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Preface

Differential algebraic equations arise naturally in many significant applications, for
example in mechanical body motion, chemical processing, power generation, net-
work fluid flow, aircraft guidance. Such equations also exist in economy, for
instance, the famous input–output Leontief model and its several important
extensions, or in ecology and growth population, for instance, the Leslie growth
population model and backward population projections.

Such systems may not be regular, referred to as singular, and often considered as
a generalization of conventional state-space systems. The fact that these systems
include algebraic equations enables them to encompass static constraints. These
constraints may be intrinsic, such as some physical or behavior constraints, or
induced by the analysis and/or the control approach. It is common to call these
systems descriptor systems since they allow keeping the physical significance of
state variables. Moreover, in their irregular form, they can also model systems with
an impulsive (e.g. a derivative action) or non-causal behavior.

Since the 1970s, an abundant literature has shown the advantages of the generic
specificity of descriptor systems. One issue of great importance is that unique
solutions to initial value problems consistent with the system may not exist and the
system may not be controllable or observable. A critical aspect of control system
design is therefore to ensure regularity of the system. Likewise, many research
works dealt with those new aspects that are inexistent for regular state-space sys-
tems. The frequency domain and time domain approaches are both discussed to
give an overall picture of the status of the theory in the 1980s.

Twenty years later a remarkable number of results have been produced partic-
ularly on some extensions of state-space control theory to descriptor systems. Many
control issues are tackled, such as pole placement, optimal control, observer syn-
thesis, filtering and fault detection, control design under H2 or H1 constraints, and
their LMI-based solutions. This reading key is valid even today. In the same vein,
many recent papers consider the open problems in this theme associated with the
discrete-time control design case or state-space controllers design for descriptor
systems, fault estimation, and fault-tolerant control.
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This book develops some original results about linear descriptor systems through
the two following different visions. The first one is generalizing some existing
results from classical state-space case to descriptor systems, such as dilated LMI
characterizations and performance control under regulation constraints. This part
of the book is somehow in the continuity of the work mentioned before. Second, a
different contribution of descriptor systems is highlighted. A new path is taken by
considering these systems as a powerful tool for conceiving new control laws,
understanding and deciphering some controller’s architecture or even homogeniz-
ing different existing ways to obtain some new or known results for state-space
systems. To emphasize this concern, for instance, the comprehensive control
problem for continuous-time descriptor systems is an example of the descriptor
framework used in order to transform a nonstandard control problem with unstable
and nonproper weights into a traditional stabilization control problem. In another
register, an exact solution is derived for the sensitivity constrained linear optimal
control also by using the descriptor framework.

On new developments for descriptor systems or on the use of the descriptor
approach to solve some extended or constrained control problems, this book brings
a new brick to the knowledge edifice of descriptor systems. It also represents a
synthesis of a work that lasts for a decade.

This work was partially supported by the Natural Science Foundation of China
under Grants 61573318, 61203130, Zhejiang Province Natural Science Foundation
of China for Distinguished Young Scholars under Grant LR17F030003, and
Qianjiang Talent Plan under Grant QJD1302013.

Hangzhou, China Yu Feng
Nantes, France Mohamed Yagoubi

vi Preface



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Differential Algebraic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Descriptor Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Review on Analysis and Control for Descriptor Systems . . . . . . . 3
1.4 Highlights of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Linear Time-Invariant Descriptor Systems . . . . . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Equivalent Realizations and System Decomposition . . . . . . . . . . . 11
2.4 Temporal Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Controllability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Discrete-Time Descriptor Systems . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Dilated Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Uniformed Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Admissibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 H2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Dissipativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Robust Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Discrete-Time State Feedback H1 Control . . . . . . . . . . . . . . . . . . 35
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Dissipative Control Under Output Regulation . . . . . . . . . . . . . . . . . . 45
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Extended Regulator Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



4.3 Dissipativity with Output Regulation . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Admissibility with Unstable and Nonproper Weights . . . . . . . . . . . . . 61
5.1 Why Unstable and Nonproper Weights. . . . . . . . . . . . . . . . . . . . . 62
5.2 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Comprehensive Admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Observer-Based Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 State Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Youla Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6 Structured Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Performance with Unstable and Nonproper Weights . . . . . . . . . . . . . 85
6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Comprehensive H2 Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Quasi-admissible Solutions to GAREs . . . . . . . . . . . . . . . 88
6.2.2 Optimal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Comprehensive H1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Parametric Sensitivity Constrained LQ Control . . . . . . . . . . . . . . . . . 105
7.1 SCLQ Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 New Solution to SCLQ Control Problem . . . . . . . . . . . . . . . . . . . 108
7.3 Multiple SCLQ Controller Design . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.2 PSO-Based Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix A: Generalized Sylvester Equation . . . . . . . . . . . . . . . . . . . . . . 121

Appendix B: Generalized Algebraic Riccati Equation . . . . . . . . . . . . . . . 127

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

viii Contents



Notations

C Filed of complex numbers
R Filed of real numbers
R

n Space of n-dimensional real vectors
R

n�m Space of n� m real matrices
2 ‘Belongs to’
, ‘Defined as’
� Inner product
� Element wise multiplication of vectors
� Sum of vector spaces
� Kronecker product
L½�� Laplace transform of an argument
F lð�; �Þ Lower linear fractional transformation
rankð�Þ Rank of a matrix
detð�Þ Determinant of a matrix
degð�Þ Degree of a polynomial
Reð�Þ Real part of a complex number
‚minð�Þ Minimum eigenvalue of a real matrix
‚maxð�Þ Maximum eigenvalue of a real matrix
fið�; �Þ Generalized spectral abscissa of a matrix
fið�Þ Spectral abscissa of a matrix
‰ð�; �Þ Generalized spectral radius of a matrix
‰ð�Þ Spectral radius of a matrix
�maxð�Þ Maximum singular value of a matrix
vecð�Þ Ordered stack of the columns of a matrix from left to right

starting with the first column
In Identity matrix of the size n� n
0n�m Zero matrix of the size n� m
X⊤ Transpose of matrix X
X�1 Inverse of matrix X
X	 Conjugate transpose of matrix X

ix



Xy Moore–Penrose inverse of matrix X
X? Any matrix satisfying X?X ¼ 0 and X⊥(X)⊤>0
ImðXÞ Range space of matrix X
KerðXÞ Kernel (null) space of matrix X
diagðX1; . . .;XmÞ Block diagonal matrix with blocks X1, . . ., Xm

X
ð[ Þ0 X is real symmetric positive semi-definite (positive definite)
He{X} X⊤ +X
� Off-diagonal blocks of a symmetric matrix represented

blockwise, e.g. X11 X12

XT
12 X22

� �
¼ X11 X12

� X22

� �
¼ X11 �

XT
12 X22

� �

‘2 Space of square integrable functions on ½0;1Þ
RH1 Set of all rational proper stable transfer matrices
RH2 Set of strictly proper and real rational stable transfer matrices[
A− sE B

C D

]
Descriptor system associated with system data ðE;A;B;C;DÞ

k � k2 ‘2 norm
kGk1 H1 norm of transfer function G
Mg, M`, Mr, Mm Gain margin, phase margin, delay margin, modulus margin

x Notations



List of Figures

Figure 3.1 Minimized H1 performance with respect to different fi . . . . . . 43
Figure 4.1 Singular value plot of TzdðsÞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 4.2 Controller performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 4.3 Asymptotic output regulation . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 5.1 A mixed sensitivity configuration . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 5.2 Asymptotic tracking problem . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 5.3 Modified mixed sensitivity configuration . . . . . . . . . . . . . . . . . 64
Figure 5.4 Comprehensive admissibility control problem. . . . . . . . . . . . . . 65
Figure 5.5 Structured controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 5.6 Weighted system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 6.1 Comprehensive control problem . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 6.2 Numerical example for comprehensive H2 control . . . . . . . . . . 95
Figure 6.3 A mixed sensitivity problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 7.1 Trajectory of x1ðtÞ with LQ controller . . . . . . . . . . . . . . . . . . . 116
Figure 7.2 Trajectory of x1ðtÞ with SCLQ controller . . . . . . . . . . . . . . . . . 116
Figure 7.3 Trajectory of x2ðtÞ with LQ controller . . . . . . . . . . . . . . . . . . . 117
Figure 7.4 Trajectory of x2ðtÞ with SCLQ controller . . . . . . . . . . . . . . . . . 117

xi



Chapter 1
Introduction

1.1 Differential Algebraic Equations

A classical dynamic system is, in systems and control theory, often considered as a
set of ordinary differential equations (ODEs), which describe relations among the
system variables, usually known as state variables. For the most general purpose of
system analysis, the first-order system as follows is widely adopted

F (ẋ(t), x(t)) = 0, (1.1)

where F and x are vector value functions.The form (1.1) contains not only differential
equations, but also a set of algebraic constraints. It is referred to as differential
algebraic equations (DAEs). For control engineering, it is usually assumed that the
ODEs can be expressed in an explicit way

ẋ(t) = f (x(t)) , (1.2)

where f is a vector value function. A set of ODEs of the form (1.2) is generally
referred to as state-space description. This representation has been the predominant
tool in systems and control theory.

One notes that a state-space system model is obtained on the assumption that the
plant is governed by the causality principle. However, in certain cases, the state in the
past may depend on its state in the future, which violates the causality assumption.
There are practical situations in which:

(i) physical variables can not be chosen as state variables in a natural way to meet
the form (1.2),

(ii) physical senses of variables or coefficients are lost after transformation to (1.2).

Even in the area of signal processing where significant results have also expressed
the filter in the state-space form, the limitations of the use of the state-space system
model have been recognized by some scholars. As pointed out in [HCW07], the

© Springer Nature Singapore Pte Ltd. 2017
Y. Feng and M. Yagoubi, Robust Control of Linear Descriptor Systems,
Studies in Systems, Decision and Control 102, DOI 10.1007/978-981-10-3677-4_1
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2 1 Introduction

analysis of the rounding effect of a specific coefficient in a particular realization
can become very difficult after transformation to the state-space form. Moreover,
many realizations require the computation of intermediate variables that cannot be
expressed in the state-space form.

Here, an example is given to show the limitations of the use of state-space systems.
Let us consider an economic process where n interrelated production sectors are
involved [Lue77b]. The relationship between the production levels of the sectors can
be described by the Leontieff Model of the form

x(k) = Ax(k) + Ex(k + 1) − Ex(k) + u(k), (1.3)

where x(k) ∈ R
n is the vector of production level of the sectors at time k. Ax(k)

is interpreted as the capital required as direct input for production of x , and an
element ai j of A called the flow coefficient matrix indicates the amount of product i
needed to produce one unit of product j . Ex(k + 1) − Ex(k) stands for the stocked
capital for producing x in the next time period, and a coefficient ei j of E called the
stock coefficient matrix indicates the amount of product i that has to be in stock
for producing one unit of product j in the next time period. Moreover, u(k) is the
demanded production level. The type of econometric model shown in (1.3) was
first studied by Leontieff and both continuous-time and discrete-time cases were
considered in [Leo53].

The stock coefficient matrix E is, in general, quite sparse, and most of its entries
are zero, which means that E is often singular. The singularity of E can be explained
by the fact that the production of one sector does not generally require the capital
in stock from all the other sectors. In addition, in many cases, there are few sectors
offering capital in stock to other sectors. The Eq. (1.3) can be rewritten as

Ex(k + 1) = (I − A + E)x(k) − u(k), (1.4)

which is similar to, but not exactly the representation given in (1.2). If the matrix E
is invertible, we can left-multiply the above equation by E−1, and then a state-space
model is obtained. For the case with E being singular, it is clear that this economic
process cannot be represented by a state-space model via simply inverting the matrix
E . In fact, whether this transformation can be done depends upon the properties of
the matrix pencil (E, I − A + E).

1.2 Descriptor Systems

Let us decompose the DAEs (1.1) into two parts

{
ẋ(t) = φ (x(t)) ,

0 = ϕ (x(t)) ,
(1.5)
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where φ and ϕ are both vector value functions. Compared with the form (1.2),
the DAEs in (1.5) contain not only differential equations, but also the algebraic
constraints.

For a linear time-invariant system, the second equation in (1.5) concerns the static
properties and impulsive behaviors of the system, which do not arise in a state-space
system.Thanks to this add-on, the systems forwhich thewriting of (1.2) is impossible
or undesirable can be represented by the DAEs (1.5).

Dynamic systems of the form (1.5) have different nomenclature depending upon
the research fields. For example, control theorists and mathematicians call them sin-
gular systems [Dai89, Lew86, Ail89, Cob84, XL06] due to the fact that thematrix on
the derivative of the state (“generalized state” ismore appropriate in this case), such as
E in (1.4), is generally singular. They sometimes use the name generalized (extended)
state-space systems [Ail87, VLK81, Cam84, HFA86] since the form (1.5) can be
viewed as a generalization of conventional state-space systems. In the engineering
economic systems community, the terminology descriptor system [Lue77a, BL87,
HM99b, WYC06] is most frequently adopted for the raison that the form (1.5) offers
a fairly natural description of system properties; while numerical analysts like to
call this representation differential algebraic equations [BCP96, GSG+07, KM06],
probably due to its original form. Besides, in circuit theory, the form (1.5) is named
a semistate system [ND89, RS86] because it describes “almost state” of the under-
lying system. Sometimes the term implicit system [SGGG03, IS01] is also used by
some researchers to mention systems of form (1.5). Throughout this book, the name
descriptor system is used and we will focus on the LTI dynamic systems.

Descriptor systems defined by DAEs do not evidently belong to the class of ODEs
since an ODE does not include any algebraic constraints. Hence, descriptor systems
contain conventional state-space systems as a special case and behave much more
powerful in terms of systemmodeling. Compared with state-space systems, they can
not only preserve the structure of physical systems, but also describe static constraints
and impulsive behaviors. Such systems arise in real systems, for instance, large-scaled
systems networks [Lue77a, SL73], circuits [ND89, ZHL03], boundary control sys-
tems [Pan90], power systems [Sto79], economic systems [Lue77a, Lue77b], chemi-
cal processes [KD95], mechanical engineering systems [HW79, SGGG03], robotics
[MG89] and aircraft modeling [SL91].

1.3 Review on Analysis and Control for Descriptor Systems

As descriptor systems describe an important class of systems of both theoretical
and practical significance, they have been a subject of research for many years. The
history of studying descriptor systems dates back to the 1860s. The foundation for
the study of linear descriptor systems was laid by Weierstrass. In the seminal work
[Wei67], he developed the theory of elementary divisor for systems of the form
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Eẋ = Ax + Bu. (1.6)

His results were restricted in the regular case, that is, the determinant sE − A is not
identically zero. Then, by using the notion of minimal indices, Kronecker extended
this theory to general cases where |sE − A| = 0 or E and A are rectangular [Kro90].

Foundational research of descriptor systems in the system theoretic context began
from the 1970s. The 1970 and 1980s were characterized as the development of basic
yet essential results for descriptor systems, such as, the structure of matrix pencils,
impulsive behavior, solvability, controllability, reachability, observability and system
equivalence. From the beginning of the 1990s, scholars began to generalize the
classic control issues to descriptor systems, for both continuous-time and discrete-
time settings. Let us list briefly the main research outcomes of linear descriptor
systems as follows.

• controllability and observability [Cob84, Lew85, YS81, Ail87, CP85, Hou04]
• system equivalence [BS00, HFA86, VLK81, ZST87]
• canonical form [Glu90, HS89, LL94, VK97]
• regularity and regularization [BKM97, CH99, KLX03, BGMN94, WS99]
• Admissibility and admissibilization [Var95, Kat96, Tor96, XY99, XL04, SC04,
XL06, FY16]

• linear quadratic optimal control [Cob83, BL87, Wan04]
• pole assignment [Ail89, FKN86, GF95, DP98, VK03, YW03, RBCM08]
• generalized Lyapunov and Riccati equations [Ben87, ZLZ99, ZLX02, TMK95,
IT02, SMA95]

• positive real lemma [FJ04, WC96, ZLX02, LC03, Mas06, Mas07, CT08, Fen15]
• H2 analysis and control synthesis [ILU00, IT02, TK98, ZMC02, ZHL03,
FYC12a]

• H∞ analysis and control synthesis [MKOS97, KK97, Mas07, RA99, UI99,
ZXS08, WYC06, FYC12b, FY13, DYH14]

• observer design [Dai88, DZH96, Dar14, HM99a, MH93, Gao05, WDF07]
• generalized Sylvester equation [KW89, GLAM92, Dua96, CdS05, Dar06,
WH14]

• output regulation problem [LD96, IK05, FYC13]
• model reduction problem [XL03, Sty04, WLZX04, WSL06, LZD07]
• controller implementation via a descriptor framework [HCW07, HCW10, FCH11]
• toolbox for analysis and synthesis of descriptor systems [Var00, VKAV08]

On the other hand, descriptor systems bring extra complexities to system analysis
and controller design synthesis, though they aremuchmore natural and powerful than
conventional state-space systems. Roughly speaking, given a descriptor system (1.6),
the major difficulties of studying such a system are rooted in the analysis of the
matrix pair (E, A) instead of a single matrix A for the state-space case. Two new
concepts called regularity and impulsiveness (respectively causality for the discrete-
time setting) which are not necessarily considered for the state-space case need to be
taken into account. For instance, in order to stabilize a descriptor system, the closed-
loop system must be stable, as well as regular and impulsive-free. The latter two
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are intrinsic properties of conventional state-space systems. Another example is the
indefiniteness of the Lyapunov matrix for descriptor systems. As known, in the state-
space setting, a desirable Lyapunovmatrix should be symmetric and positive definite.
However, this is not the case within the descriptor framework. A desirable Lyapunov
matrix associated with a descriptor system is indefinite, only the part related to the
image of the matrix E is supposed to be positive definite. Furthermore, contrary to
state-space systems, the Lyapunov matrix within the descriptor framework is not
unique, and it is possible to find several Lyapunov matrices for a single descriptor
system. The requirement of uniqueness is no longer imposed on the Lyapunovmatrix,
but on the product of E� and the Lyapunovmatrix. Therefore, some control problems
that have been successfully solved within the state-space framework are still open
and deserve further investigation for descriptor systems.

1.4 Highlights of the Book

The remainder of this book is organized in the following and the key results are
highlighted accordingly.

Chapter 2 recalls the basic concepts concerning linear time-invariant descriptor
systems, for both continuous-time and discrete-time settings, which will be used sub-
sequently in this book. Fundamental definitions and results of descriptor systems,
such as regularity, admissibility, equivalent realizations, system decomposition, tem-
poral response, controllability, observability, and duality are reviewed.

Chapter 3 discusses dilated LMI characterizations of descriptor systems for both
the continuous-time and discrete-time settings. Conditions with regard to admissibil-
ity, H2 performance, and dissipativity are systematically explored through reciprocal
application of the projection lemma. Moreover, by the use of auxiliary matrices and
a positive scalar, a novel bounded real lemma for discrete-time descriptor systems
is derived. Based on this, a numerically efficient and reliable design procedure for
state feedback H∞ controller design is given.

Chapter 4 is concerned with a nonstandard multi-objective output control prob-
lem for continuous-time descriptor systems. In this problem, an output signal is to
be regulated with the presence of an infinite-energy exo-system; while a specified
dissipative performance from a finite external disturbance to a tracking signal has
also to be satisfied. It is shown that the regulation constraint is satisfied if and only if
a generalized Sylvester equation is solvable. In addition, every controller achieving
regulation objective admits a specific structure. Furthermore, using this structure,
additional dissipative performance specification is satisfied by solving a set of LMIs.

Chapter 5 considers the comprehensive control problem for continuous-time
descriptor systems. Systems and their weights are all described within the descriptor
framework. Comprehensive admissibility issue under this circumstance is addressed
in terms of two generalized Sylvester equations. A parametrization of all observer-
based controllers achieving comprehensive admissibility is also given. In order to
further clarify the impact of weighting filters on resulting controllers, a structured

http://dx.doi.org/10.1007/978-981-10-3677-4_2
http://dx.doi.org/10.1007/978-981-10-3677-4_3
http://dx.doi.org/10.1007/978-981-10-3677-4_4
http://dx.doi.org/10.1007/978-981-10-3677-4_5
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controller is explicitly conducted and it is shown that the comprehensive admissibil-
ity control problem can be transformed into a standard admissibility control problem
without weights for an augmented system.

Chapter 6 tackles the H2 and H∞ performance control subjects to unstable
and nonproper weighting filters. The so-called quasi-admissible solution is defined
instead of the conventional admissible solution for generalized algebraic Riccati
equations (GAREs). Optimal comprehensive H2 controller is conducted from quasi-
admissible solutions to the twoGAREs, togetherwith solutions to the twogeneralized
Sylvester equations. As for the comprehensive H∞ control problem, the necessary
and sufficient conditions for the existence of a comprehensive H∞ controller are
deduced and a set of controllers is explicitly parameterized in terms of two general-
ized Sylvester equations and two GARE together with a spectral radius condition.

Chapter 7 is dedicated to a synthesis method of parametric sensitivity constrained
linear quadratic (SCLQ) controller for uncertain LTI systems. System sensitivity to
parameter variation is handled through an additional quadratic trajectory paramet-
ric sensitivity term in the standard LQ criterion. A descriptor system approach is
adopted to establish the relationship between a singular LQ control and the SCLQ
control, and the solvability condition is conducted in terms of a nonstandard Ric-
cati equation. Moreover, multiple parametric SCLQ control synthesis is addressed to
cover the whole parametric uncertainty while degrading as less as possible the intrin-
sic robustness properties of each local LQ controller. An adequate particle swarm
optimization (PSO) based algorithm is presented.

Chapter 8 contains concluding remarks that summarize the main achievements of
this book.

Appendices A and B contain useful results for generalized Sylvester equations
and GAREs associated with descriptor systems. Numerical algorithms for solving
these equations are also presented.

http://dx.doi.org/10.1007/978-981-10-3677-4_6
http://dx.doi.org/10.1007/978-981-10-3677-4_7
http://dx.doi.org/10.1007/978-981-10-3677-4_8


Chapter 2
Linear Time-Invariant Descriptor Systems

In this chapter, we recall some basic concepts concerning linear time-invariant
descriptor systems for both continuous-time and discrete-time settings, which will
be used subsequently. Descriptor systems offer a powerful tool for systemmodelling
since they allow to describe a system by both dynamic equations and algebraic con-
straints. We give here a quick reminder of the fundamental definitions and results of
descriptor systems, such as regularity, admissibility, equivalent realizations, system
decomposition, temporal response, controllability, observability, and duality.Most of
the results presented in this chapter can be found in [Ros74, Cob84, Lew85, VLK81,
YS81, Ail87, CP85, Hou04, Dai89, Lew86, IT02, XY99, XL04, Mar03].

2.1 Introduction

Let us recall the first-order DAE discussed in the previous chapter

F (ẋ(t), x(t)) = 0, (2.1)

where F and x are vector value functions. Representing the Jacobians as

E � ∂F
∂ ẋ(t)

, A � − ∂F
∂x(t)

, (2.2)

we can write

Edẋ(t) = Adẋ(t) +
(

dF − ∂F
∂t

dt

)
. (2.3)

© Springer Nature Singapore Pte Ltd. 2017
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As mentioned before, if the matrix E is not singular, i.e. |E | �= 0, we can convert
this system into a conventional state-space system by left-multiplying the two sides
by E−1. On the other hand, if E is singular, this conversion is no longer possible. In
the parts to follow, we omit the time index t for continuous-time descriptor systems
to simplify the writing.

A linear time-invariant version of (2.1) including a control input u(t) and a mea-
surement output y(t) is written as

Eẋ = Ax + Bu,
y = Cx,

(2.4)

where x ∈ R
n , y ∈ R

p and u ∈ R
m are the descriptor variable, measurement and

control input vector, respectively. The matrix E ∈ R
n×n may be singular, i.e.

rank(E) = r ≤ n.
Note that the form (2.4) can be used without loss of generality. In the case where

the feedthrough matrix from u to y is not null, we can introduce an extra descriptor
variable to render the D matrix zero. For example, consider the following system

Eẋ = Ax + Bu,
y = Cx + Du,

(2.5)

which can be equivalently represented by

[
E 0
0 0

]
︸ ︷︷ ︸

E

[
ẋ
ζ̇

]
=

[
A 0
0 −I

]
︸ ︷︷ ︸

A

[
x
ζ

]
+

[
B
I

]
︸︷︷︸
B

u,

y = [
C D

]
︸ ︷︷ ︸

C

[
x
ζ

]
.

(2.6)

By introducing the auxiliary variable ζ, this system is rewritten as the form of (2.4).
A descriptor system G associated with the system data (E, A, B,C, D) can also

be represented by the form of

G(s) :=
[

A − s E B
C D

]
. (2.7)

2.2 Regularity

One of the basic notations of descriptor systems is regularity or solvability. If a
descriptor system is regular, then it has a unique solution for any initial condition
and any continuous input function [VLK81, Cob83].
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Definition 2.1 (Regularity) The descriptor system in (2.4) is said to be regular if
det(s E − A) �≡ 0 for all s ∈ C.

This definition is the same as the one called solvability used by Yip and Sincovec
in [YS81]. To illustrate the physical mean of regularity, let us examine the Laplace
transformed version of Eẋ = Ax + Bu as follows

s EL[x] − Ex(0) = AL[x] + BL[u], (2.8)

which can be arranged as

(s E − A)L[x] = BL[u] + Ex(0). (2.9)

It is observed that, if the system is regular, then

L[x] = (s E − A)−1(BL[u] + Ex(0)), (2.10)

which guarantees the existence and uniqueness of L[x] for any initial condition and
any continuous input function. On the other hand, if the system is not regular, or
equivalently, the matrix s E − A is of rank deficiency, there exists a nonzero vector
θ(s) such that

(s E − A)θ(s) ≡ 0. (2.11)

Consequently, one can state that, if the system has a solution denoted L[x], then
L[x] + αθ(s) is also a solution for any α. It is clear that a solution to this system is
not unique, and it is also obvious that there may be no solution to this system. The
following characterizations of regularity are given in [YS81].

Lemma 2.1 (Regularity) The following statements are equivalent.

(a) (E, A) is regular.
(b) If X0 is the null space of A and Xi = {x : Ax ∈ E Xi−1} then Ker(E)

⋂
Xi = 0

for i = 0, 1, 2, . . ..
(c) If Y0 is the null space of AT and Yi = {x : AT x ∈ ET Yi−1} thenKer(ET )

⋂
Yi =

0 for i = 0, 1, 2, . . ..
(d) The matrix

G(n) =

⎡
⎢⎢⎢⎢⎣

E 0 · · · 0
A E · · · 0
0 A · · · 0

E
0 · · · A

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

n + 1 (2.12)

has full column rank for n = 1, 2, . . ..
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(e) The matrix

F(n) =

⎡
⎢⎢⎢⎣

E A 0 · · · 0
0 E A · · · 0
...

...

0 E A

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
n+1

(2.13)

has full row rank for n = 1, 2, . . ..
(f) There exist nonsingular matrices M and N such that E ẋ = Ax + Bu is decom-

posed into possibly two subsystems: a subsystem with only a state variable, and
an algebraic-like subsystem, i.e. M E N N−1 ẋ = M AN N−1x + M Bu has one
of the following forms.

(i)

ẋ1 = E1x1 + B1u,
E2 ẋ2 = x2 + B2u, Ek

2 = 0, Ek−1
2 �= 0.

(2.14)

In this case, both E and A are singular, or A is nonsingular and E is singular
but not nilpotent, i.e., Ek �= 0 for all positive integers k.

(ii)

ẋ1 = E1x1 + B1u. (2.15)

In this case, E is nonsingular.
(iii)

E2 ẋ2 = x2 + B2u, Ek
2 = 0, Ek−1

2 �= 0. (2.16)

In this case, A is nonsingular and E is nilpotent.

In all cases,

[
x1
x2

]
= N−1x,

[
B1

B2

]
= M B, (2.17)

and the exact solution is

x1(t) = eE1t x10 + ∫ t
0 e(t−τ )E1 B1u(τ )dτ ,

x2(t) = −∑k−1
i=0 Ei

2B2u(i)(t),
(2.18)

where x10 is the transformed initial condition, i.e.,

[
x10
x20

]
= N−1x0.
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Among these equivalent statements, the easiest one to characterize regularity for
a given descriptor system is the condition (d) or its dual version (e). For the sake
of avoiding computing a matrix with huge dimension, Luenberger proposed the so-
called shuffle algorithm which requires manipulations only on the rows and columns
of the matrix [E A] [Lue78]. For convenience, we usually check regularity directly
from its definition, that is, s E − A �≡ 0 for all s ∈ C. In addition, if the descriptor
system (2.4) is regular, (s E − A)−1 is a rational matrix and we can further define its
transfer function as

G(s) = C(s E − A)−1B. (2.19)

2.3 Equivalent Realizations and System Decomposition

To model a physical system, one has to choose a set of states which are related
to the same performance, such as acceleration, velocity, position, temperature and
mass. The choice of these states is in general not unique, and this fact leads to a
set of different models (realizations) which yield the same input–output relationship
for a given system. Consequently, it is of great interest to determine the relation of
equivalence among these different representations.

Definition 2.2 (Restricted System Equivalence) Reference [Ros74] Consider two
descriptor systems G and Ḡ given by

Eẋ = Ax + Bu,
y = Cx,

(2.20)

and

Ē ˙̄x = Āx̄ + B̄ū,
ȳ = C̄ x̄ .

(2.21)

The two systems G and Ḡ are termed restricted system equivalent if there exist
nonsingular matrices M and N such that

[
M 0
0 I

] [
s E − A B

C 0

] [
N 0
0 I

]
=

[
s Ē − Ā B̄

C̄ 0

]
. (2.22)

Definition 2.3 (Strong Equivalence) Reference [VLK81] Consider two descriptor
systemsG and Ḡ given in (2.20) and (2.21), respectively. The two systems are termed
strongly equivalent if there exist nonsingular matrices M , N and two matrices Q, R
such that
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[
M 0
Q I

] [
s E − A B

C 0

] [
N R
0 I

]
=

[
s Ē − Ā B̄

C̄ 0

]
,

QE = E R = 0.
(2.23)

Note that in book the term “equivalence” means “restricted system equivalence.”
Among many equivalent representations, there are two particular realizations

of great importance for system analysis and control. They are referred to as the
Kronecker-Weierstrass form [Wei67, Kro90] and the singular value decomposition
(SVD) [BL87] form.

Lemma 2.2 (Kronecker-Weierstrass Decomposition) Reference [Dai89] The
descriptor system (2.4) is regular if and only if there exist nonsingular matrices
M1 and N1 such that

M1E N1 =
[

In1 0
0 N

]
, M1AN1 =

[A 0
0 In2

]
, (2.24)

where n1 + n2 = n and N is a nilpotent matrix.

The form (2.24) is referred to as the Kronecker-Weierstrass decomposition. This
form can be viewed as an equivalent condition for regularity, and is also referred to
by some scholars as slow–fast decomposition [Cob84]. The subsystem related to A
is called the slow subsystem, while what is related toN is called the fast subsystem.
Although the Kronecker-Weierstrass decomposition divides the systems into two
parts which may bring simplicity for analysis, the use of this decomposition requires
that the underlying system is regular. If the regularity of the system is not known, then
this form cannot be applied. Moreover, the Kronecker-Weierstrass decomposition
is numerically unreliable, especially in the case where the order of the system is
relatively large.

