14.1 1 ] and [ 18.1 ] . 0 ther deriva- 
tives may also be obtained from heat capacities, but they are not of as much 
interest as those given above. 

Let us now consider the connection between isobaric and isohoric specific 
heat capacities and the relation between them. All the considerations adduced 
below for a single-component system are also valid for a binary system - sea 
water, since in the latter case heat capacities are considered at constant salinity 
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dS = 0 (in order to have the considerations formally lead to a binary system, 
it is necessary to restore the terms containing dS and to provide the derivatives 
containing indices with still another index S ) .  

Bearing in mind that in the fundamental equation of thermodynamics [ 12.31 
E = E(U, T), we may write this equation in the following form (expanding the 
total differential de): 

T dq = (g), d T  + [( g)T + P] du [ 18.91 

Differentiating this expression with respect to T ,  we obtain the equation 
for specific heat capacity in general: 

[ 18.101 

At constant volume, du = 0, the second term of the right side disappears, 
and we obtain formula [ 18.11 : 

c, = T(g), = (g) 
while at constant pressure, dp = 0: 

[18.11] 

This general formula, expressing the link between specific heat capacities cp and 
c,, is unsuitable, since it contains the caloric parameter E. Let us transform it 
as follows. Considering formula [ 18.91 as the expression of the total 
differential dq for the variables u and T, i.e., as an expression of the type: 

d q =  (g) d T  + (%)T du [ 18.121 

and comparing [ 18.91 with [ 18.121 , we obtain the following identical rela- 
tions: 

[ I  8.131 

Substituting [ 18.131 in [ 18.1 1 ] and taking the reciprocal relation [ 13.181 
into account, we obtain the following basic formula, expressing the link be- 
tween the specific heat capacities 

[ 18.141 

This formula in turn can also be transformed. Thus, let us consider the dif- 
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ferential of entropy as a function of temperature and pressure (Fofonoff, 
1962): 

[l8.15] 

This expression can be written, according to formulae [ 18.21 and [ 13.191 , 
in the form: 

[18.16] 

Let us calculate the isohoric specific heat capacity c,; for this, having made 
use of the condition: 

d u = ( g ) p  dT+(*) dp=O 
aP T 

[18.17] 

having determined from it the differential dp and having substituted it in 
[ 18.161 , we obtain: 

whence: 

[18.18] 

The latter formula is more convenient, particularly from the oceanographic 
point of view, than formula [ 18.141 , in which it is practically impossible 
experimentally to determine the derivative (ap/a T), . Equation [ 18.181 can 
also be obtained by another, shorter way. Multiplying and dividing the right 
side of [18.14] by (au/aT),, we obtain: 

whence, on the basis of the identity: 

we obtain formula [ 18.181. 

[ 18.191 

[ 18.201 * 

* Identity [ 18.201 and the inverse identity [18.21] follow from [2.6] when dS = 0. 
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Finally, still another formula, expressing the difference of heat capacities, 
can be obtained in the same way from basic formula [ 18.141. Multiplying 
and dividing [ 18.141 by ( a p / a  T), and applying the identity: 

we obtain: 

[18.21] 

[ 18.221 

Let us express the difference cp - c, through the coefficients introduced 
in Section 2. Thus, for example, from formula [ 18.181 and the determina- 
tion of the coefficients of thermal (volumetric) expansion [ 2.71 and com- 
pressibility [ 2.93 , there follows the formula: 

T vo a2 
c -c,=- 
P k 

[ 18.231 

Finally, the ratio of specific heat capacities - a quantity important first 
of all in the theory of the propagation of sound in the sea, is determined by 
the following formula, resulting from [ 18.181 : 

[ 18.241 

In solving many problems of oceanography the quantity of specific heat 
of sea water is considered to be constant (equal to 1 cal. 8-l "C--') and in 
many cases this precision proves adequate. However, in the consideration of 
a number of important questions connected with the equation of state of 
sea water, precise knowledge of the specific heat of sea water is absolutely 
necessary. These problems include, in the first place, the question of the 
speed of propagation of sound in the sea and the question of the nature of 
adiabatic processes in the deep parts of the ocean. Precise knowledge of 
specific heat capacity is of great importance in studying the non-linear 
properties of sea water, particularly in studying contraction on mixing 
(Section 22). 

Steinwehr (19 15) by the empirical formula: 

cp = 1.00492 - 4.22542*10-4 T +  6.32379010-~ T 2  

O <  T <  50°C. 

The quantity cp for distilled water is determined according to Jaeger and 

[ 18.251 
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The data of Osborne et al. (1 939) are, apparently, more precise; in particu- 
lar, they served Cox and Smith as a basis for the compilation of a table of the 
heat capacity of sea water and, in addition, were verified by the latter two 
authors *. 

The first studies of the heat capacity of sea water were undertaken by 
Thoulet and Chevallier in 1889; however, their results are unreliable both 
because of the technical imperfection of their experiments and because of 
the fact that these authors considered the specific heat of distilled water cp 
as not changing with temperature and equal to a constant quantity of 1 cal. 
8-l "C-' . In spite of this, the data of Thoulet and Chevallier, worked up by 
Krummel, were used in oceanography for more than fifty years. Compara- 
tively recent, Cox and Smith (1959) published a new table of the values of 
the specific heat capacity cp of sea water at various values of temperature, 
salinity and atmospheric pressure. These authors performed a series of precise 
laboratory experiments to determine heat capacity. The methodology, on 
which we will not dwell, is described in detail in the work of Cox and Smith 
(1 959). A total of five series of experiments was performed with water of 
10.56; 20.22; 30.055; 34.297 and 39.768'/00 salinities at different tempera- 
tures, as well as control measurements of the heat capacity of distilled water. 

It proved possible to  express the result of the experiments by the follow- 
ing formula: 

cp = A - 0.005075 S - 0.000014 S2 

where cp is the specific isobaric heat capacity of sea water of salinity S 
(g kg-' ) in absolute Joules per gram per degree Celsius (J g-' "C-' ). A is 
the specific heat capacity of distilled water at constant pressure, dependent 
on some conventional (elevated when S > 0) temperature T ' ,  determined by 
the formula: 

T' = (T  + 0 .7s  + 0.0175 S 2 )  "C 

The specific heat of distilled water at constant pressure was taken accord- 
ing to Osborne et al. (1939), and a series of control measurements of the 
heat capacity of distilled water, referred to above, yielded results coinciding 
with the data of Osborne et al. Cox and Smith do not give a formula for the 
determination of the quantity A .  However, Fofonoff (1 962), relying on the 
data of Osborne et al., shows that for salinities higher than 30'/00 and at a 
temperature higher than the freezing point the following formula is valid: 

A = 4.1784 + 8.46 * 1 0-6 (T - 33.67)2 

[ 18.261 

[ 18.271 

* These authors do not give the formula determining the value of cp. 
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From their experimental data Cox and Smith compiled a table of specific 
heats c in absolute Joules per gram per degree Celcius for salinities from 0 
to 4 O o i o  and temperatures from -2 to 30°C (Table A12 of the Annex). The 
possible error in the values of this table amounts to approximately 0.001 5 
J g-' "C-' (the experiments themselves were carried out with a precision of 
up to 0.0001 J g-' "C-'). 

Having divided the values of heat capacities by the quantity of the mechan- 
ical equivalent of heat, equal to 4.1876 J cal:' (Dorsey, 1968)' it is possible 
to obtain the specific heat values in a more usual dimension, cal. g-l "C-1. 

Connors (1970) approximates Cox' and Smith's data by the following 
simpler formula, drawing upon the results of his experiments in determining 
the heat of mixing of waters: 
cp = 4.2044 - 0.001 1 4 T  - S(6.99 - 0.069T) + 

+ S2 (19.6-0.627 J g-' "C-' [ 18.281 

This formula is valid in the ranges 1.87 < T < 30.84"C, 10.56 < S < 39.79'/00, 
and its standard deviation from Cox' and Smith's data amounts in this range 
to a quantity of 0.0024 J g-' "C-' . 

Experiments in determining the specific heat of sea water were also carried 
out by Bromley et al. (1967), who drew up on the basis of these experiments 
four alternative formulae of different degrees of accuracy. Let us quote the 
most accurate of these formulae, namely (salinity in %): 

cp = 1.0049 - 0.0 1 62 10 S + (3.5 26 1 - 1 OP4 S2 ) - 

- [ (3.2506 - 1.4795 S + 0.07765 S 2 )  1 OF4 TI i- 

+ [(3.8013 - 1.2084S+ 0.06121 S 2 )  T 2 ]  [ 18.291 

The formula is valid in the ranges 2 < T < 80°C and 1 < S < 12%, while 
its confidence limit in these ranges amounts to 0.001 cal. g-' "C-' . 
rc 
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Fig. 8. The dependence of the specific heat of sea water at constant (atmospheric) pressure c 
lute Joules per gram per degree Celsius on temperature and salinity (Cox and Smith, 1959; [ofonoff, 1962: 

in abso- 
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The results of Cox and Smith are shown in Fig. 8, plotted in T-S coordi- 
nates (Fofonoff, 1962). The following important fact becomes obvious, in 
particular, from this figure: the heat capacity of water with salinity of less 
than approximately 20"/00 decreases, whereas beginning with a salinity of 
about 20"/00 it starts to increase. The oceanographic implications of this law 
have not been studied. 

Integrating [ 18.281 by temperature, Connors ( 1970) obtains the follow- 
ing empirical equation for determining the specific enthalpy of sea water (cf. 
formula [ 18.21 1: 

h(T,S)=4.2044T- 0.00057T2 - S(6.99T-0.0343T2)- 

- S2(464 - 19.6T+ 0.3T2) J g-' [ 18.301 

valid in the same ranges as [ 18.281 : 10 < S < 40"/00 and 0 < T < 30°C. 
Here we will not explain the reason for the appearance of the constant of 
integration in the form of the quantity 464 in the second parenthesis, 
referring the reader for an exhaustive explanation to the primary source, all 
the more since equation [ 18.301 does not yield absolute values for enthalpy, 
but is applicable only for the calculation of the differences of h. In addition, 
the equation applies only given the condition of linearity between partial 
specific enthalpy and salinity (in this connection also, see the primary source). 

The nature of the change in heat capacity depending on the change in tem- 
perature and salinity reinforces the anomalous nature of the properties of sea 
water and, in particular, reinforces the effect of contraction on mixing of sea 
waters. This question will be considered briefly in Section 2 1. 

19. THE SPEED OF SOUND 

The theoretical formula for the speed of sound in a compressible liquid 
may be derived in an elementary way on the basis of the following consider- 
ations (Fabrikant, 1949). Let us consider a liquid placed between two pistons 
in a tube of unit cross-section (Fig. 9). If the liquid is incompressible, it 
behaves like a solid body: any displacement of piston A causes the same 
instantaneous displacement of piston B .  In other words, disturbances in an 
incompressible liquid are transmitted with infinitely great speed. In the case 
of a compressible liquid these disturbances are transmitted with finite speed, 
namely: if for the time d t  piston A has travelled the distance dl, the longitu- 
dinal disturbance (elastic wave) caused by this will be propagated over the 
distance dx. Thus, dl/dt is the speed of displacement of the liquid particles, 
c = dx/dt is the speed of displacement of the longitudinal elastic disturbances, 
which is the speed of propagation of the sound wave. Since the displacement 
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Fig. 9. Derivation of the formula for the speed of propagation of sound (see text). 

of the piston dl caused the contraction of the liquid element dx, dlldx repre- 
sents the relative linear (or volumetric, the two being the same in this case) 
contraction of the liquid and Hooke’s law is valid, following directly from 
formula [ 2.91 : 

where F = dp is the.force applied to the piston of unit cross section, and 
E = k-’ is Young’s modulus ( k  is the coefficient of isothermal compressi- 
bility). 

F dt = d(mc) 

A liquid mass, set into motion, is equal to p dx, while its momentum 
equals p dx (dlldt); the speed (dlldt) is considered identical for all particles 
in view of the smallness of dx. Utilizing the expression of force [ 19.1 ] , we 
have, according to [ 19.21 : 

Let us apply to our argument the theorem of impulses: 

[ 19.21 

dl dx 
dx dt  E - d t = P -  dl 

or : 

E - = p c  
C 

whence: 

[ 19.31 

Young’s modulus and the speed of propagation of sound may be expressed 
by a quantity which is the inverse of the baric gradient of density. For this 
we make use of the equation of continuity of mass, written in the most 
general form : 
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[ 19.41 

SPEED OF SOUND 

d 
- (pu)  = 0 dt 

differentiating p u  and dividing by pu, we obtain: 
1 dp 1 du - -  +-  - = o  
p dt  u dt  
whence: 

[ 19.5 du- _ _ - _  dP 
U P 

Young's modulus: 
Substituting [ 19.51 in [ 19.1 1, we obtain the following expressions for 

[ 19.6 E = p -  dP 
dP 

Comparing formulae [ 19.31 and [ 19.61, we obtain the theoretical formula 
we are seeking for the speed of sound: 

c2 = 
[ 19.71 

The process of the propagation of sound is an adiabatic process. Owing to 
the great frequency of contractions and rarefactions heat does not have time 
to be dissipated by means of heat conduction and radiation; in practice, each 
particle behaves as if its store of heat remained constant (Lamb, 1932). 

On the other hand, the speed of sound can also be expressed by Laplace's 
formula (Shuleikin, 1968): 

'YPO c2 = - 
P o  

which, using the relationship : 
1 

P = k  

where k is the coefficient of compressibility, can also be represented in 
the following form: 

[ 19.81 

[ 19.91 

[ 19.101 

In these formulae y is the ratio of heat capacities as determined by for- 
mula [ 18.241. Substituting this ratio, as well as expression [2.9] for coeffi- 



16 THERMODYNAMICS OF SEA WATER 

cient k in formula [ 19.101 , we obtain the following expression for the speed 
of sound : 

aL 
c2 = - sTP 

aa aa -+r-  
ap aT 

where: 

[19.11] 

is the adiabatic gradient of temperature (see Sections 20 and 27). 

eters of state of sea water: 

c = c(S, T, P) 

and is closely linked with the equation of state of sea water, which, taking 
account of formula [ 19.71, may be written in the form: 

Thus, the speed of sound, as well as density, is a function of the param- 

C19.121 

da cu - = a d T -  PdS-- dP 
cu c2 

[19.13] 

The speed of sound may be considered as still another parameter of state 
of sea water in situ. The dependence of the speed of sound in sea water, c 
m/sec, at atmospheric pressure on temperature and salinity is shown in Fig. 
10. 

Formula [ 19.1 1 ] is applied for the calculation of the speed of sound in 
the sea; let us call it the theoretical formula (sometimes it is referred to not 
altogether accurately as the Newton-Laplace formula). 

Matthews tables of the speed of sound (1927, 1939, 1944), published by the 
British Admiralty, as well as for the Kuwahara tables (1 939), which, as we 
shall see below, made use precisely of the expanded formula [ 19.1 1 ] . This 
question is considered below in Section 29. 

A comparison of the results of the calculations of the speed of sound 
according to the theoretical formula, on which Matthews' and Kuwahara's 
tables are based, with direct measurements, accompanied by simultaneous 
measurements of temperature and salinity, showed that the theoretical 
formula produces inaccurate results: at 0 < T < 40°C and 15 < S < 40"/00 
the deviation amounts to from 2.5 to 5.0 m/sec. The maximum deviation 
of the theoretical formula amounts to about 8 m/sec when S = O'/OO, T = 0". 
On the average we may consider that the theoretical formula yields a result 
which is lower by -3  m/sec (Beyer, 1954; Ganson, 1958). This occurs 

The theoretical formula was utilized for the compilation of the well-known 
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Fig. 10. Speed of sound c m/sec as a function of salinity and temperature at atmospheric pressure. 
(According to Kuwahara’s data, 1939.) 

mainly because of the inaccuracy of Ekman’s coefficient of isothermal 
compressibility p,  entering into the calculations of the speed of sound 
according to the theoretical formula by means of the coefficient k *. It is 
is perfectly possible, as Beyer (1 954) points out, that the lack of constancy 
of the saline composition of sea waters also exerts an influence on the 
appearance of deviations in the calculations of the speed of sound according 
to the theoretical formula; a smaller error is involved in inaccuracy in deter- 
mining heat capacity cp at constant pressure **. 

Mackenzie pays particular attention to the value ~ 3 5 , 0 , 0  , equal, according 
to Kuwahara, to 1445.5 m/sec. As was pointed out by Beyer (1954) and 
shown on the basis of laboratory experiments by Wilson ( 1959) and Del 
Grosso (1 959), and also verified by Mackenzie ( 1960) by measuring the speed 
of sound during his submersion with Jacques Piccard in the bathyscaph 
“Trieste” to a depth of 4,000 ft. on May 29, 1959, the quantity ~ 3 5 , 0 , 0  

according to Kuwahara is less than the true quantity by about 3 m sec-l . 
In the last years, methods of accurate laboratoy determination of the 

speed of sound in pure and sea water have been developed; the results of 
these experiments have made it possible to undertake the construction of 
empirical formulae, the accuracy of which could prove greater than the accu- 
racy of the theoretical formula. 

* In Del Grosso’s work (1959) there is a detailed analysis and criticism of Ekman’s methods in calcu- 
lating the coefficient of compressibility p .  

** Additional light should be shed on this point by the introduction of the new values for heat capacity 
cp according to Cox and Smith (par. 18) in the theoretical formula. 
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The first result of accurate laboratory investigations was Del Grosso's 
empirical formula (1 952): 

c = 1448.6 + 4.618T - 0.0523T2 + 0.00023 T3 + 1.25(S - 35) - 

- 0.011(S-35)T+ 0.00027~10-5(S-35)T4 - 

- 2 1 OF7 ( S  - 35)4 (1 + 0,577 T - 0.0072 T 2 )  [ 19.141 

Until recently Del Grosso's formula was considered the most accurate: for 
all temperatures and for salinities above 15'/00 the error produced by Del 
Grosso's formula does not exceed 0.5 m/sec, and amounts basically only to 
0.2-0.3 m/sec. Del Grosso's formula is designed for the speed of sound at 
atmospheric pressure and does not take account of the influence of hydro- 
static pressure; detailed tables have been compiled according to it (Bark et al., 
1961). 

help of the correction Ac, according to Wilson (see below). 

pressure are the works of Wilson (1 960a, b, 1962), who proposed two for- 
mulae for the speed of sound as a function of temperature, pressure and salin- 
ity; we shall dwell below on the second of these which is the more accurate. 
Wilson describes in detail a first series of experiments in the course of which 
he undertook instrumental laboratory investigations of the speed and propa- 
gation of sound in water samples collected in the Atlantic Ocean in the region 
of the Bermudas - Key West. Wilson points out that according to the statisti- 
cal T-S analysis of Montgomery (1958), 99.5% of the waters of the World 
Ocean lie in the range of temperatures 3 < T < 30°C, the range of pressures 
1.033 < p < 1000 kg/cm2 and the range of salinities 33 < S < 37"/00. In 
accordance with this, the experiments were carried out in these ranges; the 
water samples, filtered for the purpose of removing organic matter, were 
diluted to the required salinity by distilled water. 

During the first series of experiments 581 measurements of the speed of 
sound in these ranges were carried out for 15 values of temperature, 8 values 
of pressure and 5 values of salinity. The methods of measurement were the 
same as this author had used to measure the speed of sound in distilled water 
at various pressures; they are described in Wilson's preceding work (1959) *. 
The results of the measurements were processed on a computer by the method 
of least squares; Wilson presents these results in the form of an equation, 
similar to Kuwahara's expansion (Section 29). 

The influence of pressure is taken into account in these tables with the 

Recent investigations of the speed of sound in sea water taking account of 

* The tables for the speed of sound in distilled water at 0 < T < 100" and atmospheric pressure, based 
on the new data, are given in an article by Greenspan and Tshiegg (1959). 
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Wilson's second formula is as follows: 

c = 1449.14 + ACT f AcP + A c ~  + AcST 
P 

where: 

ACT =4.5721T- 4 . 4 5 3 2 0 1 0 - ~ T ~  - 2 . 6 0 4 5 ~ 1 O - ~ T ~  + 

+ 7.985 1 1 0-6 T4 
Acp = 1.60272 lO-'p + 1.0268 - 1 O-5p2 + 

+ 3.5216*10-9p3 - 3.3603*10-'2p4 

Acs = 1.39799 (S - 35) + 1.69202 * 1 0-3 ( S  - 35)2 

AcsTp = ( S  - 35) (-1.1244. T + 7.771 1 T2 + 
+7.7016.10-5p - 1 . 2 9 4 3 ~ 1 0 - ~ p ~  +3.1580*10-8pT + 
+ 1.5790 * 1OV9pT2) + p(-  1.8607 1 0-4 T + 
+ 7.4812.1 0-6 T 2  + 4.5283 lop8 T3) + 
+ p2(-2.5294- lop7 T + 1.8563 - 10-9T2) + 

+p3(-1.9646* lO-'OT) 

79 

I19.151 

[19.16] 

This formula is valid withk the ranges -4 < T < 30°C, 1 < p < 1,000 
kg/cm2, 0 < S < 3 7 " / ~ .  The quantity 1449.14 m/sec represents the speed 
of sound at O'C, 35%' and pressure 0 kg/cm2. At atmospheric pressure, 
equal to 1.0332 kg/cm2, the correction, as may be seen from the second 
formula (1 9.16), amounts to approximately 0.16 mlsec. Accordingly, the 
speed of sound at O"C, 35%' and atmospheric pressure amounts to 1449.30 
m/sec. The standard deviation of Wilson's second formula with respect to 
the experimental data amounts to 0.30 m/sec. At the present time it is the 
most accurate, and tables and nomograms have been prepared from it 
(Bialek, 1964; Tables of Sound Speed in Sea Water, 1962). 

Inasmuch as the argument in this (as well as in the fnst) formula is not 
depth, but full pressure, the latter may be calculated for a depth of z meters 
according to the following formula: 

gp dz +pa  = cg,pi Az + 10.33 
0 

[ 19,171 

p is expressed in decibars, where pa = 10.33 dbars is the standard surface 
atmospheric pressure, gq is the mean vertical acceleration of gravity at latitude 
p; pi is the mean density of the i-th layer of water, Az is the thickness of the 
i-th layer. 
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It is possible to follow another, simpler (but somewhat less accurate) path, 
namely: to make use of a formula combining pressure and depth. Such a 
formula, constructed by Polosin (1 967) for a standard ocean, was given above 
[ 1.81 . The details for calculating the speed of sound in such a way are con- 
sidered in this author’s article. 

In conclusion, let us note that in spite of the appearance of accurate empi- 
rical formulae for the speed of sound, it is premature to  abandon the theoreti- 
cal formula, since the flaw does not lie in the Newton-Laplace formula itself, 
which, according to Lamb, enjoys the absolute confidence of the physicists, 
but in the inaccuracy of the empirical constants contained in the formula, 
and first of all in the inaccuracy of the Ekman coefficient of isothermic com- 
pressibility. The recalculation of these constants, which will be carried out 
sooner or later, will make it possible substantially to improve the results ob- 
tained under the theoretical formula. Speaking, however, of the inaccuracy 
of Ekman coefficient p, we must also recognize as inaccurate contemporary 
methods of calculating C K S T ~  (according to the tables of Bjerknes, Zubov, 
Sverdmp et al.), and hence also the calculation of geopotentials and speeds 
of geostrophic currents, stability, etc., although errors in all these calcula- 
tions are of considerably less importance than errors in hydroacoustical cal- 
culations. All these characteristics are brought together by the equation of 
state of sea water and, as far as the accurate empirical formulae for the speed 
of sound are concerned, it is possible with their help to solve the “opposite” 
problem, i.e. to determine indirectly the coefficient of compressibility 
(Crease, 1962). 

20. KELVIN’S FORMULA 

Let us consider the question of the adiabatic change in temperature with a 
change in depth. Fofonoff (1962) points out that if a layer of water is fully 
mixed so that two particles within this layer, brought to one and the same 
pressure, are in no way different from each other, then in this case the layer 
of water considered must have constant entropy and salinity. Thus, from 
formula [ 18.161 , expressing the differential of entropy as a function of tem- 
perature, salinity and pressure, the following formula, where dq = 0 and 
dS = 0, is directly derived: 

t20.11 

This is Kelvin’s formula, which expresses the adiabatic vertical temperature 
gradient in the ocean. Proudman (1953) gives a detailed derivation of Kelvin’s 
formula by the method of thermodynamic cycles (circular processes). In the 
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present exposition Kelvin’s formula is obtained on the basis of a consecutive 
development of the method of thermodynamic potentials. 

Kelvin’s formula is of great importance in physical oceanography and is 
used in such questions as the determination of potential temperatures (this 
question is connected with the problem of the study of deep circulation in 
the sea), the calculation of stability, the speed of propagation of sound, etc. 
Kelvin’s formula and calculations from it are considered in detail in Section 
27. 

21. NON-LINEAR PROPERTIES OF SEA WATER 

As is well known, sea water is a substance possessing numerous anomalous 
properties - extremely high heat capacity, heat of melting, heat of vaporiza- 
tion, etc. Without going into the physical and chemical nature of the proper- 
ties of sea water, the study of which goes beyond the limits of the present 
work, one may consider that the direct cause of the principal anomalous 
properties of sea water is the non-linear dependence on temperature and 
salinity of its density (specific volume) and heat capacity, as well as of the 
gradients of thermal expansion and saline “contraction” aa/a T and aa/aS; 
this is immediately obvious from a consideration of the graphs of the func- 
tions mentioned (Figs. 1 ,8 ,  10, 14 and 15). 

Due to the existence in sea water of the temperature of maximal density 
(the extreme of the isosteres on the T-S diagram), the coefficient of thermal 
(volumetric) expansion a = ( 1/ao)(aa/aT) in the region of temperatures and 
salinities, limited on the T-S diagram by the lines of the temperature of maxi- 
mal density and the temperature of freezing (Fig. I) ,  is negative. In greater 
detail: 

(1) for pure water (S = Oo/m): 
a <  OatO< T <  4°C 
a = O a t T = 4 ” C  
a >  Oat T >  4°C 

a < O a t T < B  
a = 0 at T = 8 
a > 0 at T >  8 

(3) for sea waters (S > 24.7’/00): 
a > 0 at all temperatures. 

(2) for brackish waters (0 < S < 24.70/,): 

Inasmuch as the volumetric expansion of water is connected with adiabatic 
processes, at a < 0 water on contraction is adiabatically cooled, and not 
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heated; this fact is proven for pure water on the basis of the second principle 
of thermodynamics (see, for example, Bazarov, 196 1). 

This anomaly of sea water - the anomaly of adiabatic processes - has not 
yet attracted the attention of investigators, apparently for the reason that 
the waters falling within the area where a < 0, are not encountered in the 
ocean at great pressures (although a comparable situation can be observed in 
the deep parts of the Black Sea - this question requires further study), and 
this anomaly is of purely theoretical interest. 

The main anomalies of significance in the dynamics of ocean waters are 
revealed ddring the study of the process of mixing of two homogeneous 
water masses having different temperatures and salinities. Let us consider 
briefly at least three of the most important effects caused by the anomalous 
properties of sea water: 

(1) The heat of mixing (dilution) effect. If the temperature and salinity 
are regarded as additive, i.e., as in the case of a linear dependence between 
the resulting property and the proportions of mixing, the curve of the binary 
systems (Anosov and Pogodin, 1947) will be linear (Fig. 1 la). However, 
neither temperature nor salinity are additive properties. Let us consider for 
example two homogeneous water masses having extreme values for ocean 
conditions (30", 35°/00 for one mass and 0" , Oo/m for the other). The formula 
for the mixing of two equal masses, i.e., the formula for a binary solution, 
has the following form for the determination of temperature: 

[21.1] 

here c is specific heat. Substituting the values of the specific heat capacities 
of these waters, equal to 3.999 and 4.217 J 8-l "C-' respectively, in the 
formula [ 21.1 ] , we obtain that the temperature of the resulting mixture will 
become equal not to T = f (TI  + T 2 )  = 15", as would occur if temperature 
were additive, but to Tf = 14.602". The difference Tf - T =  0.398"C repre- 
sents the heat of mixing (dihtion) of the waters; it may be seen from this 
example that its quantity is not at all negligible. The heat effect of the mixing 
of sea waters is considered in greater detail in the work of Okubo (1 95 1) and 
Connors (1 970). Thus, temperature is not an additive property (Fig. 1 1 b). 
The same thing probably also occurs for salinity owing to the degree of disso- 
ciation of sea water as an electrolyte; however, here the non-linear effects are 
probably small. On the other hand, we shall see below (Section 22) that 
enthalpy, h - cp T ,  is an additive property. 

In general T-S analysis, neglecting the quantity of heat of dilution, temper- 
ature and salinity are considered for the sake of simplicity as additive proper- 
ties (see Section 30). 
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Fig. 11. The curve of an additive property (a) and curves of the most important non-additive proper- 
ties of sea water (b)-(d). The curves shown in broken lines in (c) and (d) take account of the non- 
additivity of temperature. 

(2) The effect of contraction on mixing. The property of contraction may 
be easily studied in a simple example which we borrow from Zubov (1 947, 
pp. 40-41). Let us consider two homogeneous water masses, A and L ,  at 

PC 

Fig. 12. In explanation of the effect of contraction on mixing of two water masses. 
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atmospheric pressure and with the following characteristics: TA = 30°, SA = 
35.36’/,, and TL = -1 .9 ,  SL = 27.38’/, (Fig. 12). The conventional density 
of both water masses is identical: uT = 22.02; the first of them corresponds 
roughly to  the waters of the Gulf Stream, the second to the waters of the 
Labrador current in the region where they are contiguous near the Great New- 
foundland Bank. I f  equal volumes of these two water masses are mixed, the 
temperature and salinity of the mixture, provided these properties are addi- 
tive, will be equal respectively to 14.25’ and 3 1. 18°/m. As may be seen from 
Fig. 12, conventional density uT = 23.38 corresponds to these values; we see 
that this value for conventional density is greater by AuT = 1.36 than the density 
of each of the waters mixed. A “densification” of the waters has occurred (if 
we are thinking in terms of density) or their contraction (if we consider 
specific volume). For the two extreme uniform water masses considered 
above (30°, 35’/, and O’, O’/,) the conventional density of the mixture of 
equal volumes of these waters will be greater by AuT = 1.78 than the mean 
arithmetical value of the conventional density of these waters. 

Thus, density (specific volume) is a strongly non-additive property, and 
the effect of contraction is reinforced if one takes into account the non- 
additivity of temperature (Fig. 1 1 c). 

has virtually not been investigated. It is likely that this effect is to be ex- 
plained by the reorganization of polymeric clusters of water molecules in 
specific electrolytic conditions (in this connection see Horne, 1970, 1972). 
From the oceanographic point of view the phenomenon of contraction on 
mixing of sea water has been studied in the greatest detail by Zubov (1938, 
1947, 1957b) and by Zubov and Sabinin (1958), and, following Zubov, by 
a number of other investigators. Bulgakov (1 960) and Fonofoff (1 96 1) have 
studied this phenomenon from the theoretical point of view. The important 
general results of Fofonoff will be considered immediately in the following 
paragraph. In addition, some development of the theory will be presented in 
Section 36, while contraction on mixing of the real water masses of the ocean 
will be considered in Sections 55-57. 

The physical and chemical nature of contraction on mixing of sea water 

(3) The effect of acceleration of sound on mixing. For the mixture of two 
equal volumes of water at extreme conditions (30’, 35qoO, and O”, O’/,,,,) the 
speed of sound is 9.3 1 m/sec greater than the mean arithmetical speed. Pre- 
cisely, the speed of sound (at atmospheric pressure) for the first of the waters 
amounts to 1545.66,m/sec, for the second to  1402.28 m/sec, and for the mix- 
ture of equal volumes of these water to 1483.28 mfsec, whereas the mean arith- 
metical value amounts to  1473.97 m/sec. Thus, the speed of sound is also a 
substantially non-additive property (Fig. 1 1 d). The study of the effect of the 
acceleration of sound during mixing, pointed out for the first time in the 
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present work (in any event, the author is not aware of any studies devoted 
to this question) is of great importance for the study of the speed of sound 
in the World Ocean. 

cesses of mixing, formation and transformation of water masses, as well as 
on the static conditions in the real ocean, stratified as to density. 

The non-linear effects considered above have a great influence on the pro- 

22. CONTRACTION ON MIXING OF SEA WATERS 

In the preceding section, the effect of contraction on mixing of two 
water masses was considered in one particular example. The study and evalua- 
tion of the influence of this effect, as we shall see in subsequent chapters, play 
an important part in the T-S analysis of sea waters. For this reason, before 
proceeding to the study of this effect in the oceanographic context, let us 
present a general consideration of contraction on mixing from the thermo- 
dynamic and mathematical points of view, following the work of Fofonoff 
(1 96 1) in the exposition of this paragraph. 

Let us consider the process of mixing of two homogeneous water masses 
m l  , m 2 ,  having initial temperatures T I  , T2 and salinities S , ,  S2 at constant 
pressure p .  Given complete mixing of these water masses, a homogeneous 
water mass m is formed with temperature T and salinity S.  According to the 
condition of the conservation of masses and salts, we have: 

Am = m - (m 1 + m2) = 0 [22.1] 

m A S = m S -  ( m 1 S 1 + m 2 S 2 ) = 0  [ 22.21 

The change in volume (contraction) will then be defined as: 

A V = W Z U  - ( W Z ~ U ~  + m 2 ~ 2 )  

where u l ,  u2 and u are the specific volumes of the original water masses and 
their mixture, respectively. 

~ A E  = W Z E  - (mi €1 + ~ 2 2 ~ 2 )  = -p dY [ 22.41 

where e l ,  e2 and E are the respective values of the specific internal energy of 
the water masses. 

Substituting [ 22.31 in [ 22.41 and taking account of formula [ 13.41, we 
obtain : 

~ A ( E + ~ u ) = ~ ( E + ~ u )  - [ m l ( ~ l  + P U ~ )  + w z ~ ( E ~ + P u ~ ) ]  = 0 

or : 

[ 22.31 

Further, according to the condition of the conservation of energy, we have: 

[22.5] 
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mAh = mh - (m , h , + m2h2)  = 0 

where h ,  , h2 and h are the respective values of the specific enthalpy of the 
water masses. Formula [22.6] expresses the condition of the conservation of 
enthalpy. 

Let us expand the specific volume, as a function of enthalpy and salinity, 
v(h, S ) ,  into a Taylor series in the neighborhood of a certain point (ho, So),  
the coordinates of which correspond to equilibrium values, limiting ourselves 
to terms of the second order: 

[ 22.61 

+ +  [(&) (h-ho)2  +2(&) a h a s  o (h-.ho)(S-So)-t  
ah2 

+ (&) (S-S0); l  
as2 O 

[22.7] 

Substituting [ 22.71 in [22.3] and taking account, during the transformation 
of the formula, of [22.1] , [22.2] and [22.6], we obtain the following analy- 
tical expression for contraction, AV:  

[22.8] 

where h 2 v  is the abbreviated designation of the differential form contained in 
[22.8] in square brackets. 

The transition from enthalpy to temperature leads to the following formula: 

[22.9] 

where: 

The additional term [ - (1 /cp ) ( a  u/a T )  a 2  h ] characterizes that small part of 
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contraction on mixing which is determined by the temperature deviation from 
the linear law of mixing represented in Fig. 1 1 a; this temperature deviation, 
equal to [ - (1 /c,  ) 6 h ] , is determined by the nature of the dependence of 
heat capacity on temperature and salinity and represents the heat of mixing 
of water masses, which was illustrated by a particular example in the preced- 
ing section *. 

Let us consider further, following Fofonoff, the quantity of contraction 
per unit of mass provided that the small mass of water 6m mixes with the 
large mass of water m. Calculating the limit of expression 122.81 when 
6rn -+ 0, we obtain: 

[22.11] 

With the help of this formula Fofonoff shows how the quantity of contraction 
on mixing depends on the angle of slope of the straight line of mixing (shown 
in Fig. 12) to the axes of the T-S diagram (and, consequently, also to the iso- 
steres). 

Fig. 13. Dependence of the parameter of contraction on mixing, F on the angle of slope 0 of the 
straight line of mixing to the abscissa axis of the T-S diagram (at atmospheric pressure). I = O"C, 35'/90; 
2 = 16'C, 35'/00 ; 3 = 8"C, 20°/00, (From Fofonoff, 1961, with additions.) 

* In a subsequent work, Fofonoff (1962) extends the above considerations to the general case of anon- 
equilibrium unbalanced system, considering, in particular, the question of the speed of production of entropy 
in the process of mixing and the attainment of equilibrium. This question is not considered here since 
the work mentioned is well known to oceanographers. 
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Assuming : 

T2-T, = r s i n 8  

S2 - S ,  = rcos8 

and substituting these expressions in [ 22.1 1 ] , we obtain: 

[22.12] 

(instead of these expressions Fofonoff gives a more cumbersome analytical 
expression which is not considered here). 

In Fig. 13 examples are shown of the dependence of the parameter of 
contraction on mixing, 
line of mixing to the abscissa axis of the T-S diagram for three types of sea 
water. Curve I , plotted by Fofonoff, corresponds to standard sea water (0” , 
35’/,), curve 2 to the “Central” Water of the Pacific Ocean (see Fig. 96), 
curve 3 to the waters of the Black Sea at a depth of about 100 m. The values 
of the second derivatives of specific volume, necessary for calculations accord- 
ing to formula f22.123 , are taken from the accurate tables of Fofonoff and 
Froese (1 958). 

From the figure it is clear that the greatest contraction on mixing is ob- 
served at angles 0 of the order of 80”, i.e., for waters which are highly differ- 
ent for temperature and much less so for salinity; the least contraction occurs 
at angles 8 of the order of 170” , i.e., for waters which are very different in 
salinity and little different in temperature. 

This qualitative conclusion proves highly useful in the practical study of 
the contraction on mixing of the real water masses of the ocean (see Sections 
55-57). 

F(8 ; T, S, p ) ,  on the angle of slope of the straight 



CHAPTER 4 

PARTIAL DERIVATIVES OF THE EQUATION OF STATE 

23. EXPANSION OF FUNCTION OL = &(S, T, p )  INTO TAYLOR'S SERIES 

Expanding the'function a(S, T, p) into Taylor's series (for three variables) 
in the neighborhood of point (35,0,0) with an accuracy to  terms of the third 
order of smallness, we obtain: 

a(S,  T,p) = a(35,0,0) + 

d S d p  + 

a3a dS2dT+ 

a2 OL 

asap d S d T +  2 - + -  (- dS2 + - dT2 +2 dp2 + 2 - 1 a2a a2 a 2 a2  (Y 

a s a T  2 as2 aT2 aP2 
3 

a2a dTdp + 1 & dS3 +fi dT3 + a(ll dp3 + 3 - 
a s 2 a T  ) 6 ( a s 3  a T3 aP3 

+2- 

+3- a3a d T 2 ~ + 3 -  a3ff  a2dp+3---  a3a d T 2 d p +  

n a p  

a T 2 a s  as2 ap aT2ap 

ap2 as ap2 a T 
a3a dp2a+3- - -  a3 a a3a dSdTdp)  +.... [23.1] 

+3- 

In order to represent this expansion in the form of finite differences, let us 
first consider functions a(S,O,O), a(35,TyO) and a(35,0,p) as functions of 
one variable, S ,  T and p respectively. Expanding these functions into a Taylor's 
series for the corresponding variable and designating the differences between 
them and the quantity of specific volume of standard ocean water a(35,0,0) 
by 6,, 6, and 6, respectively, we obtain: 

aa 1 a2a 1 a3a 
-as 2 as2 6 a s 3  

6 --dS+-- dS2+--dS3+ ... 

d T 3 +  ... 6, =* d T +  aT2 dT2 +-- 
a T  6 aT3 

1 a2a 

a& 1 a2a 1 a3a 
aP 2 ap2 6 ap3 

6 =-dp+--dp +-- d p 3 +  ... 

[ 23.21 

[ 23.3 

[23.4 
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These three differences thus include nine terms of the expansion [ 23.1 1. 
Further, considering the expressions [23.2-23.41 as functions of T ,  p and S 
respectively, drawing up the second differences h S T ,  bSp and 6 T  and expand- 
ing them into a Taylor’s series, we will obtain expressions inclu&ng nine more 
terms of the expansion [ 23.1 1. Thus, having drawn up differences of the first, 
second and third order: 
‘ p  - “35,0,p - “35,0,0 

‘S =“S,O,O - “35,0,0 

6 T  = “35,T,O -“35,0,0 

- 

[23.5] 

- 
6 T p  - (“35,T,p -“35,0,p) - (“35,T,O -“35,0,0) 

6 S T p  = [(“S,T,p-“35,T,p) -(aS,T,0-a35,T,0)1 - 

- [(“S,O,p -“35,0,p) - (“S,O,O -“35,0,0)1 

we come to the conclusion, that expansion [23.1] may be represented in the 
following form (Bjerknesand Sandstrom, 19 10): 

“STp  = “35,0,0 + 6S + 6 T  + 6 p  + 6 S T  + 6Sp  + 6 T p  + ‘ S T p  [23.6] 

This dependence can also be written in the form: 
“STp  = “35,0,p + 6  

where : 
6 = 6s + 6 ,  + 6 s T  + 6 T p  + 6 s T p  

[23.7] 

[23.8] 

is the expression of the anomaly of specific volume [ 1.321. 

corrections 6s, 6 ,  and 6sT in quantity aT (or u T ) :  

Let us combine quantity a(35,0,0) = 0.97264 [or u(35,0,0) = 72.641 with 

[23.91 

[ 23.1 01 

The latter formula is applied for tabular calculations of specific volumes 
in situ in practice. 
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The relationship between anomaly 6 [ 1.321 and conventional specific 
volume uSTp can be obtained from the following considerations. It follows 
from formulae [23.8] and [23.9] that: 

Comparing this expression with [ 23.101 we obtain: 

6 = 1 Op3 (USTp - u35,0,0) - 6, 
and : 
uSTp - +5,0,0 = lo3@ + h p )  

[23.11] 

[23.12] 

Density in situ can be expressed by a formula similar t o  [23.7], namely: 

PSTD = p35,0,D - 
where : 

[23.13] 

E = E S  + ET + EST + ESD + ETD + ESTD 

is the anomaly of density. This formula, also proposed by Bjerknes and 
Sandstrom ( 19 12), differs from the formula for the calculation of specific 
volume in situ by the fact that, instead of depth expressed in decibars, depth 
appears in it expressed in dynamic meters. The replacement in expressions 
[ 23.131 and [ 23.141 of 01 by p ,  6 by E and p by D ,  respectively, is convenient, 
bearing in mind the relationships between density and specific volume 
(formula [ 1.91) and pressure, dynamic depth, specific volume and density 
(formula [ 1.351). Differentiating formula [ 1.91 we obtain: 

dp = - d01/a2 , 
whence, bearing in mind expressions [ 23.71 and [ 23.131, we obtain (Bjerknes 
and Sandstrom, 19 12, p. 32) the following relationship between E and 6 : 
E = - 6/a2 

[23.14] 

[23.15] 

[ 23.1 61 

In a completely similar way to formulae [ 23.101 we may write: 
PSTD = 1 + w 3 0 T  + ED + fSD + ETD + ESTD 

[ 23.1 71 

In such form these formulae were written for the first time by Hessenberg 
and Sverdrup (191 Sb). It should be pointed out that the formulae given for 
the calculation of uSTD are rarely used (Sverdrup et al., 1942). Tables of 
quantities p35,O,D, as well as of the corrections to  this quantity entering into 
formula [23.1], may be found in Bjerknes and Sandstrom (1912, tables 16 H 
to 23 H). These tables are repeated in part in an article by Hesselberg and 
Sverdrup ( 19 1 Sa). 
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The expansion of function a(S, T,  p )  in a Taylor series is important not 
only for convenience in calculating specific volumes but also for analytical 
purposes (Chapter 3). The first derivatives aa/aS, aa/aT and aa /ap  will be 
considered immediately below (Sections 24 and 26). 

24. THERMAL EXPANSION AND SALINE “CONTRACTION” 

In this section we consider the first partial derivatives aa/aT and aa/aS 
entering into the Taylor expansion both at atmospheric pressure and in situ, 
as well as (briefly) the second partial derivatives a2a/aS2, a2a/aT2 and 
a2a/aSa T at atmospheric pressure. The first partial derivative aa /ap  (the 
baric gradient of specific volume) is considered separately in Section 26. 

Thus, let us turn to the question of calculating specific volume “gradients” 
for temperature and salinity aa/a T and aa/aS, as well as the corresponding 
density gradients ap/aT and ap/aS.  Let us call the first of these gradients the 
gradient of thermal expansion and the second the gradient of saline contrac- 
tion, by analogy with the coefficients of thermal expansion and saline con- 
traction. 

Knowledge of the gradients of thermal expansion and saline contraction is 
absolutely essential for the study of those phenomena in which a change of 
specific volume takes place, or where account must be taken of such a change 
for one or two variables: temperature and salinity. In particular, this is 
necessary for: (a) calculation of the speed of propagation of sound in sea 
water; (b) calculation of the vertical stability of waters; (c) calculation of 
steric fluctuations of level; (d) calculation of line integrals on a T-S plane. 

pressure are calculated by the differentiation of function a( T,  S ) ,  i.e., by the 
differentiation of Knudsen’s formulae; the result is expressed by the corre- 
sponding gradients of conventional density auT/aT and auT/aS. 

The derivatives of thermal expansion and saline contraction at atmospheric 

Differentiating the relationship between p,  a and uT : 

l24.11 

[ 24.21 

[24.3] 

and : 
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- a a T  = -10- 3 a T -  2 aaT 
a T  a T  

- a a T  = -10- 3 aT 2 - aaT 
as as 

[ 24.41 

124.51 

The derivatives of conventional specific volume a vT /a T and a vT /as may 
also be obtained by differentiation of the formula linking v T  and u T :  

VT = lo6 - 900 
OT+103 

as a result of which we obtain: 

t24.61 

[ 24.71 

[24.8] 

It is easy to  see that formulae [ 24.71 and [24.8] are similar to  formulae 
[24.4] and [24.5]. Differentiating Knudsen’s formula [3.4] by T, we obtain: 

d=T dAT + dBT - (O0-O.1324)] [-dr dT ao, =- +(u0+0.1324) a T  dT  124.9 J 

The derivatives entering into this expression are also obtained by differen- 
tiation of Knudsen’s formulae [ 3.51, which determine the quantities Z T ,  AT 
and BT, and equal: 

1’094*910 1 - = -  T 
dT 503.570 (T+ 67.26)2 

b15.74 - 2(T-3.98) - [24.10] 

dA, = (4.7867 - 0.196370 T + 0.0032529 T2) 1 0-3 dT 
t24.111 

and 

dBT =(18.030- 1.6328T+0.05001 T2)*10-6 [24.12] 
dT 

Differentiating Knudsen’s formula [ 3.41 by S, we obtain: 
8 0 ,  - -- - duo (1 -AT + ~ B T O ~ )  
as d S  

where : 

124.133 
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[24.14] 2 dC1 -- duo - ( 1.4708 - 0.003140CZ + 0.0001 194Cl ) d~ 
dS 
and 
dC1- 1 
dS  1.8050 [24.15] 

The values of a uT /a T and a uT /as were calculated by Hesselberg and 
Sverdrup ( 19 15b), Kuwahara ( 1939) and Ivanov-Frantskevich (1 953). The 
latter author established that there were mistakes in the tables of Hesselberg 
and Sverdrup; Kuwahara does not give the results of his computations. 
Therefore the tables of derivatives auT/a Tand au,/aS, calculated by Ivanov- 
Frantskevich, should be considered the most reliable; they are published both 
in his work (1953), and in the Oceanological Tables of Zubov (1957a, tables 
20 and 26). These tables were calculated by Ivanov-Frantskevich with an 
accuracy of one decimal place greater than necessary for the calculations, i.e. 
to 10-4(auT/aT) and au,/aS. This was done so that it might be possible to 
plot graphs for corresponding computations from the tables. 

The derivatives avT/aT and avT/aS may be computed from formulae 
[24.7] and [24.8]. Tables of these derivatives were published by the author 
(Mamayev, 1954,1963) and by Fofonoff and Froese (1958). Both these 
tables are given in the Appendix (Tables A4 and A5). 

The relationships of the derivatives of thermal expansion and saline con- 
traction to temperature and salinity at constant pressure are shown (for 
specific volume) in Figs. 14 and 15. The corresponding graphs for density are 
not given; let us note merely that the graphs of the derivatives aa/a T and 
ap/aT are quite similar, whereas graphs of aa/aS and ap /aS  differ - probably 
due to  the fact that specific volume and density are inverse quantities. It is 
curious that in the area of the greatest non-linearity of graph a = f(S, T )  
(Fig. l ) ,  i.e. at low values of S and T ,  graph aa/aS =f(S, T )  is “most linear” 
and vice versa. The same is true in respect of density. These peculiarities are 
interesting for the theoretical study of contraction on mixing of sea waters. 

The gradients of thermal expansion and saline contraction in situ can be 
obtained by differentiation of Bjerknes’ formula [ 23.101. Differentiating this 
formula for temperature, we obtain: 

where : 

(%)ST= 10- 3 - a v T  
aT 

[ 24.1 61 

[ 24.1 71 

while differentiating it by salinity, we obtain: 
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30 

20 

to 

0 

- 2  

Fig. 14. Graph of function 1O4aa/aT =f(S, TI. 

where : 

[ 24.1 81 

[ 24.191 

Similar formulae for the expression of density gradients can be obtained 
by differentiation of formula [ 23.181 : 

T T  
30 

20 

10 

0 
-2 

Fig. 15. Graph of function - 104aa/aS = f(S, T )  
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and : 

[ 24.201 

[ 24.2 11 

The values of the corrections for temperature and pressure, for salinity and 
pressure and for temperature, salinity and pressure (the second and third 
terms in formulae [24.201 and [24.21 I )  are calculated by differentiation of 
the corrections e (see [23.17]). 

We shall not dwell on the details of this laborious procedure. These correc- 
tions were calculated by Hesselberg and Sverdrup ( 19 14- 19 1 5). Ivanov- 
Frantskevich ( 1953), verifying Hesselberg’s and Sverdrup’s tables, discovered 
mistakes in them; thus, for example, correction is increased in Hesselberg’s 
and Sverdrup’s tables to double the necessary value. Therefore the values of 
the corrections for pressure were also recalculated by Ivanov-Frantskevich, 
and his tables included in the Oceanological Tables of 1957; thus, the value 
[ap/aTISTp is calculated from tables 20, 21 and 22, while the value 
[ap/aS],,,  is calculated from tables 26, 27 and 28. 

The second Clerivatives of density and specific volume at constant pressure 
are determined through the first and second derivatives of conventional 
density by the following formulae, obtained by secondary differentiation of 
formulae [ 24.21 -I 24.5 I : 

and : 

L24.221 

[ 24.23 ] 
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The second derivatives of conventional density are determined in the 
following way: 

d2BT1 a 2 a T  d2xT d2A T - -- - + (00+ 0.1324) [- -p + (ao - 0.1324) - 
aT2 dT2 dT 

i24.241 

where the derivatives d2ET/dT2, d2AT/dT2 and d2BT/dT2 can easily be 
obtained by secondary differentiation of formulae [ 24.101 , [ 24.1 1 I and 
[ 24.121 , and the derivative d2a0 Ids2 by secondary differentiation of 124.141 I 

The secondary derivatives are extremely small in size and necessary only 
for the most precise oceanographic computations (in particular, for the com- 
putation of the speed of propagation of sound). Some idea of them is given 
by Table IVY the values of the quantities in which are borrowed from the 
precise tables of specific volume and its derivatives by Fofonoff and Froese 
(1 958). 

TABLE IV 

Values of second derivatives of the specific volume of sea water at atmospheric pressure 

1O4(azu~ /aTZ)  =fi(s, T , O )  

0 183 174 165 157 150 144 138 133 128 
10 134 128 122 117 111 106 102 97 93 

’ 20 106 103 99 96 92 88 85 81 77 
30 90 89 87 86 84 81 78 75 71 

104(azu~/aS2) = f3S, T, 0) 
0 23 21 18 16 14 12 10 8 6 

10 20 18 16 14 11 9 8 6 4 
20 18 16 14 12 10 8 6 5 3 
30 17 15 13 11 9 7 5 3 2 

io4(aZuT/as aT) =f3(s, T, 0) 

0 40 38 36 34 33 31 29 28 27 
10 24 23 22 22 21 20 19 19 18 
20 15 14 13 13 12 12 11 11 10 
30 10 9 8 7 6 5 4 3 2 
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In conclusion, let us note that approximate values of the first derivatives 
aoT/aT and aaT/aS can be obtained from the simplified equation of state 
[9.6]. Differentiating [9.6] for T and S, we obtain respectively: 

aa, = -0.0735 - 0.00938T - 0.002s aT  

-- a'' - 0.802 - 0.002T as 

[ 24.251 

These formulae can prove useful in various types of approximate calcula- 
tions. 

25. THE THERMOHALINE DERIVATIVE 

The coefficient of thermohalinity [ 2.1 1 ] is of specific oceanographic 
interest, and is an important numerical characteristic of the equation of state 
of sea water at atmospheric pressure (Mamayev, 1968). It will be seen from 
[2.11] that the latter at So = 1 is numerically equal to the cotangent of the 
angle cp of inclination of the isostere or isopycnal in the given point ( S ,  T )  to 
the abscissa axis, taken with the opposite sign: 

cot cp = - ($) 
P* v 

Indeed, having divided the equation of the isopycnal: 

t25.11 

[ 25.21 

by ap/aS, we will obtain: 
d S =  -cotcp d T  

whence follows [25.1]. Let us call this function the thermohaline derivative 
and designate it as a partial derivative, unlike the arbitrary value of the 
cotangent of angle cp in the given T-S point. 

sure. The numerical value of the thermohaline derivative can be obtained by 
dividing the partial derivative of the equation of state acu/aT (or ap/aT) by 
the derivative acu/aS (or ap/aS respectively) *; as a result we will obtain: 

Let us consider the thermohaline derivative at constant (atmospheric) pres- 

* In both cases we will obtain one and the same result (this is clear from a comparison of formulae 
[ 24.21 and [24.3] with formulae [ 24.41 and [24.5], in spite of the fact that the values of the deriva- 
tives aalaT and aorlab differ from the values of derivatives aplaT and ap/aS. 



THERMOHALINE DERIVATIVE 99 

--u (1 - A ,  +2B,a()) 
dS  

Table A6 gives the values of cot cp = -(aS/aT), as a function of salinity and 
temperature at constant pressure, obtained by dividing the values of the quan- 
tities in table 20 by the values of the quantities in table 26 of the Oceanologi- 
cal Tables (Zubov, 1957a). In addition, the corresponding relationship is 
shown in graphs (Figs. 16 and 17), in the first of which is shown the function 
itself, while the second shows the values of angle cp corresponding to  it for a 
T-S diagram with a unit correlation of scales ( 1 ”/ 1%0 = 1). Considering the 
graph (Fig. 16), we come to the conclusion that it reveals an analytical link 
of a simpler nature between temperature and salinity (“the thermohaline 
link”) in the equation of state of sea water than might have been expected, 
let us say, from the consideration of the graph p = p (S, T ) :  the isolines cot cp 
are almost rectilinear, especially in the region of low temperatures and 
salinities. 

coincides with the line of temperature 8 of maximum density; assuming in 
formula [25.3] (aS/aT), = 0, we obtain the equation of line 8 = const. in 
S- T coordinates, which is more accurate than formulae [ 5.21 and [ 5.31. 

quantity of thermal expansion to  saline contraction, Fig. 16 enables us to  
judge the relative influence of these two processes on the formation of the 
field of density; thus, saline contraction, to a greater extent than thermal 
expansion, influences density in the region of low salinities (and low tempera- 
tures); thermal expansion attains maximum influence in the region of high 
temperatures and high salinities (this is to  be explained by caloric effects). 

It is interesting to draw attention to  the similarity in the arrangement of 
the isolines of the gradients of thermal expansion (Fig. 14) and the gradients 
of thermohalinity (Fig. 16). In both cases the zero isolines coincide; small 
discrepancies are observed in the region of high salinities and temperatures. 
This is completely understandable, at least from the formal point of view. 
Since: 

The zero line (the line of the isopycnal extremes in relation to  variable T )  

Furthermore, inasmuch as function aS/a T characterizes the relation of the 

while the changes of ap/aS are relatively small and do not exceed 10% of the 
quantity itself throughout the whole oceanic range of salinities and tempera- 
tures, within an accuracy of 10% we can write: 
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Fig. 16. Graph of function cot ~p = -aS/aT= f(s, T) .  

as ?&! = 0.0008 - 
3T 3T 

Thus, the gradient of thermohalinity with a good degree of accuracy is re- 

S a l i n i t y ,  %. 

Fig. 17. Angles of slope I+Y of the tangent to the isopycnals to the abscissa axis of the T-S diagram. 
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presentative in relation to the quantity of thermal expansion of sea water, and, 
if necessary, we can judge the latter by the angle of inclination of the iso- 
pycnal to  the abscissa axis. 

An interesting example of the application of the thermohaline derivative 
to  prove that mixing may be isopycnal in nature is given by Pingree (1 972). 
Studying small-scale mixing (microstructure) in the deep parts of the ocean 
in the region to the west of the Iberian Peninsula, Pingree considers the rela- 
tionship: 

T’ = mS’ [ 25.41’ 

where T’ and S’ are the fluctuating deviations of temperature and salinity 
from those values of T and 3, which form an averaged (flattened) T-S curve, 
while m is a coefficient which apparently can be calculated from the formula: 
-- 

m2 = (Tt2)/(Sr2) [25.5] 

but the theoretical meaning of which still remains to  be determined. 
By means of an ingenious argument, which we omit here, Pingree shows 

that if small-scale mixing occurs along isopycnic surfaces, the following con- 
dition must be fulfilled: 

m e  (g) 
P 

[25.6] 

(the sign 2 means that two quantities are not very different from each other). 
Indeed, for two repeated (in one point) stations 65 13 and 6521 of the 

R.V. “Discovery” in the region mentioned above, condition [25.6] is ful- 
filled, as may be seen from the excerpt from Pingree’s table (1 972, p. 554) 

TABLE V 

Values of r,  rn and aT/aS (From Pingree, 1972, p.554) 

Range of m (aT/aS),  
depths (m) (oc/o/oo) (oc/o/oo) 

800-1,000 0.96 4.3 4.3 
1,000-1,200 0.98 3.9 4.4 
1,200-1,400 0.97 4.6 4.7 
1,400-1,600 0.98 5.7 5.4 
1,600-1,800 0.98 5.3 6.5 
1,800-2,000 0.94 6.6 7.4 
2,000-2,200 0.90 6.2 8.2 
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which is given in Table V. The quantity rn is calculated from formula [25.5]; 
in addition, the values of the coefficient of correlation r = (T’S’)/(T’2S’2)’n 
are given. 

Thus, in a region of propagation of Mediterranean waters in the Atlantic 
not only large-scale, but also small-scale mixing is isopycnic in nature. 

26. BARIC COMPRESSIBILITY* 

The baric gradient of specific volume ac!sTp/ap can be obtained by diffe- 
rentiating formula [ 4.1 3 for p ;  as a result of the differentiation we will ob- 
tain: 

t26.11 

In this formula: 

10 * dP - 4886x0’000183 +(105.5+9.50T-0.158T2)-10-3 - 3 ~ T * 1 0 - ~  

[26.2] 
dP (1 + 0.000183p)2 

UO - 28 ao -28  +- (32.4 - 0.87 T +  0.02T2) 
- ( ) (1.8 - 0.06 T ) w 3  l o  

(provided that pressure p is expressed in bars). The formula obtained [ 26.1 3 
makes it possible to  establish a correlation between the true coefficient of 
compressibility: 

[26.3] k = - - -  1 aaSTp 

&STp aP 
and the mean coefficient of compressibility p **. Namely, substituting formula 
[ 26.1 ] in expression [ 20.31, we will obtain a formula linking up these coeffi- 
cients: 

dP P + P d  
k =  

1 -PP 
[26.4] 

From the latter formula, in particular, it will be seen that at atmospheric 
pressure (p  = 0) the coefficients are equal: k = p, while the baric gradient of 

* Also called isothermic compressibility, inasmuch as it is considered at T =  const., i.e., without 
allowance for the influence of adiabatic processes (see also Section 27). 
** Here the letter designation accepted in oceanographic literature has been retained. It should not be 
confused with chemical potential )I. 



B A R K  COMPRESSIBILITY 103 

specific volume is equal to: 

[26.5] 

In the practice of oceanographic analysis the baric gradient of density 
ap/ap is often applied; let us calculate it: 

or, utilizing formulae [ 26.21 and [ 26.31 : 

[ 26.61 

[ 26.71 
ap Q S T O ( 1  -PPI2 

It may be seen from the latter two formulae that the baric density gradient 
at atmospheric pressure (p  = 0) equals: 

[ 26.81 aPSTO - p 

aP QSTO 

It is interesting to elucidate the physical meaning of the baric density 
gradient in situ. Let us consider the differential of density: 

[26.9] 

where T = 0 + AT, is temperature in situ, 0 is the potential temperature, 
AT, is the adiabatic temperature correction, as well as the total deriva- 
tive : 

[26.10] 

Let us consider a homogeneous compressible ideal ocean, in which salinity 
and temperature in situ do not change with depth, i.e., a compressible non- 
adiabatic ocean. In this case in the latter formula we will have dT/dp = 0, 
dSldp = 0, whence: 

[26.11] 

Thus, the baric density gradient in situ characterizes the change in densiry 
caused only by pressure, i.e., by the compressibility of sea water. Numerically, 
it characterizes the density gradient in the event that temperature and salinity 
do not change with depth. 
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The numerical value of the baric gradient of specific volume (density) by 
1 dbar varies within the limits of 350 + 450 low8 (Ivanov-Frantskevich, 
1956). The values of the true coefficient of compressibility k are given in 
table 27 of the Oceanological Tables (Zubov and Chigirin, 1940). 

27. ADIABATIC COMPRESSIBILITY AND POTENTIAL TEMPERATURE 

In actual fact, changes in density with depth (pressure) take place adiabati- 
cally, which, properly speaking, is expressed by formula [ 26.101. In that case, 
let us consider a homogeneous compressible standard ocean, in which salinity and 
potential temperature do not change with depth: dS/dp = 0 and de/dp = 0. 
For such an ocean instead of formula 126.101 we will obtain: 

[27.11 

(Pollak, 1954). In this formula the derivative (ap/ap)e represents the iso- 
thermic (baric) density gradient, (d T/dp), the adiabatic temperature gradient 
determined by Kelvin’s formula [ 20.1 1. 

according to the formulae given above, equals: 
The temperature gradient in situ (the “total” temperature gradient), 

[ 27.21 

The quantity (aplap), is the baric density gradient in situ; we will call it 
the adiabatic gradient of density. It characterizes only that part of the change 
in density of sea water which is caused by baric and adiabatic effects. This 
component does not depend (for all practical purposes) on the thermohaline 
structure of the ocean; thermohaline compressibility, or stability, will be 
considered below in Section 28. 

Both terms in the right-hand side of formula [ 27.1 ] depend on pressure; 
we have already considered this dependence for the first term and will con- 
sider below the dependence of the adiabatic temperature gradient on pressure. 

Let us quote the example of a calculation according to formula i27.11 for 
the simple case p = 0 (atmospheric pressure) at S = 36’/00, T = 10”. According 
to  formula [ 26.81 we can rewrite formula [ 27.1 ] in the form: 

[27.3] 

The quantities necessary for the calculation are taken from the Oceanologi- 
cal Tables of Zubov (1957a): a = 0.973 (table 1 l ) ,  p = 441.5 lo8 (table 14), 
ap/a T = - 1.74 1 0-4 (table 20), (a T/ap)A = 1.20 - 1 0-4 (table 23). 
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We obtain: 

441*5 1.74X 1.20) lo-' = 451 lo-* 

This computation, fairly simple for p = 0 (the sea surface), becomes con- 
siderably more complicated in computing for depth. Here we are helped by 
the formula [ 19.71 of the theory of sound to  which Pollak (1954) drew atten- 
tion in this aspect, namely: 

(""'p) =- 1 
dp A C2 

[ 27.41 

where c is the speed of propagation of sound in sea water. Thus, for S = 36O/o0 
and T = lo", c = 1487.9 m/sec; hence: 

= 45 1 1 0-' (92) = 1 
dp A (1487.9)2 
From formula [ 27.41 Pollak ( 1954) calculated a nomogram for the compu- 

tation of (ap /ap) ,  at atmospheric pressure, as well as a nomogram for calcu- 
lating the pressure correction. These nomograms, extremely convenient for 
calculating the adiabatic density gradient in situ, are reproduced in Figs. 18 
and 19 (reduced in size); the computation itself, thus, is carried out according 
to the formula: 

For example, for S = 3 5 ° / ~ ,  T = 2" and p = 5000 dbar: 

= (471 - 64) = 407 
[(%)A] S T p  

The computation of .the adiabatic density gradients is used in the simpli- 
fied computation of the vertical stability of the waters of the sea proposed by 
Pollak. 

Let us now consider the dependence of the adiabatic temperature gradient 
on pressure. As is already known, the vertical adiabatic temperature gradient 
in the sea is determined from Kelvin's formula: 

[27.5] 

where T is absolute temperature (in OK), cp  the specific heat of sea water at 
constant pressure, in J 8-l "C-' (see Section 18). Gradient I' represents the 
adiabatic gradient at atmospheric pressure, i.e., without allowing for pressure 
corrections. In order to obtain the adiabatic gradient in situ it is necessary to 
introduce quantity (aa/aT)sTp in Kelvin's formula instead of aa/aT,  as well 



106 PARTIAL DERIVATIVES OF EQUATION OF STATE 

Temperature ( ' C )  

Fig. 18. The adiabatic density gradient 108(ap/ap)A as a function of salinity and temperature at 
atmospheric pressure. (Pollak, 1954.) 
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Fig. 19. Pressure correction -108A(ap/ap), to the adiabatic density gradient as a function of pressure 
and of the adiabatic density gradient 108(ap/ap)A. (Pollak, 1954.) 

as to take account of the change in specific heat capacity with a change in 
pressure, as determined by formula [ 18.61. 

The adiabatic gradient I? in situ is calculated according to the formula: 

r s T p  = r s T o  + A F T p  + A h T p  

tions A r T P  and ArsTp  are calculated from tables 24 and 25 respectively 
(Zubov, 1957a). 

[ 27.61 

The gradient rsTo at constant pressure is calculated from table 23, correc- 
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Fig. 20. Adiabatic temperature gradient rSTO = ( a T / a p ) ~  in 0.01"/1000 dbar as a function of salinity 
and temperature. (Fofonoff, 1959, 1962.) 

