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Chapter 1
Introduction

Now we witness the very rapid development of computer science. Computers and
embedded systems can be found in practically all fields of human activity. The up-to-
day state of the art in this area is characterized by three major factors. The first factor
is a development of ultra complex VLSI such as “system-on-programmable chip”
(SoPC) with billions of transistors and hundreds of millions of equivalent gates [11].
The second factor is a development of hardware description languages (HDL) such
as VHDL andVerilog [3, 6, 7] that permits to capture a design with tremendous com-
plexness. The third factor is a wide application of different computer-aided design
(CAD) tools to design very complex projects in the satisfactory time [10, 12, 16].
These three factors affected significantly the process of hardware design. Now the
hardware design is very similar to the development of computer programs. An appli-
cation of HDLs together with CAD-tools allows concentrating the designer’s energy
on the basic problems of design, whereas a routine work remains the prerogative of
computers.

Tremendous achievements in the area of semiconductor electronics turn micro-
electronics into nanoelectronics. Actually, we observe a real technical boom con-
nected with achievements in nanoelectronics. It results in development of very com-
plex integrated circuits, particularly in the field of programmable logic devices. Our
book targets field-programmable gate arrays (FPGA) [13, 14]. Up-to-day FPGAs
have up to 7 billion of transistors [15]. So, they are so huge, that it is enough only
one chip to implement a very complex digital system including a data-path and a
control unit. Because of the extreme complexity of modern microchips, it is very
important to develop effective design methods targeting particular properties of log-
ical elements in use.

As it is known, any digital system can be represented as a composition of a data-
path and a control unit [2]. Logic circuits of operational blocks forming a data-path
have regular structures [1]. It allows using standard library elements of CAD tools
(such as counters, multibit adders, multipliers, multiplexers, decoders and so on) for
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2 1 Introduction

their design. A control unit coordinates interplay of other system blocks producing a
sequence of control signals. These control signals cause executing some operations
in a data-path. As a rule, control units have irregular structures. It makes process of
their design very sophisticated. In the case of complex logic controllers, the prob-
lem of system design is reduced practically to the design of control units [2]. Many
important features of a digital system, such as performance, power consumption
and so on, depend to a large extent on characteristics of its control unit. Therefore,
to design competitive digital systems with FPGAs, a designer should have funda-
mental knowledge in the area of logic synthesis and optimization of logic circuits
of control units. As experience of many scientists shows, design methods used by
standard industrial packages are far from optimal [8]. Especially it is true in the
case of designing complex control units. It means that a designer could be forced
to develop his own design methods, next to program them and at last to combine
themwith standard packages to get a result with desired characteristics. To help such
a designer, this book is devoted to solution of the problems of logic synthesis and
reduction of hardware amount in control units. We discuss a case when a control
unit is represented by the model of finite state machine (FSM). The book contains
some original synthesis and optimization methods based on the taking into account
the peculiarities of a control algorithm and an FSM model in use. Regular parts of
these models can be implemented using such library elements as embedded mem-
ory blocks, decoders and multiplexers. It results in reducing the irregular part of the
control units described by means of Boolean functions. It permits decreasing for
the total number of look-up table (LUT) elements in comparison with logic circuits
based on known models of FSM. Also, it makes the problem of place-and-routing
much simpler. The third benefit is the reducing power dissipation in comparison
with FSM circuits implemented only with LUTs. In our book, control algorithms
are represented by graph-schemes of algorithms (GSA) [3]. This choice is based on
obvious fact that this specification provides the simple explanation of the methods
proposed by the authors.

To minimize the number of LUTs in FSM logic circuits, we propose to replace a
state register by a state counter. Such replacement is executed in the case of composi-
tional microprogram control units [4]. But those methods are based on creating some
linear sequences (chains) of ioperator vertices where only unconditional interstate
transitions are possible. We propose an approach allowing creating linear chains of
states. Such chains can have more than one output (and more than one input). It
simplifies the system of input memory functions and, therefore, decreases the num-
ber of LUTs in the resulting FSM circuit. We combine this approach with using
EMBs for implementing the system of output functions (microoperations). It allows
a significant decreasing for the number of LUTs, as well as eliminating a lot of
interconnections in the FSM logic circuit. It saves area occupied by the circuit and
diminishes the resulting power dissipation. Of course, it leads to more sophisticated
synthesis process than the one connected only with using LUTs.

The process of FSM logic synthesis is reduced to a transformation of a control
algorithm into some tables describing the behaviour of FSM blocks [5, 9]. These
tables are used to find the systems of Boolean functions, which can be used to imple-
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ment logic circuits of particular FSM blocks. In order to implement corresponding
circuits, this information should be transformed using data formats of particular
industrial CAD systems. We do not discuss this step is in our book. Our book con-
tains a lot of example showing design of FSMs with using the proposed methods.
Some examples are illustrated by logic circuits. The main part of the book contains
seven chapters.

Chapter 2 provides some basic information. Firstly, the language of GSA is intro-
duced. Next, the connections are shown with GSAs and state transition graphs of
both Mealy and Moore FSMs. Classical principles of FSM logic synthesis are dis-
cussed. The basic features of FPGA are analyzed. It is shown that embeddedmemory
blocks allow implementing systems of regular Boolean functions. Themodern design
flow is analyzed targeting FPGA-based projects. Next, the basic problems of FSM
design are considered.Different state assignmentmethods are analyzed, aswell as the
methods of functional decomposition. Next the issues are discussed connected with
implementing FSM logic circuits with EMBs. The peculiarities of hybrid FPGAs are
discussed in last part of the Chapter.

Chapter 3 is devoted to the using linear chains in FSMs. The counter-based micro-
programcontrol units are discussed, aswell as knownPLA-based structures ofMoore
FSMs. Then, there are discussed methods of optimal state assignment and transfor-
mation of state codes into codes of classes of pseudoequivalent states (PES). Next,
there are introduced different linear chains of states (LCS) such as unitary, elemen-
tary, normal and extendedLCSs. The structural diagrams are proposed for LCS-based
Moore FSMs. The proposed procedures are discussed for constructing different linear
chains of states.

Chapter 4 is devoted to the problems of hardware reducing for FPGA-based logic
circuits of Moore FSMs. The design methods are proposed based on using more than
one source of codes of classes of pseudoequivalent states (PES). Two structural dia-
grams and design methods are proposed for Moore FSM based on transformation of
objects. The first method is based on transformation the unitary codes of microoper-
ations into the codes of PES. The second approach is connected with transformation
of the codes of collections of microoperations into the codes of PES. The last part of
the Chapter is devoted to the replacement of logical conditions.

Chapter 5 deals with optimization of logic circuits of hybrid FPGA-based Mealy
FSMs. First of all, the models with two state registers are discussed. This approach
allows removal of direct dependence among logical conditions and output functions
of Mealy FSM. Next, the proposed design methods are presented. Some improve-
ments are proposed for further hardware reduction. They are based on the special
state assignment and transformation of state codes. The proposed methods target
joint using such blocks as LUTs, PLAs and EMBs in FSM circuits. The models are
discussed based on the principle of object transformation. The last part of the chapter
is connected with design methods connected with the object transformation.

Chapter 6 is devoted to hardware reduction targeting the elementary LCS-based
Moore FSMs. Firstly, the optimization methods are proposed for the base model of
EFSM. They are based on the executing either optimal state assignment or trans-
formation of state codes. Two different models are proposed for the case of code

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_4
http://dx.doi.org/10.1007/978-3-319-59837-6_5
http://dx.doi.org/10.1007/978-3-319-59837-6_6


4 1 Introduction

transformation. They depend on the numbers of microoperations of FSM and out-
puts of EMB in use. Themodels are discussed based on the principle of code sharing.
In this case, the state code is represented as a concatenation of the chain code and
the code of component inside this chain. The last part of the chapter is devoted to
design methods targeting the hybrid FPGAs.

Chapter 7 is devoted to hardware reduction targeting the normal LCS-basedMoore
FSMs. Firstly, the optimization methods are proposed for the base model of NFSM.
They are based on the executing either optimal state assignment or transformation of
state codes. Two different models are proposed for the case of code transformation.
They depend on the numbers of microoperations of FSM and outputs of EMB in
use. The models are discussed based on the principle of code sharing. In this case,
the state code is represented as a concatenation of the code of normal LCS and the
code of component inside this chain. The last part of the chapter is devoted to design
methods targeting the hybrid FPGAs.

Chapter 8 is devoted to hardware reduction targeting the extended LCS-based
Moore FSMs. Firstly, the design method is proposed for the base model of XFSM.
Next, themethods are proposed targeting the hardware reduction in the circuits based
on this model. They are based on the executing either optimal state assignment or
transformation of state codes. The third part deals with the models based on the
encoding of the chain outputs. At last, the principle of code sharing is discussed.
In this case, the state code is represented as a concatenation of the code of class of
pseudoequivalent chains and the code of component inside this class.

We hope that our book will be interesting and useful for students and PhD stu-
dents in the area of Computer Science, as well as for designers of modern digital
systems. We think that proposed FSM models enlarge the class of models applied
for implementation of control units with modern FPGA chips.
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Chapter 2
Finite State Machines and
Field-Programmable Gate Arrays

Abstract The Chapter provides some basic information. Firstly, the language of
GSA is introduced. Next, the connections are shown with GSAs and state transition
graphs of both Mealy and Moore FSMs. Classical principles of FSM logic synthesis
are discussed. The basic features of FPGA are analyzed. It is shown that embedded
memory blocks allow implementing systems of regular Boolean functions. Themod-
ern design flow is analyzed targeting FPGA-based projects. Next, the basic problems
of FSM design are considered. Different state assignment methods are analyzed, as
well as the methods of functional decomposition. Next the issues are discussed con-
nected with implementing FSM logic circuits with EMBs. The peculiarities of hybrid
FPGAs are discussed last part of the Chapter.

2.1 Background of Finite State Machines

Finite state machines (FSM) are the most widely used components of digital systems
[7, 15, 45]. In this book, we use FSMs for representing and synthesis of control units
[8]. To represent a control algorithm, the language of graph-schemes of algorithms
(GSA) is used in our book [6]. This language gives the better understanding of ideas
discussed in this book.

A graph-scheme of algorithm Γ is a directed connected graph having finite set of
vertices. There are four different types of vertices (Fig. 2.1): start, end, operator and
conditional.

The start vertex has no input; it corresponds to the beginning of a control algorithm.
The end vertex has no output; it corresponds to the finishing of a control algorithm.
An operator vertex contains a collection of output signals executed in a particular
cycle of a digital system’s operation. Let us call this collection Yt ⊆ Y a collection
of microoperations (CMO). The set Y includes microoperations of a digital system:
Y = {y1, . . . , yN }. A conditional vertex includes an input variable xl ∈ X checked
for branching a control algorithm. So, the set X = {x1, . . . , xL} is a set of logical
conditions.

© Springer International Publishing AG 2018
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8 2 Finite State Machines and Field-Programmable Gate Arrays

Fig. 2.1 Types of vertices of
GSA

(a) (b) (c) (d)

Fig. 2.2 Graph-scheme of
algorithm Γ1

Let us analyse the GSA Γ1 (Fig. 2.2). The following sets and their characteristics
can be found for thisGSA: the set ofmicrooperationsY = {y1, . . . , y4}having N = 4
elements and the set of logical conditions X = {x1, x2} having L = 2 elements.

The following collections of microoperations can be derived from the operator
vertices of Γ1 : Y1 = {y1, y2}, Y2 = {y3}, Y3 = {y2, y3}, Y4 = {y1, y4}. So, there are
To = 4 different CMOs in the discussed case. Let us point out that different operator
vertices could include the same CMOs. Also, different conditional vertices could
include the same logical conditions.

A control unit generates a sequence of CMOs distributed in time. To start the
execution of a control algorithm, the special pulse Start is used. There are the different
sequences of CMOs for GSA Γ1 (Fig. 2.3). They depend on the values of logical



2.1 Background of Finite State Machines 9

Fig. 2.3 Operation of control unit represented by GSA Γ1

conditions xl ∈ X . The record x2 = ∗ means that the value of x2 does not affect the
outputs of a control unit.

So, to produce a sequence ofCMOs, it is necessary to have some information about
the prehistory of system operation. The prehistory for the instant t is determined by
input signals X (0), X (1), . . . , X (t − 1) in the previous time intervals. It means that
an output signal Y (t) is determined by the following function:

Y (t) = f (X (0), . . . , X (t − 1), X (t)). (2.1)

To represent the prehistory, interrenal states of FSM are used [6]. They form a
set A = {a1, . . . , aM }. In any instant t (t = 1, 2, . . .) an FSM could be in some state
am ∈ A. As a rule, if t = 0, then an FSM is in the initial state a1 ∈ A.

An FSM could be represented by the following vector

S = 〈A, X,Y, γ,λ, a1〉. (2.2)

In (2.2), the function γ determines either conditional or unconditional transitions
〈am, as〉, where am, as ∈ A. The function λ determines outputs of FSM. There are
two basic models of FSM, namely Moore FSM and Mealy FSM. For both models,
the function γ is determined as the following:

a(t + 1) = γ(a(t), x(t)). (2.3)

In the case of Moore FSM, the function λ is determined as:

y(t) = λ(a(t)). (2.4)
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(a) (b)

Fig. 2.4 Marked GSA Γ1 (a) and STG of Moore FSM (b)

So, the outputs of a Moore FSM depend on its internal states. The outputs of a Mealy
FSM depend on both inputs and states:

y(t) = λ(a(t), x(t)). (2.5)

The difference in functions (2.4) and (2.5) follows from different approach used
for constructing the set A [6]. In the case of Moore FSM, each operator vertex is
marked by a unique state am ∈ A. Both start and end vertices are marked by the
initial state a1 ∈ A. The marked GSA Γ1 and corresponding state transition graph
(STG) of Moore FSM are shown in Fig. 2.4.

The arcs of STG correspond to transitions between the FSM’s states. For uncon-
ditional transitions, the arcs are marked by “1". For conditional transitions, the arcs
are marked by conjunctions of input variables causing these transitions. As follows
form Fig. 2.4, the Moore FSM has M = 6 states: A = {a1, . . . , a6}.

The following rules are used for finding the states of Mealy FSM [6]. The input
of end vertex is marked by the initial state a1 ∈ A, as well as the output of the start
vertex. If some vertex is connected with the output of an operator vertex, then its
input is marked by a unique state. Each input can be marked only once. Using this
procedure toGSAΓ1, the followingmarkedGSA and STG can be obtained (Fig. 2.5).

The arcs of STG of a Mealy FSM are marked by pairs 〈input variables, out-
put variables〉. As follows from Fig. 2.5, the Mealy FSM has Mo = 3 states: A =
{a1, a2, a3}.
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(a) (b)

Fig. 2.5 Marked GSA Γ1 (a) and STG of Moore FSM (b)

The FSMs shown in Figs. 2.4 and 2.5 are equivalent, because they are constructed
for the same GSA Γ1. Comparison of these FSMs leads to the following conclusion.
For equivalent Mealy and Moore FSMs the following relations take places:

Mo ≤ M; (2.6)

Ho ≤ H. (2.7)

In (2.7) the symbol Ho(H) stands the number of transitions (the number of arcs
of STG) of Mealy (Moore) FSM.

2.2 Synthesis of Mealy and Moore FSMs

Let us start from the synthesis of Mealy FSM. Let us construct the set of states A
for some GSA Γ j . This set includes Mo states. Let us encode each state am ∈ A by
a binary code K (am) having Ro bits:

RO = �log2 MO	. (2.8)
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Fig. 2.6 Structural diagram
of P Mealy FSM

So, the value of Ro is determined as a ceil function [32]. The expression �B	
determines the least integer greater than or equal to B. Let us use the state vari-
ables Tr ∈ T where |T | = Ro for encoding of states. This step is named the state
assignment [15].

There are many methods of state assignment targeting mostly optimization of
hardware amount in the logic circuit of an FSM [4, 15, 17, 51]. There are thousands
of publications connected with the state assignment. We do not discuss them in this
chapter.

The Mealy FSM can be represented as P FSM (Fig. 2.6). It is a composition of a
combinational circuit (CC) and register RG. The CC implements the system of input
memory functions

Φ = Φ(T, X). (2.9)

The set Φ = {D1, . . . , DRo} includes input memory functions used for changing
the content ofRG.TheRG includes Ro ofDflip-flops.Aflip-flop number r represents
the state variable Tr (r = 1, . . . , Ro). Also, the CC implements the system of output
variables

Y = Y (T, X). (2.10)

The pulse Start loads the code K (a1) of the initial state a1 ∈ A into RG. As a
rule, this code includes all zeros [6]. The pulse Clock allows changing the content
of RG determined by input memory functions (2.9). Let us point out that the system
(2.9) determines the function (2.3), whereas the system (2.10) the function (2.5).

The method of Mealy FSM synthesis on the base of a GSA Γ includes the fol-
lowing steps [6]:

1. Construction of marked GSA and finding the set of states A.
2. State assignment.
3. Constructing the structure table of FSM.
4. Deriving systems Φ and Y from the structure table.
5. Implementing FSM logic circuit using some logic elements.

In this book, we use the symbol P(Γ j ) to show that the model of P Mealy FSM
is synthesized using the GSA Γ j . Let us discuss an example of synthesis for Mealy
FSM P(Γ1)
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Table 2.1 Structure table of Mealy FSM P(Γ1)

am K (am) as K (as) Xh Yh Φh h

a1 00 a2 01 1 y1y2 D2 1

a2 01 a3 10 x1 y3 D1 2

a3 10 x̄1x2 y2y3 D1 3

a3 10 x̄1 x̄2 y1y2 D1 4

a3 10 a1 00 1 y4 – 5

The marked GSA Γ1 is shown in Fig. 2.5a. The following set of states A exists in
this case: A = {a1, a2, a3}. It means that MO = 3, RO = 2, T = {T1, T2} and Φ =
{D1, D2}. Let us endode the states am ∈ A in the trivial way: K (a1) = 00, K (a2) =
01 and K (a3) = 10. An FSM structure table (ST) can be viewed as a list of interstate
transitions obtained from STG. This table includes the following columns [6]: am is
an current state of FSM; K (am) is a code of the current state; as is a state of transition
(next state); K (as) is a code of the state as ∈ A; Xh is an input signal determining
the transition 〈am, as〉 and it is equal to the conjunction of some elements (or their
complements) of the set X ; Yh is a collection of microoperations generated during
the transition 〈am, as〉; Φh is a set of input memory functions equal to 1 to load the
code K (as) into RG; h is a number of transition (h = 1, . . . , HO).

There are HO = 5 arcs in the STG (Fig. 2.5b). Therefore, the ST of FSM P(Γ1)

includes HO = 5 rows (Table2.1).
The connection between the STG (Fig. 2.5b) and the ST (Table2.1) is obvious. It

is clear that this table can be constructed using only the marked GSA Γ1 (Fig. 2.5a).
FunctionsΦ andY are derived from theSTas the sums-of-products (SOP) depend-

ing on the following product terms:

Fh = AmXh (h = 1, . . . , HO). (2.11)

In (2.11), themember Am is a conjunction of state variables Tr ∈ T corresponding
to the code K (am) from the row number h of ST:

Am =
RO∧

r=1

T lmr
r (m = 1, . . . , MO). (2.12)

In (2.12), the variable lmr ∈ {0, 1} is a value of the bit r of the code K (am) and
T 0
r = T̄r , T 1

r = Tr (r = 1, . . . , RO).
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Fig. 2.7 Structural diagram
of PY Moore FSM

The systems (2.9)–(2.10) are represented by the following SOPs:

Dr =
HO∨

h=1

Crh Fh (r = 1, . . . , RO); (2.13)

yh =
HO∨

h=1

CnhFh (n = 1, . . . , N ). (2.14)

In these expressions, Crh(Cnh) is a Boolean variable equal to 1 if and only if (iff)
the h-th row of ST includes the variable Dr (yn).

The following equations can be derived from Table2.1: F1 = T̄1T̄2, F2 = T̄1T2x1;
F3 = T̄1T2 x̄1x2; F4 = T̄1T2 x̄1 x̄2; F5 = T1T̄2; D1 = F2 ∨ F3 ∨ F4; D2 = F1; y1 =
F1 ∨ F4; y2 = F1 ∨ F3 ∨ F4; y3 = F2 ∨ F3; y4 = F5. These functions can be min-
imized. For example, D1 = T̄1T2, y1 = T̄2 ∨ T̄1T2 x̄1 x̄2. But we do not discuss this
step in our book.

The last step of the discussed method depends on logic elements used for imple-
menting the FSM logic circuit. In this book,we discuss the designmethods connected
with field-programmable gate arrays (FPGA). We discuss these methods a bit later.

The method of Moore FSM synthesis includes the same steps as for Mealy FSM.
Let us discuss the structural diagram of PY Moore FSM (Fig. 2.7).

A block of input memory functions (BIMF) generates the functions Dr ∈ Φ rep-
resented by the system (2.9). In the case of Moore FSM, the minimum number of
bits required for the state assignment is determined as

R = �log2 M	. (2.15)

A block of microoperations (BMO) generates the mirooperations yn ∈ Y , where

Y = Y (T ). (2.16)

The Eq. (2.16) follows from (2.4). So, the outputs of Moore FSM depend only on
its states. Due to this property, the relations (2.6)–(2.7) take places.

In the formula PY, the letter "P" shows that a structure diagram includes the
BIMF. The letter "Y" means that there is the BMO in the FSM’s structural diagram.
Of course, both blocks can be combined into a single combinational circuit as it is
for the Mealy FSM (Fig. 2.6). But we want to show that systems Φ and Y have the
different nature. These systems are based on different product terms.
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Table 2.2 Structure table of Moore FSM PY(Γ1)

am K (am) as K (as) Xh Φh h

a1 000 a2 001 1 D3 1

a2(y1y2) 001 a3 010 x1 – 2

a4 011 x̄1x2 D2D3 3

a5 100 x̄1 x̄2 D1 4

a3(y3) 010 a6 101 1 D1D2 5

a4(y2y3) 011 a6 101 1 D1D2 6

a5(y1y2) 100 a7 101 1 D1D2 7

a6(y1y4) 101 a1 000 1 – 8

Let us discuss an example of synthesis for the Moore FSM PY(Γ1). As follows
from Fig. 2.4b, there is M = 6, therefore, R = 3. Let us encode the states am ∈ A in
the trivial way: K (a1) = 000, . . . , K (a6) = 101.

The structure table ofMooreFSMincludes all columns presented in its counterpart
of Mealy FSM but the column Yh . The collections of microoperations are written it
the column am[6]. The STG (Fig. 2.4b) contains H = 8 arcs. Therefore, the ST of
Moore FSM PY(Γ1) includes H = 8 rows (Table2.2).

The connection between Table2.2 and the STG (Fig. 2.4b) is obvious. The system
(2.9) depends on the terms (2.11). So, each function Dr ∈ Φ is represented by SOP
(2.13). Of course, the symbol HO should be replaced by H . The functions yn ∈ Y
depend on the terms (2.12). Of course, the symbols RO and MO in (2.12) should be
replaced by R andM , respectively. So, theBMO implements the following functions:

yn =
M∨

m=1

Cnm Am (n = 1, . . . , N ). (2.17)

In (2.17), the Boolean variable Cnm = 1, iff the microoperation yn ∈ Y is placed in
the column am of the ST.

The following terms and functions, for example, can be derived from Table2.2:
F1 = T̄1T̄2T̄3; F2 = T̄1T̄2T3x1; A1 = T̄1T̄2T̄3; F1 = T̄1T̄2T3; D1 = F4 ∨ F5 ∨ F6 ∨
F7; y1 = A2 ∨ A5 ∨ A6.

Let us point out that the system (2.16) can be represented by a truth table [9]. In
the discussed case it is Table2.3.

Analysis of Table2.3 shows that system Y for the discussed case is determined
for more than 50% of possible input assignments. It takes place for any Moore FSM
if exactly R bits are used the state assignment. Such functions are named regular [8].
The best way for implementing logic circuits for regular functions is using memory
blocks [8]. These blocks could be either read-only memories (ROM) or random
access memories (RAM). We discuss those approaches a bit further.
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Table 2.3 Truth table for
system Y

K (am) Yt m

T1T2T3 y1y2y3y4

000 0000 1

001 1100 2

010 0010 3

011 0110 4

100 1100 5

101 1001 6

110 **** *

111 **** *

2.3 Field-Programmable Gate Arrays

Field-programmable gate arrays were invented by designers of Xilinx in 1984 [29].
Their influence on different directions of engineering has been growing extremely
fast. One of the most important reasons for this process is a relatively cheap develop-
ment cost. These chips can replace billions 2NAND gates (system gates) [30]. The
first FPGAs were used for implementing simple and glue logic [45]. Now they have
up to 7 billions transistors [45], posses clock frequency acceding gigahertz, their the
most advanced technology is 22nm [45].

The world’s first FPGA XC2064 (Xilinx, 1985) offered 85 000 transistors, 128
logic cells, 64 configurable logic blocks (CLB) based on three-input look-up table
(LUT) elements having clock frequency up to 50MHz. In accordancewith [45], from
1990 to 2005 FPGA grew 200 times in capacity, became 40 times faster, 500 times
cheaper, reduced power consumption in 50 times. Analysis conducted by the authors
of [45] shows that from 2005 till 2011 the capacity of FPGA has been increased
in at least 10 times. Five companies dominate on the FPGA market: Xilinx, Altera,
Lattice Semiconductor, Microsemi and QuickLogic. All their products can be found
on corresponding homepages [2, 28, 31, 36, 52].

In this Chapter we discuss only the basic features of FPGAs relevant to imple-
menting logic circuits of control units. Let us analyze peculiarities of LUT-based
FPGAs. As a rule, typical FPGAs include four main elements: configurable logic
blocks basedonLUTs,matrix of programmable interconnections (MPI), input-output
blocks (IOB) and embedded memory blocks (EMB). The organization of an FPGA
chip is shown in Fig. 2.8.

As a rule, LUTs are based on RAM having limited amount of inputs S (S ≤ 6).
A single LUT can implement an arbitrary Boolean function depended on L input
variables (L ≤ S) represented by a truth table.

A typical CLB includes a single LUT, programmable flip-flop (FF), multiplexer
(MX) and logic of clock and set-reset (LCSR). The simplified structure of CLB is
shown in Fig. 2.9.
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Fig. 2.8 Simplified
organization of FPGA

Fig. 2.9 Simplified structure
of CLB

The output of LUT is connected with FF which could be programmed as D, JK,
or T flip-flop. The FF could be by-passed due to programmable MX. So, the output
Oi of a CLB can be either combinational or registered. The existence of flip-flops
allows organization of either registers or counters. Both these devices are used for
FSM implementation.

To show the progress in FPGA characteristics, let us start from the family Spartan-
3 by Xilinx [28]. They were introduced in 2002, were powered by 1, 2V and used
the 90nm technology. They included LUTs having 4 inputs. The chips of Spartan-3
included up to 104 EMBs with 18Kb for each of them. These blocks are named
block of RAMs (BRAM). So, the chips included up to 1,87 Mb of BRAMS. The
frequency of operation for these FPGAs was variable (from 25MHz till 325 Mhz).
Some characteristics of Spartan-3 family are shown in Table2.4.

The second column of Table2.4 contains the number of system gates (SG) for a
chip. The column 4 determines the capacity of memory created by LUTs. It is named
distributed random-access memory (DRAM).
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Table 2.4 Characteristics of Spartan-3 family

Device Number Capacity in bits

CLB SG(K) BRAMs(K) DRAM(K)

XC3550 1728 50 72 12

XC35200 4320 200 216 30

XC35400 8064 400 288 56

XC351000 17280 1000 432 120

XC351500 29952 1500 576 208

XC352000 46080 2000 720 320

XC354000 62208 4000 1728 432

XC355000 74880 5000 1872 520

Fig. 2.10 Structural diagram of a slice of Virtex-4 family

The structure of CLB has become more and more complex with the development
of technology. For example, the CLB of Virtex-7 includes 4 slices having fast inter-
connections. A slice includes 2 LUTs, four multiplexers, arithmetic logic and two
programmable flip-flops (Fig. 2.10).

This slice includes 2 LUTs; each of them has S = 4 inputs. Each LUT can imple-
ment an arbitrary logic function depended on 4 variables. Using the multiplexer F5,
both LUTs are viewed as a single LUT having S = 5. The multiplexer FX combines
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Table 2.5 Characteristics of FPGAs by Xilinx

Family Modification Number of slices Capacity in Kbits Technology
nm

BRAMs DRAM

Virtex-4 LX 10 752–89 088 1 296–6 048 168–1 392 90

SX 10 240–24 576 2 304–5 760 160–384

FX 5 472–63 168 648–9 936 86–987

Virtex-5 LX 4 800–51 840 1 152–10 368 320–3 420 65

LXT 3 120–51 840 936–11 664 210–3 420

SXT 5 440–37 440 3 024–18 576 520–4 200

TXT 17 280–24 320 8 208–11 664 1 500–2 400

FXT 5 120–30 720 2 448–16 416 390–2 280

Virtex-6 LXT 11 640–118 560 5 616–25 920 1 045–8 280 40

SXT 49 200–74 400 25 344–28 304 5 090–7 640

HXT 39 360–88 560 18 144–32 832 3 040–6 370

CHT 11 640–37 680 5 616–14 976 1 045–3 650

Virtex-7 T 44 700–305 400 14 760–46 512 3 475–21 550 28

XT 64 400–135 000 31 680–64 800 6 525–13 275

HT 45 000–135 000 21 600–64 800 4 425–13 275

together outputs of F5 and FX from other slides. So, a slice can implement a Boolean
functions depending on 5 variables; two slices on 6 variables; four slices (a CLB) on
7 variables. The arithmetic block allows organizing adders and multiplexers. Mul-
tiplexers Y and X determine input data for programmable flip-flops. So, each CLB
can include either RG or CT.

The number of inputs per a LUT is increased up to 5 for Virtex-5 family, whereas
CLBs of Virtex-6 and Virtex-7 include LUTs having S = 6. There are different mod-
ifications of FPGAs for each family. We do not discuss them. Some characteristics
of modern FPGA chips by Xilinx are shown in Table2.5.

Analysis of Tables2.4 and 2.5 proves out statement about the tremendous progress
in FPGAs. Let us point out that modern chips include blocks of digital signal proces-
sors and central processing units. But these blocks are not used for FSM design. So,
we do not discuss them.

As it follows from Table2.5, modern FPGA includes huge blocks of memory. Let
us name these blocks embedded-memory blocks (EMB). EMBs have a property of
configurability. It means that they have the constant size (VO ) but both the numbers
of cells (V) and their outputs (tF ) can be changeable. There are the following typical
configurations of EMBs: 36K× 1, 18K× 2, 8K× 4, 4K× 8 (4K× 9), 2K× 16
(2K× 18), 1K× 32 (1K× 36) and 512× ,64 (512× 72) bits [2, 28, 31, 36, 52].

Let an EMB contain V cells having tF outputs. Let VO be a number of cells if
there is tF = 1. So, the number of V can be determined as
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Fig. 2.11 Karnaugh map for system Y

(a) (b)

Fig. 2.12 Logic circuit for system (2.19)

V =
⌈
VO

tF

⌉
. (2.18)

Let us point out that decreasing tF by 1 leads to doubling number of cells (and
vice versa).

Embedded-memory blocKs could be used for implementing regular functions [8].
Let us discus the Karnaugh map (Fig. 2.10b) corresponding to Table2.3.

The following functions can be found from this map:

y1 = T1 ∨ T̄2T3;
y2 = T̄1T3 ∨ T1T̄3; (2.19)

y3 = T2;
y4 = T1T3.

Let us use system gates (LUTs with S = 2) for implementing the system (2.19).
It leads to the logic circuit having 4 LUTs and 2 levels of LUTs (Fig. 2.12a).
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From Fig. 2.11a the following negative features can be seen:

1. Different propagation time for different output functions,
2. Input variables should be connected with more than one logic element.

The second feature (bigger value of fan-out for inputs T1–T3) also leads to more
complicated routing process.

If an EMB is used for implementing the system (2.19), all these problems are
absent (Fig. 2.12b). Each input T1–T3 is connected only with a single input of EMB.
All functions y1, y2, . . . , y4 have the same propagation time. This example is very
simple. But a single EMBs having the configuration 512× 64 could replace at least
64 LUTs. It is possible if a system Y depend on 9 inputs and includes up to 64
different functions. Of course, the circuit includes 64 LUTs having S = 9. But there
is no such LUTs in modern FPGAs. If minimization allows dependance of each
function yn ∈ Y on 8 variables, then 256 LUTs with S = 6 are necessary for creating
a logic circuit.

In a typical FPGA 60% of power is consumed by the programmable interconnec-
tions, 16% is consumed by programmable logic and 24

Replacement of LUTs by EMBs allows decreasing of the number of interconnec-
tions. So, it is very important to use EMBs in implementing FSM circuits.

The exceptional complexity of FPGA requires using computer-aided design
(CAD) tools for designing logic circuits [20]. It assumes development of formal
methods for synthesis and verification of control units [19, 22, 33, 40]. For example,
a design process for FPGAs from Xilinx includes the following steps:

1. Specification of a project. A design entry can be executed by the schematic
editor (if a design is represented by a circuit), or the state editor (a design in
represented by an STG) or a program written with some hardware description
languages (HDL). The most popular HDLs are VHDL and Verilog [12, 13]. This
initial specification is verified and corrected if necessary.

2. Logic synthesis. During this step, the package FPGA Express executes synthesis
and optimization of an FSM logic circuit. As an outcome of this step, an FPGA
Netlist file is generated. This file is represented in either EDIF or XNF format.
During this step, library cells from system and user libraries are used.

3. Simulation. The functional correctness of an FSM is checked. This step is exe-
cuted without taking into account real propagation times in a chip. If the outcome
of simulation is negative, then the previous steps should be repeated.

4. Implementation of logic circuit. Now the Netlist is translated into an internal
format of CAD system. Such physical objects as CLBs and chip pins are assigned
for initial Netlist elements. This step is named the packing. The step of mapping
is the first stage of the packing. The mapping refers to the process of associating
entities such as gate-level functions in the gate-level netlist with the LUT-level
functions available on the FPGA [29]. It is not a one-to-one mapping because
each LUT can be used to represent a number of logic gates [21]. The mapping
step gives results for executing the packing. During this step, the LUTs and
flip-flops are packed into the CLBs. Both mapping and packing steps are very
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difficult because there are many variants of their solutions. Following packing
the step of place-and-route is executed. Now we know the connections between
CLBs and parts of logic functions are implemented. But there are many ways
how these CLBs could be placed in the FPGA. The placement problem is also
very difficult because hundreds of thousands or even millions CLB should be
placed. During the routing, it is necessary to decide how to connect all CLBs for
a particular project. This step should be executed in a way giving the maximum
possible performance. Obviously, the outcome of placement affects tremendously
the outcome of routing. When routing is finished, the real performance could be
found. Also, the BitStream is formed which will be used for chip programming.

5. Project verification. The final simulation is performed where the actual values
of delays among the physical elements of a chip are used. If outcome of this step
is negative (the actual performance of an FSM is less than it is necessary), then
the previous steps of the design process should be repeated.

6. Chip programming. This step is connectedwith thewriting of the final bit stream
into the chip.
One of time most important roles in the design process plays the step of logic
synthesis. Let us analyze this step for FGPA-based FSMs.

2.4 Implementing FSMs with FPGAs

The synthesis is a transformation of initial specification of project into the structural
specification where elements of lower abstraction levels are used [1]. The synthesis
process is repeated till each element to be assigned is represented by some library
element. In the case of FSM with FPGAs, the library elements are LUTs and EMBs.

An FSM circuit includes LUTs and flip-flops. To get a structure of FSM, the
sequential synthesis is executed. It transforms specifications of FSM (GSA, STG)
into structure tables describing some parts of an FSM logic circuit. Next, the systems
of Boolean functions are derived from those tables. These systems could be (2.9),
(2.10) or (2.16). The stage of logic synthesis follows the sequential synthesis. Now,
the functions are transformed into smaller subsystems. Each of these subsystems
could be implemented using either a LUT or an EMB of a particular FPGA chip.
Both these steps are considered in our book. We combine them in a single stage of
synthesis of FSM logic circuit.

If an FSM is specified by a GSA, then such sets as X, Y and A are known. But
there are no state codes. To obtain them, the step of state assignment is executed [15].
This step is very important because its outcome has a tremendous influence on the
hardware amount (the number of LUTs) in the FSM logic circuit [1]. A strategy of
state assignment could target optimization for area, performance, power consumption
or testability.

One of the most popular state assignment algorithms is JEDI which is distributed
with the system SIS [43]. JEDI targets a multi-level logic implementation. It is based
on the weight assignment for state.
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The input dominant algorithm assigns higher weights to pairs of present states
which asserts similar inputs and produce sets of next states. It allows maximizing the
size of common cubes in the implemented logic function. The output dominanted
algorithm assigns higherweights to pairs of next stateswhich are generated by similar
input combinations and similar sets of present states. It maximizes the number of
common cubes in the logic function.

In modern industrial packages different state assignment strategies are used. For
example, two optimization criteria are used in the design tool XST of Xilinx: max-
imum performance and minimum hardware [53]. Seven different approaches are
used for state assignment. The automatic state assignment is based od some special
algorithm proposed by Xilinx. It has been never published. The method of one-hot
encoding is based on the following expression:

R = M. (2.20)

This method is very popular because it is very simple and each LUT is connected
with a flip-flop. So, this conception is implemented very easy in FPGAs. In this
case, there is a lot of input memory functions but each of them is relatively small.
The compact state assignment is based on formula (2.8) for a Mealy FSM and the
formula (2.15) for a Moore FSM. In this case the number of input memory functions
is minimum possible, but they are rather complex. In this book we mostly use this
approach and name it a binary state assignment. Two other methods ar based on
codes either Gray or Johnson. At last, there are so named speed encoding and the
sequential encoding based on using of the counter instead of state register.

The master thesis [48] is devoted to investigation of the influence of state assign-
ment methods on characteristics of Mealy FSM. The benchmarks from [54] are used
in the investigation. The results obtained forMealy FSM are represented in Table2.6.
The efficiency of the investigated methods is shown in Figs. 2.13, 2.14 and 2.15.

The investigations are executed for the FPGA XC5VLX30 of Xilinx. The first
column of table Table2.6 shows the name of a benchmark. The columns “LUT”
shownumber of LUTs in the final circuit. The columns “MHz” represent themaximal
frequency of operation for final Mealy FSMs.

The best results are producedwhen the automatic state assignment is used. It gives
the best outcomes for area (58,54% of all benchmarks) and performance (39,02%).
The binary state assignment posses the second place in this competition. As follows
from Fig. 2.15, the automatic state assignment produces the best results when both
area and performance are optimized (29,27%). The same results are produced for the
compact (binary) state assignment. It is interesting that the one-hot state assignment
can optimize only one parameter of FSM circuit. (Fig. 2.14)

Of course, these results are true only for the chip XC5VLX30 but similar conclu-
sions are made, for example, in [27]. It allows to suggest that these conclusions have
a rather common nature.
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Table 2.6 Outcomes of investigations

FSM Auto One-hot Compact Sequential Gray Johnson Speedl

LUT MHz LUT MHz LUT MHz LUT MHz LUT MHz LUT MHz LUT MHz

bbara 11 639 9 966 13 635 13 639 19 589 24 545 13 962

bbsse 29 559 29 559 29 582 29 538 31 538 36 408 38 556

bbtas 5 962 8 966 5 966 5 962 5 955 5 962 9 966

beecount 7 952 19 639 7 952 7 952 7 948 21 625 30 583

cse 49 480 52 477 46 463 50 487 46 454 71 434 72 453

dkl4 8 945 29 522 8 945 8 945 8 945 19 623 40 512

dkl5 7 1062 19 737 7 1062 7 1062 7 1062 7 1062 19 659

dkl6 46 556 46 556 15 625 19 506 27 554 86 355 70 399

dkl7 6 952 14 669 6 952 6 952 6 952 7 895 27 571

dk27 5 900 8 906 5 897 5 959 5 955 6 899 10 903

dk512 17 730 17 730 7 899 7 895 7 899 21 437 19 790

exl 64 586 64 586 74 447 67 478 66 406 106 340 72 605

ex4 15 962 15 962 16 626 15 598 14 748 33 546 15 962

ex6 29 553 30 580 20 621 23 615 22 616 36 426 31 598

keyb 56 384 56 384 65 358 71 382 66 447 62 435 85 374

kirkman 51 874 84 1058 53 569 48 880 51 874 112 451 84 1058

lion 3 1084 5 962 3 1080 1080 3 1084 3 1084 5 962

markl 27 726 27 726 19 708 22 622 18 623 27 574 29 959

mc 5 1071 8 1071 5 1071 6 1071 5 1071 5 1071 8 1071

opus 22 596 22 754 21 628 26 585 22 596 26 576 26 671

planet 100 888 100 888 138 389 145 417 149 375 192 346 106 637

planetl 100 888 100 888 138 389 145 417 149 375 192 346 106 637

pma 73 554 73 554 115 438 108 367 112 375 121 405 88 559

si 77 550 77 550 75 447 89 328 105 368 114 361 81 552

sl488 140 425 140 425 141 432 130 394 147 433 192 334 162 458

si494 124 412 124 412 143 442 135 383 145 383 192 333 152 462

s208 28 559 28 559 13 669 12 716 15 639 29 483 50 386

s27 4 962 21 636 4 962 7 679 4 962 12 664 21 631

s298 362 406 362 406 330 313 264 311 274 314 716 244 399 397

s386 26 577 31 586 28 581 28 558 29 429 43 422 36 441

s420 28 559 28 559 14 629 12 716 15 639 29 483 36 510

s510 42 900 42 900 39 448 53 440 50 427 123 388 42 900

s820 63 429 63 429 85 395 92 441 93 438 98 366 93 399

s832 63 429 63 429 73 412 77 431 87 394 97 335 108 444

sand 99 569 99 569 121 426 125 421 125 438 189 306 103 490

scf 179 676 179 676 202 338 205 349 197 389 337 327 180 561

shiftreg 0 1584 9 1080 0 1584 4 959 4 959 5 902 4 903

sse 29 559 29 559 28 543 37 548 32 540 44 394 36 612

styr 118 430 118 430 127 369 138 363 138 353 181 323 161 454

tav 6 1556 6 1556 6 911 6 911 5 914 5 914 6 1556

tbk 55 406 179 360 71 465 129 342 137 290 295 276 444 342
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Fig. 2.13 Efficiency of state assignment methods for area optimization

Fig. 2.14 Efficiency of state assignment methods for performance optimization
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Fig. 2.15 Efficiency of state assignment methods for area/performance optimization

A small amount of inputs per LUT create a big problem for logic design. Let us
consider some input memory function D1 depending on I (D1) = 7 Boolean vari-
ables:

D1 = T1T̄2T3x1 x̄2 ∨ T1T2T3x3x4 ∨ T1T̄2T̄3x1x3. (2.21)

Let LUTs in use have S = 7 inputs. In this case, the logic circuit for D1 includes
only a single LUT (2.16a). Now, let LUT have S = 6. In this case the function (2.21)
should be transformed. It should be represented by some functions f1, f2, . . . having
I ( f1) ≤ 6, I ( f2) ≤ 6 and so on. Let us represent the function (2.21) in the following
form:

D1 = T1(T̄2T 3x1 x̄2 ∨ T2T3x3x4) ∨ T̄1T̄2T3 x̄1x3 = T1A ∨ B. (2.22)

The function D1 represented as (2.22) requires two LUTs to be implemented.
Moreover, this circuit (Fig. 2.16b) includes two levels of LUTs. It means that the
solution corresponding to (2.22) is twice slower.

This approach is named functional decomposition. The principle of functional
decomposition is the basic one for FPGA-based design [37, 41]. This approach
usually targets only LUTs, but also there are methods using EMBs as tools for
implementing some subfunctions [11, 38].
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(a) (b)

Fig. 2.16 Implementing function D1 with LUTs having S = 7 (a) and S=6 (b)

Fig. 2.17 Illustration of the
principle of functional
decomposition

In general, the method of functional decomposition is based on representation of
a Boolean function F(X) in the following form:

F(X) = H(X0,G1(X1), . . . ,GI (XI )). (2.23)

The Eq. (2.23) corresponds to the implementation of the circuit shown in Fig. 2.17.

The negative influence of functional decomposition is increasing of the propaga-
tion time in comparison with single-level circuit. It follows from complain [23], the
methods of functional decomposition are far from ideal. Let us point out that is is
very important to decrease the number of arguments and product terms in Boolean
functions to be implemented. We discus these methods a bit further.

Modern FPGAs posses the substantial logic resources and high processing speeds.
Due to these factors, FPGAs now are used for some applications previously targeted
to Application Specific Integrated Circuits (ASIC) [49]. Now FPGAs are used in
portable computing devices and wireless telecommunication equipment. They are
also used extensively in space-based applications [31]. The rising of FPGA com-
plexity leads to increasing the power consumed by FPGA-based devices. It is known
that FSMs consume a significant amount of power in any FPGA-based project [49].
Therefore, minimizing power consumed by the FSMs can significantly reduce the
total power consumed by a device.
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The dynamic power dissipated in CMOS circuits can be represented by the well-
known formula [47]:

P =
N∑

n=1

Cn fnV
2
DD. (2.24)

In (2.24), N is the number of elements, Cn is the load capacitance at the output
of the element number n, fn is the frequency of its switching, and VDD is the supply
voltage. One of the ways for decreasing the power dissipation is decreasing of the
switching activity of flip-flops [47].

One of the approaches leading to decreasing the power dissipation in FSMs is the
energy-saving state assignment [39]. Main works in low-power FSMs compute first
the switching activity and transition probabilities [50]. The key idea of thesemethods
is the reduction of the average activity by minimizing the bit changes during state
transitions [10, 34]. The state assignment should minimize the Hamming distance
between states with high transition probability. Different variants of this approach
can be found in many works [5, 14, 16, 35]. There are hundreds of articles devoted
to this approach.

There is a very interesting result of investigations conducted by the authors of the
article [47]. They found that the smaller FSM circuits consumes less power than its
bigger versions. It is clear because a smaller circuit needs less interconnections than
its bigger counterpart. One of the ways leading to smaller FSM circuit is application
of EMBs for implementing some parts of FSM circuits [46]. It is shown that FSM
implementationwithEMBsprovides somebenefits compared to synthesiswithLUTs
[18, 42]. The maximum clock frequency of an FSM implemented in a ROM block
is independent of its complexity. Of course, it is possible if the whole circuit is
implemented using just a single EMB. Thememory blocks of FPGAs provide control
signals that allow for module deactivation when the FSM is inactive. It provides an
efficient mechanism for power saving. It has been proved [49] that complex FSMs
consume less power when implemented as memory blocks. Let us consider some
EMB-based models of FSMs.