Another decomposition that does not depend upon the regularity of systems is
called the SVD form. This form can be obtained via a singular value decomposition
on E and followed by scaling of the bases. Under the SVD form, the pair (E, A) is
decomposed by two nonsingular matrices M2 and N2 as

M2E N2 =
[

I 0
0 0

]
, M2 AN2 =

[
A1 A2

A3 A4

]
. (2.25)

The SVD form was discussed by Bender and Laub for using it to examine gen-
eral system properties and to derive a linear-quadratic regulator for continuous-time
descriptor systems [BL87]. Similar to the Kronecker-Weierstrass decomposition, M2

and N2 for SVD form are in general not unique.
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2.4 Temporal Response

Assume that the descriptor system (2.4) is regular. According to the Kronecker-
Weierstrass decomposition, there exist matrices M1 and N1 such that

ẋ1 = Ax1 + B1u,
y1 = C1x1,

(2.26)

N ẋ2 = x2 + B2u,
y2 = C2x2,

(2.27)

where
[

x1
x2

]
= N−1

1 x,

[
B1

B2

]
= M1B,

[
C1 C2

] = C N1.

Suppose that h is the degree of the nilpotentmatrixN , that is,N h−1 �= 0 andN h = 0.
The subsystem (2.26) is a normal state-space system, whose temporal response for
a given input u(t) and initial condition x10 can be written as

y1(t) = C1eAt x10 + C1

∫ t

0
eA(t−τ )B1u(τ )dτ . (2.28)

Then we consider the subsystem (2.27). Suppose that u(t) ∈ Ch−1, where Ch−1

stands for the set of h − 1 times continuously differentiable functions. Then we have
the following relations

N ẋ2(t) = x2(t) + B2u(t),
N 2 ẋ (2)

2 (t) = N ẋ2(t) + N B2u̇(t),
· · · ,

N k ẋ (k)
2 (t) = N k−1x (k−1)

2 (t) + N k−1B2u(k−1)(t),
· · · ,

N h−1 ẋ (h−1)
2 (t) = N h−2x (h−2)

2 (t) + N h−2B2u(h−2)(t),
0 = N h−1x (h−1)

2 (t) + N h−1B2u(h−1)(t).

(2.29)

Hence, the expression of x2(t) can be obtained as

x2(t) = N ẋ2 − B2u(t),
x2(t) = N 2 ẋ (2)

2 (t) − B2u(t) − N B2u̇(t),
· · · ,

x2(t) = −∑h−1
k=0 N k B2u(k)(t),

(2.30)

which gives
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y2(t) = −
h−1∑
k=0

C2N k B2u(k)(t). (2.31)

Hence, the temporal response y(t) of the descriptor system (2.4) is

y(t) = C1

(
eAt x10 +

∫ t

0
eA(t−τ )B1u(τ )dτ

)
−

h−1∑
k=0

C2N k B2u(k)(t). (2.32)

It is observed that the response of the subsystem (2.26) depends on the matrix
A, initial condition x10, as well as the input u(t); while the response of the subsys-
tem (2.27) depends only on the derivative of the input u(t) on time t . That is why
we also call these two subsystems slow subsystem and fast subsystem, respectively.
If t → 0+, then we can deduce the following constraint on the initial condition

x(0+) = N1

[
I
0

]
x10 − N1

[
0
I

] h−1∑
k=0

N k B2u(k)(0+). (2.33)

Any initial condition satisfying (2.33) is called an admissible condition. From this
point of view, only one initial condition is allowed and hence only one solution is
allowed for each choice of u(t). In [VLK81, Cob83], the authors used the theory
of distributions and generalized this viewpoint to allow arbitrary initial conditions.
Under this theory, for the fast subsystem, we have

x2(t) = −
h−1∑
k=1

δ(k−1)N k x20 −
h−1∑
k=0

N k B2u(k)(t), (2.34)

where δ is the Dirac delta. As pointed out in [Cob81], the form of (2.34) suggests
that in any conventional sense the dynamics of the overall system are concentrated
in the slow subsystem in (2.26). With the theory of distributions, we can represent
the systems whose initial conditions are not admissible or those who contain “jump”
behaviors. For example, when we switch an electrical circuit on, there will be a jump
in the current or voltage at this moment. For these cases, the first term of (2.34) can
transform the system into an admissible state.

2.5 Admissibility

Stability is a fundamental concept for state-space systems, which can be character-
ized, by one of the definitions, that the system has no poles located in the right-hand
plane including the imaginary axis. Under the descriptor framework, a similar yet
more complicated concept called admissibility plays the same role as stability for
state-space systems.
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Definition 2.4 (Admissibility) References [Dai89, Lew86]

(a) The descriptor system (2.4) is said to be regular if det(s E − A) is not identically
null;

(b) The descriptor system (2.4) is said to be impulse-free if deg(det(s E − A)) =
rank(E);

(c) The descriptor system (2.4) is said to be stable if all the roots of det(s E − A) = 0
have negative real parts;

(d) The descriptor system (2.4) is said to be admissible if it is regular, impulse-free,
and stable.

From the definition, the admissibility of a descriptor system concerns stability,
as well as regularity and impulsiveness. The latter two are intrinsic properties of
conventional state-space systems and are not necessarily considered in the state-space
case. Furthermore, it can be deduced that if a descriptor system is impulse-free, then
it is regular.

Now we give some equivalent conditions for admissibility.

Lemma 2.3 Reference [Dai89] Suppose that the descriptor system (2.4) is regu-
lar and there exist nonsingular matrices M1 and N1 such that the Kronecker and
Weierstrass form (2.24) holds. Then

(i) this system is said to be impulse-free if and only if N = 0;
(ii) this system is said to be stable if and only if α(A) < 0;

(iii) this system is said to be admissible if and only if N = 0 and α(A) < 0.

Lemma 2.4 Reference [Dai89] Consider the descriptor system (2.4) and suppose
that there exist nonsingular matrices M2 and N2 such that the SVD form (2.25) holds.
Then

(i) this system is said to be impulse-free if and only if |A4| �= 0;
(ii) this system is said to be admissible if and only if |A4| �= 0 and α(A1 −

A2 A−1
4 A3) < 0.

Furthermore, if the descriptor system is regular and the matrices M1 and N1 exist
to render it Kronecker-Weierstrass form, then the transfer function of this system can
be written as

G(s) = C1(s I − A)−1B1 + C2(sN − I )−1B2. (2.35)

For an impulse-free system, that is, N = 0, we have

G(s) = C1(s I − A)−1B1 − C2B2. (2.36)

It is noted that the term C2(sN − I )−1B2 leads to polynomial terms of s if both B2

and C2 are nonzero. Hence the impulse-free assumption guarantees the properness
of the transfer function. The converse statement is, however, not true. Clearly, if
either B2 or C2 vanishes, the transfer function is still proper, even if the system is
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impulsive. Hence, given a stable transfer function G(s) and its corresponding system
data (E, A, B,C, (D)), the admissibility of this system can not be concluded.

Nowwediscuss briefly the issue of generalized eigenvalues of amatrix pencil. The
theory mentioned here has been reported in the literature, for instance see [GvL96,
BDD+00].

Consider a matrix pencil λE − A, where E and A are both real n × n matrices,
and λ is a scalar. First, we assure that this pencil is regular, that is, |λE − A| �≡ 0 for
all λ. The generalized eigenvalues are defined as those λ for which

|λE − A| = 0. (2.37)

Definition 2.5 (Infinite Generalized Eigenvectors) Reference [BL87]

1. Grade 1 infinite generalized eigenvectors of the pencil (s E − A) satisfy

Ev1i = 0. (2.38)

2. Grade k (k ≥ 2) infinite generalized eigenvectors of the pencil (s E − A) corre-
sponding to the i th grade 1 infinite generalized eigenvectors satisfy

Evk+1
i = Avk

i . (2.39)

Moreover, the finite generalized eigenvalues of s E − A are called the finite
dynamic modes. The infinite generalized eigenvalues of s E − A with the grade 1
infinite generalized eigenvectors determine the static modes, while the infinite gen-
eralized eigenvalues with the grade k (k ≥ 2) infinite generalized eigenvectors are
the impulsive modes.

Let q be the degree of the polynomial |λE − A|. One can state that the matrix
pencil λE − A has q finite generalized eigenvalues and n − q infinite generalized
eigenvalues where the number of static modes is n − r and the number of impulsive
modes is r − q.

2.6 Controllability

In this section, we introduce controllability for descriptor systems in a way that
reduces to the state-space definition when E = I . We suppose that the descriptor
system (2.4) is regular and it is transformed into the Kronecker-Weierstrass form as
follows

θs : ẋ1 = Ax1 + B1u, y1 = C1x1,
θ f : N ẋ2 = x2 + B2u, y2 = C2x2,

y = y1 + y2,
(2.40)

where x1 ∈ R
n1 , x2 ∈ R

n2 , n1 + n2 = n and N is a nilpotent matrix with degree h.



2.6 Controllability 17

Let us define

• Ci
p be the i times piecewise continuously differentiable maps on R with range

depending on context;
• I be the set of admissible initial conditions, that is,

I =
{[

x1
x2

]
: x1 ∈ R

n1 , x2 = −
h−1∑
k=0

N k B2u(k)(0), u ∈ Ch−1
m

}
; (2.41)

• 〈X, Y 〉 = β + Xβ + X2β + · · · + Xn−1β, where X is a square matrix, n is the
order of X , the product XY is well defined and β = Im(Y ).

Definition 2.6 (Reachable State) Reference [YS81] A state xr is reachable from a
state x0 if there exists u(t) ∈ Ch−1

m such that x(tr ) = xr for some tr > 0.

Lemma 2.5 Reference [YS81] Let R(0) be the set of reachable states from x0 = 0.
Then,

R(0) = 〈A, B1〉 ⊕ 〈N , B2〉. (2.42)

Lemma 2.6 Reference [YS81] Let R(x) be the set of reachable states from x ∈ I.
Then the complete set of reachable states R is

R =
⋃
x∈I

R(x) = R
n1 ⊕ 〈N , B2〉. (2.43)

We can adopt the conventional definition of controllability for descriptor systems.

Definition 2.7 (C-controllability) The descriptor system (2.40) is said to be
completely controllable (C-controllable) if one can reach any state from any initial
state.

Within the descriptor framework, we also define two different types of controlla-
bility as follows.

Definition 2.8 (R-controllability) The descriptor system (2.40) is said to be con-
trollable within the set of reachable states (R-controllable) if, from any initial state
x0 ∈ I, there exists u(t) ∈ Ch−1

m such that x(t f ) ∈ R for any t f > 0.

Note that, for state-space systems, C-controllability and R-controllability are
equivalent. This is, however, not the case for descriptor systems.

Definition 2.9 (Imp-controllability) Reference [Cob84] The descriptor system
(2.40) is said to be impulse controllable (Imp-controllable) if for every w ∈ R

n2

there exists u(t) ∈ Ch−1
m such that the fast subsystem θ f satisfies

x2(t f ) =
h−1∑
k=1

δ(k−1)
t f

N kw, ∀t f > 0. (2.44)
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Theorem 2.1 (Regarding C-controllability) References [YS81, Cob84, Dai89,
Lew86]

(1) The following statements are equivalent.

(1i) The descriptor system (2.40) is C-controllable.
(1ii) θs and θ f are both controllable.

(1iii) 〈A, B1〉 ⊕ 〈N , B2〉 = R
n1+n2 .

(1iv) rank ([s E − A B]) = n, for a finite s ∈ R and rank ([E B]) = n.
(1v) Im(λE − A) ⊕ Im(B) = R

n and Im(E) ⊕ Im(B) = R
n.

(1vi) The matrix C is full row rank,

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

−A B
E −A B

E
. . . B
. . . −A

. . .

E B

⎤
⎥⎥⎥⎥⎥⎥⎦

(2) The following statements are equivalent.

(2i) θs is controllable.
(2ii) The descriptor system (2.40) is R-controllable.

(2iii) 〈A, B1〉 = R
n1 .

(2iv) rank ([s E − A B]) = n, for a finite s ∈ R.
(2v) Im(λE − A) ⊕ Im(B) = R

n.

(3) The following statements are equivalent.

(3i) θ f is controllable.
(3ii) 〈N , B2〉 = R

n2 .
(3iii) rank ([E B]) = n.
(3iv) Im(E) ⊕ Im(B) = R

n.
(3v) Im(N ) ⊕ Im(B2) = R

n2 .
(3vi) The rows of B2 corresponding to the bottom rows of all Jordan blocks of N

are linearly independent.
(3vii) v�(sN − I )−1B2 = 0 for constant vector v implies that v = 0.

Theorem 2.2 (RegardingR-controllability) References [YS81, Cob84, Dai89] The
following statements are equivalent.

1. The descriptor system (2.40) is R-controllable.
2. θs is controllable.
3. 〈A, B1〉 = R

n1 .
4. rank ([s E − A B]) = n, for a finite s ∈ R.
5. Im(λE − A) ⊕ Im(B) = R

n.
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Theorem 2.3 (Regarding Imp-controllability) References [Cob84, Dai89, Lew86]
The following statements are equivalent.

1. The descriptor system (2.40) is Imp-controllable.
2. θ f is Imp-controllable.
3. Ker(N ) ⊕ 〈N , B2〉 = R

n2 .
4. Im(N ) = 〈N , B2〉.
5. Im(N ) ⊕ Ker(N ) ⊕ Im(B2) = R

n2 .

6. rank

([
A E B
E 0 0

])
= n + r .

7. The rows of B2 corresponding to the bottom rows of the nontrivial Jordan blocks
of N are linearly independent.

8. v�N (sN − I )−1B2 = 0 for constant vector v implies that v = 0.

It is observed that the conditions characterizing R-controllability are only con-
cerned with the slow subsystem θs . The response of the fast subsystem depends only
on u(t) and its derivatives. Any reachable state of θ f w ∈ 〈A, B1〉 can be written as
w = ∑h−1

k=0 ηkN k B2. Then it is easy to find an input u(t) satisfying u(k)(t f ) = ηk ,
for k = 0, 1, . . . , h − 1 (for example u(t) = ∑h−1

k=0 ηk(t − t f )
k/k!) which leads to

x2(t f ) = w. Hence, the fast subsystem has no impact onR-controllability.
Imp-controllability guarantees the ability to generate a maximal set of impulses,

at each instant, in the following sense: suppose E and A are given but B and u are
allowed to vary over all values.

2.7 Observability

In this section, we introduce observability for descriptor systems in a way that allows
for a set of results analogous to the last section. Similarly, the concepts, that is, C-
observability, R-observability, and Imp-observability are defined.

Definition 2.10 (C-observability) The descriptor system (2.40) is said to be com-
pletely observable (C-observability) if knowledge of u(t) and y(t) for t ∈ [0,∞] is
sufficient to determine the initial condition x0.

Definition 2.11 (R-observability) The descriptor system (2.40) is said to be observ-
able within the set of reachable states (R-observable) if, for t ≥ 0, x(t) ∈ I can be
computed from u(τ ) and y(τ ) for any τ ∈ [0, t].
Definition 2.12 (Imp-observability) The descriptor system (2.40) is said to be
impulse observable (Imp-observable) if, for every w ∈ R

n2 , knowledge of y(t) for
t ∈ [0,∞] to determine x2(t).

x2(t) =
h−1∑
k=1

δ(k−1)
t f

N kw. (2.45)
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Theorem 2.4 (RegardingC-observability)References [YS81, Cob84, Dai89, Lew86]

(1) The following statements are equivalent.

(1i) The descriptor system (2.40) is C-observable.
(1ii) θs and θ f are both observable.

(1iii) 〈A�,C�
1 〉 ⊕ 〈N�,C�

2 〉 = R
n1+n2 .

(1iv) rank
([s E� − A� C�]) = n, for a finite s ∈ R and rank

([E� C�]) = n.
(1v) Ker(λE − A)

⋂
Ker(C) = {0} and Ker(E)

⋂
Ker(C) = {0}.

(1vi) The matrix O is full row rank,

O =

⎡
⎢⎢⎢⎢⎢⎢⎣

−A� C�
E� −A� C�

E� . . . C�
. . . −A� . . .

E� C�

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(2) The following statements are equivalent.

(2i) θs is observable.
(2ii) The descriptor system (2.40) is R-observable.

(2iii) 〈A�,C�
1 〉 = R

n1 .
(2iv) rank

([s E� − A� C�]) = n, for a finite s ∈ R.
(2v) Ker(λE − A)

⋂
Ker(C) = {0}.

(3) The following statements are equivalent.

(3i) θ f is observable.
(3ii) 〈N�,C�

2 〉 = R
n2 .

(3iii) rank
([E� C�]) = n.

(3iv) Ker(E)
⋂

K er(C) = 0.
(3v) Ker(N )

⋂
Ker(C2) = {0}.

(3vi) The rows of C�
2 corresponding to the bottom rows of all Jordan blocks of N�

are linearly independent.
(3vii) C2(sN − I )−1v = 0 for constant vector v implies that v = 0.

Theorem 2.5 (Regarding R-observability) References [YS81, Cob84, Dai89] The
following statements are equivalent.

1. The descriptor system (2.40) is R-observable.
2. θs is observable.
3. 〈A�,C�

1 〉 = R
n1 .

4. rank
([s E� − A� C�]) = n, for a finite s ∈ R.

5. Ker(λE − A)
⋂

Ker(C) = {0}.
Theorem 2.6 (Regarding Imp-observability) References [Cob84, Dai89, Lew86]
The following statements are equivalent.
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1. The descriptor system (2.40) is Imp-observable.
2. θ f is Imp-observable.
3. Im(N�)

⋂
Ker

(〈N�,C�
2 〉) = {0}.

4. Ker(N�) = NKer
(〈N�,C�

2 〉).
5. Ker(N )

⋂
I m(N )

⋂
Ker(C2) = {0}.

6. rank

([
A� E� C�
E� 0 0

])
= n + r .

7. The rows of C�
2 corresponding to the bottom rows of the nontrivial Jordan blocks

of N� are linearly independent.
8. C2(sN − I )−1N v = 0 for constant vector v implies that v = 0.

Similar toR-controllability, the characterizations for evaluatingR-observability
are only concerned with the slow subsystem θs .

2.8 Duality

As known, there is a strong sense of symmetry between controllability and observ-
ability for the state-space setting. We now extend this idea to descriptor systems.
Corresponding to (2.4), we define the dual system θ̄

E� ẋ = A�x + C�u,
y = B�x .

(2.46)

Then we have the following statements.

Theorem 2.7 (Duality)

1. The descriptor system (2.4) is C-controllable (C-observable) if and only if the
system (2.46) is C-observable (C-controllable).

2. The descriptor system (2.4) is R-controllable (R-observable) if and only if the
system (2.46) is R-observable (R-controllable).

3. The descriptor system (2.4) is Imp-controllable (Imp-observable) if and only if
the system (2.46) is Imp-observable (Imp-controllable).

2.9 Discrete-Time Descriptor Systems

Consider the following linear time-invariant discrete-time descriptor system:

Ex(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k),

(2.47)
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where x ∈ R
n and u ∈ R

m are the descriptor variable and control input vector, respec-
tively. The matrix E ∈ R

n×n may be singular, i.e., rank(E) = r ≤ n.
The aforementioned notations for continuous-time descriptor systems can be

adopted directly for its discrete-time counterpart. The only two differences between
continuous-time and discrete-time settings are impulsiveness and stability. For
discrete-time descriptor systems, we use the term causality instead of impulsiveness;
while the discrete-time descriptor system (2.47) is said to be stable if ρ(E, A) < 1.
Moreover, the definition of the transfer function of a regular discrete-time descrip-
tor system is the same as that defined in the continuous-time setting, except for the
use of the shift operator z instead of the Laplace operator s. Interested readers may
referred to [Dai89, XL06] for a comprehensive discussion of discrete-time descriptor
systems.

2.10 Conclusion

This chapter recalls some basic concepts for linear time-invariant descriptor sys-
tems. Some fundamental and important results, such as regularity, admissibility,
equivalent realizations, system decomposition and temporal response, are reviewed.
The definitions of controllability and observability are also presented. Compared
with state-space systems, for a descriptor system, three types of controllability are
involved, that is, C-controllability,R-controllability, and Imp-controllability. This is
also the case for observability. In addition, the duality between controllability and
observability is stated.



Chapter 3
Dilated Linear Matrix Inequalities

The history of the use of linear matrix inequalities (LMIs) in the context of systems
and control dates back more than 120years. This story probably began in about
1890, when Aleksandr Mikhailovich Lyapunov published his fundamental work on
the stability of motion. Lyapunov showed that the differential equations of the form

ẋ(t) = Ax(t) (3.1)

are stable if and only if there exists a positive definite matrix P such that

A�P + PA < 0. (3.2)

This statement is now called Lyapunov theory and the requirement P > 0 together
with (3.2) is what we now call Lyapunov inequality on P that is commonly referred
to as a Lyapunov matrix. The expression (3.2) might be the most well-known LMI to
control theorists, and can be solved analytically by solving a set of linear equations.
In the early 1980s, it is observed that many LMIs arising in systems and control
theory can be formulated as convex optimization problems, which can be reliably
solved by computer, even if for many of them no analytical solutions have been
found.

Over the past two decades, LMI-based techniques [IS94, GA94, CG96, SGC97]
have been widely employed as an important tool in system analysis and controller
design synthesis because of its efficient and reliable solvability through convex opti-
mization algorithms and powerful numerical supports of LMI toolboxes available in
popular application software [GNLC95]. This method benefits not only from sim-
plifying in a wide sense the necessity of certain cumbersome material of Riccati
(Riccati-like) equations when the classical approaches are used, but also from its
capability of gaining access to a vast panorama of control problems. Stability and
performance specifications, such as, eigenvalue assignment, H2 and H∞ control,

© Springer Nature Singapore Pte Ltd. 2017
Y. Feng and M. Yagoubi, Robust Control of Linear Descriptor Systems,
Studies in Systems, Decision and Control 102, DOI 10.1007/978-981-10-3677-4_3
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multiobjective design problems and linear parameter-varying (LPV) synthesis, can
be interpreted into LMIs [BGFB94, SGC97, MOS98].

However, the conservatism of the LMI formulations emerges when handling some
“tedious” control problems. For instance, while using standard LMIs for solving
a multiobjective control design problem, a common Lyapunov matrix is imposed
on all equations involved to render the synthesis problem convex. This restriction
inherently causes conservatism into design procedure. In order to reduce this con-
servatism, a new characterization named the dilated (extended/enhanced) LMI was
first introduced in [GdOH98] for continuous-time state-space systems. From then
on, tremendous investigations have been launched to explore new dilated LMI char-
acterizations, and constructive results have been reported in the literature for analy-
sis and controller design synthesis in both discrete-time and continuous-time set-
tings [ATB01, BBdOG99, EH04, EH05, dOBG99, dOGB99, dOGH99, dOGB02,
PABB00, Xie08, PDSV09]. Generally speaking, the advantages of these dilated
LMIs over the standard ones can be resumed as follows.

• The dilated LMIs do not involve product terms of the Lyapunovmatrix and the sys-
tem matrix A. This separation enables the use of parameter-dependent Lyapunov
functions for robust system analysis and controller synthesis [ATB01, dOBG99,
dOGB02, PABB00];

• No indefinite quadratic terms of the system matrix A;
• Auxiliary (slack) variables are introduced that means more decision variables are
involved. This fact might reduce the conservatism in robust analysis and controller
synthesis.

Same enthusiasm has been witnessed for descriptor systems and the resulting
dilatedLMIs have also been studied in [XL06, Yag10, Seb07, Seb08, FYC10, Bar11,
FY13]. In the current chapter, we explore dilated LMIs with regard to admissibility
and performance specifications for linear descriptor systems.

3.1 Uniformed Methodology

Consider the LTI descriptor system �(λ) as follows:

�(λ) :
{
Eσx = Ax + Bw,

z = Cx + Dw,
(3.3)

where x ∈ R
n , z ∈ R

p, andw ∈ R
m are the descriptor variable, the controlled output,

and disturbance input belonging to �2[0 + ∞), respectively. The matrix E ∈ R
n×n

may be singular, i.e., rank(E) = r ≤ n; and A, B, C , and D are all known real
constant matrices with appropriate dimensions. For the continuous-time, σx = dx

dt
and λ = s, while in the discrete-time, σ stands for the shift operator q and λ = z.
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If (E, A) is regular, then the transfer matrix of (3.3) is written as

G(λ) = C(λE − A)−1B + D. (3.4)

Throughout this chapter, let us define matricesU, V ∈ R
n×(n−r) with full column

rank satisfying E�U = 0 and EV = 0, respectively. We also define matrices
EL , ER ∈ R

n×(n−r) with full column rank satisfying E�
L U = 0 and E�

R V = 0.
Hence, E can be decomposed as E = EL�E�

R , with � ∈ R
r×r being nonsingular.

The following lemma plays an essential role to conduct the main results of this
chapter.

Lemma 3.1 (ProjectionLemma)Reference [BGFB94]Consider a symmetricmatrix
� ∈ R

n×n and two matrices � ∈ R
n×m and ϒ ∈ R

k×n with rank(�) < n and
rank(ϒ) < n, respectively. There exists an unstructured matrix � satisfying

� + ϒ���� + ���ϒ < 0, (3.5)

if and only if the following inequalities with respect to � are satisfied:

N�
� �N� < 0, N�

ϒ �Nϒ < 0, (3.6)

where N� and Nϒ are any matrices whose columns form a basis of the nullspaces
of � and ϒ , respectively.

In the parts to follow, standard LMI characterizationswith respect to admissibility,
H2 and dissipativity are reformed into quadratic forms, as the first inequality in (3.6),
where N� is related to the system data. Then the dilated LMI conditions can be
derived by applying Projection Lemma. Four types of dilated LMIs are explored,
according to different constructions of Nϒ :

I: Nϒ = 0. In this case, ϒ = I .
II: Choose Nϒ such that the second inequality of (3.6) is equivalent to positive

definiteness of (partial entries of P) E�
L PEL .

III: Choose Nϒ such that a trivial inequality is introduced.
IV: Combine II and III.

With aforementioned choices of Nϒ , the resulting dilated LMIs are denoted as
Characterizations I, II, III, IV.

3.2 Admissibility Analysis

Lemma 3.2 (Standard LMI)References [IT02, XL04] The continuous-time (respec-
tively discrete-time) descriptor system (3.3) is admissible if and only if there exist
matrices P ∈ R

n×n > 0 and Q ∈ R
(n−r)×n such that
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[
I
A

]� [
0 (PE +UQ)�
• 0

] [
I
A

]
< 0, (3.7)

respectively

[
I
A

]� [−E�PE Q�U�
• P

] [
I
A

]
< 0. (3.8)

The LMIs (3.7) and (3.8) are already in the quadratic form with N� = [
I A�]�

.
According to the strategy I, setting Nϒ = 0 leads to the following results, which
were reported in [XL06].

Theorem 3.1 (Characterization I) The continuous-time (respectively discrete-time)
descriptor system (3.3) is admissible if and only if there existmatrices P ∈ R

n×n > 0,
Q ∈ R

(n−r)×n, and �1,�2 ∈ R
n×n such that

[
0 (PE +UQ)�
• 0

]
+ He

{[
��

1
��

2

] [
A −I

]}
< 0, (3.9)

respectively

[−E�PE Q�U�
• P

]
+ He

{[
��

1
��

2

] [
A −I

]}
< 0. (3.10)

In Characterization I, one note that the matrix P is positive definite. Here Nϒ

can be chosen such that the second inequality in (3.6) is equivalent either to
−2εE�

L PEL < 0 for the continuous-time case with an arbitrary positive ε, or to
−E�

L PEL < 0 for the discrete-time setting. Hence, the following choices are made.
For continuous-time descriptor systems, set

Nϒ =
[−εER(E�

R ER)−1�−1

EL

]
→ ϒ =

[
E εI

V� 0(n−r)×n

]
. (3.11)

Theorem 3.2 (Characterization II) For a continuous-time descriptor system, the
LMI condition (3.7) is equivalent to

[
0 (PE +UQ)�
• 0

]
+ He

{[
E���

1 + V��
2

ε��
1

] [
A −I

]}
< 0, (3.12)

where ε is an arbitrary positive scalar, and �1 ∈ R
n×n and �2 ∈ R

n×(n−r) are
auxiliary matrices.

For discrete-time descriptor systems, choose

Nϒ =
[
ER(E�

R ER)−1�−1

0

]
→ ϒ =

[
V� 0(n−r)×n

0 I

]
. (3.13)

Theorem 3.3 (Characterization II) For a discrete-time descriptor system, the LMI
condition (3.8) is equivalent to
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[−E�PE Q�U�
• P

]
+ He

{[
V��

1
��

2

] [
A −I

]}
< 0, (3.14)

where �1 ∈ R
n×(n−r) and �2 ∈ R

n×n are auxiliary matrices.

In the case where E = I , in other words, the state-space systems, the matrices
U , V Q, �1 in (3.14) and �2 in (3.12) become empty matrices with the number of
columns being 0. Since the multiplication of two empty matrices with compatible
dimensions is a zero matrix [NH93], the present results cover the existing dilated
LMIs [BBdOG99, CM04, EH04, GdOH98, dOBG99, dOGH99, PABB00] state-
space systems.

3.3 H2 Performance

For the sake of simplicity, we assume, in this section, that the direct gain from
disturbance to output is null, i.e., D = 0 and consider the standard assumption
Ker(E) ⊆ Ker(C) [ILU00, TK97].

For a continuous-time admissible and strictly proper descriptor systems, the H2

norm is defined as

‖G(s)‖2 =
[
1

2π

∫ ∞

−∞
trace{G( jω)∗G( jω)}dω

] 1
2

, (3.15)

where G( jω) stands for the frequency response function of the transfer function
given in (3.4). For discrete-time descriptor systems the integral bounds are −π and
π; while the frequency response function is written as G(e jω).

The standard LMI of H2 performance for the continuous-time descriptor systems
is available in [ILU00], and its counterpart for discrete-time descriptor systems can
be derived by following the similar thread.

Lemma 3.3 (Standard LMI) Given γ2 > 0, the continuous-time (respectively
discrete-time) descriptor system (3.3) with D = 0 is admissible and satisfies
‖G(s)‖2 < γ2 (respectively ‖G(z)‖2 < γ2), if and only if there exist matrices
P ∈ R

n×n > 0, Q ∈ R
(n−r)×n and Z ∈ R

m×m such that

⎡
⎣In 0
A 0
0 Ip

⎤
⎦

� ⎡
⎣0 (PE +UQ)� C�

• 0 0
• • −I

⎤
⎦

⎡
⎣In 0
A 0
0 Ip

⎤
⎦ < 0, (3.16)

[
Z B�P
• P

]
> 0, trace(Z) < γ2

2 ; (3.17)

respectively

⎡
⎣In 0
A 0
0 Ip

⎤
⎦

� ⎡
⎣−E�PE Q�U� C�

• P 0
• • −I

⎤
⎦

⎡
⎣In 0
A 0
0 Ip

⎤
⎦ < 0, (3.18)
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[
Z B�P
• P

]
> 0, trace(Z) < γ2

2 . (3.19)

The conditions (3.16) and (3.18) are already in the form of (3.6) with N� =⎡
⎣ I 0
A 0
0 I

⎤
⎦ and Nϒ = 0. Consequently, � and ϒ are given as � = [

A −I 0
]
and

ϒ = I .

Theorem 3.4 (Characterization I)The LMI (3.16) (respectively (3.18)) is equivalent
to

⎡
⎣0 (PE +UQ)� C�

• 0 0
• • −I

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣��

1
��

2
��

3

⎤
⎦[

A −I 0
]
⎫⎬
⎭ < 0, (3.20)

respectively

⎡
⎣−E�PE Q�U� C�

• P 0
• • −I

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣��

1
��

2
��

3

⎤
⎦ [

A −I 0
]
⎫⎬
⎭ < 0, (3.21)

with � = [
�1 �2 �3

] ∈ R
n×(2n+p).