Instead of tables 23, 24 and 25 it is more convenient to use graphs which 
can easily be plotted from these tables. These graphs were constructed by 
Fofonoff ( 1959,1962) and are reproduced in Figs. 20 and 2 1 respectively *. 
The units I' in these graphs equal O.Ol"C/ 1,000 dbar. 

Furthermore, Fofonoff (1 962) and Bryden (1 973) give formulae for the 
calculation of rSTp, which represent a polynomial by increasing powers of 
parameters of state, convenient for computer calculations. 

Potential temperature ( O ) ,  after Helland-Hansen (19 12), is that temperature 
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Fig. 21. Correction ArT, to the adiabatic temperature gradient for temperature and pressure (A), cor- 
rection Ars,  to the adiabatic temperature gradient for salinity and pressure (B) in the same units as 
in Fig. 20. (Fofonoff, 1959, 1962.) 

* Fig. 21 represents only part of table 25 for temperature 0" 
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Fig. 22. Adiabatic correction A T ,  to temperature Tm in rising from a depth of m meters in the ocean 
(00 = 28.00). 

which water will assume adiabatically if pressure ceases; in other words, if a 
particle is raised from depth (in situ) to the surface of the sea without an ex- 
change of heat (or salts) with the environment (see Section 20). Potential 
temperature is determined by the following formula (Fofonoff, 1962; 
Bryden, 1973): 

[ 27.71 

[ 27.81 

(r is the adiabatic temperature gradient). It should be made clear that an 
adiabatic change in temperature (the integral in [ 27.71) depends on tempera- 
ture, which itself changes with a change in pressure p in the process of inte- 
gration - hence formula [ 27.81, in which 8 ,  = To = T ,  (Bryden, 1973). 

On the basis of the formulae mentioned above Ekman ( 19 14) * and 
Helland-Hansen ( 1930) compiled tables and graphs for the determination of 
adiabatic corrections and potential temperatures; Helland-Hansen's tables 
underly the corresponding Oceanological Tables of Zubov (1957a). In addi- 
tion, potential temperatures can be calculated from the corresponding poly- 
nomial formulae given in the works of Fofonoff and Bryden quoted above. 

To illustrate the numerical values of adiabatic corrections, a graph is given 
(Fig. 22) for the determination of potential temperature according to the 

* Schott's (1914) tables of the adiabatic changes in temperature from a given depth to the surface were 
published at the same time. As Helland-Hansen points out (1930), Schott's tables are inaccurate since 
temperature is taken in them as constant, whereas, as has already been pointed out, the latter decreases 
adiabatically as one gets closer to the surface. 
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Fig. 23. The distribution with depth of the in situ (1) and potential (2) temperatures at station No.262 
of the “Snellius”, made in the Mindanao Trench. Curve 3 corresponds to the adiabatic temperature 
change with depth at a potential temperature 8 = 1.25OC. (Fofonoff, 1959.) 

formula : 

e = T~~~~~ ~ AT, 

This graph is constructed from the corresponding table of Helland-Hansen. 
As Sverdrup et al. (1 942) and Fofonoff (1 959) point out, the vertical dis- 

tribution of temperature in the depressions of the World Ocean is very close 
to the adiabatic, and the instability of the waters, of which Schott had 
spoken ( 19 14), apparently practically does not exist. Fig. 23 shows the distri- 
bution of deep and potential temperatures at the station “Snellius” No. 262, 
made in the Mindanao Trench on May 15-16, 1930 (~p = 9”40’N, 
X = 126” 5 1 ’E, depth 10,068 m). The curve in the figure corresponds to  the 
adiabatic change in temperature with depth for potential temperature 1.25”C, 
and this curve coincides with the points of potential temperatures, indicating 
the adiabatic (equilibrium) stability of the waters in the Mindanao depression. 

The concept of potential temperature is essential in T-S analysis; in investi- 
gating deep waters on T-S diagrams (and not only on them) instead of tem- 
perature, it is preferable (and more correct) to utilize potential temperature, 
which is an indicator of a certain water mass (Zubov, 1938, et al.). 

28. VERTICAL STABILITY 

Let us consider in the sea a certain small particle of water with density p 
and unit volume ( u  = I), brought out of a state of vertical equilibrium, i.e., 
displaced under the influence of some impetus upwards or downwards over a 
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vertical distance Az. In a sea which is not uniform for density this particle 
enters an environment with greater or less density p’ = p f Ap, and Archi- 
medes’ force will begin to  act on it, equal per unit of mass to: 

F = g ( p ’ - p )  = f g A p  [28.1] 

The further behavior of the particle considered under the influence of 
Archimedes’ force will depend on the type of density stratification which 
may be, if axis z is directed downwards, positive (density increases with depth, 
Ap > 0), negative (density decreases with depth, Ap < 0) and neutral or 
indifferent (density does not change with depth, Ap = 0). With positive strati- 
fication the particle, displaced up or down, will strive to  return to its initial 
position; with negative stratification, it will continue t o  move further away 
from the initial position; with balanced stratification the particle will remain 
in any position. 

the particle) equals: 
The vertical acceleration of the movement of the particle (rn is the mass of 

d2z - F - Ap fg- 
d t 2  m P 

Related to  the unit of vertical distance, this acceleration equals: 

f-- g AP 
P AZ 

while the expression: 

[28.2] 

[ 28.31 

[ 28.41 

represents the total vertical stability of the waters of the ocean. 
Thus, stability is the acceleration of a particle displaced from its original 

state of equilibrium, related to  a unit of distance, i.e., a kind of “unit accele- 
ration”. 

It is natural that at E > 0 we observe a stable equilibrium, at E < 0 an un- 
stable equilibrium and at E = 0 an indifferent equilibrium. 

The density gradient in formula [ 28.41 is written in relation to  depth; 
taking into account the factor of compressibility of sea water from the physi- 
cal point of view, the following criterion is more acceptable: 

[28.5] 

where p is pressure. Bearing in mind the correlation between depth expressed 
in m and pressure expressed in dbars, d p  = (gp/lO) dz we can write: 
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1.02 
E p  =P E, [ 28.61 

With an adequate degree of accuracy both criteria equal: 

Ep = E, [ 28.71 

It is practically a matter of indifference whether the density gradient is 
considered according to depth or according to pressure; we will make equal 
use of expression [28.4] or [28.5] depending on the context. Criterion [28.5] 
was proposed by Pollak (1954). 

The density gradient entering into the expression of stability [ 28.5 ] is 
determined by formula [ 26.101 and may be viewed as consisting of two 
parts; adiabatic compressibility, or the density gradient in a uniform adia- 
batically compressible ocean - equation [ 27.1 3 ,  and thermohaline compres- 
sibility, or the density gradient in the real ocean, stratified according to  tem- 
perature and salinity (excepting the “ideal” component from the real ocean): 

[ 28.8 J 

As was already said above, the adiabatic part of the density gradient prac- 
tically does not depend on the thermohaline structure of the ocean and is 
identical for each isobaric surface. Although the absolute quantity of the 
adiabatic density gradient is relatively large in comparison with the other 
components of vertical stability (it varies within the limits of 350 + 450.10-8 
sec2/m2), it may be omitted in considering stability (Ivanov-Frantskevich, 
1956). 

Thus, from the oceanographic point of view, we are interested precisely in 
that part of stability [28.8] which is determined by the distribution of salin- 
ity and potential temperature in the sea. This component, or thermohaline 
stability, is studied in the theory and practice of physical oceanography. 

Since 8 = T - AT,, instead of [28.8] we obtain: 

[28.9] 

In this formula on the left is written the expression for the thermohaline 
density gradient; sometimes it is designated as 6p/dp in order to  emphasize 
the difference between this derivative and the total density gradient. The 
substitution in [28.9] of temperature in situ and the adiabatic correction 
instead of potential temperature is to  be explained by the fact that the latter 
cannot be determined directly from observations. Substituting [ 28.91 in 
[28.5], we obtain the generally accepted expression for vertical (we empha- 
size anew: thermohaline) stability, written with reference to  pressure: 
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or the expression equation expressed through depth: 

[28.10] 

[28.113 

The constant multiplier is usually neglected and the following quantity is 
calculated: 

[28.12] 

Comparing formulae [28.5], [27.1] and [28.8], we obtain the expression: 

[ 28.131 

once again linking the total density gradient (total stability) with thermo- 
haline and adiabatic stability (compressibility). Let us note that the adia- 
batic gradient enters into both these expressions. In turn, stability [ 28.101 
can be represented in the form of the following notation: 
E = ET + Es + E A  [28.14] 

where : 
is the temperature stability , 

is the saline stability and 

E = - - -  rT) - is the adiabatic stability. 
A P a T  d p  A 

Such a division makes it possible to  bring out the relative influence of each 
of the parameters on the formation of total thermohaline stability. 

state ap/aS and ap /a  T themselves depend on temperature, salinity and 
pressure, which has already been referred to in detail in Section 24. In its 
general form, this dependence can be expressed in the following way: 

It is essential to point out that the partial derivatives of the equation of 

[28.15] 

[28.161 
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The same is true of the adiabatic gradient of temperature - formula [ 27.61. 
Thus, the baric effect in the calculation of stability is not finally eliminated; 
only the basic part of this influence is eliminated where pressure appears in 
“pure form”. 

The expression: 

[ 28.1 71 

into which the partial derivatives of the equation of state enter without cor- 
rections for compressibility (pressure) we will call the principal part of stabil- 
ity. Thus, E i T o  represents stability brought to atmospheric pressure (we dis- 
regard the adiabatic gradient in the principal part also). 

Taking account of formula [ 27.41, linking the adiabatic density gradient 
with the speed of sound, we can write the following important expression 
for stability, obtained by Pollak (1954): 

[ 28.181 

Thus, the effect of adiabatic compressibility can be eliminated from total 
stability by means of the speed of sound. Formula [28.18], identical to 
formula [ 28.131, proves to  be preferable, however, from the practical point 
of view, since the equation for the speed of sound in the sea c = c (S ,  T , p )  has 
been studied at the present time with greater precision than the equation of 
state p = p (S, T, p). 

There are also other expressions for thermohaline stability; thus, on the 
basis of formulae [ 23.181 and [ 23. lo], one can construct identical expres- 
sions, which look respectively as follows: 

(Hesselberg and Sverdrup, 191 5b; Sverdrup et al., 1942), and: 

[ 28.193 

[28.201 

The practical ways of calculating stability are considered in detail in the 
works of Ivanov-Frantskevich (1953,1956) and Mamayev (1963). 

29. PARTIAL DERIVATIVES OF THE SPEED OF SOUND 

To compute the speed of sound from the theoretical formula [ 19.1 1 ] and 
to  compile sound speed tables the expansion of function in a Taylor series is 
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used, exactly as is done with respect to  specific volume (Section 23). We shall 
not consider this question in as great detail as was the case for specific volume, 
but shall demonstrate, following Kuwahara ( 1939), only the principle of this 
computation in the example of the derivative ac/aS, entering into the Taylor 
expansion. 

Differentiating formula [ 19.1 1 ] by S ,  we obtain: 

[29.1] 

where by H in the given context is designated the denominator of formula 
[ 19.1 11: 

In turn: 

aH=--.- a2a + -  T [<- 1 acp ( j& ) -2--1 aa a2a as asap cP as aT aT asaT  [29.2] 

The derivatives entering into the last three formulae are easily determined 
from Knudsen’s and Ekman’s formulae: of them, the quantities aa/aS, 
atu/aT and a2a/aSaT are determined by formulae [24.4], [24.5] and [24.231, 
while the remaining are: 

- _  aa - 10-5 aaSTp = - ~ O - ~ O ~ , , ~ E . (  * 
aP aP 

asap asap  as 
aaSTO all  

“STO as) & = 10-5 a2asTp - -10-5 (E.( 

[29.3] 

[ 29.41 

lo9 = - [{ 147.3-2.72 T+0.04T2-p.10-4(32.4-0.87 T+0.02 T2))*10-’ 

[29.51 300 
as + 2 * 1 0-2(~o-28){4.5 -0.1 T -p* low4( 1.8-0.06T))l- 

The formula for ac, /as is not given here. 
Thus, the formula for the speed of sound [ 19.1 1 ] can be finally written in 

the form: 
cSTp = c35,0,0 + + AcS -t Acp AcSTp [29.6] 

where c is the speed of sound in situ, ~35,0,0 is the speed of sound in 
“standard water ( T  = 0” , S = 3So/m), ACT is the speed of sound temperature sTE 

* Here the multiplier serves to convert CGS units (dyn)/cm2) into decibars. 
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correction, Acs is the speed of sound salinity correction, Ac, is the speed of 
sound pressure correction, AcsT, = AcST + Acsp + AcTp is the total speed of 
sound correction for temperature, salinity and pressure. 

quantity of sound speed in a “standard ocean”. 
In his tables Kuwahara combines the quantities ~ 3 5 , 0 , 0  and Ac, in one 

Thus, formula [29.6] can be written: 

[ 29.71 

Kuwahara’s formula, as we see, is similar to Bjerknes’ for the calculation of 
specific volume in situ; this circumstance makes Kuwahara’s tables compact 
and, at the same time, the speed of sound obtained from them may be con- 
sidered more accurate than that derived from Matthews’ tables. 

Mackenzie ( 1960) undertook a detailed analysis of Kuwahara’s tables and 
proposed empirical formulae for individual terms of Kuwahara’s overall for- 
mula for the determination of cSTp; these empirical expressions may be 
introduced into computers and considerably speed up the calculating process. 
The differences in the determinations of the speeds of sound from Kuwahara’s 
tables and from approximate expansions of terms of Kuwahara’s formula in 
series (by the method of least squares) are basically confined within limits of 
0.1 m/sec. Mackenzie’s results were simplified by Bellas (1961) and also 
Horton ( 196 l) ,  who proposed the following simple formula: 

c =  1399+ 1.31S+4.592T- 0.0444T2+0.182h [29.8] 

where h is depth in meters. We do not dwell on the results of Mackenzie, 
Bellas and Horton, which were considered in detail in another monograph of 
the author (Mamayev, 1963), but merely quote the last formula which, like 
the simplified equation of state of sea water [ 9.61, can prove useful for ana- 
lytical purposes. 

three variables: 
Let us now consider the differential of the speed of sound as a function of 

ac ac ac 
as a T  aP 

dc=-dS+-  d T + - d p  [ 29.91 

The partial derivatives are defined here from the equation c = c(S, T,p); 
their approximate values can be obtained from Horton’s formula and equal 
ac/aS = 1.3 1 ; ac/aT = 4.59=0.09T; ac/ap = 0.18 (in meters per second per 
1°C and 1 m respectively). These values must be considered only as determi- 
nations of an order of magnitude, since the partial derivatives of the speed of 
sound are, generally speaking, functions of the parameters of state of sea 
water. Expression [29.9] is interesting from the point of view of an accurate 
determination of the acceleration of sound on mixing. 
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The vertical speed of sound gradient is determined by the expression: 

[ 29.1 01 

This expression, according to formula [ 29.61, can also be approximately 
written in the following form: 

dc - a (Ac,) d s  - + - a (Ac,) - d T  + - (Ac a ) sk dz aS dz aT dz ap P dz 
[29.1 I ]  

The last two formulae are similar to the formulae for density, which express 
vertical stability, and are of great importance for the study of the curves of 
vertical distribution of the speed of sound, in particular for the study of the 
conditions of formation of a deep sound channel (in the axis of a sound 
channel the derivative dc/dz turns into zero). 

Let us consider the interesting example of the relation between the thermal 
part of vertical (density) stability and the "sound stability" which determines 
the formation of a sound channel. It is known that temperature and hydro- 
static pressure exert the main influence on the formation of the vertical distri- 
bution of the speed of sound. The influence of salinity, in spite of the fact 
that the derivative ac/aS is after all not so small, is considerably less because 
of the smaller vertical salinity gradients (if we leave aside regions with strong 
anomalies of salinity along the vertical such as, for example, the area of 
propagation of Mediterranean waters in the Atlantic Ocean). Taking account 
of what has been said, formula [29.11] can be written approximately as: 

[ 29.121 

More accurate values of the partial derivatives, if we limit ourselves in the 
Taylor expansion to terms of the first order, are provided, according to 
Wilson's formula [ 19.161, by the following quantities: 
a(Ac,)/aT = 4.57 cm sec-l "c-' 

a(Acp)/ap = 1.60 cm3 sec-l kg-' 

Substituting in the second term of the right-hand side instead of the deri- 
vative dp/dz its approximate value, equal to 1.03 (this follows from the 
equation of hydrostatics), and using the given values of the partial derivatives, 
we can obtain from formula [ 29.121 the value of the critical vertical tempera- 
ture gradient: 

Elcmh = -2.89 "C/m 
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(axis z directed downwards). Everywhere that the values of the temperature 
gradient become less than this critical quantity the formation of an axis of a 
sound channel can be expected. The example mentioned is borrowed from 
the work of Garner (1967), who studied the question of oceanic sound 
channels in the waters around New Zealand. 
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CHAPTER 5 

THE T-S DIAGRAM AND ITS PROPERTIES 

30. THE REPRESENTATION OF THE PROCESS OF MIXING ON THE T-S DIAGRAM 

The representation of the processes of mixing of the water masses of the 
ocean on a T-S diagram, in the field of which various functions can be 
plotted - density and its derivatives, the speed of sound, etc., as well as 
their combinations, possesses a number of advantages over other graphic 
methods, and most of all because on the T-S diagram the largest quantity of 
characteristics of the waters of the ocean ‘prove to be connected: temperature, 
salinity, density, speed of sound, and others, and at least one of the param- 
eters (time, distance or depth, the concentration of waters in the mixture, 
etc.). The distinctive “capacity” of the T-S diagram determines the need for 
a quantitative study of the analytical properties of T-S relations together with 
the equation of state, represented on the T-S diagram by the isopycnic field. 

Before proceeding to study T-S relations, representing real or idealized 
objects - the water masses of the ocean or their models, it  is necessary to 
consider both the properties of the T-S diagram and the simplest images 
which arise on the T-S diagram while studying the processes of the mixing of 
waters. These include, first of all: the straight line of mixing, representing the 
mixing of two water masses, the triangle of mixing (area), necessary for the 
analysis of the mixing of three water masses, as well as the arbitrary T-S curve 
(the curve of mixing), the origin of which is due to the processes of incom- 
plete mixing of waters. 

Let us consider anew (see Section 21) two homogeneous water massesA 
and B ;  let the temperature and salinity of the first water mass equal T I ,  S, , 
and of the second water mass: T2 , S2 . On the T-S diagram, these water 
masses will be determined by points A and B (Fig. 24). The T-S points, deter- 
mining the position of the water masses in the T-S coordinates, are called 
thermohaline indexes; borrowing the terminology of physico-chemical analy- 
sis, they may also be called figurative points (Anosov and Pogodin, 1947). 

Let us consider the question of the intermixing of these two water masses 
in different proportions. In the case of additivity of temperature and salinity 
(see Section 21 ), the result of the complete mixing of water masses A and B 
will be represented by a thermohaline index lying on the straight line AB,  
which is called the straight line of mixing. The temperature and salinity of 
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Fig. 24. The straight line of mixing of two water masses. 

the mixture will then be determined by the formulae of mixing: 
T =  T l m l  + T2m2 

S = S l m l  +S2m2 

i30.1 I 

[ 30.21 

where m l  and m2 are the proportions (masses) of the first and second water 
masses taking part in the mixing. In these equations the proportions are ex- 
pressed in parts of a unit, ml  + m2 = 1; the percentage expression of the parts 
of the water masses in the mixture is also used. The resulting T-S point will 
lie on the straight line of mixing at distances from A and B proportional to 
m2 and m l  respectively (Fig. 24). It should be pointed out that formulae 
[30.1] and [30.2] are approximate, since no allowance is made in them for 

0' ' 4 . 0 '  ' ' ' 3.55 ' I I ' ' 36.0 ' ' ' ' ' 38.5 ' ' ' 
S %. 

Fig. 25 .  Triangle of mixing (nomogram for the determination of the percentage content of water masses). 
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the dependence of specific heat on temperature and salinity (see, for example, 
Proudman, 1953). 

Let us now turn to the case of the mixing of three homogeneous water 
masses A , B and M ,  having temperatures and salinities Tl , Sl ; T2 , S2 and T,  , 
S ,  respectively. On the T-S diagram (Fig. 25) the indexes of these three 
water masses, if they do not lie on one straight line, form a triangle ofmixing. 
The product of the complete mixing of these three water masses will have a 
temperature and salinity also determined by the formulae of mixing: 
T =  Timl + T2m2+ T3m3 [30.3] 

S = S l m l  +S2m2 +S3m3 [ 30.41 

where ml , m2 and m3 are the proportions of the three water masses taking 
part in the mixing, ml + m2 + m3 = 1. The result of the complete mixing of 
the three water masses will be represented by a point with the coordinates 
(T, S) ,  lying within the triangle of mixing. The formulae of mixing constitute 
the usual formulae for mean-weighted quantities (Zubov and Sabinin, 1958). 

The determination from formulae [ 30.1 ] - [ 30.41 of the temperature and 
salinity of the mixture according to the known values of the ratio of each of 
the water masses in the mixture represents a direct problem; the inverse prob- 
lem consists in the determination of the proportionate (or percentage) com- 
position of each of the waters of the mixture from the known values of the 
thermohaline indexes of the original water masses and of the water mass of 
the mixture (Ivanov, 1949). 

two water masses), a system of two equations is sufficient: 

Tlml  + T2m2 = T 

For the determination of the two unknowns ml and m2 (the mixing of the 

m l + m 2  = 1  

the solution of which in the matrix notation (Efimov, 1964) is: 

[30.5 

\ 

[30.6] 

or : 

ml =- 

where: 

T -  T2 Ti - T 
m2 =- 

A A 
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is the determinant of the system t30.51. 

of the three water masses), it is necessary to solve the system: 
For the determination of the three unknowns ml , m2 and m3 (the mixing 

T1ml + T2m2 + T3m3 = T 

S lml  + S2m2+ S3m3 = S  

m l + m 2 + m 3 = 1  

The solution in matrix notation is: 

- - 

where: 

I 

S,  -5'3 T2 -T3 T 2  s3 - T3 s2 - 
A A A 

s1 - s3 T1- T3 TIS3 - T3SI - - 
A A A 

T 
S 
1 

[30.7] 

[ 30.81 

A =  1 1  s1 s2 1 s 3 1  1 

is the determinant of the system [30.7] . Thus, for example, for the unkown ml 
we have: 

We have considered above the question of the analytical determination of 
the proportions (concentrations) of water masses in the mixture of two and 
three water masses; this question is also dealt with in the works of Ivanov 
(1949), Timofeev and Panov (1962) and Baranov (1965). In practice, however, 
more frequent use is made of the graphic method of determining concentra- 
tions of water masses from the straight line of mixing and the triangle of mix- 
ing, respectively, i.e., from the known coordinates of the indexes of the mixing 
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water masses and of the index of the resulting mixture (T,S).  Thus, for exam- 
ple, to the point M with coordinates (T, S) in Fig. 24 there correspond 64% of 
water mass A and 36% of water mass B. 

For convenience in determining the ratio of each of the water masses in 
the mixing of three water masses, it  is necessary to break down each of the 
sides of the triangle of mixing into ten parts, and to join the points of division 
by straight lines, parallel to each of the sides of the triangle of mixing. The use 
of the grid thus obtained for the determination of the percentage content of 
each of the water masses is clear from Fig. 25 : for example, in point I 6  we 
have 10% of water mass A ,  50% of water mass B and 40% of water mass M *. 
Practical methods of determining the percentage composition of the waters 
in a mixture are considered in more detail in Section 44. 

Let us now turn briefly to the question of the mixing of four water masses. 
The direct problem in this case, obviously, is easily solved; the solution of the 
inverse problem is based on the system of equations: 

T , m l + T 2 m 2 + T 3 m 3 + T 4 m 4  = T  

S l m l + S 2 m 2 + S 3 m 3 + S 4 m 4  = S  

P,  m l  + P2m2 + S3m3 + P4m4 = P 

m l + m 2 + m 3 + m 4  = 1 

[ 30.9 

which we shall not consider, referring the reader to Ivanov’s article for further 
details. We see that for a strict solution of the inverse problem two character- 
istics of the water masses - temperature and salinity - are not enough; the 
introduction of some third characteristic P is necessary, in which capacity, for 
example, some stable hydrochemical characteristic may be selected. Ivanov 
(1 949) points out that in this case the nomogram for the determination of 
the percentage content of the four waters must be spatial. Inasmuch as system 
[30.9] is linear, this nomogram must have the form of a tetrahedron. However, 
in the particular case when four water masses mix in pairs and in equal propor- 
tions, the construction of a quadrangular nomogram on the T-S plan is possible. 
This question is considered below, in Section 54. 

Thus, in the case of complete (final) mixing of two or three water masses, 
the T-S index of the mixture, provided temperature and salinity are additive, 
will lie on the straight line of mixing or within the triangle of mixing. In the 

* The sides of the triangle of mixing form on the 7‘-S plane a distinctive triangular system of coordinates, 
the geometric properties of which are considered in Blokh’s booklet (1952) .  The triangles of mixing them. 
selves are widely used not only in oceanography, but also in physical chemistry, geology, metallurgy, etc. 
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case of partial mixing (the intermediate stage), an aggregate of “intermediate” 
T-S indexes is formed, each of which is related to a definite point of space, in 
which mixing takes place. These aggregates form the straight T-S line (when 
two waters mix) and the T-S curve (when three waters mix); their formation 
will be qualitatively considered in the following paragraph. 

3 1. T-S CURVES OF THE WATERS OF THE OCEAN 

Let us take as an example data on the distribution of temperature and sali- 
nity with depth at any oceanographical station and let us plot on the T-S dia- 
gram the T-S points for temperature and salinity observed at each of the levels. 
Noting under the T-Spoints the values of the depths of the corresponding 
levels and joining these points by a smooth curve, we obtain the T-S curve of 
the oceanographical station. The example of the T-S curve for the oceano- 
graphical station is represented in Fig. 26. Inasmuch as temperature and salin- 
ity are functions of depth: 
T = $ ( z )  S = q(z)  131.11 

and the T-S curve itself in the T-S coordinates may be considered as the curve 
f”C 

-/W 

Fig. 26. T-S curve of oceanographic station. 
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of a certain function: 

then expressions [ 3 1.1 ] represent the parametric setting of the T-S curve. 
Function [3 1.2 ] is thus an explicit function. The T-S curve for parameter z 
can be called the T-S-z curve; it is appropriate instead of z to introduce the 
parameter.p (pressure) to obtain the T-S-p curve. 

The method of interpreting oceanographical observations in the form of 
T-S curves was introduced by Heiland-Hansen (1 9 18). The first experiments 
in constructing T-S curves, undertaken by Helland-Hansen and other investi- 
gators, showed that the T-S curves of many stations lying in one and the 
same region, often an extremely extensive one, possessed an astonishing 
similarity (this is dealt with in greater detail in Section 34). I t  was precisely 
thanks to this circumstance that the consideration of the T-S curve as the 
curve of a certain function [ 3 1.21 attained its physical significance and theo- 
retical justification, forming the fundamental subject of T-S analysis. 

It has already been stated that, in addition to parameters z or p ,  T-S curves 
can also be constructed for other parameters: time, distance along the hori- 
zontal, etc. The quantity p ,  represented in Fig. 26 by a family of isopycnals, 
may also be viewed conventionally as a parameter; in this case the parametric 
equations will prove to be: 

T = T ( p )  S = S(p) 

Various methods of parametric setting of T-S curves and other T-S rela- 
tions will be considered below in Section 48 when we come to grips with 
methods. Here, however, we shall briefly consider the question of how the 
appearance on a T-S plane of a curve for parameter z is connected with the 
process of vertical mixing of waters. The most common case of mixing of 
water masses in the real conditions of the World Ocean is the vertical mixing 
of two, three or more water masses superimposed on each other. Therefore, 
let us consider, following Sverdrup et al. (1 942), two and three (Fig. 27) 
horizontal water masses superimposed on each other. Let the vertical distri- 
bution of temperature and salinity in three successive stages of mixing be 
characterized by curves I, 2 and 3 in both cases. These curves can reflect both 
the distribution of temperature and salinity which occurs during the mixing 
of water masses along one and the same vertical in the ocean and during dis- 
placement in space away from the area of the original distribution of the two 
or three “pure” water masses. In both cases the curves I correspond to the 
initial stage, when two or three unifrom water masses are superimposed on 
each other. 
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Fig. 27.  Schematic representation of the results of mixing of two (above) and three (below) water 
masses. On the left curves T(z)  and S(z) for the initial ( I )  and subsequent (2 and 3) stages of mixing 
are shown; on the right the T-S curves corresponding to these three stages are shown (Sverdrup et al., 
1942). 

Complete mixing may fail to take place between these two or three water 
masses due to the fact that, apart from the process of mixing, which is striving 
to equalize temperature and salinity, processes are taking place in the ocean 
which support the initial temperatures and salinities of the water masses, i.e., 
processes of the creation of water masses (Zubov, 1938). Among the latter, 
first of all, are included processes of heat exchange with the atmosphere, 
advection and some others. Therefore, in a stationary situation, the water 
masses under consideration continue to remain constantly in a state of partial 
mixing . 

Proceeding to  the description of the process of mixing on the T-S diagram, 
we obtain a characterization of these three stages of partial mixing first in the 
form of T-S points (stage I ) ,  then of T-S straight lines and T-S curves (stages 
2 and 3), represented in the right-hand part of Fig. 27. 

Strictly speaking, during partial mixing of real water masses in the ocean 
the T-S points which correspond to different values of parameter z may also 
not lie on the straight line of mixing or within the triangle - in opposition to 
complete mixing, when the "final" T-S point must satisfy these conditions (in 
the absence of heat and salt exchange with the environment). This occurs both 
because of the non-additivity of properties, as has already been stated, and 
because of the differing intensity of the processes of turbulent heat conduc- 
tion and diffusion which effect partial mixing of temperatures and salinities 
(Ivanov, 1949; Stommel, 1962a, b). For simplicity's sake, however, we may 
disregard these effects - at least in this qualitative exposition. 
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The most interesting result of the analysis of the mixing of three water 
masses is the fact that the T-S curve fits within the limits of the triangle of 
mixing in such a way that its branches extend to the T-S indexes of the two 
water masses - surface and deep, while the extreme lies opposite the T-S 
index of the intkrmediute water mass. Simultaneous study of this T-S curve 
(the lower right on the figure) with curves T(z) and S(z) shows that the ex- 
treme of the T-S curve corresponds to the extreme in the vertical distribution 
in the given case of salinity. 

Inasmuch as we find widespread in the World Ocean the type of intermedi- 
ate water masses characterized either by an extreme of salinity (such are the 
Mediterranean Water in the Atlantic and the Red Sea Water in the Indian 
Ocean), or by an extreme of temperature (such, for example, as the Atlantic 
water in the Central Arctic Basin), such a type of T-S curve appears to be not 
only interesting but also extremely important from the viewpoint of the ana- 
lysis of water masses. 

Above we have described a purely qualitative and summary picture; from 
the theoretical point of view, the question of the occurrence of T-S curves 
during the mixing of water masses is considered in Chapter 6. 

32. THE LINE INTEGRAL IN THE T-S PLANE 

The arbitrary curve in the T-S plane as a definite characteristic of state of 
the water masses of the sea possesses a most important analytical property 
which opens up the possibility of representing the T-S plane as the plane po- 
tential field and, accordingly, of investigating the equation of state of sea 
water and the processes of transformation of the waters of the ocean within 
the framework of the theory of the functions of a complex variable. 

The T-S curve, on the basis of this property, proves to be bound up with 
other quantitative criteria, in particular with the vertical stability of waters 
(Section 28) and the concepts of thermohalinity (Sec'tion 25) and T-S areas. 

Let us consider the line integral along the T-S curve [curve T = f(S)] : 

[32.l] 

from point (To ,  So) to point (T, S) ,  (Fig. 26). 
In the case of the equation of state of sea water at atmospheric pressure 
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the total differential of density p will be written in the form: 

aP aP  dp=-  dS+-dT as aT [32.2] 

In this case, the integrand of [32.1] is the total differential [32.3], pro- 
vided that: 

In this case, the following condition is fulfilled identically: I 

[32.3] 

[32.4] 

and, consequently, the Leibnitz-Newton formula is valid, extended to the 
line integral: 

[32.51 

The line integral considered can be calculated, “straightening it out” for 
conversion into an ordinary rectilinear integral by two methods: by parameter 
and by the length of the arc. 

S=cp(z) T=$(z )  . [32.6] 

Thus, if we use the parametric representation of the functions *.: 

then the line integral: 

I = 

can be calculated by parameter z ,  using the known formula: 

(T, S) 

P(S, T )  dS + Q(S, T)  dT 
(To.So) 

[32.7] 

* As has already been said, it is also possible to introduce another parameter; the significance of consider- 
ing precisely parameter z (or p )  will become clear later. 
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In that case we obtain: 

a p  dS a p  dT b 

I = !  [--+--Idz as dz a T  dz 
a 

129 

[32.8] 

[32.9] 

The integrand of [32.9] represents the principal part of vertical .stability 
EkTO (i.e., stability withaut any corrections for the compressibility of sea 
water). 

Thus, expression [32.9] can be written in the following form: 

b 

I =  $EhTO(z) dz 
a 

[32.10] 

We have proven the theorem: the line integral along the T-S curve from 
point a (To, So) to point b (T,S) by parameter z equals the definite integral 
of the principal part of stability (EkTO) between z = a and z = b (Mamayev, 
1962). 

The quantity: 

b 
gI=-  g $EkTO(z) dz 
P P  

[32.11] 

characterizes the store of potential energy of a layer with a thickness from 
z = a  t o z  = b .  

line integral I does not depend on the path of integration, but is determined 
cnly by the position of the final points a and b (broken line in Fig. 26). 

For the calculation of the line integral along the length of the arc reckoned 
from the initial point a (To, So) along the T-S curve, let us divide and multiply 
the integrand of formula [ 32.71 by the differential of the length of the arc, dl. 
Then, bearing in mind that: 

Inasmuch as the integrand of [ 32.1 ] is a total differential, the value of the 

dT 
- = sinp - -  a- cosp dl dl [32.12] 
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where p is the angle of slope of the tangent to the T-S curve in the given point 
n to the abscissa axis, we obtain: 

1 

I =  s(* cosp as aT 
0 

[32.13] 

(Mamayev, 1964b, 1965b). Here 1 is the length of the whole arc ab. 
Formula 132.131 is convenient for the numerical computation of the line 

integral along the straight T-S line, when the latter is broken down into inter- 
vals Al, equal in length, corresponding to the parameter m (percentage con- 
tent) evenly placed along the straight T-S line. A computation of this type is 
considered below in Section 35. 

33. THE T-S DIAGRAM IN THE LIGHT OF THE THEORY OF A PLANE FIELD 

Examining a plane T-S diagram, one may express the supposition that 
there must exist on it a family of lines orthogonal to the family of isopycnals, 
if only because of the formal consideration of the continuity of the derivatives 
ap/aS and ap/a T. Designating the unknown function by y(S, T )  and proceed- 
ing to the dimensionless coordinates on the S-T plane *, we can write the fol- 
lowing expression, known from 'differential geometry, of the orthogonality of 
two families of curves on a plane, expressing it through the dimensionless S-T 
coordinates: 

Writing the differential equation of the isopycnal p(S, T): 

aP aP 
as aT dp=-  dS+-  dT=O 

and the differential equation of the curve y(S, T) :  

a Y  a Y  
as aT dy=-  dS+- dT=O 

[33.11 

133.21 

133.33 

* The dimensionless coordinates in this section as well as in Section 37, are defined as T = T'/To, 
S = S'/So, where T and S' are ordinary (dimensional) temperature and salinity, TO = 1"C, SO = l0/m 
(Prrudman, 1953, section 74). This standard designation of To and So is convenient since it retains the 
values of temperature and salinity commonly used in T-S analysis. (See also Mamayev, 1973b.) 
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we may conclude that the necessary condition for the observance of the con- 
dition of orthogonality [33.1] is the validity of the following equations: 

[33.4] 

Indeed, for any curve pk (S, T )  the derivative (dS/dT), will be determined 
from the equation: 

and equals: 

Correspondingly, for the curve yn (S, T )  we have: 

whence: 

Having constructed the product of i33.61 and [33.8] : 

[33.5] 

[33.6] 

[33.7] 

[33.8] 

[33.9] 

and comparing it with equation [33.4], we see that this product is equal to 
-1 (Milne-Thompson, 1960). For the right-hand parts of [33.9] condition 
[ 33.1 ] directly follows, for the left-hand parts - the condition of perpendi- 
cularity of the tangents to curves p and y: 

[33.10] 

Equations [33.4] are the Cauchy-Riemann equations for the T-S plane; 
they are valid if Laplace's equations are satisfied for functions p and y by 
variables S and T: 
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a*p a2p - + - = O  
as2 aT2 [33.11] 

Turning to the question of the formal analogy of these expressions, which 
characterize a plane thermohaline field, with the analytical characteristics of 
a plane field of irrotational motion of an incompressible fluid (a comparison 
with a plane heat field may look just as valid: the system of orthogonal iso- 
lines p and y forms an isothermal grid), let us note that function y ,  which may 
be called the density flux function, corresponds to the stream function $, 
while the isopycnic potential p corresponds to the velocity potential cp. Equa- 
tions [33.4] prove formally similar to the Cauchy-Riemann equations for a 
plane. potential flow: 

[33.12] 

which has already been noted earlier, while equations [ 33.1 1 ] prove similar 
to Laplace’s equations for functions cp and $ in the x, y-plane: 

[33.13] 

Turning to the inner meaning of the analogy made, we must draw attention 
to the fact that in hydrodynamics equations [ 33.13 1 are valid provided that 
the condition of continuity is observed; consequently, for a T-S plane we 
must present independent proof of the validity either of equations [33.11 I 
(or of one of them), or of equations [33.28] written below, which are for- 
mally similar to the equation of continuity for plane flow. We have no such 
proof: for the T-S plane it is difficult to express considerations close to those 
on the continuity of flow. 

The equation of state of sea water according to Knudsen does not, how- 
ever, satisfy Laplace’s equation (the upper equation in [ 33. l l ] ); the same is 
true of the simplified equations of state which follow from it. For a model 
of sea water according to Knudsen (the introduction of this term is justified 
by the need for making the equation of state more precise and constructing 
a new model) we have: 
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a2p a2p - + - (-10-5) + (-2- 
a s 2  aT2 

[33.14] 

(this sum is determined by the sum of the first two formulae [24.141). 
The error in [ 33.141 in relation to the upper equation in [ 33.1 1 ] is ex- 

tremely small and lies fully within the limits of accuracy of the determination 
of the density of sea water. More than that, it is known from an experiment 
(Stupochenko, 1956) that the instrumental determination of the equation of 
state of a system on the basis of the measurement of the parameters of its 
state leads to different analytical expressions, the divergence among which is 
most substantially displayed precisely in the second derivatives (let us say, of 
specific volume or density); therefore, we are entitled to attribute the error 
in [33.14] to the inaccuracy of Knudsen’s model of sea water. What has been 
said above amounts to affirming that the density of water is a harmonic func- 
tion of temperature and salinity; this affirmation, however, remains in the 
nature of a postulate, and, we repeat, requires proof which, probably, can be 
devised by the methods of thermodynamics. 

Continuing this comparison, let us note that to  the components of velocity: 

correspond the components of the “density flux”: 

L33.151 

i33.161 

while the relationships between the conjugate functions p and y are written 
in T-S coordinates in the following way: 

T S y=I(*) d T - r z d S  aP 
as S=S, 

Ta SO 

[33.17] * 

The idea of the “density flux”, formally recorded, as it were, on the T-S 
diagram, acquires definite physical meaning, if one considers its components, 
which may be called the ‘‘salt flux” and the “heat flux” (formulae [33.16]); 
these fluxes are represented in Fig. 28 (the heat flux in the main part of the 

* This formula can be used for the direct computation of function r(S, 7‘) (with an accuracy to the 
constant 70) from the known expression for function p(S, 7‘). 
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Fig. 28. Orthogonal families of curves of functions p and 7 on a T-S diagram. 

T-S diagram is negative). If the analytical considerations set forth above are 
supplemented by considerations on the distribution of temperature, salinity 
and density in the ocean (for example, along the vertical) and on the corre- 
sponding flows under real conditions, then it is also interesting to consider 
the distribution of parameter z (depth) along the T-S curves. Let us imagine 
that segments AB, AC and AD (Fig. 28) may be viewed as straight T-S lines, 
corresponding to real conditions, with some distribution of parameter z along 
them. In this situation AD is the straight T-S line in an ocean homogeneous 
in salinity and stratified in temperature; AC is the straight T-S line in an ocean 
homogeneous only for temperature. Then for these straight lines we may con- 
sider that p = p(T, z )  and p = p(S, z) respectively; hence: 

[33.18] 

(Here derivative ap/az characterizes the relationship of parameters p and z ;  
p also appears here as a parameter.) 

the following quantities: 
In this case the heat and salt fluxes in the ocean will prove proportional to 

[33.19] 

Formulae [ 33.191 link the vertical fluxes of heat and salts in the ocean 
with the real density flux, as well as with the components of the “density 
flux” on the T-S diagram. 

The considerations set forth reveal: 
(a) An analogy between the T-S field and a plane stationary vector field, in 
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particular with a field of plane stationary irrotational motion of an incom- 
pressible fluid. 

(b) The possibility of investigating the T-S diagram and the real and ana- 
lytical T-S correlations represented on it by methods of the theory of func- 
tions of a complex variable, in particular by the conformal transformation of 
the T-S diagram. 

z = S + i T  [33.20] 

and the corresponding function of the complex variable: 

Let us now consider the plane of a complex variable: 

w = f ( z ) = p  +iy t33.211 

It is obvious that function w = f ( z )  is regular in the whole T-S plane at 
least to the limit values of salinity and temperature which are encountered in 
the ocean, since its real and imaginary parts satisfy the Cauchy-Riemann 
equations [ 33.41 for the T-S plane. Accordingly, function C33.2 11 performs 
a conformal transformation of a certain region D in the T-S plane into the 
region D* in the p,y-plane. If on the plane z = S + i T we take two families of 
orthogonal lines 

[33.22] 

where po and yo are arbitrary constants, then on the plane w = p + i y the 
families of straight lines: 

[ 33.23 1 
parallel to the coordinate axis, will correspond to them. The conformal trans- 
formation of the family of straight lines into lines [33.22] is performed by 
the function: 
z = F(w)  [33.24] 

which is the inverse in relation to function [33.21] . This transformation is 
made easier by the introduction of the simplified equation of state of sea 
water (Section 9); confining ourselves here to stating the problem, we shall 
not consider it further. 

Finally, let us consider another function of the complex variable, namely: 

w 2  = f ( z ) = P + i Q  [33.25] 

where P and Q are determined by formulae [33.16]. It is obvious that func- 
tion [33.25] is regular in the T-S plane, excluding the line of temperatures 
of maximum density, or line dS/dT = 0 (dashed line in Fig. 28); i.e., the 
Cauchy-Riemann equations are satisfied for functions P and Q :  
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[33.26] 

Consequently, we may continue the comparison of the characteristics of 
the thermohaline field with the corresponding characteristics of a field of 
irrotational incompressible flow: equations [ 33.261 prove formally similar to 
the Cauchy-Riemann equations for the components of velocity u and u: 

the Laplace equations: 

[33.27] 

[33.28] 

prove similar to the corresponding equations also for u and v, while the iden- 
tity: 

[33.291 

proves similar to the condition of equality to zero of the vertical component 
of the curl: 

[33.30] 

The introduction of function [33.26] is equivalent to the consideration of 
the equation of state in a plane formally analogous to the hodograph plane. 
The conformal transformation performed by function: 
z = F(W2)  [33.3 13 

makes it possible to “straighten out” in the plane P + iQ the isolines of the 
componentsof the “density flux” ap/aS and ap/a T. 

The transformations thus considered in most general terms can not only 
facilitate the introduction of a non-linear equation of state of sea water into 
theoretical T-S analysis, but also reveal new and perhaps very substantial 
features of the interaction and transformation of the waters of the ocean in 
studying this question by means of the T-S diagram *. 

* Let us point out once. again that all the reasoning in this paragraph (as well as in Section 37) is valid 
only if the T-S diagram is considered as dimensionless. 
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34. BASIC CHARACTERISTICS OF THE T-S CURVE. CONSERVATION OF FORM 

The question considered of the integral connection between stability and 
the T-S curve is not enough for a detailed study of the latter, in particular for 
the study of the basic property of the T-S curve - the conservation of its 
form. Practical experience in con8tructing T-S curves of oceanographical 
stations indicates their extraordinary similarity for extensive oceanic regions; 
at the same time, the distribution of salinities and temperatures along the 
vertical for stations characterized by very similar T-S curves can be extremely 
different. It becomes apparent that we need a separate consideration of two 
basic characteristics of the T-S curve - its form and the distribution of param- 
eter z, for it is only the form of the T-S curve which demonstrates the property 
of conservation. This question is connected with the opinion which has taken 
root in physical oceanography to the effect that the position in relation to the 
axes of the coordinates of a T-S curve of an oceanographical station, con- 
structed by parameter z ,  more or less correctly reflects the value of stability 
E of the water layers of the sea. In confirmation of what has been said one 
may refer to the monograph of Sverdrup et al. (1942, p. 142), in which the 
following is stated: “the slope of the observed T-S curve relative to the uT 
curves gives immediately an idea of the stability of the stratification”. 

However, this opinion is not altogether correct; the only thing we can say 
in looking at a T-S curve and its position in relation to the axes of the coordi- 
nates and the isolines of uT is whether the stability is positive or not. So far 
as the quantity of stability itself is concerned, it is by no means determined 
solely by that angle which the T-S curve forms in the given point with the 
isolines of uT. It is easy to see this immediately from a specific example. Let 
the same values of temperature T = 17” and of salinity S = 36.2’/, (uT = 26.44) 
be observed at oceanographical stations A and B at depths of z = 300 m and 
600m respectively, while values T = 9” and S = 35.2”/, (uT = 27.30) are ob- 
served at the same stations and at depths of 400 m and 800 m respectively. 
The data quoted are close to those observed at stations No. 1638 and 1640 of 
“Atlantis”, carried out in the region of the Gulf Stream (Sverdrup et al., 
1942). 

17”) and (35.2’/,; 9”) is the same for both stations; meanwhile, stability 
8 = AuT/Az in the first case amounts to 86 1 0-4, and in the second to 
43 1 0-4 CGS units. Such a disparity in the values of stability along one and 
the same T-S curve is explained by the irregularity in the change of the param- 
eter z along the latter in each of the two cases considered. 

For the purpose of studying this question, let us attempt to separate the 
effect of parameter z on the results of calculating stability from the effect of 
the form of the T-S curve itself and its position in relation to the axes of the 

The straight T-S line connecting on the T-S diagram the points (36.2’/,; 
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coordinates and the uT isolines, and to determine under what conditions the 
irregular distribution of parameter z along the T-S curve does not affect the 
results of the calculation of the vertical stability of waters (Mamayev, 1964b). 

Since the T-S curve is given in parametric form, let us write the expression 
of the differential dl of the arc of the T-S curve in the form: 

dl = im dz 

In addition, we shall need the following expressions: 

d T  -cosp  - =s inp  CIS 
dl dl 
- _  

[34.1] 

[ 34.21 

where p is the angle of slope of the T-S curve in the given point to the abscissa 
axis. 

Replacing in expressions [34.2] differentiation by the length of the arc I by 
differentiation by parameter z ,  we can, using [34.1] , obtain the following ex- 
pressions for the derivatives of T and S by parameter z (in other words, for 
the vertical salinity and temperature gradients): 

[ 34.3 J 

[ 34.41 

Substituting [ 34.31 and [ 34.41 in the expression for the principal part of 
stability: 

[34.5] 

(in the expression for E' the effect of pressure and adiabatic processes is dis- 
regarded), we obtain : 

[34.6] 

The expression [34.6] obtained is interesting by the fact that it isolates 
the effect of parameter z or, what is the same, of the vertical salinity and tem- 
perature gradients, on both the quantity of stability and on the form of the 
T-S curve, and places the sign of inequality between these two criteria of state 
of the water masses of the ocean, provided that they are considered in differ- 
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ential form. Indeed, the form of the T-S curve and its position on the T-S 
plane are determined solely by the binominal appearing in [34.6] in the paren- 
theses; however, where: 

aP aP - cosp + - sinp = const. as aT 
[34.7] 

i.e., given constant form of the T-S curve, the quantity of stability E’ can as- 
sume any values determined by the multipliers appearing under the sign of 
the square root. 

Thus, the opinion expressed, in particular, by Sverdrup and quoted above, 
requires subs tan tial clarification. 

In case of constancy of the T-S curves (condition [ 34.71 ) and equal values 
of stability (E’ = const.) for different oceanographical stations, parameter z 
also can be distributed irregularly on such T-S curves. In this case the follow- 
ing condition is imposed on the vertical salinity and temperature gradients: 

d 2 d T 2  (3 + (z) =const. 

Expression [34 .8]  represents the normal equation of a circle in Cartesian 
coordinates, on the axes of which the gradients dS/dz and dT/dz have been 
laid out. 

What has been said above fully justifies the affirmation that T-S curves are 
more stable images of the water masses of the ocean than the curves of verti- 
cal distribution of salinity S(z) and temperature T(z). On the other hand, they 
are more general characteristics, inasmuch as they reflect not only the vertical 
distribution of salinity and temperature, but also the influence of two other 
important factors: the equation of state of sea water and some kind of proper- 
ties of relaxation brought about by the origin of water masses. 

With respect to the second factor, let us note that it is confirmed precisely 
by the surprising similarity of many T-S curves in adjacent regions of the 
ocean; the processes of turbulent heat exchange and diffusion first of all 
modify the vertical distribution of salinity and temperature, which is mani- 
fested in the shift of the values of parameter z along invariable T-S curves. 
The modification of the T-S curves themselves is, as it were, a secondary 
process. 

The question of the correlations between stability and the characteristics 
of the T-S curve is considered here in differential form; it is understood that 
the integral property brought out in Section 32 remains invariable. Formula 
[32.13] for the calculation of the integral from the length of the arc agrees 
exactly with this reasoning. 
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35. THE CALCULATION OF THE LINE INTEGRAL ALONG THE T-S CURVE 

The concept of the line integral (Section 32) opens up certain possibilities 
for numerical computations linking up real T-S relations with the field of iso- 
pycnals which represents the equation of state of sea water on the character- 
istic diagram. Let us consider first of all the question of the calculation of the 
line integral: 

[35.1] 

along any curve I ,  lying in the T-S plane (Mamayev, 1964 b). As has already 
been pointed out, the integral [35.1] is reduced to a definite integral either 
by the introduction of some parameter or by the representation of [ 35.11 in 
the form of an integral for the length of the arc 1. Let us recall that, in the 
first case, we come to the definite integral L32.91 and, in the second case, to 
the definite integral [32.13]. 

Let us consider the calculation of integral I from the example of a particu- 
lar case - along the straight T-S line; in the case of uniform distribution of 
the parameter along this straight line, formulae [32.9] and [32.13] prove 
equivalent, as we shall see below. 

Generally speaking, the quantity of integral [ 35.1 ] is determined by the 
difference of densities in the final and initial points, and this difference can 
be determined from the coordinates of the corresponding points with the 
help of the Oceanologicul Tables (Zubov, 1957 a). However, the calculation 
precisely of expression [35.1] is of definite interest, since it not only con- 
siderably increases the accuracy of the determination of densities along the 
T-S line, but also makes it possible more accurately to carry out other calcu- 
lations, in particular the calculation of contraction on mixing (see below). In 
addition, in calculating the integral [35.1] we have the possibility both of 
determining the effect of its temperature and salinity components and of im- 
mediately obtaining an idea of the stability of the vertical stratification along 
the T-S curve; the latter follows from the identity of formulae [32.9] and 
[32.13]. Concerning the technique of calculations, it should be pointed out 
that, although the partial derivatives ap/aS and ap/a T of the equation of 
state of sea water p = p(S, T )  at atmospheric pressure are expressed in elemen- 
tary functions, the method is so cumbersome that taking integral I in its final 
form becomes quite laborious. Therefore, we must proceed along the path of 
approximate integration, taking the necessary values of derivatives ap/aS and 
ap/a T from the tables (Zubov, 1957 a, tables 20 and 26). 

In calculating integral 1 along the straight T-S line, it is convenient to con- 
sider the latter as a straight line of mixing of water masses a (S,, T,) and 
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b ( s b ,  T b ) ,  and as a parameter, evenly distributed along the straight T-S line, 
to take the percentage content m of one of the water masses in points of the 
straight T-S line (points of the corresponding mixtures). In that case we have: 

sb - sa 
- cosp =- _ -  dS 

dm 100 

Tb - Ta 
- sinp = ___ -_ dT 

dm 100 

or 

Am 
sb - sa 

A S =  ~ 

100 

Am 
Tb - Ta 

A T = -  
100 

[35.2] 

[ 35.31 

[35.41 

[35.51 

Breaking down the straight line of mixing into, let us say, ten equal parts 
(Am = lo), we can write the following expression for the calculation of inte- 
gral [32.9] or integral [32.13] by the approximate method: 

n = 1 0  - 

n = l  
I =  c [(g)n A S +  (g)n AT] 

where (ap/aS), and (ap/aT), are 

[35.6] 

the values of the corresponding derivatives 
in the median points n l  , n 2 ,  ..., nlO,  having coordinates (S , ,  Tn) ,  where: 

[35.7] 

[35.81 

and m = 5, 15, 25, ..., 95 are values of parameter m (percentage content) in 
points n l ,  n 2 ,  ..., n lo ;  finally, 

Tb - Ta 
A T =  

sb - sa 
A S =  ~ 

10 

are the increments of salinity and temperature corresponding to the increment 
of parameter m by 10% 

Table VI gives an example of a calculation according to formula L35.81 for 
the straight T-S line BM, the ends of which have coordinates (2.50"; 34.90°/m) 



142 T-S DIAGRAM AND ITS PROPERTIES 

TABLE VI 

Example of the numerical calculation of an integral I along the straight T-S line 

100 
90 
80 
70 
60 
50 
40 
30 
20 
10 
0 

36.50 
36.34 
36.18 
36.02 
35.86 
35.70 
35.54 
35.38 
35.22 
35.06 
34.90 

11.90 
10.96 
10.02 
9.08 
8.14 
7.20 
6.26 
5.32 
4.38 
3.44 
2.50 

36.42 
36.26 
36.10 
35.94 
35.78 
35.62 
35.46 
35.30 
35.14 
34.98 

11.43 
10.49 
9.55 
8.61 
7.67 
6.73 
5.79 
4.85 
3.91 
2.97 

0.778 
0.779 
0.781 
0.783 
0.786 
0.788 
0.790 
0.792 
0.795 
0.797 

-0.189 
-0.180 
-0.169 
-0.159 
-0.149 
-0.138 
-0.127 
-0.116 
-0.105 
-0.093 

100 

90 
80 
70 
60 
50 
40 
30 
20 
10 
0 

0.124 

0.125 
0.125 
0.125 
0.126 
0.126 
0.126 
0.127 
0.127 
0.128 

-0.178 

-0.169 
-0.159 
-0.149 
-0.140 
-0.130 
-0.119 
-0.199 
-0.099 
-0.087 

-0.054 

-0.044 
-0.034 
-0.024 
-0.013 
-0.004 
+ 0.007 
+ 0.018 
+ 0.028 
+ 0.04 1 

2 x 8  
27.793 
27.847 
27.891 
27.925 
27.949 
27.962 
27.966 
27.959 
27.941 
27.913 
27.872 

27.788 

27.796 
27.805 
27.813 
27.822 
27.830 
27.838 
27.847 
27.855 
27.864 
27.872 

0.005 

0.051 
0.086 
0.112 
0.127 
0.132 
0.128 
0.112 
0.086 
0.049 

and (1 1.9" ; 36.50°/00). This straight line on the average corresponds to the 
straight line of mixing between the Deep and Bottom Water of the Atlantic 
Ocean B and the Intermediate Mediterranean Water M .  In this case, apparent- 
ly, AS  = +0.16°/oo, AT = +0.94", if the direction of the calculation is selected 
from point B to  point M .  The explanations to Table VI are as follows: 

Column I - percentage content m of the water mass in points which are 
multiples of 10%; 

Columns 2 and 3 - salinity and temperature in these points, calculated 
from formulae L35.71 and L35.81 at rn = 0, 10,20, ..., 100%; 

Columns 4 and 5 - salinity and temperature in the points corresponding 
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to the midpoints of the 10% segments. The values of S,, and T,, are also 
determined by formulae [35.7] and [35.8] where, however, n = 5, 15, 25, ..., 
95%; 

lO3(ap/aT) in points n l ,  n 2 ,  ..., nl0 ,  corresponding to the midpoints of the 
10% segments. The values of the derivatives are selected, as has already been 
said, from the Oceanological Tables or are taken from graphs constructed 
from these tables; 

and due to temperature increment, (aoT/a T )  dT, corresponding to the incre- 
ment in parameter m by 10%. Here AS = +0.16°/oo, AT = +0.94"; 

Columns 6 and 7 - derivatives aaT/aS= 103((ap/aS) and aoT/aT= 

Columns 8 and 9 - increments in uT due to  salinity increment, (aoT/as)As 

Column I 0  - total increment in density uT : 

corresponding to  the increment in parameter m by 10% and determined as 
the sum of the numbers in columns 8 and 9 ;  

Column I I  - values of uT in points m l  , m2, ..., m l O ,  obtained from the 
formula: 

t35.91 

i.e., by an increasing summation from the bottom up. The value of ( u ~ ) ~  = 
27.872 is determined from the accurate tables of Ivanov-Frantskevich (1956). 
In addition, value ( o ~ ) ~  = 27.788 appearing in the first line of column I I  in 
the numerator is determined from Ekman's (1 9 10) tables as a control. The 
corresponding value of u T ,  determined from formula r35.91, appears in the 
same place in the denominator; we see that the error in the calculation from 
formula [35.9] amounted in the given case to only 0.005. We may point out 
that the accuracy of this calculation can be increased if the derivatives appear- 
ing in columns 6 and 7 are selected with an accuracy greater by one decimal 
place (the Oceanological Tables provide for such a possibility) or if the straight 
T-S line is broken down into a larger number of segments Am. 

What has been set forth, in particular, constitutes the theoretical founda- 
tion of the method of calculating the auxiliary tables for the construction of 
T-S diagrams (an example of such a table is represented in the Appendix by 
Table A2). In this case it is necessary to consider function S(p, T), the differ- 
ential of which equals: 

as as dS = - dp + - dT 
aP aT 

[35.10] 

At d T  = 0 (the calculation of the supporting values of salinity, correspond- 
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ing to whole values of density, is carried out for the given values of tempera- 
ture, T = const.), the line integral from expression [ 35.101 turns into an 
ordinary integral along the line T = const. 

[35.11] 
Pa 

In the latter formula, we take aS/ap = (ap/aS)-' ; the numerical calculation 
from it is described in works of the author (Mamayev, 1954) and of Burkov 
et al. (1957). 

36. THE REAL AND LINEARIZED ISOPYCNIC FIELDS. CONTRACTION ON MIXING 

I Let us consider two T-S diagrams: one real, the distribution of the isopyc- 
nals on which corresponds to the actual equation of state of sea water, and the 
other, idealized, with a linear field of isopycnals. Without prejudging for the 
time being the numerical characteristics of the linearized equation of state for 
the second T-S diagram, let us consider on these T-S diagrams two identical 
straight T-S lines, having the same coordinates, (i.e., coinciding with each 
other). Let density p(SA,  TA) in the initial point A (at the end of the straight 
T-S line) be identical on both T-S diagrams. Calculating the difference of den- 
sities between the points having identical coordinates on both straight T-S 
lines and the initial points, and designating these points N l  (TI, S,)  for the 
real T-S diagram and N 2  (T2, S 2 )  for the linear T-S diagram, we obtain: 

In the first case': 

In the second case: 

[36.1] 

[36.2] 

In both formulae the line integral [35.1] appears on the right. In formula 
[36.1], obviously, ap/aS=fi(S,T);ap/aT=f2(S,T), while in hrmula [36.2] 
ap /as  = p = constant, ap/aT = (Y = constant. 

A P = P ( T ~ , S ~ ) -  P ( T ~ , S ~ ) =  

The difference of densities in points N1 and N2 equals: 

[36.3] 
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or : 

Ap= $ (g-p)dS-(g-a) dT 
(AN) 

[ 36.41 

The latter formula expresses the quantity of contraction on mixing of two 
water masses and shows that this effect is analytically determined by the dif- 
ference of the derivatives of thermal expansion and saline contraction for non- 
linear and linear equations of state of sea water. Thus, contraction on mixing 
represents a basic characteristic of the non-linear (real) equation of state of 
sea water. 

The second term of the right-hand part of expression [36.3] corresponds, 
generally speaking, to the innumerable quantity of equations of state, since, 
for the calculation of contraction on mixing, it is enough to know the density 
only in the end points of the straight T-S line (the straight line of mixing), 
and, moreover, these densities coincide for the non-linear and linear fields of 
isopycnals only in the two points mentioned. The inclination of the linear 
isopycnals may, generally speaking, be arbitrary. However, the values of co- 
efficients a and p cannot be mutually independent; indeed, inasmuch as: 

where dS/dT is the cotangent of the angle of slope of the isopycnals in the 
linear field, then, given one of them, we can determine the second only if the 
slope of the linear isopycnals is known. In other words, a definite linear field 
of the isopycnals can be constructed only if the values of density are known 
in three points. 

It follows from what has been said that the calculation of contraction on 
mixing of sea waters places in correspondence to the real field of isopycnals 
every time a family of linearized fields of isopycnals, determined by the coin- 
cidence of densities at the ends of the straight lines of mixing of both fields. 

Formula [36.3] or [36.4] makes it possible to carry out the calculation of 
contraction bn mixing with great accuracy; this calculation is illustrated in 
Table VI considered above. The values of the first integral in the right-hand 
part of formula [36.3] summed up with the constant of integration ( ~ 7 ~ ) ~  = 
27.872, are given, as has already been pointed out, in column 11. 

The values of the second integral in the right-hand side of formula [36.3] 
can be obtained from the following considerations. Let us write the integrand 

whence, having divided it by dS, we obtain: 
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or : 

dp d T  
dS Q d S  

p =  -- 

Hence, in the finite differences: 

[ 36.5 I 

[36.6] 

L36.71 

The final increments of density, salinity and temperature can, in the case 
of a linear field of isopycnals, be taken on the ends of the straight line of 
mixing; however, we shall take them 10 times smaller, following the proce- 
dure for the calculation of the line integral, determined by the first term of 
the right-hand part of equation [36.3]. Then: 

136.81 

where A1 = 10 (the straight line of mixing 1 broken into ten parts). For the 
numerical example, considered in the preceding paragraph, the integrand of 
the second integral in the right-hand part of formula [30.3] can be written in 
the following form : 

[36.9] 

where ( u ~ ) ~  = 27.788; ( u ~ ) ~  = 27.872, or, numerically: 

-0.0084 = P X  0.16 + CWX 0.94 

Let us set the value of a arbitrarily, in agreement with what has been said 
above, namely: let a = -0.2. Then: 

- 0.0082 + 0.188 = I 225 
0.16 P =  

The increment of 0 in a linear field of isopycnals will be determined by the 
expression: 
A@ = PAS + aAT 

or, numerically: 
AO= 1.1225 AS+(-0.2)AT 
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Accordingly: 

The values of i3 are given in column 12 of Table VI; let us note that in prac- 
tice it is simpler to calculate it from the formula of mixing analogous to for- 
mula [ 30.1 ] (Zubov and Sabinin, 1958). 

Finally, in column 13 are given the values of contraction on mixing oT-u 
obtained as the difference between the numbers appearing in columns 11 and 
12. We see that the values of contraction are obtained with an accuracy to the 
third decimal place of uT and, if so wished, could be obtained with an accuracy 
to the fourth decimal place. 

The cotangent of the angle of inclination of the linear isopycnals, correspond- 
ing to the example considered, equals (AS/AT)  = 0.178. 

Formula [ 36.31 is cumbersome in calculating contraction, let us say, in one 
specific case; however, for a series of calculations a graph may be constructed 
for the calculation of the integrand of the first term of formula [36.3], corre- 
sponding to the real field of isopycnals. This facility can be achieved if it is 
necessary to carry out calculations of contraction on mixing along different 
straight lines of mixing, lying in different coordinates, which are, however, 
parallel to each other. Such cases are often encountered in practice, and, as 
an example, one may cite the straight T-S lines of what Sverdrup calls the 
Central Water Masses of the World Ocean. These straight lines, constructed 
from the data of table 89 (Sverdrup et al., 1942), are represented in Fig. 29. 
We see that many of these straight T-S lines are parallel to each other; thus, 
the cotangents of the angles of inclination to the abscissa axis for the Central 
Water Masses of the North Atlantic, South Atlantic, Indian Ocean, the Western 
South Pacific and the Eastern North Pacific Ocean amount to approximately 
0.125; 0.125, 0.121 ; 0.121 and 0.127 respectively. Some of these T-S relations, 
as may be seen from Fig. 29, are curvilinear. 

Therefore, the integrand of the line integral: 

A ~ = - A S + - A T  aP a P  
as aT 

[36.101 

AS = 0. lo/oo and AT = 0.8", which corresponds to the North and South 
Atlantic, will be suitable also with adequate degree of accuracy for the 
three other Central Water Masses enumerated. Table VII gives the 
values of function [ 36.101 with AS = 0.1 o/m and A T  = 0.8" (as above, the 
straight line of mixing is broken down into 10 parts in the calculation) for 
the different values of salinity and temperature in the range comprising the 
Central Water Masses; the same values are represented in Fig. 29 in the form 
of a field of isolines. We see from this figure that the quantity of the line 
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Fig. 29. Graph of function lo4 [(ap/as) A S  + (ap/ar) dT] at AS = O.lo/oo, AT = 0.8". T-S curves for 
the Central (tropospheric) Water masses are plotted on the graph. a = Eastern North Pacific; b = Western 
North Pacific; c = Eastern South Pacific; d = Western South Pacific; e = South Atlantic;f= Indian Ocean; 
g = North Atlantic. 

integral at the increments of temperature and salinity taken depends very 
little on a change in salinity. 

