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Chapter 1
Introduction

Now we witness the very rapid development of computer science. Computers and
embedded systems can be found in practically all fields of human activity. The up-to-
day state of the art in this area is characterized by three major factors. The first factor
is a development of ultra complex VLSI such as “system-on-programmable chip”
(SoPC) with billions of transistors and hundreds of millions of equivalent gates [11].
The second factor is a development of hardware description languages (HDL) such
as VHDL and Verilog [3, 6, 7] that permits to capture a design with tremendous com-
plexness. The third factor is a wide application of different computer-aided design
(CAD) tools to design very complex projects in the satisfactory time [10, 12, 16].
These three factors affected significantly the process of hardware design. Now the
hardware design is very similar to the development of computer programs. An appli-
cation of HDLs together with CAD-tools allows concentrating the designer’s energy
on the basic problems of design, whereas a routine work remains the prerogative of
computers.

Tremendous achievements in the area of semiconductor electronics turn micro-
electronics into nanoelectronics. Actually, we observe a real technical boom con-
nected with achievements in nanoelectronics. It results in development of very com-
plex integrated circuits, particularly in the field of programmable logic devices. Our
book targets field-programmable gate arrays (FPGA) [13, 14]. Up-to-day FPGAs
have up to 7 billion of transistors [15]. So, they are so huge, that it is enough only
one chip to implement a very complex digital system including a data-path and a
control unit. Because of the extreme complexity of modern microchips, it is very
important to develop effective design methods targeting particular properties of log-
ical elements in use.

As it is known, any digital system can be represented as a composition of a data-
path and a control unit [2]. Logic circuits of operational blocks forming a data-path
have regular structures [1]. It allows using standard library elements of CAD tools
(such as counters, multibit adders, multipliers, multiplexers, decoders and so on) for
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2 1 Introduction

their design. A control unit coordinates interplay of other system blocks producing a
sequence of control signals. These control signals cause executing some operations
in a data-path. As a rule, control units have irregular structures. It makes process of
their design very sophisticated. In the case of complex logic controllers, the prob-
lem of system design is reduced practically to the design of control units [2]. Many
important features of a digital system, such as performance, power consumption
and so on, depend to a large extent on characteristics of its control unit. Therefore,
to design competitive digital systems with FPGAs, a designer should have funda-
mental knowledge in the area of logic synthesis and optimization of logic circuits
of control units. As experience of many scientists shows, design methods used by
standard industrial packages are far from optimal [8]. Especially it is true in the
case of designing complex control units. It means that a designer could be forced
to develop his own design methods, next to program them and at last to combine
them with standard packages to get a result with desired characteristics. To help such
a designer, this book is devoted to solution of the problems of logic synthesis and
reduction of hardware amount in control units. We discuss a case when a control
unit is represented by the model of finite state machine (FSM). The book contains
some original synthesis and optimization methods based on the taking into account
the peculiarities of a control algorithm and an FSM model in use. Regular parts of
these models can be implemented using such library elements as embedded mem-
ory blocks, decoders and multiplexers. It results in reducing the irregular part of the
control units described by means of Boolean functions. It permits decreasing for
the total number of look-up table (LUT) elements in comparison with logic circuits
based on known models of FSM. Also, it makes the problem of place-and-routing
much simpler. The third benefit is the reducing power dissipation in comparison
with FSM circuits implemented only with LUTSs. In our book, control algorithms
are represented by graph-schemes of algorithms (GSA) [3]. This choice is based on
obvious fact that this specification provides the simple explanation of the methods
proposed by the authors.

To minimize the number of LUTs in FSM logic circuits, we propose to replace a
state register by a state counter. Such replacement is executed in the case of composi-
tional microprogram control units [4]. But those methods are based on creating some
linear sequences (chains) of ioperator vertices where only unconditional interstate
transitions are possible. We propose an approach allowing creating linear chains of
states. Such chains can have more than one output (and more than one input). It
simplifies the system of input memory functions and, therefore, decreases the num-
ber of LUTs in the resulting FSM circuit. We combine this approach with using
EMBs for implementing the system of output functions (microoperations). It allows
a significant decreasing for the number of LUTSs, as well as eliminating a lot of
interconnections in the FSM logic circuit. It saves area occupied by the circuit and
diminishes the resulting power dissipation. Of course, it leads to more sophisticated
synthesis process than the one connected only with using LUTs.

The process of FSM logic synthesis is reduced to a transformation of a control
algorithm into some tables describing the behaviour of FSM blocks [5, 9]. These
tables are used to find the systems of Boolean functions, which can be used to imple-



1 Introduction 3

ment logic circuits of particular FSM blocks. In order to implement corresponding
circuits, this information should be transformed using data formats of particular
industrial CAD systems. We do not discuss this step is in our book. Our book con-
tains a lot of example showing design of FSMs with using the proposed methods.
Some examples are illustrated by logic circuits. The main part of the book contains
seven chapters.

Chapter 2 provides some basic information. Firstly, the language of GSA is intro-
duced. Next, the connections are shown with GSAs and state transition graphs of
both Mealy and Moore FSMs. Classical principles of FSM logic synthesis are dis-
cussed. The basic features of FPGA are analyzed. It is shown that embedded memory
blocks allow implementing systems of regular Boolean functions. The modern design
flow is analyzed targeting FPGA-based projects. Next, the basic problems of FSM
design are considered. Different state assignment methods are analyzed, as well as the
methods of functional decomposition. Next the issues are discussed connected with
implementing FSM logic circuits with EMBs. The peculiarities of hybrid FPGAs are
discussed in last part of the Chapter.

Chapter 3 is devoted to the using linear chains in FSMs. The counter-based micro-
program control units are discussed, as well as known PLA-based structures of Moore
FSMs. Then, there are discussed methods of optimal state assignment and transfor-
mation of state codes into codes of classes of pseudoequivalent states (PES). Next,
there are introduced different linear chains of states (LCS) such as unitary, elemen-
tary, normal and extended LCSs. The structural diagrams are proposed for LCS-based
Moore FSMs. The proposed procedures are discussed for constructing different linear
chains of states.

Chapter 4 is devoted to the problems of hardware reducing for FPGA-based logic
circuits of Moore FSMs. The design methods are proposed based on using more than
one source of codes of classes of pseudoequivalent states (PES). Two structural dia-
grams and design methods are proposed for Moore FSM based on transformation of
objects. The first method is based on transformation the unitary codes of microoper-
ations into the codes of PES. The second approach is connected with transformation
of the codes of collections of microoperations into the codes of PES. The last part of
the Chapter is devoted to the replacement of logical conditions.

Chapter 5 deals with optimization of logic circuits of hybrid FPGA-based Mealy
FSMs. First of all, the models with two state registers are discussed. This approach
allows removal of direct dependence among logical conditions and output functions
of Mealy FSM. Next, the proposed design methods are presented. Some improve-
ments are proposed for further hardware reduction. They are based on the special
state assignment and transformation of state codes. The proposed methods target
joint using such blocks as LUTs, PLAs and EMBs in FSM circuits. The models are
discussed based on the principle of object transformation. The last part of the chapter
is connected with design methods connected with the object transformation.

Chapter 6 is devoted to hardware reduction targeting the elementary LCS-based
Moore FSMs. Firstly, the optimization methods are proposed for the base model of
EFSM. They are based on the executing either optimal state assignment or trans-
formation of state codes. Two different models are proposed for the case of code
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transformation. They depend on the numbers of microoperations of FSM and out-
puts of EMB in use. The models are discussed based on the principle of code sharing.
In this case, the state code is represented as a concatenation of the chain code and
the code of component inside this chain. The last part of the chapter is devoted to
design methods targeting the hybrid FPGAs.

Chapter 7 is devoted to hardware reduction targeting the normal LCS-based Moore
FSMs. Firstly, the optimization methods are proposed for the base model of NFSM.
They are based on the executing either optimal state assignment or transformation of
state codes. Two different models are proposed for the case of code transformation.
They depend on the numbers of microoperations of FSM and outputs of EMB in
use. The models are discussed based on the principle of code sharing. In this case,
the state code is represented as a concatenation of the code of normal LCS and the
code of component inside this chain. The last part of the chapter is devoted to design
methods targeting the hybrid FPGAs.

Chapter 8 is devoted to hardware reduction targeting the extended LCS-based
Moore FSMs. Firstly, the design method is proposed for the base model of XFSM.
Next, the methods are proposed targeting the hardware reduction in the circuits based
on this model. They are based on the executing either optimal state assignment or
transformation of state codes. The third part deals with the models based on the
encoding of the chain outputs. At last, the principle of code sharing is discussed.
In this case, the state code is represented as a concatenation of the code of class of
pseudoequivalent chains and the code of component inside this class.

We hope that our book will be interesting and useful for students and PhD stu-
dents in the area of Computer Science, as well as for designers of modern digital
systems. We think that proposed FSM models enlarge the class of models applied
for implementation of control units with modern FPGA chips.
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Chapter 2
Finite State Machines and
Field-Programmable Gate Arrays

Abstract The Chapter provides some basic information. Firstly, the language of
GSA is introduced. Next, the connections are shown with GSAs and state transition
graphs of both Mealy and Moore FSMs. Classical principles of FSM logic synthesis
are discussed. The basic features of FPGA are analyzed. It is shown that embedded
memory blocks allow implementing systems of regular Boolean functions. The mod-
ern design flow is analyzed targeting FPGA-based projects. Next, the basic problems
of FSM design are considered. Different state assignment methods are analyzed, as
well as the methods of functional decomposition. Next the issues are discussed con-
nected with implementing FSM logic circuits with EMBs. The peculiarities of hybrid
FPGAs are discussed last part of the Chapter.

2.1 Background of Finite State Machines

Finite state machines (FSM) are the most widely used components of digital systems
[7, 15, 45]. In this book, we use FSMs for representing and synthesis of control units
[8]. To represent a control algorithm, the language of graph-schemes of algorithms
(GSA) is used in our book [6]. This language gives the better understanding of ideas
discussed in this book.

A graph-scheme of algorithm I is a directed connected graph having finite set of
vertices. There are four different types of vertices (Fig.2.1): start, end, operator and
conditional.

The start vertex has no input; it corresponds to the beginning of a control algorithm.
The end vertex has no output; it corresponds to the finishing of a control algorithm.
An operator vertex contains a collection of output signals executed in a particular
cycle of a digital system’s operation. Let us call this collection Y; C Y a collection

of microoperations (CMO). The set Y includes microoperations of a digital system:

Y ={y1,..., yn}. A conditional vertex includes an input variable x; € X checked
for branching a control algorithm. So, the set X = {x;,...,x.} is a set of logical
conditions.

© Springer International Publishing AG 2018 7
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Fig. 2.1 Types of vertices of (a) (b) (c) (d)
GSA
- 9"
Fig. 2.2 Graph-scheme of
algorithm I @

y1y2

y2y3 y1y2

y1ys

Let us analyse the GSA I} (Fig.2.2). The following sets and their characteristics
can be found for this GSA: the set of microoperations Y = {yy, ..., ys}having N =4
elements and the set of logical conditions X = {x|, x,} having L = 2 elements.

The following collections of microoperations can be derived from the operator
vertices of I} : Y1 = {y1, 2}, Y2 = {3}, Y3 = {32, y3}, Y4 = {y1, y4}. So, there are
T, = 4 different CMOs in the discussed case. Let us point out that different operator
vertices could include the same CMOs. Also, different conditional vertices could
include the same logical conditions.

A control unit generates a sequence of CMOs distributed in time. To start the
execution of a control algorithm, the special pulse Start is used. There are the different
sequences of CMOs for GSA I (Fig.2.3). They depend on the values of logical
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Fig. 2.3 Operation of control unit represented by GSA I

conditions x; € X. The record x, = * means that the value of x, does not affect the
outputs of a control unit.

So, to produce a sequence of CMOs, it is necessary to have some information about
the prehistory of system operation. The prehistory for the instant ¢ is determined by
input signals X (0), X (1), ..., X(¢ — 1) in the previous time intervals. It means that
an output signal Y (¢) is determined by the following function:

Y(t) = f(X(O0),..., Xt —1), X(1)). 2.1
To represent the prehistory, interrenal states of FSM are used [6]. They form a
set A ={ay,...,ay}. Inany instant#(¢ = 1, 2, ...) an FSM could be in some state

a, € A. As arule, if r = 0, then an FSM is in the initial state a; € A.
An FSM could be represented by the following vector

S=(A, XY, v, A\ ap). (2.2)

In (2.2), the function v determines either conditional or unconditional transitions
(am, as), where a,,, a; € A. The function A determines outputs of FSM. There are
two basic models of FSM, namely Moore FSM and Mealy FSM. For both models,
the function y is determined as the following:

at +1) =~(a(), x(@)). (2.3)
In the case of Moore FSM, the function A is determined as:

y(1) = Aa(@)). 24
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yiyu dg

Fig. 2.4 Marked GSA I7 (a) and STG of Moore FSM (b)

So, the outputs of a Moore FSM depend on its internal states. The outputs of a Mealy
FSM depend on both inputs and states:

y(&) = AMa(t), x(1)). (2.5)

The difference in functions (2.4) and (2.5) follows from different approach used
for constructing the set A [6]. In the case of Moore FSM, each operator vertex is
marked by a unique state a,, € A. Both start and end vertices are marked by the
initial state a; € A. The marked GSA I} and corresponding state transition graph
(STG) of Moore FSM are shown in Fig.2.4.

The arcs of STG correspond to transitions between the FSM’s states. For uncon-
ditional transitions, the arcs are marked by “1". For conditional transitions, the arcs
are marked by conjunctions of input variables causing these transitions. As follows
form Fig.2.4, the Moore FSM has M = 6 states: A = {ay, ..., as}.

The following rules are used for finding the states of Mealy FSM [6]. The input
of end vertex is marked by the initial state a; € A, as well as the output of the start
vertex. If some vertex is connected with the output of an operator vertex, then its
input is marked by a unique state. Each input can be marked only once. Using this
procedure to GSA 7, the following marked GSA and STG can be obtained (Fig. 2.5).

The arcs of STG of a Mealy FSM are marked by pairs (input variables, out-
put variables). As follows from Fig.2.5, the Mealy FSM has M, = 3 states: A =
{a1, a2, as}.
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Fig. 2.5 Marked GSA I7 (a) and STG of Moore FSM (b)

The FSMs shown in Figs. 2.4 and 2.5 are equivalent, because they are constructed
for the same GSA I'i. Comparison of these FSMs leads to the following conclusion.
For equivalent Mealy and Moore FSMs the following relations take places:

M, < M; (2.6)
H, < H. (2.7)

In (2.7) the symbol H,(H) stands the number of transitions (the number of arcs
of STG) of Mealy (Moore) FSM.

2.2 Synthesis of Mealy and Moore FSMs

Let us start from the synthesis of Mealy FSM. Let us construct the set of states A
for some GSA I';. This set includes M, states. Let us encode each state a,, € A by
a binary code K (a,,) having R, bits:

Ro = [log, Mo]. 2.8)
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Fig. 2.6 Structural diagram X v

of P Mealy FSM —— ™ (Combinational

circuit

So, the value of R, is determined as a ceil function [32]. The expression [B]
determines the least integer greater than or equal to B. Let us use the state vari-
ables 7, € T where |T| = R, for encoding of states. This step is named the state
assignment [15].

There are many methods of state assignment targeting mostly optimization of
hardware amount in the logic circuit of an FSM [4, 15, 17, 51]. There are thousands
of publications connected with the state assignment. We do not discuss them in this
chapter.

The Mealy FSM can be represented as P FSM (Fig. 2.6). It is a composition of a
combinational circuit (CC) and register RG. The CC implements the system of input
memory functions

@ =0T, X). (2.9)

The set @ = {D;, ..., Dg,} includes input memory functions used for changing

the content of RG. The RG includes R, of D flip-flops. A flip-flop number r represents

the state variable 7,(r = 1, ..., R,). Also, the CC implements the system of output
variables

Y =Y(T, X). (2.10)

The pulse Start loads the code K (a;) of the initial state a; € A into RG. As a
rule, this code includes all zeros [6]. The pulse Clock allows changing the content
of RG determined by input memory functions (2.9). Let us point out that the system
(2.9) determines the function (2.3), whereas the system (2.10) the function (2.5).

The method of Mealy FSM synthesis on the base of a GSA I" includes the fol-
lowing steps [6]:

1. Construction of marked GSA and finding the set of states A.
2. State assignment.

3. Constructing the structure table of FSM.

4. Deriving systems @ and Y from the structure table.

5. Implementing FSM logic circuit using some logic elements.

In this book, we use the symbol P (I';) to show that the model of P Mealy FSM
is synthesized using the GSA TI';. Let us discuss an example of synthesis for Mealy
FSM P (1)
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Table 2.1 Structure table of Mealy FSM P (1)

am K(an) as K (as) Xn Yy Dy h
ap 00 a, 01 1 yiy2 Dy 1
ap 01 a3 10 X1 V3 D, 2
az 10 X1x2 Y23 D 3
az 10 X1X2 yiy2 D, 4
a3 10 ay 00 1 V4 - 5

The marked GSA I is shown in Fig.2.5a. The following set of states A exists in
this case: A = {ay, a, a3}. It means that Mp =3, Ro =2, T ={Ty,T>} and ® =
{D, D,}. Let us endode the states a,, € A in the trivial way: K (a;) = 00, K (ay) =
01 and K (a3) = 10. An FSM structure table (ST) can be viewed as a list of interstate
transitions obtained from STG. This table includes the following columns [6]: a,, is
an current state of FSM; K (a,,) is a code of the current state; ay is a state of transition
(next state); K (ay) is a code of the state a; € A; X, is an input signal determining
the transition (a,,, a,) and it is equal to the conjunction of some elements (or their
complements) of the set X; Y}, is a collection of microoperations generated during
the transition (a,,, a;); @, is a set of input memory functions equal to 1 to load the
code K (ay) into RG; & is a number of transition (h =1, ..., Hp).

There are Hp = 5 arcs in the STG (Fig. 2.5b). Therefore, the ST of FSM P (1)
includes Hp = 5 rows (Table 2.1).

The connection between the STG (Fig. 2.5b) and the ST (Table 2.1) is obvious. It
is clear that this table can be constructed using only the marked GSA I (Fig.2.5a).

Functions @ and Y are derived from the ST as the sums-of-products (SOP) depend-
ing on the following product terms:

Fr=AnXy (h=1,..., Hp). @2.11)

In (2.11), the member A,, is a conjunction of state variables 7, € T corresponding
to the code K (a,,) from the row number /4 of ST:

Ro
Ap= N\TM m=1..... Mo). (2.12)
r=1

In (2.12), the variable /,,, € {0, 1} is a value of the bit r of the code K (a,) and
T°=T,T'=T,(r=1,...,Ro).
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Fig. 2.7 Structural diagram ¥
of PY Moore FSM ™ Block of Input | ¢ T Block of Y
: —» RG . ’ —
Memory Functions Microoperations
Start f
Clock

The systems (2.9)—(2.10) are represented by the following SOPs:

Ho

D, = \/C,hFh (r=1,...,R0): (2.13)
h=1
Ho

=\ CunFy (n=1,....N). (2.14)
h=1

In these expressions, C,,(C,;) is a Boolean variable equal to 1 if and only if (iff)
the A-th row of ST includes the variable D, (y,).

The following equations can be derived from Table 2.1: F; = T\ D, Fy = Ty Thxy;
F3=T\ThXixy; Fs=TiThii%; Fs=TiT»; Dy =F,V F;V Fy; Dy=Fp; y =
Fiv Fy; vy, = F1 VvV F3V Fy; y3 = F>, vV F3; y4 = Fs. These functions can be min-
imized. For example, D; = Ny V= T, v Ty T% 1 %,. But we do not discuss this
step in our book.

The last step of the discussed method depends on logic elements used for imple-
menting the FSM logic circuit. In this book, we discuss the design methods connected
with field-programmable gate arrays (FPGA). We discuss these methods a bit later.

The method of Moore FSM synthesis includes the same steps as for Mealy FSM.
Let us discuss the structural diagram of PY Moore FSM (Fig.2.7).

A block of input memory functions (BIMF) generates the functions D, € @ rep-
resented by the system (2.9). In the case of Moore FSM, the minimum number of
bits required for the state assignment is determined as

R = [log, M. (2.15)
A block of microoperations (BMO) generates the mirooperations y, € Y, where
Y =Y (). (2.16)

The Eq. (2.16) follows from (2.4). So, the outputs of Moore FSM depend only on
its states. Due to this property, the relations (2.6)—(2.7) take places.

In the formula PY, the letter "P" shows that a structure diagram includes the
BIME. The letter "Y" means that there is the BMO in the FSM’s structural diagram.
Of course, both blocks can be combined into a single combinational circuit as it is
for the Mealy FSM (Fig.2.6). But we want to show that systems @ and Y have the
different nature. These systems are based on different product terms.
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Table 2.2 Structure table of Moore FSM PY (1)

am K(ay) d K (ay) Xn Dy h
ap 000 ar 001 1 D3 1
ax(y1y2) 001 a3 010 X1 - 2

as 011 X1X2 D> Ds 3

as 100 15 D; 4
a3 (y3) 010 as 101 1 DD, 5
as(y2y3) 011 ag 101 1 DD, 6
as(y1y2) 100 a; 101 1 DD, 7
ag(y1y4) 101 ay 000 1 - 8

Let us discuss an example of synthesis for the Moore FSM PY(I). As follows
from Fig. 2.4b, there is M = 6, therefore, R = 3. Let us encode the states a,, € A in
the trivial way: K (a;) = 000, ..., K (ag) = 101.

The structure table of Moore FSM includes all columns presented in its counterpart
of Mealy FSM but the column Y},. The collections of microoperations are written it
the column a,,[6]. The STG (Fig.2.4b) contains H = 8 arcs. Therefore, the ST of
Moore FSM PY(I) includes H = 8 rows (Table2.2).

The connection between Table 2.2 and the STG (Fig. 2.4b) is obvious. The system
(2.9) depends on the terms (2.11). So, each function D, € @ is represented by SOP
(2.13). Of course, the symbol Hy should be replaced by H. The functions y, € Y
depend on the terms (2.12). Of course, the symbols Ry and My in (2.12) should be
replaced by R and M, respectively. So, the BMO implements the following functions:

M
Y=\ ComAn (@ =1,....N). (2.17)

m=1

In (2.17), the Boolean variable C,,,, = 1, iff the microoperation y, € Y is placed in
the column a,, of the ST.

The following terms and functions, for example, can be derived from Table2.2:
Fi =T\ T3, F, = TiTTsxi; Ay = TiTTs; Fy = TiThTs; Dy = FyV FsV Fe v
91 = Ar VvV As V Ag.

Let us point out that the system (2.16) can be represented by a truth table [9]. In
the discussed case it is Table2.3.

Analysis of Table2.3 shows that system Y for the discussed case is determined
for more than 50% of possible input assignments. It takes place for any Moore FSM
if exactly R bits are used the state assignment. Such functions are named regular [8].
The best way for implementing logic circuits for regular functions is using memory
blocks [8]. These blocks could be either read-only memories (ROM) or random
access memories (RAM). We discuss those approaches a bit further.
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Table 2.3 Truth table for K (ap) Y, m
system Y
VLY Y1Y2Y3Y4
000 0000 1
001 1100 2
010 0010 3
011 0110 4
100 1100 5
101 1001 6

2.3 Field-Programmable Gate Arrays

Field-programmable gate arrays were invented by designers of Xilinx in 1984 [29].
Their influence on different directions of engineering has been growing extremely
fast. One of the most important reasons for this process is a relatively cheap develop-
ment cost. These chips can replace billions 2NAND gates (system gates) [30]. The
first FPGAs were used for implementing simple and glue logic [45]. Now they have
up to 7 billions transistors [45], posses clock frequency acceding gigahertz, their the
most advanced technology is 22 nm [45].

The world’s first FPGA XC2064 (Xilinx, 1985) offered 85 000 transistors, 128
logic cells, 64 configurable logic blocks (CLB) based on three-input look-up table
(LUT) elements having clock frequency up to 50 MHz. In accordance with [45], from
1990 to 2005 FPGA grew 200 times in capacity, became 40 times faster, 500 times
cheaper, reduced power consumption in 50 times. Analysis conducted by the authors
of [45] shows that from 2005 till 2011 the capacity of FPGA has been increased
in at least 10 times. Five companies dominate on the FPGA market: Xilinx, Altera,
Lattice Semiconductor, Microsemi and QuickLogic. All their products can be found
on corresponding homepages [2, 28, 31, 36, 52].

In this Chapter we discuss only the basic features of FPGAs relevant to imple-
menting logic circuits of control units. Let us analyze peculiarities of LUT-based
FPGAs. As a rule, typical FPGAs include four main elements: configurable logic
blocks based on LUTSs, matrix of programmable interconnections (MPI), input-output
blocks (IOB) and embedded memory blocks (EMB). The organization of an FPGA
chip is shown in Fig.2.8.

As arule, LUTs are based on RAM having limited amount of inputs S (S < 6).
A single LUT can implement an arbitrary Boolean function depended on L input
variables (L < S) represented by a truth table.

A typical CLB includes a single LUT, programmable flip-flop (FF), multiplexer
(MX) and logic of clock and set-reset (LCSR). The simplified structure of CLB is
shown in Fig.2.9.
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Fig. 2.8 Simplified
organization of FPGA

Fig. 2.9 Simplified structure
LUT e ]
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: | LCSR J -
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The output of LUT is connected with FF which could be programmed as D, JK,
or T flip-flop. The FF could be by-passed due to programmable MX. So, the output
O; of a CLB can be either combinational or registered. The existence of flip-flops
allows organization of either registers or counters. Both these devices are used for
FSM implementation.

To show the progress in FPGA characteristics, let us start from the family Spartan-
3 by Xilinx [28]. They were introduced in 2002, were powered by 1, 2V and used
the 90 nm technology. They included LUTs having 4 inputs. The chips of Spartan-3
included up to 104 EMBs with 18Kb for each of them. These blocks are named
block of RAMs (BRAM). So, the chips included up to 1,87 Mb of BRAMS. The
frequency of operation for these FPGAs was variable (from 25 MHz till 325 Mhz).
Some characteristics of Spartan-3 family are shown in Table 2.4.

The second column of Table2.4 contains the number of system gates (SG) for a
chip. The column 4 determines the capacity of memory created by LUTs. It is named
distributed random-access memory (DRAM).
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Table 2.4 Characteristics of Spartan-3 family

Device Number Capacity in bits
CLB SG(K) BRAMs (K) DRAM (K)

XC3550 1728 50 72 12
XC35200 4320 200 216 30
XC35400 8064 400 288 56
XC351000 17280 1000 432 120
XC351500 29952 1500 576 208
XC352000 46080 2000 720 320
XC354000 62208 4000 1728 432
XC355000 74880 5000 1872 520

I

—1 CLK

LUT1

SR

Arithmetic
block

T kx T_

F5
LUT2
- Lh
X D Qr—
[

—

¢ | [CLK

SR

Fig. 2.10 Structural diagram of a slice of Virtex-4 family

The structure of CLB has become more and more complex with the development
of technology. For example, the CLB of Virtex-7 includes 4 slices having fast inter-
connections. A slice includes 2 LUTs, four multiplexers, arithmetic logic and two
programmable flip-flops (Fig.2.10).

This slice includes 2 LUTS; each of them has S = 4 inputs. Each LUT can imple-
ment an arbitrary logic function depended on 4 variables. Using the multiplexer F5,
both LUTs are viewed as a single LUT having S = 5. The multiplexer FX combines
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Table 2.5 Characteristics of FPGAs by Xilinx

19

Family Modification | Number of slices | Capacity in Kbits Technology
nm
BRAMs DRAM
Virtex-4 | LX 10 752-89 088 1296-6 048 168-1 392 90
SX 1024024576 | 2304-5 760 160-384
FX 5472-63 168 648-9 936 86-987
Virtex-5 | LX 4 800-51 840 1152-10368 | 320-3 420 65
LXT 3 120-51 840 936-11 664 210-3 420
SXT 5 440-37 440 3024-18 576 | 520-4 200
TXT 17 280-24 320 | 8208-11664 |1500-2 400
EXT 5 120-30 720 2448-16416 |390-2 280
Virtex-6 | LXT 11 640-118 560 |5 616-25920 | 1045-8 280 40
SXT 49 200-74 400 |25 344-28 304 |5 090-7 640
HXT 39 360-88 560 18 144-32 832 | 3 040-6 370
CHT 11 640-37680 |5616-14976 |1 045-3 650
Virtex-7 | T 44700-305 400 |14 760-46 512 |3 475-21550 |28
XT 64 400-135 000 |31 680-64 800 |6 525-13 275
HT 45000-135 000 |21 600-64 800 |4 425-13 275

together outputs of F5 and FX from other slides. So, a slice can implement a Boolean
functions depending on 5 variables; two slices on 6 variables; four slices (a CLB) on
7 variables. The arithmetic block allows organizing adders and multiplexers. Mul-
tiplexers Y and X determine input data for programmable flip-flops. So, each CLB
can include either RG or CT.

The number of inputs per a LUT is increased up to 5 for Virtex-5 family, whereas
CLBs of Virtex-6 and Virtex-7 include LUTs having S = 6. There are different mod-
ifications of FPGAs for each family. We do not discuss them. Some characteristics
of modern FPGA chips by Xilinx are shown in Table2.5.

Analysis of Tables 2.4 and 2.5 proves out statement about the tremendous progress
in FPGAs. Let us point out that modern chips include blocks of digital signal proces-
sors and central processing units. But these blocks are not used for FSM design. So,
we do not discuss them.

As it follows from Table 2.5, modern FPGA includes huge blocks of memory. Let
us name these blocks embedded-memory blocks (EMB). EMBs have a property of
configurability. It means that they have the constant size (V) but both the numbers
of cells (V) and their outputs () can be changeable. There are the following typical
configurations of EMBs: 36 K x 1, 18K x 2, 8K x4, 4K x8 (4K x9), 2K x 16
(2K x 18), 1K x 32 (1K x 36) and 512 x ,64 (512 x 72) bits [2, 28, 31, 36, 52].

Let an EMB contain V cells having 77 outputs. Let Vy be a number of cells if
there is tr = 1. So, the number of V can be determined as
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T2T3
T 00 01 1 10

o] 0 yiyz | yays ¥3

T yiy2 Y1y * *

Fig. 2.11 Karnaugh map for system Y

(@) (b)
T, T3 T T T3 T T3 T1T2 T3
123
LUT, LUT; LUT, EMB
|—| l l 1234
LUT ll l l
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Fig. 2.12 Logic circuit for system (2.19)
V
V= [—01 . (2.18)
¥

Let us point out that decreasing ¢z by 1 leads to doubling number of cells (and
vice versa).

Embedded-memory bloc Ks could be used for implementing regular functions [8].
Let us discus the Karnaugh map (Fig. 2.10b) corresponding to Table 2.3.

The following functions can be found from this map:

yi =T VDI

y2=TTs Vv T Ts; (2.19)
3 = Tr;

y4 =T T;.

Let us use system gates (LUTs with § = 2) for implementing the system (2.19).
It leads to the logic circuit having 4 LUTs and 2 levels of LUTs (Fig.2.12a).
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From Fig.2.11a the following negative features can be seen:

1. Different propagation time for different output functions,
2. Input variables should be connected with more than one logic element.

The second feature (bigger value of fan-out for inputs 77—73) also leads to more
complicated routing process.

If an EMB is used for implementing the system (2.19), all these problems are
absent (Fig.2.12b). Each input T1-T3 is connected only with a single input of EMB.
All functions yj, ys, ..., ¥4 have the same propagation time. This example is very
simple. But a single EMBs having the configuration 512 x 64 could replace at least
64 LUTs. It is possible if a system Y depend on 9 inputs and includes up to 64
different functions. Of course, the circuit includes 64 LUTs having S = 9. But there
is no such LUTs in modern FPGAs. If minimization allows dependance of each
function y, € Y on 8 variables, then 256 LUTs with § = 6 are necessary for creating
a logic circuit.

In a typical FPGA 60% of power is consumed by the programmable interconnec-
tions, 16% is consumed by programmable logic and 24

Replacement of LUTs by EMBs allows decreasing of the number of interconnec-
tions. So, it is very important to use EMBs in implementing FSM circuits.

The exceptional complexity of FPGA requires using computer-aided design
(CAD) tools for designing logic circuits [20]. It assumes development of formal
methods for synthesis and verification of control units [19, 22, 33, 40]. For example,
a design process for FPGAs from Xilinx includes the following steps:

1. Specification of a project. A design entry can be executed by the schematic
editor (if a design is represented by a circuit), or the state editor (a design in
represented by an STG) or a program written with some hardware description
languages (HDL). The most popular HDLs are VHDL and Verilog [12, 13]. This
initial specification is verified and corrected if necessary.

2. Logic synthesis. During this step, the package FPGA Express executes synthesis
and optimization of an FSM logic circuit. As an outcome of this step, an FPGA
Netlist file is generated. This file is represented in either EDIF or XNF format.
During this step, library cells from system and user libraries are used.

3. Simulation. The functional correctness of an FSM is checked. This step is exe-
cuted without taking into account real propagation times in a chip. If the outcome
of simulation is negative, then the previous steps should be repeated.

4. Implementation of logic circuit. Now the Netlist is translated into an internal
format of CAD system. Such physical objects as CLBs and chip pins are assigned
for initial Netlist elements. This step is named the packing. The step of mapping
is the first stage of the packing. The mapping refers to the process of associating
entities such as gate-level functions in the gate-level netlist with the LUT-level
functions available on the FPGA [29]. It is not a one-to-one mapping because
each LUT can be used to represent a number of logic gates [21]. The mapping
step gives results for executing the packing. During this step, the LUTs and
flip-flops are packed into the CLBs. Both mapping and packing steps are very
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difficult because there are many variants of their solutions. Following packing
the step of place-and-route is executed. Now we know the connections between
CLBs and parts of logic functions are implemented. But there are many ways
how these CLBs could be placed in the FPGA. The placement problem is also
very difficult because hundreds of thousands or even millions CLB should be
placed. During the routing, it is necessary to decide how to connect all CLBs for
a particular project. This step should be executed in a way giving the maximum
possible performance. Obviously, the outcome of placement affects tremendously
the outcome of routing. When routing is finished, the real performance could be
found. Also, the BitStream is formed which will be used for chip programming.

5. Project verification. The final simulation is performed where the actual values
of delays among the physical elements of a chip are used. If outcome of this step
is negative (the actual performance of an FSM is less than it is necessary), then
the previous steps of the design process should be repeated.

6. Chip programming. This step is connected with the writing of the final bit stream
into the chip.
One of time most important roles in the design process plays the step of logic
synthesis. Let us analyze this step for FGPA-based FSMs.

2.4 Implementing FSMs with FPGAs

The synthesis is a transformation of initial specification of project into the structural
specification where elements of lower abstraction levels are used [1]. The synthesis
process is repeated till each element to be assigned is represented by some library
element. In the case of FSM with FPGAs, the library elements are LUTs and EMBs.

An FSM circuit includes LUTs and flip-flops. To get a structure of FSM, the
sequential synthesis is executed. It transforms specifications of FSM (GSA, STG)
into structure tables describing some parts of an FSM logic circuit. Next, the systems
of Boolean functions are derived from those tables. These systems could be (2.9),
(2.10) or (2.16). The stage of logic synthesis follows the sequential synthesis. Now,
the functions are transformed into smaller subsystems. Each of these subsystems
could be implemented using either a LUT or an EMB of a particular FPGA chip.
Both these steps are considered in our book. We combine them in a single stage of
synthesis of FSM logic circuit.

If an FSM is specified by a GSA, then such sets as X, Y and A are known. But
there are no state codes. To obtain them, the step of state assignment is executed [15].
This step is very important because its outcome has a tremendous influence on the
hardware amount (the number of LUTSs) in the FSM logic circuit [1]. A strategy of
state assignment could target optimization for area, performance, power consumption
or testability.

One of the most popular state assignment algorithms is JEDI which is distributed
with the system SIS [43]. JEDI targets a multi-level logic implementation. It is based
on the weight assignment for state.
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The input dominant algorithm assigns higher weights to pairs of present states
which asserts similar inputs and produce sets of next states. It allows maximizing the
size of common cubes in the implemented logic function. The output dominanted
algorithm assigns higher weights to pairs of next states which are generated by similar
input combinations and similar sets of present states. It maximizes the number of
common cubes in the logic function.

In modern industrial packages different state assignment strategies are used. For
example, two optimization criteria are used in the design tool XST of Xilinx: max-
imum performance and minimum hardware [53]. Seven different approaches are
used for state assignment. The automatic state assignment is based od some special
algorithm proposed by Xilinx. It has been never published. The method of one-hot
encoding is based on the following expression:

R=M. (2.20)

This method is very popular because it is very simple and each LUT is connected
with a flip-flop. So, this conception is implemented very easy in FPGAs. In this
case, there is a lot of input memory functions but each of them is relatively small.
The compact state assignment is based on formula (2.8) for a Mealy FSM and the
formula (2.15) for a Moore FSM. In this case the number of input memory functions
is minimum possible, but they are rather complex. In this book we mostly use this
approach and name it a binary state assignment. Two other methods ar based on
codes either Gray or Johnson. At last, there are so named speed encoding and the
sequential encoding based on using of the counter instead of state register.

The master thesis [48] is devoted to investigation of the influence of state assign-
ment methods on characteristics of Mealy FSM. The benchmarks from [54] are used
in the investigation. The results obtained for Mealy FSM are represented in Table 2.6.
The efficiency of the investigated methods is shown in Figs.2.13,2.14 and 2.15.

The investigations are executed for the FPGA XC5VLX30 of Xilinx. The first
column of table Table2.6 shows the name of a benchmark. The columns “LUT”
show number of LUTS in the final circuit. The columns “MHz” represent the maximal
frequency of operation for final Mealy FSMs.

The best results are produced when the automatic state assignment is used. It gives
the best outcomes for area (58,54% of all benchmarks) and performance (39,02%).
The binary state assignment posses the second place in this competition. As follows
from Fig.2.15, the automatic state assignment produces the best results when both
area and performance are optimized (29,27%). The same results are produced for the
compact (binary) state assignment. It is interesting that the one-hot state assignment
can optimize only one parameter of FSM circuit. (Fig.2.14)

Of course, these results are true only for the chip XC5VLX30 but similar conclu-
sions are made, for example, in [27]. It allows to suggest that these conclusions have
a rather common nature.
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Table 2.6 Outcomes of investigations

FSM Auto One-hot Compact Sequential | Gray Johnson Speedl
LUT | MHz | LUT | MHz | LUT | MHz | LUT | MHz | LUT | MHz | LUT | MHz | LUT | MHz
bbara 11 639| 9 | 966| 13 635| 13 639 | 19 | 589 | 24 | 545| 13 | 962
bbsse 29 | 559| 29 | 559 29 582| 29 | 538 | 31 538 | 36 | 408 | 38 556
bbtas 5 962| 8 | 9%66| 5 | 966 | 5 962 | 5 955 5 962| 9 | 966
beecount 7 952| 19 | 639| 7 | 952| 7 952 | 7 | 948 | 21 625| 30 | 583
cse 49 | 480 52 | 477 | 46 | 463 | 50 | 487 | 46 | 454| 71 434 | 72 | 453
dkl4 8 | 945| 29 | 522 8 | 945 8 945 8 | 945| 19 | 623 | 40 | 512
dkl5 7 11062| 19 | 737| 7 |1062| 7 |1062| 7 |1062| 7 |1062| 19 659
dkl6 46 | 556| 46 | 556| 15 625| 19 | 506 | 27 | 554| 86 | 355| 70 | 399
dk17 6 | 952| 14 | 669 6 | 952 6 | 952| 6 | 952| 7 895 | 27 571
dk27 5 900 8 | 906| 5 897 | 5 959 5 955 6 | 89| 10 | 903
dk512 17 | 730| 17 | 730 7 899 | 7 895 17 899 | 21 437 19 | 790
exl 64 | 586| 64 | 586 | 74 | 447 | 67 | 478 | 66 | 406|106 340 | 72 | 605
ex4 15 962 | 15 962 | 16 | 626| 15 598 | 14 | 748 | 33 546 | 15 | 962
ex6 29 | 553| 30 | 580 20 | 621 | 23 615| 22 | 616| 36 | 426| 31 598
keyb 56 | 384| 56 | 384 65 358 | 71 382| 66 | 447| 62 | 435| 85 374
kirkman 51 874 | 84 | 1058 | 53 569 | 48 880 | 51 874|112 | 451 | 84 | 1058
lion 3 /1084 | 5 962 | 3 | 1080 1080 | 3 |1084| 3 |1084| 5 | 962
markl 27 | 726| 27 | 726 19 | 708 | 22 | 622| 18 | 623 | 27 | 574| 29 | 959
mc 5 | 1071 8 | 1071 5 1071 6 | 1071 5 | 1071 5 | 1071 8 | 1071
opus 22 | 596| 22 | 754 21 628 | 26 | 585| 22 | 596| 26 | 576| 26 | 671

planet 100 888 | 100 888 | 138 389 | 145 417 | 149 3751192 346 | 106 637
planetl 100 888 | 100 888 | 138 389 | 145 417 | 149 3751192 | 346 | 106 637
pma 73 554 | 73 554 | 115 438 | 108 367 | 112 375|121 405 | 88 559
si 71 550 | 77 550| 75 447 89 328 | 105 368 | 114 361 | 81 552
s1488 140 | 425|140 | 425|141 432130 394 | 147 433192 334 | 162 458
si494 124 | 412|124 412|143 442 | 135 383 | 145 383|192 333152 462

s208 28 | 559| 28 | 559 | 13 669 | 12 | 716 | 15 639 | 29 | 483| 50 | 386
s27 4 | 962 | 21 636 4 | 962| 7 679 | 4 | 962| 12 | 664 | 21 631
s298 362 | 406|362 | 406|330 | 313|264 | 311|274 | 314|716 | 244|399 397
$386 26 | 577| 31 586 | 28 581 | 28 558 | 29 | 429 43 422 36 | 441
s420 28 | 559| 28 | 559 14 | 629 12 | 716| 15 639 | 29 | 483| 36 | 510
s510 42 | 900| 42 | 900 | 39 | 448 | 53 | 440 50 | 427|123 388 | 42 | 900
820 63 | 429| 63 429 | 85 395| 92 | 441| 93 | 438| 98 366 | 93 399
s832 63 | 429| 63 429 | 73 | 412 77 | 431 | 87 394 | 97 335|108 | 444
sand 99 | 569| 99 | 569|121 426|125 | 421|125 | 438|189 306 | 103 490
scf 179 | 676|179 | 676|202 338 | 205 349 | 197 389 | 337 327|180 | 561
shiftreg 0O [1584| 9 |1080| O |[1584| 4 | 959| 4 | 959| 5 902| 4 | 903
sse 29 | 559| 29 | 559 28 543 | 37 548 | 32 | 540 | 44 | 394| 36 | 612
styr 118 | 430|118 | 430|127 369 | 138 363 | 138 353 | 181 323 | 161 454
tav 6 |1556| 6 |1556| 6 | 911 6 | 911 5 914| 5 914| 6 | 1556

tbk 55 406 | 179 360 | 71 465 | 129 342 | 137 290 | 295 276 | 444 342
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Fig. 2.13 Efficiency of state assignment methods for area optimization
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Fig. 2.14 Efficiency of state assignment methods for performance optimization
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Fig. 2.15 Efficiency of state assignment methods for area/performance optimization

A small amount of inputs per LUT create a big problem for logic design. Let us
consider some input memory function D; depending on /(D) = 7 Boolean vari-
ables:

D =T T2T3)C1)22 VT T2 Tsx3x4 vV Ty T2T3X1X3. (221)

Let LUTs in use have S = 7 inputs. In this case, the logic circuit for D; includes
only a single LUT (2.16a). Now, let LUT have S = 6. In this case the function (2.21)
should be transformed. It should be represented by some functions f, f», ... having
I(f1) <6, 1(f;) < 6andsoon.Letus represent the function (2.21) in the following
form:

D, =T, (TQT?))C])EQ VvV T T3x3x4) V T] T2T3)E]X3 =T|AV B. (2.22)

The function D; represented as (2.22) requires two LUTs to be implemented.
Moreover, this circuit (Fig.2.16b) includes two levels of LUTs. It means that the
solution corresponding to (2.22) is twice slower.