The second characterization is derived based on the fact that E�
L PEL > 0. Similar

to the admissibility case, for continuous-time descriptor systems, set

Nϒ =
⎡
⎣−εER(E�

R ER)−1�−1

EL

0

⎤
⎦ → ϒ =

⎡
⎢⎣

E εI 0

V� 0(n−r)×n 0

0 0 Ip

⎤
⎥⎦ , (3.22)

with an arbitrary ε > 0.

Theorem 3.5 (Characterization II) Consider the continuous-time descriptor sys-
tem (3.3). The LMI condition (3.16) is equivalent to

⎡
⎣0 (PE +UQ)� C�

• 0 0
• • −I

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣E���

1 + V��
2

ε��
1

��
3

⎤
⎦ [

A −I 0
]
⎫⎬
⎭ < 0, (3.23)

where ε is an arbitrary positive scalar and � = [
�1 �2 �3

] ∈ R
n×(2n−r+p), with

�2 ∈ R
n×(n−r), is an auxiliary matrix.

Similarly, for the discrete-time descriptor systems, choose

Nϒ =
⎡
⎣ER(E�

R ER)−1�−1

0n×r

0p×r

⎤
⎦ → ϒ =

⎡
⎢⎣
V� 0(n−r)×n 0

0 I 0
0 0 Ip

⎤
⎥⎦ . (3.24)
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Theorem 3.6 (Characterization II) Consider the discrete-time descriptor system
(3.3). The LMI condition (3.18) is equivalent to

⎡
⎣−E�PE Q�U� C�

• P 0
• • −I

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣V��

1
��

2
��

3

⎤
⎦[

A −I 0
]
⎫⎬
⎭ < 0, (3.25)

where � = [
�1 �2 �3

] ∈ R
n×(2n−r+p), with �1 ∈ R

n×(n−r), is an auxiliary matrix.

In order to conduct the third characterization, we introduce a trivial inequality.
From the standard LMIs (3.16) and (3.18), the following construction of Nϒ

Nϒ =
⎡
⎣ 0
0
Ip

⎤
⎦ → ϒ =

[
I 0 0
0 I 0

]
(3.26)

yields −Ip < 0.

Theorem 3.7 (Characterization III) Enforcing�3 = 0 in (3.20) and (3.21) does not
introduce conservatism.

Moreover, the forth dilated LMI characterization is derived by combining the

second and third strategies. To this end, the inequality

[−2εE�
L PEL 0
0 −Ip

]
<

0 is introduced, with an arbitrary ε > 0 for the continuous-time setting and[−E�
L PEL 0
0 −Ip

]
< 0 for the discrete-time setting. Hence, the following choices

are made.
For continuous-time descriptor systems, set

Nϒ =
⎡
⎢⎣

−εER(E�
R ER)−1�−1 0

EL 0
0 Ip

⎤
⎥⎦ → ϒ =

[
E εI 0

V� 0 0(n−r)×p

]
. (3.27)

Theorem 3.8 (Characterization IV) Consider the continuous-time descriptor sys-
tem (3.3). Enforcing �3 = 0 in (3.23) does not introduce conservatism.

For discrete-time descriptor systems, choose

Nϒ =
⎡
⎢⎣

ER(E�
R ER)−1�−1 0

0 0
0 Ip

⎤
⎥⎦ → ϒ =

[
V� 0 0(n−r)×p

0 In 0

]
. (3.28)
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Theorem 3.9 (Characterization IV) Consider the discrete-time descriptor system
(3.3). Enforcing �3 = 0 in (3.25) does not introduce conservatism.

If E = I , then the present results cover the existing dilated LMIs for state-space
systems [PABB00, dOGB99, dOGB02, EH04, PDSV09].

3.4 Dissipativity

Dissipativity [Wil72a, Wil72b] plays an important role in systems and control theory
both for theoretical considerations as well as from a practical point of view. Roughly
speaking, a dissipative system is characterized by the property that at any time the
amount of energy which the system can supply to its environment cannot exceed the
amount of energy that has been supplied to it. Many important control issues can
be formulated as dissipativity with quadratic supply functions, for instance, positive
realness, bounded realness, and circle criterion. It is known that strict dissipativity
of a descriptor system can be described by a frequency-domain inequality (FDI) of
the form [

I
G(	)

]∗
S

[
I

G(	)

]
< 0, (3.29)

where

S �
[
S1 S2
• S3

]
, S1 = S�

1 ∈ R
m×m, S3 = S�

3 ∈ R
p×p, (3.30)

	 = jω for the continuous-time case, 	 = e jω for the discrete-time setting, and
ω ∈ R∪{∞}. We make in this section the classical assumption that S3 ≥ 0 [SW09].
Let us denote

M =
[
0 I
C D

]�
S

[
0 I
C D

]
. (3.31)

Then, the FDI (3.29) is reformed as

[
(	E − A)−1B

I

]∗
M

[
(	E − A)−1B

I

]
< 0. (3.32)

As special cases, positive realness of G(λ) indicates S =
[
0 −I

−I 0

]
, while for

γ∞ > 0, ‖G‖∞ < γ∞ (bounded realness) implies S =
[−γ2∞ I 0

0 I

]
.

The standard LMI conditions for the FDI (3.29) together with admissibility are
given as follows.
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Lemma 3.4 (Standard LMI) Reference [XL06] The continuous-time (respectively
discrete-time) descriptor system (3.3) is admissible and strictly dissipative, if and
only if there exist matrices P ∈ R

n×n > 0, Q ∈ R
(n−r)×n and R ∈ R

(n−r)×m such
that

M + He
{[

(PE +UQ)�
R�U�

] [
A B

]}
< 0, (3.33)

respectively M +
[
A�PA − E�PE A�PB

• B�PB

]
+ He

{[
Q�U�
R�U�

] [
A B

]}
< 0.

(3.34)

We reform the above two inequalities into the quadratic from as, respectively,

M + He
{[

(PE +UQ)�
R�U�

] [
A B

]}

=
⎡
⎣ I 0
A B
0 I

⎤
⎦

� ⎡
⎢⎣
I 0 0
0 I 0
I 0 0
0 0 I

⎤
⎥⎦

� ⎡
⎢⎢⎣
0 (PE +UQ)� 0 0

• 0 0 UR
• • M1 M2

• • • M3

⎤
⎥⎥⎦

⎡
⎢⎣
I 0 0
0 I 0
I 0 0
0 0 I

⎤
⎥⎦

⎡
⎣ I 0
A B
0 I

⎤
⎦

=
⎡
⎣ I 0
A B
0 I

⎤
⎦

� ⎡
⎣M1 (PE +UQ)� M2

• 0 UR
• • M3

⎤
⎦

⎡
⎣ I 0
A B
0 I

⎤
⎦ < 0, (3.35)

M +
[
A�PA − E�PE A�PB

• B�PB

]
+ He

{[
Q�U�
R�U�

] [
A B

]}

=
⎡
⎣ I 0
A B
0 I

⎤
⎦

� ⎡
⎢⎣
I 0 0
0 I 0
I 0 0
0 0 I

⎤
⎥⎦

� ⎡
⎢⎢⎣

−E�PE Q�U� 0 0

• P 0 UR
• • M1 M2

• • • M3

⎤
⎥⎥⎦

⎡
⎢⎣
I 0 0
0 I 0
I 0 0
0 0 I

⎤
⎥⎦

⎡
⎣ I 0
A B
0 I

⎤
⎦

=
⎡
⎣ I 0
A B
0 I

⎤
⎦

� ⎡
⎣M1 − E�PE Q�U� M2

• P U R
• • M3

⎤
⎦

⎡
⎣ I 0
A B
0 I

⎤
⎦ < 0, (3.36)

where M �
[
M1 M2

• M3

]
, M1 ∈ R

n×n .

By the first strategy, the following statement can be made.

Theorem 3.10 (Characterization I) The inequality (3.33) (respectively (3.34)) is
equivalent to
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⎡
⎣M1 (PE +UQ)� M2

• 0 UR
• • M3

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣��

1
��

2
��

3

⎤
⎦ [

A −I B
]
⎫⎬
⎭ < 0, (3.37)

respectively

⎡
⎣M1 − E�PE Q�U� M2

• P U R
• • M3

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣��

1
��

2
��

3

⎤
⎦ [

A −I B
]
⎫⎬
⎭ < 0,

(3.38)

with � = [
�1 �2 �3

] ∈ R
n×(2n+m).

For continuous-time descriptor systems, set

Nϒ =
⎡
⎣−εER(E�

R ER)−1�−1

EL

0

⎤
⎦ → ϒ =

⎡
⎢⎣

E εI 0

V� 0(n−r)×n 0

0 0 Im

⎤
⎥⎦ . (3.39)

This choice yields

ε2
M1

� − εE�

L PEL < 0, (3.40)

with 
 � �−�(E�
R ER)−1E�

R . It is observed that in order to keep the equivalence,
the positive scalar ε cannot be chosen arbitrarily, in contrast with the cases of admis-
sibility and H2 performance, but must be viewed as a decision variable.

Theorem 3.11 (Characterization II) Consider the continuous-time descriptor sys-
tem (3.3). The LMI condition (3.33) is equivalent to

⎡
⎣M1 (PE +UQ)� M2

• 0 UR
• • M3

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣E���

1 + V��
2

ε��
1

��
3

⎤
⎦ [

A −I B
]
⎫⎬
⎭ < 0, (3.41)

where ε > 0 and � = [
�1 �2 �3

] ∈ R
n×(2n−r+m), with �2 ∈ R

n×(n−r), is an
auxiliary matrix.

For the discrete-time case, choose

Nϒ =
⎡
⎣ER(E�

R ER)−1�−1

0n×r

0m×r

⎤
⎦ → ϒ =

⎡
⎢⎣
V� 0(n−r)×n 0

0 I 0
0 0 Im

⎤
⎥⎦ . (3.42)

This choice leads to


M1

� − E�

L PEL < 0. (3.43)
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This condition is in general more strict than −E�
L PEL < 0. Consequently, for

discrete-time descriptor systems, equivalent Characterization II is impossible to
derive. However, for positive realness where M1 = 0, (3.43) is not conservative.

Theorem 3.12 (Characterization II for Positive Realness) Consider the discrete-
time descriptor system (3.3). Suppose M1 = 0, then the LMI condition (3.34) is
equivalent to

⎡
⎣−E�PE Q�U� M2

• P U R
• • M3

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣V��

1
��

2
��

3

⎤
⎦ [

A −I B
]
⎫⎬
⎭ < 0, (3.44)

where� = [
�1 �2 �3

] ∈ R
n×(2n−r+m), with�1 ∈ R

n×(n−r), is an auxiliary matrix.

Unlike the case of H2 performance, the third strategy cannot be applied without
assumption on the realization of systems. To obtain the corresponding dilation, we
assume that M3 < 0.

Similarly, set

Nϒ =
⎡
⎣0
0
I

⎤
⎦ → ϒ =

[
I 0 0
0 I 0

]
. (3.45)

Theorem 3.13 (Characterization III) Assume M3 < 0. Enforcing �3 = 0 in (3.37)
and (3.38) does not introduce conservatism.

Combining the second and the third strategies yields the forth dilated LMI formu-
lations for dissipativity together with admissibility. For continuous-time descriptor
systems, set

Nϒ =
⎡
⎢⎣

−εER(E�
R ER)−1�−1 0

EL 0
0 Im

⎤
⎥⎦ → ϒ =

[
E εI 0

V� 0(n−r)×n 0

]
(3.46)

with ε > 0. This choice of Nϒ implies that

[
ε2
M1


� − 2εE�
L PEL −ε
M2

• M3

]

=
[−
 0

0 Im

] [
ε2M1 − 2εE�PE εM2

• M3

] [−
 0
0 Im

]�
< 0,

where 
 � �−�(E�
R ER)−1E�

R . This inequality is equivalent to
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ε2
M1

� − 2εE�

L PEL < 0, M3 < 0,

2εE�
L PEL > ε2
(M1 − M2M

−1
3 M�

2 )
�.

Since M1 ≥ 0 (S3 ≥ 0), the choice of Nϒ in (3.46) does not introduce conservatism,
provided that ε > 0 is a decision variable.

Theorem 3.14 (Characterization IV) Consider the continuous-time descriptor sys-
tem (3.3). Assume that M3 < 0. Enforcing �3 = 0 in (3.41) does not introduce
conservatism.

For the discrete-time case, choosing

Nϒ =
⎡
⎢⎣

ER(E�
R ER)−1�−1 0

0 0
0 Im

⎤
⎥⎦ → ϒ =

[
V� 0 0(n−r)×m

0 In 0

]
, (3.47)

leads to
[


M1

� − E�

L PEL 
M2

• M3

]
< 0,

which is only a sufficient condition for the existence of (3.34). Hence, nonc con-
servative Characterization IV is impossible to derive for discrete-time descriptor
systems.

The positive scalar ε is introduced for continuous-time descriptor systems. The
way to treat ε can be resumed as for admissibility and H2 performance, ε can be
any arbitrary positive scalar, while it must be considered as an additional decision
variable for dissipativity. These choices coincide with the existing results for state-
space systems [EH04, PDSV09, Xie08].

3.5 Robust Analysis

In this section, the benefit of using dilated LMI formulations deduced previously
is illustrated through robust analysis for a class of affinely parameter-dependent
descriptor systems. Let us consider the following parameter-dependent descriptor
system whose coefficient matrices are affine functions of a time-invariant uncertain
parameter vector δ = [δ1, . . . , δ j ]

{
Eẋ = A (δ) x + B1w + Bu,

z = C1w,
(3.48)

where δi ∈ [δli , δui ]i=1,..., j . δ is supposed to be contained in the hype-rectangle
� = {θ1, . . . , θ2 j }.
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We consider here the problem of robust H∞ performance analysis. Let γ
opt
∞ be

the worst-case H∞ norm with respect to δ contained in the hype-rectangle �. The
use of standard LMIs requests parameter-dependent Lyapunov matrix and results in
a non-convex problem. To render it convex, a constant Lyapunov matrix is imposed
over the entire hype-rectangle. This treatment is obviously conservative. Denote γsta∞
as the optimal H∞ norm obtained by the standard LMI approach with a constant
Lyapunov matrix, and we have γ

opt
∞ ≤ γsta∞ .

The dilated LMIs enable the use of parameter-dependent Lyapunov matrices for
robust analysis. For example, using Characterization I gives

min
Pi ,Qi ,Ri ,�1,�2,�3,γ∞

γ∞ (3.49)

subject to Pi > 0, ∀i ∈ {1, . . . , 2 j } (3.50)⎡
⎣C�

1 C1 (Pi E +UQi )
� 0

• 0 URi

• • −γ2∞ I

⎤
⎦ + He

⎧⎨
⎩

⎡
⎣��

1
��

2
��

3

⎤
⎦ [

A −I B1
]
⎫⎬
⎭ < 0. (3.51)

Although the auxiliary matrices �1, �2, and �3 are still chosen as parameter-
independent for convexity, compared with the standard LMI, the resulting estimated
value, denoted γ I∞, is in general smaller than γsta∞ . Other dilations can equally be
used for robust H∞ performance estimation. Denote the corresponding estimations
as γ I I∞ , γ I I I∞ , and γ I V∞ , respectively. The following relations hold:

γopt
∞ ≤ γ I

∞ ≤ γ I I
∞ ≤ γ I V

∞ ≤ γsta
∞ , (3.52)

γopt
∞ ≤ γ I

∞ ≤ γ I I I
∞ ≤ γ I V

∞ ≤ γsta
∞ . (3.53)

3.6 Discrete-Time State Feedback H∞ Control

State feedback H∞ control for discrete-time descriptor systems in general leads to
a nonlinear programming problem. Directly adopting the existing results in the lit-
erature ends with a nonlinear matrix inequality problem for controller synthesis.
Dilated LMIs are appealed to address this problem. However, as it is shown pre-
viously, Characterization IV that contains only one single auxiliary matrix and is
suitable for controller synthesis is impossible to derive. While the use of Characteri-
zations I, II, and III that contain more than one auxiliary matrices indicates to impose
certain structure on auxiliary matrices. This treatment of course gives a numerically
tractable solution, but the resulting design process is conservative and no general
conclusion can be found for the induced conservatism.

In this section, we present a numerically efficient and reliable controller design
process for state feedback H∞ control of discrete-time descriptor systems through a
new dilated LMI characterization.
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Consider the following discrete-time descriptor system:

{
Ē x̄(k + 1) = Āx̄(k) + B̄1w(k) + B̄u(k),

y(k) = C̄ x̄(k),
(3.54)

where x̄ ∈ R
n , y ∈ R

p, w ∈ R
q , and u ∈ R

m are the descriptor variable, controlled
output, disturbance, and control input vectors, respectively. The matrix Ē ∈ R

n×n

may be singular, i.e., rank(Ē) = r ≤ n; the matrices Ā ∈ R
n×n , B̄1 ∈ R

n×q ,
B̄ ∈ R

n×m , and C̄ ∈ R
p×n are constant.

It is known that for the matrix pair (Ē, Ā), there exist nonsingular matrices M
and N rendering this pair to the following SVD form:

E := MĒN =
[
Ir 0
0 0

]
, A := M ĀN =

[
A1 A2

A3 A4

]
, (3.55)

where A1 ∈ R
r×r .

Now let us consider a state feedback control law as

u(k) = F̄ x̄(k), F̄ ∈ R
m×n . (3.56)

Applying this controller to (3.54) yields the following closed-loop system:

{
Ē x̄(k + 1) = ( Ā + B̄ F̄)x̄(k) + B̄1w(k),

y(k) = C̄ x̄(k).
(3.57)

Problem 3.1 (State Feedback H∞ Control Problem) Given γ > 0, the state feed-
back H∞ control problem for the discrete-time descriptor system (3.54) is to find the
state feedback controller (3.56) such that the closed-loop system (3.57) is admissible
and ‖Gyw(z)‖∞ < γ, where Gyw(z) = C̄(z Ē − Ā − B̄ F̄)−1 B̄1.

For simplicity of arguments, we consider, in rest of this section, the SVD form of
the descriptor system (3.54), that is

{
Ex(k + 1) = Ax(k) + B1w(k) + Bu(k),

y(k) = Cx(k),
(3.58)

where x(k) = N x̄(k) and

B1 = MB̄1 =
[
B11

B12

]
,C = C̄ N = [

C1 C2
]
, B = MB̄, (3.59)

compatible with the decompositions of the matrices E and A in (3.55). Consider
a state feedback controller u(k) = Fx(k), where F ∈ R

m×n . Then, the resulting
closed-loop system is
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{
Ex(k + 1) = (A + BF)x(k) + B1w(k),

y(k) = Cx(k).
(3.60)

Lemma 3.5 Problem3.1 is solvable, if and only if there exists F such that the closed-
loop system (3.60) is admissible and ‖C(z I − A − BF)−1B1‖∞ < γ. Moreover,
F̄ = FN−1.

Proof Note that the systems (3.57) and (3.60) have identical zeros and poles. More-
over, the transfer function Gyw(z) can be rewritten as

Gyw(z) =C̄ N N−1(z Ē − Ā − B̄ F̄)−1M−1MB̄1

=C̄ N (zM ĒN − M ĀN − MB̄ F̄N )−1MB̄1

=C(zE − A − BF)−1B1.

�
Anew bounded real lemma is given in the following theorem for the system (3.58)

with u(k) = 0.

Theorem 3.15 Given γ > 0 and u(k) = 0, the descriptor system (3.58) is admis-
sible and ‖Gyw(z)‖∞ < γ, where Gyw(z) = C(zE − A)−1B1, if and only if there
exist matrices P ∈ R

r×r > 0, Q ∈ R
r×r , R ∈ R

r×(n−r), S ∈ R
(n−r)×(n−r) and a

sufficiently large scalar α > 0, such that

⎡
⎢⎢⎢⎢⎣

�1 • • • •
A�
� �3 • • •
B�
1 
� B�

1 �� −γ2 Iq • •
�2 
A 
B1 −Q − Q� •
0 �4 �5 0 −Ip

⎤
⎥⎥⎥⎥⎦ < 0, (3.61)

where

�1 = −1

2
Q − 1

2
Q�, �2 = P − Q − 1

2
Q�,

�3 = �A + A��� − �, �4 = C + αC�A, 
 = [
Q R

]
,

�5 = αC�B1, � =
[
P 0
0 0

]
, � =

[
0 0
0 S

]
.

The following two lemmas are needed for the proof of Theorem 3.15.

Lemma 3.6 Reference [XL06] Let

	 =
[
	11 	12

	21 	22

]
,
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where 	11, 	12, 	21, and 	22 are any real matrices with appropriate dimensions
such that 	22 is invertible and 	 + 	� < 0. Then we have

	11 + 	�
11 − 	12	

−1
22 	21 − 	�

21	
−�
22 	�

12 < 0.

Lemma 3.7 Reference [FY13] Consider γ > 0 and the discrete-time state-space
system

{
x(k + 1) = Ax(k) + Bv(k),

y(k) = Cx(k) + Dv(k),
(3.62)

where the matrices A ∈ R
n×n, B ∈ R

n×q , C ∈ R
p×n, and D ∈ R

p×q are constant.
The system (3.62) is stable and ‖Gyv(z)‖∞ < γ, where Gyv(z) = C(z I−A)−1B+D,
if and only if there exist matrices X ∈ R

n×n > 0 and Y ∈ R
n×n such that

⎡
⎢⎢⎢⎢⎣

− 1
2Y − 1

2Y
� YA YB X − 1

2Y − Y�

• C�C − X C�D A�Y�

• • D�D − γ2 Iq B�Y�

• • • −Y − Y�

⎤
⎥⎥⎥⎥⎦ < 0. (3.63)

Proof of Theorem 3.15 Sufficiency: Suppose that the inequality (3.61) holds. We
prove that the system is admissible and its H∞ norm is bounded by γ. With the
decompositions (3.55), there holds

⎡
⎢⎢⎢⎢⎢⎢⎣

�11 • • • • •
�21 −P • • • •
�31 SA3 �33 • • •
�41 0 B�

12S
� −γ2 Iq • •

�51 �52 �53 �54 �55 •
0 �62 �63 �64 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0,

where

�11 = − 1
2Q − 1

2Q
�, �21 = A�

1 Q
� + A�

3 R
�,

�31 = A�
2 Q

� + A�
4 R

�, �33 = SA4 + A�
4 S

�,

�41 = B�
11Q

� + B�
12R

�, �51 = P − 1
2Q

� − Q,

�52 = QA1 + RA3, �53 = QA2 + RA4,

�54 = QB11 + RB12, �55 = −Q − Q�,

�62 = C1 + αC2SA3, �63 = C2 + αC2SA4,

�64 = αC2SB12.

Left and right multiplying this inequality by
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T =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ir 0 0 0 0 0
0 Ir 0 0 0 0
0 0 0 Iq 0 0
0 0 0 0 Ir 0
0 0 0 0 0 Ip
0 0 In−r 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.64)

and its transpose, respectively, give

W + W� < 0, (3.65)

with

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
2Q 0 0 0 0 0

W21 − 1
2 P 0 W24 W25 A�

3 S
�

W31 0 − γ2

2 Iq W34 W35 B�
12S

�
W41 0 0 −Q 0 0
0 0 0 0 − 1

2 Ip 0
W61 0 SB12 W64 W65 A�

4 S
�

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

W21 = A�
1 Q

� + A�
3 R

�, W24 = A�
1 Q

� + A�
3 R

�,

W25 = C�
1 + αA�

3 S
�C�

2 , W31 = B�
11Q

� + B�
12R

�,

W34 = B�
11Q

� + B�
12R

�, W35 = αB�
12S

�C�
2 ,

W41 = P − 1
2Q

� − Q, W61 = A�
2 Q

� + A�
4 R

�,

W64 = A�
2 Q

� + A�
4 R

�, W65 = C�
2 + αA�

4 S
�C�

2 .

The (6, 6) entry of the above inequality reads to A�
4 S

� + SA4 < 0. Hence, one can
claim that the matrices A4 and S are both nonsingular. Hence, the system (3.58) is
causal and canbe transformed into a state-space systemassociatedwith the realization
( Ã, B̃, C̃, D̃), with

Ã = A1 − A2A
−1
4 A3, B̃ = B11 − A2A

−1
4 B12,

C̃ = C1 − C2A
−1
4 A3, D̃ = −C2A

−1
4 B12.

(3.66)

Now, it suffices to prove that the matrix Ã is stable and ‖C̃(z I − Ã)−1 B̃+ D̃‖∞ < γ.
Since SA4 is invertible, applying Lemma 3.6 to the inequality (3.65) yields

M < 0, (3.67)
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where

M =

⎡
⎢⎢⎢⎢⎣

− 1
2Q − 1

2Q
� • • • •

Ã�Q� −P • • •
B̃�Q� 0 −γ2 Iq • •

P − 1
2Q

� − Q QÃ QB̃ −Q − Q� •
0 C̃ D̃ 0 −Ip

⎤
⎥⎥⎥⎥⎦ .

According to Schur complement and Lemma 3.7, it is shown that Ã is stable and
‖C̃(z I − Ã)−1 B̃ + D̃‖∞ < γ.

Necessity: Suppose that the descriptor system (3.58) is admissible and ‖Gyw‖∞ <

γ.We prove that the condition (3.61) holds. The assumption of admissibility indicates
that the matrix A4 is invertible and the system (3.58) can be rewritten as the state-
space system associated with the realization ( Ã, B̃, C̃, D̃) given in (3.66). Using
Lemma 3.7, together with Schur complement, gives (3.67). Since this inequality is
strict, there exists a small positive scalar ε such that

M + ε

⎡
⎢⎢⎢⎢⎣

0
A�
3 A

−1
4

B�
12A

−1
4

0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0
A�
3 A

−1
4

B�
12A

−1
4

0
0

⎤
⎥⎥⎥⎥⎦

�

< 0.

Set S = − 1
2 εA

−1
4 . Then, the above inequality can be rewritten as

M −

⎡
⎢⎢⎢⎢⎣

0
A�
3 S

�
B�
12S

�
0
0

⎤
⎥⎥⎥⎥⎦ (A�

4 S
� + SA4)

−1

⎡
⎢⎢⎢⎢⎣

0
A�
3 S

�
B�
12S

�
0
0

⎤
⎥⎥⎥⎥⎦

�

< 0.

Using Schur complement, and setting R = −QA2A
−1
4 and α = 2

ε
yield

W̄ + W̄� < 0,

where

W̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2Q 0 0 0 0 0

W̄21 − 1
2 P 0 W̄24 W̄25 A�

3 S
�

W̄31 0 − γ2

2 Iq W̄34 W̄35 B�
12S

�

W̄41 0 0 −Q 0 0
0 0 0 0 − 1

2 Ip 0
0 0 SB12 0 0 A�

4 S
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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with

W̄21 = A�
1 Q

� + A�
3 R

�, W̄24 = A�
1 Q

� + A�
3 R

�,

W̄25 = C�
1 + αA�

3 S
�C�

2 , W̄31 = B�
11Q

� + B�
12R

�,

W̄34 = B�
11Q

� + B�
12R

�, W̄35 = αB�
12S

�C�
2 ,

W̄41 = P − 1
2Q

� − Q.

Moreover, with the aforementioned choices of R, S, and α, one has

QA2 + RA4 = 0, C2 + αC2SA4 = 0.

Replacing the (6, 1), (6, 4), and (6, 5) entries of W̄ with (QA2 + RA4)
�, (QA2 +

RA4)
�, and (C2 + αC2SA4)

�, respectively, we have (3.65). Then, by left and right
multiplying (3.65) by T−1 given in (3.64) and its transpose, respectively, there holds
the inequality (3.61). That ends the proof. �

It is worth noting that Theorem 3.15 is relied on the SVD form of the descriptor
system, but the feasibility of (3.61) does not depend on a particular choice of SVD
decomposition. Consider an arbitrary transformation matrix pair (M1, N1). It is easy
to see that, if the condition (3.61) is feasible for the system (3.58), then it is also
feasible for the SVD-based realization associated with (M1, N1).

Now we are in a position to give a solution to state feedback controller synthesis.

Theorem 3.16 Problem 3.1 is solvable, if and only if there exist matrices P ∈
R

r×r > 0, Q ∈ R
r×r , R ∈ R

r×(n−r), S ∈ R
(n−r)×(n−r), Z ∈ R

n×m and a sufficiently
large scalar α > 0 such that

⎡
⎢⎢⎢⎢⎣

1 • • • •
2 5 • • •
3 6 −γ2 Ip • •
4 �

2 �
3 −Q − Q� •

0 7 8 0 −Iq

⎤
⎥⎥⎥⎥⎦ < 0, (3.68)

where

1 = −1

2
Q − 1

2
Q�, 2 = A
� + BZ�	�, 3 = C
�,

4 = P − Q − 1

2
Q�, 8 = αB�

1 �C�,

5 = �A� + A�� + �Z B� + BZ��� − �, 6 = C��,

7 = B�
1 + αB�

1 �A� + αB�
1 ��Z B�, 
 = [

Q R
]
,

� =
[
P 0
0 0

]
, � =

[
0 0
0 S

]
, � =

[
0 0
0 In−r

]
, 	 = [

Ir 0
]
.
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Moreover, the feedback gain F̄ is given as

F̄ = Z�
[

Q−� 0
−S−�R�Q−� S−�

]
N−1. (3.69)

Proof According to Lemma 3.5, the solvability of Problem 3.1 is equivalent to the
existence of a feedback gain F such that the closed-loop system (3.60) is admissible
and the H∞ norm of its transfer function from w(k) to y(k) is less than γ. Moreover,
F̄ = FN−1.

Assume that the inequality (3.68) holds. Then, the (1, 1) entry implies that Q is
invertible. And S can also be assumed to be invertible without loss of generality.

Replacing Z with

[
Q R
0 S

]
F� in (3.68) and straightforward calculation give (3.61)

associated with the dual system of (3.60). Hence (3.60) is admissible and the H∞
performance of its transfer function from w(k) to y(k) is satisfied.

Conversely, if Problem 3.1 is solvable, then the condition (3.61) holds for the
system (3.60). Hence, it also holds for its dual system. By the linear change of

variables

[
Q R
0 S

]
F� = Z , which implies

[
Q R

]
F� = [

Ir 0
]
Z ,

[
0 0
0 S

]
F� =

[
0 0
0 In−r

]
Z ,

we have (3.68). Moreover, as pointed out before, Q and S are both invertible.
Therefore, the feedback gain F for the closed-loop system (3.60) is F = Z�[

Q−� 0
−S−�R�Q−� S−�

]
. Hence F̄ is given by (3.69). �

Following the same thread, we can also conduct a dilated LMI characterization
and give a numerically efficient and reliable controller design process for discrete-
time state feedback positive realness control. Relevant results have been reported
in [Fen15].

Example 3.1 Let the descriptor system (3.54) be given as follows:

Ē =
⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ , Ā =

⎡
⎣ 0 1 1

−1 3 0
0 0 0

⎤
⎦ , B̄1 =

⎡
⎣1
0
1

⎤
⎦ ,

B̄ = [
0 0 1

]�
, C̄ = [

1 0 1
]
.

It is easy to see that the system is noncausal. In addition, the system has a pole at
2.6180, and hence it is not stable either. The purpose is to find a state feedback H∞
controller with γ = 2. Using Theorem 3.16, together with α = 1, gives

F̄ = [
7.3827 −20.4128 1.9135

]
.
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Fig. 3.1 Minimized H∞ performance with respect to different α

Moreover, Fig. 3.1 plots the minimized H∞ performance achieved by
Theorem 3.16 with respect to different values of α. It is observed that when α is
selected to be relatively large, conservatism is significantly reduced.