Plotting in Fig. 29 any straight T-S line parallel and equal in length to the 
straight T-S line for the North Atlantic Central Water (the latter is shown in 
the figure), we can immediately determine the value of the function: 

- 0.1 + - a  a P  0.8) * lo4 
aT 

in any point of the straight T-S line. If the length of the straight T-S line is 
different from the length of the base straight T-S line, which was used for 
the construction of the graph, then: 

TABLE VII 

Function 104Ap(S, T)  = lo4 [(ap/as) AS'+ (ap/aT)AT] with A S  = O.lo/oo, AT = 0.8" 

33 34 35 ' 36 37 

5 
6 
8 

10 
12 
14 
16 
18 
20 

-0.1036 
-0.1998 
-0.3848 
-0.5598 
-0.7258 
-0.8834 
-1.0352 
-1.1810 
- 1.3226 

-0.1247 
-0.2201 
-0.4035 
-0.5769 
-0.7312 
-0.8989 
-1.0490 
-1.1940 
-1.3340 

-0.1450 
-0.2404 
-0.4221 
-0.5939 
-0.7575 
-0.9 135 
-1.06a8 
-1.2062 
-1.3453 

-0.1652 
-0.2598 
-0.4407 
-0.61 17 
-0.77.36 
-0.9280 
-1.05'65 
-1.2191 
-1.3567 

-0.1854 
-0.2792 
-0.4593 
-0.6287 
-0.7898 
-0.9434 
-1.0902 
-1.2312 
-1.3680 
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where k is the ratio of the length of the given straight T-S line to the base 
straight T-S line of the North Atlantic Central Water. 

Let us now consider the question of the correlation of the real and linear- 
ized fields of isopycnals on the whole T-S diagram. It is known that inlthe 
linearization of the equation of state for various analytical purposes we usually 
take the following mean values of the coefficients of thermal expansion and 
saline contraction: a = -2 10-4 and 0 = 8 10-4 (Hesselberg and Sverdrup, 
191 5 a). Therefore, it is interesting to consider the function: 

1 lo4 Ap(S, T )  = lo4 - (0AS + aAT) [36.11] 

with the values mentioned of coefficients a and 0 and where AS = and 
AT = 1" (the latter values of the increments in salinity and temperature are 
taken for the sake of uniformity). The values of function [36.11] are given 
in Table A7 of the Appendix and also represented in the T-S plane in Fig. 30. 
Considering this figure, we see that it well reflects the relation between the 
real (non-linear) and the linearized equations of state of sea water at atmo- 
spheric pressure. In particular, it constitutes a graph of the errors arising 
from the replacement of the real equation of state by the linear; these errors 
are different in the different ranges of temperatures and salinities. If we take 
as the maximum admissible error, let us say, the value 6p  = 5 1 0-5,  then 
it may be seen from the figure that the area of admissible replacement of one 

30 

T'C 

20 

10 

0 
-2 

0 10 20 SO 40 
S%. 

Fig. 30. Graph of function: lo4 Ap = lo4 [ { (ap/aS)  AS + ( a p / a T )  AT} - (PAS + orAT)] with P = 8 lo4; 
( ~ = - 2 * 1 0 - ~ ;  AS= l"/oo;AT= 1°C. 
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equation by the other extends on the T-S diagram in a band lying at Oo/oo be- 
tween 13 and 20" and extending to  the limits of 6-15°C at salinity of 40°/00. 

Fig. 30 is interesting also for the further theoretical study of the phenom- 
enon of contraction on mixing of sea waters. 

37. THE TRANSFORMATION OF COORDINATES ON THE T-S PLANE 

The question of the transformation of T-S coordinates arises first of all 
because the various families of curves in the T-S plane, representing the dif- 
ferent functions of the equation of state of sea water, form distinctive curvi- 
linear coordinates. The transformation of coordinates can prove highly useful 
from the theoretical and practical points of view; this question, however, has 
practically not been investigated. Here we shall confine ourselves, in conclud- 
ing the consideration of the basic properties of the T-S diagram, only to for- 
mulating this question in the most preliminary way. 

Revolving of the axes of the coordinates 

If S' and T' are the new coordinates, while S and Tare the old coordinates, 
the correlation between them is determined by the formulae known from 
analytical geometry: 

S = S c o s a  + Tsina  

T '=  -S sina + T cosa 
[37.1] 

where a is the angle of the revolution (counter-clockwise). Formulae [37.1] 
are valid given an invariable scale. 

Revolving of the axes of coordinates is considered by Proudman ( 1953, 
section 74) in connection with the question of determining the coefficient 
of mixing from T-S curves (see also Section 47). Proudman introduces the 
dimensionless coordinates S/So and T/To ; therefore for the abscissa axis a 
new dimensionless function arises: 

S T 
F =  - cosa + - sina 

SO TO 
[37.2] 

At a = constant, F represents a linear combination of S and T (something 
in the nature of an analog of density), plotted along one of the axes of the 
new system of coordinates. If in the S-T plane a T-5'-z curve is constructed, 
for example, then the second axis of the new system of coordinates can, for 
example, be graduated by parameter z ;  it is natural that in constructing a 
regular scale for z in the new system of coordinates a distortion - stretching 
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of the original T-S curve is necessary. Revolving the axes of the coordinates 
enabled Proudman to come up with a derivation of Jacobsen’s formula ( 1927) 
simpler than the derivation of Jacobsen himself and than Okada’s derivation 
considered in Section 47. 

The transformation of curvilinear coordinates 

Let us consider a plane related to the dimensionless * coordinates S, T, and 
another plane, related to certain, also dimensionless, coordinates 5 and 9. The 
transformation of the S-T plane into the 517 plane is possible; moreover, if in 
the plane S-T the system of functions is given as: 

9 = 77(S n I 
then in the plane 5-q it corresponds to the system of functions: 

s = w, 9) 
T =  T(fY 9) 

[37.4] 

This transformation is possible if a one-to-one correspondence exists of the 
areas considered in both planes (see Fikhtengolts, 1956). Moreover, as is 
known from calculus, the condition must be fulfilled : 

where the Jacobian: 

[ 37.51 

[ 37.61 

and its inverse Jacobian J(S, T )  should neither of them turn into zero. 

type [37.3], for example: 
In the plane S-T one can consider a whole series of families of functions of 

[37.7] 

* See footnote on p. 130. 
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or : 

9 = l(S, T)  as [37.8] 

(7 is the function of “density flux” - see Section 33). Let us consider the 
system [37.7] and let us calculate the Jacobian: 

[ 37.91 

On the basis of the Cauchy-Riemann equations [33.4] (on the right) for 
the plane S-T we have: 

[ 37.101 

Consequently, the system of functions [37.7] transforms the S-T plane into 
the p r  plane, on which are represented two families of curves: 

[37.11] 

To the system [37.8] , represented in the S-Tplane (these families of curves 
relating, however, to specific volume, are represented in Figs. 14 and 15), 
there corresponds a system: 

On the basis of formulae [ 33.161 we may say that the system of functions 
[ 37.121 transforms the plane S-T into a plane analogous to  the hodograph 
plane, since the components of the “density flux” ap/aS and -(ap/a T )  are 
analogous to the components of velocity u and u (Section 33). 

It is interesting to consider another transformation to  the “hodograph 
plane” carried out by means of the independent variables q and 8 - of the 
“vector of density flux”, tangent to the isolines y, and of the angle of its 
inclination to  the abscissa axis, determined respectively by the formulae: 
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In the plane S-T to formulae [ 37.131 there correspond formulae: 

9=q case 

as 

aT 

2 = q sin e 

The modulus of vector q is determined by the expression: 

and its direction by formula: 

aT tan8 =- as 

[37.14] 

[37.15] 

[37.16] 

moreover: 

as tan 8 = -cotp =- 
aT 

where aS/aT is the thermohaline derivative (Section 25). 

in the plane analogous to the hodograph plane; an idea of the latter - the 
modulus of the “density flux” 4 - is given by Table VIII. This table is calcu- 
lated from formula [ 37.151 with the help of tables 20 and 24 of the Oceano- 
logical Tables of Zubov (1957a). 

Thus, the thermohaline derivative serves as one of the independent variables 

TABLE VlII 

Function lo’ q = f(S, T) 

40 \ 0 10 20 30 

0 
10 
20 
30 

8174 8079 8037 8051 8116 
7876 7854 7873 7936 8040 
7890 7892 7929 8002 8113 
8047 8068 8116 8192 8294 

We see that function 4, unlike function 8 (or p),  undergoes very small 
changes in the ranges 0 < T < 30” and 0 < S < 40°/,. 

Thesrelation between coordinates x and y ,  the velocity potential and 
the stream function cp and $, as well as variables q and 8 is established from 
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formulae known in hydro- and aero-mechanics; by analogy formulae can also 
be constructed for the S-T plane allowing for the differences in scales of 
salinity and temperature. 

As has already been said, the transformation of coordinates can prove use- 
ful in the analytical study of T-S relations. Thus, the straight T-S line is repre- 
sented in the q-8 plane by a smooth curve (it is transformed into a curve); on 
the contrary, some portions of the T-S curves can be straightened out with 
appropriate transformation of the coordinates. 

T-S areas. The calculation of areas on the T-S diagram is necessary, for 
example, in statistical T-S analysis (Section 58) and in some other cases. 

Closely connected with this question is the question of the calculation of 

In a dimensionless T-S plane the formula occurs: 

[37.171 

which expresses area with the help of the line integral along the contour ( L )  of 
the T-S area. To use this formula it is necessary to know the function T =f(S) 
on the smooth (or intermittently smooth) contour of the area. 

The corresponding formula for the calculation of the area of a closed region 
A in the 517 plane has the form: 

[37.18] 

whereJ(S, q) is the Jacobian determined by formula [37.61. 

38. THE FUNCTION OF THE DENSITY FLUX IN OCEANOGRAPHIC T-S ANALYSIS 

The use of the function of density flux y in the practice of oceanographic 
analysis has also been considered by Veronis ( 1972); to make such use possible, 
it is necessary to determine function y numerically, which was done by the 
author mentioned. Let us consider briefly some of Veronis’ results - the 
numerical calculation of function y as well as its possible oceanographic inter- 
pretation *. 

* Concerning Veronis’ article (1972) see (Mamayev, 1973b). Veronis designates function -y by the 
letter 7. 
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The numerical representation of function y 

Function y can be calculated with accuracy to yo by direct integration 
according to formula [ 33.171 , if the analytical expression for density p and 
its derivatives is known. Veronis did not make use of this direct method, but 
used the finite-difference method of calculation. In spite of the disadvantage- 
ous method chosen by Veronis, we shall set it  forth here, since it represents 
the first attempt to calculate function y. 

The differential form of formula [33.17] for a dimensionless T-S diagram 
is as follows: 

[38.1] 

Going back to the dimensional coordinates T' and S' (see footnote on p. 130) 
and dropping the strokes, we have: 

[38.2] 

This is the formula used by Veronis for the determination of y (instead of To 
and So he writes AT and AS). 

Here it should be emphasized, following Veronis, that function y, the iso- 
lines of which on the T-S diagram are orthogonal to the isopycnals, is not 
single-valued and depends on the choice of scales for temperature and salinity, 
in other words, on the arbitrarily given quantity AT/AS. Expressing further 
formula [33.6] in finite differences, determining from it the value of AT (we 
replace To and So by AT and AS) and substituting it in [38.2] we obtain: 

Finally, solving [38.3] for dS, Veronis obtains the following formula 
for calculations: 

[38.3] 

[38.4] 

The calculation of the field of function y according to this formula is as 
follows: setting an arbitrary (convenient) value of y in a certain point of the 
T-S plane and setting increments 6y along the curve p = const., passing through 
this point, from formula [38.4] we can determine the increments 6S, while 
from formula [33.6] , written in finite differences, the corresponding incre- 
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ments 6T. By this method the distribution of function 7 along one isopycnal 
is obtained; using the corresponding values of 7 ,  taken at equal intervals, from 
formula [33.8] and the formula: 

[38.51 

we can construct isolines orthogonal to the curves p = constant *. 

and 33°/00 Q S Q 37°/00, setting as an arbitrary value 7 = 5 in the point: 
T =  9.42"C; S =  35'loO ( 0 0  = 27.07) and as a ratio of scales AT/AS = 5 
(0.1 "C corresponds to 0.02°/m). The corresponding T-S diagram is represented 
in Fig. 31 **. The function 7 determined by this method changes in the ranges 

Veronis carried out a calculation of function 7 in the ranges 0 Q T Q 30°C 

Fig. 31. Numerical representation of a family of curves of function 7 ,  orthogonal to the family of iso- 
pycnals, in the oceanic range of temperatures and salinities (Veronis, 1972). Compare with Fig. 28. 

* Formula [38.5] follows directly from the condition of orthogonality [33.10] and eqs.[33.2] and [33.3]. 
** In this work Veronis uses potential temperature 0 instead of T and potential conventional density 08 
instead of uT, which has substantial oceanographic justification. We shall take up these quantities below. 
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of temperature and salinity mentioned from 2.5 to 10.0 g 1-' (this is seen 
from the figure), which corresponds to the range of changes in density. 

Having calculated by the method described above 100 values of the func- 
tion for the region of values of temperature and salinity represented in Fig. 3 1, 
Veronis approximated this distribution with the help of the least squares 
method by the following polynomial of the 5th degree: 

[38.6] 

which is convenient for computer calculations and whose accuracy with 
respect to the data calculated amounts to 0.002 unit of 7.  The coefficients 
A ,  of the polynomial are presented in Table A9 of the Appendix. 

Oceanographic application 

Let us consider as an example the distribution of function 7,  and also of 
potential conventional density uo on a meridian section in the western part 
of the Atlantic Ocean (Fig. 32). In the upper kilometer layer of the ocean 
approximately between latitudes 40"s and 30"N the isolines of 7 and uo are 
roughly parallel; lower down they intersect at a greater or smaller angle. 
Veronis interprets the parallelism of the curves of y and uo in the section as 

Longitude west 

1000 

2000 
Y 

Fig. 32. The distribution of function y (solid lines) and of potential conventional density uo (broken 
lines) in a meridional section in the western part of the Atlantic Ocean. In those parts of the section 
where broken lines are not shown, both families of lines are approximately parallel (Veronis, 1972) 
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a possible indication of intensive horizontal mixing of water masses, and their 
intersection as evidence of vertical mixing. Let us add that it is more conve- 
nient to speak of the change of one of the functions against the invariable 
value of the other and vice versa. Indeed, the most general consideration of 
the T-S diagram with the orthogonal families of curves (Fig. 3 1) leads to the 
conclusion that a change in function y along any isopycnal bears witness to 
the isopycnic process, while a change in ug along any isoline y testifies to  
mixing across isopycnic surfaces, i.e., to vertical mixing (or the “density flux” 
in a stratified ocean, which was mentioned above in Section 33). Turning 
again to the oceanographic section, we can notice that the greatest change in 
function y occurs along the isopycnal u, = 27.4. I t  is known (Section 62) 
that the transformation of the core of the Antarctic Intermediate Water takes 
place approximately along just this isopycnic surface due to vertical mixing. 
This vertical mixing proceeds primarily downward from the core mentioned, 
which is borne out by the change in density along any of the isolines y = 3.4; 
3.6; 3.8 and 4.0 - in those parts of them which lie below the isoline ug = 27.4 
(Fig. 32). 

The primarily vertical mixing of the intermediate water mass with the lower 
water mass (as compared with the upper) was pointed out by the author of 
the present work earlier on the basis of other considerations (see Sections 55 
and 63). 

Confining ourselves to this one example, we may agree with Veronis’ opin- 
ion that the function y can serve as a yardstick for the mixing of water mas- 
ses - at least for isopycnic mixing. 

With this we conclude the consideration of the basic general properties of 
the T-S diagram and proceed to the systematic exposition of the analytical 
theories of T-S curves. 



CHAF'TER 6 

ANALYTICAL THEORIES OF T-S CURVES 

39. FORMULATING THE THEORETICAL PROBLEMS 

Equations 

The fundamental problem of the analytical theory of T-S curves is the 
simultaneous solution of the equations which determine the spatial distribu- 
tion of temperature and salinity, the representation of the results obtained 
on the T-S diagram and the geometric and analytical investigation of the 
functional relationships between temperature and salinity so obtained. The 
foregoing can immediately be made clear in the following way. As a result of 
the solution of the equations, let the analytical expressions have become 
known to us which determine the nature of the distribution by depth and in 
time of temperature and salinity, let us say, in some investigated point of the 
ocean : 
T = f ( z ,  t )  S = q ( z ,  t )  [39.1] 

In these expressions z (depth) and t (time) represent, as has already been 
said above, parameters (see Section 3 1). The simultaneous representation of 
the results of [39.1] on the T-S plane or, in other words, the transition from 
the T-z plane and the S-z plane (with t = const.) to  the T-S plane presupposes, 
obviously, obtaining relation: 
T =  W) [39.2] 

Obtaining the analytical type of expression [ 39.21 presupposes, obviously, 
the elimination of parameters z and t .  Thus obtaining functional relation 
[ 39.21 , as well as its investigation and further practical application constitutes 
the fundamental problem of the analytical theory of T-S curves. 

Corresponding equations in the theory of T-S curves prove to be the equa- 
tions of turbulent heat conduction: 

[39.3] 

and of turbulent salt diffusion: 
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[39.4] 

or rather, their simplified versions; in expressions [39.3] and [39.4] 
d/dt = a/aT+ u(a/ax) + u(a/ay) + w(a/az) 

is the differential Euler operator, A = a 2/ax2 + a2/ay2 + a2/az2 is the Laplace 
operator, kT and ks are the coefficients of turbulent heat conduction and 
turbulent salinity diffusion. It is understood that in notations [39.3] and 
[ 39.41 these coefficients are assumed to  be identical in the direction of all 
three axes: k T x  = kT,y = k T z  and ks,x = ks,y = ks,z. In addition, [ k T ]  and 
[ ks ] = cm2/sec. 

lay the theory of T-S curves developed by Shtokman (l938,1939,1943a,b, 
1944,1946) and by Ivanov (1943,1944,1946,1949): 

The following simplified equations of heat conduction and diffusion under- 

[39.5] 

Each of these equations is identical to  the fundamental equation ofheat 
conduction for a uniform rod - to  the uniform equation (the rod without 
heat sources) which has been thoroughly studied in the theory of equations 
of mathematical physics. In accordance with this circumstance, the theory of 
T-S curves is constructed mathematically by analogy with the theory of 
propagation of heat in rods. 

non-stationary (i.e., changing in time) distribution of temperature and salin- 
ity along the vertical in any point of the sea with subsequent interpretation 
of the solution in the T-S plane, as well as the stationary distribution of tem- 
perature and salinity in the two-dimensional case - by depth and along axis x, 
provided that the entire mass of liquid possesses a constant value of velocity 
along this axis (Hirano, 1957; Shtokman, 1962). Indeed, the equations which 
correspond to this case: 

In the theory of T-S curves equations [39.5] make it possible to study the 

[39.6] 

by the substitution: 
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U 
X = - [  

k 

are reduced to  the equations: 

[39.7] 

identical to equations i39.51. 
The simultaneous solution of equations [ 39.61, given a more general as- 

sumption concerning velocity u,  namely when the nature of its change with 
depth is given, represents, as it were, an independent ramification of the 
theory of T-S curves, possessing a certain value and some advantages (for 
example, from the point of view of simplification of solutions in studying 
the transformation of water masses in a sea of finite depth). In this direction 
almost nothing has been done, aside from the work of the author (Mamayev, 
1962a), devoted to the solution of simplified equations: 

[39.8] 

(the left-hand parts of equations [39.6] are taken as constant) for the purpose 
of carrying out T-S analysis of moving water masses limited in the vertical 
direction. The results obtained in the work mentioned will be set forth below 
in Section 45. 

equation for temperature and salinity: 
A T = O  A S = O  [39.9] 

(here A is also a three-dimensional Laplacian); the results of the interpretation 
of solutions in the T-S plane must in this case form the analytical basis for the 
method of volumetric T-S analysis, which has become current in recent years. 
The methods of practical volumetric T-S analysis will be set forth below 
(Section 58); so far as what has been said above with respect to  equations 
[39.9] is concerned, no steps have been undertaken in this direction to our 
knowledge; this is a third ramification of the theory of T-S curves but none- 
theless a most promising one. 

It is clear that the development of the analytical theory. of T-S curves is 
not limited to the possibilities of using the equations of heat conduction and 

Finally, the problem may be raised of the simultaneous solution of Laplace's 
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diffusion t39.31 and [39.4] or any of their simplified versions. In principle, 
it is possible to  construct and solve any equations describing the spatial and 
temporal distribution of temperature and salinity with subsequent analysis on 
the T-S plane; there is no doubt that all such results must also be included 
within analytical theories of T-S curves (or, speaking more generally, of T-S 
relationships). Such results already exist, and as an example (perhaps the only 
one) we may refer to the very promising work of Stommel devoted to the 
analysis on the T-S plane of the processes of thermohaline convection 
(Stommel, 1961). Stommel’s work deserves detailed scrutinity, which it will 
receive in Section 46; here we will point out that Stommel subjects to T-S 
analysis the result of the solution, for example, of both the following equa- 
tions (in them T and S are certain constant values of temperatures and salinity, 
while c and d are the coefficients of heat and salt exchange): 

dT = C ( T  - T )  

- _  dS - d ( S  -S> 

dt 

dt 

[39.10] 

and of some others, more complex. One cannot fail to conclude that these 
and many other problems make the analytical theory of T-S curves an even 
more powerful tool of oceanographic analysis than has been thought up to 
now. 

Initial conditions 

Our main attention in this chapter will be devoted to the analysis of the 
solutions of equations [39.5], since i t i s  precisely in this direction that the 
theory of T-S curves has achieved its greatest successes up to the present time. 
The initial and boundary conditions will be constructed accordingly. 

Continuing to use the identical methods for solving problems of the theory 
of T-S curves and problems of mathematical physics, we must bring the 
problems of the transformation of water masses in oceans of infinite, semi- 
infinite and finite depth into correspondence with the problems of the propa- 
gation of heat in rods of infinite, semi-infinite and finite length. Greatest at- 
tention will be paid to  T-S analysis in infinite and semi-infinite oceans - for 
reasons which will become clear below. In exactly the same way, the advantage 
of considering a semi-infinite ocean as compared with an ocean of infinite 
depth will also be emphasized in the subsequent exposition. Here we will 
formulate the initial conditions for solving equations [ 39.51. 

The initial (when t = 0) distribution by depth of temperature and salinity 
is established in the form of the existence of parallel plane layers possessing 
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constant (initial) values of temperature and salinity. Underlying this condition 
is the idea, understandable for oceanographic reasons, that the waters of the 
World Ocean in any of its points have been formed as a result of the interac- 
tion of the original, more or less homogeneous water masses, the appearance 
of which is harnessed to the main worldwide sources - the regions of forma- 
tion of water masses. Here, however, it is necessary to make a qualification: 
in spite of the obviousness of this idea, it is by no means possible to affirm 
that water masses exist in the ocean in “pure” form, i.e., such water masses 
as would be characterized by constant values of temperature and salinity 
along the vertical within the limits of a layer more or less substantial in depth. 
Such an idea is valid to a certain extent for the bottom water masses: at the 
bottom of the ocean vertical homothermy and homohalinity are often en- 
countered within the limits of a more or less considerable thickness. So far as, 
say, intermediate waters are concerned, we will hardly find any such homo- 
thermy and homohalinity in any significant zone of the ocean (along the 
vertical). As an example, Mediterranean water flowing into the Atlantic Ocean 
as an undercurrent over the sill of the Strait of Gibraltar has more or less 
homogeneous characteristics over this sill. However, vertical gradients of tem- 
perature and salinity already exist in the Strait as well, not even to mention 
the regions adjacent to the Strait. Nowhere do we observe homogeneousness 
along the vertical, and a striking indication of the presence of Mediterranean 
Intermediate Water manifests itself correspondingly in a marked extreme of 
salinity. However, this extreme in no way upsets the continuity of the curve 
of vertical distribution of salinity. A kind of “initial paradox” appears; we 
can indicate almost exactly the characteristics, i.e., the constant values of 
temperature and salinity of Mediterranean water in situ, at the time of its 
origin, as it were; we can also indicate, fairly exactly as well, the thickness of 
this homogeneous water mass; however, nowhere can we join these indicators 
together by establishing the initial presence of a parallel plane original layer. 
The primary water mass slips out of our hands, as it were, and the only thing 
that we can do is to  surmise the existence of this initial, homogeneous water 
mass, somewhere beyond the limits of the region accessible to us: it might 
quite well be precisely there, and might quite well lead to that vertical distri- 
bution of characteristics which we observe, say, immediately at the outlet 
from the Strait of Gibraltar, to return again to this example. 

Shtokman (1 943b) substantiated even better than has been done above 
a theory of T-S curves in which the initial picture took the form of a series of 
superimposed parallel plane water masses, and a quotation from his work 
therefore seems to us to be in order. He writes: “It should ... be emphasized 
that the highly useful concept for oceanography of water masses as some 
limited volumes of water possessing individual properties before mixing (this 
concept underlies the whole development of the theory of T-S curves) is to a 
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considerable extent a conventional concept. Indeed, an exact reproduction of 
the concept of water masses could be formed by different layers of a fluid 
which we had originally placed one over the other in some vessel, observing 
thereafter the gradual equalization of the properties of these layers as a result 
of mixing and interpreting this process by T-S curves. It is not difficult, 
however, to realize that we could attain a distribution of temperature and 
salinity of the water identical with the first case also if our vessel originally 
contained water not divided into layers and possessing identical properties at 
any point within the vessel. This may be achieved by changing the properties 
of the water by means of external influences, subjecting the water on the sur- 
face to  heating, cooling, desalinization or salinization (as a result of deposits 
or evaporation on the surface of the liquid). As a result of the action of the 
external factors enumerated, along with the processes of mixing in our vessel, 
we can achieve such a vertical distribution of temperature as would correspond 
exactly to the first case (the mixing of several layers of fluid which had been 
individual in nature at the original moment in time), although in the latter 
case such layers (water masses) did not in fact exist at the initial moment in 
time.” And further: “ ... splitting the water of the ocean up into different 
water masses, we are speaking in point of fact about layers in the sea which 
do not exist in reality” (Shtokman, 1943). 

Although both these arguments start out from different positions - the 
first from an originally homogeneous sea, and the second from the existence 
of an original, as it were “instantaneously” created continuous stratification - 
they bear witness, nevertheless, to the existence of an initial distribution of 
homogeneous water masses to which reference was made at the beginning of 
this subsection. 

It is relevant to point out that, generally speaking, we could have taken 
other initial conditions also: say, a linear (by depth) distribution of tempera- 
ture or salinity at some interval of depth, as is often done in problems of the 
propagation of heat in rods or as was taken, for example, by Hirano (1957) 
for salinity in studying the transformation of water masses in the subarctic 
region of the Northern Pacific Ocean. However, we will not go beyond the 
framework usually accepted in the theory of T-S curves. 

Thus, let us return to the initial distribution of water masses in the form 
of parallel plane layers possessing identical initial values of temperature and 
salinity. We will consider cases when two, three and four layers exist (and in 
the case of a sea of semi-infinite depth - also the case of complete absence 
of layers or, in other words, the existence of one layer), bearing in mind, in 
the first place, that the vertical structure of the water masses of the ocean is 
practically limited to the existence of not more than four basic water masses, 
and in the second place, that, having solutions for this quantity of water 
masses, we can immediately obtain a solution for a greater (any) number of 
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T(z,O) = T , ,  S ( z ,O)  = S ,  when += > z > h 

T ( z ,  0) = T , ,  S ( z ,  0) = S2 when h > z > 0 

T(z,O) = T , ,  S(z,O) = S ,  when 0 > z > -= 
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i39.121 

( a ) + -  
+ -  

(b) 

z = H  

( C )  

Fig. 33. Four water masses in an ocean of infhite (a), semi-infinite (b) and finite (c) depth (initial ;on- 
ditions). 

them, by using general or recurrent formulae which it is easy to construct, 
when we have solutions for the three versions mentioned (Fig. 33). 

The initial conditions are as follows: 
(A) An ocean of infinite depth (the count starts from one of the interfaces 

(a) four water masses (Fig. 33a) - 
when + = > z > + h2 

between the water masses; the positive direction z is counted downward): 

T ( z ,  0) = T ,  , S ( z ,  0) = S ,  I 
T(z,O) = T , ,  S ( z ,O)  = S 2  when +h2> z > 0, 

T(z ,  0) = T , ,  S ( z ,  0) = S3 when 0 > z > - h ,  
[39.11] 

(c)  two water masses - 

T ( z ,  0) = T ,  , 

T ( z , O ) = T Z ,  S ( z , O ) = S ,  when 0 > z > - m  

S ( z ,  0) = S, when + m > z > 0 
[39.131 

(B)  An ocean of semi-infinite depth (the count starts from the surface of 
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the sea, the positive direction z is counted downward): 

T(z ,  0) = T ,  , S(z, 0) = S ,  when > z > h3 

T ( z ,  0) = T,, S(z, 0) = S ,  when h3> z > h2 

T ( z ,  0) = T,, S ( z ,  0) = S ,  when h2> z > h ,  

T ( z ,  0) = T 4 ,  S(z, 0) = S ,  when h,> z > 0 

(a) four water masses (Fig. 33b) - 

(b) three water masses - 

T ( z ,  0) = T , ,  S(z, 0) = S ,  when m > z > h,  

T ( z ,  0) = T,, S(z, 0) = S ,  when h2> z > h ,  

T(z ,O)=T, ,  S ( z , 0 ) = S 3  when h , > z > O  

(c) two water masses - 

T ( z ,  0) = T ,  , S(z, 0) = S ,  when m > z > h 

T( z ,  0) = T,, S(z, 0) = S ,  when h > z > 0 

(d) one water mass - 

T ( z ,  0) = T ,  , S(z, 0) = S ,  when m > z > 0 

t39.1' 

[39.15 

I 

1 [39.161 

[39.17] 

( C )  A n  ocean o f  finite depth (the count starts from the sea surface, the 

(a)  four water masses (Fig. 33c) - 
positive direction z is counted downward, His the depth of the ocean): 

T ( z ,  0) = T , ,  S(z, 0) = S ,  when H > z > h3 I 
T ( z ,  0) = T,, S(z, 0) = S ,  when h3 > z > h2 

T(z ,  0) = T,, S(z, 0) = S ,  when h2 > z > h l  
T ( z ,  0) = T 4 ,  S ( z ,  0) = S ,  when h l  > z > 0 

(b) three water masses - 

T ( z ,  0) = T ,  , S(z, 0) = S ,  when H > z > h, 

T ( z ,  0) = T,, S ( z ,  0) = S ,  when h2 > z > h ,  

T ( z ,  0) = T,, S(z, 0) = S 3  when h l  > z > 0 

( c )  two water masses - 

T ( z ,  0) = T ,  , S(z, 0) = S ,  when H > z > h 

T ( z ,  0) = T,, S(z, 0) = S ,  when h > z > 0 

1 [39.181 

I 

[39.19] 

1 [ 39.201 
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(d) one water mass - 

T(z ,  0) = T I ,  S(z, 0) = Sl when H > z > 0 
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[ 39.2 1 ] 

Boundary conditions 

It is obvious that for an ocean of infinite depth as a result of the absence 
of the effect of any external conditions (the ocean extends upward and down- 
ward without limits), boundary conditions are absent. An exception is consti- 
tuted by the interfaces between water masses for which must be satisfied the 
condition of equality of flow of heat or salts on both sides of the boundary. 
For the interface z = 0, dividing water masses 1 and 2, these conditions are 
written in the following way: 

In addition, it is necessary to observe the conditions: 

= T ,  T I  z=+o = T I  z=-0 

= s /  =s, 1 z=+o z=-0 
S 

[39.221 

E39.231 

(Shtokman, 1943a;Grober and Erk, 1955), where T,  and S ,  are certain 
values of temperature and salinity which establish themselves on the dividing 
line after the beginning of mixing ( t  > 0). The observance of conditions 
[39.22] is necessary in those cases when the coefficients of heat conduction 
and diffusion are taken as non-identical in the water masses lying on both 
sides of the internal boundary considered: kT,l # kT,2 and kS,l # kS,2 .  How- 
ever, in case the coefficients are taken as identical for all the mixing water 
masses, conditions [39.22], as well as conditions [39.23], are satisfied auto- 
matically, and in the solution we are not obliged to  take them into account. 
The case where the coefficients of heat conduction and diffusion of salts are 
not identical in the interacting water masses will be considered by us follow- 
ing Grober and Erk and Shtokman as applied to  the mixing of two water 
masses in an ocean of infinite depth; in this only case we naturally will have 
to take into account conditions [39.22] and 139.231. 

Let us now turn to  the cases of the oceans of semi-infinite and finite depth. 
Remaining within the framework of the mathematical apparatus of the theory 
of heat conduction applied in the theory of T-S curves (in this case, as we 
shall see below, the solutions of equations [39.5] can be expressed by the 
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integral of probabilities @(z), which makes it much easier in practice to find 
ready-made solutions), we shall limit ourselves to the consideration of the 
two simplest cases of boundary conditions for the surface of the sea and for 
the bottom, namely : 

(1)  The sea surface is heat-insulated (and “salt-insulated”), i.e., flows of 
heat and salts do not take place through the surface of the ocean: 

[39.24] 

This case corresponds to the “pure” internal mixing of the water masses 
among themselves, in particular, the effect of heat exchange with the 
atmosphere is disregarded. 

(2) Constant values of temperature and salinity are given on the surface of 
the sea; any such constant values may be given; however, for simplicity, (and 
this is quite enough) we will assume that values of temperature and salinity 
are maintained on the surface equal to the original values of temperature and 
salinity of the sub-surface water mass: 
T ( 0 ,  t )  = T,  S(0, t) = s, [39.25] 

where n = 2, 3 and 4 - the number of the surface water mass. An exception 
will be the case of the transformation of one water mass in a semi-infinite 
sea, when arbitrary values of temperature and salinity To and So will be given 
different from the initial temperature and the initial salinity of this mass. This 
case, however, is to a greater extent illustrative in nature rather than practical, 
although it is interesting from the point of view of the methods of T-S anal- 
ysis. 

It is clear that the constant values of temperature and salinity on the sea 
surface are their mean values over many years, developing in each point of 
the sea under the influence of climatic conditions. 

face, there can be given either conditions: 
(3) Finally, on the bottom of an ocean of finite depth, just as on the sur- 

or conditions: 

= s, I z=H 
T = T,  S 1 z=H 

[39.26] 

[39.271 

The former of these correspond to conditions of absence of flows of heat 
and salts through the bottom, the latter to  the existence of stationary values 
of temperature and salinity in the bottom layer. It is apparent that in the case 
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of a deep finite sea, by virtue of the constancy of the values of the bottom 
characteristics, conditions [ 39.27 ] are preferable. 

Diffusion of density 

In studying the mixing processes of water masses on the T-S plane, changes 
in density, as well as in its vertical gradients (stability), which accompany 
changes in temperature and salinity, have not been considered up to  now, 
aside from the single work of Stommel(l96 1) quoted above. It is known that 
in the theory of ocean currents too (it is clear that we are not referring to  
the theory of geostrophic currents) the influence and distribution of density 
have also begun to be considered in recent years, after the appearance of the 
works of Lineikin (1955,1957), Takano (1955) and Hansen (1956), who 
independently introduced the equation of diffusion of density into the 
theory of ocean currents. The difficulties here consist in the non-linearity of 
the equation of state of sea water; these difficulties have not been overcome 
up to the present time (in the analytical sense). However, if we approximate 
the equation of state of sea water by a roughly approximate linear model, it 
proves possible to  obtain the linear equation of diffusion of density, in agree- 
ment with the equations of turbulent heat conduction and turbulent diffusion. 
The works mentioned on the theory of ocean currents, as well as Stommel's 
work on thermohaline convection, are based on the representation of the 
equation of state of sea water by a linear formula [9.2]. Differentiating this 
expression once by t and twice by z ,  we obtain respectively: 

[39.28] 

Let us now multiply the first of equations [ 39.51 by -a and the second by 
0, assuming in the first approximation that the coefficients of turbulent heat 
conduction and turbulent diffusion are equal to each other: k ,  = k,  = k,  and 
adding the results of these multiplications termwise, we obtain: 

[39.29] 

Comparing the expression obtained with the previous ones, we come to the 
equation of diffusion of density (or rather to one of its simplifications): 

[ 39.301 
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where the coefficient of diffusion of density k ,  is introduced, which possesses 
a corresponding physical meaning, obviously only given the condition of 
equality of coefficients kT and kS .  The general equation of diffusion of density 
is written, by analogy with [39.3] and [39.4], in the following way: 

[39.31] 

Equation [ 39.30 J is identical with equations [39.5], which form the basis 
of the analytical theory of T-S curves; its solution can be obtained every time 
simultaneously with the solution of these equations. Returning to the ques- 
tion of the lack of correspondence of equation [9.2] to the true equation of 
state of sea water, we will repeat again that in the necessary conditions at the 
first stage an intermittently linear approximation of the true equation of state 
on various zones of the T-S diagram is fully possible; the necessary values of 
coefficients a(S,  T )  and @(S, 7') can be selected for this from tables 20 and 
26 of the Oceanological Tables of Zubov ( 1957a). 

40. THE THEORY OF T-S CURVES FOR AN OCEAN OF INFINITE AND SEMI-INFINITE DEPTH 

Solutions of the problem 

In this section we will consider the solution of the problem of mixing of 
four, three and two water masses first in an infinite and then in a semi-infinite 
ocean along the vertical. In this we will consider first the solution for the case 
of mixing of four water masses, since the other two alternatives can be easily 
obtained from it as particular cases. This solution, beginning with the general 
solution of the equation of heat conduction, i.e., in that part of it where 
function W z )  - the integral of probabilities, is introduced with the corre- 
sponding transformations, will be considered in some detail. This has a certain 
methodological value for the reader who is interested in the further develop- 
ment of the analytical theories of T-S curves, all the more since such detailed 
expositions are rarely found in courses of equations of mathematical physics. 
An exception is provided by the article of Ivanov (1 9461, where the solution 
precisely for the case of four water masses in an infinite sea is considered in 
detail; thus, the computations quoted in this section are borrowed from 
this article. Further, for the case of the mixing of four water masses in a 
semi-infinite ocean we will also cite a detailed solution which is somewhat 
different from the solution for the infinite ocean. All derivations will be 
made for temperature, while the identical expressions for salinity in the major- 
ity of cases will be omitted for the sake of brevity. 
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An ocean of infinite depth 

The general solution of the equation of heat conduction (39.9,  given the 
initial condition Tlt,O = f ( z ) ,  is the following expression (Poisson's integral): 

[40.1] 

(see, for example, Aramanovich and Levin, 1964, p. 162). Bearing in mind 
that the integrand f (5) is determined for the case of four water masses by 
initial conditions [ 39.1 1 1 ,  using these conditions we can rewrite expression 
[40.1] in the following way: 

[40.2] 

Let us transform this expression by replacing variable f ;  this can be done 
by means of the following substitutions: 

Moreover (Grober et al., 1955) the limits of integration change in the 
following way * : 

instead of f = + 00 q = + 00 
instead of = -m we will have q = -00 

instead of f = f 0 

we will have 

we will have q = -z/2* 

* Beside substitution [A], we can also use one of the following substitutions: 

Transformations [A] and [C] are equivalent in the sense that they do not change the sign of limit of 
integration when it is equal to + - or - -; thus, when f = + 
q = - m (this was indicated above),'whereas it follows from [B] that when f = + - we have q = - -, 
when f = - m we have q = + -. All three variants lead to the same fmal result, if we consider the proper- 
ties of the integral of probabilities, which will now be discussed. 

we have q = + -, when f = - - we have 
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Thus, using substitution [A], we reduce expression [40.2] to the form: 
z + h l  z -- r7= - 

2 f i  
2 T3 

2 4 5  

e-q dq+- e-q2 dq-t T4 T ( z , t ) = -  
fi q=-m fi z + h l  - - 

2JZ 

[40.3] 
-- 

2 4 z  

Each of.the four integrals of the right-hand side of the expression obtained 
can be transformed by using the special function called the integral of 
probabilities * : 

[ 40.41 

Function @(z) possesses the following properties: 

(1) function @ ( z )  is odd: @ ( - z )  = - @ ( z ) ,  whereas the integrand function 
e-q2 is even (this is completely obvious). The oddness of @(z) follows from 
the fact that: 

(3) @(O) = o  

[40.5] 

[40.6] 

[40.7] 

* It is also called the integral of Gauss’s errors, or Laplace’s function or Kramp’s function. Sometimes 
this function is designated erf (2 )  instead of @(z); in such cases by @(z) is meant another function (the 
function of Laplace quoted), with a different standard designation used in the theory of probabilities 
(see, for example, Bronshtein and Semendiaev, 1953). 
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The integral of probabilities is convenient because for it detailed tables 
exist by means of which it is possible easily and quickly to obtain numerical 
values of the solutions. Thus, by using the properties of the integral of proba- 
bilities expressed by formulae [40.5] and [40.6], we can transform expression 
[40.3] in the following way: here, consequently, each of the addends of the 
right-hand side of [40.3] will be broken down into two: 

z+h 1 -- 

[40.8] 

Introducing the symbol @ ( z )  in [40.8], we come to the final expression 
for the vertical distribution of temperature in the case of mixing of four 
water masses in an ocean of infinite depth: 

[40.9] 
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Now it is easy to  see that combining any two water masses in one, i.e., 
proceeding from the case of mixing of four water masses to three water 
masses, we can obtain the corresponding formula for the case of vertical mix- 
ing of three water masses. Thus, eliminating in Fig. 33a the boundary -h, 
and assuming T3 = T4,  and also writing h instead of h,, we will obtain from 
formula [40.9], in which, obviously, the last term will disappear, the formula 
for the mixing of three water masses. Acting further in the same way, we can 
obtain the formula for the distribution of temperature in the case of mixing 
of two water masses. This may be seen by comparing all three formulae which 
are written out below as a summary for the mixing of four, three and two 
water masses in a sea of infinite depth. 

Recapitulation of the formulae for an ocean of infinite depth 

Four water masses: 

Three water masses: 

Two water masses: 

T ( z ,  t )  = - T,+ T ,  + (T,-T,) @ - 
2 " ( 2 . 2 1  

[ 40.91 

[ 40.1 01 

[40.11] 

Considering the formula for three water masses separately, let us note that 
for further analysis it will be more convenient for us to use the formula which 
is obtained if we combine two intermediate water masses of a four-layer-sea, 
placing the starting point of the vertical coordinate in the middle of the new 
intermediate water mass thus obtained. Then, instead of formula [40.10] we 
will obtain formula: 

(Shtokman, 1943a) 
The results obtained make it possible for us, on the basis of a comparison 

of formulae t40.91, [40.10] and [40.11], to write a general, or recurrent, 
formula for the case of mixing of any number of water masses with any thick- 
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nesses. Ivanov ( 1943) constructed a corresponding general formula; it is also 
given in the book of Timofeev and Panov ( 1962). However, we will neither 
quote this formula nor construct a recurrent formula, recalling what has al- 
ready been said to the effect that the vertical structure of the waters of the 
ocean does not exceed, as a rule, the case when four basic water masses 
exist; in any case, the fundamental analysis of the results obtained will be 
considered as it applies to the mixing of three water masses. 

The same formula for salinity must be placed in correspondence to each of 
the formulae obtained above for temperature. Below, when we proceed 
directly to T-S analysis, this is what we will do. Above, however, the formulae 
for salinity were not written solely in order to save space. 

A n  ocean of semi-infinite depth 

The original problem of the theory of T-S curves is the construction of 
analytical T-S curves which would reproduce as accurately as possible the 
curves constructed from the results of observations at hydrological stations 
in the sea. In striving to attain similarity between both curves, the purpose 
of theory consists not only of constructing an analytical T-S curve the form 
of which would be similar to the form of the real curve, but also of having 
the distribution of parameter z (depth) along it reflect the real picture. Only 
after the observance of both these conditions - similarity in the form of T-S 
curves and likeness in the distribution along them of parameter z - is it possible 
to make further theoretical conclusions on the distribution of water masses 
(first of all by depth), the speed of their transformation and displacement, 
the percentage ratio of water masses in different points, the quantities of the 
coefficients of exchange, etc. 

In connection with what has been said, attention should be drawn to one 
general and highly important property of T-S curves of deep water oceano- 
graphical stations: the reference marks of parameter z are distributed along 
them irregularly; the points with values of parameter z taken at even or close 
intervals are thinned out in the upper part of the T-S curve and fill out along 
its lower part, asymptotically approaching when z -+ H ,  where H is the depth 
of the ocean, the T-S index of the deep (bottom) water mass. For illustration 
in Fig. 34 are given three T-S curves of stations of the research vessel 
“Carnegie” No. 136, 137 and 147, made in September-October, 1929, in the 
Northeastern Pacific Ocean (the upper layer of the ocean of a thickness of 
about 100 m is not considered); the parametric points of depth become more 
frequent along the T-S curves as they approach the thermohaline index of 
the Bottom Water of the North Pacific Ocean B (1 .30° ; 34.7Ooh), deter- 
mined by Sverdrup et al. (1 942). 

The property noted of T-S curves is perfectly obvious, and is explained by 
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Fig. 34. T-S curves of “Carnegie” stations No. 136, 137 and 147, made in September-October 1929 in 
the Northeastern Pacific Ocean (Mamayev, 1966b) 

the great homogeneousness of the deep water mass for temperature and 
salinity; having imagined the case of an idealized ocean, unlimited in depth, 
filled to infinity with water homogeneous in temperature and salinity, we 
will come to the conclusion that the parametric points will, as before, asymp- 
totically approach the T-S index of this homogeneous mass, however, no 
longer when z -, H ,  but when z -+ 00. 

( z  = H )  and an infinite (2400) ocean with an identical index (To,So) in the 
first case a t  the bottom and in the second at infinity, we can come to the 
conclusion that the distribution of parameter z in the neighborhood of point 
( To,So) of radius e ,  provided that E is small enough, will have little effect on 
the distribution of points z, in the remaining part of the T-S curves. What has 
been said above is enough for the affirmation that the development of the 

Comparing mentally the T-S curves constructed for a very deep but finite 



OCEAN OF INFINITE AND SEMI-INFINITE DEPTH 177 

analytical theory of T-S curves for an ocean of infinite depth with subsequent 
application to  a real deep ocean is fully justified. 

The solution of the problem 

Let us consider the solutions of equations [39.5] for the case of mixing in 
a semi-infinite ocean of four, three and two water masses at initial conditions 
[39.14], illustrated in Fig. 33b, and boundary conditions [39.24] and 
[39.25] *. 

determining the distribution of salinity are identical. 
As earlier, we shall consider solutions for temperature; the expressions 

(A) Constant value of temperature is maintained on the sea surface. The 
general solution of the equation of heat conduction [ 39.5 J given initial con- 
dition [39.14] and boundary condition T(0 , t )  = To is determined by the 
expression : 

(z- S P  ( Z + H 2  
T ( z , t ) = T o  [I1-@ ($--)]+’if({) ( L F - e  dc 

2 4 i E o  
[40.13] 

(see, for example, Aramanovich and Levin, 1964, p. 139). Transforming the 
second addend of the right-hand side in accordance with initial conditions 
[ 39.141, we obtain: 

[ 40.1 41 

* In his last work on the theory of T:S curves, Ivanov (1949) gives solutions of equations [39.5] for 
the transformation of two and three water masses in a sea of semi-infinite depth with mixed boundary 
conditions for temperature and salinity. Ivanov, however, did not focus attention on the reasons for 
the need to develop a theory for an ocean of semi-infinite depth, and his results were in fact not utilized. 
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We transform successively eight addends of the type exp [ ( ~ + 5 ) ~ / 4 k t ]  ap- 
pearing in this expression in curly brackets, introducing in the cases 1 ,  3, 
5 and 7 the variable: 

and in cases 2, 4, 6 and 8 the variable: 

and proceeding to  the integral of probabilities [40.4]. Then we will obtain: 

[40.15] 

for the first addend. For the remaining seven addends we can obtain in 
exactly the same way: 

[40.16] 

[ 40.171 

[40.18] 
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[40. i 9 3 

[40.20] 

[40.2 11 

[40.22] 

Adding according to [40.13], and [40.14], To [ 1 - a(2/2-)] with the 
results [40.15]-[40.22] and introducing for brevity of notation the symbol: 

[40.23] 

we obtain finally: 

Since we assumed above that To = T4,  the second term of formula i40.241 
disappears and we have: 

T ( z ,  t )  = T4 + f [( T3 - T4) *+(h 1 )  + (T2 - T3) *+(h 2 )  + ( T i  - T2) *+(h 3 11 
[ 40.251 

For the case of mixing of three and two water masses in a sea of semi- 
infinite depth given boundary condition [ 39.251 we have respectively: 

and : 

T ( z ,  t )  = T2 +$(Ti-T,)*+(h,) 

Each of the successive formulae [40.26] and [40.27] can be obtained 
from the preceding one by combining two water masses in one (from the top 
downward), by lowering the number n etc.; therefore we will not repeat the 
transformations. 

[40.27] 
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(B)  No heat flow through the sea surface (heat insulation). The general 
solution of the equation of heat conduction in this case is written in the form: 

[40.28] 

Transforming it in accordance with initial conditions [ 39.141 we obtain: 

h l  t Z - 5 ) 2  (z+5)2 ) dC+ T(z ,  t )  = 2Jiiki[ ~ 

(e 4 k t  + e  4 k t  T4 

[ 40.291 

Using the ready-made values of the eight addends of expression [40.291, 
determined by formulae [40.15 I-t40.221 of the preceding exposition, and 
introducing for brevity the symbol: 

\k-(h) = Q, (---) z - h  - Q, (e) 
2 4 F t  2m 

[40.301 

[40.331 

Each of the two successive formulae [40.32] and [40.33] necessarily 
follows from the preceding one with the reduction in the number of water 
masses. 

Let us now proceed to  the practical application of the theory. We must 
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immediately point out the fundamental difficulty of this problem which con- 
sists of the fact that the construction of the “geometry” of the T-S curves in 
this case is considerably more complex than for the case of mixing of water 
masses in a sea of infinite depth. In the latter case we had the symmetry of 
three water masses in relation to the core of the intermediate water mass, 
which enabled us fairly simply to eliminate the parameter (function) @(z) in 
certain basic cases for the purpose of obtaining the equations of certain T-S 
lines in explicit form: T = f(S). For the theory of T-S curves in a semi-infinite 
ocean this is far from being the case; some geometrical constructions can be 
made only when the thicknesses of the water masses are the same. We will not 
dwell on these cases, rarely encountered in practice, but will briefly consider 
the fundamental results of the theory which illustrate its difference from the 
theory for the infinite ocean. We shall pay particular attention to two cases: 
(a) the mixing of two water masses given boundary condition [39.24] (the 
sea surface is “heat insulated” and “salt insulated”); (b) the mixing of three 
water masses given boundary condition [ 39.251 (constant values of tempera- 
ture and salinity are maintained on the sea surface). 

The first problem is connected with the problem of the zonal transforma- 
tion of the water masses of the ocean; the second with the question of the 
correct determination of the percentage ratio of the water masses from the 

It should probably be pointed out that the theory of T-S curves has been 
developed up to the present time on the basis of the hypothesis that the coef- 
ficients of turbulent heat conduction and turbulent diffusion are equal. A 
more correct concept to the effect that turbulent heat conduction is consider- 
ably more intensive than the turbulent exchange of salts introduces substantial 
corrections into the theory when in further analysis we assume that k ,  > k,. 
Remaining on the whole within the first of the hypotheses mentioned, we 
will, however, in some cases investigate the effect of inequality of the coeffi- . 

cients; this question is too complex for us to be able to give decisive prefer- 
ence to one alternative of the analysis or the other. 

T-S-z curves. 

4 1. MIXING OF TWO WATER MASSES IN AN OCEAN OF INFINITE DEPTH 

The solution of equations [ 39.5 1, given initial conditions [ 39.13 1,  is ex- 
pressed, as was already indicated, by formula [ 40.1 1 ] and the analogous for- 
mula for salinity. However, this solution represents a particular case of a more 
general solution which corresponds to the assumption that the coefficients of 
exchange, taken as identical for heat and salts, are considered non-identical 
in the upper and lower water masses. This case corresponds to the problems 
of heat exchange between two heterogeneous bodies, which has been thor- 
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oughly studied and is classical in the theory of heat conduction (see, for 
example, Grober and Erk, 1955); it was applied to the theory of T-S curves 
by Shtokman (1  943a). 

The considerations leading to the solution of this more general problem 
must be completed by the physical hypothesis to the effect that, after the 
beginning of mixing or, as Grober points out, “after the degeneration of 
separation”, on the interface between two water masses some constant 
value of temperature (and salinity) is instantaneously established, which 
remains unchanged throughout the whole process of heat and salt exchange. 
Mathematically, this assumption corresponds to the introduction of bound- 
ary condition [39.23] for each of the water masses which now, obviously, 
must be considered separately - as two cases of heat and salt transfer in one 
semi-infinite water mass. The combination of two solutions for two semi- 
infinite water masses in one solution for two water masses in an infinite sea 
must be carried out by means of boundary condition [ 39.221. 

when 0 < z < +a has the form: 
The solution for one semi-infinite water mass for temperature and salinity 

[41.11 

where T I  and S ,  are the initial values of temperature and salinity of a semi- 
infinite water mass, Tm and Sm are the given constant values of temperature 
and salinity on its boundary. 

Considering Fig. 35 (Shtokman, 1943a, fig. 5; Grober and Erk, 1955, 
fig. 66), we must come to the obvious conclusion that the solution of equa- 
tions [ 39.5 ] , given initial conditions [ 39.131 and boundary conditions 
[39.22] and [39.23], must be written (separately for each of the water 
masses) in the following form: 

[41.2] 

[41.3] 

(for the sake of brevity we do not write the analogous expressions for salin- 
ity). Tm and Sm represent the values of temperature and salinity established 
on the interface after the beginning of mixing. Equations [41.21 and i41.31 
satisfy conditions [39.23], since @(O) = 0. 
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2- 0 S 

Fig. 35. Diagram of the equalization of temperature and salinity on mixing of two heterogenous 
(&./A= 2)  water masses in an ocean of infinite depth, according to Grober and Erk (1955)  and 
Shtokman (1943a). 

For the determination of Tm and S,,,, let us use the conditions of continuity 
of curves T ( z )  and S(z) on the interface (z = 0) - formula [ 39.221. The first 
derivative of the integral of probability is determined by the expression: 

[41.4] 

Consequently : 

and : 

Equating these two expressions on the basis of boundary condition [39.22], 
we obtain: 

f i < T ,  - T m  1 = f i 2  ( T m  - T 2 )  [41.5] 

From this expression and the analogous expression for salinity are deter- 
mined the values of temperature and salinity T,,, and s,,, on the interface: 
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[41.61 

[41,7] 

Substituting these expressions in formulae [41.2] and [41.3], we obtain 

for water mass I 

finally solutions of equations [ 39.51 for the case under consideration: 

for water mass 11 

[41.8] 

[41.91 

(Shtokman, 1943a). We see that these formulae differ from formula [40.11 I ,  
derived for the case when the coefficients of exchange are taken as identical 
in both water masses. The latter represent a particular case of formulae 
[41.8] and t41.93, provided that kl = k2. 

The nature of the equalization of temperature and salinity in the process 
of mixing of two water masses follows from the same Fig. 35: according to  
formula [41.5], the points T,  and S ,  divide the segments T2- T l  and 
S ,  - S2 into parts inversely proportional to  the corresponding values of coef- 
ficients G, which Grober calls the coefficient of penetration and Shtokman 
the coefficients of  accumulation (of heat and salts) *. When k, = k, the quan- 
tities T ,  and S ,  prove to be arithmetical means: T,  = ( T 1  + T2)/2; 
S ,  = ( S ,  + S2)/2. The case of equalization of temperatures, given the condi- 

* One cannot help drawing attention to the problem of the physiological sensation “hot” or “cold”, 
explained by this problem; Grober draws attention to this problem, and we do not quote his argument 
only because it is not most directly related to the problem under consideration. 
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tion of equality of the coefficients of heat conduction in both water masses, 
was considered for the first time by Defant; assuming k = 5 CGS units, he 
plotted curves for the vertical distribution of temperature at intervals of 1.16; 
11.6; 57.9 and 220 days after the beginning of mixing. The initial tempera- 
tures were taken by him as equal to  5 and lo", and the vertical distance 
- 400 m upward and downward from the interface. We do not reproduce 
Defant's figure, analogous to Fig. 35, referring the reader either to the pri- 
mary source (Defant, 1929) or to the monograph of Shuleikin, where Defant's 
conclusions are reproduced (Shuleikin, 1953; figs. 182 and 183). 

plane. Eliminating function @(z/2fit) from formulae [41.81 and [41.91, we 
obtain : 

Let us proceed to the interpretation of the results obtained in the T-S 

for water mass I 

for water mass 11 

[41.10] 

[41.113 

both the formulae obtained represent equations of straight lines passing 
through two given points, in the first case - through points ( T 1 , S 1 )  and 
(Tm,Sm),  in the second case - through points ( T 2 , S 2 )  and ( T m , S m ) .  Since, 
according to [41.6] and [41.7], point (T,,S,) itself lies on the straight line 
connecting points ( T , ;  S , )  and ( T 2 , S 2 ) ,  all three points mentioned lie on one 
straight T-S line. 

In particular, in the case of homogeneous water masses, when the coeffi- 
cients of exchange are taken as identical in both masses ( k ,  = k 2 ) ,  function 
@(z/24kt) must be eliminated from equation [40.11] for temperature and 
from the analogous equation for salinity. In this case we will obtain the 
equation of the straight line passing both through points I ( T , ,  S , )  and 
II(T2, S 2 )  and through the middle of segment I-11- point [ f ( T l  + T 2 ) ,  
;<s, + S2)I: 

[41.12] 

In other words, we come to the same result, namely: the process of mixing 
of two infinite water masses, provided the coefficients of exchange of heat 
and salts are equal, is represented in the T-S plane in the form of a straight 
line. 
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This affirmation contains the fundamental result of the theory of T-S 
curves for the case of mixing of two water masses in an infinite sea - provided 
that the coefficients of heat and salt exchange are equal. 

It is interesting to trace the development of the process of mixing which is 
expressed in the T-S plane by a different arrangement of points with discrete 
values of parameter z along the straight T-S line at different moments in time. 
It is obvious that at the initial moment, when t = 0, all these points for the 
region + = > z > 0 are grouped in point I ,  while points z for region -= < z < 0 
are grouped in point ZZ. Indeed, by virtue of the properties of the function 
@ ( z )  - formula [40.6] - when t = 0 we have: when z > 0, ( P ( + z / 2 m )  = 
= a(+-) = + 1, and when z < 0, respectively @(-z/2fit) = a(-=) = - 1. 
Substituting these values in formula [40.11] and its counterpart for salinity, 
in both cases we will obtain: 

when z > 0 Tlt=o = T ,  ; Slt=O = S ,  

when z < 0 TItzO = T2 ; = S ,  

On the expiry of the initial moment, which takes place instantaneously, 
the points with the values of parameterz will begin from points Z and I .  to 
move “inside” the straight T-S line; meanwhile, in the end points an infinite 
number of discrete points z will continue to remain throughout. This proper- 
ty of representing the mixing of infinite water masses in the T-S plane has 
been well delineated by Ivanov, who writes: “The ends of the segment 
- points Z and ZZ - are limiting points for the set of points z arranged on it 
at  any time. Indeed, at any t in however small a vicinity of point Z or ZZ are 
arranged infinitely many points +z or - z ,  and only when t = = do all the 
points z instantaneously ... pass to the position of point z = 0, concerning 
which it is by no means possible to say that it is limiting for any fixed t, 
although it is precisely to  it that the points are rushing ... On the contrary, 
at small distances from the interface, i.e., in the vicinity of point z = 0, at 
fixed t only a finite set of points z will necessarily arrange themselves. The 
picture will be the opposite, if we consider the set formed by the positions of 
fixed point z on segment I-ZZ during a change in time t” (Ivanov, 1943, p.38). 

Thus, when t==,  @ ( z / 2 m )  = Oandweobtainfromformulae [41.8] and 
[41.9] formulae [41.61 and [41.7], representing the coordinates of limiting 
point M in the T-S plane. Point M divides the straight T-S line I-ZI into seg- 
ments also inversely proportional to quantities 
case when k ,  = k, ,  pointM divides the straight line I-ZI into equal halves. 
Shtokman points out concerning formulae [41.6] and [41.71 that they are 
analogous to the formulae of mixing of two waters [ 30.1 ] and [ 30.21 with 
the difference, however, that instead of volumes or vertical heights of water 

and 6; in the particular 
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masses (when they are finite) here appear quantities of the coefficients of 
penetration (accumulation). 

T-S lines, corresponding to the five successive stages of mixing of the same 
initial water masses, possessing thermohaline indexes I(2.5" ; 34.90°0) and 
II (24"; 36.3'0); this figure is similar to fig. 1 of Ivanov's work (1943). Water 
masses I and II represent respectively Deep and Bottom Water of the North 
Atlantic and the water mass of the Gulf Stream itself and Antilles Current 
(Jacobsen, 1929); the second of these water masses spreads in the North 
Atlantic, gradually being transformed, over the first (see Section 43 for 
greater detail). Let us note that in the graphic representation of the different 
T-S relationships (Fig. 36 represents one such an example) in the majority of 
cases, instead of time t ,  we will use as an argument the parameter 2m so as 
to leave ourselves freedom to select the quantity of coefficient k .  The relation- 
ship between the different moments in time and the different values of coef- 
ficient k can easily be obtained by means of a special graph (nomogram), 
represented in Fig. 37. The straight T-S lines, represented in Fig. 36 have 
been plotted for the following successive values of this parameter: 

To illustrate the process of mixing, in Fig. 36 are represented five straight 

T'C 

Fig. 36. Straight T-S lines corresponding to the five successive stages of transformation of water masses I 
(2.5"; 34.g0/oo) and11 (24.0'; 36 .3 ' /~ ) .  (I) 2&= 2 0 lo4; (2) 2@= 4 * lo4; (3) 2 f i =  6 * lo4; 
(4) 2& = 8.104; (5)  2 4 Z =  10. lo4. 
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X 

10' 

10 ' 

1 
10 ' 101 1o't days 

Fi 37. Relation between coefficient of turbulence k and time t (in days). Isolines of parameter 
2&t.104 are plotted on the graph. 

2@. lop4 = 2 , 4 ,  6 , 8  and 10 respectively. Fig. 37 well illustrates the process 
described above of the development of mixing in time, which is characterized 
by the gradual movement of the parametric points z from the initial points 1 
and 11 in the direction of the middle point (13.25", 35.60°0) with the desig- 
nation z = 0. 

The results of the analysis of the process of mixing of two water masses of 
infinite depth and homogeneous properties are formulated by Ivanov in the 
form of the following theorems, proof of which was demonstrated by us 
above (except for the fourth, which will be discussed below): 

(1) The T-S diagram in the case of mixing of two infinite water masses 
1 (Tl,Sl) and 11 ( T 2 , S 2 )  always, independently of time, constitutes a segment 
of the straight line joining points (Tl,S1) and ( T 2 , S 2 ) ,  which represent in the 
T-S plane water masses 1 and 11. 

corresponding to the values of parameter +z and -2, are symmetrical in rela- 
tion to the middle of segment 1-11 at any time. In particular, point z = 0 
coincides with the middle of segment 1-11 at any moment of time (this 
theorem relates to the case when k, = k2;  its proof is obvious). 

(3) Points 1 and IZ at any time t are limiting points for the set of points z, 
arranged on the straight T-S line of two infinite water masses 1 and 11. Point 
M (in Ivanov - the middle of segment 1-11) is the limiting point for a set of 
positions of any definite point z, assumed by it on segment 1-11 during a 
successive change of time from 0 to -. 

(4) Points with identical values z on the two straight T-S lines 1-11 and 
I-IIZ, which have a common end in point I ,  belong (at the same moment in 
time) to the straight lines parallel to segment 11-111. 

(2) The points of the straight T-S line of two infinite water masses 1 and 11, 
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The latter affirmation is proven in the following way. The coordinates of 
any point z' on segment 1-11 are expressed by formulae: 

S' =L [Sl + s, + ( S ,  - S , )  @ (L)] 
2 2m 

while the coordinates of any point z " on the segment 1-111 are expressed by 
formulae: 

Establishing the same direction for the reckoning of coordinates on both 
T-S segments, let us draw straight lines through points z '  of the first and 
through the same points z " of the second segment, and let us calculate the 
tangent of the angle of slope of these straight lines to the axis S.  Obviously, 
we will obtain for any such straight line: 

[41.13] 

which proves theorem 4. 

infinite water masses to a larger quantity of infinite water masses by means of 
the simple graphic methods proposed by Ivanov. 

The last theorem is important to generalize the case of mixing of two 

The effect of inequality o f  the coefficients of turbulence 

Up to now we have considered the case where the coefficients of turbulent 
heat conduction and turbulent diffusion of salinity were deemed to be iden- 
tical: k, = k,. Let us now investigate the question of how the inequality of 
these coefficients affects the results of the T-S analysis of two mixing water 
masses of infinite depth. In this connection, in accordance with contemporary 
ideas about the nature of marine turbulence, we will assume that heat ex- 
change is carried out with more intensity than the exchange of salts, i.e., that 
k, > ks . From the physical point of view such an assumption is obvious, since 
turbulent heat exchange is stimulated also by the direct radiation of heat, the 
direction of which has the same sign; it is clear that this cannot be said about 
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the process of exchange of solid substances. In so doing, we will not prejudge 
the relations between the coefficients of exchange, since this question has 
practically not been investigated enough; more than that, the introduction into 
T-S analysis of the fact of inequality of the coefficients may, with further 
comparison of the results of theory with empirical data, by itself shed light 
on this question. 

Thus, expression [40.111 is considered again, in which it is now neces- 
sary to insert indexes in designating the coefficient k :  

[41.14] 

The question of the effect of inequality of the coefficients of turbulence 
on the mixing of water masses was investigated for the first time by Ivanov 
(1 949), who demonstrated that the result of this mixing was represented in 
the T-S plane no longer by a straight line but by some curve. Indeed, we can 
no longer immediately eliminate function @ ( z / 2 m )  from expressions [ 4 1.141, 
as was-done by us above, since by virtue of the inequality of kT # ks we have 
Q , ( z / 2 v ' F t )  # @ ( z / 2 a ) ,  which does not enable us to come to the equa- 
tion of the straight line passing through the given points. On the other hand, 
if, recalling the expression for the derivative by z of the integral of probabil- 
ity [41.4], we calculate the tangent of the angle of slope to the T-S curve 
mentioned, then, as Ivanov demonstrated, we will obtain: 

[41.151 

We see from this expression that the slope of the tangent to the T-S curve 
depends on z ,  i.e., changes along the T-S curve. It is essential that the form 
of this line does not depend on t ,  but is wholly determined by the relation- 
ship of coefficients kT and k, ; the circumstance that any two successive 
stages of mixing are represented in the T-S plane by the same T-S curve, but 
with a different (as also in the case of the straight T-S line) arrangement of 
parameter z along it is proved in the following way: if tl > t ,  then t ,  = a l l .  
Then in expressions [ 4 1.141 we have: 
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i.e., the effect of time on the form of the T-S curve does not really take place 
(Ivanov, 1949). 