In the simplest case, it is enough a single EMB for implementing an FSM logic
circuit. Our book is mostly devoted to Moore FSMs. Because of it, let us discuss
possible trivial models of EMB-based Moore FSMs. Analysis of design methods
from [18, 47, 49] allows finding four EMB-based models of Moore FSM (Fig. 2.18).

In the simplest case, the P Moore FSM is used (Fig. 2.18a). To use this model, the
following condition should take place:

2L+R(R + N ) ≤ V0. (2.25)

To design the logic circuit of Moore FSM P(Γ j ), the initial structure table should
be transformed. Each row of the transformed ST corresponds to a single cell of EMB.
This table includes V (P) rows, where

V (P) = 2L+R . (2.26)
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(a)

(c) (d)

(b)

Fig. 2.18 Models of Moore FSMs based on RAMs

(a) (b)

Fig. 2.19 Initial GSA Γ2 (a) and state transition graph (b)

It is necessary to have 2L rows for representing transitions from the state am ∈ A.
The transformed ST includes the following columns: K (am), X , Y (am), Φ, v. First
two columns form the address of a cell. The column Y (am) includes a collection of
microoperations Yt ⊆ Y generated in the state am ∈ A. The column v contains the
numbers of rows (or cells).

Let us consider the initial GSA Γ2 (Fig. 2.19a). The corresponding state transition
graph of Moore FSM is shown in Fig. 2.19b. The structure table of P Moore FSM is
represented by Table2.7.
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Table 2.7 Structure table of P(Γ2) Moore FSM

am K (am) as K (as) Xh Φh h

a1 000 a2 001 1 D3 1

a2(y1y2) 001 a3 010 x1 D2 2

a4 011 x̄1 D2D3 3

a3(y3) 010 a5 100 1 D1 4

a4(y1y4) 011 a5 100 1 D1 5

a5(y2y3) 100 a1 000 1 – 6

Table 2.8 Part of the transformed ST for Moore FSM P(Γ2)

K (am) X Y (am) Φ v h

T1T2T3 x1 y1y2y3y4 D1D2D3

000 0 0000 001 1 1

000 1 0000 001 2 1

001 0 1100 011 3 3

001 1 1100 010 4 2

010 0 0010 100 5 4

010 1 0010 100 6 4

011 0 1001 100 7 5

011 1 1001 100 8 5

100 0 0110 000 9 6

100 1 0110 000 10 6

Because L = 1, the transitions from each state am ∈ A are represented by 2L = 2
rows of the transformed structure table. Because there is L + R = 4, the transformed
ST includes V (P) = 16 rows. Of course only M · 2L rows include some useful
information. The first 10 rows of transformed ST are represented by Table2.8

To make the connection between Tables2.7 and 2.8 more transparent, the last
includes the column h. This column shows the rows of initial ST corresponding to
the rows of transformed ST. To implement the logic circuit of P Moore FSM, it is
enough to load the bit-stream corresponding to Table2.8 into a particular EMB.

If condition (2.25) is violated, then other models can be used. Let the following
conditions take places:

R · 2L+R = V0; (2.27)

N · 2R = V0. (2.28)

In this case, the model of PYMoore FSM (Fig. 2.18b) can be used. In this model,
the EMB1 implements the circuit of BIMF, the EMB2 implements the circuit of
BMO.
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Table 2.9 Table of
microoperations of Moore
FSM PY(Γ1)

K (am) Y (am) m

T1T2T3 y1y2y3y4

000 0000 1

001 1100 2

010 0010 3

011 1001 4

100 0110 5

To design PYFSM, the table ofmicrooperations should be constructed. It includes
the columns K (am), Y (am),m. In the case ofMoore FSMPY(Γ2), this table includes
8 rows but only M = 5 of them include some useful information (Table2.9). The
transformed ST of PY Moore FSM does not include the column Y (am).

Let us point out that conditions (2.25) or (2.27) have places only for very simple
FSMs. If they are violated, the models based on the replacement of logical conditions
[6] are used. These models are represented by Fig. 2.18c, d.

The replacement of logical conditions (RLC) is reduced to replacement of the set
X by a set of additional variables P = {p1, . . . , pG}, whereG � L . As it is stated in
[46], there is G ≤ 3 for a vast majority of practical control algorithms. As a rule, the
value of G is determined as max(L1, . . . , LM). Here the symbol Lm stands for the
number of elements in the set X (am) ⊆ X . These conditions determine transitions
from state am ∈ A. Let us denote the model (Fig. 2.18c) as MP Moore FSM, the
model (Fig. 2.18d) as MPY Moore FSM.

In these FSMs, the multiplexer MX generates functions

P = P(T, X). (2.29)

The system of input memory functions is represented as

Φ = Φ(T, P). (2.30)

Let the condition (2.25) be violated, but the following condition take place:

2G+R(R + N ) ≤ V0. (2.31)

In this case the MP FSM is used. If the condition (2.31) is violated, then the MPY
FSM can be used if the following condition takes place

R · 2G+R ≤ V0. (2.32)

Of course, the condition (2.28) also should take place.
In this book, we use such terms as LUTer and EMBer. The LUTer is a network

of LUTs implementing circuit of BIMF. The EMBer is a network of EMBs imple-
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Fig. 2.20 Structural
diagram of FPGA-based PY
Moore FSM

menting the circuit of BMO. The register RG is distributed among the CLBs of
the LUTer. For example, the PY Moore FSM (Fig. 2.7) can be represented as the
following structure (Fig. 2.20).

There is the extension of the library [54] named 1993 MCNC library of bench-
marks (BM). It includes 190 BMs for different FSMs. There is the analysis of these
BMs presented in [24]. In total, the BMs comprise 36 304 Boolean functions. An
examinations of BMs shown that more than 70% of functions depend on more than
4 variables. Also, roughly 20% of the functions have fan-in equal or greater than
6. If the number of arguments exceeds the number of inputs of a LUT, then such a
function might be implemented with programmable logic arrays (PLA) [24].

The PLAs were introduced by Signetics in the mid 1970s [8]. The particular prop-
erty of PLA is the programmability of bothAND–andOR–planes. It provides greater
flexibility than PLDwhere only one plane is programmable. As it mentioned in [25],
being coupled with LUTs, PLAs provide an integrated programmable resource that
can be used in many digital systems design to support control logic for LUT-based
data-paths.

Finite state machines are wide fan-in, low logic-density circuits [25]. To optimize
the chip area occupied by such circuits, architectures of hybrid FPGAs (HPGA)
were proposed [26, 44]. They include LUTs, EMBs and SRAM-configurable pro-
grammable logic arrays (PLA). For example, an Embedded System Block of Altera
APEX20K can be configured as a PLA with 32 inputs, 32 product terms and 16
outputs [3].

So, the main programmable logic blocks can be found in FPGAs, namely, LUTs,
EMBs and PLAs. In this book, we use the name PLAer for a network of PLAs
implementing some part of an FSM circuit. Now let us discuss in details the design
methods based on linear chains of states (LCS) in FSMs.
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Chapter 3
Linear Chains in FSMs

Abstract The Chapter is devoted to the using linear chains in FSMs. The counter-
based microprogram control units are discussed, as well as known PLA-based struc-
tures of Moore FSMs. Then there are discussed methods of optimal state assignment
and transformation of state codes into codes of classes of pseudoequivalent states
(PES). Next there are introduced different linear chains of states (LCS) such as uni-
tary, elementary, normal and extended LCSs. The structural diagrams are proposed
for LCS-basedMoore FSMs. The proposed procedures are discussed for constructing
different linear chains of states.

3.1 Counter-Based Control Units

As it is pointed out in many works [4, 12], it is necessary to take into account the
nature of a control algorithm to optimize characteristics of a control unit. If the set
of vertices for a given GSA Γ includes more than 75% of operator vertices, then
such a GSA is named linear GSA [8] It means that a corresponding FSM possesses
a lot of unconditional transitions. This property can be used for simplifying the
system of input memory functions [24]. As a rule, the simplification of input memory
functions is possible if the state register is replaced by some more complex device.
Two approaches are possible. In the first case a shift register replaces the state register
[17, 26]. This approach requires sophisticated algorithms for the state assignment.
Because of it, shift register did not find a wide application in FSMs. The second
approach is connected with replacement of the state register by a state counter [2,
3, 24, 35]. This approach has found a wide application in the case of microprogram
control units [11, 23].

Microprogram control units are based on the operational - address principle for
presentation of control words (microinstructions) kept in a special control memory
[1]. The typical method of MCU design includes the following steps [8]:

1. Transformation of initial graph-scheme of algorithm.
2. Generation of microinstructions with given format.
3. Microinstruction addressing.
4. Encoding of operational and address parts of microinstructions.
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Fig. 3.1 Microinstruction
formats for MCU with
natural addressing of
microinstructions

5. Construction of control memory content.
6. Synthesis of logic circuit of MCU using given logical elements.

The mode of microinstruction addressing affects tremendously the method of
MCU synthesis [8]. Three particular addressing modes are known:

1. Compulsory addressing of microinstructions.
2. Natural addressing of microinstructions.
3. Combined addressing of microinstructions.

In the first case, the address of microinstruction is kept into a register. This address
be viewed as a state code, whereas a microinstruction can be viewed as an FSM state
[16]. In the last two cases, the address of microinstruction is kept into a counter.

In the common case, microinstruction formats include the following fields: FY,
FX, FA0 and FA1. The field FY, operational part of the microinstruction, contains
information about microoperations yn ∈ Y (t = 0, 1, . . .), which are executed in
cycle t of control unit operation. The field FX contains information about logical
condition xtl ∈ X , which is checked at time t (t = 0, 1, . . .). The filed FA0 contains
next microinstruction address At+1 (transition address), either in case of uncondi-
tional transition (go to type), or if xtl = 0.ThefieldFA1 contains nextmicroinstruction
address for the case when xtl = 1. The fields FX, FA0 and FA1 form the address part
of microinstruction.

There are two microinstruction formats in case of natural microinstruction
addressing [8, 16]: operational microinstructions corresponding to operator vertices
of GSA Γ and control microinstructions corresponding to conditional vertices of
GSA Γ (Fig. 3.1).

First bit of each format represents field FA, used to recognize the type of microin-
struction. Let FA=0 correspond to operational microinstruction and FA=1 to control
microinstruction. As follows from Fig. 3.1, next address is not included in opera-
tional microinstructions. The same is true for the case, when a logical condition to
be checked is equal to 1. In both cases mentioned above current address At is used
to calculate next address:

At+1 = At + 1. (3.1)

Hence, the following rule is used for next address calculation:

At+1 =

⎧
⎪⎪⎨

⎪⎪⎩

At + 1 if [FA]t = 0;
At + 1 if (xtl = 1) ∧ ([FA]t = 1);
[FA0]t if (xtl = 0) ∧ ([FA]t = 1);
[FA0]t if ([FX ]t = ∅) ∧ ([FA]t = 1).

(3.2)
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Fig. 3.2 Structural diagram
of MCU with natural
addressing of
microinstructions

Two first records of (3.2), as well as (3.1), show that a counter should be included into
the structure of MCU with natural addressing. This counter is named a counter of
microinstruction address (CAMI). The structure diagram of MCU includes a block
of addressing (CFA), a control memory (CM), a block of microoperations (BMO)
and a flip-flop TF used for fetching microinstructions from CM (Fig. 3.2).

This MCU operates in the following manner. The pulse Start initiates loading
of start address into CAMI. At the same time flip-flop TF is set up. Let an address
At be located in CAMI at time t (t = 0, 1, . . .). If this address determines an
operational microinstruction, the block BMO generates microoperations yn ∈ Y
and the sequencer CFA produces signal z1. If this address determines a control
microinstruction, microoperations are not generated, and the sequencer produces
either signal z0 (corresponding to an address loaded from the field FA0 or signal z1
(it corresponds to adding 1 to the content of CAMI). The content of counter CAMI
can be changed by pulseClock. If variable yE is generated by BMO, then the flip-flop
TF is cleared and operation of MCU terminated.

The MCU (Fig. 3.2) has one serious drawback. Only a single logic condition is
checked during one cycle of MCU’s operation. If an GSA includes a lot of multi-
directional transitions, the performance ofMCU is rather small. But it has very simple
circuit of CFA. It is just a multiplexer. To improve the performance of MCU, the
programmable logic arrays were used for implementing the circuit of CFA.

The PLAs were introduced in the mid 1970s by Signetics [20, 22]. They include
two programmable planes (or arrays), namely, AND-array and OR-array. This prop-
erty of the PLAs can be used for implementing systems of Boolean functions repre-
sented as minimal SOPs [28].

Due to their flexibility, the PLAs found applications in design of control units.
They were used in FSMs to implement both functions Φ and Y [6, 29]. They evoked
a lot of design and optimization methods [29] such as for example, NOVA [36].

In the case of MCU, the block CFA is implemented using a multiplexer [10]. In
articles [30, 31], it was proposed to replace the MX by PLAs. It allowed execution
of multidirectional transitions in a single cycle. Of course, the main drawback of
this approach is the necessity of re-design of CFA if there are some changes in
microprogram to be implemented. The structural diagram of PLA-based MCU is
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Fig. 3.3 Structural diagram
of PLA-based MCU

Fig. 3.4 Structural diagram
of PLA-based Moore FSM

shown in Fig. 3.3. In this model, the control memory is implemented as PROM. The
variable L is used for incrementing the counter CT.

If both blocks CFA and CM are implemented with PLAs, it leads to either Mealy
or Moore FSM. The structural diagram of PLA-based Moore FSM [2] is shown in
Fig. 3.4.

In this structure the PLA1 implements system (2.9) and function L:

L = f (T, X). (3.3)

The function L is used for adding 1 to the content of CT. The PLA2 implements the
system of output functions represented as (2.16).

Nowadays, we observe the return of PLAs in logic design. It justifies the statement
from [5] that successful computation structures return back at the next round of
technological spiral. Now, the return of PLA basis can be observed in the hybrid
FPGAs [25, 33], as well as in CoolRunner CPLDs by Xilinx [37].

Also, the PLAs are very popular in the modern sublithographic technology [13,
14]. In the nanoelectronics, these devices are named nano-PLAs. Nowadays, exten-
sive research is conducted in the fields connected with design of different devices
based on nano-PLAs [15, 32]. Let us point out that all design methods discussed in
this book can be adopted to meet specifics of nano-PLAs.

3.2 Basic Principles of Hardware Reduction
for Moore FSMs

Let us consider the structural diagram of Moore FSM (Fig. 3.5).
As it was mentioned before, the block BIMF implements the system of input

memory functions (2.9), the block BMO the system of microoperations (2.16).

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 3.5 Structural diagram
of Moore FSM

The hardware reduction methods discussed in this section are based on existence
of pseudoequivalent states (PES) of Moore FSM [7]. States am, ak ∈ A are named
pseudoequivalent if there are arcs 〈bt , bq〉 and 〈bs, bq〉 where the operator vertice
br (bs) is marked by the state am(ak). So, pseudoequivalent states correspond to
operator vertices connected with the input of the same vertex of a GSA. The relation
of pseudoequivalentness is reflexive, symmetric and transitive. So, it determines
some partition ΠA = {B1, . . . , BI } on the set A. Each element of ΠA is a class of
PES.

Let us consider the GSA Γ3 shown in Fig. 3.6.
The Moore FSM PY(Γ3) has the following parameters: L = 3, N = 6, M = 7,

R = 3, H1 = 15. So, its structure table includes 15 rows.
As follows from definition of PES, there is the following partition ΠA =

{B1, . . . , B4} for FSM PY(Γ3). Its classes are the following: B1 = {a1}, B2 =
{a2, a3}, B3 = {a4}, B4 = {a5, a6, a7}. So, there is I = 4.

The simplest way for the hardware reduction is a proper state assignment. There
are different approaches named optimal, refined and combined state assignments.
Let us discuss these approaches.

In the case of optimal state assignment, the code of each class Bi ∈ ΠA is rep-
resented by the minimal possible amount of generalized intervals of R-dimensional
Boolean space. The value of R is determined by (2.15). In the best case, each class
Bi ∈ ΠA is represented by a single generalized interval. Let us consider theKarnaugh
map shown in Fig. 3.7.

It follows from Fig. 3.7 that the class B1 corresponds to the interval 〈0, 0, 0〉 the
class B2 to the interval 〈0, ∗, 1〉, the class B3 to the interval 〈0, 1, 0〉, and the class B4 to
the interval 〈1, ∗, ∗〉. Each class Bi ∈ ΠA corresponds exactly to a single generalized
interval. So, it is the best possible solution. Now, the following class codes can be
found: K (B1) = 000, K (B2) = 0 ∗ 1, K (B3) = 010 and K (B4) = 1 ∗ ∗.

To get the system (2.9), a transformed structure table should be constructed [9].
The table is based on the system of generalized formulae of transitions [9]. In the
discussed case, it is the following system:

B1 →x1a2 ∨ x̄1a3;
B2 →x2a4 ∨ x̄2x3a6 ∨ x̄2 x̄3a3;
B3 →a5;
B4 →x3a7 ∨ x̄3a1.

(3.4)

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 3.6 Marked GSA Γ3

Fig. 3.7 Optimal state codes
of Moore FSM PY(Γ3)
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Table 3.1 Transformed structure table of Moore FSM P0Y(3)

Bi K (Bi ) as K (as) Xh Φh h

B1 000 a2 001 x1 D3 1

a3 011 x̄1 D2D3 2

B2 0*1 a4 010 x2 D2 3

a6 101 x̄2x3 D2D3 4

a3 011 x̄2x3 D2D3 5

B3 010 a5 100 1 D1 6

B4 1** a7 110 x3 D1D2 7

a1 000 x̄3 – 8

The connection between the GSA Γ3 and system (3.4) is obvious. To get such a
system, it is necessary:

1. To construct the formulae of transitions for each state am ∈ A.
2. To replace a state am ∈ A in the left part of the formula by corresponding class

Bi ∈ ΠA such that am ∈ Bi .
4. If there are i equal formulae, then only one of them should remain.

We did not show this process in details for constructing the system (3.4).
If the approach of optimal state assignment is used, let us denote such an FSM as

P0Y Moore FSM. The transformed ST of P0Y Moore FSM includes the following
columns: Bi , K (Bi ), as , K (as), Xh , Φh , h. In the discussed case, this table includes
H1 = 8 rows (Table3.1).

The connection between Table3.1 and the system (3.4) is obvious. The state codes
are taken from Fig. 3.7. This table is a base for constructing the system (2.9). The
system includes the following terms:

Fh =
R∧

r=1

T lhr
i · Xh (h = 1, . . . , H1). (3.5)

The firstmember of (3.5) represents a conjunction of state variables corresponding
to the code K (Bi ) of a class Bi from the h-th row of the table. There is lhr ∈ {0, 1, ∗}
and T 0

r = T̄r , T 1
r = Tr , T ∗

r = 1 (r = 1, . . . , R). Let us point out that

H1 ≤ H0 + 1. (3.6)

So, the number of rows of transformed ST of Moore FSM is approximately the
same as this number for the equivalent Mealy FSM. The input memory functions are
represented as the following SOP:

Dr =
H1∨

h=1

Crh Fh (r = 1, . . . , R). (3.7)

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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After minimizing, the following system can be derived from Table3.1:

D1 = T̄1T3 x̄2x3 ∨ T̄1T2T̄3 ∨ T1x3;
D2 = T̄1T3 ∨ T̄1T̄2T̄3 x̄1 ∨ T̄1T3 x̄3;
D3 = T̄1T̄2T̄3 ∨ T̄1T3 x̄2;

(3.8)

There are three different approaches for implementing the circuit of PY Moore
FSM with FPGAs:

1. LUT-based implementation. In this case both BIMF and BMO are implemented
using LUTs. Let us name such a circuit as LFSM.

2. EMB-based implementation. In this case both BIMF and BMO are implemented
using EMBs. Let us name such a circuit as MFSM.

3. Heterogeneous implementation. In this case theBIMF is implementedwithLUTs,
whereas the BMO with EMBs. Let us name such a circuit as HFSM.

In the case of HFSM, the system (3.7) should beminimized [9]. It leads to decreas-
ing the number of LUTs in the circuit of BIMF. In the case of MFSM, there is no
need in minimizing [18, 34]. In the case of LFSM both blocks should be optimized.

Let LUT elements in use have S inputs. Let the following condition take place:

S ≥ R. (3.9)

In this case, any function yn ∈ Y is implemented using only a single LUT. If
condition (3.8) is violated, then it is necessary to minimize equations from (2.16). It
can be executed by applying the refined state assignment [9].

The following system of Boolean equations can be derived from Fig. 3.3:

y1 =A2 ∨ A4 ∨ A6;
y2 =A3 ∨ A4;
y3 =A3 ∨ A4 ∨ A5;
y4 =A6 ∨ A7;
y5 =A5 ∨ A6;
y6 =A5 ∨ A6 ∨ A7.

(3.10)

Let S = 2, it means that condition (3.8) is violated. Let us encode the states
am ∈ A as it is shown in Fig. 3.8.

Now, the system (3.10) is transformed into the following one:

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 3.8 Refined state codes
for Moore FSM PY(Γ3)

y1 =T3;
y2 =T̄1T2;
y3 =T2;
y4 =T1T̄2;
y5 =T1T3 ∨ T1T2;
y6 =T1.

(3.11)

The system (3.11) results in the logic circuit (Fig. 3.9) having 4 LUTs and two
levels of elements.

If the optimal state assignment is used (Fig. 3.7), then the circuit of BMO requires
8 LUTs. Let us point out that the refined state assignment leads to H1 = 8 for the
discussed case. But it is just a coincidence.

In the general case, the optimal state assignment optimizes only the circuit of
BIMF. In turns, the refined state assignment optimizes only the circuit of BMO.
To optimize both blocks of an LFSM, the combined state assignment [9] should be
used. This method can be explained as the following. Let us construct the following
systems of functions:

Y = Y (A); (3.12)

B = B(A). (3.13)

Let system (3.12) be determined by expression (2.17), while the elements of
system (3.13) are represented as

Fig. 3.9 Logic circuit of
block BMO

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 3.10 Structural diagram
of PCY Moore FSM

Bi =
M∨

m=1

Cim Am (i = 1, . . . , I ), (3.14)

where Cim is a Boolean variable equal to 1, iff am ∈ Bi . The combined state assign-
ment is executed in such a manner, that the total number of terms is minimal for
systems (3.12) and (3.13). This problem can be solved using, for example, the algo-
rithm JEDI. In the discussed case, the results of combined state assignment are the
same as for the refined state assignment (Fig. 3.8). Of course, it is a particular case.

Let us point out that the combined state assignment could produce results which
are far from optimal for one or both blocks of PY Moore FSM. In this case the total
area can be decreased using a transformer of state codes into codes of the classes of
pseudoequivalent states [9]. It results in PCY Moore FSM shown in Fig. 3.10.

In PCY Moore FSM, a block BIMF implements functions

Φ = Φ(τ , X), (3.15)

where τ is a set of variables used to code classes Bi ∈ ΠA. A code transformer BTC
generates codes of classes Bi ∈ ΠA on the base of codes for states am ∈ Bi . To
encode the classes Bi ∈ ΠA, the additional variables τr ∈ τ are used. The number
of these variables is determined as

RB = �log2 I. (3.16)

The block BTC implements the system of Boolean functions

τ = τ (T ). (3.17)

If LUTs are used for implementing BTC, the system (3.17) should be represented as
RB sum-of-products:

τr =
M∨

m=1

Crm(

R∧

r=1

Almr
m ). (3.18)

In (3.18), the Boolean variable Crm = 1, iff am ∈ Bi and the bit number r (r =
1, . . . , RB) of K (Bi ) is equal to 1.
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Table 3.2 State transition table of Moore FSM S1
am as Xh h

a1 a2 x1 1

(–) a3 x̄1 2

a2 a4 x2 3

(y1y3y5y7) a5 x̄2 4

a3 a4 x2 5

(y1y4y7) a5 x̄2 6

a4 a4 x2 7

(y3) a5 x̄2 8

a5 a7 x3 9

(y2) a6 x̄3x4 10

a8 x̄3 x̄4 11

a6 a7 x3 12

(y2y4y7) a6 x̄3x4 13

a8 x̄3 x̄4 14

a7 a6 x3 15

(y2y4y7) a7 x̄3x4 16

a8 x̄3 x̄4 17

a8 a3 x5 18

(y6) a1 x̄5 19

If EMBs are used for implementing the circuit of BTC, it is represented by a truth
table [28]. Let us point out that both BMO and BTC can be implemented using the
same EMB.

Consider an example of PCY Moore FSM S1 design, where the FSM is set up by
its state transition table (Table3.2).

The following values and sets can be derived from Table3.2: M = 8, R = 3,
ΠA = {B1, B2, B3, B4}, where B1 = {a1}, B2 = {a2, a3, a4}, B3 = {a5, a6, a7},
B4 = {a8}, I = 4. Obviously, there is no such a state assignment variant which gives
the transformed structure table with H0 = 9 rows. Remind, this value corresponds to
the number of rows in the structure table of the equivalent Mealy FSM. The method
of synthesis includes the following steps.

1. Construction of systems Y and B. For the Moore FSM S1, we can construct the
functions y1 = A2 ∨ A3, y2 = A2 ∨ A4 ∨ A7, y5 = A2 ∨ A7, y6 = A7 ∨ A8,
y7 = A2 ∨ A3 ∨ A6 ∨ A7, B1 = A1, B2 = A2 ∨ A3 ∨ A4, B3 = A5 ∨ A6 ∨ A7,
B4 = A8.

2. State assignment. For PCY Moore FSM, the state encoding targets hardware
decrease for block of microoperations. Thus, the refined state encoding should
be done. The outcome of this step is shown in Fig. 3.11.
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3. Construction of functions representing the blockBMO. The codes represented
by Fig. 3.11 permit to get the following system:

y1 =T̄1T3 = Δ1;
y2 =T1T̄2 = Δ2;
y3 =T̄1T2 ∨ T2T3 = Δ3 ∨ Δ4;
y4 =T̄2T3 = Δ5;
y5 =Δ4;
y6 =T1T2 = Δ6;
y7 =T3 = Δ7;

(3.19)

4. Construction of functions representing the block BTC. Besides, the codes
represented by Fig. 3.11 permit to get the following system:

B1 =T̄1T̄2T̄3 = Δ8;
B2 =T̄1T3 ∨ T̄1T2 = Δ1 ∨ Δ3;
B3 =T1T̄2 ∨ T1T3 = Δ2 ∨ Δ10;
B4 =T1T2T̄3 = Δ9;

(3.20)

Because of I = 4, there is RB = 2. So, there is a set τ = {τ1, τ2}. Of course,
there are a lot of ways for encoding the classes.

Let us encode the classes Bi ∈ ΠA in the trivialway, namely K (B1) = 00, . . . , K (B4) =
11. Now we can find that τ1 = B3 ∨ B4, τ2 = B2 ∨ B4. It gives the following system
of equations:

τ1 =Δ2 ∨ Δ9 ∨ Δ10;
τ2 =Δ1 ∨ Δ3 ∨ Δ9; (3.21)

5. Constructionof transformed structure table. Let us construct the transformed struc-
ture table of theMoore FSMS1 (Table3.3). This table includes the following columns:
Bi , K (Bi ), as , K (as), Xh , Φh , h. For the FSM S1, the codes K (Bi ) can be derived
from Fig. 3.11.
The following system Φ is derived from Table3.3:

D1 =F4 ∨ F5 ∨ F6 ∨ F7;
D2 =F1 ∨ F3 ∨ F5 ∨ F7;
D3 =F1 ∨ F2 ∨ F5 ∨ F6 ∨ F7.

(3.22)

The terms of system Φ are determined as the following conjunctions:

Fh =
R0∧

r=1

τ lhr
r Xh (h = 1, . . . , H0). (3.23)
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Fig. 3.11 Refined state
codes for Moore FSM S1

Table 3.3 Transformed structure table for PCY Moore FSM S1
Bi K (Bi ) as K (as) Xh Φh h

B1 00 a2 011 x1 D2D3 1

a3 001 x̄1 D3 2

B2 01 a4 010 x2 D2 3

a5 100 x̄2 D1 4

B3 10 a7 111 x3 D1D2D3 5

a6 101 x̄3x4 D1D3 6

a8 110 x̄3 x̄4 D1D2 7

B4 11 a3 001 x5 D3 8

a1 000 x̄5 – 9

In (3.23), a variable lhr ∈ {0, 1} is equal to the value of the bit r for the code
K (Bi ), which is written in the row h of the table. From Table3.3, for example, it can
be found that: F1 = τ̄1τ̄2x1, F2 = τ1τ̄2 x̄3x4 and so on. Let us point out that this table
includes H0 = 9 rows, it is the absolute minimum for the Moore FSM S1.

One of the very popularmethods of state assignments is a one-hot state assignment
[19]. This method targets FPGA-based implementations of FSMs [21]. It is based on
the connection of each LUT with its own flip-flop [27]. But it is shown in [34] that
for complex FSMs it is reasonable to use EMBs. Using EMBs presumes application
of the binary state assignment based on (2.15). Because all FSMs with counters use
EMBs for implementing the system Y , we do not discuss the one-hot approach.

3.3 Linear Chains of States

In this book,wepropose the conception of linear chains of states (LCS). Four different
kinds of LCS can be found in anyGSAΓ .We name them unitary, elementary, normal
and extended LCSs. Let us define these types of chains using some part of GSA Γ0

(Fig. 3.12). Let us introduce some definitions.

Definition 3.1 Each state am ∈ A corresponds to a unitary LCS of GSA Γ .

So, any GSA Γ includes exactly M unitary LCSs. Let us denote a unitary LCS
(ULCS) corresponding to the state am ∈ A by the symbol am (m = 1, . . . , M).

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 3.12 Fragment of GSA Γ0

Obviously, the fragment of GSA Γ0 contains 6 different ULCSs. During this step,
we do not care about the content of operator vertices. Because of it, there are no
microoperations into operator vertices of Γ0.

If the synthesis of FSM is based on ULCSs, then the state register is used. We
discuss corresponding design methods in Chaps. 4 and 5.

Definition 3.2 An elementary LCS (ELCS) of GSA Γ is a finite vector αg =
〈ag1, . . . , agFg 〉 such that there is unconditional transition 〈agi , agFg 〉 for any pair
of adjacent components of the vector αg .

Let A(αg) be a set of states which are components of ELCS αg (g = 1, . . . ,G1).
Any ULCS has only one input and one output.

Definition 3.3 A state am ∈ A(αg) is an input of ELCS αg if the input of operator
vertex marked by am ∈ A is connected with output of either start vertex b0 or
conditional vertex or any operator vertex marked by a state as /∈ A(αg).

Definition 3.4 A state am ∈ A(αg) is an input of ELCS αg if either there is uncon-
ditional transition with an input of other ULCS or there is the transition 〈am, a1〉 or
there are conditional transitions from the state am ∈ A(αg).

Let us denote an input of ELCS αg by the symbol Ig , whereas the output of αg

by Og . Let us consider Fig. 3.12.
The followingULCSs can be constructed:α1 = 〈a3, a4〉,α1 = 〈a5〉,α3 = 〈a6, a7〉

and α4 = 〈a8〉. The following inputs and outputs exist for these chains: I1 = a3,
O3 = a4; I2 = O2 = a5; I3 = a6, O3 = a7; I4 = O4 = a8.

Definition 3.5 A normal LCS (NLCS) of GSA Γ is a finite vector βg = 〈ag1, . . . ,
agFg〉 such that there is unconditional transition 〈agi , agi+1〉 for any pair of adjacent
components of βg .

Definition 3.6 A state am ∈ A(βg) is an input of NLCS βg if the input of operator
vertex marked by am ∈ A is connected with the output of any vertex which is not
marked by any state as ∈ A(βg).

Itmeans that the input of the vertexmarked by the state am should not be connected
with outputs of either the start vertex, or conditional vertices or any operator vertex
which is marked by state as /∈ A(βg). Any NLCS βg(g = 1, . . . ,G2) can include
up to Fg inputs.

http://dx.doi.org/10.1007/978-3-319-59837-6_4
http://dx.doi.org/10.1007/978-3-319-59837-6_5
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Definition 3.7 An input am ∈ A(βg) is a main input if the input of operator vertex
marked by am ∈ A is not connected with the output of any operator vertex of
GSA Γ .

Obviously, each NLCS can include only one main input. It corresponds to the first
component of the vector βg (g = 1, . . . ,G2).

Definition 3.8 A state am ∈ A(βg) is an output of NLCS βg if the output of operator
vertex marked by am is connected with any vertex which is not marked by any state
as ∈ A(Bg).

It means that the output of the vertex marked by am ∈ A(βg) is connected with an
input of either final vertex or conditional vertex or any operator vertex marked by
the state as /∈ A(βg). Obviously, any NLCS βg can have exactly one output. Let us
denote the input number k of NLCS βg as I kg (k = 1, . . . , Fg; g = 1, . . . ,G2). Let
us still use the symbol Og for the output of NLCS βg .

For the considered fragment of GSA Γ0, the following chains can be constructed:
β1 = 〈a3, a4〉, β2 = 〈a5, a6, a7〉 and β3 = 〈a8〉. They have the following inputs and
outputs: I 11 = a3, O1 = a4; I 12 = a5, I 22 = a6, O2 = a7; I 13 = O3 = a8. Obviously
the inputs I 1g are the main inputs of chains βg (g = 1, 2, 3).

It is clear that elementary chains can be viewed as some parts of natural chains.
The following equations can be found for the discussed case: β1 = α1; β2 = α2 ∗α3;
β3 = α4. We use the sign ∗ for the concatenation of chains.

Definition 3.9 An extended LCS (XLCS) of GSA Γ is a finite vector γg =
〈ag1 , . . . , agFg〉 such that there either conditional or unconditional transition
〈agi , agi+1〉 for any pair of adjacent components of γg .

The main difference of XLCS from NLCS is reduced to the existence of condi-
tional transitions between states inside the same XLCS. For all other types of chains,
only unconditional transitions are permitted for components of the same chain.

Definition 3.10 A state am ∈ A(γg) is an input of XLCS γg if the input of operator
vertex marked by the state am ∈ A is connected with the output of either start vertex
b0 or any operator vertex marked by a state as /∈ A(γg) or marked by the zero output
of a conditional vertex.

Definition 3.11 Astate am ∈ A(γg) is an output ofXLCS γg if the output of operator
vertex marked by the state am ∈ A is connected with the input of either final vertex
or any operator vertex marked by the state as /∈ A(γg) or any conditional vertex of
GSA Γ .

Definition 3.12 An input am ∈ A(γg) is a main input of XLCS γg if the input of
operator vertex marked by the state am ∈ A is not connected with the output of any
operator vertex marked by a state as /∈ A(γg).
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In the last three definitions, the symbol A(γg) stands for the set of components of
XLCS γg (γ = 1, . . . ,G3). Obviously, the issue of XLCS is the most general issue.
Such a chain can include more than one input (I 1g , I 2g , . . .) and more than one output
(O1

g , O
1
g , . . .).

In the case of the fragment shown in Fig. 3.12, there is a single XLCS γ1 =
〈a3, a4, . . . , a8〉. It has 4 inputs and 3 outputs: I 1g = a3, I 2g = a5, I 3g = a6, I 4g = a8,
O1

g = a4, O2
g = a7 and O3

g = a8 (g = 1). Obviously, the following expressions are
true: γ1 = α1 ∗ α2 ∗ α3 ∗ α4 and γ1 = β1 ∗ β2 ∗ β3.

Let us discuss two very important issues:

1. How to construct different LCSs?
2. How they influence structures of corresponding FSMs?

3.4 Structures of LCS-Based FSMs

If a synthesis method for some FSM is based on existing linear chains of states, let
us name such an FSM the LCS-based FSM. Let us start from ELCS-based Moore
FSMs.

Let it be some GSA Γm marked by the states of Moore FSM using the approach
from [4]. Let the following sets be constructed for this GSA:

1. The set CE = {α1, . . . ,αG1} of ELCSs determining a partition of the set of states
A.

2. The set IE of inputs of chains αg ∈ C1. This set is determined as

IE =
G1⋃

g=1

Ig. (3.24)

3. The set OE of outputs of chains αg ∈ C1. This set is determined as

OE =
G1⋃

g=1

Og. (3.25)

Let us execute the following state assignment for each pair of adjacent components
of chains αg ∈ C1:

K (agi+1) = K (agi ) + 1. (3.26)

This condition should take place for g = 1, . . . ,G1 and i = 1, . . . , Fg − 1. Let
us name the state assignment (3.26) a natural state assignment.

Now, all transitions of FSM (all arcs of corresponding STG) can be derived by
two classes:
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1. The class Tin of transitions between the states inside the chains. These transitions
are executed using the rule (3.26). Obviously, it can be done by adding 1 to the
content of some counter CT.

2. The class Tout of transitions between the outputs and input of chains αg ∈ CE .
Let us point out that it is possible the conditional transition between an output
Og and an input Ig(g = 1, . . . ,G1). To implement the transitions from Tout, it is
necessary to load a code of the next state into the counter.

It is necessary to have some additional variable y0 to control the counter. Let us
use the following agreements:

y0 = 1 → CT := CT + 1; (3.27)

y0 = 0 → CT := 〈Φ〉. (3.28)

The condition (3.28) determines the loading CT from some external block. As
always in this book, the counter has informational inputs of the type D.

Let us use the symbol PYE for determining the ELCS-based Moore FSM. Its
structural diagram is shown in Fig. 3.13.

The PYE Moore FSM operates in the following manner. If there is Start = 1, then
the code of initial state a1 ∈ A is loaded into the CT. Every pulse of CT permits
generating the collections ofmicrooperationsYt ⊆ Y by the block ofmicrooperations
BMO. Let some code K (am) be in the CT in some instant t (t = 0, 1, . . .). If am �=
Og (g = 1, . . . ,G1), then the variable y0 = 1 is generated by the BMO. It causes
incrementing the counter CT (see (3.27)). If am = Og (g = 1, . . . ,G1) then the CT
is loaded by the block of input memory functions BIMF. If the next state as = a1,
then the content of CT is not changed till the next pulse Start arrives.

So, in PYE Moore FSM the BIMF generates functions (2.9), whereas the BMO
generates functions (2.16) and the additional variable

y0 = y0(T ). (3.29)

The set CE should correspond to the following conditions:

Fig. 3.13 Structural
diagram of PYE Moore FSM

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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A(αg) �= ∅ (g = 1, . . . ,G1); (3.30)
G1⋃

g=1

A(αg) = A \ {a1}; (3.31)

A(αi ) ∩ A(α j ) �= ∅ (i �= j, i, j ∈ {1, . . . ,G1}; (3.32)

G1 → min . (3.33)

These conditions mean the following:

1. Any ELCS αg ∈ CE includes at least a single state am ∈ A (condition (3.30)).
2. There are no states am ∈ A which are not included in some chain αg ∈ CE . The

only exception is the initial state a1 ∈ A (conditions (3.31)).
3. Different states am ∈ A are included into different chains αg ∈ C1 (condition

(3.32)). It allows maximizing the number of rows of structure table having no
input memory functions.

4. The set CE includes the minimal possible number of chains (condition (3.33)). It
has the same effect as the condition (3.32).

So, the set CE is a partition of the set A by the chains αg (g = 1, . . . ,G1) with
minimal amount of classes A(αg) ⊆ A. Obviously, the following relation takes
place:

1 ≤ G1 ≤ M − 1. (3.34)

If there is G1 = 1, then each class A(αg) includes only a single state. In this case,
there is no need in a counter and the model of PY Moore FSM should be used. If
there is G1 = M − 1, then the corresponding GSA Γm does not include conditional
vertices. It leads to degenerated PYE Moore FSM (Fig. 3.14).

Obviously, the design of FSM (Fig. 3.14) is trivial. We do not discuss it in this
book.

The set CE corresponding to (3.30)–(3.33) can be constructed in two steps:

1. Finding the set of inputs IE for a given GSA.
2. Constructing an ELCS for each element of IE .

The set IE is constructed using Definition3.3. There are G1 = 7 inputs of
ELCSs in the discussed case (Fig. 3.15). Let the symbol b(am) means an oper-
ator vertex marked by the state am ∈ A. The input of b(a2) is connected with
the output of start vertex; the inputs of vertices b(a4), b(a5), b(a6), b(a8), b(a9)

Fig. 3.14 Structural
diagram of degenerated PYE
Moore FSM
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Fig. 3.15 Initial
graph-scheme of algorithm
Γ4

and b(a10) are connected with outputs of conditional vertices. So, there is the set
IE = {a2, a4, a5, a6, a8, a9, a10}; it means that G1 = 7.

The following procedure is proposed for constructing the partition CE :

1. Put g = 1.
2. Take the state with the smallest numberm from the set IE . Exclude this state from

the set IE . Let us name this state as a base state of ELCS αg ∈ CE .
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3. Find the vertex whose input is connected with the output of operator vertex b(am)

where am is a base state of ELCS αg ∈ CE . Let us denote this vertex as bnext.
4. If bnext is either a conditional or final vertex, then the construction of ELCS αg is

terminated. Go to the step 7.
5. If bnext is marked by a state as ∈ IE , then the construction of the chain αg is

terminated. Go to the step 7.
6. If bnext is marked by a state as /∈ IE , then this state is included into the chain

αg ∈ CE . Now this state is considered as a base state am . Go to the step 3.
7. g = g + 1.
8. If g < G1, then go to step 9 else go to the step 2.
9. End.

Let us point out that initial set IE is used during the steps 5 and 6. Let us name this
procedure as procedure P1. Using P1 for discussed case leads to the following set
CE = {α1, . . . ,α7}. This set includes the following chains:α1 = 〈a2, a3〉,α2 = 〈a4〉,
α3 = 〈a5, a7〉, α4 = 〈a6〉, α5 = 〈a8〉, α6 = 〈a9〉, and α7 = 〈a10〉.

The natural state assignment should be executed using R-dimensional codes. The
value of R is determined by (2.15). The following procedure P2 is proposed for
solution of this problem for ELCS-based Moore FSMs:

1. To construct the vectorα = α1∗α2∗ . . .∗αG1, where * is a sign of concatenation.
Let us point out that the first ELCS in α should include a state am such that there
is a transition 〈a1, am〉.

2. To execute a numeration of components of the vector α using the consecutive
integers from 1 to M.

3. To replace each number i of the component am of the vector α by its binary
equivalent having R bits. The final codes are treated as the codes K (am).

Let us illustrate this procedure for the discussed example. It is shown in Table3.4.
In the discussed case, there is R = 4. Obviously, the initial state a1 ∈ A has the

code with all zeros. The process of state assignment is obvious from Table3.4.
The design method for Moore FSM with PYE structure includes the following

steps:

1. Constructing the set of states A.
2. Constructing the set of elementary LCSs CE .
3. Executing the natural state assignment.
4. Constructing the structure table of PYE Moore FSM.

Table 3.4 Natural state assignment for Moore FSM PYE(Γ4)

Steps αg α1 α2 α3 α4 α5 α6 α7

1 am a2 a3 a4 a5 a7 a6 a8 a9 a10
2 i 1 2 3 4 5 6 7 8 9

3 K (am) 0001 0010 0011 0100 0101 0110 0111 1000 1001

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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5. Constructing the system of input memory functions.
6. Constructing the table of microoperations.
7. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore FSM PYE(Γ4). The sets A and
CE are obtained before, the state codes can be found from Table3.4.

To construct the structure table, let us construct the system of formulae of transi-
tions [9] for states a1 ∈ A and am ∈ OE , where OE ⊆ A is a set of outputs of ELCSs
α ∈ CE .

In the discussed case, there is the set OE = {a3, a4, a6, . . . , a10}. The following
system of formulae of transitions (SFT) could be found from GSA Γ4:

a1 → a2
a3 → x1a4 ∨ x̄1x2a5 ∨ x̄1 x̄2a6;
a4 → a5;
a6 → x3a8 ∨ x̄3a9;
a7 → x2a10 ∨ x̄2a6;
a8 → x2a10 ∨ x̄2a6;
a9 → x2a10 ∨ x̄2a6;
a10 → a1.

(3.35)

The structure table of Moore FSM PYE(Γ4) includes HE (Γ4) = 12 rows
(Table3.5). Let us point out that the transition from a10 into a1 is executed by the
pulse Clock. So, the structure table does not include the corresponding row. Also,
the transition from a1 into a2 is executed using y0. So, this row is not included in
Table3.5.

Table 3.5 Structure table of Moore FSM PYE(Γ4)

am K (am) as K (as) Xh Φh h

a3 0010 a4 0011 x1 D3D4 1

a5 0100 x̄1x2 D2 2

a6 0110 x̄1 x̄2 D2D3 3

a4 0010 a5 0100 1 D2 4

a6 0110 a8 0111 x3 D2D3D4 5

a9 1000 x̄3 D1 6

a7 0101 a10 1001 x2 D1D4 7

a6 0110 x̄2 D2D3 8

a8 0111 a10 1001 x2 D1D4 9

a6 0110 x̄2 D2D3 10

a9 1000 a10 1001 x2 D1D4 11

a6 0110 x̄2 D2D3 12
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Table 3.6 Table of microoperations of Moore FSM PYE(Γ4)

K (am) T1T2T3T4 y0 Ym y1y2y3y4y5y6y7 m

0000 1 000 0000 1

0001 1 110 0000 2

0010 0 001 0000 3

0011 0 010 1000 4

0100 1 001 0100 5

0101 0 000 0010 6

0110 0 001 0000 7

0111 0 001 1000 8

1000 0 000 0011 9

1001 0 001 1000 10

The system Φ is constructed in the traditional way. For example, the following
formula can be derived for the function D1 (after minimizing the initial SOP):

D1 = F6 ∨ [F7 ∨ F9] ∨ F11 = T̄1T2T3T̄4 x̄3 ∨ T̄1T2T4x2 ∨ T1T̄2T̄3T̄4x2. (3.36)

Let us point out that (3.36) can be minimized using the "don’t care" input assign-
ments from 1010 till 1111. Taking them into account, the following minimized
expression can be obtained for the function D1:

D1 = T2T3T̄4 x̄3 ∨ T2T4x2 ∨ T1T̄4x2. (3.37)

The expressions similar to (3.37) can be obtained for any function Dr ∈ Φ.
The table of microoperations can be constructed using a marked GSA. It includes

the following columns: K (am), y0, Ym , m. In the discussed case, this table includes
16 rows. Only 10 of them include some useful information. Namely these rows are
shown in Table3.6.

The column y0 is filled in the following manner. If am /∈ OE , then y0 = 1 in the
corresponding row of the table. Because of unconditional transition 〈a1, a2〉, there is
y0 = 1 in the first row of the table.