This approach is named functional decomposition. The principle of functional
decomposition is the basic one for FPGA-based design [37, 41]. This approach
usually targets only LUTs, but also there are methods using EMBs as tools for
implementing some subfunctions [11, 38].
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In general, the method of functional decomposition is based on representation of
a Boolean function F(X) in the following form:

F(X) = H(Xo, G1(X1), ..., G1(X))). (2.23)
The Eq. (2.23) corresponds to the implementation of the circuit shown in Fig. 2.17.

The negative influence of functional decomposition is increasing of the propaga-
tion time in comparison with single-level circuit. It follows from complain [23], the
methods of functional decomposition are far from ideal. Let us point out that is is
very important to decrease the number of arguments and product terms in Boolean
functions to be implemented. We discus these methods a bit further.

Modern FPGAs posses the substantial logic resources and high processing speeds.
Due to these factors, FPGAs now are used for some applications previously targeted
to Application Specific Integrated Circuits (ASIC) [49]. Now FPGAs are used in
portable computing devices and wireless telecommunication equipment. They are
also used extensively in space-based applications [31]. The rising of FPGA com-
plexity leads to increasing the power consumed by FPGA-based devices. It is known
that FSMs consume a significant amount of power in any FPGA-based project [49].
Therefore, minimizing power consumed by the FSMs can significantly reduce the
total power consumed by a device.
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The dynamic power dissipated in CMOS circuits can be represented by the well-
known formula [47]:

N
P =Y CifuVip. (2.24)

n=1

In (2.24), N is the number of elements, C, is the load capacitance at the output
of the element number n, f, is the frequency of its switching, and Vpp is the supply
voltage. One of the ways for decreasing the power dissipation is decreasing of the
switching activity of flip-flops [47].

One of the approaches leading to decreasing the power dissipation in FSMs is the
energy-saving state assignment [39]. Main works in low-power FSMs compute first
the switching activity and transition probabilities [50]. The key idea of these methods
is the reduction of the average activity by minimizing the bit changes during state
transitions [10, 34]. The state assignment should minimize the Hamming distance
between states with high transition probability. Different variants of this approach
can be found in many works [5, 14, 16, 35]. There are hundreds of articles devoted
to this approach.

There is a very interesting result of investigations conducted by the authors of the
article [47]. They found that the smaller FSM circuits consumes less power than its
bigger versions. It is clear because a smaller circuit needs less interconnections than
its bigger counterpart. One of the ways leading to smaller FSM circuit is application
of EMBs for implementing some parts of FSM circuits [46]. It is shown that FSM
implementation with EMBs provides some benefits compared to synthesis with LUT's
[18, 42]. The maximum clock frequency of an FSM implemented in a ROM block
is independent of its complexity. Of course, it is possible if the whole circuit is
implemented using just a single EMB. The memory blocks of FPGAs provide control
signals that allow for module deactivation when the FSM is inactive. It provides an
efficient mechanism for power saving. It has been proved [49] that complex FSMs
consume less power when implemented as memory blocks. Let us consider some
EMB-based models of FSMs.

In the simplest case, it is enough a single EMB for implementing an FSM logic
circuit. Our book is mostly devoted to Moore FSMs. Because of it, let us discuss
possible trivial models of EMB-based Moore FSMs. Analysis of design methods
from [18, 47, 49] allows finding four EMB-based models of Moore FSM (Fig. 2.18).

In the simplest case, the P Moore FSM is used (Fig.2.18a). To use this model, the
following condition should take place:

2LFR(R + N) < V. (2.25)
To design the logic circuit of Moore FSM P (I7;), the initial structure table should
be transformed. Each row of the transformed ST corresponds to a single cell of EMB.

This table includes V (P) rows, where

V(P) = 2F+R, (2.26)
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Fig. 2.18 Models of Moore FSMs based on RAMs
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Fig. 2.19 Initial GSA I, (a) and state transition graph (b)

It is necessary to have 27 rows for representing transitions from the state a,, € A.
The transformed ST includes the following columns: K (a,,), X, Y (a,,), @, v. First
two columns form the address of a cell. The column Y (a,,) includes a collection of
microoperations Y, C Y generated in the state a,, € A. The column v contains the
numbers of rows (or cells).

Let us consider the initial GSA I (Fig.2.19a). The corresponding state transition
graph of Moore FSM is shown in Fig.2.19b. The structure table of P Moore FSM is
represented by Table2.7.
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Table 2.7 Structure table of P(I%) Moore FSM

am K (am) As K (as) X D), h
ap 000 ar 001 1 D3 1
ax(y1y2) 001 az 010 X1 D> 2
aq 011 X1 D> Ds 3
az(y3) 010 as 100 1 D, 4
as(y1ya) 011 as 100 1 Dy 5
as(y2y3) 100 aj 000 1 - 6
Table 2.8 Part of the transformed ST for Moore FSM P (13)
K (ay) X Y (am) [ v h
VYL X Y1Y2Y3)4 DD, D3
000 0 0000 001 1 1
000 1 0000 001 2 1
001 0 1100 011 3 3
001 1 1100 010 4 2
010 0 0010 100 5 4
010 1 0010 100 6 4
011 0 1001 100 7 5
011 1 1001 100 8 5
100 0 0110 000 9 6
100 1 0110 000 10 6

Because L = 1, the transitions from each state a,, € A are represented by 21 = 2
rows of the transformed structure table. Because there is L + R = 4, the transformed
ST includes V(P) = 16 rows. Of course only M - 2X rows include some useful
information. The first 10 rows of transformed ST are represented by Table 2.8

To make the connection between Tables2.7 and 2.8 more transparent, the last
includes the column /4. This column shows the rows of initial ST corresponding to
the rows of transformed ST. To implement the logic circuit of P Moore FSM, it is
enough to load the bit-stream corresponding to Table 2.8 into a particular EMB.

If condition (2.25) is violated, then other models can be used. Let the following
conditions take places:

R -2LTR = v, (2.27)
N 2R = V. (2.28)

In this case, the model of PY Moore FSM (Fig. 2.18b) can be used. In this model,
the EMB; implements the circuit of BIMF, the EMB, implements the circuit of
BMO.
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Tgble 29 Table of K (ay) Y (ay) m

microoperations of Moore T T>T

FSM PY(I71) 14213 Y1Y2Y3Y4
000 0000 1
001 1100 2
010 0010 3
011 1001 4
100 0110 5

To design PY FSM, the table of microoperations should be constructed. It includes
the columns K (a,,), Y (a,,), m. In the case of Moore FSM PY (1), this table includes
8 rows but only M = 5 of them include some useful information (Table2.9). The
transformed ST of PY Moore FSM does not include the column Y (a,,).

Let us point out that conditions (2.25) or (2.27) have places only for very simple
FSMs. If they are violated, the models based on the replacement of logical conditions
[6] are used. These models are represented by Fig.2.18c, d.

The replacement of logical conditions (RLC) is reduced to replacement of the set
X by a set of additional variables P = {py, ..., pg}, where G < L. Asitis stated in
[46], there is G < 3 for a vast majority of practical control algorithms. As a rule, the
value of G is determined as max(L, ..., Ly). Here the symbol L,, stands for the
number of elements in the set X (a,,) € X. These conditions determine transitions
from state a,, € A. Let us denote the model (Fig.2.18c) as MP Moore FSM, the
model (Fig.2.18d) as MPY Moore FSM.

In these FSMs, the multiplexer MX generates functions

P = P(T,X). (2.29)
The system of input memory functions is represented as
@ =@(T, P). (2.30)
Let the condition (2.25) be violated, but the following condition take place:
20FR(R + N) < V. (2.31)

In this case the MP FSM is used. If the condition (2.31) is violated, then the MPY
FSM can be used if the following condition takes place

R-20FR <. (2.32)
Of course, the condition (2.28) also should take place.

In this book, we use such terms as LUTer and EMBer. The LUTer is a network
of LUTs implementing circuit of BIMF. The EMBer is a network of EMBs imple-
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Fig. 2.20 Structural X
diagram of FPGA-based PY S ® T v
Moore FSM LUTer —» RG » EMBer |—»
Start 4
Clock

menting the circuit of BMO. The register RG is distributed among the CLBs of
the LUTer. For example, the PY Moore FSM (Fig.2.7) can be represented as the
following structure (Fig.2.20).

There is the extension of the library [54] named 1993 MCNC library of bench-
marks (BM). It includes 190 BMs for different FSMs. There is the analysis of these
BMs presented in [24]. In total, the BMs comprise 36 304 Boolean functions. An
examinations of BMs shown that more than 70% of functions depend on more than
4 variables. Also, roughly 20% of the functions have fan-in equal or greater than
6. If the number of arguments exceeds the number of inputs of a LUT, then such a
function might be implemented with programmable logic arrays (PLA) [24].

The PLAs were introduced by Signetics in the mid 1970s [8]. The particular prop-
erty of PLA is the programmability of both AND-and OR-planes. It provides greater
flexibility than PLD where only one plane is programmable. As it mentioned in [25],
being coupled with LUTs, PLAs provide an integrated programmable resource that
can be used in many digital systems design to support control logic for LUT-based
data-paths.

Finite state machines are wide fan-in, low logic-density circuits [25]. To optimize
the chip area occupied by such circuits, architectures of hybrid FPGAs (HPGA)
were proposed [26, 44]. They include LUTs, EMBs and SRAM-configurable pro-
grammable logic arrays (PLA). For example, an Embedded System Block of Altera
APEX20K can be configured as a PLA with 32 inputs, 32 product terms and 16
outputs [3].

So, the main programmable logic blocks can be found in FPGAs, namely, LUTs,
EMBs and PLAs. In this book, we use the name PLAer for a network of PLAs
implementing some part of an FSM circuit. Now let us discuss in details the design
methods based on linear chains of states (LCS) in FSMs.
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Chapter 3
Linear Chains in FSMs

Abstract The Chapter is devoted to the using linear chains in FSMs. The counter-
based microprogram control units are discussed, as well as known PLA-based struc-
tures of Moore FSMs. Then there are discussed methods of optimal state assignment
and transformation of state codes into codes of classes of pseudoequivalent states
(PES). Next there are introduced different linear chains of states (LCS) such as uni-
tary, elementary, normal and extended LCSs. The structural diagrams are proposed
for LCS-based Moore FSMs. The proposed procedures are discussed for constructing
different linear chains of states.

3.1 Counter-Based Control Units

As it is pointed out in many works [4, 12], it is necessary to take into account the
nature of a control algorithm to optimize characteristics of a control unit. If the set
of vertices for a given GSA I' includes more than 75% of operator vertices, then
such a GSA is named linear GSA [8] It means that a corresponding FSM possesses
a lot of unconditional transitions. This property can be used for simplifying the
system of input memory functions [24]. As arule, the simplification of input memory
functions is possible if the state register is replaced by some more complex device.
Two approaches are possible. In the first case a shift register replaces the state register
[17, 26]. This approach requires sophisticated algorithms for the state assignment.
Because of it, shift register did not find a wide application in FSMs. The second
approach is connected with replacement of the state register by a state counter [2,
3, 24, 35]. This approach has found a wide application in the case of microprogram
control units [11, 23].

Microprogram control units are based on the operational - address principle for
presentation of control words (microinstructions) kept in a special control memory
[1]. The typical method of MCU design includes the following steps [8]:

1. Transformation of initial graph-scheme of algorithm.

2. Generation of microinstructions with given format.

3. Microinstruction addressing.

4. Encoding of operational and address parts of microinstructions.
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Fig. 3.1 Microinstruction
formats for MCU with 0 FY
natural addressing of
microinstructions

1 FX FAo

5. Construction of control memory content.
6. Synthesis of logic circuit of MCU using given logical elements.

The mode of microinstruction addressing affects tremendously the method of
MCU synthesis [8]. Three particular addressing modes are known:

1. Compulsory addressing of microinstructions.
2. Natural addressing of microinstructions.
3. Combined addressing of microinstructions.

In the first case, the address of microinstruction is kept into a register. This address
be viewed as a state code, whereas a microinstruction can be viewed as an FSM state
[16]. In the last two cases, the address of microinstruction is kept into a counter.

In the common case, microinstruction formats include the following fields: FY,
FX, FA( and FA;. The field FY, operational part of the microinstruction, contains
information about microoperations y, € Y (¢t = 0, 1,...), which are executed in
cycle ¢ of control unit operation. The field FX contains information about logical
condition x; € X, which is checked at time ¢t (r = 0, 1, ...). The filed FA( contains
next microinstruction address A’*! (transition address), either in case of uncondi-
tional transition (go to type), orif x; = 0. The field FA contains next microinstruction
address for the case when x,’ = 1. The fields FX, FA( and FA| form the address part
of microinstruction.

There are two microinstruction formats in case of natural microinstruction
addressing [8, 16]: operational microinstructions corresponding to operator vertices
of GSA I' and control microinstructions corresponding to conditional vertices of
GSA I" (Fig.3.1).

First bit of each format represents field FA, used to recognize the type of microin-
struction. Let FA=0 correspond to operational microinstruction and FA=1 to control
microinstruction. As follows from Fig. 3.1, next address is not included in opera-
tional microinstructions. The same is true for the case, when a logical condition to
be checked is equal to 1. In both cases mentioned above current address A’ is used
to calculate next address:

A = A" 4 1. (3.1

Hence, the following rule is used for next address calculation:

Al £ 1if [FA] =0;

A"+ 1if (x! = 1) A ([FAY = 1);
[FAol" if (x{ =0) A ([FAY = 1);
[FAol' if (FX]' = @) A (FA] = 1).

At = (3.2)
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Two first records of (3.2), as well as (3.1), show that a counter should be included into
the structure of MCU with natural addressing. This counter is named a counter of
microinstruction address (CAMI). The structure diagram of MCU includes a block
of addressing (CFA), a control memory (CM), a block of microoperations (BMO)
and a flip-flop TF used for fetching microinstructions from CM (Fig. 3.2).

This MCU operates in the following manner. The pulse Start initiates loading
of start address into CAMI. At the same time flip-flop TF is set up. Let an address
A" be located in CAMI at time ¢ (r = 0,1,...). If this address determines an
operational microinstruction, the block BMO generates microoperations y, € Y
and the sequencer CFA produces signal z;. If this address determines a control
microinstruction, microoperations are not generated, and the sequencer produces
either signal z( (corresponding to an address loaded from the field FA( or signal z;
(it corresponds to adding 1 to the content of CAMI). The content of counter CAMI
can be changed by pulse Clock. If variable yg is generated by BMO, then the flip-flop
TF is cleared and operation of MCU terminated.

The MCU (Fig.3.2) has one serious drawback. Only a single logic condition is
checked during one cycle of MCU’s operation. If an GSA includes a lot of multi-
directional transitions, the performance of MCU is rather small. But it has very simple
circuit of CFA. It is just a multiplexer. To improve the performance of MCU, the
programmable logic arrays were used for implementing the circuit of CFA.

The PLAs were introduced in the mid 1970s by Signetics [20, 22]. They include
two programmable planes (or arrays), namely, AND-array and OR-array. This prop-
erty of the PLAs can be used for implementing systems of Boolean functions repre-
sented as minimal SOPs [28].

Due to their flexibility, the PLAs found applications in design of control units.
They were used in FSMs to implement both functions @ and Y [6, 29]. They evoked
a lot of design and optimization methods [29] such as for example, NOVA [36].

In the case of MCU, the block CFA is implemented using a multiplexer [10]. In
articles [30, 31], it was proposed to replace the MX by PLAs. It allowed execution
of multidirectional transitions in a single cycle. Of course, the main drawback of
this approach is the necessity of re-design of CFA if there are some changes in
microprogram to be implemented. The structural diagram of PLA-based MCU is
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Fig. 3.3 Structural diagram ¢+1
of PLA-based MCU j
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Fig. 3.4 Structural diagram ¢+1
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shown in Fig.3.3. In this model, the control memory is implemented as PROM. The
variable L is used for incrementing the counter CT.

If both blocks CFA and CM are implemented with PLAs, it leads to either Mealy
or Moore FSM. The structural diagram of PLA-based Moore FSM [2] is shown in
Fig.3.4.

In this structure the PLA; implements system (2.9) and function L:

L = f(T, X). (3.3)

The function L is used for adding 1 to the content of CT. The PLA, implements the
system of output functions represented as (2.16).

Nowadays, we observe the return of PLAs in logic design. It justifies the statement
from [5] that successful computation structures return back at the next round of
technological spiral. Now, the return of PLA basis can be observed in the hybrid
FPGAs [25, 33], as well as in CoolRunner CPLDs by Xilinx [37].

Also, the PLAs are very popular in the modern sublithographic technology [13,
14]. In the nanoelectronics, these devices are named nano-PLAs. Nowadays, exten-
sive research is conducted in the fields connected with design of different devices
based on nano-PLAs [15, 32]. Let us point out that all design methods discussed in
this book can be adopted to meet specifics of nano-PLAs.

3.2 Basic Principles of Hardware Reduction
for Moore FSMs

Let us consider the structural diagram of Moore FSM (Fig. 3.5).
As it was mentioned before, the block BIMF implements the system of input
memory functions (2.9), the block BMO the system of microoperations (2.16).
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Fig. 3.5 Structural diagram

of Moore FSM Xy ® T v
BIMF » RG » BMO |—»

Start # &

Clock

The hardware reduction methods discussed in this section are based on existence
of pseudoequivalent states (PES) of Moore FSM [7]. States a,,, ar € A are named
pseudoequivalent if there are arcs (b;, b;) and (bs, b,;) where the operator vertice
b, (by) is marked by the state a,,(ax). So, pseudoequivalent states correspond to
operator vertices connected with the input of the same vertex of a GSA. The relation
of pseudoequivalentness is reflexive, symmetric and transitive. So, it determines
some partition I74 = {By, ..., By} on the set A. Each element of 1, is a class of
PES.

Let us consider the GSA I's shown in Fig. 3.6.

The Moore FSM PY (13) has the following parameters: L =3, N =6, M =7,
R =3, H, = 15. So, its structure table includes 15 rows.

As follows from definition of PES, there is the following partition [Ty =
{By, ..., By} for FSM PY (I3). Its classes are the following: B = {a;}, B, =
{ar, a3}, B3 = {a4}, B4 = {as, ag, a7}. So, there is I = 4.

The simplest way for the hardware reduction is a proper state assignment. There
are different approaches named optimal, refined and combined state assignments.
Let us discuss these approaches.

In the case of optimal state assignment, the code of each class B; € [y is rep-
resented by the minimal possible amount of generalized intervals of R-dimensional
Boolean space. The value of R is determined by (2.15). In the best case, each class
B; € I14 isrepresented by a single generalized interval. Let us consider the Karnaugh
map shown in Fig.3.7.

It follows from Fig. 3.7 that the class B; corresponds to the interval (0, 0, 0) the
class B, totheinterval (0, %, 1), the class Bs tothe interval (0, 1, 0), and the class B4 to
the interval (1, *, x). Each class B; € I14 corresponds exactly to a single generalized
interval. So, it is the best possible solution. Now, the following class codes can be
found: K (B;) =000, K(B;) =0 1, K(B3) =010 and K(By) = 1 * .

To get the system (2.9), a transformed structure table should be constructed [9].
The table is based on the system of generalized formulae of transitions [9]. In the
discussed case, it is the following system:

B, —xjax V x)a3;
By —x2a4 V Xox3a6 V X2X303; (3 1)
B3 —>ds,

By —x3a7 Vv x3a,.


http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2

40

Fig. 3.6 Marked GSA I3

Fig. 3.7 Optimal state codes
of Moore FSM PY (I3)

3 Linear Chains in FSMs

Cot e

10

Y1 LY y2y3 a3

y1y2ys

y3ysys |35 y1ysysye |36
[ <«
0 1
yuye a7
|
(e D
T2T3
T 00 01 1 10
0 a1 az as ai,




3.2 Basic Principles of Hardware Reduction for Moore FSMs 41

Table 3.1 Transformed structure table of Moore FSM PyY (3)

B; K (Bi) as K (ay) Xp Dy, h
B 000 a 001 X1 D3 1
az 011 X1 D> D3 2
B; 0*1 aq 010 X2 Dy 3
aeg 101 i2x3 D2D3 4
az 011 X2X3 Dy D3 5
B3 010 as 100 1 Dy 6
By 1% az 110 X3 D D2 7
aj 000 X3 - 8

The connection between the GSA I3 and system (3.4) is obvious. To get such a
system, it is necessary:

1. To construct the formulae of transitions for each state a,, € A.

2. To replace a state a,, € A in the left part of the formula by corresponding class
B; € I1, such that a,, € B;.

4. If there are i equal formulae, then only one of them should remain.

We did not show this process in details for constructing the system (3.4).

If the approach of optimal state assignment is used, let us denote such an FSM as
PoY Moore FSM. The transformed ST of PyY Moore FSM includes the following
columns: B;, K(B;), a5, K (ay), X;, @5, h. In the discussed case, this table includes
H, = 8 rows (Table3.1).

The connection between Table 3.1 and the system (3.4) is obvious. The state codes
are taken from Fig.3.7. This table is a base for constructing the system (2.9). The
system includes the following terms:

R
Fo= \NT" Xy (h=1,.... H). (3.5)

r=1

The first member of (3.5) represents a conjunction of state variables corresponding
to the code K (B;) of aclass B; from the h-th row of the table. There is /5, € {0, 1, *}
and T’ =7, T' =T,,T* =1 (r =1,..., R). Let us point out that

H; < Hy+ 1. (3.6)

So, the number of rows of transformed ST of Moore FSM is approximately the
same as this number for the equivalent Mealy FSM. The input memory functions are
represented as the following SOP:

H,
D, = \/ CohFy r=1,...,R). (3.7)
h=1
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After minimizing, the following system can be derived from Table 3.1:

D) = T\ Ts%yx3 v Ti I T3 V Tyxs;
D2 = Tl T3 V T] TQT})E] \% Tl T3)E3; (38)
D; = T] T2T3 \% Tl Tsxy;

There are three different approaches for implementing the circuit of PY Moore
FSM with FPGAs:

1. LUT-based implementation. In this case both BIMF and BMO are implemented
using LUTs. Let us name such a circuit as LFSM.

2. EMB-based implementation. In this case both BIMF and BMO are implemented
using EMBs. Let us name such a circuit as MFSM.

3. Heterogeneous implementation. In this case the BIMF is implemented with LUTs,
whereas the BMO with EMBs. Let us name such a circuit as HFSM.

In the case of HFSM, the system (3.7) should be minimized [9]. It leads to decreas-
ing the number of LUTs in the circuit of BIMF. In the case of MFSM, there is no
need in minimizing [18, 34]. In the case of LFSM both blocks should be optimized.

Let LUT elements in use have S inputs. Let the following condition take place:

S>R. (3.9)

In this case, any function y, € Y is implemented using only a single LUT. If
condition (3.8) is violated, then it is necessary to minimize equations from (2.16). It
can be executed by applying the refined state assignment [9].

The following system of Boolean equations can be derived from Fig.3.3:

Y1 =A, V Ay V Ag;

Y2 =A3V Ay
y3 =A3V Ay V As; (3.10)
v4 =Ag V A7;
Y5 =As V Ag;

y6 =As5 V Ag V A7.

Let S = 2, it means that condition (3.8) is violated. Let us encode the states
a, € A as itis shown in Fig.3.8.
Now, the system (3.10) is transformed into the following one:
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Fig. 3.8 Refined state codes T2T3
for Moore FSM PY (13)
T 00 01 " 10
0 =1 a; a, a3
" & 3 * as
y1 =T5;
y2 =T Ty;
B (G.11)
ya =TT
ys =NT; v T Ty
Yo =T1.

The system (3.11) results in the logic circuit (Fig.3.9) having 4 LUTs and two
levels of elements.

If the optimal state assignment is used (Fig. 3.7), then the circuit of BMO requires
8 LUTs. Let us point out that the refined state assignment leads to H; = 8 for the
discussed case. But it is just a coincidence.

In the general case, the optimal state assignment optimizes only the circuit of
BIMF. In turns, the refined state assignment optimizes only the circuit of BMO.
To optimize both blocks of an LFSM, the combined state assignment [9] should be
used. This method can be explained as the following. Let us construct the following
systems of functions:

Y = Y(A); (3.12)
B = B(A). (3.13)

Let system (3.12) be determined by expression (2.17), while the elements of
system (3.13) are represented as

Fig. 3.9 Logic circuit of T
block BMO
T3 [Ty (T T2 [Ti T2 [T (T3 T
LUT, LUT, LUT;
¢ ‘ A\
yio vz oy3owu LUTs | ye

ys
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Fig. 3.10 Structural diagram
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where C;,, is a Boolean variable equal to 1, iff a,, € B;. The combined state assign-
ment is executed in such a manner, that the total number of terms is minimal for
systems (3.12) and (3.13). This problem can be solved using, for example, the algo-
rithm JEDI. In the discussed case, the results of combined state assignment are the
same as for the refined state assignment (Fig. 3.8). Of course, it is a particular case.

Let us point out that the combined state assignment could produce results which
are far from optimal for one or both blocks of PY Moore FSM. In this case the total
area can be decreased using a transformer of state codes into codes of the classes of
pseudoequivalent states [9]. It results in PcY Moore FSM shown in Fig. 3.10.

In PcY Moore FSM, a block BIMF implements functions

D =&(1, X), (3.15)
where 7 is a set of variables used to code classes B; € I14. A code transformer BTC
generates codes of classes B; € I14 on the base of codes for states a,, € B;. To
encode the classes B; € I1,, the additional variables 7, € 7 are used. The number
of these variables is determined as

Rp = [log, I7. (3.16)

The block BTC implements the system of Boolean functions

T=1(T). (3.17)

If LUTs are used for implementing BTC, the system (3.17) should be represented as
Rp sum-of-products:

M R
Tr = \/ Crm(/\ Ai;lnr) (318)
m=1 r=1

In (3.18), the Boolean variable C,,, = 1, iff a,, € B; and the bit number r (r =
I,...,Rp) of K(B;)isequalto 1.
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Table 3.2 State transition table of Moore FSM S;

Ay as X h
ai az X1 1
-) as X1 2
a ay X2 3
1y3y5y7) as X2 4
a3 ay X2 5
(y1yay7) as X2 6
ay ay X2 7
(3) as X2 8
as a; X3 9
(>2) ag X3x4 10
as X3X4 11
ag ay X3 12
(y2y4y7) ag X3x4 13
as X3X4 14
ay ag X3 15
(2y4y7) ag X3X4 16
asg X3X4 17
as as X5 18
(¥6) aj Xs 19

If EMBs are used for implementing the circuit of BTC, it is represented by a truth
table [28]. Let us point out that both BMO and BTC can be implemented using the
same EMB.

Consider an example of PcY Moore FSM S; design, where the FSM is set up by
its state transition table (Table 3.2).

The following values and sets can be derived from Table3.2: M = §, R = 3,
Iy = {B1, By, B3, By}, where By = {a1}, B, = {a2, a3, a4}, B3 = {as, as, a7},
B4 = {as}, I = 4. Obviously, there is no such a state assignment variant which gives
the transformed structure table with Hy = 9 rows. Remind, this value corresponds to
the number of rows in the structure table of the equivalent Mealy FSM. The method
of synthesis includes the following steps.

1. Construction of systems Y and B. For the Moore FSM S|, we can construct the
functions y = Ar V Aj, Y2 = Ar VvV Ay Vv Agq, Vs = Ar VvV Az, Yo = A7V Ag,
yv7=Ay VA3V AgV A7, Bl =A|, By =A, VA3V Ay, B3 = AsV Ag V A7,
By = As.

2. State assignment. For PcY Moore FSM, the state encoding targets hardware
decrease for block of microoperations. Thus, the refined state encoding should
be done. The outcome of this step is shown in Fig.3.11.
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3. Construction of functions representing the block BMO. The codes represented
by Fig.3.11 permit to get the following system:

yi =TTs = Ay;

y2 =TT, = Ay;

yvi =TiTh vV T3 = A3 V Ag;

ya =D T5 = As; (3.19)
Vs =Ay;

Yo =T1 1y = As;

y1 =13 = Ay,

4. Construction of functions representing the block BTC. Besides, the codes
represented by Fig.3.11 permit to get the following system:

B, =T\ ,Ts = As;
B, =T\Ts v T\Th = Ay V As;
By =T\, vTiTs = Ay V Ajg:
By =T\, Ts = Ao;

(3.20)

Because of I = 4, there is Rg = 2. So, there is a set 7 = {7, 7»}. Of course,
there are a lot of ways for encoding the classes.
Letusencode the classes B; € I14 inthe trivial way, namely K (By) = 00, ..., K(By) =
11. Now we can find that 7y = B3 V By, T = By Vv By. It gives the following system
of equations:
T =Ay V Ag V Ajp; (321)
Iy :Al Vv A3 Vv Ag;
. Construction of transformed structure table. Let us construct the transformed struc-
ture table of the Moore FSM S; (Table 3.3). This table includes the following columns:
B;, K(B;), a5, K (ay), X, @5, h. For the FSM S, the codes K (B;) can be derived
from Fig.3.11.
The following system @ is derived from Table 3.3:

D, =F4V F5V FgV Fq;
D, =F,Vv I3V Fs Vv Fy; (322)
Dy =F\Vv F, Vv FsV FgV F;.

The terms of system @ are determined as the following conjunctions:

Ro
Fy= \7Xy (h=1,.... Hy). (3.23)

r=1
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Fig. 3.11 Refined state IVE
codes for Moore FSM S
T 00 01 1 10
0 a1 as ar aL
1 as ag a7 ag

Table 3.3 Transformed structure table for PcY Moore FSM S;

B; K (Bj) as K (ay) Xn Dy h
B 00 az 011 X1 D> D3 1
az 001 X1 D3 2
B 01 ay 010 X2 D> 3
as 100 X2 Dy 4
B3 10 ar 111 X3 D1 D> D3 5
ae 101 X3Xx4 D1 Ds 6
ag 110 X3X4 DD, 7
By 11 az 001 X5 D3 8
ai 000 X5 - 9

In (3.23), a variable I;,, € {0, 1} is equal to the value of the bit » for the code
K (B;), which is written in the row £ of the table. From Table 3.3, for example, it can
be found that: F| = 717»x, F> = 71T»X3x4 and so on. Let us point out that this table
includes Hy = 9 rows, it is the absolute minimum for the Moore FSM S;.

One of the very popular methods of state assignments is a one-hot state assignment
[19]. This method targets FPGA-based implementations of FSMs [21]. It is based on
the connection of each LUT with its own flip-flop [27]. But it is shown in [34] that
for complex FSMs it is reasonable to use EMBs. Using EMBs presumes application
of the binary state assignment based on (2.15). Because all FSMs with counters use
EMBs for implementing the system Y, we do not discuss the one-hot approach.

3.3 Linear Chains of States

In this book, we propose the conception of linear chains of states (LCS). Four different
kinds of LCS can be found in any GSA I". We name them unitary, elementary, normal
and extended LCSs. Let us define these types of chains using some part of GSA I
(Fig.3.12). Let us introduce some definitions.

Definition 3.1 Each state a,, € A corresponds to a unitary LCS of GSA I".

So, any GSA I includes exactly M unitary LCSs. Let us denote a unitary LCS
(ULCS) corresponding to the state a,, € A by the symbol @, (m = 1,..., M).
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as ai as =13 a7 ag

Fig. 3.12 Fragment of GSA I

Obviously, the fragment of GSA I contains 6 different ULCSs. During this step,
we do not care about the content of operator vertices. Because of it, there are no
microoperations into operator vertices of 1.

If the synthesis of FSM is based on ULCSs, then the state register is used. We
discuss corresponding design methods in Chaps. 4 and 5.

Definition 3.2 An elementary LCS (ELCS) of GSA I' is a finite vector o, =
(agi, ..., agr,) such that there is unconditional transition (ay,, a,r,) for any pair
of adjacent components of the vector c.

Let A(c,) be a set of states which are components of ELCS oy (g =1, ..., G1).
Any ULCS has only one input and one output.

Definition 3.3 A state a,, € A(ay) is an input of ELCS o, if the input of operator
vertex marked by a, € A is connected with output of either start vertex by or
conditional vertex or any operator vertex marked by a state a, ¢ A(cy,).

Definition 3.4 A state a,, € A(a) is an input of ELCS «, if either there is uncon-
ditional transition with an input of other ULCS or there is the transition (a,,, a;) or
there are conditional transitions from the state a,, € A(c).

Let us denote an input of ELCS o, by the symbol I,, whereas the output of o,
by O,. Let us consider Fig.3.12.

The following ULCSs can be constructed: v} = (a3, a4), o = {(as), a3 = {(ag, a7)
and ay = (ag). The following inputs and outputs exist for these chains: I} = a3,
Oz =ay; b =0;,=as; I35 =as, O3 =az; 14 = O4 = ag.

Definition 3.5 A normal LCS (NLCS) of GSA I' is a finite vector 3, = (d,1, ...,
agrg) such that there is unconditional transition (ag;, a,;+1) for any pair of adjacent
components of 3.

Definition 3.6 A state a,, € A(3,) is an input of NLCS [, if the input of operator
vertex marked by a,, € A is connected with the output of any vertex which is not
marked by any state a, € A(G,).

It means that the input of the vertex marked by the state a,, should not be connected
with outputs of either the start vertex, or conditional vertices or any operator vertex
which is marked by state a; ¢ A(3,). Any NLCS B,(g =1, ..., G2) can include
up to F,, inputs.
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Definition 3.7 An input a,, € A(3,) is a main input if the input of operator vertex
marked by a, € A is not connected with the output of any operator vertex of
GSAT.

Obviously, each NLCS can include only one main input. It corresponds to the first
component of the vector 3, (g =1,..., G2).

Definition 3.8 A state a,, € A(f,) is an output of NLCS [3, if the output of operator
vertex marked by a,, is connected with any vertex which is not marked by any state
as € A(By).

It means that the output of the vertex marked by a,, € A(53,) is connected with an
input of either final vertex or conditional vertex or any operator vertex marked by
the state a, ¢ A(3,). Obviously, any NLCS f3, can have exactly one output. Let us
denote the input number k& of NLCS g, as Iz,‘ k=1,...,Fp;8=1,...,G2). Let
us still use the symbol O, for the output of NLCS 3,.

For the considered fragment of GSA I, the following chains can be constructed:
61 = {az, as), B = {(as, ag, a7) and B3 = {ag). They have the following inputs and
outputs: I{ = a3, Oy = as; I = as, I3 = ag, O, = az; I3 = O3 = ag. Obviously
the inputs I; are the main inputs of chains 3, (g =1, 2, 3).

It is clear that elementary chains can be viewed as some parts of natural chains.
The following equations can be found for the discussed case: ) = a;; 6 = ap *as;
(3 = ay. We use the sign * for the concatenation of chains.

Definition 3.9 An extended LCS (XLCS) of GSA I' is a finite vector v, =
(ag,,...,agrg) such that there either conditional or unconditional transition
(agi, agiy1) for any pair of adjacent components of ,.

The main difference of XLCS from NLCS is reduced to the existence of condi-
tional transitions between states inside the same XLCS. For all other types of chains,
only unconditional transitions are permitted for components of the same chain.

Definition 3.10 A state a,, € A(7,) is an input of XLCS +, if the input of operator
vertex marked by the state a,, € A is connected with the output of either start vertex
by or any operator vertex marked by a state a; ¢ A(7,) or marked by the zero output
of a conditional vertex.

Definition 3.11 A statea,, € A(v,)isanoutputof XLCS v, if the output of operator
vertex marked by the state a,, € A is connected with the input of either final vertex
or any operator vertex marked by the state a, ¢ A(7,) or any conditional vertex of
GSAT.

Definition 3.12 An input a,, € A(7,) is a main input of XLCS «, if the input of
operator vertex marked by the state a,, € A is not connected with the output of any
operator vertex marked by a state a, ¢ A(7,).
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In the last three definitions, the symbol A(+,) stands for the set of components of
XLCS 7, (y =1, ..., G3). Obviously, the issue of XLCS is the most general issue.
Such a chain can include more than one input (1!, 7 gz’ ...) and more than one output

(3 0;, L)
In the case of the fragment shown in Fig.3.12, there is a single XLCS v, =
(as, a4, ..., ag). It has 4 inputs and 3 outputs: Ig1 = as, Ig2 = as, I; = ag, Ig = ag,

05', = a, 0; = g7 and 0; = ag (g = 1). Obviously, the following expressions are
true: y; = ag * ap * a3 * g and v = By * Oy * (3.
Let us discuss two very important issues:

1. How to construct different LCSs?
2. How they influence structures of corresponding FSMs?

3.4 Structures of LCS-Based FSMs

If a synthesis method for some FSM is based on existing linear chains of states, let
us name such an FSM the LCS-based FSM. Let us start from ELCS-based Moore
FSMs.

Let it be some GSA I, marked by the states of Moore FSM using the approach
from [4]. Let the following sets be constructed for this GSA:

1. Theset Cg = {ay, ..., ag} of ELCSs determining a partition of the set of states
A.
2. The set I of inputs of chains o, € Cy. This set is determined as

Gl
Ig = U I;. (3.24)
g=1
3. The set Of of outputs of chains o, € Cy. This set is determined as
Gl
Op = U Oy. (3.25)
g=1

Let us execute the following state assignment for each pair of adjacent components
of chains o, € Cy:
K (agiv1) = K(ag) + 1. (3.26)

This condition should take place forg =1,...,Gyandi =1,..., F, — 1. Let
us name the state assignment (3.26) a natural state assignment.

Now, all transitions of FSM (all arcs of corresponding STG) can be derived by
two classes:
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1. The class T;, of transitions between the states inside the chains. These transitions
are executed using the rule (3.26). Obviously, it can be done by adding 1 to the
content of some counter CT.

2. The class Ty of transitions between the outputs and input of chains o, € Ck.
Let us point out that it is possible the conditional transition between an output
O and an input I,(g = 1, ..., G1). To implement the transitions from Ty, it is
necessary to load a code of the next state into the counter.

It is necessary to have some additional variable y, to control the counter. Let us
use the following agreements:

y=1—-CT :=CT+1; (3.27)
yvo=0— CT := (D). (3.28)

The condition (3.28) determines the loading CT from some external block. As
always in this book, the counter has informational inputs of the type D.

Let us use the symbol PYg for determining the ELCS-based Moore FSM. Its
structural diagram is shown in Fig.3.13.

The PYg Moore FSM operates in the following manner. If there is Start = 1, then
the code of initial state a; € A is loaded into the CT. Every pulse of CT permits
generating the collections of microoperations Y; C Y by the block of microoperations
BMO. Let some code K (a,,) be in the CT in some instant ¢t (r = 0, 1,...). If a,, #
O, (g =1,..., Gl), then the variable yo = 1 is generated by the BMO. It causes
incrementing the counter CT (see (3.27)). If a,, = O, (g =1, ..., G1) then the CT
is loaded by the block of input memory functions BIMF. If the next state a; = ay,
then the content of CT is not changed till the next pulse Start arrives.

So, in PYg Moore FSM the BIMF generates functions (2.9), whereas the BMO
generates functions (2.16) and the additional variable

yo = yo(T). (3.29)

The set Cg should correspond to the following conditions:

Fig. 3.13 Structural +1
diagram of PYg Moore FSM
Yo

BIMF 2 (T » BMO [»
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Alag) #0 (g=1,...,Gl); (3.30)

Gl
U A = A\ {ar); (3.31)

g=1
Alp) NA(aj) #0 G #J,i,jed{l,...,Gl}; (3.32)
Gl — min. (3.33)

These conditions mean the following:

1. Any ELCS «, € C includes at least a single state a,, € A (condition (3.30)).

2. There are no states a,, € A which are not included in some chain o, € Cg. The
only exception is the initial state a; € A (conditions (3.31)).

3. Different states a,, € A are included into different chains o, € C; (condition
(3.32)). It allows maximizing the number of rows of structure table having no
input memory functions.

4. The set Cg includes the minimal possible number of chains (condition (3.33)). It
has the same effect as the condition (3.32).

So, the set Cp is a partition of the set A by the chains oy (g = 1,..., G1) with
minimal amount of classes A(a,) < A. Obviously, the following relation takes
place:

1<Gl<M-1. (3.34)

If there is G1 = 1, then each class A(c,) includes only a single state. In this case,
there is no need in a counter and the model of PY Moore FSM should be used. If
there is G1 = M — 1, then the corresponding GSA I, does not include conditional
vertices. It leads to degenerated PYg Moore FSM (Fig. 3.14).

Obviously, the design of FSM (Fig.3.14) is trivial. We do not discuss it in this
book.

The set Cg corresponding to (3.30)—(3.33) can be constructed in two steps:

1. Finding the set of inputs I for a given GSA.
2. Constructing an ELCS for each element of /.

The set Ig is constructed using Definition3.3. There are G1 = 7 inputs of
ELCSs in the discussed case (Fig.3.15). Let the symbol b(a,,) means an oper-
ator vertex marked by the state a,, € A. The input of b(ay) is connected with
the output of start vertex; the inputs of vertices b(ay), b(as), b(ag), b(as), b(ag)

Fig. 3.14 Structural +1
diagram of degenerated PYg
Moore FSM Yo

Start A &

Clock
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Fig. 3.15 Initial
graph-scheme of algorithm @ a
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and b(ao) are connected with outputs of conditional vertices. So, there is the set
Ir = {ay, ay, as, ag, ag, ag, ajp}; it means that G1 = 7.
The following procedure is proposed for constructing the partition Cg:

1. Putg = 1.
2. Take the state with the smallest number m from the set /5. Exclude this state from
the set /. Let us name this state as a base state of ELCS o, € Ck.
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3. Find the vertex whose input is connected with the output of operator vertex b(a,,)
where a,, is a base state of ELCS o, € Cg. Let us denote this vertex as bpex;.

4. If bpex; 18 either a conditional or final vertex, then the construction of ELCS oy is
terminated. Go to the step 7.

5. If bpex; is marked by a state a; € Ig, then the construction of the chain «y is
terminated. Go to the step 7.

6. If byex: is marked by a state a; ¢ Ig, then this state is included into the chain
a, € Cg. Now this state is considered as a base state a,,. Go to the step 3.

7. g=g+ 1L

. If g < G1, then go to step 9 else go to the step 2.

9. End.

oo

Let us point out that initial set /g is used during the steps 5 and 6. Let us name this
procedure as procedure P1. Using P1 for discussed case leads to the following set
Cg = {ay, ..., az}. This setincludes the following chains: ) = (az, a3), a; = (as),
a3 = {as, a7), ag = (ag), as = {ag), ag = {ao), and a7 = (aio).

The natural state assignment should be executed using R-dimensional codes. The
value of R is determined by (2.15). The following procedure P2 is proposed for
solution of this problem for ELCS-based Moore FSMs:

1. To construct the vector & = % *. . .*x g, where * is a sign of concatenation.
Let us point out that the first ELCS in « should include a state a,, such that there
is a transition {(a;, a,,).

2. To execute a numeration of components of the vector v using the consecutive
integers from 1 to M.

3. To replace each number i of the component a,, of the vector « by its binary
equivalent having R bits. The final codes are treated as the codes K (a,).

Let us illustrate this procedure for the discussed example. It is shown in Table 3.4.

In the discussed case, there is R = 4. Obviously, the initial state a; € A has the
code with all zeros. The process of state assignment is obvious from Table 3.4.

The design method for Moore FSM with PYg structure includes the following
steps:

1. Constructing the set of states A.

2. Constructing the set of elementary LCSs Cg.

3. Executing the natural state assignment.

4. Constructing the structure table of PYg Moore FSM.

Table 3.4 Natural state assignment for Moore FSM PYE (1)

Steps | ay [e%1 [e%) 3 gy Qs [e73 [o%}

1 am az as a4 as az ag as ag aio
2 i 1 2 3 4 5 6 7 8 9

3 K (a;,) | 0001 0010 | 0011 0100 | 0101 0110 |O0111 1000 1001
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5. Constructing the system of input memory functions.
6. Constructing the table of microoperations.
7. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore FSM PYg (/). The sets A and
C are obtained before, the state codes can be found from Table 3.4.