In the particular case when k ,  = k,  , from formula L41.15 1 we obtain the 
expression for the tangent of the angle of slope of the tangent: 

which in this case coincides with the T-S curve itself. 
To study the effect of inequality of the coefficients it is useful to construct 

T-S curves at various ratios of these coefficients. In Fig. 38A are represented 
three such T-S curves constructed on the assumption that the value of param- 
eter 2dw lop4 is equal to 2, while the values of parameter 2 w .  lop4 
are equal to 4, 6 and 10 (curves a, b and c respectively). Such a selection of 
parameters may, as is seen from the nomogram (Fig. 37), correspond to the 
following values of the coefficients, if the interval of time taken for an ex- 
ample is equal to 200 days: k, = 5.8 cm2/sec; k ,  = 23, 52 and 143 cm2/sec 
respectively. In addition, in Fig. 38B are represented three T-S curves con- 
structed at different values of the parameter, namely: 2 m .  
2 m .  lop4 = 6, 8 and 10 (curves a, b,  c respectively). We see from Fig. 38 
that with anincrease in the coefficient of turbulent heat conduction in rela- 
tion to the coefficient of diffusion, the T-S curves move ever further away 
from the straight T-S line 1-11, which corresponds on the T-S plane to the 
case of equality of these coefficients. A brief study of this figure indicates 
how useful is the direct plotting of T-S curves from the formulae which re- 
present the solutions of equations [39.5]. Indeed, as has already been said, 
the direct elimination of function @ ( 2 / 2 m )  from expressions [41.14] for 
the purpose of obtaining the analytical expression of the T-S curve, becomes 
difficult, provided that k ,  # ks ; on the other hand, the study of the figure 
gives us an idea of the course of the process of mixing in its representation 
on the T-S plane, and moreover, in the majority of cases, so complete an idea 
that often the need for corresponding mathematical confirmation disappears. 
In the case considered, the parametric points z move from the initial position, 
fully corresponding to  that considered earlier (given the condition of equality 
of the coefficients) - along the corresponding T-S curve to the middle of this 
T-S curve (to the point of symmetry or to the point equidistant from its ends). 
When t = 00 all points z assemble in this central point, representing the ther- 
mohaline index of the resulting mixture. The positions of points with identical 
values of parameter z on different T-S curves are indicated by broken lines 
which in this case may be called isobaths. 

Here the following important general observation should be made. In this 
example, and in all subsequent cases, the plotting of T-S relationships from 

= 4; 
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Fig. 38. T-S lines appearing on mixing of two water masses in an ocean of infinite depth when k ~ >  ks. 
The broken lines are isobaths (or T-S-t curves). The thermohaline indexes are the same as in Fig. 36, 
and correspond to the deep and bottom water masses of the North Atlantic and the water mass of the 
Gulf Stream. 
A. 2&t=2.104.(a) 2*=4-1O4;(b) 2@=6*104;(c) 2 6 t =  10*104. 

B .  Z G = 4 . 1 O 4 . ( a )  2&r=6-104;(b) 2== 8.104;(c) 2== 10-104. 

formulae [41.141 and others, more complex, leads to the picture qepresented 
by two families of parametric lines: T-S curves by parameter z when t = con- 
stant (these lines in Fig. 38 are represented by continuous lines and corre- 
spond to the “ordinary” T-S curves) and T-S curves by parameter t when 
z = constant (in Fig. 38 - broken lines). In the future, we will often call these 
families of T-S curves T-S-z curves and T-S-t curves. It is clear that, taking 
account of what has been said above, all equations of the type [ 40.91 -[ 40.1 1 1, 
with the analogous equations accompanying them with respect to salinity, are 
also parametric equations. The sole exception is the case considered in the 
preceding section when both sets of parametric T-S curves merge at any values 
of parameters z and t in one segment of the straight line. 

In connection with what has been said, it is interesting to draw attention 
also to Fig. 39, which differs from Fig. 38 only by the fact that the three T-S 
curves represented in it are plotted not at a fixed value of parameter 2m, 
but at a fixed value of parameter 24k , t ,  namely at 2 m .  = 10, and 
three different values of parameter 2&7* namely 6 , 4  and 2 (curves 
a, b and c in Fig. 39 respectively). We see that in this figure the T-S-t curves 
in principle are in no way different from the curves in Fig. 38, while the iso- 
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7 ° C  
25 r 

Fig. 39. T-S curves appearing on mixing of two water masses in an ocean of infinite depth when 
k~ > k ~ .  Compare with Fig. 38 (explanations in the text). 
2 m =  10*104.(a) 2@=6-104;(b) 2 f i = 4 * 1 O 4 ; ( c )  2 G = 2 * 1 0 4 .  

baths are arranged not vertically (parallel to the axis T ) ,  as in Fig. 38, but 
horizontally (parallel to the axis S ) .  This 'is perfectly clear if we bear in mind 
that in the first case coefficient kT/ks  changes and in the second case coef- 
ficient ks/k,. In case both coefficients change simultaneously, the T-S-t 
curves in the selection of a definite relationship between k ,  and ks , namely 
a relationship of the type ks /kT = f ( t ) ,  will have a more complex form, testi- 
fying to the distinctive "elusiveness" of the parameter z ;  this quantity, as it 
were, goes beyond the framework of the analytical theory of T-S curves, 
leaving us at the present stage of its development the possibility of only 
extremely approximate statements concerning parameter z .  

The question of the effect of the uneven intensity of turbulent heat con- 
duction and salt diffusion on the representation of mixing processes on the 
T-S plane was also considered by Stommel(l962a, b). Considering the results 
of an idealized logical experiment and not resorting to the solution of equa- 
tions, Stommel, apparently unfamiliar with Ivanov's (1 949) work, in one case 
comes to the same results which were considered by us above. He points out 
?hat, in the initial stage of mixing, in the presence of stable density stratifi- 
cation the T-S points, corresponding in our exposition to the points z ,  must 
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move first of all from the points of the original thermohaline indexes in direc- 
tions roughly parallel to  the axis of temperature. After the temperature con- 
trasts are smoothed out to a certain extent, diffusion becomes more effective, 
and the T-S points begin to move on the T-S diagram in a direction closer to 
the horizontal (the section my1 of T-S curve c in Fig. 38A corresponds to this 
stage of Stommel’s logical experiment). The final expression also corresponds 
to the median point. “The swarms of volumes” considered by Stommel in his 
logical experiment are nothing else but the parametric points z in the analyti- 
cal theory; the logical considerations of the analytical theory lead, as we see, 
to the same results. Stommel develops a picture of the different versions of 
mixing and convection from the first case considered to  an area of large gene- 
ralizations, where analytical theories, at least in their present phase of develop- 
ment, are still unacceptable. Let us also indicate that Stommel, together with 
Turner (Turner and Stommel, 1964), carried out a real laboratory experiment 
to excite convection in a stably stratified medium. In order not to digress, we 
will not dwell on the results of these authors. 

42. THE MIXING OF THREE WATER MASSES IN AN OCEAN OF INFINITE DEPTH 

The solution of equation [39.5] in the case of mixing of three water masses 
in a sea of infinite depth is given by [40.10] ; similarly for salinity we have: 

provided that z = 0 corresponds to the middle of the intermediate water mass. 
Before analyzing the properties of these solutions on the T-S plane it is useful 
to construct families of parametric T-S-z curves, and T-S-t curves, which we 
have done in Fig. 40 on the assumption that coefficients k ,  and k, are identi- 
cal in the whole water layer. For the plotting of Fig. 40 we have selected the 
thermohaline indexes of real water masses observed in the Eastern North 
Pacific Ocean: 

et al., 1942); 
Z (1.30” ; 34.7’/00) - North Pacific Deep (and Bottom) Water (Sverdrup 

II (9.0’; 33.6’0) - Subarctic Intermediate Water of the North Pacific; 
ZZZ (20.0”; 35.1’/00) - modification of the Eastern North Pacific Central 

Water (according to  Sverdmp’s terminology). 
The type of real T-S curves, formed as a result of the vertical interaction 

of these water masses, was represented in Fig. 34 in the example of three 
stations of the research vessel “Carnegie”; these real T-S curves will be neces- 
sary below in order to  compare them with theoretical curves. 
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The T-S curves in Fig. 40 are plotted from formulae [ 40.101 and [ 42.1 3 
at values of parameter 2&t 
the intermediate (subarctic) water equal to 400 m. This figure immediately 
gives us an idea of the course of the process of mixing of three water masses, 
which we will analyze below in more detail, paying most attention to the 
features of the transformation of the intermediate water, since it is precisely 
they which form the basis of the geometry of T-S curves of Shtokman ( 1943a), 
developed by him to apply to the mixing of three water masses in an infinite 
sea; Shtokman’s theory is set forth below. 

Thus, just as for the case of mixing of two water masses, let us trace the 
development of the process of mixing in its representation on the T-S plane. 
At the initial moment in time, when t = 0, all points z for region +m > z > +h 
are grouped in point I ;  all points z for region + h  > z > - h are grouped in 
point 11; all points z for the region -h > z > -00 are grouped in point 111. 
Indeed, we have 
for region +m > z > +h: 

= 2, 4, 6 and 10 cm and at  a thickness of 
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cp ("") = I$(+-) = +1 
24Ft 

2- 
@ ( I + h ) = ~ ( + m ) = + l ;  

for region + h  > z > - h  : 

cp (z5) = a(--)= -1 
2 4 G  

2 4 5  
Q, (m) = a(+-> = + I  ; 

for region -h > z > -m : 

cp ( S ) = @ ( - = ) = - l  

(s) = a(-m) = -1 ; 
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T(z ,  0) = Ti 

T ( z ,  0) = T2 

T ( z ,  0 )  = T3 

Consequently, the initial moment of transformation is characterized by the 
presence on the T-S plane of only three points - the thermohdine indexes 
I, 1Z and 111. On the expiration of the initial moment, parametric points z 
instantaneously distribute themselves along the straight lines 1-11 and ZI-IIZ; 
moreover, in however small vicinities of points 1 and 1Z1 remains, however, 
large a quantity of discrete points z ;  in the vicinity of point ZI only a finite 
set of them appear. Just as instantaneously on the interfaces between water 
masses, mean values of temperature and salinity are established - values 
equal to half the sum of the values of the temperature and salinity of the 
water masses adjacent to the boundary. Indeed, from formulae [40.103 and 
[42.1] when z = + h we obtain: 

[42.2] 

while when z = -h  we obtain: 
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[42.3] 

At the initial moment, when t = 0, since @(m) = 1, from these formulae we 
obtain: 

[ 42.41 

A peculiar uncertainty, arising in statu nascendi and consisting of the fact 
that at the initial moment on the interfaces we have both discontinuity of 
functions T ( z )  and S(z) and the presence of the half-sums [ 42.41, is genetic- 
ally linked with the concept of the physical (heat) impulse and with the even 
more abstract notion of the delta function of Dirac, and should not therefore 
be the subject of any misunderstanding. 

The subsequent stage of the transformation consists of the appearance of 
a continuous T-S curve, the branches (ends) of which continue to coincide 
with sides IZ-Z and ZZ-IZI of the triangle of mixing, while in the region of 
the thermohaline index II a rounding appears - this is precisely the sign of a 
T-S curve. To prove the continuity of the T-S curve, let us construct an 
expression for the tangent of the angle of slope of the tangent to the T-S 
curve at any point of it; for this, recalling the expression of the derivative of 
the integral of probabilities cPi(z) - formula [41.4 1, we obtain as a result of 
the differentiation of formulae [40.101 and [42.1] and the division of the 
results (Shtokman, 1943a): 

[42.5] 
In this expression taking out the multiplier exp [ - (~-h)~/4kt ]  from 

parentheses in the numerator and the denominator and reducing it, we obtain: 

T ,  - T2 + (T2-T3)  e x p [ { ( ~ - h ) ~ - ( z + h ) ~ } / 4 k t I  

S ,  -s ,  + (s, - s,) exp [{(z-h12 - (~+h)~1/4kt1 
tala! = 

or, transforming the exponent: 
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T ,  - T ,  +(T2-T3)exp(-zh/kt) 
S ,  - S ,  + (S ,  - S,) exp (-zhlkt) tana = [42.6] 

On the other hand, reducing the numerator and denominator of expression 
[42.5] by the quantity exp [ - ( ~ + h ) ~ / 4 k t ] ,  in the same way we can come to 
the expression: 

T2 - T3 + ( T ,  - T 2 )  exp (zhlkt) 
S, - S3 + ( S ,  - S,) exp (zhlkt)  

tanct = [42.7] 

It is natural that both functions [42.6] and [42.7] when t = constant 
(t # 0) are continuous in the whole region +- > z > -m; at small values of t 
(when t-t 0), exp(-zhlkt) -+ 0, and we have from expressions [42.6] and 
[42.7 ] respectively: 
for the regon -- > z > 0: 

T1- T2 
s142 

tanct = 

for the region -- > z > 0: 

T 2  - T 3  

'2 - s3 
tana = 

[42.8] 

[ 42.91 

These results bear witness to the coincidence of the branches of the T-S 
curves with the corresponding sides of the triangle of mixing and moreover 
this coincidence, always taking place when z -+ +-- *, is observed at the lower 
the values of parameter z ,  the earlier the moment of transformation t we con- 
sider (see Fig. 40). 

Further, assuming in formula [42.6] or in formula [42.7] z = 0, in both 
cases we will obtain: 

tana =--- 
s143 

[ 42.101 

Consequently, the tangent to the T-S curve in that point of it which cor- 
responds to the core of the intermediate water mass ( z  = 0), is parallel to side 
I-ZIZ, which Shtokman called the base of the triangle of mixing. 

Thus, mentally shifting the point of contact along the T-S curve through- 
out the whole region of values of parameter z, from +m to --, we are satis- 
fied that the tangent from position I-IZ gradually proceeds to position ZI-IZZ, 
bypassing, when z = 0, the position in which it proves parallel to the base of 
the triangle of mixing I-ZZZ. 

* The same results are valid when t = constant and when z -+ t 0. 
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The analysis performed characterizes any stage of mixing, excluding the 
initial and final stages (the latter we shall consider below), i.e., that basic 
interval of time during which are formed and gradually transformed the T-S 
curves themselves in which we are interested. 

Let us now consider the process of transformation of the special points of 
the T-S curves, which correspond on the T-S diagram to the boundaries and 
core of the intermediate water mass. For this, let us return to formulae 
[42.21 and [42.3], which are noteworthy for the fact that they describe the 
nature of the change in the thermohaline indexes characteristic of the inter- 
face between water masses; in other words, these are parametric equations 
of T-S-h curves. Thus, unlike the mixing process of two water masses, the 
values of temperature and salinity on the interfaces between three water 
masses change. Physically this is explained by the gradual degeneration of 
the intermediate layer, the heat and salt reserve of which, by reason of the 
finiteness of this layer along the vertical, is gradually “absorbed” by the neigh- 
boring water masses, infinite upwards and downwards. In the final analysis, as 
we shall be able to see below, the intermediate water mass will degenerate 
altogether. 

first case we will come to  the expression: 
Eliminating function @ ( h / f l )  from equations [42.2] and [42.3], in the 

- - T 2 - T 3  ( s - s l + s 3 )  

2 T------ 
2 s 2  - s 3  

and in the second to the expression: 

[42.111 

[42.121 

The first of them represents the equation of the straight line passing 
through two points: the middle of side 1-11 (point a in Figs. 40 and 41) and 
the middle of side 1-111 (point c in Figs. 40 and 41); the second expression 
is the equation of the straight line passing respectively through points b and c. 
The coordinates of points a ,  b and c are: 

Thus, the lines of transformation of the thermohaline indexes, correspond- 
ing to the interfaces between water masses, are straight lines. 

Finally, let us see how in the T-S plane the transformation of the thermo- 
haline index of the core of the intermediate water mass takes place, under- 
standing by this term, as has already been said, the thermohaline index corre- 
sponding to  points with the value z = 0. Obviously, the core must also degen- 
erate by reason of the above-mentioned “absorption” of the intermediate 



200 ANALYTICAL THEORIES OF T-S CURVES 

T"C 

Fig. 41. Diagram of the successive transformation of three mixing water masses in an ocean of in f i i t e  
depth (according to Shtokman, 1943a). 
ZZc is the principal, ac and bc are the secondary medians. The shaded area characterizes the intermediate 
water mass. The arrows show the direction of movement of parametric points z, while the numbering of 
these arrows corresponds to the sequence of events. 

water mass by the surface and deep waters; assuming in formula [ 42.1 ] z = 0, 
we obtain: 

[42.13] 

Eliminating function @ ( h / 2 m )  from these expressions, we come to the 
equation of the T-S-0 straight line: 

[42.14] 

passing through point ZI (T2; Sz) and point c[(T1+ T 3 ) / 2 ,  (S1 +S3)/21. Line 
ZZc Shtokman ( 1943a) called the principal, and lines ac and bc - the second- 
ary medians of the triangle of mixing. 

Let us now consider how the final stage of the mixing process presents 
itself. Since when t = m any of the functions @ ( z )  turns into zero, from for- 
mulae [40.10] and [42.1], as well as from formulae [42.121 and [42.13], we 
obtain: 
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[42.15] 

Thus, the final product of the mixing is represented by the thermohaline 
index c [ ( T l +  T 3 ) / 2 ,  (S, +S3) /2 ] ,  corresponding to  the middle of side 1-111; 
we would have the same picture if only two water masses were mixed in an 
ocean of infinite depth, namely - water masses 1 and 111. The identical final 
result, occurring on the mixing of two and three water masses in an infinite 
sea, testifies once again to the complete dissolution of the intermediate water 
mass when t = 00. 

Accordingly, the whole mixing process takes place schematically in the 
following way. The initial moment, characterized by the presence in the T-S 
plane of only three thermohaline indexes - I ,  11 and 111, is instantaneously 
replaced, by virtue of the movement of discrete points z, by the appearance 
of sides 1-11 and 11-111 of the triangle of mixing; reference has already been 
made to the distribution of parameter z along these sides. Because of the 
transformation of the intermediate water mass and its core, the angle I-11-111 
is replaced by the rounded T-S curve. This T-S curve gradually tightens, 
occupying the successive positions represented in Fig. 40, to the base of the 
triangle of mixing - side 1-111. At the same time, the points with the same 
values of parameter z slide along the broken lines represented on Fig. 40, 
gathering in point c. The state of the “two water masses”, advancing when 
t = m, instantaneously gives way to the final picture in the form of therme 
haline index c; moreover, all discrete points z of the entire region + m  > z > -= 
turn up in point c when t = 00. This picture of the transformation, explained 
by Fig. 40, is also illustrated by diagram 41, borrowed from Shtokman’s work 
(1943a, fig. 8). In Fig. 41 the shaded parallelogram characterizes the region of 
transformation of the intermediate water mass; the arcs of the curves, desig- 
nated by the heavy lines, belong to this intermediate water. Comparing Fig. 41 
with the percentage nomogram known to us (Fig. 25), we see that the bound- 
aries of the intermediate water mass (the secondary medians) correspond to 
the lines of 50% content of the surface and deep water masses 1 and 111. So 
far as the percentage amount of the intermediate water mass is concerned, 
along the secondary medians, as may be seen from a comparison of Figs. 25 
and 41, it decreases from 50% (when t = 0) to 0% (when t = m). 

Special interest attaches to the question of the arrangement within the 
triangle of mixing of the points with identical values of parameter z, but of 
the opposite sign, belonging to  the same T-S curve; this question is important 
in the theory of the method of determining by T-S curves the coefficients of 
mixing ks and k ,  (see Section 47). 

These points, obviously, lie on both sides of the principal median of the 
triangle of mixing, i.e., belong to regions +m > z > 0 and 0 > z > --oo respec- 
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Fig. 42. Tangents to the T-S curves (according to  Shtokman, 1943a). Explanations in the text. 

tively. Let these points possess values of parameter z = +a and z = -a (Fig. 42). 
Then, on the basis of formulae [40.10] and [42.1 I ,  the values of temperature 
in these points are determined by the expressions: 

the values of salinity are determined by similar formulae. 
Let us calculate the tangent of the angle of slope of the straight line join- 

ing these points; for this, apparently, it is necessary to construct differences 
T,, - T- ,  and S,, - S-, and divide them; bearing in mind oddness 
CP(-z) = -(a(z), we obtain the following expression for the difference of 
temperatures: 

or, after the reduction of similar terms: 
T T  

T,, - T-, -3 - [@ (e) + @ (*)I 2 2 4 %  2 4 5  
For salinity we obtain respectively: 

s,, - s-, = s1-s3 ~ [@ ( " - h ) + @  ( 9 1  
2 2 m  2 f i  
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Thus : 

[42.17] 

i.e., the straight line connecting points z = + a  and z = -a, is parallel to the 
base of the triangle of mixing, I-III. Since it was proved above that the 
tangent to any T-S curve in the point z = 0 is also parallel to side I-III, it 
follows from what has been said that each such tangent to the given T-S curve 
is a secant passing through points z = f a  for some other T-S curve, preceding 
it in time; and, on the contrary, each secant to the given T-S curve is at the 
same time a tangent to some other T-S curve, subsequent to it in time. The 
relationship between the intervals of time A t  and the corresponding intervals 
Az between points +a and -a will be brought out below (see Section 47). 

With this we shall conclude the construction of the analytical theory of 
T-S curves for the case of mixing of three water masses in an ocean of in- 
finite depth (provided the coefficients of heat and salt exchange are equal, 
k ,  = ks). The results of this theory, formulated by Shtokman (1 943a) in the 
form of the following theorems, proof of which was demonstrated above, 
may be set forth thus: 

ing of two straight lines which successively connect in the T-S plane the 
thermohaline indexes of the mixing water masses. 

(2) In the points of the T-S curves, sufficiently far removed from the 
boundaries of the intermediate water mass, the tangents to the T-S curves 
practically coincide with the sides of the triangle of mixing. 

(3) The points of the T-S curves, which correspond to the core of the inter- 
mediate water mass and possess the value of parameter z = 0, are simultaneous- 
ly the points of the extreme of the T-S curves. The direction of the tangents 
in these points is parallel to the base of the triangle of mixing. 

(4) The points locus with values of parameter z = 0, characterizing the 
transformation of the core of the intermediate water mass with time, repre- 
sents the principal median of the triangle of mixing; in complete mixing of 
the water masses the latter are transformed into a new water mass, the thermo- 
haline index of which corresponds to the coordinates of the midpoint of the 
base of the triangle of mixing. 

(5) All points corresponding in the T-S coordinates to water on the bound- 
aries of the intermediate layer lie on the secondary medians of the triangle of 
mixing. These straight lines cut off on the T-S curves the arcs characterizing 
water of the intermediate layer. 

(6) The straight lines connecting on the T-S curve two points possessing 
equal values of parameter z, but of opposite sign, are parallel to the base of 
the triangle of mixing. 

(1)  At the initial moment of mixing the T-S curve is a broken line, consist- 
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(7) A tangent drawn in a point of the extreme of the given curve, cuts off 
on another T-S curve, preceding in time, two points possessing equal values 
of parameter z, but of opposite sign. 

The theorems formulated of the “geometry of T-S curves” constitute at 
the present time the basis for the analysis of curves of oceanographic stations, 
carried out for the study of the transformation of the water masses of the 
ocean. The question of applying analytical theory to the analysis of real T-S 
relationships of the water masses of the World Ocean is considered in Chapter 
7. 

The effect of  inequality o f  the coefficients o f  turbulence 

The theory of the mixing of three water masses in an ocean of infinite depth 
set forth above constitutes the basis for the practical analysis of the water 
masses of the ocean. However, it makes no allowance for the possible fact of 
inequality of the coefficients of turbulent heat conduction and turbulent salt 
diffusion. This inequality, as we shall now see, substantially distorts the 
results of the theory and leads to  the most unexpected results. 

the mixing of two water masses (Section 41), the elimination of function 
@ ( z )  in this case becomes impossible in as simple a form as occurs when 
kT = ks; the theory becomes considerably more complicated, and its conclu- 
sions become not so obvious. Let us confine ourselves therefore to plotting in 
the T-S plane the solutions of equations [ 40.101 and [ 42.13 at various values 
of the coefficients of mixing. In Fig. 43 are represented three T-S curves, 
plotted for the same original water masses I ,  ZZ and ZZZ as before (Fig. 40) with 
a fixed value of parameter 2 m  = 2 lo4 cm and different values of param- 
eter 2 4 v .  We see from the figure how much the form of the T-S curves 
deviates from the form which occurs provided the coefficients of exchange 
are equal. Fig. 44 proves even more significant, in which parameter 2 m  = 
= 1 O5 is fixed and parameter 2 m c h a n g e s  (from 2 to 8 lo4). We see that 
the greater the difference between the coefficients the more the T-S curves 
become complicated and the more they deviate from “classical” forms. The 
application of the geometry of T-S curves to the analysis of such curves 
would lead to the determination of false thermohaline indexes, not corre- 
sponding to the real original water masses; the example of curve a in Fig. 44 
testifies to this in an especially striking way. It is curious that the appearance 
of false thermohaline indexes is tied in with the branches of the T-S curves; 
so far as the index of the intermediate water mass is concerned, it is main- 
tained, and the application of the results of Shtokman’s theory to  such 
curves would not lead to such very great errors in the determination of the 
thermohaline index of the intermediate water mass. Therefore, bearing in 

As was already said in considering the inequality of the coefficients during 
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mind the obvious fact of the inequality of the coefficients of turbulence, one 
must pay particular attention in the practical analysis of curves t o  the bends 
of such curves lying above and beneath a clearly marked extreme correspond- 
ing to the real intermediate water mass, remembering that these “secondary” 
extremes can be false. This observation applies especially to the surface 
branches of the T-S curves, since, precisely in the upper layer of the ocean, 
the distinction between the processes of heat and salt transfer is the most 
striking. The difference abates as we penetrate into the depth of the ocean, 
and in practical T-S analysis we do not, as a rule, notice any new or unex- 
pected thermohaline indexes in the bottom parts of real T-S curves. In the 
surface part of the T-S curve, we repeat, false extremes may very well be ob- 
served, which do not correspond to  a geographically real water mass (Section 
63). 

43. THE MIXING OF TWO WATER MASSES IN AN OCEAN OF SEMI-INFINITE DEPTH 

In this section we will consider the problem of mixing in an ocean of 
semi-infinite depth, consisting at the initial moment of time of two layers, 
the upper of which has the finite thickness h,  while the lower extends infinite- 
ly downward. This problem, as has already been indicated, will be considered 
given boundary condition [ 39.241, which corresponds to the situation when 
flows of heat and salts through the surface of the sea are absent. This condi- 
tion assumes consideration of the purely internal mixing of water masses and 
conforms with the fact that the upper 100-m layer of the ocean, which inter- 
acts intensively with the atmosphere, is usually not considered in T-S anal- 
ysis. 

The problem to which we refer is extremely important from the point of 
view of the study of the origin of the tropospheric water masses of the oceans 
and of their zonal transformation. Without going into this question in detail, 
since it receives special consideration in Section 61 , let us note that the appli- 
cation of the analytical theory of T-S curves (for the case of mixing of two 
water masses) to  the study of the waters of the North Atlantic will enable us 
to draw the conclusion that the tropospheric waters of the North Atlantic are 
formed not in the region of Subtropical Convergence, but represent the result 
of the interaction of the water mass of the Gulf Stream itself (surface) A 
with the North Atlantic Deep and Bottom Water B underlying it. 

Thus, the solution of the equations of vertical heat conduction and diffu- 
sion [39.5] at initial conditions [39.16] and boundary conditions [39.241 is 
determined by formula [40.33]; let us make special mention of the fact that 
here we will be considering the case of inequality of coefficients, k ,  > k,. In 
this case it becomes clear immediately that the T-S curves representing the 
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mixing process will, as in the case of an ocean of infinite depth and provided 
k ,  # k, , deviate from the straight h e  of mixing. 

In order to ascertain how temperature and salinity change on the sea sur- 
face in the process of mixing, let us assume in equation [40.33] that,z = 0. 
Then, because of the oddness of @(-z) = -@(z) we obtain for temperature 
and salinity: 

I 

[43.1] 

These equations represent parametric equations (for the parameter t when 
z = constant) of the line which we shall call the line o f  transformation o f  the 
surface T-S index. 

In order to elucidate how the process of mixing of two water masses in an 
ocean of semi-infinite depth is represented on the T-S diagram, it is useful to 
plot T-S curves and T-S lines of transformation from equations [40.33] and 
[43.1] respectively, which we shall do as applied to water masses A and B for 
three ratios of coefficients k ,  and k, : 

(1) k ,  = 50 cm2/sec, k, = 5 cm2/sec. 

(2) k ,  = 25 cm’lsec, k, = 5 cm2/sec. 
(3) k ,  = 10 cm2/sec, k, = 5 cm’lsec. 

(the mean thickness of water mass A in the region of the Straits of Florida) 
are represented in Fig. 45, where the curves of transformation of the surface 
T-S index at various relationships of coefficients k ,  and ks are designated by 
roman numerals, while the corresponding T-S curves, plotted for one moment 
of time t = 2000 days (as an example) are shown by arabic numerals. The 
vertical solid and broken lines represent the isolines of parameter t (isochrones) 
for the lines of transformation and isolines of parameter z (isobaths) for the 
T-S curves respectively. 

Considering Fig. 45, we see that in the process of mixing of these two 
water masses in an ocean of semi-infinite depth, the T-S curves are shortened 
and bent, while the apex of the T-S curve slides along the corresponding line 
of transformation of the surface 7‘-S index in the direction of an increase oft;  
at the limit, when t + m, the curve tightens in point B. In a particular case, 
when k ,  = k,, both the lines of transformation and the T-S curves coincide 
with the straight line of mixing AB;  it is easy to see this by eliminating, when 
k ,  = k,, function @ (z) both from equations [ 9.2 11 and from equations [43.11. 

The results of the corresponding calculations when h = 500 m = 50 X lo3 cm 
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Fig. 45. Curves of transformation of the surface T-S index (1, 11,111) and the corresponding vertical T-S 
curves (1 ,2 ,3)  at r = 2000 days, appearing on mixing of water masses A and B in a semi-infinite sea 
(Mamayev, 1966a). 
The curves are plotted respectively at the following values of the coefficients of mixing: (I) k ~ =  50, 
ks= 5 ;  (2)  k ~ =  25 ,  ks= 5; (3) k ~ =  10, ks= 5 .  The vertical solid lines are isochrones (isolines of param- 
eter 1) for curves 1-111 (in days); the vertical straight broken lines are isobaths (isolines of parameter z )  
for curves 1-3 (in meters). 

In both cases we will come to the equation of the straight line: 
r n r n  

T-  T I = -  (S-S,) 
s1- s2 

In the particular case mentioned, the T-S curve in the process of mixing 
will be reduced along the straight line AB, but again tightening in point B 
when t + 00. In this case, the distribution of parameters z and t along the 
straight T-S line will depend on the values taken for coefficients kT and k, . 

It should be pointed out that the solution of equations [ 39.51 for the case 
of mixing of two water masses in a sea of semi-infinite depth was considered 
by Ivanov (1949), but at mixed boundary conditions for temperature and 
salinity, namely: 
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r43.21 

It is obvious that in this particular case the line of transformation of the 
surface T-S index is a horizontal straight line, coinciding on the T-S diagram 
with the isotherm T = T 2 ;  parameter t distributes itself along this line depend- 
ing on the value taken for coefficient ks *. 

Having thus considered the general nature of the mixing of two water 
masses in a sea of semi-infinite depth at various values of the coefficients of 
mixing k ,  and ks , let us turn to  the fundamental question of the formation 
of the T-S curves of the North Atlantic Central Water. 

For this, let us consider Fig. 46, in which are represented two pairs of 
theoretical T-S curves, plotted from equations at the following values of pa- 
rameter t and of coefficient k ,  (coefficient ks is taken everywhere as equal 
to 5 cm2/sec): T-S curves I and 2 (Fig. 46, on the left): t = 600 and 1,000 
days respectively, k ,  = 25 cm2/sec; T-S curves 3 and 4 (Fig. 46, on the right): 
t = 2,000 and 4,000 days, k ,  = 10 cm2/sec. These pairs of T-S curves can be 
considered as the extreme (enveloping) curves of two families (“clusters”) of 
T-S curves, emanating from point B ;  the values of parameter t for the T-S 
curves lying between curves 1-2 and 3-4 are contained within the limits 
indicated for the two families: 600 < t < 1,000 days and 2,000 < t < 4,000 
days, respectively. The isolines of parameter z for each of the two families 
within the limits from 0 to 1,000 m are represented in Fig. 46 by thin broken 
lines. The figure also shows known T-S relationships of the waters of the 
North Atlantic, according to Sverdmp et al. (1 942) and Jacobsen (1  929 - 
compare Fig. 46 with Fig. 105). 

Considering Fig. 46, we see that these T-S curves, obtained as a result of 
the mixing of water masses A and B (at selected values of t ,  k ,  and ks),  in 
those parts of them which correspond to the distribution of parameter z from 
0 to  about 800-900 my arrange themselves approximately along the straight 
line of mixing CS and the T-S relationships of the Central Water, according 
to Sverdrup. In their lower parts, when z > 800 days, the T-S curves have a 

* Let us point out in passing the inaccuracy of the following assertion of Ivanov (1949,.p.69): “The 
process of mixing of two water masses is represented in the T-S plane by a segment of a straight line, 
strictly speaking, only When the sea is infinite in depth (the depths change from +- to - -1 and the 
coefficient of turbulent heat conduction is equal to the coefficient of turbulent diffusion ( k ~  = ks)”. 
We have seen, however, that the T-S curve can be rectilinear also in the caSe of mixing of two water 
masses in a semi-infinite sea. The point here is that, for a semi-infinite sea, to the condition of equality 
of the coefficients, k T =  ks, it is necessary and adequate to add the condition of identity of boundary 
conditions for temperature and salinity (conditions 139.241 or conditions of the type of the &st con- 
dition of [39.25]); Ivanov considered the problem only under mixed boundary conditions [43.2]. 
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Fig. 46. T-S curves (1 -4) appearing on mixing of water massesA and B at t = 600, 1000, 2000 and 
4000 days respectively. For curves I and 2 kT = 25, k s  = 5 ;  for curves 3 and 4 kT = 10, kS = 5 
(Mamayev, 1966a). 

bend, characteristic for the T-S curves of the North Atlantic and distinctly 
demonstrated by the averaged real T-S curve represented in Fig. 105. Here a 
reservation should be made: this bend may very well be the result of the mix- 
ing of three water masses: the intermediate S and the extremes C and B ;  
however, its formation, independent of water mass in the case of mixing of 
only two water masses, as considered in the present section, is beyond doubt. 

Let us now turn to the consideration of Fig. 46 from a somewhat different 
angle; namely, let us assume that the left and right parts of the figure illustrate 
two successive stages of the mutual transformation of water masses A and B .  
These two stages are separated in time, as may be seen from the figure, by 
about 1,500 days (- 130 lo6 sec). If one identifies the mixing of stationary 
water masses in time with their mixing in the process of movement with iden- 
tical velocity u,  then on the basis of the relationship A x  = u A t  we can roughly 
evaluate distance x ,  which water mass A must travel over homogeneous water 
mass B so that the situation represented in the left part of Fig. 46 may be 
transformed into the situation shown on the right. For this, as a mean veloc- 
ity of movement of water massA let us take the value u = 5 cm/sec. Then for 
the corresponding distance x we will obtain: 

x = 5 X 130X lo6 = 6.5 X lo8 cm = 6,500 km = 3,500 miles; 

this distance, if it is taken along the axis of the Gulf Stream and the North 
Atlantic current, approximately corresponds to the distance from the Straits 
of Florida to the Irish coast. 
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Thus, along with the explanation of the form of T-S curves observed in the 
North Atlantic by the mutual transformation of water masses A and B ,  we 
come to the possibility of explaining this transformation as latitudinal, in the 
process of displacement of the water mass from the south to the north. It is 
obvious that in the given formulation of the problem the latitudinal transfor- 
mation of water A is accompanied by a gradual shortening of the T-S curves 
along, say, the line CS, as well as by the gradual decrease of the ratio of the 
coefficients of mixing kT/ks  ; in other words, vertical turbulent heat exchange 
in the ocean decreases with an increase of latitude more rapidly than salt 
diffusion, which is perfectly understandable if one bears in mind the more 
considerable decrease with latitude in temperature (and its vertical gradients) 
as compared with salinity. 

Let us remark that, in spite of all the approximateness of the calculation 
just quoted, it agrees with some other data. For example, the span of time 
between two stages of transformation (Fig. 46), taken as equal to about 
1,500 days, agrees with the evaluations cited by Stommel(l966) of: (a) the 
time necessary for the full expenditure of the reserve of potential energy of 
the warm waters of the Sargasso Sea, i.e., of water mass A ( 1,700 days), and 
(b) of the time necessary for the removal of all the warm waters of the North 
Atlantic at  full flow of the Gulf Stream (1,600 days). 

Concluding these considerations, let us point out that in an analytical solu- 
tion of the problem it is quite possible to set the condition of transformation 
of the surface T-S index strictly along any straight line, for example, the 
straight line CS. However, this is equivalent to the introduction, instead of 
[ 39.241, of boundary conditions dependent on time, which substantially 
complicates the solution of equations [39.5] ; in particular, the numerical 
implementation of the solution proves to be connected in this case with the 
need to calculate improper integrals. 

44. THE MIXING OF THREE WATER MASSES IN AN OCEAN OF SEMI-INFINITE DEPTH 

Let us now consider in more detail the question of the mixing in an ocean 
of semi-infinite depth of three water masses under boundary condition [39.25], 
i.e., when constant values of temperature and salinity are maintained on the 
surface of the ocean (Mamayev, 1966b). 

Fig. 47 shows a graph plotted from formula [40.26] and the similar for- 
mula for salinity at the same values of the thermohaline indexes I (Tl,Sl), 
II ( T , ,  S , )  and III ( T ,  , S , )  of the water masses of the Northeastern Pacific 
Ocean and at the same thickness of the intermediate layer ( h ,  = 200 m, 
h2 = 600 m, h 2 -  h ,  = 400) as in Fig. 40. In addition, the coefficients of heat 
and salt exchange are also taken here as equal: k = k ,  = k,. The solid curves 
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0 I I I J 
33.5 34.0 34.5 35.0s % 0 

Fig. 47. T-S-z curves (solid lines) and T-S-t curves (broken lines) in the case of mixing of three water 
masses in an ocean of semi-infinite depth. The designation of the medians of the triangle is the same as 
in Fig. 40 (Mamayev, 1966b). 

in Fig. 47 represent T-S-z curves at the same values as in Fig. 40 of parameter 
2 m -  = 2,4,6 and 10 cm, the broken lines: T-S-t curves *. 

Comparing Figs. 40 and 47, we see immediately how substantially the 
theoretical picture of the transformation of three water masses in an ocean of 
semi-infinite depth differs from that for the infinite ocean. On the one hand, 
there is every reason for such a comparison, inasmuch as in both cases the 
triangle of mixing in the process of transformation of the water masses re- 
mains invariable and the T-S curves do not go beyond its limits (in particular, 
not one of the T-S indexes changes its coordinates, which cannot-be said, for 
example, with respect to the surface index of 111 in the case of mixing of 
water masses at boundary condition [ 39.241). Besides, the T-S'curves (at the 

* Using the terminology of thermodynamics, we may call Figs. 40 and 47 diagrams ofstate of wateI 
masses during their transformation. 
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same values of parameter 2 m )  in both cases are extremely similar; therefore, 
the general geometric approach to the consideration of T-S curves, the prin- 
ciples of which were ascertained by Shtokman (1 943a) for an infinite ocean, 
may also be extended to the case of the ocean of semi-infinite depth. 

However, on the other hand, the picture of the distribution of T-S-t curves 
in the case of a semi-infinite ocean sharply differs from that for an infinite 
sea. The first thing which attracts attention is that the isolines, which corre- 
spond to the boundaries of the intermediate layer (h  = 200 m and h2 = 600 m), 
do not coincide with the secondary medians of the triangle of mixing or, what 
is the same, with the lines of 50% content of water masses I and Ill (these 
lines ac and bc are also plotted in Fig. 47), but represent curves asymptotically 
approaching point Ill ( T 3 ,  S 3 ) .  Indeed, it follows from formula [ 40.261 when 
z = h ,  and z = h2 that: 

lim T ( h l ,  t )  = T3 ; 

and similarly : 

lim S(h , ,  t )  = S3 ; lim S(h2, t )  = S3 

whereas on the basis of formulae [ 40.1 01 and [ 42.1 3 we have: 

lim T(h, ,  t )  = T3 
t-- t 4 -  

t+- t 4 -  

T l  +- T 3  T 1 + T 3 .  lim T ( 0 ,  t )  = ; lim T ( h ,  t )  = 7, 
I-=- L t+- L 

' 1  + '3 
* lim S ( h , t )  = ~ lim S(0, t )  = ~ 

t+- 2 ,  t+- 

s 1 + s 3  

2 

All the remaining T-S-t curves behave in the same way: when t + 00 they 
assemble asymptotically in point 111 ( T 3 ,  S 3 )  (Fig. 47), whereas, in the case of 
the infinite sea, as may be seen from Fig. 40, they assemble in point 
c [ ( T l  + T 3 ) / 2 ,  ( S ,  + S3>/21. 

Let us consider the process of transformation of the intermediate water 
mass in a semi-infinite ocean: it is obvious that this water mass, as in the case 
of an infinite ocean, is also characterized on the T-S diagram (Fig. 47) by 
sections of T-S-z curves included within the parallelogram IIucb. 

It will be seen from Fig. 47 that with time the intermediate water mass 
sinks deeper (the values of parameter z increase along median Ilc), whereas 
in the case of the infinite sea the core of the intermediate water mass remains 
at the same depth. 

Combining the T-S diagrams of Figs. 40 and 47 with the corresponding 
percentage nomogram, plotted on the same apexes, we can determine the per- 
centage amount of each of the three water masses at any depth in the process 
of their mixing, which we have accordingly done for the intermediate water 
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Fig. 48. Percentage content of intermediate water mass II in a section in the case of mixing of three 
water masses. a. In an infinite ocean. b. In a semi-infinite ocean. The thick broken Line shows the direc- 
tion of transformation of the core of the intermediate water mass, the thin broken lines show the ori- 
ginal thickness of the intermediate layer (Mamayev, 1966b). 

mass. Fig. 48 represents “sections”, which show the content of this water 
mass at various depths in the case of transformation of three water masses in 
an infinite (a) and semi-infinite (b) ocean. Here the difference mentioned 
becomes even more evident. 

We will not dwell any longer on the elucidation of the differences between 
these two versions of the theory of T-S curves, assuming that the main points 
have glready been noted. Let us indicate in conclusion that everything said 
relates to the case when the coefficients of heat and salt exchange are taken 
as equal; it is only in this case that the T-S curves do not go beyond the 
framework of the triangle of mixing. 

Drawing attention to the need for further development of the theory of 
T-S curves, in particular for an ocean of semi-infinite depth, we wish in con- 
clusion to emphasize the following two points, which may be drawn as the 
main conclusions from this investigation: 

is of extremely great importance in the theory of T-S curves. From the 
example of the comparison of Figs. 40 and 47 we saw that T-S curves close 
in form can differ substantially in this respect, and therefore the considera- 
tion only of the form alone of curves is insufficient for the analysis of inter- 
acting water masses and, in particular, of their distribution (percentagewise) 
by depth. Parameter z is distinguished by its peculiar “mobility” along the 
T-S curve, and the features of the transformation of water masses come out 
first of all in its redistribution along the curve and only later in the change of 
form of the latter. 

should be recognized as advisable. By this is understood a whole series of 

(1) The question of the distribution of parameter z along the T-S-z curves 

(2) The calculation of special c c ~ t e r e ~ t y p e ~ ’ 7  for the analysis of water masses 
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theoretical T-S curves which can be calculated by computer for a number of 
different, to a considerable extent arbitrary, original thermohaline indexes 
and thicknesses of intermediate layers. By a selection of such theoretical T-S 
curves as would be similar to the real T-S curves investigated, not only in form 
but also by the distribution of parameter z along them, we can come t o  com- 
pletely unexpected conclusions about the origin of the water masses of the 
ocean, which go beyond the framework of the usually accepted geometry of 
T-S curves. It is natural that the methods of such comparisons may be some- 
what different; they require additional consideration, which should be carried 
out against the background of the further development of theory. 

45. A SIMPLIFIED THEORY OF 7'-S CURVES FOR AN OCEAN OF FINITE DEPTH 

The analytical theories of T-S curves considered above, constructed for 
cases of mixing of two, three and four water masses in an ocean of infinite 
and semi-infinite depth, suffer from one substantial shortcoming, which con- 
sists of the fact that they take no account of the advection of water musses 
with the exception of the particular case when the whole ocean may be con- 
sidered as moving with identical velocity along the vertical, moreover in one 
direction. Meanwhile the water masses considered in the theory, move, as a 
rule, in opposite directions; this circumstance often makes the analytical 
theories unsuitable for practical application. 

One may proceed in two ways in an attempt to overcome this contradic- 
tion. On the one hand, one can complicate the task by introducing convective 
terms into the equations of heat conduction and diffusion; in this case the 
analytical solutions also become substantially more complicated, which may 
deprive the theory of necessary clarity. On the other hand, considerable sim- 
plifications are possible which, without depriving the theory of effectiveness, 
can shed light on new circumstances unnoted in preceding theories. 

A simplified theory of T-S curves for the case of moving water masses in 
an ocean of finite depth was constructed by the author (Mamayev, 1962a); 
an exposition of this theory follows below, from which it proves clear that 
the possibilities of the most elementary analytical theories of T-S curves are 
far from exhausted. We shall consider first the mixing of two and then three 
water masses of finite dimensions along the vertical. 

The vertical mixing of  two water masses 

For the study of the vertical mixing of two water masses in a field of cur- 
rents and of stationary distribution of temperatures along the vertical let us 
use equations: 
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[45.1] 

in other words - let us consider stationary mixing along the vertical in a bi- 
dimensional current; let us direct the axis x along the current. The first of 
these equations is written for layer A ,  having thickness h, the second for 
layer B of thickness H ,  moreover the thicknesses of the layers are not equal: 
h # H. We will count the positive direction of axis z upward, the negative 
downward from the interface between water masses (Fig. 49). Wishing at the 
first stage to make the solution as simple as possible, let us assume in equations 
[45.1 J u = constant, aT/ax = constant and k = constant (in layers A and B 
these quantities may be different). 

The assumption concerning the constancy of the horizontal temperature 
gradients in the direction of the current is justified for the greater part of the 
World Ocean (excluding boundary areas), as may be seen from the tempera- 
ture distribution charts; this distribution is extremely monotonic. The assump- 
tion concerning the constant velocity of the current and the constant nature 
of the coefficient of turbulent heat conduction with depth is made for the 
purpose of simplifying the solution: the introduction of functions u (z) and 
k ( z )  must take place at the following stage, during the development of the 
elementary theory. 

Bearing in mind the simplifications mentioned, we can rewrite equations 
[45.1] in the form: 

= a  (h  > z > 0) d2 T 
dz2 
- 

(O> z > - H )  d2T -- - b 
dz2 
where a and b are constants. The integrals of equations [45.21 are: 

( h  > 2 > 0) T = -  + CIZ + c, 2 

(0 > z > - H )  

The boundary conditions are as follows: 

I 

[45.4] 
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Fig. 49. Two and three water masses in an ocean of finite depth. 

i.e., there is no heat flow from the atmosphere (we are considering a “pure” 
mixing of water masses among themselves): 

i.e., there is also no heat flow through the bottom. In addition: 

[45.5] 

[45.6] 

(on the interface some mean temperature is observed). 

[45.4] -[45.6], we obtain: 
C, = - a h ;  C, = bH;  C2 = C, = T [45.7] 

[45.2], we obtain the following expressions: 

Determining the constants of integration C, - C4 from boundary conditions 

- 

Substituting the values obtained of the constants [45.7] in equations 

T = T + a  ( g - h z )  ( h  > z > 0) 

T = T + b  ($+Hr)  (0> z > - H )  

[45.8] 

For the determination of quantities a and b let us use the following condi- 
tions, which give constant T-S indexes on the outer boundaries of the water 
masses: 

I 

[45.9] 

These stationary temperature values form on the boundaries of the water 
masses in each point of the sea under the influence of constant climatic con- 
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ditions. Substituting [45.9] respectively in [45.8], we obtain: 

[45.10] 

From these expressions it is possible to determine constants a and b:  

[45.111 

Expressions [45.1 I] ,  where a = uA(a T /ax) ,  b = uB(aT/ax) can correspond 
to the surface warm and the deep cold current, in Zubov’s terminology, both 
in the same and in the opposite direction. 

Finally, substituting expression [45.11] in equations [45:8], we obtain the 
final formulae which determine the distribution of temperature along the 
vertical : 

( h > z > O )  

( O > z > - H )  

[45.12] 

Formulae [45.12] have a similar appearance to formulae [41.2] and [41.3], 
with the difference that instead of the integral of errors we have the parabolic 
function appearing. 

For the determination of mean temperature T let us use the condition of 
continuity of curve T ( z )  at the interface ( z  = 0): 

when z = 0 [45.13] 

Calculating derivatives a T/az of expressions [45.121 and satisfying condi- 
tion [45.13], we obtain: 

[45.14] 

[45.15] 

Let us note that in the particular case, when H = h : 
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[45.19] 

[45.16] 

Let us now apply, for the determination of vertical stationary distribution 
of salinity in the same two water masses, the equations of diffusion: 

[45.17] 

in which we will assume that the coefficients of vertical turbulent heat con- 
duction and diffusion are equal. 

Carrying on the same argument with respect to salinity, we come to the 
following equations, which are entirely analogous to equations [ 45.121 : 

[45.18] 

where quantity s of mean salinity is determined from a formula entirely 
analogous to formula [ 45.1 5 I .  

For the representation of the result in T-S coordinates let us eliminate 
parameter z from equations [45.12] and [45.18] respectively. As a result we 
will obtain: 

(h  > z > 0) -=- T - T  S - S  - 
T A - T  S A - S  
- 

(0> z>-H) T - T  - 3 - S  
- 
T-TB S-SB 

Equations [45.19] represent the equations of straight lines in the system 
of coordinates T = f(S); the - -  first of them is the equation of the straight line 
joining points ( G L S A )  and ( T ,  S ) ;  the second the equation of the straight line 
joining points ( T , S )  and (TB,SB). They correspond to equation [41.121 and 
also indicate that given these assumptions the process of vertical mixing of 
two water masses is represented on the T-S diagram by a straight line of mix- 
ing. 
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Vertical mixing of three water masses 

For the study of the stationary distribution of temperature in the case of 
vertical mixing of three water masses (let us designate them by the letters A , 
M and B ) ,  superimposed over each other, let us make use of the same equa- 
tions of heat conduction: 

[45.20] 

The respective arrangement of these three water masses and the method of 
reckoning the vertical coordinate are represented in Fig. 49. Assuming, as 
previously, UA(aT/aX) = a ,  u,(aT/ax) = m and uB(aT/ax) = by  let us write 
equations [45.201 and their integrals: 

= a  ( H 1 > z > h )  d2T 
dz2 
- 

d 2 T -  -- 
dz 

(h 3 z > - h )  

( H 1 > z > h )  az2 T = -  + C ~ Z  + C2 2 

T=- -  mz2 + c,z + c, (h  > Z >  - h )  
2 

T = - bz + C,j z + Cb ( - h > z > - H 2 )  
2 

The boundary conditions: 

[45.2 13 

[45.221 

[45.23] 

indicate the absence of heat flows through the upper and lower boundaries 
of the sea, i.e., the internal nature of heat exchange. Further, 
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[ 45.241 

i.e., the extreme of curve T(z) is given in the core of the intermediate water 
mass. Finally, on the boundaries between the water masses some mean tem- 
peratures are observed: 

Here index “1” corresponds to the boundary between water mass A and M, 
index “2” to the boundary between water masses M and B .  

In addition, by conditions: 

let us set the stationary T-indexes on the outer boundaries of the surface and 
deep water masses and in the core of the intermediate water mass, and by 
conditions : 

[45.27] 

let us determine the continuity of curve T ( z )  on the boundaries of the inter- 
mediate water mass. 

On the basis of boundary conditions [45.23] and [45.24] respectively, we 
obtain: 
Cl = - a H ,  ; C, = 0 ; C, = b H 2  [ 45.281 

while on the basis of conditions [45.25] from equations [45.22] we obtain: 

C2 =T1 -- ah2 + a H l h  ( H I >  z > h )  
2 

mh2 ( h > z >  - h )  c, = -2 

C = T 2 - - + b H 2 h  bh2 ( - h >  z > - H , )  
2 6 

Substituting [45.28] and [45.29] in equations 

[45.29] 

[45.22], we obtain: 



T = T l  + a ( Z 2 - h 2 )  - a H l ( z - h )  

T = Tl,2 + 111 ( z 2 - h 2 )  

(H,> z >  h )  

(h > z > -h )  

2 

2 

(- h > z > -H2)  
b T = T  +- z 2 - h 2 )  - bH,(z-h)  
2 (  

[45.3 11 

[45.30]  

Finally, substituting [45.3 1 ] respectively in equations [ 4 5 . 3 0 ] ,  we finally 
obtain : 

- 

T T  
T = T , +  '- A [ ( z 2 - h 2 )  - 2 H l ( z - h ) ]  ( H ,  > z > h )  

( H ,  - hI2 
- 

T = + ( z2  - h 2 )  
h2 

( h >  z > - h )  [45.32]  

It now remains to determine TI and T2. For this it is necessary to  differen- 
tiate equations [45.32]  by z and to satisfy conditions [ 4 5 . 2 7 ] .  As a result, on 
the basis of the first conditions of [45.27 J we obtain: 

whence: 
- 
Ti = 

hkA TA + (Hi  - h )  kM TM 
hkA + (HI - h )  kM 

t45.331 

[45.34]  
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In exactly the same way, on the basis of the second condition of [45.27] 
we obtain: 

- 

T M - T 2  = T2 - TB 
kM h H2-h 

whence: 
- 
T2 = 

hkB T B  + (H2 -h)  
hkB + (H2 - h )  k, 

[45.35 

r45.36 

Stationary vertical distribution of temperature in a three-layer sea is ac- 
cordingly determined by equations [ 45.321 simultaneously with [45.34] and 
[ 45.361. 

For the determination of the vertical distribution of salinity, let us apply 
the equations of diffusion which are entirely analogous to the equations of 
heat conduction [ 45.201. As before, let us assume that the coefficients of 
turbulent heat conduction and turbulent diffusion in each layer are equal 
[(kA)r = (kA)S etc.]. Following the same arguments as for temperature, we 
come to the formulae determining the vertical distribution of salinity in a 
three-layer sea: 

s, - s, 
( H ,  -w2 

S = S 1 +  [ (z2-h2)-  2 H , ( ~ - h ) ]  (H,> z >  h )  

- 

( z2  - h2)  sl, 2 -'M s = s1,2 + 
h2 

(h> z >-h) 

s2 4, 

(H2-hI2 
s=S2+ [(z2-h2)  - 2Hz(~-h ) l  (-h > z > -H2) 

where : 

hkBSB +(H2-h)kMSM 
hkB + (H2 -h)  k, 

S2 = 

[45.37] 

[ 45.381 

Let us plot from formulae [45.32] and [45.37], taking account of the 
mean values of T and 3, as determined by formulae [45.341 , [45.361 and 
[45.38] , curves T ( z )  and S ( z )  for the vertical distribution of temperature and 
salinity within the following water masses: 
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Water mass A M B 

Temperature,"C 15 10 3 
Salinity,'& 35.50 36.00 34.90 
Thickness of 
layer, m 800 (from sea surface 400 (from depth 1,300 (from 

to depth of 800 m) of 800- 1,200 m) depth of 1,200- 
2,500 m) 

The graphs of vertical distribution of temperature and salinity, provided 
the coefficients of turbulent heat conduction and diffusion are equal in all 
three layers (kA = kM = kB), are represented in Fig. 50 (curve a for tempera- 
ture and curve I for salinity). 

Let us now consider how the results obtained will be interpreted in T-S 
coordinates. For this, let us eliminate parameter z from equations [45.32] and 
[45.37] in pairs; as a result we will obtain expressions: 

T-T,,, S - g , , ,  
(h  > 2 > -h )  - - 

- - 
'1,2- TM s1,2- sM 

- 
T2-T - g 2 - S  

( - h  > z > -4) 

[ 45.391 

The first of these equations - -  is the equation of the straight line joining 
points (TA,&)-and (T,, S,) ,  the second the equation of the straight - -  line join- 
ing points (T , ,S , )  and (TM,SM), as well as points (Tm,S&aEd (T2,S2), and 
the third the equation of the straight line joining points ( T2, S2)  and (TB, SB).  
Thus, the result has turned out the same as in the case of mixing of two water 
masses, while the T-S curve plotted from the data of vertical distribution 
T(z) and S(z) is represented in Fig. 5 1. From this the following conclusion 
should be drawn: in the case of vertical mixing of three water masses, charac- 
terized by identical equations of stationary heat conduction and diffusion 
with respect to parameter z, and given the equality of the coefficients of tur- 
bulent heat conduction and diffusion, the T-S curve coincides with two sides 
of the triangle of mixing. 
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35.0 355 36.0 so& 

Fig. 50. Curves of vertical distribution of temperature in a threelayer (a) and a two-layer (b )  ocean 
(on the left) and curves of vertical distribution of salinity in a two-layer sea ( V )  and in a three-layer sea 
(I-IY) (on the right) at different values of thickness of the intermediate layer and salinity extremes, 
determined by formulae [45.12] and [45.37] (Mamayev, 1962a). 

I 1 I I 
34.5 3.5.0 35.5 36.0 s o h o  

Fig. 51. T-S curves corresponding to the curves of vertical salinity distribution I- V (Fig. 50, on the 
right) and to the curve of vertical temperature distribution b (Fig. 50, on the left) (Mamayev, 1962a). 

Combining the two- and three-layer models 

In the real conditions of the World Ocean, in the majority of cases only one 
of the two properties - either temperature or salinity - is characterized by 
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the presence of an extreme. This circumstance is indirect evidence of the fact 
that turbulent heat conduction and turbulent diffusion proceed with a differ- 
ent degree of intensity and, as a rule, the extreme of salinity is considerably 
more stable than the extreme of temperature. Thus, if we turn for an example 
to the T-S curves in the western part of the Atlantic Ocean, plotted by Defant 
and Wust for various latitudes (Defant, 196 1, fig. 98), we will see from 
them that the low temperature inversion, observed on the T-S curve for lati- 
tude 33”S., quickly disappears further to the north, whereas the two ex- 
tremes of salinity on the T-S curves are distinctly maintained throughout the 
whole extent of the western meridian section from 33”s  to 1 ION. 

This peculiarity of vertical mixing, which manifests itself in the consider- 
able difference in the transfer of heat and salts, can be expressed indirectly, 
leaving aside the question of the ratio of the coefficients, by applying, say, 
to the temperature distribution a model of a two-layer sea and to the salinity 
distribution a model of a three-layer sea. In this case, the concept of the 
thickness of the layer, which is in T-S analysis in general a conventional con- 
cept (given the continuous distribution of temperature and salinity with 
depth), becomes somewhat more indefinite and characterizes rather the 
“sphere of influence” of the corresponding T-S index or extreme. Still 
another example may be cited: in studying the distribution of intermediate 
Mediterranean water in the Atlantic Ocean one may interpret with the three- 
layer model salinity alone, characterized by the presence of an extreme; with 
respect to temperature it is perfectly possible to limit oneself to the two- 
layer model, for in its distribution along the vertical no factors determine the 
appearance of a temperature extreme. 

Let us express, on the basis of what has been said, vertical temperature 
distribution by a two-layer model - equations [45.12] , and vertical salinity 
distribution by a three-layer model - equations [45.37] , having placed the 
boundary of the two “temperature” layers in the center of the intermediate 
“salinity” layer. The corresponding curves T ( z )  and S(z) are represented in 
Fig. 50 (when TA = 15”, TB = 3” ), and moreover curve b corresponds to the 
two-layer model of temperature distribution. This vertical distribution of 
temperature and salinity leads to the T-S curve represented in Fig. 5 1 (curve 
0. 

800 m and from 1,200 to 2,500 my i.e. in layers A and B y  the branches of the 
T-S curve are rectilinear. In the layer between the depths of 800 and 1,200 m 
it is curvilinear. The corresponding elimination of parameter z from equations 
[45.12] and [45.37] within the intermediate layer leads to the square depen- 
dence of T on S in the T-S coordinates. 

Let us consider the question of the transformation of the salinity extreme 
in the direction of axis x, assuming for simplicity that over some distance L 

Looking at this T-S curve, we see that from the surface of the sea to  
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the thickness of the intermediate layer decreases linearly from h = 400 m to 
zero: 

h, = (1 -2) h, [ 45.401 

Let the decrease in salinity from S, = 36.00°/00 to s= 35.26°/m (i.e., to 
the value of salinity corresponding to the two layer model when SA = 
35.50°/oo and to the overall thickness of the two layers of 2,500 m) corres- 
pond to this degeneration of the intermediate layer. Then the decrease in the 
thickness of the intermediate layer and the decrease of salinity in the extreme 
may be linked by a simple linear dependence: 

[45.41] S , = S + ( S , - S ) -  - hx 

hrn 

At the distances x = 0.25 L ,  0.50L, 0.75 L and L the thicknesses of the 
intermediate layer will equal 300, 200, 100 and 0 m, while the values of salin- 
ity in the extreme will correspondingly equal 35.82,35.63, 35.44 and 35.26Oh. 
The corresponding S(z) and T-S curves (curves I . -  V )  are also represented in 
Figs. 50 and 5 1 respectively. From the latter figure, in particular, it may be 
seen that when no change in temperature occurs in the core of the inter- 
mediate water mass, but when only salinity changes, the line of transforma- 
tion of the core of the intermediate water mass is horizontal and coincides 
with the isoline T = const, corresponding to constant temperature on the 
interface between the masses in a two-layer model. 

The following tentative conclusions and assumptions may be drawn from 
the introduction to the elementary T-S analysis of moving water masses set 
forth above, which by no means claims to be complete. 

(1) The nature of the T-S curves and the direction of the transformation 
of the extreme within the T-S triangle are determined by the relationship of 
the “spheres of influence” of the T-S indexes, or by the thicknesses of the 
corresponding layers. Apparently, this is determined in the last analysis by 
the ratio of the coefficients of turbulent heat conduction and turbulent 
diffusion (this question requires additional study). The transformation of 
the extreme along the principal median of the triangle of mixing (Shtokman, 
1943a) is one of the possible paths. It is also quite possible that in the case of 
isopycnic propagation of the intermediate water mass, the line of transforma- 
tion of the core will be an isopycnal (isostere) within the T-S triangle. In this 
case the change in temperature d T and the corresponding change in salinity 
dS  in the process of transformation must satisfy the condition: 

dT = dS  tancp 

where tancp is the function of the equation of state of sea water (the thermo- 
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haline derivative), determined by formula [ 25.31. In general, however; 
dT = tanp dS 

where 1.1 is the angle of slope of the line of transformation of the extreme to 
the abscissa axis, also determined by the relative intensities of the processes 
of turbulent heat conduction and diffusion. 

(2) The question of the percentage ratio of the three water masses on the 
interfaces of the intermediate water mass requires further investigation. The 
determination of the boundaries of the intermediate water mass by its 50% 
content is, apparently, also a particular case; generally speaking, the percen- 
tage content of the intermediate water mass at its upper and lower boundaries 
may be different. 

(3) An important question is that of the determination of the thermohaline 
index and the original thickness of the intermediate layer, inasmuch as in the 
stationary case we do not consider the initial moment of mixing with the 
homogeneous water masses which correspond to it. For the determination of 
the original thickness of the intermediate layer, it is necessary to study the 
curves T(z) and S(z), as well as the T-S curves in the regions of formation of 
the intermediate water masses. If for an example we turn once again to the 
Intermediate Mediterranean Water of the Atlantic Ocean, we may assume that 
the T-S curve for a station made in the Straits of Gibraltar, in that part which 
corresponds to the lower (outflowing) current from the Mediterranean Sea, 
must be similar to those parts of the T-S curves of the closest deep water 
stations in the region of the Atlantic near Gibraltar which are included within 
Mediterranean waters. Given this similarity of the T-S curves the value of the 
parameter z at the deep water stations must be “stretched” along the T-S 
curve as compared with a station in the Straits. Such a comparison can serve 
as a basis for the determination of the original thickness of the intermediate 
Mediterranean layer. So far as the thermohaline index of the intermediate 
water mass is concerned, it is necessary to consider within the framework of 
theory its horizontal transformation, which takes place in the same way as 
the zonal transformation of the indexes of the surface water masses (Section 
61). 

46. SOME PROBLEMS OF THERMOHALINE CONVECTION. AN ANALOGY: THE PROBLEM OF 
THE GROWTH AND DECAY OF AN ICE SHEET IN THE SEA 

The problems of thermohaline convection, considered by Stommel ( 196 1 ), 
represent a separate branch of the analytical theory of T-S curves. Although 
the process of thermohaline convection is considered by him under the con- 
ditions of an idealized experiment, these problems have great theoretical sig- 
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nificance, since they demonstrate the essential difference between the stages 
of thermal and saline convection, showing that the process of heat exchange 
anticipates at the first stage of convection the process of salt exchange, and 
then, in the process of development of mixing, gives way to the latter. The 
simple models of Stommel can serve as a first theoretical explanation of the 
fact of difference in the processes of thermohaline convection in different 
geographical conditions, and in this sense are close to the theory of autumn- 
winter convection (winter vertical circulation), developed by Zubov ( 1938, 
1945). Finally, one of Stommel’s problems, namely the first, provides a 
highly interesting analogy with the problem of the growth and decay of the 
ice sheet; this question will be considered in the second half of the present 
section. 