Now, the obtained input memory functions Dr ∈ Φ should be implemented using
LUTs. The table of microoperations determines the content of EMBs implementing
the block BMO. We do not discuss this step.

Now, let us discuss the design of NLCS-based Moore FSMs. Let the following
sets be obtained for some marked GSA Γi :

1. The set CN = {β1, . . . ,βG2} of NLCS determining a partition of the set of states
A.

2. The set IN of inputs of chains βg ∈ CN . This set is determined as
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IN =
G2⋃

g=1

I (βg). (3.38)

In (3.38), the symbol I (βg) ⊆ A(βg) is a set of inputs of an NLCS βg ∈ CN .
3. The set ON of outputs of chains βg ∈ C2. This set is determined as

ON =
G2⋃

g=1

Og. (3.39)

Let the natural state assignment be executed for states am ∈ A. In this case, the
transitions among the states am ∈ A could be derived by the classes Tin and Tout (as
it is done for PYE Moore FSM). Because of the state assignment (3.26), the variable
y0 is necessary, too. Its functions are determined by (3.27)–(3.28).

Let us use the symbol PYN for determining the NLCS-based Moore FSM. Its
structural diagram is same as the one for PYE Moore FSM. Obviously, the principles
of operations are the same for these both models. To show an advantage of PYE

Moore FSM, we should discuss the principle of code sharing [8]. It will be done a
bit later.

The set CN should correspond to the following conditions:

A(Bg) /∈ ∅ (g = 1, . . . ,G2); (3.40)
G2⋃

g1

A(βg) = A \ {a1}; (3.41)

A(βi ) ∩ A(β j ) = ∅ (i �=; i, j ∈ {1, . . . ,G2}); (3.42)

G2 → min . (3.43)

The meaning of conditions (3.40)–(3.43) is the same as for conditions (3.30)–
(3.33), respectively. Of course, the former represent the properties of NLCSs βg ∈
CN .

The set CN corresponding to (3.40)–(3.43) can be constructed in two steps:

1. Finding the set of main inputs I MN for a given GSA Γ .
2. Constructing an NLCS for each element of I MN .

Let us discuss the execution of these steps for the GSA Γ4. The set I MN is
constructed using Definition3.7. The input of operator vertex b(a2) is connected
with the output of the start vertex. The inputs of vertices b(a4), b(a6), b(a8), b(a9)
and b(a10) are connected only with outputs of conditional vertices. It means that
there is the set I MN = {a2, a4, a8, a9, a10}. So, there is G2 = 6.

The following procedure P3 is proposed for constructing the partition CN :

1. Put g=1.
2. Take the state with the smallest number ofm from the set I MN . Exclude this state

from the set I MN . Let us name this state a base state for NLCS βg ∈ CN .
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3. Find the vertex bnext (as for P1).
4. If bnext is either conditional or final vertex, then construction of the chain βg is

terminated. Go to the step 6.
5. If bnext is not marked by a state as already included into some chain βg ∈ CN ,

then this state is included into the chain βg . Now, this state is considered as the
base state am . Go to step 3.

6. g = g + 1.
7. If I MN �= ∅, then go to the step 2.
8. End.

Let us apply the procedure P3 to GSA Γ4. It gives the set CN = {β1, . . . ,β6}
where β1 = 〈a2, a3〉, β2 = 〈a4, a5, a7〉, β3 = 〈a6〉, β4 = 〈a8〉, and β5 = 〈a10〉.
In the case of PYN Moore FSM, the procedure P2 is used for executing the natural
state assignment. In this particular case, the outcomes of P2 coincide for PYE4 and
PYN4. So, the natural states codes for Moore FSM PYN4 are shown in the last row
of Table3.4.

The design methods for PYE and PYN FSMs are the same. But the execution of
the steps 2 and 4 is different. During the step 2, the set CN is constructed. During the
step 4, the SFT is constructed for the set ON = {a3, a6, a7, a8, a9, a10}. In this case,
the structure table of PYN4 includes only HN (Γ4) = 11 rows. The only difference in
the table of microoperations is reduced to existence of 1 in the column y0 for m = 4.
We do not show these tables in that chapter.

Now, let us discuss the design of XLCS-based Moore FSMs. Let the following
sets be obtained for some marked GSA Γm :

1. The set CX = {γ1, . . . , γG3} of XLCS-based Moore FSMs.
2. The set IX of inputs of chains γg ∈ CX . This set is determined as

IX =
G3⋃

g=1

I (γg). (3.44)

In (3.44), the symbol I (γg) denotes a set of inputs of an XLCS γg ∈ CX .
3. The set OX of outputs of chains γg ∈ C3. This set is determined by the following

expression:

OX =
G3⋃

g=1

O(γg). (3.45)

In (3.45), the symbol O(γg) stands for the set of outputs of an XLCS γg ∈ C3.

Let the natural state assignment be executed for states am ∈ A. In this case, the
transitions among the states could be derived by the classes Tin and Tout . Due to
the state assignment (3.26), the variable y0 is necessary.
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Fig. 3.16 Structural
diagram of PYx Moore FSM

Let us use the symbol PYX for determining theXLCS-basedMoore FSM.Accord-
ing with Definition3.9, an XLCS can have more than one output and condition
(3.26) should take place for conditional transitions, too. It means that the variable
y0 can be represented as

y0 = y10 ∨ y20 . (3.46)

The variable y10(y
2
0 ) is generated by BIMF(BMO). It determines the following struc-

ture of PYX Moore FSM (Fig. 3.16).
The main difference of PYX FSM from PYE and PYN FSMs is existence of the

following functions:

y10 = f1(X, T ); (3.47)

y20 = f2(T ). (3.48)

We do not discuss the mode of operation of PYX FSM. It is rather obvious.
The set CX should correspond to the following conditions:

A(γg) �= ∅ (g = 1, . . . ,G3); (3.49)
G3⋃

g=1

A(γg) = A \ {a1}; (3.50)

A(γi ) ∩ A(γ j ) = ∅ (i �= j; i, j ∈ {1, . . . ,G3}); (3.51)

G3 → min . (3.52)

The set CX corresponding to (3.49)–(3.52) can be constructed in two steps:

1. Finding the set of main inputs I MX for a given GSA Γ .
2. Constructing an XLCS for each input I 1g ∈ I MX .

Let us discuss the execution of these steps for the GSA Γ4. The set I MX is
constructed using Definition3.12. The vertex b(a2) is connected with outputs of
conditional variables marked by zero. So, there is the set I MX = {a2, a6, a9} and
G3 = 3.



60 3 Linear Chains in FSMs

The following procedure P4 is proposed for constructing the partition CX .

1. Put g=1.
2. Take the state with the smallest number m from the set I MX . Exclude this state

from I MX . Let us name this state a base state for XLCS γg ∈ CX .
3. Find the vertex bnext (as for P1).
4. If bnext is the end vertex, then the constructing the chain γg is terminated. Go to

step 10.
5. If bnext is an operator vertex b(as) such that the state as is already included in

some other chain, then the constructing the chain γg is terminated. Go to step
10.

6. If bnext is a conditional vertex, then find an operator vertex b(as) connected with
marked by 1 outputs of conditional vertices marking a path of GSA [4] starting
from the vertex bnext.

7. If there is no such an operator vertex (the path is finished by the end vertex),
then the constructing the chain γg is terminated. Go to step 10.

8. If the state as (from step 6) is already included into some other chain, then the
constructing the chain γg is terminated. Go to step 10.

9. If the state as (from either step 5 or step 8) is not included in some other chain,
then this state is included into the chain γg . Now, this state is considered as the
base state am . Go to step 4.

10. g = g + 1.
11. If I MX �= ∅, then go to step 2.
12. End.

Application of P4 to GSA Γ4 produces the set of XLCSs CX = {γ1, γ2, γ3}. It
includes the following chains γ1 = 〈a2, a3, a4, a5, a7, a10〉, γ2 = 〈a2, a8〉, γ3 = 〈a9〉.

As in the previous cases, the natural state assignment is executed by the procedure
P2. In the case of PYX(Γ4), it gives the following outcome (Table3.7).

The design method for PYX More FSM includes the following steps:

1. Constructing the set of states A.
2. Constructing the set of extended LCSs CX .
3. Executing the natural state assignment.
4. Constructing the structure table of PYX Moore FSM.
5. Constructing the system of input memory functions and the function y10 .
6. Constructing the table of microoperations.
7. Implementing the FSM logic circuit.

We discuss this method in details in Chap.8.

Table 3.7 Natural state assignment for Moore FSM PYX(Γ4)

Step γg γ1 γ2 γ3

1 am a2 a3 a4 a5 a7 a10 a6 a8 a9
2 i 1 2 3 4 5 6 7 8 9

3 K (am) 0001 0010 0011 0100 0101 0110 0111 1000 1001

http://dx.doi.org/10.1007/978-3-319-59837-6_8
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3.5 Principles of Hardware Reduction for LCS-Based
Finite State Machines

To generalize the discussed here principles, let us define the object of FSM. It can
be:

1. state am ∈ A;
2. LCS;
3. class of states;
4. class of LCSs;
5. collection of microoperations.

To reduce the number of LUTs in the circuit of BIMF, it is necessary to diminish
the numbers of arguments and terms in the system of input memory functions [9].
One of the possible approaches for solution of this problem is a code sharing [8]. Let
us discuss this principle for cases of NLCS and ELCS-based FSMs.

Let someGSAΓ includeG2NLCSs βg ∈ CN . Let us encode each chain βg ∈ CN

by a binary code K (βg) having RG2 bits:

RG2 = �log2 G2. (3.53)

States am ∈ A are distributed among the sets A(βg). Let it be M2
g = |A(βg)|. Let

us find the maximal amount of states MG2 = max(M2
1 , . . . , M

2
G2}. Let us encode

each state am ∈ A by a binary code C(am) having RC2 bits:

RC2 = �log2 MG2. (3.54)

Let us point out that different states am ∈ A can have the same codes C(am). But
any chain βg ∈ C2 should include only the states with different codes C(am). Let
the following rule be used for the codes C(am):

C(agi+1) = C(agi ) + 1 (g = 1, . . . ,G2; i = 1, . . . , Fg − 1). (3.55)

The condition (3.55) means that the natural state assignment is executed for the
states am ∈ A(βg) (g = 1, . . . ,G2). Let us use the variables τr ∈ τ for encoding
the chains, where |τ | = RG2. Let us use the variables Tr ∈ T for state assignment,
where |T | = RC2.

The approach allows to represent any code K (am) as the following concatenation:

K (am) = K (βg) ∗ C(am). (3.56)

In (3.56), the sign * is used for the operation of concatenation.
Such a representation of the code of any object is named the code sharing. The

formula (3.56) determines the structure diagram of PYNC Moore FSM (Fig. 3.17).
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Fig. 3.17 Structural diagram
of PYNC Moore FSM

In PYNC FSM, the block BIMF implements input memory functions loaded into
the counter CT(Φ) and register RG(Ψ ):

Φ = Φ(τ , X); (3.57)

Ψ = Ψ (τ , X). (3.58)

The block BMO implements the functions

Y = Y (τ , X); (3.59)

y0 = y0(τ , X). (3.60)

Let the following condition take place:

RG2 < R. (3.61)

In this case, the systems Φ and Ψ of PYNC FSM include few arguments than the
system Φ for PY Moore FSM. The best case for applying the code sharing for
NLCS-based FSM is determined by the following relation:

RG2 + RC2 = R. (3.62)

Let us point out that modern EMBs are very powerful. It means that only a single
EMB is enough for implementing the systems (3.59)–(3.60) even if condition (3.62)
is violated.

This very principle can be used for ELCS-based Moore FSMs. Let us replace
Eqs. (3.53)–(3.56) by the following equations:

RG1 = �log2 G1; (3.63)

RC1 = �log2 MG1; (3.64)

C(agi+1) = C(agi ) + 1 (g = 1, . . . ,G1; i = 1, . . . Fg − 1); (3.65)

K (am) = K (αg) ∗ C(am). (3.66)

The meaning is obvious for each element of formulae (3.63)–(3.66). Let us use
the variables τr for encoding of the chains αg ∈ CE . Let us use the variables Tr for
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Fig. 3.18 Structural diagram
of PYEC Moore FSM

encoding of the components am ∈ A(αg). The set τ includes GG1 elements, the set
T includes RC1 elements.

In the case of elementary LCSs, each of them has only a single input. Let us start
the natural state assignment for each ELCS αg ∈ C1 from the code C(am) having all
zeros. It means that it is enough to connect all informational inputs of D flip-flops
of CT with values of logic zeros. In this case, there is no need in functions Φ. Now,
the structural diagram of PYEC Moore FSM can be obtained (Fig. 3.18).

The blockBIMFof PYEC FSM implements only RC1 functions. Because of RC2 ≤
R, it is the minimal possible number of functions.

The second issue of possible hardware reduction is the existence of pseudoe-
quivalent objects. Every pair of objects with equivalent transitions determines two
pseudoequivalent objects. Obviously, this relation is reflexive (any object is pseu-
doequivalent to itself), symmetric (if some object A is pseudoequivalent to some
object B, then the object B is pseudoequivalent to the object A) and transitive (if
some object A is pseudoequivalent to some object B which is pseudoequivalent to
some object C, then the object A is pseudoequivalent to the object C). As it is known
[4], such kind of relations determine some partition of the set of objects.

The following partitions can be found for GSA γ4. The partition ΠA =
{B1, . . . , B8} includes the classes of PES. There are the following classes: B1 = {a1},
B2 = {a2}, B3 = {a3}, B4 = {a4}, B5 = {a5}, B6 = {a6}, B7 = {a7, a8, a9} and
B8 = {a10}. The partition ΠCE = {B1, . . . , B5} includes the classes of pseudoe-
quivalent ELCSs αg ∈ CE . There are the following classes: B1 = {α1}, B2 = {α2},
B3 = {α3,α5,α6}, B4 = {α4}, B5 = {α7}. The partition ΠCN = {B1, . . . , B4}
includes the classes of pseudoequivalent NLCS βg ∈ C2. There are the following
classes: B1 = {β1}, B2 = {β1,β4,β5}, B3 = {β3}, B4 = {β6}. There is no partition
ΠCX having at last a single class with more than 1 XLCS γg ∈ CX . It is explained
by existing more than one output in the class XLCSs γ1 and γ2.

Two approaches are used for taking into account the existence of pseudoequivalent
objects. The first is the optimal encoding of objects. It assumes such an encoding
when a class is represented by minimum possible amount of generalized intervals of
Boolean space. It is the optimal state assignment in the case of PY Moore FSM.

In the case of P0Y(4), the optimal state codes are shown in Fig. 3.19.
The following codes of classes Bi ∈ ΠA can be derived from the Karnaugh

map (Fig. 3.19): K (B1) = *000, K (B2) = 0010, K (B3) = 011*, K (B4) = *1*1,
K (B5) = *100, K (B6) = 101*, K (B7) = *0*1 and K (B8) = 1***.
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Fig. 3.19 Optimal state codes of Moore FSM P0Y(4)

The second approach is based on transformation of object into the classes of
pseudoequivalent objects. It assumes using additional variables for encoding of the
classes, as well as some special code transformer. As example of this approach, the
PCY Moore FSM can be taken (Fig. 3.10).

We discuss peculiarities of all these issues in the next chapters of this book. Let
us use the following denotations: EFSM is an FSM based on ELCS; NFSM is an
FSM based on NLCS; XFSM is an FSM based on XLCS.
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Chapter 4
Hardware Reduction for Moore UFSMs

Abstract The Chapter is devoted to the problems of hardware reducing for FPGA-
based logic circuits of Moore FSMs. The design methods are proposed based on
using more than one source of codes of classes of pseudoequivalent states (PES).
Two structural diagrams and design methods are proposed for Moore FSM based on
transformation of objects. The first method is based on transformation the unitary
codes of microoperations into the codes of PES. The second approach is connected
with transformation of the codes of collections of microoperations into the codes of
PES. The last part of the Chapter is devoted to the replacement of logical conditions.

4.1 Using Two and Three Sources of Class Codes

As it is pointedout before, the embeddedmemoryblocks ofFPGAsare reconfigurable
[7]. They have the constant size (V0) but the number of both cells (V ) and outputs
(tF) could be different. The following relation takes place:

V =
⌈
V0

tF

⌉
. (4.1)

Some methods are discussed in [5] targeting hardware reduction in CPLD-based
Moore FSMs. The methods are based on using up to three sources of codes of classes
Bi ∈ ΠA. These sources are the state register RG, the block of code transformer BCT
and the block of microoperations BMO. The following seven situations are possible
(Table4.1).

If some block produces the class code, then the corresponding cell of Table4.1
contains the symbol “•”. There are more than one source for models PCY1–PCY3.
Using these models is based on the wide fan-in of PAL-based macrocells of CPLD
[6]. The acronym PAL stands for programmable array logic. But LUTs have a very
limited fan-in (up to 8). It means that the PAL-based models cannot be directly used
for the hardware reduction in LUT-based FSMs. Let us discuss these approaches.

Let us construct the partitionΠA = {B1, . . . ,BI} for the set A. Each class Bi ∈ ΠA

includes pseudoequivalent states. Let us construct a system of functions
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Table 4.1 Models of PCY Moore FSMs

Model/Sources PY PCY PY1 PCY1 PY2 PCY2 PCY3

RG • ◦ ◦ • • ◦ •
BCT ◦ • ◦ • ◦ • •
BMO ◦ ◦ • ◦ • • •

Bi =
I∨

i=1

CmiAm. (4.2)

In (4.2), Cmi is a Boolean variable equal to 1 if and only if (iff) am ∈ Bi. Let
us encode the states am ∈ A so that each function of system (4.2) is represented by
minimum possible number of product terms. Such an encoding is named an optimal
state assignment [3].

Let ΠRG ⊆ ΠA be a set of classes Bi ∈ ΠA such that each class is represented by
a single interval of R-dimensional Boolean space. If ΠRG = ΠA, then the PY FSM
should be used. Let us discuss the case when ΠRG �= ΠA.

Let ΠTC be a set of classes Bi ∈ ΠA required the transformation. Obviously, there
is ΠTC = ΠA\ΠRG . Let the set ΠTC include ITC elements. To encode the classes
Bi ∈ ΠTC , it is enough RTC variables:

RTC = ⌈
log2 ITC

⌉
. (4.3)

Let TEMB be a set of possible amounts of EMB outputs. For up-to-day FPGAs,
there is a set TEMB = {1, 2, 4, 8, 16, 32, 64}[1, 8]. There are R inputs in the BMO.
Therefore, a standard EMB should be configured in such a way that V = 2R. After
the configuration, this EMB block can implement microoperations yn ∈ Y . It has tF
outputs, where tF is the nearest number from TEMB greater or equal to the value

t0 =
⌈
V0

2R

⌉
. (4.4)

The BMO generates N microoperations. The required number of EMBs in BMO is
determined as

n1 =
⌈
N

tF

⌉
. (4.5)

There are n1 · tF outputs in all EMBs forming the circuit of BMO. There are tBMO

“free” outputs which are not used for generating the microoperations. This value is
determined as

tBMO = n1tF − N . (4.6)
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Fig. 4.1 Structural diagram
of PY2 Moore UFSM

Let the following condition take place:

tBMO ≥ RTC + 1. (4.7)

In this case, the block BTC is absent. Using the notation from Table4.1, we can say
that the condition (4.7) leads to PY2 Moore UFSM (Fig. 4.1).

Now, the LUTer is represented by two blocks. The LUTer1 implements the system

Φ1 = Φ1(T ,X1). (4.8)

The block LUTer2 implements the system

Φ2 = Φ2(Z,X2). (4.9)

The variables zr ∈ Z encode the classes Bi ∈ ΠTC . The set Z includes RTC ele-
ments. It is quite possible that only some parts of the set X are used for generation
functions (4.8) and (4.9). Obviously, there is X1 ∪ X2 = X. In the general case, there
is X1 ∩ X2 �= ∅. The choice of the state code is executed by the variable yM using a
multiplexer MX. For example, the code is determined by functions Φ1 (Φ1) if there
is yM = 0 (yM = 1). Existance of yM explains the second member in the right part
of (4.7).

The EMBer generates microoperations Y and the following functions:

Z = Z(T); (4.10)

yM = yM(T). (4.11)

Let the following conditions take places:

ΠRG �= ΠA; (4.12)

tBMO = 0. (4.13)

It leads to PCY1 Moore UFSM (Fig. 4.2). In this case, the functions (4.10)–(4.11)
are generated by the block LUTer3. A designer can use an additional EMB block to
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Fig. 4.2 Structural diagram of PCY1 Moore UFSM

Fig. 4.3 Structural diagram
of PCY2 Moore UFSM

implement the functions (4.10)–(4.11). Of course, it leads to the transformation of
PCY1 Moore UFSM into PY2 Moore UFSM.

Let the following conditions take places:

ΠRG = ∅; (4.14)

tBMO ≤ RB + 1. (4.15)

In this case, there are no class codes generated by RG. To eliminate MX, we propose
to generate tBMO bits of K(Bi) by BMO. The rest of the code is generated by the
block BCT (Fig. 4.3). We name the UFSM shown in Fig. 4.3 a PCY2 Moore UFSM.

In this model, the LUTer2 implements functions

τ = τ (T). (4.16)

These functions represent (RB − tBMO) bits of the code K(Bi). The EMBer generates
the microoperations Y represented by the system (4.16). Also it generates functions
(4.10) representing tBMO bits of the class codes.

Let the condition (4.15) take place, as well as the following conditions:

ΠRG = ∅; (4.17)

ΠTC = ∅. (4.18)

In this case, three sources of class codes should be used. It leads to PCY3 Moore
UFSM (Fig. 4.4).
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Fig. 4.4 Structural diagram
of PCY3 Moore UFSM

To simplify the block MX, functions τ and Z forming codes K(Bi) of the classes
Bi ∈ ΠTC are used. The meaning is clear for all functions and variables shown in
Fig. 4.4.

4.2 Design of UFSMs with Three Sources

Analysis of models proposed in Sect. 4.1 shows that the model PCY3 possesses the
most general nature. Let us discuss the design method for PCY3 Moore UFSM. It
includes the following steps:

1. nConstruction of partitionΠA = {B1, . . . ,BI} of the set of states A by the classes
of pseudoequivalent states.

2. Construction of the system B(A).
3. Optimal state encoding targetedminimizing the number of terms in systemB(A).

Construction of the set ΠRG .
4. Calculation of the values of tBMO and RTC . Construction of the sets τ and Z .
5. Encoding of the classes Bi ∈ ΠTC .
6. Construction of the table of LUTer1. Construction of the system Φ1.
7. Construction of the table of LUTer2. Construction of the system Φ2.
8. Construction of the table of LUTer3. Construction of the system τ .
9. Construction of the table of EMBer.
10. Implementing UFSM logic circuit with particular LUTs and EMBs.

Let us discuss an example of design for Moore UFSM PCY4(�5). Let us start
from the transformed table of transitions constructed on the base of some GSA
Γ5 (Table4.2). This table determines transitions for some Moore FSM PY(Γ5).
This table differs from a classical table of transitions because it represents the
transitions for classes of PES [3]. As follows from Table4.2, there are the follow-
ing sets and parameters: A = {a1, . . . , a14}, M = 14, R = 4, T = {T1, . . . ,T4} and
Φ = {D1, . . . ,D4}.
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Table 4.2 Transformed table
of transitions of Moore FSM
PY(Γ5)

Bi as Xh h

B1 a2 x1 1

a3 x̄1x2 2

a5 x̄1x̄2 3

B2 a1 x3 4

a10 x̄3 5

B3 a4 x2 6

a7 x̄2x3 7

a6 x̄2x̄3x4 8

a13 x̄2x̄3x̄4 9

B4 a8 1 10

B5 a3 x3 11

a9 x̄3 12

B6 a2 x4 13

a11 x̄4x5 14

a12 x̄4x̄5x6 15

a14 x̄4x̄5x̄6 16

B7 a1 x3x6 17

a3 x3x̄6 18

a10 x2x̄3 19

a12 x̄2x̄3 20

Let the following partitionΠA = {B1, . . . ,B7} be constructed for theMoore FSM
PY(Γ5), where B1 = {a1}, B2 = {a5, a12}, B3 = {a11, a13, a14}, B4 = {a3, a6}, B5 =
{a2, a41}, B6 = {a7, a8}, B7 = {a9, a10},. This partition can be represented by the
following system B(A):

B1 = A1;
B2 = A5;
B3 = A11 ∨ A13 ∨ A14;
B4 = A3 ∨ A6; (4.19)

B5 = A2 ∨ A4;
B6 = A7 ∨ A8;
B7 = A9 ∨ A10.

One of the variants of optimal state assignment is shown in Fig. 4.5.
Using the state codes from Fig. 4.5, the following system can be obtained for the

initial system B(A):
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Fig. 4.5 Optimal state codes
for Moore FSM PY(Γ5)

B1 = T̄1T̄2T̄4;
B2 = T2T3T̄4;
B3 = T2T̄3T̄4 ∨ T̄1T2T̄3;
B4 = T̄1T̄2T4; (4.20)

B5 = T1T̄2T4;
B6 = T1T̄2T̄3T̄4 ∨ T2T3T4;
B7 = T1T2T̄3T4 ∨ T̄2T3T̄4.

As follows from (4.20), the classes B1,B2,B4,B5 are represented by single gen-
eralized intervals of four-dimensional Boolean space. It gives the following sets of
classes for Moore FSM PY(Γ5): ΠRG = {B1,B2,B4,B5} and ΠTC = {B3,B6,B7}.

Let it be the set Y = {y1, . . . , y6} for Moore FSM PY(Γ5). Let the following
system of functions can be derived from GSA Γ5:

y1 = A3 ∨ A5 ∨ A6 ∨ A14;
y2 = A2 ∨ A7 ∨ A11 ∨ A13;
y3 = A2 ∨ A4 ∨ A8 ∨ A9 ∨ A10;
y4 = A4 ∨ A5 ∨ A8 ∨ A10 ∨ A12;
y5 = A3 ∨ A6 ∨ A8 ∨ A9 ∨ A14;
y6 = A2 ∨ A3 ∨ A4 ∨ A6 ∨ A7.

(4.21)

The system (4.21) is used for constructing a part of the table of EMBer.
Let us use an FPGA chip including EMBs with the following configurations:

128 × 1, 64 × 2, 32 × 4, 16 × 8, (bits). It gives the set TEMB = {1, 2, 4, 8}, as well
as the value V0 = 128. In the case of PY(Γ5) there is R = 4. Using (4.4), the value
t0 = 8 can be found. Using (4.5), we can find the value n1 = 1. Using (4.6), the
value tBMO = 2 can be found. It is necessary RTC = 2 bits for encoding of the classes
Bi ∈ ΠTC . So, the condition (4.7) is violated and the model PCY3 can be used. In the
case of UFSM PCY3(�5), the following equality is true: |τ | = |z| = 1.

Let us encode the classes Bi ∈ ΠTC in the following way: K(B3) = 01, K(B6) =
10, and K(B7) = 00. It gives the following equations:
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Table 4.3 Table of LUTer1 for Moore UFSM PCY3(Γ5)

B1 K(Bi)T1T2T3T4 as K(as) Xh Φh h

B1 0 ∗ 00 a2 1001 x1 D1D4 1

a3 0001 x̄1x2 D4 2

a5 0110 x̄1x̄2 D2D3 3

B2 ∗110 a1 0000 x3 – 4

a10 1010 x̄3 D1D3 5

B4 00 ∗ 1 a8 1111 1 D1D2D3D4 6

B5 10 ∗ 1 a3 0001 x3 D4 7

a9 1101 x̄3 D1D2D4 8

τ1 = B6 = T1T̄2T̄3T̄4 ∨ T2T3T4;
τ2 = B3 = T2T̄3T̄4 ∨ T̄1T2T̄3;

(4.22)

To form the system (4.22), the equations from the system (4.20) are used.
The set τ includes variables implemented by the LUTer3. So, those functions τr

from (4.22) should be placed into τ whose circuits are implemented with theminimal
amount of LUTs. Let us use LUTs having S = 4. It means that each of functions
(4.22) is implemented using only single LUT. So, the sets τ and Z can be constructed
in the arbitrary way. Let us form the following sets: τ = {τ1} and Z = {z1}. So, the
set τ includes the first bit of a class code, whereas the set Z contains the second.

The table of LUTer1 includes transitions for classes Bi ∈ ΠRG (Table4.3).
This table is almost the same as a transformed structure table of Moore FSM. The

class codes are taken from system (4.20). If some variable Tr ∈ T is absent in the
equation forBi ∈ ΠRG , then it is represented by “*” in the code ofK(Bi). For example,
there is no variable T2 in the function B1 (4.20). So, the code 0 ∗ 00 corresponds to
the class B1 ∈ ΠRG . As follows from Table4.3, there is the set X1 = {x1, x2, x4}.

The LUTer1 is characterized by the system (4.8). The following functions can be
derived from Table4.3:

D1 = F1 ∨ F5 ∨ F6 ∨ F8;
D2 = F3 ∨ F6 ∨ F8;
D3 = F3 ∨ F5 ∨ F6;
D4 = F1 ∨ F2 ∨ F6 ∨ F7 ∨ F8.

(4.23)

The terms of this system are determined in the standard way. For example, F1 =
T̄1T̄3T̄4x1, F2 = T̄1T̄3T̄4x̄1x2, and so on.

The table of LUTer2 includes transitions for classes B2 ∈ ΠTC (Table4.4).
This table is constructed on the base of the table of transitions (or the structure

table) of Moore FSM. The logic circuit of LUTer2 is represented by the system (4.9).
The following setX2 = {x2, . . . , x6} can be derived fromTable4.4. The product terms
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Table 4.4 Table of LUTer2 for Moore UFSM PCY3(Γ5)

Bi K(Bi)τ1z1 as K(as) Xh Φh h

B3 00 a4 1011 x2 D1D3D4 1

a7 1000 x̄2x3 D1 2

a6 0011 x̄2x̄3x4 D3D4 3

a13 0100 x̄2x̄3x̄4 D2 4

B3 10 a2 1001 x4 D1D4 5

a11 1000 x̄4x5 D1D2 6

a12 1110 x̄4x̄5x6 D1D2D3 7

a14 0101 x̄4x̄5x̄6 D2D4 8

B7 11 a1 0000 x3x6 – 9

a3 0001 x3x̄6 D4 10

a10 1010 x2x̄3 D1D3 11

a12 1110 x̄2x̄3 D1D2D3 12

of the system (4.9) are determined by the rows of the table of LUTer2. For example,
the following terms can be found from Table4.4: F1 = τ1z̄1x2, F2 = τ1z̄2x̄2x3, and so
on. The following system of input memory functions can be derived from Table4.4:

D1 = F1 ∨ F2 ∨ F5 ∨ F6 ∨ F7 ∨ F11 ∨ F12;
D2 = F4 ∨ F6 ∨ F7 ∨ F8 ∨ F12;
D3 = F1 ∨ F3 ∨ F7 ∨ F11 ∨ F12;
D4 = F1 ∨ F3 ∨ F5 ∨ F8 ∨ F10.

(4.24)

The table of LUTer3 is constructed to find the equations for functions τr ∈ τ . It
includes the columns am, K(am), Bi, K(Bi), τh, h. It is constructed only for classes
Bi ∈ ΠTC . In the discussed case, there is no need of this table. The equation for τ1
has been already obtained. It is included into (4.22).

The table ofEMBer includes the columnsam,K(am),Y(am), ym,Z . In the discussed
case, it includes M = 16 rows (Table4.5).

The variable yM = 0(1) for classesBi ∈ ΠRG (Bi ∈ ΠTC). The following equation
determines the input memory functions Φ:

Φ = ȳMΦ1 ∨ yMΦ2. (4.25)

This equation is used for implementing the circuit of the block MX.
The last step of design is reduced to implementing the logic circuit of UFSM. It

is connected with application of some CAD tools such as WebPack [8]. We do not
discuss this step in our book.



76 4 Hardware Reduction for Moore UFSMs

Table 4.5 Table of EMBer for Moore UFSM PCY3(Γ5)

am K(am)T1T2T3T4 Y(am)y1y2y3y4y5y6 yM Zz1

a1 0000 000000 0 0

a3 0001 100011 0 0

∗ 0010 000000 1 0

a6 0011 100011 0 0

a13 0011 010000 0 1

a14 0101 100010 0 1

a5 0110 100100 0 0

∗ 0111 000000 0 0

a7 1000 010001 1 0

a2 1001 011001 1 0

a10 1010 001100 1 1

a4 1011 001101 1 0

a11 1100 010000 0 1

a9 1101 001010 0 1

a12 1110 000100 0 0

a8 1111 001110 1 0

4.3 Design of UFSMs with Two Sources

Let us discus an example of design for UFSM PCY1(�5). If an FPGA chip in
use includes EMBs having the configuration 16 × 6, then the condition (4.13)
takes place. Let us use the state codes from Fig. 4.5. It gives two sets of classes:
ΠRG = {B1,B2,B4,B5} and ΠTC = {B3,B6,B7}. It is enough to have two variables
for encoding the classes Bi ∈ ΠTC . It gives the set Z = {z1, z2}. Let an FPGA chip
in use include LUTs having four inputs (S=4). Therefore, the following condition
takes place:

S ≥ R. (4.26)

In this case, each function from system (4.10) is implemented using a single LUT.
So, the class codes can be arbitrary. Let us use the following codes: K(B3) = 00,
K(B6) = 01 and K(B7) = 10.

Obviously, the tables of LUTer1 are the same forUFSMsPCY3(�5) andPCY1(�5).
The same is true for the systems Φ1. The tables of LUTer2 have equal structures but
the codes are different in the columnK(Bi). In the case of UFSMPCY1(�5), Table4.6
represents the table of LUTer2.

Obviously, the systemΦ2 is the same as (4.24). But it includes the following terms:
F1 = z̄1z̄2x2, F2 = z̄1z̄2x̄2x3, and so on. The code 11 can be used for optimizing these
terms. It leads, for example, to terms F5 = z2x4, F10 = z1x3x̄6, and so on.
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Table 4.6 Table of LUTer2 for Moore UFSM PCY1(Γ5)

Bi K(Bi) as K(as) Xh Φh h

B3 00 a4 1011 x2 D1D3D4 1

a7 1000 x̄2x3 D1 2

a6 0011 x̄2x̄3x4 D3D4 3

a13 0100 x̄2x̄3x̄4 D2 4

B6 01 a2 1001 x4 D1D4 5

a11 1100 x̄4x5 D1D2 6

a12 1100 x̄4x̄5x6 D1D2D3 7

a14 0101 x̄4x̄5x̄6 D1D4 8

B7 10 a1 0000 x3x6 – 9

a3 0001 x3x̄6 D4 10

a10 1010 x2x̄3 D1D3 11

a12 1110 x̄2x̄3 D1D2D3 12

Table 4.7 Table of LUTer3 for Moore UFSM PCY1(Γ5)

am K(am) Bi K(Bi) Zh h

a7 1000 B6 01 z2 1

a8 1111 B6 01 z2 2

a9 1101 B7 10 z1 3

a10 1010 B7 10 z1 4

To find Boolean functions (4.10), the table of LUTer3 should be constructed
(Table4.7).

There are no states am ∈ B3 in Table4.7. It has sense due to K(B3) = 00. The
following equations can be derived from Table4.7:

z1 = T1T2T̄3T4 ∨ T1T2T3T̄4;
z2 = T1T̄2T̄3T̄4 ∨ T1T2T3T4.

(4.27)

Let yM = 0 for classes Bi ∈ ΠRG . It leads to the following equation:

yM = A1 ∨ A2 ∨ A3 ∨ A4 ∨ A5 ∨ A6 ∨ A12. (4.28)

Of course, this functions can be represented as:

yM = A7 ∨ A8 ∨ A9 ∨ A10 ∨ A11 ∨ A13 ∨ A14. (4.29)

Because the condition (4.26) takes place, each from Eqs. (4.28)–(4.29) is imple-
mented using only a single LUT. If this condition is violated, the following equation
can be used:
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Fig. 4.6 Two-level structure
of LUTer3

yM = f (Bi) (Bi ∈ ΠTC). (4.30)

In the discussed case, the following equation can be obtained:

yM = B3 ∨ B6 ∨ B7 = z̄1 ∨ z̄2. (4.31)

This approach results in two-level structure of LUTer3 (Fig. 4.6).
Let the condition (4.12) take place, as well as the following condition:

tBMO = 1. (4.32)

In this case, the free output of EMBer can be used for generating the variable yM .
It changes only the table of EMBer for UFSM PCY1.

In the discussed case, the condition (4.13) takes place. The tables of EMBer are
practically the same for UFSMs PCY3(Γ5) and PCY1(Γ5). But columns yM and z1
are eliminated from Table4.5 to construct the table of EMBer for PCY1(Γ5).

Let the following condition be true:

tBMO > 1. (4.33)

In this case, the model PCY2 can be used even if ΠRG �= ∅. Let us discuss an
example of design for UFSM PCY2(Γ5). The proposed design method includes the
following steps:

1. Construction of the partition ΠA.
2. State assignment.
3. Encoding of the classes Bi ∈ PiA.
4. Constructing the table of LUTer1.
5. Constructing the table of LUTer2.
6. Constructing the table of EMBer.
7. Implementing UFSM logic circuit.

The first step of the method is already executed. There is the partition ΠA =
{B1, . . . ,B7} with I = 7. Let us encode the states am ∈ A in the trivial order:
K(a1) = 0000,K(a2) = 0001, . . . ,K(a14) = 1101. Using (3.16), the value of RB

can be found. Because of I = 7, there is RB = 3. Let us encode the classes Bi ∈ ΠA

in the following manner: K(B1) = 000,K(B2) = 001, . . . ,K(B7) = 110.
Let an FPGA in use have EMBs with the configuration 16× 8. In the discussed

case, it gives tBMO = 2. Now, the following sets can be constructed: τ = {τ1} and
z = {z1, z2}. The table of LUTer1 can be constructed as an expansion of Table4.2.

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 4.8 Table of LUTer1 for Moore UFSM PCY1(Γ5)

Bi K(Bi)τz1z2 as K(as)T1T2T3T4 Xh Φh h

B1 000 a2 0001 x1 D4 1

a3 0010 x̄1x2 D3 2

a5 0100 x̄1x̄2 D2 3

B2 001 a1 0000 x3 – 4

a10 1001 x̄3 D1D4 5

B3 010 a4 0011 x2 D3D4 6

a7 0110 x̄2x3 D2D3 7

a6 0101 x̄2x̄3x4 D2D3 8

a13 1100 x̄2x̄3x̄4 D1D2 9

B4 011 a8 0111 1 D2D3D4 10

B5 100 a3 0010 x3 D3 11

a9 1000 x̄3 D1 12

B6 101 a2 0001 x4 D4 13

a11 1010 x̄4x5 D1D3 14

a12 1011 x̄4x̄5x6 D1D3D4 15

a14 1101 x̄4x̄5x̄6 D1D2D4 16

B7 110 a1 0000 x3x6 – 17

a3 0010 x3x̄6 D3 18

a10 1001 x2x̄3 D1D4 19

a12 1011 x̄2x̄3 D1D3D4 20

It includes all columns of Table4.2 and three new columns: K(Bi),K(as) and Φh

(Table4.8).
In PCY1 UFSM, the LUTer1 implements the system of input memory functions

Φ = Φ(Z, τ ,X). (4.34)

In the discussed case, the system (4.34) includes the following product terms:F1 =
τ̄1z̄1z̄2,F1 = τ̄1z̄1z̄2x̄1x2, . . . ,F1 = τ1z1z̄2x̄3x̄2. For example, the following Boolean
function can be derived from Table4.8:

D2 = F3 ∨ [F7 ∨ F8 ∨ F9] ∨ [F10] ∨ [F16]. (4.35)

The expressionF7 ∨ F8 ∨ F9 can be optimized and represented as τ̄z1z̄2x̄2. Taking
into account the input assignment 111, the expressions for [F10] and [F16] can be
simplified: [F10] = zzz2;[F16] = τ1z2x̄4x̄5x̄6. Now, the Eq. (4.35) can be represented
as the following:

D2 = τ̄1z̄1z̄2x̄1x2 ∨ τ̄1z1z̄2x̄2 ∨ z1z2 ∨ τ1z2x̄4x5x̄6. (4.36)

Similar transformation can be done for all input memory functions Dr ∈ Φ.
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Table 4.9 Table of EMBer for Moore UFSM PCY1(Γ5)

am K(am)T1T2T3T4 Y(am)y1y2y3y4y5y6 Zz1z2

a1 0000 000000 00

a2 0001 011001 00

a3 0010 100011 11

a4 0011 001101 00

a5 0100 100100 01

a6 0101 100011 11

a7 0110 010001 01

a8 0111 001110 01

a9 1000 001010 10

a10 1001 001100 10

a11 1010 010000 10

a12 1011 000100 01

a13 1100 010000 10

a14 1101 100010 10

To get an equation for τ1 ∈ τ , it is necessary to find all class codes with the
first position equal to 1. In the discussed case, the following classes can be found:
B5,B6,B7. It gives the following equation:

τ1 = A2 ∨ A4 ∨ A7 ∨ A8 ∨ A9 ∨ A10. (4.37)

This equation is used for implementing the circuit of LUTer2. Let S = 4, then
this block is implemented by a single LUT.

The table of EMBer is constructed in the trivial way. It includes the columns: am,
K(am), Y(am), Z . In the discussed case, it includes 16 rows (Table4.9).

Let us explain the column Z . For example, the class B2 ∈ ΠA includes the states
a5, a12 ∈ A. Because of K(B2) = 001, the rows a5 and a12 contain 01 in the column
Z . This principle is used for filling all rows am in Table4.9.

Let us point out that the model PCY1 does not include the block MX. So, it can be
expected that it has the minimum propagation time among all discussed models. But
in general case, equations are more complex for functionsDr ∈ Φ of PCY1. It means
that the final conclusion can be done after the implementation of the UFSM logic
circuit. But the PCY1 UFSM can be considered as an alternative for other structures
if the condition (4.13) has no place.

Let us point out that the state assignment can be executed so as to optimize the
circuit of LUTer1. Let us discuss the following variant of state assignment (Fig. 4.7).

As follows from the Karnaugh map (Fig. 4.7), the Eq. (4.37) can be represented
as:

τ1 = T1. (4.38)

It means that circuit of LUTer2 is reduced up to a wire (Fig. 4.8).
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Fig. 4.7 Variant of state
assignment for Moore
UFSM PCY1(�5)

Fig. 4.8 Structural diagram
of PCY1(�5) with
optimizing the LUTer2

4.3.1 Synthesis of UFSMs with Transformation
of Microoperations

This method is based on a transformation of microoperations yn ∈ Y into the codes
of classes of PES Bi ∈ ΠA. It is one of the methods that belongs to the class of object
transformation methods [2]. We discuss this approach in details in Chap.5.

Let Q be a number of different collections of microoperations Yq ⊆ Y for a GSA
Γ . Obviously, the following condition takes place:

Q ≤ M. (4.39)

LetMq be a number of states am ∈ A including a CMO Yq (q = 1, . . . ,Q). Let us
find the value

Mmax = max(M1, . . . ,MQ). (4.40)

This parameter is equal to the cardinality number of the set IS including identifiers
of states am ∈ A. Now each state am ∈ A can be represented as the following vector

am = 〈Im,Y(am)〉 (m = 1, . . . ,M). (4.41)

If Y(am) is a CMO Yq such that Mq = 1, then Im = I1. The identifiers should be
different for states am, as ∈ A if Y(am) = Y(as). Let us encode identifiers Im ∈ IS by
binary codes K(Im) having RI bits:

RI = �log2 Mmax�. (4.42)

http://dx.doi.org/10.1007/978-3-319-59837-6_5
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Fig. 4.9 Structural diagram
of PYY Moore UFSM

Let us use the variables zr ∈ Z for encoding of identifiers, where |Z| = RI .
Let us encode the classes Bi ∈ ΠA by binary codes K(Bi) having RB bits. Let an

FPGA chip in use include EMBs such that the following condition is true:

V0 ≥ 2N+RI · RB. (4.43)

In this case, the structural diagram of PYY Moore UFSM is proposed (Fig. 4.9).
In PYYFSM, the set Φ includes N + RI elements. The LUTer implements the

system of input memory functions Φ = Φ(τ , x) Two sets of variables are generated
by RG, namely, the microoperations yn ∈ Y and the additional variables zr ∈ Z . The
EMBer implements the system.

τ = τ (Z,Y). (4.44)

The proposed design method for PYY Moore UFSM includes the following steps:

1. Marking the initial GSA Γ by states of Moore FSM.
2. Constructing the collections of microoperations.
3. Constructing the set of identifiers.
4. Representing the states by pairs 〈 identifier, CMO 〉.
5. Constructing the partition ΠA.
6. Encoding of the classes of PES.
7. Encoding of the identifiers Im ∈ IS.
8. Constructing the table of LUTer.
9. Constructing the table of EMBer.
10. Implementing the UFSM logic circuit.

Let us discuss an example of design for PYY(�6) Moore UFSM. The marked
GSA Γ6 is shown in Fig. 4.10.

The following sets and their parameters can be found from GSA Γ6: X =
{x1, . . . , x5}, Y = {y1, . . . , x6}, A = {a1, . . . , a10}, L = 5, N = 6, M = 10. There-
fore, there is R = 4 and it defines the sets T = {T1, . . . ,T4} and Φ = {D1, . . . ,D4}.

There are Q = 7 different collections of microoperations in the discussed case:
Y1 = ∅,Y2 = {y1, y2},Y3 = {y2, y4},Y4 = {y3},Y5 = {y1, y4, y5},Y6 = {y5, y6},Y7 =
{y3, y5}. Let us find the values ofMq. Analysis of GSA Γ6 gives the following values:
Mq = 2 for q ∈ {2, 3, 4} and Mq = 1 for other CMOs. It means that Mmax = 2 and
IS = {I1, I2}. It gives RI = 1 and Z = {z1}. Now, the following pairs (4.41) can be
constructed for states am ∈ A (Table4.10).
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Fig. 4.10 Initial marked GSA Γ6

The following partition ΠA can be found for the set A: ΠA = {B1, . . . ,B5}. It
includes the classes B1 = {a1}, B2 = {a2, a3, a4}, B3 = {a5}, B4 = {a6, a7}, B5 =
{a8, a9, a10}. So, there is I = 5. It determines the value RB = 3 and the set τ =
{τ1, τ2, τ3}. Let us encode the classes Bi = ΠA in the following manner: K(B1) =
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Table 4.10 Identification of states for PYY(�6)

am a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Im I1 I1 I1 I1 I2 I2 I1 I1 I2 I1
Y(am) Y1 Y2 Y3 Y4 Y4 Y2 Y5 Y6 Y3 Y7

000,K(B2) = 001, . . . ,K(B5) = 100. Let us encode the identifiers: K(I1) = 0 and
K(I2) = 1.