To construct the structure table, let us construct the system of formulae of transi-
tions [9] for states a; € A and a,, € O, where O C A is a set of outputs of ELCSs
a€ Cg.

In the discussed case, there is the set Og = {as, ay, as, . . ., ajo}. The following
system of formulae of transitions (SFT) could be found from GSA I:

ay — ap

as — X144 V X1X20a5 V X1X2d6;

as — as,

ae —> XxX3ag Vv Xiag, (3.35)
a; — Xaajo V Xade;

as — xaaio V X2de;

a9 — Xadio V X2de}

ayp — aj.

The structure table of Moore FSM PYg(l}y) includes Hg(Iy) = 12 rows
(Table 3.5). Let us point out that the transition from a;o into a; is executed by the
pulse Clock. So, the structure table does not include the corresponding row. Also,

the transition from a; into a, is executed using yy. So, this row is not included in
Table 3.5.

Table 3.5 Structure table of Moore FSM PYg (1)

an K (an) as K (ay) X Dy h
as 0010 aq 0011 X1 D3 Dy 1
as 0100 X1x2 D, 2
ae 0110 X1X2 Dy D3 3
as 0010 as 0100 1 D, 4
ag 0110 as 0111 X3 Dy D3 Dy 5
ag 1000 X3 D 6
ar 0101 apo 1001 X2 DDy 7
ag 0110 X2 Dy D3 8
as 0111 a 1001 X2 DDy 9
ag 0110 X2 D, D3 10
agy 1000 aio 1001 X2 DDy 11
ae 0110 X2 Dy D3 12
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Table 3.6 Table of microoperations of Moore FSM PYE (I'y)

K(an) T2 T3 Ty Yo Yo y1y2Y3y4y5y6y7 | m
0000 1 000 0000 1
0001 1 110 0000 2
0010 0 001 0000 3
0011 0 010 1000 4
0100 1 001 0100 5
0101 0 000 0010 6
0110 0 001 0000 7
0111 0 001 1000 8
1000 0 000 0011 9
1001 0 001 1000 10

The system @ is constructed in the traditional way. For example, the following
formula can be derived for the function D, (after minimizing the initial SOP):

Dy =FsVvI|FV vV F,= T] T2T3T4)E3 \% T] T Tyx, v Ty T2T3T4XQ. (3.36)

Let us point out that (3.36) can be minimized using the "don’t care" input assign-
ments from 1010 till 1111. Taking them into account, the following minimized
expression can be obtained for the function D;:

D, = T2T3T4)E3 vV ThyTyxo v Ty T4X2. (3.37)

The expressions similar to (3.37) can be obtained for any function D, € @.

The table of microoperations can be constructed using a marked GSA. It includes
the following columns: K (a,,), Yo, Y, m. In the discussed case, this table includes
16 rows. Only 10 of them include some useful information. Namely these rows are
shown in Table 3.6.

The column yj is filled in the following manner. If a,, ¢ Og, then yy = 1 in the
corresponding row of the table. Because of unconditional transition (a;, a,), there is
yo = 1 in the first row of the table.

Now, the obtained input memory functions D, € @ should be implemented using
LUTs. The table of microoperations determines the content of EMBs implementing
the block BMO. We do not discuss this step.

Now, let us discuss the design of NLCS-based Moore FSMs. Let the following
sets be obtained for some marked GSA I;:

1. Theset Cy = {0, ..., Bg2} of NLCS determining a partition of the set of states
A.

2. The set Iy of inputs of chains 3, € Cy. This set is determined as
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G2

Iv=J 1. (3.38)

g=1

In (3.38), the symbol 1(8,) € A(f3,) is a set of inputs of an NLCS 3, € Cy.
3. The set Oy of outputs of chains 3, € C,. This set is determined as

G2
ov =] 0. (3.39)
g=1

Let the natural state assignment be executed for states a,, € A. In this case, the
transitions among the states a,, € A could be derived by the classes T;, and T, (as
it is done for PYg Moore FSM). Because of the state assignment (3.26), the variable
Yo 18 necessary, too. Its functions are determined by (3.27)—(3.28).

Let us use the symbol PYy for determining the NLCS-based Moore FSM. Its
structural diagram is same as the one for PYg Moore FSM. Obviously, the principles
of operations are the same for these both models. To show an advantage of PYg
Moore FSM, we should discuss the principle of code sharing [8]. It will be done a
bit later.

The set C should correspond to the following conditions:

A(Bg) ¢ W(g=1,...,G2); (3.40)

G2
UAB) = A\{ai); (3.41)

81
ABYNAB) =BG #i,jell, ..., G2); (3.42)
G2 — min. (3.43)

The meaning of conditions (3.40)—(3.43) is the same as for conditions (3.30)—
(3.33), respectively. Of course, the former represent the properties of NLCSs 3, €
Cy.

The set Cy corresponding to (3.40)—(3.43) can be constructed in two steps:

1. Finding the set of main inputs / My for a given GSA I".
2. Constructing an NLCS for each element of 1 M.

Let us discuss the execution of these steps for the GSA Iy. The set IMy is
constructed using Definition3.7. The input of operator vertex b(a;) is connected
with the output of the start vertex. The inputs of vertices b(ay), b(ag), b(as), b(ag)
and b(ajp) are connected only with outputs of conditional vertices. It means that
there is the set I My = {ay, as, ag, ag, ayp}. So, there is G2 = 6.

The following procedure P3 is proposed for constructing the partition Cy:

1. Put g=I.
2. Take the state with the smallest number of m from the set I M. Exclude this state
from the set / M. Let us name this state a base state for NLCS 3, € Cy.
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(O8]

. Find the vertex by, (as for P1).
4. If byy; is either conditional or final vertex, then construction of the chain (3, is
terminated. Go to the step 6.

5. If bpey; is not marked by a state a; already included into some chain 3, € Cy,
then this state is included into the chain 3,. Now, this state is considered as the
base state a,,. Go to step 3.

.g=g+1L

. If IMy # ¢, then go to the step 2.

8. End.

~N

Let us apply the procedure P3 to GSA I7. It gives the set Cy = {01, ..., O¢}
where 81 = (a2, a3), B2 = (a4, as,as7), B3 = (ag), B4 = (ag), and Bs = (ajo).
In the case of PYyx Moore FSM, the procedure P2 is used for executing the natural
state assignment. In this particular case, the outcomes of P2 coincide for PYg4 and
PYns. So, the natural states codes for Moore FSM PYy4 are shown in the last row
of Table3.4.

The design methods for PYg and PYy FSMs are the same. But the execution of
the steps 2 and 4 is different. During the step 2, the set Cy is constructed. During the
step 4, the SFT is constructed for the set Oy = {as, as, a7, as, ag, ajo}. In this case,
the structure table of PYyny includes only Hy (I';) = 11 rows. The only difference in
the table of microoperations is reduced to existence of 1in the column y, for m = 4.
We do not show these tables in that chapter.

Now, let us discuss the design of XLCS-based Moore FSMs. Let the following
sets be obtained for some marked GSA I,:

1. The set Cx = {71, ..., vg3} of XLCS-based Moore FSMs.
2. The set Ix of inputs of chains v, € Cx. This set is determined as

G3
Iy = [ J 1 (o). (3.44)

g=1

In (3.44), the symbol I (+,) denotes a set of inputs of an XLCS ~, € Cx.
3. The set Oy of outputs of chains v, € Cs. This set is determined by the following

expression:
G3

Ox =|J 0(xy). (3.45)

g=1
In (3.45), the symbol O (v, ) stands for the set of outputs of an XLCS ~, € Cs.

Let the natural state assignment be executed for states a,, € A. In this case, the
transitions among the states could be derived by the classes 7j, and T,,,. Due to
the state assignment (3.26), the variable y is necessary.
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Fig. 3.16 Structural
diagram of PYyx Moore FSM : + 2
X Yo Yo

L
BMF 2 T > BMO |'»
Start 4 4
Clock

Letus use the symbol PYx for determining the XL.CS-based Moore FSM. Accord-
ing with Definition3.9, an XLCS can have more than one output and condition
(3.26) should take place for conditional transitions, too. It means that the variable
Yo can be represented as

yo = yo v 2. (3.46)

The variable yJ (y7) is generated by BIMF(BMO). It determines the following struc-
ture of PYx Moore FSM (Fig. 3.16).

The main difference of PYx FSM from PYg and PYy FSMs is existence of the
following functions:

Yo = fi(X.T); (3.47)
o = f(D). (3.48)

We do not discuss the mode of operation of PYx FSM. It is rather obvious.
The set Cx should correspond to the following conditions:

Aly,) # B(g=1,...,G3); (3.49)

G3
UAqw = A\{aih; (3.50)

g=1
A NAM) = DG # jiisjell,...,G3); (3.51)
G3 — min. (3.52)

The set Cx corresponding to (3.49)—(3.52) can be constructed in two steps:

1. Finding the set of main inputs / Mx for a given GSA I'.
2. Constructing an XLCS for each input / gl € I Mx.

Let us discuss the execution of these steps for the GSA Iy. The set I My is
constructed using Definition3.12. The vertex b(a;) is connected with outputs of
conditional variables marked by zero. So, there is the set IMx = {a», a¢, ag} and
G3=3.
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The following procedure P4 is proposed for constructing the partition Cy.

. Put g=1.
. Take the state with the smallest number m from the set / Mx. Exclude this state

from I Mx. Let us name this state a base state for XLCS v, € Cx.

. Find the vertex bpex (as for P1).
. If bpex; 1s the end vertex, then the constructing the chain v, is terminated. Go to

step 10.

. If byext 1s an operator vertex b(a,) such that the state a; is already included in

some other chain, then the constructing the chain v, is terminated. Go to step
10.

. If byex; 1s a conditional vertex, then find an operator vertex b(a;) connected with

marked by 1 outputs of conditional vertices marking a path of GSA [4] starting
from the vertex bpex:.

If there is no such an operator vertex (the path is finished by the end vertex),
then the constructing the chain «, is terminated. Go to step 10.

. If the state a; (from step 6) is already included into some other chain, then the

constructing the chain +, is terminated. Go to step 10.

If the state a; (from either step 5 or step 8) is not included in some other chain,
then this state is included into the chain «y,. Now, this state is considered as the
base state a,,. Go to step 4.

g=g+1.

If IMx # (, then go to step 2.

End.

Application of P4 to GSA Iy produces the set of XLCSs Cx = {71, 72, 73}. It

includes the following chains v; = (ay, a3, a4, as, a7, ajo), 72 = (a2, ag), vz = (a9).

As in the previous cases, the natural state assignment is executed by the procedure

P2. In the case of PYx (1), it gives the following outcome (Table 3.7).

~N N RN

The design method for PYx More FSM includes the following steps:

. Constructing the set of states A.

. Constructing the set of extended LCSs Cy.

. Executing the natural state assignment.

. Constructing the structure table of PYx Moore FSM.

. Constructing the system of input memory functions and the function yé.
. Constructing the table of microoperations.

. Implementing the FSM logic circuit.

We discuss this method in details in Chap. 8.

Table 3.7 Natural state assignment for Moore FSM PYx (1)

Step Vg M 72 73

1 am a» a3 ay as ay apo ag ag ag

2 i 1 2 3 4 5 6 7 8 9

3 K(a,) | 0001 |0010 |0011 |O0100 |0O101 |0O110 |O111 1000 | 1001
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3.5 Principles of Hardware Reduction for LCS-Based
Finite State Machines

To generalize the discussed here principles, let us define the object of FSM. It can
be:

. state a,, € A;

LCS;

. class of states;

. class of LCSs;

. collection of microoperations.

To reduce the number of LUTs in the circuit of BIMF, it is necessary to diminish
the numbers of arguments and terms in the system of input memory functions [9].
One of the possible approaches for solution of this problem is a code sharing [8]. Let
us discuss this principle for cases of NLCS and ELCS-based FSMs.

Let some GSA I include G2 NLCSs 3, € Cy.Letus encode each chain 3, € Cy
by a binary code K (3,) having Rg; bits:

R = [log, G21. (3.53)

States a,, € A are distributed among the sets A(3,). Let it be M; = |A(B,)|. Let
us find the maximal amount of states Mg, = max(M7, ..., M%,}. Let us encode
each state a,, € A by a binary code C(a,,) having R bits:

Rcz = |—10g2 MGZ—|- (354)

Let us point out that different states a,, € A can have the same codes C(a,,). But
any chain 3, € C; should include only the states with different codes C(a,,). Let
the following rule be used for the codes C (a,):

Clagi) =Clag)+1 (g=1,...,G2i=1,...,F,— ). (3.55)

The condition (3.55) means that the natural state assignment is executed for the
states a,, € A(B,) (g =1,...,G2). Let us use the variables 7, € 7 for encoding
the chains, where |7| = Rg,. Let us use the variables 7, € T for state assignment,
where |T'| = R¢».

The approach allows to represent any code K (a,,) as the following concatenation:

K (am) = K(5B,) * C(am). (3.56)
In (3.56), the sign * is used for the operation of concatenation.

Such a representation of the code of any object is named the code sharing. The
formula (3.56) determines the structure diagram of PYync Moore FSM (Fig. 3.17).
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Fig. 3.17 Structural diagram
of PYnc Moore FSM +
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In PYnc FSM, the block BIMF implements input memory functions loaded into
the counter CT(®) and register RG(¥):

-

® = (1, X): (3.57)
v =¥(r, X). (3.58)

The block BMO implements the functions

Y =Y(r, X); (3.59)
Yo = yo(7, X). (3.60)

Let the following condition take place:
R G2 < R. (36 1 )

In this case, the systems @ and ¥ of PYnc FSM include few arguments than the
system @ for PY Moore FSM. The best case for applying the code sharing for
NLCS-based FSM is determined by the following relation:

Rgo 4+ Rco = R. (3.62)

Let us point out that modern EMBs are very powerful. It means that only a single
EMB is enough for implementing the systems (3.59)—(3.60) even if condition (3.62)
is violated.

This very principle can be used for ELCS-based Moore FSMs. Let us replace
Eqgs. (3.53)-(3.56) by the following equations:

Rg1 = [log, G11; (3.63)
Rci = [log, Mg 1; (3.64)
Clagis) =Clag)+1 (g=1,....Glii=1,...F,—1);  (3.65)
K (am) = K(ag) * C(an). (3.66)

The meaning is obvious for each element of formulae (3.63)—(3.66). Let us use
the variables 7, for encoding of the chains o, € Cg. Let us use the variables T, for
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Fig. 3.18 Structural diagram
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encoding of the components a,, € A(c,). The set 7 includes G elements, the set
T includes R elements.

In the case of elementary LCSs, each of them has only a single input. Let us start
the natural state assignment for each ELCS «, € C; from the code C(a,,) having all
zeros. It means that it is enough to connect all informational inputs of D flip-flops
of CT with values of logic zeros. In this case, there is no need in functions @. Now,
the structural diagram of PYgc Moore FSM can be obtained (Fig. 3.18).

The block BIMF of PYgc FSM implements only R¢ functions. Because of Ry <
R, it is the minimal possible number of functions.

The second issue of possible hardware reduction is the existence of pseudoe-
quivalent objects. Every pair of objects with equivalent transitions determines two
pseudoequivalent objects. Obviously, this relation is reflexive (any object is pseu-
doequivalent to itself), symmetric (if some object A is pseudoequivalent to some
object B, then the object B is pseudoequivalent to the object A) and transitive (if
some object A is pseudoequivalent to some object B which is pseudoequivalent to
some object C, then the object A is pseudoequivalent to the object C). As it is known
[4], such kind of relations determine some partition of the set of objects.

The following partitions can be found for GSA ~4. The partition [Ty =

{B1, ..., Bg}includes the classes of PES. There are the following classes: B; = {a;},
By = {ax}, Bs = {a3}, By = {as}, Bs = {as}, B¢ = {ac}, B; = {a;, as, ay} and
Bs = {ajp}. The partition [1cg = {Bj, ..., Bs} includes the classes of pseudoe-

quivalent ELCSs «, € Cp. There are the following classes: By = {a1}, By = {as},
B; = {a3, as, ag}, B4 = {a4}, Bs = {a7}. The partition Iley = {Bi,..., By}
includes the classes of pseudoequivalent NLCS 3, € C,. There are the following
classes: By = {01}, B, = {01, B4, Os}, B3 = {03}, B4 = {f}. There is no partition
Icx having at last a single class with more than 1 XLCS 7, € Cy. It is explained
by existing more than one output in the class XLCSs v, and ;.

Two approaches are used for taking into account the existence of pseudoequivalent
objects. The first is the optimal encoding of objects. It assumes such an encoding
when a class is represented by minimum possible amount of generalized intervals of
Boolean space. It is the optimal state assignment in the case of PY Moore FSM.

In the case of PyY (4), the optimal state codes are shown in Fig.3.19.

The following codes of classes B; € II4 can be derived from the Karnaugh
map (Fig.3.19): K(B;) = *000, K (B,) = 0010, K(B3) = 011%, K(Bs) = *1*1,
K (Bs) = *100, K(Bg) = 101*, K(B7) = *0*1 and K (Bg) = 1***,
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T2T3Ts
T 000 001 0n 010 110 m 101 100
0 a1 a7 ag a as * ay ag
1 »* dg * ag a1 * * %*

Fig. 3.19 Optimal state codes of Moore FSM P(Y (4)

The second approach is based on transformation of object into the classes of

pseudoequivalent objects. It assumes using additional variables for encoding of the
classes, as well as some special code transformer. As example of this approach, the
PcY Moore FSM can be taken (Fig. 3.10).

We discuss peculiarities of all these issues in the next chapters of this book. Let

us use the following denotations: EFSM is an FSM based on ELCS; NFSM is an
FSM based on NLCS; XFSM is an FSM based on XLCS.
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Chapter 4
Hardware Reduction for Moore UFSMs

Abstract The Chapter is devoted to the problems of hardware reducing for FPGA-
based logic circuits of Moore FSMs. The design methods are proposed based on
using more than one source of codes of classes of pseudoequivalent states (PES).
Two structural diagrams and design methods are proposed for Moore FSM based on
transformation of objects. The first method is based on transformation the unitary
codes of microoperations into the codes of PES. The second approach is connected
with transformation of the codes of collections of microoperations into the codes of
PES. The last part of the Chapter is devoted to the replacement of logical conditions.

4.1 Using Two and Three Sources of Class Codes

Asitis pointed out before, the embedded memory blocks of FPGAs are reconfigurable
[7]. They have the constant size (V})) but the number of both cells (V) and outputs
(tr) could be different. The following relation takes place:

V= {EW . .1)

g

Some methods are discussed in [5] targeting hardware reduction in CPLD-based
Moore FSMs. The methods are based on using up to three sources of codes of classes
B; € I14. These sources are the state register RG, the block of code transformer BCT
and the block of microoperations BMO. The following seven situations are possible
(Table4.1).

If some block produces the class code, then the corresponding cell of Table4.1
contains the symbol “e”. There are more than one source for models PcY|—PcY3;.
Using these models is based on the wide fan-in of PAL-based macrocells of CPLD
[6]. The acronym PAL stands for programmable array logic. But LUTs have a very
limited fan-in (up to 8). It means that the PAL-based models cannot be directly used
for the hardware reduction in LUT-based FSMs. Let us discuss these approaches.

Let us construct the partition I14 = {By, ..., B;} for the set A. Each class B; € I,
includes pseudoequivalent states. Let us construct a system of functions
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Table 4.1 Models of PcY Moore FSMs

Model/Sources PY PcY PY1 Pch PY2 PC Y2 PC Y3
RG . o o . . o °
BCT o . o . o ° °
BMO o o ° o . ° °
1
B = \/ Cuidm. (4.2)

In (4.2), C,; is a Boolean variable equal to 1 if and only if (iff) @, € B;. Let
us encode the states a,, € A so that each function of system (4.2) is represented by
minimum possible number of product terms. Such an encoding is named an optimal
state assignment [3].

Let ITgg € I14 be a set of classes B; € I14 such that each class is represented by
a single interval of R-dimensional Boolean space. If [Tz = I14, then the PY FSM
should be used. Let us discuss the case when ITgg # I14.

Let IT7c be a set of classes B; € Il required the transformation. Obviously, there
is I1yc = I4\IIgc. Let the set ITyc include I7¢ elements. To encode the classes
B; € Iy, it is enough Ry¢ variables:

Ryrc = [log, Irc | - (4.3)

Let Tgmp be a set of possible amounts of EMB outputs. For up-to-day FPGAs,
there is a set Temp = {1, 2, 4, 8, 16, 32, 64}[1, 8]. There are R inputs in the BMO.
Therefore, a standard EMB should be configured in such a way that V = 28, After
the configuration, this EMB block can implement microoperations y, € Y. It has ¢
outputs, where ¢ is the nearest number from Tgyp greater or equal to the value

Vo
The BMO generates N microoperations. The required number of EMBs in BMO is
determined as
N
ny = [——‘ . 4.5)
52

There are n; - 7 outputs in all EMBs forming the circuit of BMO. There are tgy,0
“free” outputs which are not used for generating the microoperations. This value is
determined as

temo = nitp — N. (4.6)
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Fig. 4.1 Structural diagram
of PY, Moore UFSM MX
Ly o
X LUTer1 L
1T Y
——»
2 ® o RG | EMBer
X —»
: wrerz  (Emf o K F
e Clock vl |z
Let the following condition take place:
tsmo = Rrc + 1. 4.7)

In this case, the block BTC is absent. Using the notation from Table 4.1, we can say
that the condition (4.7) leads to PY, Moore UFSM (Fig.4.1).
Now, the LUTer is represented by two blocks. The LUTer; implements the system

Py = DT, Xy). (4.8)
The block LUTer, implements the system
Dy =Dy (Z, X3). 4.9)

The variables z, € Z encode the classes B; € I17¢. The set Z includes Ry¢ ele-
ments. It is quite possible that only some parts of the set X are used for generation
functions (4.8) and (4.9). Obviously, there is X; U X, = X. In the general case, there
is X; N X, # @. The choice of the state code is executed by the variable y); using a
multiplexer MX. For example, the code is determined by functions @ (@) if there
is yy = 0 (yy = 1). Existance of yy, explains the second member in the right part
of (4.7).

The EMBer generates microoperations Y and the following functions:

Z = Z(T): (4.10)
yu = yu(T). “4.11)

Let the following conditions take places:

Irg # Iy; (4.12)
tgmo = 0. (4.13)

It leads to Pc Y| Moore UFSM (Fig.4.2). In this case, the functions (4.10)—(4.11)
are generated by the block LUTer;. A designer can use an additional EMB block to
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MX
—>
X LUTer1 &,
1T —
X
2 ® e [T ¢ > EMBer |Y»
X, )
| LUTerZ st LUTer3
Clock
Yo |Z

Fig. 4.2 Structural diagram of PcY| Moore UFSM

Fig. 4.3 Structural diagram X Y
of PcY2 Moore UFSM o Wien  [2slro [T T EMBer |
Start LUTer2
Clock ‘
T

implement the functions (4.10)—(4.11). Of course, it leads to the transformation of
PcY; Moore UFSM into PY, Moore UFSM.
Let the following conditions take places:

Iz = ; 4.14)
tsmo < Rp + 1. (4.15)

In this case, there are no class codes generated by RG. To eliminate MX, we propose

to generate fgyo bits of K(B;) by BMO. The rest of the code is generated by the

block BCT (Fig.4.3). We name the UFSM shown in Fig.4.3 a Pc Y, Moore UFSM.
In this model, the LUTer, implements functions

T=1(T). 4.16)

These functions represent (Rg — fpy10) bits of the code K (B;). The EMBer generates
the microoperations Y represented by the system (4.16). Also it generates functions
(4.10) representing g0 bits of the class codes.

Let the condition (4.15) take place, as well as the following conditions:

HRG = @; (417)
e = 0. (4.18)

In this case, three sources of class codes should be used. It leads to Pc Y3 Moore
UFSM (Fig.4.4).
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Fig. 4.4 Structural diagram
of Pc Y3 Moore UFSM
—
X LUTer1 ,
X T
— EMBer 7
X, ™
| LUTer LUTer3 —l
Yu

T

To simplify the block MX, functions 7 and Z forming codes K (B;) of the classes
B; € ¢ are used. The meaning is clear for all functions and variables shown in
Fig.4.4.

4.2 Design of UFSMs with Three Sources

Analysis of models proposed in Sect.4.1 shows that the model PcY3 possesses the
most general nature. Let us discuss the design method for PcY; Moore UFSM. It
includes the following steps:

1. nConstruction of partition [Ty = {By, ..., By} of the set of states A by the classes
of pseudoequivalent states.

2. Construction of the system B(A).

3. Optimal state encoding targeted minimizing the number of terms in system B(A).

Construction of the set ITxg.

Calculation of the values of tgy0 and Ryc. Construction of the sets 7 and Z.

Encoding of the classes B; € I1rc.

Construction of the table of LUTerl. Construction of the system @;.

Construction of the table of LUTer2. Construction of the system @;.

Construction of the table of LUTer3. Construction of the system 7.

Construction of the table of EMBer.

Implementing UFSM logic circuit with particular LUTs and EMBs.

SN R

Let us discuss an example of design for Moore UFSM PcY4(I's). Let us start
from the transformed table of transitions constructed on the base of some GSA
I's (Table4.2). This table determines transitions for some Moore FSM PY (I5).
This table differs from a classical table of transitions because it represents the
transitions for classes of PES [3]. As follows from Table4.2, there are the follow-
ing sets and parameters: A = {aj,...,au}, M =14, R=4,T ={Ty,..., T4} and
@ ={Dy,...,Dy}.
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Table 4..2. Transformed table B; as X, h
of transitions of Moore FSM
PY(I's) B a X1 1
a3 X1X2 2
as X1X2 3
B ay X3 4
B3 as X2 6
ay X2X3 7
ag X2 X3X4 8
aips XpX3X4 9
By ag 1 10
Bs as X3 11
ag X3 12
Bs az X4 13
arl X4xs 14
an X4X5X6 15
a4 X4X5X6 16
B7 ai X3X6 17
az X3X6 18
ao X2X3 19
ap X2X3 20
Let the following partition [Ty = {By, ..., By} be constructed for the Moore FSM

PY(I5), where By = {a1}, B2 = {as, arz}, B3 = {a11, a13, a1a}, B4 = {a3, ag}, Bs =
{as, as1}, B¢ = {ay, ag}, B7 = {aq, ajp},. This partition can be represented by the
following system B(A):

By =Ay;

By = As;

By =A;1 VAR VA

By = As V Ag: (4.19)
Bs = Ay V Ay,

B = A V Ag:

By = AoV A,

One of the variants of optimal state assignment is shown in Fig.4.5.
Using the state codes from Fig. 4.5, the following system can be obtained for the
initial system B(A):
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Fig. 4.5 Optimal state codes I.T,
for Moore FSM PY(I's) T,7_00 0 " 10

00 a; a3 dg *

01 dp dy, * ds

10 a7 aZ ah aw

B, = T\'T»Ty;

B, = ThT5T4;

By = o TsTy v T T Ts;

By = T\ T Ty; (4.20)
Bs = T\T»Ty;

Bg = T1T2T3T4 V 1hT3Ty;
B; = T|T2T3T4 \ T2T3T4.

As follows from (4.20), the classes By, By, By, Bs are represented by single gen-
eralized intervals of four-dimensional Boolean space. It gives the following sets of
classes for Moore FSM PY (I's): I1gg = {B1, B2, B4, Bs} and ITyc = {B3, B¢, B7}.

Let it be the set Y = {yy, ..., y¢} for Moore FSM PY([5). Let the following
system of functions can be derived from GSA [I5:

Y1 =A3 VA5V AgV A
y2=Ay VA VAL VA
y3=Ar VA4V AgV Ag V Ajp;
V4 =A4 VAsVAg VAV Ap;
y5s =A3VAgVAgV A9V A,
Y6 =Ar VA3V ALV Ag VA7

421

The system (4.21) is used for constructing a part of the table of EMBer.

Let us use an FPGA chip including EMBs with the following configurations:
128 x 1,64 x 2,32 x 4, 16 x 8, (bits). It gives the set Tgyp = {1, 2, 4, 8}, as well
as the value Vy = 128. In the case of PY (I'5) there is R = 4. Using (4.4), the value
to = 8 can be found. Using (4.5), we can find the value n; = 1. Using (4.6), the
value )0 = 2 can be found. It is necessary Ry¢ = 2 bits for encoding of the classes
B; € ITrc. So, the condition (4.7) is violated and the model P-Y3 can be used. In the
case of UFSM PcY3(I's), the following equality is true: |7| = |z| = 1.

Let us encode the classes B; € I1r¢ in the following way: K(B3) = 01, K(Bg) =
10, and K (B7) = 00. It gives the following equations:
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Table 4.3 Table of LUTer; for Moore UFSM PcY3(1Is)

B KB)T\TxT3Ts | as K (ay) Xn D), h
B 0% 00 a 1001 X1 DDy 1
az 0001 X1X2 Dy 2
as 0110 X1X2 D>rDs 3
B> *110 aj 0000 X3 - 4
apo 1010 X3 D1Ds3 5
By 00 %1 ag 1111 1 D\D>D3D4s |6
BS 10 1 as 0001 X3 D4 7
ag 1101 X3 D1DyDy 8

1 = Bg = T1T2T3T4 V TrT3Ty;

- (4.22)
T =By =T)T3T4 v T1T,T5;

To form the system (4.22), the equations from the system (4.20) are used.

The set 7 includes variables implemented by the LUTers. So, those functions 7,
from (4.22) should be placed into 7 whose circuits are implemented with the minimal
amount of LUTs. Let us use LUTs having S = 4. It means that each of functions
(4.22) is implemented using only single LUT. So, the sets 7 and Z can be constructed
in the arbitrary way. Let us form the following sets: 7 = {71} and Z = {z;}. So, the
set 7 includes the first bit of a class code, whereas the set Z contains the second.

The table of LUTer; includes transitions for classes B; € I1Tgs (Table4.3).

This table is almost the same as a transformed structure table of Moore FSM. The
class codes are taken from system (4.20). If some variable 7, € T is absent in the
equation for B; € I1gg, thenitisrepresented by “*” in the code of K (B;). For example,
there is no variable 7 in the function B; (4.20). So, the code 0 *« 00 corresponds to
the class B; € I1gg. As follows from Table 4.3, there is the set X1 = {x1, X2, x4}.

The LUTer is characterized by the system (4.8). The following functions can be
derived from Table 4.3:

Dy =F,V Fs5V FgV Fg;

Dy =F;5V Fg V Fy;

Ds; = F3 Vv F5V Fg;

Dy=F VvV F,VFgVF;VFg.

(4.23)

The terms of this system are determined in the standard way. For example, F| =
Tl T3T4x|, Fz = T] T3T4)_C|XQ, and so on.

The table of LUTer, includes transitions for classes B, € I1y¢ (Table4.4).

This table is constructed on the base of the table of transitions (or the structure
table) of Moore FSM. The logic circuit of LUTer; is represented by the system (4.9).
The following set X, = {x», ..., x¢} can be derived from Table 4.4. The product terms
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Table 4.4 Table of LUTer; for Moore UFSM PcY3(1Is)

B; K(Bi)Tiz1 |as K (ay) X P, h
B3 00 aq 1011 X2 D1D3Dy 1
ar 1000 X2X3 Dy 2
ag 0011 X)X3X4 D3Dy 3
ap 0100 X2X3X4 D> 4
B3 10 a 1001 X4 DDy 5
ar 1000 X4X5 DD, 6
ap 1110 X4X5X6 D1D>D;3 7
a4 0101 X4X5X6 DDy 8
B7 11 ap 0000 X3X6 — 9
as 0001 X3X6 Dy 10
apo 1010 X2X3 D1D3 11
an 1110 X2X3 D1DDs3 12

of the system (4.9) are determined by the rows of the table of LUTer,. For example,
the following terms can be found from Table4.4: Fy = 11z1x,, F» = T1Z2X2X3, and so
on. The following system of input memory functions can be derived from Table 4.4:

D\ =F VF,VFsVvFsVvF;VF,VFp,
Dy =F4V FsV F;VFgVFiy;
Dy =F VF3VF;VvFVFp;
Dy =F,VvF;3VvFsVvFgVFy.

(4.24)

The table of LUTers is constructed to find the equations for functions 7, € 7. It
includes the columns a,,, K (a,,), Bi, K(B;), T, h. It is constructed only for classes
B; € IT7¢. In the discussed case, there is no need of this table. The equation for 7
has been already obtained. It is included into (4.22).

The table of EMBer includes the columns a,,,, K (a,,,), Y (a1,,), Vi, Z. In the discussed
case, it includes M = 16 rows (Table4.5).

The variable yy, = 0(1) for classes B; € IIgg (B; € I17¢). The following equation
determines the input memory functions @:

D =yy® Vyyud,. 4.25)

This equation is used for implementing the circuit of the block MX.

The last step of design is reduced to implementing the logic circuit of UFSM. It
is connected with application of some CAD tools such as WebPack [8]. We do not
discuss this step in our book.
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Table 4.5 Table of EMBer for Moore UFSM P Y3(I5)

am K(am)T\ToT3Ts | Y(am)y1y2y3y4ysye | ym Zz1
ai 0000 000000 0 0
as 0001 100011 0 0
* 0010 000000 1 0
ag 0011 100011 0 0
aps 0011 010000 0 1
a4 0101 100010 0 1
as 0110 100100 0 0
* 0111 000000 0 0
ay 1000 010001 1 0
a 1001 011001 1 0
aro 1010 001100 1 1
as 1011 001101 1 0
ap 1100 010000 0 1
ag 1101 001010 0 1
arn 1110 000100 0 0
ag 1111 001110 1 0

4.3 Design of UFSMs with Two Sources

Let us discus an example of design for UFSM PcY(['5). If an FPGA chip in
use includes EMBs having the configuration 16 x 6, then the condition (4.13)
takes place. Let us use the state codes from Fig.4.5. It gives two sets of classes:
ITgc = {By, By, B4, Bs} and IIy¢ = {B3, Bg, B7}. It is enough to have two variables
for encoding the classes B; € I1yc. It gives the set Z = {z;, z2}. Let an FPGA chip
in use include LUTs having four inputs (S=4). Therefore, the following condition
takes place:

S>R. (4.26)

In this case, each function from system (4.10) is implemented using a single LUT.
So, the class codes can be arbitrary. Let us use the following codes: K (B3) = 00,
K(Bg) =01 and K(B;7) = 10.

Obviously, the tables of LUTer; are the same for UFSMs PcY3(I's) and Pc Y (T's).
The same is true for the systems @;. The tables of LUTer, have equal structures but
the codes are different in the column K (B;). In the case of UFSM P Y (I's), Table 4.6
represents the table of LUTer;.

Obviously, the system @; is the same as (4.24). But it includes the following terms:
Fi = 7120x2, F> = Z122X%2x3, and so on. The code 11 can be used for optimizing these
terms. It leads, for example, to terms F5 = 7px4, F19 = z1X3X6, and so on.



4.3 Design of UFSMs with Two Sources 77

Table 4.6 Table of LUTer; for Moore UFSM P Y (I's)

B; K(Bi) as K (ay) X Dy, h

B3 00 as 1011 b} D1D3Dy 1
a 1000 xx3 Dy 2
ag 0011 X)X3X4 D3Dy 3
ap 0100 X2X3X4 D> 4

Bg 01 a 1001 X4 DDy 5
ar 1100 X4X5 DD, 6
ap 1100 X4X5X6 D1D>D;3 7
aig 0101 X4X5X6 DDy 8

B7 10 ap 0000 X3X6 — 9
as 0001 X3X6 Dy 10
apo 1010 X2X3 D1D3 11
an 1110 X2X3 D1DDs3 12

Table 4.7 Table of LUTer3 for Moore UFSM PcY1(I5)

Aam K (am) B K(B;) Zy h

ay 1000 Bg 01 22 1

as 1111 Bg 01 2 2

ag 1101 B, 10 21 3

apo 1010 B7 10 Z1 4

To find Boolean functions (4.10), the table of LUTer; should be constructed
(Table4.7).

There are no states a,, € B3 in Table4.7. It has sense due to K(B3) = 00. The
following equations can be derived from Table4.7:

21 =TI T3Ty v T\ T T3T4;

L 4.27)
20 =TT T3Ty v T\ 1L T5Ty.
Let yy = O for classes B; € I1gg. It leads to the following equation:
ymM =AI VA VA3V ALV As V Ag V Ajy. (4.28)
Of course, this functions can be represented as:
Yy =A7VAg VA9V A VA VAV AL (4.29)

Because the condition (4.26) takes place, each from Eqgs. (4.28)—(4.29) is imple-
mented using only a single LUT. If this condition is violated, the following equation
can be used:
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Fig. 4.6 Two-level structure T
of LUTer;3 —» Level, > Level,
i z —l Y
yu =f(Bi) (Bi € Irc). (4.30)

In the discussed case, the following equation can be obtained:
ym =B3V BsV B =71V 2. 4.31)

This approach results in two-level structure of LUTer; (Fig.4.6).
Let the condition (4.12) take place, as well as the following condition:

temo = 1. (4.32)

In this case, the free output of EMBer can be used for generating the variable y,,.
It changes only the table of EMBer for UFSM PcY .

In the discussed case, the condition (4.13) takes place. The tables of EMBer are
practically the same for UFSMs PcY3([5) and Pc Y ([5). But columns yy, and z;
are eliminated from Table 4.5 to construct the table of EMBer for Pc Y ([5).

Let the following condition be true:

tsBmo > 1. (433)

In this case, the model PcY, can be used even if ITgg # @. Let us discuss an
example of design for UFSM PcY;(I5). The proposed design method includes the
following steps:

. Construction of the partition I74.

. State assignment.

. Encoding of the classes B; € Piy.

. Constructing the table of LUTer;.
. Constructing the table of LUTer,.
. Constructing the table of EMBer.

. Implementing UFSM logic circuit.

~N NN B W=

The first step of the method is already executed. There is the partition [Ty =
{Bi,...,B7} with I =7. Let us encode the states a,, € A in the trivial order:
K(a;) = 0000, K(ay) = 0001, ..., K(aj4) = 1101. Using (3.16), the value of Rp
can be found. Because of I = 7, there is Rg = 3. Let us encode the classes B; € Iy
in the following manner: K(B;) = 000, K(B,) = 001, ..., K(B7) = 110.

Let an FPGA in use have EMBs with the configuration 16 x 8. In the discussed
case, it gives fgyo = 2. Now, the following sets can be constructed: 7 = {7} and
z = {z1, 22} The table of LUTer; can be constructed as an expansion of Table4.2.
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Table 4.8 Table of LUTer; for Moore UFSM PcY/(I's)

B,‘ K(B,')TZ[Q dg K(aS)Tl T2T3T4 Xh 45;, h
B 000 ar 0001 X1 Dy 1
as 0010 X1X2 D3 2
as 0100 X1x2 Dy 3
B; 001 ai 0000 X3 - 4
ao 1001 X3 DDy 5
B3 010 ay 0011 X2 D3Dy 6
ay 0110 X2X3 Dy Ds 7
ag 0101 X2X3X4 DyDs 8
as 1100 X2X3X4 DD, 9
By 011 as 0111 1 D>D3Dy | 10
Bs 100 as 0010 X3 D3 11
ag 1000 X3 D 12
Bs 101 a 0001 X4 Dy 13
apg 1010 X4X5 DD3 14
an 1011 X4X5X6 D\D3Dy |15
a4 1101 X4X5X6 D\D>Dy |16
By 110 aj 0000 X3X6 - 17
a3 0010 X3X6 D3 18
ao 1001 xX2X3 DDy 19
apn 1011 X2X3 DD3D4 |20

It includes all columns of Table4.2 and three new columns: K(B;), K(a,) and &,
(Table 4.8).
In PcY; UFSM, the LUTerl implements the system of input memory functions

O =0(Z,1,X). (4.34)
In the discussed case, the system (4.34) includes the following product terms:F; =

T12122, F1 = Tizi2X1x2, - . ., F1 = T12122X3%>. For example, the following Boolean
function can be derived from Table 4.8:

D2:F3\/[F7VF8\/F9]\/[Flo]\/[Fm]. (435)

The expression F; v Fg v Fy can be optimized and represented as 7z;2,x,. Taking

into account the input assignment 111, the expressions for [Fo] and [F}¢] can be

simplified: [Fo] = z,22;[F16] = T1220X4X5Xs. Now, the Eq.(4.35) can be represented
as the following:

D, = TiZiZaX1x2 vV T12122% V 2122 V T122X4X5X6. (4.36)

Similar transformation can be done for all input memory functions D, € ®.
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Table 4.9 Table of EMBer for Moore UFSM PcY(I5)

am K(am)T1T2T3Ty Y(am)y1y2y3yaysye | Zz122
ai 0000 000000 00
a 0001 011001 00
as 0010 100011 11
as 0011 001101 00
as 0100 100100 01
ag 0101 100011 11
az 0110 010001 01
ag 0111 001110 01
ag 1000 001010 10
apo 1001 001100 10
arn 1010 010000 10
apn 1011 000100 01
aps 1100 010000 10
ag 1101 100010 10

To get an equation for 7; € 7, it is necessary to find all class codes with the
first position equal to 1. In the discussed case, the following classes can be found:
Bs, Bg, By. It gives the following equation:

TN =Ay VA4 VA7 VAgV A9 VAp. 4.37)

This equation is used for implementing the circuit of LUTer2. Let S = 4, then
this block is implemented by a single LUT.

The table of EMBer is constructed in the trivial way. It includes the columns: a,,,
K(ay), Y(a,), Z. In the discussed case, it includes 16 rows (Table4.9).

Let us explain the column Z. For example, the class B, € 14 includes the states
as, ap;p € A. Because of K(B;) = 001, the rows as and a;, contain 01 in the column
Z. This principle is used for filling all rows a,, in Table4.9.

Let us point out that the model Pc Y does not include the block MX. So, it can be
expected that it has the minimum propagation time among all discussed models. But
in general case, equations are more complex for functions D, € @ of Pc Y. It means
that the final conclusion can be done after the implementation of the UFSM logic
circuit. But the PcY; UFSM can be considered as an alternative for other structures
if the condition (4.13) has no place.

Let us point out that the state assignment can be executed so as to optimize the
circuit of LUTerl. Let us discuss the following variant of state assignment (Fig. 4.7).

As follows from the Karnaugh map (Fig.4.7), the Eq.(4.37) can be represented
as:

T = Tl. (438)

It means that circuit of LUTer?2 is reduced up to a wire (Fig.4.8).
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Fig. 4.7 Variant of state T.T,
assignment for Moore T, 00 00 1 10
UFSM PcY (T

cY1(I's) wla |a|a|a

01 aS a6 a7 aE

11 a13 a% ag aWO

10 dy dyp * *

Fig. 4.8 Structural diagram X, Y
of PcY(I's) with Wiert 2 RG [T EMBer | Z
optimizing the LUTer2
Start Z,
Clock T,

4.3.1 Synthesis of UFSMs with Transformation
of Microoperations

This method is based on a transformation of microoperations y,, € Y into the codes
of classes of PES B; € I14. It is one of the methods that belongs to the class of object
transformation methods [2]. We discuss this approach in details in Chap. 5.

Let Q be a number of different collections of microoperations Y, € Y for a GSA
I'. Obviously, the following condition takes place:

0 <M. (4.39)

Let M, be a number of states a,, € A includingaCMO Y, (¢ =1, ..., 0).Letus
find the value
Mo = max(My, ..., Mp). (4.40)

This parameter is equal to the cardinality number of the set IS including identifiers
of states a,, € A. Now each state a,, € A can be represented as the following vector

ay = (Im’ Y(am» (m= 117M) (441)
If Y(a,,) is a CMO Y, such that M, = 1, then I, = I,. The identifiers should be
different for states a,,, a; € A if Y(a,,) = Y(a;). Let us encode identifiers I,, € IS by

binary codes K (I,,) having R; bits:

R; = [logy, Mmax - (4.42)
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Fig. 4.9 Structural diagram X
of PyY Moore UFSM

LWTer |2 sl RG Y

Zl y
A
Start| EMBer

Clock

\J

T

Let us use the variables z, € Z for encoding of identifiers, where |Z| = R;.
Let us encode the classes B; € Il by binary codes K (B;) having Rp bits. Let an
FPGA chip in use include EMBs such that the following condition is true:

Vo > 2N*TR LRy (4.43)

In this case, the structural diagram of Py Y Moore UFSM is proposed (Fig.4.9).