Let us consider an extremely simple model of convection: in a vessel 
(Fig. 52, upper part) by means of mixing (by the action of a mixer, say), 
identical values of temperature T and salinity S are maintained throughout 
the whole volume; though the porous walls of the vessel, heat and salt trans- 
fer is carried out from the external part of the reservoir, where temperature T 
and salinity S are maintained constant throughout the whole time of convec- 
tion. In this case the equations of heat conduction and diffusion can be 
written in the following simple form: 

1 Mixer 

Y 

Sctinity 

Fig. 52. Diagram of idealized experiment I (above) and dimensionless T-S diagram (the anomalies of 
density are plotted for the case R = 2) and dimensionless T-S curve for 6 = 1/6 and 7 = 0, 1,2,3,5,  m 

(below). Explanations in the text. (Stommel, 1961).) 
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@ = d(S  - S )  dt  

[46.1] 

where c and d are the coefficients of heat and salt exchange respectively. In- 
troducing the designations r = ct; 6 = d / c ;  y = T/T; x = S / S  equations [46.1] 
can be made dimensionless: 

@ = 6(1 -x) d r  

[ 46.21 

The solutions of equations [46.2] at initial conditions x = xo, y = y o  when 
r = 0 will be written in the form: 

y = 1 + O/o-l)e-T 

x = 1 + (x0-1)e+ 
[46.3] 

It is obvious that when r +m, x = 1 and y = 1. Stommel points out that 
inasmuch as 6 < 1 (since coefficient d of salt exchange by its physical nature 
is smaller than the coefficient of heat exchange c ) ,  temperature reaches its 
asymptotic value more rapidly than salinity. The solution [46.3] of system 
[46.2] can be represented parametrically on a dimensionless T-S diagram 
(x,y diagram) - Fig. 52, lower part; the corresponding curve is plotted for 
value 6 = 1 /6. 

Stommel brings into consideration the simplified equation of state: 

p =po(l  -aT + PS) 

which can be expressed by dimensionless variables x and y in the following 
form: 

P = P o [ 1 + ( a ( - y + R X ) l  
where R = pS/aT represents the ratio of the temperature and salinity influen- 
ces on the density of water in the final stage of the process. The velocity of 
change in density in the process of convection can in that case be expressed 
by the equation: 

dp =po[-l+y+R6(1-x)1 
d t  

Stommel considers a particular case - at initial conditions xo = y o  = 0 and 
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f 

Fig. 53. Diagram of idealized experiment II (above) and corresponding dimensionless T-S diagram and 
dimensionless T-S curve for the values of parameter f= 0, 1/10, ..., 9, - (below). Explanations in the 
text. (Stommel, 1961.) 

values R > 1 and R6 < 1 ; in this case in the initial stage of convection density 
decreases, then begins to increase, reaches its initial value at a definite moment 
of time, after which it still continues to increase, exceeding the initial value. 
The foregoing is well illustrated by the dimensionless T-S diagram (Fig. 52, 
lower part), on which are plotted the isolines of the dimensionless anomaly 
of density u = (p /po-  l)/aT, calculated for the case R = 2. The asymptotic 
value of density, equal to zero at the initial moment, is equal to + 1. 

Let us now consider another idealized experiment, when water with the 
characteristics T = 0 and S = 0 flows into the vessel with velocity q ;  an evenly 
blended mixture flows out of the vessel with the same velocity (Fig. 53, upper 
part). The equations describing the process of heat conduction and diffusion 
prove even simpler: 

- dT = 0 = c ( T - T )  - qT 
d t  

dS = 0 = d (S - S )  - qS d-t 

[ 46.41 

In their dimensionless form they are written as follows: 
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1 - ( l + f ’ ) y = O  

6 - (6 + f ’ ) x  = 0 

where f’ = q/c is the dimensionless flow rate, whence: 

1 Y = l + f ’  
1 x=- 

PI 1 +s J 

[46.5] 

It is clear that these dimensionless values of temperature and salinity are in 
equilibrium. Eliminating parameter f’ from equations [46.6] , we obtain the 
following equation for the T-S curve which describes the process of convec- 
tion : 

1-y - 6(1-x) --- 
Y X 

[46.7] 

This curve is plotted in Fig. 53, lower part, for the value 6 = 1/6 (the iso- 
lines of the anomalies of density are also plotted for R = 2). The parameter in 
the second problem, we repeat, is no longer time but flow rate of water; from 
Fig. 53 it is seen that it is precisely the latter which determines the density of 
the outflowing water: at f’< 1/4 the density of the outflowing water is 
greater than the density of the inflowing water, while when 1 /4 < f ’ < m less 
dense water flows out. Stommel’s second problem represents a highly interest- 
ing theoretical illustration (although also a highly tentative one) of the prob- 
lem of the relation between convection and the water exchange of sea basins 
- a problem raised by Zubov in its broad geographical aspects. 

Stommel considers still another more complex problem, when water ex- 
change, as in the second problem, is not given as independent, but is deter- 
mined itself in turn by the difference of densities. This problem leads to a 
system of two non-linear equations, which are investigated by methods of the 
theory of stability (on the corresponding T-S diagrams stable nodes and a 
stable focus appear). Here we will not consider Stommel’s third problem, 
which is considerably more abstract in nature, but will proceed to  consider 
the analogy of Stommel’s first problem with the problem of the growth and 
decay of the ice sheet in the sea (Mamayev, 1964a). 

In studying the situation of ice in the freezing regions of the oceans and 
seas, the question of simultaneous change in the process of growth or decay 
of the area of distribution of the ice sheet and the thickness of the ice is of 
great importance. It is known that a large number of investigations are de- 
voted to questions of the formation and destruction of the ice sheet, but only 
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one side of the problem is considered in the majority of them, namely the 
question of change in the thickness of ice under the influence of various con- 
ditions. Studies, however, devoted to the investigation of the simultaneous 
change of both factors of ice formation - the area of the ice sheet and the 
thickness of the ice, can literally be counted on the fingers of one hand. Mean- 
while, this question is extremely important, in particular, from the point of 
view of forecasting. Thus, for example, if the analytical link is known between 
these factors of ice formation at different moments in time, it should be 
possible to judge the thickness of the ice flows and their passability from data 
on the area of the floes obtained as a result of aerial reconnaissance. The solu- 
tion of the inverse problem would prove possible: from several measurements 
of the thickness of the ice to form an idea of the area of the ice sheet in the 
given basin. 

Among the studies devoted to the investigation of the simultaneous change 
in the area of the ice sheet and its thickness, the article of Nazarov (1963) is 
highly interesting. In it, the graph showing the relationship between these fac- 
tors is particularly worthy of note; this graph, obtained by Nazarov by an 
empirical method, is reproduced here in Fig. 54. The dependence between the 
area and the thickness of the ice in the process of growth of an ice sheet, 
according to Nazarov, is determined by the formula F = J h ,  where F is the 
area of the extent of the ice and h its thickness (both quantities in percen- 
tages of their maximum values). 

Considering Nazarov’s graph (Fig. 54), the author of the present work drew 
attention to the remarkable analogy of this problem with Stommel’s first 
problem of the simultaneous change of temperature and salinity in the process 
of non-stationary thermohaline convection, when in the process of develop- 
ment of convection the change of temperature considerably anticipates, in any 

F% 

Fig. 54. Relationship between the area of ice F% and its thickness h% in the process of growth (solid 
line) and decay (broken line) of the ice sheet, according to Nazarov (1963). 
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case in the original stage of the process, the change of salinity, and, moreover, 
this takes place owing to the fact that the transfer of heat occurs with greater 
velocity than the diffusion of salts. 

We see something similar in Nazarov’s graph; in the initial stage the growth 
of the area of ice proceeds more quickly than the increase in its thickness; in 
the final stage, when the sea is covered by an almost solid sheet of ice, further 
growth takes place practically only because of an increase in its thickness. 

The analogy noted led the author to the idea of applying Stommel’s theory 
to the study of the process of growth bf an ice sheet, extending it also to the 
inverse process - the process of decay. Below a corresponding elementary 
analytical theory of the growth and decay of an ice sheet is formulated, while 
its results are represented on the s - h plane (s is the area of ice, h the thick- 
ness of the ice), which, thus, is considered an analog of the S- T plane. 

The change in area s of a solid (unbroken) ice sheet and its thickness h in 
the process of growth may be expressed in a first approximation by the follow- 
ing obvious equations: 

3 = 4 s L - s )  d t  
[46.8] 

where t is time, sL the limiting area of the ice sheet (in case the sea freezes 
over completely, sL represents its area), h, the limiting thickness of the ice, 
(Y and P the coefficients of proportionality which can generally be called the 
coefficients of growth of the area and of the thickness of the ice respectively. 
Equations [46.8] are the most simple in studying the process considered: 
thus, for example, the first equation means that a change in the area of the 
unbroken ice is proportional to the area of clear water, sL - s. These equa- 
tions, as well as their solutions, are analogous to the corresponding simplified 
equations of heat conduction and salt diffusion of Stommel [46.1], with the 
difference that area s is used instead of temperature, and thickness h instead 
of salinity. Following Stommel; let us make equations [46.9] dimensionless, 
introducing the following designations: 

Then equations [46.8] can be rewritten in the following form: 

[46.9] 
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The solutions of equations [ 46.91 at initial condition x = 0, y = 0 when 
T =  0 are: 

[46.10] 

From these equations it follows, in particular, that y + 1, x - 1, when 
~ + m .  We must consider the value of the dimensionless coefficient 6. The 
conditions observed in nature indicate to us that the area of the ice, at least 
in initial conditions, increases more rapidly than its thickness. Indeed, at the 
beginning of ice formation all the visible area of the calm sea (other conditions 
being equal) is rapidly covered by a thin crust of ice, and this process, under 
identical external conditions, proceeds the more quickly the larger the area of 
the sea; and only when the growth of the ice area begins to be hindered by the 
condition of its approaching the limiting value st, does the thickness begin to 
predominate in the growth. Therefore, it is obvious that we must usually take 
it that the coefficient of growth of area is greater than the coefficient of 
growth of thickness, a > 0, and, accordingly, that S < 1. In Fig. 55, in that 
part of it which lies between the bisector of the coordinate angle and the axis 
of the ordinates, are shown the “curves of growth” of the ice, plotted from 
equations [ 46.101 at various values of coefficient 6 ,  namely 0.1 ; 0.2; and 0.4, 
as well as isochrones T = 0.5; 1; 2; 3; 4 and 5 .  In this part, the graph, repre- 
sented in Fig. 55, is similar to Stommel’s graph (Fig. 52). 

The equation of the “curve of growth” in the x,y plane is easy to obtain, 
by eliminating parameter T from equations [ 46.101 ; as a result of this elimi- 
nation we obtain: 

Y 

1.0 

c 0.5 

0 

0 w 

.-  
L 

k 

0 0.5 1.0 

Thickness of ice 

Fig. 55. Curves of growth and decay of an ice sheet at different values of the coefficient of growth 
(decay) 6 .  The graph also shows isochrones for 7 = 0.5; 1; 2; 3; 4; 5 and isolines of the equal volume of 
ice for r = 0.04; 0.16; 0.36; 0.64 (Mamayev, 1964d). 



236 ANALYTICAL THEORIES OF T-S CURVES 

y = 1 - (1 - X ) l ’ &  [46.11] 

Let us note that when a! = /3 we have 6 = 1, and both equations [ 46.101 will 
become identical: 
y = x = 1 - e-7 [46.12] 

The “curve of growth” will coincide in this case with the bisector of the 
coordinate angle. It is obvious that for basins of different area the “curves of 
growth” will be different. For a basin of infinite area, both the area of the ice 
and its thickness will grow, apparently, with equal intensity (other conditions 
being equal); for this case 6 = 1. On the other hand, a basin of small area (lake) 
will be rapidly covered with ice and further growth will take place only owing 
to the thickness of the ice; in this case the “curve of growth” will reach its 
asymptotic value more rapidly and with a smaller thickness of ice. Thus, for 
example, when 6 = 0.1 and 6 = 0.4, to the same area of ice, let us say y = 0.95 
reached at the moment of time r = 3, correspond, as may be seen from Fig. 55 .  
various thicknesses of ice, namely x = 0.26 and x = 0.70 respectively. 

Let us now consider the question of the change of volume of ice in the 
process of growth. Having designated volume by the letter q and introducing 
dimensionless volume r ,  we have: 

q = hs = s&xy = qLxy 
[46.131 

where qL = sLh, is the limiting volume of ice. Substituting in [46.13] the 
results of [46.10] we obtain: 
r= (1 -e -“ ’ ) (1 -e -~ )  [46.14] 

It is easy to obtain the differential equation of the growth of volume of 
ice, bearing in mind that: 

d r = x d l + y d x  
dr dr dr  [ 46.151 

Substituting in 146.15 1 the values of the derivatives determined by equa- 
tions [46.9], we obtain: 

d ’ = x ( l  - y )  + 6y(l -x )  dr 

or, bearing in mind [ 46.101 : 

146.161 
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It is easy to verify by differentiation by T of equation L46.141 that it is the 
solution of equation [46.16]. 

In Fig. 5 5  are plotted the isolines of the volume of ice r = 0.04; 0.1 ; 0.36 
and 0.64. It is natural that the volume of ice in this figure will be formed for 
different moments of time by the rectangles inscribed in the hyperbolic iso- 
lines of volume, and in such a way that the free (not lying on axes x and y )  
summit of the rectangle lies on the corresponding “curve of growth” and 
slides along it with time, moving when T -+= to its maximum value r = 1, i.e., 
to the area of the entire graph. In the case 6 = 1 we have again x = y ,  and the 
volume of ice will be represented by squares, the free summit of which lies on 
the bisector of the coordinate angle. 

It is appropriate to point out that the family of isolines r is, in the given 
case, a kind of analog of the family of isolines of density (isopycnals) of water 
on the S-T diagram. The change in the density of water in the process of 
simultaneous change of temperature and salinity, considered by Stommel, 
represents, as compared with the change in the volume of ice, a considerably 
more complex process, even given the condition of the linearization of the 
equation of state of sea water carried out by him. The existence of so surpriz- 
ing an analogy between two heterogeneous problems is hardly limited only to 
the foregoing, and probably further interesting comparisons are possible here. 

The curves of growth of the volume of ice with time, i.e., the curves of 
function r = r ( ~ ) ,  represented in Fig. 56 by solid lines, are also of interest. 
These curves are plotted for variousvalues of coefficient 6 from equation 
[46.14], and we see from their consideration that the velocity of growth of 
ice changes substantially depending on the interrelationship (determined by 
coefficient 6) according to which the area of ice and its thickness change. 

Let us now consider the inverse process - the process of decay of ice. It is 

Fig. 56. Curves of the relationship of the volume of ice to time in the process of growth (solid lines) 
and decay (broken lines) of an ice sheet at different values of the coefficient of growth (decay) 6 
(Mamayev, 1964a). 
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obvious that it can be described by the following equations different from 
[46.8] : 

[46.17] 

Indeed, the decrease in the area of ice on decay is no longer proportional 
to the area of clear water sL - s, as was the case in the process of growth of 
ice, but to the area of the existing ice s. In equations [46.17] a and 0 are the 
coefficients of the decrease of area and thickness of ice respectively, which 
generally can be equal to the corresponding coefficients of growth (for this 
reason we keep the same letter designations for them). The first equation of 
146.171 was solved by Zubov ( 1949,  in a somewhat different form, he was 
considering the increase in the area of pure water in the process of ice decay. 

to the form: 
Introducing the same dimensionless quantities, we reduce equations [ 46.171 

d y =  -Y d r  [46.18] 

The solutions of these equations at initial conditions y = 1, x = 1 when r = 0 
are : 

[46.19] 

The elimination of parameter r from equations [46.19] leads to  the follow- 
ing expression: 
y = x l / a  

Finally, the change of dimensionless volume is determined, according to 
[46.15], by the equation: 

the solution of which is the product of equations [46.19] : 

[46.20] y = e- d 

Fig. 55 also represents the “curves of decay” (they lie between the bisector 
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of the coordinate angle and the abscissa axis) plotted for the same values of 
coefficient 6 as the “curves of growth”. The decrease in the volume of ice in 
the process of decay, given the same condition 6 < 1, is shown by broken 
lines for the two values of 6 ,  equal to 0.1 and 1 .O, in Fig. 56. From a compari- 
son of the curves of growth of volume of ice and the curves of its decrease, we 
may see that the destruction of the ice sheet proceeds, everything else being 
equal, considerably more intensively than its growth. This fact was pointed 
out by Zubov (1945), who drew attention to the ‘‘occasional exceptionally 
rapid disappearance of large masses of ice in the southern part of the Arctic 
Basin in the course of the polar summer, creating the impression of “melting 
before our eyes”. Zubov explains this by the influence of the “internal decay” 
of the sea ice, which takes place thanks to the presence of brine in the ice; as 
we see, one may come to the same conclusion proceeding from the most 
general assumptions. 

[46.9] and [46.18] are simultaneous in the sense that they describe the direct 
and inverse stages of a closed circular process. In the given specific case, under 
the physical assumption taken to the effect that the increase (decrease) in the 
area of ice proceeds more intensively than an increase (decrease) in the thick- 
ness of the ice (6 < l) ,  the circular process proceeds clockwise (Fig. 55) .  It is 
clear that from the physical point of view the case is also not ruled out when 
the process can proceed counter-clockwise *. 

Recalling again Stommel’s problem of thermohaline convection and com- 
paring it with the problem just considered, we cannot help coming to the 
conclusion that they are both particular cases of a more general problem of 
cyclic processes. In this case, they are of broad significance and are the 
simplest for the description of reversible (but, apparently, not self-reversible) 
thermodynamic and physico-chemical processes. 

To draw some brief conclusions, let us note the main points: equations 

47. THE DETERMINATION OF THE COEFFICIENT OF MIXING FROM T-S CURVES (JACOBSEN’S 
METHOD) 

As early as 1927 Jacobsen had proposed a graphic method of determining 
the coefficient of mixing from two T-S curves successive in time. Jacobsen’s 
method, extremely simple and elegant, won great popularity in the oceano- 

* In water basins of small area (lakes), solidly covered by an ice sheet, the decrease in the thickness of 
ice in the process of decay can, as V.L. Tsurikov pointed out to the author, proceed more rapidly than 
a decrease in its area. In this case, obviously, it is necessary to take 6 > 1. The corresponding ‘‘curve of 
decay” (for 6 = 2.5) is represented in Fig. 55 by a broken line lying between the ordinate axis and the 
bisector of the coordinate angle. 
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graphic literature. Jacobsen’s derivation is reproduced in the monographs of 
Shuleikin (1 953) and Defant (1 96 l), Jacobsen’s formula was again obtained 
by a different, simpler method by Okada (1938) and Proudman (1953). The 
latter author extended Jacobsen’s formula to various types of T-S curves, 
while Shtokman (1 943) analyzed its correctness proceeding from the analyti- 
cal theory of T-S curves. Ivanov (1 944) considered the question of the deter- 
mination of the coefficient of mixing from T-S curves in the case of mixing 
of four water masses. 

of all, along any T-S-z curve the following relationships are valid: 
Let us derive Jacobsen’s formula by the method proposed by Okada. First 

and : 

[47.1] 

[47.2] 

(in obtaining relationship [47.2] it should be borne in mind that dT/dS is a 
complex function: T is a function of S ,  while S in turn is a function of z, 
which must be taken into account in differentiation). Substituting [47.2] in 
the equation of heat conduction [ 39.51 and taking into account the equation 
of diffusion [39.5], we obtain: 

whence : 

[47.3] 

[47.41 

(here it is assumed that kT = ks). Let us now consider the T-S-z curve repre- 
sented in Fig. 57 by the heavy line, and the three points on it, A ,  0 and B 
with values of the parameters (zo -+Az, to), (zo, to) and (zo ++Az, to), respec- 
tively, as well as point P of the intersection of the chord AB and line z = zo;  
point P has the values of parameters (zo, to + A t ) .  

Temperature and salinity in points A , B and P can be expressed approxi- 
mately in the form of a sum of the first terms of a Taylor expansion in the 
vicinity of point 0, namely: 

[47.5] 
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8‘ 8 

aT Tp = To + - , A t  
a t  

as 
at 

Sp =So +- A t  

[47.5] 

where the indexes designate the quantities in the corresponding points. Let us 
now take the equation of the chord AB : 

[47.6] 

(instead of index “B ” we can also write index “P”, since point P lies on the 
chord) and let us substitute in it expressions [47.5]; as a result after some 
simple transformations we will obtain: 

[47.7] 

The expression appearing in this formula in the first term of the right-hand 

A’ 

Fig. 57.  Explanations in the text (according to Okada, 1938). 
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side in square brackets is equal to zero along the T-S-z curve, according to 
formula [47.11; therefore, bearing in mind expression [47.2] also we can 
write this formula in the form: 

[47.8] 

Substituting into [47.8] instead of the square bracket in the left-hand side 
the expimion determined by formula [47.4] , we finally obtain Jacobsen’s 
formula: 

[47.9] 

Proudman (1 953) had proposed an even simpler derivation of formula 
[47.9] and extended it to the case of vertical and horizontal stationary heat 
conduction (and diffusion) in the presence of advection, described by equa- 
tions [39.6], as well as to the case of non-stationary horizontal heat conduc- 
tion and diffusion. The corresponding formulae for the determination of the 
coefficient of mixing have the following form: 

kz - ( A z ) ~  
u 8Ax 

-- - 

(Ay12 ky = - 
8At 

[47.10] 

[47.11] 

[47.12] 

(the indexes in the last four formulae designate the direction of mixing). 
In oceanographic literature there is a number of examples of the applica- 

tion of Jacobsen’s formula; let us consider two of them. Fig. 58 represents 
the T-S curves of four stations of the R.V. “Meteor”, made in the southern 
part of the Atlantic Ocean on a section along the western basin. Combining 
six pairs of T-S curves from the number of four mentioned, Defant (1 954), 
applying formula [47.10] , obtained the values of the quantities kz/u as 
shown in Table IX. 

The mean value of the ratio k,/u amounts to 0.74 cm, and at mean velocity 
u = 10 cm sec-l (the extremes of the T-S curves considered relate to the core 
of the Antarctic Intermediate Water, which spreads to the north with approxi- 
mately the same velocity), the quantity of the coefficient of mixing amounts 
to 7.4 cm2/sec, which is in full agreement with the order of magnitude of the 
coefficient according to determinations by many other methods. 
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Fig. 58. Determination of the coefficient of mixing by pairs of T-S curves in the Atlantic Ocean from 
data of the R.V.’“Meteor” (Defant, 1954). 

TABLE IX 

Values of the quantities k,/u (After Defant, 1954) 

Pairs of stations AX AZ kZlU 

(km) (m) (cm) 

160-202 600 215 0.96 
160-297 3050 380 0.59 
160-290 4150 485 0.71 
202-297 2450 350 0.625 
202-290 3550 510 0.92 
297-290 1100 220 0.55 

The second example relates to the extremes of T-S curves, corresponding 
to the sub-tropical subsurface maximum salinity in the equatorial part of the 
Atlantic Ocean; on the equator this maximum coincides with the core of the 
subsurface equatorial countercurrent - the Lomonosov Current. Let us select 
two pairs of T-S curves from the data of the stations of the R.V. “Crawford”, 
made on a section along the equator (Fuglister, 1960). The quantities k,/u, 
obtained on the basis of the application of the same formula [47.10] , have the 
values which are shown in Table X (Mamayev, 1964b). 

The ratios of k,/u here, as we see, are approximately one order less than 
for the region of distribution of the Antarctic Intermediate Water; however, 
having taken the mean value of the coefficient k, = 10 cm2/sec, for both 
pairs we will obtain values of velocity u = 200 and 222 cm/sec respectively. 
These values, to a greater or lesser extent, correspond to the velocity of the 
Lomonosov current in its core. 
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TABLE X 

Values of the quantities kz/u (after Mamayev, 1964b) 

Pairs of stations A x  AZ kzlu 
(km) (m) (cm) 

488-499 1600 80 0.05 
480-488 1000 60 0.045 

Formula [47.9] can be to a certain extent generalized to cover the case of 
inequality of the coefficients of heat and salt exchange. Thus, if kT # ks , 
instead of [47.3] we obtain: 

whence: 

- - _ - - -  1 aT 1 d T  as- a2T (aSr 

and instead of [ 47.41 follows formula: 

kT at ks dS a t  a s 2  az  

[47.13] 

[47.14] 

[47.15] 

Thus, instead of formula [47.81 we obtain, on the basis of [47.15], ex- 
pression: 

whence: 

( A d 2  
8At (dT\ as 

147.161 

[47.17] 

at \ d s j o  a t  

When kT = k,, from [47.17] we have Jacobsen’s formula. 
Formula [47.17] by itself yields very little, but it can be somewhat simpli- 

fied for the particular case when the T-S-z and T-S-t curves are perpendicular 
in any point; in practice such cases may be met with fairly often, and Fig. 57 
corresponds precisely to such a version. Let us write the equation of the 
straight line OP (Fig. 57): 
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[47.18] 

where the tilda designates the tangent of the angle of slope of the tangent to 
the T-S-t curve (unlike the tangent of the angle of slope of the tangent to the 
T-S-z curve) in the same point 0. If both of these curves are orthogonal in 
point 0, then the condition of perpendicularity of two straight lines takes 
place : 

Consequently: 

1 Tp - To = - - 

[47.19] 

[ 47.201 

From this formula on the basis of the last two formulae of [47.5] we ob- 
tain : 

[47.21] 

Let us substitute this expression in formula [47.17] and then, reducing the 
numerator and denominator of the right-hand side by aS/aT and introducing 
(for brevity of notation) the designation a = (dT/dS), we obtain: 

[47.22] 

Finally, let us introduce the designation for the ratio of the coefficients 
kT/ks = p > 1 ; then, having divided [47.22] by k,, we will obtain the formula 
for the determination of the coefficient of turbulent heat conduction: 

[47.23] 

and having divided [47.22] by kT - the formula for the coefficient of turbu- 
lent diffusion: 

[ 47.241 

The corrective multipliers to Jacobsen's formula [47.9], systematized in 
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the form of the last two formulae, are > 1 in the first and < 1 in the second of 
the formulae; accordingly, Jacobsen’s formula [47.9] gives a lower result for 
the coefficient of turbulent heat conduction and a higer one for the coeffi- 
cient of diffusion. Consequently, it yields some average result, which, general- 
ly speaking, could have been expected in advance. 

At first glance formulae [47.23] and [47.24] are not very promising, since 
it follows from them that for the separate determination of the coefficients 
of mixing it is necessary to know their ratio without knowing in advance the 
coefficients themselves; however, the point is that it  is easier to determine 
this ratio than the coefficients themselves. This question is considered in 
detail from theoretical premises in a work of the author (Mamayev, 1958). 

So far as the tangent of the angle of slope of the tangent to the T-S curve 
is concerned, it can be determined just as easily as all the remaining param- 
eters which enter into formula [47.9]. For example, it  may be indicated that 
the quantity a for all three tangents represented in Fig. 58 equals approxi- 
mately - 2. 

Let us quote the example of the calculation of coefficient ks from formula 
[47.24] for a pair of T-S curves of stations 1607290 (Fig. 58). Having taken 
as an example /3 = 5 ,  we obtain (when a = -2): ks = 0.71 X 0.84 = 0.60. 

The investigation of the ratio of the coefficients on the basis of formulae 
[47.23] and [47.24] has, in our view, interesting prospects. 

The question of the effect of the inequality of the coefficients of mixing 
on the dynamics of the waters of the ocean was considered from other pre- 
mises by Shumilov (1 964). Considering the divergence of the extremes of 
temperature and salinity in the process of mixing provided the coefficients of 
exchange are unequal, he came to an extremely interesting and important 
result, having plotted a chart of the divergence of the depths of the extremes; 
in the Southern Ocean this chart theoretically confirms the diagram of distri- 
bution of Antarctic Bottom Water, as obtained earlier from purely oceano- 
graphic considerations, as well as substantially improving the picture of the 
propagation of bottom waters. 



CHAPTER 7 

METHODS OF T-S ANALYSIS 

48. TYPES OF T-S RELATIONSHIPS OF THE WATERS OF THE OCEAN 

The real T-S relationships of the waters of the ocean plotted on the T-S 
diagram serve as the immediate subject of thermohaline analysis. The “back- 
ground” is also plotted on the T-S diagram, reflecting the equation of state 
of sea water; a family of isopycnals (or isosteres) usually serves as such a 
“background”. The analysis of the T-S relationships, together with the field 
expressing the equation of state of sea water, allows us to take into account 
the most important factors which determine the nature of the transformation 
and interaction of different waters; in particular, the family of isopycnals 
allows us to take account, as was already said above, of the effect of contrac- 
tion on mixing of sea waters. This question will be considered again in detail 
below (Sections 55-57). In addition, taking into account the nature of the 
field of isopycnals in the analysis of the T-S relationships of water masses is 
the basis for the isopycnic analysis of water masses. 

Before turning directly to the methods of thermohaline analysis, we should 
draw up a classification of the types of T-S relations which can be plotted on 
the diagram. Among the many possible representations of the thermohaline 
field of the ocean on the T-S diagram, we should point out the main types of 
T-S relations; we shall briefly describe and illustrate these main types by 
specific examples. 

(1) T-S-z curves. Clusters of T-S-z curves. The T-S-z curves represent on the 
T-S diagram the distribution of temperature and salinity along the vertical at 
an oceanographical station. For an oceanographical section, very often aggre- 
gates of T-S curves are plotted which form “clusters” or “fans”. “Clusters” 
of T-S curves are characteristic for central ocean regions (Fig. 34), “fans” for 
so-called “transitional” regions characterized by a considerable horizontal 
transformation of water masses (Fig. 69). The question of the analysis of “clus- 
ters” and “fans” of T-S curves is considered in detail in Section 53. 

Sometimes an aggregate of curves is not drawn, but an averaging curve is 
plotted (or not plotted) through a set of T-S-z points. Examples of computer- 
plotted clusters of T-S-z points may be found in the Oceanographic Atlas of 
the International Indian Ocean Expedition (Wyrtki, 197 1). 

Finally, we can outline on the T-S diagram the region in which all T-S 
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curves for a particular area of the World Ocean will lie; such regions on the 
T-S diagram may be called fields of T-S curves. The fields of T-S curves for all 
the oceans are represented on the generalized T-S diagram of Dietrich (1 950, 
1964), reproduced in Fig. 96. 

ity in some point of the ocean due to  periodic processes, or a change in the 
process of transformation. In the first case, the T-S-t curves, as a rule, prove 
to be closed; in the second case, the curves turn out to be interrupted, and for 
a number of points (in particular, by depth) form families which combine in 
a certain way with families of T-S-z curves. The question of the relationship of 
curves by parameters z and t was considered in detail in the preceding chapter 
in the example of analytical T-S curves. 

(3) T-S-I curves. Relationships of this type are plotted for horizontal (or al- 
most horizontal) distances ( I ) ,  primarily in the following three cases: 

(a) for the surface of the sea (or any other horizontal surface). Fig. 59 
represents such T-S curves for the surface of the sea, averaged for the entire 
World Ocean, according to  Wust et al. (1 954). 

as a basis for carrying out isopycnic analysis; set out in detail in Timofeev 
and Panov (1 962). 

(c) For any characteristic quasi-horizontal surface. Most often a surface is 
selected which characterizes the core of an intermediate water mass, for 
example, the surface of maximum salinity in which the core of the Mediter- 
ranean water mass (Fig. 109) lies, or the surface of minimum salinity which 
characterizes the position of the core of the Antarctic intermediate water 

( 2 )  T-S-t cuwcs. They characterize either a change in temperature and salin- 

(b) For a selected isopycnic surface; in this case the T-S relationship serves 

T O C  

Fig. 59. Mean T-S relations of surface waters of the World Ocean. A = Equatorial; C = Central; N = North- 
ern Subpolar; S = Southern Subpolar surface water masses of the World Ocean. (After Wust et al., 1954.) 
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mass. The question of the T-S analysis of the transformation of the cores of 
intermediate water masses is considered in Section 62. 

T-S-1 relations can be plotted for quite obvious reasons for other surfaces 
too, say, for a surface of minimum oxygen content in sea water, the speed of 
sound (axis of the sound channel), etc. 

(4) T-S-z-1 curves. Such relations characterize a vertical (or any other) sur- 
face in the ocean, say, a contour formed by two verticals of oceanographic 
stations and two horizontals - on the surface of the sea and at some definite 
depth. It is clear that contours of such nature, having identical area but situ- 
ated in different regions of the World Ocean, will be characterized by con- 
tours on the T-S diagram which have a different area and a different location. 
The relation between the areas and location on the T-S diagram of the differ- 
ent T-S-z-1 contours characterizes, conventionally speaking, the “thermohaline 
tension” of the section, which by its significance is similar to the tension of a 
solenoidal field on a cross-section through a geostrophic current. The example 
of closed T-S-z-1 curves for two sections of the R.V.’s “Crawford” and “Atlan- 
tis,,, almost identical in area and located in the plane of circles of latitude 
40” 15” and 32”30‘S, is represented in Fig. 60. The study of such contours 
is connected with the application of Green’s theorem for a potential T-S field 
(Section 37); this question is an interesting one for further development. 

( 5 )  Statistical T-S relationships, or T-S-n relations. In statistical T-S rela- 

- 
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Fig. 60. T-S contours, corresponding to vertical sections in the ocean, which have approximately the 
same area and are located between pairs of stations: “Crawford” 221 -240, along parallel 40” 15” 
(distance’l522 miles); “Atlantis” 5810-5826, along parallel 32’30’s (distance 1608 miles). Height of 
the contour in the sea: 500 m. 
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tionships a new parameter n appears - frequency (or p - probability). In this 
case, numbers attached to definite T-S points are plotted, which characterize 
the frequency (or probability) in percentages or in absolute quantities of the 
given T-S points in time or in space. For this reason, statistical T-S relations 
are divided into two main types: (a) temporal statistical T-S diagrams (see 
Fig. 90); (b) spatial and volumetric statistical T-S diagrams (see Figs. 9 1 and 
92). 

Statistical T-S analysis will be considered in detail below, in Section 58.  
Such are the main types of real T-S relations of the waters of the World 

Ocean and its seas; there are, of course, and there may be further proposed 
other, intermediate, types as well. However, the possible representations of 
the thermohaline structure of the waters of the ocean on a T-S diagram con- 
sidered are quite sufficient for fullfledged analysis of ocean waters. In the 
subsequent exposition we shall dwell in greater detail on ways and means of 
analyzing all these basic types, after having first considered the question of 
thermohaline indexes as they apply to the real water masses of the ocean. 

49. WATER MASSES AND THERMOHALINE INDEXES 

The concept of primary water masses homogeneous in temperature and 
salinity (which can be represented on the T-S diagram in the form of indivi- 
dual thermohaline indexes), which underlies the analytical theories of T-S 
curves and the methods of their analysis, does not correspond, as has already 
been said, to reality, for in the World Ocean we observe continuous distribu- 
t i m  of temperature and salinity vertically and horizontally. Therefore, atten- 
tion should be drawn to the relation of the real water masses of the ocean to 
their images on the T-S diagram, in particular to the thermohaline indexes. 

The definition of a water mass of the ocean was given by Dobrovol’skii 
(1 961 ); this definition is a s  follows: “The term water mass should be used 
to describe some relatively large volume of water, formed in a certain region 
of the World Ocean - the home or source of this mass, which possesses over 
a long time almost constant and continuous distribution of physical, chemical 
and biological characteristics, which make up a single system, and w.hich dis- 
places itself as one single whole”. We see that the concept of a real water 
mass of the World Ocean is considerably wider than the concept which can 
be formed within thermohaline analysis; many characteristics of a water mass 
remain outside the scope of consideration in such analysis, although part of 
them can be represented on the T-S diagram parametrically. 

On the other hand, a kind of generalization of the concept of the water 
mass is possible within the framework of T-S analysis; by water mass we do 
not necessarily have to refer to a discrete volume of water existing in the 
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ocean, homogeneous or almost homogeneous in temperature and salinity. If, 
say, stationary values of temperature and salinity are observed on the surface 
of the ocean in some point, the corresponding thermohaline index may be 
considered an indicator of the water mass. One may imagine that such a ficti- 
tious water mass extends infinitely into the atmosphere, while alongside, in a 
neighboring point, another water mass also extends into the atmosphere. The 
steadiness of temperature and salinity in the point considered develops under 
the influence of climatic and other conditions; however, this constancy may 
conventionally be considered the consequence of the uninterrupted inflow of 
heat and salts from the fictitious water mass considered. Considerations of 
this nature were apparently expressed for the first time by Sverdmp et al. 
(1 9421, and he called such a water mass without real thickness a “water type”. 
As an example of such “point” water masses one may cite the four main sur- 
face water masses of the World Ocean singled out by Wust et al. (1 954) and 
shown in Fig. 59. These water masses, obtained as a result of the considera- 
tion of T-S characteristics on the surface of the ocean, do not have any real 
volume; however, we are fully entitled to connect their thermohaline indexes 
by straight lines of mixing and to consider the surface waters of any latitude 
as the result of horizontal mixing of the corresponding water masses, although 
in point of fact the real case of the appearance of “mixtures” of primary 
waters is simply the climatic zonality of surface characteristics. 

The foregoing applies to an even greater extent to waters mixing along the 
vertical; reference has already been made to this above, particularly in Chap- 
ter 6. Isolating the thermohaline indexes of the original “pure” water masses 
is necessary not only in order to define the boundaries between the water 
masses, but also to determine the percentage content of the waters and other 
numerical characteristics of interaction of water masses. The thermohaline 
indexes of the main primary water masses of the ocean are specified on the 
generalized T-S diagrams given in Chapter 8 (Figs. 97- 100). 

In contradistinction to the “water type”, characterized by one T-S point, 
Sverdrup singles out the “water mass” as an object characterized on the T-S 
diagram by a rectilinear (or curvilinear) T-S relationship. An example of such 
water masses (determined also within the framework of thermohaline analysis) 
are the Central Water Masses of the oceans having almost rectilinear T-S rela- 
tionships (Fig. 29). Such a view agrees to a certain extent with the determination 
of the boundaries of water masses on the basis of the geometry of T-S curves, 
with the difference in favor of the latter that makes it possible more clearly 
to determine the boundary of the water mass by the line of its 50% content 
in the triangle of mixing. 
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50. ANALYSIS OF WATER MASSES USING T-S-z CURVES 

The most common case of mixing of water masses under the real conditions 
of the World Ocean is the vertical mixing of two, three and four superimposed 
water masses. The basis for the study of the vertical mixing of waters on the 
T-S diagram is the analytical theory of T-S curves for an ocean of infinite 
depth, considered in detail in the preceding chapter. It was already indicated 
there that the theory of T-S curves for a semi-infinite and finite sea introduces 
substantial corrections in the analysis of real T-S curves; however, the theory 
for the sea of infinite depth continues to remain the basis of analysis of curves, 
while the results of the latter two theories must be drawn upon to clarify the 
picture of the interaction and transformation of water masses obtained by 
applying the theory for the infinite sea as a first (and fairly close) approxima- 
tion. 

In chapter 6 it was indicated that the practical outcome of the analytical 
theory of T-S curves took the form of seven fundamental theorems of the 
“geometry of T-S curves” (p. 203). Inasmuch as part of the theorems concern 
not the stationary T-S curves, with which we usually have to deal, but T-S 
curves changing on the same vertical by time, in practical analysis it is more 
convenient to use rules resulting from the “geometry of T-S curves”. These 
rules were proposed by Shtokman (1944) and they may be stated in the fol- 
lowing way : 

(1) The boundary between two water masses should be considered the 
depth at  which the percentage content, as determined by the straight line of 
mixing or the triangle of mixing, amounts to 50% for each of the water masses. 

(2) If the T-S curve is close to a straight line, then the straight line of mixing 
should be used for its analysis. In this case, the indexes of the two mixing 
water masses lie on the ends of the curve and correspond to the surface and 
deep water masses. 

(3) If the T-S curve consists of two or more straight (or almost straight) 
sections, connected among each other, then there are three or more water 
masses. The quantity of water masses is equal to the quantity of extremes (or 
conjugations) plus two (in Fig. 6 1, J,  D and plus A and B ,  see note on p. 253). 

(4) The determination of the T-S indexes is made by drawing tangents to 
the straightened-out sections of the T-S curve. In this case the intersection of 
the tangents in the region of the extreme (conjugation) indicates the T-S 
index of the intermediate water mass (water masses J and D in Fig. 6 1); the 
ends of the branches of the T-S curve correspond to the surface and bottom 
water masses (water masses A and B in Fig. 61). 

(5) For the determination of the boundaries and percentage content of the 
water masses at different depths, triangles of mixing (triangles A JD and J D B  
in Fig. 61) are plotted on the T-S indexes as apexes. 
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Fig. 61. Graphic analysis of the T-S curve of station No. 4 of the R.V. “Meteor” 

(6) The principal median of the triangle of mixing (Jd and Dc in Fig. 6 1 ) 
drawn from that apex which corresponds to the intermediate water mass to 
the middle of the opposite side (called the base of the triangle of mixing), 
intersects the T-S curve in that point where parameter z characterizes the 
position of the core of the intermediate water mass. 

(7) The secondary medians of the triangle of mixing (ad and ae; ec and bc 
in Fig. 6 1 ), drawn from the middle of the base of the triangle of mixing to 
the other two sides, intersect the T-S curve in those points of it where param- 
eter z corresponds to the boundaries of the intermediate water mass. The part 
of the T-S curve contained between the secondary medians of the triangle of 
mixing corresponds to the intermediate water mass (see also Fig. 41). 

Let us consider the application of the “geometry of T-S curves” to  the 
analysis of the T-S curve represented in Fig. 61 of station No. 4 of R.V. 
“Meteor”, occupied on 7-8 June, 1925 in coordinates 41’27.0’s 52’47.0’W 
(Atlantic Ocean). I t  is characterized by the presence of three extremes (at 
depths of about 100,700 and 2,500 m) * and two branches: surface (from 0 
to 100 m) and deep (from 2,500 to 5,000 m). Thus, at the given oceano- 
graphical station the existence of five water masses should be assumed. Let 
us consider these water masses. 

* The extreme at the depth of about 50 m is not considered, since it is not stationary: the section of the 
T-S curve from 0 to 50 m is characterized by an unstable stratification, temporary in nature. 
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(1) The water mass, characterized by the end of the surface branch (point 
A’) ,  represents the surface water mass, lying in the layer from 0 to  approxi- 
mately 75-100 m. In the majority of cases, this surface water mass, subjected 
to the influence of the processes taking place on the surface (wind mixing, 
heat exchange with the atmosphere, etc.), is excluded from stationary T-S 
analysis (Sverdrup et al., 1942). In any case, the surface branches of the T-S 
curves from 0 to 100 m of the majority of stations of the World Ocean are 
characterized by uncertainty caused by the unsteadiness of the processes 
mentioned above. 

(2) Water mass A , characterized by maximum salinity, is the South Atlantic 
Central Water (Sverdmp et al., 1942), formed in the region of the Subtropical 
Convergence (between 30 and 40”s)  and lying in the layer between approxi- 
mately 100 and 300 m.,This water mass does not have any single definite T-S 
index, since it is zonally transformed (see Section 6 1); consequently, it has an 
infinite set of T-S indexes, determined by the latitude of the place, and the 
locus of all these T-S indexes is a straight line joining points (6°C; 34.5’/00) 
and (18°C; 36.0°/,). T-S index A ,  determined by the intersection of tangents 
A’A and JA to  the branches of the T-S curve, lies almost on the straight line 
mentioned and represents a zonal modification of the South Atlantic Central 
Water for the region of ,“Meteor” station No. 4. 

(3) Water mass J ,  characterized by minimum salinity is the Antarctic Inter- 
mediate Water, formed in the region of Antarctic Convergence. The T-S index 
of this water mass, determined by Wust, is: T = 2.2”C; S = 33.80’/00 (Sverdrup 
et al., 1942). We observe this temperature and salinity on the surface of the 
sea in those places where the formation of the intermediate water mass takes 
place. 

(4) Water mass D is the South Atlantic Deep Water. The question of the 
origin of this water mass is not quite clear. On the one hand, it is assumed 
that it’ is the result of the mutual transformation of the Antarctic Intermediate 
and the Antarctic Deep Water masses, i.e., according to  Dobrovol’skii’s (1961) 
terminology it is a secondary ocean water mass. On the other hand, the opim 
ion is expressed that North Atlantic Deep and Bottom Water plays the main 
role in its formation. I t  is also quite likely that the South Atlantic Deep Water 
has its center of formation in the Southern Ocean and that it is thus a main 
ocean water mass (according to the terminology of Dobrovol’skii, 1961). The 
T-S index of this water mass (T = 2.9”C; S = 34.85’0) is determined by the 
intersection of the tangents to the branches of the T-S curve of “Meteor” 
station No. 4. 

( 5 )  Antarctic Bottom Water B, observed in the South Atlantic, is formed 
mainly in the Weddell Sea. Its thermohaline index, according to Sverdrup et 
al. (1 942), is T = -0.4”C; S = 34.66%’. 

Such are the water masses and their thermohaline indexes in the area of 
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Fig. 62. Curves of vertical temperature and salinity distribution, as well as the position of water masses 
at “Meteor” station No. 4. 

“Meteor” station No. 4, i.e., in the southwestern part of the South Atlantic. 
In Fig. 6 1 triangles of mixing AJD and JDB are plotted on these T-S indexes. 
From the intersection of the T-S curve by the secondary medians du, de, ce 
and cb we determine that the boundaries between water masses A and J, J 
and D, D and B lie at  depths of 200, 1,000 and 3,500 m respectively. The 
boundaries between the water masses, as well as the curves of vertical distri- 
bution of temperature and salinity, are represented in Fig. 62. 

Such is the process of analysis of a T-S curve of an oceanographic station. 
Having determined as a result the boundaries between water masses for a 
number of stations, we can characterize the distribution of the water masses 
of the region studied in sections or in charts. I t  goes without saying that the 
analysis of T-S curves is far from being always as simple arid unambiguous as 
it turned out for “Meteor” station No. 4, selected as highly characteristic and 
fairly simple. Often T-S curves of neighboring stations are dissimilar, and 
sometimes it is extremely difficult to determine the T-S indexes, etc. 

or averaged T-S curves, or, finally, idealized T-S curves, but even this does 
not always lead to one unquestionable value: every time the analysis of T-S 
curves represents a research problem and not merely a phase of standard pro- 
cessing. 

As a result it is necessary to consider an aggregate (clusters) of T-S curves, 

5 1. DETERMINATION OF PERCENTAGE CONTENT OF WATER MASSES 

Let us now consider the use of the triangle of mixing to determine the 
percentage content of water masses at different depths both at an individual 
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Fig. 63. Triangle of mixing of water masses A ,  Jand D (lower part). 

oceanographic station and in a section, i.e., the use of the graphic method 
which was mentioned in Section 30. Fig. 63 represents the lower part of the 
triangle of mixing plotted on the indexes of the following water masses as 
apexes: 

is determined from the surface branches of eight "Meteor" stations (No. 86, 
170, 157, 200, 210, 258, 299 and 289) composing a section in the South 
Atlantic along the eastern coast of South America. The T-S curves of these 
stations were chosen by Defant and Wiist (1930) for a description of the 
spread of the Antarctic Intermediate Water Mass. The T-S index of water 
mass A in Fig. 63 is cut off together with the upper part of the triangle of 
mixing; 

A - South Atlantic Central Water. Modified index T = 20°C and S = 36.2"/, 

J - Antarctic Intermediate Water ( T  = 2.2"C; S = 33.8O/,); 
D - South Atlantic Deep Water. Its T-S index (T = 3.5"C; S = 35.0°/,) is 

also modified and determined from the T-S curves of the eight stations men- 
tioned. 

Within the triangle of mixing, indicated in Fig. 63, parts of the T-S curves 
of four of the eight stations mentioned (No. 86, 170, 200 and 289) are plotted. 
For the determination of percentage content it is most convenient to find the 
value of parameter z, corresponding to the percentage content, a multiple of 
lo%, of any of the three water masses; in other words, finding the point of 
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intersection of the T-S curve with the corresponding isoline to determine the 
value of parameter z in this point. Thus, for example, at station No. 289 40% 
of water mass J is observed at  depths of approximately 285 and 900 m. 
Thomsen (1 935), who first applied percentage analysis of T-S curves using 
the triangles of mixing, proposes to determine the percentage content of 
each of the water masses in standard sections. 

The result of the analysis carried out in respect of each of the water masses 
at all the oceanographic stations of the section (region) may conveniently be 
represented in the form of sections and charts. For example, in Fig. 64, repre- 
senting a projection on the plane of the meridian of the section consisting of 
the eight “Meteor” stations mentioned, is shown the percentage content of 
the South Atlantic Central Water A (on top) and the Antarctic Intermediate 
Water J (below). In both figures the regions are shaded where the percentage 
content of the corresponding water mass exceeds 50%. In any point the sum 
must amount to 100% (for this triangle of mixing, water mass D must be 
added to water masses A and J). 

The determination of the percentage content makes it possible to study 
more thoroughly the results, i.e., the determination of the boundaries of the 
water masses, since it gives an idea of the “density” of the corresponding 
water mass. Thus, it follows from Fig. 64 that the “density” of intermediate 
water mass J decreases from the south to the north (see isolines 70 and 60%). 
However, an even more important conclusion follows from both of the last 
figures, namely, that this water mass mixes more intensively with the under- 
lying than with the overlying water mass (the thickness of the isolines above 
the core of the water mass and their rarefaction below). This fact was noted 
by the author earlier in the example of the Mediterranean Intermediate Water 
in the Atlantic (Mamayev, 1960b). 

Thus, the determination of the percentage content of water masses makes 
it possible substantially to improve the picture of the distribution and trans- 
formation of the water masses of the ocean. 

The example considered above relates to the case when mixing of water 
masses is observed along the vertical; however, the triangle of mixing is also 
applicable to the determination of the percentage content of waters in the 
case of horizontal mixing, as well as when two of the three water masses mix 
in a horizontal direction or along isopycnic surfaces. Let us refer to the 
highly significant example of “refined” T-S analysis of the interaction of 
water masses in the region of the coast of Central Brazil between Cab0 Frio 
and Vittoria (Okuda, 1962), where in the process of horizontal mixing we 
find tropical, coastal and “deep” waters. Okuda plotted charts of distribution 
of these water masses on the surface of the sea as well as at levels of 25 and 
50 m, from which it follows that the distribution of the water masses at  
these depths is spotty in nature. Thus, percentage analysis enables us to dis- 
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Fig. 64. Percentage content of Southern Atlantic Central Water massA (above) and Antarctic lnter- 
mediate Water mass J (below) in a meridional section along the eastern coast of South America. 

cover the extremely fine structure of the waters; its possibilities are very 
broad. Incidentally, this was demonstrated for the first time in the work of 
Thomsen (1933,  devoted to the analysis of the interaction of waters in the 
southern parts of the Indian Ocean and Pacific Ocean. 

and horizontally will be considered below in Section 53. 

of two of the four water masses are in a process of horizontal mixing, the 
basis for the determination of the percentage content of the waters in the 
mixture is not the two triangles of mixing, plotted on the four T-S indexes as 
apexes and having one common side (such as triangles AJD and DJB in Fig. 
6 11, but the quadrangle ofrnixing. A quadrangular nomogram was proposed 
by Miller (1950) and elaborated by the author; this question is considered in 
Section 54. 

Another example of when three water masses mix together both vertically 

Finally, the case of mixing of four water masses is possible; if a minimum 

52. TYPIFICATION OF T-S-Z CURVES 

The determination of thermohaline indexes by means of analysis of the 
T-S curves of oceanographic stations in accordance with the analytical theories 
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of T-S curves, with the subsequent determination of boundaries between water 
masses, their percentage ratio, etc., is not the only method of analysis of the 
water masses of the ocean. Apart from this, the typification of T-S curves is 
possible, i.e., their combination in groups following the principle of the simi- 
larity of form of curves, and the division into regions of the ocean - the 
determination of regions with identical types of T-S curves. 

The analysis of water masses, based on the typification of T-S curves, was 
carried out for the first time by Jacobsen (1 929) for the northern part of the 
Atlantic Ocean. The work of Mosby (1 938) was very productive for an under- 
standing of the structure of the water masses not only of the Atlantic but of 
the entire World Ocean as a whole. 

On the basis of the typification of T-S curves Jacobsen broke the North 
Atlantic down into 23 regions *, each of which is characterized by a quite 
definite “cluster” of T-S curves. In the opinion of the author, the zoning of 
Jacobsen is too fractional; thus, the “clusters” of T-S curves for his regions 
XIV-XVII, embracing the Carribean Sea and the region adjacent to it on the 
east, whence the Carribean Sea is supplied with waters of the trade wind cur- 
rents, are very similar. The T-S curves for these four regions are distinguished 
practically only by the length of the surface branches. Therefore, if we take 
into account the zonal (as well as latitudinal) transformation of the surface 
waters, the number of regions can be considerably reduced. Indeed, these 
four regions (XIV-XVII) characterize a genetically homogeneous province, 
the division of which crosswise into four regions is by no means in agreement 
with the principle of the continuity of ocean fields and oceanographic char- 
acteristics. 

Proceeding from the foregoing, the author (Mamayev, 1960a), using the 
data of the IV cruise of the R.V. “Mikhail Lomonosov”, drew up a typi- 
fication of T-S curves with a view to a greater degree of generalization, iden- 
tifying only five regions in the Central North Atlantic. Let us consider the 
corresponding results. 

Concepts about the water masses of the North Atlantic in their most 
generalized form are set forth by Sverdrup et al. (1 942). Sverdrup points out 
that the main feature of the North Atlantic is the presence of two basic water 
masses (the upper 100-m layer, subjected to the considerable influence of 
exchange with the atmosphere and seasonal fluctuations, is not considered 
by him): 

* Tiuriakov (1964) and Tiuriakov and Zakharchenko (1965) repeated Jacobsen’s typification on more 
modern and extensive material; they singled out 26 regions in the North Atlantic, the location of which 
improves the picture obtained earlier by Jacobsen. The map of Tiuriakov’s and Zaharchenko’s regions 
may prove useful for technical purposes. 
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(1) North Atlantic Central Water ( A ) .  Is characterized by a straight section 
of the T-S curve from the point T = 8"C, S = 35.1 Oo/oo t o  the point T = 19"C, 
S = 36.70°/, . The correspondence between T and S is given more exactly in 
Table XI. 

TABLE XI 

Relation between T and S in North Atlantic Central Water 
(According to Sverdrup et  al., 1942) 

8 35.12 + 0.09 
10 35.37 + 0.09 
12 35.63 i 0.09 
14 35.88 i 0.09 
16 35.12 +_ 0.09 

This water mass is formed in the region of the Subtropical Convergence, 
between 35 and 40"N, since in some seasons of the year the horizontal T-S 
curves for the surface of the sea are similar, as was noted for the first time 
by Iselin, to the vertical T-S curves of the Central Water (this region is shown 
on the map - Fig. 102 - by small squares). The North Atlantic Central 
Water lies below the 100-m depth, and the greatest depth of its lower boun- 
dary is equal to 900 m in the Sargasso Sea. 

(2) The Deep and Bottom Water (B) .  Is characterized by temperatures 
between 2.2 and 3.5"C and salinities between 34.90 and 34.97°/oo. The 
thermohaline index of this water mass, according to Jacobsen (1 929), is: 
Tinsit, = 2.5"C; S = 34.90°/oo. The Deep and Bottom Water is formed, as 
Nansen had already pointed out, in the region to the southeast of the southern 
extremity of Greenland (as well as, according to Sverdrup, between the Labra- 
dor Peninsula and the southwestern coast of Greenland), sinking here to  the 
bottom; it is observed at depths above 3,000 m in almost unmixed form 
throughout the whole North Atlantic - in regions where the features of the 
relief do not prevent its penctmtion. 

Between these two basic types of water masses one may observe in differ- 
ent regions three types of intermediate water masses which influence the 
distribution of temperatures and salinities in the intermediate layers of the 
North Atlantic: 

(3) 7he Antarctic Intermediate Water (Ann.  Thermohaline index: T = 
2.2"C; S =  33.80°/00. This water mass is characterized by a considerable 
saline minimum; it is formed in the zone of Antarctic Convergence and ex- 
tends between isopycnic surfaces uT = 27.2 and 27.4, primarily to the north. 
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In the Northern Hemisphere it is traced to 20”N. (It is possible that in the 
zone of the Antilles and Florida Currents, and further in the Gulf Stream too 
it may be traced somewhat more to the north.) 

(4) Arctic Intermediate Water (AI). Formed to the east of the Great New- 
foundland Bank in small quantities and has little influence outside the regions 
of its formation. Thermohaline index: T = 3.5”C; S = 34.8.8°/w. 

(5) Mediterranean Intermediate Water (M) .  When flowing out of the Straits 
of Gibraltar has a thermohaline index of T = 1 1.9”C; S = 36.50°/00. Extends 
between the isopycnic surfaces uT = 27.6 and 27.8, reaching in the north the 
shelf of the British Isles. 

Analyzing the water masses, we see an overall resemblance of the picture 
obtained with the generalized picture of the water masses of the North Atlan- 
tic according to Sverdrup. All the water area investigated by the “Mikhail 
Lomonosov”, below the depths of 1,500-2,000 m, is underlayed the deep and 
bottom water mass of Arctic origin ( B ) ,  having a thermohaline index of T = 
2.5”C; S = 34.90°/, . Above lie the surface and intermediate water masses, 
with the exception of the Antarctic Intermediate and Arctic Intermediate 
Waters, which were not observed in the region investigated in the IV cruise. 
The boundaries between the regions (structures) are shown in Fig. 65; they 
may be easily established after the typification of T-S curves, which is set 
forth briefly below, with an indication of the regions where individual types 
of T-S curves are encountered: 

(1) The region of the subarctic Surface Water (SA),  under which the deep 
and bottom water mass stretches, lies to the south of the Straits of Denmark 
and Greenland; its southern boundary is situated approximately along 50”N. 
Typical T-S curves of this region are represented in Fig. 66 in the example of 
stations 234 and 243; they are almost vertical. The Subarctic Water is the 
subject of conversion into deep and bottom water masses, and from Fig. 106, 
which represents T-S points of the Subarctic Water for the surface of the sea 
at 24 stations: No. 234-244,275-283, 321-324, it may be seen that, apart 
from the drop in temperature, for the formation of Deep and Bottom Water 
from Subarctic Water an insignificant change in salinity is also required, main- 
ly salinization during ice-formation. Thus, the Subarctic Surface Water lies in 
the subarctic (or polar) region of convective mixing, according to Zubov 
( 19471, and this mixing in the period of greatest spreading of ice-floes from 
the Baffin and Danish Straits creates the Deep and Bottom Water mass from 
the Subarctic Water mass. 

(2) The region of  the North Atlantic Water ( A ) ,  overlying the Deep and 
Bottom Water, is characterized by the type of T-S curves represented in the 
example of stations 250 and 3 1 1 of the “Mikhail Lomonosov” (Fig. 66). This 
type of T-S curve has in the surface part a bend, which is a trace of the trans- 
formation of the more saline core of the North Atlantic Current together 
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Fig. 65. Boundaries between the different water masses in the central North Atlantic (from data of the 
IV cruise of the R.V. “Mikhail Lomonosov”). SA = region of the Subarctic Water mass; L = region of 
the Labrador (arctic) Water mass; A = region of the North Atlantic Water mass;M = region of the Medi- 
terrranean Intermediate Water mass; Tr = zone of horizontal transformation (Mamayev, 1960a). 
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Fig. 66. T-S curves of R.V. “Mikhail Lomonosov” stations 234 and 243 (subarctic type), stations 250 
and 311 (North Atlantic type) and stations 221 and 225 (North Atlantic type with Intermediate Medi- 
terranean Water mass). 
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with the surface 100- 150 m and underlying layers. Region A is a region of 
marked zonal transformation, downward along the currents of the Gulf 
Stream system, of the primary water mass of the Gulf Stream; passing through 
region A ,  these waters extend to  Iceland and further, ending their journey as 
warm waters in the Arctic Basin. Precisely the zonal transformation of the 
surface waters makes it impossible to break down region A into parts; the 
thermohaline indexes of the different latitudinal modifications pass smoothly 
one into the other. The question of the nature of the zonal transformation 
will be considered again below (Section 6 1). 

(3) The region of the North Atlantic Water overlying the Mediterranean 
Intermediate Water ( M )  is characterized by the T-S curves represented in Fig. 
66 by the example of stations 221 and 225. The thermohaline index of the 
Mediterranean Water mass is taken at  T = 1 1 “C; S = 36.50°/00 ; this core is 
situated approximately at a depth of 1,000-1,200 m. 

In the nature of T-S curves of all stations at which Mediterranean Inter- 
mediate Water is present (region A + M ,  Fig. 65), an interesting feature is 
observed consisting of the asymmetry of the T-S curves as compared with 
that form which they should have in the case of mixing of three water masses, 
in accordance with the theorems of the “geometry of T-S curves”. The asym- 
metry of T-S curves is explained by the influence of vertical stratification on 
the process of mutual transformation of water masses, as a result of which 
the Mediterranean Water M mixes mainly with Deep Water B .  The unilateral 
direction of the transformation of the intermediate water mass is reinforced 
also by contraction on mixing. This question is considered in greater detail 
in Section 63 and in the work of the author (1960b). 

(4) Region of the water mass of the Labrador Current ( L ) .  This water mass 
belongs to the arctic type (lies to the east of Newfoundland) and is character- 
ized by the type of T-S curves represented in Fig. 67 (stations 290-293). Iso- 
pycnic mixing must exist between the water mass of the Labrador Current 
and the water mass of the Gulf Stream, presumably between the isopycnic 
surfaces oT = 26.0 and 26.5. 

In the area of the zone of transformation contraction on mixing must take 
place, as was pointed out for this region by McLellan (1 957). As an example, 
the water masses participating in isopycnic mixing along the surface uT = 26.7 
must experience an increase in density up to the density of the waters lying 
on the straight line of mixing connecting points (- 1°C; 33.18O/,) and 
(15.1”C; 35.97°/0~). The contraction on mixing of the Labrador and North 
Atlantic Water masses does not lead to any considerable sinking of the water 
masses, since the analysis of many T-S curves does not reveal any deep points 
for the straight line of mixing noted above. Apparently, contraction on the 
isopycnic mixing of the Labrador and North Atlantic Water masses gives rise 
to the Intermediate Arctic Water mass; isopycnic contact leads to broad 
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Fig. 67. T-S curves of R.V. “Mikhail Lomonosov” stations 290 and 293 (Labrador type), 299 and 315 
(transitional type). The broken line shows the T-S curve of Labrador waters averaged for 1948-1958 
(from data of the International Ice Patrol in the North Atlantic). 

development of frontal activity and oceanic cyclogenesis, while isopycnic 
mixing in the zone of cyclogenesis leads to the creation of a zone of transfor- 
mation, or a transitional zone, designated by the index “Tr” in Fig. 65. 

(5) 77ze zone of horizontal transformation (Tr) between the waters of the 
Gulf Stream and the Labrador Waters is characterized by the type of T-S 
curves represented in Fig. 67 by the example of stations 293 and 315. A 
curious feature of this zone is the presence of an isolated region of Gulf Stream 
Waters in the area of stations 284 and 285; this fact does not allow us simply 
to draw the northeastern part of the boundary between the zone of transfor- 
mation and Atlantic Waters (between the third and fourth sections of the 
“Mikhail Lomonosov”). From Kashkin’s data (personal communication, 1960) 
on the distribution of various forms (boreal and warm-water) of plankton, 
this boundary extends to the northwest, to stations 284 and 285. One may 
conjecture about the existence in the vicinity of these two stations of a tem- 
porary isolated heat eddy, detached from the main mass of Gulf Stream 
Waters in the process of meandering. 

In conclusion, Fig. 68 gives model patterns of the interaction of water 
masses for two sections of the “Mikhail Lomonosov” (the first and the fifth). 
The nature of the interaction of the water masses in these two sections is ex- 
tremely different. In Fig. 68 those boundaries between water masses which 
are more permeable are designated by dashed lines. 

Division into regions on the basis of typification of the structures of the 
northwestern part of the Pacific Ocean was carried out by Dobrovol’skii 
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Fig. 68. Diagrams of the interaction of waters in the North Atlantic in sections I and V of the 1V cruise 
of R.V. “Mikhail Lomonosov”. SA = Subarctic Water mass; G = Gulf Stream (Atlantic surface) Water 
mass;M = Mediterranean Water mass; DB = Deep and Bottom Atlantic Water mass; L = Labrador Water 
mass. 

( 1962). He also identified only five regions (structures), in full agreement 
with the natural boundaries in the ocean, in particular, with convergences 
and fronts. Dobrovol’skii et al. (1 960) extended such zoning to the central 
part of the Pacific Ocean also, while the definitive zoning of the structure of 
the entire Pacific Ocean has been drawn up by Radzikhovskaya and Leont’eva 
(Hydrology of the Pacific Ocean, 1968). 

53. SPECIAL FEATURES OF T-S ANALYSIS IN REGIONS OF HORIZONTAL INTERACTION OF 
WATER MASSES 

The study of the interaction of water masses in those regions of the World 
Ocean where the largest horizontal gradients of oceanographic characteristics 
are observed on the surface is of exceptionally great importance. In a number 
of cases this interaction is markedly frontal in nature, and in the process of 
horizontal mixing, as a rule, of two main water masses the formation of secon- 
dary water masses occurs, which often are quasi-stationary in nature; waters 
having the greatest biological productivity are tied in with these regions. 

Regions of horizontal interaction of water masses are widespread in the 
ocean; the main such regions are the following: 

(1) Regions of interaction of the Central Water masses of the northern parts 
of the Atlantic and the Pacific Oceans with Subarctic Waters. These regions 
are sometimes called: regions of the subarctic front. The subarctic frontal 
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zone in the North Atlantic strettthes from the Gulf Stream front south of 
Newfoundland to the northeast, to the region of Iceland and Spitzbergen; in 
the Pacific Ocean it extends from the region of interaction of the waters of 
the Kuroshio and Oyashio in a latitudinal direction to the shores of British 
Columbia and California. 

(2) An extensive region of the Southern Ocean lying between the subtropi- 
cal and antarctic convergences. Here we observe latitudinal interaction of the 
South Central Water masses of three oceans with the surface circumpolar 
Antarctic Waters, while the product of mixing represents the Subantarctic 
Surface Water mass. 

(3) Regions of intrusion of cold currents in the low latitudes. The most 
characteristic of these are the regions of interaction of the water of the Cali- 
fornia and Peru Currents with the Tropical and Equatorial Waters. These 
regions are distinctive “spurs” of the first two - namely, the subarctic and 
subantarctic regions of interaction of water masses, while the name given to  
them by Sverdrup - “transitional regions” - in a certain sense can be ex- 
tended also to the regions of subarctic and subantarctic interaction of waters. 
A noteworthy feature of T-S curves plotted for oceanographic stations which 
are located in sections intersecting the “transitional regions” in the direction 
of the largest gradients of oceanographic characteristics is their “fan-shaped” 
nature in the surface layers (it is clear that we are referring to T-S curves 
plotted in the same scale). In this they are considerably different from the 
T-S curves for the central regions, which form distinctive “clusters” or 
“bunches”. As an example, Fig. 69 gives the curves of six stations of the R.V. 
“Discovery”, made in 1932 in the section between Australia and the Antarctic; 
the surface “fan” of T-S curves is formed as a result of horizontal mixing, 
which may be isopycnic in nature. One could multiply examples of T-S rela- 
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Fig. 69. T-S curves of six “Discovery” stations made in 1932 in a section between Australia and the 
Antarctic. 
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tions of this type; one of the most pronounced (with a large “opening of 
angle” between the extreme T-S curves) relates to  the region of interaction 
of the water masses of the Gulf Stream and Labrador Currents (McLellan, 
1957, see also Section 56). 