To construct the table ofLUTer, let us construct the systemof generalized formulae
of transitions for the classes Bi ∈ ΠA. It is the following system:

B1 = x1a2 ∨ x̄1x2a3 ∨ x̄1x̄2a4;
B2 = x3a5 ∨ x̄3x4a6 ∨ x̄3x̄4a4;
B3 = a7;
B4 = x1x3a5 ∨ x1x̄3a8 ∨ x̄1x5a9 ∨ x̄1x̄5a10;
B5 = x4a1 ∨ x̄4a10.

(4.45)

The table of LUTer includes the following columns: Bi, K(Bi), IS , K(IS), Y(as),
Xh,Φh, h. The columnΦh includesN + RI functions. Let the function yn corresponds
to the input memory function Dn (n = 1, . . . ,N). The pairs 〈IS,Y(a5)〉 determines
states of transitions for the right parts of formulae of system (4.45). The table of
LUTer includes H0 = 13 rows (Table4.11).

The pairs 〈IS,Y(a5)〉 are taken from Table4.10. The input memory functionD7 =
1 for the identifier I2. This table is used for deriving the system of input memory

Table 4.11 Table of LUTer for Moore UFSM PYY(�6)

Bi K(bi) Is K(Is) Y(as) Xh Φh h

B1 000 I1 0 y1y2 x1 D1D2 1

I1 0 y2y4 x̄1x2 D2D4 2

I1 0 y3 x̄1x̄2 D3 3

B2 001 I2 1 y3 x3 D3D7 4

I2 1 y1y2 x̄3x4 D1D2D7 5

I1 0 y3 x̄3x̄4 D3 6

B3 010 I1 0 y1y4y5 1 D1D4D5 7

B4 011 I2 1 y3 x1x3 D3D7 8

I1 0 y5y6 x1x̄3 D5D6 9

I2 1 y2y4 x̄1x5 D2D4D7 10

I1 0 y3y5 x̄1x̄5 D3D5 11

B5 100 I1 0 – x4 – 12

I1 0 y3y5 x̄4 D3D5 13
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functions. For example, the following expression can be found for function D1:

D1 = F1 ∨ F5 ∨ F7. (4.46)

The terms Fh in (4.46) are determined as the following conjunctions: F1 = τ̄1τ̄2τ̄3x1;
F5 = τ̄1τ̄2τ̄3x̄3x4; F7 = τ̄1τ2τ̄3. There are unused input assignments of variables
τr ∈ τ , such as 101, 110 and 111. They can be used for simplifying terms F5 (the
input assignment 101) and F7 (the input assignment 110). It gives the following
conjunctions F5 = τ̄2τ3x̄3x4 and F7 = τ2τ̄3.

The table of EMBer is constructed on the base of the following matching:

〈IM,Y(Gm)〉 → (Bi|am ∈ Bi). (4.47)

The table of EMBer includes the following columns: am, Bi, Im, Y(am), K(Im),
K(Bi),m. The columns Y(am),K(Im) form the address of cell numberm. The column
K(Bi) gives the content of the cell. In the general case, this table includes H(PYY)

rows, where
H(PYY) = 2N+RI . (4.48)

In the discussed case, the expression (4.48) gives 128 rows. Only 10 of them are
used for implementing the function (4.44). These rows are represented by Table4.12.

The main advantage of the model PYY is the highest possible performance. There
is only a single level of logic for generating microoperations. But this model can be
used only if the condition (4.43) takes place. If this condition is violated, we propose
to encode the collections of microoperations [3]. It leads to PYZ model of Moore
FSM (Fig. 4.11).

In PYZFSM, the set Φ includes RI + RY elements, where the value of RY is
determined as

RY = �log2 Q�. (4.49)

Table 4.12 Part of table of EMBer for Moore UFSM PYY(�6)

am Bi Im Y(am)y1y2y3y4y5y6 K(Im)z1 K(Bi)τ1τ2τ3 m

a1 B1 I1 000000 0 000 1

a2 B2 I1 110000 0 001 2

a3 B2 I1 010100 0 001 3

a4 B2 I1 001000 0 001 4

a5 B3 I2 001000 1 010 5

a6 B4 I2 110000 1 011 6

a7 B4 I1 100110 0 011 7

a8 B5 I1 000011 0 100 8

a9 B5 I2 010100 1 100 9

a10 B5 I1 001010 0 100 10
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Fig. 4.11 Structural
diagram of PYZ Moore FSM

The variables zr ∈ Z1 are used for encoding of identifiers Im ∈ IS, where |Z1| =
RI . The variables zr ∈ Z2 are used for encoding of the collections of microoperations
Yq ⊆ Y , Dr ∈ Φ, where |Φ| = RI + RY . The EMBer1 implements the microopera-
tions yn ∈ Y represented as

Y = Y(Z2). (4.50)

The EMBer2 implements the variables τr ∈ τ used for encoding of the classes
Bi ∈ ΠA. So, it implements the system

τ = τ (Z1,Z2). (4.51)

The design method for PYZ UFSM can be obtained from the previous one. To do
it, the step 9 is replaced by the steps 9a and 9b:

9a. Constructing the table of EMBer1.
9b. Constructing the table of EMBer2.

Also, the step 7a is introduced and executed after the step 7:

7a. Encoding of the collections of microoperations.

Let us discuss an example of design for the Moore UFSM PYZ(Γ6). The steps
from 1 to 7 have been already executed. Let us start from the step 7a.

Because of Q = 7, there is RY = 3. It gives the set Z2 = {z1, z2, z3}. Let us point
out that Z1 = {z4}. Let us encode the CMOs in the following manner: K(Y1) =
000,K(Y2) = 001, and so on.

The table of LUTer includes the following columns: Bi, K(Bi), IS , K(IS), Yh,
K(Yh), Xh, Φh, h. The column Φh includes RI + RY = 4 variables Dr ∈ Φ. Let the
variables D1 − D3 load the code K(Yq) into RG, whereas the variable D4 the code
K(IS). The table is constructed using Table4.10 and system (4.45). As in previous
case, it includes 13 rows (Table4.13).

This table is used for deriving the system of input memory functions. For example
the following equation can be derived:D3 = F1 ∨ F3 ∨ [F4 ∨ F6] ∨ [F8 ∨ F9]. After
using the law of expansion [4], the following equation can be obtained:

D3 = τ̄1τ̄2τ̄3x1 ∨ τ̄1τ̄2τ̄3x̄3 ∨ τ̄1τ2τ3x1. (4.52)
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Table 4.13 Table of LUTer for Moore UFSM PYZ(Γ6)

Bi K(Bi) Is K(Is) Yh K(Yh) Xh Φh h

B1 000 I1 0 Y2 001 x1 D3 1

I1 0 Y3 010 x̄1x2 D2 2

I1 0 Y4 011 x̄1x̄2 D2D3 3

B2 001 I2 1 Y4 100 x3 D1D4 4

I2 1 Y2 001 x̄3x4 D3D4 5

I1 0 Y4 011 x̄3x̄4 D2D3 6

B3 010 I1 0 Y5 100 1 D1 7

B4 011 I2 1 Y4 011 x1x3 D1D3D4 8

I1 0 Y6 101 x1x̄3 D1D3 9

I2 1 Y3 010 x̄1x5 D2D4 10

I1 0 Y7 110 x̄1x̄5 D1D2 11

B5 100 I1 0 Y1 000 x4 – 12

I1 0 Y7 110 x̄4 D1D2 13

Table 4.14 Table of EMBer1 for Moore UFSM PYZ(Γ6)

K(Yq)z1z2z3 Yqy1y2y3y4y5y6 q

000 000000 1

001 110000 2

010 010100 3

011 001000 4

100 100110 5

101 000011 6

110 001010 7

111 000000 *

Similar Boolean functions can be derived for all functions Dr ∈ Φ. The table
of EMBer1 is constructed in the trivial way. It includes the columns K(Yq), Yq, q
(Table4.14).

The table of EMBer2 is constructed on the base of the matching (4.47). It includes
the columns: am, Bi, Im, Y(am), K(Y(am)), K(Im), K(Bi),m. The columns K(Y(am)),
K(Im) form addresses of cells. This table includes H(PYZ) rows, where

H(PYZ) = 2RY+RI . (4.53)

In the discussed case, the expression (4.53) gives 16 rows.Only 10of themare used
for implementing the functions of the system (4.51). If we compare blocks EMBer
of PYY(�6) and EMBer2 of PYZ(Γ6), we can see that the number of required cells
is diminished in 8 times. The table of EMBer2 is shown in Table4.15. Only 10 rows
are shown in this table.
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Table 4.15 Table of EMBer2 for Moore UFSM PYZ(Γ6)

am Bi Im Y(am) K(Y(am)) K(Im) K(Bi) m

a1 B1 I1 Y1 000 0 000 1

a2 B2 I1 Y2 001 0 001 2

a3 B2 I1 Y3 010 0 001 3

a4 B2 I1 Y4 011 0 001 4

a5 B3 I2 Y4 011 1 010 5

a6 B4 I2 Y1 000 1 011 6

a7 B4 I1 Y5 100 0 011 7

a8 B5 I1 Y6 101 0 100 8

a9 B5 I2 Y3 010 1 100 9

a10 B5 I1 Y7 110 0 100 10

Fig. 4.12 Structural diagram
of PYZ0 Moore UFSM

Let the following condition take place:

V0 ≥ 2RY+RI (N + RB). (4.54)

In this case, both blocks EMBer1 and EMBer2 can be combined in a single block
EMBer. It leads to the model PYZ0 shown in Fig. 4.12.

In PYZ0 Moore UFSM, the set Z = Z1 ∪ Z2. The table of EMBer can be used for
implementing FSM logic circuits. Three different elements can be used for imple-
menting an FSM logic circuit, namely, LUTs, EMBs and PLAs. The PLA blocks can
be used, for example, for implementing logic circuit of EMBer in PYY Moore FSM.
We do not discuss that issue in this Chapter.

4.4 Replacement of Logical Conditions

The replacement of logical conditions [3] is an universal method targeting the hard-
ware reduction of BIMF. It can be used in all UFSMs discussed in this Chapter. An
additional block of replacement of logical conditions (BRLC) should be introduced.
It implements the system (2.19). Of course, the terms of this system can be different
for different models of UFSMs. Existence of BRLC is devoted by the letter “M” in
the name of a model.

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 4.13 Structural diagram of MPY2 Moore UFSM

Let us start from MPY2 Moore UFSM. Let PLAs be used for implementing the
BRLC logic circuit. Let the following condition take place:

S ≥ L + R. (4.55)

In this case, the following model of MPY2 Moore UFSM is proposed (Fig. 4.13).
A block PLAer consists from PLA-cells. If the condition (4.55) is true, then only

one PLA is necessary to implement the PLAer. It implements the system (2.19). The
block LUTer1 implements the system

Φ1 = Φ1(T ,P1). (4.56)

The block LUTer2 implements the system

Φ2 = Φ2(τ ,P2). (4.57)

The functions of EMBer are the same as for PY2 Moore UFSM.
The proposed design method for MPY2 Moore UFSM includes the following

steps:

1. Marking the initial GSA by states of Moore FSM.
2. Constructing the partition ΠA for the set A.
3. Constructing the system B(A).
4. Executing the optimal state assignment.
5. Finding the sets ΠRG , ΠTC and Z .
6. Replacing the logical conditions.
7. Constructing the table of PLAer.
8. Constructing the table of LUTer1.
9. Encoding the classes Bi ∈ ΠTC .
10. Constructing the table of LUTer2.
11. Constructing the table of EMBer.
12. Implementing the logic circuit of UFSM.

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Table 4.16 Table of RLC for Moore UFSM MPY2(Γ5)

Bi B1 B2 B3 B4 B5 B6 B7

p1 x2 – x2 – – x5 x2
p2 x1 x3 x3 – x3 x6 x3
p3 – – x4 – – x4 x6

Let us discuss an example of synthesis for theMooreUFSMMPY2(Γ5). The steps
from 1 to 5 are already executed. The following sets are found: A = {a1, . . . , a14},
ΠA = {B1, . . . ,B7}, B1 = {a1}, B2 = {a5, a12}, B3 = {a11, a13, a14}, B4 = {a3, a6},
B5 = {a2, a4}, B6 = {a7, a8}, B7 = {a9, a10}, ΠRG = {B1,B2,B4,B5}, ΠTC =
{B3,B6,B7}. The optimal state codes can be taken from Fig. 4.5.

Let us denote the set of logical conditions determining transitions from states
am ∈ Bi asX(Bi) (i = 1, . . . , I). TheX(B2) = {x3},X(B3) = {x2, x3, x4},X(B4) = ∅,
X(B5) = {x3}, X(B6) = {x4, x5, x6}, X(B7) = {x2, x3, x6}. Therefore, there is G = 3
and P = {p1, p2, p3}. Let G1(G2) be the number of additional variables determining
transitions from the states for LUTer1(LUTer2). In the discussed case, there are
G1 = 2 and G2 = 3. It gives the sets X1 = {x1, x2, x3} and X2 = {x2, x3, x4, x5, x6}.

Let us place the conditions xl ∈ X1 only in the column p1, p2 of the table of
replacement of logical conditions. It leads to Table4.16.

The following equations can be derived from Table4.16:

p1 = (B1 ∨ B3 ∨ B7) ∨ B6x5;
p2 = B1x1 ∨ (B2 ∨ B3 ∨ B5 ∨ B7)x3 ∨ B6x6;
p3 = (B3 ∨ B6)x4 ∨ B7x6;

(4.58)

The system (4.57) is implemented using the PLAer. The terms from the system
(4.20) are used for representing the classes of PES in (4.57). So, Table4.16 replaces
the table of PLAer.

The table of LUTer1 has the same columns as its counterpart from the UFSM
PY2(Γ5). But the column Xh is replaced by the column Ph (Table4.17).

Let us use the same class codes for Bi ∈ ΠTC as it is for the UFSM PY2(Γ5):
K(B3) = 00, K(B6) = 01 and K(B7) = 10. Now, the table of LUTer2 can be con-
structed. It includes the same columns as its counterpart for the UFSM PY2(Γ5). But
the column Xh is replaced by the column Ph (Table4.18).

The content of EMBer does not depend on outcome of RLC. So, this table is the
same as its counterpart for UFSM PY2(Γ5). We leave this task to a reader.

The functions (4.56) can be derived fromTable4.17. They have the same structure
as the functions from (4.23).But they dependondifferent product terms. For example,
there are the terms F1 = T̄1T̄3T̄4p2, F1 = T̄1T̄3T̄4p̄2 and so on. The same is true for
functions (4.57). They are derived from Table4.18 and have the same structure as
the functions of (4.24). But they include different product terms. For example, there
are the terms F1 = z̄1z̄2p1, F2 = z̄1z2p̄1p2, F3 = z̄1z2p̄1p̄3, and so on.



4.4 Replacement of Logical Conditions 91

Table 4.17 Table of LUTer1 for Moore UFSM MPY2(Γ5)

Bi K(Bi) as K(as) Ph Φh h

B1 0*00 a2 1001 p2 D1D4 1

a3 0001 p1p̄2 D4 2

a5 0110 p̄1p̄2 D2D3 3

B2 *110 a1 0000 p2 – 4

a10 1010 p̄2 D1D3 5

B4 00*1 a8 1111 1 D1D2D3D4 6

B5 10*1 a3 0001 p2 D4 7

a9 1101 p̄2 D1D2D4 8

Table 4.18 Table of LUTer2 for Moore UFSM MPY2(Γ5)

Bi K(Bi) as K(as) Ph Φh h

B3 00 a4 1011 p1 D1D3D4 1

a7 1000 p̄1p2 D1 2

a6 1011 p̄1p̄2p3 D3D4 3

a13 0100 p̄1p̄2p̄3 D2 4

B6 01 a2 1001 p3 D1D4 5

a11 1100 p1p̄3 D1D2 6

a12 1110 p̄1p2p̄3 D1D2D3 7

a14 0101 p̄1p̄2p̄3 D2D4 8

B7 10 a1 0000 p2p3 – 9

a3 0001 p2p̄3 D4 10

a10 1010 p1p̄2 D1D3 11

a12 1110 p̄1p̄2 D1D2D2D3 12

Fig. 4.14 Structural diagram of MPCY1 Moore UFSM

Using the same approach, the following models can be proposed: MPCY1

(Fig. 4.14), MPCY2 (Fig. 4.15), MPCY3 (Fig. 4.16), MPYY (Fig. 4.17) and MPYZ
(Fig. 4.18).
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Fig. 4.15 Structural diagram of MPCY2 Moore UFSM

Fig. 4.16 Structural diagram of MPCY3 Moore UFSM

Fig. 4.17 Structural diagram of MPYY Moore UFSM

Fig. 4.18 Structural diagram of MPYZ Moore UFSM

If functions P do not depend on the internal variables Tr ∈ T , then the circuit of
PLAer can be optimized. Todo it,we propose themethodof optimal class assignment.
Let us encode the classes Bi ∈ ΠA as it is shown in Fig. 4.19. For example, they can
be used in MPYY(Γ5).

Using these codes and the system (4.58), the following system can be obtained:

p1 = τ̄1x2 ∨ τ2τ̄3x5;
p2 = τ̄2τ̄3x1 ∨ τ3x3 ∨ τ2τ̄3x6;
p3 = (τ̄1τ2 ∨ τ2τ̄3)x4 ∨ τ̄1τ̄2τ3x6.

(4.59)
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Fig. 4.19 Optimal class
codes for UFSM MPYY(Γ5)

The system (4.58) includes 13 terms, whereas the system (4.59) only 8. It reduces
the requirements to the number of terms in PLA cells.
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Chapter 5
Hardware Reduction for Mealy UFSMs

Abstract The Chapter deals with optimization of logic circuits of hybrid FPGA-
based Mealy FSMs. First of all, the models with two state registers are discussed.
This approach allows removal of direct dependence among logical conditions and
output functions of Mealy FSM. Next, the proposed design methods are presented.
Some improvements are proposed for further hardware reduction. They are based on
the special state assignment and transformation of state codes. The proposedmethods
target joint using such blocks as LUTs, PLAs and EMBs in FSM circuits. Themodels
are discussed based on the principle of object transformation. The last part of the
chapter is connected with design methods connected with the object transformation.

5.1 Models with Two State Registers

The hardware reduction for the circuit of BMO is connected with encoding of the
collections of microoperations Yq ⊆ Y [4, 5]. It means that some additional variables
are necessary for the encoding. To generate the variables, some resources of FPGA
are used. These variables can be eliminated due to using two state registers in Mealy
UFSM [3]. Let us discuss this approach.

Let Ah
m(Ah

s ) be a conjunction corresponding to the code K (am) (the code K (as))
for the current state (state of transition) from the h-th row of a structure table. Let us
represent the term Ḟh corresponding to the h-th row of ST in the following form:

Ḟh = Ah
m A

h
s (h = 1, . . . , H0). (5.1)

The conjunction Ah
m includes the internal variables Tr ∈ T . Obviously, the conjunc-

tion Ah
s should include some other variables different from Tr ∈ T . Otherwise, all

terms (5.1) are equal to zeros.
Let us use the register RG1 to keep the state codes K (am) for current states of

UFSM. These states are represented by the state variables Tr ∈ T . Let us use the
register RG2 to keep the state codes K (as) for states of transition. Let these states
be represented by the additional state variables τr ∈ T . Both registers include R0

flip-flops. Let us use D flip-flops for implementation both registers RG1 and RG2.

© Springer International Publishing AG 2018
A. Barkalov et al., Logic Synthesis for Finite State Machines Based on Linear
Chains of States, Studies in Systems, Decision and Control 113,
DOI 10.1007/978-3-319-59837-6_5
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Fig. 5.1 Structural diagram of PRY Mealy UFSM

Let us use the symbol PRY to denote those Mealy UFSMs. The structural diagram
of Mealy UFSM based on (5.1) is shown in Fig. 5.1.

In PRY UFSM, the BIMF implements the system (2.9) depending on the terms
(2.11). The BMO implements the microoperations yn ∈ Y represented by the fol-
lowing system:

Y = Y (T, τ ). (5.2)

The terms of (5.2) are represented in the form (5.1). The conjunction Ah
m is repre-

sented in the form (2.12). The conjunction Ah
s is represented in the following form:

Ah
s =

R0∧

r1

τ lrh
r . (5.3)

In (5.3), the symbol lrh stands for the value of the r -th bit of the code K (as):
lrh ∈ {0, 1}, τ 0

r = τ̄r , τ 1
r = τr (r = 1, . . . , R0). The PRY UFSM operates in the

following manner. If Start=1, then the zero codes are loaded into both registers.
In the instant t (t = 1, 2, . . .) there is a code K (am) in RG1 and code K (as) in
RG2. The BIMF generates functions Dr ∈ Φ corresponding to transition number
h (1, . . . , H0). Using the pulse Clock, the code of the state of transition is loaded
into RG1. At the same time the code of the current state is loaded into RG2. Now,
the BMO generates the microoperations (5.2). The operation continues till the code
K (a1) is loaded into RG1.

Table 5.1 Structure table for Mealy FSM P(�7)

am K (am) as K (as) Xh Yh Φh h

a1 00 a2 01 x1 y1y2 D2 1

a3 10 x̄1 y2 D1 2

a2 01 a2 01 x2 y3 D2 3

a4 11 x̄2 y1y2 D1D2 4

a3 10 a4 11 1 y3y4 D1D2 5

a4 11 a1 00 1 y2 – 6

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Let us discuss an example of design for the UFSM PRY(�7) represented by
Table5.1. As follows from the table, there are A = {a1, . . . , a4}, M0 = 4, R0 = 2,
X = {x1, x2}, Y = {y1, . . . , y4}, T = {T1, T2}, τ = {τ1, τ2}.

The input memory functions Dr ∈ Φ are determined by the following terms:
F1 = T̄1T̄2x1, F2 = T̄1T̄2 x̄1, and so on. The terms (5.1) are determined as the
following:

F1 = A2A1 = T̄1T2τ̄1τ̄2;
F2 = A3A1 = T1T̄2τ̄1τ̄2; (5.4)

...
...

F6 = A1A4 = T̄1T̄2τ1τ2.

Now, there is the function y1 = Ḟ1 ∨ Ḟ4. Using terms (5.4), the following Boolean
equation can be found

y1 = T̄1T2τ̄1τ̄2 ∨ T1T2τ̄1τ2. (5.5)

Similar equations can be obtained for all functions yn ∈ Y .
Thismethod can be used only if the variables Ḟh (h = 1, . . . , H0) are orthogonal.

It corresponds to the following conditions:

H0∨

h=1

Ḟh = 1; (5.6)

Ḟi Ḟj = 0 (i �= j, i, j ∈ {1, . . . , H0}).

If conditions (5.6) are violated, then the behaviour of PRY Mealy UFSM differs
from the behaviour of the equivalent P Mealy FSM. Let us show it.

Let the following relations take places: Ḟi = Ḟj ,Yi �= Y j . Hear Yh is a collection
ofmicrooperationswritten in the rownumber h of ST.Of course, the equality Ḟi = Ḟj

is possible if and only if there the equalities Ai
m = A j

m and Ai
s = A j

s . It means that
there are the same current states (states of transitions) for the rows i and j. The output
functions yn = Yi ∪ Y j are generated if any of transitions i or j is executed. Let us
denote as A(am) the set of states of transition for the current state of FSM. Let Hm be
the number of transitions from the state am ∈ A0. Let us treat the transitions 〈am, as〉
as a single transition if the same microoperations are generated for each transition.
Let the following condition take place:

|A(am)| = Hm (m = 1, . . . , M0). (5.7)

In this case, a P Mealy FSM can be represented by the model of PRY UFSM. If the
condition (5.7) is violated, then the laws of behaviour are different for these models.

Let us analyze the structure table of Mealy FSM P(�8) represented by Table5.2.
Let STm be a subtable of a structure table describing transitions from the state am ∈ A.
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Table 5.2 Structure table for Mealy FSM P(�8)

am K (am) as K (as) Xh Yh Φh h

a1 000 a2 001 x1 y1y2 D3 1

a2 001 x̄1 y3 D3 2

a2 001 a3 010 x2 y4y5 D2 3

a4 011 x̄2x3 y2y3 D2D3 4

a2 001 x̄2 x̄3 y3 D3 5

a3 010 a4 011 1 y2y3 D2D3 6

a4 011 a5 100 x2 y1y5 D1 7

a5 100 x̄2x4 y3 D1 8

a2 001 x̄2 x̄4 y1y2 D3 9

a5 100 a1 000 1 y6 – 10

An analysis of Table5.2 shows that the condition (5.7) is violated for states a1 and a4.
Let us start from the subtable ST1. There are the same states of transitions in the rows
1 and 2. So, there is H1 = 1, but is should be equal 2. The microoperations y1, y2 and
y3 are generated for the transition number 1, as well as for transition numer 2. There
are H2 = 3, H3 = 1 and H5 = 1. But in the case of ST4, there is H4 = 2. There
are three transitions from the state a4 ∈ A. Therefore, the condition (5.7) is violated.
For both transitions from a4 to a5, three microoperations are generated (y1, y3, y5).
Of course, it does not true for Table5.2.

To satisfy (5.7), the initial ST should be transformed. The transformation should
be executed in such a manner that the condition (5.7) is true for any subtable of the
transformed ST. The following approach is proposed for the transformation:

1. Let us analyse the subtable STm (m = 1, . . . , M0). Let a state as appear I times
in the column as of this subtable. Let us form the set Bm

s corresponding to this
situation, where Bm

s = {a1s , . . . , aI
s }.

2. Lt us construct the sets Bs = ⋃M0
m=1. These sets corresponds to the states as ∈ A.

3. Let us analyze the rows of subtable STm (m = 1, . . . , M0). Let the state as is
written in the rows i and j of the STm . Let it be Yi = Y j . In this case, the state
as is replaced by a single element of Bs . Otherwise, it is replaced by the different
elements of Bs .

4. The subtable STS (s = 1, . . . , M0) is repeated IS = |Bs | times. A subtable ST i
s

includes all rows from the STS but the initial state as ir replaced by the state
ais ∈ Bs .

In the case of P(�8), the following sets can be formed: B1 = {a11}, B2 = {a11, a22},
B3 = {a13}, B4 = {a14} and B5 = {a15, a25}. It leads to the following set A0 for the
PRY(�8): A0 = {a11, a12, a22 , a13, a14, a15, a25}. Let us encode the states am ∈ A0 by
binary codes K (am) having RA bits, where

RA = 	log2 |A0|
. (5.8)
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Table 5.3 Table of Mealy UFSM PRY(�8)

am K (am) as K (as) Xh Yh Φh h

a11 000 a12 001 x1 y1y2 D3 1

a22 010 x̄1 y3 D2 2

a12 001 a13 011 x2 y4y5 D2D3 3

a14 100 x̄2x3 y2y3 D1 4

a12 001 x̄2x3 y3 D3 5

a22 010 a13 011 x2 y4y5 D2D3 6

a14 100 x̄2x3 y2y3 D1 7

a12 001 x̄2 x̄3 y3 D3 8

a13 011 a14 100 1 y2y3 D1 9

a14 100 a15 101 x2 y1y5 D1D3 10

a25 110 x̄2x4 y3 D1D2 11

a12 001 x̄2 x̄4 y1y2 D3 12

a15 101 a11 000 1 y6 – 13

a25 110 a11 000 1 y6 – 14

In the discussed case, there is RA = 3. Let us encode the states am ∈ A0 in the
following way: K (a11) = 000, K (a11) = 001, . . . , K (a25) = 110. It leads to the table
of Mealy UFSM PRY(�8) having 14 rows (Table5.3).

Analysis of Table5.3 shows that the condition (5.7) takes place for all states
am ∈ A0. But the transformed table includes more rows than the initial structure
table. In the common case, there are H(PRY ) rows in the transformed table:

H(PRY ) =
M0∑

m=1

Hm Im = H0 + ΔH. (5.9)

The value ΔH determines the number of added rows:

ΔH =
M0∑

m=1

Hm(Im − 1). (5.10)

IfΔH > 0, then the number of terms in the system (5.4) is increased in comparison
with H0. Also, it can result in the relation

RA > R0. (5.11)

It results in increasing for the hardware amount in the circuit of PRY FSM. All
these drawbacks can lead to situation when the hardware amount is higher in PRY(�)
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in comparison with the equivalent Mealy FSM P(�). Let us discuss the ways lead-
ing to deceasing for hardware amount in logic circuits of PRY Mealy UFSMs. We
consider the case of hybrid FPGAs.

5.2 Optimization of UFSMs with Two Registers

Two different methods can be used for optimization of PRY UFSMs:

1. Special state assignment.
2. Transformation of state codes.

Let us consider these methods.
Special state assignment. Analysis of subtables ST 1

2 and ST 2
2 (Table5.3) shows

that the contents of columns as − Φh coincide for rows 3 and 6, 4 and 7, and 5 and
8, respectively. The following formulae can be derived from theses subtables:

D1 = (A1
2 ∨ A2

2)x̄2x3;
D2 = (A1

2 ∨ A2
2)x2;

D3 = (A1
2 ∨ A2

2)(x2 ∨ x̄2 x̄3).

(5.12)

All terms of (5.12) include the same part, namely, A1
2 ∨ A2

2.
Let H(as) be a set of rows of transformed ST from a subtable ST i

s (i =
1, . . . , Is). Using this set, the following formulae can be obtained for input memory
functions from subtables ST i

s :

Dr =
∨

h∈H(as )

CrhΔs Xh (r = 1, . . . , R). (5.13)

In (5.13), the member Δs is determined as Δs = ∨Is
i=1 A

i
s . To optimize functions

(5.13), it is necessary to encode the states ais so that the disjunction Δs includes the
minimum number of terms. For example, let us encode the states a12 and a22 in the
following way: K (a12) = 001, K (a22) = 101. It leads to the equality Δ2 = T̄2T3. In
turn, it results in the following form for the system (5.12):

D1 = T̄2T3 x̄2x3;
D2 = T̄2T3x2;
D3 = T̄2T3x2 ∨ T̄2T3 x̄2x3.

(5.14)

Comparison of (5.12) and (5.14) shows that the number of terms decreases in two
times. Let us name this style of state assignment a special state assignment. Let us use
the symbol PROY for Mealy FSM with the special state assignment. The following
method is proposed for synthesis of PROY Mealy UFSM:



5.2 Optimization of UFSMs with Two Registers 101

Fig. 5.2 Structural diagram of HFPGA-based PROY Mealy UFSM

Fig. 5.3 Outcome of special
state assignment for Mealy
UFSM PROY(�8)

1. Constructing the partition ΠA = {B1, . . . , BM}, where Bm = {a1m, . . . , aIm
m }.

2. Executing the special state assignment.
3. Constructing the transformed structure table of PROY Mealy UFSM.
4. Constructing the table of BMO.
5. Deriving functions Φ = Φ(T, X) and Y = (T, τ ).
6. Implementing UFSM logic circuit using resources of a particular FPGA chip.

Let us discuss an example of design for the Mealy UFSM PROY(�8). Let us point
out that in the case of hybrid FPGAs, the BIMF is implemented with LUTs and BMO
is implemented with PLAs Fig. 5.2.

The following partition ΠA can be found for the Mealy UFSM PROY(�8): Πa =
{B1, . . . , B5}, where B1 = {a11}, B2 = {a12, a22}, B3 = {a13}, B4 = {a14}, B5 = {a15 a25}.
The algorithm JEDI [1] can be used for the special state assignment. One of the
variants is shown in Fig. 5.3.

It can be found from the Karnaugh map (Fig. 5.3) that K (B1) = 000, K (B2) =
∗00, K (B3) = 100, K (B4) = ∗11 and K (B5) = ∗10.

To form the table of LUTer (the table of BIMF), it is necessary to form a system
of formulae of transitions. In the discussed case, it is the following system:

B1 = x1a
1
2 ∨ x̄1a

2
2;

B2 = x2a
1
3 ∨ x̄2x3a

1
4 ∨ x̄2 x̄3a

1
2;

B3 = a14;
B4 = x2a

1
5 ∨ x̄2x4a

2
5 ∨ x̄2 x̄4a

1
2;

B5 = a11;

(5.15)

There are 10 rows in the table of LUTer (Table5.4). This number coincides with
the number of rows in the initial table of Mealy UFSM (Table5.2).
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Table 5.4 Table of LUTer for Mealy UFSM PROY(�8)

Bm K (Bm) ais K (ais) Xh Yh Φh h

B1 000 a12 001 x1 y1y2 D3 1

a22 101 x̄1 y3 D1D3 2

B2 *01 a13 100 x2 y4y5 D1 3

a14 011 x̄2x3 y2y3 D2D3 4

a12 001 x̄2 x̄3 y3 D3 5

B3 100 a14 011 1 y2y3 D2D3 6

B4 *11 a15 010 x2 y1y5 D2 7

a25 110 x̄2x4 y3 D1D2 8

a12 001 x̄2 x̄4 y1y2 D3 9

B5 *10 a11 000 1 y6 – 10

The table of LUTer is used for deriving the system of input memory functions. In
the discussed case, the following minimized system Φ can be found:

D1 = T̄1T̄2T̄3 x̄1 ∨ T̄2T3 ∨ T2T3 x̄2x4;
D2 = T̄2T3 x̄2x3 ∨ T1T̄2T̄3 ∨ T2T3x2 ∨ T2T3x4;
D3 = T̄2T̄3 ∨ T̄2T3 x̄2 ∨ T2T3 x̄2 x̄4.

(5.16)

The table of BMO (Table of PLAer) has the following columns: K (as), K (Bm),
Xh , h. It is constructed on the base of the table of LUTer. In the discussed case this
table includes 10 rows (Table5.5). This table is used to construct the system (5.2).
For example, the following Boolean equation can be derived from Table5.5:

y5 = T1T̄2T̄3τ̄2τ3 ∨ T̄1T2T̄3τ2τ3. (5.17)

Let s, t, q be the number of inputs, outputs and product terms of PLA macrocell,
respectively. The discussed method has sense if the following condition takes place:

S ≥ 2RA. (5.18)

If the condition (5.18) is violated, then the multilevel circuit of PLAer should
be implemented [4]. It results in very slow and hardware redundant circuit of the
PLAer [3].

Let the following conditions take places:

t ≥ N ; (5.19)

q ≥ HR0. (5.20)

In (5.20), the symbol HR0 stands for the number of rows in the table of LUTer.
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Table 5.5 Table of PLAer for Mealy UFSM PROY(�8)

K (as) K (Bm) Yh h

T1T2T3 τ1τ2τ3 y1 . . . y6 h

001 000 110000 1

101 000 001000 2

100 *01 000110 3

011 *01 011000 4

001 *01 001000 5

011 100 011000 6

010 *11 100010 7

110 *11 001000 8

001 *11 110000 9

000 *10 000001 10

Fig. 5.4 Implementing
PLAer with expansion of
outputs

If conditions (5.18)–(5.20) take places, then the block of PLAer is implemented
using only a single PLA macrocell. In the discussed case, the following conditions
should be true: S ≥ 6, t ≥ 6 and q ≥ 10. If the condition (5.19) is violated, then nY
PLA macrocells are necessary:

nY = 〈N/t〉. (5.21)

In this case, “the expansion of outputs” is executed [4].
It leads to the following circuit (Fig. 5.4).
Each set Y j ( j = 1, . . . , nY ) can be viewed as a single block of the partition ΠY

of the set Y . Let it be t = 3. In the discussed case, the following partition ΠY can be
found: ΠY = {Y 1,Y 2}, where Y 1 = {y1, y2, y3}, Y 2 = {y4, y5, y6}.

Let the conditions (5.18)–(5.19) take places and let the condition (5.20) be vio-
lated. In this case, “the expansion of terms” [4] should be executed.We do not discuss
this case in our book. The possible solutions can be found in [4].

Transformation of state codes. It is quite possible a situation when the special
state assignment cannot decrease the number of rows in the table of PRY UFSM.
In this case, we propose to introduce a special code transformer. It executes the
transformation of state codes for states aim ∈ Bm into class codes. It allows providing
the following features:
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Fig. 5.5 Structural diagram of PREY Mealy UFSM

1. Decreasing the number of terms in the system Φ up to H0, as well as the number
of terms in the system Y .

2. Decreasing the number of inputs of LUTer up to L + R0.

Let us encode each class Bm ∈ ΠA by the binary code K (Bm) having R0 bits. Let
us use the variables zr ∈ Z for the class encoding, where |Z | = R0. It leads to the
PREY Mealy UFSM (Fig. 5.5).

In PREY Mealy UFSM, the LUTer implements the system of input memory func-
tions

Φ = Φ(Z , X). (5.22)

The EMBer implements the system

Z = Z(T ). (5.23)

The system (5.23) can be implemented using a single EMB if the following condition
takes place:

V0 ≥ R0 · 2RA . (5.24)

The PREYUFSMoperates in the followingmanner. In the beginning of each cycle,
the RG1 contains a code of the current state aim ∈ Bm . The EMBer transforms this
code into the code K (Bm). Using the pulse Clock, this code is loaded into RG2.At the
same time, the code K (ais) is loaded into RG1, where a

i
s ∈ A is a state of transition.

The PLAer generates the microoperations yn ∈ Y represented by the system (5.2).
The operation is continued till the code K (a1) is loaded into RG1.

There are the following steps in the proposedmethod of synthesis for PREYMealy
UFSM:

1. Constructing the table of transitions for PRY Mealy UFSM and finding the par-
tition ΠA.

2. Encoding the classes Bm ∈ Πa using variables zr ∈ Z .
3. Constructing the table of LUTer.
4. Constructing the table of EMBer.
5. Constructing the table of PLAer.
6. Implementing the logic circuit of PREY Mealy UFSM.
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Table 5.6 Table of LUTer for Mealy UFSM PREY(�8)

Bm K (Bm) ais K (ais) Xh Yh Φh h

B1 000 a12 001 x1 y1y2 D3 1

a22 010 x̄1 y3 D2 2

B2 *01 a13 011 x2 y4y5 D2D3 3

a14 100 x̄2x3 y2y3 D1 4

a12 001 x̄2 x̄3 y3 D3 5

B3 *01 a14 100 1 y2y3 D1 6

B4 *11 a15 101 x2 y1y5 D1D3 7

a25 110 x̄2x4 y3 D1D2 8

a12 001 x̄2 x̄4 y1y2 D3 9

B5 1** a11 000 1 y6 – 10

Let us discuss an example of desing forMealyUFSMPREY(�8). The partitionΠA

is constructed before. It includes the classes B1 = {a11}, B2 = {a12, a22}, B3 = {a13},
B4 = {a14} and B5 = {a15, a25}. In the discussed case, there is R0 = 3, therefore,
there is the set Z = {z1, z2, z3}. Let us encode the classes in the following way:
K (B1) = 000, . . . , K (B5) = 100. Let the states aim ∈ A are encoded in the same
way as it is shown in Table5.3.

The table of LUTer (Table5.6) is constructed on the base of the system (5.15). It
is similar to Table5.4.

Let us point out that some positions in the codes K (Bm) include the signs “*”.
It is obtained taking into account the unused input assignments of variables zr ∈ Z .
There are three unused codes: 101, 110 and 111.

The table of LUTer is used for constructing the system (5.22). For example, the
following Boolean function can be derived from Table5.6:

D2 = z̄1 z̄2 z̄3 x̄1 ∨ z̄2z3x2 ∨ z2z3 x̄2x4. (5.25)

The table of EMBer includes the columns aim , Bm , K (aim), K (Bm), m. The column
K (Bm) contains an address of the cell, whereas the column K (Bm) determines its
content. It is Table5.7 in the case of Mealy UFSM PREY(�8).

Of course, it is possible to use LUTs for implementing the system (5.23). In the
discussed case, the following functions can be obtained:

z1 = T1T2 ∨ T1T2;
z2 = T2T3 ∨ T1T̄2T̄3;
z3 = T̄1T̄2T3 ∨ T̄1T2T̄3.

(5.26)

The table of PLAer is practically the same for Mealy UFSM PROY(�) and
PREY(�). We do not show this table for the Mealy UFSM PREY(�8). Now, let us
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Table 5.7 Table of EMBer for Mealy UFSM PREY(�8)

aim Bm K (aim) K (Bm) m

T1T2T3 z1z2z3

a11 B1 000 000 1

a12 B2 001 001 2

a22 B2 010 001 3

a13 B3 011 010 4

a14 B4 100 011 5

a15 B5 101 100 6

a25 B5 110 100 7

Fig. 5.6 Outcome of special
state assignment

discuss the following example. Let it be the following partition ΠA = {B1, . . . , B4},
where B1 = {a11}, B2 = {a12, a22 , a32}, B3 = {a13}, B4 = {a14, a24 , a34}. Let it be H1 = 2,
H2 = 6, H3 = 3 and H4 = 7. The transformed table of PRY UFSM includes 44
rows. (It can be calculated using (5.8)). Hence, the system (5.2) includes 44 terms.

Let us use the special state assignment (Fig. 5.6).
As follows from Fig. 5.6, the class B2 is represented by the codes 0*1 and 01*,

whereas the class B4 by the codes 11* and 1*1. So, the table of LUTer includes 31
rows for the case of PROY Mealy UFSM.

Because of I = 4, there is RA = 2. It means that the condition (5.11) takes place.
If the model of PREY Mealy UFSM is used, then the table of LUTer contains only
H0 = 18 rows. At the same time, there is a decreasing for the number of inputs of
LUTer. So, the code transformation is the most efficient if the condition (5.11) takes
place.

5.3 Principle of Object Code Transformation

As it was mentioned before, the hardware reduction for FSM logic circuit is con-
nected with the structural decomposition, which in turn is connected with increase
for the number of levels in the FSM model. To optimize the hardware amount in
block BMO, it is necessary to generate some additional variables for encoding of
microoperations (or collections of microoperations). The methods discussed in this
Chapter are taken from [2]. These methods are based on one-to-one match among
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Fig. 5.7 Structural diagram of Mealy FSM1

Fig. 5.8 Structural diagram of Mealy FSM2

collections of microoperations and states. There are two objects of FSM, namely, its
internal states am ∈ A and collections of microoperations Yt ⊆ Y . Let us point out
that states and collections of microoperations are heterogeneous objects respectively
each other, whereas different states, for example, are the homogenous objects re-
spectively each other. The optimization methods discussed in this Chapter are based
on identification of one-to-one match among heterogeneous objects. If this match
is found, then the block BIMF generates only codes for one object (which is a pri-
mary object), while a special code transformer generates the codes of another object
(which is a secondary object). Let us name these approaches as the methods of object
code transformation (OCT).

Let us find a one-to-one match A → Y among the states as primary objects and
the microoperations as secondary objects. In this case, the block BIMF generates
the state variables Tr ∈ T = {T1, . . . , TR} to encode the states, whereas a special
state code transformer block BTSM generates variables zr ∈ Z used for encoding of
collections of microoperations. The structural diagram of Mealy FSM based on this
principle is shown in Fig. 5.7. Let the symbol PCAY stand for thismodel if collections
of microoperations are encoded, whereas the symbol PCAD stands for encoding of
the classes of compatible microoperations. Let us name such models as FSM1.

Let us find a one-to-one match Y → A among the microoperations as primary
objects and the states as secondary objects. In this case, the block BIMF generates
variables zr ∈ Z , whereas a special microoperation code transformer block BTMS
generates state variables Tr ∈ T . This approach results in the models of FSM2, de-
noted as PCYY (if collections of microoperations are encoded) or as PCYD (if classes
of compatible microoperations are encoded). Their structural diagram is shown in
Fig. 5.8.
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Fig. 5.9 FPGA-based model of Mealy FSM1

Fig. 5.10 FPGA-based model of Mealy FSM2

These models correspond to cases when an FSM has the same numbers of states
and collections of microoperations. If this condition is violated, then some additional
identifiers should be used belonging to a set of identifiers V . In common case, the
block BIMF generates variables T and V (Fig. 5.9) or variables Z and V (Fig. 5.10).
All these variables are the outputs of the register RG.

When FPGAs are used for implementing these FSMs, the BIMF is implemented
as LUTer, the BMO as EMBer. Blocks BTSM and BTMS can be implemented using
either EMBs or PLAs. The second case is represented by the structural diagrams
shown in Figs. 5.9 and 5.10.

Of course, the EMBer can be absent. It is possible in the case of unitary encoding
of microoperations. In this case, microoperations yn ∈ Y are the output of RG, as
well as the additional variables vr ∈ V .

Thus, in common case the number of bits in the register RG for Mealy FSM
with object code transformation exceeds this number for equivalent PY or PDMealy
FSM. Obviously, the proposed approach can be applied only when the total hardware
amount for blocks BIMF and BTSM (BTMS) is less, than the hardware amount for
block BIMF of PY (PD) Mealy FSM. The same approach can be applied for Moore
FSM but it is out the scope of this book.
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5.4 Design of Mealy FSM1 with OCT

Let the Mealy FSM P(�9) be specified by its structure table (Table5.8). Consider
logic synthesis for models of PCAY, PCAD, PCYY, and PCYD Mealy FSM, based
on the Mealy FSM

The following procedure is proposed for logic synthesis of Mealy FSM1:

1. One-to-one identification of collections of microoperations. Let Y (as) be a
set of collections of microoperations generated under transitions into the state
as ∈ A, where ns = |T (as)|. In this case, it is necessary ns identifiers for one-
to-one identifications of collections Yt ⊂ Y (as). In common case, it is enough
K = max(n1, . . . , nM) identifiers for one-to-one identification of all collections
Yt ⊂ Y , these identifiers form the set I = {I1, . . . , IK }. Let us encode each iden-
tifier IK ∈ I by a binary code K (IK ) having RV = 	log2 K 
 bits. Let us use the
variables vr ∈ V = {v1, . . . , vRV } for encoding of the identifiers.