3.7 Conclusion

In this chapter, we have discussed dilated LMI characterizations for descriptor sys-
tems for both the continuous-time and discrete-time settings. By reciprocal applica-
tion of the projection lemma, dilated LMI conditions for admissibility, H2 perfor-
mance and dissipativity are conducted. These dilated LMIs are denoted as Charac-
terization I, II, III, IV. As in the state-space case, among all, Characterization I has
the largest number of decision variables and is in general suitable for robust analysis,
while Characterization IV holds the smallest number of decision variables. More-
over, relied on the use of auxiliary matrices and a positive scalar, a novel necessary
and sufficient condition for the bounded real lemma for discrete-time descriptor sys-
tems is derived, and a numerically efficient and reliable design procedure for state
feedback H∞ controller design is given.



Chapter 4
Dissipative Control Under Output Regulation

Relied on the internal model principle [FSW74, Won85, Hua04], exact asymp-
totic regulation objective is fulfilled using a structured controller with a exosystem.
Extensions of this scheme have been considered by integrating other performance
requirements. Such multiobjective problems have been extensively investigated in
the literature [SSS00a, SSS00b, KS08]. Moreover, the regulation problem has been
expanded to descriptor systems. In [Dai89], a solution to this problem was given in
terms of a set of nonlinear matrix equations depending on system parameters and
some other parameters. In [LD96], a more clear-cut solution was obtained through
a generalized Sylvester equation.

In this chapter, we focus on the design of a measurement output feedback con-
troller to solve the problem of output regulation for descriptor systems. A generalized
Sylvester equation is proposed to achieve internal stabilization subject to asymptotic
regulation constraints, and a specific structure of the resulting controller is deduced.
Then, based on this structure, the additional dissipative performance objective is
further handled using an LMI-based approach.

4.1 Problem Formulation

Consider the descriptor system as follows:

(G) :

⎡
⎢⎢⎣
Eẋ
e
z
y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A Bw Bd B
Ce Dew Ded Deu

Cz Dzw Dzd Dzu

C Dyw Dyd 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
w

d
u

⎤
⎥⎥⎦ , (4.1)

where x ∈ R
n , e ∈ R

qe , z ∈ R
qz , y ∈ R

p, w ∈ R
nw , d ∈ R

md , and u ∈ R
m

are the state, tracking error, controlled output, measurement, exogenous disturbance,

© Springer Nature Singapore Pte Ltd. 2017
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external disturbance, and control input, respectively. The matrices E ∈ R
n×n , A ∈

R
n×n , Bw ∈ R

n×nw , Bd ∈ R
n×md , B ∈ R

n×m , Ce ∈ R
qe×n , Dew ∈ R

qe×nw , Ded ∈
R

qe×md , Deu ∈ R
qe×m , Cz ∈ R

qz×n , Dzw ∈ R
qz×nw , Dzd ∈ R

qz×md , Dzu ∈ R
qz×m ,

C ∈ R
p×n , Dyw ∈ R

p×nw , and Dyd ∈ R
p×md are constant.

We assume here that the exogenous disturbance w is generated by the linear
autonomous system Gw referred to as the exosystem as follows:

ẇ = Aww, Aw ∈ R
nw×nw .

Denote the new descriptor variable as ζ� = [x� w�]. Then, the descriptor system
G is rewritten as

(G) :

⎡
⎢⎢⎢⎢⎣

A − sE Bw Bd B
0 Aw − s I 0 0
Ce Dew Ded Deu

Cz Dzw Dzd Dzu

C Dyw Dyd 0

⎤
⎥⎥⎥⎥⎦ . (4.2)

The following assumptions are made:

(A.1) (E, A, B) is finite dynamics stabilizable and impulse controllable;

(A.2)

([
E 0
0 I

]
,

[
A Bw

0 Aw

]
,
[
C Dyw

])
is finite dynamics detectable and impulse

observable;

(A.3) σ(Aw) ∈ C+ � {λ ∈ C|Re(λ) ≥ 0}.
Consider the following measurement feedback controller:

(�c) :
{
EK ξ̇ = AK ξ + BK y,
u = CK ξ + DK y,

(4.3)

where EK ∈ R
nk×nk , AK ∈ R

nk×nk , BK ∈ R
nk×p, CK ∈ R

m×nk , and DK ∈ R
m×p.

The matrix EK may be singular, i.e., rank(EK ) = rk ≤ nk .
The closed-loop system is denoted by G ×�c, and the transform matrix from the

external disturbance d to the controlled output z ofG×�c is denoted by Tzd(G×�c).

Problem 4.1 (Asymptotic Output Regulation Problem) The problem of asymptotic
output regulation is to find a controller �c such that the following conditions hold.

C.1 In the absence of the disturbances w and d , the closed-loop system G × �c is
internally stable.

C.2 The closed-loop system G × �c satisfies lim
t→∞e(t) = 0 for any d ∈ �2, and for

all x(0) ∈ R
n and w(0) ∈ R

nw .

Note that Assumptions (A.1)–(A.3) are consistent with the standard assumptions
in the regulator theory for state-space systems [SSS00a, SSS00b]. For state-space
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systems, the assumptions associated with the impulse controllability and observabil-
ity vanish. Assumption (A.1) together with another assumption that (E, A,C) is
finite dynamics detectable and impulsive observable is essential to the existence of
an internally stabilizing controller. The Condition (A.3) can be assumed without loss
of generality, since any asymptotically stable modes of Gw decay to zero and thus
do not affect the regulation objective.

4.2 Extended Regulator Theory

In this section, thewell-known regulator theory for state-space systems is extended to
linear descriptor systems and a structured dynamical controller achieving asymptotic
output regulation is exhibited.

Lemma 4.1 Consider the plant G in (4.2). There exists a controller�c in (4.3) such
that Problem4.1 is solvable, if and only if there exist two matrices T ∈ R

n×nw and
� ∈ R

m×nw such that the following generalized Sylvester equation holds:

B� = AT − Bw − ET Aw,

Deu� = CeT − Dew.
(4.4)

Proof Necessity: Suppose that there exists a controller �c solving Problem4.1.
According to [FYC11], there exist two matrices T and TK such that the following
equations hold:

0 = Dew + DeuDK Dyw − (CeT + DeuDKCT + DeuCK TK ), (4.5)

ET Aw = AT + BDKCT + BCK TK − Bw − BDK Dyw, (4.6)

EK TK Aw = AK TK + BK (CT − Dyw). (4.7)

By setting � = DK (Dyw − CT ) − CK TK , (4.5) and (4.6) lead to (4.4).
Sufficiency: We suppose that the condition (4.4) holds. In order to prove the

sufficiency, it suffices to construct the controller�c solving Problem4.1. To this end,
consider the following system G̃:

(G̃) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
E 0
0 I

]
˙̃x =

[
A B�

0 Aw

]
x̃ +

[
Bd

0

]
d +

[
B 0
0 I

]
uc,

e = [
Ce Deu�

]
x̃ + Dedd + [

Deu 0
]
uc,

yc = [
C CT − Dyw

]
x̃ + Dydd.

(4.8)

According to the Assumptions (A.1) and (A.2) together with some appropriate basis
transformation, it is easy to show that G̃ is finite dynamics stabilizable and impulsive
controllable, and finite dynamics detectable and impulsive observable. Hence, there
exists an internally stabilizing controller �̃c for G̃. Let us suppose that �̃c admits
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the following form:

(�̃c) :
⎧⎨
⎩

Ẽk ẋc = Ãk xc + B̃k yc,

uc =
[
C̃k1

C̃k2

]
xc +

[
D̃k1

D̃k2

]
yc,

(4.9)

where Ẽk ∈ R
(nk−nw)×(nk−nw), Ãk ∈ R

(nk−nw)×(nk−nw), B̃k ∈ R
(nk−nw)×p, C̃k1 ∈

R
nw×(nk−nw), C̃k2 ∈ R

m×(nk−nw), D̃k1 ∈ R
nw×p, and D̃k2 ∈ R

m×p. Then, we can
construct the controller �c as follows:

⎧⎨
⎩

[
I 0
0 Ẽk

]
ξ̇ =

[
Aw + D̃k2(CT − Dyw) C̃k2

B̃k(CT − Dyw) Ãk

]
ξ +

[
D̃k2

B̃k

]
y,

u = [
� + D̃k1(CT − Dyw) C̃k1

]
ξ + D̃k1y.

(4.10)

Hence, the resulting closed-loop system formed by G and the controller (4.10) is
given by

(GCL) :
[
Ac − sEc Bc

Cc Dc

]
,

where

Ac =

⎡
⎢⎢⎣
A + BD̃k1C Bw + BD̃k1Dyw B� + BD̃k1ϒ BC̃k1

0 Aw 0 0
D̃k2C D̃k2Dyw Aw + D̃k2ϒ C̃k2

B̃kC B̃k Dyw B̃kϒ Ãk

⎤
⎥⎥⎦ ,

Ec =

⎡
⎢⎢⎣
E 0 0 0
0 Inw

0 0
0 0 Inw

0
0 0 0 Ẽk

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣
Bd + BD̃k1Dyd

0
D̃k2Dyd

B̃k Dyd

⎤
⎥⎥⎦ ,

Cc = [
Ce + Deu D̃k1C Dew + Deu D̃k1Dyw Deu(� + D̃k1ϒ) DeuC̃k1

]
,

Dc = Ded + Deu D̃k1Dyd , ϒ = CT − Dyw.

Using the following two transformation matrices

M =

⎡
⎢⎢⎣
In ET 0 0
0 Inw

0 0
0 −Inw

Inw
0

0 0 0 Ink−nw

⎤
⎥⎥⎦ , N =

⎡
⎢⎢⎣
In −T 0 0
0 Inw

0 0
0 Inw

Inw
0

0 0 0 Ink−nw

⎤
⎥⎥⎦ ,

together with the generalized Sylvester equation (4.4), yield
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MAcN =

⎡
⎢⎢⎣
A + BD̃k1C �1 B� + BD̃k1ϒ BC̃k1

0 Aw 0 0
D̃k2C �2 Aw + D̃k2ϒ C̃k2

B̃kC �3 B̃kϒ Ãk

⎤
⎥⎥⎦ , MEcN = Ec,

MBc = Bc, CcN = [
Ce + Deu D̃k1C �4 Deu(� + D̃k1ϒ) DeuC̃k1

]
,

where

�1 = Bw + BD̃k1Dyw + B� + BD̃k1ϒ − (A + BD̃k1C)T + ET Aw = 0,

�2 = D̃k2Dyw + Aw + D̃k2ϒ − D̃k2CT − Aw = 0,

�3 = B̃k Dyw + B̃kϒ − B̃kCT = 0,

�4 = Dew + Deu D̃k1Dyw + Deu� + Deu D̃k1ϒ − CeT + Deu D̃k1CT = 0.

Therefore, the closed-loop system GCL is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣E 0 0
0 I 0
0 0 Ẽk

⎤
⎦ ẋcl =

⎡
⎣A + BD̃k1C B� + BD̃k1ϒ BC̃k1

D̃k2C Aw + D̃k2ϒ C̃k2

B̃kC B̃kϒ Ãk

⎤
⎦ xcl

+
⎡
⎣Bd + BD̃k1Dyd

D̃k2Dyd

B̃k Dyd

⎤
⎦ d,

e = [
Ce + Deu D̃k1C Deu(� + D̃k1ϒ) DeuC̃k1

]
xcl + (Ded + Deu D̃k1Dyd)d,

which is nothing else but the feedback system formed by the controller �̃c in (4.9) and
the systemt G̃ in (4.8). Since �̃c internally stabilizes G̃ and d ∈ �2, the closed-loop
system GCL is internally stable and lim

t→∞e(t) = 0. �

Lemma 4.2 Any controller solving Problem4.1 contains a copy of the dynamics of
Aw that are unobservable with respect to CT − Dyw.

Proof For simplicity, we assume that the eigenvalues of Aw are distinct. If Aw have
multiple eigenvalues, then the same argument used in [SSS00a] can be applied. It
has shown that if the asymptotic output regulation problem is solved, then there exist
matrices T and TK satisfying

EK TK Aw = AK TK + BK (CT − Dyw),

� = −CK TK − DK (CT − Dyw).

Denoteλ ∈ C+ andv as an arbitrary unobservable eigenvalue of Aw and its associated
eigenvector, respectively. Hence, we have (CT − Dyw)v = 0. Then, there holds
AK TK v = EK TK Awv = λEK TK v. Now, we prove by contradiction that TKv �= 0.
According to the finite dynamics stabilizability assumption made in (A.2), we have
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rank

⎛
⎝

⎡
⎣A − λE Bw

0 Aw − λI
C Dyw

⎤
⎦

⎞
⎠ = n + nw.

Suppose TKv = 0, there holds

⎡
⎣A − λE Bw

0 Aw − λI
C Dyw

⎤
⎦

[
T v

−v

]
=

⎡
⎣(AT − Bw − λET )v

(λI − Aw)v

(CT − Dyw)v

⎤
⎦

=
⎡
⎣(B� + ET Aw − λET )v

0
0

⎤
⎦ =

⎡
⎣−BCK TKv + ET (Aw − λEw)v

0
0

⎤
⎦ = 0,

which is contradictory to Assumption (A.2). Hence TKv �= 0. According to the
definition of generalized eigenvalues of a matrix pencil [GvL96], one can conclude
that the unobservable eigenvalues of (Aw,CT − Dyw) are also eigenvalues of the
controller. �

4.3 Dissipativity with Output Regulation

In this section, we further address a multiobjective problem by adding an additional
dissipative performance in Problem4.1. Before formulating the problem, we present
a quick reminder of dissipativity. Let us consider the following descriptor system:

{
Eẋ(t) = Ax(t) + Bv(t),
z(t) = Cx(t) + Dv(t),

(4.11)

where x(t) ∈ R
n , z(t) ∈ R

p, and v(t) ∈ R
m . The matrices E ∈ R

n×n , A ∈ R
n×n ,

B ∈ R
n×m , C ∈ R

p×n , and D ∈ R
p×m are constant. Moreover, the matrix E may be

singular. If the descriptor system is regular, then the transfer function is defined as

H(s) = C(sE − A)−1B + D. (4.12)

Moreover, let S = S� ∈ R
(m+p)×(m+p) and the supply function s(v(t), z(t)) ∈

Rm × Rp → R be a mapping with the following quadratic form of v(t) and z(t):

s(v(t), z(t)) =
[
v(t)
z(t)

]�
S

[
v(t)
z(t)

]
, (4.13)

where

S �
[
S11 S12
∗ S22

]
, S11 ∈ R

m×m . (4.14)
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Definition 4.1 (StrictDissipativity) The descriptor system (4.11) is said to be strictly
dissipative with respect to s(v(t), z(t)), if it is impulse-free and there exists ε > 0,
such that for any v(t) ∈ �2 the following inequality holds, provided x(0) = 0:

∫ ∞

0
s
(
v(t), z(t)

)
dt ≤ −ε2

∫ ∞

0
v(t)�v(t)dt. (4.15)

The multiobjective control problem under consideration is defined as follows.

Problem 4.2 (Asymptotic Output Regulation with Dissipative Performance Con-
straints) The problem of asymptotic output regulation with dissipative performance
constraints is to find a controller �c such that the following conditions are satisfied:

C.1 In the absence of the disturbances w and d , the closed-loop system G × �c is
internally stable;

C.2 The solution of the closed-loop system G × �c satisfies lim
t→∞e(t) = 0 for any

d ∈ �2, and for all x(0) ∈ R
n and w(0) ∈ R

nw ;
C.3 Given a specific s(d, z), Tzd(G × �c) is strictly dissipative and admissible.

The Conditions C.1 and C.2 stand for the standard output regulation constraints.
In addition, the third condition means that at any time the amount of energy which
the closed-loop system can conceivably supply to its environment cannot exceed the
amount of energy that has been supplied to it. From the previous discussion, it is
observed that, with the parameters of the controller (4.10), we still have some degree
of freedom, that is Ẽk , Ãk , B̃k , C̃k1, C̃k2, D̃k1, and D̃k2, to address the additional
dissipative performance requirement.

Suppose that the generalized Sylvester equation (4.4) holds. Then, the closed-loop
system formed by G in (4.2) and the �c in (4.10) can be written by

⎡
⎢⎢⎢⎢⎢⎣

A + BD̃k1C − sE B� + BD̃k1ϒ BC̃k1 Bd + BD̃k1Dyd

D̃k2C Aw + D̃k2ϒ − s I C̃k2 D̃k2Dyd

B̃kC B̃k� Ãk − s Ẽk B̃k Dyd

Ce + Deu D̃k1C Deu(� + D̃k1ϒ) DeuC̃k1 Ded + Deu D̃k1Dyd

Cz + Dzu D̃k1C Dzu(� + D̃k1ϒ) DzuC̃k1 Dzd + Dzu D̃k1Dzd

⎤
⎥⎥⎥⎥⎥⎦

,

where ϒ = CT − Dyw. This system can be further rewritten as the closed-loop
system formed by the controller �̃c in (4.9) and the following system G̃

(G̃) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
E 0
0 I

] ˙̃ζ =
[
A B�

0 Aw

]
ζ̃ +

[
Bd

0

]
d +

[
B 0
0 I

]
uc,

e = [
Ce Deu�

]
ζ̃ + Dedd + [

Deu 0
]
uc,

z = [
Cz Dzu�

]
ζ̃ + Dzdd + [

Dzu 0
]
uc,

yc = [
C CT − Dyw

]
ζ̃ + Dydd.

(4.16)
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Wehaveproved that the regulation constraint is achieved, if �̃c internally stabilizes
G̃. Hence, the multiobjective problem formulated in Problem4.2 for G is reduced
into an unconstrained control problem for the associated system G̃, which can be
solved using the standard LMI-based techniques [Mas07, XL06]. However, it is
worthy of noting that direct application of these results may give a conservative
solution, since the realization of G̃ depends on a solution to the generalized Sylvester
equation (4.4) and this solution is in general not unique. This fact means that the
underlying controller synthesis may result in a nonlinear matrix inequality problem.
In order to render the controller synthesis convex, let us consider the following
coordinate transformation matrices:

M =
[
I ET
0 I

]
, N =

[
I −T
0 I

]
,

where T is an arbitrary solution to (4.4). Under this transformation, an alternative
representation of G̃ (with e being removed) is obtained as

(G̃) :
⎧⎨
⎩
E ˙̄ζ = Aζ̄ + Bdd + B(T )uc,
z = Cz(T,�)ζ̄ + Dzdd + Dzuuc,
yc = Cζ̄ + Dydd,

(4.17)

where

E =
[
E 0
0 I

]
, A =

[
A −Bw

0 Aw

]
, Bd =

[
Bd

0

]
, B(T ) =

[
B ET
0 I

]
,

Cz(T,�) = [
Cz Dzu� − CzT

]
, C = [

C −Dyw
]
, Dzu = [

Dzu 0
]
.

Then, we have the following lemma that transforms Problem4.2 into an uncon-
strained control problem.

Lemma 4.3 Consider the system G in (4.2) and a specific matrix S in (4.14). Then,
Problem4.2 is solved by the controller (4.10), if and only if there exists the con-
troller �̃c (4.9), such that the closed-loop system in (4.17) is admissible and strictly
dissipative.

Proof Straightforward. �
Before presenting a solution to Problem4.2, the following standard assumption

is made [Mas07].

(A.4) For S defined in (4.14), S22 ≥ 0 and [S�
12 S�

22]� has full column rank.

We also define the following matrices:

� �
[[

S12
�

] ([
S12
�

]⊥)�]
, (4.18)
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[	1 	2] � [I 0]�−�, (4.19)[
H11 H12

∗ H22

]
� �−1

[
S11 0
0 −I

]
�−�, (4.20)

where � is a matrix satisfying S22 = ���.

Theorem 4.1 Consider the system G̃ in (4.17) and a specific matrix S in (4.14).
Then, there exists a controller �̃c in (4.9) with rank(Ẽk) = r + nw, such that the
closed-loop system formed by �̃c and G̃ is admissible and strictly dissipative, if and
only if there exist matrices T ∈ R

n×nw , � ∈ R
m×nw , P ∈ R

(n+nw)×(n+nw), Q ∈
R

(n+nw)×(n+nw), U ∈ R
(n+nw)×md , and V ∈ R

md×(n+nw) satisfying the generalized
Sylvester equation (4.4), as well as

[E� 0
0 E

] [
P M−�
N Q

]
=

[
P� N�
M−1 Q�

] [E 0
0 E�

]
≥ 0, (4.21)

E�U = 0, (4.22)

EV� = 0, (4.23)

ϒ(T,�, P,U ) < 0, (4.24)


(Q, V ) < 0, (4.25)

where

ϒ(T,�, P,U ) =
[No 0
0 I

]�

⎡
⎣He{A�P} P�Bd + A�U + Cz(T,�)�S�

12 Cz(T,�)���
∗ He{U�Bd + S12Dzd} − S11 D�

zd�
�

∗ ∗ −I

⎤
⎦

[No 0
0 I

]
,


(Q, V ) =
[
Nc 0
0 I

]�

⎡
⎣He{QA} (Bd + AV�)	1 + Q�C�

z (Bd + AV�)	2

∗ He{(CzV� + Dzd)	1} + H11 (CzV� + Dzd)	2 + H12

∗ ∗ H22

⎤
⎦

[
Nc 0
0 I

]
,

M =
[
I ET
0 I

]
, N =

[
I −T
0 I

]
, No = [C Dyd

]⊥
, Nc =

[
B
Dzu

]⊥
,

Q = [
I 0

]
Q

[
I
0

]
, V = V

[
I
0

]
.

Proof According to [Mas07], the dissipative performance and admissibility control
problem for G̃ is solvable, if and only if there exist matrices P , Q̄, U , and V̄ such
that (4.22) and (4.24) hold, as well as
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[E� 0
0 E

] [
P I
I Q̄

]
=

[
P� I
I Q̄�

] [E 0
0 E�

]
≥ 0, (4.26)

E V̄� = 0, (4.27)[Nc 0
0 I

]�
�

[Nc 0
0 I

]
< 0, (4.28)

where Nc =
[B(T )

Dzu

]⊥
, and

� =
⎡
⎣He{AQ̄} (AV̄� + Bd)	1 + Q̄�Cz(T, �)� (AV̄� + Bd)	2

∗ He{(Cz(T, �)V̄� + Dzd)	1} + H11 (Cz(T,�)V̄� + Dzd)	2 + H12

∗ ∗ H22

⎤
⎦ .

Note that the inequality (4.28) involves the products of the decision variables
(T , �, Q̄, and V̄ ), and hence it is not linear. Now, we prove that (4.28) is equivalent
to the condition (4.25), and the conditions (4.26) and (4.27) are equivalent to the
conditions (4.21) and (4.23), respectively. To this end, left- and right-multiplying the

condition (4.26) by

[
I 0
0 M−1

]
and its transpose lead to

[ E�P E�M−�
M−1E M−1E Q̄M−�

]
=

[
P�E E�M−�
M−1E M−1 Q̄�E�M−�

]
≥ 0,

which can be further rewritten as
[ E�P E�M−�
M−1EN−1N M−1EN−1N Q̄M−�

]
=

[
P�E N�N−�E�M−�
M−1E M−1 Q̄�N�N−�E�M−�

]
≥ 0.

Note that M−1EN−1 = E and set Q = N Q̄M−�. Then, the above inequality
yields (4.21). Furthermore, there holdsE V̄ = M−1E V̄ = M−1EN−1NV̄ = ENV̄ =
0. Hence, choosing V� = NV̄�, the equality (4.27) leads to (4.23).

Then, we prove that this inequity (4.28) can be reduced into (4.25). Note that

[B(T )� D�
zu

] =
[[

B 0
0 I

]� [
Dzu 0

]�
] [

M� 0
0 I

]
.

Hence,

Nc =
[
M−� 0
0 I

]⎡
⎣ B 0

0 I
Dzu 0

⎤
⎦

⊥

=
[
M−� 0
0 I

] ⎡
⎣Nc1

0
Nc2

⎤
⎦ ,

where

[
Nc1

Nc2

]
=

[
B
Dzu

]⊥
. Hence, the condition (4.28) is equivalent to
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⎡
⎢⎢⎣
Nc1 0
0 0
Nc2 0
0 I

⎤
⎥⎥⎦

� [
M−1 0
0 I

]
�

[
M−� 0
0 I

]
⎡
⎢⎢⎣
Nc1 0
0 0
Nc2 0
0 I

⎤
⎥⎥⎦ < 0.

Set Q = N Q̄M−� and V� = NV̄�. Using the partitions of Q =
[
Q11 Q12

Q21 Q22

]
,

V = [
V1 V2

]
compatible with the realization of G̃, the above inequality can be

rewritten as

⎡
⎢⎢⎣
Nc1 0
0 0
Nc2 0
0 I

⎤
⎥⎥⎦

� ⎡
⎢⎢⎣

�1 ∗ �2 + �3	1 �3	2

• ∗ ∗ ∗
• • He{�4	1} + H11 �4	2 + H12

• • • H22

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Nc1 0
0 0
Nc2 0
0 I

⎤
⎥⎥⎦

=
⎡
⎣Nc1 0
Nc2 0
0 I

⎤
⎦

� ⎡
⎣�1 �2 + �3	1 �3	2

• He{�4	1} + H11 �4	2 + H12

• • H22

⎤
⎦

⎡
⎣Nc1 0
Nc2 0
0 I

⎤
⎦ < 0,

where ‘∗’ stands for the elements irrelative to the discussion and

�1 = He{AQ11 + B�Q21}, �2 = Q�
11C

�
z + Q�

21�
�D�

zu,

�3 = AV�
1 + B�V�

2 + Bd , �4 = CzV
�
1 + Dzu�V�

2 + Dzd .

This inequality is equivalent to

⎡
⎣Nc1 0
Nc2 0
0 I

⎤
⎦

� ⎡
⎣He{B�Q21} Q�

21�
�D�

zu + B�V�
2 	1 B�V�

2 	2

• He{Dzu�V�
2 	1} Dzu�V�

2 	2

• • 0

⎤
⎦

⎡
⎣Nc1 0
Nc2 0
0 I

⎤
⎦

+ 
(Q,V) < 0.

Since N�
c1B+N�

c2Dzu = 0, the first term of the above inequality is zero. Hence, (4.25)
holds. �

We propose the following algorithm to solve Problem4.2.

Algorithm 4.1 1. Given S, solve the generalized Sylvester equation (4.4) and the
LMIs (4.21)–(4.25), and denote the solution as (Ts,�s, Ps, Qs,Us, Vs);

2. With (Ps, Qs,Us, Vs), construct the controller �̃c given in (4.9) by the algorithm
proposed in [Mas07];

3. Obtain a realization of the controller �c by (4.10).

Note that the obtained controller �c is proper. Since the LMI-based approach
leads to a controller �̃c such that (Ẽk, Ãk) is impulsive-free, if necessary, adding
a small perturbation to the solution, �̃c is nonsingular. Hence, according to (4.10),
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the resulting controller �c is also nonsingular, since the exosystem is proper. This
fact implies that Algorithm4.1 gives a systematic way to obtain proper (state-space)
controllers solving the definedmultiobjective control problem for descriptor systems,
even if original plants are singular. This property is also revealed via a numerical
example.

Example 4.1 Consider the descriptor system G shown in (4.1) as follows:

E =
⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ , A =

⎡
⎣−1 0 1

0 0 −1
1 1 0

⎤
⎦ , Bw =

⎡
⎣0 0
0 1
1 0

⎤
⎦ ,

Bd =
⎡
⎣1 0
1 1
0 1

⎤
⎦ , B =

⎡
⎣1
0
1

⎤
⎦ , Cz =

⎡
⎣0
1
1

⎤
⎦

�

,

C = Ce =
⎡
⎣1
0
1

⎤
⎦

�

, Dyw = Dew =
[
0
0

]�
,

Dyd = Ded = [
0 1

]
, Deu = 0,

Dzw = Dzd = [
0 0

]
, Dzu = 1.

Suppose that the exogenous disturbance w is a sinusoidal disturbance as

ẇ =
[
0 1

−1 0

]
w.

We attempt to find the worst-case energy gain, represented by γ, from d to z, under
asymptotic output regulation constraint. For this case, we set S = diag{−γ2 I, I }
and this specific S implies � = I , 	1 = 0, 	2 = I , H11 = −I , H12 = 0, and H22 =
−γ2 I for (4.18)–(4.20). The semidefinite programming solver SeDuMi [Stu99] in
MATLAB� is used for controller construction.

By Theorem4.1, the following solution is obtained:

T =
⎡
⎣0.6667 0

−1 −0.6667
0 0

⎤
⎦ , � =

[−1.3333
−0.6667

]�
, W =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

−0.8787 0

⎤
⎥⎥⎥⎥⎦ ,

X =

⎡
⎢⎢⎢⎢⎣

4.0319 −0.4237 −0.0414 −0.5328 0
−0.4237 3.8990 0.4803 1.1723 0
−0.04143 0.4803 1.7101 −0.0626 0
−0.5328 1.1723 −0.0626 1.2823 0
1.0318 0.6681 1.1420 −0.9740 0.9486

⎤
⎥⎥⎥⎥⎦ , Z =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

0.2611 1

⎤
⎥⎥⎥⎥⎦

�

,



4.3 Dissipativity with Output Regulation 57

Y =

⎡
⎢⎢⎢⎢⎣

1.4774 −0.4532 0.5431 −0.5605 −0.2310
−0.4532 2.2845 −0.0595 −0.6628 2.6477
0.5431 −0.0595 1.9823 0.1497 0

−0.5605 −0.6628 0.1497 2.5431 0
0 0 0 0 0.4430

⎤
⎥⎥⎥⎥⎦ .

Hence, the controller �̃c in (4.9) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ẋc =

⎡
⎢⎢⎢⎢⎣

−30.6240 29.0841 73.6053 −25.6846 20.2507
1.7273 −6.3351 −19.5730 11.5056 −9.7048

−0.2495 0.3634 −1.8633 0.9937 −0.6653
1.5034 −1.6601 −3.7462 −0.8105 −0.0575
0.2732 −1.0323 −0.7171 −0.3969 0.6471

⎤
⎥⎥⎥⎥⎦ xc

+

⎡
⎢⎢⎢⎢⎣

7.0890
−6.3114
0.0035
0.0550

−0.2164

⎤
⎥⎥⎥⎥⎦ yc,

uc =
⎡
⎣ 0.2147 0.0440 −0.0878 0.6611 −0.3227

−4.2560 5.2260 12.6593 −5.2216 4.1972
6.2838 −7.6980 −10.9353 0 0.9947

⎤
⎦ xc +

⎡
⎣−0.5955

2.1098
−0.3187

⎤
⎦ yc.

Fig. 4.1 Singular value plot of Tzd (s)
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Fig. 4.2 Controller performance
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Fig. 4.3 Asymptotic output regulation
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According to the structure (4.10), the resulting controller �c is

�c = −0.70335(s + 38.97)(s + 15.46)(s2 + 2.852s + 2.427)(s2 + 0.3527s + 1.22)

(s + 50.98)(s + 10.72)(s2 + 2.738s + 2.144)(s2 + 1)
,

and the minimal value of γ is 1.765. The singular value plot of Tzd(s) is exhibited
in Fig. 4.1. Moreover, it is observed that y = e, referred to as the error feedback
case, where C = Ce, Dyw = Dew, and Deu = 0. Hence, we have CT − Dyw = 0.
According to Lemma4.2, the controller must contain a copy of the whole exosystem.
This fact is verified, since the controller contains two complex poles {± jw} and
Fig. 4.2 clearly reveals the copy of the exosystem in the controller.

Let us consider an external disturbance signal as follows: d(t) =
[
d1(t)
d2(t)

]
∈ �2,

where d1(t) = 2te−t�(t) and d2(t) = −3te−t�(t − 40) are shown in Fig. 4.3. The
third curve shows that the asymptotic output regulation constraint is achieved.