The basis for the analysis of lateral interaction of water masses on a T-S 
diagram is a method apparently applied for the first time by Sverdrup and 
Fleming (1941) in studying the waters in the region of the Southern Califor- 
nian coast. Fig. 70 is given as illustration of this method, and is borrowed 
from the work of these authors. The T-S points in this figure relate to the 
layer between 200 and 500 m in the vicinity of the coast of Southern Cali- 
fornia between Point Conception and San Diego (32.5-35”N) and are 
plotted on the basis of the data of sections made by the research vessels 
“Bluefin”, “Scripps’’ and “Guide”. The averaged T-S curves, plotted from 
these points, represent the “northern” and “southern” water masses, of 
which the first belongs to the California Current while the second belongs 
to the coastal countercurrent (Davidson’s Current), which wedges itself in 
from the south to the north between the waters of the California Current and 
the shore. The T-S curves of both water masses together with the family of 
isopycnals (uT) plotted on the figure represent a T-S nomogram, which is 
highly convenient for the analysis of the percentage ratio of waters at differ- 
ent depths, isopycnic analysis, etc. 

This method has subsequently been applied repeatedly and has been per- 
fected. In particular, it was used in the works of Tibby (1 941 ) and Rattray 
et al. (1962) for the study of the water masses of the northeastern part of the 
Pacific Ocean. In both these investigations the nomogram represented in Fig. 
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Fig. 70. T-S characteristics of “northern” and “southern” water masses in a layer of 200-500 m near 
the coast of Southern California (Sverdrup and Fleming, 1941). I = “Bluefin”;2 = “Scripps”, 3 = “Guide”. 
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Fig. 71.  T-S nomogram for the determination of percentage content in horizontal mixing of subarctic 
and equatorial structures of the Pacific Ocean (Rattray et al., 1962). 

7 1 was used; in the work of Rattray et al. it is called an “analyzer” of water 
masses for the Northeastern Pacific Ocean”. The nomogram represented in 
Fig. 7 1 makes it possible to determine the percentage ratio of the Subarctic 
and Equatorial Water masses of the Pacific Ocean, which are characterized by 
the extreme T-S curves of the nomogram (they are represented by heavy lines) 
in the mixed waters lying in the corresponding transitional zone. 

In McLellan’s work (1957) the method described was used to study the 
horizontal interaction of the waters of the Gulf Stream and the Labrador 
Current. McLellan supplemented the study of the transformation of water 
masses by taking account of the effect exerted on it by contraction on mixing 
(see Section 56); in the work of Sverdrup and Fleming (1941) this effect was 
neglected (the isopycnals in Fig. 70 have been straightened out for the sake of 
simplicity). 

In spite of all the obviousness of the method of T-S nomograms similar to 
those represented in Figs. 70 and 7 1, it suffers from one shortcoming, which 
consists of the following: in studying the horizontal (lateral) interaction of 
two water masses it takes no account of the vertical mixing which takes place 
between each of these water masses and the Deep Water mass underlying them. 
Taking vertical mixing into account introduces into the corresponding methods 
of T-S analysis important adjustments, the gist of which can be explained from 
the example of the same Fig. 7 1, where we have plotted the following T-S in- 
dexes (the letter designations are arbitrary): 

(1)B (1.3O”C; 34.70°/00) - the T-S index of the Deep Water mass of the 
equatorial Pacific. This index was determined by Sverdrup (Sverdrup et al., 
1942). 

Water mass. 
(2) A (4.60”C; 32.80°/00) - the surface T-S index of the Pacific Subarctic 
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(3) C (15.70”C; 35.20°/00) - the surface T-S index of the Pacific Equatorial 

Water mass B is observed in the northeastern part of the Pacific Ocean at 
Water mass. 

depths ranging from approximately 1,000 m to the bottom (the T-S index 
determined by Sverdrup relates to the bottom part). The indexes of water 
masses A and C have been determined by us to a certain extent conventional- 
ly, within the framework of the figure (they both lie on the isopycnal uT = 
26.00), however, their presence makes it possible simultaneously with the 
nomogram to consider the triangle of mixing usual in the practice of T-S 
analysis, the apexes of which are T-S points A ,  B and C. 

In this case the T-S curve of the Subarctic Waters (the extreme left in Fig. 
7 1) may be considered as the result of vertical mixing of water masses A and 
B, while the T-S curve of the equatorial waters (the extreme right in Fig. 7 1) 
may be considered the result of vertical mixing of water masses C and B,  
applying to  these waters the term “water structure’’ proposed by Dobro- 
vol’skii (1 96 1 ). Both these T-S curves deviate from straight lines AB and CB, 
but this fact is not so significant for it does not contradict the fact of mixing 
of precisely three water masses. The T-S points lying in the sector limited by 
these T-S curves may be considered as the result now of horizontal (isopycnic) 
mixing of the subarctic and equatorial structures, i.e., the mixing of those 
waters which are the product of vertical mixing of water masses A and C with 
water mass B. The foregoing becomes clear from study of Fig. 72, in which 
the usual triangle of mixing has been combined with a percentage nomogram 
of horizontal mixing similar to that shown in Fig. 7 1. Moreover, for purposes 
of general application this triangle is not attached to any specific indexes on 
the T-S diagram. Considering Fig. 72, we see that, say, point b represents the 
result of mixing of 42% of water A ,  30% of water B and 28% of water C. On 

B 

Fig. 72. Triangle of mixing. The broken lines plot the isolines of percentage content of waters CB on 
their mixing with waters AE. 
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the other hand, it may be viewed as the result of mixing of 60% of water a 
and 40% of water c; waters a and c are the products of mixing of 30% of 
water B with 70% of the waters of A and C respectively. The combination of 
the usual triangle of mixing with the percentage nomogram of horizontal 
mixing, it would seem at first sight, does not contribute anything new to the 
determination of the percentage composition of water masses. However, if 
we bear in mind that water masses A and C mix among themselves horizon- 
tally and that they also mix vertically with water mass B underlying them, 
and that any intermediate product of mixing is also in the same situation, 
we may draw some interesting conclusions therefrom if we consider the pic- 
ture of the distribution of water masses in a section carried out across the 
region of interaction of the water masses. 

cal and horizontal distances are conventionally reckoned in fractions of the 
percentage content, is represented in Fig. 7 3 .  PointsA and C correspond to 
“pure” water masses interacting horizontally, line BB‘ - to the water mass 
underlying them. The content of the corresponding water masses in points A 
and C and on line BB’ amounts to  100%. Such initial data make it possible, 
with the help of Fig. 72, to represent the percentage ratio of each of the 
water masses in the section, which has accordingly been done in Fig. 73. The 
percentage content in the section of water masses C and A is represented by 
two families of hyperbolae. The isolines of the percentage content of water 
mass B represent horizontal equidistant straight lines, with line BB’, as was 
already said, corresponding to  1 OO%, and line AC to 0% of water B.  

Such a conventional section, or rather a section-nomogram, in which verti- 

Thus, we see that, if in the case of vertical mixing of water masses the iso- 

100% of water A 100% of water C 
t 4 

I 

Fig. 73.  Section-nomogram of the percentage content of water masses A (solid curves), C (broken curves) 
and B (horizontal straight lines) provided there is vertical mixing of water masses A and C with water 
massB and horizontal mixing of waters AB with waters CB. 
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lines of the percentage ratio of the waters in the mixture extend in the sec- 
tion horizontally, and in the case of horizontal mixing vertically, then in the 
case of the combined effect, as may be seen from Fig. 73, they are complete- 
ly different and indeed more complex in nature. It goes without saying that 
one can also imagine a more complicated case in which not two but three 
water masses are involved in the process of horizontal mixing, one of which 
is intermediate; in addition, one may consider the vertical mixing of these 
three water masses not with one, but, for example, with two underlying 
water masses, one of which is also intermediate, etc. Below one of these more 
complex versions will be considered. 

The use of the nomogram shown in Fig. 73 in analyzing T-S curves taking 
account of the distribution of parameters uT (density) and z (depth) will 
make it possible not only more correctly to represent the percentage ratio of 
water masses in sections in cases of combination of horizontal and vertical 
mixing, but also substantially to improve and complete the methods of iso- 
pycnic analysis of water masses. 

54. THE MIXING OF FOUR WATER MASSES OF THE OCEAN 

Let us now proceed to consider the question of the mixing of four water 
masses of the ocean, drawing special attention subsequently to the case where 
at least two of the four water masses are involved in a process of horizontal 
mixing. 

Let us consider how valid the construction of a triangle of mixing is for 
the study of the mixing of more than three water masses. I t  is clear that in 
such a situation triangles of mixing can be built on thermohaline indexes as 
apexes in such a way that, as a result, they have one or more common sides. 
Thus, in the case of the mixing of four water masses A ,  B, C and D it is pos- 
sible to construct two triangles having one common side (Figs. 74 and 75). 
Underlying such constructions is the assumption (as a rule, not strictly prov- 
able), that in particular oceanographic conditions one of the four water 
masses plays - as compared with the three others - an insignificant part in 
the process of mutual mixing of the waters; this water mass is accordingly 
left outside the limits of the corresponding triangle of mixing. Let us con- 
sider several cases which arise in this situation. 

Let us turn first to an example already known to us (Section 49) of the ver- 
tical mixing of four superimposed water masses of the ocean - the surface one, 
two intermediate (upper and lower) and deep (or bottom). This example is genet- 
ically connected with the development in Chapter 6 of the analytical theory 
of T-S curves for the case of vertical mixing of water masses. Thus, Fig. 74 
(analogous to Fig. 61) can correspond to the case where surface water mass 
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:L 32.5 I I I 1 
33.0 33.5 34.0 34.5 35.0S%o 

Fig. 74. Two triangles of mixing for the determination of the percentage content of four water masses 
mixing vertically. The heavy line shows the typical T-S-z.curve. 

B ,  intermediate water masses A (upper) and C (lower) and deep water D mix 
under conditions of stable stratification. In such mixing there arises, in ac- 
cordance with the conclusions of the theory of T-S curves (Chapter 6), the 
typical T-S-z curve, represented in the figure by a heavy line; parameter z is 
reckoned from z = zo  to z = z , .  In this example, the two intermediate water 
masses form a kind of stratification screen which hinders direct vertical con- 
tact of water mass B with water mass D. This assumption accordingly consti- 
tutes the basis for the use of the two triangles of mixing: in the example 
represented in Fig. 74, the mixing of waters A ,  B and C is considered inde- 
pendently of water mass D, and the mixing of waters A ,  C and D in its turn 
independently of water B .  Thus, the assumption referred to above in the 
case of vertical mixing of four water masses is to a certain extent justified 
(this statement is supported by the consideration of pictures of the percent- 
age concentration of water similar to those shown in Fig. 64). 

A and B mix vertically with intermediate and deep water masses D and C 
respectively. Such a version of mixing, as well as typical T-S-z curves are 
shown in Fig. 75; given selected coordinates of thermohaline indexes under 
conditions of stable stratification it is fully possible. Two triangles with a 
common side of the type of Fig. 75 were used by Timofeev and Panov (1 962) 
for the analysis of processes of mixing of water masses in the Norwegian, 
Greenland and Barents Seas. 

Let us consider a second example when two different surface water masses 

It should be pointed out that the use of triangles of mixing of the type in 
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B 
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32.5 33.0 33.5 34.0 34.5 35.08960 

Fig. 75. Two triangles of mixing for the determination of percentage content on mixing of different 
surface water masses (A and B )  with the same intermediate (0) and deep (C) water masses. The heavy 
lines show typical T-S-z curves: the “extreme” (solid lines) and the intermediate (broken lines). 

Fig. 75 is valid only when waters A and B are not in contact with each other; 
however, if these waters can mix (horizontally), even if they are fairly dis- 
tant from each other or if one of them is transformed into the other, for 
example, under the influence of climatic conditions, it is also necessary to 
take account of mixing along straight line AB.  In other words, in the presence 
of horizontal (or isopycnic) mixing the intermediate T-S-z curve, represented 
in Fig. 75 by the heavy broken line, may appear - such that it cannot be 
inscribed in the triangles considered; consequently, the use of the “extreme” 
triangles of mixing ACD and BCD for the analysis of the mutual relationship 
of water masses becomes already less justified. 

masses, let us consider the case when two surface water masses A and B and 
two intermediate (or deep) water masses D and C are intermixing. The typical 
T-S-z curves corresponding to this version are represented in Fig. 79: the 
“extreme” by solid heavy lines, while the broken line shows the intermediate 
curve arising in the process of the mutual transformation of the first two. In 
this case the vertical mixing of waters A and D and waters B and C respective- 
ly predominates; this mixing forms structures AD and BC. Simultaneously 
horizontal mixing of the separate elements of these structures takes place, 
forming various intermediate structures. Thus, all the water masses are in- 
volved in a process of “equal” mixing, and the selection of triangles of mixing 
becomes invalid in general. 

As one of the examples of this type of interaction of waters we may cite 

Finally, as the third and final example of interaction of four water 
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the region of the subarctic front of the northwestern part of the Pacific Ocean. 
Here we may identify four water masses mixing among themselves: surface 
subarctic water mass A (1 0.0"C; 32.9°/00), water mass of the main axis of the 
Kuroshio B (22.0"C; 34.9Yo0), intermediate water mass in the Kuroshio Cur- 
rent, characterized by minimum salinity, C (7.0"C; 34.2'/00) and intermediate 
subarctic water mass with minimum temperature, D (1 .O"C; 33. lo/oo). The 
quadrangles shown in Figs. 74, 75, 78 and 79 as well as in Figs. 86 and 87, 
are constructed on summits which correspond to the thermohaline indexes 
of these water masses. The indexes themselves are determined in turn from 
the typical T-S curves represented in Fig. 86. These T-S curves are taken from 
Koizumi's work (1 955) and will be considered in greater detail in Section 57 
in connection with the question of the contraction on mixing of four water 
masses. 

Another example of the interaction of four water masses relates to the 
region of continental slope of the Atlantic coast of North America, lying to 
the south and southeast of Long Island. The conditions of interaction of the 
waters are represented in Fig. 76 (Miller, 1950). Let us explain this figure. 
The aggregate of T-S points, stretching out in the form of the strip C'CD, 
represents the result of the horizontal mixing of waters C'C with surface 
ocean waters D, and that part of the T-S points which lies in the sector C'C 
characterizes the transformation of waters at shallow water and does not 
exert any visible effect on the mixing processes of the waters of the continen- 
tal slope with ocean waters. Miller divides into three types the immediate 
ocean waters, lying in the vicinity of the edge of the shelf: surface slope waters 
D, intermediate slope waters A ,  lying directly under the strongly marked 
-!O 

I 
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33.5 34.0 34.5 35.0 35.5 36.0s %o 

Fig. 76. T-S characteristics of water masses in the region of the continental slope of North America in 
the Atlantic Ocean, to the east of the Hudson submarine canyon, and T-S nomogram for the determina- 
tion of the percentage content of the four main types of water masses. Further explanations in the text. 
(Miller, 1950) 
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thermocline, and the slope waters of medium depths B ,  observed at depths 
of approximately 200-600 m. The broken line in Fig. 76 represents the T-S 
curve for the slope waters, borrowed by Miller from Iselin’s work (1936), 
and the little open circles designate waters directly belonging to the thermo- 
cline. Thus, the type of mixing considered by Miller also relates to our third 
example: two surface water masses, shelf and ocean, mix among themselves; 
in turn a process of vertical mixing takes place of the surface waters with the 
intermediate water mass of the continental slope and with the deeper water 
mass - the waters of the Gulf Stream at the slope. 

A question arises: is it not possible for the case of mixing of four water 
masses, especially when they are in a state of vertical and horizontal mixing 
by pairs, to construct a quadrangular nomogram? In Section 30 it was indi- 
cated that the construction of a quadrangular plane nomogram (without any 
other additional limitation) is in principle impossible: owing to the fact that 
the problem is indeterminate, within the quadrangle of mixing it is possible, 
generally speaking, to construct an innumerable set of percentage grids. For 
the consideration of this question, i.e., the question of what can be the addi- 
tional limitation imposed on the conditions of mixing of water masses so that 
the construction of a quadrangle of mixing might prove possible, let us turn 
to Miller’s nomogram, constructed by him on the basis of intuitive considera- 
tions. Quadrangle of mixing ABCD (Fig. 76) breaks down into 16 areas. In 
the four areas adjoining the angles of the quadrangle, the percentage content 
of each of the corresponding water masses must exceed 75%; in the closest 
areas, lying on both sides of the angles, more than 50% of the corresponding 
waters is observed. Finally, as Miller points out, in the four inner areas the 

Fig. 77.  Stylized diagram of the distribution and interaction of water masses in the vicinity of the con- 
tinental slope of North America. The shaded regions correspond to zones of horizontal and vertical 
mixing of waters; the directions of movement of waters in the process of transformation are shown by 
arrows (Miller, 1950). 
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picture of percentage content is “more obscure”, especially in the inner core 
of the nomogram lying within the oval in Fig. 76. 

As a result of the use of the quadrangular nomogram described, a pattern 
of distribution of the water masses and of the nature of their interaction was 
obtained, and is shown in the form of a stylized section in Fig. 77. The “clear” 
regions in this figure correspond to the percentage content of the correspond- 
ing masses to the extent of 75% and more; the shaded areas of transformation, 
vertical and horizontal, and the curves lying within the shaded regions, corre- 
spond to 50% content of the water masses. It is clear that the boundaries of 
the zone of transformation correspond to 75% of the content of the “adja- 
cent” and to 25% of the content of the “opposite” water masses. 

The nomogram proposed by Miller is too approximate, since it does not 
even satisfy the basic requirement that in any of its points the sum of parts 
of the mixing waters should amount to 100%; this condition is fulfilled on 
the nomogram only on its sides. In order to correct this nomogram, let us 
formulate an additional limitation which was referred to above: let us assume 
that equal volumes of surface waters A and B are mixed with equal volumes 
of waters C and D; in turn, the elements of the structures AD and BC, which 
have arisen as a result of such vertical mixing, are mixed horizontally along 
the surfaces of their equal percentage content. Breaking down the sides of 
the quadrangle into equal parts (say into ten parts) and connecting the corre- 
sponding points on the opposite sides by straight lines, we obtain a grid (Fig. 
78), which may be considered as an auxiliary nomogram, explaining this addi- 

’%. 

Fig. 78. Nomogram for the determination of percentage content on horizontal mixing of structuresAD 
and BC; the latter are formed by the vertical mixing of typesA and D ,  5 and C respectively. 
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tional limitation. Such an approach makes it possible to construct one of the 
particular cases of a percentage grid, which may be shown by the example of 
the arbitrary point M .  Through such a point it is always possible to draw two 
lines of mixing ab and a’d - such that they have identical coordinates, ex- 
pressed in percentages, on the sides of the quadrangle (in pairs). The structure 
can then be considered as the result of the mixing of 70% of the waters of 
structure AD and 30% of the waters of structure BC; in its turn the water in 
point a represents the product of mixing of 80% of water A and 20% of water 
D, while in point b - the product of mixing of 80% of water B and 20% of 
water C. Thus, for point My expressing the concentration in fractions of a 
unit, we have: 
0.7 (0.8A + 0 .20)  + 0.3(0.8B + 0.2C) = 1 

24, 6 and 14% respectively. 

in the junctions of the grid in Fig. 78, we can construct the corresponding 
nomogram which is represented in Fig. 79. The isolines of equal percentage 
content represent the families of hyperbolae, plotted in the oblique-angled 
coordinates, while the sides of the quadrangle represent asymptotes. The fore- 
going will become obvious if we turn again to  Fig. 73, extending the method 
used in constructing it to  the case of mixing of four water masses. Assuming 

The percentage content of waters A,  B,  C and D in point M amounts t o  56, 

Determining the percentage content of all four water masses, for example 

32.5 33.0 33.5 34.0 34.5 35.0S%. 
0 I I I 
32.5 33.0 33.5 34.0 34.5 35.0S%. 

Fig. 79. Quadrangle of mixing (corrected nomogram for the determination of the percentage content 
of four water masses). The solid heavy lines represent typical T-S-z curves, corresponding to the “initial” 
structures AD and BC (compare with Fig. 78), the broken line represents the intermediate, appearing on 
mixing of the first two. 
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that each of the summits of the square corresponds to 100% content of each 
of the water mases, we will come to the conclusion that the isolines of per- 
centage content must be represented by four perfectly identical families of 
hyperbolae, flowing around each of the right angles of the section-nomogram 
By means of a corresponding distortion on the T-S plane, i.e., the ties of the 
summits of the nomogram to specific T-S indexes (it is relevant to point out 
that Miller speaks of such a distortion of the nomogram in the transition 
from the T-S plane to the vertical section), we obtain the nomogram in Fig. 
79. The sides of the nomogram are also isolines of zero percentage content in 
relation to the opposite indexes of the water masses: thus, the broken line 
ABC is the line of zero content of water D ,  line BCD is the line of zero con- 
tent of water A ,  etc. In this way, Fig. 79 substantially improves Miller’s 
nomogram. 

As has already been pointed out, the percentage nomogram (Fig. 79) repre- 
sents only one of the possible versions; any other version of mixing, for exam- 
ple, such as that shown in Fig. 78 by the dot-and-dash line, leads to other 
results: the percentage content of the waters in point N (28% of water A ,  
19.5% of water B ,  45.5% of water C and 7% of water D) in no way corre- 
sponds to the nomogram in Fig. 79. 

tions, mA /m, = mg /mc , is artificial, but from the oceanographic point of 
view looks authentic. Indeed, considering the position of quadrangle ABCD 
in the field of isopycnals (Fig. 86), we see that the position of the surfaces 
of equal percentage content of waters, along which “horizontal” mixing is 
assumed, corresponds fairly closely to the position of the isopycnic surfaces. 
Thereby the principle of isopycnic mixing is more or less observed. 

The study of vertical and isopycnic mixing of four water masses is most 
promising in regions of substantial horizontal gradients of oceanographic 
characteristics, in particular in the “transitional” (according to Sverdrup) and 
frontal regions. 

The limitation formulated above on the mixing of waters in equal propor- 

55. CONTRACTION ON VERTICAL MIXING OF WATER MASSES; TRIANGLES OF CONTRAC- 
TION ON MIXING 

We have already touched upon the question of contraction on mixing from 
the point of view of the anomalous properties of sea water, as well as within 
the framework of the general theory of the T-S diagram (Section 36). There 
too we considered an accurate method for calculating contraction, based on 
computing the line integral along the straight T-S line. In this and the follow- 
ing sections we return again to this question, but now from a purely 
oceanographic point of view: namely, we shall consider the general methods 
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of calculating contraction on mixing, as well as the question of how contrac- 
tion on mixing affects the transformation of the water masses of the ocean. 

Only a few studies devoted to the consideration of contraction on mixing 
of waters under the real conditions of the World Ocean are known. It has 
already been said that from the oceanographic point of view the phenomenon 
of contraction on mixing has been studied most thoroughly by Zubov (1938, 
1947, 1957b). McLellan (1957) studied the effect of contraction on mixing 
on the interaction of the water of the Gulf Stream and the Labrador Current, 
Fofonoff (1956) the effect on the formation of the Antarctic Bottom Water 
in the region of the Weddell Sea, Bubnov (1960) the effect on the mixing of 
the waters of the Kuroshio and the Oyashio. The author (Mamayev, 1960b) 
considered the effect of contraction on mixing on the transformation of the 
intermediate water masses of the ocean using the example of the Mediter- 
ranean Intermediate Water in the Atlantic Ocean; he also proposed a “triangle 
of contraction” on mixing (Mamayev, 1963), which has proved very conve- 
nient for determining contraction on mixing from T-S curves. The questions 
touched upon in the above-mentioned works of the author, namely, the 
question of the use of triangles of contraction on mixing and the question of 
the effect of contraction on the transformation of the Mediterranean Inter- 
mediate Water in the Atlantic, were further developed in the works of Kin’diu- 
shev (1965) and Bubnov (1967). The triangle of contraction on mixing was 
used by Dubrovin to determine the lowering of the sea level as a result of 
contraction on mixing in the area of interaction of the waters of the Gulf 
Stream and the Labrador Current. Finally, the author (Mamayev, 1970) con- 
sidered the question of contraction on mixing of four water masses of the 
ocean; it is taken up below in Section 57. 

Methods of calculating contraction on mixing, mainly of two water masses, 
and its effect on the various oceanographic processes are considered in detail 
in the work of Zubov and Sabinin (1958), and therefore we will not deal with 
the details considered in that work, but will devote our attention to questions 
going beyond its scope, namely, as was already said above, mainly to ques- 
tions of the contraction on mixing of three and four water masses, as well as 
the horizontal (isopycnic) mixing of stratified water masses in the ocean. The 
question of the mixing of two water masses, as set forth by Zubov and Sabinin, 
is a kind of preamble to the subsequent exposition. 

m e  mixing of two water masses 

In Section 2 1 we have considered an example of the mixing of equal parts 
of two water masses. In the case of mixing of two water masses in equal pro- 
portions, the mean temperature and salinity are calculated from formulae of 
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mixing [30.1] and [30.2], then “densification” on mixing will be determined 
from formula: 

AP = A T ,  S) - P 

where p(T,  S) is the density of the mixture, p the mean density, determined 
by a formula analogous to the formulae of mixing: 

- -  
[55.1] 

_ _  

p =  Vl P 1 +  V2P2 

Vl + v2 
[ 55.21 

( V  = volume). The quantity: 
Aa = ti - a(T, S) 

is actually the contraction on mixing (see p. 85); here ii is calculated from 
the formula: 

[55.3] 

[ 55.41 

where m is mass. 
?’he quantities of “densification” Ap and contraction Aa are distinguished 

by sign and are extremely close to each other - see formula [23.6] : 

Ap * -Aa [ 5 5 . 5 ]  

The distinction between “densification” on mixing and contraction on 
mixing was emphasized by Sabinin (Zubov and Sabinin, 1958); incidentally, 
the second term (contraction on mixing) is used in the English literature 
(Fofonoff, 1956). It was also demonstrated by Sabinin that in calculating the 
mean quantities p and h from the formulae of mixing, in the first case volu- 
metric proportions should appear, and in the second, mass proportions. 

Continuing to consider the straight line of mixing, represented in Fig. 12, 
we see that, having broken it down into 100 parts, we can determine the 
densities (specific volumes) of the T-S points which correspond to a particular 
percentage content of both water masses; then, having calculated p or h, deter- 
mine “densification”, or contraction. A corresponding calculation for the 
water masses of the Gulf Stream and the Labrador Current is given in Table 
XII. 

In the example cited, the densities of both original water masses were iden- 
tical; the calculation of contraction, naturally, does not change if their densi- 
ties are different. Fig. 80 represents the curves of density of two mixtures 
formed if the water mass B (its index is T = 2.5”C; S = 34.90°/oo) is mixed in 
different proportions either with water mass A (index T = 12.5”C; S = 35.67°/w), 
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or with water mass M (index T = 11.9”C; S = 35.50°/00). This figure is the 
result of calculations completely analogous to those given in Table XII. 

TABLE XI1 

Calculation of contraction on mixing in various proportions of the water masses of the Gulf Stream 
01) and the Labrador Current ( L )  

100 
90 
80 
70 
60 
50 
40 
30 
20 
10 
0 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

30.00 35.36 22.02 
26.85 34.57 22.46 
27.70 33.71 22.81 
20.55 32.97 23.09 
17.40 32.17 23.28 
14.25 31.38 23.38 
11.10 30.58 23.36 
7.95 29.78 23.22 
4.80 28.98 22.96 
1.65 28.18 22.56 

-1.50 27.38 22.02 

~~ 

22.02 0 0 
22.02 0.44 -0.44 
22.02 0.79 -0.79 
22.02 1.07 -1.07 
22.02 1.26 -1.26 
22.02 1.55 -1.55 
22.02 1.34 -1.34 
22.02 1.20 -1.20 
22.02 0.94 -0.94 
22.02 0.54 -0.54 
22.02 0 0 

Explanation of columns: 
(1) - percentage content of waterA; 
(2) - percentage content of water L ;  
(3) and (4) - values of temperature and salinity on mixing of water massesA and L in the proportions 

(5) - OT@, 

(6) - ZTis mean density. Is determined from formula [55.2] ; 
(7) - “densification” on mixing, AOT= O T ( ~  a - OT; 
(8) - contraction on mixing, AUT = -AuT. 

indicated in columns 1 and 2. Calculated from formulae [30.1] and [30.2] ; 

ing T-S points; 
is the density of the mixture. Is taken from the T-S diagram according to the correspond- 

27.0 - 

Percentage of water  mass B 

Fig. 80. Curves of contraction on mixing of water massB with water masses A or M. 
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The mixing of three water masses 

"Densification" Ap or contraction Aa on mixing of three water masses is 
determined from the same formulae [ 5 5.1 ] and [ 5 5.3 1 with the only differ- 
ence that by p and a are understood the mean weighted values of density or 
specific volume, determined from the formulae of mixing of three water 
masses: 

mlal  + m2a2 + m3a3 
a =  

m l + m 2 + m 3  

For the determination of contraction on mixing corresponding to  any 
percentage ratio of the three mixing water masses, which is determined by 
the position of the corresponding figurative point within the triangle of mix- 
ing, the construction of triangles of contraction can be recommended. Let us 
explain the principle of such construction by the example of a triangle of 
mixing of three water masses which have the following indexes: 

water mass A : T = 12.5"C; S = 35.67'0 ; 
water mass M: T = 1 1.9"C; S = 36.50°/00 ; 
water mass B : T = 2.5"C; S = 34.90°/, . 
These three water masses correspond to the Atlantic Surface Water in the 

Azores-Pyrenean region, to the Intermediate Mediterranean Water and to 
the Atlantic Deep and Bottom Water (Mamayev, 1960b). The corresponding 
triangle of mixing is represented in Fig. 25. It is clear that the three water 
masses mentioned are in a state of vertical mixing. 

For the construction of the triangle of mixing the following is necessary: 
(1) To calculate from formulae [30.1] and [30.2], as well as from formula 

[ 55.61 , the values of sand ii * for all points in which the percentage con- 
tent of each of the water masses is a multiple of 10%; in Fig. 25 these points 
are numbered from 1 to 66. 

It is convenient to bring these computations together in a general table 
which makes it possible considerably to reduce calculations; inasmuch as the 
form of this table may be arbitrary, we will not provide it, confining ourselves 
to an example of a calculation for one of the points, namely, No. 16, the ratio 
of water masses A ,  M and B in which amounts to 10,40 and 50% respectively 
(Fig. 25): 

* Below we shall speak, for the sake of simplicity, of contraction on mixing in both cases, A p  and Aa. 
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= 35.62'1- S A ~ A  + S M ~ M  + S B ~ B  - 35.67X 10 + 3 6 ~ 0 x 4 0  + 34.90X50 g =  - 
100 100 

UA "A + uMmM + uBmB - 73.68X 10 + 72.96X40 + 72.88X50 
- = 72.99 - 

100 100 iTT - 

(2) From the values of the mean temperatures and salinities r a n d  s f o r  all 
66 points of the triangle to determine from the T-S diagram the specific 
volumes u,(T, S) ,  where n = 1 , 2, ..., 66. 

_ _  
_ _  

For point No. 16 we have: u16(T,  S) = 72.86. 
(3) To determine from formula [55.3] the values of contraction Au also 

for all 66 points of the triangle. In our example AU16 = 72.86 - 72.99 = -0.13. 
For the three sides of the triangle of mixing BA, AM and MB the values of 
contraction on mixing, determined in a similar way, are given in Table XIII. 

TABLE XI11 

Contraction on mixing, - A U . I O ~  

Side of triangle BA Side of triangle AM Side of triangle ME 

No. of points Au No. of points Au No. of points Au 
-_ ~~ 

1 0 66 0 11 0 
12 3 65 0 10 5 
22 8 63 0 9 1 
31 11 60  0 8 12 
39 13 56 0 I 13 
4 6  13 51 0 6 13 
5 2  13 45 1 5 12 
5 1  12 38 1 4 10 
61 9 30 0 3 8 
64 2 21 0 2 4 
66 0 11 0 1 0 

It is seen from this table that on side AM contraction on mixing is extremely 
insignificant; so far as sides B A  and MB are concerned, it is much larger, and 
extremely close at the ends of the straight lines 2-12,3-22,4-31, ..., 10-64, 
parallel to side A B .  

(4) To construct curves of contraction on mixing for the lines in all points 
of which an identical percentage content of one of the water masses is observed. 
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Fig. 81.  Curves of contraction on mixing for lines corresponding to 0 ,20 ,40 ,60  and 80% content of 
water massA in the triangle of mixing represented in Fig. 25. 

In the example considered, as such lines were selected line BM and the lines 
parallel to  it on which 0, 10, 20, ..., 90% content of water mass A is observed. 

Fig. 8 1 represents the curves of contraction on mixing for lines on which 
the percentage content of water mass A amounts to 0 (line BM) ,  20,40 ,60  
and 80%. In constructing the curves of contraction the scatter of individual 
points, caused by the inaccuracy of calculation of contraction (this inaccuracy 
may be avoided by calculating uT or uT not to the second but to the third 
decimal place), is smoothed out. 

(5) To  construct a triangle of contraction on mixing. For the case consid- 
ered of vertical mixing of water masses A ,  M and B the triangle of contraction 
on mixing is represented in Fig. 82. In this example the construction of the 
triangle of contraction proved simple; indeed, returning to Table XIII, we see 
that contraction on mixing, on the ends of the lines parallel to side AM, differs 
by not more than Au = -2 1 0-5 . Disregarding this difference, and also assum- 
ing that contraction on mixing of water masses A and M is equal to zero, we 
have constructed the isolines of contraction on mixing parallel to side AM. 
In reality, the picture may be more complex. 

cluded. Plotting on this triangle the T-S curves of individual oceanographic 
stations, we can evaluate the extent of the effect of contraction on mixing, 
of an internal nature, on the process of vertical mixing of three water masses. 
For an example in the same Fig. 82 is represented a T-S curve of station 225, 
made by the R.V. “Mikhail Lomonosov”, October 16, 1958, in eoordinates 

With this the construction of the triangle of contraction on mixing is con- 
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Fig. 82. Triangle of contraction on mixing of Atlantic surface (A), Mediterranean Intermediate ( M )  and 
Deep and Bottom North Atlantic (B) Water masses, as well as T-S curve of R.V. “Mikhail Lomonosov” 
station 225. 

47” 46.2” 17” 14.3’W. Looking at this T-S curve, we see that contraction on 
mixing reaches its greatest value (-1 3 - 1 0-5 ) on the lower boundary of the 
intermediate Mediterranean water massM (z EZ: 1,100 m). The effect of con- 
traction on mixing causes uneven mixing of the three water masses, name- 
ly, greater intensity of mixing of water massM with water mass B than with 
water mass A .  This question is considered in more detail in the example of 
the transformation of the Mediterranean Water mass in the Atlantic, below in 
Section 63; this example is the one most studied, as has already been stated 
above, and therefore we devote a separate section to it 

The application of the triangle of contraction on mixing to the analysis of 
individual T-S curves makes it possible to plot also the curves of vertical dis- 
tribution of contraction on mixing, Aa = f(z), for each individual station. 
Such curves, for example, are given in the work of Kin’diushev (1965). 

The triangle of contraction on mixing, represented in Fig. 82, is, as has 
already been said, extremely simple, and for other regions of the ocean the 
picture may prove more complicated. To illustrate the foregoing we may turn 
to Fig. 83, in which is shown the triangle of contraction on mixing of the Sub- 
arctic, Equatorial and Deep Water masses of the Pacific Ocean. The use of this 
triangle for the analysis of the mixing processes of water masses is considered 
in the following section. 

A qualification should be made to the effect that the influence of the com- 
pressibility of sea water, which is not taken into account either in T-S analysis 
or in the analysis of contraction on vertical mixing of water masses, requires 
further study; it may introduce substantial corrections in what has been said. 
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Fig. 83 .  Triangle of contraction on mixing (-105Aa) of surface Subarctic (A) ,  surface Equatorial (0 
and Deep (B) Water masses of the North Pacific. 

56. CONTRACTION ON HORIZONTAL MIXING OF WATER MASSES 

Horizontal mixing of two (three) water masses, differing considerably in 
their T-S characteristics, is observed, as has already been said (Section 53), 
primarily in the frontal regions of the World Ocean. The most striking exam- 
ple of such mixing is the interaction of the water masses of the Gulf Stream 
and the Labrador Current; we have already dwelt on this example above 
(Section 53) and now we will return to it again. 

It is known that the interaction of the two water masses indicated, A and 
L ,  leads to the formation of the product of their mixing - the specific water 
mass of the Continental slope (SL).  Contraction on mixing has a considerable 
effect on the formation of this water mass. It was studied by Zubov (1 957b), 
as well as by McLellan (1 957). Let us consider the effect of contraction on 
mixing on the horizontal mixing of the water masses of the Gulf Stream and 
the Labrador Current. Fig. 84 represents T-S curves of the waters of the Gulf 
Stream, the Labrador Current and of the product of their mixing - the water 
mass of the continental slope. McLellan, as well as Tibby (1 94 1 ), makes an 
assumption that mixing proceeds between water masses of identical density: 
for example, the Labrador water, characterized by figurative point A ,  mixes 
with the water the the Gulf Stream b ,  while 
sequence of the fact that the nature of the process of mixing deviates from 
the isopycnic (the productof mixing lies not on the isoline uT = 27.00, but 
on straight line ab), the effect of contraction becomes manifest. The products 
of the mixing of the two initial water masses are the points lying on the T-S 
curve of the water mass of the continental slope of the ocean and on the cor- 

= (a,)b = 27.00. As a con- 
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Fig. 84. Graphic determination of contraction on mixing from T-S curves of the water masses of the 
Gulf Stream (A) and the Labrador Current (L) .  The T-S curve of the continental slope water is designated 
by the index SL (McLellan, 1957). 

responding straight lines of mixing: point c is the product of the mixing of 
waters a and b ,  point f the product of the mixing of waters d and e ,  etc. The 
calculation of contraction on mixing in this case is illustrated by Table XIV. 
We see from the table that contraction reaches its greatest value A u T  = 0.17 
on the isopycnic surface uT = 27.60. In the overlying layers it keeps large 
values, but decreases with depth. In this way, as in the case of vertical mixing 
of water masses, contraction on mixing reaches its greatest values somewhere 

TABLE XIV 
Contraction on horizontal mixing of water masses of the Gulf Stream and Labrador Current, according 
to McLellan (1957) 

Initial Gulf Stream Labrador Current Slope water 
value 
OfUT T S T S T S UT contrac- %of Gulf 

("C) (o/oo) ("0 (%d ("C) (%J tion Stream 
AUT Water 

26.8 
26.9 
27 .O 
27.1 
27.2 
27.3 
27 A 
27.5 
27.6 

14.50 
13.30 
12.20 
11.08 
9.93 
8.90 
7.88 
7.02 
6.10 

35.92 
35.72 
35.55 
35.4 1 
35.27 
35.18 
35.12 
35.08 
35.04 

-0.80 
-0.68 
-0.42 

0.06 
0.65 
1.20 
1.78 
2.36 
2.90 

33.30 
33.43 
33.57 
33.73 
33.90 
34.07 
34.24 
34.42 
34.61 

10.48 
9.95 
9.42 
9 .OO 
8.43 
7.81 
7.10 
6.40 
5.60 

35.23 
35.17 
35.12 
35.09 
35.06 
35.03 
35.01 
34.99 
34.98 

21.07 
27.11 
21.17 
27.2 1 
27.26 
27.33 
27 A3 
27.52 
27.61 

0.09 
0.12 
0.17 
0.1 1 
0.06 
0.03 
0.03 
0.02 
0.01 

74 
76 
78 
81 
84 
86 
87 
87 
86 
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- 
North Pacific Deep Water  

Fig. 85. Isolines of contraction on mixing (-lo5 Aa) of surface Subarctic (A) ,  surface Equatorial (C) 
and Deep (B)  water masses of the northeastern part of the Pacific Ocean in a conventional section. 
50% Content of water mass Cis plotted by a broken line. 

in the intermediate depths. This phenomenon, a highly interesting one, re- 
quires additional careful study. 

In considering the horizontal interaction of three water masses, the prob- 
lem of the study of contraction on mixing is reduced once again to construct- 
ing the triangle of contraction on mixing; meanwhile, the formal side of the 
question, namely the construction itself of the triangle of contraction, does 
not change whether we are considering vertical or horizontal interaction of 
waters. The differences in the processes of interaction become manifest after 
we begin the consideration within the triangle of contraction of real T-S rela- 
tions, plotted by using either parameter z or parameter 1. 

Considering the nature of contraction on mixing of waters both horizon- 
tally and vertically, let us return to the case of the interaction, considered in 
Section 53, of the Subarctic (A) ,  Deep (B)  and Equatorial (C) Waters of the 
North Pacific Ocean. Taking account of vertical mixing with the underlying 
water mass also introduces corrections in the picture of contraction, which 
may be seen from Fig. 83, which represents a corresponding triangle of con- 
traction on mixing, and Fig. 85, in which the isolines of contraction on mix- 
ing are represented in a conventional section (cf. Fig. 73). The values of con- 
traction, which served as a basis for the plotting of the isolines in Fig. 85, 
were calculated for all points of the square grid of Fig. 73 (excluding line BB’, 
we have 1 10 points) by the method described for the construction of “tri- 
angles of contraction”. 

Considering Figs. 83 and 85 we see that contraction on mixing of water 
masses A and B is practically insignificant; it reaches its greatest values, how- 
ever, not on the horizontal mixing of waters A and C, but on the vertical 
mixing of waters C and B. The region of maximum values of contraction, as 
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was to be expected, is close to the isoline of 50% content of water mass C, 
represented in Figs. 83  and 85 by a broken line. The considerable increase of 
contraction on mixing in the horizontal direction (at different depths) from 
the subarctic structure AB to the equatorial structure CB is, apparently, one 
of the reasons for the fact that the latter is more stable and reflects the result 
of mixing not only of water masses C and B themselves, but also the partici- 
pation in mixing of water mass A .  Thus, the bulging of the equatorial T-S 
curve in Fig. 7 1 to the left, in the direction of T-S index A ,  may very well be 
the result of precisely this process. 

The reservation should be made that the type of mixing under considera- 
tion, strictly speaking, is not horizontal, inasmuch as the isopycnic surfaces, 
especially in frontal zones, are inclined, and therefore the analysis of the phe- 
nomenon of contraction itself can be usefully supplemented by the study of 
the question of the displacement of contracted waters from some levels to 
others (Zubov, 1957b). 

57. CONTRACTION ON MIXING OF FOUR WATER MASSES 

Let us consider the question of contraction on mixing of four water masses 
of the ocean homogeneous in temperature and salinity, and let us select such 
a case when a minimum of two primary water masses (or two pairs) ape in a 
process of horizontal or isopycnic mixing. Such a type of mixing of four 
water masses was already noted above (Section 54) and shown in Fig. 79; it 
is of special interest since it is precisely in the regions of intensive horizontal 
exchange that the subarctic and subantarctic (intermediate) waters are formed, 
and the effect of contraction on mixing on their formation may be most appre- 
ciable. 

The selection of the region of the subarctic front, lying immediately to the 
southeast and east of the shores of Japan, is supported by the fact that con- 
traction on mixing for it was considered by Bubnov ( 1960); thus, there is a 
possibility of comparing the data on contmction obtained in different ways. 

In Fig. 86  (which was in turn the basis for Fig. 79), three T-S curves are 
plotted, borrowed from Koizumi’s work (1953,  namely: 
“T” - the mean annual curve for the weather ship “Tango” (29”N 135‘E); 
“X” - the mean annual curve for the weather ship “Extra” (39”N 153’E); 
“Cu-I 19” - the curve of station No. 1 19 of the vessel “Carnegie”, made 

These three T-S curves well reflect the thermohaline conditions in the 
July 7, 1929 (45” 24” 159” 36’E). 

region of interaction of the waters of the Kuroshio and Oyashio: station “T” 
is situated in the region of the main Kuroshio flow, somewhat to the south of 
it, and the T-S m e  well reflects the structure of this current, agreeing with 
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other averaged T-S curves of the Kuroshio region. T-S curve “Cu-l19yy is char- 
acteristic of subarctic waters, while the T-S curve of station “X”,, situated in 
the frontal region, is representative of the waters which have been formed as 
a result of the interaction of the water masses of the Kuroshio and subarctic 
waters. The line which joins the positions of these three stations on the map 
intersects the whole region of mixing of waters of different structure which is 
of interest to us. 

In the same Fig. 86 the thermohaline indexes of four water masses are 
plotted, the contraction on mixing of which we will accordingly consider, 
namely: 

A (1O.O”C; 32.9’/,) - the surface Subarctic Water mass; 
B (22.0”C; 34.9’0) - the Water mass of the core of the Kuroshio current; 
C (7.0”C; 34.2%) - the Intermediate (of subarctic origin) Water mass, 

characterized by minimum salinity; 
D (1.O”C; 33.1°/00) - the Subarctic Subsurface Water mass (minimum tem- 

perature). 
The positions of the indexes are determined by the extremes of the curves 

in accordance with the “geometry” of T-S curves, except for index A ,  the 
position of which is somewhat arbitrary. It is found on the tangent to the T-S 
curve of the station “Cu-l19”, while its temperature is corrected from Japanese 
climatic maps. 

All four primary water masses in the zone of the subarctic front mix among 

O L  I I I I A ‘ T D i  / I  I J I  I I I 1 I/I I I I I I I I 
32.5 33.0 33.5 34 .0  34.5 35.OS%o 

Fig. 86. T-S curves of “Carnegie” station 119 ( “ C U - I I ~ ” ) ,  of averaged stations of weather ships “Tango” 
(“T”) and “Extra” (“X”), and the quadrangle ABCD of mixing of four water masses in the region of the 
subarctic front of the Pacific Ocean. Line ab is the line of maximum contraction on mixing; the shaded 
oval is the region of maximum contraction, lo5 A p  > 30. (Cf. Fig. 87.) 
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themselves: as has already been said, water masses A and D, as well as waters 
B and C, mix along the vertical; waters A and B - horizontally; waters C and 
D approximately along isopycnic surfaces. The products of the vertical mixing 
of waters A and D and B and C in turn also mix among themselves along the 
surfaces of equal percentage content. Thus, we may consider any T-S index 
lying within the quadrangle of mixing ABCD as the result of the mixing of 
the four original water masses in different proportions. 

The values of contraction on mixing of the four water masses within the 
quadrangle of mixing are calculated by the same method as in the constmc- 
tion of triangles of mixing (Section 55). In this, the grid represented in Fig. 
78 is used. For each of the 12 1 junctions of this grid the values of density uT 
(or specific volume uT) are taken from the T-S diagram; the mean density, or 
“density of mixing” by is calculated from the condition of its linear change 
along the straight lines of the grid taking into account that the conventional 
densities in peaks A ,  B ,  C and D are equal to their true values, namely 25.33, 
24.14, 26.80 and 26.54 respectively. Such an abbreviated method of calculat- 
ing mean density is equivalent to calculating it from the formula of mixing 
for density: 

[57.1] 

where mA , ..., mD - are the amounts of percentage content of each of the 
four water masses in any point M y  which may be determined from the per- 
centage nomogram represented in Fig. 79. 

The picture of contraction on mixing of the four water masses is repre- 
sented in Fig. 87 in the form of the isolines of the smoothed-out values of 
contraction, 105 Ap = 1 O2 Au = 1 O2 [ uT(S, T )  - 81 ; thus, we have a quadrange 
of contraction on mixing. It may be seen from this quadrangle that the value 
of the contraction of waters on mixing, 1 O5 Ap, fluctuates in the region of 
the subarctic front of the Pacific Ocean approximately between 5 and 30 

g/cm3, and that the maximum value amounts to 33. Line ab of maxi- 
mum contraction extends from structure AD (the surface subarctic waters) 
to structure BC (the waters of the Kuroshio within the troposphere), while 
the region of maximum contraction, lo5 Ap > 30, is displaced towards the 
structure of the Kuroshio. Analyzing the contraction on horizontal mixing of 
winter subarctic waters and the waters of the Kuroshio by the method of 
Zubov and Sabinin, Bubnov obtained the same quantity, lo5 Ap = 32; he 
considered the mixing of the two waters along a straight line of mixing close 
to straight line BD, which, as may be seen from Fig. 86, also passes through 
the region of maximum contraction on the T-S diagram (shaded on the figure). 

Let us now compare, in the most general form, the conditions of the con- 
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Fig. 87. Quadrangle of contraction on mixing (lo5 A p )  of water masses A ,  B, C and D .  Line ab is the 
line of maximum contraction. 

traction of the waters on mixing with the thermohaline conditions in the 
region considered. For this let us turn again to Fig. 86, on which line ab of 
maximum contraction is also plotted, as well as the region of maximum con- 
traction, 105 Ap 2 30 (the shaded oval). The line of maximum contraction 
lies approximately between isopycnals uT = 25.8 and 26.0; consequently, the 
region of maximum contraction in the ocean lies precisely in this isopycnic 
layer. This layer between stations “X” and “T”, i.e., in the region of the 
most intensive interaction of the waters of the Kuroshio and the subarctic 
waters, gradually sinks from the northeast to the southwest from depths of 
50-75 m to a depth of approximately 400 m (sector cb of line ab in Fig. 86); 
this may be seen from the distribution of depth marks along the T-S curve. 

Line DC constitutes the line of transformation of intermediate cold waters 
D into the intermediate layer with minimum salinity C; this transformation 
takes place approximately along the isopycnic surface uT = 26.75, which was 
noted earlier by Hirano (1 957). Contraction on mixing along line DC is the 
least in the whole region; however, the transforming waters also sink from 
the northeast to the southwest (from station “Cu-119” to station “T”) ,  from 
a depth of 50-100 m to a depth of approximately 700-800 m (Fig. 86). 
Without going into details, one may express the surmise that this sinking is 
in some way assisted by the strong contraction taking place in the overlying 
layers . 

The quantitative evaluation of the effect of contraction on the balance of 
the masses in the ocean cannot be obtained without an analysis of the content 
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Fig. 88. Curves of percentage content of water masses A,  B, C and D along line ab of maximum con- 
traction on mixing. The values of contraction are shown by a broken curve. AD= waters of the Oyashio, 
BC = waters of the Kuroshio. 

of each of the original waters in their mixture; some views can be expressed 
on the basis of a comparison of the quadrangle of contraction with the per- 
centage nomogram (Fig. 79). 

Let us consider, as an example, the change in the percentage content of 
each of the water masses along the line of maximum contraction on mixing 
ab, plotted also on the percentage nomogram. The curves of the percentage 
content of each of the waters have been entered in a separate Fig. 88 (here is 
also plotted the curve of contraction on mixing along line ab - the broken 
line). One may see, in particular, that maximum contraction, equal to 105 Ap 
= 33, is reached on the mixing of one third of the subarctic waters and two- 
thirds of the waters of the Kuroshio; precisely this explains the proximity of 
the zone of maximum contraction to  the Kuroshio region as compared with 
the subarctic region. A more detailed picture can be obtained by an analysis 
of a sufficient quantity of T-S curves of stations lying between the area of 
station “Ca-119” and the weather ship “Tango”. 

is considered, the values of contraction on mixing represent the differences 
between density as determined by the true equation of state of sea water 
uT = uT(S, T), and density corresponding to some linear equation of state. 
The latter is determined solely by the values of density of the apexes of the 
triangle of mixing, given by the true equation of state: the true and “mean” 
densities coincide in these three points (apexes) of the triangle. When two, 
as well as four or more water masses are mixing, the situation is different. On 
the mixing of two water masses the equation of state _ _  corresponding to the 
distribution of “mean” density, i.e., equation tj = tj(S, T), is linear along the 
straight line of mixing of these two water masses; outside this segment, gener- 
ally speaking, it may also be non-linear. One may also set any linear equation 
of state corresponding to the linear distribution of density along a given 
straight line of mixing; these equations will be determined solely by the con- 

As is already known (Section 36), when the mixing of three water masses 
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stant (arbitrary) values of the coefficients of thermal expansion a and saline 
contraction 0 in the expression for the linear equation: 

u = u ~ - c x T + ~ S  

(uo is some constant value of conventional density). 
If contraction on mixing of four water masses is considered, the true and 

“mean” densities coincide in the peaks of the quadrangle, the distribution of 
density is linear along the sides of the quadrangle as well as along the lines of 
the grid represented in Fig. 78. Within the quadrangle of mixing * the equa- 
tion of state, however, will be non-linear, with the exception of one particular 
case, which will be referred to below. 

Let us illustrate the foregoing in the following way. Let us imagine that the 
isopycnals on the T-S diagram represent the topographic lines of the relief 
of function uT(S,  T). In such a case, the true equation of state will appear in 
the form of a smooth, curvilinear surface rising in the region of high salinities 
and low temperatures and having a smooth bend along the line of tempera- 
tures of maximum density. The plane corresponding to the linear equation of 
state contains three points which correspond to the relief marks of the surface 
of the true equation of state in the apexes of the triangle of mixing, and inter- 
sects with the latter along some curves joining these points. Finally, the surface 
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Fig. 89. Triangle of contraction (LO5 Ap) on separate mixing of water massesA, B and C, and A,  C and 
D, respectively. The broken lines are the lines of maximum contraction. 

* The possible generalized formal concept of “expansion on mixing” outside the triangle or quadrangke 
of mixing is not considered here. 
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plotted from the values of true density in the peaks of the quadrangle of mix- 
ing is curvilinear (a surface of the second order) and corresponds to the non- 
linear equation of state for mean density 0 = O(S, T )  as determined from for- 
mula [ 57.1 ] . This equation in one particular case can be linear, when four 
points (the angles of the quadrangle of mixing) lie in the same plane. The cur- 
vilinear surface mentioned “sags” with respect to the surface of the true equa- 
tion of state; families of straight lines (the grid in Figs. 78 and 87) are its 
generatrices (within the quadrangle). 

mixing ABC and ACD, constructed on the assumption that water masses D 
and B respectively do  not participate in the mixing of the three other water 
masses. We see that the general picture within the two triangles differs from 
the picture of contraction in the quadrangle which is observed under condi- 
tions of mixing of all four water masses. These differences are fairly substan- 
tial, although the general nature of the picture of contraction is approximate- 
ly similar (the region of maximum contraction is shifted in the direction of 
the straight line of mixing BC - the Kuroshio structure). 

A comparison of Figs. 85 and 89 supports to a certain extent the hypo- 
thesis of “horizontal” mixing of water masses along the surfaces of equal 
percentage content, which served as a basis for the construction of the quad- 
rangle of mixing (Section 54): within the region of interaction of waters 
there is no line of zero contraction on mixing (reference is made to line AC 
in Fig. 89), the nature of contraction on vertical mixing of waters A and D 
and waters B and C remains identical in both cases, but at the same time a 
region of maximum contraction appears inside the region of interaction of 
the four water masses. 

- -  

Fig. 89 represents (for comparison with Fig. 87) triangles of contraction on 

58. STATISTICAL T-S ANALYSIS 

The subject of statistical T-S analysis is the frequency of observations which 
correspond to definite points on the T-S diagram or definite squares on it. The 
study of the frequency of T-S relations, broken down in a certain way into 
classes by temperature and salinity, may be carried out by time, by space and 
finally, by volume. Statistical T-S analysis has considerably expanded the pos- 
sibilities of T-S analysis as a whole; the latter‘ was applied earlier, as we have 
seen, primarily to individual T-S curves. 

Statistical T-S analysis was proposed by Montgomery (1955), whose work 
we shall consider first. Using 540 observations of temperature and salinity on 
the surface of the sea made in the course of 1948, 1949 and 1950 from the 
weather ship “J” in the North Atlantic (mean position: 53”N 2Q0W), Mont- 
gomery plotted the statistical annual T-S diagram represented in Fig. 90. Let 
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us explain it. All observations of temperature and salinity were broken down 
into intervals of 0.5"C for temperature and O.lo/oo for salinity. In the corre- 
sponding squares of the T-S diagram was inscribed the frequency of the ob- 
servations, expressed in parts per mille (number of cases per 1000, which we 
will designate here as ppm, so as to distinguish it from the designation of 
salinity (o/m) ). Thus, the frequency in the course of a year of temperature 
values between 9.5 and 1O.O"C at simultaneous salinity values of between 
35.3 and 35.4'/00 amounts, as may be seen from Fig. 90, to 38 ppm. The iso- 
line of frequency of T-S points, equal to 21.5 ppm, is plotted by a heavy line; 
this frequency covers 5 1% of all cases (the sum of the numbers included by 
the heavy line amounts to 5 16 ppm). The frequency of 5.5 ppm (thin line) 
covers 89% of all observations. Adding up the frequencies along the vertical 
and horizontal makes it possible to construct also one-dimensional distribu- 
tions - histograms, separately for salinity and for temperature. These histo- 
grams are represented in the margins of the T-S diagram. 

The smooth line, bending around the histogram, will be the curve of fre- 
quency; it is clear that in the margins of the T-S diagram cumulative frequency 
curves can also be constructed. Points have also been plotted on the statistical 
diagram (Fig. 90) which correspond to mean monthly values of temperature 
and salinity (these points are numbered by roman numerals I -XU);  if these 
points are connected, we will obtain an example of a closed T-S-t curve. 

Statistical analysis of T-S relations on the surface of the sea may be used 
for observations made not only in one point but on any water area. In this 
case frequency indicates not the quantity of cases in one point but the corre- 

Fig. 90. Statistical annual T-S diagram for the surface of the sea. Position of weather ship "J" in the 
North Atlantic: 53"N 20"W. (Montgomery, 1955.) 
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Fig. 91. Statistical T-S diagram showing frequency distribution of characteristics on the surface of the 
sea in the southern part of the Pacific Ocean (winter-August). The sum of frequencies amounts to lo4; 
to convert to area the value of the frequency must be multiplied by 816 km2. (Cochrane, 1956.) 

sponding part of the total area in which temperature and salinity are observed 
simultaneously at given intervals. 

Statistical T-S analysis for surface waters was carried out by Cochrane (1956) 
as applied to the entire Pacific Ocean including adjacent seas. Using G. Schott's 
maps of the distribution of temperature and salinity on the surface of the Paci- 
fic Ocean, Cochrane broke them down into squares (2.5" latitude by 5" longi- 
tude between 20 and 50"N and S; 5" latitude by 5" longitude in the other 
regions) and determined the areas occupied by T-S classes broken down into 
intervals of 2°C for temperature and o.4°/00 for salinity. Then he plotted sta- 
tistical T-S diagrams for winter and summer, as well as mean annual diagrams 
for the northern and southern parts of the Pacific Ocean (six diagrams in all). 
One of Cochrane's diagrams is represented in Fig. 9 1 (the dashed isolines 
represent the anomaly of specific volume A S T ) .  The nature of these T-S dia- 
grams is similar to the T-S diagram given in Fig. 90, with the difference indi- 
cated above, namely: each number in an individual class means that n 1 0-4- 
part of the area of the ocean is occupied by water having T-S characteristics 
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in the given limits. Cochrane points out that the numbers appearing in the 
classes of the statistical diagram satisfy the requirement: 

where Nii is the mean frequency for the characteristic class lying between S j  
and Si + AS and between Ti and + A T .  The integrand function z = f (T, S) 
represents (in the given case - empirically) the equation of “frequency sup  
face”, i.e., the T-S relation for the waters of the Pacific Ocean. In Fig. 91 the 
contour lines of equal height of this surface (isolines of quantity N )  have also 
been plotted, on the basis of which we come to a conclusion about the un- 
doubted connection of statistical T-S diagrams with the question of the appli- 
cation of Green’s theorem to the T-S diagram and the calculation of T-S areas. 
Analyzing the diagrams, Cochrane draws definite conclusions on the regional 
features of the thermohaline field, on which we will not dwell here. 

Finally, statistical T-S analysis may also be applied to the volumes of seas 
and oceans. Volumetric statistical diagrams were published simultaneously for 
the Pacific Ocean (by Cochrane, 1958), the Indian Ocean (by Polak, 1958) 
and for the Atlantic as well as the World Ocean as a whole (by Montgomery, 
1958). The three works mentioned, together with the two considered above, 
laid the foundation of statistical thermohaline analysis; they were followed by 
a number of other studies and, at the end of the section, we shall briefly take 
up the most interesting of them. 

The method of plotting volumetric statistical T-S diagrams consists of the 
following. In the ocean (sea) under consideration, a uniform network of sta- 
tions, made to the bottom, is selected. At the same time the condition must 
be satisfied that each station should be representative for some standard area 
(square). In the works of the authors mentioned such an area proved to be 
the area of 106 km2 *. If one station covered a larger or smaller area, its statis- 
tical weight was correspondingly increased or decreased. A depth of 10 m was 
taken as the vertical unit of volume; thus, the volumetric unit proved to be 
equal to 104 km3. Then each pair (temperature-salinity) for standard levels 
was assigned to a definite class; here, for analysis, two types of intervals were 
selected: a coarse scale (interval of temperature 2”C, of salinity - 0.5° /0~) ,  
and a fine scale (interval of temperature 0.5”C, of salinity - 0. lo/oo). The 
quantity of volumetric units, occupied by a T-S relation of a given class was 
determined in the following way: the T-S relationship was assigned to  a layer, 
the boundaries of which along the vertical were situated in the middle between 

* Given an area of the Atlantic Ocean of 106.2 -106km2 105 representative stations were selected, i.e., 
one station just fitted an area of 106km2 (Montgomery, 1958). 
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Fig. 92. Averaged volumetric T-S diagram for the Atlantic Ocean. Numbers in classes 2”X 1%, signify 
volume in lo4 km3. The heavy line marks 75% of the entire volume of the ocean, the thin line 99%: 
Along the axes the sums of the numbers appearing in the classes of the diagram are plotted. (Mont- 
gomery, 1958.) 

standard levels; the volumetric weight of the T-S relation was determined cor- 
respondingly in units of 1 O4 k m 3  . Potential temperature was taken as the 
temp era ture. 

One of the results - the coarse-scale T-S relationship for the Atlantic 
Ocean - is represented in Fig. 92. The numbers n in the unit classes 
(2” X lo/oo) determine the volume times 104 k m 3  of the water of the given 
class. The isopleth of frequency of 75% is plotted with a heavy line; conse- 
quently, more than 75% of the volume of the waters of the Atlantic Ocean 
is comprised between -1 and 3°C and between 34 and 3S0/, . The isopleth 
of 99% is plotted with a thin line. The sum of all the numbers appearing in 
the individual classes equals 70,566; a more accurate value of the volume of 
the Atlantic Ocean (Sverdrup et al., 1942, p. 15) amounts to 106,463 million 
km3 - with adjacent seas and 82,441 million km3 without adjacent seas. 

The method of volumetric statistical T-S analysis was applied to the seas 
of Indonesia by Nefed’ev (1 96 1 ), who improved the methods of plotting 
statistical T-S diagrams. This improvement consists of the fact that the ver- 
tical boundaries of the layer, assigned to the T-S characteristic, were deter- 
mined from the curves of vertical distribution of temperature and salinity 
and not from the distances between standard levels. At large vertical tempera- 
ture and salinity gradients, within one “standard” layer there prove to be 
several layers, assigned to  the T-S pair within the given intervals of T and S ;  
the result of the processing is made more precise, while the statistical T-S 
diagram proves close in its form to the “cluster” of T-S curves, conferring on 
the latter a quantitative (volumetric) characteristic. 

Dubrovin (1 965), studying the volumetric T-S characteristics of the Arabian 
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and Red Seas, made a further improvement in methods: he determined the 
boundaries between layers along the vertical not by the curves of vertical dis- 
tribution of temperature and salinity, but directly from the T-S curves. The 
use precisely of the T-S curves is not only more convenient but also more 
correct, since the identification of the layers may be carried out taking ac- 
count of the vertical arrangement of the water masses and the boundaries 
between them. The same improvement was made in the works of Masuzawa 
(1 964b, 1965). 

As has already been said, a number of other works followed the first inves- 
tigations considered. La Fond (1957) and Rama Sastry (1 963) applied statis- 
tical analysis to the waters of the northern part of the Indian Ocean, particu- 
larly to the Bay of Bengal. Thus, in the latter of the works mentioned, Rama 
Sastry considers the characteristics of the surface waters in the coastal part 
of the Bay of Bengal near Madras. The material used for statistical T-S analysis 
was an eight-year series (1 95 1 - 1957) of observations of temperature and 
salinity near Madras; as a result, a number of valuable conclusions was ob- 
tained concerning the seasonal interaction of water masses of different origins 
and concerning the effect on this interaction of various climatic factors: seaso- 
nal fluctuations in heat exchange with the atmosphere, river discharge, etc. 

In the articles of Karavaeva and Radzikhovskaia ( 1965) and Radzikhovskaia 
(1 9 6 9 ,  volumetric analysis was carried out for the waters of the northern and 
southern parts of the Pacific Ocean. In the work of Dubrovin (1 9 6 9 ,  which 
was already referred to above, a comparative analysis of the waters of the 
Arabian and Red Seas is carried out; finally, in Sturges’ work (1 965) the T-S 
characteristics of the waters of the Caribbean Sea are considered, while in the 
work of Yasui et al. (1967) characteristics of the waters of the Sea of Japan 
are given. All these studies contain a number of new and interesting conclu- 
sions, on which we will not dwell, noting only two for an example. 

Thus, Dubrovin points out on the basis of statistical analysis that, in spite 
of the fact that the volume of the Red Sea is approximately 34 times less 
than the volume of the Arabian Sea, the reserve of salts in it is 29 times less, 
while the heat reserve is only ten times less. Sturges draws attention to an 
interesting feature of the waters of the Caribbean Sea, which manifests itself 
in the presence of strong “peaks” on the curve of frequency: almost half of 
all the Caribbean waters are comprised in the interval of only 0.1 “C for tem- 
perature and 0.02°/00 for salinity in relation to a mean value of 3.9”C and 
34.9 8OIm respectively . 

In addition, Sturges propases a modernization of the method, consisting 
of the fact that the frequency of volumes in classes can be reckoned not only 
along vertical and horizontal strips, but also along isopycnic strips, which he 
accordingly does in the example of the Caribbean Sea. 

Let us mention several other works devoted to volumetric statistical analysis. 
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Finally, volumetric distribution of the T-S properties for the entire Medi- 
terranean Sea and its basins has been obtained by Miller (Miller et al., 1970) 
and for the North Atlantic Ocean by Wright and Worthington (1 970). 