Let each collection Yt ∈ (as) correspond to the pair β = 〈Ik, as〉 where Ik ∈ I .
Of course, an identifier Ik ∈ I should be different for different collections. In
this case, a code K (Ik) of the set Yt ∈ Y (as) is determined by the following
concatenation:

K (Yt ) = K (Ik) ∗ K (as). (5.27)

In (5.27) the symbol * stands for the concatenation of these codes.
2. Encoding of collections ofmicrooperations. If themethod ofmaximal encoding

of collections of microoperations is applied, then let a collection Yt ⊂ Y be
determined by a binary code C(Yt ) having Q = 	log2 T0
 bits, where T0 is the
number of collections. If the method of encoding of the classes of compatible

Table 5.8 Structure table of Mealy FSM 9

am K (am) as K (as) Xh Yh Φh h

a1 000 a2 010 x1 y1y2 D1D2 1

a3 011 x̄1 y3 D3 2

a2 010 a2 010 x2 y1y2 D2 3

a3 011 x̄2x3 y4 D2 4

a4 100 x̄2 x̄3 y1y2 D1D3 5

a3 011 a4 100 x1 y2y5 D1 6

a5 101 x̄1 y6 D1D3 7

a4 100 a5 101 1 y3y7 D1D3 8

a5 101 a2 010 x2x3 y1y2 D2 9

a3 011 x2 x̄3 y3 D2D3 10

a5 101 x̄2x4 y3y7 D1D3 11

a1 000 x̄2 x̄4 – – 12
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microoperations is used, then any collection Yt is represented as the following
vector:

Yt = 〈y1t , y2t , . . . , y Jt 〉. (5.28)

In (5.28), the symbol J stands for the number of the classes of compatible mi-
crooperations, whereas the symbol y j

t denotes microoperation yn ∈ Yt , belonged
to the class j of compatible microoperations ( j = 1, . . . , J ). Therefore, a code
of collection of mircrooperations Yt is represented as a concatenation of micro-
operation codes.

3. Construction of transformed structure table. For FSM1, the transformed ST
is used to generate input memory functions Φ and additional functions of iden-
tification V . These systems depend on the same terms and are represented as the
following:

φr =
H∨

h=1

Crh A
h
m Xh (r = 1, . . . , R), (5.29)

vr =
H∨

h=1

Crh A
h
m Xh (r = 1, . . . , RV ). (5.30)

Obviously, to represent system (5.30) the column Yh of initial ST should be
replaced by columns: Ih is an identifier of the collection Yh from pair βs,h ; K (Ih)
is a code of identifier Ik ; Vh are variables vr ∈ V , equal to 1 in the code K (Ih).

4. Specification of block BTSM. The block BTSM generates variables zq ∈ Z
represented as the following functions

Z = Z(V, T ). (5.31)

To construct system (5.31), it is necessary to built a table with columns as , K (as),
Ik , K (Ik), Yh , Zh , h. The table includes all pairs βt,s , determined the collection Y1,
next all pairs determined the collection Y2, and so on. The number of their rows
(H0) is determined as a result of summation for numbers ns(S = 1, . . . , M). The
column of the table includes variables zq ∈ Z , equal to 1 in the code K (Yh). The
system (5.31) can be represented as the following:

zq =
H0∨

h=1

Cqh Xh A
h
s (q = 1, . . . , Q). (5.32)

In (5.32) the symbol Vh stands for conjunction of variables vr ∈ V , corresponded
to the code K (Ik) of identifier from the row h of this table.

5. Specification of block for generation of microoperations. This step is executed
in the same manner, as it is done for PY or PD Mealy FSMs.
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Fig. 5.11 Structural diagram of PCAY Mealy FSM

6. Synthesis of FSM logic circuit. For theMealy FSM1, there is no need in keeping
codes of identifiers in the register RG. Therefore, these FSM models should be
refined. The structural diagram of PCAY Mealy FSM is shown in Fig. 5.11. It is
the same as the structural diagram PCAD Mealy FSM. In both cases, the block
BIMF implements functions (5.29)–(5.30), the block BTSM generates functions
(5.31), block BMO implements microoperations Y = Y (Z).

In Table5.8 there are the following collections of microoperations Y1 = ∅, Y2 =
{y1, y2}, Y3 = {y3}, Y4 = {y4}, Y5 = {t5}, Y6 = {Y6}, Y7 = {y7}, T0 = 7.

Let us consider an example of logic synthesis for the PCAY(�9) Mealy FSM.
The following sets can be derived from Table5.8: Y (a1) = {Y1}, Y (a2) = {Y2},
Y (a3) = {Y3,Y4}, Y (a4) = {Y2,Y5}, Y (a5) = {Y6,Y7}. It gives the value K = 2.
Thus, it is enough two identifiers creating the set I = {I1, I2}; they can be encoded
using RV = 1 variables from the set V = {v1}. Let K (I1) = 0, K (I2) = 1,
then the following codes can be obtained using formula (5.27): K (Y1) = ∗000,
K (Y 1

2 ) = ∗010, K (Y 2
2 ) = 0100, K (Y3) = 0011, K (Y4) = 1011, K (Y5) = 1100,

K (Y6) = 0101 and K (Y7) = 1101. This example shows that there are mt different
codes determined a collection Yt ⊂ Y if this collection belongs to mt different sets
Y (as). For example, for the collection Y2 ∈ Y (a2)∩Y (a1) we have m2 = 2, thus the
collection Y2 corresponds to codes K (Y 1

2 ) and K (Y 2
2 ).

There are T0 = 7 different collections, thus RY = 3 and Z = {z1, z2, z3}. Let
the collections Yt ⊂ Y be encoded in the following way: K (Y1) = 000, K (Y2) =
001, . . . , K (Y7) = 110. The transformed structure table (Table5.9) should be con-
structed to find functions (5.29)–(5.30).

If the condition ns = 1 takes place for some collection Yt ∈ Y (as), then there is no
need in identifier code for this collection. This situation is marked by the symbol “-”
in the corresponding row of transformed structure table. As it was mentioned, we can
derive systems (5.29)–(5.30) fromTable5.9. For example, the following SOPs can be
found: v1 = F4 ∨ F5 ∨ F8 ∨ F11 = A2 x̄2x3 ∨ A3x4 ∨ . . . = T̄1T2T̄3 x̄2x3 ∨ T̄1T2T3x4 ∨
. . . , D2 = F2 ∨ F3 ∨ F4 ∨ F9 ∨ F10 = A1 x̄1 ∨ A2x2 ∨ . . . = T̄2T̄3x2 ∨ T̄1T2T̄3x2 . . ..
Both systems are irregular, thus they are implemented using LUTs.

Table5.10 specifies the block BTMS; it includes H0 = 8 rows. This number is
equal to the outcome of summation for the numbers ns(S = 1, . . . , 5). System is
irregular and it is implemented using PLAs. For example, the SOP z1 = F6 ∨ F7 ∨
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Table 5.9 Transformed structure table of PCAY(�9) Mealy FSM

am K (am) as K (as) Xh Ih K (Ik) Vh Φh h

a1 000 a2 010 x1 – – – D1D2 1

a3 011 x̄1 I1 0 – D3 2

a2 010 a2 010 x2 – – – D2 3

a3 011 x̄2x3 I2 1 v1 D2 4

a4 100 x̄2 x̄3 I1 0 – D1D3 5

a3 011 a4 100 x1 I2 1 v1 D1 6

a5 101 x̄1 I1 0 – D1D3 7

a4 100 a5 101 1 I2 1 v1 D1D3 8

a5 101 a2 010 x2x3 – – – D2 9

a3 011 x2 x̄3 I1 0 – D2D3 10

a5 101 x̄2x4 I2 1 v1 D1D3 11

a1 000 x̄2 x̄4 – – – – 12

Table 5.10 Specification of block BTSM of Mealy PCAY(�9) FSM

as K (as) Ih K (Ik) Yh Zh h

a1 000 – – Y1 – 1

a2 010 – – Y2 z3 2

a3 011 I1 0 Y3 z2 3

a3 011 I2 1 Y4 z2z3 4

a4 100 I1 0 Y2 z3 5

a4 100 I2 1 Y5 z1 6

a5 101 I1 0 Y6 z1z3 7

a5 101 I2 1 Y7 z1z2 8

F8 = A4v1 ∨ A5v̄1 = T1T̄2T̄3v1 ∨T1T̄2T3v̄1 ∨T1T2T3v̄1 ∨T1T̄2T3 ∨v1 can be derived
from the table specified the block BTSM in our example.

The block BMO is specified by the table of microoperations. For the PCAY(�9)

Mealy FSM, this table includes T0 = 8 rows (Table5.11). Let us point out that codes
C(Yt ) are used as codes of collections Yt .

Let us consider an example of the logic synthesis for the Mealy FSM PCAD(�9).
Obviously, the outcome of one-to-one identification is the same for equivalent
PCAYand PCADMealy FSMs. To encode the collections of microoperations, it is
necessary to find the partition ΠY of the set of microoperations Y by the classes of
pseudoequivalent microoperations. For the discussed example, the following parti-
tion ΠY = {Y 1,Y 2} with two classes can be found, where Y 1 = {y1, y3, y4, y5},
Y2 = {y2, y6, y7}. It is enough Q1 = 3 variables to encode the microoperations
yn ∈ Y1, and Q2 = 2 variables for the microoperations yn ∈ Y2. It means that there
is the set Z = {z1, . . . , z5}, its cardinality is found as Q = Q1 + Q2 = 5. Let
us encode microoperations yn ∈ Y in the way shown in Table5.12. It leads to the
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Table 5.11 Specification of
microoperations of
PCAY(�9) Mealy FSM

Yt C(Yt ) y1y2 . . . y7

Y1 000 0000000

Y2 001 1100000

Y3 010 0010000

Y4 011 0001000

Y5 100 0100100

Y6 101 0000010

Y7 110 0010001

Table 5.12 Codes of microoperations for Mealy FSM PCAD(�9)

Y 1 K (Y 1
n ) Y 2 K (Y 2

n )

z1z2z3 z4z5

y1 001 y2 01

y3 010 y6 10

y4 011 y7 11

y5 100 – –

Table 5.13 Codes of collections of microoperations for Mealy FSM PCAD(�9)

t Y 1 C(Yt ) t Y 2 C(Yt )

1 ∅ 00000 5 y2y5 10001

2 y1y2 00101 6 y6 00010

3 y3 01000 7 y3y7 01011

4 y4 01100

Table 5.14 Specification of block BTSM Mealy FSM PCAD(�9)

as K (as) Ih K (Ik) Yh Zh h

a1 000 – – Y1 – 1

a2 010 – – Y2 z3z5 2

a3 011 I1 0 Y3 z2 3

a3 011 I2 1 Y4 z2z3 4

a4 100 I1 0 Y2 z3z5 5

a4 100 I2 1 Y5 z1z5 6

a5 101 I1 0 Y6 z1z4 7

a5 101 I2 1 Y7 z1z4z5 8
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codes C(Yt ) of collections Yt ∈ Y shown in Table5.13. Let us point out that if some
microoperation y j

n /∈ Yt , then the field j of code C(Yt ) contains only zeros.
The transformed structure table ofMealy FSMPCAD(�9) is identical to Table5.9.

The table specifying the block BTSM for both models is constructed in the same
way. As a rule, this table for PCAD Mealy FSM includes more variables zr ∈ Z
(Table5.14 in our example), than its counterpart for PCAY Mealy FSM.

There is noneed in a table specifyingmicrooperations, becauseTable5.12 contains
inputs and outputs for decoders of the block BMO.

5.5 Design of Mealy FSM2 with OCT

The following procedure is proposed to design a Mealy FSM2:

1. One-to-one identification of states. Let A(Yt ) be a set of states, such that a
collection Yt ⊂ Y is generated under some transitions in these states, and let
mt = |A(Yt )|. In this case, it is enoughmt identifiers for one-to-one identifications
of the states am ∈ A(Yt ). It is necessary K = max(m1, . . . ,mT ) variables for
one-to-one identification of the states am ∈ A. Let these identifiers form a set I .
Let us encode an identifier Ik ∈ I by a binary code K (Ik) and let us construct
a set of variables V = {v1, . . . , vR1} used for encoding of identifiers, where
Rl = 	log2 K 
. Let each state as ∈ A(Yt ) correspond to a pair αt,s = 〈Ik,Yt 〉,
then the code for state as is determined by the following concatenation:

C(as) = K (Yt ) ∗ K (Ik) (5.33)

2. Encoding of collections of microoperations. This step is executed using the
approach discussed before.

3. Construction of transformed structure table. This table is used to derive func-
tions V = V (T, X) and Z = Z(T, X). To construct it, the columns as , K (as),
Φh are eliminated from the initial structure table. At the same time the column
Yh is replaced by columns Vh and Zh . The column Zh contains variables zq ∈ Z
equal to 1 in the code K (Yh). The system Z includes the following equations:

zq =
H∨

h=1

Cqh A
h
m Xh (q = 1, . . . , Q). (5.34)

4. Specification of code transformer. The code transformer BTMS generates func-
tions

Φ = Φ(V, Z). (5.35)

This system can be specified by a table with the following columns: Yt , K (Yt ),
Ik , K (Ik), as , K (as), Φh , h. The table includes all pairs ∠Ik,Yt 〉 for the state a1,
next, all pairs for a2, and so on. The number of rows H0 in this table is determined



5.5 Design of Mealy FSM2 with OCT 115

Fig. 5.12 Structural diagram of PCYY and PCAD Mealy FSMs

as a result of summation for the numbers mt (t = 1, . . . , T ). The system of input
memory functions is represented as the following one:

φr =
H0∨

h=1

CrhVh Zh (r = 1, . . . , R). (5.36)

In (5.36) the symbol Zh stands for conjunction of variables zr ∈ Z corresponded
to the collection of microoperations Yt ⊂ Y from the row h of the table specifying
block BTMS.

5. Construction of the table of microoperations. This step is executed using the
same approach as the one applied for PCAY Mealy FSM.

6. Synthesis of FSM logic circuit. For structural diagram shown in Fig. 5.8 the
number of bits in the register RG is equal to Q + RV . This number can be
decreased up to R, using the structural diagrams shown in Fig. 5.12. In this case,
the block BTMS generates input memory functions instead of state variables T .
Due to such approach, it is enough R flip-flops in the register RG.

Let us discus an example of logic synthesis for the Mealy FSM PCYY(�9). For
FSM 9 there are T0 = 7 collections of microoperations, namely: Y1 = ∅, Y2 =
{y1, y2}, Y3 = {y3}, Y4 = {y4}, Y5 = {y2, y5}, Y6 = {y6}, Y7 = {y3, y7} (Table5.8).
Let us construct the sets A(Yt ) and define their cardinality numbers: A(Y1) = {a1},
m1 = 1; A(Y2) = {a2, a4}, m2 = 2; A(Y3) = {a3}, m3 = l; A(Y4) = {a3}, m4 = l;
A(Y5) = {a4}, m5 = l; A(Y6) = {a5}, m6 = 1, and A(Y7) = {a5}, m7 = 1. Thus,
it is enough K = 2 identifiers, that is I = {I1, I2}. The identifiers Ik ∈ I can be
encoded using RV = 1 variable, that is V = {v1}. Let the identifiers be encoded in
the following way: K (I1) = 0 and K (I2) = 1. Let us find the pairs αt,s for each
element from the sets A(Yt ). Ifmt = 1, then the first component of corresponding pair
is represented by the symbol ∅. This symbol corresponds to uncertainty in the code
C(as)t , where the superscript t means that the code of state as belongs to the pairαt,s .
The following pairs can be constructed in the discussed example: α1,1 = 〈∅,Y1〉,
α2,2 = 〈I1,Y2〉, α2,4 = 〈I2,Y2〉, α3,3 = 〈∅,Y3〉, α4,3 = 〈∅,Y4〉, α5,4 = 〈∅,Y5〉,
α6,5 = 〈∅,Y6〉, α7,5 = 〈∅,Y7〉. Using these pairs together with (5.8), we can get the
codes C(as) shown in Table5.15.
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Table 5.15 State codes of Mealy FSM PCYY(�9)

am C(as)t αtm h

a1 000* α1,1 1

a2 0010 α2,2 2

a3 010* α3,3 3

a3 011* α4,3 4

a4 100* α5,4 5

a4 0011 α2,4 6

a5 101* α6,5 7

a5 110* α7,5 8

Table 5.16 Transformed structure table of Mealy FSM PCYY(�9)

am K (am) Xh Zh Vh h

a1 000 x1 z3 – 1

x̄1 z2 – 2

a2 010 x2 z3 – 3

x̄2x3 z2z3 – 4

x̄2 x̄3 z3 v1 5

a3 011 x1 z1 – 6

x̄1 z1z3 – 7

a4 100 1 z1z2 – 8

a5 101 x2x3 z3 – 9

x2 x̄3 z2 – 10

x̄2x4 z1z2 – 11

x̄2 x̄4 – – 12

This table includes H0 = m1 + . . . + mT rows. As follows from Table5.15 each
from the states a3, a4, and a5 have two different codes of the type (5.33). In the
common case, the number of codes C(as)t for some state am ∈ A is equal to the
number of different sets A(Yt ), including this state am . The codes of collections of
microoperations shown in Table5.15 are the same as they were obtained before. The
codes are placed in the three most significant positions of the column C(am).

Using the known method, we can construct the transformed structure table of
Mealy FSM (Table5.16) on the base of the initial structure table (Table5.8). Using
Table5.16, we can derive systems (5.34) and (5.30).

The table used for specification of the block BTMS (Table5.17) includes H2 =
2R0 − H1 rows, where R0 = 	log2 H0
. It is necessary if the logic circuit of BTMS
is implemented with embedded memory blocks. In this case all possible addresses
should be present. Let us point out that at least H1 = (2Q − T )2R1 rows contain zero
output codes corresponded to unused collections of microoperations. For the FSM
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Table 5.17 Specification of block BTMS for Mealy FSM PCYY(�9)

Yt K (YT ) Ik K (Ik) as K (as) Φh h

Y1 000 – 0 a1 000 – 1

000 – 1 a1 000 – 2

Y2 001 I1 0 a2 010 D2 3

001 I2 1 a4 100 D1 4

Y3 010 – 0 a3 011 D2D3 5

010 – 1 a3 011 D2D3 6

Y4 011 – 0 a3 011 D2D3 7

011 – 1 a3 011 D2D3 8

Y5 100 – 0 a4 100 D1 9

100 – 1 a4 100 D1 10

Y6 101 – 0 a5 101 D1D3 11

101 – 1 a5 101 D1D3 12

Y7 110 – 0 a5 101 D1D3 13

110 – 1 a5 101 D1D3 14

S21, there is H1 = 2, it means that only 14 rows are in use, whereas there are totally
2R0 = 16 rows.

For the Mealy FSM PCYY(�9) the table of microoperations is represented by
Table5.11.The logic circuit of blockBTMS is implementedusing embeddedmemory
blocks on the base of Table5.17

Let us point out that the logic circuit of block BTMS can be implemented using
PLAer. In this case the following system of Boolean functions should be constructed:

Dr =
H2∨

h=1

Crk ZhVh (r = 1, . . . , R). (5.37)

If the column contains the symbol “–” in the row h of the table of block BTMS, then
Vh = 1. It allows minimizing system (5.37). For example, D1 = F4 ∨ F9 ∨ F10 ∨
F11 ∨ F12 ∨ F15 ∨ F14 = z̄1 z̄2z3v1 ∨ z1 z̄2 z̄3 ∨ z1 z̄2z3 ∨ z̄1z2z3 (Table5.18).

Let us discuss an example of logic synthesis for the PCYD(�9) Mealy FSM
having the structural diagram shown in Fig. 5.12. The codes for its collections of
microoperations are shown in Table5.13. Using these codes of collections as well as
the state codes from Table5.15 it is possible to construct the transformed structure of
Mealy FSM PCYD(�9) (Table5.19). It is constructed in the same way, as it is done
for PCAY Mealy FSM.

For PDMealy FSM, the number of bits used in the code K (Yt ) is much more than
for equivalent PYMealy FSM. It means that the logic circuit of block BTSM for PD
Mealy FSM should be implemented using LUTs. For the Mealy FSM PCYD(�9)

the table of block BTSM includes H0 = 8 rows (Table5.20. To implement the logic
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Table 5.18 State codes for Mealy FSM PCYD(�9)

am C(as)t αtm h

a1 00000* α1,1 1

a2 001010 α2,2 2

a3 01000* α3,3 3

a3 01100* α4,3 4

a4 10001* α5,4 5

a4 001011 α2,4 6

a5 00010* α6,5 7

a5 01011* α7,5 8

Table 5.19 The transformed structure table of Mealy FSM PCYD(�9)

am K (am) Xh Zh Vh h

a1 000 x1 z3z5 – 1

x̄1 z2 – 2

a2 010 x2 z3z5 – 3

x̄2x3 z2z3 – 4

x̄2x3 z3z5 v1 5

a3 011 x4 z1z5 – 6

x̄1 z4 – 7

a4 100 1 z2z4z5 – 8

a5 101 x2x3 z3z5 – 9

x2 x̄3 z2 – 10

x̄2x4 z2z4z5 – 11

x̄2 x̄4 – – 12

Table 5.20 Specification of block BTSM for Mealy FSM PCYD(�9)

Yt K (YT ) Ik K (Ik) as K (as) Φh h

Y1 00000 – 0 a1 000 – 1

Y2 00101 I1 0 a2 001 D3 2

I2 1 a4 011 D2D3 3

Y3 01000 – 0 a3 010 D2 4

Y4 01100 – 0 a3 010 D2 5

Y5 10001 – 0 a4 011 D2D3 6

Y6 00010 – 0 a5 100 D1 7

Y7 01011 – 0 a6 100 D1 8
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circuit of PCYD Mealy FSM, its transformed ST is used to derive systems Z and V ,
whereas its table for block BTSM is the base to derive system Φ. For example, the
following Boolean equation can be derived D1 = F7∨F8 = z̄1 z̄2 z̄3z4 z̄5∨ z̄1z2 z̄3z4z5
from Table5.20.
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5. Barkalov, A., Węgrzyn, M.: Design of Control Units with Programmable Logic. University of
Zielona Góra Press (2006)



Chapter 6
Hardware Reduction for Moore EFSMs

Abstract The Chapter is devoted to hardware reduction targeting the elementary
LCS-basedMoore FSMs. Firstly, the optimizationmethods are proposed for the base
model of EFSM. They are based on the executing either optimal state assignment or
transformation of state codes. Two different models are proposed for the case of code
transformation. They depend on the numbers of microoperations of FSM and outputs
of EMB in use. The models are discussed based on the principle of code sharing. In
this case, the state code is represented as a concatenation of the chain code and the
code of component inside this chain. The last part of the chapter is devoted to design
methods targeting the hybrid FPGAs.

6.1 Optimization of EFSM with the Base Structure

Let us name the Moore FSM PYE (Fig. 3.13) as an EFSM with the base structure.
The structural diagram of FPGA-based PYE Moore FSM is shown in Fig. 6.1.

The block LUTer (Fig. 6.1) represents the block BIMF (Fig. 3.13). It implements
the system of input memory functions (2.9). The block EMBer (Fig. 6.1) represents
the block BMO (Fig. 3.13). It implements the system of microoperations (2.16), as
well as the function (3.29). We have discussed an example of synthesis for Moore
FSM PYE(Γ4).

To diminish the number of LUTs in the circuit of LUTer, it is necessary to dimin-
ish numbers of literals and terms in functions (2.9). Two methods can be used for
optimizing LUTer of PYE FSM:

1. Optimal state assignment.
2. Transformation of state codes into class codes.

Both these methods are based on existence of classes of PES.
Let us discuss these methods for the case of GSA Γ10 (Fig. 6.2). It is marked by

states of Moore FSM using the rules [2]. The following sets and their parameters
can be derived from GSA Γ10: X = {x1, . . . , x4}, L = 4, Y = {y1, y5}, N = 5, A =
{a1, . . . , a19}, M = 19, R = 5, T = {T1, . . . , T5}, Φ = {D1, . . . , D5}.
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Fig. 6.1 Structural diagram
of FPGA-based PYE Moore
FSM

The optimal state assignment leads to P0YE Moore FSM. It has the same structure
as PYE FSM (Fig. 6.1). The following method can be used for synthesis of P0YE

Moore FSM:

1. Marking the initial GSA Γ and creating the set of states A.
2. Constructing the set of ELCS CE .
3. Constructing the partition ΠCE = {B1, . . . , BI E }.
4. Executing the optimal state assignment.
5. Constructing the table of LUTer.
6. Constructing the table of EMBer.
7. Implementing the FSM logic circuit.

Let us apply the procedure P1 to the GSA Γ10. It produces the set CE =
{α1, . . . ,α7} with the following elementary LCSs: α1 = 〈a1, a2, a3〉, α2 =
〈a4, . . . , a7〉, α3 = 〈a5, a9, a10〉, α4 = 〈a11〉, α5 = 〈a12, a13, a14〉, α6 =
〈a15, . . . , a18〉, and α7 = 〈a15〉. There is G1 = 7 in the discussed case.

To construct the partition ΠCE , let us form the set OE (Γ10). This set includes
outputs of ELCS αg ∈ CE . Using the Definition 3.4, the following set can be
found: OE (Γ10) = {a3, a7, a10, a11, a14, a18, a19}. The following classes of PES can
be found for the states am ∈ OE (Γ10) : {a3}, {a7, a10}, {a14, a18}, and a19. It gives the
following partitionΠCE = {B1, . . . , B5}with the classes B1 = {α1}, B1 = {α2,α3},
B3 = {α4}, B4 = {α5,α6}, and B5 = {α7}.

The aim of optimal state assignment is to find such state codes that the class
codes K (Bi ) will be represented by the minimum possible amount of cubes of R-
dimensional Boolean space. Let us point out that the initial state ai ∈ A should have
code with all zeroes. One of the possible variants is shown in Fig. 6.3.

This state assignment is a natural state assignment satisfying to (3.26). It can be
found fromFig. 6.3 that: the class B1 is determined by the cube 000**, the class B2 by
0*1**, the class B3 by 1*1**, the class B4 by *10**, and the class B5 by the 100**.
It gives the following class codes: K (B1)=000**, K (B2)=0*1**, K (B3)=100**,
K (B4)=*10** and K (B5)=1*1**.

The table of LUTer includes the following columns: Bi , K (Bi ), as , K (as), Xh ,
Φh , h. To construct this table a system of generalized formulae of transitions (GFT)
[4, 7] should be formed. In the discussed case, it is the following system:

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 6.2 Initial
graph-scheme of algorithm
Γ10
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Fig. 6.3 Optimal state codes
for EFSM P0YE(Γ10)

Table 6.1 Table of LUTer for Mealy EFSM P0YE(Γ10)

Bi K (Bi ) as K (as) Xh Φh h

B1 0 00** a4 0 0100 x1 D3 1

a8 0 1100 x̄1 D2D3 2

B2 0 *1** a19 1 0100 x2x4 D1D3 3

a11 1 0000 x2 x̄4 D1 4

a12 0 1000 x̄2x3 D2 5

a15 1 1000 x̄2 x̄3 D1D2 6

B3 1 00** a12 0 1000 1 D2 7

B4 * 10** a19 1 0100 1 D1D3 8

B5 1 *1** a1 0 0000 1 – 9

B1 = x1a4 ∨ x̄1a8;
B2 = x2x4 ∨ x2 x̄4a11 ∨ x̄2x3a12 ∨ x̄2 x̄3a15;
B3 = a12;
B4 = a19;
B5 = a1.

(6.1)

Each term of system (6.1) corresponds to a row of table of LUTer (Table6.1). The
state codes are taken from Fig. 6.3, the class codes are found before.

The table of LUTer is used for creating the system (2.9). The term Fh of (2.9) is
determined as:

Fh = (

R∨

r=1

T lir
r )Xh . (6.2)

In (6.2), the value lir is a value of the r -th bit of K (Bi ) from the line number h.
The number of lines is equal to H 0

E (Γ j ). In the discussed case, there is H 0
E (Γ10) = 9.

The variable lir belongs to the set {0, 1, ∗} and there are T 0
r = T̄r , T 1

r = Tr and
T ∗
r = 1(r = 1, . . . , R). The functions (2.9) are determined as

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fr =
H 0

E∨

h=1

Crh Fh (r = 1, . . . , R). (6.3)

In (6.3), the Boolean variable Crh = 1 only if the function Dr is written in the line
h of the table of LUTer.

For example, the function D1 ∈ Φ is written in the lines 3, 4, 6 and 8 of Table6.1.
After minimizing, the following function can be found:

D1 = T̄1T3x3 ∨ T̄1T3 x̄3 ∨ T2T̄3. (6.4)

Using the same approach, the functions D2 and D3 can be found:

D2 = T̄1T̄2T̄3 x̄1 ∨ T̄1T3 x̄2 ∨ T1T̄2T̄3, (6.5)

D3 = T̄1T̄2T̄3 ∨ T̄1T3x2x4 ∨ T2T̄3. (6.6)

Let us point out that each of functions (6.4)–(6.6) can be implemented using only
a single LUT having S = 5. In the discussed case, the system (2.9) depends only on
state variables T1–T3. So, it is the function:

Φ = Φ(T 1, X), (6.7)

where T 1 ⊆ T . At the same time, only the input memory functions D1–D3 should
be formed by the LUTer. It is the best possible solution.

In the common case, the best solution is determined by the equation

|T 1| = �log2 |ΠCE |	. (6.8)

The table of EMBer is constructed in a trivial way. In includes the columns K (am),
Y (am), h. In the common case, this table includes HEMB rows, where

HEMB = 2R . (6.9)

Let us point out that only M rows include the collections of microoperations.
If a state am ∈ A is not the output of ELCs, then the corresponding cell should

include the variable y0. This variable should be included in the corresponding line
of the table of EMBer. In the discussed case, there is HEMB = 32. The first 8 rows
of the table of EMBer is represented by Table6.2 for Moore EFSM P0YE(Γ10).

The column m is added to show the correspondence among the rows of table of
EMBer and the states am ∈ A. Let the following condition take place:

2R(N + 1) ≤ V0. (6.10)

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Table 6.2 The part of table
of EMBer for Mealy UFSM
P0YE(Γ10)

K (am) T1 . . . T5 Y (am) y0 . . . y5 h m

0 0000 10 0000 1 1

0 0001 11 1000 2 2

0 0010 00 0100 3 3

0 0011 00 0000 4 *

0 0100 11 0010 5 4

0 0101 10 0100 6 5

0 0110 10 1001 7 6

0 0111 01 1000 8 7

The symbol V0 stands for the number of cells of EMB under tF = 1. If the condition
(6.10) takes place, the only one EMB is enough for implementing the logic circuit
of EMBer.

In the discussed case, the left part of (6.10) produces the value 186 = 32 ∗ 6.
Let it be the EMB with configuration 32× 8 in a particular FPGA chip. Let this
chip include LUTs having five inputs. In this case, it is enough a single EMB for
implementing the circuit of EMBer. Each function (6.4)–(6.6) is implemented using
a single LUT. To implement the circuit of counter CT, five LUTs are necessary. So,
the logic, circuit of Moore EFSM P0YE(Γ10) includes 8 LUTs and a single EMB
(Fig. 6.4). The counter is shown as a single block. We do not discuss the organization
of counters in our book. It can be found in many books connected with logic design,
for example in [10, 11].

Let us point out that there are GSAs for which the condition (6.8) does not take
place. In this case, the hardware reduction can be executed due to transformation of
state codes into class codes. It leads to PCY Moore FSM (Fig. 3.10). Let us discuss
this approach for ELCS-based Moore FSMs.

Let us find the partitionΠCE = {B1, . . . , BI E } for a given GSA Γ j . Let us encode
the classes Bi ∈ ΠCE by binary codes K (Bi ) having RCE bits:

RCE = �log2 I E	. (6.11)

Let us use the variables τr ∈ τ for encoding the classes.
Let the following condition take place:

2R(N + RCE + 1) ≤ V0. (6.12)

In this case, the functions (3.17) are generated by the EMBer. It results in PC1YE

Moore FSM (Fig. 6.5).

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 6.4 Logic circuit of Moore EFSM P0YE(Γ10)

Fig. 6.5 Structural diagram
of FPGA=based PC1YE
Moore FSM

In thismodel, the LUTer generates functions (3.15), whereas the EMBer functions
(2.16), (3.15) and (3.29). The method of synthesis for PC1YE Moore FSM is similar
to the method for P0YE FSM. There is the following difference:

4. Executing the natural state assignment.
4a. Encoding of the classes Bi ∈ ΠCE .

Let us discuss an example of synthesis for Moore EFSM PC1YE(Γ10). The sets
CE and ΠCE are already found. Let us use the same state codes as the ones from
Fig. 6.3.

There is I E = 5 in the discussed case. It gives the value RCE = 3. But the analysis
of Table6.1 shows that the transitions are executed automatically for the states am ∈
B5. It means that only classes B1, . . . , B4 should be encoded. It gives the set τ =
{τ1, τ2}. Let us encode the classes in the trivial way: K (B1) = 00, . . . , K (B4) = 11.
The table of LUTer is constructed on the base of the system of GFT. In the discussed
case, it is Table6.3 constructed using the system (6.1).

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 6.3 Table of LUTer for Moore EFSM PC1YE(�10)

Bi K (Bi ) as K (as) Xh Φh h

B1 00 a4 0 0100 x1 D3 1

a8 0 1100 x̄1 D2D3 2

B2 01 a19 1 0100 x2x4 D1D3 3

a11 1 0000 x2 x̄4 D2 4

a12 0 1000 x̄2 x̄3 D2 5

a15 1 1000 x̄2 x̄3 D1D2 6

B3 10 a12 0 1000 1 D2 7

B4 11 a19 1 0100 1 D1D3 8

Table 6.4 The part of table of EMBer for Moore EFSM PC1YE(Γ10)

K (am) T1 . . . T5 Y (am) y0 . . . y5 K (Bi ) τ1τ2 h m

0 0000 10 0000 00 1 1

0 0001 11 1000 00 2 2

0 0010 00 0100 00 3 3

0 0011 00 0000 00 4 *

0 0100 11 0010 00 5 4

0 0101 10 0100 00 6 5

0 0110 10 1001 00 7 6

0 0111 01 1000 01 8 7

The functions Dr ∈ Φ are derived from this table. They depend on the terms

Fh = (

RCE∧

r=1

τ lir
r )xh (h = 1, . . . , HC

E ). (6.13)

The meaning is obvious for each element of (6.13).
After minimizing, the following functions can be derived from Table6.3

D1 = τ̄1τ2x2 ∨ τ̄1τ2 x̄3 ∨ τ1τ2;
D2 = τ̄1τ̄2 x̄1 ∨ τ̄1τ2 x̄2 ∨ τ1τ̄2;
D3 = τ̄1τ̄2 ∨ τ̄1τ2x2x4 ∨ τ1τ2.

(6.14)

Analysis of the system (6.14) shows that each its equations can be implemented using
LUTs with S = 4.

The table of EMBer includes the column K (Bi ). If am = Og , then the cell with
address K (am) contains the code K (Bi ) such that αg ∈ Bi . The first 8 rows for this
table are shown in Table6.4. The state a8 is the output of ELCS α2 ∈ B2. Because
of it, the code 01 is placed in the row 8 of Table6.4.
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Fig. 6.6 Structural diagram
of FPGA-based PC2YE
Moore FSM

If the condition (6.12) is violated, then apart of the code K (Bi ) shouldbegenerated
by the block of transformer of state codes BTC (Fig. 3.10). It leads to PC2YE Moore
FSM (Fig. 6.6).

In this model, the LUTer1 generates the functions (3.15), the EMBer generates
functions (2.16), (2.28) and

τ 1 = τ 1(T ). (6.15)

The block LUTer2 implements functions

τ 2 = τ 2(T ). (6.16)

Obviously, the following condition takes place:

τ 1 ∪ τ 2 = τ ;
τ 1 ∩ τ 2 = ∅; (6.17)

The following method can be used for synthesis of PC2YE Moore FSM:

1. Creating the set of states A.
2. Constructing the set of ELCS CE .
3. Constructing the set ΠCE = {B1, . . . , BI E }.
4. Executing the natural state assignment.
5. Encoding of the classes Bi ∈ ΠCE .
6. Constructing the table of LUTer1.
7. Constructing the table of LUTer2.
8. Constructing the table of EMBer.
9. Implementing the FSM logic circuit.

Let us discuss an example of synthesis for Moore EFSM PC2YE(Γ10). The sets
CE , ΠCE , τ are already found, as well as the codes of states am ∈ A and classes
Bi ∈ ΠCE . The table of LUTer1 is the same as Table6.3.

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Table 6.5 Table of LUTer2 for Moore EFSM PC2YE10

am K (am) Bi K (Bi ) τ2m m

a3 0 0010 B1 00 – 3

a7 0 0111 B2 01 τ2 7

a10 0 1110 B2 01 τ2 10

a11 1 0000 B3 10 – 11

a14 0 1010 B4 10 – 14

a18 1 1011 B4 11 τ2 18

The number of cells is equal 2R for EMBs of EMBer. It allows finding the number
of outputs tF . Let the following conditions take places:

tF > N + 1; (6.18)

tF < N + RCE + 1. (6.19)

In this case, the set τ should be derived using (6.17). The set τ 1 includes RCE1

elements, where
RCE1 = tF − (N + 1). (6.20)

The set τ 2 includes RCE2 elements, where

RCE2 = RCE − RCE1. (6.21)

Let the following condition take place:

S ≥ R. (6.22)

In (6.22), the symbol S stands for the number of inputs of LUTs used for design of
an FSM circuit. In this case, the set τ can be divided in an arbitrary way.

Let the configuration 32× 7 exist for an EMB in use. So, there is t f = 7. Because
of N = 5, RCE = 2, the conditions (6.18)–(6.19) take places. Using (6.20)–(6.21),
the following equality RCE1 = RCE2 = 1 can be found. Let it be S = 5. So, the
condition (6.22) takes place. It means that the following sets can be formed τ 1 = {τ1}
and τ 2 = {τ2}.

The table of LUTer2 is constructed only for outputs of ELCSαg ∈ CE . It contains
the columns am , K (am), Bi , K (Bi ), τ 2

m , m. The class Bi ∈ ΠCE is placed in the row
numberm if (am = Og)&(αg ∈ Bi ) = 1. The column τ 2

m includes the variables τr ∈
τ 2 corresponding to ones in the code K (Bi ) from the row numberm(m = 1, . . . , M).
The table of LUTer2 includes 6 rows in the discussed case (Table6.5).

This table is used to program a LUT implementing the function τ2 = τ2(T ). If
the condition (6.22) is violated, then the equations for all functions τr ∈ τ should
be obtained. The set τ 2 should include the functions τr ∈ τ corresponding to logic
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Fig. 6.7 Karnaugh map for function τ2

circuit with minimum number of LUTs. We do not discuss this problem in our book.
Let us only point out that codes of states am /∈ OE can be considered as “don’t care”
for functions τr ∈ τ . This property can be used for minimizing these functions. To
illustrate this issue, let us form a Karnaugh map for function τ2 (Fig. 6.7). It includes
the signs * for all states am ∈ OE (Γ10). The following equation can be obtained from
this map:

τ2 = T3 ∨ T5. (6.23)

Obviously, the corresponded circuit is implemented using only a single LUT with
S = 2.

6.2 Synthesis of EFSM with Code Sharing

The structural diagramof PYEC Moore FSM is shown in Fig. 3.18.We discuss FPGA-
based structures of FSM circuits. In the case of PYEC Moore FSM, the block BIMF
is represented by LUTer and the block BMO is represented by EMBer (Fig. 6.8).

Fig. 6.8 Structural diagram of FPGA-based PYEC Moore FSM

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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In this FSM, the LUTer forms functions

Ψ = Ψ (τ , X). (6.24)

These functions are used for loading codes K (αg) of ELCSαg ∈ CE into the register
RG. The state variables Tr ∈ T are used for encoding of the states am ∈ A(αg),
where r = 1, . . . , RG1. The chain variables τr ∈ τ are used for encoding of the
ELCS αg ∈ CE , where r = 1, . . . , RG1. The value of RG1 is determined by (3.64).
The states are encoded by codes C(am), the chains are encoded by codes K (αg).
The code K (am) is determined as the concatenation (3.66). This code is considered
as an address of a memory cell.

The proposed design method for PYEC Moore FSM includes the following steps:

1. Creating the set of states A.
2. Constructing the set of ELCS CE .
3. Encoding of ELCS αg ∈ CE .
4. Encoding of states am ∈ A(αg) (g = 1, . . . ,G1).
5. Constructing the table of LUTer.
6. Constructing the table of EMBer.
7. Implementing the FSM logic circuit.

Let us discuss an example of synthesis for Moore EFSM PYEC(Γ10). The steps
1 and 2 are already executed. Let us construct Table6.6 with ELCS αg ∈ CE and
classes Bi ∈ ΠCE . This table can be constructed using the previous results. Table6.6
also includes state codes C(am), chain codes K (αg) and class codes K (Bi ). We will
discuss these codes a bit later.

It is found before that there are RG1 = 3 and RC1 = 2. So, there are the sets
τ = {τ1, τ2, τ3} and T = {T1, T2}. Let us execute the steps 3 and 4 of the proposed
method.

Let us encode the ELCS αg ∈ CE in the trivial way: K (α1) = 000, K (α2) =
001, . . . , K (α7) = 110 (Table6.6). To satisfy (3.65), the first components of all
ELCS αg ∈ C should have the code C(am) = 00, the second 01, the third 10 and the
fourth 11 (Table6.6).

Table 6.6 Elementary LCSs and their classes for GSA Γ10

Bi B1 B2 B3 B4 B5 C(am)

αg α1 α2 α3 α4 α5 α6 α7

am a1 a4 a8 a11 a12 a15 a19 00

a2 a5 a9 – a13 a16 – 01

a3 a6 a10 – a14 a17 – 10

– a7 – – – a18 – 11

K (αg) 000 001 010 011 100 101 110 –

K (Bi ) 00 01 10 11 * –

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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This table gives the codes (3.66). For example the following codes can be found:
K (a1) = 00000, K (a2) = 01001, K (a3) = 01010, and so on.

To construct the table of LUTer, the set of outputs OE should be found. In the
discussed case, the set OE (Γ10) = {a3, a7, a10, a11, a14, a18, a19}. Let us form the
system of formulae of transitions for the states am ∈ OE (Γ10). It is the following
system:

a3 → x1a4 ∨ x̄1a8;
a7 → x2x4a19 ∨ x2 x̄4a11 ∨ x̄2x3a12 ∨ x̄2 x̄3a15;
a10 → x2x4a19 ∨ x2 x̄4a11 ∨ x2x3a12 ∨ x̄2 x̄3a15;
a11 → a12;
a14 → a19;
a18 → a19;
a19 → a1.

(6.25)

The table of LUTer includes the following columns: αm , K (αm), αs , K (αs), Xh ,
Ψh , h. Each line of the table corresponds to one term of SFT. Each state ai ∈ A is
replaced by an ELCS αg ∈ CE such that ai ∈ A(αg). The table contains HEC(Γ j )

lines. In the case of PYEC(Γ10), the table of LUTer includes HEC(Γ10) = 14 lines
(Table6.7).

Table 6.7 Table of LUTer of Moore EFSM PYCE(Γ10)

αm K (αm) αs K (αs) Xh Ψh h

α1 000 α2 001 x1 D3 1

α3 010 x̄1 D2 2

α2 001 α7 110 x2x4 D1D2 3

α4 011 x2 x̄4 D2D3 4

α5 100 x̄2x3 D1 5

α6 101 x̄2 x̄3 D1D3 6

α3 010 α7 110 x2x4 D1D2 7

α4 011 x2 x̄4 D2D3 8

α5 100 x̄2x3 D1 9

α6 101 x̄2 x̄3 D1D3 10

α4 011 α5 100 1 D1 11

α5 100 α7 110 1 D1D2 12

α6 101 α7 110 1 D1D2 13

α7 110 α1 000 1 – 14

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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The connection is obvious between the system (6.25) and Table6.7. The chain
codes are taken from Table6.6. This table is the base for constructing the system
(6.24). Terms of (6.24) are determined by the following expression:

Fh = (

RG1∧

r=1

τ
lgr
r )Xh (h = 1, . . . , HEC). (6.26)

The symbol lgr stands for the value of r -th bit of the code K (αg) from the h-th
row of the table.

For the example, the following equation can be derived from Table6.7:

D1 = τ̄1τ̄2τ3(x2 ∨ x̄3) ∨ τ̄1τ2τ̄3(x2 ∨ x̄3) ∨ τ2τ3 ∨ τ1τ̄2τ̄3 ∨ τ1τ3. (6.27)

To get this equation, the code 111 was used for minimizing the function D1. To
implement the logic circuit corresponding to (6.27), it is enough one LUT having
S = 5.

The table of EMBer is constructed in the same way as for PYE Moore EFSM. The
codes K (am) are the same for both PYE(Γ10) and PYCE(Γ10).

To optimize the circuit of LUTer, two methods can be used:

1. The optimal chain assignment (P0YCE EFSM).
2. The transformation of chain codes (PCYCE EFSM).

Both approaches are based on constructing the partition ΠCE . Let us discuss this
methods.

The following approach can be used for synthesis of P0YEC Moore EFSM:

1. Creating the set of states A.
2. Constructing the set of ELCS CE .
3. Encoding of states am ∈ A(αg).
4. Constructing the partition ΠCE .
5. Optimal chain assignment.
6. Constructing the table of LUTer.
7. Constructing the table of EMBer.
8. Implementing the FSM logic circuit.

Obviously, the structural diagrams are the same for PYEC and P0YEC(�) FSM.
The sets A,ΠCE , Bi ∈ ΠCE are already found, as well as the state codeC(am). They
are represented by Table6.6.

The optimal chain assignment should result in such chain codes that each class
Bi ∈ ΠCE is represented by minimum possible amount of cubes of RG1-dimensional
Boolean space. One of the possible variants is shown in Fig. 6.9.

The following codes can be derived from Fig. 6.9: K (B1) = 00∗, K (B2) = 01∗,
K (B3) = 110, K (B4) = 10∗ and K (B5) = 111. Using chain codes fromFig. 6.9 and
state codes from Table6.6 the state codes (3.66) can be found. They are shown in
Fig. 6.10.

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 6.9 Optimal chain
codes for Moore EFSM
P0YEC(�10)

Fig. 6.10 State codes for
Moore EFSM P0YEC(�10)

Table 6.8 Table of LUTer of Moore EFSM P0YCE(�10)

Bi K (Bi ) as K (as) Xh Φh h

B1 00* a4 0 1000 x1 D2 1

a8 0 1100 x̄1 D2D3 2

B2 01* a19 1 1100 x2x4 D1D2D3 3

a11 1 1100 x2 x̄4 D1D2 4

a12 1 0000 x̄2x3 D1 5

a15 1 0100 x̄2 x̄3 D1D3 6

B3 110 a12 1 0000 1 D1 7

B4 11* a19 1 1100 1 D1D2D3 8

The table of LUTer includes the following columns: Bi , K (Bi ), as , K (as), Xh ,
Φh , h. It is constructed using the system of generalized formulae of transitions. In
the discussed case, the system of GFT is represented by (6.1). The table of LUTer is
represented by Table6.8.