4.4 Conclusion

This chapter is focused on the design of a measurement output dynamic controller
for the problem of performance control subject to asymptotic output regulation for
continuous-time descriptor systems. It is shown that the asymptotic regulation objec-
tive is achieved if and only if a generalized Sylvester equation admits a solution, and
a specific structured controller that contains a copy of the dynamics of the exosystem
in a certain way is exhibited. Based on this conducted structure, the additional dis-
sipative performance objective is transformed into a standard performance control
problem associated with some augmented descriptor system, and the underlying con-
troller synthesis is further addressed using a nonconservative LMI-based approach.



Chapter 5
Admissibility with Unstable and Nonproper
Weights

In systems and control theory, many problems require the definition of a standard
model consisting of physical plant, disturbances and reference signals, and con-
trol objectives. For example, one approach of controlling the longitudinal motion
of fighter airplanes is to optimize certain weighted closed-loop transfer matrix with
weighting filters that are in general interpreted as the models of reference input and
disturbances [CS92, Kwa02]. In this context, it is well known that the use of stable
state-space weighting filters is restrictive, since the exo-system models and weights
are generally unstable, or even nonproper [HZK92, Mei95, SSS00a, Che02]. Using,
for instance, integral or derivative weights introduce potentially some unstabiliz-
able or undetectable finite dynamics, even uncontrollable or unobservable impulsive
elements, in the standard model.

In this circumstance, the stabilization issue is quite different from that of the
general setting. The conventional internal stability cannot be achieved in general,
since some weights are unstable, or even nonproper. Instead, the so-called extended
stability or comprehensive stability is introduced in the literature. This concept may
be regarded as a generalization of internal stability and is highly related to practical
concerns, for instance, the regulator and servomechanism problems [LM94].

In this chapter, we discuss the output feedback admissibility control problem
for continuous-time descriptor systems with input and output weighs. Systems and
their weighting filters are all described within the descriptor framework. Hence, it
is possible to take into account not only unstable weights, but nonproper weights
as well. Necessary and sufficient conditions for the existence of an observer-based
stabilizing controller are given in terms of generalized Sylvester equations, and a
Youla parameterization of the class of stabilizing controllers is also formulated.
Moreover, in order to further clarify the effects of the weights on the underlying
controller, a specifically structured output feedback controller is conducted in terms
of the dynamics of the weighs. It is shown that determining suitable controllers for a
given descriptor systemwith the presence of unstable and nonproperweights requires

© Springer Nature Singapore Pte Ltd. 2017
Y. Feng and M. Yagoubi, Robust Control of Linear Descriptor Systems,
Studies in Systems, Decision and Control 102, DOI 10.1007/978-981-10-3677-4_5
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solving an admissibility problem for an augmented system explicitly constructed in
this chapter.

5.1 Why Unstable and Nonproper Weights

For many problems, control specifications are usually interpreted by weighting fil-
ters. For example, the use of weights having a pole at the origin is in general appealed
to achieve perfect rejection (and/or tracking) of constant disturbances (and/or refer-
ences).

Let us take the H∞ control problem to show the importance of the use of unstable
and nonproper weights. Examine the mixed sensitivity problem [Kwa93, Mei95]
represented in Fig. 5.1, where G stands for the given plant, K is the controller to be
determined, and W1, W2 and W2 are input and output weighting filters. Figure5.1
yields the following transfer matrix:

Tzw =
[

W2(I + GK )−1W1

W3K (I + GK )−1W1

]
. (5.1)

For the mixed sensitivity problem, the weights should be appropriately chosen
such that stabilizing controllers withwhich the H∞ normof Tzw is bounded by certain
prescribed bound γ make the closed-loop system behave well. For this problem,
standard procedure is available under MATLAB routines through transforming it
into a standard H∞ control problem [BDG+91, CS92].

A desirable choice for the weighting filter W2 is to choose W2 having a pole at
the origin, since the ‖Tzw‖∞ is finite only if the sensitivity, that is, (I + GK )−1

has a zero at the origin. This fact indicates that the underlying stabilizing making
‖Tzw‖∞ < γ achieves either perfect rejection of constant disturbances or tracking of
constant references. Another well-known fact which can explain this choice is that

− K G

W1

W2

W3

u z1

z2 w

y

Fig. 5.1 A mixed sensitivity configuration
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if the plant G does not have a pole at the origin, then any desirable controller K
has integration action. Moreover, in order to avoid undesirable high-frequency noise
sensitivity and limited robustness, it is also often desirable to select a nonproper
weight W3. In particular, ‖W3‖∞ should be large outside the desirable closed-loop
bandwidth due to the fact that this choice ensures that the controller is small outside
the closed-loop bandwidth.

5.2 Existing Approaches

The importance of the use of unstable and nonproper weights has been highlighted.
The control objective for such nonstandard problems is different from the conven-
tional ones, since the overall weighted system cannot be internally stabilized due to
the presence of these either unstabilizable or undetectable weights.

To illustrate this situation, consider an asymptotic tracking problem depicted in
Fig. 5.2, where w is a step reference. The input–output relation is given by

Tew = 1

s
(I + GK )−1.

It is observed that the dynamic of the integrator is not stabilizable by the controller.
Hence, the internal stability of the weighted closed-loop system cannot be achieved.
However, the weighting filter 1/s stands for specifications that will not be realized
in real devices, and we are only interested in the internal stability of the feedback
system formed by G and K . Therefore, this asymptotic tracking problem can still be
solved by finding a controller internally stabilizing G and making Tew stable as well.

To handle such nonstandard problems, several techniques exist in the literature.
Here, we take the mixed sensitivity problem presented in Fig. 5.1 as an example to
give a brief reminder of the existing approaches [Mei95].

Method 1: Onemethod is to treat these undesirable elements by slight perturbation
to render the problem standard [CS92]. For example, one takes W2(s) = 1/(s +
0.0001) instead of W2(s) = 1/s. Similarly, one can also replace W3(s) = s with
W3(s) = s/(1 + 0.0001s). This treatment is obviously an approximation and is
widely used. The disadvantage of this approach is that it is vulnerable to the

− K G
u ye1

s

w

Fig. 5.2 Asymptotic tracking problem
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Fig. 5.3 Modified mixed sensitivity configuration

troubles related with lightly damped poles and may lead to higher order and
nonstrictly proper controllers.

Method 2: Another method is the so-called polynomial method [Kwa93], which
copes naturally with nonproper weighting filters. This theory can, however, not
be applied to cases where W2 has imaginary poles.

Method 3: The third method involves plant augmentations as well as philosophi-
cally similar “plant state tapping” techniques [Kra92, Mei95]. Let us call it here
the filter absorption method. Figure5.3 shows how to absorb the weights into
the loop. For the modified problem, the controller K̃ can be constructed, and
the corresponding controller K is given by K = W−1

3 K̃W2. This method is easy
to explain and not difficult to implement. Note that if there exists an unstable
pole-zero cancellation in the modified plant, that is, G̃ = W2GW−1

3 , then the sta-
bility properties of the original loop and the modified loop are not the same. In
other words, the weightsW2 andW3 must be appropriately chosen. Moreover, this
method obviously requires a pretreatment to absorb the weights into the loop.

Method 4: The theoryofmode cancellationor comprehensive stabilization [LM94,
LM95, LZM97, MXA00] has been proposed for solving these nonstandard prob-
lems. Roughly speaking, the main idea is to make, respectively, the unstabilizable
and undetectable elements unobservable and uncontrollable by feedback in the
underlying closed loop. However, this theory does not allow nonproper weights.

5.3 Comprehensive Admissibility

Wefirst define the comprehensive admissibility control problem for linear continuous-
time descriptor systems. The “comprehensive” term indicates here that the desirable
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G̃

K

Wi Wo

G

w e zv

u y

Fig. 5.4 Comprehensive admissibility control problem

controller can and must stabilize a part of the overall closed-loop system. The prob-
lem setup is depicted in Fig. 5.4 and the physical plant G̃(s) is given by

[
e(s)
y(s)

]
= G̃

[
v(s)
u(s)

]
=

[
G̃ev G̃eu

G̃ yv G̃ yu

] [
v(s)
u(s)

]
(5.2)

where e ∈ R
q , y ∈ R

p, v ∈ R
l , and u ∈ R

m are the controlled output, measurement,
disturbance input, and control input vector, respectively. The system (5.2) can be
rewritten as

G̃ =
⎡
⎣ Ag − sEg Bg1 Bg2

Cg1 Dg11 Dg12

Cg2 Dg21 Dg22

⎤
⎦

where Eg ∈ R
ng×ng , Ag ∈ R

ng×ng , Bg1 ∈ R
ng×l , Bg2 ∈ R

ng×m , Cg1 ∈ R
q×ng , Cg2 ∈

R
p×ng , Dg11 ∈ R

q×l , Dg12 ∈ R
q×m , Dg21 ∈ R

p×l and Dg22 ∈ R
p×m are known real

constant matrices. The matrix Eg may be singular, i.e., rank(Eg) = rg ≤ ng .
Suppose that the input weight Wi and the output weight Wo are both descriptor

systems described as

Wi =
[
Ai − sEi Bi

Ci Di

]
, Wo =

[
Ao − sEo Bo

Co Do

]
,

where Ei ∈ R
ni×ni , Eo ∈ R

no×no , Ai ∈ R
ni×ni , Ao ∈ R

no×no , Bi ∈ R
ni×mi , Bo ∈

R
no×q , Ci ∈ R

l×ni , Co ∈ R
po×no , Di ∈ R

l×mi and Do ∈ R
po×q are known real con-

stant matrices. The matrices Ei and Eo may be singular, i.e., rank(Ei ) = ri ≤ ni and
rank(Eo) = ro ≤ no.

For the sake of simplicity, Wi and Wo are assumed to have only unstable and
impulsive modes. This assumption can be made without loss of generality, since the
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stable and static modes of the weights decay to zero eventually and do not affect the
admissibility of the closed-loop system.

The resulting overall weighted system G is written as

G =

⎡
⎢⎢⎢⎢⎣

Ao − sEo BoCg1 BoDg11Ci BoDg11Di BoDg12

0 Ag − sEg Bg1Ci Bg1Di Bg2

0 0 Ai − sEi Bi 0
Co DoCg1 DoDg11Ci DoDg11Di DoDg12

0 Cg2 Dg21Ci Dg21Di Dg22

⎤
⎥⎥⎥⎥⎦ . (5.3)

Moreover, we denote in the sequel G as

G =
⎡
⎣ A − sE B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ �

[
Gzw Gzu

Gyw Gyu

]
. (5.4)

Definition 5.1 (Comprehensive Admissibility) The feedback system Fl(G, K )

is said to be comprehensively admissible if Fl(G̃, K ) is internally stable and the
closed-loop system defined by

Tzw = Fl(G, K ) = Gzw + GzuK (I − GyuK )−1Gyw (5.5)

is admissible.

Problem 5.1 (Comprehensive Admissibility Control Problem) The comprehensive
admissibility control problem for the system G in (5.4) is to find a controller K such
that the overall feedback system formed by G and K is comprehensively admissible.

It will be shown that comprehensive admissibility is achieved if and only if
two generalized Sylvester equations admit solutions. Additional performance objec-
tives, such as H2 and H∞ conditions, are further tackled by solving two generalized
algebraic Riccati equations (GAREs). Moreover, the well-known output regulation
problem addressed in the last chapter can be regarded as a special case of the com-
prehensive admissibility control problem by removing the output weighting filters.

5.4 Observer-Based Solution

In this section, we start with state feedback case and follow its dual case to conduct
an observer-based solution to Problem 5.1.
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5.4.1 State Feedback

Let us partition G in (5.3) with regard to the input weight as follows

G =

⎡
⎢⎢⎣
Ā11 − s Ē Ā12 B̄11 B̄12

0 Ai − sEi B̄21 0

C̄11 C̄12 D11 D12

C̄21 C̄22 D21 D22

⎤
⎥⎥⎦ , (5.6)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ē =
[
Eo 0
0 Eg

]
, Ā11 =

[
Ao BoCg1

0 Ag

]
,

Ā12 =
[
BoDg11Ci

Bg1Ci

]
, B̄11 =

[
BoDg11Di

Bg1Di

]
,

B̄12 =
[
BoDg12

Bg2

]
, B̄21 = Bi , C̄11 = [

Co DoCg1
]
,

C̄12 = DoDg11Ci , C̄21 = [
0 Cg2

]
, C̄22 = Dg21Ci .

(5.7)

Assumption 5.1

(A1) (Ē, Ā11, B̄12) is finite dynamics stabilizable and impulse controllable.

The following result gives a necessary and sufficient condition for the exis-
tence of a static feedback gain F ∈ R

m×(ng+no+ni ) such that the system given by[
AF − sEF BF

CF DF

]
with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

EF =
[
Ē 0
0 Ei

]
, AF =

[
Ā11 Ā12

0 Ai

]
+

[
B̄12

0

]
F,

BF =
[
B̄11

B̄21

]
, CF = [

C̄11 C̄12
] + D12F, DF = D11,

(5.8)

is comprehensively admissible.

Lemma 5.1 There exists a static feedback gain F such that (5.8) is comprehensively
admissible, if and only if there exist matrices Xi ∈ R

(ng+no)×ni , Yi ∈ R
(ng+no)×ni and

Fa ∈ R
m×ni such that the following generalized Sylvester equation holds

B̄12Fa = Ā11Yi − Ā12 − Xi Ai ,

D12Fa = C̄11Yi − C̄12,

0 = ĒYi − Xi Ei .

(5.9)
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Moreover, the feedback gain F is given by

F = [
F1 Fa + F1Yi

]
, (5.10)

where F1 ∈ R
m×(ng+no) is such that (Ē, Ā11 + B̄12F1) is admissible.

Proof (Sufficiency) Suppose that there exist matrices Xi , Yi , and Fa satisfying (5.9).
Since (Ē, Ā11, B̄12) is finite dynamic stabilizable and impulse controllable, a sta-
tic feedback gain F1 such that (Ē, Ā11 + B̄12F1) is admissible exists. Replacing F
in (5.8) with (5.10) gives

⎧⎪⎪⎨
⎪⎪⎩

EF =
[
Ē 0
0 Ei

]
, AF =

[
Ā11 + B̄12F1 Ā12 + B̄12(Fa + F1Yi )

0 Ai

]
,

BF =
[
B̄11

B̄21

]
, CF = [

C̄11 + D12F1 C̄12 + D12(Fa + F1Yi )
]
.

Then, let us introduce two nonsingular matrices M and N

M =
[
Ing+no Xi

0 Ini

]
, N =

[
Ing+no −Yi
0 Ini

]
. (5.11)

From (5.9), there holds

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MEFN =
[
Ē 0
0 Ei

]
, MAFN =

[
Ā11 + B̄12F1 0

0 Ai

]
,

MBF =
[
B̄11 + Xi B̄21

B̄21

]
, CFN = [

C̄11 + D12F1 0
]
,

which implies that (5.8) is equivalent to

[
Ā11 + B̄12F1 − s Ē B̄11 + Xi B̄21

C̄11 + D12F1 D11

]
.

Since F1 is such that (Ē, Ā11 + B̄12F1) is admissible, comprehensive admissibility
is achieved.

(Necessity) Suppose that there exists F = [F1 F2] such that (5.8) is com-
prehensively admissible. Let Z̄ ∈ R

(ng+no)×(ng+no−rg−ro) be any full column rank
matrix satisfying Ē Z̄ = 0, and Zi ∈ R

(ni−ri )×ni be any full row rank matrix satis-
fying Zi Ei = 0. Then, using the transformation matrices in (5.11) together with
Xi = ĒT +UZi and Yi = T Ei − Z̄V with T ∈ R

(ng+no)×ni , U ∈ R
(ng+no)×(ni−ri )

and V ∈ R
(ng+no−rg−ro)×ni yields



5.4 Observer-Based Solution 69

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MEFN =
[
Ē 0
0 Ei

]
, MBF =

[
B̄11 + Xi B̄21

B̄21

]
,

MAFN =
[
Ā11 + B̄12F1 B̄12Fa + Ā12 + Xi Ai − Ā11Yi

0 Ai

]
,

CFN = [
C̄11 + D12F1 D12Fa + C̄12 − C̄11Yi

]
,

FN = [
F1 Fa

]
,

(5.12)

with Fa = F2 − F1Yi . Since the system (5.12) is comprehensively admissible,
B̄12Fa + Ā12 + Xi Ai − Ā11Yi = 0.Otherwise, the admissibility ofFl(G̃, K ) cannot
be satisfied. Moreover, the closed-loop system can be written as

⎧⎨
⎩

Ē ζ̇1 = ( Ā11 + B̄12F1)ζ1 + (B̄11 + Xi B̄21)w,

Ei ζ̇2 = Aiζ2 + B̄21w,

y = (C̄11 + D12F1)ζ1 + (D12Fa + C̄12 − C̄11Yi )ζ2 + D11w.

Note that (Ei , Ai ) is unstable or nonproper. Hence, there holds D12Fa + C̄12 −
C̄11Yi = 0. Otherwise, the signal y does not converge, which is contradictory to
the fact that the overall closed-loop system is admissible. �

5.4.2 Estimation

Let us now partition G in (5.3) with respect to the output weight as follows:

G =

⎡
⎢⎢⎢⎣
Ao − sEo Â12 B̂11 B̂12

0 Â22 − s Ê B̂21 B̂22

Ĉ11 Ĉ12 D11 D12

0 Ĉ22 D21 D22

⎤
⎥⎥⎥⎦ , (5.13)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ê =
[
Eg 0
0 Ei

]
, Â12 = [

BoCg1 BoDg11Ci
]
,

Â22 =
[
Ag Bg1Ci

0 Ai

]
, B̂11 = BoDg11Di , B̂12 = BoDg12,

B̂21 =
[
Bg1Di

Bi

]
, B̂22 =

[
Bg2

0

]
, Ĉ11 = Co,

Ĉ12 = [
DoCg1 DoDg11Ci

]
, Ĉ22 = [

Cg2 Dg21Ci
]
.

(5.14)
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Assumption 5.2

(A2) (Ê, Â22, Ĉ22) is finite dynamics detectable and impulse observable.

The following result gives a necessary and sufficient condition for the exis-
tence of a static estimation gain L ∈ R

(ng+ni+no)×p such that the system given by[
AL − sEL BL

CL DL

]
with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EL =
[
Eo 0
0 Ê

]
, AL =

[
Ao Â12

0 Â22

]
+ L

[
0 Ĉ22

]
,

BL =
[
B̂11

B̂21

]
+ LD21, CL = [

Ĉ11 Ĉ12

]
, DL = D11,

(5.15)

is comprehensively admissible.

Lemma 5.2 There exists a static estimation gain L such that (5.15) is comprehen-
sively admissible if and only if there existmatrices Xo ∈ R

no×(ng+ni ), Yo ∈ R
no×(ng+ni )

and La ∈ R
no×p such that the following generalized Sylvester equation holds

LaĈ22 = AoYo − Â12 − Xo Â22,

LaD21 = −B̂11 − Xo B̂21,

0 = EoYo − Xo Ê .

(5.16)

Moreover, the estimation gain L is given by

L =
[
La − XoL2

L2

]
(5.17)

where L2 is such that (Ê, Â22 + L2Ĉ22) is admissible.

Proof Duality of Lemma 5.1.

The Eq. (5.9) is introduced to make the dynamics of (Ei , Ai ), which are neither
finite dynamics stabilizable nor impulse controllable, unobservable by feedback in the
underlying closed-loop system. Similarly, theEq. (5.16) is used tomake the dynamics
of (Eo, Ao), which are neither finite dynamics detectable nor impulse observable,
uncontrollable by feedback in the underlying closed-loop system. Moreover, when
Eg = Ing , Ei = Ini and Eo = Ino , the generalizedSylvester equations (5.9) and (5.16)
cover the regulator equations reported in the literature [Fra77, LM94, SSS00b,
Che02] for state-space systems.

The solvability of the Eqs. (5.9) and (5.16) is essential for the problem under
consideration. Note that (5.9) can be reformed as
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−
[
I
0

]
Xi Ai +

[
Ā11 −B̄12

C̄11 −D12

] [
Yi
Fa

]
=

[
Ā12

C̄12

]
,

Xi Ei + [
Ē 0

] [
Yi
Fa

]
= 0.

Furthermore, this equation can be further written as a linear system of equations

⎡
⎣I ⊗

[
Ā11 −B̄12

C̄11 −D12

]
Ai ⊗

[−I
0

]

I ⊗ [
Ē 0

]
Ei ⊗ I

⎤
⎦

⎡
⎣Col

([
Yi
Fa

])

Col(Xi )

⎤
⎦ =

⎡
⎣Col

([
Ā12

C̄12

])

0

⎤
⎦ .

So the solution can be obtained through a linear program. The same discussion also
holds for the Eq. (5.16). Amore comprehensive discussion about Sylvester equations
is given in Appendix A.

Now, we are in a position to state the condition to existence of an observer-based
controller solving Problem 5.1.

Theorem 5.1 Consider the generalized weighted plant G in (5.4) and suppose that
Assumptions (A1) and (A2) hold. There exists an observer-based controller K such
that Problem 5.1 is solved if and only if the generalized Sylvester equations (5.9)
and (5.16) hold. Moreover, the controller K is given by

K =
[
A + B2F + LC2 − sE −L

F 0

]
, (5.18)

where F and L are given in (5.10) and (5.17), respectively.

Proof Straightforward through Lemmas 5.1 and 5.2. �

5.5 Youla Parameterization

Based on the observer-based solution given previously, we provide a Youla parame-
terization of all controllers achieving the specification of comprehensive admissibil-
ity. Consider an output feedback dynamic controller K of the form

K =
[
AK − sEK BK

CK DK

]
. (5.19)

Lemma 5.3 Consider the overall weighted plant G in (5.4). Suppose that
Assumptions (A1) and (A2) hold. The controller K in (5.19) stabilizing G̃ solves
Problem 5.1 if and only if there exist matrices Xi ∈ R

(ng+no)×ni , Yi ∈ R
(ng+no)×ni ,

Fa ∈ R
m×ni , Xo ∈ R

no×(ng+ni ), Yo ∈ R
no×(ng+ni ), La ∈ R

no×p, Xi
K ∈ R

nk×ni , Y i
K ∈

R
nk×ni , Xo

K ∈ R
no×nk , and Y o

K ∈ R
no×nk such that the two generalized Sylvester equa-

tions (5.9) and (5.16) hold, as well as
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(i)

[
AK BK

CK DK

] [
Y i
K

C̄21Yi − C̄22

]
−

[
Xi

K
0

]
Ai =

[
0

−Fa

]
,

EKY i
K = Xi

K Ei ,

(5.20)

(ii)

[
Xo

K Xo B̂22 + B̂12

] [
AK BK

CK DK

]
− Ao

[
Y o
K 0

] = [
0 −La

]
,

Xo
K EK = EoY o

K .

(5.21)

Proof (i) By following the same thread of the proof of Lemma 5.1, it is observed
that the controller K achieves comprehensive admissibility for G if and only if there
exist matrices Xi , Yi , Fa , Xi

K and Y i
K such that

0 = D12(DK C̄22 − DK C̄21Yi − CKY i
K ) − C̄11Yi + C̄12,

Xi Ai = Ā11Yi + B̄12(DK C̄21Yi − DK C̄22 + CKY i
K ) − Ā12,

Xi Ei = ĒYi ,
Xi

K Ai = AKY i
K + BK (C̄21Yi − C̄22),

Xi
K Ei = EKY i

K .

By setting Fa = DK C̄22 − DK C̄21Yi − CKY i
K , the above matrix equations lead

to (5.9) and (5.20).
(ii) By duality and Lemma 5.2. �

The following theorem gives a complete observer-based solution to Problem 5.1
and can be viewed as an extension of the conventional Youla parameterization to the
nonstandard case.

Theorem 5.2 Suppose that Assumptions (A1) and (A2) hold. All controllers solving
Problem 5.1 can be parameterized as

K = Fl(J, Q), ∀Q ∈ RH∞, (5.22)

with

J =
⎡
⎣ A + B2F + LC2 − sE −L B2

F 0 I
−C2 I 0

⎤
⎦ , (5.23)

where F and L are defined in (5.10) and (5.17), respectively.
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Proof (Sufficiency) We show that K = Fl(J, Q) achieves comprehensive admissi-
bility. Consider Q ∈ RH∞ of the form

Q =
[
AQ − sEQ BQ

CQ DQ

]
.

Then the resulting closed-loop system is written as

Fl(G,Fl(J, Q)) =⎡
⎢⎢⎣
A + B2F − sE B2CQ B2F − B2DQC2 B1 + B2DQD21

0 AQ − sEQ −BQC2 BQD21

0 0 A + LC2 − sE −B1 − LD21

C1 + D21F D12CQ D21F − D12DQC2 D11 + D11DQD21

⎤
⎥⎥⎦ .

According to the choice of F , all unstable and impulsive modes of the pair (E, A +
B2F) are unobservable from the output z. Similarly, by the choice of L , all unstable
and impulsive modes of the pair (E, A + LC2) are uncontrollable from the input w.
Moreover, (EQ, AQ) is admissible. Hence, the closed-loop system Fl(G,Fl(J, Q))

is comprehensively admissible.
(Necessity) We show that for any controller K solving Problem 5.1, there exists

a Q ∈ RH∞ such that K = Fl(J,Q). To this end, we define

J =
⎡
⎣ A − sE −L B2

−F 0 I
C2 I 0

⎤
⎦ ,

and Q = Fl(J ,K). Note that the system Fl(G,K) is comprehensively admissible,
since K solving Problem 5.1. Then, according to Lemma 5.3, the conditions (5.9)
and (5.20) hold. Note that G and J share the same E , A and B2 matrices, which
indicates that the first and third equations of (5.9) also hold with respect to the
systemdata ofJ .Moreover,we have F = [F1 Fa + F1Yi ]. Then, Fa = Fa + F1Yi −
F1Yi , which is nothing else but the second equation of (5.9). Hence, the generalized
Sylvester equation (5.9) holds for J . Besides, G and J share the same C2 matrix.
Hence, the condition (5.20) also holds with respect to the system data of J .

With the same thread, we can also prove that the conditions (5.16) and (5.21) hold
with respect toJ . Therefore, byLemma5.3, the controllerK achieves comprehensive
admissibility for J , which means thatQ is comprehensively admissible. Moreover,
there holds

Fl(J,Q) = Fl(J,Fl(J ,K)) = Fl(Fl(J,J ),K) = Fl(J1,K),
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with

J1 =

⎡
⎢⎢⎣
A + LC2 − sE B2F −L B2

0 A − sE −L B2

F −F 0 I
−C2 C2 I 0

⎤
⎥⎥⎦ =

[
0 I
I 0

]
.

Hence, Fl(J,Q) = Fl(J1,K) = K. �

Note that no constraint has been imposed on the Youla parameter Q so far, mul-
tiobjective control synthesis with certain additional performance objectives may be
dealt with by using a usual projection of the Youla parameter on some orthonormal
basis such as Laguerre or Kautz basis [Mä91, Wah94] and convex optimization tools.

Example 5.1

Consider the example as shown in Fig. 5.4. withWi = 1

s
andWo = s. Let G̃ be given

as

G̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣1 0 0
0 0 −1
0 0 0

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎣

1 0 0 −1 1
0 1 0 0 1
0 0 1 0 1
1 −1 0 −2 1
1 1 1 2 1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

and

Wi =
{
1,

[
0 1
1 0

]}
, Wo =

⎧⎨
⎩

[
0 1
0 0

]
,

⎡
⎣ 1 0 0
0 1 −1
1 0 0

⎤
⎦

⎫⎬
⎭ .

Solving the Eq. (5.9) gives

Xi =

⎡
⎢⎢⎢⎢⎣

0
0
0

−1
0

⎤
⎥⎥⎥⎥⎦ , Yi =

⎡
⎢⎢⎢⎢⎣

0
0
0

−1
−1

⎤
⎥⎥⎥⎥⎦ , Fa = 1.

The gain F1, such that (Ē, Ā11 + B̄12F1) is admissible, can be calculated by
solving a feasibility problem under an LMI constraint. Hence, we obtain

F = [
0.4283 5.9326 −34.8241 −1.5169 35.0731 34.5

]
.
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Similarly, applying Lemma 5.2 leads to

Xo =
[−2 0 0 0
0 0 1 0

]
, Yo =

[
1 −1 1 4

−2 0 0 0

]
, La =

[
1

−1

]
,

L = [−13.3445 −0.7713 −7.1723 1.1157 −0.2287 0.7628
]�

.

Then, according to Theorem 5.2, we can parameterize all controllers solving Prob-
lem 5.1 for the given plant. For this purpose, we arbitrarily choose Q ∈ RH∞, for
instance, taking

Q =
⎧⎨
⎩

[
0 0
0 1

]
,

⎡
⎣ 1 0 1
0 −1 0
0 1 1

⎤
⎦

⎫⎬
⎭ .

which yields the following controller K

EK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

AK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −13.3 −13.3 −13.3 −26.6 0 0
−0.43 −4.93 34.05 2.746 −34.8 −32.1 0 −1
0.428 5.933 −42 −9.69 26.90 17.21 0 1
0.428 5.933 −34.7 −0.4 35.19 34.79 0 1
0.428 5.933 −36.1 −2.75 34.84 32.1 0 1
0 0 0.763 0.763 0.763 1.526 0 0
0 0 −1 −1 −1 −2 −1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

BK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13.35
−0.23
8.172
−0.12
1.229
−0.76

1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, CK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.428
5.933
−35.8
−2.52
34.07
32.56
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

, DK = 1.
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Then, the resulting closed-loop system is obtained

Tzw = −2s(s + 68.13)(s − 0.3456)(s2 − 12.73s + 111.6)

(s + 11.26)(s + 2.65)(s + 0.9641)(s + 0.4852)(s2 + 6.288s + 10.38)
.

Moreover, using Lemma 5.3 together with the controller’s data gives

Xi =

⎡
⎢⎢⎢⎢⎣

0
0
0

−1
0

⎤
⎥⎥⎥⎥⎦ , Yi =

⎡
⎢⎢⎢⎢⎣

0
0
0

−1
−1

⎤
⎥⎥⎥⎥⎦ , Xo =

⎡
⎢⎢⎣

2 0
0 0

−0.606 −1
0 0

⎤
⎥⎥⎦

�

, Yo =

⎡
⎢⎢⎣

1.921 2
−0.079 0
−0.684 0
−2.159 0

⎤
⎥⎥⎦

�

,

Fa = 1, La = [−0.08 1
]�

,

Xi
K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−1
0

−1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y i
K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
1

−1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Xo
K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0.88 1
−2 0
0 0

1.406 1
0 0
0 0

0.54 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

, Y o
K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.97 0
0.421 1

−0.122 −2
1.07 0
1.208 0
1.259 0
0 0

0.46 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

.

Hence, the obtained dynamic controller K satisfies the characterization given in
Lemma 5.3.

5.6 Structured Controllers

So far, we have developed an observer-based solution to the nonstandard problem
with unstable and nonproper weights. Additional performance objective control with
the presence of weights can be further addressed based on the previous results, which
will be reported in the next chapter. However, the effects of the weights on the
underlying controller’s structure have not yet been clarified. The main purpose of
this section is to explicitly exhibit the structure of the resulting controller. It will be
shown that the comprehensive admissibility control problem can be transformed into
a problem without weights for an augmented system explicitly constructed from the
data of the given system.