Apart from areas and volumes, the values of volume transports of water cal- 
culated, in particular, by the dynamic method, can be plotted in the corre- 
sponding classes of T-S diagram. For an illustration of the method, let us 
consider the results obtained by Masuzawa (1964a, 1965) for the region of 
the Kuroshio Current. From the data of a section made in May 1965 by the 
R.V. “Riofu Maru” along the meridian 136.5”E, the geostrophic flows were 
calculated between stations 21 84 and 2 189 (distance about 180 km) from 
the reference surface of 2,000 dbar. The flows were calculated between each 
pair of stations for layers of a thickness of 50 m in the upper 1,000-m layer 
and for layers of a thickness of 100 m in the lower 1,000-m layer. The method 
of combining geostrophic flows with the T-S diagram is as follows. For each 
station the geostrophic flow is calculated as a quantity, which is the average 
between the flows through neighboring pairs of stations, including the station 
considered. Then, from the T-S curve the boundaries of the classes are deter- 
mined and by interpolation - the corresponding transports within each of 
the classes. Thus, the geostrophic transport is considered along the T-S curve 
as a parameter. 

In Fig. 93 a are shown the results of a computation for the section men- 
tioned above (the enveloping T-S curves belong to the extreme stations 2 184 
and 21 89). It is seen from the figure that the maximum transport - 38.9 
h 3 / h  - belongs to the class (18.5”C; 34.85°/00), which corresponds to waters 
equivalent to the “1 8-degree waters of the Sargasso Sea” (Worihingon, 1959, 
Istoshin, 196 1 ). Full transport through the investigated part of the section 
amounts to 247.2 km3 /h. In Fig. 93b is shown for comparison the T-S dia- 
gram of the geostrophic transport of the Kuroshio through another section, 
made further east (along meridian 144”E). One of the interesting results of 
the comparison is the fact that the transport of “18-degree waters of the 
Kuroshio” through the second of the sections considered is considerably 
smaller. Finally, in Fig. 93c are shown the differences of geostrophic trans- 
ports in corresponding classes between the two sections considered. 

transport through a section to the south of Cape Shiono - Misaki are also 
considered - average for winter and summer, as well as the differences of 
geostrophic T-S diagrams between the Kuroshio to  the south of Japan (in the 
summer) and the Northern Trade Wind Current (summer sections of 1956 
along meridians 140 and 150” E). Let us note that as conventional dynamic 
heights Masuzawa used integrated thermosteric anomalies A S T .  

teristics of water masses may also be represented on statistical T-S diagrams: 

In Masuzawa’s work (1 965) the differences of T-S diagrams of geostrophic 

Apart from frequency, area, volume, volumetric flow, other additive charac- 
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Fig. 93. T-S diagrams of geostrophic transport of the Kuroshio Current. (a) To the south of Japan, 
through a section made along meridian 136.5"E. (b) To the east of Japan, through a section along 
meridian 144"E. ( c )  Difference in geostrophic transports through the sections mentioned. (Masuzawa, 
1964a; 1965.) 

the oxygen, phosphate, or nitrate content, the biomasses of plankton, etc. As 
an example, a statistical T-S diagram is represented in Fig. 94, which shows 
the total content of dissolved oxygen in the plane of the section made by the 
scientific research vessel "Professor Deryugin" in the southeast part of the 
Pacific Ocean along meridian 109" W in May 1968 (part of the plane of the 
section was selected for calculation, namely, between the surface of the sea 
and the depth of 1,000 m and between latitudes 39.5 and 49.5"S, including 
ten stations made every other degree of latitude) (cf. also Mamayev, 1973b). 
The diagram represented in Fig. 94 is plotted in the following way. On the 
curves of vertical distribution of oxygen 0, (z) at the oceanographical stations 
the thicknesses of the layers are laid out corresponding to  the individual T-S 
classes (these thicknesses in turn were taken from T-S curves). Then, within 
each layer, the mean content of oxygen in the layer is graphically determined. 
Having multiplied the oxygen content in each square meter (or rather, in the 
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4000 t 
Fig. 94. Statistical T-S diagram of dissolved oxygen content (in --n 
R.V. "Professor Deryugin", made at meridian 109"W in the Southeastern Pacific Ocean. The diagram 
relates to the part of the plane offhe section lying between 39.5 and 49.5"S, in the 0-1,000-m layer. 

0 in a plane of a section of 

volume 1 m X 1 m X 0.1 m), expressed in 1 O2 ml/l by the thickness of the layer, 
we obtain the oxygen content in that part of the plane of the section which 
corresponds to  the given T-S class; this content is presented in the classes of 
statistical diagram in liters per unit of latitude. In order to obtain the true 
oxygen content in the plane of the section (in a vertical layer of 0.1 m thick- 
ness) the sum of all the numbers of Fig. 94 must be multiplied by the dis- 
tance between two stations, equal to 1.1 1 1 O5 m. This content equals: 

5833.85 X 1.1 1 lo5 = 6.5 105 m3 

lar, by the nature of distribution, to the corresponding volumetric diagram 
Let us note that the statistical T-S diagram of oxygen content is very simi- 
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which is not given here (cf. Mamayev, 1973b). This takes place because the 
oxygen content at the stations of the section of the “Professor Deryugin” 
along meridian 109” W is very uniform, changes little with depth and amounts 
in the layer 0-1,000 m on the average to about 6 ml/l. The latter quantity 
represents, as it were, the mean multiplier for the transition from the volu- 
metric diagram to the diagram of dissolved oxygen content. The maximum 
content of dissolved oxygen belongs to the Antarctic Intermediate Water 
mass, the thermohaline index of which in the plane of the section considered 
amounts to (5.5”C; 34.34%). By the way, the latter value was also deter- 
mined from the statistical volumetric diagram as the “peak” of a mountainous 
country the relief of which can be plotted if the numbers appearing in the 
classes of the diagram are considered as heights (the foregoing is clarified by 
consideration of Fig. 9 1 ). 

The possibilities of statistical T-S analysis, of course, are not confined to 
the examples quoted; in combination with “ordinary” T-S analysis it proves 
an extremely powerful means for the division of the World Ocean into regions 
by various factors, the study of the question of the seasonal and spatial inter- 
action of water masses, the study of the interaction between the ocean and 
atmosphere, etc. Let us indicate in conclusion that the results of volumetric 
analysis were used by Bolin and Stommel(l96 1) for the study of the abyssal 
circulation of the World Ocean. 



CHAPTER 8 

WATERS OF THE WORLD OCEAN 

59. GENERALIZED T-S RELATIONS OF THE WATERS OF THE OCEAN 

In the present concluding chapter, the generalized T-S relations of the 
principal water masses of the World Ocean will be considered, their classifica- 
tion drawn up and their geographical distribution shown; the special features 
of the transformation of intermediate water masses will be considered in 
somewhat greater detail, as they are of the greatest interest in the vertical 
oceanographic structure of the ocean. 

The generalized T-S relations, which are considered in this paragraph, 
represent the basic material for T-S analysis in the sense that they are the 
basis for the further study of the waters and the mapping of their characteris- 
tics: vertical and horizontal extent, paths of propagation, percentage ratio 
and other indicators of interaction; the quantitative comparison of the results 
of thermohaline analysis with other indicators of the dynamics of waters, as 
well as with the “secondary” characteristics of waters (say, with the distribu- 
tion of various forms of plankton and its biomass). Finally, a highly impor- 
tant problem is the determination from generalized types of T-S curves of the 
coefficients of vertical and horizontal turbulent mixing, different for the 
regions of interaction of different waters, by means of Jacobsen’s method 
(1927) and its possible modifications. Knowledge of the spectrum of averaged 
coefficients is absolutely necessary for the study of planetary processes of 
heat and salt exchange and for the subscquent solution of a number of the 
most important geophysical and geographical problems. Bearing in mind the 
connection between the T-S diagram and the coefficients of exchange, one 
may say that the coefficients of exchange are a distinctive parameter of state 
of the natural waters of the ocean, and to each point of the T-S diagram 
there can be placed in correspondence at least one value of the coefficient, 
which in turn is attached to a definite type of curve. 

The question touched upon is not a new one; generalized T-S relations of 
the water masses of the World Ocean (excluding the 100-m surface layer) 
were constructed by Sverdrup et al. (1942) and Dietrich (1950,1964). These 
diagrams constitute an introduction to what follows, and are shown in Figs. 
95 and 96 respectively. The well-known T-S relations of Sverdrup show on 
the diagram the regions into which the main types of T-S curves of the World 
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Ocean fit; looking at Fig. 95 we can easily imagine a particular form of a 
certain T-S curve in various regions of the ocean. However, Sverdrup’s graph 
suffers from a certain shortcoming since it does not cover entire groups of 
T-S curves which lie between the main types and which correspond to regions 
which are transitional in relation to those referred to in the figure. To de- 
scribe this shortcoming, let us cite the following example: the region of the 
Central waters of the eastern part of the North Pacific Ocean passes into the 
region of Equatorial waters if we follow along the meridian to the south; a 
gradual smooth change in the form of the T-S curve from one type to 
another corresponds to this “transition”, even during transition through 
frontal regions. However, in Sverdrup’s diagram, a considerable gap exists 
between the typical T-S bands, and it is not clear which form the “intermediate” 
T-S curves assume. In addition, as will be seen further on, Sverdrup’s relations 
have become obsolete in some of their details and do not correspond to the 
true distribution of water masses. 

The averaged diagram of Dietrich (Fig. 96) covers to a certain extent the 
shortcomings noted in Sverdmp’s diagram, since all the possible T-S curves 

T ‘C 
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Fig. 96. Generalized T-S relations of the water masses of the World Ocean, according to Dietrich 
( 195 0). 
I = waters of the Black Sea; 2 = Subantarctic water ring; 3 = waters of the Red Sea; 4 = waters of the 
European Mediterranean Sea; 5 = oceans to the North of -40”s; 6 = waters of the North 
Polar and North Seas; 7 = Antarctic bottom waters; 8 = waters of Baffii Bay (2,000 m); 9 = waters of 
the Sea of Japan (1,500 m); 10 = waters of the Sea of Okhotsk; I 1  = Subantarctic intermediate waters; 
12 = Subarctic Pacific waters;A WR = Antarctic water ring (1,000-4,000 m). 
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for a given T-S region fit within such a region, which corresponds to  each of 
the oceans. However, the picture is too generalized, and we are denied the 
possibility of judging their form, since the main types (“clusters”, if you will) 
are not defined here, and within each of the shaded T-S regions we can, 
generally speaking, imagine a T-S curve of any form. Of course, Dietrich’s 
diagram also suggests to us the predominant configuration of T-S curves, but 
looking, for example, at the T-S region corresponding to the Indian Ocean, 
we can hardly imagine the probability of what is almost a straight T-S line, 
characteristic of the water masses of the southern part of the Bay of Bengal, 
where almost complete homohalinity is observed with depth. 

Also, in Stepanov’s work (1965), the main types of structures of the 
waters of the World Ocean are considered, their classification is proposed, 
and typical T-S curves are given corresponding to the main structures. 

masses appears necessary: on them, aside from the basic “fans”, “clusters” 
and other aggregates of T-S curves, must also be represented the thermo- 
haline indexes of the primary water masses (including the “point” masses 
too), as well as the main triangles of mixing, so that the analysis of T-S rela- 
tions may be substantially supplemented by the conclusions which follow 
from the analytical theories of T-S curves. Furthermore, there is a need for a 
certain systematization of the T-S indexes of the main water masses. 

The modified T-S relations of the main water masses of the Atlantic, 
Indian, Pacific and Southern Oceans, plotted by the author (Mamayev, 1969a), 
are represented in Figs. 97-100 respectively. Sverdrup’s diagram (Fig. 95) 
was taken as a basis for these generalized T-S relations, and to a certain ex- 
tent they may be considered as a modification of the former. In addition, in 
plotting these relations, apart from Sverdrup’s T-S diagram, series of T-S 
curves plotted for selected sections in the oceans were used, as well as literary 
sources, of which the most important were the followipg: 

On the Atlantic Ocean - the works of Defant and Wust (1930), Jacobsen, 
(1929), Wust (1 935), Mamayev (1 960a), Tiuriakov (1964), Tiuriakov and 
Zakharchenko (1965); 

On the Indian Ocean - the works of Thomsen (1 935), Rochfoid ( 1963, 
1966a,b,c) the General Report ( 1966) by Uda about Japan’s participation in the 
International Indian Ocean Expedition; 

On the Pacific Ocean - the works of Dobrovol’skii (1 962), Dobrovol’skii 
et al. (1 960) and the monograph generalizing these works The Hydrology of 
the Pacific Ocean (Institute of Oceanology, Academy of Sciences, U.S.S.R., 
1968), as well as the works of Robinson ( 1960) and Wyrtki ( 1963,1967); 

On the Soutern Ocean - the work of Yu.K. Gordienko (1964) (unpub- 
lished). 

Apart from the thermohaline indexes of the primary water masses, Figs. 

Thus, a clarification of the picture of the T-S relations of the main water 

’ 
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Fig. 97. Generalized T-S diagram of the water masses of the Atlantic Ocean. 
1 = North Atlantic Central Water (according to Sverdrup), 2 = South Atlantic Central Water, An1 = 
Antarctic Intermediate Water, SAD = South Atlantic Deep Water, NADB = North Atlantic Deep and 
Bottom Water, AnB = Antarctic Bottom Water, NAST = North Atlantic Subtropical Troposheric 
Water, SAST = South Atlantic Subtropical Tropospheric Water, MI = Mediterranean Intermediate 
Water. 

97-100 show the positions of the main straight lines and triangles of mixing 
(although the bases of the triangles are not plotted in the majority of cases in 
order not to overload the diagrams) and the types of T-S curves (heavy lines 
- solid and dashed), formed as a result of the mixing of primary water masses 
(black dots). It is clear that the appearance on the T-S diagram of the thermo- 
haline indexes of the primary water masses opens the way to greater scope in 
determining possible variations of T-S curves in accordance with the 
“geometry” of T-S curves. 

The classification of types of water masses, based on generalized T-S 
diagrams, as well as their geographical distribution will be briefly considered 
in the following section; here we will give a characteristic example of the 
interpretation of generalized diagrams with the example of the eastern part 
of the Pacific Ocean, in explanation of the foregoing. For this purpose, the 
T-S relations for the eastern part of the Pacific Ocean have been singled out 
in a separate Fig. 101 in somewhat greater detail. The selection of this ex- 
ample is based on the fact that it is precisely in the Pacific Ocean that we 
observe in the most striking way (by comparison, say, with the Indian Ocean) 
the interesting effect of the interaction of two intermediate water masses 
which have extremes of the same sign, in particular salinity minima. 

The main water masses of the central region of the North Pacific are 
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Fig. 98. Generalized T-S diagram of the water masses of the Indian Ocean. I = Indian Central Water 
(according to Sverdrup et al., 1942). 
AnISA = Antarctic Intermediate Water of South Atlantic 
An1 = Antarctic Intermediate Water 
TI = Timor Sea Intermediate Water 
BT = Bengal Bay Tropospheric Water 
TT = Timor Sea Tropospheric Water 
ET = Equatorial Tropospheric Water 
SIST = South Indian Subtropical Tropospheric Water 
RI = Red Sea Intermediate Water 
IB = Indian Deep and Bottom Water. 

(Fig. 101): Surface (tropospheric) Subtropical Water mass C,, Intermediate 
Subarctic Water mass A and Deep Water mass B. Their interaction is illu- 
strated by a T-S curve of type I ,  the most characteristic for the east of the 
North Pacific (Section 48). 

masses are characteristic: tropospheric Subtropical Water mass C2, Inter- 
mediate Antarctic Water mass A and Deep Water mass B (the Bottom 
Antarctic Water mass, underlying Water B ,  is not considered in Fig. 101). The 
interaction of these water masses is represented by a T-S curve of type 3. 

In the equatorial part of the ocean the Intermediate Water masses, Sub- 
arctic and Antarctic, come into contact: the first of them, moving to the 
south, spreads over the second which is moving to the north. There occurs, 
as it were, mutual penetration of structures C1A2B and C2A,B, and a T-S 
curve of the transitional type 1-3 is formed; its upper part retains the 
features of T-S curve I ,  and the lower part of T-S curve 3. The transitional 

For the central region of the South Pacific as a whole the following main 
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Fig. 99. Generalized T-S diagram of the water masses of the Pacific Ocean. Central Water masses 
(according to Sverdrup); I = Eastern North Pacific, 2 = Western North Pacific, 3 = Eastern South 
Pacific, 4 = Western South Pacific, 5 = Pacific Equatorial. 
SAS = Subarctic Surface Water 
WNPSI = Western North Pacific Subarctic Intermediate Water 
ENPSI = Eastern North Pacific Subarctic Intermediate Water 
ESPSI = Eastern South Pacific Subtropical Intermediate Water 
WNPST = Western North Pacific Subtropical Tropospheric Water 
ENPST = Eastern North Pacific Subtropical Tropospheric Water 
SPEST = South Pacific Equatorial and Subtropical Tropospheric Water 
AnIESP = Antarctic Intermediate Water of Eastern South Pacific 
AnISA = Antarctic Intermediate Water of South Atlantic 
PD = Pacific Deep and Bottom Water 

curve 1-3 has two salinity minima - subarctic u and antarctic b,  separated 
by salinity maximum c, which represents the truce of  the effect o f  water muss 
C2. The chief purpose of such discussion is to lay the way for a clarification 
of the origin of this kind of secondary maximum (of extremes in general), 
which are often observed on T-S curves - all the more since this clarification 
goes beyond the limits of the analytical theory of T-S curves developed up 
to the present time. 

Thus, if we follow mentally from north to south along a meridional sec- 
tion in the eastern part of the Pacific Ocean, we can see how a T-S curve of 
type I gradually passes into type 3, forming in the equatorial part of the 
ocean a transitional intermediate structure 1-3. In the western part of the 
equatorial region of the Pacific Ocean a similar and even more striking picture 
is observed, since the Subarctic Intermediate Waters rise there to the surface. 

A similar example is the formation of the T-S curve of the eastern-subtropi- 
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Fig. 100. Generalized T-S diagram of the water masses of the Southern Ocean (Atlantic and Pacific 
sectors). 
SPEST = South Pacific and Equatorial Subtropical Tropospheric Water 
SAST = South Atlantic Subtropical Tropospheric Water 
NADB = North Atlantic Deep and Bottom Water 
PD = Pacific Deep and Bottom Water 
An = Antarctic Bottom Water 
SAn = Surface Antarctic Water 
An1 = Antarctic Intermediate Water 
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Fig. 101. Generalized T-S diagram of the water masses of the Eastern Pacific Ocean (explanations in 
the text). 
Intermediate water masses: A1 = Antarctic of the Eastern South Pacific; A2 = subarctic of the Eastern 
North Pacific; A 3  = Subtropical of the Eastern South Pacific. 
B = Pacific Deep and Bottom Water. 
Subtropical Tropospheric waters: C1 = of the Eastern North Pacific; C2 = of the South Pacific Ocean. 
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cal structure 3 in the Peruvian-Chilean region of the southeast Pacific Ocean, 
T-S curve 3 of subtropical structure 2 is formed in the triangle of mixing 
C2A,B,  whereas T-S curve 2 in triangle of mixing C2A3B.  The “mutual pene- 
tration” of structures 2 and 3 leads to the formation of a transitional structure 
of the eastern-subtropical type (T-S curve 2-3 in Fig. 101). Intermediate 
secondary salinity maximum c’ represents a survival of curve 3, which reflects 
(at corresponding depths) the direct mixing of water masses C2 and A 1 .  

Such is one of the examples of the application of T-S diagrams to the dis- 
covery of the genesis and transformation of water masses; other examples 
will be considered below. 

60. THE CLASSIFICATION OF WATER MASSES 

Thus, on generalized T-S diagrams (Figs. 97-100) T-S lines are considered 
not as images of individual water masses, but as lines of mixing between the 
primary water masses of the ocean. It may be seen from the T-S diagrams 
that these waters break down into three types: tropospheric, intermediate 
and stratospheric (deep and bottom) water masses. A return to Defant’s 
terminology - “the troposphere of the ocean” and “the stratosphere of the 
ocean” - appears highly appropriate in the given context. 

Let us consider briefly the basic features of these three types of water 
masses which are enumerated (together with their mean thermohaline in- 
dexes) in Table XV. 

Tropospheric waters. These waters are situated in the near-surface layers of 
the oceans, at depths of approximately from 100 to 500-900 m and are 
linked basically to anticyclonic circulation of waters in the oceans. As a rule, 
tropospheric waters are characterized by a surface subtropical salinity maxi- 
mum, which we have already seen in several figures (see for example, Figs. 
6 1,66); the T-S indexes of tropospheric waters are accordingly determined as 
the points of intersection of the tangents at the corresponding extreme. The 
surface water mass, very thin, with a mobile thermohaline index, is excluded 
in this (although it may serve as the subject of separate consideration). In the 
case where a subsurface salinity maximum does not occur, the index of the 
tropospheric mass “emerges on the surface”. Moreover, the “absence of 
thickness” in such tropospheric water masses should not disturb us: precisely 
the stability of a T-S index in some surface point of the ocean may be treated 
as an indication of a “water mass” (such an approach was justified above, in 
Section 50). Tropospheric (central) waters and hypotheses of their formation 
are considered in detail in Section 6 1. The region of their distribution is near 
to what is shown in Fig. 102. 
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TABLE XV 

Principal water masses of the World Ocean and their T-S indexes 
~ ~~ 

Water masses Atlantic Ocean Indian Ocean Pacific Ocean 

Tropospheric' North Atlantic 
Subtropical 
(20.0"C; 36.5'/00) 

South Atlantic 
Subtropical 
(18.0"C; 35.go/oo) 

Intermediate Subarctic 
(2.OoC; 34.9'/00) 

Mediterranean 
(11.9"c; 36.So/oo) 

Antarctic 
(22°C; 33.8'/00) 

Stratospheric North Atlantic 
(Deep and Deep and Bottom 
Bottom) (2.5"C; 34.go/oo) 

South Atlantic Deep 
(4.0"C; 35.0°/oo) 

Antarctic Bottom 
(-0.4"C; 34.66O/oo) 

Bengal (Bay) 
(25.0"C; 33.8'/00) 

Equatorial 
(25.0"C; 35.3'/00) 

Timor (Sea) 
(25.0"C; 34.So/oo) 

South Indian 
Subtropical 
(16.0"C; 35.6'/00) 

Red Sea 
(23.0"C; 40.O0/0o) 

Timor Sea 
(12.0"C; 34.6'/00) 

Antarc tic 
(5.2" C; 34.3'/00) 

Deep and Bottom 
(0.6"C; 34.7'/00) 

Western North Pacific Subtropical 
(20.O"C; 34.8'/00) 

Eastern North Pacific Subtropical 
(20.0"c; 35.2'/00) 

South Pacific Equatorial and 
Subtropical 
(25.0"C; 36.2°/oo)-(20.0"C; 35.7'/00) 

Subarctic 
(5.0"C; 33.8°/oo)-(9.00C; 33.5'/00) 

Eastern South Pacific Subtropical 
(11.5"C; 33.go/oo) 

Antarctic 
(5.O"c; 34.lo/oo) 

Deep and Bottom 
(1.3"C; 34.7'100) 

Not included in the table are surface (tropospheric) arctic, subarctic, antarctic and subantarctic 
waters with unstable T-S indexes. 

Intermediate waters. These waters form a distinctive liquid boundary 
between the troposphere and the stratosphere of the ocean and are situated 
at depths of approximately from 600-800 to  1,200 m. Intermediate waters 
are determined on T-S curves by characteristic extremes, and are divided into 
three main types: 

(1) Intermediate waters with a salinity minimum, formed in the subarctic 
and subantarctic latitudes; these are subarctic waters in the Atlantic Ocean, 
subarctic waters in the Pacific Ocean and antarctic waters in all three oceans 
(in their southern parts). 

(2) Intermediate waters with salinity maximum, formed as a result of the 
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water exchange of the ocean with closed seas with a thermohaline structure 
different from the ocean. These are the Mediterranean Water mass in the 
Atlantic Ocean, the Red Sea Water mass in the Indian Ocean, the layers of 
increased salinity in the Arabian Sea, as well as the water mass of the Timor 
Sea in the Indian Ocean. 

(3) Intermediate waters with a temperature maximum, penetrating into 
the high latitudes. These are the Atlantic Water mass in the North Polar Sea 
and the Antarctic Intermediate Water mass in the Southern Ocean, shown in 
Fig. 100. 

The intermediate water mass in the southeast of the Pacific Ocean - the 
Eastern Subtropical Intermediate Water - stands somewhat by itself; its for- 
mation takes place in a similar way to  the formation of the antarctic water 
mass, but in lower latitudes (it is also characterized by a salinity minimum, 
while its appearance was considered in discussing Fig. 10 1). The region of 
distribution of the main intermediate water masses of the World Ocean is 
shown in Fig. 103. 

Stratospheric waters. The stratospheric waters may be divided into two 
principal types: waters formed in the high latitudes of the Northern Hemi- 
sphere and characterized by a salinity maximum, and waters formed in the 
high latitudes of the Southern Ocean and characterized by a salinity minimum 
(“maximum” and “minimum” must be understood here in a relative sense, 
when only stratospheric waters are considered). The stratospheric waters 
move from the high latitude regions toward each other, and where they come 

Fig. 103. Intermediate Water masses of the World Ocean. 
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into contact, the waters of the Northern Hemisphere prove to be deep, and 
the waters of the Southern Hemisphere bottom waters; the thermohaline charac- 
teristics are such that the antarctic waters always appear lower than the water 
masses of northern origin. The distribution of stratospheric waters is shown 
in Fig. 104. 

A list of the principal water masses of the World Ocean, the indexes of 
which are represented in Figs. 97-100, is given in Table XV; here the water 
masses are classified by oceans, their vertical position (depth), as well as by 
their location from the north to  the south. 

The water masses listed embrace an area of water, excluding the regions of 
formation of stratospheric water masses, namely, the water area limited on 
the south by the line of antarctic convergence and on the north by the polar 
fronts of the Atlantic and Pacific Oceans. The water masses lying to the 
north and to the south are distinguished by greater “thermohaline complex- 
ity”, which makes difficult the identification of individual thermohaline in- 
dexes. These waters (if the Arctic Basin is excluded) include: the subarctic 
(surface) waters of the North Atlantic; the subarctic waters of the North 
Pacific; and the antarctic waters in the Southern Ocean, surface and inter- 
mediate. 

In spite of the difficulty (and even the impossibility) of isolating the 
thermohaline indexes of these waters, the T-S regions of their existence are 
indicated: for the Southern Ocean - in Fig. 100, for the Pacific Ocean - in 
Fig. 99 (the subarctic waters of the Atlantic are not indicated in Fig. 97; in 

~~ ~ 

Fig. 104. Deep and Bottom Water masses of the World Ocean. 1 = centers of formation, 2 = Deep and 
Bottom Water mass of the North Atlantic and the North Pacific, 3 = Antarctic Bottom Water mass, 
4 = Southern Deep Water masses of all three oceans. 
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order not to encumber the diagrams, they are shown in Fig. 106 and de- 
scribed below, in Section 6 1 ). 

the Atlantic and Pacific Oceans: the first are distinguished by pronounced 
homohalinity along the vertical (mean salinity amounts to 34.9O/00); the 
second by pronounced hornothermy (mean temperature along the vertical 
1.5" C). Apparently, precisely this distinction explains the broad distribution 
in the Pacific Ocean of Intermediate Subarctic Waters as compared with the 
Atlantic Ocean. 

Regarding the subarctic waters, let us note in passing their difference for 

61. THE TRANSFORMATION OF TROPOSPHERIC WATERS 

One of the important questions in the study of the thermohaline structure 
of the waters of the World Ocean is the question of the origin of the tropo- 
spheric, or central water masses of the World Ocean. As has already been 
said, by this term we mean the waters belonging to anticyclonic gyres in the 
oceans and observed both in the region of the currents themselves and in the 
internal zones of circulation; in the vertical direction the Central Water masses 
extend from a depth of 100 m to a maximum depth of 900 m in the Sargasso 
Sea and a minimum depth of 200-300 m in the northern part of the Pacific 
Ocean. Precisely in these horizontal and vertical limits (the upper 100 m 
layer, interacting intensively with the atmosphere, is excluded) the Central 
Water masses are characterized by a quite definite rectilinear T-S relationship, 
which was established by Sverdrup et al. (1942) for all three oceans. 

Several hypotheses have been put forward to explain the origin of these 
water masses and the formation of the straight T-S lines which characterize 
them. According to the first of these, formulated by Sverdrup, the central 
water masses are formed in the regions of the subtropical convergences, 
roughly speaking along the 40th north and south parallels as a result of con- 
vection, as well as of isopycnic mixing, and the fill in the entire region where 
they exist. Justification for this hypothesis is provided by the coincidence of 
the horizontal T-S curves, characterizing the regions of convergence in cer- 
tain seasons, with the vertical T-S curves of the central water masses, noticed 
by Iselin. 

A second point of view concerning the waters of the North Atlantic had 
been expressed even earlier by Jacobsen (1 929). Jacobsen considers that the 
central waters of the North Atlantic (although he does not use this term, he 
does consider the water masses within the same limits - between 100-200 
and 900 m depth and throughout the western and central North Atlantic) 
are formed as a result of the mixing of water mass C (also central, but in 
another terminology) and water mass S (southern). The first of these, accord- 



TRANSFORMATION OF TROPOSPHERIC WATERS 319 

ing to Jacobsen, represents a belt of warm and saline waters, extending lati- 
tudinally from the Canary Islands to Puerto Rico at a depth of about 100 m; 
the thermohaline index of this water-mass C: T = 22°C; S = 37%. The second 
water mass S represents the intermediate layer, lying between the equator and 
10"N at a depth of 700-800 m; its thermohaline index: T = 5.5"C; S = 34.6Oh. 
It is obvious that water mass S represents nothing else but the transformed 
Antarctic Intermediate Water mass, which, as is shown, spreads from the 
south to precisely about 10" N. 

A shortcoming of the two hypotheses mentioned is the fact that they make 
no allowance for the effect on the formation of the central water masses of 
ocean currents, even such as the Gulf Stream and the Kuroshio, whose waters 
are completely situated in the regions of distribution of the Central Water 
masses. Therefore, another hypothesis was proposed by the author, based on 
the example of the North Atlantic (Mamayev, 1960a), the gist of which is as 
follows. The principal source of the Central Water mass of the North Atlantic 
is the water mass of the Gulf Stream itself and the Antilles Current; moving 
into the high latitudes, this water mass undergoes latitudinal (zonal) transfor- 
mation, chiefly due to its continuous vertical mixing with the underlying deep 
and bottom North Atlantic Water mass. So far as the rectilinear T-S relation 
is concerned, characteristic for the central water mass, it is the locus of the 
T-S points of the modifications of the "mother" water mass of the Gulf 
Stream, observed at various latitudes within the entire thickness of the upper 
layer. 

Let us substantiate this point of view in somewhat greater detail. The 
geographic layout of the problem under consideration is as follows. From 
the region of confluence of the Florida Current and the Antilles Current, 
initial water mass A spreads to the north; the thermohaline index of t h s  
water mass may be taken as the following: T = 24"C, S = 3 6 . 3 O h .  This index 
was obtained by Jacobsen as a result of averaging the data of oceanographical 
stations, located precisely in the region of the Straits of Florida and the 
Bahamas. As a result of vertical mixing with the Deep and Bottom Water 
mass of the North Atlantic B (T = 2.5"C, S = 34.9'0) underlying it, the 
characteristics of which remain invariable throughout the water area of the 
North Atlantic, water mass A is transformed in such a way that its tempera- 
ture and salinity decrease as the waters move to higher latitudes. 

For the geometrical interpretation of this problem on the T-S plane, Fig. 
105 is provided, on which are represented: 

(1) The averaged T-S curve for the extensive region (zone XX according 
to Jacobsen, 1929) lying between the coast of North America and meridian 
50"W and limited on the north and south by parallels 40 and 20"N. This 
region embraces almost all the west of the central part of the North Atlantict 
(including the Sargasso Sea) and is directly fed by the waters of the Gulf 
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Fig. 105. Averaged T-S curve for the region lying between 20" and 40"N, 50"W and the coast of North 
America (western part of the North Atlantic). AB and CS are the stralght lines of mixing of the corre- 
sponding water masses according to Jacobsen (1929). The shaded strip is the T-S relation for the North 
Atlantic Central Water according to Sverdrup (Sverdrup et al., 1942). 

Stream. The T-S curve referred to was plotted by him from the data of 21 
deep water stations. 

(2) A linear T-S relation, characteristic for the North Atlantic Central 
Water according to Sverdmp - in the form of a shaded strip (all the T-S 
curves of the Central Water mass within its vertical extent fit into this strip). 

(3) The straight lines of mixing, according to Jacobsen, of water masses A 
and B ,  as well as C and S (reference was made to these water masses above), 
as well as special T-S index J ,  which, as Jacobsen indicates, may be the result 
of mixing along either of the two straight lines. 

A noteworthy feature of the T-S relations represented is the coincidence 
of the averaged T-S curve (within depths from 200 to 900 m), the straight 
line of mixing CS and the shaded strip; all these three relations accordingly 
characterize the Central Water mass of the North Atlantic in the range of 
depths indicated. 

In order to prove the possibility of the formation of the central (or tropo- 
spheric; this term, which we will use below, is more general) waters by means 
of zonal transformation of the initial water mass (of the Gulf Stream and 
Antilles Current) it is necessary: (a) to demonstrate that the T-S curves lying 
in the shaded strip in Fig. 105 can be formed as a result of the mixing of 
precisely water musses A and B y  and not necessarily, say, of water masses C 
and S ,  as Jacobsen assumes; (b) to demonstrate that in the shaded strip lie 
not only parametric points z of T-S curves in vertical limits corresponding to 
the thickness of the central water mass, but also the thermohaline indexes of 
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the subsurface waters, representing zonal modifications o f  the initial water 
mass o f  the Gulf Stream and the Antilles Current. 

Condition (a) was considered above, in Section 43; there it was demon- 
strated that by applying the analytical theory of T-S curves to the mixing of 
two water masses in an ocean of semi-infinite depth and provided that the 
coefficients of heat and salt exchange are not equal, the situation is precisely 
as stated in (a); let us now consider the second aspect of the problem, formu- 
lated in (b). 

Considering the T-S curves for the region of North Atlantic Water mass A 
(Section 52), we see (Fig. 66) that this type of T-S curve has a bend in the 
surface part which is a trace of the transformation of the more saline core of 
the North Atlantic Current together with the 100- 150-m surface layer and 
the underlying layers. The presence of this bend makes it possible to  calculate 
the thermohaline indexes of the saline core of the North Atlantic Current, 
which we have accordingly done using the example of stations made in five 
sections of the IV cruise of the R.V. “Mikhail Lomonosov” (Fig. 65). These 
thermohaline indexes, determined from individual T-S curves and then aver- 
aged for each section, are shown in Table XVI, as well as being plotted in 
Fig. 106. 

We see that the thermohaline indexes of the subsurface core of the North 
Atlantic Current fit well within the generalized T-S diagram (strip of central 
waters). The data of the IV cruise of the “Mikhail Lomonosov” relate to the 
northwestern part of the North Atlantic; in the eastern part of the North 
Atlantic a zonal transformation of the core of the North Atlantic Central 
Water mass is also observed (Kin’diushev, 1965). 

Thus, the entire North Atlantic, or rather the entire region lying to the 
southeast of the left edge of the Gulf Stream and the North Atlantic Current 
is fed by the waters of the Gulf Stream system. These waters, as they move 
to the northeast undergo a zonal transformation, cooling off and experi- 
encing decrease of salinity; therefore, each of the water masses lying on this path 
may be considered as a zonal modification of the “mother” surface Atlantic 
Water mass. 
TABLE XVI 

Mean termohaliie indexes of the core of the North Atlantic Current for five sections of the IV cruise 
of the R.V. “Mikhail Lomonosov” 

Section T (“c) s (O/oo) 

I 12.49 35.67 
I1 13.17 35.75 
I11 15.36 36.02 
IV 16.86 36.01 
V 17.54 36.34 
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Fig. 106. Generalized T-S diagram of the water masses of the North Atlantic according to Sverdrup 
(Sverdrup et al., 19421, supplemented by data of the IV cruise of the R.V. “Mikhail Lomonosov”. 
1-5 = T-S indexes of the core of the North Atlantic Water mass at stations made in cross-sections 1-5 
respectively; 6 = T-S points of the Subarctic Water mass on the surface of the sea; A i A 5  = line of 
zonal transformation of the North Atlantic Water mass. 

If the source of the North Atlantic Water mass were not the system of the 
Gulf Stream and the Antilles Current, the saline core of the North Atlantic 
Current would hardly occur; its existence is difficult to explain if one adopts 
the conception of the “central” formation of the North Atlantic Water mass. 

For a clarification of the details let us turn to generalized Fig. 107, in 

Fig. 107. Water masses of the North Atlantic and their interaction, shown on a T-S diagram (according 
to  data of the I and IV cruises of the R.V. “Mikhail Lomonosov”) (Mamayev, 1960a). 
L = Labrador Water mass, SA = Subarctic Water mass, u = isopycnic mixing, b = zonal transformation. 
For further explanation see text. 
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which modifications of the initial Atlantic Water mass in five sections of the 
IV cruise of the “Mikhail Lomonosov” are plotted; these modifications are 
designated as A,-A v. In addition, the T-S indexes of the following water 
masses are plotted on Fig. 107: 

A ,  - the water mass of the Gulf Stream itself in the region between 52” 30’ 
and 57” 20’W. The T-S index is determined from McLellan’s work (1957) and 
equals: T = 2O.O0C, S = 36.5900. Depth is 0-150 m; 

A ,  - the North Atlantic Water mass in the section Iceland-Ireland, lying 
in the layer 0-500 m and having index T = lO.l”C, S = 35.4Oo/0o; 

A ,  - the North Atlantic Water mass in the section Hebrides-Iceland, 
lying in the layer 0-500-750 m; thermohaline index: T = 9.0°C, S = 35.28Oh; 

A ,  - the North Atlantic Water mass in the Faeroe-Shetland section, lying 
in the layer 0-1 50 m. Thermohaline index: T = 8.3”C, S = 35.20’/00. 

The thermohaline indexes A , ,  A ,  and A ,  were determined by the author 
from the data of sections made in the I cruise of the “Mikhail Lomonosov” 
(October-November 1957), and were also shown in Fig. 106. 

(thermohaline index: T = 7.2”C, S = 35.08°/~), representing the product of 
the zonal transformation of the North Atlantic Water mass in the region of 
Iceland and also determined from data of the I cruise of the “Mikhail 
Lomonosov”. The final product of this zonal transformation is apparently 
the warm Atlantic intermediate * water mass in the Arctic Basin; its thermo- 
haline index, according to the generalized T-S diagram of the waters of the 
Arctic Basin of Kusunoki (1 962), is: T = 0.3”C, S = 34.9’0. 

the initial “mother” water mass of the Gulf Stream in the course of its trans- 
formation into water mass C. Naturally, there is an innumerable set of these 
modifications. Line A ,  C may be called the line of zonal transformation of 
the North Atlantic Water mass. This transformation may take place for the 
following reasons: 

warm waters of the Gulf Stream system progress into the high latitudes and 
of a certain degree of desalinization as a result of water exchange with the 
atmosphere. 

(b) As a result of the interaction of the water mass of the Gulf Stream 
throughout its path from Cape Hatteras to Spitzbergen with the surface waters 
encountered by it on the left boundary - from the water mass of the conti- 
nental shelf in the region of Chesapeake Bay and the water mass of the 

Finally, C is a water mass called by the author the Eastern-Icelandic 

Thus, straight line A, -C in Fig. 107 is the locus of all the modifications of 

(a) As a result of the consistent release of heat into the atmosphere as the 

~ 

* According to the terminology of Timofeev and Panov (1962), this water mass belongs to the main 
type of waters of the Arctic Basin and has the following thermohaline index from the generalized T-S 
diagram of the waters of the Arctic Basin: T = 0.8”C, S = 34.go/oo. 
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Canadian continental slope in the area of the Great Newfoundland Bank to 
the polar waters in the region of the polar front near Jan Mayen Island. This 
interaction is frontal in nature and causes a broad frontal zone from Newfound- 
land to Iceland and further on to Jan Mayen. 

water mass B underlying it. 

wedges out to the north; its depth amounts to up to 1,000 m in the region of 
the Sargasso Sea, and only up to 150 m in the Faeroe-Shetland section. The 
increase in the mean density of the North Atlantic (surface) Water mass in 
the course of its transformation on the way from A ,  to C amounts to AoT = 
= 1.54. This increase owes its origin, in the first place, to the cooling of the 
Atlantic waters by 12.8"C (from 20 to 7.2"C) on the whole, as a consequence 
of their movement into the high latitudes and, in the second place, to their 
desalinization as a result of continuing contact with the less saline waters of 
the subarctic regions - on the whole, by 1.42Oh0 (from 36.50 to 3 5 . 8 O O h ) .  

The nature of the zonal transformation of tropospheric waters must be 
similar in the Northern Atlantic and in the northern half of the Pacific Ocean; 
so far as the southern regions of the Oceans are concerned, there it will be 
somewhat different in nature, since the final product may very well be the 
Antarctic Intermediate Water mass; formed as a result of convection in the 
region of the Antarctic Convergence. 

generalized T-S diagrams of the main water masses of the Atlantic Ocean 
(Fig. 97). 

(c) As a result of the mixing of the modifications of water mass A with 

In the process of horizontal transformation, the Atlantic Water mass 

Let us note that the T-S diagram represented in Fig. 107 supplements the 

62. THE TRANSFORMATION OF THE CORES OF WATER MASSES 

Unlike the thermohaline indexes of the Tropospheric Water masses which, 
as we have seen, undergo continuous zonaZ transformation, the indexes of 
intermediate and deep water masses change for other reasons; this change 
may be called the transformation of mixing, inasmuch as the main factor 
which determines it is not the climatic factor, but the mixing processes of 
these water masses with the over- and underlying masses (see also the work of 
Khanaichenko, 1947). The primary effect of transformation of mixing is ex- 
perienced by those water masses which, on the T-S curve, are characterized 
by extremes of salinity or (more rarely) temperature; the transformation of 
the cores of Intermediate and Deep Water masses may be zonal (meridional) 
in nature - for example, the Antarctic Intermediate Water mass in all three 
oceans. it may also be latitudinal in nature - for example, the Mediterranean 
Water mass in the Atlantic Ocean. 
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The essence of the “core method” of Wust (1935) is extremely simple and 
consists of determining the characteristics which correspond to the core of 
the water mass and the subsequent charting of these characteristics. Thus, 
say, for the core of the Mediterranean Intermediate Water mass, one may 
determine the values of maximum salinity in the surface of the core, the 
temperature values, the dissolved oxygen content, the speed of sound, and 
so forth; the charting of all the characteristics peculiar to the core makes it 
possible to draw conclusions about the nature of the waters of the ocean, 
their geographical distribution and their paths of propagation. 

The second phase of the “core method” consists of plotting the lines of 
transformation of the cores on the T-S diagram and determining the percen- 
tage content of the waters of the core, counting from the T-S point, which 
corresponds to the “pure” type of intermediate or deep water mass, to the 
T-S point which determines the practical disappearance of the core. Such a 
percentage nomogram as applied to the T-S line of transformation of the 
core allows us to determine, by comparing the line of transformation with 
the T-S curves of individual stations, the picture of the percentage content 
of intermediate or deep waters by space, and consequently to determine the 
nature and intensity of the mixing of the water masses. As a result of the 
analysis of the transformation of the cores of intermediate and deep water 
masses, in comparison with charts of salinity and temperature distribution, 
Wust drew up a diagram of the meridional distribution of stratospheric water 
masses in the Atlantic Ocean, represented in Fig. 108 (Wust, 1935). 

To illustrate the “core method”, let us cite a striking example of the trans- 
formation of the core of the Mediterranean Intermediate Water mass in the 
Atlantic Ocean. This question was also investigated for the first time by Wust; 
however, he combined this water mass and the deep water mass of the South 
Atlantic of North Atlantic origin, also having a salinity maximum, in one 
“upper deep water mass”; as a result he obtained a formal picture differing 
from reality, namely: on his charts this “combined” water mass stretches 

Fig. 108. Distribution of water masses on a middle section of the Atlantic Ocean (Wust, 1935). 
E,y = Antarctic Bottom, T = Atlantic Deep, Z,y = Antarctic Intermediate, ZN = Arctic Intermediate 
Water masses. Above: Tropospheric (Central) waters. 
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Fig. 109. Curve of transformation of the core of the Mediterranean Intermediate Water mass in the 
North Atlantic (Bubnov, 1971). 

from the Straits of Gibraltar far into the southern hemisphere. It is clear that 
such a result does not correspond to geographic realities. 

This question was taken up again from more realistic premises by Bubnov 
(1971). On the basis of the analysis of T-S curves of 385 oceanographic 
stations in the North Atlantic, he plotted a generalized T-S curve of the 
transformation of the core of the Mediterranean Water mass, represented in 
Fig. 109. The points in this figure are the cores determined from the corre- 
sponding intermediate salinity maxima of individual T-S curves. Having taken 
the T-S index of the “pure” Mediterranean Water mass (T  = 1 1 .90” C; 
S = 36.50°/~ - Wiist, 1935; Sverdrup et al., 1942) as 100% and having deter- 
mined the “final” T-S index of this T-S curve ( T  = 4.5”C; S = 35.00”/00), 
Bubnov, taking the latter as 076, plotted a chart of the percentage content of 
Mediterranean waters in the core with Sma,. 

It will be seen from this chart, as Bubnov points out, that the velocity of 
transformation of the Mediterranean waters is greatest in the northeast of the 
region outlined by the isoline of 0%; here the isolines of percentage content 
are most condensed. According to Bubnov, the propagation of Mediterranean 
waters to the northwest is limited by the North Atlantic Current, which repre- 
sents a kind of liquid barrier on their path. The smallest velocity of transfor- 
mation of Mediterranean waters is observed in the region lying to the south 
of parallel 30”N. 

The lines of transformation of the cores of water masses on the T-S dia- 
gram make it possible to determine how much the nature of the transformation 
of intermediate waters differs from the isopycnic. Thus, for example, the 
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transformation of the Antarctic Intermediate Water mass in the Southern 
Atlantic is not isopycnic; owing to the intensive nature of mixing, density in 
its core increases throughout the course of transformation from the value 
uT = 27.0 to uT = 27.5. On the other hand, the transformation of the 
Mediterranean Water mass is quasi-isopycnic in nature; the generalized T-S 
curve, shown in Fig. 109, is fairly well approximated by the isopycnic surface 
uT = 27.70. The difference in the nature of the transformation of the two 
water masses considered is explained by the different nature of their propaga- 
tion. In the first case, when transformation takes place in a meridional direc- 
tion, it entails a considerable redistribution of energy, the need for which is 
determined by climatic factors. In the second case, transformation proves to 
be isopycnic. 

boundaries of their propagation may also be carried out by means of the so- 
called method of salinity anomalies. This method was proposed by Helland- 
Hansen and Nansen (1 926) and used for the determination of the boundaries 
of intermediate water masses in the North Atlantic by Iselin (1936) and 
Bubnov (1 968). Let us consider briefly the gist of the method of salinity 
anomalies in the example of the work of the latter author, who dealt most 
thoroughly with this question. 

The basis of the method is the selection of a standard or reference T-S 
curve, relating to that point in the ocean where the absence of intermediate 
water masses is most probable. As a reference standard for the North Atlantic 
a generalized T-S curve of the waters of the western part of the Sargasso Sea 
plotted by Iselin was selected. Comparing the T-S curves of individual stations 
with the standard T-S curve in the region of the cores of intermediate water 
masses, one may obtain the values of the salinity anomalies, wherein the pos- 
itive anomalies will correspond to waters with high salinity, while the negative 
anomalies correspond to waters of low salinity. Having thus processed about 
three thousand stations in the North Atlantic, Bubnov constructed a chart of 
salinity isoanomalies, showing the distribution of intermediate water masses. 
Since in practice anomalies exceeding 0.05O/00 are determined with reliability, 
precisely that quantity was accordingly taken as the boundary of distribution 
of intermediate water masses: +0.05%0 for the Mediterranean and -0.05°/~ 
for the Antarctic and Subarctic Water masses. The location of the positive 
isoanomalies on Bubnov’s chart is very similar to the picture of propagation 
of the Mediterranean waters obtained by the same author using the “core 
method”; however, the most interesting feature of the chart obtained is the 
region of negative isoanomalies, which correspond to the Subarctic Water 
mass. It turned out that this water mass has a wider propagation than was 
thought up to now, while the isoanomaly of -0.20’/00 clearly shows the area 
of formation of the subarctic waters, situated to the south of Cape Farewell 

The investigation of the transformation of cores of water masses and of the 
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(Greenland). The picture of the contact of the Mediterranean and Antarctic 
Intermediate Water masses is also interesting: these waters, as it were, 
“extinguish” each other approximately in the area of parallel 20”N, without 
spreading over each other, as occurs in the northern part of the Pacific Ocean. 
Bubnov’s chart served to clarify the boundaries of the intermediate water 
masses shown in Fig. 103. 

and its further use for the study of the water masses of the ocean is necessary. 
The method of standard T-S curves and salinity anomalies can be developed, 

63. SOME SPECIAL FEATURES OF THE TRANSFORMATION OF INTERMEDIATE WATER 
MASSES 

We have considered above the main features of the transformation of cores 
of intermediate and deep water masses, which we have called “the transfor- 
mation of mixing”, and although this transformation takes place mainly due 
to vertical mixing, we have considered the question of how the transforma- 
tion of cores takes place in the horizontal direction and how it is connected 
with the isopycnic movement of water layers. 

In the present section we shall consider some special feature of the trans- 
formation of intermediate waters, which arise first of all because of the differ- 
ing intensity of vertical mixing upward and downward from the core of the 
intermediate water mass. If we turn once again to the analytical theory of 
T-S curves for the case of mixing of three water masses in a sea of infinite 
depth (this theory, as we know, continues to remain the basis for the practi- 
cal analysis of T-S curves), we may note that the theory assumes symmetry 
of mixing upward and downward from the core of the intermediate water 
mass, which, in particular, follows from the regular distribution of parametric 
points z on the branches of the analytical T-S curve. However, some cases of 
practical analysis show that the fundamental principles of the geometry of 
T-S curves are often violated. In our opinion, this occurs for the reason that 
in analytical theory, even if we leave aside (in a first approximation) the 
question of the effect of horizontal currents, no allowance is made for the 
fact that triangles of mixing are constructed in the field of graph p = p (T,  S )  
and consequently, for the effect of vertical stability: 

on the transformation of the intermediate water mass is not evaluated 
(Mamayev, 1960b). The differing values of criterion E on the upper and 
lower boundaries of the intermediate layer, as well as the appearance, in the 
majority of cases, of a second factor - contraction on mixing - violate the 
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TABLE XVII 

Thermohaiine indexes 

Water mass U”C) S(O/OO) UT 
~ ~~ ~~ ~. 

North Atlantic surface ( A )  12.5 35.67 27.04 
Mediterranean (M) 11.9 36.50 27.78 
North Atlantic Deep and Bottom (B)  2.5 34.90 27.86 

symmetry predetermined by the geometry of T-S curves, cause the appearance 
of secondary and false T-S indexes on the T-S curves and change the percen- 
tage ratio of the water masses. 

Let us explain the foregoing by the specific example of the mutual trans- 
formation of the Mediterranean Intermediate Water mass (M) with the over- 
lying North Atlantic surface ( A )  and the underlying North Atlantic Deep and 
Bottom ( B )  Water masses; their thermohaline indexes are shown in Table 
XVII. 

The T-S index of the first of these water masses was determined by the 
author and represents a zonal modification of the North Atlantic Water mass 
in the I section of the IV cruise of the R.V. “Mikhail Lomonosov” (Section 
61); it fits into the generalized T-S diagram of the North Atlantic of Sverdrup 
(Sverdrup et al., 1942, p.741). The second and third indexes are borrowed 
from Sverdrup and Jacobsen (1 929). 

If we consider the corresponding triangle of mixing (Figs. 25 and 110) in 
the field of isolines uT, it may be seen that the conditions of mixing of water 
mass A with water mass B on the one hand, and of water mass M with water 
mass B on the other, are not identical and, everything else being equal, depend 
on the degree of vertical stratification among the T-S indexes of the corre- 
sponding water masses. If it is assumed that the cores of water masses A ,  M 
and B lie respectively at depths of about 150, 1,200 and 2,500 my which on 
the average corresponds to reality, the value of stability 108E = 105(duT/dz) 
between water massesA and M will be equal to 70 CGS, and between water 
masses M and B to 6 CGS. Thus, vertical stability between masses A and M is 
almost twelve times more than between masses M and B. Consequently, mix- 
ing between water masses A and M y  other things being equal (in particular, in 
the absence of horizontal advection), must also proceed twelve times less 
intensively than between water masses M and B. 

The effect of stability on the form of the T-S curve is shown in Fig. 110, 
where, in the same triangle of mixing, a typical T-S curve is represented by a 
heavy line for the extensive region which lies to the southeast of the line con- 
necting the southwestern extremity of Ireland with the Azores, and which 
has intermediate water mass M between masses A and B (see Fig. 65) .  
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Fig. 110. Diagram of asymmetric T-S curve for the region where the transformation of the Mediterran- 
ean Intermediate Water mass takes place (Mamayev, 1960b). 
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The T-S curve in Fig. 110 is markedly asymmetrical as compared with the 
form which, within the given triangle, corresponds to the conditions of 
geometry of T-S curves (this form is shown by a dashed line). For this asym- 
metric curve, the theorems of the geometry of T-S curves are no longer valid. 
In particular, for points a and b ,  located at equal distance (in meters) from 
the core of intermediate water mass M ,  the percentage content of water mass 
M amounts respectively to 10 and 30%. In the case of a symmetric T-S curve 
these proportions for points of this type (a’ and b )  would be equal to  30 and 
20%. 

The mixing of water masses A and M is hindered by a kind of stratification 
screen ac, situated on the asymmetric T-S curve, between the salinity minimum 
in the area of point a and the salinity maximum in the area of point c .  Branch 
Aa of the T-S curve gravitates towards straight line AB of mixing between the 
Atlantic surface and deep water masses, retaining the features of the T-S 
curves of those stations where the mixing of water masses A and B takes place 
without the participation of intermediate water mass M. 

It follows from the foregoing that thermohaline index a is secondary (it 
may also be called false); it is not the index of any independent water mass as, 
for example, Jacobsen assumes, calling it “southern” water mass S (see Fig. 
105). Fig. 1 1 1 * may serve as additional evidence of the “secondary” nature 

* Fig. 111 was drawn up by V.A. Bubnov who kindly made it available to the author. 
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Fig. 111. T-S curves of R.V. “Chain” stations made in April-May 1959 in a section along 36’N (to the 
west of the Straits of Gibraltar). 

of index a in Fig. 110, as Fig. 1 11 represents the T-S curves of stations of the 
R.V. “Chain”, made in April-May 1959 in a section along 36”N lat. from the 
Straits of Gibraltar (station 7 1) to the west (station 40 on longitude 60” W). 
We see that as it moves away from the Straits of Gibraltar the extreme of the 
T-S curves, which corresponds to the core of the Mediterranean Water mass, 
is resolved, and together with it the secondary extreme (minimum) lying 
above it also disappears. The latter is the most pronounced in the immediate 
vicinity of the Straits of Gibraltar, in the same place where the Mediterranean 
maximum is also the most pronounced; it is clear that the Straits of Gibraltar 
cannot serve as the source of any other intermediate water mass than the 
Mediterranean. The salinity minimum is thus a secondary one. Let us note 
that the asymmetry of T-S curves with an intermediate water mass, considered 
above, is most marked in the whole World Ocean precisely in the region near 
Gibraltar. 

On the other hand, the mixing of water masses M and B is assisted, apart 
from smaller vertical stability, by contraction on mixing also (this question 
was already considered in Section 55, and here we take it up again). Thus, 
for the region of the Straits of Gibraltar, where direct contact of undiluted 
Mediterranean water (of the “pure” type M )  with water mass B takes place, 
the mixture of equal parts of both water masses, which is formed on the 
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interface, has density uT = 27.97, which is 0.20 more than the density of 
water mass M and 0.12 more than the density of water mass B. Contraction 
on mixing reinforces the effect of stratification screen ac and stimulates a 
shift of the mixing reaction in the direction of water mass B.  Apparently, it 
is precisely contraction on mixing which causes the unusually rapid trans- 
formation of core M into core c in the immediate proximity of the source 
of water mass M - the Straits of Gibraltar (to the nortwest of the boun- 
dary of Gibraltar region indicated above type M is no longer observed) 
(Mamayev, 1960b). Branch Bb of the T-S curve gravitates toward straight 
line M B  of mixing between the Mediterranean and deep water masses (Fig. 
110). 

The question of the effect of contraction on mixing on the transformation 
of the Mediterranean Water mass studied by the author (his results were set 
forth in Section 5 5 ,  as well as above in this section), was then examined at 
greater length by Kin’diushev (1965) and Bubnov (1967). The first of these 
authors constructed a number of triangles of contraction, using various zonal 
modifications of water mass A , and analyzed by means of these triangles the 
vertical distribution of contraction on mixing (from T-S curves of individual 
stations). His computations confirmed the conclusion drawn above (Section 
5 5 )  from the consideration of Fig. 82: the maximum values - 1O’Acu = lo+  12 
are attained by contraction on mixing on the lower boundary of the Mediter- 
ranean Water mass. 

Contraction on mixing of Mediterranean water with the deep waters of the 
North Atlantic was also considered by Bubnov (1967, 1971). Inasmuch as, 
and this was shown above, the maximum values (Acu = - 14 - lo-’) of con- 
traction on mixing are observed on the lower boundary of the Mediterranean 
waters, while the contraction on mixing of the Mediterranean waters with the 
overlying surface Atlantic Water mass is extremely insignificant, Bubnov 
accordingly confined himself to studying contraction on mixing of the 
Mediterranean waters only with the waters underlying them. 

Inasmuch as the main differences in T-S curves are observed in the surface 
parts, while below the core of the Mediterranean waters they are practically 
insignificant, in this case, as Bubnov showed, there is no need for division into 
zones for the purpose of constructing triangles of mixing(1et us emphasize that 
this applies only to the region under consideration; due precisely to  the fore- 
going, the triangle of contraction on mixing shown in Fig. 82 is extremely 
simple: the isolines of contraction on mixing are parallel to  one of the sides). 
For the analysis of contraction on mixing Bubnov made use of real T-S 
curves *; for each T-S curve there was determined the T-S index of the modi- 
* Real curves were processed for the region lying between 35 and 45”N 15”W and the coast; for the re- 
maining part of the water area the T-S curves were averaged by 5’ squares, while the value calculated 
for contraction referred to the center of the trapezium. 
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fied core of the Mediterranean Water mass, the T-S index of the core of water 
B and maximum contraction, corresponding to the mixing of the water 
masses in equal proportions (50% each), was calculated. Thus, contraction 
was determined from the straight line of mixing, while the point of the 
straight line corresponding to 50% content of each of the water masses, 
following the theory of T-S curves. accordingly corresponds to the lower 
boundary of the upper (Mediterranean) water mass. As a result, he constructed 
a chart of isolines of contraction on mixing, which in its main lines repeats 
the picture of salinity distribution in the core of the Mediterranean Water 
mass as well as the picture of the percentage content of the Mediterranean 
waters in their core. 

The special features considered of the transformation of an intermediate 
water mass depend to a varying extent on the reciprocal position of the sides 
of the triangle of mixing and the isopycnals in the field of the T-S diagram 
and may also be observed in other cases. The example quoted of the effect of 
vertical stability and contraction on mixing on the mutual transformation of 
three water masses is the most striking. Generally speaking, however, a change 
in the sign of curvature of the T-S curve within the triangle of mixing may 
also fail to occur, but the effect of stability (with a correction introduced for 
contraction on mixing) causes a deviation of the T-S curve in the direction of 
one of the sides of the triangle of mixing, and also leads to uncertainty in 
finding the T-S index. This testifies to the more intensive interaction of the 
intermediate water mass with only one of the two water masses lying above 
or below it. 

It follows from the phenomenon considered that it is necessary further to 
develop the theory of T-S curves taking into account the special features 
noted, as well as the inconstancy of the coefficients of turbulent exchange of 
momentum and turbulent diffusion along the vertical, particularly upward 
and downward from the core of the intermediate layer. 

Above we have considered the vertical transformation of the intermediate 
water mass without allowing for horizontal advection. In particular, this was 
valid for a region of weak currents, lying near to the Iberian Peninsula and 
the Bay of Biscay. But the case of symmetric T-S curves in the field of graph 
uT = f ( T ,  S )  is also quite possible, provided that symmetry “is restored” 
thanks to the existence of advection. In this case it is natural to assume that: 

[63.1] 

where 
between surface 1 and intermediate 2, and between intermediate and deep 3 
water masses: 

is the mean coefficient of turbulence (for example, of diffusion) 
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is Richardson's number (u is the velocity of the mean current), whence: 
- - 
Ri1-2 = Ri2-3 [ 63.21 

where the line signifies the averaging of the number Ri between the surface 
of the sea and the core of the intermediate water mass and the core of the 
intermediate water mass and the bottom of the sea. This assumption means 
that the different extent of the effect of stratification on mixing between the 
surface and intermediate water masses, on the one hand, and between the 
intermediate and the deep, on the other, is compensated by the effect of the 
velocity gradient. Let us assume that depth z = H of surface of no motion 
coincides with the core of intermediate water mass 2. In this case expression 
[63.2] makes it possible to evaluate bottom (z = B )  velocity uE of an abyssal 
system of circulation. Assuming for simplicity that velocity and density are 
distributed with depth on a linear basis, we will obtain for velocity uE from 
expression [ 63.21 the following simple expression: 

P B - P H  B -  
ug = u O  /-) PH - P O  [ 63.31 

where uo is the velocity of the current on the sea surface. 
Thus, the nature of T-S curves must inevitably be linked also with circula- 

tion; it can provide a certain idea not only of the special features of the trans 
formation of intermediate water masses but also, say, of the conditions of 
abyssal circulation of the World Ocean. 



CONCLUSION 

Our attention in the present monograph has been devoted mainly to the 
following questions of T-S analysis of the waters of the ocean: the theo- 
retical aspects, which include the equation of state and questions of the thermo- 
dynamics of sea water, the analytical properties of the T-S diagram, including 
such an important phenomenon as contraction on mixing of waters; and 
finally, the analytical theories of T-S curves in an ocean of infinite and semi- 
infinite depth; the practical aspects, which include the most widespread 
methods of analysis of the interaction of water masses, wherein the methods 
of T-S analysis were considered as they apply to the main water masses of 
the ocean, which extend over the entire globe; the main emphasis was laid on 
the consideration of the intermediate water masses, which represent the most 
interesting and specific phenomenon in the thermohaline structure of the 
waters of the World Ocean. 

fore it is interesting in conclusion briefly to consider the prospects for its 
development, and in so doing to touch upon those questions which are not 
reflected or are insufficiently reflected in the main body of the present work. 
In the author’s opinion, the following questions present the greatest interest: 

T-S analysis, naturally, is not confined to this set of questions, and there- 

(1) The theory of T-S curves and the geostrophic currents. The first step in 
this direction was taken by Stommel(1962b), who examined the cause of the 
formation of a T-S curve, stable in form, in the field of geostrophic currents, 
provided the equation of state was linear, and who, in particular, made clear 
the connection between surface waters, characterized by a scatter of T-S 
points, and deep waters, determined by a single T-S curve. This theoretical 
aspect is very interesting from the point of view of the general theory of ocean 
currents. Even earlier, investigators had been attracted by the question of the 
connection between the stability of form of the T-S curve and the methods 
of calculating dynamic depths and heights. Here one may refer to the works 
of Thompson (1 939), Stommel(1947) and Yasui (1 955), devoted to the same 
question of the use of T-S curves for the calculation of dynamic heights. In 
particular, Yasui considers the question of the possibility of an approximation 
of the stable T-S curve in the Kuroshio region by a third-powered polynomial 
and of the subsequent elimination of salinity in dynamic computations. The 
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practical value of the recommendations proposed in these three works is not 
especially great at the present time, but this question is interesting from the 
point of view of principle. 

(2) The development of the theory o f  T-S curves for an ocean of finite 
depth taking account o f  advection. The extension of the analytical theory of 
T-S curves to  the case of an ocean of finite depth is of special interest for the 
analysis of waters in a comparatively shallow sea. As early as the work of 
Shtokman (1943a) and Ivanov (1949), a sea of finite depth was studied, but 
the results obtained by these authors were not carried to the point of practi- 
cal application. In addition, taking account of the effect of currents on the 
possible forms of T-S relations are of exceptionally great importance, as was 
stated above at the end of the last chapter. The elementary theory of T-S 
curves for moving water masses in an ocean of finite depth, considered in 
Section 45, is naturally insufficient for a solution of this question, and there- 
fore it is interesting to consider the solutions of equations [45.1] at  different 
boundary conditions and variable (by depth) current velocity, and to present 
the interpretation of these solutions in the T-S plane. 

(3) T-S analysis of surface waters. As has already been said, our attention 
in this work has been devoted mainly to the analysis of T-S curves relating 
to the principal oceanic structures; the upper layer of the ocean of approxi- 
mately 100 m, subjected to considerable changes both of temperature and 
salinity, has somehow invariably eluded the attention of the authors who 
have investigated T-S relations. However, the study of the T-S relations of the 
surface waters - a kind of micro-T-S analysis - promises much that is inter- 
esting. Recently, studies have appeared devoted to  “refined” T-S analysis and 
which have lead to new results. Thus, we may mention the works of Okuda 
(1 962), Bary (1 963), Bonchik (1 967); they contain a T-S analysis of the sur- 
face waters of a region near the coast of Brazil, of the coastal waters of Great 
Britain and of the waters of the southern Baltic, respectively. In the work of 
Stommel and Fedorov (1966), the small-scale structure of the waters in the 
region of the islands of Timor and Mindanao is also considered by methods 
of T-S analysis. Finally, T-S analysis of waters in regions of interaction of sea 
and river waters may be of great interest (the author’s attention was drawn 
to this aspect by A.M. Muromtsev). In these regions the stability of the saline 
composition is upset, and the equation of state deviates from the “oceanic” 
equation; the study of the deviations from the normal course of interaction 
of the mixing waters which occur in such cases is of great interest. 