The table of LUTer is used for constructing the system (6.24). The terms of (6.24)
are represented by (6.28):

Fh = (

R∧

r=1

τ lir
r )G1h (h = 1, . . . , H 0

EC). (6.28)
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Table 6.9 The part of table of EMBer for Moore EFSM P0YEC(�10)

K (am) τ1τ2τ3T1T2 Y (am) y0 . . . y5 h m

000 00 10 0000 1 1

000 01 11 1000 2 2

000 10 00 0100 3 3

000 11 00 0000 4 *

001 00 00 0010 5 *

001 01 00 0000 6 *

001 10 00 0000 7 *

001 11 00 0000 8 *

Fig. 6.11 Structural diagram
of PC1YEC Moore EFSM

The symbol lir stands for the value of the r -th bit of the code K (Bi ) from the h-th
row of the table derived from Table6.8:

D1 = τ̄1τ2 ∨ τ1τ2τ̄3 ∨ τ1τ̄2;
D2 = τ̄1τ̄2 ∨ τ̄1τ2x2 ∨ τ1τ̄2 = τ̄2 ∨ τ̄1τ2x2;
D3 = τ̄1τ̄2 x̄1 ∨ τ̄1τ2x2x4 ∨ τ̄1τ2 x̄2 x̄3 ∨ τ1τ̄2.

(6.29)

The functions D1, D2 can be implemented using one LUT having S = 3. It is
necessary to have five inputs in a LUT implementing the circuit for D3 (Fig. 6.11).

The table of EMBer has the same columns as for the case of P0YE. The first 8
lines are shown in Table6.9 for the discussed case. Let us point out that the codes
001** are not used as state codes K (am) (see Fig. 6.9).

Using transformation of codes K (αg) into codes K (Bi ) leads to PC2YEC Moore
EFSM (Fig. 6.12).

The functions Z are used for creating the input memory functions

Φ = Φ(Z , X). (6.30)



6.2 Synthesis of EFSM with Code Sharing 137

Fig. 6.12 Structural diagram
of PC2YEC Moore EFSM

The set Z includes RCE variables, where the value of RCE is determined by (6.11).
The design methods include the same steps for EFSMs PC1YE and PC1YEC. Let

us discuss an example of synthesis for Moore EFSM PC1YE(Γ10). There are the sets
A, ΠCE and Bi ∈ ΠE for this example (Table6.6). Table6.6 also includes the codes
C(am) and K (αg) for the discussed case. It gives the state codes K (am) represented
as (3.66).

The transitions are not included into the table of LUTer for the class B5 ∈ ΠCE .
It means that the formula (6.11) can be refined for this case:

RCE = �log2(I E − 1)	. (6.31)

The value RCE = 2 is obtained for the discussed case. It gives the set Z = {z1, z2}.
Let us encode the class Bi ∈ ΠCE using the codes from Table6.6.

The table of LUTer is constructed using the system of GFT. In the discussed
case, it is the system (6.1). The table of LUTer includes the same columns as its
counterpart for P0YCE EFSM. In the discussed case, it is Table6.10. This table is
used for constructing the functions (6.30). These functions depend on product terms

Fh = (

RCE∧

r=1

zlirr )Xh (h = 1, . . . , HC1
EC). (6.32)

The table of LUTer of Moore EFSM PC1YCE(Γ10) includes HC1
CE (Γ10) = 8 rows

(Table6.10). The functions (6.33) are derived from Table6.10.

D1 = z̄1z2 x̄1 ∨ z̄1z2 x̄2 ∨ z1;
D2 = z̄1 z̄2 x̄1 ∨ z̄1z2x2 ∨ z1z2;
D3 = z̄1 z̄2x1 ∨ z̄1z2x2 x̄2 ∨ z̄1z2 x̄2 x̄3.

(6.33)

The table of EMBer is constructed as its counterpart for PCY1E Moore EFSM.
The part of this table (Table6.11) is shown for the discussed example.

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 6.10 Table of LUTer of Moore EFSM PC1YCE(Γ10)

Bi K (Bi ) as Xh Φh h

B1 00 a4 0 0100 x1 D3 1

a8 0 1000 x̄1 D2 2

B2 01 a19 1 1000 x2x4 D1D2 3

a11 0 1100 x2 x̄4 D2D3 4

a12 1 0000 x̄2x3 D1 5

a15 1 0100 x̄2 x̄3 D1D3 6

B3 10 a12 1 0000 1 D1 7

B4 11 a19 1 1000 1 D1D2 8

Table 6.11 The part of table of EMBer for Moore EFSM PC1YCE(Γ10)

K (am) τ1τ2τ3T1T2 Y (am) y0 . . . y5 K (Bi ) z1z2 h m

010 00 10 0100 00 9 8

010 01 10 1001 00 10 9

010 10 01 0011 01 11 10

010 11 00 0000 00 12 *

011 00 00 0010 10 13 11

011 01 00 0000 00 14 *

011 10 00 0000 01 15 *

011 11 00 0000 00 16 *

Let us discuss an example of synthesis forMoore EFSMPC2YCE(Γ10). The design
method is the same as for Moore EFSM PC2YE. Let it be Z1 = {z1} and Z2 = {z2}.
Let us save all codes we have for the case of PC1YCE(Γ10). Let us consider how to
get the table of LUTer2.

This table includes the columnsαg , K (αg), Bi , K (Bi ), Z2
g , g. The class Bi ∈ ΠCE

is placed in the rownumberg of the table ifαg ∈ Bi . The column Z2
g includes the vari-

ables zr ∈ Z2 equal to 1 in the code K (Bi ) from the row number g(g = 1, . . . ,G1).
The table of LUTer2 includes G1 = 7 rows in the discussed case (Table6.12).

The sign * means that the corresponding chain code can be used for minimizing
functions zr ∈ Z2. These functions are represented as

Z2 = Z2(τ ). (6.34)

In the discussed case, the following equation can be derived from Table6.12:

z2 = τ1 ∨ τ̄2τ3 ∨ τ2τ̄3. (6.35)
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Table 6.12 Table of LUTer2 for Moore EFSM PC2YCE(Γ10)

αg K (αg) Bi K (Bi ) Z2
g g

α1 000 B1 00 – 1

α2 001 B2 01 z2 2

α3 010 B2 01 z2 3

α4 011 B3 10 – 4

α5 100 B4 11 z2 5

α6 101 B4 11 z2 6

α7 110 B5 * * 7

Fig. 6.13 Optimal chain
codes for Moore EFSM
PC2YCE(Γ10)

Let us pint out that functions (6.34) can be simplified. Let us encode the chains
αg ∈ CE (Γ10) as it is shown in Fig. 6.13.

Using these codes, the following equation can be found:

z2 = τ3. (6.36)

In this case, the block LUTer2 is absent.

6.3 Design of Moore EFSMs with Two Sources of Codes

The approach discussed in this section is based on ideas from Sect. 4.1. Let us adjust
these ideas for ELCS-basedMoore FSMs. Let us start from the model of PYE Moore
FSM (Fig. 6.1).

Let us form the sets CE and ΠCE for some GSA Γ . Let us execute the optimal
state assignment. Let Bi ∈ ΠCT if the code K (Bi ) is represented by a single interval
of R-dimensional Boolean space. If it is not true, that Bi ∈ ΠTC . The codes K (Bi )

should be generated by the block of transformer BTC if Bi ∈ ΠTC . It is enough RTC

variables (see (4.3)) to encode the classes Bi ∈ ΠTC .
Using (4.4)–(4.6), the number tBMO can be found. It is equal to the number of

unused outputs of EMBs from the EMBer. Let the following condition take place:

tBMO = RTC + 2. (6.37)

http://dx.doi.org/10.1007/978-3-319-59837-6_4
http://dx.doi.org/10.1007/978-3-319-59837-6_4
http://dx.doi.org/10.1007/978-3-319-59837-6_4
http://dx.doi.org/10.1007/978-3-319-59837-6_4
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Fig. 6.14 Structural diagram of FPGA-based PYE1 Moore EFSM

Table 6.13 Characteristics of GSA Γ11

Bi B1 B2 B3 B4 B5 B6 B7 C(am)

αg α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

am a1 a3 a6 a7 a9 a11 a14 a16 a18 a20 a23 a25 a27 a29 00

a2 a4 – a8 a10 a12 a15 a17 a19 a21 a24 a26 a28 a30 01

– a5 – – – a13 – – – a22 – – – – 10

K (αg) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 –

K (Bi ) 000 001 010 011 100 101 110 –

One output of EMBer is used for generating y0 and one yM (see Fig. 4.1). If (6.37)
takes place, then the model of PYE1 Moore EFSM can be used (Fig. 6.14).

In this model, the block of LUTer1 implements the system of input memory
functions (4.8), the block LUTer2 the system (4.9). The variables zr ∈ Z encode the
classes Bi ∈ ΠTC, where |Z | = RTC. As in the case of PY2 Moore FSM, there is
X1 ∪ X2 = X . The variable yM is used for control of the multiplexer MX.

The design method for PYE1 includes the following steps:

1. Creating the set A.
2. Constructing the set of ELCS CE .
3. Constructing the partition ΠCE .
4. Executing the optimal state assignment.
5. Finding the sets ΠCT and ΠTC .
6. Encoding the classes Bi ∈ ΠTC .
7. Constructing the table of LUTer1.
8. Constructing the table of LUTer2.
9. Constructing the table of EMBer.
10. Implementing the EFSM logic circuit.

Let us discuss an example of synthesis for Moore FSM PYE1(Γ11). The GSA Γ11

is rather complex. Because of it, we just show its characteristics in Table6.13.

http://dx.doi.org/10.1007/978-3-319-59837-6_4
http://dx.doi.org/10.1007/978-3-319-59837-6_4
http://dx.doi.org/10.1007/978-3-319-59837-6_4
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Fig. 6.15 Optimal state codes for Moore EFSM PYE1(Γ11)

The following sets and their parameters can be derived from Table6.13: A =
{a1, . . . , a30}, M = 30; CE = {α1, . . . ,α14}, G1 = 14, α1 = 〈a1, a2〉, α2 =
〈a3, a4, a5〉, . . . ,α14 = 〈a25, a30〉; ΠCE = {B1, . . . , B7}, ICE = 7, B1 = {α1}, B2 =
{α2,α3}, . . . , B7 = {α14}. So, the steps 1–3 are already executed.

Let us encode the statesam ∈ A as it is shown inFig. 6.15.Obviously, the condition
(3.26) is satisfied for all ELCS αg ∈ CE (Γ11).

Let us define the code K (Bi ) using the state codes K (am) where am ∈ A(αg) and
αg ∈ Bi . The following class codes can be found from Fig. 6.15: K (B1)=00001,
K (B2)=0010*, K (B3)=010**, K (B7)=11110. Other classes are represented using
more than a single generalized interval.

Now, the following sets can be found: ΠCT = {B1, B2, B3, B7} and ΠTC =
{B4, B5, B6}. It gives ITC = 3. Using (4.3), the following value can be found:
RTC = 2. It gives the set Z = {z1, z2}. Let it be tF = 16 and N = 5. It gives the
value tBMO = 6. So, the condition (6.37) takes place and the model PYE1(Γ11) should
be applied. Let us encode the classes Bi ∈ ΠTC in the following way: K (B4) = 00,
K (B5) = 01 and K (B6) = 10.

Let the GSA Γ11 is characterized by the following system of GFT:

B1 → x1a3 ∨ x̄1a6;
B2 → x2a7 ∨ x̄2a9;
B3 → x1a11 ∨ x̄1a3a14 ∨ x̄1 x̄3a16;
B4 → x3x4a11 ∨ x̄1 x̄4a18 ∨ x̄3x5a20 ∨ x̄3 x̄5a23;
B5 → x6a25 ∨ x̄6a27;
B6 → a29;
B7 → a1.

(6.38)

The table of LUTer1 includes the following columns Bi , K (Bi ), K (as), Xh , Φh ,
h (the same is true for the table of LUTer2). In the discussed case, the LUTer1 is
represented by Table6.14.

The state codes are taken from Fig. 6.15. Table6.14 includes transitions for the
classes Bi ∈ ΠCT. It is constructed using the GFTs for class B1, B2, B3 (6.37).

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_4
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Table 6.14 Table of LUTer1 of Moore EFSM PYE1(Γ11)

Bi K (Bi ) as K (as) Xh Φh h

B1 0 0001 a3 0 0010 x1 D4 1

a6 0 0101 x̄1 D3D5 2

B2 0 010* a7 0 0111 x2 D3D4D5 3

a9 0 1001 x2 D2D5 4

B3 0 10** a11 0 1011 x1 D2D4D5 5

a14 0 1110 x̄1x3 D2D3 6

a16 0 1001 x̄1 x̄3 D1 7

Table 6.15 Table of LUTer2 of Moore EFSM PYE1(Γ11)

Bi K (Bi ) as K (as) Xh Φh h

B4 00 a11 0 1011 x3x4 D2D4D5 1

a18 1 0010 x3 x̄4 D1D4 2

a20 1 0100 x̄3 x̄5 D1D3 3

a23 1 0111 x̄3 x̄5 D1D3D4D5 4

B5 01 a25 1 1001 x6 D1D2D5 5

a25 1 1011 x̄6 D1D2D4D5 6

B6 10 a29 1 1101 1 D1D2D3D5 7

The table of LUTer1 is used for deriving the system (4.8). In the discussed case,
for example, the following equations can be derived:

D1 → T̄1T2T̄3 x̄1 x̄3;
D5 → T̄1T̄2T̄3T̄4T5 x̄1 ∨ T̄1T̄2T3T̄4 ∨ T̄1T2T̄3x1.

(6.39)

Table6.15 represents the table of LUTer2 for the Moore EFSM PE1YE(Γ11). It is
constructed using GFTs for the classes B4, B5, B6 (5.37).

The table of LUTer2 is used for deriving the system (4.9). In the discussed case,
for example, the following equations can be derived:

D1 → z̄1 z̄2x3 x̄4 ∨ z̄1 z̄2 x̄3 ∨ z̄1z2 ∨ z1 z̄2;
D5 → z̄1 z̄2x3 x̄4 ∨ z̄1 z̄2 x̄3x5 ∨ z̄1z2 ∨ z1 z̄2.

(6.40)

Let us use yM = 0(yM = 1) to indicate that the input memory functions Φ1(Φ2)

should be loaded into CT. Using this rule and class codes for Bi ∈ ΠTC, the table of
EMBer can be constructed. It includes the columns K (am), Y (am), y0, yM , K (Bi ),
m. If (am = Og &αg ∈ Bi & Bi ∈ ΠTC) = 1 then the code K (Bi ) is placed in the
m-th row of the table together with yM = 1 If am �= Og , then the variable y0 is placed
in the row number m of the table. This table is constructed in the trivial way. We do
not discuss it in this Chapter.

http://dx.doi.org/10.1007/978-3-319-59837-6_4
http://dx.doi.org/10.1007/978-3-319-59837-6_5
http://dx.doi.org/10.1007/978-3-319-59837-6_4


6.3 Design of Moore EFSMs with Two Sources of Codes 143

Fig. 6.16 Structural diagram of FPGA-based PYE2 Moore EFSM

If tBMO > 0 but the condition (6.37) is violated, then only RTC1 bits can be gen-
erated by the EMBer:

RTC1 = RTC − tTMO. (6.41)

The rest of bits is generated by the block LUTer3. It leads to the Moore EFSM PYE2

(Fig. 6.16).
This model combines the features of PYE1 and PC2YE EFSMs. The same is true

for the corresponding design methods. We leave this EFSM to our reader.
Now, let us discuss application of this idea for Moore EFSMs with code sharing.

Let us start from the model of PYEC Moore EFSM (Fig. 6.8). In this case, there
is no need in the optimal state assignment. We should execute the optimal chain
assignment.

Let us find the sets A, CE and ΠCE for a given GSA Γ . Let us execute the natural
state assignment (3.65). Let us encode the chains αg ∈ CE in the optimal way. Let us
represent the set ΠCE as ΠCE = ΠRG ∪ ΠTC. There is the relation Bi ∈ ΠRG if the
code K (Bi ) is represented by a single interval of RG1-dimensional Boolean space.
Otherwise, there is the relation Bi ∈ ΠTC. The chain codes should be transformed if
(αg ∈ Bi )&Bi ∈ ΠTC) = 1. It is enough RTC variables zr ∈ Z to encode the classes
Bi ∈ ΠTC. Let the condition (6.37) take place. In this case, the following structural
diagram (Fig. 6.17) is proposed for PYEC1 Moore EFSM.

In this case, the LUTer1 generates the input memory functions

Φ1 = Φ1(τ , X1). (6.42)

The LUTer2 implements the input memory functions

Φ2 = Φ2(τ , X2). (6.43)

The following system of equations is implemented by the multiplexer MX:

Φ = yMΦ1 ∨ ȳMΦ2. (6.44)

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 6.17 Structural diagram of FPGA-based PYEC1 Moore EFSM

Fig. 6.18 Structural diagram of FPGA-based PYEC2 Moore EFSM

The EMBer implements functions y0, Y , Z and yM depended on variables from
the sets τ and T .

Theproposeddesignmethod includes the following steps forPYEC1 MooreEFSM:

1. Creating the set A.
2. Constructing the set of ELCS CE .
3. Constructing the partition ΠCE.
4. Executing the natural state assignment.
5. Executing the optimal chain assignment.
6. Finding the sets ΠRG and ΠTC.
7. Encoding of the classes Bi ∈ ΠTC.
8. Constructing the table of LUTer1.
9. Constructing the table of LUTer2.
10. Constructing the table of EMBer2.
11. Implementing the EFSM logic circuit.

If the condition (6.37) is violated, then RTC1 functions zr ∈ Z belong to the set
Z2. It leads to PYEC2 Moore EFSM (Fig. 6.18).
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Fig. 6.19 Structural
diagram of HFPGA-based
PYE Moore EFSM

The block LUTer3 generates the functions

Z2 = Z2(τ ). (6.45)

The designmethods are practically the same for PYCE1 andPYCE2 EFSMs.But it is
necessary onemore step for design of PYEC2 EFSM. It is connectedwith constructing
the table of LUTer3. We do not discuss these methods in our book.

6.4 Design of Moore EFSMs with HFPGAs

There are no embedded memory blocks in modern hybrid FPGAa [8, 9]. So, only
PLA macrocells and LUTs can be used for implementing the logic circuits of FSMs.
Let the symbol PH means that HFPGAs are used for implementing an EFSM logic
circuit. The structural diagram (Fig. 6.19) represents the PHYE Moore EFSM.

In PHYE FSM, the PLAer implements the system of input memory functionsΦ =
Φ(T, X), whereas the LUTer generates microoperations Y = Y (T ) and y0 = y0(T ).
Let the symbol PLA(sp, tp, qt ) denotes a PLAmacrocell having sp inputs, tp outputs
and qp product terms. Let the following conditions take places:

sp ≥ L + R; (6.46)

tp ≥ R; (6.47)

qp ≥ HE . (6.48)

In this case, it is necessary only a single PLA for implementing the circuit of
PLAer. If the condition (6.47) is violated, then the “expansion of PLA outputs”
should be executed. If the condition (6.48) is violated, then the “expansion of PLA
terms” should be executed [3]. If the condition (6.46) is violated, then different
methods from [1] should be used. We do not discuss these cases in our book.

Let a LUT in use have sL inputs. Let the following condition take place:

sL ≥ R. (6.49)

In this case, only N + 1 LUTs are used in the LUTer. If the condition (6.49) is
violated, the different methods of functional decomposition [12] should be used.
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Fig. 6.20 Structural
diagram of HFPGA-based
PHCYE Moore EFSM

Let us discuss some approaches leading to diminishing the numbers of PLA
cells and LUT elements in logic circuits of PHYE EFSMs. In the condition (6.48) is
violated, then the method of optimal state assignment can be used. It leads to PH0YE

MooreEFSMhaving the same structural diagramas the one shown inFig. 6.20. In this
method does not give theminimumpossible amount of terms, then the transformation
of state codes can be used. It leads to PHCYE Moore EFSM (Fig. 6.20).

The designmethods are obvious for PHYE, PH0YE and PHCYE EFSMs. Because of
it, we do not discuss them. Let us discuss the situation when the following condition
takes place:

tp > R. (6.50)

Let us find the value of tA:
tA > tp − R. (6.51)

Let it be qA unused terms in PLAer:

qA = qp − H(Φ). (6.52)

In (6.52), H(Φ) is the number of terms in the system (2.9).
Let us find the equations for functions (2.16) and y0. Let us divide the set y0 ∪ Y

by two subsets Y 1 and Y 2. Let the set Y 1 satisfy to the following conditions:

N (Y 1) ≤ tA; (6.53)

H(Y 1) ≤ qA.i (6.54)

In (6.53)–(6.54), N (Y 1) is the number of elements in the set Y 1, whereas H(Y 1)

is the number of terms in the functions yn ∈ Y 1. Let us point out that it is quite
possible the following relation: y0 ∈ Y 1. Let Y 1 �= ∅, then the functions from Y 1 can
be implemented by PLAer. It results in PH1YE Moore EFSM (Fig. 6.21).

Obviously, the PH01YE Moore EFSM has the same structure. Let us discuss an
example of design for PH01YE(Γ10). The proposed design metod includes the fol-
lowing steps:

1. Creating the set of states A.
2. Constructing the set of ELCS CE .
3. Constructing the partition ΠCE.

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 6.21 Structural
diagram of HFPGA-based
PHCYE Moore EFSM

4. Executing the optimal natural state assignment.
5. Creating the preliminary table of PLAer.
6. Dividing the set Y ∪ y0 by subsets Y 1 and Y 2.
7. Creating the final table of PLAer.
8. Creating the table of LUTer.
9. Implementing the FSM logic circuit.

The sets A, CE and ΠCE are already found for the Moore EFSM PYE(Γ10).
They can be derived from Table6.6. Let us encode the states am ∈ A as it is shown in
Fig. 6.3. The preliminary table of PLAer is the same as the table of LUTer (Table6.1).
The Eqs. (6.4)–(6.6) represent the system Φ. Let us rewrite them in the following
system:

D1 = F1 ∨ F2 ∨ F3;
D2 = F4 ∨ F5 ∨ F6;
D3 = F7 ∨ F8 ∨ F3.

(6.55)

The value HE (Φ) = 8 can be derived from the system (6.55). Let theHFPGAchip
in use have macrocells PLA with sp = 12, tp = 6 and qp = 17. Using (6.52), it can
be found qA = 16 − 8 = 8. Using (6.51), it can be found the value tA = 6 − 3 = 3.
So, it is possible to generate up to 3 functions yn ∈ Y by PLAer.

Let us form the system (2.16) for the discussed case. Using Fig. 6.2, the following
system can be found:

y1 =A2 ∨ A4 ∨ A7 ∨ A10 ∨ A12 ∨ A14 ∨ A17 ∨ A19;
y2 =A2 ∨ A2 ∨ A6 ∨ A7 ∨ A9 ∨ A12 ∨ A15 ∨ A18;
y3 =A3 ∨ A5 ∨ A8 ∨ A15 ∨ A17;
y4 =A4 ∨ A10 ∨ A11 ∨ A12 ∨ A14;
y5 =A6 ∨ A9 ∨ A10 ∨ A13 ∨ A16 ∨ A18.

(6.56)

After minimizing the system (6.56), it can be found that the function y1 includes
H(y1) = 4 terms. Also, the following values can be found H(y2) = 6, H(y3) =
4, H(y4) = 3 and H(y5) = 2. So, only a pair of microoperations can be chosen
for implementing by the PLAer. Let su choose the functions y4 and y5. They are
represented by the following minimized equations:

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Table 6.16 Final table of PLAer of Moore EFSM PH01YE(Γ10)

InputsT1 . . . T5x1 . . . x4 Terms OutputsD1D2D3y4y5

0*1** *1** 1 100 00

0*1** **0* 2 100 00

*10** **** 3 101 00

000** 0*** 4 010 00

0*1** *0** 5 010 00

100** **** 6 010 00

000** **** 7 001 00

0*1** *1*1 8 001 00

*0101 **** 9 000 10

110*0 **** 10 000 10

*1010 **** 11 000 10

*1**1 **** 12 000 01

**110 **** 13 000 01

y4 = T̄2T3 ∨ T4T5 ∨ T1T2T̄3T̄5 ∨ T2T̄3T4T̄5 = F9 ∨ F10 ∨ F11;
y5 = T2T5 ∨ T3T4T̄5 = F12 ∨ F13.

(6.57)

So, now there are two sets: Y 1 = {y4, y5} and Y 2 = {y0, y1, y2, y3}. Of course,
the pair y2, y5 could be taken, as well as the pair y3, y4.

The final table of PLAer includes the columns Inputs, Terms andOutputs. It is just
a table using for programming a PLA [1]. In the discussed case, it includes 13 rows
(Table6.16). If some term includes the direct value of some variable, it corresponds
to 1. If some term includes the complement value of some variable, it corresponds
to 0. If there is no variable in the term, then it corresponds to *. If some function
depends on a term, it is denoted as 1. Otherwise, it is denoted as 0.

We hope that the connection is obvious between the systems (6.4)–(6.6), (6.53),
(6.57) and Table6.16. The column Terms includes the numbers of terms of systems
(6.53) and (6.57).

Let it be sL = 5 in the discussed case. So, the condition (6.49) is true. So, only 4
LUTs are necessary for implementing the set Y 2. The logic circuit of Moore EFSM
PH01YE(Γ10) is shown in Fig. 6.22.

Let us find out that ITC classes Bi ∈ ΠCE cannot be represented by single intervals
of R-dimensional Boolean space. It means that the set ΠCE is represented as ΠCT ∪
ΠTC. Let us encode the classes Bi ∈ ΠTC by binary codes K (Bi ) having RTC bits.
The value of RTC is determined by (4.3). Let us use the variables zr ∈ Z for encoding
of the classes Bi ∈ ΠCE. In this case, the model of PHYE1 Moore EFSM (Fig. 6.23)
is proposed.

http://dx.doi.org/10.1007/978-3-319-59837-6_4
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Fig. 6.22 Logic circuit of Moore EFSM PH01YE(Γ10)

Fig. 6.23 Structural diagram
of PHYE1 Moore EFSM

In this model, the PLAer implements the system

Φ = Φ(T, Z , X). (6.58)

The LUTer implements functions (2.16), (3.29) and

Z = Z(T ). (6.59)

This model can be applied if the following condition takes place:

Sp ≥ L + R + RTC. (6.60)

It is known that PLA macrocells have the wide fan-in which is equal up to 30
[8, 9]. It means that the condition (6.60) takes place in many practical cases.

There are the following steps in the proposed design method targeting PHYE1

Moore EFSM:

1. Creating the set of states A, set of ELCS CE and the partition ΠCE

2. Executing the optimal natural state assignment.
3. Finding the sets ΠCT and ΠTC.
4. Encoding of the classes Bi ∈ ΠTC.
5. Constructing the table of PLAer.

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 6.17 Table of PLAer of Moore EFSM PHE1Y(�11)

B1 K (Bi ) z1z2T1 . . . T5 as K (as) Xh Φh h

B1 00 00001 a3 0 0010 x1 D4 1

a6 0 0101 x̄1 D3D5 2

B2 00 0010* a7 0 0111 x2 D3D4D5 3

a9 0 1001 x̄2 D2D5 4

B3 00 010** a11 0 1011 x1 D2D4D5 5

a14 0 1110 x̄1x3 D2D3D4 6

a16 1 0000 x̄1 x̄3 D1 7

B4 01 ***** a11 0 1011 x3x4 D2D4D5 8

a18 1 0010 x3 x̄4 D1D4 9

a20 1 0100 x̄3x5 D1D3 10

a23 1 0111 x̄3 x̄5 D1D2D4D5 11

B5 10 ***** a25 1 1001 x6 D1D2D5 12

a27 1 1011 x̄6 D1D2D4D5 13

B6 11 ***** a29 1 1101 1 D1D2D3D5 14

6. Constructing the table of LUTer.
7. Implementing the FSM logic circuit.

Let us discuss an example of design for Moore EFSM PHE1Y(�11). The char-
acteristics of GSA Γ11 are shown in Table6.12. The optimal natural state codes
are shown in Fig. 6.15. They are the following: K (B1) = 00001, K (B2) = 0010∗,
K (B3)=010**, K (B7)=11110. There is the setΠTC = {B4, B5, B6} having ITC = 3.
The number of RTC is determined as

RTC = �log2(ITC + 1)	. (6.61)

The value 1 is added to ITC to take into account the relation Bi ∈ ΠCT. It should
be represented by an unique code using the variables zr ∈ Z .

Let us encode the classes Bi ∈ ΠTC in the following manner: K (B4) = 01,
K (B5) = 10 and K (B6) = 11. Let us use the code 00 to show that Bi /∈ ΠTC. The
table of LUTer is represented by Table6.17 for a given example.

The table of PLAer is used for deriving the functions (6.58). These functions
depend on the following terms:

Fh =
(

RTC∧

r=1

zlirr

) (
R∧

r=1

T lir
r

)
Xh . (6.62)

For example, the following terms (6.62) can be obtained from Table6.17: F1 =
z̄1 z̄2T̄1T̄2T̄3T̄4T5, F6 = z̄1 z̄2T̄1T2T̄3, F12 = z1 z̄2x6. The table of LUTer includes the
columns K (am), Y (am), Z(am), m. The column Z(am) includes the codes K (Bi )
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Fig. 6.24 Structural diagram
of PH1YEC1 Moore FSM

for the classes Bi ∈ ΠTC. This table corresponds to RTC + N + 1 truth tables. Each
table corresponds to as single function from the set y0 ∪ Y ∪ Z .

Let us point out that the PHYE1 EFSM is based on the results from [5, 6]. These
ideas can be applied for the case of PH1YE1 EFSM. Its design method is combined
from the methods for PH1YE and PHYE1 Moore EFSMs. The same approach can be
used for EFSMs with code sharing. Let us, for example, discuss the design method
for EFSM PH1YEC1. Its structural diagram is shown in Fig. 6.24.

In this model, the PLAer implements input memory functions:

Φ = Φ(τ , Z , X). (6.63)

The LUTer implements the functions

y0 = y0(τ , T ); (6.64)

Z = Z(τ , T ); (6.65)

Y 2 = Y 2(τ , T ). (6.66)

Also, the PLAer implements some subset Y 1 ⊂ Y , which is represented as

Y 1 = Y 1(τ , Z , X). (6.67)

The design method includes the following steps for this model:

1. Creating the set of states A.
2. Constructing the set of ELCS CE .
3. Constructing the set ΠCE.
4. Optimal encoding of the ELCS αg ∈ CE .
5. Natural encoding of the states am ∈ A(αg).
6. Encoding of the classes Bi ∈ ΠTC

7. Finding the sets Y 1 and Y 2.
8. Constructing the table of PLAer.
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Table 6.18 Models of ELCS-based Moore FSMs

No Type BIMF BTC BMO Basis Comments

1. PYE Φ = Φ(T, X) – y0 = y0(T ) FPGA Base structure

2. P0YE Y = Y (T )

3. PC1YE Φ = Φ(τ , X) – τ = τ (T )

4. PC2YE τ2 = τ2(T ) τ1 = τ1(T )

5. PYEC Ψ = Ψ (τ , X) – y0 = y0(τ , T ) Code sharing

6. P0YEC Y = Y (τ , T )

7. PC1YEC Ψ = Ψ (Z , X) Z = Z(τ , T )

8. PC2YEC Z2 = Z2(τ ) Z1 = Z1(τ , T )

8. PC2YEC Z2 = Z2(τ ) Z1 = Z1(τ , T )

9. PYE1 Φ1 = Φ1(T, X)

Φ2 = Φ2(Z , X)

– y0 = y0(T )

Y = Y (T )

yM = yM (T )

Z = Z(T )

Two sources
of codes for
base structure

10. PC2YE2 Z2 = Z2(τ ) Z1 = Z1(T )

11. PYE2 Ψ1 = Ψ1(τ , X1)

Φ2 = Φ2(Z , X)

– y0 = y0(τ , T )

Y = Y (τ , T )

yM =
yM (τ , T )

Z = Z(τ , T )

Two sources
for code
sharing

12. PYEC2 Z2 = Z2(τ ) Z1 = Z1(τ , T )

13. PHYE Φ = Φ(T, X) – y0 = y0(τ , T ) HFPGA Base structure

14. PH0YEC Y = Y (T )

15. PHCYE Φ = Φ(τ , X) τ = τ (T )

16. PH1YE Y 1 = Y 1(T ) Y 2 = Y 2(T )

17. PH01YE

18. PHC1YE

19. PHYE1 Φ = Φ(T, Z , X) y0 = y0(T )

Y = Y (T )

Z = Z(T )

Two sources

20. PH1YE1 Y 1 = Y 1(T, Z) Y 2 = Y 2(T )

21. PH1YEC1 Ψ = Ψ (τ , Z , X)

Y 1 = Y 1(τ , Z)

y0 = y0(τ , T )

Y 2 = Y 2(τ , T )

Z = Z(τ , T )

Code sharing
with two
sources

9. Constructing the table of LUTer.
10. Implementing the FSM logic circuit.

This method combines steps form different methods discussed in this Chapter.We
hope that a reader will not have troubles with designing the logic circuit of PH1YEC1

Moore EFSM.
We show all discussed models of ELCS-based Moore FSMs in Table6.18. More

structures can be added for the case of HFPGA-based EFSMs with code sharing:
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1. The model PHYEC is a base model with code sharing. It is the same as the model
of PYEC Moore EFSM (Fig. 6.8). Of course, in this case the BIMF is represented
by the PLAer, whereas the BMO is represented by LUTer.

2. The model PH0YEC is a base model with the optimal chain encoding.
3. The model PHCYEC is a base model with the transformation of chain codes into

class codes K (Bi ).

These three models are not included in Table6.18. It is done because we did not
discuss them in this Chapter. But we hope that our reader will be able to work out
the corresponding design methods. Of course, they are based on the methods already
discussed in this Chapter. Now let us discuss design methods targeting Moore FSMs
based on the normal linear chains of states.
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Chapter 7
Hardware Reduction for Moore NFSMs

Abstract The Chapter is devoted to hardware reduction targeting the normal LCS-
based Moore FSMs. Firstly, the optimization methods are proposed for the base
model of NFSM. They are based on the executing either optimal state assignment
or transformation of state codes. Two different models are proposed for the case of
code transformation. They depend on the numbers of microoperations of FSM and
outputs of EMB in use. The models are discussed based on the principle of code
sharing. In this case, the state code is represented as a concatenation of the code of
normal LCS and the code of component inside this chain. The last part of the chapter
is devoted to design methods targeting the hybrid FPGAs.

7.1 Optimization of NFSMs with the Base Structure

The only difference exists between EFSMs and NFSMs. The NFSMs are based on
natural linear chains of states. Because of it, we can use all optimization methods
proposed in Sect. 6.1. Of course, the setCN = {β1, . . . ,βG2}. should be found instead
of the set CE . So, the following four models can be generated:

1. The model of PYN Moore NFSM has the same structural diagram as the one
shown in Fig. 6.1.

2. The model of P0YN Moore NFSM is based on the optimal state assignment.
It has the same structural diagram as the one shown in Fig. 6.1. The partition
ΠCN = {B1, . . . , BIN } should be constructed. Each class Bi ∈ ΠCN includes
pseudoequivalent NLCS β ∈ CN . The optimal codes K (am) should satisfy the
following condition:

K (agi+1) = K (agi ) + 1 (g = 1, . . . ,G2). (7.1)

3. The model PC1YN Moore NFSM is based on the transformation of state codes
K (am) into the class codes K (Bi ). It has the same structural diagram as the one
shown in Fig. 6.5. The set τ includes RCN variables:

© Springer International Publishing AG 2018
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RCN = �log2 I N�. (7.2)

This approach can be used if the following condition takes place:

tF ≥ N + 1 + RCN . (7.3)

In (7.3), the symbol tF stands for the number of outputs of EMB. This number
should provide the following condition:

V0 ≥ M. (7.4)

In (7.4), the symbol V0 stands for the number of cells of EMB for a given number
of outputs tF .

4. The model of PC2YN Moore NFSM is based on the same principle of code
transformation. It has the same structure as the one shown in Fig. 6.6. It can be
used if two conditions take place. The first of them is the condition (6.18). The
second is the following condition:

tF < N + RCN + 1. (7.5)

Let us discuss this model in details. The proposed synthesis method includes the
following steps:

1. Creating the set of states A for a given GSA Γ .
2. Constructing the set of NLCSs CN .
3. Constructing the partition ΠCN = {B1, . . . , BIN }
4. Executing the natural state assignment (7.1).
5. Encoding of the classes Bi ∈ ΠCN .
6. Constructing the table of LUTer1.
7. Constructing the table of LUTer2.
8. Constructing the table of EMBer.
9. Implementing the FSM logic circuit.

Let us discuss an example of synthesis for Moore NFSM PC2YN(�12). The initial
GSA Γ12 is shown in Fig. 7.1. It is marked by the states of Moore FSM using rules
[1]. The following sets and their characteristics can be derived from Fig. 7.1: A =
{a1, . . . , a16}, M = 16, X = {x1, . . . , x3}, L = 5, Y = {y1, . . . , y7}, N = 7. Using
(2.15), it can be found that R = 4. It gives the sets T = {T1, . . . , T4} and Φ =
{D1, . . . , D4}.

Let us apply the procedure P4 to GSA Γ12. It gives the set of normal linear chains
of statesCN having G2 = 8 elements. There are the following chains: β1 = 〈a1, a2〉,
β2 = 〈a3, . . . , a6〉, β3 = 〈a7, a8〉, β4 = 〈a9, a10〉, β5 = 〈a11, a12〉, β6 = 〈a13〉, β7 =
〈a14〉 and β8 = 〈a15, a16〉.

It can be found the set ΠCN = {B1, . . . , B4} where B1 = {β1}, B2 = {β2,β3,β4},
B3 = {β5,β6,β7} and B4 = {β8}. So, there is RCN = 2. It gives the set τ = {τ1, τ2}.
The outcome of natural state assignment is shown in Fig. 7.2.

http://dx.doi.org/10.1007/978-3-319-59837-6_6
http://dx.doi.org/10.1007/978-3-319-59837-6_6
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 7.1 Initial marked
GSA Γ12
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Fig. 7.2 Natural state codes
for Moore NFSM
PC2YN(�12)

Let us encode the classes Bi ∈ ΠCN in the trivial way: K (B1) = 00, . . . , K (B4) =
11. Let us point out that the code 11 can be treated as “don’t care” input assignment.

Let it be the configuration 16× 9 (bits) in the FPGA chip in use. So, the condition
(7.4) is satisfied. There is tF = 9. There is N + 1 + RCN = 10. It means that the
condition (7.3) is violated, whereas the condition (6.18) takes place. So, the model
of PC2YN Moore NFSM can be used.

The set τ should be derived using (6.17). The set τ 1 includes RCN1 elements
where:

RCN1 = tF − (N + 1). (7.6)

The set τ 2 includes RCN2 elements, where:

RCN2 = RCN − RCN1. (7.7)

Let the condition (6.22) take place. It allows finding sets: τ 1 = {τ1} and τ 2 = {τ2}.
The table of LUTer1 is constructed on the base of the system GFT. There is the

following system in the discussed case:

B1 = x1a3 ∨ x̄1x2a4 ∨ x̄1 x̄2x2a7 ∨ x̄1 x̄2 x̄3a9;
B2 = x2a11 ∨ x̄2x4a13 ∨ x̄2 x̄4a14;
B3 = x5a15 ∨ x̄5a10.

(7.8)

The system (7.8) includes HN (Γ12) = 9 terms. It is the number of rows for
Table7.1.

This table is used for deriving the system of inputmemory functions. For example,
the following minimized function can be derived from Table7.1:

D1 = τ̄1τ̄2 x̄1 x̄2 x̄3 ∨ τ̄1τ2 ∨ τ1τ̄2. (7.9)

http://dx.doi.org/10.1007/978-3-319-59837-6_6
http://dx.doi.org/10.1007/978-3-319-59837-6_6
http://dx.doi.org/10.1007/978-3-319-59837-6_6
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Table 7.1 Table of LUTer1 for Moore NFSM PC2YN(�12)

Bi K (Bi ) as K (as) Xh Φh h

B1 00 a3 0010 x1 D3 1

a4 0011 x̄1x2 D3D4 2

a7 0110 x̄1 x̄2x3 D2D3 3

a9 1000 x̄1 x̄2 x̄3 D1 4

B2 01 a11 1010 x2 D1D3 5

a13 1100 x̄2x4 D1D2 6

a14 1101 x̄2 x̄4 D1D2D4 7

B3 10 a15 1110 x5 D1D2D3 8

a10 1001 x̄5 D1D4 9

Table 7.2 Table of LUTer2 for Moore NFSM PC2YN(�12)

am K (am) Bi K (Bi ) τ2m m

a2 0001 B1 00 – 2

a6 0101 B2 01 τ2 6

a8 0111 B2 01 τ2 8

a10 1001 B2 01 τ2 10

a12 1011 B3 10 – 12

a13 1100 B3 10 – 13

a14 1101 B3 10 – 14

The table of LUTer2 is constructed only for outputs of chains βg ∈ CN . It contains
the columns am , K (am), Bi , K (Bi ), τ 2

m , m. It is constructed using the same rules as
for the Moore EFSM PC2YE. The table of LUTer2 includes 7 rows in the discussed
case (Table7.2).

This table is used to program the LUTs implementing the functions τ2 = τ2(T ).
It is done as in the case of PC2YE Moore EFSM.

The table of EMBer includes the columns K (am), Y (am), τ 1
m , h,m. The column t1m

includes RCN1 bits from the codes K (Bi ). There is a part of this table for PC2YN(�12)

including the first 8 rows (Table7.3).
This table is used for programming EMBs. It is constructed in the same way as

its counterpart for the case of PC2YE Moore EFSM.
Now, all tables are constructed. It gives an opportunity to obtain the NFSM logic

circuit. We do not discuss this step for the Moore NFSM PC2YN(�12). It is possible
to diminish the number of outputs of LUTer due to encoding of the inputs of NLCS
βg ∈ CN . This method is based on ideas [4].

Let us discuss this approach using the GSA Γ13 (Fig. 7.3). It is marked by the
states of Moore FSM creating the set A = {a1, . . . , a12}.

There are the following normal LCSs in the GSA Γ13: β1 = 〈a1, a2, a3〉, β2 =
〈a4, a5, a6〉, β3 = 〈a7, a8〉, β4 = 〈a9, a10〉, β5 = 〈a11, a12〉. So, there are G2 = 5
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Table 7.3 The part of table of EMBer for Moore NFSM PC2YN(�12)

K (am) T1 . . . T4 Y (am) y0 . . . y7 τ1m τ1 h m

1000 11100000 0 1 9

1001 00010000 0 2 10

1010 11100000 0 3 11

1011 00001011 1 4 12

1000 11100000 0 1 9

1001 00010000 0 2 10

1010 11100000 0 3 11

1011 00001011 1 4 12

Fig. 7.3 Initial GSA Γ13
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Fig. 7.4 Structural diagram of PT0YN Moore NFSM

chains in the set CN (Γ13). These chains have the following inputs: I 11 = a1, I 12 = a4,
I 22 = a5, I 13 = a7, I 14 = a9, I 24 = a10, I 15 = a11, I 25 = a12. They form the set IN hav-
ing |IN | = 8 elements.

Let us encode the inputs I kg ∈ IN by the binary codes K (I kg ) having RIN bits:

RIN = �log2 |IN |�. (7.10)

Let us use the variables zr ∈ Z for the input encoding where |Z | = RIN. To trans-
form the codes K (I kg ) into the codes K (am), it is necessary to use a block of inputs
transformer (BIT). The BIT implements the following system:

Φ = Φ(Z). (7.11)

Let the symbol PT show that there is the BIT in the structure of a Moore FSM. In the
case of the base structure, four different NFSMs are possible: PTYN, PT0YN, PTC1YN

and PTC2YN. Design methods for these NFSMs include steps connected with design
of BIT. For example, let us discuss the PT0YN Moore NFSM (Fig. 7.4).

In this structure, the LUTer1 implements the functions

Z = Z(T, X). (7.12)

The LUTer2 implements the system (7.11). The LUTer2 corresponds to the BIT.
The proposed design method includes the following steps:

1. Creating the set of states A.
2. Constructing the set of NLCSs CN .
3. Constructing the partition ΠCN.
4. Executing the optimal natural state assignment.
5. Executing of input encoding.
6. Constructing the table of LUTer1.



162 7 Hardware Reduction for Moore NFSMs

Fig. 7.5 State codes for
Moore NFSM PT0YN(�13)

Fig. 7.6 Input codes for
Moore NFSM PT0YN(�13)

7. Constructing the table of LUTer2.
8. Constructing the table of EMBer.
9. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore NFSM PT0YN(�13). The steps
1 and 2 are already executed.

There is the partition ΠCN = {B1, . . . , B4} including classes B1 = {β1}, B2 =
{β2}, B3 = {β3,β4} and B4 = {β5}. One of the variants of the optimal natural state
assignment is shown in Fig. 7.5.

The following class codes can be derived from Fig. 7.5: K (B1)=00**,
K (B2)=01**, K (B3)=10**, K (B4)=11**. Because the table of LUTer1 does
not include the transitions for B4, the class code K (B4) can be treated as “don’t
care”. It allows obtaining the codes K (B2)=*1** and K (B3)=1***.

Using (7.10), the following value can be found: RIN = 3. So, there is the set
Z = {z1, z2, z3}. Let us encode the chain inputs as it is shown in Fig. 7.6.

The table of LUTer1 is constructed on the base of the systemGFT. In the discussed
case, it is the system:

B1 = x1a4 ∨ x̄1x2a7 ∨ x̄1 x̄2a9;
B2 = x2a11 ∨ x̄2a5;
B3 = x3x4a10 ∨ x3 x̄4a12 ∨ x̄3a11.

(7.13)

The table includes the columns Bi , K (Bi ), as , K (as), Xh , Zh , h. In the discussed
case, it is Table7.4. The state codes are taken from Fig. 7.6.
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Table 7.4 Table of LUTer1 for Moore NFSM PT0YN(�13)

Bi K (Bi ) as K (as) Xh Zh h

B1 00** a4 111 x1 z1z2z3 1

a7 101 x̄1x2 z1z3 2

a9 100 x̄1 x̄2 z1 3

B2 *1** a11 010 x2 z2 4

a5 110 x̄2 z1z2 5

B3 1*** a10 001 x3z4 z3 6

a12 011 x3 x̄4 z2z4 7

a11 010 x̄3 z2 8

Table 7.5 Table of LUTer2 for Moore NFSM PT0YN(�13)

am C(am) z1z2z3 K (Bi ) T1 . . . T4 Φh m

a1 000 0000 – 1

a4 111 0100 D2 4

a5 110 0101 D2D4 5

a7 101 1000 D1 7

a9 100 0110 D1D3 9

a10 001 1011 D1D3D4 10

a11 010 1100 D1D2 11

a12 011 1101 D1D2D4 10

The table of LUTer1 is used for deriving the system (7.12). It is the following
system in the discussed example:

z1 = T̄1T̄2 ∨ T2 x̄2;
z2 = T̄1T̄2x1 ∨ T2 ∨ T1 x̄4 ∨ T1 x̄3;
z3 = T̄1T̄2x1 ∨ T̄1T̄2x2 ∨ T1x3.