In PyYrSM, the set @ includes N + R; elements. The LUTer implements the
system of input memory functions @ = @ (7, x) Two sets of variables are generated
by RG, namely, the microoperations y, € Y and the additional variables z, € Z. The
EMBer implements the system.

T=7(Z,Y). (4.44)

The proposed design method for Py’ Y Moore UFSM includes the following steps:

Marking the initial GSA I" by states of Moore FSM.
Constructing the collections of microoperations.
Constructing the set of identifiers.

Representing the states by pairs ( identifier, CMO ).
Constructing the partition I7y.

Encoding of the classes of PES.

Encoding of the identifiers I,, € IS.

Constructing the table of LUTer.

Constructing the table of EMBer.

Implementing the UFSM logic circuit.

COXIANE P~

—_

Let us discuss an example of design for PyY (I's) Moore UFSM. The marked
GSA TI% is shown in Fig.4.10.

The following sets and their parameters can be found from GSA I%: X =
{Xl,...,X5}, Y = {yl,...,x6}, A= {al,...,alo}, L=5, N=6, M = 10. There-
fore, there is R = 4 and it defines the sets T = {T}, ..., Ty} and @ = {Dy, ..., D4}.

There are Q = 7 different collections of microoperations in the discussed case:
Y1 =0,Y> = {y1.y2}, Y3 = {y2, 4}, Ya = {33}, ¥s = {y1, 4, y5}, Y6 = {5, ¥}, Y7 =
{y3, ¥5}. Let us find the values of M. Analysis of GSA I gives the following values:
M, =2 for q € {2, 3,4} and M, = 1 for other CMOs. It means that M,,x = 2 and
IS = {I}, I,}. It gives R; = 1 and Z = {z;}. Now, the following pairs (4.41) can be
constructed for states a,, € A (Table4.10).
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Fig. 4.10 Initial marked GSA I

The following partition 14 can be found for the set A: [Ty = {By, ..., Bs}.
includes the classes By = {a1}, B, = {a», a3, a4}, Bz = {as}, B4 = {a¢, a7}, Bs
{ag, ay, ajp}. So, there is I = 5. It determines the value Rg = 3 and the set 7
{11, ™, T3}. Let us encode the classes B; = I14 in the following manner: K(B)

It
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Table 4.10 Identification of states for Py Y (I'¢)

am a a as as as ae ar as ag ao
I il I Il I L 163 Il I I I
Y(am) |11 43 Y3 Yy Yy 43 Ys Yo Y; Yy

000, K(B,) =001, ..., K(Bs) = 100. Let us encode the identifiers: K(/;) = 0 and
K =1.

To construct the table of LUTer, let us construct the system of generalized formulae
of transitions for the classes B; € I14. It is the following system:

B = x1ax V X1xa3 V X1X2ay4;

By = x3a5 V X3x4a6 V X3X444;

B; = ay; (4.45)
By = x1x3a5 V x1X3ag V X1Xs5a9 V X1X50a10;

Bs = x4a1 V x4a9.

The table of LUTer includes the following columns: B;, K(B;), Is, K(Is), Y (ay),
X, @p,, h. The column @, includes N + R; functions. Let the function y, corresponds
to the input memory function D, (n = 1, ..., N). The pairs (I, Y (as)) determines
states of transitions for the right parts of formulae of system (4.45). The table of
LUTer includes Hy = 13 rows (Table4.11).

The pairs (s, Y (as)) are taken from Table4.10. The input memory function D; =
1 for the identifier I,. This table is used for deriving the system of input memory

Table 4.11 Table of LUTer for Moore UFSM Py Y (I'g)

B; K(bi) I K (1) Y(as) X Dy, h
B, 000 I 0 yiy2 X1 DD, 1
I 0 y2ya X1x2 D>Dy 2
I 0 V3 X1X2 D3 3
B 001 b 1 V3 X3 D3Dq 4
J4) 1 yiy2 X3x4 DiD;D7 | 5
4l 0 3 X3X4 D3 6
Bs 010 L 0 Y1y4Ys 1 D\DsDs | 7
By 011 I 1 y3 X1X3 D3D; 8
I 0 V5Y6 X1X3 DsDg 9
063 1 y2ya X1Xs DyDyD7 |10
I 0 y3Y5 X1X5 D3Ds 11
Bs 100 I 0 - X4 - 12
I 0 y3ys X4 D3Ds 13
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functions. For example, the following expression can be found for function D;:
Dy =F, Vv Fs5V Fy. (446)

The terms F, in (4.46) are determined as the following conjunctions: F| = T|T»T3X1;
Fs = T\ ThT3x3x4; F7 = Ti7»73. There are unused input assignments of variables
T, € T, such as 101, 110 and 111. They can be used for simplifying terms Fs (the
input assignment 101) and F; (the input assignment 110). It gives the following
conjunctions Fs = T,73x3x4 and F7 = 1, 73.

The table of EMBer is constructed on the base of the following matching:

(In. Y(Gw)) — (Bilan € B)). (4.47)

The table of EMBer includes the following columns: a,,, B;, I,, Y (an), K(I,),
K(B;), m. The columns Y (a,,), K(I,,) form the address of cell number m. The column
K (B;) gives the content of the cell. In the general case, this table includes H(PyY)
rows, where

H(PyY) =2Vt (4.48)

In the discussed case, the expression (4.48) gives 128 rows. Only 10 of them are
used for implementing the function (4.44). These rows are represented by Table 4.12.
The main advantage of the model PyY is the highest possible performance. There
is only a single level of logic for generating microoperations. But this model can be
used only if the condition (4.43) takes place. If this condition is violated, we propose
to encode the collections of microoperations [3]. It leads to PyZ model of Moore
FSM (Fig.4.11).
In PyZFSM, the set @ includes R; + Ry elements, where the value of Ry is
determined as
Ry = [log, Q1. (4.49)

Table 4.12 Part of table of EMBer for Moore UFSM Py Y (I'¢)

A B; I, Y(am)y1y2y3yaysye | KUw)zi | K(B)TiT2m3 |m

aj B I 000000 0 000 1
a B> I 110000 0 001 2
as B> I 010100 0 001 3
as B> I 001000 0 001 4
as B3 )63 001000 1 010 5
ag By b 110000 1 011 6
ar By I 100110 0 011 7
as Bs I 000011 0 100 8
ay Bs )63 010100 1 100 9
apo Bs L 001010 0 100 10
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Fig. 4.11 Structural X
diagram of PyZ Moore FSM LUTer d RG > EMBerl Y
Z' VA
Y
Start] EMBer2
Clock

K

The variables z, € Z! are used for encoding of identifiers I, € IS, where |Z'| =
R;. The variables z, € Z2 are used for encoding of the collections of microoperations
Y, CY,D, € @, where |@| = R; + Ry. The EMBerl implements the microopera-
tions y, € Y represented as

Y = Y(Z. (4.50)

The EMBer2 implements the variables 7, € 7 used for encoding of the classes
B; € I14. So, it implements the system

=72, 7%. (4.51)

The design method for PyZ UFSM can be obtained from the previous one. To do
it, the step 9 is replaced by the steps 9¢ and 9°:

94, Constructing the table of EMBerl.
9. Constructing the table of EMBer2.

Also, the step 7¢ is introduced and executed after the step 7:
7¢. Encoding of the collections of microoperations.

Let us discuss an example of design for the Moore UFSM PyZ([%). The steps
from 1 to 7 have been already executed. Let us start from the step 7¢.

Because of Q = 7, there is Ry = 3. It gives the set Z? = {z1, 22, z3}. Let us point
out that Z' = {z4}. Let us encode the CMOs in the following manner: K(Y;) =
000, K(Y,) = 001, and so on.

The table of LUTer includes the following columns: B;, K(B;), Is, K(Is), Yy,
K(Yy), Xn, @5, h. The column @, includes R; + Ry = 4 variables D, € &. Let the
variables D; — D3 load the code K(Y,) into RG, whereas the variable Dy the code
K(Is). The table is constructed using Table4.10 and system (4.45). As in previous
case, it includes 13 rows (Table 4.13).

This table is used for deriving the system of input memory functions. For example
the following equation can be derived: D3 = F| v F3 V [Fy V Fg] V [Fg V Fg]. After
using the law of expansion [4], the following equation can be obtained:

D3y = 113X V TITaT3X3 V TITaT3X] . (452)
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Table 4.13 Table of LUTer for Moore UFSM PyZ (%)

B; K(B)) I K(Iy) Yy K(Yp) Xn Dy h
B 000 I 0 Y> 001 X1 D3 1
I 0 Y3 010 X1X2 Dy 2
I 0 Yy 011 X1X2 DyrDs 3
B> 001 b 1 Yy 100 X3 DDy 4
I 1 Y, 001 X3X4 D3Dy 5
I 0 Yy 011 X3X4 DyDs 6
B3 010 L 0 Ys 100 1 D 7
By 011 I 1 Yy 011 X1X3 DiD3Dy | 8
I 0 Ys 101 X1X3 D1D3 9
I 1 Y3 010 X1X5 DDy 10
I 0 Y7 110 X1X5 DD, 11
Bs 100 I 0 Y 000 X4 — 12
I 0 Y7 110 X4 DD, 13

Table 4.14 Table of EMBerl for Moore UFSM PyZ (1)

K(Yy)z12223 Y y1y2y3y4y5Y6 q
000 000000 1
001 110000 2
010 010100 3
011 001000 4
100 100110 5
101 000011 6
110 001010 7
111 000000 *

Similar Boolean functions can be derived for all functions D, € @. The table
of EMBerl is constructed in the trivial way. It includes the columns K(Y,), ¥,, ¢
(Table4.14).

The table of EMBer?2 is constructed on the base of the matching (4.47). It includes
the columns: a,,, B;, I,,, Y (a,,), K(Y (a,,)), K(I,,,), K(B;), m. The columns K (Y (a,,)),
K(I,,) form addresses of cells. This table includes H (PyZ) rows, where

H(PyZ) = 2R R (4.53)

In the discussed case, the expression (4.53) gives 16 rows. Only 10 of them are used
for implementing the functions of the system (4.51). If we compare blocks EMBer
of PyY (I'¢) and EMBer?2 of PyZ(I%), we can see that the number of required cells
is diminished in 8 times. The table of EMBer?2 is shown in Table4.15. Only 10 rows
are shown in this table.
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Table 4.15 Table of EMBer2 for Moore UFSM PyZ (1)

am B; In Y(am) K(Y(am)) | K(m) K (B;) m
ai B I Y; 000 0 000 1
a B I Y, 001 0 001 2
az B I Y3 010 0 001 3
as By I Yy 011 0 001 4
as B3 63 Yy 011 1 010 5
ag By b Y, 000 1 011 6
ay By I Ys 100 0 011 7
ag Bs I Ye 101 0 100 8
ag Bs b Y3 010 1 100 9
apo Bs I Yy 110 0 100 10
Fig. 4.12 Structural diagram X, LY,
of PyZy Moore UFSM LuTert [ ®—» RG [£>l EMBer

Start
Clock T

Let the following condition take place:
Vo > 28R (N 4 Rp). (4.54)

In this case, both blocks EMBer1 and EMBer2 can be combined in a single block
EMBEer. It leads to the model PyZ, shown in Fig.4.12.

In PyZ, Moore UFSM, the set Z = Z' U Z2. The table of EMBer can be used for
implementing FSM logic circuits. Three different elements can be used for imple-
menting an FSM logic circuit, namely, LUTs, EMBs and PLAs. The PLA blocks can
be used, for example, for implementing logic circuit of EMBer in Py Y Moore FSM.
We do not discuss that issue in this Chapter.

4.4 Replacement of Logical Conditions

The replacement of logical conditions [3] is an universal method targeting the hard-
ware reduction of BIMF. It can be used in all UFSMs discussed in this Chapter. An
additional block of replacement of logical conditions (BRLC) should be introduced.
It implements the system (2.19). Of course, the terms of this system can be different
for different models of UFSMs. Existence of BRLC is devoted by the letter “M” in
the name of a model.
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Fig. 4.13 Structural diagram of MPY, Moore UFSM

Let us start from MPY, Moore UFSM. Let PLAs be used for implementing the
BRLC logic circuit. Let the following condition take place:

S>L+R. (4.55)

In this case, the following model of MPY, Moore UFSM is proposed (Fig. 4.13).

A block PLAer consists from PLA-cells. If the condition (4.55) is true, then only
one PLA is necessary to implement the PLAer. It implements the system (2.19). The
block LUTer1 implements the system

@, = P(T, Py). (4.56)
The block LUTer2 implements the system
¢2 = @2(7’, P2) (457)

The functions of EMBer are the same as for PY, Moore UFSM.
The proposed design method for MPY, Moore UFSM includes the following
steps:

Marking the initial GSA by states of Moore FSM.
Constructing the partition I14 for the set A.
Constructing the system B(A).

Executing the optimal state assignment.
Finding the sets I1gg, I17c and Z.
Replacing the logical conditions.
Constructing the table of PLAer.
Constructing the table of LUTerl.
Encoding the classes B; € I1c.
Constructing the table of LUTer2.

. Constructing the table of EMBer.

. Implementing the logic circuit of UFSM.

P NN R W=

[ S —
D= S0
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Table 4.16 Table of RLC for Moore UFSM MPY,(I5)

B; B B B3 By Bs Bs B7
P1 X2 - X2 - - X5 X2
P2 x| x3 x3 - x3 X6 x3
p3 - - X4 - - X4 X6

Let us discuss an example of synthesis for the Moore UFSM MPY, (I’s). The steps
from 1 to 5 are already executed. The following sets are found: A = {ay, ..., a4},
Iy = {By, ..., B7}, Bi = {a1}, By = {as, a1z}, B3 = {a11, a13, a1a}, B4 = {a3, ag},
Bs ={as, a4}, Bs ={az,as}, By ={ao,aw}, Ilgc = {B1, B2, B4, Bs}, Ilrc =
{B3, Bg, B7}. The optimal state codes can be taken from Fig.4.5.

Let us denote the set of logical conditions determining transitions from states
am € BiasX(B) (i=1,...,1).TheX(By) = {x3},X(B3) = {x2, x3, x4}, X (By) = 0,
X (Bs) = {x3}, X(Bg) = {x4, x5, X6}, X(B7) = {x2, X3, X¢}. Therefore, there is G = 3
and P = {py, p2, p3}. Let G| (G,) be the number of additional variables determining
transitions from the states for LUTerl1(LUTer2). In the discussed case, there are
G| =2 and G, = 3. It gives the sets X| = {x, xp, x3} and X, = {x2, x3, x4, X5, X6}

Let us place the conditions x; € X; only in the column py, p» of the table of
replacement of logical conditions. It leads to Table4.16.

The following equations can be derived from Table4.16:

p1 = (B1V B3V B7) V Bexs;
p2=Bix; Vv (B, VB3V BsV B7)x3 V Bgxg; (4.58)
p3 = (B3 V Be)xs V Byxe;

The system (4.57) is implemented using the PLAer. The terms from the system
(4.20) are used for representing the classes of PES in (4.57). So, Table 4.16 replaces
the table of PLAer.

The table of LUTerl has the same columns as its counterpart from the UFSM
PY,(I5). But the column X, is replaced by the column Pj, (Table4.17).

Let us use the same class codes for B; € I17¢ as it is for the UFSM PY,([5):
K(B3) =00, K(Bg) = 01 and K(B7) = 10. Now, the table of LUTer2 can be con-
structed. It includes the same columns as its counterpart for the UFSM PY,(I5). But
the column X}, is replaced by the column P}, (Table4.18).

The content of EMBer does not depend on outcome of RLC. So, this table is the
same as its counterpart for UFSM PY, (I5). We leave this task to a reader.

The functions (4.56) can be derived from Table 4.17. They have the same structure
as the functions from (4.23). But they depend on different product terms. For example,
there are the terms F; = T, T 7_"4p2, Fi =T, 7_"37_“4132 and so on. The same is true for
functions (4.57). They are derived from Table4.18 and have the same structure as
the functions of (4.24). But they include different product terms. For example, there
are the terms F, = 2122p1, F2 = Z1220p1p2, F3 = Z122p1P3, and so on.
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Table 4.17 Table of LUTerl for Moore UFSM MPY;(I'5)
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B; K(B;) as K(as) Py Dy, h
B 0*00 a) 1001 P2 DDy 1
az 0001 Pip2 Dy 2
as 0110 D12 D>rD3 3
B *110 ap 0000 P2 - 4
a 1010 P2 D D3 5
By 00*1 as 1111 1 D1D,D3Dy |6
Bs 10%*1 az 0001 P2 Dy 7
ag 1101 P2 D1D>Dy 8
Table 4.18 Table of LUTer2 for Moore UFSM MPY, (I5)
B; K (B as K(ay) Py, Py, h
B3 00 aq 1011 P1 D1D3Dy 1
a; 1000 Pip2 D 2
as 1011 P1P2p3 D3Dy 3
ais 0100 P1P203 D, 4
Be 01 ap 1001 3 DDy 5
ap 1100 P1p3 DD, 6
apn 1110 P1P2D3 DD1D3 7
a4 0101 Dp1D2p3 DDy 8
By 10 ar 0000 203 - 9
as 0001 DP2p3 Dy 10
apo 1010 P12 D1Ds3 11
apn 1110 P12 D1D>D>D3 |12
L
P, LUTer1
X ol PlAer |— EMBer |—1»
P>
LUTer2
—»

Fig. 4.14 Structural diagram of MPcY| Moore UFSM

Using the same approach, the following models can be proposed: MPcY
(Fig.4.14), MPcY, (Fig.4.15), MPcY; (Fig.4.16), MPyY (Fig.4.17) and MPyZ

(Fig.4.18).



4 Hardware Reduction for Moore UFSMs

p Y,
PLAer | —» LUTert [2—»lrG [ > EMBer |7
T Y
Start LUTer2
Clock
T
Fig. 4.15 Structural diagram of MPcY, Moore UFSM
L MX
P LUTer1 ®, >
W Y
X P >
S PLAer ® ol RG (Tl EMBer |,
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LUTer2 1= start LUTer3 —i
yi™| Clock Y

Fig. 4.16 Structural diagram of MPcY3 Moore UFSM

X o .
PLAer LUTer RG Y,
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Y Y
SMT
EMBer
Clock
[t
Fig. 4.17 Structural diagram of MPyY Moore UFSM
X ) P
PLAer LWTer (2= RG > EMBer! Yo
A
Start | EMBer2
Clock
T

Fig. 4.18 Structural diagram of MPyZ Moore UFSM

If functions P do not depend on the internal variables 7, € T, then the circuit of
PLAer can be optimized. To do it, we propose the method of optimal class assignment.
Let us encode the classes B; € I, as it is shown in Fig.4.19. For example, they can
be used in MPyY (I5).

Using these codes and the system (4.58), the following system can be obtained:

pP1 = T1X2 V TaT3Xs;
P2 = THhT3X1 V T3X3 V ThT3X6; (459)

p3 = (T1T2 V T2T3)X4 V TI T2 T3Xe.
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Fig. 4.19 Optimal class LT
codes for UFSM MPyY (I's) T~ 00 01 M 10

The system (4.58) includes 13 terms, whereas the system (4.59) only 8. It reduces

the requirements to the number of terms in PLA cells.
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Chapter 5
Hardware Reduction for Mealy UFSMs

Abstract The Chapter deals with optimization of logic circuits of hybrid FPGA-
based Mealy FSMs. First of all, the models with two state registers are discussed.
This approach allows removal of direct dependence among logical conditions and
output functions of Mealy FSM. Next, the proposed design methods are presented.
Some improvements are proposed for further hardware reduction. They are based on
the special state assignment and transformation of state codes. The proposed methods
target joint using such blocks as LUTs, PLAs and EMBs in FSM circuits. The models
are discussed based on the principle of object transformation. The last part of the
chapter is connected with design methods connected with the object transformation.

5.1 Models with Two State Registers

The hardware reduction for the circuit of BMO is connected with encoding of the
collections of microoperations Y, C Y [4, 5]. It means that some additional variables
are necessary for the encoding. To generate the variables, some resources of FPGA
are used. These variables can be eliminated due to using two state registers in Mealy
UFSM [3]. Let us discuss this approach.

Let Afn (A?) be a conjunction corresponding to the code K (a,,) (the code K (ay))
for the current state (state of transition) from the /-th row of a structure table. Let us

represent the term Fj, corresponding to the /-th row of ST in the following form:
Fy=A"A" (h=1,..., H). (5.1)

The conjunction A" includes the internal variables 7, € T. Obviously, the conjunc-
tion Ai’ should include some other variables different from 7, € T. Otherwise, all
terms (5.1) are equal to zeros.

Let us use the register RG; to keep the state codes K (a,,) for current states of
UFSM. These states are represented by the state variables 7, € T. Let us use the
register RG, to keep the state codes K (a,) for states of transition. Let these states
be represented by the additional state variables 7. € T. Both registers include Ry
flip-flops. Let us use D flip-flops for implementation both registers RG; and RG,.
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X,
BIME |2 RG1 [T > RG2[ "> BMO —'»
A A
Start Start
Clock Clock

Fig. 5.1 Structural diagram of PrY Mealy UFSM

Let us use the symbol PrY to denote those Mealy UFSMs. The structural diagram
of Mealy UFSM based on (5.1) is shown in Fig.5.1.

In PRY UFSM, the BIMF implements the system (2.9) depending on the terms
(2.11). The BMO implements the microoperations y, € Y represented by the fol-
lowing system:

Y=Y(T,71). (5.2)

The terms of (5.2) are represented in the form (5.1). The conjunction A,’; is repre-
sented in the form (2.12). The conjunction A" is represented in the following form:

Ro
Al = N\l (5.3)
r

In (5.3), the symbol /,;, stands for the value of the r-th bit of the code K (ay):
Ly € {0, 1}, T,O =T, 7',1 =71 (r =1,..., Ry). The PrY UFSM operates in the
following manner. If Start=1, then the zero codes are loaded into both registers.
In the instant ¢ (t = 1,2, ...) there is a code K (a,,) in RG; and code K (ay) in
RG,. The BIMF generates functions D, € @ corresponding to transition number
h (1,..., Hy). Using the pulse Clock, the code of the state of transition is loaded
into RG;. At the same time the code of the current state is loaded into RG,. Now,
the BMO generates the microoperations (5.2). The operation continues till the code
K (ay) is loaded into RG;.

Table 5.1 Structure table for Mealy FSM P(I"7)

am K (am) as K (as) Xn Y Py h
ap 00 a 01 X1 yiy2 D 1

az 10 X1 A2 D, 2
ap 01 a 01 X2 V3 D> 3

as 11 X2 yiy2 DD, 4
as 10 as 11 1 Y3 Y4 DD, 5
ay 11 ap 00 1 V2 - 6
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Let us discuss an example of design for the UFSM PrY (I'7) represented by
Table5.1. As follows from the table, there are A = {ay, ..., a4}, My = 4, Ry = 2,
X={x,xhLY={,....,nu}, T ={T1, L}, 7 ={n, n}

The input memory functions D, € @ are determined by the following terms:
Fy = T\Thx,, F, = T,T»%;, and so on. The terms (5.1) are determined as the
following:

F) = AyA, = T\ )R T,
= A3A| = Ti L7172 (5.4)

F6 = A1A4 = T1T2T1T2.

Now, there is the function y; = F Y% F4. Using terms (5.4), the following Boolean
equation can be found .
yi = T1T27_'1’7_'2VT1T27_'1T2. (55)

Similar equations can be obtained for all functions y, € Y.
This method can be used only if the variables F;, (h =1, ..., Hp) are orthogonal.
It corresponds to the following conditions:

Hy

\ Bn=1 (5.6)
=1

FFy=0 (i#j. i.jef{l,....H)).

If conditions (5.6) are violated, then the behaviour of Pr Y Mealy UFSM differs
from the behaviour of the equivalent P Mealy FSM. Let us show it.

Let the following relations take places: F; = F;, Y; # Y;. Hear Y is a collection
of microoperations written in the row number £ of ST Of course, the equality F; = F
is possible if and only if there the equalities A}, = = A}, and Al = AJ. Tt means that
there are the same current states (states of transmons) for the rows i and j. The output
functions y, = Y; U Y; are generated if any of transitions i or j is executed. Let us
denote as A(a,,) the set of states of transition for the current state of FSM. Let H,, be
the number of transitions from the state a,, € Aq. Let us treat the transitions {(a,,, a)
as a single transition if the same microoperations are generated for each transition.
Let the following condition take place:

|Aam)| = Hy (m=1,..., M. (5.7)

In this case, a P Mealy FSM can be represented by the model of PR Y UFSM. If the
condition (5.7) is violated, then the laws of behaviour are different for these models.

Let us analyze the structure table of Mealy FSM P(I's) represented by Table 5.2.
Let ST,, be a subtable of a structure table describing transitions from the state a,, € A.
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Table 5.2 Structure table for Mealy FSM P(I'g)

an K(an) as K (as) Xn Yy Dy h
ap 000 ar 001 X1 yiy2 D3 1
a 001 k9 3 Ds 2
ap 001 as 010 X2 y4ys D> 3
as 011 X2x3 23 Dy D; 4
a 001 X2X3 V3 D3 5
a3 010 ay 011 1 Y23 D, D3 6
ay 011 as 100 x2 Y15 D 7
as 100 X2X4 3 D, 8
ar 001 Xo¥y yiy2 D3 9
as 100 aj 000 1 Y6 - 10

An analysis of Table 5.2 shows that the condition (5.7) is violated for states a; and ay.
Let us start from the subtable S7;. There are the same states of transitions in the rows
1 and 2. So, there is H; = 1, but is should be equal 2. The microoperations y;, y, and
y3 are generated for the transition number 1, as well as for transition numer 2. There
are H, = 3, H; = 1 and Hs = 1. But in the case of STy, there is Hy = 2. There
are three transitions from the state a4 € A. Therefore, the condition (5.7) is violated.
For both transitions from a4 to as, three microoperations are generated (y;, y3, ys).
Of course, it does not true for Table 5.2.

To satisfy (5.7), the initial ST should be transformed. The transformation should
be executed in such a manner that the condition (5.7) is true for any subtable of the
transformed ST. The following approach is proposed for the transformation:

1. Letus analyse the subtable ST,, (m =1, ..., My). Let a state a; appear I times
in the column a; of this subtable. Let us form the set B;" corresponding to this
situation, where B" = {a!, ..., al}.

2. Lt us construct the sets B; = U,A,:I“:l These sets corresponds to the states a; € A.

3. Let us analyze the rows of subtable S7,, (m = 1,..., My). Let the state ay is
written in the rows 7 and j of the S7,,. Let it be ¥; = Y;. In this case, the state
a, is replaced by a single element of B;. Otherwise, it is replaced by the different
elements of B;.

4. The subtable STs (s =1, ..., Mp) is repeated Is = | B| times. A subtable STX"
includes all rows from the ST but the initial state a, ir replaced by the state
a; € By.

In the case of P(I'g), the following sets can be formed: B; = {al}, B, = {a}, a3},
By = {a}}, By = {a}} and Bs = {al, a?}. It leads to the following set A, for the
PrY(Tg): Ag = {all, azl, a%, aé, ai, ajl, a52}. Let us encode the states a,, € Ao by
binary codes K (a,,) having R, bits, where

R4 = [log, |Aol]. (5.8)
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Table 5.3 Table of Mealy UFSM PR Y (I's)

am K(am) ds K (ay) Xp Yy P h
al 000 al 001 x1 yiy2 D3 1
as 010 X1 v3 D> 2
al 001 al o011 x2 Vays DyD;3 3
ai 100 X2X3 23 D 4
a21 001 X2X3 V3 D3 5
a3 010 al o011 x2 Vays DyD;3 6
ai 100 X2X3 233 D, 7
a21 001 X2X3 V3 D3 8
al o011 al 100 1 y2y3 D 9
a} 100 al 101 X2 V15 D D3 10
ag 110 X2X4 V3 DD, 11
al 001 XoX4 yiy2 D3 12
al 101 al 000 1 ¥6 - 13
a2 110 al 000 1 6 - 14

In the discussed case, there is R4 = 3. Let us encode the states a,, € Ag in the
following way: K(a,l) = 000, K(all) =001,..., K(a?) = 110. It leads to the table
of Mealy UFSM PrY (I'g) having 14 rows (Table5.3).

Analysis of Table5.3 shows that the condition (5.7) takes place for all states
a, € Ap. But the transformed table includes more rows than the initial structure
table. In the common case, there are H (PrY) rows in the transformed table:

My
H(PRY) = Z H,I, = Hy+ AH. (5.9)

m=1
The value AH determines the number of added rows:
My
AH =" Hy(l, — 1). (5.10)
m=1

If AH > 0, then the number of terms in the system (5.4) is increased in comparison
with Hj. Also, it can result in the relation

RA > Ro. (511)

It results in increasing for the hardware amount in the circuit of PrY FSM. All
these drawbacks can lead to situation when the hardware amount is higher in PR Y (I")
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in comparison with the equivalent Mealy FSM P (I"). Let us discuss the ways lead-
ing to deceasing for hardware amount in logic circuits of PR Y Mealy UFSMs. We
consider the case of hybrid FPGAs.

5.2 Optimization of UFSMs with Two Registers

Two different methods can be used for optimization of PRY UFSMs:

1. Special state assignment.
2. Transformation of state codes.

Let us consider these methods.

Special state assignment. Analysis of subtables ST, and ST} (Table5.3) shows
that the contents of columns a; — @, coincide for rows 3 and 6, 4 and 7, and 5 and
8, respectively. The following formulae can be derived from theses subtables:

Dy = (A} v AD)ipxs;
Dy = (A} v Ad)xy; (5.12)

D3 = (A} vV A (x2 V Tak3).

All terms of (5.12) include the same part, namely, A% \Y A%.

Let H(ay) be a set of rows of transformed ST from a subtable ST (i =
1, ..., Iy). Using this set, the following formulae can be obtained for input memory
functions from subtables ST::

D,= \/ CudXy (r=1.....R). (5.13)
heH (ag)

In (5.13), the member A is determined as A; = \/il‘=1 A§ To optimize functions
(5.13), it is necessary to encode the states a’ so that the disjunction A; includes the
minimum number of terms. For example, let us encode the states a} and a3 in the
following way: K(azl) =001, K(a%) = 101. It leads to the equality A, = T, T;. In
turn, it results in the following form for the system (5.12):

Dy = Ty T33x3;
D2 = TQT3)C2; (514)
D; = T2T3x2 \% T2T3)EQX3.
Comparison of (5.12) and (5.14) shows that the number of terms decreases in two
times. Let us name this style of state assignment a special state assignment. Let us use

the symbol ProY for Mealy FSM with the special state assignment. The following
method is proposed for synthesis of Pro Y Mealy UFSM:
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X
) T t Y
LUTer > RG1 > RG2 > PLAer —»
A A
Start Start
Clock Clock

Fig. 5.2 Structural diagram of HFPGA-based Pro Y Mealy UFSM

Fig. 5.3 Outcome of special T,T,
state assignment for Mealy T, 00 01 11 10
UFSM ProY (I'g) N -

0 ai |/aii|fali|/al;

1. Constructing the partition [74 = {Bj, ..., By}, where B,, = {a),, ..., al}.
2. Executing the special state assignment.

3. Constructing the transformed structure table of ProY Mealy UFSM.

4. Constructing the table of BMO.

5. Deriving functions @ = & (T, X) and Y = (T, 7).

6. Implementing UFSM logic circuit using resources of a particular FPGA chip.

Let us discuss an example of design for the Mealy UFSM Pro Y (I'g). Let us point
out that in the case of hybrid FPGAs, the BIMF is implemented with LUTs and BMO
is implemented with PLAs Fig.5.2.

The following partition /74 can be found for the Mealy UFSM ProY (I's): I1, =
{Bi, ..., Bs},where B; = {a{}, B, = {azl, a%}, B; = {a31}, By = {a}‘}, Bs = {as1 a52}.
The algorithm JEDI [1] can be used for the special state assignment. One of the
variants is shown in Fig.5.3.

It can be found from the Karnaugh map (Fig.5.3) that K (B;) = 000, K (B;) =
%00, K (B3) = 100, K (B4) = %11 and K (Bs) = *10.

To form the table of LUTer (the table of BIMF), it is necessary to form a system
of formulae of transitions. In the discussed case, it is the following system:

B, = xlazl \% )Elag;

B, = )C2a31 Vv )22)63614{ \ )22)77361%;

B3 = ai; (5.15)
By = )C2a51 \ )EQX4CZ§ \% )22)24612];

Bs = all;

There are 10 rows in the table of LUTer (Table 5.4). This number coincides with
the number of rows in the initial table of Mealy UFSM (Table 5.2).
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Table 5.4 Table of LUTer for Mealy UFSM ProY (I's)

By, K(Bn) |d K (a) X, Y @y, h
B 000 al 001 X1 yiy2 Ds 1
a% 101 X1 V3 D1 D3 2
B> #01 al 100 x2 V4y5 Dy 3
(li 011 )E2X3 y2y3 D2 D3 4
a21 001 X2X3 V3 D3 5
B3 100 al 011 1 y2)3 Dy Ds 6
By *11 al 010 X2 VY5 D 7
ag 110 X2 X4 V3 DD, 8
al 001 XoX4 yiy2 D3 9
Bs *10 al 000 1 6 - 10

The table of LUTer is used for deriving the system of input memory functions. In
the discussed case, the following minimized system & can be found:

D, = T]sz}f] \ T2T3 V ThT5Xx4;
D, = T2T3)2'2)C3 v T T2T3 VT Txy vV ThTsxy; (5.16)
D; = T2T3 \% T2T3)EZ V T T3x2X4.
The table of BMO (Table of PLAer) has the following columns: K (ay), K (B,,),
Xy, h. It is constructed on the base of the table of LUTer. In the discussed case this

table includes 10 rows (Table 5.5). This table is used to construct the system (5.2).
For example, the following Boolean equation can be derived from Table5.5:

V5 = T, T2T37_'27'3 \ T] T2T3T2T3. (517)

Let s, t, g be the number of inputs, outputs and product terms of PLA macrocell,
respectively. The discussed method has sense if the following condition takes place:

S > 2R4. (5.18)
If the condition (5.18) is violated, then the multilevel circuit of PLAer should
be implemented [4]. It results in very slow and hardware redundant circuit of the

PLAer [3].
Let the following conditions take places:

t>N; (5.19)
q = Hpo. (5.20)

In (5.20), the symbol Hgg stands for the number of rows in the table of LUTer.
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Table 5.5 Table of PLAer for Mealy UFSM Pro Y (I's)

K (as) K(Bn) Y h
' I, Ts TITAT3 Yi---Y6 h
001 000 110000 1
101 000 001000 2
100 *01 000110 3
011 *01 011000 4
001 *01 001000 5
011 100 011000 6
010 *11 100010 7
110 *11 001000 8
001 *11 110000 9
000 *10 000001 10
Fig. 5.4 Implementing t
PLAer with expansion of
outputs ‘ T
A i vy
PLA, e PLA

" "

If conditions (5.18)—(5.20) take places, then the block of PLAer is implemented
using only a single PLA macrocell. In the discussed case, the following conditions
should be true: S > 6,1 > 6 and ¢ > 10. If the condition (5.19) is violated, then ny
PLA macrocells are necessary:

ny = (N/t). (5.21)

In this case, “the expansion of outputs” is executed [4].

It leads to the following circuit (Fig.5.4).

Eachset Y/(j =1, ..., ny) can be viewed as a single block of the partition ITy
of the set Y. Let it be r = 3. In the discussed case, the following partition I7y can be
found: ITy = {Y', Y2}, where Y' = {y1, y2, y3}, Y* = {ya4. y5. Yo}

Let the conditions (5.18)—(5.19) take places and let the condition (5.20) be vio-
lated. In this case, “the expansion of terms” [4] should be executed. We do not discuss
this case in our book. The possible solutions can be found in [4].

Transformation of state codes. It is quite possible a situation when the special
state assignment cannot decrease the number of rows in the table of PrY UFSM.
In this case, we propose to introduce a special code transformer. It executes the
transformation of state codes for states a, € B,, into class codes. It allows providing
the following features:
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- .

LUTer > RG1 T EMBer z » RG2 L PLAer ——>
Start Start
Clock Clock

Fig. 5.5 Structural diagram of PRgY Mealy UFSM

A\

1. Decreasing the number of terms in the system @ up to Hy, as well as the number
of terms in the system Y.
2. Decreasing the number of inputs of LUTer up to L + Ry.

Let us encode each class B,, € Il by the binary code K (B,,) having Ry bits. Let
us use the variables z, € Z for the class encoding, where |Z| = Ry. It leads to the
PreY Mealy UFSM (Fig.5.5).
In PrgY Mealy UFSM, the LUTer implements the system of input memory func-
tions
O =0(Z,X). (5.22)

The EMBer implements the system
Z=Z(). (5.23)

The system (5.23) can be implemented using a single EMB if the following condition
takes place:
Vo > Ry - 2R4. (5.24)

The Prg Y UFSM operates in the following manner. In the beginning of each cycle,
the RG1 contains a code of the current state a’, € B,,. The EMBer transforms this
code into the code K (B,,). Using the pulse Clock, this code is loaded into RG2. At the
same time, the code K (ag') is loaded into RG1, where a§ € A is a state of transition.
The PLAer generates the microoperations y, € Y represented by the system (5.2).
The operation is continued till the code K (a;) is loaded into RGI.

There are the following steps in the proposed method of synthesis for PR Y Mealy
UFSM:

1. Constructing the table of transitions for Pk Y Mealy UFSM and finding the par-
tition I7,.

Encoding the classes B,, € I1, using variables z, € Z.

Constructing the table of LUTer.

Constructing the table of EMBer.

Constructing the table of PLAer.

Implementing the logic circuit of PrgY Mealy UFSM.

SNk wN
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Table 5.6 Table of LUTer for Mealy UFSM PrgpY (I'g)

B K(Bn) |d K(al) X Y Py h
B 000 al 001 X1 yiy2 Ds 1
as 010 X1 3 D, 2
B; *01 a31 011 X2 y4ys D> Ds 3
al 100 X3 23 D 4
al 001 X3 3 D3 5
B3 *01 al 100 1 y2y3 D, 6
By *11 al 101 x2 yiys D, D3 7
ag 110 X2 X4 V3 DD, 8
al 001 Koy y1y2 D3 9
Bs 1 al 000 1 ¥6 - 10

Let us discuss an example of desing for Mealy UFSM Pre Y (I'g). The partition 74
is constructed before. It includes the classes By = {al}, B, = {a}, a3}, B; = {ai},
B, = {ai} and Bs = {a51, ag}. In the discussed case, there is Ry = 3, therefore,
there is the set Z = {zi, 22, z3}. Let us encode the classes in the following way:
K(B;) = 000, ..., K(Bs) = 100. Let the states afn € A are encoded in the same
way as it is shown in Table 5.3.

The table of LUTer (Table 5.6) is constructed on the base of the system (5.15). It
is similar to Table 5.4.

Let us point out that some positions in the codes K (B,,) include the signs “*”.
It is obtained taking into account the unused input assignments of variables z, € Z.
There are three unused codes: 101, 110 and 111.

The table of LUTer is used for constructing the system (5.22). For example, the
following Boolean function can be derived from Table 5.6:

Dy = 712273X1 V 2223X2 V 2223X2X4. (5.25)

The table of EMBer includes the columns a! , B,,, K (a!,), K (B,,), m. The column
K (B,,) contains an address of the cell, whereas the column K (B,,) determines its
content. It is Table 5.7 in the case of Mealy UFSM PreY (I'g).

Of course, it is possible to use LUTs for implementing the system (5.23). In the
discussed case, the following functions can be obtained:

21 =TT v T
2 ="D0Tv LT (5.26)
z3=T10LT Vv 1 T

The table of PLAer is practically the same for Mealy UFSM ProY (I') and
PreY (I'). We do not show this table for the Mealy UFSM PreY (I's). Now, let us
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Table 5.7 Table of EMBer for Mealy UFSM PrgY (I's)

al, B K(al,) K (Bw) m
LAYbYE] 712223
al B 000 000 1
al B> 001 001 2
a3 B> 010 001 3
al Bs 011 010 4
a} By 100 011 5
al Bs 101 100 6
a2 Bs 110 100 7
Fig. 5.6 Outcome of special I,T,
state assignment TN_00 01 11 10
0| ai | a; |3 | &

discuss the following example. Let it be the following partition I74 = {By, ..., B4},
where By = {al}, B, = {al, a2, a3}, Bs = {al}, By = {a}, a3, a}}. Letitbe H; =2,
H, = 6, H; = 3 and Hy; = 7. The transformed table of PrY UFSM includes 44
rows. (It can be calculated using (5.8)). Hence, the system (5.2) includes 44 terms.

Let us use the special state assignment (Fig. 5.6).

As follows from Fig. 5.6, the class B, is represented by the codes 0*1 and 01%,
whereas the class B4 by the codes 11* and 1*¥1. So, the table of LUTer includes 31
rows for the case of ProY Mealy UFSM.

Because of I = 4, there is R4 = 2. It means that the condition (5.11) takes place.
If the model of PrgY Mealy UFSM is used, then the table of LUTer contains only
Hy = 18 rows. At the same time, there is a decreasing for the number of inputs of
LUTer. So, the code transformation is the most efficient if the condition (5.11) takes
place.

5.3 Principle of Object Code Transformation

As it was mentioned before, the hardware reduction for FSM logic circuit is con-
nected with the structural decomposition, which in turn is connected with increase
for the number of levels in the FSM model. To optimize the hardware amount in
block BMO, it is necessary to generate some additional variables for encoding of
microoperations (or collections of microoperations). The methods discussed in this
Chapter are taken from [2]. These methods are based on one-to-one match among
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X
L
BME 2 » RG —» BTMS |~ » BMO |'»
i A
Start
Clock

Fig. 5.7 Structural diagram of Mealy FSM1

X () z Y
BIMF > RG > BMO —>
> y
]
Start BTMS
Clock ‘T

Fig. 5.8 Structural diagram of Mealy FSM2

collections of microoperations and states. There are two objects of FSM, namely, its
internal states a,, € A and collections of microoperations ¥; C Y. Let us point out
that states and collections of microoperations are heterogeneous objects respectively
each other, whereas different states, for example, are the homogenous objects re-
spectively each other. The optimization methods discussed in this Chapter are based
on identification of one-to-one match among heterogeneous objects. If this match
is found, then the block BIMF generates only codes for one object (which is a pri-
mary object), while a special code transformer generates the codes of another object
(which is a secondary object). Let us name these approaches as the methods of object
code transformation (OCT).

Let us find a one-to-one match A — Y among the states as primary objects and
the microoperations as secondary objects. In this case, the block BIMF generates
the state variables 7, € T = {T1, ..., Tg} to encode the states, whereas a special
state code transformer block BTSM generates variables z, € Z used for encoding of
collections of microoperations. The structural diagram of Mealy FSM based on this
principle is shown in Fig. 5.7. Let the symbol PC, Y stand for this model if collections
of microoperations are encoded, whereas the symbol PC,D stands for encoding of
the classes of compatible microoperations. Let us name such models as FSM1.

Let us find a one-to-one match ¥ — A among the microoperations as primary
objects and the states as secondary objects. In this case, the block BIMF generates
variables z, € Z, whereas a special microoperation code transformer block BTMS
generates state variables 7, € T. This approach results in the models of FSM2, de-
noted as PCyY (if collections of microoperations are encoded) or as PCyD (if classes
of compatible microoperations are encoded). Their structural diagram is shown in
Fig.5.8.
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: ) v > z Y
LUTer > RG |T | PLAer » EMBer —»
Y
Start
Clock

Fig. 5.9 FPGA-based model of Mealy FSM1

s ® /A - y
LUTer > RG [V "| EMBer —
> ‘ IR
Start PLAer
Clock T

Fig. 5.10 FPGA-based model of Mealy FSM2

These models correspond to cases when an FSM has the same numbers of states
and collections of microoperations. If this condition is violated, then some additional
identifiers should be used belonging to a set of identifiers V. In common case, the
block BIMF generates variables 7' and V (Fig.5.9) or variables Z and V (Fig.5.10).
All these variables are the outputs of the register RG.