(4) T-S analysis of the formation o f  bottom waters. The methods of T-S 
analysis are highly effective for the study of processes of formation of bottom 
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waters of the ocean; however, there are few studies on this topic. Fofonoff 
(1 956) shed light on the question of the effect of contraction on mixing on 
the formation of the Antarctic Bottom Water mass in the Weddell Sea. In the 
work of Bolin and Stommel ( 1  96 l) ,  the question of the origin of the Antarctic 
Bottom Waters and the Deep Waters of the Pacific Ocean is considered on the 
basis of a solution of systems of equations close to systems [30.7] and [30.9]. 
Finally, in an article by Worthington and Wright (1 967), T-S analysis is carried 
out for cold waters in the entire North Atlantic, with a temperature of less 
than 4”. As a result of their investigation, the existence of five main sources 
of deep and bottom waters was ascertained, and a balance of the circulation 
of the cold waters of the North Atlantic was also drawn up. This balance was 
calculated using analysis (the values of potential temperature were utilized), 
the dynamic method and direct measurements of deep currents. 

( 5 )  T-S analysis of convection processes. The T-S diagram represents an 
effective instrument for the analysis of the processes of thermohaline con- 
vection, which occurs in the ocean on the destruction of stable stratification. 
Thus, Zubov’s classical method for calculating vertical winter circulation is 
based on the use of the T-S diagram. A T-S diagram representing the course 
of vertical winter circulation, according to Zubov, is given in the author’s 
monograph (Mamayev, 1963, fig. 27). Some simple problems of thermohaline 
convection according to Stommel(l96 1) and their representation in the T-S 
plane were considered in Section 46. Some other interesting conclusions, 
based on logical modelling of the process of convection on the T-S diagram, 
as well as on laboratory experiments, are also the work of the same author 
(Stommel, 1962a; Turner and Stommel, 1964). Another example of the use 
of the T-S diagram for the study of the process of convection may be ob- 
served in the work of Neumann and McGill (1 96 1 ), relating to the waters of 
the Red Sea, the Gulf of Aden and the adjacent part of the Indian Ocean. 

(6) Development of the methods of T-Sanalysis. The appearance in 1955 
of the methods of statistical T-S analysis (Montgomery, 1955) showed that 
the “classical” method of analysis of individual T-S curves was not the only 
one; from this work of Montgomery a separate branch of theory arose, suit- 
able for the analysis of waters interacting in any situation and lending itself 
to further improvement. Thus, the set of methods of T-S analysis considered 
in the present work is not finished, and new methods and procedures for the 
analysis of the interaction and transformation of waters must therefore be 
sought. As an example of some particular methods of analysis, which did not 
enter into the context of the present work, we may mention the so-called 
“equivalent-thickness method” of Jacobsen ( I  943; Defant, 1961), which 
makes it possible to determine from the straight line of mixing the thicknesses 
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which mixing water masses would have if inverse stratification of the waters 
occurred, and the “frequency method” of Rochford (1963), which supple- 
ments the “core method” of Wust and makes it possible to clarify the posi- 
tion and form of the extreme of the intermediate water mass, by bringing into 
the analysis histograms of salinity distribution. 

It is clear that the discovery of different new methods and procedures of 
T-S analysis, appropriate for the study of a particular situation arising in the 
interaction of water masses, is quite possible. The improvement of methods 
of instrumental observations in the sea should contribute substantially to  the 
development of new methods and procedures. 

T-S analysis; it goes without saying that the points listed do not exhaust all 
the paths of its development. Without dwelling on other possible problems of 
“pure” T-S analysis, let us note in conclusion two interrelated problems in 
which, apart from the usual spatial and temporal parameters for T-S analysis 
(time, depth, etc.), there appear, as it were, “outside” parameters or numerical 
indicators. Such parameters may be, for example, dissolved oxygen content, 
nutrient elements and other hydrochemical indicators, or such indicators as 
plankton content. The appearance of additional parameters means that, on the 
one hand, they too may be plotted on the T-S diagram, and that, on the other 
hand, other characteristic diagrams may be plotted in addition to the T-S dia- 
gram. Some of the interrelated problems mentioned are as follows: 

We have quoted several examples of problems relating to the field of “pure” 

( 7 )  The comparison of the T-S diagram with other characteristic diagrams. 
If dissolved oxygen content is considered as an “additional” parameter, then, 
apart from the T-S diagram, it is interesting to consider the following charac- 
teristic diagrams: u T - 0 2 ,  T-0, diagram, diagram and S-0, diagram. In the 
oceanographic literature there is a small number of studies in which such addi- 
tional nomograms are considered and used for the analysis of waters. As an 
example, let us mention the work of Rochford ( I  966a), where uT-02 dia- 
grams are used for the analysis of the origin of the oxygen minimum in the 
Indian Ocean. It is interesting that salinity is considered as a parameter “in- 
side” the diagram in these diagrams of Rochford, Of no less interest to analy- 
sis may be diagrams where other indicators are used as an additional param- 
eter, say, nitrate content (see, for example, Rochford, 1966b). 

( 8 )  The development of T-S-P analysis. Recently a distinctive branch 
of T-S analysis has arisen in which plankton content (P)  in the water 
layers (along the vertical) appears as an additional parameter on the T-S dia- 
gram. T-S-P diagrams for the eastern regions of the North Atlantic and for 
the region to the south of New Zealand were constructed by Bary (1 959; see 
also Bary, 1963). There are also only a few studies in this direction. The cycle 



CONCLUSION 339 

of studies of Yashnov ( 1  966) is of substantial interest for the subsequent de- 
velopment of T-S analysis. T-S diagrams may also be used for other hydro- 
biological indicators; as a curious example, let us note the work of Kingsman 
(1 964), which gives a T-S diagram of the tolerance of reef coral in the Indian 
Ocean. The boundaries of the optimal temperature and salinity region are 
plotted on this diagram, as well as the boundaries of the various admissible 
limits within which the growth of reef coral is possible. 

Such, in the opinion of the author, are the principal aspects of the further 
development of the thermohaline analysis of the natural waters of the World 
Ocean and its seas. 
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APPENDIX 

TABLE A1 
Vertical stratification of the standard ocean 

(Defant, 1961) 
( T =  o"c, s=  35'/00) 

Pressure Geom. Dynamic Spec. 
depth depth volume 

(dbar) (m) (dyn.m) (105a) 

0 0 
100 99.24 
200 198.45 
300 297.60 
400 396.7 1 
500 495.78 
600 594.80 
700 693.77 
800 792.69 
900 890.57 

1000 984.41 
1500 1482.97 
2000 197 5.4 3 
2500 2465.96 
3000 2956.20 
3500 3445.55 
4000 3932.89 
5000 4904.57 
6000 5873.38 
7000 6836.43 
8000 7796.89 

0 97.264 
97.242 97.219 

194.438 97.174 
291.590 97.129 
388.696 97.084 
485.758 97.040 
582.776 96.995 
679.749 96.951 
776.678 96.901 
873.564 96.863 
970.404 96.819 

1453.955 96.602 
1936.429 96.388 
2417.836 96.177 
2898.204 95.970 
3377.544 95.766 
3855.873 95.566 
4809.556 95.173 
5759.368 94.791 
6705.421 94.421 
7647.817 94.060 

Density 

(ot) 

28.23 
28.61 
29.12 
29.64 
30.03 
30.50 
31.02 
31.45 
31.92 
32.41 
32.85 
35.17 
37.47 
39.75 
41.99 
44.21 
46.40 
50.72 
54.95 
59.08 
63.15 

Dynamic 
depth 
(dyn.m) 

0 
100 
20 0 
300 
400 
500 
600 
700 
800 
900 

1000 
1500 
2000 
2500 
3000 
3500 
4000 
5000 
6000 
7000 
8000 

Pressure 

(dbar) 

0 
102.837 
205.7 24 
308.659 
41 1.643 
514.677 
617.758 
720.889 
824.068 
927.296 

1030.572 
1547.696 
2065.967 
2585.445 
3106.094 
3627.903 
4150.862 
5200.185 
6253.981 
731 2.174 
8374.688 

Table A2 represents the coordinates of the isosteres on the T-S diagram (Fig. l ) ,  in multiples of 
whole values of UT, and the coordinates of isotherms on the UPS diagram (Fig. 3), in multiples of whole 
values of a degree. In the first case, the coordinates of each of the UT lines are represented by whole val- 
ues of temperature (extreme left column) and by the corresponding fractional values of salinity. In the 
second case, the coordinates of each of the isotherms are represented by whole values of UT (heading 
of the table) and by the corresponding fractional values of salinity. The precision of the table qakes 
it possible to plot large-scale graphs (for example, a T-S diagram in the scale: lo/0o - 50 cm, 1' - 5 
or 10 cm). The isolines of tenths (and hundredths) of values of u ~ a n d  Tare plotted with a sufficient 
degree of accuracy between the isolines of whole values of these quantities by means of linear inter- 
polation (Mamayev, 1954; Callaway, 1951). 
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TABLE A2 
Function S = ~ ( I J T ,  T )  

APPENDIX 

100 99 98 97 96 95 

30 4.418 5.761 
29 4.011 5.351 

7.108 
6.695 
6.296 
5.910 
5.536 
5.177 
4.832 
4.500 
4.184 
3.882 
- 

- 
- 

- 
- 
- 

- 
- 
- 
- 

- 

- 
- 

- 
- 
- 

- 

- 
- 
- 
- 
- 
- 

8.459 
8.042 
7.641 
7.252 
6.875 
6.513 
6.165 
5.831 
5.511 
5.206 
4.915 
4.639 
4.378 
4.133 
3.903 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

- 

9.813 
9.393 
8.989 
8.597 
8.218 
7.853 
7.502 
7.166 
6.842 
6.534 
6.240 
5.961 
5.696 
5.447 
5.214 
4.996 
4.795 
4.608 
4.438 
4.286 
4.151 
4.034 
3.933 
3.851 
3.188 
3.743 
3.717 
3.712 
3.726 
3.760 
3.815 
3.892 
- 

11.170 
10.747 
10.341 
9.946 
9.564 
9.197 
8.843 
8.504 
8.177 
7.866 
7.569 
7.286 
7.018 
6.766 
6.529 
6.308 
6.102 
5.912 
5.738 
5.582 
5.443 
5.321 
5.216 
5.129 
5.061 
5.011 
4.981 
4.970 
4.979 
5.007 
5.056 
5.127 
- 

12.530 
12.104 
11.695 
11.301 
10.914 
10.544 
10.187 
9.846 
9.5 15 
9.201 
8.901 
8.615 
8.344 
8.088 
7.848 
7.623 
7.413 
7.220 
7.042 
6.882 
6.738 
6.612 
6.503 
6.411 
6.339 
6.283 
6.248 
6.232 
6.236 
6.258 
6.301 
6.367 
- 
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TABLE A2 (continued) c U " C )  

30 13.892 15.257 
29 13.465 14.829 
28 13.053 14.413 
27 12.657 14.015 
26 12.267 13.623 
25 11.894 13.248 
24 11.534 12.885 
23 11.190 12.538 
22 10.857 12.202 
21 10.540 11.882 
20 10.237 11.576 
19 9.948 11.284 
18 9.674 11.006 
17 9.414 10.743 
16 9.169 10.495 
15 8.941 10.263 
14 8.728 10.046 
13 8.531 9.846 
12 8.350 9.661 
11 8.185 9.492 
10 8.037 9.340 
9 7.906 9.204 
8 7.793 9.087 
7 7.697 8.987 
6 7.620 8.905 
5 7.559 8.839 
4 7.519 8.794 
3 7.498 8.768 
2 7.497 8.761 
1 7.513 8.772 
0 7.554 8.806 

-1 7.611 8.859 
-2 - - 

92 91 90 89 88 

16.625 
16.195 
15.777 
15.376 
14.982 
14.605 
14.239 
13.889 
13.551 
13.227 
12.918 
12.623 
12.342 
12.076 
11.824 
11.589 
11.368 
11.165 
10.976 
10.803 
10.646 
10.506 
10.384 
10.280 
10.193 
10.122 
10.073 
10.041 
10.028 
10.035 
10.062 
10.110 
- 

17.996 
17.564 
17.194 
16.740 
16.344 
15.964 
15.596 
15.243 
14.903 
14.576 
14.263 
13.966 
13.682 
13.412 
13.157 
12.918 
12.694 
12.487 
12.294 
12.117 
11.955 
11.812 
11.685 
11.576 
11.485 
11.409 
11.355 
11.318 
11.300 
11.301 
11.323 
11.365 
- 

19.370 
18.935 
18.514 
18.106 
17.708 
17.326 
16.956 
16.600 
16.258 
15.927 
15.612 
15.311 
15.024 
14.751 
14.493 
14.250 
14.023 
13.812 
13.615 
13.434 
13.268 
13.121 
12.989 
12.876 
12.780 
12.700 
12.640 
12.598 
12.575 
12.571 
12.587 
12.623 
- 

20.746 
20.309 
19.886 
19.475 
19.075 
18.690 
18.319 
17.960 
17.615 
17.281 
16.964 
16.660 
16.369 
16.093 
15.832 
15.585 
15.355 
15.140 
14.939 
14.754 
14.584 
14.433 
14.297 
14.179 
14.078 
13.994 
13.929 
13.882 
13.853 
13.844 
13.855 
13.885 
- 

22.125 
21.685 
21.260 
20.846 
20.445 
20.057 
19.684 
19.323 
18.975 
18.638 
18.318 
18.011 
17.717 
17.438 
17.174 
16.924 
16.690 
16.471 
16.267 
16.077 
15.903 
15.748 
15.608 
15.485 
15.379 
15.291 
15.221 
15.169 
15.136 
15.121 
15.126 
15.150 
- 
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TABLE A2 (continued) 

PPENDIX 

86 85 84 83 82 81 

30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

-1 
-2 

23.505 
23.064 
22.636 
22.220 
21.818 
21.427 
21.052 
20.688 
20.337 
19.999 
19.675 
19.365 
19.068 
18.786 
18.519 
18.266 
18.027 
17.805 
17.597 
17.403 
17.255 
17.066 
16.922 
16.795 
16.684 
16.591 
16.516 
16.459 
16.421 
16.401 
16.400 
16.419 
- 

24.887 
24.444 
24.015 
23.596 
23.193 
22.800 
22.422 
22.056 
21.702 
21.361 
21.035 
20.722 
20.421 
20.137 
19.866 
19.611 
19.367 
19.142 
18.930 
18.732 
18.550 
18.387 
18.239 
18.108 
17.992 
17.894 
17.814 
17.752 
17.709 
17.683 
17.678 
17.691 
- 

26.271 
25.826 
25.395 
24.975 
24.570 
24.175 
23.794 
23.426 
23.069 
22.726 
22.397 
22.081 
21.778 
21.490 
21.216 
20.958 
20.710 
20.481 
20.266 
20.064 
19.879 
19.712 
19.558 
19.423 
19.303 
19.200 
19.1 16 
19.049 
19.000 
18.969 
18.959 
18.966 
18.995 

27.656 
27.210 
26.778 
26.356 
25.949 
25.552 
25.169 
24.798 
24.439 
24.093 
23.762 
23.443 
23.137 
22.846 
22.569 
22.307 
22.056 
21.824 
21.604 
21.398 
21.210 
21.039 
20.881 
20.741 
20.616 
20.509 
20.4 20 
20.348 
20.294 
20.258 
20.243 
20.244 
20.267 

29.043 
28.596 
28.162 
27.7 39 
27.329 
26.931 
26.545 
26.172 
25.811 
25.463 
25.129 
24.807 
24.498 
24.204 
23.924 
23.659 
23.405 
23.169 
22.945 
22.736 
22.544 
22.368 
22.206 
22.062 
21.933 
21.821 
21.127 
21.650 
21.591 
21.550 
21.528 
21.525 
21.542 

30.431 
29.983 
29.548 
29.123 
28.712 
28.311 
27.922 
27.548 
27.184 
26.835 
26.498 
26.174 
25.861 
25.564 
25.282 
25.012 
24.757 
24.5 16 
24.288 
24.076 
23.880 
23.699 
23.534 
23.385 
23.253 
23.136 
23.037 
22.955 
22.891 
22.845 
22.817 
22.809 
22.820 

31.821 
31.372 
30.935 
30.509 
30.096 
29.693 
29.302 
28.926 
28.560 
28.208 
27.869 
27.542 
27.226 
26.927 
26.641 
26.368 
26.1 10 
25.865 
25.634 
25.419 
25.218 
25.033 
24.864 
24.7 11 
24.574 
24.453 
24.348 
24.262 
24.193 
24.142 
24.109 
24.095 
24.101 
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TABLE A2 (continued) 

79 78 77 76 . 75 74 

345 

30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

-1 
-2 

33.212 
32.763 
32.323 
31.896 
31.481 
31.077 
30.684 
30.306 
29.938 
29.583 
29.242 
28.912 
28.594 
28.292 
28.002 
27.726 
27.464 
27.217 
26.982 
26.764 
26.558 
26.369 
26.197 
26.039 
25.898 
25.772 
25.663 
25.572 
25.498 
25.442 
25.404 
25.384 
25.385 

34.604 
34.154 
33.713 
33.285 
32.867 
32.462 
32.068 
31.687 
31.317 
30.960 
30.616 
30.284 
29.964 
29.659 
29.365 
29.086 
28.821 
28.571 
28.332 
28.111 
27.901 
27.708 
27.532 
28.369 
27.224 
27.093 
26.981 
26.884 
26.805 
26.744 
26.701 
26.676 
26.671 

35.997 
35.546 
35.104 
34.675 
34.255 
33.849 
33.453 
33.070 
32.698 
32.339 
31.992 
31.657 
31.335 
31.027 
30.730 
30.448 
30.180 
29.927 
29.684 
29.459 
29.246 
29.049 
28.869 
28.702 
28.552 
28.417 
28.300 
28.199 
28.115 
28.049 
28.001 
27.970 
27.960 

37.39'1 
36.939 
36.496 
36.066 
35.644 
35.237 
34.839 
34.454 
34.080 
33.719 
33.370 
33.032 
32.708 
32.397 
32.097 
31.813 
31.541 
31.284 
31.038 
30.809 
30.593 
30.392 
30.208 
30.037 
29.882 
29.743 
29.622 
29.516 
29.427 
29.356 
29.303 
29.267 
29.251 

38.786 
38.333 
37.889 
37.457 
37.035 
36.626 
36.227 
35.839 
35.464 
35.101 
34.749 
34.409 
34.082 
33.768 
32.466 
33.179 
32.904 
32.643 
32.394 
32.161 
31.942 
31.737 
31.549 
31.373 
31.214 
31.071 
30.945 
30.835 
30.741 
30.665 
30.608 
30.566 
30.546 

40.181 
39.727 
39.282 
38.849 
38.427 
38.016 
37.616 
37.226 
36.848 
36.483 
36.129 
35.787 
35.457 
35.141 
34.837 
34.546 
34.268 
34.003 
33.751 
33.515 
33.292 
33.084 
32.891 
32.7 11 
32.548 
32.401 
32.270 
32.156 
32.057 
3 1.976 
31.914 
31.867 
31.842 

- 
41.122 
40.676 
40.242 
39.819 
39.406 
39.005 
38.614 
38.234 
37.867 
37.510 
37.166 
36.834 
36.515 
36.208 
35.914 
35.633 
35.365 
35.110 
34.871 
34.644 
34.432 
34.235 
34.05 1 
33.884 
33.732 
33.597 
33.478 
33.375 
33.289 
33.222 
33.170 
33.140 
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TABLE A2 (continued) 

72 71 70 69 68 

30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

-1 
-2 

- 
- 

- 
- 

41.212 
40.797 
40.395 
40.003 
39.620 
39.251 
38.892 
38:546 
38.212 
37.890 
37.580 
37.284 
36.999 
36.728 
36.470 
36.227 
35.997 
35.781 
35.580 
35.393 
35.221 
35.065 
34.926 
34.803 
34.695 
34.605 
34.532 
34.476 
34.439 

TABLE A3 
Function AST = f(q) 
(Sverdrup et al., 1942) 

- 
- 
- 
- 

- 
- 
- 
- 
4 1.007 
40.636 
40.275 
39.927 
39.590 
39.266 
38.953 
38.654 
38.367 
38.093 
37.831 
37.584 
37.351 
37.131 
36.926 
36.736 
36.560 
36.400 
36.256 
36.129 
36.017 
35.922 
35.843 
35.782 
35.741 

- 

- 

- 
- 

- 

- 
- 
- 
- 
- 

- 
41.308 
40.969 
40.643 
40.328 
40.025 
39.736 
39.459 
39.193 
38.943 
38.706 
38.483 
38.274 
38.080 
37.900 
37.736 
37.588 
37.456 
37.340 
37.241 
37.157 
37.090 
37.045 

- 

- 

- 
- 
- 
- 
- 

- 
- 

- 
- 
- 

- 

- 

- 
- 

41.106 
40.825 
40.557 
40.303 
40.062 
39.836 
39.623 
39.425 
39.242 
39.073 
38.921 
38.784 
38.664 
38.561 
38.472 
38.400 
38.350 

- 
41.190 
40.973 
40.771 
40.584 
40.412 
40.255 
40.114 
39.989 
39.880 
39.788 
39.712 
39.656 

CJT 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

23.0 488 487 486 485 484 483 482 481 480 479 
23.1 478 477 476 475 474 473 412 472 471 470 
23.2 469 468 467 466 465 464 463 462 461 460 
23.3 459 458 457 456 455 454 453 452 452 451 
23.4 450 449 448 447 446 445 444 443 442 441 



APPENDIX 

TABLE A3 (continued) 

347 

O T  0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

23.5 
23.6 
23.7 
23.8 
23.9 
24.0 
24.1 
24.2 
24.3 
24.4 
24.5 
24.6 
24.7 
24.8 
24.9 
25.0 
25.1 
25.2 
25.3 
25.4 
25.5 
25.6 
25.7 
25.8 
25.9 
26.0 
26.1 
26.2 
26.3 
26.4 
26.5 
26.6 
26.7 
26.8 
26.9 
27.0 
27.1 
27.2 
27.3 
27.4 
27.5 
27.6 
27.7 
27.8 
27.9 
28.0 

440 
430 
421 
41 1 
402 
392 
383 
373 
364 
354 
345 
335 
325 
316 
306 
297 
287 
278 
26 8 
259 
249 
240 
230 
22 1 
21 1 
202 
192 
183 
173 
164 
154 
145 
135 
126 
116 
107 
98 
88 
78 
69 
60 
50 
41 
31 
22 
12 

439 
430 
420 
410 
401 
391 
382 
372 
363 
353 
344 
3 34 
324 
315 
306 
296 
286 
277 
267 
25 8 
24 8 
239 
229 
220 
210 
20 1 
191 
182 
172 
163 
154 
144 
134 
125 
116 
106 
97 
87 
78 
68 
59 
49 
40 
30 
21 
11 

438 
429 
419 
410 
400 
390 
381 
37 1 
362 
35 2 
34 3 
333 
324 
314 
305 
295 
286 
27 6 
266 
25 7 
24 8 
238 
228 
219 
210 
200 
190 
181 
171 
162 
153 
143 
134 
124 
115 
105 
96 
86 
77 
67 
58 
48 
39 
29 
20 
10 

437 
428 
418 
409 
399 
389 
380 
370 
361 
351 
342 
332 
323 
313 
3 04 
294 
285 
275 
266 
256 
247 
237 
228 
218 
209 
199 
190 
180 
170 
161 
152 
142 
133 
123 
114 
104 
95 
85 
76 
66 
57 
47 
38 
28 
19 
9 

436 
427 
417 
408 
398 
388 
319 
369 
360 
350 
34 1 
331 
322 
312 
303 
293 
284 
274 
265 
255 
246 
236 
227 
217 
208 
198 
189 
179 
170 
160 
151 
14 1 
132 
122 
113 
103 
94 
84 
75 
65 
56 
46 
37 
27 
18 
8 

435 
426 
416 
407 
397 
387 
378 
368 
359 
34 9 
340 
330 
321 
311 
302 
292 
283 
27 3 
264 
254 
245 
235 
226 
216 
207 
197 
188 
178 
169 
159 
150 
140 
131 
121 
112 
102 
93 
83 
74 
64 
55 
45 
36 
26 
17 
8 

4 34 
425 
415 
4 06 
396 
3 86 
377 
367 
358 
348 
3 39 
3 29 
320 
310 
301 
29 1 
282 
272 
263 
253 
244 
234 
225 
215 
206 
196 
187 
177 
168 
158 
149 
139 
130 
120 
111 
101 
92 
82 
73 
63 
54 
44 
35 
26 
16 
7 

433 
4 24 
414 
405 
395 
386 
376 
366 
357 
347 
338 
328 
319 
309 
300 
290 
28 1 
27 1 
26 2 
25 2 
24 3 
233 
224 
214 
205 
195 
186 
176 
167 
157 
148 
138 
129 
119 
110 
100 
91 
81 
72 
62 
53 
44 
34 
25 
15 
6 

432 
423 
413 
404 
3 94 
385 
375 
366 
356 
346 
337 
327 
318 
308 
299 
289 
280 
270 
26 1 
25 1 
242 
232 
223 
213 
204 
194 
185 
175 
166 
156 
147 
137 
128 
118 
109 
99 
90 
80 
71 
61 
52 
43 
33 
24 
14 
5 

431 
422 
412 
403 
393 
3 84 
374 
365 
355 
346 
336 
3 26 
317 
307 
298 
288 
279 
26 9 
260 
250 
24 1 
231 
222 
212 
203 
193 
184 
174 
165 
155 
146 
136 
127 
117 
108 
98 
89 
79 
70 
60 
51 
42 
32 
23 
13 
4 
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TABLE A4 
Function 104(au~/aT) = f(S, T) 

5 10 15 20 25 30 35 40 

-2 -1057 -843 -640 -447 -265 -92 71 225 371 

0 -679 
2 -326 
4 5 
6 314 
8 606 

10 882 
12 1114 
14 1392 
16 1629 
18 1856 
20 207 3 
22 228 1 
24 2482 
26 2676 
28 2864 
30 3046 

-483 
-148 

166 
46 1 
738 

1001 
1251 
1489 
1716 
1934 
2144 
2346 
2542 
2731 
2916 
3095 

-297 
22 

320 
601 
865 

1116 
1354 
1582 
1800 
2009 
2211 
2407 
25 97 
2782 
2962 
3139 

TABLE A5 
Function -104(aq/aS) =f(S, 7') 

-121 47 
183 337 
467 608 
735 863 
987 1104 

1226 1332 
1454 1550 
1671 1758 
1880 1958 
2081 2151 
2276 2338 
2465 2520 
2649 2697 
2828 2871 
3004 3042 
3177 3210 

-206 
4 84 
743 
986 

1216 
1434 
1642 
1841 
2033 
2217 
2397 
2571 
2742 
2910 
3075 
3238 

358 
623 
872 

1105 
1325 
1533 
1732 
1922 
2105 
2282 
245 3 
2620 
2784 
2945 
3104 
3261 

501 
757 
995 

1218 
1429 
1628 
1818 
2000 
2174 
2343 
2507 
2667 
2823 
2977 
3129 
3280 

637 
884 

1113 
1327 
1529 
1720 
1902 
2075 
2242 
2403 
2559 
271 1 
2859 
3005 
3150 
3292 

S(O/OO) 0 5 10 15 20 25 30 35 40 
T("C) \ 
-2 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
'30 

8235 
8150 
8074 
8004 
794 1 
7885 
7833 
7787 
7746 
7708 
7675 
1644 
7617 
7591 
7568 
7545 
7524 

8121 
8042 
7969 
7903 
7843 
7788 
7739 
7695 
7655 
7619 
7586 
7557 
7531 
7507 
7485 
7465 
7446 

8020 
7945 
7875 
7812 
7755 
7703 
7655 
7613 
7574 
7540 
7508 
7481 
7455 
7433 
7413 
7394 
7377 

793 1 
7859 
7793 
7733 
7678 
7628 
7583 
7541 
7504 
747 1 
744 1 

7414 
7390 
7369 
7350 
7333 
7318 

7853 
7785 
7722 
7665 
7612 
7564 
7520 
7480 
7445 
7412 
7384 
7358 
7335 
7315 
7298 
7283 
7269 

7786 
7721 
7662 
7607 
7556 
7510 
7468 
7430 
7395 
7364 
7336 
7312 
7290 
7271 
7255 
7241 
7230 

7729 
7668 
7611 
7559 
7510 
7466 
7425 
7388 
7355 
7325 
7298 
7275 
7 254 
7236 
7222 
7210 
7 200 

7683 
7625 
7571 
7521 
7474 
7432 
7392 
7357 
7324 
7295 
7270 
7247 
7228 
7211 
7197 
7187 
7179 

7646 
7591 
7540 
7492 
7448 
7407 
7369 
7335 
7303 
7275 
7250 
7229 
7210 
7195 
7182 
7173 
7167 
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5 10 15 20 25 30 35 40 
T("C) 

-2 
0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

+0.129 
+0.082 
+0.040 
-0.001 
-0.039 
-0.077 
-0.113 
-0.147 
-0.180 
-0.211 
-0.242 
-0.271 
-0.300 
-0.327 
-0.354 
-0.380 
-0.406 

+0.104 +0.080 
+ 0.060 + 0.037 
+ 0.01 8 -0.003 
-0.021 -0.041 
-0.059 -0.077 
-0.095 -0.112 
-0.129 -0.146 
-0.163 -0.178 
-0.194 -0.209 
-0.225 -0.239 
-0.255 -0.268 
-0.284 -0.296 
-0.312 -0.323 
-0.338 -0.349 
-0.365 -0.375 
-0.391 -0.401 
-0.416 -0.426 

+0.056 +0.034 +0.012 
+0.015 -0.006 70.027 
-0.024 -0.044 -0.063 
-0.061 -0.079 -0.098 
-0.096 -0.113 -0.131 
-0.129 -0.146 -0.162 
-0.162 -0.177 -0.192 
-0.193 -0.207 -0.211 
-0.223 -0.236 -0.249 
-0.252 -0.264 -0.276 
-0.280 -0.291 -0.302 
-0.307 -0.318 -0.328 
-0.334 -0.344 -0.353 
-0.360 -0.369 -0.377 
-0.385 -0.393 -0.401 
-0.410 -0.418 -0.425 
-0.434 -0.442 -0.448 

-0.009 -.0.029 
-0.047 -0.006 
-0.082 -0.1 00 
-0.115 -0.132 
-0.147 -0.163 
-0.177 -0.192 
-0.206 -0.220 
-0.234 -0.247 
-0.261 -0.273 
-0.287 -0.298 
-0.313 -0.322 
-0.337 -0.346 
-0.361 -0.369 
-0.385 -0.392 
-0.408 -0.4 14 
-0.431 -0.435 
-0.453 -0,457 

-.0.049 
-0.084 
-0.1 17 
-0.149 
-0.178 
-0.206 
-0.233 
-0.259 
-0.284 
-0.308 
-0.331 
-0.354 
-0.316 
-0.397 
-0.418 
-0.439 
-0.459 

TABLE A7 

Function lo4[(% ds + - ( P A S  + aAT) =f(S, T )  1 

-2 
0 
5 

10 
15 
20 
25 
30 

0 

3.291 
2.817 
1.803 
0.946 
0.199 

-0.451 
-1.025 
-1.568 

5 10 

3.033 2.797 
2.593 2.375 
1.617 1.437 
0.787 0.639 
0.068 -0.055 

-0.565 -0.669 
-1.133 -1.224 
-1.655 -1.735 

15 20 25 30 35 40 

2.580 2.380 
2.173 1.988 
1.272 1.121 
0.503 0.379 

-0.167 -0.268 
-0.762 -0.844 
-1.302 -1.368 
-1.802 -1.854 

2.198 
1.819 
0.983 
0.267 

-0.358 
-0.915 
-1.422 
-1.893 

2.032 1.883 
1.667 1.530 
0.858 0.747 
0,167 0.080 

-0.437 -0.504 
-0.974 -1.022 
-1.463 -1.494 
-1.918 -1.928 

1.752 
1.409 
0.649 
0.008 

-0.560 
-1.059 
-1.$10 



TABLE A8 

Equation of state of water and sea water in Tumlirtz form 

(numerical values of constants) 
[P + Po(T,s)l [a - “O(T,s)I = h(T,S) 

“0 P o  h 

Eckart 
(1958) 

Wilson 
and 
Bradley 
(1968) 

Fisher 
et al. 
(1969) 

0.6980 

0.70200 

0.6980-0.7435626 T 
+0.3704258~104T2-0.6315724.10”T3 
+0.9829576- 10-8T4-0.1197269* lO*T5 
+0.1005461*10-”T6-0.5437898~10~’4T7 
+0.169946*-10-’6T8 -0.2295063.10-’9Te 
-(2.679~104+2.02~10”T-6.0~10-9T2)S 

5890+ 38T-0.375T2+ 3 s  

5880.9+37.592T 
-0.34395T2+ 2.2524s 

lo2( 17.795+0.1125 T-0.000745T2 
-0.0380s- 0.0001TS) 

10’ ( 17.5273 +O. 1 101 T 
-0.0006397” -0.0399868 
-0.000107TS) 

5918.499+58.052677 1788.316+21.55053T 
-1.1253317T2+6.6123869.10-3T3 -0.469591 1T2+ 3 .096363~10-~T~ 
- 1.4661625*10-5T4+(10.874 -0.734 1182. 10-’T4 * 
- 4.1 384.1 0”T)S 

W 
v, 
0 

~~ ~~ ~~ 

* Here h is the function of T only. 



TABLE A9 
Equation of state of sea water in polynomial form 

(A) Sea water at atmospheric pressure (Cox e t  aL, 1970) 

O T ( T , S )  = C a i , j T ' S i  0 < i,j < 3 
ii 

= a o , o + a l , o T + a o , ~ S + a ~ , o T 2 + a ~ , ~ S T + a o , 2 S 3  

+ a3,0T3 + az,lST2 + al,2S2T + ao,3S3 

The polynomial coefficients a [ ,  j 

i j aij 

0 0  
1 
2 
3 

1 0  
1 
2 

2 0  
1 

3 0  

8.00969062 * 

7.97018644 -lo-' 
1.31710842 * lo4 

-6.1 1831499 - 1 0-3 
5.88194023 - 

-3.25310441 - lom3 
2.87971530 10" 

-8.11465413 * 

3.89 187483 * 
4.76600414 * lo-' 

The formula is valid over the following ranges: 0 G T < 25"; 9 < S Q 4lo/oo 

(B) 

a@, T , S )  = c ai,j,kp T j ( S -  35)k 

Sea water in situ (Crease, 1962) 

0 < i,j,k < 4 
i,], k 

The polynomial coefficients ai, j ,  k (expressed in floating decimals, exponent following the comma) 

0 0 0  9.727149, - 1 1 0 0 -4.42003, 
1 -7.6268, - 4  1 1.5221, 

3 -5.54, - 9 *  3 6.6 
4 2.55, - 1 1 *  1 0  2.5962, 

1 2.8892, - 6 2 5.70, 

3 1.84, - 11 * 1 3.127, 
2 0  6.4656, - 6  3 0  2.556, 

1 -5.827, - 8 2 0 0  6.7845, 

2 3.934, - 7 2 -2.490, 

1 0  5.037, - 5  1 -2.3956, 

2 -1.056, - 8 *  2 0 -4.8964, 

2 1.307, - 10* 1 -3.348, 
3 0 -6.532, - 8 1 0 -7.954, 

4 0  6.201, - 10 3 0 0 -0.297, 
1 4.001, - 10 2 0  1.35, 

1 0  6.52, 
4 0 0  1.076, 

* The starred coefficients are relevant only to salinities below 30°/oo. 
The formula is valid over the following ranges: 
(1) 
(2) 
(3) 

p < 100 kg/cm2, 5O/OO < S < 37'/00, freezing point < T < 30°C. 
p < 500 kg/cm2, 33'/00 < S < 37°/oo, freezing point < T < 3OoC. 
p < 1000 kg/cm2, 33'/00 < S < 37'/00, freezing point < T < 6°C. 

- 5  
- 1  
- 10* 
- 13* 
- 7  
- 9 *  
- 12* 
- 9  
- 11 * 
- 11 
- 9  
- 11 
- 11 
- 12 
- 13 
- 15 
- 16 
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TABLE A10 

Approximation of the Knudsen-Ekman equation of state in situ 

(A) By Bryan and Cox (1 972) 

oT(T, S, Z )  - OT,O(TO,SO,Z) = X I ( T - T O )  + X 2 ( S - S d  + ~ ~ ( T - T o ) ’  IX.1 I 
Constants in the polynomial formula [X.1] 

Z (PO-1) TO S O  x1 x 2  x3 

0 
250 
500 
750 

1000 
1250 
1500 
1750 
2000 
2250 
2500 
2750 
3000 
3250 
3500 
3750 
4000 
4250 
4500 
4750 
5 000 
5250 
5500 
5750 
6000 

24.458 
28.475 
29.797 
31.144 
32.236 
33.505 
34.808 
35.969 
37.143 
38.272 
39.462 
40.582 
41.695 
42.801 
43.863 
45.038 
46.130 
47.216 
48.296 
49.278 
50.344 
51.404 
52.459 
53.508 
54.552 

13.50 
8.50 
6.00 
4.50 
4.00 
3.00 
2.00 
1 S O  
1.50 
1 .so 
1.00 
1 .oo 
1 .oo 
1.00 
1.00 
0.50 
0.50 
0.50 
0.50 
1 .oo 
1.00 
1.00 
1.00 
1 .oo 
1 .oo 

32.600 
35.150 
34.900 
34.900 
34.750 
34.750 
34.800 
34.750 
34.800 
34.800 
34.800 
34.800 
34.800 
34.800 
34.750 
34.750 
34.750 
34.750 
34.750 
34.750 
34.750 
34.750 
34.750 
34.750 
34.750 

-0.19494-00 
-0.15781 -00 
-0.137 28-00 
-0.12720-00 
-0.12795 -00 
-0.1 2312 +00 
-0.11837 + 00 
-0.11896+00 
-0.12543 -00 
-0.13 168-00 
-0.13250-00 
-0.13871 -00 
-0.14483-00 
-0.15088-00 
-0.15673-00 
-0.15771 -00 
-0.16363-00 
-0.16948-00 
-0.175 24 -00 
-0.18556-00 
-0.19 107 -00 
-0.19650-00 
-0.201 86-00 
-0.20715-00 
-0.21237-00 

0.77475-00 
0.78318-00 
0.78650-00 
0.78807-00 
0.7871 0-00 
0.78763-00 
0.78822-00 
0.78751-00 
0.78560-00 
0.78368-00 
0.78300-00 
0.7 8 10 9-00 
0.77920-00 
0.77733-00 
0.77544-00 
0.77475-00 
0.77292-00 
0.77 110-00 
0.76930-00 
0.7664 1-00 
0.76467-00 
0.76295-00 
0.76126-00 
0.75958-00 
0.75792-00 

-0.49038-02 
-0.52669-02 
-0.55278-02 
-0.56610-02 
-0.56274-02 
-0.56972-02 
-0.57761 -02 
-0.57631-02 
-0.56422-02 
-0.55239-02 
-0.55 116-02 
-0.53946 -02 
-0.52793-02 
-0.5 1654 -02 
-0.50557-02 
-0.50466-02 
-0.49360-02 
-0.48268-02 
-0.47193-02 
-0.45 102-02 
-0.44074-02 
-0.43061-02 

. -0.42068-02 
-0.41 138-02 
-0.40172-02 

- 

(B) 
Formula for the upper layer of the ocean (0 < Z < 2 km): 

By Friedrich and Levitus (1972) 

UT(T,S)  = C1+ C2T+ C3S+ C4T2 + C5ST+ C6T3 + C2ST2 

OT(T,S) = C1 + C2T+ C3S+ C4T2 + CsST 

1x.21 

Formula for the lower layer of the ocean ( Z  2 2 km): 

1x.31 

Coefficients of the approximation, C N ( D  = ON + ONZ + T N Z ~ ,  for the formula [X.2] 

N ON PN TN 

1 -7.2169.10-2 +5.1215.10+ -5.012*10-2 
2 +4.9762*10-’ -3.6349.10” +7.853.104 
3 +8.0560-10-’ -8.5540*1V3 +1.070-104 
4 -7.5911-10-3 +6.4295*104 -1.397.10” 
5 -3.0063.10-3 +1.9365-104 -3.899-10” 
6 +3.5187.10-s -3.9740~10-~ -5.695-10” 
7 +3.7297.10” -2.8108*10-6 +1.147.10-’ 
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TABLE A10 (continued) 

Coefficients of the approximation, C N ( Z )  = CYN+ PNZ + YNZ’, for the formula [X.3] 

N aN PN YN 

1 -9 .2163~10-~ +5.1140.10-0 -4.692+10-2 
2 +4.3314-10-’ -3 .5685~10-~ +7.689-104 
3 +8.0640*10-’ - 8 . 6 8 2 6 ~ 1 0 ~ ~  +1.433.104 
4 -6.2723~10-~ +5.1351.104 -1.246-10” 
5 -2.7762*10-3 +1.7792*104 -3.985.10” 



TABLE A1 I 

Polynomial expression for 7 ("Density flux" function) 
(Veronis, 1972) 

W 
cn 
P 

2 3 4 

1 5.089907 0.1529522 -0.2653792(-2) 0.9409070(-4) 
2 0.8424673 0.2309882(-1) -0.8486828(-3) 0.5136553(-4) 

4 -0.1263383(-2) -0.1542035(-4) -0.2640413(-5) -0.3038523(-5) 

6 -0.1178271(-3) 0.7019903(-6) 0.4057835(-5) 0.1928200(-6) 

3 0.695 1154(-1) -0.1 173089(-2) 0.661 3862(-4) -0.1 24 1726(-5) 

5 0.200885 8( -4) -0.12050 16( -4) -0.9072095( -5) 0.693266 1(-6) 

5 6 

-0.3334090( - 5 )  
-0.3040085(-5) 
-0.7876663(-6) 

0.1004874(-6) 
-0.2404088(-7) 

0.1563445(-6) 

0.598631 1(-7) 
0.7860879(-7) 
0.4358532(-7) 
0.451 3363(-8) 

-0.402506 1( -8) 
0.6693087(-9) 

The formula is valid over the ranges 0 < 0 < 30°C, 33 < S C 37°/oo and for the ratio of temperature-salinity scales on the T-S 
diagram, l"C/lo/oo, equal to 115. 

TABLE A12 
Specific heat cp of sea water at atmospheric pressure (1 g-' "C-') 
(Cox and Smith, 1959) 

0 
5 

10 
15 
20 
25 
30 
32 
34 
35 
36 
38 
40 

-2 

- 
- 
- 
- 
- 
- 
- 
- 
- 
3.984 
3.979 
3.968 
3.957 

-1 0 1 

- 
- 
- 
- 
4.075 
4.043 
4.013 
4.001 
3.990 
3.984 
3.979 
3.968 
3.957 

4.217 
4.179 
4.142 
4.107 
4.074 
4.043 
4.013 
4.002 
7.990 
3.985 
3.979 
3.968 
3.957 

4.214 
4.176 
4.140 
4.106 
4.074 
4.043 
4.013 
4.002 
3.991 
3.985 
3.980 
3.968 
3.958 

2 

4.210 
4.174 
4.138 
4.105 
4.073 
4.042 
4.013 
4.002 
3.991 
3.985 
3.980 
3.969 
3.958 

5 

~ 

4.202 
4.168 
4.135 
4.103 
4.072 
4.042 
4.014 
4.003 
3.992 
3.986 
3.981 
3.970 
3.959 

10 15 20 25 30 

4.192 4.186 4.182 4.179 
4.161 4.157 4.154 4.153 
4.130 4.128 4.126 4.126 
4.100 4.099 4.098 4.099 
4.071 4.071 4.071 4.072 
4.042 4.043 4.045 4.046 
4.015 4.016 4.018 4.020 
4.004 4.006 4.008 4.010 
3.993 3.995 3.998 4.000 
3.988 3.990 3.993 3.995 
3.983 3.985 3.988 3.991 
3.972 3.975 3.978 3.981 
3.962 3.965 3.968 3.972 

4.178 
4.152 
4.126 
4.100 
4.074 
4.048 
4.023 
4.G13 
4.003 
3.999 
3.994 
3.985 
3.976 
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The monograph describes recent developments in the study of mixing and turbulence in stratified 
fluids. Chapter 8 “Doublediffusive convection” is devoted to the study of thermohaline convec- 
tion observed in presence of different (molecular) diffusivities of heat and salts. 
(Relevant to Section 41). 

seawater determined from sound speeds. J. Geophys. Re+, 78 (30) 
Equation of the state of water and seawater is presented in the form of the second-degree secant 
modulus equation: 

( Y o  - Vp)/P = DI@ + A 1 P + Az P z )  

where vo and v p  are specific volumes of water or sea water at atmospheric pressure and applied 
pressure, correspondingly. The results axe based on Knudsen’s (1901) equations for YO and sound 
speed measurements of Wilson (1959, 1960b). D is specific volume of pure water at p = 0, empiri- 
cal constants B, A l  and Az are functions of temperature and salinity. 
(Relevant to Sections 3,4,  7, 8). 

Mamayev, O.L., 1974. On the problem of conjugated function on the oceanographic T-S diagram. 

Monin, A.S., 1973. The hydrothermodynamics of the ocean. Izv. Acad Sci., USSR, Atrnos. Oceanic 

Wang, Dong-Ping and Millero, F.J., 1973. Precise representation of the P- V-T properties of water and 
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Numbers in italics refer to tables 

Abyssal circulation, 304,334 
Adiabatic cooling, 81 
- compressibility, see Compressibility 
- gradient of density, 104 
_ _  -, dependence on pressure, 105,106, 

- _  of temperature, 76 
- -  -, dependence on pressure, 105,106, 

- processes, 49, 70,75,81 
Additive properties, 82, 119 
Analysis, isopycnic, 247, 271 
-, oceanographic, 4, 154 
- of water masses by T-S curves, 252 
-, thermohaline, see T-S analysis 
Anomaly of specific volume, 16, 17,346 
-, therniosteric, 16 
Antarctica, 266 
Arctic Basin, 127,239, 263,323 
Atmosphere, 14 
-, “normal”, or physical, 14 
Australia, 266 

Bay of Bengal, 300 
- of Biscay, 333 
British Colombia, 266 

108 

108 

California, 266,267 
Chesapeake Bay, 323 
Qllorinity, 10 
Coefficient of accumulation (of heat and salt), 

184 
- decrease of area of ice sheet, 238 
_ -  of thickness of ice, 238 
- diffusion, 159 
_ -  of density, 170 
- growth of area of ice sheet, 234 
_ _  of thickness of ice, 234 
- heat conduction, 159 
- isothermal (and isohaline) compressibility, 

- - -  , mean, 28,102 

- mixing (graphical determination), 150, 239 

22 

, true, 102 - - -  

- penetration, 184 
- pressure (elasticity), thermal, 22 
- saline contraction, 22 
- thermal (volumetric) expansion, 22 
- thermohalinity, 22 
- turbulence, 189 

Complex variable, 127, 135 
Compressibility, adiabatic, 104, 11 1 
-, isobaric (isothermal), 80, 102 
-, -, dependence on pressure, 103 
-, thermohaline, 11 1 
Conductivity, electrical, 9,20 
- relative, 12 
Contraction on mixing (of sea water), 49, 61, 

- -, inequality Of, 181,189,204,244 

70,73,83,84,85,94,144,247,263,280, 
332,337 

- -, CUNW of, 281,284 
of four water masses, 289 
of three water masses, 282 
of two water masses, 83,85, 279 

- -, on horizontal (isopycnic) mixing, 286 
- -, on vertical mixing, 278 
- -, quadrangle of, 290,367 

_ _  
_ _  
- -  

, theory of, 85 
, triangle of, 278,282,367 

_ _  
_ _  
-, saline, 22,92,348 
Convection, in a stratified medium, 194, 368 
-, thermohaline, 162,228,368 
Convergence, Antarctic, 260,324 
-, Subtropical, 254,260 
Coordinates, curvilinear, 151 
-, dimensionless, 151 
-, transformation on T-S plane, 150 

-, triangular, 123 
- ~ 7 , 1 5 2  
Core of the intermediate water mass, see 

Water mass, intermediate 
Curl, vertical component of, 136 
Current, Antilles, 187,261, 319 
-, California, 266 
-, Davidson’s, 267 

-, T-S, 151 

-, Florida, 261,319 



370 INDEX 

Current (continued) 
-, geostrophic, 335 
-, Gulf Stream, 84,137,210,261,267, 279, 

286,319 
-, Kuroshio, 266,274, 279,289, 290, 301, 

-, Labrador, 84,263,267,279,286 
-, Lomonosov, 243 
-, North Atlantic, 210 
-, North Equatorial (Trade Wind), 301 

-, Peruvian, 266 

Delta-function, 197 
Densification on mixing, see Contraction on 

Density, 9, 14 
-, conventional (sigma-T), 16 
- in situ (dependence on pressure), 18 
- _  -, conventional, 16 
- in standard ocean, 341 

- _  function, 132,152,154,354,368 
- _  -, numerical calculation of, 155,368 
- - _  in oceanographic analysis, 154, 155 
- potential, 15 
- -, conventional, 16 
Diagram, characteristic, 29, 30, 338 
- of state (volumetric), 33 
-, Taylor’s, 33 
-, T-S, see T-S diagram 
Differential of the arc of T-S curve, 138 

Differential operator, Jacobian, 58,151 
_ -  , Euler’s, 160 
- -, Laplace’s, 160, 161 
Diffusion, 49 
- of density, 169 
Dynamic depth, 18,19 
- height, 20 
- method, 13, 20, 301,335 

Energy, bound, 52 
-, free, 52 
-, internal, 20,50,51 
-, -, specific, 20,50,51,57,85 
-, potential, 61,129 
-, turbulent, 51 
Enthalpy, 52 
-, specific, 52,86 

Entropy, 21,50,80 
-, specific, 21,50 
Equation(s), Cauchy-Riemann’s, 131, 135, 136, 

319,335 

-, Oya~hi0,266,279,289 

mixing 

- f l ~ ~ , 1 3 2  

-, total, 21,51,55 

- _  , , of sea water, 73 

152 

-, fundamental, of thermodynamics, 50,51 
-, Gibbs-Duhem’s, 61 
-, Laplace’s, 132 
- of continuity, 75 
- of diffusion, 159 
_ -  of density, 169 
- of heat conduction, 159 
- - -  , fundamental, for a uniform rod, 160 
- of hydrostatics, 13, 19 
- of state, at atmospheric pressure, 25 
- -, caloric,21 
- -, Clapeyron’s, 24 
_ -  in situ, dependence of pressure on, 27 
- -, instrumental determination of, 133 
_ -  of pure water in Tait-Gibson’s form, 24, 

37 
- - -  - in Tumlirz’ form, 34,350 
- - - -  of Kell and Walley, 39 

- - _ -  , Boussinesq (linear) approximation 

_ - _ _  in polynomial form, 24,38,351 
in secant-modulus form, 368 

- - _ _  in Tait-Gibson’s form, 24, 37 
- - - -  in Tumhz’ form, 24,34 

in Van der Waal‘s form, 24 
- - _ -  , Knudsen-Ekman’s, 19, 25,44 
- - - - - -  , approximation of, 44,352 
- -, simplified, 39 
- -, thermal, 21,23 
-, Poisson’s, 367 
Expansion on mixing, 294 

Faroe-Shetland channel, 324 
Field, geopotential (gravity), 18, 19, 50 
-, isopycnic, 144 
-, -, linearized, 144 
-, -, real, 144 
- of irrotational motion of incompressible 

fluid, 132 
-, plane, see Theory of plane field 
-, plane thermohaline, 132,134,249 
Formula, Green’s, 249 
-, Jacobsen’s, 242,244 
-, Kelvin’s, 80, 105 
-, Leibnitz-Newton’s, 128 
-, Newton-Laplace’s, 75,76 
-, Taylor’s (expansion into series), 86, 89, 113 
-, Wilson’s (for the speed of sound), 79 
Front, Polar, 324 
-, Subarctic, of the Pacific Ocean, 265, 274, 

Function, conjugated, 133, 368 
- of complex variable, 135 

of sea water, 9,76, 170 - -  

to, 40, 294 

_ - _ _  

- - - _  

289 
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Function (continued) 
-, potential, 51 
-, stream,. 132 

G a s ,  mixture of, 60 
-, perfect, 24, 59 
Gravity, 9,12,14, 15 
-, acceleration of, 13 

-, -, conventional, 15,26 
Great Newfoundland Bank, 84 
Greenland, 260 
Gulf of Aden, 337 
Gulf Stream, see Currents 

-, Specific, 9,14,15 

Heat capacity, at constant pressure (isobaric), 66 
- - -  , salinity,66 
- _ -  , volume (iohoric), 66 
- -  , dependence on parameters of state, 67, 

71,121 
of pure water, 70 

- -  of sea water, 105,354 

_ _  , specific,66 
- conduction, 49 
Hodograph plane, 136,152 
Hook‘s law, 74 
Hudson Submarine Canyon, 274 

- _  

-, at constant pressure, 105 _ _ -  

Iberian Peninsula, 101 
Ice cover, area of, 234 
_ _  , decay of, 228 
_ _  , growht of, 228 
_ _  , thickness of, 234 
Iceland, 266 
Incompressible fluid, 132 
Integral of probabilities, 168,170,171, 182,183 
-, line, in T-S plane (along T-S curve), 127 
-, -, calculation of, 128 
Isobath, 191 

Jacobian, 58,151 
Jan Mayen, 234 
Japan, 289 

Kuroshio, see Currents 

Labrador Peninsula, 260 
Lake, 236 
Long Island, 274 

Mass, 9 
-, air,33 
- fraction, 49, 58 
-, water, see Water mass 

Mechanical equivalent of heat, 72 
Medium, isotropic, 49 
Method, core, 325 
-, dynamic, 13,20,301,335 
-, equivalent-thickness, 337 
-, “frequency”, 338 
-, graphical, of determining concentration of 

water masses, 255 
- of Jacobians, 58 
- of salinity anomalies, 327 
- of thermodynamic cycles, 80 
- -  potentials, 23,53 
Mindanao Trench, 109 
Mixing (of sea waters), acceleration of sound on, 

-, contraction on, see Contraction on mixing 
-, heat of, (dilution), 82 
-, horizontal, 266 
- in ocean of infinite depth, 170,171,181,194 
- _  of 5Nte depth, 215 
- _  of semi-infinite depth, 170,175,206,211 

- of four water masses, 271 
- of three water masses, 120,126, 194, 200, 

21 1,220,282 
- of two water masses, 82,84, 119,126, 181, 

206,215,279 
-, quadrangle of, 258,275,277 
-, representation of, on T-S diagram, 119 
-, small-scale, 101 
-, straight line of, 119,219 
-, triangle of, see Triangle of mixing 
-, vertical, 268 
Mole, 63 

84,115 

-, ~ S O P Y C ~ ~ C ,  318,322,326 

Newfoundland, 263,266 
New Zealand, 117,338 
North America, 274 

Ocean, Atlantic, 12,78,157, 242,253, 259, 

-, Indian, 258,298 
- of infinite depth, 165,170,171,174,181, 

194 
- of finite depth, 166,215 
- of semi-infinite depth, 165,170, 175, 206, 

211 
-, Pacific, 164,175,194,258,264,265,274, 

297 
-, Southern, 246,254,266 
-, World, 10,12,298 

-, -, parameters of, 13 
-, -, vertical stratification in, 341 

265,298 

-, standard, 13,18,43,88,341 
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Orthogonal curves (on T-S plane), 130 
Oyashio, see Currents 

Parameter of state of sea water, 9 
- on T-S diagram, 119,159 
-, thermodynamic, 50 
Partial (quantity), 63 
- electrical conductivity, 66 
- heat capacity, 66 
- molal volume of ions, 66 
- specific enthalpy, 66 
- specific volume, 64 
- volume, 64 
Point, freezing, see Temperature of freezing 
-, figurative, 119 
-, parametric, on T-S curve, 186 
-, special, of T-S curve, 199 
Potential, chemical, 21,56,58 
-, -, of perfect gas, 60 
-, -, of pure water, 60 

-, -, of salts in a solution, 59 
-, -, of saturated vapour, 60 
-, -, of sea water, 51 
-, isopycnic, 132 
-, mechanical, 61 
-, specific chemical, 21 
-, thermodynamic, 52,57 
-, velocity, 132 
Pressure, 12 
-, atmospheric, 13 
- in standard ocean, 13,341 
-, relation with depth, 13,79 

Quadrangle of contraction on mixing, 290, 367 
- of mixing, 258,275,277 

, in a solution, 59,60 _ - - _  , ,  

Reciprocal (Maxwell’s) relations, 53 
Richardson’s number, 334 

Saline contraction, 92,348 
- dependence on pressure, 94 
Salinity, 9,10 
Salinometer, 11,12 
Sea, Arabian, 300 
-, Aral, 11 
-, Azov, 11 
-, Baltic, 11,26,336 
-, Barentz, 272 
-, Black, 11,82,88 
-, Caribbean, 259,300 
-, Caspian, 11,26 
-, Greenland, 272 

-, Indonesian seas, 299 
-, Mediterranean, 38 
-, Norwegian, 26,272 
-, Red, 26,300,337 
-, Sargasso, 260,301 
-, Timor, 314,316 
-, Weddell, 254,279,337,367 
Sea water, 32 
- -  , brackish, 32 
- -  , compressibility of, 80, 102, 103, 104,111 
- _  , contraction on mixing of, see Contraction 

- _  , density of, see Density 
- -  , electrical conductivity of, 9, 12,20 
- _  , enthalpy of, 52,73, 86 
- _  , entropy, 21,50, 80 
- _  , equation of state of, see Equation of state 
- -  , heat capacity of, see Heat capacity 
- _  , non-linear (anomalous) properties of, 

- -  , parameters of state of, 9 
- _  , salinity of, 9, l o  
- _  , specific enthalpy of, 52,86 
- _  , specific gravity of, see Gravity 
- -  , specific volume of, see Volume 
- -  , speed of sound in, see Speed of sound 
- -  , temperature of, see Temperature 
Solution, 61 
-, ideally diluted, 61 
-, perfect, 61 
Sound channel, 116 
Specific heat, see Heat capacity 
Speed of sound, 39,49,73,97,105 
- -, acceleration on mixing, 84, 115 
- -, partial derivatives of, 113 
Spitzbergen, 266 
Stability, vertical, 109 
-, -, adiabatic, 112 
-, -, negative, 110 
-, -, neutral, 110 
-, -, positive, 110 
-, -, principal part of, 113,129 
-, -, saline, 112 
-, -, “sound”, 116 
- -  , , thermal, 112 
-, -, thermohaline, 111 
Strait(s), Florida, 207,319 
-, Kattegat, 26 
- of Gibraltar, 163,228,331 
Surface, geopotential, 20 
-, isobaric, 20 
- of the sea, 14 
System, thermodynamic, 49 
-, -, multi-component, 49,61 

on mixing 

73,81 
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System, thermodynamic (continued) 
- -  , , singlecomponent, 50 
- -  , , two-component (binary) (sea water), 50, 

62 
-, -, two-phase (water-vapour), 59 

Temperature, 9 
-, absolute (Kelvin), 9,50 
-, adiabatic gradient of, 76,80 
-, Celsius,9 
-, in situ, 9 
-, of freezing (freezing point), 32, 367 
- of maximal density, 30, 31,99 
-, potential, 9,104,107 
Theorem, Green’s, 249 
-, Shtokman’s, 203 
Theory of plane field, 130,134 
_ -  -, application to  T-S diagram, 130 
-, analytical, of T-S curves, see T-S curves 
Thermal expansion, 23,92,348 
- dependence on pressure, 23, 94 
Thermodiffusion, 49 
Thermodynamics, 49 
-, fundamental equation of, 50,51 
- of sea water, 49, 367 
Thermohaline coefficient, 97 
- derivative, 31,98, 153, 227,349 
- index, see T-S index 
Thermohalogram, see T-S diagram 
Transitional region, 266,278 
Transformation conformal, 135 
-, Legendre’s, 52 
- of coordinates on T-S plane, 150 
- of the core of water mass, 195, 213, 328 
- of mixing, 324 
- of the surface T-S index, 207 
- of tropospheric water mass, 318 
- zonal (latitudinal), 263, 323, 324 
Triangle of contraction on mixing, 278,282, 

367 
- of mixing, 120,198,255,329 
- -, baseof, 198 
- _  , principle median of, 200 
_ -  , secondary median of, 200 
T-S analysis in regions of horizontal interaction 

of water masses, 265 
- -, methods of, 247 
- - of convective processes, 337 
- -  of formation of bottom water masses, 

- -  of surface waters, 336 
- _  , statistical, 78, 295 
- -  , volumetric, 161,298 

336 

- ~ e a , 1 2 7 , 1 5 4  

- contour, 249 
- coordinates, dimensionless, 130 
- curve(s), analytical theory of, 159, 162, 328, 

335,336 
, boundary conditions, 167 
, formulation of problem, 159 
, initial conditions, 162 

- _ _ -  
- - - -  
- _ - -  

for an ocean of infinite depth, 170, 

for an ocean of finite depth, 215 
for an ocean of semi-infiinite depth, 

- _ _ -  
171,181,194 

- - - _  
- _ - -  

170,175,206,211 
- -  , asymmetric, 330 
- -  , by parameter, 125,247,248, 249 
- -  , cause of, 335 
- -, “cluster” of, 247 
- -, conservation of form of, 137 
- -, general properties of, 137 
- -, geometry of, 181,195,203,252,263 
- -  in transitional regions, 247, 266 
- -  , line integral along, 140 
- -  of oceanographic station, 124 
- -, simplified theory of, 215 
- -  , special point of, 199 
- -  , tangent to, 202 
- -  , typification of, 258 
- diagram, 29,341 
- - at corresponding pressure,33,34,367,368 
- 

- -  , isosteric, 30 
- -, properties of, 119 
- _  , statistical, 295, 301, 367 
- -  , spacial, 249 
- -  , statistical geostrophic, 301 
- - _  , oxygen,302 
- - -  , temporal, 249 
- -  , volumetric, 249,367 
- -  with functional scales, 33 
- index, 119,194,249 
- -, surface,207 

- h e  (straight), 185 
- plane, 150 
- -  , dimensionless, 15 1 
- -  , transformation of coordinates on, 150 
- relations, 32 
- -, generalized of the World Ocean, 305 
- -  of sea water, 32 
- _  , types of, 247 
- -  , statistical, 249 

-, conformal transformation of, 135 
- -  , isopy~nal, 30. 

- - -  , , transformation of, 207 

T-S-P analysis, 338 

Universal gas constant, 24 
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Vapour, saturated, 59 
Velocity components, 133 
Volume, 9 
-, conventional specific, 16, 17 
- ofice, 236 
-, partial, 64 
- -  , specific,64 
-, specific, 9,14,15 
-, -, in situ (dependence of pressure on), 18 
Volumehalogram, 30,341 
Volumethermogram, 30 

Water, 23 
-, pure (distilled), 23 
-, -, specific gravity of, 26 
-, see Sea water 
Water mass(es), 1, 2 
- -, advection of, 215 
- _  , analysis of, by T-S curves, 252 
- _  , Central, 147,265 
- 

- 
- - _  , , formationof, 318 
- _ -  , , Indian, 147,148 

-, -, Eastern North Pacific, 147,148,194, 
311 
-, -, Eastern South Pacific, 88, 148, 311 

- - _  , , North Atlantic, 147, 148, 149, 209, 
260,309 

309 
- -, -, Western North Pacific, 148, 31 1 

- -, Circumpolar Antarctic, 266 
- _  , classific2tion of, 314 
- _  , concept of, 163,249 
- _  , d e f ~ t i o n  of, 250 
- _  , diagram of state of, 212 
- -  , Eastern-Icelandic, 323 
- -, Equatorial, Indian, 310,314 

- -, formation of, 126,163 
- -, Gulf Stream, 187,192, 206 
- -, interface between, 165,182 
- -, Intermediate, 127,195,198, 314 
- _  , -, Antarctic, 158,242,248,254,256, 

260,304,307,309,310,311,312,314,327 
- -, -, Atlantic in the Arctic Basin, 127,323 
- -, -, coreof, 198,324 

- -, -, South Atlantic, 147, 148,254,256, 

- _ _  , , Western South Pacific, 147, 148, 311 

- -, -, Pacific, 266,269,285,288,311 

- _ -  , , Mediterranean, 102,116,127,142, 
163, 228, 248,257,261,279,282, 307, 
309,314,325,329 

- -, -, Red Sea, 127,307,310,314 
- -, -, Subarctic Atlantic, 261, 327 
- -, -, Subarctic Pacific, 194,288, 290, 311, 

312,314 

_ - -  , , Subtropical Eastern South Pacific, 

, transformation of, 195,213,324, 328 

311,312,314,316 
_ - -  , , Timor Sea, 310,314 
_ _ -  , 
- _  , Japan Sea, 307 
_ _  , Labrador, 322 
- _  , North Polar Sea, 307 
_ _  , of the World Ocean, 305 
- -, Okhotsk Sea, 307 
- -, percentage content of, 255 
- _  , slope, 286 
_ -  , Stratospheric (Deep and Bottom), 314, 

316 

309,312,314,337 
_ _ _  , , Antarctic Bottom, 246, 254, 279, 307, 

, Indian Deep and Bottom, 310,314 
, North Atlantic Deep and Bottom, 

, Pacific Deep and Bottom, 175, 194, 

, South Atlantic Deep, 254,256,309, 

_ - _  , 
_ _ -  , 

142,187,192,206,254, 282, 309, 312, 314, 
319,329 

268,285,288,311,312,314 

314 

- _ -  , 

- _ _  , 

_ _  , Surface, Antarctic, 312 
_ _ _  , , Central,248 
- _ _  , , Equatorial, 248 
_ _ _  , , Northern Subpolar, 248 

, , Southern Subpolar, 248 - - -  
_ _ -  , 
_ _ -  , 

, Subarctic Atlantic, 261, 265, 322 
, Subarctic Pacific, 268,285, 307, 311 

_ _  , transformation or mixing of, 324 
_ _  , Tropospheric, 3% 
- -, -, Equatorial, 266,269,285,288,310, 

311,314 
- -, -, of Bengal Bay, 310,314 
- -, -, Subtropical, Eastern North Pacific, 

311,314 
- -, -, -, North Atlantic, 309, 314 
- -, -, -, South Atlantic, 309, 312, 314 _ _ _  , 
- - _  , 

, -, SouthIndian, 310,314 
, -, South Pacific Equatorial and 

Subtropic, 311, 312,314 
- -, -, -, Western North Pacific, 311,314 
- -, -, Timor Sea, 310,514 
- -, -, transformation of, 213,323 
- -, zonal transformation on mixing, 263,323 
Water structure, 269 
- -, Equatorial,288 
- -, Subarctic, 288 
Water type 251 

Young’s modulus, 74 
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