(7.14)

Each of Eqs. (7.14) can be implemented using LUTs with SL = 5.
The table of LUTer2 gives functions (7.11). It includes the columns am , C(am),

K (am), Φm , m. In the discussed case, it is Table7.5.
The state codes C(am) are taken from Fig. 7.6, whereas the state codes K (am)

from Fig. 7.5. If the following relation takes place

SL ≥ RIN, (7.15)

then only RIN of LUTs is required to implement the logic circuit of LUTer2.
The table of EMBer is the same as for PYE Moore EFSM. For the discussed

example, a part of this table is represented by Table7.6.
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Table 7.6 The part of table
of EMBer for Moore NFSM
PT0YN(�13)

K (am)

T1 . . . T4
Y (am)

y0 . . . y5
h m

1000 100000 1 1

0001 111000 2 2

0010 000110 3 3

0011 000000 4 *

0100 101100 5 4

Fig. 7.7 Structural diagram
of FPGA-based PYNC
Moore NFSM

Let us use LUTs having SL = 5 and EMBs having the configuration 16× 8. In
this case, each equation of (7.14) is implemented using only a single LUT. Because
the (7.15) takes place, each Eq. (7.11) is implemented using only a single LUT. So,
there are seven LUTs and one EMB in the logic circuit ofMoore NFSMPT0YN(�13).
Of course, at least four LUTs are used to implement the circuit of CT.

This approach can be used in ELCS-based Moore FSMs. It results in models
PTYE, PT0YE, PTC1YE, PTC2YE. We do not consider them in our book.

7.2 Optimization of NFSMs with Code Sharing

Basing on Fig. 3.17, it can be obtained the FPGA-based structural diagram of PYNC

Moore NFSM (Fig. 7.7).
In this model, the LUTer implements functions (3.57) and (3.58), the EMBer

generates functions (3.59) and (3.60). The counter CT contains codes C(am) of
states am ∈ A. The register RG contains codes K (βg) of chains βg ∈ CN . The state
codes K (am) are represented using the principle of code sharing (3.56).

The following approach is proposed for synthesis of FPGA-based PYNC Moore
FSM:

1. Creating the set of states A for a given GSA Γ .
2. Constructing the set of NLCSs CN = {β1, . . . ,βG2}.
3. Executing encoding of NLCS.
4. Executing natural encoding (3.55).

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 7.7 Natural LCSs and their classes for GSA Γ14

Bi B1 B2 B3 B4 C(am)

βg β1 β2 β3 β4 β5 β6 β7 β8

am a1 a3 a6 a8 a10 a11 a13 a15 00

a2 a4 a7 a9 – a12 a14 a16 01

– a5 – – – – – a17 10

– – – – – – – – 11

K (βg) 000 001 010 011 100 101 110 111 –

K (Bi ) 00 01 10 11 –

5. Constructing the table of LUTer.
6. Constructing the table of EMBer.
7. Implementing the FSM logic circuit.

Let us discuss an example of synthesis for the More NFSM PYNC(Γ14). The
marked GSA Γ14 is shown in Fig. 7.8.

The following sets and their characteristics can be found from GSA Γ14: X =
{x1, . . . , x4}, L = 4, Y = {y1, . . . , y7}, N = 7, A = {a1, . . . , a17}, M = 17. Hence,
there is R = 5.

Let us apply the procedure P4 to this GSA. It gives the set CN = {β1, . . . ,β8}
where β1 = 〈a1, a2〉, β2 = 〈a3, a4, a5〉, β3 = 〈a6, a7〉, β4 = 〈a8, a9〉, β5 = 〈a10〉,
β6 = 〈a11, a12〉,β7 = 〈a13, a14〉 andβ8 = 〈a15, a16, a17〉. So, there isG2 = 3. It gives
the set τ = {τ1, τ2, τ3}. Analysis of chains shows that there is MG2 = 3. It gives the
value RC2 = 2 and the set T = {T1, T2}. Also, there are set Ψ = {D1, D2, D3} and
Φ = {D4, D5}.

Let us encode the chains βg ∈ CN in the trivial way: K (β1) = 000, K (β2) =
001, . . . , K (β8) = 111. Let us encode the states am ∈ A(βg) using (3.55). The result-
ing codes K (am) can be obtained from Table7.7.

Using Table7.7, the following state codes, for example, can be found: K (a1) =
00000, K (a2) = 00001, K (a17) = 11110.

The table of LUTer includes the columns βg , K (βg), as , K (as), Xh , Ψh , Φh , h.
The sense of them is clear from previous discussion. The table is constructed on the
base of the system of formulae of transitions. In the discussed case, it is the following
system:

a2 → x1x3a3 ∨ x1 x̄3a4 ∨ x̄1x2a6 ∨ x̄1 x̄2a8;
a5, a7, a9 → x3a10 ∨ x̄3x4a11 ∨ x̄3 x̄4x1a13 ∨ x̄1 x̄3 x̄4a15;

a10, a12, a14 → a1;
a17 → x3a14 ∨ x̄3a9.

(7.16)

In the discussed case, the table of LUTer includes 18 rows. Let us point out that
there are no transitions for states a10, a12 and a14 in the table. These transitions are

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 7.8 Initial marked GSA Γ14



7.2 Optimization of NFSMs with Code Sharing 167

Table 7.8 The part of table of LUTer for Moore NFSM PYNC(Γ14)

βg K (βg) as K (as) Xh Ψh Φh h

β1 000 a3 00100 x1x3 D3 – 1

a4 00101 x1 x̄3 D3 D5 2

a6 01000 x̄1x2 D2 – 3

a8 01100 x̄1 x̄2 D2D3 – 4

β2 001 a10 10000 x3 D1 – 5

a11 10100 x̄3x4 D1D3 – 6

a13 11000 x1 x̄3 x̄4 D1D2 – 7

a15 11100 x̄1 x̄3 x̄4 D1D2D3 – 8

Table 7.9 The part of table of EMBer for Moore NFSM P0YNC(�14)

K (am) τ1τ2τ3T1T2 Y (am) y0 . . . y7 h m

000 00 1000 0000 1 1

000 01 0110 0000 2 2

000 10 0000 0000 3 *

000 11 0000 0000 4 *

001 00 1001 1000 5 3

001 01 1000 0100 6 4

001 10 0101 0100 7 5

001 11 0000 0000 8 *

executed automatically. First 8 rows are shown in Table7.8 for the table of LUTer of
Moore NFSM PYNC(Γ14).

The table of LUTer gives functions (3.57) and (3.58). For example, the following
equations can be derived from Table7.8 (after minimization):

D1 = τ̄1τ̄2τ3;
D2 = τ̄1τ̄2τ̄3 x̄1 ∨ τ̄1τ̄2τ3 x̄3 x̄4;
D3 = τ̄1τ̄2τ3x1 ∨ τ̄1τ̄2τ3 x̄2 ∨ τ̄1τ̄2τ3(x̄3x4 ∨ x̄1 x̄3 x̄4);
D4 = 0;
D5 = τ̄1τ̄2τ̄3x1 x̄3.

(7.17)

The table of EMBer includes the columns K (am), Y (am), h, m. It is constructed
in the same way as for its counterpart for PYEC Moore EFSM. The first 8 lines are
shown in Table7.9 for the given example. Let us point out that there are 32 rows in
the table of EMBer for our example.

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 7.9 Optimal natural state codes for Moore NFSM P0YNC(�14)

Basing on Chap.6, two methods can be used for optimization of logic circuit of
PYNC Moore FSM:

1. The optimal natural state assignment. It leads to P0YNC Moore NFSM having
the same structure as the one shown in Fig. 7.6.

2. The transformation of chain codes into class codes. There are two modification
of this FSM. They depends on the following condition

tF > N + 1 + RCN. (7.18)

The value of RCN determines the number of bits in the class codes K (Bi ).
There are the optimal natural state codes for theMoore NFSMP0YNC(�14) shown

in Fig. 7.9.
The partition ΠCN is taken from Table7.7. It includes the classes B1 = {β1},

B2 = {β2,β3,β4}, B3 = {β5,β6,β7}, B4 = {β8}. We can use the codes of states a10–
a14 for optimizing the class codes. Using this fact, the following class codes can be
found from Fig. 7.9: K (B1)=0*0**, K (B2)=1**** and K (B4)=0*1**.

The system of GFT for P0YNC(�14) is similar to the system (7.16). But the states
am = Og should be replaced by corresponding classes:

B1 → x1x3a3 ∨ x1 x̄3a4 ∨ x̄1x2a6 ∨ x̄1 x̄2a8;
B2 → x3a10 ∨ x̄3x4a11 ∨ x1 x̄3x4a13 ∨ x̄3 x̄4a15;
B4 → x3a14 ∨ x̄3a9.

(7.19)

The system (7.19) determines Table7.10. It includes only 10 rows.
As in the previous case, functions (3.57) and (3.58) can be derived from this

table. For example, the following functions can be derived from Table7.10 (after
minimization):

D1 = τ̄1τ̄3 ∨ τ1x3 ∨ τ1x4 ∨ τ̄1τ3 x̄3;
D5 = τ̄1τ̄3x1 x̄3 ∨ τ̄1τ3.

(7.20)

http://dx.doi.org/10.1007/978-3-319-59837-6_6
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 7.10 Table of LUTer for Moore NFSM P0YNC(�14)

Bi K (Bi ) as K (as) Xh Ψh Φh h

B1 0*0** a3 11000 x1x3 D1D2 – 1

a4 11001 x1 x̄3 D1D2 D5 2

a6 11100 x̄1x2 D1D2D3 – 3

a8 10100 x̄1 x̄2 D1D3 – 4

B2 1**** a10 10000 x3 D1 – 5

a11 01100 x̄3x4 D1D2 – 6

a13 01000 x1 x̄3 x̄4 D2 – 7

a15 00100 x̄1 x̄3 x̄4 D3 – 8

B4 0*1** a14 01001 x3 D2 D5 9

a9 10101 x̄3 D1D3 D5 10

Fig. 7.10 Structural
diagram of FPGA-based
PC1YNC Moore NFSM

If the condition (7.18) takes place, then the model of PC1YNC Moore NFSM can
be used (Fig. 7.10).

In this model, the LUTer implements the systems (6.30) and

Φ = Φ(Z , X). (7.21)

The EMBer implements the functions (3.59), (3.60) and (3.62). The proposed design
method for PC1YNC Moore NFSM includes the following steps:

1. Creating the set of states A.
2. Constructing the set of NLCSs CN .
3. Executing chain encoding and natural state encoding (3.55).
4. Constructing the set ΠNC .
5. Executing class encoding.
6. Constructing the table of LUTer.
7. Constructing the table of EMBer.
8. Implementing the FSM logic circuit.

Let us discuss an example of design fot the Moore NFSM PC1YNC(�14). The first
five steps are already executed. Their outcomes is represented by Table7.7.

http://dx.doi.org/10.1007/978-3-319-59837-6_6
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 7.11 Table of LUTer for Moore NFSM PC1YNC(�14)

Bi K (Bi ) as K (as) Xh Ψh Φh h

B1 00 a3 00100 x1x3 D3 – 1

a4 00101 x1 x̄3 D3 D5 2

a6 01000 x̄1x2 D2 – 3

a8 01100 x̄1 x̄2 D2D3 – 4

B2 01 a10 10000 x3 D1 – 5

a11 10100 x̄3x4 D1D3 – 6

a13 11000 x1 x̄3 x̄4 D1D2 – 7

a15 11100 x̄1 x̄3 x̄4 D1D2D3 – 8

B4 11 a14 10001 x3 D1D2 D5 9

a9 01101 x̄3 D2D3 D5 10

Let us point out that there are RCN = 2 and Z = {z1, z2}. The code 10 can be
treated as “don’t care”. It can be done due to execution of transitions 〈am, a1〉 auto-
matically.

To construct the table of LUTer, let us construct the system of GFT for classes
B1, B2, and B4:

B1 → x1x3a3 ∨ x1 x̄3a4 ∨ x̄1x2a6 ∨ x̄1 x̄2a8;
B2 → x3a10 ∨ x̄3x4a11 ∨ x̄3 x̄4x1a13 ∨ x̄1 x̄3 x̄4a15;
B4 → x3a14 ∨ x̄3a9.

(7.22)

The system (7.21) determines Table7.11.
Let us point out that the chain codes are taken from Table7.7. The table of LUTer

is used for deriving the systems (6.30) and (7.21). For example, it is possible to derive
the following functions from Table7.11:

D1 = z̄1z2 ∨ z1z2x3;
D2 = z̄1 z̄2 x̄1 ∨ z1z2 x̄3 x̄4 ∨ z1z2;
D3 = z̄1 z̄2x1 ∨ z1 z̄2 x̄2 ∨ z1z2 x̄3x4 ∨ z̄1x2x1 x̄3 x̄4 ∨ z1z2 x̄3;
D4 = 0;
D5 = z̄1 z̄2x1 x̄3 ∨ z1z2.

(7.23)

Each equation of (7.23) can be implemented using a single LUT having 6 inputs.
To implement the circuit of EMBer, it is necessary to use an EMB having the

configuration 32× 10 (bits). The table of EMBer is constructed in a trivial way. The
logic circuit of NFSM PC1YNC(�14) is shown in Fig. 7.11.

If the condition (7.18) is violated, then the model of PC2YNC Moore NFSM can
be used (Fig. 7.12).

http://dx.doi.org/10.1007/978-3-319-59837-6_6
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Fig. 7.11 Logic circuit of Moore NFSM PC1YNC(�14)

Fig. 7.12 Structural diagram
of PC2YNC Moore NFSM

It can be used if the following conditions take places:

tF ≥ N + 1; (7.24)

t f < N + 1 + RCN (7.25)
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Fig. 7.13 Structural diagram of FPGA-based PTC2YNC Moore NFSM

We hope that a reader can invent the design method for PC2YNC Moore NFSM. It
can be done using the methods for both PC2YEC and PC1YEC FSMs.

It is possible to use the method of input transformations for NFSMs with the code
sharing. It results in the following models: PTYNC, PT0YNC, PTC1YNC and PTC2YNC.
For example, there is the following structure diagram for the PTC2YNC Moore NFSM
(Fig. 7.13).

In this model, the LUTer1 implements the system of functions

W = W (Z , X). (7.26)

These functions are used as variables creating the input codes. The LUTer2 imple-
ments the input memory functions

Ψ = Ψ (W ); (7.27)

Φ = Φ(W ). (7.28)

The LUTer3 implements the functions

Z2 = Z2(τ ). (7.29)

The EMBer implements the functions (3.59), (3.60) and

Z1 = Z1(τ , T ). (7.30)

The variables zr =∈ Z1 ∪ Z2 are used for representing the class codes.
There are the following steps in the proposed design method for PTC2YNC Moore

NFSM:

1. Creating the set of states A.
2. Constructing the set of chains CN .
3. Executions of state and chain encoding.

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 7.14 Codes of inputs
for Moore NFSM
PTC2YNC(�14)

4. Constructing the set of ΠNC.
5. Executing the class encoding.
6. Executing chain inputs encoding.
7. Constructing the table of LUTer1.
8. Constructing the table of LUTer2.
9. Constructing the table of LUTer3.
10. Constructing the table of EMBer.
11. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore NFSM PTC2YNC(�14). The
first five steps are already executed. There are the corresponding sets and codes in
Table7.7.

It is possible to find the set of inputs for NLCSs of GSA Γ14: IN = {a1, a2, a4, a6,
a8, a9, a10, a11, a13, a14, a15}. It is necessary RIN = 4 variables to encode the inputs.
Let us encode the inputs as it is shown in Fig. 7.14. The following approach is
used for this step: all states from the same GFT should be included in the same
generalized interval of RIN-dimensional Boolean space. It allows minimization for
Boolean equations (7.26).

The table of LUTer1 (Table7.12) is constructed using the system of GFT (7.22).
It contains the state codes from Fig. 7.14.

Now, the following equations can be derived from Table7.12:

w1 = z̄1 z̄2;
w2 = z̄1z2;
w3 = z̄1z2x1x3 ∨ z̄1 z̄2 x̄1 x̄2 ∨ z̄1z2 x̄3x4 ∨ z̄1z2 x̄1 x̄3 x̄4 ∨ z1z2 x̄3;
w4 = z̄1 z̄2 x̄1 ∨ z̄1z2 x̄3 x̄4 ∨ z1z2.

(7.31)

The table of LUTer2 includes the columns: am , K (am), K (βg), C(am), Ψh , Φh ,
h. It includes the codes of inputs in the column K (am). It is used for deriving the
functions (7.27) and (7.28). In the discussed case it is Table7.13.

Let us point out that there is no row for state a1 in Table7.13. The pulse Start is
used for loading the zero codes into both RG and CT. Table7.13 is used for deriving
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Table 7.12 Table of LUTer1 for Moore NFSM PTC2YNC(�14)

Bi K (Bi ) as K (as) Xh Wh h

B1 00 a3 1000 x1x3 w1 1

a4 1010 x1 x̄3 w1w3 2

a6 1001 x̄1 x̄2 w1w4 3

a8 1011 x̄1 x̄2 w1w3w4 4

B2 01 a10 0100 x3 w2 5

a11 0110 x̄3x4 w2w3 6

a13 0101 x1 x̄3 x̄4 w2w4 7

a15 0111 x̄1 x̄3 x̄4 w2w3w4 8

B4 11 a14 0001 x3 w4 9

a9 0011 x̄3 w3w4 10

Table 7.13 Table of LUTer2 for Moore NFSM PTC2YNC(�14)

am K (am) K (βg) C(am) Ψh Φh h

a3 1000 001 00 D3 – 1

a4 1010 001 01 D3 D5 2

a6 1001 010 00 D2 – 3

a8 1011 011 00 D2D3 – 4

a9 0001 011 01 D2D3 D5 5

a10 0100 100 00 D1 – 6

a11 0110 101 00 D1D3 – 7

a13 0101 110 00 D1D2 – 8

a14 0011 110 01 D1D2 D5 9

a15 0111 111 00 D1D2D3 – 10

the functions (7.27) and (7.28). For example, the following equations can be derived
from Table7.13:

D1 = w̄1w2 ∨ w̄1w3;
D5 = w1w3w̄4 ∨ w̄1w̄2w3.

(7.32)

These equations are obtained using both Table7.13 and the Karnaugh map
(Fig. 7.14).

Let the EMB in use have the configuration 32× 9 bits. Because of IN = 4, we
have RCN = 2. So, both conditions (7.24) and (7.25) take place. Let us divide the set
Z by the following subsets: Z1 = {z2} and Z2 = {z1}. Analysis of class codes shows
that z1 = 1 only for chain β8 ∈ B4. So there is no need in the table of LUTer3. We
can obtain the following equation z1 = τ1τ2τ3 from the relation β8 ∈ B4.

The table of EMBer is constructed as in previous cases. We do not discuss this
step in that book.
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Table 7.14 Models of NLCS-based Moore FSMs

No. Type BIMF BTC BIT BMO

1. PYN Φ = Φ(T, X) (1) – – y0 = y0(T )(2)

Y = Y (T )(3)2. P0YN

3. PC1YN Φ = Φ(τ , X) (4) – – (2)(3) τ = τ (T ) (5)

4. PC2YN τ2 = τ2(T ) (6) – (2)(3) τ1 = τ1(T ) (7)

5. PTYN Z = Z(T, X) (8) – Φ = Φ(Z)(9) (2)(3)

6. PT0YN

7. PTC1YN Z = Z(τ , X)(10) – (2)(3)(5)

8. PTC2YN
(6) (2)(3)(7)

9. PYNC Ψ = Ψ (T, X)(11)

Φ = Φ(T, X)(12)
– – y0 = y0(τ , T )(13)

Y = Y (τ , T )(14)10. P0YNC

11. PC1YNC Ψ = Ψ (Z , X)(15)

Φ = Φ(Z , X)(16)
– – (13)(14) Z = Z(τ , T )(17)

12. PC2YNC Z2 = Z2(τ )(18) (13)(14)Z1 = Z1(τ , T )(19)

13. PTYNC W = W (τ , X)(20) – Φ = Φ(W )(21)

Ψ = Ψ (W )(22)

(13)(14)

14. PT0YNC

15. PTC1YNC W = W (Z , X)(23) – – (13)(14)(17)

16. PTC2YNC
(18) (13)(14)(19)

There are 16 different models of NFSMs discussed in Sects. 7.1 and 7.2. They are
represented by Table7.14. All these models target FPGA as a basis for implementing
logic circuits of NFSMs.

The further hardware reduction can be obtained due to replacement of logical
conditions [2]. These methods can be used for FSMs based on any kind of LCSs. Let
us discuss these methods for Moore NFSMs.

7.3 Replacement of Logical Conditions for NLCS-based
Moore FSMs

As it is mentioned in Chap.2, the replacement of logical conditions is reduced to find-
ing some set of additional variables P = {p1, . . . , pG}. The value ofG is determined
as max(L1, . . . , LM). The symbol Lm stands for the number of logical conditions in
the state X (am) ⊂ X . The logical conditions xe ∈ X (am) determine transitions from
the state am ∈ A. If the method of RLC is used, then the symbol “M” appears in the
corresponding formula of FSM.

Let us start from MPYN Moore NFSM. There is a structural diagram of FPGA-
based MPYN Moore NFSM shown in Fig. 7.15.

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 7.15 Structural diagram of FPGA-based MPYN Moore NFSM

Table 7.15 Natural LCSs and their characteristics for GSA Γ13

Bi B1 B2 B3 B4 C(am)

βg β1 β2 β3 β4 β5

am a1 a4 a7 a9 a11 00

a2 a5 a8 a10 a12 01

a3 a6 – – – 10

K (βg) 000 001 010 011 100 –

K (Bi ) 00 01 10 11 –

In this model, the LUTer1 implements the system (2.19), whereas, the LUTer2
generates the input memory functions (2.20). The EMBer implements functions
(2.16) and (3.29). The proposed design methods includes the following steps:

1. Constructing the set of states A.
2. Constructing the set of chains CN .
3. Executions of the natural state assignment.
4. Finding the set of additional variables P .
5. Constructing the table of LUTer1.
6. Constructing the table of LUTer2.
7. Constructing the table of EMBer.
8. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore NFSMMPYN(Γ13). The GSA
Γ13 is shown in Fig. 7.3. There are chains, classes and their codes in Table7.15.

Let us form the set X (am) for states am = Og(g = 1, . . . ,G2). There are the fol-
lowing states X (a3) = {x1, x2}, X (a6) = {x2}, X (a8) = X (A10) = {x3, x4},
X (a12) = ∅. Obviously, there is G = 2. It gives the set P = {p1, p2}.

Let us form the table showing the replacement of logical conditions. It is Table7.16
for the given example.

Let us encode the states am ∈ A in the trivial way: K (a1) = 0000, K (a2) =
0001, . . . , K (a12) = 1011. It corresponds to the requirement (7.1). The table of
LUTer1 has the following columns: am , K (am), X (p1), . . . , X (PG), m. It is con-
structed on the base of table of RLC. In the discussed case, it is Table7.16. Let us
point out that there are the sets X (p1) = {x1, x3}, X (p2) = {x2, x4}.

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 7.16 Table of RLC for Moore NFSM MPYN(Γ13)

Pg\am a3 a6 a8 a10 a12

P1 x1 – x3 x3 –

P2 x2 x2 x4 x4 –

Table 7.17 Table of LUTer1
for Moore NFSM
MPYCN(Γ13)

am K (am) X (p1) X (p2) m

a8 0111 x3 x4 8

a10 1001 x3 x4 10

a3 0010 x1 x2 3

a6 0101 – x2 6

Fig. 7.16 Refined state
codes for Moore NFSM
MPYCN(Γ13)

This table is used for deriving Eqs. (2.19). In the discussed case, there is the
system:

p1 = T̄1T̄2T3T̄4x1 ∨ T̄1T2T3T4x3 ∨ T1T̄2T̄3T4x3;
p2 = T̄1T̄2T3T̄4x2 ∨ T̄1T2T̄3T4x2 ∨ . . . ∨ T1T̄2T̄3T4x4.

(7.33)

Each equation of (7.33) can be implemented using a single LUT with SL = 6. These
equations can be minimized. If am = Og , then the code K (am) can be used for
minimizing.The same is true for the stateam such that there is unconditional transition
〈am, a1〉 (Table7.17).

Let us change the state codes for MPYCN(Γ13). Let new codes be oriented on
optimization of the system (2.19). Let us name such an approach as a refined state
assignment. One of the possible variants is shown in Fig. 7.16.

Using these state codes and “don’t care” state codes, the following system can be
obtained:

p1 = T̄1x1 ∨ T1x3;
p2 = T̄1x2 ∨ T1x4.

(7.34)

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2


178 7 Hardware Reduction for Moore NFSMs

Table 7.18 Table of LUTer2 for Moore NFSM MPYCN(Γ13)

am K (am) as K (as) Ph Φh h

a3 0010 a4 0100 p1 D2 1

a7 1000 p̄1 p2 D1 2

a9 1010 p̄1 p̄2 D1D3 3

a6 0110 a11 1100 p2 D1D2 4

a5 0101 p̄2 D2D4 5

a8 1001 a12 1101 p1 p̄2 D1D2D4 6

a10 1011 p1 p2 D1D3D4 7

a11 1100 p̄1 D1D2 8

a10 1011 a12 1101 p1 p̄2 D1D2D4 9

a10 1011 p1 p2 D1D3D4 10

a11 1100 p̄1 D1D2 11

Each equation of (7.34) can be implemented with a single LUT having SL = 3.
Let us point out that the codes from Fig. 7.16 satisfy to (7.1).

The table of LUTer2 includes the following columns: am , K (am), as , K (as), Ph ,
Φh , h. The column Ph includes conjunctions of variables pg ∈ P corresponding to
conjunctions Xh for PYN(Γ13). In the discussed case, it is Table7.18.

The state codes are taken from Fig. 7.16. The equations (2.30) can be derived from
table of LUTer2. For example, the following minimized equations can be derived
from Table7.18:

D1 = T̄1T̄2T3 p̄1 ∨ T2T3 p2 ∨ T1T̄2T4;
D4 = T2T3 p̄2 ∨ T1T̄2 p1.

(7.35)

Let us point out that each equation Dr ∈ Φ can contain up to R + G different
variables. In the case of PYN Moore NFSM, it contains up to R + L variables. If
L � G, then the circuit of LUTer2 is quite simpler that the circuit of LUTer for
equivalent PYN Moore NFSM.

Tables of EMBer are the same for MPYN and PYN Moore NFSMs. Because of
it, we do not discuss the step 7 in our book.

The method of RLC can be used together with the encoding of inputs of NLCSs.
Using both methods the following structural diagram (Fig. 7.17) can be created for
MPTYN Moore NFSM.

Int this model, the LUTer1 implements the system (2.19). The LUTer2 generates
functions zr ∈ Z used for encoding the inputs of NLCS βg ∈ CN . It is the following
system:

Z = Z(T, P). (7.36)

The LUTer3 implements functions (7.11). The EMBer implements functions y(T )

and Y (T ).

http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 7.17 Structural diagram of FPGA-based MPTYN Moore NFSM

Table 7.19 Table of LUTer2 of Moore NFSM MPTYN(�13)

am K (am) as K (as) Ph Zh h

a3 0010 a4 001 p1 z3 1

a7 011 p̄1 p2 z2z3 2

a9 100 p̄1 p̄2 z1 3

a6 0110 a11 110 p2 z1z2 4

a5 001 p̄2 z3 5

a8 1001 a12 111 p1 p̄2 z1z2z3 6

a10 101 p1 p2 z1z3 7

a11 110 p̄1 z1z2 8

a10 1011 a12 111 p1 p̄2 z1z2z3 9

a10 101 p1 p2 z1z3 10

a11 110 p̄1 z1z2 11

The design methods are practically identical for NFSMsMPYN andMPTYN. But
there is an additional step in the second case. It is the step connectedwith constructing
the table of LUTer3. This table is the same as the table of LUTer2 for PTYN Moore
NFSM.

Let us construct the table of LUTer2 for Moore NFSMMPTYN(�13). There is the
following set of inputs IN (Γ13) = {a1, a4, a5, a7, a9, a10, a11, a12}. There is IN = 8.
Using (7.10), we can find the value RIN = 3 and the set Z = {z1, z2, z3}.

Let us encode the inputs am ∈ IN in the trivial way: K (a1) = 000, K (a4) =
001, . . . , K (a12) = 111. The table of LUTer2 has the same columns as its counter-
part for the MPYN Moore NFSM. But there are two differences. Firstly, the column
K (as) includes the codes of inputs. Secondly, there is a column Zh instead of Φh . In
the discussed case, it is Table7.19.

This table is used for deriving the system (7.36). For example, the following
minimized equation can be derived from Table7.19:

z1 = T̄1T̄2T3T̄4 p̄1 p̄2 ∨ T̄1T2T3T̄4 p̄2 ∨ T1T̄2T4. (7.37)

Themethod of RLC can be used togetherwith the optimal natural state assignment
and with encoding of the classes of pseudoeqivalent NLCSs. The first combination
leads to MP0YN Moore NFSM. There are two possible models in the second case.
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Fig. 7.18 Structural diagram of FPGA-based MPC1YN Moore NFSM

They are the models MPC1YN and MPC2YN. Of course, the BIT can be used in these
FSMs, too. It leads to the following models MPT0YN, MPTC1YN and MPTC2YN. For
example, let us discuss the MPC1YN Moore NFSM (Fig. 7.18).

In this model, the LUTer1 implement the functions

P = P(τ , X). (7.38)

The LUTer2 implements the functions

Φ = Φ(τ , P). (7.39)

The purpose of EMBer is the same as for PC1YN Moore NFSM. The design method
includes the following steps for MPC1YN Moore NFSM:

1. Constructing the set of states A.
2. Constructing the set of NLCSs CN .
3. Executing the natural state assignment.
4. Constructing the partition ΠCN.
5. Executing the encoding of the classes Bi ∈ ΠCN.
6. Finding the set of additional variables P .
7. Constructing the table of LUTer1.
8. Constructing the table of LUTer2.
9. Constructing the table of EMBer.
10. Implementing the FSM logic circuit.

Let us discuss an example of design for Moore NFSM MPC1YN(�13). The first
five steps of the design method are already executed (see Table7.15). The step 6
gives the set P = {p1, p2}.

The table of LUTer1 is constructed using the table of RLC. This table is the
same as for MPYN Moore NFSM but the states am ∈ Bi are replaced by the classes
Bi ∈ ΠCM. It is Table7.20 in the discussed case.

The table of LUTer1 has the columns Bi , K (Bi ), X (p1), X (p2), . . . , X (pG), i .
In the discussed case, it is Table7.21.
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Table 7.20 Table of RLC for Moore NFSM MPC1YN(�13)

pg\Bi B1 B2 B3 B4

p1 x1 – x3 –

p2 x2 x2 x4 –

Table 7.21 Table of LUTer1 for Moore NFSM MPC1YN(�13)

Bi K (Bi ) X (p1) X (p2) i

B1 00 x1 x2 1

B2 01 – x2 2

B3 10 x3 x4 3

Table 7.22 Table of LUTer2 for Moore NFSM MPC1YN(�13)

Bi K (Bi ) as K (as) Ph Φh h

B1 00 a4 0100 p1 D2 1

a7 1000 p̄1 p2 D1 2

a9 1010 p̄1 p̄2 D1D3 3

B2 01 a11 1010 p2 D1D2 4

a5 0101 p̄2 D2D4 5

B3 10 a12 1101 p1 p̄2 D1D2D4 6

a10 1011 p1 p2 D1D3D4 7

a11 1100 p̄1 D1D2 8

Using the code 11, we can get the following equations from Table7.21:

p1 = τ̄1x1 ∨ τ1x3;
p2 = τ̄1x2 ∨ τ1x4.

(7.40)

Comparison of (7.34) and (7.40) shows that these systems have the same amount
of terms and literals. It means that, in the discussed case, the hardware amount is
equal for blocks LUTer1 of both NFSMs.

The table of LUTer2 includes the columns Bi , K (Bi ), as , K (as), Ph , Φh , h. In
the discussed case, the system (7.13) is used for creating Table7.22.

This table is used for obtaining the system (7.39). For example, there are the
following equations derived from Table7.22:

D1 = τ̄1τ̄2 p̄1 ∨ τ̄1τ2 ∨ τ1τ̄2;
D4 = τ̄1τ2 p̄2 ∨ τ1τ̄2 p1.

(7.41)

As it is for all previous cases discussed for GSA Γ13, the EMBer includes 16
cells. The code K (Bi ) is placed in the cell having address K (am) where am = Og



182 7 Hardware Reduction for Moore NFSMs

Table 7.23 The part of table of EMBer for Moore NFSM MPC1YN(�13)

K (am) T1 . . . T4 Y (am) y0 . . . y5 K (Bi ) τ1τ2 h m

0000 10 0000 00 1 1

0001 11 1000 00 2 2

0010 00 0110 00 3 3

0011 00 0000 00 4 *

0100 10 1100 00 5 4

0101 11 0010 00 6 5

0110 00 0001 01 7 6

0111 00 0000 00 8 *

Fig. 7.19 Structural
diagram of HFPGA-based
PHCYN Moore NFSM

and βg ∈ Bi . There is a part of table of EMBer for the discussed case represented by
Table7.23.

The state codes (Fig. 7.16) are used for constructing both Tables7.22 and 7.23.
As in the previous case, we do not discuss the final step of design. Also, we do not
discuss other NFSMs having the block of RLC. We hope that our reader has enough
information to do it by himself or herself.

7.4 Design of Moore NFSMs with HFPGAs

Obviously, the HFPGAs can be used for implementing logic circuits of NFSMs. If
there is no code sharing, then the structure diagrams are the same for both EFSMs
and NFSMs. For example, there is the structural diagram of PHCYN Moore NFSM
shown in Fig. 7.19.

It is obvious that the circuits shown in Figs. 6.20 and 7.19 are identical. There are
identical the corresponding design methods. The only difference is reduced to the
approach used for the crating LCSs.

Now, let us discuss the design methods targeting NLCS-based FSMs with code
sharing. Let us start from PH0YNC Moore NFSM (Fig. 7.20). Its circuit is represented
by the same systems of Boolean functions as it is for PYNC Moore NFSM.

http://dx.doi.org/10.1007/978-3-319-59837-6_6
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Fig. 7.20 Structural
diagram of HFPGA-based
PH0YNC Moore NFSM

There are the following steps in the design method proposed for PH0YNC Moore
NFSM:

1. Creating the set of states A for a given GSA Γ .
2. Constructing the set of NLCSs CN = {β1, . . . ,βG2}.
3. Constructing the partition ΠCN = {B1, . . . , BIN}.
4. Executing of the optimal natural state assignment.
5. Constructing the preliminary table of PLAer.
6. Constructing the final table of PLAer.
7. Constructing the table of LUTer.
8. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore NFSM PH0YNC(�14). The first
four steps are already executed (see Table7.7). There is the outcome of the optimal
natural state assignment shown in Fig. 7.9.

The preliminary table of PLAer is constructed using the system of GFT. It is the
system (7.19) for the discussed case. This table is the same as Table7.10.

The final table of PLAer includes the following columns: Inputs, Terms, Outputs.
It is constructed in the same manner as Table6.16. In the discussed case the table
of PLAer is represented by Table7.24. We hope the connection is obvious between
Tables7.10 and 7.24.

The table of LUTer is constructed in the same way as table of EMBer for P0YNC

Moore NFSM. The part of this table is shown in Table7.25. It is based on state codes
K (am) from Fig. 7.9.

Let the following conditions be true for the HFPGA chip used for implementation
of the logic circuit of PH0YCN(�14):

sp ≥ L + RG2; (7.42)

tp ≥ RG2 + RC2; (7.43)

qp ≥ HE ; (7.44)

sl ≥ RG2 + RC2. (7.45)

http://dx.doi.org/10.1007/978-3-319-59837-6_6
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Table 7.24 Final table of PLAer for Moore NFSM PH0YNC(�14)

Inputs Terms Outputs

τ1τ2τ3 x1 . . . x4 D1D2D3D5

0*0 1*1* 1 1100

0*0 1*0* 2 1101

0*0 01** 3 1110

0*0 00** 4 1010

1** **1* 5 1000

1** **01 6 1100

1** 1*00 7 0100

1** 0*00 8 0010

0*1 **1* 9 0101

0*1 **0* 10 1011

Table 7.25 The part of table of LUTer for Moore NFSM PH0YNC(�14)

K (am) τ1τ2τ3T1T2 Y (am) y0 . . . y7 h m

000 00 1000 0000 1 1

000 01 0110 0000 2 2

000 10 0000 0000 3 *

000 11 0000 0000 4 *

001 00 1110 0000 5 15

001 01 1001 0001 6 16

001 10 0000 1000 7 17

001 11 0000 0000 8 *

In this case, only a single PLA macrocell is used for implementing the circuit of
PLAer. Also, only 8 LUTs are used for implementing the circuit of LUTer. It leads
to the logic circuit shown in Fig. 7.21.

If conditions (7.42)–(7.44) are violated, the more than one macrocell is necessary
to implement the circuit of PLAer. To minimize the hardware amount in the PLAer,
it is necessary to use the known methods [2, 3]. Of course,these methods should be
tuned to meet the peculiarities of NLCS-based Moore FSMs.

Let us discuss the case when the condition (7.42) is violated. Let the following
condition (7.46) be true:

Sp ≥ G + RG2. (7.46)

In this case, we can use the method of RLC. Let us denote as DL2 the difference

ΔL2 = Sp + (G = RG2). (7.47)
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Fig. 7.21 Logic circuit of Moore NFSM PH0YCN(�14)

Fig. 7.22 Structural diagram
of HFPGA-based MPHYNC

Obviously, the DL2 inputs of PLA can be used for entering the logical conditions.
It means that only DL1 of logical conditions should be replaced. Let the following
condition take place:

Sp ≥ ΔL1 + RG2. (7.48)

In this case, we propose the following structural diagram of MPHYNC Moore
NFSM (Fig. 7.22).

In this model, the PLAer1 implements the system

P = P(τ , X1). (7.49)

It transforms the logical conditions xe ∈ X1 into the additional variables pg ∈ P .
There are exactlyΔL1 elements in the set X1. The PLAer2 implements the functions

Ψ = Ψ (τ , x2, P); (7.50)

Φ = Φ(τ , x2, P). (7.51)

This very approach can be used for optimizing HFPGA based Moore EFSMs. It
can be used for all models of NFSMs discussed in this Chapter. We hope that our
reader will be able to generate the models of FSMs as well as the corresponding
design methods.
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3. Barkalov, A.,Węgrzyn,M.: Design of control units with programmable logic. UZ Press, Zielona

Góra (2006)
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Chapter 8
Hardware Reduction for Moore XFSMs

Abstract TheChapter is devoted to hardware reduction targeting the extended LCS-
based Moore FSMs. Firstly, the design method is proposed for the base model of
XFSM. Next, the methods are proposed targeting the hardware reduction in the
circuits based on this model. They are based on the executing either optimal state
assignment or transformation of state codes. The third part deals with the models
based on the encoding of the chain outputs. At last, the principle of code sharing is
discussed. In this case, the state code is represented as a concatenation of the code
of class of pseudoequivalent chains and the code of element inside this class.

8.1 Design of XFSM with Base Structure

There are three main blocks in the base model of XFSM: the block of input mem-
ory functions, the counter and the block of microoperations (see Fig. 3.16). As in
the previous cases, the BIMF is implemented as the LUTer, whereas the BMO is
implemented as EMBer. Let us start from the model P1YX (Fig. 8.1).

The LUTer implements the functions (2.9) and the following function:

yL = yL(T, X). (8.1)

The EMBer implements the functions (2.17). Let us point out that this model has
never been discussed in the literature.

There are the following steps in the proposed design method targeting P1YX

Moore XFSMs:

1. Creating the set A for a given GSA Γ .
2. Constructing the set of XLCSs CX = {γ1, . . . , γG3}.
3. Executing the natural state assignment.
4. Constructing the table of LUTer.
5. Constructing the table of EMBer.
6. Implementing the FSM logic circuit.
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Fig. 8.1 Structural diagram of FPGA-based P1YX XFSM

Fig. 8.2 Initial graph-scheme of algorithm Γ15

Let us discuss an example of design for the Moore XFSM P1YX(�15), where the
GSA Γ15 is shown fi Fig. 8.2.

The following sets can be derived from the GSA Γ15: A = {a1, . . . , a7}, X =
{x1, x2, x3}, Y = {T1, T2, T3} and Φ = {D1, D2, D3}. Using the procedure P4, the
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Fig. 8.3 State codes for
Moore XFSM P1YX(�15)

following set CX can be found CX = {β1,β2,β3}. There are the following XLCS
βg ∈ CX : β1 = 〈a1, a2, a3, a5, a7〉, β2 = 〈a4〉, β3 = 〈a6〉.

Let us execute the step 3. The state codes should obey to the relation (3.26). At
the same time, it should be zero code assigned for the initial state a1 ∈ A [2]. Using
these rules, the following state codes can be obtained (Fig. 8.3).

The table of LUTer includes the following columns: am , K (am), as , K (as), Xh ,
Φh , yL , h. The column yL includes one if the transition 〈am, as〉 should satisfy to the
relation K (as) = K (am) + 1. In the discussed case, there is the following table of
LUTer (Table8.1).

The table of EMBer includes the columns K (am), Y (am), m. It is constructed as
for all cases discussed before. It is Table8.2 for the case of P1YX(�15).

The table of LUTer includes 10 rows. It is the same number as for theMoore FSM
PY(Γ15). But there are some input memory functions only in five rows of Table8.1.
Let us point out that each function Dr can include up to 9 terms in the case of
PY(Γ15). So, we can expect that the logic circuit is simpler for LUTer of P1YX(�15)

than for its counterpart from PY(Γ15).
The following system can be derived from Table8.1:

D1 = T̄1T̄2T3 x̄1 x̄2 ∨ T̄1T2T3 x̄3 = F1 ∨ F8;
D2 = T̄1T̄2T3 x̄1x2 ∨ T1T̄2T̄3 ∨ T̄1T2T3 x̄3 ∨ T1T2T̄3 = F3 ∨ F6 ∨ F8 ∨ F9;
D3 = T̄1T̄2T3 x̄1 ∨ T1T̄2T3 ∨ T1T2T̄3 = [F3 ∨ F4] ∨ F6 ∨ F9;
yl = F1 ∨ F2 ∨ F5 ∨ F7.

(8.2)

Table 8.1 Table of LUTer for Moore XFSM P1YX(�15)

am K (am) as K (as) Xh Φh yL h

a1 000 a2 001 1 – 1 1

a2 001 a3 010 x1 – 1 2

a5 011 x̄1x2 D2D3 – 3

a4 101 x̄1 x̄2 D1D3 – 4

a3 010 a5 011 1 – 1 5

a4 101 a5 011 1 D2D3 – 6

a5 011 a7 100 x3 – 1 7

a6 110 x̄3 D1D2 – 8

a6 110 a5 011 1 D2D3 – 9

a7 100 aa 000 1 – – 10

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 8.2 Table of EMBer
for Moore XFSM P1YX(�15)

K (am) T1T2T3 Y (am) y1 . . . y6 m

000 000000 1

001 110000 2

010 001000 3

011 010100 5

100 010001 7

101 000100 4

110 110000 6

111 000000 *

The expression [F3 ∨ F4]means that the corresponding term is obtained by using
the law of expansion [3]. The equation for yL could be simplified.

Analysis of Table8.1 shows that yL = 1 in two cases:

1. D1 ∨ D2 ∨ D3 = 0;
2. K (am) �= 100.

It gives the following equations:

yL = D1 ∨ D2 ∨ D3 · T1T̄2T̄3 = D̄1 D̄2 D̄3T̄1 ∨ D̄1 D̄2 D̄3T3 ∨ D̄1 D̄2 D̄3T3. (8.3)

The Eq. (8.3) means that the function yL can be expressed as:

yL = yL(Φ, T ). (8.4)

When an FSM is designed, either (8.1) or (8.4) could be chosen for implementing
the corresponding circuit. Of course, it is reasonable to choose equation leading to
the circuit with less amount of LUTs.

Let us point out that the pulse Start should be connected with the clearing input
of the counter. Also, the functions C1 = yLClock and C2 = ȳLClock should be
implemented by the LUTer.

Let LUTs having S = 6 inputs be used for implementing the circuit of LUTer. In
this case, functions (8.2), C1 and C2 are implemented using a single LUT. Let the
FPGA in use include EMBs having the configuration 8× 8 (bits). It means that only
one EMB is necessary for implementing the circuit of EMBer. The logic circuit of
P1YX(�15) is shown in Fig. 8.4.

In this circuit, LUT4 implements the function yL represented by (8.3), LUT5
implements Eq. (8.5),

C1 = y1Clock; (8.5)

C2 = ȳ1Clock. (8.6)
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Fig. 8.4 Logic circuit of Moore XFSM P1YX(�15)

Fig. 8.5 Structure diagram
of P2YX Moore FSM

Let the LUTer generate a function yL1 initializing the incrementing the counter
for conditional transitions. Let the EMBer generates a function yL2 initializing the
incrementing the counter for unconditional transitions. In this case, the following
equation should by implemented:

yL = yL1 ∨ yL2. (8.7)

It leads to P2YX Moore XFSM shown in Fig. 8.5.
In the case of FSM P2YX(�15), the LUTer is represented by Table8.3.
Comparison of Tables8.1 and 8.3 shows that the later includes less rows. Two

different equations could be formed for the function yL1:
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Table 8.3 Table of LUTer of Moore XFSM P2YX(�15)

am K (am) as K (as) Xh Φh yL1 h

a2 001 a3 010 x1 – 1 1

a5 011 x̄1x2 D2D3 – 2

a4 101 x̄1 x̄2 D1D3 – 3

a4 101 a5 011 1 D2D3 – 4

a5 011 a7 100 x3 – 1 5

a6 110 x̄3 D1D2 – 6

a6 110 a5 011 1 D2D3 – 7

a7 100 a1 000 – – – 8

Table 8.4 Table of EMBer of
Moore XFSM P2YX(�15)

K (am) T1T2T3 Y (am)

y1 . . . y6 yL2
m

000 000000 1 1

001 110000 0 2

010 001001 1 3

011 010100 0 5

100 010010 0 7

101 000100 0 4

110 110000 0 6

111 000000 0 *

yL1 = T̄1T̄2T3x1 ∨ T̄1T2T3x3; (8.8)

yL1 = D1 ∨ D2 ∨ D3 ∧ T1T̄2T̄3. (8.9)

Obviously, the Eq. (8.9) is a part of Eq. (8.2), whereas the Eq. (8.5) coincides
with (8.3). The function yL2 should be formed for states a1, a3 ∈ A. It leads to the
following table of EMBer (Table8.4).