When FPGA s are used for implementing these FSMs, the BIMF is implemented
as LUTer, the BMO as EMBer. Blocks BTSM and BTMS can be implemented using
either EMBs or PLAs. The second case is represented by the structural diagrams
shown in Figs.5.9 and 5.10.

Of course, the EMBer can be absent. It is possible in the case of unitary encoding
of microoperations. In this case, microoperations y, € Y are the output of RG, as
well as the additional variables v, € V.

Thus, in common case the number of bits in the register RG for Mealy FSM
with object code transformation exceeds this number for equivalent PY or PD Mealy
FSM. Obviously, the proposed approach can be applied only when the total hardware
amount for blocks BIMF and BTSM (BTMS) is less, than the hardware amount for
block BIMF of PY (PD) Mealy FSM. The same approach can be applied for Moore
FSM but it is out the scope of this book.
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5.4 Design of Mealy FSM1 with OCT

Let the Mealy FSM P(I'y) be specified by its structure table (Table5.8). Consider
logic synthesis for models of PCAY, PCsD, PCyY, and PCyD Mealy FSM, based

on

the Mealy FSM
The following procedure is proposed for logic synthesis of Mealy FSM1:

. One-to-one identification of collections of microoperations. Let Y (a;) be a

set of collections of microoperations generated under transitions into the state
a; € A, where ny; = |T(a,)|. In this case, it is necessary n, identifiers for one-
to-one identifications of collections Y; C Y (a,). In common case, it is enough
K =max(ny, ..., ny) identifiers for one-to-one identification of all collections
Y, C Y, these identifiers form the set I = {I;, ..., Ix}. Let us encode each iden-
tifier Ix € I by a binary code K (Ix) having Ry = [log, K] bits. Let us use the
variables v, € V = {vy, ..., vgy} for encoding of the identifiers.

Let each collection Y; € (ay) correspond to the pair 8 = (i, a;) where I € I.
Of course, an identifier I, € I should be different for different collections. In
this case, a code K (I) of the set ¥, € Y(ay) is determined by the following
concatenation:

K(Y;) = K(I}) * K (ay). 5.27)

In (5.27) the symbol * stands for the concatenation of these codes.

. Encoding of collections of microoperations. If the method of maximal encoding

of collections of microoperations is applied, then let a collection ¥; C Y be
determined by a binary code C(Y;) having Q = [log, Ty] bits, where T is the
number of collections. If the method of encoding of the classes of compatible

Table 5.8 Structure table of Mealy FSM 9

an K(ap) as K (ay) Xn Yy Dy h
ap 000 an 010 X1 yiy2 D1 D> 1
a3 011 ¥ 3 Dj 2
a 010 a; 010 x2 y1y2 D, 3
as 011 )EQX3 Y4 D2 4
as 100 X2X3 yiy2 Dy D3 5
a3 011 as 100 X1 Y25 D, 6
as 101 X1 Y6 D1 Ds 7
ay 100 as 101 1 V3y7 D D3 8
as 101 a 010 X2X3 yiy2 D, 9
as 011 X2X3 3 Dy D5 10
as 101 X2 X4 y3y7 DD 11
aj 000 X2X4 - - 12
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microoperations is used, then any collection Y; is represented as the following
vector:

Yt:<y[lvytzv"'1yzj>' (528)

In (5.28), the symbol J stands for the number of the classes of compatible mi-
crooperations, whereas the symbol y; denotes microoperation y, € Y;, belonged
to the class j of compatible microoperations (j = 1, ..., J). Therefore, a code
of collection of mircrooperations Y, is represented as a concatenation of micro-
operation codes.

3. Construction of transformed structure table. For FSM1, the transformed ST
is used to generate input memory functions @ and additional functions of iden-
tification V. These systems depend on the same terms and are represented as the
following:

H

@:ch%M(Hﬂwwm, (5.29)
h=1
H

v =\/ ChALX, (r=1.....Ry). (5.30)

=
Il

Obviously, to represent system (5.30) the column Y}, of initial ST should be
replaced by columns: 7, is an identifier of the collection Y}, from pair f5; 5 K (I1,)
is a code of identifier I;; V), are variables v, € V, equal to 1in the code K (I},).

4. Specification of block BTSM. The block BTSM generates variables z, € Z
represented as the following functions

Z=2Z(V,T). (5.31)

To construct system (5.31), it is necessary to built a table with columns ay, K (ay),
I, K(Ix), Yu, Zp, h. The table includes all pairs 3, ;, determined the collection Y7,
next all pairs determined the collection Y5, and so on. The number of their rows
(Hp) is determined as a result of summation for numbers ny(S =1, ..., M). The
column of the table includes variables z, € Z, equal to 1in the code K (Y}). The
system (5.31) can be represented as the following:

Hy

2=\ CauXsAl (g=1,....0). (5.32)
h=1

In (5.32) the symbol Vj, stands for conjunction of variables v, € V, corresponded
to the code K (I;) of identifier from the row & of this table.

5. Specification of block for generation of microoperations. This step is executed
in the same manner, as it is done for PY or PD Mealy FSMs.
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X v
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Fig. 5.11 Structural diagram of PCA Y Mealy FSM

6. Synthesis of FSM logic circuit. For the Mealy FSM1, there is no need in keeping
codes of identifiers in the register RG. Therefore, these FSM models should be
refined. The structural diagram of PC5Y Mealy FSM is shown in Fig.5.11. It is
the same as the structural diagram PC,D Mealy FSM. In both cases, the block
BIMF implements functions (5.29)—(5.30), the block BTSM generates functions
(5.31), block BMO implements microoperations ¥ = Y (Z).

In Table 5.8 there are the following collections of microoperations Y| = @, ¥, =
.nb =L Ya={n), Ys=1{},Ys={Ys}, Y7 = {7}, To =T7.

Let us consider an example of logic synthesis for the PCoY (I'y) Mealy FSM.
The following sets can be derived from Table5.8: Y(a;) = {Y1}, Y(an) = {Y»},
Y((l3) = {Y3, Y4}, Y((l4) = {Yz, Y5}, Y((l5) = {Y(), Y7} It giVCS the value K = 2.
Thus, it is enough two identifiers creating the set I = {I;, I,}; they can be encoded
using Ry = 1 variables from the set V = {v;}. Let K({/;) = 0, K(») = 1,
then the following codes can be obtained using formula (5.27): K(Y;) = *000,
K(Yzl) = %010, K(Yzz) = 0100, K(Y3) = 0011, K(Y4) = 1011, K(Y5) = 1100,
K (Ys) = 0101 and K (Y7) = 1101. This example shows that there are m, different
codes determined a collection Y; C Y if this collection belongs to m, different sets
Y (ay). For example, for the collection ¥, € Y (ay) N Y (a;) we have m, = 2, thus the
collection Y, corresponds to codes K (Yzl) and K (Yzz).

There are Ty, = 7 different collections, thus Ry = 3 and Z = {zi, 22, 23}. Let
the collections ¥; C Y be encoded in the following way: K (Y;) = 000, K(Y,) =
001, ..., K(Y7) = 110. The transformed structure table (Table 5.9) should be con-
structed to find functions (5.29)—(5.30).

If the condition n; = 1 takes place for some collection ¥; € Y (a;), then there is no
need in identifier code for this collection. This situation is marked by the symbol “-”
in the corresponding row of transformed structure table. As it was mentioned, we can
derive systems (5.29)—(5.30) from Table 5.9. For example, the following SOPs can be
found: vy = F4V F5V FgV Fi1 = AyXox3V Azxs V... = Tl T2T3)EQX3 \ T] T Tsx4 v
s Dy =F V3V, FV Fig=A1Xx1VAX, V... = T2T3)C2VT1T2T3XZ....
Both systems are irregular, thus they are implemented using LUTs.

Table 5.10 specifies the block BTMS; it includes Hy = 8 rows. This number is
equal to the outcome of summation for the numbers n,(S = 1,...,5). System is
irregular and it is implemented using PLAs. For example, the SOP z; = Fs Vv F; Vv
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Table 5.9 Transformed structure table of PCAY (I'g) Mealy FSM

Am K(am) |as K (as) X I K (1) Vi D), h
ap 000 a 010 X1 - — — DD, 1
as 011 X1 I 0 — D3 2
ap 010 a 010 X2 - — — D> 3
as 011 i2x3 [2 1 V1 D2 4
aq 100 X2X3 I 0 — D1 D3 5
as 011 aq 100 X1 I 1 V1 D 6
as 101 X1 I 0 - D1 D3 7
aq 100 as 101 1 I 1 V] D D3 8
as 101 a 010 X2X3 - - - Dy 9
as 011 X2X3 I 0 - D>,D3 |10
as 101 XoX4 I 1 V] D D3 11
ap 000 XoX4 - - - - 12

Table 5.10 Specification of block BTSM of Mealy PCA Y (I'9) FSM

as K (ay) Iy, K (1) Yy Zn h
ap 000 — - Y - 1
ap 010 — — Y> z3 2
a3 011 I 0 Y3 22 3
az 011 I 1 Yy 2223 4
as 100 I 0 Y Z3 5
ag 100 I 1 Ys 21 6
as 101 I 0 Yo 2123 7
as 101 I 1 Y7 2122 8

Fs = Asvi VAsv =T T2T3v1 v T T2T3131 VT, T30, vT T2T3 V v can be derived
from the table specified the block BTSM in our example.

The block BMO is specified by the table of microoperations. For the PCAY (I'g)
Mealy FSM, this table includes T, = 8 rows (Table5.11). Let us point out that codes
C(Y;) are used as codes of collections Y;.

Let us consider an example of the logic synthesis for the Mealy FSM PC, D (I'y).
Obviously, the outcome of one-to-one identification is the same for equivalent
PC,Yand PCyDMealy FSMs. To encode the collections of microoperations, it is
necessary to find the partition [Ty of the set of microoperations Y by the classes of
pseudoequivalent microoperations. For the discussed example, the following parti-
tion ITy = {Y', Y?} with two classes can be found, where Y' = {y1, v, y4, ¥s},
Y, = {y2, ys, ¥7}. It is enough Q; = 3 variables to encode the microoperations
yn € Y1, and Q, = 2 variables for the microoperations y, € Y,. It means that there
is the set Z = {zi, ..., zs}, its cardinality is found as Q = Q; + Q> = 5. Let
us encode microoperations y, € Y in the way shown in Table5.12. It leads to the
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Table 5.11 Specification of

microoperations of i C¥r) 12 0T
PCAY (T'9) Mealy FSM Yi 000 0000000
Y2 001 1100000
Y3 010 0010000
Y4 011 0001000
Ys 100 0100100
Ys 101 0000010
Y, 110 0010001
Table 5.12 Codes of microoperations for Mealy FSM PCAD (I'g)
! K() Y? K(Y2)
212223 2425
1 001 2 01
¥3 010 Y6 10
Yya 011 7 11
¥s 100 - -

Table 5.13 Codes of collections of microoperations for Mealy FSM PCAD (I'g)

t y! c(Yy) t y? C(Yy)
1 ] 00000 5 y2ys 10001
2 yiy2 00101 6 Y6 00010
3 3 01000 7 y3y7 01011
4 V4 01100
Table 5.14 Specification of block BTSM Mealy FSM PCAD (I'y)
ay K (ay) I K(Iy) Yy Zn h
ai 000 - - Y - 1
an 010 - - Y 2325 2
as 011 I 0 Y3 22 3
a3 011 I 1 Yy 72223 4
a4 100 I 0 Y, 2325 5
as 100 b 1 Y5 7125 6
as 101 I 0 Ys 2124 7
as 101 L 1 Y; 212425 8




114 5 Hardware Reduction for Mealy UFSMs

codes C(Y;) of collections Y; € ¥ shown in Table 5.13. Let us point out that if some
microoperation y; ¢ Y, then the field j of code C(Y;) contains only zeros.

The transformed structure table of Mealy FSM PCoD(I'y) is identical to Table 5.9.
The table specifying the block BTSM for both models is constructed in the same
way. As a rule, this table for PCoD Mealy FSM includes more variables z, € Z
(Table 5.14 in our example), than its counterpart for PC, Y Mealy FSM.

There is no need in a table specifying microoperations, because Table 5.12 contains
inputs and outputs for decoders of the block BMO.

5.5 Design of Mealy FSM2 with OCT

The following procedure is proposed to design a Mealy FSM2:

1. One-to-one identification of states. Let A(Y;) be a set of states, such that a
collection ¥; C Y is generated under some transitions in these states, and let
m; = |A(Y;)|. Inthis case, itis enough m;, identifiers for one-to-one identifications
of the states a,, € A(Y;). It is necessary K = max(m, ..., mr) variables for
one-to-one identification of the states a,, € A. Let these identifiers form a set /.
Let us encode an identifier I; € I by a binary code K (I;) and let us construct
a set of variables V. = {vy, ..., vgi} used for encoding of identifiers, where
R; = [log, K. Let each state a;, € A(Y;) correspond to a pair oy s = (Ix, ¥y),
then the code for state a, is determined by the following concatenation:

Clay) = K(Y) * K (Iy) (5.33)

2. Encoding of collections of microoperations. This step is executed using the
approach discussed before.

3. Construction of transformed structure table. This table is used to derive func-
tions V = V(T, X) and Z = Z(T, X). To construct it, the columns ay, K (ay),
@, are eliminated from the initial structure table. At the same time the column
Y, is replaced by columns V), and Zj,. The column Z;, contains variables z, € Z
equal to 1in the code K (Y},). The system Z includes the following equations:

H

2=\ CadhXy (g=1,....0). (5.34)
h=1

4. Specification of code transformer. The code transformer BTMS generates func-

tions
O =90V, 2). (5.35)

This system can be specified by a table with the following columns: Y;, K (Y;),
I, K(I}), ay, K (as), @y, h. The table includes all pairs £1I, Y;) for the state a;,
next, all pairs for a,, and so on. The number of rows Hj in this table is determined
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Fig. 5.12 Structural diagram of PCyY and PCyD Mealy FSMs

as a result of summation for the numbers m,(t = 1, ..., T). The system of input
memory functions is represented as the following one:

Hy
¢ =\ CaVaZy (r=1.....R). (5.36)
h=1

In (5.36) the symbol Z, stands for conjunction of variables z, € Z corresponded
to the collection of microoperations Y; C Y from the row 4 of the table specifying
block BTMS.

5. Construction of the table of microoperations. This step is executed using the
same approach as the one applied for PCo Y Mealy FSM.

6. Synthesis of FSM logic circuit. For structural diagram shown in Fig.5.8 the
number of bits in the register RG is equal to Q + Ry. This number can be
decreased up to R, using the structural diagrams shown in Fig.5.12. In this case,
the block BTMS generates input memory functions instead of state variables T'.
Due to such approach, it is enough R flip-flops in the register RG.

Let us discus an example of logic synthesis for the Mealy FSM PCyY (I'y). For
FSM 9 there are Ty = 7 collections of microoperations, namely: Y| = @, ¥, =
v, b Y = {y3}, Ya = {ya}, ¥s = {2, y5}, Y6 = {y6}, Y7 = {y3, y7} (Table5.8).
Let us construct the sets A(Y;) and define their cardinality numbers: A(Y;) = {a;},
my =1, A(Y2) = {az, as}, my = 2; A(Y3) = {as}, m3 = 1I; A(Yy) = {az}, mg = I;
A(Ys) = {as}, ms = I; A(Ye) = {as}, me¢ = 1, and A(Y7) = {as}, m7 = 1. Thus,
it is enough K = 2 identifiers, that is I = {I;, I,}. The identifiers I; € I can be
encoded using Ry = 1 variable, that is V = {v;}. Let the identifiers be encoded in
the following way: K (I/;) = 0 and K(/;) = 1. Let us find the pairs «, ; for each
element from the sets A(Y;).If m, = 1, then the first component of corresponding pair
is represented by the symbol (. This symbol corresponds to uncertainty in the code
C(ay)', where the superscript  means that the code of state a, belongs to the pair «; ;.
The following pairs can be constructed in the discussed example: o1 = (4, Y1),
azy = (I, Y2), ang = (L, Y2), 33 = (0, 13), ag3 = (0, Y4), asq = {4, Ys),
aes = (B, Ys), a75 = (A, Y7). Using these pairs together with (5.8), we can get the
codes C (ay) shown in Table5.15.
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Table 5.15 State codes of Mealy FSM PCyY (I'y)

5 Hardware Reduction for Mealy UFSMs

am Clay)' a, h
ap 000%* 1.1 1
a 0010 (%% 2
as 010* 033 3
a3 011* 43 4
aq 100* 5.4 5
ay 0011 2.4 6
as 101* a5 7
as 110* @75 8

Table 5.16 Transformed structure table of Mealy FSM PCyY (I'g)

Am K (am) Xn Zy 3 h
al 000 X1 23 - 1
X 2 - 2
a 010 X2 Z3 - 3
)szg, 2273 - 4
X2X3 23 V1 5
a3 011 X1 71 - 6
X 2123 - 7
as 100 1 2122 - 8
as 101 X2X3 23 - 9
X2X3 22 - 10
X2X4 2122 - 11
X2 X4 - - 12

This table includes Hy = m + ... + m7 rows. As follows from Table 5.15 each
from the states a3, as, and as have two different codes of the type (5.33). In the
common case, the number of codes C(ay)’ for some state a,, € A is equal to the
number of different sets A(Y;), including this state a,,. The codes of collections of
microoperations shown in Table 5.15 are the same as they were obtained before. The
codes are placed in the three most significant positions of the column C(ay,).

Using the known method, we can construct the transformed structure table of
Mealy FSM (Table 5.16) on the base of the initial structure table (Table 5.8). Using
Table 5.16, we can derive systems (5.34) and (5.30).

The table used for specification of the block BTM S (Table5.17) includes H, =
2R — Hy rows, where Ry = [log, Hy]. It is necessary if the logic circuit of BTMS
is implemented with embedded memory blocks. In this case all possible addresses
should be present. Let us point out that at least H; = (2¢ — T')2% rows contain zero
output codes corresponded to unused collections of microoperations. For the FSM



5.5 Design of Mealy FSM2 with OCT 117

Table 5.17 Specification of block BTMS for Mealy FSM PCyY (I'g)

Y K(Yr) Iy K (1) as K (ay) P, h
Y; 000 - 0 aj 000 - 1
000 - 1 aj 000 - 2
Y 001 I 0 a 010 D> 3
001 I 1 as 100 D 4
Y3 010 - 0 az 011 D, D3 5
010 - 1 as 011 D> D3 6
Yy 011 - 0 as 011 D> D3 7
011 - 1 az 011 D, D3 8
Ys 100 - 0 as 100 Dy 9
100 - 1 as 100 Dy 10
Ye 101 - 0 as 101 D1 D3 11
101 - 1 as 101 D D3 12
Y7 110 - 0 as 101 D1 D3 13
110 - 1 as 101 D1 D3 14

S>1, there is H; = 2, it means that only 14 rows are in use, whereas there are totally
2R = 16 rows.

For the Mealy FSM PCyY (I'g) the table of microoperations is represented by
Table5.11. Thelogic circuit of block BTMS is implemented using embedded memory
blocks on the base of Table 5.17

Let us point out that the logic circuit of block BTMS can be implemented using
PLAer. In this case the following system of Boolean functions should be constructed:

H,
D, =\/CuZyVy (r=1.....R). (5.37)
h=1

If the column contains the symbol “~” in the row & of the table of block BTMS, then
Vi = 1. It allows minimizing system (5.37). For example, D; = F4 VvV Fy V Fiy VvV
Fii Vv Fia Vv FisV Fry = 21222301 V 212223 V 212223 V 212223 (Table 5.18).

Let us discuss an example of logic synthesis for the PCyD(I'g) Mealy FSM
having the structural diagram shown in Fig.5.12. The codes for its collections of
microoperations are shown in Table 5.13. Using these codes of collections as well as
the state codes from Table 5.15 it is possible to construct the transformed structure of
Mealy FSM PCyD(I'y) (Table 5.19). It is constructed in the same way, as it is done
for PC, Y Mealy FSM.

For PD Mealy FSM, the number of bits used in the code K (Y;) is much more than
for equivalent PY Mealy FSM. It means that the logic circuit of block BTSM for PD
Mealy FSM should be implemented using LUTs. For the Mealy FSM PCyD (I'g)
the table of block BTSM includes Hy = 8 rows (Table 5.20. To implement the logic
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Table 5.18 State codes for Mealy FSM PCyD (I'g)

am C(ay)! ay, h
aj 00000* a1l 1
a 001010 2 2
as 01000* 33 3
as 01100* o3 4
aq 10001* 5.4 5
as 001011 .4 6
as 00010* a5 7
as 01011* Qazs 8
Table 5.19 The transformed structure table of Mealy FSM PCyD (T'y)
am K (ay) Xn Zy 3 h
ap 000 X1 2325 - 1
X 2 - 2
az 010 X2 2325 - 3
X2X3 2223 - 4
X2X3 2325 | 5
as 011 X4 2125 - 6
X1 z4 - 7
aq 100 1 222425 - 8
as 101 X2X3 2325 - 9
X2X3 22 - 10
XX4 222425 - 11
X2 X4 - - 12
Table 5.20 Specification of block BTSM for Mealy FSM PCyD (I'g)
Y K(YT) I K (Ir) ds K (as) Py, h
Y 00000 - 0 ai 000 - 1
Y 00101 I 0 a 001 D3 2
I 1 as 011 D, D3 3
Y3 01000 - 0 a3 010 D; 4
Y 01100 - 0 a3 010 D, 5
Ys 10001 - 0 ay 011 D, D3 6
Ys 00010 - 0 as 100 D, 7
Yy 01011 - 0 ag 100 D, 8
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circuit of PCyD Mealy FSM, its transformed ST is used to derive systems Z and V,
whereas its table for block BTSM is the base to derive system @. For example, the
following Boolean equation can be derived Dy = F;V Fy = 7122732425 V 2122232435
from Table 5.20.
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Chapter 6
Hardware Reduction for Moore EFSMs

Abstract The Chapter is devoted to hardware reduction targeting the elementary
LCS-based Moore FSMs. Firstly, the optimization methods are proposed for the base
model of EFSM. They are based on the executing either optimal state assignment or
transformation of state codes. Two different models are proposed for the case of code
transformation. They depend on the numbers of microoperations of FSM and outputs
of EMB in use. The models are discussed based on the principle of code sharing. In
this case, the state code is represented as a concatenation of the chain code and the
code of component inside this chain. The last part of the chapter is devoted to design
methods targeting the hybrid FPGAs.

6.1 Optimization of EFSM with the Base Structure

Let us name the Moore FSM PY§g (Fig.3.13) as an EFSM with the base structure.
The structural diagram of FPGA-based PYg Moore FSM is shown in Fig. 6.1.

The block LUTer (Fig. 6.1) represents the block BIMF (Fig. 3.13). It implements
the system of input memory functions (2.9). The block EMBer (Fig. 6.1) represents
the block BMO (Fig.3.13). It implements the system of microoperations (2.16), as
well as the function (3.29). We have discussed an example of synthesis for Moore
FSM PYg(1).

To diminish the number of LUTs in the circuit of LUTer, it is necessary to dimin-
ish numbers of literals and terms in functions (2.9). Two methods can be used for
optimizing LUTer of PYg FSM:

1. Optimal state assignment.
2. Transformation of state codes into class codes.

Both these methods are based on existence of classes of PES.

Let us discuss these methods for the case of GSA @7 (Fig.6.2). It is marked by
states of Moore FSM using the rules [2]. The following sets and their parameters
can be derived from GSA I'o: X = {x1, ..., x4}, L=4,Y ={y1,y5}, N=5,A =
{dl,...,alg},MZ 19,R=5,T={Tl,...,Ts},dj = {Dl,...,DS}.
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Fig. 6.1 Structural diagram +1
of FPGA-based PYg Moore <
FSM X v M
) T
LUTer > (T > EMBer —
Y
Start]
Clock

The optimal state assignment leads to Py Yg Moore FSM. It has the same structure
as PYg FSM (Fig.6.1). The following method can be used for synthesis of PyYg
Moore FSM:

1. Marking the initial GSA I" and creating the set of states A.
2. Constructing the set of ELCS Cg.

3. Constructing the partition I1cg = {Bi, ..., Big}.

4. Executing the optimal state assignment.

5. Constructing the table of LUTer.

6. Constructing the table of EMBer.

7. Implementing the FSM logic circuit.

Let us apply the procedure P; to the GSA I7y. It produces the set Cp =
{ay, ..., a7} with the following elementary LCSs: o) = (aj, a2, a3), ap =
(ag,...,a7), o3 ={(as,a9,aip), ou=(an), as=/{(an, a3, au4), =
(ais, ..., a13), and a7 = (a;5). There is G1 = 7 in the discussed case.

To construct the partition [1cg, let us form the set Og(17o). This set includes
outputs of ELCS a4 € Cg. Using the Definition 3.4, the following set can be
found: Og (1) = {as, a7, a0, a11, aia, aig, aje}. The following classes of PES can
be found for the states a,, € Og(Io) : {as}, {a7, aio}, {a14, a1s}, and aj. It gives the
following partition I1cg = {By, ..., Bs} with the classes B; = {«;}, B| = {an, a3},
Bs = {ay}, B4 = {as, ag}, and Bs = {a7}.

The aim of optimal state assignment is to find such state codes that the class
codes K (B;) will be represented by the minimum possible amount of cubes of R-
dimensional Boolean space. Let us point out that the initial state a; € A should have
code with all zeroes. One of the possible variants is shown in Fig.6.3.

This state assignment is a natural state assignment satisfying to (3.26). It can be
found from Fig. 6.3 that: the class B; is determined by the cube 000**, the class B, by
0*1**, the class Bz by 1*1**, the class B4 by *10**, and the class Bs by the 100**.
It gives the following class codes: K (B;)=000**, K (B,)=0*1*%*, K(B3)=100%%,
K (B4)=*10%* and K (Bs) = 1*1%%,

The table of LUTer includes the following columns: B;, K (B;), a;, K (ay), Xy,
@, h. To construct this table a system of generalized formulae of transitions (GFT)
[4, 7] should be formed. In the discussed case, it is the following system:
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Fig. 6.2 Initial
graph-scheme of algorithm
I
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Fig. 6.3 Optimal state codes I.1,T,
for EFSM Py YE(1'10) T, T2 000 001 011 o1 110 111 101 100
00 d, a, dg dy dss * dy dy
01 d; ds d ds; dy * * *
N 2 a, % 2 dyg 2 2 2
10 d; Ch dy dy dy * * *
B, B, B, B, B, B, B,
Table 6.1 Table of LUTer for Mealy EFSM Py YE (170)
B; K (B;) ds K (as) Xp Py, h
B 0 00** as 00100 X1 D3 1
ag 01100 X1 D, D3 2
B 0 *]** ag 10100 X2X4 D1 D3 3
arp 1 0000 XX4 D 4
apn 0 1000 X2X3 D; 5
aps 1 1000 X2X3 D D) 6
B3 1 00%** apn 0 1000 1 Dy 7
By *1Q** arg 10100 1 D1 D3 8
Bs | aj 0 0000 1 - 9
B, = x1a4 V X1as;
By = xpx4 V XoXsa11 V XaX3a12 V X2X3415;
B3 = ai; (6.1
By = ay;
B5 =da.

Each term of system (6.1) corresponds to a row of table of LUTer (Table 6.1). The
state codes are taken from Fig. 6.3, the class codes are found before.
The table of LUTer is used for creating the system (2.9). The term Fj, of (2.9) is
determined as:

R
Fy = (\/ T} Xy.

r=1

(6.2)

In (6.2), the value /;, is a value of the r-th bit of K (B;) from the line number /4.
The number of lines is equal to Hg (I'j). In the discussed case, there is Hg (Io) =9.
The variable /;, belongs to the set {0, 1, %} and there are Tr0 =T, Tr1 =17, and
T =1(r =1,..., R). The functions (2.9) are determined as
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Hp
Fo=\/CuF, (r=1.....R). (6.3)

h=1

In (6.3), the Boolean variable C,, = 1 only if the function D, is written in the line
h of the table of LUTer.

For example, the function D € @ is written in the lines 3, 4, 6 and 8 of Table6.1.
After minimizing, the following function can be found:

D, = Tl Tsx3 Vv Tl Tsx3 VvV T2T3. (6.4)
Using the same approach, the functions D, and D3 can be found:

D, = Tl T2T3)21 \ Tl Tzx, v Ty T2T3, (65)
D; = Tl Tz’fg \4 Tl T3x2x4 V T2T3. (66)

Let us point out that each of functions (6.4)—(6.6) can be implemented using only
a single LUT having § = 5. In the discussed case, the system (2.9) depends only on
state variables T7—T3. So, it is the function:

& =d(T!, X), (6.7)

where T! C T. At the same time, only the input memory functions D;—D3 should
be formed by the LUTer. It is the best possible solution.
In the common case, the best solution is determined by the equation

IT'| = og, |McEl. (6.8)

The table of EMBer is constructed in a trivial way. In includes the columns K (a,,),
Y (a,,), h. In the common case, this table includes Hgyg rows, where

Hevp = 2K, (6.9)

Let us point out that only M rows include the collections of microoperations.

If a state a,, € A is not the output of ELCs, then the corresponding cell should
include the variable yy. This variable should be included in the corresponding line
of the table of EMBer. In the discussed case, there is Hgyp = 32. The first 8 rows
of the table of EMBer is represented by Table 6.2 for Moore EFSM Py YE (179).

The column m is added to show the correspondence among the rows of table of
EMBer and the states a,, € A. Let the following condition take place:

28N +1) < V. (6.10)
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PoYE (o) 0 0000 10 0000 1 1
00001 11 1000 2 2
00010 000100 3 3
00011 00 0000 4 *
00100 110010 5 4
00101 100100 6 5
00110 10 1001 7 6
00111 01 1000 8 7

The symbol Vj stands for the number of cells of EMB under ¢ = 1. If the condition
(6.10) takes place, the only one EMB is enough for implementing the logic circuit
of EMBer.

In the discussed case, the left part of (6.10) produces the value 186 = 32 x 6.
Let it be the EMB with configuration 32 x 8 in a particular FPGA chip. Let this
chip include LUTs having five inputs. In this case, it is enough a single EMB for
implementing the circuit of EMBer. Each function (6.4)—(6.6) is implemented using
a single LUT. To implement the circuit of counter CT, five LUTs are necessary. So,
the logic, circuit of Moore EFSM PyYg(I79) includes 8 LUTs and a single EMB
(Fig.6.4). The counter is shown as a single block. We do not discuss the organization
of counters in our book. It can be found in many books connected with logic design,
for example in [10, 11].

Let us point out that there are GSAs for which the condition (6.8) does not take
place. In this case, the hardware reduction can be executed due to transformation of
state codes into class codes. It leads to PcY Moore FSM (Fig. 3.10). Let us discuss
this approach for ELCS-based Moore FSMs.

Let us find the partition [1cg = {B1, ..., Byg} foragiven GSA I';. Let us encode
the classes B; € I1¢cg by binary codes K (B;) having R¢g bits:

Let us use the variables 7, € 7 for encoding the classes.
Let the following condition take place:

2R(N+ Rcg + 1) < V. (6.12)

In this case, the functions (3.17) are generated by the EMBer. It results in Pc; Yg
Moore FSM (Fig.6.5).
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In this model, the LUTer generates functions (3.15), whereas the EMBer functions
(2.16), (3.15) and (3.29). The method of synthesis for Pc; Yg Moore FSM is similar
to the method for Py Yr FSM. There is the following difference:

4. Executing the natural state assignment.
4a. Encoding of the classes B; € I1c.

Let us discuss an example of synthesis for Moore EFSM P¢; Yg (7). The sets
Cg and [I¢p are already found. Let us use the same state codes as the ones from
Fig.6.3.

Thereis I E = 5inthe discussed case. It gives the value Rcg = 3. But the analysis
of Table 6.1 shows that the transitions are executed automatically for the states a,, €
Bs. It means that only classes By, ..., By should be encoded. It gives the set 7 =
{11, m}. Let us encode the classes in the trivial way: K (B;) = 00, ..., K(By) = 11.
The table of LUTer is constructed on the base of the system of GFT. In the discussed
case, it is Table 6.3 constructed using the system (6.1).
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Table 6.3 Table of LUTer for Moore EFSM Pc Yg (')

B; K(B;j) as K (ay) Xn Dy h
B 00 aq 00100 X1 D3 1
ag 01100 X1 Dy D3 2
B; 01 ag 10100 X2X4 DD 3
ar 1 0000 X2X4 D 4
ap 0 1000 X2X3 D, 5
ais 1 1000 X2X3 DD, 6
B3 10 an 0 1000 1 D 7
By 11 ag 10100 1 D1 D3 8

Table 6.4 The part of table of EMBer for Moore EFSM Pc YE(1719)

K@n)T ...Ts |Y(@aw)yo...ys K(Bj) 11 h m
00000 10 0000 00 1 1
00001 11 1000 00 2 2
00010 000100 00 3 3
00011 00 0000 00 4 *
00100 11 0010 00 5 4
00101 10 0100 00 6 5
00110 10 1001 00 7 6
00111 01 1000 01 8 7

The functions D, € @ are derived from this table. They depend on the terms

Rce

Fy=(/\7)x (h=1,.... Hf). (6.13)

r=1

The meaning is obvious for each element of (6.13).
After minimizing, the following functions can be derived from Table 6.3

Dy = Timxy V TITX3 V T T2,
Dy = T X1 V T1TaXy V T T2, (614)

D; = TIT2 V T1TaX2X4 V T T2.

Analysis of the system (6.14) shows that each its equations can be implemented using
LUTs with § = 4.

The table of EMBer includes the column K (B;). If a,, = Oy, then the cell with
address K (a,,) contains the code K (B;) such that og € B;. The first 8 rows for this
table are shown in Table 6.4. The state ag is the output of ELCS «, € B,. Because
of it, the code 01 is placed in the row 8 of Table 6.4.
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If the condition (6.12) is violated, then a part of the code K (B;) should be generated
by the block of transformer of state codes BTC (Fig.3.10). It leads to Pc, Yg Moore
FSM (Fig. 6.6).
In this model, the LUTerl generates the functions (3.15), the EMBer generates
functions (2.16), (2.28) and

h=7NT).
The block LUTer2 implements functions

2 = 7(T).
Obviously, the following condition takes place:

T1U72:T;

'n? =g

The following method can be used for synthesis of Pc; Yg Moore FSM:

. Creating the set of states A.

. Constructing the set of ELCS Cg.

. Constructing the set [Tcg = {By, ..., Bjg}.
. Executing the natural state assignment.

. Encoding of the classes B; € I1¢g.

. Constructing the table of LUTerl.

. Constructing the table of LUTer?2.

. Constructing the table of EMBer.

. Implementing the FSM logic circuit.

(6.15)

(6.16)

(6.17)

Let us discuss an example of synthesis for Moore EFSM Pc, Y (179). The sets
Cg, IIcg, T are already found, as well as the codes of states a,, € A and classes

€ I1¢cg. The table of LUTerl is the same as Table 6.3.


http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_2

130 6 Hardware Reduction for Moore EFSMs

Table 6.5 Table of LUTer2 for Moore EFSM P, YE10

am K (am) B; K (Bi) ™ m
as 00010 B 00 - 3

as 00111 B 01 ™ 7

ao 01110 B 01 ™ 10
ar 1 0000 B3 10 - 11
ais 01010 By 10 - 14
as 11011 By 11 ™ 18

The number of cells is equal 2% for EMBs of EMBer. It allows finding the number
of outputs 7. Let the following conditions take places:

tr>N+1; (6.18)
tr < N+ Rcp + 1. (6.19)

In this case, the set 7 should be derived using (6.17). The set 7! includes Rcp
elements, where

The set 72 includes R¢ g, elements, where
Rcga = Rce — Rckr- (6.21)
Let the following condition take place:
S > R. (6.22)

In (6.22), the symbol S stands for the number of inputs of LUTs used for design of
an FSM circuit. In this case, the set 7 can be divided in an arbitrary way.

Let the configuration 32 x 7 exist for an EMB in use. So, there is 1y = 7. Because
of N =35, Rcg = 2, the conditions (6.18)—(6.19) take places. Using (6.20)—(6.21),
the following equality Rcg; = Rcga = 1 can be found. Let it be S = 5. So, the
condition (6.22) takes place. It means that the following sets can be formed ' ={n}
and 72 = {m}.

The table of LUTer2 is constructed only for outputs of ELCS oy € Cg. It contains
the columns a,,, K (a,,), B;, K(B;), 7'31, m. The class B; € Il¢g is placed in the row
number m if (a,, = Og)&(ay € B;) = 1. The column T,%l includes the variables 7, €
72 corresponding to ones in the code K (B;) from the row numberm(m = 1, ..., M).
The table of LUTer2 includes 6 rows in the discussed case (Table6.5).

This table is used to program a LUT implementing the function 7 = 7 (7). If
the condition (6.22) is violated, then the equations for all functions 7, € 7 should
be obtained. The set 72 should include the functions 7, € 7 corresponding to logic



6.1 Optimization of EFSM with the Base Structure 131
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Fig. 6.7 Karnaugh map for function 7

circuit with minimum number of LUTs. We do not discuss this problem in our book.
Let us only point out that codes of states a,, ¢ Op can be considered as “don’t care”
for functions 7, € 7. This property can be used for minimizing these functions. To
illustrate this issue, let us form a Karnaugh map for function 7, (Fig.6.7). It includes
the signs * for all states a,, € Og(I7p). The following equation can be obtained from
this map:

™ =13V Ts. (6.23)

Obviously, the corresponded circuit is implemented using only a single LUT with
S=2.

6.2 Synthesis of EFSM with Code Sharing

The structural diagram of PYgc Moore FSM is shown in Fig. 3.18. We discuss FPGA-
based structures of FSM circuits. In the case of PYgc Moore FSM, the block BIMF
is represented by LUTer and the block BMO is represented by EMBer (Fig. 6.8).

+1

<

' v,

O Tl EMBer
¥ g
Start |
Clock
A
s o
LWTer (2 re |7/

Fig. 6.8 Structural diagram of FPGA-based PYgc Moore FSM
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In this FSM, the LUTer forms functions
v =v(r, X). (6.24)

These functions are used for loading codes K (ag) of ELCS oy € Cp into the register
RG. The state variables 7, € T are used for encoding of the states a,, € A(ay),
where r =1, ..., Rg;. The chain variables 7, € 7 are used for encoding of the
ELCS a4 € Cg, where r =1, ..., Rgi. The value of Rg; is determined by (3.64).
The states are encoded by codes C(a,,), the chains are encoded by codes K (o).
The code K (a,,) is determined as the concatenation (3.66). This code is considered
as an address of a memory cell.

The proposed design method for PYgc Moore FSM includes the following steps:

. Creating the set of states A.

. Constructing the set of ELCS Cg.

. Encoding of ELCS a4 € Cg.

. Encoding of states a,, € A(ag) (g=1,...,G1).
. Constructing the table of LUTer.

. Constructing the table of EMBer.

. Implementing the FSM logic circuit.

~N N RN

Let us discuss an example of synthesis for Moore EFSM PYgc(179). The steps
1 and 2 are already executed. Let us construct Table 6.6 with ELCS o4 € Cg and
classes B; € I1¢g. This table can be constructed using the previous results. Table 6.6
also includes state codes C(ay,), chain codes K (o) and class codes K (B;). We will
discuss these codes a bit later.

It is found before that there are Rg; = 3 and Rcy = 2. So, there are the sets
T ={m,m, 3} and T = {T1, T»}. Let us execute the steps 3 and 4 of the proposed
method.

Let us encode the ELCS a4 € Cg in the trivial way: K (o) = 000, K (o) =
001, ..., K(a7) = 110 (Table6.6). To satisfy (3.65), the first components of all
ELCS a4 € C should have the code C(a,,) = 00, the second 01, the third 10 and the
fourth 11 (Table 6.6).

Table 6.6 Elementary LCSs and their classes for GSA I7¢

B; By By Bs By Bs Clam)
og ) ap a3 y as ag a7
am a as asg ar ap ais a9 00
az as ay - az aie - 01
as as aio - aig ayy - 10
— ay - - - ag - 11
K (ag) 000 001 010 011 100 101 110 -
K (B;) 00 01 10 11 * -
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This table gives the codes (3.66). For example the following codes can be found:
K (a;) = 00000, K (ay) = 01001, K (a3) = 01010, and so on.

To construct the table of LUTer, the set of outputs Of should be found. In the
discussed case, the set Og (o) = {as, a7, ayo, ai1, ais, aig, ayo}. Let us form the
system of formulae of transitions for the states a,, € Og([7g). It is the following
system:

as — Xxja4 V X4ag;

a7 — X2X4a19 V X2Xaa11 V XoX3a12 V X2X3a15;

ap — XaX4a19 V XaXaap) V XaX3d12 V X2X3dis;

ayl — apn; (625)
apg — apo;

aig — apg;

dijg — ap.

The table of LUTer includes the following columns: oy, K (o), oy, K (o), X,
¥, h. Each line of the table corresponds to one term of SFT. Each state a; € A is
replaced by an ELCS ¢4 € Cg such that a; € A(ag). The table contains Hgc (1)
lines. In the case of PYgc (1), the table of LUTer includes Hgc (1) = 14 lines
(Table 6.7).

Table 6.7 Table of LUTer of Moore EFSM PYcg(110)

am K (aum) oy K (as) Xn '8 h
aq 000 [e%) 001 X1 D3 1
a3 010 X1 D> 2
[s%) 001 a7 110 X2X4 DD, 3
oy 011 X2 X4 D, D3 4
as 100 X2X3 Dy 5
ag 101 X2X3 D1 D3 6
a3 010 (o5} 110 X2X4 DD, 7
e 011 X2X4 Dy D3 8
as 100 X2X3 Dy 9
ag 101 X2X3 D D3 10
[e 71 011 as 100 1 Dy 11
as 100 a7 110 1 DD, 12
(67 101 (%) 110 1 Dl D2 13
az 110 aj 000 1 - 14
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The connection is obvious between the system (6.25) and Table 6.7. The chain
codes are taken from Table 6.6. This table is the base for constructing the system
(6.24). Terms of (6.24) are determined by the following expression:

R
Fi=(/\ X, (h=1,..., Hgc). (6.26)

r=1

The symbol /g, stands for the value of r-th bit of the code K () from the A-th
row of the table.
For the example, the following equation can be derived from Table 6.7:

D, = 7_'1’7_'2’7'3()62 \ )E3) \ ’7_'17'27_'3()62 \ )23) V73V T3V TIT3. (627)

To get this equation, the code 111 was used for minimizing the function D;. To
implement the logic circuit corresponding to (6.27), it is enough one LUT having
S=5.

The table of EMBer is constructed in the same way as for PYg Moore EFSM. The
codes K (a,,) are the same for both PYg (1g) and PYcg(Io).

To optimize the circuit of LUTer, two methods can be used:

1. The optimal chain assignment (PyYcg EFSM).
2. The transformation of chain codes (PcYcg EFSM).

Both approaches are based on constructing the partition I1¢cg. Let us discuss this
methods.
The following approach can be used for synthesis of Py Ygc Moore EFSM:

Creating the set of states A.
Constructing the set of ELCS Cg.
Encoding of states a,, € A(ag).
Constructing the partition I1¢g.
Optimal chain assignment.
Constructing the table of LUTer.
Constructing the table of EMBer.
Implementing the FSM logic circuit.

PN R W=

Obviously, the structural diagrams are the same for PYgc and Py Ygc(I') FSM.
The sets A, I[1cg, B; € I1cg are already found, as well as the state code C(a,,). They
are represented by Table 6.6.

The optimal chain assignment should result in such chain codes that each class
B; € Il is represented by minimum possible amount of cubes of R |-dimensional
Boolean space. One of the possible variants is shown in Fig. 6.9.