Theorem 5.3 Consider the partitions (5.6) and (5.13). Problem 5.1 is solvable, if
and only if there exist matrices Xi ∈ R

(ng+no)×ni , Yi ∈ R
(ng+no)×ni , Fa ∈ R

m×ni , Xo ∈
R

no×(ng+ni ), Yo ∈ R
no×(ng+ni ), and Lo ∈ R

no×p such that the generalized Sylvester
equations (5.9) and (5.16) hold. Moreover, a desired output feedback controller is
given by
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K =
[
AK − sEK BK

CK D1
k1

]
, (5.24)

with

EK =
⎡
⎣Ei 0 0
0 Ek 0
0 0 Eo

⎤
⎦ , AK =

⎡
⎣Ai + D2

k1�i C2
k D2

k2
Bk1�i Ak Bk2

�o�i −�oCk Ao − �oDk2

⎤
⎦ ,

BK =
⎡
⎣D2

k1
Bk1

�o

⎤
⎦ , CT

K =
⎡
⎢⎣

�T
i(

C1
k

)T(
D1

k2

)T

⎤
⎥⎦ , �i = C̄21Yi − C̄22,

�o = Xo B̃22 + B̃12, �i = Fa + D1
k1�i , �o = Lo − �oDk1,

B̃12 =
[
B̂12 X1

i

]
, B̃22 =

[
B̂22

X2
i−Ini

]
, X1

i = [
Ino 0

]
Xi ,

X2
i = [

0 Ing
]
Xi , Ck =

[
C1
k

C2
k

]
, Dk1 =

[
D1

k1
D2

k1

]
, Dk2 =

[
D1

k2
D2

k2

]
,

where Ek, Ak, Bk1, Bk2, C1
k , C

2
k , D

1
k1, D

2
k1, D

1
k2, and D2

k2 are parameters of the
controller K given by

K =
⎡
⎣ Ak − sEk Bk1 Bk2

C1
k D1

k1 D1
k2

C2
k D2

k1 D2
k2

⎤
⎦ (5.25)

internally stabilizing the system G as follows:

G =

⎡
⎢⎢⎢⎢⎢⎣

A − sE B1

[
B2

Xi

Ini

]

C1 D11
[
D12 0

]
[

C2

−Ino −Yo

] [
D21

0

] [
0 0
0 0

]

⎤
⎥⎥⎥⎥⎥⎦

. (5.26)

Proof Necessity: Straightforward from Lemma 5.3.
Sufficiency: We prove that under (5.9) and (5.16), the controller (5.24) solves

Problem5.1. The proof is divided in three steps. First, we show that the uncontrollable
dynamics of Wi are canceled in the closed-loop system. For simplicity, we denote
the controller (5.24) as

K =
⎡
⎢⎣
Ai + D2

k1�i − sEi C̄k2 D2
k1

B̄k�i Āk − s Ēk B̄k

�i C̄k1 D1
k1

⎤
⎥⎦ ,
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where

Ēk =
[
Ek 0
0 Eo

]
, Āk =

[
Ak Bk2

−�oCk Ao − �oDk2

]
, (5.27)

B̄k =
[
Bk1,

�o

]
, (C̄k1)

T =
[

(C1
k )

T

(D1
k2)

T

]
, (C̄k2)

T =
[

(C2
k )

T

(D2
k2)

T

]
. (5.28)

Then, the closed-loop system is given by

Fl(G, K ) =
[
Ac − sEc Bc

Cc Dc

]
,

where

Ac =

⎡
⎢⎢⎣
Ā11 + B̄12D1

k1C̄21 � B̄12�i B̄12C̄k1

0 Ai 0 0
D2

k1C̄21 D2
k1C̄22 Ai + D2

k1�i C̄k2

B̄kC̄21 B̄kC̄22 B̄k�i Āk

⎤
⎥⎥⎦ ,

Ec =

⎡
⎢⎢⎣
Ē 0 0 0
0 Ei 0 0
0 0 Ei 0
0 0 0 Ēk

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣
B̄11 + B̄12D1

k1D21

Bi

D2
k1D21

B̄k D21

⎤
⎥⎥⎦ ,

Cc = [
C̄11 + D12D1

k1C̄21 C̄12 + D12D1
k1C̄22 D12�i D12C̄k1

]
,

Dc = D11 + D12D
1
k1D21, � = Ā12 + B̄12D

1
k1C̄22.

Using the two transformation matrices

M1 =

⎡
⎢⎢⎣
I Xi 0 0
0 −I 0 0
0 −I I 0
0 0 0 I

⎤
⎥⎥⎦ , N1 =

⎡
⎢⎢⎣
I Yi 0 0
0 −I 0 0
0 −I I 0
0 0 0 I

⎤
⎥⎥⎦ ,

together with (5.9), gives

Fl(G, K ) =
[
Āc − s Ēc B̄c

C̄c Dc

]
, (5.29)

where

Āc =
⎡
⎣ Ā11 + B̄12D1

k1C̄21 B̄12�i B̄12C̄k1

D2
k1C̄21 Ai + D2

k1�i C̄k2

B̄kC̄21 B̄k�i Āk

⎤
⎦ ,
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Ēc =
⎡
⎣Ē 0 0
0 Ei 0
0 0 Ēk

⎤
⎦ , Bc =

⎡
⎣B̄11 + B̄12D1

k1D21 + Xi Bi

D2
k1D21 − Bi

B̄k D21

⎤
⎦ ,

C̄c = [
C̄11 + D12D1

k1C̄21 D12�i D12C̄k1
]
.

Therefore, the uncontrollable dynamics ofWi are canceled in the closed-loop system.
Second, we prove that the unobservable dynamics of Wo are also canceled in the

closed-loop system. Consider further the closed-loop system (5.29), which can be
written as Fl(Ḡ, K̄ ), where

Ḡ =

⎡
⎢⎢⎢⎣

Ā11 − s Ē
0

B̄12�i

Ai − sEi

B̄11 + Xi Bi

−Bi

[
B̄12 0
0 Ini

]

C̄11 D12�i D11
[
D12 0

]
C̄21 �i D21

[
0 0

]

⎤
⎥⎥⎥⎦ ,

K̄ =
⎡
⎢⎣
Āk − s Ēk B̄k

C̄k1 D1
k1

C̄k2 D2
k1

⎤
⎥⎦ .

With the Eq. (5.9) and two transformation matrices

M2 =
[
Ing+no Xi

0 −Ini

]
, N2 =

[
Ing+no Yi
0 −Ini

]
,

the system Ḡ is represented alternatively by Ĝ as

Ĝ =

⎡
⎢⎢⎢⎣

[
Ao Â12

0 Â22

]
− s

[
Eo 0
0 Ê

]
B̂11 B̃12

B̂21 B̃22

Co Ĉ12

0 Ĉ22

D11 D̃12

D21 0

⎤
⎥⎥⎥⎦ ,

where B̃12 and B̃22 are given in (5.24), D̃12 = [
D12 0

]
, and the other data are given in

the partition (5.13). Proceeding with the controller K̄ specified in (5.27) and (5.28)
gives

Fl(Ĝ, K̄ ) =
[
M2 ĀcN2 − sM2 ĒcN2 M2 B̄c

C̄cN2 Dc

]
,

where
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M2 ĀcN2 =

⎡
⎢⎢⎣
Ao Â12 + B̃12Dk1Ĉ22 B̃12Ck B̃12Dk2

0 Â22 + B̃22Dk1Ĉ22 B̃22Ck B̃22Dk2

0 Bk1Ĉ22 Ak Bk2

0 �oĈ22 −�oCk Ao − �oDk2

⎤
⎥⎥⎦ ,

M2 ĒcN2 =

⎡
⎢⎢⎣
Eo 0 0 0
0 Ê 0 0
0 0 Ek 0
0 0 0 Eo

⎤
⎥⎥⎦ , M2 B̄2 =

⎡
⎢⎢⎣
B̂11 + B̃12Dk1D21

B̂21 + B̃22Dk1D21

Bk1D21

�oD21

⎤
⎥⎥⎦ ,

C̄cN2 = [
Co Ĉ12 + D̂12Dk1Ĉ22 D̂12Ck D̂12Dk2

]
.

Using the two transformation matrices

M3 =

⎡
⎢⎢⎣
I Xo 0 0
0 I 0 0
0 I I 0
0 0 0 I

⎤
⎥⎥⎦ , N3 =

⎡
⎢⎢⎣
I −Yi 0 −I
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎦ ,

together with (5.16), leads to

Fl(Ĝ, K̄ ) =
[
Âc − s Êc B̂c

Ĉc Dc

]
, (5.30)

where

Âc =
⎡
⎣ Â22 + B̃22Dk1Ĉ22 B̃22Ck B̃22Dk2

Bk1Ĉ22 Ak Bk2

�oĈ22 −�oCk Ao − �oDk2

⎤
⎦ ,

Êc =
⎡
⎣Ê 0 0
0 Ek 0
0 0 Eo

⎤
⎦ , B̂c =

⎡
⎣B̂21 + B̃22Dk1D21

Bk1D21

�oD21

⎤
⎦ ,

Ĉc = [
Ĉ12 + D̂12Dk1Ĉ22 − CoYo D̂12Ck D̂12Dk2 − Co

]
.

Therefore, the unobservable dynamics ofWo are canceled in the closed-loop system.
Finally, it suffices to show that the closed-loop system is admissible. It is observed

that the closed-loop system (5.30) can be written as Fl(Ḡ,K), where K is given
in (5.25) and

Ḡ =

⎡
⎢⎢⎢⎢⎢⎣

Â22 − s Ê 0
�oĈ22 Ao − sEo

B̂21 B̃22

�oD21 − �o

Ĉ12 − CoYo − Co D11 D̂12[
Ĉ22 0
0 Ino

] [
D21

0

] [
0
0

]

⎤
⎥⎥⎥⎥⎥⎦

.



5.6 Structured Controllers 81

Using the Eq. (5.16) and two transformation matrices

M4 =
[
Ing+ni 0
−Xo −Ino

]
, N4 =

[
Ing+ni 0
−Yo −Ino

]
,

the system Ḡ is represented alternatively byG in (5.26). Under Assumptions (A1) and
(A2), it is shown that the system G is both finite dynamics stabilizable and impulse
controllable, and finite dynamics detectable and impulse observable. Therefore, a
stabilizing controller K (5.25) always exists for G. This ends the proof. �

Figure5.5 exhibits explicitly the structure of the controller (5.24) and clearly
shows the impact of weighting filters on the resulting controller. With this structured
controller, the admissibility problem subject to unstable and nonproper weights is
transformed into an admissible problem without weights for the augmented sys-
tem (5.26). Free parameters of (5.25) serve as extra degrees of freedom and pave a
way to additional performance objective control with weights.

Ai − sEi I
I 0

Ak − sEk Bk1 Bk2

C1
k D1

k1 D1
k2

C2
k D2

k1 D2
k2

Ao − sEo I
I 0

Πi

Πo

uy

C̄21

C̄22

Yi

−

+

+
+

+
+

++
+

Xo

+
−−B̃12

B̃22

K

Fig. 5.5 Structured controller
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Example 5.2
Now, let us present an example to illustrate Theorem 5.3. Figure5.6 depicts a
weighted system that yields the transfer matrix from w to (zT1 , zT2 )T as

Tzw =
[−W1K (I − HK )−1W3

−W2(I − HK )−1W3

]
,

where W1 = 0.5s − 0.1, W2 = 1/s, W3 = (1 + 5s)/4(1 − 5s), H = 1/(s − 1) and
K is the controller to be design. It is clear that the output weights W1 and W2 are
unobservable, and the input weight W3 is uncontrollable. Hence, it is impossible to
render the closed-loop system internally stable. The objective here is to find an output
feedback controller K such that the resulting closed-loop system is comprehensively
admissible. Note that the weighted system G can be represented as

E =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 5

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 0 0 1 −1
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , B1 =

⎡
⎢⎢⎢⎢⎣

0
0

0.25
0

−0.5

⎤
⎥⎥⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎢⎢⎣

0
−1
0
1
0

⎤
⎥⎥⎥⎥⎦ , C1 =

[
0 0.5 0 0 0
0 0 1 0 0

]
, D11 =

[
0
0

]
,

C2 = [
0 0 0 1 −1

]
, D12 =

[−0.1
0

]
, D21 = 0.25.

Clearly, the Assumptions (A1)–(A2) hold. Solving the two generalized Sylvester
equations yields

Xi =

⎡
⎢⎢⎣
0.16
0
0

−0.2

⎤
⎥⎥⎦ , Yi =

⎡
⎢⎢⎣
0.8
0.16
0

−1

⎤
⎥⎥⎦ Fa = −0.8,

Xo = Yo =

⎡
⎢⎢⎣
0 0
0 0
0 0
0 0

⎤
⎥⎥⎦ , Lo =

⎡
⎣ 0

0
−1

⎤
⎦ .

Hence, the comprehensive admissibility problem for the system in Fig. 5.6 amounts
to finding a controller K of the form
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K :=
⎡
⎣ Ak − sEk Bk1 Bk2

C1
k D1

k1 D1
k2

C2
k D2

k1 D2
k2

⎤
⎦

to internally stabilizes the following augmented system G

G :=
⎡
⎣ A − sE B1 B2

C1 D11 D12

C2 D21 0

⎤
⎦ ,

where

B2 =

⎡
⎢⎢⎢⎢⎣

0 0.16
−1 0
0 0
1 −0.2
0 1

⎤
⎥⎥⎥⎥⎦ , C2 =

⎡
⎢⎢⎣

0 0 0 1 −1
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0

⎤
⎥⎥⎦ ,

D12 =
[−0.1 0

0 0

]
, D21 =

⎡
⎢⎢⎣
0.25
0
0
0

⎤
⎥⎥⎦ ,

other system data are given previously. It is easy to see that the system G is both
finite dynamics stabilizable and impulse controllable, and finite dynamics detectable
and impulse observable. Therefore, a stabilizing controller K always exists. The
parameters in K can be further appealed for the mixed sensitivity problem through
some existing results, if H∞ performance is imposed on the transfer matrix Tzw.

5.7 Conclusion

This chapter addresses the admissibility control problem subject to input–output
unstable and nonproper weighting filters for continuous-time descriptor systems.
By introducing a new concept called comprehensive admissibility, necessary and
sufficient conditions for this nonstandard problem are given in terms of the two
generalized Sylvester equations. A set of observer-based controllers is characterized
trough Youla parameterization. In order to further clarify the impact of weighting
filters on resulting controllers, a structured controller is explicitly conducted and
it proves that the comprehensive admissibility control problem can be transformed
into a standard admissibility control problem with regard to an augmented system
without weights.



Chapter 6
Performance with Unstable and Nonproper
Weights

The last chapter addresses the stabilization subject to input-output unstable and
nonproper weighting filters for continuous-time descriptor systems. Systems and
weights are all described within the descriptor framework to take into consideration
not only unstable weights, but also nonproper weights. The so-called comprehensive
admissibility is appealed to tackle the stabilization issue within this circumstance.
Both observer-based controllers and general output feedback controllers solving this
nonstandard problem are parameterized and it has been shown that the solvability
conditions are relied on the two generalized Sylvester equations.

In this chapter, we attempt to further explore additional H2 and H∞ perfor-
mance objectives subject to comprehensive admissibility. It will be shown that per-
formance objectives can be achieved by solving two generalized algebraic Riccati
equations (GAREs). As the overall weighted system is neither wholly stabilizable
nor detectable, the underlying GAREs have no admissible solutions. Similar to the
definition of comprehensive admissibility, the concept of so-called quasi-admissible
solution will be adopted. It is observed that the quasi-admissible solutions to the
GAREs are formed by admissible solutions to two reduced GAREs and solutions to
the two generalized Sylvester equations. Thus, solvability conditions to the problem
of performance control under comprehensive admissibility are characterized in terms
of quasi-admissible solutions to the underlying GAREs.

6.1 Problem Formulation

The same setup used in the last chapter is adopted here. Consider the interconnection
depicted in Fig. 6.1, where G̃(s) is written by[

e(s)
y(s)

]
= G̃

[
v(s)
u(s)

]
=

[
G̃ev G̃eu

G̃ yv G̃ yu

] [
v(s)
u(s)

]
(6.1)

© Springer Nature Singapore Pte Ltd. 2017
Y. Feng and M. Yagoubi, Robust Control of Linear Descriptor Systems,
Studies in Systems, Decision and Control 102, DOI 10.1007/978-981-10-3677-4_6
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Fig. 6.1 Comprehensive control problem

where e ∈ R
q , y ∈ R

p, v ∈ R
l , and u ∈ R

m are the controlled output, measurement,
disturbance input, and control input, respectively. The system (6.1) can be rewritten
as

G̃ =
⎡
⎣ Ag − s Eg Bg1 Bg2

Cg1 Dg11 Dg12

Cg2 Dg21 Dg22

⎤
⎦

where Eg ∈ R
ng×ng , Ag ∈ R

ng×ng , Bg1 ∈ R
ng×l , Bg2 ∈ R

ng×m , Cg1 ∈ R
q×ng , Cg2 ∈

R
p×ng , Dg11 ∈ R

q×l , Dg12 ∈ R
q×m , Dg21 ∈ R

p×l , and Dg22 ∈ R
p×m are known as

real constant matrices. The matrix Eg may be singular, i.e., rank(Eg) = rg ≤ ng .
Suppose that the input weight Wi and the output weight Wo are both descriptor

systems described as

Wi =
[

Ai − s Ei Bi

Ci Di

]
, Wo =

[
Ao − s Eo Bo

Co Do

]
,

where Ei ∈ R
ni ×ni , Eo ∈ R

no×no , Ai ∈ R
ni ×ni , Ao ∈ R

no×no , Bi ∈ R
ni ×mi ,

Bo ∈ R
no×q , Ci ∈ R

l×ni , Co ∈ R
po×no , Di ∈ R

l×mi , and Do ∈ R
po×q are known real

constant matrices. The matrices Ei and Eo may be singular, i.e., rank(Ei ) = ri ≤ ni

and rank(Eo) = ro ≤ no.
Then the resulting overall weighted plant G is written as

G =

⎡
⎢⎢⎢⎢⎣

Ao − s Eo BoCg1 Bo Dg11Ci Bo Dg11Di Bo Dg12

0 Ag − s Eg Bg1Ci Bg1Di Bg2

0 0 Ai − s Ei Bi 0
Co DoCg1 Do Dg11Ci Do Dg11Di Do Dg12

0 Cg2 Dg21Ci Dg21Di Dg22

⎤
⎥⎥⎥⎥⎦ . (6.2)
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Moreover, we denote in the sequel G as

G =
⎡
⎣ A − s E B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ �

[
Gzw Gzu

G yw G yu

]
. (6.3)

Let us recall the definition of comprehensive admissibility as follows.

Definition 6.1 (Comprehensive Admissibility) The feedback system Fl(G, K ) is
said to be comprehensively admissible ifFl(G̃, K ) is internally stable and the closed-
loop system defined as

Tzw = Fl(G, K ) = Gzw + Gzu K (I − G yu K )−1G yw (6.4)

is admissible.

Throughout this chapter we make the following assumptions.

(A0). The weights Wi and Wo contain only unstable and impulsive modes.
(A1). D�

12D12 > 0, D21D�
21 > 0, and D22 = 0.

(A2). (E, A) is regular.

Assumption (A0) is made without loss of generality since the stable and static
modes of the weights are a mere consequence of internal stabilization. (A1) is made
here to conduct the optimal controller in terms of GAREs.Moreover, this assumption
causes no loss of generality within the descriptor framework. If it does not hold, an
equivalent realization satisfying this assumption can always be obtained.

Let us consider two partitions of G with regard to Wi and Wo, respectively.
Partition 1:

G =

⎡
⎢⎢⎣

Ā11 − s Ē Ā12 B̄11 B̄12

0 Ai − s Ei B̄21 0
C̄11 C̄12 D11 D12

C̄21 C̄22 D21 D22

⎤
⎥⎥⎦ , (6.5)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ē =
[

Eo 0
0 Eg

]
, Ā11 =

[
Ao BoCg1

0 Ag

]
,

Ā12 =
[

Bo Dg11Ci

Bg1Ci

]
, B̄11 =

[
Bo Dg11Di

Bg1Di

]
,

B̄12 =
[

Bo Dg12

Bg2

]
, B̄21 = Bi , C̄11 = [

Co DoCg1
]
,

C̄12 = Do Dg11Ci , C̄21 = [
0 Cg2

]
, C̄22 = Dg21Ci .

(6.6)
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Partition 2:

G =

⎡
⎢⎢⎢⎣

Ao − s Eo Â12 B̂11 B̂12

0 Â22 − s Ê B̂21 B̂22

Ĉ11 Ĉ12 D11 D12

0 Ĉ22 D21 D22

⎤
⎥⎥⎥⎦ , (6.7)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ê =
[

Eg 0
0 Ei

]
, Â12 = [

BoCg1 Bo Dg11Ci
]
,

Â22 =
[

Ag Bg1Ci

0 Ai

]
, B̂11 = Bo Dg11Di , B̂12 = Bo Dg12,

B̂21 =
[

Bg1Di

Bi

]
, B̂22 =

[
Bg2

0

]
, Ĉ11 = Co,

Ĉ12 = [
DoCg1 Do Dg11Ci

]
, Ĉ22 = [

Cg2 Dg21Ci
]
.

(6.8)

6.2 Comprehensive H2 Control

First, we define the problem of comprehensive H2 control as follows.

Problem 6.1 (Comprehensive H2 Control Problem) The comprehensive H2 control
problem for the system G in (6.3) is to find a controller K such that Fl(G, K )

is comprehensively admissible and the H2 norm of the closed-loop Tzw in (6.4) is
minimized.

We introduce the concept of quasi-admissible solution to GAREs for the nonstan-
dard problem defined previously. Relied on this concept, a solution to Problem6.1
is presented.

6.2.1 Quasi-admissible Solutions to GAREs

It is well known that the standard H2 control problem for continuous-time descriptor
systems is closely related to the following two GAREs.
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⎧⎨
⎩

E� X = X�E,

A� X + X� A + C�
1 C1

−(C�
1 D12 + X� B2)(D�

12D12)
−1(D�

12C1 + B�
2 X) = 0;

(6.9)

⎧⎨
⎩

EY = Y �E�,

AY + Y � A� + B1B�
1−(B1D�

21 + Y �C�
2 )(D21D�

21)
−1(D21B�

1 + C2Y ) = 0.
(6.10)

Solvability condition to the standard H2 control problem is based on the following
assumptions.

(A3). (E, A, B2) is finite dynamics stabilizable and impulse controllable.

(A4).
[

A − s E B2

C1 D12

]
has no invariant zeros on the imaginary axis including infinity;

(A5). (E, A, C2) is finite dynamics detectable and impulse observable.

(A6).
[

A − s E B1

C2 D21

]
has no invariant zeros on the imaginary axis including infinity.

The conditions (A3) and (A5) guarantee the existence of a controller K inter-
nally stabilizing the closed-loop systemFl(G, K ). Moreover, it is known that, under
Assumptions (A1) and (A2), the GARE (6.9) has an admissible solution if the con-
ditions (A3) and (A4) hold. Similarly, the GARE (6.10) has an admissible solution if
the conditions (A5) and (A6) hold. Admissible solutions to the two GAREs form the
optimal H2 controller. A more comprehensive discussion about GARE is given in
Appendix B. However, as for Problem6.1, (A3) and (A5) are obviously not fulfilled
due to the presence of unstable and nonproper weights Wi and Wo. In order to solve
such nonstandard GAREs, we relax conventional admissible solutions and define the
following quasi-admissible solutions.

Definition 6.2 (Quasi-admissible Solution) Let X and Y be solutions to the GAREs
(6.9) and (6.10), respectively. Define

F = −(D�
12D12)

−1(D�
12C1 + B�

2 X), (6.11)

L = −(B1D�
21 + Y �C�

2 )(D21D�
21)

−1. (6.12)

(i) Asolution X to theGARE (6.9) is called a quasi-admissible solution if E� X ≥
0 and the closed-loop systemdefined by

[
A + B2F − s E B2

C1 + D12F D12

]
is admissible.

(ii) A solution Y to the GARE (6.10) is called a quasi-admissible solution if EY ≥
0 and the closed-loop system defined by

[
A + LC2 − s E B1 + L D21

C2 D21

]
is

admissible.

Also, let us introduce a relaxed version of the aforementioned standard assump-
tions that give sufficient conditions for the existence of quasi-admissible solutions
to the GAREs (6.9) and (6.10).

(A3’) (Ē, Ā11, B̄12) is finite dynamics stabilizable and impulse controllable.
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(A4’)
[

Ā11 − s Ē B̄12

C̄11 D12

]
has no invariant zeros on the imaginary axis including

infinity.

(A5’) (Ê, Â22, Ĉ22) is finite dynamics detectable and impulse observable.

(A6’)
[

Â22 − s Ê B̂21

Ĉ22 D21

]
has no invariant zeros on the imaginary axis including

infinity.

The following theorem gives a condition to the existence of a quasi-admissible
solution to the GARE (6.9).

Theorem 6.1 Under Assumptions (A0)–(A2), (A3’), and (A4’), if there exist matrices
Ui ∈ R

(ng+no)×ni , Vi ∈ R
(ng+no)×ni , and Fa ∈ R

m×ni such that the following general-
ized Sylvester equation holds

⎧⎨
⎩

B̄12Fa = Ā11Vi − Ā12 − Ui Ai ,

D12Fa = C̄11Vi − C̄12,

ĒVi = Ui Ei ,

(6.13)

then the GARE (6.9) with regard to the partition (6.5) admits a quasi-admissible
solution. Moreover, the quasi-admissible solution X is given by

X = [
I Ui

]�
Xc

[
I Vi

]
, (6.14)

where Xc is an admissible solution to the GARE

⎧⎪⎨
⎪⎩

Ē� Xc = X�
c Ē,

Ā�
11Xc + X�

c Ā11 + C̄�
11C̄11

−(C̄�
11D12 + X�

c B̄12)(D�
12D12)

−1(D�
12C̄11 + B̄�

12Xc) = 0,

(6.15)

Proof Under Assumptions (A3’) and (A4’), the GARE (6.15) has an admissible
solution Xc. Using matrices Ui and Vi satisfying (6.13), there holds

E� X =
[

Ē�
E�

i U�
i

]
Xc

[
I Vi

]

=
[

Ē�
V �

i Ē�

]
Xc

[
I Vi

]

= [
I Vi

]�
Ē� Xc

[
I Vi

]
≥ 0,

since Xc is an admissible solution to (6.15), i.e., Ē� Xc ≥ 0. The first equation
of (6.15), that is Ē� Xc = X�

c Ē , implies
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E� X = [
I Vi

]�
X�

c

[
Ē ĒVi

]
= [

I Vi
]�

X�
c

[
Ē Ui Ei

]

= [
I Vi

]�
X�

c

[
I Ui

] [
Ē 0
0 Ei

]

= X�E .

Moreover, using the partition shown (6.5) gives

A� X + X� A + C�
1 C1 − (C�

1 D12 + X� B2)(D�
12D12)

−1(D�
12C1 + B�

2 X)

=
[
�11 �12

��
12 �22

]
,

where

�11 = Ā�
11Xc + X�

c Ā11 + C̄�
11C̄11

− (C̄�
11D12 + X�

c B̄12)(D�
12D12)

−1(D�
12C̄11 + B̄�

12Xc)

=0.

By (6.13), it is observed that �12 = �11Vi . Hence �12 = 0. In addition, we have
�22 = V �

i �11Vi = 0. Hence, X given in (6.14) satisfies the GARE (6.9). Now, it

suffices to prove that the closed-loop system T =
[

A + B2F − s E B2

C1 + D12F D12

]
is admis-

sible. To this end, let us define

Fc = −(D�
12D12)

−1(D�
12C̄11 + B̄�

12Xc).

Substituting X in (6.11) leads to

F = [
Fc Fa + FcVi

]
.

Define two transformation matrices M and N as follows

M =
[

I Ui

0 I

]
, N =

[
I −Vi

0 I

]
.

Then, it is easy to see that an alternative representation of T is

T =
[

Ā11 + B̄12Fc − s Ē B̄12

C̄11 + D̄12Fc D12

]
.

Since Fc is the stabilizing gain of the GARE (6.15), the closed-loop system T is
admissible. This ends the proof. �
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A quasi-admissible solution to the GARE (6.10) is characterized in the following
theorem.

Theorem 6.2 Under Assumptions (A0)–(A2), (A5’), and (A6’), if there exist matrices
Uo ∈ R

no×(ng+ni ), Vo ∈ R
no×(ng+ni ), and La ∈ R

no×p such that the following gener-
alized Sylvester equation holds

⎧⎨
⎩

LaĈ22 = AoVo − Â12 − Uo Â22,

La D21 = −Uo B̂21 − B̂11,

Uo Ê = EoVo,

(6.16)

then the GARE (6.10) with regard to the partition (6.7) admits a quasi-admissible
solution. Moreover, the quasi-admissible solution Y is given by

Y = [
V �

o I
]�

Yo
[−U�

o I
]
, (6.17)

where Yo is the admissible solution to the GARE

⎧⎨
⎩

ÊYo = Y �
o Ê�,

Â22Yo + Y �
o Â�

22 + B̂21 B̂�
21

−(B̂21D�
21 + Y �

o Ĉ�
22)(D21D�

21)
−1(D21 B̂�

21 + Ĉ22Yo) = 0.
(6.18)

Proof By the same thread of Theorem6.2. �

6.2.2 Optimal Controller

Based on quasi-admissible solutions to the GAREs, we provide an explicit form
of the optimal comprehensive H2 controller and also prove the optimality of the
resulting closed-loop system.

Lemma 6.1 Suppose that there exist quasi-admissible solutions X and Y to the two
GAREs (6.9) and (6.10), respectively. Consider the following systems

T1 :=
⎡
⎣ AF − s E −B2F

0 AL − s E
B1

BL

CF −D12F D11

⎤
⎦ , (6.19)

T2 :=
[

AF − s E B2

CF D12

]
, (6.20)

T3 :=
[

AL − s E BL

C2 D21

]
, (6.21)

where AF = A + B2F, AL = A + LC2, CF = C1 + D12F, BL = B1 + L D21, and
F, L are defined in (6.11)and (6.12), respectively. Then, T1, T2, and T3 are admissible.
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Proof Suppose that the GAREs (6.9) and (6.10) admit quasi-admissible solutions
X and Y given in (6.14) and (6.17), respectively. Let Xc and Yo be the admissible
solutions to the GAREs (6.15) and (6.18), respectively. Then define Fc and Lo as

Fc = −(D�
12D12)

−1(D�
12C̄11 + B̄�

12Xc),

Lo = −(B̂21D�
21 + Y �

o Ĉ�
22)(D21D�

21)
−1.

Substituting X and Y in (6.11) and (6.12), respectively, yields

F = [
Fc Fa + FcVi ,

]
, L =

[
La − Uo Lo

Lo

]
.

Define two transformation matrices M1 and N1 as follows:

M1 =
[

I Ui

0 I

]
, N1 =

[
I −Vi

0 I

]
.

Then, an alternative representation of T2 is given as

T2 =
[

Ā11 + B̄12Fc − s Ē B̄12

C̄11 + D̄12Fc D12

]
. (6.22)

Since Fc is the admissible gain of the GARE (6.15), (Ē, Ā11 + B̄12Fc) is admis-
sible. Hence, the system T2 is admissible. By the same thread, with the following
transformation matrices

M2 =
[

I Uo

0 I

]
, N2 =

[
I −Vo

0 I

]
,

we can obtain an alternative representation of T3

T3 =
[

Â22 + LoĈ22 − s Ê B̂21 + Lo D̂21

Ĉ22 D21

]
. (6.23)

Since Lo is the admissible gain of the GARE (6.18), the system T3 is admissible.