Let V0 be a number of cells of EMB if it has a single output (tF = 1). To be
implemented as single EMB, the following conditions should take places for EMBers
of PYC and PYC1 FSMs:

2RN ≤ V0; (8.10)

2R(N + 1) ≤ V0. (8.11)

Analysis of the benchmarks from [4] shows that both conditions (8.10)–(8.11) are
satisfied for all benchmarks. So, both models can be used. The criterion of choice
could be either minimum hardware or minimum propagation time for function yL .
In this Chapter, we always use the models where the function yL is generated by the
LUTer.
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8.2 Optimization of XFSM with the Base Structure

It is known that the Moore FSM can be optimized by using the existence of pseudoe-
quivalent states [2]. But it is necessary to change the definition of PES for XLCS-
based More FSMs. Let us define PEWS as the following. The states am, as ∈ A are
pseudoequivalent, if they:

1. belong to different XLCS βg ∈ Cx ;
2. mark operator vertices connected with the input of the same vertex of GSA Γ ;
3. the condition (3.26) takes no place for transitions from these states.

There are G3 = 3 extended LCSs in the case of GSA Γ15. Let ΠCX be a partition of
the set A by the classes of PES for an XLCS-based Moore FSM. In the discussed
case, there is ΠCX = {B1, . . . , B5}, where B1 = {a1}, B2 = {a2}, B3 = {a3}, B4 =
{a4, a6}, B5 = {a5} and B6 = {a7}. So the partition ΠCX includes ICX = 6 classes of
PES. Let us point out that the following relation takes place:

ICX ≥ I. (8.12)

In (8.12), the symbol I stands for the capital numer of the partition ΠA formed for
ULCS-based Moore FSM.

Let us encode the PES am ∈ Bi in such a way that:

1. the condition (3.26) takes place for each XLCS βg ∈ Cx ;
2. the codes of states am ∈ Bi belong to the same generalized interval of R-

dimensional Boolean space.

As in previous cases, it is necessary to execute the optimal natural state assignment.
There is a variant of the optimal natural state assignment for the discussed example
(Fig. 8.6). Let us point out that the symbol P0 means that the optimal state encoding
is used in an FSM.

Using the “don’t care” input assignment 110, the following codes can be found
for classes Bi ∈ ΠEX: K (B1)=000, K (B2)=001, K (B3)=*10, K (B4) =1*1,
K (B5) = 011, and K (B6) =1*0.

There are the following steps in the proposed design method for P01YX Moore
XFSM:

1. Constructing the set of states A.
2. Constructing the partition ΠCX = {γ1, . . . , γG3}.

Fig. 8.6 Optimal state codes
for P01YX(�15)

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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3. Finding the partition ΠCX = {B1, . . . , BICX }.
4. Executing the optimal natural state assignment.
5. Constructing the table of LUTer.
6. Constructing the table of EMBer.
7. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore XFSM P01YX(�15). The first 4
steps are already executed. The table of LUTer includes the following columns: Bi ,
K (Bi ), as , K (as), Φh , yL , h. It is constructed on the base of GFTs. In the discussed
case, there is the following system of GFTs:

B1 → a2;
B2 → x1a3 ∨ x̄1x2a5 ∨ x̄1 x̄2a4;
B3 → a5;
B4 → a5;
B5 → x3a7 ∨ x̄3a5;
B6 → a1.

(8.13)

The table of LUTer includes 9 rows for the discussed case (Table8.5). The columns
Φh and yL are filled using the following approach. Let us consider the transitions
from the class Bi ∈ ΠEX, where am ∈ Bi . If the condition (3.26) takes place for the
transition 〈am, as〉, then Φh = ∅ and yL = 1. If the condition (3.26) is violated, then
yL = 0 and variables Dr ∈ Φh are determined by the code K (as).

The table of EMBer is constructed in the same way as in the previous case. We
do not discuss this step.

There is the second known optimization approach, namely the transformation of
state codes. In this case, the classes of PES are encoded using the class codes K (Bi )

having RIX bits:
RIX = �log2 IX. (8.14)

Table 8.5 Table of LUTer of Moore NFSM P01YX(�15)

Bi K (Bi ) as K (as) Xh Φh yL h

B1 000 a2 001 1 – 1 1

B2 001 a3 010 x1 – 1 2

a5 011 x̄1x2 D2D3 – 3

a4 101 x̄1 x̄2 D1D3 – 4

B3 *10 a5 011 1 – 1 5

B4 1*1 a5 011 1 D2D3 – 6

B5 011 a7 100 x3 – 1 7

a5 011 x̄3 D2D3 – 8

B6 1*0 a1 000 1 – – 9

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 8.7 Structural diagram
of FPGA-based P1C1YX
Moore XFSM

There are additional variables τr ∈ τ used for encoding of the classes Bi ∈ ΠCX.
Obviously, there is RIX = |τ |. If there are RIX free outputs in EMBs, then the model
P1C1YX is used (Fig. 8.7).

The block LUTer implements the system (3.57) together with the function

yL = yL(τ , X). (8.15)

The EMBer generates the functions (2.16) and (3.17).
Let the following conditions take places:

tF > N ; (8.16)

tF < N + RIX. (8.17)

In this case, the model P1C2YX can be used (Fig. 8.8).
We hope, our reader understands the functions of each block from Fig. 8.8. Let us

discuss the designmethod for P1C1YX Moore XFSM. In includes the following steps:

1. Constructing the set of states A.
2. Constructing the set of XLCSs CX .
3. Finding the partition ΠCX.
4. Executing the natural state assignment.
5. Executing the encoding for classes Bi ∈ ΠCX.
6. Constructing the table of LUTer.
7. Constructing the table of EMBer.
8. Implementing the FSM logic circuit.

Fig. 8.8 Structural diagram
of FPGA-based P1C2YX
Moore XFSM

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 8.9 Initial graph-scheme of algorithm Γ16

Let us discuss an example of design for Moore XFSM P1C1YX(�15). The initial
GSA Γ16 is shown in Fig. 8.9.

The following sets and their parameters can be derived from GSA Γ16: A =
{a1, . . . , a8}, M = 8, X = {x1, . . . , x4}, Y = {y1, . . . , y6}, N = 6, R = 3,
T = {T1, T2, T3} and Φ = {D1, D2, D3}. The following set of XLCS can be con-
structed: CX = {β1, . . . ,β6}, where β1 = 〈a1, a2, a6〉, β2 = 〈a3〉, β3 = 〈a4〉, β4 =
〈a5〉, β5 = 〈a7〉 and β6 = 〈a8〉.



8.2 Optimization of XFSM with the Base Structure 197

Fig. 8.10 Codes of states of
Moore XFSM P1C1YX(�16)

Using the definition of PES from this Chapter, the set ΠCX = {B1, . . . , B5} can
be found. It includes the following classes: B1{a1}, B2{a2}, B3{a3, a4, a5}, B4{a6},
B5{a7, a8}. Because there are classes havingmore than one state, it is possible to opti-
mize the LUTer. Obviously, there is no variant of the optimal natural state assignment
leading to representing each class by a single generalized interval. So, there is sense
using the state transformation approach.

Let us encode the states as it is shown in Fig. 8.10.
Using (8.14), we can find RIX = 3. Therefore, there is the set τ = {τ1, τ2, τ3}.

The class assignment can be executed in such a manner that its outcome optimizes
the system of input memory functions. Let us start from the system of GFT:

B1 → x1a2 ∨ x̄1x2a3 ∨ x̄1 x̄2x3a4 ∨ x̄1 x̄2 x̄3a5;
B2 → x2a6 ∨ x̄2x4a7 ¯̄x2 x̄4a8;
B3 → x2a6 ∨ x̄2x4a7 ∨ x̄2 x̄4a8;
B4 → a1;
B5 → a1.

(8.18)

There are identical GFTs for classes B2 and B3 in (8.18). It is possible to simplify
the system (3.57) using this fact. To to it, the class codes should be in the same
generalized interval of RIX-dimensional Boolean space for the classes B2 and B3. The
same is true for the classes B4, B5 ∈ ΠCX. One of the variants is shown in Fig. 8.11.

There are the same columns in the table of LUTer for both P01YX and P1C1YX

FSMs. In the discussed case, the table of LUTer is represented by Table8.6.
In the column K (Bi ) the “don’t care” class codes are taken into account. The state

codes are taken fromFig. 8.10. The system (3.57) can be derived fromTable8.6.After
minimizing, this system is the following one:

Fig. 8.11 Optimal class
codes for Moore XFSM
P1C1YX(�16)

http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 8.6 Table of LUTer for Moore XFSM P1C1YX(�16)

Bi K (Bi ) as K (as) Xh Φh yL h

B1 *00 a2 001 1 – 1 1

a3 011 x̄1x2 D2D3 – 2

a4 100 x̄1 x̄2x3 D1 – 3

a5 101 x̄1 x̄2 x̄3 D1D3 – 4

B2 *01 a6 010 x2 – 1 5

a7 110 x̄2x4 D1D2 – 6

a8 111 x̄2 x̄4 D1D2D3 – 7

B3 *11 a6 010 x2 D2 – 8

a7 110 x̄2x4 D1D2 – 9

a8 111 x̄2 x̄4 D1D2D3 – 10

B4 010 a1 000 1 – – 11

B5 110 a1 000 1 – – 12

D1 = τ̄2τ̄3 x̄1 x̄2 ∨ τ3 x̄2;
D2 = τ̄2τ̄3 x̄1x2 ∨ τ̄2τ3x2 ∨ τ2τ3;
D3 = τ̄2τ̄3x2 ∨ τ̄2τ̄3 x̄1 x̄2 x̄3 ∨ τ3 x̄2 x̄4.

(8.19)

The function y1 is equal to 1 if D1 ∨ D2 ∨ D3 = 0 (rows 1 and 5) and Bi = B1

of Bi = B2. It gives the following expression: yL = D1 ∨ D2 ∨ D3τ̄2 = D̄1 D̄3 D̄3τ̄2.
The variable τ2 = 0 for K (B1) and K (B2) (Fig. 8.10).

The table of EMBer includes the columns K (am), Y (am), K (Bi ), m. The column
K (Bi ) includes the code of a class Bi such that am ∈ Bi . In the discussed case, only
the variables τ2, τ3 ∈ τ should be shown in this column (Table8.7).

Obviously, this model can be used if the following condition takes place:

tF ≥ N + RIX. (8.20)

Table 8.7 Table of EMBer
for Moore XFSM
P1C1YX(�16)

K (am)

T1T2T3
Y (am)

y1 . . . y6
K (Bi ) τ2τ3 m

000 000000 00 1

001 110000 01 2

010 110000 10 3

011 001000 11 4

100 000010 11 5

101 000101 11 6

110 101001 10 7

111 010100 10 8
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To use only a single EMB in the EMBer, the following condition should take place:

2R(N + RIX) ≤ V0. (8.21)

In this book, we do not discuss the design methods when the condition (8.22) is
violated. As shown our analysis of [4], the condition (8.21) takes place for all bench-
marks from the library [4].

8.3 Encoding of Chain Outputs

As it is mentioned before, each XLCS γg ∈ CX can include more than one output.
The state am ∈ A(γg) is an output of the XLCS γg ∈ CX if there is a transition
〈am, as〉 such tat K (as) �= K (am) + 1. These states form the set of outputs OX (Γ j ).
For example, there is the set OX (Γ15) = {a2, a4, a5, a6, a7}. Such a set can be found
after executing the natural state assignment (3.26).

Analysis of GSA Γ15 shows that there are the same transitions for the outputs
a4, a6 ∈ OX (Γ15). Let us name such outputs pseudoequivalent outputs (PEO). Let us
find a partitionΠXO = {O1, . . . , Oy} for the set OX (Γ j ). Each elementΠXO is a class
of PEO. There is the partition ΠXO = {O1, . . . , O4} in the case of Γ15. It includes
the following classes: O1 = {a2}, O2 = {a4, a6}, O3 = {a5} and O4 = {a7}.

Let us encode the classes Oj ∈ ΠXO by binary codes K (Oj ) having RXO bits:

RXO = �log2 J. (8.22)

Let us use the variables zr ∈ Z for encoding of the classes Oj ∈ ΠXO, where
|Z | = RXO. Now, the model of P3YX Moore XFSM is proposed (Fig. 8.12).

In this model, the BIMF implements the system of input memory functions

Φ = Φ(Z , X) (8.23)

Fig. 8.12 Structural diagram of P3YX Moore XFSM

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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together with the function
yL1 = f1(Z , X). (8.24)

The BMO implements the system of microoperations and the functions

yL2 = f2(T ). (8.25)

The block of output transformer (BOT) implements the functions

Z = Z(T ). (8.26)

If FPGAs are used for implementing an FSM circuit, three different models are
possible for XFSM based on the encoding of outputs. Let us discuss them.

Let the following condition take place:

tF ≥ N + RXO + 1. (8.27)

In this case, the functions (8.25), (8.26) and (2.15) are implemented by the EMBer.
It leads to P3C1YX Moore XFSM (Fig. 8.13).

Let the following condition take place:

tF > N + 1;
tF < N + RXO + 1.

(8.28)

In this case, the set Z should be divided by two subsets: Z = Z1 ∪ Z2. The
functions zr ∈ Z1 are generated by the EMBer. Their number tE is determined as

tE = tF − (N + 1). (8.29)

The functions zr ∈ Z2 are implemented by the LUTer2. Their number tL is deter-
mined as

tL = RXO − tE . (8.30)

Fig. 8.13 Structural diagram
of P3C1YX Moore XFSM

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 8.14 Structural
diagram of FPGA-based
P3C2YX Moore XFSM

This approach leads to P3C2YX Moore XFSM (Fig. 8.14).
Let the following condition take place:

tF = N + 1. (8.31)

In this case, the model P3C3YX Moore XFSM can be used. In is the same as the one
shown in Fig. 8.12. In the case of FPGA, the BOT is represented by the LUTer2.

All these XFSMs are designed in the similar ways. The difference is reduced
to the distribution of functions zr ∈ Z between the block EMBer and LUTer2. For
example, let us discuss the proposed design method for P3C1YX Moore XFSM. It
includes the following steps:

1. Constructing the set of states A.
2. Constructing the set of XLCS CX .
3. Natural state assignment.
4. Constructing the set of chain outputs OX (Γ j ).
5. Constructing the partition ΠXO.
6. Encoding of the classes of PEO Oj ∈ ΠXO

7. Constructing the table of LUTer.
8. Constructing the table of EMBer.
9. Implementing the logic circuit of FSM.

Let us discuss an example of design for theMoore XFSMP3C1YX(�15). The steps
1–5 are already executed. In the discussed case, there are RXO = 2 and Z = {z1, z2}.
Let us encode the classes Oj ∈ ΠXO in the trivial way: K (O1)=00, . . . , K (O4)=11.

To construct the table of LUTer, let us find the system of generalized formula of
transitions. In the case of GSA Γ15, this system is the following:

O1 → x1a3 ∨ x̄1x2a5 ∨ x̄1 x̄2a4;
O2 → a5;
O3 → x3a7 ∨ x̄3a5.

(8.32)

As in all previous cases, D flip-flops are used for implementing the counter. It
means that transitions into state a1 ∈ A are executed automatically (using only the
pulseClock). Due to it, the transitions from the output O4 are not considered in (8.31).
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Table 8.8 Table of LUTer of Moore XFSM P3C1YX(�15)

Oj K (Oj ) as K (as) Xh Φh yL1 h

O1 00 a3 010 x1 – 1 1

a5 011 x̄1x2 D2D3 – 2

a4 101 x̄1 x̄2 D1D3 – 3

O2 *0 a5 011 1 D2D3 – 4

O3 1* a7 100 x3 – 1 5

a5 011 x̄3 D2D3 – 6

The table of LUTer includes the following columns: Oj , K (Oj ), as , K (as), Xh ,
Φh , yL1, h. In the discussed case, the table of LUTer is represented by Table8.8.

Because the transitions from O4 are not considered, the code K (O4) is treated as
“don’t care”. It is used for simplifying the codes of classes O2 and O3. The following
Boolean functions can be derived from Table8.8:

D1 = z̄1 z̄2 x̄1 x̄2;
D2 = z̄1 z̄2 x̄1x2 ∨ z1 ∨ z1;
D3 = z̄1 z̄2 x̄1 ∨ z2 ∨ z1x3;
yL1 = z̄1 z̄2x1 ∨ z1x3.

(8.33)

Analysis of the system (8.33) shows that each its equations can be implemented
using a LUT having S = 4. This system is much simpler that the system (8.2). Let
us point out that the equation yL1 = D̄3 can be derived from Table8.8, as well as
yL1 = D̄1 z̄1 ∨ D̄2 z̄1.

The table of EMBer includes the following columns: K (am), Y (am) K (Oj ), y12,
m. In the discussed case, it is represented by Table8.9.

The logic circuit ofMooreXFSMP3C1YX(�15) is shown in Fig. 8.15. The function
yL is implemented using the equation yL = yL1 ∨ yL2. It is implemented by LUTs.
Two LUTs (LUT6 and LUT 7) are used for implementing Eqs. (8.5) and (8.6). The
EMBer should have the configuration 8× 9 bits.

Table 8.9 Table of EMBer of Moore XFSM P3C1YX(�15)

K (am) T1T2T3 Y (am) y1 . . . y6 yL2 m K (Oj ) z1z2

000 000000 1 1 00

001 110000 0 2 00

010 001000 1 3 00

011 010100 0 5 10

100 010001 0 7 11

101 000010 0 4 01

110 110000 0 6 01

111 000000 0 * **
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Fig. 8.15 Logic circuit of Moore XFSM P3C1YX(�15)

Let us point out that the function yL could be implemented as the following one:

yL = yL(yL1, T ). (8.34)

In the discussed case, the following equation can be found:

yL = yL1 ∨ A1 ∨ A3 = yL1 ∨ T̄1T̄3. (8.35)

It is enough a single LUT having S = 3 for implementing the function (8.35).
If the following condition takes place

R ≤ SL , (8.36)

then circuit of BOT is implemented using only R0 of LUTs.
The following approach can be used for simplification of the circuit generating

the function yL . Let us discuss it using Table8.1. Let us construct a Karnaugh map
for function yL (Fig. 8.16) on the base of Table8.1.
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Fig. 8.16 Karnaugh map for function yL

The connection between Table8.1 and Fig. 8.16 is obvious. Let us minimize the
function yL . It gives the following expression:

yL = T̄1T̄3 ∨ T̄2T̄3x1 ∨ T̄1T2 x̄1x3 ∨ T̄1x1x3. (8.37)

This expression can be used for the case of encoding of chain outputs. It leads to
P3C4YX MooreXFSM (Fig. 8.17). In thismodel, the LUTer2 implements the function
yL = yL(T, X). In the discussed case, this equation is the Eq. (8.37).

This very approach can be used for optimizing the number of LUTs in P1C1 and
P1C2 Moore XFSMs. For example, the following model can be proposed (Fig. 8.18).

Thismodel is based on themodel of P1C1YX MooreXFSM (Fig. 8.7). The function
(8.36) is used in this model for incrementing the counter CT. We do not discuss the
corresponding design method in this Chapter.

Fig. 8.17 Structural
diagram of FPGA-based
P3C4YX Moore XFSM
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Fig. 8.18 Structural
diagram of FPGA-based
P1C4YX Moore XFSM

8.4 Code Sharing for Moore XFSMs

Let us find the partition ΠA = {B1, . . . , BK } of the set A by the classes of PES. We
treat the states as pseudoequivalent if they mark the vertices connected with the input
of the same vertex of GSA Γ [2]. Let us construct the linear chains of classes (LCC)
for a given GSA Γ . Let us define and LCC as a vector δq = 〈Bq1, . . . , BqIq〉 where
a transition 〈am, as〉 exists for any pair of adjacent components of δq . It means that
am ∈ Bqi and as ∈ Bqi+1(i = 1, . . . , Iq − 1). A transition could be either conditional
or unconditional.

Let us construct a setΠΔ = {δ1, . . . , δQ} such that each class Bi ∈ ΠA belongs to
a single LCC. So, the set ΠΔ is a partition of ΠA. Let us encode the classes Bi ∈ ΠA

by binary codes K (Bk) having RK bits, where:

RK = �log2 K . (8.38)

Let us encode the classes in the natural order:

K (Bqi+1 = K (Bqi ) + 1. (8.39)

In (8.39), there are q ∈ {1, . . . , Q}, i ∈ {1, . . . , Iq − 1}. Let a class Bk ∈ ΠA include
Mk states am ∈ A(k = 1, . . . , K ). Let us find the value

M0 = max(M1, . . . , MK ). (8.40)

Let us encode each state am ∈ Bk by a binary code C(am) having RM bits:

RM = �log2 M0. (8.41)
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Fig. 8.19 Structural diagram
of PYXC Moore XFSM

Now each state am ∈ A can be determined by a binary code K (am)which is equal
to a concatenation of codes K (Bk) and C(am), where am ∈ Bk :

K (am) = K (Bk) ∗ C(am). (8.42)

In (8.42), the sign * determines the concatenation of codes.
Let us name such a representation of state as code sharing. Let us use the following

approach for encoding of the states. If there is a transition 〈am, as〉 such that am ∈ Bqi

and as ∈ Bqi+1, then C(as) = 00 . . . 0. It allows to propose the model PYX6 Moore
XFSM (Fig. 8.19).

In this FSM, the BIMF implements the functions

Φ = Φ(τ , X; (8.43)

Ψ = Ψ (τ , X); (8.44)

yL = yL(τ , X). (8.45)

The set Φ includes RM of functions, whereas the set Ψ RK of functions. The
register RG keeps the state codesC(am) represented by state variables Tr ∈ T , where
|T | = RM . The counter CT keeps the class codes K (Bk) represented by the class
variables τr ∈ τ , where |τ | = RK . The variable yL is used for incrementing the
content of CT. The BMO generates the functions

Y = Y (τ , T ). (8.46)

The XFSM operates in the following manner. If Start=1, then zero codes are
loaded in both CT and RG. It corresponds to the initial state a1 ∈ A. If a transition
〈am, as〉 corresponds to (8.39), then the variable yL is generated, whereas Dr =
0(Dr ∈ Φ ∪ Ψ ). If the condition (8.39) is violated for a given transition, then yL = 0.
In this case contents of RG and CT are determined by functions (8.43)–(8.44).

If FPGAs are used for implementing the logic circuit of PYXC XFSM, then BIMF
is implemented by the LUTer and BMO is implemented by the EMBer (Fig. 8.20).
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Fig. 8.20 Structural diagram
of PYXC Moore XFSM
implemented with FPGA

The proposed designmethod of PYXC Moore XFSM includes the following steps:

1. Constructing the set of internal states A.
2. Constructing the partition ΠA = {B1, . . . , BK }.
3. Constructing the set of LCC ΠB = {δ1, . . . , δq}.
4. Natural encoding of classes Bk ∈ ΠA.
5. Encoding of states and finding the codes K (am).
6. Constructing the table of LUTer.
7. Constructing the table of EMBer.
8. Implementing the logic circuit of FSM.

Let us discuss an example of design for Moore FSM PYXC(Γ17) where GSA Γ17

is shown in Fig. 8.21.
The following sets and their parameters can be found from GSA Γ17: A =

{a1, . . . , a12}, M = 12, R = 4, X = {x1, . . . , x4}, L = 4, Y = {y1, . . . , y6}, N = 6.
The following partition ΠA = {B1, . . . , B8} can be found from GSA Γ17. It

includes the following classes of PES: B1 = {a1}, B2 = {a2}, B3 = {a3}, B4 =
{a4, a5, a6}, B5 = {a7}, B6 = {a8}, B7 = {a9, a10} and B8 = {a11, a12}. So, there is
K = 8; it gives RK = 3 and τ = {τ1, τ2, τ3}.

The following set of LCCΠB = {β1,β2} can be found from GSA Γ17. It includes
the following linear chains of classes: δ1 = 〈B1, B2, B3, B4, B5, B6, B8〉 and δ2 =
〈B7〉. Let us encode the classes Bi ∈ ΠA in the natural order (Fig. 8.22).

Analysis of the classes Bi ∈ ΠA shows that there are M1 = M2 = M3 = M5 =
M6 = 1, M4 = 3, M7 = M8 = 2. Therefore, there are M0 = 3 RM = 2 and T =
{T1, T2}. The following state codes C(am) can be found from GSA Γ17: C(a1) =
C(a2) = C(a3) = C(a6) = C(a7) = C(a8) = C(a9) = C(a11) = 00, C(a4) =
C(a10) = 01 and C(a5) = 10. Now, the state codes are shown in Fig. 8.23.

To construct the table ofLUTer, let us construct the systemof generalized formulae
of transitions. If the discussed case, it is the following:
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Fig. 8.21 Initial graph-scheme of algorithm Γ17
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Fig. 8.22 Codes of classes of XFSM PYXC(Γ17)

Fig. 8.23 State codes for XFSM PYXC(Γ17)

B1 → a2;
B2 → x1a3 ∨ x̄1x2a4 ∨ x̄1 x̄2a5;
B3 → a6;
B4 → a7;
B5 → x3a8 ∨ x̄3x4a9 ∨ x̄3 x̄4a10;
B6 → x1a6 ∨ x̄1a11;
B7 → a12;
B8 → a1.

(8.47)

The table of LUTer includes the following columns: Bk , K (Bk), as , K (as), Xh ,
Ψh , Φh , y1, h. In the discussed case it is represented by Table8.10.

The table ofLUTer is used for deriving the systems (8.43)–(8.44) and the equations
for yL . The following equations can be found from Table8.10:

D1 = τ1τ̄2τ̄3 x̄3 ∨ τ1τ2τ3;
D2 = τ1τ2τ3 x̄1 ∨ τ1τ̄2τ̄3 x̄3 ∨ τ1τ̄2τ3x1 ∨ τ1τ2τ3;
D3 = τ̄1τ̄2τ3 x̄1 ∨ τ1τ̄2τ̄3 x̄3 ∨ τ1τ̄2τ3x1;
D4 = τ̄1τ̄2τ3 x̄1 x̄2;
D5 = τ̄1τ̄2τ3 x̄1x2 ∨ τ1τ̄2τ̄3 x̄3 x̄4 ∨ τ1τ2τ3;
yL = D̄2τ1τ2τ̄3 = D̄2τ̄1 ∨ D̄2τ̄2 ∨ D̄2τ3.

(8.48)
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Table 8.10 Table of LUTer of Moore XFSM PYXC(Γ17)

Bk K (Bk) as K (as) Xh Ψh Φh y1 h

B1 000 a2 00100 1 – – 1 1

B2 001 a3 01000 x1 – – 1 2

a4 01101 x̄1x2 D2D3 D5 – 3

a5 01110 x̄1 x̄2 D2D3 D4 – 4

B3 010 a6 01100 1 – – 1 5

B4 011 a7 10000 1 – – 1 6

B5 100 a8 10100 x3 – – 1 7

a9 11100 x̄3x4 D1D2D3 – – 8

a10 11101 x̄3 x̄4 D1D2D3 D5 1 9

B6 101 a6 01100 x1 D2D3 – 1 10

a11 11000 x̄1 – – 1 11

B7 111 a12 11001 1 D1D2 D5 – 12

B8 110 a1 00000 1 – – – 13

The last equation of (8.48) is based on analysis of Table8.10. The function D2 =
1 if yL = 0. The only exception is the row 13, where D2 = yL = 0. This row is
determined by the conjunction τ1τ2τ̄3.

The table of EMBer includes the columns K (am), Y (am),m. In the discussed case
it includes 32 rows, because there is RK + RM = 5. The part of this table for states
a3, a4, a5, a6 ∈ A is represented by Table8.11.

The connection between Table8.11, Figs. 8.21 and 8.23 is obvious. Let us use
FPGAs having LUTs with s = 5 for implementing the circuit of LUTer. Analysis
of the system (8.48) shows that functions D1, D2, D3, D4, yL can be implemented
using only a single LUT. To implement the function D5, it should be decomposed:

D5 = τ1(τ̄2τ̄3 x̄3 x̄4 ∨ τ2τ3) ∨ τ̄1(τ̄2τ3 x̄1x2) = τ1G1 ∨ τ̄1G2. (8.49)

Table 8.11 Part of table of EMBer for Moore XFSM PYXC(Γ17)

K (EYq ) τ1τ2τ3T1T2 Y (am) y1 . . . y6 m

010 00 011000 3

010 01 000000 *

010 10 000000 *

010 11 000000 *

011 00 001010 6

011 01 100100 4

011 10 110000 5

011 11 000000 *
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Fig. 8.24 Logic circuit of Moore XFSM PYXC(Γ17)

The logic circuit of Moore XFSM PYXC(Γ17) is shown in Fig. 8.24.
In this circuit, LUT9 implements the Eq. (8.5), whereas the Eq. (8.6) is imple-

mented by LUT10. If yL = 0, the both CT and RG are loaded using input memory
functions. It means that inputs C2 of CT and C of RG should be connected with the
output of LUT10.

8.5 Code Sharing with a Single EMB

To implement the circuit of BMO as as single EMB, the following condition should
take place:

2RK+RM N ≤ V0. (8.50)

Let only a single EMB could be used in FSM design. All other are used for
implementing other parts of a digital system. Let the condition (8.50) is violated, but
the following conditions take places:
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Fig. 8.25 Structural diagram
of PYXC1 Moore XFSM

RK + RM > R; (8.51)

2RN ≤ V0. (8.52)

If the following condition takes place

RK < R, (8.53)

then functions (8.43) include less amount of literals in their sum-of-products in
comparison with functions (2.9). If can result in decreasing the number of LUTs in
block BIMF for PYXC XFSM in comparison, for example, with PY FSM.

If the condition (8.29) is violated and the condition (8.52) takes place, then it is
necessary to introduce an additional block of code transformer (BCT) in the structure
of PYXC FSM. It is similar to approaches proposed in [1]. It leads to PYXC1 Moore
XFSM (Fig. 8.25).

In PYXC1 MooreXFSM, theBIMF implements functions (8.43)–(8.45). The block
BCT implements the functions

Z = Z(τ , T ). (8.54)

These functions are used as state variables in PY Moore FSM. The BMO implements
the system of microoperations

Y = Y (Z). (8.55)

If only a single EMB could be used in the FSM circuit, then BCT is implemented as
LUTer1 (Fig. 8.26).

The designmethod for PYXC1 MooreXFSMincludes all steps discussed for design
pf PYXC XFSM. Also, it includes two following additional steps:

6a . State assignment.
6b. Constructing the table of LUTer1.

Let the EMBs in use include configurations 16× 8, bits. Let us discuss an exam-
ple of design for Moore FSM PYCS1(Γ17). It was found that RK = 3, RM = 2

http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 8.26 Structural diagram
of PYXC1 Moore XFSM
implemented with FPGA

and RK + RM = 5. It means that the condition (8.50) is violated and the model
PYXC(Γ17) cannot be used. There is the set of states A = {a1, . . . , a12}, therefore,
R = 4. Because N = 6 and R = 4, the inequality (8.52) gives the following result:
16× 6≤108. Therefore, the model PYCS1(Γ17) can be used.

The steps 1–6 are already executed. Let us encode the states am ∈ A by binary
codes CS(am) having R bits. In the discussed case, there is R = 4 and Z =
{z1, . . . , z4}. The outcome of this steps execution does not affect hardware amounts
for LUTer and EMB. Let us use the following codes: CS(a1) = 0000,CS(a2) =
0001, . . . ,CS(a12) = 1011. Now, the step 6b can be executed.

The table of LUTer1 includes the following columns: am , K (am), CS(am), Zm ,
m. The codes K (am) are represented in the form (8.42). The column Zm includes
variables zr ∈ Z equal to 1 in the codeCS(am). This table is the base for constructing
the system (8.54). The functions of this system are represented as

zr =
M∨

m = 1

Cmr

(
RK∧

r = 1

τ lmr

)(
RM∧

r = 1

T Emr

)
. (8.56)

In (8.56), the Boolean variable Cmr = 1 iff the bit number r of the code CS(am)

is equal to 1 (r = 1, . . . , R); the variable lmr is the value of the bit number r of the
code K (Bi ) where am ∈ Bi (r = 1, . . . , RK ); the variable Emr is the value of the bit
number r of the code C(am) where r = 1, . . . , RM ; lmr, Emr ∈ {0, 1, ∗}, τ 0

r = τ̄r ,
τ 1
r = τr , τ ∗

r = 1; T 1
r = Tr , T 0

r = T̄r , T ∗
r = 1.

In the discussed case, this table includes 12 rows (Table8.12).
Let the following condition take place

Sl ≥ RK + RM . (8.57)

In (8.57), the symbol Sl stands for the number of inputs of LUTs. In the discussed
case, it is enough Sl = 5 for satisfy (8.57). If (8.57) if violated, the states am ∈ A
should be encoded in a wayminimizing the number of LUTs in the circuit of LUTer1.

The table of EMBer includes the columns K (am), Y (am), m. In the discussed
case, this table has 12 rows (Table8.13).
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Table 8.12 Table of LUTer1 of Moore XFSM PYXC(Γ17)

am K (am) CS(am) Zm m

a1 000** 0000 – 1

a2 001** 0001 z4 2

a3 010** 0010 z3 3

a4 01101 0011 z3z4 4

a5 01110 0100 z2 5

a6 01100 0101 z2z4 6

a7 100** 0110 z2z3 7

a8 101** 0111 z2z3z4 8

a9 11100 1000 z1 9

a10 11101 1001 z1z4 10

a11 11000 1010 z1z3 11

a12 11001 1011 z1z3z4 12

Table 8.13 Table of EMBer
of Moore XFSM PYXC1(Γ17)

K (EYq ) z1 . . . z4 EYq y1 . . . y6 q

0000 000000 1

0001 110000 2

0010 011000 3

0011 100100 4

0100 110000 5

0101 001010 6

0110 001101 7

0111 100100 8

1000 010010 9

1001 000001 10

1010 100100 11

1011 001000 12

The part of the logic circuit is shown in Fig. 8.27. It represents the block LUTer1
and EMB of Moore XFSM PYXC1(Γ16).

Let a GSA Γ include T0 different collections of microoperations (CMO) Yt ⊂ Y .
Let the condition (8.52) be violated. Let us encode the collections Yt ⊂ Y by binary
codes K (Yt ) having RY bits:

RY = �log2 T0. (8.58)

Let us use the variables zr ∈ Z for the encoding, where |Z | = RY . Let the following
condition take place:

2RY N ≤ V0. (8.59)
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Fig. 8.27 Logic circuit of LUTer1 and EMBer for Moore XFSM PYXC1(Γ17)

Fig. 8.28 Structural diagram
of PYXC2 Moore FSM

In this case the model of PYXC2 Moore XFSM is proposed (Fig. 8.28).
In this model a block of collections of microoperations implements the system

(8.54). The difference between XFSMs PYXC1 and PYXC1 is the following. In XFSM
PYXC1 the variables z1 ∈ Z encode the states ofXFSM. InXFSMPYXC2 the variables
zr ∈ Z encode the collections of microoperations. Obviously, the LUTer is used
for implementing BIMF, the LUTer1 for implementing BCM, and the EMBer for
implementing BMO.

The design method forMoore XFSMPYXC2 includes the same steps as the design
method for Moor XFSM PYXC1.

Let us discuss an example of design for Moore FSM PYCX2(Γ18). Let the
GSA Γ18 have the same structure as the GSA Γ15 (Fig. 8.2). But let its oper-
ational vertices include the following collections of microoperations: Y (a1) =
Y1 = ∅, Y(a2) = Y (a4) = Y (a10) = {y1, y2} = Y2, Y (a3) = Y (a8) = {y3, y4} = Y3,
Y (a5) = {y1, y4, y5} = Y4,Y (a6) = Y (a11) = {y4, y6} = Y5,Y (a9) = {y3} = Y6 and



216 8 Hardware Reduction for Moore XFSMs

Y (a7) = Y (a12) = {y3, y5, y6} = Y7. So, there is T0 = 7; therefore, there is RY = 3
and Z = {z1, z2, z3}.

Let the FPGA in use include EMBs having configurations 16× 4 and 8× 8 (bits).
It means that the condition (8.52) is violated because of 2R × B = 16 × 6 = 96 >

64. So, both models PYXC and PYXC1 cannot be applied. But the, model of XFSM
PYXC2(Γ18) can be used.

In the case of FSM PYXC2(Γ j ), the step 6a is the encoding of CMOs Yt ⊂ Y .
Let us encode the collections of microoperations in the trivial way: K (Y1) =
000, . . . , K (Y7) = 110. Now the table of LUTer1 can be constructed. This table
includes the columns am , K (am) K (Yt ), Zm , m. The only difference between tables
of LUTer1 for PYXC1(Γ j ) and PYXC2(Γ j ) is reduced to the meaning of the third
column of tables. In the case of PYXC2 this table includes a code of the collection
of microoperations Y (am) generated in the state am ∈ A. In the discussed case, this
table has M = 12 rows (Table8.14). The codes K (am) are taken from Fig. 8.23.

The table of EMBer for Moore FSM PYXC2(Γ j ) includes the columns K (Yt ), Yt ,
t . In the discussed case it is represented by Table8.15. The last row of this table
corresponds to “don’t care” assignment of variables zr ∈ Z .

Let us point out that each of discussed models has four variants. The variants
are determined by the approach used for implementing the function yL . As a rule,
only base variants are discussed in this Chapter. All possible variants are shown in
Table8.16. The table represent 44 different models of Moore XFSMs.

Let us point out that only the variants 1 and 2 are possible for PYXC2 Moore
XFSM. Also, there is a model where only the variants 3 and 4 are possible.

Let us name the collections of microoperations constructed for the set Y ∪ yL2 as
extended collections of microoperations (ECMO). Let a GSA Γ include Q0 of dif-
ferent ECMO EYq ⊂ Y ∪ {yL2}. Let the condition (8.52) be violated. Let us encode
the collection EYq by a binary code K (EYq) having REY bits:

Table 8.14 Table of LUTer1 of Moore XFSM PYXC2(Γ18)

am K (am) K (Yt ) Zm m

a1 000** 000 – 1

a2 001** 001 z3 2

a3 010** 010 z2 3

a4 01101 001 z3 4

a5 01110 011 z2z3 5

a6 01100 100 z1 6

a7 100** 110 z1z2 7

a8 101** 010 z2 8

a9 11100 101 z1z3 9

a10 11101 001 z3 10

a11 11000 100 z1 11

a12 11001 110 z1z2 12
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Table 8.15 Table of EMBer of Moore XFSM PYXC2(Γ18)

K (EYq ) z1 z2 z3 EYq y1 . . . y6 q

000 000000 1

001 110000 2

010 001100 3

011 100110 4

100 010101 5

101 001000 6

110 001011 7

111 010000 8

Table 8.16 Models of Moore XFSMs

Type Variants

1 2 3 4
PYX
P0YX

Φ = Φ(T, X)

Y = Y (T )

yL = f (T, x)

yL = f (Φ, X) yL = yL1 ∨ yL2

yL1 = f (T, X)

yL2 = f (T )

yL = yL1 ∨ yL2

yL1 = f (Φ, X)

yL2 = f (T );
PC1YX
PC2YX

Φ = Φ(T, X)

Y = Y (T )

yL = f (τ , X)

τ = τ (T )

yL = f (Φ, X)
yL = yL1 ∨ yL2

yL1 = f (τ , X)

yL2 = f (T )

yL = yL1 ∨ yL2

yL1 = f (Φ, X)

yL2 = f (T )

P3C1YX
P3C2YX

Φ = Φ(Z , X)

Y = Y (T )

yL = f (Z , X)

Z = Z(T )

yL = f (Φ, X)
yL = yL1 ∨ yL2

yL1 = f (Z , X)

yL2 = f (T )

yL = yL1 ∨ yL2

yL1 = f (Φ, X)

yL2 = f (T )

P1C4YX
P3C4YX

Φ = Φ(Z , X)

Y = Y (T )

yL = f (T, X)

Z = Z(T )

yL = f (Φ, X)
yL = yL1 ∨ yL2

yL1 = f (T, X)

yL2 = f (T )

yL = yL1 ∨ yL2

yL1 = f (Φ, X)

yL2 = f (T )

PYXC Φ = Φ(τ , X)

Ψ = Ψ (τ )

yL = f (τ , X)

Y = Y (T, τ )

yL = f (Ψ, X)
yL = yL1 ∨ yL2

yL1 = f (τ , X)

yL2 = f (T, τ )

yL = yL1 ∨ yL2

yL1 = f (Ψ, X)

yL2 = f (T, τ )

PYXC1
PYXC2

Φ = Φ(τ , X)

Ψ = Ψ (τ )

yL = f (τ , X)

Z = Z(τ , T )

Y = Y (Z)

yL = f (Ψ, X)

yL = yL1 ∨ yL2

yL1 = f (τ , X)

yL2 = f (Z)

yL = yL1 ∨ yL2

yL1 = f (Ψ, X)

yL2 = f (Z)
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Fig. 8.29 Structural diagram
of PYXC3 Moore FSM

REY = �log2 Q0. (8.60)

Let us use the variables zr ∈ Z for the encoding, where |Z | = REY . Let the fol-
lowing condition take place:

2REY(N + 1) ≤ V0. (8.61)

In this case the model of PYXC3 Moore XFSM can be used (Fig. 8.29).
In this model, the block of extended CMOs implements the system (8.54). Its

functions are used for encoding of ECMOs. So, the BMO generates the functions of
the system Y (Z) and the function

yL2 = yL2(Z). (8.62)

The variable yL is generated as a function

yL = yL(τ , X, yL2). (8.63)

Let us discuss an example of design for Moore FSM PYXC3(Γ19). Let the
GSA Γ19 have the same structure as the GSA Γ15 (Fig. 8.20). But let the vertices
of GSA Γ19 include the following collections of microoperations: Y (a1) = ∅ =
Y1; Y (a2) = Y (a5) = Y (a8) = {y1, y2} = Y2, Y (a3) = Y (a10) = {y3, y5, y6} = Y3;
Y (a4) = Y (a9) = {y1, y5} = Y4; Y (a6) = Y (a12) = {y2, y4} = Y5, Y (a7) =
Y (a11) = {y4, y6} = Y6. There are two unconditional transitions where state codes
satisfy to condition (3.26): 〈a3, a6〉 and 〈a6, a7〉. It means that the variable yL2 should
be added into collections Y (a3) and Y (a6). It leads to the following set of ECMOs:
EYq = Yq(q = 1, . . . , 6), EY7 = {yL2, y3, y5, y6} and EY8 = {yL2, y2, y4}. There-
fore, there are REY = 3, Z = {z1, z2, z3}.

Let us encode the collections EYq(q = 1, . . . , Q0)by thebinary codes: K (EY1) =
000, . . . , K (EY8) = 111. Now the tables of LUTer1 (Table8.17) and EMBer
(Table8.18) can be constructed. Let us pont out that structural diagrams are iden-
tical for XFSMs PYXC2 and PYXC3. It means that blocks of CMO and ECMO are
implemented by LUTer1, whereas the block BMO by EMBer.

http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 8.17 Table of LUTer1 of Moore XFSM PYXC3(Γ19)

am K (am) K (EYq ) Zm m

a1 000** 000 – 1

a2 001** 001 z3 2

a3 010** 110 z1z2 3

a4 01101 011 z2z3 4

a5 01110 001 z3 5

a6 01100 111 z1z2z3 6

a7 100** 101 z1z3 7

a8 101** 001 z3 8

a9 11100 011 z2z3 9

a10 11101 010 z2 10

a11 11000 101 z1z3 11

a12 11001 100 z1 12

Table 8.18 Table of EMBer of Moore XFSM PYXC3(Γ19)

K (EYq ) z1 z2 z3 EYq y1 . . . y6 yL2 q

000 000000 0 1

001 110000 0 2

010 001011 0 3

011 100010 0 4

100 010100 0 5

101 000101 0 6

110 001011 1 7

111 010100 1 8

Table 8.19 Models PYXC2 and PYXC3

Type Variants

1 2 3 4

PYXC2 Φ = Φ(τ , X);
Ψ = Ψ (τ , X);
yL = f (τ , x);
Z = Z(T, τ );
Y = Y (Z)

yL = f (Φ, τ ) – –

PYXC3

– –

yL = yL1 ∨ yL2;
yL1 = f (τ , X);
yL2 = f (τ , T );

yL = yL1 ∨ yL2;
yL1 = f (Φ, X);
yL2 = f (τ , T );
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Now, the table for models PYCS2 and PYCS3 could be constructed. As follows
from Table8.19, the model PYCS2 has only the variants 1 and 2, whereas the model
PYXC3 the variants 3 and 4. Now, all 48 different models of Moore XFSMs are listed.
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Conclusion

Now we are witnesses of the intensive development of design methods targeting
FPGA-based circuits and systems. The complexity of digital systems to de designed
increases drastically, as well as the complexity of FPGA chips used for the design.
The up-to-day FPGAs include up to seven billions of transistors and it is not a limit.
Development of digital systems with such complex logic elements is impossible
without application of hardware description languages, computer-aided design tools
and design libraries. But even the application of all these tools does not guarantee
that some competitive product will be designed for appropriate time-to-market. To
solve this problem, a designer should know not only CAD tools, but the design
and optimization methods, too. It is especially important in case of such irregular
devices as control units. Because of irregularity, their logic circuits are implemented
without using of the standard library cells; only LUTs and EMBs (and PLAs) of
a particular FPGA chip can be used in FSM logic circuit design. In this case, the
knowledge and experience of a designer become a crucial factor of the success.Many
experiments conducted with use of standard industrial packages show that outcomes
of their operation are, especially in case of complex control units design, too far
from optimal. Thus, it is necessary to develop own program tools oriented on FSM
optimization and use them together with industrial packages. This problem cannot
be solved without fundamental knowledge in the area of logic synthesis. Besides, to
be able to develop new design and optimization methods, a designer should know the
existed methods. We think that new FSM models and design methods proposed in
our book will help in solution of this very important problem. We hope that our book
will be useful for the designers of digital systems and scholars developing synthesis
and optimization methods targeting implementation FPGA-based logic circuits of
finite state machines.
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