The following codes can be derived from Fig.6.9: K(B;) = 00%, K (B,) = 01x,
K(B3) = 110, K(B4) = 10xand K (Bs) = 111. Using chain codes from Fig. 6.9 and
state codes from Table 6.6 the state codes (3.66) can be found. They are shown in
Fig.6.10.
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Fig. 6.9 Optimal chain IT,
codes for Moore EFSM T 0 0 11 10
Py Yec(T
0YEc(I'10) 0 s
1 * o, s
BW BZ BL

Fig. 6.10 State codes for A
Moore EFSM PyYgc(I'10) 7,7 000 010 01 100 101 10 1M

OO a1 aA aB 812 a15 aﬂ 319

01 aZ aS a9 aB a16 - -

11 aB aG aWO aﬂo a17 - -

10 - a7 - - a1s - -

Table 6.8 Table of LUTer of Moore EFSM Py Ycge(I'19)

B; K (B;) as K (ay) Xp Dy h
By 00* as 0 1000 X1 D, 1
as 01100 X1 D> Ds 2
By 01* apg 11100 X2X4 DD, D3 3
ar 11100 X2 X4 DD, 4
arn 1 0000 X2X3 D 5
ais 10100 X2X3 D1 D3 6
B3 110 apn 1 0000 1 Dy 7
By 11* ag 11100 1 DDy D3 8

The table of LUTer includes the following columns: B;, K (B;), as, K (a;), X,
@y, h. Tt is constructed using the system of generalized formulae of transitions. In
the discussed case, the system of GFT is represented by (6.1). The table of LUTer is
represented by Table 6.8.

The table of LUTer is used for constructing the system (6.24). The terms of (6.24)
are represented by (6.28):

R
Fy=(\7Gl, (h=1,...,H)). (6.28)

r=1
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Table 6.9 The part of table of EMBer for Moore EFSM Py Ygc (')

K(an) mmmTi T, Y(am)yo-..ys h m
000 00 10 0000 1 1
000 01 11 1000 2 2
000 10 00 0100 3 3
000 11 00 0000 4 *
001 00 00 0010 5 *
001 01 00 0000 6 *
001 10 00 0000 7 *
001 11 00 0000 8 *
Fig. 6.11 Structural diagram +]
of Pc1 Ygc Moore EFSM <
! | Yo
O et o EMBer T
1z
A 4
Start |
Clock
X o A
LUTer > RG |1

The symbol /;, stands for the value of the r-th bit of the code K (B;) from the &-th
row of the table derived from Table 6.8:

D =T VTITT3 VvV T,
D)y =TT, VTITXo V T1Th = T V TITaX2; (629)

D3 = T\ TX1 V TITaXaXs NV T1TaX2X3 V T1Ta.

The functions Dy, D, can be implemented using one LUT having S = 3. It is
necessary to have five inputs in a LUT implementing the circuit for D3 (Fig.6.11).

The table of EMBer has the same columns as for the case of PyYg. The first 8
lines are shown in Table 6.9 for the discussed case. Let us point out that the codes
001** are not used as state codes K (a,,) (see Fig.6.9).

Using transformation of codes K () into codes K (B;) leads to Pco Ygc Moore
EFSM (Fig.6.12).

The functions Z are used for creating the input memory functions

@ =d(Z, X). (6.30)
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Fig. 6.12 Structural diagram +]
of Pco Ygc Moore EFSM <
Y A y
0 T .
r ™ EMBer 1—Y>
'y > Z
Start |
Clock
X A
| LuTert (sl Re L s LUTer?
: zz

The set Z includes Rcp variables, where the value of Rcg is determined by (6.11).

The design methods include the same steps for EFSMs P¢; Yg and Pc; Yge. Let
us discuss an example of synthesis for Moore EFSM P¢; YE(10). There are the sets
A, I1¢cg and B; € ITg for this example (Table 6.6). Table 6.6 also includes the codes
C(an) and K (o) for the discussed case. It gives the state codes K (a,,) represented
as (3.66).

The transitions are not included into the table of LUTer for the class Bs € Ilcg.
It means that the formula (6.11) can be refined for this case:

Rer = [log,(IE — 1)7. 6.31)

The value Rcg = 2 is obtained for the discussed case. It gives the set Z = {z1, z2}.
Let us encode the class B; € I1¢g using the codes from Table 6.6.

The table of LUTer is constructed using the system of GFT. In the discussed
case, it is the system (6.1). The table of LUTer includes the same columns as its
counterpart for PyYcg EFSM. In the discussed case, it is Table6.10. This table is
used for constructing the functions (6.30). These functions depend on product terms

Rce
Fy=(N\#)Xy (h=1,....HE. (6.32)

r=1

The table of LUTer of Moore EFSM P¢Ycg (1) includes Hccll—(ﬂo) = 8 rows
(Table 6.10). The functions (6.33) are derived from Table 6.10.

Dy = Z1z22X1 V Z122%2 V 235
Dy = 72122X%1 V Z122X2 V 21223 (6.33)

D3 = Z122X1 V Z122X2X2 V Z122X2X3.

The table of EMBer is constructed as its counterpart for Pc Y{E Moore EFSM.
The part of this table (Table6.11) is shown for the discussed example.


http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 6.10 Table of LUTer of Moore EFSM PciYcg(110)

B; K(B;j) as Xn Dy h

B 00 aq 00100 X1 D3 1
ag 0 1000 X1 Dy 2

B; 01 ag 1 1000 X2X4 D D) 3
apy 01100 X2X4 D> D3 4
ap 1 0000 X2X3 D, 5
ais 10100 X2X3 DD 6

B3 10 an 1 0000 1 Dy 7

By 11 ag 1 1000 1 DD, 8

Table 6.11 The part of table of EMBer for Moore EFSM Pc Ycg(1110)

K (am) mimmTi T Y(an)yo...ys | K(Bi)z1z2 h m
01000 10 0100 00 9 8
01001 10 1001 00 10 9
010 10 010011 01 11 10
01011 00 0000 00 12 *
01100 000010 10 13 11
01101 00 0000 00 14 *
01110 00 0000 01 15 *
01111 00 0000 00 16 *

Let us discuss an example of synthesis for Moore EFSM Py Y g (110). The design
method is the same as for Moore EFSM P, Yg. Let it be Z! = {z,} and Z% = {z,}.
Let us save all codes we have for the case of Pci Yce(£0). Let us consider how to
get the table of LUTer2.

This table includes the columns ag, K (o), B, K(B;), Z;, g.Theclass B; € II¢cg

is placed in the row number g of the table if oy € B;. The column Z; includes the vari-
ables z, € Z2 equal to 1in the code K (B;) from the row numberg(g =1, ..., G1).

The table of LUTer2 includes G1 = 7 rows in the discussed case (Table 6.12).
The sign * means that the corresponding chain code can be used for minimizing
functions z, € Z2. These functions are represented as
Z? = 7%7). (6.34)

In the discussed case, the following equation can be derived from Table 6.12:

22 =TV 273 V TT3. (6.35)
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Table 6.12 Table of LUTer2 for Moore EFSM Py Yce(£0)

ag K (ag) Bi K (B;) Z; g

ol 000 By 00 - 1

an 001 By 01 22 2

a3 010 B, 01 2 3

u 011 By 10 - 4

as 100 By 11 2 5

[e73 101 By 11 1) 6

a7 110 Bs * * 7
o o Moot EFSM pb 00 o 11 10
PcaYce(I0)

Let us pint out that functions (6.34) can be simplified. Let us encode the chains
ag € Cg(Ip) as itis shown in Fig.6.13.
g
Using these codes, the following equation can be found:

2 = T3. (6.36)

In this case, the block LUTer2 is absent.

6.3 Design of Moore EFSMs with Two Sources of Codes

The approach discussed in this section is based on ideas from Sect. 4.1. Let us adjust
these ideas for ELCS-based Moore FSMs. Let us start from the model of PYg Moore
FSM (Fig.6.1).

Let us form the sets Cg and I1cg for some GSA I'. Let us execute the optimal
state assignment. Let B; € I1cr if the code K (B;) is represented by a single interval
of R-dimensional Boolean space. If it is not true, that B; € ITr¢. The codes K (B;)
should be generated by the block of transformer BTC if B; € I1r¢. Itis enough Ry¢
variables (see (4.3)) to encode the classes B; € I17c.

Using (4.4)—(4.6), the number gyo can be found. It is equal to the number of
unused outputs of EMBs from the EMBer. Let the following condition take place:

Mo = Rrc +2. (6.37)


http://dx.doi.org/10.1007/978-3-319-59837-6_4
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MX
| ¢
x| LUTer "y yo»l” Jyo
X S oor o EMBer 7 ™Y
Y
X, o, .
LuT - }
L erZ Start
r Clock

Fig. 6.14 Structural diagram of FPGA-based PYg; Moore EFSM

Table 6.13 Characteristics of GSA I'1;

B; Bi | B B3 By Bs Be By | Clam)
ag ar e a3 |as |as |as a7 |as a9 |ajp |an |on |oi3 | o
am ar |a3 |as |a7 (a9 |an |ais |aie |a1g |ax |axs |axs |ay; |ax |00

a |as |- |ag |aip |a2 (a5 |ai7 |aw |axn |an |ax |as |az |01

- las |- |- |- a3 |- |- |- Jan |- |- |- |- 10
K (ag) |0000|0001|0010| 0011|0100/ 0101|0110/ 0111| 1000| 1001| 1010| 1011| 1100{ 1101 | —
K(B;) |000 | 001 010 011 100 101 110 |-

One output of EMBer is used for generating yo and one y;, (see Fig.4.1). If (6.37)
takes place, then the model of PYg; Moore EFSM can be used (Fig. 6.14).

In this model, the block of LUTerl implements the system of input memory
functions (4.8), the block LUTer2 the system (4.9). The variables z, € Z encode the
classes B; € Ilyc, where |Z| = Rrc. As in the case of PY, Moore FSM, there is
X' U X? = X. The variable y,, is used for control of the multiplexer MX.

The design method for PYg; includes the following steps:

. Creating the set A.

. Constructing the set of ELCS Cg.

. Constructing the partition I1¢cg.

. Executing the optimal state assignment.
. Finding the sets ITc7 and I17c.

. Encoding the classes B; € I[Irc.

. Constructing the table of LUTerl.

. Constructing the table of LUTer2.

. Constructing the table of EMBer.

. Implementing the EFSM logic circuit.

S O 0 IO N W=

[y

Let us discuss an example of synthesis for Moore FSM PYg; (I;). The GSA 17,
is rather complex. Because of it, we just show its characteristics in Table 6.13.
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11213

T.TS 000 001 on 010 110 m 101 100
00| & s an as A az a0 a6
01 az 36 an a9 axs a9 an an
o a a7 ats an az * a3 ang
0] a3 * a1y a1 az% a3 az ag

Fig. 6.15 Optimal state codes for Moore EFSM PYg; (I71)

The following sets and their parameters can be derived from Table6.13: A =

{ai, ..., a3}, M =30; Cg={aj,...,au}, Gl=14, a={a,m), a,=
(as, a4, as), ..., 14 = {azs, a30); [lce = {B1, ..., B7}, Ice =7, By = {a1}, B, =
{an, a3}, ..., B; = {ay4}. So, the steps 1-3 are already executed.

Letusencode the states a,, € A asitis showninFig.6.15. Obviously, the condition
(3.26) is satisfied for all ELCS oy € CE(1711).

Let us define the code K (B;) using the state codes K (a,,) where a,, € A(ayg) and
ag € B;. The following class codes can be found from Fig.6.15: K (B;)=00001,
K (B,)=0010%, K(B3)=010**, K (B7)=11110. Other classes are represented using
more than a single generalized interval.

Now, the following sets can be found: I1c7 = {Bi, B,, B3, B} and IIy¢c =
{B4, Bs, Bg}. It gives Ir¢c = 3. Using (4.3), the following value can be found:
Rypc = 2. It gives the set Z = {z1, z»}. Let it be tr = 16 and N = 5. It gives the
value tgpo = 6. So, the condition (6.37) takes place and the model PYg; (17;) should
be applied. Let us encode the classes B; € II1c in the following way: K (B4) = 00,
K(Bs) =01 and K(Bg) = 10.

Let the GSA I7; is characterized by the following system of GFT:

Bl — X143 vilaﬁ;

B, — xa7 V Xxza9;

By — x1a11 V X1azais V X1X3a16;

By — x3x4a11 VvV )21)_646113 Vv )23)(56120 Vv )23)256123; (638)
Bs — xgass V Xea07;

Bs — ano;

B; — ay.

The table of LUTerl includes the following columns B;, K (B;), K (a;), X, @,
h (the same is true for the table of LUTer2). In the discussed case, the LUTerl1 is
represented by Table 6.14.

The state codes are taken from Fig.6.15. Table 6.14 includes transitions for the
classes B; € Ilcr. It is constructed using the GFTs for class By, By, B3 (6.37).


http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 6.14 Table of LUTer1 of Moore EFSM PYg; (I71)

B; K(B;j) as K (ay) Xn Dy h
By 00001 as 00010 X1 Dy 1
ae 00101 X1 D3 Ds 2
B; 0010* ay 00111 X2 D3 Dy Ds 3
ag 01001 X2 D2D5 4
B3 0 10%** ar 01011 X1 Dy Dy Ds 5
a4 01110 X1X3 D> Ds 6
aie 01001 X1X3 D, 7
Table 6.15 Table of LUTer2 of Moore EFSM PYg; (I71)
B; K(Bj) ds K (ay) Xn Dy h
By 00 arn 01011 X3X4 D> D4 Ds 1
aipg 10010 X3X4 DDy 2
a 10100 X3X5 D1 D3 3
a 10111 X3X5 D1 D3DyDs | 4
Bs 01 ass 11001 X6 D1 D, Ds 5
as 11011 X6 D1DyDyDs | 6
Bg 10 axy 11101 1 D1 DyD3Ds |7

The table of LUTerl is used for deriving the system (4.8). In the discussed case,
for example, the following equations can be derived:

D1 e T1T2T3)21)E3;
o - - - (6.39)
Ds — T'WL, T:TyTsx v T/ I T:Ty v T T2 Tsx4 .
Table 6.15 represents the table of LUTer2 for the Moore EFSM Pg Y (£71). It is
constructed using GFTs for the classes By, Bs, Bg (5.37).
The table of LUTer2 is used for deriving the system (4.9). In the discussed case,
for example, the following equations can be derived:

Dy — Z1Z0x3X4 V 2122X3 V 2122 V 21223 (6.40)
Ds — Z122X3%4 V 2122%3X5 V 2122 V 2122. )

Let us use yy = O(yy = 1) to indicate that the input memory functions @;(P;)
should be loaded into CT. Using this rule and class codes for B; € Ic, the table of
EMBer can be constructed. It includes the columns K (a,,), Y (@), Y0, Ym, K(B;),
m. If (a, = Oy & ag € B; & B; € II7¢) =1 then the code K (B;) is placed in the
m-th row of the table together with yy;, = 11If a,, # Og, then the variable y, is placed
in the row number m of the table. This table is constructed in the trivial way. We do
not discuss it in this Chapter.
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Fig. 6.16 Structural diagram of FPGA-based PYg; Moore EFSM

If tsmo > O but the condition (6.37) is violated, then only Ryc; bits can be gen-
erated by the EMBer:
Rrc1 = Rrc — ttmo.- (6.41)

The rest of bits is generated by the block LUTer3. It leads to the Moore EFSM PYg,
(Fig.6.16).

This model combines the features of PYg; and Pc, Yg EFSMs. The same is true
for the corresponding design methods. We leave this EFSM to our reader.

Now, let us discuss application of this idea for Moore EFSMs with code sharing.
Let us start from the model of PYgc Moore EFSM (Fig.6.8). In this case, there
is no need in the optimal state assignment. We should execute the optimal chain
assignment.

Let us find the sets A, Cg and I1cg for a given GSA I'. Let us execute the natural
state assignment (3.65). Let us encode the chains oy € Cg in the optimal way. Let us
represent the set [1cg as [1cg = I1rg U I1c. There is the relation B; € I1g¢ if the
code K (B;) is represented by a single interval of Rg;-dimensional Boolean space.
Otherwise, there is the relation B; € IItc. The chain codes should be transformed if
(ag € Bi)&B; € Iltc) = 1.Itis enough Ry variables z, € Z to encode the classes
B; € Il1c. Let the condition (6.37) take place. In this case, the following structural
diagram (Fig. 6.17) is proposed for PYgc; Moore EFSM.

In this case, the LUTerl generates the input memory functions

D) = Di(1, Xy). (6.42)
The LUTer2 implements the input memory functions

D) = Dy(7, X>). (6.43)
The following system of equations is implemented by the multiplexer MX:

D =yudVyuPb:. (6.44)


http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 6.17 Structural diagram of FPGA-based PYgc; Moore EFSM
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Fig. 6.18 Structural diagram of FPGA-based PYgc, Moore EFSM

The EMBer implements functions yy, Y, Z and y,; depended on variables from
the sets 7 and T'.
The proposed design method includes the following steps for PYgc; Moore EFSM:

Creating the set A.

Constructing the set of ELCS Cg.
Constructing the partition [1cg.
Executing the natural state assignment.
Executing the optimal chain assignment.
Finding the sets ITrg and Iltc.
Encoding of the classes B; € Ic.
Constructing the table of LUTerl.
Constructing the table of LUTer2.
Constructing the table of EMBer2.
Implementing the EFSM logic circuit.

AN e RO ol

—_

If the condition (6.37) is violated, then Rrc; functions z, € Z belong to the set
Z?. 1t leads to PYgc, Moore EFSM (Fig.6.18).



6.3 Design of Moore EFSMs with Two Sources of Codes 145

Fig. 6.19 Structural +1
diagram of HFPGA-based : J
X Yo
PYg Moore EFSM AN ® T
PLAer > T > LUTer —Y>
]
Start
Clock

The block LUTer3 generates the functions
Z? = Z*(1). (6.45)

The design methods are practically the same for PY cg; and PY gy EFSMs. Butitis
necessary one more step for design of PYgc, EFSM. It is connected with constructing
the table of LUTer3. We do not discuss these methods in our book.

6.4 Design of Moore EFSMs with HFPGAs

There are no embedded memory blocks in modern hybrid FPGAa [8, 9]. So, only
PLA macrocells and LUTs can be used for implementing the logic circuits of FSMs.
Let the symbol Py means that HFPGAs are used for implementing an EFSM logic
circuit. The structural diagram (Fig. 6.19) represents the Py Yg Moore EFSM.

In Py Yg FSM, the PLAer implements the system of input memory functions @ =
@ (T, X), whereas the LUTer generates microoperations Y = Y(T') and yy = yo(T).
Let the symbol PLA(s,, ,, ;) denotes a PLA macrocell having s, inputs, 7, outputs
and g, product terms. Let the following conditions take places:

52 L4 R; (6.46)
t, > R; (6.47)
qp = Hg. (6.48)

In this case, it is necessary only a single PLA for implementing the circuit of
PLAer. If the condition (6.47) is violated, then the “expansion of PLA outputs”
should be executed. If the condition (6.48) is violated, then the “expansion of PLA
terms” should be executed [3]. If the condition (6.46) is violated, then different
methods from [1] should be used. We do not discuss these cases in our book.

Let a LUT in use have s, inputs. Let the following condition take place:

s. > R. (6.49)

In this case, only N 4+ 1 LUTs are used in the LUTer. If the condition (6.49) is
violated, the different methods of functional decomposition [12] should be used.
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Fig. 6.20 Structural +1
diagram of HFPGA-based N J
Puc Y Moore EFSM X, Yo

A 4

PLAer [ @»f (T LUTer —Y»

Let us discuss some approaches leading to diminishing the numbers of PLA
cells and LUT elements in logic circuits of Py Yg EFSMs. In the condition (6.48) is
violated, then the method of optimal state assignment can be used. It leads to Py Yg
Moore EFSM having the same structural diagram as the one shown in Fig. 6.20. In this
method does not give the minimum possible amount of terms, then the transformation
of state codes can be used. It leads to Pyc Yg Moore EFSM (Fig. 6.20).

The design methods are obvious for Py Yg, Pro Y and Pyc Yg EFSMs. Because of
it, we do not discuss them. Let us discuss the situation when the following condition
takes place:

t, > R. (6.50)
Let us find the value of #4:
th > t, — R. (6.51)
Let it be g4 unused terms in PLAer:
qa =qp — H(P). (6.52)

In (6.52), H(®) is the number of terms in the system (2.9).
Let us find the equations for functions (2.16) and y,. Let us divide the set yo U Y
by two subsets Y and Y. Let the set Y'! satisfy to the following conditions:

N < ta; (6.53)
H(Y"Y) < gq.i (6.54)

In (6.53)—(6.54), N(Y'') is the number of elements in the set Y'!, whereas H(Y'!)
is the number of terms in the functions y, € Y. Let us point out that it is quite
possible the following relation: yo € Y'. Let Y'! # ¢, then the functions from Y can
be implemented by PLAer. It results in Py; Yg Moore EFSM (Fig. 6.21).

Obviously, the Pyg; YE Moore EFSM has the same structure. Let us discuss an
example of design for Pyo; Yg(179). The proposed design metod includes the fol-
lowing steps:

1. Creating the set of states A.
2. Constructing the set of ELCS Cg.
3. Constructing the partition [1cg.
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Fig. 6.21 Structural +1
. B Y'\ v
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Clock

. Executing the optimal natural state assignment.
. Creating the preliminary table of PLAer.

. Dividing the set Y U yj by subsets Y and Y2.

. Creating the final table of PLAer.

. Creating the table of LUTer.

. Implementing the FSM logic circuit.

The sets A, Cg and [Icg are already found for the Moore EFSM PYg (7).
They can be derived from Table 6.6. Let us encode the states a,, € A as it is shown in
Fig.6.3. The preliminary table of PLAer is the same as the table of LUTer (Table 6.1).
The Eqgs. (6.4)—(6.6) represent the system @. Let us rewrite them in the following
system:

O 03N L A~

Dy =F, Vv F,V F3;
D> = F, Vv F5V Fg; (655)
D; = F; v Fg Vv F;.

The value Hg (@) = 8 can be derived from the system (6.55). Let the HFPGA chip
in use have macrocells PLA with s, = 12, ¢, = 6 and g, = 17. Using (6.52), it can
be found g4 = 16 — 8 = 8. Using (6.51), it can be found the value r4 = 6 — 3 = 3.
So, it is possible to generate up to 3 functions y, € Y by PLAer.

Let us form the system (2.16) for the discussed case. Using Fig. 6.2, the following
system can be found:

yi =A VA4V A7VA Y ARV ALY A7V A,

Yo =Ar VA, VAgV A7V AV AV A5V Al

y3 =A3V A5V Ag V A5 V Ay (6.56)
va =AsV ApV ALV ARV Ay,

y5s =A¢V AgV AjgV A13V A V A,

After minimizing the system (6.56), it can be found that the function y; includes
H(y;) = 4 terms. Also, the following values can be found H(y;) =6, H(y3) =
4, H(ys) =3 and H(ys) = 2. So, only a pair of microoperations can be chosen
for implementing by the PLAer. Let su choose the functions y4 and ys. They are
represented by the following minimized equations:


http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Table 6.16 Final table of PLAer of Moore EFSM Py YE(110)

Inputs 77 ... T5x1 ... x4 Terms Outputs Dy Dy D3y4y5
QF ok ] H* 1 100 00
O % H*(* 2 100 00
HQFE Hokkk 3 101 00
000%#* Q*** 4 010 00
O % *Qkok 5 010 00
100%* *x%% 6 010 00
0003 stk 7 001 00
OF [ ** *]1%#] 8 001 00
*0101 #*** 9 000 10
110%Q sk 10 000 10
*1010 *#** 11 000 10
H ] ekkek 12 000 01
HFELLQ HkHE 13 000 01

V4 :T2T3 vV TyT5 v T1T2T3T5 Vv T2T3T4T5 =FyVv FioV Fiy;

_ (6.57)
ys =T Ts v T3T4Ts = Fp Vv Fi3.

So, now there are two sets: Y! = {v4, ys} and Y? = {vo, ¥1, 2, y3}. Of course,
the pair y;, ys could be taken, as well as the pair y3, y.

The final table of PLAer includes the columns Inputs, Terms and Outputs. It is just
a table using for programming a PLA [1]. In the discussed case, it includes 13 rows
(Table 6.16). If some term includes the direct value of some variable, it corresponds
to 1. If some term includes the complement value of some variable, it corresponds
to 0. If there is no variable in the term, then it corresponds to *. If some function
depends on a term, it is denoted as 1. Otherwise, it is denoted as 0.

We hope that the connection is obvious between the systems (6.4)—(6.6), (6.53),
(6.57) and Table 6.16. The column Terms includes the numbers of terms of systems
(6.53) and (6.57).

Let it be s, = 5 in the discussed case. So, the condition (6.49) is true. So, only 4
LUTs are necessary for implementing the set Y. The logic circuit of Moore EFSM
PHOIYE(FIO) is shown in Flg622

Let us find out that Ic classes B; € Ilcg cannot be represented by single intervals
of R-dimensional Boolean space. It means that the set I1cg is represented as [1ct U
IT1c. Let us encode the classes B; € I1r¢ by binary codes K (B;) having Ryc bits.
The value of Ryc is determined by (4.3). Let us use the variables z, € Z for encoding
of the classes B; € [lcg. In this case, the model of Py Yg; Moore EFSM (Fig. 6.23)
is proposed.


http://dx.doi.org/10.1007/978-3-319-59837-6_4
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In this model, the PLAer implements the system
O =90(T, 7, X). (6.58)
The LUTer implements functions (2.16), (3.29) and
Z = Z(T). (6.59)
This model can be applied if the following condition takes place:
Sp > L+ R+ Ryc. (6.60)

It is known that PLA macrocells have the wide fan-in which is equal up to 30
[8, 9]. It means that the condition (6.60) takes place in many practical cases.

There are the following steps in the proposed design method targeting Py Yg
Moore EFSM:

Nk e =

Creating the set of states A, set of ELCS Cg and the partition I1cg
Executing the optimal natural state assignment.
Finding the sets I1ct and [c.
Encoding of the classes B; € Ic.
Constructing the table of PLAer.


http://dx.doi.org/10.1007/978-3-319-59837-6_2
http://dx.doi.org/10.1007/978-3-319-59837-6_3

150 6 Hardware Reduction for Moore EFSMs

Table 6.17 Table of PLAer of Moore EFSM Pyg; Y(I'1)

Bl K(B,‘)ZlZzT] ...T5 ag K(as) Xh ¢h h
B 00 00001 az 00010 X1 Dy 1
ag 00101 X1 D3 Ds 2
B; 00 0010* ay 00111 X2 D3 D4 Ds 3
ag 01001 iz D2D5 4
B3 00 010%** a 01011 X1 Dy Dy Ds 5
a4 01110 X1Xx3 D> D3 Dy 6
aie 1 0000 X1X3 D, 7
By (0] Batalaion a 01011 X3X4 Dy Dy Ds 8
ag 10010 X3X4 D1 Dy 9
aro 10100 X3X5 D1 D3 10
a3 10111 X3X5 D1 Dy;DsDs | 11
Bs 1Q FkHE ans 11001 X6 DDy Ds 12
azy 11011 X6 D1DyDyDs |13
Bg 1] kst any 11101 1 D1 Dy;D3Ds |14

6. Constructing the table of LUTer.
7. Implementing the FSM logic circuit.

Let us discuss an example of design for Moore EFSM Pyg; Y (I'y1). The char-
acteristics of GSA I7; are shown in Table6.12. The optimal natural state codes
are shown in Fig.6.15. They are the following: K (B;) = 00001, K (B,) = 0010x,
K (B3)=010**, K (B7)=11110. Thereis the set [Tyc = {Ba4, Bs, Bg} having Itc = 3.
The number of Rrc is determined as

Rrc = [log,(Itc + D]. (6.61)

The value 1 is added to Itc to take into account the relation B; € Ilcr. It should
be represented by an unique code using the variables z, € Z.

Let us encode the classes B; € [Itc in the following manner: K (B4) = 01,
K(Bs) = 10 and K (Bg) = 11. Let us use the code 00 to show that B; ¢ IIrc. The
table of LUTer is represented by Table 6.17 for a given example.

The table of PLAer is used for deriving the functions (6.58). These functions
depend on the following terms:

Rrc R
F, = ( N zﬁi') ( A ijf) Xy (6.62)
r=1 r=1

For example, the following terms (6.62) can be obtained from Table 6.17: F =

2122TW T T3 Ty Ts, Fg = 2122 T\ T» T3, F1o = 71Z2x6. The table of LUTer includes the
columns K (a,,), Y(a,), Z(a,), m. The column Z(a,,) includes the codes K (B;)
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for the classes B; € I1rc. This table corresponds to Rrc + N + 1 truth tables. Each
table corresponds to as single function from the set yo U Y U Z.

Let us point out that the Py Yg; EFSM is based on the results from [5, 6]. These
ideas can be applied for the case of Py; Yg; EFSM. Its design method is combined
from the methods for Py; Yg and Py Yg; Moore EFSMs. The same approach can be
used for EFSMs with code sharing. Let us, for example, discuss the design method
for EFSM Py Ygc; . Its structural diagram is shown in Fig. 6.24.

In this model, the PLAer implements input memory functions:

D =9(r,Z,X). (6.63)

The LUTer implements the functions

Yo = yo(7, T); (6.64)
Z=2Z(T); (6.65)
Y2 =Y*r,T). (6.66)

Also, the PLAer implements some subset Y I ¢ Y, which is represented as
Y'=v(r, Z, X). (6.67)

The design method includes the following steps for this model:

. Creating the set of states A.

. Constructing the set of ELCS Cg.

. Constructing the set I1cg.

. Optimal encoding of the ELCS a4 € Cg.

. Natural encoding of the states a,, € A(ayg).
. Encoding of the classes B; € [Tt

. Finding the sets Y! and Y.

. Constructing the table of PLAer.

0NN AW~
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Table 6.18 Models of ELCS-based Moore FSMs

6 Hardware Reduction for Moore EFSMs

No Type BIMF BTC BMO Basis Comments
1. PYg D =d(T, X) - yo = yo(T) FPGA Base structure
2. PyoYE Y=Y(T)
3. PciYE | @ =®(r,X) - 7 =1(T)
4, PcoYE 2 =721 |th=7NT)
5. PYgc v =y(r,X) - yo =yo(1,T) Code sharing
6. P YEC Y=Y(,T)
7. PciYgce (¥ =¥ (Z,X) Z=2Z(,T)
8. PcoYEC 72=7%(r) |Z'=2'az, 1)
8. PcoYEC 22=7%(r) |z'=2'a, 1)
9. PYg; D1 =D1(T,X) |- yo = yo(T) Two sources
Oy = Dy(Z, X) Y =Y(T) of codes for
ym = ym(T) base structure
Z = Z(T)
10. PcaYin 72=7%7) |z'=z4(T)
11. PYgs v =v(r,X1) |- yo = yo(1,T) Two sources
Oy =Py(Z, X) Y=Y(,T) for code
YM = sharing
ym(7,T)
Z=2(T)
12. PYgco zZ2=7%r) |(zZV=Zl(r,T)
13. PuYg D =d(T, X) - yo =yo(7,T) HFPGA | Base structure
14. ProYEC Y =Y(T)
15. PucYg D =P(1,X) 7=1(T)
16. PmYg |Y'=Y4T) Y2 =YX(T)
17. PHo1 YE
18. Puci1YEe
19. PuYEg: S =9(T, Z,X) yo = yo(T) Two sources
Y =Y(T)
Z=2Z(T)
20. PmYg |Y'=YYT,2) Y2 = YX(T)
21. Pu1Ygc) | ¥ =¥ (1, Z,X) yo = yo(7,T) Code sharing
Y'=vl(r,2) Y2 =Y2%(r,T) with two
Z=Z(,T) sources

9. Constructing the table of LUTer.
10. Implementing the FSM logic circuit.

This method combines steps form different methods discussed in this Chapter. We
hope that a reader will not have troubles with designing the logic circuit of Py Ygc
Moore EFSM.

We show all discussed models of ELCS-based Moore FSMs in Table 6.18. More
structures can be added for the case of HFPGA-based EFSMs with code sharing:
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. The model Py Ygc is a base model with code sharing. It is the same as the model

of PYgc Moore EFSM (Fig. 6.8). Of course, in this case the BIMF is represented
by the PLAer, whereas the BMO is represented by LUTer.

. The model Py Ygc is a base model with the optimal chain encoding.
. The model Pyc Ygc is a base model with the transformation of chain codes into

class codes K (B;).

These three models are not included in Table 6.18. It is done because we did not

discuss them in this Chapter. But we hope that our reader will be able to work out
the corresponding design methods. Of course, they are based on the methods already
discussed in this Chapter. Now let us discuss design methods targeting Moore FSMs
based on the normal linear chains of states.
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Chapter 7
Hardware Reduction for Moore NFSMs

Abstract The Chapter is devoted to hardware reduction targeting the normal LCS-
based Moore FSMs. Firstly, the optimization methods are proposed for the base
model of NFSM. They are based on the executing either optimal state assignment
or transformation of state codes. Two different models are proposed for the case of
code transformation. They depend on the numbers of microoperations of FSM and
outputs of EMB in use. The models are discussed based on the principle of code
sharing. In this case, the state code is represented as a concatenation of the code of
normal LCS and the code of component inside this chain. The last part of the chapter
is devoted to design methods targeting the hybrid FPGAs.

7.1 Optimization of NFSMs with the Base Structure

The only difference exists between EFSMs and NFSMs. The NFSMs are based on
natural linear chains of states. Because of it, we can use all optimization methods
proposed in Sect. 6.1. Of course, the set Cy = {0, ..., Bg2}. should be found instead
of the set Cg. So, the following four models can be generated:

1. The model of PYN Moore NFSM has the same structural diagram as the one
shown in Fig.6.1.

2. The model of PyYNx Moore NFSM is based on the optimal state assignment.
It has the same structural diagram as the one shown in Fig.6.1. The partition
Iey = {By, ..., By} should be constructed. Each class B; € I1¢y includes
pseudoequivalent NLCS 3 € Cy. The optimal codes K (a,,) should satisfy the
following condition:

K(agi) =K(ag)+1 (g=1,...,G2). (7.1)

3. The model Pc; YN Moore NFSM is based on the transformation of state codes
K (a,,) into the class codes K (B;). It has the same structural diagram as the one
shown in Fig. 6.5. The set 7 includes Rcy variables:
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Renv = [log, INT. (7.2)

This approach can be used if the following condition takes place:
tr > N+ 14 Rew. (7.3)

In (7.3), the symbol #r stands for the number of outputs of EMB. This number
should provide the following condition:

Vo> M. (74

In (7.4), the symbol V; stands for the number of cells of EMB for a given number
of outputs #5.

4. The model of Pc; YN Moore NFSM is based on the same principle of code
transformation. It has the same structure as the one shown in Fig. 6.6. It can be
used if two conditions take place. The first of them is the condition (6.18). The
second is the following condition:

tr <N+ Rey + 1. (7.5)

Let us discuss this model in details. The proposed synthesis method includes the
following steps:

Creating the set of states A for a given GSA I".
Constructing the set of NLCSs Cy.
Constructing the partition I1cy = {By, ..., By}
Executing the natural state assignment (7.1).
Encoding of the classes B; € I1¢y.
Constructing the table of LUTerl.

Constructing the table of LUTer2.

Constructing the table of EMBer.

Implementing the FSM logic circuit.

XNk LD =

Let us discuss an example of synthesis for Moore NFSM P, Yn(T'12). The initial
GSA I'j; is shown in Fig.7.1. It is marked by the states of Moore FSM using rules
[1]. The following sets and their characteristics can be derived from Fig.7.1: A =
{ai,....,a16}, M =16, X ={x,...,x3}, L=5,Y ={y,...,y71}, N =7. Using
(2.15), it can be found that R = 4. It gives the sets T = {T},..., Ty} and @ =
{D1, ..., D4}.

Let us apply the procedure P4 to GSA I7,. It gives the set of normal linear chains
of states Cy having G2 = 8 elements. There are the following chains: 5| = {(a;, az),
B2 = a3, ..., as), B3 = (a7, ag), Bs = (a9, ay), Bs = (a1, arz), B = {a13), b1 =
(a14) and g = (a5, aje).

It can be found the set ITcy = {By, ..., B4} where By = {31}, B, = {32, (3, (4},
B3 = {0s, B, 87} and B4 = {0s}. So, there is Ry = 2. It gives the set 7 = {1, 7}.
The outcome of natural state assignment is shown in Fig.7.2.
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Fig. 7.2 Natural state codes T,
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Letus encode the classes B; € [1¢y inthe trivial way: K (B) =00, ..., K(By) =
11. Let us point out that the code 11 can be treated as “don’t care” input assignment.

Let it be the configuration 16 x 9 (bits) in the FPGA chip in use. So, the condition
(7.4) is satisfied. There is tr = 9. There is N 4+ 1 + Rcy = 10. It means that the
condition (7.3) is violated, whereas the condition (6.18) takes place. So, the model
of P> YN Moore NFSM can be used.

The set 7 should be derived using (6.17). The set 7! includes Rcny elements
where:

Reni =t — (N +1). (7.6)
The set 72 includes Renp elements, where:
Rcn2 = Ren — Reni- (7.7

Let the condition (6.22) take place. It allows finding sets: 7! = {7} and 72 = {7}.
The table of LUTerl is constructed on the base of the system GFT. There is the
following system in the discussed case:

B = x1a3 V X1X2a4 V X1X2X2a7 V X1X2X309;
By = x0a11 V X2x4a13 V X2X4a14; (7.8)

B3 = xsa15 V Xs5aq9.

The system (7.8) includes Hy(I2) =9 terms. It is the number of rows for
Table7.1.

This table is used for deriving the system of input memory functions. For example,
the following minimized function can be derived from Table7.1:

Dy = T1X1X2X3 VT2 V T Ts. (79)
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Table 7.1 Table of LUTerl for Moore NFSM P Yn(T'12)

B; K (Bi) as K (as) Xp Dy, h
B 00 as 0010 X1 D3 1
as 0011 X1X2 D3 Dy 2
ay 0110 X1X2X3 Dy Ds 3
ag 1000 X1X2X3 D 4
B 01 ar 1010 X D1 D3 5
as 1100 XoXq DD 6
a4 1101 XoXy4 D1DyDy 7
B3 10 aps 1110 X5 D1 D> D3 8
ao 1001 X5 DDy 9
Table 7.2 Table of LUTer2 for Moore NFSM Py Yn(T12)
am K (am) B; K (B;) T2 m
aj 0001 By 00 - 2
ae 0101 By 01 p) 6
as 0111 B> 01 ™ 8
ao 1001 B> 01 ™ 10
ap 1011 B3 10 - 12
as 1100 B3 10 - 13
ais 1101 B3 10 - 14

The table of LUTer2 is constructed only for outputs of chains 3, € Cy. It contains
the columns a,,, K (a,,), B;, K(B;), 7'3,, m. It is constructed using the same rules as
for the Moore EFSM P, Yg. The table of LUTer2 includes 7 rows in the discussed
case (Table7.2).

This table is used to program the LUTs implementing the functions 7 = 7 (7).
It is done as in the case of P, Yg Moore EFSM.

The table of EMBer includes the columns K (a,,), Y (a,,), T,}, , h,m. The column t,L
includes Rcn bits from the codes K (B;). There is a part of this table for P, Yn(I'12)
including the first 8 rows (Table7.3).

This table is used for programming EMBs. It is constructed in the same way as
its counterpart for the case of Pc, Yg Moore EFSM.

Now, all tables are constructed. It gives an opportunity to obtain the NFSM logic
circuit. We do not discuss this step for the Moore NFSM P, YN(I'12). It is possible
to diminish the number of outputs of LUTer due to encoding of the inputs of NLCS
B¢ € Cy. This method is based on ideas [4].

Let us discuss this approach using the GSA I3 (Fig.7.3). It is marked by the
states of Moore FSM creating the set A = {ay, ..., a;z}.

There are the following normal LCSs in the GSA I'3: 51 = (a1, a2, a3), B =
(a, as, ag), B3 = (a7, ag), Bs = {ag, aio), B5 = (a1, arz). So, there are G2 =15



160

7 Hardware Reduction for Moore NFSMs

Table 7.3 The part of table of EMBer for Moore NFSM Pco YN (T'12)

1

Kan)Ty... Ty |Y(@m)yo...¥7 T T1 h m
1000 11100000 0 1 9
1001 00010000 0 2 10
1010 11100000 0 3 11
1011 00001011 1 4 12
1000 11100000 0 1 9
1001 00010000 0 2 10
1010 11100000 0 3 11
1011 00001011 1 4 12
Fig. 7.3 Initial GSA I3 @
Ell
Yiy2 EY)
A/
Y3y a3
1 % 0
0
1
| y1y2 a7 | y3yu 3y
: —
| y1ysys ag | yiy3 an
0 1

Ell
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Fig. 7.4 Structural diagram of P1oYn Moore NFSM

chains in the set Cy (173). These chains have the following inputs: 1 11 =ay, 121 = a4,
122 = as, 131 =ay, I41 = ao, 142 = ay, 151 =a, 152 = aj;. They form the set Iy hav-
ing |Iy| = 8 elements.

Let us encode the inputs /; € Iy by the binary codes K (Iy) having Rix bits:

Rix = [log, [In]1. (7.10)

Let us use the variables z, € Z for the input encoding where |Z| = Riy. To trans-
form the codes K (I é‘) into the codes K (a,,), it is necessary to use a block of inputs
transformer (BIT). The BIT implements the following system:

® =P (2). (7.11)

Let the symbol Py show that there is the BIT in the structure of a Moore FSM. In the
case of the base structure, four different NFSMs are possible: Pt Yn, Pro Yn, Prc1 YN
and Ppcr Yn. Design methods for these NFSMs include steps connected with design
of BIT. For example, let us discuss the ProYn Moore NFSM (Fig.7.4).

In this structure, the LUTerl implements the functions

Z = Z(T, X). (7.12)

The LUTer2 implements the system (7.11). The LUTer2 corresponds to the BIT.
The proposed design method includes the following steps:

. Creating the set of states A.

. Constructing the set of NLCSs Cy.

. Constructing the partition I1cy.

. Executing the optimal natural state assignment.
. Executing of input encoding.

. Constructing the table of LUTerl.

NN AW
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Fig. 7.5 State codes for T1T2

Moore NFSM ProYn(T13) 5T 00 01 1 10
00 a1 a, an a7
01 az as an ag
1 * * * a
10| a3 36 * 9

B1 B2 Bs B3

Fig. 7.6 Input codes for 7172
Moore NFSM PT()YN(FB)
7N 00 01 11 10
0 & a1 an an
1 dg a7 ds dg

7. Constructing the table of LUTer2.
8. Constructing the table of EMBer.
9. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore NFSM ProYn(T'13). The steps
1 and 2 are already executed.

There is the partition ITcy = {By, ..., B4} including classes B = {3}, B, =
{B.}, B3 = {03, 084} and B4 = {35}. One of the variants of the optimal natural state
assignment is shown in Fig.7.5.

The following class codes can be derived from Fig.7.5: K(B;)=00%%,
K (By)=01** K(B3)=10** K(B4)=11%* Because the table of LUTerl does
not include the transitions for By, the class code K (Bj) can be treated as “don’t
care”. It allows obtaining the codes K (B;) =*1** and K (B3) = 1¥%*,

Using (7.10), the following value can be found: Ry = 3. So, there is the set
Z = {z1, 22, z3}. Let us encode the chain inputs as it is shown in Fig.7.6.

The table of LUTer1 is constructed on the base of the system GFT. In the discussed
case, it is the system:

B, = x1a4 V X1x2a7 V X1X2a9;
By = xpa11 V xaas; (7.13)

B3 = x3x4a10 V X3X4a12 V X3ay].