Finally, let
[

F̂1 F̂2

]
= F be a partition compatible with (6.7). The admissibility of

T1 can be conducted through the following transformation matrices

M =
[M1 0

0 M2

]
, N =

[N1 0
0 N2

]
. (6.24)

Hence, T1 can be equivalently rewritten as
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T1 =
⎡
⎢⎣

Ā11 + B̄12Fc − s Ē B̄12
(
F̂1Vo − F̂2

)
0 Â22 + LoĈ22 − s Ē

B̄11 + Ui B̄21

B̂21 + Lo D̂21

C̄11 + D̄12Fc D12
(
F̂1Vo − F̂2

)
D11

⎤
⎥⎦ . (6.25)

Thus, it is clear that the system T1 is admissible. �

The following equation

T1(∞) − T2(∞)�T3(∞) = 0, � ∈ R
m×p. (6.26)

is a necessary and sufficient condition for the existence of a stabilizing controller K
such that the underlying closed loop is strictly proper. Note that the realizations of
Ti (s), (i = 1, 2, 3) are regular and impulse-free, so the underlying transfer matrices
can be computed. Then, Ti (∞) can be calculated by taking s to infinity for Ti (s).

Now, we are in a position to give a solution to Problem6.1.

Theorem 6.3 Suppose that Assumptions (A0)–(A2), (A3’)–(A6’) hold, and the two
generalized Sylvester equations (6.13) and (6.16) admit solutions. For a given G
in (6.3), there exists an optimal comprehensive H2 controller if and only if the fol-
lowing conditions hold

(I) Equation (6.26) with T1, T2, and T3 defined in (6.25), (6.22), and (6.23) admits
a solution �.

(II) (E, A + B2F + LC2 + B2�C2) is regular.

Moreover, the resulting optimal comprehensive H2 controller is given by

K =
[

A + B2F + LC2 + B2�C2 − s E −B2� − L
F + �C2 −�

]
, (6.27)

where F and L are defined in (6.11) and (6.12), respectively.

Proof Under the conditions (I) and (II), there holds

‖Fl(G, K )‖2 = ‖Fl (G,Fl(J,�))‖2 = ‖Fl (Fl(G, J ),�)‖2 ,

where

J =
⎡
⎣ A + B2F + LC2 − s E −L B2

F 0 I
−C2 I 0

⎤
⎦ .

Using the same transformation matrices M and N in (6.24) leads to

‖Fl(G, K )‖2 = ‖T1(s) − T2(s)�T3(s)‖2.

According to Theorem 11 in [TK98], ‖T1(s) − T2(s)�T3(s)‖2 is minimal. �
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Fig. 6.2 Numerical example for comprehensive H2 control

Example 6.1 Consider the overall weighted system in Fig. 6.2 with α = 0.1 and
τ = 0.5. It consists of an unstable system with an additive disturbance described by
an integral model and a nonproper weight on the control deviation to get roll-off at
high frequency. The input-output relationship is given by

⎡
⎣z1(s)

z2(s)
y(s)

⎤
⎦ =

⎡
⎣

0.5(s+2)
s 0.5(s + 2)

− 1
s

1
s−1

0.1(s−10)
s

1
s−1

⎤
⎦ [

w(s)
u(s)

]
.

Equivalently, this system can also be represented as (6.3) by

E =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎣

0
−1
1
0

⎤
⎥⎥⎦ , C1 =

⎡
⎢⎢⎣

0 0
0.5 0
0 1
1 −1

⎤
⎥⎥⎦

�

, C2 =

⎡
⎢⎢⎣

0
0
1

−1

⎤
⎥⎥⎦

�

,

D11 = [
0.5 0

]�
, D12 = [

1 0
]�

, D21 = 0.1.

It is shown that the related assumptions hold. Applying Theorems6.1 and 6.2,
and solving the generalized Sylvester equations and GAREs lead to
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Ui =
⎡
⎣ 1

0
−1

⎤
⎦ , Vi =

⎡
⎣ 1

0
−1

⎤
⎦ , Fa = −1,

U0 =
[
0 0
0 0

]
, V0 =

[
0 0
0 0

]
, La =

[
0
0

]
,

X =

⎡
⎢⎢⎣

0.5661 0 1.7732 −1.2071
4.9055 1 9.3351 −4.4297
1.7732 0 5.7887 −4.0154

−1.2071 0 −4.0154 2.8083

⎤
⎥⎥⎦ , Y =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 2.42 2.2
0 0 2.2 2.2

⎤
⎥⎥⎦ ,

F = [
3.1322 0.5 3.5465 −1.4142

]
, L� = [

0 0 −22 −10
]
.

Moreover, solving the equation (6.26) gives � = −5. Hence, the resulting optimal
H2 controller is

K = −10(s + 11.53)(s + 0.2453)

s(s + 9.694)(s + 5.571)
.

The four poles of the underlying closed-loop system are {−1.632 ± 0.4057i,−1,
−10}, and the H2 norm of the closed-loop system is ‖Tzw‖2 = 4.0318.

Note that K has, as expected, a relative degree of 1 and an integral action. Nearly
the same H2 norm can be obtained through pre-stabilizing the integral disturbance
model and incorporating the filter 1

1+τs as proposed in [CS92]. It is also shown that
the unstable model of the disturbance is hidden in the closed-loop system.

6.3 Comprehensive H∞ Control

In this section, we present a solution to the H∞ performance control under unstable
and nonproper weights. The existence of a solution to this problem is characterized
in terms of two generalized Sylvester equations and two GAREs together with a
spectral radius condition. We adopt the notations defined previously.

Problem 6.2 (Comprehensive H∞ Control Problem) Given γ > 0, the comprehen-
sive H∞ control problem for the system G in (6.3) is to find a controller K such that
Fl(G, K ) is comprehensively admissible and the H∞ norm of the closed-loop Tzw

satisfies ‖Tzw‖∞ < γ.

Theorem 6.4 Suppose that Assumptions (A0)–(A2), (A3’)–(A6’) hold. Then Prob-
lem6.2 is solvable, if and only if the following conditions hold.

(i) There exist matrices Ui ∈ R
(ng+no)×ni , Vi ∈ R

(ng+no)×ni , Fa ∈ R
m×ni , Uo ∈

R
no×(ng+ni ), Vo ∈ R

no×(ng+ni ) and La ∈ R
no×p such that the following two gener-

alized Sylvester equations hold
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⎧⎨
⎩

B̄12Fa = Ā11Vi − Ā12 − Ui Ai ,

D12Fa = C̄11Vi − C̄12,

ĒVi = Ui Ei .

(6.28)

⎧⎨
⎩

LaĈ22 = AoVo − Â12 − Uo Â22,

La D21 = −Uo B̂21 − B̂11,

Uo Ê = EoVo.

(6.29)

(ii) There exists an admissible solution Xc to the GARE

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ē� Xc = X�
c Ē ≥ 0,

( Ā11 − B̄12(D�
12D12)

−1D�
12C̄11)

� Xc + X�
c ( Ā11 − B̄12(D�

12D12)
−1D�

12C̄11)

+C̄�
11(I − D12(D�

12D12)
−1D�

12)C̄11

+X�
c

(
1
γ2BB� − B̄12(D�

12D12)
−1 B̄�

12

)
Xc = 0, (6.30)

where B = B̄11 + Ui Bi .
(iii) There exists an admissible solution Yo to the GARE

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ÊYo = Y �
o Ê� ≥ 0,

( Â22 − B̂21D�
21(D21D�

21)
−1Ĉ22)Yo + Y �

o ( Â22 − B̂21D�
21(D21D�

21)
−1Ĉ22)

�

+B̂21(I − D�
21(D21D�

21)
−1D21)B̂�

21

+Y �
o

(
1
γ2 C�C − Ĉ�

22(D21D�
21)

−1Ĉ22

)
Yo = 0, (6.31)

where C = CoVo − Ĉ12.
(iv) The spectral radius ρ(Y X) < γ2, where

X = [
I Ui

]�
Xc

[
I Vi

]
, Y = [−V �

o I
]�

Yo
[−U�

o I
]
.

Moreover, the set of comprehensive H∞ controllers is parameterized by

K∞ = Fl(J∞, Q∞), ‖Q∞‖∞ < γ, (6.32)

J∞ =
⎡
⎣ A∞ − s E B1∞ B2∞

C1∞ 0 (D�
12D12)

−1D�
12

C2∞ D�
21(D21D�

21)
−1 0

⎤
⎦ , (6.33)
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where

A∞ = A + B2C1∞ − B1∞C2 + 1
γ2 (B1 − B1∞ D21)B�

1 X,

B1∞ = Z�(C2 + 1
γ2 D21B�

1 X)�(D21D�
21)

−1 + B1D�
21(D21D�

21)
−1,

B2∞ = (B2 − Z�C�
1∞)(D�

12D12)
−1D�

12,

C1∞ = −(D�
12D12)

−1(B�
2 X + D�

12C1),

C2∞ = −D�
21(D21D�

21)
−1(C2 + 1

γ2 D21B�
1 X),

Z = (I − 1
γ2 Y X)−1Y.

To prove Theorem6.4, we need Lemma5.3 and Theorem5.3 given in Chap.5.
For the purpose of convenience, we summarize the related results in the following
lemma.

Lemma 6.2 Given G in (6.3), suppose that Assumptions (A0), (A3’), and (A4’) hold.
(i) There exists a controller such that the closed-loop system is comprehensively

admissible if and only if there exist Ui , Vi , Fa, Uo, Vo, and Lo satisfying the gener-
alized Sylvester equations (6.28) and (6.29).

(ii) All controllers making G comprehensively admissible is parameterized as

K = Fl(J, Q), Q ∈ RH∞, (6.34)

J :=
⎡
⎣ A + B2F + LC2 − s E −L B2

F 0 I
−C2 I 0

⎤
⎦ , (6.35)

where

F = [
Fc Fa + FcVi

]
, L =

[
La − Uo Lo

Lo

]
,

with Fc and Lo such that (Ē, Ā11 + B̄12Fc) and (Ê, Â22 + LoĈ22) are admissible,
respectively.

Proof of Theorem6.4. Necessity: If there exists a controller K solving Problem6.2,
according to Lemma6.2, the generalized Sylvester equations (6.28) and (6.29) hold.
Moreover, there exist admissible solutions Xc and Yo to theGAREs (6.30) and (6.31),
respectively, since Assumptions (A0)–(A2), (A3’)–(A6’) hold. Now we prove that
the condition related to the spectral radius holds. With the parametrization of the
controller K given in Lemma6.2, there holds

Fl(G, K ) = Fl(G,Fl(J, Q)) = Fl(G J , Q).

http://dx.doi.org/10.1007/978-981-10-3677-4_5
http://dx.doi.org/10.1007/978-981-10-3677-4_5


6.3 Comprehensive H∞ Control 99

where,

G J = Fl(G, J ) =

⎡
⎢⎢⎣

A + B2F − s E B2F B1 B2

0 A + LC2 − s E −B1 − L D21 0
C1 + D12F D12F D11 D12

0 −C2 D21 0

⎤
⎥⎥⎦ .

With Ui , Vi , Uo, and Vo being solutions to (6.28) and (6.29), we define

M1 =
[

I Ui

0 I

]
�

[
M11

M12

]
, N1 =

[
I −Vi

0 I

]
,

M2 =
[

I Uo

0 I

]
, N2 =

[
I −Vo

0 I

]
�

[
N21 N22

]
.

Left- and right-multiplyingG J by diag(M1, M2) and diag(N1, N2), respectively, lead
to an alternative representation of G J as

G J =

⎡
⎢⎢⎣

Ā11 + B̄12Fc − s Ē B̄12F N22 B̄11 + Ui B̄21 B̄12

0 Â22 + LoĈ22 − s Ê −B̂21 − Lo D21 0

C̄1 + D12Fc D12F N22 D11 D12

0 −Ĉ22 D21 0

⎤
⎥⎥⎦ . (6.36)

Since the system G J satisfies the standard assumptions [WYC06], the standard H∞
control problem associated with G J is solvable. From the realization in (6.36), we
form an admissible solution to the underlying GARE as X J = diag(Xc, 0), where
Xc is an admissible solution to the GARE (6.30). Furthermore, let us define

� =
⎡
⎣I M11

[−Uo

I

]

0 I

⎤
⎦ , � =

[
I − [

I Vi
]

N22

0 I

]
.

By � and �, the system G J can be represented alternatively as

G J =

⎡
⎢⎢⎢⎣

Ā11 + B̄12Fc − s Ē M11LĈ22 −M11L D21 B̄12

0 Â22 + LoĈ22 − s Ê −B̂21 − Lo D21 0
C̄1 + D12Fc Ĉ12 − Ĉ11Vo D11 D12

0 −Ĉ22 D21 0

⎤
⎥⎥⎥⎦ .

With this realization, we define ŶJ = diag(0, Yo), where Yo is an admissible solution
to the GARE (6.31). Then, an admissible solution YJ to the underlying GARE with
respect to this realization is formed by YJ = �ŶJ �

−�. Hence,

ρ(YJ X J ) = ρ(N11N22YoM�
21M�

11Xo) = ρ(Y X) < γ2.
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Sufficiency: Suppose that the conditions (i)–(iv) hold. We prove that there exists
a controller K solving Problem6.2 and the controller K can be parameterized by
Theorem6.4. To this end, define

Fc = −(D�
12D12)

−1(B̄�
12Xc + D�

12C̄11),

Lo = −(Y �
o Ĉ�

22 + B̂21D�
21)(D21D�

21)
−1.

Note that Xc and Yo are admissible solutions to the GAREs (6.30) and (6.31), respec-
tively. Hence, (Ē, Āc), and (Ê, Âo) are both admissible, where

Āc = Ā11 − B̄12(D�
12D12)

−1D�
12C̄11 +

(
1

γ2
BB� − B̄12(D�

12D12)
−1 B̄�

12

)
Xc,

Âo = Â22 − B̂21D�
21(D21D�

21)
−1Ĉ22 + Y �

o

(
1

γ2
C�C − Ĉ�

22(D21D�
21)

−1Ĉ22

)
.

Furthermore, define

FX = −(D�
12D12)

−1(B�
2 X + D�

12C1),

LY = −(Y �C�
2 + B1D�

21)(D21D�
21)

−1.

After simple computation, there holds

FX = [
Fc Fa + FcVi

]
, LY =

[
La − Uo Lo

Lo

]
.

Hence, FX and LY satisfy Lemma6.2. Then, we consider the system G J defined
in (6.36), where J is given in (6.35) with F = FX and L = LY . It has been shown
that X J and YJ are admissible solutions to the underlying GAREswith respect to G J ,
and ρ(YJ X J ) < γ2. Therefore, the standard H∞ control problem associated with G J

is solvable and the set of H∞ controllers is parameterized by

K = Fl(J ,Q), ‖Q‖∞ < γ,

where J is computed from (6.33) with respect to X J and YJ . Then, we construct

K = Fl(J,K) = Fl(Fl(J,J ),Q).

Hence,

Fl(G, K ) = Fl(Fl(G, J ),K) = Fl(G J ,K),

which indicates that ‖Fl(G, K )‖∞ < γ. Note that G J is admissible and G J22 induced
from G J is zero. Hence, its H∞ controllerK is admissible. According to Lemma6.2,
comprehensive admissibility for Fl(G, K ) is achieved. Therefore, Problem6.2 is
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Fig. 6.3 A mixed sensitivity problem

solvable. In addition, after straightforward computation, there holds

J = Fl(ϒ J−1ϒ, J∞), ϒ =
[
0 I
I 0

]
.

�

Example 6.2 Consider the mixed sensitivity problem in Fig. 6.3 that yields the trans-
fer matrix from w to (zT

1 , zT
2 )T as

Tzw =
[−W1K (I − H K )−1W3

−W2(I − H K )−1W3

]
,

where W1 = 0.5s − 0.1, W2 = 1/s, W3 = (1 + 5s)/4(1 − 5s), H = 1/(s − 1), and
K is the controller to be design. The objective here is to find K such that ‖Tzw‖∞ < 1.
This overall weighted system can be represented as in (6.3) by

E =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 5

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 0 0 1 −1
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , B1 =

⎡
⎢⎢⎢⎢⎣

0
0

−0.25
0

−0.5

⎤
⎥⎥⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎢⎢⎣

0
−1
0
1
0

⎤
⎥⎥⎥⎥⎦ , C1 =

[
0 0.5 0 0 0
0 0 1 0 0

]
, C2 = [

0 0 0 1 −1
]
,

D11 =
[
0
0

]
, D12 =

[−0.1
0

]
, D21 = 0.25.
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Solving the generalized Sylvester equations (6.28) and (6.29) gives

Ui =

⎡
⎢⎢⎣
0.16
0
0

−0.2

⎤
⎥⎥⎦ , Vi =

⎡
⎢⎢⎣
0.8
0.16
0

−1

⎤
⎥⎥⎦ , Fa = −0.8,

Uo =

⎡
⎢⎢⎣
0 0
0 0
0 0
0 0

⎤
⎥⎥⎦ , Vo =

⎡
⎢⎢⎣
0 0
0 0
0 0
0 0

⎤
⎥⎥⎦ , La =

⎡
⎣ 0

0
−1

⎤
⎦ .

Then, solving the GAREs (6.30) and (6.31) yields

Xc =

⎡
⎢⎢⎣
1.0466 0 0.5923 1.9480
2.1573 0 2.3153 5.3837
0.5923 0 1.8517 2.1968
1.9480 0 2.1968 4.9941

⎤
⎥⎥⎦ , Yo =

[
0.2813 0.4688
0.0938 0.1563

]
,

which leads to

X =

⎡
⎢⎢⎢⎢⎣

1.05 0 0.60 1.94 −1.11
2.16 0 2.3153 5.38 −3.66
0.59 0 1.85 2.20 −1.72
1.95 0 2.20 4.99 −3.44

−0.22 0 −0.34 −0.69 0.51

⎤
⎥⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.28 0.47
0 0 0 0.09 0.16

⎤
⎥⎥⎥⎥⎦ .

Therefore, the central H∞ controller with Q∞ = 0 is

K∞ = 759.796(s2 + 0.09234s + 0.02681)

s(1 − 5s)(s + 18.51)(s + 4.379)

and the H∞ norm of the closed-loop system is ‖Tzw‖∞ = 0.9972. As expected,
the controller contains poles at s = 0 and s = 0.2 for a perfect rejection of con-
stant and unbounded disturbance specified by the weights W2 and W3. At the same
time, the weight W1 allows the control input to be divergent for counteracting the
disturbance W3.

6.4 Conclusion

In this chapter, we have discussed the performance control problem subject to com-
prehensive admissibility requirement. Two typical performance indices that is H2 and
H∞ norms are adopted. Due to the use of unstable and nonproper weighting filters,
the so-called quasi-admissible solution is defined instead of conventional admissible
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solution to the underlying GAREs. It has been shown that the optimal comprehensive
H2 controller is conducted from quasi-admissible solutions to two GAREs, together
with solutions to two generalized Sylvester equations that are closely related to
comprehensive admissibility. As for the comprehensive H∞ control problem, the
necessary and sufficient conditions to the existence of a comprehensive H∞ con-
troller are deduced and a set of controllers is also explicitly parameterized in terms
of two generalized Sylvester equations and twoGARE together with a spectral radius
condition.

It is worthy of noting that the solutions presented in the current paper require
assumptions concerning the invariant zeros. These assumptions are indeed not nec-
essary and can be removed through the use of the structured controller explicitly given
in Theorem5.3 in Chap.5. With the structured controller, the comprehensive admis-
sibility problem is transformed into a standard problem for an augmented system
without weights. Hence, additional performance control objectives can be directly
tackled for this augmented system through LMI-based approaches in the literature.

http://dx.doi.org/10.1007/978-981-10-3677-4_5


Chapter 7
Parametric Sensitivity Constrained
LQ Control

Finding a parametric sensitivity constrained linear quadratic controller by includ-
ing a quadratic trajectory sensitivity to the standard quadratic cost functional is still
of major importance from a practical point of view. Since the seminal works of
Kreindler [Kre69] and Newmann [New70], the system sensitivity to parameter vari-
ations has been handled in various ways through criterion sensitivity, closed-loop
eigenvalues sensitivity or trajectory sensitivity measures [FN77, KB88]. Sensitiv-
ity to parameter variation remains a relevant controller and filter design criterion as
attested by the large number of references on the subject. See, for instance, [AM13,
LP00, Apk11, FCH11]. When the bounds on parameter deviation are not a priori
known, it is still of interest to reduce the potential performance degradation due to
uncertain parameter deviation with respect to some nominal values [GY14].

Moreover, such a problem can pave the way to a potentially new parametric
sensitivity constrained H2 control design owing to the well-known superposition
principle. Even if many attempts have been carried out in the literature to solve
this problem in the H2 context [YC04, YC05], existing methods are still either
computationally unwieldy or suffer from an augmentation of the controller order.
In this chapter, we consider the problem of parametric sensitivity constrained linear
quadratic (SCLQ) control for uncertain linear time-invariant systems by the use of
descriptor systems. System sensitivity to parameter variation is handled through an
additional quadratic trajectory parametric sensitivity in the standard LQ criterion to
be minimized. The main purpose here is to find a suboptimal linear quadratic control
law that takes explicitly into account the parametric uncertainties.

In a first step, it is shown that the SCLQ problem leads to a singular infinite hori-
zon LQ optimal control problem, that is the matrix, conventionally denoted by R
weighting the input in the cost function is only positive semi-definite. Thus, relying
on a descriptor system approach [BL87, ITS03], the link between the SCLQ control
problem and a nonstandard Riccati equation with a pseudo-inverse of the weighting

© Springer Nature Singapore Pte Ltd. 2017
Y. Feng and M. Yagoubi, Robust Control of Linear Descriptor Systems,
Studies in Systems, Decision and Control 102, DOI 10.1007/978-981-10-3677-4_7
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matrix R is explicitly exhibited. Then, a new solution to the SCLQ problem is con-
ducted based on a Lur’e matrix equations formulation of the underlying nonstandard
Riccati equation.

Furthermore, we focus, in the last part of this chapter, on how to design a parsi-
monious partition of the uncertainty simultaneously with a set of SCLQ controllers
to improve the total insensitivity to parametric variations while preserving, as far as
possible, the classical robustness margins of the standard LQ controllers.

7.1 SCLQ Control Problem

Consider the uncertain linear system given by

ẋ = A(θ)x + B(θ)u, x(0) = x0, (7.1)

where A(θ) ∈ R
n×n and B(θ) ∈ R

n×m are matrix functions of a time-invariant para-
meter vector θ = [

θ1, . . . , θq
] ∈ R

q .
We focus on a parameter dependence such that A (θ) and B (θ) are matrix func-

tions with all entries of class Cnθ , nθ ≥ 1. The system given by (7.1) is assumed to

be controllable. Let us also define the trajectory sensitivity xθ = ∂x

∂θ
due to paramet-

ric deviation from a nominal value θ = θ0. To simplify the presentation, only the
first-order derivative term is considered in the sequel, although the results presented
in this chapter can be easily extended to the higher order derivative case.

Problem 7.1 (SCLQcontrol problem) The SCLQcontrol problem is to find a control
law u that minimizes the following linear quadratic cost functional

JSC =
∫ ∞

0
x�Qx + u�Ru + x�

θ Qθ xθdt, (7.2)

where Q and Qθ are positive semi-definite, and R is positive definite.

The trajectory sensitivity function, when differentiating the equations in (7.1)with
respect to θ is described by the following state-space equation

ẋθ = Aθ x + (Iq ⊗ A)xθ + Bθu + (Iq ⊗ B)uθ , xθ (0) = 0, (7.3)

with Aθ = ∂A(θ)

∂θ

∣∣∣
θ=θ0

, Bθ = ∂B(θ)

∂θ

∣∣∣
θ=θ0

and uθ = ∂u

∂θ
.

To solve the SCLQ problem, Fleming and Newmann used a full state feedback
control law of the form [FN77]

u = Kx + Fxθ . (7.4)
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Clearly, in order to implement such a control law the trajectory sensitivity vector
xθ has to be simulated. Partially differentiating (7.4) with respect to θ gives

uθ = Kxθ + F
∂xθ

∂θ
. (7.5)

Then, substituting (7.4) and (7.5) into (7.3) leads to

ẋθ = (Aθ + BθK ) x + (Iq ⊗ B)F
∂xθ

∂θ
+ [

(Iq ⊗ A) + (Iq ⊗ B)K + Bθ F
]
xθ .

(7.6)

Thus, Fleming and Newmann proposed to neglect the second-derivative term
∂xθ

∂θ
in order to implement the control law (7.5). Unfortunately, neither optimality nor
robustness of the resulting dynamic state feedback control was discussed due to this
approximation. In fact, the real control law in this case is of the following form

u =
{
F

[
s Inq − (Iq ⊗ A) + (Iq ⊗ B)K + Bθ F

]−1
(Aθ + BθK ) + K

}
x . (7.7)

Authors in [KB88] adopted a structured control law as follows

u = [
K 0

] [
x
xθ

]
. (7.8)

Hence, the SCLQ problem can be formulated as an optimal structured constrained
LQ problem that is to find a state feedback gain K ∈ R

n×m such that the structured
control law given by [

u
uθ

]
= (Iq+1 ⊗ K )

[
x
xθ

]
(7.9)

minimizes an approximated objective function of the form

J =
∫ ∞

0

(
x̄�Qx̄ + ū�Rū

)
dt, R̄ = diag (R, ε Im) , Q̄ = diag (Q, Qθ ) ,

(7.10)

with x̄ =
[
x
xθ

]
, ū =

[
u
uθ

]
, and ε > 0 being small enough, under the following con-

straints
˙̄x = Āx̄ + B̄ū, x̄0 =

[
x0
0

]
,

Ā =
[

A 0
Aθ (Iq ⊗ A)

]
, B̄ =

[
B 0
Bθ (Iq ⊗ B)

]
.

(7.11)

Note that the cost functional J is a standard LQ cost functional since the matrix
R̄ > 0. This problem can be formulated as an optimization problem of a linear
objective under some bilinear matrix inequality (BMI) constraints. However, the
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underlying optimization control problem is hard to be addressed due to the type of
structure imposed by (7.9). One can note that the difficulty is accentuated in the case
where higher order trajectory sensitivity is considered.

7.2 New Solution to SCLQ Control Problem

In this section, we investigate the singular LQ control problem through the SCLQ
problem associated with the cost functional (7.2). Characterizing the solution to this
singular LQ problem will lead to a new formulation of the SCLQ problem where the
structure constraint (7.9) is simplified. Thereby, based on a connection to the Lur’e
matrix equations, an alternative solution to the SCLQ problem is conducted.

Consider the singular LQ problem that is to find a control law minimizing the
following objective function

Js =
∫ ∞

0

(
x̄� Q̄x̄ + ū� R̄ū

)
dt,

R̄ = diag (R, 0m) , Q̄ = diag (Q, Qθ ) .

(7.12)

The following theorem gives a solution to this singular LQ problem that is closely
related to the SCLQ problem defined previously.

Theorem 7.1 Let the matrix X∗ > 0 be the maximal solution to the following non-
standard Riccati equation

Ā�X + X Ā − X B̄ R̄† B̄�X + Q̄ = 0, (7.13)

where X ∈ R
n(q+1)×n(q+1) > 0 is an unknown matrix. Then, all solutions to the sin-

gular LQ problem are given by

ū∗(t) = −R̄† B̄�X∗ x̄(t) + V�ũ(t), (7.14)

where ũ ∈ �2 is an arbitrary function and V = [
0 Im

]
. Moreover, the optimal cost

is given by J ∗
s = x̄�

0 X∗ x̄0.

Proof Consider the following augmented descriptor system

(�) :

⎧⎪⎪⎨
⎪⎪⎩

Ea

[ ˙̄x
ξ̇

]
= Aa

[
x̄
ξ

]
+ (Ea x̄0) w + Baū,

z = Ca

[
x̄
ξ

]
+ Daū,

(7.15)
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where

Ea =
[
In(q+1) 0

0 0

]
, Aa =

[
Ā 0
0 −I

]
, Ba =

[
B̄
V

]
,

Ca =
[
diag

(
Q̄1/2, 0

)
V

]
, Da =

[
0

diag
(
R1/2,−I

)] ,

and w is a virtual exogenous input. Thus, there holds

∫ ∞

0
z�zdt =

∫ ∞

0

[
x̄� Q̄1/2 u�R1/2 0

]⎡
⎣Q̄1/2 x̄
R1/2u
0

⎤
⎦ dt

=
∫ ∞

0
x̄� Q̄x̄ + u�Rudt =

∫ ∞

0
x̄� Q̄x̄ + ū� R̄ūdt

=Js .

According to Lemma 10 in [ITS03], the descriptor system � (7.15) satisfies the
following condition

[
x̄�
0 0

]
Ker

(
E�
a

) = {0}. Hence, the following static feedback
gain

K ∗ = − (
D�

a Da
)−1 (

D�
a Ca + B�

a P
)

(7.16)

minimizes Js with the matrix P being a stabilizing solution to the following GARE

{
E�
a P = P�Ea,

A�
a P + P�Aa + C�

a Ca − (
C�
a Da + P�Ba

) (
D�

a Da
)−1 (

D�
a Ca + B�

a P
) = 0.
(7.17)

Note that the sufficient solvability conditions [TK98] for the GARE (7.17) obviously
hold for the descriptor system �. Let us now partition the matrix P as

P =
[
X P1
P2 P3

]
, P3 ∈ R

m .

Thus, the first equation of (7.17) leads to X = X� and P1 = 0. The second one gives

Ā�X + X Ā + Q̄ − (
X B̄ + P�

2 V
)
(diag (R,−I ))−1

(
X B̄ + P�

2 V
)� = 0, (7.18)

P2 + (
I + P�

3

)
V (diag (R,−I ))−1

(
X B̄ + P�

2 V
)� = 0, (7.19)

P3 + P�
3 + I + (

I + P�
3

)
V (diag (R,−I ))−1 V� (I + P3) = 0. (7.20)

From the Eq. (7.20), it follows that P3 = 0. Hence, substituting P3 = 0 into (7.19)
yields

V B̄�X = 0. (7.21)
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Note that the following equality holds

(X B̄) (diag(R, I ))−1 (X B̄)� = (X B̄) (diag(R, I ))−1 (X B̄)� + (X B̄)V�V (X B̄)�.

Therefore, the Eq. (7.18) leads to (7.13). Furthermore, according to (7.16) the optimal
state feedback gain is given by

K ∗ = −
[
R−1 0
0 −I

] [
B̄�X∗ V� ]

.

Thus, by (7.21) there holds

ū (t) = K ∗
[
x̄
ξ

]

=
[([−R−1 0

0 0

]
+

[
0
V

])
B̄�X∗ V�

] [
x̄
ξ

]

= [−R̄† B̄�X∗ V� ] [
x̄
ξ

]

= −R̄† B̄�X∗ x̄ + V�ξ.

Moreover, on account of the structure of the matrix R̄, a control law given in (7.14)
is optimal. Finally, according to Theorem 11 in [ITS03], the optimal cost in this case
is given by J ∗

s = x̄�
0 E�

a PEa x̄0 = x̄�
0 X∗ x̄0. �	

Theorem 7.1 characterizes all optimal solutions of the singular LQ problem. Since
this singular LQ problem can be viewed as a special case of the defined SCLQ control
problem, a new solution to the latter is thus conducted. Nevertheless, neither the
nonstandard Riccati Eq. (7.13) nor the GARE (7.17) is helpful to solve numerically
the SCLQ problem because of the structured constraint (7.8). The following result
provides a new LMI formulation of a suboptimal SCLQ control problem relying on
the Lur’e matrix equations. Interested readers may refer, for instance, to [Rei11] and
references therein for more information concerning the Lur’e matrix equations.