The table includes the columns B;, K (B;), ay, K (ay), X, Z;,, h. In the discussed
case, it is Table 7.4. The state codes are taken from Fig.7.6.
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Table 7.4 Table of LUTerl for Moore NFSM ProYn(I"13)

B; K (Bi) as K (as) Xp Zp h
B 00%** aq 111 X1 212223 1
az 101 X1x2 2123 2
ag 100 X1X2 21 3
B> w] ar 010 X2 22 4
as 110 X 7122 5
B; otk aio 001 X324 23 6
aln 011 X3)E4 2274 7
apg 010 X3 2 8

Table 7.5 Table of LUTer2 for Moore NFSM P1oYN(13)

an C(am) 212223 KB)T ... Ty |®y m
ap 000 0000 - 1
as 111 0100 Dy 4
as 110 0101 D> Dy 5
az 101 1000 D 7
ag 100 0110 D1 D3 9
ao 001 1011 D1 D3 Dy 10
apy 010 1100 DD, 11
apn 011 1101 D1 D> Dy 10

The table of LUTerl1 is used for deriving the system (7.12). It is the following
system in the discussed example:

21 =TT v Thio;
7y = T] Tle VT,V TixsV T])E3; (714)

3 = Tl szl \ Tl TzXz Vv T1x3.

Each of Egs. (7.14) can be implemented using LUTs with §; = 5.

The table of LUTer2 gives functions (7.11). It includes the columns a,,, C(a,,),
K (a;), ®,,, m. In the discussed case, it is Table7.5.

The state codes C (a,,) are taken from Fig.7.6, whereas the state codes K (a,,)
from Fig.7.5. If the following relation takes place

SL > RIN’ (715)
then only Ry of LUTs is required to implement the logic circuit of LUTer2.

The table of EMBer is the same as for PYg Moore EFSM. For the discussed
example, a part of this table is represented by Table 7.6.
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Table 7.6 The part of table K (ay) Y (@) h m
of EMBer for Moore NFSM
ProYn(T'13) T...Ty Yo .--Y5
TOINE 1000 100000 1 1
0001 111000 2 2
0010 000110 3 3
0011 000000 4 *
0100 101100 5 4
Fig. 7.7 Structural diagram +]
of FPGA-based PYnc \/
M FSM
oore NFS o ol (T T - o
X—» -
Start | Y
LUTer Clock EMBer
I v
Y gl RG [T >

Let us use LUTs having S; = 5 and EMBs having the configuration 16 x 8. In
this case, each equation of (7.14) is implemented using only a single LUT. Because
the (7.15) takes place, each Eq.(7.11) is implemented using only a single LUT. So,
there are seven LUTs and one EMB in the logic circuit of Moore NFSM Py Y (I'13).
Of course, at least four LUTs are used to implement the circuit of CT.

This approach can be used in ELCS-based Moore FSMs. It results in models
PrYE, ProYE, Prc1 YE, Ptca YE. We do not consider them in our book.

7.2 Optimization of NFSMs with Code Sharing

Basing on Fig.3.17, it can be obtained the FPGA-based structural diagram of PYnc
Moore NFSM (Fig.7.7).

In this model, the LUTer implements functions (3.57) and (3.58), the EMBer
generates functions (3.59) and (3.60). The counter CT contains codes C(a,,) of
states a,, € A. The register RG contains codes K (3,) of chains 3, € Cy. The state
codes K (a,,) are represented using the principle of code sharing (3.56).

The following approach is proposed for synthesis of FPGA-based PYnc Moore
FSM:

1. Creating the set of states A for a given GSA I".

2. Constructing the set of NLCSs Cy = {01, ..., Bg2}-
3. Executing encoding of NLCS.

4. Executing natural encoding (3.55).


http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 7.7 Natural LCSs and their classes for GSA I'i4

B; B B> B3 By C(any)
Bg B B2 B3 B4 s Be B Bs
am aj as as ag aio ail ais ais 00

as ay ay ag - ap ag aie 01

- as - - - - - ayy 10

- - - - - - - - 11
K(Bg) | 000 001 010 011 100 101 110 111 -
K(B;) |00 01 10 11 -

5. Constructing the table of LUTer.
6. Constructing the table of EMBer.
7. Implementing the FSM logic circuit.

Let us discuss an example of synthesis for the More NFSM PYnc(/74). The
marked GSA I74 is shown in Fig.7.8.
The following sets and their characteristics can be found from GSA I'4: X =

{x1,....,x4},L=4Y ={y1,...., 7}, N=T7,A={ay,...,a17}, M = 17. Hence,
there is R = 5.
Let us apply the procedure P, to this GSA. It gives the set Cy = {01, ..., Os}

where (31 = (ar, @), f = (a3, a4, as), B3 = {ag, a7), Bas = (as, as), PBs = {aio),
B¢ = (a1, arn), B7 = {ai13, a14) and By = (ais, a6, ai7). So, thereis G2 = 3. It gives
the set 7 = {71, T, 73}. Analysis of chains shows that there is Mg, = 3. It gives the
value Rc» = 2 and the set T = {1}, T»}. Also, there are set ¥ = {D;, D,, D3} and
@ = {Dy, Ds}.

Let us encode the chains 3, € Cy in the trivial way: K(3;) = 000, K(83:) =
001, ..., K(8s) = 111.Letusencode the states a,, € A(f3,) using (3.55). The result-
ing codes K (a,,) can be obtained from Table 7.7.

Using Table 7.7, the following state codes, for example, can be found: K (a;) =
00000, K (a;) = 00001, K (a;7) = 11110.

The table of LUTer includes the columns 3y, K (B,), as, K(ay), Xn, ¥, Pn, h.
The sense of them is clear from previous discussion. The table is constructed on the
base of the system of formulae of transitions. In the discussed case, it is the following
system:

ar —> X1X3a3 V X1X3a4 V X1X2dg V X1X2a3;

as, az, g —> X3ajo vV X3X4a11 V X3X4X1013 V X1X3X4415; (7.16)
ajp, a1z, d14 — ag,

ay; — X3ai V X3dog.

In the discussed case, the table of LUTer includes 18 rows. Let us point out that
there are no transitions for states a;g, a;» and a4 in the table. These transitions are


http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 7.8 The part of table of LUTer for Moore NFSM PYnc (174)
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ﬂg K(ﬁg) As K (as) X ¥, D), h

061 000 as 00100 X1Xx3 D3 — 1
as 00101 X1X3 D3 Ds 2
ae 01000 X1X2 D> — 3
as 01100 X1X2 D, D3 — 4

52 001 apo 10000 X3 Dy - 5
ar 10100 X3X4 DD — 6
aps 11000 X1X3X4 DD - 7
ais 11100 X1X3X4 D\Dy;D3 |- 8

Table 7.9 The part of table of EMBer for Moore NFSM Py Ync(I'14)

K (am) T T2 Y(am) yo...y7 h m

000 00 1000 0000 1 1

000 01 0110 0000 2 2

000 10 0000 0000 3 *

000 11 0000 0000 4 *

001 00 1001 1000 5 3

001 01 1000 0100 6 4

001 10 0101 0100 7 5

001 11 0000 0000 8 *

executed automatically. First 8 rows are shown in Table 7.8 for the table of LUTer of
Moore NFSM PYnc(114).
The table of LUTer gives functions (3.57) and (3.58). For example, the following

equations can be derived from Table 7.8 (after minimization):

Dy = 117735

Dy = T\ TyT3X1 V T1TaT3X3X4;

D3 = Tiamx; V TITaT3X V 7_'17_'2’7'3()23)64 V)El)f3)f4);

Dy =0;

D5 = 7_'17_'27_'3)61)23.

(7.17)

The table of EMBer includes the columns K (a,,), Y (a,,), h, m. It is constructed
in the same way as for its counterpart for PYgc Moore EFSM. The first 8 lines are
shown in Table 7.9 for the given example. Let us point out that there are 32 rows in
the table of EMBer for our example.


http://dx.doi.org/10.1007/978-3-319-59837-6_3
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titats
D 000 001 011 010 10 m 101 100
00| & ars an a3 a3 ds ag ato
01 & A an an, ay 3y ag *
N s » 2 » * * » »
10 2 ar % %* as % %* %*

Fig. 7.9 Optimal natural state codes for Moore NFSM Py Ync(T"14)

Basing on Chap. 6, two methods can be used for optimization of logic circuit of
PYne Moore FSM:

1. The optimal natural state assignment. It leads to PoYnc Moore NFSM having
the same structure as the one shown in Fig.7.6.

2. The transformation of chain codes into class codes. There are two modification
of this FSM. They depends on the following condition

tr > N+ 1+ Ren. (7.18)

The value of Rcyn determines the number of bits in the class codes K (B;).

There are the optimal natural state codes for the Moore NFSM Py Ync (I'14) shown
in Fig.7.9.

The partition ITcy is taken from Table7.7. It includes the classes By = {/3;},
By = {32, B3, B4}, Bz = {Bs, B, 57}, B4 = {Fs}. We can use the codes of states aj9—
ay4 for optimizing the class codes. Using this fact, the following class codes can be
found from Fig.7.9: K(B;) =0%0%**, K(B,) = 1**** and K (B4) =0%1**,

The system of GFT for Py Ync(I'14) is similar to the system (7.16). But the states
an = O, should be replaced by corresponding classes:

B, — x1x3a3 V x1X3a4 V X1X20¢ V X1X243;
By, — x3ai10 V X3x4a11 V X1X3X4a13 V X3X4d15; (7.19)

By — x3a14 V X3a9.

The system (7.19) determines Table 7.10. It includes only 10 rows.

As in the previous case, functions (3.57) and (3.58) can be derived from this
table. For example, the following functions can be derived from Table7.10 (after
minimization):

Dy =773V T1X3 V T1X4 V TIT3X3;
I (7.20)
Ds = 1iT3x1X3 V T T3.
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http://dx.doi.org/10.1007/978-3-319-59837-6_3
http://dx.doi.org/10.1007/978-3-319-59837-6_3

7.2 Optimization of NFSMs with Code Sharing

Table 7.10 Table of LUTer for Moore NFSM Py Ync(I14)
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B; K(B;) as K (as) Xn 'Z% Dy h
By 0*0** as 11000 X1Xx3 DD, - 1
aq 11001 X1X3 D1 D> Ds 2
ae 11100 X1X2 D\ DyD3 | — 3
as 10100 X1X2 D1 D3 — 4
By ok ao 10000 X3 D, - 5
ar 01100 X3X4 D D; — 6
aps 01000 X1X3X4 D, - 7
aps 00100 X1X3X4 D3 - 8
By QF]** a4 01001 X3 D> Ds 9
ag 10101 X3 D D3 Ds 10
Fig. 7.10 Structural +1
diagram of FPGA-based  /
Pc1Ync Moore NFSM ® ol o7 LT J)’O
- Start [ 4Y>
LUTer Clock EMBer
> A
Y »lRG|T Z

-

D =9(Z,X).

If the condition (7.18) takes place, then the model of P¢; Yne Moore NFSM can
be used (Fig.7.10).
In this model, the LUTer implements the systems (6.30) and

(7.21)

The EMBer implements the functions (3.59), (3.60) and (3.62). The proposed design
method for P¢; Yne Moore NFSM includes the following steps:

0NN AW~

. Creating the set of states A.

. Constructing the set of NLCSs Cy.
. Executing chain encoding and natural state encoding (3.55).
. Constructing the set ITyc.

. Executing class encoding.

. Constructing the table of LUTer.
. Constructing the table of EMBer.
. Implementing the FSM logic circuit.

five steps are already executed. Their outcomes is represented by Table7.7.

Let us discuss an example of design fot the Moore NFSM P¢; Yne(I'14). The first


http://dx.doi.org/10.1007/978-3-319-59837-6_6
http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Table 7.11 Table of LUTer for Moore NFSM Pc; Ync(T14)

B; K(B;) as K (as) Xn 'Z% Dy h
B 00 as 00100 X1Xx3 D3 — 1
as 00101 X1X3 D3 Ds 2
ae 01000 X1X2 D> — 3
as 01100 X1X2 D, D3 — 4
B 01 apg 10000 X3 D - 5
ar 10100 X3X4 DD — 6
aips 11000 X1X3X4 DD - 7
ais 11100 X1X3X4 D\Dy;D3 |- 8
By 11 a4 10001 X3 DD, Ds 9
ag 01101 X3 D> D3 Ds 10

Let us point out that there are Rcny = 2 and Z = {z1, z2}. The code 10 can be
treated as “don’t care”. It can be done due to execution of transitions {(a,,, a;) auto-
matically.

To construct the table of LUTer, let us construct the system of GFT for classes
Bl, Bz, and B4Z

B, — x1x3a3 V x1X304 V X1X2a6 V X1X243;
By — x3a10 V X3X4a11 V X3X4X1013 V X1X3X4015; (7.22)

By — x3ai14 V X3a9.

The system (7.21) determines Table7.11.

Let us point out that the chain codes are taken from Table 7.7. The table of LUTer
is used for deriving the systems (6.30) and (7.21). For example, it is possible to derive
the following functions from Table7.11:

Dy =Z120 V 2122X3;

Dy = Z122X1 V 2120X3%4 V 21225

D3 = Z12ox1 V 2122X2 V 2122X3X4 V 21 X2X1X3X4 V Z122X3; (7.23)
D4 = O;

Ds = 7172x1X3 V 2122.

Each equation of (7.23) can be implemented using a single LUT having 6 inputs.

To implement the circuit of EMBer, it is necessary to use an EMB having the
configuration 32 x 10 (bits). The table of EMBer is constructed in a trivial way. The
logic circuit of NFSM P¢; Yne(T14) is shown in Fig. 7.11.

If the condition (7.18) is violated, then the model of Pc, Ync Moore NFSM can
be used (Fig.7.12).


http://dx.doi.org/10.1007/978-3-319-59837-6_6
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It can be used if the following conditions take places:

tr > N+ 1;
lf<N+1+RCN

(7.24)
(7.25)
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Fig. 7.13 Structural diagram of FPGA-based Prc2 YN Moore NFSM

We hope that a reader can invent the design method for P¢; Yne Moore NFSM. It
can be done using the methods for both P, Ygc and Pej Yge FSMs.

It is possible to use the method of input transformations for NFSMs with the code
shan'ng. It results in the fOHOWng models: PTYNC’ PTOYNC’ PTCI YNC and PTCZYNC~
For example, there is the following structure diagram for the Pr¢, Yne Moore NFSM
(Fig.7.13).

In this model, the LUTer1 implements the system of functions

W =W(Z, X). (7.26)

These functions are used as variables creating the input codes. The LUTer2 imple-
ments the input memory functions

U =y (W), (7.27)
= P(W). (7.28)

The LUTer3 implements the functions
7% = 7%(7). (7.29)
The EMBer implements the functions (3.59), (3.60) and
z'=27"(r, 7). (7.30)
The variables z, =< Z' U Z? are used for representing the class codes.

There are the following steps in the proposed design method for Prc, Yne Moore
NFSM:

1. Creating the set of states A.
2. Constructing the set of chains Cy.
3. Executions of state and chain encoding.


http://dx.doi.org/10.1007/978-3-319-59837-6_3
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Fig. 7.14 Codes of inputs WiW2

e w001
00| =& a * 33
01 a ars * 3
"l an ars * as
10 »* ay * a,

. Constructing the set of Ilnc.

. Executing the class encoding.

. Executing chain inputs encoding.

. Constructing the table of LUTerl.

. Constructing the table of LUTer2.

. Constructing the table of LUTer3.

. Constructing the table of EMBer.

. Implementing the FSM logic circuit.

— O O 00NN L B~

—_ =

Let us discuss an example of design for the Moore NFSM Prcy Yne(I'14). The
first five steps are already executed. There are the corresponding sets and codes in
Table7.7.

It is possible to find the set of inputs for NLCSs of GSA I'4: Iy = {a1, a2, a4, as,
ag, ag, aig, aii, 13, di4, ais}. It is necessary Ry = 4 variables to encode the inputs.
Let us encode the inputs as it is shown in Fig.7.14. The following approach is
used for this step: all states from the same GFT should be included in the same
generalized interval of Riy-dimensional Boolean space. It allows minimization for
Boolean equations (7.26).

The table of LUTer1 (Table7.12) is constructed using the system of GFT (7.22).
It contains the state codes from Fig.7.14.

Now, the following equations can be derived from Table7.12:

Wi = Z122;
Wy = Z122;

_ o - _ (7.31)
W3 = Z122X1X3 V Z122X1X2 V Z122X3X4 V 2122X1X3X4 V Z122X3;

W4 = Z120X%1 V Z122X3X4 V 2122.

The table of LUTer2 includes the columns: a,,, K (an), K(B3¢), C(an), ¥, Ps,
h. It includes the codes of inputs in the column K (a,,). It is used for deriving the
functions (7.27) and (7.28). In the discussed case it is Table 7.13.

Let us point out that there is no row for state a; in Table7.13. The pulse Start is
used for loading the zero codes into both RG and CT. Table 7.13 is used for deriving
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Table 7.12 Table of LUTer1 for Moore NFSM Ptca Yne (T i4)

B; K (Bi) as K (as) Xp Wi h
B 00 as 1000 X1X3 w1 1
as 1010 X1X3 wiws 2
ag 1001 X1X2 wiwg 3
ag 1011 X1X2 Wiw3wy 4
By 01 apo 0100 X3 w) 5
ary 0110 X3Xx4 wows3 6
ap 0101 X1X3X4 Wowyg 7
ais 0111 X1X3X4 WoW3wyg 8
By 11 a4 0001 X3 Wy 9
ag 0011 X3 W3wyg 10

Table 7.13 Table of LUTer2 for Moore NFSM Ptca Yne (T i4)

G K (am) K(53,) Clam) i Pp h

as 1000 001 00 D3 - 1
as 1010 001 01 D3 Ds 2
aeg 1001 010 00 D, - 3
ag 1011 011 00 D> D3 - 4
ag 0001 011 01 D> D3 Ds 5
aio 0100 100 00 D, - 6
ar 0110 101 00 D1 D3 — 7
aps 0101 110 00 DD, - 8
a4 0011 110 01 DD, Ds 9
as 0111 111 00 DDy D3 — 10

the functions (7.27) and (7.28). For example, the following equations can be derived

from Table 7.13:
Dy =wiwy V wiws;
1 1 2_ 1_3_ (7.32)
Ds = wiwzwy V wiwows.

These equations are obtained using both Table7.13 and the Karnaugh map
(Fig.7.14).

Let the EMB in use have the configuration 32 x 9 bits. Because of Iy = 4, we
have Rcn = 2. So, both conditions (7.24) and (7.25) take place. Let us divide the set
Z by the following subsets: Z' = {z,} and Z? = {z;}. Analysis of class codes shows
that z; = 1 only for chain Og € By. So there is no need in the table of LUTer3. We
can obtain the following equation z; = 77,73 from the relation Jg € Bj.

The table of EMBer is constructed as in previous cases. We do not discuss this
step in that book.
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Table 7.14 Models of NLCS-based Moore FSMs

No. Type BIMF BTC BIT BMO

1. PYxn o=, Xx)D - - Yo = yo(T)?

2. PoYn Y = Y(T)(3)

3. PaYn @ =0(,X)® - - OO 7 =7(T)®

4. PcoYn 2 =72(T)© - @O 71 = 7y D
5. PrYx  Z=2Z(T.X)® - & = d(2)® @0

6. ProYn

7. PraiYn Z=Z(r, X)10 - @6

8. Prc2Yn © @G

9. PYne ¥ =w(T, X)) - - yo = yo(r, T)1¥
10. PoYne @ = o(T, X)1? Y =Y(r, T)¥
1. PoiYne ¥ =w(Z, X)) - _ 114 7 — 7(7, 7)1
12. PooYne @ = @(Z, X)10 72 = 722(n)(1® AHAH 71 = 71 (7, 7)19
13. PrYne W = W(r, X)@0 - & = (W)@ 1314

14. ProYne v =g (W)

15. PrciYne W = W(Z, X)® - - a3 a4 A7)

16. PreaYne (18 (13)(14)(19)

There are 16 different models of NFSMs discussed in Sects. 7.1 and 7.2. They are
represented by Table 7.14. All these models target FPGA as a basis for implementing
logic circuits of NFSMs.

The further hardware reduction can be obtained due to replacement of logical
conditions [2]. These methods can be used for FSMs based on any kind of LCSs. Let
us discuss these methods for Moore NFSMs.

7.3 Replacement of Logical Conditions for NLCS-based
Moore FSMs

Asitis mentioned in Chap. 2, the replacement of logical conditions is reduced to find-
ing some set of additional variables P = {py, ..., ps}. The value of G is determined
asmax(Ly, ..., Ly). The symbol L,, stands for the number of logical conditions in
the state X (a,,) C X. The logical conditions x, € X (a,,) determine transitions from
the state a,, € A. If the method of RLC is used, then the symbol “M” appears in the
corresponding formula of FSM.

Let us start from MPYy Moore NFSM. There is a structural diagram of FPGA-
based MPYy Moore NFSM shown in Fig.7.15.


http://dx.doi.org/10.1007/978-3-319-59837-6_2
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Fig. 7.15 Structural diagram of FPGA-based MPYN Moore NFSM

Table 7.15 Natural LCSs and their characteristics for GSA I3

B; B B Bs By C(ap)
B B B2 B3 B4 Bs
am ai a4 az ag apg 00

as as ag aio ap 01

as ag - - - 10
K(B,) 000 001 010 o011 100 -
K (B;) 00 01 10 11 -

In this model, the LUTerl implements the system (2.19), whereas, the LUTer2
generates the input memory functions (2.20). The EMBer implements functions
(2.16) and (3.29). The proposed design methods includes the following steps:

. Constructing the set of states A.

. Constructing the set of chains Cy.

. Executions of the natural state assignment.
. Finding the set of additional variables P.

. Constructing the table of LUTerl.

. Constructing the table of LUTer2.

. Constructing the table of EMBer.

. Implementing the FSM logic circuit.

Let us discuss an example of design for the Moore NFSM MPYn (173). The GSA
I'i3 is shown in Fig.7.3. There are chains, classes and their codes in Table 7.15.

Let us form the set X (a,,) for states a,, = O,(g =1, ..., G2). There are the fol-
lowing states X(a3) = {x1, x2}, X(as) = {x2}, X(ag) = X(A10) = {x3, x4},
X (ajp) = @. Obviously, there is G = 2. It gives the set P = {py, p2}.

Let us form the table showing the replacement of logical conditions. Itis Table 7.16
for the given example.

Let us encode the states a,, € A in the trivial way: K (a;) = 0000, K (a;) =
0001, ..., K(a;p) = 1011. It corresponds to the requirement (7.1). The table of
LUTerl has the following columns: a,,, K (a,,), X (p1), ..., X(Pg), m. It is con-
structed on the base of table of RLC. In the discussed case, it is Table 7.16. Let us
point out that there are the sets X (p;) = {x1, x3}, X (p2) = {x2, x4}.

0NN AW~
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Table 7.16 Table of RLC for Moore NFSM MPYN (173)
Pg\ap, as as asg aio apn
P X1 - X3 X3 -
Py X2 X2 X4 X4 -
Table 7.17 Table of LUTerl
K (a, X X
for Moore NFSM am (am) (p1) (p2) m
MPYCN(F]3) ag 0111 X3 X4 8
ao 1001 X3 X4 10
as 0010 X1 X3 3
ag 0101 - X2 6
Fig. 7.16 Refined state T1T2
codes for Moore NFSM
MPY e T T, 00 00 1 10
00| ay a an a7
01 =) 3s ap 3
" 2 2 2 A
10 a3 3 »* ag

This table is used for deriving Egs.(2.19). In the discussed case, there is the

system: o ) o
p1=TiLT:Thx v TV T T3Tyxs vV Ti Th T3 Taxs;

P2 = Tl T2T3T4X2 \ Tl T2T3T4)C2 vV...vT T2T3T4X4. (7:33)
Each equation of (7.33) can be implemented using a single LUT with S; = 6. These
equations can be minimized. If a,, # O,, then the code K(a,,) can be used for
minimizing. The same is true for the state a,, such that there is unconditional transition
(@, ar) (Table7.17).

Let us change the state codes for MPYn(173). Let new codes be oriented on
optimization of the system (2.19). Let us name such an approach as a refined state
assignment. One of the possible variants is shown in Fig.7.16.

Using these state codes and “don’t care” state codes, the following system can be

obtained: B
p1 = Tixy Vv Tixs;
i} (7.34)
P2 =Tixa VvV Tixg.
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Table 7.18 Table of LUTer2 for Moore NFSM MPY N (1713)

an K(an) as K (ay) Py Dy h
as 0010 as 0100 p1 D, 1
ay 1000 p1Dp2 D 2
ag 1010 P1P2 DD 3
ag 0110 apy 1100 P2 D1 Dy 4
as 0101 D2 DDy 5
as 1001 an 1101 P1P2 D1DyDy 6
aio 1011 pip2 D1D3 Dy 7
arg 1100 D1 DD, 8
apo 1011 an 1101 P1P2 D1DyDy 9
apo 1011 pip2 D1D3Dy 10
arg 1100 D1 DD, 11

Each equation of (7.34) can be implemented with a single LUT having S;, = 3.
Let us point out that the codes from Fig. 7.16 satisfy to (7.1).

The table of LUTer2 includes the following columns: a,,, K (a,,), a,, K (as), Py,
@y, h. The column P, includes conjunctions of variables p, € P corresponding to
conjunctions X for PYN(173). In the discussed case, it is Table 7.18.

The state codes are taken from Fig. 7.16. The equations (2.30) can be derived from
table of LUTer2. For example, the following minimized equations can be derived
from Table 7.18: o B

Dy =TiTT3p1 v TyTspy vV Ti T Ty,

_ - (7.35)
Dy = T2T3p2 v T T2p1 .

Let us point out that each equation D, € @ can contain up to R + G different
variables. In the case of PYNy Moore NFSM, it contains up to R + L variables. If
L > G, then the circuit of LUTer2 is quite simpler that the circuit of LUTer for
equivalent PYy Moore NFSM.

Tables of EMBer are the same for MPYy and PYyn Moore NFSMs. Because of
it, we do not discuss the step 7 in our book.

The method of RLC can be used together with the encoding of inputs of NLCSs.
Using both methods the following structural diagram (Fig.7.17) can be created for
MP1YyN Moore NFSM.

Int this model, the LUTer1 implements the system (2.19). The LUTer2 generates
functions z, € Z used for encoding the inputs of NLCS 3, € Cy. It is the following
system:

Z=Z(T,P). (7.36)

The LUTer3 implements functions (7.11). The EMBer implements functions yT')
and Y (T).
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Fig. 7.17 Structural diagram of FPGA-based MPTYN Moore NFSM

Table 7.19 Table of LUTer2 of Moore NFSM MP1YN(T"13)

am K(any) as K (ay) Py Zy h
a 0010 as 001 P 2 1
az 011 1292 2223 2
ag 100 P1D2 71 3
ag 0110 ap 110 P2 2122 4
as 001 12 73 5
ag 1001 apn 111 P1P2 212223 6
ao 101 piD2 7123 7
ar 110 Di 2122 8
ao 1011 apn 111 p1D2 212233 9
ao 101 piD2 7123 10
ai 110 Di 2122 11

The design methods are practically identical for NFSMs MPYy and MPyYy. But
there is an additional step in the second case. It is the step connected with constructing
the table of LUTer3. This table is the same as the table of LUTer2 for PrYx Moore
NFSM.

Let us construct the table of LUTer2 for Moore NFSM MP1 Y (I"13). There is the
following set of inputs Iy (I3) = {ai, a4, as, a7, aq, ajg, a1, ajp}. There is IN = 8.
Using (7.10), we can find the value Ryy = 3 and the set Z = {zy, 22, z3}.

Let us encode the inputs a,, € Iy in the trivial way: K(a;) = 000, K (a4) =
001, ..., K(ajz) = 111. The table of LUTer2 has the same columns as its counter-
part for the MPYyN Moore NFSM. But there are two differences. Firstly, the column
K (ay) includes the codes of inputs. Secondly, there is a column Z), instead of @;,. In
the discussed case, it is Table 7.19.

This table is used for deriving the system (7.36). For example, the following
minimized equation can be derived from Table7.19:

21 =T LT Typipo vV TiT T Taps vV Ti T T (7.37)
The method of RLC can be used together with the optimal natural state assignment

and with encoding of the classes of pseudoeqivalent NLCSs. The first combination
leads to MPy YN Moore NFSM. There are two possible models in the second case.
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Fig. 7.18 Structural diagram of FPGA-based MPc; YN Moore NFSM

They are the models MP¢; Yy and MP, Yy. Of course, the BIT can be used in these
FSMs, too. It leads to the following models MP1oYxN, MPrc; YN and MPpc, Yn. For
example, let us discuss the MP¢; YN Moore NFSM (Fig. 7.18).

In this model, the LUTerl implement the functions

P = P(7, X). (7.38)
The LUTer2 implements the functions
@ = &(T, P). (7.39)

The purpose of EMBer is the same as for Pc; Yy Moore NFSM. The design method
includes the following steps for MP¢; YN Moore NFSM:

. Constructing the set of states A.

. Constructing the set of NLCSs Cy.

. Executing the natural state assignment.

. Constructing the partition ITcy.

. Executing the encoding of the classes B; € IIcN.
. Finding the set of additional variables P.

. Constructing the table of LUTerl.

. Constructing the table of LUTer2.

. Constructing the table of EMBer.

. Implementing the FSM logic circuit.

O O 00O\ N AW

—_

Let us discuss an example of design for Moore NFSM MP¢; Yn(I'13). The first
five steps of the design method are already executed (see Table7.15). The step 6
gives the set P = {py, p2}.

The table of LUTerl is constructed using the table of RLC. This table is the
same as for MPYy Moore NFSM but the states a,, € B; are replaced by the classes
B; € Icy. Itis Table 7.20 in the discussed case.

The table of LUTerl has the columns B;, K (B;), X(p1), X(p2), ..., X(pg), i.
In the discussed case, it is Table 7.21.
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Table 7.20 Table of RLC for Moore NFSM MP¢c; Yn(T'13)
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Pg\Bi By By B3 By
P1 X1 - X3 -
P2 X2 X2 X4 -
Table 7.21 Table of LUTer1 for Moore NFSM MPc; Yn(T'13)
B; K (B;) X(p1) X(p2) i
B 00 X1 X2 1
B> 01 — X2 2
B3 10 X3 X4 3
Table 7.22 Table of LUTer2 for Moore NFSM MPc; Yn(I'13)
B; K (B;) as K (ay) Py D), h
B 00 aq 0100 P1 D> 1
ar 1000 DP1p2 Dy 2
ag 1010 piD2 D1 D3 3
B 01 ap 1010 P2 DD 4
as 0101 P2 Dy Dy 5
B3 10 apn 1101 pP1D2 D1 D>Dy 6
ap 1011 P1p2 D\D3Dy |7
ar 1100 P1 DD, 8

Using the code 11, we can get the following equations from Table 7.21:

=T1X1 V T1X3;
P1 _1 1 1X3 (7.40)
P2 = T1X2 V TiX4.

Comparison of (7.34) and (7.40) shows that these systems have the same amount
of terms and literals. It means that, in the discussed case, the hardware amount is
equal for blocks LUTerl1 of both NFSMs.

The table of LUTer2 includes the columns B;, K (B;), ay, K (ay), Py, 5, h. In
the discussed case, the system (7.13) is used for creating Table 7.22.

This table is used for obtaining the system (7.39). For example, there are the
following equations derived from Table 7.22:

Dy = Ahp VAT V T
1 _1 2]f1 1_2 172 (7.41)
Dy =T112p2 V T1T2p1-

As it is for all previous cases discussed for GSA I3, the EMBer includes 16
cells. The code K (B;) is placed in the cell having address K (a,,) where a,, = O,
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Table 7.23 The part of table of EMBer for Moore NFSM MPc; Yn(I'13)

Kan)Ty... Ty |Y(@m)yo.--s5 K(B;) 1 h m
0000 10 0000 00 1 1
0001 11 1000 00 2 2
0010 000110 00 3 3
0011 00 0000 00 4 *
0100 10 1100 00 5 4
0101 11 0010 00 6 5
0110 00 0001 01 7 6
0111 00 0000 00 8 *
Fig. 7.19 Structural +1
diagram of HFPGA-based # ﬂ
Pyc YN Moore NFSM X >

pLaer 2| CT ol LUTer o

T
Start T

Clock

and 3, € B;. There is a part of table of EMBer for the discussed case represented by
Table 7.23.

The state codes (Fig.7.16) are used for constructing both Tables7.22 and 7.23.
As in the previous case, we do not discuss the final step of design. Also, we do not
discuss other NFSMs having the block of RLC. We hope that our reader has enough
information to do it by himself or herself.

7.4 Design of Moore NFSMs with HFPGAs

Obviously, the HFPGAs can be used for implementing logic circuits of NFSMs. If
there is no code sharing, then the structure diagrams are the same for both EFSMs
and NFSMs. For example, there is the structural diagram of Pyc YN Moore NFSM
shown in Fig.7.19.

It is obvious that the circuits shown in Figs. 6.20 and 7.19 are identical. There are
identical the corresponding design methods. The only difference is reduced to the
approach used for the crating LCSs.

Now, let us discuss the design methods targeting NLCS-based FSMs with code
sharing. Let us start from PyyYne Moore NFSM (Fig. 7.20). Its circuit is represented
by the same systems of Boolean functions as it is for PYync Moore NFSM.
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Fig. 7.20 Structural +1
diagram of HFPGA-based ¢
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There are the following steps in the design method proposed for PyoYne Moore
NFSM:

. Creating the set of states A for a given GSA I".
. Constructing the set of NLCSs Cy = {01, .. ., B62}-
. Constructing the partition [Tcy = {Bj, ..., BN}.

. Executing of the optimal natural state assignment.
. Constructing the preliminary table of PLAer.

. Constructing the final table of PLAer.

. Constructing the table of LUTer.

. Implementing the FSM logic circuit.

el e SR R S US

Let us discuss an example of design for the Moore NFSM Py Yne (I14). The first
four steps are already executed (see Table7.7). There is the outcome of the optimal
natural state assignment shown in Fig.7.9.

The preliminary table of PLAer is constructed using the system of GFT. It is the
system (7.19) for the discussed case. This table is the same as Table 7.10.

The final table of PLAer includes the following columns: Inputs, Terms, Outputs.
It is constructed in the same manner as Table 6.16. In the discussed case the table
of PLAer is represented by Table 7.24. We hope the connection is obvious between
Tables7.10 and 7.24.

The table of LUTer is constructed in the same way as table of EMBer for Py Ync
Moore NFSM. The part of this table is shown in Table 7.25. It is based on state codes
K (a,,) from Fig.7.9.

Let the following conditions be true for the HFPGA chip used for implementation
of the lOgiC circuit of ProYon(T4):

Sp = L + Rgp; (7.42)
tp > Rz + Rea; (7.43)
qp = Hg; (7.44)

s1 > Rz + Rca. (7.45)
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Table 7.24 Final table of PLAer for Moore NFSM Py Ync(T14)

Inputs Terms Outputs
TIT2T3 X1...X4 DDy D3 Ds
0*0 1*1%* 1 1100
0*0 1*0%* 2 1101
0*0 01** 3 1110
0*0 00%* 4 1010
1#** o 5 1000
1% **01 6 1100
1** 1*00 7 0100
1** 0*00 8 0010
0*1 o 9 0101
0*1 FEQF 10 1011

Table 7.25 The part of table of LUTer for Moore NFSM ProYnc(I'14)

K(ay,) mimmTi T Y(am) yo...y7 h m
000 00 1000 0000 1 1
000 01 0110 0000 2 2
000 10 0000 0000 3 *
000 11 0000 0000 4 *
001 00 1110 0000 5 15
001 01 1001 0001 6 16
001 10 0000 1000 7 17
001 11 0000 0000 8 *

In this case, only a single PLA macrocell is used for implementing the circuit of
PLAer. Also, only 8 LUTs are used for implementing the circuit of LUTer. It leads
to the logic circuit shown in Fig.7.21.

If conditions (7.42)—(7.44) are violated, the more than one macrocell is necessary
to implement the circuit of PLAer. To minimize the hardware amount in the PLAer,
it is necessary to use the known methods [2, 3]. Of course,these methods should be
tuned to meet the peculiarities of NLCS-based Moore FSMs.

Let us discuss the case when the condition (7.42) is violated. Let the following
condition (7.46) be true:

S, > G + Rga. (7.46)

In this case, we can use the method of RLC. Let us denote as D L, the difference

Ay =S, + (G = Ra). (7.47)
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Obviously, the DL, inputs of PLA can be used for entering the logical conditions.

It means that only DL, of logical conditions should be replaced. Let the following
condition take place:

Sp > A1+ Rao. (7.48)

In this case, we propose the following structural diagram of MPyYnc Moore
NFSM (Fig.7.22).
In this model, the PLAer1 implements the system

P =P, X". (7.49)

It transforms the logical conditions x, € X! into the additional variables p, € P.
There are exactly A elements in the set X'. The PLAer2 implements the functions

v =v(r,x2 P); (7.50)
& = &(r,x%, P). (7.51)

This very approach can be used for optimizing HFPGA based Moore EFSMs. It
can be used for all models of NFSMs discussed in this Chapter. We hope that our
reader will be able to generate the models of FSMs as well as the corresponding
design methods.
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Chapter 8
Hardware Reduction for Moore XFSMs

Abstract The Chapter is devoted to hardware reduction targeting the extended LCS-
based Moore FSMs. Firstly, the design method is proposed for the base model of
XFSM. Next, the methods are proposed targeting the hardware reduction in the
circuits based on this model. They are based on the executing either optimal state
assignment or transformation of state codes. The third part deals with the models
based on the encoding of the chain outputs. At last, the principle of code sharing is
discussed. In this case, the state code is represented as a concatenation of the code
of class of pseudoequivalent chains and the code of element inside this class.

8.1 Design of XFSM with Base Structure

There are three main blocks in the base model of XFSM: the block of input mem-
ory functions, the counter and the block of microoperations (see Fig.3.16). As in
the previous cases, the BIMF is implemented as the LUTer, whereas the BMO is
implemented as EMBer. Let us start from the model P, Yx (Fig.8.1).

The LUTer implements the functions (2.9) and the following function:

v =y.(T, X). (8.1

The EMBer implements the functions (2.17). Let us point out that this model has
never been discussed in the literature.

There are the following steps in the proposed design method targeting P;Yx
Moore XFSMs:

Creating the set A for a given GSA I".
Constructing the set of XLCSs Cx = {v1, ..., Y3}
Executing the natural state assignment.
Constructing the table of LUTer.

Constructing the table of EMBer.

Implementing the FSM logic circuit.

SNk PN =
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Let us discuss an example of design for the Moore XFSM P, Yx(I';5), where the
GSA @15 is shown fi Fig. 8.2.

The following sets can be derived from the GSA I's: A ={ay,...,a7}, X =
{x1,x2,x3}, Y ={T1, T2, Tz} and @ = {D, D,, D3}. Using the procedure Py, the
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Fig. 8.3 State codes for T1T2
Moore XFSM P]Yx(F15) -|-3 00 01 ,l,l 10

0 ai as dg a7y

1 a; as 2 as

following set Cyx can be found Cy = {3, 3., #3}. There are the following XLCS
By € Cx: B1 = (a1, a2, a3, as, a7), B = (as), B3 = (as).

Let us execute the step 3. The state codes should obey to the relation (3.26). At
the same time, it should be zero code assigned for the initial state a; € A [2]. Using
these rules, the following state codes can be obtained (Fig. 8.3).

The table of LUTer includes the following columns: a,,, K (a,,), as, K (ay), X,
@}, yr, h. The column y; includes one if the transition (a,,, a;) should satisfy to the
relation K (ay) = K(a,) + 1. In the discussed case, there is the following table of
LUTer (Table8.1).

The table of EMBer includes the columns K (a,,), Y (a,,), m. It is constructed as
for all cases discussed before. It is Table 8.2 for the case of P; Yx(I';5).

The table of LUTer includes 10 rows. It is the same number as for the Moore FSM
PY (I'15). But there are some input memory functions only in five rows of Table 8.1.
Let us point out that each function D, can include up to 9 terms in the case of
PY (I'15). So, we can expect that the logic circuit is simpler for LUTer of P, Yx(I';s)
than for its counterpart from PY (I7s).

The following system can be derived from Table 8.1:

D, = T\ 7 T3x5,%, v T1 T» Tsx3 = Fy V Fg;

Dy =T\ Lsxx, vV T LT3 v T To Taxs v TV T Ty = F3 v Fg vV Fy V Fo;
Dy =T\ DTk, vV TV Ts vV T\ ThTs = [F3 V F4] V Fe \ Fo;
yi=F VvV F,VFsVvF;.

8.2)

Table 8.1 Table of LUTer for Moore XFSM P Yx(I"15)

am K (ay) as K (ay) Xn [ yrL h
aj 000 a 001 1 - 1 1
a 001 as 010 X1 - 1 2
as 011 X1x2 D, D3 - 3
as 101 X152 D\ D; - 4
as 010 as 011 1 - 1 5
as 101 as 011 1 Dy D5 - 6
as 011 az 100 X3 - 1 7
ag 110 X3 D1 D> - 8
ag 110 as 011 1 Dy Ds - 9
ar 100 a, 000 1 - - 10
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000 000000 1
001 110000 2
010 001000 3
011 010100 5
100 010001 7
101 000100 4
110 110000 6
111 000000 *

The expression [ F3 v Fy4] means that the corresponding term is obtained by using
the law of expansion [3]. The equation for y; could be simplified.

Analysis of Table 8.1 shows that y;, = 1 in two cases:
1. D;v D,V D3 =0;
2. K(ay) # 100.

It gives the following equations:

yo=D1 VvV DyV D3 - T1T2T3 = lezb3fl \% [)15253T3 \% D152D3T3. (8.3)
The Eq. (8.3) means that the function y; can be expressed as:
yo =y (@, T). (8.4)

When an FSM is designed, either (8.1) or (8.4) could be chosen for implementing
the corresponding circuit. Of course, it is reasonable to choose equation leading to
the circuit with less amount of LUTs.

Let us point out that the pulse Start should be connected with the clearing input
of the counter. Also, the functions C; = y;Clock and C, = y; Clock should be
implemented by the LUTer.

Let LUTs having S = 6 inputs be used for implementing the circuit of LUTer. In
this case, functions (8.2), C; and C, are implemented using a single LUT. Let the
FPGA in use include EMBs having the configuration 8 x 8 (bits). It means that only
one EMB is necessary for implementing the circuit of EMBer. The logic circuit of
P Yx(T"y5) is shown in Fig. 8.4.

In this circuit, LUT4 implements the function y; represented by (8.3), LUTS
implements Eq. (8.5),

Cy = y1Clock; (8.5)
C, = yiClock. (8.6)
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Let the LUTer generate a function y; initializing the incrementing the counter
for conditional transitions. Let the EMBer generates a function yj, initializing the
incrementing the counter for unconditional transitions. In this case, the following
equation should by implemented:

yL =YyL1 V yL2.

It leads to P, Yx Moore XFSM shown in Fig. 8.5.
In the case of FSM P, Yx (I';s), the LUTer is represented by Table 8.3.
Comparison of Tables 8.1 and 8.3 shows that the later includes less rows. Two
different equations could be formed for the function yy ;:

(8.7)
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Table 8.3 Table of LUTer of Moore XFSM P, Yx (I"5)

an K(am) as K (as) Xn Dy, YL h
ar 001 as 010 X1 - 1 1
as 011 X1X2 Dy D3 — 2
as 101 XX D1 D; - 3
as 101 as 011 1 D, D5 _ 4
as 011 a; 100 X3 - 1 5
ae 110 X3 D D) — 6
ag 110 as 011 1 Dy D3 - 7
az 100 ap 000 - - - 8
s BB G Tnn (Ve
Y1-.-Y6 VL2
000 000000 1 1
001 110000 0 2
010 001001 1 3
011 010100 0 5
100 0100100 7
101 000100 0 4
110 110000 0 6
111 000000 0 *
yu1 = 1 LyTzxy v T T T3x3; (8.8)
yui = D1V D,V Ds AT\ T Ts. (8.9)

Obviously, the Eq.(8.9) is a part of Eq.(8.2), whereas the Eq.(8.5) coincides
with (8.3). The function y;, should be formed for states a;, az € A. It leads to the
following table of EMBer (Table 8.4).