Theorem 7.2 Suppose that the following matrix equations are solved for X ∈
R

n(q+1)×n(q+1) and K0 ∈ R
m×n

⎧⎨
⎩

Ā�X + X Ā + Q̄ = diag
(
K�

0 K0, 0qn
)
,

X B̄ = diag
(
K�

0 R1/2, 0qn×m
)
,

X = X� > 0.
(7.22)

Then u∗ = −R−1/2K0x is an optimal solution to the SCLQ problem.

Proof According to Theorem 7.1, the SCLQ problem admits ū∗ given by (7.14) as an
optimal solution with X∗ > 0 being the maximal solution to the nonstandard Riccati
Eq. (7.13). Thus, X∗ is also a maximal solution to the following Lur’e equations
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⎧⎨
⎩

Ā�X + X Ā + Q̄ = K�
1 K1,

X B̄ = K�
1 L1,

R̄ = L�
1 L1,

(7.23)

where (K1, L1) ∈ R
p×(q+1)n × R

p×m with p ≤ m.Moreover, since R̄=diag (R, 0m)

and R > 0, we have L1 = [
R1/2 0

]
.

The solution to (7.23) implies that K1 x̄ + L1ū = K1 x̄ + R1/2u = 0. Note that a
sufficient condition for obtaining a structured state feedback gain of the form (7.8)
is K1 = [

K0 0
]
. Hence, it is easy to see that (7.23) reduces to (7.22). The control

law u∗ = −R−1/2K0x is an optimal solution to the SCLQ problem since the choice
ũ = − [

Iq+1 ⊗ (
R−1/2K0

)]
xθ can be made without loss of the optimality according

to Theorem 7.1. �	
The condition (7.22)may be regarded as a necessary and sufficient condition to the

existence of a structured solution to the optimal SCLQ problem. If the Eq. (7.22) does
not admit a solution, then it is possible to find a suboptimal SCLQ controller. In fact,
suppose that the symmetric matrix X∗ is the maximal solution to the Lur’e matrix
Eq. (7.23). According to the LMI formulation of the LQ problem [BGFB94], solving
the following optimization problem with a linear objective subject to LMI/LME
(linear matrix equality) constraints

max
X,K0

x̄�
0 X∗ x̄0,

Ā�X + X Ā + Q̄ ≥ diag
(
K�

0 K0, 0qn
)
,

X B̄ = diag
(
K�

0 R1/20qn×m
)
,

X = X� > 0,

(7.24)

leads to a suboptimal SCLQ controller of the form u∗ = −R−1/2K0x .
The Lur’e equations allow formulating a suboptimal SCLQ problem as an opti-

mizationproblemof linear objective underLMI/LMEconstraintswhile taking explic-
itly into account the structured constraints (7.8).

7.3 Multiple SCLQ Controller Design

In order to have a reduced number of tuning parameters, we use, hereafter, the well-
known finite time controllability Gramian and some additional sensitivity reduction
parameters associatedwith each parameter θi , i ∈ {1, . . . , q}.We adopt the following
weighting matrices

R = Tc

∫ Tc

0

(
eAt B

) (
eAt B

)�
dt, Tc > 0,

Q = In,
Qθ = diag

(
σ1, . . . , σq

) ⊗ In, σi > 0.

(7.25)
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The set of tuning parameters σi has a direct effect on the sensitivity reduction from
a nominal value θ = θ0 and the extent of the parametric area.

7.3.1 Problem Formulation

Assume that N balls of predetermined, sufficiently small, radiuses δθ j centered on
θ = θ j , j ∈ {1, . . . , N }, and given by


θ j (
δθ j ,Rq

) = {
θ ∈ R

q/
∥∥θ − θ j

∥∥
2 ≤ δθ j

}
(7.26)

are uniformly distributed in the search space (i.e., parameter set). As an initialization
step, it is supposed that

∀ j ∈ {1, . . . , N } , 0 < δθ j <
(
ε
/
2
) ∥∥θ j − θ j+1

∥∥
2,

for some 0 < ε < 1. For each nominal value, namely θ = θ j , an SCLQ controller,
minimizing a criterion J j of the form (7.12), is synthesized bymeans of the following
set of tuning parameters Tc, σ

j
i∈{1,...,q} ∈ R where Tc is fixed and σ

j
i∈{1,...,q} = δθ j .

Problem 7.2 (Multiple SCLQ Control Problem) The multiple SCLQ control prob-
lem is to determine a set of radiuses δθ j and tuning parameters σ

j
i , i ∈ {1, . . . , q},

j ∈ {1, . . . , N } that solve the following optimization problem

max
δ j>0,σ j

i ,i∈{1,...,q}, j∈{1,...,N }

N∑
j=1

δθ j

max
j

M j
g < M̄g

max
j

M j
φ < M̄φ

max
j

M j
r < M̄r

max
j

M j
m < M̄m

σ
j
mi ≥ αδθ j

(7.27)

where M̄g , M̄φ , M̄r , and M̄m are some predetermined upper bounds on different
margins, α > 1, σ j

mi = min
i

σ
j
i , and M j

g , M
j
φ , M

j
r , M

j
m are the margins obtained with

the SCLQ controllers minimizing criterions J j and synthesized by means of Tc and
σ

j
i∈{1,...,q}.

The number of decision variables is N (1 + q). The margin constraints can be
considered entirely or in part. In fact, in some cases only the constraints on Mφ

and Mr are needed, since Mg and Mm are slightly degraded. To reduce the number
of decision variables, it is possible to substitute the last constraint in (7.27) by an
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equality constraint of the form ∀i ∈ {1, . . . , q} , σ
j
i = αδθ j with some given α > 1.

In other words, it is possible to limit the decision variables to the radiuses of the N
small balls given by (7.26). Moreover, the parameter α is used to reduce or expand
the space search for the parametric sensitivity reduction tuning parameters and from
thence it has a direct impact on the global computation time.

One can note that maximizing the criterion
N∑
j=1

δθ j implies a maximization of the

sensitivity tuning parameters σ
j
i , i ∈ {1, . . . , q}which is, indeed, needed for the sen-

sitivity reduction. In opposition, it is also the margin constraints in (7.27). Moreover,
the sample generation problem consisting of generating real vector samples θ j ∈ q ,
uniformly distributed in the search space 
, can be reduced to multiple random
vector generation for which the technique reported in [CDT99] can be used.

7.3.2 PSO-Based Algorithm

Firstly introduced in [EK95], particle swarm optimization (PSO) is inspired by the
social behavior, for instance, bird flocking or fish schooling. Let us consider the
following optimization problem

min
x∈

f (x), (7.28)

where particles are moving in the search space .
xkp and vk

p denote the position and velocity of particle p at iteration k, respectively.
Each particle is able to remember where it has found its best position, which is
defined as bkp = argmin( f (x)), x ∈ {bk−1

p , xkp}. Moreover, V (xkp) ⊂ {1, 2, . . . , P}
denotes the set of “co-particles” of particle p at iteration and gkp = argmin f (x),
x ∈ {bki , i ∈ V (xkp)} denotes the best position found by the co-particles of particle p
until iteration k.

The particles move in  according to the following transition equations

vk+1
p = c0.vk

p + c1 ◦ (bkp − xkp) + c2 ◦ (gkp − xkp),

xk+1
p = xkp + vk+1

p .
(7.29)

In this equation c0 is the inertia factor and c1 and c2 are random numbers in [0, c̄1]
and [0, c̄2], respectively. To guarantee the convergence of the PSO algorithm, the
choice of parameters (c0, c1, c2) is central [Tre03]. It is well known that, in case of a
large number of decision variables, the PSO algorithm may suffer from undesirable
convergence to local minima. This may be the case when dealing with the multiple
SCLQ control synthesis. To overcome this difficulty, some recent PSO modified
versions have been proposed. The underlying idea is to modify the rules (7.29)
so as to bring a random movement toward the best particle. Particularly, a step is
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considered as a success if the best value found by the particles is improved and a
failure otherwise. Then the number of consecutive successes and failures is used in
the modified transition rule.

Following the lines of the algorithm presented in [dBE02], the new transition rules
are considered as follows

vk+1
p = c0.vk

p + (gkp − xkp) + ρk(1 − 2r [0,1]),
xk+1
p = xkp + vk+1

p .
(7.30)

where r[0,1] denotes a random vector in [0, 1]. The value of ρk is updated at each
iteration according to the following

ρk+1 =
⎧⎨
⎩

2ρk if nb_success > sc,
0.5ρk if nb_ f ailure > fc,

ρk otherwise,
(7.31)

where nb_success is the number of consecutive successes, nb_ f ailure the number
of consecutive failures, and sc and fc are some additional tuning parameters.

The following algorithm sketches in few lines the proposed method for solving
the multiple SCLQ control problem.

Algorithm 7.1

Step 0 : Fix Tc, α > 1, ε < 1, N , and a maximum iteration number k̄.

Step 1 : Initialization

Generate N real vector samples θ j ∈ R
q , uniformly distributed in 
.

Choose randomly N parameters δθ j such that

0 < δθ j <
ε

2

∥∥θ j − θ j+1
∥∥
2.

Fix σ
j
i∈{1,...,q} = δθ j , j ∈ {1, . . . , N }.

Step 2 : PSO Optimization

Associate the particle positions in the perturbed PSO algorithm, with the
transition rule given by (31), to

xp = [
δ1, . . . , δN , σ 1

1 , . . . , σ N
1 , . . . , σ 1

q , . . . , σ N
q

]
.

Optimize (7.27) until a stopping criterion is verified or k̄ is reached.

Step 3 : Uncertainty Set Covering Test

Generate randomly N 2q points in 
. If all these points belong to
⋃
j


θ j
,

then stop. Else, set N = N + 1 and go to Step 1.
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Example 7.1 Consider a second order systemwith a rational parametric dependence
given by

ẋ =
[

θ3 − 1 0
1 −1

θ

]
x +

[
1
2θ

]
u, x0 =

[
1
1

]
,

where θ0 = 1. The optimal control law for the standard LQ problem with Q = I2
and R = 1 is

u∗ = − [
0.8572 0.5571

]
x,

when θ = θ0. Here,we consider an SCLQproblemwith a first and a second derivative
of the trajectory sensitivity such as

JSC =
∫ ∞

0
x�Qx + u�Ru + x�

θ Qθ xθ + x�
θθ Qθθ xθθdt,

with xθθ = ∂xθ

∂θ
. The objective is to find a structured state feedback gain of the form

u = [
K 0 0

]
⎡
⎣ x

xθ

xθθ

⎤
⎦

minimizing the following objective function

J =
∫ ∞

0

(
x̄� Q̄x̄ + ū� R̄ū

)
dt, x̄� = [

x� x�
θ x�

θθ

]
, ū� = [

u� u�
θ u�

θθ

]
,

R̄ = diag (R, 0) , Q̄ = diag (Q, Qθ , Qθθ ) ,

under the following constraints

˙̄x = Āx̄ + B̄ū, x̄�
0 = [

x�
0 01×2n

]
,

Ā =
⎡
⎣ A 0 0

Aθ (Iq ⊗ A) 0
Aθθ 2Aθ (Iq ⊗ A)

⎤
⎦ , Aθθ = ∂Aθ

∂θ
,

B̄ =
⎡
⎣ B 0 0

Bθ (Iq ⊗ B) 0
Bθθ 2Bθ (Iq ⊗ B)

⎤
⎦ , Bθθ = ∂Bθ

∂θ
.

Solving the associated LMI/LME problem, with Q = I2, Qθ = Qθθ = 0.1I2, and
R = 1 gives

u∗ = [−1.5950 0.0098
]
x .
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Fig. 7.1 Trajectory of x1(t) with LQ controller
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Fig. 7.2 Trajectory of x1(t) with SCLQ controller
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Fig. 7.3 Trajectory of x2(t) with LQ controller
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Fig. 7.4 Trajectory of x2(t) with SCLQ controller
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Figures7.1, 7.2, 7.3 and 7.4 show performance comparison between the standard LQ
and SCLQ controllers for θ = θ0 (corresponding to solid lines in Figs. 7.3 and 7.4)
and θ = 1.2 (corresponding to dashed lines in Figs. 7.3 and 7.4). It is observed that
the standard LQ controller leads to instability when θ = 1.2; while the closed-loop
systemwith the SCLQcontroller is stable and only deviates slightly from the nominal
value θ = θ0 case.

7.4 Conclusion

This chapter shows a new necessary and sufficient condition for the existence of
the optimal SCLQ controller, through solving a singular LQ control problem within
the descriptor system framework. A suboptimal parametric SCLQ controller is then
obtained by means of a computationally tractable optimization problem subject to
some LMI/LME constraints.

Furthermore, a new synthesis method for multiple parametric SCLQ controllers is
proposed. These controllers are designed to cover the entire parametric uncertainty
set while degrading as less as possible the intrinsic robustness properties of each
local linear quadratic controller. An adequate PSO-based algorithm is presented to
find the best distribution of the local design regions simultaneously with the set of
the sensitivity reduction tuning parameters.



Chapter 8
Concluding Remarks

Composed of eight chapters, this book develops some original results about dynamic
LTI descriptor systems by following two different visions. The first one consists
on generalizing some results from the classical state-space case to linear descriptor
systems.The second approachuses the descriptor framework in order to solve, exactly
or numerically, some robust and optimal control problems known in the literature
and unsolved yet.

After recalling some basic concepts and fundamental results for LTI descriptor
systems, dilated LMIs, also referred to as extended LMIs, for both the continuous-
time and discrete-time settings are given. These conditions are unifying with respect
to the existing tremendous LMI conditions with some auxiliary variables. Moreover,
relied on the use of an additional positive scalar, a necessary and sufficient condi-
tion for the bounded real lemma for discrete-time descriptor systems is presented.
A numerically efficient and reliable design procedure for state feedback H∞ con-
troller design is given. Furthermore, the design of a measurement output feedback
controller solving the problem of regulation constraints for descriptor systems is also
discussed. A solvability condition is conducted in terms of a generalized Sylvester
equation, together with a specific structured controller, and the additional dissipative
performance objective is further tackled using an LMI-based approach.

In addition, on the control design aspects, this book reports a certain number of
results associated with the use of input-output unstable and nonproper weighting
filters for continuous-time descriptor systems. Stabilization, H2 control and H∞
control under a new concept called comprehensive admissibility are dealt with. In
addition to necessary and sufficient conditions, the structure of the resulting controller
is explicitly conducted, which indicates that the comprehensive admissibility control
problem can be transformed into a standard admissibility control problem for some
augmented system without weights.

Finally, when reconsidering the well-known optimal control problem under para-
metric sensitivity constraints, one heads to a singular optimal control problem. A
necessary and sufficient condition to the existence of optimal sensitivity constrained

© Springer Nature Singapore Pte Ltd. 2017
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119



120 8 Concluding Remarks

LQ controller is derived thanks to an augmented descriptor system. A numerically
efficient and reliable design LMI/LME procedure is proposed for suboptimal cases.

Numerically, a certain number of tools, such as the generalized Sylvester equa-
tions, generalized algebraic Riccati equations, particle swarm optimization, are
recalled and adopted to derive solutions to the examples used throughout the book.

Authors hope to pave the way to some promising and original developments on
the use of the descriptor approach for solving multiobjective control problems or on
generalizations of existing results to this broader class of systems.



Appendix A
Generalized Sylvester Equation

A.1 Sylvester Matrix Equation

Many problems in systems and control theory are related to solvability of Sylvester
equations. It is well known that these equations have important applications in sta-
bility analysis, observer design, output regulation problems and eigenvalue assign-
ment [Tsu88, Doo84, FKKN85, Dua93, WH14]. In this appendix, we present some
existing results for generalized Sylvester equations associated with continuous-time
descriptor systems.

A matrix equation of interest in control theory is of the form,

k∑
i=1

Ai X Si = R, (A.1)

where Ai , Si and R are given matrices and X is an unknown. In [Hau94], Hautus
provided a detailed discussion on such equations while recalling historical origins
of them.

A well known example of the linear matrix equation (A.1) is what is referred to
as the Sylvester equation,

AX − XS = R, (A.2)

where A and S are square matrices. As proved by Sylvester [Syl84], the Eq. (A.2)
is universally solvable1 if and only if the matrices A and S have no eigenvalues in
common. A result for the general equation (A.1), in the same spirit as that of the
Sylvester equation, is still not known. Thus, researchers restrict themselves to some
special cases. For example, the authors in [Chu87, HG89, GLAM92] considered the
solvability for the matrix equation of the form,

1Equation (A.1) is said to be universally solvable if it has a solution for every R.

© Springer Nature Singapore Pte Ltd. 2017
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Studies in Systems, Decision and Control 102, DOI 10.1007/978-981-10-3677-4
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AXB − CXD = E . (A.3)

It is proved that the Eq. (A.3) has a unique solution if and only if the matrix pencils
A − λC and D − λB are regular and the spectrum of one is disjoint from the negative
of the spectrum of the other.

The generalized Sylvester equation of the form

AX − Y B = C,

DX − Y E = F,
(A.4)

has also been studied in the literature, e.g. see [Ste73, KW89, Wim94]. It is shown
that in the case where the matrices of (A.4) are real and A, B, D and E are square,
the generalized Sylvester equation has a unique solution if and only if the polynomi-
als det(A − sB) and det(D − sE) are coprime [Ste73]. With these assumptions, the
authors in [KW89] deduced a solution of (A.4) by applying generalized Schur meth-
ods. Moreover, Wimmer extended Roth’s equivalence theorem [Rot52] to a pair
of Sylvester equations and concluded the following statement for the consistency
of (A.4) without assumptions.

Theorem A.1 ([Wim94]) The Eq.A.4 has a solution X and Y if and only if there
exist nonsingular matrices R and S with appropriate dimensions such that

S

[[
A C
0 B

]
− λ

[
D F
0 E

]]
=

[[
A 0
0 B

]
− λ

[
D 0
0 E

]]
R. (A.5)

The above theorem can also be interpreted as the polynomial matrices[
A − λD C − λF

0 B − λE

]
and

[
A − λD 0

0 B − λE

]
are unimodularly equivalent.

Within the descriptor framework, the generalized Sylvester equations have also
been received wide attention from scholars. In [Dua96], Duan considered the gener-
alized Sylvester matrix equation of the form

AV + BW = EVC, (A.6)

where A ∈ C
m×n , B ∈ C

m×r , C ∈ C
p×p, E ∈ C

m×n (p ≤ n) are known, and V ∈
C

n×p and W ∈ C
r×p are to be determined. This equation is directly related to the

eigenstructure assignment and observer design for linear descriptor systems. Based
on the Smith canonical form of the matrix [A − λE B], the author provided a simple,
direct complete and explicit parametric solution of (A.6) for the matrix C in the
Jordan form with arbitrary eigenvalues.

Moreover, combined with some rank and regional pole placement constraints, the
following problem was investigated in [CdS05, Dar06].
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Problem A.1 Consider a linear descriptor system represented by

E ẋ = Ax + Bu,

y = Cx,
(A.7)

where x ∈ R
n, y ∈ R

p and u ∈ R
m are the descriptor variable, measured output and

control input, respectively. The matrix E ∈ R
n×n is such that rank(E) = r < n and

p < r . Let D be a region in the open left-half complex plane, D ⊆ C
−, symmetric

with respect to the real axis. Find matrices T ∈ R
(r−p)×n, Z ∈ R

(r−p)×p and H ∈
R

(r−p)×(r−p) such that

T A − HT E = −ZC, σ(H) ⊂ D, (A.8)

under the rank constraint

rank

⎛
⎝

⎡
⎣T E
L A
C

⎤
⎦

⎞
⎠ = n, (A.9)

where L ∈ R
(r−p)×n is any full row rank matrix satisfying LE = 0.

Themain motivation of solving this problem is directly concerned with the design
of a reduced-order observer of minimal order r − p under the form

ż(t) = Hz(t) + T Bu(t) − Zy(t),
x̂(t) = Sz(t) + N̄ ȳ(t) + Ny(t),

(A.10)

where z ∈ R
(r−p) is the state of the observer and ȳ ∈ R

(n−r) is a fictitious output. As
shown in [CdS05], if ProblemA.1 is solved for some matrices T , Z and H and if we
compute the matrices S, N̄ and N satisfying

[
S N̄ N

]
⎡
⎣T E
L A
C

⎤
⎦ = I, (A.11)

then, the corresponding minimal order observer given by (A.10) is such that

(i) the observer state verifies

lim
t→∞[z(t) − T Ex(t)] = 0, ∀z(0), Ex(0); (A.12)

(ii) for ȳ(t) = −LBu(t), the estimated state x̂(t) satisfies

lim
t→∞[x(t) − x̂(t)] = 0, ∀x(0), x̂(0). (A.13)
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Note that for L = 0, ProblemA.1 reduces to finding matrices T ∈ R
(n−p)×n , Z ∈

R
(n−p)×p and H ∈ R

(n−p)×(n−p) such that

T A − HT E = −ZC, σ(H) ⊂ D, (A.14)

under the rank constraint

rank

([
T E
C

])
= n. (A.15)

These are indeed the conditions for the reduced-order observer design with order
n − p, see for example [DB95, DZH96, Var95].

The solvability of ProblemA.1 was deduced in terms of the concept of D-strong
detectability.

Definition A.1 (D-strong Detectability) The descriptor system (A.7) is D-strongly
detectable if and only if the following conditions are satisfied

(1) rank

([
A − λE

C

])
= n, ∀λ ∈ C, λ /∈ D,

(2) rank

⎛
⎝

⎡
⎣ E
LA
C

⎤
⎦

⎞
⎠ = n.

Theorem A.2 ([CdS05, Dar06]) There exist matrices T ∈ R
(r−p)×n, Z ∈ R

(r−p)×p

and H ∈ R
(r−p)×(r−p) with σ(H) ⊂ D ⊆ C

− solving ProblemA.1, if and only if the
descriptor system (A.7) is D-strongly detectable and

rank

([
L A
C

])
= n − r + p. (A.16)

A.2 Considered Generalized Sylvester Equation

For a general case, we define the following matrix equation

∑
1≤i≤ f,1≤ j≤k

�i j� j�i j = Pi , (A.17)

where �i j , �i j and Pi are constant matrices with appropriate dimensions, and � j is
the matrix variable. It is worth pointing out that (A.17) can be regarded as a gener-
alized Sylvester equation , which covers the aforementioned generalized Sylvester
equations reported in [KW89, Chu87, HG89, GLAM92, Dua96].

For example, theSylvester equation (A.3) canbeobtainedby setting f = 1, k = 2,
�11 = A,�12 = C ,�11 = −B,�12 = D, P1 = E , and�1 = �2 = X in (A.17); the
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Eq. (A.4) can be viewed as (A.17) with f = k = 2, �11 = A, �11 = I , �12 = −I ,
�12 = B, �21 = D, �21 = I , �22 = −I , �22 = E , P1 = C , P2 = F , �1 = X and
�2 = Y ; while the generalized Sylvester equation (A.6) can be regarded as (A.17)
with f = 1, k = 2, �11 = [

A B
]
, �12 = [

E 0
]
, �11 = I , �12 = C , P1 = 0, and

�1 = �2 =
[
V
W

]
.

Now, we discuss briefly the solvability of a special case of (A.17). According to
the properties of the Kronecker product, we have the following relationship

AXB = (B	 ⊗ A)vec(X). (A.18)

Then, the matrix equation (A.17) can be written as

(N	 ⊗ M)vec
(
diag(I f ⊗ �1, . . . , I f ⊗ �k)

) = vec(L) (A.19)

where

M = [
diag(�11, . . . , � f 1) · · · diag(�1k, . . . , � f k)

]
, (A.20)

N = [
diag(�	

11, . . . , �
	
f 1) · · · diag(�	

1k, . . . , �
	
f k)

]	
, (A.21)

L = [
P	
1 · · · P	

k

]	
. (A.22)

Now, we focus on the special case of the generalized Sylvester equation (A.17).
Let us consider the following matrix equation

AXB − CY D = E,

FXG − HY J = K ,
(A.23)

where A, B, C , D, E , F , G, H , J and K are known matrices with appropriate
dimensions, and X and Y are the matrix variables to determine.

Using the Kronecker product, (A.23) can be written by

[
B	 ⊗ A D	 ⊗ C
G	 ⊗ F J	 ⊗ H

] [
vec(X)

vec(Y )

]
=

[
vec(E)

vec(K )

]
. (A.24)

Clearly, the solution to this equation can easily be obtained through a linear program.



Appendix B
Generalized Algebraic Riccati Equation

In mathematics, a Riccati equation is named after the Italian mathematician Count
Jacopo Francesco Riccati and is referred to anyODE that is quadratic in the unknown
function. In systems and control theory, the term “Riccati equation” is used to refer
to matrix equations with an analogous quadratic term that occur in both continuous-
time and discrete-time linear quadraticGaussian (LQG) control problems. The steady
state version of these is referred to as the algebraic Riccati equation (ARE). The ARE
is either of the following matrix equations: the continuous-time algebraic Riccati
equation (CARE)

A	P + PA − PBR−1B	P + Q = 0, (B.1)

or the discrete-time algebraic Riccati equation (DARE)

A	PA − (A	PB)(R + B	PB)−1(B	PA) + Q = P, (B.2)

where P ∈ R
n×n is the unknown symmetric matrix and A, B, Q, R are known real

coefficient matrices with appropriate dimensions. The ARE determines the solution
of two of the most fundamental problems in control theory, namely, the infinite
horizon time-invariant linear quadratic regulator (LQR) problem and the infinite
horizon time-invariant LQG control problem. Comprehensive studies on the AREs
in both continuous-time anddiscrete-time settings havebeen reported in the literature,
for example, see [WAL84, LR95].

In this section, we study the continuous-time generalized algebraic Riccati equa-
tion (GARE) of the form

E	P = P	E,

A	P + P	A − (P	B + S)R−1(P	B + S)	 + Q = 0,
(B.3)

where E ∈ R
n×n , A ∈ R

n×n , B ∈ R
n×m , Q ∈ R

n×n , S ∈ R
n×m , R ∈ R

m×m and
rank(E) = r ≤ n. The above GARE is associated with the following continuous-
time descriptor system

© Springer Nature Singapore Pte Ltd. 2017
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Eẋ = Ax + Bu,

y = Cx + Du.
(B.4)

Katayama and Minamino, in [KM92], proposed an asymmetric GARE to study
the optimal LQR problem for descriptor systems. The GARE (B.3) can be viewed as
the symmetric version of the one proposed by Katayama andMinamino. The authors
in [WFC93] also used a symmetric GARE for the robustness properties of the LQR
problem within the descriptor framework.

Definition B.1 (Admissible Solution) A solution P to the GARE (B.3) is called an
admissible solution if

(
E, A − BR−1(B	P + S	)

)
is regular, impulsive and stable

as well as E	P ≥ 0.

It is noted that the admissible solution P might not be unique, but E	P is unique.
The H2 and H∞ control problems for descriptor systems reported in [TK98,

TMK94, KK97] are directly related to admissible solutions to the underlyingGAREs.
For example, for the H2 control problem, we set

[
Q S
S	 R

]
=

[
C	
D	

] [
C D

]
(B.5)

Furthermore, the H∞ control problem needs to solve the following H∞-like Riccati
equation

E	P = P	E,

A	P + P	A + P	(γ−2B1B	
1 − B2B	

2 )P + C	C = 0,
(B.6)

where γ ∈ R
+. The second equation can be rewritten in the GARE format as

A	P + P	A + P	 [
B1 B2

]
︸ ︷︷ ︸

B

[
γ−2 0
0 −I

]
︸ ︷︷ ︸

R−1

[
B	
1

B	
2

]
P + C	C︸ ︷︷ ︸

Q

= 0. (B.7)

The following assumptions are generally made for the existence of an admissible
solution to the GARE.

Assumption B.1

(A1). (E, A) is regular;
(A2). D	D > 0;
(A3). (E, A, B) is finite dynamics stabilizable and impulse controllable;

(A4).
[
A − sE B

C D

]
has no invariant zeros on the imaginary axis including infinity;

These assumptions are quite standard and coincide with the classical assumptions
for conventional state-space systems [ZDG96]. Note that (A2) is widely made for
state-space systems to guarantee a regular problem, i.e. one without zeros at infinity.



Appendix B: Generalized Algebraic Riccati Equation 129

However, descriptor systems can still have zeroes at infinity, even if D is full column
rank. This condition is made here in order to deduce the controller in terms of the
GARE. Moreover, Assumption (A2) can be made without loss of generality within
the descriptor framework. If it does not hold, an equivalent realization satisfying
this assumption can always be obtained [MKOS97, TK98]. Assumption (A3) is
obviously essential to the existence of an admissible solution. Assumption (A4)
is made to guarantee a regular problem. Moreover, for the state-space case where
E = I , (A1) always holds.

Based on the generalized eigenvalue problem (GEP), numerical methods for
solving the GARE (B.3) have been reported in [TMK94, TK98, KK97, KM92,
WYC98].Nowwe recall these processes. To this end, let us construct theHamiltonian
pencil of the form

H − λJ =
⎡
⎣ A 0 B

−Q −A	 −S
S	 B	 R

⎤
⎦ − λ

⎡
⎣E 0 0
0 E	 0
0 0 0

⎤
⎦ , (B.8)

with λ ∈ C. Under Assumptions (A1)–(A4), (J, H) is regular, impulse-free and
has no finite dynamic modes on the imaginary axis including infinity. In addi-
tion, this matrix pencil contains r stable finite eigenvalues, r unstable eigenvalues,
and 2n + m − 2r infinite eigenvalues. Let � = [�	

1 �	
2 �	

3 ]	 ∈ C
(2n+m)×n be the

matrix consisting of the generalized eigenvectors and the generalized principal vec-
tors related to the stable finite eigenvalues. We have

⎡
⎣E 0 0
0 E	 0
0 0 0

⎤
⎦

⎡
⎣�1

�2

�3

⎤
⎦ � =

⎡
⎣ A 0 B

−Q −A	 −S
S	 B	 R

⎤
⎦

⎡
⎣�1

�2

�3

⎤
⎦ , (B.9)

where � ∈ C
r×r is a Jordan form with all eigenvalues in the open left-half complex

plane.
According to [TMK94], any admissible solution P to the GARE (B.3) is given

by

P = [
�2 W2Pr

] [
�1 W1

]−1
, (B.10)

where Pr satisfies

A	
r Pr + P	

r Ar − (P	
r Br + Sr )R−1(P	

r Br + Sr )	 + Qr = 0,
Ar = W	

2 AW1, Br = W	
2 B, Qr = W	

1 QW1, Sr = W	
1 S,

(B.11)

and W1 ∈ R
n×(n−r), W2 ∈ R

n×(n−r) are any full column rank matrices satisfying
EW1 = 0 and E	W2 = 0, respectively.
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Asymptotic tracking, 63
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Comprehensive admissibility, 66, 87
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Controllability Gramian, 111
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Descriptor system, 3
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dissipative system, 30
positive realness, 30
strict dissipativity, 51
supply function, 50

Duality, 21

E
Exosystem, 46
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Generalized algebraic Riccati equation, 88,
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Generalized eigenvalue, 16
Generalized eigenvalue problem, 129
Generalized state-space system, 3
Generalized Sylvester equation, 47, 67, 70,

122, 124

H
Hamiltonian pencil, 129
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Infinite generalized eigenvector, 16
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Kronecker-Weierstrass decomposition, 12
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Mixed sensitivity problem, 62
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impulse (Imp-) observability, 19

Optimal comprehensive H2 controller, 94
Ordinary differential equation, 1
Output regulation, 46

P
Parameter dependence, 34, 106
Parametric sensitivity, 105
Particle swarm optimization, 113
Projection lemma, 25

R
Reachable state, 17
Regularity, 8
Restricted system equivalence, 11

S
Semistate system, 3
Singular LQ problem, 108
Singular system, 3
Singular value decomposition, 12, 36
Solvability, 9
Strong equivalence, 11
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Weighting filter, 62

Y
Youla parameterization, 61, 72
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