Let Vy be a number of cells of EMB if it has a single output (¢ = 1). To be
implemented as single EMB, the following conditions should take places for EMBers
of PY¢c and PY(; FSMs:

2RN < y; (8.10)
2B(N +1) < V. 8.11)

Analysis of the benchmarks from [4] shows that both conditions (8.10)—(8.11) are
satisfied for all benchmarks. So, both models can be used. The criterion of choice
could be either minimum hardware or minimum propagation time for function y; .
In this Chapter, we always use the models where the function y; is generated by the
LUTer.
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8.2 Optimization of XFSM with the Base Structure

It is known that the Moore FSM can be optimized by using the existence of pseudoe-
quivalent states [2]. But it is necessary to change the definition of PES for XLCS-
based More FSMs. Let us define PEWS as the following. The states a,,, a; € A are
pseudoequivalent, if they:

1. belong to different XLCS 3, € C,;
2. mark operator vertices connected with the input of the same vertex of GSA I';
3. the condition (3.26) takes no place for transitions from these states.

There are G3 = 3 extended LCSs in the case of GSA I's. Let I1cx be a partition of
the set A by the classes of PES for an XLCS-based Moore FSM. In the discussed
case, there is [1cx = {Bi, ..., Bs}, where B; = {a,}, B, = {ay}, B; = {a3}, By =
{a4, as}, Bs = {as} and B = {a7}. So the partition I1cx includes Icx = 6 classes of
PES. Let us point out that the following relation takes place:

Iex > 1. (8.12)

In (8.12), the symbol I stands for the capital numer of the partition /74 formed for
ULCS-based Moore FSM.
Let us encode the PES a,, € B; in such a way that:

1. the condition (3.26) takes place for each XLCS 3, € C,;
2. the codes of states a, € B; belong to the same generalized interval of R-
dimensional Boolean space.

As in previous cases, it is necessary to execute the optimal natural state assignment.
There is a variant of the optimal natural state assignment for the discussed example
(Fig. 8.6). Let us point out that the symbol Py means that the optimal state encoding
is used in an FSM.

Using the “don’t care” input assignment 110, the following codes can be found
for classes B; € IIgx: K(B;)=000, K(B,)=001, K(B3)=*10, K(By) =1*1,
K (Bs) =011, and K (Bg) =1*0.

There are the following steps in the proposed design method for Py; Yx Moore
XFSM:

1. Constructing the set of states A.
2. Constructing the partition I1cx = {v1, ..., Ys3}-

Fig. 8.6 Optimal state codes T1T2
forPorvx(fs) TN 0001 om0

0 d1 =) dg a3

1 a7 ds dg »*
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. Finding the partition IIcx = {Bi, ..., Bic,}.

. Executing the optimal natural state assignment.
. Constructing the table of LUTer.

. Constructing the table of EMBer.

. Implementing the FSM logic circuit.

NN R W

Let us discuss an example of design for the Moore XFSM Py; Yx (I";5). The first 4
steps are already executed. The table of LUTer includes the following columns: B;,
K (B;), ag, K (ay), D, yr, h. It is constructed on the base of GFTs. In the discussed
case, there is the following system of GFTs:

Bl — dy,
By — xy1a3 V X1x2a5 V X1X2a4;
B3 — das,
(8.13)
By — as;
Bs — x3a7 V X3as;

BG—>CZ1.

The table of LUTer includes 9 rows for the discussed case (Table 8.5). The columns
@;, and y; are filled using the following approach. Let us consider the transitions
from the class B; € I1gx, where a,, € B;. If the condition (3.26) takes place for the
transition (a,,, a,), then @, = @ and y; = 1. If the condition (3.26) is violated, then
yr = 0 and variables D, € @;, are determined by the code K (a;).

The table of EMBer is constructed in the same way as in the previous case. We
do not discuss this step.

There is the second known optimization approach, namely the transformation of
state codes. In this case, the classes of PES are encoded using the class codes K (B;)
having Rx bits:

R[X = |_10g2 IX-| . (814)

Table 8.5 Table of LUTer of Moore NFSM Py, Yx (I'15)

B; K (B;) as K (as) X P, VL h
By 000 a 001 1 - 1 1
By 001 asz 010 X1 - 1 2

as 011 X1X2 D, D3 — 3

as 101 X1X2 D1 D3 - 4
B3 *10 as 011 1 - 1 5
By 1*1 as 011 1 D> D3 - 6
Bs 011 az 100 X3 - 1 7

as 011 X3 D> Ds — 8
Bg 1*0 aj 000 1 - - 9
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Fig. 8.7 Structural diagram X yL
of FPGA-based Pic; Yx —» ﬂ”
Moore XFSM Y
LUTer |(o T EMBer —»
—» (T [P
T

Start

Clock

There are additional variables 7, € 7 used for encoding of the classes B; € IIcx.
Obviously, there is Ryx = |7|. If there are Rrx free outputs in EMBs, then the model
PlClYX is used (Flg 87)

The block LUTer implements the system (3.57) together with the function

yL = yL(7, X). (8.15)

The EMBer generates the functions (2.16) and (3.17).
Let the following conditions take places:

tr > N; (8.16)
tr < N 4+ Rix. (8.17)

In this case, the model P;c; Yx can be used (Fig. 8.8).
We hope, our reader understands the functions of each block from Fig. 8.8. Let us
discuss the design method for P1¢; Yx Moore XFSM. In includes the following steps:

Constructing the set of states A.

Constructing the set of XLCSs Cy.

Finding the partition I1cx.

Executing the natural state assignment.
Executing the encoding for classes B; € [1cx.
Constructing the table of LUTer.
Constructing the table of EMBer.
Implementing the FSM logic circuit.

PN R LD =

Fig. 8.8 Structural diagram X YL X
of FPGA-based P12 Yx i
Moore XFSM

| LUTer | @ T EMBer Y
- (T | > —

A LUTer2
Start
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Fig. 8.9 Initial graph-scheme of algorithm I'i¢

Let us discuss an example of design for Moore XFSM P Yx(I'15). The initial
GSA I is shown in Fig. 8.9.

The following sets and their parameters can be derived from GSA [ A =
{Cll,...,ag}, M=8, X={)C1,...,)C4}, Y={y1,...,y6}, N=6, R=3,
T ={T, T,, T3} and @ = {D;, D;, D3}. The following set of XLCS can be con-
structed: Cx = {B1, ..., B¢}, where 51 = (a1, a2, as), 2 = (a3), B3 = (a4), Ba =
(as), Bs = {a7) and B = (as).
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Fig. 8.10 Codes of states of T2T3

Moore XFSM Pic1 Yx(T16) T 00 01 M 10
0 =1 az as dg
1 a, as as a7

Using the definition of PES from this Chapter, the set [1cx = {Bj, ..., Bs} can
be found. It includes the following classes: Bi{a,}, Bx{a»}, Bs{as, as, as}, Bs{ac},
Bs{ay, ag}. Because there are classes having more than one state, it is possible to opti-
mize the LUTer. Obviously, there is no variant of the optimal natural state assignment
leading to representing each class by a single generalized interval. So, there is sense
using the state transformation approach.

Let us encode the states as it is shown in Fig. 8.10.

Using (8.14), we can find Rix = 3. Therefore, there is the set 7 = {7y, 7, 73}.
The class assignment can be executed in such a manner that its outcome optimizes
the system of input memory functions. Let us start from the system of GFT:

B, — x1ay V X1X2a3 V X1X2X3a4 V X1X2X305;

By — xa¢ v )szmw?zhag;

B3 — xsag V Xoxsa7 V XpXaag; (8.18)
By — ay;

Bs — aj.

There are identical GFTs for classes B, and B3 in (8.18). It is possible to simplify
the system (3.57) using this fact. To to it, the class codes should be in the same
generalized interval of Rjx-dimensional Boolean space for the classes B, and Bs. The
same is true for the classes By, Bs € IIcx. One of the variants is shown in Fig. 8.11.

There are the same columns in the table of LUTer for both Py Yx and Pic; Yx
FSMs. In the discussed case, the table of LUTer is represented by Table 8.6.

In the column K (B;) the “don’t care” class codes are taken into account. The state
codes are taken from Fig. 8.10. The system (3.57) can be derived from Table 8.6. After
minimizing, this system is the following one:

Fig. 8.11 Optimal class T,Ts
codes for Moore XFSM T 00 01 " 10
Pic1Yx(T'16)

0| By B, Bs B,
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Table 8.6 Table of LUTer for Moore XFSM Pic; Yx(I16)

B; K (B;) ds K (a5) Xn Py, yL h
By *00 a 001 1 - 1 1
az 011 X1x2 D, D3 - 2
as 100 Fi¥ax3 | Dy - 3
as 101 X1X2X3 D1 D3 — 4
B> *01 ae 010 X2 - 1 5
ay 110 X2X4 D D; — 6
ag 111 X2X4 D\D>,D3 |- 7
B3 *11 ag 010 X2 D - 8
ay 110 X2 X4 DD, — 9
ag 111 X2X4 D\D>,D3 |- 10
By 010 aj 000 1 - - 11
Bs 110 aj 000 1 - - 12
Dy = 1T3X1X2 V T3X2;
D) = 1hTax1x2 V TaT3Xy V TaTs; (8.19)

The function y; is equal to 1 if Dy vV D, v D3 = 0 (rows 1

and 5) an_d I_Bi = B

of B; = B;. It gives the following expression: y;, = Dy VvV D, V

The variable 7, = 0 for K (B;) and K (B,) (Fig.8.10).

D37__2 - D1D3D37_—2.

The table of EMBer includes the columns K (a,,), Y (a,,), K (B;), m. The column
K (B;) includes the code of a class B; such that a,, € B;. In the discussed case, only
the variables 7,, 73 € 7 should be shown in this column (Table 8.7).

Obviously, this model can be used if the following condition takes place:

tr > N 4+ Rix. (8.20)
Pic1Yx(I'16) AEERE 20
000 000000 00 1
001 110000 01 2
010 110000 10 3
011 001000 11 4
100 000010 11 5
101 000101 11 6
110 101001 10 7
111 010100 10 8
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To use only a single EMB in the EMBer, the following condition should take place:
28(N + Rix) < Vo. (8.21)

In this book, we do not discuss the design methods when the condition (8.22) is
violated. As shown our analysis of [4], the condition (8.21) takes place for all bench-
marks from the library [4].

8.3 Encoding of Chain Outputs

As it is mentioned before, each XLCS 7, € Cx can include more than one output.
The state a,, € A(7,) is an output of the XLCS v, € Cx if there is a transition
{(am, as) such tat K (ay) # K (a,,) + 1. These states form the set of outputs Ox (I'7}).
For example, there is the set Ox (I'15) = {a», a4, as, ag, a7}. Such a set can be found
after executing the natural state assignment (3.26).

Analysis of GSA I's shows that there are the same transitions for the outputs
as, ag € Ox(Is). Let us name such outputs pseudoequivalent outputs (PEO). Let us
find a partition [Txo = {0y, ..., Oy} forthe set Ox (I';). Each element [Txo is a class
of PEO. There is the partition ITxo = {0y, ..., O4} in the case of I7s. It includes
the following classes: O1 = {a»}, Oy = {a4, as}, O3 = {as} and O4 = {a7}.

Let us encode the classes O; € ITxo by binary codes K (O;) having Rxg bits:

Rxo = [log, J1. (8.22)
Let us use the variables z, € Z for encoding of the classes O; € IIxo, where

|Z| = Rxo. Now, the model of P3;Yx Moore XFSM is proposed (Fig. 8.12).
In this model, the BIMF implements the system of input memory functions

=2z X) (8.23)
+1
X i
Block of Vo
Input
Memory  Block of Y
Functions |9 > T T Microoperations ——»

Block of
gar}i Output z
oc Transformer T

Fig. 8.12 Structural diagram of P3Yx Moore XFSM
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together with the function
v = fi(Z, X). (8.24)

The BMO implements the system of microoperations and the functions
yr2 = fo(T). (8.25)
The block of output transformer (BOT) implements the functions
Z=Z(T). (8.26)

If FPGAs are used for implementing an FSM circuit, three different models are
possible for XFSM based on the encoding of outputs. Let us discuss them.
Let the following condition take place:

tr > N+ Rxo + 1. (8.27)

In this case, the functions (8.25), (8.26) and (2.15) are implemented by the EMBer.
It leads to P3¢; Yx Moore XFSM (Fig. 8.13).
Let the following condition take place:

trp > N+1;

(8.28)
tr < N+ Rxo + 1.

In this case, the set Z should be divided by two subsets: Z = Z 1'U Z,. The
functions z, € Z' are generated by the EMBer. Their number ¢ is determined as

tg=tr — (N +1). (8.29)

The functions z, € Z? are implemented by the LUTer2. Their number ¢, is deter-
mined as

fL = Rxo —tg. (8.30)
Fig. 8.13 Structural diagram X 1
of P3¢1 Yx Moore XFSM 2 g yu s
yL2
LUTer ® T

Y
— (T +—m EMBer —
Z

Start

Clock
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Fig. 8.14 Structural +
diagram of FPGA-based X u >t
P32 Yx Moore XFSM y Y2
w VT 0 o T > EMBer b
‘ Z1
T A
Start LUTer2
Clock 72
This approach leads to P3¢, Yx Moore XFSM (Fig. 8.14).
Let the following condition take place:
tr =N+ 1. (8.31)

In this case, the model P3¢3Yx Moore XFSM can be used. In is the same as the one
shown in Fig. 8.12. In the case of FPGA, the BOT is represented by the LUTer2.

All these XFSMs are designed in the similar ways. The difference is reduced
to the distribution of functions z, € Z between the block EMBer and LUTer2. For
example, let us discuss the proposed design method for P3c; Yx Moore XFSM. It
includes the following steps:

. Constructing the set of states A.

. Constructing the set of XLCS Cy.

. Natural state assignment.

. Constructing the set of chain outputs Ox (I7).
. Constructing the partition ITxo.

. Encoding of the classes of PEO O; € ITxo

. Constructing the table of LUTer.

. Constructing the table of EMBer.

. Implementing the logic circuit of FSM.

O 00 1O\ U B~ Wi~

Let us discuss an example of design for the Moore XFSM Psc; Yx(I'15). The steps
1-5 are already executed. In the discussed case, there are Rxpo = 2 and Z = {z1, z»}.
Letus encode the classes O; € ITxg in the trivial way: K (01)=00, ..., K(O4)=11.

To construct the table of LUTer, let us find the system of generalized formula of
transitions. In the case of GSA I7s, this system is the following:

01 — x1a3 V X1X20a5 V X1X204;
0, — as; (8.32)

03 — x3a7 V X3as.

As in all previous cases, D flip-flops are used for implementing the counter. It
means that transitions into state a; € A are executed automatically (using only the
pulse Clock). Due to it, the transitions from the output O4 are not considered in (8.31).
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Table 8.8 Table of LUTer of Moore XFSM P3¢ Yx(I'15)

0O; K(0j) as K (as) Xn Dy Y1 h
01 00 as 010 X1 - 1 1
as 011 X1X2 Dy D3 — 2
as 101 XX D1 D; - 3
Oy *Q as 011 1 D> D3 - 4
03 1* az 100 X3 - 1 5
as 011 X3 D> Ds — 6

The table of LUTer includes the following columns: O;, K(O)), as, K(a,), X4,
@y, yr1, h. In the discussed case, the table of LUTer is represented by Table 8.8.

Because the transitions from Oy are not considered, the code K (O,) is treated as
“don’t care”. It is used for simplifying the codes of classes O, and O3. The following
Boolean functions can be derived from Table 8.8:

Dy = z122X1%2;
D), = 71Z72X1x2 V 21 V 24

T (8.33)
D3 = Z120%1 V 22 V 21X3;

Y1 = Z122X1 V 21X3.

Analysis of the system (8.33) shows that each its equations can be implemented
using a LUT having S = 4. This system is much simpler that the system (8.2). Let
us point out that the equation y,| = D5 can be derived from Table 8.8, as well as
ye1 = D1z1 Vv Dazy.

The table of EMBer includes the following columns: K (a,), Y (a,) K(O;), y12,
m. In the discussed case, it is represented by Table 8.9.

The logic circuit of Moore XFSM P3¢ Yx (I'y5) is shown in Fig. 8.15. The function
v is implemented using the equation y;, = yp; V yz,. It is implemented by LUTs.
Two LUTs (LUT6 and LUT 7) are used for implementing Eqs. (8.5) and (8.6). The
EMBer should have the configuration 8 x 9 bits.

Table 8.9 Table of EMBer of Moore XFSM P31 Yx(I'i5)

K(aw) i T2 T3 Y(am) y1---y6 | yr2 m K(0j) z122
000 000000 1 1 00
001 110000 0 2 00
010 001000 1 3 00
011 010100 0 5 10
100 010001 0 7 11
101 000010 0 4 01
110 110000 0 6 01
111 000000 0 * w
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Fig. 8.15 Logic circuit of Moore XFSM P3¢ Yx(I'15)

Let us point out that the function y; could be implemented as the following one:

In the discussed case, the following equation can be found:

yo =y VA VA =y, VT

ye =y, T).

(8.34)

(8.35)

It is enough a single LUT having S = 3 for implementing the function (8.35).
If the following condition takes place

then circuit of BOT is implemented using only R of LUTs.

R < S,

(8.36)

The following approach can be used for simplification of the circuit generating
the function y; . Let us discuss it using Table 8.1. Let us construct a Karnaugh map
for function y; (Fig.8.16) on the base of Table8.1.
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TiT,T3
XX 000 001 on 010 10 m 101 100

00| (1] o o |1 o » 0 0
001 || 1 0 Ffﬂ 0 " 0 0
M 0 \ 1 1 \ 0 * 0 0
010 | | 1 0 0 1 0 * 0 0
10 ([ 1 1 0 1 0 . 0 0
g 1 1 ] o * 0 0
o1 ||[| 1 1 1 1o * 0 0
00 (L J[ 1)) o L1 )] o x 0 0

Cl| az as a3 ag a, a7

Fig. 8.16 Karnaugh map for function yy

The connection between Table 8.1 and Fig. 8.16 is obvious. Let us minimize the
function y; . It gives the following expression:

yL = Tl Tg \ T2T3x1 Vv Tl Thxi1x3 V T1X1JC3. (8.37)

This expression can be used for the case of encoding of chain outputs. It leads to
P3c4Yx Moore XFSM (Fig. 8.17). In this model, the LUTer2 implements the function
yr = yr (T, X). In the discussed case, this equation is the Eq. (8.37).

This very approach can be used for optimizing the number of LUTs in P;¢; and
Pyc2 Moore XFSMs. For example, the following model can be proposed (Fig. 8.18).

This model is based on the model of P;¢; Yx Moore XFSM (Fig. 8.7). The function
(8.36) is used in this model for incrementing the counter CT. We do not discuss the
corresponding design method in this Chapter.

Fig. 8.17 Structural
diagram of FPGA-based
P3¢4Yx Moore XFSM 1 LuTer2 A
" ) J
T Y
- ¢ | p EMBer —»
LUTert [ 7 z
> A |
Start

Clock
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Fig. 8.18 Structural
diagram of FPGA-based -
P1C4YX Moore XFSM LUTer3 | YL 1
ﬂ+
x|
Y
. ol 7 [t » EMBer
LUTer
> A A
Start
Clock Ll LUTer2 ?
8.4 Code Sharing for Moore XFSMs
Let us find the partition IT4 = {By, ..., Bg} of the set A by the classes of PES. We

treat the states as pseudoequivalent if they mark the vertices connected with the input
of the same vertex of GSA I" [2]. Let us construct the linear chains of classes (LCC)
for a given GSA I'. Let us define and LCC as a vector 6, = (By1, ..., Byi4) where
a transition (a,,, a,) exists for any pair of adjacent components of ¢,. It means that

am € Byiandag € Byiy1(i =1,..., 1, — 1). Atransition could be either conditional
or unconditional.
Letus constructaset [Ty = {d, ..., dp} such that each class B; € I14 belongs to

a single LCC. So, the set I1, is a partition of I14. Let us encode the classes B; € I14
by binary codes K (By) having Rk bits, where:

Rk = [log, K. (8.38)
Let us encode the classes in the natural order:
K (Bgiy1 = K(By) + 1. (8.39)

In(8.39), thereareq € {1, ..., Q},i € {1, ..., I, — 1}. Letaclass By € I14 include
M, states a,, € A(k =1, ..., K). Let us find the value

My = max(M,, ..., Mg). (8.40)
Let us encode each state a,, € By by a binary code C(a,,) having R, bits:

Ry = [log, Mo]. (8.41)
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Fig. 8.19 Structural diagram X o o T o
of PYxc Moore XESM - > RG
Block of | g A 4 Block of
Input Clock Microope- |—»
Memory rations Y
Functions 'y
Yl (1 Ts
yu

Now each state a,, € A can be determined by a binary code K (a,,) which is equal
to a concatenation of codes K (B;) and C(a,,), where a,, € By:

K(an) = K(Bi) * C(am). (8.42)

In (8.42), the sign * determines the concatenation of codes.

Let us name such a representation of state as code sharing. Let us use the following
approach for encoding of the states. If there is a transition (a,,, a,) such thata,, € By;
and a; € Bg;y1, then C(a;) = 00...0. It allows to propose the model PYx¢ Moore
XFSM (Fig.8.19).

In this FSM, the BIMF implements the functions

D =d(1,X; (8.43)
v =v(r, X); (8.44)
yr = y(7, X). (8.45)

The set @ includes Rj, of functions, whereas the set ¥ Ry of functions. The
register RG keeps the state codes C(a,,) represented by state variables 7, € T, where
|T'| = Ry. The counter CT keeps the class codes K (By) represented by the class
variables 7, € 7, where |7| = Rg. The variable y, is used for incrementing the
content of CT. The BMO generates the functions

Y =Y(,T). (8.46)

The XFSM operates in the following manner. If Start=1, then zero codes are
loaded in both CT and RG. It corresponds to the initial state @; € A. If a transition
(am, as) corresponds to (8.39), then the variable y, is generated, whereas D, =
0(D, € @ U ¥).If the condition (8.39) is violated for a given transition, then y; = 0.
In this case contents of RG and CT are determined by functions (8.43)—(8.44).

If FPGAs are used for implementing the logic circuit of PYxc XFSM, then BIMF
is implemented by the LUTer and BMO is implemented by the EMBer (Fig. 8.20).
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Fig. 8.20 Structural diagram X ® T
of PYxc Moore XFSM —— | RG —p
implemented with FPGA i
Start [
LUTer Clock EMBer —m
Y
y
<
Y el (T >
yu

L

The proposed design method of PYxc Moore XFSM includes the following steps:

. Constructing the set of internal states A.

. Constructing the partition [Ty = {By, ..., Bg}.
. Constructing the set of LCC ITg = {d1, ..., 64}
. Natural encoding of classes By € I1y.

. Encoding of states and finding the codes K (a,,).
. Constructing the table of LUTer.

. Constructing the table of EMBer.

. Implementing the logic circuit of FSM.

00 ON N BN

Let us discuss an example of design for Moore FSM PYxc(177) where GSA 177
is shown in Fig. 8.21.

The following sets and their parameters can be found from GSA I';: A =
{aj,...,apn},M =12, R=4,X ={x1,...,x4},L=4,Y ={y1,..., 6}, N = 6.

The following partition I14 = {Bj, ..., Bg} can be found from GSA I;. It
includes the following classes of PES: B) = {a;}, B, = {a»}, Bz ={a3}, Bs =
{as, as, ag}, Bs = {a7}, B¢ = {as}, B = {ao, a0} and By = {a11, arz}. So, there is
K =8;itgives Ry =3 and 7 = {11, 7, T3}

The following set of LCC I1g = {3, 3»} can be found from GSA 7. It includes
the following linear chains of classes: ; = (By, B,, B3, B4, Bs, Bg, Bg) and d; =
(B7). Let us encode the classes B; € 14 in the natural order (Fig. 8.22).

Analysis of the classes B; € IT4 shows that there are M| = M, = M3 = M5 =
Mg =1, My =3, M7 = Mg = 2. Therefore, there are My =3 Ryy =2 and T =
{T1, T»}. The following state codes C(a,,) can be found from GSA I77: C(a;) =
C(a2) = C(a3) = C(ag) = C(a7) = C(as) = C(ag) = C(a11) = 00, Clas) =
C(ajo) = 01 and C(as) = 10. Now, the state codes are shown in Fig. 8.23.

To construct the table of LUTer, let us construct the system of generalized formulae
of transitions. If the discussed case, it is the following:
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y1y2 Y,
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Fig. 8.21 Initial graph-scheme of algorithm I'17



8.4 Code Sharing for Moore XFSMs 209
\F1%
00 01 " 10
0] By B, B., B3
1 Bs Be By Bs
Fig. 8.22 Codes of classes of XFSM PYxc(117)
T T, Ts
InD 000 001 0 010 110 M 101 100
00| & a 3 as ar g ag ar
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Fig. 8.23 State codes for XFSM PYxc(I117)
B] — aj,
B, — xja3 V X1xa4 V X1X0a5;
B3 — dg,
B4 — ary,
_ _ (8.47)
Bs — x3ag V X3x4a9 V X3X4a10;
B¢ — x1a¢ V x1011;
B; — an;
Bg —> aj.

The table of LUTer includes the following columns: By, K (By), as, K (ay), X,

¥, Dy, y1, h. In the discussed case it is represented by Table 8.10.

The table of LUTer is used for deriving the systems (8.43)—(8.44) and the equations
for y, . The following equations can be found from Table 8.10:

D1 = T\TaT3X3 V TIT2T3;

D, = T1T2T3)E1 Vv 7'17_'27_'3)23 \/7‘17_'27'3X1 V T1T27T3;

D3 = 1Ty 33X V TITaT3X3 V T TaT3X1;

Dy = T Tym3x1X2;

Ds = Tiam3X1x2 V T1TaT3X3X4 V TI T2 T3

yL = DzT1T27_'3 = D27_'1 \ [)27_'2 \% l_)27'3.

(8.48)
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Table 8.10 Table of LUTer of Moore XFSM PYxc(117)

By K(By) | as K(as) | Xn L2 Py V1 h
By 000 a 00100 1 - - 1 1
By 001 as 01000 X1 - - 1 2
aq 01101 X1X2 D> Ds Ds — 3
as 01110 X1X2 D> D3 Dy - 4
B3 010 ae 01100 1 - - 1 5
By 011 ay 10000 1 - - 1 6
Bs 100 as 10100 X3 - - 7
ag 11100 X3X4 D1D,D3 |- - 8
apo 11101 X3X4 D1D> D3 | Ds 1 9
Bg 101 ae 01100 X1 D> D3 - 1 10
apy 11000 X1 - - 1 11
B 111 an 11001 1 D D) Ds - 12
Bg 110 aj 00000 1 - - - 13

The last equation of (8.48) is based on analysis of Table 8.10. The function D, =
1 if y, = 0. The only exception is the row 13, where D, = y; = 0. This row is
determined by the conjunction 7;7,73.

The table of EMBer includes the columns K (a,,), Y (a,,), m. In the discussed case
it includes 32 rows, because there is Rx + Ry = 5. The part of this table for states
as, as, as, ag € A is represented by Table 8.11.

The connection between Table 8.11, Figs.8.21 and 8.23 is obvious. Let us use
FPGAs having LUTs with s = 5 for implementing the circuit of LUTer. Analysis
of the system (8.48) shows that functions Dy, D, D3, D4, y;, can be implemented
using only a single LUT. To implement the function Ds, it should be decomposed:

Ds = 71(7_'27_'3)23)24 V ™T3) V 7_'1(7_'27'3)21)62) =711G, VvV 11G;. (849)

Table 8.11 Part of table of EMBer for Moore XFSM PYxc(I77)

K(EYy)) T Ty Y(am) y1---Y6 m
010 00 011000 3
010 01 000000

010 10 000000 *
010 11 000000 *
011 00 001010 6
01101 100100 4
01110 110000 5
01111 000000 *
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Fig. 8.24 Logic circuit of Moore XFSM PYxc(177)

The logic circuit of Moore XFSM PYxc(I77) is shown in Fig. 8.24.

In this circuit, LUT9 implements the Eq.(8.5), whereas the Eq.(8.6) is imple-
mented by LUT10. If y; = 0, the both CT and RG are loaded using input memory
functions. It means that inputs C, of CT and C of RG should be connected with the
output of LUT10.

8.5 Code Sharing with a Single EMB

To implement the circuit of BMO as as single EMB, the following condition should
take place:
2REFRUN < V. (8.50)

Let only a single EMB could be used in FSM design. All other are used for
implementing other parts of a digital system. Let the condition (8.50) is violated, but
the following conditions take places:
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Fig. 8.25 Structural diagram X ® T
of PYxci Moore XFSM - > RG ™ Block of Code
Block of Short \ A Transformer
Inpuf Clock
Memory 7z
Functions Yy Y
Y (7 T
yu Block of
A Microoperations
+1
‘Y
RK+RM >R; (851)
28N < V. (8.52)

If the following condition takes place
Rk < R, (8.53)

then functions (8.43) include less amount of literals in their sum-of-products in
comparison with functions (2.9). If can result in decreasing the number of LUTs in
block BIMF for PYxc XFSM in comparison, for example, with PY FSM.

If the condition (8.29) is violated and the condition (8.52) takes place, then it is
necessary to introduce an additional block of code transformer (BCT) in the structure
of PYxc FSM. It is similar to approaches proposed in [1]. It leads to PYxc; Moore
XFSM (Fig. 8.25).

In PYxc1 Moore XFSM, the BIMF implements functions (8.43)—(8.45). The block
BCT implements the functions

Z=27(T). (8.54)

These functions are used as state variables in PY Moore FSM. The BMO implements
the system of microoperations
Y =Y(2). (8.55)

If only a single EMB could be used in the FSM circuit, then BCT is implemented as
LUTer1 (Fig. 8.26).

The design method for PYxc; Moore XFSM includes all steps discussed for design
pf PYxc XFSM. Also, it includes two following additional steps:

6%. State assignment.
6. Constructing the table of LUTerl.

Let the EMBs in use include configurations 16 x 8, bits. Let us discuss an exam-
ple of design for Moore FSM PYcs (I7). It was found that Rg =3, Ry =2
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Fig. 8.26 Structural diagram
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Y el o7 |5

and Rx + Ry = 5. It means that the condition (8.50) is violated and the model
PYxc(I77) cannot be used. There is the set of states A = {ay, ..., a2}, therefore,
R = 4. Because N = 6 and R = 4, the inequality (8.52) gives the following result:
16 x 6<108. Therefore, the model PY s (/77) can be used.

The steps 1-6 are already executed. Let us encode the states a,, € A by binary
codes CS(a,) having R bits. In the discussed case, there is R =4 and Z =
{z1, ..., z4}. The outcome of this steps execution does not affect hardware amounts
for LUTer and EMB. Let us use the following codes: CS(a;) = 0000, CS(ay) =
0001, ..., CS(ajp) = 1011. Now, the step 6" can be executed.

The table of LUTer1 includes the following columns: a,,, K (a,,), CS(an), Zm,
m. The codes K (a,,) are represented in the form (8.42). The column Z,, includes
variables z, € Z equal to 1 in the code CS(a,,). This table is the base for constructing
the system (8.54). The functions of this system are represented as

M Rk Ru
z=\ c( A T’"")( A TE) (8.56)

m=1 r=1 r=1

In (8.56), the Boolean variable Cy,, = 1 iff the bit number r of the code C S(a,,)
isequalto 1 (r =1, ..., R); the variable /,,, is the value of the bit number r of the
code K (B;) where a,, € B;(r =1, ..., Rg); the variable E,,, is the value of the bit
number r of the code C(a,,) where r = 1, ..., Ry; e, Enr € {0, 1, %}, 7',0 =T,
=7, 7=LT' =T, T =T, T* = 1.

In the discussed case, this table includes 12 rows (Table 8.12).

Let the following condition take place

S; > Rx + Ry. (8.57)

In (8.57), the symbol S; stands for the number of inputs of LUTs. In the discussed
case, it is enough S; = 5 for satisfy (8.57). If (8.57) if violated, the states a,, € A
should be encoded in a way minimizing the number of LUTs in the circuit of LUTer1.

The table of EMBer includes the columns K (a,,), Y (a,,), m. In the discussed
case, this table has 12 rows (Table 8.13).
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Table 8.12 Table of LUTer1 of Moore XFSM PYxc(177)

an K(anm) CS(am) Zm m
aj 000%** 0000 - 1
a 001%* 0001 24 2
as 010%* 0010 z3 3
as 01101 0011 2324 4
as 01110 0100 22 5
aeg 01100 0101 2224 6
az 100%* 0110 2223 7
as 101%* 0111 227374 8
ag 11100 1000 21 9
apo 11101 1001 2124 10
an 11000 1010 2123 11
a 11001 1011 712324 12
ety M (e TR
0000 000000 1
0001 110000 2
0010 011000 3
0011 100100 4
0100 110000 5
0101 001010 6
0110 001101 7
0111 100100 8
1000 010010 9
1001 000001 10
1010 100100 11
1011 001000 12

The part of the logic circuit is shown in Fig. 8.27. It represents the block LUTer1
and EMB of Moore XFSM PY xc1(I¢).

Let a GSA I include Ty different collections of microoperations (CMO) ¥; C Y.
Let the condition (8.52) be violated. Let us encode the collections ¥; C Y by binary
codes K (Y;) having Ry bits:

Ry = [log, Ty]. (8.58)

Let us use the variables z, € Z for the encoding, where | Z| = Ry. Let the following
condition take place:
28N < V. (8.59)
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Fig. 8.27 Logic circuit of LUTerl and EMBer for Moore XFSM PYxc1(117)

Fig. 8.28 Structural diagram N ® T
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In this case the model of PYxc2 Moore XFSM is proposed (Fig. 8.28).

In this model a block of collections of microoperations implements the system
(8.54). The difference between XFSMs PYxc; and PYxc; is the following. In XFSM
PYxci the variables z; € Z encode the states of XFSM. In XFSM PY ¢, the variables
z, € Z encode the collections of microoperations. Obviously, the LUTer is used
for implementing BIMF, the LUTer1 for implementing BCM, and the EMBer for
implementing BMO.

The design method for Moore XFSM PYx¢; includes the same steps as the design
method for Moor XFSM PYxc;.

Let us discuss an example of design for Moore FSM PYcx2(Ig). Let the
GSA I3 have the same structure as the GSA [I7s (Fig.8.2). But let its oper-
ational vertices include the following collections of microoperations: Y (a;) =
Yy =0, Ya) = Y(as) = Y(a) = {y1, y2} = Y2, Y(a3) = Y(as) = {y3, ;a} = V3,
Y(as) = {y1, ys, y5} = Ya,Y(ae6) = Y(a11) = {ys, ¥} = ¥5,Y (ay) = {y3} = Ysand
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Y(a7) = Y(an) = {y3, ¥s, Y6} = Y7. So, there is Ty = 7; therefore, there is Ry = 3
and Z = {z1, 22, z3}.

Let the FPGA in use include EMBs having configurations 16 x 4 and 8 x 8 (bits).
It means that the condition (8.52) is violated because of 28 x B = 16 x 6 = 96 >
64. So, both models PYxc and PYxc| cannot be applied. But the, model of XFSM
PYxc2 (1) can be used.

In the case of FSM PYxc (1), the step 6 is the encoding of CMOs Y, C Y.
Let us encode the collections of microoperations in the trivial way: K (Y) =
000, ..., K(Y7) = 110. Now the table of LUTerl can be constructed. This table
includes the columns a,,, K (a,,) K(Y;), Z,,, m. The only difference between tables
of LUTerl for PYxci(I7j) and PYxc2(17) is reduced to the meaning of the third
column of tables. In the case of PYx(, this table includes a code of the collection
of microoperations Y (a,,) generated in the state a,, € A. In the discussed case, this
table has M = 12 rows (Table 8.14). The codes K (a,,) are taken from Fig. 8.23.

The table of EMBer for Moore FSM PYxc (I';) includes the columns K (Y,), Y;,
t. In the discussed case it is represented by Table 8.15. The last row of this table
corresponds to “don’t care” assignment of variables z, € Z.

Let us point out that each of discussed models has four variants. The variants
are determined by the approach used for implementing the function y,. As a rule,
only base variants are discussed in this Chapter. All possible variants are shown in
Table 8.16. The table represent 44 different models of Moore XFSMs.

Let us point out that only the variants 1 and 2 are possible for PYxc, Moore
XFSM. Also, there is a model where only the variants 3 and 4 are possible.

Let us name the collections of microoperations constructed for the set Y U y;, as
extended collections of microoperations (ECMO). Let a GSA I include Q of dif-
ferent ECMO EY, C Y U {y»}. Let the condition (8.52) be violated. Let us encode
the collection EY, by a binary code K (EY,) having Rgy bits:

Table 8.14 Table of LUTerl of Moore XFSM PYxc2 (I'3)

an K(an) K(Y;) Zm m
ai 000%* 000 - 1
a 001%* 001 23 2
a3 010%* 010 22 3
ay 01101 001 23 4
as 01110 011 2223 5
ag 01100 100 71 6
ar 100%* 110 7122 7
ag 1071 010 22 8
ag 11100 101 2123 9
apo 11101 001 z3 10
ay 11000 100 71 11
ap 11001 110 2122 12




8.5 Code Sharing with a Single EMB 217
Table 8.15 Table of EMBer of Moore XFSM PYxc2(173)
K(EYy) 7122 23 EY;y1...y6 q
000 000000 1
001 110000 2
010 001100 3
011 100110 4
100 010101 5
101 001000 6
110 001011 7
111 010000 8
Table 8.16 Models of Moore XFSMs
Type Variants
1 2 3 4
PYx S=0(T,X) |yo=/[(P.X) YL=YL1VYL2| YL =YLV L2
PoYx Y =Y(T) yor=f(T,X) |y = f(®, X)
v = f(T,x) yi2 = f(T) yi2 = f(T);
Pc1Yx =T, X) yL = f(®,X)
PcaYx Y = Y(T) yL=yL1 VyL | YL =YLLV L2
= f(r.X) yui=f,X) |y =f@X)
= (T yia=f(y 2= S0
P3c1Yx P=9(Z,X) |yL=f(P,X)
PicaYx Y = Y(T) YL=YL1VYL2 | YL =YLl V YL2
= (Z.X) yor = f(Z,X) |y = f(@,X)
Z=2(T) yi2 = f(T) yi2 = f(T)
PicaYx P=0(Z,X) |yL=f(P,X)
P3caYx Y = Y(T) YL=YL1VYL2 | YL =YLl V YL2
i = f(T, X) yer = f(T,X) |y = f(P,X)
Z=2(T) ez = f(T) ye2 = f(T)
PYxc ¢ =P(1, X) v = f(¥ X)
W= w(r) YL=YL1VYL2 | YL =YLl V YL2
yer=f(r,X) |y =fW&X)
L= f(1,X)
Y = Y(T.7) yio = f(T,7) | y2=f(T,7)
PYxc1 b =o(7,X) o= f¥X)
PYxca Y =w(r) YL=YL VY2 | YL =YLV y
v =f(T,.X) yer = f(r,X) |y = f(¥X)
Z=2Z(T) 2 = f(Z) yi2 = f(2)
Y=Y2)
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Let us use the variables z, € Z for the encoding, where |Z| = Rgy. Let the fol-
lowing condition take place:

2R (N 4+ 1) < V. (8.61)

In this case the model of PYxc3 Moore XFSM can be used (Fig. 8.29).

In this model, the block of extended CMOs implements the system (8.54). Its
functions are used for encoding of ECMOs. So, the BMO generates the functions of
the system Y (Z) and the function

Y2 = yr2(Z). (8.62)

The variable y; is generated as a function

yL = yo(7, X, yr2). (8.63)

Let us discuss an example of design for Moore FSM PYxc3(I79). Let the
GSA T have the same structure as the GSA I'is (Fig.8.20). But let the vertices
of GSA ITg include the following collections of microoperations: Y (a;) =¥ =
Yi; Y(a2) = Y(as) = Y(as) = {y1, 2} = Y2, Y(a3) = Y(ai0) = {3, ¥s, Y6} = ¥3;
Y(a)) =Y(ag) = {y1,ys} =Ys; Y(as) =Y(an) ={n, a}=Ys, Y(a7)=
Y(ai1) = {y4, y6} = Y¢. There are two unconditional transitions where state codes
satisfy to condition (3.26): (a3, a¢) and (ag, a7). It means that the variable y;, should
be added into collections Y (a3) and Y (ae). It leads to the following set of ECMOs:
EY, =Y,(qg=1,...,0), EY7 ={y12, y3, ¥5, Y} and EYs = {y12, y2, ya}. There-
fore, there are Rgy = 3, Z = {z1, 22, 23}

Letus encode the collections EY, (g = 1, ..., Qo) by thebinary codes: K (EY;) =
000, ..., K(EYg) = 111. Now the tables of LUTerl (Table8.17) and EMBer
(Table 8.18) can be constructed. Let us pont out that structural diagrams are iden-
tical for XFSMs PYxc, and PYxcs. It means that blocks of CMO and ECMO are
implemented by LUTerl1, whereas the block BMO by EMBer.
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8.5 Code Sharing with a Single EMB

Table 8.17 Table of LUTer1 of Moore XFSM PYxc3(1'9)
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Ay K (an) K(EY,) Zm m
aj 000%** 000 - 1
a 001 % 001 z3 2
a3 010%* 110 2122 3
as 01101 ol1 2273 4
as 01110 001 23 5
ag 01100 111 212223 6
ar 100%#%* 101 Z123 7
ag 101 001 23 8
ag 11100 011 2223 9
ao 11101 010 22 10
apg 11000 101 2123 11
apn 11001 100 21 12
Table 8.18 Table of EMBer of Moore XFSM PYxc3(179)
K(EYy) 71 22 23 EY; y1...Y6 Y2 q
000 000000 0 1
001 110000 0 2
010 0010110 3
011 100010 0 4
100 010100 0 5
101 000101 0 6
110 0010111 7
111 010100 1 8
Table 8.19 Models PYxc2 and PYxc3
Type Variants
1 2 3 4
PYxc2 ¢ =P(1,X);
v =v(r, X);
yL = f(7,%); yo=f(®.1) |- -
Z=7Z(T,T1),;
Y =Y(2)
PYxc3 YL =YyL1V YyL2;| YL =YLV YL2;
- - yor = f(r,X); | yo1 = f(@, X);
yie=f(r,T); | yr2= f(z,7T);
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Now, the table for models PYcs; and PYcs3 could be constructed. As follows
from Table 8.19, the model PY s, has only the variants 1 and 2, whereas the model
PYxc; the variants 3 and 4. Now, all 48 different models of Moore XFSMs are listed.
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Conclusion

Now we are witnesses of the intensive development of design methods targeting
FPGA-based circuits and systems. The complexity of digital systems to de designed
increases drastically, as well as the complexity of FPGA chips used for the design.
The up-to-day FPGAs include up to seven billions of transistors and it is not a limit.
Development of digital systems with such complex logic elements is impossible
without application of hardware description languages, computer-aided design tools
and design libraries. But even the application of all these tools does not guarantee
that some competitive product will be designed for appropriate time-to-market. To
solve this problem, a designer should know not only CAD tools, but the design
and optimization methods, too. It is especially important in case of such irregular
devices as control units. Because of irregularity, their logic circuits are implemented
without using of the standard library cells; only LUTs and EMBs (and PLAs) of
a particular FPGA chip can be used in FSM logic circuit design. In this case, the
knowledge and experience of a designer become a crucial factor of the success. Many
experiments conducted with use of standard industrial packages show that outcomes
of their operation are, especially in case of complex control units design, too far
from optimal. Thus, it is necessary to develop own program tools oriented on FSM
optimization and use them together with industrial packages. This problem cannot
be solved without fundamental knowledge in the area of logic synthesis. Besides, to
be able to develop new design and optimization methods, a designer should know the
existed methods. We think that new FSM models and design methods proposed in
our book will help in solution of this very important problem. We hope that our book
will be useful for the designers of digital systems and scholars developing synthesis
and optimization methods targeting implementation FPGA-based logic circuits of
finite state machines.
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